

We are committed to providing <u>accessible customer service</u>. If you need accessible formats or communications supports, please <u>contact us</u>.

Nous tenons à améliorer <u>l'accessibilité des services à la clientèle</u>. Si vous avez besoin de formats accessibles ou d'aide à la communication, veuillez <u>nous contacter</u>. Exploration Report Diamond Drilling Nipissing Diamond Project – Kon Property Gillies Limit Township Larder Lake Mining Division Ontario

For

RJK Explorations Ltd.

Rochelle Collins, P. Geo.

Peter Hubacheck, P. Geo.

July 28, 2021

Table of Contents

1.0	SUMMARY
2.0	INTRODUCTION
3.0	Property Description and Location
3.1	Location and Access5
3.2	Topography, Climate and Vegetation5
3.3	Description of Mining Claims Worked6
4.0	Property Exploration History
5.0	Regional and Local Geology
5.1	Regional Geology8
5.2	Local Geology10
5.3	Structural Geology10
6.0	Type of Mineral Deposit / Commodity
7.0	2020 Diamond Drilling Program13
7.1	Diamond Drilling Program13
7.2	Technical Aspects of the Drill Program13
7.3	Location of Drill Holes13
7.4	Drill Hole Information14
8.0	Results14
8.1	Sampling and Description of Kimberlite Processing Results14
8.2	Diamond Processing Results14
8.3	Micro-Probe Indicator Mineral Results15
9.0	Descriptions of Drill Holes15
9.1	Drill Hole Cross-Sections
10	Assessment Work Expenditure Allocation
11.0	Conclusions
12.0	Recommendations
13.0	Acknowledgements
13.0	Certificates of Qualification
14.0	End Notes/References
End	notes
Refe	erences

Figures

Figure 3.1: General Location and Property Access Map	5
Figure 4.1: Plan view of Drill Hole Location with Claim Cells	7
Figure 5.1: Cobalt Silver Area Geology and Structural Architecture	9
Figure 5.3a: Timiskaming Structural Zone showing Twin Lakes Kimberlites	11
Figure 5.3b: Photo Lineament Structural Analysis of Twin Lakes Kimberlite Field	12
Figure 5.3c: Total Field Airborne Magnetics of Twin Lakes Kimberlite Field	12
Figure 9.1: Drill Fence 1 showing KON-20-06, 03, 02 of KON 1 Kimberlite Structure	17
Figure 9.2: Plan Map showing Cross-section Drill Fence lines 1 & 2	18
Figure 9.3: KON-20-01 & KON-20-07: Cross-Section Drill Hole Fence 2 with Lithology	19

Tables

Table 3.3.1: Summary of Mining Claims Worked	6
Table 7.4.1: Summary of Drill Hole Information	14
Table 10.1: Assessment Work Expenditure Allocation	20

Appendices

Appendix A: Property History
Appendix B: Drill Hole Logs
Appendix C: Analytical Certificates
Appendix D: Work Expenditure Invoices

1.0 SUMMARY

All mining claims within the Nipissing Diamond Project – Kon Property are in Gillies Limit Township, Larder Lake Mining Division and are held by Alan Kon and have been optioned to RJK Explorations Ltd. for purposes of exploring for diamond-bearing kimberlite pipes in the Cobalt-Kirkland Lake area situated 13 km south of the community of Cobalt, Ontario. The property and exploration diamond drill holes may be accessed via Hound Chute Road east of the Montreal River. A central point within the Kon Property is approximately located at UTM coordinate 5,238,950 N, 599,520 E NAD 83 Zone 17 (47.29645 Lat., 79.68260 Long).

RJK Explorations Ltd. personnel conducted diamond drilling with the assistance of Huard Drilling of New Liskeard, Ontario between January 21, 2020 and February 29, 2020 (leap-year) for 40 days on four unpatented mining claims within Gillies Limit Township. RJK Explorations Ltd. completed 5 drill holes totalling 516 meters in a diamond drill program to test the KON 1 magnetic low anomaly on the Kon Property for the potential to host diamondiferous kimberlites. Drilling resulted in a better understanding and definition of the local stratigraphy.

Maximum relief on the property is approximately 25 metres. Topography is generally rolling hills with local steep ledges and cliffs. Giroux Creek flows south and westward through the area and into the Montreal River. Overburden is relatively shallow over the north and south parts of the claims and deeper in central parts of the claim between 2-26m. Vegetation on the claims consists mainly of mature mixed forest and locally dense underbrush. Logging was done across much of the area and re-growth is extremely dense and, in some cases, impassable.

CFM Mineral Labs recovered 7 natural microdiamonds, varying in colour from clear to white from 7.56 kg of heavy mineral concentrates from the 277 kg (611 lb) drill core bulk sample from the KON 1 magnetic low target. Three of the diamonds were chips with a greenish tinge and the other four are white diamond chips and macles. The chips are generally flat with one being triangular shaped, possibly a broken fragment from a larger stone. There were no inclusions in the diamonds recovered.

2.0 INTRODUCTION

This report has been prepared to meet the requirements for the filing of assessment work under the provisions of the Ontario Mining Act and describes results of a diamond drilling program performed by RJK Explorations Ltd.

The diamond drill holes were drilled within the Kon Property in Gillies Limit Township on 4 contiguous claims 100% owned by Alan Kon and optioned to RJK Explorations Ltd. The drill holes are targeting magnetic anomalies identified in previous assessment work.

3.0 Property Description and Location

3.1 Location and Access

A centrally located point within the Kon Property is approximately located at UTM coordinate 5,238,950 N, 599,520 E NAD 83 Zone 17 (47.29645 Lat., 79.68260 Long). The Kon Property is located approximately 243 kilometers southeast of Timmins, Ontario and 158 kilometers north of North Bay, Ontario, via road access. The field crews accessed the Kon Property in Gillies Limit Township, Larder Lake Mining Division, via road from the community of Cobalt, Ontario and turning southeast onto Coleman Road for 1.7 kilometres and turning south onto Hound Chute Road (may also be known as Silverfields Road) for approximately 12.6 kilometers, following the eastern side of the Montreal River. The property can be accessed to the east on foot or via all-terrain vehicle.

Figure 3.1: General location and property access.

3.2 Topography, Climate and Vegetation

Maximum relief on the property is approximately 25 metres. Topography is generally rolling hills with local steep ledges and cliffs. Giroux Creek flows south and westward through the area and into the Montreal River. Overburden is relatively shallow over the north and south parts of the claims but of unknown depth in the center. Vegetation on the claims consists mainly of mature mixed forest and locally dense underbrush. Logging was done across much of the area and re-growth is extremely dense and, in some cases, impassable.ⁱ

The climate of northern Ontario is generally warm with moderate precipitation from May to October and snow covered and cold weather from November to May.

3.3 Description of Mining Claims Worked

The diamond drilling area consists of mining claims in Gillies Limit Township, Larder Lake Mining Division. The claims are part of the Nipissing Diamond Project – Kon Property. The claims are all contiguous, and owned by Alan Kon and have been optioned to RJK Explorations Ltd. Summary information for those mining claim cells on which the diamond drilling program was completed is summarized in Table 3.3.1. Drill hole locations are depicted on a claim map and presented in Figure 4.1. One drill hole KON-20-04 crossed claim boundaries as can be seen in Figure 4.1.

Cell Number	Legacy Claim	Township	Ownership	Due Date
174592	1140510	Gillies Limit	Alan Kon	May 18, 2022
228663	1140510, 4243947	Gillies Limit	Alan Kon	May 18, 2022
244698	1140510, 4288297	Gillies Limit	Alan Kon	July 16, 2022
232532	1140510, 4268297	Gillies Limit	Alan Kon	July 16, 2022

Table 3.3.1: Summary Mining Claims Worked

4.0 Property Exploration History

The property known as the Nipissing Diamond Project – Kon Property is composed of several mining claims listed in Appendix A, along with history of the claims as identified in claim abstracts and Mine Lands Administration System (MLAS). A summary of the key elements of the property history were reproduced in this report with the permission of Alan Kon.

Extensive work has been carried out in the general Cobalt District, but little has been reported in the immediate area of the Hound Chutes claims. One drill hole was completed by E. Forbear in 1955 at a point approximately 75 m northwest of the area. Watt-Armstrong did some work in 1969 (?) where Cobalt and Nickel was recorded in a drill hole and a pit near the Hound Chutes Dam in December 1998, High-Sense Geophysics Limited carried out an airborne electromagnetic survey over the area on behalf of Branchwater Resources Ltd. Seymour Sears carried out geological mapping in 2003 on behalf of Cabo Mining Corporation. During the summer months of 2009, Alan Kon performed a KIM survey and prospecting over parts of the claims on behalf of Diamond Exploration Inc.

A ground Magnetometer/VLF survey carried out between January 28 and February 4, 2011, by Larder Geophysics of Larder Lake Ontario and Alan Kon who did the initial consultation, ground inspection, and organized the work. Since acquiring the claims starting in 2011, Alan Kon has done a considerable amount of preliminary exploration including prospecting and follow-up sampling, overburden stripping projects and geophysical surveys. Chronological age dating was also performed on a kimberlite sample from the Hound Chutes Claims in 2014 and is estimated to be approximately 153.5 Ma.ⁱⁱ

Figure 4.1: Drill hole locations depicted on claim map. [DDH KON-20-04 & 05 discussed in separate assessment filing]

5.0 Regional and Local Geology

The information provided in the Regional and Local Geology section of this report is a compilation from various sources. The reader is directed to the references for further reading.

5.1 Regional Geology

The Cobalt area lies within the Superior structural province of the Canadian Shield. Archean basement rocks consist of northwest-southeast trending Archean volcanic intruded by mafic, ultramafic and granitic intrusives. The Archean rocks are unconformably overlain by relatively flat-lying Proterozoic sediments. The sediments consist of conglomerates, greywackes, and quartzites of the Coleman member. The Archean and Proterozoic rocks were intruded by the Nipissing diabase sill intrusive event. Nipissing diabase was intruded ~2219 Ma predominantly as sheets (sills, cone sheets and dikes). The diabase takes the shape of basins and domes were intruded as a sill sheet. The youngest known consolidated rocks in the area are kimberlite pipes.

The rationale of exploring for diamonds in the Temagami region is the diamond-bearing kimberlite pipes and dykes. The Lake Temiskaming Structural Zone is expressed as large-scale normal movement along northwest-trending faults, including the Montreal River and Cross Lake fault systems. Nipissing diabase and gabbro intrusive likely were funnelled through conduits created by this rifting event and kimberlite magmatism is likely to have exploited these same features.ⁱⁱⁱ

Kimberlites in northern and eastern Ontario occur along a trend at approximately 325°. The Lake Timiskaming Structural Zone in eastern Ontario has a northwest trend, and a subordinate northeast trend in the Cobalt and New Liskeard, Ontario areas.^{iv}

There are three major NE trending structures (West Cobalt Lake fault, Kerr Arch and Schumann Arch) and two major NW/SE trending structures (Cross Lake and Montreal River Faults shown in purple, Figure 5.1. In 2019, The Mineral Exploration Research Center published the Cobalt Seismic transect under the direction of Dr. Shawna White. The 40 km transect was conducted on HWY 567 from the east side of Cobalt through Bucke and Lorrain and terminated in South Lorrain Twp. RJK Explorations Ltd.'s major claim dispositions including the Kon and Bishop Properties are outlined in yellow rectangles, Figure 5.1.

Figure 5.1: Cobalt Silver Area Geology and Structural Architecture – Modified from {MERC Cobalt Seismic Transect Release-2018}

5.2 Local Geology

The following comments were noted by Alan Kon, author of the Assessment Work Report on Claims 1140510 and 3007492 Gillies Township, Larder Lake Mining Division May 2012, that documents an outcrop stripping program.

"The first part of the stripped area is Gowanda series sediments with exceedingly small pebbles to large loosely packed boulders up to - 12 inches in diameter. There are a few small areas with rusty gossans, but no visible sulphides were observed. Further up the stripped area there is one small rusty breccia vein approximately 2 centimeters in width and about 50 centimeters long. The conglomerate meets an unidentified mafic intrusive dike. The conglomerate has a considerable amount of calcite stringer veins and veinlets running between the layers.

The mafic dike also appears to be faulted near the contact. Small calcite veins run perpendicular to the fault with the occasional vein running parallel. The mafic dike itself is mostly very dark green to black in colour but seems to have a bluish tinge. At the faulted area, the mafic rock is very crumbly and somewhat soft but gets much harder as it moves away from the fault.

The exact age or type of the mafic dike is not known but would suggest it is much younger than the relatively young Protozoic aged Gowganda sediments". v

5.3 Structural Geology

The information compiled in this section regarding the structural geology of the Kon Property area is sourced from Sage, R.P. 2000. Kimberlites of the Lake Timiskaming structural zone: supplement; Ontario Geological Survey, Open File Report 6018, 123p.

The Lake Timiskaming Structural Zone kimberlites occur at intersections between the regional northwest trend and more local lineaments, faults, and lithologic boundaries. While regionally the distribution of kimberlites follows a northwest pattern, in detail, local clusters of kimberlite pipes may reflect a distribution oblique to the northwest trend and influenced by cross structures as evidenced by the Twin Lake kimberlite discoveries in 1996 by Sudbury Contact Mines Ltd. In 1995 and 1996, the author led a discovery team employing detailed airborne geophysics combined with RC drilling basal till sampling to identify the 95-1, 95-2, 96-1, MR6 kimberlite targets. (Imagery from P. Hubacheck geo-datafiles).

Figure 5.3a: Timiskaming Structural Zone showing Twin Lakes Kimberlites

Along the Lake Timiskaming Structural Zone, faults and lineaments display groupings into north-south, northeast, and northwest trends and these intersecting patterns have broken the crustal rocks into polygonal blocks. Kimberlite intrusions display a preference at being emplaced at intersection points along these structural trends. In the Cobalt – New Liskeard area, kimberlites occur on both flanks of the Lake Timiskaming Structural Zone. Lineament trends intersect at or close to the site of emplacement.

Figure 5.3b: Photo Lineament Structural Analysis of Twin Lakes Kimberlite Field

Figure 5.3c: Total Field Airborne Magnetics of Twin Lakes Kimberlite Field

Between Cobalt and New Liskeard, numerous kimberlite pipes occur where more conspicuous northwest-trending faults are intersected by local northeast-trending cross faults. Mapping by Thomson (1956, 1960) and Russell (1984) suggests that the bedrock in this region is broken into many blocks defined by these two structural trends.^{III}

6.0 Type of Mineral Deposit / Commodity

The RJK Explorations Ltd. is exploring for diamondiferous kimberlite pipes by testing magnetic lows and magnetic highs identified by previous magnetometer survey work. Magnetometer is an effective tool for kimberlite exploration, as the host rock surrounding the emplaced pipe often has different magnetic properties than the pipe itself.

The reader is encouraged to refer to Sage (1996) for a discussion of the geophysical expression of kimberlite pipes in this region. In summary, within the Cobalt – New Liskeard area at least three kimberlite intrusions have a negative magnetic response including the diamondiferous 96-1 pipe. The geochronology suggests that kimberlite emplacement spanned approximately 30 Ma and straddled a magnetic polar reversal in the earth's magnetic field.^{vi} The kimberlite intrusions commonly display oval to circular isomagnetic contour patterns, and some appear to be highly elongated.^v

7.0 2020 Diamond Drilling Program

7.1 Diamond Drilling Program

The diamond drilling commenced January 21, 2020 and ended on February 29, 2020. A total 516 meters in five diamond drill holes were drilled during the period by Huard Diamond Drilling of New Liskeard. The exploration permit number for the property is PR-19-000292, effective January 2, 2020, to January 1, 2023.

7.2 Technical Aspects of the Drill Program

In general, access to the drilling area was good with the used of the Hound Chutes Road and drill access travel-ways. Huard Drilling of New Liskeard, Ontario used a hydraulic drill to drill BTW core diameter (42mm) to a maximum depth of 208 meters. The drill was aligned using GPS and compass at the drill site by an RJK Exploration Ltd. geologist. Drill hole inclination was surveyed at fifty-meter intervals and at the end of the hole with a Reflex single shot tool which utilized a magnetic compass to measure azimuth and a pendulum inclinometer to measure dip.

7.3 Location of Drill Holes

All drill hole collars were positioned with a Garmin 78S GPS unit and verified with a Magellan 1000 unit. Elevations were determined from Google Earth WGS 84.

7.4 Drill Hole Information

Drill hole information is summarized in Table 7.4.1 with UTM co-ordinates in NAD 83 Zone 17. Geologist, Peter Hubacheck supervised diamond drilling in the field and logged the diamond drill core.

							Samples	Samples
HOLE_ID	EASTING	NORTHING	ELEV.	Length	Azimuth	Dip	Collected	Assayed
KON-20-01	599,398	5,239,077	287	54	90	-45	0	0
KON-20-02	599,595	5,238,702	277	135	360	-90	0	0
KON-20-03	599,595	5,238,702	277	139	270	-50	0	0
KON-20-06	599,520	5,238,748	291	127	360/0	-90	27	27
KON-20-07	599,600	5,238,950	292	61	360/0	-90	0	0

Table 7.4.1: Summary of Drill Hole Information

Note: Coordinates shown are UTM NAD 83 Zone 17

Holes KON-20-04 and KON-20-05 were reported in a separate assessment report pertaining to gold exploration.

8.0 Results

8.1 Sampling and Description of Kimberlite Processing Results

Upon completion of a drill hole, geologists completed logs for geological observations. These drill logs can be found in Appendix B. Drill holes were selectively sampled by the logging geologist within prospective lithologies. A bulk sample was collected from the drill core of hole KON-20-06. See Appendix C for assay certificates. Holes KON-20-01, KON-20-02, KON-20-03, and KON-20-07 were not sampled.

The 277 kg bulk sample was prepared from the entire BTW vertical drill core interval from 7.2m to 85.9m in hole KON-20-06 which tested the northwest rim of the KON 1 magnetic low target stepping out 82m from hole KON-20-02. KON-20-06 intersected four volcanoclastic diatreme eruptions with each event consisting of two phases, an upper heterolithic kimberlite breccia underlain by a hypabyssal olivine-ilmenite-chromite-phlogopite kimberlite flow. The lower bimodal eruptive phases from 58.7m to 85.9m appear to be correlated to a similar assemblage in KON-20-02 from 68.7m to 100m.

8.2 Diamond Processing Results

CFM Mineral Labs recovered 7 natural microdiamonds, varying in colour from clear to white from 7.56 kg of heavy mineral concentrates from the 277 kg (611 lb) drill core bulk sample from the KON 1 magnetic low target. The samples were processed by CF Mineral Research Ltd. (CFM), an ISO 9001:2015 certified and 17025:2005 compliant laboratory, owned by Dr. Charles E. Fipke. Three of the diamonds were chips with a greenish tinge and the other four are white diamond chips and macles. The chips are generally flat with one being triangular shaped, possibly a broken fragment from a larger stone. There were no inclusions in the diamonds recovered.

8.3 Micro-Probe Indicator Mineral Results

Kimberlite indicator minerals (KIMS) were also separated and tested, returning materially important results. A total of 44 KIMS grain determinations were identified, that commonly derive from kimberlite sources, originating in the "diamond stability field." The diamond stability field is located from depths of about 200 km in the earth at the lower boundary of the continental lithosphere with the convecting mantle. From the heavy mineral concentrates, 1,200 grains were picked and classified into five diamond indicator mineral classes: potential picroilmenites and chromites, potential peridotitic pyroxene, potential diatreme olivenes and potential peridotitic garnet. Of the 119 grains analysed by electromicroprobe, 20 were high titanium chromites, 17 were clinopyroxene including 7 derived from eclogitic magma, 4 were G10 garnets, 2 were forsterite-olivine, 1 was a G11 garnet and all formed in the diamond stability field along with the diamonds.

Of interest was the chromite chemistry of the indicator minerals with 20 of the 30 grains probed containing enrichment of TiO_2 having geothermometry measurements ranging from 813 °C to 1478 °C which can only be derived from kimberlites or lamproites. It is noteworthy that 5 of these grains show lamproite affinity.

9.0 Descriptions of Drill Holes

Drill Hole KON-20-01

Drill hole KON-20-01 was collared at 599,398 E, 5,239,077 N and drilled with a 90 degrees azimuth and a -45 degrees dip to a final depth of 54.5 meters.

KON-20-01 intersected 0 meters of overburden followed downhole by a matrix supported conglomerate (Coleman Formation), an alteration zone of possible hypabyssal kimberlite phase. A hypabyssal kimberlite was intersected from 8.5-28m downhole with a fine grained pelletal textured groundmass and a brecciated lower contact. The hole ended in Coleman Formation Conglomerate like the start of the hole. No downhole surveys were taken for the hole and no samples were collected.

Drill Hole KON-20-02

Drill hole KON-20-02 was collared at 599,594.6 E, 5,238,702.18 N and drilled with a 360/0 degrees azimuth and a -90 degrees dip to a final depth of 135.0 meters.

KON-20-02 intersected 11 meters of overburden followed downhole by heterolithic kimberlite breccia matrix support to a clast supported heterolithic fluidized breccia. With a granodiorite raft with reddishbrown kimberlite breccia matrix. A hypabyssal kimberlite was intersected from 65.5-68.7m downhole with an aphanitic matrix and 10% globular granodiorite clasts. Units alternate between heterolithic breccia and hypabyssal kimberlite. The hole ended in granodiorite at 135 meters. Three downhole surveys were collected for the hole and no samples were collected.

Drill Hole KON-20-03

Drill hole KON-20-03 was collared at 599,594.6 E, 5,238,702.18 N and drilled with a 270 degrees azimuth and a -50 degrees dip to a final depth of 110.5 meters.

KON-20-03 intersected 11 meters of overburden consisting of glaciofluvial pebbly sand and boulders. A heterolithic kimberlite breccia with a rubbly clay-gouge lower contact composed most of the upper part of the hole with a hypabyssal kimberlite flow in the lower part of the hole. The hole ended in granodiorite. Downhole surveys are not available for the hole due to a tool malfunction. No samples were collected from KON-20-03.

Drill Hole KON-20-04 and KON-20-05

Drill Hole KON-20-04 and Drill Hole KON-20-05 were collared south of the KON 1 magnetic anomaly target and will be discussed in a separate assessment report. The target of these holes was a supracrustal break associated with a magnetic low and possible gold environment.

Drill Hole KON-20-06

Drill hole KON-20-06 was collared at 599,520 E, 5,238,748 N and drilled with a 360/0 degrees azimuth and a -90 degrees dip to a final depth of 127.0 meters.

KON-20-06 intersected 7 meters of overburden before intersecting four volcanoclastic diatreme eruptions with each event consisting of two phases, an upper heterolithic kimberlite breccia underlain by a hypabyssal olivine-ilmenite-chromite-phlogopite kimberlite flow. The lower bimodal eruptive phases from 58.7m to 85.9m appear to be correlated to a similar assemblage in KON-20-02 from 68.7m to 100m. Three downhole surveys were collects at approximately 50 meters spacing. Samples were collected from 7 meters to 89 meters in approximately 3 meters increments to be combined into a bulk sample discussed above in Section 8.

Drill Hole KON-20-07

Drill hole KON-20-07 was collared at 599,600 E, 5,238,950 N and drilled with a 360/0 degrees azimuth and a -90 degrees dip to a final depth of 61.0 meters. The objective of this hole was to test the high magnetic perimeter on the northeastern flank of the KON 1 magnetic low feature.

KON-20-07 intersected 2.9 meters of glaciofluvial sand and boulders followed down hole to 61 meters of Huronian polymictic conglomerate with 15-30% pebble to cobble sized dropstone clasts. One downhole survey was collected at the end of the hole. No samples were collected from KON-20-07.

9.1 Drill Hole Cross-Sections

Figure 9.1: Drill Fence 1 showing KON-20-06, 03, 02 of KON 1 Kimberlite Structure

A drill fence cross-section was generated by Golden Strater software from the northwest side of the kimberlite structure towards the center of the structure. Four major diatreme breccia phases have been identified with two hypabyssal phases more dominant towards the bottom of the drill holes. the correlation of the hypabyssal phases in 3 drill holes indicate a lobate sill-like geometry.

Figure 9.2: Plan Map showing Cross-section Drill Fence lines 1 & 2

Figure 9.3: KON-20-01 & KON-20-07: Cross-Section Drill Hole Fence 2 with Lithology

10.0 Assessment Work Expenditure Allocation

Hole - ID	Claim	Description	Invoice Number/Identifier	Amount (CDN\$)
KON-20-01	174592	Drilling	Jan 16-31, 2020	\$6,488.50
		Logging Facility	20-02, 20-04, 20-06, 22683	\$240.14
		Supplies	69432	\$128.70
		Consultants	Alan Kon 1, 2, 4, Hubacheck INV-5	\$2,150.89
		Reporting	21-202	\$608.00
	Sub-total			\$9,616.23
KON-20-02	228663	Drilling	Jan 16-31, 2020	\$14,430.50
		Logging Facility	20-02, 20-04, 20-06	\$240.14
		Supplies	69432	\$128.70
		Consultants	Alan Kon 1, 2, 4, Hubacheck INV-5	\$2,150.89
		Reporting	21-202	\$608.00
	Sub-total			\$17,558.23
KON-20-03	228663	Drilling	Jan 16-31, 2020 and Feb 1-15, 2020	\$9,985.00
		Logging Facility	20-02, 20-04, 20-06	\$240.14
		Supplies	69432	\$128.70
		Consultants	Alan Kon 1, 2, 4, Hubacheck INV-5	\$2,150.89
		Reporting	21-202	\$608.00
	Sub-total			\$13,112.73
KON-20-06	228663	Drilling	Feb 16-29, 2020	\$18,482.94
		Logging Facility	20-02, 20-04, 20-06	\$240.14
		Supplies	69432	\$128.70
		Consultants	Alan Kon 1, 2, 4, Hubacheck INV-5	\$2,150.89
		Diamond Indicator Analysis	C.F. Mineral Research Inv#9205866	\$19,771.18
		Reporting	21-202	\$608.00
	Sub-total			\$41,381.85
KON-20-07	174592	Drilling	Feb 16-29, 2020	\$14,224.94
		Logging Facility	20-02, 20-04, 20-06	\$240.14
		Supplies	69432	\$128.70
		Consultants	Alan Kon 1, 2, 4, Hubacheck INV-5	\$2,150.89
		Reporting	21-202	\$608.00
	Sub-total			\$17,352.67
Total (Before	Tax)			\$99,021.71
HST 13%				\$12,872.82

Table 10.1 Assessment Work Expenditure Allocation – See Appendix D

Note: Some expenditures have been pro-rated per hole, for example drilling costs, supplies etc.

Total by Claim

Claim ID	Amount (CDN\$) (Before Tax)	HST 13%
174592	\$26,968.90	\$3,505.96
228663	\$72,052.81	\$9,366.87

11.0 Conclusions

RJK Explorations Ltd. completed 5 drill holes totalling 516 meters in a diamond drill program to test the KON 1 magnetic low anomaly on the Kon Property for the potential to host diamondiferous kimberlites. Drilling resulted in a better understanding and definition of the local stratigraphy and phase geometry of the KON 1 kimberlite structure. Four major diatreme breccia phases have been identified with two hypabyssal phases more dominant towards the bottom of the drill holes. the correlation of the hypabyssal phases in 3 drill holes indicate a lobate sill-like geometry.

CFM Mineral Labs recovered 7 natural microdiamonds, varying in colour from clear to white from 7.56 kg of heavy mineral concentrates from the 277 kg (611 lb) drill core bulk sample from the KON 1 magnetic low target. Three of the diamonds were chips with a greenish tinge and the other four are white diamond chips and macles. The chips are generally flat with one being triangular shaped, possibly a broken fragment from a larger stone. There were no inclusions in the diamonds recovered.

12.0 Recommendations

Further drilling is recommended to follow up on the results of drill holes KON-20-01, KON-20-02, KON-20-03 and KON-20-06 as well as other areas of the KON 1 magnetic low anomaly.

13.0 Acknowledgements

Acknowledgements to the following individuals who provided geological, technical, historical, and other important information for this report: Alan Kon, Gary Grabowski, and the staff of MENDM.

13.0 Certificates of Qualification

STATEMENT OF QUALIFICATIONS – ROCHELLE COLLINS

I, Rochelle Collins, of the City of Timmins, Province of Ontario, do hereby certify that:

I am a registered professional Geologist, residing at 287 Lois Crescent, Timmins Ontario, P4P 1G6, and a member in good standing with the Professional Geoscientists of Ontario (#1412).

I have been working continuously in the field of geology for over 20 years in Canada and Mexico.

I hold a B.Sc. Honours degree in Geology and Geography (1997) from McMaster University of Hamilton, Ontario and an EMBA from Queen's University of Kingston, Ontario (2020).

This report is based on my observations and interpretation of the geological and geophysical data as reviewed for this report. I have no personal interest in the property covered by this report.

Rochelle Collins, P. Geo., B.Sc., eMBA Dated at Timmins, Ontario This 28th day of July, 2021.

STATEMENT OF QUALIFICATIONS – PETER HUBACHECK

I, Peter Hubacheck residing at 132 Moore St., Lion's Head, hereby certify that:

I hold a Mining Technologist (1974) diploma from the Haileybury School of Mines and Technology, Haileybury, Ontario and a B.A.Sc. (Geol. Eng. 1977) degree from the South Dakota School of Mines and Technology, Rapid City, South Dakota.

I have over 40 years of experience as a project geologist, exploration manager and Qualified Person for the purposes of NI 43-101, with experience in the exploration for gold, silver, base metals, uranium and diamonds in Canada and the USA.

I am a consulting geologist and President of W. A. Hubacheck Consultants Ltd. In January 2020, I joined RJK Explorations Ltd. as project manager and principal geologist on their Nipissing Diamond Project leading an exploration team in discovering 8 kimberlite deposits in the Historic Cobalt mining Camp.

I am a practicing member in good standing with the Association of Professional Geoscientists of Ontario (Member Number 1059).

Statements within this report are based on my personal observations made under direct supervision of the diamond drilling program and I have no interest either direct or indirect pertaining to the properties included in this report, nor do I expect any.

Dated this July 28, 2021

Peter C. Hubacher

Peter Hubacheck

14.0 End Notes/References

Endnotes

^{vi} Sage, R.P. 1996. Kimberlites of the Lake Timiskaming Structural Zone; Ontario Geological Survey, Open File Report 5937, 435p.

References

Kon, A. 2019. Assessment Work Report On The Hound Chute Claims.

Kon, A. 2015. Assessment Work Report Magnetometer Survey On The Hound Chute Road Claims (Phase 2).

Kon, A. 2014. Assessment Report On The Hound Chutes Rd Kon Kimberlite Dike.

Kon, A. 2014. Till Sampling and Prospecting Report On The Hound Chutes Road Claims

Kon, A. 2012. Assessment Work Report On Claims 1140510 and 3007492 Gillies Township, Larder Lake Mining Division.

Combined Helicopterborne Magnetic and Electromagnetic Survey of the Cobalt Area, Northern Ontario. High Sense Geophysics Limited., March 2019

Crabtree, D., Minerology Report - Identification and Classification of Kimberlite: Geoscience Laboratories

Ploeger, J., 2011. Magnetometer and VLF EM Surveys Over the Hound Chute Property Gillies Limit Township, Ontario.

Burton, D., 1971. Report on the VLF and the Magnetic Geophysical surveys on the property of Lobo Mines and Exploration Limited in Blocks 58 and 59, and 67 and 68 Gillies Limit Township, Ontario.

MERC Cobalt Seismic Transect-Field work 2019

¹ Kon, A. 2019. Assessment Work Report on the Hound Chute Claims, Gillies Township, Larder Lake Mining Division

ⁱⁱ Kon, A. 2019. Assessment Work Report on the Hound Chute Claims, Gillies Township, Larder Lake Mining Division ⁱⁱⁱ Potter, E., and Rees, K., 2008: Temex Resources Corp., Report on the 2008 Diamond Drilling Program, Latchford Diamond Project.

^{iv} Sage, R.P. 2000. Kimberlites of the Lake Timiskaming structural zone: supplement; Ontario Geological Survey, Open File Report 6018, 123p.

^v Kon, A. 2012. Assessment Work Report on Claims 1140510 and 3007492 Gillies Township, Larder Lake Mining Division

Appendices

Appendix A: Property History

			KON PRO	JECT		
Annendix A			PROPERTY HISTORY			
	Append		As at July 26, 2021			
Claim #	Legacy Claim #	Date	Description	Performed Assigned	Transaction #	
174592	1140510	2017-OCT-26	RECORDED BY PEEVER, ROBERT L (K23011)		R1780.02553	
Cell ID 31M05B171		2017-OCT-26	PEEVER, ROBERT L (302672) RECORDS 100.0 % IN THE NAME OF GOLD RUSH CARIBOO INC. (413519)		R1780.02554	
	3007492	2010-FEB-25	YOUNGS, BRIAN EDWARD (300274) RECORDS 100.00 % IN THE NAME OF NEMCSOK, MICHAEL STEVEN (393281)		R1080.00866	
		2011-JAN-18	NEMCSOK, MICHAEL STEVEN (393281) TRANSFERS 100.00 % TO KON, ALAN DANIEL (401418)		T1180.00022	
		2011-FEB-10	WORK PERFORMED (MAG, VLF) APPROVED: 2011-APR-13	\$ 4,554/\$ 1,138	Q1180.00308	
		2012-MAY-18	WORK PERFORMED (PROSP, PSTRIP) APPROVED: 2012-JUN-28	\$ 2,972/\$ 2,000	Q1280.01379	
		2012-NOV-19	WORK PERFORMEDASSAY, PROSP, PSTRIP APPROVED: 2013-FEB-06	\$ 2,974	Q1280.02819	
		2013-MAR-21	WORK PERFORMEDMAG APPROVED: 2013-MAY-16	\$ 1,355	Q1380.00896	
		2015-JUN-08	WORK PERFORMEDGEOL, MAG, PROSP APPROVED: 2015-JUN-09	\$ 2,400	Q1580.01233	
		2015-DEC-16	WORK PERFORMEDMAG APPROVED: 2016-JAN-05	\$ 1,177	Q1580.02474	
		2016-MAR-24	WORK PERFORMEDASSAY, GEOL, PROSP APPROVED: 2016-MAR-31	\$ 2,495	Q1680.00596	
		2017-JAN-06	WORK PERFORMEDASSAY, PROSP APPROVED: 2017-FEB-15	\$ 2,400	Q1780.00035	
		2017-OCT-27	WORK PERFORMEDPROSP, RAD APPROVED: 2017-NOV-24	\$ 865	Q1780.02017	
	4243947	2011-JAN-18	NEMCSOK, MICHAEL STEVEN (393281) TRANSFERS 100.00 % TO KON, ALAN DANIEL (401418)		T1180.00022	
		2011-FEB-10	WORK PERFORMED (MAG, VLF) APPROVED: 2011-APR-13	\$ 4,554	Q1180.00308	
		2012-NOV-19	WORK PERFORMEDASSAY, PROSP, PSTRIP, APPROVED: 2013-FEB-06	\$ 2,973	Q1280.02819	
		2013-MAR-21	WORK PERFORMEDMAG APPROVED: 2013-MAY-16	\$ 1,355	Q1380.00896	

		2013-NOV-28	WORK PERFORMEDGCHEM, PMAN APPROVED: 2014- JAN-10	\$ 3,647	Q1380.02906
		2014-JAN-14	WORK PERFORMEDASSAY, PMAN, PROSP	\$ 779	Q1480.00136
		2014-NOV-13	WORK PERFORMEDGCHEM APPROVED: 2014-NOV-18	\$ 1,672	Q1480.02194
		2014-DEC-08	WORK PERFORMEDASSAY, GCHEM, PROSP APPROVED: 2014-DEC-11	\$ 1,275	Q1480.02406
		2017-OCT-27	WORK PERFORMEDPROSP, RAD APPROVED: 2017-NOV-24	\$ 865	Q1780.02017
174592	Post- Conversion	2019-JUL-05	\$2157 Work Performed (Grass Roots Prospecting) Approved: 2019-09- 09	\$2,157	685100
		2019-NOV-08	Exploration Permit No. PR-19- 000292 Effective from 2020/01/02 to 2023/01/01 for the following activities (Mechanized Drilling (Assembled Weight >150kg), Trails (TS))		826201
		2020-APR-15	Assessment Work Report \$2358 Work Performed (Airborne Magnetics) Approved 2020-Jun- 26	\$2,358	964886
228663	1140510	2017-OCT-26	RECORDED BY PEEVER, ROBERT L (K23011)		R1780.02553
Cell ID 31M05B191		2017-OCT-26	PEEVER, ROBERT L (302672) RECORDS 100.0 % IN THE NAME OF GOLD RUSH CARIBOO INC. (413519)		R1780.02554
	4243947	2011-JAN-18	NEMCSOK, MICHAEL STEVEN (393281) TRANSFERS 100.00 % TO KON, ALAN DANIEL (401418)		T1180.00022
		2011-FEB-10	WORK PERFORMED (MAG, VLF) APPROVED: 2011-APR-13	\$ 4,554	Q1180.00308
		2012-NOV-19	WORK PERFORMEDASSAY, PROSP, PSTRIP, APPROVED: 2013-FEB-06	\$ 2,973	Q1280.02819
		2013-MAR-21	WORK PERFORMEDMAG APPROVED: 2013-MAY-16	\$ 1,355	Q1380.00896
		2013-NOV-28	WORK PERFORMEDGCHEM, PMAN APPROVED: 2014-JAN-10	\$ 3,647	Q1380.02906
		2014-JAN-14	WORK PERFORMEDASSAY, PMAN, PROSP APPROVED: 2014-FEB-20	\$ 779	Q1480.00136
		2014-NOV-13	WORK PERFORMEDGCHEM APPROVED: 2014-NOV-18	\$ 1,672	Q1480.02194
		2014-DEC-08	WORK PERFORMEDASSAY, GCHEM, PROSP APPROVED: 2014-DEC-11	\$ 1,275	Q1480.02406
		2017-OCT-27	WORK PERFORMEDPROSP, RAD APPROVED: 2017-NOV-24	\$ 865	Q1780.02017

228663	Post- Conversion	2019-JUL-05	\$1618 Work Performed (Grass Roots Prospecting) Approved: 2019-09-	\$1,618	685100
		2019-JUL-05	Work Report Filed – Silver – Assessment Work Report June 2019		685099
		2019-NOV-08	Exploration Permit No. PR-19- 000292 Effective from 2020/01/02 to 2023/01/01 for the following activities (Mechanized Drilling (Assembled Weight >150kg), Trails (TS))		826201
		2020-APR-15	Assessment Work Report \$2102 Work Performed (Airborne Magnetics) Approved 2020-Jun- 26	\$2,102	964886
232532	1140510	2017-OCT-26	RECORDED BY PEEVER, ROBERT L (K23011)		R1780.02553
Cell ID 31M05B211		2017-OCT-26	PEEVER, ROBERT L (302672) RECORDS 100.0 % IN THE NAME OF GOLD RUSH CARIBOO INC. (413519)		R1780.02554
	4268297	2012-JUL-16	RECORDED BY KON, ALAN DANIEL (1001448)		R1280.02426
		2014-JAN-14	WORK PERFORMEDASSAY, PMAN, PROSP APPROVED: 2014-FEB-20	\$ 700	Q1480.00136
		2017-JAN-06	WORK PERFORMEDASSAY, PROSP APPROVED: 2017-FEB-15	\$ 572	Q1780.00035
		2017-OCT-27	WORK PERFORMEDPROSP, RAD APPROVED: 2017-NOV-24	\$ 865	Q1780.02017
	Post- Conversion	2019-JUL-05	\$270 Work Performed (Grass Roots Prospecting) Approved: 2019- 09-09 Assessment Work Report May 13, 2019	\$270	685100
		2019-MAY-14	\$1440 Work Performed (Grass Roots Prospecting) Approved: 2019- 06-07 Assessment Work Report July 5, 2019	\$1,440	628399
		2019-NOV-08	Exploration Permit No. PR-19- 000292 Effective from 2020/01/02 to 2023/01/01 for the following activities (Mechanized Drilling (Assembled Weight >150kg), Trails (TS))		826201
		2020-APR-15	Assessment Work Report \$2174 Work Performed (Airborne Magnetics) Approved 2020-Jun- 26	\$2,174	964886
244698	1140510	2017-OCT-26	RECORDED BY PEEVER, ROBERT L (K23011)		R1780.02553

Cell ID 31M05B212		2017-OCT-26	PEEVER, ROBERT L (302672) RECORDS 100.0 % IN THE NAME OF GOLD RUSH CARIBOO INC. (413519)		R1780.02554
	4268297	2012-JUL-16	RECORDED BY KON, ALAN DANIEL (1001448)		R1280.02426
		2014-JAN-14	WORK PERFORMEDASSAY, PMAN, PROSP APPROVED: 2014-FEB-20	\$ 700	Q1480.00136
		2017-JAN-06	WORK PERFORMEDASSAY, PROSP APPROVED: 2017-FEB-15	\$ 572	Q1780.00035
		2017-OCT-27	WORK PERFORMEDPROSP, RAD APPROVED: 2017-NOV-24	\$ 865	Q1780.02017
		2019-NOV-08	Exploration Permit No. PR-19- 000292 Effective from 2020/01/02 to 2023/01/01 for the following activities (Mechanized Drilling (Assembled Weight >150kg), Trails (TS))		826201
		2020-APR-15	Assessment Work Report \$1914 Work Performed (Airborne Magnetics) Approved 2020-Jun- 26		964886

Appendix B: Drill Hole Logs

RJK EXPLORATIONS LTD

NIPISSING DIAMOND PROJECT - KON PROPERTY

DDH#: AZM:	KON-20-01 90	U NORTHING	TM NAD 83 ZONE 17 5,239,077.0	DRILL COMPANY: START DATE:	Huard Drilling Jan 21, 2020	TWP: CLAIM:	Gillies Limit 174592		MAKING WATER: CORE LOCATION:	N Kenogami Lake Core	Facility		
DIP: EOH:	-45 54.5m	EASTING ELEVATION	599,398.0 286.9	END DATE: CORE SIZE:	Jan 23, 2020 BTW	CASING LOGGED BY:	Removed Peter Hubacheck		LOGGING COMPLETED:	Jan. 24, 2020			
FROM	то	ROCK TYPE	CODE		DESCRIP	NOTION		KIM TEXTURE	CLAST TYPE	MATRIX%	AUTO CLAST%	ZENO CLAST%	COLOUR
0	7	COLEMAN FORMATION CONGLOMERATE	CONGL	matrix supported dropston heterolithic clasts common	ted dropstone unit; 15% to 20% pebble to small cobbles; angular to rounded asts common; dark gray, fine grained mudstone matrix								
7	8.5	HORNFELS ALTERATION ZONE	CONGL	moderate to strong silicific pelletal lapilli nodules ~5%; kimberlite dike is 40 TCA; k	o strong silicification; dark gray to black matrix; amorphous siliceous veinlets with ili nodules ~5%; possibly altered hypabyssal kimberlite phase; upper contact of ilize is 40 TCA: local crackle preciation								
8.5	28	HYPABYSSAL KIMBERLITE	НҮК	fine grained pelletal texture replacing vuggy gas pocket 28m;	ed pelletal textured groundmass; exotic country rock clasts~1%; 5% to 10% calcite cement vuggy gas pockets; sharp lower contact @ 45TCA; brecciated lower contact from 25.4m to				olivene-ilmenite	95	5	1	GY/BK
28	54.5	COLEMAN FORMATION CONGLOMERATE	CONGL	matrix supported dropston heterolithic clasts common chill zone at HYK dike/ Cole	supported dropstone unit; 15% to 20% pebble to small cobbles; angular to rounded olithic clasts common; dark gray, fine grained mudstone matrix; upper contact @ 45TCA; no one at HYK dike/ Coleman Core! contact								

DOWNHOLE SURVEY

HOLE-ID	DEPTH	MAG AZIMUTH	MAGNETIC DECLINATION	AZIMUTH (TN)	DIP	SURVEY TYPE	MAGNETIC FIELD
No downhole survey							

SAMPLING -	SAMPLING - Buik Sample										
FROM	TÔ	INTERVAL (m)	8AG#	WEIGHT (Kg)							
None											

RIK EXPLORATIONS LTD

NIPISSING DI	MOND PROJECT - KON PROPERTY	
DDH#:	KON-20-02	UTM NAD 83 ZONE 17

AZM:	360/0	NORTHING	5,238,702.2	START DATE:	Jan. 25, 2020	CLAIM:	228663	co	RE LOCATION:	Kenogami Lake Core	e Facility		
EOH:	-30 135m	ELEVATION	277.2	CORE SIZE:	5an. 25, 2020 BTW	LOGGED BY:	Peter Hubacheck	LOGGING	G COMPLETED:	Jan. 30, 2020			
FROM	то	ROCK TYPE	CODE		DESCRIPT	NON	KIM TEXTURE	CLAST TYPE	MATRIX%	AUTO CLAST%	ZENO CLAST%	COLOUR	
0	11	GLACIOFLUVIAL PEBBLY SAND	ОВ		GLACIOFLUVIAL F	PEBBLY SAND							
11	36	HETEROLITHIC KIMBERLITE BRECCIA	нкв	HETEROLITHIC KIMBE country rock clasts and	ERLITE BRECCIA: pelle angular granodiorite ang	etal lapilli texture fg m gular to subrounded c	atrix with 1cm to 3cm lasts up to 0.5m	ткв		75	15		
36	47.4	HETEROLITHIC FLUIDIZATION BRECCIA	HF8X	HETEROLITHIC FLUID rounded cobble size to 1 honeycomb tecture mg grains; 41m: local vuggy	IZATION BRECCIA: cla boulder granodiorite clas matrix of relict pelletal la y porosity with gypsum r	ast supported, 75% se sts; bluish gray colour ipilli and sugary textur needles infilling vugs;	pentinized clasts, , reddish brown, e perofskite altered			25	75		RB/BG
47.4	64.9	GRANODIORITE RAFT	GD RAFT	GRANOD!ORITE RAFT kimberlite; cg pyroxene/ brown; 59.5m to 64.7m: as microcubic to cubic c	F: locally crackle breciate /sepentinized groundma: massive bedding med t crystal up to 2mm size	ed with pelletal to glob ss; kimberlite breccia o cg phenocrysts; .5%	ular tectured matrix is reddish 6 dissem magnetite			10	90		
64.9	65.5	FLUIDIZATION BRECCIA	FBX	FLUIDIZATION BRECCIA						45	55		RB/BG
65.5	68.7	HYPABYSSAL KIMBERLITE	нүк	10% globular granodiori	ite clasts			АРН	GLOB	90	10		
68.7	85	HETEROLITHIC	нғвх	HETEROLITHIC FLUID rounded blocks ranging calcite lamimae with ber is kimberlite-free except dominant;	IZATION BRECCIA: ma from .1m to .6m; matrix dding @20 TCA; reddish t for interval : 77m to 81	atrix supported with m is well sorted cg lapill a brown staining is cor m; greenish blue kimb	ixed angular to i fragments; flattened nmon,most of matix verlitic matrix is			90	10		
85	87.7	HYPABYSSAL FLOW BRECCIA	HYFBX	globular lapilli tecture m gradational contact with	natrx with 5% sub-round underlying unit;85.5m:	ed clasts infilling matri flow banding @ 75 TC	ix with 15%; CA;			90	5		
87.7	98.4	HYPABYSSAL KIMBERLITE FLOW	нук	microfitic pelletal texture gouge at contact with ur	e with gradational upper Inderlying HFBX unit simi	contact and brecciate ilar to above package,	d, rubbly grenish clay ;		GLOB	100			GB
98.4	100	HETEROLITHIC FLUIDIZATION BRECCIA	HFBX	matrix supported with m well sorted cg lapilli frag brown staining is comm 81m: greenish blue kimb	ixed angular to rounded iments; flattened calcite on,most of matix is kimb berlitic matrix is dominar	i blocks ranging from . lamimae with bedding erlite-free except for i at;	1m to .6m; matrix is @20 TCA; reddish nterval : 77m to			75	25		RGY
100	135	GRANODIORITE- SYENITE	SYEN	Archean basement rocks; grounDmass to fg apnaitic 127m: cg equigranular tex									

Gillies Limit

MAKING WATER:

N

TWP:

DRILL COMPANY: Huard Drilling

DOWNHOLE SURVEY

HOLE-ID	DEPTH	MAG AZIMUTH	MAGNETIC	AZIMUTH (TN)	DIP	SURVEY TYPE	MAGNETIC FIELD
KON-20-02	50	356.4	11.5	344.9	88.6	REFLEX	5697
KON-20-02	100	352.9	11.5	341.4	88.4	REFLEX	6017
KON-20-02	135	14.2	11.5	2.7	88.3	REFLEX	5481

FROM	то	INTERVAL (m)	BAG#	WEIGHT (Kg)	
None					

RJK EXPLORATIONS LTD NIPISSING DIAMOND PROJECT - KON PROPERTY

DDH#:	KON-20-03	UTM NA	D 83 ZONE 17	DRILL COMPANY:	Huard Drilling	TWP:	Gillies Limit	MAKING WATER: N
AZM:	270	NORTHING	5,238,702.2	START DATE:	Jan. 29, 2020	CLAIM:	228663	CORE LOCATION: Kenogami Lake Core Facility
DIP:	-50	EASTING	599,594.6	END DATE:	Feb. 3, 2020	CASING	Left in hole	
EOH:	110.5m	ELEVATION	277.2	CORE SIZE:	BTW	LOGGED BY:	Peter Hubacheck	LOGGING COMPLETED: Feb. 4, 2020

FROM	то	ROCK TYPE	CODE	DESCRIPTION	KIM TEXTURE	CLAST TYPE	MATRIX%	AUTO CLAST%	ZENO CLAST%	COLOUR
0	11	GLACIOFLUVIAL PEBBLY SAND	ОВ	GLACIOFLUVIAL PEBBLY SAND/GLACIOFLUVIAL BOULDERS						
11	36	HETEROLITHIC KIMBERLITE BRECCIA	нквх	pelletal lapilli texture fg matrix with .5cm to 5cm country rock autoclasts 15%; angular to subrounded clasts up to .5m; microlitic to lapilli size homogenous matrix under binoc scope	ТКВ		85	15		
36	67.5	HETEROLITHIC KIMBERLITE BRECCIA	нквх	pelletal lapilli texture fg matrix with .5cm to 7cm country rock autoclasts 25%; angular to subrounded clasts up to .5m; microlitic to lapilli size homogenous matrix under binoc scope			75	25		
67.5	71.8	HETEROLITHIC KIMBERLITE BRECCIA	нквх	matrix supported with highly porous vesicular texture; larger rounded clasts of proto-breccia material 7cm size; dominant clasts are qtz/pyroxene-rich; fault gouge rubbly material			55	45		
71.8	83.5	HYPABYSSAL KIMBERLITE FLOW	НҮК	microlitic pelletal texture with gradational upper contact and brecciated, rubbly clay gouge at contact with underlying HYFBX package;			90	10		
83.5	88	HYPABYSSAL FLOW BRECCIA	НҮҒВХ	clast supported; dominantly intraformational rebrecciated rounded clasts with sepentinized reaction rims; ilmenite-rich microlitic pelletal texture in matrix			35	65		
88	93.4	HYPABYSSAL KIMBERLITE FLOW	НҮК	microlitic pelletal texture with gradational upper contact and brecciated, rubbly clay gouge at sharp contact with underlying syenite basement rocks; no alteration at contact;			98	2		
93.4	110.5	GRANODIORITE- SYENITE	GDSYEN	Archean basement rocks; varieagated sequence of interbeds varying from cg crystatlline groundmass to fg aphanitic phases; reddish green clay fault gouge seam at 105.5m; 118m to 127m: cg equigranular texture with .1% dissem galena cubes up to 2 mm;						

DOWNHOLE SURVEY

HOLE-ID	DEPTH	MAG AZIMUTH	MAGNETIC DECLINATION	AZIMUTH (TN)	DIP	SURVEY TYPE	MAGNETIC FIELD
No surveys - tool malfunction							

SPROT LITE	a baikoumpic	•		
FROM	TO	INTERVAL (m)	BAG#	WEIGHT (Kg)
None				

RIK EXPLORATIONS LTD NIPISSING DIAMOND PROJECT - KON PROPERTY

DDH#:	KON-20-06	UTM	NAD 83 ZONE 17	DRILL COMPANY:	Huard Drilling	TWP:	Gillies Umit	MAKING WATER:	N
AZM:	360/0	NORTHING	5,238,748.0	START DATE:	Feb. 23, 2020	CLAIM:	228663	CORE LOCATION: N	enogami Lake Core Facility
DIP:	-90	EASTING	599,520.0	END DATE:	Feb. 25, 2020	CASING	Left in hole		
EOH:	127m	ELEVATION	291	CORE SIZE:	BTW	LOGGED BY:	Peter Hubacheck	LOGGING COMPLETED:	Feb. 26, 2020

FROM	то	ROCK ТУРЕ	CODE	DESCRIPTION	KIM TEXTURE	CLAST TYPE	MATRIX%	AUTO CLAST%	ZENO CLAST%	COLOUR
٥	7.2	GLACIOFLUVIAL SAND/BOULDERS	ОВ	GLACIOFLUVIAL PEBBLY SAND/GLACIOFLUVIAL BOULDERS						
7.2	28	HETEROLITHIC KIMBERLITE BRECCIA	нквх	matrix supported with ilmenite-rich microlitic pelletal texture; larger rounded clasts of proto- breccia material .3m size; dominant clasts are calcium-rich matrix cement with dolomitic concretion rimming clasts @ 25m ;dominant autoclasts are .5cm to 2cm size, angilar to sub- rounded; chromitic microlitic material in large .3m zenolith at 21m; ilmenite zenoclasts1 to 3mm are 25 to 35% of matrix;			40	25	35	
28	32.6	HYPABYSSAL KIMBERLITE	нүк	5% globular calcium-rich clasts; decreasing amount of autoclasts with higher enrichment of ilmenite pellets;			50	5	45	
32.6	39.7	HETEROLITHIC KIMBERLITE BRECCIA	нквх	matrix supported with ilmenite-rich microlitic pelletal texture; larger rounded clasts of calcium-rich matrix .3m size; dominant clasts are calcium-rich matrix cement; dominant autoclasts are .5cm to 2cm size, angilar to sub-rounded; calcite-rimmed microlitic material in 2 5cm zenoliths at 37m; ilmenite zenoclasts1 to 3mm are 25 to 35% of matrix;			70	20	10	
39.7	42.1	HYPABYSSAL KIMBERLITE FLOW	НУК	microlitic pelletal texture with gradational upper contact; decreasing amount of ilmenite pellets >2mm in size; MS ranges from 30 to 20 downhole; sharp lower contact;;			85	5	10	
42.1	53.6	HETEROLITHIC KIMBERLITE BRECCIA	нквх	matrix supported with ilmenite-rich microlitic pelletal texture; larger rounded clasts of calcium-rich matrix .3m size; dominant clasts are calcium-rich matrix cement; dominant globular autoclasts are .5cm to 2cm size, ilmenite zenoclasts1 to 3mm are 25 to 35% of matrix;			50	15	35	
53.6	58.7	HYPABYSSAL KIMBERLITE FLOW	НҮК	microlitic pelletal texture with gradational upper contact; decreasing amount of ilmenite pellets >2mm in size; MS ranges from 45 to 20 downhole;			85	5	10	
58.7	73.6	HETEROLITHIC KIMBERLITE BRECCIA	нквх	matrix supported with ilmenite-rich microlitic pelletal texture; larger rounded clasts of calcium-rich proto-breccia matrix up to .10cm size; dominant clasts are calcium-rich matrix cement; dominant globular perovskite-rich autoclasts are .5cm to 2cm size, ilmenite pellets are 1mm to 3mm are 25% of matrix deceasing in concentration with MS RANGING FROM 30 TO 20 DOWNHOLE; sharp lower contact with underlying HYK flow;			60	15	25	
73.6	85.9	HYPABYSSAL KIMBERLITE FLOW	НҮК	microlitic pelletal texture with abrupt upper contact; decreasing amount of ilmenite pellets >2mm in size; MS ranges from 30 to 20 downhole; sharp, well defined basal contact @ 30 TCA;			85	10	5	
85.9	115.7	GRANODIORITE	GD	Archean basement rocks; variegated sequence of equigranular phases varying from med to cg feldspar phencrysts 55% with mg hornblende/augite groundmass 45%; strong qtz/chorite flow banding at 92.1m						RD/GY
115.7	117.2	HYPABYSSAL KIMBERLITE DIKE	нүкд	carbonate-rich matrix with perofskite, rutile, phlogopite grains predominant;			100	_		

RIK EXPLORATIONS LTD NIPISSING DIAMOND PROJECT - KON PROPERTY

DDH#: AZM: DIP:	KON-20-06 360/0 -90	U" NORTHING EASTING	TM NAD 83 ZONE 17 5,238,748.0 599,520.0	DRILL COMPANY: START DATE: END DATE:	Huard Drilling Feb. 23, 2020 Feb. 25, 2020	TWP: CLAIM: CASING	Gillies Limit 228663 Left in hole	MAKING WATER: CORE LOCATION:	N Kenogami Lake Core	e Facility	
EOH:	<u>127m</u>	ELEVATION	291	CORE SIZE:	BTW	LOGGED BY:	Peter Hubacheck	LOGGING COMPLETED:	Feb. 26, 2020		
117.2	119.9	GRANODIORITE	GD	Archean basement rocks; v feldspar phencrysts 55% w	rariegated sequence of ith mg hornblende/aug	equigranular phases varyir ite groundmass 45%;	ng from med to cg				
119.9	120.6	HYPABYSSAL KIMBERLITE DIKE	НҮКО	carbonate-rich matrix with	perofskite, rutile, phio	gopite grains predominant	;		100		-
120.6	126.5	GRANODIORITE	GD	Archean basement rocks; v aphanitic textures intruded	ariegated sequence of I by mafic dike from 12	equigranular phases varyin 2.6m to 123.7m;	ng from med to				_
126.5	126.9	HYPABYSSAL KIMBERLITE DIKE	HYKD	carbonate-rich matrix with	perofskite, rutile, phlog	gopite grains predominant	;		100		
126.9	127	GRANODIORITE	GD	Granodiorite							

.

DOWNHOLE SURVEY

HOLE-ID	DEPTH	MAGNETIC AZIMUTH	MAGNETIC DECLINATION	AZIMUTH (TN)	DIP	SURVEY TYPE	MAGNETIC FIELD
KON-20-06	32	320.7	11.5	309.2	87.3	REFLEX	5515
KON-20-06	77	328.3	11.5	316.8	87.5	REFLEX	5618
KON-20-06	127	326.3	11.5	314.8	87.1	REFLEX	5433

FROM	TO	INTERVAL (m)	BAG#	WEIGHT (Kg)
7	10	3	1	8.8
10	13	3	2	10.3
13	16	3	3	10.3
16	19	3	4	10.8
19	22	3	5	9.0
22	25	3	6	8.3
25	28	3	7	9.0
28	31	3	8	10.0
31	34	3	9	11.0
34	37	3	10	10.3
37	40	3	11	10.3
40	42.1	2.1	12	7.8
42.1	46	3.9	1	12.8
46	49	3	2	9.5
49	52	3	3	10.3
52	55	3	4	10.0
55	58	3	5	11.8
58	61	3	6	11.5
61	64	3	7	10.5
64	67	3	8	11.0
67	70	3	9	11.3
70	73	3	10	11.8
73	76	3	11	12.0
76	79	3	12	10.8
79	82	3	13	9.5
82	85	3	14	11.3
85	89	4	15	12.3

RJK EXPLORATIONS LTD. NIPISSING DIAMOND PROJECT - KON PROPERTY

DDH#:	KON-20-07	UTM NAD	83 ZONE 17	DRILL COMPANY:	Huard Drilling	TWP:	Gillies Limit	MAKING WATER: N
AZM:	360/0	NORTHING	5,238,950.0	START DATE:	Feb. 27, 2020	CLAIM:	174592	CORE LOCATION: Kenogami Lake Core Facility
DIP:	- 9 0	EASTING	599,600.0	END DATE:	Feb. 29, 2020	CASING	Removed	
EOH:	61m	ELEVATION	292	CORE SIZE:	BTW	LOGGED BY:	Peter Hubacheck	LOGGING COMPLETED: Mar. 1, 2020

FROM	то	ROCK TYPE	CODE	DESCRIPTION	KIM TEXTURE	CLAST TYPE	MATRIX%	AUTO CLAST%	ZENO CLAST%	COLOUR
0	2.9	GLACIOFLUVIAL SAND/BOULDERS	ОВ	GLACIOFLUVIAL SAND/BOULDERS						
2.9	29.5	HURONIAN POLYMICTIC CONGLOMERATE	HCONGL	35% to 30% pebble to cobble size(.2m) dropstone; roundedto subrounded assorted granitic clasts in chloritic, aphanitic groundmass with 1cm to 2cm size rip-up matrix-type clasts						GR/BK
29.5	47.5	HURONIAN POLYMICTIC CONGLOMERATE	HCONGL	10% to 15% pebble to cobble size dropstone; rounded to subrounded assorted granitic clasts in chloritic, aphanitic groundmass with 1cm to 2cm size rip-up matrix-type clasts; many broken core intervals with low RQD						GR/BK
47.5	61	HURONIAN POLYMICTIC CONGLOMERATE	HCONGL	35% to 30% pebble to cobble size(.1m) dropstone; rounded to subrounded assorted granitic clasts in chloritic, aphanitic groundmass with 1cm to 2cm size rip-up matrix-type clasts						GR/BK

DOWNHOLE SURVEY

HOLE-ID	DEPTH	MAG AZIMUTH	MAGNETIC DECLINATION	AZIMUTH (TN)	DIP	SURVEY TYPE	MAGNETIC FIELD
KON-20-07	61	35.2	11.5	23.7	88.7	REFLEX	5487

FROM	то	INTERVAL (m)	BAG#	WEIGHT (Kg)
None				

Appendix C: Assay Certificates of Analysis

7-Jul	- 2020	CLIENT REPORT/PREL	TARY C.F. MINERAL RESEARCH LT DIAMOND DESCRIPTIONS		Page File:	1 DIA9352.DB
REC #	Sample Name	Sample Wt (kg)	Description			
9	KON-20-06	277.96	HITE CLEAR PARTIAL CHIP WITH GREENISH	INGE, NATURAL		
1	KON-20-05	277.95	LEAR WHITE DIAMOND CHIP WITH GREENISH "	INGE, NATURAL		
2	KON-29-06	277.95	HITE DIAMOND CHIP WITH STEPPED STRUCTU	E, NATURAL		
3	KON-20-06	277.96	HITE DIAMOND CHIP, NATURAL			
4	KON-20-06	277.96	HITE DIAMOND CHIP, NATURAL			
5	KON-20-05	277.96	LEAR WHITE DIAMOND CHIP WITH GREENISH	INGE, NATURAL		
6	KAN-20-06	277_96	HITE DIAMOND CHIP, NATURAL			
7	KON-20-06	277_95	YNTHETIC			
8	KON-20-06	277.96	YNTHETIC			

13-Jul-20 CLIENT DIAMOND INDICATOR PICKING REPORT - C.F. MINERAL RESEARCH LTD Page 1 File: PCK9352

BWO	Batch	# Sample Name	Sample Wt kg	AWD	Fraction	Fract Wt g	Pck wt g	PP	OR	CD	Olv/ Opx	Gold Di	а	Blks	8eta value	
AD28	20+9352	1 KON-20-06	277.96	AD28	-32+80HIL	793.85	201.42	2	0	6	Θ	0	Ð	541	1.00	
AD28	20+9352	1 KON-20-06	277.96	AD28	-32+80HPY	1200.45	1200.45	32	8	299	204	Ð	Θ	116	1.00	

ISO 9001:2015 ISO 17025:2005 C.F. MINERAL RESEARCH LIMITED 1677 POWICK ROAD KELOWNA, BRITISH COLUMBIA CANADA V1X 4L1

TEL (250) 860-8525 FAX (250) 862-9435 info@cfmresearch.com

C.F. Mineral Research Ltd.'s Diamond Classifications of Submitted Electron Microprobe Analyses

Source : C.F. Mineral Research Ltd. EPMA Status : BASE: AD28 Project : RJK0

File Name : PRB9352R # Analyses: 119 Date : 13 July 2020

Caveats and explanations:

- Any '#' symbol identifies analyses where the total is outside the range of 98.5 and 101.0 despite repeated analyses. This may affect the quality and reliability of the classifications.
- Any '*' symbol identifies samples where no grains were found (by picking/ scanning) worthy of analysing from the whole sample. No asterisk is shown if at least one (or more) grain(s) from the sample was analysed.
- Any 'D' symbol identifies duplicate analytical descriptions.
- Any 'i' symbol identifies a grain with an intergrowth.

- The Mars/Cart rock classification (using chromite analysis) assumes the presence of, and good quality analyte values of MnO, NiO and ZnO values.
- The Mars/Cart 'n' symbol identifies analyses that cannot classify due to
 (i) lacking all required analytes
 - or (ii) possessing any analyte with a value <0.0001
- The Mars/Cart T(Zn) can include extreme, but useful, values outside the calibrated ranges
- The Mars/Cart '+' symbol identifies T(Zn) within the diamond stability range of ~950-1250°C
- The results of any geothermobarometry obtained from suitable CPXs are reported at the end of the DI field.
- Please see document titled "Legend of Electron Microprobe Compositional (lassifications (Version 4.812)" for further explanations.

Client: RJK8

ELECTRON MICROPROBE ANALYSIS FROM C.F. MINERAL RESEARCH LTD.

Comment:

Sample				v4.	.812Classif	ication	Rock	/Темо															Trace		
Name	Fraction	Nount	Cel	l Grain SA	CFH	DI	МC	T(Zn)	Si02	Ti02	A1203	¥203	Cr203	Fe203	Fe0	MaQ	CaO	MoD	NiO	Zoû	Nb205	Na20	Na20	K20	Total
								•c	vt X	wt %	wt s	wt %	wt %	wt %	wt %	wt %	wt ≉	wt %	wt \$	wt %	wt %	vt *	wt %	vt *	wt %
KGN-20-06	-32+80HIL	7556	48	819	CR		UG		.08	.11	4.34	.05	57.48	4.41	27.61	.37	0.00	2.47	8.88	2.12					99.07
KON-28-06	-32+80HPY	7556	30	718	CR	•	кк	917	.07	.54	6.45	.22	57.88	7.63	16.10	18.97	.60	.34	.13	.09					99.63
KON-28-05	-32+80HIL	7556	4 0	321	CR	-	кк	713	.83	.29	10.03	.27	58.28	4.29	13.92	12.77	.00	.32	. 69	.18					100.48
KCN-20-06	-32+80HIL	7556	48	812	CR	-	кк	1658+	.08	.26	7.12	.32	58.40	7.20	14.26	12.2B	8.08	.34	.11	.07					160.43
KON-20-06	-32+60HTL	7556	41	412	CR	•	кк	894	.64	.43	8.11	.33	57.67	7.19	14.45	12.34	.00	.38	.12	.18					100.49
KON-20-06	-32+88HIL	7562	10	203	CR	•	КК	86 0	.04	.85	8.18	.30	57.89	6.66	13.56	13.15	0.80	.32	.12	.11					100.37
KON-20-06	-32+80HIL	7562	11	102	CR	-	кк	850	.09	.21	7.89	.34	58.63	6.79	14.18	12.20	.01	.33	.15	.11					100.13
KON-20-05	-32+88HIL	7562	13	186	CR	-	LΚ		.05	.45	8.32	.25	58.32	6.17	12.81	13.49	.00	.28	.09	.83					100.26
KON-20-06	-32+89HTL	7562	11	303	CR	•	кк	927	.09	.58	7,35	. 34	58.02	6.66	14.75	12.20	.86	.32	.12	.09					180,53
KON-20-05	-32+88HIL	7562	11	318	CR	-	кк	967+	.05	.44	7.78	.29	56.14	7.97	14.56	12.13	0.00	.32	.10	.68					99.86
KON-20-06	-32+80HPY	7556	30	781	CR	π	кк	813	.08	1.21	7.98	.25	56.18	7.20	14.24	12.96	.00	.32	.10	.13					100.57
KON-20-05	-32+86HPY	7556	31	169	CR	п	кк		.05	1.07	7.61	.28	57.82	5.77	14.65	12.93	.00	.31	.11	.02					100.05
KON-20-05	-32+88HPY	7556	31	286	CR	П	LΚ	1386	.87	2.73	5.29	.32	57.23	5.80	15.68	12.89	.60	.39	.14	.84					100.00
KON-20-86	-32+88HIL	7556	31	401	CR	п	KL	1177+	.07	1.63	6.92	.25	56.12	6.76	14.94	12.68	.00	.31	.13	.05					100.07
KON-20-06	-32+80HIL	7556	31	515	CR	Π	кк	817	.06	1.99	5.37	.29	56.69	6.93	16.67	11.40	.01	.33	.12	.12					99.98
KON-28-85	-32+88HIL	7556	40	107	CR	п	кк	1061+	.17	1.76	6.20	.21	58.38	6.04	12,56	14.16	.01	.30	.17	.07					100.01
KON-20-86	-32+88HIL	7556	49	113	CR	TI	КК	1435	.83	2.13	2.84	. 24	58.51	7.88	15.50	11.31	.00	.38	.14	.64					100.00
KON-20-86	-32+80HIL	7556	40	484	CR	π	ĽΚ	1374	.86	1.27	7.84	.27	56.62	6.35	14.91	12.53	.01	.31	.13	.04					100.35
KON-20-86	-32+80HIL	7556	40	611	CR	TI	кк	921	.85	1.65	7.72	.30	56.62	6.05	14.40	13.01	.00	.36	.14	.09					160.41
KON-20-86	-32+80HIL	7556	40	811	CR	π	КК	1013+	.87	2.03	6.63	.26	56.61	7.13	15.75	12.27	.80	.36	.12	.07					169.71
KON-20-05	-32+80HIL	7556	41	219	CR	π	КК	940	.86	2.70	4.50	.23	58.03	5.61	15.96	12.15	.00	.38	.16	.09					99.86
KON-20-06	-32+80HIL	7556	41	317	CR	TI	КК	872	.86	1.96	6.58	.32	57.26	5.68	15.65	12.26	0.00	.33	.14	.11					100.35
KON-20-06	-32+80HIL	7556	41	316	CR	Π	кк	1073+	.87	1.63	3.74	.20	59.09	7.47	16.16	11.43	0.00	.39	.15	.06					100.39
KON-20-05	-32+80HIL	7562	10	301	CR	TI.	КΚ	1601+	.07	2.02	7.60	.28	56.15	6.19	15.27	12.80	0.00	.34	.13	.08					100.93
KON-20-06	-32+80HIL	7562	18	365	CR	П	кк	1168+	.08	2.42	5.64	.23	56,99	6.53	15.35	12.44	.01	.37	.14	.06					99.65
KON-20-06	-32+80HIL	7562	10	515	CR	TI	КК	1681+	.07	1.05	7.58	.25	57.80	5.79	14.28	12.73	.00	.30	.13	.86					186.85
KON-20-05	-32+80HIL	7562	10	611	CR	п	LK	1478	.69	1.65	7.88	.31	55.15	5.37	13.98	13.37	.01	.32	.14	.63					108.31
KON-20-05	-32+80HPY	7556	30	511	CR-Si	п	кк	1462	.23	1.63	5.19	.21	58.88	5.85	12.99	13.94	.01	.33	.20	.03					160.49
KON-20-06	-32+80HIL	7556	31	507	CR-SL	TI	кк	1652+	.25	1.69	6.12	.23	58.89	5.92	12.52	14.27	.01	.27	.10	.07					100.24
KON-20-05	-32+80HIL	7562	18	183	CR-Si	TI	κı	1144+	.18	1.03	7.21	.25	56.63	7.54	14.07	12.94	.66	.28	.17	.06					100.37
KON-20-06	-32+80HPY	7556	30	367	OLV				48.22	.03	.82		.89		9.89	49.68	.69	.13	.31			.81		9.90	100.48
KON-20-06	-32+80HPY	7556	30	468	OLV				40.39	.04	.02		.03		10.91	48.43	.07	.14	.24			.02		.60	100.29
KON-20-06	-32+80HPY	7556	20	285	OLV-FORS				41.00	.02	.02		.64		7.81	58.56	.86	.13	-40			6.00		0.60	100.04
KON-20-05	-32+60HPY	7556	20	503	OLV-FORS				48.98	6.60	.02		.07		8.89	50.97	.06	.89	.38			.91		0.00	100.66
KON-20-05	-32+80HPY	7556	20	785	OLV-FORS				40.93	.02	.83		.05		9.49	49.64	.08	.11	.38			.01		.01	100.75
KON-20-06	-32+80HPY	7556	20	803	OLV-FOR5				48.75	.02	.64		.69		7.94	51.25	.06	.12	.37			.08		0.00	100.64
KON-20-06	-32+80HPY	7556	30	285	OLV-FORS				40.65	.06	.63		.82		8.18	51.28	.28	.16	.22			.09		.00	100.87
KON-20-85	-32+80HPY	7556	30	465	OLV-FORS				40.7 6	.01	.62		.06		8,69	50.44	.07	.12	.37			.01		.60	100.56
KCN-20-86	-32+80HPY	7556	30	469	OLV-FORS				40.59	.02	.61		.06		B.95	58.33	.66	.12	.41			.81		.81	1 0 0.57
KON-20-85	-32+86HPY	7556	30	586	OLV-FORS				40.62	.83	.02		.05		8.08	51.21	.06	.08	.37			.02		0.00	100.55

Page: 1

106400.00.05_CUSTPROBE_05MAR2012

Compent:

sample					v4.	812Classif	lcation	R	ock/ieno															Trace		
Name	Fraction	Hount	Cel	l Grai	n SA	CFM	DI	н	С Т(Zл) *С	SiO2 wt %	TiO2 wt %	Al2O3 vt ÷	V203 wt ≹	Cr203 wt %	Fe203 wt %	Fe0 wt %	Mg0 wt\$	CaO wt %	Mn0 wt%:	NiO vt %	Znû wrt %	No205 wt %	Na20 wt %	Na20 wt %	K20 wt%s	Total wt %
 KON-28-86		 7556	 20	 584		OLV-FORS	 DI*			41.32		.01		.06		 7.39	 51.60					•••••	 .82			 181.62 #
KON-28-86	-32+80HPY	7556	38	268		OLV-FORS	DI*			48.58	.83	.10		.11		7.01	52.19	.89	.10	.35			.62		.01	199.69
KON-20-05	-32+80HIL	7556	40	211		PIL					51.76	.11		2.25	8.70	26.06	11.33	.01	.35		0.00	. 87				189.64
KON-20-06	-32+80HIL	7556	40	318		PIL					53.62	1.02		.79	7.64	21.93	14.62	.84	.29		.01	.16				100.07
KON-20-05	-32+86HIL	7556	48	721		PIL					52.34	.30		.57	10.82	22.53	13.61	.85	.23		.03	.05				100.54
CON-20-06	-32+80HIL	7556	41	184		PIL					52.30	.06		.68	6.68	31.47	7.07	.10	2.84		0.00	.83				100.56
GN-20-06	-32+88HIL	7556	41	285		PIL					53.40	. 15		2.56	5.38	24.03	13.32	.83	.36		.03	.17				100.43
QN-20-06	-32+80HIL	7556	41	318		PIL					55.03	.31		.67	7.88	20.44	16.15	.85	.22		8.00	.02				100.68
ON-20-06	-32+80HIL	7562	10	214		PIL					55.13	.33		1.73	7.02	18.01	17.57	.86	.24		.01	.06				100.15
ON-20-05	-32+80HIL	7562	10	586		PIŁ					55.69	. 32		,95	7.75	17.91	17.89	.65	.22		0.00	.61				128.89
ON-28-86	-32+80HIL	7562	18	588		PIL					52.95	.40		4.22	8.09	17.75	16.62	.84	.21		.00	.01				100.29
ON-20-05	-32+80HIL	7562	16	606		PIL					57.36	. 19		1.25	4.52	19.19	18.01	.04	.27		.02	.04				180.98
ON-20-05	-32+88HIL	7556	31	385	CP	CP2	-			54.10	.34	2.68		1.23		4.48	15.92	18.67	.12	.83			2.32		.81	59.29
DN-28-86	-32+80HPY	7556	10	302	CP	CP5	-	••		54.25	.11	1.80		2.73		2.39	15.03	19.64	.12	.03			2.32		.01	99.44
ON-20-06	-32+86HPY	7556	10	585	CP	CP5	•	••		53.17	.29	1.23		2.78		2.36	16.45	28.79	.09	.05			1.52		.00	98.74
ON-20-05	-32+80HPY	7556	10	598	CР	CP5	-			52.80	.28	1.10		2.83		2.26	16.20	20.83	.69	.02			1.54		.00	97.94 #
ON-20-05	-32+80HPY	7556	10	6 0 2	CP	CP5	-			54.55	.14	1.39		2.51		2.66	16.10	19.55	.69	.06			2.24		.01	99.30
ON-20-06	-32+80HPY	7556	10	689	CP	CP5		••		53.89	.28	1.26		2.83		2.85	15.72	19.92	.10	.07			1.77		8.69	99.68
CN-20-06	-32+86HPY	7556	18	892	CP	CPS	-			52.98	.19	1.51		2.50		2.56	15.94	28.91	. 88	.05			1.56		.80	58.19 #
ON-20-05	-32+88HPY	7556	10	888	ÇР	CP5	•	••		53.66	.16	1.25		2.58		2.40	16.12	20,30	.07	.04			1.74		.00	98.33 #
ON-20-86	-32+80HPY	7556	11	101	CP	CP5	-			54.43	.16	.61		1.83		2.44	18.04	20.76	.18	.06			1.03		.82	99.48
ON-20-05	-32+88HPY	7556	11	112	CP	CP5	-			54.47	.86	2.06		2.23		2.49	15.19	19,87	.68	.06			2.28		.02	99.83
ON-20-86	-32+80HPY	7556	11	211	CP	CP5	-			53.73	.19	.20		2.38		1.69	15.51	23.33	.05	.08			1.18		.02	98.21 #
ON-20-06	-32+80HPY	7556	11	603	CP	CP5	•	••		54.64	.85	2.26		2.95		2.62	15.69	18.58	.05	.05			2.81		.01	99.71
08-20-06	-32+80HPY	7556	11	613	CP	CPS	-			53.42	.15	. 15		1.44		1.66	16.68	23.43	.87	.03			.64		0.00	97.28 #
CN-20-86	-32+80HPY	7556	11	717	¢۶	CP5	•	••		54.54	.15	1.07		2.17		2.69	16.27	20.78	.10	.04			1.89		.01	99.73
ON-20-06	-32+80HPY	7556	10	366	CP	CP5	-	Diam		53.84	.25	2.01		1.58		3.16	17.84	18.12	.69	.85			1.65		.04	98.62
ON-28-86	-32+80HPY	7556	10	307	CP	CP5	-	Diam		54.B 0	.15	1.91		1.56		2.77	18.25	18.70	.89	.85			1.69		.83	99.91
ON-28-86	-32+80HPY	7556	10	607	CP	CP5	-	Diam		55.54	.19	1.87		1.06		3.17	18.97	19.21	.11	. 18			1.38		.83	101.63 #
ON-20-06	-32+80HIL	7556	31	307	ÇР	CP5	•	Diam		54.49	.18	1.84		1.02		3.80	18.10	18.69	.10	.05			1.33		.83	98.72
ON-20-05	-32+80HIL	7556	31	388	CP	CP5	•	Diam		54.64	.04	1.55		1.40		2.88	18.35	19.06	.10	.08			1.33		.64	99.47
CN-28-86	-32+80HPY	7556	10	501	ÇР	CP5	·	Diam+		53.71	.26	.95		1.32		2.87	17.82	20.33	.11	.07			.99		.01	98.45 #
ON-20-06	-32+80HIL	7556	31	386	CP	CPS	-	Diam+		54.22	.39	1.11		1.68		2.83	18.29	19.99	.69	.05			1.15		- 82	99.81
IN-28-86	-32+80HPY	7556	11	186	CP	CP5	•	Diam-		54.14	.87	1.54		2.73		2.53	15.69	19.69	.08	.05			1.84		0.0 0	99.37
ON-28-86	-32+80HPY	7556	11	681	ĊР	CP5	-	Diam-		53.75	.31	2.31		1.57		3.30	17.87	17.58	.12	.04			1.75		.84	98.64
ON-20-06	-32+80HPY	7556	11	718	СР	CP5	DI/G2			53.81	.26	1.24		2.72		2.53	16.54	20.45	.09	.63			1.64		.00	99.33
ON-20-06	-32+80HPY	7556	11	213	СP	CP5	D10/G2	2 Diam		54.45	.27	1.99		1.66		3.05	17.97	18.19	.69	.05			1.75		.83	99.58
ON-28-86	-32+80HPY	7556	10	768	СР	CP5	G2			54.56	.13	.35		3.26		1.41	15.45	22.64	.64	.06			1.70		.01	99.59
ON-20-06	-32+80HPY	7556	11	117	СР	CPS	G2			53.78	.37	.81		1.54		2.05	16.97	23.69	.64	.81			.77		.61	99.44
ON-20-06	-32+86HPY	7556	11	768	CP	CP5	G2/DIC)		54.54	.64	2.29		9.6A		2 56	15 74	18 78	.11	97			2 72		92	66 87

Client: RJK0

Comment:

Samole					v4.	812Class	ification		Roc	k/Tena															Trace		
Nage	Fraction	Mount	Cel	l Grain	SA	CFM	DI		HC	T(Zn)	Si02	Ti02	A1203	V203	Cr203	Fe203	Fe0	MaQ	CaO	MoQ	NiG	ZnO	Nb205	Na20	Na20	K20	Total
										-c	vt ×	vt 🛪	wt 🕏	wt %	wt %	wt %	wt %	wt %	vt 🕯	vt 💈	ut s	wt %	wt %	wt ≉	wt 3	wt %	wt s
KON-20-06	-32+80HPY	7556	10	806	CP	СРб	•				54.22	.35	2.15		2.35		3.54	15.41	18,17	.12	.03			2.61		. 0 2	99.19
KON-28-85	-32+88HPY	7556	11	218	CP	CP6	-				53.73	.37	2.93		1.45		3.50	15.43	18.71	.18	0.00			2.58		.82	98.81
KON-20-05	-32+88HPY	7556	10	217	CP	CP6	G2				53,77	.30	1.90		2.84		3.52	14.92	18.49	.89	.06			2.66		.01	98.55
KON-28-86	-32+80HPY	7556	10	698	CP	CP6	G2	••			53.81	.29	1.91		2.75		3.53	15.32	18.69	.10	.04			2.82		.68	99.26
KON-20-05	-32+86HPY	7556	11	284	C₽¢	CP5	-				53.74	.24	1.62		2.73		2.52	15.49	21.01	.09	.68			2.03		.25	59.20
KON-28-05	-32+88HPY	7556	11	207	CP#	CPS	-				53.35	.24	1.05		1.02		2.64	17.85	20.38	.69	.84			.81		.74	9 8.24 #
KON-20-06	-32+80KPY	7556	11	185	CP*	CP5	-	Diam			54.65	.22	2.48		1.33		3.26	17.87	17.56	.10	.06			1.96		.07	99.57
KON-20-05	-32+80HPY	7556	10	583	CP*	CP6	-				53.42	.38	1.51		3.51		2.11	15.05	20.17	.86	.03			2.23		.37	98.B5
KON-20-06	-32+86HPY	7556	18	115	P	G 9					41.67	.92	19.75		3.59		7.72	20.49	5.50	.24	.04			.66		0.88	99,98
KON-20-05	-32+88HPY	7556	18	108	Ρ	G 9-1					41.84	.21	21.39		3.32		7.61	28.61	4.51	.42	.03			.02		0.00	99.96
KON-20-06	-32+80HPY	7556	18	119	Р	G 9-1					41.92	.20	21.05		3.74		7.79	28.52	4.38	.45	.01			.65		0.00	100.12
KON-20-06	-32+88HPY	7556	10	202	P	G 9-1					42.64	.21	21.56		3.13		7.52	28.72	4.45	.39	0.00			.02		0.00	100.05
KON-20-06	-32+80HPY	7556	10	265	Р	G 9-1					42.23	.25	28.87		3.91		7.51	28.43	4.85	.35	0.00			.05		0.00	100.45
KON-20-06	-32+80HPY	7556	18	208	Р	G 9-1					41.68	.28	21.78		3.24		7.63	28.42	4.47	.39	.02			.05		0.00	99.88
KON-20-05	-32+80HPY	7556	10	210	Ρ	G 9-1					41.99	.28	21.71		3.01		7.44	28,67	4.40	.42	6.66			.05		0.00	99.89
KON-20-05	-32+80HPY	7556	10	212	Р	G10-2					41.57	.05	18.49		7.43		7.14	20.95	4.36	.42	0.00			.64		6.60	100.45
KON-20-06	-32+88HIL	7556	31	383	Р	G10-2					41.03	.88	16.92		9.40		7.19	19.55	5.61	.46	.01			.03		.80	160.29
KON-20-06	-32+80HPY	7556	10	101	Р	G10-4					41.44	.92	18.39		7.74		6.88	21.03	3.71	.40	0.90			.02		0. 90	99.62
KON-20-05	-32+80HPY	7556	10	113	Ρ	G10-4					41.43	.03	18.44		7.75		6.88	21.18	3,68	.44	0.00			.02		0.00	99.85
KON-20-05	-32+80HPY	7556	10	103	Р	G10-5×					41.23	.03	16.57		9.82		6.95	20.35	4,39	.45	0.00			.83		0. 0 0	99.84
KON-20-06	-32+80HPY	7556	10	164	Р	G10-5*					41.07	.03	15.81		9.53		6.69	28.27	4.38	.41	.02			.65		0.00	99.27
KON-20-06	-32+80HPY	7556	10	189	Р	G10-5*					41.21	.03	16.65		9.84		6.76	20.54	4.39	.42	.01			.02		0.00	99.98
KON-20-06	-32+86HPY	7556	10	291	Р	G18-5¥					41.10	.64	16.64		9.74		5.82	28,66	4.45	.41	.82			.83		.01	99.91
KON-20-06	-32+80HPY	7556	10	112	₽	G11					40.89	.01	17.88		8.68		7.78	18.20	5.74	.55	.03			.01		.68	188.88
KON-20-06	-32+80HPY	7556	10	114	P	G11					41.35	.14	19.69		5.62		7.49	19.06	6.38	.44	0.00			.82		.00	100.21
KON-20-06	-32+86HPY	7556	10	116	P	G11					41.45	.43	18.37		6.63		6.58	19.76	6.24	.30	.05			.02		0.00	99.83
KON-20-06	-32+86HPY	7556	10	102	P	G11-1					42.64	.01	20.05		5.03		6.85	20.76	5.19	.36	.01			.01		.00	100.32
KON-20-06	-32+80HPY	7556	10	105	Ρ	G11-1					40.53	.18	15.75		10.14		7.29	18.40	6.87	.39	0.00			.02		0.00	99.58
KON-20-06	-32+88HPY	7556	10	106	Ρ	G11-1					41.09	.2 0	16.48		9.21		7.37	18.47	6.21	.39	0.00			.05		0.00	99.48
KON-20-06	-32+80HPY	7556	10	107	Ρ	G11-1					41.54	.27	19.04		6.55		6.94	20.18	5.89	.38	.84			.05		.00	100.01
KON-20-06	-32+88HPY	7556	10	111	Ρ	G11-1					40.94	.12	16.94		8.60		7.77	18.64	6.25	.42	.03			.05		0.00	99,95
KON-20-06	-32+80HPY	7556	10	118	Ρ	G11-1					41.38	.31	18.86		5.93		8.19	19.56	5.49	.43	0.08			.03		6.86	100.11
KON-28-85	-32+80HPY	7556	10	263	Ρ	G11-1					41.11	.14	17.76		7.91		7.34	19.13	6.68	.44	.04			.03		.01	99.97
KON-28-85	-32+86HPY	7556	10	284	Ρ	G11-1					40.75	.20	18.11		7.57		7.41	18.55	5.64	.44	0.00			.84		.00	98.71
KON-20-06	-32+86HPY	7556	10	285	P	G11-1					41.39	.23	19.77		5.42		8.20	18.84	5.69	.49	.01			.04		.88	100.08
KON-20-06	-32+86HPY	7556	10	207	Ρ	G11-1					41.83	.29	19.87		5.09		7.23	20.26	5.11	.35	.04			.83		0.00	100.11
KON-20-05	-32+86HPY	7556	10	211	Ρ	G11-1					41.35	.69	18.12		7.71		6.80	19.60	6.08	.40	.02			.84		.01	100.20
KON-20-06	-32+80HIL	7556	31	382	Р	G11-1					41.60	.26	19.70		5.42		7.85	19.75	5.15	.34	.04			.84		0.00	189.16
KON-28-06	-32+88HPY	7556	10	110	Р	G11-1	DIC				41.14	.33	18.19		7.21		7.53	19.77	5.23	.49	0.00			.89		0.00	99.98

Page: 3

105400.09.05_CUSTPROBE_05MAR2012

13-Jul-2020	CLIENT REPORT
Project: RJK0	
AWO : AD26	

.

	CFN ID CLIENT ID				E	SUBMISSION	11	ATTRITION MILL			HE	ICN				
	11			1	L		н				Ŧ	Т	95		MI	
	11	•		[-	•		11				-1-					
	н			1	Ł		11				1			- E		
	11	Batch	Sa	[Sample	E	Sample	11	+16 05	-16 VS	Clay	I	·16L	-16IH	-161	-16H	
	11	Name	#	Nase	L	Weight	11	Weight	Weight	Rejects	1	Weight	Weight	Weigh	t Weight	t
	11			1	E	(kg)	П	(kg)	(kg)		1	{kg}	{g#}	(gm)	(g=)	
	п	·····	••	•	Ł	+	u	*****	+++++		1		*****	1	- +++++	٠
1	н	20+9352	1	KON-28-05	Ł	277.95	11	7.56	x	×	1	48.58	×	6591.	43 =	
	н			1	I		11				1			1		

Not involved in process

- x No weight minimal material
- * No weight tangible material

+++++ Subject to further processing

13-Jul-2020	CLIENT REPORT	WEIGHTS TABLE -	C.F. MINERAL RESEARCH LTD.
Project: RJK0			
AWO : AD26			

	н	CFH ID		CLIENT ID	I	SUBMISSION	П	MAGNETIC SEPARATION														I
	11			I	ł		П															ţ
•••	н				!-		-11-															-1
	11			1	l		11					1					1					1
	11 :	Batch	Sa	Sample	- E	Sample	[]	- 15+32HM	-16+32HIL	-16+32HPY	-16+32HD	ł	-32+80HM	-32+80HIL	-32+80HPY	-32+80HD	1	-80HM	-80HIL	-80KPY	- BCHD	I
	11 :	Name	*	Nase	I	Weight	П	Weight	Weight	Weight	Weight	í	Weight	Weight	Weight	Weight	ł	Weight	Weight	Weight	Weight	ł.
	н			1	1	(kg)	П	(gm)	(ga)	(gm)	(ga)	t	(gæ)	(gæ)	(gm)	(ga)	1	(ga)	(gs)	{gm)	(gm)	ſ
	11		••		1		11	•••••	•••••	••••	+++++	Ŧ				+++++	1			•••••	******	1
1	н.	20+9352	I	KON-20-06	L	277.95	Ш	13.94	209_46	225.77	2.14	1	108.62	793.85	1200.45	5.29	1	621.36	375.99	940.46	9.91	ţ
	İI.			1	1		П					1					1					L

Not involved in process ٠

- × No weight - minimal material
- No weight tangible material

+++++ Subject to further processing

Page 18 File: WTS9352

-