

We are committed to providing <u>accessible customer service</u>. If you need accessible formats or communications supports, please <u>contact us</u>.

Nous tenons à améliorer <u>l'accessibilité des services à la clientèle</u>. Si vous avez besoin de formats accessibles ou d'aide à la communication, veuillez <u>nous contacter</u>.

2019 Exploration Diamond Drilling Report Nipissing Diamond Project – Lorrain Property Lorrain Township Larder Lake Mining Division Ontario

For

RJK Explorations Ltd.

Rochelle Collins, P. Geo.

Peter Hubacheck, P. Geo.

November 25, 2021

Table of Contents

1.0	SUMMARY	4
2.0	INTRODUCTION	4
3.0	Property Description and Location	5
3.1	Location and Access	5
3.2	Topography, Climate and Vegetation	5
3.3	Description of Mining Claims Worked	6
4.0	Property Exploration History	6
5.0	Regional and Local Geology	7
5.1	Regional Geology	7
5.2	Local Geology	9
5.3	Structural Geology	9
6.0	Type of Mineral Deposit / Commodity	12
7.0	Diamond Drilling Program	12
7.1	2019 Diamond Drilling Program	12
/.1		
7.1		
	1 Technical Aspects of the Drill Program	12
7.1.	 Technical Aspects of the Drill Program	12 13
7.1. 7.1.	 Technical Aspects of the Drill Program	12 13 13
7.1. 7.1. 7.1.	 Technical Aspects of the Drill Program	12 13 13 13
7.1. 7.1. 7.1. 8.0	 Technical Aspects of the Drill Program	12 13 13 13 13
7.1. 7.1. 7.1. 8.0 8.1	 Technical Aspects of the Drill Program Location of Drill Holes Drill Hole Information Results Sampling and Description of Kimberlite Processing Results 	12 13 13 13 13 13
7.1. 7.1. 7.1. 8.0 8.1 8.2	 Technical Aspects of the Drill Program Location of Drill Holes Drill Hole Information Results Sampling and Description of Kimberlite Processing Results Diamond Processing Results 	12 13 13 13 13 14 14
7.1. 7.1. 7.1. 8.0 8.1 8.2 8.3	1 Technical Aspects of the Drill Program 2 Location of Drill Holes 3 Drill Hole Information 3 Results Sampling and Description of Kimberlite Processing Results Diamond Processing Results Micro-Probe Indicator Mineral Results	12 13 13 13 13 14 14 14
7.1. 7.1. 7.1. 8.0 8.1 8.2 8.3 9.0	1 Technical Aspects of the Drill Program 2 Location of Drill Holes 3 Drill Hole Information 3 Results Sampling and Description of Kimberlite Processing Results Diamond Processing Results Micro-Probe Indicator Mineral Results Descriptions of Drill Holes	12 13 13 13 13 14 14 14 14
7.1. 7.1. 8.0 8.1 8.2 8.3 9.0 9.1	1 Technical Aspects of the Drill Program 2 Location of Drill Holes 3 Drill Hole Information 3 Drill Hole Information Results Sampling and Description of Kimberlite Processing Results Diamond Processing Results Diamond Processing Results Micro-Probe Indicator Mineral Results Descriptions of Drill Holes Drill Hole Cross-Section Drill Hole Cross-Section	12 13 13 13 13 14 14 14 16 18
7.1. 7.1. 8.0 8.1 8.2 8.3 9.0 9.1 10.0	1 Technical Aspects of the Drill Program 2 Location of Drill Holes 3 Drill Hole Information 3 Drill Hole Information Results Sampling and Description of Kimberlite Processing Results Diamond Processing Results Diamond Processing Results Micro-Probe Indicator Mineral Results Diamond Processing Results Descriptions of Drill Holes Diamond Process-Section Assessment Work Expenditure Allocation Diamond Processing Results	12 13 13 13 14 14 14 16 18 19
7.1. 7.1. 8.0 8.1 8.2 8.3 9.0 9.1 10.0 11.0	1 Technical Aspects of the Drill Program 2 Location of Drill Holes 3 Drill Hole Information 3 Barling and Description of Kimberlite Processing Results Sampling and Description of Kimberlite Processing Results Diamond Processing Results Micro-Probe Indicator Mineral Results Descriptions of Drill Holes Drill Hole Cross-Section Assessment Work Expenditure Allocation Conclusions	12 13 13 13 14 14 14 16 18 19 19

Figures

Figure 3.1: General Location and Property Access Map	5
Figure 4.1: Drill Hole Location depicted on Regional Claim Map	7
Figure 5.1: Cobalt Silver Area Geology and Structural Architecture	8
Figure 5.3a: Timiskaming Structural Zone showing Twin Lakes Kimberlites	10
Figure 5.3b: Photo Lineament Structural Analysis of Twin Lakes Kimberlite Field	11
Figure 5.3c: Total Field Airborne Magnetics of Twin Lakes Kimberlite Field	.11
Figure 9.1: West / East Drill Fence showing Paradis Pond Kimberlite Structure	16
Figure 9.2: Plan Map showing Cross-section Drill Fence line	.17

Tables

Table 3.3.1: Summary of Mining Claims Worked	6
Table 7.1.3.1: Summary of Drill Hole Information	13
Table 10.1: Assessment Work Expenditure Allocation by Hole	18
Table 10.2: Assessment Work Expenditure Allocation by Claim Cell	19

Appendices

Appendix A: Property History
Appendix B: Drill Hole Logs
Appendix C: Analytical Certificates
Appendix D: Work Expenditure Invoices

1.0 SUMMARY

All mining claims within the Nipissing Diamond Project – Lorrain Property are in Lorrain Township, Larder Lake Mining Division and are held by RJK Explorations Ltd. for purposes of exploring for diamondbearing kimberlite pipes in the Cobalt-Kirkland Lake area. A centrally located point within the Nipissing Diamond Project – Lorrain Property ("Property") is approximately located at UTM coordinate 5,244,385 N, 605,880 E NAD 83 Zone 17 (47.344339 Lat., 79.598255 Long) at the center of Nicol Lake. The Property is located approximately 243 kilometers southeast of Timmins, Ontario and 158 kilometers north of North Bay, Ontario, via road access.

RJK Explorations Ltd. personnel conducted diamond drilling with the assistance of Huard Drilling of New Liskeard, Ontario between February 19, 2019 and March 28, 2019 for 37 days on three unpatented mining claims within Lorrain Township. RJK Explorations Ltd. completed 5 drill holes totalling 482 meters in a diamond drill program to test the potential to host diamondiferous kimberlites. Drilling resulted in a better understanding and definition of the local stratigraphy.

Maximum relief on the property is approximately 25 metres. Topography is generally rolling hills with local steep ledges and cliffs. Overburden is relatively shallow over the claims between 6.6-11.0m. Vegetation on the claims consists mainly of mature mixed forest and locally dense underbrush. Logging was done across much of the area and re-growth is extremely dense and, in some cases, impassable.

CF Mineral Research Ltd. recovered at least 18 natural diamonds, varying in colour, in a 22.4 kg (50 lb) drill core sample. Four of the stones that appear natural are -0.212+0.150 mm in size. One is light yellow; one is light green and two are white in colour. These are mostly partially crystalline chips and are clear with single tiny inclusions in two of the stones. Seven of the stones thought to be natural are -0.150+0.106 mm in size. Five of these are clear white broken fragments, one is clear white with broken dodecahedral crystal faces and one is a light brown diamond fragment. There were no inclusions in the diamonds recovered.

2.0 INTRODUCTION

This report has been prepared to meet the requirements for the filing of assessment work under the provisions of the Ontario Mining Act and describes results of a diamond drilling program performed by RJK Explorations Ltd in 2019. Subsequent reports will be filed annually for consecutive exploration phases completed in 2020 and 2021.

The drill holes were drilled within the Lorrain Township Properties in Lorrain Township on 3 contiguous claims owned 100% RJK Explorations Ltd. The drill holes are targeting magnetic anomalies identified in previous assessment work and following up on known kimberlite targets.

3.0 Property Description and Location

3.1 Location and Access

A centrally located point within the Nipissing Diamond Project – Lorrain Property ("Property") is approximately located at UTM coordinate 5,244,385 N, 605,880 E NAD 83 Zone 17 (47.344339 Lat., 79.598255 Long) at the center of Nicol Lake. The Property is located approximately 243 kilometers southeast of Timmins, Ontario and 158 kilometers north of North Bay, Ontario, via road access. The field crews accessed the Property in Lorrain Township, Larder Lake Mining Division, via road from the community of Cobalt, Ontario and turning south onto Ontario Road 567 for 6.5 kilometers to a gravel logging road on the right and turning southwest on a gravel road 6 km toward the west side of Nicol Lake.

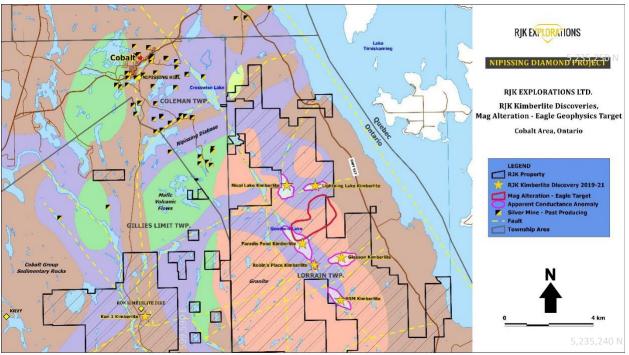


Figure 3.1: General location and property access.

3.2 Topography, Climate and Vegetation

Maximum relief on the property is approximately 25 metres. Topography is generally rolling hills with local steep ledges and cliffs. Overburden is relatively shallow over the claims between 6.6-11.0m. Vegetation on the claims consists mainly of mature mixed forest and locally dense underbrush. Logging was done across much of the area and re-growth is extremely dense and, in some cases, impassable. impassable.ⁱ

The climate of northern Ontario is generally warm with moderate precipitation from May to October and snow covered and cold weather from November to May.

3.3 Description of Mining Claims Worked

The drilling area consists of mining claims in Lorrain Township, Larder Lake Mining Division. The claims are part of the Nipissing Diamond Project – Lorrain Property. The claims are all contiguous, and owned by RJK Explorations Ltd. Summary information for those mining claim cells on which the drilling program was completed is summarized in Table 3.3.1. Drill hole locations are depicted on a claim map and presented in Figure 4.1.

Year	Cell Number	Legacy Claim	Township	Ownership	Due Date
2019	126017	4273040, 4282142	Lorrain	RJK Exploration Ltd.	2024-10-03
2019	175091	4273040, 4282187, 4282410	Lorrain	RJK Exploration Ltd.	2024-10-03
2019	343852	4273040, 4282187	Lorrain	RJK Exploration Ltd.	2024-10-03

Table 3.3.1: Summary Mining Claims Worked

4.0 Property Exploration History

The property known as the Bishop Nipissing Diamond Project is composed of several mining claims listed in Table 3, along with history of the claims as identified in claim abstracts.

Work completed to date includes grass roots prospecting, a research component, till sampling, screening, concentrating, sorting, and examining potential kimberlite indicator minerals (KIMs), and microphotography. Refer to filed Assessment reports:

Bishop, T., June 6, 2018: Assessment Work Report Claim L 4282142

Bishop, T., June 18, 2018: Assessment Work Report for Cell Claims 277042, 277041, 131127, and 329881 Bishop, T., November 27, 2017: Assessment Work Report L 4281431 and L 4282409 Bishop, T., October 3, 2016: Assessment Work Report Claim L 4273040

A drone magnetic survey using a Geometrics MFAM magnetometer mounted on a DJI M600 drone was conducted by Zen Geomap of Timmins over forty-nine claims wholly or partly within seven flight grids in Lorrain Township between May 29, 2018, and December 28, 2019. Refer to filed Assessment report:

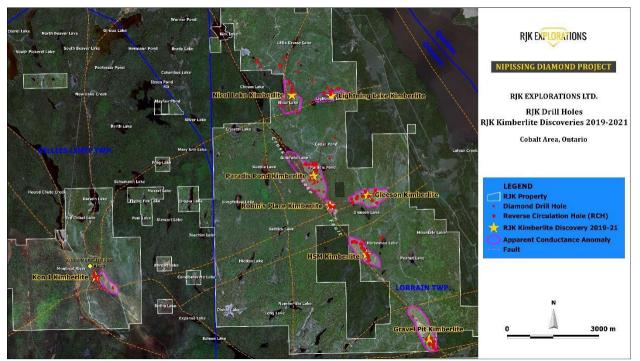


Figure 4.1: Drill hole locations depicted on regional claim map.

5.0 Regional and Local Geology

The information provided in the Regional and Local Geology section of this report is a compilation from various sources. The reader is directed to the references for further reading.

5.1 Regional Geology

The Cobalt area lies within the Superior structural province of the Canadian Shield. Archean basement rocks consist of northwest-southeast trending Archean volcanic intruded by mafic, ultramafic and granitic intrusives. The Archean rocks are unconformably overlain by relatively flat-lying Proterozoic sediments. The sediments consist of conglomerates, greywackes, and quartzites of the Coleman member. The Archean and Proterozoic rocks were intruded by the Nipissing diabase sill intrusive event. Nipissing diabase was intruded ~2219 Ma predominantly as sheets (sills, cone sheets and dikes). The diabase takes the shape of basins and domes were intruded as a sill sheet. The youngest known consolidated rocks in the area are kimberlite pipes.

The rationale of exploring for diamonds in the Temagami region is the diamond-bearing kimberlite pipes and dykes. The Lake Temiskaming Structural Zone is expressed as large-scale normal movement along northwest-trending faults, including the Montreal River and Cross Lake fault systems. Nipissing diabase and gabbro intrusive likely were funnelled through conduits created by this rifting event and kimberlite magmatism is likely to have exploited these same features.ⁱⁱ Kimberlites in northern and eastern Ontario occur along a trend at approximately 325°. The Lake Timiskaming Structural Zone in eastern Ontario has a northwest trend, and a subordinate northeast trend in the Cobalt and New Liskeard, Ontario areas.ⁱⁱⁱ

There are three major NE trending structures (West Cobalt Lake fault, Kerr Arch and Schumann Arch) and two major NW/SE trending structures (Cross Lake and Montreal River Faults shown in purple, Figure 5.1. In 2019, The Mineral Exploration Research Center published the Cobalt Seismic transect under the direction of Dr. Shawna White. The 40 km transect was conducted on HWY 567 from the east side of Cobalt through Bucke and Lorrain and terminated in South Lorrain Twp. RJK Explorations Ltd.'s major claim dispositions including the Kon and Bishop Properties are outlined in yellow rectangles, Figure 5.1.

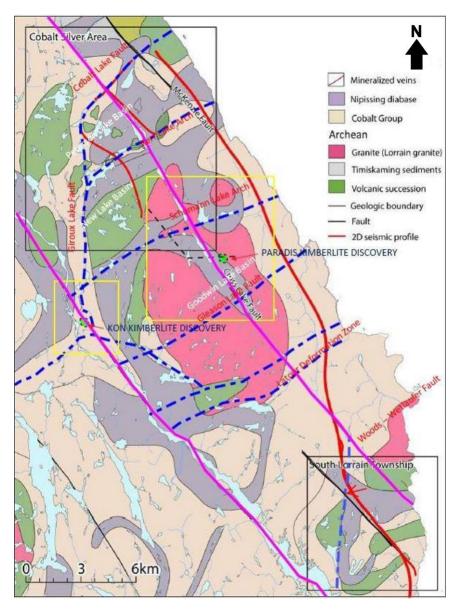


Figure 5.1: Cobalt Silver Area Geology and Structural Architecture – Modified from {MERC Cobalt Seismic Transect Release-2018}

5.2 Local Geology

The following comments were noted by Alan Kon, author of the Assessment Work Report on Claims 1140510 and 3007492 Gillies Township, Larder Lake Mining Division May 2012, that documents an outcrop stripping program.

"The first part of the stripped area is Gowanda series sediments with exceedingly small pebbles to large loosely packed boulders up to - 12 inches in diameter. There are a few small areas with rusty gossans, but no visible sulphides were observed. Further up the stripped area there is one small rusty breccia vein approximately 2 centimeters in width and about 50 centimeters long. The conglomerate meets an unidentified mafic intrusive dike. The conglomerate has a considerable amount of calcite stringer veins and veinlets running between the layers.

The mafic dike also appears to be faulted near the contact. Small calcite veins run perpendicular to the fault with the occasional vein running parallel. The mafic dike itself is mostly very dark green to black in colour but seems to have a bluish tinge. At the faulted area, the mafic rock is very crumbly and somewhat soft but gets much harder as it moves away from the fault.

The exact age or type of the mafic dike is not known but would suggest it is much younger than the relatively young Protozoic aged Gowganda sediments".^{iv}

5.3 Structural Geology

The information compiled in this section regarding the structural geology of the Kon Property area is sourced from Sage, R.P. 2000. Kimberlites of the Lake Timiskaming structural zone: supplement; Ontario Geological Survey, Open File Report 6018, 123p.

The Lake Timiskaming Structural Zone kimberlites occur at intersections between the regional northwest trend and more local lineaments, faults, and lithologic boundaries. While regionally the distribution of kimberlites follows a northwest pattern, in detail, local clusters of kimberlite pipes may reflect a distribution oblique to the northwest trend and influenced by cross structures as evidenced by the Twin Lake kimberlite discoveries in 1996 by Sudbury Contact Mines Ltd. In 1995 and 1996, the author led a discovery team employing detailed airborne geophysics combined with RC drilling basal till sampling to identify the 95-1, 95-2, 96-1, MR6 kimberlite targets. (Imagery from P. Hubacheck geo-datafiles).

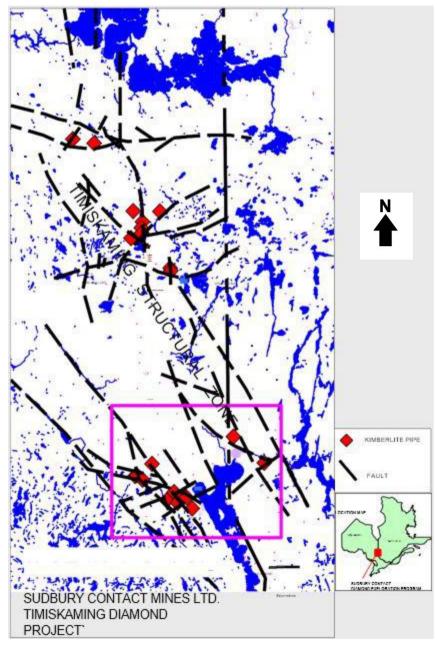


Figure 5.3a: Timiskaming Structural Zone showing Twin Lakes Kimberlites

Along the Lake Timiskaming Structural Zone, faults and lineaments display groupings into north-south, northeast, and northwest trends and these intersecting patterns have broken the crustal rocks into polygonal blocks. Kimberlite intrusions display a preference at being emplaced at intersection points along these structural trends. In the Cobalt – New Liskeard area, kimberlites occur on both flanks of the Lake Timiskaming Structural Zone. Lineament trends intersect at or close to the site of emplacement.

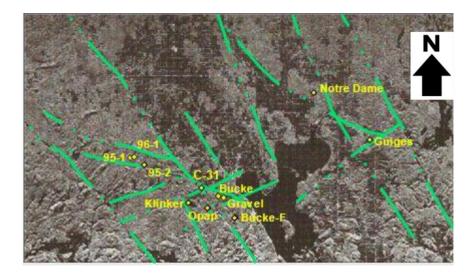


Figure 5.3b: Photo Lineament Structural Analysis of Twin Lakes Kimberlite Field

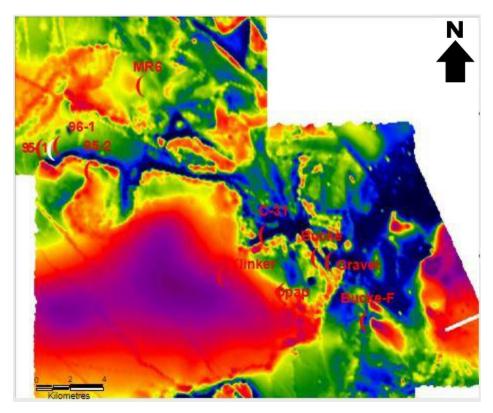


Figure 5.3c: Total Field Airborne Magnetics of Twin Lakes Kimberlite Field

Between Cobalt and New Liskeard, numerous kimberlite pipes occur where more conspicuous northwest-trending faults are intersected by local northeast-trending cross faults. Mapping by Thomson (1956, 1960) and Russell (1984) suggests that the bedrock in this region is broken into many blocks defined by these two structural trends.ⁱⁱⁱ

6.0 Type of Mineral Deposit / Commodity

The RJK Explorations Ltd. is exploring for diamondiferous kimberlite pipes by testing magnetic lows and magnetic highs identified by previous magnetometer survey work. In addition, government airborne conductance maps were highly effective in detecting the Lorrain Twp. Kimberlite Field. Drone Magnetometer surveys are an effective tool for kimberlite exploration, as the host rock surrounding the emplaced pipe often has different magnetic properties than the pipe or dike itself.

The reader is encouraged to refer to Sage (1996) for a discussion of the geophysical expression of kimberlite pipes in this region. In summary, within the Cobalt – New Liskeard area at least three kimberlite intrusions have a negative magnetic response including the diamondiferous 96-1 pipe. The geochronology suggests that kimberlite emplacement spanned approximately 30 Ma and straddled a magnetic polar reversal in the earth's magnetic field.^V The kimberlite intrusions commonly display oval to circular isomagnetic contour patterns, and some appear to be highly elongated.^V

7.0 Diamond Drilling Program

7.1 2019 Diamond Drilling Program

The drilling activities commenced February 19, 2019 and ended on March 28, 2019 for 37 days. A total 482 meters in five diamond drill holes were drilled during the period by Huard Diamond Drilling of New Liskeard. The exploration permit number for the property is PR-18-000247, effective January 24, 2019, to January 24, 2022.

In March 2020, a 22.4 kg sample of the 2019 Paradis Pond drill core was sent to CF Mineral Research Ltd. ("CFM"). Project Manager, Peter Hubacheck P. Geo., relogged the four (PP-19-02 to PP-19-05) 2019 Paradis diamond drill cores reclassifying the core as volcaniclastic kimberlite breccia and identified potential kimberlite indicator minerals leading to further investigative work leading to the decision to have the core analysed by CFM. A 22.4 kg sample was sent to CFM for heavy mineral separation, grain picking, microprobe analysis, and caustic fusion testing for diamonds.

7.1.1 Technical Aspects of the Drill Program

In general, access to the drilling area was good via HWY 567 accessing a logging road system in Lorrain Twp, to the property areas such that the drilling equipment could be floated with tandem trailer. Huard Drilling of New Liskeard, Ontario used a hydraulic drill to drill BTW core diameter (42mm) to a maximum depth of 208 meters. The drill was aligned using GPS and compass at the drill site by an RJK Exploration Ltd. geologist. Drill hole inclination was surveyed at fifty-meter intervals and at the end of the hole with a Reflex single shot tool which utilized a magnetic compass to measure azimuth and dip.

7.1.2 Location of Drill Holes

All drill hole collars were positioned with a Garmin 78S GPS unit and verified with a Magellan 1000 unit. Elevations were determined from Google Earth WGS 84.

7.1.3 Drill Hole Information

Drill hole information is summarized in Table 7.1.3.1 with UTM co-ordinates in NAD 83 Zone 17. Glenn Kasner, Mining Technologist supervised diamond drilling and Geologist, Peter Hubacheck performed geo-logging and geo-teching of the diamond drill core.

Hole_ID	Easting	Northing	Elev (m)	Length (m)	Azm.	Dip	DDH Started	DDH Completed	Sample Taken
PP-19-01	607120	5242253	343	191	269	-44	Feb. 27, 2019	Mar. 9, 2019	No Samples
PP-19-02	606700	5242375	343	149	100	-45	Mar. 12, 2019	Mar. 15, 2019	22.4kg Bulk
PP-19-03	606725	5242335	343	57	110	-44	Mar. 16, 2019	Mar. 18, 2019	sample from
PP-19-04	606677	5242382	343	38	98	-45	Mar. 22, 2019	Mar. 23, 2019	all 4 holes
PP-19-05	606665	5242375	343	47	95	-51	Mar. 25, 2019	Mar. 27, 2019	

Table 7.1.3.1: Summary of Drill Hole Information

Note: Coordinates shown are UTM NAD 83 Zone 17

8.0 Results

8.1 Sampling and Description of Kimberlite Processing Results

Upon completion of a drill hole, geologists completed logs for geological observations. The drill logs can be found in Appendix B. Drill holes were selectively sampled by the logging geologist within prospective lithologies. A bulk sample was collected from the drill core of holes PP-19-02 to PP-19-05. See Appendix C for assay certificates. Holes PP-19-01 was not sampled.

The 22.4 kg bulk sample was prepared from Paradis diamond drill cores after relogging and reclassifying the core as volcaniclastic kimberlite breccia and identified potential kimberlite indicator minerals leading to further investigative. A 22.4 kg sample was sent to CFM Mineral Research Limited for heavy mineral separation, grain picking, microprobe analysis, and caustic fusion testing for diamonds.

8.2 Diamond Processing Results

The samples were processed by CF Mineral Research Ltd. (CFM), an ISO 9001:2015 certified and 17025:2005 compliant laboratory, owned by Dr. Charles E. Fipke. CFM reports the recovery of at least 18 natural diamonds, varying in colour, in a 22.4 kg (50 lb) drill core sample. Four of the stones that appear natural are -0.212+0.150 mm in size. One is light yellow; one is light green and two are white in colour. These are mostly partially crystalline chips and are clear with single tiny inclusions in two of the stones. Seven of the stones thought to be natural are -0.150+0.106 mm in size. Five of these are clear white broken fragments, one is clear white broken dodecahedral crystal faces and one is a light brown diamond fragment. There were no inclusions in the diamonds recovered.

8.3 Micro-Probe Indicator Mineral Results

Kimberlite indicator minerals (KIMS) were also separated and tested, returning materially important results. A total of 28 KIM grain determinations were identified, that commonly derive from kimberlite sources, originating in the "diamond stability field." From the heavy mineral concentrates, 164 grains were probed and classified into six diamond indicator minerals: chromite, high manganese ilmenite, peridotitic pyroxene, clinopyroxene, eclogitic garnet and peridotitic garnet. Of the 164 grains analysed by electromicroprobe, twenty-three were G10 peridotitic garnets, three were diamond inclusion G11 garnets, one was a G1 eclogitic garnet and one was a diamond inclusion chromite, all formed in the diamond stability field along with the diamonds.

9.0 Descriptions of Drill Holes

Drill Hole PP-19-01

Drill hole PP-19-01 was collared at 687,120.0 E, 5,242,253.0 N and drilled with a 269 degrees azimuth and a -44 degrees dip to a final depth of 191.0 meters.

PP-19-01 intersected 11 meters of overburden followed downhole by a massive syenite (Lorrain Granite), with coarse grain equigranular pinkish feldspar phenocrysts up to 3cm.

One downhole survey was measured from the hole and no samples were collected.

Drill Hole PP-19-02

Drill hole PP-19-02 was collared at 606,700.0 E, 5,242,375.0 N and drilled with a 100 degrees azimuth and a -45 degrees dip to a final depth of 149.0 meters.

PP-19-02 intersected 8 meters of overburden followed downhole by heterolithic kimberlite breccia matrix supported. With a relict honeycomb texture lapilli matrix. The hole ended in massive syenite at 149 meters.

Two downhole surveys were measured from the hole and a portion of the core was used in a 22.4 kg bulk test.

Drill Hole PP-19-03

Drill hole PP-19-03 was collared at 599,594.6 E, 5,238,702.18 N and drilled with a 270 degrees azimuth and a -50 degrees dip to a final depth of 110.5 meters.

PP-19-03 intersected 7 meters of overburden consisting of glaciofluvial pebbly sand and boulders. A heterolithic matrix supported breccia with mixed angular and rounded blocks. At 7m relict honeycomb texture; at 11.5m sparry faceted yellow crystals. The hole ended in massive syenite.

One downhole survey was measured from the hole and a portion of the core was used in a 22.4 kg bulk test.

Drill Hole PP-19-04

Drill hole PP-19-04 was collared at 606,677.0 E, 5,242,382.0 N and drilled with a 98 degrees azimuth and a -45 degrees dip to a final depth of 38.0 meters.

PP-19-04 intersected 6.6 meters of overburden consisting of glaciofluvial pebbly sand and boulders. A heterolithic matrix supported breccia with mixed angular and rounded blocks. At 7.-8m, and 11.4-11.6m relict honeycomb texture. The hole ended in massive syenite.

One downhole survey was measured from the hole and a portion of the core was used in a 22.4 kg bulk test.

Drill Hole PP-19-05

Drill hole PP-19-05 was collared at 599,594.6 E, 5,238,702.18 N and drilled with a 270 degrees azimuth and a -50 degrees dip to a final depth of 110.5 meters.

PP-19-05 intersected 7 meters of overburden consisting of glaciofluvial pebbly sand and boulders. A heterolithic matrix supported breccia with mixed angular and rounded blocks. At 7m relict honeycomb texture; at 11.5m sparry faceted yellow crystals. The hole ended in massive syenite.

One downhole survey was measured from the hole and a portion of the core was used in a 22.4 kg bulk test.

9.1 Drill Hole Cross-Section

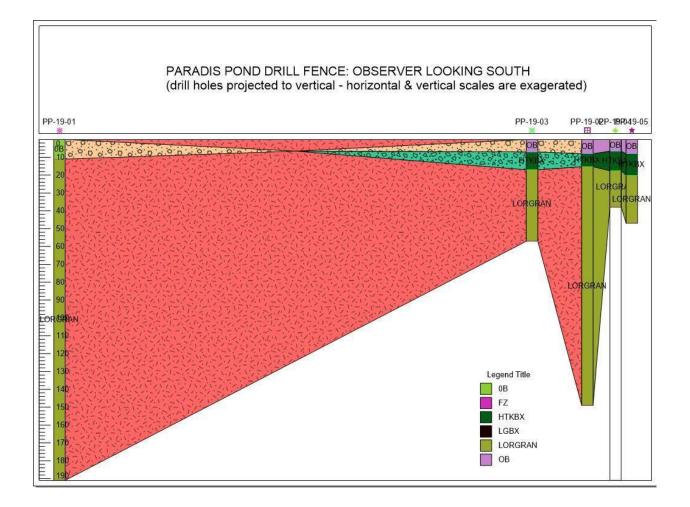


Figure 9.1: West / East Drill Fence showing Paradis Pond Kimberlite Structure

The overburden layer is likely continuous between drill holes PP-19-01 and PP-19-03 as Paradis Pond and adjacent peat bog occupy this region.

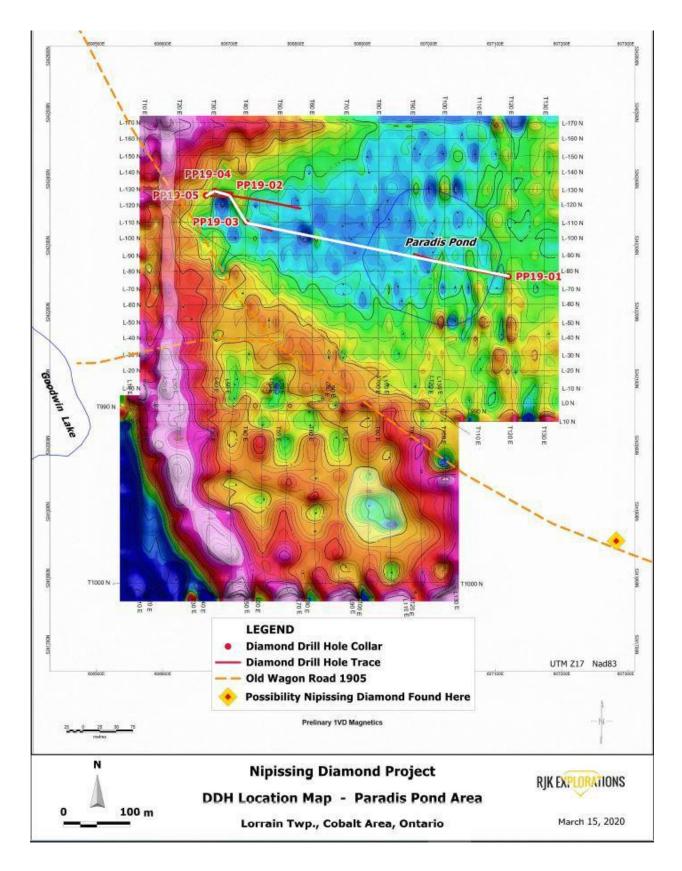


Figure 9.2: Plan Map showing Cross-section Drill Fence line [white line]

Hole - ID	Claim	Description	Invoice Number/Identifier	Amount (CDN\$)
PP-19-01	126017	Drilling/Float	P4760, Huard Drilling Feb 19-28, 2019	\$25,752.28
	and	Logging Facility	197261, RJK 2019-1 to RJK 2019-6, RJK 2019-8, M.Kasner	\$3,341.60
	343852	Consultants	MacKay Dec. 24, 2019, Hubacheck RJK_Inv- 2 Dec27 19	\$14,159.29
		Reporting	21-203	\$480.00
		Assay Cost	Invoice 9205853	\$0.00
PP-19-02	175091	Drilling/Float	Huard Drilling March 1-15, 2019	\$12,786.33
	and	Logging Facility	197261, RJK 2019-1 to RJK 2019-6, RJK 2019-8, M.Kasner	\$3,341.60
	343852	Consultants	MacKay Dec. 24, 2019, Hubacheck RJK_Inv- 2_Dec27_19	\$14,159.29
		Reporting	21-203	\$480.00
		Assay Cost	Invoice 9205853	\$855.11
PP-19-03	175091	Drilling/Float	Huard Drilling Mar 16-28, 2019	\$8,858.83
	and	Logging Facility	197261, RJK 2019-1 to RJK 2019-6, RJK 2019-8, M.Kasner	\$3,341.60
	343852	Consultants	MacKay Dec. 24, 2019, Hubacheck RJK_Inv- 2_Dec27_19	\$14,159.29
		Reporting	21-203	\$480.00
		Assay Cost	Invoice 9205853	\$855.11
PP-19-04	175091	Drilling/Float	Huard Drilling Mar 16-28, 2019	\$4,403.00
	and	Logging Facility	197261, RJK 2019-1 to RJK 2019-6, RJK 2019-8, M.Kasner	\$3,341.60
	343852	Consultants	MacKay Dec. 24, 2019, Hubacheck RJK_Inv- 2_Dec27_19	\$14,159.29
		Reporting	21-203	\$480.00
		Assay Cost	Invoice 9205853	\$855.11
PP-19-05	175091	Drilling/Float	Huard Drilling Mar 16-28, 2019	\$5,313.00
		Logging Facility	197261, RJK 2019-1 to RJK 2019-6, RJK 2019-8, M.Kasner	\$3,341.60
		Consultants	MacKay Dec. 24, 2019, Hubacheck RJK_Inv- 2_Dec27_19	\$14,159.29
		Reporting	21-203	480
		Assay Cost	Invoice 9205853	\$855.11

Table 10.1 Assessment Work Expenditure Allocation – See Appendix DAA

10.0 Assessment Work Expenditure Allocation

Note: Some expenditures have been pro-rated per hole, for example drilling or consulting costs, etc. Amounts are before taxes are added.

Total by Claim

Claim ID	Amount (CDN\$) (Before Tax)	HST 13%	GST 5%	Total (With Taxes)
126017	\$21,866.59	\$2,842.66	-	\$24,709.25
		-	-	\$0.00
Total	\$21,866.59	\$2,842.66	\$0.00	\$24,709.25
343852	\$61,862.02	\$8,042.06	-	\$69,904.08
	\$1,282.66	-	\$64.13	\$1,346.79
Total	\$63,144.68	\$8,042.06	\$64.13	\$71,250.87
175091	\$63,289.32	\$8,227.61	-	\$71,516.94
	\$2,137.77	-	\$106.89	\$2,244.66
Total	\$65,427.09	\$8,227.61	\$106.89	\$73,761.59

11.0 Conclusions

RJK Explorations Ltd. completed 5 drill holes totalling 482 meters in a diamond drill program to test the potential to host diamondiferous kimberlites. Drilling resulted in a better understanding and definition of the local stratigraphy and emplacement geometry of the Paradis Pond kimberlite occurrence. The sill-like geometry suggests an associated feeder system which has not been identified. A north-south trending magnetic feature appears to sub-crop west of the drilling area and merits further investigation by ground truthing prospecting.

A

12.0 Recommendations

RJK Explorations plans to conduct a ground IP survey over the Paradis Pond magnetic low feature as shown in figure 9.2. The Company's 2020 summer drilling program will focus on several areas with transects between the Montreal River Fault proximal to the Cross Lake Fault proximal to the kimberlite indicator dispersion trains identified on RJK's Lorrain Twp. properties by P. Hubacheck in 2012 and T. Bishop in 2018. This work is intended to expand on the positive kimberlite indicator mineral sampling results and focus on kimberlite magnetic and electromagnetic drill targets.

13.0 Certificates of Qualification

STATEMENT OF QUALIFICATIONS – ROCHELLE COLLINS

I, Rochelle Collins, of the City of Timmins, Province of Ontario, do hereby certify that:

I am a registered professional Geologist, residing at 287 Lois Crescent, Timmins Ontario, P4P 1G6, and a member in good standing with the Professional Geoscientists of Ontario (#1412).

I have been working continuously in the field of geology for over 20 years in Canada and Mexico.

I hold a B.Sc. Honours degree in Geology and Geography (1997) from McMaster University of Hamilton, Ontario and an EMBA from Queen's University of Kingston, Ontario (2020).

This report is based on my observations and interpretation of the geological and geophysical data as reviewed for this report. I have no personal interest in the property covered by this report.

Rochelle Collins, P. Geo., B.Sc., EMBA Dated at Timmins, Ontario This 23rd day of November, 2021.

STATEMENT OF QUALIFICATIONS – PETER HUBACHECK

I, Peter Hubacheck residing at 132 Moore St., Lion's Head, hereby certify that:

I hold a Mining Technologist (1974) diploma from the Haileybury School of Mines and Technology, Haileybury, Ontario and a B.A.Sc. (Geol. Eng. 1977) degree from the South Dakota School of Mines and Technology, Rapid City, South Dakota.

I have over 40 years of experience as a project geologist, exploration manager and Qualified Person for the purposes of NI 43-101, with experience in the exploration for gold, silver, base metals, uranium and diamonds in Canada and the USA.

I am a consulting geologist and President of W. A. Hubacheck Consultants Ltd. In January 2020, I joined RJK Explorations Ltd. as project manager and principal geologist on their Nipissing Diamond Project leading an exploration team in discovering 8 kimberlite deposits in the Historic Cobalt mining Camp.

I am a practicing member in good standing with the Association of Professional Geoscientists of Ontario (Member Number 1059).

Statements within this report are based on my personal observations made under direct supervision of the diamond drilling program and I have no interest either direct or indirect pertaining to the properties included in this report, nor do I expect any.

Dated this November 23, 2021

Peter C. Hubacher

Peter Hubacheck

14.0 End Notes/References

Endnotes

^V Sage, R.P. 1996. Kimberlites of the Lake Timiskaming Structural Zone; Ontario Geological Survey, Open File Report 5937, 435p.

References

Kon, A. 2019. Assessment Work Report On The Hound Chute Claims.

Kon, A. 2015. Assessment Work Report Magnetometer Survey On The Hound Chute Road Claims (Phase 2).

Kon, A. 2014. Assessment Report On The Hound Chutes Rd Kon Kimberlite Dike.

Kon, A. 2014. Till Sampling and Prospecting Report On The Hound Chutes Road Claims

Kon, A. 2012. Assessment Work Report On Claims 1140510 and 3007492 Gillies Township, Larder Lake Mining Division.

Combined Helicopterborne Magnetic and Electromagnetic Survey of the Cobalt Area, Northern Ontario. High Sense Geophysics Limited., March 2019

Crabtree, D., Minerology Report - Identification and Classification of Kimberlite: Geoscience Laboratories

Ploeger, J., 2011. Magnetometer and VLF EM Surveys Over the Hound Chute Property Gillies Limit Township, Ontario.

Burton, D., 1971. Report on the VLF and the Magnetic Geophysical surveys on the property of Lobo Mines and Exploration Limited in Blocks 58 and 59, and 67 and 68 Gillies Limit Township, Ontario.

MERC Cobalt Seismic Transect-Field work 2019

ⁱ Kon, A. 2019. Assessment Work Report on the Hound Chute Claims, Gillies Township, Larder Lake Mining Division

ⁱⁱ Potter, E., and Rees, K., 2008: Temex Resources Corp., Report on the 2008 Diamond Drilling Program, Latchford Diamond Project.

ⁱⁱⁱSage, R.P. 2000. Kimberlites of the Lake Timiskaming structural zone: supplement; Ontario Geological Survey, Open File Report 6018, 123p.

^{iv} Kon, A. 2012. Assessment Work Report on Claims 1140510 and 3007492 Gillies Township, Larder Lake Mining Division

Appendix A: Property History

PROPERTY HISTORY		TORY	BISHOP NIPISSING DIAMOND PROJECT				
			As at March 20, 2020				
Claim #	Legacy Claim #	Date	Description	Performed Assigned	Transaction #		
106280	4282409	2016- OCT-21	HARRINGTON, PATRICK MICHAEL JR. (142047) RECORDS 100.0 % IN THE NAME OF BISHOP, BRIAN ANTHONY (108621)		R1680.01839		
		2017- DEC-01	APPROVED: 2017-DEC-18 WORK PERFORMEDBENEF, MICRO, PROSP	\$4,627	Q1780.02154		
111760	4287463	2017- NOV-27	RECORDED BY EDEN, LANCE H. (M25662)		R1780.02944		
		2018- JAN-08	EDEN, LANCE H. (302295) TRANSFERS 100.0% TO COBALT INDUSTRIES OF CANADA INC. (413298)		T1880.00056		
	4287464	2017- NOV-27	RECORDED BY EDEN, LANCE H. (M25662)		R1780.02944		
		2018- JAN-08	EDEN, LANCE H. (302295) TRANSFERS 100.0% TO COBALT INDUSTRIES OF CANADA INC. (413298)		T1880.00056		
126017	4273040	2014- OCT-03	BARRETTE, MICHAEL JOSEPH (105222) RECORDS 100.0 % IN THE NAME OF BISHOP, BRIAN ANTHONY (108621)	\$11,524	R1480.01844		
		2016- OCT-24	WORK PERFORMEDASSAY, BENEF, PROSP, APPROVED: 2016-NOV-29		Q1680.01763		
	4282142	2016- JUN-06	BARRETTE, MICHAEL JOSEPH (105222) RECORDS 100.0 % IN THE NAME OF BISHOP, BRIAN ANTHONY (108621)		R1680.01121		
131127	4282444	2016- OCT-24	BARRETTE, MICHAEL JOSEPH (105222) RECORDS 100.0 % IN THE NAME OF BISHOP, BRIAN ANTHONY (108621)		R1680.02189		
	4282705	2016- NOV-14	HARRINGTON, PATRICK MICHAEL JR. (142047) RECORDS 100.0 % IN THE NAME OF BISHOP, BRIAN ANTHONY (108621)		R1680.01999		
	4282707	2016- NOV-14	HARRINGTON, PATRICK MICHAEL JR. (142047) RECORDS 100.0 % IN THE NAME OF BISHOP, BRIAN ANTHONY (108621)		R1680.01999		
131742	4287461	2018- JAN-08	EDEN, LANCE H. (302295) TRANSFERS 100.0 % TO COBALT INDUSTRIES OF CANADA INC 413298		T1880.00056		
139060	4282706	2016- NOV-14	HARRINGTON, PATRICK MICHAEL JR. (142047) RECORDS 100.0 % IN THE NAME OF BISHOP, BRIAN ANTHONY (108621)		R1680.01999		
	4282707	2016- NOV-14	HARRINGTON, PATRICK MICHAEL JR. (142047) RECORDS 100.0 % IN THE NAME OF BISHOP, BRIAN ANTHONY (108621)		R1680.01999		
143090	4282187	2016- OCT-21	HARRINGTON, PATRICK MICHAEL JR. (142047) RECORDS 100.0 % IN THE NAME OF BISHOP, BRIAN ANTHONY (108621)		R1680.01839		
		2017- DEC-01	APPROVED: 2017-DEC-18 WORK PERFORMEDBENEF, MICRO, PROSP	\$4,627	Q1780.02154		

	4282189	2015- NOV-05	BARRETTE, MICHAEL JOSEPH (105222) RECORDS 100.0 % IN THE NAME OF BISHOP, BRIAN ANTHONY (108621)		R1580.01881
		2017- NOV-02	WORK PERFORMEDBENEF, MICRO, PROSP APPROVED: 2017-DEC-04	\$6,324	Q1780.02043
150827	4282187	2016- OCT-21	HARRINGTON, PATRICK MICHAEL JR. (142047) RECORDS 100.0 % IN THE NAME OF BISHOP, BRIAN ANTHONY (108621)		R1680.01839
		2017- DEC-01	APPROVED: 2017-DEC-18 WORK PERFORMEDBENEF, MICRO, PROSP	\$4,627	Q1780.02154
	4282189	2015- NOV-05	BARRETTE, MICHAEL JOSEPH (105222) RECORDS 100.0 % IN THE NAME OF BISHOP, BRIAN ANTHONY (108621)		R1580.01881
		2017- NOV-02	WORK PERFORMEDBENEF, MICRO, PROSP APPROVED: 2017-DEC-04	\$6,324	Q1780.02043
	4282409	2016- OCT-21	HARRINGTON, PATRICK MICHAEL JR. (142047) RECORDS 100.0 % IN THE NAME OF BISHOP, BRIAN ANTHONY (108621)		R1680.01839
		2017- DEC-01	APPROVED: 2017-DEC-18 WORK PERFORMEDBENEF, MICRO, PROSP	\$4,627	Q1780.02154
155683	4282187	2016- OCT-21	HARRINGTON, PATRICK MICHAEL JR. (142047) RECORDS 100.0 % IN THE NAME OF BISHOP, BRIAN ANTHONY (108621)		R1680.01839
		2017- DEC-01	APPROVED: 2017-DEC-18 WORK PERFORMEDBENEF, MICRO, PROSP	\$4,627	Q1780.02154
	4282409	2016- OCT-21	HARRINGTON, PATRICK MICHAEL JR. (142047) RECORDS 100.0 % IN THE NAME OF BISHOP, BRIAN ANTHONY (108621)		R1680.01839
		2017- DEC-01	APPROVED: 2017-DEC-18 WORK PERFORMEDBENEF, MICRO, PROSP	\$4,627	Q1780.02154
	4282410	2016- OCT-21	HARRINGTON, PATRICK MICHAEL JR. (142047) RECORDS 100.0 % IN THE NAME OF BISHOP, BRIAN ANTHONY (108621)		R1680.01839
155684	4273040	2014- OCT-03	BARRETTE, MICHAEL JOSEPH (105222) RECORDS 100.0 % IN THE NAME OF BISHOP, BRIAN ANTHONY (108621)	\$11,524	R1480.01844
		2016- OCT-24	WORK PERFORMEDASSAY, BENEF, PROSP, APPROVED: 2016-NOV-29		Q1680.01763
	4282142	2016- JUN-06	BARRETTE, MICHAEL JOSEPH (105222) RECORDS 100.0 % IN THE NAME OF BISHOP, BRIAN ANTHONY (108621)		R1680.01121
	4282410	2016- OCT-21	HARRINGTON, PATRICK MICHAEL JR. (142047) RECORDS 100.0 % IN THE NAME OF BISHOP, BRIAN ANTHONY (108621)		R1680.01839
172334	4282187	2016- OCT-21	HARRINGTON, PATRICK MICHAEL JR. (142047) RECORDS 100.0 % IN THE NAME OF BISHOP, BRIAN ANTHONY (108621)		R1680.01839
		2017- DEC-01	APPROVED: 2017-DEC-18 WORK PERFORMEDBENEF, MICRO, PROSP	\$4,627	Q1780.02154

	4282410	2016-	HARRINGTON, PATRICK MICHAEL JR. (142047)		R1680.01839
	1202110	OCT-21	RECORDS 100.0 % IN THE NAME OF BISHOP,		112000101000
			BRIAN ANTHONY (108621)		
175091	4273040	2014-	BARRETTE, MICHAEL JOSEPH (105222)	\$11,524	R1480.01844
/000	,	OCT-03	RECORDS 100.0 % IN THE NAME OF BISHOP,	<i>+==)=</i> :	
			BRIAN ANTHONY (108621)		
		2016-	WORK PERFORMEDASSAY, BENEF, PROSP,		Q1680.01763
		OCT-24	APPROVED: 2016-NOV-29		
	4282187	2016-	HARRINGTON, PATRICK MICHAEL JR. (142047)		R1680.01839
	4202107	OCT-21	RECORDS 100.0 % IN THE NAME OF BISHOP,		K1060.01655
		001-21	BRIAN ANTHONY (108621)		
		2017-	APPROVED: 2017-DEC-18 WORK	4627	Q1780.02154
		DEC-01	PERFORMEDBENEF, MICRO, PROSP	4027	Q1780.02134
	4202410				D1C00.01020
	4282410	2016-	HARRINGTON, PATRICK MICHAEL JR. (142047)		R1680.01839
		OCT-21	RECORDS 100.0 % IN THE NAME OF BISHOP, BRIAN ANTHONY (108621)		
100011	4282409	2016-	HARRINGTON, PATRICK MICHAEL JR. (142047)		D1690.01920
186844	4282409	OCT-21	RECORDS 100.0 % IN THE NAME OF BISHOP,		R1680.01839
		001-21	BRIAN ANTHONY (108621)		
		2017-	APPROVED: 2017-DEC-18 WORK	\$4,627	Q1780.02154
		DEC-01	PERFORMEDBENEF, MICRO, PROSP	Ş4,027	Q1760.02154
407400	4207462				D4700 00044
187189	4287463	2017-	RECORDED BY EDEN, LANCE H. (M25662)		R1780.02944
		NOV-27			T1000 00056
		2018-	EDEN, LANCE H. (302295) TRANSFERS 100.0%		T1880.00056
		JAN-08	TO COBALT INDUSTRIES OF CANADA INC.		
187190	4287463	2017-	(413298) RECORDED BY EDEN, LANCE H. (M25662)		D1790 02044
10/190	420/405	NOV-27	RECORDED BY EDEN, LANCE H. (WI25002)		R1780.02944
		2018-	EDEN, LANCE H. (302295) TRANSFERS 100.0%		T1880.00056
		JAN-08	TO COBALT INDUSTRIES OF CANADA INC.		11000.00050
		5/ 11 00	(413298)		
191673	4282706	2016-	HARRINGTON, PATRICK MICHAEL JR. (142047)		R1680.01999
1010/0	1202700	NOV-14	RECORDS 100.0 % IN THE NAME OF BISHOP,		1120001012555
			BRIAN ANTHONY (108621)		
191674	4280186	2016-	VON CARDINAL, THOMAS (205724) RECORDS		R1680.01663
		OCT-04	100.0 % IN THE NAME OF CHITARONI, GINO		
			PAUL (117874)		
		2016-	CHITARONI, GINO PAUL (117874) TRANSFERS		T1680.00353
		DEC-01	100.0 % TO COBALT POWER GROUP INC.		
			(412467)		
196494	4287463	2017-	RECORDED BY EDEN, LANCE H. (M25662)		R1780.02944
		NOV-27	,,		
		2018-	EDEN, LANCE H. (302295) TRANSFERS 100.0%		T1880.00056
		JAN-08	TO COBALT INDUSTRIES OF CANADA INC.		
			(413298)		
	4287464	2017-	RECORDED BY EDEN, LANCE H. (M25662)		R1780.02944
		NOV-27			
		2018-	EDEN, LANCE H. (302295) TRANSFERS 100.0%		T1880.00056
		JAN-08	TO COBALT INDUSTRIES OF CANADA INC.		
			(413298)		

199542	4282409	2016-	HARRINGTON, PATRICK MICHAEL JR. (142047)		R1680.01839
133342	4202405	OCT-21	RECORDS 100.0 % IN THE NAME OF BISHOP,		11000.01000
			BRIAN ANTHONY (108621)		
		2017-	APPROVED: 2017-DEC-18 WORK	\$4,627	Q1780.02154
		DEC-01	PERFORMEDBENEF, MICRO, PROSP	<i>ψ</i> 1,027	Q1/00.02101
	4286187	2015-	BARRETTE, MICHAEL JOSEPH (105222)		R1580.01779
	4200107	NOV-12	RECORDS 100.0 % IN THE NAME OF BISHOP,		K1380.01779
		100-12	BRIAN ANTHONY (108621)		
		2017-	WORK PERFORMEDBENEF, MICRO, PROSP	\$17,231	Q1780.02043
		NOV-02	APPROVED: 2017-DEC-04	\$17,251	Q1780.02045
1005.00					D 4600.04000
199568	4282409	2016-	HARRINGTON, PATRICK MICHAEL JR. (142047)		R1680.01839
		OCT-21	RECORDS 100.0 % IN THE NAME OF BISHOP,		
			BRIAN ANTHONY (108621)	4	
		2017-	APPROVED: 2017-DEC-18 WORK	\$4,627	Q1780.02154
		DEC-01	PERFORMEDBENEF, MICRO, PROSP		
214520	4287463	2017-	RECORDED BY EDEN, LANCE H. (M25662)		R1780.02944
		NOV-27			
		2018-	EDEN, LANCE H. (302295) TRANSFERS 100.0%		T1880.00056
		JAN-08	TO COBALT INDUSTRIES OF CANADA INC.		
			(413298)		
	4287464	2017-	RECORDED BY EDEN, LANCE H. (M25662)		R1780.02944
		NOV-27			
		2018-	EDEN, LANCE H. (302295) TRANSFERS 100.0%		T1880.00056
		JAN-08	TO COBALT INDUSTRIES OF CANADA INC.		
			(413298)		
234633	4281431	2015-	BARRETTE, MICHAEL JOSEPH (105222)		R1580.01790
		NOV-27	RECORDS 100.0 % IN THE NAME OF BISHOP,		
			BRIAN ANTHONY (108621)		
		2017-	WORK PERFORMEDBENEF, MICRO, PROSP	\$3,725	Q1780.02154
		DEC-01	APPROVED: 2017-DEC-18		
	4286185	017-	HARRINGTON, PATRICK MICHAEL JR. (142047)		R1780.01265
		APR-06	RECORDS 100.0 % IN THE NAME OF BISHOP,		
			BRIAN ANTHONY (108621)		
	4286186	2016-	VON CARDINAL, THOMAS (205724) RECORDS	1	R1680.01663
		OCT-04	100.0 % IN THE NAME OF CHITARONI, GINO		
			PAUL (117874)		
		2016-	CHITARONI, GINO PAUL (117874) TRANSFERS		T1680.00353
		DEC-01	100.0 % TO COBALT POWER GROUP INC.		
			(412467)		
	4207462	2017-	RECORDED BY EDEN, LANCE H. (M25662)		R1780.02944
245678	4287463	2017			1
245678	4287463	NOV-27			
245678	4287463		EDEN, LANCE H. (302295) TRANSFERS 100.0%		T1880.00056
245678	4287463	NOV-27	EDEN, LANCE H. (302295) TRANSFERS 100.0% TO COBALT INDUSTRIES OF CANADA INC.		T1880.00056
245678	4287463	NOV-27 2018-	TO COBALT INDUSTRIES OF CANADA INC.		T1880.00056
		NOV-27 2018- JAN-08	TO COBALT INDUSTRIES OF CANADA INC. (413298)		
245678 247076	4287463	NOV-27 2018-	TO COBALT INDUSTRIES OF CANADA INC. (413298) HARRINGTON, PATRICK MICHAEL JR. (142047)		T1880.00056
		NOV-27 2018- JAN-08 2016-	TO COBALT INDUSTRIES OF CANADA INC. (413298) HARRINGTON, PATRICK MICHAEL JR. (142047) RECORDS 100.0 % IN THE NAME OF BISHOP,		
	4282707	NOV-27 2018- JAN-08 2016- NOV-14	TO COBALT INDUSTRIES OF CANADA INC. (413298) HARRINGTON, PATRICK MICHAEL JR. (142047) RECORDS 100.0 % IN THE NAME OF BISHOP, BRIAN ANTHONY (108621)		R1680.01999
		NOV-27 2018- JAN-08 2016- NOV-14	TO COBALT INDUSTRIES OF CANADA INC. (413298) HARRINGTON, PATRICK MICHAEL JR. (142047) RECORDS 100.0 % IN THE NAME OF BISHOP,		

		2016-	CHITARONI, GINO PAUL (117874) TRANSFERS		T1680.00353
		DEC-01	100.0 % TO COBALT POWER GROUP INC. (412467)		
	4286187	2015- NOV-12	BARRETTE, MICHAEL JOSEPH (105222) RECORDS 100.0 % IN THE NAME OF BISHOP, BRIAN ANTHONY (108621)		R1580.01779
		2017- NOV-02	WORK PERFORMEDBENEF, MICRO, PROSP APPROVED: 2017-DEC-04	\$17,231	Q1780.02043
254147	4282409	2016- OCT-21	HARRINGTON, PATRICK MICHAEL JR. (142047) RECORDS 100.0 % IN THE NAME OF BISHOP, BRIAN ANTHONY (108621)		R1680.01839
		2017- DEC-01	APPROVED: 2017-DEC-18 WORK PERFORMEDBENEF, MICRO, PROSP	\$4,627	Q1780.02154
258580	4286185	017- APR-06	HARRINGTON, PATRICK MICHAEL JR. (142047) RECORDS 100.0 % IN THE NAME OF BISHOP, BRIAN ANTHONY (108621)		R1780.01265
	4286186	2016- OCT-04	VON CARDINAL, THOMAS (205724) RECORDS 100.0 % IN THE NAME OF CHITARONI, GINO PAUL (117874)		R1680.01663
		2016- DEC-01	CHITARONI, GINO PAUL (117874) TRANSFERS 100.0 % TO COBALT POWER GROUP INC. (412467)		T1680.00353
259882	4280186	2016- OCT-04	VON CARDINAL, THOMAS (205724) RECORDS 100.0 % IN THE NAME OF CHITARONI, GINO PAUL (117874)		R1680.01663
		2016- DEC-01	CHITARONI, GINO PAUL (117874) TRANSFERS 100.0 % TO COBALT POWER GROUP INC. (412467)		T1680.00353
265306	4287463	2017- NOV-27	RECORDED BY EDEN, LANCE H. (M25662)		R1780.02944
		2018- JAN-08	EDEN, LANCE H. (302295) TRANSFERS 100.0% TO COBALT INDUSTRIES OF CANADA INC. (413298)		T1880.00056
269300	4287463	2017- NOV-27	RECORDED BY EDEN, LANCE H. (M25662)		R1780.02944
		2018- JAN-08	EDEN, LANCE H. (302295) TRANSFERS 100.0% TO COBALT INDUSTRIES OF CANADA INC. (413298)		T1880.00056
277041	4282444	2016- OCT-24	BARRETTE, MICHAEL JOSEPH (105222) RECORDS 100.0 % IN THE NAME OF BISHOP, BRIAN ANTHONY (108621)		R1680.02189
	4282706	2016- NOV-14	HARRINGTON, PATRICK MICHAEL JR. (142047) RECORDS 100.0 % IN THE NAME OF BISHOP, BRIAN ANTHONY (108621)		R1680.01999
277042	4282444	2016- OCT-24	BARRETTE, MICHAEL JOSEPH (105222) RECORDS 100.0 % IN THE NAME OF BISHOP, BRIAN ANTHONY (108621)		R1680.02189
	4282706	2016- NOV-14	HARRINGTON, PATRICK MICHAEL JR. (142047) RECORDS 100.0 % IN THE NAME OF BISHOP, BRIAN ANTHONY (108621)		R1680.01999

	4282707	2016- NOV-14	HARRINGTON, PATRICK MICHAEL JR. (142047) RECORDS 100.0 % IN THE NAME OF BISHOP,		R1680.01999
			BRIAN ANTHONY (108621)		
277043	4280186	2016- OCT-04	VON CARDINAL, THOMAS (205724) RECORDS 100.0 % IN THE NAME OF CHITARONI, GINO PAUL (117874)		R1680.01663
		2016- DEC-01	CHITARONI, GINO PAUL (117874) TRANSFERS 100.0 % TO COBALT POWER GROUP INC. (412467)		T1680.00353
283212	4282187	2015- NOV-12	BARRETTE, MICHAEL JOSEPH (105222) RECORDS 100.0 % IN THE NAME OF BISHOP, BRIAN ANTHONY (108621)		R1580.01779
		2017- NOV-02	WORK PERFORMEDBENEF, MICRO, PROSP APPROVED: 2017-DEC-04	\$17,231	Q1780.02043
	4282189	2015- NOV-05	BARRETTE, MICHAEL JOSEPH (105222) RECORDS 100.0 % IN THE NAME OF BISHOP, BRIAN ANTHONY (108621)		R1580.01881
		2017- NOV-02	WORK PERFORMEDBENEF, MICRO, PROSP APPROVED: 2017-DEC-04	\$6,324	Q1780.02043
	4282411	2016- OCT-21	HARRINGTON, PATRICK MICHAEL JR. (142047) RECORDS 100.0 % IN THE NAME OF BISHOP, BRIAN ANTHONY (108621)		R1680.01839
300383	4287463	2017- NOV-27	RECORDED BY EDEN, LANCE H. (M25662)		R1780.02944
		2018- JAN-08	EDEN, LANCE H. (302295) TRANSFERS 100.0% TO COBALT INDUSTRIES OF CANADA INC. (413298)		T1880.00056
	4287464	2017- NOV-27	RECORDED BY EDEN, LANCE H. (M25662)		R1780.02944
		2018- JAN-08	EDEN, LANCE H. (302295) TRANSFERS 100.0% TO COBALT INDUSTRIES OF CANADA INC. (413298)		T1880.00056
301841	4287463	2017- NOV-27	RECORDED BY EDEN, LANCE H. (M25662)		R1780.02944
		2018- JAN-08	EDEN, LANCE H. (302295) TRANSFERS 100.0% TO COBALT INDUSTRIES OF CANADA INC. (413298)		T1880.00056
302829	4281431	2015- NOV-27	BARRETTE, MICHAEL JOSEPH (105222) RECORDS 100.0 % IN THE NAME OF BISHOP, BRIAN ANTHONY (108621)		R1580.01790
		2017- DEC-01	WORK PERFORMEDBENEF, MICRO, PROSP APPROVED: 2017-DEC-18	\$3,725	Q1780.02154
	4282409	2016- OCT-21	HARRINGTON, PATRICK MICHAEL JR. (142047) RECORDS 100.0 % IN THE NAME OF BISHOP, BRIAN ANTHONY (108621)		R1680.01839
	4286185	017- APR-06	HARRINGTON, PATRICK MICHAEL JR. (142047) RECORDS 100.0 % IN THE NAME OF BISHOP, BRIAN ANTHONY (108621)		R1780.01265
		2017- DEC-01	APPROVED: 2017-DEC-18 WORK PERFORMEDBENEF, MICRO, PROSP	\$4,627	Q1780.02154

302849	4282409	2016-	HARRINGTON, PATRICK MICHAEL JR. (142047)		R1680.01839
562615	1202 105	OCT-21	RECORDS 100.0 % IN THE NAME OF BISHOP,		11000101000
			BRIAN ANTHONY (108621)		
		2017-	APPROVED: 2017-DEC-18 WORK	\$4,627	Q1780.02154
		DEC-01	PERFORMEDBENEF, MICRO, PROSP	. ,	
	4286187	2015-	BARRETTE, MICHAEL JOSEPH (105222)		R1580.01779
		NOV-12	RECORDS 100.0 % IN THE NAME OF BISHOP,		
			BRIAN ANTHONY (108621)		
		2017-	WORK PERFORMEDBENEF, MICRO, PROSP	\$17,231	Q1780.02043
		NOV-02	APPROVED: 2017-DEC-04		
307616	4280185	017-	HARRINGTON, PATRICK MICHAEL JR. (142047)		R1780.01265
		APR-06	RECORDS 100.0 % IN THE NAME OF BISHOP,		
			BRIAN ANTHONY (108621)		
	4280186	2016-	VON CARDINAL, THOMAS (205724) RECORDS		R1680.01663
		OCT-04	100.0 % IN THE NAME OF CHITARONI, GINO		
			PAUL (117874)		
		2016-	CHITARONI, GINO PAUL (117874) TRANSFERS		T1680.00353
		DEC-01	100.0 % TO COBALT POWER GROUP INC.		11000.00333
			(412467)		
317154	4287461	2018-	EDEN, LANCE H. (302295) TRANSFERS 100.0 %		T1880.00056
01/10/		JAN-08	TO COBALT INDUSTRIES OF CANADA INC		
			413298		
317177	4282707	2016-	HARRINGTON, PATRICK MICHAEL JR. (142047)		R1680.01999
		NOV-14	RECORDS 100.0 % IN THE NAME OF BISHOP,		
			BRIAN ANTHONY (108621)		
	4286187	2015-	BARRETTE, MICHAEL JOSEPH (105222)		R1580.01779
		NOV-12	RECORDS 100.0 % IN THE NAME OF BISHOP,		
			BRIAN ANTHONY (108621)		
		2017-	WORK PERFORMEDBENEF, MICRO, PROSP	\$17,231	Q1780.02043
		NOV-02	APPROVED: 2017-DEC-04		
319733	4287463	2017-	RECORDED BY EDEN, LANCE H. (M25662)		R1780.02944
		NOV-27			
		2018-	EDEN, LANCE H. (302295) TRANSFERS 100.0%		T1880.00056
		JAN-08	TO COBALT INDUSTRIES OF CANADA INC.		
			(413298)		
326551	4280185		HARRINGTON, PATRICK MICHAEL JR. (142047)		R1780.01265
		APR-06	RECORDS 100.0 % IN THE NAME OF BISHOP,		
			BRIAN ANTHONY (108621)		
	4280186	2016-	VON CARDINAL, THOMAS (205724) RECORDS		R1680.01663
		OCT-04	100.0 % IN THE NAME OF CHITARONI, GINO		
			PAUL (117874)		
		2016-	CHITARONI, GINO PAUL (117874) TRANSFERS		T1680.00353
		DEC-01	100.0 % TO COBALT POWER GROUP INC.		
			(412467)		
329881	4282707	2016-	HARRINGTON, PATRICK MICHAEL JR. (142047)		R1680.01999
		NOV-14	RECORDS 100.0 % IN THE NAME OF BISHOP,		
			BRIAN ANTHONY (108621)		
	4286187	2015-	BARRETTE, MICHAEL JOSEPH (105222)		R1580.01779
		NOV-12	RECORDS 100.0 % IN THE NAME OF BISHOP,		
			BRIAN ANTHONY (108621)		

		2017- NOV-02	WORK PERFORMEDBENEF, MICRO, PROSP APPROVED: 2017-DEC-04	\$17,231	Q1780.02043
329925	4287463	2017- NOV-27	RECORDED BY EDEN, LANCE H. (M25662)		R1780.02944
		2018- JAN-08	EDEN, LANCE H. (302295) TRANSFERS 100.0% TO COBALT INDUSTRIES OF CANADA INC. (413298)		T1880.00056
	4287464	2017- NOV-27	RECORDED BY EDEN, LANCE H. (M25662)		R1780.02944
		2018- JAN-08	EDEN, LANCE H. (302295) TRANSFERS 100.0% TO COBALT INDUSTRIES OF CANADA INC. (413298)		T1880.00056
330989	4282189	2015- NOV-05	BARRETTE, MICHAEL JOSEPH (105222) RECORDS 100.0 % IN THE NAME OF BISHOP, BRIAN ANTHONY (108621)		R1580.01881
		2017- NOV-02	WORK PERFORMEDBENEF, MICRO, PROSP APPROVED: 2017-DEC-04	\$6,324	Q1780.02043
	4282409	2016- OCT-21	HARRINGTON, PATRICK MICHAEL JR. (142047) RECORDS 100.0 % IN THE NAME OF BISHOP, BRIAN ANTHONY (108621)		R1680.01839
		2017- DEC-01	APPROVED: 2017-DEC-18 WORK PERFORMEDBENEF, MICRO, PROSP	\$4,627	Q1780.02154
	4282411	2016- OCT-21	HARRINGTON, PATRICK MICHAEL JR. (142047) RECORDS 100.0 % IN THE NAME OF BISHOP, BRIAN ANTHONY (108621)		R1680.01839
339261	4287461	2018- JAN-08	EDEN, LANCE H. (302295) TRANSFERS 100.0 % TO COBALT INDUSTRIES OF CANADA INC 413298		T1880.00056
341583	4281431	2015- NOV-27	BARRETTE, MICHAEL JOSEPH (105222) RECORDS 100.0 % IN THE NAME OF BISHOP, BRIAN ANTHONY (108621)		R1580.01790
		2017- DEC-01	WORK PERFORMEDBENEF, MICRO, PROSP APPROVED: 2017-DEC-18	\$3,725	Q1780.02154
	4286186	2016- OCT-04	VON CARDINAL, THOMAS (205724) RECORDS 100.0 % IN THE NAME OF CHITARONI, GINO PAUL (117874)		R1680.01663
		2016- DEC-01	CHITARONI, GINO PAUL (117874) TRANSFERS 100.0 % TO COBALT POWER GROUP INC. (412467)		T1680.00353
	4286187	2015- NOV-12	BARRETTE, MICHAEL JOSEPH (105222) RECORDS 100.0 % IN THE NAME OF BISHOP, BRIAN ANTHONY (108621)		R1580.01779
		2017- NOV-02	WORK PERFORMED BENEF, MICRO, PROSP APPROVED: 2017-DEC-04	\$17,231	Q1780.02043
343852	4273040	2014- OCT-03	BARRETTE, MICHAEL JOSEPH (105222) RECORDS 100.0 % IN THE NAME OF BISHOP, BRIAN ANTHONY (108621)	\$11,524	R1480.01844
		2016- OCT-24	WORK PERFORMED ASSAY, BENEF, PROSP, APPROVED: 2016-NOV-29		Q1680.01763

4282187	2015- NOV-12	BARRETTE, MICHAEL JOSEPH (105222) RECORDS 100.0 % IN THE NAME OF BISHOP, BRIAN ANTHONY (108621)		R1580.01779
	2017- NOV-02	WORK PERFORMED BENEF, MICRO, PROSP APPROVED: 2017-DEC-04	\$17,231	Q1780.02043
	2018- APR-09	Record Migrated from Claims 3.2, Converted from legacy claim(s) 4273040, 4282187		262502
	2019- JAN-24	Exploration Permit No. PR-18- 000247 Effective from 2019/01/24 to 2022/01/24 for the Following Activities: (Mechanized Drilling (Assembled Weight >150kg), Trails (TS))		398829
	2020- APR-16	\$1628 Work Performed (Airborne Magnetics) Approved: 2020-07-10	\$1,628	967309

Appendix B: Drill Hole Logs

RJK EXPLORATIONS LTD NIPISSING DIAMOND PROJECT - LORRAIN PROPERTY

DDH#: AZM: DIP:	PP-19-01 269 -44	UTI NORTHING EASTING	-, ,	START DATE:	Huard Drilling February 27, 2019 March 9, 2019	TWP: CLAIM: CASING	Lorrain 126017/343852 10m		MAKING WATER	: N Kenogami Lake Core	Facility		
EOH:	191.0m	ELEVATION	343.0	CORE SIZE:	BQ	LOGGED BY:	Peter Hubacheck	I	LOGGING COMPLETED	: March 10, 2019			
FROM	то	ROCK TYPE	CODE		DESCRIPTION			KIM TEXTURE	CLAST TYPE	MATRIX%	AUTO CLAST%	ZENO CLAST%	COLOUR
0	11	ОВ	ОВ	GLACIOFLUVIAL PEBB	SLY SAND								
11	191	MASSIVE SYENITE	LORGRAN	MASSIVE SYENITE: equigranular pinkish feldspar phenocrysts; 65% course grained groundmass with suhedral hornblende-rich matrix 35%; moderate to strong silicification; cg feldspar phenocrysts up o 3cm; chloritic fracture fillings 1%; no foliation observed. 54m fracture at 30 degrees to core axis chloritized hairline fractures									

DOWNHOLE SURVEY

HOLE-ID	DEPTH	MAG AZIMUTH	MAGNETIC DECLINATION	AZIMUTH (TN)	DIP	SURVEY TYPE	MAGNETIC FIELD
PP-19-01	191	299.3	11	288.3	-35.5	Reflex	5505

SAMPLING - Bulk Sample

SAMPLING - Burk Sample								
F	FROM	то	INTERVAL (m)	BAG#	WEIGHT (Kg)	COMMENT		
NON	NE							

RJK EXPLORATIONS LTD

NIPISSING DIAMOND PROJECT - LORRAIN PROPERTY

DDH#: AZM: DIP:	PP-19-02 100 -45	UTM NORTHING EASTING	-, ,	START DATE:	Huard Drilling March 12, 2019 March 15, 2019	TWP: CLAIM: CASING	Lorrain 175091/343852 8m		MAKING WATER	: N ON: Kenogami Lal	e Core Facility		
EOH:	149.0m	ELEVATION			BQ	LOGGED BY:			LOGGING COMPLETED	: March 16, 2019			
FROM	TO	ROCK TYPE	CODE		DESCR	IPTION		KIM TEXTURE	CLAST TYPE	MATRIX%	AUTO CLAST%	ZENO CLAST%	Γ
0	8	OB	OB	GLACIOFLUVIAL PEBE	BLY SAND								
8	15.3	HETEROLITHIC FLUIDIZATION BRECCIA	НТКВХ	HETEROLITHIC FLUIDI ranging from .2cm to .5 moderate calcite ceme autoliths are assorted	im;fine grained tuffis nt; relict honeycomb	itic, sandy homogenou texture microlitic lapil	is matrix is tan brov	ncolour with 75 2	5 carbonate/barium	rich tan-coloured (clast; larger		
15.3	149	MASSIVE SYENITE	LORGRAN	MASSIVE SYENITE: eq euhedral hornblende-ri to 3cm; choritic fractur	ch matrix 35%; mode	erate to strong silicifica							

COLOUR

DOWNHOLE SURVEY

HOLE-ID	DEPTH	MAG AZIMUTH	MAGNETIC DECLINATION	AZIMUTH (TN)	DIP	SURVEY TYPE	MAGNETIC FIELD
PP-19-02	15	110.5	11	99.5	-45.3	Reflex	5534
PP-19-02	107	113.6	11	102.6	-41.4	Reflex	5509

SAMPLING - Bulk Sample

FROM	то	INTERVAL (m)	BAG#	WEIGHT (Kg)	COMMENT
8	15.3	7.3		22.4	Combined with Holes PP-19-03, PP-19-04 and PP-19-05

RJK EXPLORATIONS LTD NIPISSING DIAMOND PROJECT - LORRAIN PROPERTY

DDH#: AZM: DIP:	PP-19-03 110 -44	UTM NORTHIN EASTIN		7 DRILL COMPANY: START DATE: END DATE:	Huard Drilling March 16, 2019 March 18, 2019	TWP: CLAIM: CASING	Lorrain 175091/343852 Unknown		MAKING WATER CORE LOCATI	: N ON: Kenogami Lak	e Core Facility		
EOH:	57m	ELEVATIO		CORE SIZE:	BQ		Peter Hubacheck		LOGGING COMPLETED	: March 19, 2019			
FROM	то	ROCK TYPE	CODE		DESCRI	PTION		KIM TEXTURE	CLAST TYPE	MATRIX%	AUTO CLAST%	ZENO CLAST%	COLOUR
0	7	ОВ	ОВ	GLACIOFLUVIAL PEBE	BLY SAND								
7	17	HETEROLITHIC FLUIDIZATION BREC	НТКВХ	HETEROLITHIC FLUIDI ranging from .2cm to .7 moderate calcite cemer composition: yuggy, or	cm;fine grained tuffis nt; relict honeycomb t	itic, sandy homogene exture microlitic lapil	ous matrix is tan bro	wn colour with	sorted granodiorite a	nd vuggy limestor	ne		

7	17	HETEROLITHIC FLUIDIZATION BRE	нтквх	HETEROLITHIC FLUIDIZATION BRECCIA: matrix supported with mixed angular to rouhded blocks ranging from .2cm to .7cm;fine grained tuffisitic, sandy homogenous matrix is tan brown colour with moderate calcite cement; relict honeycomb texture microlitic lapilli matrix; larger autoliths are 75 25 composition; vuggy, open space porosity 5%; 7m relict microlitic texture, honeycomb texture; 11.5m sparry faceted crystal, yellowish colour	nd vuggy limestor	e		
15.3	57	MASSIVE SYENIT		MASSIVE SYENITE: equigranular pinkish feldspar phenocrysts; 65% course grained groundmass with euhedral hornblende-rich matrix 35%; moderate to strong silicification; cg feldspar phenocrysts up to 3cm; choritic fracture fillings 1%; no foliation observed				

DOWNHOLE SURVEY

	HOLE-ID	DEPTH	MAG AZIMUTH	MAGNETIC DECLINATION	AZIMUTH (TN)	DIP	SURVEY TYPE	MAGNETIC FIELD
[PP-19-03	17	121	11	110	-44	Reflex	-

SAMPLING - Bulk Sample

[FROM	то	INTERVAL (m)	BAG#	WEIGHT (Kg)	COMMENT
	7	17	10		22.4	Combined with Holes PP-19-02, PP-19-04 and PP-19-05

RJK EXPLORATIONS LTD NIPISSING DIAMOND PROJECT - LORRAIN PROPERTY

DDH#:	PP-19-04	UTM	NAD 83 ZONE 17	DRILL COMPANY:	Huard Drilling	TWP:	Lorrain		MAKING WATER:	N	
AZM:	98	NORTHING	5,242,382.0	START DATE:	March 22, 2019	CLAIM:	175091/343852		CORE LOCATION:	Kenogami Lake Core F	Facility
DIP:	-45	EASTING	606,677.0	END DATE:	March 23, 2019	CASING	Unknown				
EOH:	38m	ELEVATION	343.0	CORE SIZE:	BQ	LOGGED BY:	Peter Hubacheck	1	LOGGING COMPLETED:	March 24, 2019	
FROM	то	BOCK TYPE	CODE		DES	CRIPTION			CLAST TYPE	MATRIX%	AUTO CLAST

FROM	то	ROCK TYPE	CODE	DESCRIPTION	KIM TEXTURE	CLAST TYPE	MATRIX%	AUTO CLAST%	ZENO CLAST%	COLOUR
0	6.6	ОВ	ОВ	CASING TO 7M						
6.6	17.6	HETEROLITHIC FLUIDIZATION BRECCIA	нтквх	HETEROLITHIC FLUIDIZATION BRECCIA: matrix supported with mixed angular to rou ranging from .2cm to .7m;fine grained tuffisitic, sandy homogenous matrix is tan brow moderate calcite cement; relict honeycomb texture microlitic lapilli matrix; larger auto assorted mafic volcanic and variable limestone compositions with barium present du specific gravity; vuggy, open space porosity 5%; carbonate-rich clasts may be zenoci angular to sub-rounded honeycomb textured phenocrysts contained within amorpous 7.8-8m relict microlitic texture; honeycomb texture in proto-milonitic zenocryst 9.5-8.7m tan-gray heavy calcium-barium rich? Zenoclast with sperules, honeycor texture 11.4-11.6m relict microlitic texture; honeycomb texture in proto-milonitic zenocry 14-14.7m possibly micritic Ca/Ba-rich limestone clast	n colour with liths are e to high rysts with s groundmass nb microlitic		75	25		
15.3	38	MASSIVE SYENITE	LORGRAN	MASSIVE SYENITE: equigranular pinkish feldspar phenocrysts; 65% course grained groundmass with euhedral hornblende-rich matrix 35%; moderate to strong silicification; cg feldspar phenocrysts up to 3cm; choritic fracture fillings 1%; no foliation observed						

DOWNHOLE SURVEY

ŀ	HOLE-ID	DEPTH	MAG AZIMUTH	MAGNETIC DECLINATION	AZIMUTH (TN)	DIP	SURVEY TYPE	MAGNETIC FIELD
F	PP-19-04	14	109	11	98	-44.8	Reflex	-

RJK EXPLORATIONS LTD

NIPISSING DIAMOND PROJECT - LORRAIN PROPERTY

DDH#:	PP-19-05	UTM NA	D 83 ZONE 17	DRILL COMPANY:	Huard Drilling	TWP:	Lorrain	MAKING WATER: N
AZM:	95	NORTHING	5,242,375.0	START DATE:	March 25, 2019	CLAIM:	175091	CORE LOCATION: Kenogami Lake Core Facility
DIP:	-51	EASTING	606,665.0	END DATE:	March 27, 2019	CASING	9.7m	
EOH:	47m	ELEVATION	343.0	CORE SIZE:	BQ	LOGGED BY:	Peter Hubacheck	LOGGING COMPLETED: March 28, 2019

FROM	то	ROCK TYPE	CODE	DESCRIPTION	KIM TEXTURE	CLAST TYPE	MATRIX%	AUTO CLAST%	ZENO CLAST%	COLOUR
0	8	OVERBURDEN	ОВ	OVERBURDEN						
8	20.2	HETEROLITHIC FLUIDIZATION BRECCIA	нтквх	HETEROLITHIC FLUIDIZATION BRECCIA: matrix supported with mixed angular to rou ranging from .2cm to .7cm;fine grained tuffisitic, sandy homogemnous matrix is tan b with moderate calcite cement; relict honeycomb texture microlitic lapilli matrix; larger assorted granodiorite and vuggy limestone composition; vuggy, open space porosity texture	rowncolour autoliths are 75 25 7m	relict microlitic	texture; hone	ycomb		
				11.5m sparry faceted crystal; yellow colour						
				MASSIVE SYENITE: equigranular pinkish feldspar phenocrysts; 65% course grained groundmass with						
20.2	47	MASSIVE SYENITE	LORGRAN	euhedral hornblende-rich matrix 35%; moderate to strong silicification; cg feldspar phenocrysts up						
				to 3cm; choritic fracture fillings 1%; no foliation observed						

DOWNHOL	E SURVEY						
HOLE-ID	DEPTH	MAG AZIMUTH	MAGNETIC DECLINATION	AZIMUTH (TN)	DIP	SURVEY TYPE	MAGNETIC FIELD
PP-19-05	14	105.7	11	94.7	-51.1	Reflex	-
SAMPLING	- Bulk Sample						
FROM	то	INTERVAL (m)	BAG#	WEIGHT (Kg)		COMMENT	
8	20.2	12.2		22.4	Combined with I	Holes PP-19-02, PP-19-	03 and PP-19-04

Appendix C: Analytical Certificates

C.F. MINERAL RESEARCH LIMITED 1677 POWICK ROAD KELOWNA, BRITISH COLUMBIA CANADA V1X 4L1

ISO 9001:2015 ISO 17025:2005

C.F. Mineral Research Ltd.'s Diamond Classifications of Submitted Electron Microprobe Analyses

Source : C.F. Mineral Research Ltd. EPMA Status : BASE: AD20 Project : RJK0

File Name : PRB9301R # Analyses: 164 Date : 19 March 2020

Caveats and explanations:

- Any '#' symbol identifies analyses where the total is outside the range of 98.5 and 101.0 despite repeated analyses. This may affect the quality and reliability of the classifications.
- Any '*' symbol identifies samples where no grains were found (by picking/ scanning) worthy of analysing from the whole sample. No asterisk is shown if at least one (or more) grain(s) from the sample was analysed.
- Any 'D' symbol identifies duplicate analytical descriptions.
- Any 'i' symbol identifies a grain with an intergrowth.

- The Mars/Cart rock classification (using chromite analysis) assumes the presence of, and good quality analyte values of MnO, NiO and ZnO values.
- The Mars/Cart 'n' symbol identifies analyses that cannot classify due to

 lacking all required analytes

TEL (250) 860-8525

FAX (250) 862-9435

info@cfmresearch.com

- or (ii) possessing any analyte with a value <0.0001
- The Mars/Cart T(Zn) can include extreme, but useful, values outside the calibrated ranges
- The Mars/Cart '+' symbol identifies T(Zn) within the diamond stability range of ~950-1250°C
- The results of any geothermobarometry obtained from suitable CPXs are reported at the end of the DI field.
- Please see document titled "Legend of Electron Microprobe Compositional Classifications (Version 4.812)" for further explanations.

1/2

Notes:

• There is a total of 50 PIL, 44 IL and 21 IL-Mn grains picked/scanned.

Comment:

Client: RJK0

Sample v4.810Classification Rock/Temp Name Fraction Mount Cell Grain SA CFM Trace DT M C T(Zn) Si02 Ti02 Al203 V203 Cr203 Fe203 Fe0 Mg0 Ca0 MnO NiO Zn0 Nb205 Na20 Na20 K20 Total °C wt % Wt% Wt% Wt% Wt% Wt% - -----PARADISPOND -32+80HIL ------------------7524 20 310 CR GΚ 980+ .10 .44 9.50 .12 54.97 5.87 20.30 8.72 0.00 .37 .13 .08 PARADISPOND -32+80HIL 7524 20 402 100.58 CR GG 545 -.11 .30 12.02 .16 51.36 4.60 24.33 5.81 .00 .59 .09 .39 PARADISPOND -32+80HIL 7524 99.76 20 411 CR -KK .08 1.06 6.91 .21 53.06 10.19 18.05 10.18 .00 PARADISPOND .33 .18 .00 -32+80HIL 7524 20 511 CR 100.27 LL 1209+ .10 .29 9.35 .09 55.52 7.83 13.93 12.75 0.00 PARADISPOND .32 .13 .05 -32+80HTL 7524 20 704 100.37 CR KL 913 .07 .40 12.56 .27 52.57 6.03 17.49 10.89 0.00 PARADISPOND .36 .09 .09 -32+80HIL 7524 20 720 100.84 CR KK 856 .07 .40 9.97 .10 56.50 7.06 11.24 14.63 .00 .29 .12 .11 PARADISPOND -32+80HIL 7524 20 807 100.51 CR GL 726 .07 .54 12.57 .29 50.82 6.87 18.97 9.91 . 00 PARADISPOND .35 .10 .17 -32+80HIL 7524 20 814 100.66 CR E L 1131+ .10 .30 12.23 .11 53.26 6.16 16.49 11.43 .01 .30 .17 .86 PARADISPOND -32+80HIL 7524 188.61 20 818 CR 739 KL .02 .06 12.99 .32 51.66 7.99 14.19 12.75 0.00 .30 .11 PARADISPOND .16 -32+80HIL 7524 100.54 20 819 CR GG 917 .10 .21 7.49 .09 55.37 5.97 24.70 5.12 .00 74 PARADISPOND -32+80HIL .15 .09 7524 20 507 100.03 CR TI KK 1022+ .09 1.42 .26 61.28 4.55 5.53 14.71 12.50 .00 PARADISPOND .38 .13 .07 -32+80HTI 7524 20 409 100.92 CR-Si ΚL 852 .21 .52 12.51 .27 51.42 6.57 17.49 11.01 .00 .34 .07 PARADISPOND .11 -32+80HTL 7524 20 100.51 405 **CR04** DT 965+ KK .10 .19 5.34 .33 62.49 5.13 14.01 12.27 0.00 .33 PARADISPOND .06 .08 -32+80HIL 7524 20 519 160.34 IL-Mn 49.70 .00 .04 5.66 43.27 .11 0.00 1.21 PARADISPOND -32+80HTL 0.00 0.00 7524 20 522 99.99 IL-Mn 47.51 .03 .00 9.78 40.85 .06 .00 PARADISPOND 1.75 0.00 -32+80HIL 0.00 7524 20 99.98 615 IL-Mn 49.77 0.00 .11 5.63 40.33 .17 .02 4.03 PARADISPOND -32+80HIL 7524 .03 0.00 160.08 20 619 IL-Mn 47.55 .04 .03 9.45 40.78 .05 .01 1.86 PARADISPOND -32+80HIL 0.00 0.00 7524 20 305 99.78 IL-Mn DIO 51.91 0.00 .03 1.98 43.79 . 16 0.00 PARADISPOND 2.64 .02 -32+80HIL .07 7524 20 315 100.61 IL-Mn DIO 52.62 .00 .05 .89 42.76 .11 8.88 PARADISPOND -32+80HIL 4.36 .02 .06 7524 20 403 100.87 IL-Mn DIO 50.16 0.00 .10 4.48 40.05 .16 .00 4.69 PARADISPOND .03 0.00 -32+80HTL 7524 20 99.67 521 TL-Mn DTO 50.82 **A**A .08 4.02 40.96 .18 .01 4.38 PARADISPOND .01 .02 -32+80HTL 7524 20 613 100.48 IL-Mn DIO 50.51 .00 .07 40.83 3.95 .14 .02 PARADISPOND 4.23 .04 -32+80HIL 7524 20 717 0.00 99.81 IL-Mn DIO 50.30 0.00 . 89 4.45 41.72 .16 0.00 PARADISPOND 3.20 0.00 -32+80HIL 7524 20 .02 99.95 885 IL-Mn DIO 50.24 .00 0.00 5.06 42.05 .06 .00 3.05 PARADISPOND -32+80HIL .00 .06 7524 28 100.51 820 IL-Mn DIO 50.80 .01 4.15 41.33 0.00 .10 .01 4.12 PARADISPOND 0.00 0.00 -32+80HPY 7524 11 414 100.51 0P5 55.69 .08 1.09 8.27 30.97 .62 2.04 .21 .08 PARADISPOND -32+80HPY .04 7524 20 102 .00 99.10 0PX 54.90 .12 1.35 .61 9.08 29.79 2.55 PARADISPOND -32+80HIL .25 .06 .02 7524 20 .00 98.75 108 PIL 53.09 .12 2.89 6.42 24.25 13.14 .02 .39 PARADISPOND .00 .32 -32+80HIL 7524 20 109 100.65 PIL 53.16 .14 6.58 24.24 13.16 2.89 .01 .34 PARADISPOND .02 .25 -32+80HIL 7524 20 114 100.80 PIL 52.11 .64 .61 9.97 24.50 12.42 .03 .19 PARADISPOND .84 -32+80HIL 7524 .03 100.53 20 201 PIL 51.80 .29 .98 10.17 24.46 12.30 .05 .34 PARADISPOND -32+80HIL 0.00 .18 7524 20 100.57 205 PIL 53.19 .15 2.76 6.30 24.36 13.08 .02 .37 PARADISPOND 0.00 .22 -32+80HTL 7524 100.45 20 206 PIL 53.27 .15 2.88 6.13 24,26 13.21 .01 .34 PARADISPOND .04 -32+80HIL .25 7524 20 214 100.54 PIL 51.18 .62 .30 11.42 25.46 11.35 .02 .26 PARADISPOND -32+80HTL .06 0.00 7524 20 302 PIL 100.66 51.06 .27 .98 10.51 26.04 11.02 0.00 PARADISPOND -32+80HIL .25 .01 .03 7524 20 515 100.17 PTI 51.59 .33 6.93 24.38 12.27 4.42 .01 .25 .05 PARADISPOND -32+80HIL .16 7524 20 518 100,40 PIL 53.29 .15 6.12 24.76 12.94 2.76 .01 .36 PARADISPOND -32+80HPY 0.00 .25 7524 11 310 CP2 100.63 CE 52.83 .28 1.17 .44 5.76 16.76 21.81 .12 PARADISPOND -32+80HPY 7524 .04 .25 10 889 .00 99.46 CE CP4 52.87 .51 1.06 18 8.01 16.48 19.68 .21 PARADISPOND -32+80HPY .03 7524 .48 0.00 11 114 99.52 CE CP4 52.95 .52 1.12 .28 7.23 16.40 20.10 .18 .06 .51 0.00 99.35 Page: 1

106400.00.05_CUSTPROBE_05MAR2012

19-Mar-2020 8:13 am File: Prb9301r.PRN

Comment:

Client: RJK0

19-Mar-2020 8:13 am File: Prb9301r.PRN

ample ame	French days		1.1			.810Class	ification	1	Rock/Temp															<u>.</u>		
aine	Fraction	Mount	Cell	l Gra	in SA	CFM	DI		M C T(Zn)	Si02	T102	A1203	V203	Cr203	Fe2(3	Fe0	MgO	CaO	MnO					Trace		
									°C	wt %	wt %		wt %	wt %	wt %	wt %	wt %		ta fin	NiO wt %	ZnO wt %	Nb205 wt %	Na2O wt %	Na20		Total
ARADISPOND	-32+80HPY	7524	11	209	CE	CP4																		wt %	wt %	wt %
ARADISPOND	-32+80HPY	7524	11	115	CE		-			52.78	.45	.98		.30		7.02	16.88	20.11	.17	.06			. 48		0.00	99.21
ARADISPOND	-32+80HIL	7524	20	105		CPX	-			53.56	.16	.96		.06		4.18	16.33	23.74	.12	.02			. 50		0.00	
ARADISPOND	-32+80HIL	7524	20	506		* CP8	-			42.71	.30			.03		23.00	6.54	11.52	.45	.00			1.39		.47	98.21
ARADISPOND	-32+80HPY	7524	10	817	CP		-			44.71	1.24	9.30		0.00		19.17	9.28	11.89	.48	.02			1.00		.72	
ARADISPOND	-32+80HPY	7524	10	912	CP		-			53.51	.30	.76		.93		6.01	17.80	19.37	.15	.08			.52		0.00	99.42
ARADISPOND	-32+80HPY	7524	10	913	CP		-			53.86	.01	.83		1.39		5.63	13.43	21.71	.10	.05			2.50		0.00	99.51
RADISPOND	-32+80HPY	7524	11	110	CP		-			53.76	.27	.76		.95		5.22	17.02	21.24	.14	.08			.48		0.00	99.92
RADISPOND	-32+80HPY	7524	11	111	CP	CP2	-			53.63	.29	.65		.75		5.66	17.91	19.98	.14	.08			.47		.00	99.57
RADISPOND	-32+80HPY	7524	11	210	CP	CP2	-			54.00	.25	.62		.93		5.94	18.73	18.50	.16	. 12			.43		0.00	99.66
RADISPOND	-32+80HPY	7524	11	312	CP		-			54.01	.26	.63		.84		6.11	18.49	18.74	.16	. 09			.47		0.00	
RADISPOND	-32+80HPY	7524	11	314	CP	CP2	-			53.59	.32	.81		1.09		5.23	17.26	20.76	.15	.09			.49			99.80
RADISPOND	-32+80HPY	7524	11	315		CP2	-			53.57	.29	.70		. 85		5.72	17.97	19.31	.18	.05			.47		0.00	99.80
RADISPOND	-32+80HPY	7524	11	401	CP	CP2	-			53.57	.26	.63		.92				19.67	.14	.07			.49		.01	99.12
	-32+80HPY	7524	11		CP	CP2	-			53.82	.30	.80		1.01		5.86	17.60	19.69	.16	.06			.54		0.00	99.40
	-32+80HPY	7524	10	404	CP	CP2	-			53.51	.32	.78		1.00		5.72		19.59	.17	.09			.54			99.84
	-32+80HPY	7524		815	CP	CP2	-	Diam		53.59	.31	.83		.97		5.35		19.75	.15	.11					.00	99.48
	-32+80HPY	7524	11	307	CP	CP2	-	Diam+		53.51	.28	.73		.90				19.09	.16	.07			.49			99.66
	-32+80HPY		11	407	CP	CP3	-	* *		54.04	.05	.95		.76			15.32		.12	.01			.46		.01	99.26
	-32+80HPY	7524		914	CP	CP5	-			53.98	.15	.59		1.70				22.50	.09	.05			.69			99.68
	-32+80HPY	7524		201	CP	CP5	-			54.51	.08	1.91		1.70			15.82		.09	.07			1.17			99.14
	-32+80HPY	7524		202	CP	CP5	-	* *		54.52	.16	. 52		1.08				22.79	.08	. 02			1.92			99.62
	-32+80HPY	7524		305	CP	CP5	-			54.08	.20	1.60		1.82			15.14		.08	.02			1.30			99.79
1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	-32+80HPY	7524		108	CP	CP5	-	Gr		53.51	.22	1.80		1.06			17.37		.07	.04			2.10			99.39
1. A 2. B	-32+80HPY	7524		901		CPX	-	Diam		53.35	.31	.92		1.09		5.94		19.13	.15	.04			.59			99.64
	-32+80HPY	7524		909		CPX	-	Diam		53.31	.33	.93		1.12		5.78		18.73	.16				.56			99.33
100 C 100 C		7524		917	CP	CPX	-	Diam		53.32	.26	.83		1.10				19.60	. 17	.06			.54			99.02
	-32+80HPY			919		CPX	-	Diam		53.39	.33	.89		1.17			18.04			.11			.56			99.48
	- 32+80HPY			916	CP	CPX	-	Diam-		52.89	.32	.98		1.25			17.80		. 14	.06			.52		0.00	99.54
dia mandra di Carto	-32+80HPY			116	CP	CPX	-	Diam-		53.24	.36	1.16		1.06			17.57		. 13	.12			.56		0.00	99.20
	-32+80HPY		11	304	CP	CPX	-	Diam-		52.79	.36	.98		1.24			17.61		. 16	.09			.62		.00	99.78
	- 32+80HPY		10	810	CP	CPX	-	Gr		53.12	.33	1.25		1.12					. 16	.06			.54		0.00	99.42
	-32+80HPY	7524	11	104	CP	CPX		Gr		52.79	.30	1.28		1.23			17.78		.15	.09			.54		0.00	99.16
and the share in the	-32+80HPY	7524	11	204	CP	CPX	-	Gr		53.04	.34	1.27		.73			17.21		.14	.10			.59		.01	99.16
	-32+80HPY	7524	11 2	205	CP	CPX	-	Gr		53.05	.32	1.41		1.25			17.41		.14	.08			. 45		0.00	99.54
	-32+80HPY	7524	11	208	CP	CPX	-	Gr		52.75	.15	1.97					17.31		.15	.09			.51		.00	99.62
	-32+80HPY	7524	11 4	403	CP	CPX	-	Gr		52.23	.27	2.98		.94			16.83		.11	.02			.41		.01	99.39
	32+80HPY	7524	10 8	801	Е	G 3	G2			39.14	.08			.86			17.71		.17	.01			.30		0.00	99.64
	32+80HPY	7524	10 7	720	Е	G 3	LPM			39.54				.07		1.76 1		6.09	.43	0.00				030	0.00	99.81
ADISPOND -	32+80HPY	7524	10 8	806		G 3	LPM/G2				.07			.07		3.06 1		4.41	.50	0.00					0.00 1	
ADISPOND -	32+80HPY	7524				G 5	REG			39.07	.07			.07				6.04	.42	.01					0.00 1	
					-					39.11	.12	22.40		.10	24	4.79 1	0.41	2.82	.39	0.00					0.00 10	

106400.00.05_CUSTPROBE_05MAR2012

Comment:

Client: RJK0

19-Mar-2020 8:13 am File: Prb9301r.PRN

Sample					v4	.810Class	ification	Ro	ck/Temp	e.															
Name	Fraction	Mount	Cell	l Grai	in SA	CFM	DI	м	C T(Zn) Si02	Ti02	A1203	V203	Cr203	Fo203	Fe0	MgO	6-0				 	Trace		
									°C	wt %	wt %	wt %	wt %	wt %		wt %		CaO wt %	Mn0 wt %	NiO wt %	ZnO wt %	Na20 wt %	Na20 wt %	K20 wt %	Total
PARADISPOND		7524	10	103	E	G 9	G1/HPM	-		42.10		22.17													
PARADISPOND	-32+80HPY	7524	10	807	E	G 9	HPM			40.88		22.51		1.96			20.56	4.33	. 39	.01			.084	0.00	100.01
PARADISPOND	-32+80HPY	7524	10	111	E	G 9	HPM*			42.00		21.94		. 37			16.80	6.18	.31	0.00			.069	.01	99.72
PARADISPOND	-32+80HPY	7524	10	209	E	G 9	HPM*			41.61		21.30		1.99				4.34	.34	.04			.068	0.00	99.92
PARADISPOND	-32+80HPY	7524	10	106	E	G 9	LPM*			41.36		22.28		1.71			19.59	5.30	.32	0.00			.052	.01	99.90
PARADISPOND	-32+80HPY	7524	10	102	Р	G 9				41.42		19.40		1.95			19.14	5.11	.50	.01			.025	.00	99.72
PARADISPOND	-32+80HPY	7524	10	315	р	G 9				41.46		20.46		4.28			20.31	5.59	.32	.01		.05		.00	99.73
PARADISPOND	-32+80HPY	7524	10	422	Р	G 9				41.95		20.40		4.37			18.83	5.62	.46	.01		.03		0.00	100.05
PARADISPOND	-32+80HPY	7524	10	107	Р	G 9-1				41.55				3.95				5.52	.27	.00		.02		0.00	99.79
PARADISPOND	-32+80HPY	7524	10	408	Р	G 9-1				42.01		20.44		4.22			20.29	4.89	.35	.01		.04		0.00	99.59
PARADISPOND	-32+80HPY	7524	10	410	Р	G 9-1				41.73		21.29		3.87				4.72	.35	.01		.02		0.00	99.91
PARADISPOND	-32+80HPY	7524	10	415	P	G 9-1				41.91		21.19		3.60			19.96	4.72	.40	.01		.06		0.00	99.98
PARADISPOND	-32+80HPY	7524	10	420	P	G 9-1						21.10		3.96			19.98	4.90	- 38	.00		.02		.01	100.08
PARADISPOND	-32+80HPY	7524	10	421	P	G 9-1				42.01		22.08		2.89		8.54	19.67	4.73	.43	.03		.05		0.00	100.59
PARADISPOND	-32+80HPY	7524	10	423	p	G 9-1				41.55		21.18		3.97			20.09	4.85	.40	.02		.03		0.00	99.93
PARADISPOND	-32+80HPY	7524	10	503	P	G 9-1				42.09		21.32		3.53				4.80	. 38	.00		.03			100.36
PARADISPOND	-32+80HPY	7524	10	512	P	G 9-1				42.08		21.96		3.29		7.56	20.20	4.53	. 48	0.00		.01			100.13
PARADISPOND	-32+80HPY	7524		101	P	G10-2				41.41		20.58		4.45		8.14	19.62	4.97	.42	.00		.05			
PARADISPOND	-32+80HPY	7524	10	403	Р	G10-2				40.95		18.18		7.78		7.01	20.58	4.40	.40	0.00		.02			99.38
PARADISPOND	-32+80HPY	7524		419	P	G10-2				42.05		21.96		2.91		9.33	19.92	3.74	.41	.02		.07			100.72
ARADISPOND	-32+80HPY	7524		504	P	G10-2				41.05		17.84		7.68		7.19	19.97	4.87	.44	.02		.06			
PARADISPOND	-32+80HPY	7524		511	P	G10-2				41.19		18.26		7.78		7.06	19.80	5.14	.43	.04		.03			99.78
ARADISPOND	-32+80HPY	7524		601	P	G10-2 G10-2				41.15		18.57		6,87		7.18	20.05	4.83	.44	.02		.02			99.16
ARADISPOND	-32+80HPY	7524		605	p	G10-2				41.15		18.42		7.14		6.98	20.41	5.14	.42	0.00		.06			99.98
ARADISPOND	-32+80HPY	7524		617	p	G10-2				40.88		16.29		9.35		7.18	19.27	5.59	.44	.00		.04			99.16
ARADISPOND	-32+80HPY	7524		622	p	G10-2				41.34		17.96		8.09		6.80	20.40	4.46	.43	.02		.04			99.61
ARADISPOND	-32+80HPY	7524		713	P	G10-2				41.51		17.93		8.13		7.17	20.15	4.53	.42	.01		.02			99.87
ARADISPOND	-32+80HPY			716	p					41.15	.12	17.65		8.12		6.99	19.76	5.38	.42	0.00		.03			99.61
	-32+80HIL			103	P	G10-2				41.15	.06	17.81	1	8.13		7.03	20.28	4.67	.42	0.00		.03			99.59
	-32+80HPY					G10-2				41.53	.06	18.48		7.22		6.99	20.01	5.03	.44	0.00		.05			99.82
	-32+80HPY			306 401	P	G10-3*				40.56	.13	15.51	1	0.69		6.94	19.20	5.87	.40	.00		.02			99.33
	-32+80HPY			1.1.1	P	G10-3*				40.65	.13	16.06	1	9.15		6.86	19.55	5.42	.41	0.00		.05			
	-32+80HPY	1 () () () () () () () () () (207	P	G10-4				41.18	.03	17.11	1	9.00		7.30	19.90	4.46	.39	.00		.03			99.29
	-32+80HPY			313		G10-4				41.15	.02	17.59	1	8.67		7.40	20.64	3.96	.44	0.00		.04			99.41
	-32+80HPY			412		G10-4				41.48	.08	18.19	7	7.95		6.88		3.18	.44	0.00					99.93
	-32+80HPY			502		G10-4				40.97	.01	17.71	8	3.49		7.02		4.19	.45	0.00		.04			99.42
						G10-4				41.43	.20	18.73	6	5.86				3.98	.45	0.00		.03			99.29
	-32+80HPY			519		G10-5*				41.21	.01	16.77		9.61		7.11		3.64		0.00		.06			99.51
	-32+80HPY					G10-5*				41.01	.04			.38		6.82		4.49	.45			.01			99.56
	-32+80HPY					G10-7*				41.16	0.00			.22				3.48		.03 0.00		.03			99.48
ARADISPOND	-32+80HPY	7524	10 !	515	P	G10-7*				40.93		16.07		.57		6.71		3.40	.47			.00			99.69
										Page:	з							3.07	.47	.00		.02		0.00	99.29 PROBE 65

106400.00.05_CUSTPROBE_05MAR2012

Comment:

Client: RJK0

19-Mar-2020 8:13 am File: Prb9301r.PRN

Sample Name	Fraction	Nourt	1	1.0-		1.810Class		Roc	:k/Temp															Trace		
		Mount	cet	l Gra	1N \$/	A CFM	DI	мс	T(Zn)	Si02	Ti02	Al203	V203	Cr203	Fe203	Fe0	MgO	Ca0	MnO	NiO	Zn0	Nb205	Na20	Trace Na20	K20	Tatal
									°C	wt %	wt %	wt %	wt %	wt %	wt %	wt %	wt %	wt %	wt %	wt %	wt %		wt %	wt %	wt %	
PARADISPOND		7524	10	202	Ρ	G11				40.80	.54	18.83							******							
PARADISPOND		7524	10	304	Ρ	G11				41.24		18.95		5.48			18.14	8.56	.34	0,00			.03		0.00	99.76
PARADISPOND		7524	10	414	Ρ	G11				40.55		17.59		4.74			20.07	5.72	.31	. 90			.05		0.00	99.53
PARADISPOND		7524	10	507	Р	G11				40.69		17.54		8.10 8.05			18.24	6.97	.38	0.00			.01		0.00	99.21
PARADISPOND		7524	10	510	Р	G11				40.02		13.81		12.47			18.22	7.36	. 47	.01			.07		.01	99.85
PARADISPOND		7524	10	618	P	G11				40.29		17.11		7.52			17.36	7.86	. 47	0.00			.03		0.00	98.98
PARADISPOND		7524	10	619	Р	G11	DI			40.62		17.95		6.89			16.54	9.81	.48	.01			.07		0.00	99.50
PARADISPOND		7524	10	104	P	G11-1				41.25		18.95		6.52			17.07	9.06	.47	.02			.07		.01	99.82
PARADISPOND		7524	10	108	P	G11-1				40.97		18.25		7.71		7.40	19.43	5.48	.45	.01			.02		.00	99.67
PARADISPOND		7524	10	204	P	G11-1				40.99		18.40		7.30			19.49	5.60	.46	.01			.02		9.00	99.77
PARADISPOND		7524	10	206	P	G11-1				41.24		18.77		6.68			18.56	6.31	.48	.02			.02		.00	99.78
ARADISPOND	-32+80HPY	7524	10	211	Р	G11-1				41.50		20.03		5.49			19.67	5.76	.42	.01			.02		0.00	99.94
ARADISPOND	-32+80HPY	7524	10	302	Р	G11-1				40.85		17.24		8.73			20.21	5.34	.42	.00			.04		.00	100.00
ARADISPOND	-32+80HPY	7524	10	305	Ρ	G11-1				41.45		20.39		4.67			19.02	5.78	.48	.02			.04		.00	99.63
ARADISPOND	-32+80HPY	7524	10	308	Ρ	G11-1				41.40		20.22		4.97			20.07	4.79	.45	.03			. 08		.00	99.77
ARADISPOND	-32+80HPY	7524	10	309	Ρ	G11-1				41.02		17.73		8.14			19.65	5.15	.45	0.00			.03		.00	99.80
ARADISPOND	-32+80HPY	7524	10	314	Ρ	G11-1				41.04		18.35		7.17			19.35 18.60	6.16	.41	.03			.01		0.00	99.84
ARADISPOND	-32+80HPY	7524	10	402	Ρ	G11-1				41.45		19.24		6.07				5.84	.49	.02			.05		.00	99.87
ARADISPOND	-32+80HPY	7524	10	405	Р	611-1				41.42		18.62		6.80			20.03	5.40	. 38	0.00			.03		0.00	99.81
ARADISPOND	-32+80HPY	7524	10	411	Ρ	G11-1				41.29		18.62		6.69			19.67	5.70	.41	0.00			- 02		0.00	99.58
ARADISPOND	- 32+80HPY	7524	10	501	Ρ	G11-1				40.82		18.04		7.47		7.32	19.19	5.64	.44	0.00			.02		.00	99.93
ARADISPOND	-32+80HPY	7524	10	506	Ρ	G11-1				41.79	.23			5.21		7.75		5.42	.44	.00			.06		0.00	99.47
ARADISPOND	-32+80HPY	7524	10	509	Ρ	G11-1				41.32		19.49		5.42			19.96	5.36	.36	0.00			.03		0.00	100.05
ARADISPOND	-32+80HPY	7524	10	516	Р	G11-1				41.39	.23			6.86				5.46	.38	0.00			.63		0.00	99.58
ARADISPOND	-32+80HPY	7524	19	522	P	G11-1				41.27	.29			5.67		6.89 7.34		5.59	.35	.03			.04		0.00	99.99
ARADISPOND	-32+80HPY	7524	10	607	P	G11-1				41.49	.17			4.94		7.73		5.60	.39	0.00			.04		0.00 1	09.00
ARADISPOND	-32+80HPY	7524	10	608	P	G11-1				41.12	.03			7.90				5.15	.46	.02			.04		0.00	99.81
ARADISPOND	-32+80HPY	7524	10	612	P	G11-1				41.25	.13			6.32		6.95 7.28		6.24	.43	0.00			.01		.01	99.55
ARADISPOND	-32+80HPY	7524	10	614	Ρ	G11-1				41.20	.27			6.14		7.23		5.58	.39	.03			.01		.00	99.64
RADISPOND	-32+80HPY	7524	10	620	P	G11-1				41.09	.21			6.55				5.46	.38	.04			.05		.00	99.31
RADISPOND	-32+80HPY	7524	10	701	Р	G11-1				41.20	.10			6.52				5.43	. 36	0.00			.03		0.00	99.27
	-32+80HPY	7524	10	702	Ρ	G11-1				41.25	.64			6.05				5.47	.45	.00			.03		0.00	99.62
RADISPOND	-32+80HPY		10	703	P	G11-1				40.86	.06			8.90		7.45		5.16	.42	.03			.08		0.00	99.76
<u> </u>	-32+80HPY	7524	10	704	Р	G11-1				41.90	.01			5.08		7.04		6.37		0.00			.02		.00	99.60
	-32+80HPY	7524	10	706	P	G11-1				41.82	.22 1			4.93				4.72		0.00			.03		0.00 1	80.25
	-32+80HPY	7524	10	710	P	G11-1				40.83	.05 1			9.11		7.36		5.16	. 39	.02			.84		.00 1	00.09
	-32+80HPY	7524	10	711	Р	G11-1				41.28	.21 1			9.11 6.79				6.30		0.00			.01	-	0.00	99.30
- in a	-32+80HPY	7524	10	712	Р	G11-1				41.48	.29 2					7.49		5.76	.40	.01			.04		.00 1	90.21
	-32+80HPY	7524	10	714	Ρ	G11-1				41.11	.08 1			4.82 7.50		7.39		4.78		0.00			.09		.01	99.75
RADISPOND	-32+80HPY	7524	10	715	Р	G11-1				41.23		9.32				7.11		6.00		0.00			.00		.00	99.68
										Page:	.07 1	3,32		5.13		7.68	19,33	5.68	.51	.03			.03		9,00 10	0.01

106400.00.05_CUSTPROBE_05MAR2012

19-Mar-2020 8:13 am File: Prb9301r.PRN

Comment:

Client: RJK0

Sample					v4.	B10Classific	ation	Rock	k/Temp															Trace		
Name	Fraction	Mount	Cell	Grain	n SA	CFM	DI	MC	T(Zn)	Si02	Ti02	A1203	V203	Cr203	Fe203	Fe0	MgO	Ca0	MnO	NiO	Zn0	Nb205	Na20	Na20	K20	Total
									°C	wt %	wt %	wt %	wt %	wt %	wt A	wt %	wt %	wt %	wt %	wt %	wt %	wt %	wt %	wt %	wt %	wt %
					~ ~ -						*****										~					
PARADISPOND	-32+80HPY	7524	10	409	P	G11-1	DIO			40.87	.40	17.45		7.70		7.25	19.30	5.68	.43	.03			.08		0.00	99.18
PARADISPOND	-32+80HPY	7524	10	613	P	G11-1	DIO			41.10	.08	17.72		7.89		7.17	19.22	6.03	.44	0.00			.03		.00	99.69
PARADISPOND	-32+80HPY	7524	10	719	R	G 5				38.13	.05	21.44		.00		26.85	5.87	6.78	.87	0.00			.02		0.00	160.00
PARADISPOND	-32+80HPY	7524	10	803	R	G 5				38.75	.04	22.25		.11		25.71	9.97	2.57	.56	.02			0.00		.00	99.98

19 DIAMOND CHARACTERISATIONS

26-Mar-2020		CL	IENT	REPORT/PREL	IMINARY		C.F. MINERAL RESEARCH LTD. DIAMOND CHARACTERISATIONS								
REC #	Sample Name			Sieve Size on (mm)	Sieve Size through(mm)	2	2		Colour WYGBEO	Intensity 0-4	Inclusions 0-5				
		(Kg)						н в с 							
3	PARADISPOND	22.42	11	.150	.212	.024	.000120	в	Y	2	1				
29	PARADISPOND	22.42	11	.150	.212	.012	.000060	в	Y	2	1				
28	PARADISPOND	22.42	11	.150	.212	.010	.000050	в	Y	2	1				
12	PARADISPOND	22.42	11	.150	.212	.008	.000040	В	Y	2	1				
11	PARADISPOND	22.42	11	.150	.212	.007	.000035	С	Y	1	1				
			11												
			11												
30	PARADISPOND	22.42	11	.106	.150	.006	.000030	С	Y	2	1				
13	PARADISPOND	22.42	11	.106	.150	.003	.000015	С	Y	1	1				
31	PARADISPOND	22.42	11	.106	.150	.002	.000010	С	Y	1	0				
14	PARADISPOND	22.42	11	.106	.150	.001	.000005	С	Y	1	1				
15	PARADISPOND	22.42	11	.106	.150	.001	.000005	С	Y	1	0				
27	PARADISPOND	22.42	11	.106	.150	.001	.000005	С	Y	1	0				
33	PARADISPOND	22.42	11	.106	.150	.001	.000005	С	Y	2	1				
18	PARADISPOND	22.42	11	.106	.150			С	Y	1	0				
32	PARADISPOND	22.42		.106	.150			С	Y	1	0				
34	PARADISPOND	22.42		.106	.150			С	Y	1	0				
16	PARADISPOND	22.42			.106			С	Y	1	0				
26	PARADISPOND	22.42			.106										
35	PARADISPOND	22.42			.106										
36	PARADISPOND	22.42			.106										

Total: 19 Stones

es .0004 carats

Page 1 File: DIA9301.DB

19 DIAMOND DESCRIPTIONS

26-Mar	-2020	CLI	ENT REPORT/PRELIMINARY C.F. MINERAL RESEARCH LTD. DIAMOND DESCRIPTIONS	Page 1 File: DIA9301.DB
REC #	Sample Name	Sample Wt (kg)	 Description	
3	PARADISPOND		WHITE CLEAR PARTIAL CHIP WITH A SLIGHT GREENISH TINGE, THE CRYSTAL FACES PRESENT APPEAR TOO STEEP FOR A DODECAHEDRON, PROBABLY NATURAL	
29	PARADISPOND		SLIGHTLY GREENISH CHIP WITH SOME DODECAHEDRAL CRYSTAL FACES ON ONE SIDE, PROBABLE SYNTHETIC	
28	PARADISPOND		SLIGHTLY GREENISH CHIP WITH 2 CRYSTAL FACES ON ONE SIDE, CONTAINS TINY BLACK INCLUSION, COULD POSSIBLY BE NATURAL DIAMOND?	
12	PARADISPOND		PROBABLE NATURAL WHITE IRREGULAR DIAMOND- THE GRAIN APPEARS TO HAVE POSSIBLE TINY MICA? INCLUSION	
11	PARADISPOND		PERHAPS NATURAL WHITE DIAMOND CHIP; NO CHARACTERISTICS OF SYNTHETIC	
30	PARADISPOND	22.42	SLIGHTLY GREENISH WHITE CHIP WITH SOME CRYSTAL FACES THAT APPEAR DODECAHEDRAL, PROBABLY SYNTHETIC	
13	PARADISPOND	22.42	WHITE DIAMOND CHIP WITH SOME DODECAHEDRAL FACES, IN SOME LIGHT CONDITIONS IT APPEARS SLIGHTLY GREEN, PROBABLE SYNTHETIC	
31	PARADISPOND	22.42	GREENISH WHITE CHIP WITH ONE FLAT PARTIAL CRYSTAL FACE, PROBABLY SYNTHETIC	
14	PARADISPOND	22.42	WHITE CHIP PROBABLY NATURAL	
15	PARADISPOND	22.42	WHITE BROKEN NATURAL DIAMOND WITH PSEUDOOCTAHEDRAL FACES ON UNBROKEN SIDE	
27	PARADISPOND	22.42	SLIGHTLY GREENISH CHIP WITH A FEW POSSIBLE DODECAHEDRAL BROKEN CRYSTAL FACES ON ONE SIDE, PROBABLY SYNTHETIC	
33	PARADISPOND	22.42	LIGHT CLEAR GREEN FRAGMENT WTIH APPARENT PARTIAL DODECAHEDRAL CRYSTAL FACES, PROBABLY SYNTHETIC	
18	PARADISPOND	22.42	SMALL WHITE DIAMOND CHIP, PROBABLY NATURAL, TOO SMALL TO WEIGH	
32	PARADISPOND	22.42	WHITE CLEAR DIAMOND FRAGMENT THAT HAS PARTIAL CRYSTAL FACES ON ONE SIDE THAT COULD POSSIBLY BE DODECAHEDRAL, STONE IS PROBABLY NATURAL, TOO SMALL TO WEIGH	
34	PARADISPOND	22.42	LIGHT CLEAR PALE GREEN FRAGMENT WITH OVERALL DODECAHEDRAL SHAPE, PROBABLY SYNTHETIC, TOO SMALL TO WEIGH	
16	PARADISPOND	22.42	SMALL WHITE DIAMOND CHIP-NO CRYSTAL FACES, PROBABLY NATURAL	
26	PARADISPOND	22.42	TINY LIGHT BROWN DIAMOND CHIP, PROBABLY NATURAL	
35	PARADISPOND	22.42	LIGHT CLEAR PALE GREEN FRAGMENT, PROBABLY SYNTHETIC	
36	PARADISPOND	22.42	CLEAR WHITE CHIP WITH TINY INCLUSION, PROBABLY NATURAL	

Note: 52 stones not reported (-.106mm) - at least 7 natural very small white chips