

We are committed to providing <u>accessible customer service</u>. If you need accessible formats or communications supports, please <u>contact us</u>.

Nous tenons à améliorer <u>l'accessibilité des services à la clientèle</u>. Si vous avez besoin de formats accessibles ou d'aide à la communication, veuillez <u>nous contacter</u>.

ASSESSMENT REPORT VALE CANADA LIMITED TOTTEN DRILL PROGRAM NTS: 41/I-06 DECEMBER 2021

> Kristin Henry, P. Geo December 20,2021

TABLE OF CONTENTS

Executive Summary	3
Introduction	3
Property	4
Location and Access	5
Property Status	5
Exploration History	5
Regional Geology	6
Property Geology	8
2017 & 2018 Exploration Program	9
Discussion	9
Conclusions and Recommendations	15
References	16
List of Figures	
Figure 1: Location Map of Worthington Offset and the Totten Project Claims.	3
Figure 2: Vale Area of Exploration for the Totten Project.	4
Figure 3: Plan View of the 2017-2018 Totten Drill holes.	9
Figure 4: Borehole Section 1368900	11
Figure 5: Borehole Section 1368901	12
Figure 6: Borehole Section 1368902	12
Figure 7: Borehole Section 1368910	13
Figure 8: Borehole Section 1368920	13
Figure 9: Borehole Section 1368950	14
Figure 10: Borehole Section 1368951	14
	14
Figure 11: Borehole Section 1368952	15
List of Tables	
Table 1: 2017 & 2018 Personnel Totten Project	19
Table 2: Drilling Expenditure Summary 2017 & 2018	21
List of Appendices	
Appendix I. List of Personnel	19
Appendix II. List of Expenditures and Drill Invoices	20
Appendix III. Geological borehole logs	22
Appendix III. Summary Table for Each Drill Hole	23
J S S S S S S S S S S S S S S S S S S S	= -

Page

EXECUTIVE SUMMARY

A drill program was completed in the Totten area during 2017 and 2018. There was a total of 8 drillholes completed which consisted of four parent holes and four branch holes. The total length drilled within the 2017-2018 program was 5735.2 meters. The objective of this program was to evaluate the extension of the Cu-Ni mineralization within Quartz Diorite dyke to the south of Totten Mine. There was no significant mineralization identified in the drill campaign along the main Worthington trend. However, large areas of open ground remain untested. While no immediate follow up targets were generated from the 2017-2018 exploration drill program, further exploration is recommended within the area.

INTRODUCTION

The Worthington offset is a radial Quartz Diorite offset dyke which extends outwards from the basal Sudbury Igneous Complex in the South Range of the basin. Totten Mine is located within the offset.

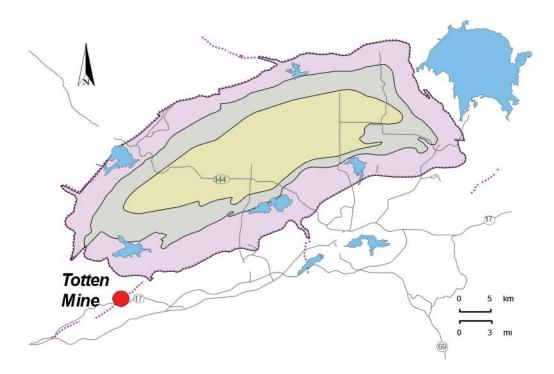


Figure 1: Location Map of Worthington Offset and the Totten Mine area.

Figures 1 through 3 illustrate the area where the 2017-2018 drill programs were conducted.

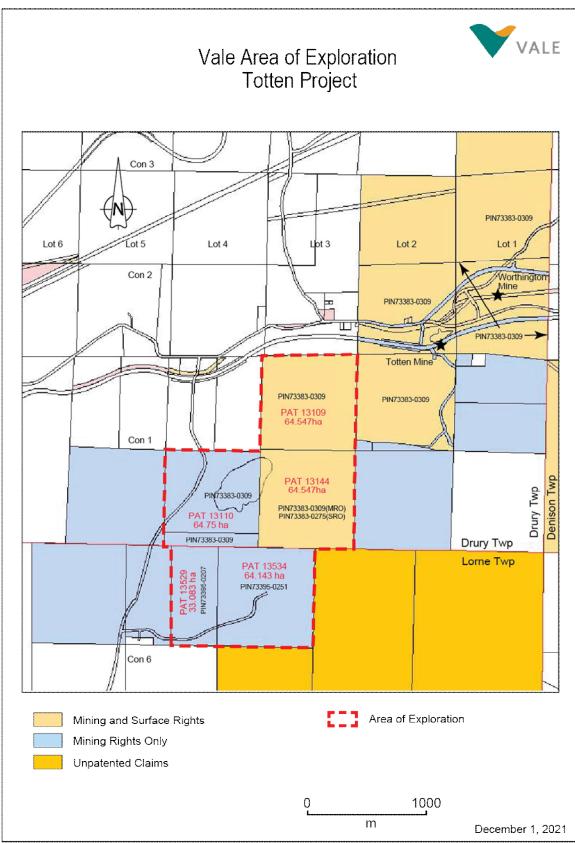


Figure 2: Vale Area of Exploration for the Totten Project.

PROPERTY

Location and Access

The Totten property is located approximately 40 kilometers west of the City of Sudbury on the Worthington Offset dyke in Lots 3 & 4 Concession 1 Drury Township and Lots 3 & 4 Concession 6 Lorne Township. Access to the property can be gained via regional road 658 from Hwy. 17 West or by C.P.R. railway line that runs east west through the property immediately north of the Totten No. 2 shaft. The property is characterized by rolling topography of the Canadian Shield. Maximum relief is approximately 30 m. The topography is reflected to some degree by the bedrock lithology and structure. The mineral hosting quartz diorite dyke forms a high ridge that trends in a northeast – southwest direction through the property. Argillaceous metasedimentary rocks stand at lower elevations.

The area is drained by Victoria Creek, a small waterway that runs east-west through the property. The creek experiences highest flow rates during the spring during run-off and lowest flow rates during the summer. Numerous small swamps and marshes are present on the property. Vegetation consists of scrubby poplar, birch, maple, oak, red and white pine in areas of higher elevation and alder and spruce in areas of lower elevation.

The drill areas were accessed using 4x4 trucks on exploration drill trails.

Property Status

The Totten Exploration program was performed on several parcels of land in Drury and Lorne Townships with a total area of 291+/- ha (Figure 1). The exploration work was on several parcels being the South ½ of Lot 4 Con 1, all of Lot 3 Con 1, being part of PIN 73383-0309 (PAT-13110, PAT-13144, Pat-13109) in Drury Township, the North ½ of Lot 3 Con 6 being PIN 7395-0251 (PAT-13534), The East ½ of the North ½ of Lot 4 Con 6 being PIN 73395-0207 (PAT-13529) in Lorne Township. The property is a combination of mining and surface rights and mining rights only patented lands 100% owned by Vale Canada Limited.

Exploration History

The Totten property was operated intermittently by various companies from 1890 to 1970, including (from earliest to latest): the Dominion Mineral Company, the Mond Nickel Company, and the International Nickel Company.

Ore was first discovered in Worthington area in June 1884 during the construction of the Canadian Pacific Railway. The property was originally called the Crean property and was later named Worthington who was the manager of railway construction and the largest shareholder of the Dominion Mineral Company.

The properties encompassing the Totten/Worthington area have changed ownership several times. Current ownership is held by Vale Canada Limited. Several exploration campaigns have been conducted on the property, many of which have culminated in successful mining operations.

REGIONAL GEOLOGY

The Sudbury Impact Structure lies at the boundary of the Archean Superior Province with the Proterozoic Southern Province, immediately north of the Grenville Province. It formed at ~1850 Ma and consists of three members: the Whitewater Group; the Sudbury Igneous Complex (SIC) which underlies and rings the Whitewater Group (Figure 1); and an outer zone of locally brecciated country rocks (Sudbury breccia). The Whitewater Group contained within the central depression of the Sudbury Structure consists of four conformable formations generated from impact. These are, in ascending order, the Onaping, Vermilion, Onwatin, and Chelmsford formations. The Onaping Formation consists of a succession of upward-fining breccia units. The Vermilion Formation consists of carbonate, siltstone, and chert units. The Onwatin Formation is comprised of carbonaceous mudstones and siltstones. The Chelmsford Formation is dominated by greywackes.

The Sudbury Igneous Complex (SIC) lies structurally below the Whitewater Group and consists of four main units from base to top: contact sublayer norite, felsic and mafic norite, quartz gabbro, and granophyre. Concentric and radial quartz diorite offset dykes cut the footwall rocks along fracture zones. Footwall or granite breccia occurs as irregular zones varying in thickness from 20 to 225 ft between the SIC and the footwall rocks and is composed of fragments derived from both the SIC and the footwall rocks, contained in a quartz-rich breccia matrix. The granite breccia generally strikes parallel to the basal contact of the SIC but locally, upwellings or tongues project as far as 225 ft into the overlying SIC and underlying footwall rocks. The contact sublayer norite, offset dykes and granite breccia are the main hosts for the nickel-copper-precious metal sulphide ores.

Sudbury breccia represents impact shock features that occur as irregular bodies or dykes throughout the country rocks around the Sudbury structure. It is composed of subrounded fragments, mainly derived from the adjacent host rocks, set in a dark fine-grained matrix which may be fragmental, recrystallized, igneous textured or mylonitic.

Archean gneisses, migmatites, granites and volcanic rocks (>2500 Ma) of the Superior Province lie to the west, northwest and northeast of the SIC. Supracrustal rocks of the Huronian Supergroup are exposed in the Southern Province and lie to the south of the SIC. The Supergroup includes from oldest to youngest; the Elliot Lake Group volcanic and clastic sedimentary rocks; the Hough Lake, Quirke Lake and Cobalt groups consisting of a sequence of conglomerate, mudstone, siltstone and sandstone and the Flack Lake Group consisting of mudstone, siltstone, and sandstone.

Sills and dykes of Nipissing gabbro (approximately 2215 Ma) intrude the Huronian rocks of the Southern Province, and the Superior Province rocks.

Copper, nickel, PGE-Au mineralization occurs in five principal environments:

1. As massive to disseminated sulphides at the base of the main mass in the sublayer; These deposits typically occur on the South Range of the Sudbury Structure. They are situated at the contact between the Sudbury Igneous Complex and footwall supracrustal rocks of the Huronian Supergroup and the Creighton and Murray granites. These deposits are generally zoned from massive ore at the footwall to disseminated sulphide ore toward the hangingwall. The massive ores rest directly on the footwall rocks and contain locally derived inclusions consisting of mafic, felsic, and subordinate metasedimentary clasts as well as ultramafic fragments whose source is unknown. The PGE content of these deposits is variable.

- 2. As fine and blebby disseminations and massive stringers within breccias beneath the sublayer; This deposit type occurs on the North and East Ranges of the Sudbury Structure (e.g., Onaping-Levack and Victor areas). These deposits are spatially related to breccia filled embayment structures on the margins of the SIC. The mineralization occurs primarily within brecciated country rocks at the basal contact of the SIC and in fractures in country rocks underlying the breccias. The breccias consist of fragments of country rock, ultramafic inclusions, and rare sublayer and mafic norite in a quartzo-feldspathic matrix. Sulphides occur as fine and blebby disseminations and massive stringers within the breccias, as stringers in footwall fractures and occasionally as disseminations within overlying sublayer norite. The PGE-Au content of these deposits is generally low.
- 3. As veins and stockwork systems in the underlying footwall country rocks; These deposits occur up to 1,600 ft into the underlying footwall and are usually linked to a contact related deposit. Footwall mineralization is often hosted in thick zones of Sudbury Breccia. This breccia is composed of fragments of country rock ranging from microscopic (matrix) to more than 35 ft in diameter that occurs as dykes and irregular masses in all footwall rocks. The deposits are comprised of veins and stockwork systems that are primarily massive chalcopyrite that vary from millimeter scale to greater than 35 ft wide. The edges of the deposits are characterized by stringers that are <3 ft that consist of massive intergrown bornite/chalcopyrite/millerite. Alteration of the host footwall rocks immediately next to the deposits includes quartz carbonate, epidote and chlorite in seams and fractures. Significant PGE-Au mineralization occurs within the main portion of the deposits, but significant concentrations occur in the peripheral sulphide stringers and within altered host rocks.</p>
- 4. Within quartz diorite offset dykes extending radically from the SIC; Deposits within "Offset Dykes" are spatially associated with inclusion rich quartz diorite and with local structural complexities of the dyke (e.g., folding, displacements etc.). Inclusion quartz diorite (IQD) is generally located within the central portion of the offset, but on occasion may occur to the dyke boundary. Up to 75% of the inclusions are derived from local sources. Inclusions vary in diameter from <1/2" to several feet and volumetrically ranges from a few percent to locally >80% of the IQD. The marginal areas of the dykes are characterized by fine-grained inclusion free quartz diorite (QD). Contacts between the QD and IQD are variable and may be diffuse to gradational in nature to extremely sharp. Mineralization consists of massive and semi-massive Cu-Ni bearing sulphides haloed by disseminated and blebby sulphides. The massive sulphide (>80 volume % sulphide) is dominantly pyrrhotite and pentlandite. The massive sulphide thins and splays into 1 inch to 3 ft thick copper-rich stringer zones within the disseminated sulphide halo. Semi-massive sulphides (50-80% volume sulphide) are also typically pyrrhotite and pentlandite rich but are spatially associated with chalcopyrite-rich patches. The PGE-Au minerals tend to occur at sulphide/silicate boundaries and are spatially associated with more Curich sulphide.
- 5. Shear zones and related structural traps; These deposits occur within fault zones at the contact of the SIC and metasedimentary rock of the Stobie Formation of the Huronian Supergroup. Examples of this type of deposit include the East, Falconbridge, and Garson mines. The ore zones consist of two styles of mineralization including a contorted schist inclusion sulphide and an inclusion massive sulphide. Contorted schist inclusion sulphide is a sulphide breccia containing inclusions of norite and Huronian supracrustal rocks. The ore minerals are pyrrhotite, pentlandite and chalcopyrite. Inclusion massive sulphide contains inclusions of Huronian supracrustal rocks, quartz and jasperoid. This ore type is characterized by, silicified footwall rocks, strong deformation of the mineralization and late cross cutting quartz carbonate fractures with sphalerite, marcasite, and galena indicative of later hydrothermal activity.

PROPERTY GEOLOGY

Huronian-age metasediments, including conglomerate, sandstone, phyllite and argillite of the Ramsey Lake Formation, underlie the Totten Mine area. Intrusion of a Nipissing gabbro sill followed deposition of the sediments. The sill, approximately 1,200 ft in thickness, trends east west and dips approximately 65° to the southeast. The Nipissing gabbro consists predominantly of pyroxene gabbro and hornblende gabbro. In the Totten area, the gabbro is altered and takes on a waxy appearance. The Worthington Offset cuts both the metasedimentary rocks and the gabbro sill. Late quartz diabase and olivine diabase dykes crosscut all lithologies.

This quartz diorite offset dyke extends for 7.5 miles from the Sudbury Igneous Complex. The Worthington Offset attains a thickness of up to 150 ft in the Totten Mine area. The dyke strikes approximately 045° with steep variable dips.

Internal margins of the QD are often finer grained than the remainder of the QD and may be very biotitic in composition. Multiple pulses of QD may occur but are poorly documented in drill core.

Inclusion Quartz Diorite (IQD) is generally located within the central portion of the offset, but on occasion may occur at the dyke boundary. The quartz diorite intrusion "matrix" between inclusions in the IQD is commonly finer grained than in the inclusion-free QD. Up to 75% of the offset dyke (by area) consists of inclusions derived almost entirely from local sources. Inclusions vary in diameter from <1/2 inch to several feet. Inclusion volume ranges from a few percent to locally >80% of the IQD and consists dominantly of gabbroic fragments, with lesser amphibolite and rare metasedimentary inclusions. The proportion of metagabbro inclusions within the offset decreases away from the core of the offset and away from the gabbro metasediment contact.

The contact relationship between metagabbro and quartz diorite is characterized by a metagabbro metabreccia of 1 to 35 ft fragments that are separated by sulphide-bearing IQD. Locally the metagabbro is invaded by a stockwork of IQD veins and mineralized stringers. These breccia stockwork features are not developed in metasedimentary country rocks.

Contacts between the QD and IQD are variable and may be diffuse to gradational in nature to extremely sharp. Where contacts are sharp a cross cutting relationship is observed that suggests that the IQD is a later phase. Locally the IQD contains sub angular fragments of inclusion-free QD also suggesting the emplacement of QD prior to IQD. Inclusions of QD tend to be associated with more intense sulphide mineralization.

In areas where large metagabbro inclusions are present within the IQD, metal grades tended to be higher than in portions of the dyke which contain only amphibolite inclusions.

Where the dyke is in contact with metasediments the margin of the offset consists of 'spherulitic' textured quartz diorite and the QD becomes increasingly coarse-grained inwards towards the core of the offset dyke. Locally fragments of meta-greywacke are entrained in the QD. Contacts with the Huronian metasediments are generally sharp. Locally, metasediments may be altered by the intrusion.

Late quartz and olivine diabase dykes intersect all lithologies. Two prevalent quartz diabase dykes are present in the immediate vicinity of the Worthington Mine.

2017-2018 EXPLORATION PROGRAMS

Drill programs were completed in the Totten area during 2017 and 2018. The objective of these programs was to explore for the extension of the Cu-Ni mineralization within Quartz Diorite dyke to the south of Totten Mine. No significant mineralization was identified in the drill campaign along the main Worthington trend. However, large areas of open ground remain untested. While no immediate follow up targets were generated from the 2017-2018 exploration drill holes, further exploration is recommended in the area. The exploration strategy focused on several drillholes that were drilled perpendicular to Worthington offset to better understand the location and morphology of the Quartz Diorite dyke and to validate favorable lithologies.

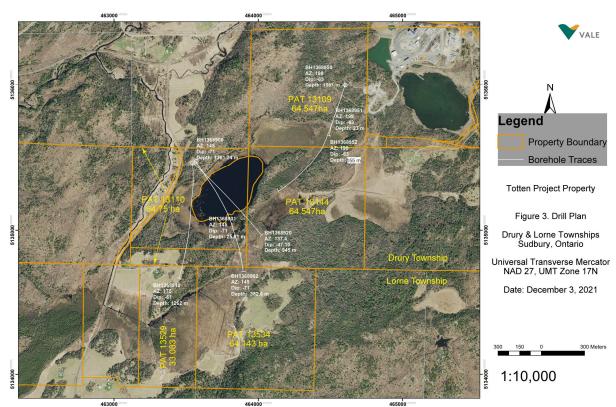


Figure 3: Plan View of the 2017-2018 Totten Drill holes.

DISCUSSION

Borehole 1368900 was drilled from surface to a depth of 4466 ft between August 24th to October 11th of 2017. The hole was drilled HQ core diameter by Major Drilling with a VD8000 drill rig. The location of the borehole trace with the property boundaries are presented within the drilling plan on (Figure 3 above). Quartz Diorite was intersected between 4394.3 ft to 4413 ft followed by Inclusion Quartz Diorite to 4466 ft. The main samples were taken from 4379.9 ft to 4465.2 ft. This hole was abandoned at 4459 ft when the rods became stuck in a fault. A steel wedge was set at 4383 ft to bypass the gear. The hole was then reduced from HQ to NQ core diameter at 1991 ft. There were Clappison wedges set at 2785 ft, 2844 ft, and at 2913ft and then the Continuous wedging tool was used at 3413 ft, 3451.1 ft, 3488.6 ft and at 3567.4 ft to direct the hole towards the target (See figure 4 below).

Borehole 1368901 was drilled from 4384 ft to 4468 ft between October 12th to the 15th of 2017. The hole was drilled NQ core diameter by Major Drilling with a VD8000 drill rig. This was a branch from the parent borehole 1368900. Quartz Diorite was intersected between 4396.7 ft to 4414.3 ft followed by Inclusion Quartz Diorite to 4444.5 ft. The main samples were taken from 4389.7 ft to 4467.9 ft. This hole was abandoned at 4465 ft after the rods got stuck in the same structure that borehole 1368900 became stuck in (See figure 5 below).

Borehole 1368902 was drilled from 4364 ft to 5612 ft between October 16th to November 5th of 2017. The hole was drilled by Major Drilling with a VD8000 drill rig. A steel wedge from borehole 1368900 was set at 4364 ft to drill this branch from the parent hole 1368900. Quartz Diorite was intersected between 4390.9 ft to 4415.9 ft followed by Inclusion Quartz Diorite to 4520.5 ft and then Quartz Diorite again to 4531.1 ft. The main samples were taken from 4383.9 ft to 4543.1 ft (See figure 6 below).

Borehole 1368910 was drilled from surface to 4140.9 ft between August 29th to October 4th of 2017. The hole was drilled HQ core diameter by Major Drilling with a VD8000 drill rig. This borehole was reduced from HQ to NQ core diameter at 1397.6 ft. The location of the borehole trace with the property boundaries are presented on the drilling plan on Figure 2. Quartz Diorite was intersected between 2342.9 ft to 2380.9 ft followed by Inclusion Quartz Diorite to 2582.8 ft and then Quartz Diorite to 2640.2 ft. The main samples were taken from 2332.7 ft to 2667.3 ft (See figure 7 below).

Borehole 1368920 was drilled from surface to 3100 ft between October 8th to November 2nd of 2017. The hole was drilled HQ core diameter by Major Drilling with a VD8000 drill rig. The location of the borehole trace with the property boundaries are presented within the drilling plan on Figure 2. Quartz Diorite was intersected between 1385.4 ft to 1399 ft followed by Inclusion Quartz Diorite to 1476 ft and then Quartz Diorite to 1482.9 ft. The main samples were taken from 1373 ft to 1496 ft (See figure 8 below).

Borehole 1368950 was drilled from surface to 5187 ft between March 7th to May 6th of 2018. The hole was drilled HQ core diameter by Foraco with a VD5000 drill rig. The location of the borehole trace with the property boundaries are presented within the drilling plan on Figure 2. Quartz Diorite was intersected between 1892.9 ft to 1957.7 ft followed by Inclusion Quartz Diorite to 2124.4 ft then Quartz Diorite to 2197.3 ft., followed by Inclusion Quartz Diorite to 2241.3 ft and then QD to 2282.2 ft. The main samples were taken from 1883.7 ft to 2332.5 ft (See figure 9 below).

Borehole 1368951 was drilled from 1981 ft to 2058 ft between June 12th to July 2nd of 2018. The hole was drilled HQ core diameter by Foraco with a VD5000 drill rig. The location of the borehole trace with the property boundaries are presented within the drilling plan on Figure 2. Inclusion Quartz Diorite was intersected between 1981.1 ft to 2058 ft. The main samples were taken from 1981.1 ft to 2058 ft (See figure 10 below).

Borehole 1368952 was drilled from 1952.9 ft to 2461 ft between June 12th to July 22nd of 2018. The hole was drilled HQ core diameter by Foraco with a VD5000 drill rig. The location of the borehole trace with

the property boundaries are presented within the drilling plan on Figure 2. Inclusion Quartz Diorite was intersected between 1952.9 ft to 22106.9 ft followed by Quartz Diorite to 2139.2 ft and then Inclusion Quartz Diorite to 2166.1 ft followed by more Quartz Diorite to 2195.4 ft. The main samples were taken from 1952.9 ft to 2209.8 ft (See figure 11 below).

The drilling programs (of 1368950, 1368951, and 1368952) were designed to test down plunge and along strike of the Worthington Offset. Exploring for an extension of the main Quartz Diorite Dyke. No significant mineralization was intersected though there was trace to weakly disseminated sulphides, typical to what is seen in the Worthington Offset. The target area tested over one kilometer strike length with the four parent drillholes and four branch holes.



Figure 4: Section Looking North of borehole 1368900.

VALE

Figure 5: Section Looking North of borehole 1368901.



Figure 6: Section Looking North of borehole 1368902.

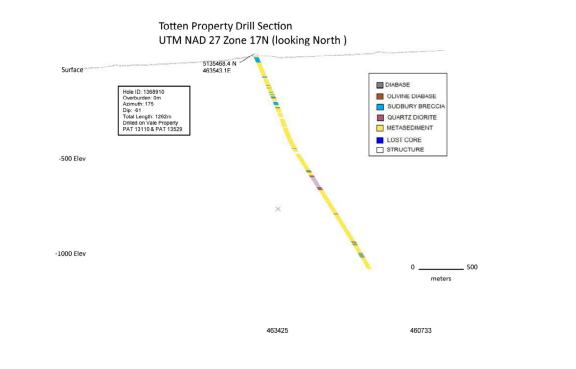


Figure 7: Section Looking North of borehole 1368910.

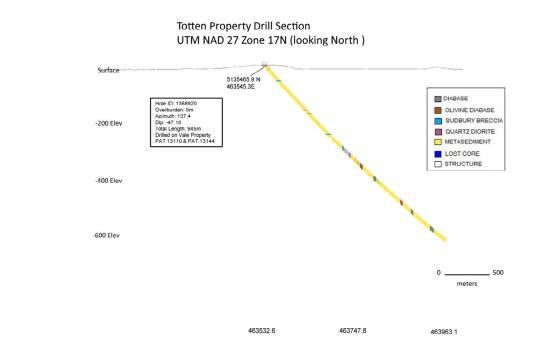


Figure 8: Section Looking North of borehole 1368920.

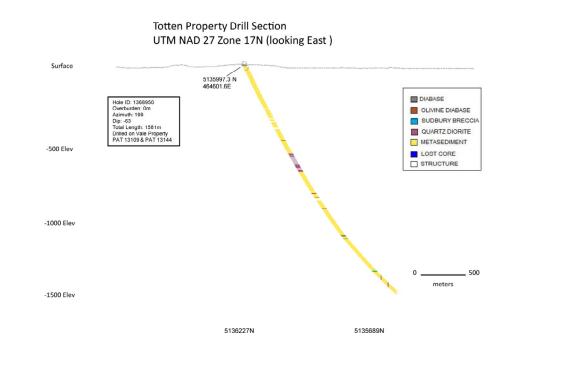


Figure 9: Section Looking East of borehole 1368950.

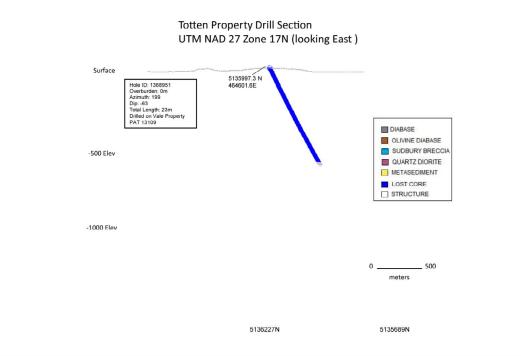


Figure 10: Section Looking East of borehole 1368951.

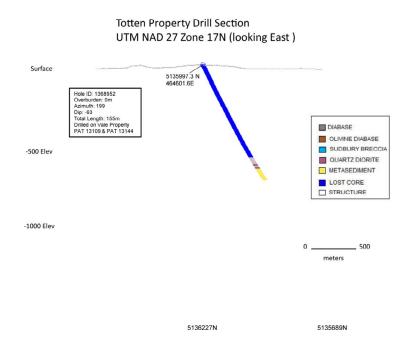


Figure 11: Section Looking East of borehole 1368952.

CONCLUSIONS AND RECOMMENDATIONS

The exploration diamond drill programs successfully intersected Quartz Diorite and the Inclusion Quartz Diorite dyke validating the continuation of the Worthington offset. No significant mineralization was identified during these drill programs. With untested and under explored areas remaining, opportunities continue to exist for potential mineralization within the Worthington Offset. It is recommended that future exploration continues to focus on untested areas to further understand and evaluate the prospective quartz diorite offset of the Sudbury Basin.

REFERENCES

Lloyd, T.R., 2001 Totten Project: Totten Cu-Ni-PGE-Au Project Drury Township, Sudbury District. Internal ITSL Memorandum, issued June 14, 2001.

Certificates of Author Qualifications

I, Kristin Henry of 321 Wembley Drive, Sudbury, Ontario, hereby certify that:

- 1. I am a 2013 graduate of Laurentian University of Sudbury with a Bachelor of Science (4year) degree in Geology.
- 2. I am a professional Geoscientist registered in the province of Ontario with the practising member licence # 3078.
- 3. I have practised in my profession continuously since 2017.
- 4. I am currently employed as a Sr. Geologist, Project with Vale, 337 Power Street, Copper Cliff, Ontario, POM 1NO.
- 5. The work documented in this report was conducted under my direct supervision.
- 6. I am the author of this report.

Kristin Henry December 17, 2021

APPENDIX I LIST OF PERSONNEL

Table 1: 2017 & 2018 Personnel Totten Project

<u>Geology Personnel</u>	Position	<u>Work</u>	<u>Activity</u> Program Planning,
Jason Letto	Area Geologist	2017 – 2018	Compilation & Logging
Tom Raskevicius	Project Geologist	2017	Logging Core
Kristin Henry	Geologist in Training II	2018	Logging Core
Geotechnical Personnel			
David Desbiens	Geological Technologist	2017 – 2018	Field work, borehole monitoring
<u>Geophysics Personnel</u> Krystal Kant	Project Geophysicist	2017 – 2018	Geophysical Support

APPENDIX II LIST OF EXPENDITURES AND DRILL INVOICES

Expenditure Summary for 2017 & 2018

The total amount applied for this assessment report is \$1,389,491.85. Costs applied for assessment are associated with the 2017 & 2018 Drilling Programs. The costs that will be applied for assessment credits correspond to drilling expenditures. Details for this category are provided below.

Period	Program	Drill#	Borehole #	Invoice#	Total (CDN\$)
					sub-total
1-Sep-2017 to 15-Sep-2017	Totten	1545	1368910	SY-002424	\$87,224.41
16-Sep-2017 to 30-Sep-2017	Totten	1545	1368910	SY-002429	\$66,193.94
1-Oct-2017 to 15-Oct-2017	Totten	1545	1368920	SY-002435	\$82,427.69
16-Oct-2017 to 31-Oct-2017	Totten	1545	1368920	SY-002436	\$84,062.45
1-Nov-2017 to 14-Nov-2017	Totten	1545	1368920	SY-002443	\$19,764.36
16-Aug-2017 to 31-Aug-2017	Totten	1544	1368900	SY-002416-A	\$50,212.42
1-Sep-2017 to 15-Sep-2017	Totten	1544	1368900	SY-002423	\$85,889.92
16-Sep-2017 to 30-Sep-2017	Totten	1544	1368900	SY-002428	\$98,557.92
1-Oct-2017 to 15-Oct-2017	Totten	1544	1368900	SY-002434	\$94,072.14
16-Oct-2017 to 31-Oct-2017	Totten	<mark>1544</mark>	1368902	SY-002437	\$91,786.79
16-Oct-2017 to 31-Oct-2017	Totten	1544	1368902	SY-002441	\$7,591.50
1-Nov-2017 to 14-Nov-2017	Totten	1544	1368902	SY-002444	\$50,146.78
15-Nov-2017 to 30-Nov-2017	Totten	1544	1368902	SY-002451	\$11,104.50
				-	\$829,034.82
				_	
Feb-16-2018 to Feb-28-2018	Totten	27	1368950	1802074	\$10,084.00
Mar-1-2018 to Mar-7-2018	Totten	27	1368950	1803089	\$25,508.52
Mar-8-2018 to Mar-15-2018	Totten	27	1368950	1803097	\$42,844.77
Mar-16-2018 to Mar-22-2018	Totten	27	1368950	1803119	\$37,458.89
Mar-23-2018 to Mar-31-2018	Totten	27	1368950	1803127	\$45,907.80
April-1-2018 to April-8-2018	Totten	27	1368950	1804153	\$38,876.20
April-1-2018 to April-8-2018	Totten	27	1368950	1804176	\$7,717.50
April-9-2018 to April-15-2018	Totten	27	1368950	1804167	\$23,266.91
April-16-2018 to April-22-2018	Totten	27	1368950	1804185	\$24,957.80
April-23-2018 to April-30-2018	Totten	27	1368950	1804194	\$50,961.08
May-01-2018 to May-15-2018	Totten	27	1368950	1805217	\$91,616.22
May-16-2018 to May-31-2018	Totten	27	1368951	1805255	\$95,492.26
June-16-2018 to June-30-2018	Totten	27	1368952	1806299	\$2,100.00
June-16-2018 to June-30-2018	Totten	27	1368952	1806303	\$157.50
July-01-2018 to July-15-2018	Totten	27	1368952	1806274	\$63,507.58
					\$560,457.03

Table 2: Drilling Expenditure Summary 2017 & 2018

APPENDIX III GEOLOGICAL BOREHOLE LOGS

BOREHOLE PROPERTY P	ROPERTY LEVEL	DEPTH ACCT # SYS	NORTHING EASTING ELEV SIZE		END DATE FROM	ТО ТҮРЕ	RESOURCE STATUS
1368900 Totten	180	0 1361.24 R000929.0	1 353514 291818 805 HQ	24/08/2017 10:32:41	11/10/2017 10:32:41	EXPLN	Yes Complete

DEPTH	AZIMUTH	DIP
0	144.89	-70.82
9.14	144.794	-70.3397
18.29 27.43	145.1393 145.1049	-70.1056 -69.9377
36.58	145.2656	-69.8594
45.72	145.5574	-69.9004
54.86	145.5531	-69.8336
64.01	145.4942	-69.8896
73.15 82.3	145.8085 145.919	-69.8823 -69.8254
91.44	145.919	-69.7692
100.58	146.1624	-69.7593
109.73	146.133	-69.6976
118.87	146.0132	-69.6292
128.02 137.16	145.9168 145.9212	-69.6662 -69.6215
146.3	145.9212	-69.6687
155.45	145.8307	-69.4942
164.59	145.9551	-69.5465
173.74	145.924	-69.4923
182.88 192.02	146.12 146.3863	-69.3091 -69.2728
201.17	146.3863	-69.2728
210.31	146.4189	-69.2231
219.46	146.6609	-69.1391
228.6	146.7688	-69.2111
237.74	146.5229	-69.1969
246.89 256.03	146.8403 146.7387	-69.1482 -69.3351
265.18	146.6118	-69.2568
274.32	146.6075	-69.2799
283.46	146.7283	-69.3151
292.61	147.0975	-69.0896
301.75 310.9	147.0313 146.9421	-69.0934 -69.1229
320.04	146.921	-69.0508
329.18	146.8725	-68.9721
338.33	146.825	-69.0356
347.47	146.5302	-68.9063
356.62 365.76	146.4864 146.5534	-68.9266 -68.81
374.9	146.2514	-68.5825
384.05	145.8458	-68.5006
393.19	145.8211	-68.3447
402.34	145.8232	-68.2877
411.48 420.62	145.6414 145.404	-68.1881 -68.1016
429.77	145.2566	-68.0894
438.91	145.1825	-68.0718
448.06	145.1628	-68.032
457.2	145.0373	-68.0244 -68.0061
466.34 475.49	145.0903 145.2622	-68.0061
484.63	145.1305	-68.0293
493.78	145.1007	-68.0376
502.92	145.3103	-68.0041
512.06	145.3364	-67.9957
521.21 530.35	145.3773 145.4884	-67.9793 -68.0427
539.5	145.3804	-68.046
548.64	145.4513	-68.0246
557.78	145.4591	-67.9641
566.93	145.6326 145.5713	-68.1019
576.07 585.22	145.5713 145.7895	-68.0241 -68.0832
594.36	146.0002	-68.0443
603.5	146.0909	-67.8744
612.65	146.1918	-67.684
621.79	146.5553	-67.6643
630.94 640.08	146.908 147.479	-67.6145 -67.4483
5-0.00	147.475	57. 4 705

649.22	147.2551	-67.4566
658.37	147.7209	-67.2586
667.51	147.956	-67.1043
676.66	148.2624	-67.0776
685.8	148.4141	-67.0703
694.94	148.5292	-67.0023
704.09	148.9116	-67.0317
713.23	149.2362	-67.0608
722.38	149.4042	-67.0907
731.52	149.762	-67.1049
740.66	149.9323	-67.1382
749.81	150.141	-67.1761
758.95	150.5417	-67.1049
768.1	150.574	-67.2192
777.24	150.7462	-67.219
	150.9188	-67.2308
786.38		
795.53	151.215	-67.3069
804.67	151.4295	-67.3634
813.82	151.8444	-67.4014
822.96	152.1124	-67.4674
832.1	152.3972	-67.6988
841.25	152.4452	-67.8522
850.39	150.2534	-67.8378
859.54	150.2354	-68.1216
868.68	148.5758	-68.5566
877.82	148.514	-68.8343
886.97	149.0078	-68.7161
896.11	149.9254	-68.6987
905.26	150.5556	-68.3706
914.4	151.0855	-67.6744
923.54	150.3543	-66.4255
932.69	150.2855	-65.8786
941.83	150.5754	-65.7023
950.98	152.3778	-65.773
960.12	153.068	-66.0216
969.26	152.0815	-64.1148
978.41	152.1665	-63.1988
987.55	152.5792	-62.4303
996.7	152.7959	-62.4481
1005.84	153.3501	-62.5851
1014.98	153.408	-62.6119
1014.98		
	153.3302	-62.8931
1033.27	152.9467	-62.9342
1042.42	153.0879	-62.1008
1051.56	152.4174	-60.8863
1060.7	152.3506	-60.5425
1069.85	152.81	-59.8729
1078.99	153.7052	-58.4117
1088.14	153.5315	-56.9008
	153.7005	-57.1308
1097.28		-56.9976
1106.42	154.4958	
1115.57	155.2457	-56.6606
1124.71	156.0442	-56.3079
1133.86	156.5675	-56.0841
1143	157.1052	-55.5092
1152.14	157.8503	-54.8644
1161.29	158.5113	-54.4739
1170.43	159.1695	-53.9925
1179.58	159.927	-53.583
1188.72	160.4124	-52.6442
1197.86	160.508	-52.0686
1207.01	160.7146	-52.1486
1216.15	160.8942	-52.1307
1225.3	161.2857	-51.9436
1234.44	161.6413	-51.4651
1243.58	161.9472	-51.3356
1252.73	162.2281	-51.3117
1252.75	-02.2201	
1201.0/	162 5207	-51 1220
	162.5287	-51.1229
1271.02	162.7939	-51.1457
1271.02 1280.16	162.7939 163.0344	-51.1457 -51.2315
1271.02	162.7939 163.0344 163.405	-51.1457
1271.02 1280.16	162.7939 163.0344	-51.1457 -51.2315

1307.59	163.8867	-50.7869
1316.74	164.2172	-50.6489
1325.88	161.9616	-49.3939
1335.02	161.8952	-47.8969
1341.12	164.2	-50.2

ME	TERS	SAMPLE	INFO			PERCENT			GRAMS/TONNE						
DEPTH	LENGTH	SAMPLE	CODE	EST	CU	NI	CO	AS	ТРМ	RQD	ORE	MINOR ROCK	ROCK	MILLSTOR	DESCRIPT
0	0														Colla
															Casing. About 1ft of b
															blocky core/boulders
5.39	5.39									0			CASE		Qtzt and possibly insi
															Quartzite, massive, hi
															QTZT. Weak fabric pro
															consistent throughou
															60-80deg tca. Does no
															this fabric plane. Colo
															very silicious. Occasio
															of SUBX or small brec
															of core with a fg silice
															significant sulphides a
															occasional pyrite alon
															planes. Overall this ur
															massive and hmgs wit
71.87	66.48									90			QTZT		change.
															QTZT as described ab
															there is veins of SUBX
															the interval in a chaot
															preferred orientation
															fg, dark grey and host
															inclusions of qtzt. No
															associated with the S
73.3	1.43									90		QTZT	SUBX		QTZT.
															Quartzite, as describe
															massive, hmgs, comp
															Weak fabric present k
															consistent throughou
															60-80deg tca. Does no
															this fabric plane. Colo
															drk grey and very silic significant sulphides a
															occasional pyrite alon
															planes. Overall this ur
															massive and hmgs wi
87.08	13.78									90			QTZT		change.
															SUBX similar to what
															above. The QTZT inte
															with a fg matrix that a
															swirly fabric that host
															qtzt inclusions. Matrix
87.75	0.67									90		QTZT	SUBX		and appears to be sim mass. No sulphids pre
07.75	0.07									50		Q121	JOBY		mass. No sulpinus pre

RIPTION

ollar of broken and ers. Boulders are nsitu.

e, hmgs, competent c present but not nout. Varies from s not fracture along Color is drk grey and asional small whisps precciated sections iliceous matrix. No es although along fracture s unit if very s with very little

above except JBX that cross cuts aotic nonion. The matrix is tost abundant local No sulphides e SUBX or the

ribed above with mpetent QTZT. nt but not nout. Varies from s not fracture along color is drk to med silicious. No es although along fracture s unit if very s with very little

hat was described nterval is chaotic at appears as a host abundant local atrix is not black similar to the QTZT present.

180.56	92.81	90		QTZT	Quartzite, massive, hn QTZT. Weak fabric pre consistent throughout 50-70deg tca. Does no this fabric plane. Color very silicious. No signif although occasional py fracture planes. Overa very massive and hmg change and is the sam as above. Qtzt as described abov interval is brecciated v gry matrix, believed to local inclusions of QTZ sulphides. It is possible contact or transition fr
190.5	9.94	90	QTZT	SUBX	MTSD that is defined a grey and becomes mo sandstone or slts as se down the hole.
					The quartzite describe appears to have transi changed at the breccia above (possibly SUBX) contains less qtz but is massive, hmgs, compe darker in color and see sandstone or laminate MTSD. A fabric is prese from 15-30deg tca. Oc subpll tca. No significa although occasional py
246.86	56.36	90		MTSD	fracture planes or alor SUBX cross cutting the described above. Fg di that has ripped apart I of the MTSD. Appears
248.23	1.37	90	MTSD	SUBX	sulphides. This interval is the san MTSD unit that was de between 625.0-809.9f above appears to have
251.58	3.35	90		MTSD	MTSD sequence.

e, hmgs, competent present but not nout. Varies from s not fracture along color is drk grey and ignificant sulphides al pyrite along verall this unit if mgs with very little same continuation

above except the ed with a fg gry-drk d to be SUBX. Small QTZT within. No sible this is the on from a qtzt to a ed as less qtz, drker more of a fg is seen farther

ibed above insitioned or cciated interval BX) into a unit that t is still fg, npetent. It is seems to be a ated siltstone resent ranging Occasionally ficant sulphides l pyrite along long laminations. the MTSD interval g drker gry matrix rt localized blocks ars to be SUBX, no

same unit as the as described above 9.9ft. The subx have cross cut this

						storilite??. Hmgs entire interval. S alteration throug this unit/interval MTSD. It appears change from MT massive QTZT as of the hole. Tr di
252.86	1.28		90	LAMP	MTSD	throughout this QTZT, very silicio with abundant q very massive, hn throughout. The occurring at 40-5 throughout. No s Minor Fractures
286.18	33.31		90		QTZT	occurs at 50Deg MTSD exactly as 825.4-829.6ft. It contacts upper a lower at 30deg to sulphides. Simila It is believed to b MTSD. The conta chilled, and some inclusions of the contains predom black lathy mine radiating orienta surface it is flake Possibly a stauro
288.1	1.92		90	LAMP	MTSD	recrystallized. QTZT, very silicio with abundant q very massive, hn throughout. The occurring at 40-5
304.8	16.7		90		QTZT	throughout. No s

MTSD unit that is uniquely different from above and below. It has sharp upper and lower contacts both at 50deg tca. The composition consist of lathy needle like minerals, possibly Hmgs throughout this erval. Some chloritic h throughout. Believed that interval is a cooked up appears to define a lithology om MTSD above, back to QTZT as described at the top le. Tr diss pyt sulphides ut this interval. v silicious and sugary txt ndant qtz. The interval is sive, hmgs and continuous ut. There is a weak fabric at 40-50deg tca ut. No sulphides present. actures present. Lower CT 50Deg tca. actly as described between .6ft. It has very sharp upper at 50Deg tca and 30deg tca. Non Magnetic, no Similar color to the MTSDs. ved to be a cooked up e contacts are slightly nd some evidence of s of the host Qtzt. This unit predominantly of a needly / mineral that occurs in a orientation. On a fresh is flakey like biotite. a staurolite mineral

> ry silicious and sugary txt ndant qtz. The interval is sive, hmgs and continuous ut. There is a weak fabric at 40-50deg tca ut. No sulphides present.

0 STRT FLT 3.44 308.24 312.21 3.96 90 QTZT 0.37 30 QTZT STRT 312.57 364.48 51.91 90 QTZT 365.94 1.46 90 SUBX 90 QTZT 401.12 35.17 0 402 0.88 QTZT FLT

FLT. Large significant fault with gouge. Obvious movement with slicken slides and fault gouge. Qtz vns that are vuggy with qtz crystals. Qtz has abundant inclusions of qtzt within from the flt movement. The upper Ct is 30deg tca and the lower ct is 30-40deg tca, but may represent the weak qtzt fabric. The Flt it self appears to be subpll tca at about 5-10deg through the length of this interval.. No significant sulphides present just some minor pyt. QTZT, very silicious and sugary txt with abundant qtz. The interval is very massive, hmgs and continuous throughout. There is a weak fabric occurring at 40-50deg tca throughout. No sulphides present.

QTZT as described above but there is a small structure or plane that has some movement that is likely related to the larger FLT above. Small qtz vns throughout, and a fracture plane of 40Deg tca. No sulphides. QTZT, very silicious and sugary txt with abundant qtz. The interval is very massive, hmgs and continuous throughout. There is a weak fabric occurring at 40-50deg tca throughout. No sulphides present. SUBX band that cross suts the Qtzt. No sulphides. The fg drk gry matrix host inclusions of the local Qtzt. The

fabric of the SUBX is chaotic and

swirly.

QTZT, very silicious and sugary txt with abundant qtz. The interval is very massive, hmgs and continuous throughout. There is a weak fabric occurring at 40-50deg tca throughout. No sulphides present.

Small flt within the Qtzt. Approaching a larger lower flt below. There is evidence of movement with slicken slides at this flt. Located at 1318.5ft is minor gouge. Broken and blocky pieces throughout. No sulphides.

					into a darker grey is about 50/50 QTZ upper portion app QTZT and more sili at 40-50deg tca, th grey MTSD which I subpll tca (5-20deg often appears as si
414.38	12.37	70	QTZT	MTSD	blocks/intervals as blocks/intervals as Large significant flu a strong flt plane a filled with gouge, o This flt occurs at al This interval shows has created voids t infilled with perfec Majority of this flt been rehealed with
417.09	2.71	0	STRT	FLT	sulphides. MTSD unit from ak grey fg MTSD. The moderate fabric ar occur subpll tca. N in core but many fi break along the fal
442.75	25.66	80		MTSD	axis. No sulphides QTZT as seen abov siliceous and sugar abundant qtz. Lt gr interval is very ma continuous throug weak fabric occurr
458.18	15.42	90		QTZT	throughout. No su DIA, Fg Black magr Contacts are chille sharp at 20deg tca sharp at 30deg tca hmgs throughout s but overall compet
461.83	3.66	70		DIA	fracture planes.

QTZT unit appears to be transitioning into a darker grey MTSD. This interval QTZT/MTSD. The ppears to be mostly siliceous with a fabric , than the low drker ch has a fabric plan deg tca). The QTZT s small s as it transitions. t flt. At 1359.5 there is ne about 2inches wide e, qtz and qtz-carb. about 30deg tca. ows broken core that ds that has been rfect qtz crystal. flt and fractures have with QTZ and shows a of the host MTSD. No

> n above continues. Drk The MTSDs have a c and laminations that n. Not strongly obvious by fracture planes e fabric along the core les present.

> bove in the hole. very gary txt with t grey in colour. The massive, hmgs and bughout. There is a curring at 40-50deg tca sulphides present.

> agnetic diabase dyke. illed and upper ct is tca and lower ct is tca. Very massive and ut some broken blocks upetent. No significant

471.43	9.6		80		MTSD	MTSD and possibly sor Difficult to tell but see back and forth. The QT more felsic and siliceou MTSDs are typically slig grey. Both are massive hmgs. DIA, fg, blk, magnetic, sharp chill contacts boo lower at 20deg tca. Fg
472.47	1.04		30		DIA	broken and blocky core faults. No sulphides pr
492.16	19.69		80	QTZT	MTSD	MTSD and QTZT. Seem back and forth. The QT more felsic and siliceou MTSDs are typically slig grey. Both are massive hmgs. It seems that the MTSD is more likely to DIA dykes contacts. Po occupying the weaker altering the QTZ to a d sulphides present. DIA, fg, blk, magnetic, sharp chill contacts, up 20Deg and lower at 25 aphanitic with some bu
						subpli frac along core a increase fractures. No
496.28	4.11		40		DIA	present. MTSD with minor local QTZT near the top half Dominantly a fg drk gr relatively competent a QTZT is usually more fe siliceous while the MTS typically slightly darker
558.15	61.87 26.4		75		MTSD	sulphides present. Large fg black aphaniti Sharp chill contacts. Up tca and lower at 30deg of this interval is slight in color and coarsens a mg DIA. Interval is stro and no sulphides. No s structures in this DIA. S at the top ct and some of the interval but not

y some QTZT. seems to transition e QTZT is usually iceous while the ly slightly darker ssive in txt and

etic, dia dyke with s both upper and h. Fg aphanitic with core but no major es present.

eems to transition e QTZT is usually iceous while the y slightly darker ssive in txt and at the fg drker grey ly to occur near the s. Possibly the dia aker MTSDs, or o a drk MTSD. No

etic, dia dyke with s, upper CT at at 25deg tca. Fg ne broken and major faults. 1 ore axis causing No sulphides

localized areas of half of this interval. k gry MTSD, ent and hmgs. The ore felsic and MTSDs are arker grey. No

anitic DIA dyke. s. Upper at 25deg Odeg tca. The core lightly lighter grey ens a little to a fgstrongly magnetic No significant DIA. Some fractures ome in the middle nothing significant.

					between the 2 u but the unit doe more siliceous a overprinting fab
606.8	22.25	90	MTSD	QTZT	tca. No sulphide Small structure of tca. Slicken slide plane. The plane brecciated QTZT carb. No sulphid and qtz-carb. NC IS THE END OF T REDUCED TO NC
607.13	0.34	20	QTZT	STRT	DIRECTIONAL DF QTZT with a mod tca. The unit doe areas of a slightl with weak lamin but this interval Uniform through slight change fro weak fabric. No
652.76	45.63	80		QTZT	Competent, no s DIA, blk-dark gry CTs. Fg throughd occur at 15Deg t
656.51	3.75	40		DIA	30deg at the low QTZT with a wea tca. The unit doe areas of a slight with weak lamin but this interval Uniform through present. Compet
670.99	14.48	80		QTZT	structures. STRT within the fracture planes v occurring at 20-3 and Qtz-Carb bre core axis. No sul Moderate move
673.39	2.41	30	QTZT	STRT	Major Flt.

QTZT with some MTSD at the upper CT near the DIA. Distinguishing between the 2 units can be difficult, loes appear to be slightly and qtz rich. Weak fabric occurring at 40deg ides present. re occurring at 30deg ides along a fracture ane consist of local FZT with qtz and qtzhides. Rehealed with qtz NOTE THAT AT 1991.9ft F THE HQ DRILLING. NQ TO BEGIN DRILLING.

> noderate fabric at 30deg does have localized shtly drker gry MTSD minations in some areas, val is mostly QTZT. ughout, with only a from no fabric to a No sulphides present. no significant structures. gry with sharp chilled ghout. The contacts eg tca at the upper and lower. No sulphides.

veak fabric at 30-40deg does have localized shtly drker gry MTSD ninations in some areas, val is dominantly QTZT. ughout. No sulphides petent, no significant

he QTZT. Several es with movement 20-30deg tca. Also Qtz brecciating along the sulphides present. ovement expected, no a

				QTZT with a weak fabr
				tca and often no fabrio
				an more massive hmg
				sandstone. The unit do
				localized areas of a slig
				MTSD with weak lamin
				areas, but this interval
				QTZT. Uniform throug
724.24	FO 04	0F	0777	sulphides present. Cor
724.24	50.84	85	QTZT	significant structures.
				DIA, blk-dark gry with
				CTs. Fg throughout. Th
				occur at 10-20Deg tca
725.52	1.28	80	DIA	and 20deg at the lowe
				QTZT with a weak fabr
				tca and often no fabric
				an more massive hmg
				sandstone. The unit do
				localized areas of a slig
				MTSD with occasional
				laminations in some a
				interval is dominantly
				throughout. No sulphi
				Competent, no signific
704 50	<i>c</i>	65	0.777	structuresLOGGING
731.52	6	85	QTZT	BX260 AT 782m.
				CORE NOT FOUND IN
705.00	F 4 4 4	0		SHOULD TURN UP THO
785.96	54.44	0	LC	LOGGING @ BOX 280
				MG to FG grey to blus bedding fabric thrt at 2
				tca, local area near 26
				with low-angle rough j
				Chlorite-Muscovite an
				vnlts. rare spks of sulp
				surfaces. local areas of
				laminations typically ~
				typically more prevale
837.71	51.76	96	QTZT	of interval.
037.71	51.70	50	QIZI	of interval.
				FG to MG, grey to darl
				consistant bedding fat
				30 deg tca, Abundant
				to bedding fabric. bed
				laminated with beds ra
				~2mm to 10cm. thin b
				<1cm are chlorite rich.
865.97	28.25	78	MTSD	beds are more Qz-rich

fabric at 30-40deg abric present at all amgs like a it does have a slightly drker gry aminations in some erval is dominantly oughout. No Competent, no res.

vith sharp chilled t. The contacts tca at the upper ower. No sulphides.

fabric at 20-30deg abric present at all ings like a it does have a slightly drker gry onal weak he areas, but this ntly QTZT. Uniform Iphides present. nificant ING CONTINUE AT

D IN YARD. IT THO. STARTED 280 blush, weak t at 25 to 35 deg r 2626' to 2638' ugh jts thin 1-5mm e anastomosing sulphide along Jt as of fine Ily ~0.5cm thick valent near bottom

dark grey, g fabric thrt at 25 to ant smth jts parallel bedding is strongly ds ranging from in beds typically rich. Thicker (>1cm) rich.

882	16.03	80		MTSD	MG to FG, grey to b bedding fabric thrt beds range from <1 smth jts thrt along rare Qz-Po vns thrt cm.
907.82	25.82	80	QTZT	MTSD	FG to MG gry to blu bedding thrt, local <0.5cm thick to the >10cm beds. Local facing up hole. Bed typically at 20 to 30 5' of interval shows associated with fau FG to MG, Fine lam typically >1cm. Bro
912.54	4.72	5	MTSD	FLT	preferentially broke planes. Upper part abundant muddy g layers of gouge are surfaces. FG, blue to grey, fir (typically <1cm). an thrt. bedding fabric 45 deg tca, smth jts
940.31	27.77	95		MTSD	deg tca. local Qz-wl alteration and vein
965.55	25.24	90		MTSD	FG, blue to grey, fir thrt typically >1cm. vnlts that X-cut bec along bedding fabri typically at 35 to 45
976.09	10.55	35	MTSD	QTZT	FG to MG, grey to b laminated, and app the thicker, more C Bedding typically at Abundant smth and at 10 to 40 deg tca blocky and JT surfa with smth chlorite.
987	10.91	90		QTZT	MG to CG, thickly b 10 cm with sandy, (thin and irregular 1 occ smth jts thrt at coated in carbonate

to bluish, consistent hrt at 20 30 deg tca, n <1cm to >10cm. occ ng bedding planes. hrt from 1cm to 10

bluish, thin to thick cal fine laminations the occasional sandy cal gradded bedding bedding fabric o 30 deg tca. Bottom ows abundant jointing fault below. aminated beds thrt Broken core thrt oken along bedding art of interval has y gouge. and fine are found along Jt

fine laminated and mud-rich beds pric is typically 40 to jts thrt, at 30 to 50 -white mica and Po einlts thrt.

fine laminated beds cm. occ thin <1mm Qz bedding. SMth jts thrt abric. bedding 0 45 deg tca.

to bluish, locally finely apparently massive in e Qz-rich layers. y at 30 to 40 deg tca. and stepped jts thrt icca locally core is rfaces are coated te.

y bedded from 2 to y, Qz-rich beds. occ ir 1-2mm Qz-vnlt thrt. at 15 to 25 deg tca nate and chlorite.

995.48	8.47	85		MTSD	FG to MG, grey to blu laminated, and appa the thicker, more Qz Bedding typically at 2 Common and shallow 25 deg tca often coat chlorite.
					FG to MG, grey to blu laminated, and appa the thicker, more Qz Bedding typically at 3 Abundant smth and 5 to 30 deg tca often glossy-chlorite. locall
999.87	4.39	55		MTSD	mechanically ground FG to MG, grey to blu laminated beds thrt thick. Bedding foliati deg tca. Locally close creating blocky core.
1031.23	31.36	75		MTSD	parallel to bedding. FG to MG, grey to blo broken and blocky co looks drilling-induced low angle structure r
1032.21	0.98	0	MTSD	STRT	the interval. FG to MG, grey to blu with muddy beds typ thick. Smth and shall
1038	5.79	80		MTSD	typically along beddi Ground 7.5' for wedg
1040.28	2.29	0		WDG	center. FG to MG, grey to blu beds thrt. from mude <1cm to more Qz-ric layers typically >3cm stepped and very sha
1050.01	9.72	75		MTSD	typically along beddi ground 6.2' for wedg
1051.9	1.89	0		WDG	center FG to MG, grey to blu bedded with mud-ric <1cm thick. Smth and often along bedding shallow and oblique
1055.98	4.08	60		MTSD	core axis.

bluish, locally finely oparently massive in Qz-rich layers. at 25 to 35 deg tca, llow jts thrt at 10 to coated with smth

bluish, locally finely oparently massive in Qz-rich layers. at 35 to 45 deg tca. Ind shallow jts from ten coated with cally core looks and and blocky. bluish, finely ort typically <1cm iation at 30 to 40 osely spaced jts ore. smth jts typically g. bluish, completely

y core, broken core iced. from a thin and re near the top of

bluish, thin bedded typically <1cm hallow jts thrt dding. edge. button is off

bluish, thin to thick uddy layers typically rich and sandy cm. smth and shallow jts thrt dding. edge. button off

bluish, thinly -rich beds typically and shallow jts thrt ng surface or at ue angles to the 1062.01 6.04 60 MTSD 1063.33 0 WDG 1.31 center. 1086 22.68 85 QTZT MTSD oblique to bedding. 1087.34 1.34 0 WDG center. 85 QTZT MTSD and Po. 1099.57 12.22 1116.79 17.22 45 MTSD blocky, broken, core. 55 1131.45 14.66 MTSD intervals of blocky core. 10.12 75 1141.57 MTSD tca.

FG to MG, grey to bluish, thinly bedded thrt with mud-rich beds typically <1cm. Bedding typically at 20 to 30 deg tca, Abundant Smth jts thrt at shallow angles often along bedding. Jts often X-eachother creating local intervals of blocky core. Ground core for wedge. button is off

FG to MG, grey to bluish, thin to thick beds consisting of fine, mud-rich laminations <1cm. to thicker (>10cm) sandy and more Qz-rich beds. Smth jts thrt typically along the bedding fabric. And also at shallower angles Ground core for wedge. button is off

FG to MG, grey to bluish, thin to thick beds consisting of fine, mud-rich laminations <1cm. to thicker (>10cm) sandy and more Qz-rich beds. Smth its thrt typically along the bedding fabric. And also at shallower angles oblique to bedding. Rare, veinlt of Qz

FG to MG, grey to bluish, thin to thick beds of fine muddy laminations typically <1cm. to thicker beds >10cm. Abundant smth jts thrt at shallow oblique angles TCA. often Xing eachother creating intervals of

FG to MG, grey to bluish, thin to thick bedded with mud-rich beds ranging from <1cm to >5cm. Bedding is 15 to 25 deg tca, Common smth jts thrt at high angles TCA typically 10 to 20 deg tca. often jts X-eachother creating FG to MG, grey to bluish, thin to thick bedded with mud-rich beds ranging from <1cm to >5cm. Bedding is 15 to 25 deg tca, Common smth jts thrt at

high angles TCA typically 10 to 20 deg

					MG to FG, grey to b Qz0rich beds thrt at smth jts thrt at 30 to upper 2' and lower 2 like mechanically br
1146.05	4.48	60		QTZT	core. MG to CG, grey to b bedded with Qz-rich rare thin (<1cm) mu
1157.66	11.61	85		QTZT	jts thrt typically at 3 But also rarely at 10 MG to CG, grey to b bedding fabric thrt. sandy and Qz-rich. s
1199.72	42.06	85		QTZT	to 60 deg tca. rare t with Trace po thrt. FG, dark grey, upper mechanically broker upper half of interva glassy. lower half is
1202.62	2.9	85		OLDI	sugary. rare thin (~1 Chill margine of OLE MG, dark grey, apilit smth and rough tjs t to 60 deg tca. Rough
1219.38	16.76	85		OLDI	Chlorite coated. uni magnetic. FG, dark grey, aphar
1222.1	2.71	85		OLDI	thrt. occ smth jt thrt tca. Chill margin of C FG, dark grey, comp broken core. Some I pieces are broken, s looks like the contac
1223.1	1.01	0	MTSD	OLDI	broken.
1224.35	1.25	90		MTSD	FG grey to dark grey apparently massive. be rextlized. and is o from OLDI in that it
					MG to FG, grey to b fabric thrt with typic and sandy beds. sm 40 deg tca. Occasior varous angles creati
1248.92	24.57	65		QTZT	blocky core thrt. occ vnlts thrt.

o bluish, sandy, at 30 to 40 deg tca. 0 to 40 deg tca. er 1' of interval looks broken and ground

bluish, thickly ich and sandy beds. nud-rich beds. smth t 30 to 40 deg tca. 10 to 15 deg tca. bluish weak rt. beds are typically n. smth jts thrt at 30 e thin (<1cm) Qz vns t. per 8 inches is ken and blocky. rval is aphanitic and is apilitic and (~1mm) Qz-vnlt thrt.)LDI pilitic to phaneritic. is trht mostly at 45 ugh jts are typically unit is strongly

hanitic and glassy thrt at 45 to 60 deg of OLDI mpletely blocky and ne broken core n, some are not. htact of OLDI is

rey, none magnetic, ve. Unit appears to is distinguishable t it is non-magnetic.

o blue. weak bedding ypically thick, Qz-rich smth jts thrt at 30 to sional rough jts at eating local areas of occ thin 1-2mm Qz

MG to FG, grey to bluish, bedding fabric ranges from weak to strong. Thick, sandy, Qz-rich beds with local thin, mud-rich beds thrt show thin laminations. occ small Chl-vnlts show offsetting and x-cutting of beds. rare thin 1-2mm Qz vnlts thrt. Locally, QTZT looks sugary in appearance and 1284.73 35.81 85 MTSD QTZT may be rexrystalized. MG to FG, grey to bluish, thin to think beds thrt, thinner beds (typically less than 1cm) are more mud-rich, while thinker beds are sandy and more Qzrich. smth jts thrt 30 to 45 deg tca, often Jt surfaces are coated in Carbonate minerals. occ rough jt thrt with no dominant orientation. rare 85 1308.2 23.47 MTSD thin 1-5mm Qz- vnlt thrt. FG to MG, grey to bluish, bedding fabric at 20 to 30 deg tca and is typically laminated thrt. smth jts thrt at shallow angles often X-ing bedding. 1322.68 80 MTSD rar thin Qz-vnlts thrt 14.48 FG to MG grey to bluish, weak bedding fabric at 20 to 30 deg tca thrt, Often MTSD looks sugary and rextlized. Abundant smth jts thrt at shallow angles (15 to 30 deg tca), often Xing rougher jts creating local 55 1334.99 12.31 MTSD blocky core. FG to MG, grey to bluish, thin bedding fabric thrt @ 25 to 30 deg tca, smth jts roughly parallel to bedding. Mineral grains are sugary in appearance and may be rextlized. 1336.55 1.55 MX247020 2 0.1 0.01 0.01 0 0 0 90 NVS MTSD NVS. FG to MG, grey to bluish, thin bedding fabric thrt @ 25 to 30 deg tca, smth jts thrt at 25 to 50 deg tca often oblique to bedding, Mineral grains are sugary in appearance and MTSD 1338.01 MX247021 2 0.1 0.01 0.01 0 0 85 NVS may be rextlized. NVS. 1.46 0

MG to FG, grey to bluish, weak bedding fabric thrt at 30 to 40 deg tca, Smth jts thrt, often coated in Qz-Cb material, rare thin 2-3mm Qz Cb vnlt thrt, mechanically broken and blocky core thrt, Mineral grains are sugary in appearance and may be rextlized. NVS. MG to FG dark grey to bluish, unit is strongly rextlized and has a lot of porphyroblastic Bt. appears to be a brecciated contact with Bt-rich clasts of MTSD in fine grained QD. Smth and ough jts thrt at 40 to 80 deg tca. Common thin 2-4mm Qz Cb vnlts thrt. NVS

FG, bluish, apilitic, well formed amphiboles thrt, interstitial plag. smth and rough jts thrt, occ. coated with slicken lines @ 20 to 30 deg tca. occ 0.5 to 2cm Qz vnlt thrt. NVS. CG to MG grey to bluish, spherulitic /dendritic amph thrt. amphibole xtls can be up to 1.5 cm. interstitial plag. rough and smth jts thrt, thin (1-2mm) Cb vnlts thrt. NVS CG to MG grey to bluish, spherulitic /dendritic amph thrt. amphibole xtls can be up to 1 cm. interstitial plag. Rare thin Qz-Cb vnlt thrt. smth jts thrt at 20 to 80 deg tca, locally jts xeachother and create blocky core. One ~5cm Qz-sulphide vn with trace Po and Cp.

MG, grey to bluish. needle-like Amph thrt up to 0.5 cm. interstitial plag. rare rough jts thrt often along 1-2mm Qz-Cb vnlts. rare inclusions thrt, NVS MG, bluish, aphanitic, abundant angular inclusions thrt, rare thin 1-2mm Qz-Cb vnlt thrt. smth and rough jts thrt at 40 to 60 deg tca. rare speck of Po. CG to MG spherulitic amph xtls thrt up to 2cm long, interstitial plag thrt. thin 1-3mm Qz Cb vnlts thrt. May be an inclusion od QD in IQD.

1339.38	1.37	MX247022	2	0.1	0.01	0	0	0	0	60	NVS		MTSD	
1340.54	1.16	MX247023	2	0.1	0.01	0.01	0	0	0	70	NVS	MTSD	QD	
1342.03	1.49	MX247024	2	0.1	0	0.01	0	0	0	85	NVS		QD	
1343.56	1.52	MX247025	2	0.1	0.01	0	0	0	0	85	NVS		QD	
1345.08	1.52	MX247026	2	0.5	0.01	0.01	0	0	0	65	TR		QD	
1346.33	1.25	MX247027	2	0.1	0.01	0	0	0	0	90	NVS		IQD	
1348.68	2.35	MX247028	2	0.5	0.03	0.03	0	0.001	0.1	80	SPKS		IQD	
1349.72	1.04	MX247029	2	0.1	0.01	0.01	0	0	0.03	85	NVS		QD	

MG, bluish, aphanitic, abundant angular inclusions thrt, rare thin 1-2mm Qz-Cb vnlt thrt. smth and rough jts thrt at 30 to 60 deg tca. rare speck of Po.

MG, bluish, aphanitic, abundant angular inclusions thrt, rare thin 1-2mm Qz-Cb vnlt thrt. smth and rough jts thrt at 30 to 60 deg tca. specks of Po thrt.

MG bluish grey, apilitic, abundant jts thrt and blocky core, Jt surfaces often coated with chlorite and carbonate material. small structure along contact with OLDI. ***LAST BOX LOGGED #478*** FG, dark grey, aphanitic to apilitic, first 1.5 feet are blocky, faulted, and chilled, Broken surfaces are coated in Cb material. lower part of interval is apilitic, and sugary. NVS. FG, dark grey, apilitic, strongly magnetic, completely blocky and broken core all broken chunks have waxy Chl coatings and slickenlines. FG, dark grey, apilitic, strongly magnetic, completely blocky and broken core all broken chunks have waxy Chl coatings and slickenlines. FG, grey to greenish blue, apilitic w/ occ angular clast thrt, greenish colour looks to be imparted by a weak Chl altn, trace spks of Po and Cp. ***LAST BOX. ENDED IN FAULT. BOX #481 @ 4465.2ft** FG, grey to greenish blue, apilitic w/ occ angular clast thrt, greenish colour looks to be imparted by a weak Chl altn, trace spks of Po and Cp. ***LAST BOX. ENDED IN FAULT. BOX #481 @ 4465.2ft**

1351.24	1.52	MX247030	2	0.6	0.03	0.02	0	0.001	0.07	85	SPKS		IQD
1352.7	1.46	MX247031	2	1	0.03	0.02	0	0.001	0.1	85	SPKS		IQD
1353.34	0.64	MX247033	2	0.1	0.04	0.03	0.01	0.001	0.14	35	TR	STRT	QD
1356.33	2.99	MX247034	2	0	0	0	0	0	0	80	NVS		OLDI
1358.46	2.13	MX247035	2	0.1	0.01	0.01	0	0	0.03	0	TR	OLDI	FLT
1360.51	2.04	MX247036	2	0.1	0.01	0	0.01	0	0	0	TR	OLDI	FLT
1360.99	0.49	MX247037	2	0.4	0.01	0.01	0	0	0	30	TR	ALTN	IQD
1361.24	0.24									30			IQD

BOREHOLE PROPERTY PR	OPERTY LEVEL	DE	EPTH ACCT #	SYS	N	ORTHING I	EASTING	ELEV	SIZE	START DATE	END DATE	FROM	то
1368901 Totten	180	0	1361.85 R000929.0		1	353514	291818	3	805 NQ	12/10/2017 12:46:1	1 15/10/2017 12:4	6:11	

TYPERESOURCE STATUSEXPLNYesComplete

DEPTH	AZIMUTH	DIP
0	144.9	-70.8
9.14	144.8	-70.3
18.29	145.1	-70.1
27.43	145.1	-69.9
36.58	145.3	-69.9
45.72	145.6	-69.9
54.86	145.6	-69.8
64.01	145.5	-69.9
73.15	145.8	-69.9
82.3	145.9	-69.8
91.44	146	-69.8
100.58	146.2	-69.8
109.73	146.1	-69.7
118.87	146	-69.6
128.02	145.9	-69.7
137.16	145.9	-69.6
146.3	146.1	-69.7
155.45	145.8	-69.5
164.59	146	-69.5
173.74	145.9	-69.5
182.88	146.1	-69.3
192.02	146.4	-69.3
201.17	146.2	-69.2
210.31	146.4	-69.2
219.46	146.7	-69.1
228.6	146.8	-69.2
237.74	146.5	-69.2
246.89	146.8	-69.1
256.03	146.7	-69.3
265.18	146.6	-69.3
274.32	146.6	-69.3
283.46	146.7	-69.3
292.61	147.1	-69.1
301.75	147	-69.1
310.9	146.9	-69.1
320.04	146.9	-69.1
329.18	146.9	-69
338.33	146.8	-69
347.47	146.5	-68.9
356.62	146.5	-68.9
365.76	146.6	-68.8
374.9	146.3	-68.6
384.05	145.8	-68.5
393.19	145.8	-68.3
402.34	145.8	-68.3
411.48	145.6	-68.2

420.62	145.4	-68.1
429.77	145.3	-68.1
438.91	145.2	-68.1
448.06	145.2	-68
457.2	145	-68
466.34	145.1	-68
475.49	145.3	-68.1
484.63	145.1	-68
493.78	145.1	-68
495.78 502.92		
	145.3	-68
512.06	145.3	-68
521.21	145.4	-68
530.35	145.5	-68
539.5	145.4	-68
548.64	145.5	-68
557.78	145.5	-68
566.93	145.6	-68.1
576.07	145.6	-68
585.22	145.8	-68.1
594.36	146	-68
603.5	146.1	-67.9
612.65	146.2	-67.7
621.79	146.6	-67.7
630.94	146.9	-67.6
640.08	147.5	-67.4
649.22	147.3	-67.5
658.37	147.3	-67.3
667.51	148	-67.1
676.66	148.3	-67.1
685.8	148.4	-67.1
694.94	148.5	-67
704.09	148.9	-67
713.23	149.2	-67.1
722.38	149.4	-67.1
731.52	149.8	-67.1
740.66	149.9	-67.1
749.81	150.1	-67.2
758.95	150.5	-67.1
768.1	150.6	-67.2
777.24	150.7	-67.2
786.38	150.9	-67.2
795.53	151.2	-67.3
804.67	151.4	-67.4
813.82	151.4	-67.4
		-67.4
822.96	152.1	
832.1	152.4	-67.7
841.25	152.4	-67.9

850.39	150.3	-67.8
859.54	150.4	-68.1
868.68	148.6	-68.6
877.82	148.5	-68.8
886.97	149	-68.7
896.11	149.9	-68.7
905.26	150.6	-68.4
914.4	151.1	-67.7
923.54	150.4	-66.4
932.69	150.3	-65.9
941.83	150.6	-65.7
950.98	152.4	-65.8
960.12	153.1	-66
969.26	152.1	-64.1
978.41	152.2	-63.2
987.55	152.6	-62.4
996.7	152.8	-62.4
1005.84	153.4	-62.6
1014.98	153.4	-62.6
1024.13	153.3	-62.9
1033.27	152.9	-62.9
1042.42	153.1	-62.1
1051.56	152.4	-60.9
1060.7	152.4	-60.5
1069.85	152.8	-59.9
1078.99	153.7	-58.4
1088.14	153.5	-56.9
1097.28	153.7	-57.1
1106.42	154.5	-57
1115.57	155.2	-56.7
1124.71	156	-56.3
1133.86	156.6	-56.1
1143	157.1	-55.5
1152.14	157.9	-54.9
1161.29	158.5	-54.5
1170.43	159.2	-54
1179.58	159.9	-53.6
1188.72	160.4	-52.6
1197.86	160.5	-52.1
1207.01	160.7	-52.1
1216.15	160.9	-52.1
1225.3	161.3	-51.9
1234.44	161.6	-51.5
1243.58	161.9	-51.3
1252.73	162.2	-51.3
1261.87	162.5	-51.1
1271.02	162.8	-51.1

1280.16	163	-51.2
1289.3	163.4	-51
1298.45	163.6	-50.9
1307.59	163.9	-50.8
1316.74	164.2	-50.6
1325.88	162	-49.4
1335.02	161.9	-47.9
1344.17	160.9	-47.2
1353.31	160.1	-46.2

DEPTH 4383

N 4 F		CANADIA				DEDOENT									
DEPTH	TERS LENGTH	SAMPLE	CODE	EST	CU	PERCENT NI	со	AS	GRAMS/TONNE TPM	RQD	ORE	/INOR ROC	ROCK	MILLSTOR	DESCRIPTION
0	0	SAIN LL	CODE	201				A 3		ngo	One	inter noc	noen		Collar
1336.24	1336.24									0			LC	I	Wedge off off BHID: 1368900. Core starts at 4384' FG to MG, grey to bluish, weak bedding fabric thrt at 30 to 40 deg tca. occ smth its parallel to bedding, locally
1337.98	1.74									75			MTSD		sugary grains may be rextlized. first 1.8' are cut from wedge.
1339.5	1.52	MX247039	2	0	0.01	0.01	0	0	0	85	NVS		MTSD		FG to MG, grey to bluish, local weak bedding fabric thrt, locally BT rich smth jts thrt at 40 to 60 deg tca. rare thin Qz-Cb vnlt.
															G to MG, grey to bluish, sugary, Porphyroblastic Bt thrt, common thin 2-5mm Qz-CB vnlts with trace ctrystals of
1340.11	0.61	MX247040	2	0.1	0	0.01	0	0	0	70	TR		MTSD		pyrite/marcasite. MG, grey to bluish, laths of Bt and Amph (up to 1-2mm) thrt with interstitial plag. occ thin Qz-Cb vnlts thrt. One Qz-Cb vnlt ~5cm wide at 4399.6'. Smth and rough jts thrt at shallow and steep angles (10 to 40 50 deg tca).
1341.64	1.52	MX247041	2	0.1	0.01	0.01	0	0	0	90	TR		QD	I	Trace sulphides along Qz-vns. MG to FG, grey to bluish, laths of Amph up to 0.5cm ong. w/ interstitial plag. smth tjs thrt at 50 to 50 deg tca often coated in Cb. occ thin 1-2mm Qz-Cb vnlts thrt.
1343.16	1.52	MX247042	2	0.1	0	0	0	0	0	80	TR		QD	I	Trace sulphide along JT surfaces. MG to FG, grey to bluish, laths of Amph up to 0.5cm ong. w/ interstitial plag. smth tjs thrt at 50 to 50 deg tca
1344.69	1.52	MX247043	2	0.5	0.01	0.01	0.01	0	0.03	75	TR		QD		often coated in Cb. occ thin 1-2mm Qz-Cb vnlts thrt. Trace sulphide along JT surfaces. MG to FG, grey to bluish laths of amph up to 0.5 cm with interstitial plag. smth tjs thrt at 50 deg tca, occ rough it along Qz-Cb vnlts. occ thin 1-5mm Qz-Cb vnlt
1345.48	0.79	MX247044	2	0.1	0	0	0	0	0	90	TR		QD		htt. MG to FG, grey to bluish, amph laths up to 0.5cm long with interstitial plag. smth jts thrt at 50 to 60 deg tca. rare Qz- Cb vnlt. Rare angular inclusion (~2% inclusions
1347	1.52	MX247045	2	0.5	0.01	0.01	0	0	0	85	BLBS		IQD		by volume). rare bleb of Po/Pn, and Cp thrt. FG to MG, amph laths up to 0.25cm with interstitial plag. smth jts thrt at 40 to 60 deg tca coated in Cb. Approx. 10% angular and mostly mafic inclusions thrt.
1348.47	1.46	MX247046	2	0.5	0.03	0.02	0	0.001	0.1	90	BLBS		IQD		approx. 0.5% blebby Po/Pn +-Cp thrt.
1349.99	1.52	MX247047	2	0.4	0.02	0.02	0	0	0.03	75	SPKS		IQD		MG to FG, grey to bluish amph laths thrt with interstitial plag. smth its thrt at 25 to 40 deg tca. often X-ing eachother. Thin ~1mm Qz-Cb vntls thrt approx. 0.4% spks of po/pn and cp thrt. Sulph and clasts appear to have a weak fabric/foliation @ 30 to 40 deg tca. MG to FG, grey to bluish, small laths of amph (~2-3mm) w/ interstitial plag. occ thin 1-2mm Qz-Cb vnlt thrt. smth
1351.48	1.49	MX247048	2	0.1	0.03	0.02	0	0	0.07	90	TR		IQD	j	its thrt @ 30 to 40 deg tca often coated by Qz-Cb. Trace spks of sulphide. MG to FG grey to bluish small laths of amph (~2-3mm). with interstitial plag. Rare thin <1mm Qz-Cb vnlts thrt.
1353.01	1.52	MX247049	2	0.3	0.03	0.03	0	0	0.1	90	TR		IQD		smth jts thrt at 50 to 60 deg tca. weak foliation is present defined by elongated sulphide spks and clasts at 30 to 40 deg tca.
1354.68	1.68	MX247051	2	0.4	0.03	0.03	0	0.002	0.1	85	TR		IQD	Y	MG to FG, grey to bluish, small 1-2mm Amphiboles thrt with interstitial plagioclase. smth tjs thrt at 50 to 60 deg tca. often JT surfaces are coated with Cb material bottom 6 inches of interval is pervasively altered by chlorite and has irregular and anastomosing Q2-Cb vnlts.
1355.99	1.31	MX247052	2	0	0.01	0.01	0.01	0	0	30	NVS		OLDI		FG to VFG, dark grey, aphanitic and top 1-2feet is almost glassy, and chilled. abundant occ smth jt at 15 deg tca, occ rough jt at 50 to 60 deg tca. often jts are coated in chlorite andh X-each other creating locally blocky core zones. Upper contact to OLDI is at 55 deg tca.
1357.49	1.49	MX247053	2	0	0	0.01	0.01	0	0	15	NVS		OLDI	j	FG, dark grey, apilitic, and sugary, very abundant smth its thrt at 50 to 70 deg tca approx. one every 2-3 inches. often coated with waxy chlorite. local infiling of Cb along fractures. NVS.
1359.01	1.52	MX247054	2	0	0	0.01	0.01	0	0	40	NVS		OLDI		FG, dark grey, apilitic, smth jts thrt at 45 to 60 deg tca, T surfaces are coated in waxy chlorite, rare thin (<1mm) Qz-Cb vnlts thrt.
	2.56		-	÷	č	5.01	5.01	v	č				5251		

1360.54	1.52	MX247055	2	0	0	0	0.01	0	0	20	NVS	OLDI	STRT	FG, dark grey, apilitc, smth jts thrt often coated with waxy chlorite. first 1.5' is unbroken. bottom 4' of core is completely brocken and blocky broken core has many smth and waxy Jt surfaces thrt. NVS.
1361.82	1.28	MX247056	2	0	0	0	0	0	0	5	NVS	OLDI	STRT	FG, dark grey apilitic, smth jts thrt coated with waxy chlorite, Core is completely broken and blocky, Broken core pieces have abundant smth waxy jt surfaces. occ section that isn't broken up typically 4-6inches long. with thin 1-2mm irregular Qz-Cb vnlts.***Drill Rods Stuck and Cut. Hole was abandoned and restarted with 1368902*** EOH@4467.9ft***
1361.85	0.03									5	NVS	OLDI	STRT	FG, dark grey apilitic, smth jts thrt coated with waxy chlorite, Core is completely broken and blocky, Broken core pieces have abundant smth waxy jt surfaces. occ section that isn't broken up typically 4-6inches long. with thin 1-2mm irregular Qz-Cb vnlts.***Drill Rods Stuck and Cut. Hole was abandoned and restarted with 1368902*** EOH@4467.9ft***

BOREHOLE PROPERTY P	ROPERTY LEVEL	D	EPTH ACCT #	SYS	N	ORTHING	EASTING	ELEV	SIZE	START DATE	END DATE	FROM	то
1368902 Totten	180	0	1710.54 R000929	.0	1	353514	291818	3	805 NQ	16/10/2017 09:44:4	2 05/11/2017 09:44	4:42	

TYPERESOURCE STATUSEXPLNYesComplete

DEPTH	AZIMUTH	DIP
0	144.89	-70.82
9.14	144.79	-70.34
18.29	145.14	-70.11
27.43	145.1	-69.94
36.58	145.27	-69.86
45.72	145.56	-69.9
54.86	145.55	-69.83
64.01	145.49	-69.89
73.15	145.81	-69.88
82.3	145.92	-69.83
91.44	146.02	-69.77
100.58	146.16	-69.76
109.73	146.13	-69.7
118.87	146.01	-69.63
128.02	145.92	-69.67
137.16	145.92	-69.62
146.3	146.06	-69.67
155.45	145.83	-69.49
164.59	145.96	-69.55
173.74	145.92	-69.49
182.88	146.12	-69.31
192.02	146.39	-69.27
201.17	146.19	-69.19
210.31	146.42	-69.22
219.46	146.66	-69.14
228.6	146.77	-69.21
237.74	146.52	-69.2
246.89	146.84	-69.15
256.03	146.74	-69.34
265.18	146.61	-69.26
274.32	146.61	-69.28
283.46	146.73	-69.32
292.61	147.1	-69.09
301.75	147.03	-69.09
310.9	146.94	-69.12
320.04	146.92	-69.05
329.18	146.87	-68.97
338.33	146.83	-69.04
347.47	146.53	-68.91
356.62	146.49	-68.93
365.76	146.55	-68.81
374.9	146.25	-68.58
384.05	145.85	-68.5
393.19	145.82	-68.34
402.34	145.82	-68.29
411.48	145.64	-68.19

420.62	145.4	-68.1
429.77		-68.09
438.91	145.18	-68.07
448.06	145.16	-68.03
457.2	145.04	-68.02
466.34	145.09	-68.01
475.49	145.26	-68.05
484.63	145.13	-68.03
493.78	145.1	-68.04
502.92	145.31	-68
512.06	145.34	-68
521.21	145.38	-67.98
530.35	145.4884	-68.0427
539.5	145.3804	-68.046
548.64	145.4513	-68.0246
557.78	145.4591	-67.9641
566.93	145.6326	-68.1019
576.07	145.5713	-68.0241
585.22	145.7895	-68.0832
594.36	146.0002	-68.0443
603.5	146.0909	-67.8744
612.65	146.1918	-67.684
621.79	146.5553	-67.6643
630.94	146.908	-67.6145
640.08	147.479	-67.4483
649.22	147.2551	-67.4566
658.37		
667.51	147.956	
676.66		
685.8	148.4141	
694.94		
704.09		
713.23	149.2362	
722.38	149.4042	-67.0907
731.52	149.762	-67.1049
740.66	149.9323	
749.81		-67.1761
758.95	150.5417	
768.1	150.574	-67.2192
777.24	150.7462	
786.38		-67.2308
795.53	151.215	-67.3069
804.67		-67.3634
813.82	151.4295	-67.4014
822.96	151.8444	
832.1	152.3972	
841.25	152.4452	-67.8522

850.39	150.2534	-67.8378
859.54	150.4409	-68.1216
868.68	148.5758	-68.5566
877.82	148.514	-68.8343
886.97	149.0078	-68.7161
896.11	149.9254	-68.6987
905.26	150.5556	-68.3706
914.4	151.0855	-67.6744
923.54	150.3543	-66.4255
932.69	150.2855	-65.8786
941.83	150.5754	-65.7023
950.98	152.3778	-65.773
960.12	153.068	-66.0216
969.26	152.0815	-64.1148
978.41	152.1665	-63.1988
987.55	152.5792	-62.4303
996.7	152.7959	-62.4481
1005.84	153.3501	-62.5851
1014.98	153.408	-62.6119
1024.13	153.3302	-62.8931
1033.27	152.9467	-62.9342
1042.42	153.0879	-62.1008
1051.56	152.4174	-60.8863
1060.7	152.3506	-60.5425
1069.85	152.81	-59.8729
1078.99	153.7052	-58.4117
1088.14	153.5315	-56.9008
1097.28	153.7005	-57.1308
1106.42	154.4958	-56.9976
1115.57	155.2457	-56.6606
1124.71	156.0442	-56.3079
1133.86	156.5675	-56.0841
1143	157.1052	-55.5092
1152.14	157.8503	-54.8644
1161.29	158.5113	-54.4739
1170.43	159.1695	-53.9925
1179.58	159.927	-53.583
1188.72	160.4124	-52.6442
1197.86	160.508	-52.0686
1207.01	160.7146	-52.1486
1216.15	160.8942	-52.1307
1225.3	161.2857	-51.9436
1234.44	161.6413	-51.4651
1243.58	161.9472	-51.3356
1252.73	162.2281	-51.3117
1261.87	162.5287	-51.1229
1271.02	162.7939	-51.1457

1280.16	163.0344	-51.2315
1289.3	163.405	-51.0333
1298.45	163.614	-50.9154
1307.59	163.8867	-50.7869
1316.74	164.2172	-50.6489
1325.88	161.9616	-49.3939
1335.02	161.8952	-47.8969
1344.17	161.6856	-47.0729
1353.31	161.674	-47.0441
1362.46	161.6158	-47.0279
1371.6	161.8277	-46.9439
1380.74	161.9581	-46.5126
	161.8952	
	161.9755	
	162.2191	
	162.5116	
	162.9553	
	163.2356	
	163.2532	
	163.51	
	163.9004	
	164.3412	
	164.7914	
	165.2223	
	165.6429	
1508.76		
1517.9		
	167.0556	
	167.426	
	167.8141	
1554.48		
1563.62	168.5298	-40.6026
1572.77		
1581.91	169.2846	-39.8054
1591.06		-39.4034
1600.2	170.0126	-39.0359
1609.34	170.279	-38.4499
1618.49	170.5445	-37.8843
1626.41	170.86	-37.42
1644.09	171.7	-36.7
1673.96	172.3	-35.1
1704.14	173.9	-33.6

DEPTH 4364

	METERS	SAMPLE	INFO			PERCENT			GRAMS/TONNE					
DEPT	H LENGTH	SAMPLE	CODE	EST	CU	NI	СО	AS	ТРМ	RQD	ORE	/INOR ROC	ROCK	MILLSTOR
0														
1327	.4 1327.4									0			TOW	
														M
														to Ro
														SU
														is
1331.	67 4.27									45			MTSD	Ca
														FC
														30
														of
1336.	21 4.54									85			MTSD	Ct
														M
														la 2c
														re
1337.	74 1.52	MX247058	2	0	0.01	0.01	0	0.001	0	90	NVS		MTSD	Cl
														Μ
														rio
														re
1338.	35 0.61	MX247059	2	0	0.01	0.02	0	0.002	0	95	NVS		MTSD	ch
														FC
														at
1339.	87 1.52	MX247060	2	0.1	0	0.01	0	0	0	90	TR		QD	ar
10001			-	011	U U	0101	Ū	Ū	C C	50			45	SU
														FC
														of
														to
														ro
														Ve
1341.	39 1.52	MX247061	2	0.2	0	0.01	0	0	0	75	TR	QV	QD	43 Tr
1341.	55 1.52	101/247001	Z	0.2	0	0.01	0	0	0	75		QV	QD	M
														ar
														sr
1342.	92 1.52	MX247062	2	0.1	0.02	0.01	0	0	0.03	75	TR		QD	vr
														Μ
														in
														de
1344.	44 1.52	MX247063	2	2.5	0.04	0.02	0.01	0	0.07	90	DISS		QD	to
1044.	I.JZ	1917/247 000	2	2.3	0.04	0.02	0.01	U	0.07	50	כנוס		ųυ	M
														to
1345.	97 1.52	MX247064	2	1.5	0.02	0.01	0	0	0	70	STRS		QD	th

DESCRIPTION

Collar

Top of Wedge

MG to FG, grey to bluish, weak bedding fabric @ 20 to 30 deg tca with beds typically 0.5 to 2 cm thick. Rough and smth jts thrt at various angles often Jt surfaces are coated w/ Chl or carbonate, Locally Core is blocky and broken. Common thin 1-2mm Carbonate vnlts thrt.

FG to MG, grey to bluish, weak bedding fabric thrt at 30 to 40 deg tca, smth jts thrt at 20 to 30 deg tca often along bedding surfaces. rare thin (<1mm) Qz-Cb vnlts thrt.

MG light grey to bluish, local weak bedding laminations at 30 to 40 deg tca, beds are typically 1-2cm wide. sugary texture in some places may be rexrystalized by nearby dyke. rare thin (<1mm) Qz-Cb vnlts thrt. NVS.

MG to FG, light grey, sugary appearance BT and plag rich, primary textures are obliterated by recrystallization. lower contact is sharp with FG, chilled QD at 40 deg tca.

FG to VFG, grey, aphanitic to apilitic, upper contact is at 40 deg tca, and chilled. lower part of interval is apilitic. rare thin 2-3mm Qz-Cb vnlt thrt with trace sulphides.

FG to MG, grey, grainsize increases towards bottom of the interval. and displays laths of amphiboles up to 0.5cm long w/ interstitial plagioclase. smth and rough jts thrt at 20 to 50 deg tca. one 1 foot wide vein of Qz with ribbons of wall rock ripped up at 4396.9 to 4397.9 and one 3 inch Qz vein at 4399.6'. Trace sulphide associated with Qz-vns.

MG, grey to bluish, phaneritic, with laths of amphibole up to 1cm and interstitial plagioclase. smth jts thrt at 20 to 60 deg tca. thin 1-2mm Qz-Cb vnlts thrt. trace sulphide.

MF, grey to bluish phaneritic with laths of amph and interstitial plag. smth and rough jts thrt at 15 to 60 deg tca, occ thin 1-2mm Qz-Vn thrt locally adjacent to thin Qz vns is sulphides as Cp > Po and Pn occurring as fine disseminations thrt the rock. MG, grey to bluish, phaneritic with smth jts thrt at 20 to 40 deg tca often coated with Cb material, rare thin 1-2mm Fine Chalcopyrite stringers.

1346.61	0.64	MX247065	2	0.5	0.03	0.02	0	0.001	0.07	100	SPKS	IQD
1348.13	1.52	MX247067	2	1.5	0.03	0.02	0	0	0.1	90	SPKS	IQD
1349.68	1.55	MX247068	2	1	0.03	0.03	0	0	0.1	70	SPKS	IQD
1351.21	1.52	MX247069	2	0.8	0.03	0.03	0	0	0.1	85	SPKS	IQD
1352.7	1.49	MX247070	2	1	0.02	0.01	0	0	0.03	90	SPKS	IQD
1354.23	1.52	MX247071	2	0.5	0.02	0.02	0	0.002	0.1	85	SPKS	QD
1355.2	0.98	MX247072	2	0.5	0.04	0.06	0.01	0.009	0.17	80	SPKS	QD
1357.94	2.74	MX247073	2	2	0.04	0.03	0.01	0.003	0.14	80	SPKS	IQD

MG to FG, grey to bluish, small 1-5mm laths of amphibole and interstitial plag thrt matrix supporting angular mafic clasts thrt. approx. 0.5% spks of Po/Pn and Cp. one rough jt at 50 deg tca. Upper QD/IQD contact is sharp, but broken.

FG to MG, grey to greenish, apilitic matrix of amph and plag interstitial to angular and mostly mafic clasts, approx. 1.5% Po and Pn spks. weak fol thrt defined by elongation of clasts and sulphides at 20 to 30 deg tca.

FG to MG, grey to bluish, apilitic matrix of amph and plag interstitial to rare angular and mostly mafic clasts, approx. 1.5% Po and Pn spks. weak fol thrt defined by elongation of clasts and sulphides at 20 to 30 deg tca. Bottom 6 inches of interval has healed and brecciated Chl-veinlits interstitial to greenishaltered QD clasts.

FG to MG, grey to bluish, apilitic matrix of amph and plag interstitial to rare (<3%) angular and mostly mafic clasts, approx. 0.8% Po and Pn spks. weak fol thrt defined by elongation of clasts and sulphides at 20 to 30 deg tca.

FG to MG, grey to bluish, apilitic matrix of amph and plag interstitial to rare (<3%) angular and mostly mafic clasts, approx. 1% Po and Pn spks. weak fol thrt defined by elongation of clasts and sulphides at 20 to 30 deg tca.

FG to MG, grey to bluish, apilitic texture made up of amph and plag. Clasts are nolonger apparent. approx. 0.5% Po and Pn spks. weak fol thrt defined by elongation of sulphides at 20 to 30 deg tca. occ thin 1-2mm Qz-Cb vnlt with greenish alteration selvedge.

FG to MG, grey to bluish, apilitic texture made up of amph and plag. Clasts are nolonger apparent. approx. 0.5% Po and Pn spks. weak fol thrt defined by elongation of sulphides at 20 to 30 deg tca. occ thin 1-2mm Qz-Cb vnlt with greenish alteration selvedge.

FG to MG, grey to bluish, first 1' has Chlorite/quartz, infill along structure. unit is apilitic with amphiboles and plag. and rare, angular mafic clasts (2-3% by volume). Approx 2% spks of Po an Pn. weak fol at 25 to 35 deg tca defined by elongation of sulphide spks. occasional thin 1-2mm Qz-Cb vnlt thrt. Box 11 has been dropped and the whole box was taken as a single sample.

1358.43	0.49	MX247074	2	0.1	0.03	0.02	0	0.001	0.1	70	TR		IQD
1359.13	0.7	MX247075	2	0.1	0.01	0.01	0	0	0	10	TR	IQD	OLDI
1359.29	0.15	MX247076	2	0	0.05	0.02	0	0.002	0.07	60	SPKS	STRT	QD
1360.32	1.04	MX247077	2	0	0	0	0.01	0	0	35	NVS		OLDI
1361.36	1.04	MX247079	2	0	0	0.01	0.01	0	0	60	NVS	OLDI	STRT
1363.22	1.86	MX247080	2	0	0	0.01	0	0	0	10	NVS	OLDI	FLT
1365.14	1.92	MX247081	2	0	0	0	0.01	0	0	70	NVS		OLDI
1366.66	1.52	MX247082	2	0.2	0.02	0.02	0	0.001	0.07	75	SPKS		QD
1368	1.34	MX247083	2	0.5	0.04	0.03	0	0.004	0.1	70	BLBS		IQD
1369.53	1.52	MX247084	2	0.5	0.04	0.03	0	0.004	0.14	80	BLBS		IQD
1370.99	1.46	MX247085	2	0.5	0.03	0.03	0	0.002	0.1	80	SPKS		IQD

FG to MG, grey to bluish, apilitic, amph up to 4mm. w/ interstitial plag. smth and rough jts thrt at 50 to 80 deg tca, occ mafic subangular incusion, Trace sulph. Unit May be a small sill coming off the main Dyke

VFG, dark grey, aphanitic, strongly magnetic blocky core thrt with angular, broken core pieces. upper and lower contact is ~5-10 deg tca, and irregular in shape. Contact essentially runs the length of the core axis. Unit is highly magnetic.

MG to FG, grey to bluish, apilitic w/ amph up to 3mm and interstitial plag. occ spks of sulph. Weak fabric thrt defn. by elongation of sulphides. lower contact is at 45 deg tca. Local Jt surfaces have small amounts of gouge material.

VFG, dark grey, aphanitic, smth tjs thrt at 40 to 50 deg tca, often Jts are coated with smth Chlorite, NVS VFG, dark grey, aphanitic, abundant smth and rough jts at various angles from20 to 50 deg tca, occ Smth jts are coated with muddy gouge. Unit is highly magnetic.

VFG, dark grey aphanitic, smth chl-lined jts thrt localy blocky/pulverized core, local broken surfaces coated by muddy gouge material. rare thin 1-2mm Irregular shaped Cb vnlts thrt. nvs.

VFG, dark grey, aphanitic, smth jts thrt at 60 to 70 deg tca, irregular Chl vnlts thrt. NVS.

FG, grey to bluish, needle-like amph up to 1cm long with interstitial plagioclase. smth tjs thrt at 60 to 70 deg tca, rare smth jts at 10 to 15 deg tca. local thin band up to 4 inches of aphanitic, and magnetic OLDI. rare spks of sulphide.

FG, grey to bluish, needle-like amph up to 1cm long with interstitial plagioclase. smth tjs thrt at 60 to 70 deg tca, rare smth jts at 10 to 15 deg tca. Occ bleb of Po and Pn. rare subrounded mafic inclusion. FG, grey to bluish, amphibole up to 0.5cm with interstitial plag. smth jts trht at 20 to 50 deg tca, occ jt surface coated with Cb. rare bleb of po/Pn, rare subrounded mafic inclusion.

FG, grey to bluish, amph up to 0.5mm long with interstitial plag. smth jts thrt at 30 to 50 deg tca, spks of Po and Pn thrt. occ smth jts thrt.

1372.51	1.52	MX247086	2	0.5	0.04	0.03	0	0.003	0.14	80	SPKS		IQD
1374.01	1.49	MX247087	2	1	0.04	0.03	0	0.005	0.17	85	BLBS		IQD
1375.53	1.52	MX247088	2	0.5	0.08	0.04	0	0.009	0.24	75	SPKS		IQD
1376.99	1.46	MX247089	2	0.5	0.03	0.03	0	0.001	0.14	90	SPKS		IQD
1377.85	0.85	MX247090	2	0.2	0.03	0.02	0	0	0.1	80	TR		IQD
1379.37	1.52	MX247091	2	0.1	0.01	0.02	0	0.001	0.03	95	TR		QD
1380.29	0.91	MX247092	2	0.1	0.02	0.03	0	0.01	0.07	70	TR		QD
1381.08	0.79	MX247093	2	0	0.02	0	0	0	0.03	80	NVS	MTSD	QD
1381.69	0.61	MX247094	2	0	0.01	0.01	0	0.001	0	40	NVS		MTSD
							_						
1383.21	1.52	MX247095	2	0	0.01	0.01	0	0	0	75	NVS		MTSD
1384.74	1.52	MX247097	2	0	0.01	0.01	0	0	0	80	NVS		MTSD
1396.9	12.16									75		QTZT	MTSD
1420.31	23.41									70		QTZT	MTSD

FG, grey to bluish, amph up to 5mm long with interstitial plag. smth ths thrt at 30 to 50 deg tca, rare thin Qz-Cb vnlts thrt. rare spks of sulph, rare subrounded mafic clasts thrt.

FG, grey to bluish, amph up to 5mm long, w/ interstitial plag. occ smth jts thrt at 30 to 50 deg tca, rare blebs of sulphide, occ rounded mafic clasts thrt. FG, grey to bluish, amph up to 5mm long, w/ interstitial plag. occ smth jts thrt at 30 to 50 deg tca, occ thin <1mm Cb vnlt thrt. rare spks of sulphide, occ rounded mafic clasts thrt.

FG, grey to bluish, amph up to 5mm long, w/ interstitial plag thrt. occ shallow smth jt thrt at 5 to 10 deg tca. rare spks of sulphide, occ subrounded mafic clasts thrt.

FG, grey to bluish, elongated amph up to 5mm long w/ interstitial plag thrt. occ smth jts thrt at 30 to 40 deg tca. trace sulph.

FG, grey to bluish, amph up to 5mm long w/ interstitial plag thrt. rare smth jts at 50 to 60 deg tca. no apparent clasts. trace spks sulphide.

FG, grey to bluish, amph to to 5mm long, increasing Biotite mineralogy component. smth and rough jts thrt at 60 to 80 deg tca. Trace sulphide.

FG, bluish, equigranular BT, amph and plag. irregular thin Cb vnlts thrt. smth jts thrt at 50 to 60 deg tca. apparent mixing zone between QD and MTSD. lower contact is sharp with MTSD.

FG, light grey, thin laminated bedding texture thrt at 30 to 40 deg tca, smth jts thrt commonly along bedding fabric. NVS.

FG, light grey, laminated bedding fabric thrt at 30 to 40 deg tca, occ smth jts thrt commonly along bedding fabric, occ rough jt oblique to bedding. NVS. FG, light grey, rare smth jt thrt typically along a weak bedding fabric at 30 to 40 deg tca, NVS.

FG, light grey to grey, weak bedding thrt at 30 to 40 deg tca. localy areas of sandy-Qz rich domains. smth jts thrt at 40 to 60 deg tca. Mineralogy is Bt-rich. NVS.

FG, light grey, local weak bedding fabric, at 20 to 30 deg tca, smth jts thrt often at shallow angels TCA from 5 to 10 deg. occ rough jts thrt at 40 to 60 deg tca, rare thin (<1mm Chl vnlts thrt). NVS.

1422.87	2.56	MX247098	2	0	0.01	0.01	0	0.001	0	80	NVS	MTSD	QD
1423.05	0.18	MX247099	2	0	0.01	0.01	0	0	0	100	NVS		QD
1423.45	0.4	MG229902	5	0	0	0.01	0	0	0	100	NVS	DIA	QD
1424.09	0.64	MG229903	5	0	0	0.01	0	0	0	95	NVS		DIA
1424.48	0.4	MG229904	5	0	0.01	0.01	0	0	0	60	NVS	DIA	QD
1425.58	1.1	MG229905	5	0	0.01	0.01	0	0	0	85	NVS		DIA
1425.73	0.15	MG229906	5	0	0.01	0.01	0	0	0	100	NVS		DIA
1426.43	0.7	MG229907	5	0	0.01	0.01	0	0	0	85	NVS		DIA
1426.62	0.18	MG229908	5	0	0	0.01	0	0	0	90	NVS	DIA	QD
1427.38	0.76	MG229909	5	0	0.01	0.01	0	0	0	75	NVS		DIA
1427.84	0.46	MG229910	5	0	0.01	0.01	0	0	0	100	NVS		DIA

FG, grey to bluish, sugary textured with porphyroblastic Biotite and amphibole??, upper contact is sharp at 20 deg tca with sheeted Chl vnlts parallel to contact. Rough and smth jts thrt. No clear and apparent bedding, smht and rough jts thrt at various angles. NVS. Unit may be transition or mixed Seds and QD or hornfelsed MTSD from the diabase below.

FG, grey to bluish sugary amph and Bt thrt, apparently massive with no jts or bedding. sugary texture thrt. Unit as described above from 4659.8 to 4668.2 sending this interval for whole rock geochemical analysis.

FG to VFG, grey to bluish, Irregular, and rounded potato-shaped inclusions of VFG bluish diabase with interstitial sugary, bluish QD? occ thin <1mm Qz-Cb vnlts thrt with grey alteration selvedges up to 3m wide. No jts thrt, NVS.

VFG to FG, grey to bluish green, apilitic, abundant Qz-CB vnlts mostly near top of interval. rare smth jts along Cb vnlts. NVS.

FG to VFG, grey to bluish, irregular upper and lower contacts, and irregular potato-shaped inclusions of diabase as from 4670.1 to 4672.2 with interstitial and sugary possible QD.

VFG, grey to bluish green, apilitic, mostly amphibole and plagioclase.common Qz-Cb vnlts thrtocc smth jt thrt mostly along Cb vnlts. NVS.

VFG, grey to bluish, apilitic, dominantly VFG amph and plagioclase. Section selected for WHOLE ROCK analysis. Unit was selected to be vein free for analysis.

VFG, grey to bluish green, apilitic, mostly amphibole and plagioclase. common Qz-Cb vnlts thrt. occ smth jt thrt mostly along Cb vnlts. NVS.

FG to VFG, grey to bluish, irregular upper and lower contacts, and irregular potato-shaped inclusions of diabase as from 4670.1 to 4672.2 with interstitial and sugary possible QD.

VFG, grey to bluish green, apilitic, mostly amphibole and plagioclase. common Qz-Cb vnlts thrt. Common smth jt thrt mostly along Cb vnlts. NVS.

VFG, grey to bluish green, apilitic, mostly amphibole and plagioclase. common Qz-Cb vnlts thrt. occ smth jt thrt mostly along Cb vnlts. NVS.

1428.38	0.55	MG229911	5	0	0.01	0.01	0	0	0	60	NVS		MTSD	
1429.21	0.82	MG229912	5	0	0.01	0.01	0	0	0	90	NVS		MTSD	
1439.57	10.36									80			MTSD	
1439.72	0.15	MG229913	5	0	0	0.01	0	0.001	0	100	NVS		MTSD	
1444.23	4.51									90			MTSD	
1460.48	16.25									80		QTZT	MTSD	
1461.52	1.04									85			DIA	
1484.99	23.47									90		MTSD	QTZT	
1497.33	12.34									75			MTSD	
1526.74	29.41									90		MTSD	QTZT	

FG, grey to bluish, weak bedding fabric thrt at 20 to 30 deg tca, Thin 1-2mm Qz-Cb vnlts thrt. occ smth jts thrt typically along Cb vnlts. NVS.

FG, grey to bluish, bedding fabric is apparent thrt, typically at 20 to 30 deg tca, occ rough and smth jt thrt at 35 to 60 deg tca, rare thin <1mm Cb vnlt thrt. NVS.

FG, grey to bluish, local weak bedding fabric at 20 to 30 deg tca, common smth jts thrt often shallow at 15 to 25 deg tca, icc thin and irregular (<1mm) Qz-Cb vnlt thrt. occ irregular and thin (<1mm) Bt-Chl vnlt thrt. NVS.

FG to MG, grey to bluish 6 inches of barren and veinfree MTSD taken for whole rock geochemical analysis.

FG to MG, grey to bluish, local weak bedding at 20 to 30 deg tca, occ rough and smth jts thrt at 20 to 60 deg tca, icc thin <1mm Qz-Cb vnlts thrt. NVS. FG to MG, grey to bluish, smth and rough jts thrt at 20 to 50 deg tca. Often jts are coated in Qb material.

Thin <1mm Qz-Cb vnlts thrt. occ thin <1mm irregular Chl/Bt vnlts thrt. Unit alternated from sandy to muddy beds. Locall ybeddin fabric @ 25 to 35 deg tca. NVS.

FG to VFG, grey to bluish green. aphanitic, smth jts thrt at 60 to 70 deg tca, OFten Jts are coated with Cb matrial. Abundant thin ~1mm Qb vnlts thrt. upper and lower contacts are diffuse and may be altered. FG, grey to bluish, local weak bedding fabric defined by alternating sandy and mud-rich layers typically at 30 to 40 deg tca. occ smth jts thrt at 45 to 50 deg tca, occ thin <1mm Qz-Cb vnlt thrt. rare thin <1mm and irregular shaped Chl-vnlt thrt.NVS FG, grey to bluish, Local weak beddig fabric thrt at 40 to 50 deg tca. smth and rough jts thrt at 20 to 70 deg tca, often Jts are coated in Qz-Cb material. local weak Ep? and chl aleration.

FG to MG, grey to bluish, local weak bedding fol at 35 to 45 deg tca, mostly sandy Qz-rich beds thrt. rare 0.5 to 1cm Qz-vnlts thrt. occ thin 1-2mm carbonate vnlts thrt. ocat irregular and anastomosing Chl vnlts thrt. occ smth jts thrt at 30 to 60 deg tca.

1551.43	24.69									80		QTZT	MTSD
1567.77	16.34									80		QTZT	MTSD
1580.42	12.65									75			MTSD
1594.41	13.99									85			CONG
1598.68	4.27									80			QDIA
1598.92	0.24	MG229915	5	0	0.01	0	0	0	0	100	NVS		QDIA
1601.42	2.5									80			QDIA
1608	6.58									75			CONG
1619.62	11.61									90			CONG

FG to MG, grey to bluish, local thinly laminated beds on a centimeter scale. locally graded bed ing is apparent facing up the hole. smth jts thrt often along bedding fabric but also at oblique angles from 20 to 60 deg tca. occ thin 1-2mm Qz-Cb vnlts thrt.

FG to CG, grey to bluish, smith and rough jts thrt at 30 to 70 deg tca, interbedded fine, muddy, thin beds with coarser sand and Qz rich beds thrt. bedding fabric at 40 to 50 deg tca, occ thin <1mm Cb vnlts thrt.

FG, grey to bluish, thinly laminated mud-rich beds thrt on a centimeter scale. smth jts thrt often along bedding fabric. occ thin <1mm Cb vnlts thrt. FG to CG, grey to bluish with white clasts,

moderately well sorted. Clasts are dominantly sand to mud sized with occ small pebble (~1cm) with rare large pebbles (>5cm). muddy matrix is mica-rich. rare thin <1mm Cb vnlts.

FG to MG, grey to greenish, apilitic, mineralogy is dominantly Bt, Amph and Qz. smth and rough jts thrt at 50 to 60 deg tca, occ thin <1mm Qz-Cb vnlts thrt. upper contact is at 30 deg tca, and chilled.

FG to MG, grey to greenish, apilitic, mineralogy is dominantly Bt, Amph and Qz. smth and rough. Small sample selected for whole rock analysis. Sample interval was chosen to be homogenous and free of veining. *****WHOLE ROCK ANALYSIS**** FG to MG, grey to greenish, apilitic, mineralogy is dominantly Bt, Amph and Qz. smth and rough jts thrt at 50 to 60 deg tca, occ thin <1mm Qz-Cb vnlts thrt. lower contact is at 30 deg tca, and chilled. FG to CG, grey to bluish with white clasts, moderately well sorted. smth jts thrt typically at 30 to 50 deg tca. Clasts are dominantly sand to mud sized with occ small pebble (~1cm) with rare large pebbles (>5cm). muddy matrix is mica-rich. rare thin <1mm Cb vnlts.

FG to MG, grey to bluish whit local white clasts. poorly sorted with fine muddy to sandy material and large angular pebbles. occ rough and smth jts thrt at 30 to 80 deg tca. occ thin 1-3mm Qz-Cb vnlts thrt.

1664.21	44.59	90	QTZT	CONG
1685.39	21.18	80	QTZT	CONG
1689.69	4.3	65		QDIA
1695.15	5.46	60		CONG
1710.54	15.39	75		CONG

MG to CG, grey to blueish, moderately well sorted, clasts are rounded dominantly coarse sand to small pebbles (~2-5mm) occ larger white, rounded clasts typically 0.5 to 1cm wide. rare smth and rough jts thrt typically at 40 to 50 deg tca.

FG to CG, grey to bluish, smth and rough jts thrt at 45 to 50 deg tca. moderately well sorted dominantly coarse sand and small pebbles (~2-5mm). occ thin Qz-Cb vnlt thrt. locally mechanically ground core. FG, grey, apilitic to aphanitic mafic dyke appears as from 5231' to 5254' abundant smth jts thrt typically at 45 to 50 deg tca, common thin 1-3mm Qz-Cb vntls thrt.

FG to CG, grey to bluish, smth and rough jts thrt at 45 to 50 deg tca. moderately well sorted dominantly coarse sand and small pebbles (~2-5mm). occ thin Qz-Cb vnlt thrt. localy mechanically ground core. FG to CG, grey to bluish, moderately to poorly sorted dominantly coarse sand and pebbles from 2 mm to 5 cm. commin smth jts thrt often X-ing eachother. occ thin 1-3mm Qz-Cb vnlts thrt.

BOREHOLE PROPERTY PR	OPERTY LEVEL	DEF	PTH ACCT #	SYS	NC	ORTHING E	EASTING	ELEV	SIZE	START DATE	END DATE	FROM	то
1368910 Totten	180	0 1	1261.87 R000929.	.0:	1	353490	291749	,	800 NQ	29/08/2017 13:03	17 04/10/2017 13:03	8:17	

TYPE	RESOURCE APPLIED	STATUS
EXPLN	Yes	Complete

DEPTH	AZIMUTH	DIP
0	175.19	-60.48
9.14	175.4037	-60.4566
18.29	175.685	-60.2041
27.43	175.5462	-59.9419
36.58	175.5765	-59.9442
45.72	175.6037	-59.9448
54.86	175.6133	-59.9905
64.01	175.6784	-60.0769
73.15	175.9625	-60.0433
82.3	176.0721	-60.0683
91.44	176.3276	-60.0434
100.58	176.4307	-60.0944
109.73	176.6437	-60.1244
118.87	176.9565	-60.1477
128.02	177.0809	-60.1094
137.16	177.3777	-59.9806
146.3	177.8228	-59.7234
155.45	178.1703	-59.4781
164.59	178.0079	-59.0964
173.74	178.0305	-58.9214
182.88	178.3452	-59.0918
192.02	178.7935	-59.0401
201.17	179.0055	-59.2133
210.31	179.4145	-59.3096
219.46	179.5592	-59.2997
228.6	179.8285	-59.3238
237.74	180.0491	-59.2252
246.89	180.6308	-59.094
256.03	180.891	-59.1766
265.18	181.1502	-59.1625
274.32	181.5306	-59.0638
283.46	181.8915	-59.1402
292.61	182.1965	-59.0485
301.75	182.6379	-59.1039
310.9	182.9428	-59.238
320.04	182.9491	-59.1335
329.18	183.2341	-59.0981
338.33	183.4114	-59.1262
347.47	183.749	-59.1698
356.62	183.8632	-59.1576
365.76	184.2897	-59.3347
374.9	184.5795	-59.2227
384.05	184.725	-59.2361
393.19	184.9006	-59.3138
402.34	185.1439	-59.3242
411.48	185.4883	-59.3762

420.62	185.7746	-59.3881
429.77	185.8043	-59.4062
438.91	185.9283	-59.5497
448.06	186.5005	-59.4655
457.2	185.3812	-58.9324
466.34	185.281	-57.9614
475.49	185.8571	-55.6401
484.63	186.5061	
493.78		
502.92		
512.06		
521.21	189.0707	
530.35		
539.5	187.1589	
548.64		
557.78		
566.93	182.3416	-47.4064
576.07 585.22		
585.22 594.36	182.8402	
603.5	182.8402	-46.1478
612.65	183.2973	-45.8632
621.79	183.5204	
630.94	183.7385	
640.08	183.9407	
649.22		
658.37	184.3058	-45.2945
667.51	184.2974	
676.66	184.4521	-44.985
685.8	184.7358	-44.9717
694.94	184.8884	-44.7737
704.09	185.0894	-44.679
713.23	185.3587	-44.5081
722.38	185.615	-44.3901
731.52	185.7196	-44.1458
740.66	185.8918	-44.311
749.81	185.9931	-44.3904
758.95	186.1819	-44.3184
768.1	186.302	-44.2467
777.24	186.4421	-44.2538
786.38	186.5151	-44.3401
795.53	186.6807	-44.2224
804.67	186.8323	-44.1044
813.82	186.9541	-44.2065
822.96	187.0777	
832.1	187.2017	
841.25	187.2778	-44.083

850.39	187.509	-44.0037
859.54	187.6982	-43.7679
868.68	187.9183	-43.6308
877.82	188.1805	-43.3522
886.97	188.4015	-43.0223
896.11	188.6787	-43.0539
905.26	188.9796	-42.8382
914.4	189.3063	-42.4785
923.54	189.4309	-41.9871
932.69	189.6906	-42.0794
941.83	189.9971	-41.9832
950.98	190.0782	-41.6789
960.12	190.633	-41.7671
969.26	190.8851	-41.479
978.41	191.0844	-41.605
987.55	191.1938	-41.3771
996.7	191.2194	-41.5088
1005.84	191.2382	-41.4259
1014.98	191.8296	-41.4357
1024.13	191.69	-41.3014
1033.27	191.5503	-41.1672
1042.42	191.5646	-41.0772
1051.56	191.7872	-41.0471
1060.7	191.996	-40.9758
1069.85	192.1987	-40.903
1078.99	192.3852	-40.9331
1088.14	192.5875	-40.9289
1097.28	192.8101	-40.8808
1106.42	193.0047	-40.8607
1115.57	193.1734	-40.8418
1124.71	193.2035	-40.7696
1133.86	193.3395	-40.7164
1143	193.6042	-40.6863
1152.14	193.8926	-40.642
1161.29	194.1775	-40.5771
1170.43	194.3941	-40.3966
1179.58	194.5722	-40.3
1180.8	194.59	-40.3

DEPTH
1496
1762
1841

ME	TERS	SAMPLE	INFO			PERCENT			GRAMS/TONNE					
DEPTH	LENGTH	SAMPLE	CODE	EST	CU	NI	СО	AS	TPM	RQD	ORE	MINOR ROCK	ROCK	MILLSTOR
0	0													
														Overburd
3.17	3.17									0			OB	piece of C
														QTZT, lt g
														of SUBX. I
														segments
														with oxidi
														ground w
														it. The QT
														broken fu
														Drillers re
														cemented
														major sigr
9.36	6.19									70			QTZT	broken ar
														SUBX hos
														above. Th
														lt grey, no
														weak fabr
														The SUBX
														70% of th
														from 1-2i
														lt is possil
														SUBX bec
														that may
														be boulde
														2-3ft in le
														qtz rich in
														abundant
41.79	32.43									80		QTZT	SUBX	sulphides
												~ · - ·		QTZT as d
														competer
														Minor sm
														occasiona
														but nothi
122.99	81.2									90			QTZT	identified

DESCRIPTION

Collar rden until 10.4ft. This is the first f QTZT.

t gry with possibly a couple whisps X. No sulphides. A couple ints of this interval has fractures addization (rusty brown) where water appears to have influenced QTZ that is fractured appears to be further from mechanical drilling. reported this as a structure and ted it but does not appear to be a significant structure and just and blocky ground from drilling.

nosted with QTZT as described The QTZT is massive, competent, non-Mag, with an occasional abric visible at approx. 50deg tca. BX occurs throughout approx. 40%this interval as whispy vns ranging -2inches to bands as large as 1-2ft. ssible this interval is up to 70% because of large blocks of QTZT ay not be insitu but may actually Iders. Some of the blocks could be a length, and appear as very felsic an inclusions. Fg drk gry matrix with ant inclusions of the host QTZT. No les present.

s described above, massive, tent, hmgs, It gry throughout. small stringers of SUBX can onally be seen within the top 40ft thing significant. No sulphides ed.

					SUBX cros
					orientatio
					the QTZT.
					cutting at
					subpll tca
					matrix ho
					Larger int
					2-3inches
130.82	7.83	70	QTZT	SUBX	interval is
130.02	7.05		QILI	JODA	QTZT as d
					competer
135.36	4.54	80		QTZT	sulphides
155.50	4.54			QIZI	Suprides
					Major flt
					gouge. Pla
					at 40deg t
					are also re
137.22	1.86	0	QTZT	FLT	No sulphi
107.22	1.00		Q121		QTZT as d
					competer
					weak to n
					occurring
176.42	39.2	80		QTZT	sulphides
170.42	55.2			QIZI	Suprides
					TRAP dyke
					contacts o
					1inch chil
					magnetic
					with very
					, in color, w
					green/bro
					white phe
178.46	2.04	90		TRAP	unit. No s
					QTZT as d
					competer
					sulphides
					adjacent t
					about 1ft
190.13	11.67	85		QTZT	Qtz-carb v

tross cutting the QTZT in a chaotic ation with abundant inclusions of ZT. The SUBX can be seen cross at 45deg tca, 60deg tca, and also tca. Not consistent. Fg drk gry hosting local QTZT inclusions. interval of 2-3ft and small er vns of nes. About 30-40% of this total I is SUBX. No sulphides present. s described above, massive, tent, hmgs, It gry throughout. No les present.

flt with significant movement and Plane of gouge appears to occur eg tca. Broken and blocky sections o rehealed with qtz and qtz-carb. ohides present.

s described above, massive, tent, hmgs, lt gry throughout. A o moderate fabric is present ng at about 20deg tca. No les present.

lyke, sharp upper and lower ts occurring at 30deg tca. Slight shill along the cts. The dyke is nontic and massive/hmgs throughout ery little composition change. Gry r, with a weak hue of brown. It has abundant small ohenocryst that speckle the entire o sulphides present.

s described above, massive, tent, hmgs, lt gry throughout. No les present. Note at the lower CT nt the Trap dyke below there is 1ft of highly brecciated qtzt with rb vnlts throughout.

						TRAP dyke
						contacts of
						inch chill a
						magnetic a
						with very li
						in color, wi
						white pher
192.05	1.92		70		TRAP	unit. No su
						QTZT as de
						competent
						very weak
214.58	22.52		30		QTZT	about 30de
						SUBX hoste
						fabric at 60
						of local Qtz
217.02	2.44	8	30	QTZT	SUBX	with qtz/qt
						QTZT as de
						competent
226.59	9.57		30		QTZT	No sulphid
						SUBX host
						fabric at ra
						inclusions
						defining fa
						sulphides p
232.65	6.07	8	30	QTZT	SUBX	sized or slig
						QTZT as de
						competent
241.92	9.27		30		QTZT	No sulphid
						vFg Blk DIA
						30-40deg t
						towards th
						significant
						fractures t
249.88	7.96		70		DIA	drilling.
						Subx hoste
						sized QTZT
						interval co
						the rest Q1
						matrix is lt
						than the h
253.01	3.14		35	QTZT	SUBX	chaotic.

lyke, sharp upper and lower ts occurring at 65deg tca. Slight 1 iill along the cts. The dyke is nontic and massive/hmgs throughout ery little composition change. Gry r, with a weak hue of green. Small ohenocryst that speckle the entire o sulphides present.

s described above, massive, tent, hmgs, lt gry throughout. A eak fabric is present occurring at 30deg tca. No sulphides present.

nosted within the QTZT, strong at 60deg tca. Blocks and inclusions I Qtzt. Bt present defining fabric cz/qtz-carb. No sulphides present. Is described above, fg, grey tent, massive and hmgs texture. phides present.

nosted within the QTZT, moderate at random orientations. Blocks and ons of local Qtzt. Bt present g fabric with qtz/qtz-carb. No les present. Some blocks are fist r slightly larger.

s described above, fg, grey tent, massive and hmgs texture. bhides present.

DIA with sharp chilled contacts at leg tca. Slight coarsening to a fg ls the middle of the dyke. No ant structures just a couple es that have been broken by

osted within the QTZT. Large fist QTZT blocks within the SUBX. This Il consist of about 60% SUBX and t QTZT. No sulphides. The subx is lt gry and just slightly darker he host. Fabric of the subx can be

					QTZT as o
					competer
269.23	16.22	85		QTZT	No sulphi
					Flt that is
					have a su
					tca. Mino
273.92	4.69	0	STRT	FLT	sulphides
					SUBX thre
					subx in la
					continuo
					and small
					4inches ir
291.18	17.25	80	QTZT	SUBX	of about
					QTZTs as
					stressed a
					with rehe
					slightly da more like
					appears t
					stressed/
299.25	8.08	85	MTSD	QTZT	present.
299.31	0.06	90		LAMP	LAMP
					QTZTs as
					except th
					dyke. Thi
					txt that is
					fractures
					appearan
					MTSD, bu
					because t stressed/
305.23	5.91	85	MTSD	QTZT	present.
505.25	5.51	85		QIZI	present.
					Lampropl
					amph. Is
					color. App
					unit with
					and lowe abundant
					aligned w
					45deg tca
					See BH13
310.07	4.85	85	DIA	LAMP	continuat

s described above, fg, grey tent, massive and hmgs texture. bhides present.

t is broken and blocky. Appears to subpll fracture plane at 0-5deg nor gouge along frac plane. No les present.

hroughout the qtzt. Significant large bands over 20ft in uous lengths. No sulphides. Large nall clast ranging from cm - 3s in length or larger. SUBX consist ut 70% of this interval.

as above except this interval is ed and has a txt that is brecciated ehealed fractures. The qtzt has a y darker appearance and looks ike a fg ss MTSD, but likely just rs this way because the qtzt is more ed/metamorphosed. No sulphides ot.

as above between 955.3-981.8ft this interval is divided by the Lamp This interval is stressed and has a t is brecciated with rehealed es. The qtzt has a slightly darker rance and looks more like a fg ss but likely just appears this way the the qtzt is more ed/metamorphosed. No sulphides t.

ophyre dyke consisting of bt and Is ver mafic and has a dark green Appears to be chloritic. Intrusive th sharp cts. Upper ct at 35deg tca wer ct at 80deg tca. Contains ant ~35% Bt flakes. The BT is I with a preferred orientation of 35tca. No sulphides, non magnetic. I1368900 for a similar unit. Likely a Juation.

					QTZTs as a
					has a txt tl
					fractures.
					has a sligh
					looks more
					just appea
					more stres
333.85	23.77	90	MTSD	QTZT	sulphides
					FLT within
					The upper
					competen
					almost like
336.47	2.62	50	STRT	FLT	No sulphic
					QTZT, mas
342.84	6.37	85		QTZT	no fabric.
					Lamproph
					amph. Col
					green. App
					unit with s
					not measu
					Contains a
					sulphides,
344.82	1.98	90		LAMP	dykes seer
					QTZT as de
					massive, h
262.20		05		0777	joint sets o
362.29	17.47	85		QTZT	sulphides.
					FLT. Broke
					gouge alor
					and lots of
370.82	8.53	0	QTZT	FLT	core throu
					QTZT as de
					interval be
					the base o
					see a defir
					between t
					this interv
					and has a
					lamination
386.76	15.94	75		QTZT	broken an

is above described as stressed and t that is brecciated with rehealed es. The core is competent. The qtzt ightly darker appearance and ore like a fg ss MTSD, but likely bears this way because the qtzt is ressed/metamorphosed. No es present.

hin the QTZT with minor gouge. Der half of this interval is ent but has a chaotic fabric like SUBX cross cuts this interval. hides present.

nassive competent QTZT, little to c. No sulphides present.

phyre dyke consisting of bt and Colour is very mafic and is dark Appears to be chloritic. Intrusive h sharp cts. Upper ct is sharp but asureable, lower ct at 40deg tca. s abundant ~35% Bt flakes. No es, non magnetic. Similar LAMP een above.

described above, competent, e, hmgs with very minor fract and ts occurring 30-40deg tca. No es.

oken and blocky core with some long fract planes. Minor gouge of small bits and fragments of roughout this interval.

a described above except this becomes slightly darker towards e of the interval where you can efinite lithological contact n the sed layers. The lower part of erval appears more like a MTSD a slight increase in fabric and ions. As a result becoming more and blocky. No sulphides present.

							QTZT as
							compete
418.83	32.06			85		QTZT	minor fra
							Small flt
							gouge pr
	0.67						Abundan
419.5	0.67			0	QTZT	FLT	in this in
							QTZT as
							compete
							minor fra
							NOTE TH
							WAS 432
							426M. TI
425.99	6.49			85		QTZT	FROM H
							QTZT as
							compete
457.41	31.42			85		QTZT	minor fra
							Wedge a
457.75	0.34			0		WDG	core.
							QTZT sim
							more str
							fractures
							moderat
							tca. Appe
							describe
							and more classified
							Possible
							1581.1ft
481.92	24.17			70	MTSD	QTZT	mechani
							QTZT, ma
540.17	58.25			85		QTZT	significar
							WDG occ
							There is a
							rod coun
							1779.6ft
							have bee
542.42	2.26			0		WDG	centered

as described above as being etent, massive, hmgs with only fractures. No sulphides present. flt with evidence of movement and present along fracture planes. dant broken and blocky fragments interval.

as described above as being etent, massive, hmgs with only fractures. No sulphides present. THAT THERE WAS A BLOCK ERROR. 432M BUT AFTER ROD COUNT IT IS . THIS ALSO MARKS THE CHANGE I HQ TO NQ.

as described above as being etent, massive, hmgs with only fractures. No sulphides present. e at 1501.8ft, Button is centered in

similar to above but becomes a bit stressed with internal rehealed res. A lamination or weakrate fabric is present at 20-30deg ppears more like what has been bed as a MTSD with slightly less qtz nore of a fg unit slightly darker. Still fied as a fg qtzt. No sulphides. ole small structure between 1574.8-1ft (broken and blocky core, mostly anical drilling).

massive, hmgs, competent, no cant sulphides. Very few fracts.

occurs between 1772.2 to 1779.6ft. is a block that says correction, so ount must be off. Correct footage is 6ft. Looks like graphite plug may been used and the button is red.

														QTZT as o
														competer
561.										85			QTZT	minor fra
562.	84 1.46									0			WDG	WDG, but
														QTZT as c
														competer
563.	58 0.73									85			QTZT	minor fra
														Structure
														sections of
														subpll tca
														core via n
														Minor evi
576.	32 12.74									30		QTZT	STRT	some mir
														QTZT as c
														competer
														minor fra
														the interv
														interval n
														laminatio
608.	99 32.67									80			QTZT	sulphides
														QTZT as c
														competer
680.	83 71.84									90			QTZT	minor fra
														Fg mafic v
														white phe
														Dyke. Cor
														over a 1-2
														No sulphi
														qtz-carb ۱
														joint sets
695.	22 14.39									70			TRAP	and hmgs
														QTZT as c
														competer
711.	01 15.79									85			QTZT	minor fra
/11.	51 15.75									05			QIZI	
														QTZT as a
712.	32 1.31	MG229551	5	0	0	0	0	0	0	85	NVS		QTZT	sample al
														QTZT as a
713.4	48 1.16	MG229552	5	0	0.01	0	0	0	0	85	NVS		QTZT	sample al
														-

is described above as being tent, massive, hmgs with only fractures. No sulphides present. button is centered.

s described above as being tent, massive, hmgs with only fractures. No sulphides present.

are with broken and blocky as of core. Fracture planes occur as tca which has increased the broken a mechanical drilling process. evidence of a gouge indicating ninor movement.

s described above as being tent, massive, hmgs with only fractures. Very little different from ervals above and below. This I may have a slight increase in tions or a weak fabric. No les present.

s described above as being tent, massive, hmgs with only fractures. No sulphides present.

ic with minor (less than 5%)small ohenocrysts, non-magnetic, Trap Contacts are weak and transitional 1-2inches. The upper CT is broken. ohides present. Minor-moderate b vnlts cross cutting. Common ets and fractures. Overall, massive ngs fg drk grey dyke.

s described above as being tent, massive, hmgs with only fractures. No sulphides present.

s above except this is a buffer above QD. No sulphides present.

s above except this is a buffer above QD. No sulphides present.

714.12	0.64	MG229553	5	0	0	0	0	0	0	85	NVS	QTZT	QTZT as a sample al
													QD with a into QD. (However,
715.49	1.37	MG229554	5	0	0.01	0.01	0	0	0	85	NVS	QD	an increas Otherwise competer QD with a
717.22	1.74	MG229555	5	0	0.01	0.01	0	0	0.03	85	NVS	QD	cutting, re No signifi QD with a
720	2.77	MG229556	5	0	0.01	0.01	0	0.001	0	85	NVS	QD	cutting, re No signifi QD with a cutting, re
722.99	2.99	MG229557	5	0	0.01	0.01	0	0.001	0	85	NVS	QD	No signifi QD with a cutting, re
724.81	1.83	MG229558	5	0	0.01	0.01	0	0.001	0	85	NVS	QD	No signifi QD with a cutting, ro Very BT a sulphides poorly de
725.7	0.88	MG229559	5	0	0.01	0.01	0	0	0.03	85	NVS	QD	tca. IQD. Mati grey, mg except ab of which
727.19	1.49	MG229560	5	0.5	0.03	0.02	0	0	0.07	85	TR	IQD	amphibol inch, but appear. D 1% overa
													IQD as de to the QD cutting qt inclusions been mos Average s
728.99	1.8	MG229562	5	0.5	0.03	0.02	0	0.001	0.07	85	TR	IQD	occasiona sulphides

s above except this is a buffer above QD. No sulphides present.

h a transitional contact from QTZT D. Challenging to pin point exact Ct. er, slight increase in grain size, and ease in qtz-carb vnlts throughout. vise hmgs txt being relatively tent. No sulphides present.

h a mg, grey, qtz-carb vnlts cross , relatively competent and hmgs. nificant sulphides.

h a mg, grey, qtz-carb vnlts cross , relatively competent and hmgs. hificant sulphides.

h a mg, grey, qtz-carb vnlts cross , relatively competent and hmgs. hificant sulphides.

h a mg, grey, qtz-carb vnlts cross , relatively competent and hmgs. hificant sulphides.

h a mg, grey, qtz-carb vnlts cross , relatively competent and hmgs. T and feldspar rich. No significant les. Lower CT with the IQD is defined but occurs at about 30deg

atrix is similar to the QD above, ng with cross cutting qtz-carb, abundant inclusions of mtgb many ch have been mostly altered to polite. Average size is less than 1 ut occasionally large 2-3 inches . Diss sulphides occur at less than erall.

described above. Matrix is similar QD above, grey, mg with cross g qtz-carb, except abundant ons of mtgb many of which have nostly altered to amphibolite. the size is less than 1 inch, but onally large 2-3 inches appear. Diss les occur at less than 1% overall.

													IQD as de
													to the QI
													cutting q
													inclusion
													been mo
													Average
													occasion
732.01	3.02	MG229563	5	0.5	0.02	0.02	0	0	0.07	85	TR	IQD	sulphides
													IQD as de
													to the QI
													cutting q
													inclusion
													been mo
													Average
724.00	2.00		F	0.5	0.02	0.01	0	0.001	0.02	05	TD	100	occasion
734.99	2.99	MG229564	5	0.5	0.02	0.01	0	0.001	0.03	85	TR	IQD	sulphides
													IQD as de
													to the QI
													cutting q
													inclusion
													been mo
													Average
													occasion
738.01	3.02	MG229565	5	0.5	0.06	0.05	0	0.001	0.21	85	TR	IQD	sulphides
													IQD as de
													to the QI
													cutting q
													inclusion
													been mo
													Average
													occasion
739.87	1.86	MG229566	5	0.5	0.02	0.01	0	0	0.03	85	TR	IQD	sulphides
													IQD as de
													to the QI
													cutting q
													inclusion
													been mo
													Average
													occasion
													sulphides
<u> </u>			_			<i></i>	_	_	- .				section o
741.27	1.4	MG229567	5	0.5	0.03	0.03	0	0	0.1	85	TR	IQD	inclusion

described above. Matrix is similar QD above, grey, mg with cross g qtz-carb, except abundant ons of mtgb many of which have mostly altered to amphibolite. ge size is less than 1 inch, but onally large 2-3 inches appear. Diss des occur at less than 1% overall.

described above. Matrix is similar QD above, grey, mg with cross g qtz-carb, except abundant ons of mtgb many of which have mostly altered to amphibolite. ge size is less than 1 inch, but onally large 2-3 inches appear. Diss des occur at less than 1% overall.

described above. Matrix is similar QD above, grey, mg with cross g qtz-carb, except abundant ons of mtgb many of which have mostly altered to amphibolite. ge size is less than 1 inch, but onally large 2-3 inches appear. Diss des occur at less than 1% overall.

described above. Matrix is similar QD above, grey, mg with cross g qtz-carb, except abundant ons of mtgb many of which have mostly altered to amphibolite. ge size is less than 1 inch, but onally large 2-3 inches appear. Diss des occur at less than 1% overall.

described above. Matrix is similar QD above, grey, mg with cross g qtz-carb, except abundant ons of mtgb many of which have mostly altered to amphibolite. ge size is less than 1 inch, but onally large 2-3 inches appear. Diss des occur at less than 1% overall. A n of this interval has little to no ons and could be a QD block.

													DIA, fg, m
													broken ar
													torqued a
													mechanic
742.89	1.62	MG229568	5	0	0.01	0.01	0	0	0	0	NVS	DIA	fracture p
													IQD as de
													to the QD
													cutting qt
													inclusions
													been mos
													Sections
													inclusions
													Average s
													occasiona
743.99	1.1	MG229569	5	0.5	0.02	0.02	0	0	0.07	85	TR	IQD	sulphides
													IQD as de
													to the QD
													cutting q
													in the mid
													Possibly a
747	3.02	MG229570	5	0.5	0.03	0.02	0	0	0.07	85	TR	IQD	, occur at l
													IQD as de
													to the QE
													cutting q
													inclusions
													been mos
													Average s
													occasiona
749.99	2.99	MG229572	5	0.5	0.03	0.02	0	0.001	0.1	85	TR	IQD	sulphides
													IQD as de
													to the QD
													cutting qt
													inclusions
													been mos
													Average s
													occasiona
751.33	1.34	MG229573	5	0.5	0.02	0.01	0	0	0.03	85	TR	IQD	sulphides
													DIA, fg, N
													cts upper
751.58	0.24	MG229574	5	0	0	0	0	0.017	0	90	NVS	DIA	sulphides

, magnetic, black, chilled and very and blocky. Seems to be over d and broken mostly due to nical drilling. Chlorite coated e planes are present. No sulphides.

described above. Matrix is similar QD above, grey, mg with cross g qtz-carb, except abundant ons of mtgb many of which have nostly altered to amphibolite. Its of this interval have less ons than the IQD above and below. ge size is less than 1 inch, but onally large 2-3 inches appear. Diss les occur at less than 1% overall.

described above. Matrix is similar QD above, grey, mg with cross ; qtz-carb. A large section about 5ft middle has little to no inclusions. y a large QD block. Diss sulphides at less than 1% overall.

described above. Matrix is similar QD above, grey, mg with cross a qtz-carb, except abundant ons of mtgb many of which have nostly altered to amphibolite. The size is less than 1 inch, but onally large 2-3 inches appear. Diss les occur at less than 1% overall.

described above. Matrix is similar QD above, grey, mg with cross g qtz-carb, except abundant ons of mtgb many of which have nostly altered to amphibolite. The size is less than 1 inch, but onally large 2-3 inches appear. Diss des occur at less than 1% overall. , Magnetic, chilled black with sharp per and lower at 55-60deg tca. No des present.

														IQD as de
														cross cut
														mtgb ma
														altered to
														less than
														large 2-3
753.62	2.04	MG229575	5	0.5	0.03	0.03	0	0	0.1	85	TR		IQD	occur at
														IQD as de
														cross cut
														mtgb ma
														altered to
														less than
														large 2-3
756	2.38	MG229576	5	0.5	0.02	0.03	0	0.002	0.1	85	TR		IQD	occur at l
													-	DIA, fg, N
														cts upper
756.73	0.73	MG229577	5	0	0.01	0	0	0	0	90	NVS		DIA	sulphides
														The top 5
														above wi
														remainin
														block tha
														weak gre
757.49	0.76	MG229578	5	0.5	0.02	0.04	0.01	0.003	0.07	85	TR	MTGB	IQD	present i
														DIA, fg, N
														cts upper
757.85	0.37	MG229579	5	0	0	0	0	0	0	90	NVS		DIA	sulphides
														IQD inter
														this is a la
														to amph.
														(~4inches
759.01	1.16	MG229580	5	0.5	0.01	0.04	0.01	0.002	0.07	85	TR	MTGB	IQD	inclusion
														IQD as de
														cross cut
														mtgb ma
														altered to
														less than
														large 2-3
762	2.99	MG229581	5	0.5	0.03	0.03	0	0.001	0.1	85	TR		IQD	occur at l

described above, grey, mg with utting qtz-carb vnlts. Inclusions of nany of which have been mostly I to amphibolite. Average size is an 0.5 inches, but occasionally -3 inches appear. Diss sulphides at less than 1% overall.

described above, grey, mg with utting qtz-carb vnlts. Inclusions of nany of which have been mostly I to amphibolite. Average size is an 0.5 inches, but occasionally -3 inches appear. Diss sulphides at less than 1% overall. , Magnetic, chilled black with sharp per and lower at 55-60deg tca. No les present.

p 5inches are IQD as described with Tr diss sulphides. The ning lower half is a larger MTGB that is altered to amph and has a green chloritic hue. No sulphides nt in this MTGB section. g, Magnetic, chilled black with sharp per and lower at 55-60deg tca. No des present.

terval as described above except a large MTGB block that is altered bh. A small section of the interval hes) is IQD with small (<0.5inch) ons and Tr sulphides.

described above, grey, mg with sutting qtz-carb vnlts. Inclusions of many of which have been mostly d to amphibolite. Average size is an 0.5 inches, but occasionally 2-3 inches appear. Diss sulphides at less than 1% overall.

														IQD as de
														cross cut
														mtgb ma
														altered to
														less than
														large 2-3
														MTGB/AI
-	764.99	2.99	MG229583	5	0.5	0.04	0.04	0	0.002	0.14	85	TR	IQD	sulphides
														IQD as de
														cross cut
														mtgb ma
														altered to
														less than
														at less th
														occasion
	768	3.02	MG229584	5	0.5	0.06	0.06	0	0	0.21	85	TR	IQD	and very
														IQD as de
														cross cut
														mtgb ma
														altered to
														less than
														large 2-3
-	770.99	2.99	MG229585	5	0.5	0.03	0.02	0	0	0.07	85	TR	IQD	occur at
														IQD as de
														cross cut
														mtgb ma
														altered to
														less than
														large 2-3
-	774.01	3.02	MG229586	5	0.5	0.02	0.02	0	0.001	0.03	85	TR	IQD	occur at

described above, grey, mg with utting qtz-carb vnlts. Inclusions of nany of which have been mostly I to amphibolite. Average size is an 0.5 inches, but occasionally -3 inches appear. Also 1 'AMPH block about 1ft. Diss les occur at less than 1% overall.

described above, grey, mg with cutting qtz-carb vnlts. Inclusions of many of which have been mostly d to amphibolite. Average size is an 0.5 inches. Diss sulphides occur than 1% overall, but a couple onal blebs. Sulphides are Po, Cpy, ery fg Pn.

described above, grey, mg with sutting qtz-carb vnlts. Inclusions of many of which have been mostly d to amphibolite. Average size is an 0.5 inches, but occasionally 2-3 inches appear. Diss sulphides at less than 1% overall.

described above, grey, mg with sutting qtz-carb vnlts. Inclusions of many of which have been mostly d to amphibolite. Average size is an 0.5 inches, but occasionally 2-3 inches appear. Diss sulphides at less than 1% overall.

777	2.99	MG229587	5	0.5	0.03	0.02	0	0.001	0.1	85	TR	IQD	IQD as de cross cut mtgb ma altered te less than large 2-3 occur at long stre chaotic fa
780.01	3.02	MG229588	5	0.5	0.02	0.02	0	0	0.07	85	TR	IQD	IQD as de cross cut mtgb ma altered te less than large 2-3 occur at
783	2.99	MG229589	5	1	0.02	0.02	0	0	0.03	85	DISS	IQD	IQD as de cross cut mtgb ma altered to less than large 2-3 occur at
785.99	2.99	MG229590	5	1	0.03	0.03	0	0.001	0.14	85	DISS	IQD	IQD as de cross cut mtgb ma altered te less than large 2-3 ~1% over

s described above, grey, mg with cutting qtz-carb vnlts. Inclusions of many of which have been mostly d to amphibolite. Average size is tan 0.5 inches, but occasionally 2-3 inches appear. Diss sulphides at less than 1% overall. A couple treaks and blebs aligned with the c fabric of the IQD inclusions.

s described above, grey, mg with cutting qtz-carb vnlts. Inclusions of many of which have been mostly d to amphibolite. Average size is an 0.5 inches, but occasionally 2-3 inches appear. Diss sulphides at less than 1% overall.

s described above, grey, mg with cutting qtz-carb vnlts. Inclusions of many of which have been mostly d to amphibolite. Average size is tan 0.5 inches, but occasionally 2-3 inches appear. Diss sulphides at ~1% overall.

s described above, grey, mg with cutting qtz-carb vnlts. Inclusions of many of which have been mostly d to amphibolite. Average size is an 0.5 inches, but occasionally 2-3 inches appear. Diss sulphides verall.

													IQD as de cross cut mtgb ma altered t less than large 2-3 Diss thro sections and blote 3"x1" of about 49 interval
786.6	0.61	MG229592	5	4	0.14	0.12	0.01	0.013	0.45	85	RGDI	IQD	BX2867
787.24	0.64	MG229593	5	3	0.08	0.08	0.01	0.009	0.31	85	BLBS	IQD	IQD as de cross cut mtgb ma altered t less than sulphide: Approx 3 marks th coincider at the ba most sul
789.01	1.77	MG229594	5	0.3	0	0.01	0	0.001	0	85	TR	QD	QD with that man start of t QD most rich, mas Spherulit some are Significat denoting
791.99	2.99	MG229595	5	0.3	0.01	0.01	0	0.002	0.03	90	TR	QD	QD barre massive Occasion some are

s described above, grey, mg with cutting qtz-carb vnlts. Inclusions of many of which have been mostly d to amphibolite. Average size is nan 0.5 inches, but occasionally 2-3 inches appear. Sulphides are nroughout but there are a couple ns that are slightly larger patches lotches. One ragged blotch is about of Po minor Cp and fg Pn. Overall 4% sulphides in this al....CONTINUE LOGGING AT 5..786m

s described above, grey, mg with cutting qtz-carb vnlts. Inclusions of many of which have been mostly d to amphibolite. Average size is nan 0.5 inches. Small blebs of des occur with minor cp, pn and po. ox 3% sulphides overall. This interval the end of the IQD and dentally these last couple samples back of the IQD dyke have the sulphides.

ith rare inclusions. Poorly defined Ct narks the end of the IQD and the of the QD. However it is obviously ostly barren of inclusions. Grey, bt nassive and hmgs throughout. ulitic texture weakly apparent in areas. Tr sulphides less than 0.5%. icantly less than IQD above, also ing the rock type change.

arren of inclusions. Grey, bt rich, ve and hmgs throughout. ional spherulitic texture present in areas. Tr sulphides less than 0.5%.

													QD barre massive Occasior
795.01	3.02	MG229596	5	0.3	0.01	0.01	0	0	0	90	TR	QD	some are QD barre
798	2.99	MG229597	5	0.3	0.01	0.01	0	0	0	90	TR	QD	massive sulphide QD barre
801.01	3.02	MG229598	5	0.3	0.01	0.01	0	0	0	90	TR	QD	massive sulphide
803.76	2.74	MG229599	5	0.3	0.02	0.01	0	0	0.03	90	TR	QD	QD barre massive a sulphide last 3incl vein. Tr F vein coul but diffic lower dy the QTZT
													QD barre seems to between shadows been eng challeng interval i lower QI
804.73	0.98	MG229600	5	0.3	0.01	0.01	0	0	0.07	90	TR	QD	0.5%. QTZT, gr No sulph above bu
806.99	2.26	MG229602	5	0	0	0.01	0	0	0	90	NVS	QTZT	environn like a qtz
810.01	3.02	MG229603	5	0	0.01	0.01	0	0	0	90	NVS	QTZT	QTZT, gr No sulph below th
812.99	2.99	MG229604	5	0	0.01	0.01	0	0	0	90	NVS	QTZT	QTZT, gr No sulph below th

arren of inclusions. Grey, bt rich, ve and hmgs throughout. ional spherulitic texture present in areas. Tr sulphides less than 0.5%. arren of inclusions. Grey, bt rich, ve and hmgs throughout. Tr ides less than 0.5%. arren of inclusions. Grey, bt rich, ve and hmgs throughout. Tr

des less than 0.5%.

arren of inclusions. Grey, bt rich, ve and hmgs throughout. Tr des less than 0.5%. Note that the nches of this interval is a white qtz Tr Po and Cpy sulphides here. This ould mark the contact of the QD, fficult to determine because the dyke contact is transitional with TZT.

arren of inclusions, but this interval s to define a transitional contact een QTZT seds below. Very weak wes appear as QTZT blocks have engulfed in the QD. Very nging to find the exact ct but this al is the best representation of the QD contact. Sulphides less than

gry, massive and hmgs throughout. Iphides present. Very similar to QD but within this transitional onment near the ct it appears more qtzt.

gry, massive and hmgs throughout. Iphides present. Buffer sample the QD dyke above.

gry, massive and hmgs throughout. Iphides present. Buffer sample the QD dyke above.

					MTSD, fg-
					competer significant
					laminatio
					areas 1-21
					the QD, a
					interval a
					appearan
					Therefore
					described
908.85	95.86	85		MTSD	present.
500.00	55.00			inited and a second sec	p. co c
					QTZT. Rel
					and lower
					couple sm
					define a li
					QTZT. Ver
913.03	4.18	85		QTZT	po and py
					MTSD, fg-
					and hmgs
944.73	31.7	85	SS	MTSD	Weakly de
					MTBS It g
					amphs. M
					vnlts. No s
					interval re
					weak folia
					equigranu
					typical in
					identified
					FW enviro
					brecciated
953.38	8.66	85		MTBS	a standaro
					MTSD, fg-
					and hmgs
957.56	4.18	80		MTSD	Weakly de
					MTSD as o
					and hmgs
					amphibol
					possibly r
959.08	1.52	85 1	MTBS	MTSD	describes

fg-mg, It gry, very massive and tent and uniform throughout. No ant structures. No defined strong tion only a couple small localized .-2ft in length. This interval below 0, appears to have less Qtz in the II and slightly more mafic/darker in rance than the qtzt above. ore this interval is now being bed as a MTSD. No sulphides t.

Relatively defined upper (85deg) ver contact(at ~30deg tca) with a small qtz-carb vnlts. Appears to a lithological unit from MTSD to /ery fg lt gry qtzt. Trace specks of pyrite. No significant sulphides.

fg-mg lt gry massive, competent ngs. No significant sulphides. v defined fabric at 30deg tca.

t gry mg, with Amglys and mg . Moderate-abundant qtz-carb lo significant sulphides. This I represents a chaotic texture oliation at ~30deg but also hmgs anular patches. This interval is nonin this hole but other holes have ed small layers of MTBS within the *v*ironments. Some often seen as a ted unit. This does not seem luike lard Metagabbro.

fg-mg lt gry massive, competent ngs. No significant sulphides. v defined fabric at 30deg tca.

as described above, fg-mg massive ngs except abundant small 1-3mm pole inclusions throughout, y related to the MTBS flow wes above. No significant sulphides.

1050.01	90.92			85		MTSD	Massive N carb vnlts Compete bedding. MTSD as increase i Minor Qt
1053.88	3.87			60	SLTS	MTSD	abundant present. MTSD as more con laminatio mtsd but
1099.54	45.66			85	SS	MTSD	sulphides
							OLDI, blk, sharp cor
1099.81	0.27			60		OLDI	sulphides
							MTSD as
							except in
							vein.Lami
							occasiona
1114.14	14.33			75		MTSD	significan
							OLDI, ma
1114.68	0.55			80		OLDI	contacts
							MTSD as
1116.12	1.43			70		MTSD	the OLDI
							OLDI, ma
							contacts
							70deg tca
							that there
1119.99	3.87			85		OLDI	OLDI betv
							MTSD as
4424.46	4.24			05		MATCO	to moder
1124.19	4.21			85		MTSD	laminatio

e MTSD, HMGS fg with minor qtznlts throughout. No sulphides. etent, no significant fractures along g.

as described above except with an se in laminations at 20deg tca. Qtz present, and areas of ant alteration. No sulphides

as described above but slightly competent and less

tions/bedding planes. More of a ss ut still abundant bt. No significant les.

olk, fg, chilled small OLDI that has contacts at 50-60deg tca. No les present and strongly magnetic.

as described above. continuation intervalis just broken by the OLDI minations/bedding planes have onal fabric at 20-35deg tca. No ant sulphides.

nag, fg, black, chilled sharp ts at 60-70deg tca. No sulphides.

as described above just divided by DI above and below. No sulphides.

nag, fg, black, chilled sharp ts at 50deg tca at upper CT and tca at lower ct. No sulphides. Note ere is a MTSD block within the etween 3664.3-3665.3ft. as described above. SS with weak lerate low angle tions/bedding. No sulphides.

						MTBS uni
						uncommo
						earlier 20
						rare for th
						environm
						of MTBS a
						green hue
						cts is the
						Looks like
						amygls. L
1134.98	10.79		85		MTBS	sulphides
						Described
						could like
						MTBS flow
1135.35	0.37		85		SHR	40deg tca
						MTSD, fg-
						bedding p
						represent
						sulphides
1176.53	41.18		75		MTSD	continuou
						mtbs, mg
						moderate
						Variable g
						especially
						present. I
						MTGB bu
						metabasa
						rich patch
						could rep
1203.02	26.49		70		MTBS	evidence
						MTSD, lar
						moderate
						fractures
						25deg tca
1261.87	58.86		80	SS	MTSD	present. I

unit. Somewhat unique and mon in this stratigraphy based on 2017 drilling in this area, but not r the footwall

hment/Huronian. This is an interval as as is seen in some other holes. Lt hue, and most common feature at he brecciated inclusions of MTBS. ike IQD but not. Minor small b. Lower CT is a shr/flow ct. No les.

bed as a shear with qtz, but this ikely be the lower contact of a flow. Qtz mixed with MTSD at tca. No sulphides present. fg-mg, typically ss with occasional g planes at low angle tca enting the slightly lower RQD. No les present. Very massive and uous.

mg, weak green chloritic hue, ate to abundant qtz-carb vnlts. le grain size, bt rich patches, ally at lower CT. No sulphides t. It is possible that this could be a but it has been interpreted as a asalt because several areas have bt tches at low angle contacts and epresent flows(ie: pillows). Some ce of MTBS logged above also.

large interval of massive, hmgs, ately competent with some res occurring along bedding at 10tca on average. No sulphides t. FOH at 1262m/4140.9ft
 BOREHOLE PROPERTY PROPERTY LEVEL
 DEPTH
 ACCT #
 SYS
 NORTHING
 EASTING
 ELEV
 SIZE
 START DATE
 END DATE
 FROM

 1368920
 Totten
 180
 0
 944.88
 R000929.01
 1
 353482
 291756
 801 HQ
 08/10/2017 10:56:57
 02/11/2017 10:56:57

то	TYPE	RESOURC	E STATUS
	EXPLN	Yes	Complete

DEPTH	AZIMUTH	DIP
0	137.4	-47.1
9.14	134.406	-46.932
18.29	132.414	-46.814
27.43	132.426	-46.796
36.58	132.808	-46.76
45.72	133.375	-46.715
54.86	133.942	-46.67
64.01	134.332	-46.61
73.15	134.368	-46.52
82.3	134.404	-46.43
91.44	134.44	-46.34
100.58	134.326	-46.316
109.73	134.212	-46.292
118.87	134.098	-46.268
128.02	134.094	-46.252
137.16	134.145	-46.24
146.3	134.196	-46.228
155.45	134.261	-46.197
164.59	134.354	-46.128
173.74	134.447	-46.059
182.88	134.54	-45.99
192.02	134.507	-45.963
201.17	134.474	-45.936
210.31	134.441	-45.909
219.46	134.414	-45.844
228.6	134.39	-45.76
237.74	134.366	-45.676
246.89	134.366	-45.605
256.03	134.414	-45.56 -45.515
265.18 274.32	134.462	-45.515
274.52	134.51 134.57	-45.47
203.40	134.57	-45.35
301.75	134.69	-45.29
310.9	134.652	-45.096
320.04	134.565	-44.835
329.18	134.478	-44.574
338.33	134.44	-44.298
347.47	134.5	-43.992
356.62	134.56	-43.686
365.76	134.62	-43.38
374.9	134.86	-43.425
384.05	135.1	-43.47
393.19	135.34	-43.515
402.34	135.446	-43.43
411.48	135.485	-43.28
-		-

420.62	135.524	-43.13
429.77	135.587	-43.006
438.91	135.698	-42.934
448.06	135.809	-42.862
457.2	135.92	-42.79
466.34	135.932	-42.571
475.49	135.944	-42.352
484.63	135.956	-42.133
493.78	136.014	-42.026
502.92	136.095	-41.975
512.06	136.176	-41.924
521.21	136.25	-41.885
530.35	136.31	-41.87
539.5	136.37	-41.855
548.64	136.43	-41.84
557.78	136.589	-41.843
566.93	136.748	-41.846
576.07	136.907	-41.849
585.22	137.01	-41.814
594.36	137.085	-41.76
603.5	137.16	-41.706
612.65	137.223	-41.648
621.79	137.262	-41.582
630.94	137.301	-41.516
640.08	137.34	-41.45
649.22	137.4	-41.411
658.37	137.46	-41.372
667.51	137.52	-41.333
676.66	137.64	-41.242
685.8	137.79	-41.125
694.94	137.94	-41.008
704.09	138.028	-40.915
713.23	137.992	-40.87
722.38	137.956	-40.825
731.52	137.92	-40.78
740.66	138.061	-40.771
749.81	138.202	-40.762
758.95	138.343	-40.753
768.1	138.425	-40.656
777.24	138.4775	-40.515
786.38	138.53	-40.374
795.53	138.5825	-40.233
804.67	138.635	-40.092
813.82	138.6875	-39.951
822.96	138.74	-39.81
832.1	138.869	-39.741
841.25	138.998	-39.741
041.23	120.220	-29.072

850.39	139.127	-39.603
859.54	139.244	-39.566
868.68	139.355	-39.545
877.82	139.466	-39.524
886.97	139.54	-39.415
896.11	139.54	-39.13
902.21	139.54	-38.94

DEPTH

N	NETERS	SAMPLE				PERCENT			GRAMS/TONNE					
DEPTH		SAMPLE	CODE	EST	CU	NI	СО	AS	TPM	RQD	ORE	/INOR ROC	ROCK	MILLSTOR
0	0													Collar
7.92	7.92									0			CASE	Casing, D
														FG to MG
														typically t
28.96	21.03									85		QTZT	MTSD	rough jts
														MG to FG
														thrt @ 60
														Fabric @
56.24	27.28									90		MTSD	QTZT	1cm and 0
														FG to MG
														DEG TCA.
														coated in
57.33	1.1									5		QTZT	STRT	vnlts thrt.
														FG to MG
														thrt @ 40
														dominant Cb and m
														small (~ 1
														matrix. Bi
60.96	3.63									70		BX	MTSD	the local s
														VFG, Dark
														deg tca, C
														Bedding f
														Breccia m
62.91	1.95									90		MTSD	BX	the above
														FG to M<
														45 deg to
														tca often
<i>CC</i> A A	2.22									00			0777	~1m Chl v
66.14	3.23									90			QTZT	selvedge.

DESCRIPTION

Drill Core begins at 26'.

1G, Bedding Fabric thrt. Grey to blueish. y thin to thick beds @ 50 to 60 deg tca, ts thrt with no dominant orientation.

FG, Light Grey to Bluish, Smth to rough jts 60 to 80 deg tca. Localized weak Bedding @ 50 to 60 deg TCA. Beds are typically > nd Qz rich.

1G grey to bluish, Smth Jtts thrt @ 40 to 50 A. Locally blocky core, Jt surfaces are in Cb and trace Po. Occ Anastomosing Cb rt.

AG, grey to blueisg, weak bedding Fabric 40 to 50 Deg tca. Rough Jts thrt no ant orientation with Jt surfaces coated with minor Po. Occ thin 1-2cm Bx vnlt with very r 1mm) clasts and a dark grey, aphanitic Breccia veinlits may be subx, or related to al structure above.

ark gry matrix weakly foliated at 30 to 40 , Clasts are rounded and are all MTSD. weak g fabric MTSD intervals @ 50to 60 Deg TCA. may be SUBX or a fault breccia related to ove fault.

M<F gry to bluish, weak bedding fol @ 35 to tca, smth to rough jts thrt at 20 to 80 deg en coated with Cb and minor Po. occ thin hl vnlt thrt with light grey/white alteration ge.

					FG to MG, common t thin 2-3m rough jts t
74.13	7.99	90	MTSD	QTZT	and trace
78.79	4.66	90	MTSD	SUBX	MG to FG, with subro matrix. Ma textured f
111.1	32.31	90	QTZT	MTSD	MG to FG, from <1cn Bedding fa jts thrt are and rough coated in t Carbonate irregular s thrt. Trace
151.61	40.51	85	MTSD	QTZT	FG to MG, local doma characteri 1.5 cm thi 15 to 50 d minor Pyri

AG, grey to blue, local weak bedding fabric, on thicker (>5cm) Qz-rich, sandy beds, occ Bmm anastomosing Bt/Chl vnlts. smth to ts thrt commonly coated with Carbonate ce Py and Galena.

G, grey to bluish, interval is up to 20% subx brounded clasts of MTSD in a FG, Bt-rich Matrix appears to have a marble-cake d flow banding around clasts.

FG, grey to bluish, thin to thick beds ranging Lcm to >10 cm but typically 1-2 cm thick. g fabric is oriented at 30 to 40 deg tca, Smth are often along bedding fabric. occ smth ugh jts at 15 to 80 deg tca. Jts are often in Carbonate. Thin and straight 1-2mm ate vnlts are occ. found thrt. thin and ar shaped 1-2 mm Bt/chl vnlts are found ace sulphides often along joint surfaces

IG, grey to bluish, thin to thickly bedded. omains with a weak bedding fabric erized by thin laminated beds typically 1thick. smth jts thrt at various angles from D deg tca. JT surfaces often coated with Pyrite, occ thin <1mm Qb vnlt thrt.

161.39	9.78	75		MTSD	FG to MG, alteration laminated typically ~ anastomos small brec smth to ro
166.18	4.79	90		QTZT	MG to FG, at 40 deg jts thrt at minor Pyri
189.01	22.83	85		QTZT	MG to FG, at 60 to 70 2cm think, various an shallow as coating Jo 2mm Cb v
218.36	29.35	75	QTZT	MTSD	FG to MG, thrt interv drough jts deg tca. of 4mm thinl and locally Quartz dia vnlts most
219.61	1.25	80		QDIA	FG, dark g minor Qz. contact is

1G, grey to greenish, strong EP/Chl? on imparting a pale greenish colour. thin red bedding fabric is apparent with beds y ~1cm thick. Abundant irregular Chl-Bt mosing veinlits thrt locally coalescing to reccias. Occ thin 1-3mm Qz-Cb vnlts thrt. o rough jts thrt at 40 to 60 deg tca.

G, grey to bluish, local weak bedding fabric g tca, interval is Qz-rich and sandy. rought at 60 to 80 deg tca, often JTs are coated in Pyrite.

G, grey to bluish, weak bedding fabric thrt 70 deg tca, when apparent, beds are 1nk, sandy, and quartz rich. smth jts thrt at angles often at 50 to 60 deg tca, but as as 5 deg tca. Carbonate is often found Joint surfaces with minor pyrite. occ thin 1b vnlt thrt. occ 2-3 mm Chlorite vnlt thrt.

IG, grey to bluish, thin bedding is weak but erval beds are typically <1cm. Smth an jts thrt often at shallow angles @ 30 to 50 . often coated with Carbonate. irregular 2ink Chl vnlts thrt that are irregular in shape ally forms breccias. lower contact with diabase is characterized by abundant Qz-Cb ostly parallel to contact.

k grey, apilitic, equigranular Bt, Plag, and Qz. upper contact is at 65 deg tca. lower is at 65 deg tca. trace spks of Py.

227.08	7.47	75		QTZT	MG to FG at 35 to 4 bedding. carbonate Common vnlts thrt.
234.03	6.95	75		QTZT	MG to FG 40 to 50 c and are ty often X-cu deg tca. o
236.89	2.87	65		QDIA	FG to MG equigrant sharp and abundant no veinlit
242.59	5.7	85		QTZT	MG to FG be from r bedding f sandy and cutting be Occ thin (
262.68	20.09	90	QTZT	MTSD	FG to MG often bed veinlts ald sand-rich Carbonate

FG, grey to bluish, weak bedding fabric thrt o 40 deg tca, smth jts thrt often parallel to g. Jt surfaces are commonly coated with ate. occ thin ~1mm Qz-Cb vnlt thrt. on thin 1-4mm and irregular shaped Chlorite rt.

FG, light grey, weak bedding fabric thrt at 0 deg tca, beds range from <1cm to >5cm e typically sandy and Qz-rich. smth tjs thrt -cutting Bedding. JTs are typically 35 to 45 . occ thin <1mm Chl vnlts thrt.

IG, grey to greenish, apilitic with nular Bt, Fsp, and Qz. upper contact is nd at 70 deg tca. and is characterized by nt Qz-Carb vnlts. Lowe contact is sharp, has lits, and is at 35 deg tca.

FG, grey to light grey, light grey colour may n rextlization close to the above dyke, weak g fabric thrt, at 40 to 50 deg tca, beds are and Qz-rich. smth and rough jts thrt often bedding. occ thin (<1mm) Qz0Cb vnlt thrt. n (<1mm) Chl vnlt thrt.

1G, grey to bluish, weak bedding fabric thrt, edding is thinly laminated, with thin Chl-rich along bedding planes. Local areas of thicker, ch beds JT surfaces are often coated in ate material.

267.58	4.91	60	STRT	QTZT	MG to FG, thrt at 30 dominant hight angl areas of b rough jts E with Chlor
270.3	2.71	90	MTSD	QTZT	MG to FG, spaced be unit is san deg tca, ra Common t MG to FG
294.44	24.14	80	MTSD	QTZT	at 30 to 40 bedding, b thin and ir sulphides surfaces.
302.97	8.53	55		MTSD	FG to MG, thrt at 35 with Carbo various an Common (blocky cor
313.82	10.85	75	QTZT	MTSD	FG to MG, at 35 to 45 bedding, c Irregular s material is along bed

FG, grey to bluish, local weak bedding fabric 30 to 40 deg tca, unit is sandy and antly Qz-rich, Smth and rough tjs thr often at ngles TCA. (typically 60 to 70 deg tca). Local f blocky ground where core had abundant ts Broken core pieces have surfaces coated alorite and slickenlines.

G, grey to bluish, local areas of thinly beds (1-3cm) at 40 to 50 deg tca, mostly andy and Qz-rich. smth jts thrt at 30 to 40 , rare thin 1-2mm Qz-Cb vnlts thrt. on thin <1mm Chl vnlts thrt unit.

G, grey to bluish, weak bedding fabric thrt 40 deg tca, smth jts thrt often along g, but, occasionally oblique to bedding. rare d irregular Chl vnlts thrt. Rare trace es and common Carbonate along Jt s.

IG, grey to bluish, moderate bedding fabric B5 to 40 deg tca. Jt surfaces often coated rbonate. Rough and stepped Jts thrt at angles from 40 to sub-parallel TCA. on Chl-rich layers parallel to Bedding. Locallt core where Jts coalesce.

1G, grey to bluish, weak bedding fabric thrt o 45 deg tca, smth jts thrt often parallel to g, occ oblique to bedding rare thin and or shaped Qz-Cb vnlts thrt. OFten Cb of is coating jt surfaces. occ Chl-rich surface edding planes.

					FG, grey t to 50 deg common material.
336.13	22.31	75	SUBX	MTSD	areas (typ MTSD cla
341.19	5.06	60	MTSD	SUBX	VFG to M interstitia smth and often coa Blocky co
345.7	4.51	90		QTZT	FG, grey t not appar at 45 to 8 Inspection mineralog texturally grains. oc
349.58	3.87	55	ALTN	MTSD	FG to MG fabric. Sm locally, cc areas of a thrt impa is breccia stronger.
353.87	4.3	65	QTZT	MTSD	FG, grey t fabric at 3 inches) of at 25 to 7 Carbonat

ey to bluish, weak bedding fabric thrt at 40 leg tca, occ thin 1-2mm Qz-Cb vnlt thrt. on smth jts, occasionally coated with Cb al. JTs are often parallel to bedding, Local typically <1 foot) of SUBX with rounded clasts within a FG dark grey matrix.

MG, grey, aphanitic dark grey matrix itial to rounded light grey clasts of MTSD. ind rough jts thrtat 45 to 60 deg tca. Its are coated with Cb material. Local areas of core due to abundant Jointing.

ey to bluish, apparently massive. Bedding is parent. occ smth jt coated with Cb material o 80 deg tca. Unit first appeared as a dyke. tion under binocular microscope shows the alogy is dominantly Qz with minor biotite. ally, the unit is sugary, with rounded Qz occ thin 1-2mm Qz-Cb vnlt thrt.

MG, grey to greenish, local weak bedding Smth and rough jts thrt at various angles. , core is completely blocky and broken in of abundant jointing. irregular ChI-Ep vnlts aparting a greenish colour. locally the MTSD ciated and Chlorite/epidote alteration is er.

ey to bluish, local areas of weak bedding at 30 to 40 deg tca, minor zones (typically <6) of Sudbury breccia. Abundant rough jts thrt o 70 deg tca. occ. Jts are coated with nate material.

358.81	4.94	70	ΒХ	MTSD	FG to VFG laminatio at 40 to 5 creating v of breccia
361.77	2.96	45	BX	MTSD	FG to VFG typically I MTSD wit encapsula thrt. block with Qz-C
386.09	24.32	85		MTSD	FG, grey t on a cent vnlts ofte deg tca au 60 to 70 o band of S matrix an
387.68	1.58	85		LAMP	MG to CG and carbo Cb vnlts t upper and upper cor 40 deg tc
409.93	22.25	75	MTSD	QTZT	FG to MG weak bed typically 2 massive a to 50 deg thin 2-3m

/FG, grey to bluish, local thin bedding tions typically <1cm. smth and rough jts thrt o 50 deg tca, local Qz-Cb vnlts thrt locally ng vuggy-veins. local areas (typically <1foot) cciated MTSD.

/FG, grey to bluish, local thin bedding ly less than 1cm. local interval of brecciated with rounded clasts and flow banding? sulating clasts. Abundant smth and rough jts locky core thrt. occ broken surface is coated z-Cb.

ey to bluish, local thin bedding laminations entimeter scale. Common thin 1-2mm Qz-CB often sheeted and parallel to eachother at 70 a and a 1-2inch spacing. occ smth jts thrt at 70 deg tca, often along Qz-Cb vnlts. local of SUBX? typically <6 inches with an aphanitic and subrounded clasts.

CG, green, CG biotite thrt a matrix of plag? rbonate? occ thin 1-2mm and irregular Qzis thrt. occ smth jts thrt at 45 to 50 deg tca. and lower contacts are shap and chilled. contact is at 35 deg tca lower contact is at t tca. unit weakly effervesces with acid.

VIG, grey to bluish, apparently massive, local bedding fabric is apparent. rare interval ly 2 to 8 inches of breccia. Unit is typically re and sand/quartz -rich. off rough jts at 40 deg tca. smth jts thrt at 10 to 80 deg tca. rare 3mm Qz-Cb vnlts thrt.

417.67	7.74									70		MTSD	SUBX	vfg to MG with irreg lamination vnlts thrt. connected
418.49	0.82									90			QTZT	FG, grey to deg tca, sr 2mmQz-C at 70 deg
420.01	1.52	MG229917	5	0	0.01	0.01	0	0.002	0	70	NVS		MTSD	FG to MG, fabric. loca smth jts th vnlts thrt.
421.66	1.65	MG229918	5	0	0.01	0.01	0	0	0	75	NVS		MTSD	FG to MG, at a centir thrt from 50 deg tca
422.27	0.61	MG229919	5	0	0.01	0.01	0	0	0	55	NVS	QD	MTSD	FG to MG 2mm Qz v deg tca. a MTSD and sugary and
423	0.73	MG229920	5	0	0.01	0.01	0	0	0	85	NVS		QD	FG to MG, chilled and sugary, an Cb vnlts th at 40 to 60
424.53	1.52	MG229921	5	0	0.01	0.01	0	0	0	95	NVS		QD	MG, grey amph (up smth jts th Cb vnlts th

AG, dark grey to light grey, aphanitic matix egular to subangular clasts thrt. local thin ions in clasts, commin thin 1-3mm Qz-Cb rt. often Cb vnlts are irregular in shape and ted. local intervals of blocky core.

y to light grey, occ smth jts thrt at 70 to 80 , smth jts often along breaks along thin 1z-Cb vnlts. bedding fabric is weakly apparent eg tca.

1G, grey to bluish, local weak bedding local domain (1-2 inches) of breccia. oss s thrt at 60 to 70 deg tca. thin 1-2mm Qz-Cb rt. NVS.

IG, grey to bluish, Weak bedding fabric thrt ntimeter scale. local thin to thick Qz vntls m 3mm to 2cm. occ rough jts thrt at 40 to tca. NVS.

1G grey to bluish, sugary and apilitic, thin 1z vnlts thrt. common rough jts at 40 to 50 . appears to be transition zone between and QD. appears similar to QD, but more and rextlized in appearance.

IG, upper contact gradational but appears and finer grained that lower part of interval. and apilitic in texture. occ thin 1-2mm Qzs thrt. Occ smth jts broken along Qz-Cb vnlts o 60 deg tca. Amph laths up to 0.5 cm thrt.

ey to bluish, phaneritic with needle-like up to 1cm) and interstitial plagioclase. occ s thrt at 60 to 70 deg tca, icc thin 1-2mm Qzs thrt. NVS.

426.42	1.89	MG229922	5	0	0.01	0.01	0	0	0	90	NVS	QD	MG, grey amph (up smth jts t Qz-Cb vn
427.48	1.07	MG229923	5	1	0.02	0.02	0	0	0.03	70	SPKS	IQD	FG to MG with inte various a preferrec clasts thr
429.01	1.52	MG229924	5	0.5	0.02	0.02	0	0	0.07	75	SPKS	IQD	FG to MG with inte deg tca, r angular N
430.47	1.46	MG229925	5	0.5	0.02	0.02	0	0	0.07	75	SPKS	IQD	FG to MG with inter deg tca, r angular N
431.99	1.52	MG229926	5	2	0.04	0.03	0	0	0.14	75	SPKS	IQD	FG to MG with inte to 60 deg Angular r
433.3	1.31	MG229927	5	2.5	0.05	0.05	0	0	0.21	75	SPKS	IQD	FG to MG with inte deg tca. d inclusions and Pn.
433.97	0.67	MG229928	5	3	0.06	0.05	0	0.002	0.21	90	SPKS	IQD	FG to MG with inte Qz-Cb vn inclusion

rey to bluish, phaneritic with needle-like (up to 1cm) and interstitial plagioclase. occ ts thrt at 60 to 70 deg tca, occ thin 1-2mm vnlts thrt. NVS.

MG, grey to blue, laths of amph up to 1cm nterstitial plag. commmin rough jts thrt at s angles. thin <1mm Qz-Cb vnlts thrt at no red orientation. Common sub angular mafic thrt. Spks of Sulph as Po and Pn.

MG, grey to blue, laths of amph up to 0.5cm terstitial plag. occ smth jts thrt at 20 to 45 a, rare thin <1mm Qz-Cb vnlts thrt. Common r Mafic clasts up to 3cm. Spks of Po and Pn.

MG, grey to blue, laths of amph up to 0.5cm terstitial plag. occ smth jts thrt at 20 to 30 a, rare thin <1mm Qz-Cb vnlts thrt. Common r Mafic clasts up to 5cm. Spks of Po and Pn.

MG, grey to blue, laths of amph up to 0.5cm terstitial plag. smth and rough jts thrt at 20 leg tca. commin thin <1mm Qz-Cb vnlts thrt. In mafic inclusions up to 3cm.

MG, grey to blue, laths of amph up to 0.5cm terstitial plag. occ smth jts thrt at 20 to 45 a. occ thin <1mm Qz-Cb vnlts thrt. mafic ons thrt up to 2cm. approx. 2.5% spks of Po

MG, grey to blue, laths of amph up to 0.5cm terstitial plag. occ smth jts thrt often along vnlts at 30 to 60 deg tca. angular mafic on thrt up to 3cm wide.

434.4	0.43	MG229930	5	1.5	0.06	0.04	0	0	0.14	90	SPKS		IQD	FG to MG with inter deg tca. r of Po and
435.71	1.31	MG229931	5	2.5	0.07	0.06	0	0	0.21	85	SPKS		IQD	FG to MG with inter to 70 deg mafic clas
436.81	1.1	MG229932	5	1.5	0.04	0.03	0	0	0.1	75	SPKS	LAMP	IQD	FG to MG with inter deg tca, c 5inch inte section ha chlorite?
437.72	0.91	MG229933	5	3.5	0.08	0.08	0.01	0.001	0.27	95	SPKS		IQD	FG to MG with inter deg tca. r preferred inclusion
438.67	0.94	MG229934	5	3.5	0.08	0.08	0.01	0	0.27	75	SPKS		IQD	FG to MG with inter deg tca. r 3.5% spks
440.44	1.77	MG229935	5	1.5	0.05	0.03	0	0	0.14	50	SPKS		IQD	FG to MG with inter to 60 deg of blocky spks of su

1G, grey to blue, laths of amph up to 0.5cm terstitial plag. occ smth jts thrt at 30 to 40 . rare thin <1mm Qz-Cb vntls thrt. rare spks nd Pn.

AG, grey to blue, laths of amph up to 0.5cm terstitial plag. occ smth and rough jts at 60 eg tca, thin <1mm Qz-Cb vnlts thrt. angular lasts thrt up to 3 cm. Spks of Po and Pn thrt.

AG, grey to blue, laths of amph up to 0.5cm terstitial plag. occ smth jts thrt at 15 to 20 a, often brokwn along Qz-Cb vnlts. Local nterval of lamprophyre at top of interval. has CG biotite within a matrix of green e? and light green alteration selvedges.

MG, grey to blue, laths of amph up to 0.5cm terstitial plag. occ smth jts thrt at 30 to 40 a. rare thin <1mm Qz-Cb vnlts thrt at no red orientation. subangular to angular mafic on up to 10cm. spks of Po and Pn thrt.

1G, grey to blue, laths of amph up to 0.5cm terstitial plag. occ smth jts thrt at 30 to 45 . rare thin <1mm Qz-Cb vnlts thrt. approx. oks of Po and pn.

AG, grey to blue, laths of amph up to 0.5cm terstitial plag. abundant rough jts thrt at 30 leg tca coming together to create intervals ky core. rare thin <1mm carbonate vnlts.

441.02	0.58	MG229936	5	2	0.06	0.05	0	0	0.21	95	SPKS	IQD	FG to MG with inter thrt defin- spks. app Cp.
441.62	0.61	MG229937	5	2.5	0.07	0.08	0.01	0	0.24	90	SPKS	IQD	FG to MG with inter deg tca. o thrt defn. blebs. app
442.57	0.94	MG229938	5	1	0.07	0.04	0	0	0.14	90	SPKS	IQD	FG to MG with inter deg tca. s weak fol c clasts. occ
444	1.43	MG229939	5	0.5	0.07	0.07	0.01	0	0.24	95	SPKS	IQD	FG to MG with inter deg tca. w 3mm Qz-0
445.4	1.4	MG229940	5	1.5	0.05	0.04	0	0	0.17	85	SPKS	IQD	FG to MG with inter 40 to 60 c strong fol
446.99	1.58	MG229941	5	0	0.02	0.01	0	0	0.03	45	NVS	LAMP	FG to CG, chlorite-ri with acid. NVS. Upp

1G, grey to blue, laths of amph up to 0.5cm terstitial plag. Rare rough jts thrt. weak fol. fined by streaching of clasts and sulphide oprox. 2& sulph as spks of Po PN and minor

AG, grey to blue, laths of amph up to 0.5cm terstitial plag. occ smth jts thrt at 35 to 40 . occ thin <1mm Qz-Cb vnlts thrt. weak fol fn. by streaching of clasts and sulphide approx. 2.5% spks of Pn, Pn and Cp.

AG, grey to blue, laths of amph up to 0.5cm terstitial plag. occ rough jts thrt at 30 to 40 . spks of Po and Pn with minor Cp thrt. ol defn. by streaching of sulphide spks and occ Qz-Cb vnlts thrt typically 2-3mm.

AG, grey to blue, laths of amph up to 0.5cm terstitial plag. occ rough jts thrt at 40 to 50 n. weak fol at 40 to 50 deg tca. rare thin 2tz-Cb vnlts thrt. rare spks of Po and Pn thrt.

AG, grey to blue, laths of amph up to 0.5cm terstitial plag. occ smth to rough jts thrt at 0 deg tca. thin (<2mm) Qz-Cb vnlts thrt. no foliation. Angular clasts thrt up to 3cm.

CG, green, MG to CG biotite thrt within a e-rich groundmass. unit effervesces weakly d. Dyke is very soft, and non magnetic. pper contact is sharp at 25 deg tca.

448.51	1.52	MG229943	5	0	0.01	0.01	0	0	0	90	NVS		LAMP	FG to CG, chlorite-ri to 45 deg Dyke is ve 3mm Chl
449.34	0.82	MG229944	5	0	0.01	0.01	0	0	0	95	NVS		LAMP	FG to CG, chlorite-ri to 40 deg unit effer and non n
449.88	0.55	MG229945	5	0.5	0.03	0.03	0	0.001	0.07	90	SPKS		IQD	FG to MG 1cm with at 50 deg spks of Pc
450.52	0.64	MG229946	5	0	0.01	0.01	0	0	0.03	90	NVS		QD	FG to MG interstitia amphibole
451.99	1.46	MG229947	5	0	0	0.01	0	0	0	95	NVS	SHR	QD	FG to MG interstitia thrt at 20 local inter developed highly stra sharp at 6
452.93	0.94	MG229948	5	0	0.02	0.01	0	0	0	80	NVS	SHR	MTSD	FG, grey, a locally, ro strongly fo strained a choritized

G, green, MG to CG biotite thrt within a e-rich groundmass. occ rough jts thrt at 30 eg tca. unit effervesces weakly with acid. very soft, and non magnetic.occ. thin 1hl vnlts thrt.NVS.

G, green, MG to CG biotite thrt within a e-rich groundmass. occ rough jts thrt at 30 eg tca. Lower contact is sharp at 30 deg tca. ervesces weakly with acid. Dyke is very soft, n magnetic. NVS.

1G, grey to bluish, laths of amph thrt up to th interstitial plagioclase. occ smth jts thrt eg tca, occ thin 2-3mm Qz-Cb vnlts thrt. Po and Pn thrt.

1G, grey to bluish, laths of amph thrt with tial plag. weak fol. defn by orientation of poles. occ thin 1-2mm Chl vnlts thrt. nvs.

AG, grey to bluish, laths of amph thrt with tial plagioclase. comm in smth and rough jts 20 to 40 deg tca often coated with chlorite. terval at top of section with a strongly bed foliation at 60 deg tca, appears to be strained and sheared. lower contact of QD is t 60 deg tca.

y, apparently massive, appears mud-rich, rough jts thrt at 60 to 70 deg tca. unit is y fol. at 70 deg tca, unit appears to be highly d and sheared. shear zone is weakly ed. NVS.

454.46	1.52	MG229949	5	0	0.01	0.01	0	0	0	75	NVS		MTSD	FG, grey, l scale. rou <1mm Qz·
455.98	1.52	MG229950	5	0	0	0	0	0	0	85	NVS		MTSD	FG, grey, l scale. roug rare thin <
473.2	17.22									85			MTSD	FG to MG, laminated at 20 to 30 deg tca,. r vnlts thrt.
473.99	0.79									55		STRT	OLDI	FG to VFG chilled and clearly de magnetic.
474.76	0.76									0	(OLDI	FLT	FG, dark g core, core slickenline
477.5	2.74									80			OLDI	VFG to FG is chilled a highly map
490.73	13.23									65			MTSD	FG to MG, bedding a thrt typica and coate 60 deg tca

y, local weakly apparent thin beds on a cm ough jts thrt at 70 to 80 deg tca. rare thin Qz-CB vnlts thrt. nvs.

y, local weakly apparent thin beds on a cm ough and smth jts thrt at 70 to 80 deg tca. n <1mm Qz-CB vnlts thrt. nvs.

AG, grey to dark grey, local clearly apparent eed beds at a centimeter scale. smth jts thrt o 30 deg tca, occ rough jts thrt at 40 to 60 ,. rare and irregular shaped (1-3mm) Qz0Cb rt. local areas of chloritization. NVS.

FG, dark grey, aphanitic, upper contact is and very dark grey but is irregular and not a defn. angle. local blocky core. Unit is highly cic. NVS.

k grey, completely blocky and pulverized ore blocks are often coated in chlorite. with ines. Unit is highly magnetic.

FG, dark grey, aphanitic, bottom of interval d and contact is at 15 to 20 deg tca. unit is nagnetic. NVS>

1G, grey to dark grey, local weakly apparent g at 30 to 40 deg tcam abundant smth jts vically at shallow angles 10 to 20 deg tcam ated with chlorite. occ rough jts thrt at 40 to tca. local blocky core. NVS.

493.23	2.5	75	ALTN	OLDI	VFG to FG to dyke. a vnlts. abu common material. apparent chilled an
500.54	7.32	85		MTSD	FG to MG bedding f at 60 to 7 bedding.
501.76	1.22	85		SUBX	FG to MG clasts of M apparent matrix als concentri
503.65	1.89	70		OLDI	FG, grey t rough jts 20 at 60 c chlorite. r magnetic
507	3.35	50		OLDI	FG grey to smth and coalescing of core ar surfaces.
515.78	8.78	95		OLDI	FG to VFG jts thrt at vnlt. lowe

FG, grey to pale beige alteration imparted e. aphanitc, abundant thin <1mm Qz-Cb abundant anastomosing cracks in core. on rough jts thrt often coated with Qz-Cb al. When wet, a pervasive beige alteration is ent. area is non magnetic. Upper contact is and at 25 deg tca.

IG, grey to bluish, strongly apparent
g fabric thrt typically thinly laminated beds
70 deg tca, common smth jts parallel to
g. occ rough jts oblique to bedding. nvs.

MG, grey to dark grey, abundant angular of MTSD with a darker matrix. SUBX matrix is ently rextlized and is somewhat sugary. also displays flow banding? forming ntrically around clasts.

ey to dark grey, apilitic and sugary, smth and jts thrt at various angles, typically between 60 deg tca. often JT surfaces are coated in e. rare thin Qz-Cb vnlts thrt. Unit is strongly itic.

y to dark grey, apilitic and sugary, abundant nd rough jts thrt at 50 to 60 deg tca. often cing to form intervals of blocky core. blocks are often coated with Chlorit on broken es. unit is strongly magnetic.

/FG, dark grey, apilitic to aphanitic, occ smth at 20 to 70 deg tca, rare thin 1-2mm Chl wer contact is chilled and at 45 deg tca.

551.29	35.51	95	QTZT	FG to MG bedding f massive a jts thrt at vnlt thrt.
566.01	14.72	90	QTZT	FG to MG bedding f massive a rough jts Qz-Cb vnl
571.35	5.33	70	QTZT	FG to MG local wea rough jts along thir broken co material.
586.95	15.61	80	QDIA	FG, grey t are chilled typified b is at 65 de veining. t Qz vnlts t
594.06	7.1	80	QTZT	FG, grey t indicatior at 50 to 8 vnlts thrt. FG to VFG
595.67	1.62	75	QDIA	upper and greenish, NVS.

MG, grey to bluish, local weakly developed ng fabric thrt typically at 65 deg tca, typically we and Qz/sand rich beds. rare shallow smth t at 5 to 10 deg tca. occ thin <1mm Qz-Cb rt. NVS.

MG, grey to bluish, local weakly developed og fabric thrt typically at 65 deg tca, typically re and Qz/sand rich beds. occ smth and jts thrt at 30 to 40 deg tca. rare thin <1mm vnlts thrt. nvs.

MG, grey to bluish, apparently massive, occ yeak indication of bedding fabric. smth and jts thrt at 20 to 50 deg tca, ofent breaking thin (1-2mm) Qz-Cb vntls. local blocky core in core blocks often have coatings of Qz-Cb ral. NVS.

ey to greenish, apilitic to aphanitic, contacts lled. Upper contact is 70 deg tca, and is d by abundant Qz-Cb veining. lower contact 5 deg tca, and also has abundant Qz-Cb g. thin (1-2mm Qz-Cb vnlts thrt). occ 1-3cm cs thrt. NVS.

ey to bluish, apparently massive local weak ion of bedding fabric. common smth jts thrt o 80 degtca, common thin (<1mm) qz-Cb nrt. nvs.

/FG, grey to greenish, apilitic to aphanitic, and lower contacts are chilled and pale sh, common thin 1-2mm Qz-Cb vnlts thrt.

617.22	21.55									85		QTZT	MTSD	FG to MG beds typi apparent rough, an Often Jts Qz-Cb vnl
628.8	11.58									80		MTSD	QTZT	FG, grey t fabric at 4 Occ rough occ, Jts an of lower f
629.2	0.4									100			QV	CG, white jointing. t at 30 deg
642.21	13.01									80			MTSD	FG, grey, tca, typic oblique to thrt. NVS
678	35.78									85		QTZT	MTSD	FG, grey t local area apparent 45 deg tc bedding.
705.76	27.77									70			MTSD	FG, grey, tca, comr fabric, oc jts often o 1-2mm Q
707.29	1.52	MG229952	5	0	0.01	0.01	0	0.001	0	75	NVS		MTSD	FG, grey, fabric is a typically a oblique to

MG, grey to bluish, local thinly laminated ypically <1cm, thrt local areas that are ently massive, Qz-rich and sandy. smth, and stepped, joints thrt at various angles. Its are along bedding fabric. occ thin (<1mm) vnlts thrt. NVS.

ey to bluish, local weakly apparent bedding at 45 to 50 deg tca, occ 1-3cm Qz vein thrt. ugh and smth jts thrt at 30 to 50 deg tca, s are coated with chlorite, typically in areas er RQD. NVS.

nite to translucent. abundant cracks thrt, no g. thick quartz vein upper and lower contact leg tca.

ey, thinly laminated beds thrt at 30 to 40 deg pically <1cm wide. smth jts thrt often e to bedding. rare thin 1-2 mm Qz-Cb vnlts VS.

ey to bluish, thin beds are apparent thrt. reas are apparently massive, bedding is ent on the centimeter scale typically at 35 to tca, smth jts thrt typically oblique to ng. thin (<1mm) Qz-Cb vnlts thrt. NVS.

ey, thinly laminated beds thrt at 45 to 50 deg mmon smth jts thrt often along bedding occasionally oblique to bedding. occ rough en coated with carbonate material. occ thin o Qz-Cb vnlts thrt. NVS.

ey, local thinly laminated beds thrt. Bedding is at 40 to 45 deg tca, occ smth jts thrt ly along bedding fabric. rare rough jts e to bedding. NVS.

708.81	1.52	MG229953	5	0	0.01	0.01	0	0	0	70	NVS		MTSD	FG, grey, fabric is a typically a oblique to
709.54	0.73	MG229954	5	0	0.01	0	0	0	0	60	NVS	ALTN	MTSD	FG, grey a fabric typ jts thrt at thrt, botto character
711.07	1.52	MG229955	5	0	0.01	0.01	0	0.001	0	85	NVS	ALTN	QD	FG to VFG Qz-Cb vnt tca. unit is pale gree
712.07	1.01	MG229957	5	0	0.01	0.01	0	0.001	0	85	NVS	ALTN	QD	FG to MG thrt often pervasive
712.68	0.61	MG229958	5	0	0.01	0.01	0	0.001	0	80	NVS		QD	FG, grey t 1cm with 2mm Qz-C with Qz-C
712.87	0.18	MG229959	5	0	0.01	0.01	0	0.001	0	100	NVS		QD	FG, grey t 1cm with rare thin 3 selected f
713.6	0.73	MG229960	5	0	0.01	0.01	0	0.001	0	85	NVS		QD	FG to MG 1cm with 2mm Qz-0 tca often

y, local thinly laminated beds thrt. Bedding s at 40 to 45 deg tca, occ smth jts thrt y along bedding fabric. rare rough jts to bedding. NVS.

y and weakly green, local weak bedding ypically at 40 to 50 deg tca, common smth at 50 to 70 deg tca, thin 1-2mm Qz-Cb vnlts ottom of interval is greenish and is serized by abundant Qz-Cb veining. NVS.

FG, grey to greenish, aphanitic. abundant vntls thrt. upper contact is sharp at 30 deg t is pervasively altered and chloritized? to a een colour.

1G, grey to greenish, apilitic, occ rough jts en coated with Qz-Cb material. Unit is vely altered to a pale greenish colour.

y to bluish, laths of amphibole thrt up to th interstitial plagioclase. common thin 1z-Cb vnlts thrt. smth jts thrt often coated z-Cb material.

y to bluish, laths of amphibole thrt up to th interstitial plagioclase. no natural joints. n 1-2mm Qz-Cb vnlts thrt. ***Sample d for whole rock geochemistry***

AG grey to bluish, laths of amph thrt up to th interstitial plagioclase. common thin 1-2-Cb vnlts thrt. occ smth jts thrt at 45 deg en coated with Qz-CB matrial. NVS.

714.42	0.82	MG229961	5	0.1	0.01	0.01	0	0.002	0	70	NVS	QD	FG to MG thrt up to Cb vnlts t
715.06	0.64	MG229962	5	0.1	0	0.01	0	0.002	0	100	TR	IQD	FG to MG clasts wit and inters Qz-Cb vnl
716.28	1.22	MG229963	5	0.1	0.01	0.01	0	0.002	0	90	TR	QD	FG to MG amphibol common smth jts b
716.52	0.24	MG229964	5	0.1	0.01	0.01	0	0	0	100	SPKS	QD	FG, grey t 0.5cm, wi Qz-cb vnl homogen whole-roo
717.47	0.94	MG229965	5	0.1	0.01	0.01	0	0	0	80	NVS	QD	FG to MG up to 0.5c 1-5mm Q thrt often
718.11	0.64	MG229966	5	0	0.01	0	0	0.001	0	85	NVS	OLDI	FG to VFG contact sl magnetic
719.63	1.52	MG229967	5	0.1	0.01	0.01	0	0.001	0	85	TR	QD	FG to MG with inter vnlts thrt.
720.55	0.91	MG229968	5	0.1	0.01	0.01	0	0	0	75	TR	QD	FG to MG with inter vnlts thrt rare trace

MG grey to bluish, thin laths of amphibole to 1cm. interstitial plag thrt. abundant Qzts thrt. rare specks of Po and Pn thrt.

MG, grey to bluish, Weakly apparent angular within a MG matrix with laths of amphiboles terstitial plagioclase. Common thin 1-2mm vnlts thrt. trace spks of sulphide.

MG, grey to bluish, apilitic with laths of bole up to 1cm with interstitial plagioclase. on thin 1-3mm Qz-Cb vnlts thrt. common ts broken along Qz-Cb vnlts.

ey to bluish, apilitic with laths of amph up to with interstitial plagioclase. rare thin <1mm vnlts. Section has been selected to be genous and as free from veins as possible for -rock geochemistry***

MG, grey to bluish, laths of amphibole thrt 0.5cm with laths of plagioclase. common thin n Qz-Cb vnlts thrt. occ smth and rough jts ten along Qz-Cb vnlts.

/FG, dark grey, aphanitic, upper and lower t sharp at 20 deg tcxa, unit is highly tic.

MG, grey to bluish, laths of amph up to 1cm terstitial plagioclase. occ thin 1-4 mm Qz-Cb nrt. occ smth jts thrt often along Qz-Cb vnlts.

MG, grey to bluish, laths of amph up to 1cm terstitial plagioclase. occ thin 1-2 mm Qz-Cb nrt. occ smth jts thrt often along Qz-Cb vnlts. ace speck of Po and Pn.

720.85	0.3	MG229969	5	0	0.01	0.01	0	0	0	75	NVS		QD	FG to MG, amphibole Qz0Cb vnl
721.86	1.01	MG229970	5	0	0.01	0.01	0	0.001	0	85	NVS		QD	FG, grey t Qz-Cb vnli irregular a
722.47	0.61	MG229971	5	0	0.01	0.01	0	0	0	100	NVS		QTZT	FG to MG, sugary, or Qz-Cb vnlt proximity
723.9	1.43	MG229972	5	0	0.01	0.01	0	0	0	95	NVS	QTZT	MTSD	FG to MG, bedding fa to 40 deg rare thin 1
725.42	1.52	MG229973	5	0	0	0.01	0	0	0	90	NVS		MTSD	FG to MG, bedding fa smth jts th Qz-Cb vnh
750.94	25.51									90		QTZT	MTSD	FG to MG, thrt at a c thrt typica 3cm wide
757.12	6.19									40			QTZT	FG, grey to vnlts thrt. Cb breaks weakly ap
764.19	7.07									80		MTSD	QTZT	FG to MG, jts thrt at vnlt thrt. c core. NVS

1G, grey to bluish, apilitic, laths of oole are weakly apparent. occ thin 1-2mm vnlts thrt. trace spks of sulphide.

y to blue, aphanitic, abundant thin 1-2mm nlts thrt. lower contact is chilled and ar and cannot define a clear angle. NVS.

IG, grey to bluish, apparently massive and one smth jt at 50 deg tca. occ thin 1-2mm vnlts thrt. unit may be rextlized due to ity to dyke.

1G, grey to bluish, local thinly laminated g fabric typically at a centimeter scale at 30 eg tca. occ smth jts thrt at 40 to 50 deg tca, n 1-2mm Qz-Cb vnlts thrt.

1G, grey to bluish, local thinly laminated g fabric typically at a centimeter scale. occ s thrt at 40 to 50 deg tca, rare thin 1-2mm ynlts thrt. NVS.

1G, grey to bluish, local weak bedding fabric a centimeter scale. occ smth and rough jts vically at 30 to 50 deg tca. occ Qz vnlt thrt 2de. NVS.

y to bluish, common thin 1-2mm Qz-Cb rt. abundant smth jts thrt often along Qziks. local blocky core. Bedding fabric is apparent. NVS.

1G, grey to bluish, apparently massive, smth at 40 to 50 deg tca, occ thin 1-2mm Qz-Cb t. often Jts are along vnlts. local blocky VS.

770.72	6.52									80		QDIA	FG to VFG contact th Common alteration deg tca.
770.9	0.18	MG229974	5	0	0.01	0	0	0	0	100	NVS	QDIA	FG, grey t textured. selected f
777	6.1									85		QDIA	FG, grey t at 30 to 6 thin 1-2m Lower cor
,,,,	0.1									05		QUIA	
													FG, grey t thrt at 35
791.57	14.57									95		QTZT	Cb vnlts tl
													FG, grey t
													thrt at 25
801.01	9.45									65		MTSD	often alor bedding. d
	0110												
													FG, grey t
													at 20 to 3 at 50 to 7
822.02	21									85		MTSD	thrt. NVS.
													FG, grey t
													smth and
													core thrt. coated by
851.52	29.5									30		QTZT	carbonate

FG, grey to greenish, apilitic with upper that is chilled. smth and rough jts thrt. on thin 1-2mm Qz-Cb vnlts with pale grey on selvedges. rough. upper contact is at 50

y to greenish blue. apilitic, and sugary ed. rare <1mm Qz-Cb vntls. sample has been d for whole rock ID to identify the dyke.

y to greenish blue, rough and smth jts thrt o 60 deg tca, occ 2-3cm Qz veins thrt. occ 2mm Qz-Cb vnlts thrt. local blocky core. contact is broken and blocky NVS.

y to bluish, apparently massive, occ smth jts 35 to 60 deg tca, rare thin 0.1 to 0.5 cm Qzs thrt. NVS.

y to bluish, thinly laminated bedding fabric 25 to 30 deg tca, shallow, smth jts thrt long bedding. rough jts thrt oblique to g. occ thin 1-2mm Qz-Cb vnlts. NVS.

y to bluish, local thinly laminated beds thrt o 30 deg tca, common smth jts thrt typically o 70 deg tca. rare thin <1mm Qz-Cb vnlts /S.

y to blue, apparently massive, abundant nd rough jts thrt at various angles. blocky rt. often Jt surfaces and broken core is by carbonate material. common irregular ate veinlits thrt. NVS.

860.85	9.33	95		QTZT	FG, grey t Typically tca, local of blocky vntls and sulphides
882.67	21.82	75	MTGB	DIA	FG to MG common to thick fr veins thrt lower cor
886.97	4.3	80		QTZT	FG, grey t bedding f Qz/sand i NVS.
920.53	33.56	90		QTZT	FG, grey t to 40 deg 50 deg tc surfaces a
937.93	17.4	60		QTZT	FG, grey to to 40 deg various a interval ~ ant a sug 2mm Qz- with Cark
944.88	6.95	90		MTSD	FG, grey t typically a along bec NVS.

ey to bluish, local weak bedding is apparent. Ily massive, smth jts thrt from 15 to 60 deg cal rough jts, and one small (1 foot) interval cky core at 2746.1'. rare thin 1-2mm Qz-Cb and rare thin 1-2mm Chl vnlts. Trace des along some veinlits.

MG greenish to grey, phaneritic to aphanitic. on rough jts thrt at 30 to 50 deg tca. occ thin k from 1mm 8 inche Qz-Chl-tourmaline? chrt. upper contact is chilled at 30 deg tca contact is chilled and oriented at 45 deg tca.

ey to blue. apparently massive, no distinct ng fabric, grains are rounded and unit is nd rich. occ rough jts thrt at 50 to 60 deg tca.

ey to bluish, local weak bedding fabric at 30 deg tca, occ smth jts thrt typically at 40 oto g tca. rare thin 1-2mm Qz-Cb vnlt thrt. occ Jt es are coated with Carbonate material. NVS.

ey to bluish, local weak bedding fabric at 30 leg tca, abundant smth and rough jts at s angles from 5 deg tca to 60 deg tca. local al ~1foot wide of breccia with rounded clasts ugary, very fine grained matrix. rare thin 1-Qz-Cb vnlt thrt. occ Jt surfaces are coated arbonate material. NVS.

ey to blue, local thinly laminated beds thrt lly at 25 to 30 deg tca, smth jts thrt often bedding fol. Rough jts oblique to bedding.

BOREHOLE PROPERTY PR	OPERTY LEVEL	DEPTH	ACCT #	SYS	N	ORTHING	EASTING	ELEV	SIZE	START DATE	END DATE	FROM	то
1368950 Totten	180	0 1	581 R000929.	.0:	1	355229	295222	2	836 HQ	07/03/2018 13:58:26	6 06/05/2018 13:58:26	5 200)1

ТҮРЕ	RESOURCE APPLIED	STATUS
5187 EXPLN	Yes	Complete

DEPTH	AZIMUTH	DIP
0	198.75	-63.28
9.14	200.286	-63.3295
18.29	200.0041	-63.2389
27.43	199.9101	-63.2752
36.58	199.3986	-63.2581
45.72	199.2642	-63.2713
54.86	199.1381	-63.2685
64.01	199.0658	-63.2109
73.15	199.125	-63.2081
82.3	199.198	-63.2254
91.44	199.2518	-63.1877
100.58	199.0266	-63.1335
109.73	198.6587	-63.0007
118.87	198.461	-62.9308
128.02	198.4357	-62.9166
137.16	198.3708	-62.9062
146.3	198.2557	-62.8486
155.45	198.2597	-62.8198
164.59	198.2413	-62.6954
173.74	198.2248	-62.6916
182.88	198.3614	-62.6749
192.02	198.3791	-62.7139
201.17	198.4068	-62.6166
210.31	198.3246	-62.5069
219.46	198.4796	-62.5346
228.6	198.3964	-62.4681
237.74	198.4256	-62.4799
246.89	198.5863	-62.4086
256.03	198.7582	
265.18	198.829	
274.32	198.8112	
283.46	198.8214	
292.61	198.8988	
	198.9901	
310.9	198.9943	
320.04	199.1312	
329.18	198.9891	
338.33	198.9567	
	198.9595	
356.62	199.0128	
365.76	198.9791	
374.9	198.9701	
	199.0131	
	199.052	
	198.9861	
411.48	199.0119	-61.2148

420.62	199.1339	-61.1174	
429.77	199.2197	-61.058	
438.91	199.4447		
448.06	199.5794		
457.2	199.6263		
466.34			
400.34	199.4106	-60.6973	
484.63			
493.78	199.3731	-60.5858	
	199.4746		
512.06	199.6787		
521.21	199.7515	-60.2861	
530.35	199.9365	-60.1856	
539.5	199.8273		
548.64	199.93	-60.16	
557.78	199.9526	-60.0798	
566.93	199.9128	-60.0491	
576.07	199.979	-59.9325	
585.22	199.9387	-59.8407	
594.36	200.0545	-59.7276	
603.5	200.0792		
612.65	200.0337		
621.79	200.0383		
630.94	200.0505		
640.08	200.3499		
649.22	200.3499		
658.37			
667.51	200.7138		
676.66	200.8049		
685.8	200.9132		
694.94	200.9726		
704.09	201.1518		
713.23	201.0051	-59.0978	
722.38	200.9541	-58.8607	
731.52	201.0219	-58.6792	
740.66	200.9196	-58.377	
749.81	200.9334	-58.1663	
758.95	201.1179	-58.2362	
768.1	201.2385	-58.0175	
777.24	201.4387		
786.38	201.4754		
795.53	201.6271	-57.7955	
804.67			
813.82 822.06	201.8448		
822.96	202.1193		
832.1	202.487		
841.25	202.7057	-57.1939	

850.39	202.7614	-56.9431	
859.54	202.9503	-56.7448	
868.68	203.2855	-56.274	
877.82	203.542	-56.0258	
886.97	203.6214	-55.8463	
896.11	204.7051	-55.8265	
905.26	206.4188	-56.1752	
914.4	207.2124	-56.0788	
923.54	208.5657	-56.103	
932.69	209.5846	-56.0907	
941.83	210.6358	-55.964	
950.98	211.3925	-55.9601	
960.12	211.8086	-55.8455	
969.26	212.5275	-55.7901	
978.41	213.2909	-55.6611	
987.55	213.8996	-55.2885	
996.7	214.5587	-55.277	
1005.84	215.2491	-55.0805	
1014.98	215.627	-54.9182	
1024.13	216.0668	-54.9066	
1033.27	216.3025	-54.622	
1042.42	216.774	-54.5117	
1051.56	217.2475	-54.3046	
1060.7	217.7603	-54.0882	
1069.85	217.9409	-53.584	
1078.99	218.1055	-53.5305	
1088.14	218.2024	-53.5154	
1097.28	218.4557	-53.4308	
1106.42	218.4928	-53.1799	
1115.57	218.8779	-53.1724	
1124.71	219.2222	-52.9238	
1133.86	219.578	-52.628	
1143	219.703	-52.4751	
1152.14	219.8353	-52.4465	
1161.29	220.3062	-51.6098	
1170.43	220.8228	-50.5819	
1179.58	221.4049	-50.1139	
1188.72	222.0503	-49.6539	
1197.86	222.3697	-49.5271	
1207.01	222.8129	-49.3298	
1216.15	223.2017	-49.0578	
1225.3	223.6577	-48.8475	
1234.44	224.0354	-48.5819	
1243.58	224.3034	-48.3297	
	224.7216		
1261.87	225.3305	-47.7736	
1271.02	225.5266	-47.6056	

1200 10	225 0674	47 2275
1280.16	225.9674	
1289.3	226.2705	-46.9711
1298.45	226.3788	-46.9517
1307.59	226.6678	-47.0248
1316.74	226.8104	-46.8828
1325.88	227.029	-46.7923
1335.02	227.2984	-46.766
1344.17	227.5153	-46.3579
1353.31	227.593	-46.3755
1362.46	227.7803	-45.9588
1371.6	228.1496	-45.6443
1380.74	228.6251	-45.2238
1389.89	229.0715	-45.0659
1399.03	229.4357	-44.8059
1408.18	229.6616	-44.6159
1417.32	229.9032	-44.3978
1426.46	230.1735	-44.0903
1435.61	230.3806	-43.7894
1444.75	230.717	-43.3827
1453.9	230.729	-43.385
1463.04	232.556	-42.8712
1472.18	233.2658	-42.572
1481.33	233.3247	-42.2447
1490.47	233.3774	-42.0578
1499.62	233.6257	-41.7494
1508.76	234.1282	-41.4324
1517.9	234.2101	-41.3806
1519.12	234.36	-41.22
1520.95	236	-41.1
1551.13	236	-40.78
1555.09	237.9	-40.3
1556	238.8	-40.2
1559.05	240.1	-40.1
1562.1	239.6	-39.8
1567.89	241.7	-38.9
1570.94	243.9	-39.5
1571.85	244.4	-39.5
1573.99	244.5	-39.4
1577.04	239.7	-40.2
10,7.04	233.7	10.2

DEPTH	
2940	
4802	
5097	

ME	TERS	SAMPLE	INFO			PERCENT			GRAMS/TONNE					
DEPTH	LENGTH	SAMPLE	CODE	EST	CU	NI	СО	AS	ТРМ	RQD	ORE	/INOR ROC	ROCK	MILLSTOR
0	0													
8.23	8.23									0		OB	CASE	Casing/OB no co
														Broken up piece
8.47	0.24									0		OB	CASE	SIZED overdrille
														Fg, Dk grey MTS
														occasional thinl
														wide)(biotite rid
														tca, qtz vn @ 39
														vnlts btw 45-60
														py, jnts btw 10-
24.99	16.52									75			MTSD	coated with a fe
														Fg, dk grey, am
														are btw 1-3mm
25.36	0.37									100			MTBS	nvs, no jnts.
														Fg, Dk grey MTS
														and thinly lamin
														wide)(biotite rid tca, qtz vn @ 13
														qtz/carb vnlts b
														wide), tr py, jnt
44.01	18.65									80			MTSD	carb coated).
														,
														Fg, dk grey, qtz
														thinly laminated
														striped black (b
														rare conglomer
														incls up to 1cm)
														bedding (2cm-2
														subangular qtz
														20-25 deg tca, r
70.04	26.2									0-			e1 = 2	deg tca, tr py, jr
73.21	29.2									85		MTSD	SLTS	coated).

DESCRIPTION Collar core retrieved.

eces of rock (MTSD), GRAVEL illed pieces of core.

ATSD, qtz rich beds and hinly laminated beds (up to 1cm e rich), bedding is btw 25-30 deg 9 39 (approx. 0.5ft wide), qtz/carb -60 deg tca (up to 3cm wide), tr 10-50 deg tca (chl and carb a few intersecting jnt sets).

mygdaloidal basalt, amygdules m (carbonate-fizzes with HCL),

ATSD, qtz and biotite rich beds minated beds (up to 1cm rich), bedding is btw 25-30 deg 131.4ft (approx. 0.5ft wide), s btw 45-60 deg tca (up to 3cm jnts btw 30-70 deg tca (chl and

tz and biotite rich, commonly ted and btw 151-154.2ft (looks (biotitic) to grey (more qtz rich), nerate bed (subrounded qtz rich cm), rare SUBX vnlts cross cutting n-20cm wide) vfg, dk grey with tz rich fragments, bedding is btw a, min qtz carb vnlts btw 55-75 v, jnts btw 35-50 deg tca (chl

	94.31	21.09	80	SLTS	MTSD	Fg, Dk grey MTS occasional thinly wide)(biotite ric tca, qtz/carb vnl wide), tr py, jnts carb coated with
						Fg, Dk grey MTS laminated beds 20-30 deg tca, q tca (1-2mm wid qtz/carb vnlt @ tca), tr py, jnts b
-	123.78	29.47	80	SLTS	MTSD	tca (smooth chl
	124.79	1.01	100		LAMP	Fg, greenish gre throughout, hm (flaky biotite), sl 60 (lct) deg tca,
<u>.</u>	175.05	50.26	80	SLTS	MTSD	Fg, Dk grey MTS laminated beds 20-40 deg tca, q tca (1-2mm wid btw 50-60 deg t
	200.01	24.96	90	SLTS	MTSD	Fg, Dk grey MTS occasional thinly wide)(biotite ric tca, qtz/carb vnl wide), tr py and and carb coated
						Fg, Dk grey MTS thinly laminated wide)(biotite ric bedding is btw 5 btw 20-30 deg t chl healed fractu tr speck of arser
4	207.57	7.56	60	SLTS	MTSD	btw 10-20 deg t

ITSD, qtz rich beds and inly laminated beds (up to 1cm rich), bedding is btw 20-30 deg vnlts btw 20-25 deg tca (1-2mm nts btw 20-50 deg tca (chl and vith a few intersecting jnt sets).

ITSD, qtz rich beds and thinly ds (biotite rich), bedding is btw n, qtz/carb vnlts btw 15-30 deg vide) and rare brecciated @ 368.3ft (0.3ft wide @ 60 deg ts btw 20-30 and btw 50-70 deg th coated).

grey, lamp dyke, chl altn hmgs nmgs throughout, very biotitic), sharp contacts @ 15 (uct) and ca, nvs, no jnts.

ITSD, qtz rich beds and thinly ds (biotite rich), bedding is btw n, qtz/carb vnlts btw 15-30 deg vide), tr py, jnts btw 20-30 and g tca (smooth chl coated).

ITSD, qtz rich beds and inly laminated beds (up to 1cm rich), bedding is btw 20-30 deg vnlts btw 25-40 deg tca (1-2mm nd cp, jnts btw 40-50 deg tca (chl ced).

ITSD, qtz rich beds and common ted beds (up to 1cm rich), irregular wormy looking w 5-30 deg tca, qtz/carb vnlts g tca (1-2mm wide), vuggy and actures (core is blocky), tr py and seno pyrite, jnts btw 30-50 and g tca (chl and carb coated).

220.83	13.26	85	SLTS	MTSD	Fg, Dk grey MTS occasional thinl wide)(biotite ric tca, rare qtz/cai 2mm wide), tr p and carb coated
280.39	59.56	80	SLTS	MTSD	Continuation of competent, may Laminations are at 10-25deg tca beds of little to the same textur rare tr speck of
					MTSD as descril broken and bloc
281.76	1.37	5	MTSD	FLT	at the upper co
341.5	59.74	75	SLTS	MTSD	Continuation of competent, mas Laminations are tca ranging from vnlts are randor at 15Deg tca. So plane of the lam occasionally has (rehealed). No s speck of Po or P
347.32	5.82	20	MTSD	STRT	MTSD as descril However, very b pieces on avera but abundant b with minor grou some frac plane Texturally the so orientated qtz-o

ATSD, qtz rich beds and inly laminated beds (up to 1cm rich), bedding is btw 20-30 deg carb vnlts btw 25-30 deg tca (1tr py, jnts btw 10-30 deg tca (chl ted).

of MTSD unit above, fg, grey, nassive and hmgs throughout. are present throughout occurring cca. Occasional more massive to no laminations but generally turally. No significant sulphides, of Po or Pyt.

cribed above except a Flt with locky core. Minor 1-2inch gouge contact. No sulphides present.

of MTSD unit above, fg, grey, massive and hmgs throughout. are abundant and occur subpll rom (10-15deg) tca. Qtz-carb domly orientated but often seen . Some fractures occur along the laminations. Texturally the core has a brecciated like appearance lo significant sulphides, rare tr or Pyt.

cribed above, continued. ry broken and blocky (1-4inch erage). No major gouge sections t breaks along fracture plane round core/sand sized along mes. No significant sulphides. e same with some randomly iz-carb vnlts.

362.89	15.58	85 SS	MTSD	Continuation of competent, mas Laminations are appear as more are randomly or 40-60deg tca on laminations ar p occasionally has of micro fracture sulphides, rare t
367.28	4.39	20 MTSD	STRT	MTSD as describ However, very b pieces on averag but abundant br with minor grou some frac plane coated with min minor graphite o significant sulph
387.25	19.96	80 SS	MTSD	Continuation of competent, mas Laminations are appear as more are randomly or 40-60deg tca on laminations ar3 occasionally has of micro fracture sulphides, rare t
387.64	0.4	100	DIA	Vfg to fg, dk gre is non-magnetic phenocrysts(1m up to 2cm, shar deg tca.

of MTSD unit above, fg, grey, massive and hmgs throughout. are less common and the MTSD ore of a SS MTSD. Qtz-carb vnlts orientated. Fractures occur at on average when no dominant r present. Texturally the core mas a brecciated like appearance cures(rehealed). No significant re tr speck of Po or Pyt.

cribed above, continued. y broken and blocky (1-4inch erage). No major gouge sections breaks along fracture planes round core/sand sized along nes. Fracture planes are chlorite ninor ground core. Possibly te coating along the surface. No lphides.

of MTSD unit above, fg, grey, nassive and hmgs throughout. are less common and the MTSD ore of a SS MTSD. Qtz-carb vnlts orientated. Fractures occur at on average when no dominant ar3 present. Texturally the core has a brecciated like appearance cures(rehealed). No significant re tr speck of Po or Py.

grey (looks like OLDI but the dia etic), visible plag 1mm) and larger porphryoblasts narp uct @ 50 and lct sharp @ 50

401.85	14.2	85	SS	MTSD	Fg, grey, compe mostly homoge vnlts btw 30-60 (<0.5%), jnts btv
411.85	10	20	MTSD	STRT	MTSD as descril However, very I pieces on avera abundant break minor ground co frac planes. @ 1 with qtz/carb co deg tca) Jnts are coated and smo
431.99	20.15	75	SLTS	MTSD	Continuation of biotite), Fg, gree hmgs throughou throughout occ Occasional mor laminations but No significant su po (0.5%); jnts b and smooth).
432.79	0.79	50		OLDI	VFG to Fg, dk gr magnetic, sharp tca, blocky and pieces of core.
442.66	9.88	85	SLTS	MTSD	Biotite rich lam throughout occ Occasional mor laminations but No significant si po (0.5%); jnts l and smooth). VFG to Fg, dk gr magnetic, sharp
442.75	0.09	100		OLDI	tca, no jnts.

petent MTSD, massive and ogenous throughout, rare qtz carb -60 deg tca, spks py and po btw 25-50 deg tca (chl coated).

cribed above, continued. ry broken and blocky (1-4inch erage). No gouge sections but eaks along fracture planes with d core/pebble sized along some @ 1330ft Carb healed fracture o crystals within the vug (@ 45 are btw 5-40 deg tca (chlorite mooth).

o of MTSD unit above (qtz and grey, competent, massive and hout. Laminations are present occurring btw 15-30 deg tca. hore massive beds of little to no but generally the same texturally. t sulphides, rare tr spks py and ts btw 15-35 deg tca (chl coated

greyish black OLDI, Strongly arp uct @ 35 and lct @ 60 deg nd broken into gravel to 4 inch e.

aminations are present occurring btw 15-30 deg tca. hore massive beds of little to no but generally the same texturally. t sulphides, rare tr spks py and ts btw 15-35 deg tca (chl coated

greyish black OLDI, Strongly arp uct @ 60 and lct @ 65 deg

461.92 463.42	19.17 1.49	MG220601	5	0	0.01	0	0	0	0	90 90	NVS	SLTS SLTS	MTSD MTSD	Fg, grey, qtz an laminated (biot grey (more qtz tca, min irregul tca, tr po and p coated). MTSD as descri bracket sample below.
403.42	1.45	1010220001	5	0	0.01	0	U	0	0	50	1105	JLIJ	IVIT5D	Below.
464.88	1.46	MG220603	5	10	0.15	0.04	0.03	0	0	90	STRS		MTSD	MTSD with stro Has a darker bla compared to qt Almost similar t About 10% sulp Entire unit is no sulphides. Uppe 10-15deg tca. F tca are sulphide masu.
466.4	1.52	MG220604	5	0	0.01	0.01	0	0	0	90	NVS	SLTS	MTSD	MTSD as descri This is just a bu
475.49	9.08									90		SLTS	MTSD	Fg, grey, qtz an laminated (biot grey (more qtz tca, min irregul tca, tr po and p coated).
476 40	1.01									00				Black fg chilled Sharp upper ct
476.49	1.01									90		DIA	OLDI	sulphides prese
														MTSD continue and biotite rich (biotite) (stripe qtz rich), beddi irregular qtz ca po and py, jnts
487.44	10.94									90		SLTS	MTSD	coated).

and biotite rich, commonly thinly viotite) (striped black (biotitic) to stz rich), bedding is btw 15-25 deg gular qtz carb vnlts btw 55-75 deg d py, jnts btw 15-30 deg tca (chl

cribed above. This is just a ple above the mineralized sample

trong laminations and BT rich. black-brown appearance oftz rich mtsd above and below. ar to a banded Fe formation. ulphides with 8%Po and 2%Cpy. non-magnetic including the pper and lower CTs are sharp at a. Fracture planes perpendicular hide filled and appear as if it is

cribed (MG220601) and above. buffer sample.

and biotite rich, commonly thinly viotite) (striped black (biotitic) to vitz rich), bedding is btw 15-25 deg gular qtz carb vnlts btw 55-75 deg d py, jnts btw 15-30 deg tca (chl

ed magnetic aphanitic DIA dyke. ct at 55 and lower 50 deg tca. No esent.

nued from above. Fg, grey, qtz rich, commonly thinly laminated iped black (biotitic) to grey (more dding is btw 15-25 deg tca, min carb vnlts btw 55-75 deg tca, tr nts btw 15-30 deg tca (chl

488.35	0.91									80		DIA	OLDI	Black fg chilled aphanitic DIA lower 30 deg t
514.99	26.64									90		SLTS	MTSD	MTSD continu and biotite ric (biotite) (strip qtz rich), bedc irregular qtz c po and py, jnt coated).
														MTSD continu rich, but lackir dominant bed more massive whispy qtz-can
574.15	59.16									90		SS	MTSD	the unit. Com sulphides. MTSD as desc continuation o
575.49	1.34	MG220605	5	0	0.01	0.01	0	0	0	90	NVS	SS	MTSD	just the buffer sulphides. Continuation sample above
576.96	1.46	MG220606	5	0	0	0.01	0	0	0	90	NVS	SS	MTSD	qtz vnlts.
577.99	1.04	MG220607	5	0	0	0.01	0	0.001	0	90	NVS		QD	This is the beg transitional zo Believed to be becoming mod igneous with o coarsening ov significant sul
579.39	1.4	MG220608	5	0	0.01	0.01	0	0	0	90	NVS		QD	Beginning of t spherulitic tex hmgs through cutting. No sig

lled magnetic massive and hmgs, IA dyke. Sharp upper ct at 50 and eg tca. No sulphides present.

nued from above. Fg, grey, qtz rich, commonly thinly laminated riped black (biotitic) to grey (more edding is btw 15-25 deg tca, min z carb vnlts btw 55-75 deg tca, tr ints btw 15-30 deg tca (chl

nued from above. Fg, grey, qtz king the laminations and edding. The MTSD becomes a ve hmgs sandstone with just small carb vnlts randomly cross cutting ompetent core. No significant

scribed above. This is a n of the MTSD and is sampled as fer above the QD below. No

n of MTSD above. This is a buffer ve the QD. No sulphides. Minor

beginning of the QD. This is a zone with a very weak upper CT. be a mix of MTSD and QD but nore crystaline, equigranualr and h depth. Relatively fg with a slight over this interval with depth. No sulphides.

of the true QD. Grey, mg, some textures throughout. Relatively ghout. Minor qtz-carb vnlts cross significant ulphides.

													QD continued spherulitic tex hmgs throughd
581.01	1.62	MG220609	5	0	0	0.01	0	0	0	90	NVS	QD	cutting. No sig
													QD continued spherulitic tex
582.38	1.37	MG220611	5	0	0.01	0.01	0	0	0	90	NVS	QD	hmgs through cutting. No sig
													QD continued spherulitic tex
													hmgs through
584	1.62	MG220612	5	0	0.02	0.01	0	0	0.03	90	NVS	QD	cutting. No sig
													QD continued
													spherulitic text
585.12	1.13	MG220613	5	0	0.01	0.01	0	0	0.03	90	NVS	QD	hmgs through cutting. No sig
565.12	1.15	WG220013	J	0	0.01	0.01	0	0	0.03	90	1113	QD	cutting. NO sig
													IQD with inclus
													amphibolites. rich matrix hos
													appears to be
													the QD (above
587.23	2.1	MG220615	5	0	0.01	0.01	0	0	0.03	90	NVS	IQD	significant sulp
													QD continued
			_		0.04								Relatively hmg
588.51	1.28	MG220616	5	0	0.01	0.01	0	0	0	90	NVS	QD	vnlts cross cut
													QD continued
500	1 40	140220017	F	0	0.01	0.01	0	0	0	00		00	Relatively hmg
590	1.49	MG220617	5	0	0.01	0.01	0	0	0	90	NVS	QD	vnlts cross cut
													QD continued
591.37	1.37	MG220618	5	0	0	0.01	0	0	0	90	NVS	QD	Relatively hmg vnlts cross cut
551.57	1.37	1410220010	J	U	0	0.01	U	U	U	30	CVFI	QU	
													QD continued
592.26	0.88	MG220620	5	0	0	0.01	0	0	0	90	NVS	QD	Relatively hmg vnlts cross cut
552.20	0.00	10220020	5	U	U	0.01	U	U	0	50	1405		

ed from above, Grey, mg, some extures throughout. Relatively ghout. Minor qtz-carb vnlts cross significant sulphides.

ed from above, Grey, mg, some extures throughout. Relatively ghout. Minor qtz-carb vnlts cross significant sulphides.

ed from above, Grey, mg, less extures than above. Relatively ghout. Minor qtz-carb vnlts cross significant sulphides.

ed from above, Grey, mg, some textures throughout. Relatively ghout. Minor qtz-carb vnlts cross significant sulphides.

clusions of MTGB now altered to es. fabric occurring at 30deg tca. Bt hosting the inclusions. This be a small interval/injection into ove and Below this interval). No sulphides.

ed from above, Grey, mg. mgs throughout. Minor qtz-carb cutting. No significant sulphides.

ed from above, Grey, mg. mgs throughout. Minor qtz-carb cutting. No significant sulphides.

ed from above, Grey, mg. mgs throughout. Minor qtz-carb cutting. No significant sulphides.

ed from above, Grey, mg. mgs throughout. Minor qtz-carb cutting. No significant sulphides.

592.62	0.37	MG220621	5	1	0.1	0.05	0.01	0.003	0.1	90	NVS	QTZ	QTZ, white cro sulphides aloną or less.
594.15	1.52	MG220622	5	0	0.01	0.01	0	0	0	90	NVS	QD	QD continued f Relatively hmg vnlts cross cutt
595.27	1.13	MG220624	5	0	0.01	0.01	0	0	0	90	NVS	QD	QD continued f Relatively hmg vnlts cross cutt
596.71	1.43	MG220625	5	0	0.01	0.01	0	0	0	90	NVS	QD	QD continued 1 Relatively hmg vnlts cross cutt
597.77	1.07	MG220626	5	1	0.04	0.02	0	0.001	0.07	90	TR	IQD	IQD, beginning left the margin middle of the V contains abund Amphibolite) ir 2mm to 6inche multiple larger specks and sma present. 1% or visible.
598.99	1.22	MG220627	5	1	0.03	0.02	0	0.001	0.07	90	TR	IQD	IQD contains a Amphibolite) ir 2mm to 6inche multiple larger specks and sma present. 1% or visible.
600.46	1.46	MG220628	5	1	0.04	0.05	0	0.001	0.14	90	TR	IQD	IQD contains a Amphibolite) ir 2mm to 6inche multiple larger specks and sma present. 1% or visible.

ross cutting vein. Tr Cpy ong the CTs. Occur as specks. 1%

ed from above, Grey, mg. ngs throughout. Minor qtz-carb utting. No significant sulphides.

ed from above, Grey, fg-mg. mgs throughout. Minor qtz-carb utting. No significant sulphides.

ed from above, Grey, fg-mg. mgs throughout. Minor qtz-carb utting. No significant sulphides.

ing of a large IQD interval. DH has ginal QD and entered into the e Worthington Dyke. The IQD undant MTGB (Now altered to) inclusions ranging in size from ches. Average size is 2-6mm with ger ones from 2-3inches. TR diss small discontinuous streaks are or less overall. Usually CP and Po

s abundant MTGB (Now altered to) inclusions ranging in size from ches. Average size is 2-6mm with ger ones from 2-3inches. TR diss small discontinuous streaks are or less overall. Usually CP and Po

s abundant MTGB (Now altered to) inclusions ranging in size from ches. Average size is 2-6mm with ger ones from 2-3inches. TR diss small discontinuous streaks are or less overall. Usually CP and Po

IQD contains Amphibolite) 2mm to 6inch multiple large specks and sn present. 1% o visible.	IQD	TR	90	0.14	0.001	0	0.04	0.04	1	5	MG220629	1.55	602.01
IQD contains Amphibolite) 2mm to 6inch multiple large specks and sn present. 1% o visible.	IQD	TR	90	0.14	0.002	0	0.04	0.05	1	5	MG220631	1.62	603.63
IQD contains a Amphibolite) 2mm to 6inch multiple large specks and sn present. 1% o													
visible.	IQD	TR	90	0.21	0.002	0	0.05	0.05	1	5	MG220632	1.37	605
IQD as describ	IQD	TR	90	0.27	0.008	0.01	0.1	0.07	1	5	MG220633	2.5	607.5
IQD as describ A White cross of this interva	IQD	TR	90	0.14	0.022	0.01	0.06	0.04	1	5	MG220634	1.07	608.56
QD contains a Amphibolite) 2mm to 6inch multiple large specks and sn present. 1% o visible.	IQD	TR	90	0.17	0.005	0	0.04	0.03	1	5	MG220635	1.13	609.69
IQD as describ	IQD	TR	90	0.17	0.005	0	0.04	0.05	1	5	MG220636	1.31	611
IQD as describ	IQD	TR	90	0.21	0.007	0	0.05	0.05	1	5	MG220638	1.71	612.71
	140		50	0.21	0.007	Ŭ	0.00	0.05	±	5		±./ ±	J-2.7 I

s abundant MTGB (Now altered to e) inclusions ranging in size from ches. Average size is 2-6mm with ger ones from 2-3inches. TR diss small discontinuous streaks are or less overall. Usually CP and Po

e) inclusions ranging in size from ches. Average size is 2-6mm with ger ones from 2-3inches. TR diss small discontinuous streaks are or less overall. Usually CP and Po

s abundant MTGB (Now altered to e) inclusions ranging in size from ches. Average size is 2-6mm with ger ones from 2-3inches. TR diss small discontinuous streaks are or less overall. Usually CP and Po

ribed above. Sulphide 1% or less.

ribed above. Sulphide 1% or less. ss cutting qtz vn representing 50% val.

s abundant MTGB (Now altered to e) inclusions ranging in size from ches. Average size is 2-6mm with ger ones from 2-3inches. TR diss small discontinuous streaks are 5 or less overall. Usually CP and Po

ribed above. Sulphide 1% or less.

ribed above. Sulphide 1% or less.

IQD as describ	IQD	TR	90	0.07	0.002	0	0.02	0.02	1	5	MG220640	1.28	613.99
IQD as describ	IQD	TR	90	0.17	0.008	0	0.04	0.04	1	5	MG220641	1.4	615.39
IQD as describ	IQD	TR	90	0.14	0.002	0	0.04	0.03	1	5	MG220642	1.62	617.01
IQD as describ	IQD	TR	90	0.14	0.001	0	0.04	0.05	1	5	MG220643	1.49	618.5
IQD as describ	IQD	TR	90	0.17	0.002	0	0.04	0.05	1	5	MG220644	1.49	619.99
IQD as describ	IQD	TR	90	0.07	0.002	0.01	0.03	0.04	1	5	MG220645	1.43	621.43
IQD as describ	IQD	TR	90	0.17	0.001	0.01	0.04	0.05	1	5	MG220646	0.67	622.1
IQD as describ	IQD	TR	90	0.14	0.004	0.01	0.03	0.09	1	5	MG220647	2.41	624.5
IQD as describ	IQD	TR	90	0.1	0.003	0	0.03	0.07	1	5	MG220648	1.49	626
IQD as describ	IQD	TR	90	0.17	0.013	0.01	0.04	0.02	1	5	MG220650	1.55	627.55
IQD as describ	IQD	TR	90	0.17	0.012	0.01	0.04	0.03	1	5	MG220651	1.43	628.99
IQD as describ	IQD	TR	90	0.21	0.011	0.01	0.04	0.05	1	5	MG220653	1.22	630.2
IQD as describ less. A couple with BT halos associated wir coated and m pieces are ass drilling.	IQD	TR	50	0.21	0.01	0.01	0.04	0.05	1	5	MG220654	1.01	631.21
IQD as describ inclusions and seen as diss s	IQD	TR	30	0.14	0.006	0.01	0.05	0.13	1	5	MG220655	0.79	632
IQD as describ inclusions and diss specks th	IQD	TR	80	0.14	0.001	0	0.04	0.05	1	5	MG220656	1.58	633.59

ribed above. Sulphide 1% or less. ribed above. Sulphide 1% or less.

ribed above with 1% sulphides or le larger(2-3inch) amph inclusions os. Broken and blocky pieces likely with a fracture plane, chlorite minor movement. Some of the ssociated with the mechanical

ibed above with typically small nd less than 1% sulphides overall specks throughout.

ibed above with typically small nd sulphides 1% or less, seen as hroughout.

IQD as descri inclusions an diss specks tl chlorite coat pieces due to	IQD	TR	70	0.21	0.001	0	0.04	0.02	1	5	MG220657	1.4	634.99
IQD as descri inclusions an diss specks tl	IQD	TR	90	0.14	0.002	0	0.03	0.03	1	5	MG220658	1.55	636.54
IQD as descri minor diss su inclusions (2- halos.	IQD	TR	90	0.1	0.003	0	0.03	0.02	1	5	MG220659	1.46	638.01
IQD as descri minor diss su inclusions (2- halos. Fractu													
has caused so significant m	IQD	TR	60	0.1	0	0	0.03	0.04	1	5	MG220660	1.68	639.68
IQD as descri minor diss su	IQD	TR	90	0.17	0.001	0	0.04	0.05	1	5	MG220661	1.31	640.99
IQD as descri minor diss su inclusions (2- halos.	IQD	TR	90	0.14	0.002	0	0.04	0.04	1	5	MG220663	1.49	642.49
IQD as descri minor diss su inclusions (2- halos.	IQD	TR	90	0.14	0.001	0	0.04	0.04	1	5	MG220664	1.52	644.01
IQD as descri minor diss su	IQD	TR	90	0.17	0.001	0	0.04	0.04	1	5	MG220665	1.55	645.57
IQD as descri minor diss su	IQD	TR	90	0.17	0.003	0	0.04	0.06	1	5	MG220666	1.95	647.52

ibed above with typically small ad sulphides 1% or less, seen as hroughout. Minor fracture, red surface and some broken o mechanical drilling.

ibed above with typically small nd sulphides 1% or less, seen as hroughout.

ibed above with inclusions and Iphides, 1% or less. Several large -3inches) of MTGB altered and BT

ibed above with inclusions and ulphides, 1% or less. Several large -3inches) of MTGB altered and BT are also present subpll TCA that ome blocky core but no novement identified.

ibed above with inclusions and Ilphides, 1% or less.

ibed above with inclusions and Ilphides, 1% or less. Several large -3inches) of MTGB altered and BT

ibed above with inclusions and Ilphides, 1% or less. Several large -3inches) of MTGB altered and BT

ibed above with inclusions and Ilphides, 1% or less.

ibed above with inclusions and Ilphides, 1% or less.

QD, grey, non-mag, so appearing as a sphere massive, competent, sulphides. The upper the IQD occurs at 15c QD as described abov lathy minerals appear This is a massive, com significant sulphides. QD as described abov sulphides. Very massi throughtout.

throughtout. throughout. throughout. throughout. throughout. throughout. throughout. throughout. throughout. throughout. throughout.

648.46	0.94	MG220667	5	0	0.03	0.02	0	0.001	0.03	95	NVS	QD
650.11	1.65	MG220668	5	0	0.03	0.01	0	0	0	95	NVS	QD
651.36	1.25	MG220669	5	0	0.01	0.01	0	0	0	95	NVS	QD
653	1.65	MG220670	5	0	0.01	0.01	0	0	0	95	NVS	QD
654.5	1.49	MG220671	5	0	0.01	0.01	0	0	0	95	NVS	QD
655.99	1.49	MG220672	5	0	0.01	0.01	0	0	0	95	NVS	QD
657.45	1.46	MG220674	5	0	0.01	0.01	0	0	0	95	NVS	QD
659.01	1.55	MG220675	5	0	0.01	0.01	0	0	0	95	NVS	QD
660.47	1.46	MG220676	5	0	0.03	0.01	0	0	0	95	NVS	QD
662	1.52	MG220677	5	0	0.01	0.01	0	0	0	95	NVS	QD
662.91	0.91	MG220678	5	0	0.01	0.01	0	0	0	95	NVS	QD
665.01	2.1	MG220679	5	0	0.01	0.01	0	0	0	95	NVS	QD
666.02	1.01	MG220680	5	0	0.02	0.01	0	0	0	95	NVS	QD

QD, grey, non-mag, some lathy minerals appearing as a spherulitic txt. This is a massive, competent, hmgs unit. No significant sulphides. The upper Ct of this interval with the IQD occurs at 15deg tca.

QD as described above. Grey, non-mag, some lathy minerals appearing as a spherulitic txt. This is a massive, competent, hmgs unit. No significant sulphides.

QD as described above with no significant sulphides. Very massive, uniform and hmgs

QD as described above with no significant sulphides. Very massive, uniform and hmgs

QD as described above with no significant sulphides. Very massive, uniform and hmgs

QD as described above with no significant sulphides. Very massive, uniform and hmgs

QD as described above with no significant sulphides. Very massive, uniform and hmgs

QD as described above with no significant sulphides. Very massive, uniform and hmgs

QD as described above with no significant sulphides. Very massive, uniform and hmgs

QD as described above with no significant sulphides. Very massive, uniform and hmgs

QD as described above with no significant sulphides. Very massive, uniform and hmgs

QD as described above with no significant sulphides. Very massive, uniform and hmgs

QD as described above with no significant sulphides. Very massive, uniform and hmgs

666.93 0.91 MG220681 5 0 0.01 0.01 0.01 0 0 85 NVS OLDI DIA	very Fg Black, chilled aphanit be OLDI cross present. QD as describe sulphides. Ver throughout.
668 1.07 MG220682 5 0 0 0.01 0 0 95 NVS QD	
669.74 1.74 MG220683 5 0 0.02 0.03 0 0.006 0.1 95 NVS QD	QD as describe sulphides. Ver throughout. Lo with a couple transitions into
	Weakly develo to the QD but equigranular o 1% or lss. (Po a MTGB/amph a from 2-3mm to
670.99 1.25 MG220684 5 1 0.05 0.05 0.01 0.027 0.17 90 TR IQD	Sometimes ver IQD as describ
672.48 1.49 MG220685 5 1 0.05 0.05 0 0.003 0.21 95 TR IQD	Trace or weak inclusions.
674 1.52 MG220686 5 1 0.03 0.02 0 0.001 0.07 95 TR IQD	IQD as describ Trace or weak inclusions. Cor or structures.
675.22 1.22 MG220689 5 1 0.05 0.04 0 0.004 0.21 95 TR IQD	IQD as describ Trace or weak inclusions.
676.99 1.77 MG220690 5 1 0.04 0.04 0 0.003 0.14 95 TR IQD	IQD as describ Trace or weak inclusions, gen
678.76 1.77 MG220691 5 1 0.04 0.04 0 0.001 0.17 95 TR IQD	IQD as describ Trace or weak inclusions, gen

k, massive and hmgs throughout, nitic dyke. Magnetic. Believed to ss cutting QD. No sulphides

ibed above with no significant 'ery massive, uniform and hmgs

ibed above with no significant ery massive, uniform and hmgs Lower CT is somewhat irregular le MTGB blocks included as it nto the IQD below.

eloped IQD. Main mass is similar ut slightly more fg and not as r or hmgs. Diss sulphides present o and Cpy primarily). Inclusions of n are present. Ranging on size n to 2inches on average. very faint and difficult to see. ribed above. 1% sulphides or less. akly diss. Mod-abundant

ribed above. 1% sulphides or less. akly diss. Mod-abundant competent unit with rare fractures

ibed above. 1% sulphides or less. akly diss. Mod-abundant

ibed above. 1% sulphides or less. akly diss. Mod-abundant amph enerally less than 1 inch.

ibed above. 1% sulphides or less. akly diss. Mod-abundant amph enerally less than 1 inch.

IQD as describ													
Trace or weakl inclusions, gen	IQD	TR	95	0.17	0.002	0	0.04	0.04	1	5	MG220692	1.28	680.04
IQD as describ Trace or weakl inclusions, gen	IQD	TR	95	0.1	0	0	0.03	0.04	1	5	MG220693	1.71	681.75
IQD as describ Trace or weakl inclusions, gen defined sharp transitional loc becoming mor of qtz-carb vnl	IQD	TR	95	0.1	0.001	0	0.03	0.04	1	5	MG220694	1.4	683.15
QD, becoming Minor amph ir identified thro but rare speck Qtz-carb vnlts denoting the li	QD	NVS	90	0	0	0	0.01	0.02	0	5	MG220695	1.22	684.37
QD as describe sulphides. Pos inclusions. Ma competent.	QD	NVS	90	0.03	0	0	0.01	0.01	0	5	MG220696	1.65	686.01
QD as describe sulphides. Pos inclusions. Ma competent.	QD	NVS	90	0.1	0.001	0	0.03	0.03	0	5	MG220697	1.46	687.48
QD as describe sulphides. Poss inclusions. Ma competent.	QD	NVS	90	0.03	0	0	0.01	0.01	0	5	MG220698	1.62	689.09
QD as describe sulphides. Pos inclusions. Ma competent.	QD	NVS	90	0	0	0	0.01	0.01	0	5	MG220700	1.52	690.62

ribed above. 1% sulphides or less. akly diss. Mod-abundant amph generally less than 1 inch.

ribed above. 1% sulphides or less. akly diss. Mod-abundant amph generally less than 1 inch.

ribed above. 1% sulphides or less. akly diss. Mod-abundant amph generally less than 1 inch. No rp ct near the lower CT, more loosing the inclusions and nore hmgs QD. Also slight increase wnlts. near the ct.

ng very uniform, competent. i inclusions can randomly be roughout. Generally no sulphides cks have been observed. Some ts along upper ct possibly e lithology contact.

ibed above, no significant ossibly rare trace specks. Rare Aassive and hmgs unit that is

ibed above, no significant ossibly rare trace specks. Rare Aassive and hmgs unit that is

ibed above, no significant ossibly rare trace specks. Rare Aassive and hmgs unit that is

ibed above, no significant ossibly rare trace specks. Rare Aassive and hmgs unit that is

691.99	1.37	MG229605	5	0	0.02	0.02	0	0	0.07	90	NVS	QD	QD as described sulphides. Possik and hmgs unit th
													QD as described
													sulphides. Possib
													and hmgs unit th
													Also a white bree
			_								A 11 / C		2276.1 occurring
693.45	1.46	MG229606	5	0	0.03	0.02	0	0.002	0.07	90	NVS	QD	thickness of 3inc
													QD as described
													sulphides. Possib
694.91	1.46	MG229608	5	0	0.02	0.01	0	0.001	0	90	NVS	QD	and hmgs unit th
													QD as described
													slightly finer grai
													interval is descri
													with mixing occu No immediate sh
695.61	0.7	MG229609	5	0	0.01	0.01	0	0	0	80	NVS	QD	sulphides preser
													MTSD, but possil
													with the QD abo
													rich and possibly
													occurring. Relativ
696.44	0.82	MG229610	5	0	0	0.01	0	0	0	90	NVS	MTSD	No sulphides.
													MTSD, but possil
													with the QD abo
													rich and possibly
697.38	0.94	MG229611	5	0	0.01	0.01	0	0	0.03	90	NVS	MTSD	occurring. Relativ No sulphides.
007100	0.01		J	Ū	0.01	0.01	Ū	0	0.00	50			
													MTSD continued
													contamination fr
													lighter in color b
													stressed with fra
													rehealed and inf halo of alteratior
699.06	1.68	MG229612	5	0	0.01	0.01	0	0	0	90	NVS	MTSD	fracture walls. N

ribed above, no significant Possibly rare trace specks. Massive nit that is competent.

ribed above, no significant Possibly rare trace specks. Massive nit that is competent throughout. e brecciated rehealed qtz vn at urring at 20deg tca with a true f 3inches.

ribed above, no significant Possibly rare trace specks. Massive nit that is competent.

ribed above except it becomes r grained, and more bt rich. This escribed as a transitional zone g occurring with the MTSDs below. ate sharp ct identified. No resent.

possible mixing and contamination Dabove. Appears to be more BT ssibly a weak fabric/layering Relatively hmgs massive texture.

possible mixing and contamination Dabove. Appears to be more BT ssibly a weak fabric/layering Relatively hmgs massive texture.

nued from above with little to no ion from the QD. More qtz rich, olor but also texturally it has been th fractures that have been nd infilled with qtz or has a slight ration from fluids along the Ils. No sulphides identified.

701.01	1.95	MG229613	5	0	0.01	0.01	0	0	0	80	NVS		MTSD	MTSD, qtz rich, texturally it has that have been or has a slight h along the fractu identified.
														MTSD, qtz rich, texturally it has that have been or has a slight h along the fractu
702.59	1.58	MG229614	5	0	0.02	0.01	0	0	0	80	NVS		MTSD	identified.Slight above 2 interva
704	1.4	MG229615	5	0	0.01	0.01	0	0	0	80	NVS		MTSD	MTSD similar to and more comp MTSDs. Weak f sulphides.
704	1.4	WG229015	5	0	0.01	0.01	0	0	0	80	1112		INT SD	
			_											MTSD as descri 40deg tca. Rela This is a buffer
704.7	0.7	MG229616	5	0	0.02	0.01	0	0	0	85	NVS	SS	MTSD	sulphides ident
706.16	1.46	MG229617	5	0	0.01	0.01	0	0	0	85	NVS	SS	MTSD	MTSD as descri 40deg tca. Rela This is a buffer sulphides ident
														MTSD as descri 40deg tca. Rela
707.01	0.85	MG229618	5	0	0.01	0.01	0	0.001	0	85	NVS	SS	MTSD	This is a buffer sulphides ident
708.54	1.52	MG229619	5	0	0.01	0.01	0	0	0	85	NVS		MTSD	MTSD as descri sample for the
														MTSD as descri 1.5inch true thi vein that cross
708.72	0.18	MG229620	5	20	0.11	0.63	0.04	0	0.03	90	MASU	MTSD	MASU	Sharp contacts.
710	1 70	MC220621	E	0	0.01	0.01	0	0	0	90	NVS		MTSD	MTSD as descri to the MASU Po
710	1.28	MG229621	5	0	0.01	0.01	U	0	0	90	1112			

ch, lighter in color but also has been stressed with fractures en rehealed and infilled with qtz ht halo of alteration from fluids acture walls. No sulphides

ch, lighter in color but also has been stressed with fractures en rehealed and infilled with qtz ht halo of alteration from fluids acture walls. No sulphides ghtly less infill qtz vnlts than the rvals.

r to above except less stressed mpetent and typical of the host k fabric beginning to develop. No

cribed above. Weak fabric at 30elatively competent and hmgs. er sample to the QD above. No entified.

cribed above. Weak fabric at 30elatively competent and hmgs. er sample to the QD above. No entified.

cribed above. Weak fabric at 30elatively competent and hmgs. er sample to the QD above. No entified.

cribed above. Just a buffer he MASU vn below. cribed above but there is a thickness massive sulphide Po iss cuts the MTSD at 70deg tca. cts.

cribed above. Just a buffer zone Po vn above.

710.95	0.94	MG229622	5	0	0.01	0.01	0	0	0	90	NVS		MTSD	MTSD as descril to the MASU Pc
749.75	38.8									90		SLTS	MTSD	MTSD as descril laminations occ consistent and o or structures. N
														MTSD as descril the MTSD apper rehealed vnlts v infilled tension along the lamin that indicates m
752.37	2.62									80		SLTS	MTSD	present.
756.3	3.93									90		SLTS	MTSD	MTSD as descril laminations occ consistent and o or structures. N
														MTSD as descril the MTSD appe rehealed vnlts v infilled tension along the lamin that indicates m
759.01	2.71									75		SLTS	MTSD	present.
769.9	0.79									00		CI TC	MTSD	MTSD as descril laminations occ consistent and o
768.8	9.78									90		SLTS	0110	or structures. N MTSD as descril 30deg tca. Smal
768.95	0.15									75		MTSD	FLT	along the lamin present. No sul

cribed above. Just a buffer zone Po vn above.

cribed above. SLTS with strong occurring at 30deg tca. Very nd uniform with minor fractures 5. No sulphides present.

cribed above except texturally pear locally stressed and s with qtz. Appears almost like on gashes. One fracture plane ninations with chlorite coating s minor movement. No sulphides

cribed above. SLTS with strong occurring at 30deg tca. Very nd uniform with minor fractures s. No sulphides present.

cribed above except texturally pear locally stressed and s with qtz. Appears almost like on gashes. One fracture plane ninations with chlorite coating s minor movement. No sulphides

cribed above. SLTS with strong occurring at 30deg tca. Very nd uniform with minor fractures 5. No sulphides present.

cribed above with laminations at nall flt with minor movement ninated planes. Minor gouge ulphides.

					MTSD as describ
					laminations occu
					consistent and u
					or structures. Lo
					do represent mo
					little to no evide
822.29	53.34	90		MTSD	appear more co
					Small Fault filled
					wide. Indications
822.32	0.03	0		FLT	60deg tca. No su
					FG SLTS MTSD u
					laminations. Mo
					along laminatior
830	7.68	70	SLTS	MTSD	uniform through
					MTSD as describ
					lamination. This
					broken pieces ty
					Laminated surfa
					smooth. Minor g
					along some fract
					this zone is likely
834.6	4.6	10	MTSD	STRT	well. No sulphide
					MTSD as describ
					strong laminatio
839.66	5.06	60	SLTS	MTSD	Laminations occ
					Fg OLDI. Blk chill
					occurring at abo
					areas have smal
					Unit is magnetic
845	5.33	90		OLDI	CT is subpll at 0-

cribed above. SLTS with occurring at 30deg tca. Very d uniform with minor fractures Localized areas/intervals within more hmgs sections that have idence of laminations and competent and massive.

led with gouge. ABout 1 inch ons of movement. Angle at 50o sulphides present.

D unit with moderate to strong Moderate breaks and fractures tions. No sulphides. Unit is ughout.

cribed above with intense his is a structural zone with s typically along laminations. rfaces are chlorite coated and or ground core and rock powder ractures. The broken nature of kely due to mechanical drilling as nides present.

cribed above continued with ations. No major structures. occurring at 30deg tca.

hilled unit with upper ct about 10-20deg tca. Localized nall 2-4mm white phenocryst. etic. No sulphides present. Lower t 0-10deg tca.

					MTSD as above Abundant brok along the lamin spalling of the mechanical dri movement alou planes. Minor n planes. This co zone overlying
873.83	28.83	20	STRT	MTSD	described belo specks of Galer
874.53	0.7	70		DIA	DIA (Non Mag) dyke that cross FLT within the many fracture
875.45	0.91	0	MTSD	FLT	sulphides.
876.33	0.88	80		MTSD	MTSD with mir compared to a that is more hr
0,0.00	0.00			11130	OLDI that is fg,
877.49	1.16	90	DIA	OLDI	Minor white ph sulphides. Low
					MTSD with stro 25deg tca. Som zone due to the
881.73	4.24	60	SLTS	MTSD	interval. No sul Flt with gouge
881.97	0.24	0	MTSD	FLT	signs of moven sulphides.
					MTSD strongly Broken consist planes. Most p
883.77	1.8	0	MTSD	STRT	Looks almost li Flt with gouge
883.89	0.12	0		FLT	signs of moven sulphides.

ove with strong laminations. roken and blocky core, typically mination plane. Much of the ne rock may be influenced by drilling. Possibly some structural along the fracture/lamination or rock flour present on some could be considered the damage ng some of the flt that will be elow. Minor tr Pyt and possibly alena in fracture/flt zones.

ng) seen as a fine grained black osscuts this interval. No sulphides. ne MTSD. Gouge present along re planes. No significant

ninor to rare laminations above. Relatively massive SS hmgs. No sulphides.

fg, black with sharp contacts. phenocryst throughout. No ower CT is at 10deg tca.

trong laminations occurring at ome fractures in this damage the underlying flts in the next sulphides.

ge and broken pieces. Obvious ement. Significant structure. No

gly laminated at 50deg tca. istently along the laminated t pieces are about 1inch in length. t like discing core. No Sulphides. ge and broken pieces. Obvious ement. Significant structure. No

889.62	5.73	40	MTSD	SHR	MTSD as above small fractures a evidence of slick the part of the c
					MTSD, broken a structural zone. that occurs at 40 brecciated and h appearing to be question whethe has a matrix and rock. Note cross
890.87	1.25	40	MTSD	SHR	filled with altera Flt with gouge a
890.96	0.09	0		FLT	signs of moveme sulphides.
894.65	3.69	70	MTSD	SHR	MTSD as describ at 25Deg tca. Ab 2mm in size elor inclusions appea and in a fine gra in texture but no inclusions. Belie (possibly regiona brecciated units gouge. No sulph
895.99	1.34	80		MTSD	Mtsd but med g competent with inclusions. The u be a lithology co MTSD in this intu (possibly related as a result it also of this structura reference from a

ve but broken and blocky with es and small structures with licken slides. This appears to be e damage zone from above.

n and blocky and still within this ne. This interval also has a fabric t 40deg tca. This interval looks ad has local inclusions, most be local MTSD. There is some ether this is IQD. This flow fabric and inclusions similar to the host oss cutting rehealed fractures eration fluids/serpentine. e and broken pieces. Obvious ement. Significant structure. No

cribed above with a strong fabric Abundant small inclusions 1elongated to the fabric. The bear to be MTSD (grey)in origin grain grey matrix. Similar to IQD t not the typical MTGB elieved to be related to a large onal) scale structure and the hits/shears/serpentine/and fault lphides.

d grained, slightly more ithout the strong fabric and sall e upper CT at 2935.2 appears to contact or a MTSD bedding. The interval appears bleached ted to this structural zone) and also has a QD like appearance. All ural zone has been kept as a m 881m-899m.

897.54	1.55	0		WDG	WDG at 896m. where the wed core has been wedge.
901.39	3.84	70		MTSD	MTSD with lam tca. No sulphid structures. Sma from below.
901.99	0.61	80	DIA	OLDI	Fg DIA, chilled, magnetic with Most likely a O
914	12.01	80	SLTS	MTSD	MTSD with stro 20deg tca. No s significant stru MTSD laminatio core. Switch to
949.06	35.05	85	SLTS	MTSD	MTSD as above from 20-35deg Some broken a laminations an hmgs and cont
950.21	1.16	60	OLDI	DIA	Fg blk chilled O sulphides. Abou broken and blo
1091.03	140.82	75	SLTS	MTSD	MTSD as above from 20-35deg Some broken a laminations and hmgs and conti sulphides.
1098.01	6.98	20	SLTS	MTSD	MTSD as describlocky along la laminations an 35deg tca. No s

m. Note that there is a large sliver redge has been cut out. 4.6ft of en recovered of the cut out

aminations occurring at 30deg hides present. No significant Small splay (1 inch) of DIA dyke

ed, aphanitic blk hmgs. The unit is th 1-3cm feldspar phenocryst. OLDI. No sulphides.

strong laminations occurring at lo significant sulphides and no tructures. Breaks are along the ations. This is the end of the HQ to NQ.

ove, strongly laminated ranging eg tca. No significant structures. n and blocky core along and sometimes subpll tca. Very ntinuous. No sulphides.

d OLDI. Magnetic and no bout 40% of the interval has blocky sections.

ove, strongly laminated ranging eg tca. No significant structures. n and blocky core along and sometimes subpll tca. Very ntinuous. No significant

scribed above but just broken and glaminated surfaces. Both and fracture planes occur at lo significant sulphides.

					MTSD as descril occurring at 350 the interval abo
1131.63	33.62	80	SLTS	MTSD	Sharp lower CT present.
					Fg black dia dyk
					white feldspar
					Believe to be O Contacts are sh
					within this inter
1133.22	1.58	80	OLDI	DIA	injection of DIA
1135.47	2.26	80		MTSD	MTSD as descril the 2 DIA dykes
1155.47	2.20	80		WI SU	the 2 DIA dykes
					DIA as above, fg
					magnetic. Broke
					the damage zor the lower conta
					minor serpentir
1149.74	14.26	60	OLDI	DIA	feldspar pheno
					FLT at the lowe
					0.5m of core wa
					interval. Small g observed. Sharp
1150.86	1.13	0	DIA	FLT	measurable.
					MTSD as descril
					magnetic. Lami
1161.62	10.76	75		MTSD	still occurring at massive hmgs ta
					FG Dia dyke, ma with sharp cont
					Broken and blo
1161.84	0.21	20		DIA	sulphides.
					MTSD as descri
					magnetic. Lamin occurring at 400
1165.13	3.29	80		MTSD	hmgs txt. No su

cribed above. Laminated, 35deg tca. More competent than above but interval is very hmgs. CT with DIA. No sulphides

dyke. Strongly magnetic and ar phenocryst can be observed. e OLDI. No sulphides present. sharp but also several DIA veins aterval.(Possibly a second DIA within the DIA). cribed above but just separating kes.

e, fg, black DIA dyke that is oken and blocks and may due to zone related to the fault below at ntact. Some slicken slides and ntine coatings present. White nocryst present as well.

wer contact of the DIA dyke. was not recovered within this all gravel size pieces. No sulphides arp lower contact, but not

cribed above. Fg, grey, nonminations becoming weak but g at 40deg tca. MTSD have a s txt. No sulphides present.

magnetic. Crosscutting the mtsd ontacts occurring at 70deg tca. blocky but not a structure. No

cribed above. Fg, grey, nonminations weak but still 40deg tca. MTSD have a massive sulphides present.

1165.8	0.67	90		DIA	FG Dia dyke, m with very sharp tca, at upper ar No sulphides.
1202.28	36.48	80		MTSD	MTSD as descri magnetic. Lami occurring at 40 hmgs txt. No su from above MT
					DIA as describe
1203.02	0.73	80		DIA	tca. Fg black, m
1294.76	91.74	80		MTSD	MTSD as descri magnetic. Lami occurring at 40 hmgs txt. No su from above MT
1391.32	96.56	85	SS	MTSD	MTSD similar to laminations and massive in text Rare local zone brecciated host within an altere Appears sedime
1407.29	15.97	85	MTSD	CONG	Conglomerate I Sharp upper co becomes slight 30deg tca. Abu and rounded fr matrix. Some g significant sulpl inclusions beco

magnetic. Crosscutting the mtsd arp contacts occurring at 70deg and lower Cts. Very competent.

scribed above. Fg, grey, nonminations weak but still 40deg tca. MTSD have a massive sulphides present. Continuation MTSDs.

ibed above crosscutting at 60deg , magnetic. No sulphides.

scribed above. Fg, grey, nonaminations weak but still 40deg tca. MTSD have a massive o sulphides present. Continuation MTSDs.

r to above, fg, grey but no and more competent and exture. No sulphides present. ones 1ft or less where the MTSD is osting small local inclusions ered matrix. Not Sudbury breccia. imentary related, not SIC related.

te MTSD unit with areas of qtzt. contact where the ss Mtsds ghtly coarse grained. Occurs at bundant feldspar/qtzt inclusions I fragments within a qtz rich ss e grey MTSD inclusions. No alphides. CONG continues but ecoming less apparent.

					MTGB Mg drk
					no significant s
					pyt. Massive te
					hmgs through
					igneous unit/ N
					Does not have
					alteration. Onl
					intrusive obser
					Small alteratio
					the MTGB/Mv
1414.49	7.19	90		MTGB	little breccia ba
					MTGB that has
					inclusions of th
					green chloritic be the lower co
					has been broke
1416.25	1.77	85	MTGB	BX	margin with th
1410.25	1.77	65	IVITOD	DA	
					QTZT metased
					and has a suga
					broken surface
					couple local ar
					mostly due to
1454.99	38.74	80	MTSD	QTZT	significant stru
					Fg, light grey C
					appearance), c
					(1mm wide), (s
					@ 4784.4-4784
					and cp within v
1461.52	6.52	80	MTSD	QTZT	(min carb on jr
					CWT (no core l
1463.59	2.07	0		WDG	button is fairly
					Fg, light grey C
					appearance), r
					(55- 60 tca), qt
					(1mm wide), tr
1492.51	28.93	80	MTSD	QTZT	tca (min chl an

rk grey to green, non-magnetic, at sulphides rare traces of po or e texture with little variation and ghout. This appears to be an t/ MTGB. Possibly a metavolcanic. ve a strong chloritic green Only example of a igneous served in this hole. Reps taken. tion bands that host inclusions of Avol in an alteration fluid. These a bands are not IQD related.

has been brecciated with f the MTGB included within a tic alteration fluid. This appears to r contact of the MTGB unit that oken and brecciated along the the MTSDs.

ediments, fg, grey, abundant qtz gary qtzt texture on a fresh ace. No significant sulphides. A areas have broken sections but to mechanical drilling. No tructures.

y QTZT, qtz rich (sugary), qtz/carb vnlts btw 40-60 deg tca , (soft, green) chl and qtz vn/vnlt 784.9ft btw 25-30 deg tca (tr po in vnlt), jnts btw 30-65 deg tca n jnts).

re btw 4795-4801.8ft). The wedge rly centered.

y QTZT, qtz rich (sugary), rare mm wide biotite rich beds qtz/carb vnlts btw 40-60 deg tca , tr po (<0.5%), jnts btw 30-50 deg and carb on jnts).

1492.73	0.21									35		FLT	STRT	QTZT as above v smaller angular are chl coated v jnt surfaces, jnt lines visible on s
1505.30	12 56									QE		0777	MTCD	Fg, light grey QT sugary appeara Staurolite rich b whispy chl vnlts irregular vnlt of subrounded to s wide), jnts btw
1505.29	12.56									85		QTZT	MTSD	coated).
1506.66	1.37	MG229623	5	0	0.01	0.01	0	0	0	80	NVS		QTZT	A QTZT as above of Staurolite ric within the QTZT
1506.99	0.34	MG229624	5	0	0.01	0.01	0	0	0	90	NVS	QTZT	вх	MTSD/QTZT as interval is brecc the host rock w fragments and i Uncertain if this feature. No sulp
1507.82	0.82	MG229626	5	0.5	0	0.01	0	0	0	80	TR		QTZT	QTZT with mino fracture filled an total sulphides. alteration throu minor sulphides due to the intru
1509	1.19	MG229627	5	0.5	0.01	0.01	0	0	0	80	TR		QTZT	QTZT, grey, fg, v bedding planes. seen as whisps alteration veinle sulphides, prima

ve with the core broken into lar fragments (Fault/STRT), jnts ed with min silty/sandy (gouge) on jnts btw (15-40 deg tca), slicken on smooth jnt surface parallel tca.

P QTZT, qtz rich (moderately arance) interbedded with th beds (1cm-5ft wide), irregular nlts with spks PO and cp (0.5%), to of SUBX?? (vfg mtx, with to subangular qtz rich incls (0.4ft tw 10-25 deg tca (chl and carb

ove with several local examples rich beds. Weak fabric present TZT. No significant sulphides.

as described above except this ecciated. Fg grey matrix similar to a with small subangular ad inclusions 0.5inches or less. this is SUBX, could be just a MTSD sulphides present.

inor trace stringer Po sulphides/ d and whispy. Less than 0.5% es. Also whispy chloritic roughout. Possibly alteration and des that has been remobilized trusive (QD) below.

g, with microfractures and weak es. Sulphides are occasionally ps along these planes or inlets. Less than 0.5% total imarily Po.

1509.86	0.85	MG229628	5	0.5	0	0.01	0	0	0	80	TR	QTZT	QTZT, grey, fg, bedding planes seen as whisps alteration vein sulphides, prim
1511.17	1.31	MG229629	5	0.5	0	0.01	0	0.001	0	80	TR	QTZT	QTZT, grey, fg, bedding planes seen as whisps alteration vein sulphides, prim
1511.47	0.3	MG229630	5	0	0	0	0	0	0	90	NVS	QTZT	**WHOLE ROC representing th QD samples be complete on 4 intervals). QTZ more compete specks of Po ar Very HMGS.
1512.69	1.22	MG229631	5	0	0	0	0	0	0	85	NVS	QTZT	QTZT as descril Very massive, I 1/4 of this inte and microfract contact.
1513.82	1.13	MG229632	5	0.5	0.01	0.01	0	0.001	0	75	TR	QD	QD. This QD un typical QD in th and therefor th represented by quicker cooling interpreted to dyke, but at th at this depth ha Upper CT show gradational ma

fg, with microfractures and weak nes. Sulphides are occasionally sps along these planes or einlets. Less than 0.5% total rimarily Po.

fg, with microfractures and weak nes. Sulphides are occasionally sps along these planes or einlets. Less than 0.5% total rimarily Po.

OCK** (A bracket sample g the host rock to the potential below. Comparison of WRA to be a 4 samples for these QD/QTZT TZT as above except a slightly etent and uniform QTZT. Rare tr and Rare fractures and veinlets.

cribed above in the WRA interval. e, hmgs and uniform. The lower nterval shows a slight alteration actures as it approaches the

unit is challenging and not a in the fact that it is only ~25ft wide in the mineralogy appears to be by a fg material due to the ing in the host MTSD. It is to be a splay off of the main QD the time of logging the Main QD in has not been located. No IQD. ows altrn and a chilled margin. Rare trace sulphides.

1514	0.18	MG229633	5	0	0.01	0.01	0	0	0	90	NVS	QD	**WHOLE ROC uniform piece continued from granular and ir massive and co grain size and v lathy pyrox/am would be seen No significant s
1515.37	1.37	MG229635	5	0	0.01	0.01	0	0	0	80	NVS	QD	QD continued granular and ir massive and co grain size and v lathy pyroxene would be seen No significant s QD continued
1516.87	1.49	MG229636	5	0	0.01	0.01	0	0	0	80	NVS	QD	granular, has a pyroxenes/am illustrating a sp and uniform th chlorite. No sig Mag. **WHOLE ROC WRA) QD cont
1517.05	0.18	MG229637	5	0	0.01	0.01	0	0	0	80	NVS	QD	the pyroxenes, and illustrating hmgs and unifo in chlorite. No Non-Mag. QD continued
1518	0.94	MG229638	5	0	0.01	0.01	0	0	0	80	NVS	QD	pyroxenes/am illustrating a sp and uniform th chlorite. No sig Mag.

ROCK SAMPLE** (representing a see of this igneous intrusive). QD from above becoming more d intrusive txt looking. Very hmgs, d consistent throughout. Fg-mg nd what appears to be slightly /amphiboles, similar to what een in typical QD at the margins. nt sulphides.

ed from above becoming more d intrusive txt looking. Very hmgs, l consistent throughout. Fg-mg ad what appears to be slightly enes/amphiboles, similar to what en in typical QD at the margins. nt sulphides. Unit is Non-Mag.

ed from above but becoming more s a mg size and the imph have become very lathy and spherulitic texture. Overall, hmgs throughout. Slight increase in significant sulphides. Unit is Non-

OCK** (Second sample of QD for ontinued from above, mg size and ies/amph have become very lathy ting a spherulitic texture. Overall, niform throughout. Slight increase No significant sulphides. Unit is

ed from above, mg size and the amph have become very lathy and a spherulitic texture. Overall, hmgs a throughout. Slight increase in significant sulphides. Unit is Non-

0.94	MG229639	5	1	0.01	0.01	0	0	0	80	DISS		QD	QD continued f decreases a litt change that the lathy like above texture. Overal throughout. Su small specks 19
													QD as above (p 2cm)subround rims, irregular 20-45 (chl and
1.68	MG229640	5	0	0.01	0.01	0	0.001	0	90	NVS		QD	is @ 30 deg an
0.94	MG229641	5	0	0	0.01	0	0	0	70	NVS	QTZT	MTSD	Fg, light grey, c (0.5ft) @ 25 de btw 30-50 deg
													Fg, light grey, c
0.46	MG229642	5	0	0	0.01	0	0	0	100	NVS		MTSD	biotite rich vnl
													Fg, light grey N vnlts with tr cp fractures chl fil
1.86	MG229644	5	0.5	0	0	0	0	0	95	NVS		MTSD	(chl coated). QTZT, very silic
0.4	MG229645	5	0	0	0	0	0	0	90	NVS		QTZT	predominantly sulphides.
													MTSD with a w along bedding fractures, but t rehealed fractu
1.52	MG229646	5	0.5	0.01	0.01	0	0	0	50	TR		MTSD	less than 0.5%.
1.77									60			MTSD	MTSD, grey, fg throughout bu
2.44									90			QTZT	QTZT, compete minor alteratic bleaching alon sulphides prese
	 1.68 0.94 0.46 1.86 0.4 1.52 1.77 	1.68 MG229640 0.94 MG229641 0.46 MG229642 1.86 MG229644 0.4 MG229645 1.52 MG229646 1.77 Immediation of the second of the sec	1.68 MG229640 5 0.94 MG229641 5 0.46 MG229642 5 1.86 MG229644 5 0.4 MG229645 5 1.52 MG229646 5 1.77 1.77	1.68 MG229640 5 0 0.94 MG229641 5 0 0.46 MG229642 5 0 1.86 MG229644 5 0.5 0.4 MG229645 5 0 1.52 MG229646 5 0.5 1.77 Image: Main and the second and	1.68 MG229640 5 0 0.01 0.94 MG229641 5 0 0 0.46 MG229642 5 0 0 1.86 MG229644 5 0.5 0 0.4 MG229645 5 0.5 0 1.52 MG229646 5 0.5 0.01 1.77 5 0.5 0.01	1.68 MG229640 5 0 0.01 0.01 0.94 MG229641 5 0 0 0.01 0.46 MG229642 5 0 0 0.01 1.86 MG229644 5 0.5 0 0 1.84 MG229645 5 0.5 0 0 1.85 MG229646 5 0.5 0.01 0.01 1.52 MG229646 5 0.5 0.01 0.01 1.77 5 0.5 0.01 0.01	1.68 MG229640 5 0 0.01 0.01 0 0.94 MG229641 5 0 0 0.01 0 0.46 MG229642 5 0 0 0.01 0 1.86 MG229644 5 0.5 0 0 0 1.86 MG229645 5 0.5 0 0 0 1.87 MG229645 5 0.5 0.01 0.01 0 1.52 MG229646 5 0.5 0.01 0.01 0 1.57 MG229645 5 0.5 0.01 0.01 0 1.52 MG229646 5 0.5 0.01 0.01 0 1.77	1.68 MG229640 5 0 0.01 0.0 0.01 0.94 MG229641 5 0 0 0.01 0 0 0.46 MG229642 5 0 0 0.01 0 0 1.86 MG229644 5 0.5 0 0 0 0 1.86 MG229645 5 0 0 0 0 0 1.87 MG229645 5 0.5 0.01 0.01 0 0 1.52 MG229645 5 0.5 0.01 0.01 0 0 1.57 MG229646 5 0.5 0.01 0.01 0 0 1.52 MG229645 5 0.5 0.01 0.01 0 0 1.77	1.68 MG229640 5 0 0.01 0.01 0 0.001 0 0.94 MG229641 5 0 0 0.01 0 0 0 0.46 MG229642 5 0 0 0.01 0 0 0 1.86 MG229642 5 0.5 0 0 0 0 0 1.86 MG229645 5 0.5 0 0 0 0 0 1.48 MG229645 5 0.5 0.01 0 0 0 0 1.49 MG229645 5 0.5 0.01 0.01 0 0 0 1.49 MG229646 5 0.5 0.01 0.01 0 0 0 1.47 HG229646 5 0.5 0.01 0.01 0 0 0 1.47 HG229646 5 0.5 0.01 0.01 0 0 0 1.47 HG229646 5 0.5 0.01 0.01 0 0	1.68 MG229640 5 0 0.01 0 0.001 0 0 90 0.94 MG229641 5 0 0 0.01 0 0 0 70 0.46 MG229642 5 0 0 0.01 0 0 0 70 1.86 MG229644 5 0.5 0 0 0 0 90 1.86 MG229645 5 0.5 0 0 0 0 90 1.86 MG229645 5 0.5 0.01 0 0 0 90 1.52 MG229646 5 0.5 0.01 0.01 0 0 0 90 1.52 MG229646 5 0.5 0.01 0.01 0 0 0 50 1.77 0.01 0 0 0 50	1.68 MG229640 5 0 0.01 0.01 0 0.001 0 90 NVS 0.94 MG229641 5 0 0 0.01 0 0 0 70 NVS 0.46 MG229642 5 0 0 0.01 0 0 0 100 NVS 1.86 MG229642 5 0.5 0 0 0 0 0 95 NVS 1.86 MG229643 5 0.5 0 0 0 0 90 NVS 1.52 MG229645 5 0.5 0.01 0.01 0 0 0 90 NVS 1.52 MG229646 5 0.5 0.01 0.01 0 0 0 50 TR 1.77 60	1.68 M6229640 5 0 0.01 0 0.001 0 90 NVS 0.94 M6229641 5 0 0 0.01 0 0 0 70 NVS QTZT 0.46 M6229642 5 0 0 0.01 0 0 0 70 NVS QTZT 1.86 M6229642 5 0.5 0 0 0 0 0 95 NVS 1.84 M6229645 5 0.5 0 0 0 0 90 NVS 1.52 M6229645 5 0.5 0.01 0.1 0 0 0 90 NVS 1.52 M6229646 5 0.5 0.01 0.01 0 0 0 50 TR 1.52 M6229646 5 0.5 0.01 0.01 0 0 0 50 TR 1.57 60 1.57 <t< td=""><td>1.68 MG229640 5 0 0.01 0 0.01 0 90 NVS QD 0.94 MG229641 5 0 0 0.01 0 0 0 70 NVS QTZ MTSD 0.46 MG229642 5 0 0 0.01 0 0 0 100 NVS QTZ MTSD 1.48 MG229642 5 0.5 0 0 0 0 0 95 NVS MTSD 1.48 MG229645 5 0.5 0 0 0 0 95 NVS MTSD 1.44 MG229645 5 0.5 0.1 0.1 0 0 0 90 NVS QTZT 1.52 MG229646 5 0.5 0.01 0.1 0 0 0 90 NVS QTZT 1.57 1.57</td></t<>	1.68 MG229640 5 0 0.01 0 0.01 0 90 NVS QD 0.94 MG229641 5 0 0 0.01 0 0 0 70 NVS QTZ MTSD 0.46 MG229642 5 0 0 0.01 0 0 0 100 NVS QTZ MTSD 1.48 MG229642 5 0.5 0 0 0 0 0 95 NVS MTSD 1.48 MG229645 5 0.5 0 0 0 0 95 NVS MTSD 1.44 MG229645 5 0.5 0.1 0.1 0 0 0 90 NVS QTZT 1.52 MG229646 5 0.5 0.01 0.1 0 0 0 90 NVS QTZT 1.57 1.57

ed from above but the grain size little and there is an obvious txt the pyroxenes/amph are not ove. More of a Hmgs equigranular erall, hmgs and uniform Sulphides are diss throughout in 5 1% or less. Po sulphides mostly.

(possibly MTSD), patches (1nded (look bleached) with ALTN ar qtz /carb vnlts, tr py, jnts btw nd carb coated); contact with seds and is undulating.

n, qtz rich MTSD, wk fabric visible
 deg tca (biotite rich), nvs, jnts
 eg tca (chl coated with min carb).

y, qtz rich MTSD, nvs, irregular /nlts, no jnts; ***((WRA))***

MTSD, qtz rich, min qtz/carb
 cp (approx. 0.5%), healed
 filled, min jnts btw 35-45 deg tca

iliceous, sugary texture and tly qtz. Lt grey in colour, no

a weak fabric, some fractures ng planes. Several rehealed ut tr sulphides along these ctures. Primarily Po sulphides, 5%. Fg and grey.

fg with minor alterations out relatively hmgs. No sulpides.

etent, predominantly qtz with tion throughout, seen as ong healed fractures. No esent.

1545.7	15.7	70		MTSD	Gry, fg MTSD w fracture planes about 30-50de only a couple ra fractures.
1548.57	2.87	80	MTSD	CONG	Conglomerate biotite patches typically only a 1-2cm. No sign to be a layer wi
1555.24	6.68	80		MTSD	MTSD with som considered a qt seem a bit mor inclusions. No s
1556.58	1.34	90	MTSD	CONG	Conglomerate inclusions of qt Inclusions are s few mm in size significant sulp layer within the foliation and ch
1566	9.42	90	CONG	MTSD	MTSD with som considered a N areas seem a b amount of inclu
1568.01	2.01	0	conc	WDG	WEDGE Block h
1581	12.98	90		MTSD	Continuation fr with some inclu qtz inclusions v grey mtsd. Gen significant sulp

D with moderate laminations and nes along bedding, occurring at deg tca. No significant sulphides, e rare blebs along rehealed

te with inclusions of qtz. Some nes. Inclusions are small pebbles y a few mm in size but can reach gnificant sulphides. This appears within the main MTSD interval.

ome inclusions of qtz. Could be qtz conglomerate. Some areas hore chaotic with the amount of o significant sulphides.

te layer as seen above with qtz. Some biotite patches. e small pebbles typically only a ize but can reach 1-2cm. No ulphides. This appears to be a the main MTSD interval at has a chaotic fabric present.

ome inclusions of qtz. Could be MTSD qtz conglomerate. Some a bit more chaotic with the nclusions. No significant sulphides.

k here. This was a CWT cut.

n from above the wedge. MTSD nclusions of qtz. Seems to be less s with depth and more hmgs fg senerally competent. No ulphides.

BOREHOLE PROPERTY PR	OPERTY LEVEL	DEI	PTH ACCT # SYS	S	NORTHING E	ASTING ELE	EV SIZE	START DATE	END DATE	FROM	T
1368951 Totten	180	0	627.28 R000929.0	1	355229	295222	836 HQ	12/06/2018 09:2	6:40 02/07/2018 09	:26:40	

TOTYPERESOURCE APPLIEDEXPLNYes

STATUS Complete

DEPTH	AZIMUTH	DIP
0	198.75	-63.28
9.14	200.286	-63.3295
18.29	200.0041	-63.2389
27.43	199.9101	-63.2752
36.58	199.3986	-63.2581
45.72	199.2642	-63.2713
54.86	199.1381	-63.2685
64.01	199.0658	-63.2109
73.15	199.125	-63.2081
82.3	199.198	-63.2254
91.44	199.2518	-63.1877
100.58	199.0266	-63.1335
109.73	198.6587	-63.0007
118.87	198.461	-62.9308
128.02	198.4357	-62.9166
137.16	198.3708	-62.9062
146.3	198.2557	-62.8486
155.45	198.2597	-62.8198
164.59	198.2413	-62.6954
173.74	198.2248	-62.6916
182.88	198.3614	-62.6749
192.02	198.3791	-62.7139
201.17	198.4068	-62.6166
210.31	198.3246	-62.5069
219.46	198.4796	-62.5346
228.6	198.3964	-62.4681
237.74	198.4256	-62.4799
246.89	198.5863	-62.4086
256.03	198.7582	
265.18	198.829	
274.32	198.8112	
283.46	198.8214	
292.61	198.8988	
	198.9901	
310.9	198.9943	
320.04	199.1312	
329.18	198.9891	
338.33	198.9567	
	198.9595	
356.62	199.0128	
365.76	198.9791	
374.9	198.9701	
	199.0131	
	199.052	
	198.9861	
411.48	199.0119	-61.2148

199.1339	-61.1174
199.2197	-61.058
199.4447	-60.9814
199.5794	-60.9218
199.6263	-60.7263
199.4879	-60.7993
199.4106	-60.6973
199.2264	-60.6969
199.3731	-60.5858
199.4746	-60.4279
199.6787	-60.3891
199.7515	-60.2861
199.9365	-60.1856
199.8273	-60.1092
199.93	-60.16
199.9526	-60.0798
199.9128	-60.0491
199.979	-59.9325
199.9387	-59.8407
200.0545	-59.7276
204	-61.2
203.9	-60.9
	199.2197 199.4447 199.5794 199.6263 199.4879 199.4106 199.2264 199.3731 199.4746 199.6787 199.7515 199.9365 199.8273 199.93 199.9526 199.9128 199.979 199.9387 200.0545 204

DEPTH 1978

ME	TERS	SAMPLE	INFO			PERCENT			GRAMS/TONNE					
DEPTH	LENGTH	SAMPLE	CODE	EST	CU	NI	СО	AS	ТРМ	RQD	ORE	MINOR ROCK	ROCK	MILLSTOR
0	0													
														Ste
														Thi
603.84	603.84									0			LC	pa
														Thi
														pa
														mi
														we
605.39	1.55	MX243169	2	0.5	0.05	0.05	0.01	0.003	0.21	0	DISS		WDG	de
														IQI
														sul
														0.5
														M
														var
														3in
														str
														be
														in !
606	0.61	MX243171	2	0.5	0.05	0.04	0.01	0.002	0.17	75	DISS		IQD	siz
														As
														ble
														Les
														Inc
														an
														2-3
607.47	1.46	MX243172	2	0.5	0.05	0.05	0.01	0.002	0.14	75	DISS		IQD	sig
														As
														ble
														Les
														Inc
														an
														2-3
														str
														has
														fra
														be
608.99	1.52	MX243173	2	0.5	0.05	0.05	0.01	0.007	0.14	80	DISS	QTZ	IQD	the

DESCRIPTION Collar

Steel wedge set in hole at 1981.1ft. This section of the core is part of the parent logged in 1368950. This interval is IQD and is observed as part of the wedge cut with half missing and tapered out. Sampling weights will be off here. Same IQD as described below.

IQD with diss and small blebs of sulphides (Po, Cp, and Pn). Less than 0.5% total sulphides. Inclusions of MTGB both rounded and angular, varying in size from 1-2mm to 2-Binches. Grey in color no significant structures. Note that the intervals below are continuous but are sampled in 5ft intervals due to the large core size and maximum weight per bag. As Above, IQD with diss and small blebs of sulphides (Po, Cp, and Pn). Less than 0.5% total sulphides. Inclusions of MTGB both rounded and ingular, varying in size from 1-2mm to 2-3inches. Grey in colour no significant structures.

As above, IQD with diss and small blebs of sulphides (Po, Cp, and Pn). Less than 0.5% total sulphides. Inclusions of MTGB both rounded and angular, varying in size from 1-2mm to 2-3inches. Grey in color no significant structures. Also a subpll Qtz vn that has brecciated the IQD and host local fragments. Note that this QTZ vn can be observed in BH136895-2 at approx. the same depth.

													As ble Les Inc ang 2-3 str vei
610.51	1.52	MX243174	2	0.5	0.02	0.04	0.01	0.006	0.24	80	DISS	IQD	int As ble Les Inc ang 2-3
612.01	1.49	MX243175	2	0.5	0.05	0.04	0.01	0.009	0.17	80	DISS	IQD	stru As ble Les Inc ang 2-3 stru MT
613.47	1.46	MX243176	2	0.5	0.04	0.03	0	0.005	0.14	80	DISS	IQD	typ As ble Les Inc ang 2-3
614.99 616.37	1.52	MX243177 MX243178	2	0.5	0.04	0.03	0 0.01	0.003	0.14	80 80	DISS	IQD	stri As ble Les Inc ang 2-3 stri
010.07	1.07	11/12 131/0	2	0.0	0.04	0.04	0.01	0.007	0.17	50	5155		501

As above, IQD with diss and small blebs of sulphides (Po, Cp, and Pn). Less than 0.5% total sulphides. Inclusions of MTGB both rounded and angular, varying in size from 1-2mm to 2-3inches. Grey in color no significant structures. Continuation of the QTZ vein identified in the top of this interval.

As above, IQD with diss and small blebs of sulphides (Po, Cp, and Pn). Less than 0.5% total sulphides. Inclusions of MTGB both rounded and angular, varying in size from 1-2mm to 2-3inches. Grey in color no significant structures.

As above, IQD with diss and small blebs of sulphides (Po, Cp, and Pn). Less than 0.5% total sulphides. Inclusions of MTGB both rounded and ingular, varying in size from 1-2mm to 2-3inches. Grey in color no significant structures. One larger 3-4inch fg MTGB block in the middle of the interval. Not altered to amphibolite as typically seen. FG than usual MTGB. As above, IQD with diss and small blebs of sulphides (Po, Cp, and Pn). Less than 0.5% total sulphides. Inclusions of MTGB both rounded and ingular, varying in size from 1-2mm to 2-3inches. Grey in color no significant structures.

As above, IQD with diss and small blebs of sulphides (Po, Cp, and Pn). Less than 0.5% total sulphides. Inclusions of MTGB both rounded and angular, varying in size from 1-2mm to 2-3inches. Grey in color no significant structures.

													L
618.01	1.65	MX243179	2	0.5	0.04	0.04	0	0.005	0.17	80	DISS	IQD	a 2 s t A b L
619.23	1.22	MX243180	2	0.5	0.04	0.03	0	0.001	0.14	80	DISS	IQD	li 2 s A b L
621	1.77	MX243181	2	0.5	0.04	0.04	0	0.001	0.14	80	DISS	IQD	lı a 2 s A b L
622.52	1.52	MX243182	2	0.5	0.05	0.04	0.01	0	0.17	80	DISS	IQD	a 2 s A b L
623.99	1.46	MX243183	2	0.5	0.04	0.04	0.01	0.001	0.14	80	DISS	IQD	a 2 s A b L
625.21	1.22	MX243184	2	0.5	0.04	0.05	0	0.004	0.17	80	DISS	IQD	a 2 s

As above, IQD with diss and small blebs of sulphides (Po, Cp, and Pn). Less than 0.5% total sulphides. Inclusions of MTGB both rounded and angular, varying in size from 1-2mm to 2-3inches. Grey in color no significant structures. Weak fabric present subpll to 40deg tca.

As above, IQD with diss and small blebs of sulphides (Po, Cp, and Pn). Less than 0.5% total sulphides. Inclusions of MTGB both rounded and angular, varying in size from 1-2mm to 2-3inches. Grey in color no significant structures.

As above, IQD with diss and small blebs of sulphides (Po, Cp, and Pn). Less than 0.5% total sulphides. Inclusions of MTGB both rounded and angular, varying in size from 1-2mm to 2-3inches. Grey in color no significant structures.

As above, IQD with diss and small blebs of sulphides (Po, Cp, and Pn). Less than 0.5% total sulphides. Inclusions of MTGB both rounded and angular, varying in size from 1-2mm to 2-3inches. Grey in color no significant structures.

As above, IQD with diss and small blebs of sulphides (Po, Cp, and Pn). Less than 0.5% total sulphides.

Inclusions of MTGB both rounded and angular, varying in size from 1-2mm to 2-3inches. Grey in color no significant structures.

As above, IQD with diss and small blebs of sulphides (Po, Cp, and Pn). Less than 0.5% total sulphides.

Inclusions of MTGB both rounded and angular, varying in size from 1-2mm to 2-3inches. Grey in color no significant structures.

													As
													bl
													Le
													In
													an
													2-
626.55	1.34	MX243185	2	0.5	0.04	0.05	0.01	0.005	0.17	80	DISS	IQD	sti As
													bl
													Le
													In
													an
													2-
													st
													W
627.28	0.73	MX243187	2	0.5	0.07	0.05	0	0.008	0.14	80	DISS	IQD	sta

As above, IQD with diss and small blebs of sulphides (Po, Cp, and Pn). Less than 0.5% total sulphides. Inclusions of MTGB both rounded and angular, varying in size from 1-2mm to 2-3inches. Grey in color no significant structures.

As above, IQD with diss and small blebs of sulphides (Po, Cp, and Pn). Less than 0.5% total sulphides. Inclusions of MTGB both rounded and angular, varying in size from 1-2mm to 2-3inches. Grey in color no significant structures. FOH is at 2058.0ft - Steel wedge above shifts and this hole starts a new branch.

BOREHOLE PROPERTY PI	ROPERTY LEVEL	D	EPTH ACCT #	SYS	ſ	NORTHING	EASTING	ELEV	SIZE	START DATE	END DATE	FROM
1368952 Totten	180	0	750.11 R00092	9.0	1	355229	29522	22	836 HQ	12/06/2018 08	:20:21 22/07/2018 08:	20:21

то	ΤΥΡΕ	RESOURCE APPLIED	STATUS
	EXPLN	Yes	Complete

DEPTH	AZIMUTH	DIP
0	198.75	-63.28
9.14	200.286	-63.3295
18.29	200.0041	-63.2389
27.43	199.9101	-63.2752
36.58	199.3986	-63.2581
45.72	199.2642	-63.2713
54.86	199.1381	-63.2685
64.01	199.0658	-63.2109
73.15	199.125	-63.2081
82.3	199.198	-63.2254
91.44	199.2518	-63.1877
100.58	199.0266	-63.1335
109.73	198.6587	-63.0007
118.87	198.461	-62.9308
128.02	198.4357	-62.9166
137.16	198.3708	-62.9062
146.3	198.2557	-62.8486
155.45	198.2597	-62.8198
164.59	198.2413	-62.6954
173.74	198.2248	-62.6916
182.88	198.3614	-62.6749
192.02	198.3791	-62.7139
201.17	198.4068	-62.6166
210.31	198.3246	-62.5069
219.46	198.4796	-62.5346
228.6	198.3964	-62.4681
237.74	198.4256	-62.4799
246.89	198.5863	-62.4086
256.03	198.7582	
265.18	198.829	
274.32	198.8112	
283.46	198.8214	
292.61	198.8988	
	198.9901	
310.9	198.9943	
320.04	199.1312	
329.18	198.9891	
338.33	198.9567	
	198.9595	
356.62	199.0128	
365.76	198.9791	
374.9	198.9701	
	199.0131	
	199.052	
	198.9861	
411.48	199.0119	-61.2148

420.62	199.1339	-61.1174
429.77	199.2197	-61.058
438.91	199.4447	-60.9814
448.06	199.5794	-60.9218
457.2	199.6263	-60.7263
466.34	199.4879	-60.7993
475.49	199.4106	-60.6973
484.63	199.2264	-60.6969
493.78	199.3731	-60.5858
502.92	199.4746	-60.4279
512.06	199.6787	-60.3891
521.21	199.7515	-60.2861
530.35	199.9365	-60.1856
539.5	199.8273	-60.1092
548.64	199.93	-60.16
557.78	199.9526	-60.0798
566.93	199.9128	-60.0491
576.07	199.979	-59.9325
585.22	199.9387	-59.8407
595.88	200.0545	-59.7276
603.5	196.3172	-58.5028
612.65	195.8342	-57.7798
621.79	194.5014	-57.7897
630.94	193.9355	-57.421
640.08	193.174	-56.3813
649.22	191.2137	-56.2742
658.37	190.9837	-56.081
667.51	191.0439	-56.0317
676.66	191.0616	-55.8194
685.8	191.041	-55.5432
694.94	191.1737	-55.3897
704.09	191.0132	-55.208
713.23	190.7727	-54.8754
722.38	190.695	-54.477
731.52	190.7791	-54.1102
740.66	190.758	-53.7737
741.88	190.74	-53.79

DEPTH	
1955	
2037	
2116	

ME	TERS	SAMPLE INFO		PERCENT					GRAMS/TONNE					
DEPTH	LENGTH	SAMPLE	CODE	EST	CU	NI	CO	AS	ТРМ	RQD	ORE	MINOR ROCK	ROCK	MILLSTOR
0	0													
														Be
595.24	595.24									0			LC	we
														IQ
														de
														tha is s
														CU.
														at
596.46	1.22	MX243188	2	0.5	0.01	0.01	0	0	0	0	TR	IQD	WDG	thi
							-	-	-	-				IQ
														sai
														ab
														am
														rin
														bt.
														We
														40
														to blo
														int
														thi
														CO
597.29	0.82	MX243189	2	0.5	0.01	0	0	0	0.03	85	TR		IQD	ch
														IQ
														ma
														mt
														AN
														So
														to
														a v rai
														in
														0.5
598.6	1.31	MX243191	2	0.5	0.03	0.01	0.01	0	0.07	85	TR		IQD	thi
	-			-		-	-	-	-	-				-

DESCRIPTION Collar

Beginning of core and cut for the steel wedge.

IQD rock unit similar to below and described in more detail below. Less than 0.5% total sulphides. This interval is shaved in half by the steel wedge cut, tapered at the top and thickening at the bottom to full HQ core thickness.

IQD continuous over the next several samples. A grey QD matrix hosting abundant incls of mtgb now altered to amph. Many AMPHs have reaction rims of bt. Some incls are completely bt. Incls and sulphide blebs can have a weak preferred orientation from 20-40deg tca. Incls range in size from 2-4" to less than 0.5". Larger AMPH blocks/incls are broken out into intervals. Sulphides are diss throughout Po, Cp & fg Pn. Hmgs and continuous IQD, below with minor change to sulphides.

IQD as described above. A grey QD matrix hosting abundant inclusions of mtgb now altered to amph. Many AMPHs have reaction rims of biotite. Some inclusions are completely altrnd to bt. Incls of sulphide blebs can have a weak preferred orientation that range from 20-40deg tca. Incls range in size from 2-4inches to less than 0.5inches. Sulphides are diss throughout Po, Cp and fg Pn.

													IQ ma Mt AN or sul ori tca
600.24	1.65	MX243192	2	0.5	0.03	0.03	0	0.001	0.14	85	DISS	IQD	thi IQ ma MI AN or su ori tca les
601.55	1.31	MX243193	2	1	0.03	0.02	0	0	0.1	85	DISS	IQD	thi IQ ma mt AN or sul ori tca les
602.99	1.43	MX243194 MX243195	2	1	0.05	0.05	0.01	0.002	0.17	85	DISS	IQD	thi IQ ma mt AN or sul ori tca les
							-			-			

IQD as described above. A grey QD matrix hosting abundant inclusions of mtgb now altered to amph. Many AMPHs have reaction rims of biotite or completely altrd to bt. Incls of sulphide blebs have a weak preferred orientation ranging from 20-40deg tca. Incls range in size from 2-4" to less than 0.5". Sulphides are diss throughout Po, Cp and fg Pn.

IQD as described above. A grey QD matrix hosting abundant inclusions of mtgb now altered to amph. Many AMPHs have reaction rims of biotite or completely altrd to bt. Incls of sulphide blebs have a weak preferred orientation ranging from 20-40deg tca. Incls range in size from 2-4" to less than 0.5". Sulphides are diss throughout Po, Cp and fg Pn.

IQD as described above. A grey QD matrix hosting abundant inclusions of mtgb now altered to amph. Many AMPHs have reaction rims of biotite or completely altrd to bt. Incls of sulphide blebs have a weak preferred orientation ranging from 20-40deg tca. Incls range in size from 2-4" to less than 0.5". Sulphides are diss throughout Po, Cp and fg Pn.

IQD as described above. A grey QD matrix hosting abundant inclusions of mtgb now altered to amph. Many AMPHs have reaction rims of biotite or completely altrd to bt. Incls of sulphide blebs have a weak preferred orientation ranging from 20-40deg tca. Incls range in size from 2-4" to less than 0.5". Sulphides are diss throughout Po, Cp and fg Pn.

2	606 1.46 MX243196	2 (0.07 0.07	0.01	0.008	0.27	85	DISS	IQD	IQI ma Mt AM or sul ori tca les thr
2	607.68 1.68 MX243197	2 (0.04 0.04	0.01	0.002	0.21	85	DISS	IQD	IQI inc ho: no hav cor sul ori tca les thr
2	608.99 1.31 MX243198	1 (0.02 0.04	0.01	0.003	0.21	85	DISS	IQD	IQI inc no cor sul ori tca les thr
2	610.51 1.52 MX243199	1 (0.03 0.04	0.01	0.006	0.14	85	DISS	IQD	IQI lar adj ma sor Cp ori tca les

IQD as described above. A grey QD matrix hosting abundant inclusions of mtgb now altered to amph. Many AMPHs have reaction rims of biotite or completely altrd to bt. Incls of sulphide blebs have a weak preferred orientation ranging from 20-40deg tca. Incls range in size from 2-4" to less than 0.5". Sulphides are diss throughout Po, Cp and fg Pn.

IQD as described above except a slight increase in Qtz Vns. A grey QD matrix hosting abundant inclusions of mtgb now altered to amph. Many AMPHs have reaction rims of biotite or completely altrd to bt. Incls of sulphide blebs have a weak preferred orientation ranging from 20-40deg tca. Incls range in size from 2-4" to less than 0.5". Sulphides are diss throughout Po, Cp and fg Pn.

IQD as described above, slight increase in Qtz vns. A grey QD matrix nosting abundant inclusions of mtgb now altered to amph. Many AMPHs nave reaction rims of biotite or completely altrd to bt. Incls of sulphide blebs have a weak preferred orientation ranging from 20-40deg tca. Incls range in size from 2-4" to less than 0.5". Sulphides are diss throughout Po, Cp and fg Pn. IQD as described above with a couple larger qtz vns @ 25deg tca, seen in djacent wedged BH. A grey QD matrix hosting abundant inclusions of mtgb now altered to amph with sometimes Bt rims. Diss sulphide (Po, Cp and fg Pn) with a weak preferred orientation ranging from 20-40deg tca. Incls range in size from 2-4" to less than 0.5".

														r r
612.01	1.49	MX243200	2	1	0.04	0.03	0	0.003	0.17	85	DISS		IQD	s (c t l l r r r
613.2	1.19	MX274101	2	1	0.04	0.03	0	0.005	0.17	85	DISS		IQD	c c t l r r s
614.39	1.19	MX274102	2	1	0.05	0.03	0.01	0.001	0.14	85	DISS		IQD	(c t l F a r
614.99	0.61	MX274103	2	1	0.05	0.04	0	0.005	0.17	20	DISS	IQD	FLT	v i s v f f l r r s o
616.28	1.28	MX274104	2	1	0.05	0.03	0.01	0.003	0.14	85	DISS		IQD	c t l

IQD as described above. A grey QD matrix hosting abundant inclusions of mtgb now altered to amph with sometimes Bt rims. Diss sulphide (Po, Cp and fg Pn) with a weak preferred orientation ranging from 20-40deg tca. Incls range in size from 2-4" to less than 0.5".

IQD as described above. A grey QD matrix hosting abundant inclusions of mtgb now altered to amph with sometimes Bt rims. Diss sulphide (Po, Cp and fg Pn) with a weak preferred orientation ranging from 20-40deg tca. Incls range in size from 2-4" to less than 0.5".

IQD as described above. A grey QD matrix hosting abundant inclusions of mtgb now altered to amph with sometimes Bt rims. Diss sulphide (Po, Cp and fg Pn) with a weak preferred orientation ranging from 20-40deg tca. Incls range in size from 2-4" to less than 0.5".

FLT within the IQD (IQD as described above). Flt Plane at 15-20deg tca. minor gouge along plane IQD as above with grey QD matrix hosting abundant inclusions of mtgb now altered to amph with sometimes Bt rims. Diss sulphide (Po, Cp and fg Pn) with a weak preferred orientation ranging from 20-40deg tca. Incls range in size from 2-4" to less than 0.5". IQD as described above. A grey QD matrix hosting abundant inclusions of mtgb now altered to amph with sometimes Bt rims. Diss sulphide (Po, Cp and fg Pn) with a weak preferred orientation ranging from 20-40deg tca. Incls range in size from 2-4" to less than 0.5".

IQI sub axi abi alt rim wit													
ran in s IQI ma mt; sor Cp orie	IQD	DISS	85	0.1	0.004	0	0.03	0.03	1	2	MX274105	1.74	618.01
tca les IQI ma mt sor Cp ori tca	IQD	DISS	85	0.14	0.001	0.01	0.03	0.04	1	2	MX274106	1.74	619.75
les CW 204 IQI ma mt sor Cp ori tca	IQD WDG	DISS	85 0	0.1	0	0	0.02	0.03			MX274107		621 622.37
les IQI ma mt; sor (Pc ori rar rar 0.5	IQD	DISS	85	0.14		0.01	0.03	0.04			MX274108 MX274109		623.99 625.66

IQD as described above (except with a subpll qtz vn running along the core axis). A grey QD matrix hosting abundant inclusions of mtgb now altered to amph with sometimes Bt rims. Diss sulphide (Po, Cp and fg Pn) with a weak preferred orientation ranging from 20-40deg tca. Incls range in size from 2-4" to less than 0.5". IQD as described above. A grey QD matrix hosting abundant inclusions of mtgb now altered to amph with sometimes Bt rims. Diss sulphide (Po, Cp and fg Pn) with a weak preferred orientation ranging from 20-40deg tca. Incls range in size from 2-4" to less than 0.5".

IQD as described above. A grey QD matrix hosting abundant inclusions of mtgb now altered to amph with sometimes Bt rims. Diss sulphide (Po, Cp and fg Pn) with a weak preferred orientation ranging from 20-40deg tca. Incls range in size from 2-4" to less than 0.5".

CWT Wedge cut between 2037.4-2041.9ft.

IQD as described above. A grey QD matrix hosting abundant inclusions of mtgb now altered to amph with sometimes Bt rims. Diss sulphide (Po, Cp and fg Pn) with a weak preferred orientation ranging from 20-40deg tca. Incls range in size from 2-4" to less than 0.5".

IQD as described above. A grey QD matrix hosting abundant inclusions of mtgb now altered to amph with sometimes Bt rims. Tr Diss sulphide (Po, Cp and fg Pn). A weak flow orientation of the inclusions, but often random or chaotic orientation. Incls range in size from 2-4" to less than 0.5".

627	1.34	MX274110	2	2	0.05	0.04	0.01	0.007	0.14	85	DISS	IQD	m m sc (F ol ra ra 0. IC m m sc (r
628.28 628.95	1.28 0.67	MX274111 MX274113	2 2	1 0	0.03 0.02	0.03 0.01	0.01 0	0.001 0.003	0.1 0.03	85 90	DISS NVS	IQD QTZT	(F or ra 0. Q su C IC m
629.99	1.04	MX274114	2	1	0.04	0.03	0.01	0.001	0.14	85	DISS	IQD	m sc (F o ra ra 0. IC m sc (F
631.79	1.8	MX274115	2	1	0.02	0.01	0	0	0.03	85	DISS	IQD	oi ra 0. IC m ha
633.1	1.31	MX274144	2	1	0.04	0.04	0.01	0.014	0.17	85	TR	IQD	gr La
634.38	1.28	MX274116	2	0	0	0.03	0.01	0.001	0.03	80	NVS	АМРН	u

IQD as described above. A grey QD matrix hosting abundant inclusions of mtgb now altered to amph with sometimes Bt rims. Tr Diss sulphide (Po, Cp and fg Pn). A weak flow orientation of the inclusions, but often random or chaotic orientation. Incls range in size from 2-4" to less than 0.5".

IQD as described above. A grey QD matrix hosting abundant inclusions of mtgb now altered to amph with sometimes Bt rims. Tr Diss sulphide (Po, Cp and fg Pn). A weak flow orientation of the inclusions, but often random or chaotic orientation. Incls range in size from 2-4" to less than 0.5".

QTZT inclusion, massive competent no sulphides. Minor IQD along the upper CT.

IQD as described above. A grey QD matrix hosting abundant inclusions of mtgb now altered to amph with sometimes Bt rims. Tr Diss sulphide (Po, Cp and fg Pn). A weak flow orientation of the inclusions, but often random or chaotic orientation. Incls range in size from 2-4" to less than 0.5".

IQD as described above. A grey QD matrix hosting abundant inclusions of mtgb now altered to amph with sometimes Bt rims. Tr Diss sulphide (Po, Cp and fg Pn). A weak flow orientation of the inclusions, but often random or chaotic orientation. Incls range in size from 2-4" to less than 0.5".

IQD continued from above. A grey QD matrix hosting minor inclusions and has become a more uniform fine grained QD with Diss sulphides. Large amph inclusions, mg, hmgs and uniform. No sulphides present.

a														
ri P ir c fi l(n n n	IQD		DISS	85	0.17	0.021	0.01	0.04	0.04	1	2	MX274117	1.62	636
si (1 o ra ra 0 1 (n	IQD		DISS	85	0.24	0.003	0.01	0.05	0.06	1	2	MX274118	1.58	637.58
n s: (I o r: r: 0 L	IQD		DISS	85	0.24	0.01	0.01	0.05	0.08	2	2	MX274119	1.62	639.2
g h	АМРН		NVS	80	0.03	0.004	0.01	0.03	0	0	2	MX274121	1.65	640.84
n a ir sı C	IQD	AMPH	TR	85	0.21	0.021	0.01	0.08	0.13	1	2	MX274122	1.34	642.18
e sı a C C e	QD		NVS	90	0.03	0	0	0.01	0.01	0	2	MX274123	1.4	643.59
s a V	QD WDG		NVS	90 0	0	0	0	0	0.01	0	2	MX274124	1.4 1.55	644.99 646.54

IQD, A grey QD matrix hosting abundant inclusions of mtgb now altered to amph with sometimes Bt rims. Tr Diss sulphide (Po, Cp and fg Pn). A weak flow orientation of the inclusions, but often random or chaotic orientation. Incls range in size from 2-4" to less than 0.5". IQD as described above. A grey QD matrix hosting abundant inclusions of mtgb now altered to amph with sometimes Bt rims. Tr Diss sulphide (Po, Cp and fg Pn). A weak flow orientation of the inclusions, but often random or chaotic orientation. Incls range in size from 2-4" to less than 0.5".

IQD as described above. A grey QD matrix hosting abundant inclusions of mtgb now altered to amph with sometimes Bt rims. Tr Diss sulphide (Po, Cp and fg Pn). A weak flow orientation of the inclusions, but often random or chaotic orientation. Incls range in size from 2-4" to less than 0.5".

Large Amph inclusions with chloritic green alteration and mg, massive, hmgs and no visible sulphides.

IQD as described above. A grey QD matrix hosting inclusions of mtgb now altered to amph. Several large AMPH inclusions 0.5-1ft in length. Tr Diss sulphide (Po, Cp and fg Pn) in IQD. QD, competent QD with mg equigranular texture hosting a spherulitic needle like textures. Minor alteration and minor qtz vns. QD, continuation from above. Competent, hmgs with mg equigranular texture hosting a spherulitic needle like textures. Minor alteration and minor qtz vns. WDG cut with CWT.

													QL
													Со
													eq
													spl
648	1.46	MX274125	2	0	0.01	0	0	0	0	90	NVS	QD	alt
													QD
													Со
													eq
													spl
649.68	1.68	MX274126	2	0	0.02	0	0	0	0	90	NVS	QD	alt
													QD
													Со
													eq
													spl
650.99	1.31	MX274127	2	0	0.01	0.01	0	0	0	90	NVS	QD	alt
													QD
													Со
													eq
													spl
652.03	1.04	MX274128	2	0	0.02	0.01	0	0.001	0.03	90	NVS	QD	alt
													IQI
													inc
													am
													2-4
654.01	1.98	MX274130	2	1	0.05	0.03	0.01	0.003	0.14	90	NVS	IQD	(Po
													IQ
													ho
													alt
													inc
655.78	1.77	MX274131	2	2	0.06	0.05	0.01	0.001	0.27	85	DISS	IQD	sul
													IQ
													ab
													inc
													am
657	1.22	MX274132	2	1	0.03	0.02	0	0.001	0.07	85	DISS	IQD	Pn
													IQ
													ab
													inc
													am
657.94	0.94	MX274133	2	1	0.02	0.02	0	0.003	0.07	85	DISS	IQD	Pn

QD, continuation from above. Competent, hmgs with mg equigranular texture hosting a spherulitic needle like textures. Minor alteration and minor qtz vns. QD, continuation from above. Competent, hmgs with mg equigranular texture hosting a spherulitic needle like textures. Minor alteration and minor qtz vns. QD, continuation from above. Competent, hmgs with mg equigranular texture hosting a spherulitic needle like textures. Minor alteration and minor gtz vns. QD, continuation from above. Competent, hmgs with mg equigranular texture hosting a spherulitic needle like textures. Minor alteration and minor qtz vns. IQD. A grey QD matrix hosting inclusions of mtgb now altered to amph. Several larger AMPH inclusions 2-4inches in length. Tr Diss sulphide (Po, Cp and fg Pn) in IQD.

IQD as above. A grey QD matrix hosting inclusions of mtgb now altered to amph. Several larger AMPH inclusions ~2inches in length. Tr Diss sulphide (Po, Cp and fg Pn) in IQD. IQD. A grey QD matrix hosting abundant small 0.5-1inch or less inclusions of mtgb now altered to amph. Tr Diss sulphide (Po, Cp and fg Pn) in IQD.

IQD. A grey QD matrix hosting abundant small 0.5-1inch or less inclusions of mtgb now altered to amph. Tr Diss sulphide (Po, Cp and fg Pn) in IQD.

														ab mt de
660.23	2.29	MX274134	2	1	0.04	0.04	0.01	0.005	0.17	85	DISS		IQD	aga (Po Fg alt
661.6	1.37	MX274135	2	0.5	0.01	0.02	0.01	0.002	0.03	90	TR		QD	cut les Fg Oc
663	1.4	MX274136	2	2	0.02	0.02	0	0.001	0.07	90	BLBS		QD	~2 QE
664.65	1.65	MX274137	2	1	0.02	0.01	0	0	0.03	90	TR		QD	un QE
665.99	1.34	MX274138	2	0.5	0.03	0.01	0	0	0.03	90	TR		QD	un QE
667.73	1.74	MX274139	2	0.5	0.02	0.01	0	0	0.03	90	TR		QD	un QE
														co sm vn:
														COI (~2
669.16	1.43	MX274140	2	2	0.04	0.02	0.01	0	0.1	90	TR		QD	of
														DI/ OL
														tca sul
														at CT
670.22	1.07	MX274141	2	0	0.01	0	0.01	0	0	80	NVS	MTSD	DIA	sw M ⁻
671.99	1.77	MX274142	2	0	0.01	0	0	0	0	90	NVS		MTSD	un cai
														M ⁻ ma
673.55	1.55	MX274143	2	0	0.01	0.01	0	0	0	90	NVS		MTSD	mi vis QT
														Ur sul
688.3	14.75									90			QTZT	str

IQD. A grey QD matrix hosting abundant small 0.5-1inch inclusions of mtgb now altered to amph. Relatively defined contact with minor qtz-carb against the QD below. Tr Diss sulphide (Po, Cp and fg Pn) in IQD.

Fg QD with a weak foliation and some alteration within small veins that cross cut the interval. Minor TR sulphides less than 1%

Fg QD continued from above. Occasional small blebs of sulphide ~2% overall.

QD, fg-mg 1% or less tr sulphides. Very uniform, hmgs and competent. QD, fg-mg 1% or less tr sulphides. Very uniform, hmgs and competent. QD, fg-mg 1% or less tr sulphides. Very uniform, hmgs and competent. QD, fg-mg 2% sulphides. Diss with a couple areas with local blebs and small stringers (Cp and Po)around qtz vns. QD is very uniform, hmgs and competent. Note that there is a qtz vn (~2inches) that defines the lower CT of the QD with the MTSD below.

DIA dyke, black, strongly magnetic (fg OLDI) with shark contacts at 70deg tca. Massive and uniform with no sulphides. Note that there is 4inches at the upper CT that is MTSD. The QD CT is actually against MTSD but it switches to DIA within 4inches. MTSD, fg, massive, competent and uniform with minor stringers of Qtzcarb vnlts. No visible sulphides. MTSD, continued from above. Fg, massive, competent and uniform with minor stringers of Qtz-carb vnlts. No visible sulphides.

QTZT, darker grey, siliceous and vg. Unit is very competent and hmgs. No sulphides present and no significant structures. Minor qtz-carb vnlts.

					QT sev wit gro pla mi
690.01	1.71	40	QTZT	STRT	QT QT
708.48	18.47	90		QTZT	Un sul str M1 QT of alc is h
726.77	18.29	75		MTSD	sul ST ab wit mi go the
727.01	0.24	75		STRT	mo sig M1 wit M1 be pla ove
742.13	15.12	75		MTSD	mi sul M1 slig Bre fol No
750.11	7.99	50		MTSD	24

QTZT as described above except several broken and blocky sections with fracture planes and very minor ground core along some fracture planes. Not a major structure but minor movement. Otherwise same QTZT as above.

QTZT, darker grey, siliceous and vg. Unit is very competent and hmgs. No sulphides present and no significant structures. Minor qtz-carb vnlts. MTSD, unit becomes a lighter grey MTSD SS with laminations (from the QTZT above). The MTSD has a foliation of 30deg tca. More broken planes along the MTSD fabric but overall unit is hmgs throughout. No significant sulphides.

STRT within the MTSD as described above. Unit is a light grey MTSD SS with laminations. This structure has a minor-moderate fracture with minor gouge or frock flour smeared along the fracture plane. Evidence of movement, but not a major fault. No significant sulphides.

MTSD unit is a lighter grey MTSD SS with minor/weak laminations. The MTSD has a foliation of 30deg tca but becomes weaker at depth. Broken planes along the MTSD fabric but overall unit is hmgs throughout with minor fractures. No significant sulphides.

MTSD as described above except a slight increase in fracture planes. Breaks appears to be mostly along foliation. Not a significant structure. No significant sulphides. FOH at 2460.6ft/750m.

APPENDIX IV SUMMARY TABLE FOR EACH DRILL HOLE

APPENDIX IV

Drill hole number	TYPE of hole	Collar Location UTM	Drillhole Azimuth	Drillhole Dip	Drillhole Length	# Samples collected	# of samples assayed
	drilled	coordinates with			(meters)		
		(Datum and Zone)					
		5135475.7N,					
		463564.2E, UTM Nad					
1368900	Parent	27, Zone 17N	145	-71	1361	17	17
		5135475.7N,					
		463564.2E, UTM Nad					
1368901	Branch	27, Zone 17N	145	-71	25.6	17	17
		5135475.7N,					
		463564.2E, UTM Nad					
1368902	Branch	27, Zone 17N	145	-71	382.6	52	52
		5135468.4N,					
		463543.1E, UTM Nad					
1368910	Parent	27, Zone 17N	175	-61	1262	49	49
		5135465.9N,					
		463545.3E, UTM Nad					
1368920	Parent	27, Zone 17N	137.4	-47.1	945	54	54
		5135997.3N,					
		464601.6E, UTM Nad					
1368950	Parent	27, Zone 17N	199	-63	1581	123	123
		5135997.3N,					
		464601.6E, UTM Nad					
1368951	Branch	27, Zone 17N	199	-63	23	17	17
		5135997.3N,					
		464601.6E, UTM Nad					
1368952	Branch	27, Zone 17N	199	-63	155	53	53

Total Meters drilled	Total # samples collected	Total # samples assayed
5735.2	382	382

There was a total of 8 drillholes completed which consisted of four parent holes and four branch holes. The total length drilled within the 2017-2018 program was 5735.2 meters.