Ontario \odot

We are committed to providing accessible customer service.
If you need accessible formats or communications supports, please contact us.

Nous tenons à améliorer l'accessibilité des services à la clientèle.
Si vous avez besoin de formats accessibles ou d'aide à la communication, veuillez nous contacter.

ASSESSM ENT REPORT

VALE CANADA LIM ITED

TOTTEN DRILL PROGRAM

NTS: 41/I-06
DECEM BER 2021

TABLE OF CONTENTS

Page
Executive Summary 3
Introduction 3
Property 4
Location and Access 5
Property Status 5
Exploration History 5
Regional Geology 6
Property Geology 8
2017 \& 2018 Exploration Program 9
Discussion 9
Conclusions and Recommendations 15
References 16
List of Figures
Figure 1: Location M ap of Worthington Offset and the Totten Project Claims. 3
Figure 2: Vale Area of Exploration for the Totten Project. 4
Figure 3: Plan View of the 2017-2018 Totten Drill holes. 9
Figure 4: Borehole Section 1368900 11
Figure 5: Borehole Section 1368901 12
Figure 6: Borehole Section 1368902 12
Figure 7: Borehole Section 1368910 13
Figure 8: Borehole Section 1368920 13
Figure 9: Borehole Section 1368950 14
Figure 10: Borehole Section 1368951 14
Figure 11: Borehole Section 1368952 15
List of Tables
Table 1: 2017 \& 2018 Personnel Totten Project 19
Table 2: Drilling Expenditure Summary 2017 \& 2018 21
List of Appendices
Appendix I. List of Personnel 19
Appendix II. List of Expenditures and Drill Invoices 20
Appendix III. Geological borehole logs 22
Appendix III. Summary Table for Each Drill Hole 23

EXECUTIVE SUM M ARY

A drill program was completed in the Totten area during 2017 and 2018. There was a total of 8 drillholes completed which consisted of four parent holes and four branch holes. The total length drilled within the 2017-2018 program was 5735.2 meters. The objective of this program was to evaluate the extension of the Cu-Ni mineralization within Quartz Diorite dyke to the south of Totten Mine. There was no significant mineralization identified in the drill campaign along the main Worthington trend. However, large areas of open ground remain untested. While no immediate follow up targets were generated from the 20172018 exploration drill program, further exploration is recommended within the area.

INTRODUCTION

The Worthington offset is a radial Quartz Diorite offset dyke which extends outwards from the basal Sudbury Igneous Complex in the South Range of the basin. Totten Mine is located within the offset.

Figure 1: Location M ap of Worthington Offset and the Totten M ine area.

Figures 1 through 3 illustrate the area where the 2017-2018 drill programs were conducted.

Vale Area of Exploration Totten Project

December 1, 2021
Figure 2: Vale Area of Exploration for the Totten Project.

PROPERTY

Location and Access

The Totten property is located approximately 40 kilometers west of the City of Sudbury on the Worthington Offset dyke in Lots $3 \& 4$ Concession 1 Drury Township and Lots 3 \& 4 Concession 6 Lorne Township. Access to the property can be gained via regional road 658 from Hwy. 17 West or by C.P.R. railway line that runs east west through the property immediately north of the Totten No. 2 shaft.
The property is characterized by rolling topography of the Canadian Shield. Maximum relief is approximately 30 m . The topography is reflected to some degree by the bedrock lithology and structure. The mineral hosting quartz diorite dyke forms a high ridge that trends in a northeast - southwest direction through the property. Argillaceous metasedimentary rocks stand at lower elevations.

The area is drained by Victoria Creek, a small waterway that runs east-west through the property. The creek experiences highest flow rates during the spring during run-off and lowest flow rates during the summer. Numerous small swamps and marshes are present on the property. Vegetation consists of scrubby poplar, birch, maple, oak, red and white pine in areas of higher elevation and alder and spruce in areas of lower elevation.

The drill areas were accessed using 4×4 trucks on exploration drill trails.

Property Status

The Totten Exploration program was performed on several parcels of land in Drury and Lorne Townships with a total area of $291+/$ - ha (Figure 1). The exploration work was on several parcels being the South $1 / 2$ of Lot 4 Con 1, all of Lot 3 Con 1, being part of PIN 73383-0309 (PAT-13110, PAT-13144, Pat13109) in Drury Township, the North $1 / 2$ of Lot 3 Con 6 being PIN 7395-0251 (PAT-13534), The East $1 / 2$ of the North $1 / 2$ of Lot 4 Con 6 being PIN 73395-0207 (PAT-13529) in Lorne Township. The property is a combination of mining and surface rights and mining rights only patented lands 100% owned by Vale Canada Limited.

Exploration History

The Totten property was operated intermittently by various companies from 1890 to 1970, including (from earliest to latest): the Dominion Mineral Company, the M ond Nickel Company, and the International Nickel Company.

Ore was first discovered in Worthington area in June 1884 during the construction of the Canadian Pacific Railway. The property was originally called the Crean property and was later named W orthington who was the manager of railway construction and the largest shareholder of the Dominion M ineral Company.

The properties encompassing the Totten/Worthington area have changed ownership several times. Current ownership is held by Vale Canada Limited. Several exploration campaigns have been conducted on the property, many of which have culminated in successful mining operations.

REGIONAL GEOLOGY

The Sudbury Impact Structure lies at the boundary of the Archean Superior Province with the Proterozoic Southern Province, immediately north of the Grenville Province. It formed at $\sim 1850 \mathrm{Ma}$ and consists of three members: the Whitewater Group; the Sudbury Igneous Complex (SIC) which underlies and rings the Whitewater Group (Figure 1); and an outer zone of locally brecciated country rocks (Sudbury breccia). The Whitewater Group contained within the central depression of the Sudbury Structure consists of four conformable formations generated from impact. These are, in ascending order, the Onaping, Vermilion, Onwatin, and Chelmsford formations. The Onaping Formation consists of a succession of upward-fining breccia units. The Vermilion Formation consists of carbonate, siltstone, and chert units. The Onwatin Formation is comprised of carbonaceous mudstones and siltstones. The Chelmsford Formation is dominated by greywackes.

The Sudbury Igneous Complex (SIC) lies structurally below the Whitewater Group and consists of four main units from base to top: contact sublayer norite, felsic and mafic norite, quartz gabbro, and granophyre. Concentric and radial quartz diorite offset dykes cut the footwall rocks along fracture zones. Footwall or granite breccia occurs as irregular zones varying in thickness from 20 to 225 ft between the SIC and the footwall rocks and is composed of fragments derived from both the SIC and the footwall rocks, contained in a quartz-rich breccia matrix. The granite breccia generally strikes parallel to the basal contact of the SIC but locally, upwellings or tongues project as far as 225 ft into the overlying SIC and underlying footwall rocks. The contact sublayer norite, offset dykes and granite breccia are the main hosts for the nickel-copper-precious metal sulphide ores.

Sudbury breccia represents impact shock features that occur as irregular bodies or dykes throughout the country rocks around the Sudbury structure. It is composed of subrounded fragments, mainly derived from the adjacent host rocks, set in a dark fine-grained matrix which may be fragmental, recrystallized, igneous textured or mylonitic.
Archean gneisses, migmatites, granites and volcanic rocks ($>2500 \mathrm{Ma}$) of the Superior Province lie to the west, northwest and northeast of the SIC. Supracrustal rocks of the Huronian Supergroup are exposed in the Southern Province and lie to the south of the SIC. The Supergroup includes from oldest to youngest; the Elliot Lake Group volcanic and clastic sedimentary rocks; the Hough Lake, Quirke Lake and Cobalt groups consisting of a sequence of conglomerate, mudstone, siltstone and sandstone and the Flack Lake Group consisting of mudstone, siltstone, and sandstone.

Sills and dykes of Nipissing gabbro (approximately 2215 Ma) intrude the Huronian rocks of the Southern Province, and the Superior Province rocks.

Copper, nickel, PGE-Au mineralization occurs in five principal environments:

1. As massive to disseminated sulphides at the base of the main mass in the sublayer; These deposits typically occur on the South Range of the Sudbury Structure. They are situated at the contact between the Sudbury Igneous Complex and footwall supracrustal rocks of the Huronian Supergroup and the Creighton and Murray granites. These deposits are generally zoned from massive ore at the footwall to disseminated sulphide ore toward the hangingwall. The massive ores rest directly on the footwall rocks and contain locally derived inclusions consisting of mafic, felsic, and subordinate metasedimentary clasts as well as ultramafic fragments whose source is unknown. The PGE content of these deposits is variable.
2. As fine and blebby disseminations and massive stringers within breccias beneath the sublayer; This deposit type occurs on the North and East Ranges of the Sudbury Structure (e.g., Onaping-Levack and Victor areas). These deposits are spatially related to breccia filled embayment structures on the margins of the SIC. The mineralization occurs primarily within brecciated country rocks at the basal contact of the SIC and in fractures in country rocks underlying the breccias. The breccias consist of fragments of country rock, ultramafic inclusions, and rare sublayer and mafic norite in a quartzofeldspathic matrix. Sulphides occur as fine and blebby disseminations and massive stringers within the breccias, as stringers in footwall fractures and occasionally as disseminations within overlying sublayer norite. The PGE-Au content of these deposits is generally low.
3. As veins and stockwork systems in the underlying footwall country rocks; These deposits occur up to $1,600 \mathrm{ft}$ into the underlying footwall and are usually linked to a contact related deposit. Footwall mineralization is often hosted in thick zones of Sudbury Breccia. This breccia is composed of fragments of country rock ranging from microscopic (matrix) to more than 35 ft in diameter that occurs as dykes and irregular masses in all footwall rocks. The deposits are comprised of veins and stockwork systems that are primarily massive chalcopyrite that vary from millimeter scale to greater than 35 ft wide. The edges of the deposits are characterized by stringers that are $<3 \mathrm{ft}$ that consist of massive intergrown bornite/chalcopyrite/millerite. Alteration of the host footwall rocks immediately next to the deposits includes quartz carbonate, epidote and chlorite in seams and fractures. Significant PGE-Au mineralization occurs within the main portion of the deposits, but significant concentrations occur in the peripheral sulphide stringers and within altered host rocks.
4. Within quartz diorite offset dykes extending radically from the SIC; Deposits within "Offset Dykes" are spatially associated with inclusion rich quartz diorite and with local structural complexities of the dyke (e.g., folding, displacements etc.). Inclusion quartz diorite (IQD) is generally located within the central portion of the offset, but on occasion may occur to the dyke boundary. Up to 75% of the inclusions are derived from local sources. Inclusions vary in diameter from $<\mathbb{l} / 2^{\prime \prime}$ to several feet and volumetrically ranges from a few percent to locally $>80 \%$ of the IQD. The marginal areas of the dykes are characterized by fine-grained inclusion free quartz diorite (QD). Contacts between the QD and IQD are variable and may be diffuse to gradational in nature to extremely sharp. Mineralization consists of massive and semi-massive Cu-Ni bearing sulphides haloed by disseminated and blebby sulphides. The massive sulphide (>80 volume $\%$ sulphide) is dominantly pyrrhotite and pentlandite. The massive sulphide thins and splays into 1 inch to 3 ft thick copper-rich stringer zones within the disseminated sulphide halo. Semi-massive sulphides ($50-80 \%$ volume sulphide) are also typically pyrrhotite and pentlandite rich but are spatially associated with chalcopyrite-rich patches. The PGEAu minerals tend to occur at sulphide/silicate boundaries and are spatially associated with more Curich sulphide.
5. Shear zones and related structural traps; These deposits occur within fault zones at the contact of the SIC and metasedimentary rock of the Stobie Formation of the Huronian Supergroup. Examples of this type of deposit include the East, Falconbridge, and Garson mines. The ore zones consist of two styles of mineralization including a contorted schist inclusion sulphide and an inclusion massive sulphide. Contorted schist inclusion sulphide is a sulphide breccia containing inclusions of norite and Huronian supracrustal rocks. The ore minerals are pyrrhotite, pentlandite and chalcopyrite. Inclusion massive sulphide contains inclusions of Huronian supracrustal rocks, quartz and jasperoid. This ore type is characterized by, silicified footwall rocks, strong deformation of the mineralization and late cross cutting quartz carbonate fractures with sphalerite, marcasite, and galena indicative of later hydrothermal activity.

PROPERTY GEOLOGY

Huronian-age metasediments, including conglomerate, sandstone, phyllite and argillite of the Ramsey Lake Formation, underlie the Totten Mine area. Intrusion of a Nipissing gabbro sill followed deposition of the sediments. The sill, approximately 1,200 ft in thickness, trends east west and dips approximately 65° to the southeast. The Nipissing gabbro consists predominantly of pyroxene gabbro and hornblende gabbro. In the Totten area, the gabbro is altered and takes on a waxy appearance. The Worthington Offset cuts both the metasedimentary rocks and the gabbro sill. Late quartz diabase and olivine diabase dykes crosscut all lithologies.

This quartz diorite offset dyke extends for 7.5 miles from the Sudbury Igneous Complex. The Worthington Offset attains a thickness of up to 150 ft in the Totten M ine area. The dyke strikes approximately 045° with steep variable dips.
Internal margins of the QD are often finer grained than the remainder of the QD and may be very biotitic in composition. Multiple pulses of QD may occur but are poorly documented in drill core.

Inclusion Quartz Diorite (IQD) is generally located within the central portion of the offset, but on occasion may occur at the dyke boundary. The quartz diorite intrusion "matrix" between inclusions in the IQD is commonly finer grained than in the inclusion-free QD. Up to 75% of the offset dyke (by area) consists of inclusions derived almost entirely from local sources. Inclusions vary in diameter from <1/2 inch to several feet. Inclusion volume ranges from a few percent to locally $>80 \%$ of the IQD and consists dominantly of gabbroic fragments, with lesser amphibolite and rare metasedimentary inclusions. The proportion of metagabbro inclusions within the offset decreases away from the core of the offset and away from the gabbro metasediment contact.

The contact relationship between metagabbro and quartz diorite is characterized by a metagabbro metabreccia of 1 to 35 ft fragments that are separated by sulphide-bearing IQD. Locally the metagabbro is invaded by a stockwork of IQD veins and mineralized stringers. These breccia stockwork features are not developed in metasedimentary country rocks.
Contacts between the QD and IQD are variable and may be diffuse to gradational in nature to extremely sharp. Where contacts are sharp a cross cutting relationship is observed that suggests that the IQD is a later phase. Locally the IQD contains sub angular fragments of inclusion-free QD also suggesting the emplacement of QD prior to IQD. Inclusions of QD tend to be associated with more intense sulphide mineralization.

In areas where large metagabbro inclusions are present within the IQD, metal grades tended to be higher than in portions of the dyke which contain only amphibolite inclusions.

Where the dyke is in contact with metasediments the margin of the offset consists of 'spherulitic' textured quartz diorite and the QD becomes increasingly coarse-grained inwards towards the core of the offset dyke. Locally fragments of meta-greywacke are entrained in the QD. Contacts with the Huronian metasediments are generally sharp. Locally, metasediments may be altered by the intrusion.

Late quartz and olivine diabase dykes intersect all lithologies. Two prevalent quartz diabase dykes are present in the immediate vicinity of the Worthington Mine.

2017-2018 EXPLORATION PROGRAMS

Drill programs were completed in the Totten area during 2017 and 2018. The objective of these programs was to explore for the extension of the Cu-Ni mineralization within Quartz Diorite dyke to the south of Totten Mine. No significant mineralization was identified in the drill campaign along the main Worthington trend. However, large areas of open ground remain untested. While no immediate follow up targets were generated from the 2017-2018 exploration drill holes, further exploration is recommended in the area. The exploration strategy focused on several drillholes that were drilled perpendicular to Worthington offset to better understand the location and morphology of the Quartz Diorite dyke and to validate favorable lithologies.

Figure 3: Plan View of the 2017-2018 Totten Drill holes.

DISCUSSION

Borehole 1368900 was drilled from surface to a depth of 4466 ft between August $24^{\text {th }}$ to October $11^{\text {th }}$ of 2017. The hole was drilled HQ core diameter by M ajor Drilling with a VD8000 drill rig. The location of the borehole trace with the property boundaries are presented within the drilling plan on (Figure 3 above). Quartz Diorite was intersected between 4394.3 ft to 4413 ft followed by Inclusion Quartz Diorite to 4466 ft . The main samples were taken from 4379.9 ft to 4465.2 ft . This hole was abandoned at 4459 ft when the rods became stuck in a fault. A steel wedge was set at 4383 ft to bypass the gear. The hole was then reduced from HQ to NQ core diameter at 1991 ft . There were Clappison wedges set at $2785 \mathrm{ft}, 2844 \mathrm{ft}$, and at 2913 ft and then the Continuous wedging tool was used at $3413 \mathrm{ft}, 3451.1 \mathrm{ft}, 3488.6 \mathrm{ft}$ and at 3567.4 ft to direct the hole towards the target (See figure 4 below).

Borehole 1368901 was drilled from 4384 ft to 4468 ft between October $12^{\text {th }}$ to the $15^{\text {th }}$ of 2017 . The hole was drilled NQ core diameter by M ajor Drilling with a VD8000 drill rig. This was a branch from the parent borehole 1368900. Quartz Diorite was intersected between 4396.7 ft to 4414.3 ft followed by Inclusion Quartz Diorite to 4444.5 ft . The main samples were taken from 4389.7 ft to 4467.9 ft . This hole was abandoned at 4465 ft after the rods got stuck in the same structure that borehole 1368900 became stuck in (See figure 5 below).

Borehole 1368902 was drilled from 4364 ft to 5612 ft between October $16^{\text {th }}$ to November $5^{\text {th }}$ of 2017. The hole was drilled by Major Drilling with a VD8000 drill rig. A steel wedge from borehole 1368900 was set at 4364 ft to drill this branch from the parent hole 1368900. Quartz Diorite was intersected between 4390.9 ft to 4415.9 ft followed by Inclusion Quartz Diorite to 4520.5 ft and then Quartz Diorite again to 4531.1 ft . The main samples were taken from 4383.9 ft to 4543.1 ft (See figure 6 below).

Borehole 1368910 was drilled from surface to 4140.9 ft between August $29^{\text {th }}$ to October $4^{\text {th }}$ of 2017. The hole was drilled HQ core diameter by Major Drilling with a VD8000 drill rig. This borehole was reduced from HQ to NQ core diameter at 1397.6 ft . The location of the borehole trace with the property boundaries are presented on the drilling plan on Figure 2. Quartz Diorite was intersected between 2342.9 ft to 2380.9 ft followed by Inclusion Quartz Diorite to 2582.8 ft and then Quartz Diorite to 2640.2 ft . The main samples were taken from 2332.7 ft to 2667.3 ft (See figure 7 below).

Borehole 1368920 was drilled from surface to 3100 ft between October $8^{\text {th }}$ to November $2^{\text {nd }}$ of 2017. The hole was drilled HQ core diameter by Major Drilling with a VD8000 drill rig. The location of the borehole trace with the property boundaries are presented within the drilling plan on Figure 2. Quartz Diorite was intersected between 1385.4 ft to 1399 ft followed by Inclusion Quartz Diorite to 1476 ft and then Quartz Diorite to 1482.9 ft . The main samples were taken from 1373 ft to 1496 ft (See figure 8 below).

Borehole 1368950 was drilled from surface to 5187 ft between March $7^{\text {th }}$ to M ay $6^{\text {th }}$ of 2018. The hole was drilled HQ core diameter by Foraco with a VD5000 drill rig. The location of the borehole trace with the property boundaries are presented within the drilling plan on Figure 2. Quartz Diorite was intersected between 1892.9 ft to 1957.7 ft followed by Inclusion Quartz Diorite to 2124.4 ft then Quartz Diorite to 2197.3 ft ., followed by Inclusion Quartz Diorite to 2241.3 ft and then QD to 2282.2 ft . The main samples were taken from 1883.7 ft to 2332.5 ft (See figure 9 below).

Borehole 1368951 was drilled from 1981 ft to 2058 ft between June $12^{\text {th }}$ to July $2^{\text {nd }}$ of 2018 . The hole was drilled HQ core diameter by Foraco with a VD5000 drill rig. The location of the borehole trace with the property boundaries are presented within the drilling plan on Figure 2. Inclusion Quartz Diorite was intersected between 1981.1 ft to 2058 ft . The main samples were taken from 1981.1 ft to 2058 ft (See figure 10 below).

Borehole 1368952 was drilled from 1952.9 ft to 2461 ft between June $12^{\text {th }}$ to July $22^{\text {nd }}$ of 2018 . The hole was drilled HQ core diameter by Foraco with a VD5000 drill rig. The location of the borehole trace with
the property boundaries are presented within the drilling plan on Figure 2. Inclusion Quartz Diorite was intersected between 1952.9 ft to 22106.9 ft followed by Quartz Diorite to 2139.2 ft and then Inclusion Quartz Diorite to 2166.1 ft followed by more Quartz Diorite to 2195.4 ft . The main samples were taken from 1952.9 ft to 2209.8 ft (See figure 11 below).

The drilling programs (of 1368950,1368951 , and 1368952) were designed to test down plunge and along strike of the Worthington Offset. Exploring for an extension of the main Quartz Diorite Dyke. No significant mineralization was intersected though there was trace to weakly disseminated sulphides, typical to what is seen in the W orthington Offset. The target area tested over one kilometer strike length with the four parent drillholes and four branch holes.

Figure 4: Section Looking North of borehole 1368900.

Figure 5: Section Looking North of borehole 1368901.

Totten Property Drill Section UTM NAD 27 Zone 17N (looking North)

Figure 6: Section Looking North of borehole 1368902.

Totten Property Drill Section
UTM NAD 27 Zone 17N (looking North)

463425
460733

Figure 7: Section Looking North of borehole 1368910.

Figure 8: Section Looking North of borehole 1368920.

Totten Property Drill Section UTM NAD 27 Zone 17N (looking East)

5135689N

Figure 9: Section Looking East of borehole 1368950.

Figure 10: Section Looking East of borehole 1368951.

Figure 11: Section Looking East of borehole 1368952.

CONCLUSIONS AND RECOM M ENDATIONS

The exploration diamond drill programs successfully intersected Quartz Diorite and the Inclusion Quartz Diorite dyke validating the continuation of the Worthington offset. No significant mineralization was identified during these drill programs. With untested and under explored areas remaining, opportunities continue to exist for potential mineralization within the Worthington Offset. It is recommended that future exploration continues to focus on untested areas to further understand and evaluate the prospective quartz diorite offset of the Sudbury Basin.

REFERENCES

Lloyd, T.R., 2001
Totten Project: Totten Cu-Ni-PGE-Au Project Drury Township, Sudbury District. Internal ITSL Memorandum, issued June 14, 2001.

Certificates of Author Qualifications

I, Kristin Henry of 321 Wembley Drive, Sudbury, Ontario, hereby certify that:

1. I am a 2013 graduate of Laurentian University of Sudbury with a Bachelor of Science (4year) degree in Geology.
2. I am a professional Geoscientist registered in the province of Ontario with the practising member licence \#3078.
3. I have practised in my profession continuously since 2017.
4. I am currently employed as a Sr. Geologist, Project with Vale, 337 Power Street, Copper Cliff, Ontario, POM INO.
5. The work documented in this report was conducted under my direct supervision.
6. I am the author of this report.

Kristin Henry
December 17, 2021

APPENDIXI
LIST OF PERSONNEL

Table 1: 2017 \& 2018 Personnel Totten Project

Geology Personnel	Position	Work	Activity Jason Letto
Tom Raskevicius	Area Geologist	$2017-2018$	Program Planning, Logging
Kristin Henry	Geologist in Training II Geologist	2017	2018
Logging Core			

Geotechnical Personnel

| David Desbiens
 Geophysics Personnel | Geological Technologist | 2017-2018 | Field work, borehole
 monitoring |
| :---: | :---: | :---: | :---: | :---: |
| Krystal Kant | Project Geophysicist | $2017-2018$ | Geophysical Support |

APPENDIXII
LIST OF EXPENDITURES AND DRILL INVOICES

Expenditure Summary for 2017 \& 2018

The total amount applied for this assessment report is $\$ 1,389,491.85$. Costs applied for assessment are associated with the 2017 \& 2018 Drilling Programs. The costs that will be applied for assessment credits correspond to drilling expenditures. Details for this category are provided below.

Table 2: Drilling Expenditure Summary 2017 \& 2018

Period	Program	Drill\#	Borehole \#	Invoice\#	Total (CDN\$)
					sub-total
1-Sep-2017 to 15-Sep-2017	Totten	1545	1368910	SY-002424	$\$ 87,224.41$
16-Sep-2017 to 30-Sep-2017	Totten	1545	1368910	SY-002429	$\$ 66,193.94$
1-Oct-2017 to 15-Oct-2017	Totten	1545	1368920	SY-002435	$\$ 82,427.69$
16-Oct-2017 to 31-Oct-2017	Totten	1545	1368920	SY-002436	$\$ 84,062.45$
1-Nov-2017 to 14-Nov-2017	Totten	1545	1368920	SY-002443	$\$ 19,764.36$
16-Aug-2017 to 31-Aug-2017	Totten	1544	1368900	SY-002416-A	$\$ 50,212.42$
1-Sep-2017 to 15-Sep-2017	Totten	1544	1368900	SY-002423	$\$ 85,889.92$
16-Sep-2017 to 30-Sep-2017	Totten	1544	1368900	SY-002428	$\$ 98,557.92$
1-Oct-2017 to 15-Oct-2017	Totten	1544	1368900	SY-002434	$\$ 94,072.14$
16-Oct-2017 to 31-Oct-2017	Totten	1544	1368902	SY-002437	$\$ 91,786.79$
16-Oct-2017 to 31-Oct-2017	Totten	1544	1368902	SY-002441	$\$ 7,591.50$
1-Nov-2017 to 14-Nov-2017	Totten	1544	1368902	SY-002444	$\$ 50,146.78$
15-Nov-2017 to 30-Nov-2017	Totten	1544	1368902	SY-002451	$\$ 11,104.50$
					$\$ 829,034.82$

Feb-16-2018 to Feb-28-2018	Totten	27	1368950	1802074	$\$ 10,084.00$
Mar-1-2018 to Mar-7-2018	Totten	27	1368950	1803089	$\$ 25,508.52$
Mar-8-2018 to Mar-15-2018	Totten	27	1368950	1803097	$\$ 42,844.77$
Mar-16-2018 to Mar-22-2018	Totten	27	1368950	1803119	$\$ 37,458.89$
Mar-23-2018 to Mar-31-2018	Totten	27	1368950	1803127	$\$ 45,907.80$
April-1-2018 to April-8-2018	Totten	27	1368950	1804153	$\$ 38,876.20$
April-1-2018 to April-8-2018	Totten	27	1368950	1804176	$\$ 7,717.50$
April-9-2018 to April-15-2018	Totten	27	1368950	1804167	$\$ 23,266.91$
April-16-2018 to April-22-2018	Totten	27	1368950	1804185	$\$ 24,957.80$
April-23-2018 to April-30-2018	Totten	27	1368950	1804194	$\$ 50,961.08$
May-01-2018 to May-15-2018	Totten	27	1368950	1805217	$\$ 91,616.22$
May-16-2018 to May-31-2018	Totten	27	1368951	1805255	$\$ 95,492.26$
June-16-2018 to June-30-2018	Totten	27	1368952	1806299	$\$ 2,100.00$
June-16-2018 to June-30-2018	Totten	27	1368952	1806303	$\$ 157.50$
July-01-2018 to July-15-2018	Totten	27	1368952	1806274	$\$ 63,507.58$
					$\$ 560,457.03$

APPENDIX III GEOLOGICAL BOREHOLE LOGS
$\begin{array}{lll}10.58 & 146.1624 & -999.759 \\ 109.73 & 146.133 & -69676\end{array}$
$\begin{array}{lll}109.73 & 146.133 & -69.6976 \\ 118.87 & 146.0132 & -69.6292\end{array}$
$\begin{array}{llll}118.87 & 146.0132 & -69.6292 \\ 128.02 & 145.9168 & -69.6662\end{array}$
$\begin{array}{lll}128.02 & 145.9168 & -69.6662 \\ 137.16 & 145.9212 & -69.6215\end{array}$

$\begin{array}{lll}155.45 & 145.8307 & -69.4942 \\ 164.59 & 145.9551 & -69.5465\end{array}$
$\begin{array}{lll}164.59 & 145.9551 & -69.5465 \\ 173.74 & 145.924 & -69.923\end{array}$

| 182.88 | 144.12 | -699.3991 |
| :--- | :--- | :--- | :--- |
| 192.02 | 146.3863 | -69.2728 |

192.02	146.3863	
201.17	146.1942	-69.2728

201.17	146.1942	-69.1938
210.31	146.1189	-69.2231

$\begin{array}{lll}219.46 & 146.6609 & -69.1391 \\ 2288 & 1467898\end{array}$
$\begin{array}{lll}228.6 & 146.7688 & -69.211 \\ 237.74 & 146.5229 & -69.1969\end{array}$
$\begin{array}{lll}237.74 & 146.5229 & -69.1969 \\ 246.89 & 146.8403 & -69.1482\end{array}$
$\begin{array}{lll}23.7 .89 & 146.8403 & -69.1482 \\ 256.03 & 146.7387 & -69335\end{array}$

256.03	146.7387	
265.18	-69.3351	
	146.6118	-69568

265.18	146.6118	-69.2568
274.32	146.6075	-69.7999
2836		

274.32	146.6075	-69.2799
283.46	146.7283	-69.315

$\begin{array}{llll}292.61 & 147.0975 & -69.089\end{array}$
$\begin{array}{lll}381.75 & 147.0313 & -69.0896 \\ 31094 \\ 3109 & 1464921\end{array}$
$\begin{array}{llll}310.9 & 146.9421 & -69.1229 \\ 320.04 & 169.921\end{array}$

$\begin{array}{llll}329.18 & 146.8725 & -68.972 \\ & 3383 & 16.9\end{array}$
$\begin{array}{lll}338.33 & 146.825 & -69.035 \\ 347.77 & 146.5302 & -68.006 \\ 3565\end{array}$
$\begin{array}{lll}347.47 & 146.5302 & -68.9963 \\ 356.62 & 146.8464 & -68.9266 \\ 36576 & 1465534\end{array}$

| 356.62 | 146.4864 | -68.9266 |
| :--- | :--- | :--- | :--- |
| 355.76 | 146.5534 | -68.81 |

$\begin{array}{lll}3744.9 & 1466.5514 & -68.81 \\ 38525 \\ 34.05 & 145.5458 & -685006\end{array}$
$\begin{array}{lll}384.05 & 145.8458 & -68.5006 \\ 393.19 & 145.8211 & -68.3447\end{array}$
$\begin{array}{lll}393.19 & 145.8211 & -68.3447 \\ \text { 402.34 } & 145.8232 & -68.2877 \\ 411.48 & 1456414\end{array}$
$\begin{array}{lll}411.48 & 1455.6414 & -68.1881 \\ 420.62 & 145.404 & -681010\end{array}$

420.62	1454.404	-688.1016
429.77	145.2566	-68.0894

$\begin{array}{lll}429.77 & 145.2566 & -68.0894 \\ 438.91 & 145.1825 & -68.0718\end{array}$
$\begin{array}{lll}448.06 & 145.1825 & -68.0718 \\ 145.1628 & -68.032\end{array}$

457.2	145.0373	-68.0244
4634		

$\begin{array}{lll}466.34 & 145.0903 & -68.0061\end{array}$
$\begin{array}{llll}475.49 & 145.2622 & -68.0539 \\ 484.63 & 145.1305 & -68.0293\end{array}$
$\begin{array}{llll}484.63 & 145.1305 & -68.029 \\ 493.78 & 145.1007 & -680376\end{array}$
$\begin{array}{lll}\text { 493.78 } & 145.1 .1007 & -68.0376 \\ 502.92 & 145.3103 & -68.0041 \\ 51.26\end{array}$
$\begin{array}{lll}502.92 & 145.3103 & -68.0041 \\ 512.06 & 145.3364 & -67.9957\end{array}$
$\begin{array}{llll}521.21 & 145.3773 & -67.9793\end{array}$
$\begin{array}{lll}530.35 & 145.4884-68.0427\end{array}$

$\begin{array}{lll}54.64 & 145.4513 & -68.024 \\ 557.78 & 1455.4591 & -67.964 \\ 56693 & 145.6326 & -68101\end{array}$

566.93	145.6326	-68.101
576.07	145.5713	-68.024

$\begin{array}{llll}576.07 & 145.5713 & -68.0241 \\ 585.22 & 145.7895 & -68.0832 \\ 5936\end{array}$
$\begin{array}{lll}556.4 & 145.7895 & -68.0832 \\ 594.36 & 146.0002 & -68.0843\end{array}$
$\begin{array}{lll}653.5 & 146.0909 & -687.0844 \\ 612.65 & 146.1918 & -67.684 \\ 6\end{array}$
$\begin{array}{lll}612.65 & 146.1918 & -67.684 \\ 621.79 & 146.5553 & -67.6643 \\ 630.94 & 146908 & -67.6145\end{array}$
$\begin{array}{lll}621.19 & 146.5553 & -67.643 \\ 630.94 & 146.908 & -67.6145 \\ 640 & 14749 & -67.483\end{array}$
$\begin{array}{lll}841.25 & 152.4452 & -67.8522 \\ 850.39 & 150.2534 & -67.8378\end{array}$

850.39	150.2534	-7.8327
859.54	150.4409	-68.1216
8688		

$\begin{array}{lll}877.82 & 148.514 & -68.833 \\ 886.97 & 149.0078 & -68.7161\end{array}$

876.11	149.9254	-68.6987

989.11	149.9254	-68.6897
905.26	150.5556	-68.3706
914.4	151.0855	

$\begin{array}{lll}914.4 & 151.0855 & -677.674 \\ 923.54 & 150.3543 & -66.425\end{array}$

923.54	150.3543	-66.4255
932.69	150.2855	-65.8786

932.69	150.2855	$-65 . .8786$
941.83	150.554	
950.98	152.3778	-65.723
	-65.723	

$\begin{array}{lll}950.98 & 152.3778 & -555.773 \\ 960.12 & 153.068 & -66.0216\end{array}$
$\begin{array}{lll}960.12 & 153.068 & -66.0216 \\ 969.26 & 152.0815 & -64.1148 \\ 978.41 & 1521655\end{array}$

	152.0815	-64.1148
978.41	152.1665	-63.1988
987.55	152.5992	-62.330

$\begin{array}{llll}9887.55 & 152.5792 & -62.430 \\ 996.7 & 152.7959 & -62.448\end{array}$

| 1005.84 | 153.3501 | -62.5551 |
| :--- | :--- | :--- | :--- |
| 1014.98 | 153.400 | -62.6119 |
| 1024.13 | 153.3302 | -628931 |

$\begin{array}{llll}1024.13 & 1535.3302 & -62.61 .819 \\ 1033.27 & 152.3467 & -62.9332\end{array}$ $\begin{array}{llll}1033.27 & 152.9467 & -62.9342 \\ 1042.42 & 153.0879 & -62.1008\end{array}$ $\begin{array}{lll}1042.42 & 153.0079 & -22.1 .1008 \\ 1051.56 & 152.4174 & -60.8863\end{array}$

$\begin{array}{lll}1069.85 & 152.81 & -59.8729 \\ 1078.99 & 153.7052 & -58.4117\end{array}$ $\begin{array}{lll}10888.14 & 153.7052 & -58.4111 \\ 10935 & -56.9008 \\ 109728 & 15377005 & -57138\end{array}$ | 10907.28 | 153.7005 | -57.130 |
| :--- | :--- | :--- | :--- | $\begin{array}{lll}1106.42 & 154.4958 & -56.9976 \\ 1115.57 & 155.2457 & -56.6600\end{array}$ $\begin{array}{lll}1114.57 & 1555.2457 & -56.6606 \\ 1124.71 & 156.0442 & -56.3079 \\ 11336 & 15655755 & -5.80\end{array}$ | 1133.86 | 156.5675 | -56.0841 |
| :--- | :--- | :--- |
| | 1143 | | | 1143 | 157.1052 | -55.5092 |
| :---: | :---: | :---: |
| 1152.14 | 157.8503 | -54.864 |

$1161.29 \quad 158.5113-54.4739$
$\begin{array}{lll}1161.29 & 158.5113 & -54.4739 \\ 1170.43 & 159.1695 & -53.9925\end{array}$

$\begin{array}{llll}1179.58 & 159.927 & -53.583\end{array}$ | 1188.72 | 160.4124 | -52.6442 | |
| :--- | :--- | :--- | :--- |
| | 1197.86 | | 50.08 |
| | -52.068 | | | $\begin{array}{lll}11197.86 & 160.508 & -52.0686 \\ 1207.01 & 160.7146 & -52.1486\end{array}$ $1216.15 \quad 160.8942 \quad-52.1307$ $\begin{array}{llll}1225.3 & 161.2857 & -51.943 \\ 1234.44 & 161.6413 & -51.4651\end{array}$

123344	161.6413	-51.4651
1243.58	161.9472	-51.335
125273	1622081	

$\begin{array}{llll}1252.73 & 162.2281 & -51.3117\end{array}$
$\begin{array}{lll}12621.87 & 162.5287 & -51.1229 \\ 1271.02 & 162.9339 & -51.1457\end{array}$

$\begin{array}{llll}1307.59 & 163.8867 & -50.7869\end{array}$

$$
\begin{array}{lll}
13116.74 & \text { 164..2172 } & -50.64899 \\
1325.88 & 161.9616 & -49.3939
\end{array}
$$

$$
\begin{array}{ccc}
13355.02 & 161.8952 & -47.8969 \\
1341.12 & 164.2 & -50.2
\end{array}
$$

ненимем

| METERS | | SAMPLE INFO | | | | PERCENT | | | GRAMS/TONN |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DEPTH | LENGTH | | | | | | | | |
| 0 | 0 | SAMPLE | CODE | EST | CU | NI | CO | AS | TPM |

00

DESCRIPTION

Collar
Casing. About 1 ft of broken and blocky core/boulders. Boulders are Qtzt and possibly insitu.

Quartzite, massive, hmgs, competent QTZT. Weak fabric present but not consistent throughout. Varies from 60-80deg tca. Does not fracture alons 0-80deg ta. Dot fracture along this fabric plane. Color is drk grey and very slicious. Occasional small whisps of core with a fg siliceous matrix. No significant sulphides although occasional pyrite along fractur planes. Overall this unit if very massive and hmgs with very little change.
QTZT as described above except there is veins of SUBX that cross cuts the interval in a chaotic nonpreferred orientation. The matrix is g, dark grey and host abundant local inclusions of qtzt. No sulphides associated with the SUBX or the QTZT.
Quartzite, as described above with massive, hmgs, competent QTZT. Weak fabric present but not consistent throughout. Varies from 60-80deg tca. Does not fracture along this fabric plane. Color is drk to med drk grey and very silicious. No
significant sulphides although occasional pyrite along fracture planes. Overall this unit if very massive and hmgs with very little change.

SUBX similar to what was described bove The QTZT interval is chaotic with a fg matrix that appears as a wirly fabric that host abundant loca tat inclusions. Matrix is not black and appears to be similar to the QTZT mass. No sulphids present.

Quartzite, massive, hmgs, competen QTZT. Weak fabric present but not consistent throughout. Varies from 50-70deg tca. Does not fracture along this fabric plane. Color is drk grey and very silicious. No significant sulphides although occasional pyrite along fracture planes. Overall this unit if very massive and hmgs with very little change and is the same continuation as above.
Qtzt as described above except the interval is brecciated with a fg gry-drk gry matrix, believed to be SUBX. Small loal inclusions of QTZT within. No sulphides. It is possible this is the sulphides. It is possible this is the
contact or transition from a qtzt to a contact or transition from a qtzt to a
MTSD that is defined as less qtz, drker grey and becomes more of a fg sandstone or slts as seen farther down the hole.

The quartzite described above appears to have transitioned or changed at the brecciated interval above (possibly SUBX) into a unit that contains less qtz but is still fg , massive, hmgs, competent. It is darker in color and seems to be sandstone or laminated siltstone MTSD. A fabric is present ranging from 15-30deg tca. Occasionally subpll tca. No significant sulphides although occasional pyrite along fracture planes or along laminations. SUBX cross cutting the MTSD interval described above. Fg drker gry matrix that has ripped apart localized blocks f the MTSD. Appears to be SUBX, no sulphides.
This interval is the same unit as the MTSD unit that was described above between $625.0-809.9 \mathrm{ft}$. The subx above appears to have cross cut this MTSD sequence.
storilite??. Hmgs throughout this
entire interval. Some chloritic
alteration throughout. Believed that
this unit/interval is a cooked up
this unit/interval is a cooked up
MTSD. It appears to define a lithology
change from MTSD above, back to massive QTZT as described at the to of the hole. Tr diss pyt sulphides throughout this interval.
QTZT, very silicious and sugary txt with abundant qtz. The interval is very massive, hmgs and continuous throughout. There is a weak fabric occurring at 40-50deg tca
throughout. No sulphides present. Minor Fractures present. Lower CT occurs at 50Deg tca.
MTSD exactly as described between 825.4-829.6ft. It has very sharp contacts upper at 50Deg tca and lower at 30deg tca. Non Magnetic, no sulphides. Similar color to the MTSDs. It is believed to be a cooked up MTSD. The contacts are slightly hilled, and some evidence of inclusions of the host Qtzt. This unit contains predominantly of a needly black lathy mineral that occurs in a radiating orientation. On a fresh surface it is flakey like biotite. Possibly a staurolite mineral recrystallized.
QTZT, very silicious and sugary ty QIZ, very slicioious and sugary with abundant qtz. The interval is roushout. Thare is wak fabic throughout. There is a weak throughout. No sulphides present.
$308.24 \quad 3.44$0

FLT. Large significant fault with gouge. Obvious movement with slicken slides and fault gouge. Qtz vns that are vuggy with qtz crystals. Qtz has abundant inclusions of qtzt within from the flt movement. The upper C is 30deg tca and the lower ct is $30-$ 40deg tca, but may represent the weak atzt fabric. The Flt it self weak qtzt fabric. The FIt it self 10deg through the length of this interval. .No significant sulphides interval.. No significant sulphid QTZT, very silicious and sugary txt with abundant qtz. The interval is very massive, hmgs and continuous throughout. There is a weak fabric occurring at 40-50deg tca throughout. No sulphides present.

QTZT as described above but there is a small structure or plane that has some movement that is likely related o the larger FLT above. Small qtz vns throughout, and a fracture plane of 40 Deg tca. No sulphides.
QTZT, very silicious and sugary txt with abundant atz. The interval is ery massive hmgs and continuous throughout. There is a weak fabric ccurring at 40-50deg tca throughout. No sulphides present. SUBX band that cross suts the Qtzt. No sulphides. The fg drk gry matrix host inclusions of the local Qtzt. The fabric of the SUBX is chaotic and swirly.
QTZT, very silicious and sugary txt with abundant qtz. The interval is very massive, hmgs and continuous throughout. There is a weak fabric ccurring at 40-50deg tca throughout. No sulphides present.

Small flt within the Qtzt. Approaching a larger lower flt below. There is evidence of movement with slicken slides at this flt. Located at 1318.5 ft is minor gouge. Broken and blocky pieces throughout. No sulphides.

QTZT unit appears to be transitioning into a darker grey MTSD. This interval is about 50/50 QTZT/MTSD. The upper portion appears to be mostly QTZT and more siliceous with a fabric at 40-50deg tca, than the low drker grey MTSD which has a fabric plan subpll tca (5-20deg tca). The QTZT often appears as small
blocks/intervals as it transitions. Large significant flt. At 1359.5 ther Large significant flt. At 1359.5 there is a strong flt plane about 2inches wid
filled with gouge, atz and qtz-carb. filled with gouge, qtz and qtz-carb.
This flt occurs at about 30deg tca. This flt occurs at about 30deg tca.
This interval shows broken core that This interval shows broken core that
has created voids that has been has created voids that has been infilled with perfect qtz crystal. Majority of this flt and fractures have been rehealed with QTZ and shows a breccia like txt of the host MTSD. No sulphides.
MTSD unit from above continues. Drk grey fg MTSD. The MTSDs have a moderate fabric and laminations that occur subpll tca. Not strongly obvious in core but many fracture planes break along the fabric along the core axis. No sulphides present.

QTZT as seen above in the hole. very siliceous and sugary txt with abundant qtz. Lt grey in colour. The interval is very massive, hmgs and continuous throughout. There is a weak fabric occurring at 40-50deg tca throughout. No sulphides present.

DIA, Fg Black magnetic diabase dyke. Contacts are chilled and upper ct is sharp at 20deg tca and lower ct is sharp at 30deg tca. Very massive and hmgs throughout some broken blocks but overall competent. No significant fracture planes.

MTSD and possibly some QTZT. Difficult to tell but seems to transition back and forth. The QTZT is usually more felsic and siliceous while the MTSDs are typically slightly darker grey. Both are massive in txt and hmgs.
DIA, fg, blk, magnetic, dia dyke with sharp chill contacts both upper and lower at 20deg tca. Fg aphanitic with lower at 20deg ca. fg aphanitic with faults. No sulphides present.

MTSD and QTZT Seems to transition back and forth. The QTZT is usually more felsic and siliceous while the MTSDs are typically slightly darke grey. Both are massive in txt and hmgs. It seems that the fg drker grey MTSD is more likely to occur near the DIA dykes contacts. Possibly the dia occupying the weaker MTSDs, or altering the QTZ to a drk MTSD. No sulphides present.
IIA, fg, blk, magnetic, dia dyke with diA, fg, bik, magnetic, dia dyke sharp chill contacts, upp
20Deg and lower at 25d 20Degan lowe at 25 tca. F aphanitic with some broken and
blocky core but no major faults. 1 blocky core but no major faults. 1 increase fractures. No sulphides present.
MTSD with minor localized areas of QTZT near the top half of this interval. Dominantly a fg drk gry MTSD, relatively competent and hmgs. The QTZT is usually more felsic and siliceous while the MTSDs are typically slightly darker grey, No sulphides present.

Large fg black aphanitic DIA dyk Sharp chill contacts. Upper at 25 deg tea and lower at 30deg tca. The cor of this interval is slightly lighter grey in color and coarsens a little to a fg. mg DIA. Interval is strongly magnetic and no sulphides. No significant structures in this DIA. Some fracture at the top ct and some in the middla of the interval but nothing significant. brecciated QTZT with qtz and qtzcarb. No sulphides. Rehealed with qtz and qtz-carb. NOTE THAT AT 1991.9ft IS THE END OF THE HQ DRILIING. REDUCED TO NQ TO BEGIN DIRECTIONAL DRILLING.

QTZT with a moderate fabric at 30deg tca. The unit does have localized areas of a slightly drker gry MTSD with weak laminations in some areas, but this interval is mostly QTZT. Uniform throughout, with only a slight change from no fabric to a weak fabric. No sulphides present. weak fabric. No sulphides present. competent, no significant structure CTS. Fg throughout. The contacts CTs. Fg throughout. The contacts occur at 15 Deg tca at the upper and
30 deg at the lower. No sulphides.

QTZT with a weak fabric at $30-40 \mathrm{deg}$ ca. The unit does have localized areas of a slightly drker gry MTSD with weak laminations in some areas, but this interval is dominantly QTZT. Uniform throughout. No sulphides present. Competent, no significant structures.
STRT within the QTZT. Several STRT within the QTZT. Several fracturring at 20-30 des tca Also and Qtz-Carb brecciating along the core axis. No sulphides present. Moderate movement expected, no Major FIt.

QTZT with a weak fabric at 30-40deg ca and often no fabric present at al an more massive hmgs like a sandstone. The unit does have localized areas of a slightly drker gry MTSD with weak laminations in some areas, but this interval is dominantly QTZT. Uniform throughout. No sulphides present. Competent, no significant structures.

DIA, blk-dark gry with sharp chilled CTs. Fg throughout. The contacts occur at $10-20 \mathrm{Deg}$ tca at the upper and 20deg at the lower. No sulphides.

QTZT with a weak fabric at 20-30deg ca and often no fabric present at al an more massive hmgs like a sandstone. The unit does have localized areas of a slightly drker gry MTSD with occasional weak
laminations in some areas, but this interval is dominantly QTZT. Uniform interval is dominantly QTZT. Uniform Competent, no significant Competent, no significant BX260 AT 782m. BX260 AT 782 m .
CORE NOT FOUND IN YARD. IT SHOULD TURN UP THO. STARTED LOGGING @ BOX 280
MG to FG grey to blush, weak bedding fabric thrt at 25 to 35 deg tca, local area near 2626^{\prime} to 2638^{\prime} with low-angle rough jts thin $1-5 \mathrm{~mm}$ Chlorite-Muscovite anastomosing vnlts. rare spks of sulphide along Jt surfaces. local areas of fine laminations typically $\sim 0.5 \mathrm{~cm}$ thick laminations typically $\sim 0.5 \mathrm{~cm}$ thick
typically more prevalent near bottom of interval.

FG to MG, grey to dark grey, consistant bedding fabric thrt at 25 to 30 deg tca, Abundant smth jts parallel to bedding fabric. bedding is strongly laminated with beds ranging from $\sim 2 \mathrm{~mm}$ to 10 cm . thin beds typically $<1 \mathrm{~cm}$ are chlorite rich. Thicker (>1cm) beds are more Qz-rich.

MG to FG, grey to bluish, consistent bedding fabric thrt at 2030 deg tca beds range from $<1 \mathrm{~cm}$ to $>10 \mathrm{~cm}$. oc smth jts thrt along bedding planes. rare Qz-Po vns thrt from 1 cm to 10 cm.

FG to MG gry to bluish, thin to thick bedding thrt, local fine laminations $<0.5 \mathrm{~cm}$ thick to the occasional sandy 0.5 cm thick to the occasional sandy acin beds. Local gradded bed typically at 20 to 30 deg tca. Bottom 5 ' of interval shows abundant jointing associated with fault below.
FG to MG, Fine laminated beds thrt typically $>1 \mathrm{~cm}$. Broken core thrt preferentially broken along beddin planes. Upper part of interval has abundant muddy gouge. and fine layers of gouge are found along J surfaces.
FG, blue to grey, fine laminated
(typically <1cm). and mud-rich beds thrt. bedding fabric is typically 40 to 45 deg tca, smth jts thrt, at 30 to 50 deg tca. local Qz-white mica and Po alteration and veinlts thrt.

FG, blue to grey, fine laminated bed thrt typically >1cm. occ thin $<1 \mathrm{~mm}$ Qz vnlts that X-cut bedding. SMth jts thrt along bedding fabric. bedding typically at 35 to 45 deg tca.

FG to MG, grey to bluish, locally finely laminated, and apparently massive in the thicker, more Qz-rich layers. Bedding typically at 30 to 40 deg tca Bedding typically at 30 to 40 deg tca. at 10 to 40 deg tca locally core is blocky and JT surfaces are coated with smth chlorite.

MG to CG, thickly bedded from 2 to 0 cm with sandy, Qz-rich beds. occ thin and irregular $1-2 \mathrm{~mm}$ Qz-vnlt thrt. occ smth jts thrt at 15 to 25 deg tca coated in carbonate and chlorite.

FG to MG, grey to bluish, locally finely laminated, and apparently massive in the thicker, more Qz-rich layers. Bedding typically at 25 to 35 deg tca, Common and shallow jts thrt at 10 to 25 deg tca often coated with smth chlorite.

FG to MG, grey to bluish, locally finely laminated, and apparently massive in the thicker, more Qz-rich layers. Bedding typically at 35 to 45 deg tca. Abundant smth and shallow jts from Abundant smth and shallow jts fro
5 to 30 deg tca often coated with 5 to 30 deg tca often coated with
glossy-chlorite. locally core looks glossy-chlorite. locally core looks mechanically ground and blocky
FG to MG, grey to bluish, finely laminated beds thrt typically $<1 \mathrm{~cm}$ thick. Bedding foliation at 30 to 40 deg tca. Locally closely spaced jts creating blocky core. smth jts typically parallel to bedding.
FG to MG, grey to bluish, completely broken and blocky core, broken core looks drilling-induced. from a thin and low angle structure near the top of low angle struct.
FG to MG, grey to bluish, thin bedded FG to MG, grey to bluish, thin bed
with muddy beds typically $<1 \mathrm{~cm}$ with muddy beds typically $<1 \mathrm{~cm}$ thick. Smth and shallow
typically along bedding. Ground 7.5^{\prime} for wedge. button is off center.
FG to MG, grey to bluish, thin to thick beds thrt. from muddy layers typically $<1 \mathrm{~cm}$ to more Qz-rich and sandy layers typically $>3 \mathrm{~cm}$. smth and stepped and very shallow jts thrt typically along bedding. ground 6.2^{\prime} for wedge. button off ground
FG to MG, grey to bluish, thinly bedded with mud-rich beds typically 1 cm thick. Smth and shallow jts thrt ften along bedding surface or at shallow and oblique angles to the core axis.

1062.01 1063.33	6.04 1.31	60		MTSD WDG	FG to MG, grey to bluish, thinly bedded thrt with mud-rich beds typically $<1 \mathrm{~cm}$. Bedding typically at 20 to 30 deg tca, Abundant Smth jts thrt at shallow angles often along bedding. Jts often X-eachother creating local intervals of blocky core. Ground core for wedge. button is off center.
1086	22.68	85	QTZT	MTSD	FG to MG, grey to bluish, thin to thick beds consisting of fine, mud-rich laminations $<1 \mathrm{~cm}$. to thicker ($>10 \mathrm{~cm}$) sandy and more Qz-rich beds. Smth jts thrt typically along the bedding fabric. And also at shallower angles oblique to bedding.
1087.34	1.34	0		WDG	Ground core for wedge. button is off center.
1099.57	12.22	85	QTZT	MTSD	FG to MG, grey to bluish, thin to thick beds consisting of fine, mud-rich laminations $<1 \mathrm{~cm}$. to thicker ($>10 \mathrm{~cm}$) sandy and more Qz-rich beds. Smth jts thrt typically along the bedding fabric. And also at shallower angles oblique to bedding. Rare, veinlt of $Q z$ and Po.
1116.79	17.22	45		MTSD	FG to MG, grey to bluish, thin to thick beds of fine muddy laminations typically $<1 \mathrm{~cm}$. to thicker beds $>10 \mathrm{~cm}$. Abundant smth jts thrt at shallow oblique angles TCA. often Xing eachother creating intervals of blocky, broken, core.
1131.45	14.66	55		MTSD	FG to MG, grey to bluish, thin to thick bedded with mud-rich beds ranging from $<1 \mathrm{~cm}$ to $>5 \mathrm{~cm}$. Bedding is 15 to 25 deg tca, Common smth jts thrt at high angles TCA typically 10 to 20 deg tca. often jts X -eachother creating intervals of blocky core.
					FG to MG, grey to bluish, thin to thick bedded with mud-rich beds ranging from $<1 \mathrm{~cm}$ to $>5 \mathrm{~cm}$. Bedding is 15 to 25 deg tca, Common smth jts thrt at high angles TCA typically 10 to 20 deg
1141.57	10.12	75		MTSD	tca.

MG to FG, grey to bluish, sandy, QzOrich beds thrt at 30 to 40 deg tca smth jts thrt at 30 to 40 deg tca. upper 2' and lower 1' of interval looks like mechanically broken and ground core.

MG to CG, grey to bluish, thickly bedded with Qz-rich and sandy beds. rare thin $(<1 \mathrm{~cm})$ mud-rich beds. smth jts thrt typically at 30 to 40 deg tca. its thrt typicaly at 30 to 40 deg tca. BG to MG to CG, grey to bluish weak bedding fabric thrt. beds are typically sandy and Qz-rich. smth jts thrt at 30 060 deg tca. rare thin ($<1 \mathrm{~cm}$) Qz vns with Trace po thrt.
G, dark grey, upper 8 inches is mechanically broken and blocky. upper half of interval is aphanitic and glassy. lower half is apilitic and sugary. rare thin ($\sim 1 \mathrm{~mm}$) Qz-vnlt thrt. Chill margine of OLDI
MG, dark grey, apilitic to phaneritic. smth and rough tis trht mostly at 45 smth and rough tis trht mostly at 45 Whorite coated unit is Chlorite co
FG, dark grey, aphanitic and glassy thrt. occ smth jt thrt at 45 to 60 deg Chill margin of OLDI
FG, dark grey, completely blocky and broken core. Some broken core pieces are broken, some are not. looks like the contact of OLDI is broken.

FG grey to dark grey, none magnetic, apparently massive. Unit appears to be rextlized. and is distinguishable from OLDI in that it is non-magnetic.

MG to FG, grey to blue. weak bedding fabric thrt with typically thick, Qz-rich and sandy beds. smth jts thrt at 30 to 0 dendy beds. smoly for 40 deg tca. Occasional rough jts at varous angles creating local areas of
blocky core thrt. occ thin 1-2mm Qz vnlts thrt.

1284.73	35.81									85		MTSD	QTZT	MG to FG, grey to bluish, bedding fabric ranges from weak to strong. Thick, sandy, Qz-rich beds with local thin, mud-rich beds thrt show thin laminations. occ small Chl-vnlts show offsetting and x -cutting of beds. rare thin $1-2 \mathrm{~mm}$ Qz vnlts thrt. Locally, QTZT looks sugary in appearance and may be rexrystalized.
1308.2	23.47									85			MTSD	MG to FG, grey to bluish, thin to think beds thrt, thinner beds (typically less than 1 cm) are more mud-rich, while thinker beds are sandy and more Qzrich. smth jts thrt 30 to 45 deg tca, often Jt surfaces are coated in Carbonate minerals. occ rough jt thrt with no dominant orientation. rare thin $1-5 \mathrm{~mm}$ Qz- vnlt thrt.
1322.68	14.48									80			MTSD	FG to MG, grey to bluish, bedding fabric at 20 to 30 deg tca and is typically laminated thrt. smth jts thrt at shallow angles often X -ing bedding. rar thin Qz-vnlts thrt
1334.99	12.31									55			MTSD	FG to MG grey to bluish, weak bedding fabric at 20 to 30 deg tca thrt, Often MTSD looks sugary and rextlized. Abundant smth jts thrt at shallow angles (15 to 30 deg tca), often Xing rougher jts creating local blocky core.
1336.55	1.55	MX247020	2	0.1	0.01	0.01	0	0	0	90	NVS		MTSD	FG to MG, grey to bluish, thin bedding fabric thrt @ 25 to 30 deg tca, smth jts roughly parallel to bedding. Mineral grains are sugary in appearance and may be rextlized. NVS.
														FG to MG, grey to bluish, thin bedding fabric thrt @ 25 to 30 deg tca, smth jts thrt at 25 to 50 deg tca often oblique to bedding, Mineral grains are sugary in appearance and
1338.01	1.46	M $\times 247021$	2	0.1	0.01	0.01	0	0	0	85	NVS		MTSD	may be rextlized. NVS.

$\begin{array}{llll}1339.38 & 1.37 & \text { MX247022 } & 2\end{array}$
$0.1 \quad 0$ 0.01 0 0

1340.54	1.16	M 247023	2	0.1	0.01	0.01	0	0	0	70	NVS	MTSD	QD
1342.03	1.49	M 247024	2	0.1	0	0.01	0	0	0	85	NVS		QD
1343.56	1.52	M 247025	2	0.1	0.01	0	0	0	0	85	NVS		QD
1345.08	1.52	MX247026	2	0.5	0.01	0.01	0	0	0	65	TR		QD
1346.33	1.25	M 247027	2	0.1	0.01	0	0	0	0	90	NVS		IQD
1348.68	2.35	M 247028	2	0.5	0.03	0.03	0	0.001	0.1	80	SPKS		IQD
1349.72	1.04	M 247029	2	0.1	0.01	0.01	0	0	0.03	85	NVS		QD

MG to FG, grey to bluish, weak bedding fabric thrt at 30 to 40 deg tca, Smth jts thrt, often coated in QzCb material, rare thin $2-3 \mathrm{~mm} \mathrm{Qz} \mathrm{Cb}$ vnlt thrt, mechanically broken and blocky core thrt, Mineral grains are sugary in appearance and may be rextlized. NVS.
MG to FG dark grey to bluish, unit is strongly rextlized and has a lot of trongly roblastic Bt appears to be a porphyroblastic Bt. appears to be a F MTSD in fine MTSD in fine grained QD. Smth ough jts thrt at 40 to 80 deg tca. Common thin $2-4 \mathrm{~mm} \mathrm{Qz} \mathrm{Cb} \mathrm{vnlts} \mathrm{thrt}$. NVS

FG, bluish, apilitic, well formed amphiboles thrt, interstitial plag. smth and rough jts thrt, occ. coated with slicken lines @ 20 to 30 deg tca. occ 0.5 to 2 cm Qz vnlt thrt. NVS. CG to MG grey to bluish, spherulitic /dendritic amph thrt. amphibole xtls an be up to 1.5 cm . interstitial plag can be up to 1.5 cm . interstitial plag Cb vnlts thrt. NVS CG to MG grey to bluish, spherulitic /dendritic amph thrt. amphibole xtls can be up to 1 cm . interstitial plag. Rare thin Qz-Cb vnlt thrt. smth jts thrt at 20 to 80 deg tca, locally y ts x eachother and create blocky core. One $\sim 5 \mathrm{~cm}$ Qz-sulphide vn with trace Po and Cp.

MG, grey to bluish. needle-like Amph thrt up to 0.5 cm . interstitial plag. rare rough jts thrt often along $1-2 \mathrm{~mm}$ Qz-Cb vnlts. rare inclusions thrt, NVS MG, bluish, aphanitic, abundant angular inclusions thrt, rare thin 1 2 mm Qz-Cb vnlt thrt. smth and rough its thrt at 40 to 60 deg tca. rare speck of Po.
CG to MG spherulitic amph xtls thrt up to 2 cm long, interstitial plag thrt. thin $1-3 \mathrm{~mm} \mathrm{Qz} \mathrm{Cb}$ vnlts thrt. May be an inclusion od QD in IQD.

1351.24	1.52	MX247030	2	0.6	0.03	0.02	0	0.001	0.07	85	SPKS		IQD
1352.7	1.46	M 247031	2	1	0.03	0.02	0	0.001	0.1	85	SPKS		IQD
1353.34	0.64	MX247033	2	0.1	0.04	0.03	0.01	0.001	0.14	35	TR	STRT	QD
1356.33	2.99	M 247034	2	0	0	0	0	0	0	80	NVS		OLD
1358.46	2.13	M 247035	2	0.1	0.01	0.01	0	0	0.03	0	TR	OLDI	FLT
1360.51	2.04	M 247036	2	0.1	0.01	0	0.01	0	0	0	TR	OLDI	FLT
1360.99	0.49	M 247037	2	0.4	0.01	0.01	0	0	0	30	TR	ALTN	IQD
1361.24	0.24									30			IQD

MG, bluish, aphanitic, abunda

 angular inclusions thrt, rare thin $2 \mathrm{~mm} \mathrm{Qz-Cb}$ vnlt thrt. smth and rough jts thrt at 30 to 60 deg tca. rare speck of Po.MG, bluish, aphanitic, abundant
angular inclusions thrt, rare thin 1
2 mm Qz-Cb vnlt thrt. smth and roug ts thrt at 30 to 60 deg tca. specks of Po thrt.
MG bluish grey, apilitic, abundant jts G bluish grey, hrt and blocky core, Jt surfaces ofte coated with chlorite and carbon
material. small structure along material. small structure along

LOGGED \#478***

G, dark grey, aphanitic to apilitic, first 1.5 feet are blocky, faulted, and chilled, Broken surfaces are coated in Cb material. lower part of interval is apilitic, and sugary. NVS
FG, dark grey, apilitic, strongly
magnetic, completely blocky and broken core all broken chunks have waxy ChI coatings and slickenlines. GG, dark arey, apilitic, stronsly FG, dark grey, apiitic, strongly magnetic, completely blocky and broken core albroken chunks have waxy Chl FG, grey to greenish blue, apilitic w/ occ angular clast thrt, greenish colour looks to be imparted by a weak Chl altn, trace spks of Po and Cp. ***LAST BOX. ENDED IN FAULT. BOX \#481 @ 4465.2ft**

FG, grey to greenish blue, apilitic w/ occ angular clast thrt, greenish colour looks to be imparted by a weak Chl altn, trace spks of Po and Cp. ${ }^{* * *}$ LAST BOX ENDID IN FAULT BOX $4465.2 \mathrm{ft} * *$

DEPTH	AZIMUTH	DIP
0	144.9	-70.8
9.14	144.8	-70.3
18.29	145.1	-70.1
27.43	145.1	-69.9
36.58	145.3	-69.9
45.72	145.6	-69.9
54.86	145.6	-69.8
64.01	145.5	-69.9
73.15	145.8	-69.9
82.3	145.9	-69.8
91.44	146	-69.8
100.58	146.2	-69.8
109.73	146.1	-69.7
118.87	146	-69.6
128.02	145.9	-69.7
137.16	145.9	-69.6
146.3	146.1	-69.7
155.45	145.8	-69.5
164.59	146	-69.5
173.74	145.9	-69.5
182.88	146.1	-69.3
192.02	146.4	-69.3
201.17	146.2	-69.2
210.31	146.4	-69.2
219.46	146.7	-69.1
228.6	146.8	-69.2
237.74	146.5	-69.2
246.89	146.8	-69.1
256.03	146.7	-69.3
265.18	146.6	-69.3
274.32	146.6	-69.3
283.46	146.7	-69.3
29.61	147.1	-69.1
301.75	147	-69.1
310.9	146.9	-69.1
320.04	146.9	-69.1
329.18	146.9	-69
338.33	146.8	-69
347.47	146.5	-68.9
356.62	146.5	-68.9
365.76	146.6	-68.8
374.9	146.3	-68.6
384.05	145.8	-68.5
393.19	145.8	-68.3
402.34	145.8	-68.3
411.48	145.6	-68.2

420.62	145.4	-68.1
429.77	145.3	-68.1
438.91	145.2	-68.1
448.06	145.2	-68
457.2	145	-68
466.34	145.1	-68
475.49	145.3	-68.1
484.63	145.1	-68
493.78	145.1	-68
502.92	145.3	-68
512.06	145.3	-68
521.21	145.4	-68
530.35	145.5	-68
539.5	145.4	-68
548.64	145.5	-68
557.78	145.5	-68
566.93	145.6	-68.1
576.07	145.6	-68
585.22	145.8	-68.1
594.36	146	-68
603.5	146.1	-67.9
612.65	146.2	-67.7
621.79	146.6	-67.7
630.94	146.9	-67.6
640.08	147.5	-67.4
649.22	147.3	-67.5
658.37	147.7	-67.3
667.51	148	-67.1
676.66	148.3	-67.1
685.8	148.4	-67.1
694.94	148.5	-67
704.09	148.9	-67
713.23	149.2	-67.1
722.38	149.4	-67.1
731.52	149.8	-67.1
740.66	149.9	-67.1
749.81	150.1	-67.2
758.95	150.5	-67.1
768.1	150.6	-67.2
777.24	150.7	-67.2
786.38	150.9	-67.2
795.53	151.2	-67.3
804.67	151.4	-67.4
813.82	151.8	-67.4
822.96	152.1	-67.5
832.1	152.4	-67.7
841.25	152.4	-67.9

850.39	150.3	-67.8
859.54	150.4	-68.1
868.68	148.6	-68.6
877.82	148.5	-68.8
886.97	149	-68.7
896.11	149.9	-68.7
905.26	150.6	-68.4
914.4	151.1	-67.7
923.54	150.4	-66.4
932.69	150.3	-65.9
941.83	150.6	-65.7
950.98	152.4	-65.8
960.12	153.1	-66
969.26	152.1	-64.1
978.41	152.2	-63.2
987.55	152.6	-62.4
996.7	152.8	-62.4
1005.84	153.4	-62.6
1014.98	153.4	-62.6
1024.13	153.3	-62.9
1033.27	152.9	-62.9
1042.42	153.1	-62.1
1051.56	152.4	-60.9
1060.7	152.4	-60.5
1069.85	152.8	-59.9
1078.99	153.7	-58.4
1088.14	153.5	-56.9
1097.28	153.7	-57.1
1106.42	154.5	-57
1115.57	155.2	-56.7
1124.71	156	-56.3
1133.86	156.6	-56.1
1143	157.1	-55.5
1152.14	157.9	-54.9
1161.29	158.5	-54.5
1170.43	159.2	-54
1179.58	159.9	-53.6
1188.72	160.4	-52.6
1197.86	160.5	-52.1
1207.01	160.7	-52.1
1216.15	160.9	-52.1
1225.3	161.3	-51.9
1234.44	161.6	-51.5
1243.58	161.9	-51.3
1252.73	162.2	-51.3
1261.87	162.5	-51.1
1271.02	162.8	-51.1

$1280.16 \quad 163 \quad-51.2$
$\begin{array}{lll}1289.3 & 163.4 & -51\end{array}$
$1298.45 \quad 163.6 \quad-50.9$
$1307.59 \quad 163.9 \quad-50.8$
$1316.74 \quad 164.2-50.6$
$1325.88 \quad 162 \quad-49.4$
$\begin{array}{lll}1335.02 & 161.9 & -47.9\end{array}$
$\begin{array}{lll}1344.17 & 160.9 & -47.2\end{array}$
$1353.31 \quad 160.1$
$=$

$1360.54 \quad 1.52 \quad$ M×247055
$\begin{array}{lll}1361.82 & 1.28 & M \times 247056\end{array}$
$1361.85 \quad 0.03$

FG, dark grey, apilitc, smth its thrt often coated with
waxy chlorite. first 1.5 is is unbroken. bottom 4 ' of core completely brocken and blocky broken core has many
 core pieces have abundant smth waxy t surfaces. oce
section that isn't broken up tyicially 4 4-6inches ong.

 section that isn't brouken up typically 4 - -6inches long. with thin $1-2$ mm irreeular Qu-ccu vnlts. ***Orill Rods. Stuck and Cut. Hole was abandoned and restarted with

DEPTH	AZIMUTH	DIP
0	144.89	-70.82
9.14	144.79	-70.34
18.29	145.14	-70.11
27.43	145.1	-69.94
36.58	145.27	-69.86
45.72	145.56	-69.9
54.86	145.55	-69.83
64.01	145.49	-69.89
73.15	145.81	-69.88
82.3	145.92	-69.83
91.44	146.02	-69.77
100.58	146.16	-69.76
109.73	146.13	-69.7
118.87	146.01	-69.63
128.02	145.92	-69.67
137.16	145.92	-69.62
146.3	146.06	-69.67
155.45	145.83	-69.49
164.59	145.96	-69.55
173.74	145.92	-69.49
182.88	146.12	-69.31
192.02	146.39	-69.27
201.17	146.19	-69.19
210.31	146.42	-69.22
219.46	146.66	-69.14
228.6	146.77	-69.21
237.74	146.52	-69.2
246.89	146.84	-69.15
256.03	146.74	-69.34
265.18	146.61	-69.26
274.32	146.61	-69.28
283.46	146.73	-69.32
292.61	147.1	-69.09
301.75	147.03	-69.09
310.9	146.94	-69.12
320.04	146.92	-69.05
329.18	146.87	-68.97
338.33	146.83	-69.04
347.47	146.53	-68.91
356.62	146.49	-68.93
365.76	146.55	-68.81
374.9	146.25	-68.58
384.05	145.85	-68.5
393.19	145.82	-68.34
402.34	145.82	-68.29
411.48	145.64	-68.19

420.62	145.4	-68.1
429.77	145.26	-68.09
438.91	145.18	-68.07
448.06	145.16	-68.03
457.2	145.04	-68.02
466.34	145.09	-68.01
475.49	145.26	-68.05
484.63	145.13	-68.03
493.78	145.1	-68.04
502.92	145.31	-68
512.06	145.34	-68
521.21	145.38	-67.98
530.35	145.4884	-68.0427
539.5	145.3804	-68.046
548.64	145.4513	-68.0246
557.78	145.4591	-67.9641
566.93	145.6326	-68.1019
576.07	145.5713	-68.0241
585.22	145.7895	-68.0832
594.36	146.0002	-68.0443
603.5	146.0909	-67.8744
612.65	146.1918	-67.684
621.79	146.5553	-67.6643
630.94	146.908	-67.6145
640.08	147.479	-67.4483
649.22	147.2551	-67.4566
658.37	147.7209	-67.2586
667.51	147.956	-67.1043
676.66	148.2624	-67.0776
685.8	148.4141	-67.0703
694.94	148.5292	-67.0023
704.09	148.9116	-67.0317
713.23	149.2362	-67.0608
722.38	149.4042	-67.0907
731.52	149.762	-67.1049
740.66	149.9323	-67.1382
749.81	150.141	-67.1761
758.95	150.5417	-67.1049
768.1	150.574	-67.2192
777.24	150.7462	-67.219
786.38	150.9188	-67.2308
795.53	151.215	-67.3069
804.67	151.4295	-67.3634
813.82	151.8444	-67.4014
822.96	152.1124	-67.4674
832.1	152.3972	-67.6988
841.25	152.4452	-67.8522

850.39	150.2534	-67.8378
859.54	150.4409	-68.1216
868.68	148.5758	-68.5566
877.82	148.514	-68.8343
886.97	149.0078	-68.7161
896.11	149.9254	-68.6987
905.26	150.5556	-68.3706
914.4	151.0855	-67.6744
923.54	150.3543	-66.4255
932.69	150.2855	-65.8786
941.83	150.5754	-65.7023
950.98	152.3778	-65.773
960.12	153.068	-66.0216
969.26	152.0815	-64.1148
978.41	152.1665	-63.1988
987.55	152.5792	-62.4303
996.7	152.7959	-62.4481
1005.84	153.3501	-62.5851
1014.98	153.408	-62.6119
1024.13	153.3302	-62.8931
1033.27	152.9467	-62.9342
1042.42	153.0879	-62.1008
1051.56	152.4174	-60.8863
1060.7	152.3506	-60.5425
1069.85	152.81	-59.8729
1078.99	153.7052	-58.4117
1088.14	153.5315	-56.9008
1097.28	153.7005	-57.1308
1106.42	154.4958	-56.9976
1115.57	155.2457	-56.6606
1124.71	156.0442	-56.3079
1133.86	156.5675	-56.0841
1143	157.1052	-55.5092
1152.14	157.8503	-54.8644
1161.29	158.5113	-54.4739
1170.43	159.1695	-53.9925
1179.58	159.927	-53.583
1188.72	160.4124	-52.6442
1197.86	160.508	-52.0686
1207.01	160.7146	-52.1486
1216.15	160.8942	-52.1307
1225.3	161.2857	-51.9436
1234.44	161.6413	-51.4651
1243.58	161.9472	-51.3356
1252.73	162.2281	-51.3117
1261.87	162.5287	-51.1229
1271.02	162.7939	-51.1457

$1626.41 \quad 170.86 \quad-37.42$
$1644.09 \quad 171.7 \quad-36.7$
$1673.96 \quad 172.3-35.1$

1704.14	173.9	-33.6

$=$

1346.61	0.64	MX247065	2	0.5	0.03	0.02	0	0.001	0.07	100	SPKS	IQD
1348.13	1.52	MX247067	2	1.5	0.03	0.02	0	0	0.1	90	SPKS	IQD
1349.68	1.55	MX247068	2	1	0.03	0.03	0	0	0.1	70	SPKS	IQD
1351.21	1.52	MX247069	2	0.8	0.03	0.03	0	0	0.1	85	SPKS	IQD
1352.7	1.49	M 247070	2	1	0.02	0.01	0	0	0.03	90	SPKS	IQD
1354.23	1.52	M 247071	2	0.5	0.02	0.02	0	0.002	0.1	85	SPKS	QD
1355.2	0.98	M 2477072	2	0.5	0.04	0.06	0.01	0.009	0.17	80	SPKS	QD
1357.94	2.74	MX247073	2	2	0.04	0.03	0.01	0.003	0.14	80	SPKS	IQD

MG to FG, grey to bluish, small 1-5mm laths of amphibole and interstitial plag thrt matrix supporting angular mafic clasts thrt. approx. 0.5% spks of $\mathrm{Po} / \mathrm{Pn}$ and Cp. one rough jt at 50 deg tca. Upper QD/IQD contact is sharp, but broken.
FG to MG, grey to greenish, apilitic matrix of amph and plag interstitial to angular and mostly mafic clasts, approx. 1.5\% Po and Pn spks. weak fol thrt defined by elongation of clasts and sulphides at 20 to 30 deg tca.
FG to MG, grey to bluish, apilitic matrix of amph and plag interstitial to rare angular and mostly mafic clasts, approx. 1.5\% Po and Pn spks. weak fol thrt defined by elongation of clasts and sulphides at 20 to 30 deg tca. Bottom 6 inches of interval has healed and brecciated Chl-veinlits interstitial to greenishaltered QD clasts.
FG to MG, grey to bluish, apilitic matrix of amph and plag interstitial to rare ($<3 \%$) angular and mostly mafic clasts, approx. 0.8% Po and Pn spks. weak fo thrt defined by elongation of clasts and sulphides at 20 to 30 deg tca.
FG to MG, grey to bluish, apilitic matrix of amph and plag interstitial to rare ($<3 \%$) angular and mostly mafic clasts, approx. 1\% Po and Pn spks. weak fol thrt defined by elongation of clasts and sulphides at 20 to 30 deg tca.
F to MG, grey to bluish, apilitic texture made up of amph and plag. Clasts are nolonger apparent. approx. 0.5% Po and Pn spks. weak fol thrt defined by elongation of sulphides at 20 to 30 deg tca. occ thin $1-2 \mathrm{~mm}$ Qz-Cb vnlt with greenish alteration selvedge.
F to MG, grey to bluish, apilitic texture made up of amph and plag. Clasts are nolonger apparent. approx. 0.5% Po and Pn spks. weak fol thrt defined by elongation of sulphides at 20 to 30 deg tca. occ thin 1-2mm Qz-Cb vnlt with greenish alteration selvedge
FG to MG, grey to bluish, first 1' has Chlorite/quartz, infill along structure. unit is apilitic with amphiboles and plag. and rare, angular mafic clasts (2-3\% by volume). Approx 2% spks of Po an Pn. weak fol at 25 to 35 deg tca defined by elongation of sulphide spks. occasional thin 1-2mm Qz-Cb vnlt thrt. Box 11 has been dropped and the whole box was taken as a single sample.

1358.43	0.49	M 247074	2	0.1	0.03	0.02	0	0.001	0.1	70	TR		IQD
1359.13	0.7	M 247075	2	0.1	0.01	0.01	0	0	0	10	TR	IQD	OLDI
1359.29	0.15	M 247076	2	0	0.05	0.02	0	0.002	0.07	60	SPKS	STRT	QD
1360.32	1.04	MX247077	2	0	0	0	0.01	0	0	35	NVS		OLDI
1361.36	1.04	M 247079	2	0	0	0.01	0.01	0	0	60	NVS	OLDI	STRT
1363.22	1.86	M 247080	2	0	0	0.01	0	0	0	10	NVS	OLDI	FLT
1365.14	1.92	M 247081	2	0	0	0	0.01	0	0	70	NVS		OLDI
1366.66	1.52	MX247082	2	0.2	0.02	0.02	0	0.001	0.07	75	SPKS		QD
1368	1.34	MX247083	2	0.5	0.04	0.03	0	0.004	0.1	70	BLBS		IQD
1369.53	1.52	MX247084	2	0.5	0.04	0.03	0	0.004	0.14	80	BLBS		IQD
1370.99	1.46	M 247085	2	0.5	0.03	0.03	0	0.002	0.1	80	SPKS		IQD

FG to MG, grey to bluish, apilitic, amph up to 4 mm . $\mathrm{w} /$ interstitial plag. smth and rough jts thrt at 50 to 80 deg tca, occ mafic subangular incusion, Trace sulph. Unit May be a small sill coming off the main Dyke
VFG, dark grey, aphanitic, strongly magnetic blocky core thrt with angular, broken core pieces. upper and lower contact is $\sim 5-10$ deg tca, and irregular in shape. Contact essentially runs the length of the core axis. Unit is highly magnetic.
MG to FG, grey to bluish, apilitic w/ amph up to 3 mm and interstitial plag. occ spks of sulph. Weak fabric thrt defn. by elongation of sulphides. lower contact is at 45 deg tca. Local Jt surfaces have small amounts of gouge material.

VFG, dark grey, aphanitic, smth tjs thrt at 40 to 50 deg tca, often Jts are coated with smth Chlorite, NVS VFG, dark grey, aphanitic, abundant smth and rough jts at various angles from 20 to 50 deg tca, occ Smth ts are coated with muddy gouge. Unit is highly magnetic.
VFG, dark grey aphanitic, smth chl-lined jts thrt localy blocky/pulverized core, local broken surfaces cated by muddy gouge material. rare thin $1-2 \mathrm{~mm}$ Irregular shaped Cb vnlts thrt. nvs.
VFG, dark grey, aphanitic, smth jts thrt at 60 to 70 deg tca, irregular Chl vnlts thrt. NVS.
FG, grey to bluish, needle-like amph up to 1 cm long with interstitial plagioclase. smth tis thrt at 60 to 70 deg tca, rare smth jts at 10 to 15 deg tca. local thin band up to 4 inches of aphanitic, and magnetic OLDI rare spks of sulphide.

FG, grey to bluish, needle-like amph up to 1 cm long with interstitial plagioclase. smth tis thrt at 60 to 70 deg tca, rare smth jts at 10 to 15 deg tca. Occ bleb of Po and Pn. rare subrounded mafic inclusion.
G, grey to bluish, amphibole up to 0.5 cm with interstitial plag. smth jts trht at 20 to 50 deg tca, occ it surface coated with Cb . rare bleb of po/Pn, rare subrounded mafic inclusion.
FG, grey to bluish, amph up to 0.5 mm long with interstitial plag. smth jts thrt at 30 to 50 deg tca, spks of Po and Pn thrt. occ smth jts thrt.

1372.51	1.52	M $\times 247086$	2	0.5	0.04	0.03	0	0.003	0.14	80	SPKS		IQD
1374.01	1.49	M $\times 247087$	2	1	0.04	0.03	0	0.005	0.17	85	BLBS		IQD
1375.53	1.52	M $\times 247088$	2	0.5	0.08	0.04	0	0.009	0.24	75	SPKS		IQD
1376.99	1.46	M $\times 247089$	2	0.5	0.03	0.03	0	0.001	0.14	90	SPKS		IQD
1377.85	0.85	M $\times 247090$	2	0.2	0.03	0.02	0	0	0.1	80	TR		IQD
1379.37	1.52	M $\times 247091$	2	0.1	0.01	0.02	0	0.001	0.03	95	TR		$Q D$
1380.29	0.91	M $\times 247092$	2	0.1	0.02	0.03	0	0.01	0.07	70	TR		QD
1381.08	0.79	M $\times 247093$	2	0	0.02	0	0	0	0.03	80	NVS	MTSD	$Q D$
1381.69	0.61	M $\times 247094$	2	0	0.01	0.01	0	0.001	0	40	NVS		MTSD
1383.21	1.52	M $\times 247095$	2	0	0.01	0.01	0	0	0	75	NVS		MTSD
1384.74	1.52	M $\times 247097$	2	0	0.01	0.01	0	0	0	80	NVS		MTSD
1396.9	12.16									75		QTZT	MTSD
1420.31	23.41									70		QTZT	MTSD

FG, grey to bluish, amph up to 5 mm long with interstitial plag. smth ths thrt at 30 to 50 deg tca, rare thin Qz-Cb vnlts thrt. rare spks of sulph, rare subrounded mafic clasts thrt.

FG, grey to bluish, amph up to 5 mm long, w/ interstitial plag. occ smth jts thrt at 30 to 50 deg tca, rare blebs of sulphide, occ rounded mafic clasts thrt. FG, grey to bluish, amph up to 5 mm long, w/ interstitial plag. occ smth jts thrt at 30 to 50 deg tca, occ thin $<1 \mathrm{~mm}$ Cb vnlt thrt. rare spks of sulphide, occ rounded mafic clasts thrt.
FG, grey to bluish, amph up to 5 mm long, w/ interstitial plag thrt. occ shallow smth jt thrt at 5 to 10 deg tca. rare spks of sulphide, occ subrounded mafic clasts thrt.
FG, grey to bluish, elongated amph up to 5 mm long $\mathrm{w} /$ interstitial plag thrt. occ smth jts thrt at 30 to 40 deg tca. trace sulph
FG, grey to bluish, amph up to 5 mm long w/ interstitial plag thrt. rare smth jts at 50 to 60 deg tca no apparent clasts. trace spks sulphide.
FG, grey to bluish, amph to to 5 mm long, increasing Biotite mineralogy component. smth and rough jts thrt at 60 to 80 deg tca. Trace sulphide.
FG, bluish, equigranular $B T$, amph and plag. irregular thin Cb vnlts thrt. smth jts thrt at 50 to 60 deg tca. apparent mixing zone between QD and MTSD. lower contact is sharp with MTSD.
FG, light grey, thin laminated bedding texture thrt at 30 to 40 deg tca, smth jts thrt commonly along bedding fabric. NVS.

FG, light grey, laminated bedding fabric thrt at 30 to 40 deg tca, occ smth jts thrt commonly along bedding fabric, occ rough jt oblique to bedding. NVS FG, light grey, rare smth jt thrt typically along a weak bedding fabric at 30 to 40 deg tca, NVS.
FG, light grey to grey, weak bedding thrt at 30 to 40 deg tca. localy areas of sandy-Qz rich domains. smth jts thrt at 40 to 60 deg tca. Mineralogy is Bt-rich.
NVS.
FG, light grey, local weak bedding fabric, at 20 to 30 deg tca, smth jts thrt often at shallow angels TCA from 5 to 10 deg. occ rough jts thrt at 40 to 60 deg tca, rare thin (<1mm Chl vnlts thrt). NVS.
$1422.87 \quad 2.5$

MX247099
0
0.01

0
0
0 100

NVS

1423.45	0.4	MG229902	5	0	0	0.01	0	0	0	100	NVS
1424.09	0.64	MG229903	5	0	0	0.01	0	0	0	95	NVS
1424.48	0.4	MG229904	5	0	0.01	0.01	0	0	0	60	NVS
1425.58	1.1	MG229905	5	0	0.01	0.01	0	0	0	85	NVS
1425.73	0.15	MG229906	5	0	0.01	0.01	0	0	0	100	NVS
1426.43	0.7	MG229907	5	0	0.01	0.01	0	0	0	85	NVS
1426.62	0.18	MG229908	5	0	0	0.01	0	0	0	90	NVS
1427.38	0.76	MG229909	5	0	0.01	0.01	0	0	0	75	NVS
1427.84	0.46	MG229910	5	0	0.01	0.01	0	0	0	100	NVS

FG, grey to bluish, sugary textured with
porphyroblastic Biotite and amphibole??, uppe contact is sharp at 20 deg tca with sheeted Chl vnlts parallel to contact. Rough and smth jts thrt. No clear and apparent bedding, smht and rough jts thrt at various angles. NVS. Unit may be transition or mixed Seds and QD or hornfelsed MTSD from the diabase below.
G, grey to bluish sugary amph and Bt thrt,
apparently massive with no jts or bedding. sugary texture thrt. Unit as described above from 4659.8 to 4668.2 sending this interval for whole rock eochemical analysis.
FG to VFG, grey to bluish, Irregular, and rounded potato-shaped inclusions of VFG bluish diabase with interstitial sugary, bluish QD? occ thin <1mm Qz-Cb vnlts thrt with grey alteration selvedges up to 3 m wide. No jts thrt, NVS
VFG to FG, grey to bluish green, apilitic, abundant Qz CB vnlts mostly near top of interval. rare smth jts along Cb vnlts. NVS.
FG to VFG, grey to bluish, irregular upper and lower contacts, and irregular potato-shaped inclusions of diabase as from 4670.1 to 4672.2 with interstitial and sugary possible $Q D$.
VFG, grey to bluish green, apilitic, mostly amphibole and plagioclase.common Qz-Cb vnlts thrtocc smth jt thrt mostly along Cb vnlts. NVS.
VFG, grey to bluish, apilitic, dominantly VFG amph and plagioclase. Section selected for WHOLE ROCK nalysis. Unit was selected to be vein free for analysis
VFG, grey to bluish green, apilitic, mostly amphibole and plagioclase. common Qz-Cb vnlts thrt. occ smth jt thrt mostly along Cb vnlts. NVS
FG to VFG, grey to bluish, irregular upper and lower ontacts, and irregular potato-shaped inclusions of diabase as from 4670.1 to 4672.2 with interstitial and sugary possible QD.

VFG, grey to bluish green, apilitic, mostly amphibole and plagioclase. common Qz-Cb vnlts thrt. Common mth jt thrt mostly along Cb vnlts. NVS
VFG, grey to bluish green, apilitic, mostly amphibole and plagioclase. common Qz-Cb vnlts thrt. occ smth jt thrt mostly along Cb vnlts. NVS

1428.38	0.55	MG229911	5	0	0.01	0.01	0	0	0	60	NVS		MTSD
1429.21	0.82	MG229912	5	0	0.01	0.01	0	0	0	90	NVS		MTSD
1439.57	10.36									80			MTSD
1439.72	0.15	MG229913	5	0	0	0.01	0	0.001	0	100	NVS		MTSD
1444.23	4.51									90			MTSD
1460.48	16.25									80		QTZT	MTSD
1461.52	1.04									85			DIA
1484.99	23.47									90		MTSD	QTZT
1497.33	12.34									75			MTSD
1526.74	29.41									90		MTSD	QTZT

FG, grey to bluish, weak bedding fabric thrt at 20 to 30 deg tca, Thin $1-2 \mathrm{~mm}$ Qz-Cb vnlts thrt. occ smth jts thrt typically along Cb vnlts. NVS.
FG, grey to bluish, bedding fabric is apparent thrt, typically at 20 to 30 deg tca, occ rough and smth jt thrt at 35 to 60 deg tca, rare thin $<1 \mathrm{~mm}$ Cb vnlt thrt. NVS.
G, grey to bluish, local weak bedding fabric at 20 to 30 deg tca, common smth jts thrt often shallow at 15 to 25 deg tca, icc thin and irregular (<1mm) Qz-Cb vnlt thrt. occ irregular and thin (<1mm) Bt-Chl vnlt hrt. NVS.
FG to MG, grey to bluish 6 inches of barren and veinfree MTSD taken for whole rock geochemica analysis.
FG to MG, grey to bluish, local weak bedding at 20 to 30 deg tca, occ rough and smth jts thrt at 20 to 60 deg tca, icc thin $<1 \mathrm{~mm}$ Qz-Cb vnlts thrt. NVS FG to MG, grey to bluish, smth and rough jts thrt at 20 to 50 deg tca. Often jts are coated in Qb material. Thin <1mm Qz-Cb vnlts thrt. occ thin <1mm irregular $\mathrm{Ch} /$ Bt vnlts thrt. Unit alternated from sandy to muddy beds. Locall ybeddin fabric @ 25 to 35 deg tca. NVS.

FG to VFG, grey to bluish green. aphanitic, smth jts thrt at 60 to 70 deg tca, OFten Jts are coated with Cb matrial. Abundant thin $\sim 1 \mathrm{~mm}$ Qb vnlts thrt. upper and lower contacts are diffuse and may be altered FG, grey to bluish, local weak bedding fabric defined by alternating sandy and mud-rich layers typically at 30 to 40 deg tca. occ smth jts thrt at 45 to 50 deg tca, occ thin <1mm Qz-Cb vnlt thrt. rare thin $<1 \mathrm{~mm}$ and irregular shaped Chl-vnlt thrt.NVS FG, grey to bluish, Local weak beddig fabric thrt at 40 o 50 deg tca. smth and rough jts thrt at 20 to 70 des ca, often Its are coated in Qz -Cb material. local weak Ep? and chl aleration.

FG to MG, grey to bluish, local weak bedding fol at 35 to 45 deg tca, mostly sandy Qz-rich beds thrt. rare 0.5 to 1 cm Qz-vnlts thrt. occ thin $1-2 \mathrm{~mm}$ carbonate vnlts thrt. ocat irregular and anastomosing Chl vnlts hrt. occ smth jts thrt at 30 to 60 deg tca.

FG to MG, grey to bluish, local thinly laminated beds on a centimeter scale. locally graded bed ing is apparent facing up the hole. smth jts thrt often along bedding fabric but also at oblique angles from 20 to 60 deg tca. occ thin 1-2mm Qz-Cb vnlts thrt. FG to CG, grey to bluish, smith and rough jts thrt at 30 to 70 deg tca, interbedded fine, muddy, thin beds with coarser sand and Qz rich beds thrt. bedding fabric at 40 to 50 deg tca, occ thin <1mm Cb vnlts thrt.
FG, grey to bluish, thinly laminated mud-rich beds thrt on a centimeter scale. smth jts thrt often along bedding fabric. occ thin $<1 \mathrm{~mm} \mathrm{Cb}$ vnlts thrt. G to CG, grey to bluish with white clasts, moderately well sorted. Clasts are dominantly sand o mud sized with occ small pebble ($\sim 1 \mathrm{~cm}$) with rare large pebbles ($>5 \mathrm{~cm}$). muddy matrix is mica-rich rare thin $<1 \mathrm{~mm} \mathrm{Cb}$ vnlts.
FG to MG, grey to greenish, apilitic, mineralogy is dominantly Bt , Amph and Qz. smth and rough jts thrt at 50 to 60 deg tca, occ thin <1mm Qz-Cb vnlts thrt. upper contact is at 30 deg tca, and chilled.

FG to MG, grey to greenish, apilitic, mineralogy is dominantly Bt, Amph and Qz. smth and rough. Small sample selected for whole rock analysis. Sample interval was chosen to be homogenous and free of veining. *****WHOLE ROCK ANALYSIS**** FG to MG, grey to greenish, apilitic, mineralogy is dominantly Bt , Amph and Qz. smth and rough jts thr at 50 to 60 deg tca, occ thin <1mm Qz-Cb vnlts thrt. lower contact is at 30 deg tca, and chilled.
FG to CG, grey to bluish with white clasts, moderately well sorted. smth jts thrt typically at 30 to 50 deg tca. Clasts are dominantly sand to mud sized with occ small pebble ($\sim 1 \mathrm{~cm}$) with rare large pebbles ($>5 \mathrm{~cm}$). muddy matrix is mica-rich. rare thin $<1 \mathrm{~mm} \mathrm{Cb}$ vnlts.

FG to MG, grey to bluish whit local white clasts poorly sorted with fine muddy to sandy material and arge angular pebbles. occ rough and smth jts thrt at 30 to 80 deg tca. occ thin $1-3 \mathrm{~mm}$ Qz-Cb vnlts thrt.

MG to CG, grey to blueish, moderately well sorted, clasts are rounded dominantly coarse sand to smal pebbles ($\sim 2-5 \mathrm{~mm}$) occ larger white, rounded clasts typically 0.5 to 1 cm wide. rare smth and rough jts thrt typically at 40 to 50 deg tca.

FG to CG, grey to bluish, smth and rough jts thrt at 45 to 50 deg tca. moderately well sorted dominantly coarse sand and small pebbles ($\sim 2-5 \mathrm{~mm}$). occ thin Qz Cb vnlt thrt. locally mechanically ground core. FG, grey, apilitic to aphanitic mafic dyke appears as from 5231' to 5254' abundant smth jts thrt typically at 45 to 50 deg tca, common thin $1-3 \mathrm{~mm}$ Qz-Cb vntls thrt.

FG to CG, grey to bluish, smth and rough jts thrt a 45 to 50 deg tca. moderately well sorted dominantly coarse sand and small pebbles ($\sim 2-5 \mathrm{~mm}$). occ thin $Q z$ Cb vnlt thrt. localy mechanically ground core.
FG to CG, grey to bluish, moderately to poorly sorted dominantly coarse sand and pebbles from 2 mm to 5 cm . commin smth jts thrt often X -ing eachother. occ thin $1-3 \mathrm{~mm}$ Qz-Cb vnlts thrt
$\begin{array}{llll}164.59 & 178.0079 & -59.0964\end{array}$
$173.74 \quad 178.0305-58.9214$
$182.88 \quad 178.3452-59.0918$
$192.02 \quad 178.7935-59.0401$
$201.17 \quad 179.0055-59.2133$
$210.31 \quad 179.4145-59.3096$
$219.46 \quad 179.5592-59.2997$
$228.6 \quad 179.8285-59.3238$
$237.74 \quad 180.0491 \quad-59.225$
$246.89 \quad 180.6308 \quad-59.094$
$256.03 \quad 180.891 \quad-59.1766$
$265.18 \quad 181.1502-59.1625$
$274.32 \quad 181.5306-59.0638$
$283.46 \quad 181.8915-59.1402$
$\begin{array}{llll} & 292.61 & 182.1965 & -59.0485\end{array}$
$301.75 \quad 182.6379-59.1039$
$\begin{array}{lll}310.9 & 182.9428 & -59.238\end{array}$
$320.04 \begin{array}{lll}182.9491 & -59.1335\end{array}$
$\begin{array}{lll}320.04 & 182.9491 & -59.1335 \\ 329.18 & 183.2341 & -59.0981\end{array}$
$\begin{array}{llll}338.33 & 183.4114 & -59.1262\end{array}$
$347.47 \quad 183.749 \quad-59.1698$
$\begin{array}{llll}356.62 & 183.8632 & -59.1576\end{array}$
$\begin{array}{llll}365.76 & 184.2897 & -59.3347\end{array}$
$374.9 \quad 184.5795-59.2227$
$\begin{array}{llll}384.05 & 184.725 & -59.236\end{array}$
$393.19 \quad 184.9006 \quad-59.313$
$\begin{array}{llll}402.34 & 185.1439 & -59.3242\end{array}$
$411.48 \quad 185.4883-59.3762$

420.62	185.7746	-59.3881
429.77	185.8043	-59.4062
438.91	185.9283	-59.5497
448.06	186.5005	-59.4655
457.2	185.3812	-58.9324
466.34	185.281	-57.9614
475.49	185.8571	-55.6401
484.63	186.5061	-53.0565
493.78	187.7584	-50.0783
502.92	188.3956	-49.8423
512.06	188.7523	-49.5446
521.21	189.0707	-49.1386
530.35	189.3123	-49.0719
539.5	187.1589	-48.9504
548.64	185.2552	-48.033
557.78	184.6285	-47.7194
566.93	182.3416	-47.4064
576.07	182.4178	-46.4953
585.22	182.5634	-46.3566
594.36	182.8402	-46.1886
603.5	183.0011	-46.1478
612.65	183.2973	-45.8632
621.79	183.5204	-45.8277
630.94	183.7385	-45.5346
640.08	183.9407	-45.4109
649.22	184.1202	-45.2319
658.37	184.3058	-45.2945
667.51	184.2974	-44.9966
676.66	184.4521	-44.985
685.8	184.7358	-44.9717
694.94	184.8884	-44.7737
704.09	185.0894	-44.679
713.23	185.3587	-44.5081
722.38	185.615	-44.3901
731.52	185.7196	-44.1458
740.66	185.8918	-44.311
749.81	185.9931	-44.3904
758.95	186.1819	-44.3184
768.1	186.302	-44.2467
777.24	186.4421	-44.2538
786.38	186.5151	-44.3401
795.53	186.6807	-44.2224
804.67	186.8323	-44.1044
813.82	186.9541	-44.2065
822.96	187.0777	-44.2316
832.1	187.2017	-43.9939
841.25	187.2778	-44.083

850.39	187.509	-44.0037
859.54	187.6982	-43.7679
868.68	187.9183	-43.6308
877.82	188.1805	-43.3522
886.97	188.4015	-43.0223
896.11	188.6787	-43.0539
905.26	188.9796	-42.8382
914.4	189.3063	-42.4785
923.54	189.4309	-41.9871
932.69	189.6906	-42.0794
941.83	189.9971	-41.9832
950.98	190.0782	-41.6789
960.12	190.633	-41.7671
969.26	190.8851	-41.479
978.41	191.0844	-41.605
987.55	191.1938	-41.3771
996.7	191.2194	-41.5088
1005.84	191.2382	-41.4259
1014.98	191.8296	-41.4357
1024.13	191.69	-41.3014
1033.27	191.5503	-41.1672
1042.42	191.5646	-41.0772
1051.56	191.7872	-41.0471
1060.7	191.996	-40.9758
1069.85	192.1987	-40.903
1078.99	192.3852	-40.9331
1088.14	192.5875	-40.9289
1097.28	192.8101	-40.8808
1106.42	193.0047	-40.8607
1115.57	193.1734	-40.8418
1124.71	193.2035	-40.7696
1133.86	193.3395	-40.7164
1143	193.6042	-40.6863
1152.14	193.8926	-40.642
1161.29	194.1775	-40.5771
1170.43	194.3941	-40.3966
1179.58	194.5722	-40.3
1180.8	194.59	-40.3

METERS	SAMPLE INFO					PERCENT				GRAMS/TONNE
DEPTH	LENGTH	SAMPLE	CODE	EST	CU	NI	CO	AS	TPM	

Overburden until 10.4 ft . This is the first piece of QTZT.

130.82	7.83	70	QTZT	SUBX
135.36	4.54	80		QTZT
137.22	1.86	0	QTZT	FLT
176.42	39.2	80		QTZT
178.46	2.04	90		TRAP
190.13	11.67	85		QTZT

SUBX cross cutting the QTZT in a chaotic orientation with abundant inclusions of the QTZT. The SUBX can be seen cross cutting at 45 deg tca, 60 deg tca, and also subpll tca. Not consistent. Fg drk gry matrix hosting local QTZT inclusions. Larger interval of $2-3 \mathrm{ft}$ and small er vns of 2-3inches. About $30-40 \%$ of this total interval is SUBX. No sulphides present. QTZT as described above, massive, competent, hmgs, It gry throughout. No sulphides present.

Major flt with significant movement and gouge. Plane of gouge appears to occur at 40deg tca. Broken and blocky sections are also rehealed with qtz and qtz-carb. No sulphides present
QTZT as described above, massive, competent, hmgs, It gry throughout. A weak to moderate fabric is present occurring at about 20deg tca. No sulphides present.

TRAP dyke, sharp upper and lower contacts occurring at 30deg tca. Slight linch chill along the cts. The dyke is nonmagnetic and massive/hmgs throughout with very little composition change. Gry in color, with a weak hue of
green/brown. It has abundant smal white phenocryst that speckle the entire unit. No sulphides present.

QTZT as described above, massive competent, hmgs, It gry throughout. No sulphides present. Note at the lower CT adjacent the Trap dyke below there is about 1 ft of highly brecciated qtzt with Qtz-carb vnlts throughout.

TRAP dyke, sharp upper and lower contacts occurring at 65 deg tca. Slight 1 inch chill along the cts. The dyke is nonmagnetic and massive/hmgs throughout with very little composition change. Gry in color, with a weak hue of green. Small white phenocryst that speckle the entire unit. No sulphides present.

QTZT as described above, massive competent, hmgs, It gry throughout. A very weak fabric is present occurring at about 30 deg tca. No sulphides present.

SUBX hosted within the QTZT, strong fabric at 60 deg tca. Blocks and inclusions of local Qtzt. Bt present defining fabric with qtz/qtz-carb. No sulphides present. QTZT as described above, fg , grey competent, massive and hmgs texture No sulphides present.

SUBX hosted within the QTZT, moderate fabric at random orientations. Blocks and inclusions of local Qtzt. Bt present defining fabric with qtz/qtz-carb. No sulphides present. Some blocks are fist sized or slightly larger.
QTZT as described above, fg, grey competent, massive and hmgs texture. No sulphides present
vFg BIk DIA with sharp chilled contacts at
30-40deg tca. Slight coarsening to a fg towards the middle of the dyke. No significant structures just a couple fractures that have been broken by drilling.
Subx hosted within the QTZT. Large fist sized QTZT blocks within the SUBX. This interval consist of about 60\% SUBX and the rest QTZT. No sulphides. The subx matrix is It gry and just slightly darker than the host. Fabric of the subx can be chaotic.

QTZT as described above, fg, grey competent, massive and hmgs texture No sulphides present

Flt that is broken and blocky. Appears to have a subpll fracture plane at $0-5 \mathrm{deg}$ tca. Minor gouge along frac plane. No sulphides present.

SUBX throughout the qtzt. Significant subx in large bands over 20 ft in continuous lengths. No sulphides. Large and small clast ranging from $\mathrm{cm}-3$ 4inches in length or larger. SUBX consist of about 70\% of this interval.

QTZTs as above except this interval is stressed and has a txt that is brecciated with rehealed fractures. The qtzt has a slightly darker appearance and looks more like a fg ss MTSD, but likely just appears this way because the qtzt is more stressed/metamorphosed. No sulphides presen
LAMP

QTZTs as above between 955.3-981.8ft except this interval is divided by the Lamp dyke. This interval is stressed and has a txt that is brecciated with rehealed fractures. The qtzt has a slightly dark appearance and looks more like a fg ss MTSD, but likely just appears this way because the qtzt is more stressed/metamorphosed. No sulphides present.

Lamprophyre dyke consisting of bt and amph. Is ver mafic and has a dark green color. Appears to be chloritic. Intrusive unit with sharp cts. Upper ct at 35deg tca and lower ct at 80deg tca. Contains abundant $\sim 35 \%$ Bt flakes. The BT is aligned with a preferred orientation of 35 45 deg tca. No sulphides, non magnetic. See BH1368900 for a similar unit. Likely a continuation

QTZTs as above described as stressed and has a txt that is brecciated with rehealed fractures. The core is competent. The qtzt has a slightly darker appearance and looks more like a fg ss MTSD, but likely just appears this way because the qtzt is more stressed/metamorphosed. No
sulphides present.
FLT within the QTZT with minor gouge The upper half of this interval is competent but has a chaotic fabric almost like SUBX cross cuts this interval. No sulphides present

QTZT, massive competent QTZT, little to no fabric. No sulphides present.

Lamprophyre dyke consisting of bt and amph. Colour is very mafic and is dark green. Appears to be chloritic. Intrusive unit with sharp cts. Upper ct is sharp but not measureable, lower ct at 40deg tca Contains abundant $\sim 35 \%$ Bt flakes. No sulphides, non magnetic. Similar LAMP dykes seen above.
QTZT as described above, competent, massive, hmgs with very minor fract and joint sets occurring 30-40deg tca. No sulphides.

FLT. Broken and blocky core with some gouge along fract planes. Minor gouge and lots of small bits and fragments of core throughout this interval.

QTZT as described above except this interval becomes slightly darker towards the base of the interval where you can see a definite lithological contact between the sed layers. The lower part of this interval appears more like a MTSD and has a slight increase in fabric and laminations. As a result becoming more broken and blocky. No sulphides present.

QTZT as described above as being competent, massive, hmgs with only minor fractures. No sulphides present. Small flt with evidence of movement and gouge present along fracture planes. Abundant broken and blocky fragments in this interval.

QTZT as described above as being competent, massive, hmgs with only minor fractures. No sulphides present. NOTE THAT THERE WAS A BLOCK ERROR WAS 432M BUT AFTER ROD COUNT IT IS 426M. THIS ALSO MARKS THE CHANGE FROM HQ TO NQ.

QTZT as described above as being competent, massive, hmgs with only minor fractures. No sulphides present. Wedge at 1501.8 ft , Button is centered in core

QTZT similar to above but becomes a bit more stressed with internal rehealed fractures. A lamination or weakmoderate fabric is present at 20-30deg tca. Appears more like what has been described as a MTSD with slightly less qtz and more of a fg unit slightly darker. Still classified as a fg qtzt. No sulphides. Possible small structure between 1574.8 1581.1ft (broken and blocky core, mostly mechanical drilling).

QTZT, massive, hmgs, competent, no significant sulphides. Very few fracts.

WDG occurs between 1772.2 to 1779.6 ft . There is a block that says correction, so rod count must be off. Correct footage is 1779.6 ft . Looks like graphite plug may have been used and the button is centered.

561.38	18.96									85			QTZT	competent, massive, hmgs with only minor fractures. No sulphides present.
562.84	1.46									0			WDG	WDG, button is centered.
563.58	0.73									85			QTZT	QTZT as described above as being competent, massive, hmgs with only minor fractures. No sulphides present.
576.32	12.74									30		QTZT	STRT	Structure with broken and blocky sections of core. Fracture planes occur as subpll tca which has increased the broken core via mechanical drilling process. Minor evidence of a gouge indicating some minor movement.
608.99	32.67									80			QTZT	QTZT as described above as being competent, massive, hmgs with only minor fractures. Very little different from the intervals above and below. This interval may have a slight increase in laminations or a weak fabric. No sulphides present.
680.83	71.84									90			QTZT	QTZT as described above as being competent, massive, hmgs with only minor fractures. No sulphides present.
695.22	14.39									70			TRAP	Fg mafic with minor (less than 5\%)small white phenocrysts, non-magnetic, Trap Dyke. Contacts are weak and transitional over a 1-2inches. The upper CT is broken. No sulphides present. Minor-moderate qtz-carb vnlts cross cutting. Common joint sets and fractures. Overall, massive and hmgs fg drk grey dyke.
711.01	15.79									85			QTZT	QTZT as described above as being competent, massive, hmgs with only minor fractures. No sulphides present.
712.32	1.31	MG229551	5	0	0	0	0	0	0	85	NVS		QTZT	QTZT as above except this is a buffer sample above QD. No sulphides present.
713.48	1.16	MG229552	5	0	0.01	0	0	0	0	85	NVS		QTZT	QTZT as above except this is a buffer sample above QD. No sulphides present.

| 715.49 | 1.37 | MG229554 | 5 | 0 | 0.01 | 0.01 | 0 | 0 | 0 | 85 | NVS |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 717.22 | 1.74 | MG229555 | 5 | 0 | 0.01 | 0.01 | 0 | 0 | 0.03 | 85 | NVS |
| 720 | 2.77 | MG229556 | 5 | 0 | 0.01 | 0.01 | 0 | 0.001 | 0 | 85 | NVS |
| 722.99 | 2.99 | MG229557 | 5 | 0 | 0.01 | 0.01 | 0 | 0.001 | 0 | 85 | NVS |
| 724.81 | 1.83 | MG229558 | 5 | 0 | 0.01 | 0.01 | 0 | 0.001 | 0 | 85 | NVS |

QD with a transitional contact from QTZT into QD. Challenging to pin point exact Ct . However, slight increase in grain size, and an increase in qtz-carb vnlts throughout. Otherwise hmgs txt being relatively competent. No sulphides present. QD with a mg, grey, qtz-carb vnlts cross cutting, relatively competent and hmgs. No significant sulphides.
QD with a mg, grey, qtz-carb vnlts cross cutting, relatively competent and hmgs. No significant sulphides. QD with a mg , grey, qtz-carb vnlts cross cutting, relatively competent and hmgs. No significant sulphides
QD with a mg, grey, qtz-carb vnlts cross cutting, relatively competent and hmgs. No significant sulphides.
QD with a mg , grey, qtz-carb vnlts cross cutting, relatively competent and hmgs. Very BT and feldspar rich. No significant sulphides. Lower CT with the IQD is poorly defined but occurs at about 30deg tca.

IQD. Matrix is similar to the QD above grey, mg with cross cutting qtz-carb, except abundant inclusions of mtgb many of which have been mostly altered to amphibolite. Average size is less than inch, but occasionally large 2-3 inches ppear Diss sulphides occur at less than 1% overall.

IQD as described above. Matrix is similar to the QD above, grey, mg with cross cutting qtz-carb, except abundant inclusions of mtgb many of which have been mostly altered to amphibolite. Average size is less than 1 inch, but occasionally large 2-3 inches appear. Diss sulphides occur at less than 1% overall.
734.99 2.99 MG229564
33.01 3.02 MG229565
0.5
0.06
0.05

0
0.001
0.21

TR

5
0.5

IQD as described above. Matrix is similar to the QD above, grey, mg with cross cutting qtz-carb, except abundant inclusions of m tgb many of which have been mostly altered to amphibolite. Average size is less than 1 inch, but occasionally large 2-3 inches appear. Diss sulphides occur at less than 1% overall.

IQD as described above. Matrix is simila to the QD above, grey, mg with cross cutting qtz-carb, except abundant inclusions of mtgb many of which hav been mostly altered to amphibolite. Average size is less than 1 inch, but occasionally large 2-3 inches appear. Diss sulphides occur at less than 1% overall.

IQD as described above. Matrix is similar to the QD above, grey, mg with cross cutting qtz-carb, except abundant inclusions of mtgb many of which have been mostly altered to amphibolite Average size is less than 1 inch, but occasionally large 2-3 inches appear. Diss sulphides occur at less than 1% overall.

IQD as described above. Matrix is similar to the QD above, grey, mg with cross cutting qtz-carb, except abundant inclusions of mtgb many of which have been mostly altered to amphibolite Average size is less than 1 inch, but occasionally large 2-3 inches appear. Diss sulphides occur at less than 1% overall.

IQD as described above. Matrix is simila to the QD above, grey, mg with cross cutting qtz-carb, except abundant inclusions of mtgb many of which have been mostly altered to amphibolite. Average size is less than 1 inch, but occasionally large 2-3 inches appear. Diss sulphides occur at less than 1% overall. A section of this interval has little to no inclusions and could be a QD block.

DIA, fg, magnetic, black, chilled and very broken and blocky. Seems to be over torqued and broken mostly due to mechanical drilling. Chlorite coated fracture planes are present. No sulphides

IQD as described above. Matrix is similar to the QD above, grey, mg with cross cutting qtz-carb, except abundant inclusions of mtgb many of which have been mostly altered to amphibolite. Sections of this interval have less inclusions than the IQD above and below. Average size is less than 1 inch, but occasionally large 2-3 inches appear. Diss sulphides occur at less than 1% overall.

IQD as described above. Matrix is similar to the QD above, grey, mg with cross cutting qtz-carb. A large section about $5 f$ in the middle has little to no inclusions. Possibly a large QD block. Diss sulphides occur at less than 1% overall.

IQD as described above. Matrix is similar to the QD above, grey, mg with cross cutting qtz-carb, except abundant inclusions of mtgb many of which have been mostly altered to amphibolite. Average size is less than 1 inch, but occasionally large 2-3 inches appear. Diss sulphides occur at less than 1% overall.

IQD as described above. Matrix is similar to the QD above, grey, mg with cross cutting qtz-carb, except abundant inclusions of mtgb many of which have been mostly altered to amphibolite Average size is less than 1 inch, but occasionally large 2-3 inches appear. Diss sulphides occur at less than 1% overall. DIA, fg, Magnetic, chilled black with sharp cts upper and lower at 55-60deg tca. No sulphides present.

756	2.38	MG229576	5	0.5	0.02	0.03	0	0.002	0.1	85	TR		IQD
756.73	0.73	MG229577	5	0	0.01	0	0	0	0	90	NVS		DIA
757.49	0.76	MG229578	5	0.5	0.02	0.04	0.01	0.003	0.07	85	TR	MTGB	IQD
757.85	0.37	MG229579	5	0	0	0	0	0	0	90	NVS		DIA
759.01	1.16	MG229580	5	0.5	0.01	0.04	0.01	0.002	0.07	85	TR	MTGB	IQD

IQD as described above, grey, mg with cross cutting qtz-carb vnlts. Inclusions of mtgb many of which have been mostly altered to amphibolite. Average size is less than 0.5 inches, but occasionally large 2-3 inches appear. Diss sulphides occur at less than 1% overall.

IQD as described above, grey, mg with cross cutting qtz-carb vnlts. Inclusions of mtgb many of which have been mostly altered to amphibolite. Average size is less than 0.5 inches, but occasionally large 2-3 inches appear. Diss sulphides occur at less than 1% overall. DIA, fg, Magnetic, chilled black with sharp cts upper and lower at 55-60deg tca. No sulphides present.

The top 5inches are IQD as described above with Tr diss sulphides. The remaining lower half is a larger MTGB block that is altered to amph and has a weak green chloritic hue. No sulphides present in this MTGB section. DIA, fg, Magnetic, chilled black with sharp cts upper and lower at 55-60deg tca. No sulphides present.

IQD interval as described above except this is a large MTGB block that is altered to amph. A small section of the interval (~ 4 inches) is IQD with small (<0.5inch) inclusions and Tr sulphides.

IQD as described above, grey, mg with cross cutting qtz-carb vnlts. Inclusions of mtgb many of which have been mostly altered to amphibolite. Average size is less than 0.5 inches, but occasionally large 2-3 inches appear. Diss sulphides occur at less than 1% overall.

IQD as described above, grey, mg with cross cutting qtz-carb vnlts. Inclusions of mtgb many of which have been mostly altered to amphibolite. Average size is less than 0.5 inches, but occasionally large 2-3 inches appear. Also 1 MTGB/AMPH block about 1 ft . Diss sulphides occur at less than 1% overall

IQD as described above, grey, mg with cross cutting qtz-carb vnlts. Inclusions of mtgb many of which have been mostly altered to amphibolite. Average size is less than 0.5 inches. Diss sulphides occur at less than 1% overall, but a couple occasional blebs. Sulphides are Po, Cpy, and very fg Pn.

IQD as described above, grey, mg with cross cutting qtz-carb vnlts. Inclusions of mtgb many of which have been mostly altered to amphibolite. Average size is less than 0.5 inches, but occasionally large 2-3 inches appear. Diss sulphides occur at less than 1% overall.

IQD as described above, grey, mg with cross cutting qtz-carb vnlts. Inclusions of mtgb many of which have been mostly altered to amphibolite. Average size is less than 0.5 inches, but occasionally large 2-3 inches appear. Diss sulphides occur at less than 1% overall.

777	2.99	MG229587	5	0.5	0.03	0.02	0	0.001	0.1	85	TR	IQD	long streaks and blebs aligned with the chaotic fabric of the IQD inclusions.
780.01	3.02	MG229588	5	0.5	0.02	0.02	0	0	0.07	85	TR	IQD	IQD as described above, grey, mg with cross cutting qtz-carb vnlts. Inclusions of mtgb many of which have been mostly altered to amphibolite. Average size is less than 0.5 inches, but occasionally large 2-3 inches appear. Diss sulphides occur at less than 1% overall.
783	2.99	MG229589	5	1	0.02	0.02	0	0	0.03	85	DISS	IQD	IQD as described above, grey, mg with cross cutting qtz-carb vnlts. Inclusions of mtgb many of which have been mostly altered to amphibolite. Average size is less than 0.5 inches, but occasionally large 2-3 inches appear. Diss sulphides occur at $\sim 1 \%$ overall.
													IQD as described above, grey, mg with cross cutting qtz-carb vnlts. Inclusions of mtgb many of which have been mostly altered to amphibolite. Average size is less than 0.5 inches, but occasionally large 2-3 inches appear. Diss sulphides
785.99	2.99	MG229590	5	1	0.03	0.03	0	0.001	0.14	85	DISS	IQD	$\sim 1 \%$ overall.

IQD as described above, grey, mg with cross cutting qtz-carb vnlts. Inclusions of mtgb many of which have been mostly altered to amphibolite. Average size is less than 0.5 inches, but occasionally large 2-3 inches appear. Sulphides are Diss throughout but there are a couple sections that are slightly larger patches and blotches. One ragged blotch is about $3 " \times 1$ " of Po minor Cp and fg Pn. Overall about 4% sulphides in this interval....CONTINUE LOGGING AT BX286..786m

IQD as described above, grey, mg with cross cutting qtz-carb vnlts. Inclusions of mtgb many of which have been mostly altered to amphibolite. Average size is less than 0.5 inches. Small blebs of sulphides occur with minor cp , pn and po. Approx 3% sulphides overall. This interval marks the end of the IQD and coincidentally these last couple samples at the back of the IQD dyke have the most sulphides.
$Q D$ with rare inclusions. Poorly defined C that marks the end of the IQD and the start of the QD. However it is obviously QD mostly barren of inclusions. Grey, bt rich, massive and hmgs throughout.
Spherulitic texture weakly apparent in some areas. Tr sulphides less than 0.5%. Significantly less than IQD above, also denoting the rock type change.

QD barren of inclusions. Grey, bt rich, massive and hmgs throughout. Occasional spherulitic texture present in some areas. Tr sulphides less than 0.5%.

795.01	3.02	MG229596	5	0.3	0.01	0.01	0	0	0	90	TR	QD
798	2.99	MG229597	5	0.3	0.01	0.01	0	0	0	90	TR	QD
801.01	3.02	MG229598	5	0.3	0.01	0.01	0	0	0	90	TR	QD
803.76	2.74	MG229599	5	0.3	0.02	0.01	0	0	0.03	90	TR	QD
804.73	0.98	MG229600	5	0.3	0.01	0.01	0	0	0.07	90	TR	QD
806.99	2.26	MG229602	5	0	0	0.01	0	0	0	90	NVS	QTZT
810.01	3.02	MG229603	5	0	0.01	0.01	0	0	0	90	NVS	QTZT
812.99	2.99	MG229604	5	0	0.01	0.01	0	0	0	90	NVS	QTZT

QD barren of inclusions. Grey, bt rich, massive and hmgs throughout.
Occasional spherulitic texture present in some areas. Tr sulphides less than 0.5%. QD barren of inclusions. Grey, bt rich, massive and hmgs throughout. Tr sulphides less than 0.5%.
QD barren of inclusions. Grey, bt rich, massive and hmgs throughout. Tr sulphides less than 0.5%.

QD barren of inclusions. Grey, bt rich, massive and hmgs throughout. Tr sulphides less than 0.5%. Note that the last 3inches of this interval is a white qtz vein. Tr Po and Cpy sulphides here. This vein could mark the contact of the $Q D$ but difficult to determine because the lower dyke contact is transitional with the QTZT.

QD barren of inclusions, but this interval seems to define a transitional contact between QTZT seds below. Very weak shadows appear as QTZT blocks have been engulfed in the QD. Very challenging to find the exact ct but this interval is the best representation of the lower QD contact. Sulphides less than 0.5\%.

QTZT, gry, massive and hmgs throughout. No sulphides present. Very similar to QD above but within this transitional environment near the ct it appears more like a qtzt.

QTZT, gry, massive and hmgs throughout No sulphides present. Buffer sample below the QD dyke above.

QTZT, gry, massive and hmgs throughout No sulphides present. Buffer sample below the QD dyke above.

MTSD, fg-mg, It gry, very massive and competent and uniform throughout. No significant structures. No defined strong lamination only a couple small localized areas $1-2 \mathrm{ft}$ in length. This interval below the QD, appears to have less Qtz in the interval and slightly more mafic/darker in appearance than the qtzt above Therefore this interval is now being described as a MTSD. No sulphides present.

QTZT. Relatively defined upper (85deg) and lower contact(at ~30deg tca) with a couple small qtz-carb vnlts. Appears to define a lithological unit from MTSD to QTZT. Very fg It gry atzt. Trace specks of po and pyrite. No significant sulphides.

MTSD, fg-mg lt gry massive, competent and hmgs. No significant sulphides. Weakly defined fabric at 30deg tca.

MTBS It gry mg, with Amglys and mg amphs. Moderate-abundant qtz-carb vnlts. No significant sulphides. This interval represents a chaotic texture weak foliation at ~ 30 deg but also hmgs equigranular patches. This interval is non typical in this hole but other holes have identified small layers of MTBS within the FW environments. Some often seen as a brecciated unit. This does not seem luike a standard Metagabbro

MTSD, fg-mg It gry massive, competent and hmgs. No significant sulphides. Weakly defined fabric at 30deg tca.

MTSD as described above, fg-mg massive and hmgs except abundant small $1-3 \mathrm{~mm}$ amphibole inclusions throughout, possibly related to the MTBS flow describes above. No significant sulphides

Massive MTSD, HMGS fg with minor qtzcarb vnlts throughout. No sulphides. Competent, no significant fractures along bedding.
MTSD as described above except with an increase in laminations at 20deg tca Minor Qtz present, and areas of abundant alteration. No sulphides present.
MTSD as described above but slightly more competent and less laminations/bedding planes. More of a ss mtsd but still abundant bt. No significant sulphides.

OLDI, blk, fg, chilled small OLDI that has sharp contacts at 50-60deg tca. No sulphides present and strongly magnetic.

MTSD as described above. continuation except intervalis just broken by the OLDI vein.Laminations/bedding planes have occasional fabric at 20-35deg tca. No significant sulphides.

OLDI, mag, fg, black, chilled sharp contacts at 60-70deg tca. No sulphides.

MTSD as described above just divided by the OLDI above and below. No sulphides.

OLDI, mag, fg, black, chilled sharp contacts at 50deg tca at upper CT and 70deg tca at lower ct. No sulphides. Note that there is a MTSD block within the OLDI between 3664.3-3665.3ft. MTSD as described above. SS with weak to moderate low angle laminations/bedding. No sulphides.

$1134.98 \quad 10.79$

$1135.35 \quad 0.37$
$1176.53 \quad 41.18$

MTBS unit. Somewhat unique and uncommon in this stratigraphy based on earlier 2017 drilling in this area, but not rare for the footwall
environment/Huronian. This is an interval of MTBS as is seen in some other holes. L green hue, and most common feature at cts is the brecciated inclusions of MTBS. Looks like IQD but not. Minor small amygls. Lower CT is a shr/flow ct. No sulphides.

Described as a shear with qtz, but this could likely be the lower contact of a MTBS flow. Qtz mixed with MTSD a 40deg tca. No sulphides present. MTSD, fg-mg, typically ss with occasional bedding planes at low angle tca representing the slightly lower RQD. No sulphides present. Very massive and continuous.
mtbs, mg, weak green chloritic hue, moderate to abundant qtz-carb vnlts. Variable grain size, bt rich patches, especially at lower CT. No sulphides present. It is possible that this could be a MTGB but it has been interpreted as metabasalt because several areas have bt rich patches at low angle contacts and could represent flows(ie: pillows). Some evidence of MTBS logged above also.

MTSD, large interval of massive, hmgs, moderately competent with some fractures occurring along bedding at 10 $25 d e g$ tca on average. No sulphides present. FOH at $1262 \mathrm{~m} / 4140.9 \mathrm{ft}$

DEPTH	AZIMUTH	DIP
0	137.4	-47.1
9.14	134.406	-46.932
18.29	132.414	-46.814
27.43	132.426	-46.796
36.58	132.808	-46.76
45.72	133.375	-46.715
54.86	133.942	-46.67
64.01	134.332	-46.61
73.15	134.368	-46.52
82.3	134.404	-46.43
91.44	134.44	-46.34
100.58	134.326	-46.316
109.73	134.212	-46.292
118.87	134.098	-46.268
128.02	134.094	-46.252
137.16	134.145	-46.24
146.3	134.196	-46.228
155.45	134.261	-46.197
164.59	134.354	-46.128
173.74	134.447	-46.059
182.88	134.54	-45.99
192.02	134.507	-45.963
201.17	134.474	-45.936
210.31	134.441	-45.909
219.46	134.414	-45.844
228.6	134.39	-45.76
237.74	134.366	-45.676
246.89	134.366	-45.605
256.03	134.414	-45.56
265.18	134.462	-45.515
274.32	134.51	-45.47
283.46	134.57	-45.41
292.61	134.63	-45.35
301.75	134.69	-45.29
310.9	134.652	-45.096
320.04	134.565	-44.835
329.18	134.478	-44.574
338.33	134.44	-44.298
347.47	134.5	-43.992
356.62	134.56	-43.686
365.76	134.62	-43.38
374.9	134.86	-43.425
384.05	135.1	-43.47
393.19	135.34	-43.515
402.34	135.446	-43.43
411.48	135.485	-43.28

420.62	135.524	-43.13
429.77	135.587	-43.006
438.91	135.698	-42.934
448.06	135.809	-42.862
457.2	135.92	-42.79
466.34	135.932	-42.571
475.49	135.944	-42.352
484.63	135.956	-42.133
493.78	136.014	-42.026
502.92	136.095	-41.975
512.06	136.176	-41.924
521.21	136.25	-41.885
530.35	136.31	-41.87
539.5	136.37	-41.855
548.64	136.43	-41.84
557.78	136.589	-41.843
566.93	136.748	-41.846
576.07	136.907	-41.849
585.22	137.01	-41.814
594.36	137.085	-41.76
603.5	137.16	-41.706
612.65	137.223	-41.648
621.79	137.262	-41.582
630.94	137.301	-41.516
640.08	137.34	-41.45
649.22	137.4	-41.411
658.37	137.46	-41.372
667.51	137.52	-41.333
676.66	137.64	-41.242
685.8	137.79	-41.125
694.94	137.94	-41.008
704.09	138.028	-40.915
713.23	137.992	-40.87
722.38	137.956	-40.825
731.52	137.92	-40.78
740.66	138.061	-40.771
749.81	138.202	-40.762
758.95	138.343	-40.753
768.1	138.425	-40.656
777.24	138.4775	-40.515
786.38	138.53	-40.374
795.53	138.5825	-40.233
804.67	138.635	-40.092
813.82	138.6875	-39.951
822.96	138.74	-39.81
832.1	138.869	-39.741
841.25	138.998	-39.672

850.39	139.127	-39.603
859.54	139.244	-39.566
868.68	139.355	-39.545
877.82	139.466	-39.524
886.97	139.54	-39.415
896.11	139.54	-39.13
902.21	139.54	-38.94

...

METERS	
DEPTH	LENG
0	0
7.92	7.9

FG to MG, Bedding Fabric thrt. Grey to blueish typically thin to thick beds @ 50 to 60 deg tca, rough jts thrt with no dominant orientation.

MG to FG, Light Grey to Bluish, Smth to rough jts thrt @ 60 to 80 deg tca. Localized weak Bedding Fabric @ 50 to 60 deg TCA. Beds are typically > 1 cm and $Q z$ rich

FG to MG grey to bluish, Smth Jtts thrt @ 40 to 50 DEG TCA. Locally blocky core, Jt surfaces are coated in Cb and trace Po. Occ Anastomosing Cb vnlts thrt.

FG to MG, grey to blueisg, weak bedding Fabric thrt @ 40 to 50 Deg tca. Rough Jts thrt no dominant orientation with Jt surfaces coated with Cb and minor Po. Occ thin $1-2 \mathrm{~cm} \mathrm{Bx}$ vnlt with very small ($\sim 1 \mathrm{~mm}$) clasts and a dark grey, aphanitic matrix. Breccia veinlits may be subx, or related to the local structure above.

VFG, Dark gry matrix weakly foliated at 30 to 40 deg tca, Clasts are rounded and are all MTSD. weak Bedding fabric MTSD intervals @ 50to 60 Deg TCA. Breccia may be SUBX or a fault breccia related to the above fault.

FG to M<F gry to bluish, weak bedding fol @ 35 to 45 deg tca, smth to rough jits thrt at 20 to 80 deg tca often coated with Cb and minor Po. occ thin $\sim 1 \mathrm{~m}$ Chl vnlt thrt with light grey/white alteration selvedge.

FG to MG, grey to blue, local weak bedding fabric common thicker (>5cm) Qz-rich, sandy beds, occ thin $2-3 \mathrm{~mm}$ anastomosing $\mathrm{Bt} / \mathrm{Chl}$ vnlts. smth to rough jts thrt commonly coated with Carbonat and trace Py and Galena.

MG to FG, grey to bluish, interval is up to 20% subx with subrounded clasts of MTSD in a FG, Bt-rich matrix. Matrix appears to have a marble-cake textured flow banding around clasts.

MG to FG, grey to bluish, thin to thick beds ranging from $<1 \mathrm{~cm}$ to $>10 \mathrm{~cm}$ but typically $1-2 \mathrm{~cm}$ thick. Bedding fabric is oriented at 30 to 40 deg tca, Smth jts thrt are often along bedding fabric. occ smth and rough jts at 15 to 80 deg tca. Jts are often coated in Carbonate. Thin and straight $1-2 \mathrm{~mm}$ Carbonate vnlts are occ. found thrt. thin and irregular shaped 1-2 $\mathrm{mm} \mathrm{Bt} / \mathrm{chl}$ vnlts are found thrt. Trace sulphides often along joint surfaces

FG to MG, grey to bluish, thin to thickly bedded local domains with a weak bedding fabric characterized by thin laminated beds typically 11.5 cm thick. smth jts thrt at various angles from 15 to 50 deg tca. JT surfaces often coated with minor Pyrite, occ thin <1mm Qb vnlt thrt.

FG to MG, grey to bluish, thin bedding is weak but thrt interval beds are typically <1cm. Smth an drough jts thrt often at shallow angles @ 30 to 50 deg tca. often coated with Carbonate. irregular 2 4 mm think Chl vnlts thrt that are irregular in shape and locally forms breccias. lower contact with Quartz diabase is characterized by abundant Qz-Cb vnlts mostly paralle to contact.

FG to MG, grey to greenish, strong EP/Chl? alteration imparting a pale greenish colour. thin laminated bedding fabric is apparent with beds typically $\sim 1 \mathrm{~cm}$ thick. Abundant irregular Chl-Bt anastomosing veinlits thrt locally coalescing to small breccias. Occ thin 1-3mm Qz-Cb vnlts thrt. smth to rough jts thrt at 40 to 60 deg tca

MG to FG, grey to bluish, local weak bedding fabric at 40 deg tca, interval is Qz-rich and sandy. rought jts thrt at 60 to 80 deg tca, often JTs are coated in minor Pyrite.

MG to FG, grey to bluish, weak bedding fabric thrt at 60 to 70 deg tca, when apparent, beds are 12 cm think, sandy, and quartz rich. smth jts thrt at various angles often at 50 to 60 deg tca, but as shallow as 5 deg tca. Carbonate is often found coating Joint surfaces with minor pyrite. occ thin 12 mm Cb vnlt thrt. occ 2-3 mm Chlorite vnlt thrt.

FG, dark grey, apilitic, equigranular Bt, Plag, and minor Qz. upper contact is at 65 deg tca. lower contact is at 65 deg tca. trace spks of Py.

MG to FG, grey to bluish, weak bedding fabric thrt at 35 to 40 deg tca, smth jts thrt often parallel to bedding. Jt surfaces are commonly coated with carbonate. occ thin $\sim 1 \mathrm{~mm}$ Qz-Cb vnlt thrt.
Common thin $1-4 \mathrm{~mm}$ and irregular shaped Chlorite vnlts thrt.

MG to FG, light grey, weak bedding fabric thrt at 40 to 50 deg tca, beds range from $<1 \mathrm{~cm}$ to $>5 \mathrm{~cm}$ and are typically sandy and Qz-rich. smth tjs thrt often X-cutting Bedding. JTs are typically 35 to 45 deg tca. occ thin $<1 \mathrm{~mm}$ Chl vnlts thrt.

FG to MG, grey to greenish, apilitic with equigranular $\mathrm{Bt}, \mathrm{Fsp}$, and Q z. upper contact is sharp and at 70 deg tca. and is characterized by abundant Qz-Carb vnlts. Lowe contact is sharp, has no veinlits, and is at 35 deg tca.

MG to FG, grey to light grey, light grey colour may be from rextlization close to the above dyke, weak bedding fabric thrt, at 40 to 50 deg tca, beds are sandy and Qz-rich. smth and rough jts thrt often cutting bedding. occ thin (<1mm) QzOCb vnlt thrt. Occ thin (<1mm) Chl vnlt thrt.

FG to MG, grey to bluish, weak bedding fabric thrt, often bedding is thinly laminated, with thin Chl-rich veinlts along bedding planes. Local areas of thicker, sand-rich beds JT surfaces are often coated in Carbonate material .

267.58	4.91	60	STRT	QTZT
270.3	2.71	90	MTSD	QTZT
294.44	24.14	80	MTSD	QTZT
302.97	8.53	55		MTSD
313.82	10.85	75	QTZT	MTSD

MG to FG, grey to bluish, local weak bedding fabric thrt at 30 to 40 deg tca, unit is sandy and dominantly Qz-rich, Smth and rough tis thr often at hight angles TCA. (typically 60 to 70 deg tca). Local areas of blocky ground where core had abundant rough jts Broken core pieces have surfaces coated with Chlorite and slickenlines.

MG to FG, grey to bluish, local areas of thinly spaced beds ($1-3 \mathrm{~cm}$) at 40 to 50 deg tca, mostly unit is sandy and Qz-rich. smth jts thrt at 30 to 40 deg tca, rare thin $1-2 \mathrm{~mm}$ Qz-Cb vnlts thrt Common thin $<1 \mathrm{~mm}$ Chl vnlts thrt unit.

MG to FG , grey to bluish, weak bedding fabric thr at 30 to 40 deg tca, smth jts thrt often along
bedding, but, occasionally oblique to bedding. rare thin and irregular Chl vnlts thrt. Rare trace sulphides and common Carbonate along Jt surfaces.

FG to MG, grey to bluish, moderate bedding fabric thrt at 35 to 40 deg tca. Jt surfaces often coated with Carbonate. Rough and stepped Jts thrt at various angles from 40 to sub-parallel TCA. Common Chl-rich layers parallel to Bedding. Locallt blocky core where Jts coalesce.

FG to MG, grey to bluish, weak bedding fabric thrt at 35 to 45 deg tca, smth jts thrt often parallel to bedding, occ oblique to bedding rare thin and Irregular shaped Qz-Cb vnlts thrt. OFten Cb material is coating jt surfaces. occ Chl-rich surface along bedding planes.

FG, grey to bluish, weak bedding fabric thrt at 40 to 50 deg tca, occ thin $1-2 \mathrm{~mm}$ Qz-Cb vnlt thrt. common smth jts, occasionally coated with Cb material. JTs are often parallel to bedding Local areas (typically <1 foot) of SUBX with rounded MTSD clasts within a FG dark grey matrix

VFG to MG, grey, aphanitic dark grey matrix interstitial to rounded light grey clasts of MTSD smth and rough jts thrtat 45 to 60 deg tca. Jts are often coated with Cb material. Local areas of Blocky core due to abundant Jointing.

G, grey to bluish, apparently massive. Bedding is not apparent. occ smth jt coated with Cb material at 45 to 80 deg tca. Unit first appeared as a dyke. Inspection under binocular microscope shows the mineralogy is dominantly $Q z$ with minor biotite. texturally, the unit is sugary, with rounded $Q z$ grains. occ thin 1-2mm Qz-Cb vnlt thrt.

FG to MG, grey to greenish, local weak bedding fabric. Smth and rough jts thrt at various angles. locally, core is completely blocky and broken in areas of abundant jointing. irregular Chl-Ep vnlts thrt imparting a greenish colour. locally the MTSD is brecciated and Chlorite/epidote alteration is stronger.

FG, grey to bluish, local areas of weak bedding fabric at 30 to 40 deg tca, minor zones (typically <6 inches) of Sudbury breccia. Abundant rough jts thrt at 25 to 70 deg tca occ. Its are coated with Carbonate material

FG to VFG, grey to bluish, local thin bedding laminations typically <1cm. smth and rough jts thrt at 40 to 50 deg tca, local Qz-Cb vnlts thrt locally creating vuggy-veins. local areas (typically <1foot) of brecciated MTSD.

FG to VFG, grey to bluish, local thin bedding typically less than 1 cm . local interval of brecciated MTSD with rounded clasts and flow banding?
encapsulating clasts. Abundant smth and rough jt thrt. blocky core thrt. occ broken surface is coated with Qz-Cb.

FG, grey to bluish, local thin bedding laminations on a centimeter scale. Common thin $1-2 \mathrm{~mm}$ Qz-CB vnlts often sheeted and parallel to eachother at 70 deg tca and a 1-2inch spacing. occ smth jts thrt at 60 to 70 deg tca, often along Qz-Cb vnlts. local band of SUBX? typically <6 inches with an aphanitic matrix and subrounded clasts.

MG to CG, green, CG biotite thrt a matrix of plag? and carbonate? occ thin 1-2 mm and irregular QzCb vnlts thrt. occ smth jts thrt at 45 to 50 deg tca. upper and lower contacts are shap and chilled. upper contact is at 35 deg tca lower contact is at 40 deg tca. unit weakly effervesces with acid.

FG to MG, grey to bluish, apparently massive, local weak bedding fabric is apparent. rare interval typically 2 to 8 inches of breccia. Unit is typically massive and sand/quartz -rich. off rough jts at 40 to 50 deg tca. smth jts thrt at 10 to 80 deg tca. rare thin 2-3mm Qz-Cb vnlts thrt.

40.01	1.52	MG229917	5	0	0.01	0.01	0

vfg to MG, dark grey to light grey, aphanitic matix with irregular to subangular clasts thrt. local thin laminations in clasts, commin thin $1-3 \mathrm{~mm}$ Qz-Cb vnlts thrt. often Cb vnlts are irregular in shape and connected. local intervals of blocky core.

FG, grey to light grey, occ smth jts thrt at 70 to 80 deg tca, smth jts often along breaks along thin 12 mmQz -Cb vnlts. bedding fabric is weakly apparent at 70 deg tca.

FG to MG, grey to bluish, local weak bedding fabric. local domain (1-2 inches) of breccia. oss smth jts thrt at 60 to 70 deg tca. thin $1-2 \mathrm{~mm}$ Qz-Cb vnlts thrt. NVS.

FG to MG, grey to bluish, Weak bedding fabric thrt at a centimeter scale. local thin to thick Qz vntls thrt from 3 mm to 2 cm . occ rough jts thrt at 40 to 50 deg tca. NVS

FG to MG grey to bluish, sugary and apilitic, thin 1 2 mm Qz vnlts thrt. common rough jts at 40 to 50 deg tca. appears to be transition zone between MTSD and QD. appears similar to QD, but mor sugary and rextlized in appearance.

FG to MG, upper contact gradational but appears chilled and finer grained that lower part of interval. sugary, and apilitic in texture. occ thin 1-2mm QzCb vnlts thrt. Occ smth jts broken along Qz -Cb vnlts at 40 to 60 deg tca . Amph laths up to 0.5 cm thrt.

MG, grey to bluish, phaneritic with needle-like amph (up to 1 cm) and interstitial plagioclase. occ smth jts thrt at 60 to 70 deg tca, icc thin $1-2 \mathrm{~mm}$ QzCb vnlts thrt. NVS.

426.42	1.89	MG229922	5	0	0.01	0.01	0	0	0	90	NVS	QD
427.48	1.07	MG229923	5	1	0.02	0.02	0	0	0.03	70	SPKS	IQD
429.01	1.52	MG229924	5	0.5	0.02	0.02	0	0	0.07	75	SPKS	IQD
430.47	1.46	MG229925	5	0.5	0.02	0.02	0	0	0.07	75	SPKS	IQD
431.99	1.52	MG229926	5	2	0.04	0.03	0	0	0.14	75	SPKS	IQD
433.3	1.31	MG229927	5	2.5	0.05	0.05	0	0	0.21	75	SPKS	IQD
433.97	0.67	MG229928	5	3	0.06	0.05	0	0.002	0.21	90	SPKS	IQD

MG, grey to bluish, phaneritic with needle-like amph (up to 1 cm) and interstitial plagioclase. occ smth jts thrt at 60 to 70 deg tca, occ thin 1-2mm Qz-Cb vnlts thrt. NVS.

FG to MG, grey to blue, laths of amph up to 1 cm with interstitial plag. commmin rough jts thrt at various angles. thin <1mm Qz-Cb vnlts thrt at no preferred orientation. Common sub angular mafic clasts thrt. Spks of Sulph as Po and Pn.

FG to MG, grey to blue, laths of amph up to 0.5 cm with interstitial plag. occ smth jts thrt at 20 to 45 deg tca, rare thin <1mm Qz-Cb vnlts thrt. Common angular Mafic clasts up to 3cm. Spks of Po and Pn

FG to MG, grey to blue, laths of amph up to 0.5 cm with interstitial plag. occ smth jts thrt at 20 to 30 deg tca, rare thin <1mm Qz-Cb vnlts thrt. Common angular Mafic clasts up to 5 cm . Spks of Po and Pn.

FG to MG, grey to blue, laths of amph up to 0.5 cm with interstitial plag. smth and rough jts thrt at 20 to 60 deg tca. commin thin <1mm Qz-Cb vnlts thrt Angular mafic inclusions up to 3 cm .

FG to MG, grey to blue, laths of amph up to 0.5 cm with interstitial plag. occ smth jts thrt at 20 to 45 deg tca. occ thin <1mm Qz-Cb vnlts thrt. mafic inclusions thrt up to 2 cm . approx. 2.5% spks of Po and Pn.

FG to MG, grey to blue, laths of amph up to 0.5 cm with interstitial plag. occ smth jts thrt often along Qz-Cb vnlts at 30 to 60 deg tca. angular mafic inclusion thrt up to 3 cm wide.

434.4	0.43	MG229930	5	1.5	0.06	0.04	0	0	0.14	90	SPKS		IQD
435.71	1.31	MG229931	5	2.5	0.07	0.06	0	0	0.21	85	SPKS		IQD
436.81	1.1	MG229932	5	1.5	0.04	0.03	0	0	0.1	75	SPKS	LAMP	IQD
437.72	0.91	MG229933	5	3.5	0.08	0.08	0.01	0.001	0.27	95	SPKS		IQD
438.67	0.94	MG229934	5	3.5	0.08	0.08	0.01	0	0.27	75	SPKS		IQD
440.44	1.77	MG229935	5	1.5	0.05	0.03	0	0	0.14	50	SPKS		IQD

FG to MG, grey to blue, laths of amph up to 0.5 cm with interstitial plag. occ smth jts thrt at 30 to 40 deg tca. rare thin <1mm Qz-Cb vntls thrt. rare spk of Po and Pn

FG to MG, grey to blue, laths of amph up to 0.5 cm with interstitial plag. occ smth and rough jts at 60 to 70 deg tca, thin <1mm Qz-Cb vnlts thrt. angular mafic clasts thrt up to 3 cm . Spks of Po and Pn thrt.

FG to MG, grey to blue, laths of amph up to 0.5 cm with interstitial plag. occ smth jts thrt at 15 to 20 deg tca, often brokwn along Qz-Cb vnlts. Local 5inch interval of lamprophyre at top of interval section has CG biotite within a matrix of green chlorite? and light green alteration selvedges.

FG to MG, grey to blue, laths of amph up to 0.5 cm with interstitial plag. occ smth jts thrt at 30 to 40 deg tca. rare thin <1mm Qz-Cb vnlts thrt at no preferred orientation. subangular to angular mafic inclusion up to 10 cm . spks of Po and Pn thrt.

FG to MG, grey to blue, laths of amph up to 0.5 cm with interstitial plag. occ smth jts thrt at 30 to 45 deg tca. rare thin <1mm Qz-Cb vnlts thrt. approx. 3.5% spks of Po and pn.

FG to MG, grey to blue, laths of amph up to 0.5 cm with interstitial plag. abundant rough jts thrt at 30 to 60 deg tca coming together to create intervals of blocky core. rare thin <1mm carbonate vnlts. spks of sulph as Po and Pn thrt

FG to MG, grey to blue, laths of amph up to 0.5 cm with interstitial plag. Rare rough jts thrt. weak fol thrt defined by streaching of clasts and sulphide spks. approx. $2 \&$ sulph as spks of Po PN and minor Cp.

FG to MG, grey to blue, laths of amph up to 0.5 cm with interstitial plag. occ smth jts thrt at 35 to 40 deg tca. occ thin <1mm Qz-Cb vnlts thrt. weak fol thrt defn. by streaching of clasts and sulphide blebs. approx. 2.5\% spks of Pn, Pn and Cp.

FG to MG, grey to blue, laths of amph up to 0.5 cm with interstitial plag. occ rough jts thrt at 30 to 40 deg tca. spks of Po and Pn with minor Cp thrt. weak fol defn. by streaching of sulphide spks and clasts. occ Qz-Cb vnlts thrt typically 2-3mm.

FG to MG, grey to blue, laths of amph up to 0.5 cm with interstitial plag. occ rough jts thrt at 40 to 50 deg tca. weak fol at 40 to 50 deg tca. rare thin 23 mm Qz-Cb vnlts thrt. rare spks of Po and Pn thrt.

FG to MG, grey to blue, laths of amph up to 0.5 cm with interstitial plag. occ smth to rough jts thrt at 40 to 60 deg tca. thin (<2mm) Qz-Cb vnlts thrt. no strong foliation. Angular clasts thrt up to 3 cm .

FG to CG, green, MG to CG biotite thrt within a chlorite-rich groundmass. unit effervesces weakly with acid. Dyke is very soft, and non magnetic. NVS. Upper contact is sharp at 25 deg tca.

448.51	1.52	MG229943	5	0	0.01	0.01	0	0	0	90	NVS		LAMP
449.34	0.82	MG229944	5	0	0.01	0.01	0	0	0	95	NVS		LAMP
449.88	0.55	MG229945	5	0.5	0.03	0.03	0	0.001	0.07	90	SPKS		IQD
450.52	0.64	MG229946	5	0	0.01	0.01	0	0	0.03	90	NVS		QD
451.99	1.46	MG229947	5	0	0	0.01	0	0	0	95	NVS	SHR	QD
452.93	0.94	MG229948	5	0	0.02	0.01	0	0	0	80	NVS	SHR	MTSD

FG to CG, green, MG to CG biotite thrt within a chlorite-rich groundmass. occ rough jts thrt at 30 to 45 deg tca. unit effervesces weakly with acid. Dyke is very soft, and non magnetic.occ. thin 1 3 mm Chl vnlts thrt.NVS.

FG to CG, green, MG to CG biotite thrt within a chlorite-rich groundmass. occ rough jts thrt at 30 to 40 deg tca. Lower contact is sharp at 30 deg tca. unit effervesces weakly with acid. Dyke is very soft, and non magnetic. NVS.

FG to MG, grey to bluish, laths of amph thrt up to 1 cm with interstitial plagioclase. occ smth jts thrt at 50 deg tca, occ thin 2-3mm Qz-Cb vnlts thrt. spks of Po and Pn thrt

FG to MG, grey to bluish, laths of amph thrt with interstitial plag. weak fol. defn by orientation of amphiboles. occ thin $1-2 \mathrm{~mm}$ Chl vnlts thrt. nvs.

FG to MG, grey to bluish, laths of amph thrt with interstitial plagioclase. comm in smth and rough jts thrt at 20 to 40 deg tca often coated with chlorite. local interval at top of section with a strongly developed foliation at 60 deg tca, appears to be highly strained and sheared. lower contact of $Q D$ is sharp at 60 deg tca

FG, grey, apparently massive, appears mud-rich locally, rough jts thrt at 60 to 70 deg tca. unit is strongly fol. at 70 deg tca, unit appears to be highly strained and sheared. shear zone is weakly choritized. NVS.

454.46	1.52	MG229949	5	0	0.01	0.01	0	0	0	75	NVS		MTSD
455.98	1.52	MG229950	5	0	0	0	0	0	0	85	NVS		MTSD
473.2	17.22									85			MTSD
473.99	0.79									55		STRT	OLDI
474.76	0.76									0		OLDI	FLT
477.5	2.74									80			OLDI
490.73	13.23									65			MTSD

FG, grey, local weakly apparent thin beds on a cm scale. rough jts thrt at 70 to 80 deg tca. rare thin <1mm Qz-CB vnlts thrt. nvs.

FG, grey, local weakly apparent thin beds on a cm scale. rough and smth jts thrt at 70 to 80 deg tca. rare thin <1mm Qz-CB vnlts thrt. nvs.

FG to MG, grey to dark grey, local clearly apparent laminated beds at a centimeter scale. smth jts thr at 20 to 30 deg tca, occ rough jts thrt at 40 to 60 deg tca,. rare and irregular shaped ($1-3 \mathrm{~mm}$) QzOCb vnlts thrt. local areas of chloritization. NVS.

FG to VFG, dark grey, aphanitic, upper contact is chilled and very dark grey but is irregular and not a clearly defn. angle. local blocky core. Unit is highly magnetic. NVS.

FG, dark grey, completely blocky and pulverized core, core blocks are often coated in chlorite. with slickenlines. Unit is highly magnetic.

VFG to FG, dark grey, aphanitic, bottom of interval is chilled and contact is at 15 to 20 deg tca. unit is highly magnetic. NVS>

FG to MG, grey to dark grey, local weakly apparent bedding at 30 to 40 deg tcam abundant smth jts thrt typically at shallow angles 10 to 20 deg tcam and coated with chlorite. occ rough jts thrt at 40 to 60 deg tca. local blocky core. NVS.

VFG to FG, grey to pale beige alteration imparted to dyke. aphanitc, abundant thin <1mm Qz-Cb vnlts. abundant anastomosing cracks in core. common rough jts thrt often coated with Qz-Cb material. When wet, a pervasive beige alteration is apparent. area is non magnetic. Upper contact is chilled and at 25 deg tca.

FG to MG, grey to bluish, strongly apparent bedding fabric thrt typically thinly laminated beds at 60 to 70 deg tca, common smth jts parallel to

 bedding. occ rough jts oblique to bedding. nvs.FG to MG, grey to dark grey, abundant angular clasts of MTSD with a darker matrix. SUBX matrix is apparently rextlized and is somewhat sugary. matrix also displays flow banding? forming concentrically around clasts.

FG, grey to dark grey, apilitic and sugary, smth and rough jts thrt at various angles, typically between 20 at 60 deg tca. often JT surfaces are coated in chlorite. rare thin Qz-Cb vnlts thrt. Unit is strongly magnetic.

FG grey to dark grey, apilitic and sugary, abundant smth and rough jts thrt at 50 to 60 deg tca. often coalescing to form intervals of blocky core. blocks of core are often coated with Chlorit on broken surfaces. unit is strongly magnetic.

FG to VFG, dark grey, apilitic to aphanitic, occ smth jts thrt at 20 to 70 deg tca, rare thin $1-2 \mathrm{~mm}$ Chl vnlt. lower contact is chilled and at 45 deg tca.

FG to MG, grey to bluish, local weakly developed bedding fabric thrt typically at 65 deg tca, typically massive and Qz/sand rich beds. rare shallow smth jts thrt at 5 to 10 deg tca. occ thin <1mm Qz-Cb vnlt thrt. NVS.

FG to MG, grey to bluish, local weakly developed bedding fabric thrt typically at 65 deg tca, typically massive and Qz/sand rich beds. occ smth and rough jts thrt at 30 to 40 deg tca. rare thin $<1 \mathrm{~mm}$ Qz-Cb vnlts thrt. nvs.

FG to MG, grey to bluish, apparently massive, occ local weak indication of bedding fabric. smth and rough jts thrt at 20 to 50 deg tca, ofent breaking along thin ($1-2 \mathrm{~mm}$) Qz-Cb vntls. local blocky core broken core blocks often have coatings of Qz-Cb material. NVS

FG, grey to greenish, apilitic to aphanitic, contacts are chilled. Upper contact is 70 deg tca, and is typified by abundant Qz-Cb veining. lower contact is at 65 deg tca, and also has abundant $\mathrm{Qz}-\mathrm{Cb}$ veining. thin ($1-2 \mathrm{~mm}$ Qz-Cb vnlts thrt). occ $1-3 \mathrm{~cm}$ Qz vnlts thrt. NVS.

FG, grey to bluish, apparently massive local weak indication of bedding fabric. common smth jts thrt at 50 to 80 degtca, common thin ($<1 \mathrm{~mm}$) qz-Cb vnlts thrt. nvs

FG to VFG, grey to greenish, apilitic to aphanitic, upper and lower contacts are chilled and pale greenish, common thin 1-2mm Qz-Cb vnlts thrt. NVS.

FG to MG, grey to bluish, local thinly laminated beds typically $<1 \mathrm{~cm}$, thrt local areas that are apparently massive, Qz-rich and sandy. smth, rough, and stepped, joints thrt at various angles. Often Jts are along bedding fabric. occ thin (<1mm) Qz-Cb vnlts thrt. NVS.

FG, grey to bluish, local weakly apparent bedding fabric at 45 to 50 deg wa, $1-3 \mathrm{~cm}$ Qz vein thrt Occ rough and smth jts thrt at 30 to 50 deg tca, occ, Jts are coated with chlorite, typically in areas of lower RQD. NVS.

CG, white to translucent. abundant cracks thrt, no jointing. thick quartz vein upper and lower contact at 30 deg tca

FG, grey, thinly laminated beds thrt at 30 to 40 deg tca, typically $<1 \mathrm{~cm}$ wide. smth jts thrt often oblique to bedding. rare thin 1-2 mm Qz-Cb vnlts thrt. NVS.

FG, grey to bluish, thin beds are apparent thrt. local areas are apparently massive, bedding is apparent on the centimeter scale typically at 35 to 45 deg tca, smth jts thrt typically oblique to bedding. thin (<1mm) Qz-Cb vnlts thrt. NVS.

FG, grey, thinly laminated beds thrt at 45 to 50 deg tca, common smth jts thrt often along bedding fabric, occasionally oblique to bedding. occ rough jts often coated with carbonate material. occ thin $1-2 \mathrm{~mm}$ Qz-Cb vnlts thrt. NVS.

FG, grey, local thinly laminated beds thrt. Bedding fabric is at 40 to 45 deg tca, occ smth jts thrt typically along bedding fabric. rare rough jts oblique to bedding. NVS.

708.81	1.52	MG229953	5	0	0.01	0.01	0	0	0	70	NVS		MTSD
709.54	0.73	MG229954	5	0	0.01	0	0	0	0	60	NVS	ALTN	MTSD
711.07	1.52	MG229955	5	0	0.01	0.01	0	0.001	0	85	NVS	ALTN	$Q D$
712.07	1.01	MG229957	5	0	0.01	0.01	0	0.001	0	85	NVS	ALTN	QD
712.68	0.61	MG229958	5	0	0.01	0.01	0	0.001	0	80	NVS		$Q D$
712.87	0.18	MG229959	5	0	0.01	0.01	0	0.001	0	100	NVS		$Q D$
713.6	0.73	MG229960	5	0	0.01	0.01	0	0.001	0	85	NVS		QD

FG, grey, local thinly laminated beds thrt. Bedding fabric is at 40 to 45 deg tca, occ smth jts thrt typically along bedding fabric. rare rough jts oblique to bedding. NVS

FG, grey and weakly green, local weak bedding fabric typically at 40 to 50 deg tca, common smth its thrt at 50 to 70 deg tca, thin $1-2 \mathrm{~mm}$ Qz-Cb vnlts thrt, bottom of interval is greenish and is characterized by abundant $\mathrm{Qz}-\mathrm{Cb}$ veining. NVS

FG to VFG, grey to greenish, aphanitic. abundant Qz-Cb vntls thrt. upper contact is sharp at 30 deg tca. unit is pervasively altered and chloritized? to a pale green colour.

FG to MG, grey to greenish, apilitic, occ rough jts thrt often coated with Qz-Cb material. Unit is pervasively altered to a pale greenish colour.

FG, grey to bluish, laths of amphibole thrt up to 1 cm with interstitial plagioclase. common thin 12 mm Qz-Cb vnlts thrt. smth jts thrt often coated with Oz-Cb material

FG, grey to bluish, laths of amphibole thrt up to 1 cm with interstitial plagioclase. no natural joints. rare thin $1-2 \mathrm{~mm}$ Qz-Cb vnlts thrt. ${ }^{* * *}$ Sample selected for whole rock geochemistry***

FG to MG grey to bluish, laths of amph thrt up to 1 cm with interstitial plagioclase. common thin 1 2 mm Qz-Cb vnlts thrt. occ smth jts thrt at 45 deg tca often coated with Qz-CB matrial. NVS.

714.42	0.82	MG229961	5	0.1	0.01	0.01	0	0.002	0	70	NVS	QD
715.06	0.64	MG229962	5	0.1	0	0.01	0	0.002	0	100	TR	IQD
716.28	1.22	MG229963	5	0.1	0.01	0.01	0	0.002	0	90	TR	QD
716.52	0.24	MG229964	5	0.1	0.01	0.01	0	0	0	100	SPKS	$Q D$
717.47	0.94	MG229965	5	0.1	0.01	0.01	0	0	0	80	NVS	$Q D$
718.11	0.64	MG229966	5	0	0.01	0	0	0.001	0	85	NVS	OLDI
719.63	1.52	MG229967	5	0.1	0.01	0.01	0	0.001	0	85	TR	QD
720.55	0.91	MG229968	5	0.1	0.01	0.01	0	0	0	75	TR	QD

FG to MG grey to bluish, thin laths of amphibole thrt up to 1 cm . interstitial plag thrt. abundant QzCb vnlts thrt. rare specks of Po and Pn thrt.

FG to MG, grey to bluish, Weakly apparent angular clasts within a MG matrix with laths of amphiboles and interstitial plagioclase. Common thin $1-2 \mathrm{~mm}$ Qz-Cb vnlts thrt. trace spks of sulphide.

FG to MG, grey to bluish, apilitic with laths of amphibole up to 1 cm with interstitial plagioclase. common thin $1-3 \mathrm{~mm}$ Qz-Cb vnlts thrt. common smth jts broken along Qz-Cb vnlts.

FG, grey to bluish, apilitic with laths of amph up to 0.5 cm , with interstitial plagioclase. rare thin $<1 \mathrm{~mm}$ Qz-cb vnlts. Section has been selected to be homogenous and as free from veins as possible for whole-rock geochemistry***

FG to MG, grey to bluish, laths of amphibole thrt up to 0.5 cm with laths of plagioclase. common thin $1-5 \mathrm{~mm}$ Qz-Cb vnlts thrt. occ smth and rough jts thrt often along $\mathrm{Q}_{z}-\mathrm{Cb}$ vnlts.

FG to VFG, dark grey, aphanitic, upper and lower contact sharp at 20 deg tcxa, unit is highly magnetic.

FG to MG, grey to bluish, laths of amph up to 1 cm with interstitial plagioclase. occ thin 1-4 mm Qz-Cb vnlts thrt. occ smth jts thrt often along Qz-Cb vnlts.

FG to MG, grey to bluish, laths of amph up to 1 cm with interstitial plagioclase. occ thin 1-2 mm Qz-Cb vnlts thrt. occ smth jts thrt often along Qz-Cb vnlts. rare trace speck of Po and Pn.

720.85	0.3	MG229969	5	0	0.01	0.01	0	0	0	75	Nvs		QD
721.86	1.01	MG229970	5	0	0.01	0.01	0	0.001	0	85	NVS		QD
722.47	0.61	MG229971	5	0	0.01	0.01	0	0	0	100	NVS		QTZT
723.9	1.43	MG229972	5	0	0.01	0.01	0	0	0	95	NVS	QTZT	MTSD
725.42	1.52	MG229973	5	0	0	0.01	0	0	0	90	NVS		MTSD
750.94	25.51									90		QTZT	MTSD
757.12	6.19									40			QTZT
764.19	7.07									80		MTSD	QTZT

FG to MG, grey to bluish, apilitic, laths of amphibole are weakly apparent. occ thin $1-2 \mathrm{~mm}$ QzOCb vnlts thrt. trace spks of sulphide.

FG, grey to blue, aphanitic, abundant thin $1-2 \mathrm{~mm}$ Qz-Cb vnlts thrt. lower contact is chilled and

 irregular and cannot define a clear angle. NVS.FG to MG, grey to bluish, apparently massive and sugary, one smth jt at 50 deg tca. occ thin $1-2 \mathrm{~mm}$ Qz-Cb vnlts thrt. unit may be rextlized due to proximity to dyke.

FG to MG, grey to bluish, local thinly laminated bedding fabric typically at a centimeter scale at 30 to 40 deg tca. occ smth jts thrt at 40 to 50 deg tca rare thin 1-2mm Qz-Cb vnlts thrt.

FG to MG, grey to bluish, local thinly laminated bedding fabric typically at a centimeter scale. occ smth jts thrt at 40 to 50 deg tca, rare thin $1-2 \mathrm{~mm}$ Qz-Cb vnlts thrt. NVS.

FG to MG, grey to bluish, local weak bedding fabric thrt at a centimeter scale. occ smth and rough jts thrt typically at 30 to 50 deg tca. occ Qz vnlt thrt 23 cm wide. NVS.

FG, grey to bluish, common thin 1-2mm Qz-Cb vnlts thrt. abundant smth jts thrt often along QzCb breaks. local blocky core. Bedding fabric is weakly apparent. NVS.

FG to MG, grey to bluish, apparently massive, smth jts thrt at 40 to 50 deg tca, occ thin $1-2 \mathrm{~mm}$ Qz-Cb vnlt thrt. often Jts are along vnlts. local blocky core. NVS.
$770.72 \quad 6.52$
$770.9-0.18 \quad$ MG229974 $\quad 5 \quad 0 \quad 0.01 \quad 0 \quad 0$

FG to VFG, grey to greenish, apilitic with upper contact that is chilled. smth and rough jts thrt Common thin 1-2mm Qz-Cb vnlts with pale grey alteration selvedges, rough. upper contact is at 50 deg tca

FG, grey to greenish blue. apilitic, and sugary textured. rare <1mm Qz-Cb vntls. sample has been selected for whole rock ID to identify the dyke.

FG, grey to greenish blue, rough and smth jts thrt at 30 to 60 deg tca, occ $2-3 \mathrm{~cm}$ Qz veins thrt. occ thin $1-2 \mathrm{~mm}$ Qz-Cb vnlts thrt. local blocky core Lower contact is broken and blocky NVS.

FG, grey to bluish, apparently massive, occ smth jts thrt at 35 to 60 deg tca, rare thin 0.1 to 0.5 cm QzCb vnlts thrt. NVS.

FG, grey to bluish, thinly laminated bedding fabric thrt at 25 to 30 deg tca, shallow, smth jts thrt often along bedding. rough jts thrt oblique to bedding. occ thin 1-2mm Qz-Cb vnlts. NVS.

FG, grey to bluish, local thinly laminated beds thrt at 20 to 30 deg tca, common smth jts thrt typically at 50 to 70 deg tca. rare thin $<1 \mathrm{~mm}$ Qz-Cb vnlts thrt. NVS.

FG, grey to blue, apparently massive, abundant smth and rough jts thrt at various angles. blocky core thrt. often Jt surfaces and broken core is coated by carbonate material. common irregular carbonate veinlits thrt. NVS.

FG, grey to bluish, local weak bedding is apparent Typically massive, smth jts thrt from 15 to 60 deg tca, local rough jts, and one small (1 foot) interval of blocky core at 2746.1' rare thin 1 -2mm Oz-Cb vntl and rare thin $1-2 \mathrm{~mm}$ Chl vnlts. Trace sulphides along some veinlits.

FG to MG greenish to grey, phaneritic to aphanitic common rough jts thrt at 30 to 50 deg tca. occ thin to thick from 1 mm 8 inche Qz-Chl-tourmaline? veins thrt. upper contact is chilled at 30 deg tc lower contact is chilled and oriented at 45 deg tca

FG, grey to blue. apparently massive, no distinct bedding fabric, grains are rounded and unit is Qz/sand rich. occ rough jts thrt at 50 to 60 deg tca NVS.

FG, grey to bluish, local weak bedding fabric at 30 to 40 deg tca, occ smth jts thrt typically at 40 oto 50 deg tca. rare thin 1-2mm Qz-Cb vnlt thrt. occ Jt surfaces are coated with Carbonate material. NVS

F, grey to bluish, local weak bedding fabric at 30 to 40 deg tca, abundant smth and rough jts at various angles from 5 deg tca to 60 deg tca. local interval ~ 1 foot wide of breccia with rounded clasts ant a sugary, very fine grained matrix. rare thin 1 2 mm Qz-Cb vnlt thrt. occ Jt surfaces are coated with Carbonate material. NVS.

FG, grey to blue, local thinly laminated beds thrt typically at 25 to 30 deg tca, smth jts thrt often along bedding fol. Rough jts oblique to bedding NVS.

DEPTH	AZIMUTH	DIP
0	198.75	-63.28
9.14	200.286	-63.3295
18.29	200.0041	-63.2389
27.43	199.9101	-63.2752
36.58	199.3986	-63.2581
45.72	199.2642	-63.2713
54.86	199.1381	-63.2685
64.01	199.0658	-63.2109
73.15	199.125	-63.2081
82.3	199.198	-63.2254
91.44	199.2518	-63.1877
100.58	199.0266	-63.1335
109.73	198.6587	-63.0007
118.87	198.461	-62.9308
128.02	198.4357	-62.9166
137.16	198.3708	-62.9062
146.3	198.2557	-62.8486
155.45	198.2597	-62.8198
164.59	198.2413	-62.6954
173.74	198.2248	-62.6916
182.88	198.3614	-62.6749
192.02	198.3791	-62.7139
201.17	198.4068	-62.6166
210.31	198.3246	-62.5069
219.46	198.4796	-62.5346
228.6	198.3964	-62.4681
237.74	198.4256	-62.4799
246.89	198.5863	-62.4086
256.03	198.7582	-62.4624
265.18	198.829	-62.347
274.32	198.8112	-62.1519
283.46	198.8214	-62.1527
292.61	198.8988	-61.8982
301.75	198.9901	-61.9249
310.9	198.9943	-61.8245
320.04	199.1312	-61.83
329.18	198.9891	-61.6061
338.33	198.9567	-61.6232
347.47	198.9595	-61.5682
356.62	199.0128	-61.5105
365.76	198.9791	-61.4425
374.9	198.9701	-61.3796
384.05	199.0131	-61.3727
393.19	199.052	-61.2258
402.34	198.9861	-61.2607
411.48	199.0119	-61.2148

420.62	199.1339	-61.1174
429.77	199.2197	-61.058
438.91	199.4447	-60.9814
448.06	199.5794	-60.9218
457.2	199.6263	-60.7263
466.34	199.4879	-60.7993
475.49	199.4106	-60.6973
484.63	199.2264	-60.6969
493.78	199.3731	-60.5858
502.92	199.4746	-60.4279
512.06	199.6787	-60.3891
521.21	199.7515	-60.2861
530.35	199.9365	-60.1856
539.5	199.8273	-60.1092
548.64	199.93	-60.16
557.78	199.9526	-60.0798
566.93	199.9128	-60.0491
576.07	199.979	-59.9325
585.22	199.9387	-59.8407
594.36	200.0545	-59.7276
603.5	200.0792	-59.7444
612.65	200.0337	-59.6987
621.79	200.0383	-59.6535
630.94	200.0521	-59.5548
640.08	200.3499	-59.4838
649.22	200.4531	-59.4593
658.37	200.5579	-59.4549
667.51	200.7138	-59.4363
676.66	200.8049	-59.3693
685.8	200.9132	-59.4008
694.94	200.9726	-59.3965
704.09	201.1518	-59.2096
713.23	201.0051	-59.0978
722.38	200.9541	-58.8607
731.52	201.0219	-58.6792
740.66	200.9196	-58.377
749.81	200.9334	-58.1663
758.95	201.1179	-58.2362
768.1	201.2385	-58.0175
777.24	201.4387	-57.8954
786.38	201.4754	-57.9779
795.53	201.6271	-57.7955
804.67	201.7875	-57.818
813.82	201.8448	-57.746
822.96	202.1193	-57.6011
832.1	202.487	-57.5633
841.25	202.7057	-57.1939

850.39	202.7614	-56.9431
859.54	202.9503	-56.7448
868.68	203.2855	-56.274
877.82	203.542	-56.0258
886.97	203.6214	-55.8463
896.11	204.7051	-55.8265
905.26	206.4188	-56.1752
914.4	207.2124	-56.0788
923.54	208.5657	-56.103
932.69	209.5846	-56.0907
941.83	210.6358	-55.964
950.98	211.3925	-55.9601
960.12	211.8086	-55.8455
969.26	212.5275	-55.7901
978.41	213.2909	-55.6611
987.55	213.8996	-55.2885
996.7	214.5587	-55.277
1005.84	215.2491	-55.0805
1014.98	215.627	-54.9182
1024.13	216.0668	-54.9066
1033.27	216.3025	-54.622
1042.42	216.774	-54.5117
1051.56	217.2475	-54.3046
1060.7	217.7603	-54.0882
1069.85	217.9409	-53.584
1078.99	218.1055	-53.5305
1088.14	218.2024	-53.5154
1097.28	218.4557	-53.4308
1106.42	218.4928	-53.1799
1115.57	218.8779	-53.1724
1124.71	219.2222	-52.9238
1133.86	219.578	-52.628
1143	219.703	-52.4751
1152.14	219.8353	-52.4465
1161.29	220.3062	-51.6098
1170.43	220.8228	-50.5819
1179.58	221.4049	-50.1139
1188.72	222.0503	-49.6539
1197.86	222.3697	-49.5271
1207.01	222.8129	-49.3298
1216.15	223.2017	-49.0578
1225.3	223.6577	-48.8475
1234.44	224.0354	-48.5819
1243.58	224.3034	-48.3297
1252.73	224.7216	-48.1156
1261.87	225.3305	-47.7736
1271.02	225.5266	-47.6056

$1362.46 \quad 227.7803-45.9588$
$\begin{array}{llll}1371.6 & 228.1496 & -45.6443\end{array}$
$\begin{array}{ccc}1371.6 & 228.1496 & -45.6443 \\ 1380.74 & 228.6251 & -45.2238\end{array}$
$\begin{array}{lll}1380.74 & 228.6251 & -45.2238 \\ 1389.89 & 229.0715 & -45.0659\end{array}$
$\begin{array}{lll}1389.89 & 229.0715 & -45.0659 \\ 1399.03 & 229.4357 & -44.8059\end{array}$
$1408.18 \quad 229.6616-44.6159$
$\begin{array}{llll}1417.32 & 229.9032 & -44.3978\end{array}$
$\begin{array}{llll}1426.46 & 230.1735 & -44.0903\end{array}$
$\begin{array}{llll}1435.61 & 230.3806 & -43.7894\end{array}$
$\begin{array}{lll}1444.75 & 230.717 & -43.3827\end{array}$
$\begin{array}{llll}1453.9 & 230.729 & -43.385\end{array}$
$1463.04 \quad 232.556-42.8712$
$\begin{array}{lll}1472.18 & 233.2658 & -42.572\end{array}$
$\begin{array}{llll}1481.33 & 233.3247 & -42.2447\end{array}$
$1490.47 \quad 233.3774-42.0578$
$\begin{array}{llll}1499.62 & 233.6257 & -41.7494\end{array}$
$\begin{array}{llll}1508.76 & 234.1282 & -41.4324\end{array}$
$1517.9 \quad 234.2101 \quad-41.3806$
$1519.12 \quad 234.36-41.22$
$1520.95 \quad 236 \quad-41.1$$1551.13 \quad 236 \quad-40.78$

1555.09	237.9	-40.3

$1556 \quad 238.8$-40.2
$1559.05 \quad 240.1 \quad-40.1$
$1562.1 \quad 239.6-39.8$

1567.89	241.7	-38.9

$1570.94 \quad 243.9 \quad-39.5$
$1571.85-244.4-\quad 39.5$
$1573.99-244.5$ - 39.5
$1577.04 \quad 239.7 \quad-40.2$

METERS		SAMPLE INFO			PERCENT			GRAMS/TONNE	
DEPTH	LENGTH	SAMPLE	CODE	EST	CU	NI	CO	AS	TPM
0	0								

$8.47 \quad 0.24$
$24.99 \quad 16.52$

Casing/OB no core retrieved.
Broken up pieces of rock (MTSD), GRAVE SIZED overdrilled pieces of core

Fg, Dk grey MTSD, qtz rich beds and occasional thinly laminated beds (up to 1 cm wide)(biotite rich), bedding is btw 25-30 deg tca, qtz vn @ 39 (approx. 0.5 ft wide), qtz/carb vnlts btw 45-60 deg tca (up to 3 cm wide), t py, jnts btw 10-50 deg tca (chl and carb coated with a few intersecting jnt sets).

Fg, dk grey, amygdaloidal basalt, amygdules are btw $1-3 \mathrm{~mm}$ (carbonate-fizzes with HCL) nvs, no jnts.

Fg, Dk grey MTSD, qtz and biotite rich beds and thinly laminated beds (up to 1 cm wide)(biotite rich), bedding is btw $25-30$ de tca, qtz vn @ 131.4ft (approx. 0.5ft wide), qtz/carb vnlts btw $45-60$ deg tca (up to 3 cm wide), tr py, jnts btw 30-70 deg tca (chl and carb coated).

Fg, dk grey, qtz and biotite rich, commonly thinly laminated and btw 151-154.2ft (looks striped black (biotitic) to grey (more qtz rich), rare conglomerate bed (subrounded qtz rich incls up to 1 cm), rare SUBX vnlts cross cutting bedding ($2 \mathrm{~cm}-20 \mathrm{~cm}$ wide) vfg, dk grey with subangular qtz rich fragments, bedding is btw 20-25 deg tca, min qtz carb vnlts btw 55-75 deg tca, tr py, jnts btw 35-50 deg tca (chl coated)

Fg, Dk grey MTSD, qtz rich beds and occasional thinly laminated beds (up to 1 cm wide)(biotite rich), bedding is btw $20-30$ deg tca, qtz/carb vnlts btw 20-25 deg tca ($1-2 \mathrm{~mm}$ wide), tr py, jnts btw 20-50 deg tca (chl and carb coated with a few intersecting jnt sets)

Fg, Dk grey MTSD, qtz rich beds and thinly laminated beds (biotite rich), bedding is btw 20-30 deg tca, qtz/carb vnlts btw 15-30 deg tca ($1-2 \mathrm{~mm}$ wide) and rare brecciated qtz/carb vnlt @ 368.3 ft (0.3 ft wide @ 60 deg tca), tr py, jnts btw 20-30 and btw 50-70 deg tca (smooth chl coated).

Fg, greenish grey, lamp dyke, chl altn hmgs throughout, hmgs throughout, very biotitic (flaky biotite), sharp contacts @ 15 (uct) and 60 (lct) deg tca, nvs, no jnts.

Fg, Dk grey MTSD, qtz rich beds and thinly laminated beds (biotite rich), bedding is btw 20-40 deg tca, qtz/carb vnlts btw 15-30 deg tca ($1-2 \mathrm{~mm}$ wide), tr py, jnts btw 20-30 and btw 50-60 deg tca (smooth chl coated).

Fg, Dk grey MTSD, qtz rich beds and occasional thinly laminated beds (up to 1 cm wide)(biotite rich), bedding is btw 20-30 deg tca, qtz/carb vnlts btw 25-40 deg tca ($1-2 \mathrm{~mm}$ wide), tr py and cp, jnts btw 40-50 deg tca (ch and carb coated).

Fg, Dk grey MTSD, qtz rich beds and common thinly laminated beds (up to 1 cm wide)(biotite rich), irregular wormy looking bedding is btw 5-30 deg tca, qtz/carb vnlts btw 20-30 deg tca ($1-2 \mathrm{~mm}$ wide), vuggy and chl healed fractures (core is blocky), tr py and tr speck of arseno pyrite, jnts btw 30-50 and btw 10-20 deg tca (chl and carb coated).

Fg, Dk grey MTSD, qtz rich beds and occasional thinly laminated beds (up to 1 cm wide)(biotite rich), bedding is btw 20-30 deg tca, rare qtz/carb vnlts btw 25-30 deg tca (12 mm wide), tr py, jnts btw 10-30 deg tca (chl and carb coated).

Continuation of MTSD unit above, fg, grey, competent, massive and hmgs throughout. Laminations are present throughout occurrin at 10-25deg tca. Occasional more massive beds of little to no laminations but generally the same texturally. No significant sulphides, rare tr speck of Po or Pyt.

MTSD as described above except a Flt with broken and blocky core. Minor 1-2inch gouge at the upper contact. No sulphides present

Continuation of MTSD unit above, fg , grey, competent, massive and hmgs throughout. Laminations are abundant and occur subpll tca ranging from ($10-15 \mathrm{deg}$) tca. Qtz-carb vnlts are randomly orientated but often seen at 15 Deg tca. Some fractures occur along the plane of the laminations. Texturally the core occasionally has a brecciated like appearance (rehealed). No significant sulphides, rare tr speck of Po or Pyt.

MTSD as described above, continued. However, very broken and blocky (1-4inch pieces on average). No major gouge sections but abundant breaks along fracture plane with minor ground core/sand sized along some frac planes. No significant sulphides. Texturally the same with some randomly orientated atz-carb vnlts.

Continuation of MTSD unit above, fg, grey, competent, massive and hmgs throughout. Laminations are less common and the MTSD appear as more of a SS MTSD. Qtz-carb vnlts are randomly orientated. Fractures occur at 40-60deg tca on average when no dominant laminations ar present. Texturally the core occasionally has a brecciated like appearance of micro fractures(rehealed). No significant sulphides, rare tr speck of Po or Pyt.

MTSD as described above, continued However, very broken and blocky (1-4inch pieces on average). No major gouge sections but abundant breaks along fracture planes with minor ground core/sand sized along some frac planes. Fracture planes are chlorite coated with minor ground core. Possibly minor graphite coating along the surface. No significant sulphides.

Continuation of MTSD unit above, fg , grey, competent, massive and hmgs throughout. Laminations are less common and the MTSD appear as more of a SS MTSD. Qtz-carb vnlt are randomly orientated. Fractures occur at 40-60deg tca on average when no dominan laminations ar3 present. Texturally the core occasionally has a brecciated like appearance of micro fractures(rehealed). No significant sulphides, rare tr speck of Po or Py

Vfg to fg , dk grey (looks like OLDI but the dia is non-magnetic), visible plag phenocrysts $(1 \mathrm{~mm})$ and larger porphryoblasts up to 2 cm , sharp uct @ 50 and Ict sharp @ 50 deg tca

$11.85 \quad 10$

$431.99 \quad 20.15$
$432.79 \quad 0.79$
fg, grey, competent MTSD, massive and mostly homogenous throughout, rare qtz carb vnlts btw 30-60 deg tca, spks py and po (<0.5\%), jnts btw 25-50 deg tca (chl coated).

MTSD as described above, continued. However, very broken and blocky (1-4inch pieces on average). No gouge sections but abundant breaks along fracture planes with minor ground core/pebble sized along some frac planes. @ 1330ft Carb healed fracture with qtz/carb crystals within the vug (@ 45 deg tca) Jnts are btw 5-40 deg tca (chlorite coated and smooth).

Continuation of MTSD unit above (qtz and biotite), Fg , grey, competent, massive and hmgs throughout. Laminations are present throughout occurring btw 15-30 deg tca Occasional more massive beds of little to no laminations but generally the same texturally No significant sulphides, rare tr spks py and po (0.5%); jnts btw 15-35 deg tca (chl coated and smooth).

VFG to Fg, dk greyish black OLDI, Strongly magnetic, sharp uct @ 35 and Ict @ 60 deg tca, blocky and broken into gravel to 4 inch pieces of core.

Biotite rich laminations are present throughout occurring btw 15-30 deg tca. Occasional more massive beds of little to no laminations but generally the same texturally. No significant sulphides, rare tr spks py and po (0.5%); jnts btw 15-35 deg tca (chl coated and smooth).
VFG to Fg, dk greyish black OLDI, Strongly magnetic, sharp uct @ 60 and Ict @ 65 deg tca, no jnts.
$461.92 \quad 19.1$
463.42
\square
464.88
$475.49 \quad 9.08$
76.49

90

90
0.01

46 MG2
1.52 MG220604

5
10
0.04
0.030

0
0
90

90

90

SLTS

Fg, grey, qtz and biotite rich, commonly thinly laminated (biotite) (striped black (biotitic) to grey (more qtz rich), bedding is btw 15-25 deg tca, min irregular qtz carb vnlts btw 55-75 deg tca, tr po and py, jnts btw 15-30 deg tca (chl coated).
MTSD as described above. This is just a
bracket sample above the mineralized sample below.

MTSD with strong laminations and $B T$ rich.

 Has a darker black-brown appearance compared to qtz rich mtsd above and below. Almost similar to a banded Fe formation. About 10% sulphides with 8% Po and 2% Cpy Entire unit is non-magnetic including the sulphides. Upper and lower CTs are sharp at 10-15deg tca. Fracture planes perpendicular tca are sulphide filled and appear as if it is masu.MTSD as described (MG220601) and above. This is just a buffer sample.

Fg, grey, qtz and biotite rich, commonly thinly laminated (biotite) (striped black (biotitic) to grey (more qtz rich), bedding is btw 15-25 deg tca, min irregular qtz carb vnlts btw 55-75 deg tca, tr po and py, jnts btw 15-30 deg tca (chl coated).

Black fg chilled magnetic aphanitic DIA dyke. Sharp upper ct at 55 and lower 50 deg tca. No sulphides present.

MTSD continued from above. Fg, grey, qtz and biotite rich, commonly thinly laminated (biotite) (striped black (biotitic) to grey (more qtz rich), bedding is btw $15-25$ deg tca, min irregular qtz carb vnlts btw 55-75 deg tca, tr po and py, jnts btw 15-30 deg tca (chl coated).

575.49	1.34	MG220605	5	0	0.01	0.01	0	0	0	90	NVS	SS	MTSD
576.96	1.46	MG220606	5	0	0	0.01	0	0	0	90	NVS	SS	MTSD

577.99 104 MG220607 $\quad 5 \quad 0 \quad 0 \quad 0.01 \quad 0 \quad 0.001$

Black fg chilled magnetic massive and hmgs, aphanitic DIA dyke. Sharp upper ct at 50 and lower 30 deg tca. No sulphides present.

MTSD continued from above. Fg, grey, qtz and biotite rich, commonly thinly laminate (biotite) (striped black (biotitic) to grey (more qtz rich), bedding is btw 15-25 deg tca, min irregular qtz carb vnlts btw 55-75 deg tca, tr po and py, jnts btw 15-30 deg tca (chl coated).

MTSD continued from above. Fg, grey, qtz rich, but lacking the laminations and dominant bedding. The MTSD becomes more massive hmgs sandstone with just small whispy qtz-carb vnlts randomly cross cutting the unit. Competent core. No significant sulphides.
MTSD as described above. This is a continuation of the MTSD and is sampled as just the buffer above the QD below. No sulphides.
Continuation of MTSD above. This is a buffe sample above the QD. No sulphides. Minor qtz vnlts.

This is the beginning of the QD. This is a transitional zone with a very weak upper CT Believed to be a mix of MTSD and QD but becoming more crystaline, equigranualr and igneous with depth. Relatively fg with a slight coarsening over this interval with depth. No significant sulphides.

Beginning of the true QD. Grey, mg, some spherulitic textures throughout. Relatively hmgs throughout. Minor qtz-carb vnlts cross cutting. No significant ulphides.

581.01	1.62	MG220609	5	0	0	0.01	0	0	0	90	NVS	QD
582.38	1.37	MG220611	5	0	0.01	0.01	0	0	0	90	NVS	QD
584	1.62	MG220612	5	0	0.02	0.01	0	0	0.03	90	NVS	QD
585.12	1.13	MG220613	5	0	0.01	0.01	0	0	0.03	90	NVS	QD
587.23	2.1	MG220615	5	0	0.01	0.01	0	0	0.03	90	NVS	IQD
588.51	1.28	MG220616	5	0	0.01	0.01	0	0	0	90	NVS	QD
590	1.49	MG220617	5	0	0.01	0.01	0	0	0	90	NVS	QD
591.37	1.37	MG220618	5	0	0	0.01	0	0	0	90	NVS	QD
592.26	0.88	MG220620	5	0	0	0.01	0	0	0	90	NVS	QD

QD continued from above, Grey, mg , some spherulitic textures throughout. Relatively hmgs throughout. Minor qtz-carb vnlts cros cutting. No significant sulphides.

QD continued from above, Grey, mg, some spherulitic textures throughout. Relatively hmgs throughout. Minor qtz-carb vnlts cros cutting. No significant sulphides.
$Q D$ continued from above, Grey, mg , less spherulitic textures than above. Relatively hmgs throughout. Minor qtz-carb vnlts cross cutting. No significant sulphides

QD continued from above, Grey, mg, some spherulitic textures throughout. Relatively hmgs throughout. Minor qtz-carb vnlts cros cutting. No significant sulphides.

IQD with inclusions of MTGB now altered to amphibolites. fabric occurring at 30 deg tca. Bt rich matrix hosting the inclusions. This appears to be a small interval/injection into the QD (above and Below this interval). No significant sulphides.

QD continued from above, Grey, mg. Relatively hmgs throughout. Minor qtz-carb vnlts cross cutting. No significant sulphides.

QD continued from above, Grey, mg Relatively hmgs throughout. Minor qtz-carb vnlts cross cutting. No significant sulphides.

QD continued from above, Grey, mg. Relatively hmgs throughout. Minor qtz-carb vnlts cross cutting. No significant sulphides.

QD continued from above, Grey, mg. Relatively hmgs throughout. Minor qtz-carb vnlts cross cutting. No significant sulphides.

QTZ, white cross cutting vein. Tr Cpy sulphides along the CTs. Occur as specks. 1% or less.

QD continued from above, Grey, mg. Relatively hmgs throughout. Minor qtz-carb vnlts cross cutting. No significant sulphides.

QD continued from above, Grey, fg-mg Relatively hmgs throughout. Minor qtz-carb vnlts cross cutting. No significant sulphides.

QD continued from above, Grey, fg-mg. Relatively hmgs throughout. Minor qtz-carb vnlts cross cutting. No significant sulphides.

IQD, beginning of a large IQD interval. DH has left the marginal QD and entered into the middle of the Worthington Dyke. The IQD contains abundant MTGB (Now altered to Amphibolite) inclusions ranging in size from 2 mm to inches. Average size is $2-6 \mathrm{~mm}$ with multiple larger ones from 2-3inches. TR diss specks and small discontinuous streaks are present. 1\% or less overall. Usually CP and Po visible.

IQD contains abundant MTGB (Now altered to Amphibolite) inclusions ranging in size from 2 mm to 6 inches. Average size is $2-6 \mathrm{~mm}$ with multiple larger ones from 2-3inches. TR diss specks and small discontinuous streaks are present. 1\% or less overall. Usually CP and Po visible.

IQD contains abundant MTGB (Now altered to Amphibolite) inclusions ranging in size from 2 mm to 6 inches. Average size is $2-6 \mathrm{~mm}$ with multiple larger ones from 2-3inches. TR dis specks and small discontinuous streaks are present. 1% or less overall. Usually CP and Po visible.
$\begin{array}{lllllllll}602.01 & 1.55 & \text { MG220629 } & 5 & 1 & 0.04 & 0.04 & 0 & 0.001\end{array}$

0363 MG220631 1.62 1 0.05

| 605 | 1.37 | MG220632 | 5 | 1 | 0.05 | 0.05 | 0 | 0.002 | 0.21 | 90 | TR | | IQD |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 607.5 | 2.5 | MG220633 | 5 | 1 | 0.07 | 0.1 | 0.01 | 0.008 | 0.27 | 90 | TR | | IQD |
| 608.56 | 1.07 | MG220634 | 5 | 1 | 0.04 | 0.06 | 0.01 | 0.022 | 0.14 | 90 | TR | | IQD |

609.69	1.13	MG220635	5	1	0.03	0.04	0	0.005	0.17	90	TR
611	1.31	MG220636	5	1	0.05	0.04	0	0.005	0.17	90	TR
612.71	1.71	MG220638	5	1	0.05	0.05	0	0.007	0.21	90	TR

IQD contains abundant MTGB (Now altered to Amphibolite) inclusions ranging in size from 2 mm to 6 inches. Average size is $2-6 \mathrm{~mm}$ with multiple larger ones from 2-3inches. TR dis specks and small discontinuous streaks are present. 1\% or less overall. Usually CP and Po visible.

IQD contains abundant MTGB (Now altered to Amphibolite) inclusions ranging in size from 2 mm to 6 inches. Average size is $2-6 \mathrm{~mm}$ with multiple larger ones from 2-3inches. TR diss specks and small discontinuous streaks are present. 1\% or less overall. Usually CP and Po visible.

IQD contains abundant MTGB (Now altered to Amphibolite) inclusions ranging in size from 2 mm to 6 inches. Average size is $2-6 \mathrm{~mm}$ with multiple larger ones from 2-3inches. TR diss specks and small discontinuous streaks are present. 1\% or less overall. Usually CP and Po visible.

IQD as described above. Sulphide 1\% or less.
IQD as described above. Sulphide 1% or less. A White cross cutting qtz vn representing 50% of this interval.

QD contains abundant MTGB (Now altered to Amphibolite) inclusions ranging in size from 2 mm to finches. Average size is $2-6 \mathrm{~mm}$ with multiple larger ones from 2-3inches. TR diss specks and small discontinuous streaks are present. 1\% or less overall. Usually CP and Po visible.

IQD as described above. Sulphide 1% or less

IQD as described above. Sulphide 1% or less

613.99	1.28	MG220640	5	1	0.02	0.02	0	0.002	0.07	90	TR	IQD
615.39	1.4	MG220641	5	1	0.04	0.04	0	0.008	0.17	90	TR	IQD
617.01	1.62	MG220642	5	1	0.03	0.04	0	0.002	0.14	90	TR	IQD
618.5	1.49	MG220643	5	1	0.05	0.04	0	0.001	0.14	90	TR	IQD
619.99	1.49	MG220644	5	1	0.05	0.04	0	0.002	0.17	90	TR	IQD
621.43	1.43	MG220645	5	1	0.04	0.03	0.01	0.002	0.07	90	TR	IQD
622.1	0.67	MG220646	5	1	0.05	0.04	0.01	0.001	0.17	90	TR	IQD
624.5	2.41	MG220647	5	1	0.09	0.03	0.01	0.004	0.14	90	TR	IQD
626	1.49	MG220648	5	1	0.07	0.03	0	0.003	0.1	90	TR	IQD
627.55	1.55	MG220650	5	1	0.02	0.04	0.01	0.013	0.17	90	TR	IQD
628.99	1.43	MG220651	5	1	0.03	0.04	0.01	0.012	0.17	90	TR	IQD
630.2	1.22	MG220653	5	1	0.05	0.04	0.01	0.011	0.21	90	TR	IQD
631.21	1.01	MG220654	5	1	0.05	0.04	0.01	0.01	0.21	50	TR	IQD
632	0.79	MG220655	5	1	0.13	0.05	0.01	0.006	0.14	30	TR	IQD
633.59	1.58	MG220656	5	1	0.05	0.04	0	0.001	0.14	80	TR	IQD

IQD as described above. Sulphide 1% or less. IQD as described above. Sulphide 1\% or less. IQD as described above. Sulphide 1% or less. IQD as described above. Sulphide 1% or less IQD as described above. Sulphide 1\% or less. IQD as described above. Sulphide 1% or less IQD as described above. Sulphide 1% or less IQD as described above. Sulphide 1\% or less IQD as described above. Sulphide 1% or less IQD as described above. Sulphide 1% or less IQD as described above. Sulphide 1% or less. IQD as described above. Sulphide 1% or less.

IQD as described above with 1% sulphides or less. A couple larger(2-3inch) amph inclusions with BT halos. Broken and blocky pieces likely associated with a fracture plane, chlorite coated and minor movement. Some of the pieces are associated with the mechanical drilling.

IQD as described above with typically small inclusions and less than 1% sulphides overall seen as diss specks throughout.

IQD as described above with typically small inclusions and sulphides 1% or less, seen as diss specks throughout.

634.99	1.4	MG220657	5	1	0.02	0.04	0	0.001	0.21	70	TR	IQD
636.54	1.55	MG220658	5	1	0.03	0.03	0	0.002	0.14	90	TR	IQD
638.01	1.46	MG220659	5	1	0.02	0.03	0	0.003	0.1	90	TR	IQD
639.68	1.68	MG220660	5	1	0.04	0.03	0	0	0.1	60	TR	IQD
640.99	1.31	MG220661	5	1	0.05	0.04	0	0.001	0.17	90	TR	IQD
642.49	1.49	MG220663	5	1	0.04	0.04	0	0.002	0.14	90	TR	IQD
644.01	1.52	MG220664	5	1	0.04	0.04	0	0.001	0.14	90	TR	IQD
645.57	1.55	MG220665	5	1	0.04	0.04	0	0.001	0.17	90	TR	IQD
647.52	1.95	MG220666	5	1	0.06	0.04	0	0.003	0.17	90	TR	IQD

IQD as described above with typically small inclusions and sulphides 1% or less, seen as diss specks throughout. Minor fracture, chlorite coated surface and some broken pieces due to mechanical drilling.

IQD as described above with typically small inclusions and sulphides 1% or less, seen as diss specks throughout.

IQD as described above with inclusions and minor diss sulphides, 1% or less. Several large inclusions (2-3inches) of MTGB altered and BT halos.

IQD as described above with inclusions and minor diss sulphides, 1% or less. Several large inclusions (2-3inches) of MTGB altered and BT halos. Fracture also present subpll TCA that has caused some blocky core but no significant movement identified.

IQD as described above with inclusions and minor diss sulphides, 1% or less.

IQD as described above with inclusions and minor diss sulphides, 1% or less. Several large inclusions (2-3inches) of MTGB altered and BT halos.

IQD as described above with inclusions and minor diss sulphides, 1% or less. Several large inclusions (2-3inches) of MTGB altered and BT halos.

IQD as described above with inclusions and minor diss sulphides, 1% or less.

IQD as described above with inclusions and minor diss sulphides, 1% or less.

648.46	0.94	MG220667	5	0	0.03	0.02	0	0.001	0.03	95	NVS	QD
650.11	1.65	MG220668	5	0	0.03	0.01	0	0	0	95	NVS	QD
651.36	1.25	MG220669	5	0	0.01	0.01	0	0	0	95	NVS	QD
653	1.65	MG220670	5	0	0.01	0.01	0	0	0	95	NVS	QD
654.5	1.49	MG220671	5	0	0.01	0.01	0	0	0	95	NVS	QD
655.99	1.49	MG220672	5	0	0.01	0.01	0	0	0	95	NVS	QD
657.45	1.46	MG220674	5	0	0.01	0.01	0	0	0	95	NVS	QD
659.01	1.55	MG220675	5	0	0.01	0.01	0	0	0	95	NVS	QD
660.47	1.46	MG220676	5	0	0.03	0.01	0	0	0	95	NVS	QD
662	1.52	MG220677	5	0	0.01	0.01	0	0	0	95	NVS	QD
662.91	0.91	MG220678	5	0	0.01	0.01	0	0	0	95	NVS	QD
665.01	2.1	MG220679	5	0	0.01	0.01	0	0	0	95	NVS	QD
666.02	1.01	MG220680	5	0	0.02	0.01	0	0	0	95	NVS	QD

QD, grey, non-mag, some lathy minerals appearing as a spherulitic txt. This is a massive, competent, hmgs unit. No significant sulphides. The upper Ct of this interval with the IQD occurs at 15 deg tca.
$Q D$ as described above. Grey, non-mag, some lathy minerals appearing as a spherulitic txt This is a massive, competent, hmgs unit. No significant sulphides.
QD as described above with no significant sulphides. Very massive, uniform and hmgs throughtout.
QD as described above with no significant sulphides. Very massive, uniform and hmgs throughout.
QD as described above with no significant sulphides. Very massive, uniform and hmgs throughout.
QD as described above with no significant sulphides. Very massive, uniform and hmgs throughout.
QD as described above with no significant sulphides. Very massive, uniform and hmgs throughout.
QD as described above with no significant sulphides. Very massive, uniform and hmgs throughout.
QD as described above with no significant sulphides. Very massive, uniform and hmgs throughout.
QD as described above with no significant sulphides. Very massive, uniform and hmgs throughout.
QD as described above with no significant sulphides. Very massive, uniform and hmgs throughout.
QD as described above with no significant sulphides. Very massive, uniform and hmgs throughout.
QD as described above with no significant sulphides. Very massive, uniform and hmgs throughout.

666.93	0.91	MG220681	5	0	0.01	0.01	0.01	0	0	85	NVS	OLDI	DIA
668	1.07	MG220682	5	0	0	0.01	0	0	0	95	NVS		QD
669.74	1.74	MG220683	5	0	0.02	0.03	0	0.006	0.1	95	NVS		QD
670.99	1.25	MG220684	5	1	0.05	0.05	0.01	0.027	0.17	90	TR		IQD
672.48	1.49	MG220685	5	1	0.05	0.05	0	0.003	0.21	95	TR		IQD
674	1.52	MG220686	5	1	0.03	0.02	0	0.001	0.07	95	TR		IQD
675.22	1.22	MG220689	5	1	0.05	0.04	0	0.004	0.21	95	TR		IQD
676.99	1.77	MG220690	5	1	0.04	0.04	0	0.003	0.14	95	TR		IQD
678.76	1.77	MG220691	5	1	0.04	0.04	0	0.001	0.17	95	TR		IQD

very Fg Black, massive and hmgs throughout, chilled aphanitic dyke. Magnetic. Believed to be OLDI cross cutting QD. No sulphides present.
QD as described above with no significant sulphides. Very massive, uniform and hmgs throughout.

QD as described above with no significant sulphides. Very massive, uniform and hmgs throughout. Lower CT is somewhat irregular with a couple MTGB blocks included as it transitions into the IQD below.

Weakly developed IQD. Main mass is similar to the QD but slightly more fg and not as equigranular or hmgs. Diss sulphides present 1% or Iss. (Po and Cpy primarily). Inclusions of MTGB/amph are present. Ranging on size from $2-3 \mathrm{~mm}$ to 2 inches on average.
Sometimes very faint and difficult to see IQD as described above. 1% sulphides or less. Trace or weakly diss. Mod-abundant inclusions.

IQD as described above. 1% sulphides or less. Trace or weakly diss. Mod-abundant inclusions. Competent unit with rare fractures or structures.
IQD as described above. 1% sulphides or less. Trace or weakly diss. Mod-abundant inclusions.

IQD as described above. 1% sulphides or less. Trace or weakly diss. Mod-abundant amph inclusions, generally less than 1 inch.

IQD as described above. 1% sulphides or less. Trace or weakly diss. Mod-abundant amph inclusions, generally less than 1 inch.

680.04	1.28	MG220692	5	1	0.04	0.04	0	0.002	0.17	95	TR	IQD
681.75	1.71	MG220693	5	1	0.04	0.03	0	0	0.1	95	TR	IQD
683.15	1.4	MG220694	5	1	0.04	0.03	0	0.001	0.1	95	TR	IQD
684.37	1.22	MG220695	5	0	0.02	0.01	0	0	0	90	NVS	QD
686.01	1.65	MG220696	5	0	0.01	0.01	0	0	0.03	90	NVS	$Q D$
687.48	1.46	MG220697	5	0	0.03	0.03	0	0.001	0.1	90	NVS	QD
689.09	1.62	MG220698	5	0	0.01	0.01	0	0	0.03	90	NVS	QD
690.62	1.52	MG220700	5	0	0.01	0.01	0	0	0	90	NVS	QD

IQD as described above. 1\% sulphides or less. Trace or weakly diss. Mod-abundant amph inclusions, generally less than 1 inch

IQD as described above. 1% sulphides or less. Trace or weakly diss. Mod-abundant amph inclusions, generally less than 1 inch.

IQD as described above. 1% sulphides or less. Trace or weakly diss. Mod-abundant amph inclusions, generally less than 1 inch. No defined sharp ct near the lower CT, more transitional loosing the inclusions and becoming more hmgs QD. Also slight increase of qtz-carb vnlts. near the ct.
$Q D$, becoming very uniform, competent. Minor amph inclusions can randomly be identified throughout. Generally no sulphides but rare specks have been observed. Some Qtz-carb vnlts along upper ct possibly denoting the lithology contact.

QD as described above, no significant sulphides. Possibly rare trace specks. Rare inclusions. Massive and hmgs unit that is competent.

QD as described above, no significant sulphides. Possibly rare trace specks. Rare inclusions. Massive and hmgs unit that is competent.

QD as described above, no significant sulphides. Possibly rare trace specks. Rare inclusions. Massive and hmgs unit that is competent.

QD as described above, no significant sulphides. Possibly rare trace specks. Rare inclusions. Massive and hmgs unit that is competent.

691.99	1.37	MG229605	5	0	0.02	0.02	0	0	0.07	90	NVS	QD
693.45	1.46	MG229606	5	0	0.03	0.02	0	0.002	0.07	90	NVS	QD
694.91	1.46	MG229608	5	0	0.02	0.01	0	0.001	0	90	NVS	QD
695.61	0.7	MG229609	5	0	0.01	0.01	0	0	0	80	NVS	QD
696.44	0.82	MG229610	5	0	0	0.01	0	0	0	90	NVS	MTSD
697.38	0.94	MG229611	5	0	0.01	0.01	0	0	0.03	90	NVS	MTSD
699.06	1.68	MG229612	5	0	0.01	0.01	0	0	0	90	NVS	MTSD

QD as described above, no significant sulphides. Possibly rare trace specks. Massive and hmgs unit that is competent.

QD as described above, no significant

 sulphides. Possibly rare trace specks. Massive and hmgs unit that is competent throughout. Also a white brecciated rehealed qtz vn at 2276.1 occurring at 20 deg tca with a true thickness of 3inches.QD as described above, no significant sulphides. Possibly rare trace specks. Massive and hmgs unit that is competent.

QD as described above except it becomes slightly finer grained, and more bt rich. This interval is described as a transitional zone with mixing occurring with the MTSDs below. No immediate sharp ct identified. No sulphides present.

MTSD, but possible mixing and contamination with the QD above. Appears to be more BT rich and possibly a weak fabric/layering occurring. Relatively hmgs massive texture. No sulphides

MTSD, but possible mixing and contamination with the QD above. Appears to be more BT rich and possibly a weak fabric/layering occurring. Relatively hmgs massive texture. No sulphides.

MTSD continued from above with little to no contamination from the QD. More qtz rich, lighter in color but also texturally it has been stressed with fractures that have been rehealed and infilled with qtz or has a slight halo of alteration from fluids along the fracture walls. No sulphides identified

MTSD, qtz rich, lighter in color but also texturally it has been stressed with fractures that have been rehealed and infilled with qtz or has a slight halo of alteration from fluids along the fracture walls. No sulphides identified.

MTSD, qtz rich, lighter in color but also texturally it has been stressed with fractures that have been rehealed and infilled with qtz or has a slight halo of alteration from fluids along the fracture walls. No sulphides identified. Slightly less infill qtz vnlts than the above 2 intervals.

MTSD similar to above except less stressed and more competent and typical of the host MTSDs. Weak fabric beginning to develop. No sulphides.

MTSD as described above. Weak fabric at $30-$ 40deg tca. Relatively competent and hmgs. This is a buffer sample to the QD above. No sulphides identified.

MTSD as described above. Weak fabric at 30 40deg tca. Relatively competent and hmgs. This is a buffer sample to the QD above. No sulphides identified.

MTSD as described above. Weak fabric at $30-$ 40deg tca. Relatively competent and hmgs. This is a buffer sample to the QD above. No sulphides identified.

MTSD as described above. Just a buffer sample for the MASU vn below. MTSD as described above but there is a 1.5inch true thickness massive sulphide Po vein that cross cuts the MTSD at 70deg tca Sharp contacts.

MTSD as described above. Just a buffer zone to the MASU Po vn above.

710.95	0.94	MG229622	5	0	0.01	0.01	0	0	0	90	NVS		MTSD
749.75	38.8									90		SLTS	MTSD
752.37	2.62									80		SLTS	MTSD
756.3	3.93									90		SLTS	MTSD
759.01	2.71									75		SLTS	MTSD
768.8	9.78									90		SLTS	MTSD
768.95	0.15									75		MTSD	FLT

MTSD as described above. Just a buffer zone to the MASU Po vn above.

MTSD as described above. SLTS with strong laminations occurring at 30deg tca. Very consistent and uniform with minor fracture or structures. No sulphides present.

MTSD as described above except texturally the MTSD appear locally stressed and rehealed vnlts with qtz. Appears almost like infilled tension gashes. One fracture plane along the laminations with chlorite coating that indicates minor movement. No sulphides present.

MTSD as described above. SLTS with strong laminations occurring at 30deg tca. Very consistent and uniform with minor fractures or structures. No sulphides present.

MTSD as described above except texturally the MTSD appear locally stressed and rehealed vnlts with atz. Appears almost like infilled tension gashes. One fracture plane along the laminations with chlorite coating that indicates minor movement. No sulphides present.

MTSD as described above. SLTS with strons laminations occurring at 30deg tca. Very consistent and uniform with minor fractures or structures. No sulphides present

MTSD as described above with laminations at 30deg tca. Small flt with minor movement along the laminated planes. Minor gouge present. No sulphides

822.29	53.34	90		MTSD
822.32	0.03	0		FLT
830	7.68	70	SLTS	MTSD
834.6	4.6	10	MTSD	STRT
839.66	5.06	60	SLTS	MTSD
845	5.33	90		OLDI

MTSD as described above. SLTS with laminations occurring at 30deg tca. Very consistent and uniform with minor fractures or structures. Localized areas/intervals within do represent more hmgs sections that have little to no evidence of laminations and appear more competent and massive.

Small Fault filled with gouge. ABout 1 inch wide. Indications of movement. Angle at 50 60deg tca. No sulphides present.

FG SLTS MTSD unit with moderate to strong laminations. Moderate breaks and fractures along laminations. No sulphides. Unit is uniform throughout.

MTSD as described above with intense lamination. This is a structural zone with broken pieces typically along laminations. Laminated surfaces are chlorite coated and smooth. Minor ground core and rock powder along some fractures. The broken nature of this zone is likely due to mechanical drilling as well. No sulphides present

MTSD as described above continued with strong laminations. No major structures. Laminations occurring at 30deg tca

Fg OLDI. Blk chilled unit with upper ct occurring at about 10-20deg tca. Localized areas have small $2-4 \mathrm{~mm}$ white phenocryst. Unit is magnetic. No sulphides present. Lower CT is subpll at 0-10deg tca.

873.83	28.83	20	STRT	MTSD
874.53	0.7	70		DIA
875.45	0.91	0	MTSD	FLT
876.33	0.88	80		MTSD
877.49	1.16	90	DIA	OLDI
881.73	4.24	60	SLTS	MTSD
881.97	0.24	0	MTSD	FLT
883.77	1.8	0	MTSD	STRT
883.89	0.12	0		FLT

MTSD as above with strong laminations. Abundant broken and blocky core, typically along the lamination plane. Much of the spalling of the rock may be influenced by mechanical drilling. Possibly some structura movement along the fracture/lamination planes. Minor rock flour present on som planes. This could be considered the damage zone overlying some of the flt that will be described below. Minor tr Pyt and possibly specks of Galena in fracture/flt zones.

DIA (Non Mag) seen as a fine grained black dyke that crosscuts this interval. No sulphides FLT within the MTSD. Gouge present along many fracture planes. No significant sulphides.

MTSD with minor to rare laminations compared to above. Relatively massive $S S$ that is more hmgs. No sulphides

OLDI that is fg, black with sharp contacts. Minor white phenocryst throughout. No sulphides. Lower CT is at 10 deg tca.

MTSD with strong laminations occurring at 25 deg tca. Some fractures in this damage zone due to the underlying flts in the next interval. No sulphides.
Flt with gouge and broken pieces. Obvious signs of movement. Significant structure. No sulphides.

MTSD strongly laminated at 50deg tca Broken consistently along the laminated planes. Most pieces are about 1inch in length. Looks almost like discing core. No Sulphides. Flt with gouge and broken pieces. Obvious signs of movement. Significant structure. No sulphides.

$889.62 \quad 5.73$

$890.87 \quad 1.25$
890.96
0.09

MTSD as above but broken and blocky with small fractures and small structures with evidence of slicken slides. This appears to be the part of the damage zone from above

MTSD, broken and blocky and still within this structural zone. This interval also has a fabric that occurs at 40 deg tca. This interval looks brecciated and has local inclusions, most appearing to be local MTSD. There is some question whether this is IQD. This flow fabric has a matrix and inclusions similar to the host rock. Note cross cutting rehealed fractures filled with alteration fluids/serpentine. Flt with gouge and broken pieces. Obvious signs of movement. Significant structure. No sulphides.

MTSD as described above with a strong fabric at 25 Deg tca. Abundant small inclusions 1 2 mm in size elongated to the fabric. The inclusions appear to be MTSD (grey)in origin and in a fine grain grey matrix. Similar to IQD in texture but not the typical MTGB inclusions. Believed to be related to a large (possibly regional) scale structure and the brecciated units/shears/serpentine/and fault gouge. No sulphides.

Mtsd but med grained, slightly more

 competent without the strong fabric and sall inclusions. The upper CT at 2935.2 appears to be a lithology contact or a MTSD bedding. The MTSD in this interval appears bleached (possibly related to this structural zone) and as a result it also has a QD like appearance. All of this structural zone has been kept as a reference from $881 \mathrm{~m}-899 \mathrm{~m}$.| 897.54 | 1.55 | 0 | | WDG |
| :---: | :---: | :---: | :---: | :---: |
| 901.39 | 3.84 | 70 | | MTSD |
| 901.99 | 0.61 | 80 | DIA | OLDI |
| 914 | 12.01 | 80 | SLTS | MTSD |
| 949.06 | 35.05 | 85 | SLTS | MTSD |
| 950.21 | 1.16 | 60 | OLDI | DIA |
| 1091.03 | 140.82 | 75 | SLTS | MTSD |
| 1098.01 | 6.98 | 20 | SLTS | MTSD |

WDG at 896 m . Note that there is a large sliver where the wedge has been cut out. 4.6 ft of core has been recovered of the cut out wedge.

MTSD with laminations occurring at 30deg tca. No sulphides present. No significant structures. Small splay (1 inch) of DIA dyke from below.

Fg DIA, chilled, aphanitic blk hmgs. The unit is magnetic with $1-3 \mathrm{~cm}$ feldspar phenocryst. Most likely a OLDI. No sulphides.

MTSD with strong laminations occurring at 20deg tca. No significant sulphides and no significant structures. Breaks are along the MTSD laminations. This is the end of the HO core. Switch to NQ

MTSD as above, strongly laminated ranging from 20-35deg tca. No significant structures Some broken and blocky core along laminations and sometimes subpll tca. Very hmgs and continuous. No sulphides.

Fg blk chilled OLDI. Magnetic and no sulphides. About 40% of the interval has broken and blocky sections.

MTSD as above, strongly laminated ranging from 20-35deg tca. No significant structures Some broken and blocky core along laminations and sometimes subpll tca. Very hmgs and continuous. No significant sulphides.

MTSD as described above but just broken and blocky along laminated surfaces. Both laminations and fracture planes occur at 35 deg tca. No significant sulphides.

MTSD as described above. Laminated, occurring at 35 deg tca. More competent than the interval above but interval is very hmgs. Sharp lower CT with DIA. No sulphides present.

Fg black dia dyke. Strongly magnetic and white feldspar phenocryst can be observed Believe to be OLDI. No sulphides present. Contacts are sharp but also several DIA veins within this interval.(Possibly a second injection of DIA within the DIA). MTSD as described above but just separating the 2 DIA dykes

DIA as above, fg, black DIA dyke that is magnetic. Broken and blocks and may due to the damage zone related to the fault below at the lower contact. Some slicken slides and minor serpentine coatings present. White feldspar phenocryst present as well.

FLT at the lower contact of the DIA dyke 0.5 m of core was not recovered within this interval. Small gravel size pieces. No sulphides observed. Sharp lower contact, but not measurable.

MTSD as described above. Fg, grey, nonmagnetic. Laminations becoming weak but still occurring at 40deg tca. MTSD have a massive hmgs txt. No sulphides present.

FG Dia dyke, magnetic. Crosscutting the mtsd with sharp contacts occurring at 70deg tca. Broken and blocky but not a structure. No sulphides.

MTSD as described above. Fg, grey, nonmagnetic. Laminations weak but still occurring at 40deg tca. MTSD have a massive hmgs txt. No sulphides present.

FG Dia dyke, magnetic. Crosscutting the mtsd with very sharp contacts occurring at 70deg tca, at upper and lower Cts. Very competent. No sulphides.

MTSD as described above. Fg, grey, nonmagnetic. Laminations weak but still occurring at 40deg tca. MTSD have a massive hmgs txt. No sulphides present. Continuation from above MTSDs.

DIA as described above crosscutting at 60deg tca. Fg black, magnetic. No sulphides.

MTSD as described above. Fg, grey, nonmagnetic. Laminations weak but still occurring at 40deg tca. MTSD have a massive hmgs txt. No sulphides present. Continuation from above MTSDs.

MTSD similar to above, fg, grey but no laminations and more competent and massive in texture. No sulphides present. Rare local zones 1 ft or less where the MTSD is brecciated hosting small local inclusions within an altered matrix. Not Sudbury breccia Appears sedimentary related, not SIC related.

Conglomerate MTSD unit with areas of qtzt Sharp upper contact where the ss Mtsds becomes slightly coarse grained. Occurs at 30deg tca. Abundant feldspar/qtzt inclusion and rounded fragments within a qtz rich ss matrix. Some grey MTSD inclusions. No significant sulphides. CONG continues but inclusions becoming less apparent.

MTGB Mg drk grey to green, non-magnetic, no significant sulphides rare traces of po or pyt. Massive texture with little variation and hmgs throughout. This appears to be an igneous unit/ MTGB. Possibly a metavolcanic. Does not have a strong chloritic green alteration. Only example of a igneous intrusive observed in this hole. Reps taken, Small alteration bands that host inclusions of the MTGB/Mvol in an alteration fluid. These little breccia bands are not IQD related.

MTGB that has been brecciated with inclusions of the MTGB included within a green chloritic alteration fluid. This appears to be the lower contact of the MTGB unit that has been broken and brecciated along the margin with the MTSDs.

QTZT metasediments, fg, grey, abundant qtz and has a sugary qtzt texture on a fresh broken surface. No significant sulphides. A couple local areas have broken sections but mostly due to mechanical drilling. No significant structures.

Fg, light grey QTZT, qtz rich (sugary appearance), qtz/carb vnlts btw 40-60 deg tca (1 mm wide), (soft, green) chl and qtz vn/vnlt @ 4784.4-4784.9ft btw 25-30 deg tca (tr po and cp within vnlt), jnts btw 30-65 deg tca (min carb on jnts).

CWT (no core btw 4795-4801.8ft). The wedge button is fairly centered.

Fg, light grey QTZT, qtz rich (sugary appearance), rare mm wide biotite rich beds (55-60 tca), qtz/carb vnlts btw 40-60 deg tca (1 mm wide), tr po (<0.5\%), jnts btw 30-50 deg tca (min chl and carb on jnts).

QTZT as above with the core broken into smaller angular fragments (Fault/STRT), jnts are chl coated with min silty/sandy (gouge) on jnt surfaces, jnts btw (15-40 deg tca), slicken lines visible on smooth int surface parallel tca.

Fg, light grey QTZT, qtz rich (moderately sugary appearance) interbedded with Staurolite rich beds ($1 \mathrm{~cm}-5 \mathrm{ft}$ wide), irregula whispy chl vnlts with spks PO and $\mathrm{cp}(0.5 \%)$, irregular vnlt of SUBX?? (vfg mtx, with subrounded to subangular qtz rich incls (0.4 ft wide), jnts btw 10-25 deg tca (chl and carb coated).

A QTZT as above with several local example of Staurolite rich beds. Weak fabric present within the QTZT. No significant sulphides

MTSD/QTZT as described above except this interval is brecciated. Fg grey matrix similar to the host rock with small subangular fragments and inclusions 0.5 inches or less. Uncertain if this is SUBX, could be just a MTSD feature. No sulphides present.

QTZT with minor trace stringer Po sulphides/ fracture filled and whispy. Less than 0.5\% total sulphides. Also whispy chloritic alteration throughout. Possibly alteration and minor sulphides that has been remobilized due to the intrusive (OD) below.

QTZT, grey, fg , with microfractures and weak bedding planes. Sulphides are occasionally seen as whisps along these planes or alteration veinlets. Less than 0.5% total sulphides, primarily Po.

1509.86	0.85	MG229628	5	0.5	0	0.01	0	0	0	80	TR	QTZT
1511.17	1.31	MG229629	5	0.5	0	0.01	0	0.001	0	80	TR	QTZT
1511.47	0.3	MG229630	5	0	0	0	0	0	0	90	NVS	QTZT
1512.69	1.22	MG229631	5	0	0	0	0	0	0	85	NVS	QTZT

QTZT, grey, fg , with microfractures and weak bedding planes. Sulphides are occasionally seen as whisps along these planes or alteration veinlets. Less than 0.5% total sulphides, primarily Po.

QTZT, grey, fg , with microfractures and weak bedding planes. Sulphides are occasionally seen as whisps along these planes or alteration veinlets. Less than 0.5% total sulphides, primarily Po.
WHOLE ROCK (A bracket sample representing the host rock to the potential QD samples below. Comparison of WRA to be complete on 4 samples for these QD/QTZT intervals). QTZT as above except a slightly more competent and uniform QTZT. Rare tr specks of Po and Rare fractures and veinlets. Very HMGS.

QTZT as described above in the WRA interval. Very massive, hmgs and uniform. The lower $1 / 4$ of this interval shows a slight alteration and microfractures as it approaches the contact
$Q D$. This $Q D$ unit is challenging and not a typical QD in the fact that it is only $\sim 25 \mathrm{ft}$ wide and therefor the mineralogy appears to be represented by a fg material due to the quicker cooling in the host MTSD. It is interpreted to be a splay off of the main QD dyke, but at the time of logging the Main QD at this depth has not been located. No IQD. Upper CT shows altrn and a chilled gradational margin. Rare trace sulphides.

WHOLE ROCK SAMPLE (representing a uniform piece of this igneous intrusive). QD continued from above becoming more granular and intrusive txt looking. Very hmgs, massive and consistent throughout. Fg-mg grain size and what appears to be slightly lathy pyrox/amphiboles, similar to what would be seen in typical QD at the margins. No significant sulphides.

QD continued from above becoming more granular and intrusive txt looking. Very hmgs, massive and consistent throughout. Fg-mg grain size and what appears to be slightly lathy pyroxenes/amphiboles, similar to what would be seen in typical QD at the margins. No significant sulphides. Unit is Non-Mag.

QD continued from above but becoming more granular, has a mg size and the
pyroxenes/amph have become very lathy and illustrating a spherulitic texture. Overall, hmgs and uniform throughout. Slight increase in chlorite. No significant sulphides. Unit is NonMag.
WHOLE ROCK (Second sample of QD for WRA) QD continued from above, mg size and the pyroxenes/amph have become very lathy and illustrating a spherulitic texture. Overall, hmgs and uniform throughout. Slight increase in chlorite. No significant sulphides. Unit is Non-Mag.

QD continued from above, mg size and the pyroxenes/amph have become very lathy and illustrating a spherulitic texture. Overall, hmgs and uniform throughout. Slight increase in chlorite. No significant sulphides. Unit is NonMag.

1518.94	0.94	MG229639	5	1	0.01	0.01	0	0	0	80	DISS		QD
1520.62	1.68	MG229640	5	0	0.01	0.01	0	0.001	0	90	NVS		$Q D$
1521.56	0.94	MG229641	5	0	0	0.01	0	0	0	70	NVS	QTZT	MTSD
1522.02	0.46	MG229642	5	0	0	0.01	0	0	0	100	NVS		MTSD
1523.88	1.86	MG229644	5	0.5	0	0	0	0	0	95	NVS		MTSD
1524.27	0.4	MG229645	5	0	0	0	0	0	0	90	NVS		QTZT
1525.8	1.52	MG229646	5	0.5	0.01	0.01	0	0	0	50	TR		MTSD
1527.57	1.77									60			MTSD
1530	2.44									90			QTZT

QD continued from above but the grain size decreases a little and there is an obvious tx change that the pyroxenes/amph are not lathy like above. More of a Hmgs equigranular texture. Overall, hmgs and uniform
throughout. Sulphides are diss throughout in small specks 1% or less. Po sulphides mostly.

QD as above (possibly MTSD), patches (12 cm)subrounded (look bleached) with ALTN rims, irregular qtz /carb vnlts, tr py, jnts btw 20-45 (chl and carb coated); contact with seds is @ 30 deg and is undulating.

Fg, light grey, qtz rich MTSD, wk fabric visible (0.5ft) @ 25 deg tca (biotite rich), nvs, jnts btw 30-50 deg tca (chl coated with min carb).

Fg, light grey, qtz rich MTSD, nvs, irregular biotite rich vnlts, no jnts; ***((WRA))***

Fg, light grey MTSD, qtz rich, min qtz/carb vnlts with $\operatorname{tr} \mathrm{cp}$ (approx. 0.5%), healed fractures chl filled, min jnts btw 35-45 deg tca (chl coated).
QTZT, very siliceous, sugary texture and predominantly qtz. Lt grey in colour, no sulphides.

MTSD with a weak fabric, some fractures along bedding planes. Several rehealed fractures, but tr sulphides along these rehealed fractures. Primarily Po sulphides, less than 0.5%. Fg and grey.

MTSD, grey, fg with minor alterations throughout but relatively hmgs. No sulpides

QTZT, competent, predominantly qtz with minor alteration throughout, seen as bleaching along healed fractures. No sulphides present.

1545.7	15.7	70	
1548.57	2.87	80	MTSD
1555.24	6.68	80	
1556.58	1.34	90	MTSD
1566	9.42	90	CONG
1568.01	2.01	0	
1581	12.98	90	

Gry, fg MTSD with moderate laminations and fracture planes along bedding, occurring at about 30-50deg tca. No significant sulphides, only a couple rare blebs along rehealed fractures.

Conglomerate with inclusions of qtz. Some biotite patches. Inclusions are small pebbles typically only a few mm in size but can reach $1-2 \mathrm{~cm}$. No significant sulphides. This appear to be a layer within the main MTSD interval.

MTSD with some inclusions of qtz. Could be considered a qtz conglomerate. Some areas seem a bit more chaotic with the amount of inclusions. No significant sulphides

Conglomerate layer as seen above with inclusions of qtz. Some biotite patches. Inclusions are small pebbles typically only a few mm in size but can reach $1-2 \mathrm{~cm}$. No significant sulphides. This appears to be a layer within the main MTSD interval at has a foliation and chaotic fabric present.

MTSD with some inclusions of qtz. Could be considered a MTSD qtz conglomerate. Some areas seem a bit more chaotic with the amount of inclusions. No significant sulphides. WEDGE Block here This was a CWT cut.

Continuation from above the wedge. MTSD with some inclusions of qtz. Seems to be less qtz inclusions with depth and more hmgs fg grey mtsd. Generally competent. No significant sulphides.

DEPTH	AZIMUTH	DIP
0	198.75	-63.28
9.14	200.286	-63.3295
18.29	200.0041	-63.2389
27.43	199.9101	-63.2752
36.58	199.3986	-63.2581
45.72	199.2642	-63.2713
54.86	199.1381	-63.2685
64.01	199.0658	-63.2109
73.15	199.125	-63.2081
82.3	199.198	-63.2254
91.44	199.2518	-63.1877
100.58	199.0266	-63.1335
109.73	198.6587	-63.0007
118.87	198.461	-62.9308
128.02	198.4357	-62.9166
137.16	198.3708	-62.9062
146.3	198.2557	-62.8486
155.45	198.2597	-62.8198
164.59	198.2413	-62.6954
173.74	198.2248	-62.6916
182.88	198.3614	-62.6749
192.02	198.3791	-62.7139
201.17	198.4068	-62.6166
210.31	198.3246	-62.5069
219.46	198.4796	-62.5346
228.6	198.3964	-62.4681
237.74	198.4256	-62.4799
246.89	198.5863	-62.4086
256.03	198.7582	-62.4624
265.18	198.829	-62.347
274.32	198.8112	-62.1519
283.46	198.8214	-62.1527
292.61	198.8988	-61.8982
301.75	198.9901	-61.9249
310.9	198.9943	-61.8245
320.04	199.1312	-61.83
329.18	198.9891	-61.6061
338.33	198.9567	-61.6232
347.47	198.9595	-61.5682
356.62	199.0128	-61.5105
365.76	198.9791	-61.4425
374.9	198.9701	-61.3796
384.05	199.0131	-61.3727
393.19	199.052	-61.2258
402.34	198.9861	-61.2607
411.48	199.0119	-61.2148

420.62	199.1339	-61.1174
429.77	199.2197	-61.058
438.91	199.4447	-60.9814
448.06	199.5794	-60.9218
457.2	199.6263	-60.7263
466.34	199.4879	-60.7993
475.49	199.4106	-60.6973
484.63	199.2264	-60.6969
493.78	199.3731	-60.5858
502.92	199.4746	-60.4279
512.06	199.6787	-60.3891
521.21	199.7515	-60.2861
530.35	199.9365	-60.1856
539.5	199.8273	-60.1092
548.64	199.93	-60.16
557.78	199.9526	-60.0798
566.93	199.9128	-60.0491
576.07	199.979	-59.9325
585.22	199.9387	-59.8407
602.89	200.0545	-59.7276
615.09	204	-61.2
623.93	203.9	-60.9

As above, IQD with diss and small blebs of sulphides (Po, Cp, and Pn) Less than 0.5% total sulphides. Inclusions of MTGB both rounded and angular, varying in size from $1-2 \mathrm{~mm}$ to 2-3inches. Grey in color no significant structures. Continuation of the QTZ vein identified in the top of this interval.
As above, IQD with diss and small blebs of sulphides (Po, Cp, and Pn). Less than 0.5% total sulphides. Inclusions of MTGB both rounded and angular, varying in size from $1-2 \mathrm{~mm}$ to 2-3inches. Grey in color no significant structures.

As above, IQD with diss and small blebs of sulphides (Po, Cp , and Pn) Less than 0.5% total sulphides. Inclusions of MTGB both rounded and angular, varying in size from $1-2 \mathrm{~mm}$ to 2-3inches. Grey in color no significant structures. One larger 3-4inch fg MTGB block in the middle of the interval. Not altered to amphibolite as typically seen. FG than usual MTGB As above, IQD with diss and small blebs of sulphides (Po, Cp, and Pn). Less than 0.5% total sulphides Inclusions of MTGB both rounded and angular, varying in size from $1-2 \mathrm{~mm}$ to 2-3inches. Grey in color no significant structures.
As above, IQD with diss and small blebs of sulphides (Po, Cp, and Pn). Less than 0.5% total sulphides. Inclusions of MTGB both rounded and angular, varying in size from $1-2 \mathrm{~mm}$ to 2-3inches. Grey in color no significant structures.

As above, IQD with diss and small blebs of sulphides (Po, Cp , and Pn) Less than 0.5% total sulphides. Inclusions of MTGB both rounded and angular, varying in size from $1-2 \mathrm{~mm}$ to 2-3inches. Grey in color no significant structures. Weak fabric present subpl to 40deg tca.
As above, IQD with diss and small blebs of sulphides (Po, Cp, and Pn). Less than 0.5% total sulphides. Inclusions of MTGB both rounded and angular, varying in size from $1-2 \mathrm{~mm}$ to 2-3inches. Grey in color no significant structures.
As above, IQD with diss and small blebs of sulphides (Po, Cp, and Pn). Less than 0.5% total sulphides. Inclusions of MTGB both rounded and angular, varying in size from $1-2 \mathrm{~mm}$ to 2-3inches. Grey in color no significant structures.
As above, IQD with diss and small blebs of sulphides (Po, Cp, and Pn) Less than 0.5% total sulphides. Inclusions of MTGB both rounded and angular, varying in size from $1-2 \mathrm{~mm}$ to 2-3inches. Grey in color no significant structures.
As above, IQD with diss and small blebs of sulphides (Po, Cp, and Pn) Less than 0.5% total sulphides. Inclusions of MTGB both rounded and angular, varying in size from $1-2 \mathrm{~mm}$ to 2-3inches. Grey in color no significant structures.
As above, IQD with diss and small blebs of sulphides (Po, Cp, and Pn). Less than 0.5% total sulphides. Inclusions of MTGB both rounded and angular, varying in size from $1-2 \mathrm{~mm}$ to 2 -3inches. Grey in color no significant structures.
Inclusions of MTGB both rounded and
angular, varying in size from $1-2 \mathrm{~mm}$ to
angular, varying in size from $1-2 \mathrm{~mm}$ to 2 -3inches. Grey in color no significant
structures. structures.
As above, IQD with diss and small blebs of sulphides (Po, Cp, and Pn).
Less than 0.5% total sulphides. Inclusions of MTGB both rounded and angular, varying in size from $1-2 \mathrm{~mm}$ to 2 -3inches. Grey in color no significant structures. FOH is at 2058.0 ft - Steel wedge above shifts and this hole starts a new branch.

START DATE

DEPTH	AZIMUTH	DIP
0	198.75	-63.28
9.14	200.286	-63.3295
18.29	200.0041	-63.2389
27.43	199.9101	-63.2752
36.58	199.3986	-63.2581
45.72	199.2642	-63.2713
54.86	199.1381	-63.2685
64.01	199.0658	-63.2109
73.15	199.125	-63.2081
82.3	199.198	-63.2254
91.44	199.2518	-63.1877
100.58	199.0266	-63.1335
109.73	198.6587	-63.0007
118.87	198.461	-62.9308
128.02	198.4357	-62.9166
137.16	198.3708	-62.9062
146.3	198.2557	-62.8486
155.45	198.2597	-62.8198
164.59	198.2413	-62.6954
173.74	198.2248	-62.6916
182.88	198.3614	-62.6749
192.02	198.3791	-62.7139
201.17	198.4068	-62.6166
210.31	198.3246	-62.5069
219.46	198.4796	-62.5346
228.6	198.3964	-62.4681
237.74	198.4256	-62.4799
246.89	198.5863	-62.4086
256.03	198.7582	-62.4624
265.18	198.829	-62.347
274.32	198.8112	-62.1519
283.46	198.8214	-62.1527
292.61	198.8988	-61.8982
301.75	198.9901	-61.9249
310.9	198.9943	-61.8245
320.04	199.1312	-61.83
329.18	198.9891	-61.6061
338.33	198.9567	-61.6232
347.47	198.9595	-61.5682
356.62	199.0128	-61.5105
365.76	198.9791	-61.4425
374.9	198.9701	-61.3796
384.05	199.0131	-61.3727
393.19	199.052	-61.2258
402.34	198.9861	-61.2607
411.48	199.0119	-61.2148

420.62	199.1339	-61.1174
429.77	199.2197	-61.058
438.91	199.4447	-60.9814
448.06	199.5794	-60.9218
457.2	199.6263	-60.7263
466.34	199.4879	-60.7993
475.49	199.4106	-60.6973
484.63	199.2264	-60.6969
493.78	199.3731	-60.5858
502.92	199.4746	-60.4279
512.06	199.6787	-60.3891
521.21	199.7515	-60.2861
530.35	199.9365	-60.1856
539.5	199.8273	-60.1092
548.64	199.93	-60.16
557.78	199.9526	-60.0798
566.93	199.9128	-60.0491
576.07	199.979	-59.9325
585.22	199.9387	-59.8407
595.88	200.0545	-59.7276
603.5	196.3172	-58.5028
612.65	195.8342	-57.7798
621.79	194.5014	-57.7897
630.94	193.9355	-57.421
640.08	193.174	-56.3813
649.22	191.2137	-56.2742
658.37	190.9837	-56.081
667.51	191.0439	-56.0317
676.66	191.0616	-55.8194
685.8	191.041	-55.5432
694.94	191.1737	-55.3897
704.09	191.0132	-55.208
713.23	190.7727	-54.8754
722.38	190.695	-54.477
731.52	190.7791	-54.1102
740.66	190.758	-53.7737
741.88	190.74	-53.79

METERS	SAMPLE INFO					PERCENT			GRAMS/TONNE	
DEPTH	LENGTH	SAMPLE	CODE	EST	CU	NI	CO	AS	TPM	
0	0									

Beginning of core and cut for the steel wedge.
IQD rock unit similar to below and described in more detail below. Less than 0.5% total sulphides. This interval is shaved in half by the steel wedge cut, tapered at the top and thickening at the bottom to full HQ core thickness.
IQD continuous over the next several samples. A grey QD matrix hosting abundant incls of mtgb now altered to amph. Many AMPHs have reaction rims of bt. Some incls are completely bt. Incls and sulphide blebs can have weak preferred orientation from 20 40deg tca. Incls range in size from 2-4 to less than 0.5". Larger AMPH blocks/incls are broken out into intervals. Sulphides are diss throughout Po, Cp \& fg Pn. Hmgs and continuous IQD, below with minor change to sulphides.

IQD as described above. A grey QD matrix hosting abundant inclusions of mtgb now altered to amph. Many AMPHs have reaction rims of biotite Some inclusions are completely altrnd to bt. Incls of sulphide blebs can have a weak preferred orientation that range from 20-40deg tca. Incls range in size from 2-4inches to less than 0.5 inches. Sulphides are diss throughout Po, Cp and fg Pn.

600.24	1.65	M $\times 243192$	2	0.5	0.03	0.03	0	0.001	0.14	85	DISS	IQD	less than 0.5 ". Sulphides are diss throughout Po, Cp and fg Pn .
601.55	1.31	MX243193	2	1	0.03	0.02	0	0	0.1	85	DISS	IQD	IQD as described above. A grey QD matrix hosting abundant inclusions of mtgb now altered to amph. Many AMPHs have reaction rims of biotite or completely altrd to bt. Incls of sulphide blebs have a weak preferred orientation ranging from 20-40deg tca. Incls range in size from 2-4" to less than $0.5^{\prime \prime}$. Sulphides are diss throughout Po, Cp and fg Pn.
602.99	1.43	MX243194	2	1	0.05	0.05	0.01	0.002	0.17	85	DISS	IQD	IQD as described above. A grey QD matrix hosting abundant inclusions of mtgb now altered to amph. Many AMPHs have reaction rims of biotite or completely altrd to bt. Incls of sulphide blebs have a weak preferred orientation ranging from 20-40deg tca. Incls range in size from 2-4" to less than $0.5^{\prime \prime}$. Sulphides are diss throughout Po, Cp and fg Pn .
604.54	1.55	MX243195	2	1	0.08	0.05	0.01	0.003	0.24	85	DISS	IQD	IQD as described above. A grey QD matrix hosting abundant inclusions of mtgb now altered to amph. Many AMPHs have reaction rims of biotite or completely altrd to bt. Incls of sulphide blebs have a weak preferred orientation ranging from 20-40deg tca. Incls range in size from 2-4" to less than $0.5^{\prime \prime}$. Sulphides are diss throughout Po, Cp and fg Pn .

606	1.46	MX243196	2	2	0.07	0.07	0.01	0.008	0.27	85	DISS	IQD	tca. Incls range in size from 2-4" to less than $0.5^{\prime \prime}$. Sulphides are diss throughout Po, Cp and fg Pn .
607.68	1.68	MX243197	2	2	0.04	0.04	0.01	0.002	0.21	85	DISS	IQD	IQD as described above except a slight increase in Qtz Vns. A grey QD matrix hosting abundant inclusions of mtgb now altered to amph. Many AMPHs have reaction rims of biotite or completely altrd to bt. Incls of sulphide blebs have a weak preferred orientation ranging from 20-40deg tca. Incls range in size from 2-4" to less than $0.5^{\prime \prime}$. Sulphides are diss throughout Po, Cp and fg Pn .
													IQD as described above, slight increase in Qtz vns. A grey QD matrix hosting abundant inclusions of mtgb now altered to amph. Many AMPHs have reaction rims of biotite or completely altrd to bt. Incls of sulphide blebs have a weak preferred orientation ranging from 20-40deg tca. Incls range in size from 2-4" to less than $0.5^{\prime \prime}$. Sulphides are diss
608.99	1.31	MX243198	2	1	0.02	0.04	0.01	0.003	0.21	85	DISS	IQD	throughout Po, Cp and fg Pn . IQD as described above with a couple larger qtz vns @ 25deg tca, seen in adjacent wedged BH. A grey QD matrix hosting abundant inclusions of mtgb now altered to amph with sometimes Bt rims. Diss sulphide (Po, Cp and fg Pn) with a weak preferred orientation ranging from 20-40deg tca. Incls range in size from 2-4" to
610.51	1.52	MX243199	2	1	0.03	0.04	0.01	0.006	0.14	85	DISS	IQD	less than 0.5".

| | 1.19 |
| :--- | :--- |2

0.04
0.03

0
0.005
0.17

85
DISS

IQD as described above. A grey QD matrix hosting abundant inclusions of mtgb now altered to amph with sometimes Bt rims. Diss sulphide (Po, Cp and fg Pn) with a weak preferred orientation ranging from 20-40deg tca. Incls range in size from 2-4" to less than $0.5^{\prime \prime}$.
IQD as described above. A grey QD matrix hosting abundant inclusions of mtgb now altered to amph with sometimes Bt rims. Diss sulphide (Po, Cp and fg Pn) with a weak preferred orientation ranging from 20-40deg tca. Incls range in size from 2-4" to less than 0.5".
IQD as described above. A grey QD matrix hosting abundant inclusions of mtgb now altered to amph with sometimes Bt rims. Diss sulphide (Po, Cp and fg Pn) with a weak preferred orientation ranging from 20-40deg tca. Incls range in size from 2-4" to less than 0.5".

FLT within the IQD (IQD as described above). Flt Plane at 15-20deg tca. minor gouge along plane IQD as above with grey QD matrix hosting abundant inclusions of mtgb now altered to amph with sometimes $B t$ rims. Diss sulphide (Po, Cp and fg Pn) with a weak preferred orientation ranging from 20-40deg tca. Incls range in size from 2-4" to less than 0.5" IQD as described above. A grey QD matrix hosting abundant inclusions of mtgb now altered to amph with sometimes Bt rims. Diss sulphide (Po, Cp and fg Pn) with a weak preferred orientation ranging from 20-40deg tca. Incls range in size from 2-4" to less than 0.5".

618.01	1.74	M $\times 274105$	2	1	0.03	0.03	0	0.004	0.1	85	DISS	IQD
619.75	1.74	M $\times 274106$	2	1	0.04	0.03	0.01	0.001	0.14	85	DISS	IQD
621	1.25	M $\times 274107$	2	1	0.03	0.02	0	0	0.1	85	DISS	IQD
622.37	1.37									0		WDG
623.99	1.62	M $\times 274108$	2	1	0.04	0.03	0.01	0.003	0.14	85	DISS	IQD
625.66	1.68	M $\times 274109$	2	1	0.04	0.03	0.01	0.003	0.14	85	DISS	IQD

IQD as described above (except with a subpll qtz vn running along the core axis). A grey QD matrix hosting abundant inclusions of mtgb now altered to amph with sometimes Bt rims. Diss sulphide (Po, Cp and fg Pn) with a weak preferred orientation ranging from 20-40deg tca. Incls range in size from 2-4" to less than 0.5". IQD as described above. A grey QD matrix hosting abundant inclusions of mtgb now altered to amph with sometimes Bt rims. Diss sulphide (Po, Cp and fg Pn) with a weak preferred orientation ranging from 20-40deg tca. Incls range in size from 2-4" to less than 0.5".
IQD as described above. A grey QD matrix hosting abundant inclusions of mtgb now altered to amph with sometimes Bt rims. Diss sulphide (Po, Cp and fg Pn) with a weak preferred orientation ranging from 20-40deg tca. Incls range in size from 2-4" to less than 0.5".
CWT Wedge cut between 2037.42041.9 ft .

IQD as described above. A grey QD matrix hosting abundant inclusions of mtgb now altered to amph with sometimes Bt rims. Diss sulphide (Po, Cp and fg Pn) with a weak preferred orientation ranging from 20-40deg tca. Incls range in size from 2-4" to less than $0.5^{\prime \prime}$.
IQD as described above. A grey QD matrix hosting abundant inclusions of mtgb now altered to amph with sometimes Bt rims. Tr Diss sulphide (Po, Cp and fg Pn). A weak flow orientation of the inclusions, but often random or chaotic orientation. Incls range in size from 2-4" to less than $0.5^{\prime \prime}$.

627	1.34	M $\times 274110$	2	2			0.01		0.14	85	DISS	IQD
					0.05	0.04		0.007				
628.28	1.28	MX274111	2	1	0.03	0.03	0.01	0.001	0.1	85	DISS	IQD
628.95	0.67	M $\times 274113$	2	0	0.02	0.01	0	0.003	0.03	90	NVS	QTZT
629.99	1.04	M $\times 274114$	2	1	0.04	0.03	0.01	0.001	0.14	85	DISS	IQD
631.79	1.8	M $\times 274115$	2	1	0.02	0.01	0	0	0.03	85	DISS	IQD
633.1	1.31	M $\times 274144$	2	1	0.04	0.04	0.01	0.014	0.17	85	TR	IQD
634.38	1.28	M $\times 274116$	2	0	0	0.03	0.01	0.001	0.03	80	NVS	AMPH

IQD as described above. A grey QD matrix hosting abundant inclusions of mtgb now altered to amph with sometimes Bt rims. Tr Diss sulphide (Po, Cp and fg Pn). A weak flow orientation of the inclusions, but often random or chaotic orientation. Incls range in size from 2-4" to less than 0.5".

IQD as described above. A grey QD matrix hosting abundant inclusions of mtgb now altered to amph with sometimes Bt rims. Tr Diss sulphide (Po, Cp and fg Pn). A weak flow orientation of the inclusions, but often random or chaotic orientation. Incls range in size from 2-4" to less than 0.5".

QTZT inclusion, massive competent no sulphides. Minor IQD along the upper CT.
IQD as described above. A grey QD matrix hosting abundant inclusions of mtgb now altered to amph with sometimes Bt rims. Tr Diss sulphide (Po, Cp and fg Pn). A weak flow orientation of the inclusions, but often random or chaotic orientation. Incls range in size from $2-4$ " to less than 0.5".

IQD as described above. A grey QD matrix hosting abundant inclusions of mtgb now altered to amph with sometimes Bt rims. Tr Diss sulphide (Po, Cp and fg Pn). A weak flow orientation of the inclusions, but often random or chaotic orientation. Incls range in size from 2-4" to less than 0.5".

IQD continued from above. A grey QD matrix hosting minor inclusions and has become a more uniform fin grained QD with Diss sulphides. Large amph inclusions, mg, hmgs and uniform. No sulphides present.

636	1.62	M $\times 274117$	2	1	0.04	0.04	0.01	0.021	0.17	85	DISS		IQD
637.58	1.58	M $\times 274118$	2	1	0.06	0.05	0.01	0.003	0.24	85	DISS		IQD
639.2	1.62	M $\times 274119$	2	2	0.08	0.05	0.01	0.01	0.24	85	DISS		IQD
640.84	1.65	M $\times 274121$	2	0	0	0.03	0.01	0.004	0.03	80	NVS		AMPH
642.18	1.34	M $\times 274122$	2	1	0.13	0.08	0.01	0.021	0.21	85	TR	AMPH	IQD
643.59	1.4	M $\times 274123$	2	0	0.01	0.01	0	0	0.03	90	NVS		$Q D$
644.99	1.4	M $\times 274124$	2	0	0.01	0	0	0	0	90	NVS		QD
646.54	1.55									0			WDG

IQD, A grey QD matrix hosting abundant inclusions of mtgb now altered to amph with sometimes Bt rims. Tr Diss sulphide (Po, Cp and fg Pn). A weak flow orientation of the inclusions, but often random or chaotic orientation. Incls range in size from 2-4" to less than 0.5".
IQD as described above. A grey QD matrix hosting abundant inclusions of mtgb now altered to amph with sometimes Bt rims. Tr Diss sulphide (Po, Cp and fg Pn). A weak flow orientation of the inclusions, but often random or chaotic orientation. Incls range in size from 2-4" to less than 0.5".

IQD as described above. A grey QD matrix hosting abundant inclusions of mtgb now altered to amph with sometimes Bt rims. Tr Diss sulphide (Po, Cp and fg Pn). A weak flow orientation of the inclusions, but often random or chaotic orientation. Incls range in size from 2-4" to less than $0.5 "$.
Large Amph inclusions with chloritic green alteration and mg, massive, hmgs and no visible sulphides.

IQD as described above. A grey QD matrix hosting inclusions of mtgb now altered to amph. Several large AMPH inclusions $0.5-1 \mathrm{ft}$ in length. Tr Diss sulphide (Po, Cp and fg Pn) in IQD. $Q D$, competent $Q D$ with mg equigranular texture hosting a spherulitic needle like textures. Minor alteration and minor qtz vns. QD, continuation from above Competent, hmgs with mg equigranular texture hosting a spherulitic needle like textures. Minor alteration and minor qtz vns. WDG cut with CWT.

648	1.46	M $\times 274125$	2	0	0.01	0	0	0	0	90	NVS	QD
649.68	1.68	M $\times 274126$	2	0	0.02	0	0	0	0	90	NVS	QD
650.99	1.31	M $\times 274127$	2	0	0.01	0.01	0	0	0	90	NVS	QD
652.03	1.04	M $\times 274128$	2	0	0.02	0.01	0	0.001	0.03	90	NVS	QD
654.01	1.98	M $\times 274130$	2	1	0.05	0.03	0.01	0.003	0.14	90	NVS	IQD
655.78	1.77	M $\times 274131$	2	2	0.06	0.05	0.01	0.001	0.27	85	DISS	IQD
657	1.22	M $\times 274132$	2	1	0.03	0.02	0	0.001	0.07	85	DISS	IQD
657.94	0.94	M $\times 274133$	2	1	0.02	0.02	0	0.003	0.07	85	DISS	IQD

QD, continuation from above Competent, hmgs with mg equigranular texture hosting a spherulitic needle like textures. Minor alteration and minor qtz vns. QD, continuation from above Competent, hmgs with mg equigranular texture hosting a spherulitic needle like textures. Minor alteration and minor qtz vns. QD, continuation from above Competent, hmgs with mg equigranular texture hosting a spherulitic needle like textures. Minor alteration and minor qtz vns.
QD, continuation from above
Competent, hmgs with mg equigranular texture hosting a spherulitic needle like textures. Minor alteration and minor qtz vns. IQD. A grey QD matrix hosting inclusions of mtgb now altered to amph. Several larger AMPH inclusions 2-4inches in length. Tr Diss sulphide (Po, Cp and fg Pn) in IQD.

IQD as above. A grey QD matrix hosting inclusions of m tgb now altered to amph. Several larger AMPH inclusions ~2inches in length. Tr Diss sulphide (Po, Cp and fg Pn) in IQD. IQD. A grey QD matrix hosting abundant small $0.5-1$ inch or less inclusions of mtgb now altered to amph. Tr Diss sulphide (Po, Cp and fg Pn) in IQD.
IQD. A grey QD matrix hosting abundant small 0.5 -1inch or less inclusions of mtgb now altered to amph. Tr Diss sulphide (Po, Cp and fg Pn) in IQD.

660.23	2.29	M $\times 274134$	2	1	0.04	0.04	0.01	0.005	0.17	85	DISS		IQD
661.6	1.37	M 274135	2	0.5	0.01	0.02	0.01	0.002	0.03	90	TR		QD
663	1.4	M 274136	2	2	0.02	0.02	0	0.001	0.07	90	BLBS		$Q D$
664.65	1.65	M 274137	2	1	0.02	0.01	0	0	0.03	90	TR		$Q D$
665.99	1.34	M $\times 274138$	2	0.5	0.03	0.01	0	0	0.03	90	TR		$Q D$
667.73	1.74	M $\times 274139$	2	0.5	0.02	0.01	0	0	0.03	90	TR		$Q D$
669.16	1.43	M 274140	2	2	0.04	0.02	0.01	0	0.1	90	TR		QD
670.22	1.07	M $\times 274141$	2	0	0.01	0	0.01	0	0	80	NVS	MTSD	DIA
671.99	1.77	M $\times 274142$	2	0	0.01	0	0	0	0	90	NVS		MTSD
673.55	1.55	M $\times 274143$	2	0	0.01	0.01	0	0	0	90	NVS		MTSD
688.3	14.75									90			QTZT

IQD. A grey QD matrix hosting abundant small $0.5-1$ inch inclusions of mtgb now altered to amph. Relatively defined contact with minor atz-carb against the QD below. Tr Diss sulphide (Po, Cp and fg Pn) in IQD.
Fg QD with a weak foliation and some alteration within small veins that cross cut the interval. Minor TR sulphides less than 1%
Fg QD continued from above Occasional small blebs of sulphide $\sim 2 \%$ overall.
QD, fg-mg 1% or less tr sulphides. Very uniform, hmgs and competent.
QD, fg-mg 1% or less tr sulphides. Very uniform, hmgs and competent. QD, fg-mg 1% or less tr sulphides. Very uniform, hmgs and competent.
QD, fg-mg 2% sulphides. Diss with a couple areas with local blebs and small stringers (Cp and Po)around qtz vns. $Q D$ is very uniform, hmgs and competent. Note that there is a qtz vn (~ 2 inches) that defines the lower CT of the QD with the MTSD below.

DIA dyke, black, strongly magnetic (fg OLDI) with shark contacts at 70deg tca. Massive and uniform with no sulphides. Note that there is 4inches at the upper CT that is MTSD. The QD CT is actually against MTSD but it switches to DIA within 4inches. MTSD, fg, massive, competent and uniform with minor stringers of Qtzcarb vnlts. No visible sulphides. MTSD, continued from above. Fg, massive, competent and uniform with minor stringers of Qtz-carb vnlts. No visible sulphides.
QTZT, darker grey, siliceous and vg. Unit is very competent and hmgs. No sulphides present and no significant structures. Minor qtz-carb vnlts.

QTZT as described above except several broken and blocky sections with fracture planes and very minor ground core along some fracture planes. Not a major structure but minor movement. Otherwise sam QTZT as above.
QTZT, darker grey, siliceous and vg. Unit is very competent and hmgs. No sulphides present and no significant structures. Minor qtz-carb vnlts. MTSD, unit becomes a lighter grey MTSD SS with laminations (from the QTZT above). The MTSD has a foliation of 30 deg tca. More broken planes along the MTSD fabric but overall unit is hmgs throughout. No significant sulphides.
STRT within the MTSD as described above. Unit is a light grey MTSD SS with laminations. This structure has a minor-moderate fracture with minor gouge or frock flour smeared alon the fracture plane. Evidence of movement, but not a major fault. No significant sulphides.
MTSD unit is a lighter grey MTSD S with minor/weak laminations. The MTSD has a foliation of 30deg tca but becomes weaker at depth. Broken planes along the MTSD fabric but overall unit is hmgs throughout with minor fractures. No significant sulphides.
MTSD as described above except a slight increase in fracture planes. Breaks appears to be mostly along foliation. Not a significant structure No significant sulphides. FOH at 2460.6ft/750m

APPENDIXIV
SUM M ARY TABLE FOR EACH DRILL HOLE

APPENDIX IV

Drill hole number	TYPE of hole drilled	Collar Location UTM coordinates with (Datum and Zone)	Drillhole Azimuth	Drillhole Dip	Drillhole Length (meters)	\# Samples collected	\# of samples assayed
1368900	Parent	$5135475.7 N$, 463564.2 E, UTM Nad 27, Zone 17N	145	-71	1361	17	17
1368901	Branch	$5135475.7 N$, 463564.2 E, UTM Nad 27, Zone 17N	145	-71	25.6	17	17
1368902	Branch	$5135475.7 N$, 463564.2 E, UTM Nad 27, Zone 17N	145	-71	382.6	52	52
1368910	Parent	$5135468.4 N$, 463543.1E, UTM Nad 27, Zone 17N	175	-61	1262	49	49
1368920	Parent	5135465.9N, 463545.3E, UTM Nad 27, Zone 17N	137.4	-47.1	945	54	54
1368950	Parent	5135997.3N, 464601.6 E, UTM Nad 27, Zone 17N	199	-63	1581	123	123
1368951	Branch	$5135997.3 N$, 464601.6 E, UTM Nad 27, Zone 17N	199	-63	23	17	17
1368952	Branch	$5135997.3 N$, 464601.6 E, UTM Nad 27, Zone 17N	199	-63	155	53	53
					Total M eters drilled	Total \# samples collected	Total \# samples assayed
					5735.2	382	382

There was a total of 8 drillholes completed which consisted of four parent holes and four branch holes.
The total length drilled within the 2017-2018 program was 5735.2 meters.

