

We are committed to providing <u>accessible customer service</u>. If you need accessible formats or communications supports, please <u>contact us</u>.

Nous tenons à améliorer <u>l'accessibilité des services à la clientèle</u>. Si vous avez besoin de formats accessibles ou d'aide à la communication, veuillez <u>nous contacter</u>.

Decayed Vegetation Sampling in Coulson Township, Ontario

(north of Painkiller Lake)

on unpatented mining claims 550334, 550335, 550336, 550337

in respective cells 42A09F165, 42A09F166, 42A09F186, 42A09F187

Report by Hermann Daxl, M.Sc.(Minex), Claim Holder
19 January 2022

Introduction

This decayed vegetation sampling works, and one weak gold anomaly has been discovered on the second day of prospecting. The test samples from the historic gold zone adjacent south of my claims also proved this superior method.

I did this preliminary sampling on my claims 550334, 550335, 550336, 550337 (respective cells 42A09F165, 42A09F166, 42A09F186, 42A09F187), excluding my claims 550338 and 550333 adjacent in the northwest. I registered the claims on 23 May 2019 and informed the surface right owners. The part of my 6 claims overlapping the south half of lots 6 and 7, in concession 1, Coulson Township, Ontario, is on crown land.

I encountered no development nor workings on my 3 traverses. The few trails are quite overgrown. The mixed forest is mostly mature, with only 5 - 10 cm humus on sand to clay as annotated on the attached lab results. The vicinity of the creek is swampy with alders. The outcrop trending 60 az. around 8358 E - 6654 N is nonmagnetic, greenish gray, very finegrained, rusty deep weathering basalt, massive without fractures or veins.

You can drive with a city car to my claims, 93 km east from Timmins, via Highway 101 past Matheson, Diamond and Nickel Roads, Painkiller Road in summer, as shown on the attached map. The attached sample and gold maps show more details.

Present Work and Results

I collected the 13 samples during 3 traverses on 8, 15, 20 June 2021. Except for CL5, they were heaped double-handfuls of decayed vegetation (K) from 0 - 6 cm depth composed from several spots in a 15 m radius, namely decayed leaves, needles, and small rootlets, where ions of gold and other elements migrating from deposits are known to accumulate directly and through the plant cycle. I chose favourable dry sample spots and noted the UTM center (see list). On swampy ground this can be done beside trees.

The samples were dried, rubbed, and sieved <250 micron, and all except CL6 had to be dryswirled in a plastic gold pan to remove sand and silt dregs. The remaining sand or silt has no influence on gold, as shown by CL15 and CL16 extracted from CL8 and CL11. Samples CL10 to CL14 were also bracket-sieved to 125 - 250 micron to remove the silt, but as shown by CL16, which is the <125 micron fraction of CL11, silt carries no gold, however, it would dilute samples.

CL5 is from fine very rusty sand of the enriched B-horizon from 15 - 25 cm below CL4, rubbed and sieved to <125 micron. Because usually this horizon does not scavenge gold, the 125 -

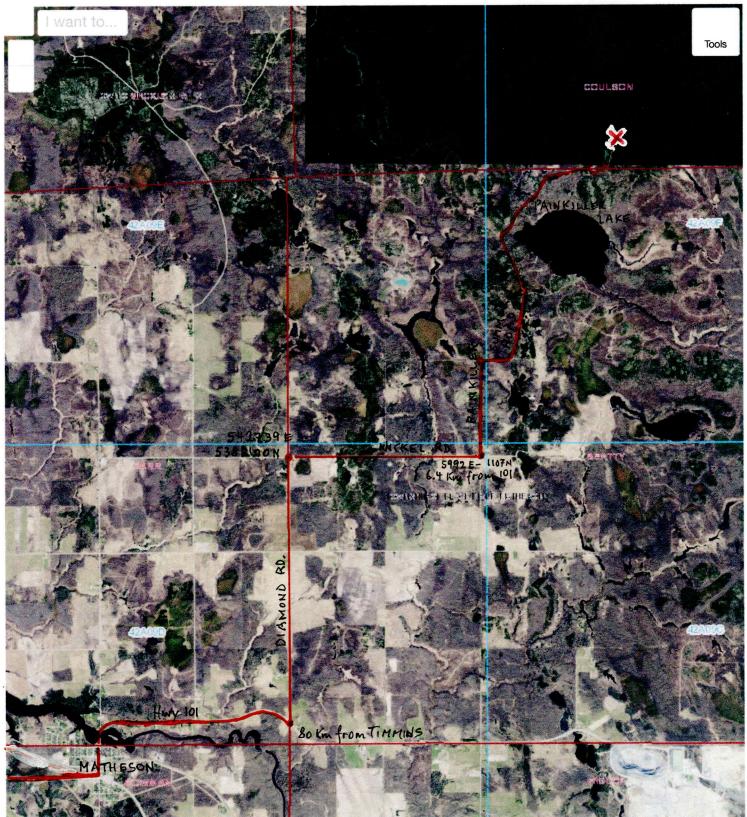
250 micron fraction also was analyzed, as LG47 which had no gold. The first 18.8 ppb gold could have been a 60 micron detrital flake. Fine panning of all its <250 micron sievings revealed no gold but about 10% magnetite.

I compacted the samples into medium vials of 7 cm3. Their net weight is listed under "mass". Activation Laboratories Ltd. analyzed all samples by Neutron Activation - 2B Vegetation - special double irradiation. Special care is taken to avoid static cling of rock pulps to the outside of vials, which would contaminate. The gold results are illustrated on the attached gold map, and show a weak gold anomaly with 3 to 9 ppb gold in the center of my claim group. As per MLAS, the bedrock here is as in that gold zone in the south, which has prompted me to sample here. However, this should not discourage from extending the sampling to the rest of the claims, because this efficient method can evalute them all in only 5 to 10 more field days. The higher values for Cr, Fe, Hf, Na, Sc, La, Ce, Nd, Sm, are normal for sand samples.

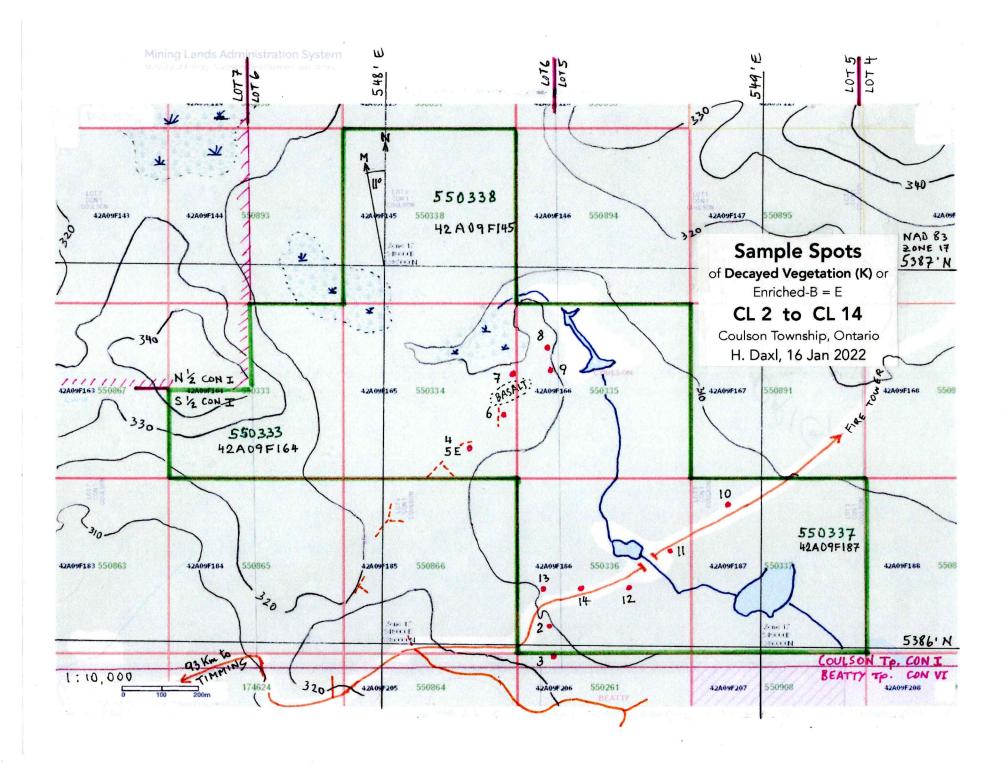
The all-organic exotic blank CL1 returned 0.5 ppb Au. As another test, RS4 to RS7 from the gold zone south of my claims, with <13.6 ppb Au, show that the method works. Standard OREAS 45e agreed twice in the same batch and two further organic blanks had zero gold.

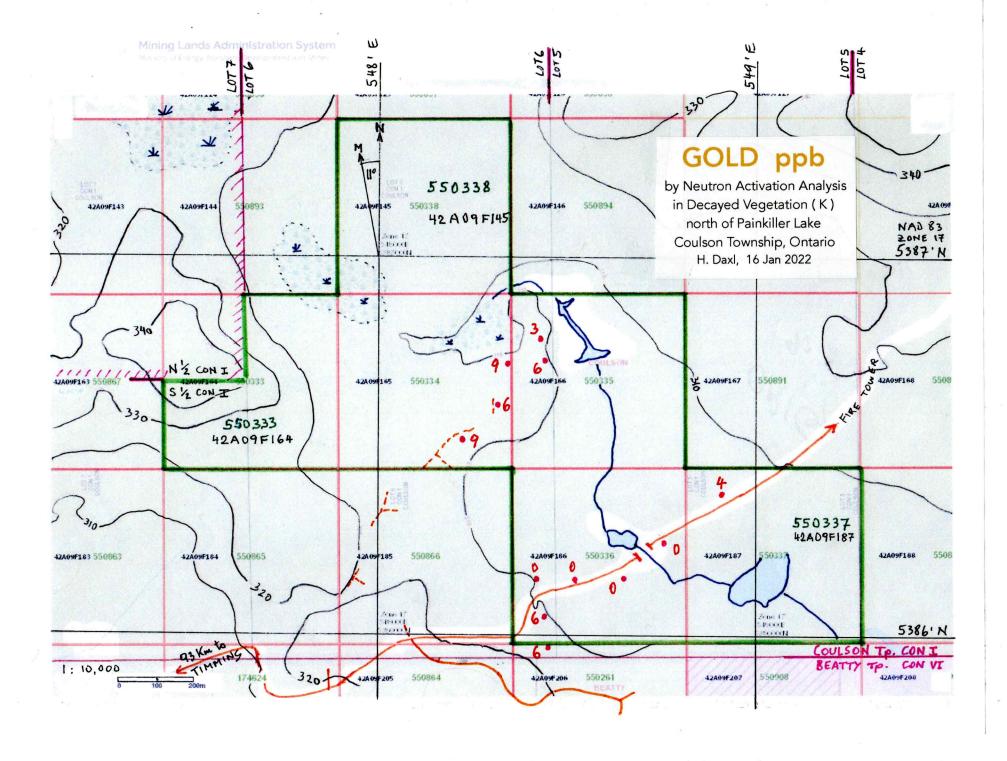
Seven samples were also sent to ALS Canada Ltd., North Vancouver, for analyses of copper and other elements by ME-VEG41, HNO3/HCl - ICP/AES-MS, as 1g aliquots. No further significant anomaly is seen. Such analysis is not suitable for gold in such samples, as carbon seems to interfere. Their MS41L by aqua regia is more suitable, but the special neutron activation is the most reliable for gold in decayed vegetation.

Please refer to both attached lab results with annotations. Also google > youtube hermann daxl < for two videos showing sample collection and preparation for analysis.


Conclusions and Recommendations

Sampling of decayed vegetation discovers mines, and the minor gold anomaly over the tested adjacent historic gold zone here is a good example. The present oriention sampling further revealed a minor gold anomaly in the center of my 6 claims. Another 5 to 10 days of field work will discover a gold deposit, if there is one.


Respectfully submitted,


Timmins, 19 January 2022

Hermann Daxl, M.Sc.(Minex), Claim Holder

Regional Location Map - Matheson to Daxl Claims (total 93 km East of Timmins) 🗶

Quality Analysis ...

Innovative Technologies

Report Date:

29-Jul-21

Date Submitted:

06-Jul-21

Your Reference:

MUW-COL-VAR

Hermann Daxi 39-630 Riverpark Road **Timmins Ontario P4P 1B4** Canada

ATTN: Hermann Daxl

CERTIFICATE OF ANALYSIS

packed with < 250 mm decayed vegetation 41 Vial samples were submitted for analysis. In medium Vials

The following analytical package(s) were requested:

Testing Date:

see mass ne

QOP INAAGEO (Vegetation INAA)

2021-07-16 12:39:49

briquett not

by neutron activation, double irradiation time

REPORT

A21-12591

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

Footnote: INAA data may be suppressed due to high concentrations of some analytes.

LabID: 266

ACTIVATION LABORATORIES LTD.

41 Bittern Street, Ancaster, Ontario, Canada, L9G 4V5 TELEPHONE +905 648-9611 or +1.888.228.5227 FAX +1.905.648.9613 E-MAIL Ancaster@actlabs.com ACTLABS GROUP WEBSITE www.actlabs.com

CERTIFIED BY:

Emmanuel Eseme, Ph.D. Quality Control Coordinator

Decayed vegetatition 0-6 cm depth sieved <250 micron (except marked) - by neutron activation - 2B vegetation - double irrad. time
Results Activation Laboratories Ltd. Report: A21-12591

Results Activation Laboratories Ltd. Report: A21-12591

				Results	5		ACTIVA	auon L	aborate	ories L	ıu.		-	eport.	A21-12	.001				
Analyte Symbol	Au	Ag	As	Ва	Br	Ca	Со	Cr	Cs	Fe	Hg	Hf	lr	K	Мо	Na	Ni	Rb	Sb	Sc
Unit Symbol	ppb	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	%	ppm	ppm	ppb	%	ppm	ppm	ppm	ppm	ppm 0.005	0.01
Detection Limit	0.1	0.3	0.01	5	0.01	0.01	0.1	0.3	0.05	0.005	0.05	0.05 INAA	0.1 INAA	0.01 INAA	0.05 INAA	INAA	2 INAA	INAA	INAA	INAA
Analysis Method	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA				< 0.05	2080	< 2	33	0.260	1.49
CL7 K +	8.6	< 0.3	1.41	141	12.60	1.39	4.1	15.7	< 0.05	0.450	0.35	0.66	< 0.1	0.90				13	0.200	1.61
CL8 K &	2.9	< 0.3	1.28	157	14.00	2.97	4.1	14.2	< 0.05	0.520	0.34	0.62	< 0.1	0.94	< 0.05	2020	< 2			
CL9 K+	6.4	< 0.3	1.63	121	15.10	1.79	2.8	5.3	< 0.05	0.170	0.36	0.38	< 0.1	1.08	< 0.05	1690	< 2	4	0.310	0.69
CL 10 K ID 125	5-250 4.1	< 0.3	1.62	209	10.40	1.66	5.0	26.1	0.99	0.900	< 0.05	2.91	< 0.1	0.79	0.36	5720	< 2	47	0.230	3.19
CL 11 K 10T 129	5-250 < 0.1 V	< 0.3	1.87	253	10.00	1.16	3.3	25.3	0.84	0.680	< 0.05	2.62	< 0.1	0.71	< 0.05	5660	< 2	22	0.320	2.76
CL 12 K D 125	5-250 < 0.1 V	< 0.3	1.68	172	10.20	0.65	3.4	21.5	0.91	0.630	< 0.05	2.59	< 0.1	0.86	< 0.05	6380	< 2	3	0.210	2.59
CL 13 K -0 125	-250 < 0.1 V	< 0.3	1.51	139	14.10	2.33	4.7	21.7	< 0.05	0.690	0.15	1.99	< 0.1	0.82	0.87	3750	< 2	< 1	0.160	2.56
CL 14 K + 125	-250 < 0.1 V	< 0.3	3.56	258	11.80	2.50	6.8	27.0	< 0.05	0.880	< 0.05	2.42	< 0.1	0.66	< 0.05	4960	< 2	52	0.150	3.28
CL 15 50% DT of	CL8 < 0.1 V	< 0.3	< 0.01	443	4.28	1.10	2.3	19.8	0.78	0.560	< 0.05	3.16	< 0.1	0.29	< 0.05	14800	< 2	38	0.080	2.64
CL 16 50 / T 0		< 0.3	1.04	453	5.73	< 0.01	2.0	29.5	1.27	0.700	< 0.05	4.07	< 0.1	0.25	< 0.05	12700	< 2	61	0.150	3.40
RS 4 K ID		< 0.3	1.84	143	10.00	0.94	8.8	28.4	0.64	0.990	< 0.05	0.99	< 0.1	0.58	< 0.05	3950	< 2	22	, 0.360	2.79
RS 5 K I D	13.6	< 0.3	1.91	127	11.80	1.08	7.0	49.6	0.97	0.620	0.18	1.05	< 0.1	0.57	0.54	3990	< 2	25	0.280	2.56
RS 6 KID	3.8	< 0.3	1.51	105	12.00	0.42	2.9	16.9	0.85	0.300	0.29	0.24	< 0.1	0.62	< 0.05	1790	68	< 1	0.320	1.24
RS 7 40% D of R		< 0.3	0.75	253	5.58	0.90	7.2	80.7	1.07	1.450	< 0.05	3.82	< 0.1	0.28	< 0.05	14000	< 2	39	0.170	5.80
CL1 Blank		A	2.16	< 5	17.20	1.81	1.1	4.1	< 0.05	0.180	< 0.05	0.24	< 0.1	0.60	< 0.05	401	< 2	< 1	0.080	0.89
CL2 K 2D	5.6	< 0.3	1.56	141	13.80	1.55	3.7	9.6		0.300	0.22	0.36	< 0.1	0.60	< 0.05	1780	< 2	3	0.330	1.09
		< 0.3	1.18	121	11.40	0.57	2.3	7.1	0.32	0.160	0.24	0.15	< 0.1	0.70		1100	< 2	< 1	0.230	0.70
r .	5.8	380.00	10 1000100			77		12.1	< 0.05	0.630	0.41	0.41	< 0.1	0.53		1380	< 2	< 1	0.280	1.61
CL4 K 1 D	8.9	< 0.3	1.65	119	14.80	1.39	5.3	1 173	0.000,000,000,000,000			14.50		0.32		18400	< 2	5	0.060	11.30
	5 pm 18.8		1.03	282	16.10		7.3	118.0		3.250					1.26	1770	< 2	< 1	0.200	1.1
CL6 K ID	5.9	< 0.3	0.96	124	13.00	1.41	2.9	15.6	0.66	0.330	0.11	0.52	< 0.1	0.93	1.26	1770	- 2	`	0.200	1.1

DT = % Sand-silt remaining in decayed vegetation (K) after dry-swirling (except CLb) in plastic gold pan. Dregs are CL15+16 and RS7.

E = Enriched B-horizon, med.orange-beige dry sand, rubbed + sieved 2125 µm, 3% K, beach sand. 3.25% Fe in CL5.
Panned CL5 all 2250 µm, no gold, must have been one 60 µm flake, ~10% magnetite. Elements typical of sand La, Ce, Nol, Sm, Na.
But CL5 E 125-250 as LG 47 had no gold, much less La, Ce, Nd, Sm, but bit more Na. Size dilutes.

-LG 47 confirmed that despite gold in overlying decayed regetation K (CL4), gold is never scavenged in B-horizon.

TESTS RS4-RS7 from an assumed gold zone nearby, show that sand dregs RS7 removed from decayed vegetation (K) RS4+L do not have enough gold to contaminate a sample, but need to be removed to prevent dilution.

			4	Result	S		Activa	ation L	aborate	ories L	td.		F	Report:	A21-12	591
Analyte Symbol Unit Symbol	Se ppm	Sr ppm	Ta ppm	Th	U	W	Zn	La	Се	Nd	Sm	Ευ	Tb	Lu	Yb	Mass
Detection Limit	0.1	100	0.05	0.1	0.01	0.05	ppm 2	ppm 0.01	ppm 0.1	ppm 0.3	0.001	ppm 0.05	ppm 0.1	0.001	ppm 0.005	g INORGANIC TOP
Analysis Method	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA at cm depth
CL7 K +	< 0.1	< 100	< 0.05	1.1	< 0.01	< 0.05	135	4.64	7.5	4.9	0.480	< 0.05	< 0.1	< 0.001	0.140	3.00 - 10 beige clay
CL8 K O	< 0.1	< 100	< 0.05	1.5	0.89	< 0.05	62	8.76	14.6	10.4	0.960	< 0.05	< 0.1	0.030	0.260	2.79 - 10 beige silt
CL9 K +	< 0.1	< 100	< 0.05	0.5	< 0.01	< 0.05	105	1.98	3.6	< 0.3	0.230	< 0.05	< 0.1	0.010	0.110	2.76 - 10 fine sound leacher
CL 10 K 10 /25-750	< 0.1	< 100	< 0.05	2.3	0.80	< 0.05	162	8.89	15.3	6.4	1.010	0.07	< 0.1	0.020	0.480	3.47 - 5 silt
CL 11 K 1DT 125-250	< 0.1	< 100	< 0.05	1.9	< 0.01	< 0.05	47	7.24	11.8	5.4	0.910	0.30	< 0.1	0.030	0.430	3.31 - 10 beige silt
CL 12 KID 125-250	< 0.1	< 100	< 0.05	2.1	0.77	< 0.05	118	7.00	12.2	4.9	0.850	0.20	< 0.1	0.010	0.370	3.22 - 5 gray to beige si
CL 13 K + 125-250	< 0.1	< 100	< 0.05	2.1	1.59	< 0.05	73	9.16	14.8	7.0	1.170	0.41	< 0.1	0.010	0.390	3.13 - 10 " " "
CL 14 K + 125-250	< 0.1	200	< 0.05	2.5	0.69	< 0.05	81	9.83	17.9	17.5	1.280	0.47	< 0.1	0.010	0.630	3.04 - 5 " " "
CL 15 50% ST of CL 8	< 0.1	< 100	< 0.05	2.3	< 0.01	< 0.05	< 2	9.12	15.7	11.6	1.110	0.12	< 0.1	0.030	0.470	7.08
S CL 16 50 1. T OF CL 11	0.4	< 100	< 0.05	2.2	0.23	< 0.05	<.2	7.43	13.4	5.1	1.050	0.10	< 0.1	0.020	0.560	5.16
7 RS 4 K ID	< 0.1	< 100	< 0.05	1.9	< 0.01	< 0.05	68	8.08	17.4	7.6	0.890	0.19	< 0.1	0.040	0.320	2.89 - 10 brown sand-gro
RS 5 K (D	< 0.1	< 100	< 0.05	1.8	< 0.01	< 0.05	132	5.36	9.9	5.4	0.640	0.08	< 0.1	0.020	0.250	2.88 - 5 brown sound and
RS 6 KID	< 0.1	< 100	< 0.05	0.5	0.97	< 0.05	61	2.94	5.5	< 0.3	0.310	< 0.05	< 0.1	0.010	0.240	2.60 - 5 gray sound "
RS 7 40% D of RS 4+6	< 0.1	500	< 0.05	5.6	0.45	< 0.05	18	13.40	26.5	9.1	1.620	0.41	< 0.1	0.080	0.810	5.00
CLI Blank MISZ	< 0.1	< 100	< 0.05	1.0		< 0.05	4	2.97	5.2	< 0.3	0.360	0.08		< 0.001	0.110	2.66
CL2 K 2 D	< 0.1	< 100	< 0.05	0.6	< 0.01	< 0.05	80	3.89	6.4	1.8	0.410	0.07	< 0.1	TOTAL S	0.160	2.73 - 10 grey sand
CL3 K ID	< 0.1	< 100	< 0.05	0.4	< 0.01	< 0.05	91	1.75	2.8	2.0	0.210	0.06	< 0.1	0.001	0.080	2.62 - 10 leached sand
CL4 K ID	< 0.1	< 100	< 0.05	1.2	0.26	< 0.05	63	5.99	10.4	10.2	0.690	0.21	< 0.1	0.020	0.270	2.65 - 10 " " "
CL5 E < 125 mm	< 0.1	200	0.28	10.7	1.62	< 0.05	39	29.10	50.2	21.3	3.810	1.06	< 0.1	0.190	2.070	10 to
CL6 K 1)	< 0.1	< 100	< 0.05	1.3	0.12	< 0.05	79	3.47	5.3	5.9	0.360	< 0.05	< 0.1	0.190	0.140	8.37 - v. tusty B fine saud > 2.86 - 10 leached saud + x
														DAA.A	977Y	TOTAL TOTAL TOTAL TOTAL

CHEMICA COMMON

tellvaller Leboraleries Lid

Report: A21-12591

			Qual	lity Co	ntrol		,	ctivati	on Lab	oratorio	es Ltd.			Rep	ort: A2 1	I-12591	İ			
Analyte Symbol	Aυ	Ag	As	Ва	Br	Cg/	Co	Cr	Çś	Fe	Hg	Hf	ir	К	Мо	Na	Ni	Rb	Sb	Sc
Unit Symbol	ppb	ppm	ppm	ppm	ppm	/%	ppm	ppm	pøm	%	ppm	ppm	ppb	%	ppm	mag	mag	mag	ppm	
Detection Limit	0.1	0.3	0.01	5	0.01	0.01	1.0	0.3	0.05	0.005	0.05	0.05	0.1	0.01	0.05	ppi	bbii:	PPIII 1	0.005	0.01
Analysis Method	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA
OREAS 45e (INAA) Meas & lso Mill 21 OREAS 45e (INAA) Cert	54.9 48,5 53.0		14.9 /	256 2 <i>05</i> 246	3.37	< 0.01 0.06	64.0 6 z 59.0	938.0 994 1070.0	< 0.05 1.20	24.100 23.4 24.200		5.70 6.3 0 6.31		0.34 0.23 0.34	1.21	685 5&z 580	407 516 459	< 1 8 21	0.850	92.60 93.7° 91.00
Method Blank	< 0.1	< 0.3	< 0.01	< 5	< 0.01	< 0.01	0.1	< 0.3	< 0.05	< 0.005	< 0.05	< 0.05	< 0.1	0.26	< 0.05	< 1	< 2	< 1	< 0.005	< 0.01

		Quality Control					Activation Laboratories Ltd.						Report: A21-12591			
Analyte Symbol	Se	Sr	Τρ	Th	U	W	Zn	La	Се	Nd	Sm	Ευ	Τ̈́b	Lυ	Yb	Mass
Unit Symbol	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Detection Limit	0.1	100	0.05	0.1	0.01	0.05	2	0.01	0.1	0.3	0.001	0.05	0.1	0.001	0.005	9
Analysis Method	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA
DREAS 45e (INAA) Meas also Muw	21	< 100	< 0.05	13.1 11.5	2.45 2.85	< 0.05		11.20	23.3 23.4	9.4 8.1	1.400	0.63	< 0.1	0.310	1.470	111/7/
OREAS 45e (INAA) Cert		16	0.63	13.0	2.54	1.06		11.10	23.5	9.5	2.130	0.55	0.4	0.230	1.450 1.480	
Method Blank	< 0.1	< 100	< 0.05	< 0.1	< 0.01	< 0.05	< 2	< 0.01	< 0.1	< 0.3	< 0.001	< 0.05	< 0.1	< 0.001	< 0.005	10.00

.

HERMANN DAXL

ALS Canada Ltd.
2103 Dollarton Hwy
North Vancouver BC V7H 0A7
Phone: +1 604 984 0221 Fax: +1 604 984 0218
www.alsglobal.com/geochemistry

To: HERMANN DAXL 39-630 RIVERPARK RD TIMMINS ON P4P 1B4 Page: 1 Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 21-AUG-2021

Account: DAXHER

CERTIFICATE VA21173801

P.O. No.: MUW-CL-VEG

Decayed

This report is for 23 samples of Vegetation submitted to our lab in Vancouver, BC, Canada on 6-JUL-2021.

The following have access to data associated with this certificate:

	SAMPLE PREPARATION	
ALS CODE	DESCRIPTION	
WEI-21g	Received Wet Sample Wt in grams	
LOG-22	Sample login - Rcd w/o BarCode	

	ANALYTICAL PROCEDURES	
ALS CODE	DESCRIPTION	INSTRUMENT
ME-VEG41	Vegetation - HNO3/HCI ICPAES-ICPMS	

CL 10, CL 11, CL 14 of 125-250 junothers = 250 jun sievings, analyze asis, unashed - 1 g aliquots.

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

***** See Appendix Page for comments regarding this certificate *****

Signature:

Saa Traxler, General Manager, North Vancouver

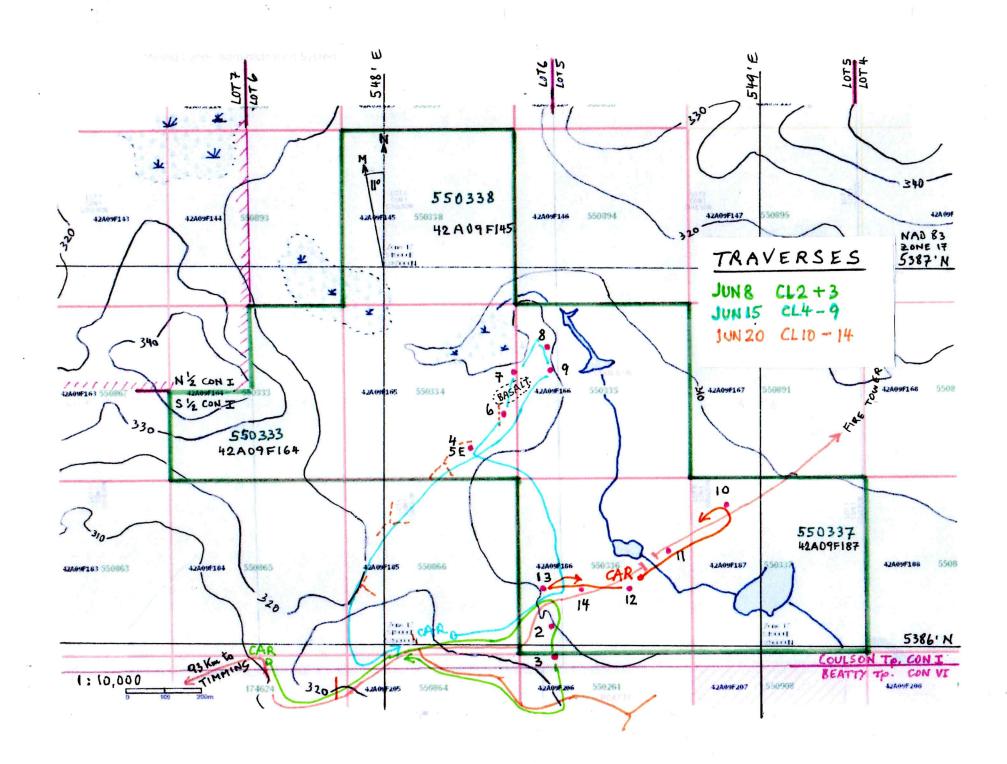
	VA2117380	1 VA	21173801	VA21173801	VA21173801	VA21173801	VA21173801
Sample	ME-VEG41	M	IE-VEG41	ME-VEG41	ME-VEG41	ME-VEG41	ME-VEG41
Description		Au 🛧	Ag	Al	As	В	Ва
	F	opb N.A	ֆ, ppm	%	ppm	ppm	ppm
CL1 BLANK	M 152 .	<0.2	0.017	0.17	1.86	4	20.3
CL3 K ID		2.3 5,	8 0.075	0.07	1.04	5	80.3
CL4 K I D	•	3.8 8.	9 0.091	0.32	1.65	5	68.3
CL6 K ID		2.6 5.	9 0.081	0.14	0.93	5	52.3
CL8 K 🕈		1.2 2	.9 0.080	0.39	1.22	11	82.1
CL 10 K 1 3	125-250	0.7 4.	0.207	0.55	1.46	9	88.6
CL 11 KIDT	125-250	1.0 🕁	0.139	0.39	1.76	7	50.7
CL 14 K &	125-250	0.8 +	- 0.081	0.54	4.55	13	76.0
RS 5 K (D		5.1 13	0.103 م	0.21	1.67	6	60.6
8075 SHAFT	TEST KA	32.1 92	0.127 ها.	√ 0.61	60.70	v 11	150.0

* GOLD here too low. Method not suitable due to carbon? Inorganic OREAS 45e in batch 42.5
8075 was 92.6 by neutron activation-ACTLABS
versus 53ppb.
and 91.0 by aquaregia Super MS 41L-ALS

	VA21173801	VA21173801	VA21173801	VA21173801	VA21173801	VA21173801	VA21173801
Sample	ME-VEG41	ME-VEG41	ME-VEG41	ME-VEG41	ME-VEG41	ME-VEG41	ME-VEG41
Description	Ве	Bi	Ca	Cd	Ce	Со	₹— Cr
	ppm	ppm	%	ppm	ppm	ppm	N.A.ppm
CL1 BLA	NK M152 0.07	0.016	1.91	0.081	2.87	0.273	4.1 1.91
CL3 K I I	0.03	0.150	0.53	0.710	1.30	1.300	7.1 2.62
CL4 KII	0.11	0.207	0.61	0.671	7.49	3.600	12.1 4.82
CL6 K 13	0.05	0.132	0.64	0.746	2.33	2.270	15.6 3.62
CL8 K 4	0.13	0.159	1.53	1.040	12.55	3.910	14.2 6.61
CL 10 K 1) 125-250 0.15	0.163	1.15	0.790	9.04	3.870	26.1 12.10
CL 11 K 10	T 125-250 0.11	0.177	0.78	0.527	6.71	1.680	25.3 8.08
CL 14 K +	125-250 0.17	0.101	1.71	0.666	12.05	4.370	27 13.00
RS 5 KID	0.04	0.210	0.74	0.929	3.11	3.920	49.6 13.90
8075 SHAF	TTEST 0.11	0.188	1.85	0.870	6.43	17.800	51.9 21.00

Sample	VA21173801 ME-VEG41						
Description	Cs	Cu	Fe	Ga	Ge	Hf	Hg
	ppm						
CL1 BLANK	M 152 0.099	3.30	1450	0.503	0.050	0.055	0.097
CL3 K I D	0.267	20.10	940	0.261	0.066	0.016	0.252
CL4 KID	0.403	20.50	4810	1.040	0.085	0.041	0.218
CL6 K 1 D	0.269	17.90	1530	0.494	0.051	0.027	0.222
CL8 K	0.333	22.20	3680	1.140	0.067	0.071	0.212
CL 10 K 10 1	25-250 0.570	13.90	5820	2.900	0.021	0.084	0.174
CL11 KIDT	/25-250 0.356	16.60	3990	2.170	0.043	0.071	0.162
CL 14 K + 1	25-250 0.527	14.30	5920	2.290	0.036	0.127	0.112
RS 5 KID	0.538	24.00	2910	1.230	830.0	0.036	0.206
8075 SHAFT T	EST KO 0.606.	/ 47.60 .	/ 16900	2.570	0.014	0.041	0.510

	VA21173801	VA21173801	VA21173801	VA21173801	VA21173801	VA21173801	VA21173801
Sample	ME-VEG41	ME-VEG41	ME-VEG41	ME-VEG41	ME-VEG41	ME-VEG41	ME-VEG41
Description	In	Κ	La	Li	Mg	Mn	Мо
	ppm	%	ppm	ppm	%	ppm	ppm
CL1 BLAN	K MISZ<0.005	<0.01	1.50	<0.1	0.102	11.3	0.22
CL3 K 13	0.039	0.09	0.74	0.3	0.069	250.0	0.28
CL4 K I	0.048	0.10	4.01	1.1	0.077	299.0	0.44
CL6 K 1]	0.034	0.11	1.29	0.8	0.090	306.0	0.24
CL8 K &	0.035	0.11	5.95	3.3	0.151	661.0	0.37
CL 10 K 1 D	125-250 0.024	0.15	4.54	5.3	0.202	702.0	0.32
CL 11 K 1 B	T125-250 0.031	0.11	3.53	2.6	0.134	200.0	0.30
CL 14 K 🕏	125-250 0.013	0.12	6.02	6.0	0.253	447.0	0.20
RS 5 KID	0.039	0.07	1.60	1.5	0.140	680.0	0.33
8075 SHAF	T TEST 100.046	0.09	2.98	5.8	0.313	1335.0	0.39 /


	VA21173801	VA21173801	VA21173801	VA21173801	VA21173801	VA21173801	VA21173801
Sample	ME-VEG41	ME-VEG41	ME-VEG41	ME-VEG41	ME-VEG41	ME-VEG41	ME-VEG41
Description	Na	Nb	Ni	Р	Pb	Pd	Pt
	%	ppm	ppm	%	ppm	ppb	ppb
CL1 BLAN	K MISZ 0.017	0.163	0.87	0.031	1.33	<1	2
CL3 K D	0.005	0.078	5.98	0.092	7.51	<1	2
CL4 KID	0.004	0.226	6.65	0.101	13.65	1	<1
CL6 K I D	< 0.001	0.178	6.48	0.098	7.02	<1	1
CL8 K A	0.011	0.361	7.08	0.101	10.90	<1	<1
CL 10 K I D	125-250 0.003	1.000	8.98	0.095	14.60	<1	1
CL 11 KIDT	125-250 0.004	0.754	7.23	0.076	17.00	<1	1
CL 14 K -0	125-250 0.003	1.030	9.75	0.086	7.86	<1	1
RS5 KID		0.355	16.50	0.075	15.85	1	1
8075 SHAFT	TEST KO 0.005	0.502	24.20	0.113	50.20	2	3

Sample	VA21173801 ME-VEG41						
Description	Rb	Re	S	Sb	Sc	Se	Sn
	ppm	ppm	%	ppm	ppm	ppm	ppm_
CL1 BLAH	CM ISZ 0.27	<0.001	0.18	0.05	0.56	1.135	0.09
CL3 K [D	•	0.001	0.20	0.19	0.25	2.920	0.35
CL4 K ID	6.39	0.001	0.19	0.23	0.57	2.870	0.38
CL6 K (D	6.58	0.001	0.17	0.16	0.27	2.500	0.27
CL8 K	4.78	0.001	0.22	0.16	0.51	1.435	0.23
CL 10 KID	125-250 14.85	<0.001	0.14	0.10	0.63	1.635	0.29
CL11 KINT		0.001	0.16	0.20	0.48	1.570	0.35
, , , , ,	125-250 10.80	0.001	0.16	0.11	0.99	0.595	0.23
RS 5 K ()	5.60	0.001	0.19	0.18	0.55	1.930	0.47
	TTEST KO 8.46	< 0.001	0.14	√ 0.28	3.08	2.170	1.50 ^{2.7}

	VA21173801	VA21173801	VA21173801	VA21173801	VA21173801	VA21173801	VA21173801
Sample	ME-VEG41	ME-VEG41	ME-VEG41	ME-VEG41	ME-VEG41	ME-VEG41	ME-VEG41
Description	Sr	Ta	Te	Th	Ti	TI	U
	ppm	ppm	ppm	, ppm	%	ppm	ppm
CL1 BLANK	MISZ 72.6	0.010	0.005	0.438	0.004	0.025	0.161
CL3 K 1 J	24.7	0.001	0.008	0.105	0.002	0.041	0.039
CL4 KII	26.3	0.002	0.017	0.170	0.006	0.057	0.248
CL6 KII	27.1	0.002	0.008	0.124	0.006	0.041	0.050
CL8 K 🕁	39.8	0.002	0.014	0.244	0.009	0.055	0.580
CL10 K ID	125-250 33.7	0.002	0.017	0.315	0.025	0.064	0.155
CL11 K D	T 125-250 20.0	0.004	0.016	0.284	0.019	0.041	0.148
CL 14 K &	125-250 42.5	0.003	0.014	0.695	0.025	0.050	0.219
RS5 KID	21.4	0.004	0.018	0.238	0.017	0.041	0.078
8075 SHAPTT	TEST K-0 41.0	0.001	0.047	0.254	0.013	0.056	0.136

	VA21173801	VA21173801	VA21173801	VA21173801	VA21173801
Sample	ME-VEG41	ME-VEG41	ME-VEG41	ME-VEG41	ME-VEG41
Description	V	W	Y	Zn	Zr
	ppm	ppm	ppm	N.A.ppm	ppm
CL1 BLANK	M 152 1.86	0.03	0.623	4 2.5	1.74
CL3 KID	1.99	0.09	0.282	91 90.2	0.52
CL4 KID	6.24	0.08	1.570	63 61.0	1.51
CL6 K 1 D	3.31	0.07	0.398	79 77.6	0.87
CL8 K A	6.35	0.07	2.290	62 99.5	2.84
CL 10 KID	125-250 13.15	0.07	1.055	162 114.5	3.02
CL11 KIST	125-250 8.84	0.07	0.896	47 42.5	2.48
CL 14 K -0-	125-250 13.10	0.08	1.900	81 97.6	4.49
RS5 KID	8.60	0.09	0.533	132 119.0	1.13
8075 SHAFTT	est K o 23.70	0.25	1.440	✓ 249.0 ·	/ 1.59

DT = % sand-silt remaining in decayed regetation (K) 0-6 cm depth, after dry-moirling (except CL6) in plastic gold pan removed dregs.

NAD 83 UTM Zone 17

Painkiller Lake, Coulson Township

(K-Samples are composites of 6 spots in 15 m radius plotted in the center)

Sample #	Easting 54	Northing 538	Sample #	Easting 54	Northing 538
CL 2	8450	6050	CL 9	8446	6735
CL 3	8454	5970	CL 10	8908	6372
CL 4	8222	6521	CL 11	8747	6263
CL 5 E	п	II.	CL 12	8651	6150
CL 6	8317	6608	CL 13	8420	6151
CL 7	8351	6725	CL 14	8525	6147
CL 8	8430	6791			

LOG OF WORK DONE BY H. DAXL ON COUSON CLAIMS 550334-37:

2021:

- Study region, prepare field work, find history JUN 7
- Find access, sampled CL2-3, RS 4-6 for tests X JUN 8
 - Dry samples, plot, make envelopes, sachet. JUN 9
- Sampling CL4 CL9 × JUN 15
 - Dry samples, dean of sticks, etc JUN 16
 - Sieve and prop samples, granned CL 5 < 250 (no gold) JUN 19
- X JUN 20 Sampling CL 10 CL 14
 - Dry and clean samples, plot JUN 22
 - JUN 23 Sieve and prep samples
 - JUN 29 Fill vials, lat order, for neutren activation, fill sadet.
 - SEP 20 Annotate sample list and rents
 - SEP 21 Amnotate + study results N.A.

2022:

- UTM list, location map, plot, copies, study field motes. Sample location + gold maps, traverse map, copy in coices. JAN 15
- JAN 16
- JAN 17 white report
- JAN 18 Write report
- JAN 19 Scran, copy, finalize, file report.