

We are committed to providing <u>accessible customer service</u>. If you need accessible formats or communications supports, please <u>contact us</u>.

Nous tenons à améliorer <u>l'accessibilité des services à la clientèle</u>. Si vous avez besoin de formats accessibles ou d'aide à la communication, veuillez <u>nous contacter</u>.

REPORT ON THE 2019 EXPLORATION PROGRAM AT THE EASTERN EYAPAMIKAMA LAKE PROPERTY OF ROMIOS GOLD RESOURCES INC.

Patricia Mining Division,

Northwestern Ontario.

Exploration Plan: PL-19-000062

NTS Mapsheets 53B/15 Latitude: 52° 55' 55" N Longitude: 90° 37' 30" W

Field Work Date: June 21, 2019

By

John L. Biczok, P.Geo. March 27, 2020

Table of Contents

1.	SUMMARY1
2.	INTRODUCTION
3.	LOCATION AND ACCESS
4.	TOPOGRAPHY
5.	PROPERTY DESCRIPTION
Ex	ploration Plan5
6.	PREVIOUS WORK
7.	REGIONAL GEOLOGY7
	LITHOLOGIES
	STRUCTURE9
	METAMORPHISM
8.	PROPERTY GEOLOGY10
	LITHOLOGIES
	STRUCTURE
9.	2019 EXPLORATION PROGRAM11
10.	DISCUSSION
11.	RECOMMENDATIONS
12.	STATEMENT OF QUALIFICATIONS
13.	LIST OF REFERENCES

LIST OF FIGURES

Figure 1: Regional Location Map	. 4
Figure 2: Eyapamikama Project Claim Map	. 5
Figure 3: General geology of the North Caribou Greenstone Belt and surrounding area	. 8
Figure 4 : Aeromagnetic pattern over the Eyapamikama claim block	11
Figure 5: Geological mapping stops, outcrops and structure	12

LIST OF TABLES

LIST OF APPENDICES

1. SUMMARY

Romios Gold Resources Inc. ("Romios" or "the company") is the 100% owner of 79 current mining cell claims located in the North Caribou Greenstone Belt (NGGB) at the eastern end of Eyapamikama Lake in northwestern Ontario. The claims cover a prominent oval shaped aeromagnetic feature suspected of reflecting a large S-type granite pluton. This type of granite is believed to be related to partial melting of the metasediments elsewhere in the belt due to metamorphism that occurred at approximately the same time as the formation of the Musselwhite gold deposit located ~40 km to the south. This report presents the results of the 2019 field work on the claims by Romios, the Company's first work on the property. Although this was a brief one day field visit by one geologist, geological mapping did locate several dykes of S-type granite on the shore of Eyapamikama Lake flanking the oval magnetic high presumed to reflect a concealed pluton of the same granite. Three quartz veins were located about 800 m from the pluton but these proved to be barren.

Further soil sampling and prospecting around the presumed pluton margins are recommended.

2. INTRODUCTION

Romios Gold Resources Inc. ("Romios" or "the company") is the 100% owner of 79 mining cell claims located at the eastern end of Eyapamikama Lake in northwestern Ontario (Figs. 1, 2). Romios acquired the claims by "online staking" on April 10th and 12th, 2018 to cover a prominent oval shaped aeromagnetic feature situated along the central long axis of the North Caribou Greenstone Belt (NGB) at the point where it takes major bend in direction from east-west in the western part of the belt to almost north-south in the central portion (Fig. 3). The author was aware of unconfirmed verbal reports of the presence of S-type granite dykes along the shore of Eyapamikama Lake and the aeromagnetic feature was suspected of reflecting a large S-type granite pluton. This type of granite is believed to be related to partial melting of the metasediments elsewhere in the belt due to metamorphism that occurred at approximately the same time as the formation of the Musselwhite gold deposit. If this magnetic feature is indeed an S-type pluton, it would be the largest such intrusion by far in the NCGB. Some researchers (e.g. Isaac, 2008) have suggested that fluids from these S-type intrusions contributed to the oreforming fluids at Musselwhite and/or they are both products of the same metamorphic event. In addition to the possibility of a genetic link between the presumed pluton and potential gold mineralization, the presence of a pluton at major structural bend in a belt undergoing cratonscale collision and major dextral strain may have created a significant extensional setting in the pressure shadows around the pluton. Such pressure shadows are often highly favourable settings for gold mineralization (e.g. the San Antonio mine in SE Manitoba).

This report presents the results of the 2019 field work on the claims by Romios, the Company's first work on the property. Although this was a brief one day field visit by one geologist, geological mapping did locate several dykes of S-type granite on the shore of Eyapamikama Lake flanking the oval magnetic high presumed to reflect a concealed pluton of the same granite.

The following personnel was involved in the field work: John Biczok, H.B.Sc., P. Geo.; Ottawa, ON

3. LOCATION AND ACCESS

The eastern Eyapamikama Lake property held by Romios is located 500 km NNW of Thunder Bay, Ontario and 160 km north of Pickle Lake, Ontario (Fig. 1). It lies within the Patricia Mining Division on NTS map sheet 53B/15. The claim block is centred at about Latitude 52° 55′ 40″ N and Longitude 90° 37′ 30″ W. The property begins 36 km north-northwest of Newmont's road accessible Musselwhite gold mine on Opapimiskan Lake. The nearest settlement is the First Nation community of Round Lake (a.k.a. Weagamow) which is 45 km to the west of the claims. Both Pickle Lake and Round Lake are serviced by regular scheduled air service from Thunder Bay and charter float plane service is available from both communities. The paved Highway 599, leads to Pickle Lake from the Trans-Canada highway, 300km to the south, and an all-weather gravel road, the "North Road", extends from Pickle Lake to Round Lake with a branch to the Musselwhite Mine.

Access to the Eyapamikama Lake property for this one-day program was by helicopter from a rented camp on Skinner Lake 35 km to the SE. In future, access may be gained by float-equipped from the community of Round Lake 45 km to the west which is now road accessible year-round.

4. TOPOGRAPHY

The topography of the Eyapamikama Lake area features the subdued relief typical of most of the northern Canadian Shield, the majority of the claims are barely 10 m above the 298 m ASL elevation of Eyapamikama Lake. The terrain is relatively flat with numerous low-lying, somewhat boggy areas, particularly in the SE ½ of the claim block. The topography is interrupted by several north-trending low ridges and rows of outcrops on the northernmost claims. The majority of the region is thoroughly forested with spruce, tamarack and jack pine with minor birch or poplar dominant areas. Several lakes ~1/2 km wide and ~1 km long as well as a few small ponds occur throughout the claims southeast of Eyapamikama Lake. The area is somewhat dominated by a SSW-trending linear glacial dispersion pattern that extends westward across much of North Caribou Lake. All of the area traversed was covered by moderately dense conifer forest, no major swamps were encountered.

Figure 1: Regional Location Map

5. PROPERTY DESCRIPTION

The eastern Eyapamikama Lake property of Romios consists of 79 cell claims (Fig. 2) which were acquired by online staking on April 10th, 2018 and in the days shortly thereafter. The claims cover a total area of 1539.76 hectares, details are listed in Table 1 below. There is no record of any previous claims over most of this ground. This report presents the results of the first work done on the claims by Romios.

Romios currently holds 79 mining cell claims in the eastern Eyapamikama Lake area (see Table 1, Fig. 2). The claims were acquired by the company by online staking on April 10th and 12th, 2018. The northwestern portion of the claim block, including the 2019 work area, is presented on a map of the provincial claim cell grid in Appendix Two at the end of the report.

Figure 2: Eyapamikama Project Claim Map

Exploration Plan: An application for an early Exploration Plan was submitted to MNDM on May 21, 2019 and assessed on June 21, 2019. The Exploration Plan, #PL-19-000062, covers only the initial, grass-roots examination of these claims consisting of geological mapping, prospecting, soil sampling +/- ground geophysical surveys if the initial results are encouraging. Any work beyond this will be covered in an application for an Exploration Permit if need be.

6. PREVIOUS WORK

There is no record of any previous exploration work specifically on the current claim block except for a small overlapping claim block in the SE corner of the current claims where Northern Dynasty conducted a program of VLF, geological and geochemical surveys in 1984. Past exploration in this

Claim #	Cell ID	Anniversary Date	Holder Area (ha) Area				Vork Juired
500811	53B15J337	2020-04-10	(100) ROMIOS GOLD RESOURCES INC.	19.49	ERICHSEN LAKE	\$	400
500812	53B15J355	2020-04-10	(100) ROMIOS GOLD RESOURCES INC.	19.49	ERICHSEN LAKE	\$	400
500813	53B15J356	2020-04-10	(100) ROMIOS GOLD RESOURCES INC.	19.49	ERICHSEN LAKE	\$	400
500814	53B15I321	2020-04-10	(100) ROMIOS GOLD RESOURCES INC.	19.49	ERICHSEN LAKE	\$	400
500815	53B15I322	2020-04-10	(100) ROMIOS GOLD RESOURCES INC.	19.49	ERICHSEN LAKE	\$	400
500816	53B15H042	2020-04-10	(100) ROMIOS GOLD RESOURCES INC.	19.50	ERICHSEN LAKE	\$	400
500817	53B15H043	2020-04-10	(100) ROMIOS GOLD RESOURCES INC.	19.50	ERICHSEN LAKE	\$	400
500818	53B15H044	2020-04-10	(100) ROMIOS GOLD RESOURCES INC.	19.50	ERICHSEN LAKE	\$	400
500819	53B15H021	2020-04-10	(100) ROMIOS GOLD RESOURCES INC.	19.50	ERICHSEN LAKE	\$	400
500820	53B15H022	2020-04-10	(100) ROMIOS GOLD RESOURCES INC.	19.50	ERICHSEN LAKE	\$	400
500821	53B15H023	2020-04-10	(100) ROMIOS GOLD RESOURCES INC.	19.50	ERICHSEN LAKE	\$	400
500822	53B15H024	2020-04-10	(100) ROMIOS GOLD RESOURCES INC.	19.50	ERICHSEN LAKE	\$	400
500823	53B15H001	2020-04-10	(100) ROMIOS GOLD RESOURCES INC.	19.50	ERICHSEN LAKE	\$	400
500824	53B15H002	2020-04-10	(100) ROMIOS GOLD RESOURCES INC.	19.50	ERICHSEN LAKE	\$	400
500825	53B15H003	2020-04-10	(100) ROMIOS GOLD RESOURCES INC.	19.50	ERICHSEN LAKE	\$	400
500826	53B15H004	2020-04-10	(100) ROMIOS GOLD RESOURCES INC.	19.50	ERICHSEN LAKE	\$	400
500827	53B15H005	2020-04-10	(100) ROMIOS GOLD RESOURCES INC.	19.50	ERICHSEN LAKE	\$	400
500828	53B15I382	2020-04-10	(100) ROMIOS GOLD RESOURCES INC.	19.49	ERICHSEN LAKE	\$	400
500829	53B15I383	2020-04-10	(100) ROMIOS GOLD RESOURCES INC.	19.49	ERICHSEN LAKE	\$	400
500830	53B15I384	2020-04-10	(100) ROMIOS GOLD RESOURCES INC.	19.49	ERICHSEN LAKE	\$	400
500831	53B15I385	2020-04-10	(100) ROMIOS GOLD RESOURCES INC.	19.49	ERICHSEN LAKE	\$	400
500832	53B15I386	2020-04-10	(100) ROMIOS GOLD RESOURCES INC.	19.49	ERICHSEN LAKE	\$	400
500833	53B15I362	2020-04-10	(100) ROMIOS GOLD RESOURCES INC.	19.49	ERICHSEN LAKE	\$	400
500834	53B15I363	2020-04-10	(100) ROMIOS GOLD RESOURCES INC.	19.49	ERICHSEN LAKE	\$	400
500835	53B15I364	2020-04-10	(100) ROMIOS GOLD RESOURCES INC.	19.49	ERICHSEN LAKE	\$	400
500836	53B15I365	2020-04-10	(100) ROMIOS GOLD RESOURCES INC.	19.49	ERICHSEN LAKE	\$	400
500837	53B15I366	2020-04-10	(100) ROMIOS GOLD RESOURCES INC.	19.49	ERICHSEN LAKE	\$	400
500838	53B15I342	2020-04-10	(100) ROMIOS GOLD RESOURCES INC.	19.49	ERICHSEN LAKE	\$	400
500839	53B15I343	2020-04-10	(100) ROMIOS GOLD RESOURCES INC.	19.49	ERICHSEN LAKE	\$	400
500790	53B15J274	2020-04-10	(100) ROMIOS GOLD RESOURCES INC.	19.48	ERICHSEN LAKE	\$	400
500791	53B15J275	2020-04-10	(100) ROMIOS GOLD RESOURCES INC.	19.48	ERICHSEN LAKE	\$	400
500792	53B15J276	2020-04-10	(100) ROMIOS GOLD RESOURCES INC.	19.48	ERICHSEN LAKE	\$	400
500793	53B15J277	2020-04-10	(100) ROMIOS GOLD RESOURCES INC.	19.48	ERICHSEN LAKE	\$	400
500794	53B15J294	2020-04-10	(100) ROMIOS GOLD RESOURCES INC.	19.48	ERICHSEN LAKE	\$	400
500795	53B15J295	2020-04-10	(100) ROMIOS GOLD RESOURCES INC.	19.48	ERICHSEN LAKE	\$	400
500796	53B15J296	2020-04-10	(100) ROMIOS GOLD RESOURCES INC.	19.48	ERICHSEN LAKE	\$	400
500797	53B15J297	2020-04-10	(100) ROMIOS GOLD RESOURCES INC.	19.48	ERICHSEN LAKE	\$	400
500798	53B15J298	2020-04-10	(100) ROMIOS GOLD RESOURCES INC.	19.48	ERICHSEN LAKE	\$	400
500799	53B15J299	2020-04-10	(100) ROMIOS GOLD RESOURCES INC.	19.48	ERICHSEN LAKE	\$	400
500800	53B15J314	2020-04-10	(100) ROMIOS GOLD RESOURCES INC.	19.49	ERICHSEN LAKE	\$	400
500801	53B15J315	2020-04-10	(100) ROMIOS GOLD RESOURCES INC.	19.49	ERICHSEN LAKE	\$	400
500802	53B15J316	2020-04-10	(100) ROMIOS GOLD RESOURCES INC.	19.49	ERICHSEN LAKE	\$	400
500803	53B15J317	2020-04-10	(100) ROMIOS GOLD RESOURCES INC.	19.49	ERICHSEN LAKE	\$	400
500804	53B15J318	2020-04-10	(100) ROMIOS GOLD RESOURCES INC.	19.49	ERICHSEN LAKE	\$	400
500805	53B15J319	2020-04-10	(100) ROMIOS GOLD RESOURCES INC.	19.49	ERICHSEN LAKE	\$	400
500806	53B15J320	2020-04-10	(100) ROMIOS GOLD RESOURCES INC.	19.49	ERICHSEN LAKE	\$	400
500807	53B15I301	2020-04-10	(100) ROMIOS GOLD RESOURCES INC.	19.49	ERICHSEN LAKE	\$	400

 Table 1 : Claims list, Eyapamikama Lake Project

Claim #	Cell ID	Anniversary	Holder	Area (ha)	Area		Work
		Date				Re	quired
500808	53B15J334	2020-04-10	(100) ROMIOS GOLD RESOURCES INC.	19.49	ERICHSEN LAKE	Ş	400
500809	53B15J335	2020-04-10	(100) ROMIOS GOLD RESOURCES INC.	19.49	ERICHSEN LAKE	\$	400
500810	53B15J336	2020-04-10	(100) ROMIOS GOLD RESOURCES INC.	19.49	ERICHSEN LAKE	\$	400
501137	53B15H045	2020-04-10	(100) ROMIOS GOLD RESOURCES INC.	19.50	ERICHSEN LAKE	\$	400
501138	53B15H046	2020-04-10	(100) ROMIOS GOLD RESOURCES INC.	19.50	ERICHSEN LAKE	\$	400
501139	53B15H026	2020-04-10	(100) ROMIOS GOLD RESOURCES INC.	19.50	ERICHSEN LAKE	\$	400
501140	53B15H025	2020-04-10	(100) ROMIOS GOLD RESOURCES INC.	19.50	ERICHSEN LAKE	\$	400
501141	53B15H006	2020-04-10	(100) ROMIOS GOLD RESOURCES INC.	19.50	ERICHSEN LAKE	\$	400
511162	53B15J399	2020-04-10	(100) ROMIOS GOLD RESOURCES INC.	19.49	ERICHSEN LAKE	\$	400
511163	53B15J380	2020-04-10	(100) ROMIOS GOLD RESOURCES INC.	19.49	ERICHSEN LAKE	\$	400
511164	53B15J357	2020-04-10	(100) ROMIOS GOLD RESOURCES INC.	19.49	ERICHSEN LAKE	\$	400
511165	53B15J378	2020-04-10	(100) ROMIOS GOLD RESOURCES INC.	19.49	ERICHSEN LAKE	\$	400
511166	53B15J397	2020-04-10	(100) ROMIOS GOLD RESOURCES INC.	19.49	ERICHSEN LAKE	\$	400
511167	53B15G020	2020-04-10	(100) ROMIOS GOLD RESOURCES INC.	19.50	ERICHSEN LAKE	\$	400
511168	53B15I361	2020-04-10	(100) ROMIOS GOLD RESOURCES INC.	19.49	ERICHSEN LAKE	\$	400
511169	53B15J375	2020-04-10	(100) ROMIOS GOLD RESOURCES INC.	19.49	ERICHSEN LAKE	\$	400
511170	53B15J376	2020-04-10	(100) ROMIOS GOLD RESOURCES INC.	19.49	ERICHSEN LAKE	\$	400
511171	53B15J400	2020-04-10	(100) ROMIOS GOLD RESOURCES INC.	19.49	ERICHSEN LAKE	\$	400
511172	53B15I381	2020-04-10	(100) ROMIOS GOLD RESOURCES INC.	19.49	ERICHSEN LAKE	\$	400
511173	53B15J377	2020-04-10	(100) ROMIOS GOLD RESOURCES INC.	19.49	ERICHSEN LAKE	\$	400
511174	53B15J398	2020-04-10	(100) ROMIOS GOLD RESOURCES INC.	19.49	ERICHSEN LAKE	\$	400
511175	53B15J379	2020-04-10	(100) ROMIOS GOLD RESOURCES INC.	19.49	ERICHSEN LAKE	\$	400
511176	53B15G018	2020-04-10	(100) ROMIOS GOLD RESOURCES INC.	19.50	ERICHSEN LAKE	\$	400
511177	53B15G019	2020-04-10	(100) ROMIOS GOLD RESOURCES INC.	19.50	ERICHSEN LAKE	\$	400
511178	53B15J396	2020-04-10	(100) ROMIOS GOLD RESOURCES INC.	19.49	ERICHSEN LAKE	\$	400
511179	53B15J358	2020-04-10	(100) ROMIOS GOLD RESOURCES INC.	19.49	ERICHSEN LAKE	\$	400
516053	53B15J340	2020-04-12	(100) ROMIOS GOLD RESOURCES INC.	19.49	ERICHSEN LAKE	\$	400
516054	53B15I341	2020-04-12	(100) ROMIOS GOLD RESOURCES INC.	19.49	ERICHSEN LAKE	\$	400
516055	53B15J338	2020-04-12	(100) ROMIOS GOLD RESOURCES INC.	19.49	ERICHSEN LAKE	\$	400
516056	53B15J339	2020-04-12	(100) ROMIOS GOLD RESOURCES INC.	19.49	ERICHSEN LAKE	\$	400
516057	53B15J360	2020-04-12	(100) ROMIOS GOLD RESOURCES INC.	19.49	ERICHSEN LAKF	\$	400
516058	53B15J359	2020-04-12	(100) ROMIOS GOLD RESOURCES INC.	19.49	ERICHSEN LAKE	Ś	400
79				1539.76		Ś	31.600

part of the NCGB has been focussed almost exclusively on the iron formations in the North Rim and South Rim assemblages with essentially no work on the Eyapamikama metasediments.

In 1985 Aerodat undertook an airborne EM and magnetic survey of the entire NCGB under contract to the Ontario government. This survey outlined the oval magnetic pluton which is the focus of this program.

7. REGIONAL GEOLOGY

The project area lies at the eastern end of the E-W trending northern portion of the Archean North Caribou Lake greenstone belt (NCGB) (Fig. 3), one of the northernmost belts in the North

Caribou Superterrane adjacent to its internal contact with the Island Lake Domain. The belt was mapped in detail by the Ontario Geological Survey over a 3 year period in the 1980's (Breaks et al., 2001). These workers divided the belt into 8 groups which were modified somewhat by Thurston, (1991) and Hollings and Kerrich (1999). The Romios claims are entirely underlain by one assemblage, the Eyapamikama siliciclastic metasediments, intruded by a large oval pluton and multiple dykes of an S-type granite. For information on the other units the reader is referred to Breaks et al. (2001) and Biczok et al. (2012).

Figure 3: General geology of the North Caribou Greenstone Belt and surrounding area.

LITHOLOGIES

The central portion of the NCGB and the adjacent part of the northwestern arm are dominated by three assemblages designated by Breaks et al. (1986, 2001) as the South Rim Volcanics along the southern and western margins of the belt, the Eyapamikama metasediments along the axial centre of the belt, and the North Rim volcanic assemblage along the northern and eastern margins of the belt (Fig. 3). Only the Eyapamikama metasediments are found on the claims discussed in this report.

The Eyapamikama assemblage (ELS) is described by Breaks et al. (2001) as "a fining-upward sequence in which basal alluvium and fan delta conglomeratic cycles grade vertically and laterally into finer grained metasedimentary rocks". It occupies the centre of the belt for tens of kilometres. The ELS was dated at between <2846 Ma and <2880 Ma by Davis and Stott (2001) and Kelly and Schneider (2015) report a minimum U-Pb zircon core age of 2800 Ma from eleven samples with younger overgrowths in the 2788-2703 Ma range (due to a regional hydrothermal event).

STRUCTURE

Three periods of deformation have been mapped in the North Caribou belt by Hall and Rigg (1986) and Breaks et al. (2001 and references therein) and supported by subsequent workers.

The earliest event, D_1 , was until recently recognized almost exclusively only in iron formations as tight isoclinal folds with a penetrative foliation. Mapping by the author and others in the Musselwhite mine area combined with high-precision age-dating by the GSC, revealed a major F1 fold that has completely overturned the stratigraphy in the mine area. Many small scale recumbent folds have also been found in mapping of the iron formations in that area. There is no indication as yet if this F1 event was prevalent in the Eyapamikama assemblage. D_2 is the strongest phase of deformation and is evidence by northwest-plunging folds, often with a steeply dipping axial planar foliation. D_3 appears to have been a relatively minor, heterogeneous event that produced small-scale, asymmetric, broad to open or chevron folds with a steep southwest trending crenulation cleavage (Oswald et al., 2014).

Mineral lineations throughout the NCGB exhibit a well-developed and somewhat unusual pattern in that they are quite shallow plunging and reverse plunge directions at several points along the belt, but their axes remain roughly parallel to the axis of the belt overall. The reason for this flip in the lineation plunge is uncertain but may in part be due to the intrusion of the crescent shaped North Caribou pluton (Stott and Biczok, 2010) or perhaps a large-scale F₃ effect. In the central part of the belt, in the region of the Romios claims, the intensity of deformation appears to increase eastward towards the contact with the Schade Lake gneiss complex, a contact marked locally by a highly lineated L-tectonite plunging very shallowly (<5 deg) to the southeast. Examination of the aeromagnetic pattern of the Schade Lake gneiss suggest that it underwent a pronounced south-directed movement adjacent to the central part of the greenstone belt and this deformation event likely induced a dextral strain throughout much of the adjacent belt. Dextral offsets on fault structures of all scales are the norm throughout the NCGB. The potential for this dextral movement to have produced large scale pressure shadows favourable for the generation of vein-type gold mineralization at the NW and SE margins of the central S-type granite pluton is the primary reason for Romios' decision to stake claims over this area.

METAMORPHISM

The metamorphic grade of the NCGB exhibits an overall increase from low grade (chlorite and biotite bearing assemblages) in the western arm to medium grade assemblages east and south of Doubtful Lake where index minerals such as garnet, staurolite, cordierite, grunerite and rarely, sillimanite are found (Beaks et al. 2001). Work by Kelly and Schneider (2015) suggests that some of the higher-grade assemblages are produced by contact metamorphism from small intrusions throughout the belt. Assemblages in the metasedimentary rocks at the Eyapamikama Lake property include minor garnets and widespread staurolite "knobs" up to 2 cm long, retrograded to mica and quartz (?), indicative of medium grade (amphibolite) conditions.

8. PROPERTY GEOLOGY

The area of the Romios claims at Eyapamikama Lake were mapped by the Ontario Geological Survey at various times and levels of detail but most recently and in the greatest detail by Breaks et al. (1986). The overall setting is as previously described, i.e., a 3.8 km wide, NW-SE trending belt of fine-grained, amphibolite grade siliciclastic metasediments flanked to the south of the claims by South Rim volcanic>sedimentary rocks and to the north by the North Rim volcanic assemblage. The following unit descriptions are based on observations by Romios' geologists.

LITHOLOGIES

Eyapamikama Assemblage: The metasediments of this assemblage crop out in narrow outcrops along the shoreline of Eyapamikama Lake. They are typically hard, well foliated, quartz dominant with fine-grained, ~round quartz grains > feldspar grains in a siliceous, recrystallized matrix with generally minor biotite. Outcrop surfaces commonly display elongated "knobs" 1-2 cm in length that are presumed to be staurolite retrograded to a fine-grained mixture of quartz and micas.

S-type Granite: Several dykes of S-type granite were located by the author along the shoreline of Eyapamikama Lake closest to the presumed granite pluton (based upon its aeromagnetic pattern; Fig. 4). The dykes are composed of medium-grained feldspar>quartz and several % of fine-grained white mica. A helicopter-borne visual reconnaissance flight over the assumed area of the pluton failed to locate any outcrops.

STRUCTURE

Foliation and bedding orientations in the outcrops mapped during this program were typically straight and planar. Those in the southern map area (Fig. 5) trend SSE and dip moderately to the SW. Foliations in the northern map area trend more ESE and dip steeply north and south.

Figure 4 : Aeromagnetic pattern over the Eyapamikama claim block (from a reprocessing of the 1985 Aerodat survey by P. Keating (OGS 2003))

9. 2019 EXPLORATION PROGRAM

The 2019 exploration program consisted of 1 day of traverses by the geologist on June 21, 2019. After an initial helicopter-borne aerial examination of the area in an unsuccessful attempt to locate outcrops along the margins of the target granite pluton, the geologist set out at 2 different points along the shore of Eyapamikama Lake and conducted 2,905m of traverses along the shoreline and a short distance inland (Fig. 5) to presumed contact of the pluton (based on the aeromagnetic pattern, Fig. 4). Navigation was aided by the use of hand-held GPS devices utilising the UTM NAD 83, Zone 15 datum.

The details of the claims traversed can be found in Appendix 1: Geological Mapping Stop Locations and Details.

Figure 5: Geological mapping stops, outcrops and structure

GEOLOGICAL MAPPING: Descriptions of the lithologies encountered are presented above in Chapter 7.

10.DISCUSSION

Even though the exploration program conducted on the Eyapamikama claims was only one day long, it was successful in regards to:

Geological mapping confirmed the presence of multiple S-type granite dykes in close proximity to the margins of a suspected pluton of the same granite. This S-type granite is abundant in the vicinity of the Musselwhite gold mine and is the only intrusive rock that is close to age to the mineralization at Musselwhite. Some researchers (Isaac, 2008) have suggested that fluids from these granite melts contributed to the ore-forming fluid at Musselwhite whereas others suggest that 2 events – partial melting of the Eyapamikama metasediments to produce these S-type granites, and metamorphogenic dewatering of the volcanosedimentary pile to generate ore fluids, are 2 cogenetic results of the same metamorphic process. In either case, the presence of S-type granites is encouraging as an indication of local partial melting with the potential to have produced gold bearing fluids. The presence of a granite pluton in a major structural bend as is present on this claim block is also an ideal candidate to create large pressure-shadows and extensional regimes that may host gold vein mineralization.

11.RECOMMENDATIONS

A program of systematic prospecting and humus sampling is recommended to explore the potential of the Eyapamikama claims to host gold mineralization around the margins of the presumed S-type granite pluton. Sampling should be conducted in late summer to give the ground beneath the extensive moss cover time to melt after the winter. This program should focus initially on the NW margin of the pluton where there is the greatest potential for vein-type mineralization in the structural pressure shadows.

Respectfully submitted,

John Biczok

John L. Biczok, P.Geo. March 27, 2020

12.STATEMENT OF QUALIFICATIONS

STATEMENT OF QUALIFICATIONS

I, John Biczok, of the city of Greely, Ontario, do hereby swear and affirm that:

- I am a Professional Geologist registered in good standing with Professional Geoscientists Ontario (since 2007).
- I have an Honours B.Sc. degree in Geology from Lakehead University in Thunder Bay, ON.
- 3. I was employed as an exploration geologist by several major mining companies on a full-time basis from 1979 to 2003 throughout central and western Canada and much of India. From 2003 to March 2015 I was employed as a geologist at the Musselwhite gold mine, initially as a project geologist, followed by a senior exploration geologist position and then as senior research geologist. Since August 2016 I have been employed on a part-time basis by Romios Gold Resources Inc.
- I currently serve as Vice President of Exploration for Romios Gold Resources Inc. and personally took part in and supervised the geological work described in this report.
- My only financial interest in Romios Gold Resources Inc. are a number of vested and pending stock options. I have no personal interest in the claims described herein.

Signed: 0 Date:

13.LIST OF REFERENCES

Biczok, J., Hollings, P., Klipfel, P., Heaman, L., Maas, R., Hamilton, M., Kamo, S., and Friedman, R., 2012. Geochronology of the North Caribou greenstone belt, Superior Province Canada: Implications for tectonic history and gold mineralization at the Musselwhite mine: Precambrian Research, v. 192-195, p. 209-230.

Breaks, F.W., Bartlett, J.R., DeKemp, E.A. and Osmani, I.A., 1986. Precambrian Geology of the Doubtful-Akow Lakes Area (Opapimiskan Lake Project), Kenora District (Patricia Portion); Ontario Geological Survey, Map P.2965, Geological series – Preliminary Map.

Breaks, F.W. Bartlett, J.R., de Kemp, E.A., Finamore, P.F., Jones, G.R., Macdonald, A.J., Shields, H.N., and Wallace, H., 1984. Opapimiskan Lake Project: Precambrian Geology, Quaternary Geology, and Mineral Deposits of the North Caribou Lake Area, District of Kenora, Patricia Portion. Ontario Geological Survey, Miscellaneous Paper 119, S49, pp. 258-273.

Breaks, F.W., Osmani, I.A., Bartlett, J.R., Finamore, P.F. and Wallace, H., 1985. Opapimiskan Lake Project: Precambrian and Quaternary Geology of the North Caribou Lake Area, District of Kenora, Patricia Portion. Ontario Geological Survey, Miscellaneous Paper 126, S54, p. 268-276.

Breaks, F.W., Osmani, I.A., and de Kemp, E.A., 1986. Opapimiskan Lake Project: Precambrian Geology pf the Opapimiskan-Forrester Lakes Area, District of Kenora, Patricia Portion. Ontario Geological Survey, Miscellaneous Paper 132, p. 368-378.

Breaks, F.W., Osmani, I.A., and de Kemp, E.A., 2001. Geology of the North Caribou Lake Area, northwestern Ontario. Ontario Geological Survey, Open File Report 6023, 80 p.

Davis, D.W., Stott, G.M., 2001. Geochronology of several greenstone belts in the Sachigo Subprovince, northwestern Ontario, #18 Project Unit 89-7. In: Baker, C.L., Kelly, R.I., Parker, J.R. (Eds.), Summary of Field Work and Other Activities 2001. Ontario Geological Survey Open File Report 6070, pp. 18-1–18-13.

Hall, R.S. and Rigg, D.M. 1986. Geology of the West Anticline zone, Musselwhite prospect, Opapimiskan Lake, Ontario, Canada; in Proceedings of Gold '86, Konsult International, Toronto, Ontario, p.124-136.

Hollings, P., and Kerrich, R., 1999. Trace element systematics of ultramafic and mafic volcanic rocks from the 3 Ga North Caribou greenstone belt, northwestern Superior Province. Precambrian Research, v. 93, p. 257-279.

Isaac, C., 2008. Stable isotope (N, O, H) geochemistry, petrology and compositions of biotite of the Musselwhite Mine, Ontario: implications for mineralisation. Unpublished M.Sc. thesis, Lakehead University. 133 pages.

Kelly, C.J. and Schneider, D.A., 2015. Insights into the timing of mineralization and metamorphism in the North Caribou greenstone belt, western Superior Province, In: Targeted Geoscience Initiative 4: Contributions to the Understanding of Precambrian Lode Gold Deposits and Implications for Exploration, (ed.) B. Dubé and P. Mercier-Langevin; Geological Survey of Canada, Open File 7852, p. 245–253

OGS 1985: Airborne Electromagnetic and Total Intensity Magnetic Survey, Opapimiskan Lake Area, District of Kenora, Patricia Portion; by Aerodat Limited for Ontario Geological Survey, Geophysical/Geochemical Series, Maps 80735, 80736, 80737 and 80738; Scale 1:20 000. Survey and compilation March to July, 1985.

McNicoll, V., Dubé, B., Biczok, J., Castonguay, S., Oswald, W., Mercier-Langevin, P., Skulski, T. and Malo, M., 2013. The Musselwhite gold deposit, North Caribou greenstone belt, Ontario: New high-precision U-Pb ages and their impact on the geological and structural setting of the deposit. GAC-MAC 2013 Winnipeg. Joint annual meeting of the Geological Association of Canada and the Mineralogical Association of Canada, Winnipeg, 2013. Program with Abstracts.

Ontario Geological Survey 2003. Ontario airborne geophysical surveys, magnetic data, Opapimiskan area; Ontario Geological Survey, Geophysical Data Set 1011.

Oswald, W., Castonguay, S., Dubé, B, Mercier-Langevin, P., Malo, M., Biczok, J., and McNicoll, V.J., 2014 Targeted Geoscience Initiative 4. Lode Gold Deposits in Ancient Deformed and metamorphosed Terranes: Detailed Mapping of Key Stripped Outcrops in the Musselwhite Mine Area, Northwestern Ontario, and Implications for the Geological and Structural Setting of the Gold Mineralization. Summary of Field Work and Other Activities 2014, Ontario Geological Survey, Open File Report 6300, p.42-1 to 42-15.

Stott, G.M., Biczok, J., 2010. North Caribou greenstone belt: gold and its possible relation to the North Caribou pluton emplacement – a belt wide contact strain aureole? In: Ayer, J.A., Easton, R.M., Beakhouse, G.P., Stott, G.M., Kelly, R.I., Debicki, E.J., Parker, J.R., Brown, T. (Eds.), Summary of Field Work and Other Activities 2010. Ontario Geological Survey, Open File Report 6260, pp. 22-1–22-12.

Thurston, P.C., Osmani, I.A., Stone, D., 1991. Northwestern Superior Province Review and Terrane Analysis: Geology of Ontario. Ontario Geological Survey, pp. 81–144.

Van Lankvelt, A., 2013. Protracted magmatism within the North Caribou Terrane, Superior Province: petrology, geochronology, and geochemistry of Meso- to Neoarchean TTG suites; M.Sc. Thesis, University of Ottawa, Ottawa, Ontario, 208 p.

APPENDIX ONE:

GEOLOGICAL MAPPING STOP LOCATIONS AND DETAILS

Total Metres per claim

TRAVERSE									
	Metres								
500793	170								
500792	480								
500796	830								
500795	15								
500801	920								
500802	490								
TOTAL	2905								

STOP_#	Date	Easting	Northing	Area	Rock Type	Description	Foliation Strike	Foliation Dip	Bedding Strike	Bedding Dip	Vein/dike/s tructure/	Vein/dike/s tructure
21-00	June 21, 2019	657140	5867447	SE shore Eyap Lake		Helicopter landing site, start of traverse		·				
21-01a	June 21, 2019	657318	5867657	SE shore Eyap Lake	Eyap L. siliciclastics	Interlayered f.g., hornfelsed(?) homogeneous, equigranular quartzite/arenite and layers of ¬5 mm x 1-2cm staurolite(?) bearing metaseds weathered into knobby surfaces. Matrix mainly qtz, minor bio. Co-ords at south end of o/c.			195	35		
21-01b	June 21, 2019	657308	5867643	SE shore Eyap Lake	Eyap L. siliciclastics	As above. Co-ords are north end of long thin o/c.						
21-01c	June 21, 2019	657309	5867647	SE shore Eyap Lake	Felsite Dyke	F.g. felsite dyke cutting the metaseds. 40cm wide.					168	80
21-02	June 21, 2019	657346	5867692	SE shore Eyap Lake	S-type Granite	1x8m o/c of S-type Granite along shoreline. ¬massive, mainly m.g. white Fd-Qtz with a few % of f.g. white mica. NE and SE edges in contact with metaseds.						
21-03	June 21, 2019	657371	5867722.5	SE shore Eyap Lake	Staurolite Arenite	Same knobby weathering staurolite(?) rich arenite or quartzite as before.						
21-04	June 21, 2019	657382	5867748.5	SE shore Eyap Lake	Eyap L. siliciclastics	As per stop 21-1a, interbedded equigranular and knobby weathering siliciclastics. o/c ¬5 m long.			192	57		
21-05	June 21, 2019	657400	5867760	SE shore Eyap Lake	S-type Granite	80 cm wide dyke of same S-type Granite as St. 21- 2, cutting siliciclastic metaseds, o/c ~ 5m long x 1m trending 020 deg.					180	70
21-06	June 21, 2019	657400	5867774	SE shore Eyap Lake	Eyap L. siliciclastics	3x7m o/c of Eyap Lake siliciclastics, trending 020 deg.			178	70		
21-07	June 21, 2019	657497	5867893	SE shore Eyap Lake	Eyap L. siliciclastics	1x2m o/c of the knobby weathered staurolite(?) bearing siliciclastic seds.						
21-08	June 21, 2019	657600	5867600	SE shore Eyap Lake	No outcrop, thick moss & ovbn	No outcrop in this area since last stop. Walking inland (¬East) toward assumed granite margin.						
21-09	June 21, 2019	657551	5867465	SE shore Eyap Lake	No outcrop, thick moss & ovbn	Still no outcrop in this area.						
21-10	June 21, 2019	657530	5867470	SE shore Eyap Lake	No outcrop, thick moss & ovbn	Still no outcrop in this area.						
21-11	June 21, 2019	657707	5868593	SE shore Eyap Lake	Eyap L. siliciclastics	1m x 35 m shoreline o/c of f.g., Eyap siliclastics (quartzite/arenite). 30cm Qtz vein ?? To foliation	292	81				
21-12	June 21, 2019	657713	5868607	SE shore Eyap Lake	Eyap L. siliciclastics	Sandstone/wacke with f.g. round qtz - fd grains in siliceous matrix.						
21-13	June 21, 2019	657784	5868666	SE shore Eyap Lake	Eyap L. siliciclastics	Sandstone/wacke with f.g. round qtz - fd grains in siliceous matrix.	120	75				

STOP_#	Date	Easting	Northing	Area	Rock Type		Description	Foliation Strike	Foliation Dip	Bedding Strike	Bedding Dip	Vein/dike/s tructure/	Vein/dike/s tructure
21-14	June 21, 2019	657814	5868696	SE shore Eyap Lake	Eyap L. siliciclastics	Sandstone/wacke siliceous matrix.	110	90					
21-15	June 21, 2019	658019	5868767	SE shore Eyap Lake	Eyap L. siliciclastics	Sandstone/wacke siliceous matrix. 2	292	81					
						Abbreviations:							
	f.g. fine-grained												
						m.g medium-grained							
						c.g	c.g coarse-grained						
						Qtz	Quartz						
						Fd	Feldspar						
						Bio	Biotite						
						Eyap	Eyapamikama						
						o/c outcrop							
						co-ords	coordinates						

APPENDIX TWO:

NORTHWESTERN PORTION OF ROMIOS' EYAPAMIKAMA CLAIM BLOCK AND THE PROVINCIAL CLAIM CELL GRID

