

We are committed to providing <u>accessible customer service</u>. If you need accessible formats or communications supports, please <u>contact us</u>.

Nous tenons à améliorer <u>l'accessibilité des services à la clientèle</u>. Si vous avez besoin de formats accessibles ou d'aide à la communication, veuillez <u>nous contacter</u>.

Exploration 2020 Diamond Drilling Report Nipissing Diamond Project – Lorrain Property Lorrain Township Larder Lake Mining Division Ontario

For

RJK Explorations Ltd.

Rochelle Collins, P. Geo.

Peter Hubacheck, P. Geo.

December 21, 2021

Table of Contents

1.0	SUMMARY
2.0	INTRODUCTION
3.0	Property Description and Location
3.1	Location and Access6
3.2	Topography, Climate and Vegetation6
3.3	Description of Mining Claims Worked7
4.0	Property Exploration History7
5.0	Regional and Local Geology8
5.1	Regional Geology8
5.2	Local Geology11
5.3	Structural Geology11
6.0	Type of Mineral Deposit / Commodity
7.0	Diamond Drilling Program
7.2	2020 Summer Drilling Program18
7.2.	1 Technical Aspects of the Drill Program19
7.2.	3 Location of Drill Holes
7.2.	2 Drill Hole Information
8.0	Results
8.1	Sampling and Description of Kimberlite Processing Results
8.2	Diamond Processing Results24
8.3	Micro-Probe Indicator Mineral Results
9.0	Descriptions of Drill Holes
9.1	Drill Hole Cross-Section Fences
10.0	Assessment Work Expenditure Allocation
11.0	Conclusions
12.0	Recommendations
13.0	Certificates of Qualification
14.0	End Notes/References
End	notes
Refe	erences

Figures

Figure 9.1: Paradis Pond Kimberlite – Drill Fence 1	
Figure 9.2: Paradis Pond Kimberlite – Drill Fence 2	
Figure 9.3: Paradis Pond Kimberlite – Drill Fence 3	
Figure 9.4: Paradis Pond Kimberlite Drill Fence 1 / 2/ 3 Plan Map	
Figure 9.5: HSM Kimberlite Drill Fence 4	
Figure 9.6: HSM Kimberlite Drill Fence 4 Plan Map34	
Figure 9.7: Little Grassy - Nicol Lake Drill Fence 5	
Figure 9.8: Little Grassy - Nicol Lake Drill Fence 5 Plan Map	
Figure 9.9: Gleeson Kimberlite - Drill Fence 6	
Figure 9.10: Gleeson Kimberlite - Drill Fence 6 Plan Map	

Tables

Table 3.3.1: Summary of Mining Claims Worked	6
Table 7.2.3.1: Summary of Drill Hole Information	14
Table 10.1: Assessment Work Expenditure Allocation	37
Table 10.2: Assessment Work Expenditure Allocation by Claim	40

Appendices

Appendix A: Property History
Appendix B: Drill Hole Logs
Appendix C: Analytical Certificates
Appendix D: Work Expenditure Invoices

1.0 Summary

All mining claims within the Nipissing Diamond Project – Lorrain Property are in Lorrain Township, Larder Lake Mining Division and are held by RJK Explorations Ltd. for purposes of exploring for diamond-bearing kimberlite pipes in the Cobalt-Kirkland Lake area. A centrally located point within the Nipissing Diamond Project – Lorrain Property ("Property") is approximately located at UTM coordinate 5,244,385 N, 605,880 E NAD 83 Zone 17 (47.344339 Lat., 79.598255 Long) at the center of Nicol Lake. The Property is located approximately 243 kilometers southeast of Timmins, Ontario and 158 kilometers north of North Bay, Ontario, via road access.

RJK Explorations Ltd. personnel conducted diamond drilling with the assistance of Huard Drilling of New Liskeard, Ontario between March 6, 2020 and December 10, 2020 . The phase 1 drilling commenced March 6, 2020 and ended on March 30, 2020. Phase 2 drilling commenced on June 30, 2020 and ended on December 10, 2020. A total 1,961.4 meters in twenty-six diamond drill holes were drilled on 16 unpatented mining claims within Lorrain Township. RJK Explorations Ltd.. The diamond drill program was to test the potential to host diamondiferous kimberlites and better understanding and definition of the local stratigraphy.

Maximum relief on the property is approximately 25 metres. Topography is generally rolling hills with local steep ledges and cliffs. Overburden is relatively shallow over the claims between 6.6-11.0m. Vegetation on the claims consists mainly of mature mixed forest and locally dense underbrush. Logging was done across much of the area and re-growth is extremely dense and, in some cases, impassable.

CFM Mineral Labs processed from a 156 kg drill core sample selected from 4 drill holes (PP-20-03,04,08,09), a picking weight of 179 g from 341 g of heavy mineral concentrates, 1,914 grains were picked and 243 grains probed and classified into 6 diamond indicator minerals. SGS Laboratories processed samples from PP-20-04,08 holes for multi-trace element analysis using the Sodium Peroxide fusion ICP-MS method.

In September 2020, RJK excavated 3 batches of kimberlite material from 3 trenches in the Paradis Pond area totalling 3,583 kg. When the samples were processed by Microlithics Lab, it was determined that no diamonds were recovered after processing the 3 batches and the samples were not representative of the main kimberlite body.

2.0 Introduction

This report has been prepared to meet the requirements for the filing of assessment work under the provisions of the Ontario Mining Act and describes results of a diamond drilling program performed by RJK Explorations Ltd.

The drill holes were drilled within the Lorrain Township Properties in Lorrain Township on 16 contiguous claims owned 100% RJK Explorations Ltd. The drill holes are targeting magnetic anomalies identified in previous assessment work and following up on known kimberlite targets.

3.0 Property Description and Location

3.1 Location and Access

A centrally located point within the Nipissing Diamond Project – Lorrain Property ("Property") is approximately located at UTM coordinate 5,244,385 N, 605,880 E NAD 83 Zone 17 (47.344339 Lat., 79.598255 Long) at the center of Nicol Lake. The Property is located approximately 243 kilometers southeast of Timmins, Ontario and 158 kilometers north of North Bay, Ontario, via road access. The field crews accessed the Property in Lorrain Township, Larder Lake Mining Division, via road from the community of Cobalt, Ontario and turning south onto Ontario Road 567 for 6.5 kilometers to a gravel logging road on the right and turning southwest on a gravel road 6 km toward the west side of Nicol Lake.

Figure 3.1: General location and property access.

3.2 Topography, Climate and Vegetation

Maximum relief on the property is approximately 25 metres. Topography is generally rolling hills with local steep ledges and cliffs. Overburden is relatively shallow over the claims between 6.6-11.0m. Vegetation on the claims consists mainly of mature mixed forest and locally dense underbrush. Logging was done across much of the area and re-growth is extremely dense and, in some cases, impassable.ⁱ The climate of northern Ontario is generally warm with moderate precipitation from May to October and snow covered and cold weather from November to May.

3.3 Description of Mining Claims Worked

The drilling area consists of mining claims in Lorrain Township, Larder Lake Mining Division. The claims are part of the Nipissing Diamond Project – Lorrain Property. The claims are all contiguous, and owned by RJK Explorations Ltd. Summary information for those mining claim cells on which the drilling program was completed is summarized in Table 3.3.1. Drill hole locations are depicted on a claim map and presented in Figure 4.1.

Year	Cell Number	Legacy Claim	Township	Ownership	Due Date
2020	126017	4273040, 4282142	Lorrain	RJK Exploration Ltd.	2024-10-03
2020	131127	428244, 4282705, 4282707	Lorrain	RJK Exploration Ltd.	2024-10-24
2020	138563	4282401	Lorrain	RJK Exploration Ltd.	2023-07-05
2020	155684	4273040, 4282142, 4282410	Lorrain	RJK Exploration Ltd.	2024-10-03
2020	175091	4273040, 4282187, 4282410	Lorrain	RJK Exploration Ltd.	2024-10-03
2020	199542	4281431, 4282409, 4286187	Lorrain	RJK Exploration Ltd.	2024-12-15
2020	203195	4282401	Lorrain	RJK Exploration Ltd.	2023-07-05
2020	210724	4282401	Lorrain	RJK Exploration Ltd.	2023-07-05
2020	239443	4282142	Lorrain	RJK Exploration Ltd.	2024-06-06
2020	247076	4282707, 4286186, 4286187	Lorrain	RJK Exploration Ltd.	2024-04-06
2020	276783	4285517	Lorrain	RJK Exploration Ltd.	2026-03-10
2020	277042	4282444, 428276, 4282707	Lorrain	RJK Exploration Ltd.	2024-10-24
2020	329881	4282707, 4286187	Lorrain	RJK Exploration Ltd.	2024-04-06
2020	331574	4282401	Lorrain	RJK Exploration Ltd.	2023-07-05
2020	569259	No Legacy Claim	Lorrain	RJK Exploration Ltd.	2022-01-13
2020	567969	No Legacy Claim	Lorrain	RJK Exploration Ltd.	2022-01-01

Table 3.3.1: Summary Mining Claims Worked

4.0 Property Exploration History

The property known as the Bishop Nipissing Diamond Project is composed of several mining claims listed in Table 3.3.1, along with history of the claims as identified in claim abstracts (See Appendix A).

Work completed to date includes grass roots prospecting, a research component, till sampling, screening, concentrating, sorting, and examining potential kimberlite indicator minerals (KIMs), and microphotography. Refer to filed Assessment reports:

Bishop, T., June 6, 2018: Assessment Work Report Claim L 4282142

Bishop, T., June 18, 2018: Assessment Work Report for Cell Claims 277042, 277041, 131127, and 329881 Bishop, T., November 27, 2017: Assessment Work Report L 4281431 and L 4282409

Bishop, T., October 3, 2016: Assessment Work Report Claim L 4273040

A drone magnetic survey using a Geometrics MFAM magnetometer mounted on a DJI M600 drone was conducted by Zen Geomap of Timmins over forty-nine claims wholly or partly within seven flight grids in Lorrain Township between May 29, 2018, and December 28, 2019. Refer to filed Assessment report: Collins, R., March 23, 2020: Assessment Report Drone Magnetic Survey Bishop Nipissing Diamond Project.

Diamond drilling and analytical work has been completed on the property, refer to filed assessment report:

Collins, R., Hubacheck, P.. November 25, 2021: 2019 Exploration Diamond Drilling Report Nipissing Diamond Project – Lorrain Property Lorrain Township Larder Lake Mining Division.

Figure 4.1: Drill hole locations depicted on regional claim map.

5.0 Regional and Local Geology

The information provided in the Regional and Local Geology section of this report is a compilation from various sources. The reader is directed to the references for further reading.

5.1 Regional Geology

The Cobalt area lies within the Superior structural province of the Canadian Shield. Archean basement rocks consist of northwest-southeast trending Archean volcanic intruded by mafic, ultramafic and granitic intrusives. The Archean rocks are unconformably overlain by relatively flat-lying Proterozoic sediments. The sediments consist of conglomerates, greywackes, and quartzites of the Coleman member. The Archean and Proterozoic rocks were intruded by the Nipissing diabase sill intrusive event. Nipissing diabase was intruded ~2219 Ma predominantly as sheets (sills, cone sheets and dikes). The diabase takes the shape of basins and domes were intruded as a sill sheet. The youngest known consolidated rocks in the area are kimberlite pipes.

The rationale of exploring for diamonds in the Temagami region is the diamond-bearing kimberlite pipes and dykes. The Lake Temiskaming Structural Zone is expressed as large-scale normal movement along northwest-trending faults, including the Montreal River and Cross Lake fault systems. Nipissing diabase and gabbro intrusive likely were funnelled through conduits created by this rifting event and kimberlite magmatism is likely to have exploited these same features.ⁱⁱ

Kimberlites in northern and eastern Ontario occur along a trend at approximately 325°. The Lake Timiskaming Structural Zone in eastern Ontario has a northwest trend, and a subordinate northeast trend in the Cobalt and New Liskeard, Ontario areas.^{III}

There are three major NE trending structures (West Cobalt Lake fault, Kerr Arch and Schumann Arch) and two major NW/SE trending structures (Cross Lake and Montreal River Faults shown in purple, Figure 5.1. In 2019, The Mineral Exploration Research Center published the Cobalt Seismic transect under the direction of Dr. Shawna White. The 40 km transect was conducted on HWY 567 from the east side of Cobalt through Bucke and Lorrain and terminated in South Lorrain Twp. RJK Explorations Ltd.'s major claim dispositions including the Kon and Bishop Properties are outlined in yellow rectangles, Figure 5.1.

Figure 5.1: Cobalt Silver Area Geology and Structural Architecture – Modified from {MERC Cobalt Seismic Transect Release-2018}

5.2 Local Geology

The following comments were noted by Alan Kon, author of the Assessment Work Report on Claims 1140510 and 3007492 Gillies Township, Larder Lake Mining Division May 2012, that documents an outcrop stripping program.

"The first part of the stripped area is Gowanda series sediments with exceedingly small pebbles to large loosely packed boulders up to - 12 inches in diameter. There are a few small areas with rusty gossans, but no visible sulphides were observed. Further up the stripped area there is one small rusty breccia vein approximately 2 centimeters in width and about 50 centimeters long. The conglomerate meets an unidentified mafic intrusive dike. The conglomerate has a considerable amount of calcite stringer veins and veinlets running between the layers.

The mafic dike also appears to be faulted near the contact. Small calcite veins run perpendicular to the fault with the occasional vein running parallel. The mafic dike itself is mostly very dark green to black in colour but seems to have a bluish tinge. At the faulted area, the mafic rock is very crumbly and somewhat soft but gets much harder as it moves away from the fault.

The exact age or type of the mafic dike is not known but would suggest it is much younger than the relatively young Protozoic aged Gowganda sediments".^{iv}

5.3 Structural Geology

The information compiled in this section regarding the structural geology of the Kon Property area is sourced from Sage, R.P. 2000. Kimberlites of the Lake Timiskaming structural zone: supplement; Ontario Geological Survey, Open File Report 6018, 123p.

The Lake Timiskaming Structural Zone kimberlites occur at intersections between the regional northwest trend and more local lineaments, faults, and lithologic boundaries. While regionally the distribution of kimberlites follows a northwest pattern, in detail, local clusters of kimberlite pipes may reflect a distribution oblique to the northwest trend and influenced by cross structures as evidenced by the Twin Lake kimberlite discoveries in 1996 by Sudbury Contact Mines Ltd. In 1995 and 1996, the author led a discovery team employing detailed airborne geophysics combined with RC drilling basal till sampling to identify the 95-1, 95-2, 96-1, MR6 kimberlite targets. (Imagery from P. Hubacheck geo-datafiles).

Figure 5.3a: Timiskaming Structural Zone showing Twin Lakes Kimberlites

Along the Lake Timiskaming Structural Zone, faults and lineaments display groupings into north-south, northeast, and northwest trends and these intersecting patterns have broken the crustal rocks into polygonal blocks. Kimberlite intrusions display a preference at being emplaced at intersection points along these structural trends. In the Cobalt – New Liskeard area, kimberlites occur on both flanks of the Lake Timiskaming Structural Zone. Lineament trends intersect at or close to the site of emplacement.

Figure 5.3b: Photo Lineament Structural Analysis of Twin Lakes Kimberlite Field

Figure 5.3c: Total Field Airborne Magnetics of Twin Lakes Kimberlite Field

Between Cobalt and New Liskeard, numerous kimberlite pipes occur where more conspicuous northwest-trending faults are intersected by local northeast-trending cross faults. Mapping by Thomson (1956, 1960) and Russell (1984) suggests that the bedrock in this region is broken into many blocks defined by these two structural trends.^{III}

Figure 5.3d: Structural Cross-Section from Schumann Lake Arch to Goodwin Lake Basin

Figure 5.3d depicts a structural cross-section transecting the Schumann Arch and Goodwin Lake basin Crossing over RJK's land holdings. The Nipissing diabase sill intrudes Lorrain Granites with the Schumann Arch showing as an antiform then gently folding into a synform towards Goodwin Lake Basin. The Lightening Lake fault crosscuts the crest of the fold structure on the Arch and the Cross Lake fault appears to terminate the diabase sill in Goodwin Lake. To the east of Goodwin Lake, a steeply dipping mafic dike intrusion has been identified by recent drone magnetic surveys. The Paradis Pond volcaniclastic kimberlite sill is shown on the east side of the dike structure draping over Lorrain granite basement rocks. The possibility for kimberlite fissure intrusions are shown proximal to the Cross Lake fault and Lightening Lake fault.

Figure 5.3e: Conductance EM Map showing signature of Nicol, Lightning. Paradis, Gleeson and HSM Kimberlite Bodies

Figure 5.3f: Total KIMS in Tills showing Dispersion Trains in Nicol Lake Area – Silver Buffalo Project 2012

Figure 5.3g: Total KIMS in Tills showing Dispersion Trains in Lorrain Twp.– Bishop Till Sampling Project 2019

6.0 Type of Mineral Deposit / Commodity

The RJK Explorations Ltd. is exploring for diamondiferous kimberlite pipes by initially testing magnetic lows and magnetic highs identified by previous magnetometer survey work. The magnetic anomalies were selected up-ice of kimberlite mineral dispersion trains identified by independent till sampling programs conducted in 2012 and 2019 by Hubacheck Consulting Geologists and Tony and Graeme Bishop in 2019, see Figures 5.3f and 5.3g. The initial testing of magnetic anomalies was not effective. RJK initiated IP coverage bracketing the Paradis Pond area which was successful in identifying conductive shallow features to depths of 25 meters. In addition, government airborne conductance maps were highly effective in detecting the Lorrain Twp. Kimberlite Field which also overlapped the IP survey grid. Drone Magnetometer surveys in the Paradis Pond area was also an effective tool for identifying mafic dike trends possibly controlling the emplacement of kimberlite fissure eruptions exploiting the dike trends.

The reader is encouraged to refer to Sage (1996) for a discussion of the geophysical expression of kimberlite pipes in this region. In summary, within the Cobalt – New Liskeard area at least three kimberlite intrusions have a negative magnetic response including the diamondiferous 96-1 pipe. The geochronology suggests that kimberlite emplacement spanned approximately 30 Ma and straddled a magnetic polar reversal in the earth's magnetic field.^v The kimberlite intrusions commonly display oval to circular isomagnetic contour patterns, and some appear to be highly elongated.^v

7.0 Diamond Drilling Program

7.2 2020 Summer Drilling Program

The phase 1 drilling commenced March 6, 2020 and ended on March 30, 2020. Phase 2 drilling commenced on June 30, 2020 and ended on December 10, 2020. A total 1,961.4 meters in twenty-six diamond drill holes were drilled during the period by Huard Diamond Drilling of New Liskeard. The exploration permit numbers for the work performed on the property are:

PR-18-000247, effective January 24, 2019, to January 24, 2022,

PR-19-000070 effective June 7, 2019, to June 7, 2022,

PR-19-000071, effective May 27, 2019, to May 27, 2022,

PR-20-000251, effective October 2, 2020, to October 1, 2023,

PR-20-000292, effective November 11, 2020, to November 10, 2023,

PR-20000293, effective November 11, 2020, to November 10, 2023, and

PR-20-000297, effective November 25, 2020, to November 24, 2023.

All the holes in the Paradis Pond (PP) intersected kimberlite except for PP-20-20 and all fall within the EM conductance anomaly. Drilling of the Paradis Pond kimberlite now shows that the body extends for some 1.2 kilometers in length and a minimum of 400 meters wide with an average thickness of 11 meters. Approximately 55% of this conductance anomaly has been tested by wide spaced drill holes within a perimeter area of 87 hectares measuring approximately 2,000 m in length and by widths varying from 400 meters to 600 meters. Additional in-fill drilling is required to further define the boundaries of each of the conductance anomalies.

Near Paradis Pond, 8 holes have not intersected kimberlite while testing geophysical anomalies outside of the EM conductance anomalies (B-20-01,02,03,05; LG-20-01,02,03; and PP-20-20). All four kimberlite bodies discovered to date visually appear to have similar phase lithologies and deposited in similar geologic settings. Other untested conductance signatures are located within the company's land holdings.

Robin's Place and Gleeson kimberlites are located 200 meters south and 900 meters southeast of the Paradis Pond kimberlite. The HSM kimberlite is located 1 km southeast of the Robin's Place body. Kimberlite drill intercepts from Paradis, Robin's Place, Gleeson and HSM all lie within conductance anomalies of 87, 10, 40 and 46 hectares, respectively. To date, drill holes located outside these conductance zones have not intersected kimberlite.

Drilling resumed following a cease work period due to COVID-19 mandate. A total of 26 vertical and angled holes being drilled, resulting in the expansion of the Paradis Pond kimberlite, in addition to discovering 3 new kimberlites Robin's Place, Gleeson, and HSM which are all located in Lorrain Township. The total dimension of these kimberlites is still to be determined by drilling.

Little Grassy (LG) holes were testing magnetic lows and magnetic highs identified by previous magnetometer survey work. These holes were not successful in intersecting kimberlite while testing anomalies outside the EM conductance anomalies.

The Gleeson conductance anomaly was tested with two vertical drill holes aligned along a West to East fence and collared 600 meters apart within a larger conductance anomaly measuring approximately 1,400 meters in length by 600 meters in width representing a perimeter area of 40 hectares. Hole GL-20-1 and hole GL-20-2 intersected 5.8 meters and 14.1 meters of kimberlite under shallow overburden depths of 3 meters and metres, respectively.

The HSM conductance anomaly was tested with three vertical drill holes aligned along a SE fence and collared 200 meters apart within a larger conductance anomaly measuring approximately 1,500 meters in length by 300 meters in width representing a perimeter area of 46 hectares. Holes HSM-20-1, HSM-20-2 and HSM-20-03 intersected 14.85 meters, 48.2 meters and 18.1 meters of kimberlite under shallow overburden depths ranging from 4 meters to 12 metres, respectively.

Additional in-fill drilling is required to further define the boundaries of each of the conductance anomalies. All three kimberlite bodies discovered to date visually appear to have similar phase lithologies and deposited in similar geologic settings.

7.2.1 Technical Aspects of the Drill Program

In general, access to the drilling area was good via HWY 567 accessing a logging road system in Lorrain Twp, to the property areas such that the drilling equipment could be floated with tandem trailer. Huard Drilling of New Liskeard, Ontario used a hydraulic drill to drill BTW core diameter (42mm) to a maximum depth of 208 meters. The drill was aligned using GPS and compass at the drill site by an RJK Exploration Ltd. geologist. Drill hole inclination was surveyed at fifty-meter intervals and at the end of the hole with a Reflex single shot tool which utilized a magnetic compass to measure azimuth and dip.

7.2.3 Location of Drill Holes

All drill hole collars were positioned with a Garmin 78S GPS unit and verified with a Magellan 1000 unit. Elevations were determined from Google Earth WGS 84.

7.2.2 Drill Hole Information

Drill hole information is summarized in Table 7.2.3.1 with UTM co-ordinates in NAD 83 Zone 17. Geologist, Peter Hubacheck supervised diamond drilling in the field and logged the diamond drill core.

HOLE_ID	EASTING	NORTHING	ELEV	Length	Azimuth	Dip	DDH Started	DDH Completed
			(m)	(m)				
B-20-01	606660	5245147	335	130	180	-50	06-Mar-20	13-Mar-20
B-20-02	606175	5244052	311	158.5	340	-50	14-Mar-20	17-Mar-20
B-20-03	606583	5244409	302	81.5	120	-50	19-Mar-20	21-Mar-20
B-20-05	605727	5245870	316	157	60	-50	27-Mar-20	30-Mar-20
LG-20-01	605715	5245860	317	75	125	-50	30-Jun-20	02-Jul-20
LG-20-02	606200	5245380	333	100	325	-50	03-Jul-20	14-Jul-20
LG-20-03	606200	5245680	337	85	120	-50	16-Jul-20	18-Jul-20
PP-20-01	606607	5242377	337	121	255	-50	22-Jul-20	24-Jul-20
PP-20-02	606555	5242279	327	75	225	-50	27-Jul-20	30-Jul-20
PP-20-03	606440	5242410	324	72.4	360/180	-90	31-Jul-20	05-Aug-20
PP-20-04	606432	524209	324	231	245	-50	06-Aug-20	21-Aug-20
PP-20-05A	606547	524399	334	30.5	360/180	-90	22-Aug-20	27-Aug-20
PP-20-06	606608	5242114	328	50	245	-50	28-Aug-20	31-Aug-20
PP-20-07	606654	5241984	322	17	360/180	-90	05-Sep-20	10-Sep-20
PP-20-08	606713	5241871	331	135	245	-50	11-Sep-20	20-Sep-20
PP-20-09	606728	5241790	325	160	238	-50	21-Sep-20	27-Sep-20
PP-20-10	606824	5241822	340	25.4	360/180	-90	27-Sep-20	28-Sep-20
PP-20-11	606944	5241900	350	11.15	360/180	-90	28-Sep-20	28-Sep-20
PP-20-12	607069	5241950	350	5.1	360/180	-90	29-Sep-20	30-Sep-20
PP-20-13	606800	5242134	346	18.75	360/180	-90	01-Oct-20	02-Oct-20
GL-20-01	610450	5236625	335	28.5	360/180	-90	12-Nov-20	13-Nov-20
GL-20-02	610295	5236885	320	22.4	360/180	-90	13-Nov-20	14-Nov-20
HSM-20-01	608462	5239425	319	31.5	360/180	-90	29-Nov-20	30-Nov-20
HSM-20-02	608247	5239670	340	52.25	360/180	-90	01-Dec-20	01-Dec-20
HSM-20-03	607952	5239834	338	25.45	360/180	-90	02-Dec-20	02-Dec-20
PP-20-20	609100	5239000	320	62	240	-50	08-Dec-20	10-Dec-20

Table 7.2.3.1: Summary of Drill Hole Information sorted by drilling dates

Note: Coordinates shown are UTM NAD 83 Zone 17

Figure 7.2.3.1: Paradis Pond Kimberlite Drill Location Map

Figure 7.2.3.2: HSM Kimberlite Drill Location Map

Figure 7.2.3.3: Nicol Lake and Lightning Lake Kimberlite Drill Location Map

Figure 7.2.3.4: Nicol Lake North and Little Grassy Lake Drill Location Map

8.0 Results

8.1 Sampling and Description of Kimberlite Processing Results

Upon completion of a drill hole, geologists completed logs for geological observations. The drill logs can be found in Appendix B. Drill holes were selectively sampled by the logging geologist within prospective lithologies. A bulk sample was collected from the drill core of holes PP-20-03, PP-20-04, PP-20-08 and PP-20-09. See Appendix C for assay certificates. Holes PP-20-01, PP-20-02, PP-20-05 to PP-20-07, PP-20-10 to PP-20-13, PP-20-20, B-20-01 to B-20-05, GL-20-01, GL-20-02 and LG-20-01 to LG-20-03 and HSM-20-01 to HSM-20-03 were not sampled.

In September 2020, RJK excavated 3 batches of kimberlite material from trenches in the vicinity of drill holes PP-20-13, PP-20-12 and PP-20-07 where overburden depths were estimated to range from 3 meters to 4 meters.

8.2 Diamond Processing Results

From a 156 kg drill core samples selected from 4 drill holes (PP-20-03,04,08,09), a picking weight of 179 g from 341 g of heavy mineral concentrates, 1,914 grains were picked and 243 grains probed and classified into 6 diamond indicator minerals.

8.3 Micro-Probe Indicator Mineral Results

Paradis Pond

The micro-probe results from the 156 kg drill core samples are stated as follows: 18 were diamond inclusion olivine/forsterite; 2 were G9 eclogitic garnets believed to originate between 150 km to 200 km depths; 8 were diamond inclusion clinopyroxenes; 17 kimberlite chromites including 7 high titanium chromites, 10 were G10 peridotitic garnets; 2 were diamond inclusion G11 garnets, Of importance is that 18 olivine/forsterite grains classify in all diamond inclusion fields and 2 G9 eclogitic and 16 high pressure megacrystic garnets are associated with diamond formation at depths of about 200 km or more. A total of 5 microdiamonds were recovered and all stones are described as: natural, white, chip with adamantine lustre, very strong colour emission with no inclusions. One diamond from holes PP-20-03/04 is described as an irregular crystal with fractured surface, weakly yellow with adamantine lustre, very strong colour emission with no inclusions is the diamond bearing Paradis kimberlite may have originated in the upper mantle passing through both group 1 and group 2 eclogitic magma fields and therefore can assimilate both group 1 and group 2 eclogitic clinopyroxenes and garnets.

Paradis Pond: 2020 Trench Excavation Sampling

In September 2020, RJK excavated 3 batches of kimberlite material from 3 trenches in the Paradis Pond area totalling 3,583 kg. The trenches were selected where overburden depths were drill indicated at 3 to 4 m. The reach of the excavator bucket was able to cut into the top layer of the kimberlite body approaching 4 meter depths but also encountered fluvial outwash mixed with kimberlite olivine matrix at

3m level. When the samples were processed by Microlithics Lab, it was determined that significant dilution of overburden (30%) was incorporated into the sample. No diamonds were recovered after processing the 3 batches and the samples were not representative of the main kimberlite body. RJK anticipates employing larger excavators to extend the depth reach up to 6m from surface.

9.0 Descriptions of Drill Holes

Drill Hole PP-20-01

Drill hole PP-20-01 was collared at 606,607.0 E, 5,242,377.0 N and drilled with a 255 degrees azimuth and a -50 degrees dip to a final depth of 121.0 meters.

PP-20-01 intersected 13 meters of overburden consisting of boulder till followed by a heterolithic matrix supported breccia with mixed angular and rounded blocks. The remainder of the hole was Lorrain Granite with equigranular pinkish feldspar phenocrysts. A fault zone cut the Lorrain Granite at 94.7-96.5m.

Two downhole surveys were measured from the hole. No samples were collected.

Drill Hole PP-20-02

Drill hole PP-20-02 was collared at 606,555.0 E, 5,242,279.0 N and drilled with a 225 degrees azimuth and a -50 degrees dip to a final depth of 75.0 meters.

PP-20-02 intersected 10 meters of overburden consisting of pebbles and cobbles in contact with kimberlite followed by heterolithic tuffisitic kimberlite breccia with mixed angular to rounded blocks ranging from 0.2cm to 40cm. The hole ended in Lorrain Granite, a massively bedded coarse grained unit with 45% equigranular pinkish phenocrysts.

Two downhole surveys were measured from the hole. No samples were collected.

Drill Hole PP-20-03

Drill hole PP-20-03 was collared at 606,440.0 E, 5,242,410.0 N and drilled with a 0 degrees azimuth and a -90 degrees dip to a final depth of 72.4 meters.

PP-20-03 intersected 4 meters of overburden consisting of pebbles and cobbles in contact with kimberlite followed by a heterolithic tuffisitic matrix supported breccia with mixed angular and rounded blocks. The remainder of the hole was Lorrain Granite with equigranular pinkish feldspar phenocrysts in a coarse grain groundmass. Several faults with gouge were noted. One downhole survey was measured from the hole. 44 kg of kimberlite from PP-20-03 and 04 were collected for diamond processing.

Drill Hole PP-20-04

Drill hole PP-20-04 was collared at 606,432.0 E, 5,242,409.0 N and drilled with a 245 degrees azimuth and a -50 degrees dip to a final depth of 231.0 meters.

PP-20-04 intersected 4.5 meters of overburden consisting of boulder till and angular diabase boulders in contact with kimberlite followed by a heterolithic tuffisitic matrix supported breccia with mixed angular and rounded blocks. Lorrain Granite massively bedded; equi-granular pinkish feldspar phenocrysts in a coarse grained groundmass were intersected at hole depths of 25.6-43.5m, 52.35-73.9m and 83.65-231.0m. A fault zone was observed 50.6-52.35m composed of 90% broken rubbly diabase at the lower contact of the fine-grained diabase dike logged from 42.5-50.6m. Another diabase dike was observed at 73.9-83.65m. The hole ended in Lorrain Granite.

Three downhole surveys were measured from the hole. 44 kg of kimberlite from PP-20-03 and 04 were collected for diamond processing. The hole was sampled for multi-trace element analysis using the Sodium Peroxide fusion ICP-MS method from 40.5m - 50.6m and from 72.9m – 84.65m.

Drill Hole PP-20-05A

Drill hole PP-20-05A was collared at 606,547.0 E, 5,242,399.0 N and drilled with a 0 degrees azimuth and a -90 degrees dip to a final depth of 30.5 meters.

PP-20-05A intersected 6 meters of overburden consisting of boulder till followed by a heterolithic tuffisitic matrix supported breccia with mixed angular and rounded blocks. Lorrain Granite breccia was intersected between 15.2-18.25m followed by a typical Lorrain Granite with equigranular pinkish feldspar phenocrysts in a coarse grain groundmass. The hole ended in Lorrain Granite.

No downhole surveys were measured from the hole and no samples were collected.

Drill Hole PP-20-06

Drill hole PP-20-06 was collared at 606,608.0 E, 5,242,114.0 N and drilled with a 245 degrees azimuth and a -50 degrees dip to a final depth of 50 meters.

PP-20-06 intersected 4 meters of overburden consisting of boulder till followed by a heterolithic tuffisitic matrix supported breccia with mixed angular and rounded blocks. The hole ended in Lorrain Granite with equigranular pinkish feldspar phenocrysts in a coarse grain groundmass.

No downhole surveys were measured from the hole and no samples were collected.

Drill Hole PP-20-07

Drill hole PP-20-07 was collared at 606,654.0 E, 5,241,984.0 N and drilled with a 0 degrees azimuth and a -90 degrees dip to a final depth of 17.25 meters.

PP-20-07 intersected 3 meters of overburden consisting of cobbles followed by heterolithic tuffisitic kimberlite breccia with mixed angular to rounded blocks ranging from 0.1cm to 20cm. The hole ended in Lorrain Granite, a massively bedded coarse grained unit with 45% equigranular pinkish phenocrysts.

No downhole surveys were measured from the hole and no samples were collected. In September 2020, RJK excavated 3 batches of kimberlite material from trenches in the vicinity of drill holes PP-20-13, PP-20-12 and PP-20-07 where overburden depths were estimated to range from 3 meters to 4 meters.

Drill Hole PP-20-08

Drill hole PP-20-08 was collared at 606,713.0 E, 5,241,871.0 N and drilled with a 245 degrees azimuth and a -50 degrees dip to a final depth of 135.5 meters.

PP-20-08 intersected 7 meters of overburden consisting of diabase and granitoid boulder till followed by a heterolithic tuffisitic kimberlite matrix supported breccia with mixed angular and rounded blocks. The next lithologic unit downhole was Lorrain Granite with equigranular pinkish feldspar phenocrysts in a coarse grain groundmass intruded by a diabase dike between 70-95.55m. The hole ended in Lorrain Granite.

Two downhole surveys were measured from the hole. The hole was sampled for multi-trace element analysis using the Sodium Peroxide fusion ICP-MS method. from 69m - 96.55m and a bulk sample weighing 67 kg from 7.1m - 31.3m.

Drill Hole PP-20-09

Drill hole PP-20-09 was collared at 606,728.0 E, 5,241,790.0 N and drilled with a 238 degrees azimuth and a -50 degrees dip to a final depth of 160.0 meters.

PP-20-09 intersected 5 meters of overburden consisting of diabase and granitoid cobbles followed by a heterolithic tuffisitic kimberlite matrix supported breccia with mixed angular and rounded blocks. Lorrain Granite a massively bedded; equi-granular pinkish feldspar phenocrysts in a coarse-grained groundmass were intersected at hole depths of 29.7-58.7m, and 82.25-131.6m. The Cross Lake Fault Zone was observed at the end of the hole within the Lorrain Granite. A diabase dike was observed at 58.7-82.25m. The hole ended in Lorrain Granite.

No downhole surveys were measured from the hole. A bulk sample weighing 54 kg from 5m - 29.7m was submitted for electron microprobe analysis.

Drill Hole PP-20-10

Drill hole PP-20-10 was collared at 606,824.0 E, 5,241,822.0 N and drilled with a 0 degrees azimuth and a -90 degrees dip to a final depth of 25.4 meters.

PP-20-10 intersected 7.1 meters of overburden consisting of diabase and granitoid boulder till followed by a heterolithic tuffisitic kimberlite matrix supported breccia with mixed angular and rounded blocks. The next lithologic unit downhole was Lorrain Granite with equi-granular pinkish feldspar phenocrysts in a coarse grain groundmass. The hole ended in Lorrain Granite.

No downhole surveys were measured from the hole and no samples were collected. <u>Drill Hole PP-20-11</u>

Drill hole PP-20-11 was collared at 606,944.0 E, 5,241,900.0 N and drilled with a 0 degrees azimuth and a -90 degrees dip to a final depth of 11.15 meters.

PP-10-11 intersected 5 meters of overburden consisting of 40cm granitoid and diabase cobbles followed by heterolithic volcaniclastic kimberlite breccia matrix supported with mixed angular to rounded blocks

ranging from 0.05cm to 30cm. The hole ended in Lorrain Granite, a massively bedded coarse grained unit with 45% equigranular pinkish phenocrysts.

No downhole surveys were measured from the hole and no samples were collected.

Drill Hole PP-20-12

Drill hole PP-20-12 was collared at 607,069.0 E, 5,241,950.0 N and drilled with a 0 degrees azimuth and a -90 degrees dip to a final depth of 5.1 meters.

PP-10-12 intersected 3 meters of overburden consisting of 40cm granitoid and diabase cobbles followed by heterolithic volcaniclastic kimberlite breccia matrix supported with mixed angular to rounded blocks ranging from 0.05cm to 30cm. The hole ended in Lorrain Granite, a massively bedded coarse grained unit with 45% equigranular pinkish phenocrysts.

No downhole surveys were measured from the hole and no samples were collected._In September 2020, RJK excavated 3 batches of kimberlite material from trenches in the vicinity of drill holes PP-20-13, PP-20-12 and PP-20-07 where overburden depths were estimated to range from 3 meters to 4 meters.

Drill Hole PP-20-13

Drill hole PP-20-13 was collared at 606,800.0 E, 5,242,134.0 N and drilled with a 0 degrees azimuth and a -90 degrees dip to a final depth of 18.75 meters.

PP-10-13 intersected 2.5 meters of overburden consisting of 20cm granitoid and diabase cobbles followed by heterolithic volcaniclastic kimberlite breccia matrix supported with mixed angular to rounded blocks ranging from 0.05cm to 30cm. The hole ended in Lorrain Granite, a massively bedded coarse grained unit with 45% equigranular pinkish phenocrysts.

No downhole surveys were measured from the hole and no samples were collected. In September 2020, RJK excavated 3 batches of kimberlite material from trenches in the vicinity of drill holes PP-20-13, PP-20-12 and PP-20-07 where overburden depths were estimated to range from 3 meters to 4 meters.

Drill Hole PP-20-20

Drill hole PP-20-20 was collared at 609,100.0 E, 5,239,000.0 N and drilled with a 240 degrees azimuth and a -50 degrees dip to a final depth of 62.0 meters. The hole targeted a magnetic low anomaly.

PP-20-01 intersected 3 meters of overburden followed by Lorrain Granite described as massively bedded; equigranular pinkish feldspar phenocrysts:65% fine grained groundmass with platy foliated hornblende matrix 15%. The hole ended in Lorrain Granite.

No downhole surveys were measured from the hole and no samples were collected.

Drill Hole B-20-01

Drill hole B-20-01 was collared at 606,660.0 E, 5,245,147.0 N and drilled with a 180 degrees azimuth and a -50 degrees dip to a final depth of 130.0 meters.

B-20-01 intersected 5.7 meters of overburden followed by Lorrain Syenite. Lorrain Syenite is a coarse grain equigranular to phaneritic forming aggregates from 1cm-2cm. The hole ended in Lorrain Syenite.

Two downhole surveys were measured from the hole. No samples were collected.

Drill Hole B-20-02

Drill hole B-20-02 was collared at 609,100.0 E, 5,239,000.0 N and drilled with a 240 degrees azimuth and a -50 degrees dip to a final depth of 62.0 meters.

B-20-02 intersected 5.4 meters of overburden followed by quartz and chlorite rich Nipissing Diabase sills. Quartz Diabase Sills are fine grained equigranular with 35% reabsorbed quartz grains. The Chloritic Diabase is fine grain hornblende/chlorite groundmass with less than 15% reabsorbed quartz. A shear zone was noted between 130.4-137.5m broken and rubbly core comprised of diabase with chlorite and serpentine on fractures. The hole ended in a chloritic diabase.

Three downhole surveys were measured from the hole. No samples were collected.

Drill Hole B-20-03

Drill hole B-20-03 was collared at 606,583.0 E, 5,244,409.0 N and drilled with a 120 degrees azimuth and a -50 degrees dip to a final depth of 81.0 meters.

B-20-03 intersected 9.7 meters of overburden comprised mostly of glacial boulders followed by quartz rich Nipissing Diabase sills. Quartz Diabase Sills are fine grained equigranular with approximately 35% reabsorbed quartz grains. A shear zone of brecciated fault gouge was noted between 45.2-47m comprised of diabase. The hole ended in diabase.

Two downhole surveys were measured from the hole. No samples were collected.

Drill Hole B-20-05

Drill hole B-20-05 was collared at 605,727.0 E, 5,245,870.0 N and drilled with a 60 degrees azimuth and a -50 degrees dip to a final depth of 157.0 meters.

B-20-05 intersected 5.5 meters of overburden comprised of glacial till along with lake bottom silts or clays followed by quartz rich Nipissing Diabase sills. Quartz Diabase Sills are fine grained equigranular with approximately 35% reabsorbed quartz grains. The hole ended in diabase.

Three downhole surveys were measured from the hole. No samples were collected.

Drill Hole GL-20-01

Drill hole GL-20-01 was collared at 608,090.0 E, 5,241,320.0 N and drilled with a 0 degrees azimuth and a -90 degrees dip to a final depth of 28.5 meters.

GL-20-01 intersected 2.8 meters of overburden consisting of cobbles and pebbles followed by a heterolithic tuffisitic kimberlite matrix supported breccia with mixed angular and rounded blocks. The remainder of the hole alternated between Kaolinized Syenite and Syenite. Kaolinized Syenite is fine to medium grained equigranular texture with kaolinized and epidotized alteration. The Syenite unit is massive, fine to medium grained with a weak foliation and mafic accessory minerals. The hole ended in Syenite.

No downhole surveys were measured from the hole and no samples were collected.

Drill Hole GL-20-02

Drill hole GL-20-02 was collared at 608,670.0 E, 5,241,371.0 N and drilled with a 0 degrees azimuth and a -90 degrees dip to a final depth of 22.4 meters.

GL-20-02 intersected 4.45 meters of overburden consisting of cobbles and pebbles followed by a heterolithic tuffisitic kimberlite matrix supported breccia with mixed angular and rounded blocks. The remainder of the hole was logged as Syenite. The Syenite unit is massive, fine to medium grained with a weak foliation and mafic accessory minerals. The hole ended in Syenite.

No downhole surveys were measured from the hole and no samples were collected.

Drill Hole HSM-20-01

Drill hole HSM-20-01 was collared at 608,461.0 E, 5,239,424.0 N and drilled with a 0 degrees azimuth and a -90 degrees dip to a final depth of 31.5 meters.

HSM-20-01 intersected 12.6 meters of overburden consisting of cobbles and pebbles followed by a heterolithic tuffisitic kimberlite matrix supported breccia with mixed angular and rounded blocks. The remainder of the hole was logged as Lorrain Granite. Lorrain Granite is massive with equigranular pinkish feldspar phenocrysts. The hole ended in Lorrain Granite.

No downhole surveys were measured from the hole and no samples were collected.

Drill Hole HSM-20-02

Drill hole HSM-20-02 was collared at 608,247.0 E, 5,239,670.0 N and drilled with a 0 degrees azimuth and a -90 degrees dip to a final depth of 82.85 meters.

HSM-20-02 intersected 4.05 meters of overburden consisting of cobbles and pebbles followed by a heterolithic tuffisitic kimberlite matrix supported breccia with mixed angular and rounded blocks. The hole ended in heterolithic tuffisitic kimberlite.

No downhole surveys were measured from the hole and no samples were collected.

Drill Hole HSM-20-03

Drill hole HSM-20-03 was collared at 607,952.0 E, 5,239,834.0 N and drilled with a 0 degrees azimuth and a -90 degrees dip to a final depth of 25.45 meters.

HSM-20-03 intersected 4.1 meters of overburden consisting of cobbles and pebbles followed by a heterolithic volcanoclastic kimberlite matrix supported breccia with mixed angular mafic and globular carbonate clasts. The hole ended in Nipissing Diabase.

No downhole surveys were measured from the hole and no samples were collected.

Drill Hole LG-20-01

Drill hole LG-20-01 was collared at 605,715.0 E, 5,245,860.0 N and drilled with a 125 degrees azimuth and -50 degrees dip to a final depth of 75.0 meters.

LS-20-01 intersected 6 meters of overburden followed by Nipissing Diabase. The Nipissing Diabase is fine grained to medium grained, medium to dark grey in colour. The hole ended in diabase.

One downhole survey was measured from the hole and no samples were collected.

Drill Hole LG-20-02

Drill hole LG-20-02 was collared at 605,200.0 E, 5,245,380.0 N and drilled with a 325 degrees azimuth and -50 degrees dip to a final depth of 100.0 meters.

LG-20-02 intersected 8.85 meters of overburden followed by Lorrain Granite. Lorrain Granite is massively bedded, coarse grained with equigranular texture. Following the Lorrain Granite was a Nipissing Diabase unit that is fine grained to medium grained, medium to dark grey in colour. The hole ended in diabase.

One downhole survey was measured from the hole and no samples were collected.

Drill Hole LG-20-03

Drill hole LG-20-03 was collared at 606,200.0 E, 5,245,680.0 N and drilled with a 120 degrees azimuth and -50 degrees dip to a final depth of 85.0 meters.

LS-20-03 intersected 1.3 meters of overburden consisting of diabase cobbles followed by Lorrain Granite with coarse grain equigranular texture. From 55.4-55.6 meters is a hornblende granite with sharp cooling contacts and 90% fine grain hornblende. The hole ended in Lorrain Granite.

One downhole survey was measured from the hole and no samples were collected.

9.1 Drill Hole Cross-Section Fences

Figure 9.1: Paradis Pond Kimberlite – Drill Fence 1

Figure 9.2: Paradis Pond Kimberlite – Drill Fence 2

Figure 9.3: Paradis Pond Kimberlite – Drill Fence 3

Figure 9.4: Paradis Pond Kimberlite Drill Fence 1 / 2/ 3 Plan Map

Figure 9.5: HSM Kimberlite Drill Fence 4

Figure 9.6: HSM Kimberlite Drill Fence 4 Plan Map

Figure 9.7: Little Grassy - Nicol Lake Drill Fence 5

Figure 9.8: Little Grassy - Nicol Lake Drill Fence 5 Plan Map

Figure 9.9: Gleeson Kimberlite - Drill Fence 6

GLEESON KIMBERLITE DRILL FENCE 6 PLAN MAP

Figure 9.10: Gleeson Kimberlite - Drill Fence 6 Plan Map

10.0 Assessment Work Expenditure Allocation

Table 10.1 Assessment Work Expenditure Allocation by Hole – See Appendix D – Work Expenditure Invoices

Hole ID	Claim	Description	Invoice Number/Identifier	Amo	unt (CDN\$)
B-20-01	247076	Drilling	Huard Mar 15, 2020,	\$	13,646.10
			93142,92543,92681		
		Logging Facility	Utilities, Couriers, Core Cutting	\$	202.50
		Consultants	T. Bishop; P. Hubacheck; T. Link	\$	3,728.96
		Assay Cost		\$	-
		Reporting	21-204	\$	59.26
B-20-02	276783	Drilling	Huard Mar 15 & 28, 2020, 93142,92543,92681	\$	19,637.10
		Logging Facility	Utilities, Couriers, Core Cutting	\$	202.50
		Consultants	T. Bishop; P. Hubacheck; T. Link	\$	3,728.96
		Assay Cost		\$	-
		Reporting	21-204	\$	59.26
B-20-03	199542	Drilling	Huard Mar 28, 2020, 93142,92543,92681	\$	10,078.44
		Logging Facility	Utilities, Couriers, Core Cutting	\$	202.50
		Consultants	T. Bishop; P. Hubacheck; T. Link	\$	3,728.96
		Assay Cost		\$	-
		Reporting	21-204	\$	59.26
B-20-05	277042	Drilling	Huard Mar 28, 2020, 93142,92543,92681	\$	14,383.44
-		Logging Facility	Utilities, Couriers, Core Cutting	\$	202.50
-		Consultants	T. Bishop; P. Hubacheck; T. Link	\$	3,728.96
		Assay Cost		\$	-
		Reporting	21-204	\$	59.26
GL-20-01	210724	Drilling	Huard Drilling Dec 1-15, 2020	\$	3,611.40
		Logging Facility	Utilities, Couriers, Core Cutting	\$	202.50
		Consultants	A. Kon	\$	1,295.12
		Assay Cost		\$	-
-		Reporting	21-204	\$	59.26
GL-20-02	569259	Drilling	Huard Drilling Dec 1-15, 2020	\$	3,227.10
		Logging Facility	Utilities, Couriers, Core Cutting	\$	202.50
		Consultants	A. Kon	\$	1,295.12
-		Assay Cost		\$	-
-		Reporting	21-204	\$	59.26
HSM-20-01	331574	Drilling	Huard Drilling Nov 16-30, 2020	\$	5,255.50
		Logging Facility	Utilities, Couriers, Core Cutting	\$	202.50
		Consultants	A. Kon; T. Link	\$	1,558.76
		Assay Cost		\$	-

		Reporting	21-204	\$ 59.26
HSM-20-02	203195	Drilling	Huard Drilling Nov 16-30, 2020	\$ 6,600.55
		Logging Facility	Utilities, Couriers, Core Cutting	\$ 202.50
		Consultants	A. Kon; T. Link	\$ 1,558.76
		Reporting	21-204	\$ 59.26
		Assay Cost		\$ -
HSM-20-03	138563	Drilling	Huard Drilling Dec 1-15, 2020	\$ 3,998.85
		Logging Facility	Utilities, Couriers, Core Cutting	\$ 202.50
		Consultants	A. Kon	\$ 1,295.12
		Assay Cost		\$ -
		Reporting	21-204	\$ 59.26
LG-20-01	131127	Drilling	Huard Drilling Jun 27-Jul15, 2020	\$ 6,532.33
		Logging Facility	Utilities, Couriers, Core Cutting	\$ 202.50
		Consultants	P. Hubacheck; A. Kon; T. Link	\$ 3,268.45
		Assay Cost		\$ -
		Reporting	21-204	\$ 59.26
LG-20-02	329881	Drilling	Huard Drilling Jun 27-Jul15, 2020	\$ 11,721.28
		Logging Facility	Utilities, Couriers, Core Cutting	\$ 202.50
		Consultants	K. Charlton; P. Hubacheck; A. Kon; T. Link	\$ 4,033.45
		Assay Cost		\$ -
		Reporting	21-204	\$ 59.26
LG-20-03	329881/ 247076	Drilling	Huard Drilling Jun 27-Jul15, 2020, Jul 16-31, 2021	\$ 10,411.83
		Logging Facility	Utilities, Couriers, Core Cutting	\$ 202.50
		Consultants	P. Hubacheck; A. Kon; T. Link	\$ 4,768.45
		Assay Cost		\$ -
		Reporting	21-204	\$ 59.26
PP-20-01	175091	Drilling	Huard Drilling Jul 16-31, 2021	\$ 11,165.00
		Logging Facility	Utilities, Couriers, Core Cutting	\$ 202.50
		Consultants	K. Charlton; P. Hubacheck; A. Kon; T. Link	\$ 3,057.45
		Assay Cost		\$ -
		Reporting	21-204	\$ 59.26
PP-20-02	175091	Drilling	Huard Drilling Jul 16-31, 2021	\$ 8,289.50
		Logging Facility	Utilities, Couriers, Core Cutting	\$ 202.50
		Consultants	K. Charlton; P. Hubacheck; A. Kon; T. Link	\$ 2,870.45
		Assay Cost		\$ -
		Reporting	21-204	\$ 59.26
PP-20-03	175091	Drilling	Huard Drilling Aug 1-15, 2020	\$ 7,541.00
		Logging Facility	Utilities, Couriers, Core Cutting	\$ 202.50
		Consultants	K. Charlton; P. Hubacheck; A. Kon; T. Link	\$ 2,397.04
		Assay Cost	CFM 9205900	\$ 6,475.16

		Reporting	21-204	\$ 59.26
PP-20-04	175091	Drilling	Huard Drilling Aug 1-15, 2020, Aug 16- 31, 2020	\$ 20,963.33
		Logging Facility	Utilities, Couriers, Core Cutting	\$ 202.50
		Consultants	K. Charlton; P. Hubacheck; A. Kon; T. Link	\$ 2,465.04
		Assay Cost	Invoice 593767 CFM 9205900	\$ 7,096.36
		Reporting	21-204	\$ 59.26
PP-20-05A	175091	Drilling	Huard Drilling Aug 16-31, 2020	\$ 7,117.74
		Logging Facility	Utilities, Couriers, Core Cutting	\$ 202.50
		Consultants	P. Hubacheck; A. Kon; T. Link	\$ 3,274.16
		Assay Cost		\$ -
		Reporting	21-204	\$ 59.26
PP-20-06	155684	Drilling	Huard Drilling Aug 16-31, 2020	\$ 6,554.88
		Logging Facility	Utilities, Couriers, Core Cutting	\$ 202.50
		Consultants	P. Hubacheck; A. Kon; T. Link	\$ 2,329.04
		Assay Cost		\$ -
		Reporting	21-204	\$ 59.26
PP-20-07	155684	Drilling	Huard Drilling Sept 1-15, 2020	\$ 4,146.75
		Logging Facility	Utilities, Couriers, Core Cutting	\$ 202.50
		Consultants	P. Hubacheck; A. Kon; T. Link	\$ 2,329.04
		Assay Cost	Microlithic 21-DMS-RJK-PP-RC	\$ 7,560.00
		Reporting	21-204	\$ 59.26
PP-20-08	155684	Drilling	Huard Drilling Sept 1-15, 2020, Sept 16-30, 2020	\$ 14,376.00
		Logging Facility	Utilities, Couriers, Core Cutting	\$ 202.50
		Consultants	P. Hubacheck; A. Kon; T. Link	\$ 3,529.04
		Assay Cost	Invoice 593767 CFM 9205900	\$ 7,167.71
		Reporting	21-204	\$ 59.26
PP-20-09	155684/ 239443	Drilling	Huard Drilling Sept 16-30, 2020	\$ 12,984.00
		Logging Facility	Utilities, Couriers, Core Cutting	\$ 202.50
		Consultants	P. Hubacheck; A. Kon; T. Link	\$ 2,408.76
		Assay Cost	CFM 9205900	\$ 6,475.16
		Reporting	21-204	\$ 59.26
PP-20-10	126017	Drilling	Huard Drilling Sept 16-30, 2020	\$ 4,424.20
		Logging Facility	Utilities, Couriers, Core Cutting	\$ 202.50
		Consultants	P. Hubacheck; A. Kon; T. Link	\$ 2,408.76
		Assay Cost		\$ -
		Reporting	21-204	\$ 59.26
PP-20-11	126017	Drilling	Huard Drilling Sept 16-30, 2020	\$ 5,862.28
		Logging Facility	Utilities, Couriers, Core Cutting	\$ 202.50
		Consultants	P. Hubacheck; A. Kon; T. Link	\$ 2,408.76
		Assay Cost		\$ -

		Reporting	21-204	\$ 59.26
PP-20-12	126017	Drilling		\$ 4,340.40
		Logging Facility	Utilities, Couriers, Core Cutting	\$ 202.50
		Consultants	P. Hubacheck; A. Kon; T. Link	\$ 1,875.42
		Assay Cost	Microlithic 21-DMS-RJK-PP-RC	\$ 6,230.00
		Reporting	21-204	\$ 59.26
PP-20-13	126017	Drilling		\$ 3,813.23
		Logging Facility	Utilities, Couriers, Core Cutting	\$ 202.50
		Consultants	P. Hubacheck; A. Kon; T. Link	\$ 2,408.76
		Assay Cost	Microlithic 21-DMS-RJK-PP-RC	\$ 8,145.00
		Reporting	21-204	\$ 59.26
PP-20-20	567969	Drilling	Huard Drilling Dec 1-15, 2020	\$ 6,301.50
		Logging Facility	Utilities, Couriers, Core Cutting	\$ 202.50
		Consultants	P. Hubacheck; A. Kon; T. Link	\$ 1,558.76
		Assay Cost		\$ -
		Reporting	21-204	\$ 59.26
		Total	(Before Taxes)	\$ 352,248.56
		HST 13%		\$ 45,792.31

Note: Some expenditures have been pro-rated per hole, for example monthly rental costs, etc.

Claim ID	Amount	(CDN\$) (Before Tax)	HS	Т 13%	Tota	(Taxes Incl.)
126017	\$	42,963.87	\$	5,585.30	\$	48,549.17
131127	\$	10,062.55	\$	1,308.13	\$	11,370.68
138563	\$	5,555.74	\$	722.25	\$	6,277.98
155684	\$	59,842.60	\$	7,779.54	\$	67,622.13
175091	\$	84,021.07	\$	10,922.74	\$	94,943.81
199542	\$	14,069.16	\$	1,828.99	\$	15,898.15
203195	\$	8,421.07	\$	1,094.74	\$	9,515.81
210724	\$	5,168.29	\$	671.88	\$	5,840.16
239443	\$	11,064.84	\$	1,438.43	\$	12,503.27
247076	\$	25,357.84	\$	3,296.52	\$	28,654.36
276783	\$	23,627.82	\$	3,071.62	\$	26,699.43
277042	\$	18,374.16	\$	2,388.64	\$	20,762.80
329881	\$	23,737.53	\$	3,085.88	\$	26,823.41
331574	\$	7,076.02	\$	919.88	\$	7,995.90
567969	\$	8,122.02	\$	1,055.86	\$	9,177.88
569259	\$	4,783.99	\$	621.92	\$	5,405.90
Total	\$	352,248.56	\$	45,792.31	\$	398,040.87

Table 10.2 Assessment Work Expenditure Allocation by Claim – See Appendix D

11.0 Conclusions

Descriptive Features

- 4 kimberlite bodies have been discovered in Lorrain Twp. In 2020, all spatially aligned with the NW/SE trending Cross Lake Fault and intersecting W/E cross-fault structures.
- The dimensions of the larger kimberlite bodies range in length from 1200m to 2000m and in width from 400m to 700m. The average thicknesses of the bodies are Paradis: 11m; Gleeson: 14m; Robin's Place: 39m; HSM: 32m;
- The average elevations of the basement bedrock interface before kimberlite deposition are Paradis Beaver Dam: 331m; Gleeson: 308m; Nicol Lake: 305m; HSM: 298m; Robin's Place: 278m;
- All 4 kimberlite bodies exhibit similar textures observed in drill core and consistent kimberlite emplacement geometry above the bedrock, but below the shallow overburden, suggesting one eruptive event.
- The major lithologic constituents of the kimberlite consist of 50% to 60% olivene, 25% to 30% peridotitic ash, 5% to 10% mantle nodules and xenocrysts and 5% country rock autoliths. Mantle xenocrysts are predominantly rhombohedral carbonate and ilmenite, chromite micro/macrocrysts. Magnetic susceptibility measurements in all kimberlite bodies range from -5 to 1 characterizing a consistent distribution of ilmenite clasts. Country rock autoliths are all locally derived consisting of Lorrain Granite, Lorrain Fm. Quartzite and a magnetic-rich gabbroic dyke based on bedrock mapping geology proximal to the Cross Lake Fault.
- The geothermometry of the constituent chromite grains show temperatures ranging from 900 °C to 1300 °C. These temperatures support the temperature-pressure solid solution phase diagrams for forsterite/monticellite along a solidus line at temperature of 1300 °C and pressure of ~9000 KBars. The parental kimberlite magma possibly originates from the upper mantle to the lower mantle transition zone between depths of 200km and 410km.
- All kimberlite bodies are unconsolidated and deposited unconformably on Archean and Proterozoic Age basement rocks. The upper contact of the kimberlite bodies is unconformably overlain by glaciofluvial outwash. The lower contact of the kimberlite bodies is sharp with no detritus or regolith developed at this contact.
- The unique constituent mineralogy of the unconsolidated volcaniclastic deposits is not reactive with the overlying glaciofluvial sediments due to the impermeable clay ash content, however, limonitic alteration has been observed within 1m - 2m above the basal contact with Lorrain granites.

12.0 Recommendations

A comprehensive reverse circulation program has been recommended to determine the geometry of the known kimberlite discoveries: Paradis Pond, Robin's Place, Gleeson and HSM.

RC drilling is also planned to test several EM conductance features aligned along the Cross Lake Fault structure.

A bulk sampling program is planned for diamond recovery and kimberlite indicator minerals using the RC drilling cuttings.

13.0 Certificates of Qualification

STATEMENT OF QUALIFICATIONS - ROCHELLE COLLINS

I, Rochelle Collins, of the City of Timmins, Province of Ontario, do hereby certify that:

I am a registered professional Geologist, residing at 287 Lois Crescent, Timmins Ontario, P4P 1G6, and a member in good standing with the Professional Geoscientists of Ontario (#1412).

I have been working continuously in the field of geology for over 20 years in Canada and Mexico.

I hold a B.Sc. Honours degree in Geology and Geography (1997) from McMaster University of Hamilton, Ontario and an EMBA from Queen's University of Kingston, Ontario (2020).

This report is based on my observations and interpretation of the geological and geophysical data as reviewed for this report. I have no personal interest in the property covered by this report.

Rochelle Collins, P. Geo., B.Sc., EMBA Dated at Timmins, Ontario This December 17, 2021.

STATEMENT OF QUALIFICATIONS – PETER HUBACHECK

I, Peter Hubacheck residing at 132 Moore St., Lion's Head, hereby certify that:

I hold a Mining Technologist (1974) diploma from the Haileybury School of Mines and Technology, Haileybury, Ontario and a B.A.Sc. (Geol. Eng. 1977) degree from the South Dakota School of Mines and Technology, Rapid City, South Dakota.

I have over 40 years of experience as a project geologist, exploration manager and Qualified Person for the purposes of NI 43-101, with experience in the exploration for gold, silver, base metals, uranium and diamonds in Canada and the USA.

I am a consulting geologist and President of W. A. Hubacheck Consultants Ltd. In January 2020, I joined RJK Explorations Ltd. as project manager and principal geologist on their Nipissing Diamond Project leading an exploration team in discovering 8 kimberlite deposits in the Historic Cobalt mining Camp.

I am a practicing member in good standing with the Association of Professional Geoscientists of Ontario (Member Number 1059).

Statements within this report are based on my personal observations made under direct supervision of the diamond drilling program and I have no interest either direct or indirect pertaining to the properties included in this report, nor do I expect any.

Dated this December 17, 2021

Peter C. Hubachede

Peter Hubacheck

14.0 End Notes/References

Endnotes

References

Kon, A. 2019. Assessment Work Report On The Hound Chute Claims.

Kon, A. 2015. Assessment Work Report Magnetometer Survey On The Hound Chute Road Claims (Phase 2).

Kon, A. 2014. Assessment Report On The Hound Chutes Rd Kon Kimberlite Dike.

Kon, A. 2014. Till Sampling and Prospecting Report On The Hound Chutes Road Claims

Kon, A. 2012. Assessment Work Report On Claims 1140510 and 3007492 Gillies Township, Larder Lake Mining Division.

Combined Helicopterborne Magnetic and Electromagnetic Survey of the Cobalt Area, Northern Ontario. High Sense Geophysics Limited., March 2019

Crabtree, D., Minerology Report - Identification and Classification of Kimberlite: Geoscience Laboratories

Ploeger, J., 2011. Magnetometer and VLF EM Surveys Over the Hound Chute Property Gillies Limit Township, Ontario.

Burton, D., 1971. Report on the VLF and the Magnetic Geophysical surveys on the property of Lobo Mines and Exploration Limited in Blocks 58 and 59, and 67 and 68 Gillies Limit Township, Ontario.

MERC Cobalt Seismic Transect-Field work 2019

ⁱ Kon, A. 2019. Assessment Work Report on the Hound Chute Claims, Gillies Township, Larder Lake Mining Division ⁱⁱ Potter, E., and Rees, K., 2008: Temex Resources Corp., Report on the 2008 Diamond Drilling Program, Latchford Diamond Project.

ⁱⁱⁱ Sage, R.P. 2000. Kimberlites of the Lake Timiskaming structural zone: supplement; Ontario Geological Survey, Open File Report 6018, 123p.

^{iv} Kon, A. 2012. Assessment Work Report on Claims 1140510 and 3007492 Gillies Township, Larder Lake Mining Division

^v Sage, R.P. 1996. Kimberlites of the Lake Timiskaming Structural Zone; Ontario Geological Survey, Open File Report 5937, 435p.

Appendix A: Property History

PROPERTY HISTORY		TORY	BISHOP NIPISSING DIAMOND PROJECT				
			As at December 20, 2	021	-		
Claim #	Legacy Claim #	Date	Description	Performed Assigned	Transaction #		
126017	4273040	2014- OCT-03	BARRETTE, MICHAEL JOSEPH (105222) RECORDS 100.0 % IN THE NAME OF BISHOP, BRIAN ANTHONY (108621)	\$11,524	R1480.01844		
		2016- OCT-24	WORK PERFORMEDASSAY, BENEF, PROSP, APPROVED: 2016-NOV-29		Q1680.01763		
	4282142	2016- JUN-06	BARRETTE, MICHAEL JOSEPH (105222) RECORDS 100.0 % IN THE NAME OF BISHOP, BRIAN ANTHONY (108621)		R1680.01121		
		2018- SEP-16	\$10224 Work Performed (Grass Roots Prospecting, Beneficiation, Microscopy, Assays) Approved: 2018-09-17	\$10,224	360994		
		2018- SEP-26	\$1522 Work Performed (Beneficiation, Assays) Approved: 2018-09-27	\$1,522	390891		
		2019- JAN-24	Exploration Permit No. PR-18-000247 Effective from 2019/01/24 to 2022/01/24 for the Following Activities: (Mechanized Drilling (Assembled Weight >150kg), Trails (TS))		398829		
		2020- APR-16	\$2562 Work Performed (Airborne Magnetics) Approved: 2020-07-10	\$2,562	967309		
		2020- SEP-16	Exploration Permit No. PR-20-000297 Effective from 2020/11/25 to 2023/11/24 for the Following Activities: (Geophysical Survey Requiring Generator Type, Line Cutting (<1.5m width), Mechanized Drilling (Assembled Weight >150kg), Mechanized Stripping (>100m2 in 200 metre radius), Pitting and Trenching of Bedrock (>3m3 in 200 metre radius), Trails (TS))		1064385		
		2021- MAR-14	BRIAN BISHOP (108621) Transfers 100% to RJK EXPLORATIONS LTD. (187972)		1155036		
		2021- MAY-31	\$1242 Work Performed (Overburden Heavy Mineral Processing) Approved: 2021-07-15	\$1,242	1201110		
131127	4282444	2016- OCT-24	BARRETTE, MICHAEL JOSEPH (105222) RECORDS 100.0 % IN THE NAME OF BISHOP, BRIAN ANTHONY (108621)		R1680.02189		
	4282705	2016- NOV-14	HARRINGTON, PATRICK MICHAEL JR. (142047) RECORDS 100.0 % IN THE NAME OF BISHOP, BRIAN ANTHONY (108621)		R1680.01999		
	4282707	2016- NOV-14	HARRINGTON, PATRICK MICHAEL JR. (142047) RECORDS 100.0 % IN THE NAME OF BISHOP, BRIAN ANTHONY (108621)		R1680.01999		
		2018- APR-09	Converted from legacy claim(s) 4282444, 4282705, 4282707		67891		
		2018- SEP-16	\$3124 Work Performed (Grass Roots Prospecting, Beneficiation, Microscopy,	\$3,124	365449		

			Electron Microprobe Study) Approved: 2018-		
		2019	09-17	¢516	200896
		2010- CED 25	Assays) Approved: 2018 00 26	2210	390000
		2010	Exploration Parmit No. PR 19 000070 Effective		571707
		2019-	from $2019/06/07$ to $2022/06/07$ for the		571707
		1014-00	Following Activities: (Mechanized Drilling		
			(Assembled Weight >150kg) Trails (TS))		
		2020-	\$1/91 Work Performed (Airborne		967309
		ΔPR-16	Magnetics) Approved: 2020-07-10		507505
		2021-	BRIAN RISHOP (108621) Transfers 100% to RIK		115503/
		2021- ΜΔR-1/	EXPLORATIONS ITD (187972)		1155054
		2021-	\$973 Work Performed (Overburden Heavy		1201110
		2021- MAV-21	Mineral Processing) Approved: 2021-07-15		1201110
128562	1282101	2017-			P1780 01774
120202	4202401	2017-			K1/60.01//4
		2010	Converted to coll claim(s)		MAN400 20480
		ADD 10	converted to cell claim(s)		WAW00.50480
		2010	Exploration Parmit No. BR 19 000071 Effective		571906
		2019- ADD 02	from 2010/0E/27 to 2022/0E/27 for the		571800
		APR-05	Following Activities: (Mechanized Drilling		
			(Accombined Woight >150kg) Trails (TS))		
		2010	(Assembled Weight >150kg), Halls (15))	¢190	694720
		2019-	S480 Work Performed (Airborne	Ş48U	084730
		JOL-02	Magnetics) Approved. 2019-09-05		
		2021-	BRIAN BISHOP (108621) Transfers 100% to RJK		1155035
		MAR-14	EXPLORATIONS LTD. (187972)		
			. ,		
155684	4273040	2014-	BARRETTE, MICHAEL JOSEPH (105222)	\$11,524	R1480.01844
		OCT-03	RECORDS 100.0 % IN THE NAME OF BISHOP,		
			BRIAN ANTHONY (108621)		
		2016-	WORK PERFORMEDASSAY, BENEF, PROSP,		Q1680.01763
		OCT-24	APPROVED: 2016-NOV-29		
	4282142	2016-	BARRETTE, MICHAEL JOSEPH (105222)		R1680.01121
		JUN-06	RECORDS 100.0 % IN THE NAME OF BISHOP,		
			BRIAN ANTHONY (108621)		
	4282410	2016-	HARRINGTON, PATRICK MICHAEL JR. (142047)		R1680.01839
		OCT-21	RECORDS 100.0 % IN THE NAME OF BISHOP,		
			BRIAN ANTHONY (108621)		
		2018-	Converted from legacy claim(s) 4273040,		45448
		APR-09	4282142, 4282410		
		2019	\$1000 Work Porformed (Crees Poets	¢1.000	260004
			STOOD WORK PERFORMED (Grass ROOTS	\$1,000	300994
		SEP-16	Prospecting, Beneficiation, Microscopy,		
		2010	Assays) Approved: 2018-09-17	620F	200801
			SZ85 WORK PERFORMED (BENETICIATION,	Ş285	390891
		SEP-26	Assays) Approved: 2018-09-27		
		2019-	Exploration Permit No. PR-18-000247 Effective		398829
		JAN-24	from 2019/01/24 to 2022/01/24 for the		
			Following Activities: (Mechanized Drilling		
			(Assembled Weight >150kg), Trails (TS))		

		2020-	\$912 Work Performed (Airborne	\$912	967309
		APR-16	Magnetics) Approved: 2020-07-10		
		2020- SEP -16	Exploration Permit No. PR-20-000297 Effective from 2020/11/25 to 2023/11/24 for the Following Activities: (Geophysical Survey Requiring Generator Type, Line Cutting (<1.5m width), Mechanized Drilling (Assembled Weight >150kg), Mechanized Stripping (>100m2 in 200 metre radius), Pitting and Trenching of Bedrock (>3m3 in 200 metre radius), Trails (TS)) BRIAN BISHOP (108621) Transfers 100% to BIK		1064385
		MAR-14	EXPLORATIONS LTD. (187972)		1100000
		2021- MAY-31	\$458 Work Performed (Overburden Heavy Mineral Processing) Approved: 2021-07-15	\$458	1201110
175091	4273040	2014- OCT-03	BARRETTE, MICHAEL JOSEPH (105222) RECORDS 100.0 % IN THE NAME OF BISHOP, BRIAN ANTHONY (108621)	\$11,524	R1480.01844
		2016- OCT-24	WORK PERFORMEDASSAY, BENEF, PROSP, APPROVED: 2016-NOV-29		Q1680.01763
	4282187	2016- OCT-21	HARRINGTON, PATRICK MICHAEL JR. (142047) RECORDS 100.0 % IN THE NAME OF BISHOP, BRIAN ANTHONY (108621)		R1680.01839
		2017- DEC-01	APPROVED: 2017-DEC-18 WORK PERFORMEDBENEF, MICRO, PROSP	\$4,627	Q1780.02154
	4282410	2016- OCT-21	HARRINGTON, PATRICK MICHAEL JR. (142047) RECORDS 100.0 % IN THE NAME OF BISHOP, BRIAN ANTHONY (108621)		R1680.01839
		2018- APR -09	Converted from legacy claim(s) 4273040, 4282187, 4282410		95405
		2019- JAN-24	Exploration Permit No. PR-18-000247 Effective from 2019/01/24 to 2022/01/24 for the Following Activities: (Mechanized Drilling (Assembled Weight >150kg), Trails (TS))		398829
		2020- APR -16	\$492 Work Performed (Airborne Magnetics) Approved: 2020-07-10		967309
		2020- SEP -16 2021-	Exploration Permit No. PR-20-000297 Effective from 2020/11/25 to 2023/11/24 for the Following Activities: (Geophysical Survey Requiring Generator Type, Line Cutting (<1.5m width), Mechanized Drilling (Assembled Weight >150kg), Mechanized Stripping (>100m2 in 200 metre radius), Pitting and Trenching of Bedrock (>3m3 in 200 metre radius), Trails (TS)) BRIAN BISHOP (108621) Transfers 100% to RJK		1064385 1155036
		MAR-14	EXPLORATIONS LTD. (187972)	42.CF	1201112
		2021- MAY-31	\$365 Work Performed (Overburden Heavy Mineral Processing) Approved: 2021-07-15	\$365	1201110

199542	4282409	2016-	HARRINGTON, PATRICK MICHAEL JR. (142047)		R1680.01839
		OCT-21	RECORDS 100.0 % IN THE NAME OF BISHOP,		
			BRIAN ANTHONY (108621)		
		2017-	APPROVED: 2017-DEC-18 WORK	\$4,627	Q1780.02154
		DEC-01	PERFORMEDBENEF, MICRO, PROSP		
	4286187	2015-	BARRETTE, MICHAEL JOSEPH (105222)		R1580.01779
		NOV-12	RECORDS 100.0 % IN THE NAME OF BISHOP,		
			BRIAN ANTHONY (108621)		
		2017-	WORK PERFORMEDBENEF, MICRO, PROSP	\$17,231	Q1780.02043
		NOV-02	APPROVED: 2017-DEC-04		
		2018-	Converted from legacy claim(s) 4281431,		101996
		APR -09	4282409, 4286187		
		2019-	Exploration Permit No. PR-19-000070 Effective		571707
		JUN -06	from 2019/06/07 to 2022/06/07 for the		
			Following Activities: (Mechanized Drilling		
			(Assembled Weight >150kg), Trails (TS))		
		2020-	\$1031 Work Performed (Airborne	\$1,031	967309
		APR -16	Magnetics) Approved: 2020-07-10		
		2021-	BRIAN BISHOP (108621) Transfers 100% to RJK		1155036
		MAR-14	EXPLORATIONS LTD. (187972)		
		2021-	\$1829 Work Performed (Overburden Heavy		1201110
		MAY-31	Mineral Processing) Approved: 2021-07-15		
203195	4282401	2017-	RECORDED BY HARRINGTON, PATRICK		R1780.01774
		JUL-05	MICHAEL JR. (K23069)		
		2018-	Converted to cell claim(s)		MAM00.30480
		APR-10			
		2019-	Exploration Permit No. PR-19-000071 Effective		571806
		APR-03	from 2019/05/27 to 2022/05/27 for the		
			Following Activities: (Mechanized Drilling		
			(Assembled Weight >150kg), Trails (TS))		
		2019-	\$675 Work Performed (Airborne	\$675	684730
		SEP-04	Magnetics) Approved: 2019-09-05		
		2021-	BRIAN BISHOP (108621) Transfers 100% to RJK		1155035
		MAR-14	EXPLORATIONS LTD. (187972)		
		2021-	\$636 Work Performed (Overburden Heavy	\$636	1201110
		MAY-31	Mineral Processing) Approved: 2021-07-15		
210724	4282401	2017-	RECORDED BY HARRINGTON, PATRICK		R1780.01774
		JUL-05	MICHAEL JR. (K23069)		
		2018-	Converted to cell claim(s)		MAM00.30480
		APR-10			
		2019-	Exploration Permit No. PR-19-000071 Effective		5718006
		APR-03	from 2019/05/27 to 2022/05/27 for the		
			Following Activities: (Mechanized Drilling		
			(Assembled Weight >150kg), Trails (TS))		

		2020- SEP-10	Exploration Permit No. PR-20-000292 Effective from 2020/11/11 to 2023/11/10 for the Following Activities: (Geophysical Survey Requiring Generator Type, Line Cutting (<1.5m width), Mechanized Drilling (Assembled Weight >150kg), Mechanized Stripping (>100m2 in 200 metre radius), Pitting and Trenching of Bedrock (>3m3 in 200 metre radius), Trails (TS))		1062217
		MAR-14	EXPLORATIONS LTD. (187972)		1133033
		2021- MAY-31	\$753 Work Performed (Overburden Heavy Mineral Processing) Approved: 2021-07-15	\$753	1201110
239443		2016- JUN-06	RECORDED BY BARRETTE, MICHAEL JOSEPH (1007272)		R1680.01120
		2018- APR-10	Converted to cell claim(s) 126017 and boundary claim(s) 105615, 151798, 155684, 239443, 293947.		MAM00.17242
		2020- SEP-16	Exploration Permit No. PR-20-000297 Effective from 2020/11/25 to 2023/11/24 for the Following Activities: (Geophysical Survey Requiring Generator Type, Line Cutting (<1.5m width), Mechanized Drilling (Assembled Weight >150kg), Mechanized Stripping (>100m2 in 200 metre radius), Pitting and Trenching of Bedrock (>3m3 in 200 metre radius). Trails (TS))		1064385
		2021- MAR-14	BRIAN BISHOP (108621) Transfers 100% to RJK EXPLORATIONS LTD. (187972)		1155036
247076	4282707	2016- NOV-14	HARRINGTON, PATRICK MICHAEL JR. (142047) RECORDS 100.0 % IN THE NAME OF BISHOP, BRIAN ANTHONY (108621)		R1680.01999
	4286186	2016- OCT-04	VON CARDINAL, THOMAS (205724) RECORDS 100.0 % IN THE NAME OF CHITARONI, GINO PAUL (117874)		R1680.01663
		2016- DEC-01	CHITARONI, GINO PAUL (117874) TRANSFERS 100.0 % TO COBALT POWER GROUP INC. (412467)		T1680.00353
	4286187	2015- NOV-12	BARRETTE, MICHAEL JOSEPH (105222) RECORDS 100.0 % IN THE NAME OF BISHOP, BRIAN ANTHONY (108621)		R1580.01779
		2017- NOV-02	WORK PERFORMED BENEF, MICRO, PROSP APPROVED: 2017-DEC-04	\$17,231	Q1780.02043
		2018- APR -09	Converted from legacy claim(s) 4282707, 4286186, 4286187		175380
		2019- JUN -06	Exploration Permit No. PR-19-000070 Effective from 2019/06/07 to 2022/06/07 for the Following Activities: (Mechanized Drilling (Assembled Weight >150kg), Trails (TS))		571707

		2020- APR -16	\$1091 Work Performed (Airborne Magnetics) Approved: 2020-07-10	\$1,091	967309
		2021- MAR-14	BRIAN BISHOP (108621) Transfers 100% to RJK EXPLORATIONS LTD. (187972)		1155034
		2021- MAY-31	\$1450 Work Performed (Overburden Heavy Mineral Processing) Approved: 2021-07-15	\$1,450	1201110
276783		2017- MAR-10	RECORDED BY EDE, BRONSON JEFFERY (1011491)		R1780.00762
		2018- APR-10	Converted to cell claim(s)		MAM00.29145
		2018- MAY-07	JONATHAN CAMILLERI (411562) Transfers 100% to METEORIC RESOURCES SUB INC. (413563)		348301
		2019- APR-24	METEORIC RESOURCES SUB INC. (413563) Transfers 100% to JONATHAN CAMILLERI (411562)		302725
		2020- AUG-09	Exploration Permit No. PR-20-000251 Effective from 2020/10/02 to 2023/10/01 for the Following Activities: (Geophysical Survey Requiring Generator Type, Line Cutting (<1.5m width), Mechanized Drilling (Assembled Weight >150kg), Trails (TS))		1035737
		2020- DEC-02	Exploration Permit No. PR-20-000348 Effective from 2021/02/09 to 2024/02/08 for the Following Activities: (Mechanized Stripping (>100m2 in 200 metre radius), Pitting and Trenching of Bedrock (>3m3 in 200 metre radius), Trails (TS))		1093432
		2021- FEB-25	JONATHAN CAMILLERI (411562) Transfers 100% to RJK EXPLORATIONS LTD. (187972)		1144909
277042	4282444	2016- OCT-24	BARRETTE, MICHAEL JOSEPH (105222) RECORDS 100.0 % IN THE NAME OF BISHOP, BRIAN ANTHONY (108621)		R1680.02189
	4282706	2016- NOV-14	HARRINGTON, PATRICK MICHAEL JR. (142047) RECORDS 100.0 % IN THE NAME OF BISHOP, BRIAN ANTHONY (108621)		R1680.01999
	4282707	2016- NOV-14	HARRINGTON, PATRICK MICHAEL JR. (142047) RECORDS 100.0 % IN THE NAME OF BISHOP, BRIAN ANTHONY (108621)		R1680.01999
		2018- APR -09	Converted from legacy claim(s) 4282444, 4282706, 4282707		205346
		2018- SEP -16	\$2664 Work Performed (Grass Roots Prospecting, Beneficiation, Microscopy, Electron Microprobe Study) Approved: 2018- 09-17	\$2,664	365449

		2018-	\$684 Work Performed (Beneficiation,	\$684	390886
		SEP -25	Assays) Approved: 2018-09-26		
		2019-	Exploration Permit No. PR-19-000070 Effective		571707
		JUN -06	from 2019/06/07 to 2022/06/07 for the		
			Following Activities: (Mechanized Drilling		
			(Assembled Weight >150kg), Trails (TS))		
		2020-	\$1777 Work Performed (Airborne	\$1,777	967309
		APR -16	Magnetics) Approved: 2020-07-10		
		2021-	BRIAN BISHOP (108621) Transfers 100% to RJK		1155034
		MAR-14	EXPLORATIONS LTD. (187972)		
		2021-	\$3069 Work Performed (Overburden Heavy	\$3,069	1280186
		MAY-31	Mineral Processing) Approved: 2021-07-15		
329881	4282707	2016-	HARRINGTON, PATRICK MICHAEL JR. (142047)		R1680.01999
		NOV-14	RECORDS 100.0 % IN THE NAME OF BISHOP,		
			BRIAN ANTHONY (108621)		
	4286187	2015-	BARRETTE, MICHAEL JOSEPH (105222)		R1580.01779
		NOV-12	RECORDS 100.0 % IN THE NAME OF BISHOP,		
			BRIAN ANTHONY (108621)		
		2017-	WORK PERFORMEDBENEF, MICRO, PROSP	\$17,231	Q1780.02043
		NOV-02	APPROVED: 2017-DEC-04		
		2018-	Converted from legacy claim(s) 4282707,		239385
		APR -09	4286187		
		2018-	\$14199 Work Performed (Grass Roots	\$14,199	365449
		SEP -16	Prospecting, Beneficiation, Microscopy,		
			Electron Microprobe Study) Approved: 2018-		
			09-17		
		2018-	\$1959 Work Performed (Beneficiation,	\$1,959	390886
		SEP-25	Assays) Approved: 2018-09-26		
		2019-	Exploration Permit No. PR-19-000070 Effective		571707
		JUN -06	from 2019/06/07 to 2022/06/07 for the		
			Following Activities: (Mechanized Drilling		
			(Assembled Weight >150kg), Trails (TS))		
		2020-	\$550 Work Performed (Airborne	\$550	967309
		APR -16	Magnetics) Approved: 2020-07-10		
		2021-	BRIAN BISHOP (108621) Transfers 100% to RJK		1155034
		MAR-14	EXPLORATIONS LTD. (187972)		
		2021-	\$1118 Work Performed (Overburden Heavy	\$1,118	1201110
		MAY-31	Mineral Processing) Approved: 2021-07-15		
331574		2017-	RECORDED BY HARRINGTON, PATRICK		R1780.01774
		JUL-05	MICHAEL JR. (K23069)		574000
		2019-	Exploration Permit No. PR-19-000071 Effective		571806
		APR-03	Trom 2019/05/27 to 2022/05/27 for the		
			Following Activities: (Mechanized Drilling		
		0010	(Assembled Weight >150kg), Trails (TS))	42.05	60.4705
		2019-	\$300 Work Performed (Airborne	\$300	684730
		JUL-03	Nagnetics) Approved: 2019-09-05		

	2021- MAR-14	BRIAN BISHOP (108621) Transfers 100% to RJK EXPLORATIONS LTD. (187972)	1155035
567969	2020- JAN-01	Registered By DH EXPLORATION INC. (10001266)	878860
	2020- JAN-16	DH EXPLORATION INC. (10001266) Transfers 100% to RJK EXPLORATIONS LTD. (187972)	893677
569259	2020- JAN-13	Registered By C Bishop (10002609)	891264
	2020- JAN-16	C Bishop (10002609) Transfers 100% to RJK EXPLORATIONS LTD. (187972)	893674
	2020- SEP-10	Exploration Permit No. PR-20-000293 Effective from 2020/11/11 to 2023/11/10 for the Following Activities: (Geophysical Survey Requiring Generator Type, Line Cutting (<1.5m width), Mechanized Drilling (Assembled Weight >150kg), Mechanized Stripping (>100m2 in 200 metre radius), Pitting and Trenching of Bedrock (>3m3 in 200 metre radius), Trails (TS))	1062242

Appendix B: Drill Hole Logs

AZM: DIP: EOH:	B-20-01 180 -50 130	UTM NORTHING EASTING ELEVATION	M NAD 83 ZONE 17 5,245,147.0 606,660.0 338.0	DRILL COMPANY: START DATE: END DATE: CORE SIZE:	Huard Drilling March 6, 2020 March 13, 2020 BQ	TWP: CLAIM: CASING LOGGED BY:	Lorrain 247076 casing left in hole Peter Hubacheck	13. a	MAKING WATER CORE LOCATION LOGGING COMPLETED	: N : Kenogami Lake Cor : March 14, 2020	e Facility		
FROM	TO	ROCK TYPE	CODE		DESCRIPTI	ON		KIM TEXTURE	CLAST TYPE	MATRIX%	AUTO CLAST%	ZENO CLAST%	COLOUR
0	5.7	OVERBURDEN	OB	Overburden								ELITO CLAST A	COLOOK
5.7	73	LORRAIN SYENITE	SYEN	LORRAIN SYENITE: cg equigrar aggregates varying from 1cm size: 35% of groundmass	nular to phaneritic textur to 2 cm, 65% of groundm	res with feldspar phen nass; pyroxene minera	ocrysts forming Is are typically ,5cm in						РК/ВК
73	82	LORRAIN SYENITE	SYEN	LORRAIN SYENITE: cg equigrar aggregates varying from 1cm size: 15% of groundmass; core	nular to phaneritic textur to 2 cm, 85% of groundm has bleached colouratic	res with feldspar pheno bass; pyroxene mineral on on dry surface	ocrysts forming Is are typically ,5cm in						РК/ВК
82	130	LORRAIN SYENITE	SYEN	LORRAIN SYENITE: cg phaneri aggregates varying from 1cm t size: 45% of groundmass[occa 94.4m cemented fault gouge 122.5m chloritic fracture slip	tic to porphyritic texture to 2 cm, 65% of groundm assional chiritic fracture s	s with feldspar phenod lass; ругохепе mineral llips @ 30 TCA	rysts forming s are typically ,5cm in						РК/ВК

DOWNHOLE SURVEY

HOLE-ID	DEPTH	MAG AZIMUTH	MAGNETIC DECLINATION	AZIMUTH (TN)	DIP	SURVEY TYPE	MAGNETIC FIELD
B-20-01	52	192.7	11	181.7	-44.2	PEELEY	6600
B-20-01	130	194.5	11	183.5	-30.8	PECLEX	5523
				100.0	-00.0	REFLEX	5537

FROM	TO	INTERVAL (m)	BAG#	WEIGHT (Kg)
None				1100111 (106)

DDH#:	B-20-02	UTM	NAD 83 ZONE 17	DRILL COMPANY:	Huard Drilling	TWP:	Lorrain	MAKING WATED
AZM:	340	NORTHING	5,244,052.0	START DATE:	March 14, 2020	CLAIM:	276783	COPE LOCATION: Keneren Lieke Com South
DIP:	-50	EASTING	606,175.0	END DATE:	March 17, 2020	CASING	Unknown	CORE LOCATION: Renogami Lake Core Facility
EOH:	158.5m	ELEVATION	313.0	CORE SIZE:	BQ	LOGGED BY:	Peter Hubacheck	LOGGING COMPLETED: March 18 2020

FROM	то	ROCK TYPE	CODE	DESCRIPTION	KIM TEXTURE	CLAST TYPE	MATRIX%	AUTO CLAST%	ZENO CLAST%	COLOUR	AVG MS
0	5.4	OVERBURDEN	ОВ	OB: GLACIAL BOULDER ABLATION TILL				1			
5.4	71	NIPISSING QUARTZ DIABASE SILL	QTZDIAB	NIPISSING QUARTZ DIABASE SILL: fg equigranular groundmass with mottled, resorbed qtz grains ~35%; speckled texture throughout; major groundmass is horneblende/augite ~65% as massive tectured intergrowths; chloritic fracture slips are common; occassional calcite fracture fillings .5mm; tr fg pyrite grains 13.4-16.5m broken, rubbly core with high angle chloritic fracture slips 50.5-51m broken, rubbly core with high angle chloritic fracture slips						DGY/BK	
71	100	NIPISSING QUARTZ DIABASE SILL	QTZDIAB	NiPISSING QUARTZ DIABASE SILL: strongly silicified; fg equigranular groundmass with mottled, resorbed qtz grains ~25%; speckled texture throughout; major groundmass is horneblende/augite as massive tectured intergrowths; very competent with high RQD factor; tr fg pyrite grains; dark gray colour on dry core; 121.5-124.7 broken, rubbly core with high angle chloritic fracture slips						DGY/BK	6 1 9
100	130.4	NIPISSING CHLORITIC DIABASE SILL	CHLDIAB	NIPISSING CHLORITIC DIABASE SILL: fg equigranular groundmass with mottled, resorbed qtz grains ~15%; speckled texture throughout; major groundmass is horneblende/chlorite as massive tectured intergrowths ~85%; weakly competent with low RQD factor; light gray colour on dry core;						DGY/BK	25 42
130.4	137.5	SHEAR ZONE	SHZ	SHEAR ZONE: "85%; weakly competent with low RQD factor; light gray colour on dry core; strong shearing with black chlorite/sepentine on slickenside fractures: fg equigranular groundmass with mottled, resorbed qtz grains ~15%; speckled texture throughout; major groundmass is horneblende/chlorite as massive tectured intergrowths 130.4-137.5m shear zone with broken, rubbly core with high angle chlorite/sepentine On fracture slips.						DGY/BK	.2342
137.5	158,5	NIPISSING CHLORITIC DIABASE SILL	CHLDIAB	NIPISSING CHLORITIC DIABASE SILL: fg equigranular groundmass with mottled, resorbed qtz grains ~15%; speckled texture throughout; major groundmass is horneblende/chlorite as massive tectured intergrowths ~85%; weakly competent with low RQD factor; light gray colour on dry core; higher MS with intervals ranging from 9 to 16;						DGY/BK	0. 10

DOWNHOLE SURVEY

HOLE-ID	DEPTH	MAG AZIMUTH	MAGNETIC DECLINATION	AZIMUTH (TN)	DIP	SURVEY TYPE	MAGNETIC FIELD
B-20-02	52	350.2	11	339.2	-48.4	REFLEX	5511
B-20-02	100	352.2	11	341.2	-46.1	REFLEX	5509
B-20-02	157	353.4	11	342.4	-45	REFLEX	5531

FROM	TO	INTERVAL (m)	BAG#	WEIGHT (Kg)
None				

DH#:	
M:	N
P;	Kenogami Lake Core Facility
H:	March 22 2020
e: H:	Marc

FROM	то	ROCK TYPE	CODE	DESCRIPTION	KIM TEXTURE	CLAST TYPE	MATRIX%	AUTO CLAST%	ZENO CLAST%	COLOUR	AVGMS
0	9.7	OVERBURDEN	OB	OB: GLACIAL BOULDER ABLATION TILL					CONTR	COLOGN	AVG MG
9.7	45.2	NIPISSING QUARTZ DIABASE SILL	QTZDIAB	NIPISSING QUARTZ DIABASE SILL: fg equigranular groundmass with mottled, resorbed qtz grains ~35%; speckled texture throughout; major groundmass is horneblende/augite ~65% as massive tectured intergrowths; chloritic fracture slips are common; occassional calcite fracture fillings .5mm; tr fg pyrite grains							
											1.5 - 4.5
45.2	47	SHEAR ZONE	SHZ	SHEAR ZONE: weakly competent with low RQD factor; light gray colour on dry core; brecciated fault gouge fragments in clayey matrix]							
	_						1		_		.0515
47	51.8	NIPISSING QUARTZ DIABASE SILL	QTZDIAB	NIPISSING QUARTZ DIABASE SILL: fg equigranular groundmass with mottled, resorbed qtz grains ~35%; speckled texture throughout; major groundmass is horneblende/augite ~65% as massive tectured intergrowths; chloritic fracture slips are common; occassional calcite fracture fillings .5mm; tr fg pyrite grains							
								-			.1535
51.8	67.3	NIPISSING QUARTZ DIABASE SILL	QTZDIAB	dt grains ~15%; speckled texture throughout; major groundmass with mottled, resorbed qtz grains ~15%; speckled texture throughout; major groundmass is horneblende/augite ~85% as massive tectured intergrowths; weakly epidotized; gradational contact with overlying unit; very competent core; irregular calcite/serpentinized fractures 64.3m fuchsitic/calcite fracture slip							
				NIPISSING QUARTZ DIABASE SILL: medium to coarse grained environmentation							.1535
67.3	81	NIPISSING QUARTZ DIABASE SILL	QTZDIAB	mottled, resorbed qtz grains "35%; speckled texture throughout; major groundmass with horneblende/augite "65% as massive textured intergrowths; chloritic fracture slips are common; occassional calcite fracture fillings .5mm; tr fg pyrite grains 68.8m fuchsitic/calcite fracture slip							
						-					15 - 35

DOWNHOLE SURVEY

HOLE-ID	DEPTH	MAG AZIMUTH	MAGNETIC DECLINATION	AZIMUTH (TN)	DIP	SURVEY TYPE	MAGNETIC FIELD
B-20-03	55	152.9	11	141.9	-49	DEELEY	5522
B-20-03	81	155	11	144	.49.9	DEFLEX	5523
					40.0	ALFLEA	5521

FROM	TO	INTERVAL (m)	BAG#	WEIGHT (Kg)
None				11011 1101

NIPISSING DIAMOND PROJECT - LORRAIN PROPERTY

DDH#;	B-20-05	UTN	NAD 83 ZONE 17	DRILL COMPANY:	Huard Drilling	TIA/D-	Lorrain	A		
AZM:	60	NORTHING	5,245,870.0	START DATE:	March 27, 2020	CLAIDA:	Corrain	MAKING WATER:	N	
DIP:	-50	EASTING	605,727.0	END DATE:	March 30, 2020	CASING	277042	CORE LOCATION: 1	Cenogami Lake Core Facility	
EOH:	157m	ELEVATION	316.0	CORE SIZE:	BQ	LOGGED BY: Pe	eter Hubacheck/ Alan Kon	LOGGING COMPLETED:	April 5, 2020	

то	ROCK TYPE	CODE	DESCRIPTION	KIM	CLAST TYPE	MATRIXY	AUTO	ZENO	-	
5,5	OVERBURDEN	ОВ	Possible glacial till along with lake bottom silts or clays			MATRIA 2	CLAST76	CLAST%	COLOUR	AVG MS
23	NIPISSING QUARTZ DIABASE SILL	QTZDIAB	Nip Qu Db sill: Granular grnd mass, 25%-35%, Hornblende matrix with mottled Qu grains of varies size, minor to med speckled texture with some possible Epi(?) or other grnish/yllw min. abundant fractrs at varies angles toTCA minor Cc fracture fills or slips' less than tract to~ 1%Py with some blebs. 6-S6m Some broken core with various angle chloritic fracture slips or breaks						Md/drk/Blk Grn Gry	
56	NIPISSING QUARTZ DIABASE SILL	QTZDIAB	Nip Qu Db sill, Grnlar grnd mass, med to course grained, 25% to 35%, Hornblende matrix with mottled Qu grains, speckled textr, abundant fractrs and slips, no Cc vns but some Epi(?) Qu veins or veinlettes with Py and other Unkwn silvery/Blk metalic						Md/drk/Blk Grn Gry	2.7-5.5
106	NIPISSING QUARTZ DIABASE SILL	QTZDIAB	Nip Qu Db sill; Very similar to previous. Grnlar grnd mass, med to course grained, 25% to 35% mottled Qu grains, speckled textr, abundant fractrs and slips. Small section at ~ 72.5m to 73m Qugrains appears to be far more abundant with nearly equal to Hornblend matrix. Some minor Serpentine slickenside fracture breaks or slips. Very little Cc veins ir veinlettes. 2 notable sections, at ~57.5m small Qu/Epi veinlette with Py/Sphl(?) and at ~72m small Qu/Apl(?) veinlettle with <trace Py. Some fractures or breaks have 1% or better blebby Py 56-106m Mosly blocky core but no rubble, fractures or breaks at various angles TCA</trace 						Md/drk/Bik Grn Gry	0-5
157	NIPISSING QUARTZ DIABASE SI L	QTZDIAB	Nip Qu/Db sill, Silmilar to previous, granular groundmas, medium to course grained, 25% to 35% mottled & speckled texture, somewhat more silicified. Considerable amount of fractures, breaks or slips, very little rubble most likely from drill. Some minor slickensides on slips. Minimal amount of veining or veinlettes except for one small Qu/Carb vein at ~126.80 with a 1cm x 3cm Pyrite bleb. Pyrite specks thoughout most of section. EOH at 157m 106-157m Mostly blocky broken. Fractures, breaks and slips at various angles TCA.						Md/drk/Blk Grn Gry	.0-4
	TO 5.5 23 56 106 157	TO ROCK TYPE 5.5 OVERBURDEN 23 NIPISSING QUARTZ DIABASE SILL 56 NIPISSING QUARTZ DIABASE SILL 106 NIPISSING QUARTZ DIABASE SILL 157 NIPISSING QUARTZ DIABASE SILL	TOROCK TYPECODE5.5OVERBURDENOB23NIPISSING QUARTZ DIABASE SILLQTZDIAB56NIPISSING QUARTZ DIABASE SILLQTZDIAB106NIPISSING QUARTZ DIABASE SILLQTZDIAB157NIPISSING QUARTZ DIABASE SILLQTZDIAB	TOROCK TYPECODEDESCRIPTION5.5OVERBURDENOBPossible glacial till along with lake bottom silts or clays23NIPISSING QUARTZ DIABASE SILLQTZDIABNip Qu Db sill: Granular grnd mass, 25%-35%, Hornblende matrix with mottled Qu grains of varies size, minor to med speckled texture with some possible Epi(?) or other grnish/vilw min. abundant fractrs at varies angles toTCA minor Cc fracture fills or slips' less than tract to~ 1%Py with some blebs. 6-56m Some broken core with various angle chloritic fracture slips or breaks56NIPISSING QUARTZ DIABASE SILLQTZDIABNip Qu Db sill; Grniar grnd mass, med to course grained, 25% to 35%, Hornblende matrix with mottled Qu grains, speckled textr, abundant fractrs and slips, no Cc vns but some Epi(?) Qu veins or veinlettes with Py and other Unkwn silvery/Bik metalic106NIPISSING QUARTZ DIABASE SILLQTZDIABNip Qu Db sill; Very similar to previous. Grnlar grnd mass, med to course grained, 25% to 35%, mottled Qu grains, speckled textr, abundant fractrs and slips. Small Section at ~7.2.5 m to 73m Qugarina spears to be far more abundant with nearly equal to Hornblend matrix. Some minor Serpentine slickenside fracture breaks or slips. Very little Cc veins ir veinlettes. 2 notable sections, at "5.7.5 m small Qu/Epi veinlette with Py/Sphi(?) and at ~72m small Qu/Api(?) veinlette with strace Py. Some fractures or breaks have 1% or betre blebby Py S6-106m Mosly blocky core but no rubble, fractures or breaks at various angles TCA157NIPISING QUARTZ DIABASE SILLQTZDIABNip Qu/Db sill, Similar to previous, granular groundmas, medium to course grained, 25% to 35%, mottled & speckled textre, somewhat more silicified. Considerable amount of fractures, breaks or slips, very l	TOROCK TYPECODEDESCRIPTIONKIM TEXTURE5.5OVERBURDENOBPossible glacial till along with lake bottom silts or clays23NIPISSING QUARTZ DIABASE SILLQTZDIABNip Qu Db sill: Granular grad mass, 25%-35%, Hornblende matrix with mottled Qu grains of varies size, minor to med speckled texture with some possible Ep(?) or other grains/v/lkw min. abundant fractrs at varies angles toTCA minor Cc fracture fills or slips' less than tract tor '1%Py with some blebs. 6-56m Some broken core with various angle chloritic fracture slips or breaks56NIPISSING QUARTZ DIABASE SILLQTZDIABNip Qu Db sill, Grinar grad mass, med to course grained, 25% to 35%, Hornblende matrix with mottled Qu grains, speckled textr, abundant fractrs and slips, no Cc vns but some Epi(?) Qu veins or veinlettes with Py and other Unkwn silvery/Bik metalic106NIPISSING QUARTZ DIABASE SILLQTZDIABNip Qu Db sill, Grain grad mass, med to course grained, 25% to 35% mottled Qu grains, speckled textr, abundant fractrs and slips, small section at '' 72.5m to '73m Clugrains appears to be far more abundant with nearly equal to Hornblend matrix. Some minor 	TOROK TYPECODEDESCRIPTIONRIM TEXTURE5.5OVERBURDENOBPossible glacial till along with lake bottom silts or claysImage: Class Type Class Cl	TOROCKTYPECODEDESCRIPTIONNIM TEXTURECLAST TYPEMATRIXS5.5OVERBURDENOBPossible glacial till along with lake bottom silts or claysImage: Class of the second	TOROCK TYPECODEDESCRIPTIONRIM TEXTUREAUTO CLAST TYPEAUTO CLAST TYPE5.5OVERBURDENOBPossible glacial till along with lake bottom silts or claysImage: Class transmitter class transmitte	10ROCK TYPECODEDESCRIPTIONNIM TEXTURECLAST TYPEMATRIXSAUTOZENO- CLAST %5.5OVERBURDEN0BPossible glacial till along with lake bottom silts or claysImage: Class of the cl	TOROCK TYPECODEDESCRIPTIONRIM TEXTURECLAST TYPEAUTOZENO5.5CVERBURDENOBPossible glacial til along with lake bottom sitts or claysImage: Clast TypeMATRIXKCLAST NOCLAST

DOWNHOLE SURVEY

HOLE-ID	DEPTH	MAG AZIMUTH	MAGNETIC	AZIMUTH (TN)	DIP	SURVEY TYPE	MAGNETIC FIELD
B-20-05	52	68	11	57	.53	DECIEV	PP 47
B-20-05	106	71	11	60	-51.8	DEFLEX	5517
B-20-05	157	75	11	64	-51.0	REFLEX	5523
		1777	44	04	-50,4	REFLEX	5439

FROM	TO	INTERVAL (m)	BAG#	WEIGHT (Ke)
None				1111111111

DDH#:	LG-20-01	UTM	NAD 83 ZONE 17	DRILL COMPANY:	Huard Drilling	TWP-	Lorrain			
AZM:	125	NORTHING	5,245,860.0	START DATE:	June 30, 2020	CLAIM	121127	MAKING WATER:	N	
DIP:	-50	EASTING	605,715.0	END DATE:	July 2, 2020	CASING	Linknown	CORE LOCATION: KE	enogami Lake Core Facility	
EOH:	75m	ELEVATION	333.0	CORE SIZE:	BQ	LOGGED BY: Pe	ter Hubacheck	LOGGING COMPLETED:	July 3, 2020	

FROM	TO	ROCK TYPE	CODE	DESCRIPTION	KIM TEXTURE	CLAST TYPE	ARATDING/			1
0	6	OVERBURDEN	OB	OVERBURDEN		CLASTITIC	MAIRIAZ	AUTO CLAST%	ZENO CLAST%	COLOUR
5	75	NIPISSING DIABASE	NIPDIA	NIPDIA: Nipissing Diabase sill: fine grained to medium grained; med to dark gray; 19.3m to 49.5m: med grained fabric with massive equigranular texture; aphanitic chloritic groundmass with 20% altered feldspar lathes;At 17.5m possible epidote(?) alteration. Core appears to have a light greenish yellow tinge. From 19m to 19.70m, core is very light colored. 1 cm wide qtz vein at 25° TCA at 19.45m; contact with fine-grained intrusive structure at 32m and qtz/calcite vein, pink in color with small amount of pyrite along edge of vein at 32.11m at 55° to TCA. Core becomes more siliceous at 32.55m with qtz/calcite crackle veinlets; At 45.55m is a 1cm wide reddish aplite vein 20° TCA; Core continues to alternate between fg to med-grained texture throughout entire section until 57.0m; increasing silicification from 69.60m to 70m;						

DOWNHOLE SURVEY

HOLE-ID	DEPTH	MAG AZIMUTH	MAGNETIC DECLINATION	AZIMUTH (TN)	DIP	SURVEY TYPE	MAGNETIC FIELD
LG-20-01	52	120,4	11	109.4	-41.2	REFLEX	5525
						1	

FROM	то	INTERVAL (m)	BAG#	WEIGHT (Kg)
None				1.01

FROM .									
on.	TOOM	ELEVATION	333.0	CORE SIZE:	BQ	LOGGED BY: Pe	ter Hubacheck	LOGGING COMPLETED:	July 16, 2020
OH-	100m	FIFUATION	000 0			CHOING	Chanowh		
IP:	-50	EASTING	606,200.0	END DATE:	July 14, 2020	CASING	Unknown	some countrols.	cone racinty
n	50			BUCKET BOTTE	ould of TOTO	CLAINI:	329881	CORE LOCATION .	Conogami Lako Coro Escility
2111:	325	NORTHING	5.245.380.0	START DATE:	July 3 2020	CLAIDA.	220004		
78.4.	205			Bruce Contra Parent	ridurd Drining	I WP:	Lorrain	MAKING WATER:	N
DH#:	LG-20-02	UTM	NAD 83 ZONE 17	DRILL COMPANY:	Huard Drilling	TIME	1 months		

TROM	10	ROCK TYPE	CODE	DESCRIPTION	KIM TEXTURE	CLAST TYPE	MATDIV	AUTO CLASTO		1
0	8.85	OVERBURDEN	OVB	OVERBURDEN		COOT THE	MAINA2	AUTO CLAST%	ZENO CLAST%	COLOUR
8.85	10.9	LORRAIN GRANITE	LORGRAN	LORRAIN GRANITE: massively bedded; Cg equigranular texture pervasive; 25% quartz-2-4mm / 50% ochrous feldspar3-5mm / 25% hornblende2-4mm; minor chloritic fractures						
10.9	100	NIPISSING DIABASE	NIPDIA	NIPDIA: Nipissing Diabase sill: fine grained to medium grained; med to dark gray; med grained fabric with massive equigranular texture; aphanitic chloritic groundmass with 20% altered feldspar lathes						

DOWNHOLE SURVEY

HOLE-ID	DEPTH	MAG AZIMUTH	MAGNETIC DECLINATION	AZIMUTH (TN)	DIP	SURVEY TYPE	MAGNETIC FIELD
LG-20-02	52	328.8	11	317.8	-51.5	REFLEX	5503

FROM	TO	INTERVAL (m)	BAG#	WEIGHT (Kg)
None				1.6/

DDH#: AZM: DIP: EOH:	LG-20-03 120 -50 85m	UT NORTHING EASTING ELEVATION	FM NAD 83 ZONE 17 5,245,680.0 606,200.0 337.0	7 DRILL COMPANY: Huard Drilling 0 START DATE: July 16, 2020 0 END DATE: July 18, 2020 0 CORE SIZE: BQ	TWP: CLAIM: 329 CASING casi LOGGED BY: Peter H	Lorrain 9881/247076 sing removed Hubacheck	ı	MAKING WATER CORE LOCATION OGGING COMPLETED	N Kenogami Lake Core July 20, 2020	e Facility		
FROM	то	ROCK TYPE	CODE	DES	CRIPTION	1		CLAST TYPE	MATDING			1
0	1.3	OVERBURDEN	ОВ	OVERBURDEN: rounded diabase cobble in box	DEN: rounded diabase cobble in box @ 1.3m				MAI RIAZ	AUTO CLAST%	ZENO CLAST%	COLOUR
1.3	22.5	LORRAIN GRANITE	LORGRAN	LORRAIN GRANITE: massively bedded; Cg equin 50% ochrous feldspar3-5mm / 25% hornblende	ANITE: massively bedded; Cg equigranular texture pervasive; 25% quartz-2-4mm / is feldspar3-5mm / 25% hornblende2-4mm; minor chloritic fractures							
22.5	27	LORRAIN GRANITE	LORGRAN	LORRAIN GRANITE: massively bedded; high ang Cg equigranular texture pervasive; 25% quartz /	UN GRANITE: massively bedded; high angle joint fractures with limonite coating slip planes; Jigranular texture pervasive; 25% quartz / 50% ochrous feldspar / 25% hornblende;							
27	55.4	LORRAIN GRANITE	LORGRAN	LORRAIN GRANITE: massively bedded; Cg equig ochrous feldspar / 25% hornblende; minor chlo	granular texture pervasive; 25% quar ritic fractures	rtz / 50%						
55.4	55.6	HORNBLENDE GRANITE	HBGRAN	HORNBLENDE GRANITE: differentiated phase; sl 90% fg hornblende	harp cooling contacts; 5% quartz / 59	5% red feldspar /						
55.6	85	LORRAIN GRANITE	LORGRAN	LORRAIN GRANITE: massively bedded; Cg equig ochrous feldspar / 25% hornblende; minor chlo 58m to 70m;	ranular texture pervasive; 25% quar ritic fractures; reduction in RQD com	rtz / 50% npetency from						

DOWNHOLE SURVEY

HOLE-ID	DEPTH	MAG AZIMUTH	MAGNETIC DECLINATION	AZIMUTH (TN)	DIP	SURVEY TYPE	MAGNETIC FIELD
LG-20-03	50	134	11	123	-40.3	REFLEX	5537

FROM	TO	INTERVAL (m)	BAG#	WEIGHT (Kg)
None			00100	110101111101

NIPISSING DIAMOND PROJECT - LORRAIN PROPERTY

DDH#:	PP-20-01	UTN	1 NAD 83 ZONE 17	DRILL COMPANY:	Huard Drilling	TIA/D:	Lorrain	add on a second s
AZM:	255	NORTHING	5,242,377.0	START DATE:	July 22 2020	CLAIRA.	Lorram	MAKING WATER: N
DIP:	-50	EASTING	606,607.0	END DATE:	July 24, 2020	CLAINT:	175091	CORE LOCATION: Kenogami Lake Core Facility
EOH:	121m	ELEVATION	337.0	CORE SIZE:	BQ	LOGGED BY:	Peter Hubacheck	LOGGING COMPLETED. July 20 2020
							Contraction and the second	July 26, 2020

FROM	TO	ROCK TYPE	CODE	DESCRIPTION	MAA TENTI IDE		1	-		La companya
0	13	OB	ОВ	BOULDER TILL	NIM TEXTURE	CLAST TYPE	MATRIX%	AUTO CLAST%	ZENO CLAST%	COLOUR
13	23.4	HFBX	нғвх	HETEROLITHIC FLUIDIZATION BRECCIA: matrix supported with mixed angular to rounded blocks ranging from .2cm to .7m;fine grained tuffisitic; sandy homogenous matrix is greenish gray to dark tan brown colour with moderate calcite cement; relict honeycomb texture microlitic lapilli matrix; larger autoliths are assorted mafic volcanic and variable limestone compositions with barium present due to high specific gravity; vuggy, open space porosity 5%; carbonate-rich clasts may be zenocrysts with angular to sub-rounded honeycomb textured phenocrysts contained within amorpous groundmass			75	25		
23.4	94.7	LORGRAN	LORGRAN	LORRAIN GRANITE: massively bedded; equigranular pinkish feldspar phenocrysts:45% course grained groundmass with euhedral hornblende-rich matrix 35%; 20% amorphous quartz; moderate to strong silicification; cg feldspar phenocrysts up to 3cm; choritic fracture fillings 1%;						
94.7	96.5	EZ	FZ	FAULT ZONE: 50% fault gouge; limonite staining on fractures						
96.5	121	LORGRAN	LORGRAN	LORRAIN GRANITE: massively bedded; equigranular pinkish feldspar phenocrysts:45% course grained groundmass with euhedral hornblende-rich matrix 35%; 20% amorphous quartz; moderate to strong silicification; cg feldspar phenocrysts up to 3cm; choritic fracture fillings 1%;						

DOWNHOLE SURVEY

HOLE-ID	DEPTH	MAG AZIMUTH	MAGNETIC DECLINATION	AZIMUTH (TN)	DIP	SURVEY TYPE	MAGNETIC FIELD
PP-20-01	50	274.2	11	263.2	-49.5	DEFLEY	
PP-20-01	101	274.0		200.2	-40,0	REFLEX	5583
11 20 01	121	2/4.9	11	263.9	-46	REFLEX	5545

FROM	TO	INTERVAL (m)	BAG#	WEIGHT (Ke)
None				HEIGHT [NB]

DDH#: PP-20-02 UTM NAD 83 ZONE 17 DRILL COMPANY: Huard Drilling TWP: Lorrain AZM: 225 MAKING WATER: N NORTHING 5,242,279.0 START DATE: July 27, 2020 CLAIM: 175091 DIP: -50 CORE LOCATION: Kenogami Lake Core Facility EASTING 606,555.0 END DATE: July 30, 2020 CASING Unknown EOH: 75m ELEVATION 327.0 CORE SIZE: BQ LOGGED BY: Peter Hubacheck LOGGING COMPLETED: August 1, 2020

FROM	TO	ROCK TYPE	CODE	DESCRIPTION	Internet in a					
0	10	OB	ОВ	BOULDER TILL: pebbles and cobbles in contact with kimberlite	KIM TEXTURE	CLAST TYPE	MATRIX%	AUTO CLAST%	ZENO CLAST%	COLOUR
7	28.6	HETEROLITHIC TUFFISITIC KIMBERLITE BRECCIA	нтквх	HETEROLITHIC TUFFISITIC KIMBERLITE BRECCIA: matrix supported with mixed angular to rounded blocks ranging from .2cm to .4m;fine grained tuffisitic, sandy homogenous matrix is dark tan brown colour with moderate calcite cement; microlitic. pelletal lapill (.1mm2mm) in matrix 5%; chromite frosting on lapilli and zenoclastsclasts; also fg irregular ilmenite/chromite grains; are 85% of tan- coloured,clayey.sandy matrix;larger autoliths are assorted mafic volcanic and variable carbonate compositions 5%; vuggy, open space porosity 5%; carbonate-rich tan-coloured clasts are mainly globular; tr phlogopite micro-phenocrysts						
28.6	75	LORRAIN GRANITE	LORGRAN	LORRAIN GRANITE: massively bedded; equigranular pinkish feldspar phenocrysts:45% course grained groundmass with euhedral hornblende-rich matrix 35%; 20% amorphous quartz; moderate to strong silicification; cg feldspar phenocrysts up to 3cm;23.8m to 28,9m: intense shearing with choritic.goethite fracture fillings 35%;						

DOWNHOLE SURVEY

HOLE-ID	DEPTH	MAG AZIMUTH	MAGNETIC DECLINATION	AZIMUTH (TN)	DIP	SURVEY TYPE	MAGNETIC FIELD
PP-20-02	42	233.5	11	222.5	-52.9	DEFLEY	F704
PP-20-02	85	234.2	11	223.2	.51.2	REFLEX	5524
				22012	-51.5	REFLEX	5521

FROM	TO	INTERVAL (m)	BAG#	WEIGHT (Kg)
None				TTERSTINES/

NIPISSING DIAMOND PROJECT - LORRAIN PROPERTY

DDH#:	PP-20-03	UTN	NAD 83 ZONE 17	DRILL COMPANY:	Huard Drilling	TIMO	Laurata	
AZM:	0	NORTHING	5,242,410.0	START DATE:	July 31 2020	TVVP;	Lorrain	MAKING WATER: N
DIP:	-90	EASTING	606.440.0	END DATE:	August E 2020	CLAIM:	175091	CORE LOCATION: Kenogami Lake Core Facility
EOH:	72.4	FLEVATION	324.0	CODE SITE.	August 5, 2020	CASING	Unknown	
		and the first of the	524.0	CORE SIZE:	BQ	LOGGED BY:	Peter Hubacheck	LOGGING COMPLETED: August 7 2020

		ROCK TYPE	CODE	DESCRIPTION	KIM TEXTURE	CIAST TYPE	ALA TOWN	1		
0	4	OB	OB	BOULDER TILL: .pebbles and cobbles in contact with kimberlite	NM TEXTORE	CLAST TIPE	MATRIX%	AUTO CLAST%	ZENO CLAST%	COLOUR
4	13.4	HETEROLITHIC TUFFISITIC KIMBERLITE BRECCIA	нтквх	HETEROLITHIC TUFFISITIC KIMBERLITE BRECCIA: matrix supported with mixed angular to rounded blocks ranging from .2cm to .4m;fine grained tuffisitic, sandy homogenous matrix is dark tan brown colour with moderate calcite cement; microlitic. pelletal lapilli (.1mm2mm) in matrix 5%; chromite frosting on lapilli and zenoclastsclasts; also fg irregular ilmenite/chromite grains; are 85% of tan- coloured, clayey.sandy matrix;larger autoliths are assorted mafic volcanic and variable carbonate compositions 5%; vuggy, open space porosity 5%; carbonate-rich tan-coloured clasts are mainly globular; tr phlogopite micro-phenocrysts 6.5-6.6m relict microlitic texture; honeycomb textured zenocryst 9.7-10m 0.3m diabase autoclast with very fine grain disseminated pyrite 10% 10.2-10.2 relict microlitic texture; 2.5mm to 7mm honeycomb textured zenocryst 10.7-11m 0.3m granitoid autoclast 23.8-24.8m brecciated, sheared granite with 50% fault gouge with geothite oxidation 25.3-25.8m brecciated, sheared granite with 50% fault gouge with geothite oxidation 33.7-34m brecciated, sheared granite with 50% fault gouge with geothite oxidation 36.2-37m brecciated, sheared granite with 50% fault gouge with geothite oxidation 40.3-41m brecciated, sheared granite with 50% fault gouge with geothite oxidation 40.3-41m brecciated, sheared granite with 50% fault gouge with geothite oxidation			85	10	5	
13.4	72.4	LORRAIN GRANITE	LORGRAN	LORRAIN GRANITE: massively bedded; equigranular pinkish feldspar phenocrysts:45% course grained groundmass with euhedral hornblende-rich matrix 35%; 20% amorphous quartz; moderate to strong silicification; og feldspar phenocrysts up to 3cm;23.8m to 28,9m: intense shearing with choritic.goethite fracture fillinge 35%.						

DOWNHOLE SURVEY

HOLE-ID	DEPTH	MAG AZIMUTH	MAGNETIC	AZIMUTH (TN)	DIP	SURVEY TYPE	MAGNETIC FIELD
PP-20-03	73	146.2	11	135.2	-86.4	REFLEX	5552
		100 million					0002

FROM	то	INTERVAL (m)	BAG#	CERTIFICATE
Combined with	PP-20-04			

NIPISSING DIAMOND PROJECT - LORRAIN PROPERTY

DDH#:	PP-20-04	UTM	NAD 83 ZONE 17	DRILL COMPANY-	Huard Drilling	734/0	1 minutes
AZM:	245	NORTHING	5,242,409.0	START DATE:	August 6, 2020	TWP:	Lorrain
DIP:	-50	EASTING	606 432 0	END DATE:	August 04, 2020	CLAIM:	175091
EOH:	231m	ELEVATION.	202.0	END DATE.	August 21, 2020	CASING	Unknown
		LLEVANON	322.0	CORE SIZE:	BQ	LOGGED BY:	Peter Hubacheck

MAKING WATER: N CORE LOCATION: Kenogami Lake Core Facility

LOGGING COMPLETED: August 27, 2020

FROM	TO	ROCK TYPE	CODE	DESCRIPTION	KINA TENTI INF	-	1			
o	4.5	OB	OB	BOULDER TILL: .3m angular diabase boulder in contact with kimberlite	KIMITEXTURE	CLAST TYPE	MATRIX%	AUTO CLAST%	ZENO CLAST%	COLOUR
4.4	25,6	HETEROLITHIC TUFFISITIC KIMBERLITE BRECCIA	НТКВХ	HETEROLITHIC TUFFISTIC KIMBERLITE BRECCAC matrix supported with mixed angular to rounded blocks ranging from .2cm to .3m;fine grained tuffisitic, sandy homogenous matrix is dark tan brown colour with moderate calcite cement; microlitic, pelletal lapilit (.1mm2mm) in matrix 7%; chromite frosting on lapilit (catsr; also fig irregular linenite/chromiter grains are 23% of tan-coloured amorphous matrix;larger autoliths are assorted mafic volcanic and variable granitic compositions; vuggy, open space porosity 5%; carbonate-rich tan-coloured clasts are mainly globular; tr phlogopite micro-phenocrysts 13-13.2m 0.25m granitic autoclast (Lorrain Granite) 13.7-14m 0.25m granitic autoclast (With ery fine grain disseminated pyrite 10% 16-16.25m pelletal lapilit with chromite/ilmentite frosting 18-18.2m 0.25m granitic autoclast 40.65-41m granitic breccia with chloritic fault gouge 46-46.5m brecciated diabase with 50% fault gouge with calcite in-filling breccia 75-76m red stalned fractures; niccolite stalning 77.25-77.75m Brecciated diabase with 25% fault with crystalline calcite in-filling open space fractures and brecciated velnets 88.325-83.25m zenate rati in the			75	20	5	
25.6	43.5	LORRAIN GRANITE	LORGRAN	LORRAIN GRANITE: massively bedded; equigranular pinkish feldspar phenocrysts:45% course grained groundmass with euhedral hornblende-rich matrix 35%; 20% amorphous quartz; moderate to strong silicification; og feldspar phenocrysts up to 3cm; choritic fracture fillings 15%;						
42.5	50.6	DIABASE DIKE	DIADIKE	DIABASE DIKE: fine grained, aphanitic to mottled textured groundmass; sharp upper contact with ,4m chill zone; calcite crackle veinlets @ 70 TCA ~5% increasing downhole; metallic lustre mineral with acicular crystal habit; 10% niccolite?						
50.6	52.35	FAULT ZONE	FZ	FAULT ZONE: 90% broken rubbly diabase core with calcite stringers ; vfg dissem crypto-crystalline magnetite 10%						
52.35	73.9	LORRAIN GRANITE	LORGRAN	LORRAIN GRANITE: massively bedded; equigranular pinkish feldspar phenocrysts:45% course grained groundmass with euhedral hornblende-rich matrix 35%; 20% amorphous quart; moderate to strong silicification; cg feldspar phenocrysts up to 3cm; choritic fracture fillings 15%;						
73.9	83.65	DIABASE DIKE	DIADIKE	DIABASE DIKE: fine grained, aphanitic to sucrosic textured groundmass; sharp upper contact; calcite crackle veinlets @ 70 TCA ~5% increasing to 25% in breccia veining interval from 77.25m to 77.75m						
83.65	231	LORRAIN GRANITE	LORGRAN	LORRAIN GRANITE: massively bedded; equigranular pinkish feldspar phenocrysts:45% course grained groundmass with euhedral hornblende-rich matrix 35%; 20% amorphous quartz; moderate to strong silicification; cg feldspar phenocrysts up to 3cm; choritic fracture fillings 15%;						

DOWNHOLE SURVEY

HOLE-ID	DEPTH	MAG AZIMUTH	MAGNETIC	AZIMUTH (TN)	DIP	SURVEY TYPE	MAGNETIC FIELD
PP-20-04	100	257.2	11	246.2	47.4		
PP-20-04	150	261.3		240.2	-97.9	REFLEX	5490
PP.20.04	200	201.0	11	250.3	-44.3	REFLEX	5512
11-20-04	220	266.3	11	255.3	-41.3	REFLEX	5483

FROM	TO	INTERVAL (m)	BATCH#	WEIGHT (Kg)	CERTIFICATE
16.25	25.6	9.35	1	11.8	CEM - PRB9549
10.15	16.25	6.1	2	10.9	CEM - PPB0548
7	10.15	3.15	3	10.9	CEM - PPP0549
4	13.4	9.4	4	9.1	CFM - PRB9548

NIPISSING DIAMOND PROJECT - LORRAIN PROPERTY

DDH#:	PP-20-04	UTM	NAD 83 ZONE 17	DRILL COMPANY:	Huard Drilling	TWP:	Lorrain	MANING WATER.
AZM:	245	NORTHING	5,242,409.0	START DATE:	August 6, 2020	CLAIM:	175091	CORELOCATION KENER
DIP:	-50	EASTING	606,432.0	END DATE:	August 21, 2020	CASING	Unknown	CORE LOCATION: Renogami Lake Core Facility
EOH:	231m	ELEVATION	322.0	CORE SIZE:	BQ	LOGGED BY:	Peter Hubacheck	LOGGING COMPLETED: August 27, 2020

SAMPLING

FROM	TO	INTERVAL (m)	SAMPLE #	WEIGHT (Kg)	CERTIFICATE
PP-20-04	41.5	42.5	1	P679101	SGS - YCN20-00067
PP-20-04	42.5	43	0.5	P679102	SGS - YCN20-00067
PP-20-04	43	44	1	P679103	SGS - YCN20-00067
PP-20-04	44	45	1	P679104	SGS - YCN20-00067
PP-20-04	45	46	1	P679105	SGS - YCN20-00067
PP-20-04	46	47	1	P679106	SGS - YCN20-00067
PP-20-04	47	48	1	P679107	SGS - YCN20-00067
PP-20-04	48	49	1	P679108	SGS - YCN20-00067
PP-20-04	49	50	1	P679109	SGS - YCN20-00067
PP-20-04	50	50.6	0.6	P679110	SGS - YCN20-00067
PP-20-04	50.6	51.6	1	P679111	SGS - YCN20-00067
PP-20-04	72.9	73.9	1	P679112	SGS - YCN20-00067
PP-20-04	73.9	75	1.1	P679113	SGS - YCN20-00067
PP-20-04	75	76	1	P679114	SGS - YCN20-00067
PP-20-04	76	77	1	P679115	SGS - YCN20-00067
PP-20-04	77	78	1	P679116	SGS - YCN20-00067
PP-20-04	78	79	1	P679117	SGS - YCN20-00067
PP-20-04	79	80	1	P679118	SGS - YCN20-00067
PP-20-04	80	81	1	P679119	SG5 - YCN20-00067
PP-20-04	81	82	1	P679120	SGS - YCN20-00067
PP-20-04	82	83	1	P679121	SGS - YCN20-00067
PP-20-04	83	83.65	0.65	P679122	SGS - YCN20-00067
PP-20-04	83.65	84.65	1	P679123	SGS - YCN20-00067

NIPISSING DIAMOND PROJECT - LORRAIN PROPERTY

FROM	TO	DOCK THEF						Looding CompleteD: August 28, 2020
EOH:	30.5m	ELEVATION	335.0	CORE SIZE:	BQ	LOGGED BY:	Peter Hubacheck	LOGGING COMPLETED: August 28, 2000
DIP:	-90	EASTING	606,547.0	END DATE:	August 27, 2020	CASING	1/5091	CORE LOCATION: Kenogami Lake Core Facility
AZM:	0	NORTHING	5,242,399.0	START DATE:	August 22, 2020	CLAINA:	Lorrain	MAKING WATER: N
DDH#:	PP-20-05A	UTN	NAD 83 ZONE 17	DRILL COMPANY	Huard Drilling	THIN		

FROM	TO	ROCK TYPE	CODE	DESCRIPTION	MAR TONOLOGIC			and the second	11 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	
0	6.05	OB	ОВ	BOULDER TILL	KIM TEXTURE	CLAST TYPE	MATRIX%	AUTO CLAST%	ZENO CLAST%	COLOUR
6.05	15.2	HETEROLITHIC TUFFISITIC KIMBERLITE BRECCIA	нтквх	HETEROLITHIC TUFFISITIC KIMBERLITE BRECCIA: matrix supported with mixed angular to rounded blocks ranging from .2cm to .4m; fine grained tuffisitic, sandy homogenous matrix is dark tan brown colour with moderate calcite cement; microlitic. pelletal lapilli (.1mm2mm) in marix 5%; chromite frosting on lapilli and zenoclastsclasts; also fg irregular ilmenite/chromite grains; are 85% of tan- coloured, clayey.sandy matrix; larger autoliths are assorted mafic volcanic and variable carbonate compositions 5%; vuggy, open space porosity 5%; carbonate-rich tan-coloured clasts are mainly globular; tr phlogopite micro-phenocrysts						
15.2	18.25	LORRAIN GRANITE BRECCIA	LGBX	BRECCIATED LORRAIN GRANITE: Angular to sub-angular breccia fragment pieces; equigranular pinkish feldspar phenocrysts:45% course grained groundmass with euhedral hornblende-rich matrix 35%; 20% amorphous quartz; moderate to strong silicification; cg feldspar phenocrysts up to 3cm; choritic fracture fillings 15%;						
18.25	30.5	LORRAIN GRANITE	LORGRAN	LORRAIN GRANITE: massively bedded; equigranular pinkish feldspar phenocrysts:45% course grained groundmass with euhedral homblende-rich matrix 35%; 20% amorphous quartz; moderate to strong silicification; cg feldspar phenocrysts up to 3cm; choritic fracture fillings 15%;	1				1	

DOWNHOLE SURVEY

HOLE-ID	DEPTH	MAG AZIMUTH	MAGNETIC	AZIMUTH (TN)	DIP	SURVEY TYPE	MAGNETIC FIELD
No downhole	survey						

FROM	TO	INTERVAL (m)	BAG#	WEIGHT (Ke)
None				The start (he)

FROM	TO	ROCK TYPE	CODE		SECOND ON				
EOH:	50m	ELEVATION	328.0	CORE SIZE:	BQ	LOGGED BY:	Peter Hubacheck	LOGGING COMPLETED:	September 1, 2020
DIP:	-50	EASTING	606,608.0	END DATE:	August 31, 2020	CASING	Unknown	CORELOCATION	Kenogami Lake Core Facility
DDH#: AZM:	PP-20-06 245	UTM NORTHING	NAD 83 ZONE 17 5,242,114.0	DRILL COMPANY: START DATE:	Huard Drilling August 28, 2020	TWP:	Lorrain 155684	MAKING WATER	N

				DESCRIPTION	CIM TEXTURE	CLAST TYPE	MATRIX%	AUTO CLAST%	ZENO CLAST%	COLOUR
0	4.05	ОВ	OB	BOULDER TILL						COLOGN
4.05	10.15	HETEROLITHIC TUFFISITIC KIMBERLITE BRECCIA	нтквх	HETEROLITHIC TUFFISITIC KIMBERLITE BRECCIA: matrix supported with mixed angular to rounded blocks ranging from .2cm to .4m;fine grained tuffisitic, sandy homogenous matrix is dark tan brown colour with moderate calcite cement; microlitic. pelletal lapilli (.1mm2mm) in matrix 5%; chromite frosting on lapilli and zenoclastsclasts; also fg irregular ilmenite/chromite grains; are 85% of tan- coloured,clayey.sandy matrix;larger autoliths are assorted mafic volcanic and variable carbonate compositions 5%; vuggy, open space porosity 5%; carbonate-rich tan-coloured clasts are mainly globular; tr phlogopite micro-phenocrysts						
10.15	50	LORRAIN GRANITE	LORGRAN	LORRAIN GRANITE: massively bedded; equigranular pinkish feldspar phenocrysts:45% course grained groundmass with euhedral hornblende-rich matrix 35%; 20% amorphous quartz; moderate to strong silicification; cg feldspar phenocrysts up to 3cm; choritic fracture fillings 15%;						

DOWNHOLE SURVEY

HOLE-ID	DEPTH	MAG AZIMUTH	MAGNETIC	AZIMUTH (TN)	DIP	SURVEY TYPE	MAGNETIC FIELD
No downhole	survey						

FROM	то	INTERVAL (m)	BAG#	WEIGHT (Kg)
None				1.01

DDH#: AZM: DIP: EOH:	PP-20-07 0 -90 17m	UT NORTHING EASTING ELEVATION	M NAD 83 ZONE 17 5,241,984.0 606,654.0 330.0	7 DRILL COMPANY: Huard Drilling TWP: Lorrain 0 START DATE: September 5, 2020 CLAIM: 155684 0 END DATE: September 10, 2020 CASING Unknown 0 CORE SIZE: BQ LOGGED BY: Peter Hubacheck		MAKING WATER: CORE LOCATION: 1	N Kenogami Lake Core Fa September 11, 202	acility 0		
FROM	TO	ROCK TYPE	CODE	DESCRIPTION	KIM TEXTURE	CLAST TYPE	MATDIX	AUTOCIASTY		1
0	3	OB	ОВ	OVERBURDEN: cobbles- casing set to 4.05m			MATRIA 20	AUTO CLAST%	ZENO CLAST%	COLOUR
3	16.1	HETEROLITHIC VOLCANICLASTIC KIMBERLITE BRECCIA	нуквх	HETEROLITHIC VOLCANICLASTIC KIMBERLITE BRECCIA: matrix supported with mixed angular to rounded blocks ranging from .1cm to .2m - 10% magmaclasts; fine grained tuffisitic, sandy homogenous matrix (75%) is dark tan brown colour with moderate calcite cement; microlitic. pelletal lapilli (.1mm2mm) in matrix 7%; chromite frosting on lapilli clasts; also fg irregular ilmenite/chromite grains are 15% of tan-coloured amorphous matrix; larger autoliths are assorted mafic volcanic and variable granitic compositions; vuggy, open space porosity 5%; carbonate-rich tan-coloured clasts are mainly globular; 1% phlogopite microcrysts with 10% translucent tabular monticellite microcrysts	Massive	Crater fill	75		15	
16.1	17.25	LORRAIN GRANITE	LORGRAN	LORRAIN GRANITE: massively bedded; equigranular pinkish feldspar phenocrysts:45% course grained groundmass with euhedral hornblende-rich matrix 35%; 20% amorphous quartz;31.3m to 33.45m: moderate to strong silicification; cg feldspar phenocrysts up to 3cm; 65.05m to 66.35m: choritic fracture fillings 15% with ohre-red staining;						

DOWNHOLE SURVEY

L	HOLE-ID	DEPTH	MAG AZIMUTH	MAGNETIC	AZIMUTH (TN)	DIP	SURVEY TYPE	MAGNETIC FIELD
1	lo downhole	survey						

FROM TO		INTERVAL (m)	BAG#	CERTIFICATE
DSM Processing				Microlithics Lab

NIPISSING DIAMOND PROJECT - LORRAIN PROPERTY

DDH#: AZM: DIP: EOH:	PP-20-08 245 -50 135.5	UT NORTHING EASTING ELEVATION	TM NAD 83 ZONE 1 5,241,871. 606,713. 331.	7 DRILL COMPANY: Huard Drilling TWP: Lorrain 0 START DATE: September 11, 2020 CLAIM: 155684 0 END DATE: September 20, 2020 CASING casing left in hole 0 CORE SIZE: BQ LOGGED BY: Peter Hubacheck	1	MAKING WATER: CORE LOCATION: OGGING COMPLETED:	N Kenogami Lake Core Faci September 23, 2020	lity		
FROM	TO	ROCK TYPE	CODE	DESCRIPTION	KIM TEXTURE	CLAST TYPE	MATRIX%	AUTO CLASTR	TENO CLACTOR	001010
o	7.1	ОВ	ОВ	BOULDER TILL: diabase/granitoid boulders in contact with kimberlite			MAT NA A	AUTO CLAST%	ZENU CLAST%	COLOUR
7.1	31.3	HETEROLITHIC TUFFISITIC KIMBERLITE BRECCIA	нтквх	HETEROLITHIC TUFFISITIC KIMBERLITE BRECCIA: matrix supported with mixed angular to rounded blocks ranging from .2cm to .3m - 5% autoclasts; fine grained tuffisitic, sandy homogenous matrix is dark tan brown colour with moderate calcite cement; microlitic. pelletal lapilii (.1mm2mm) in matrix 7%; chromite frosting on lapilii clasts; also fg irregular ilmenite/chromite grains are 23% of tan-coloured amorphous matrix/larger autoliths are assorted mafic volcanic and variable granitic compositions; vuggy, open space porosity 5%; carbonate-rich tan-coloured clasts are mainly globular; 1% phlogopite microcrysts with 10% translucent tabular monticellite microcrysts 10.15-10.25m rhombohedral calcite globule 19.3-19.5m glassy monticellite microcrysts? with pelletal lapilli microcrysts 28.45-28.95m carbonate globular autoclast 30-30.2m glassy 2mm conchoidal macrocryst with ilmenite frosting 30.9-31.1m tan coloured, laminated sediment autoclast (varved periglacial lake seds) 31.3m kimberlite/granite contact			65	20	15	
31.3	70	LORRAIN GRANITE	LORGRAN	LORRAIN GRANITE: massively bedded; equigranular pinkish feldspar phenocrysts:45% course grained groundmass with euhedral hornblende-rich matrix 35%; 20% amorphous quartz;31.3m to 33.45m: moderate to strong silicification; cg feldspar phenocrysts up to 3cm; 65.05m to 66.35m: choritic fracture fillings 15% with ohre-red staining; 58.65-58.95m chlorite-filled high angle fracture zone 65.05-66.35m highly fractured, silicified granite, limonite stained fractures						
70	95.55	DIABASE DIKE	DIADIKE	DIABASE DIKE: fine grained, aphanitic to dark gray sucrosic textured siliceous groundmass up to 60% silica; sharp upper contact; calcite crackle veinlets @ 45 TCA over .1m at contact; fg diabase textured chill zone~5% from 70m to 71.15m; cg gabroic texture from 73m to 88m; aphanitic chloritic chill zone from 92.5m to 95.55m; metallic lustre mineral with acicular crystal habit; 5-10% milleritite(magnetic if formed at high temperatures)? soft, metallic subconchoidal mineral in aggregates disseiminated in siliceous groundmass 5-8% - possibly argentite; HIGH SG. 70-71.15m Chill zone at upper contact, fine grain diabase texture 0.1m fault gouge at contact. 93.5-95.55m calcite crackle brecciated chill zone - 10% veinlets						
95.55	135.5	LORRAIN GRANITE	LORGRAN	LORRAIN GRANITE: massively bedded; equigranular pinkish feldspar phenocrysts:45% course grained groundmass with euhedral hornblende-rich matrix 35%; 20% amorphous quartz; moderate silicification; cg feldspar phenocrysts up to 3cm; choritic fracture fillings 15%; 125.3- 127.3m highly fractured chloritic slips at 0 and 20 degrees to core axis.						

DOWNHOLE SURVEY

276.4					
mi 474	11	265.4	-47.4	REFLEY	E404
275.6	11	264.6	-44.8	REFLEX	5491
	275.6	275.6 11	275.6 11 264.6	275.6 11 264.6 -44.8	275.6 11 264.6 -44.8 REFLEX

DDH#:	PP-20-08	UTM NAD 83 70NF 17	DRILL COMPANY-

DDH#:	PP-20-08	UTM	NAD 83 ZONE 17	DRILL COMPANY	Huard Drilling
AZM:	245	NORTHING	5,241,871.0	START DATE:	September 11, 2020
DIP:	-50	EASTING	606,713.0	END DATE:	September 20, 2020
EOH:	135.5	ELEVATION	331.0	CORE SIZE:	BQ
				Contraction of the second	

SAMPLING

FROM	TO	INTERVAL (m)	SAMPLE #	CERTIFICATE
69	70	1	P679124	SGS - YCN20-00066
70	71	1	P679125	SGS - YCN20-00066
71	72	1	P679126	SGS - YCN20-00066
72	73	1	P679127	SGS - YCN20-00066
73	74	1	P679128	SGS - YCN20-00066
74	75	1	P679129	SGS - YCN20-00066
75	76	1	P679130	SGS - YCN20-00066
76	77	1	P679131	SGS - YCN20-00066
77	78	1	P679132	SGS - YCN20-00066
78	79	1	P679133	SGS - YCN20-00066
79	80	1	P679134	SGS - YCN20-00066
80	81	1	P679135	SGS - YCN20-00066
81	82	1	P679136	SGS - YCN20-00066
82	83	1	P679137	5G5 - YCN20-00066
83	84	1	P679138	5G5 - YCN20-00066
84	85	1	P679139	SGS - YCN20-00066
85	86	1	P679140	SGS - YCN20-00066
86	87	1	P679141	SGS - YCN20-00066
87	88	1	P679142	SGS - YCN20-00066
88	89	1	P679143	SGS - YCN20-00066
89	90	1	P679144	5GS - YCN20-00066
90	91	1	P679145	SGS - YCN20-00066
91	92	1	P679146	SGS - YCN20-00066
92	93	1	P679147	SGS - YCN20-00066
93	94	1	P679148	SGS - YCN20-00066
94	95.55	1.55	P679149	SGS - YCN20-00066
95.55	96.55	1	P679150	SGS - YCN20-00066

SAMPLING - Bulk Sample

FROM	TO	INTERVAL (m)	BATCH #	WEIGHT (Kg)	CERTIFICATE
7.1	13.2	6.1	4	16.4	CFM - PRB9547
13.2	19.3	6.1	3	18.2	CEM - PR89547
19.3	25.4	6.1	2	14.1	CFM - PR89547
25.4	31,3	5.9	1	15.9	CEM - PR89547

TWP:	Lorrain	MA
CLAIM:	155684	CO
CASING	casing left in hole	
LOGGED BY:	Peter Hubacheck	LOGGING

MAKING WATER: N CORE LOCATION: Kenogami Lake Core Facility

LOGGING COMPLETED: September 23, 2020
NIPISSING DIAMOND PROJECT - LORRAIN PROPERTY

DDH#: AZM: DIP: EOH:	PP-20-09 238 -50 160m	UT NORTHING EASTING ELEVATION	TM NAD 83 ZONE 17 5,241,790.0 606,728.0 325.0	DRILL COMPANY: Huard Drilling TWP: Lorrain START DATE: September 21, 2020 CLAIM: 155684/239443 END DATE: September 27, 2020 CASING casing left in hole CORE SIZE: BQ LOGGED BY: Peter Hubacheck		MAKING WATER: CORE LOCATION: I LOGGING COMPLETED:	N Kenogami Lake Core Fa September 30, 2020	ncility D		
FROM	TO	ROCK TYPE	CODE	DESCRIPTION	KIN TEXTURE	CLAST TYPE	MATDING			-
0	5	OB	OB	BOULDER TILL: .4m diabase/granitoid cobbles with sand(washed out)		CONSTITUTE	MATRIAZ	AUTO CLAST%	ZENO CLAST%	COLOUR
5	29.7	HETEROLITHIC TUFFISITIC KIMBERLITE BRECCIA	нтквх	HETER OLITHIC TUFFISITIC KIMBERLITE BRECCIA: matrix supported with mixed angular to rounded blocks ranging from .2cm to .3m - 5% autoclasts; fine grained tuffisitic, sandy homogenous matrix is dark tan brown colour with moderate calcite cement; microlitic. pelletal lapilii (.1mm2mm) in matrix 7%; chromite frosting on lapilii clasts; also fg irregular ilmenite/chromite grains are 23% of tan-coloured amorphous matrix; larger autoliths are assorte mafic volcanic and variable granitic compositions; vuggy, open space porosity 5%; carbonate-ric tan-coloured clasts are mainly globular; 1% phlogopite microcrysts with 10% translucent tabular monticellite microcrysts	d h			3		
29.7	58.7	LORRAIN GRANITE	LORGRAN	LORRAIN GRANITE: massively bedded; equigranular pinkish feldspar phenocrysts:45% course grained groundmass with euhedral hornblende-rich matrix 35%; 20% amorphous quartz;31.3m t 33,45m: moderate to strong silicification; cg feldspar phenocrysts up to 3cm; 65.05m to 66.35m choritic fracture fillings 15% with ohre-red staining;	o ;					
58.7	82.25	DIABASE DIKE	DIADIKE	DIABASE DIKE: fine grained, aphanitic to dark gray sucrosic textured siliceous groundmass up to 60% silica; sharp upper contact; calcite crackle veinlets @ 45 TCA over .1m at contact; fg diabase textured chloritic phase~5% from 58.7m to 60.7m; 60.7m to 80.5m: cg gabroic texture with chloritic spotting: 80.5m to 82.25m: aphanitic, chloritic dike wall lower boundary zone, 5% calcit crackle veinlets ; metallic lustre mineral with acicular crystal habit; 5-10% milleritite(magnetic if formed at high temperatures)? soft, metallic subconchoidal mineral in aggregates disseiminated in siliceous groundmass 5-8% - possibly argentite; HIGH SG	e					
82.25	131.6	LORRAIN GRANITE	LORGRAN	LORRAIN GRANITE: massively bedded; equigranular pinkish feldspar phenocrysts:45% course grained groundmass with euhedral hornblende-rich matrix 35%; 20% amorphous quartz;31.3m to 33.45m: moderate to strong silicification from 107.1m to m;; cg feldspar phenocrysts up to 3cm; 99.3m to 100.5m: choritic, hematific fracture fillings 15% with ohre-red staining;	,					
131.6	160	CROSS LAKE FAULT ZONE	CLFZ c	CLFZ: Cross Lake Fault Zone: intensely brecciated fault zone in Lorrain Grainte; rubbly broken core; highly weathered' some crackle brecciated core intervals scattered throughout the intersection' MS = 0; RQD = 0						

DOWNHOLE SURVEY

HOLE-ID	DEPTH	MAG AZIMUTH	MAGNETIC	AZIMUTH (TN)	DIP	SURVEY TYPE	MAGNETIC FIELD
No downhole	survey						

FROM	TO	INTERVAL (m)	BATCH #	WEIGHT (Kg)	CERTIFICATE
22.35	29.7	7.35	1	10.0	CEM - PRB9546
16.25	22.35	6,1	2	15.5	CEM - PRB9546
10.15	16.25	6.1	3	18.2	CEM - PRB9546
5	10.15	5.15	4	9.1	CEM - PRB9546

NIPISSING DIAMOND PROJECT - LORRAIN PROPERTY

DDH#: AZM: DIP: EOH:	PP-20-10 360/0 -90 25.4	UTI NORTHING EASTING ELEVATION	M NAD 83 ZONE 17 5,241,822.0 606,824.0 340.0	DRILL COMPANY: Huard Drilling TWP: START DATE: September 27, 2020 CLAIM: END DATE: September 28, 2020 CASING casing CORE SIZE: BQ LOGGED BY: Peterson	Lorrain 126017 ssing left in hole ter Hubacheck	MAKING WATER: CORE LOCATION: LOGGING COMPLETED:	N Kenogami Lake Core Facil September 29, 2020	ity		
FROM	TO	ROCK TYPE	CODE	DESCRIPTION	KIM TEXTURE	CLAST TYPE	MATRINA			
0	7.1	OB	OB	BOULDER TILL: .4m diabase/granitoid cobbles with sand(washed out)		CLASITIFE	MATRIX%	AUTO CLAST%	ZENO CLAST%	COLOUR
7,1	22.35	HETEROLITHIC TUFFISITIC KIMBERLITE BRECCIA	нтквх	HETER OLITHIC TUFFISITIC KIMBERLITE BRECCIA: matrix supported with mixed ang blocks ranging from .2cm to .35m - 5% autoclasts; fine grained tuffisitic, sandy hon is dark greenish brown colour with moderate calcite cement; microlitic, pelletal la .2mm) in matrix 7%; chromite frosting on lapilli clasts; also fg irregular ilmenite/chi 15% of tan-coloured amorphous matrix; larger autoliths are assorted mafic volcania vuggy, open space porosity 5%; carbonate-rich tan-coloured clasts are mainly glob phlogopite microcrysts with 10% translucent tabular monticellite microcrysts 7.1-7.2m glassy monticellite midrocrysts with pelletal ilmenite lapillis; pyrope 10.15-10.35m pyrope macrocryst 5mm	gular to rounded mogenous matrix apilli (.1mm- iromite grains are le compositions; jular; 1% pyrope es					
22.35	25.4	LORRAIN GRANITE	LORGRAN	LORRAIN GRANITE: massively bedded; equigranular pinkish feldspar phenocrysts:6 groundmass with platy foliated hornblende matrix 15%; 20% amorphous quartz;31 moderate to strong silicification; mg feldspar phenocrysts up to .5cm; 25.3-25.4m glassy monticellite midrocrysts with pelletal ilmenite lapiliis; pyro	55% fine grained 1.3m to 33.45m: opes					

DOWNHOLE SURVEY

HOLE-ID	DEPTH	MAG AZIMUTH	MAGNETIC	AZIMUTH (TN)	DIP	SURVEY TYPE	MAGNETIC FIELD
No downhole	e survey						

FROM	TO	INTERVAL (m)	BAG#	WEIGHT (Ke)
None				weidin (kg)

NIPISSING DIAMOND PROJECT - LORRAIN PROPERTY

AZM: DIP: EOH:	0 -90 11.15m	NORTHING EASTING ELEVATION	TM NAD 83 ZONE 17 5,241,900.0 606,944.0 350.0	DRILL COMPANY: Huard Drilling TWP: Lorrain START DATE: September 28, 2020 CLAIM: 126017 END DATE: September 28, 2020 CASING casing left in 1 CORE SIZE: BQ LOGGED BY: Peter Hubach	ole eck	MAKING WATER CORE LOCATION LOGGING COMPLETED:	N Kenogami Lake Core F September 29, 202	acility		
FROM	TO	ROCK TYPE	CODE	DESCRIPTION	KIM TEXTURE	CLAST TYPE	MATRIX%	AUTO CLAST%	TENO CLASTIN	
o	5	ОВ	ОВ	BOULDER TILL: .4m diabase/granitoid cobbles with sand(washed out)				NOTO CLASTA	ZENU CLAST&	COLOUR
5	8.3	HETEROLITHIC VOLCANICLASTIC KIMBERLITE BRECCIA	НУКВХ	HETEROLITHIC VOLCANICLASTIC KIMBERLITE BRECCIA: matrix supported with mixed angular diabase/lorrain granite blocks ranging from .05cm to .3m - 25% magmaclasts; fine grained tuffisitic, sandy homogenous matrix is dark greenish brown colour with moderate calcite cer microlitic. pelletal lapilli ilmenite zenoclasts(.1mm3mm) in matrix 75%; chromite frosting or clasts; also fg irregular ilmenite/chromite grains are 10% of tan-coloured amorphous matrix; zenoliths are dominant; vuggy, open space porosity 1% with monticellite infilings; carbonate tan-coloured zenoclasts are mainly globular with monticellite microcrysts; 1% phlogopite microcrysts with 5% translucent tabular monticellite microcrysts; sharp lower contact with smooth, polished surface of Lorrain granite	ient; Iapilli rger Massive rich	Volcaniclastic	75		10	Tan Green
8.3	11.15	LORRAIN GRANITE	LORGRAN	LORRAIN GRANITE: massively bedded; equigranular pinkish feldspar phenocrysts:65% fine gr groundmass with platy foliated hornblende matrix 15%; 20% amorphous quartz; moderate to strong silicification; mg feldspar phenocrysts up to .5cm;	ined					Reddish

DOWNHOLE SURVEY

HOLE-ID	DEPTH	MAG AZIMUTH	MAGNETIC	AZIMUTH (TN)	DIP	SURVEY TYPE	MAGNETIC FIELD
No downhole	survey						

FROM	TO	INTERVAL (m)	BAG#	WEIGHT (Ka)
None				The second free

NIPISSING DIAMOND PROJECT - LORRAIN PROPERTY

AZM: DIP: EOH:	0 -90 5.1	UT NORTHING EASTING ELEVATION	TM NAD 83 ZONE 1 5,241,950. 607,069. 350.	7 DRILL COMPANY: Huard Drilling TWP: Lc 0 START DATE: September 29, 2020 CLAIM: 12 0 END DATE: September 30, 2020 CASING casing I 0 CORE SIZE: BQ LOGGED BY: Peter H	orrain 26017 left in hole Hubacheck		MAKING WATER: CORE LOCATION: LOGGING COMPLETED:	N Kenogami Lake Core Fa October 2, 2020	icility		
FROM	TO	ROCK TYPE	CODE	DESCRIPTION	K	IM TEXTURE	CLAST TYPE	BAATDING/			-
0	З	ОВ	OB	BOULDER TILL: .5m cobbles with no sand			contract	MATRIA76	AUTO CLAST%	ZENO CLAST%	COLOUR
3	4.3	HETEROUTHIC VOLCANICLASTIC KIMBERLITE BRECCIA	нуквх	HETEROLITHIC VOLCANICLASTIC KIMBERLITE BRECCIA: matrix supported with mixed diabase/lorrain granite blocks ranging from .05cm to3m - 25% magmaclasts; fine g tuffisitic, sandy homogenous matrix is dark greenish brown colour with moderate ci cement; microlitic. pelletal lapilli ilmenite zenoclasts(.1mm3mm) in matrix 75%; ch frosting on lapilli clasts; also fg irregular ilmenite/chromite grains are 10% of tan-col amorphous matrix; larger zenoliths are dominant; vuggy, open space porosity 1% wi monticellite infillings; carbonate-rich tan-coloured zenoclasts are mainly globular wii monticellite microcrysts; 1% phlogopite microcrysts with 5% translucent tabular mor microcrysts; sharp lower contact with smooth, polished surface of Lorrain granite	l angular grained alcite hromite loured tith tith nticellite	Massive	Volcaniclastic	75		10	Tan Green
4.3	5,1	LORRAIN GRANITE	LORGRAN	LORRAIN GRANITE: massively bedded; equigranular pinkish feldspar phenocrysts:659 grained groundmass with platy foliated hornblende matrix 15%; 20% amorphous qua moderate to strong silicification; mg feldspar phenocrysts up 5 series	% fine artz;						

DOWNHOLE SURVEY

HOLE-ID	DEPTH	MAG AZIMUTH	MAGNETIC	AZIMUTH (TN)	DIP	SURVEY TYPE	MAGNETIC FIELD
No downhole	survey						
							the second se

FROM	TO	INTERVAL (m)	BAG#	CERTIFICATE
DCM Drospecies			or ton	CENTIFICATE
DSIVI Processing			1	Microlithics Lab

NIPISSING DIAMOND PROJECT - LORRAIN PROPERTY

		HOURT IL	CODE		DESCRIPTIO	N		KIM TEXTURE	CLAST TYPE	MATRIX%	AUTO CLAST%
FROM	TO	ROCK TYPE	005							Contraction of the second	
EOH:	18.75m	ELEVATION	345.0	CORE SIZE:	BQ	LOGGED BY:	Peter Hubacheck		LOGGING COMPLETED:	October 3, 2020	
DIP:	-90	EASTING	606,800.0	END DATE:	October 2, 2020	CASING	12601/		CORE LOCATION:	Kenogami Lake Core	Facility
AZM:	360/0	NORTHING	5,242,134.0	DRILL COMPANY: START DATE:	Huard Drilling October 1, 2020	TWP:	Lorrain		MAKING WATER:	N	

	-		CODE	DESCRIPTION	KIM TEXTURE	CLAST TYPE	MATRIX%	AUTO CLASTS	7ENO CLACTO	1 coupur
O	2.5	OB	ОВ	BOULDER TILL: .2m cobbles with no sand				AUTO CLAST/A	ZENUCLASI%	COLOUR
2.5	16.25	HETEROLITHIC VOLCANICLASTIC KIMBERLITE BRECCIA	нуквх	HETEROLITHIC VOLCANICLASTIC KIMBERLITE BRECCIA: matrix supported with mixed angular diabase/lorrain granite blocks ranging from .05cm to .3m - 8% autoclasts; fine grained tuffisitic, sandy homogenous matrix is dark greenish brown colour with moderate calcite cement; microlitic. pelletal lapilli ilmenite zenoclasts(.1mm3mm) in matrix 77%; chromite frosting on lapilli clasts; also fg irregular ilmenite/chromite grains are 15% of tan-coloured amorphous matrix; larger zenoliths are dominant; vuggy, open space porosity 1% with monticellite infillings; carbonate-rich tan-coloured zenoclasts are mainly globular with monticellite microcrysts; 1% phlogopite microcrysts with 10% translucent tabular monticellite microcrysts; sharp lower contact with smooth, polished surface of Lorrain granite	Massive	Volcaniclastic	77		15	Tan Green
16.25	18.75	LORRAIN GRANITE	LORGRAN	LORRAIN GRANITE: massively bedded; equigranular pinkish feldspar phenocrysts:65% fine grained groundmass with platy foliated hornblende matrix 15%; 20% amorphous quartz; moderate to strong silicification; mg feldspar phenocrysts up to .5cm;						

DOWNHOLE SURVEY

HOLE-ID	DEPTH	MAG AZIMUTH	MAGNETIC AZIMUTH (TN) DIP			SURVEY TYPE	MAGNETIC FIELD
No downhole	survey	1	SEGENTION				

FROM	TO	INTERVAL (m)	BAG#	CEPTIEICATE
DSM Processing	3		Price a	Microlithics Lab
				Indicionation Lab

NIPISSING DIAMOND PROJECT - LORRAIN PROPERTY

DDH#: AZM: DIP: EOH:	PP-20-20 240 -50 62m	UT NORTHING EASTING ELEVATION	TM NAD 83 ZONE 17 5,239,000.0 609,100.0 320.0	DRILL COMPANY: Huard Drilling D START DATE: December 8, 2020 D END DATE: December 10, 2020 O CORE SIZE: BQ	TWP: CLAIM: CASING LOGGED BY:	Lorrain 567969 Unknown Peter Hubacheck		MAKING WATER CORE LOCATION	N Kenogami Lake Core Fa December 11, 2020	acility		
FROM	то	ROCK TYPE	CODE	DESCRIPTION	1			CLAST TYPE				
0	3	OVERBURDEN	ОВ	OVERBURDEN: 1m cobbles , pebbles with no sand			MATERIONE	CLASITIPE	MATRIX%	AUTO CLAST%	ZENO CLAST%	COLOUR
3	62	LORRAIN GRANITE	LORGRAN	LORRAIN GRANITE: massively bedded; equigranular pinki groundmass with platy foliated hornblende matrix 15%; strong silicification; mg feldspar phenocrysts up to .5cm; 21.5m joint/fracture 25 tca and 60.6m joint/fracture 10 t 13.2-13.4m and 43.25-46.25m broken core; moderate ble	sh feldspar phenocr 20% amorphous qua ca eaching	ysts:65% fine grained rtz; moderate to						Pink/Red

DOWNHOLE SURVEY

HOLE-ID D	EPTH	MAG AZIMUTH	MAGNETIC	AZIMUTH (TN)	DIP	SURVEY TYPE	MAGNETIC FIELD
No downhole survey	1		DECLINATION			Source	MAGINE HC FIELD

PROM	10	INTERVAL (m)	BAG#	WEIGHT (Ka)
None			Undir	weight (kg)

DDH#: AZM: DIP: EOH:	GL-20-01 360 -90 28.5	UT NORTHING EASTING ELEVATION	M NAD 83 ZONE 1 5,241,320. 608,090. 335.	7 DRILL COMPANY: Huard Drilling TWP: Lorrain 0 START DATE: November 12, 2020 CLAIM: 210724 0 END DATE: November 13, 2020 CASING Unknown 0 CORE SIZE: BQ LOGGED BY: Peter Hubacheck		MAKING WATER: CORE LOCATION: LOGGING COMPLETED:	N Kenogami Lake Core Fa November 13, 202	cility O			
FROM	TO	ROCK TYPE	CODE	DESCRIPTION	KIM TEXTURE	CLAST TYPE	MATDING	AUTO CLAST		1	1
0	2.8	OVERBURDEN	ОВ	OVERBURDEN: .3m cobbles , pebbles with no sand		CONTINUE -	MININAZ	AUTO CLAST%	ZENO CLAST%	COLOUR	AVG MS
2.8	8.75	HETEROLITHIC TUFFISITIC KIMBERLITE BRECCIA	нтквх	HETEROLITHIC TUFFISITIC KIMBERLITE BRECCIA: matrix supported with mixed angular mafic /granitoid blocks ranging from .5 cm to .15m - 15% autoclasts; fine grained tuffisitic, sandy homogenous matrix is dark greenish brown colour with moderate calcite cement; microlitic. pelletal lapilli (.1mm2mm) in matrix 75%; chromite frosting on lapilli clasts; also fg irregular ilmenite/chromite grains are 5% of tan-coloured amorphous matrix; larger autoliths are ot dominant; vuggy, open space porosity 5%; carbonate-rich tan-coloured zenoclasts are mainly globular with monticellite microcrysts 5%; 1% philogopite microcrysts with 10% translucent tabular monticellite microcrysts; sharp lower contact with broken surface of kaolinized syenite 2.8M KIM upper contact 75 dca kim matrix stuck to 0.2m granitic autoclast 8.75m KIM lower contact 50 dca			75	15	10		
8.75	19.7	KAOLINIZED SYENITE	KAOSYEN	KAOSYEN: kaolinized and epidotized syenite: fine to med grained equigranular texture; moderate kaolinization of feldspars; 12.6m to 13.2m: high angle stronly kaolinized granular fault gouge zone; 17.05m to 18.15m: high angle stronly kaolinized granular fault gouge zone; 19.3m to 19.7m: lateral alteration fron perpendicular to drill hole axis with relict syenite groundmass preserved in alteration zone 13.2m brecciated fracture 5cm fault gouge kaolinized breccia							
19.7	20.4	SYENITE	SYEN	SYEN; massive bedded, pink coloured, fg to med gr groundmass with weak foliation in mafic accessory minerals=15%							
20.4	21.2	KAOLINIZED SYENITE	KAOSYEN	KAOSYEN: kaolinized and epidotized syenite: fine to med grained equigranular texture; moderate kaolinization of feldspars; gradational with bounding units				-			
21.2	22	SYENITE	SYEN	SYEN; massive bedded, pink coloured, fg to med gr groundmass with weak foliation in mafic accessory minerals=15%							
22	22.55	KAOLINIZED SYENITE	KAOSYEN	KAOSYEN: kaolinized and epidotized syenite: fine to med grained equigranular texture; moderate kaolinization of feldspars; high angle fault gouge with bounding units							
22.55	28.45	SYENITE	SYEN	SYEN; massive bedded, pink coloured, fg to med gr groundmass with weak foliation in mafic accessory minerals=15%[weak epidotized fracture shears present 23.85m brecciated fracture 5cm fault gouge kaolinized breccia							

DOWNHOLE SURVEY

HOLE-ID	DEPTH	MAG AZIMUTH	MAGNETIC	AZIMUTH (TN)	DIP	SURVEY TYPE	MAGNETIC FIELD
No downho	le survey					-	

FROM	TO	INTERVAL (m)	BAG#	WEIGHT (Ke)
None				treatin (ng)

DDH#:	GL-20-02	UTM	NAD 83 ZONE 17	DRILL COMPANY:	Huard Drilling	TWP	Lorrain			
AZM:	360	NORTHING	5 241 371 0	START DATE:	November 12 2020		Lonani	MAKING WATER:	N	
DID	00		0,241,071.0	START DATE:	November 13, 2020	CLAIM:	569259	CORE LOCATION: 1	Cenogami Lake Core Facility	
DIP.	-90	EASTING	608,670.0	END DATE:	November 14, 2020	CASING	Unknown		and game core ruenty	
EOH:	22.4	ELEVATION	320.0	CORE SIZE:	BQ	LOGGED BY: Pe	ter Hubacheck	LOGGING COMPLETED:	November 15, 2020	

FROM	TO	ROCK TYPE	CODE	DESCRIPTION	KIM TEXTURE	CLAST TYPE	MATRIXY	AUTO CLACTON		T
o	4.45	OVERBURDEN	ОВ	OVERBURDEN: .6m cobbles , pebbles with no sand			marniz 2	AUTO CLAST%	ZENO CLAST%	COLOUR
4.45	18.5	HETEROLITHIC TUFFISITIC KIMBERLITE BRECCIA	нтквх	HETEROLITHIC TUFFISITIC KIMBERLITE BRECCIA: matrix supported with mixed angular mafic /granitoid, globular blocks ranging from .5 cm to .15m - 10% autoclasts; fine grained tuffisitic, sandy homogenous matrix is dark greenish brown colour with moderate calcite cement; microlitic. pelletal lapilli (.1mm2mm) in matrix 80%; chromite frosting on lapilli clasts; also fg irregular ilmenite/chromite grains are 5% of tan-coloured amorphous matrix;larger autoliths are ot dominant; vuggy, open space porosity 5%; carbonate-rich tan-coloured zenoclasts are mainly globular with monticellite microcrysts 5%; 1% phlogopite microcrysts with 10% translucent tabular monticellite microcrysts; sharp lower contact with broken surface of kaolinized, fractured syenite 4.45m KIM upper contact tan carbonate zenoclast at contact 18.5m KIM lower contact kaolinized fractured syenite at contact						
18.5	22.35	SYENITE	SYEN	SYEN; massive bedded, pink coloured, fg to med gr groundmass with weak foliation in mafic accessory minerals=15% weak epidotized fracture shears present 18.5-19.7m high angle fracture at 0 dca with epidotized gouge material						

DOWNHOLE SURVEY

HOLE-ID	DEPTH	MAG AZIMUTH	MAGNETIC	AZIMUTH (TN)	DIP	SURVEY TYPE	MAGNETIC FIELD
No downhole :	survey						

FROM	то	INTERVAL (m)	BAG#	WEIGHT (Ke)		
None						

DDH#: AZM: DIP: EOH:	HSM-20-01 360 -90 31.5	UT NORTHING EASTING ELEVATION	M NAD 83 ZONE 1 5,239,424. 608,461. 320.	7 DRILL COMPANY: 0 START DATE: 0 END DATE: 0 CORE SIZE:	Huard Drilling November 29, 2020 November 30, 2020 BQ	TWP: Lor CLAIM: 331 CASING Unkr LOGGED BY: Peter Hub	orrain 11574 known bacheck	LOGGI	MAKING WATER: CORE LOCATION: K	N enogami Lake Core Facility December 1, 2020			
FROM	TO	ROCK TYPE	CODE		DESCRIPTIO	ON	KIM TEX	URE	CLAST TYPE	MATRIX%	AUTO CLAST%	ZENO CLAST%	
0	12.6	OVERBURDEN	ОВ	OVERBURDEN: 3.3m bou	lders, cobbles , pebbles with	no sand					AUTO CLASTIN	LENO CLASIZ	COLOOK
12.6	27.25	HETEROLITHIC TUFFISITIC KIMBERUTE BRECCIA	нтквх	HETEROLITHIC TUFFISITIO quartzite / globular carbo granite autoclasts:1%; fir colour with moderate cal chromite frosting on lapil amorphous matrix;larger rich tan-coloured xenocla composed of tr% phlogo 12.8m KIM upper contact 16.25m KIM lower contact	C KIMBERLITE BRECCIA: matri anate clasts ranging from 2 cn en grained tuffisitic, sandy ho loite cement; microlitic, pellet li clasts; also fg irregular ilmer xenoliths are ot dominant; v ists are mainly globular with pite microcrysts with 6% trai t an carbonate zenoclast at c t t6 d ca high angle fracture in	x supported with 23 % mixed ange n to .3m - 8% autoclasts; few scatt mogenous matrix is light greenish tal lapilli (.1mm2mm) in matrix 6 nite/chromite grains are 8% of tar vuggy, open space porosity 5%; ca monticellite microcrysts 8%; sandy nslucent tabular monticellite micr ontact n granite at contact	gular Lorrain tered h brown 62%; an-coloured arbonate- y matrix crocrysts;			50	20	30	
26.7	31.5	LORRAIN GRAINITE	LORGRAN	LORRAIN GRANITE: massi groundmass with platy fo	vely bedded; equigranular pir liated hornblende matrix 15%	nkish feldspar phenocrysts:65% fir 6; 20% amorphous quartz; moder	ine grained trate to						

DOWNHOLE SURVEY

HOLE-ID	DEPTH	MAG AZIMUTH	MAGNETIC	AZIMUTH (TN)	DIP	SURVEY TYPE	MAGNETIC FIELD
No downhole	e survey						

strong silicification; mg feldspar phenocrysts up to .5cm;

FROM	TO	INTERVAL (m)	BAG#	WEIGHT (Ke)
None				11212111118/

AZM: DIP:	360 -90	NORTHING	5,239,670.0 608,247.0	DRILL COMPANY: START DATE: END DATE:	Huard Drilling December 1, 2020 December 1, 2020	TWP: CLAIM: CASING	Lorrain 203195	MAKING WATER: CORE LOCATION:	N Kenogami Lake Core Facility	
EOH:	52.85	ELEVATION	339.0	CORE SIZE:	BQ	LOGGED BY: Pe	ter Hubacheck	LOGGING COMPLETED:	December 1, 2020	

TROW	10	ROCK ITPE	CODE	DESCRIPTION	KIM TEXTURE	CLAST TYPE	MATRIX	AUTO CLASTR		Transie
0	4.05	OVERBURDEN	ОВ	OVERBURDEN: Sm , cobbles , pebbles with no sand			marniaza	AUTO CLASI%	ZENU CLAST%	COLOUR
4.05	52.85	HETEROUTHIC TUFFISITIC KIMBERLITE BRECCIA	нтквх	HETEROLITHIC TUFFISITIC KIMBERLITE BRECCIA: matrix supported with 8 % mixed angular mafic / globular carbonate clasts ranging from 2 cm to .15m - 8% autoclasts;few scattered granite autoclasts:2%; fine grained tuffisitic, sandy homogenous matrix is light greenish brown colour with moderate calcite cement; microlitic. pelletal lapilli (.1mm2mm) in matrix 62%; chromite frosting on lapilli clasts; also fg irregular ilmenite/chromite grains are 8% of tan-coloured amorphous matrix;larger xenoliths are ot dominant; vuggy, open space porosity 5%; carbonate- rich tan-coloured zenoclasts are mainly globular with monticellite microcrysts 10%; tr% phlogopite microcrysts with 10% translucent tabular monticellite microcrysts;			62	8	26	

DOWNHOLE SURVEY

HOLE-ID	DEPTH	MAG AZIMUTH	MAGNETIC	AZIMUTH (TN)	DIP	SURVEY TYPE	MAGNETIC FIELD
No downhole	e survey						

FROM	то	INTERVAL (m)	BAG#	WEIGHT (Ka)	
None				inclotti (hb/	

FROM	TO	ROCK TYPE	CODE		DESCRIPTIO	N		KIM TEXTURE	CLAST TYPE	MATRIX%	AUTO CLAST%	ZENO CLAST%
DIP: EOH:	-90 25.45m	EASTING	607,952.0 338.0	END DATE: CORE SIZE:	December 2, 2020 BQ	LOGGED BY: Pe	Unknown ter Hubacheck		LOGGING COMPLETED:	December 3, 2020		
DDH#: AZM:	HSM-20-03 360	NORTHING	NAD 83 ZONE 17 5,239,834.0	DRILL COMPANY: START DATE:	Huard Drilling December 2, 2020	TWP: CLAIM:	Lorrain 138563		MAKING WATER: CORE LOCATION:	N Lenogami Lake Core F	acility	

0	4.1	OVERBURDEN	OB	OVERBURDEN: 2m cobbles , pebbles with no sand				
4.1	22.2	HETEROLITHIC VOLCANICLASTIC KIMBERLITE BRECCIA	нуквх	HETEROLITHIC VOLCANICLASTIC KIMBERLITE BRECCIA: matrix supported with 8 % mixed angular mafic / globular carbonate clasts ranging from 2 cm to .15m - 10% magmaclasts;few scattered mafic autoliths:2%; fine grained tuffisitic, sandy homogenous matrix is light greenish brown colour with moderate calcite cement; microlitic. pelletal lapilii (.1mm2mm) in matrix 70%; chromite frosting on lapilli clasts; also fg nodular ilmenite/chromite grains are 15% of tan-coloured amorphous matrix; vuggy, open space porosity 5%; carbonate-rich tan-coloured xenoclasts are mainly globular with monticellite microcrysts 10%; trasslucent tabular monticellite microcrysts;	Massive/Uniform	Crater Fill	75	15
22.4	25.45	NIPISSING DIABASE	NIPDIA	NIPDIA: Nipissing Diabase sill: fine grained to medium grained; med to dark gray; med grained fabric with massive equigranular texture; 35% aphanitic chloritic groundmass with 20% altered feldspar lathes;chloritic fracture slips from 22.7m to 22.9m				

COLOUR

DOWNHOLE SURVEY

HOLE-ID	DEPTH	MAG AZIMUTH	MAGNETIC DECLINATION	AZIMUTH (TN)	DIP	SURVEY TYPE	MAGNETIC FIELD
No downhol	le survey					the second second second	1

FROM	TO	INTERVAL (m)	BAG#	WEIGHT (Kg)
None				the second

Appendix C: Analytical Certificates

ANALYSIS REPORT YCN20-00066

To RJK EXPLORATIONS LTD GLENN KASNER 4 AI WENDE AVE BOX 546 KIRKLAND LAKE P2N 3J5 ON CANADA

Order Number Submission Number Number of Samples	PO# Nipissing *BBY* Nipissin 27	Shipment 3 g Shipment 3/ 27 Core	Date Received Date Analysed Date Completed SGS Order Number	24-Sep-2020 15-Oct-2020 - 27-Oct-2020 27-Oct-2020 YCN20-00066
Methods Summar	L			
Number of Sample 27	Method Code GE_IMS90A50	Description Na2O2 Fusion, HM	NO3, ICP-MS, 0,1a-50ml	

Authorised Signatory

John Chiang Laboratory Operations Manager

This document is issued by the Company under its General Conditions of Service accessible at https://www.sgs.com/en/Terms-end-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was(were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativeness of any goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement puposes.

- not analysed	element not determined	I.S.	insufficient sample	1	L.N.R.	listed not received	
27-Oct-2020 3:58PM BBM_0000434357	570	Page	1 of 9		MI	N-M_COA_ROW-Last Modi	fied Date: 05-Nov-2019
SGS Canada Inc. NAM	M Minerals Geochemistry 3260 Production W	/ay Burnab	y BC. V5A 4W4 CANADA	+1 (6	638 23	49 f +1 (604) 444 5486	www.sgs.com

PO# Nipissing Shipment 3 *BBY* Nipissing Shipment 3/ 27 Core 27

ANALYSIS REPORT YCN20-00066

Element Method Lower Limit Upper Limit Unit	Ag GE_IMS90A50 1 200 ppm m / m	AI GE_IMS90A50 0.01 25 %	As GE_IMS90A50 3 10,000 ppm m / m	Ba GE_IMS90A50 10 10,000 ppm m / m	Be GE_IMS90A50 1 2,500 ppm m / m	Bi GE_IMS90A50 0.1 1,000 ppm m / m
P679124	2	6.56	<3	747	3	<0.1
P679125	5	6.90	<3	993	1	<0.1
P679126	<1	7.32	<3	912	1	<0.1
P679127	1	7.47	<3	943	1	<0.1
P679128	2	7.26	<3	968	1	<0.1
P679129	2	7.05	<3	987	1	<0.1
P679130	<1	7.09	<3	1029	1	<0.1
P679131	<1	7.07	<3	1071	1	<0.1
P679132	<1	7.10	<3	1066	1	<0.1
P679133	<1	6.99	<3	798	1	<0.1
P679134	<1	7.29	<3	1010	1	<0.1
P679135	<1	7.47	<3	1025	1	<0.1
P679136	<1	7.35	<3	944	1	<0.1
P679137	<1	7.43	<3	985	1	<0.1
P679138	<1	7.15	<3	1008	1	<0.1
P679139	<1	7.15	<3	1011	1	<0.1
P679140	<1	7.50	<3	944	2	<0.1
P679141	<1	7.14	<3	984	2	<0.1
P679142	<1	7.14	<3	919	2	<0.1
P679143	<1	7.43	<3	1005	1	<0.1
P679144	<1	7.04	<3	1021	1	<0.1
P679145	<1	7.51	<3	1017	1	<0.1
P679146	<1	6.73	<3	1021	2	<0.1
P679147	<1	7.17	<3	919	2	<0.1
P679148	<1	7.25	<3	872	2	<0.1
P679149	<1	6.08	8	565	3	27
P679150	<1	7.28	<3	735	4	0.6
*BIK BLANK	2	0.02	<3	<10	<1	<0.1
*Std OREAS 624	41	4.11	107	998	<1	21.3
*Std OREAS 520	8	5.64	146	7621		21.0

- not analysed | -- element not determined | I.S. insufficient sample | L.N.R. listed not received

27-Oct-2020 3:58PM BBM_U0004343570

Page 2 of 9

MIN-M_COA_ROW-Last Modified Date: 05-Nov-2019

SGS Canada Inc. NAM Minerals Geochemistry 3260 Production Way Burnaby BC. V5A 4W4 CANADA & +1 (604) 638 2349 f +1 (604) 444 5486

www.sgs.com

Order Number PO# Nipissing Shipment 3 Submission Number *BBY* Nipissing Shipment 3/ 27 Core Number of Samples 27

ANALYSIS REPORT YCN20-00066

Element Method Lower Limit Upper Limit Unit	Ag GE_IMS90A50 1 200 ppm m / m	AI GE_IMS90A50 0.01 25 %	As GE_IMS90A50 3 10,000 ppm m / m	Ba GE_IMS90A50 10 10,000 ppm m / m	Be GE_IMS90A50 1 2,500 ppm m / m	Bi GE_IMS90A50 0.1 1,000 ppm m / m
*BIK BLANK	2	<0.01	<3	<10	<1	<0.1
*Rep P679133	<1	7.12	<3	818	1	<0.1

Element Method Lower Limit Upper Limit Unit	Ca GE_IMS90A50 0.1 25 %	Cd GE_IMS90A50 0.2 10,000 ppm m / m	Co GE_IMS90A50 0.5 10,000 ppm m / m	Cr GE_IMS90A50 5 10,000 ppm m / m	Cs GE_IMS90A50 0.1 10,000 ppm m / m	Cu GE_IMS90A50 2 50,000 ppm m / m
P679124	0.2	<0.2	2.8	13	3.7	31
P679125	5.6	<0.2	50.7	27	8.2	134
P679126	5.6	<0.2	51.7	19	11.8	126
P679127	5.4	<0.2	53.2	36	5.5	119
P679128	5.5	<0.2	54.6	42	4.1	126
P679129	5.3	<0.2	52.4	37	4.8	121
P679130	5.6	<0.2	50.5	35	3.3	128
P679131	5.6	<0.2	50.5	29	3.3	120
P679132	5.5	0.2	45.9	22	7.0	107
P679133	5.4	0.6	50.0	28	5.9	127
P679134	5.6	<0.2	50.4	33	3.7	107
P679135	5.8	<0.2	48.5	30	3.0	127
P679136	5.4	<0.2	46.6	34	3.6	117
P679137	5.6	<0.2	53.0	41	12.6	117
P679138	5.5	<0.2	51.8	38	12.0	125
P679139	5.6	<0.2	51.7	30	4.0	120
P679140	5.7	0.2	53.7	39	11.3	126
P679141	5.5	0.2	56.2	41	30.7	129
P679142	5.9	0.2	50.2	42	19.7	129
P679143	5.5	-0.3	53.3	38	25.7	130
P679144	5.5	50.2	56.2	43	4.0	126
P679145	5.4	<0.2	54.4	39	11.0	131
1010140	5.5	<0.2	52.7	40	9.2	130

- not analysed | - element not determined | I.S. insufficient sample | L.N.R. listed not received

27-Oct-2020 3:58PM BBM_U0004343570

Page 3 of 9

MIN-M_COA_ROW-Last Modified Date: 05-Nov-2019

SGS Canada Inc. NAM Minerals Geochemistry 3260 Production Way Burnaby BC. V5A 4W4 CANADA & +1 (604) 638 2349 F +1 (604) 444 5486

Member of the SGS Group (SGS SA)

Order Number PO# Nipissing Shipment 3 Submission Number *BBY* Nipissing Shipment 3/ 27 Core Number of Samples 27

ANALYSIS REPORT YCN20-00066

Element Method Lower Limit Upper Limit Unit	Ca GE_IMS90A50 0.1 25 %	Cd GE_IMS90A50 0.2 10,000 ppm m / m	Co GE_IMS90A50 0.5 10,000 ppm m / m	Cr GE_IMS90A50 5 10,000 ppm m / m	Cs GE_IMS90A50 0.1 10,000 ppm m / m	Cu GE_IMS90A50 2 50,000 ppm m / m
P679146	7.9	0.5	48.0	37	23.6	126
P679147	6.6	0.4	49.8	32	16.0	124
P679148	6.9	0.4	46.3	27	18.5	120
P679149	10.5	1.3	36.3	28	24.5	116
P679150	0.6	0.2	2.5	15	6.9	8
*BIk BLANK	<0.1	<0.2	<0.5	<5	<0.1	<2
*Std OREAS 624	1.5	126	268	28	1.1	29641
*Std OREAS 520	4.5	<0.2	198	41	0.7	2978
*BIK BLANK	<0.1	<0.2	<0.5	<5	<0.1	<2
*Rep P679133	5.6	0.5	50.7	28	5.9	138

Element Method Lower Limit Upper Limit Unit	Fe GE_IMS90A50 0.01 25 %	K GE_IMS90A50 0.1 30 %	La GE_IMS90A50 0.1 10,000 ppm m / m	Li GE_IMS90A50 5 10,000 ppm m / m	Mg GE_IMS90A50 0.01 30 %	Mn GE_IMS90A50 10 10,000 ppm m / m
P679124	1.12	4.1	33.3	26	0.30	82
P679125	12.32	1.1	30.9	27	2.72	1547
P679126	13.11	1.2	28.4	40	2.98	1742
P679127	12.83	1.1	26.3	27	3.13	1652
P679128	13.21	1.0	27.4	15	3.19	1722
P679129	12.76	1.0	29.1	13	3.12	1666
P679130	13.03	1.1	30.5	18	2.95	1708
P679131	13.19	1.2	33.4	25	2.00	1720
P679132	12.51	1.2	33.9	42	2.30	1603
P679133	13.37	1.0	31.3	49	3.11	1093
P679134	12.83	1.2	30.3	30	2.00	1042
P679135	12.59	1.2	31.0	28	2.50	1/14
P679136	11.93	1.2	28.6	40	2.88	1685
P679137	13.23	10	20.0	18	2.91	1570
	10.20	1.0	27.5	10	3.16	1702

- not analysed | -- element not determined | I.S. insufficient sample | L.N.R. listed not received

27-Oct-2020 3:58PM BBM_U0004343570

Page 4 of 9

MIN-M_COA_ROW-Last Modified Date: 05-Nov-2019

SGS Canada Inc. NAM Minerals Geochemistry 3260 Production Way Burnaby BC. V5A 4W4 CANADA & +1 (604) 638 2349 f +1 (604) 444 5486

Member of the SGS Group (SGS SA)

PO# Nipissing Shipment 3 *BBY* Nipissing Shipment 3/ 27 Core 27

ANALYSIS REPORT YCN20-00066

Element Method Lower Limit Upper Limit Unit	Fe GE_IMS90A50 0.01 25 %	K GE_IMS90A50 0.1 30 %	La GE_IMS90A50 0.1 10,000 ppm m / m	Li GE_IMS90A50 5 10,000 ppm m / m	Mg GE_IMS90A50 0.01 30 %	Mn GE_IMS90A50 10 10,000 ppm m / m
P679138	12.43	1.1	29.0	18	3.01	1632
P679139	12.79	1.2	29.3	37	2.82	1677
P679140	11.80	1.5	28.6	57	2.93	1677
P679141	12.38	1.3	29.6	48	2.89	1685
P679142	12.25	1.2	30.5	67	3.12	1860
P679143	13.46	1.2	28.5	30	3.14	1700
P679144	12.93	1.2	30.5	40	3.02	1722
P679145	13.18	1.2	30.3	38	3.09	1708
P679146	12.02	1.2	29.2	63	2.98	2299
P679147	12.16	1.2	30.3	68	2.73	1970
P679148	12.08	1.2	29.2	60	2.43	2479
P679149	9.98	1.0	28.3	84	2.09	3225
P679150	1.28	4.0	38.7	30	0.36	176
*BIK BLANK	0.02	<0.1	<0.1	<5	<0.00	170
*Std OREAS 624	16.23	0.8	16.6	9	1 20	<10 670
*Std OREAS 520	16.87	3.2	88.9	27	1.23	072
*BIK BLANK	<0.01	<0.1	<0.1	21	1.24	2386
*Rep P679133	13.65	1.0	31.4	50	3.18	<10

Element Method Lower Limit Upper Limit Unit	Mo GE_IMS90A50 2 10,000 ppm m / m	Ni GE_IMS90A50 5 50,000 ppm m / m	P GE_IMS90A50 0.01 25 %	Pb GE_IMS90A50 2 50,000 ppm m / m	S GE_IMS90A50 1 25 %	Sb GE_IMS90A50 1 10,000 ppm m / m
P679124	<2	<5	0.02	17	<1	<1
P679125	<2	45	0.48	8	<1	<1
P679126	<2	44	0.50	4	<1	<1
P679127	<2	57	0.44	4	<1	
P679128	<2	58	0.45	11	<1	<1
P679129	<2	55	0.46	4	<1	<1

- not analysed | -- element not determined | I.S. insufficient sample | L.N.R. listed not received

27-Oct-2020 3:58PM BBM_U0004343570

Page 5 of 9

MIN-M_COA_ROW-Last Modified Date: 05-Nov-2019

SGS Canada Inc. NAM Minerals Geochemistry 3260 Production Way Burnaby BC. V5A 4W4 CANADA t +1 (604) 638 2349 f +1 (604) 444 5486

PO# Nipissing Shipment 3 *BBY* Nipissing Shipment 3/ 27 Core 27

ANALYSIS REPORT YCN20-00066

GE_IMS90A50 2 10,000	GE_IMS90A50 5 50,000	P GE_IMS90A50 0.01 25 %	Pb GE_IMS90A50 2 50,000	S GE_IMS90A50 1 25	Sb GE_IMS90A50 1 10,000
<2	20 AQ	70	ppm m / m	%	ppm m / m
<2	43	0.50	0	<1	<1
<2	43	0.50	6	<1	<1
<2	46	0.53	5	<1	<1
<2	40	0.52	5	1>	<1
<2	47	0.51	0	<1	<1
<2	52	0.34	14	<1	<1
<2	57	0.47	10	<1	<1
<2	55	0.47	5	<1	<1
<2	53	0.47	5	<1	<1
<2	55	0.40	10	<1	<1
<2	58	0.50	17	<1	<1
<2	55	0.49	12	<1	<1
<2	55	0.51	43	<1	<1
<2	57	0.47	3	<1	<1
-2	57	0.50	3	<1	<1
-2	53	0.49	3	<1	<1
<2	53	0.44	62	<1	<1
<2	55	0.48	44	<1	<1
<2	40	0.48	134	<1	<1
-2	40	0.42	269	<1	<1
-2	<0	0.02	90	<1	<1
10	<0	<0.01	3	<1	<1
10	1/	0.05	6011	13	69
03	/2	0.07	9	<1	3
<2	<5	<0.01	4	<1	<1
	GE_IMS90A50 2 10,000 ppm m / m <2	GE_IMS90A50 GE_IMS90A50 2 5 10,000 50,000 ppm m / m 9 <2	GE_IMS90A50 GE_IMS90A50 GE_IMS90A50 GE_IMS90A50 0.01 25 0.01 26 0.05 26 27 26 27 <th27< th=""> 27 27</th27<>	GE_IMS90A50 2 GE_IMS90A50 5 GE_IMS90A50 0.01 GE_IMS90A50 2 GE_IMS90A50 0.01 GE_IMS90A50 2 10,000 ppm m /m 50,000 ppm m /m 25 50,000 ppm m /m 6 <2	

- not analysed | -- element not determined |

I.S. insufficient sample

L.N.R. listed not received

27-Oct-2020 3:58PM BBM_U0004343570

Page 6 of 9

MIN-M_COA_ROW-Last Modified Date: 05-Nov-2019

SGS Canada Inc. NAM Minerals Geochemistry 3260 Production Way Burnaby BC. V5A 4W4 CANADA 2 +1 (604) 638 2349 2 +1 (604) 444 5486

PO# Nipissing Shipment 3 *BBY* Nipissing Shipment 3/ 27 Core 27

ANALYSIS REPORT YCN20-00066

Element Method Lower Limit Upper Limit Unit	Si GE_IMS90A50 0.1 40 %	Sn GE_IMS90A50 1 10,000 ppm m / m	Sr GE_IMS90A50 10 10,000 ppm m / m	Te GE_IMS90A50 1 1,000 ppm m / m	Ti GE_IMS90A50 0.01 30 %	V GE_IMS90A50 5 10,000 ppm m / m
P679124	30.8	1	92	<1	0.10	11
P679125	20.0	1	456	<1	2.50	319
P679126	21.0	1	473	<1	2.54	321
P679127	21.2	<1	511	<1	2.42	340
P679128	20.9	1	482	<1	2.53	340
P679129	19.9	1	458	<1	2.46	323
P679130	20.9	1	469	<1	2.50	306
P679131	21.5	1	463	<1	2.59	285
P679132	20.8	1	467	<1	2.48	254
P679133	20.6	1	424	<1	2.61	283
P679134	21.2	1	502	<1	2.53	295
P679135	21.7	1	510	<1	2.47	284
P679136	21.7	<1	472	<1	2.28	275
P679137	21.0	<1	493	<1	2.58	329
P679138	20.6	2	486	<1	2.42	305
P679139	20.9	1	507	<1	2.52	303
P679140	21.0	1	483	<1	2.57	322
P679141	20.4	1	475	<1	2.52	328
P679142	20.0	1	468	<1	2.46	310
P679143	21.3	<1	485	<1	2.52	335
P679144	21.1	1	498	<1	2.57	323
P679145	21.3	1	507	<1	2.56	314
P679146	19.0	<1	449	<1	2.26	283
P679147	20.3	1	442	<1	2.42	289
P679148	20.2	1	432	<1	2.47	200
P679149	16.8	<1	295	<1	2.11	200
P679150	35.4	1	124	<1	0.12	12
BIK BLANK	<0.1	<1	<10	<1	<0.01	13
Std OREAS 624	20.4	15	38	<1	0.16	22
Std OREAS 520	20.5	5	104	-1	0.50	55

- not analysed | -- element not determined | I.S. insufficient sample | L.N.R. listed not received

27-Oct-2020 3:58PM BBM_U0004343570

Page 7 of 9

MIN-M_COA_ROW-Last Modified Date: 05-Nov-2019

SGS Canada Inc. NAM Minerals Geochemistry 3260 Production Way Burnaby BC. V5A 4W4 CANADA t +1 (604) 638 2349 f +1 (604) 444 5486

www.sgs.com

Order Number PO# Nipissing Shipment 3 Submission Number *BBY* Nipissing Shipment 3/ 27 Core Number of Samples 27

ANALYSIS REPORT YCN20-00066

Element Method Lower Limit Upper Limit Unit	Si GE_IMS90A50 0.1 40 %	Sn GE_IMS90A50 1 10,000 ppm m / m	Sr GE_IMS90A50 10 10,000 ppm m / m	Te GE_IMS90A50 1 1,000 ppm m / m	Ti GE_IMS90A50 0.01 30 %	V GE_IMS90A50 5 10,000 ppm m / m
*BIk BLANK	<0.1	<1	<10	<1	<0.01	<5
*Rep P679133	21.1	1	435	<1	2.74	296

Element Method Lower Limit Upper Limit Unit	W GE_IMS90A50 5 10,000 ppm m / m	Y GE_IMS90A50 0.5 10,000 ppm m / m	Yb GE_IMS90A50 0.1 1,000 ppm m / m	Zn GE_IMS90A50 5 50,000 ppm m / m
P679124	<5	8.9	0.8	9
P679125	<5	35.7	3.1	275
P679126	<5	35.6	2.9	269
P679127	<5	31.6	2,6	239
P679128	<5	32.7	2.8	245
P679129	<5	33.1	2.9	247
P679130	<5	35.9	3.1	255
P679131	<5	39.8	3.2	264
P679132	<5	39.5	3.4	255
P679133	<5	37.6	3.1	409
P679134	<5	36.9	3.0	256
P679135	<5	37.9	2.9	246
P679136	<5	35.1	2.9	228
P679137	<5	32.4	2.8	250
P679138	<5	34.5	2.8	244
P679139	<5	35.2	2.9	244
P679140	<5	34.0	2.7	250
P679141	<5	33.9	2.9	256
P679142	<5	35.0	2.9	276
P679143	<5	34.1	3.0	248
P679144	<5	36.5	3.0	240
P679145	<5	35.3	2.9	255

- not analysed | -- element not determined | I.S. insufficient sample |

L.N.R. listed not received

27-Oct-2020 3:58PM BBM_U0004343570

Page 8 of 9

MIN-M_COA_ROW-Last Modified Date: 05-Nov-2019

SGS Canada Inc. NAM Minerals Geochemistry 3260 Production Way Burnaby BC. V5A 4W4 CANADA & +1 (604) 638 2349 F +1 (604) 444 5486

PO# Nipissing Shipment 3 *BBY* Nipissing Shipment 3/ 27 Core 27

ANALYSIS REPORT YCN20-00066

Element Method Lower Limit Upper Limit Unit	W GE_IMS90A50 5 10,000 ppm m / m	Y GE_IMS90A50 0.5 10,000 ppm m / m	Yb GE_IMS90A50 0.1 1,000 ppm m / m	Zn GE_IMS90A50 5 50,000 ppm m / m
P679146	<5	32.9	2.8	363
P679147	<5	34.4	2.8	298
P679148	<5	35.5	2.8	305
P679149	<5	32.6	2.7	700
P679150	<5	9.7	0.8	97
*BIK BLANK	<5	<0.5	<0.1	<5
*Std OREAS 624	<5	16.7	1.9	23012
*Std OREAS 520	44	22.2	2.2	50
*BIK BLANK	<5	<0.5	<0.1	<5
*Rep P679133	<5	37.9	3.4	426

- not analysed | -- element not determined | I.S. insufficient sample | L.N.R. listed not received

27-Oct-2020 3:58PM BBM_U0004343570

Page 9 of 9

MIN-M_COA_ROW-Last Modified Date: 05-Nov-2019

SGS Canada Inc. NAM Minerals Geochemistry 3260 Production Way Burnaby BC. V5A 4W4 CANADA & +1 (604) 638 2349 f +1 (604) 444 5486

Member of the SGS Group (SGS SA)

ANALYSIS REPORT YCN20-00067

To RJK EXPLORATIONS LTD GLENN KASNER 4 AI WENDE AVE BOX 546 KIRKLAND LAKE P2N 3J5 ON CANADA

Order Number Submission Number Number of Samples	PO:Nipissing Shipment #2 *BBY* Nipissing Shipment 2/ 24 Pulps 24	Date Received Date Analysed Date Completed SGS Order Number	02-Sep-2020 03-Oct-2020 - 08-Oct-2020 08-Oct-2020 YCN20-00067
Methods Summary			

24

GE_IMS90A50

Na2O2 Fusion, HNO3, ICP-MS, 0.1g-50ml

Authorised Signatory

John Chiang Laboratory Operations Manager

This document is issued by the Company under its General Conditions of Service accessible at https://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was(were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativeness of any goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement puposes.

- not analyse	ed -	- element not determined	1	I.S.	insufficient sample	1	L.N.R.	listed not received
8-Oct-2020 12:26PM BBM_U00040	21853			Page	1 of 7		MI	N-M_COA_ROW-Last Modified Date: 05-Nov-201
SGS Canada	CA MIN Bu	maby, BC 3260 Production Way, Bu	urnaby	, BC V	5A 4W4 Burnaby CANADA	* +	1 (604) 638	2349 f www.sgs.com

PO:Nipissing Shipment #2 *BBY* Nipissing Shipment 2/ 24

24

ANALYSIS REPORT YCN20-00067

Element Method Lower Limit Upper Limit Unit	Ag GE_IMS90A50 1 200 ppm m / m	AI GE_IMS90A50 0.01 25 %	As GE_IMS90A50 3 10,000 ppm m / m	Ba GE_IMS90A50 10 10,000 ppm m / m	Be GE_IMS90A50 1 2,500 ppm m / m	Bi GE_IMS90A50 0.1 1,000 ppm m / m
P679101	<1	7.15	<3	328	3	0.5
P679102	<1	6.83	14	343	2	0.6
P679103	<1	7.00	4	282	1	0.2
P679104	<1	6.39	3	217	1	0.1
P679105	1	5.80	<3	82	1	0.2
P679106	<1	6.74	<3	308	<1	0.1
P679107	<1	6.77	<3	300	<1	0.1
P679108	<1	7.09	<3	320	<1	0.1
P679109	<1	6.98	<3	376	1	0.1
P679110	<1	7.28	5	352	2	0.1
P679111	<1	7.33	7	341	2	0.2
P679112	<1	7.44	4	410	3	0.1
P679113	<1	7.32	<3	535	3	0.4
P679114	<1	7.63	<3	932	2	0.2
P679115	<1	7.35	<3	920		<0.1
P679116	<1	7.52	<3	836	4	<0.1
P679117	<1	6.65	<3	721	2	0.3
P679118	<1	7.13	<3	895	2	-0.1
P679119	<1	7.83	<3	911	1	0.1
P679120	<1	7.58	<3	878	1	<0.1
P679121	<1	7.28	<3	837	2	<0.1
P679122	<1	3.39	20	254	10	<0.1
P679123	<1	7.58	<3	723	10	0.7
DDH PP-20-04	<1	7.53	<3	125	3	0.1
*BIK BLANK	1	<0.01	-3	415	3	0.1
*Rep P679107	<1	6.94	-3	207	<1	<0.1
*Std OREAS 624	44	4 31	111	307	<1	0.2
*Std OREAS 520	<1	5.90	152	7948	<1	20.6

- not analysed | -- element not determined | I.S. insufficient sample | L.N.R. listed not received

8-Oct-2020 12:26PM BBM_U0004021853

Page 2 of 7

MIN-M_COA_ROW-Last Modified Date: 05-Nov-2019

SGS Canada CA MIN Burnaby, BC 3260 Production Way, Burnaby, BC V5A 4W4 Burnaby CANADA t +1 (604) 638 2349 f

www.sgs.com

BBY Nipissing Shipment 2/ 24 24

PO:Nipissing Shipment #2

ANALYSIS REPORT YCN20-00067

Element Method Lower Limit Upper Limit	Ca GE_IMS90A50 0.1 25	Cd GE_IMS90A50 0.2 10,000	Co GE_IMS90A50 0.5 10,000	Cr GE_IMS90A50 5 10,000	Cs GE_IMS90A50 0.1 10,000	Cu GE_IMS90A50 2 50,000
P679101	70	ppm m / m	ppm m / m	ppm m / m	ppm m / m	ppm m / m
P679102	1.3	<0.2	13.3	33	2.2	67
P679103	4.1	<0.2	62.2	99	11.8	144
P679104	4.2	<0.2	56.1	104	6.8	150
P679105	0.2	0.3	50.8	86	3.9	122
P670106	4.7	30.5	69.2	109	3.6	457
P679100	5.8	1.4	54.2	111	5.4	129
P679107	5.2	<0.2	56.1	111	6.0	134
P679108	4.8	<0.2	57.9	105	6.0	135
P679109	4.2	0.2	54.2	132	6.3	143
P679110	3.5	<0.2	57.8	101	9.1	148
P679111	3.0	0.2	35.7	76	7.0	100
P679112	0.4	<0.2	6.0	20	1.8	92
P679113	0.4	<0.2	7.2	33	1.7	175
P679114	4.4	1.1	57.9	37	6.9	157
P679115	5.1	0.4	52.8	28	9.4	159
P679116	4.8	0.3	57.6	32	8.1	151
P679117	9.2	0.4	50.3	44	7.2	141
P679118	7.3	0.3	50.9	40	5.0	147
P679119	5.8	0.4	52.8	37	5.9	152
P679120	5.8	0.3	58,2	48	6.1	155
P679121	7.4	0.3	57.7	62	6.4	147
P679122	21.6	0.4	22.3	28	6.3	89
P679123	0.5	<0.2	5.5	30	19	40
DDH PP-20-04	0.4	<0.2	4.2	45	1.7	40
*BIK BLANK	<0.1	0.3	<0.5	<5	<0.1	21
*Rep P679107	5.4	<0.2	57.4	108	-0.1	4
*Std OREAS 624	1.3	130	270	40	0.1	134
*Std OREAS 520	3.9	<0.2	210	40	0.7	32700

- not analysed | -- element not determined | I.S. insufficient sample | L.N.R. listed not received

8-Oct-2020 12:26PM BBM_U0004021853

Page 3 of 7

MIN-M_COA_ROW-Last Modified Date: 05-Nov-2019

SGS Canada CA MIN Burnaby, BC 3260 Production Way, Burnaby, BC V5A 4W4 Burnaby CANADA t +1 (604) 638 2349 f

www.sgs.com

PO:Nipissing Shipment #2 *BBY* Nipissing Shipment 2/24

24

ANALYSIS REPORT YCN20-00067

Element Method Lower Limit Upper Limit Unit	Fe GE_IMS90A50 0.01 25 %	K GE_IMS90A50 0.1 30 %	La GE_IMS90A50 0.1 10,000 ppm m / m	Li GE_IMS90A50 5 10,000 ppm m / m	Mg GE_IMS90A50 0.01 30 %	Mn GE_IMS90A50 10 10,000 ppm.m./m
P679101	3.17	2.9	38.2	20	1.24	625
P679102	9.91	1.6	24.0	57	3.27	1606
P679103	10.33	1.2	22.3	29	2.98	1706
P679104	10.35	0.7	22.5	23	3.43	2018
P679105	11.49	0.2	29.9	45	4.92	2186
P679106	10.18	1.1	20.7	25	3.20	1980
P679107	10.59	1.1	21.8	22	3.02	1886
P679108	10.98	1.3	24.0	32	3.34	1787
P679109	10.23	1.5	22.2	34	3.15	1615
P679110	9.85	2.0	25.6	56	3.63	1481
P679111	6.47	2.2	26.0	35	2.23	1345
P679112	1.82	3.8	39.1	15	0.74	278
P679113	1.71	3.8	32.9	15	0.58	173
P679114	11.43	1.7	30.9	32	2.76	1424
P679115	12.91	1.3	28.9	24	2.85	1709
P679116	12.90	1.3	27.9	23	2.93	1700
P679117	11.29	1.1	28.2	18	2.10	2038
P679118	11.85	1.3	32.8	18	2.28	1045
P679119	12.52	1.3	28.1	19	2.49	1771
P679120	12.95	1.2	26.6	16	2.40	1771
P679121	10.88	1.2	29.3	22	1.69	2040
P679122	6.46	0.5	29.5	12	0.62	2040
P679123	1.83	4.6	46.8	16	0.02	2230
DDH PP-20-04	1.59	3.6	49.4	15	0.56	257
BIK BLANK	<0.01	<0.1	<0.1	<5	<0.00	184
*Rep P679107	10.62	1.1	22.1	22	2.04	<10
*Std OREAS 624	16.37	0.9	16.1	0	3.04	1922
*Std OREAS 520	17.37	3.3	85.4	16	1,29	2445

- not analysed | -- element not determined | I.S. insufficient sample | L.N.R. listed not received

8-Oct-2020 12:26PM BBM_U0004021853

Page 4 of 7

MIN-M_COA_ROW-Last Modified Date: 05-Nov-2019

SGS Canada CA MIN Burnaby, BC 3260 Production Way, Burnaby, BC V5A 4W4 Burnaby CANADA t +1 (604) 638 2349 f

www.sgs.com

PO:Nipissing Shipment #2 *BBY* Nipissing Shipment 2/ 24

24

ANALYSIS REPORT YCN20-00067

Element Method Lower Limit Upper Limit	Mo GE_IMS90A50 2 10,000	Ni GE_IMS90A50 5 50,000	P GE_IMS90A50 0.01 25	Pb GE_IMS90A50 2 50,000	S GE_IMS90A50 1 25	Sb GE_IMS90A50 1 10,000
P679101	ppm m / m	ppm m / m	%	ppm m / m	%	ppm m / m
P670102	<2	13	0.04	133	<1	<1
P670102	<2	51	0.09	13	<1	<1
P679103	<2	52	0.08	10	<1	<1
P679104	<2	54	0.07	126	<1	<1
P679105	<2	135	0.06	404	<1	<1
P679106	<2	55	0.07	103	<1	<1
P679107	<2	53	0.08	15	<1	<1
P679108	<2	54	0.09	9	<1	<1
P679109	<2	61	0.08	8	<1	<1
P679110	<2	55	0.09	32	<1	<1
P679111	<2	42	0.06	79	<1	<1
P679112	<2	5	0.04	16	<1	<1
P679113	<2	<5	0.04	19	<1	<1
P679114	<2	58	0.43	6	<1	<1
P679115	<2	48	0.43	6	<1	<1
P679116	<2	56	0.42	6	<1	<1
P679117	<2	54	0.36	7	<1	<1
P679118	<2	53	0.39	21	<1	<1
P679119	<2	51	0.42	5	<1	<1
P679120	<2	61	0.40	6	<1	
P679121	<2	79	0.40	8	<1	-1
P679122	<2	34	0.19	23	<1	<1
P679123	<2	9	0.03	13	-1	1
DDH PP-20-04	<2	<5	0.03	7	1	<1
*BIK BLANK	<2	<5	<0.01	-2	<1	<1
*Rep P679107	<2	55	0.08	10		<1
*Std OREAS 624	16	22	0.06	10	<1	<1
*Std OREAS 520	61	72	0.04	0000	11	67

- not analysed | -- element not determined | I.S. insufficient sample | L.N.R. listed not received

8-Oct-2020 12:26PM BBM_U0004021853

Page 5 of 7

MIN-M_COA_ROW-Last Modified Date: 05-Nov-2019

SGS Canada CA MIN Burnaby, BC 3260 Production Way, Burnaby, BC V5A 4W4 Burnaby CANADA t +1 (604) 638 2349 f

PO:Nipissing Shipment #2 *BBY* Nipissing Shipment 2/24

24

ANALYSIS REPORT YCN20-00067

Element Method Lower Limit Upper Limit Unit	Si GE_IMS90A50 0.1 40 %	Sn GE_IMS90A50 1 10,000 ppm m / m	Sr GE_IMS90A50 10 10,000 ppm m / m	Te GE_IMS90A50 1 1,000 ppm m / m	Ti GE_IMS90A50 0.01 30 %	V GE_IMS90A50 5 10,000
P679101	33.9	1	58	<1	0.26	68
P679102	23.5	1	196	<1	0.99	353
P679103	23.6	<1	191	<1	0.97	348
P679104	22.2	<1	157	<1	0.95	348
P679105	20.5	<1	65	<1	0.86	457
P679106	22.2	<1	213	<1	0.88	324
P679107	22.9	<1	217	<1	0.94	337
P679108	24.3	<1	223	<1	0.96	346
P679109	23.3	<1	229	<1	0.96	344
P679110	23.6	1	169	<1	1.05	365
P679111	28.7	1	116	<1	0.64	215
P679112	34.5	1	73	<1	0.15	27
P679113	35.1	<1	91	<1	0.14	21
P679114	22.2	1	404	<1	2.26	329
P679115	21.0	1	450	<1	2.27	335
P679116	21.1	1	412	<1	2.20	322
P679117	18.4	<1	404	<1	2.01	316
P679118	20.0	<1	446	<1	2.07	312
P679119	20.9	1	470	<1	2.25	319
P679120	21.1	1	467	<1	2.25	343
P679121	18.0	<1	442	<1	2.15	330
P679122	8.2	<1	219	<1	1.00	147
P679123	34.7	1	82	<1	0.14	22
DDH PP-20-04	33.5	1	80	<1	0.13	19
*BIK BLANK	<0.1	<1	<10	<1	<0.01	<5
*Rep P679107	23.1	<1	221	<1	0.96	340
*Std OREAS 624	20.6	15	33	<1	0.14	33
*Std OREAS 520	21.1	5	92	<1	0.50	294

- not analysed | -- element not determined | I.S. insufficient sample | L.N.R. listed not received

8-Oct-2020 12:26PM BBM_U0004021853

Page 6 of 7

MIN-M_COA_ROW-Last Modified Date: 05-Nov-2019

SGS Canada CA MIN Burnaby, BC 3260 Production Way, Burnaby, BC V5A 4W4 Burnaby CANADA t +1 (604) 638 2349 f

www.sgs.com

PO:Nipissing Shipment #2 *BBY* Nipissing Shipment 2/ 24

24

ANALYSIS REPORT YCN20-00067

Element W Y Yb Zn Method GE_IMS90A50 GE_IMS90A50 GE_IMS90A50 GE_IMS90A50 Lower Limit 5 0.5 0.1 5 **Upper Limit** 10,000 10,000 1,000 50,000 Unit ppm m / m ppm m/m ppm m / m ppm m / m P679101 <5 16.0 1.4 94 P679102 <5 28.1 2.8 159 P679103 <5 28.9 2.8 154 P679104 <5 30.0 3.0 269 P679105 <5 35.0 3.8 8438 P679106 <5 28.1 2.7 446 P679107 <5 29.4 2.8 171 P679108 <5 31.2 2.9 172 P679109 <5 28.7 2.5 162 P679110 <5 29.9 2.8 181 P679111 <5 23.7 2.3 153 P679112 <5 12.4 1.2 38 P679113 <5 11.8 0.9 29 P679114 <5 35.4 2.8 353 P679115 <5 36.4 3.0 251 P679116 <5 34.7 2.9 230 P679117 <5 33.0 2.7 264 P679118 <5 34.6 2.8 229 P679119 <5 34.7 2.9 250 P679120 <5 33.2 2.6 237 P679121 <5 34.2 2.8 238 P679122 <5 31.9 2.2 107 P679123 <5 12.7 1.1 31 DDH PP-20-04 <5 11.7 1.2 24 *BIK BLANK <5 0.6 <0.1 <5 *Rep P679107 <5 30.0 2.9 177 *Std OREAS 624 <5 17.0 1.8 23284 *Std OREAS 520 44 22.2 2.2 51

- not analysed

| - element not determined

I I.S. insufficient sample

| L.N.R. listed not received

8-Oct-2020 12:26PM BBM_U0004021853

Page 7 of 7

MIN-M_COA_ROW-Last Modified Date: 05-Nov-2019

SGS Canada CA MIN Burnaby, BC 3260 Production Way, Burnaby, BC V5A 4W4 Burnaby CANADA t +1 (604) 638 2349 f

www.sgs.com

PP-20-08

ISO 9001:2015 ISO 17025:2005

C.F. Mineral Research Ltd.'s Diamond Classifications of Submitted Electron Microprobe Analyses

Source : C.F. Mineral Research Ltd. EPMA Status : BASE: AD87 Project : DD16

File Name : PRB9547 # Analyses: 89 Date : 3 December 2020

Caveats and explanations:

- Any '#' symbol identifies analyses where the total is outside the range of 98.5 and 101.0 despite repeated analyses. This may affect the quality and reliability of the classifications.
- Any '*' symbol identifies samples where no grains were found (by picking/ scanning) worthy of analysing from the whole sample. No asterisk is shown if at least one (or more) grain(s) from the sample was analysed.
- Any 'D' symbol identifies duplicate analytical descriptions.
- Any 'i' symbol identifies a grain with an intergrowth.

- The Mars/Cart rock classification (using chromite analysis) assumes the presence of, and good quality analyte values of MnO, NiO and ZnO values.
- The Mars/Cart 'n' symbol identifies analyses that cannot classify due to

 lacking all required analytes
- or (ii) possessing any analyte with a value <0.0001
- The Mars/Cart T(Zn) can include extreme, but useful, values outside the calibrated ranges
- The Mars/Cart '+' symbol identifies T(Zn) within the diamond stability range of ~950-1250°C
- The results of any geothermobarometry obtained from suitable CPXs are reported at the end of the DI field.

· Please see document titled "Legend of Electron Microprobe Compositional Classifications (Version 4.812)" for further explanations.

TEL (250) 860-8525 FAX (250) 862-9435 info@cfmresearch.com

3-Dec-2020 12:15 pm

Comment:

Client: RJK0

ample					v4.	812Classif	ication	Roo	k/Temp															Trace		
ame	Fraction	Mount	Cell	Grain	SA	CFM	DI	M	C T(Zn)	Si02	Ti02	A1203	V203	Cr203	Fe203	Fe0	MgO	Ca0	MnO	NiO	ZnO	Nb205	Na20	Na20	K20	Total
									°C	wt %	wt %	wt %	wt %	wt %	wt s	wt %	wt %	wt %	wt %	wt %	wt %	wt %	wt %	wt %	wt %	wt %
															******				******							
P-20-08	-32+80HPY	7607	21	403		OLV				40.89	.03	0.00		.00		9.80	48.44	.03	.14	.34			0.00		0.00	99.66
-20-08	-32+80HPY	7607	30	504		OLV				40.15	.01	.01		0.00		12.25	47.09	.03	.19	.24			.02		.00	100.00
2-20-08	-32+80HPY	7607	21	406		OLV-FORS				41.43	.01	.01		0.00		6.83	51.86	.01	.11	.35			.01		0.00	100.62
-20-08	-32+80HPY	7607	30	301		OLV-FORS				40.68	.04	.03		.07		9.61	49.27	.08	.14	.39			.00		0.00	100.32
-20-08	-32+80HPY	7607	30	307		OLV-FORS				40.87	.01	.01		.00		9.48	49.37	.02	.16	.32			.00		.00	100.25
-20-08	-32+80HPY	7607	30	308		OLV-FORS				41.38	0.00	0.00		.05		6.11	52.64	.00	.09	.40			0.00		.00	160.68
-20-08	-32+80HPY	7607	30	314		OLV-FORS				41.23	0.00	.01		0.00		8.22	50.53	.02	.15	.36			0.00		0.00	100.52
-20-08	-32+80HPY	7607	30	405		OLV-FORS				41.17	.02	.02		.08		8.11	49.94	.08	.11	.39			.01		0.00	99.93
-20-08	-32+80HPY	7607	30	406		OLV-FORS				41.09	.02	.04		.10		7.87	50.85	.08	.12	.39			.02		0.00	160.58
-20-08	-32+80HPY	7607	30	407		OLV-FORS				41.05	.03	.01		.01		8.71	49.88	.04	.10	.35			.01		.00	100.19
-20-08	-32+80HPY	7607	30	414		OLV-FORS				41.19	0.00	.00		.01		7.95	50.96	.02	.15	.32			0.00		0.00	160.59
-20-08	-32+80HIL	7607	30	702		CR	-	UK	849	.02	1.03	7.37	.23	50.38	12.00	19.46	9.16	0.00	.38	.15	.11					100.30
-20-08	-32+80HIL	7607	30	710		CR		LL	751	.01	.01	15.46	.24	53.16	3.37	12.86	13.66	.00	.29	.06	.16					99.78
-20-08	-32+80HIL	7607	30	711		CR		LL		.11	.27	13.08	.14	54.95	5.17	11.17	14.97	.00	.25	.20	.83					160 32
-20-08	-32+80HIL	7607	30	801		CR	-	LL	1098+	.14	.27	13.18	.15	54.04	5.51	11.68	14.61	.00	.27	.16	.86					100.32
-20-08	-32+80HPY	7607	30	403		OLV-FORS	DI			41.38	.01	.01		.00		6.56	51.75	.00	10	.39			0 00		01	100.07
-20-08	-32+80HPY	7607	21	402		OLV-FORS	DI*			41.34	0.00	.01		.01		6.55	52.03	.01	.09	36			0.00		.01	100.21
-20-08	-32+80HPY	7607	30	303		OLV-FORS	DI*			41.24	.01	.01		.01		7.12	50.24	.01	.11	.30			91		.01	00.40
-20-08	-32+80HPY	7607	30	411		OLV-FORS	DI*			41.21	.02	.02		.06		7.83	50.75	.07	.11	40			.01		0.00	100 40
-20-08	-32+80HPY	7607	21	601	CP	CP6				54.18	.19	.52		2.16		3.40	15.49	21.62	10	.40			1 76		0.00	00 45
-20-08	-32+80HPY	7607	21	701	CP	CPX				53.41	.37	.95		.56		5.69	17.86	21.20	13	.05			1.70		0.00	99,43
-20-08	-32+80HPY	7607	21	414	CP	CP5	- Gr			54.67	.31	3.27		1.52		2.49	15.78	20 03	10	.00			2 50		.00	99.93
-20-08	-32+80HPY	7607	21	808	CP	CP5	G2/DIO			54.60	.07	.38		2.72		2.11	15.59	21.99	.10	.04			1 94		0.00	00.40
-20-08	-32+80HPY	7607	21	405	E	G 9	G2			42.01	.50	23.15		.21		9.15	17.41	8 20	25	.02			1.04	041	0.00	99.40
-20-08	-32+80HPY	7607	21	111	P	G 9				42.00	0.00	21.13		4.37		7.13	18 98	6 73	.23	.02			01	.041	0.00	100.95
-28-08	-32+80HPY	7607	20	409	P	G10-2				41.83	.88	28.24		5 11		7 31	20.90	4.52	.47	.01			.01		0.00	100.33
-28-88	-32+80HPY	7687	20	910	P	G10-2				41.71	.23	18.62		7.14		6 40	20.05	5 10	.40	.02			.04		.00	99.75
-20-08	-32+80HPY	7607	20	304	P	G11				41.65	.30	18.81		6 38		5.95	20.33	5.12	.33	.03			.04		.00	100.15
20-08	-32+80HPY	7687	20	305	P	G11				41.54	.10	17.63		7.97		5.14	10 74	6 95	.29	.03			.02		. 00	99.72
20-08	-32+80HPY	7607	20	308	P	G11				41.72	54	19.10		5 46		6 77	10.02	5.04	.2/	.02			.00		.00	99.77
20-08	-32+80HPY	7607	20	312	P	611				41 56	30	18 26		5.96		6.32	19.93	5.94	.20	.01			.04		.00	99.79
-20-08	-32+80HPY	7607	20	404	P	611				41 40	11	17 21		0.00		6 30	19.01	0.32	.28	0.00			.01		.00	99.51
20-08	- 32+80HPY	7607	20	405	P	G11				41 61	37	18 38		6.99		6.44	19.00	6.95	.30	.02			.00		.01	100.13
20-08	- 32+80HPY	7607	20	406	P	G11				41 50	12	18 83		5 81		5.01	19,33	6.20	.31	0.00			.03		.00	99.85
20-08	- 32+80HPY	7607	20	407	P	G11				41 64	37	18 23		7 02		6.30	19.09	6.20	.42	.02			.02		.00	60.03
20-08	- 32+80HPY	7697	20	488	P	611				41 22		17 45		7.05		6.04	19.62	0.32	. 32	.01			.01		0.00	99.89
20-08	- 32+80HPY	7697	20	412	P	611				41.22	.00	18 00		7.70		0.94	18.90	6.74	.33	0.00			.05		.01 1	.00.01
20-08	-32+80HPY	7697	20	502	P	611				41.01	. 30	16.09		1.29		7.43	18.52	6.49	.38	.02			.04		.01	99.58
20-08	-32+80HPY	7697	20	510	P	611				40.83	.00	10.28		8./1		7.18	18.00	7.16	.34	.04			.04		.00	99.19
20-08	- 32+80HPV	7697	20	517	D	611				41.31	.14	18.03		0.03		7.31	18.68	6.22	.42	.02			.02		.00	99.39
	- JE + DUILE I	1001	20	312	-	011				41.55	.15	11.99		1.25		7.07	18.40	6.90	. 38	0.00			.02		0.00	99.52

File: Prb9547.PRN

3-Dec-2020 12:15 pm File: Prb9547.PRN

Comment:

Client: RJK0

Sample					v4	.812Classification	Roc	k/Temp															Trace		
Name	Fraction	Mount	Cell	Grai	n SA	CFM DI	MC	T(Zn)	S102	T102	A1203	V203	Cr203	Fe203	Fe0	MgO	Ca0	MnO	NiO	Zn0	Nb205	Na20	Na20	K20	Total
Constanting								°C	wt %	wt %	wt %	wt %	wt %	wt %	wt %	wt %	wt %	wt %	wt %	wt %	wt %	wt %	wt %	wt %	wt %
PP-20-08	- 32+88HPY	7687	28	692	P	611			41 74	26	19 25		6 70		6 43	10 47	e 26			******					
PP-28-88	-32+88HPY	7687	28	683	P	611			41.54	36	19.33		7.03		6.70	19.4/	0.20	.32	.01			.01		0.00	99.62
PP-20-00	-32+80HPY	7607	20	510	P	611			41.50	.30	20.20		5.33		0.28	19.58	6.33	.29	0.00			.02		0.00	99.57
PP-28-88	- 32+89HPY	7697	20	517	P	611			41.02	.11	20.20		5.33		0.00	19.60	5.89	.41	.01			.03		0.00	160.07
PP-20-08	- 32+80HPY	7687	28	618	P	G11			41.05	.01	18 50		7 00		7.10	19.01	6.47	.48	0.00			.01		0.00	160.07
PP-20-08	-32+80HPY	7687	28	712	P	611			41 62	20	10.30		6.63		6 40	10.03	0.42	.44	.00			.03		0.00	100.09
PP-28-08	- 32+80HPY	7687	20	713	P	611			41.05	15	10.57		6 92		7.56	19.40	0.33	.31	.02			.02		0.00	99.62
PP-20-08	-37+80HPY	7687	28	885	P	611			41.37	.13	16 64		0.03		1.30	10.01	0.48	.41	.03			.01		0.00	99.94
PP-20-00	-32+80HPY	7687	20	889	P	611			41.15	24	19 00		7.75		0.01	10.53	6.92	. 32	.00			.03		0.00	99.58
PP-20-08	- 32+80HPY	7687	20	810	P	611			41.25	17	17 24		7.00		1.30	18.53	0.30	.42	.03			.03		0.00	99.87
PP-28-88	-37+88HPV	7697	20	002	P	611			41.30	54	16 22		7.90		0.19	19.00	7.68	.21	.03			0.09		.00	99.61
PP-20-00	-32+80HPV	7607	20	006	D	611			40.90	.04	10.32		0.00		7.14	18.20	1.15	. 39	0.00			.05		.00	99.64
PP-20-00	-32+80404	7607	20	000		611			41.00	.30	10.07		8.40		6.75	19.01	6.74	.33	.01			.02		.00	99.55
PP-20-08	-32+90HDV	7607	20	011	P	611			41.44	.03	17.33		8.38		6.33	18.86	7.09	.32	.05			.01		0.00	99.86
PP-20-08	-32+90HPV	7607	20	012	P	611			41,50	.09	19.98		5.23		7.91	18.62	6.23	.42	0.00			.82		0.00	100.07
PP-20-08	-32+80HPY	7607	20	107	P	611			41.00	.54	19.38		5.15		7.95	18.99	6.98	.44	0.00			.05		.00	100.24
PP 20-00	- 32+00HP1	7607	21	102		611			41.09	.33	18.41		0.64		6.6/	19.68	6.21	.29	.01			.03		0.00	99.94
PP-20-08	-32+00001	7607	21	110	P	611			41.42	.11	17.84		7.67		6.44	19.07	6.79	.33	.01			.00		.00	99.67
PP-20-00	-32+0000	7607	21	112		611			41.70	.28	19.20		5.32		7.05	19,78	5.97	.32	.01			.03		.00	99.77
PP 20-00	-32+00011	7607	21	115	P	GII			41.59	.02	19.94		5.64		7.45	18.86	6.00	.43	.03			.03		0.00	99.99
PP-20-08	-32+00001	7607	21	202	P	GII			41.51	.5/	19.17		5.40		7.55	19.10	6.11	.42	.04			.03		.00	99.89
PP-20-06	- 32+0002	7607	21	203	P	GII			41.40	.02	19.68		5.83		7.36	18.81	6.17	.51	.02			.01		0.00	99.81
PP-20-00	-32+0002	7607	21	200	P	GII			41.50	.03	19.21		6.39		6.87	18.92	6.21	.45	0.00			.01		0.00	99.64
PP-20-00	-32+00001	7007	21	200	P	GII			41./1	.12	17.68		7.95		6.09	19.31	6.61	.29	.01			.01		0.00	99.79
PP-20-08	- 32+80414	7607	21	211	P	611			41.48	.09	17.08		8.52		6.18	19.05	6.89	.28	.03			.01		0.00	99.61
PP-20-08	-32+00001	7007	21	213	P	GII			41.44	.13	18.07		1.40		6.33	19.14	6.76	.31	. 94			0.00		0.00	99.62
PP-20-08	-32+80111	7007	21	305	P	GII			41.06	.24	16.07		9.66		6.53	18.63	7.10	.32	.03			.02		0.00	99.66
PP-20-08	-32+80HPY	7007	21	368	P	611			41.11	.75	17.44		7.44		7.25	18.91	6.62	.36	.01			.06		.01	99.96
PP-20-08	-32+80HIL	7007	30	001	P	GII			41.94	.03	19.03		6.21		6.44	19.71	6.41	.31	.03			0.00		0.00	100.12
PP-20-08	-32+80H1L	7607	30	682	P	611			41.71	.10	19.00		6.46		6.16	20.07	6.21	.29	. 84			.01		.00	100.05
PP-20-08	-32+80HIL	7007	30	003	P	GII			41.40	.02	17.61		8.07		6.35	19.09	7.08	.29	.02			.00		.01	99.93
PP-20-08	-32+80HPT	1007	20	401	2	G11-1			41.14	.24	18.97		6.22		7.42	19.03	6.00	.42	.03			.02		.01	99.50
PP-20-08	-32+80HPY	7687	20	403	P	G11-1			41.92	.03	20.54		5.07		6.77	20.59	4.63	.45	.04			.02		0.00	100.06
PP-20-08	-32+80HPY	7607	20	415	P	G11-1			41.54	.32	17.90		7.51		6.34	19.52	6.34	. 30	.00			.03		0.00	99.80
PP-20-08	-32+80HPY	/60/	20	418	P	G11-1			41.76	,21	19.58		5.65		7.15	19.76	5.38	.41	.00			.02		0.00	99.92
PP-20-08	-32+80HPY	7607	20	420	P	G11-1			41.31	.08	17.60		8.27		7.02	19.11	5.86	.44	.01			.02		0.00	99.73
PP-20-08	-32+80HPY	/60/	20	519	P	611-1			41.84	0.00	20.43		4,95		7.46	19.21	5.37	.52	.03			.02		.00	99.82
PP-20-08	-32+80HPY	/607	20	609	P	611-1			41.50	.30	17.96		7.10		6.55	19.22	6.23	.29	.01			.02		.00	99.18
PP-20-08	-32+80HPY	7607	20	616	P	611-1			41.16	.42	18.09		7.29		6.74	19.43	6.17	.32	0.00			.04		0.00	99.65
PP-20-08	-32+80HPY	7607	20	711	P	611-1			41.99	.28	20.20		5.14		6.59	20.57	5.25	.34	.01			.05		0.00 1	100.42
PP-20-08	-32+80HPY	7607	20	801	Ρ	611-1			41.63	.21	18.95		6,30		7.32	19.39	5.65	.45	.03			.05		0.00	99.97

106400.00.05_CUSTPROBE_05MAR2012

3-Dec-2020 12:15 pm File: Prb9547.PRN

Client: RJK0

Comment:

Sample					v4	.812Classif	ication	Rock	k/Temp															Trace		
Name	Fraction	Mount	Cell	Grai	In SA	CFM	DI	MC	T(Zn)	Si02	Ti02	A1203	V203	Cr203	Fe203	Fe0	MgO	CaO	MnO	NiO	Zn0	Nb205	Na20	Na20	K20	Total
									°C	wt %	wt %	wt %	wt %	wt %	wt %	wt %	wt %	wt %	wt %	wt %	wt %	wt %	wt %	wt %	wt %	wt %
PP-20-08	-32+80HPY	7607	20	804	Ρ	G11-1				41.36	.13	17.73		7.99		6.16	19.79	5.97	.36	.00			.03		.00	99.53
PP-20-08	-32+80HPY	7607	20	806	Ρ	G11-1				41.75	.19	19.89		5.31		6.89	19.76	5.72	.36	0.00			.03		0.00	99.89
PP-20-08	-32+80HPY	7607	20	807	P	G11-1				41.95	.23	19.85		5.59		6.73	20.27	5.17	.46	.01			.06		.00	100.32
PP-20-08	-32+80HPY	7607	20	909	P	G11-1				41.61	.02	19.38		6.32		6.75	19.89	5.02	.43	.00			. 82		.00	99.45
PP-20-08	-32+80HPY	7607	20	914	Ρ	G11-1				41.59	.07	19.39		6.19		7.31	19.17	5.64	.48	0.00			.03		0.00	99.86
PP-20-08	-32+80HPY	7607	21	103	P	G11-1				42.12	.01	20.18		5.40		7.18	19.75	5.13	.46	.00			.03		.01	100.27
PP-20-08	-32+80HPY	7607	21	310	P	G11-1				41.62	.14	18.83		6.62		7.10	19.29	5.99	.42	.01			.03		.00	100.04
PP-20-08	-32+80HIL	7607	30	605	P	G11-1				41.57	.61	17.81		7.38		6.25	19.95	6.07	.29	.03			.86		8.00	160.62
PP-20-08	-32+80HPY	7607	20	706	Р	G11	DIO			41.30	.38	17.09		8.22		6.19	19.23	6.80	.30	.00			.03		0.00	99.55

106400.00.05_CUSTPROBE_05MAR2012

PP-20-03/ PP-20-04

C.F. MINERAL RESEARCH LIMITED 1677 POWICK ROAD KELOWNA, BRITISH COLUMBIA CANADA VIX 4L1

TEL (250) 860-8525 FAX (250) 862-9435 info@cfmresearch.com

C.F. Mineral Research Ltd.'s Diamond Classifications of Submitted Electron Microprobe Analyses

Source : C.F. Mineral Research Ltd. EPMA Status : BASE: AD87 Project : DD16

File Name : PRB9548 # Analyses: 130 Date : 3 December 2020

Caveats and explanations:

- Any '#' symbol identifies analyses where the total is outside the range of 98.5 and 101.0 despite repeated analyses. This may affect the quality and reliability of the classifications.
- Any '*' symbol identifies samples where no grains were found (by picking/ scanning) worthy of analysing from the whole sample. No asterisk is shown if at least one (or more) grain(s) from the sample was analysed.
- Any 'D' symbol identifies duplicate analytical descriptions.
- Any 'i' symbol identifies a grain with an intergrowth.

- The Mars/Cart rock classification (using chromite analysis) assumes the presence of, and good quality analyte values of MnO, NiO and ZnO values.
- The Mars/Cart 'n' symbol identifies analyses that cannot classify due to

 lacking all required analytes

or (ii) possessing any analyte with a value <0.0001

- The Mars/Cart T(Zn) can include extreme, but useful, values outside the calibrated ranges
- The Mars/Cart '+' symbol identifies T(Zn) within the diamond stability range of ~950-1250°C
- The results of any geothermobarometry obtained from suitable CPXs are reported at the end of the DI field.

· Please see document titled "Legend of Electron Microprobe Compositional Classifications (Version 4.812)" for further explanations.

ISO 9001:2015 ISO 17025:2005

3-Dec-2020 12:16 pm File: Prb9548.PRN

Client: RJK0

Comment:

Sample					v4	.812Classifi	catio	n	Rock	k/Temp															Trace		
Name	Fraction	Mount	Cell	Grai	n SA	CFM	DI		MC	T(Zn)	S102	T102	A1203	V203	Cr203	Fe203	Fe0	MgO	CaO	MnO	NiO	ZnO	Nb205	Na20	Na20	K20	Total
										°C	wt %	wt %	wt %	wt %	wt %	wt %	wt %	wt %	wt %	wt %	wt %	wt %	wt %	wt %	wt %	wt %	wt %
					**				• • •					******	******	******											******
PP-20-03/04	-32+80HPY	7608	10	107		OLV					41.02	.01	0.00		.03		9.91	49.28	.02	.15	.31			0.00		0.00	100.72
PP-20-03/04	-32+80HPY	7608	10	203		OLV					40.66	.01	.01		0.00		10.30	48.37	.01	.13	.37			0.00		0.00	99.86
PP-20-03/04	-32+80HPY	7698	10	302		OLV					40.26	.03	0.00		.02		12.31	47.55	.02	.19	.27			0.00		0.00	160.65
PP-20-03/04	-32+80HPY	7608	10	104		OLV-FORS					40.82	.01	.00		.01		9.14	49.82	.01	.16	.33			.00		0.00	109.32
PP-20-03/04	-32+80HPY	7608	10	105		OLV-FORS					40.98	.02	.01		0.00		9.19	49.75	.02	.12	.36			0.00		0.00	109.45
PP-20-03/04	-32+80HPY	7608	10	106		OLV-FORS					41.33	.01	.02		.03		8.35	49.78	.03	.09	.38			.00		0.00	109.02
PP-20-03/04	-32+80HPY	7608	10	112		OLV-FORS					41.16	.01	0.00		.01		9.45	49.66	.01	.14	.31			.00		.00	109.76
PP-20-03/04	-32+80HPY	7608	10	307		OLV-FORS					41.38	.01	0.00		0.00		8.33	58.39	.01	.14	.35			0.00		.01	169.63
PP-20-03/04	-32+80HPY	7608	10	311		OLV-FORS					41.46	0.00	.00		.00		7.69	50.63	.02	.14	.33			.01		0.00	160.29
PP-20-03/04	-32+80HPY	7608	10	510		OLV-FORS					41.48	0.00	.01		0.00		7.46	51.32	.02	.15	.43			0.00		0.00	169.87
PP-20-03/04	-32+80HIL	7608	10	701		OLV-FORS					40.85	.03	.02		.07		9.66	49.46	.08	.13	.39			.03		0.00	100.69
PP-20-03/04	-32+80HIL	7608	20	314		OLV-FORS					41.06	.01	.84		.05		8.56	49.70	.08	.13	.40			.00		.00	100.02
PP-20-03/04	-32+80HIL	7608	10	796		CR			κυ	1010+	.01	5.05	2.43	.82	30.19	27.94	27.04	5.84	.00	.39	.16	.07					99.94
PP-20-03/04	-32+80HIL	7608	10	804		CR	*		KL	835	.09	1.88	26.92	.17	31.38	10.22	13.94	15.50	.00	.21	.21	.12					100.63
PP-20-03/04	-32+80HIL	7608	10	808		CR	-		КК	958+	.07	.28	12.99	.16	55.06	5.17	10.25	15.45	.00	.22	.18	.08					99.92
PP-20-03/04	-32+80HIL	7608	10	818		CR	-		UG		.05	.49	10.46	.14	46.63	8.64	28.27	1.81	0.00	1.66	.12	1.23					99.50
PP-20-03/04	-32+80HIL	7608	11	104		CR			LK	823	.04	.13	12.64	.27	56.32	3.54	12.98	13.54	.00	.28	.09	.12					99.96
PP-20-03/04	-32+80HIL	7608	11	111		CR	-		LL	1301	.10	.27	13.49	.15	54.73	5.38	9.58	16.02	0.00	.21	.21	.84					100.18
PP-20-03/04	-32+80HIL	7608	11	112		CR	-		GK	715	0,00	.51	8.22	.29	52.13	10.75	18.81	9.43	0.00	.43	.11	.18					100.87
PP-20-03/04	-32+80HIL	7608	11	203		CR			κu	1012+	.00	4.74	1.26	1.24	36.62	23.58	25.50	6.58	0.00	.46	.19	.07					100.25
PP-20-03/04	-32+80HIL	7608	11	404		CR	-		LL	695	0.00	.14	21.07	.29	47.02	3.27	14.91	13.17	0.00	.30	.07	.19					100.23
PP-20-03/04	-32+80HIL	7608	11	418		CR	-		LL	678	.03	.02	15.47	.36	52.95	3.77	13.97	13.11	.00	.31	.98	.21					100.45
PP-20-03/04	-32+80HIL	7608	20	206		CR			KL	879	.07	.55	15.27	.37	49.01	7.14	14.29	13.25	.60	.29	19	18					100.27
PP-20-03/04	- 32+80HPY	7607	40	707		OLV-FORS	DI				41.10	0.00	.00		.01		7.39	51.63	.01	.12	.32			8 88		00	104 60
PP-20-03/04	-32+80HPY	7608	10	611		OLV-FORS	DI				41.38	0.00	0.00		.00		7.19	51.48	.01	.15	.28			0.00		.00	100.50
PP-20-03/04	-32+80HPY	7607	40	617		OLV-FORS	DI*				41.18	.02	.01		.03		7.32	51.33	.83	.10	36			61		0.00	104 36
PP-20-03/04	-32+80HPY	7668	10	304		OLV-FORS	DI*				41.47	.84	.01		.00		6.84	50.91	.01	13	35			.01		0.00	06 76
PP-20-03/04	-32+80HPY	7608	10	309		OLV-FORS	DI*				41.63	.00	.00		.03		6.37	51.99	.01	10	40			.00		0.00	100 53
PP-20-03/04	-32+80HIL	7608	10	704		CR	TI		КК	913	.02	2.99	3.98	.45	50.00	12.47	28.47	9.31	0.00	.10	14	00		.01		0.00	100.33
PP-20-03/04	-32+80HIL	7688	10	803		CR	TI		ĸu	786	.01	3.19	2.42	.79	49.24	14.97	21.02	8.81	01	.44	.12	.05					100.31
PP-20-03/04	-32+80HIL	7608	10	811		CR	TI		кк	768	.02	2.97	3.93	.44	50.24	12.14	19 67	9.64	.01	43	16	15					00.77
PP-20-03/04	-32+80HTL	7608	10	813		CR	TI		KU	724	.01	3.26	1.37	.81	43.32	20 15	23 24	7 60	.00	57	.10	.13					99.77
PP-20-03/04	-32+80HIL	7608	10	903		CR	TI		KU	738	.01	2.79	1.90	87	58.59	13 70	20.50	9.70	0.00	52	.23	.1/					100.20
PP-20-03/04	-32+80HTL	7688	11	420		CR	TI		KK	997+	8.00	4 83	2 11	.07	44 27	17.13	20.00	7 79	0.00	.52	.21	.10					99.95
PP-20-03/04	-32+80HTL	7688	20	309		CR	TT		KK	783	0.00	3 14	4 15	.00	48 05	12 76	20.20	0.00	0.00	.41	.15	.08					100.10
PP-20-03/04	- 32+80HPY	7587	40	886	CP	CP2			n n	10.5	53 65	3.14	1.02	.43	1 03	13.70	£ 63	9.08	.00	.41	.19	.14				1	100.16
PP-20-03/04	- 32+80HPY	7597	41	514	CP	CP2					53.03	.39	1.02		1.01		5.02	17.23	20.34	.15	.07			.54		.01 1	100.04
PP-20-03/04	-37+80HPY	7687	41	515	CP	CP3	2				52 72	.3/	.99		.85		5.96	17.50	19.93	.16	.09			.52		0.00 1	100.17
PP-20-03/04	-32+80HPY	7697	41	111	CP	CPS	8	-			54.00	.30	.82		.92		5.90	17.20	19.84	.18	.08			.50		.01	99.49
PP-20-03/04	-32+80HDV	7607	41	007	CP	CPV					54.08	.20	2.12		2.39		2.55	15.56	19.98	.08	.04			2.12		.01	99.13
11 20-03/04	Jan John 1	1001	-10	007	CP.	LIA					33.41	.36	1.02		1.12		5.78	17.32	20.23	.17	.04			.62		0.00 1	108.07

106400.00.05_CUSTPRDBE_05MAR2012

3-Dec-2020 12:16 pm File: Prb9548.PRN

Client: RJK0

Comment:

Sample					v4	812Clas	sification	P	kock/Temp															Trace		
Name	Fraction	Mount	Cell	. Grai	n SA	CFM	DI	M	C T(Zn)	Si02	T102	A1203	V203	Cr203	Fe203	Fe0	MgO	CaO	MnO	NiO	Zn0	Nb205	Na20	Na20	K20	Total
									°C	wt %	wt %	wt %	wt %	wt %	wt 9	wt %	wt %	wt %	wt %	wt %	wt %	wt %	wt %	wt %	wt %	wt %

PP-20-03/04	-32+80HPY	7607	40	808	CP	CPX	-			53.31	.43	.98		.75		6.52	16.91	19.92	.17	.08			.56		0.00	99.64
PP-20-03/04	-32+80HPY	7607	40	917	CP	CP2	-	Diam+		53.86	.31	.75		.89		6.00	17.94	19.80	.15	.07			.48		.01	100.24
PP-20-03/04	-32+80HPY	7607	40	914	CP	CP2	-	Diam-		53.94	.32	.98		1.14		5.54	17.76	19.84	.15	.11			.55		.00	100.33
PP-20-03/04	-32+80HPY	7697	41	112	CP	CP2	-	Diam-		53.63	.34	1.00		1.11		6.23	17.86	19.44	.17	.04			.56		0.00	100.37
PP-20-03/04	-32+80HPY	7597	41	691	CP	CP2	-	Gr		53.83	.20	.99		.90		5.21	17.78	20.88	.17	.04			.27		8.88	160.27
PP-20-03/04	-32+80HPY	7607	41	413	CP	CP5	G2	Gr		54.95	0.00	3.39		2.37		2.26	14.83	19.72	.07	.06			2.91		.01	160.56
PP-20-03/04	-32+80HPY	7697	41	308	CP	CP5	G2/DIC)		54.49	.08	.65		1.06		2.96	15.93	23.97	.10	.00			1.88		0 00	160.32
PP-20-03/04	-32+80HPY	7607	40	805	Е	G 9	G1/HPM	1		41.30	1.77	21.04		.70		9.49	18.80	6.87	30	0.00			1.00	807	0.00	160.32
PP-20-03/04	-32+80HPY	7697	40	701	E	G 2	HPM			41.47	1.81	21.05		.89		9.37	18.44	6.73	.28	8.00				0.052	0.00	100.30
PP-20-03/04	-32+80HPY	7697	40	507	E	G 9	HPM			41.67	.56	22.72		.35		12.15	18.19	4.60	48	8 88				.090	0.00	100.15
PP-20-03/04	-32+80HPY	7697	40	515	E	G 9	HPM			41.79	.50	21.84		1.79		9.65	19.25	5.03	40	0.00				001	0.00	100.79
PP-20-03/04	-32+80HPY	7607	40	692	E	G 9	HPM			42.16	.64	21.72		1.70		8.25	20.95	4 59	26	0.00				077	0.00	100.30
PP-20-03/04	-32+80HPY	7607	40	702	E	G 9	HPM			41.56	1.47	21.13		1.28		0.18	18 64	6 37	.20	.01				.0//	. 00	109.33
PP-20-03/04	-32+80HPY	7607	40	715	E	GT	HPM			41.44	1.91	28.99		.71		9 30	18 23	7 82	. 32	0.00				.084	. 01	100.04
PP-20-03/04	-32+80HPY	7607	40	614	E	G 4	HPM*			41.86	.89	22.35		32		11 18	10.23	A 55	.31	0.00				.094	0.00	169.69
PP-20-03/04	-32+80HPY	7607	40	508	E	G 9	HPM*			42.51	.29	23 58		67		9 76	10 77	4.55	.37	.01				. 103	0.00	109.00
PP-20-03/04	-32+80HPY	7607	49	509	E	6 9	HPM*			42.36	.52	22.27		1 43		0.10	10.70	4.51	.40	.00				.04/	0.00	100.42
PP-20-03/04	-32+80HPY	7687	40	512	F	6.9	HPM*			41 89	68	22 00		1 50		0.70	19.20	4.97	.30	.01				.054	.00	100.59
PP-20-03/04	-32+80HPY	7697	40	513	F	6.9	HPM*			41.46	.00	21 03		1.33		9.79	19.23	4.93	.3/	.05				.082	.00	100.59
PP-20-03/04	-32+80HPY	7697	40	684	F	6.9	HPM*			41 66	.03	21.55		1 20		10.07	10.04	5.10	.40	0.00				. 968	0.00	100.42
PP-20-03/04	-32+80HPY	7687	40	686	F	6.9	HDM*			42.00	.00	22.74		1.30		10,38	10.75	5.20	.43	0.00				.077	.01	109.28
PP-28-83/84	-37+80HPY	7607	40	688	F	6.0	HDM#			42.10	.51	22.32		1.40		9.49	19.24	4.96	. 38	.01				.054	.00	100.52
PP-20-03/04	-32+80HPY	7687	40	783	E	6 0	HDM#			42.07	.00	22.34		1.51		7.38	20.92	4.58	.21	.04				.078	.01	100.38
PP-20-03/04	-32+80HPY	7667	40	705	E	6.0	HDM+			42.15	.53	22.12		1.41		9.78	19.19	4.86	. 38	.03				.067	0.00	100.51
PP-20-03/04	-3240000	7607	40	519	E	6.0	HPM (C1			41.90	.01	21.79		1.8/		10.04	18.50	5.10	. 37	.03				.063	.00	100.34
PP-20-03/04	-32+00HPY	7607	40	510		6.0	HPH/GI			41.70	.55	22.01		.51		10.96	19.07	4.55	.33	.02				.086	.00	100.43
PP-20-03/04	-32+00007	7607	40	613	-	69	HPM/GI			42.14	.20	23.84		. 39		8.97	20.33	4.20	. 39	.02				.050	0.00	100.54
PP 20-03/04	-32+00001	7007	40	613	E	6.9	HPM/GI			41.69	.82	22.13		.76		10.59	18.44	5.75	.39	.01				.080	0.00	109.66
PP-20-03/04	-32+00HP1	7007	40	510	P	69				41.85	.58	21.52		2.06		8.60	19.60	5.61	.33	.02			.03		0.00 1	109.20
PP-20-03/04	-32+80HPY	7687	49	51/	P	69				42.20	.33	21.79		2.19		8.05	20.40	4.98	.33	.01			.02		0.00 1	100.30
PP-20-03/04	-32+80HPT	7687	48	601	P	69				41.62	.60	21.52		2.11		9.65	19.05	5.46	.38	.01			.05		.00 1	100.45
PP-20-03/04	-32+80HPY	/60/	49	610	Ρ	G 9				41.78	.36	21.49		2.82		8.73	19.70	5.13	.42	0.00			.05		.00 1	100.49
PP-20-03/04	-32+80HPY	7607	40	804	P	G 9				42.12	.41	21.17		3.01		7.68	20.57	5.28	.31	.02			.03		0.00 1	100.60
PP-20-03/04	-32+80HPY	7607	31	305	Р	G 9-1				42.16	.31	20.69		4.37		6.50	20.49	5.21	.34	.02			.84		0.00 1	100.14
PP-20-03/04	-32+80HPY	7687	40	764	P	G 9-1				41.83	.61	20.21		4.23		6.69	20.82	5.29	,35	.01			.88		0.00 1	100.12
PP-20-03/04	-32+80HPY	7607	30	817	P	G10-2				41.56	.03	18.10		8.04		6.65	20.31	5.04	.36	0.00			.01		.00 1	108.10
PP-20-03/04	-32+80HPY	7607	40	311	Ρ	G10-2				42.19	0.00	20.57		5.23		6.67	21.51	3.79	.44	0.00			.01		.00 1	100.40
PP-20-03/04	-32+80HPY	7607	40	407	Ρ	G10-2				41.41	.07	18.84		7.26		6.26	20.81	5.06	.38	0.00			.02		.00 1	00.12
PP-20-03/04	-32+80HPY	7607	49	408	P	G10-2				42.41	.01	21.14		4.14		6.73	21.35	3.89	.35	0.00			.01		0.00 1	60.03
PP-20-03/04	-32+80HPY	7607	30	815	P	G11				40.96	.55	17.94		6.82		7.80	19.15	6.27	.40	0.00			.05		.01	99.94
PP-20-03/04	-32+80HPY	7687	30	816	Ρ	G11				40.68	.52	17.41		7.48		7.13	18.90	6.76	.40	.01			.06		.00	99.34
										Page :	2												1064	.00.00	AS CUST	PROBE 05

106400.00.05_CUSTPROBE_05MAR2012

3-Dec-2020 12:16 pm File: Prb9548.PRN

Client: RJK0

Comment:

Sample					v4	.812Class	sification	Roc	k/Temp															Trace		
Name	Fraction	Mount	Cell	Grai	n SA	CFM	DI	MC	T(Zn)	Si02	T102	A1203	V203	Cr203	Fe203	Fe0	MgO	Ca0	MnO	NiO	Zn0	Nb205	Na20	Na20	K20	Total
									°C	wt %	wt %	wt %	wt %	wt %	wt ۹	wt %	wt %	wt %	wt %	wt %	wt %	wt %	wt %	wt %	wt %	wt %
00.20.02/04	22.00UDV	7607	20	910		C11				41 36	10	10.01		6 20									*****		*****	******
PP-20-03/04	-32480HPV	7667	30	019	0	611				41.30	.10	10.01		6.53		7.04	18.59	6.42	.41	.01			.01		0.00	99,72
PP-20-03/04	-32+0000	7607	30	019	-	611				41.4/	.1/	16.74		0.03		7.16	18,95	6.17	.42	.02			.03		0.00	99.65
PP-20-03/04	-37+80HPV	7607	31	194	P	611				41.30	.30	10.93		7 20		6.01	19.09	0.83	.29	0.00			.02		.00	99.41
PP-20-03/04	-32+80HPY	7687	31	197	P	611				41.30	10	70 00		5.67		6.91	10.01	0.83 E 0E	.41	.01			0.00		0.00	99.84
PP-20-03/04	-32+80HPY	7687	31	111	P	611				41 25	12	18 28		6.90		7 55	19.41	5.00	.42	9.99			.02		.00	100.00
PP-20-03/04	-32+80HPY	7687	31	114	P	611				41 21	63	18 30		6 78		6.07	10.30	6.34	.41	.04			.03		.00	99.86
PP-20-03/04	-32+80HPY	7687	31	201	P	611				41 13	.05	18 30		7 22		7 32	19.74	6.03	.30	.03			.05		0.00	100.48
PP-20-03/04	- 32+80HPY	7687	31	202	P	611				41 46	30	17 81		7 30		6 10	10.00	6.01	.43	.00			.01		0.00	100.03
PP-20-03/04	-32+80HPY	7687	31	284	P	611				41.40	26	10 88		5 41		7.05	19.42	6.91	.29	.03			0.00		.01	99.81
PP-20-03/04	- 37+88HPY	7687	31	285	P	611				41,93	.20	70 00		4.07		7.05	19.33	5.93	.40	0.00			.03		0.00	100.22
PP-20-03/04	-37+80HPV	7607	31	205	P	611				41.03	17	10 02		6.06		0.51	19.4/	5.00	.38	.01			.03		.00	100.05
PP-20-03/04	-32+80HPY	7687	31	208	P	611				41.02	10	19,03		6 90		7.32	10.64	0.49	.53	0.00			.81		.01	99.80
PP-20-03/04	-32-80HPY	7607	31	394	P	611				41.37	.19	19.07		6.24		7.23	10.04	0.34	.43	.00			.03		.00	99.41
PP-20-03/04	-37+80HPY	7697	31	586	P	611				A1 01	11	10.97		5 93		6 74	10.72	6.03	.44	.02			.04		0.00	99.92
PP-20-03/04	-32+80NPY	7687	31	518	P	G11				41 10	.11	17 33		9 31		7 20	19.01	7.25	,41	0.00			.03		0.00	100.53
PP-20-03/04	-32+80HPY	7687	31	513	P	611				41 57	.04	17 71		7 33		6 43	10.00	6.73	. 39	0.00			0.00		.01	99.81
PP-20-03/04	- 32+80HPY	7687	31	514	P	611				41.89	.40	18 72		6.51		6.35	19.30	6.75	.28	10.			.02		.00	99.93
PP-20-03/04	-32+80HPY	7687	31	515	P	GII				49.74	35	14 75		10.01		6 66	17.04	7.03	.31	0.00			.02		.01	99.58
PP-20-03/04	-32+80HPY	7687	31	686	P	611				41.64	15	10 45		5 57		7 61	19 70	6 31	.51	00.00			.02		.00	99.54
PP-20-03/04	-32+80HPY	7687	31	607	P	G11				41.57	.16	19.77		5.62		7.01	10.79	6 20	.39	.02			.00		.00	99.82
PP-20-03/04	-32+80HPY	7687	31	614	P	611				41 61	10	18 48		5.72		7 10	19.02	6 60	.41	.03			- 04		.00	99.80
PP-20-03/04	-32+80HPY	7607	40	114	P	611				41 43	30	18 25		6.80		7 12	10.09	6.41	. 30	.01			.04		9.99	99.87
PP-20-03/04	-32+80HPY	7507	40	284	P	611				41 68	19	18 94		6 30		7.06	10.04	6.05	. 39	0.04			.03		9.00	99.70
PP-20-03/04	-32+80HPY	7607	40	310	P	611				41.38	.15	10.13		5.83		7 41	19.27	6 10	. 59	0.00			.03		.00	99.90
PP-20-03/04	- 32+80HPY	7687	40	312	P	611				41 78	85	18 70		5.65		6 17	20.05	6.30	. 30	.05			.03		9.99	99.79
PP-20-03/04	-32+80HPY	7687	40	404	P	611				41.44	10	10.70		5.86		7 50	19 67	6 50	.31	0.00			0.00		0.00	99.94
PP-20-03/04	- 32+80HPY	7687	40	419	P	611				41 44	67	18 50		5 79		7.05	10.02	6.36	.49	.01			.04		0.00	169.26
PP-20-03/04	- 32+80HPY	7587	30	981	P	611-1				41.95	.24	19 46		5 68		6 44	20.53	5 40	. 30	0.00			.03		0.00	99.74
PP-20-03/04	-32+80HPY	7687	30	983	P	611-1				41.39	.17	19.61		5.62		7 15	10 77	5 60	. 33	0.00			.01		0.00	100.04
PP-20-03/04	-32+80HPY	7607	30	911	P	G11-1				41.62	.96	28.89		5 58		7 87	18 07	5.93	. 59	0.00			.04		0.00	99.83
PP-20-03/04	-32+80HPY	7607	31	108	P	611-1				41.34	.00	18 88		7 73		7 35	10.32	5 07	.30	.03			.03		0.00	100.54
PP-20-03/04	-32+80HPY	7607	31	210	P	G11-1				41.57	.05	19.25		5 80		7 20	10.25	5 90	,42	.03			0.00		0.00	99.84
PP-20-03/04	-32+80HPY	7607	31	309	P	G11-1				41.54	15	19.18		5.07		6 74	20 02	5 76	.33	.03			.03		0.00	99.01
PP-20-03/04	-32+80HPY	7607	31	314	P	611-1				41.76	36	19.81		5 03		8 24	10 42	4 00	.30	0.00			.02		0.00	99.88
PP-20-03/04	-32+80HPY	7607	31	501	P	G11-1				41.45	.15	17.26		8.52		5.86	10 43	4.99	.4/	0.00			.00		.00	100.15
PP-20-03/04	-32+80HPY	7607	31	604	P	611-1				41 47	20	18 16		7 58		5.41	10 07	6.00	. 32	0.00			.05		.00	99.60
PP-20-03/04	- 32+80HPY	7607	40	203	P	611-1				41 80	48	20.13		1 99		6.95	20.10	6.00	.3/	.03			.03		0.00)	100.18
PP-20-03/04	-32+80HPY	7607	40	205	P	611-1				41.62	.40	19 26		5.85		7 37	10.29	5.17	.33	.02			.04		0.00	99.97
PP-20-03/04	-32+80HPY	7597	40	207	P	611-1				41 92	26	10 68		5 44		7 57	10.60	5.01	.41	0.00			.05		0.00	99.98
				2.01						Dage	.20	13.00		3.44		1.33	19.00	3.3/	.40	.01			,04		0.00 1	100.45

106400.00.05_CUSTPROBE_05MAR2012
ELECTRON MICROPROBE ANALYSIS FROM C.F. MINERAL RESEARCH LTD.

3-Dec-2020 12:16 pm File: Prb9548.PRN

Client: RJK0

Comment:

Sample					v4.	812Classifi	ication	Roci	k/Temp															Trace		
Name	Fraction	Mount	Cell	Grain	n SA	CFM	DI	MC	T(Zn)	Si02	T102	A1203	V203	Cr203	Fe203	Fe0	MgO	CaO	MnO	NIO	ZnO	Nb205	Na20	Na20	K20	Total
									°C	wt %	wt %	wt %	wt %	wt %	wt %	wt %	wt %	wt %	wt %	wt %	wt %	wt %	wt %	wt %	wt %	wt s

PP-20-03/04	-32+80HPY	7607	40	208	Ρ	G11-1				41.39	.22	17.87		7.75		5.95	19.82	6.42	.33	.03			.04		.00	99.87
PP-20-03/04	-32+80HPY	7607	40	301	P	G11-1				41.32	.29	19.53		5.35		8.17	19.43	5.34	.40	.01			.05		0.00	99.96
PP-20-03/04	-32+80HPY	7607	40	302	P	G11-1				41.61	.05	19.78		6.11		7.29	20.18	5.05	.47	.01			.01		.01	100.57
PP-20-03/04	-32+80HPY	7607	40	303	P	G11-1				41.52	.40	18.16		7.03		6.21	20.15	5.98	.30	0.00			.04		.00	99.79
PP-20-03/04	-32+80HPY	7607	40	405	P	G11-1				41.81	.44	19.76		4.98		7.64	19.36	5.52	.40	.04			.04		0.00	99.90
PP-20-03/04	-32+80HPY	7607	40	406	P	G11-1				42.24	.07	20.64		4.98		6.59	20.31	5.23	.45	0.00			.03		0.00	160.57
PP-20-03/04	-32+80HPY	7607	40	412	P	G11-1				41.60	.09	18.50		6.93		6.39	19.34	5.89	.36	.02			.01		0.00	99.12
PP-20-03/04	-32+80HPY	7687	40	415	Ρ	G11-1				41.36	.43	17.46		7.80		6.52	19.28	6.12	.35	0.00			.84		0.00	99.36
PP-20-03/04	-32+80HPY	7607	40	420	P	G11-1				42.03	.16	19.81		5.55		6.94	19.69	5.69	.40	.01			.02		0.00	160.32
PP-20-03/04	-32+80HPY	7607	30	910	P	G11	DIO			41.72	.15	19.01		6.38		6.16	19.63	6.41	.28	0.00			.80		.01	99.76

PP-20-09

ISO 9001:2015 ISO 17025:2005 C.F. MINERAL RESEARCH LIMITED 1677 POWICK ROAD KELOWNA, BRITISH COLUMBIA CANADA V1X 4L1

TEL (250) 860-8525 FAX (250) 862-9435 info@cfmresearch.com

C.F. Mineral Research Ltd.'s Diamond Classifications of Submitted Electron Microprobe Analyses

Source : C.F. Mineral Research Ltd. EPMA Status : BASE: AD87 Project : DD16

File Name : PRB9546 # Analyses: 64 Date : 3 December 2020

Caveats and explanations:

- Any '#' symbol identifies analyses where the total is outside the range of 98.5 and 101.0 despite repeated analyses. This may affect the quality and reliability of the classifications.
- Any '*' symbol identifies samples where no grains were found (by picking/ scanning) worthy of analysing from the whole sample. No asterisk is shown if at least one (or more) grain(s) from the sample was analysed.
- Any 'D' symbol identifies duplicate analytical descriptions.
- Any 'i' symbol identifies a grain with an intergrowth.

- The Mars/Cart rock classification (using chromite analysis) assumes the presence of, and good quality analyte values of MnO, NiO and ZnO values.
- The Mars/Cart 'n' symbol identifies analyses that cannot classify due to

 lacking all required analytes

or (ii) possessing any analyte with a value <0.0001

- The Mars/Cart T(Zn) can include extreme, but useful, values outside the calibrated ranges
- The Mars/Cart '+' symbol identifies T(Zn) within the diamond stability range of ~950-1250°C
- The results of any geothermobarometry obtained from suitable CPXs are reported at the end of the DI field.

· Please see document titled "Legend of Electron Microprobe Compositional Classifications (Version 4.812)" for further explanations.

ELECTRON MICROPROBE ANALYSIS FROM C.F. MINERAL RESEARCH LTD.

3-Dec-2020 12:14 pm File: Prb9546.PRN

Client: RJK0

Comment:

ample					v4.	.812Classif	ication		Rock	<th></th> <th>Trace</th> <th></th> <th></th>															Trace		
ame	Fraction	Mount	Cel	1 Grain	SA	CFM	DI		MC	T(Zn)	5i02	T102	A1203	V203	Cr203	Fe203	Fe0	MaD	Ca0	MnO	NiO	7n0	Nb205	Na20	Na20	820	Tetal
										°C	wt %	wt %	wt %	wt %	wt %	wt s	wt %	wt %	wt %	wt %	wt %	wt %	wt %	wt %	wt %	wt %	wt %
-20-09	-32+86HPY	7607	11	402		OLV-FORS					40.84	.04	.01		.01		8.27	50.48	.03	.12	.41			0.00			188.28
-20-09	-32+80HPY	7687	11	403		OLV-FORS					41.06	.01	.00		.02		7.50	50.79	.01	.12	.33			.00		.00	99.85
-20-09	-32+80HPY	7607	11	408		OLV-FORS					41.20	.01	.03		.06		7.96	50.51	.06	.11	.39			.00		.00	160.34
-20-09	-32+80HPY	7607	11	410		OLV-FORS					41.13	.01	.02		.04		7.96	50.14	.07	.12	.38			.01		0.00	99.88
-20-09	-32+80HPY	7607	11	504		OLV-FORS					41.49	.00	.02		.00		5.97	51.77	.02	.07	.36			.01		0.00	99.71
-20-09	-32+80HPY	7607	11	701		OLV-FORS					40.83	.04	.00		.04		8.76	49.54	.03	.13	.36			.01		.00	99.73
-20-09	-32+80HIL	7607	20	107		CR			GL	773	.12	1.45	14.73	.35	42.86	10.57	19.49	10.30	0.00	.34	.17	.14					160.53
-20-09	-32+80HIL	7607	20	111		CR	-		GL	734	.02	.23	12.41	.18	49.54	9.04	16.95	10.78	.00	.36	.08	.17					99.75
-20-09	-32+80HIL	7607	20	112		CR	-		LL	761	0.00	.18	12.91	.29	53.10	5.96	13.89	12.87	.00	.32	.06	.15					99.72
-20-09	-32+80HIL	7687	20	202		CR	- ÷		UG	517	.06	.41	7.05	.10	52.60	7.19	27.07	2.72	.00	1.53	.13	.46					99.33
-20-09	-32+80HIL	7607	20	204		CR			GL	726	.01	.09	12.56	.18	51.58	7.37	17.44	10.51	.00	.38	.10	.17					160.38
-20-09	-32+80HIL	7607	20	210		CR			GG		.12	.27	11.87	.15	47.62	5.79	31.23	.69	0.00	.99	.08	.89					99.70
-20-09	-32+80HIL	7607	20	211		CR			LL	1259	.07	.45	9.93	.16	55.19	6.07	15.66	11.62	.00	.30	.16	.05					99.66
-20-09	-32+80HIL	7687	20	215		CR			KL	862	.11	.43	9.81	.13	55.26	6.41	15.39	11.80	0.00	.30	.19	.11					99.92
20-09	-32+80HPY	7687	11	401		OLV-FORS	DI				41.39	.00	.00		.01		6.12	51.97	0.00	.10	.35			.00		.00	59.99
20-09	-32+80HPY	7607	11	404		OLV-FORS	DI				41.05	.00	.00		.01		7.31	51.06	0.00	.10	.34			0.00		.01	99.87
20-09	-32+80HPY	7687	11	405		OLV-FORS	DI				41.56	0.00	.01		.03		6.35	51.89	.01	.07	.44			.00		0.00	160.35
20-09	-32+80HPY	7687	11	406		OLV-FORS	DI*				41.25	.00	.00		0.00		6.14	52.10	0.00	.06	.35			0.80		0.00	99.98
20-09	-32+80HPY	7607	11	407		OLV-FORS	DI*				41.28	.01	.01		.01		7.36	51.84	.01	.09	.28			.01		.00	160.91
20-09	-32+80HPY	7687	11	409		OLV-FORS	DI*				41.58	.01	0.00		0.00		6.23	51.53	.01	.10	.37			.03		0.00	99.87
20-09	-32+80HPY	7687	11	503		OLV-FORS	DI*				41.36	.00	.02		9.00		6.04	52.38	.02	.07	.40			0.00		.00	169.31
20-09	-32+80HPY	7667	11	602		OLV-FORS	DI*				41.40	.00	.01		.01		6.40	52.08	.02	.11	.33			9.80		0.00	100.36
20-09	-32+80HIL	7607	20	101		OLV-FORS	DI*				40.96	0.00	.00		0.00		6.98	51.31	.01	.09	.35			.01		.01	99.72
20-09	-32+80HPY	7687	11	316	CP	CP2	-				53.73	.28	.88		1.03		5.47	17.67	20.27	.13	.07			.51		0.00	100.05
20-09	-32+80HPY	7607	10	707	CP	CP5					54.83	,12	. 32		1.23		2.54	16.37	23.02	.07	.03			1.23		.00	99.78
20-09	-32+80HPY	7687	10	709	CP	CP5	-				54.80	.11	.64		.62		2.84	16.85	22.83	.11	.01			.93		.00	99.76
20-09	-32+80HPY	7607	10	712	CP	CP6	-				54.59	.24	1.35		1,49		3.51	15.26	21.11	.08	0.00			2.06		.01	99.69
28-09	-32+80HPY	7607	10	918	CP	CPX	41				53.28	.40	1.01		.85		6.13	16.83	20.56	.17	.97			.42		0.00	99.70
20-09	-32+80HPY	7607	11	310	CP	CPX					53.16	.30	.93		1.08		5.92	17.28	19.90	.17	.96			.48		0.00	99.29
20-09	-32+80HPY	7687	10	813	CP	CP6	G2	-			54.49	.13	.65		3.36		1.88	15.34	21.07	.05	.03			2.10		.00	99.11
20-09	-32+80HPY	7697	10	711	CP	CP6	G2*				54.69	.07	2.22		3.32		2.01	14.61	20.03	.10	.02			2.65		.01	99.74
20-09	-32+80HPY	7687	10	788	CP	CP5	G2/DIO	Gr			54.56	.03	2.35		1.90		1.58	15.45	21.53	.07	.02			2.02		.01	99.53
20-09	-32+80HPY	7687	10	702	E	G 9	HPM*				42.35	.46	22.66		1.20		7.70	20.76	5.01	.28	.01			0.040	.036	0.00	160.44
20-09	-32+80HIL	7687	11	706	P	G 9					41.92	.61	20.33		4.04		7.69	19.50	5.83	.36	0.00			.84		.01	100.34
20-09	-32+80HPY	7687	10	705	P	G 9-1					42.35	.51	21.75		2.08		7.51	20.88	4.65	.29	.00			.06		0.00	100.09
20-09	-32+80HPY	7687	19	504	P	G10-2					42.09	0.00	20.94		4.68		8.16	20.66	3.71	.36	0.00			.01		0.00	100.61
20-09	-32+80HPY	7607	10	603	P	G10-2					41.65	.12	19.13		6.55		7.73	20.03	4.64	.43	.04			.05		.00	100.38
20-09	-32+80HIL	7607	11	704	P	G10-2					41.82	.00	21.15		4.10		7.57	20.55	3.45	.49	.00			.01		.00	99.15
20-09	-32+80HPY	7607	10	202	P	G10-5*					40.79	.04	14.98		11.68		7.06	19.94	4.91	.43	.02			.03		.01	99.88
-20-09	-32+80HPY	7607	10	107	P	G11					41.67	.10	18.86		6.46		6.28	19.96	6.26	.31	.01			.04		.00	99 94
											Page	1												105	100 00	AS CUE	TODODE O

ELECTRON MICROPROBE ANALYSIS FROM C.F. MINERAL RESEARCH LTD.

3-Dec-2020 12:14 pm File: Prb9546.PRN

Client: RJK0

Comment:

Sample					v4.	812Classifi	cation	Roc	k/Temp															Тгасе		
Name	Fraction	Mount	Cell	Grai	n SA	CFM	DI	MC	T(Zn)	Si02	T102	A1203	V203	Cr203	Fe203	Fe0	MgO	CaO	MnO	NiO	Zn0	Nb205	Na20	Na20	K20	Total
									°C	wt %	wt %	wt %	wt %	wt %	wt %	wt %	wt %	wt %	wt %	wt %	wt %	wt %	wt %	wt %	wt %	wt %
PP-20-09	-32+80HPY	7607	10	109	P	G11				41.85	.50	19.75		4.74		6.96	20.03	5.74	.27	.04			.02		.01	99.90
PP-20-09	-32+80HPY	7607	10	110	Ρ	G11				41.45	.21	17.92		7.43		5.99	19.67	6.42	.29	.01			0.00		.00	99.40
PP-20-09	-32+80HPY	7607	10	111	P	G11				41.81	.11	18.89		6.76		6.21	20.07	6.30	.32	.01			.01		0.00	100.50
PP-20-09	-32+80HPY	7607	10	210	P	G11				41.17	.33	19.09		6.08		7.55	19.19	6.22	.41	.01			.04		0.00	100.08
PP-20-09	-32+80HPY	7607	10	213	Ρ	G11				41.64	.03	19.88		5.52		7.12	19.28	5.95	.47	0.00			.04		0.00	99.93
PP-20-09	-32+80HPY	7607	10	303	P	G11				41.40	.53	19.09		5.72		7.88	18.82	6.07	.41	0.00			.04		.00	99.96
PP-20-09	-32+80HPY	7607	10	308	P	G11				41.33	.11	19.71		5.71		8.10	19.09	5.88	.46	0.00			.02		.00	100.43
PP-20-09	-32+80HPY	7607	10	318	P	G11				41.59	.32	18.18		7.14		6.36	19.67	6.30	.30	.05			.02		.00	99.93
PP-20-09	-32+80HPY	7607	10	409	P	G11				41.44	.55	18.92		5.92		7.42	19.17	6.15	.35	0.00			.06		0.00	99.97
PP-20-09	-32+80HPY	7607	10	410	P	G11				41.47	.15	19.93		5.37		7.54	18.88	6.08	.47	.01			.02		0.00	99.90
PP-20-09	-32+80HPY	7607	10	501	P	G11				41.33	.59	18.46		6.22		7.53	18.89	6.30	.39	.00			.05		.00	99.77
PP-20-09	-32+80HPY	7607	10	608	P	G11				41.49	.28	18.97		6.26		7.47	19.16	6.09	.43	0.00			.04		.01	189.20
PP-20-09	-32+80HIL	7607	11	702	P	G11				41.72	.44	18.22		6.93		6.46	19.67	6.37	.32	.04			.02		0.00	180.19
PP-20-09	-32+80HIL	7607	11	703	P	G11				41.40	.59	17.92		7.11		6.26	19.87	6.29	.30	.02			.05		.01	99.82
PP-20-09	-32+80HIL	7607	11	705	P	G11				41.44	.70	17.63		7.45		6.34	19.55	6.40	.35	0.00			.08		0.00	99.94
PP-20-09	-32+80HPY	7607	10	103	P	G11-1				41.36	.17	18.40		6.86		7.75	18.71	5.87	.44	.02			.04		0.00	99.63
PP-20-09	-32+80HPY	7607	10	106	P	G11-1				41.42	.47	18.75		5.94		7.45	19.18	5.92	.41	.01			.05		0.00	99.60
PP-20-09	-32+80HPY	7607	10	307	P	G11-1				42.16	.28	19.95		5.14		6.83	19.89	5.53	.30	.01			.02		.01	160.12
PP-20-09	-32+80HPY	7607	10	408	P	G11-1				41.66	.25	18.73		6.61		6.66	19.57	5.85	.35	.02			.04		.00	99.75
PP-20-09	-32+80HPY	7607	10	502	P	G11-1				41.62	.09	19.27		6.09		6.51	19.93	5.76	.36	.01			.02		.00	99.66
PP-20-09	-32+80HPY	7607	10	503	P	G11-1				41.44	.45	19.62		5.23		7.77	19.31	5.70	.37	0.00			.03		.00	99.93
PP-20-09	-32+80HPY	7607	10	509	P	G11-1				41.60	.19	19.73		5.62		7.43	19.24	5.72	.39	.01			.03		.01	100.00
PP-20-09	-32+80HPY	7607	10	510	P	G11-1				41.75	.37	18.64		6.76		6.56	20.06	5.74	.31	.00			.04		0.00	100.24
PP-20-09	-32+80HPY	7607	10	511	P	G11-1				41.83	.20	19.59		5.98		6.56	20.17	5.53	.34	.05			.64		0.00	100.30

106400.00.05_CUSTPROBE_05MAR2012

DMS Processing Data

SampleID	Batch ID	Client	Observer	Date Observation Started	Date Observation Completed	Number of Times Sample Observed	Hours Spent Observing	Numbe of Diamonds Recovered	Number of Spike Grains Recovered	Spike Comments	Other Recovered	Comments on Other	Observation Comments
RJK KON2	20-RJK-DMS01	RJK	Chris B.	08-Dec-20	08-Dec-20	2	1	0	0			Theorem	observation comments
RJK PP-20-07	20-RJK-DM501	RJK	Chris B.	15-Dec-20	16-Dec-20	2	4	0	0				
RJK PP-20-12	20-RJK-DMS01	RJK	Chris B.	15-Dec-20	15-Dec-20	2	2	0	0				
RJK PP-20-13	20-RJK-DMS01	RJK	Chris B.	11-Dec-20	11-Dec-20	2	3	0	0				

DMS Processing Data

SampleID	Batch ID	Date Reported	Total #Diamonds Recovered	Diamonds 100 mm Sieve	Diamonds 0500 mm Sieve	Diamonds 0500mm In One Dimension	0075 to 0106 mm Square Mesh	0106 to 0150 mm Square Mesh	0150 to 0212mm Square Mesh	0212 to 0300mm Square Mesh	0300 to 0425mm Square Mesh	0300 to 0425 Total Wt G	0300 to 0425 Total Wt Ct	0425 to 0600mm Square Mesh	0425 to 0600mm Total W G	0425 to 0600mm Total Wt	0600 to 0850mm Square Mesh	0600 to 0850mm	0600 to 0850mm Total Wt	0850 to 118mm Square
RJK KON2	20-RJK-DMS01	18-Dec-20	0								0	0		0	0	~**	0	0	L.L	Mesn
RJK PP-20-07	20-RJK-DMS01	18-Dec-20	0								0	0		0	0		0	0		0
RJK PP-20-12	20-RJK-DMS01	18-Dec-20	0								0	0		0	0		0	0	-	0
RJK PP-20-13	20-RJK-DMS01	18-Dec-20	0								0	0		0	0	-	0	0	-	0

December 18, 2020 Page 2 of 3

DMS Processing Data

SampleID	Batch ID	0850 to 118mmTo tal Wt G	0850 to 118mm Total Wt Ct	118 to 170mm Square Mesh	118 to 170mm Total Wt G	118 to 170mm Total Wt Ct	170 to 236mm Square Mesh	170 to 236mm Total Wt G	170 to 236mm Total Wt Ct	236 to 335mm Square Mesh	236 to 335mm Total Wt G	236 to 335mm Total Wt Ct	335 to 475mm Square Mesh	335 to 475mm Total Wt G	335 to 475mm Total Wt	475mm Square Mesh	475 mm Total Wt	475mm Total Wt
RJK KON2	20-RJK-DMS01	0		0	0		0	0		0	0		0	0		0	0	LL
RJK PP-20-07	20-RJK-DMS01	0	-	0	0		0	0		0	0	-	0	0	-	0	0	
RJK PP-20-12	20-RJK-DMS01	0		0	0		0	0		0	0		0	0		0	0	
RJK PP-20-13	20-RJK-DMS01	0	-	0	0	-	0	0		0	0		0	0		0	0	

Microlithics Laboratories Inc. 827 Harold Cres Thunder Bay, Ontario P7CSH8

December 18, 2020 Page 3 of 3

CAUSTIC DISSOLUTION DATA REPORT

SampleID	DataSet	DiamSour ce	LabCode	Batch_Number	Process_Start_Date	Sample_ Wt_Wet_ kg	Sample_ Wt_Dry_k g	Sample_ Wt_IMpro c_kg	Sample_ Wt_Proc_ kg	Low_Mes hSize_mm	Prim_Burn s_No	Sec_Burns _No	Micro_Fus ion_No
RJK KON2				20-RJK-DMS01	12/3/2020		5.540	0.000	5.540	0.1041	1	0	
RJK PP-20-07				20-RJK-DMS01	12/9/2020		24.905	0.000	24.905	0.1041	4	1	
RJK PP-20-12				20-RJK-DMS01	12/8/2020		13.500	0.000	13.500	0.1041	2	1	
RJK PP-20-13				20-RJK-DMS01	12/3/2020		14.240	0.000	14.240	0.1041	2	2	

December 18, 2020 Page 1 of 2

CAUSTIC DISSOLUTION DATA REPORT

SampleID	Peroxide_ Fusion_No	Conc_Wt_ g	Process_End_D ate	Proc_Comments
RJK KON2		15.6	12/8/2020	
RJK PP-20-07		234.7	12/14/2020	Blank needed on 1st primary pot (Pot#9)
RJK PP-20-12		222.0	12/11/2020	Blank needed on 2nd primary pot (Pot#4)
RJK PP-20-13		231.2	12/10/2020	Blank needed on both primary pots.

December 18, 2020 Page 2 of 2