

We are committed to providing <u>accessible customer service</u>. If you need accessible formats or communications supports, please <u>contact us</u>.

Nous tenons à améliorer <u>l'accessibilité des services à la clientèle</u>. Si vous avez besoin de formats accessibles ou d'aide à la communication, veuillez <u>nous contacter</u>.

2021 PROSPECTING REPORT: BLOOM LAKE PROPERTY

MOREL & HAULTAIN TOWNSHIPS LARDER LAKE MINING DIVISION, ONTARIO, CANADA

PATHFINDER RESOURCES LTD. (2650076 ONTARIO INC.)

LEVEL 9 182 St. Georges Terrace Perth, WA 6000

February 7th, 2022

Prepared By:

JOERG M. KLEINBOECK, P.GEO.

TABLE OF CONTENTS

EXECUTIVE SUMMARY	2
1.0 INTRODUCTION	4
2.0 PROPERTY DETAILS	4
2.1 Location and Access	4
2.2 Topography and Vegetation	4
2.3 Claims	
3.0 PREVIOUS WORK	6
4.0 GEOLOGY	9
4.1 Property Geology	
5.0 2021 PROSPECTING PROGRAM	11
5.1 Description of Work	
6.0 CONCLUSIONS & RECOMMENDATIONS	14
8.0 REFERENCES	15
LIST OF FIGURES Figure 1: Location of the Bloom Lake Property	5
Figure 2: Tenure of the Bloom Lake Property	
Figure 3: Property Geology (after MRD 282).	
Figure 4: GPS tracks from the 2021 prospecting program.	13
LIST OF TABLES	
Table 1: Claim Details of the Bloom Lake Property.	7
Table 2: 2021 Reconnaissance Prospecting Results	
LIST OF APPENDICES	

Appendix I: Statement of Qualifications Appendix II: Sample Descriptions Appendix III: Assay Certificate Appendix IV: Sample Pictures

Map 1: Sample Locations

EXECUTIVE SUMMARY

In the fall of 2021, JMK Exploration Consulting was engaged by Pathfinder Resources Ltd. ("Pathfinder") to complete a Phase 2 prospecting program on their 100% owned Bloom Lake Property ("Property").

The Property is situated approximately 140 km north-northeast of Sudbury, Ontario and approximately 14 km northeast of the Town of Gowganda, Ontario. The Property is bounded by UTM coordinates 5238900 E to 524825 E, and 5288070 N to 5290880 N (NAD83, Z17N), and is covered by National Topographic System (NTS) map sheet 41P/10 and 41P/15. The Property consists of 13 unpatented mining cell claims, covering an area of approximately 226.4 ha.

In January of 2018, Pathfinder (formerly known as Winmar Resources Ltd.) purchased a 100% interest in the Bloom Lake Property from CBLT Inc., subject to a 2% NSR.

The Property is predominantly underlain by Huronian sedimentary rocks of Proterozoic age that were deposited between 2,220 and 2,500 Ma, and overlie Algoman Granites (~2,500 Ma). The Huronian sedimentary rocks present on the Property belong to the Gowganda Formation, and include conglomerates, quartzites, sandstones, and siltstones. Both rock types have been intruded by gabbroic dykes and sills dated at 2,219 Ma, commonly referred to as Nipissing Diabase. Mineralization consisting of silver, cobalt-arsenic minerals, bornite, chalcopyrite, galena, sphalerite, and to a lesser extent gold, occurs within calcite and quartz veins and fractures hosted in the Nipissing Diabase. The mineralization present on the Property is representative of silver-arsenide veins historically mined in the Cobalt, Elk Lake, and Gowganda Mining Camps, also referred to as five-element veins (Ni-Co-As-Ag-Bi).

Historical work on the Property dates to 1907 when the Ontario Gowganda-Cobalt Consolidated Company Ltd., whose name changed in 1910 to Bishop Silver Mines of Canada Ltd., discovered a 6 to 8-inch calcite vein on the west shore of Bloom Lake, followed by numerous other veins that were prospected by trenching and pitting. By 1924, an adit was driven into the hillside along the shoreline of Bloom Lake, as well as a

50 ft deep shaft was sunk west of the adit (on current claim 221266). During the 1950's and 1960's, a group of several prospectors and junior mining companies held the claims and completed prospecting, trenching, and limited diamond drilling on the Property. In 1998, Joseph Crossley completed limited prospecting on the Property in the vicinity of the historical adit and shaft.

In 2018, Winmar Resources Ltd. completed a reconnaissance prospecting program on the Property, focusing on locating historical occurrences on the Property. A total of 33 samples were collected.

From October 2nd to 6th, 2021, a second phase of prospecting was completed that included two prospectors (David Hiltz & Joan Carmichael) that focused on areas west and south of the area sampled in 2018. The program focused on extending the strike length of surface mineralization to the west of the adit and shaft area, and to ground-truth other historical occurrences referenced on historical assessment reports. A total of 14 samples were collected from both bedrock and loose material located proximal to historical trenches and pits. Mineralization encountered during the program was associated with east to east-northeast orientated narrow calcite +/- quartz veins estimated to be up to 30 cm in width, and containing values of up to 0.73 g/t Au, 2,670 g/t Ag, 3.15% Co, 38.4% Cu, 0.28% Ni, 1.51% Zn, and 0.9% Bi. Sample 860478 returned 2,670 g/t Ag, 0.45% Co, 38.4% Cu, and 0.23% Zn. Note that grab samples are selective by nature, and values reported may not be representative of mineralized zones.

Further work on the Property is recommended. A magnetic geophysical survey should be considered, followed by additional prospecting, trenching, and geological mapping on the Property prior to any consideration for diamond drilling.

1.0 INTRODUCTION

JMK Exploration Consulting was requested by Pathfinder to complete a technical report for assessment purposes on their recently completed prospecting program on the Bloom Lake Property. From October 2nd to 6th, 2021, a second phase of reconnaissance prospecting program was completed. A total of 14 samples were collected from both bedrock and loose material located proximal to the historical trenches and pits. This report includes results from the limited prospecting program completed in 2021, and makes recommendations on future work on the Property.

2.0 PROPERTY DETAILS

2.1 Location and Access

The Property is situated approximately 140 km north-northeast of Sudbury, Ontario and approximately 14 km northeast of the Town of Gowganda, Ontario (Figure 1).

Access to the Property was by boat through Bloom Lake. An atv trail branching off of the Chown Road, located east of Long Point Lake, and north of highway 560, provides access to the Wigwam River where a boat can be used to access Bloom Lake to the north.

2.2 Topography and Vegetation

The topography of the Property is characterized by steep ridges and narrow valleys that are generally orientated north-south. Forest cover is a combination of jackpine, spruce, birch, and cedar in the areas of lower relief. Bloom Lake has an abundance water for drilling purposes.

2.3 Claims

The Property is bounded by UTM coordinates 5238900 E to 524825 E, and 5288070 N to 5290880 N (NAD83, Z17N), and is covered by National Topographic System (NTS) map sheet 41P/10 and 41P/15. The Property consists of 13 unpatented mining cell claims, covering an area of approximately 226.4 ha (Table 1, Figure 2).

The author has not sought a formal legal opinion with regard to the ownership status and NSR entitlement of the mining claims comprising the Property. The author has in all aspects of tenure relied on materials made available on the ENDM's website (https://www.mlas.mndm.gov.on.ca). The author expresses no opinion as to the ownership status of the Property.

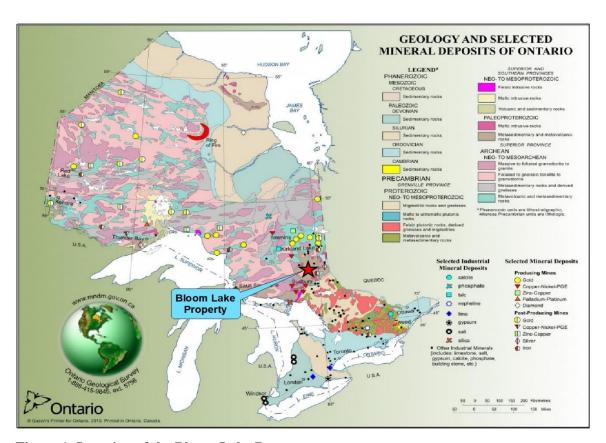


Figure 1: Location of the Bloom Lake Property

3.0 PREVIOUS WORK

A brief summary of the past exploration work completed in the area of interest that is described in this report is provided below.

Historical work on the Property dates to 1907 when the Ontario Gowganda-Cobalt Consolidated Company Ltd., whose name changed in 1910 to Bishop Silver Mines of Canada Ltd., discovered a 6 to 8-inch calcite vein on the west shore of Bloom Lake, followed by numerous other veins that were prospected by trenching and pitting. By 1924, an adit was driven into the hillside along the shoreline of Bloom Lake, as well as a 50 ft deep shaft was sunk west of the adit. During the 1950's, a group of several prospectors completed prospecting, geological mapping, and limited diamond drilling. Records are incomplete for this work, and it is suggested that the Resident Geologists office be visited in Kirkland Lake to compile all of the historical work. From 1954 to 1957, several phases of diamond drilling were completed by Pollard, Johnstone, and Barnes, the owners of the claims at the time. Several phases of diamond drilling were completed; however, the logs are incomplete. The logs that are available are often incomplete with regard to reference to a drill hole number, date, etc. Thomson (1959), the Resident Geologist for the Ontario Department of Mines at the time, states that "18 diamond drill holes (all under 50 ft in length) drilled to intersect veins gives information of negligible value". In 1963, Solid Silver Mines Ltd. held the claims and completed line cutting, prospecting, and geological mapping. Drilling was recommended, but to the authors knowledge, not completed. In 1998, Joseph Crossley completed limited prospecting on the Property in the vicinity of the historical adit and shaft. Silver and cobalt values of up to 603.0 g/t and 0.898 % respectively were obtained from historical trenches.

In 2018, Winmar Resources Ltd. completed a reconnaissance prospecting program on the Property, focusing on locating historical occurrences evaluate the Co-potential of the Property. A total of 33 samples were collected with significant results being returned including up to 0.42 g/t Au, 6.84% Co, 9.22% Cu, and 1.56% Ni.

Table 1: Claim Details of the Bloom Lake Property.

Township / Area	Tenure ID	Anniversary Date	Work Required	Work Applied	Total Reserve
MOREL	251794	2022-03-23	400	800	153
MOREL	251793	2022-03-23	400	800	0
MOREL	251792	2022-03-23	400	800	0
MOREL	243759	2022-03-23	400	800	0
MOREL	221267	2022-03-23	400	800	0
MOREL	221266	2022-03-23	400	800	0
HAULTAIN	336173	2022-03-23	200	400	0
HAULTAIN, MOREL	325202	2022-03-23	200	400	0
HAULTAIN, MOREL	308044	2022-03-23	400	800	0
HAULTAIN	287807	2022-03-23	200	400	0
HAULTAIN	229223	2022-03-23	200	400	0
HAULTAIN	582714	2022-03-26	400	0	0
HAULTAIN	582713	2022-03-26	400	0	0

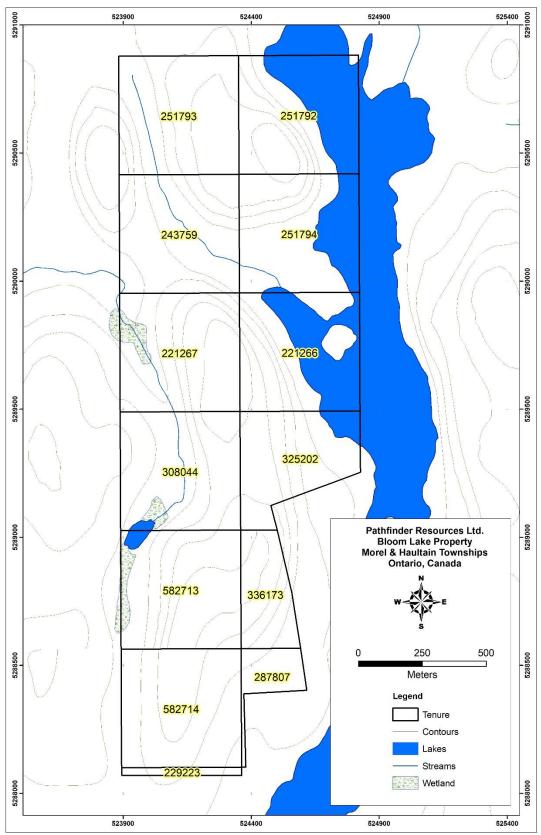


Figure 2: Tenure of the Bloom Lake Property

4.0 GEOLOGY

4.1 Property Geology

The Bloom Lake Property is predominantly underlain by Huronian sedimentary rocks of Proterozoic age that were deposited between 2,220 and 2,500 Ma, and overlie Algoman Granites (~2,500 Ma). The Huronian sedimentary rocks present on the Property belong to the Gowganda Formation, and include conglomerates, quartzites, sandstones, and siltstones. Both rock types have been intruded by gabbroic dykes and sills dated at 2,219 Ma, commonly referred to as Nipissing Diabase. On the Property, the Nipissing Diabase, as suggested in historical reports, dips approximately 20 to 30 degrees to the east, with the upper part of the sill located on the west shoreline of Bloom Lake.

Strong north-south faulting occurs on the Property, with weaker tangential fractures generally orientated east-northeast, and northeast.

Mineralization consisting of silver, cobalt-arsenic minerals, bornite, chalcopyrite, galena, sphalerite, and to a lesser extent gold, occurs within east-northeast oriented calcite and quartz veins and fractures hosted in the Nipissing Diabase. The mineralization present on the Property mineralization is representative of silver-arsenide veins historically mined in the Cobalt, Elk Lake, and Gowganda Mining Camps, also is also referred to as five-element veins (Ni-Co-As-Ag-Bi).

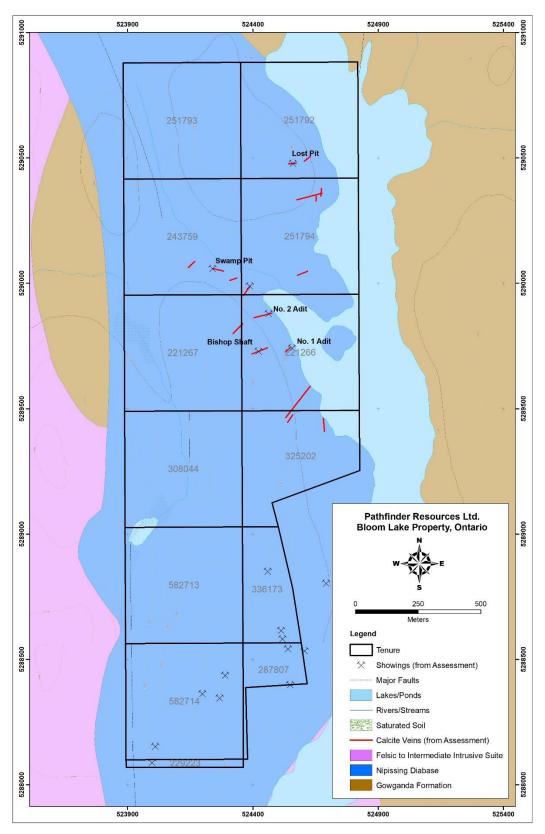


Figure 3: Property Geology (after MRD 282).

5.0 2021 PROSPECTING PROGRAM

5.1 Description of Work

From October 2nd to 6th, 2021, a second phase of prospecting was completed that included two prospectors (David Hiltz & Joan Carmichael) that focused on areas west and south of the area sampled in 2018. The program focused on extending the strike length of surface mineralization to the west of the adit and shaft area, and to ground-truth other historical occurrences referenced on historical assessment reports.

A total of 14 samples were collected from both bedrock and loose material located proximal to historical trenches and pits. Mineralization encountered during the program was associated with east to east-northeast orientated narrow calcite +/- quartz veins estimated to be up to 30 cm in width, and containing values of up to 0.73 g/t Au, 2,670 g/t Ag, 3.15% Co, 38.4% Cu, 0.28% Ni, 1.51% Zn, and 0.9% Bi, with a sample highlight (#860478) that returned 2,670 g/t Ag, 0.45% Co, 38.4% Cu, and 0.23% Zn. Due to the high Cu values in the sample, the presence of chalcocite or possibly native Cu in addition to chalcopyrite and bornite are likely present in the sample.

Selected results are provided in Table 2, and sample descriptions and assay certificates can be found in Appendices II and III respectively. Appendix IV contains photographs of samples in the field, and Map 1, located in the back pocket of this report, displays the sample locations with respect to claim tenure. Figure 4 displays the GPS tracks from the work program.

Note that grab samples are selective by nature, and values reported may not be representative of mineralized zones.

All samples were shipped to Activation Laboratories in Timmins, Ontario. Once the samples are received and dried at the laboratory, the samples are then crushed to 80% passing 10 mesh (2 mm) and then split into 250 g sub-sample size using a Jones Riffle Splitter. These sub-samples are then pulverized (using rings and pucks to 90% passing 200 mesh (0.075 mm) and homogenized prior to analysis. Gold analysis is performed using a 30 g charge by fire assay using lead collection with a silver inquart (1A2 package). The

lower detection limit is 5 ppb, and the upper detection limit is 5000 ppb for this analysis. Results for the 38 element ICP analysis (1E3 package) includes digesting 0.5 g of the sample with aqua regia for 2 hours at 95 °C. The sample is cooled and then diluted with deionized water. The samples are then analyzed using an Agilent 700 series ICP for the 38-element suite. QC for the digestion is 15% for each batch, 2 method reagent blanks, 6 inhouse controls, 8 sample duplicates and 5 certified reference materials. An additional 20% QC is performed as part of the instrumental analysis to ensure quality in the areas of instrumental drift. If over limits for base metals are encountered, a sodium peroxide fusion, acid dissolution followed by ICP-OES is completed.

Table 2: 2021 Reconnaissance Prospecting Results

Sample	Au (ppb)	Ag (ppm)	Co (ppm)	Cu (ppm)	Ni (ppm)	Pb (ppm)	Zn (ppm)	Bi (ppm)
860469	18	2.8	391	4440	37	17	39	17
860470	25	164	4700	89200	878	20	16	630
860471	733	66.7	31500	34100	2840	84	15	9000
860472	9	1.6	258	1920	46	5	18	7
860473	8	27.8	340	21000	108	9	19	139
860474	< 5	2.5	1490	212	278	36	108	11
860475	7	2.2	97	138	16	71	47	9
860476	12	< 0.2	20	142	43	14	58	< 2
860477	8	0.2	65	48	29	6	30	< 2
860478	29	2670	4470	384000	436	32	2260	< 2
860479	12	120	1120	47800	149	133	452	5
860480	43	133	18900	11700	2770	52	143	59
860481	92	446	13500	55400	1660	20	77	74
860482	32	142	18700	30600	2550	374	15100	39

Figure 4: GPS tracks from the 2021 prospecting program.

6.0 CONCLUSIONS & RECOMMENDATIONS

A total of 14 samples were collected from numerous trenches and pits on the Property that had not been sampled in 2018. All of the samples collected were highly anomalous in Ag, Co, Cu, Ni, and to a lesser extent Pb, Zn, Bi, and Au. Mineralization is associated with narrow, east to east-northeast orientated calcite +/- quartz veins up to 30 cm in width, and are representative of silver-arsenide veins historically mined in the Cobalt, Elk Lake, and Gowganda Mining Camps, also is also referred to as five-element veins (Ni-Co-As-Ag-Bi).

Further work on the Property is recommended. A magnetic geophysical survey should be considered, followed by additional prospecting, trenching, and geological mapping on the Property prior to any consideration for diamond drilling. Significant potential for extending or discovering new veins also exists to the east of the Property where the Nipissing Diabase, although faulted, is interpreted to continue to dip under the eastern shoreline of Bloom Lake where it is obscured by overlying Huronian sedimentary rocks. The upper part of the diabase sill can be targeted by diamond drilling.

8.0 REFERENCES

Ayer, J.A. and Chartrand, J.E. 2011. Geological compilation of the Abitibi greenstone belt; Ontario Geological Survey, Miscellaneous Release—Data 282.

Burrows, A.G. 1926. Gowganda Silver Area (Fourth Report, Revised), Thirfty-fifth Annual Report of the Department of Mines, Vol XXXV, Part III.

Crossley, J.D. 1998. Report on the Geology of Claim No. 1200357, Bloom Lake, Morel Township, Kirkland Lake District.

Google Earth/Maxar Technologies. 2022.

Howe, A.C.A. 1963. Geology of the Solid Silver Mines Limited Haultain and Morel Township Properties, Gowganda Silver Area, Montreal River Mining Division, Ontario.

Ministry of Northern Development and Mines; Geology of Ontario, Assessment File Research Information (AFRI) found at www.geologyontario.mndm.gov.on.ca

Sergiades, A.O. 1968. Silver Cobalt Calcite Vein Deposits of Ontario, Ontario Department of Mines.

Thompson, R. 1959. Report on Pollard Bloom Lake Group, Morel Twp. Montreal River Mining Division. Ontario Department of Mines.

Appendix I

Statement of Qualifications

Statement of Qualifications

I, Joerg Martin Kleinboeck of 147 Lakeside Drive, North Bay, Ontario, do hereby certify that:

I am a graduate of Laurentian University, Sudbury, Ontario with a B.Sc. Geology, 2000, and have been practising my profession as a geologist since.

I am a member with the Association of Professional Geoscientists of Ontario (#1411).

I hold no interests in the securities of Pathfinder Resources Ltd.

Joerg Martin Kleinboeck JMK Exploration Consulting February 7th, 2022 North Bay, Ontario

Appendix II

Sample Descriptions

Property	Date	Sample	Easting	Northing	Rock Type	Mineralization
Bloom Lake	3/10/2021	860469	524462	5289431	Nipissing Diabase	2-3% chalcopyrite, cobalt bloom, and malachite
Bloom Lake	3/10/2021	860470	524566	5289423	Nipissing Diabase	2% bornite, chalcopyrite, malachite
Bloom Lake	3/10/2021	860471	524570	5289422	Nipissing Diabase	cobalt bloom along weathered surfaces
Bloom Lake	3/10/2021	860472	524591	5289450	Nipissing Diabase	2-3% chalcopyrite, cobalt bloom, and malachite
Bloom Lake	3/10/2021	860473	524595	5289448	Nipissing Diabase	2-3% chalcopyrite, cobalt bloom, and malachite
Bloom Lake	3/10/2021	860474	524564	5289443	Nipissing Diabase	cobalt bloom along weathered surfaces
Bloom Lake	3/10/2021	860475	524564	5289443	Nipissing Diabase	2-3% chalcopyrite
Bloom Lake	5/10/2021	860476	524251	5288430	Nipissing Diabase	no visible mineralization
Bloom Lake	5/10/2021	860477	524434	5288824	Nipissing Diabase	no visible mineralization
Bloom Lake	6/10/2021	860478	524477	5289626	Nipissing Diabase	1% bornite, chalcopyrite, and chalcocite?
Bloom Lake	6/10/2021	860479	524476	5289625	Nipissing Diabase	1% bornite and chalcopyrite
Bloom Lake	6/10/2021	860480	524477	5289628	Nipissing Diabase	1% chalcopyrite, cobalt bloom
Bloom Lake	6/10/2021	860481	524474	5289615	Nipissing Diabase	2-3% bornite, chalcopyrite, along with cobalt bloom
Bloom Lake	6/10/2021	860482	524480	5289627	Nipissing Diabase	2-3% bornite, chalcopyrite, along with cobalt bloom
Bloom Lake			524011	5288140		
Bloom Lake			524031	5288188		
Bloom Lake			524150	5288363		
Bloom Lake			524449	5288835		
Bloom Lake			524452	5288831		
Bloom Lake			524453	5288828		
Bloom Lake			524562	5289431		

Description	Au	Ag	Со	Cu	Ni	Pb	Zn	Bi
Description	ppb	ppm	ppm	ppm	ppm	ppm	ppm	ppm
sample taken from upper south wall of shaft	18	2.8	391	4440	37	17	39	17
sample taken from rock pile beside shaft	25	164	4700	89200	878	20	16	630
Sample taken from rock pile beside shaft	733	66.7	31500	34100	2840	84	15	9000
sample taken from small pit within 260 deg orientated trench	9	1.6	258	1920	46	5	18	7
sample taken from small pit within 260 deg orientated trench	8	27.8	340	21000	108	9	19	139
sample taken from small pit	< 5	2.5	1490	212	278	36	108	11
sample taken from outcrop	7	2.2	97	138	16	71	47	9
sample taken of calcite vein within a small pit	12	< 0.2	20	142	43	14	58	< 2
8cm wide calcite vein in deep 3mx3m pit, veins orientated at 090 & 130 deg.	8	0.2	65	48	29	6	30	< 2
vertical calcite vein in trench orientated at 280 deg, vein is 30cm								
wide and 40m? in length. Sample taken along north-side of								
trench	29	2670	4470	384000	436		2260	
sample taken along north-side of trench	12	120						
sample taken along south-side of trench	43			11700	_	_	143	59
sample taken of exposed vein in trench	92	446	13500	55400				74
sample taken from rock pile	32	142	18700	30600	2550	374	15100	39
shallow pit, covered with fill, no o/c exposed.								
shallow pit, no o/c								
trenches with shallow pits								
trenches with shallow pits								
trenches with shallow pits								
trenches with shallow pits								
shaft location with trenches orientated at 260 deg.								

Appendix III

Assay Certificate

Quality Analysis ...

Innovative Technologies

Report No.: A21-19102
Report Date: 10-Jan-22

Date Submitted: 12-Oct-21
Your Reference: Bloom Lake

JMK Exploration Consulting 147 Lakeside Dr. North Bay ON P1A 3E1 Canada

ATTN: Joerg Kleinboeck

CERTIFICATE OF ANALYSIS

14 Core samples were submitted for analysis.

The following analytical package(s) were requested:		Testing Date:
1A2-Timmins	QOP AA-Au (Au - Fire Assay AA)	2021-10-27 17:41:11
1E3-Timmins	QOP AquaGeo (Aqua Regia ICPOES)	2021-12-16 12:01:57

REPORT **A21-19102**

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

If value exceeds upper limit we recommend reassay by fire assay gravimetric-Code 1A3.

Values which exceed the upper limit should be assayed for accurate numbers.

LabID: 709

ACTIVATION LABORATORIES LTD.

1752 Riverside Drive, Timmins, Ontario, Canada, P4R 1N1
TELEPHONE +705 264-0123 or +1.888.228.5227 FAX +1.905.648.9613
E-MAIL Timmins@actlabs.com ACTLABS GROUP WEBSITE www.actlabs.com

CERTIFIED BY:

Emmanuel Eseme , Ph.D. Quality Control Coordinator

Results	Activation Laboratories Ltd.	Report: A21-19102
---------	------------------------------	-------------------

Analyte Symbol	Au	Ag	Cd	Cu	Mn	Мо	Ni	Pb	Zn	Al	As	В	Ва	Ве	Bi	Ca	Со	Cr	Fe	Ga	Hg	K	La
Unit Symbol	ppb	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm
Lower Limit	5	0.2	0.5	1	5	1	1	2	2	0.01	2	10	10	0.5	2	0.01	1	1	0.01	10	1	0.01	10
Method Code	FA-AA	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP
860469	18	2.8	< 0.5	4440	596	2	37	17	39	1.49	414	< 10	15	0.9	17	3.49	391	2	4.76	< 10	< 1	0.06	31
860470	25	> 100	< 0.5	> 10000	1160	102	878	20	16	1.22	8460	< 10	< 10	< 0.5	630	4.30	4700	< 1	5.38	< 10	< 1	< 0.01	21
860471	733	66.7	< 0.5	> 10000	1180	332	2840	84	15	0.81	> 10000	19	< 10	< 0.5	9000	4.40	> 10000	< 1	4.16	< 10	1	< 0.01	25
860472	9	1.6	< 0.5	1920	517	5	46	5	18	1.15	373	< 10	12	< 0.5	7	2.98	258	2	4.11	< 10	< 1	0.04	15
860473	8	27.8	< 0.5	> 10000	557	33	108	9	19	1.46	993	< 10	11	< 0.5	139	1.18	340	2	5.19	< 10	< 1	0.01	17
860474	< 5	2.5	< 0.5	212	651	14	278	36	108	3.78	1800	< 10	< 10	0.8	11	0.71	1490	15	8.98	20	< 1	< 0.01	< 10
860475	7	2.2	< 0.5	138	623	21	16	71	47	1.02	138	< 10	18	< 0.5	9	2.35	97	1	4.80	< 10	< 1	0.10	15
860476	12	< 0.2	< 0.5	142	419	< 1	43	14	58	2.42	5	< 10	47	< 0.5	< 2	2.21	20	42	3.23	< 10	< 1	0.30	< 10
860477	8	0.2	< 0.5	48	1560	< 1	29	6	30	1.91	73	< 10	16	< 0.5	< 2	5.28	65	1	5.66	10	< 1	0.10	22
860478	29	> 100	2.4	> 10000	550	126	436	32	2260	0.22	7900	< 10	< 10	< 0.5	< 2	4.89	4470	< 1	5.47	< 10	< 1	< 0.01	< 10
860479	12	> 100	< 0.5	> 10000	582	76	149	133	452	1.23	1850	< 10	< 10	< 0.5	5	3.79	1120	< 1	5.65	< 10	< 1	0.03	41
860480	43	> 100	< 0.5	> 10000	1330	125	2770	52	143	1.05	> 10000	14	< 10	0.5	59	8.36	> 10000	< 1	3.06	< 10	< 1	< 0.01	40
860481	92	> 100	< 0.5	> 10000	1040	95	1660	20	77	1.08	> 10000	< 10	< 10	0.5	74	7.62	> 10000	< 1	3.67	< 10	< 1	0.01	33
860482	32	> 100	16.9	> 10000	1060	103	2550	374	> 10000	0.68	> 10000	12	< 10	0.5	39	8.40	> 10000	< 1	3.41	< 10	< 1	< 0.01	22

Report: A21-19102

Analyte Symbol	Mg	Na	Р	S	Sb	Sc	Sr	Ti	Th	Te	TI	U	٧	W	Υ	Zr
Unit Symbol	%	%	%	%	ppm	ppm	ppm	%	ppm							
Lower Limit	0.01	0.001	0.001	0.01	2	1	1	0.01	20	1	2	10	1	10	1	1
Method Code	AR-ICP															
860469	1.35	0.079	0.060	0.42	2	15	15	0.21	< 20	2	< 2	< 10	123	< 10	27	23
860470	1.34	0.045	0.110	1.80	16	17	14	0.05	< 20	2	14	< 10	80	< 10	26	15
860471	0.88	0.037	0.058	2.05	148	11	16	0.03	< 20	< 1	90	< 10	67	< 10	26	18
860472	1.05	0.064	0.044	0.23	< 2	11	10	0.05	< 20	< 1	< 2	< 10	47	< 10	16	9
860473	1.44	0.079	0.043	1.07	< 2	14	5	0.09	< 20	< 1	< 2	< 10	107	< 10	17	28
860474	4.31	0.043	0.024	0.07	4	19	3	0.07	< 20	< 1	4	< 10	235	< 10	5	13
860475	0.80	0.073	0.053	0.11	< 2	11	14	0.22	< 20	< 1	< 2	< 10	294	< 10	20	22
860476	1.13	0.281	0.023	0.08	< 2	6	31	0.08	< 20	1	< 2	< 10	108	< 10	4	6
860477	1.96	0.082	0.037	0.03	2	18	24	0.12	< 20	< 1	< 2	< 10	300	< 10	24	16
860478	0.27	0.015	0.098	1.49	13	5	16	< 0.01	< 20	10	13	< 10	47	< 10	13	2
860479	1.18	0.053	0.070	2.31	3	14	18	0.15	< 20	2	3	< 10	200	< 10	29	40
860480	1.10	0.041	0.051	1.13	9	13	24	0.04	< 20	< 1	58	< 10	149	< 10	38	19
860481	1.09	0.041	0.046	1.08	7	13	24	0.09	< 20	< 1	38	< 10	200	< 10	33	25
860482	0.71	0.037	0.038	2.39	12	10	24	0.03	< 20	< 1	52	< 10	87	< 10	28	27

Analyte Symbol	Au	Ag	Cd	Cu	Mn	Мо	Ni	Pb	Zn	Al	As	В	Ва	Ве	Bi	Ca	Со	Cr	Fe	Ga	Hg	K	La
Unit Symbol	ppb	ppm	ppm	ppm	ppm	_	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ррт	%		ppm	ге %		ppm	%	ppm
Lower Limit	5 5	0.2	0.5	1	5	1	1	2	2	0.01	2	10	10	0.5	2	0.01	1	1	0.01	10	1	0.01	10
Method Code	FA-AA	AR-ICP		AR-ICP	ΔR-ICP	AR-ICP	ΔR-ICP	AR-ICP	_		AR-ICP	-					AR-ICP	AR-ICP		AR-ICP	ΔR-ICP		AR-ICP
OREAS 134b	171701	> 100	547	1240	7111101	7111101	7111101		> 10000	/ (11 101	219	7111101	7111101	7111101	7111101	7111101	93	7111101	11.0	7111101	7111101	7111101	7111101
(AQUA RÉGIA) Meas		7 100	017	1210							210								11.0				
OREAS 134b (AQUA REGIA) Cert		204	563	1360				133000	177000		221						110		12.25				
OREAS 134b (AQUA REGIA) Meas		> 100	546	1240				> 5000	> 10000		216						92		10.8				
OREAS 134b (AQUA REGIA) Cert		204	563	1360				133000	177000		221						110		12.25				
OREAS 134b (AQUA REGIA) Meas		> 100	521	1200				> 5000	> 10000		207						90		10.6				
OREAS 134b (AQUA REGIA) Cert		204	563	1360				133000	177000		221						110		12.25				
OREAS 134b (AQUA REGIA) Meas		> 100	519	1190				> 5000	> 10000		212						91		10.6				
OREAS 134b (AQUA REGIA) Cert		204	563	1360				133000	177000		221						110		12.25				
OREAS 133a (Aqua Regia) Meas		95.0	278	303				> 5000	> 10000		130		< 10				20		7.26				
OREAS 133a (Aqua Regia) Cert		97	297	324				48600. 00	106000 .00		140		59				23		7.92				
OREAS 133a (Aqua Regia) Meas		93.5	278	291				> 5000	> 10000		131		< 10				19		7.18				
OREAS 133a (Aqua Regia) Cert		97	297	324				48600. 00	106000 .00		140		59				23		7.92				
OREAS 133a (Aqua Regia) Meas		95.0	278	302				> 5000	> 10000		130		< 10				20		7.27				
OREAS 133a (Aqua Regia) Cert		97	297	324				48600. 00	106000 .00		140		59				23		7.92				
OREAS 133a (Aqua Regia) Meas		91.1	284	271				> 5000	> 10000		129		< 10				20		6.77				
OREAS 133a (Aqua Regia) Cert		97	297	324				48600. 00	106000 .00		140		59				23		7.92				
OREAS 922 (AQUA REGIA) Meas		1.0	< 0.5	2300	787	< 1	32	58	259	2.83	5		72	0.6	11	0.39	18	44	5.46	< 10		0.43	36
OREAS 922 (AQUA REGIA) Cert		0.851	0.28	2176	730	0.69	34.3	60	256	2.72	6.12		70	0.65	10.3	0.324	19.4	40.7	5.05	7.62		0.376	32.5
OREAS 922 (AQUA REGIA) Meas		0.9	< 0.5	2240	773	< 1	39	59	256	2.76	5		69	0.6	8	0.38	18	44	5.33	< 10		0.40	35
OREAS 922 (AQUA REGIA) Cert		0.851	0.28	2176	730	0.69	34.3	60	256	2.72	6.12		70	0.65	10.3	0.324	19.4	40.7	5.05	7.62		0.376	32.5
OREAS 923 (AQUA REGIA) Meas		1.6	< 0.5	4450	880	< 1	32	81	327	2.83	7		58	0.5	17	0.38	21	40	6.19	< 10		0.35	32
OREAS 923 (AQUA REGIA)		1.62	0.40	4248	850	0.84	32.7	81	335	2.80	7.07		54	0.61	21.8	0.326	22.2	39.4	5.91	8.01		0.322	30.0

Analyte Symbol	Au	Aq	Cd	Cu	Mn	Мо	Ni	Pb	Zn	Al	As	В	Ва	Be	Bi	Ca	Со	Cr	Fe	Ga	Hq	K	La
Unit Symbol	ppb	ppm	ppm		ppm	_	ppm	_	ppm	%			ppm	_	ppm	%	ppm	ppm	%		ppm	%	ppm
Lower Limit	5		0.5	1	5	1	1		2	0.01	2	10	10		2	0.01	1	1	0.01	10	1	0.01	10
Method Code	FA-AA			AR-ICP	AR-ICP	AR-ICP	AR-ICP		AR-ICP		AR-ICP						AR-ICP	AR-ICP			AR-ICP		AR-ICP
Cert																							
OREAS 923 (AQUA REGIA) Meas		1.5	< 0.5	4410	877	< 1	34	82	330	2.78	6		57	0.5	16	0.38	20	43	6.12	< 10		0.34	32
OREAS 923 (AQUA REGIA) Cert		1.62	0.40	4248	850	0.84	32.7	81	335	2.80	7.07		54	0.61	21.8	0.326	22.2	39.4	5.91	8.01		0.322	30.0
OREAS 907 (Aqua Regia) Meas		1.4	< 0.5	6370	338	5	7	34	141	1.08	36		212	0.8	20	0.28	43	8	8.29	10		0.32	37
OREAS 907 (Aqua Regia) Cert		1.30	0.540	6370	330	5.64	4.74	34.1	139	0.945	37.0		225	0.870	22.3	0.280	43.7	8.59	8.18	14.7		0.286	36.1
OREAS 907 (Aqua Regia) Meas		1.3	< 0.5	6660	348	5	7	33	144	1.05	36		210	0.8	20	0.29	45	11	8.62	10		0.30	37
OREAS 907 (Aqua Regia) Cert		1.30	0.540	6370	330	5.64	4.74	34.1	139	0.945	37.0		225	0.870	22.3	0.280	43.7	8.59	8.18	14.7		0.286	36.1
Oreas 621 (Aqua Regia) Meas		74.4	279	3850	548	12	25		> 10000	1.69	77			< 0.5	2	1.70	28	31	3.63	< 10	4	0.33	19
Oreas 621 (Aqua Regia) Cert		68.0	278	3660	520	13.3	25.8	13600	51700	1.60	75.0			0.530	3.85	1.65	27.9	31.3	3.43	9.29	3.93	0.333	19.4
Oreas 621 (Aqua Regia) Meas		72.2	284	3700	532	11	24		> 10000	1.62	79			< 0.5	< 2	1.65	28	32	3.53	< 10	4	0.31	19
Oreas 621 (Aqua Regia) Cert		68.0	278	3660	520	13.3	25.8	13600	51700	1.60	75.0			0.530	3.85	1.65	27.9	31.3	3.43	9.29	3.93	0.333	19.4
Oreas 621 (Aqua Regia) Meas		75.7	284	3880	550	12	25		> 10000	1.71	75			< 0.5	< 2	1.70	29	32	3.68	< 10	4	0.33	20
Oreas 621 (Aqua Regia) Cert		68.0	278	3660	520	13.3	25.8	13600	51700	1.60	75.0			0.530	3.85	1.65	27.9	31.3	3.43	9.29	3.93	0.333	19.4
OREAS 239 (Fire Assay) Meas	3630																						
OREAS 239 (Fire Assay) Cert	3550																						
OREAS 263 (Aqua Regia) Meas		0.2	< 0.5	96	529	< 1	73	36	130	1.69	28		173	1.1	2	1.11	30	52	4.07	< 10	< 1	0.33	
OREAS 263 (Aqua Regia) Cert		0.285	0.270	87.0	490	0.570	72.0	34.0	127	1.29	30.8		175	1.22	0.570	1.03	31.0	48.0	3.68	4.92	0.170	0.288	
OREAS 130 (Aqua Regia) Meas		6.5	27.9	228	1570	7	34	1240	> 10000	1.11	201				5	1.60	25	23	7.19	< 10	< 1	0.49	23
OREAS 130 (Aqua Regia) Cert		6.27	28.8	226	1630	8.25	35.2	1300	16900	1.10	205				3.05	1.81	27.1	23.2	7.27	4.78	0.670	0.500	26.4
Oreas 623 (Aqua Regia) Meas		17.0	46.1	> 10000	502	5	15	2120	8660	1.57	62			< 0.5	6	0.95	186	15	11.5	< 10	< 1	0.15	15
Oreas 623 (Aqua Regia) Cert		20.4	52.0	17200	570	8.38	15.6	2520	10100	1.80	76.0			0.370	16.9	1.09	216	19.4	13.0	11.9	0.830	0.175	17.9
Oreas E1336 (Fire Assay) Meas	529																						
Oreas E1336 (Fire Assay) Cert	510.000																						
860473 Orig		29.0		> 10000	566	33	110	9			994	< 10	12	< 0.5	144	1.20	343	2	5.30	< 10	< 1	0.01	17
860473 Dup	_	26.6	< 0.5	> 10000	548	33	106	9	20	1.45	993	< 10	11	< 0.5	134	1.16	337	2	5.08	< 10	< 1	0.01	16
Method Blank	6																						
Method Blank	< 5		2.5						<u> </u>	201	<u> </u>	1.0	1.0			0.04		<u> </u>	0.04	10		0.04	10
Method Blank		0.3	< 0.5	< 1	< 5	< 1	< 1	< 2	< 2		< 2	< 10	< 10	< 0.5	< 2	< 0.01	< 1	< 1	< 0.01	< 10	< 1	< 0.01	< 10
Method Blank Method Blank		< 0.2	< 0.5	< 1	< 5 < 5	< 1	< 1	< 2	< 2	< 0.01 < 0.01	< 2 < 2	< 10 < 10	< 10 < 10	< 0.5	< 2 < 2	< 0.01	< 1	< 1	< 0.01 < 0.01	< 10 < 10	< 1	< 0.01	< 10 < 10
INICUIOU DIALIK		< 0.2	< 0.5	< 1	< 0	< 1	< 1	< 2	< 2	< 0.01	< 2	< 10	< 10	< 0.5	< 2	< 0.01	< 1	< 1	< 0.01	< 10	< 1	< 0.01	< 10

QC Activation Laboratories Ltd. Report: A21-19102

Analyte Symbol	Au	Ag	Cd	Cu	Mn	Мо	Ni	Pb	Zn	Al	As	В	Ва	Ве	Bi	Ca	Co	Cr	Fe	Ga	Hg	K	La
Unit Symbol	ppb	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm							
Lower Limit	5	0.2	0.5	1	5	1	1	2	2	0.01	2	10	10	0.5	2	0.01	1	1	0.01	10	1	0.01	10
Method Code	FA-AA	AR-ICP																					
Mothod Blank	T	-02	-05	2	- 5	- 1	- 1	- 2	- 2	~ 0.01	- 2	- 10	- 10	-05	- 2	~ 0.01	- 1	- 1	~ 0.01	- 10	- 1	~ 0.01	- 10

Analyte Symbol	Mg	Na	Р	S	Sb	Sc	Sr	Ti	Th	Te	TI	U	V	W	Υ	Zr
Unit Symbol	%	%	%	%	ppm	ppm	ppm	%	ppm	ppm						
Lower Limit	0.01	0.001	0.001	0.01	2	1	1	0.01	20	1	2	10	1	10	1	1
Method Code	AR-ICP	AR-IC														
OREAS 134b (AQUA REGIA) Meas				18.0												
OREAS 134b (AQUA REGIA)				19.31												
Cert OREAS 134b				18.3												
(AQUA REGIA) Meas OREAS 134b				19.31												
(AQUA REGIA) Cert				19.51												
OREAS 134b (AQUA REGIA) Meas				16.5												
OREAS 134b (AQUA REGIA) Cert				19.31												
OREAS 134b (AQUA REGIA) Meas				17.0												
OREAS 134b (AQUA REGIA) Cert				19.31												
OREAS 133a (Aqua Regia) Meas				10.9	132											
OREAS 133a (Aqua Regia) Cert				10.7	147											
OREAS 133a (Aqua Regia) Meas				9.61	130											
OREAS 133a (Aqua Regia) Cert				10.7	147											
OREAS 133a (Aqua Regia) Meas				10.7	133											
OREAS 133a (Aqua Regia) Cert				10.7	147											
OREAS 133a (Aqua Regia) Meas				8.23	125											
OREAS 133a (Aqua Regia) Cert				10.7	147											
OREAS 922 (AQUA REGIA) Meas	1.35	0.033	0.063	0.38	3	3	15		< 20		< 2	< 10	33	< 10	17	2
OREAS 922 (AQUA REGIA) Cert	1.33	0.021	0.063	0.386	0.57	3.15	15.0		14.5		0.14	1.98	29.4	1.12	16.0	22
OREAS 922 (AQUA REGIA) Meas	1.34	0.033	0.062	0.39	3	3	15		< 20		< 2	< 10	32	< 10	17	:
OREAS 922 (AQUA REGIA) Cert	1.33	0.021	0.063	0.386	0.57	3.15	15.0		14.5		0.14	1.98	29.4	1.12	16.0	22
OREAS 923 (AQUA REGIA) Meas	1.41		0.059	0.66	4	3	14		< 20		< 2	< 10	32	< 10	15	;
OREAS 923 (AQUA REGIA)	1.43		0.061	0.684	0.58	3.09	13.6		14.3		0.12	1.80	30.6	1.96	14.3	22

Analyte Symbol	Mg	Na	Р	S	Sb	Sc	Sr	Ti	Th	Te	TI	U	٧	W	Υ	Zr
Unit Symbol	%	%	%	%	ppm	ppm	ppm	%	ppm							
Lower Limit	0.01	0.001	0.001	0.01	2	1	1	0.01	20	1	2	10	1	10	1	1
Method Code	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP
Cert																
OREAS 923 (AQUA REGIA) Meas	1.39		0.059	0.66	3	3	14		< 20		< 2	< 10	32	< 10	15	27
OREAS 923 (AQUA REGIA) Cert	1.43		0.061	0.684	0.58	3.09	13.6		14.3		0.12	1.80	30.6	1.96	14.3	22.5
OREAS 907 (Aqua Regia) Meas	0.22	0.115	0.023	0.07	7	2	12	0.02	< 20	< 1	< 2	< 10	6	< 10	6	23
OREAS 907 (Aqua Regia) Cert	0.221	0.0860	0.0240	0.0660	2.28	2.16	11.7	0.0170	8.04	0.230	0.120	2.15	5.12	0.980	6.52	43.7
OREAS 907 (Aqua Regia) Meas	0.23	0.118	0.024	0.07	6	2	12	0.02	< 20	< 1	< 2	< 10	6	< 10	6	25
OREAS 907 (Aqua Regia) Cert	0.221	0.0860	0.0240	0.0660	2.28	2.16	11.7	0.0170	8.04	0.230	0.120	2.15	5.12	0.980	6.52	43.7
Oreas 621 (Aqua Regia) Meas	0.45	0.166	0.034	4.82	118	2	18		< 20		< 2	< 10	11	< 10	7	47
Oreas 621 (Aqua Regia) Cert	0.436	0.160	0.0335	4.50	107	2.20	18.9		5.91		0.770	1.63	10.9	1.00	6.87	55.0
Oreas 621 (Aqua Regia) Meas	0.44	0.171	0.033	4.62	122	2	17		< 20		< 2	< 10	11	< 10	7	45
Oreas 621 (Aqua Regia) Cert	0.436	0.160	0.0335	4.50	107	2.20	18.9		5.91		0.770	1.63	10.9	1.00	6.87	55.0
Oreas 621 (Aqua Regia) Meas	0.45	0.167	0.034	4.82	121	2	18		< 20		< 2	< 10	12	< 10	7	46
Oreas 621 (Aqua Regia) Cert	0.436	0.160	0.0335	4.50	107	2.20	18.9		5.91		0.770	1.63	10.9	1.00	6.87	55.0
OREAS 239 (Fire Assay) Meas																
OREAS 239 (Fire Assay) Cert																
OREAS 263 (Aqua Regia) Meas	0.63	0.103	0.042	0.13	10	4	18		< 20	< 1	< 2	< 10	25		12	
OREAS 263 (Aqua Regia) Cert	0.593	0.0790	0.0410	0.126	7.37	3.52	16.9		10.6	0.210	0.530	1.28	22.8		12.0	
OREAS 130 (Aqua Regia) Meas	0.88		0.081	6.04	8	3	20	0.03	< 20	< 1	2	< 10	34	< 10	11	18
OREAS 130 (Aqua Regia) Cert	0.892		0.0860	6.02	4.69	3.42	23.2	0.0270	10.3	0.170	5.92	8.36	33.1	1.40	13.0	19.0
Oreas 623 (Aqua Regia) Meas	0.98	0.072	0.041	8.04	21	4	12		< 20	< 1	< 2	< 10	15	< 10	6	40
Oreas 623 (Aqua Regia) Cert	1.11	0.0680	0.0400	8.75	20.2	4.63	14.2		4.72	0.570	0.260	1.43	15.8	2.62	7.43	50.0
Oreas E1336 (Fire Assay) Meas																
Oreas E1336 (Fire Assay) Cert																
860473 Orig	1.47	0.069	0.043	1.07	2		5	0.09	< 20	< 1	< 2	< 10	108	< 10	17	30
860473 Dup	1.41	0.090	0.043	1.07	< 2	14	5	0.09	< 20	< 1	< 2	< 10	106	< 10	17	26
Method Blank																
Method Blank																
Method Blank	< 0.01		< 0.001	< 0.01	< 2	< 1	< 1	< 0.01	< 20	< 1	< 2	< 10	< 1	< 10	< 1	< 1
	< 0.01	0.011	< 0.001	< 0.01	< 2	< 1	< 1	< 0.01	< 20	< 1	< 2	< 10	< 1	< 10	< 1	< 1
Method Blank Method Blank	< 0.01		< 0.001	< 0.01	< 2		< 1	< 0.01	< 20	< 1	< 2	< 10	< 1	< 10		< 1

QC Activation Laboratories Ltd. Report: A21-19102

Analyte Symbol	Mg	Na	Р	S	Sb	Sc	Sr	Ti	Th	Te	TI	U	٧	W	Υ	Zr
Unit Symbol	%	%	%	%	ppm	ppm	ppm	%	ppm							
Lower Limit	0.01	0.001	0.001	0.01	2	1	1	0.01	20	1	2	10	1	10	1	1
Method Code	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP
Method Blank	< 0.01	0.013	< 0.001	< 0.01	< 2	< 1	< 1	< 0.01	< 20	< 1	< 2	< 10	< 1	< 10	< 1	< 1

Quality Analysis ...

Innovative Technologies

Report No.: A21-19102-Final2

Report Date: 21-Jan-22
Date Submitted: 12-Oct-21
Your Reference: Bloom Lake

JMK Exploration Consulting 147 Lakeside Dr. North Bay ON P1A 3E1 Canada

ATTN: Joerg Kleinboeck

CERTIFICATE OF ANALYSIS

14 Core samples were submitted for analysis.

The following analytical package(s) were requested:	Testing Date:			
8-AR Timmins	QOP Assay (Code 8-Assays)	2022-01-20 08:34:53		

REPORT A21-19102-Final2

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

LabID: 709

ACTIVATION LABORATORIES LTD.

1752 Riverside Drive, Timmins, Ontario, Canada, P4R 1N1
TELEPHONE +705 264-0123 or +1.888.228.5227 FAX +1.905.648.9613
E-MAIL Timmins@actlabs.com ACTLABS GROUP WEBSITE www.actlabs.com

CERTIFIED BY:

Emmanuel Eseme , Ph.D. Quality Control Coordinator

Results

Activation Laboratories Ltd.

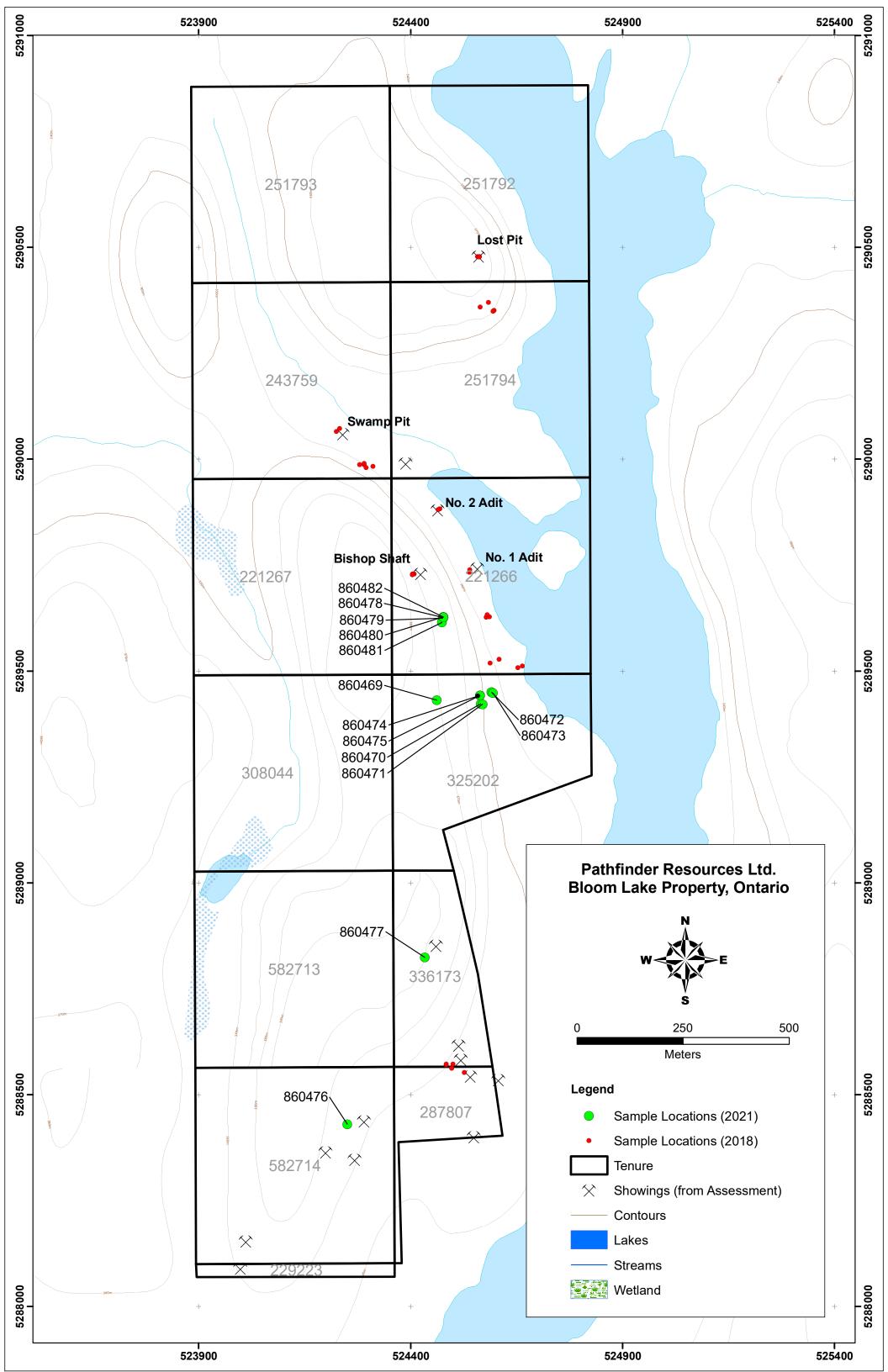
Report: A21-19102

Analyte Symbol	Ag	Co	Cu	Zn
Unit Symbol	ppm	%	%	%
Lower Limit	3	0.003	0.001	0.001
Method Code	ICP- OES	ICP- OES	ICP- OES	ICP- OES
860470	164		8.92	
860471		3.15	3.41	
860473			2.10	
860478	2670		38.4	
860479	120		4.78	
860480	133	1.89	1.17	
860481	446	1.35	5.54	
860482	142	1.87	3.06	1.51

Analyte Symbol	Ag	Со	Cu	Zn
Unit Symbol	ppm	%	%	%
Lower Limit	3	0.003	0.001	0.001
Method Code	ICP- OES	ICP- OES	ICP- OES	ICP- OES
PTM-1a Meas	131	2.05	24.8	
PTM-1a Cert	135	2.05	24.96	
OREAS 14P Meas		0.074	0.963	
OREAS 14P Cert		0.0750	0.997	
OREAS 134b (AQUA REGIA) Meas	204	0.011	0.131	17.5
OREAS 134b (AQUA REGIA) Cert	204	0.011	0.136	17.7
MP-1b Meas	53		3.09	17.1
MP-1b Cert	47		3.07	16.7
OREAS 13b (4-Acid) Meas	< 3	0.005	0.242	0.006
OREAS 13b (4-Acid) Cert	0.86		0.2327	0.01
CZN-4 Meas	54	0.009	0.403	53.5
CZN-4 Cert	51	0.009	0.403	55.07
Copper Shot Meas			100	
Copper Shot Cert			99.999	
Copper Shot Meas			87.1	
Copper Shot Cert			99.999	
PTC-1b Meas	57	0.313	7.84	0.208
PTC-1b Cert	53	0.325	7.97	0.2083
CCU-1e Meas	205	0.033	23.0	3.02
CCU-1e Cert	205	0.0301	22.9	3.02
OREAS 97 (AR Assay) Meas			6.60	
OREAS 97 (AR Assay) Cert			6.28	
860473 Orig			2.11	
860473 Dup			2.09	
Method Blank	< 3	< 0.003	< 0.001	< 0.001

Appendix IV

Sample Pictures



MAPS

Property: Bloom Lake

Date: October 02 2021

Personnel: David Hiltz

Description of Daily Work: Travelled from Shining Tree to Bloom Lake Property. Sunny day.

Used quad to access the lake& had to fixed washed out road & cleared brush to the edge of Bloom

Lake.

Property: Bloom Lake

Date: October 03 2021

Personnel: David Hiltz, Joan Hiltz

Description of Daily Work: Travelled from Shining Tree to the property. Partly cloudy day.

Used the quad then the boat to access the property .Located areas of interests & showings.

Locating a 5m x 3m x 10m depth shaft.UTM 524562/5289431.I took samples of the shaft area.

Samples #860469,860470,860471. Located several trenches & pits on strike 260' west from the shaft.

Trenches & Pits: UTM 524579/5289438. Sample # 860472. Also locating a small pit 2m x 4m x 1m deep UTM 524385/5289402. Sample #860474. Traversed area for other showings locating calcite vein. UTM 524564/5289443. Sample # 860475.

Property Bloom Lake

Date: October 04 2021

Personnel: David Hiltz, Joan Hilts

Description of Daily Work: Travelled from Shining Tree to the property. Cloudy day

Used the quad then the boat to access the property. Traversing a grid 100 m apart east & west, working north locating trenches & pits exposing Calcite no visible minerals. UTMS 524011/5288140,

524031/5288188,524150/5288363.

Property: Bloom Lake

Date: October 05 2021

Personnel: David Hiltz, Joan Hiltz

Description of Daily Work: Travelled from Shining Tree to the property. Partly cloudy day.

Used the quad then the boat to access the property. Traversing east & west working north & locating large pits.UTM 524253/5288437. Sample # 860476.Also located deep pit with a 8cm vein of Calcite & other trenches in the area. Sample # 860477.

Property: Bloom Lake

Date: October 06 2021

Personnel: David Hiltz, Joan Hiltz

Description of Daily Work: Travelled from Shining Tree to the property. Sunny day.

Used the quad then the boat to access the property. Locating a large trench with a 30 cm Calcite vein with Cobalt Bloom, Bornite & Copper staining. Vein running 200` west. Sampling of the vein & sampling north & south walls of the trench. General location for sampling UTM 524477/5289626. Samples # 860478 - # 860482