

We are committed to providing <u>accessible customer service</u>. If you need accessible formats or communications supports, please <u>contact us</u>.

Nous tenons à améliorer <u>l'accessibilité des services à la clientèle</u>. Si vous avez besoin de formats accessibles ou d'aide à la communication, veuillez <u>nous contacter</u>.

DIAMOND DRILLING CASWELL LAKE and THE RIDOUT-TYRREL DEFORMATION ZONE on the SHINING TREE PROJECT for PLATINEX INC.

MACMURCHY AND CHURCHILL TOWNSHIPS, LARDER LAKE MINING DIVISION ONTARIO, CANADA

Prepared By: Iain Trusler Under the advisement of James R. Trusler P.Eng, Chairman and Director of PLATINEX INC. March 10th, 2022 INDEX

Sectio	n No.	Title	Page No.
1.0		Introduction	1
2.0		Property Location and Access	1
3.0		Previous Work	2
4.0		Topography	3
5.0		Geology	3
	5.1	Quaternary Geology	3
	5.2	General Bedrock Geology	3
	5.3	Metamorphism and Structure	4
	5.4	Caswell Area Geology	4
6.0		Drilling Program	5
	6.1	Logistics	5
	6.2	Results	6
7.0		Conclusions and Recommendations	8
8.0		Aboriginal Consultation	9
9.0		References	11
		Qualifications	13
		LIST OF TABLES	
Table I	No.	Title	Page No.
1		Summary of Drill Holes	6
2		Vein 109 Intersections	8
		LIST OF FIGURES	
Figure	No.	Title	Page No.
1		Location and Contiguity Map	15
2		Exploration Plan Map	16
3		Exploration Permit Map	17
4		Caswell Drill Hole Plan Map	18
5		Gold Corona Drill Hole Plan Map	19
6-11		Drill Hole Cross Sections	20-25
Appen	idix I	Plan and Permit Claim List	26
Appen	idix II	Drill Hole Logs	28
Appen	idix III	Certificates of Analysis	83

1.0 INTRODUCTION

This report presents the results of six reconnaissance drill holes on the Caswell and Gold Corona areas of the Shining Tree Project. The work was completed between April 1st and September 3rd 2021 as part of ongoing exploration by Platinex Inc. Overburden stripping and washing in several locations in the previous fall, exposed multiple quartz veins on the east side of what is historically referred to as Caswell Lake. Targets were pre-selected on claims 131779, 184459, and 631731. Preliminary interpretation from an IP survey running concurrently with the drilling program resulted in additional targets. One additional hole that targeted an IP anomaly was drilled in the vicinity of the Gold Corona workings on claim 168204. Diamond drilling was performed by Missinaibi Drilling Services Ltd., of 313 Henry St., Porcupine, Ontario, under supervision from Platinex field geologists. Drill Core from all holes (WP21-08 through WP21-12, and PGC21-01) was sawn at Platinex's McBride Cabin on Lease LEA-109706, Shining Tree, Ontario. 661 samples were shipped to Activation Laboratories Inc. of Timmins, Ontario to assay for gold and 24 were also assayed for Multi-Elements.

Multiple historic sampling and drilling programs on the property have been carried out revealing sporadic gold values. Platinex conducted several stripping and channel sampling programs on both sides of the Caswell prospect in 2008, 2010, and 2020 with encouraging results. As well a 7 Hole drilling program was performed on the West side of the Caswell prospect in 2011. These warranted a drill program to confirm auriferous quartz veins found in historic drill holes on the East Side. Further sampling and drilling of areas with good results and other unexposed historical veins is justified to provide a better understanding of the Caswell system.

Interpreted geological structures coupled with IP anomalies have led Platinex to believe it has an approximate location as to where the major break of the region or a splay of it crosses through the property near the historic Gold Corona and Churchill prospects. The final drill hole of the program was designed to test this structure.

2.0 PROPERTY LOCATION AND ACCESS

At the time this work was completed the Shining Tree property consisted of 1097 contiguous boundary and single cell claims and one lease in Churchill, MacMurchy, Asquith, Tyrrell, Cabot, Kelvin, Natal, Connaught, Fawcett, Leonard, Ogilvie, and North Williams townships, Larder Lake Mining Division, District of Sudbury, Ontario.

Figure 1 (page 15) shows the location of the Shining Tree area in Ontario as well as the claim locations with respect to major topographic and cultural features of the area. Figures 2 and 3 (pages 16 and 17) Show the locations of the Plan and Permit respectively, along with the claim locations, numbers, and the two locations where work was performed.

Primary access to the property is obtained using highway 560; a paved secondary highway which runs through the centre of the property. Highway 560 connects with highway 144 to the west and with highway 65 at Elk Lake to the east. The claims surround the village of Shining Tree extending North and South-East and are approximately 50 kilometers west of Gowganda. A number of logging trails accessible by 4-wheel drive vehicle provide access to portions of the property, and boat access is possible using Michiwakenda Lake, Cryderman Lake, Okawakenda Lake and West Shining Tree Creek.

Access to the east Caswell area was obtained via an old logging road to allow the drill rig to gain access to the collar sites. The entrance of the road is located on the east side of Highway 560 in MacMurchy Township, approximately 450 metres north of the bridge that crosses Michiwakenda Lake. From the Highway the road trends east for approximately 300 metres until it is intersected from the south by a winding road. Taking this road SSE for approximately 1.2km will lead through the Caswell showings and to Shaft 2.

Entry to the Gold Corona and Churchill prospects was gained along an old logging road which opens off the north side of Highway 560 some 440 metres ENE of the Spruce Shilling Camp in Churchill Township. The road winds due north east for over 1.5 kilometres to a small modern bridge that crosses the tributaries connecting Michawakenda Lake and Beilby Lake. Approximately 100 metres north of the bridge an old trail on the east side of the road had to be trimmed for some 100 metres where a drill pad could be set up for the last hole of the program.

3.0 PREVIOUS WORK

Several shafts with limited underground development are situated on the project claims, and existed within separate properties pre 1940's. These were best known as the Herrick, Churchill, and Caswell properties. Relatively little diamond drilling has been done on the Churchill, and only sporadic programs have been carried out on the Caswell, including seven holes drilled by Platinex in 2011. From 2008 through 2011, 51 drill holes targeted the Herrick deposit, bringing the total number of diamond drill holes to 66. Exploration on the remainder of the property has been limited to prospecting, hand dug trenches, mapping and local sporadic geophysical and

diamond drilling programs. Several extensive glacial till sampling programs have also been carried out.

4.0 TOPOGRAPHY

The area has relatively low relief between 350 and 420 metres above sea level. Terrain is hummocky and gently rolling, with the remnant bases of Nipissing diabase sills forming several of the higher ridge lines, along with positive relief Matachewan diabase dykes. The area is generally well drained with numerous lakes and rivers. Logging for pine, spruce and poplar has taken place in small areas of the property at various times in the past, and continues. Regrowth is generally jack pine and poplar. Cedar is common in poorly drained areas. Outcrop ranges from 5% to 10% with a thin till veneer underlying most of the property. Outwash sands and ice contact stratified drift cover most of the eastern-most part of the property.

5.0 GEOLOGY

5.1 QUATERNARY GEOLOGY

The glacial deposits preserved in the area are products of the latest continental ice sheet, the Laurentide of Wisconsinan age. The Keewatin lobe advanced from the northeast approximately 100,000 years ago, and extended south into the northern United States. By 11,000 years ago, the ice sheet had receded back to the Shining Tree area and deposited a variety of surficial material, dominated by thin sandy till ground moraine over bedrock knobs (Roed and Hallett, 1979). Sand and gravel outwash deposits begin to predominate on the eastern edge of the project area, and can often be found as a thin deposit overlying ground moraine tills.

5.2 GENERAL BEDROCK GEOLOGY

The Shining Tree greenstone belt is located approximately 100 km north of Sudbury, and is the southern portion of the Abitibi Sub province, Superior Province, northeast Ontario. The supracrustal rocks in the Shining Tree area have been divided into the Pacaud, Deloro, Kidd-Munro, Tisdale and Porcupine assemblages in keeping with the rest of the Abitibi greenstone belt (Ayer 1999; Ayer et al. 1999; Ayer et al 2013, Johns 1999b; Oliver et al. 1999b). The ~2680 -2690 Ma Porcupine assemblage is separated from the older assemblages (>2.7 Ga) by an unconformity. The Porcupine assemblage (>2.680 Ga) is also composed of a considerably different array of rocks than the older supracrustal rocks (Ayer 2000). The Pacaud, Deloro, Kidd-Munro and Tisdale assemblages are dominated by volcanic supracrustal rocks, which were formed before the first phase of deformation. Felsic volcanic units close to the presumed tops of the assemblages in the Shining Tree area have been dated: The ages of the older three assemblages (Pacaud, Deloro and Kidd-Munro) indicate that the greenstone belt youngs to the northeast (Ayer 2000).

The Pacaud assemblage is mainly composed of massive and pillowed basalts and is associated with minor spinifex or cumulate textured komatiites.

The Deloro assemblage is dominated by felsic volcanic rocks and is capped in many places by chemical sediments, seen as banded chert and jasper.

The Kidd-Munro assemblage is a varied assemblage dominated by tholeiitic basalts and komatiites, with minor felsic volcanic rocks, and the Tisdale assemblage comprises mafic flows and intermediate to felsic pyroclastics and/or volcaniclastics (Johns 1999a).

5.3 METAMORPHISM AND STRUCTURE

The metamorphic grade throughout most of the Shining Tree area is mid to low greenschist facies (Oliver et al. 1999a, 1999b). Amygdules are filled with chlorite, carbonate or quartz. There are two main phases of deformation and associated metamorphism in the Shining Tree area (Oliver et al. 1999a,1999b) with rocks older than 2.7 Ga having undergone two periods of deformation. There are multiple deformation zones in the older volcanic rocks in which gold has been found, especially in MacMurchy and Tyrrell Townships (Johns 1996, 1997 and 1999a, Ayer et al 2013). The Porcupine assemblage has undergone a single period of deformation and is metamorphosed to a lesser degree than the older volcanic rocks (Oliver et al. 1999a, 1999b). The Porcupine assemblage was formed between the two deformation events and lies unconformably above the previously deformed volcanics (Ayer 2000).

5.4 CASWELL AREA GEOLOGY

This area straddles the narrows connecting Michiwakenda Lake and West Shining Tree Creek (also known as Caswell Lake, an enlargement of West Montreal River). Locally the property is known as the Westree or the Caswell Lake property, and has had numerous past owners and optionees. Development work on the property was carried out intermittently from 1911 to 1939. This included trenching and diamond drilling, shaft sinking and drifting (Carter, 1980). Numerous veins occur on the property, but the most extensive development work was done on a set of generally east northeast-trending veins within an overall shear system trending northwest. Based on an earlier developed numbering system, these veins correspond to: No1, No2, and No3 etc. on the west side of the river, and Vein101, Vein102, Vein103 etc. on the east side of the river.

Gold mineralization in the Caswell area is associated with a conjugate set of quartz veins. The larger, "main" vein structures run northwest, proximal to and paralleling the trend of West Shining Tree Creek. Historically these structures have been named the Saville (or # 4 Vein) and Evelyn shear zones. Less laterally extensive eastnortheasterly trending structures are located on either side of the Saville and Evelyn structures. Over 40 discrete quartz veins, trending east to northeast, were located on both sides of West Shining Tree Creek. Further south on the Bilmac property the easterly set of veins is less well developed, indicating a change in the strain regime of the overall fault system.

The geology is described further by Carter: "The deposits occur in shears containing quartz veins, the interbanded schistose rock, and quartz veins forming deposits of the lode type. Approximately 39 veins had been exposed, many of which were too small to mine. The trend of the shears varied from approximately east-west, to N60E, and dipped vertically. An important mineralized shear, occurring beneath the waterways on the property had a strike N60W and is in alignment with the Evelyn Vein of the adjoining Bilmac property to the east. The quartz veins vary from 1.3 cm to 0.6 m (I to 24 inches) in width, and some of the shears are as much as 6 m (20 feet) wide. The rocks associated with the veins are amygdaloidal and pillowed basalt, and carbonate schist. The veins and rocks are cut by narrow, later, quartz veins. The gangue material consists of carbonate, talc, sericite, chlorite, feldspar, and tourmaline; the ore minerals consist of gold, chalcopyrite, pyrite, and molybdenite (Resident Geologist's Files, Ontario Ministry of Natural Resources, Kirkland Lake)."(Carter, 1980)

6.0 DRILLING PROGRAM

6.1 LOGISTICS

Diamond drilling was done under contract with Missinaibi Drilling Services Ltd., of 313 Henry St., Porcupine, Ontario, commencing April 16th and completed on May 21st, 2021. The project was conducted under the supervision of Dean Cutting, Rouyn-Noranda, Quebec, from April through September 2021. The drill hole casings were left in place and metal caps were bolted on. Flag poles of 1.5 metres in length were erected at each collar location. A boat was utilized to transfer some goods to and from the worksite as it was more expeditious that using the side road. Access to the lake was from a launch at the north end of the highway 560 bridge where it crosses Michiwakenda Lake.

Drill core was sawn in half at a cabin on a lease LEA-109706 owned by Platinex known as the McBride Cabin, Shining Tree, Ontario in preparation for sampling, and storage there. Logging of the core was completed by Dean Cutting, of Rouyn, Quebec and assistance in program implementation was provided by Robert Peever of North Bay, Ontario.

The NQ drill core was sawn in half, with one half archived and the other sent for gold analysis (and 24 checked for Multi-Elements) at Activation Laboratories Ltd. of Timmins, Ontario. Duplicates, standards, and blank samples were inserted into the sample stream at the core facility roughly every 20 samples.

6.2 RESULTS

The Drilling program comprised 6 holes on the property totaling 1270.15 metres. The holes were drilled to test historic drill intercepts and shaft workings samples on various veins and shears of the Caswell system. A plan view of the drilling using NAD83 UTM Zone 17 is illustrated in figure 4 on page 17. The last hole was drilled in the vicinity of the Gold Corona and Churchill Shafts to test an IP anomaly. A plan view for that hole is shown in figure 5 on page 18. Drill cross sections are presented in figures 6 to 11 on pages 19 through 24.

		J -						
Hole ID	Easting	Northing	Azimuth	Dip	Elevation m	Depth m	Samples Collected	Samples Assayed
WP21-08	486032	5272173	215	45	374.48	91.15	59	59
WP21-09	485845	5272312	144	45	364.24	219	139	139
WP21-10	485949	5272220	139	45	365.45	177	50	50
WP21-11	485992	5272194	305	45	368.52	300	121	121
WP21-12	485924	5272260	330	45	366.53	222	164	164
PGC21-01	483754	5272145	045	45	379.21	261	128	128

Table 1: Summary of Drill Holes NAD83 UTM Zone 17

WP21-08 was drilled to test the continuance of the historically reported very high grade gold mineralization occurring on surface and in shaft 2 where ENE veins 102 and 103 intersect the NNW trending Evelyn vein (which is described as a slaty, pyritic and graphitic tuff) beneath the mine workings and shaft 2. The objective was to intersect and characterize the mineralization as a guide to additional exploration in the immediate vicinity. The hole intersected a sequence of mafic flows with

quartz carbonate veins, but the well mineralized Evelyn vein was not encountered. Best mineralization intersected was a low anomalous gold zone from 35.7m to 40.0m in the hole.

WP21-09 was drilled 233 metres northwest of WP21-08, targeting vein 109 at a shallow depth, and several parallel quartz carbonate veins. The hole was also intended to test the Evelyn vein near shaft 2, but the drill was not properly anchored and the hole was set up on the wrong azimuth. As a result the hole deviated under the lake and was terminated in a fault zone. The hole intersected a sequence of foliated and pillowed flows cut by two narrow massive gabbro units. Numerous quartz-carbonate mineralized zones with minor pyrite were intersected with low anomalous gold values. The best value was obtained from 142.9-143.5m in the hole with an assay of 1.46g/t Au.

WP21-10 was collared 95 metres northwest of WP21-08, targeting vein 102 east of shaft 2 to confirm historic intersections. The hole intersected mainly intermediate to mafic volcanics with one tuffaceous interval and one narrow zone of interflow metasedimentary rocks. The hole terminated in diabase. Multiple quartz carbonate veins were intersected in the hole. The two best intersections were from 112.4 to 112.9 which returned 1.06 g/t Au/ 0.5m and from 125.0 to 126.2 which returned 0.45 g/t Au/ 1.2 m. This latter intersection is believed to be the Evelyn Vein

WP21-11 was drilled 45 metres northwest of WP21-08, targeting vein 109 at depth close to a high grade gold intersection in hole WP11-01. This hole was also unstable and deviated significantly from the collar. A succession of intermediate to mafic volcanic flows was the main unit in the hole but several units of pyritic tuff were also intersected. Several veins were intersected. Vein 109 was intersected from 234.5 to 237.7 and graded 1.06 g/t Au / 3.2m.

WP21-12 was collared 140 metres northwest of WP21-08, targeting the eastern extension of vein 109 which was intersected at 78.3 m and graded 1.8g/t Au/0.3m. This mineralized zone was intersected by a barren dike and it is believed the mineralized zone is actually wider. The best value in the hole was obtained at 189.0m and graded 6.4g/t/0.5m. This intersection is thought to correlate with the Evelyn vein. Mafic volcanic flows dominated but several tuffaceous zones were also encountered as were some mafic dikes.

Hole ID	Easting	Northing	Elevation	Azimuth	Dip	Depth	From	То	Core Length	Au g/t	Comments
WP11-01	485731	5272238	366.9m	60	47	224m	199.5	200	0.5	18.75	Vein 109 best value
WP11-01							199	201.52	2.52	4.52	
WP11-01							189.6	207	17.37	0.81	
WP21-09	485845	5272312	364.24m	144°	45°	219m			collared ahea for 18m	ad of zo	ne but weak mineralization
WP21-11	485992	5272194	368.52m	305°	45°	300m	233.5	237.7	3.2	1.06	Vein 109
							235	235.5	0.5	2.15	Vein 109 best value
							233	245	12	0.33	Vein 109
WP21-12	485924	5272260	366.53m	330°	45°	222m	78.3	78.6	0.3	1.80	Vein 109 best value
							68.8	79.75	10.95		Vein 109 with 8.1m possible
											dike in middle for 3.65m of
											mineralization 0.32g/t Au

 Table 2: Vein 109 Intersections NAD83 UTM Zone 17

PCG21-01 was drilled to test an IP anomaly believed associated with the Ridout Tyrrell Deformation Zone. The hole was collared in Pacaud volcanics, intersected an intense fault zone and passed into a succession felsic to intermediate volcanics and intermediate to mafic tuffs and pyroclastic volcanic rocks, believed to be of Porcupine affinity. The rocks in the lower part of the hole are unstrained and weakly metamorphosed. The hole was drilled in a northeasterly direction for 261m and intersected an 86m thick fault zone containing intensely deformed fault breccia within a mylonitic matrix from 34m depth. This has been identified as the Ridout Tyrrell Deformation Zone ('RTDZ"). A cherty graphitic, pyritic sedimentary rock occurs from 76.65m in the hole for 14.9m within the fault zone. Analyses indicate low anomalous levels of gold and up to 186 parts per million ("ppm") zinc, 353 ppm arsenic, 239ppm barium, 9.2 ppm antimony,116 ppm copper, 573 parts per billion ("ppb") mercury, 68.6 ppm molybdenum and 16 ppm tungsten. Levels of Vanadium were also found to be anomalous.

7.0 CONCLUSIONS AND RECOMMENDATIONS

The Caswell prospect as explored to date comprises 40 veins which are conjugate in nature within an area 700m wide and 500m long. Including this program, fifty two known drill holes have been completed on Caswell with unqualified results of up to 18.48g/t Au / 18.0m. Additional reports of high grade and museum type gold samples have been reported on the property in the past, but again most of these results are unqualified. More recent results have revealed gold mineralization of commercial interest but limited to veins showing intense alteration, quartz flooding and mineralization over strike lengths of several metres and restricted to widths of one to two metres. The stronger mineralization is set within more continuous vein hosted ENE trending shear zones which are persistent and associated with anomalous silver, tellurium, arsenic and gold mineralization. It is believed that this stronger mineralization may expand or improve in grade along strike to the east, down dip especially where conjugate structures converge, and to the north where it is anticipated the the Ridout Tyrrell Deformation Zone strikes through the property.

It is recommended that careful mapping and prospecting to the north and east be conducted to characterize the mineralized vein development in those areas. Additionally, stripping and sampling near Trench 4 (see figure 2) on the east side of Caswell is recommended. The purpose of this work would be to find the source and extent of the higher grade quartz-tourmaline veining found in WP11-01 at surface.

8.0 ABORIGINAL CONSULTATION

The consultation took place during the months of January to April of 2021. It was hampered by COVID 19 conditions in that the First Nation communities were in lockdown for much of the period and all communication was by email, phone or video conferencing. The consultation was aimed at dealing with Platinex's wishes to commence exploration on its property in Shining Tree Ontario, obtain continued support from the Mattagami and Matachewan First Nations respecting the exploration, applying for the exploration plan and permit, revising the agreements with the First Nations, expanding the area to be subject to agreement in light of Platinex's property expansion in 2016 and 2017 and deal with employment and service providers recommended by the First Nations.

The aboriginal communities contacted are the Mattagami and Matachwan FN. Frequently the two FN are represented by the Wabun Council.

The consultation objectives were to deal with Platinex's wishes to commence exploration on its property in Shining Tree Ontario, obtain continued support from the Mattagami and Matachewan First Nations respecting the exploration, applying for the exploration plan and permit, revising the agreements with the First Nations, expanding the area to be subject to agreement in light of Platinex's property expansion in 2016 and 2017 and deal with employment and service providers recommended by the First Nations.

The project name is the Shining Tree Project. The focus of the exploration program is to progressively explore 33 km of very prospective deformation zone known as the Ridout Tyrrell Deformation Zone using all available tools to identify best drill targets and then drill. The main commodity sought is gold. Figure 1 (page 15) presents an overview of the entire property. Figures 2 and 3 (pages 16 and 17) present the coverage of the plan (PL-21-000005) and permit (PR-21-000041) respectively, along with the claim locations, numbers, and the two locations where work was performed. Appendix I (page 26) contains a table which lists the mining claims and lease for which the consultation was performed.

The consultation was performed on Jan 15, 20, 25, Feb 10, 24, 25, March 5, 8, 9, April 3,6,14, and 16 in 2021.

James R. Trusler on behalf of Platinex, Nicole Charbonneau, Wabun Council, Tim Harvey, Mattagami FN and Kayla Schram Matachewan FN conducted the Consultation.

The discussions included problems of dealing with exploration proposals at this time (due to COVID) and importance of keeping things simple. It was decided to keep the exploration proposals within the area that had already been permitted before. A revised agreement was sought to include over 21 sq. km of Platinex ground, but that the bulk of permitting would be done at a later date. Details of the confidential agreements were discussed. Payment formulae for work done in 2020 were discussed. The future approach in dealing with the Temagami FN was discussed. Preferred contractors were discussed. It was agreed to notify the FN of progress on an interim basis.

As a result of the consultations new agreements were entered into with the two First Nations, an agreed formula for payment and schedule for same was resolved; the agreements cover the entire Shining Tree property and future adjacent acquisitions.

9.0 REFERENCES

Agnerian, H. June 2018 Technical Report on the Shining Tree Property, Ontario Prepared for Platinex Inc.

Ayer et al, 2012 OGS MRD 294

Ayer, J.A. 2000. The Abitibi greenstone belt: a program overview; in Summary of Field Work and Other Activities 2000, Ontario Geological Survey, Open File Report 6032 p 6-1 to 6-14.

Ayer, J.A. 1999. Geological compilation of the Abitibi greenstone belt in Ontario; toward a revised stratigraphy based on compilation and new geochronology results; Summary of Field Work and Other Activities, Ontario Geological Survey, Miscellaneous Paper 169, p.14-24.

Carter, M.W. 1987. Geology of the Shining Tree Area, districts of Sudbury and Timiskaming; Ontario Geological Survey, Report 240, 48p.

Cluff, G.R. 1990. Exploration Activities – 1989 Herrick and Churchill Properties, Churchill Township, Ontario. Unocal Canada Limited.

Johns, G.W. 1996. Reappraisal of the Geology of the Shining Tree Area, districts of Sudbury and Timiskaming; Summary of Field Work and Other Activities 1997, Ontario Geological Survey, Miscellaneous Paper 166, p.13-15.

Johns, G.W. 1997. Reappraisal of the geology of the Shining Tree area, districts of Sudbury and Timiskaming. Summary of Field Work and Other Activities 1997, Ontario Geological Survey, Miscellaneous Paper 168, p.26-29.

Johns, G.W and Amelin, Y. 1999. Reappraisal of the geology of the Shining Tree area (East Part), districts of Sudbury and Timiskaming; Summary of Field Work and Other Activities 1999, Ontario Geological Survey, Miscellaneous Paper 169, p.43-50.

Johns, G.W. 1999a. Reappraisal of the geology of the Shining Tree area (West Part), District of Sudbury; Summary of Field Work and Other Activities 1999, Ontario Geological Survey, Open File Report 6000, p.6.1-6.7.

Johns, G.W. 1999b. Precambrian geology, Shining Tree area (east half); Ontario Geological Survey, Preliminary Map P.3389.

Johns, G.W. 2000. Precambrian geology, Shining Tree area (west half); Ontario Geological Survey, Preliminary Map P.3420.

Oliver, H.S., Hughes, D.J., Hall, R.P. and Johns, G.W. 1999a. Preliminary Geochemistry of Metavolcanic rocks of the Shining Tree Area; Abitibi Subprovince, Ontario; Summary of Field Work and Other Activities 1998, Ontario Geological Survey, Miscellaneous Paper 169, p.51-58.

Oliver, H.S., Hughes, D.J., Hall, R.P. and Johns, G.W. 1999b. The Mafic And Ultramafic Volcanics Of The ShiningTree Greenstone Belt, Northeastern Ontario, Canada; Summary of Field Work and Other Activities 1999,Ontario Geological Survey, Open File Report 6000, p.11.1-11.12.

Oliver, H.S., Johns, G.W., Thurston, P.C., Hughes, D.J. and Hall R.P. 1998 Preliminary geochemistry of the Shining Tree area; Abitibi Subprovince, Ontario; in Summary of Field Work and Other Activities 1998, Ontario Geological Survey, Miscellaneous Paper 169, p.51-58.

Certificate of Qualifications: James R. Trusler

I, James R. Trusler at Suite 807, 20 William Roe Blvd. Newmarket, Ontario do hereby certify that:

- 1) I am a Geological Engineer employed as Chairman and director of Platinex Inc. and I am also a major shareholder of Platinex Inc.;
- I graduated from the University of Toronto with BA.Sc. in Geological Engineering in 1967. I obtained a Master of Science (Geology) from Michigan Technological University in 1972. I have practiced my profession full-time from 1967-1969 and from 1970 to present;
- 3) I am a Professional Engineer registered with the Professional Engineers Ontario (PEO #47064019);
- 4) I have not received, nor do I expect to receive, any interest, directly or indirectly, in the Shining Tree property;
- 5) As of the date of this certificate, to the best of my knowledge, information and belief, this report contains all scientific and technical information that is required to be disclosed to make the Diamond Drilling Caswell Lake and The Ridout-Tyrrel Deformation Zone on the Shining Tree Project for Platinex Inc. not misleading;
- 6) I have read National Instrument 43-101 and supervised the completion of the Diamond Drilling Caswell Lake and The Ridout-Tyrrel Deformation Zone on the Shining Tree Project for Platinex Inc. which has been prepared in compliance with the intent of National Instrument 43-101 and Form 43-101F1 but is not a Technical Report as defined by National Instrument 43-101;
- 7) I have collaborated with Iain Trusler who prepared Diamond Drilling Caswell Lake and The Ridout-Tyrrel Deformation Zone on the Shining Tree Project for Platinex Inc. under my supervision;
- 8) I have visited the property on various occasions.

Dated at Newmarket, ON March 10th, 2022

PROFESSION BA.Sc, MS, PEng EOFON

Certificate of Qualifications: Iain S. Trusler

I, Iain S. Trusler at 32 Richmond St., Richmond Hill, Ontario do hereby certify that:

- 1) I am a GIS consultant and Property Manager employed as such by Platinex Inc.;
- 2) I have practiced my profession full-time from 2010 to Present;
- 3) I have not received, nor do I expect to receive, any interest, directly or indirectly, in the Shining Tree property;
- 4) As of the date of this certificate, to the best of my knowledge, information and belief, this report contains all scientific and technical information that is required to be disclosed to make the Diamond Drilling Caswell Lake and The Ridout-Tyrrel Deformation Zone on the Shining Tree Project for Platinex Inc. not misleading;
- 5) I have collaborated with James R Trusler who supervised Diamond Drilling Caswell Lake and The Ridout-Tyrrel Deformation Zone on the Shining Tree Project for Platinex Inc.;
- 6) I have visited the property once in October of 2011, and twice in March and April of 2012.

Dated at Richmond Hill, ON March 10th, 2022

Iain S. Truster

Appendix I

Plan and Permit Claim List

Claim Number	Township	Plan/Permit	Ownership	Claim Number	Township	Plan/Permit	Ownership
259971	Asquith	Permit	Platinex Inc.	220059	Churchill, MacMurchy	Permit	Platinex Inc.
318119	Asquith	Permit	Platinex Inc.	220951	Churchill, MacMurchy	Both	Platinex Inc.
100600	Churchill	Both	Platinex Inc.	631734	Churchill, MacMurchy	Both	Platinex Inc.
108222	Churchill	Both	Platinex Inc.	631737	Churchill, MacMurchy	Both	Platinex Inc.
121247	Churchill	Both	Platinex Inc.	111757	MacMurchy	Both	Platinex Inc.
143636	Churchill	Permit	Platinex Inc.	123655	MacMurchy	Both	Platinex Inc.
156200	Churchill	Both	Platinex Inc.	127233	MacMurchy	Permit	Platinex Inc.
168204	Churchill	Both	Platinex Inc.	128737	MacMurchy	Permit	Platinex Inc.
168205	Churchill	Both	Platinex Inc.	131779	MacMurchy	Both	Platinex Inc.
169023	Churchill	Both	Platinex Inc.	141412	MacMurchy	Permit	Platinex Inc.
170826	Churchill	Both	Platinex Inc.	165892	MacMurchy	Permit	Platinex Inc.
191319	Churchill	Both	Platinex Inc.	170756	MacMurchy	Both	Platinex Inc.
194474	Churchill	Both	Platinex Inc.	184459	MacMurchy	Both	Platinex Inc.
200831	Churchill	Both	Platinex Inc.	184989	MacMurchy	Both	Platinex Inc.
209559	Churchill	Both	Platinex Inc.	207457	MacMurchy	Permit	Platinex Inc.
220254	Churchill	Both	Platinex Inc.	207545	MacMurchy	Permit	Platinex Inc.
235670	Churchill	Both	Platinex Inc.	208166	MacMurchy	Both	Platinex Inc.
238647	Churchill	Both	Platinex Inc.	211034	MacMurchy	Permit	Platinex Inc.
255890	Churchill	Both	Platinex Inc.	222616	MacMurchy	Both	Platinex Inc.
263598	Churchill	Both	Platinex Inc.	226347	MacMurchy	Permit	Platinex Inc.
264239	Churchill	Both	Platinex Inc.	255249	MacMurchy	Permit	Platinex Inc.
272912	Churchill	Both	Platinex Inc.	278650	MacMurchy	Both	Platinex Inc.
286268	Churchill	Both	Platinex Inc.	280784	MacMurchy	Both	Platinex Inc.
286838	Churchill	Both	Platinex Inc.	289251	MacMurchy	Permit	Platinex Inc.
287536	Churchill	Permit	Platinex Inc.	300380	MacMurchy	Both	Platinex Inc.
303107	Churchill	Both	Platinex Inc.	300735	MacMurchy	Permit	Platinex Inc.
311363	Churchill	Both	Platinex Inc.	302560	MacMurchy	Both	Platinex Inc.
320945	Churchill	Both	Platinex Inc.	308388	MacMurchy	Both	Platinex Inc.
342007	Churchill	Both	Platinex Inc.	310007	MacMurchy	Permit	Platinex Inc.
342602	Churchill	Both	Platinex Inc.	310007	MacMurchy	Both	Platinex Inc.
631735	Churchill	Both	Platinex Inc.	317373	MacMurchy	Permit	Platinex Inc.
LEA-109706	Churchill	Both	Platinex Inc.	334213	MacMurchy	Both	Platinex Inc.
102317	Churchill, Asquith	Permit	Platinex Inc.	336503	MacMurchy	Both	Platinex Inc.
126126	Churchill, Asquith	Permit	Platinex Inc.	631731	MacMurchy	Both	Platinex Inc.
226827	Churchill, Asquith	Permit	Platinex Inc.	631732	MacMurchy	Both	Platinex Inc.
185702	Churchill, MacMurchy	Both	Platinex Inc.	631733	MacMurchy	Both	Platinex Inc.
197143	Churchill, MacMurchy	Both	Platinex Inc.	631736	MacMurchy	Both	Platinex Inc.

Appendix II

Drill Hole Logs

PLATINEX INC.

SHINING TREE PROJECT, ONTARIO - CASWELL EAST (WASAPIKA)

Grid Coordinates:		UTM NAD 83 - Zone 17N
UTM Coordinates:		N: 5272173 E: 486032
Dip:	45	Elevation: 375.48
Azimuth:	215	Total Depth: 91.15
Core Size:	NQ	# of Boxes 21 McBride
Target:		

	Down H	ole Tes	sts	
Туре	Depth		Dip	Azimuth
Reflex	45.70	219.80		
Reflex	45		45.40	218.90
Downhole azimuth subtracting 10 deg	readings have rees from the F	been co elex Inst	rrected to T rument rea	True North by ding.

HOLE#: WP21-08

Contractor:	Missina	ibi Drilliı	ng Serviece	es
Claim#:	18445	9		
Date Completed:	April 20t	h, 2021		
Date Started:	April 19t	h, 2021		
Page	1	of	6	

Logged by: D. R. Cutting

Sampled by: Robert Peever

De	pth	Rock Type	Description	Struc	ct. core	e angl	es	Strain	Alterati	on Charac	teristics	5				Sample	e Assays			
From	То			S。	Fol	Flow	Vn	Intens	Туре	Intens	%QCV	%Py	Sample	From	То	Width	Au ppb			
0.00	3.00	Overburden																 '		
																		 '		
3.00	4.00	Rubbly Core	Bits and pieces of assorted rock lithologies. Pieces of bounders in the																	
			overburden and surface of the subcrop															 '		
4.00	8.90	Mafic Volcanics	Medium green grey and bleached out a bit at the overburden contact. Generally																	
		Moderately to	medium to coarse grained. Moderately to strongly follated at approx 20° to core axis. Moderate to strong pervasive carbonatization, particularly where light																	
		Strongly	coloured Q/C veinlets present at an angle to and within the foliation. Veinlets																	
		Strained	within the foliation seem to offset the veinlet at higher angles to the core axis.															 '		
			Some of the veinlets in the foliation have a pinkidh tinge. Veinlets from hairline to 2cm thick. Only occasional trace of pyrite grains noted															 '		
																		<u> </u> '		
																		 '		
			Unit Sampling:																	
			Veinlets both within and cross cutting foliation. Trace pyrite at base										J356128	4.70	5.00	0.30	18	 '		
			Veinlets both within and cross cutting foliation. Trace pyrite at base										J356129	6.80	7.60	0.80	9	 '		
																		 '		
8.90	12.40	Mafic Volanic	Typical medium to coarse grained dark green mafic volcanic. Generally massive															 '		
		Underformed to	in apearance with only a very weak foliation developed very locally. Leucoxene specks notable locally. Low to moderate pervasive carbonatization. Numberous															 '		
		Weakly (locally)	irregular Q/C and C veinlets from hairline to 1.5cm thick (a rarity) Some pink															 '		
		Strained	tinge of the carbonate notable. Vein "sets" at 30° to core axis, +50-60° to core															L'		
			axis. Interesting note that 12/1-13.55m is one solid pieve of core, not really been foliated too bad one would think even where foliation is notable. Some of the															L'		
			Q/C veinlets have meatite/spearlarite filled fractures running though them. May															 '		
			be a little epidote associated in the walls of some of the veinlets. Unit is															 '		
			pervasively moderately chloritized															 '		
																		 '		
																		 '		
			Unit Sampling:																	
			Irregular Q/C veinlets +/- epidote +/- hematite with trace diss. Pyrite										J356130	10.40	11.40	1.00	< 5			
			Irregular Q/C veinlets +/- epidote +/- hematite with trace diss. Pvrite		l		l			1			J356131	11.40	12.40	1.00	5		1	
					l		l			1							-		1	
					I		I													

HOLE#: WP21-08

Page 2 of 6

De	pth	Rock Type	Description	Struc	ct. core	e angle	es	Strain	Alteratio	on Chara	cteristi	cs				S	ample As	ssays		
From	То			S。	Fol	Flow	Vn	Intens	Туре	Intens	%QCV	%Py	Sample	From	То	Width	Au ppb			
12.40	24.55	Mafic Volcanic	Typical mafic volcanic flow as perviously described except with a stong strain																	
		Strongly Strained	superimposed. The deformation "contact" is gradual over maybe 0/5m at the top of the unit.																	
			vicinity of the Q/C veining in the core of the unit from approximately 16.7m to 20.85m. The																	
			main foliation through the shear is 20-30° to core axis, however a second trend is notable a	t																
			about 40° to the core axis. The 40° set of veins with structure are offset by the 20° set my																	
			minial amounts. Both sets seem to carry sulphides but the 20° set seems to nost more. The central core of the shear has trace-1% disseminated pyrite grains and small blebs.																	
			disseminated through the host as well as the veinlets. One of the high angle veinlets has		-															
			clots of Tourmaline associated. Sulphides are not usually in the veinlets themselves but																	
			occur along the margins and in the host rock adjacent to the veinlets. Sulphide stringers do																 	
			not test conductive																	
					-															
				-	-															
			Unit Sampling:	-									1050400	10.40	40.00	0.00	. 5			
			Start of foliated zone, trace veinlets, trace disseminated pyrite		-								J356132	12.40	13.00	0.60	< 5			
			Start of foliated zone, trace veinlets, trace disseminated pyrite	_									J356133	13.00	14.00	1.00	< 5			
			Bleaching and veining starting, trace sericite, chlorite on fracture, trace diss. Py										J356134	14.00	15.00	1.00	32			
			Bleaching and veining starting, trace sericite, chlorite on fracture, trace diss. Py										J356135	15.00	16.00	1.00	20			
			Bleaching and veining starting, trace sericite, chlorite on fracture, trace+ diss. Py										J356136	16.00	16.50	0.50	14			
			Bleaching and veining starting, trace sericite, chlorite on fracture, trace diss. Py										J356137	16.50	17.00	0.50	103			
			Bleaching and veining intensifying, sulphide stringers 1-2% diss. Py and stringers										J356138	17.00	17.50	0.50	369			
			Bleaching and veining intensifying, sulphide stringers 1-2% diss. Py and stringers										J356139	17.50	18.00	0.50	373			
			Control standard #61d OREAS										J356140				4109			
			Core of the shear zone, trace tourmaline with Q/C veinlets, 2 generations of veinlets										J356141	18.00	18.50	0.50	150			
			Fine pyrite stringers with Q/C veinlets locally, rare blebs to 2mm or so disseminated through	ı									J356142	18.50	19.00	0.50	55			
			the host rock. 1-3% pyrite locally. I race+ sericite																	
			Less veining but still core of the zone with disseminated pyrite 1-3%										J356143	19.00	19.50	0.50	95			
			Less veining but still core of the zone with disseminated pyrite 1-3%										J356144	19.50	20.00	0.50	46			
			A few more Q/C veinlets but trace-2% disseminated pyrite										J356145	20.00	20.50	0.50	50			
			A few more Q/C veinlets but trace-2% disseminated pyrite										J356146	20.50	21.00	0.50	19			
			Foliation still notable but pronounced decrease in Q/C, sericite and py to trace.										J356147	21.00	22.00	1.00	13			
			Foliation still notable but pronounced decrease in Q/C, sericite and py to trace.										J356148	22.00	23.00	1.00	< 5			
			Foliation still notable but pronounced decrease in Q/C, sericite and py to trace.										J356149	23.00	24.00	1.00	< 5			
			Foliation still notable but pronounced decrease in Q/C, sericite and py to trace.										J356150	24.00	24.55	0.55	< 5			

HOLE#: WP21-08

Page 3 of 6

Dej	oth	Rock Type	Description	Struc	t. core	angle	es	Strain	Alteratio	on Chara	cteristi	cs				S	ample A	ssays		
From	То			S。	Fol	Flow	Vn	Intens	Туре	Intens	%QCV	%Py	Sample	From	То	Width	Au ppb			
24.55	35.70	Mafic Volcanic	Medium to dark green mottled with light sections epidotized. Massive and medium grained																	
		Undeformed	locally a bit coarser or finer over shot sections. No measurable foliation notable.																	
			moderately pervasively carbonatized. Unit could almost be gabbro if intrusive, don't see																	
			contats per se. Leucoxene specks.																	
			Unit Sampling: Check Only																	
			Unit contat with shear above, low angle Q/C veinlet with epidote in underformed MV, trace										J356151	24.55	25.55	1.00	< 5			
			aisseminated pyrite																	
			2cm thick Q/C veinlet at 40° to core axis, chlorite streaks, trace pyrite on margins										J356152	31.00	31.30	0.30	< 5			
			Trace-1% pyrite blebs to 3mm grains Trace+, 3mm high angle Q/C margins										J356153	32.00	33.00	1.00	< 5			
			4cm Carb veinlet @ high angle to core axis, Tr Py locally, contact with shear below										J356154	34.70	35.70	1.00	< 5			
35.70	47.70	Mafic Volcanic	Light to moderate green grey speckled colour. Medium to fine grained variable grain size																	
		Weak to	and foliation intensity over short intervals through the unit. Almost have the impression at																	
		Moderately+	to dark green for about 42m or so, above thes unit seems to be a bit bleached with more																	
		Deformation	intense presence of Q/C on C veining. Unit is variably pervasively carbonatized to strong																	
			locally. Foliation is at a low angle of approx 20° to the core axis. The core of the zone +/-37-																	
			38m is a much lighter green colour with associated Q/C and C veinlets at +/-40° to core																	
			banding some of the veinlets. Often times hosting small grains or blebs of pyrite																	
			Unit Sampling:																	
			1cm thick Q/C veinlet with Chl clots, trace pyrite (tuff?)										J356155	35.70	36.70	1.00	< 5			
			Irregular cross cutting Q/C veinlets in foliated MV (tuff?) trace+ pyrite										J356156	36.70	37.00	0.30	39			
			Core of the shear zone, strong Q/C veining at 30° to core axis, bleacing and 1-2%										J356157	37.00	38.00	1.00	102			
			disseminated pyrite. (Should be IP target?)																	
			Foliated MV with irregular Q/C and C veinlets, trace pyrite										J356158	38.00	39.00	1.00	50			
			Foliated MV with irregular Q/C and C veinlets, trace pyrite										J356159	39.00	40.00	1.00	23			
			Control standard BLANK		1	1							J356160				< 5			

HOLE#: WP21-08

Page 4 of 6

De	pth	Rock Type	Description	Struc	ct. core	e angle	es	Strain	Alterati	on Chara	cteristi	cs				S	ample A	ssays		
From	То			S。	Fol	Flow	Vn	Intens	Туре	Intens	%QCV	%Py	Sample	From	То	Width	Au ppb			
		Unit Sampling	Foliated MV with irregular Q/C and C veinlets, trace pyrite										J356161	40.00	41.00	1.00	7			
		Continued	Foliated MV with irregular Q/C and C veinlets, trace pyrite										J356162	41.00	42.00	1.00	9			
			Foliated MV with irregular Q/C and C veinlets, trace pyrite										J356163	42.00	43.00	1.00	< 5			
			Foliated MV with irregular Q/C and C veinlets, trace pyrite										J356164	43.00	44.00	1.00	< 5			
			Foliated MV with irregular Q/C and C veinlets, trace pyrite										J356165	44.00	45.00	1.00	5			
			Foliated MV with irregular Q/C and C veinlets, trace pyrite, Very low angle veinlet sub-										J356166	45.00	46.00	1.00	< 5			
			parallel to core axis with pink carb																	
			Foliated MV with irregular Q/C and C veinlets, trace pyrite										J356167	46.00	47.00	1.00	< 5			
			Foliated MV with irregular Q/C and C veinlets, trace pyrite										J356168	47.00	47.70	0.70	< 5			
47.70	50.00	Mafic Volanic	Medium to dark green colour. Medium to fine grained. Massive. Moderate chloritization.																	
		Underformed to	Gradational contacts top and bottom over +/- 20cm or so. Beige leucoxene specks notable							ļ									 	
		Weakly	locally. Very sparse grains of pyrite notable occasionally.																	
		Strained																		
			Unit Sampling: Continuity only																	
			Irregular Q/C + C validate law angles soom to affect high angles, trace purite										1356160	47 70	18 85	1 15	٩			
			Irregular Q/C + C verifiets, low angles seem to offset high angles, trace pyrite										1356170	48.85	50.00	1.15	13			
			inegular Q/C + C verniets, low angles seem to onset high angles, trace pyrite										3330170	40.05	30.00	1.15	15			
50.00	54.15	Mafic Volcanic	Typical mafic volcanic, as above described. Moderately to strongly deformed and foliated at																	
00.00	00	Moderate	a relatively low angle to the core axis of ~20°. Makes the core a bit shady with the low angle																	
		To Stong	fractures. There is very little veining associated with the low angled deformation. The Q/C							1										
		Deformation	angles for 30-50° to the core axis. Some of the pyrite in the veinlets is bleby, with small																	
			masses up to 2+mm grains. Unit is moderately to strongly pervasively carbonatized.																	
			Leucoxene specks are notable. Chloritized to moderate. Gradation "contacts" over +/-10cm																	
							ļ													
			Unit Sampling:										1050474	50.00	F4 00	1.00				
			Foliated MV with irregular, mostly high angle veinlets, hairline to 1cm thick, Tr diss. Py										J356171	50.00	51.00	1.00	< 5			
			Foliated MV with irregular, mostly high angle veinlets, hairline to 1cm thick, Tr diss. Py				I						J356172	51.00	52.00	1.00	< 5			
			Very small, thin or fine veinlets				I						J356173	52.00	52.70	0.70	< 5			
			some blebby				 						J356174	52.70	53.20	0.50	5			
					<u> </u>		I		ļ	I			J356175	53.20	54.15	0.95	< 5		 	
					1															

HOLE#: WP21-08

Page 5 of 6

Dep	oth	Rock Type	Description	Struc	ct. core	e angle	es	Strain	Alterati	on Chara	cteristi	cs				5	Sample A	ssays		
From	То			S。	Fol	Flow	Vn	Intens	Туре	Intens	%QCV	%Py	Sample	From	То	Width	Au ppb			
54.15	75.30	Mafic Volcanic	Medium green grey, medium to fine grained, massive mafic volcanic unit. Typical flows. Not																	
		Underformed	a lot to say. Low to moderate Chlorite. Only occasional irregular Q/C and C veinlets, hairline to a cm or two at most. Only an occasional grain of pyrite poted once in a while. Contacts																	
			gradational over +/- 10cm or so																	
			5 																	
			Unit Sampling: Contacts only																	
			Irregular hairline Q/C veinlets, trace pyrite at best										J356176	54.15	55.15	1.00	< 5			
			Irregular hairline Q/C veinlets, trace pyrite at best										J356177	74.30	74.80	0.50	< 5			
			Irregular hairline Q/C veinlets, trace pyrite at best										J356178	74.80	75.30	0.50	< 5			
75.30	76.60	Mafic Volcanic	Typical mafic volcanic with a moderate to strong foliation imparted. Foliation at \sim 60° to the																	
		Moderately	Stretched specks of leucoxene notable. Moderate chloritization. Some carb veining with																	
		to Strongly	pyrite blebs on the margins in the host.																	
		Deformed																		
			Unit Sampling:										10 5 0 1 7 0	75.00		1.00				
			on the edges of black chlorite clots on vein margins, trace pyrite							ļ			J356179	75.30	76.60	1.30	< 5			
			Control Standard OREAS 52c										J356180				349			
76.60	90.00	Mafic Volcanic	Typical medium to dark green coloured, medium to fine grained massive mafic volcanic.																	
		Undeformed	vellow/green epidote associated with the ceining either within or in the margins and host																	
		to Weakly	rock adjacent to the veins. Certain carb veinlets are vuggy with evidence of etching or							ļ										
		Strained	dissolution. Certain fine veinlets have red/grey hematite/specularite cores. Predominant																	
			veining angle at 40-50° to core axis. Very little to no sulphide noted. Weak to moderate and nervasive carbonatization																	
			Unit Sampling:																	
			unit Jampiny.		-								1256191	76.60	77 10	0.50	11			
			Contact with trace irregular Q/C veinlets and light epidote, pyrite trace -							 			1256100	70.00	77.60	0.50	1			
			Contact with trace irregular Q/C veinlets and light epidote, pyrite trace -										J320182	77.10	11.00	0.50	< 5			
													1050400	00.00	00.50	0.50	10			
			Q/C veinlets with dissolution vugs and light local epidote + hematite/specularite vein Py Tr	1	I					Í			J356183	80.00	80.50	0.50	10			
HOLE#: WP21-08

Page 6 of 6

De	pth	Rock Type	Description	Struc	t. core	e angle	es	Strain	Alterati	on Chara	acteristi	cs				S	Sample A	ssays		
From	То			S。	Fol	Flow	Vn	Intens	Туре	Intens	%QCV	%Py	Sample	From	То	Width	Au ppb			
		Unit Sampling	Trace Q/C veinlets, trace- pyrite										J356184	89.00	89.50	0.50	< 5			
		Continued	Trace Q/C veinlets, trace- pyrite										J356185	89.50	90.00	0.50	< 5			
90.00	91.15	Mafic Volcanic	Foliated mafic volcanic. Moderately strained over most of the interval. Medium to dark																	
		Weakly to	green grey colour. Medium to fine grained. Foliation at approx 20° to core axis and clearly																	
		Moderately	cutting veinlets are thicker up to 0.5cm than the veinlets in the foliation. Moderate to strong																	
		Strained	pervasive carbonatization.																	
			Unit Sampling:																	
			Irregular Q/C veinlets in foliated MV. Trace pyrite disseminated as grains										J356186	90.00	91.15	1.15	< 5			
91.15		EOH	END OF HOLE																	
				-																
				-													-	-		
				-													-	-		
				-																
				1	1					1										

PLATINEX INC.

SHINING TREE PROJECT, ONTARIO - CASWELL EAST (WASAPIKA)

Grid Coordinates:			UTM NAD 8	33 - Zone	17N
UTM Coordinates:		N:	5272312	E	: 485845
Dip:	45		Elevation:	364.24	
Azimuth:	144		Total Depth:	219m	
Core Size:	NQ		# of Boxes	53	McBride
Target:					

	Down H	ole Tes	sts	
Туре	Depth		Dip	Azimuth
Reflex	15		44.70	144.50
Reflex	45		43.80	144.90
Reflex	75		42.60	144.30
Reflex	105		41.80	144.50
Reflex	135		40.70	145.30
Reflex	165		40.00	146.20
Reflex	195		36.60	145.30
Reflex	219		35.50	144.20
Downhole azimuth	readings have	been co	rrected to T	rue North by

subtracting 10 degrees from the Felex Instrument reading.

HOLE#: WP21-09

Page	1	of	12	
Date Started:	April 29t	h, 2021 ((D)	
Date Completed:	May 2nd	I, 2021 (I	D)	
Claim#:	631731	+ 184459	9	
Contractor:	Missina	ibi Drilli	ng Servieces	
Logged by: D. R. (Cutting		Sampled	by: F

Sampled by: Robert Peever

De	pth	Rock Type	Description	Struc	ct. core	e angl	es	Strain	Alterati	on Charac	teristics	S				Sample	e Assays		
From	То			S。	Fol	Flow	Vn	Intens	Туре	Intens	%QCV	%Py	Sample	From	То	Width	Au ppb		
0.00	2.50	Overburden																	
2.50	6.90	Mafic Volcanic	Medium to dark green gray colour. Medium to coarse grained. Locally																
		Wealky to	pervasely carbonatized to moderate. Moderate foliation at $45-50^{\circ}$ to core axis. Fine irregular O/C vehilts. Rubbly and oxidized orange from top of the hole to																
		Moderately	5.3m or so. Odd "Varolitic"? texture locally through the interval.																
		Strained																	
6.90	9.80	Mafic Volcanic	Medium to dark green-grey colour. Medium to coarse grained. Relatively																
		Undeformed	unstrained and massive in appearance. Q/C veiniets with nematite/specularite																
		to Weakly	surfaces. Medium+ pervasive carbonatization. Occasional trace of pyrite grain.																
		Strained																	
9.80	14.45	Mafic Volcanic	Medium green grey with a beige tinge from sericite and Fe carbonate alteration.																
		Moderate	are on the order of 1-3mm grains, round to ovoid, and zoned with dark centers																
		to Strong	and high angle rims. Should get a think section and whole rock at some point.																
		Deformation	Locally lightly pervasiely carbonatized. Moderately to strongly foliated at 40-50° to the core axis. Foliation intensity contracts relatively sharply over a few cms																
			Unit is lightly chloritized as is typical. Qtz/C veining with bleaching at the lower																
			contact. Beige leucoxene specks. Irregular Q/C veining through the unit,																
			usually hairline to 1cm at the most.																
			Unit Compliant																
													1256197	12.40	12.00	0.50	10		
			Irregular Q/C verifiets, trace pyrite at best, beige alteration										1356188	12.40	12.30	0.50	6		
			Irregular Q/C verifiets, trace pyrite at best, beige alteration										1356180	12.90	13.40	0.50	6		
			Q/C (T?) veinlets both in and crossing the foliation. Trace to 1% fine										1356190	13.40	14 45	0.50	11		
			disseminated pyrite on the margins										0000100	10.00	11.10	0.00			
14.45	24.25	Mafic Volcanic	Variable unit with light to medium green colour. Medium to fine grained in																
		Wealky to	general but may have a tuffaceous component to the flow. Patchy																
		Moderately	and up to 3% disseminated pyrite as grains or small blebs through																
		Strained																	

HOLE#: WP21-09

Page 2 of 12

De	pth	Rock Type	Description	Struc	ct. cor	e angle	es	Strain	Alterat	ion Chara	acteristi	cs				;	Sample A	ssays		
From	То			S。	Fol	Flow	Vn	Intens	Туре	Intens	%QCV	%Py	Sample	From	То	Width	Au ppb			
			the unit. Foliation locally variable fro 40-50° to the core axis, weak to moderately				1				1									
			developed. Wide spread irregular Q/C veinlets from hairline to 2+cm are notable through																	
			the interval where less bleached and more chloritized.																	
											ļ									
			Unit Sampling:	_				ļ		_			10 - 0 / 0 /		15.05					
			Contact with irregular Q/C veinlets, light beige bleaching, trace-1% diss. Py locally		-	-	_				ļ		J356191	14.45	15.25	0.80	5			
			Contact with irregular Q/C veinlets, light beige bleaching, trace-1% diss. Py locally							_			J356192	15.25	16.00	0.75	5			
			Alteration intensifying with more Q/C veining and pyrite trace-1% locally										J356193	16.00	17.00	1.00	25			
			Alteration intensifying with more Q/C veining and pyrite trace-1% locally										J356194	17.00	18.00	1.00	26			
			Alteration intensifying with more Q/C veining, up to 3% diss. Py locally										J356195	18.00	19.00	1.00	< 5			
			Core of the alteration the foliation most intense, up to 3% diss. Py locally										J356196	19.00	20.00	1.00	131			
			Intensity of bleaching dropping, py trace-1% locally										J356197	20.00	20.80	0.80	22			
			Bleaching is gone and replaced by chlorite/carbonate, trace diss. Py										J356198	20.80	21.75	0.95	6			
			Bleaching is gone and replaced by chlorite/carbonate, trace diss. Py										J356199	21.75	22.65	0.90	6			
			Control Standard RDUP of J356199										J356200				7			
			Bleached interval again with 2-3% diss Py locally, 3 small Q/C veinlets in foliation										J356201	22.65	23.55	0.90	61			
			Chloritized and carbonatized with trace disseminated pyrite										J356202	23.55	24.25	0.70	6			
24.25	28.50	Mafic Volcanic	Strongly foliated mafic volcanic unit, may have in fact been a tuff. Olive green to grey																	
		(Tuff?)	colour. Fine to medium grained. Strongly foliated and brecciated with pieces of white Q/C																	
		Strong	silicified with pyrite as grains, small blebs and small stringers locally. Beige stretched																	
		Foliation	leucoxene specks are notable locally. Most of the veining, or pieves there of, are caught up					ļ		_										
			in the foliation. Foliation with a bit of local variation between 40-50° to the core axis. Trace-					ļ		_										
			2+% diseminated pyrite.							_										
				-				<u> </u>		_										
			I Init Sampling	-																
			Contact. Start of alteration, trace discominated purits										1356203	24.25	25.00	0.75	7			
				-									1256204	24.20	25.00	0.75	6			
				-						-			1256205	25.00	25.00	0.30	167			
			Grey alteration, some silica flood, trace pyrite							-			1256200	25.50	20.00	0.30	107			
			Preves or grey/white Q/C verniet in the foliation in altered MV, sericite Carb, 1r-2% Py	-									1256207	20.00	20.30	0.50	23			
			Preves or grey/white Q/C vernlet in the toliation in altered MV, sericite Carb, 2-3% Py										1320207	20.30	27.00	0.70	48			
			MV with Chl and carbonate, trace-1% pyrite										J356208	27.00	27.50	0.50	24			

HOLE#: WP21-09

Page 3 of 12

De	pth	Rock Type	Description	Struc	ct. core	e angle	es	Strain	Alterati	on Chara	acteristi	cs				S	Sample A	ssays		
From	То			S。	Fol	Flow	Vn	Intens	Туре	Intens	%QCV	%Py	Sample	From	То	Width	Au ppb			
		Unit Sampling	MV with ChI and carbonate, trace-1% pyrite										J356209	27.50	28.00	0.50	17			
		Continued	Pieces of Q/C veinlets in foliation mostly Chl/Carb alteration, trace-1% pyrite										J356210	28.00	28.50	0.50	26			
28.50	47.85	Mafic Volcanic	Medium green grey colour. Medium to fine grained. Massive for the most part with a shot																	
		Underformed to	amygdalidel/pillowed interval for about 42m to 44m or so. Locally there is a bit of weak foliation developed at 30-40° to core axis. Not well enough developed to bost veining or																	
		locally weakly	alteration other than the usual pervasive chlorite and carbonate. Irregular white Q/C veinlet	,																
		Deformed	from hairline to a couple of cms thick notable. Occasional fractures are coated with																	
			hematite or specularite. Occasional grains of disseminated pyrite notable locally.			-														
			in a fine grained matrix	9																
						-														
			Unit Compliant Contacts and sharks																	
						-							1256211	29 50	20.00	0.50	6			
													1256212	20.00	29.00	0.50	0			
						-							J350212	29.00	29.50	0.50	0			
			Contact	-	-								J356213	29.50	30.00	0.50	8			
													1050044	20.00	24.40	0.20	6			
			Beige Q/C veinlet, 5cm thick, 70° to core axis, trace epidoe, trace-1% pyrite			-							J350214	30.80	31.10	0.30	0			
													1256215	22.05	22.55	0.50	6			
			Branched white Q/C vein with Tr+ Py as grains and blebs at low angle to core axis			-				-			J350215	32.05	32.00	0.50	0			
						-							1256216	42.20	12 50	0.20	6			
			bcm green/white Q/C veinlets at 25° to core axis, trace disseminated pyrite										1256217	42.20	42.00	1.00	10			
			disseminated pyrite										J330217	42.50	43.50	1.00	10			
			Annual de NAV ON Obligation internation hath laur and high angle to some suit. To Du			-							1256210	12 50	11 50	1.00	< F			
			Amygoule MV, Q/V Chi veinets irrgeular both low and high angle to core axis, ir Py	-									1256210	43.50	44.00	1.00	< 5			
			Amygdule MV, Q/V Chi veinlets irrgeular both low and high angle to core axis, 1r Py			-				-			1020000	44.30	45.20	0.70	< 5			
			Control standard OREAS 61D										J356220	45.00	45 50	0.00	4990			
			Grey/White C/Q veinlets 3cm thick at ~30° to core axis, trace disseminated pyrite										J356221	45.20	45.50	0.30	11			
			irregular Q/C veinlets trace-1% pyrite locally										J356222	45.50	46.40	0.90	8			
													1050000	40.40	47.40	4.00	-			
			Trace+ disseminated pyrite as grains, Irregular Q/C veinlets, trace pyrite										J356223	46.40	47.40	1.00	6			
			Trace+ disseminated pyrite as grains, Irregular Q/C veinlets, trace pyrite			 							J356224	47.40	47.85	0.45	7			
						<u> </u>	I													
	 			-																
1				1	1	1	I	I		1									1	

HOLE#: WP21-09

Page 4 of 12

De	pth	Rock Type	Description	Struc	ct. core	e angle	es	Strain	Alteratio	on Chara	cteristi	cs				5	Sample A	ssays		
From	То			S。	Fol	Flow	Vn	Intens	Туре	Intens	%QCV	%Py	Sample	From	То	Width	Au ppb			
47.85	48.60	Mafic Volcanic	Typical mafic volcanic with start of deformation zone. Foliation at cross 50° to core axis.																	
		Weak to	Irregular Q/C veinlets with sulphides locally. 1-3% pyrite in stringers, veinlets nad																	
		Moderate																		
		Deformation																		
			Unit Sampling:																	
			Whole unit as sample										J356225	47.85	48.60	0.75	12			
48.60	51.00	Mafic Tuff	Medium green, fine grained to lapilli sized foliated Tuff? Maybe same sort of inter-flow																	
		Weak to	sediment. Relatively sharp contacts top and bottom at 40° to core axis subparallel to foliation. Moderate to stong pervasive carbonatization 1-3% subpides locally pyrite																	
		Moderately	primarily but small striated "trapezoidal" crystals of arsenopyrite noted as well. Stringers																	
		Deformed	occur both within the foliation and crossing the foliation. Veining carbonate/Q both within																	
			and cross cutting the foliation, hairline to 2mm thick. Foliation variable at +/-40° at top of																	
			unit to 30-35° at the bottom. Flattening of foliation continues into the following unit																	
					-															
				_																
				-												ļ				
			Unit Sampling:	-									10 - 00 00	10.00	10.05	0.05				
			Fine grained, foliated with stringer pyrite and arsenopyrite up to 1-3% locally										J356226	48.60	49.25	0.65	6			
			Fine grained, foliated with stringer pyrite and arsenopyrite up to Tr-1% diss. Py										J356227	49.25	49.75	0.50	9			
			Fine grained, foliated with stringer pyrite and arsenopyrite up to 1-3% locally										J356228	49.75	50.25	0.50	8			
			Fine grained, foliated with stringer pyrite and arsenopyrite up to Tr-1% diss. Py										J356229	50.25	50.75	0.50	12			
			Fine grained, foliated with stringer pyrite and arsenopyrite up to Tr-1% diss. Py										J356230	50.75	51.00	0.25	9			
51.00	67.40	Mafic Volcanic	Medium to dark green grey, medium to fine grained, massive mafic flow unit. Local Fining																	
		Weak to	or coursening through the interval. May locally be a few squashed amygdules in table. Unit																	
		Moderately	is moderately chloritized and variably carbonatized from light to moderate locally. Foliation intensity variable locally in intensity as well as angle to the core axis. One at 45° to core																	
		Deformed	axis and noe at 30° to core axis, looking carefully locally, both foliations occur at the same																	
			time. Locally a bit of light bleaching associated with several high angle Qtz/Carb veinlets																	
			(white) and bullish at the botton of the unit. About a metre or so at the bottom is a bit more																	
			chioralized and darker green in colour. Lower unit contact is snarp at Cross 50° to core axis Only very sporadic traces of granular dissminated pyrite noted																	
			ony tory operation action of granular dissimilated pyrite noted.																	

HOLE#: WP21-09

Page 5 of 12

FromToToMidth </th <th></th>	
Image: Second and checks only	
Image: Intrace price Contact Image: Intrace Contac	
Image: Intrace Properties in trace Propero in trace Properties in trace Properties in trace Pro	
Image: Integrade QC veinetes in trace Py. (9cm carb veinlet at approx 50° to core axis, Tr Py) Image: Integrade QC veinlets at point of trace Py. (9cm carb veinlet at approx 50° to core axis, Tr Py) Image: Integrade QC veinlets at point of trace Py. (9cm carb veinlet at approx 50° to core axis, Trace Py. Py and trace Py.	
Image: Normal standard OREAS 52CImage: Normal standard S2CImage: No	
Image: series of the series	
Image: Sector	
Image: select one of the select	
Image: series of the series	
Image: space of the space of	
Image: Sem+ Carb/Qtz veinles at 50° to core axis, trace-1% Py on margins and in light Image: Sem+ Carb/Qtz veinles at 50° to core axis, trace-1% Py on margins and in light Image: Sem+ Carb/Qtz veinles at 50° to core axis, trace-1% Py on margins and in light Image: Sem+ Carb/Qtz veinles at 50° to core axis, trace-1% Py on margins and in light Image: Sem+ Carb/Qtz veinles at 50° to core axis, trace-1% Py on margins and in light Image: Sem+ Carb/Qtz veinles at 50° to core axis, trace py rite Image: Sem+ Carb/Qtz veinles at 50° to core axis, trace py rite Image: Sem+ Carb/Qtz veinles at 50° to core axis, trace py rite Image: Sem+ Carb/Qtz veinles at 50° to core axis, trace py rite Image: Sem+ Carb/Qtz veinles at 50° to core axis, trace py rite Image: Sem+ Carb/Qtz veinles at 50° to core axis, trace py rite Image: Sem+ Carb/Qtz veinles at 50° to core axis, trace py rite Image: Sem+ Carb/Qtz veinles at 50° to core axis, trace py rite Image: Sem+ Carb/Qtz veinles at 50° to core axis, trace py rite Image: Sem+ Carb/Qtz veinles at 50° to core axis, trace py rite Image: Sem+ Carb/Qtz veinles at 50° to core axis, trace py rite Image: Sem+ Carb/Qtz veinles at 50° to core axis, trace py rite Image: Sem+ Carb/Qtz veinles at 50° to core axis, trace py rite Image: Sem = Carb/Qtz veinles at 50° to core axis, trace py rite Image: Sem = Carb/Qtz veinles at 50° to core axis, trace py rite Image: Sem = Carb/Qtz veinles at 50° to core axis, trace py rite Image: Sem = Carb/Qtz veinles at 50° to core axis, trace py rite Image: Sem = Carb/Qtz veinles at 50° to core axis, trace py rite Image: Sem = Carb/Qtz veinles at 50° to core axis, trace py rite Ima	
Image: Control standard BLANK	
Aggregate 10cm of while bull Q/C vein at 50° to core axis, trace pyrite J356241 65.50 66.00 0.50 5	
Irregular Q/C veinlets in ChI MV trace pyrite J356242 66.00 66.70 0.70 < 5	
Cracked up stockwork of fine Q/C veinlets some at 40° to core axis nil to trace Py. J356243 66.70 67.40 0.70 < 5	
67.40 75.90 Gabbro Unit is medium to coarse grained Medium to dark green grey colour and quite massive. Not	
Underformed Only no indication of foliation and very few Q/C veiniets. Those few that are apparent are usually irregular and bariline to a couple of mm thick. Sharp contacts both top at 50° to core	
axis and bottom at 60° to core axis. No sulphides noted. No carbonatization	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
72 90 99 00 Mafic Volcanic Medium to dark green grey mottled colour. Generally medium grained but variable from fine	
Underformed to to coarse over relatively short intervals. Foliation variable from weakly deformed to	
Weakly Chloritized and variable contractized pervasively from work to moderate O/C variable	
Deformed irregular through the interval, lying both within the foliation and cross cutting the foliation,	······································
variable in thickness from hairline to a couple of cm thick. Coarse intervals may in fact be	
gabbroic intrusives instead of coarse flow, lighter pervasive carbonatization might support	
Unit Sampling: Unecks only 0/0 Oblights at 50% and the prefix 1256244 75.00 75.40 0.40 4.5	
W/C Uni veiniets at 50° or so to core axis, +/- 1cm thick, trace pyrite as grains	

HOLE#: WP21-09

Page 6 of 12

De	pth	Rock Type	Description	Struc	t. core	e angle	es	Strain	Alterati	on Chara	acteristi	cs				5	Sample A	ssays		
From	То			S。	Fol	Flow	Vn	Intens	Туре	Intens	%QCV	%Py	Sample	From	То	Width	Au ppb			
		Unit Sampling	C/Q veinlets fine in foliation with trace gains of pyrite										J356245	78.20	78.50	0.30	11			
		Continued																		
			7cm complex white carb veinlet cross cutting foliation, trace pyrite										J356246	88.20	88.50	0.30	< 5			
			C/Q veinlets fine in foliation with trace gains of pyrite										J356247	91.40	91.80	0.40	7			
			Irregular carb veinlets at contact with lower unit, trace pyrite, trace epidote										J356248	98.00	98.50	0.50	< 5			
			Irregular carb veinlets at contact with lower unit, trace pyrite, trace epidote										J356249	98.50	99.00	0.50	< 5			
99.00	102.80	Mafic Volcanic	Section typical medium to dark green, medium grained mafic volcanic but in addition to a																	
		Flow	light follation at +/- 50° to core axis is brittle fractured and shot with Card/Q veinlets. Locally at approximately 100 5m the carb veining bas been re-brecciated in association with a																	
		Moderate	nossible high angle fault at 101m. Very brassy, pyrite grains in the Carb veins breccia. Unit																	
		Deformation	is strongly pervaseively carbonate altered. Locally sub round amygdules of about 2mm																	
			grain size filled with carbonate are noted. Clay crud on fractures in the rubbly fault/fracture																	
			zone.																	
			Unit Sampling:																	
			Irregular Carb/Q veinlets at high angle to core axis, hairline to 1cm thick, trace pyrite										J356250	99.00	99.70	0.70	21			
			Q/C vein breccia with chlorite trace pyrite										J356251	99.70	100.20	0.50	< 5			
			Q/C vein breccia with chlorite trace-1% pyrite locally as grains										J356252	100.20	100.70	0.50	7			
			Hich C C/Q veinlets associated with fault/fracture zone rubble, trace pyrite										J356253	100.70	101.20	0.50	< 5			
			Irregular C/! Veinlets at +/- 50° to core axis, trace pyrite										J356254	101.20	101.70	0.50	< 5			
			Veinlets reducing										J356255	101.70	102.20	0.50	< 5			
			Veinlets reducing										J356256	102.20	102.80	0.60	< 5			
102.80	127.20	Mafic Volcanic	Medium to dark green grey colour, fine to medium grained, possible selvedges of pillows																	
		Pillowed	notable locally as well as carbonate filled amygdules. Basalt composition likey grain size																	
		Underformed to	short intervals there is notable up to a weak foliation of 40-60° to core axis. Irregular C/O																	
		Weakly	veinlets occur through the unit. There is an increase in occurence of hematite (+/-																	
		Deformed	specularite) as fracture coatings and accessary to carb veinlets from about 115m to the end	1																
			of the interval. Pink carbonate veinlets as well from 115m down. Variable light to moderate																	
			carbonatization through the unit. A grain or two of disseminated pyrite locally at best.																	

HOLE#: WP21-09

Page 7 of 12

D	epth	Rock Type	Description	Struc	t. core	angle	s	Strain	Alterati	ion Chara	acteristi	cs				5	Sample A	ssays		
From	То	1		S。	Fol	Flow	Vn	Intens	Туре	Intens	%QCV	%Py	Sample	From	То	Width	Au ppb			
			Unit Sampling: Contact and checks only																	
			Irregular Q/C veinlets in trace pyrite, Contact										J356257	102.80	103.30	0.50	< 5			
			Irregular Q/C veinlets in trace Py, (9cm carb veinlet at approximately 50° to core axis, Tr Py)									J356258	103.30	103.80	0.50	7			
			Irregular Q/C veinlets in trace Py, (9cm carb veinlet at approximately 50° to core axis, Tr Py)									J356259	103.80	104.30	0.50	< 5			
			Control standard OREAS 52C										J356260				361			
			3cm Carb/Qtz "ribbon" veinlets at 50° to core axis, trace hematite, trace+ Py grains										J356261	107.60	107.90	0.30	< 5			
			3cm Carb/Qtz veinlets at 50° to core axis, trace Pyrite grains, light foliation										J356262	112.00	112.30	0.30	9			
			5cm+ Carb/Qtz veinlets at 50° to core axis, trace-1% pyrite on margins and in light foliated										J356263	112.70	113.20	0.50	126			
			host rock.																	
			2cm + 6cm Carb/Qtz veinlet in light foliated MV, trace pyrite							_									 	
			Light foliation with trace pyrite disseminated and small discontinuous stringer						ļ							ļ				
			Light foliation with trace pyrite disseminated and small discontinuous stringer, The 1/2-3/4" Stringers are conductive							_									 	
										-									 	
			Light foliation with trace discominated pyrite							-										
			Light foliation with trace disseminated pyrite							-										
												-								
127.20	131.00	Gabbro	Medium to fine grained gabbro as above described. Chloratized, with no foliation to speak																	
		Underdeformed	of and very little C/Q veinlets compared to surrounding units. Contacts based on veining																	
			Intensity, grain size and appearance more than actual physical "contacts" per se. May be iust a coarser grained part of the flow sequence. Occasional irregular Q/C veinlets. Trace																	
			hematite on some of the fracture surfaces. A very occasional grain of pyrite is notable here																	
			and there.																	
										_									 	
101.5-	400.05			I																
131.00	139.00	Mafic Volcanic	More brittle fractured than foliated																	
	I	Flow	brittle fractures often filled with hematite/specularite or H/S with Carbonate/Otz Fractures																	
			are at irregular orientations and 3cm or less in thickness. At 131.6m there is a porous Q/C																	
			H/S vein subparallel to the core axis. Occasional	<u> </u>																

HOLE#: WP21-09

Page 8 of 12

De	pth	Rock Type	Description	Struc	t. core	e angle	es	Strain	Alterati	on Chara	cteristi	cs				5	Sample A	ssays		
From	То			S。	Fol	Flow	Vn	Intens	Туре	Intens	%QCV	%Py	Sample	From	То	Width	Au ppb			
			grains of pyrite notable locally. Patchy pervasive carbonatization from nil to moderate																	
			locally.																	
			Unit Sampling:																	
			Check sample for Q/C H/S veining										J356270	131.40	132.10	0.70	< 5			
139.00	146.60	Mafic Volcanic	Medium to light green grey with a bit of buff locally where intensively bleached. Medium to																	
		Flow	tine grained and probably pillowed at least in part with faint relic selvedges locally. Foliation well developed and gradational top and bottom contacts over 20cm or so. Foliation at the																	
		Moderate	top of the unit at approx 30° to core axis but for the most part at approx 50-60° to core axis.																	
		Deformation	Carb/Q veinlets often in the foliation, but not always.													ļ				
																ļ				
																ļ			 	
			Unit Sampling:										1050074	400.00	4.40.00	1.00				
			Contact with weak-moderate foliation, trace C/Q veinlets, trace disseminated pyrite										J356271	139.00	140.00	1.00	< 5			
			Contact with weak-moderate foliation, trace C/Q veinlets, trace disseminated pyrite										J356272	140.00	141.00	1.00	< 5			
			Foliation intensity increasing, more irregular C/Q veinlets, starting to bleach a bit, trace-1%										J356273	141.00	141.50	0.50	< 5			
			pyrite disseriinated grains																	
			Core a bit rubbly, bleached, trace-1% disseminated pyrite										J356274	141.50	142.00	0.50	< 5			
			Moderate foliation, bleached, Q/C/Chl veinlet 3cm at 60° to core axis, trace-1% pyrite										J356275	142.00	142.40	0.40	< 5			
			disseminated and blebs																	
			Moderate foliation, bleached, irregular veinlets, 1-2% disseminated pyrite grains(fine)										J356276	142.40	142.90	0.50	16			
			Weak-moderate foliation, bleached, Q/C Chl veinlets, pyrite in stringers irregular. Pillow										J356277	142.90	143.50	0.60	1460			
			selvedges? Stringer very slightly conductive over short interval 1-2% py as blebs																	
			Weak-moderate foliation, light bleach, C/Q veinlets irregular mixes, trace pyrite grains		1					1			J356278	143.50	144.00	0.50	11			
			Weak-moderate foliation, light bleach, C/Q veinlets irregular mixes, trace pyrite grains										J356279	144.00	144.50	0.50	43			
			Control standard RDUP of J356279										J356280				19			
			weak-moderate foliated light bleach C/Q/Cbl veinlets trace diss pyrite grains			1				1			J356281	144.50	145.00	0.50	< 5			
			weak-mod foliation, lost the bleaching, irregular C/O veinlet, trade dide. Pyrite grains at best	1						1			1356282	145.00	145 50	0.50	5			
			weak-mod foliation, for C/Q/Chl veinlet at 50° to core axis in foliation. trace pyrite arains			1				1			1356283	145 50	146.00	0.50	11			
			as disseminated in vein margins	┣──		-							0000200	1-0.00	1-0.00	0.00				
			E-listics asside descentions incondents inter-	1						1			1256294	146.00	146 60	0.60	<u>ح</u> ۲			
			Foliation rapidly decreasing, irregular hairline G/Q veinlets, trace diss. Py at best										JS20284	140.00	140.00	0.60	< 0			
				-																
				1		1	-			1										

HOLE#: WP21-09

Page 9 of 12

De	pth	Rock Type	Description	Struc	ct. cor	e angle	es	Strain	Alterati	on Chara	acteristi	cs				5	Sample A	ssays		
From	То			S。	Fol	Flow	Vn	Intens	Туре	Intens	%QCV	%Py	Sample	From	То	Width	Au ppb			
146.60	159.80	Mafic Volcanic	Medium to dark green coloured, fine to medium+ grained, massive flow unit. Interesting																	
		Flow	that where deformation is reduced as this interval many of the Carb/Qtz have																	
		Undeformed	little to no pervasive carbonatization notable. Veinlets seem to be irregular and sharp filling																	
			brittle fractures.																	
					_															
					_													I		
			Unit Sampling: Contact and checks only		-	-							1050005	4.40.00	4 4 7 4 0	0.50	_			
			Contact with irregular Carb/Q veinlets, trace- disseminated pyrite		_								J356285	146.60	147.10	0.50	< 5			
			Irregular fine C/Q veinlets with hematite/Specularite as accessory, trace- diss. Py										J356286	147.10	147.60	0.50	< 5			
			Irregular fine C/Q veinlets with hematite/Specularite as accessory, trace- diss. Py										J356287	147.60	148.10	0.50	< 5			
			Irregular fine C/Q veinlets with hematite/Specularite as accessory, trace- diss. Py										J356288	148.10	148.60	0.50	< 5			
											ļ									
			2 C/Q h/s veins 15cm and 9cm at high angle to core axis, trace pyrite at best										J356289	150.60	151.40	0.80	< 5			
			3.5cm C/Q veinlet (no hematite), irregular fine C/Q H/S veinlets, Tr pyrite at best										J356290	151.40	151.90	0.50	< 5			
			Lower unit contact, trace- pyrite										J356291	158.80	159.30	0.50	< 5			
			Lower unit contact, trace- pyrite, 10 cm white carb veinlet along angle to core axis										J356292	159.30	159.80	0.50	< 5			
159.80	164.10	Mafic Volcanic	Medium green grey colour, fine to medium grained, massive but weakly to moderately																	
		Flow	foliated. Foliation fairly contant at 55-60° to core axis. Irregular hairline C/Q veinlets lie both within and crossing the foliation. Unit is moderately to strongly pervasively carbonatized																	
		Weakly to	Beige leucoxene laths notable locally through the unit.																	
		Moderately																		
		Deforemd																		
			Unit Sampling:																	
			Unit contact foliated MV, trace disseminated pyrite										J356293	159.80	160.75	0.95	< 5			
			C/Q veinlets hosted by foliation, trace disseminated pyrite										J356294	160.75	161.25	0.50	< 5			
			C/Q veinlets hosted by foliation, trace disseminated pyrite										J356295	161.25	162.00	0.75	< 5			
			6cm C/Q veinlet at high angle to core axis, crossing foliation, trace diss. Pyrite										J356296	162.00	162.30	0.30	< 5			
			Irregular carb veinlets in foliated MV, trace disseminated pyrite										J356297	162.30	162.80	0.50	< 5			
			Irregular carb veinlets in foliated MV, trace disseminated pyrite		1								J356298	162.80	163.45	0.65	< 5			
			Irregular carb veinlets in foliated MV, trace disseminated pyrite		1	1				I	1		J356299	163.45	164.10	0.65	< 5	Ī		
			Control standard OREAS 61d		1	1				I			J356300				5070			
					1	1					1							1		
						T	1			1	1						I	1		

HOLE#: WP21-09

Page 10 of 12

De	pth	Rock Type	Description	Struc	ct. cor	e angle	es	Strain	Alterati	on Chara	acteristi	ics				5	Sample A	ssays		
From	То			S₀	Fol	Flow	Vn	Intens	Туре	Intens	%QCV	%Py	Sample	From	То	Width	Au ppb			
164.10	169.60	Fault Zone	Very blocky broken up rubbly fault/fracture zone. Evidence of green chlorite gauge material																	
			on some of the fracture surfaces and in amongst the rubble. The edges of the zone 164.1m																	
			to say the orientation of the fault but has the impression it falls at a low angle to the core																	
			axis therefore 20° or so ? 164.1m to 167.8m is MV weakly-moderately deformed as the unit																	
			above and from 167.8m to 169.6m is an undeformed MV complete with C/Q H/S veinlets.																	
			Foliations through the fault zone at 40-50° to core axis.																	
			Unit Sampling:	-																
			Fault zone with foliated MV and C/Q veinlets in the pieces, trace pyrite										J356301	164.10	165.00	0.90	< 5			
			Fault zone with foliated MV and C/Q veinlets in the pieces, Tr Py as small masses in C/Q										J356302	165.00	165.50	0.50	< 5			
			Verniet																	
			Fault zone with foliated MV and C/Q veinlets in the pieces, trace pyrite										J356303	165.50	166.00	0.50	< 5			
			Fault zone with foliated MV and C/Q veinlets in the pieces, trace pyrite										J356304	166.00	166.50	0.50	< 5			
			Fault zone with foliated MV and C/Q veinlets in the pieces, trace pyrite										J356305	166.50	167.00	0.50	< 5			
			C/Q veinlets, some with H/S approx 15% of interval, trace pyrite										J356306	167.00	167.50	0.50	5			
			Trace C/Q veinlets at best, trace pyrite										J356307	167.50	168.00	0.50	< 5			
			Very rubbly non-foliated MV, trace- pyrite										J356308	168.00	169.00	1.00	< 5			
													J356309	169.00	169.60	0.60	< 5			
169.60	172.00	Mafic Volcanic	Mdeium to dark green grey, fine to medium grained, massive unit. No foliation notable.																	
		Flow	Irregular C/Q H/S veinlets notable. Fracturation filled by the veinlets seem to be brittle. Very																	
		Undeformed	little to no sulphides noted. Upper "contact" where fault influence seems to stop. Lower contact where foliation/deformation intensity increases. Sampling to cover the veining in																	
			the unit.																	
			Unit Sampling:																	
			5cm C/Q H/S veinlet at high angle to core axis, sparse pyrite										J356310	169.60	170.10	0.50	< 5			
			Plus/- 10% C/Q H/S veinlets, sparce pyrite										J356311	170.10	171.00	0.90	< 5			
			Trace hairline irregular C/Q veinlets Sparce pyrite at best										J356312	171.00	172.00	1.00	< 5			
172.00	180.70	Mafic Volcanic	Mdeium to dark green grey mafic volcanic unit as typical for the area. Medium to fine																	
		Flow	grained with a notable foliation imparted. Foliation locally variable from 40 to 60° to core																	
		Weakly	hairline carb/Q veinlets. Unit moderately pervasively																	
		Deforemed																		

HOLE#: WP21-09

Page 11 of 12

De	pth	Rock Type	Description	Strue	ct. cor	e angl	es	Strain	Alterati	on Chara	acteristi	cs				5	Sample A	ssays		
From	То			S。	Fol	Flow	Vn	Intens	Туре	Intens	%QCV	%Py	Sample	From	То	Width	Au ppb			
			carbonatized. Rubbly lower contact from 180m to 180.7m, no gouge noted. Only trace																	
			pyrite grains noted very locally. 2 hairline veinlets noted with a bit of H/S																	
			Unit Sampling: (checks only)	_																
			Light C/Q veinlets with trace pyrite disseminated										J356313	173.80	174.30	0.50	< 5			
			Light C/Q veinlets with trace pyrite disseminated										J356314	179.50	180.00	0.50	< 5			
180.70	189.10	Mafic Volcanic	Medium to dark green grey colour, fine to medium+ grained locally, Occasional shadows of	f																
		Flow	amygdules possibly notable. Generally duite massive with a nint of light foliation over very limited intervals. Unit is guite rubbly with sharp fractures chlorite or hematitic coatings. A																	
		Underformed	few C/Q, C, and an occasional veinlet with H/S are notable but quite few compared to						ļ									-		
		to Weakly	earlier in the hole. Only a very occasional grain of pyrite noted. Moderate pervasive																	
		Deformed	carbonatization.		-		-		ļ									ļ		
				_	-				ļ									ļ		
				-		_														
			Unit Sampling: (vein checks only)	-									1050045	400.50	400.00	0.50				
			Irregular C/Q chl veinlet, trace disseminated pyrite	_	-		-						J356315	182.50	183.00	0.50	< 5			
				-	-		-						1050040	400.40	400.00	0.50				
			Irregular C/Q chl veinlet, at approx 50° to core axis, trace hematite and diss. Pyrite	_					ļ				J356316	186.10	186.60	0.50	< 5			
400.40	405.00		Turical MV/flow Meally developed foliation leadly at approv CO ⁰ to care axis. Costiona	_	-		-													
189.10	195.60		within the interval are rubbly with chloritic coatings on many of the irregular fractures			_														
		FIOW	probably part of the fault system under the lake. A few C/Q +/- Chl +/- H/S within the unit.		-		-													
		Defermed	Moderate pervasive carbonatization noted. Very occasional grains of disseminated pyrite																	
		Deloimed	noted. Possible fault at 191.4																	
				-																
			Unit Sampling: (checks only)	-																
			Irrogular C/Q vointate trace pyrite as discominated small masses along Chi frosture					1	1	1			1356317	194.00	194 50	0.50	~ 5	1		
			Inegular C/Q verifies, trace pyrite as discerninated small masses along Chi fracture			+							1256210	104 50	105.00	0.50	< 5 < 5			
			irregular C/Q verniets, trace pyrite as disseminated small masses along Chi fracture							1			1256240	194.30	195.00	0.50	< 5			
			Irregular C/Q veinlets, trace pyrite as disseminated small masses along ChI fracture										1320319	195.00	195.60	0.60	< 5			
			Control standard BLANK		<u> </u>		<u> </u>			ł	<u> </u>		J356320				< 5			
					<u> </u>		<u> </u>			ł	<u> </u>									
				1	1	1	1	1		1	1					1				

HOLE#: WP21-09

Page 12 of 12

De	pth	Rock Type	Description	Struc	ct. core	e angle	es	Strain	Alterati	on Chara	acteristi	ics				ę	Sample A	ssays		
From	То			S。	Fol	Flow	Vn	Intens	Туре	Intens	%QCV	%Py	Sample	From	То	Width	Au ppb			
195.60	219.00	Mafic Volcanic	Medium to dark green grey colour, fine to medium grained locally, have the impression that	t																
		Flow	the unit has evidence of pillows, but for the most part quite massive. Very light but notable																	
		Undeformed	1 metre at the upper contact. Unit generally guite rubbly from 196 5m to 204 25m																	
			Fractures are generally sharp and locally chloritic crud/gauge? notable. If had to guess an																	
			angle, impression at moderate angle to core axis. Irregular Q/C +/- H/S veinlets are still																	
			notable through the unit. Very little pyrite noted anywhere through the unit.																	
			Unit Sampling: (sampling only as vein or feature check)																	
			Plus/- 15% of interval is whtie C/Q veinlet, trace pyrite with margins										J356321	197.40	197.90	0.50	< 5			
			6cm thick C/Q veinlet at 30° to core axis, trace pyrite										J356322	208.40	208.70	0.30	< 5			
				1																
			6cm thick C/Q veinlet at 30° to core axis, trace pyrite										J356323	209.40	209.70	0.30	< 5			
			Short weakly + foliated section with C/Q veinlets foliated at 50° to core axis, trace										J356324	211.30	212.00	0.70	< 5	1		
			disseminated pyrite																	
			Short weakly + foliated section with C/Q veinlets foliated at 50° to core axis, trace										J356325	218.15	218.65	0.50	13			
			disseminated pyrite																	
219.00		EOH	END OF HOLE																	
								ļ		-						ļ		ļ		
				1																

PLATINEX INC.

Target:

SHINING TREE PROJECT, ONTARIO - CASWELL EAST (WASAPIKA)

		UTM NAD 8	3 - Zone 1	7N
	N:	5272220	E:	485949
45		Elevation:	365.45	
139		Total Depth:	177.00	
NQ		# of Boxes	42	McBride
	45 139 NQ	N: 45 139 NQ	UTM NAD 8 N: 5272220 45 Elevation: 139 Total Depth: NQ # of Boxes	UTM NAD 83 - Zone 1 N: 5272220 E: 45 Elevation: 365.45 139 Total Depth: 177.00 NQ # of Boxes 42

	Down H	ole Tests	
Туре	Depth	Dip	Azimuth
Reflex	15	43.40	131.70
Reflex	45	41.30	133.30
Reflex	75	41.10	133.60
Reflex	105	39.70	131.70
Reflex	135	38.50	136.20
Reflex	165	37.90	137.20
Downhole azimut	h readings have	been corrected to	Frue North by

subtracting 10 degrees from the Felex Instrument reading.

HOLE#: WP21-10

Page	1 of 3
Date Started:	May 3rd, 2021
Date Completed:	May 7th, 2021
Claim#:	184459
Contractor:	Missinaibi Drilling Servieces

Logged by: D. R. Cutting

Sampled by: Robert Peever

De	oth	Rock Type	Description	Strue	ct. cor	e ang	es	Strain	Alteratio	on Charac	teristics	S				Samp	le Assays			
From	То			S。	Fol	Flow	Vn	Intens	Туре	Intens	%QCV	%Py	Sample	From	То	Width	Au ppb			
0.00	4.50	Overburden																		
4.50	87.70	Mafic/Intermediate	Medium green gray colour, fine to medium grained, variably locally foliated over																	
		Volcanic	short to moderate intervals. Foliation near 10 is at about 40° to core axis. Unit is																	
			at an angle to foliation. Mafic volcanics are moderately chloritized and locally																	
			carbonatized, particularly in foliated sections																	
			8-8.75m Set of Q/C veinlets at approximately 60° to core axis. Trace																	
			tourmaline, disseminated pyrite grains.																	
			13.6-14m Rubble zone looks like a fault/fracture zone at 30-40° to core axis.																	
			Clay crud on some of the fracture surfaces. Seems to be more or less in the																	
			15-17m White carbonate, carbonate/Qtz veins in an irregular stock work																	
			pattern. A few grains of pyrite in the host volcanics. One 8cm "bull" white carb																	
			disperced through the section								1									
			26.8-27m Broken core, may be a fracture zone?																	
			30.5-31.45m 2cm thick Q/C veinlet in hyaloclastite? Runs along the length of																	
			the core at a low angle to core axis								1									
													8101	36.35	36.85	0.50	9			
													8102	36.85	37.35	0.50	7			
			37.3-38.6m Foliated sections at 40-50° to core axis with Q/C veinlets hairline to										8103	37.35	37.70	0.35	5			
			3cm thick. Chlorite, carbonate a bit of tourmaline locally in some of the veinlets.								1		8104	37.70	38.05	0.35	< 5			
			Trace desseminated sulphides locally. Very shirty pyrite.								1		8105	38.05	38.55	0.50	5			
					1		1						8106	38.55	39.05	0.50	6			
			45.9-47.35m Light foliation at 50° to core axis. Carb/Qtz and Carb veinlets up to	1	1	1	1			Ì	1						-	1		
			a few cm thick, with trace pyrite locally hosted more or less by local foliation																	
			71-72 2x Q/C veinlets in coarser grained mafic volcanic gabbro sub unit. 3cm																	
			at 30° to core axis, 10cm @ 60° to core axis locally unfoliated, chl alteration, trace pyrite																 	└───
				<u> </u>	I	<u> </u>	<u> </u>				<u> </u>							<u> </u>		╡────
					<u> </u>		<u> </u>			 	<u> </u>									I
																				I
					1						1									1

HOLE#: WP21-10

Page 2 of 3

De	pth	Rock Type	Description	Struc	ct. core	e angle	es	Strain	Alteration	on Chara	acteristi	cs				5	Sample A	ssays		
From	То			So	Fol	Flow	Vn	Intens	Туре	Intens	%QCV	%Py	Sample	From	То	Width	Au ppb			
87.70	98.00	Mafic/Intermediate	Moderate strain at +/-60° to core axis. Q/C chl veinlets both within and cross cutting the										8107	90.80	91.20	0.40	33			
		Tuff (Volcanic	foliation. Trace to 2% disseminated sulphide locally. Very brassy chalcopyrite notable in some veinlets										8108	91.20	91.60	0.40	55			
		or sediment)?											8109	91.60	92.00	0.40	9			
		NQ											8110	92.00	92.50	0.50	6			
													8111	92.50	93.00	0.50	< 5			
													8112	93.00	93.50	0.50	5			
													8113	93.50	94.00	0.50	5			
													8114	94.00	94.50	0.50	6			
													8115	94.50	95.00	0.50	< 5			
													8116	95.00	95.50	0.50	6	l		
													8117	95.50	96.00	0.50	7	l		
			96-97m Q/C(+/-T) Veinlets with trace-1% pyrite. Pyrite on vein margins and as stringers. In										8118	96.00	96.50	0.50	78	l		
			the foliation in proximity.										8119	96.50	97.00	0.50	6			
			Control standard OREAS 61d										8120				5270			
													8121	97.00	97.50	0.50	19			
													8122	97.50	98.00	0.50	< 5			
98.00	105.00	Mafic/Intermediate	Only light foliation with irregular Q/C or C veinlets. Trace pyrite disseminated locally										8123	98.00	98.50	0.50	< 5			
		Volcanic											8124	98.50	99.00	0.50	< 5			
													8125	99.00	99.50	0.50	< 5			
													8126	99.50	100.00	0.50	<5			
105.00	113.50	Mafic/Intermediate	Medium to light green or grey, mottled patches. Locally bleached a bit and shot with Q/C										8127	111.00	111.50	0.50	111			
		Volcanic	at 50° to core axis.										8128	111.50	112.00	0.50	10			
													8129	112.00	112.40	0.40	157			
			112.4-112.9m Qtz/Carb Chl Tourmaline veinlet hosted by local foliation almost a fuchite										8130	112.40	112.90	0.50	1060			
			green colour along some fracture surfaces. Sulphides disseminated as blebs and grains of vein margins. Foliation at 50-60° to core axis										8131	112.90	113.40	0.50	12			
			.	-																
113.50	123.80	Matic/Intermediate	I ypical volcanic unit as described above. Locally disseminated pyrite notable as grains or small blobs, trace to 1% max. Irregular O/C vehicles through the interval			 				 										
l		Volcanic				 							8132	113.40	114.00	0.60	14			
			disseminated pyrite grains		I	ļ	I			 			8133	114.00	114.50	0.50	49			
						<u> </u>	ļ			L			8134	114.50	115.00	0.50	< 5			
					I						1					I				

HOLE#: WP21-10

Page 3 of 3

De	pth	Rock Type	Description	Struc	ct. core	e angle	es	Strain	Alterat	ion Char	acteristi	ics				S	Sample A	ssays		
From	То	1		S。	Fol	Flow	Vn	Intens	Туре	Intens	%QCV	%Py	Sample	From	То	Width	Au ppb			
123.80	128.40	Mineralized	Light grey coloured, chlorite green striped. Strongly foliated Tuff. Bleached out and shot										8135	121.70	122.20	0.50	< 5			
		Altered Tuff	with Q/C/T veinlets. Foliation at 50° to core axis. Disseminated pyrite and small stringers										8136	122.20	123.00	0.80	< 5			
			along foliation planes. Most, but not all Q/C veining is hosted by the foliation										8137	123.00	123.80	0.80	< 5			
		NQ											8138	123.80	124.50	0.70	10			
													8139	124.50	125.00	0.50	179			
			Control sample BLANK										8140				< 5			
													8141	125.00	125.30	0.30	368			
													8142	125.30	125.60	0.30	920			
													8143	125.60	125.90	0.30	382			
													8144	125.90	126.20	0.30	122			
													8145	126.20	126.50	0.30	32			
													8146	126.50	126.90	0.40	7			
													8147	126.90	127.30	0.40	141			
													8148	127.30	127.80	0.50	< 5			
													8149	127.80	128.30	0.50	< 5			
													8150	128.30	128.80	0.50	< 5			
128.40	141.70	Mafic/Intermediate	Typical unit, variable foliation intensity from high to moderate at approx 50° to core axis.																	
		Volcanic	Locally a bit coarser gained so may be more "gabbroic" initially. Contacts seem gradational Trace disceminated pyrite grains																	
		A		_							_									
141.70	147.00	Argillite	Olive green/grey, fine grained, bedded (finely) locally. Bedding/foliation at 55° to core axis.							_	-								 	
		Matic/Intermediate	inay be interbedded with mano/intermediate volcanics. Trace disseminated suprides																	
		Volcanics		_																
147.00	152.10	Mofie/Intermediate	As described above, 14cm thick Ω/C visiblet bested by foliation at 148 gm. Dark area	-							-									
147.00	153.10		mottled colour with mild chlorite alteration along some of the fracture surfaces. Trace to 2%								-									
		Voicanic	pyrite grains locally	-						-	-									
				-			-													
153.10	177.00	Diabase	Black, fine grained, with chloritic fractures, strongly Magnetic. No evidence of foliation.		1			1			1	1								
			Contact sharp along a C/Q chl veinlet at 30-40° to core axis		1						1	1								
				1							1	1								
177.00		EOH	END OF HOLE		1			1		Ĩ	T	I								
												1								

PLATINEX INC.

SHINING TREE PROJECT, ONTARIO - CASWELL EAST (WASAPIKA)

Grid Coordinates:			UTM NAD 8	3 - Zone 1	7N
LAT/LONG Coordinates:		N:	5272194	E	485992
Dip:	45		Elevation:	368.52	
Azimuth:	305		Total Depth:	300m	
Core Size:	NQ		# of Boxes	72	McBride
Target:					

	Down H	ole Tes	ts										
Туре	Depth		Dip	Azimuth									
Reflex	15		45.80	229.70									
Reflex	45		45.00	300.80									
Reflex	75		44.40	301.20									
Reflex	Reflex 105 43.90 301.80												
Reflex	135		42.80	304.40									
Reflex	165		42.50	305.20									
Reflex	195		41.90	306.20									
Reflex	225		41.10	307.30									
Reflex	255		40.40	309.00									
Reflex	285		39.90	308.70									
Reflex	300		39.70	310.10									
Downhole azimuth	readings have	been corr	rected to 7	True North by									

HOLE#: WP21-11

Page	1 of	6
Date Started:	April 22nd, 20	21
Date Completed:	April 28th, 202	21
Claim#:	184459 + 631	731
Contractor:	Missinaibi Dr	illing Servieces
Logged by: D. R.	Cutting	Sampled b

subtracting 10 degrees from the Felex Instrument reading.

Sampled by: Robert Peever

De	pth	Rock Type	Description	Strue	ct. cor	e ang	les	Strain	Alterati	on Charac	teristic	s				Samp	ole Assays				
From	То			S。	Fol	Flow	/ Vn	Intens	Туре	Intens	%QCV	∕%Py	Sample	From	То	Width	Au ppb				
0.00	2.65	Overburden																			1
											1										1
2.65	20.00	Andesite	Lightly to moderately foliated Andersite, Moderate Carbonatization. Foliations										8151	6.70	7.20	0.50	< 5				1
		Foliated	35 to 45° to core axis. Light Chlorite								1		8152	7.20	7.50	0.30	5				1
													8153	7.50	8.00	0.50	< 5				1
			7.3-9m Q/C/ChI Veining set a few cm thick very irregular, trace-1%										8154	8.00	8.50	0.50	7				
			disseminated pyrite locally. Veining at approx 40° to core axis								1		8155	8.50	9.00	0.50	35				
											1		8156	9.00	9.50	0.50	6				
											1		8157	9.50	10.00	0.50	60				
													8158	10.00	10.50	0.50	< 5				
													8159	10.50	11.00	0.50	22				1
			Control Standard OREAS 52c										8160				365				
			11.4 - 11.9m Q/C/Chl veinlets 5cm and 7cm thick at approx 50° to core axis,										8161	11 00	11 50	0.50	8				1
			trace pyrite								1		8162	11.50	11.00	0.00	5				1
				-		-						-	8163	11.00	12 40	0.50	5				1
											1		8164	12 40	13.40	1.00	< 5				1
				-		-						-	8165	13.40	14 40	1.00	< 5				1
-													8166	14.40	15.40	1.00	< 5		'		1
												-	8167	15.40	16.00	0.60	< 5			<u> </u>	
				-		-							8168	16.00	16.50	0.00	< 5			<u> </u>	
			16.45 - 18m Q/C/Chl veinlets. 1-10cm thick, irregular, hosted by local foliation.									-	8160	16.50	17.00	0.50	< 5			<u> </u>	
			trace pyrite	-									9170	17.00	17.00	0.50	< 5 7			<u> </u>	-
													0170	17.00	10.00	0.50	10		'		
				-		-						-	0171	17.50	10.00	0.50	10		 '	╞────	
													0172	18.00	18.50	0.50	< 5		<u> </u>	<u> </u>	
				-		_						-	8173	18.50	19.00	0.50	< 5		 '	╡────	
20.00	54.00	Andosito	Massive medium to fine grained andesite. Occasional hairline to 2mc thick	-		-						-							 '	╞───	
20.00	34.00	Andesite	irregular Q/C veinlets at variable angles to the core axis. Light to non magnetic.																		-
												-								<u> </u>	
			44.5-44.7m Chloritized fine gained section with slight oval amyqdules. Borders	1		1	+	1					1	1			1		<u> </u>		1
			are sharp. Block?		1		1				1							1		<u> </u>	t
				1		1		1		İ	1	1	1	1			İ		İ dara		
				1	1	1	1	1										l			1
								I		1			I	I			I				1

HOLE#: WP21-11

Page 2 of 6

De	pth	Rock Type	Description	Struc	ct. core	e angle	es	Strain	Alterati	on Chara	cteristic	cs				S	Sample As	ssays		
From	То			S。	Fol	Flow	Vn	Intens	Туре	Intens	%QCV	%Py	Sample	From	То	Width	Au ppb			
54.00	56.80	Andesite	Andesite starting to foliate again with carbonate alteration possibly sericite or fuchsite										8174	54.00	54.50	0.50	7			
		Foliated											8175	54.50	55.00	0.50	8			
			55.25- 55.35m Hairline clay gouge fault at 60° to core axis. 6cm of Q, Q/C, C veinlets with										8176	55.00	55.50	0.50	< 5			
			sericite alteration trace pyrite																	
			55.5-55.9m White bull Qtz/Carb veinlet top 30°, bottom 50° to core axis, trace pyrite										8177	55.50	56.00	0.50	27			
													8178	56.00	56.50	0.50	< 5			
56.80	85.20	Basalt/Andesite	Intermediate to mafic volcanics, medium to fine grained, foliation variable from light to																	
			moderate locally at 40-50° to core axis. Carbonatized light to moderate. Qtz/Carb veinlets														Au ppb			
													8179	56.50	57.15	0.65	< 5			
			57.35-57.65m Q/C veinlet in foliated section. Foliation at +/-45° to core axis, trace-1%										8180	57.15	57.65	0.50	25			
			disseminated pyrite grains																	
			Control Standard RDUP of 8180										8181				19			
			57.7-58.15m Q/C veinlets in afoliated section. Foliation at 30° to core axis. Chlorite breccia										8182	57.65	58.15	0.50	5			
			at the end of interval with carb chunks.										8183	58.15	58.65	0.50	< 5			
			Rubbly core locally										8184	58.65	59.15	0.50	< 5			
													8185	59.15	60.00	0.85	< 5			
													8186	60.00	60.50	0.50	< 5			
													8187	60.50	61.00	0.50	6			
													8188	61.00	61.50	0.50	5			
85.20	106.50	Basalt	Mafic Volcanic/Basalt. Notably darker in colour and more chlorite interval. Medium grained																	
			with possible pillow selvedges notable. Irregular Q/C in C veinlets throughout the interval.																	
			89.8-90m Carb/hematite veinlets, 1cm thick at 20° to core axis																	
L			95-98m Low angle Carb/hem vein in fracture zone, +5cm thick, at 10° to core axis																	
400 50	400.05	Mafia llusta una adiata	Medium to dark groop gerovicelour. Fina to medium grained. Mederately oblaritized Lightly	-																
106.50	163.25		to moderately carbonatized locally. Foliated lightly mostly thorughout, gradationally more	 																
		VUICATIIC	intense locally. Shot with irregular Q/C or C veinlets locally, trace to 2% disseminated pyrite		<u> </u>					ł			0100	106.00	106 50	0.50	202		-	
			as grains or blebs										0109	106.00	106.00	0.50	203			
<u> </u>			107-109 8m Enligted section with 3-5% pyrite locally as blacks and stringers along foliation										0190	106.50	100.00	0.30	10			
			planes. Foliation at ~40° to core axis. Several Q/C veinlets from 1 to 25cm thick. +/- 20-										8191	106.80	107.20	0.40	342			
			30% of the interval is veining.	<u> </u>									8192	107.20	107.90	0.70	< 5			
				1									8193	107.90	108.40	0.50	592			

HOLE#: WP21-11

Page 3 of 6

De	pth	Rock Type	Description	Struc	truct. core angles St		Strain	Alterati	on Chara	acteristi	cs				5	Sample A	ssays			
From	То			S。	Fol	Flow	٧n	Intens	Туре	Intens	%QCV	%Py	Sample	From	То	Width	Au ppb			
													8194	108.40	109.10	0.70	58			
													8195	109.10	109.50	0.40	260			
													8196	109.50	110.00	0.50	122			
													8197	110.00	110.50	0.50	< 5			
													8198	110.50	111.00	0.50	5			
													8199	111.00	111.50	0.50	< 5			
													8200	111.50	112.00	0.50	< 5			
			117.2-117.4m Foliated section with Q/C veining. Foliation at 40° to core axis, trace Py																	
			118.5-118.7m Rubbly sections with chlorite mud														Au ppb			
			133.45-134.35 Foliated interval with 1-3% coarse pyrite blebs, carb breccia and chlorite																	
			mud fault rubble at bottom of interval. Fault at 10-20° to the core axis	_																
			151.55-152.65m Chloritic rubbly section. Chloritic fault 2cm thick at 152.4m at 30° to core	<u> </u>	I		1			I										
				_		-	_												 	
			and at high angle to the foliation. Foliation at 50° to core axis. Sparse trace disseminated			-	-													
			pyrite locally. Seems to be broken up and carbonate healed			-	-													
				-		-	-													
163.25	201.30	Mafic/Intermdiate	Medium to fine grained, leucoxene crystals abundant, pathcy carbonate/sericite alteration,	-																
		Volcanic	numberous irregular Q/C veinlets, unit moderatly chloritized. Locally foliation developed at	-		1	1				İ.									
			40-50° to core axis. Some fractures filled with carb/hematite veinlets. Epidote alteration																	
			169.5-169.7m Q/C veinlet @ 50° to core axis, granular pyrite along chloritic planes in the																	
			vein																	
201.30	206.70	Tuff	Possible tuff facies of the volcanic pile. Moderately to strongly foliated at 50° to core axis,										8251	199.00	199.50	0.50	< 5			
			+/-30% of the interval is Q/C veining with 1-30cm thick white Qtz/C veins. 1-2%										8252	199.50	200.00	0.50	< 5			
			disseminated pyrite locally. Black tourmaline present in several of the veinlets.										8253	200.00	200.60	0.60	7			
													8254	200.60	201.40	0.80	10			
													8255	201.40	201.90	0.50	123			
													8256	201.90	202.40	0.50	105			
													8257	202.40	203.00	0.60	1120			
													8258	203.00	203.50	0.50	903			
													8259	203.50	204.00	0.50	154			
			Control standard OREAS 61d			1	1						8260				4940			

HOLE#: WP21-11

Page 4 of 6

De	pth	Rock Type	Description	Struc	t. core	e angle	es	Strain	Alterati	on Chara	cteristic	cs				S	Sample A	ssays		
From	То			S。	Fol	Flow	Vn	Intens	Туре	Intens	%QCV	%Py	Sample	From	То	Width	Au ppb			
													8261	204.00	204.50	0.50	101			
													8262	204.50	205.00	0.50	26			
													8263	205.00	205.45	0.45	44			
													8264	205.45	205.90	0.45	230			
													8265	205.90	206.40	0.50	154			
206.70	232.80	Mafic/Intermdiate	Same as 163.25 to 201.3m										8266	206.40	207.00	0.60	260			
		Volcanic											8267	207.00	208.00	1.00	< 5			
													8268	208.00	209.00	1.00	< 5			
													8269	209.00	210.00	1.00	Au ppb)		
232.80	245.00	Tuff	Strongly foliated at 50 to 60° to core axis. Shot with Q/C/T veins hairline to 5cm thick, +/-										8270	232.00	233.00	1.00	< 5			
			locally, larger massess along some foliation planes at veinlet boundaries. Bleps of										8271	233.00	233.50	0.50	44			
			chalcopyrite on deges of certain veinlets.										8272	233.50	234.00	0.50	63			
													8273	234.00	234.50	0.50	120			
													8274	234.50	235.00	0.50	1190			
													8275	235.00	235.50	0.50	2150			
													8276	235.50	236.00	0.50	300			
													8277	236.00	236.40	0.40	63			
													8278	236.40	236.80	0.40	300			
													8279	236.80	237.70	0.90	1600			
			Control sample BLANK										8280				< 5			
													8281	237.70	238.60	0.90	45			
													8282	238.60	239.20	0.60	192			
													8283	239.20	239.80	0.60	145			
													8284	239.80	240.80	1.00	18			
													8285	240.80	241.35	0.55	21			
													8286	241.35	242.00	0.65	< 5			
													8287	242.00	242.50	0.50	< 5			
													8288	242.50	243.00	0.50	30			
													8289	243.00	243.50	0.50	12			
													8290	243.50	244.00	0.50	5			
													8291	244.00	244.50	0.50	116			
													8292	244.50	245.00	0.50	5			

HOLE#: WP21-11

Page 5 of 6

De	pth	Rock Type	Description	Struc	uct. core angles			Strain	Alterati	on Chara	acteristi	cs				5	Sample A	ssays		
From	То			S。	Fol	Flow	Vn	Intens	Туре	Intens	%QCV	%Py	Sample	From	То	Width	Au ppb			
245.00	253.00	Mafic/Intermediate	Light to moderate green gery colour. Light foliation at 50-60° to core axis. Irregular Q/C +/-T										8293	245.00	246.00	1.00	38			
		Volcanic	veinlets though the interval Chlorite/Sericite alteration is moderate										8294	246.00	247.00	1.00	7			
		Altered											8295	247.00	248.00	1.00	10			
													8296	248.00	249.00	1.00	31			
				1			1													
253.00	265.75	Mafic/Intermediate	Medium green colour, medium to fine grained. Variably locally foliated. Irregular Q/C																	
		Volcanic	veinlets, trace-2% locally disseminated pyrite blebs, more in vicinity of Q/C veinlets																	
													8297	262.00	263.00	1.00	5			
			263-265.75m Q/C(T) veinlet set at low angle to the core axis. 2-3% pyrite blebs in host rock										8298	263.00	263.50	0.50	Au ppb)		
			loacily in vicinity of veinlets										8299	263.50	264.00	0.50	12			
			Control Standard OREAS 52c										8300				340			
													8301	264.00	264.50	0.50	< 5			
													8302	264.50	265.05	0.55	< 5			
							1						8303	265.05	265.50	0.45	145			
				1			1						8304	265.50	266.10	0.60	< 5			
265.75	271.00	Mafic/Intermediate	al medium to fine grained, medium green colour shot with irregular Carb and Carb/Qtz										8305	266.10	266.70	0.60	8			
		Volcanic	veinlets. Specked with leucoxene throughout, trace dsseminated pyrite locally. Contact										8306	266.70	267.70	1.00	< 5			
			gradationally more rollated at the bottom at 40-50° to core axis					1					8307	267.70	268.70	1.00	6			
271.00	272.60	Mafic/Intermediate	Carbonatized and locally foliated at 40-50° to core axis. Local rubbly core over short																	
		Breccia (healed)	intervals. Chlorite on fractures. Q/C veinlets up to 7cm thick. Low to moderate sericite,																	
272.60	291.00	Mafic/Intermediate	Same as 265.75 to 271m										8308	289.00	290.00	1.00	6			
		Volcanic											8309	290.00	291.00	1.00	5			
291.00	298.00	Tuff	Foliated unit, seems to be a tuff. Marfic to intermediate composition, foliated at 50° to core										8310	291.00	291.50	0.50	12			
			disseminated sulphide (pyrite) locally										8311	291.50	292.00	0.50	8			
													8312	292.00	292.60	0.60	697			
													8313	292.60	293.10	0.50	6			
													8314	293.10	294.00	0.90	< 5			
													8315	294.00	295.00	1.00	7			
													8316	295.00	296.00	1.00	5			
													8317	296.00	297.00	1.00	< 5			

HOLE#: WP21-11

Page 6 of 6

De	pth	Rock Type	Description	Struc	ct. core	e angle	es	Strain	Alterati	on Chara	acteristi	cs				5	Sample A	ssays		
From	То	1		S。	Fol	Flow	Vn	Intens	Туре	Intens	%QCV	%Py	Sample	From	То	Width	Au ppb			
			297.15m 6cm thick Q/C/T veinlet at 50° to core axis. 1-3% pyrite diss. associated										8318	297.00	297.50	0.50	132			
													8319	297.50	298.00	0.50	262			
			Control Standard RDUP of 8319										8320				340			
					1															
298.00	300.00	Mafic/Intermediate	Same as 272.6-291m No foliation, med grained										8321	298.00	299.00	1.00	13			
		Volcanic			1															
300.00		EOH	END OF HOLE																	
																	Au ppb			
																				L
																				L
																				L
				_					ļ							ļ				L
						_														
						-	-												 	
				-	-	-														
						-														
				_		-														
						-														
					1	-														
				-					<u> </u>											
				1			-													
				1					1											
				1		1	1		1											
	1			1					1	İ										
				1	1	1	1		l I	İ										
				1	1				1							1				
	1			T			I			Ī	Î									
				1	T	Ĭ	Γ	1	I	Ī	Ī	I				1				

PLATINEX INC.

SHINING TREE PROJECT, ONTARIO - CASWELL EAST (WASAPIKA)

Grid Coordinates:		UTM NAD 83 - Zone 17N
UTM Coordinates:		N: 5272260 E: 485924
Dip:	45	Elevation: 366.53m
Azimuth:	330	Total Depth: 222m
Core Size:	NQ	# of Boxes 52 McBride
Target:		

	Down Ho	ole Tests	
Туре	Depth	Dip	Azimuth
Reflex	15	45.30	336.60
Reflex	45	44.40	336.70
Reflex	75	43.50	337.50
Reflex	105	42.50	337.60
Reflex	135	41.40	338.60
Reflex	165	40.30	338.50
Reflex	195	39.40	338.10
Reflex	222	37.90	338.60

Downhole azimuth readings have been corrected to True North by

subtracting 10 degrees from the Felex Instrument reading.

HOLE#: WP21-12

Page	1	of	15
Date Started:	May 8,	2021 (D)	
Date Completed:	May 12	, 2021 (N))
Claim#:	184459	+ 631731	+ 131779
Contractor:	Missina	aibi Drillir	ng Services
Logged by: D. R. (Cutting		Sampled by: F

Sampled by: Robert Peever

De	pth	Rock Type	Description	Stru	ct. cor	e angl	es	Strain	Alterati	on Charac	teristics	s				Sampl	e Assays			
From	То			s。	Fol	Flow	Vn	Intens	Туре	Intens	%QCV	%Py	Sample	From	То	Width	Au ppb			
0.00	2.20	Overburden																1		1
2.20	16.60	Mafic Volcanic	Medium to dark green gey colour, medium to coarse grained, massive and																	
		Flow	relatively equigranular. Sharpish lower contact so unit may be a fine grained		1															
		(Undeformed)	and fractured with Fe oxide coating on most of the fracture surfaces. Other																	
			than the brittle cracking there is a lack of notable structure. There are a few																	
			wide spread irregular white carb/Qtz veinlets some with hornblende and sericite																	
			associated. No sulphides noted what so ever. No alteration except the chloritization throughout.		1															
					1															
			No unit sampling undertaken.		1															
16.60	24.00	Mafic Volcanic	Medium to dark green grey colour, fine to medium grained locally, generally																	
		Flow	quite massive with irregular white Carb/Qtz veinlets with thickness from hairline																	
		(Undeformed)	carbonatization patches through the unit. Beige leucoxene laths notable																	
			occasionally. Occasional disseminated pyrite grains notable either on the																	
			margins of the C/Q veinlets or the host MV. Vicinity of 20.6m some C/Q veinlets																	
			10cm but VERY conductive laterally longer than the core diameter.																	
			Unit Sampling:																	
			Trace irregular C/Q veinlets, Tr disseminated py										J356326	20.00	20.50	0.50	168			
			Trace irregular C/Q veinlets, Some with semi massive cp/py over cm's, veinlets										J356327	20.50	21.00	0.50	< 5			
			conductive																	
			Trace irregular C/Q veinlets, Some with semi massive cp/py over cm's, veinlets										J356328	21.00	21.50	0.50	6			
													1050000	04 50	00.00	0.50				
			Strongest C/Q veinlet, with semi massive cp/py, veinlets at low and moderate angles to core axis			-							J356329	21.50	22.00	0.50	< 5			
													1256220	22.00	22.00	1.00	. 5		 	
			Lacks the semi massive cp/py but veinlets still present										1320330	22.00	23.00	1.00	< 5		 	
			irregular C/Q veinlets, trace disseminated pyrite										1320331	23.00	23.50	0.50	< 5		 	
			Irregular C/Q veinlets, trace disseminated pyrite. Contact.			-							J320332	23.50	24.00	0.50	< ၁			
					-															
					1	-											1			
										•										

HOLE#: WP21-12

Page 2 of 15

De	pth	Rock Type	Description	Strue	ct. cor	e angle	es	Strain	Alterati	on Chara	cteristi	cs				S	Sample A	ssays		
From	То			S。	Fol	Flow	Vn	Intens	Туре	Intens	%QCV	%Py	Sample	From	То	Width	Au ppb			
24.00	27.00	Mafic Intrusive Flow	Medium to light greenish colour, lightly to moderately foliated and looks a bit tuffaceous.																	
		Possibly Mafic Tuff	Foliation at 40 -50° to the core axis. Irregular C/Q veining at the top of the interval generally	·																
		Weakly Deformed	parallel to the foliation. Beige reucoxene specks are notable disseminated through the unit.																	
			thick C/Q vein at +/- 30° to the core axis. Lower contact more gradational over a few cm's.																	
			20 cm thick carb/Qtz veinlet hosted by local foliation at 24/4 to 24/6m, Trace disseminated																	
			pyrite as grains and small masses Trace - 2% locally through the units, though																	
			concentrations seem stronger at the top of the unit associated with the irregular C/Q veinlets																	
			Tornolo.																	
			Unit Sampling:																	
			20cm C/Q veinlet in the foliation, Trace -1%+ disseminated pyrite in the margins										J356333	24.00	24.55	0.55	13			
			foliated MV with irregular C/Q veinlets, pyrite disseminated as grains and small blebs to										J356334	24.55	25.00	0.45	9			
			2% locally																	
			foliated MV with irregular C/Q veinlets, pyrite disseminated as grains and small blebs to										J356335	25.00	25.55	0.55	47			
			2% locally																	
			Less C/Q veining and bleaching though still strongly carbonatized. Trace disseminated										J356336	25.55	26.00	0.45	5			
			pyrite grains																	
			Less C/Q veining and bleaching though still strongly carbonatized. Trace disseminated										J356337	26.00	26.50	0.50	7			
			pyrite grains																	
			Less C/Q veining and bleaching though still strongly carbonatized. Trace disseminated										J356338	26.50	27.00	0.50	< 5			
			pyrite grains																	
27.00	36.00	Mafic Volcanic	Medium to dark green grey colour, Medium to fine grained and for the most part massive.																	
		Flow	Locally over short intervals some light foliation notable at 50-60° to core axis. Carb/Qtz																	
		(Underformed	veinlets irregular and common from hairline to a cm or so thickness. A high angle set																	
		(Weakly)	accessory hematite and occasional pyrite grains. Unit is locally moderately pervasively																	
		Deformed)	carbonatized. 34.4 to 34.85m rubbly interval fault/fracture zone with chloritic crud on some																	
		· · · · · ·	surfaces, impression that the fault lies at reltively low angle to core axis +/- 30° or so. Trace																	
			disseminated pyrite grains through the interval.																	
				1																
			Unit Sampling: Contact and Checks only																	
			Trace irregular C/Q veinlets at contact, trace disseminated pyrite grains										J356339	27.00	27.50	0.50	< 5			
			Control Standard OREAS 52c										J356340				353			

HOLE#: WP21-12

Page 3 of 15

De	pth	Rock Type	Description	Struc	ct. cor	e angle	es	Strain	Alterati	ion Chara	acteristi	cs				5	Sample A	ssays		
From	То			S。	Fol	Flow	Vn	Intens	Туре	Intens	%QCV	%Py	Sample	From	То	Width	Au ppb			
		Unit Sampling	Trace irregular C/Q veinlets, trace disseminated pyrite grains										J356341	27.50	28.00	0.50	35			
		Continued	Trace irregular C/Q veinlets, trace disseminated pyrite grains										J356342	28.00	28.50	0.50	< 5			
			4cm thick C/Q veinlet at approx 30° to core axis, Trace disseminated pyrite grains										J356343	34.90	35.25	0.35	< 5			
36.00	42.70	Gabbro	Medium to dark green/grey colour. Medium grained equigranular and massive. Sharp																	
		Undeformed	contacts with MV top and bottom. No foliation notable. Very few hairline Carb/Q veinlets at irregular orientations. Composition visually would be similar to the fine grained matic																	
			volcanics of the pile, primarily mafic and plagioclase minerals. Cracks and vein fillings give																	
			impression of brittle intrusive. No carbonatization at all. Unit chloritized with a hint of	-			_													
			epidote locally. Mafic volcanic at lower contact very fractured and filled with white Carb/Q							_								<u> </u>		
-			compared to the Gabbro above. Lower contact sharp but very inegular. Occasional trace of pyrite grains disseminated though the unit. Some red hematite as coatings on fractures.	-	_					_									 	
			r),		-															
				-														<u> </u>	 	
			Unit Complings Check Only	-																
			Com thick C/O using the core ovic three discominated purity										1256244	37.00	27.20	0.30	< 5			
			2cm mick, C/Q veinet at 15° to core axis, trace disseminated pyrite	-								-	3330344	37.00	57.50	0.30	< 5			
42 70	45 70	Mafic Volcanic	Medium to dark green grev colour. Medium to fine grained locally. May have evidence of a							-						-				
42.10	40.70	Flow	pour pillow salvedge notable, pyrite and C/Q veining in association. A few irregular hairline	-																
		Undeformed	C/Q veinlets. Moderate pervasive carbonatization. Trace beige leucoxene laths notable															1		
			locally. I race disseminated pyrite grains. Lower contact gradational to the next unit. May																	
			Tuffaceous sections																	
			Unit Sampling:																	
			Irregular C/Q veinlets in fractured contact with Gabbro, Trace diss. pyrite grains										J356345	42.70	43.00	0.30	< 5			
			Irregular C/Q veinlets with trace disseminated pyrite grains										J356346	43.00	43.50	0.50	< 5			
			Irregular C/Q veinlets with trace disseminated pyrite grains										J356347	43.50	44.00	0.50	8			
			Irregular C/Q veinlets with trace disseminated pyrite grains				1						J356348	44.00	44.50	0.50	9			
			Tuffaceous appearance from part of interval with Trace 2% diss. Py grains locally										J356349	44.50	45.00	0.50	6			
			Irregular C/Q veinlets with trace disseminated pyrite grains										J356350	45.00	45.70	0.70	11			
				T		1			1								1	1		
45.70	54.60	Mafic Tuff	Light to medium green grey colour. Medium to fine grained. Unit appears to be a crystal or	Ī	1	Ī	Ī	Ī	Ī				I							
		Moderate	fine end lapilli tuff. Deformed squashed fragments are notable locally. Unit is moderatly																	
		Deformation	ionated at 40-50° to the core axis. Chiontic alteration particularly in the		Ĩ		I													

HOLE#: WP21-12

Page 4 of 15

From To Note Hype Source of Hype Note	De	onth	Rock Type	Description	Stru	ct cor	re and	nles	Strain	Altera	ion Char	acterist	ics					Sample A	seave		
Non- Vicinity of the hosted OC verifiestivenes. Beinge blacking with light prevasive and constrained pyrite gains from trace to 1% using the fully from the	From	To	Rook Type		S.	Fol	Floy	w Vn	Intens	Type	Intens	%0CV	%Pv	Sample	From	То	Width		(330y3	1	
Image: carbonalization notable. Disseminated pyrite grame from trace to 15 koolly through the unit, Unit hasks significant foldiato. Mither buills? UCCAN venices paroidality strong from the venice. Contacts are gradual over tens of cm. Image: carbonalization notable not	110111	10		vicinity of the hosted Q/C veinlets/veins. Beige bleaching with light pervasive	-0	1.01	1101		intens	Type	intenis	/0000	701 y	Campic	TTOM		Width				
Image: Spinificant Distance Multip *Dul/Scate versions are gradual over tens of cm. Image: Spinificant Distance Multip *Dul/Scate versions are gradual over tens of cm. Image: Spinificant Distance Multip *Dul/Scate versions are gradual over tens of cm. Image: Spinificant Distance Multip *Dul/Scate versions are gradual over tens of cm. Image: Spinificant Distance Multip *Dul/Scate versions are gradual over tens of cm. Image: Spinificant Distance Multip *Dul/Scate versions are gradual over tens of cm. Image: Spinificant Distance Multip *Dul/Scate versions are gradual over tens of cm. Image: Spinificant Distance Multip *Dul/Scate versions are gradual over tens of cm. Image: Spinificant Distance Multip *Dul/Scate versions are gradual over tens of cm. Image: Spinificant Distance Multip *Dul/Scate versions are gradual over tens of cm. Image: Spinificant Distance Multip *Dul/Scate versions are gradual over tens of cm. Image: Spinificant Distance Multip *Dul/Scate versions are gradual over tens of cm. Image: Spinificant Distance Multip *Dul/Scate versions are gradual over tens of cm. Image: Spinificant Distance Multip *Dul/Scate versions are gradual over tens of cm. Image: Spinificant Distance Multip *Dul/Scate versions are gradual over tens of cm. Image: Spinificant Distance Multip *Dul/Scate versions are gradual over tens of cm. Image: Spinificant Distance Multip *Dul/Scate versions are gradual over tens of cm. Image: Spinificant Distance Multip *Dultip				carbonatization notable. Disseminated pyrite graims from trace to 1% locally through the	-			-													
49 & 0 52, 3m, approx 2/3 of interval is verining. Trace printe associated with the margins of the verins. Contracts are gradual over tens of ch. Image: Contracts are gra				unit. Unit hosts significant foliation. White "bullish" Qtz/Carb veinlets particularly strong from	י ר																
Image: Control Standard angle and Standard Print ande Standard Print and Standard Print and Standard Pri				49.8 to 52.3m, approx 2/3 of interval is veining. Trace pyrite associated with the margins of the veins. Contacts are gradual over tens of cm																	
Image: Control Standard RDUP of J356355 Image: Control Standard RDUP of J35																					
Image: Note of the sector o																					
Image: static state disseminated pyrite at contact Image: static state disseminated pyrite at contact Image: static state disseminated pyrite Image: static state disseminated pyrite Image: static state disseminated pyrite Image: state disseminated pyrite				Unit Sampling:																	
Image: blacking starting to develop, trace disseminated pyriteImage: blacking starting to develop, trace				Light Q/C veinlets, trace disseminated pyrite at contact										J356351	45.70	46.70	1.00	12			
Image: Second				Bleaching starting to develop, trace disseminated pyrite										J356352	46.70	47.50	0.80	9			
Image: sector of the sector				10cm Q/C veinlet, foliation Increasing intensity, trace disseminated pyrite										J356353	47.50	48.00	0.50	12			
Image: Note of the state of				Bleached tuff with little else, trace disseminated pyrite										J356354	48.00	49.00	1.00	15			
Image: Normal SampleImage: Normal Sample				Bleached foliation tuff with low angle Q/C veinlet 1/5cm thick, trace-1% diss. Py local										J356355	49.00	49.50	0.50	20			
Image: space of the space of				Bracket Sample										J356356	49.50	49.95	0.45	13			
Image: solution hosted white "bullish" Q/C/chl vein, trace pyrite at some marginsImage: solution hosted white "bullish" Q/C/chl vein, trace pyrite at some marginsImage: solution hosted white "bullish" Q/C/chl vein, trace pyrite at some marginsImage: solution hosted white "bullish" Q/C/chl vein, trace pyrite at some marginsImage: solution hosted white "bullish" Q/C/chl vein, trace pyrite at some marginsImage: solution hosted white "bullish" Q/C/chl vein, trace pyrite at some marginsImage: solution hosted white "bullish" Q/C/chl vein, trace pyrite at some marginsImage: solution hosted white "bullish" Q/C/chl vein, trace pyrite at some marginsImage: solution hosted white "bullish" Q/C/chl vein, trace pyrite at some marginsImage: solution hosted white "bullish" Q/C/chl vein, trace pyrite at some marginsImage: solution hosted white "bullish" Q/C/chl vein, trace pyrite at some marginsImage: solution hosted white "bullish" Q/C/chl vein, trace pyrite at some marginsImage: solution hosted white "bullish" Q/C/chl vein, trace disseminated pyriteImage: solution hosted white "bullish" Q/C/chl vein, trace disseminated pyriteImage: solution hosted white "bullish" Q/C/chl vein, trace disseminated pyriteImage: solution hosted white "bullish" Q/C/chl vein, trace disseminated pyriteImage: solution hosted white "bullish" Q/C/chl vein, trace disseminated pyriteImage: solution hosted white "bullish" Q/C/chl vein, trace disseminated pyriteImage: solution hosted white "bullish" Q/C/chl vein, trace disseminated pyriteImage: solution hosted white "bullish" Q/C/chl vein, trace disseminated pyriteImage: solution hosted white "bullish" Q/C/chl vein, trace disseminated pyriteImage: solution hosted white "bullish" Q/C/chl vein, trace disseminated pyriteImage: solution hosted white "bullish" Q/C/chl vein, trace disseminated pyrite </td <td></td> <td></td> <td></td> <td>30cm foliation hosted white "bullish" Q/C/chl vein, trace pyrite at some margins</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>J356357</td> <td>49.95</td> <td>50.30</td> <td>0.35</td> <td>14</td> <td></td> <td></td> <td></td>				30cm foliation hosted white "bullish" Q/C/chl vein, trace pyrite at some margins										J356357	49.95	50.30	0.35	14			
Image: space of the standard RDUP of J356359Sind Space of the space of				50cm foliation hosted white "bullish" Q/C/chl vein, trace pyrite at some margins										J356358	50.30	51.00	0.70	11			
Image: Control Standard RDUP of J356359Image: Control				65cm foliation hosted white "bullish" Q/C/chl vein, trace pyrite at some margins										J356359	51.00	51.75	0.75	9			
Image: Margin Control Contervico Contervicto Control Control Control Control Co				Control Standard RDUP of J356359										J356360				9			
Bleached tuff with light Q/C/chl veinlets irregular, trace disseminated pyrite J356362 52.30 52.80 13 14 14 Bleached tuff with light Q/C/chl veinlets irregular, trace disseminated pyrite J356363 52.80 53.40 0.60 9 14				40cm foliation hosted white "bullish" Q/C/chl vein, trace pyrite at some margins										J356361	51.75	52.30	0.55	20			
Bleached tuff with light Q/C/chl veinlets irregular, trace disseminated pyrite J356363 52.80 53.40 0.60 9				Bleached tuff with light Q/C/chl veinlets irregular, trace disseminated pyrite										J356362	52.30	52.80	0.50	13			
				Bleached tuff with light Q/C/chl veinlets irregular, trace disseminated pyrite										J356363	52.80	53.40	0.60	9			
Several +/-5cm thick foliation hosted Q/C/chl veinlets, trace disseminated pyrite J356364 53.40 0.70 12				Several +/-5cm thick foliation hosted Q/C/chl veinlets, trace disseminated pyrite										J356364	53.40	54.10	0.70	12			
Bottom of unit minimal veining, trace disseminated pyrite J356365 54.10 54.60 0.50 9				Bottom of unit minimal veining, trace disseminated pyrite										J356365	54.10	54.60	0.50	9			
54.60 58.70 Mafic Volcanic Medium green grey colour. Medium to fine grained and locally porphyritic with chloritized	54.60	58.70	Mafic Volcanic	Medium green grey colour. Medium to fine grained and locally porphyritic with chloritized																	
Flow matic phenocrysts. +/-1-2mm grains. I don't believe the edges are sharp though defined to be anyodules. The top metre or so of the interval has tuffaceous tendencies. Locally a very			Flow	matic phenocrysts. +/-1-2mm grains. I don't believe the edges are sharp though defined to be amyndules. The top metre or so of the interval has tuffaceous tendencies. Locally a very	,																
(Underformed weak foliation is notable at +/-50° to the core axis. Beige leucoxene crystals are notable			(Underformed	weak foliation is notable at +/-50° to the core axis. Beige leucoxene crystals are notable	·	_		_									ļ				
to Weakly through the unit. Fine irregular Q/C with chlorite veinlets present. Disseminated pyrite			to Weakly	through the unit. Fine irregular Q/C with chlorite veinlets present. Disseminated pyrite			_	_													
Deformation) grains at trace levels through the unit and in association with some of the fine C/Q veinlets.			Deformation)	grains at trace levels through the unit and in association with some of the fine C/Q veinlets.		_		_									ļ				
				-				_									ļ				
					-	_	_	_													
La la la la la la la la la la la la la la				Unit Sampling	-	-	+	_	-	-	-							ł			
Onit Sampling. plus/minus six 1 1/5cm O/C abl vaiplets basted by feliation trace discominated purite.	<u> </u>			our company.	+				-	-				1356366	54 60	55.20	0.60	~ 5			
Very little veining, trace disseminated pyrite 0300000 04.00 05.20 0.00 C 3	<u> </u>			Very little veining, trace disseminated pyrite	-		-	-	-	-				1356367	55 20	56.20	1.00	5			

HOLE#: WP21-12

Page 5 of 15

De	pth	Rock Type	Description	Struc	ct. core	e angl	es	Strain	Alterati	on Chara	acteristi	ics					Sample A	ssays		
From	То			So	Fol	Flow	Vn	Intens	Туре	Intens	%QCV	%Py	Sample	From	То	Width	Au ppb			
		Unit Sampling	Very little veining, trace disseminated pyrite										J356368	56.20	57.20	1.00	< 5			
		Continued	Very little veining, trace disseminated pyrite										J356369	57.20	58.00	0.80	5			
			Light hairline irregular Q/C stockwork veinlets some with pyrite, trace+ diss. Pyrite										J356370	58.00	58.70	0.70	< 5			
58.70	61.00	Mafic Tuff	Medium to light green colour, Medium to fine grained. Fine end of the lapilli tuff. Numerous																	
		Moderate	tine C/Q veinlets at irregular orientations both parallel to and cross cutting the local foliation. Cross cutting relationships are indeterminate. The veinlets vary in thickness from																	
		Deformation	hairline to +/- 2 cm at the thickest. Disseminated pyrite grains present through the unit. Unit																	
			is moderately to strongly pervasively carbonatized probably contributing to the bleached																	
			appearance. Foliation at 50-60° to the core axis. Stretched out beige leucoxene crystals																	
			notable locally.																	
			Unit Sampling:																	
			Irregular Q/C veinglest with trace to 1% pyrite disseminated locally										J356371	58.70	59.00	0.30	10			
			Irregular Q/C veinglest with trace to 1% pyrite disseminated locally										J356372	59.00	60.00	1.00	8			
			Irregular Q/C veinglest with trace to 1% pyrite disseminated locally										J356373	60.00	61.00	1.00	< 5			
61.00	63.00	Mafic Volcanic	As 54.6 - 58.7m. Including chloritized mafic porphyroblasts																	
		Flow																		
		(Underformed	Unit Sampling: (continuity only)																	
		to Weakly	Irregular Q/C veinglets, trace disseminated pyrite										J356374	61.00	62.00	1.00	< 5			
		Deformation)	Irregular Q/C veinglets, trace disseminated pyrite										J356375	62.00	63.00	1.00	< 5			
63.00	64.15	Polymictic	Fine polymictic breccia mixed with mafic volcanic. Pieces in the breccia are relatively small																	
		Volcanic	on the order of 4-5cm or less. Fragments are primarily mafic volcanic but also Qtz etc.																	
		Breccia	carbonatized. Not sure at this time of provenence flow top breccia, interflow unit, add																	
		Undeformed	carbonate veining etc. Unit is shot with irregular white/grey Carb/Qtz veinlets trace																	
			disseminated pyrite as grains.																	
			Unit Sampling:																	
			Complete mix in one sample										J356376	63.00	64.15	1.15	10			

HOLE#: WP21-12

Page 6 of 15

De	pth	Rock Type	Description	Struc	ct. core	e angle	es	Strain	Alterati	on Chara	acteristi	ics					Sample A	ssays		
From	То			So	Fol	Flow	Vn	Intens	Туре	Intens	%QCV	%Py	Sample	From	То	Width	Au ppb			
64.15	67.90	Mafic Volcanic	Medium to dark green grey colour. Medium to fine grained and massive though shot with																	
		Flow	irregular white Carb/Qtz veinlets. Unit appears to be shattered and filled. Some the carb																	
		Undeformed	Upper contact sharp at 30° to core axis. Lower contact gradational over 20 cm or so with																	
			gradual increase in foliation to the next unit. Trace disseminated pyrite grains.																	
			Unit Sampling:										1050077	04.45	05.00	0.05				
			Irregular white Q/C "Shatter" veinlets, trace disseminated pyrite										J356377	64.15	65.00	0.85	56			
			Irregular white Q/C "Shatter" veinlets, trace disseminated pyrite										J356378	65.00	66.00	1.00	< 5			
			Irregular white Q/C "Shatter" veinlets, trace diss. Py, 2 veins 10+7cm @ 40° to c/a										J356379	66.00	66.50	0.50	< 5			
			Control standard OREAS 61d										J356380				4680			
			Bracket Sample										J356381	66.50	67.00	0.50	16			
			Irregular white Q/C "shatter" veinlets, trace disseminated pyrite										J356382	67.00	67.90	0.90	15			
67.90	69.90	Mafic Tuff	Light green with beige bleaching. Squashed crystal/fine lapilli tuff with a mafic composition.																	
		Moderately to	Moderate to strong "wavy" toliation developed as 60-70° to core axis. Beige bleaching.																	
		Strongly	carbonatized. Possible a bit of sericite therefore unit may be trending toward intermediate																	
		Deformed	rather than mafic. Moderate bleaching and foliation tail off over 0.5m or so at the bottom of																	
			the unit becoming more flow like at the bottom. trace to trace+ disseminated pyrite grains																	
			notable as well as grain along foliation planes and veinlet margins.																	
			Unit Sampling:							I			1256202	67.00	60.40	0.50	244			
			Moderate+ Bleaching, Q/C veinlets I race+ disseminated pyrite										1320383	07.90	00.40	0.50	344			
			Modreate-Low Bleaching, Q/C veinlets dropping off, trace disseminated pyrite	_									J356384	68.40	68.90	0.50	23			
L			Trace-Low Bleaching, irregular Q/C veinlets, trace disseminated pyrite	<u> </u>	I		ļ	ļ		ļ			J356385	68.90	69.90	1.00	7			
	77.46		Madium to dark mean mercentation Medium to fine ensite of Oceaneth			 	 													
69.90	//.10	Matic Volcanaic	weaturn to dark green grey colour. Medium to tine grained. Generally massive and shot with irregular O/C veinlets. May locally have a tuffaceous component. Moderately	<u> </u>		<u> </u>	—													
		FIOWS	pervasive carbonatized, trace disseminated pyrite grains. Foliation where developed at	<u> </u>		-	ļ													
		Underformed to	about 50° to core axis. Unit may be locally porphyritic with chloritized phenocrysts. Bottom				┣───													
		weakly	of the interval hosts hematite/specularite coated	<u> </u>			 	ļ		 										
		deformed																		

HOLE#: WP21-12

Page 7 of 15

De	epth	Rock Type	Description	Stru	ct. cor	e angl	es	Strain	Alterati	on Chara	acteristi	ics					Sample A	ssays		
From	То			So	Fol	Flow	٧n	Intens	Туре	Intens	%QCV	%Py	Sample	From	То	Width	Au ppb			
			fractures occasionally. Variably pervasively carbonatized from Nil to Moderate locally.																	
			Short moderately foliated interval (tuff?) with pyrite bearing C/Q veinlets in the foliation.																	
			Unit Sampling:																	
			Irregular Q/C veinlets, trace disseminated pyrite										J356386	69.90	70.90	1.00	6			
			Irregular Q/C veinlets, trace disseminated pyrite										J356387	70.90	72.00	1.10	7			
			Irregular Q/C veinlets, trace disseminated pyrite										J356388	72.00	73.00	1.00	< 5			
			Irregular Q/C veinlets, trace disseminated pyrite										J356389	73.00	74.00	1.00	5			
			Irregular Q/C veinlets, trace disseminated pyrite										J356390	74.00	74.75	0.75	144			
			Irregular Q/C veinlets, ?Tuff, trace disseminated pyrite										J356391	74.75	75.15	0.40	26			
			Irregular Q/C veinlets, some with blebs, pyrite associated, trace disseminated pyrite										J356392	75.15	75.55	0.40	9			
			Bracket Sample					1					J356393	75.55	76.05	0.50	< 5			
			Irregular Q/C veinlets, trace disseminated pyrite										J356394	76.05	77.10	1.05	< 5			
77.10	79.75	Mafic Tuff?	Light green grey/beige stiped colour. Moderately to strongly foliated at -50° to the core axis					1												
		Moderately to	Beige bleeching may be partially caused by Fe Carbonates. Most of the unit is medium																	
		Strongly	foliation Blebby pyrite up to 2-3mm grains occur along some of the foliation planes																	
		Deformed	particularly in the vicinity of 78 to 79m. Mafic composition of the unit appears to be similar																	
			to the more massive "flow" volcanics, so may be in fact just another facies of the flow pile																	
			and visually different due to foliation and bleaching over the interval. There is no apparent																	
			green/grev coloured intervals. Unit where beige seems a bit harder so may be a little			-	-													
			silicified.															ļ		
				_																
			Unit Sampling:	_									1050005	77.40	70.00	0.00	50			
			Foliated tuff with light Q/C veinlets, trace disseminated pyrite										1326392	77.10	78.00	0.90	50			
			Beige colour, semi massive pyrite veinlet of 2mm there, Q/C veinlets, trace diss. Py		-								J356396	78.00	78.30	0.30	125			
			10cm Qtz/carb/tourmaline veinlet with py along margins. Trace+ disseminated pyrite			 	 	 					J356397	78.30	78.60	0.30	1800			
L			Beige alteration, Q/C/T veinlets in foliation, clots of pyrite up to 3mm grain size, trace-1% py	/	<u> </u>	<u> </u>	<u> </u>	I	ļ	I	ļ	I	J356398	78.60	79.05	0.45	449		ļ	
I			Bottom of interval, less beige alteration, trace disseminated pyrite	1	<u> </u>	<u> </u>	<u> </u>	I	<u> </u>	I	ļ		J356399	79.05	79.75	0.70	11	ļ	ļ	
			Control standard BLANK		<u> </u>						ļ		J356400				< 5			
I								I									ļ			

HOLE#: WP21-12

Page 8 of 15

De	pth	Rock Type	Description	Struc	ct. core	e angle	es	Strain	Alterati	on Chara	acteristi	ics					Sample A	ssays		
From	То			So	Fol	Flow	Vn	Intens	Туре	Intens	%QCV	%Py	Sample	From	То	Width	Au ppb			
79.75	92.95	Mafic Flow	Medium to dark green grey colour. Generally quite massive with a light foliation developed																	
		Underformed to	variably through the unit. Foliation is at more or less 50° to the core axis. Locally some																	
		weakly	hosted by local foliation. Occasional bematite/speculorite coated fracutres on small																	
		deformed	veinlets. Some of the Qtz/Carb/ +/-Tourmaline veinlets have pyrite associated with the																	
			beige altered walls. At the Q/C/ +/-T veinlets are somewhat discrete only check sampling																	
			will be done at this point ; possible that the interval from 79.75 to 84.15 is a mafic dike																	
			which cuts vein 109																	
			Unit Sampling:																	
			Unit contact, trace disseminated pyrite										J356401	79.75	80.25	0.50	5			
			Irregular Q/C veinlets, trace disseminated pyrite										J356402	80.25	81.20	0.95	< 5			
			Locally 45% disseminated pyrite plus beige alteration +/- Q/C/T veinlets										J356403	81.20	82.00	0.80	22			
			Bracket Sample										J356404	82.00	83.00	1.00	7			
			Irregular veinlets, trace disseminated pyrite										J356405	83.00	84.15	1.15	10			
			3cm foliation hosted at 50° to core axis Q/C veinlet, beige bleaching/silicication, 1-2% local										J356406	84.15	84.85	0.70	197			
			blebby disseminated pyrite			1														
			Irregular Q/C veinlets, trace disseminated pyrite										J356407	84.85	85.65	0.80	5	1		
			1cm thick Q/C veinlet with beige bleaching, and up to 2% diss. pyrite blebs locally							1			J356408	85.65	85.95	0.30	105			
			2x Q/C veinlets 1cm thick at 50° to core axis in foliation, 1% pyrite locally										J356409	90.00	90.30	0.30	33			
92.95	116.80	Mafic Volcanic	Medium to dark grey green colour, medium to locally minder grained. Generally massive																	
		Flow	though moderately + foliated at 40-50° to the core axis. Unit shot with irregular C/Q veinlets from bairling to 2cm or so in thickness, both bested by local foliation and cross cutting the																	
		Moderately to	foliation. Appears locally that the cross cutting veinlets post date the veins hosted by																	
		Strongly	foliation due to intercept relationships. Locally "ladden" veinlets are notable. Locally																	
		Deformed	veinlets here small blebs of pyrite (non-conductive) and traces of tourmaline in the quartz																	
			rich veinlets. Beige bleaching around some of the veins over short intervals. Locally may																	
			have furnaceous component. Pervasive carbonatization light to more moderate at the																	
					<u> </u>															
			Unit Sampling:		ļ															
			Unit contact, white bleaching with pyrite blebs +/-2mm grain size, small pyrite in Q/C										J356410	92.95	93.40	0.45	35			
			veiniets. Frace to 1% pyrite																	

HOLE#: WP21-12

Page 9 of 15

De	pth	Rock Type	Description	Struc	ct. core	e angl	es	Strain	Alterati	on Chara	acteristi	cs					Sample A	ssays		
From	То			So	Fol	Flow	Vn	Intens	Туре	Intens	%QCV	%Py	Sample	From	То	Width	Au ppb			
		Unit Sampling	Irregular veinlets, trace pyrite										J356411	93.40	94.30	0.90	8			
		Continued	Bleaching, Qtz/C veinlets with pyrite and arsenopyrite, pyrite blebs, trace-1% pyrite										J356412	94.30	95.00	0.70	16			
			1/2 interval in rubbly core Q/C +/- tourmaline veinlets, trace pyrite blebs										J356413	95.00	96.00	1.00	212			
			foliated, hatched Q/C veinlets, trace disseminated pyrite										J356414	96.00	96.55	0.55	763			
			Irregular C/Q veinlets, with pyrite and chalcopyrite blebs and along fractures										J356415	99.50	100.00	0.50	12			
			Irregular C/Q veinlets, with pyrite and chalcopyrite blebs and along fractures										J356416	100.00	101.00	1.00	16			
			Irregular C/Q veinlets, with pyrite and chalcopyrite blebs and along fractures (same black										J356417	101.00	101.50	0.50	51			
			tourmaline in some veinlets)																	
			Irregular C/Q veinlets, with pyrite and chalcopyrite blebs and along fractures (same black										J356418	101.50	102.00	0.50	12			
			tourmaline in some veinlets)																	
			Bracket Sample										J356419	104.30	104.80	0.50	7			
			Control standard 52C										J356420				366			
			Foliated, MVF with Carb/Qtz veinlets, pyrite blebs in the foliation up to 4mm grains trace+										J356421	108.00	108.55	0.55	10			
			Swarm of veinlets with ChI/T, blebby pyrite on veinlet margins + foliated Trace+										J356422	108.55	109.05	0.50	12			
			Irregular C/Q veinlets, trace disseminated pyrite										J356423	109.05	109.55	0.50	8			
116.80	119.10	Ultramafic	Unit is olive green with black spots. Generally course grained and massive. Contacts are																	
		Intrusion	ferromagnesian minerals. Unit hosts irregular carbonate/Qtz veinlets with often																	
		(Pyroxene/	specularite/hematite associated. Many of the veinlets are craggy with holes dissolved out																	
		Peridotite?)	of them. Black chlorite often associated with veinlets as clots and patches. Trace to 1%																	
			disseminated pyrite pyrrnotite locally. Unit is undeformed. No sampling of unit at this time.																	
					-	-	-													
						1														
119.10	121.30	Mafic Volcanic	Typical medium to dark green grey colour. Generally medium grained and massive. May	1	t	1	t	1		1										
		Flow	locally have remnant amydules filled with white carbonate. Unit is weakly to moderately		1	1	1			I										
		Weakly to	tollated at 50-60° to the core axis. A few irregular carbonate/Qtz veinlets notable, some in the foliation, irregular orientations on a minor set at 15-20° to the core axis. Stratched being			1				1										
		Moderately	leucoxene crystals evident through the unit. Moderate to strong pervasive carbonatization.																	
		Deformed	particularly at the top of the unit. Unit may have a tuffaceous component in the lower part of																	
			the interval.																	

HOLE#: WP21-12

Page 10 of 15

De	pth	Rock Type	Description	Struc	t. core	e angl	es	Strain	Alterati	on Chara	acteristi	ics					Sample A	ssays		
From	То			So	Fol	Flow	٧n	Intens	Туре	Intens	%QCV	%Py	Sample	From	То	Width	Au ppb			
			Unit Sampling:																	
			Trace disseminated pyrite gains and irregular C/Q veinlets										J356424	120.30	120.80	0.50	6			
			Trace disseminated pyrite gains and irregular C/Q veinlets										J356425	120.80	121.30	0.50	6			
121.30	124.75	Mafic Volcanic	Unit medium green with a beige tone from "Bleaching" Unit is moderately foliated at 60° to																	
		Flow	core axis. Medium grained relatively massive though foliated unit 5mm thick ground up																	
		Weakly to	fault/slip structute the beige bleaching associated with Q/C veining is strong. Pyrite often																	
		Moderately	with chlorite along the veinlet margins. Pyrite occurs as blebs (to about 3mm grains), small																	
		Deformed	masses (to 1cm or so grains) as well as the disseminated grains as ubiquitous. Leucoxene																	
			crystals are common and stretched.																	
			Unit Sampling:																	
			Strong Q/V silica flooding and beige bleaching, pyrite on vein margins, trace+										J356426	121.30	122.05	0.75	88			
			Low to moderate bleaching with trace+ pytire blebs and disseminated, Q/C veinlets										J356427	122.05	122.55	0.50	148			
			Low to moderate bleaching with trace+ pytire blebs and disseminated, Q/C veinlets										J356428	122.55	123.15	0.60	37			
			Moderate bleaching with Q/C veinlets, pyrite trace-1% as blebs or small masses, Some QV										J356429	123.15	123.65	0.50	132			
			grey and dirty looking																	
			Light bleaching with light veinlets, trace+ disseminated pyrite blebs										J356430	123.65	124.15	0.50	11			
			Light bleaching with light veinlets, trace+ disseminated pyrite blebs										J356431	124.15	124.75	0.60	8			
124.75	157.60	Mafic Volcanic	Thick unit of likely pillowed mafic volcanics with selvedges and amydules identifiable locally																	
		Flow (pillowed)	through the section. As usual medium green gey colour. Medium to fine grained																	
		Weakly to	intervals, say, 1-3m in length may not have easily identifiable foliation. Foliation variable																	
		Moderately	locally at 50-70° to the core axis. Pervasive carbonatization variable over moderate																	
		Deformed	intercals from nil to medoerate. Seems to be more intensi in the middle of the unit. Foliation																	
			surprisingly flatter at the bottom of the unit. From about 130-134m unit is beige bleached																	
			C/Q +/- Chl +/- Tourmaline through the unit. More detail in the sampling descriptions. Beige																	
			leucoxene notable locally through the unit. May locally bare a tuffaceous component to the																	
			flow.				 		 											
			lluit Comulian																	
													1256422	104 75	105.05	0.50	0			
			Boundary sample, trace disseminated pyrite										1356432	124.75	125.25	0.50	ð 7			
			Boundary sample, trace disseminated pyrite						1				J356433	125.25	125.75	0.50				

HOLE#: WP21-12

Page 11 of 15

De	oth	Rock Type	Description	Strue	ct. core	e angle	es	Strain	Alterat	on Chara	acteristi	ics					Sample A	ssays		
From	То			So	Fol	Flow	Vn	Intens	Туре	Intens	%QCV	%Py	Sample	From	То	Width	Au ppb			
		Unit Sampling	6cm thick, grey C/Q veinlet at 50-60° to core axis, banded, trace+ pyrite disseminated on										J356434	127.70	128.00	0.30	11			
		Continued	vein margins																	
			Bracket sample, irregular Q/C veinlet, trace disseminated pyrite										J356435	129.00	129.50	0.50	7			
			Bracket sample, irregular Q/C veinlet, trace disseminated pyrite										J356436	129.50	130.00	0.50	16			
			Irregular Q/C veinlets, start of some beige bleaching, trace+ Py as small mass/cube										J356437	130.00	131.00	1.00	50			
			Irregular Q/C veinlets, start of some beige bleaching, trace+ Py as small mass/cube										J356438	131.00	132.00	1.00	9			
			Irregular Q/C veinlets, start of some beige bleaching, trace+ Py as small mass/cube										J356439	132.00	132.50	0.50	8			
			Control standard RDUP of J356439										J356440				9			
			Core of the strongly beige bleached area, foliated, trace+ diss. Py as small masses/cubes										J356441	132.50	133.00	0.50	53			
			Bleaching but diminishing in intensity, foliated, trace diss. Py as small masses and cubes										J356442	133.00	133.50	0.50	14			
			Bracket sample, trace disseminated pyrite										J356443	133.50	134.00	0.50	6			
			Bracket sample, trace disseminated pyrite										J356444	134.00	134.65	0.65	7			
			Carb Qtz veinlets 2 at 4cm+3cm thick at 60° to core axis, pink carb, trace diss. Py										J356445	134.65	135.30	0.65	< 5			
			6cm C/Q veinlet with trace pyrite on margins										J356446	137.70	138.00	0.30	6			
			Bracket sample, irregular C/Q veinlets, trace desseminated pyrite										J356447	140.50	141.00	0.50	8			
			12cm thick C/Q veinlet at 40° to core axis, chloritic margins with trace diss. Pyrite										J356448	141.00	141.50	0.50	101			
			Irregular C/Q veinlets, trace disseminated pyrite										J356449	141.50	142.00	0.50	5			
			Irregular C/Q veinlets, trace disseminated pyrite										J356450	142.00	142.50	0.50	8			
			5cm Q/C vein at 40° to core axis, pyrite masses 2-3cm, Masses conductive, pyrite and										J356451	142.50	142.70	0.20	5			
			chalcopyrite with chlorite on margins																	
			Irregular Q/C veinlets, trace disseminated pyrite										J356452	142.70	143.35	0.65	< 5			
			Irregular Q/C veinlets, trace disseminated pyrite										J356453	143.35	144.00	0.65	< 5			
			Irregular Q/C veinlets, trace disseminated pyrite										J356454	144.00	144.60	0.60	12			
			10cm Q/C chl vein with aleteration including tourmaline +/- 60° to core axis, locally pinkish,										J356455	144.60	145.00	0.40	< 5			
			trace disseminated pyrite on margins																	
			Bracket sample irregular Q/C veinlets, trace disseminated pyrite										J356456	145.00	146.00	1.00	< 5			
			Q/C/T ChI veinlet +/- 1cm thick with pyrite grains in margins, 50° to core axis with rubble										J356457	148.90	149.20	0.30	47			
			Check sampole of poorly formed Q/C veinlet 15cm thick at 40° to core axis with trace										J356458	152.10	152.40	0.30	< 5			
			uisseminated pyrite grains																	

HOLE#: WP21-12

Page 12 of 15

De	pth	Rock Type	Description	Struc	ct. core	e angle	es	Strain	Alteration	on Chara	acteristi	ics					Sample A	ssays		
From	То			So	Fol	Flow	Vn	Intens	Туре	Intens	%QCV	%Py	Sample	From	То	Width	Au ppb			
157.60	158.00	Argillite	Beige to green in colour. Fine grained and generally finely bedded. Bedding																	
		Interflow	folded/slumped and deformed at the bottom. Maybe a bit sericitized? Sharp upper contact																	
		Sediments	fractures at 158m, if needed to pair angle to faultt would suggest 50° to the core axis. No																	
			sulphide noted associated with the unit. No Unit Sampling Undertaken																	
158.00	159.00	Mafic Volcanic	Medium green grey colour. Medium to fine grained and massive though weakly foliated at																	
		Flow	contacts. May have a tuffaceous component. No pervassive carbonatization. Trace pyrite																	
		Weakly	in clot in core. C/Q veinlet near the lower contact. Other than that a grain or two widely																	
		Deformed	dispersed through the unit. No unit sampling undertaken.	<u> </u>	 															
1 - 0 . 0 0	100.00																			
159.00	163.00	Intermediate	Light to medium grey colour, notably not green. Medium to coarse grained crystal tuff unit.																	
		l uff	to be Qtz crystals present as well. Foliation at about 50° to core axis. Light to moderate																	
		Undeformed	yellowish sericitization notable through the unit often along the foliation planes. Some large																	
		to weakly	3-5mm pyrite grains dispersed through the unit. Irregular C/Q veinlets notable. No																	
		Delotmed	pervasive carbonatization. No leucoxene latins noted.																	
								-	-										 	
				-															 	
			Unit Somaling	-																
			One sampling.	-									1256450	160 70	161.00	0.20	667			
			Check sample only of trace Py clots/grains + 1 cm thick C/Q veinlet at 30° to core axis	-									1050409	160.70	101.00	0.30	4020			
			Control standard OREAS 61d	-									J356460	404.00	100.00	4.00	4930			
			Bracket sample. Irregular Q/C veinlets, trace pyrite clots/grains										J356461	161.00	162.00	1.00	5			
			Bracket sample. Irregular Q/C veinlets, trace pyrite clots/grains		I								J356462	162.00	163.00	1.00	< 5			
100.05	170.05			I	ļ															
163.00	179.30	Matic Volcanic	initiations can be abrunt or gradual. No strong evidence noted of pillows or amyodule	<u> </u>	 															
		Flows	through the interval. Short intervals are lightly foliated at about 50° to the core axis.	 	 															
		Undeformed	Irregular C/Q veinlets present through the unit filling seemingly "brittle" bractures.	I	I															
		to weakly	Pervasive carbonatization variable to strong through the unit. Increasing at the bottom of	<u> </u>	 															
		Deformed	the unit. Leucoxene laths variably notable.	I	I															

HOLE#: WP21-12

Page 13 of 15

De	pth	Rock Type	Description	Struc	ct. cor	e ang	les	Strain	Alterati	on Chara	acteristi	cs					Sample A	ssays		
From	То			So	Fol	Flow	v Vn	Intens	Туре	Intens	%QCV	%Py	Sample	From	То	Width	Au ppb			
			Unit Sampling:																	
			Irregular C/Q veinlets, trace disseminated pyrite										J356463	163.00	163.40	0.40	< 5			
			1/2 of broken up Q/C vein, some sericite and chlorite on fractures with fine disseminated										J356464	163.40	163.80	0.40	159			
			pyrite trace chalcopyrite to 3% locally		1															
			1/2 of broken up Q/C vein, some sericite and chlorite on fractures with fine disseminated										J356465	163.80	164.20	0.40	61			
			pyrite trace chalcopyrite to 3% locally																	
			Irregular C/Q veinlets, trace sericite?, trace disseminated pyrite grains										J356466	164.20	164.70	0.50	70			
			Trace disseminated pyrite at best										J356467	164.70	165.20	0.50	33			
			foliation hosted Q/C +chl vein with trace pyrite on margins with chlorite										J356468	167.90	168.30	0.40	209			
			White bull Qtz vein, upper contact at 45° to core axis, lower contact at 15° to core axis. No										J356469	176.35	177.00	0.65	70			
			sulphides noted																	
179.30	183.00	Gabbro	Medium to dark green/ apple green mottled colour. Medium to coarse grained and massive																	
		Underformed	Irregular C/Q veinlets locally. Epidotized a bit with the apple green clolour. Contacts so so																	
			with carb veining. No pervasive carbonatization to speak of. Composition probably																	
			approximates the surrounding volvanics so may in fact be a coarser part of the flow pile.																	
			No sulphides noted. No unit sampling undertaken																	
183.00	193.30	Mafic Flow	Medium to dark green at the top of the interval to light green at the bottom. Change in		-															
		Tuff to	contact per se for the change. Seems to be an ash to lapilly tuff unit. Chloritized and			_	_													
		Intermediate	pervasively carbonatized at the top gradually changing to sericite and bleaching at the		-		_													
		I Uff	bottom. Beige leucoxene laths notable through the interval. Locally a poorly developed			_	_													
		(weakly	foliation notable at 50-60° to the core axis. Irregular C/Q veinlets sometimes associated with light bleaching and up to 3% pyrite bleas and cubes to $\pm/3$ mm grain size. Upit		-		_													
		Deloremed)	moderately magnetic from 184 to 184.5m no obvious reason for this.		-															
				-																
<u> </u>		L	Unit Samoling:	1	1	1	-	1												
			Irregular Q/C veinlets with coarse granular pyrite in the matrix to trace-1%	1	t –	1		t –	t	1			J356470	184.30	185.00	0.70	7	l		
				1	l –	1		1	1	1								l		
			Bracket sample trace disseminated pyrite										J356471	188.00	188.50	0.50	< 5			

HOLE#: WP21-12

Page 14 of 15

De	pth	Rock Type	Description	Struc	ct. core	e angl	les	Strain	Alterati	on Chara	acteristi	ics					Sample A	ssays			
From	То			So	Fol	Flow	/ Vn	Intens	Туре	Intens	%QCV	%Py	Sample	From	То	Width	Au ppb		FA-GRA Au	g/t	
		Unit Sampling	Q/C veinlet with ChI and pyrite on the margins to trace-1% locally										J356472	188.50	189.00	0.50	9				
		Continued	Q/C veinlet with ChI and pyrite on the margins to trace-2% locally										J356473	189.00	189.50	0.50	5010		6.4		
			Q/C veinlet with ChI and pyrite on the margins to trace locally										J356474	189.50	190.00	0.50	30				
			Q/C veinlet with ChI and pyrite on the margins to trace locally										J356475	190.00	191.00	1.00	6				
			Q/C veinlet with ChI and pyrite on the margins to trace-1% locally Bleached a bit										J356476	191.00	192.00	1.00	104				
			Q/C veinlet with ChI and pyrite on the margins to trace-1% locally Bleached a bit										J356477	192.00	192.65	0.65	7				
			Q/C veinlet with ChI and pyrite on the margins to trace-1% locally Bleached a bit										J356478	192.65	193.30	0.65	23				
193.30	222.00	Intermediate	Light to medium green-grey colour, locally bleached a bit to more beige/green colour.																		
		Volcanic Flow	selvedges and carbonate filled amvodules locally. Composition still chloratized mafics with																		
		Underformed	feldspars but more feldspar rich than the mafics above. irregular Q/C veinlets are present																		
		to weakly	through the interval, somewhat sparsely spaced, may be hosted by the weak foliation				_														
		Deformed	locally or cross cut the foliation. Foliation occurs as discrete (short) intervals of metre or two separated by unfolated sections. Foliation a bit steeper at 60 to 70° to core axis																		
		LOCAIly	Pervasive carbonatization variable and patchy from weak to strong locally.	-																	
					-																
					-																
			Unit Sampling:								1										
			Unit contact, trace-1% locally granular pyrite as masses and cubes, irregular Q/C veinlets,										J356479	193.30	193.80	0.50	496				
			foliation 50° to core axis																		
			Control sample BLANK										J356480				< 5				
			Bracket sample, trace disseminated pyrite										J356481	193.80	194.30	0.50	5				
			Foliation at 70° to core axis, beige bleached, trace sericite, trace pyrite as 1-2mm masses										J356482	199.70	200.05	0.35	5				
			and cubes Q/C veiniets																		
			Foliation at 70° to core axis, beige bleached, trace sericite, trace pyrite as 1-2mm masses and cubes Ω/C veinlets										J356483	201.35	201.75	0.40	9				
				 	 	<u> </u>							1050464	00445	004 50	0.46					
			Foliated, less bleached, without sericite, Q/C veinlets in the foliation trace disseminated pyri	1	 	<u> </u>							J356484	204.10	204.50	0.40	< 5				
I					<u> </u>					I			1050405	000 50	0.07.00	0.50	<u> </u>				
			Q/C veinlets, light foliation, trace disseminated pyrite	<u> </u>	<u> </u>	 	1				<u> </u>	<u> </u>	J356485	206.50	207.00	0.50	< 5				
				1																	
PLATINEX INC. SHINING TREE PROJECT, ONTARIO - CASWELL EAST (WASAPIKA)

HOLE#: WP21-12

Page 15 of 15

De	pth	Rock Type	Description	Struc	ct. cor	e angl	les	Strain	Alterat	ion Chara	acteristi	ics					Sample A	ssays		
From	То			So	Fol	Flow	v Vn	Intens	Туре	Intens	%QCV	%Py	Sample	From	То	Width	Au ppb			
		Unit Sampling	Start of some light bleaching with sericite tras diss. Py, starting foliation										J356486	213.00	214.00	1.00	< 5			
		Continued	Q/C veinlets, light beige bleaching with sericite, trace disseminated pyrite, foliation at 70° to										J356487	214.00	214.50	0.50	< 5			
			core axis																	
			Q/C veinlets, light beige bleaching with sericite, trace diss. pyrite, brittle fractured										J356488	214.50	215.00	0.50	15			
			Q/C veinlets in brittle fracture, trace diss. Pyrite, little to no beige blraching										J356489	215.00	215.50	0.50	< 5			
222.00		EOH	END OF HOLE																	
					-															
									_											
				_	-		_													
				-		-														
					-	_	-													
							_	-												
				-			-	-												
				-				-												
					1															
					1					1										
				ļ	ļ		1													
					<u> </u>		_			I										
				<u> </u>	<u> </u>		_		4	I										
									1	1										

Grid Coordinates:				UTM NAD	83	- Zone 1	7N
UTM Coordinates:		N:		483754		E:	5272145
Dip:	45		E	Elevation:	37	79.21m	
Azimuth:	045		٦	Fotal Depth:	:	261m	
Core Size:	NQ		#	# of Boxes		64	McBride
Target:							

Туре	Depth		Dip	Azimuth										
Reflex	18		44.40	042.9										
Reflex	48		44.00	043.6										
Reflex 48 44.00 043.6 Reflex 78 43.60 042.7														
Reflex	108		43.30	042.3										
Reflex	138		43.00	041.3										
Reflex	168		42.90	041.5										
Reflex	195		42.10	039.4										
Reflex	252		41.20	038.4										

subtracting 10 degrees from the Relex Instrument reading.

HOLE#: PGC21-01

Page1of12Date Started:May 14th, 2021Date Completed:May 19th, 2021Claim#:168204Contractor:Missinaibi Drilling ServicesLogged by: D. R. CuttingSampled by:

Sampled by: Robert Peever

De	epth	Rock Type	Description	Strue	ct. cor	re angl	es	Strain	Alterati	on Charac	cteristics	5				Samp	le Assays				
From	То			S。	Fol	Flow	Vn	Intens	Туре	Intens	%QCV	%Py	Sample	From	То	Width	Au ppb				
0.00	5.40	Overburden																			
5.40	10.00	Felsic Fragmental	Unit beige with a greenish tinge. Appears to be a fragmental breccia unit with																		
		/Breccia	pieces to 10cm or so in size. Grain size in the fragments is fine. The																		
			appearance of a preccia is highlighted by the presence of humerous chloritic areen fractures. Trace pyrite is often noted in the fractures or vicinity. A light to																		1
			moderate foliation, particularly at the bottom of the unit is locally notable at 60-																		1
			70 degrees to the core axis. Unit is moderately carbonatized with small irregular																		1
-			white carb veinlets in with the chloritic fractures. Trace disseminated pyrite																		1
-			sericitization					1													1
																					1
																					1
10.00	31 75	Mafic Flow	Medium green grey colour. Medium to fine grained. Light developed foliation																		
10.00	01.70	Mano Flow	locally notable at about 40 degrees to the core axis. The intensity of the foliation																		
-			increases to moderate to strong for the bottom 60cm of the unit with a like	-				1													
-			Increase in carb veining. Unit generally snot with multiple irregular carb or Carb/Otz veinlets variable in thickness from hairline to a couple of cms. Beige	-				1													
-			fine grained leucoxene specks are notable through the unit. Locally brecciated	-				1													
-			over short intervals, may either be veins or inter-flow breccia. Unit is chloritized	-				1													
-			and moderately carbonatized. Locally some of the carbonate has a flesh pink tint. Trace disseminated pyrite as grains and small bless. I pper contact sharp	-				1													
-			at high angle to the core axis. Lower contact sharp as well and at high angle to	-				1													
			the core axis.																		
-				-				1													
			10m-12.7m Stong set of carb veinlets at the unit contact. Veinlets make up																		
			about 20 to 30% of the interval. None of the veinlets are more than about 1cm																		1
-			thick. Stockwork pattern like a brittle fracture.																		1
	1		17.2m-17.8m Set of Carb and Q/C veinlets, irregular.	1			1					1									1
			20.25m-24m Set of Carb and C/Q veinlets, irregular. Some flesh coloured																		
			carbonate notable locally. Veinlets seem to be part of a shatter pattern with																		
			the core axis orientation at ton and bottom of the interval																		
																					<u> </u>
	<u> </u>		24.75m 10cm interval of rusty red/brown weathering/alteration around a carb			I	<u> </u>					ļ	ļ								
			nineu nacture at 45° to the core axis. Water passage?	I			I					I									┣───
	I		25.85m-26.9m Multi Phase 30cm thick Q/C vein at 50-60° to core axis,			-		 				<u> </u>	Į								
			perpendicular to the core axis. The fragments in the breccias are	—				ł								 				 	╂────
						1	1														

HOLE#: PGC21-01

Page 2 of 12

De	pth	Rock Type	Description	Struc	ct. cor	e angle	es	Strain	Alterati	ion Chara	acteristi	ics				5	Sample A	ssays		(
From	То			S。	Fol	Flow	Vn	Intens	Туре	Intens	%QCV	%Py	Sample	From	То	Width	Au ppb			
			generally angular to subrounded and quite fine, largest noted being +/- 3-4cm. The breccia																	
			seems to be matrix supported with the matrix being carbonate. Upper contact of the feature																	
			to core axis. Chloritic fractures host trace to 1% disseminated pyrite grains and small blebs.																	
																				I
																				
			Unit Sampling:										1050000				-			l
			Control standard BLANK										J356000	10.00		1 0 0	< 5			───
			Stockwork Carb veining at contact with trace disseminated pyrite										J356001	10.00	11.00	1.00	14			I
			Stockwork Carb veining at contact with trace disseminated pyrite										J356002	11.00	12.00	1.00	45			I
																				L
			Carb veinlets with trace disseminated pyrite										J356003	17.20	17.80	0.60	< 5			L
			Carb veinlets, Ically pink tinged, both irregular and in foliation at 40° to core axis, trace										J356004	20.25	21.00	0.75	5			
			disseminated pyrite																	
			Carb veinlets with chlorite filled fracutres variable orientations, trace diss. pyrite										J356005	21.00	22.00	1.00	6			
			Carb veinlets with chlorite filled fracutres variable orientations, trace diss. pyrite										J356006	22.00	23.00	1.00	5			
			Carb veinlets with chlorite filled fracutres variable orientations, trace diss. pyrite										J356007	23.00	24.00	1.00	< 5			
			Less veinlets with chlorite filled fracutres variable orientations, trace diss. pyrite					1					J356008	24.00	25.00	1.00	< 5			
			Less veinlets with chlorite filled fracutres variable orientations, trace diss. pyrite										J356009	25.00	25.85	0.85	8			
			Multi-phase Qtz vein with "ribbon" appearance, chloritic fractures host trace+ pyrite										J356010	25.85	26.20	0.35	290			
			40cm in 3 sections of carbonate cement breccia, trace+ disseminated pyrite										J356011	26.20	26.90	0.70	270			
			Occasional irregular carb veinlet, trace pyrite										J356012	26.90	28.00	1.10	< 5			
			Occasional irregular carb veinlet, trace pyrite (some carb flesh pink)										J356013	28.00	29.00	1.00	6			
			Occasional irregular carb veinlet, trace pyrite										J356014	29.00	30.00	1.00	7			
			Occasional irregular carb veinlet, trace pyrite	1	1			İ					J356015	30.00	31.10	1.10	65		İ	
31.10	31.75	Mafic	Medium green, medium to fine grained tuffaceous unit similar in comosition to the flow unit	1	1			1									1			
		Pyroclastic	above. Small fragments are notable and stretched out. Chloritic fragments as disconnected																I	
			most less than 1cm thick. Foliation notable moderately developed at approx 60° to core																	
			axis. Very light trace of pyrite as small blebs																	
																				L
		1		1	1	1				1	1	I.					1	1		1

HOLE#: PGC21-01

Page 3 of 12

De	pth	Rock Type	Description	Struc	ct. core	e angle	es	Strain	Alterati	on Chara	acteristi	cs				S	ample A	ssays		
From	То			S。	Fol	Flow	Vn	Intens	Туре	Intens	%QCV	%Py	Sample	From	То	Width	Au ppb			
			Unit Sampling:																	
			Trace pyrite in the boarders of the Q/C or C veinlets										J356016	31.10	31.75	0.65	20			
31.75	33.40	Felsic Pyroclastic	Fine grained, beige coloured felsic tuff unit, crystal foliation Qtz notable at about +/- 1mm in																	
		(Quatz Crystal	size sub-angular shapen. Foliation lightly developed at approx 60° to core axis. Qtz/Carb																	
		Tuff)	and Carb veiniets irregular orientation as well and more near foliation. Locally, lapilli size																	
			sericite alteration, moderate + trace pyrite disseminated as grains and small blebs																	
			throughout the unit																	
			Unit Sampling:																	
			Irregular Q/C veinlets with trace disseminated pyrite locally										J356017	31.75	32.60	0.85	28			
			Irregular Q/C veinlets with trace disseminated pyrite locally										J356018	32.60	33.40	0.80	21			
33.40	34.50	Mafic Volcanic	Fine grained, medium green grey mafic volcanic unit. Broken up and shot with numberous																	
		(a Tuff)	beige/white Q/C veinelts in a stockwork. Unit not particularly "foliated" per se but more																	
			to the end of the unit as part of the fault zone. Trace siddeminated pyrite locally.																	
			Unit Sampling:																	
			Trace disseminated pyrite with irregular Q/C veinlets										J356019	33.40	34.50	1.10	8			
			Control standard OREAS 52c										J356020				353			
34.50	35.00	Fault Zone	Cruddy rubble fault zone for about 0.5m with 0.5m either side of broken rock into units																	
		(RTDZ? Or	above and below. Colour and texture of the main rubble is the unit below. Clay like coatings present on the fracture surfaces. The impression is that the fault is at high angle to the core																	
		Branch There of)	axis. Unit shot with irregular Q/C veinlets. Very little to no sulphide notable																	
			Unit Sampling:																	
			Irregular Q/C veining, trace- pyrite										J356021	34.50	35.00	0.50	9			

HOLE#: PGC21-01

Page 4 of 12

				_																
De	epth	Rock Type	Description	Stru	ct. cor	e angle	es	Strain	Alterat	ion Char	acterist	ics				5	Sample A	ssays		
From	То			S。	Fol	Flow	Vn	Intens	Туре	Intens	%QC\	/ %Py	Sample	From	То	Width	Au ppb			
35.00	65.50	Intermediate/Felsic	Very good classic lapilli pyroclastic tuff unit. Mottled medium to light green colour due to																	
		Pyroclastic	lapilli fragments (polymict). Fragments are very identifiable with variable compositions																	
		(Ash to Lapilli	noted. The whole unit has been strained to an almost "striped" appearance. Foliation at		_															
		Tuff)	approx 50° to core axis. some of the lightly coloured more felsic fragments are less			_		-		_										
			squashed. Unit a bit rubbly down to 36.25m shot with irregular Q/C and C veinlets at			_		_		_										
			fracturation assocaited with the fault above. Unit is lightly chloritized and sericitized. Trace		_	-		-		_	_									
			fine pyrite grains disseminated along foliation planes and margins of veinlets.		_			-		_										
										_										
			Unit Sampling:																	
			Irregular Q/C veinlets in fault rubble below fault, trace pyrite										J356022	35.00	36.00	1.00	8			
			Irregular Q/C veinlets, trace pyrite										J356023	36.00	37.00	1.00	6			
			Irregular Q/C veinlets, trace pyrite										J356024	37.00	37.50	0.50	6			
			Irregular Q/C veinlets, trace pyrite										J356025	37.50	38.00	0.50	5			
			Irregular Q/C veinlets, trace pyrite										J356026	38.00	39.00	1.00	5			
			Irregular Q/C veinlets, trace pyrite (low angle pinkish carb veinlet)										J356027	39.00	40.00	1.00	6			
			Irregular Q/C veinlets, trace pyrite										J356028	40.00	41.00	1.00	6			
			Irregular Q/C veinlets, trace pyrite (Rubbly Fault/Fracture Zone)										J356029	41.00	42.00	1.00	33			
			Irregular Q/C veinlets, trace pyrite (low angle pinkish carb veinlet)										J356030	42.00	43.00	1.00	8			
			Irregular Q/C veinlets, trace pyrite (low angle pinkish carb veinlet)										J356031	43.00	44.00	1.00	5			
			Irregular Q/C veinlets, trace pyrite (low angle pinkish carb veinlet)										J356032	44.00	45.00	1.00	6			
			Irregular Q/C veinlets, trace pyrite										J356033	45.00	45.50	0.50	82			
			Irregular 10cm Q/C veinlet, basically hosted by foliation at 50° to core axis, trace Py										J356034	52.00	52.50	0.50	53			
			5cm set of Q/C veinlets in the foliation with trace+pyrite as bleb and grains in shear plane.										J356035	61.75	62.25	0.50	6			
			Irregular Q/C veinlets, trace pyrite										J356036	62.25	63.00	0.75	7			
			Irregular Q/C veinlets, trace pyrite (a few more)										J356037	63.00	63.75	0.75	7			
				1	_	-				_		ļ								
		ļ						<u> </u>		_							ļ		ļ	
				1			1				1									

HOLE#: PGC21-01

Page 5 of 12

De	pth	Rock Type	Description	Stru	ct. cor	e angle	es	Strain	Alterat	ion Chara	acteristi	cs				5	Sample A	ssays		
From	То			S₀	Fol	Flow	Vn	Intens	Туре	Intens	%QCV	%Py	Sample	From	То	Width	Au ppb			
65.50	72.50	Intermediate/Felsic	This unit is very similar in apperance to the unit above 35m to 65.5m except it is quite																	
		Pyroclastic	notably bleached to a beige/grey colour. Unit is moderately to strongly carbonatized, and likely iron each and to a transition to eviding. Still moderately to strongly faliated at 55 65° to																	
		(Ash to Lapilli Tuff)	the core axis. Upper contact gradational over maybe 0.5m or so. Lower contact sharp at	,																
		(Bleached)	approx 80° to core axis. Locally through the unit there are several Q/C Chl veinlets with up																	
			to 3+% pyrite in the vein area, sulphides seem to be primarily pyrite but some grains may																	
			be chalcopyrite.																	
				_																
				_						_						ļ				
			Unit Sampling:	_													<u> </u>			
			Q/C veinlets namine to 1 cm or so, irregular, with trace pyrite/ chalcopyrite Chlorite along some veinlets, carbonatized							_			J356038	65.50	66.00	0.50	6			
																0.50	<u> </u>			
			u/c veiniets nairiine to 1cm or so, irregular, with trace pyrite//chaicopyrite Chlorite along some veinlets, carbonatized	—	_		ļ	 	<u> </u>				J356039	66.00	66.50	0.50	< 5		I	
				_						_						ļ				
			Control standard RDUP J356039	_									J356040				7			
			Q/C veinlets irregular, with trace pyrite/?chalcopyrite Chlorite along some veinlets,										J356041	66.50	67.00	0.50	30			
													J356042	67.00	67.50	0.50	6			
													J356043	67.50	68.00	0.50	5			
			и и										J356044	68.00	68.50	0.50	< 5			
			n n										J356045	68.50	69.00	0.50	< 5			
			пп										J356046	69.00	69.50	0.50	< 5			
			и н										J356047	69.50	70.00	0.50	< 5			
			н										J356048	70.00	70.50	0.50	< 5			
													1356049	70.50	71.00	0.50	< 5			
			пп	-									1356050	71.00	71 50	0.50	< 5			
			n n							1			1356051	71.50	72.00	0.50	< 5			
			и п										1356052	72.00	72.00	0.50	< 5	-		
				-	-								JJJ00JZ	72.00	72.50	0.50	< 5			
72 50	75.65	Intermediate/Felsic	Unit similar to 35m to 65.5m, maybe just a bit finer grained. Back to medium to light grey-	-													-			
72.00	10.00	Pyroclastic	green colour with reduction in carbonatization highly sercite alteration along foliation							1						1				
		(Ash to Lapilli Tuff)	planes. Moderate+ foliation at +/-60° to core axis. Fragments variable lithologies qtz	\vdash	\mathbf{I}			<u> </u>		1									1	
			crystals, intermediate, telsic and locally tragments containing finely disseminated pyrite subbides. Lower contact sharp but irregular along a 2cm white Ω/C veiglet with trace							1						1				
			graphite, ? 50° to core axis. Locally black chlorite							1			Ì			1	1			
					1	1	1		1	1	1					1			1	

HOLE#: PGC21-01

Page 6 of 12

De	pth	Rock Type	Description	Struc	t. core	angle	es	Strain	Alterati	on Chara	acteristi	cs				9	Sample A	ssays		
From	То			S。	Fol	Flow	Vn	Intens	Туре	Intens	%QCV	%Py	Sample	From	То	Width	Au ppb			
			slips/fracture coatings notable. Irregular Carb/Qtz veinlets occasionally. Trace disseminated	ł																
			pyrite																	
			Unit Sampling:																	
			Light irregular Q/C veinlets with local trace pyrite on foliation surfaces										J356053	72.50	73.00	0.50	< 5			
			Light irregular Q/C veinlets with local trace pyrite on foliation surfaces										J356054	73.00	74.00	1.00	< 5			
			Light irregular Q/C veinlets with local trace pyrite on foliation surfaces										J356055	74.00	75.00	1.00	< 5			
			Light irregular Q/C veinlets with local trace pyrite on foliation surfaces										J356056	75.00	76.00	1.00	< 5			
			Light irregular Q/C veinlets with local trace pyrite on foliation surfaces (a few more veinlets										J356057	76.00	76.65	0.65	< 5			
			and rubbly close to next unit)																	
76.65	91.55	Chemical Sediment	Complet unit mixture of black chert, argillite, and sulphide bands. Graphite fractures noted																	
		(Silica/Sulphide	through the interval. Very hard unit. Mottled light grey, dark grey and brown in a roughly stipped pattern. Bull of the unit is black chart followed by arcilite then subbides. The subbide																	
		Banded Iron	bands vary from hariline to 4cm in thickness and are more prevalent in the top of the unit.																	
		Formation)	The sulphide, primarily pyritey (cp+sph?) occurs as amoeboid shaped grains concentrated																	
			in discrete bands. These band locally will conduct electricity from one side of the core to the	÷															 	
			other. Graphite covered tractures are more common in the bottom of the interval, still with some subbides associated. Banding, though irregular, seems to be at high angles to the																	l
			core axis. The whole unit has been Shattered and shot with white quartz and iron carbonate																	
			veining with some sulphide associated. Obviously the graphitic fractures are conductive.														_		 	
			There would appear to be black chlorite filled fractures present as well. Sulphides seem to																	l
			grains under the microscope are just that, pyrite grains usually individual amoeboid forms																	
			but often coalescing into small masses of several cm's. Only occasional grain of probable															-		┣────
			chalcopyrite notable but no other sulphide discernable (ie sphalerite)																	
																				ł
																				1
			Unit Sampling:																	
			Silica Sulpide BIF							1			J356058	76.65	77.00	0.35	8			
			Silica Sulpide BIF Sulphides more intense.	1	1			1	Ī		1	1	J356059	77.00	78.00	1.00	17	1		
			Control standard OREAS 61d							1			J356060				5030	1		
			Silica/Sulphide BIF							1			J356061	78.00	79.00	1.00	< 5			
			Silica/Sulphide BIF							1			J356062	79.00	80.00	1.00	< 5			
			Silica/Sulphide BIF	1						1			J356063	80.00	81.00	1.00	8			

HOLE#: PGC21-01

Page 7 of 12

De	pth	Rock Type	Description	Struc	ct. cor	e angl	es	Strain	Alterati	ion Chara	acteristi	cs				S	Sample A	ssays		
From	То	1		S。	Fol	Flow	Vn	Intens	Туре	Intens	%QCV	%Py	Sample	From	То	Width	Au ppb			
		Unit Sampling	Silica/Sulphide BIF										J356064	81.00	82.00	1.00	23			
		Continued	Silica/Sulphide BIF										J356065	82.00	83.00	1.00	69			
			Silica/Sulphide BIF										J356066	83.00	84.00	1.00	33			
			Silica/Sulphide BIF										J356067	84.00	85.00	1.00	44			
			Silica/Sulphide BIF										J356068	85.00	86.00	1.00	15			
			Silica/Sulphide BIF										J356069	86.00	87.00	1.00	22			
			Silica/Sulphide BIF										J356070	87.00	88.00	1.00	12			
			Silica/Sulphide BIF (Graphide becoming prevalent)										J356071	88.00	89.00	1.00	44			
			Silica/Sulphide BIF (Graphide becoming prevalent)										J356072	89.00	90.00	1.00	14			
			Silica/Sulphide BIF (Graphide becoming prevalent)										J356073	90.00	91.00	1.00	58			
			Silica/Sulphide BIF (Graphide becoming prevalent)										J356074	91.00	91.55	0.55	60			
31.55	96.85	Diabase	Typical diabase unit for the area. Medium to dark green grey and medium to fine grained.																	
			Basically non follated and massive with only a few Q/C/epidote velniets notable. Light to moderately magnetic. Upper contact sharp but irregular. Not much to say																	
			Unit Sampling: (Sampled only for Continuity)																	
			Diabase										J356075	91.55	92.00	0.45	6			
			Diabase										J356076	92.00	93.00	1.00	< 5			
			Diabase										J356077	93.00	94.00	1.00	< 5			
			Diabase										J356078	94.00	95.00	1.00	< 5			
			Diabase										J356079	95.00	96.00	1.00	< 5			
			Control standard BLANK										J356080				< 5			
			Diabase										J356081	96.00	96.85	0.85	< 5			
96.85	98.70	Mafic/Intermediate	Unit very similar in appearance to the Diabase above. The volcanic is a bit finer grained.																	
		Volcanic	More green chloritized, more fractured and Q/C filled, and non-magnetic compared to the																	
			foliation at approx 50° to core axis notable at the bottom of the interval. Lower contact very																	
			sharp at 40° to core axis. Trace diss pyrite at best																	
			Unit Sampling:																	
			Irregular Q/C veinlets										J356082	96.85	97.75	0.90	< 5			
			Irregular Q/C veinlets										J356083	97.75	98.70	0.95	< 5			

HOLE#: PGC21-01

Page 8 of 12

De	pth	Rock Type	Description	Struc	ct. core	e angle	es	Strain	Alterati	on Chara	octeristi	cs				5	Sample A	ssays		
From	То			S。	Fol	Flow	Vn	Intens	Туре	Intens	%QCV	%Py	Sample	From	То	Width	Au ppb			
98.70	104.60	Fault Zone	This ataclastic zone is composed of Argillite/Graphite/Mafic Volcanic/ and Tuff. Fround	1	1															
		Mix of: Argillite,	together in an intimate mixture of pylonitized litholoies. Foliation and fracutres in the zone																	
		Graphite, Mafic	are irregularly oriented but locally an impression of a foliation at 40° to the core axis. Unit displays extreme deformation though "nirmary" features such as marcasite (nyrite) nodules.																	
		Volcanic, Tuff	of about 1cm grains are locally notable round and underformed. Pyrite nodules are notable																	
			through the unit with the graphite/argillite, Trace to 1% locally over short intervals. Upper																	
			contact very sharp at 40° to core axis. Unit is moderately to strongly carbonatized																	
			throuhout.																	
			98.7m-100m Grey smoky Qtz vein with +/- 3% granular pyrite in pieces in the cataclastite																	
			zone. Pieces of Qtz are internally fractured quite finely is injected with later veining.																	
			104m-104.25m Black Chert with Tr-1% sulphides. Hard.																	
			May be a bit of black chlorite as well with praphite. Graphite is conductive. Bottom of the																	
			unit defined by loss of graphite/argillite though next unit exhimits extreme fractuation and																	
			strain likely part of the same large fault zone.																	
			Unit Sampling:																	
			Grey/Black fractured, smoky Qtz vein with 3-5% disseminated pyrite locally										J356084	98.70	99.35	0.65	56			
			Bits and pieves of smokey Qtz in cataclastite mix										J356085	99.35	100.00	0.65	57			
			cataclastite mix										J356086	100.00	101.00	1.00	24			
			cataclastite mix										J356087	101.00	102.00	1.00	26			
			cataclastite mix										J356088	102.00	103.00	1.00	85			
			cataclastite mix										J356089	103.00	104.00	1.00	22			
			Black Chert with Trace-2% pyrite										J356090	104.00	104.60	0.60	35			
1046	119.75	Fault Zone	This unit is still part of the cataclastic above except the affected origional host is a felsic to																	
		Felsic/Intermediate	intermediate ash to lapilli tuff. Lapilli sized fragments are clearly visible locally. Unit is beige																	
		Lapilli Tuff	influenced by the unit above. Foliation in the unit from about 40° to core axis to sub parallel																	
			to the core axis. Unit shot with irregular Q/C and C veinlets. Chloritic crud on most of the																	
			fracture surfaces. Vein occasional grains of disseminated pyrite notable locally. Unit may be																	
			a bit carbonatized and/or sericitized locally																	
			Unit Sampling:																	
			Irregular Q/C veinlets, trace disseminated pyrite locally, trace black chlorite locally										J356091	104.60	105.00	0.40	19			1

HOLE#: PGC21-01

Page 9 of 12

De	pth	Rock Type	Description	Struc	ct. core	angle	es	Strain	Alterati	ion Chara	acteristi	cs				9	Sample A	ssays		
From	То			S。	Fol	Flow	Vn	Intens	Туре	Intens	%QCV	%Py	Sample	From	То	Width	Au ppb			
		Unit Sampling	Irregular Q/C veinlets, trace disseminated pyrite locally, trace black chlorite locally										J356092	105.00	106.00	1.00	8			
		Continued	Irregular Q/C veinlets, trace disseminated pyrite locally, trace black chlorite locally										J356093	106.00	107.00	1.00	7			
			Irregular Q/C veinlets, trace disseminated pyrite locally, trace black chlorite locally										J356094	107.00	108.00	1.00	< 5			
			Irregular Q/C veinlets, trace disseminated pyrite locally, trace black chlorite locally										J356095	108.00	109.00	1.00	< 5			
			10cm thick Q/C veinlet at 119m at high angle to core axis, trace pyrite										J356096	118.60	119.75	1.15	< 5			
119.75	142.10	Mafic/Intermediate	Very coarse and poorly sorted pyroclastic unit with multi-sized and mulit-lithology																	
		Pyroclastic	tragments. Fragments mainly matic to intermediate composition, many of the large																	
		(Agglomerate)	chlorite etc easily identifiable. Fragments are from angular to rounded forms from ash to																	
		(Flow Breccia?)	tens of cm's in size. Not strongly foliated in general, locally foliated at approx 40 to 50° to																	
			the core axis. 15cm thick cooked zone of contact metamorphism with the diabase below,																	
			lower contact sharp at 70° to core axis.																	
			Unit Sampling:																	
			Q/C veinlets with trace pyrite at contact										J356097	119.75	120.45	0.70	< 5			
			Trace disseminated pyrite only										J356098	120.45	121.45	1.00	< 5			
			Trace disseminated pyrite only										J356099	121.45	122.45	1.00	< 5			
			Control standard OREAS 52c										J356100				342			
			Maybe a 10cm thick argillite band at 50° to core axis, trace-1% pyrite Q/C veinlyets										J356101	122.45	123.45	1.00	< 5			
			associated, some of the pyrite occurs as O?? Nodules								1									
			Trace veinlets, trace disseminated pyrite										J356102	123.45	124.45	1.00	< 5			
142.10	143.45	Diabase	Typical unit. Medium to fine grained, dark green to black massive, lightly to moderately																	
			magnetic, very little to no structure notable except on occasional carb veinlet. Locally a bit																	
			above and below. Lower contact sharp at 70° to core axis																	
143.45	177.2	Mafic/Intermediate	Light to medium green or olive colour, fine grained with notable round amygdules locally to																	
		Volcanic	0.5cm or so in grain size. Amygdules, usually carbonate filled, do not exhibit significant																	
		(Pillowed and	ucionnation and occur in round or sub-round snapes. I frough the unit fite lithology Varies																	
		Amygdaloidal)																		

HOLE#: PGC21-01

Page 10 of 12

Dr	pth	Rock Type	Description	Strue	ct. cor	e angle	es	Strain	Alterati	Alteration Characteristics			Sample Assays									
From	То			S。	Fol	Flow	Vn	Intens	Туре	Intens	%QCV	%Py	Sample	From	То	Width	Au ppb					
			clastic pillow selvedges and devitrified hyaloclastite (with trace sulphides locally) are																			
			notable (textbook). Positioning of the mygdules in the pillows would indicate up direction																			
			structure (foliation) notable. Irregular carb or carb Qtz veinlets are present throughout. Unit																			
			is moderately+ pervasively carbonatized throughout. Most of the pillows are on the order of																			
			0.5 to 1m in size.																			
											ļ											
			168m-1/4m Unit more broken up and rubbly, some due to drilling some caused by weaknesses on the fracture planes																			
<u> </u>										-												
					-																	
<u> </u>			Unit Sampling:										1005400	404.00	404.00	0.00						
			Check of a hyaloclastite sections with trace+ pyrite associated		-								J365103	164.30	164.60	0.30	< 5					
477.00	405.00	Mafie /latence aliste	Unit is the same basically as 142.45 to 177.20 event that it has been breesisted and abot																			
177.20	195.00		with numberous carb and C/Q maybe locally with a bit of black chlorite or tourmaline. The	-	-																	
<u> </u>		/Pillowod	veilets appear to be a stockwork in shattering as opposed to falling in a pervasive foliation.																			
			The veinlets, primarily carbonate vary in thickness from hairline to several cm's in thickness	-	-																	
		and Brecciated)	I ne unit is rubbly in places. In vicinity of 189m there is observed a fracture system/Fault rupping subparallel to the core axis at 20° chloritic crug notable in the fractures. There is																			
		and Drocolatody	very little disseminated pyrite noted in with some of the hyaloclastite and associated carb																			
			veinlets. The unit is variably, pervasively lightly to strongly carbonatized throughout.																			
					1						1											
			Sampling is good concience checking of some of the sulphides in hyaloclastite and veinlets																			
			only to explain discontinuous nature of sample pattern																			
			Unit Sampling:																			
			Trace+ pyrite in hyaloclastite with irregular carbonitite in fracture system/breccia										J356104	177.20	178.40	1.20	< 5					
			Trace+ pyrite in hyaloclastite with irregular carbonitite in fracture system/breccia										J356105	178.40	178.50	0.10	< 5					
			Trace+ pyrite in hyaloclastite with irregular carbonitite in fracture system/breccia		1					I	1		J356106	178.50	179.25	0.75	< 5		Ī			
			Trace+ pyrite in hyaloclastite with irregular carbonitite in fracture system/breccia	1	1						I		J356107	179.25	179.75	0.50	< 5					
			Trace+ pyrite in hyaloclastite with irregular carbonitite in fracture system/breccia	1	1	1				1	İ	1	J356108	179.75	180.55	0.80	< 5	Ì				
			Trace+ pyrite in hyaloclastite with irregular carbonitite in fracture system/breccia	1				1		1	1		J356109	180 55	181.35	0.80	< 5	1	Ì			
<u> </u>			Trace+ pyrite in hyaloclastite with irregular carbonitite in fracture system/breccia								1		.1356110	181.35	182 25	0.90	< 5					
<u> </u>					1					1			0000110	101.00	102.20	0.00	~ 0		1			
			Less hyaloclastite than previous. Carb+Carb/O ceinlets with trace pyrite in shatter	1	1					1	1		J356111	189 50	190.00	0.50	< 5					
<u> </u>			Less hyaloclastite than previous. Carb+Carb/Q ceinlets with trace pyrite in shatter	1	1								J356112	190.00	191.00	1 00	< 5					

HOLE#: PGC21-01

Page 11 of 12

De	pth	Rock Type	Description	Strue	ct. core	e angle	es	Strain	Alterati	ion Chara	acteristi	cs				5	Sample A	ssays		
From	То			S。	Fol	Flow	Vn	Intens	Туре	Intens	%QCV	%Py	Sample	From	То	Width	Au ppb			
		Unit Sampling	Less hyaloclastite than previous, Carb+Carb/Q ceinlets with trace pyrite in shatter										J356113	191.00	192.00	1.00	< 5			
		Continued	Less hyaloclastite than previous, Carb+Carb/Q ceinlets with trace pyrite in shatter										J356114	192.00	193.00	1.00	< 5			
			Less hyaloclastite than previous, Carb+Carb/Q ceinlets with trace pyrite in shatter										J356115	193.00	194.00	1.00	< 5			
			Less hyaloclastite than previous, Carb+Carb/Q ceinlets with trace pyrite in shatter										J356116	194.00	195.00	1.00	< 5			
195.00	202.15	Mafic/Intermediate	Unit basically the same as 143.45m to 177.20m. Not brecciated and shot with Carb and																	
		Volcanic	Carb/Qtz veinlets as the unit above. Very clearly discernable pillow (some quite small on the order of 10cm of core) with hyploclastite between. The unit has little to be faliation																	
		(Pillowed and	notable. A feb irregular Carb and Carb/Qtz veinlets scattered through the unit as well as																	
		Amygdaloidal)	being associated with the pillow selvedges and hyaloclastite. Unit is relatively "pristine"																	
			except for the moderate pervasive carbonatization above teh sharp contact with the unit																	
			below. I race disseminated pyrite in the hyaloclastite locally. Amygdules rounded to subrounded changes to 1cm diameter and filled with carbonates.																	
			sublounded shapes to Tom diameter and miled with carbonates.																	
										_						-				
					-															
			Unit Sampling:		-															
			Carb/Q veining in hyaloclastite with trace pyrite (check only)										J356117	201.40	201.90	0.50	< 5			
										_						-				
202.15	239.00	Mafic Volcanic	Unit very similar to 143.45m to 177.20m except a darker green/grey colour due to pervasive chloritization as opposed to the pervasive corbonatization above. Unit is medium to fine	÷						_										
		(Pillowed and	grained with pillow selvedges, hvaloclastite and amvadules very clearly descernable locally																	
		Amygdaloidal)	through the unit. Pillows would seem to be about 20cm to a metre or so in size. Selvedges							_										
			are locally devitrified hyaloclastite, some with a bit of disseminated pyrite and/or carbonate							_							ļ			
			veining and alteration associated as well. Amygdules are round or subround shapes (alongota). No foliotion potable. Polatively pricting unit. Some local pervesive							-										
			carbonatization close to the selvedges and hyaloclastite. Bottom of the interval from about							-										
			229m-239m unit returns to a more olive colour and regains its pervasive carbonatization							-										
										-										
			Unit Sampling:	-	-															
			Check on pillow selvedge with hydroclastite and trace sulphides										1356118	203 10	203 40	0.30	< 5			
			อกออก อก pinow servedye พนา กรุสเออสรนเข สกุด และอ รถเหาแนยร	-									0000110	203.10	203.40	0.50	~ 5			
			Check on pillow selvedge with hyaloclastite and trace sulphides										J356119	205.60	206.20	0.60	< 5			
			Control standard RDUP of J356119		1								J356120			0.00	< 5			
			Carb/Qtz veinlet, suspect associated with a pillow selvedge by its cupate form, trace		1								J356121	215.15	216.45	1.30	10			
			disseminated pyrite grains		1												· · •		1	

HOLE#: PGC21-01

Page 12 of 12

De	pth	Rock Type	Description	Struc	ct. core	e angle	es	Strain	Alterati	on Chara	cteristi	cs				S	Sample A	ssays					
From	То			S。	Fol	Flow	Vn	Intens	Туре	Intens	%QCV	%Py	Sample	From	То	Width	Au ppb						
		Unit Sampling	Carb/Qtz veinlet, suspect associated with a pillow selvedge by its cupate form, trace										J356122	234.00	235.00	1.00	13						
		Continued	disseminated pyrite grains																				
239.00	248.70	Mafic/Intermediate	Medium to light grey/green colour, medium grained and fragmental in appearance.																				
		Tuff	Fragments angular to sub angular shapes from 0.5mm to 1cm in size. Composition of the fragments is consistant to the other lithologic in the packages. Have the impression that the																				
			unit is a pyroclastic as apposed to a more "flow type" breccia. Unit is not well bedded.																				
			Irregular Carb and Carb/Qtz veinlets are present as per usual. Upper contact sharp at 60°		_																		
			to the core axis. Lower contact is sharp as well at about 80° to the core axis. Looks very																				
					-																		
				_																			
			Unit Compliant		-																		
					-								1256102	247 70	240.20	0.50	- F						
			Light irregular carb veinlets, trace pyrite disseminated, maybe a little black chlorite		-								1050123	247.70	240.20	0.50	< 5						
			Light irregular carb veinlets, trace pyrite disseminated, maybe a little black chlorite										J356124	248.20	248.70	0.50	11						
249 70	240 50	Sodimont	Black/green argillite with pyritic beds and stingers. Graphitic beds are notable as well																				
240.70	249.50	Argillito/Graphito/	Typical narrow banded unit with sharp contacts top and bottom at 80-90° to the core axis.																				
		Sulphide	Irregular hairline to 0.5cm thick carb veinlets notable. Pyrite and graphite have been verified	4	-																		
		Odiprilde	for conductivity at least through the diameter of the drill core. This unit is potentially the #2																				
			ir taiget		1		-																
			Presence of this unit is the reason for continuing the hole for 3 runs past the original target																				
			depth of 250m																				
			Unit Sampling:																				
			Argillite/Graphite/Sulphide bed. 1-2% pyrite as stringer on beds.										J356125	248.70	249.50	0.80	42						
249.50	261.00	Mafic/Intermediate	As above described. Pillow Selvedges and hyaloclastite very notable as units above. Some																				
		Volcanic	trace sulphide noted in the hyaloclastite, Unit variably carbonatized to moderately. Unit has																				
		(Pillowed and	no particular foliation notable.																				
		Amygdalidal)	Unit Sampling:																				
			Irregular Carb veinlets with trace pyrite										J356126	249.50	250.00	0.50	< 5						
			Irregular Carb veinlets with trace pyrite										J356127	250.00	251.00	1.00	< 5						
261.00		EOH	END OF HOLE																				

Appendix III

Certificates of Analysis

Innovative Technologies

Report No.:A21-09270Report Date:09-Jun-21Date Submitted:25-May-21Your Reference:Platinex inc

Plantinex Inc 807 William roe BLVD Newmarket Ontario I3y 5v6 Canada

ATTN: James R trusler

CERTIFICATE OF ANALYSIS

100 Core samples were submitted for analysis.

The following analytical package(s) were requested:		Testing Date:
1A2B-30-Timmins	QOP AA-Au (Au - Fire Assay AA)	2021-06-07 08:43:42

REPORT A21-09270

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

If value exceeds upper limit we recommend reassay by fire assay gravimetric-Code 1A3

LabID: 709

ACTIVATION LABORATORIES LTD. 1752 Riverside Drive, Timmins, Ontario, Canada, P4R 1N1 TELEPHONE +705 264-0123 or +1.888.228.5227 FAX +1.905.648.9613 E-MAIL Timmins@actlabs.com ACTLABS GROUP WEBSITE www.actlabs.com

Emmanuel Eseme , Ph.D. Quality Control Coordinator

Analyte Symbol	Au
Unit Symbol	ppb
Lower Limit	5
Method Code	FA-AA
8101	9
8102	7
8103	5
8104	< 5
8105	5
8106	6
8107	33
8108	55
8109	9
8110	6
8111	< 5
8112	5
9112	5
0113	5
0114	0
8115	< 5
0110	0
8117	70
8118	/8
8119	6
8120	5270
8121	19
8122	< 5
8123	< 5
8124	< 5
8125	< 5
8126	< 5
8127	111
8128	10
8129	157
8130	1060
8131	12
8132	14
8133	49
8134	< 5
8135	< 5
8136	< 5
8137	< 5
8138	10
8139	179
8140	< 5
8141	368
8142	920
8143	382
8144	122
8145	32
8146	7
8147	141
8148	< 5
8149	< 5
8150	< 5
8151	< 5
	+ ``

Analyte Symbol	Au
Unit Symbol	ppb
Lower Limit	5
Method Code	FA-AA
8152	5
8153	< 5
8154	7
8155	35
8156	6
8157	60
8158	< 5
8159	22
8160	365
8161	8
8162	5
0102	5
0103	5
8164 0105	< 5
8165	< 5
8166	< 5
8167	< 5
8168	< 5
8169	< 5
8170	7
8171	10
8172	< 5
8173	< 5
8174	7
8175	8
8176	< 5
8177	27
8178	< 5
8179	< 5
8180	25
8181	19
8182	5
8183	< 5
8184	< 5
9195	< 5
9196	< 5
9197	< 3
0107	5
0100	5
8109	203
0101	15
8191	342
8192	< 5
8193	592
8194	58
8195	260
8196	122
8197	< 5
8198	5
8199	< 5
8200	< 5

Analyte Symbol	Au
Unit Symbol	dqq
Lower Limit	5
Method Code	FA-AA
Oreas 237 (Fire	2170
Assay) Meas	2170
Oreas 237 (Fire	2210
Assay) Cert	-
Oreas 237 (Fire	2290
Assay) Meas	
Oreas 237 (Fire	2210
Assay) Cert	
Oreas 237 (Fire	2270
Oroas 227 (Eiro	2210
Assav) Cert	2210
Oreas E1336 (Fire	498
Assay) Meas	100
Oreas E1336 (Fire	510
Assay) Cert	
Oreas E1336 (Fire	515
Assay) Meas	
Oreas E1336 (Fire	510
Assay) Cert	500
Oreas E1336 (Fire	526
Assay) Weas	E10
Assav) Cert	510
Oreas E1336 (Fire	524
Assay) Meas	524
Oreas E1336 (Fire	510
Assay) Cert	
8110 Orig	7
8110 Dup	5
8121 Orig	15
8121 Dup	22
8145 Orig	30
8145 Dup	33
8150 Oria	< 5
8150 Split PBEP	< 5
DUP	
8154 Orig	7
8154 Dup	6
8164 Orig	< 5
8164 Dup	< 5
8179 Orig	< 5
8179 Dup	< 5
8199 Orig	5
8100 Dup	- 5
8200 Orig	< 5
	< 0
18200 Split PREP	< 5
Method Blank	~ 5
Method Blank	< 5
Method Blank	< 0
Mothod Plank	< 0
Mothod Blank	< 5
Nethed Diank	< 5
Iviethod Blank	5
Ivietnoa Blank	< 5

Analyte Symbol	Au
Unit Symbol	ppb
Lower Limit	5
Method Code	FA-AA
Method Blank	< 5

Innovative Technologies

Report No.:A21-10203Report Date:25-Jun-21Date Submitted:04-Jun-21Your Reference:Platinex

Platinex Inc. 807 William Roe Blvd Newmarket ON L3Y 5V6 Canada

ATTN: James R trusler Trusler

CERTIFICATE OF ANALYSIS

71 Core samples were submitted for analysis.

The following analytical package(s) were requested:	Testing Date:	
1A2B-30-Timmins	QOP AA-Au (Au - Fire Assay AA)	2021-06-23 12:54:42

REPORT A21-10203

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

If value exceeds upper limit we recommend reassay by fire assay gravimetric-Code 1A3

LabID: 709

ACTIVATION LABORATORIES LTD. 1752 Riverside Drive, Timmins, Ontario, Canada, P4R 1N1 TELEPHONE +705 264-0123 or +1.888.228.5227 FAX +1.905.648.9613 E-MAIL Timmins@actlabs.com ACTLABS GROUP WEBSITE www.actlabs.com

Emmanuel Eseme , Ph.D. Quality Control Coordinator

Analyte Symbol	Au
Unit Symbol	ppb
Lower Limit	5
Method Code	FA-AA
8251	< 5
8252	< 5
8253	7
8254	10
8255	123
8256	105
8257	1120
8258	903
8259	154
8260	4940
8261	101
8262	26
8263	44
8264	230
8265	154
8266	260
8267	200
9269	< 5
0200	< 5
0209	< 5
8270	C >
0271	44
0272	100
8273	1100
8274 9075	0150
8275	2150
8276	300
8277	63
8278	300
8279	1600
8280	< 5
8281	45
8282	192
8283	145
8284	18
8285	21
8286	< 5
8287	< 5
8288	30
8289	12
8290	5
8291	116
8292	5
8293	38
8294	7
8295	10
8296	31
8297	5
8298	5
8299	12
8300	340
8301	< 5
	1

Results

Activation Laboratories Ltd.

Analyte Symbol	Au
Unit Symbol	ppb
Lower Limit	5
Method Code	FA-AA
8302	< 5
8303	145
8304	< 5
8305	8
8306	< 5
8307	6
8308	6
8309	5
8310	12
8311	8
8312	697
8313	6
8314	< 5
8315	7
8316	5
8317	< 5
8318	132
8319	262
8320	340
8321	13

	Analyte Symbol	Au
	Unit Symbol	ppb
	Lower Limit	5
	Method Code	FA-AA
	Oreas 237 (Fire Assay) Meas	2190
	Oreas 237 (Fire Assay) Cert	2210
	Oreas 237 (Fire Assay) Meas	2120
	Oreas 237 (Fire Assay) Cert	2210
	Oreas 237 (Fire Assay) Meas	2200
	Oreas 237 (Fire Assay) Cert	2210
	Oreas E1336 (Fire Assay) Meas	513
	Oreas E1336 (Fire Assay) Cert	510
	Oreas E1336 (Fire Assay) Meas	495
	Oreas E1336 (Fire Assay) Cert	510
	Oreas E1336 (Fire Assay) Meas	506
	Oreas E1336 (Fire Assay) Cert	510
	8261 Orig	81
	8261 Dup	120
	8270 Orig	< 5
	8270 Dup	< 5
	8280 Orig	< 5
	8280 Dup	< 5
	8295 Orig	12
	8295 Dup	7
	8301 Orig	< 5
	8301 Split PREP DUP	< 5
1	8304 Orig	< 5
	8304 Dup	< 5
	8314 Oria	< 5
	8314 Dup	< 5
	Method Blank	< 5
	Method Blank	< 5
	Method Blank	25
	Method Blank	< 5
	Method Blank	~ 5
	Method Blank	< 5
	Methou Diank	< 0

Innovative Technologies

Report No.:A21-11603Report Date:20-Jul-21Date Submitted:22-Jun-21Your Reference:Platinex

Platinex Inc. 807 William Roe Blvd Newmarket ON L3Y 5V6 Canada

ATTN: Dean R Cutting

CERTIFICATE OF ANALYSIS

24 Core samples were submitted for analysis.

The following analytical package(s) were requested:		Testing Date:
1A2B-30-Timmins	QOP AA-Au (Au - Fire Assay AA)	2021-07-19 17:39:19

REPORT A21-11603

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

If value exceeds upper limit we recommend reassay by fire assay gravimetric-Code 1A3

LabID: 709

ACTIVATION LABORATORIES LTD. 1752 Riverside Drive, Timmins, Ontario, Canada, P4R 1N1 TELEPHONE +705 264-0123 or +1.888.228.5227 FAX +1.905.648.9613 E-MAIL Timmins@actlabs.com ACTLABS GROUP WEBSITE www.actlabs.com

Emmanuel Eseme , Ph.D. Quality Control Coordinator

Results

Activation Laboratories Ltd.

Analyte Symbol	Au
Unit Symbol	ppb
Lower Limit	5
Method Code	FA-AA
J356104	< 5
J356105	< 5
J356106	< 5
J356107	< 5
J356108	< 5
J356109	< 5
J356110	< 5
J356111	< 5
J356112	< 5
J356113	< 5
J356114	< 5
J356115	< 5
J356116	< 5
J356117	< 5
J356118	< 5
J356119	< 5
J356120	< 5
J356121	10
J356122	13
J356123	< 5
J356124	11
J356125	42
J356126	< 5
J356127	< 5

Analyte Symbol	Au
Unit Symbol	nnh
Lower Limit	5
Method Code	FA-AA
Oreas 237 (Fire Assay) Meas	2270
Oreas 237 (Fire Assay) Cert	2210
Oreas 237 (Fire Assay) Meas	2180
Oreas 237 (Fire Assay) Cert	2210
Oreas 237 (Fire Assay) Meas	2160
Oreas 237 (Fire Assay) Cert	2210
Oreas E1336 (Fire Assay) Meas	516
Oreas E1336 (Fire Assay) Cert	510
Oreas E1336 (Fire Assay) Meas	528
Oreas E1336 (Fire Assay) Cert	510
Oreas E1336 (Fire Assay) Meas	528
Oreas E1336 (Fire Assay) Cert	510
J356110 Orig	< 5
J356110 Dup	< 5
J356120 Orig	< 5
J356120 Dup	< 5
Method Blank	< 5

Innovative Technologies

Report No.:A21-12329Report Date:20-Jul-21Date Submitted:30-Jun-21Your Reference:Platinex

Platinex Inc. 807 William Roe Blvd Newmarket ON L3Y 5V6 Canada

ATTN: Dean R Cutting

CERTIFICATE OF ANALYSIS

59 Core samples were submitted for analysis.

The following analytical package(s) were requested:		Testing Date:
1A2B-30-Timmins	QOP AA-Au (Au - Fire Assay AA)	2021-07-19 17:39:19

REPORT A21-12329

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

If value exceeds upper limit we recommend reassay by fire assay gravimetric-Code 1A3

LabID: 709

ACTIVATION LABORATORIES LTD. 1752 Riverside Drive, Timmins, Ontario, Canada, P4R 1N1 TELEPHONE +705 264-0123 or +1.888.228.5227 FAX +1.905.648.9613 E-MAIL Timmins@actlabs.com ACTLABS GROUP WEBSITE www.actlabs.com

Emmanuel Eseme , Ph.D. Quality Control Coordinator

Analyte Symbol	Au
Unit Symbol	ppb
Lower Limit	5
Method Code	FA-AA
J356128	18
J356129	9
J356130	< 5
J356131	5
J356132	< 5
J356133	< 5
J356134	32
J356135	20
J356136	14
J356137	103
J356138	369
1356139	373
1356140	4190
1356141	150
1356142	55
1256142	05
1256144	35
1256145	40
1256145	10
J350140	19
J356147	13
J356148	< 5
J356149	< 5
J356150	< 5
J350151	< 5
J356152	< 5
J356153	< 5
J356154	< 5
J356155	< 5
J356156	39
J356157	102
J356158	50
J356159	23
J356160	< 5
J356161	7
J356162	9
J356163	< 5
J356164	< 5
J356165	5
J356166	< 5
J356167	< 5
J356168	< 5
J356169	9
J356170	13
J356171	< 5
J356172	< 5
J356173	< 5
J356174	5
J356175	< 5
J356176	< 5
J356177	< 5
J356178	< 5
	1

Results

Activation Laboratories Ltd.

	-
Analyte Symbol	Au
Unit Symbol	ppb
Lower Limit	5
Method Code	FA-AA
J356179	< 5
J356180	349
J356181	11
J356182	< 5
J356183	10
J356184	< 5
J356185	< 5
J356186	< 5

Unit Symbol ppb Lower Limit 5 Method Code FA-AA Oreas 237 (Fire 2270 Assay) Meas 2270 Oreas 237 (Fire 2210 Assay) Cert 210 Oreas 237 (Fire 210 Assay) Meas 210 Oreas 237 (Fire 210 Assay) Meas 210 Oreas 237 (Fire 210 Assay) Meas 210 Oreas 237 (Fire 210 Assay) Meas 210 Oreas E1336 (Fire 510 Assay) Cert <td< th=""><th>Analyte Symbol</th><th>Au</th></td<>	Analyte Symbol	Au
Lower Limit 5 Icower Limit 5 Method Code FA-AA Oreas 237 (Fire 2270 Assay) Meas 2270 Oreas 237 (Fire 2210 Assay) Cert 20 Oreas 237 (Fire 210 Assay) Cert 210 Oreas 237 (Fire 210 Assay) Meas 210 Oreas 237 (Fire 210 Assay) Meas 210 Oreas 237 (Fire 210 Assay) Meas 210 Oreas 237 (Fire 210 Assay) Meas 210 Oreas 237 (Fire 210 Assay) Meas 210 Oreas E1336 (Fire 510 Assay) Meas 20 Oreas E1336 (Fire 510 Assay) Meas 210 Oreas E1336 (Fire 510 Assay) Meas 210 Oreas E1336 (Fire 510 Assay) Meas 210 Oreas E1336 (Fire 510 Assay) Cert	Unit Symbol	daa
Method Code FA-AA Oreas 237 (Fire 2270 Assay) Meas 2270 Oreas 237 (Fire 2210 Assay) Cert 2210 Oreas 237 (Fire 210 Assay) Meas 2210 Oreas 237 (Fire 210 Assay) Meas 210 Oreas 237 (Fire 210 Assay) Meas 20 Oreas 237 (Fire 210 Assay) Meas 210 Oreas 237 (Fire 210 Assay) Meas 210 Oreas 237 (Fire 210 Assay) Meas 210 Oreas E1336 (Fire 510 Assay) Meas 20 Oreas E1336 (Fire 510 Assay) Cert 210 Oreas E1336 (Fire 510 Assay) Cert 21356130 Dup J356130 Orig 5 J356150 Orig 5 J356150 Orig 5 J356170 Dup 12 J356170 Dup 5 J356170 Dup 5 <td>Lower Limit</td> <td>5</td>	Lower Limit	5
Initial October Initial October Oreas 237 (Fire 2270 Assay) Meas 2210 Oreas 237 (Fire 2210 Assay) Meas 2210 Oreas 237 (Fire 210 Assay) Cert 2210 Oreas 237 (Fire 210 Assay) Cert 2210 Oreas 237 (Fire 210 Assay) Cert 2210 Oreas E1336 (Fire 528 Assay) Cert 50 Oreas E1336 (Fire 528 Assay) Meas 510 Oreas E1336 (Fire 528 Oreas E1336 (Fire 528 Assay) Meas 510 Oreas E1336 (Fire 528 J356130 Orig 5 J356150 Orig 5 J356150 Orig 5 J356160	Method Code	ΕΔ-ΔΔ
Oreas 237 (Fire 2210 Assay) Meas Oreas 237 (Fire 2210 Oreas 237 (Fire 2180 Assay) Meas Oreas 237 (Fire 2210 Oreas 237 (Fire 2210 Assay) Meas Oreas 237 (Fire 2210 Oreas 237 (Fire 2210 Assay) Meas Oreas 237 (Fire 2210 Oreas 237 (Fire 2210 Assay) Meas Oreas 237 (Fire 2210 Oreas 237 (Fire 2210 Assay) Meas Oreas 237 (Fire 2210 Oreas 237 (Fire 2210 Assay) Meas 510 Oreas E1336 (Fire 510 Assay) Cert 50 Oreas E1336 (Fire 510 Assay) Meas 510 Oreas E1336 (Fire 510 Assay) Meas 510 Oreas E1336 (Fire 510 Assay) Meas 510 Oreas E1336 (Fire 510 51356130 Dup 5 J356150 Orig 5 J356150 Orig 5 J356150 Dup 5 J356170 Dup 5	Oreas 237 (Fire	2270
Oreas 237 (Fire Assay) Cert 2210 Oreas 237 (Fire Assay) Meas 2180 Oreas 237 (Fire Assay) Meas 2210 Oreas 237 (Fire Assay) Meas 2210 Oreas 237 (Fire Assay) Meas 2160 Oreas 237 (Fire Assay) Meas 2210 Oreas 237 (Fire Assay) Meas 2210 Oreas 237 (Fire Assay) Meas 2210 Oreas 237 (Fire Assay) Meas 2210 Oreas E1336 (Fire Assay) Meas 510 Oreas E1336 (Fire Assay) Meas 510 Oreas E1336 (Fire Assay) Meas 528 Oreas E1336 (Fire Assay) Meas 510 Oreas E1336 (Fire Assay) Meas 510 Oreas E1336 (Fire Assay) Meas 510 Oreas E1336 (Fire Assay) Meas 510 Oreas E1336 (Fire Assay) Meas 510 Oreas E1336 (Fire Assay) Meas 510 Oreas E1336 (Fire Assay) Meas 510 Oreas E1336 (Fire Assay) Meas 510 Oreas E1336 (Fire Assay) Meas 510 J356150 Oup 5 J356160 Oup 5 J356170 Dup 5 J356	Assay) Meas	2270
Oreas 237 (Fire Assay) Meas 2180 Oreas 237 (Fire Assay) Cert 2210 Oreas 237 (Fire Assay) Cert 2160 Oreas 237 (Fire Assay) Meas 2160 Oreas 237 (Fire Assay) Cert 2110 Oreas E1336 (Fire Assay) Meas 516 Oreas E1336 (Fire Assay) Meas 510 Oreas E1336 (Fire Assay) Meas 510 Oreas E1336 (Fire Assay) Meas 510 Oreas E1336 (Fire Assay) Meas 510 Oreas E1336 (Fire Assay) Meas 510 Oreas E1336 (Fire Assay) Meas 510 Oreas E1336 (Fire Assay) Meas 510 Oreas E1336 (Fire Assay) Meas 510 Oreas E1336 (Fire Assay) Meas 510 Oreas E1336 (Fire Assay) Meas 510 J356130 Dup <5	Oreas 237 (Fire Assay) Cert	2210
Oreas 237 (Fire Assay) Cert 2210 Oreas 237 (Fire Assay) Meas 2160 Oreas 237 (Fire Assay) Meas 2210 Oreas 237 (Fire Assay) Meas 2210 Oreas E1336 (Fire Assay) Meas 516 Oreas E1336 (Fire Assay) Meas 510 Oreas E1336 (Fire Assay) Meas 510 Oreas E1336 (Fire Assay) Meas 510 Oreas E1336 (Fire Assay) Meas 510 Oreas E1336 (Fire Assay) Meas 510 Oreas E1336 (Fire Assay) Meas 510 Oreas E1336 (Fire Assay) Cert 510 J356130 Orig < 5	Oreas 237 (Fire Assay) Meas	2180
Oreas 237 (Fire Assay) Meas 2160 Oreas 237 (Fire Assay) Cert 2210 Oreas E1336 (Fire Assay) Meas 516 Oreas E1336 (Fire Assay) Meas 510 Oreas E1336 (Fire Assay) Meas 510 Oreas E1336 (Fire Assay) Meas 528 Oreas E1336 (Fire Assay) Meas 510 Oreas E1336 (Fire Assay) Meas 510 Oreas E1336 (Fire Assay) Meas 510 Oreas E1336 (Fire Assay) Meas 510 Oreas E1336 (Fire Assay) Meas 510 Oreas E1336 (Fire Assay) Meas 510 Oreas E1336 (Fire Assay) Meas 510 J356130 Orig < 5	Oreas 237 (Fire Assay) Cert	2210
Oreas 237 (Fire Assay) Cert 2210 Oreas E1336 (Fire Assay) Meas 516 Oreas E1336 (Fire Assay) Meas 510 Oreas E1336 (Fire Assay) Meas 528 Oreas E1336 (Fire Assay) Meas 510 Oreas E1336 (Fire Assay) Meas 510 Oreas E1336 (Fire Assay) Cert 510 Oreas E1336 (Fire Assay) Cert 510 J356130 Orig < 5	Oreas 237 (Fire Assay) Meas	2160
Oreas E1336 (Fire Assay) Meas 516 Oreas E1336 (Fire Assay) Cert 510 Oreas E1336 (Fire Assay) Meas 528 Oreas E1336 (Fire Assay) Meas 510 Oreas E1336 (Fire Assay) Meas 510 Oreas E1336 (Fire Assay) Meas 510 Oreas E1336 (Fire Assay) Meas 510 Oreas E1336 (Fire Assay) Meas 510 Oreas E1336 (Fire Assay) Meas 510 Oreas E1336 (Fire Assay) Meas 510 J356130 Orig < 5	Oreas 237 (Fire Assay) Cert	2210
Oreas E1336 (Fire Assay) Cert 510 Oreas E1336 (Fire Assay) Meas 528 Oreas E1336 (Fire Assay) Cert 510 Oreas E1336 (Fire Assay) Meas 510 Oreas E1336 (Fire Assay) Meas 510 Oreas E1336 (Fire Assay) Meas 510 J356130 Orig < 5	Oreas E1336 (Fire Assay) Meas	516
Oreas E1336 (Fire Assay) Meas 528 Oreas E1336 (Fire Assay) Cert 510 Oreas E1336 (Fire Assay) Meas 510 Oreas E1336 (Fire Assay) Meas 510 Oreas E1336 (Fire Assay) Cert 510 J356130 Orig < 5	Oreas E1336 (Fire Assay) Cert	510
Oreas E1336 (Fire Assay) Cert 510 Oreas E1336 (Fire Assay) Meas 528 Oreas E1336 (Fire Assay) Cert 510 J356130 Orig < 5	Oreas E1336 (Fire Assay) Meas	528
Oreas E1336 (Fire Assay) Meas 528 Oreas E1336 (Fire Assay) Cert 510 J356130 Orig 5 J356130 Dup 5 J356150 Orig 5 J356150 Dup 5 J356160 Orig 5 J356160 Orig 5 J356170 Orig 13 J356170 Orig 13 J356170 Orig 13 J356170 Orig 5 J356170 Oup 12 J356175 Dup <5	Oreas E1336 (Fire Assay) Cert	510
Oreas E1336 (Fire Assay) Cert 510 J356130 Orig < 5	Oreas E1336 (Fire Assay) Meas	528
J356130 Orig < 5	Oreas E1336 (Fire Assay) Cert	510
J356130 Dup < 5	J356130 Orig	< 5
J356150 Orig < 5	J356130 Dup	< 5
J356150 Dup < 5	J356150 Orig	< 5
J356160 Orig < 5	J356150 Dup	< 5
J356160 Dup < 5	J356160 Oria	< 5
J356170 Orig 13 J356170 Dup 12 J356175 Orig < 5	J356160 Dup	< 5
J356170 Dup 12 J356175 Orig < 5	J356170 Orig	13
J356175 Orig < 5	J356170 Dup	12
J356175 Dup < 5	J356175 Oria	< 5
J356177 Orig < 5	J356175 Dup	< 5
J356177 Split < 5	J356177 Orig	< 5
Method Blank < 5 Method Blank < 5 Method Blank < 5 Method Blank < 5 Method Blank < 5	J356177 Split PREP DUP	< 5
Method Blank< 5Method Blank< 5	Method Blank	< 5
Method Blank< 5Method Blank< 5	Method Blank	< 5
Method Blank < 5	Method Blank	< 5
	Method Blank	< 5
Method Blank < 5	Method Blank	< 5
Method Blank < 5	Method Blank	< 5

Innovative Technologies

Report No.:A21-13569Report Date:23-Aug-21Date Submitted:16-Jul-21Your Reference:16-Jul-21

Platinex Inc. 807 William Roe Blvd Newmarket ON L3Y 5V6 Canada

ATTN: Dean R Cutting

CERTIFICATE OF ANALYSIS

47 Core samples were submitted for analysis.

The following analytical package(s) were requested:		Testing Date:
1A2B-30-Timmins	QOP AA-Au (Au - Fire Assay AA)	2021-08-20 15:40:15

REPORT A21-13569

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

If value exceeds upper limit we recommend reassay by fire assay gravimetric-Code 1A3

LabID: 709

ACTIVATION LABORATORIES LTD. 1752 Riverside Drive, Timmins, Ontario, Canada, P4R 1N1 TELEPHONE +705 264-0123 or +1.888.228.5227 FAX +1.905.648.9613 E-MAIL Timmins@actlabs.com ACTLABS GROUP WEBSITE www.actlabs.com

Emmanuel Eseme , Ph.D. Quality Control Coordinator

Analyte Symbol	Au
Unit Symbol	dqq
Lower Limit	5
Method Code	FA-AA
J356187	10
J356188	6
J356189	6
J356190	11
J356191	5
J356192	5
J356193	25
J356194	26
J356195	< 5
J356196	131
J356197	22
J356198	6
J356199	6
J356200	7
J356201	61
J356202	6
J356203	7
J356204	6
J356205	167
J356206	23
J356207	48
J356208	24
J356209	17
J356210	26
J356211	6
J356212	6
J356213	8
J356214	6
J356215	6
J356216	6
J356217	10
J356218	< 5
J356219	< 5
J356220	4990
J356221	11
J356222	8
J356223	6
J356224	7
J356225	12
J356226	6
J356227	9
J356228	8
J356229	12
J356230	9
J356231	11
J356232	10
J356233	8

Analyte Symbol	Au
Unit Symbol	ppb
Lower Limit	5
Method Code	FA-AA
Oreas 237 (Fire Assay) Meas	2250
Oreas 237 (Fire Assay) Cert	2210
Oreas 237 (Fire Assay) Meas	2320
Oreas 237 (Fire Assay) Cert	2210
Oreas E1336 (Fire Assay) Meas	523
Oreas E1336 (Fire Assay) Cert	510
Oreas E1336 (Fire Assay) Meas	517
Oreas E1336 (Fire Assay) Cert	510
J356196 Orig	138
J356196 Dup	124
J356206 Orig	20
J356206 Dup	25
J356216 Orig	7
J356216 Dup	5
Method Blank	< 5
Method Blank	< 5
Method Blank	< 5
Method Blank	5

Innovative Technologies

Report No.:	A21-14613
Report Date:	23-Aug-21
Date Submitted:	03-Aug-21
Your Reference:	Platinex

Platinex Inc. 807 William Roe Blvd Newmarket ON L3Y 5V6 Canada

ATTN: James Trusler

CERTIFICATE OF ANALYSIS

117 Core samples were submitted for analysis.

The following analytical package(s) were requested:		Testing Date:
1A2B-30-Timmins	QOP AA-Au (Au - Fire Assay AA)	2021-08-23 09:23:31

REPORT A21-14613

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

If value exceeds upper limit we recommend reassay by fire assay gravimetric-Code 1A3

LabID: 709

ACTIVATION LABORATORIES LTD. 1752 Riverside Drive, Timmins, Ontario, Canada, P4R 1N1 TELEPHONE +705 264-0123 or +1.888.228.5227 FAX +1.905.648.9613 E-MAIL Timmins@actlabs.com ACTLABS GROUP WEBSITE www.actlabs.com

Emmanuel Eseme , Ph.D. Quality Control Coordinator

Analyte Symbol	Au
Unit Symbol	ppb
Lower Limit	5
Method Code	FA-AA
J356234	12
J356235	12
J356236	9
J356237	14
J356238	12
J356239	11
J356240	< 5
J356241	5
J356242	< 5
J356243	< 5
J356244	< 5
.1356245	11
1356246	< 5
1356247	7
1356248	- 5
1356240	< 5
1256250	21
1256251	21
1256252	< 3
1350232	1
1350255	< 5
J356254	< 5
J356255	< 5
J356256	< 5
J356257	< 5
1356258	1
1356259	< 0
J356260	301
1356261	< 5
1350202	106
J356263	120
J356264	< 5
J356265	< 5
J356266	54
J356267	< 5
1356268	< 5
1356269	< 5
J356270	< 5
J3562/ I	< 5
J3562/2	< 5
J3562/3	< 5
J3562/4	< 5
J3562/5	< 5
J356276	16
J356277	1460
J356278	11
J356279	43
J356280	19
J356281	< 5
J356282	5
J356283	11
J356284	< 5

Analyte Symbol	Au	
Unit Symbol	ppb	
Lower Limit	5	
Method Code	FA-AA	
J356285	< 5	
J356286	< 5	
J356287	< 5	
J356288	< 5	
J356289	< 5	
J356290	< 5	
J356291	< 5	
J356292	< 5	
J356293	< 5	
J356294	< 5	
J356295	< 5	
J356296	< 5	
J356297	< 5	
J356298	< 5	
J356299	< 5	
1356300	5070	
J356301	- 5	
1356302	< 5	
1356303	< 5	
1356304	< 5	
1356305	< 5	
1256206	< 5	
1256207	5	
1256209	< 5	
1256200	< 5	
1256210	< 5	
1256211	< 5	
1256212	< 5	
1256212	< 5	
1256214	< 5	
1256215	< 5	
1256216	< 5	
1050017	< 0	
1256210	< 5	
1356310	< 5	
135630	< 5	
1256221	< 5	
J356321	< 5	
J356322	< 5	
1356323	< 5	
J356324	< 5	
J356325	13	
J356326	168	
J356327	< 5	
J356328	6	
J356329	< 5	
J356330	< 5	
J356331	< 5	
J356332	< 5	
J356333	13	
J356334	9	
J356335	47	
I	1	
Analyte Symbol	Au	
----------------	-------	--
Unit Symbol	ppb	
Lower Limit	5	
Method Code	FA-AA	
J356336	5	
J356337	7	
J356338	< 5	
J356339	< 5	
J356340	353	
J356341	35	
J356342	< 5	
J356343	< 5	
J356344	< 5	
J356345	< 5	
J356346	< 5	
J356347	8	
J356348	9	
J356349	6	
J356350	11	

Analyta Cymhal	A
Analyte Symbol	Au
Unit Symbol	ppb
Lower Limit	5
Method Code	FA-AA
Oreas 237 (Fire	2280
Assay) Meas	
Oreas 237 (Fire	2210
Assav) Cert	2210
Oreas 237 (Fire	2290
Assav) Meas	2230
Oreas 237 /Fire	2210
Assav) Cert	2210
Oreas 237 (Fire	2210
Assav) Meas	2210
Oreas 237 (Fire	2210
Assav) Cert	2210
Oroas 227 (Eiro	2210
Assav) Meas	2210
Orogo 227 (Eiro	2210
Assav) Cert	2210
Assay Den	E14
Oreas E 1330 (Fire	514
Oreas E1000 (Fire	E10
Oreas E 1330 (Fire	510
Assay) Cert	500
Oreas E1336 (Fire	526
Assay) Weas	510
Oreas E1336 (Fire	510
Assay) Cert	510
Oreas E1336 (Fire	519
Assay Meas	510
Oreas E1336 (Fire	510
Assay) Cell	500
Oreas E 1330 (Fire	503
Assay) Meas	510
Oreas E1330 (Fire	510
	-
J356243 Orig	< 5
J356243 Dup	< 5
J356253 Orig	< 5
J356253 Dup	< 5
J356263 Orig	136
J356263 Dup	116
1256279 Orig	10
10500270 Ulig	10
0356278 Dup	11
J356283 Orig	11
J356283 Split	< 5
PREP DUP	
J356287 Orig	< 5
J356287 Dup	< 5
J356297 Orig	< 5
J356297 Dun	7
1256212 Orig	
1050012 Uly	< 3
J356312 Dup	< 5
J356322 Orig	< 5
J356322 Dup	< 5
J356332 Orig	< 5
J356332 Dup	< 5
1356333 Orig	12
1256222 Collin	
IPREP DI IP	23

	-
Analyte Symbol	Au
Unit Symbol	ppb
Lower Limit	5
Method Code	FA-AA
J356346 Orig	< 5
J356346 Dup	< 5
Method Blank	< 5
Method Blank	< 5
Method Blank	< 5
Method Blank	< 5
Method Blank	< 5
Method Blank	< 5
Method Blank	< 5
Method Blank	< 5

Innovative Technologies

Report No.:	A21-14861
Report Date:	17-Aug-21
Date Submitted:	08-Aug-21
Your Reference:	Platinex

Platinex Inc. 807 William Roe Blvd Newmarket ON L3Y 5V6 Canada

ATTN: James Trusler

CERTIFICATE OF ANALYSIS

57 Core samples were submitted for analysis.

The following analytical package(s) were requested:		Testing Date:
1A2B-30-Timmins	QOP AA-Au (Au - Fire Assay AA)	2021-08-16 15:41:42

REPORT A21-14861

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

If value exceeds upper limit we recommend reassay by fire assay gravimetric-Code 1A3

LabID: 709

ACTIVATION LABORATORIES LTD. 1752 Riverside Drive, Timmins, Ontario, Canada, P4R 1N1 TELEPHONE +705 264-0123 or +1.888.228.5227 FAX +1.905.648.9613 E-MAIL Timmins@actlabs.com ACTLABS GROUP WEBSITE www.actlabs.com

Emmanuel Eseme , Ph.D. Quality Control Coordinator

Analyte Symbol	Au
Unit Symbol	ppb
Lower Limit	5
Method Code	FA-AA
J356351	12
J356352	9
J356353	12
.1356354	15
1356355	20
1356356	13
1256257	1/
1256259	14
1256250	0
1256309	9
1320300	9
J356361	20
J356362	13
J356363	9
J356364	12
J356365	9
J356366	< 5
J356367	5
J356368	< 5
J356369	5
J356370	< 5
J356371	10
J356372	8
J356373	< 5
J356374	< 5
J356375	< 5
J356376	10
J356377	56
J356378	< 5
J356379	< 5
J356380	4680
J356381	16
J356382	15
J356383	344
J356384	22
.1356385	7
1356386	6
1356387	7
1256299	1
1256290	< 5
1320389	5
1326390	144
J356391	26
J356392	9
J356393	< 5
J356394	< 5
J356395	56
J356396	125
J356397	1800
J356398	449
J356399	11
J356400	< 5
J356401	5

Activation Laboratories Ltd.

Report: A21-14861

Analyte Symbol	Au	
Unit Symbol	ppb	
Lower Limit	5	
Method Code	FA-AA	
J356402	< 5	
J356403	22	
J356404	7	
J356405	10	
J356406	197	
J356407	5	

Analyte Symbol	Au	
Unit Symbol	ppb	
Lower Limit	5	
Method Code	FA-AA	
Oreas 237 (Fire Assay) Meas	2280	
Oreas 237 (Fire Assay) Cert	2210	
Oreas 237 (Fire Assay) Meas	2260	
Oreas 237 (Fire Assay) Cert	2210	
Oreas E1336 (Fire Assay) Meas	525	
Oreas E1336 (Fire Assay) Cert	510	
Oreas E1336 (Fire Assay) Meas	522	
Oreas E1336 (Fire Assay) Cert	510	
J356360 Orig	9	
J356360 Dup	8	
J356370 Orig	< 5	
J356370 Dup	< 5	
J356381 Orig	20	
J356381 Dup	11	
J356400 Orig	< 5	
J356400 Dup	< 5	
J356401 Orig	5	
J356401 Split PREP DUP	5	
J356407 Orig	5	
J356407 Dup	5	
Method Blank	< 5	
Method Blank	< 5	
Method Blank	< 5	
Method Blank	< 5	

Innovative Technologies

Report No.:	A21-15852
Report Date:	10-Sep-21
Date Submitted:	19-Aug-21
Your Reference:	Platinex

Platinex Inc. 807 William Roe Blvd Newmarket ON L3Y 5V6 Canada

ATTN: James R trusler Trusler

CERTIFICATE OF ANALYSIS

82 Core samples were submitted for analysis.

The following analytical package(s) were requested:		Testing Date:
1A3-50	QOP AA-Au (Au - Fire Assay Gravimetric)	2021-09-10 13:28:03

REPORT A21-15852

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

If value exceeds upper limit we recommend reassay by fire assay gravimetric-Code 1A3

LabID: 266

ACTIVATION LABORATORIES LTD. 41 Bittern Street, Ancaster, Ontario, Canada, L9G 4V5 TELEPHONE +905 648-9611 or +1.888.228.5227 FAX +1.905.648.9613 E-MAIL Ancaster@actlabs.com ACTLABS GROUP WEBSITE www.actlabs.com

Emmanuel Eseme , Ph.D. Quality Control Coordinator

Innovative Technologies

Report No.:A21-15852Report Date:10-Sep-21Date Submitted:19-Aug-21Your Reference:Platinex

Platinex Inc. 807 William Roe Blvd Newmarket ON L3Y 5V6 Canada

ATTN: James R trusler Trusler

CERTIFICATE OF ANALYSIS

82 Core samples were submitted for analysis.

The following analytical package(s) were requested:		Testing Date:
1A2B-30-Timmins	QOP AA-Au (Au - Fire Assay AA)	

REPORT A21-15852

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

If value exceeds upper limit we recommend reassay by fire assay gravimetric-Code 1A3

LabID: 709

ACTIVATION LABORATORIES LTD. 1752 Riverside Drive, Timmins, Ontario, Canada, P4R 1N1 TELEPHONE +705 264-0123 or +1.888.228.5227 FAX +1.905.648.9613 E-MAIL Timmins@actlabs.com ACTLABS GROUP WEBSITE www.actlabs.com

Emmanuel Eseme , Ph.D. Quality Control Coordinator

Analyte Symbol	Au	Au
Unit Symbol	ppb	g/tonne
Lower Limit	5	0.02
Method Code	FA-AA	FA- GRA
J356408	105	
J356409	33	
J356410	35	
J356411	8	
J356412	16	
J356413	212	
J356414	763	
J356415	12	
J356416	16	
J356417	51	
J356418	12	
J356419	7	
J356420	366	
J356421	10	
J356422	12	
J356423	8	
1356424	6	
1356425	6	
1356426	88	
1256427	149	
1256429	140	
1356420	120	
J356429	132	
J356430		
J356431	0	
J356432	0	
J356433	/	
J356434		
J356435	/	
J356436	16	
J356437	50	
J356438	9	
J356439	8	
J356440	9	
J356441	53	
J356442	14	
J356443	6	
J356444	7	
J356445	< 5	
J356446	6	
J356447	8	
J356448	101	
J356449	5	
J356450	8	
J356451	5	
J356452	< 5	
J356453	< 5	
J356454	12	
J356455	< 5	
J356456	< 5	
J356457	47	
	1	

Analyte Symbol	Au	Au
Unit Symbol	ppb	g/tonne
Lower Limit	5	0.02
Method Code	FA-AA	FA- GRA
J356458	< 5	
J356459	667	
J356460	4930	
J356461	5	
J356462	< 5	
J356463	< 5	
J356464	159	
J356465	61	
J356466	70	
J356467	33	
J356468	209	
J356469	70	
J356470	7	
J356471	< 5	
J356472	9	
J356473	5010	6.40
J356474	30	
J356475	6	
J356476	104	
J356477	7	
J356478	23	
J356479	496	
J356480	< 5	
J356481	5	
J356482	5	
J356483	9	
J356484	< 5	
J356485	< 5	
J356486	< 5	
J356487	< 5	
J356488	15	
J356489	< 5	

Analyte Symbol	Au	Au
Unit Symbol	ppb	g/tonne
Lower Limit	5	0.02
Method Code	FA-AA	FA- GRA
OREAS 229b		11.9
(Fire Assay) Meas		
OREAS 229b		11.9
(Fire Assay) Cert		
Oreas 237 (Fire	2180	
Assay) Meas		
Oreas 237 (Fire	2210	
Assay) Cert	0040	
Assav) Meas	2240	
Oreas 237 (Fire	2210	
Assav) Cert	2210	
Oreas 237 (Fire	2240	
Assay) Meas		
Oreas 237 (Fire	2210	
Assay) Cert		
Oreas 237 (Fire	2270	
Assay) Meas		
Oreas 237 (Fire	2210	
Assay) Cert		
Oreas E1336 (Fire	509	
Assay) Neas	510	
Oreas E1336 (Fire	510	
Oreas E1336 (Fire	516	
Assay) Meas	510	
Oreas E1336 (Fire	510	
Assay) Cert		
Oreas E1336 (Fire	491	
Assay) Meas		
Oreas E1336 (Fire	510	
Assay) Cert		
Oreas E1336 (Fire	506	
Assay) Neas	510	
Oreas E1336 (Fire	510	
OBEAS 228 Mass		8 74
OREAS 228 Cort		8 73
UNLAS 220 Celt	007	0.75
1256414 Duo	600	
1050414 Dup	699	
J356427 Urig	132	
J356427 Dup	164	
J356457 Orig	47	
J356457 Split	36	
J356458 Orig	11	
J356458 Dup	< 5	
J356466 Orig	69	
J356466 Dup	71	
J356476 Orig	111	
J356476 Dup	96	
J356479 Orig	525	
J356479 Dup	466	
J356487 Orig	< 5	
J356487 Dup	< 5	

Analyte Symbol	Au	Au
Unit Symbol	ppb	g/tonne
Lower Limit	5	0.02
Method Code	FA-AA	FA- GRA
Method Blank	5	
Method Blank	5	
Method Blank	< 5	
Method Blank	5	
Method Blank	< 5	
Method Blank	< 5	
Method Blank		< 0.02
Method Blank		< 0.02
Method Blank	5	
Method Blank	< 5	

Innovative Technologies

Report No.:A21-11003Report Date:29-Jun-21Date Submitted:14-Jun-21Your Reference:Platinex

Platinex Inc. 807 William Roe Blvd Newmarket ON L3Y 5V6 Canada

ATTN: James R trusler Trusler

CERTIFICATE OF ANALYSIS

104 Core samples were submitted for analysis.

The following analytical package(s) were requested:		Testing Date:
1A2B-30-Timmins	QOP AA-Au (Au - Fire Assay AA)	2021-06-23 12:54:42

REPORT A21-11003

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

If value exceeds upper limit we recommend reassay by fire assay gravimetric-Code 1A3

LabID: 709

ACTIVATION LABORATORIES LTD. 1752 Riverside Drive, Timmins, Ontario, Canada, P4R 1N1 TELEPHONE +705 264-0123 or +1.888.228.5227 FAX +1.905.648.9613 E-MAIL Timmins@actlabs.com ACTLABS GROUP WEBSITE www.actlabs.com

Emmanuel Eseme , Ph.D. Quality Control Coordinator

Analyte Symbol	Au	Au
Unit Symbol	ppb	g/tonne
Lower Limit	5	0.02
Method Code	FA-AA	FA- GRA
J356000	< 5	
J356001	14	
J356002	45	
J356003	< 5	
J356004	5	
J356005	6	
J356006	5	
J356007	< 5	
J356008	< 5	
J356009	8	
J356010	290	
J356011	270	
.1356012	< 5	
J356013	A A	
J356014	7	
1356015	65	
1256016	20	
1350010	20	
1356017	20	
1356010	21	
1356019	0	
1356020	303	
J356021	9	
J356022	0	
1356023	6	
1356024	5	
1356025	5	
1356027	5	
1256028	6	
1356020	22	
1350029	33	
1350030	5	
1256022	5	
1256022	6	
1256024	62 50	
1256025	53	
1256026	7	
1256027	/ 7	
1256029		
1050000	6	
1050039	< 5	
000040		
1356041	30	
1356042	6	
1356043	5	
J356044	< 5	
J356045	< 5	
J356046	< 5	
J356047	< 5	
J356048	< 5	
J356049	< 5	
1		

Analyte Symbol	Au	Au
Unit Symbol	ppb	g/tonne
Lower Limit	5	0.02
Method Code	FA-AA	FA- GRA
J356050	< 5	
J356051	< 5	
J356052	< 5	
J356053	< 5	
J356054	< 5	
J356055	< 5	
J356056	< 5	
J356057	< 5	
J356058	8	
1356059	17	
1356060	5030	4.81
1356061	- 5	4.01
1256062	< 5	
1256062	< 0	
1256064	8	
1050004	23	
J356065	69	
J356066	33	
J356067	44	
J356068	15	
J356069	22	
J356070	12	
J356071	44	
J356072	14	
J356073	58	
J356074	60	
J356075	6	
J356076	< 5	
J356077	< 5	
J356078	< 5	
J356079	< 5	
J356080	< 5	
J356081	< 5	
J356082	< 5	
J356083	< 5	
J356084	56	
J356085	57	
J356086	24	
J356087	26	
J356088	85	
J356089	22	
J356090	35	
J356091	19	
J356092	8	
J356093	7	
J356094	< 5	
J356095	< 5	
J356096	< 5	
J356097	< 5	
J356098	< 5	
J356099	< 5	

Analyte Symbol	Au	Au
Unit Symbol	ppb	g/tonne
Lower Limit	5	0.02
Method Code	FA-AA	FA- GRA
J356100	342	
J356101	< 5	
J356102	< 5	
J356103	< 5	

Analyte Symbol	Au	Au
Unit Symbol	ppb	g/tonne
Lower Limit	5	0.02
Method Code	FA-AA	FA- GRA
OREAS 229b		12.3
(Fire Assay) Meas		-
OREAS 229b		11.9
(Fire Assay) Cert		
Oreas 237 (Fire	2160	
Assay) Meas		
Oreas 237 (Fire	2210	
Assay) Cert		
Oreas 237 (Fire	2140	
Assay) Weas	0010	
Oreas 237 (Fire	2210	
Oreas 237 (Fire	2120	
Assav) Meas	2120	
Oreas 237 (Fire	2210	
Assay) Cert		
OREAS 228b		8.80
(Fire Assay) Meas		
OREAS 228b		8.57
(Fire Assay) Cert		
Oreas E1336 (Fire	523	
Assay) Meas		
Oreas E1336 (Fire	510	
Assay) Cert		
Oreas E1336 (Fire	522	
Assay) Meas	510	
Oreas E1336 (Fire	510	
Oroop E1226 (Eiro	500	
Assav) Meas	500	
Oreas E1336 (Fire	510	
Assay) Cert		
J356009 Orig	8	
J356009 Dup	8	
J356019 Oria	8	
J356019 Dup	8	
1356029 Orig	21	
1256020 Dup	25	
1256044 Orig		
1350044 Ong	< 5	
U050044 DUp	< 5	
J356049 Orig	< 5	
J356049 Split	< 5	
PREP DUP		
1356053 Orig	< 5	
J356053 Dup	< 5	
J356063 Orig	8	
J356063 Dup	8	
J356078 Orig	< 5	
J356078 Dup	< 5	
J356088 Orig	87	
J356088 Dup	82	
J356099 Oria	< 5	
J356099 Split	< 5	
PREP DUP		
Ivietnod Blank	< 5	

Analyte Symbol	Au	Au
Unit Symbol	ppb	g/tonne
Lower Limit	5	0.02
Method Code	FA-AA	FA- GRA
Method Blank	< 5	
Method Blank	< 5	
Method Blank	< 5	
Method Blank	< 5	
Method Blank	< 5	
Method Blank		< 0.02
Method Blank		< 0.02

Innovative Technologies

Report No.: A21-11003-TD **Report Date:** 24-Aug-21 **Date Submitted:** 14-Jun-21 Your Reference: Platinex

Platinex Inc. 807 William Roe Blvd Newmarket ON L3Y 5V6 Canada

ATTN: James R trusler Trusler

CERTIFICATE OF ANALYSIS

104 Core samples were submitted for analysis.

The following analytical package(s) were requested:	Testing Date:	
UT-5	QOP INAAGEO/QOP Ultratrace- 4acid Digest (INAA/Total Digestion ICPMS)	2021-08-11 12:12:10

REPORT A21-11003-TD

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

Unaltered silicates and resistate minerals may not be dissolved. Values which exceed upper limit should be assayed.

Footnote: insufficient material for sample J356060.

ТΜ

LabID: 266

ACTIVATION LABORATORIES LTD.

41 Bittern Street, Ancaster, Ontario, Canada, L9G 4V5 TELEPHONE +905 648-9611 or +1.888.228.5227 FAX +1.905.648.9613 E-MAIL Ancaster@actlabs.com ACTLABS GROUP WEBSITE www.actlabs.com

Emmanuel Eseme , Ph.D. Quality Control Coordinator

Analyte Symbol	Au	Ag	Ni	Zn	As	Ba	Br	Co	Cr	Cs	Fe	Hf	Hg	Na	Sb	Sc	Se	Та	Th	U	W	Mass	Cu
Unit Symbol	ppb	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	g	ppm
Lower Limit	2	0.05	0.5	0.5	0.5	1	0.5	0.1	2	0.05	0.01	1	1	0.01	0.1	0.1	0.1	0.1	0.1	0.1	1		0.2
Method Code	INAA	MULT I NAA/T D-ICP- MS	MULT I NAA/T D-ICP- MS	MULT I NAA/T D-ICP- MS	INAA	MULT I NAA/T D-ICP- MS	INAA	MULT I NAA/T D-ICP- MS	INAA	MULT I NAA/T D-ICP- MS	INAA	INAA	INAA	INAA	INAA	INAA	MULT I NAA/T D-ICP- MS	MULT I NAA/T D-ICP- MS	MULT I NAA/T D-ICP- MS	MULT I NAA/T D-ICP- MS	INAA	INAA	TD-MS
J356058	5	0.20	38.1	104	28.0	14	0.6	13.4	37	0.18	11.8	< 1	< 1	0.02	2.3	10.9	0.9	0.1	0.6	0.2	< 1	39.9	46.2
J356059	15	0.31	18.2	41.6	27.0	4	< 0.5	7.8	14	0.07	17.4	< 1	< 1	0.01	3.1	1.2	1.2	< 0.1	0.2	0.1	< 1	45.0	17.5
J356060																							
J356061	< 2	0.69	44.2	43.5	353	3	< 0.5	14.4	18	0.14	12.5	< 1	< 1	0.01	8.9	2.0	2.1	< 0.1	0.4	0.1	< 1	36.5	42.8
J356062	< 2	0.14	19.4	38.2	34.7	2	< 0.5	6.8	13	0.07	9.05	< 1	< 1	0.01	2.2	2.4	1.2	< 0.1	0.2	< 0.1	< 1	40.2	19.4
J356063	5	0.63	25.9	36.5	63.9	2	< 0.5	11.8	9	0.16	11.9	< 1	< 1	0.01	9.2	2.0	1.3	< 0.1	0.3	< 0.1	< 1	42.3	35.0
J356064	23	0.20	16.2	82.9	23.3	4	< 0.5	6.9	9	0.11	8.73	< 1	< 1	0.01	2.3	3.4	1.3	< 0.1	0.3	0.1	3	36.1	20.4
J356065	65	0.71	16.3	43.1	66.2	3	< 0.5	7.5	7	0.11	7.82	< 1	< 1	0.01	6.2	1.1	1.7	< 0.1	0.2	< 0.1	3	42.8	31.8
J356066	33	0.42	15.8	45.5	45.7	4	0.6	8.7	9	0.10	8.85	< 1	< 1	0.01	3.2	2.3	1.9	< 0.1	0.4	0.1	< 1	41.2	36.8
J356067	38	0.27	6.9	24.3	31.2	4	0.6	3.1	6	< 0.05	7.68	< 1	< 1	0.01	2.4	0.6	1.2	< 0.1	0.1	< 0.1	< 1	42.8	17.5
J356068	17	0.16	6.6	22.1	16.9	2	< 0.5	3.2	7	< 0.05	5.03	< 1	< 1	0.01	1.2	0.7	1.2	< 0.1	0.1	< 0.1	< 1	39.6	14.1
J356069	18	0.20	10.6	29.8	31.2	2	0.5	4.1	5	< 0.05	5.83	< 1	< 1	0.01	1.7	1.0	1.6	< 0.1	0.2	< 0.1	< 1	42.7	25.9
J356070	16	0.17	11.7	36.3	18.3	2	< 0.5	2.7	5	< 0.05	6.45	< 1	< 1	0.01	1.3	1.2	1.1	< 0.1	0.1	< 0.1	< 1	42.2	25.7
J356071	42	0.45	59.6	130	87.8	4	< 0.5	31.2	54	0.29	10.1	< 1	< 1	0.01	4.3	15.2	1.8	< 0.1	0.4	0.2	5	35.3	113
J356072	19	0.14	78.4	145	75.2	181	< 0.5	50.5	70	1.50	8.43	1	< 1	0.13	2.0	33.4	1.2	< 0.1	0.5	0.2	10	33.6	76.2
J356073	48	0.14	112	139	114	140	< 0.5	47.7	158	0.85	10.9	1	< 1	0.09	4.1	30.9	1.4	0.3	0.1	0.3	10	37.9	97.7
J356074	55	0.15	88.2	186	89.0	239	< 0.5	36.9	95	2.41	7.37	< 1	< 1	0.07	2.6	23.8	1.2	< 0.1	0.6	0.2	16	36.4	116
J356084	51	0.18	86.5	68.7	142	123	< 0.5	31.4	82	1.60	6.57	< 1	< 1	0.08	4.4	19.1	1.3	< 0.1	0.5	0.2	5	35.7	75.5
J356085	52	0.21	98.4	67.2	163	186	< 0.5	32.8	106	1.90	6.23	1	< 1	0.20	5.0	22.0	1.8	< 0.1	0.6	0.2	2	38.0	99.5
J356086	22	0.22	94.4	64.9	128	253	< 0.5	38.9	106	2.19	6.03	1	< 1	0.36	2.8	27.0	1.0	< 0.1	1.0	0.3	5	32.2	133
J356087	22	0.30	113	96.1	96.5	215	< 0.5	43.0	132	2.14	6.93	1	< 1	0.25	3.3	25.6	1.0	< 0.1	0.9	0.3	5	31.2	92.9
J356088	75	0.78	195	95.6	137	79	< 0.5	60.0	225	1.68	9.11	1	< 1	0.25	9.2	29.3	2.1	0.1	0.5	0.2	< 1	33.3	171
J356089	24	0.27	152	116	102	284	< 0.5	56.5	209	1.99	6.97	< 1	< 1	0.29	4.1	33.9	1.2	< 0.1	0.5	0.2	< 1	31.2	134
J356090	37	0.45	56.2	56.9	57.0	145	< 0.5	23.6	50	0.91	4.09	< 1	< 1	0.15	5.3	8.8	1.5	0.2	1.1	0.3	1	37.0	135
J356101	< 2	0.11	156	123	43.3	250	< 0.5	54.5	196	1.49	6.55	1	< 1	0.34	1.4	30.9	0.8	< 0.1	0.5	0.2	< 1	31.2	122

Analyte Symbol	Cd	Mn	Pb	Be	Bi	Ca	Eu	Ga	Ge	In	Li	Mg	Nb	Мо	Rb	Re	Sn	Sr	Te	TI	V	Y	Zr
Unit Symbol	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Lower Limit	0.1	1	0.5	0.1	0.02	0.01	0.05	0.1	0.1	0.1	0.5	0.01	0.1	0.05	0.2	0.001	1	0.2	0.1	0.05	1	0.1	1
Method Code	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS
J356058	< 0.1	5600	7.2	0.5	0.10	2.55	0.51	5.6	< 0.1	< 0.1	30.7	2.01	1.5	1.64	2.0	0.004	< 1	25.9	0.1	0.18	62	7.8	30
J356059	< 0.1	9930	14.1	0.5	0.12	2.68	0.40	1.6	< 0.1	< 0.1	3.8	1.96	0.5	0.94	0.3	0.005	< 1	44.2	0.1	0.16	10	6.9	9
J356060																							
J356061	0.1	4460	39.3	0.4	0.15	1.81	0.20	2.5	< 0.1	< 0.1	7.5	1.00	1.0	1.61	0.3	0.006	< 1	17.0	0.2	0.22	13	4.0	17
J356062	< 0.1	4290	9.6	0.4	0.11	0.80	0.15	1.6	< 0.1	< 0.1	4.6	1.11	0.5	0.89	< 0.2	0.005	< 1	9.8	0.2	0.10	12	2.8	10
J356063	0.2	4040	42.9	0.3	0.12	1.42	0.15	1.8	< 0.1	< 0.1	4.8	1.02	0.6	1.33	0.3	0.005	< 1	13.2	0.1	0.17	11	2.5	10
J356064	0.2	4240	9.1	0.4	0.23	2.40	0.25	8.7	< 0.1	< 0.1	8.8	1.47	0.7	2.00	0.2	0.007	< 1	51.5	0.2	0.11	81	4.0	12
J356065	< 0.1	3190	27.3	0.4	0.16	2.29	0.21	2.7	< 0.1	< 0.1	3.1	1.04	0.5	68.6	< 0.2	0.008	< 1	38.1	0.2	0.18	25	3.2	8
J356066	< 0.1	4410	15.1	0.4	0.20	4.62	0.43	3.5	< 0.1	< 0.1	4.2	1.25	0.7	56.3	0.3	0.009	< 1	46.2	0.3	0.22	29	6.7	14
J356067	< 0.1	3730	9.2	0.4	0.12	2.49	0.33	1.4	< 0.1	< 0.1	1.6	1.08	0.3	3.65	0.3	0.005	< 1	32.4	0.2	0.10	9	4.1	6
J356068	< 0.1	2410	3.9	0.3	0.14	2.40	0.33	1.5	< 0.1	< 0.1	1.9	0.71	0.4	1.59	< 0.2	0.005	< 1	23.2	0.3	0.08	9	3.8	6
J356069	< 0.1	2580	6.4	0.4	0.22	2.05	0.30	2.1	< 0.1	< 0.1	2.2	0.92	0.6	1.97	< 0.2	0.005	< 1	21.9	0.3	0.09	13	3.6	8
J356070	< 0.1	3350	4.7	0.3	0.13	2.65	0.23	1.8	< 0.1	< 0.1	1.7	1.14	0.4	1.86	< 0.2	0.005	< 1	28.5	0.2	0.07	14	3.0	5
J356071	< 0.1	2510	15.8	0.5	0.19	3.79	0.45	10.5	< 0.1	< 0.1	40.7	2.11	1.6	4.41	0.3	0.006	1	31.3	0.2	0.45	136	8.5	38
J356072	< 0.1	1390	5.3	1.1	0.11	2.54	0.66	15.8	0.4	< 0.1	59.5	2.55	1.4	1.77	28.9	0.005	2	41.8	< 0.1	0.28	293	14.5	69
J356073	< 0.1	615	6.7	1.1	0.17	0.50	0.28	16.2	0.5	< 0.1	58.6	2.12	3.3	3.47	2.0	0.006	3	14.5	0.3	0.23	240	4.3	69
J356074	0.4	1310	4.9	1.4	0.13	4.51	1.01	14.2	0.1	< 0.1	48.7	1.99	1.6	1.98	32.1	0.006	3	57.1	< 0.1	0.41	219	14.2	67
J356084	< 0.1	1810	10.5	1.2	0.13	8.42	0.95	11.3	0.2	< 0.1	54.7	2.31	0.7	1.60	20.4	0.004	< 1	94.8	< 0.1	0.18	171	14.0	47
J356085	< 0.1	1600	12.7	1.0	0.16	6.87	0.74	13.1	0.1	< 0.1	41.1	1.95	1.3	1.16	31.3	0.005	1	97.1	< 0.1	0.26	199	13.1	56
J356086	< 0.1	1260	7.6	1.2	0.12	4.68	0.70	14.7	0.2	< 0.1	41.0	1.88	0.7	0.40	43.3	0.004	1	107	< 0.1	0.36	205	13.3	66
J356087	< 0.1	1340	7.3	1.3	0.17	5.53	0.82	15.4	0.2	< 0.1	45.6	1.94	0.3	0.40	41.7	0.006	1	127	< 0.1	0.52	162	13.8	51
J356088	< 0.1	1540	17.8	0.9	0.15	5.74	0.58	15.3	0.1	< 0.1	36.4	1.78	2.2	1.22	36.9	0.005	1	75.9	0.1	1.59	237	11.3	59
J356089	0.2	1340	7.5	1.1	0.12	5.76	0.67	15.6	0.1	< 0.1	46.8	1.78	1.5	0.73	52.3	0.005	1	74.1	< 0.1	0.58	283	13.5	67
J356090	< 0.1	1080	11.6	0.6	0.19	3.96	0.56	7.2	< 0.1	< 0.1	18.3	0.84	2.6	1.33	25.8	0.005	1	48.2	0.2	0.42	76	9.1	51
J356101	0.1	1770	3.2	0.8	0.08	8.31	1.01	14.6	0.1	< 0.1	46.3	2.35	0.2	0.22	35.8	0.005	< 1	155	< 0.1	0.28	170	15.6	41

Analyte Symbol	La	К	Ce	Pr	Nd	Sm	Gd	Dy	Tb	Ho	Er	Tm	Yb	Lu
Unit Symbol	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Lower Limit	0.1	0.01	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Method Code	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS
J356058	5.5	0.05	11.9	1.5	6.2	1.2	1.1	1.1	0.2	0.2	0.7	0.1	0.8	0.1
J356059	3.2	< 0.01	6.2	0.7	3.1	0.5	0.8	0.8	0.1	0.2	0.5	< 0.1	0.4	< 0.1
J356060														
J356061	3.3	< 0.01	6.5	0.7	2.9	0.3	0.5	0.5	< 0.1	0.1	0.4	< 0.1	0.3	< 0.1
J356062	2.1	< 0.01	4.1	0.5	1.9	0.3	0.4	0.4	< 0.1	< 0.1	0.3	< 0.1	0.3	< 0.1
J356063	1.7	< 0.01	3.4	0.4	1.5	0.4	0.3	0.4	< 0.1	< 0.1	0.2	< 0.1	0.3	< 0.1
J356064	3.1	< 0.01	6.4	0.8	3.3	0.5	0.6	0.6	0.1	0.1	0.4	< 0.1	0.3	< 0.1
J356065	1.4	< 0.01	2.9	0.4	1.5	0.3	0.4	0.4	< 0.1	< 0.1	0.3	< 0.1	0.2	< 0.1
J356066	2.6	< 0.01	5.8	0.8	3.1	0.9	1.0	0.9	0.1	0.2	0.6	< 0.1	0.5	< 0.1
J356067	2.0	< 0.01	4.2	0.5	2.0	0.4	0.5	0.5	< 0.1	0.1	0.3	< 0.1	0.3	< 0.1
J356068	2.0	< 0.01	4.2	0.6	2.2	0.5	0.6	0.5	< 0.1	< 0.1	0.3	< 0.1	0.2	< 0.1
J356069	2.1	< 0.01	4.1	0.5	1.9	0.4	0.5	0.5	< 0.1	< 0.1	0.3	< 0.1	0.3	< 0.1
J356070	1.6	< 0.01	3.2	0.4	1.6	0.4	0.4	0.4	< 0.1	< 0.1	0.2	< 0.1	0.3	< 0.1
J356071	3.3	< 0.01	7.7	1.0	4.3	1.2	1.2	1.4	0.2	0.3	0.9	0.2	1.1	0.2
J356072	6.0	0.89	13.8	1.9	8.7	2.0	2.2	2.7	0.4	0.6	1.9	0.3	1.9	0.3
J356073	1.2	0.53	4.0	0.6	3.1	0.7	0.9	1.2	0.2	0.3	0.9	0.2	1.1	0.2
J356074	9.4	1.15	22.9	3.0	12.0	2.8	2.5	2.7	0.4	0.6	1.9	0.3	1.9	0.3
J356084	5.3	0.58	12.5	1.7	7.3	1.8	2.3	2.5	0.4	0.5	1.6	0.2	1.5	0.2
J356085	7.1	0.95	16.6	2.2	8.7	1.9	2.2	2.2	0.4	0.5	1.5	0.2	1.5	0.3
J356086	7.1	1.33	16.8	2.3	9.2	2.0	2.2	2.5	0.3	0.5	1.7	0.3	1.6	0.3
J356087	10.0	1.21	21.9	2.8	11.4	2.9	2.8	2.5	0.4	0.5	1.6	0.3	1.7	0.2
J356088	5.3	1.08	13.3	1.9	8.1	1.8	2.1	2.2	0.3	0.5	1.5	0.2	1.6	0.2
J356089	6.1	1.65	15.2	2.2	10.0	2.6	2.8	2.6	0.4	0.5	1.6	0.3	1.7	0.3
J356090	6.4	0.75	14.6	1.9	7.2	1.7	1.7	1.7	0.3	0.3	1.0	0.1	0.9	0.1
J356101	5.1	1.12	12.9	1.8	8.0	2.4	2.7	2.6	0.4	0.6	1.7	0.3	1.8	0.3

									-														
Analyte Symbol	Au	Ag	Ni	Zn	As	Ва	Br	Co	Cr	Cs	Fe	Hf	Hg	Na	Sb	Sc	Se	Та	Th	U	W	Mass	Ag
Unit Symbol	ppb	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	g	ppm
Lower Limit	2	5	20	50	0.5	50	0.5	1	2	1	0.01	1	1	0.01	0.1	0.1	3	0.5	0.2	0.5	1		0.05
Method Code	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	TD-MS
Oreas 72a (4 Acid) Meas																							
Oreas 72a (4 Acid) Cert																							
Oreas 72a (4 Acid) Meas																							
Oreas 72a (4 Acid) Cert																							
OREAS 101b (4 Acid) Meas																							
OREAS 101b (4 Acid) Cert																							
OREAS 101b (4 Acid) Meas																							
OREAS 101b (4 Acid) Cert																							
OREAS 98 (4 Acid) Meas																							42.1
OREAS 98 (4 Acid) Cert																							45.1
OREAS 98 (4 Acid) Meas																							43.9
OREAS 98 (4 Acid) Cert																							45.1
OREAS 13b (4-Acid) Meas																							0.92
OREAS 13b (4-Acid) Cert																							0.86
OREAS 13b (4-Acid) Meas																							0.91
OREAS 13b (4-Acid) Cert																							0.86
OREAS 904 (4 Acid) Meas																							0.56
OREAS 904 (4 Acid) Cert																							0.551
OREAS 905 (INAA) Meas	389			80	34.1	1960		15		9	3.94	7			2.1			< 0.5	14.5	5.4	< 1		
OREAS 905 (INAA) Cert	391			139	36.2	2800		15.3		7.10	4.23	7.26			1.96			1.38	14.7	5.00	3.02		
OREAS 96 (4 Acid) Meas																							11.4
OREAS 96 (4 Acid) Cert																							11.5
OREAS 923 (4 Acid) Meas																							1.79
OREAS 923 (4 Acid) Cert																							1.60
OREAS 923 (4 Acid) Meas																							1.65
OREAS 923 (4 Acid) Cert																							1.60
OREAS 621 (4 Acid) Meas																							61.8
OREAS 621 (4 Acid) Cert																							69.0
OREAS 621 (4 Acid) Meas																							61.9
	1			1	1		1	1		1	1		1	1									

Analyte Symbol	Au	Ag	Ni	Zn	As	Ва	Br	Co	Cr	Cs	Fe	Hf	Hg	Na	Sb	Sc	Se	Та	Th	U	W	Mass	Ag
Unit Symbol	ppb	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	g	ppm
Lower Limit	2	5	20	50	0.5	50	0.5	1	2	1	0.01	1	1	0.01	0.1	0.1	3	0.5	0.2	0.5	1		0.05
Method Code	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	TD-MS
OREAS 621 (4 Acid) Cert																							69.0
Oreas 77b (4 Acid) Meas																							1.62
Oreas 77b (4 Acid) Cert																							1.62
Oreas 77b (4 Acid) Meas																							1.60
Oreas 77b (4 Acid) Cert																							1.62
J356071 Orig																							0.46
J356071 Dup																							0.44
J356090 Orig																							0.43
J356090 Dup																							0.48
Method Blank	< 2	< 5	< 20	< 50	< 0.5	< 50	< 0.5	< 1	< 2	< 1	< 0.01	< 1	< 1	< 0.01	< 0.1	< 0.1	< 3	< 0.5	< 0.2	< 0.5	< 1	30.0	
Method Blank																							< 0.05
Method Blank																							< 0.05
Method Blank																							< 0.05
Method Blank																							< 0.05

Analyte Symbol	Cu	Cd	Mn	Pb	Ni	Zn	Ва	Be	Bi	Ca	Co	Cs	Eu	Ga	Ge	In	Li	Mg	Nb	Мо	Rb	Re	Se
Unit Symbol	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm
Lower Limit	0.2	0.1	1	0.5	0.5	0.5	1	0.1	0.02	0.01	0.1	0.05	0.05	0.1	0.1	0.1	0.5	0.01	0.1	0.05	0.2	0.001	0.1
Method Code	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS
Oreas 72a (4 Acid) Meas	320				> 5000						153												
Oreas 72a (4 Acid) Cert	316				6930.0 00						157												
Oreas 72a (4 Acid) Meas	322				> 5000						146												
Oreas 72a (4 Acid) Cert	316				6930.0 00						157												
OREAS 101b (4 Acid) Meas	464		923	26.6	6.3						50.1		7.92					1.25		20.5			
OREAS 101b (4 Acid) Cert	412		927	23	8.2						45		8.1					1.23		20.1			
OREAS 101b (4 Acid) Meas	438		946	25.4	8.3						47.3		7.77					1.27		21.3			
OREAS 101b (4 Acid) Cert	412		927	23	8.2						45		8.1					1.23		20.1			
OREAS 98 (4 Acid) Meas	> 10000			311		1290			84.2		120												169
OREAS 98 (4 Acid) Cert	14800 0.0			345		1360			97.2		121												158
OREAS 98 (4 Acid) Meas	> 10000			320		1260			88.1		118												174
OREAS 98 (4 Acid) Cert	14800 0.0			345		1360			97.2		121												158
OREAS 13b (4-Acid) Meas	2340				2160	126					74.0									9.06			
OREAS 13b (4-Acid) Cert	2327.0 000				2247.0 000	133					75									9.0			
OREAS 13b (4-Acid) Meas	2230				2110	110					77.1									8.38			
OREAS 13b (4-Acid) Cert	2327.0 000				2247.0 000	133					75									9.0			
OREAS 904 (4 Acid) Meas	5760		399	12.5	39.2	18.5	199	8.6	4.19	0.04	81.7	3.57		14.4	0.2	0.2	15.2	0.63		2.05	133		2.3
OREAS 904 (4 Acid) Cert	6120		410	10.6	40.1	26.3	194	7.86	4.05	0.0460	83.0	3.79		16.7	0.180	0.220	16.7	0.556		2.12	130		3.30
OREAS 905 (INAA) Meas																							
OREAS 905 (INAA) Cert																							
OREAS 96 (4 Acid) Meas	> 10000			102		469			26.9		49.2												44.5
Acid) Cert	39300			101		457			26.3		49.9												40.7
Acid) Meas	4410	0.4	986	91.0	31.7	354	438	2.4	19.0	0.52	23.9	6.54	1.30	17.0		0.5	31.3	1.81	14.7	1.22	162		6.0
OREAS 923 (4 Acid) Cert	4230	0.420	950	83.0	35.8	345	434	2.42	21.4	0.473	23.1	6.70	1.37	20.3		0.520	31.4	1.69	14.1	0.930	166		6.54
OREAS 923 (4 Acid) Meas	4060	0.4	949	92.0	38.1	338	420	2.3	20.0	0.50	22.9	6.11	1.37	16.1		0.5	30.2	1.85	10.4	1.06	158		5.8
OREAS 923 (4 Acid) Cert	4230	0.420	950	83.0	35.8	345	434	2.42	21.4	0.473	23.1	6.70	1.37	20.3		0.520	31.4	1.69	14.1	0.930	166		6.54
OREAS 621 (4 Acid) Meas	3500	273	459	> 5000	23.0	> 10000		1.4	3.80	1.78	27.0	3.04		21.7		1.6	13.4	0.35	9.2	12.0	71.8		4.5
OREAS 621 (4 Acid) Cert	3630	284	532	13600	26.2	52200		1.69	3.93	1.97	29.3	3.28		24.6		1.83	14.2	0.507	8.61	13.6	84.0		5.64
OREAS 621 (4 Acid) Meas	3550	274	532	> 5000	26.8	> 10000		2.0	4.23	2.03	29.4	3.22		25.7		1.9	14.8	0.51	10.1	14.0	81.4		5.2

Analyte Symbol	Cu	Cd	Mn	Pb	Ni	Zn	Ba	Be	Bi	Ca	Co	Cs	Eu	Ga	Ge	In	Li	Mg	Nb	Мо	Rb	Re	Se
Unit Symbol	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm
Lower Limit	0.2	0.1	1	0.5	0.5	0.5	1	0.1	0.02	0.01	0.1	0.05	0.05	0.1	0.1	0.1	0.5	0.01	0.1	0.05	0.2	0.001	0.1
Method Code	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS
OREAS 621 (4 Acid) Cert	3630	284	532	13600	26.2	52200		1.69	3.93	1.97	29.3	3.28		24.6		1.83	14.2	0.507	8.61	13.6	84.0		5.64
Oreas 77b (4 Acid) Meas	3230	1.2	679	61.5	> 5000	208	10	0.5	3.61	2.95	1440	2.18		4.6		0.1	18.0	2.49	3.2		20.2	0.022	
Oreas 77b (4 Acid) Cert	3430	1.20	640	61.0	113000	205	118	0.470	3.44	3.06	1550	2.32		4.61		0.112	18.8	2.59	3.26		19.1	0.0220	
Oreas 77b (4 Acid) Meas	3100	1.2	639	63.1	> 5000	197	17	0.6	3.59	2.99	1400	2.18		4.5		0.1	18.1	2.50	3.2		20.4	0.023	
Oreas 77b (4 Acid) Cert	3430	1.20	640	61.0	113000	205	118	0.470	3.44	3.06	1550	2.32		4.61		0.112	18.8	2.59	3.26		19.1	0.0220	
J356071 Orig	117	< 0.1	2460	15.8	56.1	129	4	0.5	0.19	3.74	37.5	0.28	0.44	10.2	0.1	< 0.1	40.5	2.13	1.6	4.54	0.3	0.006	1.8
J356071 Dup	108	< 0.1	2570	15.8	63.2	132	4	0.5	0.19	3.85	37.5	0.29	0.46	10.7	< 0.1	< 0.1	40.9	2.09	1.7	4.29	0.3	0.006	1.8
J356090 Orig	122	< 0.1	1040	11.1	52.1	51.1	138	0.6	0.18	3.89	23.7	0.87	0.53	6.9	< 0.1	< 0.1	17.6	0.80	2.4	1.22	24.8	0.004	1.3
J356090 Dup	148	0.2	1110	12.1	60.3	62.7	152	0.7	0.19	4.03	25.4	0.95	0.60	7.5	< 0.1	< 0.1	18.9	0.87	2.7	1.44	26.9	0.005	1.7
Method Blank																							
Method Blank	0.2	< 0.1	17	< 0.5	< 0.5	1.2	< 1	0.3	0.04	< 0.01	< 0.1	< 0.05	< 0.05	0.2	< 0.1	< 0.1	< 0.5	< 0.01	< 0.1	0.11	< 0.2	0.002	0.5
Method Blank	0.4	< 0.1	12	< 0.5	0.7	1.2	< 1	< 0.1	0.04	< 0.01	< 0.1	< 0.05	< 0.05	0.2	< 0.1	< 0.1	< 0.5	< 0.01	< 0.1	0.08	< 0.2	0.002	0.4
Method Blank	1.4	< 0.1	12	< 0.5	< 0.5	2.2	< 1	0.1	0.04	< 0.01	< 0.1	< 0.05	< 0.05	0.2	< 0.1	< 0.1	< 0.5	< 0.01	< 0.1	0.14	< 0.2	0.001	0.5
Method Blank	0.9	< 0.1	10	< 0.5	< 0.5	0.9	< 1	< 0.1	0.03	< 0.01	< 0.1	< 0.05	< 0.05	0.2	< 0.1	< 0.1	< 0.5	< 0.01	< 0.1	0.10	< 0.2	< 0.001	< 0.1

Report: A21-11003

Analyte Symbol	Sn	Sr	Та	Te	Th	TI	U	V	Y	Zr	La	К	Ce	Pr	Nd	Sm	Gd	Dy	Tb	Ho	Er	Tm	Yb
Unit Symbol	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Lower Limit	1	0.2	0.1	0.1	0.1	0.05	0.1	1	0.1	1	0.1	0.01	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Method Code	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS
Oreas 72a (4 Acid) Meas																							
Oreas 72a (4 Acid) Cert																							
Oreas 72a (4 Acid) Meas																							
Oreas 72a (4 Acid) Cert																							
OREAS 101b (4 Acid) Meas					42.1		357	84	135		718	2.48	1300	117	367	58.9	42.2	28.2	4.9	5.7	16.3	2.4	14.4
OREAS 101b (4 Acid) Cert					36.4		387	77	133		754	2.36	1325	127	388	48	40	27	5.4	5.2	15	2.08	13.9
OREAS 101b (4 Acid) Meas					39.3		334	78	129		695	2.53	1250	116	353	46.6	39.4	27.8	4.4	5.6	15.3	2.2	13.7
OREAS 101b (4 Acid) Cert					36.4		387	77	133		754	2.36	1325	127	388	48	40	27	5.4	5.2	15	2.08	13.9
OREAS 98 (4 Acid) Meas	191																						
OREAS 98 (4 Acid) Cert	206																						
OREAS 98 (4 Acid) Meas	> 200																						
OREAS 98 (4 Acid) Cert	206																						
OREAS 13b (4-Acid) Meas																							
OREAS 13b (4-Acid) Cert																							
OREAS 13b (4-Acid) Meas																							
OREAS 13b (4-Acid) Cert																							
OREAS 904 (4 Acid) Meas	3	27.0	0.4		16.0	0.52	9.1	76	32.0	153	41.7	3.68	80.8						0.9				3.2
OREAS 904 (4 Acid) Cert	2.83	27.2	0.540		14.3	0.520	8.43	76.0	31.5	171	43.2	3.31	86.0						1.00				3.14
OREAS 905 (INAA) Meas																							
OREAS 905 (INAA) Cert																							
OREAS 96 (4 Acid) Meas	67																						
OREAS 96 (4 Acid) Cert	65.6																						
OREAS 923 (4 Acid) Meas	14	44.1	1.4		18.6	0.82	3.4	93	26.5	118	40.9	2.78	78.1	9.5	35.2	6.8	6.0	5.0	0.8	1.0	2.8	0.4	2.6
OREAS 923 (4 Acid) Cert	13.3	43.0	1.11		16.5	0.860	3.06	91.0	26.4	116	42.2	2.51	83.0	9.58	35.4	6.64	5.73	5.05	0.850	0.960	2.86	0.410	2.57
OREAS 923 (4 Acid) Meas	14	42.7	0.6		18.4	0.83	3.3	92	26.4	122	41.9	2.59	79.1	9.3	35.2	6.4	6.0	5.3	0.8	1.0	2.9	0.4	2.7
OREAS 923 (4 Acid) Cert	13.3	43.0	1.11		16.5	0.860	3.06	91.0	26.4	116	42.2	2.51	83.0	9.58	35.4	6.64	5.73	5.05	0.850	0.960	2.86	0.410	2.57
OREAS 621 (4 Acid) Meas	5	65.4			5.0	1.96	2.8	30	11.0	156	15.3	1.63	43.3						0.5				1.0
OREAS 621 (4 Acid) Cert	5.25	91.0			7.48	1.96	2.83	31.8	11.1	168	21.6	2.20	46.6						0.460				0.990
OREAS 621 (4 Acid) Meas	5	66.8			4.9	2.39	2.9	36	10.7	134	17.6	2.02	43.5						0.4				0.9
	1				1																		

Analyte Symbol	Sn	Sr	Та	Те	Th	TI	U	V	Y	Zr	La	К	Ce	Pr	Nd	Sm	Gd	Dy	Tb	Ho	Er	Tm	Yb
Unit Symbol	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Lower Limit	1	0.2	0.1	0.1	0.1	0.05	0.1	1	0.1	1	0.1	0.01	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Method Code	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS
OREAS 621 (4 Acid) Cert	5.25	91.0			7.48	1.96	2.83	31.8	11.1	168	21.6	2.20	46.6						0.460				0.990
Oreas 77b (4 Acid) Meas	2	37.8	0.3	1.3	7.2	1.31	1.9	32	7.5	40	15.8	0.34	28.5										
Oreas 77b (4 Acid) Cert	1.59	34.4	0.280	1.35	6.61	1.37	1.71	33.6	6.55	37.9	15.8	0.361	27.7										
Oreas 77b (4 Acid) Meas	2	37.5	0.3	1.3	7.3	1.34	1.9	30	7.4	37	16.0	0.33	28.9										
Oreas 77b (4 Acid) Cert	1.59	34.4	0.280	1.35	6.61	1.37	1.71	33.6	6.55	37.9	15.8	0.361	27.7										
J356071 Orig	1	31.8	< 0.1	0.2	0.4	0.46	0.2	133	8.4	38	3.3	< 0.01	7.8	1.0	4.4	1.1	1.3	1.4	0.2	0.3	0.9	0.2	1.1
J356071 Dup	1	30.7	< 0.1	0.2	0.4	0.44	0.2	138	8.6	39	3.3	< 0.01	7.5	1.0	4.3	1.3	1.2	1.4	0.2	0.3	0.9	0.2	1.1
J356090 Orig	1	44.1	0.2	0.2	1.0	0.39	0.3	72	8.7	49	6.1	0.73	13.8	1.8	6.9	1.5	1.6	1.6	0.2	0.3	0.9	0.1	0.8
J356090 Dup	1	52.2	0.2	0.2	1.1	0.44	0.3	80	9.5	53	6.7	0.77	15.5	1.9	7.5	1.9	1.8	1.7	0.3	0.4	1.0	0.1	0.9
Method Blank																							
Method Blank	< 1	< 0.2	< 0.1	< 0.1	< 0.1	< 0.05	< 0.1	2	< 0.1	< 1	< 0.1	< 0.01	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Method Blank	< 1	< 0.2	< 0.1	< 0.1	< 0.1	< 0.05	< 0.1	3	< 0.1	< 1	< 0.1	< 0.01	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Method Blank	< 1	< 0.2	< 0.1	< 0.1	< 0.1	< 0.05	< 0.1	3	< 0.1	< 1	< 0.1	< 0.01	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Method Blank	< 1	< 0.2	< 0.1	< 0.1	< 0.1	< 0.05	< 0.1	3	< 0.1	< 1	< 0.1	< 0.01	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1

Analyte Symbol	Lu
Unit Symbol	ppm
Lower Limit	0.1
Method Code	TD-MS
OREAS 621 (4 Acid) Cert	0.140
Oreas 77b (4 Acid) Meas	
Oreas 77b (4 Acid) Cert	
Oreas 77b (4 Acid) Meas	
Oreas 77b (4 Acid) Cert	
J356071 Orig	0.2
J356071 Dup	0.2
J356090 Orig	0.1
J356090 Dup	0.1
Method Blank	
Method Blank	< 0.1
Method Blank	< 0.1
Method Blank	< 0.1
Method Blank	< 0.1

Innovative Technologies

Report No.:A21-11003-1GReport Date:30-Sep-21Date Submitted:14-Jun-21Your Reference:Platinex

Platinex Inc. 807 William Roe Blvd Newmarket ON L3Y 5V6 Canada

ATTN: James R trusler Trusler

CERTIFICATE OF ANALYSIS

104 Core samples were submitted for analysis.

The following analytical package(s) were requested:		Testing Date:
1G-Hg CV	QOP HgFIMS (Hg-Cold Vapour AA)	2021-09-29 11:18:27
UT-5	QOP INAAGEO/QOP Ultratrace- 4acid Digest (INAA/Total Digestion ICPMS)	

REPORT A21-11003-1G

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

If value exceeds upper limit we recommend reassay by fire assay gravimetric-Code 1A3

Unaltered silicates and resistate minerals may not be dissolved. Values which exceed upper limit should be assayed.

Values which exceed the upper limit should be assayed for accurate numbers.

LabID: 266

ACTIVATION LABORATORIES LTD.

41 Bittern Street, Ancaster, Ontario, Canada, L9G 4V5 TELEPHONE +905 648-9611 or +1.888.228.5227 FAX +1.905.648.9613 E-MAIL Ancaster@actlabs.com ACTLABS GROUP WEBSITE www.actlabs.com

Emmanuel Eseme , Ph.D. Quality Control Coordinator

Innovative Technologies

Report No.:A21-11003-1GReport Date:30-Sep-21Date Submitted:14-Jun-21Your Reference:Platinex

Platinex Inc. 807 William Roe Blvd Newmarket ON L3Y 5V6 Canada

ATTN: James R trusler Trusler

CERTIFICATE OF ANALYSIS

104 Core samples were submitted for analysis.

The following analytical package(s) were requested:		Testing Date:
1A2B-30-Timmins	QOP AA-Au (Au - Fire Assay AA)	

REPORT A21-11003-1G

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

If value exceeds upper limit we recommend reassay by fire assay gravimetric-Code 1A3

Unaltered silicates and resistate minerals may not be dissolved. Values which exceed upper limit should be assayed.

Values which exceed the upper limit should be assayed for accurate numbers.

LabID: 709

ACTIVATION LABORATORIES LTD.

1752 Riverside Drive, Timmins, Ontario, Canada, P4R 1N1 TELEPHONE +705 264-0123 or +1.888.228.5227 FAX +1.905.648.9613 E-MAIL Timmins@actlabs.com ACTLABS GROUP WEBSITE www.actlabs.com

Emmanuel Eseme , Ph.D. Quality Control Coordinator

Analyte Symbol	Hg
Unit Symbol	ppb
Lower Limit	5
Method Code	1G
J356058	74
J356059	176
J356061	476
J356062	108
J356063	573
J356064	73
J356065	205
J356066	108
J356067	53
J356068	29
J356069	47
J356070	31
J356071	98
J356072	28
J356073	26
J356074	51
J356084	39
J356085	31
J356086	38
J356087	58
J356088	140
J356089	100
J356090	114

Analyte Symbol	Hg
Unit Symbol	ppb
Lower Limit	5
Method Code	1G
Oreas 621 (Aqua Regia) Meas	3740
Oreas 621 (Aqua Regia) Cert	3930
OREAS 263 (Aqua Regia) Meas	184
OREAS 263 (Aqua Regia) Cert	170
OREAS 130 (Aqua Regia) Meas	719
OREAS 130 (Aqua Regia) Cert	670
OREAS 153b (Aqua Regia) Meas	69
OREAS 153b (Aqua Regia) Cert	66.0
Oreas 623 (Aqua Regia) Meas	750
Oreas 623 (Aqua Regia) Cert	830
J356064 Orig	73
J356064 Dup	73
Method Blank	< 5
Method Blank	< 5