

We are committed to providing <u>accessible customer service</u>. If you need accessible formats or communications supports, please <u>contact us</u>.

Nous tenons à améliorer <u>l'accessibilité des services à la clientèle</u>. Si vous avez besoin de formats accessibles ou d'aide à la communication, veuillez <u>nous contacter</u>.



# 2021 RECONNAISANCE PROGRAM -CRYDERMAN PROPERTY-SHINING TREE, ONTARIO

**MacMurchy Township** 

## Larder Lake Mining Division

NTS 41P11

**Prepared For** 

**Transition Metals Corp.** 

March 31, 2022

Mayra Zuniga-Albuja, GIT Thomas Hart, PGeo

# Contents

| List o | of Fig                                          | juresi                                |  |  |  |  |  |  |  |  |  |
|--------|-------------------------------------------------|---------------------------------------|--|--|--|--|--|--|--|--|--|
| List o | of Ta                                           | blesii                                |  |  |  |  |  |  |  |  |  |
| List o | of Ap                                           | pendicesii                            |  |  |  |  |  |  |  |  |  |
| 1.0    | 0 INTRODUCTION                                  |                                       |  |  |  |  |  |  |  |  |  |
| 2.0    | 2.0 PROPERTY LOCATION, ACCESS, AND DESCRIPTION1 |                                       |  |  |  |  |  |  |  |  |  |
| 3.0    | Н                                               | ISTORICAL WORK                        |  |  |  |  |  |  |  |  |  |
| 4.0    | G                                               | EOLOGICAL SETTING AND MINERALIZATION5 |  |  |  |  |  |  |  |  |  |
|        | 4.1                                             | REGIONAL GEOLOGY5                     |  |  |  |  |  |  |  |  |  |
|        | 4.2                                             | PROPERTY GEOLOGY7                     |  |  |  |  |  |  |  |  |  |
|        | 4.3                                             | STRUCTURAL GEOLOGY7                   |  |  |  |  |  |  |  |  |  |
|        | 4.4                                             | Mineralization12                      |  |  |  |  |  |  |  |  |  |
| 5.0    | 20                                              | 021 EXPLORATION                       |  |  |  |  |  |  |  |  |  |
|        | 5.1                                             | RESULTS12                             |  |  |  |  |  |  |  |  |  |
| 6.0    | EX                                              | XPENDITURES                           |  |  |  |  |  |  |  |  |  |
| 7.0    | C                                               | ONCLUSIONS AND RECOMMENDATIONS        |  |  |  |  |  |  |  |  |  |
| 8.0    | S                                               | FATEMENT OF AUTHORS                   |  |  |  |  |  |  |  |  |  |
|        | 8.1                                             | STATEMENT OF AUTHOR:                  |  |  |  |  |  |  |  |  |  |
|        | 8.1                                             | STATEMENT OF AUTHOR:                  |  |  |  |  |  |  |  |  |  |
| 9.0 B  | BIBLI                                           | OGRAPHY19                             |  |  |  |  |  |  |  |  |  |
| APPE   | INDI                                            | X A21                                 |  |  |  |  |  |  |  |  |  |
| APPE   | INDI                                            | X B22                                 |  |  |  |  |  |  |  |  |  |
| APPE   | INDI                                            | X C23                                 |  |  |  |  |  |  |  |  |  |
| APPE   | IND                                             | X D24                                 |  |  |  |  |  |  |  |  |  |

# List of Figures

| Figure 1: Cryderman Property location map                                                             | . 2 |
|-------------------------------------------------------------------------------------------------------|-----|
| Figure 2: Cryderman property mining claims and leases map                                             | . 3 |
| Figure 3: Regional geology of the southern Abitibi greenstone belt (Ayer et al., 2002), square is the |     |
| approximate location of the claims                                                                    | 6   |
| Figure 4: Local geology of the Cryderman Property (after Ayer and Chartrand 2011)                     | 9   |

| Figure 5: Figure 5: Structural interpretation based on Platinex airborne geophysics interpretation |      |
|----------------------------------------------------------------------------------------------------|------|
| (Burden, 2019)                                                                                     | . 10 |
| Figure 6: Location map of analytical highlights from the 2021 sample analyses                      | 14   |

## **List of Tables**

| Table 1: Cryderman property lease description and details                          | 1  |
|------------------------------------------------------------------------------------|----|
| Table 2: : Summary of historical work conducted over the Property                  | 4  |
| Table 3: Analytical highlights from the 2021 sample analyses (NAD 83, UTM Zone 17) | 13 |
| Table 4: : Summary of Expenditures                                                 | 15 |

# **List of Appendices**

APPENDIX A: Sample Descriptions

APPENDIX B: Sample Location Map

APPENDIX C: Assay certificates

APPENDIX D : Expenses & Invoices

## **1.0 INTRODUCTION**

The Cryderman Property is comprised of two mining claims and 4 mining leases forming a contiguous property located approximately 7 km northeast of Shining Tree, Ontario (Fig. 1). Following the optioning of the leases from Precambrian Equipment Limited in the spring of 2019, Transition Metals completed a programme of mapping, trenching, and sampling in 2020 by Transition Metals Corp., focused mainly on the historical Queen Elizabeth vein located on the eastern margin of the property. Following the acquisition of the mining leases, the 2021 field programme was comprised of reconnaissance mapping and sampling conducted between August 15th, 2021 and August 21st, 2021, by Transition Metals staff. The main goal of this program was to confirm and assess the extent of mineralization. A total of 53 grab and float samples were collected and submitted for analyses. Structural measurements were taken during the 2021 field work to provide further support for the interpretation postulated from the 2019 geology and trenching program.

## 2.0 PROPERTY LOCATION, ACCESS, AND DESCRIPTION

The Cryderman property is located in the southwest corner of MacMurchy Township in northeast Ontario, approximately 7 km northeast of Shining Tree, and 32 km west-southwest of the Gowganda, in the Larder Lake Mining Division. The property is located about 1 km east of Highway 560, with the geographic centroid of the property located at approximately 486160 mE 5270900 mN UTM Zone 17N (NAD83). Access to the property is by four-wheel drive vehicle for much of the year via old logging roads and trails off Highway 560, or by snowmobile in the winter.

The property is composed of two mining claims and 4 mining leases forming a contiguous land package that totals approximately 108 hectares of territory (Table 1; Figure 2).

| Claim Tenure | Status                    | Area (ha) | Holder                        |
|--------------|---------------------------|-----------|-------------------------------|
| LEA-19859    | Mining and Surface Rights | 16.39     | ((100) TRANSITION METALS CORP |
| LEA-19858    | Mining and Surface Rights | 16.11     | (100) TRANSITION METALS CORP  |
| LEA-19861    | Mining and Surface Rights | 16.79     | (100) TRANSITION METALS CORP  |
| LEA-19860    | Mining and Surface Rights | 18.45     | ((100) TRANSITION METALS CORP |
| LEA-20052    | Mining and Surface Rights | 14.97     | (100) TRANSITION METALS CORP  |
| LEA-19819    | Mining and Surface Rights | 14.89     | (100) TRANSITION METALS CORP  |
| 550839       | Single Cell Mining Claim  | 10.20     | (100) TRANSITION METALS CORP. |
| 550846       | Single Cell Mining Claim  | 0.03      | (100) TRANSITION METALS CORP. |

#### Table 1: Cryderman property lease description and details



Figure 1: Cryderman Property location map



Figure 2: Cryderman property mining claims and leases map

## **3.0 HISTORICAL WORK**

The Cryderman property was owned by the Cryderman family and hosts the Queen Elizabeth occurrence, also known as the Cryderman, Cooper-Manwell-Moore, Cryderman-Manwell-Moore, and Featherstone. Historically, the leases were originally part of the larger Queen Elizabeth property, which was divided and sub-divided into a number of separate land holdings comprising various leases, patents, and claims.

Further confusions arise around the location of the main showing, as the historic shaft is approximately on the boundary line between the historic Cryderman and Featherstone leases, although the trench extends southwest into the Cryderman lease. The dump material from the shaft if located to the east on the Featherstone lease, which was allowed to lapse, and is now a mining claim forming part of the larger Platinex - Ashley Gold – Skead Holdings property currently being explored by Platinex Inc.

Due to the nature of the property, being comprised of long-lasting historical leases, much of the historical work was not reported or appropriately recorded. This has resulted in a very obscure exploration history, which is summarized below.

| Year | Company                   | Style of Work | Summary                                     | Reference          |
|------|---------------------------|---------------|---------------------------------------------|--------------------|
| 1913 | Ontario                   | Examination   | Stewart completed an examination of         | R.B. Stewart.      |
|      | Department of             |               | the West Shining Tree gold area,            | Annual Report 22,  |
| 1017 | wines                     | Overburden    | A corior of overhurden transhes in the      | Part 1             |
| 1917 |                           | tranchas      | area of the shaft may have been created     |                    |
|      |                           | trenches      | at this time. Shaft to a dept of 40ft (!2m) |                    |
| 1920 | Ontario                   |               | Hopkins completed an examination and        | P.E. Hopkins.      |
|      | Department of             |               | mapping of the area.                        | Annual Report 29,  |
|      | Mines                     |               |                                             | Part 3.            |
| 1926 | Ontario                   | Examination   | Finley conducted an examination of the      | F.L. Finley, 1926. |
|      | Department of             |               | character of the gold occurrences in the    | Annual Report 35.  |
|      | Mines                     |               | area                                        |                    |
| 1928 | Ontario                   | Examination   | Langford conducted an examination of        | G.B. Langford,     |
|      | Department of             |               | the geology and gold occurrences in the     | 1928. Annual       |
|      | Mines                     |               | area.                                       | Report 36.         |
| 1935 | Ontario                   | Examination   | Laird completed an examination of a         | H.C. Laird, 1935.  |
|      | Department of             |               | number of properties adjacent to the        | Annual Report 44.  |
|      | Mines                     |               | north side of the Cryderman Property.       |                    |
| 1943 | Conwest                   | Channel       | Best assay being 3.19 oz Au/ton over        | Savage, 1949.      |
|      | Exploration               | sampling      | 25cm (10 in.)                               | internal report by |
|      | Company Ltd.              |               |                                             | the Resident       |
|      |                           |               |                                             | Geologist.         |
| 1977 | Ontario                   | Mapping       | MacMurchy and Tyrell townships were         | M.W. Carter,       |
|      | Department of             |               | mapped at a 1:31 680 scale                  | 1977. Report 152   |
|      | Mines                     |               |                                             | and Map M2365.     |
| 1987 | Ontario                   | Mapping       | The previous mapping in MacMurchy           | Carter, 1987.      |
|      | Department of             |               | I ownship was included in a compilation     | Ontario            |
|      | Wines                     |               | of the geology in the Shining Tree area.    | Geological Survey  |
|      |                           |               |                                             | Report 240. Map    |
| 1000 | Ontorio                   | Manaina       |                                             | IVIZ510.           |
| 1999 | Unitario<br>Department of | iviapping     | townshing manned for the Onterio            | Jonns, 1999. Map   |
| 1    | Department of             | 1             | townships mapped for the Untario            | P3389.             |

#### Table 2: : Summary of historical work conducted over the Property

| Year | Company           | Style of Work | Summary                               | Reference          |
|------|-------------------|---------------|---------------------------------------|--------------------|
|      | Mines             |               | Geological Survey                     |                    |
| 2003 | Ontario           | Mapping       | MacMurchy Township was included in    | Johns, 2003. Map   |
|      | Department of     |               | the compilation of the geology of the | P3521.             |
|      | Mines             |               | Shining Tree area                     |                    |
| 2003 | Ontario           | Mapping       | MacMurchy Township was included in a  | Ayer et al., 2003. |
|      | Department of     |               | compilation of the Matachewan-Shining | Map P327.          |
|      | Mines             |               | Tree area.                            |                    |
| 2013 | Ontario           | Mapping       | The Shining Tree gold area and        | Ayer et al., 2013. |
|      | Department of     |               | MacMurchy Township were included in   | MRD 294.           |
|      | Mines             |               | the study of Archean Gold             |                    |
| 2019 | Transition Metals | Mapping and   | Geology and trenching program in the  | Burden (2019)      |
|      | Corp.             | Trenching     | MacMurchy Township, Larder Lake       |                    |
|      |                   |               | Mining Division (NTS 41P11)           |                    |

## 4.0 GEOLOGICAL SETTING AND MINERALIZATION

#### 4.1 **REGIONAL GEOLOGY**

The following description of the Abitibi greenstone belt is from Ayer et al., (2002, 2005) and Thurstone et al., (2008) and the references found in those papers. The Abitibi greenstone belt is composed of east-trending synclines of mainly volcanic rocks and intervening domes cored by synvolcanic and/or syntectonic plutonic rocks (gabbro – diorite, tonalite, and granite) alternating with east - trending bands of turbiditic greywackes (Fig. 3). Most of the volcanic and sedimentary rock dip vertically and are separated by east-trending faults with variable dips. Some of these faults, such as the Porcupine-Destor fault, display evidence for overprinting deformation events including early thrusting, later strike-slip and extension events. There are two ages of unconformable successor basins, early, widely distributed "Porcupine-style" basins of fine-grained clastic rocks, followed by later "Timiskaming-style" basins of coarser clastic and minor volcanic rocks which are largely proximal to major strike-slip faults (e.g. Porcupine-Destor, Larder-Cadillac). Numerous late-tectonic plutons from syenite and gabbro to granite with lesser dikes of lamprophyre and carbonatite cut the belt.

The Shining Tree area is located in the southern part of the Abitibi greenstone belt and on the northern margin of the Cobalt Embayment. Volcanic rocks of the Deloro assemblage (2734 to 2724 Ma.) are part of the Shining Tree area, and capped by regional iron formations, according to Ayer et al., (2013). The Deloro assemblage is overlain to the northeast by volcanic rocks of the Kidd-Munro assemblage (2720 to 2710 Ma.) resulting in a regional syncline in repetition of the assemblage in Knight Township. The Tisdale assemblage (2710 to 2704 Ma.) is constrained to north and west of the Natal Group in Cabot and Kelvin townships. The Natal and Indian Lake groups are part of the Porcupine assemblage (2690 to 2680 Ma.) evidenced by recent geochronological research. The research evidence ages 2687 Ma. for the felsic volcanic rocks and <2680 Ma. for the conglomeratic sandstones in different parts of the belt.



Figure 3: Regional geology of the southern Abitibi greenstone belt (Ayer et al., 2002), square is the approximate location of the claims

A number of mafic dykes swarms cut the rocks of the Abitibi greenstone belt (Osmani, 1991). The 2452 Ma. Matachewan dykes are north-trending, vertical to sub-vertical and composed of quartz diabase and commonly contain plagioclase phenocrysts up to 20 cm in length.

The Archean rocks are unconformably overlain by Paleoproterozoic rocks of the Huronian Supergroup and intruded by gabbroic rocks of the Nipissing intrusives. The Huronian Supergroup was deposited in a north-trending graben referred to as the Cobalt Embayment in the area overlying the Abitibi greenstone belt. Four formations: the Gowganda, Lorrain, Gordon Lake, and Bar River, were deposited in the embayment and form the upper most sedimentary cycle of the Huronian Supergroup collectively referred to as the Cobalt Group (Bennett et al., 1991).

The Nipissing Intrusive sills intrude all older rocks forming sills, and undulating sheets up to a few hundred metres thick (Bennett et al., 1991). The 2219 Ma. Ungava magmatic event located under the Labrador Trough fed via the 2216 Ma. Senneterre dykes which form part of the radiating dikes swarm

(Ernst, 2007). Locally, emplacement of the Nipissing appears to have been controlled by pre-existing structures in the Huronian and Archean basement rocks.

## 4.2 PROPERTY GEOLOGY

The Cryderman property is mapped as being underlain by northwest-southeast trending rocks of the Deloro assemblage; locally present as mafic to intermediate metavolcanics rocks with minor siltstone interbeds, and a Matachewan dyke (Ayer et al., 2013) crosscuts the property on a northwest-southeast trend (Fig. 4).

The mafic volcanic rocks in the property are light to dark grey-green basalts with texture varying from strongly foliated to massive, porphyritic, and/or flow textured to pillowed. All variations are typically fine- to very-fine grained while the porphyritic variations contain phenocrysts of fine-grained lathe-shaped plagioclase crystals. The mafic volcanic rocks variably show weak- to moderate-patchy magnetism, weak- to strong-pervasive chlorite alteration, weak-to moderate-patchy to pervasive carbonate alteration, weak- to moderate-sericite alteration, and weak- to moderate-hematite staining and alteration along fracture and foliation planes.

The siltstone occurs as lenses or seams of interflow sediments up to 2 m thick within a basalt dominated region. The siltstone on the property is northeast-southwest striking, typically a light grey-green colour, very-fine to-fine grained, and composed of rounded to sub-rounded lithic clasts. The siltstone exhibits moderate to strong chlorite alteration, and moderate carbonate alteration.

The intermediate metavolcanics rocks were not observed on the property while prospecting; however, they have been documented by Carter (1977) to be located south of Violet Lake.

The Matachewan mafic dyke is found as a medium-grained quartz-diabase and exhibits strong pervasive magnetism. The diabase is a dark green-grey with a weak-pervasive biotite, chlorite, and epidote alteration.

## 4.3 STRUCTURAL GEOLOGY

There is no comprehensive discussion and interpretation of the structural history from the Shining Tree area and the following is from the preliminary work by Johns and Amelin (1998) (Fig. 4 and 5).

In Fawcett and MacMurchy townships the Archean volcanic rocks strike to the north-northwest in the south changing to westerly strike in northern MacMurchy Township. Except for minor top reversals, the sequence youngs to the northeast and north. In Leonard, Tyrell and Knight townships, to the east, the volcanic rocks strike north-northwest changing to a northerly strike in Knight Township. The sequence youngs to the northeast and north northwest-trending syncline axis in northern Tyrell Township.

The Porcupine sediments and volcanics have variable strikes and facing directions and there is insufficient data to identify the cause of the folded aeromagnetic pattern. It is possible that this pattern reflects the geology of the underlying older units. In the southeast part of Natal Township, the Porcupine rocks strike easterly, abutting against the Archean volcanic rocks and, for the most part young to the north.

The entire map area has been disrupted by northwest and northeast-trending faults, thus making the interpretation of stratigraphic relations difficult. This has also been noted on a property scale in northern Tyrrell Township. Deformation is restricted to these fault zones and the individual blocks exhibit little evidence of internal deformation. The Hydro Creek Fault or inferred splays from it in Tyrrell and Natal townships are related to gold mineralization and intense alteration. In some locations there appears to be intense carbonatization, but little ductile deformation is evident. Ductile deformation appears to be more intense on the splay's faults. Intense east-northeast-directed shearing and foliation, along with strong carbonatization, affects the rocks in southwest MacMurchy Township north of Gay Lake.

The following is a working interpretation of the structural history of the area based on work in the Shining Tree and Kirkland Lake areas. Ages of intrusions are from Beakhouse (2011).

## 4.3.1 D1 Synvolcanic Intrusions (2691 - 2685 Ma.)

The first deformation event (D1) was that of initial accretion of the oceanic and arc-related assemblages which was accomplished by southward-migrating, north-dipping subduction (Wilkinson et al., 1999). This deformation event is shown within the property area as synclines within the Pacaud, Deloro, Kidd-Munro, and Tisdale assemblages. These initial D1 structures are reported to be instrumental in the structural architecture of the belt and possibly served as planes of weakness to be re-activated during the D2 event (Wilkinson et al., 1999). On the volcanic belt scale these synclines (and anticlines) trend east-west; however, in the property area they appear as if they are deflected from the general east-west trend around the northeast margin of the synvolcanic Neoarchean Ramsey-Algona Complex into a northwest-southeast orientation. The Ramsey-Algoma Complex is comprised of syntectonic to post-tectonic units.

## 4.3.2 D2 Early to Syntectonic Intrusions (2691 - 2676 Ma.)

The primary structure associated with gold mineralization within the southern Abitibi and property area is the typically east-west trending reverse dextral Larder Lake Cadillac Fault Zone (D2) (Ispolatov et al., 2008). The structure is obscured to the west by the Kapuskasing Structural Zone and constrained to the east by the Grenville Front. The Larder Lake Cadillac Fault Zone is inferred to project southwest under Huronian cover to the Shining Tree area and is locally inferred to as the Rideout Fault.

The Rideout Fault in the property area is obscured by Paleoproterozoic Huronian cover to the east and is offset by several north-south to northwest-southwest, and northeast-southwest trending structures that have an apparent southwest stepping pattern in Tyrrell, Knight, Natal, and MacMurchy townships; further to the west in Churchill and Connaught townships, the structure returns to a more linear feature trending east-west sandwiched between the Ramsey-Algoma (south) and Kenogamissi (north) batholiths.

The Ribble and Foisey veins, located to the west of the property appear to share a similar orientation and general geometry to that of the Queen Elizabeth vein; this orientation infers an initial north-south shortening axis.



Figure 4: Local geology of the Cryderman Property (after Ayer and Chartrand 2011)





#### 4.3.3 D3 Syntectonic Intrusions (2686 - 2676 Ma.)

The D3 event is regarded as a shift in the shortening axis from a generally north-south orientation to an east-west orientation (Ispolatov et al., 2008), or a northwest-southeast orientation (Wilkinson et al., 1999). This shift in the Larder Lake area is represented by the generation of north trending cleavage, but varies locally based on the orientation of the S2 fabric (Wilkinson et al., 1999). A number of northwest-trending auriferous veins are located on the Caswell and Bilmac occurrences located to the north of the Cryderman property.

#### 4.3.4 D4 Late - tectonic Intrusions (2679 - 2672 Ma.)

The D4 event is again a shift in shortening direction; the D4 event is related to a northwest-southeast shortening and characterized by the development of Z-folding (Ispolatov et al., 2008). The D4 event corresponds to many of the structures hosting gold mineralization in the Kirkland Lake camp, the structural event is accompanied by late-tectonic intrusions, variably plutons, dykes, and stocks, which are known to host mineralization elsewhere in the region (Hislop and Young-Davidson).

## 4.3.5 D5 Matachewan Dykes to Trans-Hudson Orogen (2452 - 1800 Ma.)

In the Cryderman property area there are two influential structures. These structures are roughly oriented north-south to north-northwest-south-southeast and are known locally as the Michiwakenda fault and the Jess Lake Fault (Carter, 1977). These faults can be traced and related to the regional Onaping Fault system which begins just east of Sudbury, Ontario at its southern extent as the Upper Wanapitei River Fault, transitioning to the Matagami River Fault, and finally after crossing the Kapuskasing structural zone re-emerging as the Big Cedar Creek fault at its northern extremity (Buchan & Ernst, 1994).

### 4.3.6 D5 early: Matachewan Dyke Swarm and Onaping Graben Emplacement

The Onaping Fault system runs roughly north-south, parallels the orientation of the Matachewan Dyke swarm, and also seemingly has a similar locus to the dyke swarm's origin. Carter (1977) proposed that within the MacMurchy and Tyrrell township areas the Michiwakenda and Jess Lake faults from the bounding normal faults to a graben structure; the Michiwakenda Fault system, could have been an early failed west-side down. It is being proposed that the Onaping Fault system could have been an early failed rift arm associated to the Matachewan large igneous province. A divergence allows for the emplacement of the dykes in a very linear manner and the formation of fault blocks or long linear trough like depressions. Huronian epicratonic sedimentation would have been initiated as a response to the cratonic opening of the eastern margin of Superia via the Mistassini event dated 2510 Ma. (Ernst & Bleeker, 2010)

## 4.3.7 D5 Late: Onaping Deformation

Following the initial development of the two structures there is evidence provided from crosscutting relationships with intrusions, and notably the Biscotasing Dykes, that there was up to 8 kilometres of sinistral offset that occurred along the Onaping Fault system, (Buchan & Ernst, 1994). This displacement is timed to have occurred between the emplacement of the Biscotasing dykes (2167 Ma.) and that of the Sudbury Igneous Complex (1850 Ma.). In the property area the Michiwakenda Fault demonstrates almost 5.5. kilometres of lateral displacement.

The late sinistral deformation during the previously mentioned period is thought to have re-activated some D1 and D2 structures that lie within the project area due to their orientation that accommodates the batholith margins. These D1 and D2 structures would have been rotated in such a way that they would accommodate the formation of duplexes or flower structures with the graben walls bounding them. In the property area these accommodating structures between the graben walls would be represented by northwest trending lineaments and structures that often parallel the hinges defined by D1 or the shears and faults of D2.

## 4.3.8 D6 Post Trans-Hudson Deformation

Following the major sinistral event (late D5) there is evidence to support further movement along the Onaping Fault system. Minor offsets in the Sudbury dykes as well as in the Abitibi dykes shows that there was continued movement on the structure for at least another 700 Ma. following the Trans-Hudson suturing event on the western of the craton.

#### 4.4 Mineralization

In general terms, mineralization on the property has been associated with the Queen Elizabeth vein. Results from the prospecting and trenching field work done in 2019, concluded that from two hundred and twenty (220) channel samples most of the mineralization encountered corresponded to material containing quartz and quartz-carbonated veining with trace to 3% sulphide content, typically presenting a combination of pyrite and chalcopyrite ± sphalerite ± malachite. Also, an elevated notable exception sample which returned a value of 1.15 ppm Au over 60 cm, consisting of foliated basalt with 1-3% finegrained disseminated pyrite along foliation planes.

The highest value of the samples from the 2019 field program returned a value of 15.7ppm Au over 49 cm, which is composed of the Queen Elizabeth vein with trace of 1% very-fine grained pyrite, chalcopyrite, and malachite. The variation in assay results along the Queen Elizabeth vein is likely due to a nugget effect. The mineralization has been associated with samples containing centimetre scale quartz-carbonate veins, or in wall rock of strong foliation and increased sulphide content.

## 5.0 2021 EXPLORATION

The 2021 field programme was comprised of reconnaissance mapping and sampling conducted between August 15th, 2021 and August 21st, 2021, by Transition Metals Corp. project geologists Benjamin Williams and Jake Burden, assisted by field geologists Mayra Zuniga-Albuja and Michael Langa, and field assistants Carolyn Hatton and Sarah Reese. A total of 53 grab and float samples were collected and submitted for analyses with the sample descriptions contained in Appendix A, and a detailed sample location map contained in Appendix B. Structural measurements were taken during the 2021 field work to provide further support for the interpretation postulated from the 2019 geology and trenching program.

Samples were submitted to ALS in Sudbury, Ontario and analysed for gold using a combination of fire assay and inductively couple plasma – atomic emission spectroscopy (ICP – AES) methodology. Samples that exceeded the upper analytical detection limits for gold were re-analysed by a fire assay-gravimetric analysis. The samples were also analysed for forty-eight (48) trace element and base metals using a four acid near total digestion inductively couple plasma – mass spectroscopy (ICP – MS) methods. The analytical certificates and quality control data for these analyses are contained in Appendix C.

#### 5.1 **RESULTS**

Prospecting and mapping of the property confirmed the presence of mafic volcanic rocks mapped by Carter (1977), and the addition of an identified intermediate mafic volcanic. Foliations measured while prospecting were typically in an east-west orientation between 058° and 089° steeply dipping to the south.

Of the fifty-seven (57) samples of rock submitted for assay, most of the mineralization encountered were collected from the mafic volcanic rocks, with trace to 3% sulphide, typically a combination of pyrite ± chalcopyrite ± pyrrhotite ± malachite. One notable exception being sample X926817 which returned a value of 6.18 ppm Au from a sample consisting of a quartz vein with inclusions of the host rock

described as a basalt, the vein presents fine-grained pyrite following the grain boundaries. The highlights of the analytical results are contained in Table 3, with the locations shown in Figure 6.

| Station        | East   | North   | Sample  | Sample<br>Type | Lithology                        | Au<br>ppm | Ag<br>ppm | Cu<br>ppm | Pb<br>ppm | S %   | Te<br>ppm | Zn<br>ppm |
|----------------|--------|---------|---------|----------------|----------------------------------|-----------|-----------|-----------|-----------|-------|-----------|-----------|
| 21CRY7         | 485988 | 5271579 | X926790 | Grab           | Foliated<br>basalt               | 0.115     | 0.10      | 63.9      | 1.4       | 0.22  | 0.05      | 144       |
| 21CRY9         | 485977 | 5271322 | X926792 | Grab           | Basalt                           | 0.109     | 0.18      | 24.3      | 5.3       | 1.14  | 0.12      | 296       |
| 21CH-<br>C002A | 483913 | 5270528 | X926796 | Grab           | Foliated<br>mafic<br>volcanic    | 0.001     | 0.04      | 110.0     | 1.1       | 0.07  | <0.05     | 90        |
| 21MZ-<br>G006B | 486333 | 5270869 | X926804 | Grab           | Quartz-Fe-<br>carbonated<br>vein | 0.095     | 0.02      | 86.3      | 1.0       | 0.12  | <0.05     | 35        |
| 21CRY11        | 486175 | 5271336 | X926812 | Grab           | Foliated<br>basalt               | <0.001    | 0.06      | 144.0     | 0.6       | 0.04  | <0.05     | 38        |
| 21CRY15        | 486129 | 5271267 | X926817 | Grab           | Basalt                           | 6.18      | 1.01      | 37.5      | 3.2       | 0.14  | <0.05     | 25        |
| 21CH-<br>C006  | 485634 | 5270917 | X926823 | Grab           | Intermediate<br>volcanic         | <0.001    | 0.02      | 50.0      | 0.6       | <0.01 | <0.05     | 54        |
| 21CH-<br>C007A | 485648 | 5270885 | X926826 | Grab           | Quartz Vein                      | <0.001    | 0.01      | 23.7      | 1.2       | <0.01 | <0.05     | 53        |
| 21CH-<br>C015C | 486144 | 5270549 | X926837 | Grab           | Quartz vein                      | 0.040     | 0.33      | 648       | 10.2      | 0.06  | <0.05     | 43        |

 Table 3: Analytical highlights from the 2021 sample analyses (NAD 83, UTM Zone 17).



Figure 6: Location map of analytical highlights from the 2021 sample analyses

## 6.0 **EXPENDITURES**

A summary of expenditures of the program are contained in Table 3

#### Table 4: : Summary of Expenditures

| Work Type              | Sub work Type     | From       | То         | Unit of Work | Cost/Unit | Actual Cost |
|------------------------|-------------------|------------|------------|--------------|-----------|-------------|
| Geological Survey Work | Geological Survey | 2021-08-12 | 2021-09-03 | day          | 485       | \$11,820    |
| Geological Survey Work | Reporting         | 2021-09-06 | 2021-09-30 | day          | 485       | \$1,670     |
|                        | Reporting         | 2022-03-01 | 2022-03-31 | day          | 580       | \$1,450     |
|                        |                   |            |            |              |           |             |
|                        |                   |            |            |              |           |             |
| Associated Cost        | Assays            | 2021-08-12 | 2021-09-01 | Sample       | 100       | \$3,523     |
|                        | Food              | 2021-08-12 | 2021-09-01 | meal         | 26        | \$2,414     |
|                        | Lodging           | 2021-08-12 | 2021-09-01 | night        | 170       | \$2,512     |
|                        | Transportation    | 2021-08-12 | 2021-09-01 | unit         | 1         | \$282       |
|                        | Supplies          | 2021-08-12 | 2021-09-01 | unit         | 1         | \$1,416     |
|                        |                   |            |            |              |           |             |
|                        |                   |            |            |              | TOTAL     | \$25,087    |

## 7.0 CONCLUSIONS AND RECOMMENDATIONS

Mineralization in the Cryderman property appears to largely associated with the inferred D2 structures as discussed by Burden (2019). Any future work carried out should focus on these D2 structures and associated veining. Additional bedrock stripping should be completed along some of the structures to test the interpretation which could be combined with a programme of soil geochemical sampling. Burden (2019) proposed a series of diamond drill holes to further test the dominant trend of lineations of D2 - D3 structures oriented to intersect all styles of mineralization that is apparent in the trench. The proposed diamond drill holes of Burden (2019) are still valid, untested targets for mineralization on the property.

## 8.0 STATEMENT OF AUTHORS

#### 8.1 STATEMENT OF AUTHOR:

I, Mayra Zuniga-Albuja of the City of Vancouver, in the Province of British Columbia, do hereby certify that:

1) I am a geoscientist in training (GIT) with the PGO, residing at 477 59th Ave W Apt 301, Vancouver BC, V5X 1X4,.

2) This certificate is to accompany the report entitled: '2021 Reconnaissance Program, Cryderman Property, Shining Tree, Ontario, MacMurchy Township dated March 31, 2022.

3) I graduated from the University of Saskatchewan with an MSc in Geology (2020).

4) I have been working as a GIT in Canada and Ecuador since 2015.

5) I have been worked as a field geologist for Transition Metals Corp. between May 10th, 2021 and December 2021.

Dated at Vancouver, B.C. this. 29th Day of December 2021

Mayra Zuniga-Albuja

#### 8.1 STATEMENT OF AUTHOR:

I Thomas R. Hart, of the City of Kitchener, in the Province of Ontario, do hereby certify that:

1) I am a registered Professional Geoscientist, PGO, NLPEG, residing at 31 Ridgemount Street, Kitchener, Ontario, N2P 0J3.

2) This certificate is to accompany the report entitled: '2021 Reconnaissance Program, Cryderman Property, Shining Tree, Ontario, MacMurchy Township dated March 31, 2022.

3) I graduated from the University of Western Ontario (1980) with an HBSc in Geology, and the University of Toronto (1984) with an MSc in Geology.

4) I am registered as a Professional Geoscientist with the Professional Geoscientists of Ontario I have been practicing full-time as a geoscientist in Canada since 1984.

5) I am contracted to be the vice-president, exploration, and an officer of Transition Metals Corp. supervising the 2021 field programme.

Dated at Kitchener, Ontario this. 31th Day of March 2022

Thomas R. Hart, P. Geo.

#### **9.0 BIBLIOGRAPHY**

Agnerian, H., (2018). Technical Report on the Shining Tree Property, Ontario; NI 43-101 Report.

- Ayer, J.A., Barrett, T.J., Creaser, R.A., Hamilton, M.A., Lafrance, B. and Stott, G.M., (2013). Section 1 Vein Project, Ontario Geological Survey, Miscellaneous Release—Data 294.
- Ayer, J.A. and Chartrand, J.E. (2011). Geological compilation of the Abitibi greenstone belt; Ontario Geological Survey, Miscellaneous Release—Data 282
- Ayer, J.A., Amelin, Y., Corfu, F., Kamo, S., Ketchum, J., Kwok, K., and Trowell, N., (2002). Evolution of the Southern Abitibi greenstone belt on U-Pb geochronology: autochtonous volcanic construction followed by plutonism, regional deformation and sedimentation: Precambrian Research, p. 115, 63-95.
- Ayer, J.A., Barr, E., Bleeker, W., Creaser, R.A., Hall, G., Ketchum, J.W.F., Powers, D., Salier, B., Still, A. and Trowell, N.F., (2003). Discover Abitibi. New geochronological results from the Timmins area: Implications for the timing of late-tectonic stratigraphy, magmatism and gold mineralization; in Summary of Field Work and Other Activities 2003, Ontario Geological Survey, Open File Report 6120, p.33-1 to 33-11.
- Ayer, J.A., Thurston, P.C., Dubé, B., Gibson, H.L., Hamilton, M.A., Hathway, B., Hocker, S.M., Houlé, M.G., Hudak, G., Ispolatov, V.O., Lafrance, B., Lesher, C.M., MacDonald, P.J., Péloquin, A.S., Piercey, S.J., Reed, L.E., and Thompson, P.H., (2005). Overview of results from the Greenstone Architecture Project: Discover Abitibi Initiative: Ontario Geological Survey Open File Report 6154, p. 146.
- Beakhouse, G.P., (2011). The Abitibi Subprovince plutonic record: Tectonic and metallogenic implications; Ontario Geological Survey, Open File Report 6268, p. 161.
- Bennett, G., Dressler, B. O. and Robertson, J. A., (1991). The Huronian Supergroup and associated intrusive rocks. In: Thurston, P. C., Williams, H. R., Sutcliffe, R. H. & Stott, G. M. (eds.) Geology of Ontario. Ontario Geological Survey, Special Volume, p. 549–591.
- Buchan, K.L., and Ernst, R.E., (1994). Onaping fault system: age constraints on deformation of the Kapuskasing structural zone and units underlying the Sudbury Structure; Canadian Journal of Earth Sciences, Volume 31, Number 7.
- Burden, S.J., (2019), 2019 Geology and Trenching Programme, Cryderman Property, Shining Tree, Ontario, MacMurchy Township; Prepared For Transition Metals Corp.; dated December 8, 2020
- Carter, M.W., (1977). Geology of Fawcett and Leonard Townships, District of Sudbury and Timiskaming: Ontario Division of Mines, GR 146, p. 50.
- Carter, M.W., (1987). Geology of the Shining Tree Area, districts of Sudbury and Timiskaming; Ontario Geological Survey, Report 240, p. 48.
- Ernst, R. E., (2007). Large igneous provinces in Canada through time and their metallogenic potential. In: Goodfellow, W. D. (ed.) Mineral Deposits of Canada: A Synthesis of Major Deposit-Types, District

Metallogeny, the Evolution of Geological Provinces, and Exploration Methods. Geological Association of Canada, Mineral Deposits Division, Special Publication 5, p. 929–937.

- Ernst, R. E. and Bleeker, W., (2010). Large igneous provinces (LIPs), giant dyke swarms, and mantle plumes: significance for breakup events within Canada and adjacent regions from 2.5 Ga to the Present. Canadian Journal of Earth Sciences, 47, p. 695-739.
- Finley, F.L., (1926). Wasapika Section, The West Shiningtree Gold Area; Thirty Fifth Annual Report of the Ontario Department of Mines, Volume 35 Part 6, p. 83-96.
- Hopkins, P.E., (1920). The West Shining Tree Gold Area; Twenty Ninth Annual Report of the Ontario Department of Mines, Volume 29 Part 3, p. 28-52.
- Isoplatov, V., LaFrance, B., Dube, B., Creaser, R. and Hamilton, M., (2008). Geologic and structural setting of gold mineralization in the Kirkland Lake–Larder Lake gold belt, Ontario; Economic Geology, v.103, p.1309-1340.
- Johns, G.W., (1999). Reappraisal of the Geology of the Shining Tree Area (West Part), District of Sudbury; in Summary of Field Work and Other Activities 1999, Ontario Geological Survey, Open File Report 6000, p.6-1 to 6-7.
- Johns, G.W., and Amelin, Y., (1999). Project Unit 96-003. Reappraisal of the Geology of the Shining Tree Area (East Part), Districts of Sudbury and Timiskaming; in Summary of Field Work and Other Activities 1998, Ontario Geological Survey, Miscellaneous Paper 169, p. 43-50.
- Laird, H.C., (1935). Recent Developments in the Swayze and West Shiningtree Areas; Department of Mines, Annual Report Volume 44 Part 6, p. 38-47.
- Langford, B., (1928). Wasapika Section, The West Shiningtree Gold Area, District of Sudbury; Thirty Sixth Annual Report of the Ontario Department of Mines, Volume 36, p. 100-104.
- Osmani, I.A., (1991). Proterozoic Mafic Dyke Swarms in the Superior Province of Ontario, in Geology of Ontario: Ontario Geological Survey, Special Volume 4, Part 1, p. 627-660.
- Savage, W.S., (1949). Queen Elizabeth Gold Mines. MacMurchy Township; internal report by the Resident Geologist; 5 p.
- Stewart, R.B., (1913). The West Shining Tree Gold Area; Twenty Second Annual Report of the Bureau of Mines 1913, Volume 22, Part 1, p. 233-237.
- Thurston, P.C., Ayer, J.A. and Hamilton, M.A., (2008). Depositional Gaps in Abitibi Greenstone Belt Stratigraphy; A Key to Exploration for Syngenetic Mineralization: Economic Geology Vol. 103, p. 1097-1134.
- Wilkinson, L., Cruden, A.R., and Krogh, T.E., (1999). Timing and kinematics of post-Timiskaming deformation within the Larder Lake-Cadillac deformation zone, southwest Abitibi greenstone belt, Ontario, Canada; Can. J. Earth Sci. Vol. 36: p. 627-647.

# APPENDIX A

| Sample  | Station     | Area                      | Date       | East   | North   | Type   | Lithology      | Notes Lithology                                                                                                                                                                                                    | Notes Alteration                                                                                                                                             | Notes Vein                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Notes Mineralization                                                                                                                                         | Structural Measurements                    |
|---------|-------------|---------------------------|------------|--------|---------|--------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| X926783 | 21-CRY-001  | Cryderman [New<br>Claims] | 2021-08-18 | 486119 | 5271446 | Grab   | Basalt         | Fine grained. Brown weathered surface and<br>medium grey fresh surface. Slightly larger grained<br>plagioclase phenocrysts present. Non magnetic.<br>Strongly foliated                                             | Moderate somewhat patchy reaction<br>to acid along surfaces. Minor hematite<br>staining along fracture planes.                                               | Quartz vein, 3-4cm wide and white in colour. Weak very<br>patchy acid reaction. Hematite staining along grain boundaries<br>within vein. Inclusions of chlorite present. No apparent<br>mineralization                                                                                                                                                                                                                                                                                | No apparent mineralization in host rock.                                                                                                                     | [126/64] (foliation)                       |
| X926784 | 21-CRY-002  | Cryderman [New<br>Claims] | 2021-08-18 | 486094 | 5271643 | Grab   | Basalt         | Fine grained. Medium grey weathered surface<br>and fresh surface. Moderate pervasive<br>magnetism. Strongly foliated.                                                                                              | Strong acid reaction along fracture<br>planes. Moderately chloritized.                                                                                       | Thin quartz-calcite veinlets, sub-mm scale.                                                                                                                                                                                                                                                                                                                                                                                                                                           | Pyrite, pyrrhotite, trace chalcopyrite (?). 2-3<br>vol% sulphides. Fine grained to very fine<br>grained, disseminated and growing along<br>foliation planes. |                                            |
| X926785 | 21-CRY-003  | Cryderman [New<br>Claims] | 2021-08-18 | 486125 | 5271704 | Grab   | Basalt         | Fine grained. Medium grey weathered surface<br>and fresh surface. Moderate pervasive<br>magnetism. Strongly foliated.                                                                                              | Strong acid reaction along fracture<br>planes. Moderately chloritized.                                                                                       | Quartz eyelid/eyebrow structure. Contains quartz, calcite,<br>hematite, biotite books/sheets. No apparent mineralization.<br>Quite "rotten".                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                              |                                            |
| X926786 | 21-CRY-004A | Cryderman [New<br>Claims] | 2021-08-18 | 486117 | 5271698 | Grab   | Basalt         | Fine grained. Grey green fresh surface and grey<br>beige on weathered surface. Moderate pervasive<br>magnetism.                                                                                                    | Moderately to strongly chloritized.<br>Strongly carbonaceous along fracture<br>surfaces.                                                                     | Quartz vein with calcite along margins/stringers coming off of<br>main vein. Vein is white in colour with hematite staining along<br>grain boundaries and margins. Blebby chalcopyrite in vein<br>margins.                                                                                                                                                                                                                                                                            | Host rock has fine grained disseminated<br>pyrite, some associated and occurring<br>around the plagioclase phenocrysts.                                      |                                            |
| X926787 | 21-CRY-004B | Cryderman [New<br>Claims] | 2021-08-18 | 486117 | 5271698 | Grab   | Basalt         | Fine grained. Grey green fresh surface and grey<br>beige on weathered surface. Moderate pervasive<br>magnetism.                                                                                                    | Moderately to strongly chloritized.<br>Strongly carbonaceous along fracture<br>surfaces.                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Host rock has fine grained disseminated<br>pyrite, some associated and occurring<br>around the plagioclase phenocrysts.                                      |                                            |
| X926788 | 21-CRY-005  | Cryderman [New<br>Claims] | 2021-08-18 | 486051 | 5271743 | Grab   | Basalt         | Fine grained. Grey weathered surface and<br>medium grey green fresh surface. Strong to<br>moderate pervasive magnetism.                                                                                            | Moderate to strong HCI reaction along<br>fracture surfaces. Moderately to<br>strongly chloritized.                                                           | Two quartz veins present but only one (1) was sampled.<br>Sampled vein: 2-3cm wide, white to rusty patches. Hematized<br>along fractures and grain boundaries. Margins are strongly<br>chloritized/chlorite rich. Some small chlorite inclusions also<br>present within the vein. No apparent mineralization.                                                                                                                                                                         | Host rock has no apparent sulphides.                                                                                                                         | [079/74] (vein 1); [125/68] (vein 2)       |
| X926789 | 21-CRY-006  | Cryderman [New<br>Claims] | 2021-08-18 | 485957 | 5271686 | i Grab | Basalt         | Fine grained. Grey weathered surface and<br>medium grey green fresh surface. Strong to<br>moderate pervasive magnetism.                                                                                            | Moderate to strong HCI reaction along<br>fracture surfaces. Moderately to<br>strongly chloritized.                                                           | Quartz vein present that pinches and swells from 1-15cm<br>wide. White/bull white in colour with hematite staining along<br>grain boundaries. Vein has some inclusions of the host rock<br>along margins. Vein is boudined and has crack seal texture.<br>Some chlorite fragments present within the vein.                                                                                                                                                                            |                                                                                                                                                              |                                            |
| X926790 | 21-CRY-007  | Cryderman [New<br>Claims] | 2021-08-18 | 485988 | 5271579 | Grab   | Basalt         | Fine grained. Brown weathered surface and<br>medium grey green fresh surface. Strongly<br>foliated. Non magnetic.                                                                                                  | Moderate to strong oxidation on<br>fracture planes/foliation planes.<br>Strongly carbonaceous along<br>foliation/fracture surfaces. Strongly<br>chloritized. | 1-2cm wide quartz vein with iron carbonate inside. Trace<br>sulphides (cubic pyrite) along margins. Bull white in colour<br>with hematite staining along grain boundaries.                                                                                                                                                                                                                                                                                                            |                                                                                                                                                              | [085/65] (vein)                            |
| X926791 | 21-CRY-008  | Cryderman [New<br>Claims] | 2021-08-18 | 486007 | 5271564 | Grab   | Basalt         | Fine grained. Grey weathered surface and green<br>grey fresh surface. Patchy very weak magnetism.                                                                                                                  | Moderately chloritized. Moderate<br>oxidation along fracture planes. Weak<br>very patchy acid reaction.                                                      | Quartz carbonate mini stringers present within host rock.<br>Sampled quartz vein was 1-2cm wide, up to 3cm wide in the<br>extensional components. Extensional components of vein<br>branch off of main section. Moderate oxidation within vein.<br>Sulphides concentrated along vein margins and in the host<br>rock along the vein margins. Fine grained to blebby to cubic<br>pyrite with potential trace chalcopyrite, and minor pyrrhotite<br>(patchy magnetism within the vein). | Fine grained to very fine grained sulphides,<br>pyrite, about 1 vol %.                                                                                       | [255/70] (vein)                            |
| X926792 | 21-CRY-009  | Cryderman [New<br>Claims] | 2021-08-18 | 485977 | 5271322 | ! Grab | Basalt         | Fine grained. Grey weathered surface and grey green fresh surface.                                                                                                                                                 | Moderately chloritized.                                                                                                                                      | Quartz vein. 3-4cm wide. White in colour. Hematite<br>staining/oxidation along margins and grain boundaries<br>(strong, rusty). Sulphides concentrated along the vein margins<br>(medium grained cubic pyrite, fine grained disseminated<br>pyrite). Very fine grained trace disseminated pyrite within the<br>vein as flecks. Wall rock also has medium grained cubic pyrite<br>(-3 vol %). Vein has 1-2cm inclusions of chlorite +/- biotite<br>with cubic pyrite along the rims.   |                                                                                                                                                              | [264/86] (vein)                            |
| X926793 | 21-CRY-010  | Cryderman [New<br>Claims] | 2021-08-18 | 486168 | 5271365 | Grab   | Basalt         | Fine grained. Grey weathered surface and grey<br>green fresh surface. Strongly foliated.                                                                                                                           | Moderately chloritized.                                                                                                                                      | 1-2cm wide quartz carbonate vein. White to tan/orange in<br>colour. Malachite staining and chalcopyrite (fine grained)<br>within vein. Crack seal texture. Hematite staining in middle<br>section (ron carbonate section) of the vein. Fine grained cubic<br>pyrite within vein. Strong acid reaction.                                                                                                                                                                                |                                                                                                                                                              | [084/87] (vein)                            |
| X926794 | 21-CH-C001A | Cryderman                 | 2021-08-18 | 512610 | 5279401 | Grab   | Quartz vein    | Quartz vein in pillow basalt. Looks like carbonate<br>has been weathered out. Contains iron carbonate<br>with altered fractures.                                                                                   | Chlorite alteration around vein margins.                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                              |                                            |
| X926795 | 21-CH-C001B | Cryderman                 | 2021-08-18 | 512610 | 5279401 | Grab   | Mafic volcanic | Fine grained strongly altered pillow mafic<br>volcanic                                                                                                                                                             |                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                              | Foliation/flattening direction of pillows: |
| X926796 | 21-CH-C002A | Cryderman                 | 2021-08-18 | 483913 | 5270528 | Grab   | Mafic volcanic | Fine grained mafic volcanic. Strongly foliated.<br>Small veinlets with pyrite that run parallel to<br>foliation. Trace pyrite. Rotting of vesicles. Non-<br>magnetic. Strong reaction to HCI. Flow top<br>breccia? | Moderately carbonaeous. Strong<br>chlorite alteration.                                                                                                       | Small quartz carbonate veinlets.                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Pyrite along margins of veinlets. Trace<br>pyrite in host.                                                                                                   | Foliation: [145/69]                        |
| X926797 | 21-CH-C002B | Cryderman                 | 2021-08-18 | 483913 | 5270528 | Grab   | Quartz vein    | Chalky white quartz vein. Non-magnetic. No reaction.                                                                                                                                                               | Strong chlorite alteration along margins. Weak oxidation on fractures.                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                              | Vein: [326/31]                             |
| X926798 | 21-CH-C003A | Cryderman                 | 2021-08-18 | 485959 | 5270573 | Grab   | Mafic volcanic | Same as 21CH-C002A. Stronger reaction to HCl.                                                                                                                                                                      |                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                              | Foliation: [264/83]                        |

| Sample  | Station     | Area                      | Date       | East   | North   | Туре | Lithology                                    | Notes_Lithology                                                                                                                                                                                                                             | Notes_Alteration                                                                                                      | Notes_Vein                                                                                                                                                                                                                                                                                                                                                                                                              | Notes_Mineralization                 | Structural_Measurements |
|---------|-------------|---------------------------|------------|--------|---------|------|----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-------------------------|
| X926801 | 21-CH-C003B | Cryderman                 | 2021-08-18 | 485959 | 5270573 | Grab | Quartz vein                                  | Broken up quartz vein appears and then<br>reappears. No reaction to HCI. Non-magnetic. Not<br>measurable                                                                                                                                    | t                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                         |                                      |                         |
| X926802 | 21-CH-C004  | Cryderman                 | 2021-08-18 | 485968 | 5270590 | Grab | Quartz vein                                  | Frost heave breccia vein. Monomictic breccia. In<br>fine grained ultra mafic volcanic. Vein appears to<br>be 20cm. No reaction. Non-magnetic                                                                                                | Weak patchy malachite staining.<br>Chlorite alteration around vein<br>margins.                                        |                                                                                                                                                                                                                                                                                                                                                                                                                         | Trace very fine grained chalcopyrite | Vein: [326/30]          |
| X926803 | 21-MZ-G006A | Cryderman Trench          | 2021-08-18 | 486333 | 5270869 | Grab | Quartz-<br>tourmaline-Fe-<br>carbonate vein. | 11 cm wide vein exploiting pillow margins. Shows<br>some hematite-staining and < 0.5 vol. %<br>sulphide. Some oxidized sulphides. Non-<br>magnetic. Photos: 1194 to 1195                                                                    |                                                                                                                       | Pyrite                                                                                                                                                                                                                                                                                                                                                                                                                  |                                      | Foliation: [236°/080°]  |
| X926804 | 21-MZ-G006B | Cryderman Trench          | 2021-08-18 | 486333 | 5270869 | Grab | Quartz-Fe-<br>carbonate vein.                | <ol> <li>S cm thick quartz-Fe-Carbonate occurs along<br/>vein margins. Vein contains minor tourmaline.<br/>Vein is parallel to subparallel to 21MZ-6006A.<br/>Trace amount of disseminated sulphide. Photos:<br/>1196</li> </ol>            |                                                                                                                       | Pyrite                                                                                                                                                                                                                                                                                                                                                                                                                  |                                      |                         |
| X926805 | 21-MZ-G006C | Cryderman Trench          | 2021-08-18 | 486333 | 5270869 | Grab | Pillow basalt.                               | Flattened and foliated pillow basalts. Foliation is<br>parallel to vein. Same characteristics as earlier<br>pillows. Disseminated trace amount of sulphide.                                                                                 | Strong chloritization. Moderate to<br>strong reaction with HCI. Some<br>hematite-staining along fracture<br>surfaces. | Cubic to subhedral pyrite (some is oxidized).                                                                                                                                                                                                                                                                                                                                                                           |                                      |                         |
| X926806 | 21-MZ-G007A | Cryderman Trench          | 2021-08-18 | 486458 | 5271007 | Grab | Quartz vein                                  | Vein contains some tourmaline and 'chunks' of<br>feldspar. Crack-seal texture. Hematite-staining<br>along fractures in the vein. Non-magnetic. No<br>apparent mineralization.                                                               |                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                         |                                      |                         |
| X926807 | 21-MZ-G007B | Cryderman Trench          | 2021-08-18 | 486458 | 5271007 | Grab | Quartz vein                                  | 3.5 cm thick quartz vein with minor tourmaline<br>and hematite-staining. Crack-seal texture. Non-<br>magnetic. Minor sulphide oxidation. Photos: 1197<br>and 1198. Host rock is a foliated pillow basalt.<br>Foliation is parallel to vein. | ,                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                         | Pyrite                               | Vein: [158*/082°].      |
| X926808 | 21-MZ-G008A | Cryderman Trench          | 2021-08-18 | 486463 | 5271308 | Grab | Quartz vein                                  | 10 cm thick quartz vein exploiting pillow margins.<br>Hematite-staining occurring along vein margins<br>and in the vein. Oxidized magnetite and minor<br>sulphides. Photo: 1200                                                             |                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                         |                                      | Vein: [273°/085°]       |
| X926809 | 21-MZ-G008B | Cryderman Trench          | 2021-08-18 | 486463 | 5271308 | Grab | Pillow basalt                                | Same features as before, but strongly chloritized.                                                                                                                                                                                          |                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                         |                                      |                         |
| X926810 | 21-MZ-G009A | Cryderman Trench          | 2021-08-18 | 486478 | 5271402 | Grab | Quartz vein                                  | 22 cm thick undulating quartz vein with patches<br>of tourmaline. Patchy weak magnetism. Non-<br>carbonaceous. No apparent mineralization.<br>Photo: 1201.                                                                                  |                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                         |                                      | Vein: [048°/040°]       |
| X926811 | 21-MZ-G009B | Cryderman Trench          | 2021-08-18 | 486478 | 5271402 | Grab | Pillow basalt                                | Same features as before, but strongly chloritized.<br>Non-magnetic. Trace amounts of sulphide.<br>Moderate to strong hematite-staining along<br>fractures.                                                                                  |                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                         | Pyrite                               |                         |
| X926812 | 21-CRY-011  | Cryderman [New<br>Claims] | 2021-08-19 | 486175 | 5271336 | Grab | Basalt                                       | Fine grained. Foliated.                                                                                                                                                                                                                     | Strongly chloritized.                                                                                                 | Quartz vein 1-3cm wide. White to slightly smoky grey, and<br>strongly hematized. Chlorite inclusions within the vein. Some<br>trace fine grained to blebby pyrite along vein margins in host<br>rock that follows foliation planes. Vein also has inclusions of<br>the host rock. Does not react to acid.                                                                                                               |                                      |                         |
| X926813 | 21-CRY-012  | Cryderman [New<br>Claims] | 2021-08-19 | 486191 | 5271353 | Grab | Basalt                                       | Fine grained and foliated.                                                                                                                                                                                                                  | Strongly chloritized.                                                                                                 | Quartz vein that pinches and swells from 3-10cm wide. White<br>to bull white in colour. Hematite staining along grain<br>boundaries. No apparent mineralization within the vein. Does<br>not react to acid. Wall rock fragments present within the vein<br>along with chlorite inclusions.                                                                                                                              |                                      | [264/25] (vein)         |
| X926814 | 21-CRY-013  | Cryderman [New<br>Claims] | 2021-08-19 | 486167 | 5271311 | Grab | Basalt                                       | Fine grained and foliated.                                                                                                                                                                                                                  | Moderately chloritized.                                                                                               | Quart vein. Pinches and swells from 3-10xm wide. White to<br>bull white in colour. Chlorite and host rock inclusions within<br>the vein. Hematite staining along grain boundaries and some<br>patches on vein fracture surfaces. No apparent mineralization.                                                                                                                                                            |                                      | [084/84] (vein)         |
| X926815 | 21-CRY-014A | Cryderman [New<br>Claims] | 2021-08-19 | 486147 | 5271286 | Grab | Basalt                                       | Fine grained, strongly foliated.                                                                                                                                                                                                            | Moderately chloritized.                                                                                               | Quartz carbonate biotite tournaline vein with crack seal texture. 5-10cm wide. White to bull white in colour. Iron carbonate along vein margins. Some hematite staining along grain boundaries. Second quartz vein is thinner, 3-4cm wide. Extensional veinlets 1-2mm wide connect both veins (see 14B). No sulphides within the two larger quartz veins, they are concentrated along the margins and in the wall rock. |                                      | [310/80] (veins)        |
| X926816 | 21-CRY-014B | Cryderman [New<br>Claims] | 2021-08-19 | 486147 | 5271286 | Grab | Basalt                                       | Fine grained and foliated.                                                                                                                                                                                                                  | Moderately chloritized.                                                                                               | Extensional veins/veinlets are mm scale to 0.5cm wide. Quartz<br>carbonate tourmaline chlorite/biotite veins. Medium grained<br>to fine grained biebby sulphides concentrated in veinlets and<br>the wall rock, about 2 v of %, mainly pyrite.                                                                                                                                                                          |                                      |                         |

| Sample  | Station     | Area                      | Date       | East   | North   | Туре   | Lithology                  | Notes_Lithology                                                                                                                                                                                                                                                                                                                                                               | Notes_Alteration                                                                                     | Notes_Vein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Notes_Mineralization                                                                           | Structural_Measurements                                                               |
|---------|-------------|---------------------------|------------|--------|---------|--------|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| X926817 | 21-CRY-015  | Cryderman [New<br>Claims] | 2021-08-19 | 486129 | 5271267 | 7 Grab | Basalt                     | Fine grained.                                                                                                                                                                                                                                                                                                                                                                 | Moderately chloritized.                                                                              | Old trench trending 020 degrees. Quartz vein that is bull white<br>in colour. Inclusions of basalt host rock in vein. Crack seal<br>texture. Hematite staining along grain boundaries. Iron<br>carbonate along grain boundaries. Chlorite inclusions within<br>the vein. Some associated with sulphides, blebby to fine<br>grained pyrite, many of which follow the grain boundaries.<br>Non magnetic. Some sulphides (blebby to cubic pyrite) are<br>also within the wall rock. Vein is 15-20cm and pinches and<br>swells. |                                                                                                | [084/85] (vein)                                                                       |
| X926818 | 21-CRY-016  | Cryderman [New<br>Claims] | 2021-08-19 | 486063 | 5271256 | 6 Grab | Basalt                     | Fine grained.                                                                                                                                                                                                                                                                                                                                                                 | Moderately chloritized.                                                                              | Quartz carbonate chlorite vein. 15-25cm wide. White/bull<br>white in colour. Some hematite staining along grain margins.<br>Chlorite inclusions and iron carbonate patches present. No<br>visible sulphides. Acid reacts strongly with iron carbonate.                                                                                                                                                                                                                                                                      |                                                                                                | [072/85] (vein)                                                                       |
| X926819 | 21-CRY-017  | Cryderman [New<br>Claims] | 2021-08-19 | 485990 | 5271301 | Grab   | Basalt                     | Fine grained, moderately foliated.                                                                                                                                                                                                                                                                                                                                            | Moderately chloritized.                                                                              | Quartz vein. 1-2cm wide. Some oxidation and hematite<br>staining along grain boundaries. White to bull white in colour.<br>No apparent mineralization.                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                |                                                                                       |
| X926820 | 21-MZ-G010A | Cryderman Trench          | 2021-08-19 | 486418 | 5270792 | 2 Grab | Quartz-<br>tourmaline vein | 7 m thick quartz-tourmaline vein. Moderate local<br>reaction with HCI. Weak local magnetism. Vein is<br>undulating. No apparent mineralization. Foliated<br>pillow basalt host rock undulating foliation.<br>Foliation is parallel to subparallel to the vein.<br>Photo: 1202                                                                                                 |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                | Vein: [242° or 62°/near vertical dip]                                                 |
| X926821 | 21-MZ-G010B | Cryderman Trench          | 2021-08-19 | 486418 | 5270792 | grab   | Quartz vein                | Approx. 3.5 cm thick quartz vein with minor<br>tourmaline. Moderate to strong hematite-<br>staining in the vein and along margins. Oxidized<br>sulphides present. Non magnetic. Veins merge<br>and diverge. Pillow basalt host rock                                                                                                                                           |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Pyrite                                                                                         |                                                                                       |
| X926822 | 21-MZ-G011  | Cryderman Trench          | 2021-08-19 | 486408 | 5270813 | 3 Grab | Quartz vein                | Approx. Scm thick quartz vein. White coloured<br>and crystalline. Minor hematite-staining in the<br>vein. No reaction to HCI. Weak to moderate<br>patchy magnetism. Host rock is flattened pillow<br>basalts. Same characteristics as previous pillow<br>basalts, sime characteristics as previous pillow<br>basalts, sime the characteristics as previous pillow<br>basalts. |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                | Vein : [243*/076*]                                                                    |
| X926823 | 21-CH-C006  | Cryderman                 | 2021-08-19 | 485634 | 5270917 | 7 Grab | Intermediate<br>volcanic   | Leucocratic intermediate volcanic. Moderately<br>foliated. Non-magnetic. Trace disseminated<br>sulphides. With 2 vein sets. Weak reaction to HCI                                                                                                                                                                                                                              | Moderate chlorite alteration in host<br>rock and around quartz vein margins.<br>Weakly carbonatious. | 2 vein sets: vertical vein is sheared. Linear vein is not.                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Trace disseminated sulphides (probably pyrite)                                                 | Foliation: [178/76]. Shear vein: [240/72].<br>Linear vein: [059/34]                   |
| X926826 | 21-CH-C007A | Cryderman                 | 2021-08-19 | 485648 | 5270885 | Grab   | Intermediate<br>volcanic   | Fine grained intermediate volcanic with shear<br>quartz vein stretching upwards through rock.<br>Moderate reaction to HCI on fracture surfaces.<br>Non-magnetic. Chlorite slip planes present.                                                                                                                                                                                | Moderate chloritization of biotite and amphiboles. Moderately carbonatious                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                | Foliation: [355/60]                                                                   |
| X926827 | 21-CH-C007B | Cryderman                 | 2021-08-19 | 485648 | 5270885 | Grab   | Quartz vein                | Vertical shear vein in fine grained intermediate volcanic host rock. Crack seal                                                                                                                                                                                                                                                                                               | Strong chlorite alteration along vein margins.                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                | Vein: [223/58]                                                                        |
| X926828 | 21-CH-C007C | Cryderman                 | 2021-08-19 | 485648 | 5270885 | 5 Grab | Quartz vein                | Secondary vertical shear vein in fine grained<br>intermediate volcanic host rock.                                                                                                                                                                                                                                                                                             | Strong chlorite alteration along vein<br>margins.                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                | Vein: [091/79]                                                                        |
| X926829 | 21-CH-C009A | Cryderman                 | 2021-08-19 | 485754 | 5271060 | ) Grab | Quartz vein                | Quartz carbonate vein in mafic volcanic.<br>Inconsistent therefore could not be measured.<br>Non-magnetic. Moderate reaction to HCI.                                                                                                                                                                                                                                          | Strong chlorite alteration along vein margins. Moderately carbonatious                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                | ***40 meters away there are pillows<br>again with a topping direction of 5<br>degrees |
| X926830 | 21-CH-C009B | Cryderman                 | 2021-08-19 | 485754 | 5271060 | ) Grab | Mafic volcanic             | Fine grained mafic volcanic. Strongly foliated.<br>Strong reaction to HCI. Non-magnetic.                                                                                                                                                                                                                                                                                      | Strong chlorite alteration                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                | Foliation: [060/76]                                                                   |
| X926831 | 21-CH-C010  | Cryderman                 | 2021-08-19 | 485828 | 5271021 | l Grab | Mafic volcanic             | Fine grained mafic volcanic. Strongly foliated.<br>Oxidized near surface. Non-magnetic. Extensiona<br>quartz veinlets favouring fractures. Mineral<br>lineation of calcite/pyrite along foliation. Strong<br>patchy reaction to HCI.                                                                                                                                          | Hematite alteration on surface.<br>Moderate chlorite alteration.<br>Carbonatious in patches          | Extensional quartz veinlets                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1-2% cubic pyrite in host rock favouring<br>fractures. Fine grained pyrite along<br>lineations | Foliation: [090/86]. Veinlets: [013/84]                                               |
| X926832 | 21-CH-C012  | Cryderman                 | 2021-08-20 | 486517 | 5270286 | Grab   | Intermediate<br>volcanic   | Fine grained intermediate volcanic. Weakly<br>foliated. Non-magnetic. HCl reaction on veinlet<br>margins. Disseminated pyrite (trace).                                                                                                                                                                                                                                        | Weak pervasive chlorite alteration                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Trace disseminated pyrite                                                                      | Foliation: [235/74]                                                                   |
| X926833 | 21-CH-C014A | Cryderman                 | 2021-08-20 | 486553 | 5270303 | Grab   | Mafic volcanic             | Fine grained mafic volcanic with massive quartz<br>vein. Moderate foliation. Non-magnetic.<br>Moderate reaction to HCI. Foliation and vein are<br>parallel                                                                                                                                                                                                                    | Moderate chlorite alteration.                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                | Foliation: [266/58]                                                                   |
| X926834 | 21-CH-C014B | Cryderman                 | 2021-08-20 | 486553 | 5270303 | Grab   | Quartz vein                | Very large ~40cm chalky white quartz vein. No reaction to HCl. Oxidized on fracture surfaces.                                                                                                                                                                                                                                                                                 | Chlorite alteration around vein margins.                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                | Vein: [266/58]                                                                        |
| X926835 | 21-CH-C015A | Cryderman                 | 2021-08-20 | 486144 | 5270549 | 9 Grab | Quartz vein                | Top of a chalky white quartz vein. Reacts to HCl<br>on oxidized/stained surfaces. No noticeable                                                                                                                                                                                                                                                                               | Moderate chlorite alteration around vein margins.                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                | Vein: [270/43]                                                                        |

| Sample  | Station     | Area      | Date       | East   | North Type   | Lithology                              | Notes_Lithology                                                                                                                                                                                                                                                                        | Notes_Alteration                                                                                                                                         | Notes_Vein                                     | Notes_Mineralization                         | Structural_Measurements                                 |
|---------|-------------|-----------|------------|--------|--------------|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|----------------------------------------------|---------------------------------------------------------|
| X926836 | 21-CH-C015B | Cryderman | 2021-08-20 | 486144 | 5270549 Grab | Mafic volcanic                         | Fine grained mafic volcanic. Strongly foliated.<br>Foliation is parallel to vein. Moderate reaction to<br>HCI on fractures. Non-magnetic. Chalcopyrite (1-<br>2%). Quartz carbonate veinlets.                                                                                          | Hematite staining on vein margins.<br>Malachite staining on vein margins.<br>Moderate carbonate alteration on<br>fractures. Moderate chlorite alteration |                                                |                                              | Foliation: [270/43]                                     |
| X926837 | 21-CH-C015C | Cryderman | 2021-08-20 | 486144 | 5270549 Grab | Quartz vein                            | Same quartz vein as 21CH-015A but the bottom<br>of it. Chalky white quartz vein. Oxidized around<br>sulphides. Chalcopyrite (2%) and pyrite (trace).<br>Reaction to HCI along vein margins. Possible<br>visible gold?                                                                  | Moderate malachite staining.<br>Hematite alteration around sulphides.<br>Carbonate alteration around margins.                                            |                                                | 2% chalcopyrite, trace pyrite, trace gold??? | Vein: [270/43]                                          |
| X926838 | 21-CH-C016  | Cryderman | 2021-08-20 | 486099 | 5270500 Grab | Quartz vein                            | Quartz vein in same rock as 21CH-C015B. Trace chalcopyrite. Strong reaction to HCl on margins and fractures.                                                                                                                                                                           | Patchy chlorite alteration                                                                                                                               |                                                | Trace chalcopyrite                           | Vein: [264/80]. Foliation: [285/72]                     |
| X926839 | 21-CH-C017  | Cryderman | 2021-08-20 | 486094 | 5270402 Grab | Quartz<br>carbonate iron<br>shear zone | Quartz carbonate iron shear zone. Reacts to HCI<br>where oxidized. Veinlets crosscutting shear<br>structure. Strongly foliated mafic volcanic host<br>rock. Very rotted looking but strongly silicified.<br>Quartz carbonate appears marbleized and slightly<br>massive. Non-magnetic. | Stong chlorite alteration. Moderately<br>silicified. Moderate epidote alteration.<br>Hematite staining in fractures and<br>margins of veins.             | Quartz carbonate veinlets crosscutting section |                                              | Foliation: [145/84]. Quartz carb veinlets:<br>[185/88]. |

## **APPENDIX B**

Sample Location Map



## APPENDIX C Assay certificates



#### To: TRANSITION METALS CORP. 9C - 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5

Page: 1 Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 13-SEP-2021 Account: TRAMET

## CERTIFICATE SD21221782

Project: Cryderman

This report is for 57 samples of Rock submitted to our lab in Sudbury, ON, Canada on 23-AUG-2021.

The following have access to data associated with this certificate:

| JAKE BURDEN  | GREG COLLINS | THOMAS HART |
|--------------|--------------|-------------|
| GRANT MOURRE | BEN WILLIAMS |             |
|              |              |             |

|          | SAMPLE PREPARATION                 |  |  |  |  |  |  |  |  |  |  |  |
|----------|------------------------------------|--|--|--|--|--|--|--|--|--|--|--|
| ALS CODE | DESCRIPTION                        |  |  |  |  |  |  |  |  |  |  |  |
| WEI-21   | Received Sample Weight             |  |  |  |  |  |  |  |  |  |  |  |
| LOG-21   | Sample logging – ClientBarCode     |  |  |  |  |  |  |  |  |  |  |  |
| CRU-QC   | Crushing QC Test                   |  |  |  |  |  |  |  |  |  |  |  |
| PUL-QC   | Pulverizing QC Test                |  |  |  |  |  |  |  |  |  |  |  |
| LOG-23   | Pulp Login – Rcvd with Barcode     |  |  |  |  |  |  |  |  |  |  |  |
| CRU-31   | Fine crushing – 70% <2mm           |  |  |  |  |  |  |  |  |  |  |  |
| SPL-21   | Split sample – riffle splitter     |  |  |  |  |  |  |  |  |  |  |  |
| PUL-31   | Pulverize up to 250g 85% $<$ 75 um |  |  |  |  |  |  |  |  |  |  |  |

| ANALYTICAL PROCEDURES                                   |                                                                                                |  |  |  |  |  |  |  |  |  |  |
|---------------------------------------------------------|------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|
| DESCRIPTION                                             | INSTRUMENT                                                                                     |  |  |  |  |  |  |  |  |  |  |
| 48 element four acid ICP-MS<br>Au 30g FA ICP-AES Finish | ICP-AES                                                                                        |  |  |  |  |  |  |  |  |  |  |
|                                                         | ANALYTICAL PROCEDURE<br>DESCRIPTION<br>48 element four acid ICP-MS<br>Au 30g FA ICP-AES Finish |  |  |  |  |  |  |  |  |  |  |

This is the Final Report and supersedes any preliminary report with this certificate number.Results apply to samples as submitted.All pages of this report have been checked and approved for release. \*\*\*\*\* See Appendix Page for comments regarding this certificate \*\*\*\*\*

Saa Traxler, General Manager, North Vancouver

ALS

ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

#### To: TRANSITION METALS CORP. 9C - 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5

Page: 2 – A Total # Pages: 3 (A – D) Plus Appendix Pages Finalized Date: 13-SEP-2021 Account: TRAMET

Project: Cryderman

| Sample Description                                             | Method  | WEI-21                               | Au-ICP21                                       | ME-MS61                                      | ME-MS61                              | ME-MS61                          | ME-MS61                       | ME-MS61                               | ME-MS61                                | ME-MS61                              | ME-MS61                              | ME-MS61                                 | ME-MS61                             | ME-MS61                      | ME-MS61                              | ME-MS61                              |
|----------------------------------------------------------------|---------|--------------------------------------|------------------------------------------------|----------------------------------------------|--------------------------------------|----------------------------------|-------------------------------|---------------------------------------|----------------------------------------|--------------------------------------|--------------------------------------|-----------------------------------------|-------------------------------------|------------------------------|--------------------------------------|--------------------------------------|
|                                                                | Analyte | Recvd Wt.                            | Au                                             | Ag                                           | Al                                   | As                               | Ba                            | Be                                    | Bi                                     | Ca                                   | Cd                                   | Ce                                      | Co                                  | Cr                           | Cs                                   | Cu                                   |
|                                                                | Units   | kg                                   | ppm                                            | ppm                                          | %                                    | ppm                              | ppm                           | ppm                                   | ppm                                    | %                                    | ppm                                  | ppm                                     | ppm                                 | ppm                          | ppm                                  | ppm                                  |
|                                                                | LOD     | 0.02                                 | 0.001                                          | 0.01                                         | 0.01                                 | 0.2                              | 10                            | 0.05                                  | 0.01                                   | 0.01                                 | 0.02                                 | 0.01                                    | 0.1                                 | 1                            | 0.05                                 | 0.2                                  |
| X926783<br>X926784<br>X926785<br>X926786<br>X926786<br>X926787 |         | 0.85<br>1.23<br>0.57<br>1.44<br>1.47 | <0.001<br><0.001<br><0.001<br><0.001<br><0.001 | 0.03<br>0.02<br>0.03<br>0.02<br>0.02         | 1.49<br>6.13<br>1.86<br>3.82<br>6.62 | 0.3<br>1.0<br>0.6<br>0.9<br>1.0  | 10<br>30<br>20<br>50<br>60    | 0.10<br>0.66<br>0.30<br>0.27<br>0.43  | 0.01<br>0.01<br>0.01<br>0.01<br>0.02   | 2.09<br>5.02<br>0.77<br>2.39<br>4.73 | 0.07<br>0.16<br>0.07<br>0.07<br>0.07 | 1.57<br>20.2<br>13.90<br>12.80<br>16.10 | 11.3<br>30.8<br>6.6<br>23.2<br>36.4 | 41<br>9<br>34<br>31<br>29    | 0.09<br>0.08<br>0.06<br>0.15<br>0.13 | 4.1<br>47.6<br>7.3<br>93.8<br>85.6   |
| X926788                                                        |         | 0.52                                 | <0.001                                         | 0.04                                         | 5.28                                 | 3.0                              | 90                            | 0.46                                  | 0.02                                   | 2.51                                 | 0.08                                 | 16.95                                   | 32.7                                | 34                           | 0.47                                 | 40.5                                 |
| X926789                                                        |         | 1.81                                 | <0.001                                         | 0.02                                         | 2.90                                 | 1.0                              | 30                            | 0.38                                  | <0.01                                  | 0.78                                 | 0.07                                 | 11.50                                   | 12.1                                | 20                           | 0.09                                 | 28.5                                 |
| X926790                                                        |         | 1.02                                 | 0.115                                          | 0.10                                         | 5.84                                 | 25.8                             | 110                           | 0.72                                  | 0.02                                   | 2.92                                 | 0.13                                 | 21.7                                    | 33.8                                | 19                           | 0.62                                 | 63.9                                 |
| X926791                                                        |         | 1.07                                 | 0.024                                          | 0.11                                         | 5.17                                 | 2.3                              | 400                           | 0.94                                  | 0.04                                   | 1.40                                 | 0.18                                 | 11.50                                   | 22.6                                | 18                           | 0.78                                 | 44.5                                 |
| X926792                                                        |         | 0.67                                 | 0.109                                          | 0.18                                         | 1.96                                 | 12.5                             | 70                            | 0.37                                  | 0.01                                   | 0.30                                 | 2.22                                 | 6.09                                    | 11.1                                | 30                           | 0.36                                 | 24.3                                 |
| X926793<br>X926794<br>X926795<br>X926796<br>X926796<br>X926797 |         | 2.10<br>0.98<br>1.19<br>1.43<br>1.68 | 0.005<br><0.001<br><0.001<br>0.001<br>0.001    | 0.06<br>0.01<br>0.04<br>0.04<br>0.02         | 0.42<br>8.52<br>1.06<br>8.33<br>0.16 | 0.9<br>0.9<br>0.6<br>2.3<br>0.7  | 40<br>120<br>30<br>20<br>10   | 0.11<br>0.42<br>0.07<br>0.28<br><0.05 | <0.01<br>0.01<br>0.02<br><0.01         | 8.03<br>1.41<br>0.18<br>3.27<br>0.06 | 0.35<br>0.14<br>0.07<br>0.16<br>0.03 | 6.29<br>4.75<br>0.94<br>10.60<br>0.37   | 3.5<br>47.0<br>5.9<br>43.5<br>0.8   | 23<br>297<br>68<br>255<br>23 | 0.07<br>0.30<br>0.11<br>0.08<br>0.09 | 427<br>19.5<br>8.4<br>110.0<br>4.0   |
| X926798                                                        |         | 1.34                                 | <0.001                                         | 0.04                                         | 2.30                                 | 0.9                              | 20                            | 0.05                                  | <0.01                                  | 4.34                                 | 0.09                                 | 1.07                                    | 12.3                                | 109                          | 0.05                                 | 34.1                                 |
| X926799                                                        |         | 0.07                                 | 2.51                                           | 4.77                                         | 5.56                                 | 19.5                             | 350                           | 1.09                                  | 0.08                                   | 4.14                                 | 0.34                                 | 24.6                                    | 10.7                                | 25                           | 5.91                                 | 73.2                                 |
| X926800                                                        |         | 0.17                                 | <0.001                                         | 0.03                                         | 0.22                                 | 0.7                              | 20                            | 0.09                                  | 0.02                                   | 0.03                                 | <0.02                                | 4.79                                    | 0.5                                 | 25                           | 0.23                                 | 1.7                                  |
| X926801                                                        |         | 1.57                                 | 0.004                                          | 0.06                                         | 3.56                                 | 0.7                              | <10                           | 0.08                                  | <0.01                                  | 3.24                                 | 0.09                                 | 0.41                                    | 17.6                                | 135                          | 0.05                                 | 49.5                                 |
| X926802                                                        |         | 1.54                                 | 0.074                                          | 0.09                                         | 3.61                                 | 12.3                             | 30                            | 0.07                                  | 0.02                                   | 4.38                                 | 0.10                                 | 1.12                                    | 18.2                                | 184                          | 0.23                                 | 4.6                                  |
| X926803                                                        |         | 1.18                                 | 0.005                                          | 0.03                                         | 0.51                                 | 1.8                              | 10                            | 0.10                                  | 0.02                                   | 0.19                                 | 0.06                                 | 0.26                                    | 2.6                                 | 39                           | 0.06                                 | 11.7                                 |
| X926804                                                        |         | 0.80                                 | 0.095                                          | 0.02                                         | 2.16                                 | 1.9                              | 50                            | 0.19                                  | 0.01                                   | 2.91                                 | 0.13                                 | 3.50                                    | 14.7                                | 55                           | 0.21                                 | 86.3                                 |
| X926805                                                        |         | 1.14                                 | 0.001                                          | 0.01                                         | 8.05                                 | 1.7                              | 30                            | 0.59                                  | 0.04                                   | 2.49                                 | 0.08                                 | 14.60                                   | 43.1                                | 119                          | 0.39                                 | 84.1                                 |
| X926806                                                        |         | 1.57                                 | <0.001                                         | 0.04                                         | 0.55                                 | 0.6                              | 50                            | 0.19                                  | <0.01                                  | 0.03                                 | 0.03                                 | 0.29                                    | 1.2                                 | 34                           | 0.12                                 | 1.5                                  |
| X926807                                                        |         | 1.07                                 | <0.001                                         | 0.04                                         | 0.80                                 | 1.8                              | 70                            | 0.25                                  | 0.01                                   | 0.14                                 | 0.06                                 | 1.03                                    | 2.6                                 | 30                           | 0.17                                 | 9.4                                  |
| X926808<br>X926809<br>X926810<br>X926811<br>X926812            |         | 0.85<br>0.85<br>1.36<br>1.13<br>2.01 | <0.001<br><0.001<br><0.001<br><0.001<br><0.001 | 0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.06 | 1.65<br>6.61<br>0.81<br>5.26<br>1.24 | 2.2<br>4.1<br>1.0<br>2.9<br>1.8  | 40<br>30<br>10<br>50<br>20    | 0.34<br>0.80<br><0.05<br>0.59<br>0.05 | 0.03<br>0.03<br><0.01<br>0.03<br><0.01 | 0.26<br>1.80<br>0.53<br>0.89<br>0.44 | 0.06<br>0.10<br>0.02<br>0.03<br>0.36 | 14.20<br>33.7<br>1.31<br>4.43<br>0.87   | 11.5<br>33.0<br>4.4<br>46.8<br>8.9  | 21<br>16<br>36<br>44<br>16   | 0.12<br>0.19<br>0.07<br>0.93<br>0.10 | 61.6<br>71.5<br>2.3<br>13.8<br>144.0 |
| X926813<br>X926814<br>X926815<br>X926816<br>X926816<br>X926817 |         | 1.61<br>2.19<br>1.96<br>1.17<br>1.74 | <0.001<br><0.001<br>0.047<br>0.012<br>6.18     | 0.03<br>0.05<br>0.07<br>0.11<br>1.01         | 0.28<br>0.51<br>2.54<br>4.81<br>1.50 | 0.8<br><0.2<br>1.3<br>2.2<br>1.8 | 20<br>40<br>120<br>210<br>100 | <0.05<br>0.09<br>0.52<br>0.92<br>0.47 | <0.01<br><0.01<br>0.02<br>0.04<br>0.02 | 0.04<br>0.93<br>1.85<br>3.62<br>1.78 | 0.04<br>0.05<br>0.22<br>0.40<br>0.07 | 2.96<br>0.88<br>11.05<br>11.80<br>1.81  | 1.9<br>2.4<br>10.1<br>19.0<br>4.2   | 25<br>42<br>28<br>16<br>44   | 0.07<br>0.08<br>0.54<br>0.97<br>0.46 | 1.4<br>2.4<br>38.6<br>70.0<br>37.5   |
| X926818                                                        |         | 1.51                                 | <0.001                                         | 0.08                                         | 0.17                                 | <0.2                             | 20                            | 0.06                                  | <0.01                                  | 0.22                                 | 0.03                                 | 0.63                                    | 0.4                                 | 49                           | 0.14                                 | 1.3                                  |
| X926819                                                        |         | 0.65                                 | 0.001                                          | 0.02                                         | 5.99                                 | 2.4                              | 590                           | 1.46                                  | 0.01                                   | 3.21                                 | 0.44                                 | 13.50                                   | 21.6                                | 24                           | 1.19                                 | 27.3                                 |
| X926820                                                        |         | 1.06                                 | <0.001                                         | 0.03                                         | 2.09                                 | 1.2                              | 10                            | 0.43                                  | 0.01                                   | 0.25                                 | 0.07                                 | 1.54                                    | 5.2                                 | 32                           | 0.05                                 | 40.8                                 |
| X926821                                                        |         | 0.80                                 | 0.003                                          | 0.05                                         | 2.69                                 | 2.6                              | 550                           | 0.46                                  | 0.02                                   | 0.39                                 | 0.14                                 | 4.34                                    | 8.2                                 | 52                           | 0.61                                 | 4.6                                  |
| X926822                                                        |         | 1.64                                 | <0.001                                         | 0.03                                         | 0.02                                 | 1.1                              | 10                            | <0.05                                 | <0.01                                  | 0.06                                 | 0.08                                 | 0.21                                    | 0.2                                 | 28                           | 0.05                                 | 1.8                                  |

ALS)

ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

#### To: TRANSITION METALS CORP. 9C - 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5

Page: 2 – B Total # Pages: 3 (A – D) Plus Appendix Pages Finalized Date: 13–SEP–2021 Account: TRAMET

Project: Cryderman

| Sample Description                                             | Method  | ME-MS61                                | ME-MS61                                 | ME-MS61                                 | ME-MS61                           | ME-MS61                                   | ME-MS61                              | ME-MS61                            | ME-MS61                            | ME-MS61                              | ME-MS61                            | ME-MS61                              | ME-MS61                              | ME-MS61                         | ME-MS61                             | ME-MS61                          |
|----------------------------------------------------------------|---------|----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------|-------------------------------------------|--------------------------------------|------------------------------------|------------------------------------|--------------------------------------|------------------------------------|--------------------------------------|--------------------------------------|---------------------------------|-------------------------------------|----------------------------------|
|                                                                | Analyte | Fe                                     | Ga                                      | Ge                                      | Hf                                | In                                        | K                                    | La                                 | Li                                 | Mg                                   | Mn                                 | Mo                                   | Na                                   | Nb                              | Ni                                  | P                                |
|                                                                | Units   | %                                      | ppm                                     | ppm                                     | ppm                               | ppm                                       | %                                    | ppm                                | ppm                                | %                                    | ppm                                | ppm                                  | %                                    | ppm                             | ppm                                 | ppm                              |
|                                                                | LOD     | 0.01                                   | 0.05                                    | 0.05                                    | 0.1                               | 0.005                                     | 0.01                                 | 0.5                                | 0.2                                | 0.01                                 | 5                                  | 0.05                                 | 0.01                                 | 0.1                             | 0.2                                 | 10                               |
| X926783<br>X926784<br>X926785<br>X926786<br>X926786<br>X926787 |         | 3.12<br>11.45<br>2.69<br>6.28<br>10.45 | 4.78<br>18.25<br>4.49<br>10.85<br>18.55 | 0.05<br>0.10<br>0.06<br>0.07<br>0.07    | 0.2<br>2.2<br>0.3<br>0.8<br>1.3   | 0.023<br>0.124<br>0.027<br>0.064<br>0.090 | 0.02<br>0.03<br>0.02<br>0.11<br>0.13 | 0.6<br>7.7<br>5.0<br>4.5<br>5.6    | 8.3<br>14.4<br>2.7<br>16.0<br>26.0 | 0.83<br>1.68<br>0.38<br>1.11<br>1.92 | 651<br>2290<br>803<br>992<br>1420  | 2.69<br>0.30<br>2.43<br>1.36<br>0.45 | 0.19<br>2.22<br>0.39<br>1.02<br>2.01 | 0.3<br>4.7<br>0.7<br>1.8<br>3.5 | 10.7<br>10.2<br>3.9<br>15.9<br>26.4 | 100<br>1090<br>280<br>480<br>790 |
| X926788                                                        |         | 8.59                                   | 23.4                                    | 0.06                                    | 1.1                               | 0.076                                     | 0.23                                 | 6.5                                | 15.5                               | 2.25                                 | 1340                               | 0.92                                 | 1.47                                 | 2.8                             | 20.8                                | 570                              |
| X926789                                                        |         | 4.45                                   | 8.81                                    | 0.06                                    | 1.3                               | 0.040                                     | 0.05                                 | 4.0                                | 4.2                                | 0.47                                 | 452                                | 1.28                                 | 1.54                                 | 2.0                             | 6.0                                 | 850                              |
| X926790                                                        |         | 11.50                                  | 20.1                                    | 0.07                                    | 2.0                               | 0.106                                     | 0.57                                 | 8.4                                | 18.8                               | 1.33                                 | 2100                               | 1.15                                 | 1.11                                 | 3.2                             | 10.5                                | 970                              |
| X926791                                                        |         | 6.61                                   | 17.95                                   | 0.06                                    | 1.3                               | 0.098                                     | 1.88                                 | 3.9                                | 6.5                                | 0.66                                 | 1070                               | 1.14                                 | 0.46                                 | 2.4                             | 6.6                                 | 570                              |
| X926792                                                        |         | 3.85                                   | 6.66                                    | <0.05                                   | 0.8                               | 0.048                                     | 0.57                                 | 2.5                                | 2.6                                | 0.11                                 | 738                                | 1.99                                 | 0.66                                 | 1.2                             | 6.8                                 | 540                              |
| X926793<br>X926794<br>X926795<br>X926796<br>X926796<br>X926797 |         | 1.28<br>8.48<br>1.71<br>7.85<br>0.65   | 1.38<br>18.40<br>2.22<br>15.65<br>0.44  | <0.05<br>0.06<br><0.05<br>0.06<br><0.05 | 0.1<br>1.5<br>0.1<br>0.5<br><0.1  | 0.115<br>0.056<br>0.014<br>0.054<br>0.006 | 0.10<br>0.34<br>0.07<br>0.03<br>0.03 | 2.4<br>1.7<br><0.5<br>3.5<br><0.5  | 1.2<br>53.5<br>6.2<br>33.2<br>1.3  | 0.12<br>5.25<br>0.55<br>4.25<br>0.06 | 1800<br>1460<br>596<br>1280<br>123 | 1.77<br>0.71<br>2.79<br>0.26<br>1.34 | 0.08<br>0.89<br>0.11<br>2.88<br>0.03 | 0.2<br>1.6<br>0.3<br>2.7<br>0.1 | 2.6<br>301<br>28.3<br>114.5<br>2.4  | 100<br>390<br>170<br>280<br>10   |
| X926798                                                        |         | 2.17                                   | 3.03                                    | <0.05                                   | 0.1                               | 0.010                                     | 0.03                                 | <0.5                               | 9.3                                | 1.64                                 | 499                                | 1.68                                 | 0.24                                 | 0.4                             | 41.2                                | 60                               |
| X926799                                                        |         | 3.16                                   | 11.00                                   | 0.07                                    | 1.7                               | 0.049                                     | 2.48                                 | 11.5                               | 43.8                               | 0.96                                 | 727                                | 6.28                                 | 0.92                                 | 2.3                             | 11.1                                | 660                              |
| X926800                                                        |         | 0.67                                   | 0.55                                    | <0.05                                   | 0.8                               | <0.005                                    | 0.04                                 | 2.4                                | 7.2                                | 0.02                                 | 83                                 | 1.79                                 | 0.04                                 | 0.6                             | 1.6                                 | 20                               |
| X926801                                                        |         | 2.84                                   | 4.51                                    | 0.10                                    | 0.1                               | 0.008                                     | 0.01                                 | <0.5                               | 11.5                               | 2.51                                 | 508                                | 2.30                                 | 0.17                                 | 0.4                             | 69.6                                | 130                              |
| X926802                                                        |         | 2.98                                   | 4.85                                    | 0.16                                    | 0.1                               | 0.011                                     | 0.14                                 | <0.5                               | 38.1                               | 2.31                                 | 570                                | 1.43                                 | 0.76                                 | 0.5                             | 84.2                                | 110                              |
| X926803<br>X926804<br>X926805<br>X926806<br>X926806<br>X926807 |         | 0.89<br>3.91<br>10.40<br>0.86<br>1.49  | 1.08<br>5.23<br>21.0<br>1.64<br>2.45    | 0.10<br>0.10<br>0.12<br>0.06<br>0.05    | <0.1<br>0.4<br>2.1<br><0.1<br>0.1 | 0.006<br>0.037<br>0.081<br>0.008<br>0.013 | 0.02<br>0.16<br>0.30<br>0.19<br>0.24 | <0.5<br>1.2<br>5.0<br><0.5<br><0.5 | 2.8<br>10.8<br>44.8<br>2.0<br>4.1  | 0.20<br>0.95<br>3.27<br>0.11<br>0.24 | 157<br>987<br>1140<br>131<br>378   | 2.56<br>1.89<br>0.41<br>2.98<br>2.36 | 0.09<br>0.51<br>1.95<br>0.03<br>0.02 | 0.1<br>0.4<br>2.2<br>0.1<br>0.2 | 7.8<br>24.9<br>71.2<br>1.8<br>3.2   | 30<br>270<br>730<br>50<br>60     |
| X926808                                                        |         | 3.03                                   | 5.02                                    | 0.09                                    | 0.4                               | 0.045                                     | 0.03                                 | 5.3                                | 6.8                                | 0.44                                 | 367                                | 1.64                                 | 0.59                                 | 1.3                             | 5.0                                 | 250                              |
| X926809                                                        |         | 9.62                                   | 19.90                                   | 0.17                                    | 0.9                               | 0.125                                     | 0.07                                 | 11.8                               | 24.3                               | 1.79                                 | 1050                               | 0.66                                 | 2.51                                 | 5.1                             | 12.1                                | 1050                             |
| X926810                                                        |         | 1.40                                   | 2.25                                    | <0.05                                   | 0.1                               | 0.007                                     | 0.03                                 | <0.5                               | 3.8                                | 0.32                                 | 304                                | 2.79                                 | 0.29                                 | 0.3                             | 4.2                                 | 110                              |
| X926811                                                        |         | 10.70                                  | 19.35                                   | 0.05                                    | 1.0                               | 0.085                                     | 0.30                                 | 1.5                                | 57.6                               | 4.00                                 | 1380                               | 1.00                                 | 0.42                                 | 2.4                             | 34.0                                | 430                              |
| X926812                                                        |         | 2.57                                   | 4.50                                    | <0.05                                   | 0.1                               | 0.014                                     | 0.01                                 | <0.5                               | 4.6                                | 0.57                                 | 432                                | 1.17                                 | 0.15                                 | 0.4                             | 6.4                                 | 230                              |
| X926813<br>X926814<br>X926815<br>X926816<br>X926816<br>X926817 |         | 0.81<br>1.12<br>3.91<br>6.89<br>2.24   | 0.89<br>1.55<br>7.59<br>13.55<br>5.29   | <0.05<br><0.05<br>0.09<br>0.08<br>0.06  | 0.1<br>0.2<br>1.3<br>2.4<br>0.3   | 0.008<br>0.011<br>0.041<br>0.078<br>0.024 | 0.02<br>0.11<br>0.90<br>1.66<br>0.67 | 1.0<br><0.5<br>4.0<br>4.1<br>0.7   | 1.5<br>2.1<br>4.9<br>6.7<br>4.6    | 0.09<br>0.14<br>0.41<br>0.65<br>0.32 | 270<br>272<br>767<br>1540<br>400   | 2.08<br>3.60<br>2.13<br>1.16<br>3.62 | 0.08<br>0.06<br>0.48<br>1.29<br>0.03 | 0.2<br>0.3<br>2.1<br>4.2<br>0.5 | 1.8<br>2.5<br>3.9<br>6.0<br>5.2     | 70<br>60<br>490<br>1050<br>100   |
| X926818                                                        |         | 0.60                                   | 0.56                                    | <0.05                                   | <0.1                              | <0.005                                    | 0.08                                 | <0.5                               | 0.7                                | 0.02                                 | 129                                | 4.43                                 | 0.02                                 | 0.1                             | 1.2                                 | 50                               |
| X926819                                                        |         | 8.21                                   | 23.3                                    | 0.11                                    | 2.0                               | 0.086                                     | 0.87                                 | 4.8                                | 11.8                               | 1.00                                 | 1480                               | 1.14                                 | 1.75                                 | 3.4                             | 10.8                                | 820                              |
| X926820                                                        |         | 1.56                                   | 4.70                                    | <0.05                                   | 0.1                               | 0.033                                     | 0.02                                 | 0.6                                | 1.2                                | 0.45                                 | 256                                | 2.47                                 | 0.24                                 | 0.2                             | 9.3                                 | 20                               |
| X926821                                                        |         | 2.74                                   | 8.19                                    | 0.07                                    | 0.4                               | 0.030                                     | 0.48                                 | 1.4                                | 5.3                                | 0.59                                 | 559                                | 2.43                                 | 0.64                                 | 0.7                             | 14.9                                | 140                              |
| X926822                                                        |         | 0.48                                   | 0.08                                    | <0.05                                   | <0.1                              | <0.005                                    | <0.01                                | <0.5                               | 0.4                                | <0.01                                | 89                                 | 2.40                                 | 0.02                                 | 0.1                             | 1.1                                 | <10                              |

ALS

ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

#### To: TRANSITION METALS CORP. 9C - 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5

Page: 2 - C Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 13-SEP-2021 Account: TRAMET

Project: Cryderman

| Sample Description                                             | Method<br>Analyte<br>Units<br>LOD | ME-MS61<br>Pb<br>ppm<br>0.5      | ME-MS61<br>Rb<br>ppm<br>0.1         | ME-MS61<br>Re<br>ppm<br>0.002                  | ME-MS61<br>S<br>%<br>0.01               | ME-MS61<br>Sb<br>ppm<br>0.05           | ME-MS61<br>Sc<br>ppm<br>0.1          | ME-MS61<br>Se<br>ppm<br>1 | ME-MS61<br>Sn<br>ppm<br>0.2         | ME-MS61<br>Sr<br>ppm<br>0.2           | ME-MS61<br>Ta<br>ppm<br>0.05             | ME-MS61<br>Te<br>ppm<br>0.05              | ME-MS61<br>Th<br>ppm<br>0.01          | ME-MS61<br>Ti<br>%<br>0.005                | ME-MS61<br>Tl<br>ppm<br>0.02            | ME-MS61<br>U<br>ppm<br>0.1          |
|----------------------------------------------------------------|-----------------------------------|----------------------------------|-------------------------------------|------------------------------------------------|-----------------------------------------|----------------------------------------|--------------------------------------|---------------------------|-------------------------------------|---------------------------------------|------------------------------------------|-------------------------------------------|---------------------------------------|--------------------------------------------|-----------------------------------------|-------------------------------------|
| X926783<br>X926784<br>X926785<br>X926786<br>X926786<br>X926787 |                                   | 0.5<br>1.1<br>1.0<br>0.7<br>0.7  | 0.7<br>1.8<br>0.8<br>5.9<br>6.2     | <0.002<br><0.002<br><0.002<br><0.002<br><0.002 | <0.01<br>0.09<br>0.01<br>0.06<br>0.11   | 0.05<br>0.11<br>0.05<br>0.08<br>0.11   | 8.0<br>30.9<br>8.1<br>19.9<br>35.1   | <1<br>1<br><1<br>1<br>1   | <0.2<br>0.9<br>0.3<br>0.3<br>0.6    | 30.2<br>118.5<br>37.1<br>41.2<br>77.7 | <0.05<br>0.27<br><0.05<br>0.12<br>0.23   | <0.05<br><0.05<br><0.05<br><0.05<br><0.05 | 0.06<br>0.46<br>0.17<br>0.26<br>0.42  | 0.088<br>0.877<br>0.144<br>0.491<br>0.826  | <0.02<br><0.02<br><0.02<br>0.02<br>0.02 | <0.1<br>0.1<br><0.1<br>0.1<br>0.1   |
| X926788<br>X926789<br>X926790<br>X926791<br>X926792            |                                   | 2.0<br>0.8<br>1.4<br>2.3<br>5.3  | 14.6<br>2.6<br>25.1<br>51.5<br>16.0 | <0.002<br><0.002<br><0.002<br><0.002<br><0.002 | 0.06<br>0.03<br>0.22<br>0.79<br>1.14    | 0.18<br>0.06<br>0.30<br>0.20<br>0.26   | 24.6<br>11.6<br>28.3<br>18.0<br>11.5 | <1<br><1<br>1<br><1       | 0.5<br>0.5<br>0.7<br>1.0<br>0.3     | 180.0<br>44.9<br>37.9<br>27.6<br>21.4 | 0.17<br>0.12<br>0.20<br>0.15<br>0.07     | <0.05<br><0.05<br>0.05<br>0.10<br>0.12    | 0.34<br>0.27<br>0.50<br>0.33<br>0.20  | 0.674<br>0.427<br>0.573<br>0.472<br>0.220  | 0.06<br><0.02<br>0.13<br>0.27<br>0.08   | 0.1<br>0.1<br>0.1<br>0.1<br>0.1     |
| X926793<br>X926794<br>X926795<br>X926796<br>X926796<br>X926797 |                                   | 1.2<br>0.5<br>0.5<br>1.1<br>0.5  | 3.6<br>10.0<br>2.7<br>0.4<br>1.4    | <0.002<br><0.002<br><0.002<br><0.002<br><0.002 | 0.09<br>0.01<br>0.01<br>0.07<br><0.01   | 0.06<br>0.13<br>0.07<br>0.14<br>0.09   | 6.3<br>45.6<br>5.5<br>40.5<br>0.9    | 1<br><1<br><1<br><1<br><1 | <0.2<br>0.3<br><0.2<br>0.5<br><0.2  | 138.5<br>56.8<br>10.5<br>53.6<br>3.3  | <0.05<br>0.10<br><0.05<br>0.16<br><0.05  | <0.05<br><0.05<br><0.05<br><0.05<br><0.05 | 0.06<br>0.26<br>0.07<br>0.25<br>0.02  | 0.053<br>0.315<br>0.056<br>0.561<br>0.011  | <0.02<br>0.06<br>0.02<br><0.02<br><0.02 | <0.1<br>0.1<br><0.1<br>0.1<br><0.1  |
| X926798<br>X926799<br>X926800<br>X926801<br>X926802            |                                   | 0.6<br>19.4<br>1.4<br>2.2<br>2.4 | 1.0<br>97.3<br>2.1<br>0.2<br>5.5    | <0.002<br>0.002<br><0.002<br><0.002<br><0.002  | <0.01<br>0.87<br><0.01<br><0.01<br>0.02 | <0.05<br>2.07<br>0.18<br>0.26<br>0.22  | 12.2<br>12.0<br>0.4<br>12.4<br>11.3  | <1<br>1<br><1<br><1<br><1 | <0.2<br>0.7<br><0.2<br><0.2<br>0.2  | 12.9<br>285<br>2.8<br>14.7<br>8.0     | <0.05<br>0.12<br>0.08<br><0.05<br><0.05  | <0.05<br>2.71<br><0.05<br><0.05<br><0.05  | 0.05<br>2.55<br>1.20<br>0.05<br>0.08  | 0.091<br>0.281<br>0.014<br>0.102<br>0.121  | <0.02<br>0.87<br>0.02<br><0.02<br>0.03  | <0.1<br>0.7<br>0.3<br><0.1<br><0.1  |
| X926803<br>X926804<br>X926805<br>X926806<br>X926806<br>X926807 |                                   | 0.5<br>1.0<br>0.9<br>0.5<br>0.9  | 0.6<br>6.2<br>13.9<br>5.5<br>7.7    | <0.002<br><0.002<br><0.002<br><0.002<br><0.002 | 0.07<br>0.12<br>0.08<br><0.01<br>0.01   | 0.09<br>0.10<br>0.15<br>0.06<br>0.06   | 2.9<br>12.6<br>42.3<br>1.8<br>2.6    | <1<br>1<br><1<br><1<br><1 | <0.2<br><0.2<br>0.3<br><0.2<br><0.2 | 9.7<br>45.4<br>44.7<br>4.4<br>4.2     | <0.05<br><0.05<br>0.16<br><0.05<br><0.05 | <0.05<br><0.05<br><0.05<br><0.05<br><0.05 | 0.01<br>0.11<br>0.46<br>0.01<br>0.03  | 0.012<br>0.088<br>0.414<br>0.010<br>0.037  | <0.02<br>0.04<br>0.05<br>0.02<br>0.03   | <0.1<br><0.1<br>0.1<br><0.1<br><0.1 |
| X926808<br>X926809<br>X926810<br>X926811<br>X926812            |                                   | 1.5<br>2.6<br><0.5<br>1.3<br>0.6 | 2.6<br>5.0<br>0.7<br>8.6<br>2.5     | <0.002<br><0.002<br><0.002<br>0.002<br><0.002  | 0.08<br>0.09<br><0.01<br>0.07<br>0.04   | 0.13<br>0.29<br><0.05<br>0.10<br><0.05 | 8.6<br>37.0<br>2.6<br>26.4<br>6.4    | <1<br><1<br><1<br><1<br>1 | 0.2<br>0.9<br><0.2<br>0.4<br><0.2   | 11.9<br>48.1<br>9.4<br>10.5<br>30.8   | 0.08<br>0.33<br><0.05<br>0.15<br><0.05   | <0.05<br><0.05<br><0.05<br><0.05<br><0.05 | 0.15<br>0.58<br>0.03<br>0.30<br>0.04  | 0.268<br>1.035<br>0.074<br>0.708<br>0.081  | <0.02<br>0.02<br><0.02<br>0.04<br><0.02 | <0.1<br>0.1<br><0.1<br>0.1<br><0.1  |
| X926813<br>X926814<br>X926815<br>X926816<br>X926816<br>X926817 |                                   | 0.5<br><0.5<br>2.9<br>2.0<br>3.2 | 1.2<br>3.5<br>33.1<br>61.6<br>20.7  | <0.002<br><0.002<br><0.002<br>0.002<br><0.002  | <0.01<br><0.01<br>0.56<br>1.00<br>0.14  | 0.06<br>0.07<br>0.08<br>0.08<br>0.08   | 1.3<br>3.3<br>12.4<br>24.1<br>5.2    | <1<br><1<br><1<br>1<br><1 | <0.2<br>0.2<br>0.6<br>1.0<br>0.3    | 5.3<br>15.6<br>32.3<br>57.0<br>23.1   | <0.05<br><0.05<br>0.12<br>0.23<br><0.05  | <0.05<br><0.05<br>0.07<br>0.12<br><0.05   | 0.05<br>0.03<br>0.30<br>0.43<br>0.06  | 0.037<br>0.068<br>0.378<br>0.696<br>0.121  | <0.02<br>0.03<br>0.15<br>0.30<br>0.09   | <0.1<br><0.1<br>0.1<br>0.1<br><0.1  |
| X926818<br>X926819<br>X926820<br>X926821<br>X926822            |                                   | <0.5<br>2.0<br>1.0<br>1.5<br>0.7 | 2.8<br>38.9<br>0.7<br>20.0<br>0.2   | <0.002<br><0.002<br><0.002<br><0.002<br><0.002 | <0.01<br>0.04<br>0.01<br>0.20<br><0.01  | 0.06<br>0.12<br>0.05<br>0.07<br><0.05  | 0.5<br>26.6<br>14.1<br>7.2<br>0.1    | <1<br><1<br><1<br>1<br><1 | <0.2<br>2.7<br>0.5<br>0.5<br><0.2   | 4.4<br>127.0<br>60.9<br>29.7<br>7.3   | <0.05<br>0.21<br><0.05<br><0.05<br><0.05 | <0.05<br><0.05<br><0.05<br><0.05<br><0.05 | 0.02<br>0.44<br>0.09<br>0.11<br><0.01 | 0.006<br>0.714<br>0.037<br>0.168<br><0.005 | <0.02<br>0.18<br><0.02<br>0.14<br><0.02 | <0.1<br>0.1<br><0.1<br><0.1<br><0.1 |



2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

#### To: TRANSITION METALS CORP. 9C - 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5

Page: 2 - D Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 13-SEP-2021 Account: TRAMET

Project: Cryderman

| Sample Description                                             | Method<br>Analyte<br>Units<br>LOD | ME-MS61<br>V<br>ppm<br>1      | ME-MS61<br>W<br>ppm<br>0.1       | ME-MS61<br>Y<br>ppm<br>0.1         | ME-MS61<br>Zn<br>ppm<br>2     | ME-MS61<br>Zr<br>ppm<br>0.5          | CRU-QC<br>Pass2mm<br>%<br>0.01 | PUL-QC<br>Pass75um<br>%<br>0.01 |  |
|----------------------------------------------------------------|-----------------------------------|-------------------------------|----------------------------------|------------------------------------|-------------------------------|--------------------------------------|--------------------------------|---------------------------------|--|
| X926783<br>X926784<br>X926785<br>X926786<br>X926786<br>X926787 |                                   | 77<br>103<br>71<br>141<br>233 | 0.2<br>0.1<br>0.1<br>0.1<br>0.1  | 3.8<br>20.5<br>4.1<br>6.6<br>11.8  | 43<br>138<br>27<br>77<br>128  | 5.6<br>82.4<br>11.6<br>32.1<br>46.2  | 81.6                           | 93.9<br>92.1                    |  |
| X926788<br>X926789<br>X926790<br>X926791<br>X926792            |                                   | 192<br>54<br>93<br>102<br>43  | 0.1<br>0.2<br>10.5<br>6.7<br>4.4 | 24.3<br>7.4<br>15.2<br>6.7<br>5.7  | 122<br>56<br>144<br>88<br>296 | 41.0<br>56.7<br>68.6<br>46.4<br>35.4 |                                |                                 |  |
| X926793<br>X926794<br>X926795<br>X926796<br>X926796<br>X926797 |                                   | 15<br>299<br>40<br>287<br>7   | 0.7<br>0.6<br>0.2<br>5.8<br>0.4  | 4.7<br>6.3<br>1.1<br>20.5<br>0.7   | 34<br>113<br>20<br>90<br>3    | 4.7<br>58.4<br>5.2<br>11.9<br>0.5    |                                |                                 |  |
| X926798<br>X926799<br>X926800<br>X926801<br>X926802            |                                   | 58<br>106<br>2<br>104<br>89   | 0.2<br>3.1<br>0.1<br>0.2<br>2.4  | 3.7<br>10.8<br>1.5<br>2.9<br>4.1   | 21<br>92<br>2<br>29<br>34     | 1.8<br>67.6<br>23.9<br>3.2<br>4.7    |                                |                                 |  |
| X926803<br>X926804<br>X926805<br>X926806<br>X926806<br>X926807 |                                   | 28<br>69<br>282<br>18<br>27   | 0.3<br>0.3<br>1.1<br>0.6<br>1.0  | 0.4<br>3.0<br>9.2<br>0.4<br>1.6    | 6<br>35<br>124<br>7<br>15     | 0.8<br>12.5<br>69.5<br>0.5<br>3.0    |                                |                                 |  |
| X926808<br>X926809<br>X926810<br>X926811<br>X926812            |                                   | 28<br>106<br>23<br>288<br>51  | 0.3<br>1.0<br>0.2<br>0.8<br>0.1  | 10.8<br>28.4<br>2.2<br>14.0<br>3.6 | 37<br>140<br>17<br>194<br>38  | 12.6<br>31.2<br>4.8<br>28.9<br>2.3   |                                |                                 |  |
| X926813<br>X926814<br>X926815<br>X926816<br>X926816<br>X926817 |                                   | 10<br>22<br>44<br>71<br>45    | 0.4<br>0.3<br>7.4<br>13.4<br>6.7 | 0.8<br>1.4<br>5.9<br>11.2<br>2.7   | 9<br>10<br>48<br>87<br>25     | 2.9<br>5.7<br>46.8<br>83.8<br>8.0    |                                |                                 |  |
| X926818<br>X926819<br>X926820<br>X926821<br>X926822            |                                   | 4<br>109<br>152<br>93<br>1    | 0.5<br>0.2<br>0.2<br>1.0<br>0.1  | 0.6<br>13.2<br>1.8<br>4.7<br>0.3   | 3<br>121<br>13<br>28<br><2    | 0.6<br>59.7<br>2.1<br>8.1<br><0.5    | 73.2                           | 98.6<br>98.3                    |  |



2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

#### To: TRANSITION METALS CORP. 9C - 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5

Page: 3 - A Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 13-SEP-2021 Account: TRAMET

Project: Cryderman

| Sample Description                                             | Method<br>Analyte<br>Units<br>LOD | WEI-21<br>Recvd Wt.<br>kg<br>0.02    | Au-ICP21<br>Au<br>ppm<br>0.001                | ME-MS61<br>Ag<br>ppm<br>0.01         | ME-MS61<br>Al<br>%<br>0.01           | ME-MS61<br>As<br>ppm<br>0.2     | ME-MS61<br>Ba<br>ppm<br>10    | ME-MS61<br>Be<br>ppm<br>0.05            | ME-MS61<br>Bi<br>ppm<br>0.01            | ME-MS61<br>Ca<br>%<br>0.01           | ME-MS61<br>Cd<br>ppm<br>0.02          | ME-MS61<br>Ce<br>ppm<br>0.01            | ME-MS61<br>Co<br>ppm<br>0.1          | ME-MS61<br>Cr<br>ppm<br>1     | ME-MS61<br>Cs<br>ppm<br>0.05            | ME-MS61<br>Cu<br>ppm<br>0.2         |
|----------------------------------------------------------------|-----------------------------------|--------------------------------------|-----------------------------------------------|--------------------------------------|--------------------------------------|---------------------------------|-------------------------------|-----------------------------------------|-----------------------------------------|--------------------------------------|---------------------------------------|-----------------------------------------|--------------------------------------|-------------------------------|-----------------------------------------|-------------------------------------|
| X926823<br>X926824<br>X926825<br>X926826<br>X926826<br>X926827 |                                   | 1.68<br>0.06<br>0.17<br>1.46<br>1.77 | <0.001<br>0.771<br><0.001<br><0.001<br><0.001 | 0.02<br>0.14<br>0.02<br>0.01<br>0.01 | 8.27<br>7.40<br>0.20<br>8.69<br>0.68 | 2.2<br>441<br>1.8<br>3.6<br>0.5 | 20<br>520<br>20<br>20<br>10   | 0.06<br>1.68<br>0.08<br>0.10<br><0.05   | 0.01<br>0.26<br>0.15<br>0.01<br>0.01    | 7.29<br>4.15<br>0.05<br>7.92<br>1.31 | 0.11<br>0.10<br><0.02<br>0.10<br>0.02 | 2.83<br>57.2<br>5.84<br>2.58<br>0.10    | 33.3<br>32.7<br>0.6<br>31.9<br>2.1   | 300<br>162<br>18<br>335<br>23 | <0.05<br>5.37<br>0.14<br><0.05<br><0.05 | 50.0<br>66.4<br>1.4<br>23.7<br>2.6  |
| X926828<br>X926829<br>X926830<br>X926831<br>X926832            |                                   | 1.32<br>1.25<br>1.24<br>1.56<br>1.47 | 0.003<br>0.002<br>0.002<br><0.001<br><0.001   | 0.02<br>0.02<br>0.01<br>0.01<br>0.03 | 5.70<br>4.31<br>8.30<br>8.01<br>8.75 | 0.4<br>0.7<br>0.6<br>1.0<br>1.9 | 20<br>160<br>290<br>180<br>20 | <0.05<br>0.14<br>0.36<br>0.27<br>0.35   | 0.01<br>0.01<br>0.01<br>0.04<br>0.03    | 5.73<br>4.52<br>3.28<br>3.39<br>3.96 | 0.05<br>0.11<br>0.06<br>0.13<br>0.10  | 1.10<br>9.86<br>11.55<br>11.10<br>13.90 | 11.4<br>18.1<br>35.3<br>32.6<br>40.2 | 183<br>24<br>50<br>68<br>29   | 0.06<br>0.31<br>0.45<br>0.21<br><0.05   | 2.1<br>34.3<br>48.1<br>44.0<br>34.4 |
| X926833<br>X926834<br>X926835<br>X926836<br>X926836<br>X926837 |                                   | 1.54<br>1.18<br>1.12<br>1.81<br>1.30 | 0.003<br><0.001<br><0.001<br>0.015<br>0.040   | 0.03<br>0.03<br>0.04<br>0.13<br>0.33 | 7.81<br>0.43<br>0.08<br>8.57<br>2.54 | 1.9<br>0.3<br>0.4<br>5.6<br>7.0 | 320<br>20<br><10<br>30<br>10  | 0.29<br><0.05<br><0.05<br>0.09<br><0.05 | 0.04<br><0.01<br><0.01<br><0.01<br>0.01 | 2.94<br>0.11<br>0.38<br>2.88<br>1.65 | 0.05<br>0.02<br>0.06<br>0.30<br>0.66  | 8.36<br>0.60<br>0.13<br>3.78<br>1.06    | 41.1<br>1.9<br>0.6<br>40.6<br>13.3   | 49<br>34<br>49<br>170<br>84   | 0.48<br>0.08<br><0.05<br>0.05<br><0.05  | 44.9<br>1.3<br>2.4<br>494<br>648    |
| X926838<br>X926839                                             |                                   | 1.30<br>1.58                         | 0.002<br><0.001                               | 0.03<br>0.01                         | 4.41<br>0.30                         | 5.2<br>1.1                      | 20<br>20                      | 0.12<br>0.11                            | 0.02                                    | 4.85<br>18.65                        | 0.16<br>0.15                          | 2.45<br>0.86                            | 11.8<br>7.1                          | 96<br>11                      | 0.11<br><0.05                           | 29.0<br>8.0                         |



2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

#### To: TRANSITION METALS CORP. 9C - 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5

Page: 3 – B Total # Pages: 3 (A – D) Plus Appendix Pages Finalized Date: 13–SEP–2021 Account: TRAMET

Project: Cryderman

| Sample Description                                             | Method<br>Analyte<br>Units<br>LOD | ME-MS61<br>Fe<br>%<br>0.01           | ME-MS61<br>Ga<br>ppm<br>0.05            | ME-MS61<br>Ge<br>ppm<br>0.05           | ME-MS61<br>Hf<br>ppm<br>0.1      | ME-MS61<br>In<br>ppm<br>0.005               | ME-MS61<br>K<br>%<br>0.01            | ME-MS61<br>La<br>ppm<br>0.5        | ME-MS61<br>Li<br>ppm<br>0.2         | ME-MS61<br>Mg<br>%<br>0.01           | ME-MS61<br>Mn<br>ppm<br>5          | ME-MS61<br>Mo<br>ppm<br>0.05         | ME-MS61<br>Na<br>%<br>0.01           | ME-MS61<br>Nb<br>ppm<br>0.1      | ME-MS61<br>Ni<br>ppm<br>0.2          | ME-MS61<br>P<br>ppm<br>10      |
|----------------------------------------------------------------|-----------------------------------|--------------------------------------|-----------------------------------------|----------------------------------------|----------------------------------|---------------------------------------------|--------------------------------------|------------------------------------|-------------------------------------|--------------------------------------|------------------------------------|--------------------------------------|--------------------------------------|----------------------------------|--------------------------------------|--------------------------------|
| X926823<br>X926824<br>X926825<br>X926826<br>X926826<br>X926827 |                                   | 5.56<br>7.79<br>0.61<br>5.73<br>0.72 | 11.80<br>18.40<br>0.49<br>11.65<br>0.88 | 0.13<br>0.15<br>0.05<br>0.09<br>0.05   | 0.4<br>3.5<br>0.9<br>0.4<br><0.1 | 0.042<br>0.065<br><0.005<br>0.037<br><0.005 | 0.02<br>1.44<br>0.04<br>0.02<br>0.01 | 1.0<br>29.4<br>3.2<br>0.9<br><0.5  | 9.7<br>24.8<br>7.9<br>8.8<br>1.5    | 5.06<br>3.09<br>0.04<br>5.33<br>0.32 | 1120<br>1740<br>78<br>1160<br>166  | 0.27<br>3.63<br>1.14<br>0.17<br>1.15 | 1.60<br>1.61<br>0.04<br>1.51<br>0.07 | 0.8<br>17.8<br>0.7<br>0.7<br>0.1 | 92.1<br>112.5<br>1.7<br>98.5<br>4.6  | 110<br>1440<br>20<br>90<br>10  |
| X926828<br>X926829<br>X926830<br>X926831<br>X926832            |                                   | 2.66<br>4.04<br>5.61<br>5.01<br>6.98 | 8.36<br>5.59<br>11.90<br>11.20<br>12.70 | 0.09<br>0.08<br>0.10<br>0.08<br>0.09   | 0.2<br>0.7<br>1.9<br>1.4<br>1.2  | 0.016<br>0.035<br>0.031<br>0.030<br>0.029   | 0.03<br>0.22<br>0.43<br>0.24<br>0.01 | <0.5<br>4.6<br>4.9<br>4.7<br>6.1   | 4.3<br>10.8<br>22.4<br>17.6<br>11.9 | 1.90<br>2.14<br>3.10<br>2.86<br>4.15 | 612<br>1230<br>884<br>1540<br>1460 | 1.25<br>0.55<br>0.32<br>0.26<br>0.46 | 0.21<br>0.45<br>1.00<br>3.11<br>1.67 | 0.3<br>0.7<br>1.8<br>1.3<br>3.1  | 34.1<br>37.3<br>75.3<br>95.5<br>79.1 | 60<br>170<br>330<br>330<br>300 |
| X926833<br>X926834<br>X926835<br>X926836<br>X926836<br>X926837 |                                   | 6.47<br>0.65<br>0.50<br>8.04<br>2.61 | 12.35<br>0.62<br>0.15<br>11.70<br>3.30  | 0.09<br><0.05<br><0.05<br>0.06<br>0.05 | 1.0<br>0.1<br><0.1<br>0.3<br>0.1 | 0.036<br><0.005<br><0.005<br>0.061<br>0.054 | 1.10<br>0.06<br>0.01<br>0.02<br>0.01 | 3.4<br><0.5<br><0.5<br>1.3<br><0.5 | 20.2<br>1.5<br>0.5<br>17.3<br>4.9   | 3.82<br>0.19<br>0.04<br>5.06<br>1.44 | 1120<br>115<br>86<br>1400<br>406   | 0.50<br>2.62<br>3.88<br>0.24<br>2.84 | 1.75<br>0.08<br>0.03<br>2.91<br>0.83 | 3.2<br>0.2<br>0.1<br>1.3<br>0.4  | 92.4<br>4.9<br>1.9<br>75.6<br>24.3   | 300<br>30<br>10<br>220<br>70   |
| X926838<br>X926839                                             |                                   | 2.56<br>5.58                         | 8.19<br>0.97                            | 0.07<br><0.05                          | 0.1<br><0.1                      | 0.027                                       | 0.03                                 | 1.0<br><0.5                        | 5.9<br>3.6                          | 0.97<br>9.29                         | 849<br>1220                        | 1.05<br>0.17                         | 0.97<br>0.02                         | 0.3<br>0.1                       | 44.5<br>109.0                        | 110<br>40                      |

ALS)

ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

#### To: TRANSITION METALS CORP. 9C - 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5

Page: 3 - C Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 13-SEP-2021 Account: TRAMET

Project: Cryderman

| Sample Description                                             | Method<br>Analyte<br>Units<br>LOD | ME-MS61<br>Pb<br>ppm<br>0.5      | ME-MS61<br>Rb<br>ppm<br>0.1      | ME-MS61<br>Re<br>ppm<br>0.002                            | ME-MS61<br>S<br>%<br>0.01              | ME-MS61<br>Sb<br>ppm<br>0.05                    | ME-MS61<br>Sc<br>ppm<br>0.1          | ME-MS61<br>Se<br>ppm<br>1 | ME-MS61<br>Sn<br>ppm<br>0.2      | ME-MS61<br>Sr<br>ppm<br>0.2       | ME-MS61<br>Ta<br>ppm<br>0.05          | ME-MS61<br>Te<br>ppm<br>0.05                       | ME-MS61<br>Th<br>ppm<br>0.01         | ME–MS61<br>Ti<br>%<br>0.005                | ME-MS61<br>Tl<br>ppm<br>0.02             | ME-MS61<br>U<br>ppm<br>0.1          |
|----------------------------------------------------------------|-----------------------------------|----------------------------------|----------------------------------|----------------------------------------------------------|----------------------------------------|-------------------------------------------------|--------------------------------------|---------------------------|----------------------------------|-----------------------------------|---------------------------------------|----------------------------------------------------|--------------------------------------|--------------------------------------------|------------------------------------------|-------------------------------------|
| X926823<br>X926824<br>X926825<br>X926826<br>X926827            |                                   | 0.6<br>11.7<br>2.1<br>1.2        | 0.2<br>75.0<br>1.7<br>0.2<br>0.3 | <0.002<br><0.002<br><0.002<br><0.002<br><0.002           | <0.01<br>0.63<br><0.01<br><0.01        | 0.38<br>0.93<br>0.22<br>0.30                    | 32.0<br>16.8<br>0.5<br>44.6<br>0.9   | <1<br>1<br><1<br><1       | 0.2<br>2.9<br>0.2<br>0.2         | 90.7<br>291<br>3.4<br>75.4<br>4 9 | 0.05<br>1.12<br>0.08<br>0.05          | <0.05<br>0.05<br><0.05<br><0.05<br><0.05           | 0.09<br>8.37<br>1.38<br>0.09<br>0.01 | 0.238<br>0.799<br>0.014<br>0.229<br>0.006  | <0.02<br>0.40<br><0.02<br><0.02<br><0.02 | <0.1<br>1.7<br>0.4<br><0.1          |
| X926827<br>X926828<br>X926829<br>X926830<br>X926831<br>X926831 |                                   | 0.5<br>0.6<br>0.7<br>1.3         | 0.7<br>8.0<br>5.9<br>7.8<br>0.1  | <0.002<br><0.002<br><0.002<br><0.002<br><0.002<br><0.002 | <0.01<br>0.02<br>0.01<br>0.05          | 0.12<br>0.05<br>0.07<br><0.05<br>0.07           | 13.3<br>15.9<br>31.6<br>23.1<br>28.9 | <1<br><1<br><1<br><1      | <0.2<br>0.2<br>0.4<br>0.3<br>0.6 | 33.6<br>39.8<br>71.4<br>59.6      | <0.05<br>0.05<br>0.14<br>0.09<br>0.24 | <0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05 | 0.04<br>0.26<br>0.56<br>0.52<br>0.68 | 0.085<br>0.073<br>0.182<br>0.133<br>0.298  | <0.02<br>0.05<br>0.09<br>0.06            | <0.1<br>0.1<br>0.1<br>0.1<br>0.2    |
| X926832<br>X926833<br>X926834<br>X926835<br>X926836<br>X926837 |                                   | 1.4<br>0.7<br>6.5<br>2.4<br>10.2 | 11.4<br>2.2<br>0.3<br>0.2<br>0.2 | <0.002<br><0.002<br><0.002<br><0.002<br><0.002<br><0.002 | 0.06<br><0.01<br><0.01<br>0.03<br>0.06 | 0.05<br><0.05<br><0.05<br><0.05<br>0.05<br>0.24 | 28.2<br>0.8<br>0.4<br>51.6<br>11.7   | <1<br><1<br><1<br>1<br>1  | 0.6<br><0.2<br><0.2<br>0.3       | 38.6<br>3.1<br>2.2<br>19.4<br>5.6 | 0.24<br><0.05<br><0.05<br>0.08        | <0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05 | 0.51<br>0.03<br>0.01<br>0.12<br>0.05 | 0.291<br>0.017<br><0.005<br>0.400<br>0.111 | 0.17<br><0.02<br><0.02<br><0.02<br><0.02 | 0.2<br><0.1<br><0.1<br><0.1<br><0.1 |
| X926838<br>X926839                                             |                                   | 3.1<br>0.7                       | 1.0<br>0.8                       | <0.002<br><0.002<br><0.002                               | 0.01<br><0.01                          | 0.40<br>0.06                                    | 12.4<br>2.3                          | <1<br>1                   | 0.2<br><0.2                      | 127.0<br>97.8                     | <0.05<br><0.05                        | <0.05<br><0.05                                     | 0.05                                 | 0.067<br>0.011                             | <0.02<br><0.02<br><0.02                  | <0.1<br><0.1                        |
|                                                                |                                   |                                  |                                  |                                                          |                                        |                                                 |                                      |                           |                                  |                                   |                                       |                                                    |                                      |                                            |                                          |                                     |
|                                                                |                                   |                                  |                                  |                                                          |                                        |                                                 |                                      |                           |                                  |                                   |                                       |                                                    |                                      |                                            |                                          |                                     |
|                                                                |                                   |                                  |                                  |                                                          |                                        |                                                 |                                      |                           |                                  |                                   |                                       |                                                    |                                      |                                            |                                          |                                     |
|                                                                |                                   |                                  |                                  |                                                          |                                        |                                                 |                                      |                           |                                  |                                   |                                       |                                                    |                                      |                                            |                                          |                                     |
|                                                                |                                   |                                  |                                  |                                                          |                                        |                                                 |                                      |                           |                                  |                                   |                                       |                                                    |                                      |                                            |                                          |                                     |



2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

#### To: TRANSITION METALS CORP. 9C - 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5

Page: 3 - D Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 13-SEP-2021 Account: TRAMET

Project: Cryderman

| Sample Description                                             | Method<br>Analyte<br>Units<br>LOD | ME-MS61<br>V<br>ppm<br>1      | ME-MS61<br>W<br>ppm<br>0.1      | ME-MS61<br>Y<br>ppm<br>0.1         | ME-MS61<br>Zn<br>ppm<br>2  | ME-MS61<br>Zr<br>ppm<br>0.5         | CRU-QC<br>Pass2mm<br>%<br>0.01 | PUL-QC<br>Pass75um<br>%<br>0.01 |  |  |  |
|----------------------------------------------------------------|-----------------------------------|-------------------------------|---------------------------------|------------------------------------|----------------------------|-------------------------------------|--------------------------------|---------------------------------|--|--|--|
| X926823<br>X926824<br>X926825<br>X926826<br>X926826<br>X926827 |                                   | 189<br>139<br>2<br>191<br>18  | 0.1<br>1.6<br>0.1<br>0.1<br>0.1 | 12.9<br>22.9<br>1.7<br>12.1<br>0.4 | 54<br>125<br>2<br>53<br>6  | 8.1<br>134.0<br>25.2<br>7.8<br><0.5 |                                |                                 |  |  |  |
| X926828<br>X926829<br>X926830<br>X926831<br>X926832            |                                   | 73<br>74<br>142<br>122<br>147 | 0.1<br>0.1<br>0.1<br>0.1<br>0.1 | 4.8<br>3.3<br>5.6<br>6.7<br>11.3   | 27<br>47<br>69<br>79<br>87 | 4.4<br>28.5<br>81.3<br>57.5<br>48.6 |                                |                                 |  |  |  |
| X926833<br>X926834<br>X926835<br>X926836<br>X926836<br>X926837 |                                   | 142<br>7<br>3<br>278<br>78    | 0.3<br>0.2<br>0.2<br>0.1<br>0.2 | 8.5<br>0.3<br>0.2<br>15.9<br>4.7   | 87<br>6<br>2<br>91<br>43   | 39.3<br>2.6<br>0.5<br>7.2<br>2.4    |                                |                                 |  |  |  |
| X926838<br>X926839                                             |                                   | 103<br>31                     | 0.4<br><0.1                     | 8.4<br>3.3                         | 30<br>53                   | 5.1<br>1.7                          |                                |                                 |  |  |  |
|                                                                |                                   |                               |                                 |                                    |                            |                                     |                                |                                 |  |  |  |
|                                                                |                                   |                               |                                 |                                    |                            |                                     |                                |                                 |  |  |  |
|                                                                |                                   |                               |                                 |                                    |                            |                                     |                                |                                 |  |  |  |
|                                                                |                                   |                               |                                 |                                    |                            |                                     |                                |                                 |  |  |  |



ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

#### To: TRANSITION METALS CORP. 9C - 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5

Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 13-SEP-2021 Account: TRAMET

Project: Cryderman

|                    |                                                         | CERTIFICATE COMMENTS                                                            |                                                    |                  |
|--------------------|---------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------|------------------|
| Applies to Method: | REEs may not be totally soluble in this<br>ME-MS61      | ANALYTICAL CO                                                                   | OMMENTS                                            |                  |
| Applies to Method: | Processed at ALS Sudbury located at<br>CRU-31<br>PUL-31 | <b>LABORATORY A</b><br>1351–B Kelly Lake Road, Unit #1, Suc<br>CRU–QC<br>PUL–QC | DDRESSES<br>dbury, ON, Canada.<br>LOG-21<br>SPL-21 | LOG-23<br>WEI-21 |
| Applies to Method: | Processed at ALS Vancouver located a Au-ICP21           | t 2103 Dollarton Hwy, North Vancou<br>ME-MS61                                   | uver, BC, Canada.                                  |                  |
|                    |                                                         |                                                                                 |                                                    |                  |
|                    |                                                         |                                                                                 |                                                    |                  |
|                    |                                                         |                                                                                 |                                                    |                  |
|                    |                                                         |                                                                                 |                                                    |                  |
|                    |                                                         |                                                                                 |                                                    |                  |
|                    |                                                         |                                                                                 |                                                    |                  |
|                    |                                                         |                                                                                 |                                                    |                  |



#### To: TRANSITION METALS CORP. 9C - 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5

Page: 1 Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 13-SEP-2021 Account: TRAMET

## QC CERTIFICATE SD21221782

Project: Cryderman

This report is for 57 samples of Rock submitted to our lab in Sudbury, ON, Canada on 23-AUG-2021.

The following have access to data associated with this certificate:

| JAKE BURDEN<br>GRANT MOURRE | GREG COLLINS<br>BEN WILLIAMS | THOMAS HART |
|-----------------------------|------------------------------|-------------|
|                             |                              |             |

|          | SAMPLE PREPARATION              |  |  |  |  |  |  |  |  |  |  |
|----------|---------------------------------|--|--|--|--|--|--|--|--|--|--|
| ALS CODE | DESCRIPTION                     |  |  |  |  |  |  |  |  |  |  |
| WEI-21   | Received Sample Weight          |  |  |  |  |  |  |  |  |  |  |
| LOG-21   | Sample logging – ClientBarCode  |  |  |  |  |  |  |  |  |  |  |
| CRU-QC   | Crushing QC Test                |  |  |  |  |  |  |  |  |  |  |
| PUL-QC   | Pulverizing QC Test             |  |  |  |  |  |  |  |  |  |  |
| LOG-23   | Pulp Login – Rcvd with Barcode  |  |  |  |  |  |  |  |  |  |  |
| CRU-31   | Fine crushing – 70% <2mm        |  |  |  |  |  |  |  |  |  |  |
| SPL-21   | Split sample – riffle splitter  |  |  |  |  |  |  |  |  |  |  |
| PUL-31   | Pulverize up to 250g 85% <75 um |  |  |  |  |  |  |  |  |  |  |

| ANALYTICAL PROCEDURES |                             |            |  |  |  |  |  |  |  |  |  |  |
|-----------------------|-----------------------------|------------|--|--|--|--|--|--|--|--|--|--|
| ALS CODE              | DESCRIPTION                 | INSTRUMENT |  |  |  |  |  |  |  |  |  |  |
| ME-MS61               | 48 element four acid ICP-MS |            |  |  |  |  |  |  |  |  |  |  |
| Au-ICP21              | Au 30g FA ICP-AES Finish    | ICP-AES    |  |  |  |  |  |  |  |  |  |  |

This is the Final Report and supersedes any preliminary report with this certificate number.Results apply to samples as submitted.All pages of this report have been checked and approved for release. \*\*\*\*\* See Appendix Page for comments regarding this certificate \*\*\*\*\*

Saa Traxler, General Manager, North Vancouver



#### To: TRANSITION METALS CORP. 9C - 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5

Page: 2 – A Total # Pages: 3 (A – D) Plus Appendix Pages Finalized Date: 13–SEP–2021 Account: TRAMET

Project: Cryderman

| Sample Description                                                                                                                                               | Method<br>Analyte<br>Units<br>LOD                              | Au-ICP21<br>Au<br>ppm<br>0.001 | ME-MS61<br>Ag<br>ppm<br>0.01                                                         | ME-MS61<br>Al<br>%<br>0.01                                                           | ME-MS61<br>As<br>ppm<br>0.2                                                       | ME-MS61<br>Ba<br>ppm<br>10                                               | ME-MS61<br>Be<br>ppm<br>0.05                                                         | ME-MS61<br>Bi<br>ppm<br>0.01                                                         | ME-MS61<br>Ca<br>%<br>0.01                                                           | ME-MS61<br>Cd<br>ppm<br>0.02                                                         | ME-MS61<br>Ce<br>ppm<br>0.01                                                           | ME-MS61<br>Co<br>ppm<br>0.1                                                          | ME-MS61<br>Cr<br>ppm<br>1                                       | ME-MS61<br>Cs<br>ppm<br>0.05                                                             | ME-MS61<br>Cu<br>ppm<br>0.2                                                         | ME-MS61<br>Fe<br>%<br>0.01                                                                                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                  |                                                                |                                |                                                                                      |                                                                                      |                                                                                   |                                                                          | STAN                                                                                 | DARDS                                                                                |                                                                                      |                                                                                      |                                                                                        |                                                                                      |                                                                 |                                                                                          |                                                                                     |                                                                                                             |
| EMOG-17<br>Target Range – Lower<br>Upper<br>GPP-14                                                                                                               | r Bound<br><sup>r</sup> Bound                                  | 0.937                          | 70.4<br>60.9<br>74.5                                                                 | 4.85<br>4.18<br>5.13                                                                 | 611<br>522<br>638                                                                 | 230<br>310<br>440                                                        | 1.90<br>1.60<br>2.06                                                                 | 5.64<br>5.31<br>6.51                                                                 | 2.03<br>1.72<br>2.12                                                                 | 21.6<br>18.15<br>22.2                                                                | 51.6<br>42.9<br>52.5                                                                   | 775<br>686<br>838                                                                    | 58<br>49<br>62                                                  | 7.59<br>6.56<br>8.12                                                                     | 8550<br>7750<br>8910                                                                | 5.12<br>4.42<br>5.42                                                                                        |
| Target Range – Lower<br>Upper<br>KIP–19<br>Target Range – Lower                                                                                                  | r Bound<br>r Bound<br>r Bound                                  | 0.853<br>0.965<br>2.50<br>2.28 |                                                                                      |                                                                                      |                                                                                   |                                                                          |                                                                                      |                                                                                      |                                                                                      |                                                                                      |                                                                                        |                                                                                      |                                                                 |                                                                                          |                                                                                     |                                                                                                             |
| MRGeo08<br>MRGeo08<br>Target Range – Lower<br>OREAS 905<br>OREAS 905<br>Target Range – Lower<br>Upper<br>OREAS 920<br>Target Range – Lower<br>Upper<br>OREAS-45h | F Bound<br>F Bound<br>F Bound<br>F Bound<br>F Bound<br>F Bound | 0.039                          | 4.45<br>4.28<br>3.93<br>4.83<br>0.55<br>0.52<br>0.46<br>0.58<br>0.09<br>0.08<br>0.13 | 7.54<br>7.23<br>6.64<br>8.14<br>7.48<br>7.66<br>6.67<br>8.17<br>7.91<br>6.91<br>8.47 | 32.9<br>34.3<br>29.5<br>36.5<br>34.3<br>35.8<br>31.0<br>38.4<br>6.0<br>4.6<br>6.1 | 1090<br>1080<br>920<br>2710<br>2810<br>2280<br>3110<br>560<br>450<br>640 | 3.71<br>3.24<br>2.98<br>3.76<br>3.22<br>2.91<br>2.69<br>3.39<br>2.90<br>2.54<br>3.22 | 0.64<br>0.66<br>0.58<br>0.73<br>5.54<br>5.50<br>5.14<br>6.30<br>0.85<br>0.61<br>0.77 | 2.67<br>2.70<br>2.35<br>2.90<br>0.60<br>0.63<br>0.52<br>0.66<br>0.52<br>0.44<br>0.56 | 2.17<br>2.31<br>2.00<br>2.48<br>0.33<br>0.35<br>0.30<br>0.42<br>0.06<br>0.04<br>0.12 | 75.2<br>64.3<br>66.2<br>81.0<br>97.3<br>95.3<br>82.8<br>101.0<br>97.8<br>84.6<br>103.5 | 20.7<br>19.1<br>17.7<br>21.9<br>15.6<br>14.5<br>13.2<br>16.4<br>15.1<br>13.9<br>17.3 | 93<br>90<br>81<br>102<br>21<br>20<br>16<br>22<br>86<br>75<br>93 | 13.05<br>11.90<br>11.20<br>13.80<br>6.74<br>6.87<br>6.05<br>7.51<br>8.81<br>7.72<br>9.54 | 611<br>614<br>587<br>675<br>1475<br>1515<br>1425<br>1640<br>116.5<br>104.0<br>120.0 | $\begin{array}{c} 3.95\\ 3.95\\ 3.55\\ 4.37\\ 4.00\\ 4.22\\ 3.66\\ 4.50\\ 4.14\\ 3.72\\ 4.56\\ \end{array}$ |
| Upper                                                                                                                                                            | Bound                                                          | 0.038                          |                                                                                      |                                                                                      |                                                                                   |                                                                          |                                                                                      |                                                                                      |                                                                                      |                                                                                      |                                                                                        |                                                                                      |                                                                 |                                                                                          |                                                                                     |                                                                                                             |
|                                                                                                                                                                  |                                                                |                                |                                                                                      |                                                                                      |                                                                                   |                                                                          | BL/                                                                                  | ANKS                                                                                 |                                                                                      |                                                                                      |                                                                                        |                                                                                      |                                                                 |                                                                                          |                                                                                     |                                                                                                             |
| BLANK<br>Target Range – Lower<br>Upper                                                                                                                           | r Bound<br>r Bound                                             | <0.001<br><0.001<br>0.002      |                                                                                      |                                                                                      |                                                                                   |                                                                          |                                                                                      |                                                                                      |                                                                                      |                                                                                      |                                                                                        |                                                                                      |                                                                 |                                                                                          |                                                                                     |                                                                                                             |
| BLANK<br>BLANK<br>BLANK<br>Target Range – Lower                                                                                                                  | Bound                                                          |                                | <0.01<br><0.01<br><0.01<br><0.01                                                     | <0.01<br><0.01<br><0.01<br><0.01                                                     | <0.2<br><0.2<br>0.3<br><0.2                                                       | <10<br><10<br><10<br><10                                                 | <0.05<br><0.05<br><0.05<br><0.05                                                     | <0.01<br><0.01<br><0.01<br><0.01                                                     | <0.01<br><0.01<br><0.01<br><0.01                                                     | <0.02<br><0.02<br><0.02<br><0.02                                                     | 0.01<br><0.01<br><0.01<br><0.01                                                        | <0.1<br><0.1<br><0.1<br><0.1                                                         | 1<br><1<br><1<br><1                                             | <0.05<br><0.05<br><0.05<br><0.05                                                         | <0.2<br>0.4<br><0.2<br><0.2                                                         | <0.01<br><0.01<br><0.01<br><0.01                                                                            |
| Upper                                                                                                                                                            | своина                                                         |                                | 0.02                                                                                 | 0.02                                                                                 | 0.4                                                                               | 20                                                                       | 0.10                                                                                 | 0.02                                                                                 | 0.02                                                                                 | 0.04                                                                                 | 0.02                                                                                   | 0.2                                                                                  | 2                                                               | 0.10                                                                                     | 0.4                                                                                 | 0.02                                                                                                        |



2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

#### To: TRANSITION METALS CORP. 9C - 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5

Page: 2 – B Total # Pages: 3 (A – D) Plus Appendix Pages Finalized Date: 13–SEP–2021 Account: TRAMET

Project: Cryderman

|                                                                                    |                                   |                              |                              |                             |                               |                           |                             |                             | QC                         | CERTI                     | FICATE                       | OF AN                      | ALYSIS                      | SD21                        | 221782                    | 2                           |  |
|------------------------------------------------------------------------------------|-----------------------------------|------------------------------|------------------------------|-----------------------------|-------------------------------|---------------------------|-----------------------------|-----------------------------|----------------------------|---------------------------|------------------------------|----------------------------|-----------------------------|-----------------------------|---------------------------|-----------------------------|--|
| ample Description                                                                  | Method<br>Analyte<br>Units<br>LOD | ME-MS61<br>Ga<br>ppm<br>0.05 | ME-MS61<br>Ge<br>ppm<br>0.05 | ME-MS61<br>Hf<br>ppm<br>0.1 | ME-MS61<br>In<br>ppm<br>0.005 | ME-MS61<br>K<br>%<br>0.01 | ME-MS61<br>La<br>ppm<br>0.5 | ME-MS61<br>Li<br>ppm<br>0.2 | ME-MS61<br>Mg<br>%<br>0.01 | ME-MS61<br>Mn<br>ppm<br>5 | ME-MS61<br>Mo<br>ppm<br>0.05 | ME-MS61<br>Na<br>%<br>0.01 | ME-MS61<br>Nb<br>ppm<br>0.1 | ME-MS61<br>Ni<br>ppm<br>0.2 | ME-MS61<br>P<br>ppm<br>10 | ME-MS61<br>Pb<br>ppm<br>0.5 |  |
|                                                                                    |                                   |                              |                              |                             |                               |                           | STAN                        | IDARDS                      |                            |                           |                              |                            |                             |                             |                           |                             |  |
| MOG-17<br>Farget Range – Lower<br>Upper<br>GPP-14<br>Farget Range – Lower<br>Upper | Bound<br>Bound<br>Bound           | 12.20<br>10.75<br>13.25      | 0.13<br>0.06<br>0.30         | 1.8<br>1.6<br>2.2           | 0.971<br>0.823<br>1.015       | 1.76<br>1.49<br>1.85      | 25.8<br>20.7<br>26.4        | 27.7<br>23.9<br>29.7        | 1.01<br>0.86<br>1.08       | 788<br>670<br>830         | 1120<br>997<br>1220          | 1.15<br>0.99<br>1.23       | 14.5<br>12.7<br>15.7        | 7910<br>6820<br>8330        | 830<br>700<br>880         | 7400<br>6570<br>8030        |  |
| (IP-19<br>Farget Range - Lower<br>Upper                                            | Bound<br>Bound                    |                              |                              |                             |                               |                           |                             |                             |                            |                           |                              |                            |                             |                             |                           |                             |  |
| MRGeo08<br>MRGeo08<br>Farget Range – Lower                                         | Bound                             | 18.20<br>18.20<br>17.50      | 0.13<br>0.20<br><0.05        | 3.1<br>3.1<br>2.8           | 0.179<br>0.179<br>0.155       | 3.18<br>3.17<br>2.79      | 35.2<br>31.5<br>31.1        | 34.3<br>30.9<br>29.5        | 1.32<br>1.31<br>1.17       | 553<br>558<br>497         | 14.00<br>15.20<br>13.65      | 1.99<br>2.03<br>1.76       | 21.5<br>21.4<br>19.0        | 694<br>674<br>622           | 1050<br>1030<br>930       | 1085<br>1070<br>971         |  |
| Upper<br>DREAS 905<br>DREAS 905                                                    | Bound                             | 21.5<br>25.4<br>23.6         | 0.28<br>0.16<br>0.21         | 3.6<br>6.5<br>7.0           | 0.201<br>0.666<br>0.666       | 3.43<br>2.94<br>2.99      | 39.1<br>47.0<br>48.2        | 36.5<br>20.9<br>19.6        | 1.45<br>0.26<br>0.27       | 619<br>368<br>378         | 16.75<br>3.03<br>3.36        | 2.18<br>2.39<br>2.48       | 23.4<br>19.0<br>18.7        | 760<br>10.4<br>10.0         | 1160<br>270<br>270        | 1185<br>29.5<br>29.5        |  |
| Farget Range – Lower<br>Upper<br>DREAS 920                                         | Bound<br>Bound                    | 22.5<br>27.7<br>19.95        | <0.05<br>0.28<br>0.21        | 6.1<br>7.6<br>4.4           | 0.571<br>0.709<br>0.084       | 2.58<br>3.18<br>2.96      | 40.9<br>51.1<br>46.9        | 17.8<br>22.2<br>30.2        | 0.24<br>0.31<br>1.39       | 333<br>418<br>611         | 2.89<br>3.65<br>0.43         | 2.15<br>2.65<br>0.64       | 16.2<br>20.0<br>16.9        | 8.4<br>10.7<br>42.1         | 240<br>320<br>740         | 26.9<br>33.9<br>22.7        |  |
| arget Range – Lower<br>Upper<br>DREAS–45h<br>Farget Range – Lower<br>Upper         | Bound<br>Bound<br>Bound<br>Bound  | 22.9                         | <0.05<br>0.29                | 4.0<br>5.2                  | 0.070                         | 2.59<br>3.19              | 41.0<br>51.2                | 32.2                        | 1.23                       | 665                       | 0.34<br>0.58                 | 0.56                       | 15.6<br>19.2                | 37.4<br>46.2                | 840                       | 20.7<br>26.4                |  |
|                                                                                    |                                   |                              |                              |                             |                               |                           | BL                          | ANKS                        |                            |                           |                              |                            |                             |                             |                           |                             |  |
| BLANK<br>Farget Range – Lower<br>Upper                                             | Bound<br>Bound                    |                              |                              |                             |                               |                           |                             |                             |                            |                           |                              |                            |                             |                             |                           |                             |  |
| BLANK<br>BLANK<br>BLANK                                                            | <b>D</b>                          | 0.05<br><0.05<br>0.07        | 0.07<br><0.05<br>0.07        | <0.1<br><0.1<br><0.1        | <0.005<br><0.005<br><0.005    | <0.01<br><0.01<br><0.01   | <0.5<br><0.5<br><0.5        | 0.2<br>0.3<br>0.2           | <0.01<br><0.01<br><0.01    | <5<br><5<br><5            | <0.05<br><0.05<br><0.05      | <0.01<br><0.01<br><0.01    | <0.1<br><0.1<br><0.1        | <0.2<br><0.2<br>0.2         | <10<br><10<br><10         | <0.5<br><0.5<br><0.5        |  |
| Farget Range – Lower<br>Upper                                                      | Bound<br>Bound                    | <0.05<br>0.10                | <0.05<br>0.10                | <0.1<br>0.2                 | <0.005<br>0.010               | <0.01<br>0.02             | <0.5<br>1.0                 | <0.2<br>0.4                 | <0.01<br>0.02              | <5<br>10                  | <0.05<br>0.10                | <0.01<br>0.02              | <0.1<br>0.2                 | <0.2<br>0.4                 | <10<br>20                 | <0.5<br>1.0                 |  |
|                                                                                    |                                   |                              |                              |                             |                               |                           |                             |                             |                            |                           |                              |                            |                             |                             |                           |                             |  |
|                                                                                    |                                   |                              |                              |                             |                               |                           |                             |                             |                            |                           |                              |                            |                             |                             |                           |                             |  |



ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

#### To: TRANSITION METALS CORP. 9C - 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5

Page: 2 – C Total # Pages: 3(A - D)Plus Appendix Pages Finalized Date: 13-SEP-2021 Account: TRAMET

Project: Cryderman

| (,)                                                                                                                                                 |                                  |                                     |                              |                              |                              |                           |                             | Q                                | C CERTI                      | FICATE                          | OF AN                            | ALYSIS                           | SD21                         | <u>221782</u>              | 2                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-------------------------------------|------------------------------|------------------------------|------------------------------|---------------------------|-----------------------------|----------------------------------|------------------------------|---------------------------------|----------------------------------|----------------------------------|------------------------------|----------------------------|--------------------------|
| Method<br>Analyte<br>Sample Description LOD                                                                                                         | ME-MS61<br>Rb<br>ppm<br>0.1      | ME-MS61<br>Re<br>ppm<br>0.002       | ME-MS61<br>S<br>%<br>0.01    | ME-MS61<br>Sb<br>ppm<br>0.05 | ME-MS61<br>Sc<br>ppm<br>0.1  | ME-MS61<br>Se<br>ppm<br>1 | ME-MS61<br>Sn<br>ppm<br>0.2 | ME-MS61<br>Sr<br>ppm<br>0.2      | ME-MS61<br>Ta<br>ppm<br>0.05 | ME-MS61<br>Te<br>ppm<br>0.05    | ME-MS61<br>Th<br>ppm<br>0.01     | ME-MS61<br>Ti<br>%<br>0.005      | ME-MS61<br>Tl<br>ppm<br>0.02 | ME-MS61<br>U<br>ppm<br>0.1 | ME-MS61<br>V<br>ppm<br>1 |
|                                                                                                                                                     |                                  |                                     |                              |                              |                              | STAN                      | NDARDS                      |                                  |                              |                                 |                                  |                                  |                              |                            |                          |
| EMOG-17<br>Target Range - Lower Bound<br>Upper Bound<br>GPP-14<br>Target Range - Lower Bound<br>Upper Bound<br>KIP-19<br>Target Range - Lower Bound | 119.0<br>98.9<br>121.0           | 0.314<br>0.286<br>0.354             | 3.41<br>2.91<br>3.57         | 852<br>643<br>869            | 8.0<br>7.2<br>9.0            | 8<br>4<br>9               | 2.8<br>2.2<br>3.2           | 210<br>184.5<br>226              | 0.90<br>0.78<br>1.08         | 1.41<br>1.10<br>1.46            | 11.55<br>10.35<br>12.65          | 0.347<br>0.294<br>0.370          | 2.37<br>1.89<br>2.61         | 3.3<br>2.8<br>3.7          | 77<br>67<br>84           |
| Upper Bound<br>MRGeo08<br>MRGeo08<br>Target Range – Lower Bound<br>Upper Bound                                                                      | 197.0<br>178.0<br>173.5<br>212   | 0.008<br>0.010<br>0.004<br>0.013    | 0.30<br>0.30<br>0.27<br>0.35 | 4.17<br>4.53<br>3.89<br>5.39 | 11.5<br>11.5<br>11.1<br>13.7 | 1<br>2<br><1<br>4         | 3.6<br>4.0<br>3.5<br>4.7    | 304<br>304<br>277<br>339         | 1.45<br>1.45<br>1.39<br>1.81 | <0.05<br><0.05<br><0.05<br>0.12 | 20.4<br>17.75<br>17.90<br>21.9   | 0.493<br>0.491<br>0.443<br>0.553 | 1.00<br>1.12<br>0.86<br>1.21 | 5.5<br>5.0<br>4.9<br>6.2   | 109<br>109<br>97<br>121  |
| OREAS 905<br>OREAS 905<br>Target Range – Lower Bound<br>Upper Bound                                                                                 | 139.5<br>135.5<br>124.0<br>152.0 | <0.002<br><0.002<br><0.002<br>0.004 | 0.06<br>0.07<br>0.04<br>0.09 | 1.97<br>1.91<br>1.61<br>2.29 | 4.5<br>4.9<br>4.3<br>5.5     | 3<br>3<br><1<br>4         | 3.7<br>4.0<br>3.4<br>4.6    | 156.0<br>159.0<br>141.0<br>173.0 | 1.24<br>1.33<br>1.16<br>1.52 | 0.09<br>0.07<br><0.05<br>0.17   | 15.50<br>14.65<br>13.15<br>16.05 | 0.121<br>0.122<br>0.105<br>0.139 | 0.69<br>0.74<br>0.58<br>0.83 | 4.9<br>5.0<br>4.4<br>5.6   | 10<br>10<br>8<br>13      |
| OREAS 920<br>Target Range – Lower Bound<br>Upper Bound                                                                                              | 187.5<br>158.5<br>193.5          | <0.002<br><0.002<br>0.004           | 0.03<br><0.01<br>0.05        | 1.52<br>1.22<br>1.76         | 13.5<br>12.8<br>15.8         | <1<br><1<br>2             | 5.2<br>4.3<br>5.7           | 83.7<br>73.6<br>90.4             | 1.31<br>1.17<br>1.55         | <0.05<br><0.05<br>0.12          | 19.40<br>17.35<br>21.2           | 0.494<br>0.434<br>0.542          | 1.00<br>0.73<br>1.03         | 3.6<br>3.3<br>4.2          | 99<br>86<br>108          |
| UKEAS-45h<br>Target Range - Lower Bound<br>Upper Bound                                                                                              |                                  |                                     |                              |                              |                              | BL                        | ANKS                        |                                  |                              |                                 |                                  |                                  |                              |                            |                          |

BLANK

| Upper Bound                |      |         |       |        |      |    |      |      |       |       |       |         |       |      |    |
|----------------------------|------|---------|-------|--------|------|----|------|------|-------|-------|-------|---------|-------|------|----|
| BLANK                      | <0.1 | <0.002  | <0.01 | <0.05  | <0.1 | <1 | <0.2 | <0.2 | <0.05 | <0.05 | <0.01 | <0.005  | <0.02 | <0.1 | <1 |
| BLANK                      | <0.1 | <0.002  | <0.01 | <0.05  | <0.1 | <1 | <0.2 | <0.2 | <0.05 | <0.05 | <0.01 | <0.005  | <0.02 | <0.1 | <1 |
| BLANK                      | <0.1 | <0.002  | <0.01 | < 0.05 | <0.1 | <1 | <0.2 | <0.2 | <0.05 | <0.05 | <0.01 | < 0.005 | <0.02 | <0.1 | <1 |
| Target Range – Lower Bound | <0.1 | < 0.002 | <0.01 | < 0.05 | <0.1 | <1 | <0.2 | <0.2 | <0.05 | <0.05 | <0.01 | < 0.005 | <0.02 | <0.1 | <1 |
| Upper Bound                | 0.2  | 0.004   | 0.02  | 0.10   | 0.2  | 2  | 0.4  | 0.4  | 0.10  | 0.10  | 0.02  | 0.010   | 0.04  | 0.2  | 2  |



#### To: TRANSITION METALS CORP. 9C - 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5

Page: 2 - D Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 13-SEP-2021 Account: TRAMET

Project: Cryderman

|                               | Method             | ME-MS61<br>W | ME-MS61<br>Y | ME-MS61<br>Zn | ME-MS61<br>Zr |           |
|-------------------------------|--------------------|--------------|--------------|---------------|---------------|-----------|
| Sample Description            | Units<br>LOD       | ppm<br>0.1   | ppm<br>0.1   | ppm<br>2      | ppm<br>0.5    |           |
|                               |                    |              |              |               |               | STANDARDS |
| EMOG-17                       |                    | 3.9          | 16.3         | 7760          | 67.2          |           |
| Target Range – Lower          | Bound              | 3.3          | 14.3         | 6800          | 55.6          |           |
| Upper                         | Bound              | 4.7          | 17.7         | 8320          | 76.4          |           |
| Target Range – Lower<br>Upper | Bound<br>Bound     |              |              |               |               |           |
| Target Range – Lower          | · Bound            |              |              |               |               |           |
| MRGeo08                       | 2.541.14           | 4.6          | 27.3         | 797           | 107.5         |           |
| MRGeo08                       |                    | 4.5          | 25.8         | 810           | 107.5         |           |
| Target Range – Lower          | Bound              | 4.1<br>5.8   | 23.8         | 722<br>886    | 92.2<br>126.0 |           |
| OREAS 905                     | bound              | 2.6          | 16.4         | 135           | 256           |           |
| OREAS 905                     |                    | 2.8          | 16.0         | 141           | 254           |           |
| Target Range - Lower          | Bound              | 2.3          | 14.0         | 122           | 214           |           |
| Upper                         | Bound              | 3.3          | 17.4         | 154           | 290           |           |
| Target Range – Lower          | Bound              | 2.5          | 29.8         | 102           | 128.0         |           |
| Upper                         | Bound              | 3.7          | 36.6         | 130           | 174.0         |           |
| OREAS-45h                     |                    |              |              |               |               |           |
| Target Range – Lower<br>Upper | · Bound<br>· Bound |              |              |               |               |           |
|                               |                    |              |              |               |               | BLANKS    |
| BLANK                         |                    |              |              |               |               |           |
| Target Range – Lower<br>Upper | Bound<br>Bound     |              |              |               |               |           |
| BLANK                         |                    | <0.1         | <0.1         | <2            | < 0.5         |           |
| BLANK                         |                    | <0.1         | <0.1         | <2            | <0.5          |           |
| Target Range – Lower          | Bound              | <0.1         | <0.1         | <2            | < 0.5         |           |
| Upper                         | Bound              | 0.2          | 0.2          | 4             | 1.0           |           |
|                               |                    |              |              |               |               |           |
|                               |                    |              |              |               |               |           |
|                               |                    |              |              |               |               |           |
|                               |                    |              |              |               |               |           |
|                               |                    |              |              |               |               |           |
|                               |                    |              |              |               |               |           |



#### To: TRANSITION METALS CORP. 9C - 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5

Page: 3 - A Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 13-SEP-2021 Account: TRAMET

Project: Cryderman

| Sample Description                               | Method<br>Analyte<br>Units<br>LOD | Au-ICP21<br>Au<br>ppm<br>0.001      | ME-MS61<br>Ag<br>ppm<br>0.01  | ME-MS61<br>Al<br>%<br>0.01   | ME-MS61<br>As<br>ppm<br>0.2 | ME-MS61<br>Ba<br>ppm<br>10  | ME-MS61<br>Be<br>ppm<br>0.05   | ME-MS61<br>Bi<br>ppm<br>0.01   | ME-MS61<br>Ca<br>%<br>0.01   | ME-MS61<br>Cd<br>ppm<br>0.02    | ME-MS61<br>Ce<br>ppm<br>0.01 | ME-MS61<br>Co<br>ppm<br>0.1 | ME-MS61<br>Cr<br>ppm<br>1 | ME-MS61<br>Cs<br>ppm<br>0.05  | ME-MS61<br>Cu<br>ppm<br>0.2 | ME–MS61<br>Fe<br>%<br>0.01   |
|--------------------------------------------------|-----------------------------------|-------------------------------------|-------------------------------|------------------------------|-----------------------------|-----------------------------|--------------------------------|--------------------------------|------------------------------|---------------------------------|------------------------------|-----------------------------|---------------------------|-------------------------------|-----------------------------|------------------------------|
| ORIGINAL<br>DUP<br>Target Range – Lower<br>Upper | Bound<br>Bound                    | <0.001<br>0.001<br><0.001<br>0.002  |                               |                              |                             |                             | DUPL                           | ICATES                         |                              |                                 |                              |                             |                           |                               |                             |                              |
| ORIGINAL<br>DUP<br>Target Range – Lower<br>Upper | Bound<br>Bound                    |                                     | 0.07<br>0.07<br>0.06<br>0.08  | 6.95<br>7.35<br>6.78<br>7.52 | 3.5<br>2.5<br>2.7<br>3.4    | 1060<br>1110<br>990<br>1180 | 1.91<br>1.93<br>1.77<br>2.07   | 0.05<br>0.05<br>0.04<br>0.06   | 0.49<br>0.52<br>0.47<br>0.54 | 0.13<br>0.11<br>0.09<br>0.15    | 45.0<br>49.7<br>45.0<br>49.7 | 0.7<br>0.8<br>0.6<br>0.9    | 2<br>3<br><1<br>4         | 5.01<br>5.33<br>4.86<br>5.48  | 0.9<br>0.9<br>0.7<br>1.1    | 1.40<br>1.47<br>1.35<br>1.52 |
| X926795<br>DUP<br>Target Range – Lower<br>Upper  | Bound<br>Bound                    | <0.001<br><0.001<br><0.001<br>0.002 |                               |                              |                             |                             |                                |                                |                              |                                 |                              |                             |                           |                               |                             |                              |
| X926810<br>DUP<br>Target Range – Lower<br>Upper  | Bound<br>Bound                    |                                     | 0.02<br>0.03<br><0.01<br>0.04 | 0.81<br>0.88<br>0.79<br>0.90 | 1.0<br>0.7<br>0.6<br>1.1    | 10<br>10<br><10<br>20       | <0.05<br>0.05<br><0.05<br>0.10 | <0.01<br>0.01<br><0.01<br>0.02 | 0.53<br>0.58<br>0.52<br>0.59 | 0.02<br>0.02<br><0.02<br>0.04   | 1.31<br>1.36<br>1.26<br>1.41 | 4.4<br>4.5<br>4.1<br>4.8    | 36<br>38<br>34<br>40      | 0.07<br>0.08<br><0.05<br>0.10 | 2.3<br>3.0<br>2.4<br>2.9    | 1.40<br>1.52<br>1.38<br>1.54 |
| X926815<br>DUP<br>Target Range – Lower<br>Upper  | Bound<br>Bound                    | 0.047<br>0.051<br>0.046<br>0.052    |                               |                              |                             |                             |                                |                                |                              |                                 |                              |                             |                           |                               |                             |                              |
| ORIGINAL<br>DUP<br>Target Range – Lower<br>Upper | Bound<br>Bound                    |                                     | 0.03<br>0.03<br>0.02<br>0.04  | 6.64<br>6.75<br>6.35<br>7.04 | 6.3<br>4.7<br>5.0<br>6.0    | 350<br>350<br>310<br>390    | 1.66<br>1.62<br>1.51<br>1.77   | 0.39<br>0.40<br>0.37<br>0.42   | 2.49<br>2.53<br>2.37<br>2.65 | <0.02<br><0.02<br><0.02<br>0.04 | 41.1<br>42.9<br>39.9<br>44.1 | 5.2<br>5.2<br>4.8<br>5.6    | 27<br>28<br>25<br>30      | 3.82<br>3.75<br>3.55<br>4.02  | 4.2<br>3.9<br>3.7<br>4.4    | 3.83<br>3.96<br>3.69<br>4.10 |
|                                                  |                                   |                                     |                               |                              |                             |                             |                                |                                |                              |                                 |                              |                             |                           |                               |                             |                              |



#### To: TRANSITION METALS CORP. 9C - 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5

Page: 3 – B Total # Pages: 3 (A – D) Plus Appendix Pages Finalized Date: 13–SEP–2021 Account: TRAMET

Project: Cryderman

| Sample Description                               | Method<br>Analyte<br>Units<br>LOD | ME-MS61<br>Ga<br>ppm<br>0.05     | ME-MS61<br>Ge<br>ppm<br>0.05   | ME-MS61<br>Hf<br>ppm<br>0.1 | ME-MS61<br>In<br>ppm<br>0.005     | ME-MS61<br>K<br>%<br>0.01    | ME-MS61<br>La<br>ppm<br>0.5  | ME-MS61<br>Li<br>ppm<br>0.2  | ME-MS61<br>Mg<br>%<br>0.01   | ME–MS61<br>Mn<br>ppm<br>5 | ME-MS61<br>Mo<br>ppm<br>0.05 | ME-MS61<br>Na<br>%<br>0.01   | ME-MS61<br>Nb<br>ppm<br>0.1 | ME-MS61<br>Ni<br>ppm<br>0.2 | ME-MS61<br>P<br>ppm<br>10 | ME-MS61<br>Pb<br>ppm<br>0.5  |
|--------------------------------------------------|-----------------------------------|----------------------------------|--------------------------------|-----------------------------|-----------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|---------------------------|------------------------------|------------------------------|-----------------------------|-----------------------------|---------------------------|------------------------------|
| ORIGINAL<br>DUP<br>Target Range – Lower<br>Upper | Bound<br>Bound                    |                                  |                                |                             |                                   |                              | DUPL                         | ICATES                       |                              |                           |                              |                              |                             |                             |                           |                              |
| ORIGINAL<br>DUP<br>Target Range – Lower<br>Upper | Bound<br>Bound                    | 13.90<br>15.00<br>13.70<br>15.20 | 0.12<br>0.13<br>0.07<br>0.18   | 3.3<br>3.6<br>3.2<br>3.7    | 0.036<br>0.038<br>0.030<br>0.044  | 3.01<br>3.09<br>2.89<br>3.21 | 21.0<br>23.2<br>20.5<br>23.7 | 41.7<br>43.4<br>40.2<br>44.9 | 0.14<br>0.15<br>0.13<br>0.16 | 923<br>993<br>905<br>1010 | 0.27<br>0.29<br>0.22<br>0.34 | 2.62<br>2.72<br>2.53<br>2.81 | 8.5<br>9.1<br>8.3<br>9.3    | 0.4<br>0.4<br><0.2<br>0.6   | 190<br>200<br>180<br>210  | 12.8<br>13.0<br>11.8<br>14.0 |
| X926795<br>DUP<br>Target Range – Lower<br>Upper  | Bound<br>Bound                    |                                  |                                |                             |                                   |                              |                              |                              |                              |                           |                              |                              |                             |                             |                           |                              |
| X926810<br>DUP<br>Target Range – Lower<br>Upper  | Bound<br>Bound                    | 2.25<br>2.29<br>2.11<br>2.43     | <0.05<br>0.05<br><0.05<br>0.10 | 0.1<br>0.1<br><0.1<br>0.2   | 0.007<br>0.007<br><0.005<br>0.010 | 0.03<br>0.03<br>0.02<br>0.04 | <0.5<br><0.5<br><0.5<br>1.0  | 3.8<br>3.5<br>3.3<br>4.0     | 0.32<br>0.35<br>0.31<br>0.36 | 304<br>332<br>297<br>339  | 2.79<br>2.64<br>2.53<br>2.90 | 0.29<br>0.32<br>0.28<br>0.33 | 0.3<br>0.3<br>0.2<br>0.4    | 4.2<br>4.3<br>3.8<br>4.7    | 110<br>120<br>100<br>130  | <0.5<br><0.5<br><0.5<br>1.0  |
| X926815<br>DUP<br>Target Range – Lower<br>Upper  | Bound<br>Bound                    |                                  |                                |                             |                                   |                              |                              |                              |                              |                           |                              |                              |                             |                             |                           |                              |
| ORIGINAL<br>DUP<br>Target Range – Lower<br>Upper | Bound<br>Bound                    | 14.40<br>14.15<br>13.50<br>15.05 | 0.15<br>0.14<br>0.08<br>0.21   | 0.5<br>0.5<br>0.4<br>0.6    | 0.062<br>0.059<br>0.052<br>0.069  | 1.51<br>1.53<br>1.43<br>1.61 | 22.8<br>23.8<br>21.6<br>25.0 | 11.7<br>11.1<br>10.6<br>12.2 | 0.71<br>0.72<br>0.67<br>0.76 | 433<br>440<br>410<br>463  | 2.34<br>2.35<br>2.18<br>2.51 | 2.15<br>2.20<br>2.06<br>2.29 | 5.9<br>5.8<br>5.5<br>6.2    | 9.0<br>8.9<br>8.3<br>9.6    | 280<br>280<br>260<br>300  | 9.7<br>9.6<br>8.7<br>10.6    |
|                                                  |                                   |                                  |                                |                             |                                   |                              |                              |                              |                              |                           |                              |                              |                             |                             |                           |                              |



#### To: TRANSITION METALS CORP. 9C - 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5

Page: 3 - C Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 13-SEP-2021 Account: TRAMET

Project: Cryderman

| Sample Description                               | Method<br>Analyte<br>Units<br>LOD | ME-MS61<br>Rb<br>ppm<br>0.1      | ME-MS61<br>Re<br>ppm<br>0.002       | ME-MS61<br>S<br>%<br>0.01       | ME-MS61<br>Sb<br>ppm<br>0.05    | ME-MS61<br>Sc<br>ppm<br>0.1  | ME-MS61<br>Se<br>ppm<br>1 | ME-MS61<br>Sn<br>ppm<br>0.2  | ME-MS61<br>Sr<br>ppm<br>0.2      | ME-MS61<br>Ta<br>ppm<br>0.05    | ME-MS61<br>Te<br>ppm<br>0.05    | ME-MS61<br>Th<br>ppm<br>0.01     | ME-MS61<br>Ti<br>%<br>0.005      | ME-MS61<br>Tl<br>ppm<br>0.02    | ME-MS61<br>U<br>ppm<br>0.1  | ME-MS61<br>V<br>ppm<br>1 |
|--------------------------------------------------|-----------------------------------|----------------------------------|-------------------------------------|---------------------------------|---------------------------------|------------------------------|---------------------------|------------------------------|----------------------------------|---------------------------------|---------------------------------|----------------------------------|----------------------------------|---------------------------------|-----------------------------|--------------------------|
| ORIGINAL<br>DUP<br>Target Range – Lower<br>Upper | r Bound<br>r Bound                |                                  |                                     |                                 |                                 |                              | DUPL                      | ICATES                       |                                  |                                 |                                 |                                  |                                  |                                 |                             |                          |
| ORIGINAL<br>DUP<br>Target Range – Lower<br>Upper | r Bound<br>r Bound                | 125.0<br>132.0<br>122.0<br>135.0 | <0.002<br><0.002<br><0.002<br>0.004 | 0.04<br>0.05<br>0.03<br>0.06    | 3.86<br>2.90<br>3.08<br>3.68    | 2.1<br>2.1<br>1.9<br>2.3     | <1<br><1<br><1<br>2       | 1.4<br>1.5<br>1.2<br>1.7     | 135.5<br>143.5<br>132.5<br>146.5 | 0.55<br>0.60<br>0.50<br>0.65    | <0.05<br><0.05<br><0.05<br>0.10 | 5.84<br>6.35<br>5.78<br>6.41     | 0.115<br>0.119<br>0.106<br>0.128 | 0.85<br>0.92<br>0.80<br>0.97    | 2.9<br>3.1<br>2.8<br>3.3    | 4<br>4<br>3<br>5         |
| X926795<br>DUP<br>Target Range – Lower<br>Upper  | r Bound<br>r Bound                |                                  |                                     |                                 |                                 |                              |                           |                              |                                  |                                 |                                 |                                  |                                  |                                 |                             |                          |
| X926810<br>DUP<br>Target Range – Lower<br>Upper  | r Bound<br>r Bound                | 0.7<br>0.8<br>0.6<br>0.9         | <0.002<br><0.002<br><0.002<br>0.004 | <0.01<br><0.01<br><0.01<br>0.02 | <0.05<br><0.05<br><0.05<br>0.10 | 2.6<br>2.7<br>2.4<br>2.9     | <1<br>1<br><1<br>2        | <0.2<br><0.2<br><0.2<br>0.4  | 9.4<br>9.6<br>8.8<br>10.2        | <0.05<br><0.05<br><0.05<br>0.10 | <0.05<br><0.05<br><0.05<br>0.10 | 0.03<br>0.04<br>0.02<br>0.05     | 0.074<br>0.081<br>0.069<br>0.086 | <0.02<br><0.02<br><0.02<br>0.04 | <0.1<br><0.1<br><0.1<br>0.2 | 23<br>24<br>21<br>26     |
| X926815<br>DUP<br>Target Range – Lower<br>Upper  | r Bound<br>r Bound                |                                  |                                     |                                 |                                 |                              |                           |                              |                                  |                                 |                                 |                                  |                                  |                                 |                             |                          |
| ORIGINAL<br>DUP<br>Target Range – Lower<br>Upper | r Bound<br>r Bound                | 63.9<br>63.8<br>60.6<br>67.1     | <0.002<br><0.002<br><0.002<br>0.004 | 0.05<br>0.05<br>0.04<br>0.06    | 3.24<br>3.17<br>2.91<br>3.50    | 10.9<br>10.6<br>10.1<br>11.4 | <1<br><1<br><1<br>2       | 11.9<br>11.8<br>11.1<br>12.6 | 151.0<br>151.5<br>143.5<br>159.0 | 0.50<br>0.51<br>0.43<br>0.58    | <0.05<br><0.05<br><0.05<br>0.10 | 10.65<br>10.90<br>10.25<br>11.30 | 0.195<br>0.199<br>0.182<br>0.212 | 0.40<br>0.38<br>0.34<br>0.44    | 1.3<br>1.4<br>1.2<br>1.5    | 66<br>67<br>62<br>71     |
|                                                  |                                   |                                  |                                     |                                 |                                 |                              |                           |                              |                                  |                                 |                                 |                                  |                                  |                                 |                             |                          |
|                                                  |                                   |                                  |                                     |                                 |                                 |                              |                           |                              |                                  |                                 |                                 |                                  |                                  |                                 |                             |                          |
|                                                  |                                   |                                  |                                     |                                 |                                 |                              |                           |                              |                                  |                                 |                                 |                                  |                                  |                                 |                             |                          |



#### To: TRANSITION METALS CORP. 9C - 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5

Page: 3 - D Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 13-SEP-2021 Account: TRAMET

Project: Cryderman

| Sample Description                               | Method<br>Analyte<br>Units<br>LOD | ME-MS61<br>W<br>ppm<br>0.1 | ME-MS61<br>Y<br>ppm<br>0.1   | ME-MS61<br>Zn<br>ppm<br>2 | ME-MS61<br>Zr<br>ppm<br>0.5      |            |
|--------------------------------------------------|-----------------------------------|----------------------------|------------------------------|---------------------------|----------------------------------|------------|
| ORIGINAL<br>DUP<br>Target Range – Lowe<br>Upper  | r Bound<br>- Bound                |                            |                              |                           |                                  | DUPLICATES |
| ORIGINAL<br>DUP<br>Target Range – Lower<br>Upper | r Bound<br><sup>-</sup> Bound     | 0.7<br>0.7<br>0.5<br>0.9   | 21.4<br>23.3<br>21.1<br>23.6 | 67<br>69<br>63<br>73      | 112.5<br>120.0<br>107.0<br>125.5 |            |
| X926795<br>DUP<br>Target Range – Lower<br>Upper  | r Bound<br><sup>-</sup> Bound     |                            |                              |                           |                                  |            |
| X926810<br>DUP<br>Target Range – Lower<br>Upper  | r Bound<br><sup>-</sup> Bound     | 0.2<br>0.2<br><0.1<br>0.3  | 2.2<br>2.3<br>2.0<br>2.5     | 17<br>18<br>15<br>20      | 4.8<br>4.2<br>3.7<br>5.3         |            |
| X926815<br>DUP<br>Target Range – Lower<br>Upper  | r Bound<br><sup>-</sup> Bound     |                            |                              |                           |                                  |            |
| ORIGINAL<br>DUP<br>Target Range – Lower<br>Upper | r Bound<br><sup>-</sup> Bound     | 4.8<br>5.0<br>4.4<br>5.4   | 20.2<br>20.1<br>19.0<br>21.3 | 35<br>36<br>32<br>39      | 15.6<br>15.4<br>13.8<br>17.2     |            |
|                                                  |                                   |                            |                              |                           |                                  |            |



#### To: TRANSITION METALS CORP. 9C - 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5

Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 13-SEP-2021 Account: TRAMET

Project: Cryderman

| Applies to Method: | <b>ANALYTICAL COMMENTS</b><br>REEs may not be totally soluble in this method.<br>ME-MS61                                                                      |  |  |  |  |  |  |  |  |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| Applies to Method: | LABORATORY ADDRESSESProcessed at ALS Sudbury located at 1351–B Kelly Lake Road, Unit #1, Sudbury, ON, Canada.CRU-31CRU-QCLOG-21LOG-23PUL-31PUL-QCSPL-21WEI-21 |  |  |  |  |  |  |  |  |
| Applies to Method: | Processed at ALS Vancouver located at 2103 Dollarton Hwy, North Vancouver, BC, Canada.<br>Au-ICP21 ME-MS61                                                    |  |  |  |  |  |  |  |  |
|                    |                                                                                                                                                               |  |  |  |  |  |  |  |  |
|                    |                                                                                                                                                               |  |  |  |  |  |  |  |  |
|                    |                                                                                                                                                               |  |  |  |  |  |  |  |  |
|                    |                                                                                                                                                               |  |  |  |  |  |  |  |  |
|                    |                                                                                                                                                               |  |  |  |  |  |  |  |  |
|                    |                                                                                                                                                               |  |  |  |  |  |  |  |  |

## **APPENDIX D**

Expenses & Invoices