Ontario \odot

We are committed to providing accessible customer service.
If you need accessible formats or communications supports, please contact us.

Nous tenons à améliorer l'accessibilité des services à la clientèle.
Si vous avez besoin de formats accessibles ou d'aide à la communication, veuillez nous contacter.

2021 DIAMOND DRILLING REPORT K7 SOUTH ZONE SUGAR ZONE PROPERTY DAYOHESSARAH LAKE AREA WHITE RIVER, ONTARIO

$$
\text { NTS 42C/ 10, 11, } 14 \text { and } 15
$$

Latitude $48^{\circ} 48^{\prime} \mathrm{N}$, Longitude $85^{\circ} 10^{\prime} \mathrm{W}$

Dates Work Performed October 23, 2021 to April 03, 2022
for
Harte Gold Corporation 161 Bay Street Suite 2400
Toronto, Ontario
M5J 2S1

TABLE OF CONTENTS

1.0 Introduction 1
2.0 Property Location and Description 2
2.1 Location and Access 2
2.2 Description of Mining Claims 3
2.3 Physiography and Vegetation 3
3.0 Historical Work 4
4.0 Geological Setting 13
4.1 Regional Geology 13
4.2 Property Geology 14
5.0 Mineralization 17
5.1 Sugar Zone 17
5.2 K7 South Zone 18
6.0 2021 Diamond Drilling 18
6.1 Sample Collection, Preparation, Analyses and Security 18
6.2 Laboratory Methods 19
6.3 2021 K7 South Drilling 23
6.4 Results 23
7.0 Conclusions and Recommendations 24
8.0 Costs 24
9.0 References 28
10.0 Statement of Qualifications 29

LIST OF FIGURES

Figure 1 - Property Location 2
Figure 2 - Claim Position, Regional Geology and Occurrences 4
Figure 3 - Regional Geology 14
Figure 4 - Property Geology 16
LIST OF TABLES
Table 1 - K7 South Zone - Drill Hole Summary Table 23
Table 2 - K7 South Zone - Assay Results Per Hole. 23
Table 3 - K7 South Zone - Summary of Costs. 24
Table 4 - K7 South Zone - Cost per Claim 25
Table 5 - K7 South Zone - DDH Program Cost Summary 26
Table 6 - K7 South Zone - Analytical Cost Summary 27

APPENDICES

Appendix A - Property Claims List
Appendix B - Geological Legend
Appendix C - K7 South Zone - 2021 Drill Hole Logs
Appendix D - K7 South Zone - 2021 Drill Hole Cross Sections
Appendix E - K7 South Zone - 2021 Drill Hole Plans
Appendix F - K7 South Zone - 2021 Actlabs Assay Certificates
Appendix G - K7 South Zone - 2021 Actlabs Invoices
Appendix H - K7 South Zone - 2021 G4 Drilling Invoices
Appendix I-Sugar Zone Property Map

Executive Summary

Between October 23, 2021 to November 18, 2021 Harte Gold Corporation performed a 3-hole, $1,140.0$ meter diamond drill program at the K7 South Zone. The K7 South Zone is located approximately 14 kilometers south of Harte Gold's Sugar Zone Mine on the Sugar Zone property. The property is located in the Dayohessarah Lake area, and is situated northeast of White River, Ontario. One drill rig (G4-09) was supplied by G4 Drilling Canada Ltd. to perform the drilling.

The intent of the 2021 K7 South Zone drill program was to drill test several, moderate to strong VLF anomalies that are coincident with weak to moderately anomalous gold and base metal values obtained by prospecting and trenching. A total of $\$ 250,584$ was spent on this drill program which included costs such as drilling, assays and salaries, etc. The average cost per meter was \$219.81.

A high of $0.98 \mathrm{~g} / \mathrm{t}$ over 1.0 m from K7S-21-01 was obtained from the drill program. Narrow, weak gold values were also obtained from K7S-21-02 and 03.

The Sugar Zone property lies within in the Dayohessarah Greenstone Belt ("DGB"). The DGB is part of the larger, east trending Schreiber-White River Belt of the Wawa Subprovince of the Superior Craton. The DGB is situated between two larger greenstone belts; the Hemlo Greenstone Belt to the west and the Kabinakagami Greenstone Belt to the east. The DGB has an active history of exploration dating back to 1969 when Canex Aerial Exploration Ltd. drilled three holes on the property. Exploration ramped up after the discovery of Hemlo, when Pezamerica Resources commenced geophysics and drilling.

In 1998, Harte Gold Corp. entered into an option agreement on most of the unpatented mining claims comprising the Sugar Zone property, including the Sugar Zone. Harte subsequently entered into a Joint Venture agreement with Corona Gold Corporation and in 2012 Harte Gold acquired Corona's portion of the Sugar Zone property to become the 100\% owner and operator of all the claims. Harte Gold subsequently conducted extensive advanced exploration at the Sugar Zone including a successful 70,000 tonne bulk sample in 2017. After a successful development and commissioning period commercial production was officially declared for the Sugar Zone Mine on January $8^{\text {th }}, 2019$.

1.0 Introduction

The K7 South Zone is located in the south-central section of the Sugar Zone property approximately 14 kilometers south of the Sugar Zone Mine (Figure 2). The K7 South Zone is one of several gold occurrences identified on the Sugar Zone property. The property is located in the Dayohessarah Greenstone Belt. This greenstone belt is part of the larger, east trending SchreiberWhite River Belt of the Wawa Subprovince of the Superior Craton (Figure 3).

This report will summarize and discuss the results of the diamond drill program conducted between October 23, 2021 to November 18, 2021 by Harte Gold Corp. on the Sugar Zone property. The drill report was written from March 30 to April 03, 2022.

All K7 South Zone holes were drilled on claims permitted by Exploration Permit PR-18-000291.
UTM coordinates are in NAD 83, Zone 16U projection.

2.0 Property Location and Description

2.1 Location and Access

The Sugar Zone property is situated approximately 25 km northeast of the town of White River (Trans-Canada Highway No. 17) and 60 km east of the Hemlo gold camp. The property is approximately equidistant from Sault Ste. Marie to the south-east and Thunder Bay to the west (Figure 1). The overall property encompasses NTS zones 42C/ 10, 11, 14 and 15 and the gold mineralized occurrences are exposed at Latitude $48^{\circ} 48^{\prime}$ north, Longitude $85^{\circ} 10^{\prime}$ west. The property covers parts of the Odlum, Strickland, Gourlay, Tedder, Hambleton, Cooper, Nameigos, Abraham and Bayfield Townships, and falls within the Sault Ste. Marie Mining Division.

The property can be accessed via a series of logging roads and drill trails extending north from the community of White River. Access is also available by way of float plane, based in White River via Dayohessarah Lake or Hambleton Lake, and by helicopter based in Wawa or Marathon.

Figure 1 - Property Location
The western and southern portions of the property are accessible via a series of logging roads controlled by White River Forest Products Limited. Road No. 100 extends north from the western end of White River. Road No. 200 intersects Road No. 100 approximately 20 km from Highway 17 and provides access to the western and southern portions of the property. Road No. 300 intersects Road No. 100 approximately 36 km from Highway 17 and provides access to the very
northern portion of the property. Road No. 305 intersects Road No. 300 approximately 6 km from Road No. 100 and provides access to northern and eastern parts of the property. Road access to within 400 m of the Sugar Zone is available via a small road heading south and southwest from Road No. 305 for 8.8 km . From there, access to the Sugar Zone is available via all-terrain or tracked vehicles in the summer, and snowmobiles, tracked vehicles and trucks in the winter. The distance from White River to the Sugar Zone is approximately 60 km by road.

Areas surrounding Dayohessarah, Hambleton, Strickland and Pike Lakes are designated by the Ontario Ministry of Natural Resources as 'Restricted Access'. Locked gates on Road No. 200 and Road No. 305 control vehicular access in order to prevent access to remote lodge operations on two lakes. Permits are required for road access to most of the Sugar Zone property for mineral exploration purposes.

2.2 Description of Mining Claims

The Sugar Zone property consists of four mining leases comprising 1467.26 hectares, including 81 boundary cell claims, 47 single cell claims, 197 multi-cell claims (Appendix A). All claims of the Sugar Zone property are held in the name of Harte Gold Corporation. The property boundaries, claim lines, and location of the TT8 and Big Bear Zones are shown in Figure 2.

There are two mining alienations which border parts of Harte's current claim block. The largest (W-LL-C1521) lies to the east of the current claim area and shortly borders claim 4260617 on the east, and Hwy 631 on the west. The second alienation (No. 2847) lies completely within Harte's current claim block, west of Dayohessarah Lake. Surface rights are held by the Crown and timber cutting rights are held by White River Forest Products Ltd.

In 1998, Harte Gold Corp. (Harte) entered into an option agreement on most of the unpatented mining claims comprising the Sugar Zone property, including the Sugar Zone. Harte Subsequently entered into a Joint Venture agreement with Corona Gold Corp.

The original claims are subject to a 3.5% net smelter royalty ("NSR"). The Joint Venture participants, namely Corona (51%) and Harte (49%), have the option of acquiring 1.5% of the 3.5% NSR for $\$ 1.5$ million, in proportion to their respective interest and have, in addition, the right of first refusal on the remaining 2.0% NSR.

Harte and Corona entered into an Option Agreement (the "Corona Option") dated May 28, 2010, entitling Harte to acquire Corona's 51% interest in the Sugar Zone Joint Venture upon completion of certain conditions. Effective March 10, 2010, Harte became the Operator of the Sugar Zone Joint Venture for as long as the Corona Option remained in good standing. Harte completed all required conditions and as of May 23, 2012 acquired Corona's 51\% interest to become the 100\% owner and operator of all of the claims which were previously part of the Sugar Zone Joint Venture.

2.3 Physiography and Vegetation

The climate is northern boreal, with short hot summers and cold, snowy winters. Some field operations, such as drilling, can be carried out year-round while other operations, such as prospecting and mapping, can only be carried out during the late spring, summer and early autumn months.

The temperatures can range from $-35^{\circ} \mathrm{C}$ in the winter to $+30^{\circ} \mathrm{C}$ in the summer; though the mean temperatures are around $-20^{\circ} \mathrm{C}$ to $+20^{\circ} \mathrm{C}$. Rainfall is about 727 mm annual average, with the wettest month being September (120 mm average). Snow is abundant, often reaching several metres with December and January having the heaviest snowfall (about 80 cm). Snow is on the ground by late October and the ice begins to thaw on the lakes by April.

Figure 2-Claim Position, Regional Geology and Occurrences
The topography on the property varies from moderate to rugged, with lake levels generally at 390 m above sea level, and occasional hills up to 480 m elevation. The overburden is generally between 0 to 20 m deep on the property, with occasional boulderer terrain, and normally approximately 2 to 3 m overlying the Sugar Zone. Vegetation is boreal, with jack pine, fir, poplar and birch occupying dry uplands and cedar, tamarack and spruce growth on more poorly drained terrain.

3.0 Historical Work

Exploration for gold and base metals has been conducted on the Dayohessarah property since 1969. After over 10 years of very little work, exploration started to pick up on the property again in 1983, after the discovery of the Hemlo Gold camp. A complete timeline of mineral exploration/mine site development on the DGB is presented below.

1969 Canex Aerial Exploration Ltd. drilled three diamond drill holes in the vicinity of the mafic/ultramafic intrusives and flows near the north end of Dayohessarah Lake. Results include an intersection of $0.326 \% \mathrm{Ni}$ and 0.08% Cu over 5 ft . in metagabbroic rocks.

1983-1986 Pezamerica Resources Limited conducted an exploration program which included an airborne Mag and EM survey that outlined thirty-one (31) geophysical anomalies in the area. Twenty-four (24) of these anomalies were investigated by Teck Exploration on behalf of Pezamerica. Teck Exploration drilled nine airborne geophysical targets based on coincidental soil gold anomaly trends. In all cases, the airborne anomalies were explained by pyrite/pyrrhotite rich horizons within felsic volcanics. Hole PZ-6 returned appreciable amounts of sphalerite mineralization ($0.47 \% \mathrm{Zn}$ over 2.8 feet). None of the assayed core returned significant gold values.

1990 Most of the DGB is staked by a prospecting syndicate.
1991 The property is optioned from the prospectors by Hemlo Gold Mines Inc. Initial prospecting uncovered the gold-bearing Sugar Zone deposit. Based on bedrock exposure and trenching, the Sugar Zone was traced for 750 m , and a ground IP survey outlined the Sugar Zone structure extending for 1,500 meters.

1993 Hemlo Gold conducted a preliminary diamond drill program to test the Sugar Zone for economic gold mineralization. A grid was cut with a 6-km baseline and tie-lines ranging in spacing between 100 m and $1,000 \mathrm{~m}$. Six diamond drill holes were completed totaling 800 m . All drill holes intersected significant gold mineralization in the Sugar Zone. A small trenching program is initiated on the Sugar Zone.

1994 Hemlo Gold proceeds with initial geological mapping, prospecting and a follow-up drill program. Fifteen diamond drill holes are completed on the property, totaling $2,416 \mathrm{~m}$. Eight of the drill holes intersected the Sugar Zone. An I.P. survey is completed over the southern portion of the property, and a Mag survey is completed over the entire grid. After the exploration program, the property was returned to the prospecting syndicate who initially staked the ground, due to legal reasons.

1998-1999 Most of the property is optioned from the prospector's syndicate. The mining claims were subject to a Joint Venture agreement between Corona Gold Corporation (51\%) and Harte Gold Corp. (49\%). Corona was the operator. The initial 313 claims are subject to a 3.5% net smelter royalty ("NSR"), and the Joint Venture participants have the option to acquire 1.5% of the 3.5% NSR for $\$ 1.5$ million, and have the right of first refusal on the remaining 2.0% NSR.

Corona carries out an extensive exploration program. The existing grid was rehabilitated and new grid lines established east of Dayohessarah Lake. In total, 96.1 km of grid lines with 100 m spacing oriented at 320° azimuth are cut over the Sugar Zone area. An oriented soil sampling program is carried out on the grid, as well as mapping and sampling. Prospecting was limited to the Sugar Zone and extensions of the Sugar Zone to the south and to the north. A surface power trenching program is conducted on parts of the Sugar Zone and six trenches were excavated, washed, channel sampled and mapped in detail. A detailed Mag-VLF and reconnaissance gradient I.P. survey is performed on the property.

A diamond drilling program totaling $9,937 \mathrm{~m}$ of NQ core in 53 holes is completed, mostly into and around the Sugar Zone. The drill holes cover 3 km of strike length, and intersect the zone at
approximately 50 m spacing at shallow depths. A secondary purpose of the program was to follow-up low grade mineralization encountered in previous drilling by Hemlo Gold and to test previously untested/poorly tested I.P. anomalies west of the Sugar Zone and east of Dayohessarah Lake.

Preliminary Mineral Resource estimates of the Sugar Zone mineralization in the 12000 N to 13100 N area were prepared, based on the drilling program noted above. Another estimate was made, using revised and refined criteria and polygonal methods, in the spring 1999, following additional data evaluation (Drost et AI, 1998).

2003-2004 Corona conducts a diamond drilling program totaling $7,100 \mathrm{~m}$ in 26 holes. The drill program mostly intersects the Sugar Zone and is successful in its purpose of expanding the strike and dip extent of the zone, as well as increasing the level of confidence in the continuity of mineralization by in-fill drilling.

2004 Corona conducts another diamond drilling program totaling $3,588 \mathrm{~m}$ in 11 holes. The program is successful in increasing the mineralization extent of the Sugar Zone, as well as increasing the defined Sugar Zone depth to a vertical depth of 300 m . A new Mineral Resource estimate was completed.

2008 A helicopter airborne geophysical survey was flown over the property by Fugro Airborne Surveys Corp., under contract from Corona. The survey used a DIGHEM multi-coil, multifrequency electromagnetic system along with a high sensitivity cesium magnetometer. A total of 1,917 line-km was flown. It was recommended by Dave Hunt P.Geo. that compilation of historic exploration data on the remainder of the property be followed by a program of reconnaissance mapping and prospecting to evaluate the Fugro airborne conductor axes on the ground, as well as to identify additional target areas extending both north and south of existing Sugar Zone mineralization and elsewhere on the property.

2009 During March, Corona undertook a drilling program totaling $2,020 \mathrm{~m}$ in 10 holes. The purpose of the program was to test airborne electromagnetic conductors, magnetic anomalies, induced polarization chargeability anomalies and geologically defined possible extensions to the north and the south of the known Sugar Zone mineralization.

During July to September, a prospecting, reconnaissance geological mapping and channel sampling program was undertaken on geophysical targets outlined by the Fugro airborne geophysical anomalies. Highlights included sampling of a float rock (Peacock Boulders) returning a value of $87.80 \mathrm{~g} / \mathrm{t} \mathrm{Au}$, as well as grab samples from quartz veining east of the Sugar Zone returning values of 30.40 and $9.04 \mathrm{~g} / \mathrm{t} \mathrm{Au}$.

2010 Harte Gold Corp. initiated its first drilling program. During March, a diamond drill program totaling 2,097.31 m in 12 holes, two of which were aborted before reaching the Sugar Zone. The program was successful in locating a high-grade area of the Sugar Zone located near surface and directly under a series of surface trenches. The drill program was also successful in determining that the Sugar Zone has significant mineralization below 300 m depth.

Ground IP is completed over a grid totaling 20,475 meters. Chargeability from the survey outlines a potential zone north of the Peacock Boulder discovery of 2009. 5 Trenches totaling 1,850 square meters were completed over and around the newly discovered Wolf Zone.

A total of $5,387.94 \mathrm{~m}$ of diamond drilling totaling 33 drill holes was completed on the newly discovered Wolf Zone. Results outlined a small, high grade zone with a strike length up to 600 m and a depth up to 250 meters.

2011 Between May and June 2011 two more grids totaling 60,800 meters were completed over the fold nose near the north end of the of the Sugar Zone property, on the west side of Hambleton Lake. Follow up ground IP was completed on the grids by JVX Geophysical Surveys. A small 5,200-meter grid was also cut, and ground IP completed on the west side of Dayohessarah Lake, in an attempt to outline a Gossan Zone.

A Bore Hole survey was completed In August 2011 on eleven deep drill holes in the Sugar Zone. The Bore Hole survey outlined several conductors in the area. An airborne VTEM survey was completed at the end of August by Geotech Ltd. The survey covered the entire property and outlined 5 large moderate to strong conductive areas of interest. The most exciting result of the survey was a potential copper-nickel ore body below the surface, under the komatiite volcanics at the northern end of Dayohessarah Lake.

There were two main drill programs in 2011. The first was on the Sugar Zone, between February 11 to April 13, and again between July 17 and November 24, 2011, and totaled $7,885.74$ meters of diamond drilling in 27 drill holes. The drilling was designed to expand the resource estimate both at depth, and to upgrade inferred resource to indicated resource. The second drill program targeted IP anomalies on the Fold Nose grid. A total of 3,430.93 meters were drilled in 15 diamond drill holes. Most IP anomalies were explained by sedimentary layers, and no significant intercepts were observed.

2012 In April 2012, Geotech Ltd. carried out a helicopter borne geophysical survey over the Sugar Zone property. The program was completed as an extension of the airborne VTEM survey conducted in 2011 which totaled 302 line-km of data over the northern parts of Dayohessarah Lake and western parts of Hambleton Lake and the shoreline. The 2012 program totaled 1,153 line-km of data essentially covering the rest of the Dayohessarah Greenstone Belt.

In an effort to understand the source of the Peacock boulders, thin sections of three Peacock boulder samples were sent to Pleason Geoscience for analysis. The boulders returned assay values of $87.30 \mathrm{~g} / \mathrm{t} \mathrm{Au}, 52.80 \mathrm{~g} / \mathrm{t} \mathrm{Au}$ and $37.20 \mathrm{~g} / \mathrm{t} \mathrm{Au}$. It was noted that the mineralogy and microtextures of the samples were similar to gold-bearing zones at the Hemlo and Musselwhite gold camps.

Between October 30, 2012 and November 2, 2012 four mechanical trenches were made along the surface exposure of the Sugar Zone. The purpose of the trenches was to expose enough high-grade material from the Lower Zone of the Sugar Zone for a reasonably representative blasting program. The total area of the trenches is 1,799 square meters.

During the period January 21, 2012 to July 29, 2012 a total of 6,283.92 meters were drilled in 12 diamond drill holes targeting the Sugar Zone. The drilling was carried out by Major Drilling Group International Inc. The purpose of the diamond drilling program was to expand the current Mineral Resource Estimate of the Sugar Zone at vertical depths below 400 m , and to test the continuity, grade and width of the zone at $1,000 \mathrm{~m}$ vertical depth. The program was successful in defining Au mineralization in both the Upper and Lower Zones with significant assay results ranging from $0.56 \mathrm{~g} / \mathrm{t} \mathrm{Au}$ to $162 \mathrm{~g} / \mathrm{t} A u$.

An additional 2 drill holes targeted an IP north-east of Dayohessarah Lake. These exploration holes totaled 375 meters and did not return any significant gold values.

Two holes totaling 333 meters were drilled targeting an extension of the Wolf Zone. No significant assays were returned.

2013 Exploration in the 2013 season included a short prospecting program, where 46 samples were taken and analyzed for Au using fire assay. Two samples returned Au values of $10.2 \mathrm{~g} / \mathrm{t}$ and $0.73 \mathrm{~g} / \mathrm{t}$.

Four holes were drilled on the Halverson Zone, totaling 1103.28m These holes targeted $\mathrm{Cu}-\mathrm{Ni}$ mineralization discovered in 2011 by a VTEM survey.

An additional 17 diamond drill holes totaling 1356m were drilled to decrease the spacing between holes in a high-grade portion of the Sugar Zone Lower Zone (called Jewelry Box). Significant intervals from this program ran from $2.77 \mathrm{~g} / \mathrm{t}$ Au to $28.5 \mathrm{~g} / \mathrm{t}$ Au over widths from 0.35 m to 8.27 m .

Harte Gold continued moving forward with the permitting and optimization of the advance exploration 70,000 tonne bulk sample at the Sugar Zone. Confirmation drilling at the Jewelry Box Zone (JBZ) returned significant high-grade gold assays and enabled Harte Gold to re-design the bulk sample target areas in order to test this high-grade portion of the Sugar Zone deposit. The JBZ lies close to surface and can be developed quicker and more cost effectively.

Harte Gold also completed road construction to provide highway access to the property and survey work associated with taking certain of the Sugar Zone property mining claims to lease. Harte Gold is also in the process of negotiating contract mining and off-site milling agreements.

Harte Gold completed a regional exploration program and Induced Polarization (IP) survey with the objective of finding the source of the high-grade Peacock Boulders which returned gold values up to $87 \mathrm{~g} / \mathrm{t}$. Drill targets have been identified and are scheduled to be drilled during the summer of 2014.

2014 Harte Gold continued to advance the Sugar Zone "Advanced Exploration and Bulk Sample Project" during 2014. Efforts focused on completing the permitting associated with the amended closure plan, completing the road to the portal site and overall optimization of the mining plan developed in the 2012 Preliminary Economic Assessment.

Additional confirmation drilling at the Jewelry Box Zone (JBZ), the target area for the bulk sample, returned significant high-grade gold assays providing additional confirmation to mining contractors developing bids for the project.

2014 was a busy year of exploration, Induced Polarization and magnetometer surveys were conducted over a majority of the core mining claims and generated numerous drill targets. Follow up ground proofing and drill programs identified the Wolf Zone as the source of the high-grade Peacock Boulders and lead to the discovery of the Contact Zone, where a sericite schist was found to have Hemlo-style geochemistry and anomalous gold as well as a third mineralized zone known as the Footwall Zone and located 50 meters east of the Sugar Zone deposit.

During 2015 Harte Gold completed additional exploration drilling that extended the Sugar Zone deposit 300 meters south of its previously defined boundary.

Harte Gold completed additional construction work on the site access road linking the Sugar Zone deposit to Highway 631 and completed the lease application process for certain mining claims that comprise the Sugar Zone property. The leases cover the Sugar Zone deposit and immediately surrounding area and are a requirement for commercial production.

20152015 was a pivotal year for Harte Gold as efforts to move the project ahead during a challenging mining market finally culminated in October with the first portal blast at the Sugar Zone. Since October the ramp was advanced to over 850 meters in length and begun shipping ore to Barrick Gold for custom milling from ore developed on the 375 level.

With production under our bulk sampling program well underway, the commercial permitting process has begun. This process is expected to take 12-18 months which may coincide well with completion of the bulk sample program. During the intervening period, the plan is to continue with underground development which would include the ramp, underground infrastructure including ventilation and setting up stopes to be ready for mining.

The commercial production target is 600 tonnes/day. Milling options are currently being studied and a tailings facility will form part of our permit application so that an on-site milling facility can eventually be built.

Harte gold initiated a significant geophysical program between the Sugar Zone and the Wolf Zone. The Contact Zone where Hemlo-style mineralization has been found in sericite schists up to 45 meter wide and the Gossan Zone located on the west side of Dayohessarah Lake will be a focus for future exploration.

20162016 was a very busy year for Harte Gold as mining was in full swing with ore being delivered to Barrick Gold Corporation's Hemlo mill throughout the year.

Exploration efforts both near-mine and regionally are progressing at an aggressive pace with 6 drill rigs now working at the Sugar Zone and the newly discovered Middle Zone and the Wolf Zone. It is expected that the next resource update will include resources at the Middle Zone which could be incorporated into an updated mine plan and Technical Report.

2017 At the Sugar Zone deposit four drill rigs are actively completing infill and step-out drilling to move resources to the Measured, Indicated and Inferred categories. Infill drilling at the Sugar Zone upper 500 meters is now complete and work on an updated resource statement is underway. Step-out drilling targeting resource extensions at a depth below 500 meters is currently underway to extend the down-dip extension to 1,000 meters targeting Inferred resources. Step-out drilling at the Sugar Zone has returned significant intersections to the north within a previously undrilled area. This work has brought Sugar Zone mineralization to within 300 meters of the Middle Zone, further suggesting potential convergence of both zones

Drilling at the Middle Zone continues with three drill rigs active. Drilling has returned some excellent results including intersections of $13.02 \mathrm{~g} / \mathrm{t}$ gold over 4.50 meters in hole WZ-17-79W and $13.68 \mathrm{~g} / \mathrm{t}$ gold over 7.02 meters in hole SZ-17-86W. Hole WZ-17-92 confirms mineralization continues north of the Gabbro intrusion towards the Wolf Zone. One drill rig is being mobilized to test mineralization north of the Gabbro intrusion.

A property-wide MAG and HTEM survey has been completed and results interpreted. The MAG has been instrumental in outlining the geologic structures on the property and combined with the HTEM survey, has identified five new significant anomalies on the property. The strongest
conductor is on the west side of the property and is hosted at the contact of a volcanic and sedimentary unit, now referred to as the "Eagle Zone".

Early drilling at the Wolf, Lynx and Fisher Zones has demonstrated on-strike continuity of mineralization. Further definition of these areas will be enhanced using down-hole geophysics to better define potential mineralized structures and refine drill targets.

IP geophysics and soil sampling completed over the summer at the Marten Zone have identified areas to be drilled. Historical grab samples have returned anomalous gold, lead and zinc within the target area.

Technica Group Inc. completed the 30,000 tonne Phase 1 Commercial Production program. Five development sills are now developed in this area and is ready to begin long-hole drilling and mining of the stopes in the late spring to match the commissioning of the mill. Technica is now completing the upgrades of the underground power and ventilation critical for the start of commercial production.

Civil works for the mill began in Q2 as well as site preparation of the tailings management facility. The outer wall footings of the mill are completed, erection of walls is underway to prepare for the mill building shell and foundation work is well under way. It is expected the mill building will be fully erected by year end. Most equipment has been ordered and has begun arriving at site.

2018 A Mineral Resource Estimate dated February 15, 2018 contains an Indicated Mineral Resource Estimate of $2,607,000$ tonnes grading $8.52 \mathrm{~g} / \mathrm{t}$ for 714,200 ounces of contained gold and an Inferred Mineral Resource Estimate of 3,590,000 tonnes, grading $6.59 \mathrm{~g} / \mathrm{t}$ for 760,800 ounces of contained gold, using a $3.0 \mathrm{~g} / \mathrm{t}$ Au cut-off. The Company also completed a Preliminary Economic Assessment with an effective date of March 31, 2018, outlining 80,700 ounces of annual average gold production at an All-In Sustaining Cash Cost ("AISC") of US\$708/oz Au over an 11-year mine life.

All commercial production permits were issued in September. Process plant construction and transition to grid power were completed in September. First gold production was announced in mid-October. Gold doré bars are being produced through the gravity circuit and a high-grade concentrate is being produced through the flotation recovery circuit for offsite processing.

Official Mine Opening which was attended by the Premier of Ontario and Minister of Energy, Northern Development and Mines occurred October 24th, 2018. The Company bought down the royalty on the Sugar Zone property from 3.5% to 2.0% effective October 31, 2018.

Process plant commissioning was completed in early November. Since that time the Company has increased throughput to achieve the initial targeted rate of 575 tpd .

Sill development is on-going and long-hole stoping between the 140 and 155 levels off the Sugar Zone South ramp has begun. Results of the first production stope blast achieved expectations.

Underground development continues at the Sugar Zone North and South ramps. During September, the average advance rate of 8 meters per day was ahead of plan. The installation of critical underground infrastructure to support ventilation, power and pumping has been completed. In addition, the mine return air ventilation fan was successful installed and the transition to grid power for most site power requirements substantially completed. Redpath is ramping up its underground mine personnel to achieve targeted ore sill development rates. Harte Gold's current
permits allow for underground mining and mill processing rates of 550 tpd and 575 tpd respectively. Harte Gold will apply to increase both categories to 800 tpd in Q1 2019.

Near Mine Exploration infill drilling at the Sugar and Middle Zones for 2018 has concluded. Approximately 62,000 meters was drilled with a focus on the upgrade of Inferred Mineral Resources to the Indicated category. The drill program was successful and is expected to improve overall modelled grade of the Resources. Results will be factored into an updated $\mathrm{NI} 43-$ 101 Mineral Resource Estimate targeted for early 2019. Step-out drilling underway will continue to mid-December. Approximately 30,000 meters has been drilled to-date, targeting extension of known mineralization at the Sugar, Middle and Wolf Zones, as well as discovery of new potential zones of mineralization like the Fox Zone. Information provided from the Company's downhole IP program completed in August has been successful identifying several drill targets, including a chargeability anomaly currently being drilled to test the convergence of the Middle and Wolf Zones. Downhole geophysics has been a highly successful tool used in the past; earlier work led to the deep Sugar Zone discovery at a depth of 1,000 meters. The Company has also started deep drilling at the Sugar Zone, approximately 1,500 meters below surface and 500 meters below the current extent of Inferred Mineral Resources, illustrated below. The intent of deep drilling is to test continuity of mineralization down dip and to potentially follow up with further downhole IP to develop deep drilling targets.

2019 Commercial production was officially declared for the sugar zone mine on January $8^{\text {th }}$ 2019 after a successful commissioning period. The start up, commissioning and commercial production was achieved over a duration of three months. Permits initially allowed for 575 tonnes per day of production but on May $3^{\text {rd }} 2019$ the Ministry of Energy and Northern Development and Mines and the Ministry of Environment conservation and Parks, issued permits authorizing an increase in mine production to 800 tpd. Production continued to ramp up in the ladder half of the year and in August 2019 it was stated that gold production had increased 42\% quarter over quarter (Q1 to Q2) to 7754 ounces with an average head grade of $6.01 \mathrm{~g} / \mathrm{t}$. The mill processed 53,216 tonnes of ore (591 tpd average) which was a 39% increase quarter over quarter (Q1 to Q2).

On February $20^{\text {th }} 2019$ an updated NI 43-101 Resource Report based on 90,000 meters of 2018 drilling was released. The report announced indicated mineral resources at 1.1 million ounces grading $8.12 \mathrm{~g} / \mathrm{t}$ Au and inferred mineral resources at 558,000 ounces grading $5.88 \mathrm{~g} / \mathrm{t}$ Au. It also confirmed grade continuity within the sugar zone as well as an extension of mineralization along strike to the Wolf Zone. An updated feasibility study was also subsequently released on April $8^{\text {th }}$ 2019 indicating a probable mineral reserve of 3.9 million tonnes at $7.1 \mathrm{~g} / \mathrm{t} \mathrm{Au}$.

Near-mine infill drilling continued in 2019 and was focussed on the Middle and Sugar Zone-South areas. Drill results released on August $14^{\text {th }} 2019$ announced an increase to the mineralized extent of the Sugar Zone; mineralization was extended 300 m south along strike and 200 m down dip. Mineralized intersections returned values up to $23.59 \mathrm{~g} / \mathrm{t}$ Au over 2.02 m . An extension of the upper zone along strike and down dip was also announced, further adding to mineable resources.

Regional exploration on the property in 2019 included prospecting, VLF surveys, and diamond drilling (Hambleton Lake, TNT, K7, and Flat Lake areas). Prospecting in the summer has revealed gold zinc and copper values of up to $253 \mathrm{ppb}, .79 \%$ and $.69 \%$ respectively north-northeast of the Sugar zone which potentially suggests a trend in excess of 10km. Drilling results from Hambleton Lake and K7 returned anomalous gold values of up to 730 ppb. On December $2^{\text {nd }} 2019$ Harte

Gold announced the discovery of a new high grade gold showing called the TT8 Zone located approximately 16.5 km Southeast of the Sugar Zone. Initial surface chip sampling showed gold values from $11 \mathrm{~g} / \mathrm{t}$ to $247 \mathrm{~g} / \mathrm{t}$ along a 40 meter strike length hosted in a mafic and greywacke sediments. Hanging wall and footwall samples also ran gold values up to $2.64 \mathrm{~g} / \mathrm{t}$. The area had previously been mapped as tonalite by the OGS and is believed to be an extension of the Nameigos Greenstone belt.

2020 Regional exploration on the property in 2020 was focused predominately on the TT8 Zone and surrounding area. Work completed included diamond drilling, soil sampling, geophysical surveys, and prospecting. Drill results from the winter 2020 drill program were positive with the TT8 quartz vein intersected in 13 of the 15 holes drilled. Highlights of the drill assays include $11.14 \mathrm{~g} / \mathrm{t}$ Au over 1.18 metres, in TT8-20-01 and $33.1 \mathrm{~g} / \mathrm{t}$ Au over 0.68 metres in TT8-20-06. This expanded mineralization 300 metres along strike and 600 metres down-dip from the original showing.

On November 12, 2020 Harte Gold announced that summer prospecting had returned five new gold showings on strike with the previously discovered TT8 Showing. These new showings extend the TT8 mineralization trend to 11 km . Initial channel sampling and grab samples from these showings have revealed gold values up to $102 \mathrm{~g} / \mathrm{t}$ in quartz veins and $2.8 \mathrm{~g} / \mathrm{t}$ in the hanging and footwall rocks. In addition to this, prospecting also confirmed the connection of the Kabinakagami Lake Greenstone Belt and the Dayohessarah Lake Greenstone Belt via a narrow extension running through the TT8 area.

In December 2020 a short 6 hole, 527 meter drill program was conducted on the Money Zone to test it's on-strike and down-dip potential.

In 2021 exploration focused on conducting IP-mag surveys along the 11 km of new greenstone belt discovered in 2020, in particular where the six new high-grade gold showings (TT8, Money, Smokin' Aces, Long Shot, Big Bear and Southern) are located. This was followed by drilling 46 holes totalling 4,939 meters primarily along strike and down-dip of the six high-grade gold showings. Multiple IP-mag targets remain to be tested along the 11 km of new greenstone belt. Several high-grade gold intervals were intersected near the Money, TT8 and Big Bear showings. During 2021 additional drill programs were conducted at the 007, Fisher, Hambleton, K7 South and Lynx Zones. Prospecting was also carried out on all 142.9 line-km of grid lines that were cut in early 2021 for the IP-mag surveying. Prospecting was also carried out in the 007 Zone area. Exsics Exploration also conducted 30 days of prospecting in the Flat Lake area. No significant gold values were obtained from this work. A downhole IP survey was also conducted in four holes located in the Hambleton Zone to follow-up wide zones of pink-brown biotite alteration hosting minor po-py mineralization. This type of alteration and mineralization is present at the SugarMiddle Zones. A review of the drill hole geochemistry and lithological model for the Sugar Zone deposit was also conducted by Mr. Simon Griffiths, Third Planet Exploration Services Ltd. Mr. Griffiths also reviewed the soil geochemical results from the Hambleton Zone with the intent of finding pathfinder elements to be use during mine and regional exploration. A total of 775 soils samples were also taken by The Haveman Brothers at the Hambleton West grid as follow-up to recommendations made from Mr. Griffiths, Third Planet Exploration. SGS Canada Inc. was also contracted to conduct a lithological model of the Sugar Zone property. Mr. Blair Hrabi, SRK Consulting also conducted detailed structural mapping and interpretation of the TT8, Money and 007 Zones. Pioneer Exploration were contracted to perform detailed drone-mag surveys of the Hambleton, Lynx-K7 and Cigar Lake areas. Mr. Joe Mihelcic, Clearview Geophysics Ltd.
conducted a geophysical review of all ground and airborne geophysics conducted on the Sugar Zone property. Limited trenching was also performed at the K7 South and 007 Zones. In the spring of 2021 Sumac Geomatics Inc. were contracted to perform a property wide LIDAR survey which also included detailed orthophotos. Vancouver Petrographics also performed detailed petrographic work on ten core samples from the TT8 area to assist in determining differences between greywacke sediments and tonalite intrusive in the area.

4.0 Geological Setting

4.1 Regional Geology

The DGB is situated between two larger greenstone belts; the Hemlo Greenstone Belt to the west and the Kabinakagami Greenstone Belt to the east. These greenstone belts are part of the larger, east trending Schreiber-White River Belt of the Wawa Subprovince of the Superior Craton (Figure 3). The Late Archean DGB trends northwest and forms a narrow, eastward concave crescent. The belt is approximately 36 km in length and varies in width from 1.5 to 5.5 km . Principal lithologies in the belt are moderately to highly deformed metamorphosed volcanics, volcaniclastics and sediments that have been enclosed and intruded by tonalitic to granodioritic quartz-porphyry plutons.

The greenstone belt is bordered to the east by the Strickland Pluton and to the west by the Black Pic Batholith. The Danny Lake Stock borders the south-western edge of the DGB. The Strickland Pluton is characterized by a granodioritic composition, quartz phenocrysts, fine grained titanite, and hematitic fractures. The Black Pic Batholith is similar to the Strickland Pluton, but locally more potassic. The Black Pic Batholith also contains interlayers of monzogranite. The Danny Lake Stock is characterized by hornblende porphyritic quartz monzonite to quartz monzodiorite (G. M. Stott, 1999).

The DGB has been metamorphosed to upper greenschist to amphibolite facies. The Strickland Pluton seems to have squeezed the greenstone belt and imposed upon it a thermal metamorphism. Most of the mafic volcanics are composed primarily of plagioclase and hornblende. Almandine garnets are widely observed in the clastic metasediments and locally, along with pyrope garnets, in the mafic volcanics (G.M. Stott, 1996a,b,c).

Alteration throughout the belt consists of diopsidation, albitization, weak magnesium biotization, weak carbonatization and moderate to strong silicification which accompanied the emplacement of the porphyry dykes/sills and quartz veining.

The belt has been strongly foliated, flattened and strained. Deformation seen in the supracrustal rocks has been interpreted to be related to the emplacement of the Strickland Pluton. Strongly developed metamorphic mineral lineations in the supracrustal rocks closely compare with the orientations of the quartz phenocryst lineations seen in the Strickland Pluton. This probably reflects a constant strain aureole imposed by the pluton upon the belt (G.M. Stott, 1996a,b,c). The strain fabric is best observed a few hundred meters from the Strickland Pluton in the Sugar Zone, which has been characterized as the most severely strained part of the belt. The Sugar Zone is defined by sets of parallel mineralized quartz veining, quartz flooding of strongly altered wall-rock, thin intermediate porphyry lenses and dykes/sills parallel to stratigraphy and foliation, and gold mineralization.

Foliations and numerous top indicators define a synclinal fold in the central portion of the belt. The synclinal fold has been strongly flattened and stands upright with the fold hinge open to the south and centered along Dayohessarah Lake.

Figure 3 - Regional Geology

4.2 Property Geology

Near Dayohessarah Lake, the belt is dominated by a basal sequence of massive to pillowed mafic volcanics, commonly with ellipsoidal, bleached alteration pods, overlain by intermediate tuff and lapilli tuff. The tuffaceous units rapidly grade upwards to a sedimentary sequence consisting of greywacke and conglomerates derived from volcanics, sediments and felsic intrusive sources (G. M. Stott, 1996a,b,c). Several thin, continuous cherty sulphide facies iron formations are found in the mafic volcanic sequence. Spinifex textured komatiitic flows stratigraphically underlie the main sedimentary sequence and can be traced around the north end of Dayohessarah Lake. Also, at the north end of Dayohessarah Lake, mafic and ultramafic sills and stocks underlie the komatiites (Figure 4).

Several fine to medium grained, intermediate feldspar porphyry dykes/sills have intruded and swarmed the belt. Swarming of the intermediate porphyry dykes is more intense east of Dayohessarah Lake. Stott has interpreted the porphyry sills and associated porphyry bodies to
be related to the Strickland Pluton. A smaller granitic quartz porphyry body containing some sulphide mineralization is located northwest of Dayohessarah Lake. The porphyritic texture of the dykes/sills is often nearly, or completely, obliterated by the degree of foliation in the greenstone belt, or by the degree of shear in the Sugar Zone. These intermediate dykes/sills vary in abundance across the property, but increase in regularity within, and around, the Sugar Zone. There is also a consistent, weak pervasive silicic alteration in the intermediate intrusives, as well as consistently trace amounts of very fine-grained disseminated pyrite.

The major linear structure recognized on the property is the Sugar Deformation Zone ("SDZ"), which trends northwest-southeast for approximately 3.5 km and dips southwest between 65° and 75°. The SDZ appears to be spatially related to the Strickland Pluton and is a complex system with strain intensities varying from strongly deformed-pillow mafic volcanics to undeformed massive mafic flows to anastomosing linear areas. Stratigraphically-conformable porphyritic intermediate intrusions swarm through the SDZ. Both the mafic volcanics and the intermediate intrusives exhibit moderate linear fabrics along with hydrothermal alteration (i.e., silicification).

In general, the north-westerly striking, south-westerly dipping stratigraphy hosting the gold mineralized portions of the Sugar Zone can be subdivided into the following units:

- Hanging Wall Volcanics;
- Upper Zone (Sugar Zone mineralization);
- Interzone Volcanics;
- Lower Zone (Sugar Zone mineralization);
- Footwall Volcanics

The Hanging Wall, Interzone and Footwall volcanic horizons consist predominantly of massive and pillowed basalt flows generally striking northwest and dipping at an average angle of 64° to the southwest. Coarse to very coarse grained, locally gabbroic-textured phases form a significant component of the Hanging Wall mafic volcanic package. It is believed that these phases represent thick, slowly-cooled portions of the massive mafic flows, as they commonly grade into finer grained, more recognizable basaltic flows, and eventually even pillow flows. In much of the area which drilling on the Sugar Zone was carried out, a distinctive, very coarse grained mafic volcanic flow was observed consistently about 15 m stratigraphically above the Upper Zone. Other than this unit, specific mafic flows, as well as intermediate porphyry units, are nearly impossible to interpret/distinguish between holes.

The Upper and Lower zones range in thickness from 1.5 to 10 m , strike at 140° and dip between 65° and 75° with minor undulations.

The auriferous Wolf Zone lies in the northern extent of the SDZ, but drilling between the two zones indicates that the zones are complexly separate from each other. Like the Sugar Zone, the Wolf Zone is north-north-westerly striking and south-westerly dipping. Unlike the Sugar Zone, there is only one gold mineralized zone, and not two or more parallel zones.

Figure 4 - Property Geology

A northerly-striking, sub-vertically dipping, dark grey-black, diabase dyke intrudes the older rock types in the greenstone belt, and crosscuts the SDZ. The diabase obliterates the SDZ when it is encountered. The diabase dyke is aphanitic around the edges and, where thick enough to do so, grades to a coarse-grained euhedral rock in the middle of the dyke. The dyke exhibits very coarse-grained greenish quartz-epidote phenocrysts up to 3 cm across throughout. The dyke is weakly pervasively magnetic. A very small amount of lateral movement of the zones has been interpreted locally on either side of the dyke, suggesting that very minor dyke-related faulting has occurred. There are at least two more diabase dykes on the property. They strike at 35 degrees across the northern portion of the belt. These dykes are up to 40 m across, and are similar in appearance and mineralogy to the dyke that cuts through the Sugar Zone.

Other than the diabase, the youngest intrusive rocks observed on the property are white to pale grey, fine grained to medium grained and occasionally pegmatitic felsite dykes. The dykes generally consist of varying amounts of plagioclase, quartz and muscovite. These generally thin dykes strike northeast and where they intersect the SDZ, they completely wipe out the zone. These dykes are undeformed and clearly postdate the mineralization and deformation events.

5.0 Mineralization

5.1 Sugar Zone

The auriferous Upper and Lower zones of the Sugar Zone lie within the SDZ. They are defined as highly strained packages consisting of variously altered mafic volcanic flows, intermediate porphyritic intrusions and boudinaged auriferous quartz veins. The two zones range in true thickness from about 1.5 to 10 m , and are separated by 20 to 30 m of barren mafic volcanics. A high-grade section of the Lower zone between lines $13+000 \mathrm{~N}$ and $12+900 \mathrm{~N}$ has been the focus of a bulk sample study and is referred to as the Jewelry Box.

Each zone is made up of one or more porphyritic intrusions, flanked by altered basalt and hosting stratigraphically conformable quartz veins. Alteration within the mafic volcanic portions of the zones consists primarily of silicification (both pervasive and as quartz veining), diopsidation and biotization. The porphyry units of the zones exhibit biotite and silica alteration as well, but no diopside alteration.

The Upper and Lower zones appear geologically consistent both down dip and along strike. The Lower Zone has consistently larger widths, as well as mostly consistently higher grades of gold mineralization, however both the width and the gold grade within each zone seem to follow the same trends across the zone. That is to say, that where the Upper Zone exhibits larger widths and higher gold grades, the Lower Zone also exhibits larger widths and higher gold grades. The zones are observed on surface to pinch and swell over distances of 50 m or more.

Gold mineralization mostly occurs in quartz veins, stringers and quartz flooded zones predominantly associated with porphyry zones, porphyry contact zones, hydrothermally altered basalts and, rarely, weakly altered or unaltered basalt within the Upper and Lower zones.

Fine to coarse grained specks and blebs of visible gold are common in the Sugar Zone quartz veins, usually occurring within marginal, laminated or refractured portions of the veins. The visible gold itself is often observed to be concentrated within thin fractures, indicating some degree of remobilization. Quartz veins and floods also contain varying amounts of pyrrhotite, pyrite,
chalcopyrite, galena, sphalerite, molybdenite and arsenopyrite. The presence of galena, sphalerite and/or arsenopyrite is a strong indicator of the presence of visible gold. Pyrite, chalcopyrite and, rarely, molybdenite form a minor component of total sulphides and do not appear to be directly related to the presence of gold mineralization.

Other mineralized zones have been observed between, above and below the Sugar Zone Upper and Lower zones, in diamond drilling. Most of these intercepts are believed to be quartz veining originating in either the Upper or Lower zone, that have been diverted from the sheared part of the zone, up to 30 m from the main bodies of mineralization. One of these zones is the historically discovered Zoe Zone, which has been recently renamed the Lynx Zone, which lies east of the southern end of the Sugar Zone.

5.2 K7 South Zone

Prospecting in 2018 determined the western half of the K7 South area is underlain by mainly massive to pillowed mafic volcanics which are cut by several feldspar porphyry, pegmatite and granodiorite dykes/sills. The mafic volcanics and feldspar porphyries are at times weak to moderately biotite-sericite altered and host 1-2\% disseminated py-po mineralization and minor quartz flooding. These rock types, alteration and mineralization are similar to those at the SugarMiddle Zone. Rock sampling returned grades of 61-96 ppb Au, and highs of $1750 \mathrm{ppm} \mathrm{Cu}, 195$ ppm Pb and 387 ppm zinc. The eastern half of the K7 area appears to be underlain by mainly granodiorite of the Strickland Pluton with lessor massive mafic volcanic, pegmatite and feldspar porphyry dykes/sills.

In 2019 a VLF survey was completed over the area. Weak VLF trends were noted to be associated with the anomalous gold and base metal values. A stronger, folded, VLF trend was also noted to the south which is currently unexplained as no outcrops were obsered in this area. The area has been interpreted to be underlain by mafic volcanics by the Ontario Geological Survey.

6.0 2021 Diamond Drilling

6.1 Sample Collection, Preparation, Analyses and Security

NQ drill core is placed in core boxes by drillers. All drill core was delivered to the core processing facility in White River, Ontario where it undergoes geotechnical and geological logging by the geotechnician and geologist. The following describes the core logging process:

- The core is oriented in the box with the saddle pointing downhole, and rock quality data (RQD) is collected from each 3m run.
- The geotechnician marks out 1.0 m intervals with a blue China marker and prepares a box list stating the length of core in each box. Aluminum tags are made and stapled to the end of each box.
- Core is photographed dry and wet.
- The geologist logs the geology of each hole, paying close attention to lithologies, alteration, structures, veining and mineralization.
- \quad Sample collection begins with the marking of sample intervals with a red China marker by the geologist. The sample is given a sample tag. Sample intervals range from 50 cm to
1.5 m , and are taken not to cross major lithology boundaries. Standards and blanks are alternately inserted every $10^{\text {th }}$ sample for QAQC.
- The core is cut with a Vancor diamond core saw by the geotechnician, and placed back in the box. Half core samples are taken from the box and bagged individually. The technician always takes the back half of the core for shipping, while the front half stays in the box.
- The individually bagged samples are placed in rice bags and delivered to Actlabs in Thunder Bay, Ontario. Samples are delivered either in person by Harte Gold staff, or by Greyhound Bus.
- Core is stored in racks in a locked fenced in yard at the core processing facility in White River, Ontario.

6.2 Laboratory Methods

Sample Preparation

Samples arrive at Actlabs at 217 Round Blvd, Thunder Bay, Ontario, where they are received and documented. Once the samples arrive in the laboratory, Actlabs will ensure that they are prepared properly.

As a routine practice with rock and core, the entire sample is crushed to a nominal minus 10 mesh (1.7 mm), mechanically split (riffle) to obtain a representative sample and then pulverized to at least 95\% minus 150 mesh (106 microns).

All of Actlabs steel mills are now mild steel and do not induce Cr or Ni contamination. Quality of crushing and pulverization is routinely checked as part of their quality assurance program. All equipment is cleaned using quartz and air from a compressed air source. Blanks, sample replicates, duplicates, and internal reference materials (both aqueous and geochemical standards) are routinely used as part of Actlabs quality assurance program.

RX1 \quad Crush (<7kg) up to 90% passing 2 mm , riffle split (250 g) and pulverize (mild steel) to

 95% passing 105u. Cleaner sand included
1A2 - (1A2-30 or 50) Au Fire Assay - AA

Fire Assay Fusion

A sample size of 5 to 50 grams can be used but the routine size is 30 g for rock pulps, soils or sediments (exploration samples). The sample is mixed with fire assay fluxes (borax, soda ash, silica, litharge) and with Ag added as a collector and the mixture is placed in a fire clay crucible. The mixture is then preheated at $850^{\circ} \mathrm{C}$, intermediate $950^{\circ} \mathrm{C}$ and finish $1060^{\circ} \mathrm{C}$ with the entire fusion process lasting 60 minutes. The crucibles are then removed from the assay furnace and the molten slag (lighter material) is carefully poured from the crucible into a mould, leaving a lead button at the base of the mould. The lead button is then placed in a preheated cupel which absorbs the lead when cupelled at $950^{\circ} \mathrm{C}$ to recover the Ag (doré bead) +Au .

AA Finish

The entire Ag dore bead is dissolved in aqua regia and the gold content is determined by $A A$ (Atomic Absorption). AA is an instrumental method of determining element concentration by introducing an element in its atomic form, to a light beam of appropriate wavelength causing the atom to absorb light. The reduction in the intensity of the light beam directly correlates with the concentration of the elemental atomic species. On each tray of 42 samples there is two blanks, three sample duplicates and 2 certified reference materials, one high and one low (QC 7 out of 42 samples). We generally rerun all gold by fire assay gravimetric over $3,000 \mathrm{ppb}$ to ensure accurate values

Code 1A2 (Fire Assay-AA) Detection Limits (ppb)

Element	Detection Limit	Upper Limit
Au	5	5,000

1A3 - (1A3-30 or 50) - Au Fire Assay - Gravimetric

Fire Assay

A sample size of 5 to 50 grams can be used but the routine size is 30 g for rock pulps, soils or sediments (exploration samples). The sample is mixed with fire assay fluxes (borax, soda ash, silica, litharge) and with Ag added as a collector and the mixture is placed in a fire clay crucible. The mixture is then preheated at $850^{\circ} \mathrm{C}$, intermediate $950^{\circ} \mathrm{C}$ and finish $1060^{\circ} \mathrm{C}$ with the entire fusion process lasting 60 minutes. The crucibles are then removed from the assay furnace and the molten slag (lighter material) is carefully poured from the crucible into a mould, leaving a lead button at the base of the mould. The lead button is then placed in a preheated cupel which absorbs the lead when cupelled at $950^{\circ} \mathrm{C}$ to recover the Ag (doré bead) +Au .

Au is separated from the Ag in the doré bead by parting with nitric acid. The resulting gold flake is annealed using a torch. The gold flake remaining is weighed gravimetrically on a microbalance.

Code 1A3 (Fire Assay-Gravimetric) Detection Limits (g / mT)

Element	Detection Limit	Upper Limit
Au	$0.03(30 \mathrm{~g})$	10000
	$0.02(50 \mathrm{~g})$	

1A4 and 1A4-1000 - Au Fire Assay-Metallic Screen

Metallic Screen

A representative 500 g split ($1,000 \mathrm{~g}$ for Code $1 \mathrm{~A} 4-1000$) is sieved at 100 mesh (149 micron) with fire assays performed on the entire +100 mesh and 2 splits on the -100 mesh fraction. The total amount of sample and the +100 mesh and -100 mesh fraction is weighed for assay reconciliation. Measured amounts of cleaner sand are used between samples and saved to test for possible plating out of gold on the mill. Alternative sieving mesh sizes are available but the user is warned that the finer the grind the more likelihood of gold loss by plating out on the mill.

Fire Assay

A sample size of 5 to 50 grams can be used but the routine size is 30 g for rock pulps, soils or sediments (exploration samples). The sample is mixed with fire assay fluxes (borax, soda ash, silica, litharge) and with Ag added as a collector and the mixture is placed in a fire clay crucible. The mixture is then preheated at $850^{\circ} \mathrm{C}$, intermediate $950^{\circ} \mathrm{C}$ and finish $1060^{\circ} \mathrm{C}$ with the entire fusion process lasting 60 minutes. The crucibles are then removed from the assay furnace and the molten slag (lighter material) is carefully poured from the crucible into a mould, leaving a lead button at the base of the mould. The lead button is then placed in a preheated cupel which absorbs the lead when cupelled at $950^{\circ} \mathrm{C}$ to recover the Ag (doré bead) +Au .

Au is separated from the Ag in the doré bead by parting with nitric acid. The gold (roasting) flake remaining is weighed gravimetrically on a microbalance. Two splits on the -150 micron fraction are weighted and analyzed by fire assay with a gravimetric finish. A final assay is calculated based on the weight of each separated fraction and obtained Au values.

Code 1A4 (Fire Assay-Metallic Screen) Detection Limits (g / mT)

Element	Detection Limit
Au	0.03

Ultratrace 6 - "Near Total" Digestion - ICP and ICP/MS

Ultratrace 6 combines the 4 -acid digestion ($\mathrm{HF}, \mathrm{HClO}_{4}, \mathrm{HNO}_{3}$ and HCl) with analysis by ICP and ICP/MS. Resistate minerals are not digested.

"Near Total" Digestion - ICP Portion

A 0.25 g sample is digested with four acids beginning with hydrofluoric, followed by a mixture of nitric and perchloric acids, heated using precise programmer controlled heating in several ramping and holding cycles which takes the samples to incipient dryness. After incipient dryness is attained, samples are brought back into solution using aqua regia.

With this digestion, certain phases may be only partially solubilized. These phases include zircon, monazite, sphene, gahnite, chromite, cassiterite, rutile and barite. Ag greater than 100 ppm and Pb greater than 5000 ppm should be assayed as high levels may not be solubilized. Only sulphide sulfur will be solubilized.

The samples are then analyzed using a Varian ICP. QC for the digestion is 14% for each batch, 5 method reagent blanks, 10 in-house controls, 10 samples duplicates, and 8 certified reference materials. An additional 13% QC is performed as part of the instrumental analysis to ensure quality in the areas of instrumental drift.

"Near Total" Digestion - ICP/MS Portion

Additional elements are determined by ICP/MS on the multi-acid digest solution above. The samples are diluted and analyzed on a Perkin Elmer Sciex ELAN 6000, 6100 or 9000 ICP/MS. One blank is run for every 40 samples. In-house control is run every 20 samples. Digested standards are run every 80 samples. After every 15 samples, a digestion duplicate is analyzed. Instrument is recalibrated every 80 samples.

Extraction of each element by 4-Acid Digestion is dependent on mineralogy. Sulphide sulphur and soluble sulphates are extracted.

Code Ultratrace-6 Elements and Detection Limits (ppm)

Element	Detection Limit	Upper Limit	Reported By
Ag	0.05	100	ICP\&ICP/MS
AI	0.01\%	10\%	ICP
As	0.1	10,000	ICP/MS
Ba	1	5,000	ICP/MS
Be	0.1	1,000	ICP/MS
Bi	0.02	2,000	ICP/MS
Ca	0.01\%	50\%	ICP
Cd	0.1	1,000	ICP/MS
Ce	0.1	10,000	ICP/MS
Co	0.1	500	ICP/MS
Cr	1	5,000	ICP/MS
Cs	0.05	100	ICP/MS
Cu	0.2	10,000	ICP/MS
Dy	0.1	5,000	ICP/MS
Er	0.1	1,000	ICP/MS
Eu	0.05	100	ICP/MS
Fe	0.01\%	50\%	ICP
Ga	0.1	500	ICP/MS
Ge	0.1	500	ICP/MS
Gd	0.1	5,000	ICP/MS
Hf	0.1	500	ICP/MS
Hg	10 ppb	10,000 ppb	ICP/MS
Ho	0.1	1,000	ICP/MS
In	0.1	100	ICP/MS
K	0.01\%	5\%	ICP
La	0.1	10,000	ICP/MS
Li	0.5	400	ICP/MS
Lu	0.1	100	ICP/MS
Mg	0.01\%	50\%	ICP
Mn	1	10,000	ICP
Mo	0.1	10,000	ICP/MS

Element	Detection Limit	Upper Limit	Reported By
Na	0.01\%	3\%	ICP
Nb	0.1	500	ICP/MS
Nd	0.1	10,000	ICP/MS
Ni	0.5	5,000	ICP/MS
P	0.001\%	10\%	ICP
Pb	0.5	5,000	ICP/MS
Pr	0.1	1,000	ICP/MS
Rb	0.2	5,000	ICP/MS
Re	0.001	100	ICP/MS
S+	0.01\%	20\%	ICP
Sb	0.1	500	ICP/MS
Sc	1	-	ICP
Se	0.1	1,000	ICP/MS
Sm	0.1	100	ICP/MS
Sn	1	200	ICP/MS
Sr	0.2	1,000	ICP/MS
Ta	0.1	1,000	ICP/MS
Tb	0.1	100	ICP/MS
Te	0.1	500	ICP/MS
Th	0.1	500	ICP/MS
Ti	0.0005\%	-	ICP
TI	0.05	500	ICP/MS
Tm	0.1	1,000	ICP/MS
U	0.1	10,000	ICP/MS
V	1	1,000	ICP/MS
W	0.1	200	ICP/MS
Y	0.1	10,000	ICP/MS
Yb	0.1	5,000	ICP/MS
Zn	0.2	10,000	ICP/MS
Zr	1	5,000	ICP/MS

6.3 2021 K7 South Drilling

Three diamond drill holes totalling 1,140 meters were drilled at the K7 South Zone during 2021. Drilling occurred from October 23, 2021 to November 18, 2021. One drill rig (G4-09) was supplied by G4 Drilling Canada Ltd. to perform drilling.

The intent of the 2021 K7 South Zone drill program was to drill test several, weak to strong VLF anomalies that are coincident with weak to moderately anomalous gold and base metal values obtained by prospecting and trenching. A total of $\$ 250,584$ was spent on this drill program which included costs such as drilling, assays and salaries, etc. The average cost per meter was \$219.81.

Table 1 provides a summary of drill hole information.
Table 1 - K7 South Zone - Drill Hole Summary Table

\# of Holes	Hole ID	Easting	Northing	Dip	Azimuth	Length (m)	Claim \#
1	K7S-21-01	650766.354	5393227.654	-45	50	291	531157,531165
2	K7S-21-02	650907.259	5393321.587	-45	60	342	531157,531165
3	K7S-21-03	650778.254	5393554.248	-45	40	507	$531157,531165,531170$
					Total:	$\mathbf{1 1 4 0}$	

A geological legend, drill logs, plans and cross sections for all holes are presented in Appendix B, Appendix C, Appendix D and Appendix E, respectively.

6.4 Results

A total of 695 core samples were collected and 732 analysis were performed for gold by fire assay $A A$, gravimetric or metallic method. If any fire assay AA finished with a value of over $3 \mathrm{~g} / \mathrm{t}$ or 10 $\mathrm{g} / \mathrm{t} A u$, it would be re-assayed by gravimetric finish or screen metallic assay respectively. In addition, 15 samples were also analysed by the Ultratrace 6, 61 element "near total digestion" ICP, ICP/MS method.

All of the samples were shipped to Actlabs in Thunder Bay, Ontario.
Table 2 provides a summary of the assay results per hole.

Table 2 - K7 South Zone - Assay Results Per Hole

	Hole \#	Zone	Au g/t	Width (m)	From (m)	To (m)
1	K7S-21-01	K7 South	0.98	1.00	273	274
2	K7S-21-02	K7 South	0.29	0.44	118.66	119.1
3	K7S-21-03	K7 South	0.10	0.48	262.52	263

Detailed assay results can be found in the drill logs attached in Appendix C and drill certificates from Actlabs can be found in Appendix F. Actlabs invoices are found in Appendix G. G4 Drilling Canada Ltd. invoices are in Appendix H.

7.0 Conclusions and Recommendations

Between October 23, 2021 to November 18, 2021 Harte Gold Corporation performed a 3-hole, 1,140 meter diamond drill program at the K7 South Zone. The best gold value encountered during the drill program was $0.98 \mathrm{~g} / \mathrm{t}$ Au over 1.0 m from 273.0-274.0 meters in K7S-21-01. This interval, as are the weak intercepts in K7S-21-02 and 03, are related to narrow smokey quartz veins associated with weak to moderate sericite-biotite alteration hosted within mafic volcanics or at a mafic volcanic/greywacke contact.

Additional prospecting and trenching should be done in the area to further expose areas of interest that this drill program did not test.

8.0 Costs

A total of $\$ 250,584$ was spent during the K7 South drill program. Costs and cost distribution per claim are summarized in Tables 3 and 4. Drilling invoice and analytical cost summaries are provided in Tables 5 and 6, respectively.

Table 3-K7 South Zone - Summary of Costs

Activity	Units		Cost per Unit	Total	$\%$
Drilling (3 holes)	1140	meters	$\$ 161.90$	$\$ 184,567$	74%
Planning/Supervision	27	days	$\$ 692.28$	$\$ 18,692$	7%
Drill Geologist	27	days	$\$ 285.56$	$\$ 7,710$	3%
Core Cutter	27	days	$\$ 220.00$	$\$ 5,940$	2%
Assays	695	samples	$\$ 36.17$	$\$ 25,138$	10%
Truck (60 km x 3 trips/hole)	540	kilometers	$\$ 0.50$	$\$ 270$	0%
R\&B - Supervisor	27	days	$\$ 89.00$	$\$ 2,403$	1%
R\&B - Geologist	27	days	$\$ 89.00$	$\$ 2,403$	1%
Report Writing	5	days	$\$ 692.28$	$\$ 3,461$	1%
Total Program Cost					

Table 4 - K7 South Zone - Cost Per Claim

Grouped Claim Number				
	531157	531165	531170	
Total Meters/ Claim	491	584	65	1140
\% of Total Meterage/Claim	43\%	51\%	6\%	100\%
Activity				Total Cost
Drilling (3 holes)	\$79,523	\$94,602	\$10,443	\$184,567
Planning/Supervision	\$8,053	\$9,581	\$1,058	\$18,692
Drill Geologist	\$3,322	\$3,952	\$436	\$7,710
Core Cutter	\$2,559	\$3,045	\$336	\$5,940
Assays	\$10,831	\$12,885	\$1,422	\$25,138
Truck (60 km x 3 trips/hole)	\$116	\$138	\$15	\$270
R\&B - Supervisor	\$1,035	\$1,232	\$136	\$2,403
R\&B - Geologist	\$1,035	\$1,232	\$136	\$2,403
Report Writing	\$1,491	\$1,774	\$196	\$3,461
Total Cost/Claim	\$107,967	\$128,440	\$14,178	\$250,584

Table 5-K7 South Zone - DDH Program Cost Summary

	DDH \& Cost Item	Invoice Cost	Total Meters	$\$ /$ Meter	Invoice \#	Claim \#	
1	K7S-21-01						
	Hexagonal Core Barrel	$\$ 131.25$			$167-393-20211031$		
	Overburden	$\$ 2,394.00$					
	Reaming Shell NQ 18"	$\$ 315.00$					
	Coring NQ	$\$ 24,490.50$					
	Move between hole	$\$ 708.00$					
	DD 2000	$\$ 392.48$					
	Casing Cap	$\$ 65.00$					
	NW Casing 1.5 m	$\$ 96.79$					
	NW Casing 3.0 m	$\$ 1,416.60$					
	NW Crown Bit	$\$ 475.00$					
	Test 0-300 meters	$\$ 531.00$					
	Rod Grease	$\$ 193.75$				531157	
						531165	
	Total Cost for hole	$\$ 31,209.37$	291	$\$ 107.25$			

2	K7S-21-02						
	Hexagonal Core Barrel	\$178.50			167-393-20211031		
	Overburden	\$2,268.00			167-393-20211115		
	Reaming Shell NQ 18"	\$428.40					
	Water Heating	\$300.00					
	Coring NQ	\$29,865.00					
	Move between hole	\$3,186.00					
	Stabilizing	\$118.00					
	DD 2000	\$196.24					
	Casing Cap	\$65.00					
	NW Casing 3 m	\$1,416.60					
	NW Crown Bit	\$475.00					
	Rod Grease	\$775.00					
	Test 0-300 meters	\$767.00				531157	15
	Total Cost for hole	\$40,038.74	342	\$117.07		531165	327
							342
3	K7S-21-03						
	Hexagonal Core Barrel	\$217.50			167-393-20211115		
	Overburden	\$1,260.00			167-393-20211130		
	Reaming Shell NQ 18"	\$522.00					
	Water Heating	\$1,267.50					
	Coring NQ	\$49,005.00					
	Move between hole	\$16,048.00					
	Reducing	\$472.00					
	Stabilizing	\$472.00					
	Travel	\$3,600.00					
	Water line	\$2,360.00					
	DD 2000	\$196.24					
	NW Casing 3 m	\$787.00					
	NW Crown Bit	\$950.00					
	Rod Grease	\$1,356.25					
	Test 0-300 meters	\$590.00					
	Test 300-600 meters	\$826.00					
	ATV rental	\$3,750.00					
	Foreman	\$6,240.00					
	Morooka	\$2,500.00					
	Rental Reflex Ezy track	\$1,300.00					
	Rental Reflex TN-14	\$3,175.00				531157	228.95
	Room \& Board	\$16,424.51				531165	213.55
	Total Cost for hole	\$113,319.00	507	\$223.51		531170	64.5
							507
	Total Cost	\$184,567.11				Total m/claim 531157	491.18
	Total Meterage		1140			Total m/claim 531165	584.32
	Average Cost/Meter			\$161.90		Total m/claim 531170	64.5
							1140

Table 6 - K7 South Zone - Analytical Cost Summary

\# of Holes	DDH\#	Sample \#'s				\# of Samples	Certificate \#\|	RX1-1-T ($57 /$ sample)	$1 \mathrm{A2}$ ($58 /$ sample)	UT-6	100\% Rush	Subtotal Cost	Claim \#	\# Assays/Claim	\% of Assays/Claim	531157	531165	531170	
1	K75-21-01	831971	831980			9	A21-20231	9	10		1	\$324.00	531157	90	72\%	\$3,011.04			
		831981	832095			114	A21-20694	110	115	1	1	\$3,858.00	531165	35	28\%		\$1,170.96		
								119	125	1		\$4,182.00		125	100\%				
2																			
	K7S-21-02	832096	832222			126	A21-20882	120	127	2	1	\$4,262.00	531165	226	100\%		\$7,548.00		
		832223	832320			97	A21-20978	94	99		1	\$3,286.00							
								214	226	2		\$7,548.00		226	100\%				
3	K7S-21-03	832322	832405			83	A21-21124	80	84		1	\$2,792.00	531157	142	37\%	\$4,997.21			
		832406	832500	833501	833621	214	A21-21514	205	216	4	1	\$7,280.00	531165	203	53\%		\$7,143.90		
		833622	833668			46	A21-21721	45	47	6	1	\$1,594.00	531170	36	9\%			\$1,266.90	
		833669	833702			33	A21-22495	32	34	$\underline{2}$	1	\$1,742.00							
								362	381	12		\$13,408.00		381	100\%				
								Total Core Samples	Total of 1A2 Analysis	Total UT-6 Analysis	\$36.17	Total Analytical Cost							
								695	732	15	Ave. $\$ /$ Sample	\$25,138.00		732	Totals/Claim	\$8,008.25	\$15,862.86	\$1,266.90	\$25,138.00

9.0 References

Hunt, D.S., 2009. Report on the Summer 2009 exploration program on the Sugar Zone project. Internal report prepared for Corona Gold Corporation and Harte Gold Corp.

Laarman, J.E., 2014. Report on the Summer 2014 Geologic Mapping. Internal report prepared for Harte Gold Corp.

Middleton, R.S., Forslund, N.R., Laarman, J., 2015. 2014 Report on Diamond Drilling at the Sugar Zone Property, Dayohessarah Lake Area, White River, Ontario - Part 2. Internal Report for Harte Gold Corp., January 2015.

Ramsay, J. G. 1980. The crack-seal mechanism of rock deformation. Nature 284, 135-139.
Shegelski, R.J., 2014. Depositional history, structural geology and timing of gold mineralization of the Sugar Zone gold property, Dayohessarah Lake area, White River, Ontario. Internal Report for Harte Gold, September 2014, 21p.

Stein, H.J, Markey, R.J. and Morgan, J.W., 2000. Robust Re-Os Molybdenite Ages for the Hemlo Au Deposit, Superior Province, Canada. Journal of Conference Abstracts, v.5, p955.

Stott, G.M., 1996a. Precambrian Geology of Dayohessarah Lake Area (North half), Ontario Geological Survey, Preliminary map no. 3309.

Stott, G.M., 1996b. Precambrian Geology of Dayohessarah Lake Area (Central area), Ontario Geological Survey, Preliminary map no. 3310.

Stott, G.M., 1996c. Precambrian Geology of Dayohessarah Lake Area (South half), Ontario Geological Survey, Preliminary map no. 3311.

10.0 Statement of Qualifications

I, David B. Stevenson, of 2217 Lacewood Drive, Thunder Bay, Ontario, P7K 1C4 hereby certify that:

I am presently employed by Harte Gold Corporation as their Chief Exploration Geologist.
I am a graduate of the University of New Brunswick, B.Sc. (Hons. Geology), 1981 and a graduate of Queen's University, M.Sc. (Minex), 1998.

I have practiced my profession as a geologist for over 35 years in various provinces and territories across Canada as well as Norway.

I am a member in good standing of the Association Professional Geoscientists of Ontario.
I have personal knowledge of the work carried out on the property as described in this report, I have no personal interest in the property.

Dated this $03^{\text {rd }}$ day of April 2022 at Thunder Bay, Ontario.

[^0]Appendix A - Claims List

Schedule "A"
Sugar Zone Mining Leases

Schedule "B" Sugar Zone - Claims

Legacy Claim Id	Township / Area	Tenure ID	Tenure Type	Anniversary Date	Work Required	Total Reserve
4281896	ODLUM	136581*	Boundary Cell Mining Claim	2021-02-06	\$200	\$0
4281896	OdLUM	334503*	Boundary Cell Mining Claim	2021-02-06	\$200	\$0
4281896	ODLUM	255919*	Boundary Cell Mining Claim	2021-02-06	\$200	\$0
4281896	OdLUM	237877*	Boundary Cell Mining Claim	2021-02-06	\$200	\$0
4281896	OdLum	220822*	Boundary Cell Mining Claim	2021-02-06	\$200	\$0
4281896	OdLUM	220821*	Boundary Cell Mining Claim	2021-02-06	\$200	\$0
4281896	OdLUM	209284*	Boundary Cell Mining Claim	2021-02-06	\$200	\$0
4281896	OdLUM	209282*	Boundary Cell Mining Claim	2021-02-06	\$200	\$0
4281896	OdLUM	201257*	Boundary Cell Mining Claim	2021-02-06	\$200	\$0
4281896	OdLUM	171296*	Boundary Cell Mining Claim	2021-02-06	\$200	\$0
4281896	OdLUM	142560*	Boundary Cell Mining Claim	2021-02-06	\$200	\$0
4281896	ODLUM	136582*	Boundary Cell Mining Claim	2021-02-06	\$200	\$0
4281896	OdLUM	324599*	Single Cell Mining Claim	2021-02-06	\$400	\$0
4281896	ODLUM	255918*	Single Cell Mining Claim	2021-02-06	\$400	\$0
4281896	OdLUM	255917*	Single Cell Mining Claim	2021-02-06	\$400	\$223
4281896	OdLUM	209283*	Single Cell Mining Claim	2021-02-06	\$400	\$0
	MOSAMBIK	532869	Multi-cell Mining Claim	2021-04-10	8000	0
	NAMEIGOS	531281	Multi-cell Mining Claim	2021-04-10	10000	0
	NAMEIGOS	531282	Multi-cell Mining Claim	2021-04-10	9600	1753
	NAMEIGOS	531289	Multi-cell Mining Claim	2021-04-10	5600	2238
	NAMEIGOS	531331	Multi-cell Mining Claim	2021-04-10	7600	2016
	NAMEIGOS,STRICKLAND	531280	Multi-cell Mining Claim	2021-04-10	9600	0
	NAMEIGOS	514033	Single Cell Mining Claim	2021-04-10	400	0
	NAMEIGOS	514035	Single Cell Mining Claim	2021-04-10	400	0
	COOPER,STRICKLAND	531165	Multi-cell Mining Claim	2021-04-10	5200	1331
	HAMBLETON	531227	Multi-cell Mining Claim	2021-04-10	5600	1553
	HAMBLETON	531248	Multi-cell Mining Claim	2021-04-10	10000	0
	hambleton	531265	Multi-cell Mining Claim	2021-04-10	10000	0
	HAMBLETON	531266	Multi-cell Mining Claim	2021-04-10	5600	0
	HAMBLETON	531267	Multi-cell Mining Claim	2021-04-10	5600	0
	ODLUM	531183	Multi-cell Mining Claim	2021-04-10	9600	1370
	OdLum	531198	Multi-cell Mining Claim	2021-04-10	7600	3217
	ODLUM,STRICKLAND	531184	Multi-cell Mining Claim	2021-04-10	9600	2087
	ODLUM,STRICKLAND	531197	Multi-cell Mining Claim	2021-04-10	9600	3658
	ODLUM,STRICKLAND,TEDDER	531175	Multi-cell Mining Claim	2021-04-10	10000	187
	STRICKLAND	531157	Multi-cell Mining Claim	2021-04-10	10000	5781
	STRICKLAND,TEDDER	531169	Multi-cell Mining Claim	2021-04-10	8800	5224
	STRICKLAND,TEDDER	531171	Multi-cell Mining Claim	2021-04-10	8800	4401
	HAMBLETON	531254	Multi-cell Mining Claim	2021-06-13	9600	0
	HAMBLETON	531255	Multi-cell Mining Claim	2021-06-13	10000	0
	HAMBLETON	531256	Multi-cell Mining Claim	2021-06-13	10000	583
	hambleton	531258	Multi-cell Mining Claim	2021-06-13	4800	0
	HAMBLETON	531269	Multi-cell Mining Claim	2021-06-13	1200	0
	NAMEIGOS	531335	Multi-cell Mining Claim	2021-06-13	10000	0
	NAMEIGOS	531340	Multi-cell Mining Claim	2021-06-13	6800	33
	NAMEIGOS	531342	Multi-cell Mining Claim	2021-06-13	8000	0
	NAMEIGOS	531343	Multi-cell Mining Claim	2021-06-13	8000	0
	NAMEIGOS	531344	Multi-cell Mining Claim	2021-06-13	7200	2174
4260661	OdLUM	205218	Boundary Cell Mining Claim	2021-06-20	200	0
4260665	ODLUM	236538	Boundary Cell Mining Claim	2021-06-20	200	837
4284301	ODLUM	113014	Boundary Cell Mining Claim	2021-06-20	200	374
4284301	odlum	323310	Boundary Cell Mining Claim	2021-06-20	200	832
	Johns	530313	Multi-cell Mining Claim	2021-06-20	6400	2174
	JOHNS	530314	Multi-cell Mining Claim	2021-06-20	6400	940
	Johns	530315	Multi-cell Mining Claim	2021-06-20	7200	4533
	JOHNS	530316	Multi-cell Mining Claim	2021-06-20	10000	0
	JOHNS	530317	Multi-cell Mining Claim	2021-06-20	7200	0
	Johns	531017	Multi-cell Mining Claim	2021-06-20	9600	5604
	JOHNS	531018	Multi-cell Mining Claim	2021-06-20	10000	0
	JOHNS, ODLUM	530318	Multi-cell Mining Claim	2021-06-20	7200	0
	JOHNS, ODLUM	531019	Multi-cell Mining Claim	2021-06-20	9600	0
	JOHNS, ODLUM	531020	Multi-cell Mining Claim	2021-06-20	10000	0
	OdLUM	531016	Multi-cell Mining Claim	2021-06-20	10000	0

	OdLum	531021	Multi-cell Mining Claim	2021-06-20	10000	455
	ODLUM	531024	Multi-cell Mining Claim	2021-06-20	10000	0
	OdLUM	531025	Multi-cell Mining Claim	2021-06-20	9600	0
	ODLUM, TEDDER	531022	Multi-cell Mining Claim	2021-06-20	8800	247
	ODLUM, TEDDER	531023	Multi-cell Mining Claim	2021-06-20	9600	89
	ODLUM	531201	Multi-cell Mining Claim	2021-10-29	2000	398
	STRICKLAND	531162	Multi-cell Mining Claim	2020-11-16	9600	0
	STRICKLAND	531168	Multi-cell Mining Claim	2020-11-16	10000	0
	STRICKLAND	531177	Multi-cell Mining Claim	2020-11-16	9600	0
	STRICKLAND	531178	Multi-cell Mining Claim	2020-11-16	10000	0
	STRICKLAND	531180	Multi-cell Mining Claim	2020-11-16	9200	0
	STRICKLAND	531271	Multi-cell Mining Claim	2020-11-16	8000	0
	STRICKLAND	531273	Multi-cell Mining Claim	2020-11-16	10000	0
	STRICKLAND	531274	Multi-cell Mining Claim	2020-11-16	10000	0
	STRICKLAND	531275	Multi-cell Mining Claim	2020-11-16	8400	2439
	STRICKLAND	531278	Multi-cell Mining Claim	2020-11-16	800	0
	gourlay	531220	Multi-cell Mining Claim	2020-12-03	9600	0
	gourlay	531225	Multi-cell Mining Claim	2020-12-03	9600	0
	GOURLAY	531229	Multi-cell Mining Claim	2020-12-03	10000	0
	gourlay	531231	Multi-cell Mining Claim	2020-12-03	10000	0
	GOURLAY,HAMBLETON	531224	Multi-cell Mining Claim	2020-12-03	9600	0
	GOURLAY,HAMBLETON	531226	Multi-cell Mining Claim	2020-12-03	10000	0
	GOURLAY,HAMBLETON	531230	Multi-cell Mining Claim	2020-12-03	8800	0
	GOURLAY,HAMBLETON	531243	Multi-cell Mining Claim	2020-12-03	10000	0
	GOURLAY,HAMBLETON,STRICKLAND	531222	Multi-cell Mining Claim	2020-12-03	6200	0
	GOURLAY,STRICKLAND	531221	Multi-cell Mining Claim	2020-12-03	10000	0
	HAMBLETON	531228	Multi-cell Mining Claim	2020-12-03	6000	0
	ODLUM,STRICKLAND	531270	Multi-cell Mining Claim	2020-12-03	5000	0
	STRICKLAND	531167	Multi-cell Mining Claim	2020-12-03	8400	0
	STRICKLAND	531170	Multi-cell Mining Claim	2020-12-03	9200	0
	STRICKLAND	531176	Multi-cell Mining Claim	2020-12-03	10000	0
	STRICKLAND	531179	Multi-cell Mining Claim	2020-12-03	8400	0
	STRICKLAND	531181	Multi-cell Mining Claim	2020-12-03	9600	0
	STRICKLAND	531185	Multi-cell Mining Claim	2020-12-03	9600	0
	STRICKLAND	531195	Multi-cell Mining Claim	2020-12-03	8800	0
	STRICKLAND	531196	Multi-cell Mining Claim	2020-12-03	8800	0
	STRICKLAND	531223	Multi-cell Mining Claim	2020-12-03	7400	0
	STRICKLAND	531272	Multi-cell Mining Claim	2020-12-03	1200	0
4260617	STRICKLAND	110507	Single Cell Mining Claim	2020-12-03	200	0
	BAYFIELD,HAMBLETON,MATTHEWS	531242	Multi-cell Mining Claim	2020-12-17	8000	0
	GOURLAY,HAMBLETON	531241	Multi-cell Mining Claim	2020-12-17	9600	0
	HAMBLETON	531244	Multi-cell Mining Claim	2020-12-17	10000	0
	HAMBLETON	531245	Multi-cell Mining Claim	2020-12-17	9600	0
	HAMBLETON	531246	Multi-cell Mining Claim	2020-12-17	9600	0
	HAMBLETON	531247	Multi-cell Mining Claim	2020-12-17	9600	0
	hambleton	531264	Multi-cell Mining Claim	2020-12-17	9600	0
	BAYFIELD	531235	Multi-cell Mining Claim	2020-12-22	8000	0
	BAYFIELD	531236	Multi-cell Mining Claim	2020-12-22	8000	0
	BAYFIELD	531237	Multi-cell Mining Claim	2020-12-22	8000	0
	BAYFIELD	531238	Multi-cell Mining Claim	2020-12-22	9200	0
	BAYFIELD	531239	Multi-cell Mining Claim	2020-12-22	1600	0
	BAYFIELD,GOURLAY	531233	Multi-cell Mining Claim	2020-12-22	10000	0
	BAYFIELD,GOURLAY	531234	Multi-cell Mining Claim	2020-12-22	8000	0
	BAYFIELD,GOURLAY,HAMBLETON	531240	Multi-cell Mining Claim	2020-12-22	9600	0
	GOURLAY	531232	Multi-cell Mining Claim	2020-12-22	9600	0
4260661	odlum	137166	Boundary Cell Mining Claim	2020-12-23	200	930
4260661	ODLUM	156716	Boundary Cell Mining Claim	2020-12-23	200	548
4260661	ODLUM	142645	Boundary Cell Mining Claim	2020-12-23	200	151
4260664	OdLUM	308490	Boundary Cell Mining Claim	2020-12-23	200	111
4260664	ODLUM	168606	Boundary Cell Mining Claim	2020-12-23	200	174
4260665	ODLUM	112652	Boundary Cell Mining Claim	2020-12-23	200	0
4260665	OdLUM	199956	Boundary Cell Mining Claim	2020-12-23	200	298
4260665	ODLUM	155301	Boundary Cell Mining Claim	2020-12-23	200	236
	HAMBLETON	531210	Multi-cell Mining Claim	2020-12-23	6800	6082

	HAMBLETON	531249	Multi-cell Mining Claim	2020-12-23	1200	0
	HAMBLETON	531257	Multi-cell Mining Claim	2020-12-23	10000	0
	hambleton	531268	Multi-cell Mining Claim	2020-12-23	4000	0
	HAMBLETON,ODLUM	531209	Multi-cell Mining Claim	2020-12-23	2400	1604
	ODLUM	531026	Multi-cell Mining Claim	2020-12-23	10000	0
	ODLUM	531182	Multi-cell Mining Claim	2020-12-23	10000	0
	OdLUM	531199	Multi-cell Mining Claim	2020-12-23	800	0
	OdLUM	531200	Multi-cell Mining Claim	2020-12-23	10000	0
	ODLUM, TEDDER	531027	Multi-cell Mining Claim	2020-12-23	9600	0
	ODLUM, TEDDER	531154	Multi-cell Mining Claim	2020-12-23	10000	0
	ODLUM, TEDDER	531173	Multi-cell Mining Claim	2020-12-23	10000	0
	ODLUM, TEDDER	531174	Multi-cell Mining Claim	2020-12-23	9600	0
	STRICKLAND,TEDDER	531156	Multi-cell Mining Claim	2020-12-23	10000	0
	tedder	531031	Multi-cell Mining Claim	2020-12-23	9600	0
	TEDDER	531153	Multi-cell Mining Claim	2020-12-23	8800	0
	tedder	531155	Multi-cell Mining Claim	2020-12-23	10000	0
	TEDDER	531172	Multi-cell Mining Claim	2020-12-23	10000	0
	ODLUM	531203	Multi-cell Mining Claim	2020-12-31	7000	0
	ODLUM	531204	Multi-cell Mining Claim	2020-12-31	3800	0
4288587	NAMEIGOS	125769	Boundary Cell Mining Claim	2021-01-08	200	0
4288587	NAMEIGOS	286343	Boundary Cell Mining Claim	2021-01-08	200	0
4288587	NAMEIGOS	286342	Boundary Cell Mining Claim	2021-01-08	200	0
4288587	NAMEIGOS	286341	Boundary Cell Mining Claim	2021-01-08	200	0
4288587	NAMEIGOS	274252	Boundary Cell Mining Claim	2021-01-08	200	0
4288587	NAMEIGOS	266283	Boundary Cell Mining Claim	2021-01-08	200	0
4288587	NAMEIGOS	189153	Boundary Cell Mining Claim	2021-01-08	200	11
4288587	NAMEIGOS	170388	Boundary Cell Mining Claim	2021-01-08	200	0
4288588	NAMEIGOS	102955	Boundary Cell Mining Claim	2021-01-08	200	0
4288588	NAMEIGOS	322925	Boundary Cell Mining Claim	2021-01-08	200	0
4288588	NAMEIGOS	286384	Boundary Cell Mining Claim	2021-01-08	200	0
4288588	NAMEIGOS	227074	Boundary Cell Mining Claim	2021-01-08	200	0
4288588	NAMEIGOS	219128	Boundary Cell Mining Claim	2021-01-08	200	0
4288588	NAMEIGOS	189186	Boundary Cell Mining Claim	2021-01-08	200	0
4288588	NAMEIGOS	170921	Boundary Cell Mining Claim	2021-01-08	200	0
4288588	NAMEIGOS	125817	Boundary Cell Mining Claim	2021-01-08	200	149
4288588	NAMEIGOS	102957	Boundary Cell Mining Claim	2021-01-08	200	0
4288588	NAMEIGOS	102956	Boundary Cell Mining Claim	2021-01-08	200	0
4288589	NAMEIGOS	287639	Boundary Cell Mining Claim	2021-01-08	200	0
4288589	NAMEIGOS	267591	Boundary Cell Mining Claim	2021-01-08	200	0
4288589	NAMEIGOS	220366	Boundary Cell Mining Claim	2021-01-08	200	423
4288589	NAMEIGOS	208950	Boundary Cell Mining Claim	2021-01-08	200	0
4288589	NAMEIGOS	173870	Boundary Cell Mining Claim	2021-01-08	200	0
4288589	NAMEIGOS	155027	Boundary Cell Mining Claim	2021-01-08	200	0
4288589	NAMEIGOS	117345	Boundary Cell Mining Claim	2021-01-08	200	0
4288589	NAMEIGOS	335993	Single Cell Mining Claim	2021-01-08	400	0
4288589	NAMEIGOS	220373	Single Cell Mining Claim	2021-01-08	400	423
4288589	NAMEIGOS	208958	Single Cell Mining Claim	2021-01-08	400	0
4288231	NAMEIGOS	104062	Boundary Cell Mining Claim	2021-01-09	200	0
4288231	NAMEIGOS	225048	Boundary Cell Mining Claim	2021-01-09	200	0
4288231	NAMEIGOS	159665	Boundary Cell Mining Claim	2021-01-09	200	0
	ABRAHAM, COOPER,TEDDER	531096	Multi-cell Mining Claim	2021-01-09	10000	0
	ABRAHAM, TEDDER	531094	Multi-cell Mining Claim	2021-01-09	10000	0
	ABRAHAM, TEDDER	531095	Multi-cell Mining Claim	2021-01-09	10000	0
	COOPER	531112	Multi-cell Mining Claim	2021-01-09	10000	0
	COOPER	531139	Multi-cell Mining Claim	2021-01-09	9200	0
	COOPER	531163	Multi-cell Mining Claim	2021-01-09	6000	0
	COOPER,STRICKLAND	531166	Multi-cell Mining Claim	2021-01-09	800	0
	COOPER,STRICKLAND,TEDDER	531152	Multi-cell Mining Claim	2021-01-09	6800	0
	COOPER,TEDDER	531097	Multi-cell Mining Claim	2021-01-09	10000	0
	COOPER,TEDDER	531100	Multi-cell Mining Claim	2021-01-09	9600	0
	COOPER,TEDDER	531111	Multi-cell Mining Claim	2021-01-09	10000	0
	COOPER,TEDDER	531151	Multi-cell Mining Claim	2021-01-09	10000	0
	MOSAMBIK	531287	Multi-cell Mining Claim	2021-01-09	10000	0
	MOSAMBIK	531348	Multi-cell Mining Claim	2021-01-09	8800	0

	MOSAMBIK,NAMEIGOS	531286	Multi-cell Mining Claim	2021-01-09	10000	0
	MOSAMBIK,NAMEIGOS	531288	Multi-cell Mining Claim	2021-01-09	8400	0
	MOSAMBIK,NAMEIGOS	531347	Multi-cell Mining Claim	2021-01-09	10000	0
	MOSAMBIK,NAMEIGOS	531349	Multi-cell Mining Claim	2021-01-09	6400	0
	MOSAMBIK,NAMEIGOS	531350	Multi-cell Mining Claim	2021-01-09	10000	0
	NAMEIGOS	531283	Multi-cell Mining Claim	2021-01-09	10000	0
	NAMEIGOS	531284	Multi-cell Mining Claim	2021-01-09	9200	0
	NAMEIGOS	531285	Multi-cell Mining Claim	2021-01-09	10000	0
	NAMEIGOS	531351	Multi-cell Mining Claim	2021-01-09	9600	0
	NAMEIGOS	531352	Multi-cell Mining Claim	2021-01-09	10000	0
	TEDDER	531046	Multi-cell Mining Claim	2021-01-09	8800	0
	TEDDER	531047	Multi-cell Mining Claim	2021-01-09	9600	0
	tedder	531079	Multi-cell Mining Claim	2021-01-09	9200	0
	tedder	531098	Multi-cell Mining Claim	2021-01-09	9600	0
	TEDDER	531099	Multi-cell Mining Claim	2021-01-09	9600	0
	COOPER	531126	Single Cell Mining Claim	2021-01-09	400	0
04288250	MOSAMBIK	125756	Single Cell Mining Claim	2021-01-09	400	0
04288250	MOSAMBIK	293144	Single Cell Mining Claim	2021-01-09	400	0
04288250	MOSAMBIK	274244	Single Cell Mining Claim	2021-01-09	400	0
04288250	MOSAMBIK	273605	Single Cell Mining Claim	2021-01-09	400	0
04288250	MOSAMBIK	153728	Single Cell Mining Claim	2021-01-09	400	0
4288237	MOSAMBIK	118071	Single Cell Mining Claim	2021-01-09	400	0
4288237	MOSAMBIK	273604	Single Cell Mining Claim	2021-01-09	400	0
4288237	MOSAMBIK	226382	Single Cell Mining Claim	2021-01-09	400	0
4288237	MOSAMBIK	188477	Single Cell Mining Claim	2021-01-09	400	0
4288237	MOSAMBIK	170250	Single Cell Mining Claim	2021-01-09	400	0
4288249	MOSAMBIK	117527	Single Cell Mining Claim	2021-01-09	400	0
4288249	MOSAMBIK	336697	Single Cell Mining Claim	2021-01-09	400	0
4288249	MOSAMBIK	276267	Single Cell Mining Claim	2021-01-09	400	0
4288249	MOSAMBIK	221060	Single Cell Mining Claim	2021-01-09	400	0
4288237	MOSAMBIK,NAMEIGOS	344618	Single Cell Mining Claim	2021-01-09	400	0
4288237	MOSAMBIK,NAMEIGOS	265657	Single Cell Mining Claim	2021-01-09	400	0
4288230	NAMEIGOS	103256	Single Cell Mining Claim	2021-01-09	400	0
4288230	NAMEIGOS	127131	Single Cell Mining Claim	2021-01-09	400	0
4288232	NAMEIGOS	102261	Single Cell Mining Claim	2021-01-09	400	0
4288232	NAMEIGOS	276303	Single Cell Mining Claim	2021-01-09	400	0
4288232	NAMEIGOS	229063	Single Cell Mining Claim	2021-01-09	400	0
4288232	NAMEIGOS	219164	Single Cell Mining Claim	2021-01-09	400	0
4288232	NAMEIGOS	170953	Single Cell Mining Claim	2021-01-09	400	0
4288232	NAMEIGOS	118285	Single Cell Mining Claim	2021-01-09	400	0
4288233	NAMEIGOS	286410	Single Cell Mining Claim	2021-01-09	400	0
4288233	NAMEIGOS	189211	Single Cell Mining Claim	2021-01-09	400	0
4288233	NAMEIGOS	170954	Single Cell Mining Claim	2021-01-09	400	0
4288233	NAMEIGOS	154316	Single Cell Mining Claim	2021-01-09	400	0
4288233	NAMEIGOS	125852	Single Cell Mining Claim	2021-01-09	400	0
4288233	NAMEIGOS	118287	Single Cell Mining Claim	2021-01-09	400	0
	NAMEIGOS	531290	Single Cell Mining Claim	2021-01-09	400	0
	NAMEIGOS	531291	Single Cell Mining Claim	2021-01-09	400	0
	NAMEIGOS	531292	Single Cell Mining Claim	2021-01-09	400	0
	NAMEIGOS	531293	Single Cell Mining Claim	2021-01-09	400	0
	NAMEIGOS	531294	Single Cell Mining Claim	2021-01-09	400	0
	NAMEIGOS	531295	Single Cell Mining Claim	2021-01-09	400	0
	NAMEIGOS	531296	Single Cell Mining Claim	2021-01-09	400	0
	NAMEIGOS	531297	Single Cell Mining Claim	2021-01-09	400	0
	NAMEIGOS	531298	Single Cell Mining Claim	2021-01-09	400	0
	NAMEIGOS	531299	Single Cell Mining Claim	2021-01-09	400	0
	NAMEIGOS	531300	Single Cell Mining Claim	2021-01-09	400	0
	NAMEIGOS	531301	Single Cell Mining Claim	2021-01-09	400	0
	NAMEIGOS	531302	Single Cell Mining Claim	2021-01-09	400	0
	NAMEIGOS	531304	Single Cell Mining Claim	2021-01-09	400	0
	NAMEIGOS	531305	Single Cell Mining Claim	2021-01-09	400	0
	NAMEIGOS	531306	Single Cell Mining Claim	2021-01-09	400	0
	NAMEIGOS	531309	Single Cell Mining Claim	2021-01-09	400	0
	NAMEIGOS	531316	Single Cell Mining Claim	2021-01-09	400	0

	NAMEIGOS	531317	Single Cell Mining Claim	2021-01-09	400	0
	COOPER	531115	Multi-cell Mining Claim	2021-01-10	9200	0
	COOPER	531116	Multi-cell Mining Claim	2021-01-10	9600	0
	COOPER	531117	Multi-cell Mining Claim	2021-01-10	10000	0
	COOPER	531118	Multi-cell Mining Claim	2021-01-10	10000	0
	COOPER,STRICKLAND	531119	Multi-cell Mining Claim	2021-01-10	8000	0
	COOPER,STRICKLAND	531120	Multi-cell Mining Claim	2021-01-10	6000	0
	COOPER,STRICKLAND	531121	Multi-cell Mining Claim	2021-01-10	6400	0
	COOPER,STRICKLAND	531164	Multi-cell Mining Claim	2021-01-10	7200	0
	ABRAHAM	531086	Multi-cell Mining Claim	2021-01-18	9600	0
	ABRAHAM, COOPER	531087	Multi-cell Mining Claim	2021-01-18	9600	0
4281802	NAMEIGOS	134919	Boundary Cell Mining Claim	2021-02-16	200	0
4281802	NAMEIGOS	302908	Boundary Cell Mining Claim	2021-02-16	200	0
4281802	NAMEIGOS	281507	Boundary Cell Mining Claim	2021-02-16	200	0
4281802	NAMEIGOS	151061	Boundary Cell Mining Claim	2021-02-16	200	0
4281802	NAMEIGOS	150356	Boundary Cell Mining Claim	2021-02-16	200	0
4281802	NAMEIGOS	141005	Boundary Cell Mining Claim	2021-02-16	200	1139
4281805	NAMEIGOS	122945	Boundary Cell Mining Claim	2021-02-16	200	0
4281805	NAMEIGOS	290157	Boundary Cell Mining Claim	2021-02-16	200	0
4281805	NAMEIGOS	186333	Boundary Cell Mining Claim	2021-02-16	200	0
4281805	NAMEIGOS	133689	Boundary Cell Mining Claim	2021-02-16	200	0
4285671	NAMEIGOS	186239	Boundary Cell Mining Claim	2021-02-16	200	0
4285671	NAMEIGOS	319552	Boundary Cell Mining Claim	2021-02-16	200	0
4285671	NAMEIGOS	282751	Boundary Cell Mining Claim	2021-02-16	200	0
4285671	NAMEIGOS	186240	Boundary Cell Mining Claim	2021-02-16	200	0
4285672	NAMEIGOS	157827	Boundary Cell Mining Claim	2021-02-16	200	0
4285672	NAMEIGOS	344511	Boundary Cell Mining Claim	2021-02-16	200	0
4285672	NAMEIGOS	238950	Boundary Cell Mining Claim	2021-02-16	200	0
	NAMEIGOS	531332	Multi-cell Mining Claim	2021-02-16	9600	768
	NAMEIGOS	531333	Multi-cell Mining Claim	2021-02-16	4800	0
	NAMEIGOS	531334	Multi-cell Mining Claim	2021-02-16	10000	0
	NAMEIGOS	531336	Multi-cell Mining Claim	2021-02-16	9200	0
	NAMEIGOS	531337	Multi-cell Mining Claim	2021-02-16	9200	0
	NAMEIGOS	531338	Multi-cell Mining Claim	2021-02-16	9600	0
	NAMEIGOS	531341	Multi-cell Mining Claim	2021-02-16	800	0
	NAMEIGOS	531345	Multi-cell Mining Claim	2021-02-16	800	0
	NAMEIGOS	531346	Multi-cell Mining Claim	2021-02-16	1600	496
	ABRAHAM	531081	Multi-cell Mining Claim	2021-02-22	10000	0
	ABRAHAM	531082	Multi-cell Mining Claim	2021-02-22	9600	0
	ABRAHAM	531083	Multi-cell Mining Claim	2021-02-22	9600	0
	ABRAHAM, TEDDER	531048	Multi-cell Mining Claim	2021-02-22	9000	859
	ABRAHAM, TEDDER	531080	Multi-cell Mining Claim	2021-02-22	9600	0
	NAMEIGOS,STRICKLAND	531276	Multi-cell Mining Claim	2021-02-22	10000	0
	NAMEIGOS,STRICKLAND	531279	Multi-cell Mining Claim	2021-02-22	4000	0
	STRICKLAND	531160	Multi-cell Mining Claim	2021-02-22	8400	0
	STRICKLAND	531161	Multi-cell Mining Claim	2021-02-22	8400	0
	STRICKLAND	531277	Multi-cell Mining Claim	2021-02-22	7200	0
	ABRAHAM, COOPER	531084	Multi-cell Mining Claim	2021-03-10	9600	0
	COOPER	531085	Multi-cell Mining Claim	2021-03-10	9600	0
	COOPER	531088	Multi-cell Mining Claim	2021-03-10	9600	0
	COOPER	531089	Multi-cell Mining Claim	2021-03-10	8000	0
	COOPER	531090	Multi-cell Mining Claim	2021-03-10	9600	0
	COOPER	531091	Multi-cell Mining Claim	2021-03-10	9600	0
	COOPER	531092	Multi-cell Mining Claim	2021-03-10	9600	0
	COOPER	531093	Multi-cell Mining Claim	2021-03-10	10000	0
	COOPER	531113	Multi-cell Mining Claim	2021-03-10	10000	0
	COOPER	531114	Multi-cell Mining Claim	2021-03-10	10000	0
	OdLum	531205	Multi-cell Mining Claim	2021-03-27	4800	278
	HAMBLETON,ODLUM	531206	Multi-cell Mining Claim	2021-04-26	8200	345634
	BAYFIELD	549597	Multi-cell Mining Claim	2021-05-10	9600	0
	BAYFIELD	549623	Multi-cell Mining Claim	2021-05-10	9200	0
	BAYFIELD	549624	Multi-cell Mining Claim	2021-05-10	9600	0
	BAYFIELD	549625	Multi-cell Mining Claim	2021-05-10	8800	0
	BAYFIELD,BEATON	549626	Multi-cell Mining Claim	2021-05-10	9200	0

Appendix B - K7 South Zone - Geological Legend

Mafic Intrusives	Intermediate Volcanics
7A-Diabase	\square 2E-Intermediate Tuff
7B-Diorite	
7C-Lamprophyre	Felsic Volcanics
6A-Diorite	\square 2A-Felsic Massive Flows
6A-Diorite	2B-Felsic Tuff
6B-Gabbro	\square 2S-Sericite Schist
6C-Amphibilite	
6D-Peridotite	Mafic Volcanics
6G-Pyroxenite	
6E-Intermediate Dyke	1A-Massive Mafic Flows
6F-Mafic Dyke	1B-Pillowed Mafic Flows
Felsic Intrusives	1C-Agglomerate
5A-Granite	1D-Variolitic Flows
5B-Granodiorite	1E-Amygdaloidal/Vesicular Flows
	1F-Flow-top Breccia
5D-Syenite	1G-Amphibolitic Flows
4A-Quartz Porphyry	1H-Mafic Tuff
4B-Feldspar Porphyry	1I-Volcaniclastic
4C-Quartz-Feldspar Porphyry	1ALT-Altered Mafic Volcanic
4D-Felsite	1N-Hydrothermally Altered Basalt
4E-Pegmatite	1N-Hydrothermally Altered Basalt
4F-Felsic Dyke	
4ALT-Altered Feldspar Porphyry	Early Mafic Intrusive
Sediments	1Z-Gabbroic with gradational contacts
3A-Greywacke	
\square 3ALT-Altered Iron Formation w/sulphides	Ultramafic Volcanics
3B-Argillite	\square UM-Ultramafic
\square 3D-Iron Formation	1U-Ultramafic Flows
3E-Ferruginous Chert	1UT-Ultramafic Talc/Chlorite Altered
3F-Chert	
3G-Sulfide Facies Iron Formation	
3H-Reworked Tuffs	
31-Arenite	
\square 3S-Siltstone	

Assay Color Legend

	Assay Color Legend
UZ-Upper Zone	0-0.5
MZ-Middle Zone	0.6-1
	1.1-3
LZ-Lower Zone	3.1-5
QCV-Quartz-Carbonate Vein	5.1-8
	8.1-12
QTCSW-Quartz-Carbonate Stockwork	12.1-659
QTSW-Quartz Stockwork	
QV-Quartz Vein	
QZ-Quartz Zone	
QZ-STR-Quartz Stringer	

Appendix C - K7 South Zone - 2021 Drill Hole Logs

BHID	FROM_M	TO_M	LENGTH_M	ROCK_CODE	ROCK	COMMENTS
K7S-21-01	0	29.56	29.56	CAS	Casing	
K7S-21-01	29.56	31.74	2.18	3A	Greywacke	Fg to mg, grey greywacke with a massive to bedded texture. Unit is composed predominately of a fine grained felsic and biotite ground mass. Millimetric wide light grey felsic bands are observed sporadically throughout the unit. Moderate degree of fracture-controlled sericite alteration throughout. Frequent narrow sections of feldspar porphyry, felsic/granitic intrusions. Frequent narrow quartz stringers throughout most of the unit. Sharp lower contact with pegmatite.
K7S-21-01	31.74	33.33	1.59	4E	Pegmatite	Mg to vcg, pink and grey felsic unit with a massive texture. Unit is composed predominately of quartz/smokey quartz and plagioclase. Minor mica. Sharp upper and lower contact.
K7S-21-01	33.33	37.41	4.08	3 A	Greywacke	Fg to mg , grey greywacke with a massive to bedded texture. Unit is composed predominately of a fine grained felsic and biotite ground mass. Millimetric wide light grey felsic bands are observed sporadically throughout the unit. Moderate degree of fracture-controlled sericite alteration throughout. Frequent narrow sections of feldspar porphyry, felsic/granitic intrusions. Some sections appear to have relic feldspar porphyry texture with diffuse contacts? Sharp lower contact with granodiorite.
K7S-21-01	37.41	41.42	4.01	5B	Granodiorite	fg to mg , white felsic unit with black speckling throughout. Unit has a massive texture and is composed predominantly of white feldspar and grey quartz with lesser black biotite. Minor intervals of greywacke within this intrusive unit. Undulating contact with greywacke approximately along core axis from 40.3040.85 m . Sharp upper and lower contacts.
K7S-21-01	41.42	69.23	27.81	3 A	Greywacke	Fg to mg , grey greywacke with a massive to bedded texture. Unit is composed predominately of a fine grained felsic and biotite ground mass. Millimetric wide light grey felsic bands are observed sporadically throughout the unit. Moderate degree of fracture-controlled sericite alteration throughout. Frequent narrow sections of feldspar porphyry, felsic/granitic intrusions. Some sections appear to have relic feldspar porphyry texture with diffuse contacts? Strongly developed schistose fabric with strong biotite/sericite alteration in the lower section of this unit starting at approximately 48.40 m .
K7S-21-01	69.23	76.9	7.67	5B	Granodiorite	Light blue-grey, medium- to coarse-grained, massive, qz-fs-ser-bt granodiorite. This unit rarely develops a very coarse-grained texture, thus it is locally pegmatitic. This unit has a small section of greywacke at 69.50 m .

K7S-21-01	76.9	80.07	3.17	3 A	Greywacke	Grey to dark-grey, medium-grained, foliated greywacke. The foliation in this unit is defined by elongate bt, ser, qz, and fs. This unit has weak to moderate fracture- controlled sericite alteration. This unit is rarely cut by 1-3 cm-wide pegmatites. This unit locally develops a schistose texture, and has no significant sulfide mineralization.
K7S-21-01	80.07	82.13	2.06	4E	Pegmatite	Light pinkish-grey, medium- to very coarse-grained, massive, qz-fs-mica pegmatite with local medium-grained granite.
K7S-21-01	82.13	86.72	4.59	3 A	Greywacke	Grey to dark-grey, medium-grained, foliated greywacke. The foliation in this unit is defined by elongate bt, ser, qz, and fs. This unit has weak to moderate fracture- controlled sericite alteration. This unit is rarely cut by 3-5 cm-wide pegmatites with 0.5% py. This unit locally develops a schistose texture, and has no significant sulfide mineralization.
K7S-21-01	86.72	92.3	5.58	$4 E$		

K7S-21-01	109.45	144.77	35.32	3 A		

K7S-21-01	167	169.3	2.3	4E	Pegmatite	Light greyish-white to pinkish-grey, medium- to very coarse-grained, massive, qz- fs-mica, granitic pegmatite with local section of fractured feldspathic vein (?) at 167.80 m to up to 168.25 m. Diffuse upper and lower contacts with the units		
above.							,	K7S-21-01
:---								
169.3								

K7S-21-01	200.51	221	20.49	4E	Pegmatite	Light pink to dark reddish pink, medium to coarse grained, massive, qz-fs-mica-grt (?), granitic pegmatite. There are 2 minor 20 to 35 cm sections of well foliated to schistose defined by prominent Bt (possibly strained greywacke?). Appears to have sharp to undulating contacts with the enclosing pegmatites.
K7S-21-01	221	223.41	2.41	1A	Massive Flows	Fine to medium grained, grey to dark green mafic flows with a massive to occasional banded texture. Unit is composed predominately of mafic minerals with lesser amounts of grey plagioclase interstitially. This unit comprises of minor sections of well foliated/schistose (defined by prominent Bt) greywacke (possible strained?). Sulphide mineralization occurs as blebs/patches and stringers of Py, Po and locally along fractures which may be along remnant foliation. Occasionally occurs up to 3%. Minor qz veins/veinlets can be observed within this unit and times ptygmatically folded.
K7S-21-01	223.41	236.8	13.39	4E	Pegmatite	Light to dark reddish pink to reddish grey, medium to coarse grained, massive, qz-fs-mica-grt (?), granitic pegmatite. There are a few 20 to 30 cm sections of 1 A and 3 A (5B?) units within, which appears to have locally up to 1% sulphides. $\mathrm{Py} / \mathrm{Po}$ (?) occurring usually as stringers and wisps. Py blebs are present along strained/well foliated 3 A units. Py stringers nearly at 90 degree to TCA observed in minor 1A unit within.
K7S-21-01	236.8	247.23	10.43	1A	Massive Flows	Fine to medium grained, grey to dark green mafic flows with a massive to occasional banded texture. Unit is composed predominately of mafic minerals with lesser amounts of grey plagioclase interstitially. Pervasive to patchy amp alteration, with a moderate amount of banded biotite alteration in sections. Sulphides are mineralized as blebs, patches and also occur as minor stringers within the unit. At times associated with banded di/ep(?) alteration. Py/Po(?) stringers follow remnant foliation trend. There are a few 1 to 5 cm thick qz/smokyqz veins which are at times bounded by Py blebs and patches. Some veins are also devoid of sulphides as well.
K7S-21-01	247.23	250.78	3.55	4E	Pegmatite	Light to dark reddish pink to grey, medium to coarse grained, massive, qz-fs-micagrt (?), granitic pegmatite. There is a 20 cm section of 3 A within, which appears to have locally up to 1% sulphides as minor wisp/stringer.

K7S-21-01 250.78	267	16.22	1A			

													边	mimmim				\％		\％									边	mome	manmmen	边	\％	，	nomm	min mim			＂．	\％\％ix in
						\％																									－									
											－	－																				－								
											－	－	，	－		－	－	－											－	－	－	－	－	－						
																																－								
					\％	－																							－	－	－	－	－	－						
					${ }^{*}$																								，		，	－	－	－						
			为			－				\％${ }^{2}$	\cdots	\cdots	＊＊＊＊＊＊＊＊＊＊）	＊＊＊	－	＊＊	＊＊	\cdots		\％		\cdots	＊		\cdots				\％	\cdots	＊	\cdots	＊＊＊	\cdots	，	－	\％	，		
				${ }^{1.8}$	W	！								－	－	－	－	－											－	－	－	－	－	－		－	，			
						\％																									－	－	－	－						
						${ }_{\text {amb }}$																									－	－	－	－						
																																－								
						\％\％										－		－											－	－	－	－	－	－						
					\％																																			
																															－	，		－						
					$\stackrel{\text { \％}}{ }$																																			
					\％																												，							
				\％	\％		\％																																	
					${ }_{\text {and }}$	\％	\％ed							－		－	，																							
																															－	－	－							
						－	\ldots	，																					－		－	－		－						
					W																																			
																															，	－								
																－													－	－	－	－	－	－						
					．in																																			
													－	，								－	－						－	－	－	－	－	－						
																							－								－	－	－	－						
					${ }^{3}$	${ }^{\text {amb }}$					－	，	－	－	－	－	－	－				－	－						－	－	－	－	－	－		－	，			
											－	－	－	－		－	－					－							－	－	－	－	－	－			，			
					$\stackrel{*}{*}$								－	－	－																									
														－															－		－	，	，							
																													－	－	－	－	－	－						
																													－	－	－	－	－							
					$\stackrel{.}{\text { \％}}$	－																							，	－	－	－	－	－		－				
														－															－	－	－	－	－			－		－		
																													，		－		－							

GOLD CORP				Hole Number:	$\mathrm{K} 7 \mathrm{~S}-21-02$									
				Drill Rig:	G4 \#8									
				Claim Number:	531157, 531165									
Location			Drill Hole Orientation		Dates Drilled:		Start Date:		End Date:					
Surface					10/28/2021	11/02/2021								
Planned Coordinates			Azimuth:	60			Drill Contractor:		G4 Drilling					
Easting	650906													
Northing		3319	Dip:	-45	Dates Logged:		Start Date:		End Date:					
Elevation(m)	405						10/29/2021		11/03/2021					
Final Pick up			Depth(m):	342.00	Logger 1:		Antony Mohan							
Easting	650907.259				Logger 2:									
Northing	5393321.587		Core Size:	NQ	Logger 3:									
Elevation(m)	432.08				Assay Lab:		Actlabs							
Casing														
Purpose of Hole		To test an unexpected VLF anomaly in metasediments/mafic volcanics.			Dip Tests									
		Depth (m)	Az.	Dip	Mag	Notes	Az Un							
		36	53.8	-44.8	55733		61.4							
		66	57.8	-43.9	53513		65.4							
		96	53.6	-42.9	55791		61.2							
Results								126	53.7	-42.7	55819		61.3	
					186	54.5	-41.7	55795		62.1				
					216	54.4	-41	55620		62				
					270	53.3	-39.6	55909		60.9				
Comments														
Azimuth corrected to 7.6 degrees west declination														

BHID	FROM_M	TO_M	LENGTH_M	ROCK_CODE	ROCK	COMMENTS
K7S-21-02	0	27		CAS	Casing	
K7S-21-02	27	43.44		3A	Greywacke	Grey to dark-grey, medium-grained, foliated amph-rich greywacke. The foliation in this unit is defined by elongate amph, ser, qz, and fs. This unit has weak to moderate fracture-controlled sericite alteration. This unit is cut by a minor section of pegmatitic granite (?). This unit develops a schistose texture dominated by strong Bt dominated foliation between 40 to 43.44 m , and has no significant sulfide mineralization. Gt porphyroblasts are also observed along this schistose zones. This unit also has light grey beds/bands (1-2 cm-wide) that are characterized by a white, fs-rich groundmass, and dark green, acicular amph. This unit also has green beds/bands ($1-3 \mathrm{~cm}$-wide) that are characterized by ep-di-fs. Minor sulphides of locally up to 1% are observed as blebs and disseminations trending along foliation dominated by dark-green amph and Bt (?)
K7S-21-02	43.44	51.55		4E	Pegmatite	Pinkish grey to greyish-red, medium to coarse-grained, massive, occasionally cut by fractures and subsequent healing. Dominated by qz/smoky qz-fs-mica, +/-grt (?). Almost sharp upper and lower diffuse/gradational contacts with 3A units above and below. Section 43.44 to 45 m appears more to be a granite and further grading towards to a more pegmatitic texture.
K7S-21-02	51.55	57.35		3A	Greywacke	Grey to dark-grey, medium-grained, foliated amph-rich greywacke. The foliation in this unit is defined by elongate amph, ser, qz, and fs. This unit has weak to moderate fracture-controlled sericite alteration. This unit develops a schistose texture dominated by strong Bt dominated foliation. This unit also has light grey beds/bands (1-2 cm-wide) that are characterized by a white, fs-rich groundmass, and dark green, acicular amphiboles. The strain and Bt dominated foliation seems to increase towards the basal contact with 1 A unit. There is a minor $10-15 \mathrm{~cm}$ section of granodiorite intruding(?) at an angle of 25 degree with TCA along the contact with 1 A . Up to 1% of sulphides are present as blebs/disseminations associated to the contact zone following the trend of the granodiorite contact.

K7S-21-02	57.35	64		1A	Massive Flows	Fine to medium grained, grey to dark green mafic flows with a massive to occasional banded texture. Unit is composed predominately of mafic minerals with lesser amounts of grey plagioclase interstitially. Pervasive to patchy amp alteration, with a moderate amount of banded biotite alteration in sections which increases more towards the basal contact with 1 B unit. There are several 0.5 cm $q z, q z-f s$ veins trending at angles between 55-70 degree with TCA throughout the section. Sulphides are present throughout this unit. Po mostly occurs as stringers and wisps following a trend parallel to remnant foliation \& possibly bounding these dark-green amph dominated layers. There seems to be more Po compared to Py along this litho-unit. Py is often seen along and within certain sections of banded di alt(?) \& within certain qz veinlets.
K7S-21-02	64	67.78		1B	Pillowed Flows	Dark green-grey, fine-med grained, foliated, pillowed mafic unit, where the pillows are flattened and are dark grey and primarily composed of plagioclase and amphibole, and the pillow salvages are green, and composed of plagioclase, epidote/diopside +/- amphibole. This unit shows alternating bands of Di alt(?) with patchy/blebby mineralization of $\mathrm{Py} / \mathrm{Po}$ (?) locally reaching up to 0.1 to 2%. There are a few minor 0.5 to $1 \mathrm{~cm} q z$ veins that are identified within the section with trace to up to 0.5% sulphides. Py/Po stringers ($0.2-0.5 \mathrm{~cm}$) are also observed with up to 5% locally. These stringers are usually parallel to remnant foliation. Blebs or Py patches are observed within the banded di alt bands. This unit seems to grade more towards as a 1A down towards the basal contact.
K7S-21-02	67.78	72.7		1A	Massive Flows	Fine grained, grey to dark green mafic flows with a massive to occasional banded texture. Unit is composed predominately of mafic minerals with lesser amounts of grey plagioclase interstitially. Pervasive to patchy amp alteration, with a moderate amount of banded biotite alteration. There are a few 0.2 to $1 \mathrm{~cm} q z, q z-f s$ veins trending at angles between 60-80 degree with TCA/others ptygmatically folded throughout the section. Sulphides are present throughout this unit. Po mostly occurs as stringers and wisps following a trend parallel to remnant foliation \& possibly bounding these dark-green amph dominated layers. This unit has minor interlayers of feldspar porphyry's (with minor sulphide disseminations (?) and granodiorite.

K7S-21-02	72.7	76.14	1B	Pillowed Flows	Dark green-grey, fine-med grained, foliated, pillowed mafic unit, where the pillows are flattened and are dark grey and primarily composed of plagioclase and amphibole, and the pillow salvages are green and composed of plagioclase, epidote/diopside +/- amphibole. This unit shows alternating bands of Di alt(?) (usually assuming the same trend of foliation) with patchy/blebby mineralization of $\mathrm{Py} / \mathrm{Po}$ (?) locally reaching up to 0.1 to 0.5%. Sulphides are usually associated with banded di alt patches and also often associated with fracture surfaces.
K7S-21-02	76.14	77.45	3A	Greywacke	Grey to dark-grey, medium-grained, foliated amph-rich greywacke. The foliation in this unit is defined by elongate amph, ser, qz, and fs. This unit has weak to moderate fracture-controlled sericite alteration. The sharp upper contact is bounded by a granodiorite (?) unit and at the basal contact it grades into a massive to pillowed basalt.
K7S-21-02	77.45	99.97	1B	Pillowed Flows	Dark green-grey, fine-med grained, foliated, pillowed mafic unit, where the pillows are flattened and are dark grey and primarily composed of plagioclase and amphibole, and the pillow salvages are green and composed of plagioclase, epidote/diopside +/- amphibole. This unit shows alternating bands of Di alt(?) (usually assuming the same trend of foliation) with patchy/blebby mineralization of $\mathrm{Py} / \mathrm{Po}($?) locally reaching up to 0.1 to 2%. Sulphides are usually associated with banded di alt patches and also often associated with fracture surfaces. There are several minor 10 cm to 25 cm interlayers of potential pegmatite (pegmatitic ?), greywacke and feldspar porphyry units. A few smoky qz and qz-fs veins are identified within the unit which appears to have trace to occasionally up to 2% in fracture controlled mineralization events. From 97.88 to 98.3 m , there seems to be fracture (15 degree to TCA)-healing which appears to have bleached this minor section to a grey-dark greyish color.
K7S-21-02	99.97	107.76	4E	Pegmatite	Pinkish red, medium to coarse-grained, massive, occasionally fractured and consequently healed. Dominated by qz, smoky-qz, pink fs, fs, mica). Sharp upper and lower contacts with the upper 1B and lower 6Funits. No visible sulphides observed within the section.
K7S-21-02	107.76	111.85	6F	Mafic Dyke	Dark green to greenish grey, fine to medium grained mafic dyke(?). Appears to be well foliated developed by dominant Bt and other dark green amph minerals. Preferred foliation is by Bt and the dark green amph appears as laths oriented randomly not defining a particular trend. No visible sulphides associated within this section.

K7S-21-02	111.85	114.45			4B	

K7S-21-02	180.93	185.09	1B	Pillowed Flows	Dark green-grey, fine-med grained, foliated, pillowed mafic unit, where the pillows are flattened and are dark grey and primarily composed of plagioclase and amphibole, and the pillow salvages are green and composed of plagioclase, epidote/diopside +/- amphibole. This unit shows alternating bands of Di alt(?) (usually assuming the same trend of foliation) with patchy/blebby mineralization of $\mathrm{Py} / \mathrm{Po}($?) locally reaching up to 0.1 to 1%. Sulphides are usually associated with banded di alteration patches and also often fracture controlled (?). There are minor interlayers of pegmatite dyke (?) and a section of feldspar porphyry within this pillowed mafic unit.
K7S-21-02	185.09	192.55	4E	Pegmatite	Pinkish white-greyish pink to pinkish red, medium to coarse-grained, heterogenous and very quartz/smoky qz rich (up to 40% visual), with anhedral to subhedral K-fs, and plagioclase fs, +/-mica, +/-Gt, massive, (occasionally certain sections resemble more of granites) pegmatite.
K7S-21-02	192.55	193.97	1B	Pillowed Flows	Dark green-grey, fine-med grained, foliated, pillowed mafic unit, where the pillows are flattened and are dark grey and primarily composed of plagioclase and amphibole, and the pillow salvages are green and composed of plagioclase, epidote/diopside +/- amphibole. There are minor interlayers of greywacke within this section. It seems to have a sharp contact with the pillowed mafic unit and assumes the trend of foliation.
K7S-21-02	193.97	219	4E	Pegmatite	Pinkish white-greyish pink to pinkish red, medium to coarse-grained, heterogenous and very quartz/smoky qz rich (up to 40% visual), with anhedral to subhedral K-fs, and plagioclase fs, +/-mica, +/-Gt, massive, (occasionally certain sections resemble more of granites) pegmatite. Certain sections of the unit assumes a more greyish tone due to the increasing amount of Bt (mica) and other dark grey-black accessory minerals (hornblende(?).
K7S-21-02	219	220.9	4B	Feldspar Porphy	Fine to med grained, felsic unit, light to dark grey, composed of predominately quartz, plagioclase and less amounts of biotite. Millimetric sized feldspar phenocrysts throughout that produce a porphyritic texture (where phenocrysts are moderate to strongly foliated). Matrix may be is composed of qz, plagioclase fs and bt (?). Some sections resemble more of a greywacke with remnant bedding/foliation observed? Po/Py is mineralized as blebs and disseminations usually following the remnant foliation trend and locally reaching up to 0.5\% within certain sections.
K7S-21-02	220.9	229.52	4E	Pegmatite	Pinkish white-greyish, medium to coarse-grained, heterogenous and very quartz/smoky qz rich (up to 40% visual), with anhedral to subhedral K-fs, and plagioclase fs, +/-mica, +/-Gt, massive pegmatite.

K7S-21-02	229.52	231.83		4B		

K7S-21-02	271.27	288.32	4B	Feldspar Porphy	Fine to med grained, felsic unit, light to dark grey, composed of predominately quartz, plagioclase and less amounts of biotite. Millimetric sized feldspar phenocrysts throughout that produce a porphyritic texture (where phenocrysts are moderate to strongly foliated). Matrix may be is composed of qz, plagioclase fs and bt (?). Py and possibly Po is mineralized as disseminations usually following the remnant foliation trend and locally reaching up to $0.5-1 \%$ within certain sections. There are minor intrusions of pegmatitic dyke (?) within this interval. Some sections of the unit is less porphyritic in texture and consists of bands of light grey to white bands (qz-fs) alternating with darker green (amphibole) bands. In those sections sulphide disseminations are lesser compared to the porphyritic zones. There are several 2 mm to 5 mm qz/silicified veins within the unit usually following the same trend as of the foliation.
K7S-21-02	288.32	291	4E	Pegmatite	Pinkish greyish-reddish, medium to coarse-grained, heterogenous and very quartz/smoky qz rich (up to 40% visual), with anhedral to subhedral K-fs, and plagioclase fs, $+/-$ mica, $+/-\mathrm{Gt}$, massive pegmatite. Appears to have a sharp upper and lower contact with the feldspar porphyry and pillowed mafics (?)
K7S-21-02	291	296.05	1B	Pillowed Flows	Dark green-grey, fine-med grained, foliated, pillowed mafic unit, where the pillows are flattened and are dark grey and primarily composed of plagioclase and amphibole, and the pillow salvages are green and composed of plagioclase, epidote/diopside +/- amphibole. This units consists of wisps of stretched and or boudinaged felsic veinlets which are parallel to the foliation of the unit. There are a few 2 to 15 cm sections of light to pale green alt zones (possibly di?) within this interval. Sulphides usually Po?/Py (as wisps, disseminations (?)) is associated with alternating bands of light grey-white fine grained qz-fs and dark green amphiboles. There are several 1 to $4 \mathrm{~mm} q z, q z-\mathrm{fs}$? veinlets within the section, some of which follow the same trend of foliation (60 degree TCA).

K7S-21-02 296.05	298					

BHID	FROM_ITO_M		LENGTH_M	ROCK_CODE	ROCK	COMMENTS
K7S-21-03	0	12.76	12.76	CAS	Casing	
K7S-21-03	12.76	20.94	8.18	1B	Pillowed Flows	Dark green-grey, fine-med grained, foliated, pillowed mafic unit, where the pillows are flattened and are dark grey and primarily composed of plagioclase and amphibole, and the pillow salvages are green and composed of plagioclase, epidote/diopside +/- amphibole. This units consists of wisps of stretched and or boudinaged felsic veinlets which are parallel to the foliation of the unit. There are a few 2 to 5 cm sections of light to pale green alt zones (possibly di-epidote-dark green amph?) within this interval. Sulphides usually Po?/Py (as wisps, disseminations (?)) is associated with these zones ranging from 0.1 to 0.5%. There are minor intervals of pegmatitic dykes, greywacke? and two 5 cm qz/pegmatite vein? within this unit. The qz veins? are not usually sulphide rich here, but with rare occurrences and at time $\mathrm{Py} / \mathrm{Po}$? is present bounding these veins within the wall rock ranging from 0.5 to 1% locally.
K7S-21-03	20.94	29.64	8.7	4E	Pegmatite	Pinkish grey-reddish, medium to coarse-grained, heterogenous and very quartz/smoky qz rich (up to 40% visual), with anhedral to subhedral K-fs, and plagioclase $\mathrm{fs},+/$-mica, $+/-\mathrm{Gt}$, massive pegmatite. Appears to have a sharp upper and wavy/irregular lower contact with the pillowed mafic units.
K7S-21-03	29.64	34.6	4.96	1B	Pillowed Flows	Dark green-grey, fine-med grained, foliated, pillowed mafic unit, where the pillows are flattened and are dark grey and primarily composed of plagioclase and amphibole, and the pillow salvages are green and composed of plagioclase, epidote/diopside $+/$ - amphibole. This units consists of stretched and or boudinaged qz/qz-felsic veinlets which are almost parallel to the foliation of the unit. There are a few 2 to 10 cm sections of light to pale green alt zones (possibly di-epidote-dark green amph?) within this interval. Sulphides usually Po?/Py (as wisps, disseminations (?)) is associated with these zones and along certain fractures parallel to foliation ranging from 0.1 to 0.5%. There are minor intervals of pegmatitic dykes, feldspar porphyry's and possible greywacke? units within.
K7S-21-03	34.6	46.58	11.98	4E	Pegmatite	Pinkish grey-reddish, medium to coarse-grained, heterogenous and very quartz/smoky qz rich (up to 40% visual), with anhedral to subhedral K-fs, and plagioclase $\mathrm{fs},+/$-mica, $+/-\mathrm{Gt}$, massive pegmatite. Appears to have a sharp upper and sharp to slightly diffuse lower contact with the pillowed mafic units. There is a minor section of potential granodiorite within this interval. The core is broken from 35.60 to 36.80 m .

K7S-21-03	46.58	73.63	27.05	1B		

K7S-21-03	106.15	108.87	2.72	5B	Granodiorite	Light grey to beige, medium grained, equigranular, massive granodiorite mostly composed of qz, fs, bt, hornblende(?) and other accessory minerals. This unit has an irregular upper contact and sharp lower contact with the pegmatite and pillowed mafic units respectively. There is a minor healed (brick red mineral?) fracture at the base of the granodiorite (from 108.30 to 108.80 m).
K7S-21-03	108.87	113.56	4.69	1B	Pillowed Flows	Dark green-grey, fine-med grained, foliated, pillowed mafic unit, where the pillows are flattened and are dark grey and primarily composed of plagioclase and amphibole, and the pillow salvages are green and composed of plagioclase, epidote/diopside +/- amphibole. These mafics exhibit a banded texture with alternating layers of dark green amphiboles, dark grey felsic and pale green di alteration bands (?). Sulphides are usually present as Py overprinting the dark green amph bands and also as disseminations/blebs associated with the di alt patches. Py/Po? also occur as fracture controlled patches to up to 5\% locally. There is band from 112.10 to 112.16 (true thickness $2 \mathrm{~cm}, 60$ degrees to TCA) that is highly magnetic (981 magsus) and has sulphide disseminations overprinting the band of up to 0.5%. There are three 5 cm patches of possible di-ep-amph alt patches within this unit with associated overprinting of sulphides of up to 0.5% locally inn those patches.
K7S-21-03	113.56	190.49	76.93	5B	Granodiorite	Light grey-bluish grey-pinkish grey (from 181.39 to 190.49 m), medium grained, equigranular, massive granodiorite mostly composed of qz, fs, bt, hornblende(?)+/gt and other accessory minerals. This unit has a sharp upper and lower contacts with the pillowed mafic and feldspar porphyry units. There are minor interlayers of altered/strained feldspar porphyry's, metasediments (pillowed or massive mafics?-some sections are well foliated by dominated bt minerals) to 138 m . From 138 m there are minor intrusions of pegmatite within this section up to 149 m . Some sections are broken (152.47 to $154.27 \mathrm{~m}, 174.52$ to 174.79 and 176 to 176.25 m)
K7S-21-03	190.49	191.97	1.48	4B	Feldspar Porphy	Fine to med grained, felsic unit, light to dark grey, composed of predominately quartz, plagioclase and less amounts of biotite. Millimetric sized feldspar phenocrysts throughout that produce a porphyritic texture (where phenocrysts are moderate to strongly foliated). Matrix may be is composed of qz, plagioclase fs and bt (?). There are minor interlayers of greywacke (remnant bedding?), pillowed mafics units within this interval. Certain sections of the $4 B$ is so stretched out so that it appears to be like banding (alternating light grey and dark greygreen?

K7S-21-03	191.97	193.8	1.83	3 A	Greywacke	Grey to dark-grey, medium-grained, foliated amph/bt?-rich greywacke. The foliation in this unit is defined by elongate amph, ser, qz, and fs. This unit has weak fracture-controlled sericite alteration. Certain sections of the unit appears to be more porphyritic (4B?). There are two 0.5 cm qz/qz-fs veining within this unit. No visible sulphides associated with it.
K7S-21-03	193.8	195.73	1.93	5B	Granodiorite	Light pinkish grey-beige, medium grained, equigranular, massive granodiorite mostly composed of qz, fs, bt, hornblende(?)+/- gt and other accessory minerals. The upper section appears to be granitic? This unit has sharp upper and lower contacts with the greywacke and feldspar porphyry units respectively.
K7S-21-03	195.73	214.4	18.67	4B	Feldspar Porphy	Fine to med grained, felsic unit, light to dark grey, composed of predominately quartz, plagioclase and less amounts of biotite. Millimetric sized feldspar phenocrysts throughout that produce a porphyritic texture (where phenocrysts are moderate to strongly foliated). Matrix may be is composed of qz, plagioclase fs and bt (?). There are minor interlayers of greywacke (remnant bedding?), mafics units within this interval. Certain sections is so stretched out so that it appears to be like banding (alternating light grey and dark grey-green-black?. Some sections have 5 to 20 cm of white-light grey bands alternating with wisps of dark green amph with occasional light grey bands. Cherty wisps/siliceous fragments can be seen within these sections. Sulphides are minor and usually occur as disseminations interspersed throughout the unit reaching up to 1%. From 208.43 to 211.45 m the section (Strained Granodiorite?)/) appears to be well foliated with less visible strained porphyroblasts

K7S-21-03	214.4	225.27	10.87	1B		

K7S-21-03	232.73	261.52	28.79	4B	Feldspar Porphy	Fine to med grained, felsic unit, light to dark grey, composed of predominately quartz, plagioclase and less amounts of biotite. Millimetric sized feldspar phenocrysts throughout that produce a porphyritic texture (where phenocrysts are moderate to strongly foliated). Matrix is composed of qz, plagioclase fs and bt (?). There are minor interlayers of greywacke (remnant bedding?), mafics units within this interval. Cherty wisps/siliceous bands can be seen within this section throughout. Sulphides are minor and usually occur as disseminations interspersed throughout the unit reaching up to 0.1% and occasionally 1% locally. From 232.73 to 237, the unit appears to more fine to medium grained and less foliated compared the section below. Phenocrysts are smaller in size and bt/amph wisps surrounding the porphyroblasts are less stretched out. Section from 237 to 261.52 m (phenocrysts are larger in size, more foliated, more porous-dissolution porosity?, more sericite alt along fracture.
K7S-21-03	261.52	281	19.48	1B	Pillowed Flows	Dark green-grey, fine-med grained, foliated, pillowed mafic unit, where the pillows are flattened and are dark grey and primarily composed of plagioclase and amphibole, and the pillow salvages are green and composed of plagioclase, epidote/diopside +/- amphibole. These mafics exhibit a banded texture with alternating layers of dark green amphiboles, dark grey felsic and pale green di alteration bands (?). Sulphides are usually present as fine disseminations (up to 0.5% throughout unit associated with? pale green di alt patches). This unit has 5 to 10 cm patches of pale green di alteration with up to 1% sulphide disseminations locally. Certain sections of the unit show qz veining that appear to be wavy and as wisps/cherty fragments. There is evidence of stretching and accompanied boundinaging of these veinlets. There are minor interlayers of $4 \mathrm{~B}, 3 \mathrm{~A}, 4 \mathrm{E}$ and possibly minor 1 A units. Patchy di-pervasive amph-chl?-frac controlled ep altered section-276.52 to 276.92 m - euhedral sulphides?
K7S-21-03	281	316.61	35.61	5B	Granodiorite	Reddish pink to beige, medium grained, equigranular, massive granodiorite mostly composed of qz, fs, bt, hornblende(?) and other accessory minerals. This unit has an irregular upper contact and sharp lower contact with the pillowed mafic unit. There are several healed fractures especially up to 289 m with a dark grey green to black mineral (altered bt, chl?). The upper section of the unit from 281 to 286 appear more granitic.

K7S-21-03	316.61	319.38	2.77		1A	

K7S-21-03	333.25	335.42	2.17	4B	Feldspar Porphy	Fine to med grained, felsic unit, light to dark grey, composed of predominately quartz, plagioclase and less amounts of biotite. Millimetric sized feldspar phenocrysts throughout that produce a porphyritic texture (where phenocrysts are moderate to strongly foliated). Matrix is composed of qz, plagioclase fs and bt (?). There are minor interlayers of greywacke (remnant bedding?), massive mafic unit occurs within this interval.
K7S-21-03	335.42	339	3.58			

K7S-21-03	341.08	351.65	10.57	1B		

K7S-21-03	384.77	400.87	16.1	4E	Pegmatite	Pinkish grey-beige, medium to coarse-grained, heterogenous and very quartz/smoky qz rich (up to 40% visual), with anhedral to subhedral K-fs, and plagioclase fs, +/-mica, +/-Gt, massive pegmatite. Sharp upper and lower contacts. There are minor interlayers of mafic units scattered throughout .
K7S-21-03	400.87	402	1.13	7A	Diabase	Very fine grained, dark grey to black, massive mafic unit composed of mostly mafic minerals of amphibole/pyroxene and interstitial very fine grained white plagioclase. Cross-cutting of veinlets are are often mechanical fractured and coated with epidote. Scattered trace specks of pyrite throughout this unit. Sharp upper and lower contacts.
K7S-21-03	402	428.2	26.2	1B	Pillowed Flows	Dark green-grey, fine-med grained, foliated, pillowed mafic unit, where the pillows are flattened and are dark grey and primarily composed of plagioclase and amphibole, and the pillow salvages are green and composed of plagioclase, epidote/diopside +/- amphibole. These mafics exhibit a banded texture with alternating layers of dark green amphiboles, dark grey felsic and pale green di alteration bands (?).There is evidence of stretching and accompanied boundinaging of these veinlets. This pillowed flow in particular is much more altered than the pillowed mafics seen up dip. This includes increased epidotization and also sections that are highly silicified. Highly silicfied sections often contain a series of cross-cutting epidotized veinlets. In addition there is a greater number of pegmatic//granodiorite veinlets/veins and sections pegmatitic minor units scattered throughout. There is possible evidence of folding indicating a fold hinge? Also a significant change in foliation angle.
K7S-21-03	428.2	440.31	12.11	4E	Pegmatite	Pinkish grey-beige, medium to coarse-grained, heterogenous and very quartz/smoky qz rich (up to 40% visual), with anhedral to subhedral K-fs, and plagioclase fs, +/-mica, +/-Gt, massive pegmatite. Sharp upper and lower contacts. There are minor interlayers of mafic units scattered throughout .

K7S-21-03	440.31	441.82	1.51		1B	

K7S-21-03	450.85	452.39	1.54			

K7S-21-03	481.15	483.47	2.32	4E	Pegmatite	Pinkish grey-beige, medium to coarse-grained, heterogenous and very quartz/smoky qz rich (up to 40\% visual), with anhedral to subhedral K-fs, and plagioclase fs, +/-mica, +/-Gt, massive pegmatite. Sharp upper and lower contacts.
K7S-21-03	483.47	488.05	4.58	5 E		Tonalite
K7S-21-03	488.05	491.93	3.88			

													**	w	* * *		\%	**		${ }^{*}$	*	${ }^{*}$	**		\%		\% *	*	\%	**		,		\ldots	*	**	w	w w	**		**		* *	, *	*		
													,	-	-	,							-										-	-	-	-	-	-	-		-						
														,							-	-															-			,	-						
														,	,						,	-												,						-	-						
																																									-						
													-	-	-	-						-																			-						
				,		\%						\cdots	$\stackrel{\sim}{*}$	\cdots	\cdots	\cdots	-	*			\sim	\because	\%		"	+								\cdots					${ }^{*}$	\cdots	*....						
					$\xrightarrow{\text { and }}$	\%	-						,		-	-						-																		-	-						

Appendix D - K7 South Zone - 2021 Drill Hole Cross Sections

Appendix E-K7 South Zone - 2021 Drill Hole Plans

Appendix F - K7 South Zone - 2021 Actlabs Assay Certificates

Report No.:	A21-20231
Report Date:	$29-$ Oct-21
Date Submitted:	$27-$ Oct-21
Your Reference:	Exploration/Prospecting

Harte Gold Corp.

161 Bay Street
Suite 2400
Toronto Ontario M5J 2S1
Canada

ATTN: David Stevenson

CERTIFICATE OF ANALYSIS

10 Rock samples were submitted for analysis.

The following analytical package(s) were requested:	Testing Date:	
1A2-Tbay-Harte Gold	QOP AA-Au (Au - Fire Assay AA)	2021-10-29 18:10:04

REPORT A21-20231
This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:
If value exceeds upper limit we recommend reassay by fire assay gravimetric-Code 1A3

LabID: 673

ACTIVATION LABORATORIES LTD.
1201 Walsh Street West, Thunder Bay, Ontario, Canada, P7E 4X6 TELEPHONE $+807622-6707$ or +1.888 .228 .5227 FAX +1.905 .648 .9613 TELEPHONE +807 622-6707 or +1.888.228.5227FAX + 1.905 .648 .9613

CERTIFIED BY:

Emmanuel Eseme, Ph.D.
Quality Control Coordinator

Analyte Symbol	Au
Unit Symbol	ppb
Lower Limit	5
Method Code	FA-AA
831971	<5
831972	<5
831973	<5
831974	<5
831975	<5
831976	<5
831977	<5
831978	<5
831979	<5
831980	3680

Report No.:	A21-20694
Report Date:	22-Nov-21
Date Submitted:	03-Nov-21
Your Reference:	Exploration/Prospecting

Harte Gold Corp.
161 Bay Street
Suite 2400
Toronto Ontario M5J 2S1
Canada

ATTN: David Stevenson

CERTIFICATE OF ANALYSIS

115 Rock samples were submitted for analysis.

The following analytical package(s) were requested:	Testing Date:	
UT-6	QOP Total/QOP Ulltratrace- 4acid Digest (Total Digestion ICPOES/ICPMS)	2021-11-15 09:31:54

REPORT A21-20694
This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:
If value exceeds upper limit we recommend reassay by fire assay gravimetric-Code 1A3
Values which exceed the upper limit should be assayed for accurate numbers.

Report No.: A21-20694
Report Date: 22-Nov-21
Date Submitted: 03-Nov-21
Your Reference: Exploration/Prospecting
Harte Gold Corp.
161 Bay Street
Suite 2400
Toronto Ontario M5J 2S1
Canada

ATTN: David Stevenson

CERTIFICATE OF ANALYSIS

115 Rock samples were submitted for analysis.

The following analytical package(s) were requested:	Testing Date:	
1A2-Tbay-Harte Gold	QOP AA-Au (Au - Fire Assay AA)	2021-11-05 07:20:30

REPORT A21-20694

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:
If value exceeds upper limit we recommend reassay by fire assay gravimetric-Code 1A3
Values which exceed the upper limit should be assayed for accurate numbers.

Analyte Symbol	Au	Li	Na	Mg	AI	K	Ca	Cd	V	Cr	Mn	Fe	Hf	Ni	Er	Be	Ho	Ag	Cs	Co	Eu	Bi	Se
Unit Symbol	ppb	ppm	\%	\%	\%	\%	\%	ppm	ppm	ppm	ppm	\%	ppm										
Lower Limit	5	0.5	0.01	0.01	0.01	0.01	0.01	0.1	1	1	1	0.01	0.1	0.5	0.1	0.1	0.1	0.05	0.05	0.1	0.05	0.02	0.1
Method Code	FA-AA	TD-MS																					
831981	5																						
831982	< 5																						
831983	< 5																						
831984	5																						
831985	< 5																						
831986	5																						
831987	< 5																						
831988	< 5																						
831989	< 5																						
831990	< 5																						
831991	5																						
831992	5																						
831993	6																						
831994	< 5																						
831995	< 5	130	2.24	0.85	8.00	2.05	2.67	<0.1	56	34	467	3.65	2.6	37.9	1.1	1.5	0.4	0.06	14.1	13.1	1.22	0.47	< 0.1
831996	< 5																						
831997	< 5																						
831998	6																						
831999	< 5																						
832000	3580																						
832001	7																						
832002	5																						
832003	18																						
832004	5																						
832005	6																						
832006	6																						
832007	5																						
832008	7																						
832009	6																						
832010	5																						
832011	7																						
832012	6																						
832013	6																						
832014	6																						
832015	5																						
832016	6																						
832017	6																						
832018	6																						
832019	5																						
832020	7220																						
832021	8																						
832022	5																						
832023	8																						
832024	6																						
832025	5																						
832026	6																						
832027	6																						
832028	5																						
832029	5																						
832030	5																						
832031	6																						

Analyte Symbol	Au	Li	Na	Mg	AI	K	Ca	Cd	V	Cr	Mn	Fe	Hf	Ni	Er	Be	Ho	Ag	Cs	Co	Eu	Bi	Se
Unit Symbol	ppb	ppm	\%	\%	\%	\%	\%	ppm	ppm	ppm	ppm	\%	ppm										
Lower Limit	5	0.5	0.01	0.01	0.01	0.01	0.01	0.1	1	1	1	0.01	0.1	0.5	0.1	0.1	0.1	0.05	0.05	0.1	0.05	0.02	0.1
Method Code	FA-AA	TD-MS																					
832032	6																						
832033	5																						
832034	6																						
832035	6																						
832036	6																						
832037	8																						
832038	7																						
832039	6																						
832040	3560																						
832041	7																						
832042	8																						
832043	6																						
832044	9																						
832045	7																						
832046	6																						
832047	8																						
832048	8																						
832049	8																						
832050	< 5																						
832051	< 5																						
832052	< 5																						
832053	6																						
832054	< 5																						
832055	< 5																						
832056	< 5																						
832057	< 5																						
832058	< 5																						
832059	< 5																						
832060	3760																						
832061	< 5																						
832062	< 5																						
832063	< 5																						
832064	< 5																						
832065	< 5																						
832066	< 5																						
832067	<5																						
832068	< 5																						
832069	< 5																						
832070	< 5																						
832071	< 5																						
832072	< 5																						
832073	7																						
832074	119																						
832075	51																						
832089	5																						
832090	< 5																						
832091	6																						
832092	6																						
832093	6																						
832094	20																						
832095	13																						

Analyte Symbol	Au	Li	Na	Mg	AI	K	Ca	Cd	V	Cr	Mn	Fe	Hf	Ni	Er	Be	Ho	Ag	Cs	Co	Eu	Bi	Se
Unit Symbol	ppb	ppm	\%	\%	\%	\%	\%	ppm	ppm	ppm	ppm	\%	ppm										
Lower Limit	5	0.5	0.01	0.01	0.01	0.01	0.01	0.1	1	1	1	0.01	0.1	0.5	0.1	0.1	0.1	0.05	0.05	0.1	0.05	0.02	0.1
Method Code	FA-AA	TD-MS																					
832076	10																						
832077	20																						
832078	984																						
832079	< 5																						
832080	7150																						
832081	7																						
832082	< 5																						
832083	< 5																						
832084	7																						
832085	< 5																						
832086	5																						
832087	< 5																						
832088	11																						

Analyte Symbol	Zn	Ga	As	Rb	Y	Sr	Zr	Nb	Mo	In	Sn	Sb	Te	Ba	La	Ce	Pr	Nd	Sm	Gd	Tb	Dy	Cu
Unit Symbol	ppm	pm																					
Lower Limit	0.2	0.1	0.1	0.2	0.1	0.2	1	0.1	0.05	0.1	1	0.1	0.1	1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2
Method Code	TD-MS																						
831981																							
831982																							
831983																							
831984																							
831985																							
831986																							
831987																							
831988																							
831989																							
831990																							
831991																							
831992																							
831993																							
831994																							
831995	76.9	21.0	<0.1	108	11.6	478	88	0.3	0.15	<0.1	<1	<0.1	<0.1	603	34.5	75.0	9.0	32.0	5.7	3.8	0.5	2.4	34.1
831996																							
831997																							
831998																							
831999																							
832000																							
832001																							
832002																							
832003																							
832004																							
832005																							
832006																							
832007																							
832008																							
832009																							
832010																							
832011																							
832012																							
832013																							
832014																							
832015																							
832016																							
832017																							
832018																							
832019																							
832020																							
832021																							
832022																							
832023																							
832024																							
832025																							
832026																							
832027																							
832028																							
832029																							
832030																							
832031																							

Analyte Symbol	Zn	Ga	As	Rb	Y	Sr	Zr	Nb	Mo	In	Sn	Sb	Te	Ba	La	Ce	Pr	Nd	Sm	Gd	Tb	Dy	Cu
Unit Symbol	ppm																						
Lower Limit	0.2	0.1	0.1	0.2	0.1	0.2	1	0.1	0.05	0.1	1	0.1	0.1	1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2
Method Code	TD-MS																						
832032																							
832033																							
832034																							
832035																							
832036																							
832037																							
832038																							
832039																							
832040																							
832041																							
832042																							
832043																							
832044																							
832045																							
832046																							
832047																							
832048																							
832049																							
832050																							
832051																							
832052																							
832053																							
832054																							
832055																							
832056																							
832057																							
832058																							
832059																							
832060																							
832061																							
832062																							
832063																							
832064																							
832065																							
832066																							
832067																							
832068																							
832069																							
832070																							
832071																							
832072																							
832073																							
832074																							
832075																							
832089																							
832090																							
832091																							
832092																							
832093																							
832094																							
832095																							

Analyte Symbol	Zn	Ga	As	Rb	Y	Sr	Zr	Nb	Mo	In	Sn	Sb	Te	Ba	La	Ce	Pr	Nd	Sm	Gd	Tb	Dy	Cu
Unit Symbol	ppm																						
Lower Limit	0.2	0.1	0.1	0.2	0.1	0.2	1	0.1	0.05	0.1	1	0.1	0.1	1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2
Method Code	TD-MS																						
832076																							
832077																							
832078																							
832079																							
832080																							
832081																							
832082																							
832083																							
832084																							
832085																							
832086																							
832087																							
832088																							

Analyte Symbol	Ge	Tm	Yb	Lu	Ta	W	Re	TI	Pb	Sc	Th	U	Ti	P	S
Unit Symbol	ppm	\%	\%	\%											
Lower Limit	0.1	0.1	0.1	0.1	0.1	0.1	0.001	0.05	0.5	1	0.1	0.1	0.0005	0.001	0.01
Method Code	TD-MS	TD-ICP	TD-MS	TD-MS	TD-ICP	TD-ICP	TD-ICP								
831981															
831982															
831983															
831984															
831985															
831986															
831987															
831988															
831989															
831990															
831991															
831992															
831993															
831994															
831995	0.2	0.2	1.0	0.1	<0.1	< 0.1	< 0.001	0.58	8.7	11	4.3	1.1	0.193	0.101	0.04
831996															
831997															
831998															
831999															
832000															
832001															
832002															
832003															
832004															
832005															
832006															
832007															
832008															
832009															
832010															
832011															
832012															
832013															
832014															
832015															
832016															
832017															
832018															
832019															
832020															
832021															
832022															
832023															
832024															
832025															
832026															
832027															
832028															
832029															
832030															
832031															

Analyte Symbol	Ge	Tm	Yb	Lu	Ta	W	Re	TI	Pb	Sc	Th	U	Ti	P	S
Unit Symbol	ppm	\%	\%	\%											
Lower Limit	0.1	0.1	0.1	0.1	0.1	0.1	0.001	0.05	0.5	1	0.1	0.1	0.0005	0.001	0.01
Method Code	TD-MS	TD-ICP	TD-MS	TD-MS	TD-ICP	TD-ICP	TD-ICP								
832032															
832033															
832034															
832035															
832036															
832037															
832038															
832039															
832040															
832041															
832042															
832043															
832044															
832045															
832046															
832047															
832048															
832049															
832050															
832051															
832052															
832053															
832054															
832055															
832056															
832057															
832058															
832059															
832060															
832061															
832062															
832063															
832064															
832065															
832066															
832067															
832068															
832069															
832070															
832071															
832072															
832073															
832074															
832075															
832089															
832090															
832091															
832092															
832093															
832094															
832095															

Analyte Symbol	Ge	Tm	Yb	Lu	Ta	W	Re	\|T1	Pb	Sc	Th	U	Ti	P	S
Unit Symbol	ppm	\%	\%	\%											
Lower Limit	0.1	0.1	0.1	0.1	0.1	0.1	0.001	0.05	0.5		0.1	0.1	0.0005	0.001	0.01
Method Code	TD-MS	TD-ICP	TD-MS	TD-MS	TD-ICP	TD-ICP	TD-ICP								
832076															
832077															
832078															
832079															
832080															
832081															
832082															
832083															
832884															
832085															
832086															
832087															
832088															

Analyte Symbol	Au	Li	Na	Mg	AI	K	Ca	Cd	V	Cr	Mn	Fe	Hf	Ni	Er	Be	Ho	Ag	Cs	Co	Eu	Bi	Se
Unit Symbol	ppb	ppm	\%	\%	\%	\%	\%	ppm	ppm	ppm	ppm	\%	ppm										
Lower Limit	5	0.5	0.01	0.01	0.01	0.01	0.01	0.1	1	T	1	0.01	0.1	0.5	0.1	0.1	0.1	0.05	0.05	0.1	0.05	0.02	0.1
Method Code	FA-AA	TD-MS																					
Oreas 72a (4 Acid) Meas										170		9.41		> 5000						145			
$\begin{aligned} & \text { Oreas 72a (4 } \\ & \text { Acid) Cert } \end{aligned}$										228		9.63		$\begin{array}{r} 6930.0 \\ 00 \\ \hline \end{array}$						157			
OREAS 101b (4 Acid) Meas				1.25		2.40			72		885	10.6		8.7	14.8		4.6			43.9	7.06		
OREAS 101b (4 Acid) Cert				1.23		2.36			77		927	10.7		8.2	15		5.2			45	8.1		
OREAS 98 (4 Acid) Meas																		41.7		118		91.4	176
OREAS 98 (4 Acid) Cert																		45.1		121		97.2	158
OREAS 13b (4-Acid) Meas										> 5000				2160				0.82		67.3			
OREAS 13b (4-Acid) Cert										$\begin{array}{r} 8650.0 \\ 00 \\ \hline \end{array}$				$\begin{array}{r} 2247.0 \\ 000 \\ \hline \end{array}$				0.86		75			
OREAS 904 (4 Acid) Meas		15.5	0.04	0.59	6.13	2.20	0.04		75	55	390	6.52	4.8	38.6		7.7		0.59	3.82	74.3		3.91	2.8
OREAS 904 (4 Acid) Cert		16.7	0.0340	0.556	6.30	3.31	0.0460		76.0	54.0	410	6.68	5.00	40.1		7.86		0.551	3.79	83.0		4.05	3.30
OREAS 45d (4-Acid) Meas																							
OREAS 45d (4-Acid) Cert																							
OREAS 96 (4 Acid) Meas																		10.3		46.1		27.0	44.7
OREAS 96 (4 Acid) Cert																		11.5		49.9		26.3	40.7
OREAS 923 (4 Acid) Meas																							
OREAS 923 (4 Acid) Cert																							
OREAS 621 (4 Acid) Meas																							
OREAS 621 (4 Acid) Cert																							
OREAS 228b (Fire Assay) Meas	8650																						
OREAS 228b (Fire Assay) Cert	8570																						
OREAS 228b (Fire Assay) Meas	8870																						
OREAS 228b (Fire Assay) Cert	8570																						
OREAS 228b (Fire Assay) Meas	8670																						
OREAS 228b (Fire Assay) Cert	8570																						
OREAS 228b (Fire Assay) Meas	8750																						
OREAS 228b (Fire Assay) Cert	8570																						
Oreas E1336 (Fire Assay) Meas	525																						
Oreas E1336 (Fire Assay) Cert	510																						
Oreas E1336 (Fire Assay) Meas	522																						

Analyte Symbol	Au	Li	Na	Mg	AI	K	Ca	Cd	V	Cr	Mn	Fe	Hf	Ni	Er	Be	Ho	Ag	Cs	Co	Eu	Bi	Se
Unit Symbol	ppb	ppm	\%	\%	\%	\%	\%	ppm	ppm	ppm	ppm	\%	ppm										
Lower Limit	5	0.5	0.01	0.01	0.01	0.01	0.01	0.1	1	1	1	0.01	0.1	0.5	0.1	0.1	0.1	0.05	0.05	0.1	0.05	0.02	0.1
Method Code	FA-AA	TD-MS																					
Oreas E1336 (Fire Assay) Cert	510																						
Oreas E1336 (Fire Assay) Meas	510																						
Oreas E1336 (Fire Assay) Cert	510																						
Oreas E1336 (Fire Assay) Meas	513																						
Oreas E1336 (Fire Assay) Cert	510																						
OREAS 681 (4 Acid) Meas		12.9	1.50	5.40	7.99	1.43	6.19		226	1370	1320	7.67	1.9	478	1.9	1.5	0.6	0.18	3.89	45.5	1.24	0.09	
OREAS 681 (4 Acid) Cert		13.0	1.61	5.19	7.91	1.35	5.98		253	1640	1310	7.47	1.70	503	1.97	1.41	0.690	0.118	4.02	51.0	1.37	0.0980	
OREAS 147 (4 Acid) Meas																							
OREAS 147 (4 Acid) Cert																							
Oreas 521 (4 Acid) Meas																							
$\begin{aligned} & \hline \text { Oreas } 521 \text { (4 } \\ & \text { Acid) Cert } \\ & \hline \end{aligned}$																							
OREAS 70b (4 Acid) Meas		34.0	0.74	14.5	3.91	0.65	3.14	0.4	59		1180	5.80	1.8	2090		0.9		0.26	3.34	74.7		0.94	
$\begin{aligned} & \text { OREAS 70b (4 } \\ & \text { Acid) Cert } \end{aligned}$		34.4	0.77	13.4	3.87	0.62	3.05	0.4	67		1150	5.52	1.9	2180		1		0.17	3.44	78.0		0.84	
831982 Orig	< 5																						
831982 Dup	< 5																						
831996 Orig	< 5																						
831996 Dup	< 5																						
832005 Orig	5																						
832005 Dup	6																						
832017 Orig	6																						
832017 Dup	6																						
832031 Orig	6																						
$\begin{aligned} & 832031 \text { Split } \\ & \text { PREP DUP } \end{aligned}$	7																						
832031 Orig	6																						
832031 Dup	6																						
832039 Orig	5																						
832039 Dup	7																						
832051 Orig	< 5																						
832051 Dup	< 5																						
832065 Orig	< 5																						
832065 Dup	< 5																						
832074 Orig	120																						
832074 Dup	118																						
832093 Orig	6																						
832093 Split PREP DUP	6																						
832078 Orig	984																						
832088 Orig	11																						
832088 Split PREP DUP	<5																						
Method Blank	< 5																						

Analyte Symbol	Au	Li	Na	Mg	Al	K	Ca	Cd	V	Cr	Mn	Fe	Hf	Ni	Er	Be	Ho	Ag	Cs	Co	Eu	Bi	Se
Unit Symbol	ppb	ppm	\%	\%	\%	\%	\%	ppm	ppm	ppm	ppm	\%	ppm										
Lower Limit	5	0.5	0.01	0.01	0.01	0.01	0.01	0.1	1	1	1	0.01	0.1	0.5	0.1	0.1	0.1	0.05	0.05	0.1	0.05	0.02	0.1
Method Code	FA-AA	TD-MS																					
Method Blank	<																						
Method Blank	<5																						
Method Blank	<																						
Method Blank		<0.5	< 0.01	<0.01	< 0.01	< 0.01	<0.01	<0.1	1	7	3	<0.01	< 0.1	<0.5	<0.1	< 0.1	<0.1	< 0.05	<0.05	<0.1	<0.05	<0.02	0.3
Method Blank		<0.5	<0.01	<0.01	<0.01	<0.01	<0.01	<0.1	3	13	14	<0.01	<0.1	<0.5	<0.1	<0.1	<0.1	<0.05	<0.05	<0.1	<0.05	<0.02	0.3
Method Blank																							
Method Blank																							

Analyte Symbol	Zn	Ga	As	Rb	Y	Sr	Zr	Nb	Mo	In	Sn	Sb	Te	Ba	La	Ce	Pr	Nd	Sm	Gd	Tb	Dy	Cu
Unit Symbol	ppm																						
Lower Limit	0.2	0.1	0.1	0.2	0.1	0.2	1	0.1	0.05	0.1	1	0.1	0.1	1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2
Method Code	TD-MS																						
Oreas 72a (4 Acid) Meas			8.1																				335
$\begin{aligned} & \text { Oreas 72a (4 } \\ & \text { Acid) Cert } \end{aligned}$			14.7																				316
OREAS 101b (4 Acid) Meas					131				19.3						728	1310	134	355	58.0	37.4	4.8	25.3	433
OREAS 101b (4 Acid) Cert					133				20.1						754	1325	127	388	48	40	5.4	27	412
OREAS 98 (4 Acid) Meas	1280										195	4.6											P10000
OREAS 98 (4 Acid) Cert	1360										206	20.1											$\begin{array}{r} 14800 \\ 0.0 \\ \hline \end{array}$
OREAS 13b (4-Acid) Meas	140		53.7						8.05														2210
OREAS 13b (4-Acid) Cert	133		57						9.0														$\begin{array}{r} 2327.0 \\ 000 \\ \hline \end{array}$
OREAS 904 (4 Acid) Meas	26.0	15.4	107	97.5	32.5	26.4	158		2.09	0.2	3	1.4		224	43.8	87.8					0.9		6040
OREAS 904 (4 Acid) Cert	26.3	16.7	98.0	130	31.5	27.2	171		2.12	0.220	2.83	1.48		194	43.2	86.0					1.00		6120
OREAS 45d (4-Acid) Meas																							
OREAS 45d (4-Acid) Cert																							
OREAS 96 (4 Acid) Meas	442										65	5.3											P10000
OREAS 96 (4 Acid) Cert	457										65.6	5.09											39300
OREAS 923 (4 Acid) Meas																							
OREAS 923 (4 Acid) Cert																							
OREAS 621 (4 Acid) Meas																							
OREAS 621 (4 Acid) Cert																							
OREAS 228b (Fire Assay) Meas																							
OREAS 228b (Fire Assay) Cert																							
OREAS 228b (Fire Assay) Meas																							
OREAS 228b (Fire Assay) Cert																							
OREAS 228b (Fire Assay) Meas																							
OREAS 228b (Fire Assay) Cert																							
OREAS 228b (Fire Assay) Meas																							
OREAS 228b (Fire Assay) Cert																							
Oreas E1336 (Fire Assay) Meas																							
Oreas E1336 (Fire Assay) Cert																							
Oreas E1336 (Fire Assay) Meas																							

Analyte Symbol	Zn	Ga	As	Rb	Y	Sr	Zr	Nb	Mo	In	Sn	Sb	Te	Ba	La	Ce	Pr	Nd	Sm	Gd	Tb	Dy	Cu
Unit Symbol	ppm																						
Lower Limit	0.2	0.1	0.1	0.2	0.1	0.2	1	0.1	0.05	0.1	1	0.1	0.1	1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2
Method Code	TD-MS																						
$\begin{aligned} & \text { Oreas E1336 (Fire } \\ & \text { Assay) Cert } \end{aligned}$																							
Oreas E1336 (Fire Assay) Meas																							
Oreas E1336 (Fire Assay) Cert																							
Oreas E1336 (Fire Assay) Meas																							
Oreas E1336 (Fire Assay) Cert																							
OREAS 681 (4 Acid) Meas	96.3	18.9		85.4	17.3	451	59	5.9	1.40	<0.1	2	0.3		476	19.0	40.3	5.2	20.9	3.8	3.8	0.6	3.2	280
$\begin{aligned} & \hline \text { OREAS } 681 \text { (4 } \\ & \text { Acid) Cert } \\ & \hline \end{aligned}$	88.0	17.6		80.0	17.5	478	58.0	6.17	1.38	0.0420	1.89	0.240		442	18.8	40.6	5.32	21.9	4.82	4.06	0.580	3.40	264
OREAS 147 (4 Acid) Meas																							
$\begin{array}{\|l\|} \hline \text { OREAS } 147 \text { (4 } \\ \text { Acid) Cert } \\ \hline \end{array}$																							
Oreas 521 (4 Acid) Meas																							
$\begin{array}{\|l\|} \hline \begin{array}{l} \text { Oreas } 521 \text { (4 } \\ \text { Acid) Cert } \end{array} \\ \hline \end{array}$																							
OREAS 70b (4 Acid) Meas	114	10.2	156		9.4	71.1	63	3.4	4.34	<0.1	1	0.7		217	14.8	27.0							54.4
$\begin{aligned} & \text { OREAS 70b (4 } \\ & \text { Acid) Cert } \end{aligned}$	112	10.1	148		9.8	74.0	66	3.7	3.30	0.05	1	0.6		202	15.3	28.2							52.0
831982 Orig																							
831982 Dup																							
831996 Orig																							
831996 Dup																							
832005 Orig																							
832005 Dup																							
832017 Orig																							
832017 Dup																							
832031 Orig																							
$\begin{aligned} & 832031 \text { Split } \\ & \text { PREP DUP } \end{aligned}$																							
832031 Orig																							
832031 Dup																							
832039 Orig																							
832039 Dup																							
832051 Orig																							
832051 Dup																							
832065 Orig																							
832065 Dup																							
832074 Orig																							
832074 Dup																							
832093 Orig																							
$\begin{aligned} & 832093 \text { Split } \\ & \text { PREP DUP } \end{aligned}$																							
832078 Orig																							
832088 Orig																							
832088 Split PREP DUP																							
Method Blank																							

Analyte Symbol	Zn	Ga	As	Rb	Y	Sr	Zr	Nb	Mo	In	Sn	Sb	Te	Ba	La	Ce	Pr	Nd	Sm	Gd	Tb	Dy	Cu
Unit Symbol	ppm																						
Lower Limit	0.2	0.1	0.1	0.2	0.1	0.2	1	0.1	0.05	0.1	1	0.1	0.1	1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2
Method Code	TD-MS																						
Method Blank																							
Method Blank																							
Method Blank																							
Method Blank	<0.2	0.2	<0.1	<0.2	<0.1	<0.2	<1	<0.1	<0.05	<0.1	<1	<0.1	<0.1	<1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.2
Method Blank	<0.2	0.1	0.2	<0.2	<0.1	<0.2	<1	<0.1	<0.05	<0.1	<1	<0.1	<0.1	<1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.3
Method Blank																							
Method Blank																							

Analyte Symbol	Ge	Tm	Yb	Lu	Ta	W	Re	TI	Pb	Sc	Th	U	Ti	P	S
Unit Symbol	ppm	\%	\%	\%											
Lower Limit	0.1	0.1	0.1	0.1	0.1	0.1	0.001	0.05	0.5	1	0.1	0.1	0.0005	0.001	0.01
Method Code	TD-MS	TD-ICP	TD-MS	TD-MS	TD-ICP	TD-ICP	TD-ICP								
Oreas 72a (4 Acid) Meas															1.72
$\begin{aligned} & \text { Oreas 72a (4 } \\ & \text { Acid) Cert } \end{aligned}$															1.74
OREAS 101b (4 Acid) Meas		2.0	12.5	1.7					22.4		34.0	344	0.347	0.120	
OREAS 101b (4 Acid) Cert		2.08	13.9	1.96					23		36.4	387	0.35		
OREAS 98 (4 Acid) Meas									322						15.7
OREAS 98 (4 Acid) Cert									345						15.5
OREAS 13b (4-Acid) Meas															1.21
OREAS 13b (4-Acid) Cert															1.2
OREAS 904 (4 Acid) Meas	0.2		3.1	0.4	0.8	2.5		0.47	10.4	12	13.4	8.2		0.105	0.06
OREAS 904 (4 Acid) Cert	0.180		3.14	0.470	0.540	2.12		0.520	10.6	11.2	14.3	8.43		0.0980	0.0630
OREAS 45d (4-Acid) Meas										47			0.779	0.042	0.05
OREAS 45d (4-Acid) Cert										49.30			0.773	0.042	0.049
OREAS 96 (4 Acid) Meas									99.9						4.34
OREAS 96 (4 Acid) Cert									101						4.19
OREAS 923 (4 Acid) Meas										13			0.394	0.068	0.71
OREAS 923 (4 Acid) Cert										13.1			0.405	0.0630	0.691
OREAS 621 (4 Acid) Meas										6			0.175	0.037	4.70
OREAS 621 (4 Acid) Cert										6.24			0.149	0.0359	4.48
OREAS 228b (Fire Assay) Meas															
OREAS 228b (Fire Assay) Cert															
OREAS 228b (Fire Assay) Meas															
OREAS 228b (Fire Assay) Cert															
OREAS 228b (Fire Assay) Meas															
OREAS 228b (Fire Assay) Cert															
OREAS 228b (Fire Assay) Meas															
OREAS 228b (Fire Assay) Cert															
Oreas E1336 (Fire Assay) Meas															
Oreas E1336 (Fire Assay) Cert															
Oreas E1336 (Fire Assay) Meas															

Analyte Symbol	Ge	Tm	Yb	Lu	Ta	W	Re	TI	Pb	Sc	Th	U	Ti	P	S
Unit Symbol	ppm	\%	\%	\%											
Lower Limit	0.1	0.1	0.1	0.1	0.1	0.1	0.001	0.05	0.5	1	0.1	0.1	0.0005	0.001	0.01
Method Code	TD-MS	TD-ICP	TD-MS	TD-MS	TD-ICP	TD-ICP	TD-ICP								
Oreas E1336 (Fire Assay) Cert															
Oreas E1336 (Fire Assay) Meas															
Oreas E1336 (Fire Assay) Cert															
Oreas E1336 (Fire Assay) Meas															
Oreas E1336 (Fire Assay) Cert															
OREAS 681 (4 Acid) Meas		0.3	1.7	0.2	0.4	1.0			12.7	27	6.2	1.4	0.544	0.137	0.10
$\begin{aligned} & \hline \text { OREAS } 681 \text { (4 } \\ & \text { Acid) Cert } \\ & \hline \end{aligned}$		0.280	1.77	0.270	0.420	1.09			10.2	27.7	6.55	1.44	0.588	0.141	0.109
OREAS 147 (4 Acid) Meas										10			0.191	0.112	0.02
$\text { OREAS } 147 \text { (4 }$ Acid) Cert										10.7			0.470	0.155	0.0300
Oreas 521 (4 Acid) Meas										13			0.334	0.076	1.75
$\begin{aligned} & \text { Oreas } 521 \text { (4 } \\ & \text { Acid) Cert } \end{aligned}$										14			0.393	0.081	1.80
OREAS 70b (4 Acid) Meas					0.3	4.1		0.31	13.1	11	5.9	1.7	0.163	0.022	0.29
$\begin{aligned} & \text { OREAS 70b (4 } \\ & \text { Acid) Cert } \end{aligned}$					0.3	4.9		0.33	13.7	12	6.9	1.7	0.181	0.022	0.31
831982 Orig															
831982 Dup															
831996 Orig															
831996 Dup															
832005 Orig															
832005 Dup															
832017 Orig															
832017 Dup															
832031 Orig															
832031 Split PREP DUP															
832031 Orig															
832031 Dup															
832039 Orig															
832039 Dup															
832051 Orig															
832051 Dup															
832065 Orig															
832065 Dup															
832074 Orig															
832074 Dup															
832093 Orig															
$\begin{aligned} & 832093 \text { Split } \\ & \text { PREP DUP } \end{aligned}$															
832078 Orig															
832088 Orig															
832088 Split PREP DUP															
Method Blank															

Analyte Symbol	Ge	Tm	Yb	Lu	Ta	W	Re	TI	Pb	Sc	Th	U	Ti	P	S
Unit Symbol	ppm	\%	\%	\%											
Lower Limit	0.1	0.1	0.1	0.1	0.1	0.1	0.001	0.05	0.5	1	0.1	0.1	0.0005	0.001	0.01
Method Code	TD-MS	TD-ICP	TD-MS	TD-MS	TD-ICP	TD-ICP	TD-ICP								
Method Blank															
Method Blank															
Method Blank															
Method Blank	<0.1	<0.1	< 0.1	< 0.1	<0.1	< 0.1	<0.001	< 0.05	< 0.5	<1	<0.1	< 0.1	. 000	< 0.001	< 0.01
Method Blank	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	< 0.001	< 0.05	< 0.5	<1	< 0.1	< 0.1	0.0005	< 0.001	<0.01
Method Blank										<1			0.0005	< 0.001	< 0.01
Method Blank										<1			0.0005	< 0.001	< 0.01

Report No.:	A21-20882
Report Date:	08-Dec-21
Date Submitted:	05-Nov-21
Your Reference:	Exploration/Prospecting

Harte Gold Corp.

161 Bay Street
Suite 2400
Toronto Ontario M5J 2S1
Canada

ATTN: David Stevenson

CERTIFICATE OF ANALYSIS

127 Rock samples were submitted for analysis.

The following analytical package(s) were requested:	Testing Date:	
UT-6	QOP Total/QOP Ulltratrace- 4acid Digest (Total Digestion ICPOES/ICPMS)	2021-11-29 14:15:58

REPORT A21-20882
This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:
If value exceeds upper limit we recommend reassay by fire assay gravimetric-Code 1A3
Values which exceed the upper limit should be assayed for accurate numbers.

Abstract

Report No.: A21-20882 Report Date: 08-Dec-21 Date Submitted: 05-Nov-21 Your Reference: Exploration/Prospecting Harte Gold Corp. 161 Bay Street Suite 2400 Toronto Ontario M5J 2S1 Canada

ATTN: David Stevenson

CERTIFICATE OF ANALYSIS

127 Rock samples were submitted for analysis.

The following analytical package(s) were requested:	Testing Date:	
1A2-Tbay-Harte Gold	QOP AA-Au (Au - Fire Assay AA)	2021-11-08 12:20:39

REPORT A21-20882

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:
If value exceeds upper limit we recommend reassay by fire assay gravimetric-Code 1A3
Values which exceed the upper limit should be assayed for accurate numbers.

Analyte Symbol	Au	Li	Na	Mg	AI	K	Ca	Cd	V	Cr	Mn	Fe	Hf	Ni	Er	Be	Ho	Ag	Cs	Co	Eu	Bi	Se
Unit Symbol	ppb	ppm	\%	\%	\%	\%	\%	ppm	ppm	ppm	ppm	\%	ppm										
Lower Limit	5	0.5	0.01	0.01	0.01	0.01	0.01	0.1	1	1	1	0.01	0.1	0.5	0.1	0.1	0.1	0.05	0.05	0.1	0.05	0.02	0.1
Method Code	FA-AA	TD-MS																					
832096	< 5																						
832097	< 5																						
832098	< 5																						
832099	<5																						
832100	3590																						
832101	< 5																						
832102	< 5																						
832103	< 5																						
832104	< 5																						
832105	< 5																						
832106	< 5																						
832107	< 5																						
832108	< 5																						
832109	< 5																						
832110	6																						
832111	< 5																						
832112	< 5																						
832113	< 5																						
832114	5																						
832115	< 5																						
832116	< 5																						
832117	5																						
832118	< 5																						
832119	5																						
832120	3700																						
832121	< 5																						
832122	< 5																						
832123	< 5																						
832124	< 5																						
832125	< 5																						
832126	< 5																						
832127	< 5																						
832128	< 5																						
832129	< 5																						
832130	< 5																						
832131	< 5																						
832132	< 5																						
832133	<5																						
832134	< 5																						
832135	< 5																						
832136	<5																						
832137	< 5																						
832138	< 5																						
832139	<5																						
832140	7170																						
832141	9																						
832142	< 5																						
832143	< 5																						
832144	< 5																						
832145	< 5																						
832146	<5																						

Analyte Symbol	Au	Li	Na	Mg	AI	K	Ca	Cd	V	Cr	Mn	Fe	Hf	Ni	Er	Be	Ho	Ag	Cs	Co	Eu	Bi	Se
Unit Symbol	ppb	ppm	\%	\%	\%	\%	\%	ppm	ppm	ppm	ppm	\%	ppm										
Lower Limit	5	0.5	0.01	0.01	0.01	0.01	0.01	0.1	1	1	1	0.01	0.1	0.5	0.1	0.1	0.1	0.05	0.05	0.1	0.05	0.02	0.1
Method Code	FA-AA	TD-MS																					
832147	<5																						
832148	< 5																						
832149	< 5																						
832150	<5																						
832151	< 5																						
832152	< 5																						
832153	<5																						
832154	< 5																						
832155	< 5																						
832156	< 5																						
832157	< 5																						
832158	< 5																						
832159	<5																						
832160	3590																						
832161	9																						
832162	< 5																						
832163	< 5																						
832164	< 5																						
832165	5																						
832166	< 5																						
832167	< 5																						
832168	6																						
832169	< 5																						
832170	< 5																						
832171	< 5																						
832172	< 5																						
832173	< 5																						
832174	< 5																						
832175	< 5																						
832176	< 5																						
832177	< 5																						
832178	<5																						
832179	<5																						
832180	3660																						
832181	<5																						
832182	<5																						
832183	< 5																						
832184	< 5																						
832185	< 5	278	0.71	11.0	4.83	1.31	5.45	<0.1	131	744	1430	8.18	0.7	556	1.3	2.2	0.4	0.08	> 100	68.3	0.37	1.03	< 0.1
832186	< 5	396	0.62	12.1	5.76	2.28	3.31	<0.1	153	956	1400	8.79	0.8	563	1.4	1.6	0.5	0.07	>100	78.0	0.25	0.73	0.1
832187	< 5																						
832188	< 5																						
832189	<5																						
832190	< 5																						
832191	< 5																						
832192	<5																						
832193	8																						
832194	< 5																						
832195	< 5																						
832196	< 5																						
832197	<5																						

Analyte Symbol	Au	Li	Na	Mg	AI	K	Ca	Cd	V	Cr	Mn	Fe	Hf	Ni	Er	Be	Ho	Ag	Cs	Co	Eu	Bi	Se
Unit Symbol	ppb	ppm	\%	\%	\%	\%	\%	ppm	ppm	ppm	ppm	\%	ppm										
Lower Limit	5	0.5	0.01	0.01	0.01	0.01	0.01	0.1	1	1	1	0.01	0.1	0.5	0.1	0.1	0.1	0.05	0.05	0.1	0.05	0.02	0.1
Method Code	FA-AA	TD-MS																					
832198	<5																						
832199	11																						
832200	7300																						
832201	<5																						
832202	< 5																						
832203	< 5																						
832204	287																						
832205	< 5																						
832206	< 5																						
832207	< 5																						
832208	<5																						
832209	< 5																						
832210	< 5																						
832211	< 5																						
832212	< 5																						
832213	< 5																						
832214	< 5																						
832215	< 5																						
832216	< 5																						
832217	< 5																						
832218	<5																						
832219	<5																						
832220	3610																						
832221	< 5																						
832222	<5																						

Analyte Symbol	Zn	Ga	As	Rb	Y	Sr	Zr	Nb	Mo	In	Sn	Sb	Te	Ba	La	Ce	Pr	Nd	Sm	Gd	Tb	Dy	Cu
Unit Symbol	ppm																						
Lower Limit	0.2	0.1	0.1	0.2	0.1	0.2	1	0.1	0.05	0.1	1	0.1	0.1	1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2
Method Code	TD-MS																						
832096																							
832097																							
832098																							
832099																							
832100																							
832101																							
832102																							
832103																							
832104																							
832105																							
832106																							
832107																							
832108																							
832109																							
832110																							
832111																							
832112																							
832113																							
832114																							
832115																							
832116																							
832117																							
832118																							
832119																							
832120																							
832121																							
832122																							
832123																							
832124																							
832125																							
832126																							
832127																							
832128																							
832129																							
832130																							
832131																							
832132																							
832133																							
832134																							
832135																							
832136																							
832137																							
832138																							
832139																							
832140																							
832141																							
832142																							
832143																							
832144																							
832145																							
832146																							

Analyte Symbol	Zn	Ga	As	Rb	Y	Sr	Zr	Nb	Mo	In	Sn	Sb	Te	Ba	La	Ce	Pr	Nd	Sm	Gd	Tb	Dy	Cu
Unit Symbol	ppm																						
Lower Limit	0.2	0.1	0.1	0.2	0.1	0.2	1	0.1	0.05	0.1	1	0.1	0.1	1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2
Method Code	TD-MS																						
832147																							
832148																							
832149																							
832150																							
832151																							
832152																							
832153																							
832154																							
832155																							
832156																							
832157																							
832158																							
832159																							
832160																							
832161																							
832162																							
832163																							
832164																							
832165																							
832166																							
832167																							
832168																							
832169																							
832170																							
832171																							
832172																							
832173																							
832174																							
832175																							
832176																							
832177																							
832178																							
832179																							
832180																							
832181																							
832182																							
832183																							
832184																							
832185	108	13.3	0.6	254	9.9	23.0	23	2.3	0.31	<0.1	1	< 0.1	< 0.1	26	1.6	4.2	0.7	3.4	1.1	1.5	0.3	1.9	1.2
832186	102	12.0	<0.1	497	10.8	32.3	24	1.3	0.18	<0.1	<1	<0.1	< 0.1	44	1.2	3.5	0.6	3.4	1.1	1.4	0.3	2.0	0.3
832187																							
832188																							
832189																							
832190																							
832191																							
832192																							
832193																							
832194																							
832195																							
832196																							
832197																							

Analyte Symbol	Zn	Ga	As	Rb	Y	Sr	Zr	Nb	Mo	In	Sn	Sb	Te	Ba	La	Ce	Pr	Nd	Sm	Gd	Tb	Dy	Cu
Unit Symbol	ppm																						
Lower Limit	0.2	0.1	0.1	0.2	0.1	0.2	1	0.1	0.05	0.1	1	0.1	0.1	1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2
Method Code	TD-MS																						
832198																							
832199																							
832200																							
832201																							
832202																							
832203																							
832204																							
832205																							
832206																							
832207																							
832208																							
832209																							
832210																							
832211																							
832212																							
832213																							
832214																							
832215																							
832216																							
832217																							
832218																							
832219																							
832220																							
832221																							
832222																							

Analyte Symbol	Ge	Tm	Yb	Lu	Ta	W	Re	TI	Pb	Sc	Th	U	Ti	P	S
Unit Symbol	ppm	\%	\%	\%											
Lower Limit	0.1	0.1	0.1	0.1	0.1	0.1	0.001	0.05	0.5	1	0.1	0.1	0.0005	0.001	0.01
Method Code	TD-MS	TD-ICP	TD-MS	TD-MS	TD-ICP	TD-ICP	TD-ICP								
832096															
832097															
832098															
832099															
832100															
832101															
832102															
832103															
832104															
832105															
832106															
832107															
832108															
832109															
832110															
832111															
832112															
832113															
832114															
832115															
832116															
832117															
832118															
832119															
832120															
832121															
832122															
832123															
832124															
832125															
832126															
832127															
832128															
832129															
832130															
832131															
832132															
832133															
832134															
832135															
832136															
832137															
832138															
832139															
832140															
832141															
832142															
832143															
832144															
832145															
832146															

Analyte Symbol	Ge	Tm	Yb	Lu	Ta	W	Re	TI	Pb	Sc	Th	U	Ti	P	S
Unit Symbol	ppm	\%	\%	\%											
Lower Limit	0.1	0.1	0.1	0.1	0.1	0.1	0.001	0.05	0.5	1	0.1	0.1	0.0005	0.001	0.01
Method Code	TD-MS	TD-ICP	TD-MS	TD-MS	TD-ICP	TD-ICP	TD-ICP								
832198															
832199															
832200															
832201															
832202															
832203															
832204															
832205															
832206															
832207															
832208															
832209															
832210															
832211															
832212															
832213															
832214															
832215															
832216															
832217															
832218															
832219															
832220															
832221															
832222															

Analyte Symbol	Au	Li	Na	Mg	AI	K	Ca	Cd	V	Cr	Mn	Fe	Hf	Ni	Er	Be	Ho	Ag	Cs	Co	Eu	Bi	Se
Unit Symbol	ppb	ppm	\%	\%	\%	\%	\%	ppm	ppm	ppm	ppm	\%	ppm										
Lower Limit	5	0.5	0.01	0.01	0.01	0.01	0.01	0.1	1	1	1	0.01	0.1	0.5	0.1	0.1	0.1	0.05	0.05	0.1	0.05	0.02	0.1
Method Code	FA-AA	TD-MS																					
Oreas 72a (4 Acid) Meas										179		10.1		> 5000						169			
$\begin{aligned} & \text { Oreas 72a (4 } \\ & \text { Acid) Cert } \\ & \hline \end{aligned}$										228		9.63		$\begin{array}{r} 6930.0 \\ 00 \end{array}$						157			
Oreas 72a (4 Acid) Meas										172		9.09		> 5000						152			
$\begin{aligned} & \hline \text { Oreas 72a (4 } \\ & \text { Acid) Cert } \\ & \hline \end{aligned}$										228		9.63		$\begin{array}{r} 6930.0 \\ 00 \end{array}$						157			
OREAS 101b (4 Acid) Meas				1.25		2.35			72		921	10.1		8.7	14.9		4.9			43.8	6.96		
$\begin{aligned} & \begin{array}{l} \text { OREAS 101b (4 } \\ \text { Acid) Cert } \end{array} \\ & \hline \end{aligned}$				1.23		2.36			77		927	10.7		8.2	15		5.2			45	8.1		
OREAS 98 (4 Acid) Meas																		45.1		123		96.7	179
OREAS 98 (4 Acid) Cert																		45.1		121		97.2	158
OREAS 13b (4-Acid) Meas										> 5000				2360				1.01		82.9			
OREAS 13b (4-Acid) Cert										$\begin{array}{r} 8650.0 \\ 00 \end{array}$				$\begin{array}{r} \hline 2247.0 \\ 000 \end{array}$				0.86		75			
OREAS 13b (4-Acid) Meas																							
OREAS 13b (4-Acid) Cert																							
OREAS 904 (4 Acid) Meas		16.5	0.04	0.61	6.47	3.65	0.05		80	63	412	7.04	5.0	41.4		9.6		0.69	4.16	88.0		4.04	2.2
OREAS 904 (4 Acid) Cert		16.7	0.0340	0.556	6.30	3.31	0.0460		76.0	54.0	410	6.68	5.00	40.1		7.86		0.551	3.79	83.0		4.05	3.30
OREAS 904 (4 Acid) Meas		15.6	0.04	0.61	6.50	3.40	0.04		76	65	414	7.17	5.3	41.2		8.1		0.66	4.03	86.2		4.22	2.8
OREAS 904 (4 Acid) Cert		16.7	0.0340	0.556	6.30	3.31	0.0460		76.0	54.0	410	6.68	5.00	40.1		7.86		0.551	3.79	83.0		4.05	3.30
OREAS 45d (4-Acid) Meas																							
OREAS 45d (4-Acid) Cert																							
OREAS 96 (4 Acid) Meas																		12.0		54.1		30.3	45.1
OREAS 96 (4 Acid) Cert																		11.5		49.9		26.3	40.7
OREAS 96 (4 Acid) Meas																		11.1		49.7		27.3	43.8
OREAS 96 (4 Acid) Cert																		11.5		49.9		26.3	40.7
OREAS 96 (4 Acid) Meas																		11.0		47.9		26.4	43.5
OREAS 96 (4 Acid) Cert																		11.5		49.9		26.3	40.7
OREAS 96 (4 Acid) Meas																							
OREAS 96 (4 Acid) Cert																							
OREAS 96 (4 Acid) Meas																							
OREAS 96 (4 Acid) Cert																							
OREAS 923 (4 Acid) Meas		33.2	0.32	1.78	7.95	2.27	0.44	0.5	89	66	940	6.45	3.8	36.8	2.9	2.8	1.0	1.70	7.16	22.0	1.26	25.9	5.4

Analyte Symbol	Au	Li	Na	Mg	AI	K	Ca	Cd	V	Cr	Mn	Fe	Hf	Ni	Er	Be	Ho	Ag	Cs	Co	Eu	Bi	Se
Unit Symbol	ppb	ppm	\%	\%	\%	\%	\%	ppm	ppm	ppm	ppm	\%	ppm										
Lower Limit	5	0.5	0.01	0.01	0.01	0.01	0.01	0.1	1	1	1	0.01	0.1	0.5	0.1	0.1	0.1	0.05	0.05	0.1	0.05	0.02	0.1
Method Code	FA-AA	TD-MS																					
OREAS 923 (4 Acid) Cert		31.4	0.324	1.69	7.29	2.51	0.473	0.420	91.0	71.0	950	6.43	3.42	35.8	2.86	2.42	0.960	1.60	6.70	23.1	1.37	21.4	6.54
OREAS 923 (4 Acid) Meas		29.4	0.33	1.80	7.29	2.47	0.46	0.4	87	70	922	6.95	4.0	40.9	3.0	2.4	1.0	1.74	6.88	22.7	1.35	26.9	6.7
OREAS 923 (4 Acid) Cert		31.4	0.324	1.69	7.29	2.51	0.473	0.420	91.0	71.0	950	6.43	3.42	35.8	2.86	2.42	0.960	1.60	6.70	23.1	1.37	21.4	6.54
OREAS 621 (4 Acid) Meas		15.4	1.36	0.50	6.37	2.23	1.97	301	36	36	489	3.88	4.3	28.8		1.8		65.1	3.51	29.9		4.01	4.3
$\begin{aligned} & \text { OREAS } 621 \text { (4 } \\ & \text { Acid) Cert } \\ & \hline \end{aligned}$		14.2	1.31	0.507	6.40	2.20	1.97	284	31.8	37.1	532	3.70	4.41	26.2		1.69		69.0	3.28	29.3		3.93	5.64
OREAS 621 (4 Acid) Meas		14.6	1.29	0.39	6.33	2.31	1.86	254	35	29	505	4.05	4.8	29.6		1.8		61.2	3.47	32.0		4.15	5.3
OREAS 621 (4 Acid) Cert		14.2	1.31	0.507	6.40	2.20	1.97	284	31.8	37.1	532	3.70	4.41	26.2		1.69		69.0	3.28	29.3		3.93	5.64
OREAS 621 (4 Acid) Meas																							
OREAS 621 (4 Acid) Cert																							
Oreas 77b (4 Acid) Meas		18.6	0.43	2.75	1.92	0.37	3.26	1.4	33	222	695	31.2	1.2	> 5000		0.4		1.62	2.34	> 500		3.70	
$\begin{aligned} & \text { Oreas 77b (4 } \\ & \text { Acid) Cert } \end{aligned}$		18.8	0.434	2.59	1.94	0.361	3.06	1.20	33.6	280	640	29.9	1.15	113000		0.470		1.62	2.32	1550		3.44	
Oreas 77b (4 Acid) Meas		19.4	0.40	2.50	1.73	0.33	2.87	1.2	25	232	625	29.2	1.2	> 5000		0.4		1.59	2.29	> 500		3.47	
$\begin{aligned} & \begin{array}{l} \text { Oreas 77b (4 } \\ \text { Acid) Cert } \end{array} \\ & \hline \end{aligned}$		18.8	0.434	2.59	1.94	0.361	3.06	1.20	33.6	280	640	29.9	1.15	113000		0.470		1.62	2.32	1550		3.44	
Oreas 77b (4 Acid) Meas																							
$\begin{aligned} & \begin{array}{l} \text { Oreas 77b (4 } \\ \text { Acid) Cert } \end{array} \\ & \hline \end{aligned}$																							
OREAS 228b (Fire Assay) Meas	8650																						
OREAS 228b (Fire Assay) Cert	8570																						
OREAS 228b (Fire Assay) Meas	8860																						
OREAS 228b (Fire Assay) Cert	8570																						
OREAS 228b (Fire Assay) Meas	8870																						
OREAS 228b (Fire Assay) Cert	8570																						
OREAS 228b (Fire Assay) Meas	8760																						
OREAS 228b (Fire Assay) Cert	8570																						
Oreas E1336 (Fire Assay) Meas	514																						
Oreas E1336 (Fire Assay) Cert	510																						
Oreas E1336 (Fire Assay) Meas	517																						
Oreas E1336 (Fire Assay) Cert	510																						
Oreas E1336 (Fire Assay) Meas	524																						
Oreas E1336 (Fire Assay) Cert	510																						

Analyte Symbol	Au	Li	Na	Mg	AI	K	Ca	Cd	V	Cr	Mn	Fe	Hf	Ni	Er	Be	Ho	Ag	Cs	Co	Eu	Bi	Se
Unit Symbol	ppb	ppm	\%	\%	\%	\%	\%	ppm	ppm	ppm	ppm	\%	ppm										
Lower Limit	5	0.5	0.01	0.01	0.01	0.01	0.01	0.1	1	1	1	0.01	0.1	0.5	0.1	0.1	0.1	0.05	0.05	0.1	0.05	0.02	0.1
Method Code	FA-AA	TD-MS																					
Oreas E1336 (Fire Assay) Meas Oreas E	509																						
$\begin{aligned} & \begin{array}{l} \text { Oreas E1336 (Fire } \\ \text { Assay) Cert } \end{array} \\ & \hline \end{aligned}$	510																						
$\text { OREAS } 681 \text { (4 }$ Acid) Meas		12.7	1.54	5.66	8.12	1.43	6.26		234	1380	1260	7.59	1.9	477	1.9	1.2	0.6	0.18	3.78	51.4	1.33	0.10	
$\begin{aligned} & \hline \text { OREAS } 681 \text { (4 } \\ & \text { Acid) Cert } \end{aligned}$		13.0	1.61	5.19	7.91	1.35	5.98		253	1640	1310	7.47	1.70	503	1.97	1.41	0.690	0.118	4.02	51.0	1.37	0.0980	
OREAS 681 (4 Acid) Meas																							
OREAS 681 (4 Acid) Cert																							
OREAS 681 (4 Acid) Meas																							
OREAS 681 (4 Acid) Cert																							
OREAS 147 (4 Acid) Meas		> 400	0.96	0.59	5.18	1.69	1.11		43	52	379	3.41	1.2	22.9	2.6	36.1			> 100	6.6	10.1	13.5	
OREAS 147 (4 Acid) Cert		2260	0.948	0.535	4.90	1.60	1.09		60.0	57.0	390	3.23	2.99	21.2	3.00	31.2			238	6.90	10.4	12.5	
OREAS 147 (4 Acid) Meas																							
OREAS 147 (4 Acid) Cert																							
OREAS 147 (4 Acid) Meas																							
OREAS 147 (4 Acid) Cert																							
$\begin{aligned} & \text { Oreas } 521 \text { (4 } \\ & \text { Acid) Meas } \\ & \hline \end{aligned}$		17.6	0.96	1.27	4.96	3.42	4.23		224	40	3390	21.7	3.5	79.2	2.2	0.9	0.8	0.95	0.75	387	1.70	6.51	2.0
$\begin{array}{\|l} \hline \text { Oreas } 521 \text { (4 } \\ \text { Acid) Cert } \end{array}$		16.4	0.98	1.13	4.77	3.16	3.86		209	31	3210	20.7	3.2	73.0	2.1	0.9	0.7	0.89	0.72	386	1.64	5.85	2.4
$\begin{aligned} & \text { Oreas } 521 \text { (4 } \\ & \text { Acid) Meas } \end{aligned}$																							
$\begin{aligned} & \hline \begin{array}{l} \text { Oreas } 521 \text { (4 } \\ \text { Acid) Cert } \end{array} \\ & \hline \end{aligned}$																							
$\begin{aligned} & \text { OREAS 70b (4 } \\ & \text { Acid) Meas } \\ & \hline \end{aligned}$		36.2	0.78	14.0	4.08	0.63	2.97	0.4	41		1240	6.25	1.9	2040		1.2		0.21	3.89	84.3		0.92	
OREAS 70b (4 Acid) Cert		34.4	0.77	13.4	3.87	0.62	3.05	0.4	67		1150	5.52	1.9	2180		1.0		0.17	3.44	78.0		0.84	
$\begin{aligned} & \text { OREAS 70b (4 } \\ & \text { Acid) Meas } \\ & \hline \end{aligned}$		30.9	0.75	12.8	3.64	0.58	3.03	0.3	54		1120	5.24	1.7	2190		0.9		0.19	3.25	77.8		0.86	
OREAS 70b (4 Acid) Cert		34.4	0.77	13.4	3.87	0.62	3.05	0.4	67		1150	5.52	1.9	2180		1		0.17	3.44	78.0		0.84	
832097 Orig	< 5																						
832097 Dup	< 5																						
832111 Orig	< 5																						
832111 Dup	< 5																						
832121 Orig	<5																						
832121 Dup	< 5																						
832132 Orig	< 5																						
832132 Dup	< 5																						
832145 Orig	<5																						
832145 Split PREP DUP	<5																						
832146 Orig	< 5																						
832146 Dup	<5																						

Analyte Symbol	Au	Li	Na	Mg	AI	K	Ca	Cd	V	Cr	Mn	Fe	Hf	Ni	Er	Be	Ho	Ag	Cs	Co	Eu	Bi	Se
Unit Symbol	ppb	ppm	\%	\%	\%	\%	\%	ppm	ppm	ppm	ppm	\%	ppm										
Lower Limit	5	0.5	0.01	0.01	0.01	0.01	0.01	0.1	1	1	1	0.01	0.1	0.5	0.1	0.1	0.1	0.05	0.05	0.1	0.05	0.02	0.1
Method Code	FA-AA	TD-MS																					
832154 Orig	< 5																						
832154 Dup	< 5																						
832166 Orig	< 5																						
832166 Dup	< 5																						
832181 Orig	5																						
832181 Dup	< 5																						
832189 Orig	< 5																						
832189 Dup	< 5																						
832195 Orig	< 5																						
832195 Split PREP DUP	< 5																						
832201 Orig	< 5																						
832201 Dup	< 5																						
832214 Orig	< 5																						
832214 Dup	< 5																						
832222 Orig	< 5																						
832222 Split PREP DUP	< 5																						
Method Blank	< 5																						
Method Blank	< 5																						
Method Blank	< 5																						
Method Blank	< 5																						
Method Blank	< 5																						
Method Blank	< 5																						
Method Blank	< 5																						
Method Blank	5																						
Method Blank		< 0.5	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	< 0.1	4	7	21	< 0.01	< 0.1	< 0.5	< 0.1	< 0.1	< 0.1	<0.05	<0.05	< 0.1	< 0.05	< 0.02	< 0.1
Method Blank																							
Method Blank		<0.5	< 0.01	<0.01	<0.01	<0.01	<0.01	<0.1	2	4	13	<0.01	<0.1	< 0.5	< 0.1	<0.1	<0.1	<0.05	<0.05	< 0.1	< 0.05	< 0.02	0.1
Method Blank		< 0.5	< 0.01	< 0.01	<0.01	<0.01	< 0.01	<0.1	4	6	13	< 0.01	<0.1	< 0.5	< 0.1	<0.1	<0.1	< 0.05	< 0.05	<0.1	< 0.05	< 0.02	< 0.1
Method Blank		<0.5	< 0.01	<0.01	<0.01	<0.01	<0.01	<0.1	3		25	<0.01	<0.1	0.9	<0.1	<0.1	<0.1	<0.05	<0.05	<0.1	< 0.05	< 0.02	<0.1
Method Blank																							
Method Blank		< 0.5	< 0.01	<0.01	<0.01	<0.01	< 0.01	<0.1	2	3	9	< 0.01	<0.1	< 0.5	< 0.1	<0.1	<0.1	<0.05	< 0.05	<0.1	<0.05	< 0.02	0.2
Method Blank																							
Method Blank		< 0.5	< 0.01	< 0.01	<0.01	< 0.01	<0.01	< 0.1	4	6	20	< 0.01	< 0.1	< 0.5	< 0.1	< 0.1	< 0.1	<0.05	< 0.05	< 0.1	< 0.05	< 0.02	0.1
Method Blank																							

Analyte Symbol	Zn	Ga	As	Rb	Y	Sr	Zr	Nb	Mo	In	Sn	Sb	Te	Ba	La	Ce	Pr	Nd	Sm	Gd	Tb	Dy	Cu
Unit Symbol	ppm																						
Lower Limit	0.2	0.1	0.1	0.2	0.1	0.2	1	0.1	0.05	0.1	1	0.1	0.1	1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2
Method Code	TD-MS																						
Oreas 72a (4 Acid) Meas			4.7																				337
$\begin{aligned} & \text { Oreas 72a (4 } \\ & \text { Acid) Cert } \\ & \hline \end{aligned}$			14.7																				316
Oreas 72a (4 Acid) Meas			4.6																				302
$\begin{aligned} & \hline \text { Oreas 72a (4 } \\ & \text { Acid) Cert } \\ & \hline \end{aligned}$			14.7																				316
OREAS 101b (4 Acid) Meas Acid) Meas					124				18.7						732	1290	118	371	43.6	37.3	4.1	23.8	389
$\begin{aligned} & \begin{array}{l} \text { OREAS 101b (4 } \\ \text { Acid) Cert } \end{array} \\ & \hline \end{aligned}$					133				20.1						754	1325	127	388	48	40	5.4	27	412
OREAS 98 (4 Acid) Meas	1280										>200	6.9											P10000
OREAS 98 (4 Acid) Cert	1360										206	20.1											$\begin{array}{r} 14800 \\ 0.0 \end{array}$
OREAS 13b (4-Acid) Meas	147		57.3						9.57														2400
OREAS 13b (4-Acid) Cert	133		57						9.0														$\begin{array}{r} 2327.0 \\ 000 \\ \hline \end{array}$
OREAS 13b (4-Acid) Meas																							
OREAS 13b (4-Acid) Cert																							
OREAS 904 (4 Acid) Meas	29.4	14.7	109	142	33.2	27.5	187		2.20	0.2	3	1.4		215	46.7	90.7					0.9		5800
OREAS 904 (4 Acid) Cert	26.3	16.7	98.0	130	31.5	27.2	171		2.12	0.220	2.83	1.48		194	43.2	86.0					1.00		6120
OREAS 904 (4 Acid) Meas	30.4	17.0	96.6	118	31.8	31.2	201		2.10	0.2	3	1.2		204	46.5	85.5					1.0		6050
OREAS 904 (4 Acid) Cert	26.3	16.7	98.0	130	31.5	27.2	171		2.12	0.220	2.83	1.48		194	43.2	86.0					1.00		6120
OREAS 45d (4-Acid) Meas																							
OREAS 45d (4-Acid) Cert																							
OREAS 96 (4 Acid) Meas	487										65	4.9											P10000
OREAS 96 (4 Acid) Cert	457										65.6	5.09											39300
OREAS 96 (4 Acid) Meas	440										66	4.1											P10000
OREAS 96 (4 Acid) Cert	457										65.6	5.09											39300
OREAS 96 (4 Acid) Meas	393										65	4.0											P10000
OREAS 96 (4 Acid) Cert	457										65.6	5.09											39300
OREAS 96 (4 Acid) Meas																							
OREAS 96 (4 Acid) Cert																							
OREAS 96 (4 Acid) Meas																							
OREAS 96 (4 Acid) Cert																							
OREAS 923 (4 Acid) Meas	348	13.9	7.1	156	24.2	47.1	140	13.9	1.02	0.5	14	1.3		433	45.5	84.1	9.8	37.5	6.2	5.7	0.8	5.0	3930

Analyte Symbol	Zn	Ga	As	Rb	Y	Sr	Zr	Nb	Mo	In	Sn	Sb	Te	Ba	La	Ce	Pr	Nd	Sm	Gd	Tb	Dy	Cu
Unit Symbol	ppm																						
Lower Limit	0.2	0.1	0.1	0.2	0.1	0.2	1	0.1	0.05	0.1	1	0.1	0.1	1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2
Method Code	TD-MS																						
OREAS 923 (4 Acid) Cert	345	20.3	7.61	166	26.4	43.0	116	14.1	0.930	0.520	13.3	1.29		434	42.2	83.0	9.58	35.4	6.64	5.73	0.850	5.05	4230
OREAS 923 (4 Acid) Meas	353	18.5	6.5	156	26.0	46.5	142	12.1	0.95	0.5	14	1.2		417	45.7	79.8	10.0	36.0	6.6	5.6	0.9	4.9	4210
OREAS 923 (4 Acid) Cert	345	20.3	7.61	166	26.4	43.0	116	14.1	0.930	0.520	13.3	1.29		434	42.2	83.0	9.58	35.4	6.64	5.73	0.850	5.05	4230
OREAS 621 (4 Acid) Meas	P10000	23.6	79.4	84.2	11.1	73.6	164	9.4	13.4	1.9	6	21.5			21.0	47.7					0.4		3470
$\begin{aligned} & \text { OREAS } 621 \text { (4 } \\ & \text { Acid) Cert } \\ & \hline \end{aligned}$	52200	24.6	77.0	84.0	11.1	91.0	168	8.61	13.6	1.83	5.25	139			21.6	46.6					0.460		3630
OREAS 621 (4 Acid) Meas	P10000	22.8	72.6	78.7	12.2	84.7	170	8.4	14.0	1.6	6	44.1			22.8	48.7					0.5		3850
OREAS 621 (4 Acid) Cert	52200	24.6	77.0	84.0	11.1	91.0	168	8.61	13.6	1.83	5.25	139			21.6	46.6					0.460		3630
OREAS 621 (4 Acid) Meas																							
OREAS 621 (4 Acid) Cert																							
Oreas 77b (4 Acid) Meas	226	5.1	1620	21.0	6.8	34.2	40	3.3		0.1	1	9.6	1.2	16	16.5	29.6							3360
$\begin{aligned} & \text { Oreas 77b (4 } \\ & \text { Acid) Cert } \end{aligned}$	205	4.61	2050	19.1	6.55	34.4	37.9	3.26		0.112	1.59	9.100	1.35	118	15.8	27.7							3430
Oreas 77b (4 Acid) Meas	199	4.6	1350	18.4	6.3	37.2	43	2.6		0.1	2	7.8	0.9	24	16.9	27.5							3130
$\begin{aligned} & \begin{array}{l} \text { Oreas 77b (4 } \\ \text { Acid) Cert } \end{array} \\ & \hline \end{aligned}$	205	4.61	2050	19.1	6.55	34.4	37.9	3.26		0.112	1.59	9.100	1.35	118	15.8	27.7							3430
Oreas 77b (4 Acid) Meas																							
$\begin{aligned} & \begin{array}{l} \text { Oreas 77b (4 } \\ \text { Acid) Cert } \end{array} \\ & \hline \end{aligned}$																							
OREAS 228b (Fire Assay) Meas																							
OREAS 228b (Fire Assay) Cert																							
OREAS 228b (Fire Assay) Meas																							
OREAS 228b (Fire Assay) Cert																							
OREAS 228b (Fire Assay) Meas																							
OREAS 228b (Fire Assay) Cert																							
OREAS 228b (Fire Assay) Meas																							
OREAS 228b (Fire Assay) Cert																							
Oreas E1336 (Fire Assay) Meas																							
Oreas E1336 (Fire Assay) Cert																							
Oreas E1336 (Fire Assay) Meas																							
Oreas E1336 (Fire Assay) Cert																							
Oreas E1336 (Fire Assay) Meas																							
Oreas E1336 (Fire Assay) Cert																							

Analyte Symbol	Zn	Ga	As	Rb	Y	Sr	Zr	Nb	Mo	In	Sn	Sb	Te	Ba	La	Ce	Pr	Nd	Sm	Gd	Tb	Dy	Cu
Unit Symbol	ppm																						
Lower Limit	0.2	0.1	0.1	0.2	0.1	0.2	1	0.1	0.05	0.1	1	0.1	0.1	1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2
Method Code	TD-MS																						
Oreas E1336 (Fire Assay) Meas																							
Oreas E1336 (Fire Assay) Cert																							
OREAS 681 (4 Acid) Meas	79.7	14.0		76.8	16.5	457	74	4.1	1.16	<0.1	1	<0.1		410	20.2	39.5	5.4	20.3	3.8	3.7	0.6	3.3	252
OREAS 681 (4 Acid) Cert	88.0	17.6		80.0	17.5	478	58.0	6.17	1.38	0.0420	1.89	0.240		442	18.8	40.6	5.32	21.9	4.82	4.06	0.580	3.40	264
OREAS 681 (4 Acid) Meas																							
OREAS 681 (4 Acid) Cert																							
OREAS 681 (4 Acid) Meas																							
OREAS 681 (4 Acid) Cert																							
OREAS 147 (4 Acid) Meas	133	8.7	16.5	1260	25.6	282	48	51.3	3.12	3.1		1.7		1890	662	1130	119		52.0	27.1	2.1	8.8	305
OREAS 147 (4 Acid) Cert	138	22.6	36.0	1160	26.3	299	105	1110	7.99	2.61		10.6		1940	663	1110	121		48.7	24.2	2.35	9.20	298
OREAS 147 (4 Acid) Meas																							
OREAS 147 (4 Acid) Cert																							
OREAS 147 (4 Acid) Meas																							
OREAS 147 (4 Acid) Cert																							
Oreas 521 (4 Acid) Meas	27.2	18.8	331	106	18.9	87.2	130	6.5	144	0.2	7	3.5	0.3		66.9	84.1	7.8	25.4	4.0	4.4	0.6	3.9	5980
$\begin{array}{\|l\|} \hline \text { Oreas } 521 \text { (4 } \\ \text { Acid) Cert } \end{array}$	24.4	17.4	336	98.0	19.9	158	123	5.6	138	0.2	7	5.7	0.8		139	123	8.4	25.4	4.2	4.0	0.6	3.5	6070
Oreas 521 (4 Acid) Meas																							
$\begin{array}{\|l\|} \hline \text { Oreas } 521 \text { (4 } \\ \text { Acid) Cert } \end{array}$																							
OREAS 70b (4 Acid) Meas	134	7.8	161		9.7	82.7	76	3.6	3.37	<0.1	2	0.5		226	18.0	32.3							55.8
OREAS 70b (4 Acid) Cert	112	10	148		9.8	74.0	66	3.7	3.30	0.05	1	0.6		202	15.3	28.2							52.0
OREAS 70b (4 Acid) Meas	107	7.3	148		8.5	70.3	59	3.7	3.06	<0.1	1	0.5		188	13.8	25.9							46.1
OREAS 70b (4 Acid) Cert	112	10	148		9.8	74.0	66	3.7	3.30	0.05	1	0.6		202	15.3	28.2							52.0
832097 Orig																							
832097 Dup																							
832111 Orig																							
832111 Dup																							
832121 Orig																							
832121 Dup																							
832132 Orig																							
832132 Dup																							
832145 Orig																							
832145 Split PREP DUP																							
832146 Orig																							
832146 Dup																							

Analyte Symbol	Zn	Ga	As	Rb	Y	Sr	Zr	Nb	Mo	In	Sn	Sb	Te	Ba	La	Ce	Pr	Nd	Sm	Gd	Tb	Dy	Cu
Unit Symbol	ppm																						
Lower Limit	0.2	0.1	0.1	0.2	0.1	0.2	1	0.1	0.05	0.1	1	0.1	0.1	1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2
Method Code	TD-MS																						
832154 Orig																							
832154 Dup																							
832166 Orig																							
832166 Dup																							
832181 Orig																							
832181 Dup																							
832189 Orig																							
832189 Dup																							
832195 Orig																							
832195 Split PREP DUP																							
832201 Orig																							
832201 Dup																							
832214 Orig																							
832214 Dup																							
832222 Orig																							
832222 Split PREP DUP																							
Method Blank																							
Method Blank																							
Method Blank																							
Method Blank																							
Method Blank																							
Method Blank																							
Method Blank																							
Method Blank																							
Method Blank	<0.2	0.3	< 0.1	<0.2	<0.1	<0.2	<1	<0.1	0.05	< 0.1	<1	< 0.1	< 0.1	<1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1	< 0.1	< 0.1	<0.2
Method Blank																							
Method Blank	1.2	0.3	<0.1	<0.2	< 0.1	<0.2	< 1	< 0.1	0.06	<0.1	<1	<0.1	<0.1	< 1	< 0.1	< 0.1	<0.1	< 0.1	<0.1	<0.1	<0.1	<0.1	0.3
Method Blank	0.6	0.4	<0.1	<0.2	<0.1	<0.2	<1	<0.1	< 0.05	<0.1	<1	<0.1	<0.1	<1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.3
Method Blank	0.9	0.3	1.1	<0.2	<0.1	<0.2	<1	<0.1	0.11	<0.1	<1	<0.1	<0.1	<1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.4
Method Blank																							
Method Blank	1.1	0.3	< 0.1	<0.2	<0.1	<0.2	< 1	<0.1	0.10	<0.1	< 1	< 0.1	<0.1	<1	< 0.1	< 0.1	<0.1	<0.1	<0.1	<0.1	< 0.1	<0.1	0.6
Method Blank																							
Method Blank	1.3	0.4	0.9	<0.2	<0.1	0.2	<1	<0.1	0.07	< 0.1	<1	< 0.1	< 0.1	<1	< 0.1	<0.1	<0.1	<0.1	<0.1	< 0.1	< 0.1	< 0.1	1.5
Method Blank																							

Analyte Symbol	Ge	Tm	Yb	Lu	Ta	W	Re	TI	Pb	Sc	Th	U	Ti	P	S
Unit Symbol	ppm	\%	\%	\%											
Lower Limit	0.1	0.1	0.1	0.1	0.1	0.1	0.001	0.05	0.5	1	0.1	0.1	0.0005	0.001	0.01
Method Code	TD-MS	TD-ICP	TD-MS	TD-MS	TD-ICP	TD-ICP	TD-ICP								
Oreas 72a (4 Acid) Meas															1.71
$\begin{aligned} & \text { Oreas 72a (4 } \\ & \text { Acid) Cert } \\ & \hline \end{aligned}$															1.74
Oreas 72a (4 Acid) Meas															
$\begin{aligned} & \begin{array}{l} \text { Oreas 72a (4 } \\ \text { Acid) Cert } \end{array} \\ & \hline \end{aligned}$															
OREAS 101b (4 Acid) Meas		1.9	12.6	1.8					21.9		37.7	398	0.370	0.118	
$\begin{aligned} & \text { OREAS 101b (4 } \\ & \text { Acid) Cert } \end{aligned}$		2.08	13.9	1.96					23		36.4	387	0.35		
OREAS 98 (4 Acid) Meas									339						16.1
OREAS 98 (4 Acid) Cert									345						15.5
OREAS 13b (4-Acid) Meas															1.23
OREAS 13b (4-Acid) Cert															1.2
OREAS 13b (4-Acid) Meas															1.21
OREAS 13b (4-Acid) Cert															1.2
OREAS 904 (4 Acid) Meas	0.1		3.2	0.5	0.5	2.6		0.55	11.4	12	15.7	8.6		0.100	0.01
$\begin{aligned} & \text { OREAS } 904 \text { (4 } \\ & \text { Acid) Cert } \\ & \hline \end{aligned}$	0.180		3.14	0.470	0.540	2.12		0.520	10.6	11.2	14.3	8.43		0.0980	0.0630
OREAS 904 (4 Acid) Meas	0.1		3.1	0.5	0.6	2.6		0.55	11.8	11	14.8	9.2		0.103	0.06
$\begin{array}{\|l} \hline \text { OREAS } 904 \text { (4 } \\ \text { Acid) Cert } \\ \hline \end{array}$	0.180		3.14	0.470	0.540	2.12		0.520	10.6	11.2	14.3	8.43		0.0980	0.0630
OREAS 45d (4-Acid) Meas										50			0.407	0.034	0.04
OREAS 45d (4-Acid) Cert										49.30			0.773	0.042	0.049
OREAS 96 (4 Acid) Meas									107						4.77
OREAS 96 (4 Acid) Cert									101						4.19
OREAS 96 (4 Acid) Meas									98.7						4.67
OREAS 96 (4 Acid) Cert									101						4.19
OREAS 96 (4 Acid) Meas									95.7						4.15
OREAS 96 (4 Acid) Cert									101						4.19
OREAS 96 (4 Acid) Meas															4.30
OREAS 96 (4 Acid) Cert															4.19
OREAS 96 (4 Acid) Meas															4.33
OREAS 96 (4 Acid) Cert															4.19
OREAS 923 (4 Acid) Meas		0.4	2.7	0.4	1.1	5.6		0.91	87.4	13	17.7	3.2	0.411	0.071	0.74

Analyte Symbol	Ge	Tm	Yb	Lu	Ta	W	Re	TI	Pb	Sc	Th	U	Ti	P	S
Unit Symbol	ppm	\%	\%	\%											
Lower Limit	0.1	0.1	0.1	0.1	0.1	0.1	0.001	0.05	0.5	1	0.1	0.1	0.0005	0.001	0.01
Method Code	TD-MS	TD-ICP	TD-MS	TD-MS	TD-ICP	TD-ICP	TD-ICP								
OREAS 923 (4 Acid) Cert		0.410	2.57	0.390	1.11	4.85		0.860	83.0	13.1	16.5	3.06	0.405	0.0630	0.691
OREAS 923 (4 Acid) Meas		0.4	2.6	0.4	1.0	4.5		0.90	87.5	13	16.9	3.4	0.426	0.064	0.71
$\text { OREAS } 923 \text { (4 }$ Acid) Cert		0.410	2.57	0.390	1.11	4.85		0.860	83.0	13.1	16.5	3.06	0.405	0.0630	0.691
OREAS 621 (4 Acid) Meas			0.9	0.1		2.2		2.18	> 5000	6	5.5	2.8	0.185	0.038	4.81
$\begin{aligned} & \text { OREAS } 621 \text { (4 } \\ & \text { Acid) Cert } \end{aligned}$			0.990	0.140		2.35		1.96	13600	6.24	7.48	2.83	0.149	0.0359	4.48
OREAS 621 (4 Acid) Meas			1.0	0.2		2.2		2.06	> 5000	6	6.5	3.1	0.190	0.035	4.60
$\begin{aligned} & \text { OREAS } 621 \text { (4 } \\ & \text { Acid) Cert } \end{aligned}$			0.990	0.140		2.35		1.96	13600	6.24	7.48	2.83	0.149	0.0359	4.48
OREAS 621 (4 Acid) Meas										6			0.190	0.037	4.68
$\begin{aligned} & \hline \text { OREAS } 621 \text { (4 } \\ & \text { Acid) Cert } \end{aligned}$										6.24			0.149	0.0359	4.48
Oreas 77b (4 Acid) Meas					0.3	3.0	0.020	1.44	60.9	4	6.8	1.8	0.0726		
Oreas 77b (4 Acid) Cert					0.280	3.07	0.0220	1.37	61.0	3.51	6.61	1.71	0.0640		
Oreas 77b (4 Acid) Meas					0.3	2.7	0.017	1.39	58.0	4	6.2	1.8	0.0617		
Oreas 77b (4 Acid) Cert					0.280	3.07	0.0220	1.37	61.0	3.51	6.61	1.71	0.0640		
Oreas 77b (4 Acid) Meas										3			0.0608		
Oreas 77b (4 Acid) Cert										3.51			0.0640		
OREAS 228b (Fire Assay) Meas															
OREAS 228b (Fire Assay) Cert															
OREAS 228b (Fire Assay) Meas															
OREAS 228b (Fire Assay) Cert															
OREAS 228b (Fire Assay) Meas															
OREAS 228b (Fire Assay) Cert															
OREAS 228b (Fire Assay) Meas															
OREAS 228b (Fire Assay) Cert															
Oreas E1336 (Fire Assay) Meas															
Oreas E1336 (Fire Assay) Cert															
Oreas E1336 (Fire Assay) Meas															
Oreas E1336 (Fire Assay) Cert															
Oreas E1336 (Fire Assay) Meas															
$\begin{aligned} & \text { Oreas E1336 (Fire } \\ & \text { Assay) Cert } \\ & \hline \end{aligned}$															

Analyte Symbol	Ge	Tm	Yb	Lu	Ta	W	Re	TI	Pb	Sc	Th	U	Ti	P	S
Unit Symbol	ppm	\%	\%	\%											
Lower Limit	0.1	0.1	0.1	0.1	0.1	0.1	0.001	0.05	0.5	1	0.1	0.1	0.0005	0.001	0.01
Method Code	TD-MS	TD-ICP	TD-MS	TD-MS	TD-ICP	TD-ICP	TD-ICP								
Oreas E1336 (Fire Assay) Meas															
Oreas E1336 (Fire Assay) Cert															
OREAS 681 (4 Acid) Meas		0.2	1.6	0.3	0.3	0.6			10.0	27	6.5	1.5	0.570	0.138	0.11
$\begin{aligned} & \text { OREAS } 681 \text { (4 } \\ & \text { Acid) Cert } \\ & \hline \end{aligned}$		0.280	1.77	0.270	0.420	1.09			10.2	27.7	6.55	1.44	0.588	0.141	0.109
OREAS 681 (4 Acid) Meas										26			0.582	0.138	0.10
OREAS 681 (4 Acid) Cert										27.7			0.588	0.141	0.109
OREAS 681 (4 Acid) Meas										26			0.559	0.136	0.10
OREAS 681 (4 Acid) Cert										27.7			0.588	0.141	0.109
OREAS 147 (4 Acid) Meas	< 0.1	0.3	1.6	0.2	0.8			12.0	31.6	11	91.8	16.5	0.215	0.110	< 0.01
OREAS 147 (4 Acid) Cert	0.750	0.270	1.46	0.200	17.8			10.8	27.8	10.7	93.0	15.8	0.470	0.155	0.0300
OREAS 147 (4 Acid) Meas										11			0.217	0.104	0.02
OREAS 147 (4 Acid) Cert										10.7			0.470	0.155	0.0300
OREAS 147 (4 Acid) Meas										11			0.294	0.089	0.02
OREAS 147 (4 Acid) Cert										10.7			0.470	0.155	0.0300
Oreas 521 (4 Acid) Meas		0.3	2.2	0.3	0.5	86.9	0.066	0.31	7.7	15	5.6	31.2	0.466	0.091	1.79
Oreas 521 (4 Acid) Cert		0.3	2.1	0.3	0.5	92.0	0.064	0.27	9.3	14	8.3	31.0	0.393	0.081	1.80
Oreas 521 (4 Acid) Meas										14			0.418	0.081	1.74
Oreas 521 (4 Acid) Cert										14			0.393	0.081	1.80
OREAS 70b (4 Acid) Meas					0.3	4.8		0.35	14.7	12	6.9	1.8	0.180	0.024	0.29
OREAS 70b (4 Acid) Cert					0.3	4.9		0.33	13.7	12	6.9	1.7	0.181	0.022	0.31
OREAS 70b (4 Acid) Meas					0.2	3.8		0.32	12.4		6.3	1.7			
OREAS 70b (4 Acid) Cert					0.3	4.9		0.33	13.7		6.9	1.7			
832097 Orig															
832097 Dup															
832111 Orig															
832111 Dup															
832121 Orig															
832121 Dup															
832132 Orig															
832132 Dup															
832145 Orig															
832145 Split PREP DUP															
832146 Orig															
832146 Dup															

Analyte Symbol	Ge	Tm	Yb	Lu	Ta	W	Re	TI	Pb	Sc	Th	U	Ti	P	S
Unit Symbol	ppm	\%	\%	\%											
Lower Limit	0.1	0.1	0.1	0.1	0.1	0.1	0.001	0.05	0.5	1	0.1	0.1	0.0005	0.001	0.01
Method Code	TD-MS	TD-ICP	TD-MS	TD-MS	TD-ICP	TD-ICP	TD-ICP								
832154 Orig															
832154 Dup															
832166 Orig															
832166 Dup															
832181 Orig															
832181 Dup															
832189 Orig															
832189 Dup															
832195 Orig															
832195 Split PREP DUP															
832201 Orig															
832201 Dup															
832214 Orig															
832214 Dup															
832222 Orig															
832222 Split PREP DUP															
Method Blank															
Method Blank															
Method Blank															
Method Blank															
Method Blank															
Method Blank															
Method Blank															
Method Blank															
Method Blank	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.001	< 0.05	<0.5	<1	<0.1	< 0.1	0.0005	<0.001	< 0.01
Method Blank										<1			$0.0005^{<}$	<0.001	< 0.01
Method Blank	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.001	< 0.05	<0.5	<1	<0.1	<0.1	$0.0005^{<}$	<0.001	< 0.01
Method Blank	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.001	< 0.05	<0.5	<1	<0.1	<0.1	$0.0005^{<}$	<0.001	< 0.01
Method Blank	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.001	< 0.05	<0.5	<1	<0.1	<0.1	$0.0005^{<}$	<0.001	< 0.01
Method Blank										<1			0.0005	<0.001	< 0.01
Method Blank	<0.1	<0.1	<0.1	<0.1	<0.1	0.2	<0.001	<0.05	<0.5	<1	<0.1	<0.1	0.0005	<0.001	<0.01
Method Blank										<1			0.0005	<0.001	< 0.01
Method Blank	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.002	< 0.05	<0.5	<1	<0.1	<0.1	$0.0005^{<}$	<0.001	0.11
Method Blank										<1			0.0005	<0.001	< 0.01

Report No.:	A21-20978
Report Date:	11-Nov-21
Date Submitted:	08-Nov-21
Your Reference:	Exploration/Prospecting

Harte Gold Corp.
161 Bay Street
Suite 2400
Toronto Ontario M5J 2S1
Canada

ATTN: David Stevenson

CERTIFICATE OF ANALYSIS

99 Rock samples were submitted for analysis.

The following analytical package(s) were requested:	Testing Date:	
1A2-Tbay-Harte Gold	QOP AA-Au (Au - Fire Assay AA)	2021-11-10 07:10:27

REPORT A21-20978
This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:
If value exceeds upper limit we recommend reassay by fire assay gravimetric-Code 1A3

LabID: 673

ACTIVATION LABORATORIES LTD.
1201 Walsh Street West, Thunder Bay, Ontario, Canada, P7E 4X6 TELEPHONE $+807622-6707$ or +1.888 .228 .5227 FAX +1.905 .648 .9613 TELEPHONE +807 622-6707 or +1.888.228.5227FAX + 1.905 .648 .9613

CERTIFIED BY:

Emmanuel Eseme, Ph.D.
Quality Control Coordinator

Analyte Symbol	Au
Unit Symbol	ppb
Lower Limit	5
Method Code	FA-AA
832223	11
832224	9
832225	8
832226	7
832227	6
832228	6
832229	7
832230	< 5
832231	< 5
832232	< 5
832233	< 5
832234	< 5
832235	< 5
832236	< 5
832237	< 5
832238	< 5
832239	< 5
832240	3640
832241	6
832242	< 5
832243	< 5
832244	< 5
832245	< 5
832246	< 5
832247	< 5
832248	< 5
832249	< 5
832250	< 5
832251	< 5
832252	< 5
832253	< 5
832254	< 5
832255	< 5
832256	< 5
832257	< 5
832258	< 5
832259	<5
832260	7110
832261	< 5
832262	< 5
832263	<5
832264	< 5
832265	< 5
832266	< 5
832267	< 5
832268	< 5
832269	< 5
832270	< 5
832271	< 5
832272	6
832273	<5

Analyte Symbol	Au
Unit Symbol	ppb
Lower Limit	5
Method Code	FA-AA
832274	< 5
832275	< 5
832276	< 5
832277	< 5
832278	8
832279	< 5
832280	5550
832281	6
832282	< 5
832283	< 5
832284	7
832285	17
832286	27
832287	8
832288	5
832289	5
832290	< 5
832291	5
832292	5
832293	6
832294	6
832295	6
832296	6
832297	6
832298	14
832299	6
832300	3680
832301	11
832302	27
832303	42
832304	24
832305	6
832306	< 5
832307	6
832308	12
832309	21
832310	< 5
832311	10
832312	5
832313	< 5
832314	< 5
832315	< 5
832316	< 5
832317	< 5
832318	< 5
832319	< 5
832320	7100
832321	< 5

Analyte Symbol	Au
Unit Symbol	ppb
Lower Limit	5
Method Code	FA-AA
OREAS 228b (Fire Assay) Meas	8710
OREAS 228b (Fire Assay) Cert	8570
OREAS 228b (Fire Assay) Meas	8640
$\begin{aligned} & \text { OREAS 228b } \\ & \text { (Fire Assay) Cert } \end{aligned}$	8570
OREAS 228b (Fire Assay) Meas	8750
$\begin{aligned} & \text { OREAS 228b } \\ & \text { (Fire Assay) Cert } \end{aligned}$	8570
OREAS 228b (Fire Assay) Meas	8430
OREAS 228b (Fire Assay) Cert	8570
Oreas E1336 (Fire Assay) Meas	517
Oreas E1336 (Fire Assay) Cert	510
Oreas E1336 (Fire Assay) Meas	508
Oreas E1336 (Fire Assay) Cert	510
Oreas E1336 (Fire Assay) Meas	514
$\begin{array}{\|l\|} \hline \text { Oreas E1336 (Fire } \\ \text { Assay) Cert } \end{array}$	510
Oreas E1336 (Fire Assay) Meas	510
Oreas E1336 (Fire Assay) Cert	510
832224 Orig	9
832224 Dup	8
832238 Orig	< 5
832238 Dup	< 5
832247 Orig	5
832247 Dup	< 5
832259 Orig	< 5
832259 Dup	< 5
832270 Orig	5
832270 Dup	< 5
832272 Orig	6
832272 Split PREP DUP	6
832281 Orig	5
832281 Dup	7
832293 Orig	6
832293 Dup	5
832299 Orig	6
832299 Dup	6
832307 Orig	6
832307 Dup	6
832316 Orig	< 5
832316 Dup	< 5

Report No.: A21-21124
Report Date: 12-Nov-21
Date Submitted: 10-Nov-21
Your Reference: Exploration/Prospecting

Harte Gold Corp.
161 Bay Street
Suite 2400
Toronto Ontario M5J 2S1
Canada

ATTN: David Stevenson

CERTIFICATE OF ANALYSIS

84 Rock samples were submitted for analysis.

The following analytical package(s) were requested:	Testing Date:	
1A2-Tbay-Harte Gold	QOP AA-Au (Au - Fire Assay AA)	2021-11-12 13:50:55

REPORT A21-21124
This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:
If value exceeds upper limit we recommend reassay by fire assay gravimetric-Code 1A3

LabID: 673

ACTIVATION LABORATORIES LTD.
1201 Walsh Street West, Thunder Bay, Ontario, Canada, P7E 4X6 TELEPHONE $+807622-6707$ or +1.888 .228 .5227 FAX +1.905 .648 .9613 TELEPHONE +807 622-6707 or +1.888.228.5227FAX + 1.905 .648 .9613

CERTIFIED BY:

Emmanuel Eseme, Ph.D.
Quality Control Coordinator

Analyte Symbol	Au
Unit Symbol	ppb
Lower Limit	5
Method Code	FA-AA
832322	< 5
832323	< 5
832324	< 5
832325	< 5
832326	< 5
832327	< 5
832328	< 5
832329	< 5
832330	< 5
832331	< 5
832332	< 5
832333	< 5
832334	< 5
832335	< 5
832336	< 5
832337	< 5
832338	< 5
832339	< 5
832340	5420
832341	< 5
832342	< 5
832343	< 5
832344	< 5
832345	< 5
832346	< 5
832347	< 5
832348	< 5
832349	< 5
832350	< 5
832351	< 5
832352	< 5
832353	< 5
832354	< 5
832355	< 5
832356	< 5
832357	< 5
832358	< 5
832359	< 5
832360	3630
832361	< 5
832362	< 5
832363	6
832364	< 5
832365	< 5
832366	< 5
832367	< 5
832368	< 5
832369	< 5
832370	< 5
832371	< 5
832372	<5

Analyte Symbol	Au
Unit Symbol	ppb
Lower Limit	5
Method Code	FA-AA
832373	5
832374	12
832375	< 5
832376	< 5
832377	< 5
832378	< 5
832379	< 5
832380	7270
832381	< 5
832382	< 5
832383	< 5
832384	< 5
832385	< 5
832386	< 5
832387	< 5
832388	< 5
832389	< 5
832390	< 5
832391	< 5
832392	< 5
832393	< 5
832394	< 5
832395	5
832396	< 5
832397	< 5
832398	< 5
832399	< 5
832400	5600
832401	< 5
832402	< 5
832403	< 5
832404	< 5
832405	<5

Analyte Symbol	Au
Unit Symbol	ppb
Lower Limit	5
Method Code	FA-AA
OREAS 228b (Fire Assay) Meas	8790
OREAS 228b (Fire Assay) Cert	8570
OREAS 228b (Fire Assay) Meas	8760
OREAS 228b (Fire Assay) Cert	8570
OREAS 228b (Fire Assay) Meas	8580
OREAS 228b (Fire Assay) Cert	8570
Oreas E1336 (Fire Assay) Meas	517
Oreas E1336 (Fire Assay) Cert	510
Oreas E1336 (Fire Assay) Meas	513
Oreas E1336 (Fire Assay) Cert	510
Oreas E1336 (Fire Assay) Meas	510
Oreas E1336 (Fire Assay) Cert	510
832331 Orig	< 5
832331 Dup	< 5
832341 Orig	< 5
832341 Dup	< 5
832352 Orig	5
832352 Dup	< 5
832357 Orig	< 5
832357 Dup	< 5
832367 Orig	< 5
832367 Dup	< 5
832371 Orig	< 5
832371 Split PREP DUP	5
832376 Orig	< 5
832376 Dup	< 5
832396 Orig	< 5
832396 Dup	< 5
832399 Orig	< 5
832399 Dup	< 5
832405 Orig	< 5
832405 Split PREP DUP	< 5
Method Blank	< 5
Method Blank	6
Method Blank	< 5
Method Blank	< 5

Report No.:	A21-21514
Report Date:	02-Dec-21
Date Submitted:	17-Nov-21
Your Reference:	Exploration/Prospecting

Harte Gold Corp.

161 Bay Street
Suite 2400
Toronto Ontario M5J 2S1
Canada

ATTN: David Stevenson

CERTIFICATE OF ANALYSIS

216 Rock samples were submitted for analysis.

The following analytical package(s) were requested:	Testing Date:	
UT-6	QOP Total/QOP Ulltratrace- 4acid Digest (Total Digestion ICPOES/ICPMS)	2021-11-29 14:15:58

REPORT A21-21514
This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:
If value exceeds upper limit we recommend reassay by fire assay gravimetric-Code 1A3
Values which exceed the upper limit should be assayed for accurate numbers.
Footnote: Extra samples 833543-833550 added to the end of job.

Abstract

Report No.: A21-21514 Report Date: 02-Dec-21 Date Submitted: 17-Nov-21 Your Reference: Exploration/Prospecting Harte Gold Corp. 161 Bay Street Suite 2400 Toronto Ontario M5J 2S1 Canada

ATTN: David Stevenson

CERTIFICATE OF ANALYSIS

216 Rock samples were submitted for analysis.

The following analytical package(s) were requested:	Testing Date:	
1A2-Tbay-Harte Gold	QOP AA-Au (Au - Fire Assay AA)	2021-11-19 15:01:21

REPORT A21-21514

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:
If value exceeds upper limit we recommend reassay by fire assay gravimetric-Code 1A3
Values which exceed the upper limit should be assayed for accurate numbers.
Footnote: Extra samples 833543-833550 added to the end of job.

Analyte Symbol	Au	Li	Na	Mg	AI	K	Ca	Cd	V	Cr	Mn	Fe	Hf	Ni	Er	Be	Ho	Ag	Cs	Co	Eu	Bi	Se
Unit Symbol	ppb	ppm	\%	\%	\%	\%	\%	ppm	ppm	ppm	ppm	\%	ppm										
Lower Limit	5	0.5	0.01	0.01	0.01	0.01	0.01	0.1	1	1	1	0.01	0.1	0.5	0.1	0.1	0.1	0.05	0.05	0.1	0.05	0.02	0.1
Method Code	FA-AA	TD-MS																					
832406	6																						
832407	< 5																						
832408	< 5																						
832409	< 5																						
832410	5																						
832411	< 5																						
832412	< 5																						
832413	12																						
832414	< 5																						
832415	< 5																						
832416	<5																						
832417	<5																						
832418	6																						
832419	< 5																						
832420	3590																						
832421	6																						
832422	< 5	91.5	> 3.00	1.03	8.77	1.49	2.74	<0.1	56	43	378	2.94	2.5	20.5	0.6	1.1	0.2	0.17	22.7	9.6	0.87	0.38	0.3
832423	< 5																						
832424	< 5																						
832425	<5																						
832426	<5																						
832427	5																						
832428	11																						
832429	36																						
832430	< 5																						
832431	<5																						
832432	5	132	>3.00	0.33	8.17	1.78	2.20	<0.1	24	11	274	1.47	1.8	3.2	0.3	1.6	0.1	0.26	24.4	2.8	0.37	0.40	0.1
832433	<5																						
832434	<5																						
832435	<5																						
832436	<5																						
832437	15																						
832438	53																						
832439	25																						
832440	7030																						
832441	42																						
832442	89																						
832443	7																						
832444	5																						
832445	7																						
832446	12																						
832447	< 5																						
832448	5																						
832449	14																						
832450	<5																						
832451	< 5																						
832452	< 5																						
832453	<5																						
832454	8																						
832455	< 5																						
832456	5																						

Analyte Symbol	Au	Li	Na	Mg	AI	K	Ca	Cd	V	Cr	Mn	Fe	Hf	Ni	Er	Be	Ho	Ag	Cs	Co	Eu	Bi	Se
Unit Symbol	ppb	ppm	\%	\%	\%	\%	\%	ppm	ppm	ppm	ppm	\%	ppm										
Lower Limit	5	0.5	0.01	0.01	0.01	0.01	0.01	0.1	1	1	1	0.01	0.1	0.5	0.1	0.1	0.1	0.05	0.05	0.1	0.05	0.02	0.1
Method Code	FA-AA	TD-MS																					
832457	< 5																						
832458	< 5																						
832459	< 5																						
832460	5590																						
832461	< 5																						
832462	< 5																						
832463	< 5																						
832464	< 5																						
832465	< 5																						
832466	< 5																						
832467	< 5																						
832468	6																						
832469	9																						
832470	< 5																						
832471	< 5																						
832472	7																						
832473	< 5																						
832474	< 5																						
832475	6																						
832476	5																						
832477	< 5																						
832478	< 5																						
832479	< 5																						
832480	3620																						
832481	< 5																						
832482	< 5																						
832483	< 5																						
832484	<5																						
832485	< 5																						
832486	< 5																						
832487	16																						
832488	6																						
832489	< 5																						
832490	< 5																						
832491	6																						
832492	< 5																						
832493	15																						
832494	6																						
832495	6																						
832496	8																						
832497	10																						
832498	9																						
832499	9																						
832500	6810																						
833501	10																						
833502	8																						
833503	11																						
833504	13																						
833505	< 5																						
833506	9																						
833507	13																						

Analyte Symbol	Au	Li	Na	Mg	AI	K	Ca	Cd	V	Cr	Mn	Fe	Hf	Ni	Er	Be	Ho	Ag	Cs	Co	Eu	Bi	Se
Unit Symbol	ppb	ppm	\%	\%	\%	\%	\%	ppm	ppm	ppm	ppm	\%	ppm										
Lower Limit	5	0.5	0.01	0.01	0.01	0.01	0.01	0.1	1	1	1	0.01	0.1	0.5	0.1	0.1	0.1	0.05	0.05	0.1	0.05	0.02	0.1
Method Code	FA-AA	TD-MS																					
833508	9	42.8	>3.00	1.19	8.08	1.11	3.77	< 0.1	63	51	383	3.04	2.4	23.2	0.8	1.5	0.3	0.52	4.22	12.2	1.04	1.09	0.5
833509	10																						
833510	< 5																						
833511	66																						
833512	21																						
833513	100																						
833514	32																						
833515	48																						
833516	21																						
833517	6																						
833518	7																						
833519	<5																						
833520	3600																						
833521	5																						
833522	< 5																						
833523	7																						
833524	< 5																						
833525	< 5																						
833526	7																						
833527	< 5																						
833528	< 5																						
833529	19																						
833530	< 5																						
833531	< 5																						
833532	< 5																						
833533	< 5																						
833534	< 5																						
833535	< 5																						
833536	< 5																						
833537	< 5																						
833538	< 5																						
833539	5																						
833540	6920																						
833541	24																						
833542	< 5																						
833551	< 5																						
833552	< 5																						
833553	< 5																						
833554	< 5																						
833555	< 5																						
833556	< 5																						
833557	< 5																						
833558	45																						
833559	< 5																						
833560	5400																						
833561	< 5																						
833562	< 5																						
833563	< 5																						
833564	5																						
833565	9																						
833566	< 5																						

Analyte Symbol	Au	Li	Na	Mg	AI	K	Ca	Cd	V	Cr	Mn	Fe	Hf	Ni	Er	Be	Ho	Ag	Cs	Co	Eu	Bi	Se
Unit Symbol	ppb	ppm	\%	\%	\%	\%	\%	ppm	ppm	ppm	ppm	\%	ppm										
Lower Limit	5	0.5	0.01	0.01	0.01	0.01	0.01	0.1	1	1	1	0.01	0.1	0.5	0.1	0.1	0.1	0.05	0.05	0.1	0.05	0.02	0.1
Method Code	FA-AA	TD-MS																					
833567	6																						
833568	< 5																						
833569	6																						
833570	< 5																						
833571	8																						
833572	8																						
833573	< 5																						
833574	< 5																						
833575	< 5																						
833576	7	70.4	1.56	2.83	6.84	0.43	8.36	0.1	275	112	1450	12.1	0.8	104	2.8	0.4	0.9	0.41	1.69	107	0.88	1.61	0.6
833577	13																						
833578	8																						
833579	9																						
833580	3520																						
833581	8																						
833582	< 5																						
833583	< 5																						
833584	< 5																						
833585	< 5																						
833586	< 5																						
833587	7																						
833588	< 5																						
833589	<5																						
833590	46																						
833591	7																						
833592	< 5																						
833593	16																						
833594	11																						
833595	12																						
833596	18																						
833597	54																						
833598	10																						
833599	10																						
833600	7030																						
833601	29																						
833602	21																						
833603	17																						
833604	< 5																						
833605	10																						
833606	9																						
833607	< 5																						
833608	< 5																						
833609	< 5																						
833610	<5																						
833611	17																						
833612	5																						
833613	< 5																						
833614	< 5																						
833615	22																						
833616	< 5																						
833617	7																						

Analyte Symbol	Au	Li	Na	Mg	AI	K	Ca	Cd	V	Cr	Mn	Fe	Hf	Ni	Er	Be	Ho	Ag	Cs	Co	Eu	Bi	Se
Unit Symbol	ppb	ppm	\%	\%	\%	\%	\%	ppm	ppm	ppm	ppm	\%	ppm										
Lower Limit	5	0.5	0.01	0.01	0.01	0.01	0.01	0.1	1	1	1	0.01	0.1	0.5	0.1	0.1	0.1	0.05	0.05	0.1	0.05	0.02	0.1
Method Code	FA-AA	TD-MS																					
833618	< 5																						
833619	< 5																						
833620	5620																						
833621	5																						
833543	7																						
833544	< 5																						
833545	< 5																						
833546	< 5																						
833547	13																						
833548	< 5																						
833549	< 5																						
833550	<5																						

Analyte Symbol	Zn	Ga	As	Rb	Y	Sr	Zr	Nb	Mo	In	Sn	Sb	Te	Ba	La	Ce	Pr	Nd	Sm	Gd	Tb	Dy	Cu
Unit Symbol	ppm																						
Lower Limit	0.2	0.1	0.1	0.2	0.1	0.2	1	0.1	0.05	0.1	1	0.1	0.1	1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2
Method Code	TD-MS																						
832406																							
832407																							
832408																							
832409																							
832410																							
832411																							
832412																							
832413																							
832414																							
832415																							
832416																							
832417																							
832418																							
832419																							
832420																							
832421																							
832422	46.2	19.6	<0.1	57.7	5.8	919	91	4.6	1.01	<0.1	< 1	<0.1	<0.1	529	31.9	61.8	6.7	24.2	3.7	2.2	0.3	1.1	39.8
832423																							
832424																							
832425																							
832426																							
832427																							
832428																							
832429																							
832430																							
832431																							
832432	47.4	19.5	< 0.1	89.7	3.2	283	61	1.9	2.36	<0.1	<1	< 0.1	<0.1	385	11.7	21.2	2.4	8.2	1.1	1.0	0.1	0.7	88.9
832433																							
832434																							
832435																							
832436																							
832437																							
832438																							
832439																							
832440																							
832441																							
832442																							
832443																							
832444																							
832445																							
832446																							
832447																							
832448																							
832449																							
832450																							
832451																							
832452																							
832453																							
832454																							
832455																							
832456																							

Analyte Symbol	Zn	Ga	As	Rb	Y	Sr	Zr	Nb	Mo	In	Sn	Sb	Te	Ba	La	Ce	Pr	Nd	Sm	Gd	Tb	Dy	Cu
Unit Symbol	ppm																						
Lower Limit	0.2	0.1	0.1	0.2	0.1	0.2	1	0.1	0.05	0.1	1	0.1	0.1	1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2
Method Code	TD-MS																						
832457																							
832458																							
832459																							
832460																							
832461																							
832462																							
832463																							
832464																							
832465																							
832466																							
832467																							
832468																							
832469																							
832470																							
832471																							
832472																							
832473																							
832474																							
832475																							
832476																							
832477																							
832478																							
832479																							
832480																							
832481																							
832482																							
832483																							
832484																							
832485																							
832486																							
832487																							
832488																							
832489																							
832490																							
832491																							
832492																							
832493																							
832494																							
832495																							
832496																							
832497																							
832498																							
832499																							
832500																							
833501																							
833502																							
833503																							
833504																							
833505																							
833506																							
833507																							

Analyte Symbol	Zn	Ga	As	Rb	Y	Sr	Zr	Nb	Mo	In	Sn	Sb	Te	Ba	La	Ce	Pr	Nd	Sm	Gd	Tb	Dy	Cu
Unit Symbol	ppm																						
Lower Limit	0.2	0.1	0.1	0.2	0.1	0.2	1	0.1	0.05	0.1	1	0.1	0.1	1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2
Method Code	TD-MS																						
833508	35.5	17.5	<0.1	32.5	7.9	872	95	7.9	22.9	<0.1	<1	<0.1	<0.1	273	68.9	111	11.7	36.1	4.4	2.9	0.3	1.5	138
833509																							
833510																							
833511																							
833512																							
833513																							
833514																							
833515																							
833516																							
833517																							
833518																							
833519																							
833520																							
833521																							
833522																							
833523																							
833524																							
833525																							
833526																							
833527																							
833528																							
833529																							
833530																							
833531																							
833532																							
833533																							
833534																							
833535																							
833536																							
833537																							
833538																							
833539																							
833540																							
833541																							
833542																							
833551																							
833552																							
833553																							
833554																							
833555																							
833556																							
833557																							
833558																							
833559																							
833560																							
833561																							
833562																							
833563																							
833564																							
833565																							
833566																							

Analyte Symbol	Zn	Ga	As	Rb	Y	Sr	Zr	Nb	Mo	In	Sn	Sb	Te	Ba	La	Ce	Pr	Nd	Sm	Gd	Tb	Dy	Cu
Unit Symbol	ppm																						
Lower Limit	0.2	0.1	0.1	0.2	0.1	0.2	1	0.1	0.05	0.1	1	0.1	0.1	1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2
Method Code	TD-MS																						
833567																							
833568																							
833569																							
833570																							
833571																							
833572																							
833573																							
833574																							
833575																							
833576	76.9	19.8	<0.1	12.0	23.4	250	16	0.4	0.70	0.1	<1	<0.1	<0.1	84	3.9	10.2	1.6	7.7	2.4	3.0	0.7	4.3	215
833577																							
833578																							
833579																							
833580																							
833581																							
833582																							
833583																							
833584																							
833585																							
833586																							
833587																							
833588																							
833589																							
833590																							
833591																							
833592																							
833593																							
833594																							
833595																							
833596																							
833597																							
833598																							
833599																							
833600																							
833601																							
833602																							
833603																							
833604																							
833605																							
833606																							
833607																							
833608																							
833609																							
833610																							
833611																							
833612																							
833613																							
833614																							
833615																							
833616																							
833617																							

Analyte Symbol	Zn	Ga	As	Rb	Y	Sr	Zr	Nb	Mo	1 n	Sn	Sb	Te	Ba	La	Ce	Pr	Nd	Sm	Gd	Tb	Dy	Cu
Unit Symbol	ppm																						
Lower Limit	0.2	0.1	0.1	0.2	0.1	0.2	1	0.1	0.05	0.1	1	0.1	0.1	1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2
Method Code	TD-MS																						
833618																							
833619																							
833620																							
833621																							
833543																							
833544																							
833545																							
833546																							
833547																							
833548																							
833549																							
833550																							

Analyte Symbol	Ge	Tm	Yb	Lu	Ta	W	Re	TI	Pb	Sc	Th	U	Ti	P	S
Unit Symbol	ppm	\%	\%	\%											
Lower Limit	0.1	0.1	0.1	0.1	0.1	0.1	0.001	0.05	0.5	1	0.1	0.1	0.0005	0.001	0.01
Method Code	TD-MS	TD-ICP	TD-MS	TD-MS	TD-ICP	TD-ICP	TD-ICP								
832406															
832407															
832408															
832409															
832410															
832411															
832412															
832413															
832414															
832415															
832416															
832417															
832418															
832419															
832420															
832421															
832422	<0.1	<0.1	0.5	<0.1	0.2	0.3	0.002	0.38	6.2	6	4.1	1.2	0.257	0.070	0.31
832423															
832424															
832425															
832426															
832427															
832428															
832429															
832430															
832431															
832432	<0.1	< 0.1	0.3	< 0.1	0.1	0.5	0.001	0.67	5.9	3	1.9	1.2	0.138	0.023	0.18
832433															
832434															
832435															
832436															
832437															
832438															
832439															
832440															
832441															
832442															
832443															
832444															
832445															
832446															
832447															
832448															
832449															
832450															
832451															
832452															
832453															
832454															
832455															
832456															

Analyte Symbol	Ge	Tm	Yb	Lu	Ta	W	Re	TI	Pb	Sc	Th	U	Ti	P	S
Unit Symbol	ppm	\%	\%	\%											
Lower Limit	0.1	0.1	0.1	0.1	0.1	0.1	0.001	0.05	0.5	1	0.1	0.1	0.0005	0.001	0.01
Method Code	TD-MS	TD-ICP	TD-MS	TD-MS	TD-ICP	TD-ICP	TD-ICP								
832457															
832458															
832459															
832460															
832461															
832462															
832463															
832464															
832465															
832466															
832467															
832468															
832469															
832470															
832471															
832472															
832473															
832474															
832475															
832476															
832477															
832478															
832479															
832480															
832481															
832482															
832483															
832484															
832485															
832486															
832487															
832488															
832489															
832490															
832491															
832492															
832493															
832494															
832495															
832496															
832497															
832498															
832499															
832500															
833501															
833502															
833503															
833504															
833505															
833506															
833507															

Analyte Symbol	Ge	Tm	Yb	Lu	Ta	W	Re	TI	Pb	Sc	Th	U	Ti	P	S
Unit Symbol	ppm	\%	\%	\%											
Lower Limit	0.1	0.1	0.1	0.1	0.1	0.1	0.001	0.05	0.5	1	0.1	0.1	0.0005	0.001	0.01
Method Code	TD-MS	TD-ICP	TD-MS	TD-MS	TD-ICP	TD-ICP	TD-ICP								
833508	<0.1	0.1	0.6	<0.1	0.3	0.9	0.011	0.18	4.1	8	5.1	1.2	0.260	0.086	1.14
833509															
833510															
833511															
833512															
833513															
833514															
833515															
833516															
833517															
833518															
833519															
833520															
833521															
833522															
833523															
833524															
833525															
833526															
833527															
833528															
833529															
833530															
833531															
833532															
833533															
833534															
833535															
833536															
833537															
833538															
833539															
833540															
833541															
833542															
833551															
833552															
833553															
833554															
833555															
833556															
833557															
833558															
833559															
833560															
833561															
833562															
833563															
833564															
833565															
833566															

Analyte Symbol	Ge	Tm	Yb	Lu	Ta	W	Re	TI	Pb	Sc	Th	U	Ti	P	S
Unit Symbol	ppm	\%	\%	\%											
Lower Limit	0.1	0.1	0.1	0.1	0.1	0.1	0.001	0.05	0.5	1	0.1	0.1	0.0005	0.001	0.01
Method Code	TD-MS	TD-ICP	TD-MS	TD-MS	TD-ICP	TD-ICP	TD-ICP								
833618															
833619															
833620															
833621															
833543															
833544															
833545															
833546															
833547															
833548															
833549															
833550															

Analyte Symbol	Au	Li	Na	Mg	AI	K	Ca	Cd	V	Cr	Mn	Fe	Hf	Ni	Er	Be	Ho	Ag	Cs	Co	Eu	Bi	Se
Unit Symbol	ppb	ppm	\%	\%	\%	\%	\%	ppm	ppm	ppm	ppm	\%	ppm										
Lower Limit	5	0.5	0.01	0.01	0.01	0.01	0.01	0.1	1	1	1	0.01	0.1	0.5	0.1	0.1	0.1	0.05	0.05	0.1	0.05	0.02	0.1
Method Code	FA-AA	TD-MS																					
Oreas 72a (4 Acid) Meas										172		9.09		> 5000						152			
$\begin{aligned} & \text { Oreas 72a (4 } \\ & \text { Acid) Cert } \end{aligned}$										228		9.63		$\begin{array}{r} 6930.0 \\ 00 \\ \hline \end{array}$						157			
OREAS 101b (4 Acid) Meas				1.25		2.35			72		921	10.1		8.7	14.9		4.9			43.8	6.96		
OREAS 101b (4 Acid) Cert				1.23		2.36			77		927	10.7		8.2	15		5.2			45	8.1		
OREAS 98 (4 Acid) Meas																		45.1		123		96.7	179
OREAS 98 (4 Acid) Cert																		45.1		121		97.2	158
OREAS 904 (4 Acid) Meas		15.6	0.04	0.61	6.50	3.40	0.04		76	65	414	7.17	5.3	41.2		8.1		0.66	4.03	86.2		4.22	2.8
OREAS 904 (4 Acid) Cert		16.7	0.0340	0.556	6.30	3.31	0.0460		76.0	54.0	410	6.68	5.00	40.1		7.86		0.551	3.79	83.0		4.05	3.30
OREAS 96 (4 Acid) Meas																		11.1		49.7		27.3	43.8
OREAS 96 (4 Acid) Cert																		11.5		49.9		26.3	40.7
OREAS 96 (4 Acid) Meas																		11.0		47.9		26.4	43.5
OREAS 96 (4 Acid) Cert																		11.5		49.9		26.3	40.7
OREAS 923 (4 Acid) Meas		29.4	0.33	1.80	7.29	2.47	0.46	0.4	87	70	922	6.95	4.0	40.9	3.0	2.4	1.0	1.74	6.88	22.7	1.35	26.9	6.7
OREAS 923 (4 Acid) Cert		31.4	0.324	1.69	7.29	2.51	0.473	0.420	91.0	71.0	950	6.43	3.42	35.8	2.86	2.42	0.960	1.60	6.70	23.1	1.37	21.4	6.54
OREAS 621 (4 Acid) Meas		14.6	1.29	0.39	6.33	2.31	1.86	254	35	29	505	4.05	4.8	29.6		1.8		61.2	3.47	32.0		4.15	5.3
OREAS 621 (4 Acid) Cert		14.2	1.31	0.507	6.40	2.20	1.97	284	31.8	37.1	532	3.70	4.41	26.2		1.69		69.0	3.28	29.3		3.93	5.64
Oreas 77b (4 Acid) Meas		19.4	0.40	2.50	1.73	0.33	2.87	1.2	25	232	625	29.2	1.2	> 5000		0.4		1.59	2.29	> 500		3.47	
$\begin{aligned} & \hline \text { Oreas 77b (4 } \\ & \text { Acid) Cert } \end{aligned}$		18.8	0.434	2.59	1.94	0.361	3.06	1.20	33.6	280	640	29.9	1.15	113000		0.470		1.62	2.32	1550		3.44	
OREAS 228b (Fire Assay) Meas	8680																						
OREAS 228b (Fire Assay) Cert	8570																						
OREAS 228b (Fire Assay) Meas	8430																						
OREAS 228b (Fire Assay) Cert	8570																						
OREAS 228b (Fire Assay) Meas	8400																						
OREAS 228b (Fire Assay) Cert	8570																						
OREAS 228b (Fire Assay) Meas	8660																						
OREAS 228b (Fire Assay) Cert	8570																						
OREAS 228b (Fire Assay) Meas	8650																						
OREAS 228b (Fire Assay) Cert	8570																						
OREAS 228b (Fire Assay) Meas	8640																						

Analyte Symbol	Au	Li	Na	Mg	AI	K	Ca	Cd	V	Cr	Mn	Fe	Hf	Ni	Er	Be	Ho	Ag	Cs	Co	Eu	Bi	Se
Unit Symbol	ppb	ppm	\%	\%	\%	\%	\%	ppm	ppm	ppm	ppm	\%	ppm										
Lower Limit	5	0.5	0.01	0.01	0.01	0.01	0.01	0.1	1	1	1	0.01	0.1	0.5	0.1	0.1	0.1	0.05	0.05	0.1	0.05	0.02	0.1
Method Code	FA-AA	TD-MS																					
OREAS 228b (Fire Assay) Cert	8570																						
Oreas E1336 (Fire Assay) Meas Oreas E	517																						
Oreas E1336 (Fire Assay) Cert	510																						
$\begin{array}{\|l\|} \hline \text { Oreas E1336 (Fire } \\ \text { Assay) Meas } \\ \hline \end{array}$	522																						
$\begin{array}{\|l\|} \hline \text { Oreas E1336 (Fire } \\ \text { Assay) Cert } \\ \hline \end{array}$	510																						
Oreas E1336 (Fire Assay) Meas Areas	521																						
$\begin{array}{\|l\|} \hline \text { Oreas E1336 (Fire } \\ \text { Assay) Cert } \\ \hline \end{array}$	510																						
Oreas E1336 (Fire Assay) Meas Areas	510																						
$\begin{array}{\|l\|} \hline \text { Oreas E1336 (Fire } \\ \text { Assay) Cert } \\ \hline \end{array}$	510																						
Oreas E1336 (Fire Assay) Meas Ores	519																						
Oreas E1336 (Fire Assay) Cert	510																						
Oreas E1336 (Fire Assay) Meas Ores	503																						
Oreas E1336 (Fire Assay) Cert	510																						
Oreas E1336 (Fire Assay) Meas	514																						
Oreas E1336 (Fire Assay) Cert	510																						
Oreas E1336 (Fire Assay) Meas	517																						
Oreas E1336 (Fire Assay) Cert	510																						
OREAS 681 (4 Acid) Meas		12.7	1.54	5.66	8.12	1.43	6.26		234	1380	1260	7.59	1.9	477	1.9	1.2	0.6	0.18	3.78	51.4	1.33	0.10	
OREAS 681 (4 Acid) Cert		13.0	1.61	5.19	7.91	1.35	5.98		253	1640	1310	7.47	1.70	503	1.97	1.41	0.690	0.118	4.02	51.0	1.37	0.0980	
OREAS 70b (4 Acid) Meas		30.9	0.75	12.8	3.64	0.58	3.03	0.3	54		1120	5.24	1.7	2190		0.9		0.19	3.25	77.8		0.86	
OREAS 70b (4 Acid) Cert		34.4	0.77	13.4	3.87	0.62	3.05	0.4	67		1150	5.52	1.9	2180		1		0.17	3.44	78.0		0.84	
832407 Orig	< 5																						
832407 Dup	< 5																						
832421 Orig	5																						
832421 Dup	6																						
832430 Orig	< 5																						
832430 Dup	< 5																						
832431 Orig	< 5																						
832431 Dup	< 5																						
832442 Orig	92																						
832442 Dup	86																						
832455 Orig	< 5																						
832455 Split	< 5																						
832466 Orig	< 5																						
832466 Dup	< 5																						

Analyte Symbol	Au	Li	Na	Mg	AI	K	Ca	Cd	V	Cr	Mn	Fe	Hf	Ni	Er	Be	Ho	Ag	Cs	Co	Eu	Bi	Se
Unit Symbol	ppb	ppm	\%	\%	\%	\%	\%	ppm	ppm	ppm	ppm	\%	ppm										
Lower Limit	5	0.5	0.01	0.01	0.01	0.01	0.01	0.1	1	1	1	0.01	0.1	0.5	0.1	0.1	0.1	0.05	0.05	0.1	0.05	0.02	0.1
Method Code	FA-AA	TD-MS																					
832476 Orig	5																						
832476 Dup	5																						
832486 Orig	6																						
832486 Dup	<5																						
832490 Orig	<5																						
832490 Dup	< 5																						
832499 Orig	9																						
832499 Dup	9																						
833505 Orig	< 5																						
$\begin{aligned} & 833505 \text { Split } \\ & \text { PREP DUP } \end{aligned}$	< 5																						
833510 Orig	< 5																						
833510 Dup	< 5																						
833524 Orig	< 5																						
833524 Dup	<5																						
833536 Orig	< 5																						
833536 Dup	< 5																						
833553 Orig	< 5																						
833553 Dup	7																						
833563 Orig	<5																						
833563 Split PREP DUP	<5																						
833566 Orig	< 5																						
833566 Dup	< 5																						
833575 Orig	8																						
833575 Dup	< 5																						
833576 Orig		72.3	1.55	2.77	6.61	0.44	8.39	0.1	273	113	1460	12.6	0.8	101	3.0	0.4	0.9	0.40	1.70	108	0.88	1.66	0.6
833576 Dup		68.4	1.56	2.89	7.08	0.42	8.33	0.1	276	112	1450	11.7	0.9	107	2.7	0.4	0.9	0.41	1.68	106	0.87	1.55	0.7
833601 Orig	35																						
833601 Dup	23																						
833610 Dup	< 5																						
833613 Orig	<5																						
$\begin{aligned} & 83613 \text { Split } \\ & \text { PREP DUP } \end{aligned}$	< 5																						
833621 Orig	5																						
833621 Dup	5																						
833549 Orig	< 5																						
$\begin{aligned} & 833549 \text { Split } \\ & \text { PREP DUP } \end{aligned}$	< 5																						
Method Blank	< 5																						
Method Blank	< 5																						
Method Blank	< 5																						
Method Blank	<5																						
Method Blank	< 5																						
Method Blank	< 5																						
Method Blank	< 5																						
Method Blank	< 5																						
Method Blank	< 5																						
Method Blank	< 5																						
Method Blank	< 5																						
Method Blank	< 5																						
Method Blank	< 5																						

Analyte Symbol	Au	Li	Na	Mg	Al	K	Ca	Cd	V	Cr	Mn	Fe	Hf	Ni	Er	Be	Ho	Ag	Cs	Co	Eu	Bi	Se
Unit Symbol	ppb	ppm	\%	\%	\%	\%	\%	ppm	ppm	ppm	ppm	\%	ppm										
Lower Limit	5	0.5	0.01	0.01	0.01	0.01	0.01	0.1	1	T	1	0.01	0.1	0.5	0.1	0.1	0.1	0.05	0.05	0.1	0.05	0.02	0.1
Method Code	FA-AA	TD-MS																					
Method Blank		<0.5	<0.01	<0.01	<0.01	<0.01	<0.01	<0.1	4	6	20	<0.01	<0.1	<0.5	<0.1	<0.1	<0.1	<0.05	<0.05	<0.1	<0.05	<0.02	0.1

Analyte Symbol	Zn	Ga	As	Rb	Y	Sr	Zr	Nb	Mo	In	Sn	Sb	Te	Ba	La	Ce	Pr	Nd	Sm	Gd	Tb	Dy	Cu
Unit Symbol	ppm																						
Lower Limit	0.2	0.1	0.1	0.2	0.1	0.2	1	0.1	0.05	0.1	1	0.1	0.1	1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2
Method Code	TD-MS																						
$\begin{aligned} & \text { Oreas } 72 \mathrm{a} \text { (4 } \\ & \text { Acid) Meas } \end{aligned}$			4.6																				302
$\begin{aligned} & \text { Oreas 72a (4 } \\ & \text { Acid) Cert } \end{aligned}$			14.7																				316
OREAS 101b (4 Acid) Meas					124				18.7						732	1290	118	371	43.6	37.3	4.1	23.8	389
$\begin{aligned} & \text { OREAS 101b (4 } \\ & \text { Acid) Cert } \end{aligned}$					133				20.1						754	1325	127	388	48	40	5.4	27	412
OREAS 98 (4 Acid) Meas	1280										>200	6.9											P10000
$\begin{aligned} & \hline \text { OREAS } 98 \text { (4 } \\ & \text { Acid) Cert } \end{aligned}$	1360										206	20.1											$\begin{array}{r} 14800 \\ 0.0 \\ \hline \end{array}$
$\begin{aligned} & \text { OREAS } 904 \text { (4 } \\ & \text { Acid) Meas } \end{aligned}$	30.4	17.0	96.6	118	31.8	31.2	201		2.10	0.2	3	1.2		204	46.5	85.5					1.0		6050
$\begin{aligned} & \hline \text { OREAS } 904 \text { (4 } \\ & \text { Acid) Cert } \end{aligned}$	26.3	16.7	98.0	130	31.5	27.2	171		2.12	0.220	2.83	1.48		194	43.2	86.0					1.00		6120
OREAS 96 (4 Acid) Meas	440										66	4.1											\$ 10000
$\begin{aligned} & \text { OREAS } 96 \text { (4 } \\ & \text { Acid) Cert } \end{aligned}$	457										65.6	5.09											39300
OREAS 96 (4 Acid) Meas	393										65	4.0											P10000
$\begin{aligned} & \text { OREAS } 96 \text { (4 } \\ & \text { Acid) Cert } \end{aligned}$	457										65.6	5.09											39300
OREAS 923 (4 Acid) Meas	353	18.5	6.5	156	26.0	46.5	142	12.1	0.95	0.5	14	1.2		417	45.7	79.8	10.0	36.0	6.6	5.6	0.9	4.9	4210
$\begin{aligned} & \hline \text { OREAS } 923 \text { (} \\ & \text { Acid) Cert } \end{aligned}$	345	20.3	7.61	166	26.4	43.0	116	14.1	0.930	0.520	13.3	1.29		434	42.2	83.0	9.58	35.4	6.64	5.73	0.850	5.05	4230
OREAS 621 (4 Acid) Meas	P10000	22.8	72.6	78.7	12.2	84.7	170	8.4	14.0	1.6	6	44.1			22.8	48.7					0.5		3850
$\begin{aligned} & \hline \text { OREAS } 621 \text { (4 } \\ & \text { Acid) Cert } \end{aligned}$	52200	24.6	77.0	84.0	11.1	91.0	168	8.61	13.6	1.83	5.25	139			21.6	46.6					0.460		3630
Oreas 77b (4 Acid) Meas	199	4.6	1350	18.4	6.3	37.2	43	2.6		0.1	2	7.8	0.9	24	16.9	27.5							3130
$\begin{aligned} & \hline \text { Oreas 77b (4 } \\ & \text { Acid) Cert } \\ & \hline \end{aligned}$	205	4.61	2050	19.1	6.55	34.4	37.9	3.26		0.112	1.59	9.100	1.35	118	15.8	27.7							3430
OREAS 228b (Fire Assay) Meas																							
OREAS 228b (Fire Assay) Cert																							
OREAS 228b (Fire Assay) Meas																							
OREAS 228b (Fire Assay) Cert																							
OREAS 228b (Fire Assay) Meas																							
OREAS 228b (Fire Assay) Cert																							
OREAS 228b (Fire Assay) Meas																							
OREAS 228b (Fire Assay) Cert																							
OREAS 228b (Fire Assay) Meas																							
OREAS 228b (Fire Assay) Cert																							
OREAS 228b (Fire Assay) Meas																							

Analyte Symbol	Zn	Ga	As	Rb	Y	Sr	Zr	Nb	Mo	In	Sn	Sb	Te	Ba	La	Ce	Pr	Nd	Sm	Gd	Tb	Dy	Cu
Unit Symbol	ppm																						
Lower Limit	0.2	0.1	0.1	0.2	0.1	0.2	1	0.1	0.05	0.1	1	0.1	0.1	1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2
Method Code	TD-MS																						
OREAS 228b (Fire Assay) Cert																							
Oreas E1336 (Fire Assay) Meas																							
Oreas E1336 (Fire Assay) Cert																							
Oreas E1336 (Fire Assay) Meas																							
Oreas E1336 (Fire Assay) Cert																							
Oreas E1336 (Fire Assay) Meas																							
Oreas E1336 (Fire Assay) Cert																							
Oreas E1336 (Fire Assay) Meas																							
Oreas E1336 (Fire Assay) Cert																							
Oreas E1336 (Fire Assay) Meas																							
Oreas E1336 (Fire Assay) Cert																							
Oreas E1336 (Fire Assay) Meas																							
Oreas E1336 (Fire Assay) Cert																							
Oreas E1336 (Fire Assay) Meas																							
Oreas E1336 (Fire Assay) Cert																							
Oreas E1336 (Fire Assay) Meas																							
Oreas E1336 (Fire Assay) Cert																							
OREAS 681 (4 Acid) Meas	79.7	14.0		76.8	16.5	457	74	4.1	1.16	<0.1	1	< 0.1		410	20.2	39.5	5.4	20.3	3.8	3.7	0.6	3.3	252
$\begin{aligned} & \text { OREAS } 681 \text { (4 } \\ & \text { Acid) Cert } \end{aligned}$	88.0	17.6		80.0	17.5	478	58.0	6.17	1.38	0.0420	1.89	0.240		442	18.8	40.6	5.32	21.9	4.82	4.06	0.580	3.40	264
OREAS 70b (4 Acid) Meas	107	7.3	148		8.5	70.3	59	3.7	3.06	<0.1	1	0.5		188	13.8	25.9							46.1
$\begin{aligned} & \text { OREAS 70b (4 } \\ & \text { Acid) Cert } \end{aligned}$	112	10	148		9.8	74.0	66	3.7	3.30	0.05	1	0.6		202	15.3	28.2							52.0
832407 Orig																							
832407 Dup																							
832421 Orig																							
832421 Dup																							
832430 Orig																							
832430 Dup																							
832431 Orig																							
832431 Dup																							
832442 Orig																							
832442 Dup																							
832455 Orig																							
832455 Split PREP DUP																							
832466 Orig																							
832466 Dup																							

Analyte Symbol	Zn	Ga	As	Rb	Y	Sr	Zr	Nb	Mo	In	Sn	Sb	Te	Ba	La	Ce	Pr	Nd	Sm	Gd	Tb	Dy	Cu
Unit Symbol	ppm																						
Lower Limit	0.2	0.1	0.1	0.2	0.1	0.2	1	0.1	0.05	0.1	1	0.1	0.1	1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2
Method Code	TD-MS																						
832476 Orig																							
832476 Dup																							
832486 Orig																							
832486 Dup																							
832490 Orig																							
832490 Dup																							
832499 Orig																							
832499 Dup																							
833505 Orig																							
$\begin{aligned} & 833505 \text { Split } \\ & \text { PREP DUP } \end{aligned}$																							
833510 Orig																							
833510 Dup																							
833524 Orig																							
833524 Dup																							
833536 Orig																							
833536 Dup																							
833553 Orig																							
833553 Dup																							
833563 Orig																							
833563 Split PREP DUP																							
833566 Orig																							
833566 Dup																							
833575 Orig																							
833575 Dup																							
833576 Orig	76.8	20.4	<0.1	12.5	23.8	263	15	0.3	0.50	0.1	<1	<0.1	<0.1	86	3.9	10.7	1.6	7.7	2.3	2.9	0.7	4.3	219
833576 Dup	77.0	19.2	<0.1	11.6	23.1	237	16	0.6	0.91	0.1	<1	<0.1	<0.1	82	3.9	9.7	1.6	7.7	2.4	3.0	0.6	4.2	211
833601 Orig																							
833601 Dup																							
833610 Dup																							
833613 Orig																							
$\begin{aligned} & 833613 \text { Split } \\ & \text { PREP DUP } \end{aligned}$																							
833621 Orig																							
833621 Dup																							
833549 Orig																							
$\begin{aligned} & 833549 \text { Split } \\ & \text { PREP DUP } \\ & \hline \end{aligned}$																							
Method Blank																							
Method Blank																							
Method Blank																							
Method Blank																							
Method Blank																							
Method Blank																							
Method Blank																							
Method Blank																							
Method Blank																							
Method Blank																							
Method Blank																							
Method Blank																							
Method Blank																							

Analyte Symbol	Zn	Ga	As	Rb	Y	Sr	Zr	Nb	Mo	1 n	Sn	Sb	Te	Ba	La	Ce	Pr	Nd	Sm	Gd	Tb	Dy	Cu
Unit Symbol	ppm																						
Lower Limit	0.2	0.1	0.1	0.2	0.1	0.2	1	0.1	0.05	0.1	1	0.1	0.1	1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2
Method Code	TD-MS																						

Analyte Symbol	Ge	Tm	Yb	Lu	Ta	W	Re	TI	Pb	Sc	Th	U	Ti	P	S
Unit Symbol	ppm	\%	\%	\%											
Lower Limit	0.1	0.1	0.1	0.1	0.1	0.1	0.001	0.05	0.5	1	0.1	0.1	0.0005	0.001	0.01
Method Code	TD-MS	TD-ICP	TD-MS	TD-MS	TD-ICP	TD-ICP	TD-ICP								
$\begin{aligned} & \text { Oreas } 72 \mathrm{a}(4 \\ & \text { Acid) Meas } \end{aligned}$															
$\begin{array}{\|l} \hline \text { Oreas 72a (4 } \\ \text { Acid) Cert } \end{array}$															
OREAS 101b (4 Acid) Meas		1.9	12.6	1.8					21.9		37.7	398			
$\begin{aligned} & \text { OREAS 101b (4 } \\ & \text { Acid) Cert } \end{aligned}$		2.08	13.9	1.96					23		36.4	387			
OREAS 98 (4 Acid) Meas									339						
OREAS 98 (4 Acid) Cert									345						
$\begin{aligned} & \text { OREAS } 904 \text { (4 } \\ & \text { Acid) Meas } \end{aligned}$	0.1		3.1	0.5	0.6	2.6		0.55	11.8	12	14.8	9.2		0.100	0.01
$\begin{array}{\|l\|} \hline \text { OREAS } 904 \text { (} \\ \text { Acid) Cert } \end{array}$	0.180		3.14	0.470	0.540	2.12		0.520	10.6	11.2	14.3	8.43		0.0980	0.0630
OREAS 96 (4 Acid) Meas									98.7						4.67
OREAS 96 (4 Acid) Cert									101						4.19
OREAS 96 (4 Acid) Meas									95.7						4.15
OREAS 96 (4 Acid) Cert									101						4.19
OREAS 923 (4 Acid) Meas		0.4	2.6	0.4	1.0	4.5		0.90	87.5	13	16.9	3.4	0.411	0.071	0.74
$\begin{aligned} & \hline \text { OREAS } 923 \text { (4 } \\ & \text { Acid) Cert } \end{aligned}$		0.410	2.57	0.390	1.11	4.85		0.860	83.0	13.1	16.5	3.06	0.405	0.0630	0.691
OREAS 621 (4 Acid) Meas			1.0	0.2		2.2		2.06	> 5000	6	6.5	3.1	0.185	0.038	4.81
$\begin{aligned} & \hline \text { OREAS } 621 \text { (4 } \\ & \text { Acid) Cert } \end{aligned}$			0.990	0.140		2.35		1.96	13600	6.24	7.48	2.83	0.149	0.0359	4.48
Oreas 77b (4 Acid) Meas					0.3	2.7	0.017	1.39	58.0	4	6.2	1.8	0.0617		
$\begin{aligned} & \hline \begin{array}{l} \text { Oreas 77b (4 } \\ \text { Acid) Cert } \end{array} \\ & \hline \end{aligned}$					0.280	3.07	0.0220	1.37	61.0	3.51	6.61	1.71	0.0640		
OREAS 228b (Fire Assay) Meas															
OREAS 228b (Fire Assay) Cert															
OREAS 228b (Fire Assay) Meas															
OREAS 228b (Fire Assay) Cert															
OREAS 228b (Fire Assay) Meas															
OREAS 228b (Fire Assay) Cert															
OREAS 228b (Fire Assay) Meas															
OREAS 228b (Fire Assay) Cert															
OREAS 228b (Fire Assay) Meas															
OREAS 228b (Fire Assay) Cert															
OREAS 228b (Fire Assay) Meas															

Analyte Symbol	Ge	Tm	Yb	Lu	Ta	W	Re	TI	Pb	Sc	Th	U	Ti	P	S
Unit Symbol	ppm	\%	\%	\%											
Lower Limit	0.1	0.1	0.1	0.1	0.1	0.1	0.001	0.05	0.5	1	0.1	0.1	0.0005	0.001	0.01
Method Code	TD-MS	TD-ICP	TD-MS	TD-MS	TD-ICP	TD-ICP	TD-ICP								
OREAS 228b (Fire Assay) Cert															
Oreas E1336 (Fire Assay) Meas															
Oreas E1336 (Fire Assay) Cert															
Oreas E1336 (Fire Assay) Meas															
$\begin{aligned} & \begin{array}{l} \text { Oreas E1336 (Fire } \\ \text { Assay) Cert } \end{array} \\ & \hline \end{aligned}$															
Oreas E1336 (Fire Assay) Meas															
Oreas E1336 (Fire Assay) Cert															
Oreas E1336 (Fire Assay) Meas															
Oreas E1336 (Fire Assay) Cert															
Oreas E1336 (Fire Assay) Meas															
$\begin{array}{\|l\|} \hline \begin{array}{l} \text { Oreas E1336 (Fire } \\ \text { Assay) Cert } \end{array} \\ \hline \end{array}$															
Oreas E1336 (Fire Assay) Meas															
Oreas E1336 (Fire Assay) Cert															
Oreas E1336 (Fire Assay) Meas															
Oreas E1336 (Fire Assay) Cert															
Oreas E1336 (Fire Assay) Meas															
Oreas E1336 (Fire Assay) Cert															
OREAS 681 (4 Acid) Meas		0.2	1.6	0.3	0.3	0.6			10.0	27	6.5	1.5	0.570	0.138	0.11
$\begin{aligned} & \text { OREAS } 681 \text { (4 } \\ & \text { Acid) Cert } \\ & \hline \end{aligned}$		0.280	1.77	0.270	0.420	1.09			10.2	27.7	6.55	1.44	0.588	0.141	0.109
OREAS 70b (4 Acid) Meas					0.2	3.8		0.32	12.4		6.3	1.7			
$\begin{aligned} & \text { OREAS 70b (4 } \\ & \text { Acid) Cert } \end{aligned}$					0.3	4.9		0.33	13.7		6.9	1.7			
832407 Orig															
832407 Dup															
832421 Orig															
832421 Dup															
832430 Orig															
832430 Dup															
832431 Orig															
832431 Dup															
832442 Orig															
832442 Dup															
832455 Orig															
832455 Split PREP DUP															
832466 Orig															
832466 Dup															

Analyte Symbol	Ge	Tm	Yb	Lu	Ta	W	Re	TI	Pb	Sc	Th	U	Ti	P
Unit Symbol	ppm	$\%$	$\%$											
Lower Limit	0.1	0.1	0.1	0.1	0.1	0.1	0.001	0.05	0.5	1	0.1	0.1	0.0005	0.001
Method Code	TD-MS	TD-ICP	TD-MS	TD-MS	TD-ICP	TD-ICP								
TD-ICP														
Method Blank	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.002	<0.05	<0.5	<1	<0.1	<0.1	0.005	<0.001

Report No.: A21-21721
Report Date: 24-Dec-21
Date Submitted: 19-Nov-21
Your Reference: Exploration/Prospecting

Harte Gold Corp.

161 Bay Street
Suite 2400
Toronto Ontario M5J 2S1
Canada

ATTN: David Stevenson

CERTIFICATE OF ANALYSIS

47 Rock samples were submitted for analysis.

The following analytical package(s) were requested:	Testing Date:	
1A2-Tbay-Harte Gold	QOP AA-Au (Au - Fire Assay AA)	2021-11-22 07:19:55

REPORT A21-21721

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:
If value exceeds upper limit we recommend reassay by fire assay gravimetric-Code 1A3
Values which exceed the upper limit should be assayed for accurate numbers.

LabID: 673

ACTIVATION LABORATORIES LTD.

CERTIFIED BY:

Emmanuel Eseme, Ph.D.
Quality Control Coordinator

Abstract

Report No.: A21-21721 Report Date: 24-Dec-21 Date Submitted: 19-Nov-21 Your Reference: Exploration/Prospecting Harte Gold Corp. 161 Bay Street Suite 2400 Toronto Ontario M5J 2S1 Canada

ATTN: David Stevenson

CERTIFICATE OF ANALYSIS

47 Rock samples were submitted for analysis.

The following analytical package(s) were requested:	Testing Date:	
UT-6	QOP Total/QOP Ulltatrace- 4acid Digest (Total Digestion ICPOES/ICPMS)	2021-12-16 11:28:59

REPORT A21-21721
This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:
If value exceeds upper limit we recommend reassay by fire assay gravimetric-Code 1A3
Values which exceed the upper limit should be assayed for accurate numbers.

Analyte Symbol	Au	Li	Na	Mg	AI	K	Ca	Cd	V	Cr	Mn	Fe	Hf	Ni	Er	Be	Ho	Ag	Cs	Co	Eu	Bi	Se
Unit Symbol	ppb	ppm	\%	\%	\%	\%	\%	ppm	ppm	ppm	ppm	\%	ppm										
Lower Limit	5	0.5	0.01	0.01	0.01	0.01	0.01	0.1	1	1	1	0.01	0.1	0.5	0.1	0.1	0.1	0.05	0.05	0.1	0.05	0.02	0.1
Method Code	FA-AA	TD-MS																					
833622	6																						
833623	8																						
833624	55																						
833625	19																						
833626	15																						
833627	16																						
833628	7																						
833629	< 5																						
833630	< 5																						
833631	8																						
833632	8																						
833633	32																						
833634	6																						
833635	8																						
833636	8																						
833637	17																						
833638	9																						
833639	5																						
833640	3590																						
833641	< 5																						
833642	22																						
833643	< 5	80.8	1.86	4.24	7.28	0.75	7.79	0.1	330	96	1540	9.74	0.8	94.8	2.6	0.7	0.9	0.36	0.80	50.8	0.85	0.58	<0.1
833644	< 5																						
833645	9																						
833646	< 5																						
833647	32																						
833648	< 5																						
833649	< 5																						
833650	< 5																						
833651	< 5																						
833652	< 5																						
833653	16																						
833654	< 5																						
833655	< 5																						
833656	17																						
833657	6																						
833658	30																						
833659	<5																						
833660	7080																						
833661	10																						
833662	5																						
833663	5																						
833664	6																						
833665	< 5																						
833666	< 5																						
833667	< 5																						
833668	< 5																						

Analyte Symbol	Zn	Ga	As	Rb	Y	Sr	Zr	Nb	Mo	In	Sn	Sb	Te	Ba	La	Ce	Pr	Nd	Sm	Gd	Tb	Dy	Cu
Unit Symbol	ppm																						
Lower Limit	0.2	0.1	0.1	0.2	0.1	0.2	1	0.1	0.05	0.1	1	0.1	0.1	1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2
Method Code	TD-MS																						
833622																							
833623																							
833624																							
833625																							
833626																							
833627																							
833628																							
833629																							
833630																							
833631																							
833632																							
833633																							
833634																							
833635																							
833636																							
833637																							
833638																							
833639																							
833640																							
833641																							
833642																							
833643	94.4	19.6	<0.1	48.0	21.6	164	14	0.9	0.86	<0.1	<1	<0.1	<0.1	87	3.4	8.8	1.4	7.0	2.6	3.2	0.6	4.0	146
833644																							
833645																							
833646																							
833647																							
833648																							
833649																							
833650																							
833651																							
833652																							
833653																							
833654																							
833655																							
833656																							
833657																							
833658																							
833659																							
833660																							
833661																							
833662																							
833663																							
833664																							
833665																							
833666																							
833667																							
833668																							

Analyte Symbol	Ge	Tm	Yb	Lu	Ta	W	Re	TI	Pb	Sc	Th	U	Ti	P	S
Unit Symbol	ppm	\%	\%	\%											
Lower Limit	0.1	0.1	0.1	0.1	0.1	0.1	0.001	0.05	0.5	1	0.1	0.1	0.0005	0.001	0.01
Method Code	TD-MS	TD-ICP	TD-MS	TD-MS	TD-ICP	TD-ICP	TD-ICP								
833622															
833623															
833624															
833625															
833626															
833627															
833628															
833629															
833630															
833631															
833632															
833633															
833634															
833635															
833636															
833637															
833638															
833639															
833640															
833641															
833642															
833643	0.8	0.4	2.3	0.4	<0.1	2.7	0.001	0.26	1.4	43	0.4	<0.1	0.457	0.031	0.59
833644															
833645															
833646															
833647															
833648															
833649															
833650															
833651															
833652															
833653															
833654															
833655															
833656															
833657															
833658															
833659															
833660															
833661															
833662															
833663															
833664															
833665															
833666															
833667															
833668															

Analyte Symbol	Au	Li	Na	Mg	AI	K	Ca	Cd	V	Cr	Mn	Fe	Hf	Ni	Er	Be	Ho	Ag	Cs	Co	Eu	Bi	Se
Unit Symbol	ppb	ppm	\%	\%	\%	\%	\%	ppm	ppm	ppm	ppm	\%	ppm										
Lower Limit	5	0.5	0.01	0.01	0.01	0.01	0.01	0.1	1	1	1	0.01	0.1	0.5	0.1	0.1	0.1	0.05	0.05	0.1	0.05	0.02	0.1
Method Code	FA-AA	TD-MS																					
Oreas 72a (4 Acid) Meas										169		9.64		> 5000						157			
$\begin{aligned} & \text { Oreas 72a (4 } \\ & \text { Acid) Cert } \end{aligned}$										228		9.63		$\begin{array}{r} 6930.0 \\ 00 \\ \hline \end{array}$						157			
OREAS 101b (4 Acid) Meas				1.22		2.14			69		886	10.6		8.9	15.0		5.0			44.5	7.26		
OREAS 101b (4 Acid) Cert				1.23		2.36			77		927	10.7		8.2	15		5.2			45	8.1		
OREAS 101b (4 Acid) Meas				1.22		2.44			81		899	10.2		8.7	15.1		5.0			44.8	7.39		
OREAS 101b (4 Acid) Cert				1.23		2.36			77		927	10.7		8.2	15		5.2			45	8.1		
OREAS 98 (4 Acid) Meas																		41.8		121		83.4	166
OREAS 98 (4 Acid) Cert																		45.1		121		97.2	158
OREAS 98 (4 Acid) Meas																		43.5		113		99.1	174
OREAS 98 (4 Acid) Cert																		45.1		121		97.2	158
OREAS 13b (4-Acid) Meas										> 5000				2030				0.93		81.1			
OREAS 13b (4-Acid) Cert										$\begin{array}{r} 8650.0 \\ 00 \\ \hline \end{array}$				$\begin{array}{r} 2247.0 \\ 000 \\ \hline \end{array}$				0.86		75			
OREAS 13b (4-Acid) Meas										> 5000				2200				0.98		78.9			
OREAS 13b (4-Acid) Cert										$\begin{array}{r} 8650.0 \\ 00 \\ \hline \end{array}$				$\begin{array}{r} 2247.0 \\ 000 \\ \hline \end{array}$				0.86		75			
OREAS 904 (4 Acid) Meas		17.1	0.04	0.61	6.83	3.02	0.05		77	61	419	7.26	5.2	44.1		8.4		0.67	3.92	87.1		4.52	3.2
OREAS 904 (4 Acid) Cert		16.7	0.0340	0.556	6.30	3.31	0.0460		76.0	54.0	410	6.68	5.00	40.1		7.86		0.551	3.79	83.0		4.05	3.30
OREAS 904 (4 Acid) Meas		18.3	0.04	0.66	6.79	3.84	0.06		84	58	469	7.00	1.3	40.5		9.1		0.58	3.98	88.3		4.21	1.5
OREAS 904 (4 Acid) Cert		16.7	0.0340	0.556	6.30	3.31	0.0460		76.0	54.0	410	6.68	5.00	40.1		7.86		0.551	3.79	83.0		4.05	3.30
OREAS 45d (4-Acid) Meas																							
OREAS 45d (4-Acid) Cert																							
OREAS 45d (4-Acid) Meas																							
OREAS 45d (4-Acid) Cert																							
OREAS 96 (4 Acid) Meas																		11.4		53.4		27.7	45.2
OREAS 96 (4 Acid) Cert																		11.5		49.9		26.3	40.7
OREAS 96 (4 Acid) Meas																		11.7		50.4		29.6	41.9
OREAS 96 (4 Acid) Cert																		11.5		49.9		26.3	40.7
OREAS 923 (4 Acid) Meas																							
OREAS 923 (4 Acid) Cert																							
OREAS 923 (4 Acid) Meas																							

Analyte Symbol	Au	Li	Na	Mg	AI	K	Ca	Cd	V	Cr	Mn	Fe	Hf	Ni	Er	Be	Ho	Ag	Cs	Co	Eu	Bi	Se
Unit Symbol	ppb	ppm	\%	\%	\%	\%	\%	ppm	ppm	ppm	ppm	\%	ppm										
Lower Limit	5	0.5	0.01	0.01	0.01	0.01	0.01	0.1	1	1	1	0.01	0.1	0.5	0.1	0.1	0.1	0.05	0.05	0.1	0.05	0.02	0.1
Method Code	FA-AA	TD-MS																					
OREAS 923(4 Acid) Cert																							
$\text { OREAS } 621 \text { (4 }$ Acid) Meas		15.4	1.34	0.43	5.41	2.24	1.96	299	36	36	557	3.78	4.1	27.3		1.9		66.8	3.38	30.4		4.15	7.3
$\begin{array}{\|l\|} \hline \text { OREAS } 621 \text { (4 } \\ \text { Acid) Cert } \\ \hline \end{array}$		14.2	1.31	0.507	6.40	2.20	1.97	284	31.8	37.1	532	3.70	4.41	26.2		1.69		69.0	3.28	29.3		3.93	5.64
OREAS 621 (4 Acid) Meas																							
OREAS 621 (4 Acid) Cert																							
OREAS 228b (Fire Assay) Meas	8740																						
OREAS 228b (Fire Assay) Cert	8570																						
OREAS 228b (Fire Assay) Meas	8800																						
OREAS 228b (Fire Assay) Cert	8570																						
Oreas E1336 (Fire Assay) Meas	512																						
Oreas E1336 (Fire Assay) Cert	510																						
Oreas E1336 (Fire Assay) Meas	513																						
Oreas E1336 (Fire Assay) Cert	510																						
OREAS 681 (4 Acid) Meas																							
OREAS 681 (4 Acid) Cert																							
OREAS 681 (4 Acid) Meas																							
OREAS 681 (4 Acid) Cert																							
OREAS 147 (4 Acid) Meas		> 400	1.05	0.59	5.32	1.69	1.11		42	68	403	3.34	1.8	24.3	2.6	29.1			> 100	6.8	9.88	13.2	
OREAS 147 (4 Acid) Cert		2260	0.948	0.535	4.90	1.60	1.09		60.0	57.0	390	3.23	2.99	21.2	3.00	31.2			238	6.90	10.4	12.5	
OREAS 147 (4 Acid) Meas																							
OREAS 147 (4 Acid) Cert																							
Oreas 521 (4 Acid) Meas																							
Oreas 521 (4 Acid) Cert																							
Oreas 521 (4 Acid) Meas																							
Oreas 521 (4 Acid) Cert																							
OREAS 70b (4 Acid) Meas																							
OREAS 70b (4 Acid) Cert																							
833623 Orig	8																						
833623 Dup	8																						
833637 Orig	16																						
833637 Dup	17																						

Analyte Symbol	Au	Li	Na	Mg	Al	K	Ca	Cd	V	Cr	Mn	Fe	Hf	Ni	Er	Be	Ho	Ag	Cs	Co	Eu	Bi	Se
Unit Symbol	ppb	ppm	\%	\%	\%	\%	\%	ppm	ppm	ppm	ppm	\%	ppm										
Lower Limit	5	0.5	0.01	0.01	0.01	0.01	0.01	0.1	1	1	1	0.01	0.1	0.5	0.1	0.1	0.1	0.05	0.05	0.1	0.05	0.02	0.1
Method Code	FA-AA	TD-MS																					
833646 Orig	< 5																						
833646 Dup	<5																						
833658 Orig	30																						
833668 Orig	<5																						
833668 Split PREP DUP	<5																						
Method Blank	<5																						
Method Blank	5																						
Method Blank																							
Method Blank		<0.5	<0.01	< 0.01	<0.01	<0.01	<0.01	<0.1	3	13	47	<0.01	<0.1	<0.5	<0.1	0.1	<0.1	<0.05	<0.05	<0.1	< 0.05	< 0.02	0.2
Method Blank																							
Method Blank																							
Method Blank		<0.5	<0.01	< 0.01	<0.01	<0.01	<0.01	<0.1	<1	2	5	<0.01	<0.1	<0.5	<0.1	<0.1	<0.1	< 0.05	<0.05	<0.1	< 0.05	<0.02	0.1
Method Blank																							
Method Blank																							

Analyte Symbol	Zn	Ga	As	Rb	Y	Sr	Zr	Nb	Mo	In	Sn	Sb	Te	Ba	La	Ce	Pr	Nd	Sm	Gd	Tb	Dy	Cu
Unit Symbol	ppm																						
Lower Limit	0.2	0.1	0.1	0.2	0.1	0.2	1	0.1	0.05	0.1	1	0.1	0.1	1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2
Method Code	TD-MS																						
Oreas 72a (4 Acid) Meas			6.5																				329
$\begin{aligned} & \begin{array}{l} \text { Oreas 72a (4 } \\ \text { Acid) Cert } \end{array} \\ & \hline \end{aligned}$			14.7																				316
OREAS 101b (4 Acid) Meas					114				20.1						700	1340	118	346	44.1	38.6	4.5	26.7	414
$\begin{aligned} & \begin{array}{l} \text { OREAS 101b (4 } \\ \text { Acid) Cert } \end{array} \\ & \hline \end{aligned}$					133				20.1						754	1325	127	388	48	40	5.4	27	412
OREAS 101b (4 Acid) Meas Acid) Meas					135				21.4						750	1210	128	386	49.6	40.8	5.0	26.4	442
$\begin{aligned} & \begin{array}{l} \text { OREAS 101b (4 } \\ \text { Acid) Cert } \end{array} \\ & \hline \end{aligned}$					133				20.1						754	1325	127	388	48	40	5.4	27	412
OREAS 98 (4 Acid) Meas	1160										189	5.4											P10000
OREAS 98 (4 Acid) Cert	1360										206	20.1											$\begin{array}{r} 14800 \\ 0.0 \end{array}$
OREAS 98 (4 Acid) Meas	1380										194	6.2											> 10000
OREAS 98 (4 Acid) Cert	1360										206	20.1											$\begin{array}{r} 14800 \\ 0.0 \\ \hline \end{array}$
OREAS 13b (4-Acid) Meas	113		59.0						9.84														2200
OREAS 13b (4-Acid) Cert	133		57						9.0														$\begin{array}{r} 2327.0 \\ 000 \\ \hline \end{array}$
OREAS 13b (4-Acid) Meas	143		67.1						10.4														2400
OREAS 13b (4-Acid) Cert	133		57						9.0														$\begin{array}{r} 2327.0 \\ 000 \\ \hline \end{array}$
OREAS 904 (4 Acid) Meas	30.1	16.0	123	130	31.6	28.9	185		2.43	0.3	3	1.8		240	49.4	97.6					1.0		6050
OREAS 904 (4 Acid) Cert	26.3	16.7	98.0	130	31.5	27.2	171		2.12	0.220	2.83	1.48		194	43.2	86.0					1.00		6120
OREAS 904 (4 Acid) Meas	20.6	13.8	112	155	34.2	26.7	82		1.96	0.2	3	0.7		217	50.3	93.5					1.0		5880
OREAS 904 (4 Acid) Cert	26.3	16.7	98.0	130	31.5	27.2	171		2.12	0.220	2.83	1.48		194	43.2	86.0					1.00		6120
OREAS 45d (4-Acid) Meas																							
OREAS 45d (4-Acid) Cert																							
OREAS 45d (4-Acid) Meas																							
OREAS 45d (4-Acid) Cert																							
OREAS 96 (4 Acid) Meas	409										66	6.2											P10000
OREAS 96 (4 Acid) Cert	457										65.6	5.09											39300
OREAS 96 (4 Acid) Meas	487										65	3.8											> 10000
OREAS 96 (4 Acid) Cert	457										65.6	5.09											39300
OREAS 923 (4 Acid) Meas																							
OREAS 923 (4 Acid) Cert																							
OREAS 923 (4 Acid) Meas																							

Analyte Symbol	Zn	Ga	As	Rb	Y	Sr	Zr	Nb	Mo	In	Sn	Sb	Te	Ba	La	Ce	Pr	Nd	Sm	Gd	Tb	Dy	Cu
Unit Symbol	ppm																						
Lower Limit	0.2	0.1	0.1	0.2	0.1	0.2	1	0.1	0.05	0.1	1	0.1	0.1	1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2
Method Code	TD-MS																						
OREAS 923(4 Acid) Cert																							
OREAS 621 (4 Acid) Meas	> 10000	31.0	87.3	83.6	10.0	64.8	147	7.3	13.8	1.9	5	19.6			18.0	42.5					0.5		3790
OREAS 621 (4 Acid) Cert	52200	24.6	77.0	84.0	11.1	91.0	168	8.61	13.6	1.83	5.25	139			21.6	46.6					0.460		3630
OREAS 621 (4 Acid) Meas																							
OREAS 621 (4 Acid) Cert																							
OREAS 228b (Fire Assay) Meas																							
OREAS 228b (Fire Assay) Cert																							
OREAS 228b (Fire Assay) Meas																							
OREAS 228b (Fire Assay) Cert																							
Oreas E1336 (Fire Assay) Meas																							
Oreas E1336 (Fire Assay) Cert																							
Oreas E1336 (Fire Assay) Meas																							
Oreas E1336 (Fire Assay) Cert																							
OREAS 681 (4 Acid) Meas																							
OREAS 681 (4 Acid) Cert																							
OREAS 681 (4 Acid) Meas																							
OREAS 681 (4 Acid) Cert																							
OREAS 147 (4 Acid) Meas	141	14.4	21.3	1210	26.9	302	78	55.9	4.23	3.3		2.9		1800	654	1140	113		47.6	27.0	2.1	8.8	319
OREAS 147 (4 Acid) Cert	138	22.6	36.0	1160	26.3	299	105	1110	7.99	2.61		10.6		1940	663	1110	121		48.7	24.2	2.35	9.20	298
OREAS 147 (4 Acid) Meas																							
OREAS 147 (4 Acid) Cert																							
Oreas 521 (4 Acid) Meas																							
Oreas 521 (4 Acid) Cert																							
Oreas 521 (4 Acid) Meas																							
Oreas 521 (4 Acid) Cert																							
OREAS 70b (4 Acid) Meas																							
OREAS 70b (4 Acid) Cert																							
833623 Orig																							
833623 Dup																							
833637 Orig																							
833637 Dup																							

Analyte Symbol	Zn	Ga	As	Rb	Y	Sr	Zr	Nb	Mo	In	Sn	Sb	Te	Ba	La	Ce	Pr	Nd	Sm	Gd	Tb	Dy	Cu
Unit Symbol	ppm																						
Lower Limit	0.2	0.1	0.1	0.2	0.1	0.2	1	0.1	0.05	0.1	1	0.1	0.1	1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2
Method Code	TD-MS																						
833646 Orig																							
833646 Dup																							
833658 Orig																							
833668 Orig																							
833668 Split																							
Method Blank																							
Method Blank																							
Method Blank																							
Method Blank	1.3	0.4	<0.1	<0.2	<0.1	<0.2	<1	<0.1	0.05	<0.1	<1	0.1	<0.1	<1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.8
Method Blank																							
Method Blank																							
Method Blank	1.4	0.4	<0.1	<0.2	<0.1	<0.2	<1	<0.1	0.17	<0.1	<1	<0.1	<0.1	<1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.3
Method Blank																							
Method Blank																							

Analyte Symbol	Ge	Tm	Yb	Lu	Ta	W	Re	TI	Pb	Sc	Th	U	Ti	P	S
Unit Symbol	ppm	\%	\%	\%											
Lower Limit	0.1	0.1	0.1	0.1	0.1	0.1	0.001	0.05	0.5	1	0.1	0.1	0.0005	0.001	0.01
Method Code	TD-MS	TD-ICP	TD-MS	TD-MS	TD-ICP	TD-ICP	TD-ICP								
Oreas 72a (4 Acid) Meas															1.70
Oreas 72a (4 Acid) Cert															1.74
OREAS 101b (4 Acid) Meas		2.1	13.2	1.8					23.6		31.9	308	0.344	0.115	
OREAS 101b (4 Acid) Cert		2.08	13.9	1.96					23		36.4	387	0.35		
OREAS 101b (4 Acid) Meas		2.0	12.8	1.8					24.1		44.7	337			
OREAS 101b (4 Acid) Cert		2.08	13.9	1.96					23		36.4	387			
OREAS 98 (4 Acid) Meas									295						16.6
OREAS 98 (4 Acid) Cert									345						15.5
OREAS 98 (4 Acid) Meas									355						16.7
OREAS 98 (4 Acid) Cert									345						15.5
OREAS 13b (4-Acid) Meas															1.18
OREAS 13b (4-Acid) Cert															1.2
OREAS 13b (4-Acid) Meas															1.17
OREAS 13b (4-Acid) Cert															1.2
OREAS 904 (4 Acid) Meas	0.3		3.5	0.5	0.3	1.8		0.59	12.8		14.7	9.3			
OREAS 904 (4 Acid) Cert	0.180		3.14	0.470	0.540	2.12		0.520	10.6		14.3	8.43			
OREAS 904 (4 Acid) Meas	0.4		3.1	0.5	0.3	0.9		0.54	11.6		18.1	9.4			
OREAS 904 (4 Acid) Cert	0.180		3.14	0.470	0.540	2.12		0.520	10.6		14.3	8.43			
OREAS 45d (4-Acid) Meas										51			0.240	0.036	0.04
OREAS 45d (4-Acid) Cert										49.30			0.773	0.042	0.049
OREAS 45d (4-Acid) Meas										52			0.648	0.039	0.06
OREAS 45d (4-Acid) Cert										49.30			0.773	0.042	0.049
OREAS 96 (4 Acid) Meas									97.2						4.36
OREAS 96 (4 Acid) Cert									101						4.19
OREAS 96 (4 Acid) Meas									108						4.30
OREAS 96 (4 Acid) Cert									101						4.19
OREAS 923 (4 Acid) Meas										13			0.412	0.066	0.71
OREAS 923 (4 Acid) Cert										13.1			0.405	0.0630	0.691
OREAS 923 (4 Acid) Meas										13			0.408	0.064	0.70

Analyte Symbol	Ge	Tm	Yb	Lu	Ta	W	Re	TI	Pb	Sc	Th	U	Ti	P	S
Unit Symbol	ppm	\%	\%	\%											
Lower Limit	0.1	0.1	0.1	0.1	0.1	0.1	0.001	0.05	0.5	1	0.1	0.1	0.0005	0.001	0.01
Method Code	TD-MS	TD-ICP	TD-MS	TD-MS	TD-ICP	TD-ICP	TD-ICP								
OREAS 923 (4 Acid) Cert										13.1			0.405	0.0630	0.691
OREAS 621 (4 Acid) Meas			0.9	0.1		1.5		2.00	> 5000	4	4.8	2.9	0.181	0.035	4.63
$\begin{aligned} & \text { OREAS } 621 \text { (4 } \\ & \text { Acid) Cert } \end{aligned}$			0.990	0.140		2.35		1.96	13600	6.24	7.48	2.83	0.149	0.0359	4.48
OREAS 621 (4 Acid) Meas										5			0.183	0.037	4.68
$\begin{aligned} & \text { OREAS } 621 \text { (4 } \\ & \text { Acid) Cert } \end{aligned}$										6.24			0.149	0.0359	4.48
OREAS 228b (Fire Assay) Meas															
OREAS 228b (Fire Assay) Cert															
OREAS 228b (Fire Assay) Meas															
OREAS 228b (Fire Assay) Cert															
Oreas E1336 (Fire Assay) Meas															
$\begin{array}{\|l\|} \hline \text { Oreas E1336 (Fire } \\ \text { Assay) Cert } \end{array}$															
Oreas E1336 (Fire Assay) Meas															
Oreas E1336 (Fire Assay) Cert															
OREAS 681 (4 Acid) Meas										26			0.419	0.129	0.10
$\begin{aligned} & \hline \text { OREAS } 681 \text { (4 } \\ & \text { Acid) Cert } \\ & \hline \end{aligned}$										27.7			0.588	0.141	0.109
OREAS 681 (4 Acid) Meas										26			0.565	0.142	0.10
$\begin{aligned} & \hline \text { OREAS } 681 \text { (4 } \\ & \text { Acid) Cert } \\ & \hline \end{aligned}$										27.7			0.588	0.141	0.109
OREAS 147 (4 Acid) Meas	<0.1	0.3	1.7	0.2	0.4			11.5	30.9	11	77.4	15.6	0.283	0.097	0.02
$\begin{aligned} & \text { OREAS } 147 \text { (4 } \\ & \text { Acid) Cert } \end{aligned}$	0.750	0.270	1.46	0.200	17.8			10.8	27.8	10.7	93.0	15.8	0.470	0.155	0.0300
OREAS 147 (4 Acid) Meas										11			0.256	0.118	0.02
$\begin{aligned} & \text { OREAS } 147 \text { (4 } \\ & \text { Acid) Cert } \end{aligned}$										10.7			0.470	0.155	0.0300
Oreas 521 (4 Acid) Meas										14			0.305	0.077	1.70
$\begin{aligned} & \hline \text { Oreas } 521 \text { (4 } \\ & \text { Acid) Cert } \\ & \hline \end{aligned}$										14			0.393	0.081	1.80
Oreas 521 (4 Acid) Meas										14			0.311	0.078	1.72
$\text { Oreas } 521 \text { (} 4$ Acid) Cert										14			0.393	0.081	1.80
OREAS 70b (4 Acid) Meas										12			0.171	0.023	0.29
$\begin{aligned} & \begin{array}{l} \text { OREAS 70b (4 } \\ \text { Acid) Cert } \end{array} \\ & \hline \end{aligned}$										12			0.181	0.022	0.31
833623 Orig															
833623 Dup															
833637 Orig															
833637 Dup															

Analyte Symbol	Ge	Tm	Yb	Lu	Ta	W	Re	TI	Pb	Sc	Th	U	Ti	P	S
Unit Symbol	ppm	\%	\%	\%											
Lower Limit	0.1	0.1	0.1	0.1	0.1	0.1	0.001	0.05	0.5	1	0.1	0.1	0.0005	0.001	0.01
Method Code	TD-MS	TD-ICP	TD-MS	TD-MS	TD-ICP	TD-ICP	TD-ICP								
833646 Orig															
833646 Dup															
833658 Orig															
833668 Orig															
833668 Split PREP DUP															
Method Blank															
Method Blank															
Method Blank										< 1			0.0005	<0.001	< 0.01
Method Blank	< 0.1	< 0.1	<0.1	< 0.1	< 0.1	< 0.1	< 0.001	<0.05	< 0.5	<1	< 0.1	<0.1	0.0005	<0.001	< 0.01
Method Blank										< 1			0.0005	<0.001	< 0.01
Method Blank										< 1			0.0005	<0.001	< 0.01
Method Blank	0.2	< 0.1	<0.1	< 0.1	< 0.1	< 0.1	< 0.001	<0.05	< 0.5	< 1	< 0.1	< 0.1	0.0005	<0.001	< 0.01
Method Blank										<1			0.0008	<0.001	< 0.01
Method Blank										<1			0.0005	<0.001	< 0.01

Report No.:	A21-22495
Report Date:	21-Jan-22
Date Submitted:	03-Dec-21
Your Reference:	Exploration/Prospecting

Harte Gold Corp.
161 Bay Street
Suite 2400
Toronto Ontario M5J 2S1
Canada

ATTN: David Stevenson

CERTIFICATE OF ANALYSIS

34 Rock samples were submitted for analysis.

The following analytical package(s) were requested:	Testing Date:	
1A2-Tbay-Harte Gold	QOP AA-Au (Au - Fire Assay AA)	2021-12-06 12:15:53

REPORT A21-22495
This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:
If value exceeds upper limit we recommend reassay by fire assay gravimetric-Code 1A3
Values which exceed the upper limit should be assayed for accurate numbers.

Abstract

Report No.: A21-22495 Report Date: 21-Jan-22 Date Submitted: 03-Dec-21 Your Reference: Exploration/Prospecting Harte Gold Corp. 161 Bay Street Suite 2400 Toronto Ontario M5J 2S1 Canada

ATTN: David Stevenson

CERTIFICATE OF ANALYSIS

34 Rock samples were submitted for analysis.

The following analytical package(s) were requested:	Testing Date:	
UT-6	QOP Total/QOP Ulltatrace- 4acid Digest (Total Digestion ICPOES/ICPMS)	2021-12-23 15:11:13

REPORT A21-22495
This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:
If value exceeds upper limit we recommend reassay by fire assay gravimetric-Code 1A3
Values which exceed the upper limit should be assayed for accurate numbers.

Analyte Symbol	Au	Li	Na	Mg	AI	K	Ca	Cd	V	Cr	Mn	Fe	Hf	Ni	Er	Be	Ho	Ag	Cs	Co	Eu	Bi	Se
Unit Symbol	ppb	ppm	\%	\%	\%	\%	\%	ppm	ppm	ppm	ppm	\%	ppm										
Lower Limit	5	0.5	0.01	0.01	0.01	0.01	0.01	0.1	1	1	1	0.01	0.1	0.5	0.1	0.1	0.1	0.05	0.05	0.1	0.05	0.02	0.1
Method Code	FA-AA	TD-MS																					
833669	< 5																						
833670	7																						
833671	< 5																						
833672	< 5																						
833673	5	67.7	0.48	9.21	3.38	2.01	9.44	0.2	100	404	2100	11.6	0.4	481	2.9	2.7	1.1	0.07	11.6	86.4	3.43	0.04	<0.1
833674	5																						
833675	< 5																						
833676	<5																						
833677	< 5																						
833678	<5																						
833679	< 5																						
833680	5580																						
833681	8																						
833682	< 5																						
833683	6																						
833684	< 5																						
833685	8																						
833686	< 5																						
833687	<5																						
833688	< 5																						
833689	< 5																						
833690	< 5																						
833691	< 5																						
833692	5																						
833693	8																						
833694	< 5																						
833695	< 5	66.1	> 3.00	0.76	8.61	1.49	2.34	<0.1	42	21	384	2.43	1.6	13.2	0.7	1.1	0.3	0.12	3.41	6.8	0.64	0.11	< 0.1
833696	<5																						
833697	12																						
833698	< 5																						
833699	5																						
833700	3590																						
833701	7																						
833702	5																						

Analyte Symbol	Zn	Ga	As	Rb	Y	Sr	Zr	Nb	Mo	In	Sn	Sb	Te	Ba	La	Ce	Pr	Nd	Sm	Gd	Tb	Dy	Cu
Unit Symbol	ppm																						
Lower Limit	0.2	0.1	0.1	0.2	0.1	0.2	1	0.1	0.05	0.1	1	0.1	0.1	1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2
Method Code	TD-MS																						
833669																							
833670																							
833671																							
833672																							
833673	124	10.8	1.5	135	25.3	612	13	0.4	0.18	< 0.1	<1	< 0.1	< 0.1	809	76.3	147	17.7	70.2	12.7	9.9	1.4	6.7	161
833674																							
833675																							
833676																							
833677																							
833678																							
833679																							
833680																							
833681																							
833682																							
833683																							
833684																							
833685																							
833686																							
833687																							
833688																							
833689																							
833690																							
833691																							
833692																							
833693																							
833694																							
833695	55.4	18.1	1.4	93.5	5.9	441	39	4.2	1.27	<0.1	<1	<0.1	<0.1	508	19.2	38.5	4.5	16.0	3.1	1.9	0.3	1.3	17.6
833696																							
833697																							
833698																							
833699																							
833700																							
833701																							
833702																							

Analyte Symbol	Ge	Tm	Yb	Lu	Ta	W	Re	TI	Pb	Sc	Th	U	Ti	P	S
Unit Symbol	ppm	\%	\%	\%											
Lower Limit	0.1	0.1	0.1	0.1	0.1	0.1	0.001	0.05	0.5	1	0.1	0.1	0.0005	0.001	0.01
Method Code	TD-MS	TD-ICP	TD-MS	TD-MS	TD-ICP	TD-ICP	TD-ICP								
833669															
833670															
833671															
833672															
833673	0.1	0.3	1.8	0.2	<0.1	<0.1	<0.001	1.05	5.7	22	9.5	2.3	0.180	0.184	0.12
833674															
833675															
833676															
833677															
833678															
833679															
833680															
833681															
833682															
833683															
833684															
833685															
833686															
833687															
833688															
833689															
833690															
833691															
833692															
833693															
833694															
833695	<0.1	< 0.1	0.6	<0.1	0.3	0.1	< 0.001	0.64	9.4	5	3.3	1.3	0.199	0.050	0.04
833696															
833697															
833698															
833699															
833700															
833701															
833702															

Analyte Symbol	Au	Li	Na	Mg	AI	K	Ca	Cd	V	Cr	Mn	Fe	Hf	Ni	Er	Be	Ho	Ag	Cs	Co	Eu	Bi	Se
Unit Symbol	ppb	ppm	\%	\%	\%	\%	\%	ppm	ppm	ppm	ppm	\%	ppm										
Lower Limit	5	0.5	0.01	0.01	0.01	0.01	0.01	0.1	1	1	1	0.01	0.1	0.5	0.1	0.1	0.1	0.05	0.05	0.1	0.05	0.02	0.1
Method Code	FA-AA	TD-MS																					
Oreas 72a (4 Acid) Meas										157		8.72		> 5000						140			
$\begin{aligned} & \text { Oreas 72a (4 } \\ & \text { Acid) Cert } \\ & \hline \end{aligned}$										228		9.63		$\begin{array}{r} 6930.0 \\ 00 \end{array}$						157			
Oreas 72a (4 Acid) Meas										170		9.82		> 5000						165			
$\begin{aligned} & \hline \text { Oreas 72a (4 } \\ & \text { Acid) Cert } \\ & \hline \end{aligned}$										228		9.63		$\begin{array}{r} 6930.0 \\ 00 \end{array}$						157			
OREAS 101b (4 Acid) Meas				1.22		2.38			74		949	10.7		11.4	14.5		4.8			45.8	6.94		
$\begin{aligned} & \begin{array}{l} \text { OREAS 101b (4 } \\ \text { Acid) Cert } \end{array} \\ & \hline \end{aligned}$				1.23		2.36			77		927	10.7		8.2	15		5.2			45	8.1		
OREAS 101b (4 Acid) Meas				1.21		2.46			80		892	10.4		9.8	15.6		5.3			46.9	6.57		
OREAS 101b (4 Acid) Cert				1.23		2.36			77		927	10.7		8.2	15		5.2			45	8.1		
OREAS 98 (4 Acid) Meas																		43.9		119		87.8	160
OREAS 98 (4 Acid) Cert																		45.1		121		97.2	158
OREAS 98 (4 Acid) Meas																		44.2		134		98.8	174
OREAS 98 (4 Acid) Cert																		45.1		121		97.2	158
OREAS 13b (4-Acid) Meas										> 5000				2020				0.83		73.3			
OREAS 13b (4-Acid) Cert										$\begin{array}{r} 8650.0 \\ 00 \\ \hline \end{array}$				$\begin{array}{r} 2247.0 \\ 000 \\ \hline \end{array}$				0.86		75			
OREAS 904 (4 Acid) Meas		16.8	0.04	0.60	6.86	3.66	0.04		77	60	415	6.54	5.0	41.7		7.5		0.63	3.63	81.4		4.15	2.6
OREAS 904 (4 Acid) Cert		16.7	0.0340	0.556	6.30	3.31	0.0460		76.0	54.0	410	6.68	5.00	40.1		7.86		0.551	3.79	83.0		4.05	3.30
OREAS 45d (4-Acid) Meas		20.1	0.09	0.26	7.96	0.43	0.18		124	475	459	14.1	2.1	223	1.4	0.7	0.5		3.46	29.4	0.53	0.32	
OREAS 45d (4-Acid) Cert		21.5	0.101	0.245	8.150	0.412	0.185		235.0	549	490.000	14.5	3.830	231.0	1.38	0.79	0.46		3.910	29.50	0.57	0.31	
OREAS 96 (4 Acid) Meas																		10.5		48.7		27.7	38.8
OREAS 96 (4 Acid) Cert																		11.5		49.9		26.3	40.7
OREAS 96 (4 Acid) Meas																		11.2		48.0		27.6	41.5
OREAS 96 (4 Acid) Cert																		11.5		49.9		26.3	40.7
OREAS 923 (4 Acid) Meas		32.2	0.33	1.85	7.95	2.11	0.45	0.4	86	77	1000	6.47	3.5	34.8	2.6	2.2	0.9	1.64	6.90	22.5	1.25	22.9	6.4
OREAS 923 (4 Acid) Cert		31.4	0.324	1.69	7.29	2.51	0.473	0.420	91.0	71.0	950	6.43	3.42	35.8	2.86	2.42	0.960	1.60	6.70	23.1	1.37	21.4	6.54
OREAS 621 (4 Acid) Meas																							
$\begin{aligned} & \text { OREAS } 621 \text { (4 } \\ & \text { Acid) Cert } \\ & \hline \end{aligned}$																							
Oreas E1336 (Fire Assay) Meas	514																						
Oreas E1336 (Fire Assay) Cert	510.000																						
OREAS 681 (4 Acid) Meas																							

Analyte Symbol	Au	Li	Na	Mg	AI	K	Ca	Cd	V	Cr	Mn	Fe	Hf	Ni	Er	Be	Ho	Ag	Cs	Co	Eu	Bi	Se
Unit Symbol	ppb	ppm	\%	\%	\%	\%	\%	ppm	ppm	ppm	ppm	\%	ppm										
Lower Limit	5	0.5	0.01	0.01	0.01	0.01	0.01	0.1	1	1	1	0.01	0.1	0.5	0.1	0.1	0.1	0.05	0.05	0.1	0.05	0.02	0.1
Method Code	FA-AA	TD-MS																					
OREAS 681 (4 Acid) Cert																							
Oreas 521 (4 Acid) Meas		16.1	0.95	1.07	4.57	2.77	3.42		200	44	3280	20.6	3.0	67.0	2.1	0.8	0.7	0.83	0.74	373	1.52	5.99	1.4
$\begin{array}{\|l\|} \hline \text { Oreas } 521 \text { (4 } \\ \text { Acid) Cert } \end{array}$		16.4	0.98	1.13	4.77	3.16	3.86		209	31	3210	20.7	3.2	73.0	2.1	0.9	0.7	0.89	0.72	386	1.64	5.85	2.4
OREAS 70b (4 Acid) Meas																							
OREAS 70b (4 Acid) Cert																							
OREAS 256b (Fire Assay) Meas	8170																						
OREAS 256b (Fire Assay) Cert	7840																						
833671 Orig	< 5																						
833671 Dup	5																						
833684 Orig	< 5																						
833684 Dup	<5																						
833693 Orig	6																						
833693 Dup	10																						
833702 Orig	5																						
833702 Split PREP DUP	< 5																						
Method Blank	7																						
Method Blank	< 5																						
Method Blank																							
Method Blank																							
Method Blank		<0.5	< 0.01	< 0.01	<0.01	<0.01	<0.01	<0.1	1	3	7	<0.01	<0.1	<0.5	<0.1	<0.1	<0.1	< 0.05	< 0.05	<0.1	< 0.05	< 0.02	<0.1
Method Blank		< 0.5	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	<0.1	< 1	5	2	< 0.01	<0.1	<0.5	<0.1	<0.1	<0.1	< 0.05	< 0.05	<0.1	< 0.05	< 0.02	<0.1
Method Blank		<0.5	<0.01	<0.01	<0.01	<0.01	<0.01	<0.1	1	6	2	< 0.01	<0.1	0.5	<0.1	<0.1	<0.1	<0.05	<0.05	<0.1	< 0.05	< 0.02	<0.1

Analyte Symbol	Zn	Ga	As	Rb	Y	Sr	Zr	Nb	Mo	In	Sn	Sb	Te	Ba	La	Ce	Pr	Nd	Sm	Gd	Tb	Dy	Cu
Unit Symbol	ppm																						
Lower Limit	0.2	0.1	0.1	0.2	0.1	0.2	1	0.1	0.05	0.1	1	0.1	0.1	1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2
Method Code	TD-MS																						
Oreas 72a (4 Acid) Meas			14.3																				307
$\begin{array}{\|l} \hline \text { Oreas 72a (4 } \\ \text { Acid) Cert } \\ \hline \end{array}$			14.7																				316
Oreas 72a (4 Acid) Meas			18.9																				319
$\begin{array}{\|l\|} \hline \text { Oreas 72a (4 } \\ \text { Acid) Cert } \\ \hline \end{array}$			14.7																				316
OREAS 101b (4 Acid) Meas					111				20.5						668	1200	110	337	43.0	36.0	4.3	25.5	415
OREAS 101b (4 Acid) Cert					133				20.1						754	1325	127	388	48	40	5.4	27	412
OREAS 101b (4 Acid) Meas					116				19.7						725	1220	117	349	43.8	34.9	4.6	26.0	420
OREAS 101b (4 Acid) Cert					133				20.1						754	1325	127	388	48	40	5.4	27	412
OREAS 98 (4 Acid) Meas	1280										199	7.6											P10000
OREAS 98 (4 Acid) Cert	1360										206	20.1											$\begin{array}{r} 14800 \\ 0.0 \\ \hline \end{array}$
OREAS 98 (4 Acid) Meas	1330										> 200	8.1											P 10000
OREAS 98 (4 Acid) Cert	1360										206	20.1											$\begin{array}{r} 14800 \\ 0.0 \\ \hline \end{array}$
OREAS 13b (4-Acid) Meas	131		47.2						8.51														2140
OREAS 13b (4-Acid) Cert	133		57						9.0														$\begin{array}{r} 2327.0 \\ 000 \\ \hline \end{array}$
OREAS 904 (4 Acid) Meas	26.6	14.3	94.7	124	29.0	24.1	184		2.29	0.2	3	1.4		210	41.3	82.7					0.9		5760
OREAS 904 (4 Acid) Cert	26.3	16.7	98.0	130	31.5	27.2	171		2.12	0.220	2.83	1.48		194	43.2	86.0					1.00		6120
OREAS 45d (4-Acid) Meas	41.4	20.1	7.7	40.6	9.7	27.3	67	0.8	0.33	<0.1	<1	<0.1		169	16.2	32.4	3.6	12.6	2.8	2.3	0.4	2.4	368
OREAS 45d (4-Acid) Cert	45.7	21.20	13.8	42.1	9.53	31.30	141	14.50	2.500	0.096	2.78	0.82		183.0	16.9	37.20	3.70	13.4	2.80	2.42	0.400	2.26	371
OREAS 96 (4 Acid) Meas	430										63	4.7											P10000
OREAS 96 (4 Acid) Cert	457										65.6	5.09											39300
OREAS 96 (4 Acid) Meas	406										66	4.8											10000
OREAS 96 (4 Acid) Cert	457										65.6	5.09											39300
OREAS 923 (4 Acid) Meas	343	20.8	8.6	171	25.7	39.4	128	15.8	1.06	0.5	14	1.5		424	41.9	78.5	9.4	35.3	5.3	6.1	0.8	5.0	4040
OREAS 923 (4 Acid) Cert	345	20.3	7.61	166	26.4	43.0	116	14.1	0.930	0.520	13.3	1.29		434	42.2	83.0	9.58	35.4	6.64	5.73	0.850	5.05	4230
OREAS 621 (4 Acid) Meas																							
OREAS 621 (4 Acid) Cert																							
Oreas E1336 (Fire Assay) Meas																							
Oreas E1336 (Fire Assay) Cert																							
OREAS 681 (4 Acid) Meas																							

Analyte Symbol	Zn	Ga	As	Rb	Y	Sr	Zr	Nb	Mo	In	Sn	Sb	Te	Ba	La	Ce	Pr	Nd	Sm	Gd	Tb	Dy	Cu
Unit Symbol	ppm																						
Lower Limit	0.2	0.1	0.1	0.2	0.1	0.2	1	0.1	0.05	0.1	1	0.1	0.1	1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2
Method Code	TD-MS																						
OREAS 681 (4 Acid) Cert																							
Oreas 521 (4 Acid) Meas	24.0	16.2	232	97.0	18.3	97.9	118	1.7	118	0.2	6	3.6	0.2		85.7	103	7.9	24.4	4.1	4.3	0.6	3.5	5530
$\begin{aligned} & \text { Oreas } 521 \text { (4 } \\ & \text { Acid) Cert } \end{aligned}$	24.4	17.4	336	98.0	19.9	158	123	5.6	138	0.2	7	5.7	0.8		139	123	8.4	25.4	4.2	4.0	0.6	3.5	6070
OREAS 70b (4 Acid) Meas																							
$\begin{aligned} & \text { OREAS 70b (4 } \\ & \text { Acid) Cert } \end{aligned}$																							
OREAS 256b (Fire Assay) Meas																							
OREAS 256b (Fire Assay) Cert																							
833671 Orig																							
833671 Dup																							
833684 Orig																							
833684 Dup																							
833693 Orig																							
833693 Dup																							
833702 Orig																							
$\begin{aligned} & 833702 \text { Split } \\ & \text { PREP DUP } \end{aligned}$																							
Method Blank																							
Method Blank																							
Method Blank																							
Method Blank																							
Method Blank	< 0.2	0.2	1.2	< 0.2	< 0.1	< 0.2	<1	<0.1	0.05	< 0.1	<1	< 0.1	< 0.1	< 1	< 0.1	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	0.8
Method Blank	<0.2	0.1	<0.1	<0.2	<0.1	<0.2	<1	<0.1	0.06	<0.1	< 1	< 0.1	< 0.1	<1	<0.1	<0.1	< 0.1	<0.1	<0.1	<0.1	< 0.1	< 0.1	0.6
Method Blank	0.6	0.2	0.9	<0.2	<0.1	<0.2	<1	<0.1	< 0.05	<0.1	<1	<0.1	< 0.1	<1	< 0.1	<0.1	<0.1	<0.1	<0.1	< 0.1	< 0.1	< 0.1	0.2

Analyte Symbol	Ge	Tm	Yb	Lu	Ta	W	Re	TI	Pb	Sc	Th	U	Ti	P	S
Unit Symbol	ppm	\%	\%	\%											
Lower Limit	0.1	0.1	0.1	0.1	0.1	0.1	0.001	0.05	0.5	1	0.1	0.1	0.0005	0.001	0.01
Method Code	TD-MS	TD-ICP	TD-MS	TD-MS	TD-ICP	TD-ICP	TD-ICP								
Oreas 72a (4 Acid) Meas															1.65
$\begin{aligned} & \text { Oreas 72a (4 } \\ & \text { Acid) Cert } \\ & \hline \end{aligned}$															1.74
Oreas 72a (4 Acid) Meas															
$\begin{aligned} & \begin{array}{l} \text { Oreas 72a (4 } \\ \text { Acid) Cert } \end{array} \\ & \hline \end{aligned}$															
OREAS 101b (4 Acid) Meas		2.0	13.3	1.7					23.3		35.5	323	0.373	0.120	
$\begin{aligned} & \text { OREAS 101b (4 } \\ & \text { Acid) Cert } \end{aligned}$		2.08	13.9	1.96					23		36.4	387	0.35		
OREAS 101b (4 Acid) Meas		2.0	12.9	1.7					21.1		35.6	369			
$\begin{aligned} & \text { OREAS 101b (4 } \\ & \text { Acid) Cert } \end{aligned}$		2.08	13.9	1.96					23		36.4	387			
OREAS 98 (4 Acid) Meas									291						14.9
OREAS 98 (4 Acid) Cert									345						15.5
OREAS 98 (4 Acid) Meas									307						
OREAS 98 (4 Acid) Cert									345						
OREAS 13b (4-Acid) Meas															1.18
OREAS 13b (4-Acid) Cert															1.2
OREAS 904 (4 Acid) Meas	<0.1		3.2	0.4	0.9	2.7		0.54	12.9	13	15.1	8.8		0.112	0.07
$\begin{array}{\|l} \hline \text { OREAS } 904 \text { (4 } \\ \text { Acid) Cert } \\ \hline \end{array}$	0.180		3.14	0.470	0.540	2.12		0.520	10.6	11.2	14.3	8.43		0.0980	0.0630
OREAS 45d (4-Acid) Meas			1.4	0.2	< 0.1	< 0.1		0.24	19.5	55	13.8	2.6	0.305	0.038	0.05
OREAS 45d (4-Acid) Cert			1.33	0.18	1.02	1.62		0.27	21.8	49.30	14.5	2.63	0.773	0.042	0.049
OREAS 96 (4 Acid) Meas									130						4.38
OREAS 96 (4 Acid) Cert									101						4.19
OREAS 96 (4 Acid) Meas									94.4						
OREAS 96 (4 Acid) Cert									101						
OREAS 923 (4 Acid) Meas		0.4	2.5	0.4	1.1	5.9		0.86	91.5		17.9	3.3			
$\begin{aligned} & \text { OREAS } 923 \text { (4 } \\ & \text { Acid) Cert } \end{aligned}$		0.410	2.57	0.390	1.11	4.85		0.860	83.0		16.5	3.06			
OREAS 621 (4 Acid) Meas										5			0.191	0.038	4.94
$\begin{aligned} & \text { OREAS } 621 \text { (4 } \\ & \text { Acid) Cert } \end{aligned}$										6.24			0.149	0.0359	4.48
Oreas E1336 (Fire Assay) Meas															
Oreas E1336 (Fire Assay) Cert															
OREAS 681 (4 Acid) Meas										26			0.554	0.135	0.10

Analyte Symbol	Ge	Tm	Yb	Lu	Ta	W	Re	TI	Pb	Sc	Th	U	Ti	P	S
Unit Symbol	ppm	\%	\%	\%											
Lower Limit	0.1	0.1	0.1	0.1	0.1	0.1	0.001	0.05	0.5	1	0.1	0.1	0.0005	0.001	0.01
Method Code	TD-MS	TD-ICP	TD-MS	TD-MS	TD-ICP	TD-ICP	TD-ICP								
OREAS 681 (4 Acid) Cert										27.7			0.588	0.141	0.109
Oreas 521 (4 Acid) Meas		0.3	2.1	0.3	<0.1	21.2	0.066	0.28	6.4	13	4.2	32.2	0.347	0.078	1.72
Oreas 521 (4 Acid) Cert		0.3	2.1	0.3	0.5	92.0	0.064	0.27	9.3	14	8.3	31.0	0.393	0.081	1.80
$\begin{aligned} & \text { OREAS 70b (4 } \\ & \text { Acid) Meas } \\ & \hline \end{aligned}$										11			0.171	0.022	0.29
OREAS 70b (4 Acid) Cert										12			0.181	0.022	0.31
OREAS 256b (Fire Assay) Meas															
OREAS 256b (Fire Assay) Cert															
833671 Orig															
833671 Dup															
833684 Orig															
833684 Dup															
833693 Orig															
833693 Dup															
833702 Orig															
833702 Split PREP DUP															
Method Blank															
Method Blank															
Method Blank										< 1			0.0005	<0.001	< 0.01
Method Blank										<1			0.0005	<0.001	< 0.01
Method Blank	<0.1	<0.1	<0.1	< 0.1	<0.1	< 0.1	< 0.001	< 0.05	<0.5	<1	<0.1	<0.1	0.0005	<0.001	< 0.01
Method Blank	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	<0.001	< 0.05	< 0.5	<1	< 0.1	<0.1	0.0005	<0.001	< 0.01
Method Blank	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.001	< 0.05	<0.5		<0.1	<0.1			

Appendix G - K7 South Zone - 2021 Actlabs Invoices

Appendix H - K7 South Zone - 2021 G4 Drilling Invoices

[^0]: David B. Stevenson, M.Sc., P.Geo.

