Ontario \odot

We are committed to providing accessible customer service.
If you need accessible formats or communications supports, please contact us.

Nous tenons à améliorer l'accessibilité des services à la clientèle.
Si vous avez besoin de formats accessibles ou d'aide à la communication, veuillez nous contacter.

2021 DIAMOND DRILLING REPORT
 LYNX ZONE SUGAR ZONE PROPERTY DAYOHESSARAH LAKE AREA WHITE RIVER, ONTARIO

$$
\text { NTS 42C/ 10, 11, } 14 \text { and } 15
$$

Latitude $48^{\circ} 48^{\prime} \mathrm{N}$, Longitude $85^{\circ} 10^{\prime} \mathrm{W}$

Dates Work Performed November 22, 2021 to April 08, 2022
for

Harte Gold Corporation 161 Bay Street Suite 2400
Toronto, Ontario M5J 2S1

TABLE OF CONTENTS

1.0 Introduction 1
2.0 Property Location and Description 2
2.1 Location and Access 2
2.2 Description of Mining Claims 3
2.3 Physiography and Vegetation 3
3.0 Historical Work 4
4.0 Geological Setting 13
4.1 Regional Geology 13
4.2 Property Geology 14
5.0 Mineralization 17
5.1 Sugar Zone 17
5.2 Lynx Zone 18
6.0 2021 Diamond Drilling 18
6.1 Sample Collection, Preparation, Analyses and Security 18
6.2 Laboratory Methods 19
6.3 2021 Lynx Zone Drilling 23
6.4 Results. 23
7.0 Conclusions and Recommendations 24
8.0 Costs 24
9.0 References 28
10.0 Statement of Qualifications 29

LIST OF FIGURES

Figure 1 - Property Location 2
Figure 2 - Claim Position, Regional Geology and Occurrences 4
Figure 3 - Regional Geology 14
Figure 4 - Property Geology 16

LIST OF TABLES

Table 1 - Lynx Zone - Drill Hole Summary Table 23
Table 2 - Lynx Zone - Assay Results Per Hole 24
Table 3 - Lynx Zone - Summary of Costs 25
Table 4 - Lynx Zone - Cost per Claim 25
Table 5 - Lynx Zone - DDH Program Cost Summary 26
Table 6 - Lynx Zone - Analytical Cost Summary 27

APPENDICES

Appendix A - Property Claims List
Appendix B - Geological Legend
Appendix C - Lynx Zone - 2021 Drill Hole Logs
Appendix D - Lynx Zone - 2021 Drill Hole Cross Sections
Appendix E - Lynx Zone - 2021 Drill Hole Plans
Appendix F - Lynx Zone - 2021 Actlabs Assay Certificates
Appendix G - Lynx Zone - 2021 Actlabs Invoices
Appendix H - Lynx Zone - 2021 G4 Drilling Invoices

Executive Summary

Between November 22, 2021 to December 22, 2021 Harte Gold Corporation performed a 2-hole, $1,460.0$ meter diamond drill program at the Lynx Zone. The Lynx Zone is located approximately 2.7 kilometers south of Harte Gold's Sugar Zone Mine on the Sugar Zone property. The property is located in the Dayohessarah Lake area, and is situated northeast of White River, Ontario. One drill rig (G4-09) was supplied by G4 Drilling Canada Ltd. to perform the drilling.

The intent of the 2021 Lynx Zone drill program was to drill three deep holes along the Lynx Zone gold horizon to act as platforms for a future downhole IP survey. A total of $\$ 376,624$ was spent on this drill program which included costs such as drilling, assays and salaries, etc. The average cost per meter was $\$ 257.96$.

A high of $22.6 \mathrm{~g} / \mathrm{t}$ over 0.37 m from LZ-21-16 was obtained from the drill program. Narrow, weak gold values were also obtained from LZ-21-17.

The Sugar Zone property lies within in the Dayohessarah Greenstone Belt ("DGB"). The DGB is part of the larger, east trending Schreiber-White River Belt of the Wawa Subprovince of the Superior Craton. The DGB is situated between two larger greenstone belts; the Hemlo Greenstone Belt to the west and the Kabinakagami Greenstone Belt to the east. The DGB has an active history of exploration dating back to 1969 when Canex Aerial Exploration Ltd. drilled three holes on the property. Exploration ramped up after the discovery of Hemlo, when Pezamerica Resources commenced geophysics and drilling.

In 1998, Harte Gold Corp. entered into an option agreement on most of the unpatented mining claims comprising the Sugar Zone property, including the Sugar Zone. Harte subsequently entered into a Joint Venture agreement with Corona Gold Corporation and in 2012 Harte Gold acquired Corona's portion of the Sugar Zone property to become the 100% owner and operator of all the claims. Harte Gold subsequently conducted extensive advanced exploration at the Sugar Zone including a successful 70,000 tonne bulk sample in 2017. After a successful development and commissioning period commercial production was officially declared for the Sugar Zone Mine on January $8^{\text {th }}, 2019$.

1.0 Introduction

The Lynx Zone is located in the south-central section of the Sugar Zone property approximately 2.7 kilometers south of the Sugar Zone Mine (Figure 2). The Lynx Zone is one of several gold occurrences identified on the Sugar Zone property. The property is located in the Dayohessarah Greenstone Belt. This greenstone belt is part of the larger, east trending Schreiber-White River Belt of the Wawa Subprovince of the Superior Craton (Figure 3).

This report will summarize and discuss the results of the diamond drill program conducted between November 22, 2021 to December 22, 2021 by Harte Gold Corp. on the Sugar Zone property. The drill report was written from April 04 to April 08, 2022.

All Lynx Zone holes were drilled on mining lease LEA-109592 and where Harte Gold has a closure plan filed with the Ministry. No work permit is required.

UTM coordinates are in NAD 83, Zone 16U projection.

2.0 Property Location and Description

2.1 Location and Access

The Sugar Zone property is situated approximately 25 km northeast of the town of White River (Trans-Canada Highway No. 17) and 60 km east of the Hemlo gold camp. The property is approximately equidistant from Sault Ste. Marie to the south-east and Thunder Bay to the west (Figure 1). The overall property encompasses NTS zones 42C/ 10, 11, 14 and 15 and the gold mineralized occurrences are exposed at Latitude $48^{\circ} 48^{\prime}$ north, Longitude $85^{\circ} 10^{\prime}$ west. The property covers parts of the Odlum, Strickland, Gourlay, Tedder, Hambleton, Cooper, Nameigos, Abraham and Bayfield Townships, and falls within the Sault Ste. Marie Mining Division.

The property can be accessed via a series of logging roads and drill trails extending north from the community of White River. Access is also available by way of float plane, based in White River via Dayohessarah Lake or Hambleton Lake, and by helicopter based in Wawa or Marathon.

Figure 1 - Property Location
The western and southern portions of the property are accessible via a series of logging roads controlled by White River Forest Products Limited. Road No. 100 extends north from the western end of White River. Road No. 200 intersects Road No. 100 approximately 20 km from Highway 17 and provides access to the western and southern portions of the property. Road No. 300 intersects Road No. 100 approximately 36 km from Highway 17 and provides access to the very
northern portion of the property. Road No. 305 intersects Road No. 300 approximately 6 km from Road No. 100 and provides access to northern and eastern parts of the property. Road access to within 400 m of the Sugar Zone is available via a small road heading south and southwest from Road No. 305 for 8.8 km . From there, access to the Sugar Zone is available via all-terrain or tracked vehicles in the summer, and snowmobiles, tracked vehicles and trucks in the winter. The distance from White River to the Sugar Zone is approximately 60 km by road.

Areas surrounding Dayohessarah, Hambleton, Strickland and Pike Lakes are designated by the Ontario Ministry of Natural Resources as 'Restricted Access'. Locked gates on Road No. 200 and Road No. 305 control vehicular access in order to prevent access to remote lodge operations on two lakes. Permits are required for road access to most of the Sugar Zone property for mineral exploration purposes.

2.2 Description of Mining Claims

The Sugar Zone property consists of four mining leases comprising 1467.26 hectares, including 81 boundary cell claims, 47 single cell claims, 197 multi-cell claims (Appendix A). All claims of the Sugar Zone property are held in the name of Harte Gold Corporation. The property boundaries, claim lines, and location of the Lynx Zone is shown in Figure 2.

There are two mining alienations which border parts of Harte's current claim block. The largest (W-LL-C1521) lies to the east of the current claim area and shortly borders claim 4260617 on the east, and Hwy 631 on the west. The second alienation (No. 2847) lies completely within Harte's current claim block, west of Dayohessarah Lake. Surface rights are held by the Crown and timber cutting rights are held by White River Forest Products Ltd.

In 1998, Harte Gold Corp. (Harte) entered into an option agreement on most of the unpatented mining claims comprising the Sugar Zone property, including the Sugar Zone. Harte Subsequently entered into a Joint Venture agreement with Corona Gold Corp.

The original claims are subject to a 3.5% net smelter royalty ("NSR"). The Joint Venture participants, namely Corona (51\%) and Harte (49\%), have the option of acquiring 1.5% of the 3.5% NSR for $\$ 1.5$ million, in proportion to their respective interest and have, in addition, the right of first refusal on the remaining 2.0% NSR.

Harte and Corona entered into an Option Agreement (the "Corona Option") dated May 28, 2010, entitling Harte to acquire Corona's 51% interest in the Sugar Zone Joint Venture upon completion of certain conditions. Effective March 10, 2010, Harte became the Operator of the Sugar Zone Joint Venture for as long as the Corona Option remained in good standing. Harte completed all required conditions and as of May 23, 2012 acquired Corona's 51\% interest to become the 100\% owner and operator of all of the claims which were previously part of the Sugar Zone Joint Venture.

2.3 Physiography and Vegetation

The climate is northern boreal, with short hot summers and cold, snowy winters. Some field operations, such as drilling, can be carried out year-round while other operations, such as prospecting and mapping, can only be carried out during the late spring, summer and early autumn months.

The temperatures can range from $-35^{\circ} \mathrm{C}$ in the winter to $+30^{\circ} \mathrm{C}$ in the summer; though the mean temperatures are around $-20^{\circ} \mathrm{C}$ to $+20^{\circ} \mathrm{C}$. Rainfall is about 727 mm annual average, with the wettest month being September (120 mm average). Snow is abundant, often reaching several metres with December and January having the heaviest snowfall (about 80 cm). Snow is on the ground by late October and the ice begins to thaw on the lakes by April.

Figure 2-Claim Position, Regional Geology and Occurrences
The topography on the property varies from moderate to rugged, with lake levels generally at 390 m above sea level, and occasional hills up to 480 m elevation. The overburden is generally between 0 to 20 m deep on the property, with occasional boulderer terrain, and normally approximately 2 to 3 m overlying the Sugar Zone. Vegetation is boreal, with jack pine, fir, poplar and birch occupying dry uplands and cedar, tamarack and spruce growth on more poorly drained terrain.

3.0 Historical Work

Exploration for gold and base metals has been conducted on the Dayohessarah property since 1969. After over 10 years of very little work, exploration started to pick up on the property again in 1983, after the discovery of the Hemlo Gold camp. A complete timeline of mineral exploration/mine site development on the DGB is presented below.

1969 Canex Aerial Exploration Ltd. drilled three diamond drill holes in the vicinity of the mafic/ultramafic intrusives and flows near the north end of Dayohessarah Lake. Results include an intersection of $0.326 \% \mathrm{Ni}$ and 0.08% Cu over 5 ft . in metagabbroic rocks.

1983-1986 Pezamerica Resources Limited conducted an exploration program which included an airborne Mag and EM survey that outlined thirty-one (31) geophysical anomalies in the area. Twenty-four (24) of these anomalies were investigated by Teck Exploration on behalf of Pezamerica. Teck Exploration drilled nine airborne geophysical targets based on coincidental soil gold anomaly trends. In all cases, the airborne anomalies were explained by pyrite/pyrrhotite rich horizons within felsic volcanics. Hole PZ-6 returned appreciable amounts of sphalerite mineralization ($0.47 \% \mathrm{Zn}$ over 2.8 feet). None of the assayed core returned significant gold values.

1990 Most of the DGB is staked by a prospecting syndicate.
1991 The property is optioned from the prospectors by Hemlo Gold Mines Inc. Initial prospecting uncovered the gold-bearing Sugar Zone deposit. Based on bedrock exposure and trenching, the Sugar Zone was traced for 750 m , and a ground IP survey outlined the Sugar Zone structure extending for 1,500 meters.

1993 Hemlo Gold conducted a preliminary diamond drill program to test the Sugar Zone for economic gold mineralization. A grid was cut with a 6-km baseline and tie-lines ranging in spacing between 100 m and $1,000 \mathrm{~m}$. Six diamond drill holes were completed totaling 800 m . All drill holes intersected significant gold mineralization in the Sugar Zone. A small trenching program is initiated on the Sugar Zone.

1994 Hemlo Gold proceeds with initial geological mapping, prospecting and a follow-up drill program. Fifteen diamond drill holes are completed on the property, totaling $2,416 \mathrm{~m}$. Eight of the drill holes intersected the Sugar Zone. An I.P. survey is completed over the southern portion of the property, and a Mag survey is completed over the entire grid. After the exploration program, the property was returned to the prospecting syndicate who initially staked the ground, due to legal reasons.

1998-1999 Most of the property is optioned from the prospector's syndicate. The mining claims were subject to a Joint Venture agreement between Corona Gold Corporation (51\%) and Harte Gold Corp. (49\%). Corona was the operator. The initial 313 claims are subject to a 3.5% net smelter royalty ("NSR"), and the Joint Venture participants have the option to acquire 1.5% of the 3.5% NSR for $\$ 1.5$ million, and have the right of first refusal on the remaining 2.0% NSR.

Corona carries out an extensive exploration program. The existing grid was rehabilitated and new grid lines established east of Dayohessarah Lake. In total, 96.1 km of grid lines with 100 m spacing oriented at 320° azimuth are cut over the Sugar Zone area. An oriented soil sampling program is carried out on the grid, as well as mapping and sampling. Prospecting was limited to the Sugar Zone and extensions of the Sugar Zone to the south and to the north. A surface power trenching program is conducted on parts of the Sugar Zone and six trenches were excavated, washed, channel sampled and mapped in detail. A detailed Mag-VLF and reconnaissance gradient I.P. survey is performed on the property.

A diamond drilling program totaling $9,937 \mathrm{~m}$ of NQ core in 53 holes is completed, mostly into and around the Sugar Zone. The drill holes cover 3 km of strike length, and intersect the zone at
approximately 50 m spacing at shallow depths. A secondary purpose of the program was to follow-up low grade mineralization encountered in previous drilling by Hemlo Gold and to test previously untested/poorly tested I.P. anomalies west of the Sugar Zone and east of Dayohessarah Lake.

Preliminary Mineral Resource estimates of the Sugar Zone mineralization in the 12000 N to 13100 N area were prepared, based on the drilling program noted above. Another estimate was made, using revised and refined criteria and polygonal methods, in the spring 1999, following additional data evaluation (Drost et AI, 1998).

2003-2004 Corona conducts a diamond drilling program totaling $7,100 \mathrm{~m}$ in 26 holes. The drill program mostly intersects the Sugar Zone and is successful in its purpose of expanding the strike and dip extent of the zone, as well as increasing the level of confidence in the continuity of mineralization by in-fill drilling.

2004 Corona conducts another diamond drilling program totaling $3,588 \mathrm{~m}$ in 11 holes. The program is successful in increasing the mineralization extent of the Sugar Zone, as well as increasing the defined Sugar Zone depth to a vertical depth of 300 m . A new Mineral Resource estimate was completed.

2008 A helicopter airborne geophysical survey was flown over the property by Fugro Airborne Surveys Corp., under contract from Corona. The survey used a DIGHEM multi-coil, multifrequency electromagnetic system along with a high sensitivity cesium magnetometer. A total of 1,917 line-km was flown. It was recommended by Dave Hunt P.Geo. that compilation of historic exploration data on the remainder of the property be followed by a program of reconnaissance mapping and prospecting to evaluate the Fugro airborne conductor axes on the ground, as well as to identify additional target areas extending both north and south of existing Sugar Zone mineralization and elsewhere on the property.

2009 During March, Corona undertook a drilling program totaling $2,020 \mathrm{~m}$ in 10 holes. The purpose of the program was to test airborne electromagnetic conductors, magnetic anomalies, induced polarization chargeability anomalies and geologically defined possible extensions to the north and the south of the known Sugar Zone mineralization.

During July to September, a prospecting, reconnaissance geological mapping and channel sampling program was undertaken on geophysical targets outlined by the Fugro airborne geophysical anomalies. Highlights included sampling of a float rock (Peacock Boulders) returning a value of $87.80 \mathrm{~g} / \mathrm{t} \mathrm{Au}$, as well as grab samples from quartz veining east of the Sugar Zone returning values of 30.40 and $9.04 \mathrm{~g} / \mathrm{t} \mathrm{Au}$.

2010 Harte Gold Corp. initiated its first drilling program. During March, a diamond drill program totaling 2,097.31 m in 12 holes, two of which were aborted before reaching the Sugar Zone. The program was successful in locating a high-grade area of the Sugar Zone located near surface and directly under a series of surface trenches. The drill program was also successful in determining that the Sugar Zone has significant mineralization below 300 m depth.

Ground IP is completed over a grid totaling 20,475 meters. Chargeability from the survey outlines a potential zone north of the Peacock Boulder discovery of 2009. 5 Trenches totaling 1,850 square meters were completed over and around the newly discovered Wolf Zone.

A total of $5,387.94 \mathrm{~m}$ of diamond drilling totaling 33 drill holes was completed on the newly discovered Wolf Zone. Results outlined a small, high grade zone with a strike length up to 600 m and a depth up to 250 meters.

2011 Between May and June 2011 two more grids totaling 60,800 meters were completed over the fold nose near the north end of the of the Sugar Zone property, on the west side of Hambleton Lake. Follow up ground IP was completed on the grids by JVX Geophysical Surveys. A small 5,200-meter grid was also cut, and ground IP completed on the west side of Dayohessarah Lake, in an attempt to outline a Gossan Zone.

A Bore Hole survey was completed In August 2011 on eleven deep drill holes in the Sugar Zone. The Bore Hole survey outlined several conductors in the area. An airborne VTEM survey was completed at the end of August by Geotech Ltd. The survey covered the entire property and outlined 5 large moderate to strong conductive areas of interest. The most exciting result of the survey was a potential copper-nickel ore body below the surface, under the komatiite volcanics at the northern end of Dayohessarah Lake.

There were two main drill programs in 2011. The first was on the Sugar Zone, between February 11 to April 13, and again between July 17 and November 24, 2011, and totaled $7,885.74$ meters of diamond drilling in 27 drill holes. The drilling was designed to expand the resource estimate both at depth, and to upgrade inferred resource to indicated resource. The second drill program targeted IP anomalies on the Fold Nose grid. A total of $3,430.93$ meters were drilled in 15 diamond drill holes. Most IP anomalies were explained by sedimentary layers, and no significant intercepts were observed.

2012 In April 2012, Geotech Ltd. carried out a helicopter borne geophysical survey over the Sugar Zone property. The program was completed as an extension of the airborne VTEM survey conducted in 2011 which totaled 302 line-km of data over the northern parts of Dayohessarah Lake and western parts of Hambleton Lake and the shoreline. The 2012 program totaled 1,153 line-km of data essentially covering the rest of the Dayohessarah Greenstone Belt.

In an effort to understand the source of the Peacock boulders, thin sections of three Peacock boulder samples were sent to Pleason Geoscience for analysis. The boulders returned assay values of $87.30 \mathrm{~g} / \mathrm{t} \mathrm{Au}, 52.80 \mathrm{~g} / \mathrm{t} A u$ and $37.20 \mathrm{~g} / \mathrm{t} A u$. It was noted that the mineralogy and microtextures of the samples were similar to gold-bearing zones at the Hemlo and Musselwhite gold camps.

Between October 30, 2012 and November 2, 2012 four mechanical trenches were made along the surface exposure of the Sugar Zone. The purpose of the trenches was to expose enough high-grade material from the Lower Zone of the Sugar Zone for a reasonably representative blasting program. The total area of the trenches is 1,799 square meters.

During the period January 21, 2012 to July 29, 2012 a total of 6,283.92 meters were drilled in 12 diamond drill holes targeting the Sugar Zone. The drilling was carried out by Major Drilling Group International Inc. The purpose of the diamond drilling program was to expand the current Mineral Resource Estimate of the Sugar Zone at vertical depths below 400 m , and to test the continuity, grade and width of the zone at $1,000 \mathrm{~m}$ vertical depth. The program was successful in defining Au mineralization in both the Upper and Lower Zones with significant assay results ranging from $0.56 \mathrm{~g} / \mathrm{t} \mathrm{Au}$ to $162 \mathrm{~g} / \mathrm{t}$ Au.

An additional 2 drill holes targeted an IP north-east of Dayohessarah Lake. These exploration holes totaled 375 meters and did not return any significant gold values.

Two holes totaling 333 meters were drilled targeting an extension of the Wolf Zone. No significant assays were returned.

2013 Exploration in the 2013 season included a short prospecting program, where 46 samples were taken and analyzed for Au using fire assay. Two samples returned Au values of $10.2 \mathrm{~g} / \mathrm{t}$ and $0.73 \mathrm{~g} / \mathrm{t}$.

Four holes were drilled on the Halverson Zone, totaling 1103.28m These holes targeted $\mathrm{Cu}-\mathrm{Ni}$ mineralization discovered in 2011 by a VTEM survey.

An additional 17 diamond drill holes totaling 1356m were drilled to decrease the spacing between holes in a high-grade portion of the Sugar Zone Lower Zone (called Jewelry Box). Significant intervals from this program ran from $2.77 \mathrm{~g} / \mathrm{t}$ Au to $28.5 \mathrm{~g} / \mathrm{t}$ Au over widths from 0.35 m to 8.27 m .

Harte Gold continued moving forward with the permitting and optimization of the advance exploration 70,000 tonne bulk sample at the Sugar Zone. Confirmation drilling at the Jewelry Box Zone (JBZ) returned significant high-grade gold assays and enabled Harte Gold to re-design the bulk sample target areas in order to test this high-grade portion of the Sugar Zone deposit. The JBZ lies close to surface and can be developed quicker and more cost effectively.

Harte Gold also completed road construction to provide highway access to the property and survey work associated with taking certain of the Sugar Zone property mining claims to lease. Harte Gold is also in the process of negotiating contract mining and off-site milling agreements.

Harte Gold completed a regional exploration program and Induced Polarization (IP) survey with the objective of finding the source of the high-grade Peacock Boulders which returned gold values up to $87 \mathrm{~g} / \mathrm{t}$. Drill targets have been identified and are scheduled to be drilled during the summer of 2014.

2014 Harte Gold continued to advance the Sugar Zone "Advanced Exploration and Bulk Sample Project" during 2014. Efforts focused on completing the permitting associated with the amended closure plan, completing the road to the portal site and overall optimization of the mining plan developed in the 2012 Preliminary Economic Assessment.

Additional confirmation drilling at the Jewelry Box Zone (JBZ), the target area for the bulk sample, returned significant high-grade gold assays providing additional confirmation to mining contractors developing bids for the project.

2014 was a busy year of exploration, Induced Polarization and magnetometer surveys were conducted over a majority of the core mining claims and generated numerous drill targets. Follow up ground proofing and drill programs identified the Wolf Zone as the source of the high-grade Peacock Boulders and lead to the discovery of the Contact Zone, where a sericite schist was found to have Hemlo-style geochemistry and anomalous gold as well as a third mineralized zone known as the Footwall Zone and located 50 meters east of the Sugar Zone deposit.

During 2015 Harte Gold completed additional exploration drilling that extended the Sugar Zone deposit 300 meters south of its previously defined boundary.

Harte Gold completed additional construction work on the site access road linking the Sugar Zone deposit to Highway 631 and completed the lease application process for certain mining claims that comprise the Sugar Zone property. The leases cover the Sugar Zone deposit and immediately surrounding area and are a requirement for commercial production.

20152015 was a pivotal year for Harte Gold as efforts to move the project ahead during a challenging mining market finally culminated in October with the first portal blast at the Sugar Zone. Since October the ramp was advanced to over 850 meters in length and begun shipping ore to Barrick Gold for custom milling from ore developed on the 375 level.

With production under our bulk sampling program well underway, the commercial permitting process has begun. This process is expected to take 12-18 months which may coincide well with completion of the bulk sample program. During the intervening period, the plan is to continue with underground development which would include the ramp, underground infrastructure including ventilation and setting up stopes to be ready for mining.

The commercial production target is 600 tonnes/day. Milling options are currently being studied and a tailings facility will form part of our permit application so that an on-site milling facility can eventually be built.

Harte gold initiated a significant geophysical program between the Sugar Zone and the Wolf Zone. The Contact Zone where Hemlo-style mineralization has been found in sericite schists up to 45 meter wide and the Gossan Zone located on the west side of Dayohessarah Lake will be a focus for future exploration.

20162016 was a very busy year for Harte Gold as mining was in full swing with ore being delivered to Barrick Gold Corporation's Hemlo mill throughout the year.

Exploration efforts both near-mine and regionally are progressing at an aggressive pace with 6 drill rigs now working at the Sugar Zone and the newly discovered Middle Zone and the Wolf Zone. It is expected that the next resource update will include resources at the Middle Zone which could be incorporated into an updated mine plan and Technical Report.

2017 At the Sugar Zone deposit four drill rigs are actively completing infill and step-out drilling to move resources to the Measured, Indicated and Inferred categories. Infill drilling at the Sugar Zone upper 500 meters is now complete and work on an updated resource statement is underway. Step-out drilling targeting resource extensions at a depth below 500 meters is currently underway to extend the down-dip extension to 1,000 meters targeting Inferred resources. Step-out drilling at the Sugar Zone has returned significant intersections to the north within a previously undrilled area. This work has brought Sugar Zone mineralization to within 300 meters of the Middle Zone, further suggesting potential convergence of both zones

Drilling at the Middle Zone continues with three drill rigs active. Drilling has returned some excellent results including intersections of $13.02 \mathrm{~g} / \mathrm{t}$ gold over 4.50 meters in hole WZ-17-79W and $13.68 \mathrm{~g} / \mathrm{t}$ gold over 7.02 meters in hole SZ-17-86W. Hole WZ-17-92 confirms mineralization continues north of the Gabbro intrusion towards the Wolf Zone. One drill rig is being mobilized to test mineralization north of the Gabbro intrusion.

A property-wide MAG and HTEM survey has been completed and results interpreted. The MAG has been instrumental in outlining the geologic structures on the property and combined with the HTEM survey, has identified five new significant anomalies on the property. The strongest
conductor is on the west side of the property and is hosted at the contact of a volcanic and sedimentary unit, now referred to as the "Eagle Zone".

Early drilling at the Wolf, Lynx and Fisher Zones has demonstrated on-strike continuity of mineralization. Further definition of these areas will be enhanced using down-hole geophysics to better define potential mineralized structures and refine drill targets.

IP geophysics and soil sampling completed over the summer at the Marten Zone have identified areas to be drilled. Historical grab samples have returned anomalous gold, lead and zinc within the target area.

Technica Group Inc. completed the 30,000 tonne Phase 1 Commercial Production program. Five development sills are now developed in this area and is ready to begin long-hole drilling and mining of the stopes in the late spring to match the commissioning of the mill. Technica is now completing the upgrades of the underground power and ventilation critical for the start of commercial production.

Civil works for the mill began in Q2 as well as site preparation of the tailings management facility. The outer wall footings of the mill are completed, erection of walls is underway to prepare for the mill building shell and foundation work is well under way. It is expected the mill building will be fully erected by year end. Most equipment has been ordered and has begun arriving at site.

2018 A Mineral Resource Estimate dated February 15, 2018 contains an Indicated Mineral Resource Estimate of $2,607,000$ tonnes grading $8.52 \mathrm{~g} / \mathrm{t}$ for 714,200 ounces of contained gold and an Inferred Mineral Resource Estimate of 3,590,000 tonnes, grading $6.59 \mathrm{~g} / \mathrm{t}$ for 760,800 ounces of contained gold, using a $3.0 \mathrm{~g} / \mathrm{t}$ Au cut-off. The Company also completed a Preliminary Economic Assessment with an effective date of March 31, 2018, outlining 80,700 ounces of annual average gold production at an All-In Sustaining Cash Cost ("AISC") of US\$708/oz Au over an 11-year mine life.

All commercial production permits were issued in September. Process plant construction and transition to grid power were completed in September. First gold production was announced in mid-October. Gold doré bars are being produced through the gravity circuit and a high-grade concentrate is being produced through the flotation recovery circuit for offsite processing.

Official Mine Opening which was attended by the Premier of Ontario and Minister of Energy, Northern Development and Mines occurred October 24th, 2018. The Company bought down the royalty on the Sugar Zone property from 3.5% to 2.0% effective October 31, 2018.

Process plant commissioning was completed in early November. Since that time the Company has increased throughput to achieve the initial targeted rate of 575 tpd .

Sill development is on-going and long-hole stoping between the 140 and 155 levels off the Sugar Zone South ramp has begun. Results of the first production stope blast achieved expectations.

Underground development continues at the Sugar Zone North and South ramps. During September, the average advance rate of 8 meters per day was ahead of plan. The installation of critical underground infrastructure to support ventilation, power and pumping has been completed. In addition, the mine return air ventilation fan was successful installed and the transition to grid power for most site power requirements substantially completed. Redpath is ramping up its underground mine personnel to achieve targeted ore sill development rates. Harte Gold's current
permits allow for underground mining and mill processing rates of 550 tpd and 575 tpd respectively. Harte Gold will apply to increase both categories to 800 tpd in Q1 2019.

Near Mine Exploration infill drilling at the Sugar and Middle Zones for 2018 has concluded. Approximately 62,000 meters was drilled with a focus on the upgrade of Inferred Mineral Resources to the Indicated category. The drill program was successful and is expected to improve overall modelled grade of the Resources. Results will be factored into an updated $\mathrm{NI} 43-$ 101 Mineral Resource Estimate targeted for early 2019. Step-out drilling underway will continue to mid-December. Approximately 30,000 meters has been drilled to-date, targeting extension of known mineralization at the Sugar, Middle and Wolf Zones, as well as discovery of new potential zones of mineralization like the Fox Zone. Information provided from the Company's downhole IP program completed in August has been successful identifying several drill targets, including a chargeability anomaly currently being drilled to test the convergence of the Middle and Wolf Zones. Downhole geophysics has been a highly successful tool used in the past; earlier work led to the deep Sugar Zone discovery at a depth of 1,000 meters. The Company has also started deep drilling at the Sugar Zone, approximately 1,500 meters below surface and 500 meters below the current extent of Inferred Mineral Resources, illustrated below. The intent of deep drilling is to test continuity of mineralization down dip and to potentially follow up with further downhole IP to develop deep drilling targets.

2019 Commercial production was officially declared for the sugar zone mine on January $8^{\text {th }}$ 2019 after a successful commissioning period. The start up, commissioning and commercial production was achieved over a duration of three months. Permits initially allowed for 575 tonnes per day of production but on May $3^{\text {rd }} 2019$ the Ministry of Energy and Northern Development and Mines and the Ministry of Environment conservation and Parks, issued permits authorizing an increase in mine production to 800 tpd. Production continued to ramp up in the ladder half of the year and in August 2019 it was stated that gold production had increased 42\% quarter over quarter (Q1 to Q2) to 7754 ounces with an average head grade of $6.01 \mathrm{~g} / \mathrm{t}$. The mill processed 53,216 tonnes of ore (591 tpd average) which was a 39% increase quarter over quarter (Q1 to Q2).

On February $20^{\text {th }} 2019$ an updated NI 43-101 Resource Report based on 90,000 meters of 2018 drilling was released. The report announced indicated mineral resources at 1.1 million ounces grading $8.12 \mathrm{~g} / \mathrm{t}$ Au and inferred mineral resources at 558,000 ounces grading $5.88 \mathrm{~g} / \mathrm{t} \mathrm{Au}$. It also confirmed grade continuity within the sugar zone as well as an extension of mineralization along strike to the Wolf Zone. An updated feasibility study was also subsequently released on April $8^{\text {th }}$ 2019 indicating a probable mineral reserve of 3.9 million tonnes at $7.1 \mathrm{~g} / \mathrm{t} \mathrm{Au}$.

Near-mine infill drilling continued in 2019 and was focussed on the Middle and Sugar Zone-South areas. Drill results released on August $14^{\text {th }} 2019$ announced an increase to the mineralized extent of the Sugar Zone; mineralization was extended 300 m south along strike and 200 m down dip. Mineralized intersections returned values up to $23.59 \mathrm{~g} / \mathrm{t}$ Au over 2.02 m . An extension of the upper zone along strike and down dip was also announced, further adding to mineable resources.

Regional exploration on the property in 2019 included prospecting, VLF surveys, and diamond drilling (Hambleton Lake, TNT, K7, and Flat Lake areas). Prospecting in the summer has revealed gold zinc and copper values of up to $253 \mathrm{ppb}, .79 \%$ and $.69 \%$ respectively north-northeast of the Sugar zone which potentially suggests a trend in excess of 10km. Drilling results from Hambleton Lake and K7 returned anomalous gold values of up to 730 ppb. On December $2^{\text {nd }} 2019$ Harte

Gold announced the discovery of a new high grade gold showing called the TT8 Zone located approximately 16.5 km Southeast of the Sugar Zone. Initial surface chip sampling showed gold values from $11 \mathrm{~g} / \mathrm{t}$ to $247 \mathrm{~g} / \mathrm{t}$ along a 40 meter strike length hosted in a mafic and greywacke sediments. Hanging wall and footwall samples also ran gold values up to $2.64 \mathrm{~g} / \mathrm{t}$. The area had previously been mapped as tonalite by the OGS and is believed to be an extension of the Nameigos Greenstone belt.

2020 Regional exploration on the property in 2020 was focused predominately on the TT8 Zone and surrounding area. Work completed included diamond drilling, soil sampling, geophysical surveys, and prospecting. Drill results from the winter 2020 drill program were positive with the TT8 quartz vein intersected in 13 of the 15 holes drilled. Highlights of the drill assays include $11.14 \mathrm{~g} / \mathrm{t}$ Au over 1.18 metres, in TT8-20-01 and $33.1 \mathrm{~g} / \mathrm{t}$ Au over 0.68 metres in TT8-20-06. This expanded mineralization 300 metres along strike and 600 metres down-dip from the original showing.

On November 12, 2020 Harte Gold announced that summer prospecting had returned five new gold showings on strike with the previously discovered TT8 Showing. These new showings extend the TT8 mineralization trend to 11 km . Initial channel sampling and grab samples from these showings have revealed gold values up to $102 \mathrm{~g} / \mathrm{t}$ in quartz veins and $2.8 \mathrm{~g} / \mathrm{t}$ in the hanging and footwall rocks. In addition to this, prospecting also confirmed the connection of the Kabinakagami Lake Greenstone Belt and the Dayohessarah Lake Greenstone Belt via a narrow extension running through the TT8 area.

In December 2020 a short 6 hole, 527 meter drill program was conducted on the Money Zone to test it's on-strike and down-dip potential.

In 2021 exploration focused on conducting IP-mag surveys along the 11 km of new greenstone belt discovered in 2020, in particular where the six new high-grade gold showings (TT8, Money, Smokin' Aces, Long Shot, Big Bear and Southern) are located. This was followed by drilling 46 holes totalling 4,939 meters primarily along strike and down-dip of the six high-grade gold showings. Multiple IP-mag targets remain to be tested along the 11 km of new greenstone belt. Several high-grade gold intervals were intersected near the Money, TT8 and Big Bear showings. During 2021 additional drill programs were conducted at the 007, Fisher, Hambleton, K7 South and Lynx Zones. Prospecting was also carried out on all 142.9 line-km of grid lines that were cut in early 2021 for the IP-mag surveying. Prospecting was also carried out in the 007 Zone area. Exsics Exploration also conducted 30 days of prospecting in the Flat Lake area. No significant gold values were obtained from this work. A downhole IP survey was also conducted in four holes located in the Hambleton Zone to follow-up wide zones of pink-brown biotite alteration hosting minor po-py mineralization. This type of alteration and mineralization is present at the SugarMiddle Zones. A review of the drill hole geochemistry and lithological model for the Sugar Zone deposit was also conducted by Mr. Simon Griffiths, Third Planet Exploration Services Ltd. Mr. Griffiths also reviewed the soil geochemical results from the Hambleton Zone with the intent of finding pathfinder elements to be use during mine and regional exploration. A total of 775 soils samples were also taken by The Haveman Brothers at the Hambleton West grid as follow-up to recommendations made from Mr. Griffiths, Third Planet Exploration. SGS Canada Inc. was also contracted to conduct a lithological model of the Sugar Zone property. Mr. Blair Hrabi, SRK Consulting also conducted detailed structural mapping and interpretation of the TT8, Money and 007 Zones. Pioneer Exploration were contracted to perform detailed drone-mag surveys of the Hambleton, Lynx-K7 and Cigar Lake areas. Mr. Joe Mihelcic, Clearview Geophysics Ltd.
conducted a geophysical review of all ground and airborne geophysics conducted on the Sugar Zone property. Limited trenching was also performed at the K7 South and 007 Zones. In the spring of 2021 Sumac Geomatics Inc. were contracted to perform a property wide LIDAR survey which also included detailed orthophotos. Vancouver Petrographics also performed detailed petrographic work on ten core samples from the TT8 area to assist in determining differences between greywacke sediments and tonalite intrusive in the area.

4.0 Geological Setting

4.1 Regional Geology

The DGB is situated between two larger greenstone belts; the Hemlo Greenstone Belt to the west and the Kabinakagami Greenstone Belt to the east. These greenstone belts are part of the larger, east trending Schreiber-White River Belt of the Wawa Subprovince of the Superior Craton (Figure 3). The Late Archean DGB trends northwest and forms a narrow, eastward concave crescent. The belt is approximately 36 km in length and varies in width from 1.5 to 5.5 km . Principal lithologies in the belt are moderately to highly deformed metamorphosed volcanics, volcaniclastics and sediments that have been enclosed and intruded by tonalitic to granodioritic quartz-porphyry plutons.

The greenstone belt is bordered to the east by the Strickland Pluton and to the west by the Black Pic Batholith. The Danny Lake Stock borders the south-western edge of the DGB. The Strickland Pluton is characterized by a granodioritic composition, quartz phenocrysts, fine grained titanite, and hematitic fractures. The Black Pic Batholith is similar to the Strickland Pluton, but locally more potassic. The Black Pic Batholith also contains interlayers of monzogranite. The Danny Lake Stock is characterized by hornblende porphyritic quartz monzonite to quartz monzodiorite (G. M. Stott, 1999).

The DGB has been metamorphosed to upper greenschist to amphibolite facies. The Strickland Pluton seems to have squeezed the greenstone belt and imposed upon it a thermal metamorphism. Most of the mafic volcanics are composed primarily of plagioclase and hornblende. Almandine garnets are widely observed in the clastic metasediments and locally, along with pyrope garnets, in the mafic volcanics (G.M. Stott, 1996a,b,c).

Alteration throughout the belt consists of diopsidation, albitization, weak magnesium biotization, weak carbonatization and moderate to strong silicification which accompanied the emplacement of the porphyry dykes/sills and quartz veining.

The belt has been strongly foliated, flattened and strained. Deformation seen in the supracrustal rocks has been interpreted to be related to the emplacement of the Strickland Pluton. Strongly developed metamorphic mineral lineations in the supracrustal rocks closely compare with the orientations of the quartz phenocryst lineations seen in the Strickland Pluton. This probably reflects a constant strain aureole imposed by the pluton upon the belt (G.M. Stott, 1996a,b,c). The strain fabric is best observed a few hundred meters from the Strickland Pluton in the Sugar Zone, which has been characterized as the most severely strained part of the belt. The Sugar Zone is defined by sets of parallel mineralized quartz veining, quartz flooding of strongly altered wall-rock, thin intermediate porphyry lenses and dykes/sills parallel to stratigraphy and foliation, and gold mineralization.

Foliations and numerous top indicators define a synclinal fold in the central portion of the belt. The synclinal fold has been strongly flattened and stands upright with the fold hinge open to the south and centered along Dayohessarah Lake.

Figure 3 - Regional Geology

4.2 Property Geology

Near Dayohessarah Lake, the belt is dominated by a basal sequence of massive to pillowed mafic volcanics, commonly with ellipsoidal, bleached alteration pods, overlain by intermediate tuff and lapilli tuff. The tuffaceous units rapidly grade upwards to a sedimentary sequence consisting of greywacke and conglomerates derived from volcanics, sediments and felsic intrusive sources (G. M. Stott, 1996a,b,c). Several thin, continuous cherty sulphide facies iron formations are found in the mafic volcanic sequence. Spinifex textured komatiitic flows stratigraphically underlie the main sedimentary sequence and can be traced around the north end of Dayohessarah Lake. Also, at the north end of Dayohessarah Lake, mafic and ultramafic sills and stocks underlie the komatiites (Figure 4).

Several fine to medium grained, intermediate feldspar porphyry dykes/sills have intruded and swarmed the belt. Swarming of the intermediate porphyry dykes is more intense east of Dayohessarah Lake. Stott has interpreted the porphyry sills and associated porphyry bodies to
be related to the Strickland Pluton. A smaller granitic quartz porphyry body containing some sulphide mineralization is located northwest of Dayohessarah Lake. The porphyritic texture of the dykes/sills is often nearly, or completely, obliterated by the degree of foliation in the greenstone belt, or by the degree of shear in the Sugar Zone. These intermediate dykes/sills vary in abundance across the property, but increase in regularity within, and around, the Sugar Zone. There is also a consistent, weak pervasive silicic alteration in the intermediate intrusives, as well as consistently trace amounts of very fine-grained disseminated pyrite.

The major linear structure recognized on the property is the Sugar Deformation Zone ("SDZ"), which trends northwest-southeast for approximately 3.5 km and dips southwest between 65° and 75°. The SDZ appears to be spatially related to the Strickland Pluton and is a complex system with strain intensities varying from strongly deformed-pillow mafic volcanics to undeformed massive mafic flows to anastomosing linear areas. Stratigraphically-conformable porphyritic intermediate intrusions swarm through the SDZ. Both the mafic volcanics and the intermediate intrusives exhibit moderate linear fabrics along with hydrothermal alteration (i.e., silicification).

In general, the north-westerly striking, south-westerly dipping stratigraphy hosting the gold mineralized portions of the Sugar Zone can be subdivided into the following units:

- Hanging Wall Volcanics;
- Upper Zone (Sugar Zone mineralization);
- Interzone Volcanics;
- Lower Zone (Sugar Zone mineralization);
- Footwall Volcanics

The Hanging Wall, Interzone and Footwall volcanic horizons consist predominantly of massive and pillowed basalt flows generally striking northwest and dipping at an average angle of 64° to the southwest. Coarse to very coarse grained, locally gabbroic-textured phases form a significant component of the Hanging Wall mafic volcanic package. It is believed that these phases represent thick, slowly-cooled portions of the massive mafic flows, as they commonly grade into finer grained, more recognizable basaltic flows, and eventually even pillow flows. In much of the area which drilling on the Sugar Zone was carried out, a distinctive, very coarse grained mafic volcanic flow was observed consistently about 15 m stratigraphically above the Upper Zone. Other than this unit, specific mafic flows, as well as intermediate porphyry units, are nearly impossible to interpret/distinguish between holes.

The Upper and Lower zones range in thickness from 1.5 to 10 m , strike at 140° and dip between 65° and 75° with minor undulations.

The auriferous Wolf Zone lies in the northern extent of the SDZ, but drilling between the two zones indicates that the zones are complexly separate from each other. Like the Sugar Zone, the Wolf Zone is north-north-westerly striking and south-westerly dipping. Unlike the Sugar Zone, there is only one gold mineralized zone, and not two or more parallel zones.

Figure 4 - Property Geology

A northerly-striking, sub-vertically dipping, dark grey-black, diabase dyke intrudes the older rock types in the greenstone belt, and crosscuts the SDZ. The diabase obliterates the SDZ when it is encountered. The diabase dyke is aphanitic around the edges and, where thick enough to do so, grades to a coarse-grained euhedral rock in the middle of the dyke. The dyke exhibits very coarse-grained greenish quartz-epidote phenocrysts up to 3 cm across throughout. The dyke is weakly pervasively magnetic. A very small amount of lateral movement of the zones has been interpreted locally on either side of the dyke, suggesting that very minor dyke-related faulting has occurred. There are at least two more diabase dykes on the property. They strike at 35 degrees across the northern portion of the belt. These dykes are up to 40 m across, and are similar in appearance and mineralogy to the dyke that cuts through the Sugar Zone.

Other than the diabase, the youngest intrusive rocks observed on the property are white to pale grey, fine grained to medium grained and occasionally pegmatitic felsite dykes. The dykes generally consist of varying amounts of plagioclase, quartz and muscovite. These generally thin dykes strike northeast and where they intersect the SDZ, they completely wipe out the zone. These dykes are undeformed and clearly postdate the mineralization and deformation events.

5.0 Mineralization

5.1 Sugar Zone

The auriferous Upper and Lower zones of the Sugar Zone lie within the SDZ. They are defined as highly strained packages consisting of variously altered mafic volcanic flows, intermediate porphyritic intrusions and boudinaged auriferous quartz veins. The two zones range in true thickness from about 1.5 to 10 m , and are separated by 20 to 30 m of barren mafic volcanics. A high-grade section of the Lower zone between lines $13+000 \mathrm{~N}$ and $12+900 \mathrm{~N}$ has been the focus of a bulk sample study and is referred to as the Jewelry Box.

Each zone is made up of one or more porphyritic intrusions, flanked by altered basalt and hosting stratigraphically conformable quartz veins. Alteration within the mafic volcanic portions of the zones consists primarily of silicification (both pervasive and as quartz veining), diopsidation and biotization. The porphyry units of the zones exhibit biotite and silica alteration as well, but no diopside alteration.

The Upper and Lower zones appear geologically consistent both down dip and along strike. The Lower Zone has consistently larger widths, as well as mostly consistently higher grades of gold mineralization, however both the width and the gold grade within each zone seem to follow the same trends across the zone. That is to say, that where the Upper Zone exhibits larger widths and higher gold grades, the Lower Zone also exhibits larger widths and higher gold grades. The zones are observed on surface to pinch and swell over distances of 50 m or more.

Gold mineralization mostly occurs in quartz veins, stringers and quartz flooded zones predominantly associated with porphyry zones, porphyry contact zones, hydrothermally altered basalts and, rarely, weakly altered or unaltered basalt within the Upper and Lower zones.

Fine to coarse grained specks and blebs of visible gold are common in the Sugar Zone quartz veins, usually occurring within marginal, laminated or refractured portions of the veins. The visible gold itself is often observed to be concentrated within thin fractures, indicating some degree of remobilization. Quartz veins and floods also contain varying amounts of pyrrhotite, pyrite,
chalcopyrite, galena, sphalerite, molybdenite and arsenopyrite. The presence of galena, sphalerite and/or arsenopyrite is a strong indicator of the presence of visible gold. Pyrite, chalcopyrite and, rarely, molybdenite form a minor component of total sulphides and do not appear to be directly related to the presence of gold mineralization.

Other mineralized zones have been observed between, above and below the Sugar Zone Upper and Lower zones, in diamond drilling. Most of these intercepts are believed to be quartz veining originating in either the Upper or Lower zone, that have been diverted from the sheared part of the zone, up to 30 m from the main bodies of mineralization. One of these zones is the historically discovered Zoe Zone, which has been recently renamed the Lynx Zone, which lies east of the southern end of the Sugar Zone.

5.2 Lynx Zone

The auriferous Lynx Zone lies 2.7 km along strike of the Sugar Zone and may represent the southern extension of the Sugar Zone deformation zone. It is defined as highly strained packages consisting of variously altered mafic volcanic flows and gabbros. The zone ranges in true thickness from 0.5 to 8 m .

The zone is made up of highly sheared mafic volcanics, and a network of intrusive, intermediate quartz-feldspar porphyry dykes/sills. Alteration in the mafic volcanic and gabbro units consists mainly of silicification (both pervasive and quartz veining), diopside alteration and magnesiumrich brown biotite alteration. Alteration within the intermediate porphyry units consist of mostly silicification, with small amounts of magnesium-rich brown biotite, and no diopside. The zone is observed in trenches to pinch and swell over 30 m .

Gold mineralization mostly occurs in quartz veins, stringers and quartz flooded zones predominantly associated with porphyry zones, and hydrothermally altered basalts and gabbros. A total of 17 shallow holes have been put in to test the Lynx Zone. Five of these holes have intersected narrow intervals of low grade gold mineralization over narrow widths as summarized below:

Hole \#	Au value (g/t)	Width (m)	From (m)	To (m)
LZ-17-01	2.22	0.63	260.62	261.25
LZ-17-02	2.23	0.66	282.38	283.04
LZ-17-03	3.52	0.51	379.69	380.20
LZ-17-06	0.51	0.66	199.22	199.88
LZ-18-13	0.91	1.00	456.00	457.00

6.0 2021 Diamond Drilling

6.1 Sample Collection, Preparation, Analyses and Security

NQ drill core is placed in core boxes by drillers. All drill core was delivered to the core processing facility in White River, Ontario where it undergoes geotechnical and geological logging by the geotechnician and geologist. The following describes the core logging process:

- The core is oriented in the box with the saddle pointing downhole, and rock quality data (RQD) is collected from each 3m run.
- The geotechnician marks out 1.0 m intervals with a blue China marker and prepares a box list stating the length of core in each box. Aluminum tags are made and stapled to the end of each box.
- Core is photographed dry and wet.
- The geologist logs the geology of each hole, paying close attention to lithologies, alteration, structures, veining and mineralization.
- \quad Sample collection begins with the marking of sample intervals with a red China marker by the geologist. The sample is given a sample tag. Sample intervals range from 50 cm to 1.5 m , and are taken not to cross major lithology boundaries. Standards and blanks are alternately inserted every $10^{\text {th }}$ sample for QAQC.
- The core is cut with a Vancor diamond core saw by the geotechnician, and placed back in the box. Half core samples are taken from the box and bagged individually. The technician always takes the back half of the core for shipping, while the front half stays in the box.
- The individually bagged samples are placed in rice bags and delivered to Actlabs in Thunder Bay, Ontario. Samples are delivered either in person by Harte Gold staff, or by Greyhound Bus.
- Core is stored in racks in a locked fenced in yard at the core processing facility in White River, Ontario.

6.2 Laboratory Methods

Sample Preparation

Samples arrive at Actlabs at 217 Round Blvd, Thunder Bay, Ontario, where they are received and documented. Once the samples arrive in the laboratory, Actlabs will ensure that they are prepared properly.

As a routine practice with rock and core, the entire sample is crushed to a nominal minus 10 mesh (1.7 mm), mechanically split (riffle) to obtain a representative sample and then pulverized to at least 95% minus 150 mesh (106 microns).

All of Actlabs steel mills are now mild steel and do not induce Cr or Ni contamination. Quality of crushing and pulverization is routinely checked as part of their quality assurance program. All equipment is cleaned using quartz and air from a compressed air source. Blanks, sample replicates, duplicates, and internal reference materials (both aqueous and geochemical standards) are routinely used as part of Actlabs quality assurance program.

RX1	Crush (<7kg) up to 90% passing 2 mm , riffle split (250g) and pulverize (mild steel) to 95% passing 105u. Cleaner sand included

1A2 - (1A2-30 or 50) Au Fire Assay - AA

Fire Assay Fusion

A sample size of 5 to 50 grams can be used but the routine size is 30 g for rock pulps, soils or sediments (exploration samples). The sample is mixed with fire assay fluxes (borax, soda ash, silica, litharge) and with Ag added as a collector and the mixture is placed in a fire clay crucible. The mixture is then preheated at $850^{\circ} \mathrm{C}$, intermediate $950^{\circ} \mathrm{C}$ and finish $1060^{\circ} \mathrm{C}$ with the entire fusion process lasting 60 minutes. The crucibles are then removed from the assay furnace and the molten slag (lighter material) is carefully poured from the crucible into a mould, leaving a lead button at the base of the mould. The lead button is then placed in a preheated cupel which absorbs the lead when cupelled at $950^{\circ} \mathrm{C}$ to recover the Ag (doré bead) +Au .

AA Finish

The entire Ag dore bead is dissolved in aqua regia and the gold content is determined by AA (Atomic Absorption). AA is an instrumental method of determining element concentration by introducing an element in its atomic form, to a light beam of appropriate wavelength causing the atom to absorb light. The reduction in the intensity of the light beam directly correlates with the concentration of the elemental atomic species. On each tray of 42 samples there is two blanks, three sample duplicates and 2 certified reference materials, one high and one low (QC 7 out of 42 samples). We generally rerun all gold by fire assay gravimetric over $3,000 \mathrm{ppb}$ to ensure accurate values

Code 1A2 (Fire Assay-AA) Detection Limits (ppb)

Element	Detection Limit	Upper Limit
Au	5	5,000

1A3-(1A3-30 or 50) - Au Fire Assay - Gravimetric

Fire Assay

A sample size of 5 to 50 grams can be used but the routine size is 30 g for rock pulps, soils or sediments (exploration samples). The sample is mixed with fire assay fluxes (borax, soda ash, silica, litharge) and with Ag added as a collector and the mixture is placed in a fire clay crucible. The mixture is then preheated at $850^{\circ} \mathrm{C}$, intermediate $950^{\circ} \mathrm{C}$ and finish $1060^{\circ} \mathrm{C}$ with the entire fusion process lasting 60 minutes. The crucibles are then removed from the assay furnace and the molten slag (lighter material) is carefully poured from the crucible into a mould, leaving a lead button at the base of the mould. The lead button is then placed in a preheated cupel which absorbs the lead when cupelled at $950^{\circ} \mathrm{C}$ to recover the Ag (doré bead) +Au .

Au is separated from the Ag in the doré bead by parting with nitric acid. The resulting gold flake is annealed using a torch. The gold flake remaining is weighed gravimetrically on a microbalance.

Code 1A3 (Fire Assay-Gravimetric) Detection Limits (g / mT)

Element	Detection Limit	Upper Limit
Au	$0.03(30 \mathrm{~g})$	10000
	$0.02(50 \mathrm{~g})$	

1A4 and 1A4-1000 - Au Fire Assay-Metallic Screen

Metallic Screen

A representative 500 g split ($1,000 \mathrm{~g}$ for Code 1A4-1000) is sieved at 100 mesh (149 micron) with fire assays performed on the entire +100 mesh and 2 splits on the -100 mesh fraction. The total amount of sample and the +100 mesh and -100 mesh fraction is weighed for assay reconciliation. Measured amounts of cleaner sand are used between samples and saved to test for possible plating out of gold on the mill. Alternative sieving mesh sizes are available but the user is warned that the finer the grind the more likelihood of gold loss by plating out on the mill.

Fire Assay

A sample size of 5 to 50 grams can be used but the routine size is 30 g for rock pulps, soils or sediments (exploration samples). The sample is mixed with fire assay fluxes (borax, soda ash, silica, litharge) and with Ag added as a collector and the mixture is placed in a fire clay crucible. The mixture is then preheated at $850^{\circ} \mathrm{C}$, intermediate $950^{\circ} \mathrm{C}$ and finish $1060^{\circ} \mathrm{C}$ with the entire fusion process lasting 60 minutes. The crucibles are then removed from the assay furnace and the molten slag (lighter material) is carefully poured from the crucible into a mould, leaving a lead button at the base of the mould. The lead button is then placed in a preheated cupel which absorbs the lead when cupelled at $950^{\circ} \mathrm{C}$ to recover the Ag (doré bead) +Au .

Au is separated from the Ag in the doré bead by parting with nitric acid. The gold (roasting) flake remaining is weighed gravimetrically on a microbalance. Two splits on the -150 micron fraction are weighted and analyzed by fire assay with a gravimetric finish. A final assay is calculated based on the weight of each separated fraction and obtained Au values.

Code 1A4 (Fire Assay-Metallic Screen) Detection Limits (g/mT)

Element	Detection Limit
Au	0.03

Ultratrace 6 - "Near Total" Digestion - ICP and ICP/MS

Ultratrace 6 combines the 4 -acid digestion ($\mathrm{HF}, \mathrm{HClO}_{4}, \mathrm{HNO}_{3}$ and HCl) with analysis by ICP and ICP/MS. Resistate minerals are not digested.

"Near Total" Digestion - ICP Portion

A 0.25 g sample is digested with four acids beginning with hydrofluoric, followed by a mixture of nitric and perchloric acids, heated using precise programmer controlled heating in several ramping and holding cycles which takes the samples to incipient dryness. After incipient dryness is attained, samples are brought back into solution using aqua regia.

With this digestion, certain phases may be only partially solubilized. These phases include zircon, monazite, sphene, gahnite, chromite, cassiterite, rutile and barite. Ag greater than 100 ppm and Pb greater than 5000 ppm should be assayed as high levels may not be solubilized. Only sulphide sulfur will be solubilized.

The samples are then analyzed using a Varian ICP. QC for the digestion is 14% for each batch, 5 method reagent blanks, 10 in-house controls, 10 samples duplicates, and 8 certified reference materials. An additional 13% QC is performed as part of the instrumental analysis to ensure quality in the areas of instrumental drift.

"Near Total" Digestion - ICP/MS Portion

Additional elements are determined by ICP/MS on the multi-acid digest solution above. The samples are diluted and analyzed on a Perkin Elmer Sciex ELAN 6000, 6100 or 9000 ICP/MS. One blank is run for every 40 samples. In-house control is run every 20 samples. Digested standards are run every 80 samples. After every 15 samples, a digestion duplicate is analyzed. Instrument is recalibrated every 80 samples.

Extraction of each element by 4-Acid Digestion is dependent on mineralogy. Sulphide sulphur and soluble sulphates are extracted.

Code Ultratrace-6 Elements and Detection Limits (ppm)

Element	Detection Limit	Upper Limit	Reported By
Ag	0.05	100	ICP\&ICP/MS
Al	0.01%	10%	ICP
As	0.1	10,000	$\mathrm{ICP} / \mathrm{MS}$
Ba	1	5,000	$\mathrm{ICP} / \mathrm{MS}$
Be	0.1	1,000	$\mathrm{ICP} / \mathrm{MS}$
Bi	0.02	2,000	$\mathrm{ICP} / \mathrm{MS}$
Ca	0.01%	50%	ICP
Cd	0.1	1,000	$\mathrm{ICP} / \mathrm{MS}$
Ce	0.1	10,000	$\mathrm{ICP} / \mathrm{MS}$
Co	0.1	500	$\mathrm{ICP} / \mathrm{MS}$
Cr	1	5,000	$\mathrm{ICP} / \mathrm{MS}$
Cs	0.05	100	$\mathrm{ICP} / \mathrm{MS}$
Cu	0.2	10,000	$\mathrm{ICP} / \mathrm{MS}$
Dy	0.1	5,000	$\mathrm{ICP} / \mathrm{MS}$
Er	0.1	1,000	$\mathrm{ICP} / \mathrm{MS}$
Eu	0.05	100	$\mathrm{ICP} / \mathrm{MS}$
Fe	0.01%	50%	ICP
Ga	0.1	500	$\mathrm{ICP} / \mathrm{MS}$
Ge	0.1	500	$\mathrm{ICP} / \mathrm{MS}$
Gd	0.1	5,000	$\mathrm{ICP} / \mathrm{MS}$
Hf	0.1	500	$\mathrm{ICP} / \mathrm{MS}$

Element	Detection Limit	Upper Limit	Reported By
Na	0.01%	3%	ICP
Nb	0.1	500	$\mathrm{ICP} / \mathrm{MS}$
Nd	0.1	10,000	$\mathrm{ICP} / \mathrm{MS}$
Ni	0.5	5,000	$\mathrm{ICP} / \mathrm{MS}$
P	0.001%	10%	ICP
Pb	0.5	5,000	$\mathrm{ICP} / \mathrm{MS}$
Pr	0.1	1,000	$\mathrm{ICP} / \mathrm{MS}$
Rb	0.2	5,000	$\mathrm{ICP} / \mathrm{MS}$
Re	0.001	100	$\mathrm{ICP} / \mathrm{MS}$
$\mathrm{S}+$	0.01%	20%	ICP
Sb	0.1	500	$\mathrm{ICP} / \mathrm{MS}$
Sc	1	-	ICP
Se	0.1	1,000	$\mathrm{ICP} / \mathrm{MS}$
Sm	0.1	100	$\mathrm{ICP} / \mathrm{MS}$
Sn	1	200	$\mathrm{ICP} / \mathrm{MS}$
Sr	0.2	1,000	$\mathrm{ICP} / \mathrm{MS}$
Ta	0.1	1,000	$\mathrm{ICP} / \mathrm{MS}$
Tb	0.1	100	$\mathrm{ICP} / \mathrm{MS}$
Te	0.1	500	$\mathrm{ICP} / \mathrm{MS}$
Th	0.1	500	$\mathrm{ICP} / \mathrm{MS}$
Ti	0.0005%	-	ICP

Hg	10 ppb	$10,000 \mathrm{ppb}$	$\mathrm{ICP} / \mathrm{MS}$
Ho	0.1	1,000	$\mathrm{ICP} / \mathrm{MS}$
In	0.1	100	$\mathrm{ICP} / \mathrm{MS}$
K	0.01%	5%	ICP
La	0.1	10,000	$\mathrm{ICP} / \mathrm{MS}$
Li	0.5	400	$\mathrm{ICP} / \mathrm{MS}$
Lu	0.1	100	$\mathrm{ICP} / \mathrm{MS}$
Mg	0.01%	50%	ICP
Mn	1	10,000	ICP
Mo	0.1	10,000	$\mathrm{ICP} / \mathrm{MS}$

Tl	0.05	500	$\mathrm{ICP} / \mathrm{MS}$
Tm	0.1	1,000	$\mathrm{ICP} / \mathrm{MS}$
U	0.1	10,000	$\mathrm{ICP} / \mathrm{MS}$
V	1	1,000	$\mathrm{ICP} / \mathrm{MS}$
W	0.1	200	$\mathrm{ICP} / \mathrm{MS}$
Y	0.1	10,000	$\mathrm{ICP} / \mathrm{MS}$
Yb	0.1	5,000	$\mathrm{ICP} / \mathrm{MS}$
Zn	0.2	10,000	$\mathrm{ICP} / \mathrm{MS}$
Zr	1	5,000	$\mathrm{ICP} / \mathrm{MS}$

6.3 2021 Lynx Zone Drilling

Two diamond drill holes totalling 1,460 meters were drilled at the Lynx Zone during 2021. Drilling occurred from November 22, 2021 to December 22, 2021. One drill rig (G4-09) was supplied by G4 Drilling Canada Ltd. to perform drilling.

The intent of the 2021 Lynx Zone drill program was to drill three deep holes along the Lynx Zone gold horizon to act as platforms for a future downhole IP survey. A total of $\$ 376,624$ was spent on this drill program which included costs such as drilling, assays and salaries, etc. The average cost per meter was \$257.96.

Table 1 provides a summary of drill hole information.
Table 1 - Lynx Zone - Drill Hole Summary Table

\# of Holes	Hole ID	Easting	Northing	Dip	Azimuth	Length (m)	Lease \#
1	LZ-21-16	647618.14	5405054.58	-57	250	1011	LEA-109592
2	LZ-21-17	647235.42	5404611.93	-50	60	449	LEA-109592
					Total:	$\mathbf{1 4 6 0}$	

A geological legend, drill logs, plans and cross sections for all holes are presented in Appendix B, Appendix C, Appendix D and Appendix E, respectively.

6.4 Results

A total of 1,115 core samples were collected and 1,117 analysis were performed for gold by fire assay AA, gravimetric or metallic method. If any fire assay AA finished with a value of over $3 \mathrm{~g} / \mathrm{t}$ or $10 \mathrm{~g} / \mathrm{t} \mathrm{Au}$, it would be re-assayed by gravimetric finish or screen metallic assay respectively. In addition, 11 samples were also analysed by the Ultratrace 6, 61 element "near total digestion" ICP, ICP/MS method.

All of the samples were shipped to Actlabs in Thunder Bay, Ontario.
Table 2 provides a summary of the assay results per hole.

Table 2 - Lynx Zone - Assay Results Per Hole

	Hole \#	Zone	Au g/t	Width (m)	From (m)	To (m)
1	LZ-21-16	Lynx Zone	0.23	0.52	613.79	614.31
			22.60	0.37	634.08	634.45
			0.35	0.57	712.46	713.03
2	LZ-21-17	Lynx Zone	1.42	0.30	180.70	181.00
			0.12	1.00	208.00	209.00
			0.16	0.33	296.27	296.60
			0.12	0.29	338.01	338.30

Detailed assay results can be found in the drill logs attached in Appendix C and drill certificates from Actlabs can be found in Appendix F. Actlabs invoices are found in Appendix G. G4 Drilling Canada Ltd. invoices are in Appendix H.

7.0 Conclusions and Recommendations

Between November 22, 2021 to December 22, 2021Harte Gold Corporation performed a 2-hole, 1,460 meter diamond drill program at the Lynx Zone. The best gold value encountered during the drill program was $22.60 \mathrm{~g} / \mathrm{t}$ Au over 0.37 m from 634.08-634.45 meters in LZ-21-16. This interval, as are the weak intercepts in LZ-21-17, are related to narrow smokey quartz veins associated with weak to moderate sericite-biotite alteration hosted within mafic volcanics or a quartz-feldspar porphyry dyke/sill.

Additional prospecting and trenching should be done in the area to further expose areas of interest that this drill program did not test.

8.0 Costs

A total of $\$ 376,624$ was spent during the Lynx Zone drill program. Costs and cost distribution per claim are summarized in Tables 3 and 4. Drilling invoice and analytical cost summaries are provided in Tables 5 and 6, respectively.

Table 3- Lynx Zone - Summary of Costs

Activity	Units		Cost per Unit	Total	\%
Drilling (2 holes)	1460	meters	\$205.53	\$300,068	80\%
Planning/Supervision	31	days	\$692.28	\$21,461	6\%
Drill Geologist	31	days	\$285.56	\$8,852	2\%
Core Cutter	31	days	\$220.00	\$6,820	2\%
Assays	1115	samples	\$27.06	\$30,173	8\%
Truck (90 km x 3 trips/hole)	540	kilometers	\$0.50	\$270	0\%
R\&B - Supervisor	31	days	\$89.00	\$2,759	1\%
R\&B - Geologist	31	days	\$89.00	\$2,759	1\%
Report Writing	5	days	\$692.28	\$3,461	1\%
Total Program Cost				\$376,624	100\%
			Average \$/m	\$257.96	

Table 4-Lynx Zone - Cost Per Claim

Mining Lease Number	
	LEA-109592
Total Meters/ Claim	$\mathbf{1 4 6 0}$
\% of Total Meterage/Claim	$\mathbf{1 0 0 \%}$
Activity	$\$ 300,068$
Drilling (2 holes)	$\$ 21,461$
Planning/Supervision	$\$ 8,852$
Drill Geologist	$\$ 6,820$
Core Cutter	$\$ 30,173$
Assays	$\$ 270$
Truck (90 km x 3 trips/hole)	$\$ 2,759$
R\&B - Supervisor	$\$ 2,759$
R\&B - Geologist	$\$ 3,461$
Report Writing	$\$ 376,624$
Total Cost/Claim	

Table 5-Lynx Zone - DDH Program Cost Summary

	DDH \& Cost Item	Invoice Cost	Total Meters	\$/Meter	Invoice \#	Mining Lease \#	m/Claim
1	LZ-21-16						
	Hexagonal Core Barrel	\$613.50			167-393-20211130		
	Overburden	\$252.00			167-393-20211215		
	Reaming Shell NQ 18"	\$1,688.40					
	Water heating	\$2,535.00					
	Coring NQ	\$122,923.00					
	Move between hole	\$4,248.00					
	Travel	\$13,680.00					
	Water line	\$1,888.00					
	Casing Shoe NW	\$179.61					
	NW Casing 3.0 m	\$314.80					
	NW Crown Bit	\$475.00					
	Rod Grease	\$3,100.00					
	Test 0-300 meters	\$590.00					
	Test 300-600 meters	\$1,180.00					
	Test 600-900 meters	\$1,770.00					
	Test 900-1200 meters	\$708.00					
	ATV Rental (divided by 4 holes)	\$1,750.00					
	Foreman (divided by 4 holes)	\$6,240.00					
	Morooka (divided by 4 holes)	\$937.50					
	Rental Reflex Exy track (divided by 4 holes)	\$1,300.00					
	Rental Reflex TN-14 (divided by 4 holes)	\$1,587.50					
	Tractor \& Operator	\$11,416.00					
	Core boxes (dividied by 4 holes)	\$619.80					
	Survey records books (divided by 4 holes)	\$34.27					
	Additional coil (divided by 4 holes)	\$4,392.00					
	Bridge rental (divided by 4 holes)	\$3,050.00					
	Rental pick-up (divided by 4 holes)	\$13,343.75					
	Room \& Board (divided by 4 holes)	\$4,072.44					
	Total Cost for hole	\$204,888.57	1011	\$202.66		LEA-109592	1011
							1011
2	LZ-21-17						
	Hexagonal Core Barrel	\$223.50			167-393-20211215		
	Overburden	\$252.00					
	Reaming Shell NQ 18"	\$536.40					
	Water Heating	\$1,125.00					
	Coring NQ	\$43,633.00					
	Move between hole	\$3,304.00					
	Travel	\$2,880.00					
	NW Casing 3 m	\$157.40					
	NW Crown Bit	\$475.00					
	Rod Grease	\$387.50					
	Test 0-300 meters	\$118.00					
	Test 300-600 meters	\$118.00					
	Core boxes (dividied by 4 holes)	\$619.80					
	Survey records books (divided by 4 holes)	\$34.27					
	Additional coil (divided by 4 holes)	\$4,392.00					
	ATV Rental (divided by 4 holes)	\$1,750.00					
	Bridge rental (divided by 4 holes)	\$3,050.00					
	Foreman (divided by 4 holes)	\$3,120.00					
	Morooka (divided by 4 holes)	\$468.75					
	Rental pick-up (divided by 4 holes)	\$13,343.75					
	Rental Reflex Exy track (divided by 4 holes)	\$325.00					
	Rental Reflex TN-14 (divided by 4 holes)	\$793.75					
	Room \& Board (divided by 4 holes)	\$4,072.44					
	Tractor	\$10,000.00					
	Total Cost for hole	\$95,179.56	449	\$211.98		LEA-109592	449
							449
	Total Cost	\$300,068.13				Total m/L109592	1460
	Total Meterage		1460				
	Average Cost/Meter			\$205.53			
							1460

Table 6 - Lynx Zone - Analytical Cost Summary

DDH\#	Certificate \#\|	Sample \#'s				\# of Samples	RX1-1-T ($58 /$ sample)	1A2 (59/sample)	1A3 (s9/sample)	1A4-(S50/sample)	Rx4-(\$7.50/sample)	UT-6 ($528 /$ sample)	50\% Rush	100\% Rush	200\% Rush	Subtotal Cost	LEA-109592
		From	To	From	To												
LZ-21-16	A21-22549	833703	833876			174	166	174			2	5			1	\$8,867.00	\$8,867.00
	A21-22797	833877	833940			64	60	64						1		\$2,112.00	\$2,112.00
	A21-22865	833941	834000			60	57	60				1		1		\$2,020.00	\$2,020.00
	A21-22945	861251	861420			170	162	170	1	1			1			\$4,327.50	\$4,327.50
	A21-23105	861421	861621			201	191	201					1			\$5,005.50	\$5,005.50
	A21-23564	861622	861626			$\underline{5}$	$\underline{5}$	$\underline{5}$								\$170.00	\$170.00
						674	641	674	1	1	2	6				\$22,502.00	\$22,502.00
[$2-21-17$	A21-23564	861627	861750	862501	862610	232	234	234				2				\$4,034.00	\$4,034.00
	A21-23626	862611	862820			209	209	209				3				\$3,637.00	\$3,637.00
						441	443	443				5				\$7,671.00	\$7,671.00
						Total Core Samples		Total of 1A2 Analysis	Total 1 A3 Analysis	Total 1A4 Analysis	Total RX4 Analysis	Total UT-6 Analysis		\$27.06		Total Analytical Cost	
						1115		1117	1	1	2	11		Ave. $\$ /$ Sample		\$30,173.00	\$30,173.00

9.0 References

Hunt, D.S., 2009. Report on the Summer 2009 exploration program on the Sugar Zone project. Internal report prepared for Corona Gold Corporation and Harte Gold Corp.

Laarman, J.E., 2014. Report on the Summer 2014 Geologic Mapping. Internal report prepared for Harte Gold Corp.

Middleton, R.S., Forslund, N.R., Laarman, J., 2015. 2014 Report on Diamond Drilling at the Sugar Zone Property, Dayohessarah Lake Area, White River, Ontario - Part 2. Internal Report for Harte Gold Corp., January 2015.

Ramsay, J. G. 1980. The crack-seal mechanism of rock deformation. Nature 284, 135-139.
Shegelski, R.J., 2014. Depositional history, structural geology and timing of gold mineralization of the Sugar Zone gold property, Dayohessarah Lake area, White River, Ontario. Internal Report for Harte Gold, September 2014, 21p.

Stein, H.J, Markey, R.J. and Morgan, J.W., 2000. Robust Re-Os Molybdenite Ages for the Hemlo Au Deposit, Superior Province, Canada. Journal of Conference Abstracts, v.5, p955.

Stott, G.M., 1996a. Precambrian Geology of Dayohessarah Lake Area (North half), Ontario Geological Survey, Preliminary map no. 3309.

Stott, G.M., 1996b. Precambrian Geology of Dayohessarah Lake Area (Central area), Ontario Geological Survey, Preliminary map no. 3310.

Stott, G.M., 1996c. Precambrian Geology of Dayohessarah Lake Area (South half), Ontario Geological Survey, Preliminary map no. 3311.

10.0 Statement of Qualifications

I, David B. Stevenson, of 2217 Lacewood Drive, Thunder Bay, Ontario, P7K 1C4 hereby certify that:

I am presently employed by Harte Gold Corporation as their Chief Exploration Geologist.
I am a graduate of the University of New Brunswick, B.Sc. (Hons. Geology), 1981 and a graduate of Queen's University, M.Sc. (Minex), 1998.

I have practiced my profession as a geologist for over 35 years in various provinces and territories across Canada as well as Norway.

I am a member in good standing of the Association Professional Geoscientists of Ontario.
I have personal knowledge of the work carried out on the property as described in this report, I have no personal interest in the property.

Dated this $08^{\text {th }}$ day of April 2022 at Thunder Bay, Ontario.

[^0]Appendix A - Claims List

Schedule "A"
Sugar Zone Mining Leases

Schedule "B" Sugar Zone - Claims

Legacy Claim Id	Township / Area	Tenure ID	Tenure Type	Anniversary Date	Work Required	Total Reserve
4281896	ODLUM	136581*	Boundary Cell Mining Claim	2021-02-06	\$200	\$0
4281896	OdLUM	334503*	Boundary Cell Mining Claim	2021-02-06	\$200	\$0
4281896	ODLUM	255919*	Boundary Cell Mining Claim	2021-02-06	\$200	\$0
4281896	OdLUM	237877*	Boundary Cell Mining Claim	2021-02-06	\$200	\$0
4281896	OdLum	220822*	Boundary Cell Mining Claim	2021-02-06	\$200	\$0
4281896	OdLUM	220821*	Boundary Cell Mining Claim	2021-02-06	\$200	\$0
4281896	OdLUM	209284*	Boundary Cell Mining Claim	2021-02-06	\$200	\$0
4281896	OdLUM	209282*	Boundary Cell Mining Claim	2021-02-06	\$200	\$0
4281896	OdLUM	201257*	Boundary Cell Mining Claim	2021-02-06	\$200	\$0
4281896	OdLUM	171296*	Boundary Cell Mining Claim	2021-02-06	\$200	\$0
4281896	OdLUM	142560*	Boundary Cell Mining Claim	2021-02-06	\$200	\$0
4281896	ODLUM	136582*	Boundary Cell Mining Claim	2021-02-06	\$200	\$0
4281896	OdLUM	324599*	Single Cell Mining Claim	2021-02-06	\$400	\$0
4281896	ODLUM	255918*	Single Cell Mining Claim	2021-02-06	\$400	\$0
4281896	OdLUM	255917*	Single Cell Mining Claim	2021-02-06	\$400	\$223
4281896	OdLUM	209283*	Single Cell Mining Claim	2021-02-06	\$400	\$0
	MOSAMBIK	532869	Multi-cell Mining Claim	2021-04-10	8000	0
	NAMEIGOS	531281	Multi-cell Mining Claim	2021-04-10	10000	0
	NAMEIGOS	531282	Multi-cell Mining Claim	2021-04-10	9600	1753
	NAMEIGOS	531289	Multi-cell Mining Claim	2021-04-10	5600	2238
	NAMEIGOS	531331	Multi-cell Mining Claim	2021-04-10	7600	2016
	NAMEIGOS,STRICKLAND	531280	Multi-cell Mining Claim	2021-04-10	9600	0
	NAMEIGOS	514033	Single Cell Mining Claim	2021-04-10	400	0
	NAMEIGOS	514035	Single Cell Mining Claim	2021-04-10	400	0
	COOPER,STRICKLAND	531165	Multi-cell Mining Claim	2021-04-10	5200	1331
	HAMBLETON	531227	Multi-cell Mining Claim	2021-04-10	5600	1553
	HAMBLETON	531248	Multi-cell Mining Claim	2021-04-10	10000	0
	hambleton	531265	Multi-cell Mining Claim	2021-04-10	10000	0
	HAMBLETON	531266	Multi-cell Mining Claim	2021-04-10	5600	0
	HAMBLETON	531267	Multi-cell Mining Claim	2021-04-10	5600	0
	ODLUM	531183	Multi-cell Mining Claim	2021-04-10	9600	1370
	OdLum	531198	Multi-cell Mining Claim	2021-04-10	7600	3217
	ODLUM,STRICKLAND	531184	Multi-cell Mining Claim	2021-04-10	9600	2087
	ODLUM,STRICKLAND	531197	Multi-cell Mining Claim	2021-04-10	9600	3658
	ODLUM,STRICKLAND,TEDDER	531175	Multi-cell Mining Claim	2021-04-10	10000	187
	STRICKLAND	531157	Multi-cell Mining Claim	2021-04-10	10000	5781
	STRICKLAND,TEDDER	531169	Multi-cell Mining Claim	2021-04-10	8800	5224
	STRICKLAND,TEDDER	531171	Multi-cell Mining Claim	2021-04-10	8800	4401
	HAMBLETON	531254	Multi-cell Mining Claim	2021-06-13	9600	0
	HAMBLETON	531255	Multi-cell Mining Claim	2021-06-13	10000	0
	HAMBLETON	531256	Multi-cell Mining Claim	2021-06-13	10000	583
	hambleton	531258	Multi-cell Mining Claim	2021-06-13	4800	0
	HAMBLETON	531269	Multi-cell Mining Claim	2021-06-13	1200	0
	NAMEIGOS	531335	Multi-cell Mining Claim	2021-06-13	10000	0
	NAMEIGOS	531340	Multi-cell Mining Claim	2021-06-13	6800	33
	NAMEIGOS	531342	Multi-cell Mining Claim	2021-06-13	8000	0
	NAMEIGOS	531343	Multi-cell Mining Claim	2021-06-13	8000	0
	NAMEIGOS	531344	Multi-cell Mining Claim	2021-06-13	7200	2174
4260661	OdLUM	205218	Boundary Cell Mining Claim	2021-06-20	200	0
4260665	ODLUM	236538	Boundary Cell Mining Claim	2021-06-20	200	837
4284301	ODLUM	113014	Boundary Cell Mining Claim	2021-06-20	200	374
4284301	odlum	323310	Boundary Cell Mining Claim	2021-06-20	200	832
	Johns	530313	Multi-cell Mining Claim	2021-06-20	6400	2174
	JOHNS	530314	Multi-cell Mining Claim	2021-06-20	6400	940
	Johns	530315	Multi-cell Mining Claim	2021-06-20	7200	4533
	JOHNS	530316	Multi-cell Mining Claim	2021-06-20	10000	0
	JOHNS	530317	Multi-cell Mining Claim	2021-06-20	7200	0
	Johns	531017	Multi-cell Mining Claim	2021-06-20	9600	5604
	JOHNS	531018	Multi-cell Mining Claim	2021-06-20	10000	0
	JOHNS, ODLUM	530318	Multi-cell Mining Claim	2021-06-20	7200	0
	JOHNS, ODLUM	531019	Multi-cell Mining Claim	2021-06-20	9600	0
	JOHNS, ODLUM	531020	Multi-cell Mining Claim	2021-06-20	10000	0
	OdLUM	531016	Multi-cell Mining Claim	2021-06-20	10000	0

	OdLum	531021	Multi-cell Mining Claim	2021-06-20	10000	455
	ODLUM	531024	Multi-cell Mining Claim	2021-06-20	10000	0
	OdLUM	531025	Multi-cell Mining Claim	2021-06-20	9600	0
	ODLUM, TEDDER	531022	Multi-cell Mining Claim	2021-06-20	8800	247
	ODLUM, TEDDER	531023	Multi-cell Mining Claim	2021-06-20	9600	89
	ODLUM	531201	Multi-cell Mining Claim	2021-10-29	2000	398
	STRICKLAND	531162	Multi-cell Mining Claim	2020-11-16	9600	0
	STRICKLAND	531168	Multi-cell Mining Claim	2020-11-16	10000	0
	STRICKLAND	531177	Multi-cell Mining Claim	2020-11-16	9600	0
	STRICKLAND	531178	Multi-cell Mining Claim	2020-11-16	10000	0
	STRICKLAND	531180	Multi-cell Mining Claim	2020-11-16	9200	0
	STRICKLAND	531271	Multi-cell Mining Claim	2020-11-16	8000	0
	STRICKLAND	531273	Multi-cell Mining Claim	2020-11-16	10000	0
	STRICKLAND	531274	Multi-cell Mining Claim	2020-11-16	10000	0
	STRICKLAND	531275	Multi-cell Mining Claim	2020-11-16	8400	2439
	STRICKLAND	531278	Multi-cell Mining Claim	2020-11-16	800	0
	gourlay	531220	Multi-cell Mining Claim	2020-12-03	9600	0
	gourlay	531225	Multi-cell Mining Claim	2020-12-03	9600	0
	GOURLAY	531229	Multi-cell Mining Claim	2020-12-03	10000	0
	gourlay	531231	Multi-cell Mining Claim	2020-12-03	10000	0
	GOURLAY,HAMBLETON	531224	Multi-cell Mining Claim	2020-12-03	9600	0
	GOURLAY,HAMBLETON	531226	Multi-cell Mining Claim	2020-12-03	10000	0
	GOURLAY,HAMBLETON	531230	Multi-cell Mining Claim	2020-12-03	8800	0
	GOURLAY,HAMBLETON	531243	Multi-cell Mining Claim	2020-12-03	10000	0
	GOURLAY,HAMBLETON,STRICKLAND	531222	Multi-cell Mining Claim	2020-12-03	6200	0
	GOURLAY,STRICKLAND	531221	Multi-cell Mining Claim	2020-12-03	10000	0
	HAMBLETON	531228	Multi-cell Mining Claim	2020-12-03	6000	0
	ODLUM,STRICKLAND	531270	Multi-cell Mining Claim	2020-12-03	5000	0
	STRICKLAND	531167	Multi-cell Mining Claim	2020-12-03	8400	0
	STRICKLAND	531170	Multi-cell Mining Claim	2020-12-03	9200	0
	STRICKLAND	531176	Multi-cell Mining Claim	2020-12-03	10000	0
	STRICKLAND	531179	Multi-cell Mining Claim	2020-12-03	8400	0
	STRICKLAND	531181	Multi-cell Mining Claim	2020-12-03	9600	0
	STRICKLAND	531185	Multi-cell Mining Claim	2020-12-03	9600	0
	STRICKLAND	531195	Multi-cell Mining Claim	2020-12-03	8800	0
	STRICKLAND	531196	Multi-cell Mining Claim	2020-12-03	8800	0
	STRICKLAND	531223	Multi-cell Mining Claim	2020-12-03	7400	0
	STRICKLAND	531272	Multi-cell Mining Claim	2020-12-03	1200	0
4260617	STRICKLAND	110507	Single Cell Mining Claim	2020-12-03	200	0
	BAYFIELD,HAMBLETON,MATTHEWS	531242	Multi-cell Mining Claim	2020-12-17	8000	0
	GOURLAY,HAMBLETON	531241	Multi-cell Mining Claim	2020-12-17	9600	0
	HAMBLETON	531244	Multi-cell Mining Claim	2020-12-17	10000	0
	HAMBLETON	531245	Multi-cell Mining Claim	2020-12-17	9600	0
	HAMBLETON	531246	Multi-cell Mining Claim	2020-12-17	9600	0
	HAMBLETON	531247	Multi-cell Mining Claim	2020-12-17	9600	0
	hambleton	531264	Multi-cell Mining Claim	2020-12-17	9600	0
	BAYFIELD	531235	Multi-cell Mining Claim	2020-12-22	8000	0
	BAYFIELD	531236	Multi-cell Mining Claim	2020-12-22	8000	0
	BAYFIELD	531237	Multi-cell Mining Claim	2020-12-22	8000	0
	BAYFIELD	531238	Multi-cell Mining Claim	2020-12-22	9200	0
	BAYFIELD	531239	Multi-cell Mining Claim	2020-12-22	1600	0
	BAYFIELD,GOURLAY	531233	Multi-cell Mining Claim	2020-12-22	10000	0
	BAYFIELD,GOURLAY	531234	Multi-cell Mining Claim	2020-12-22	8000	0
	BAYFIELD,GOURLAY,HAMBLETON	531240	Multi-cell Mining Claim	2020-12-22	9600	0
	GOURLAY	531232	Multi-cell Mining Claim	2020-12-22	9600	0
4260661	odlum	137166	Boundary Cell Mining Claim	2020-12-23	200	930
4260661	ODLUM	156716	Boundary Cell Mining Claim	2020-12-23	200	548
4260661	ODLUM	142645	Boundary Cell Mining Claim	2020-12-23	200	151
4260664	OdLUM	308490	Boundary Cell Mining Claim	2020-12-23	200	111
4260664	ODLUM	168606	Boundary Cell Mining Claim	2020-12-23	200	174
4260665	ODLUM	112652	Boundary Cell Mining Claim	2020-12-23	200	0
4260665	OdLUM	199956	Boundary Cell Mining Claim	2020-12-23	200	298
4260665	ODLUM	155301	Boundary Cell Mining Claim	2020-12-23	200	236
	HAMBLETON	531210	Multi-cell Mining Claim	2020-12-23	6800	6082

	HAMBLETON	531249	Multi-cell Mining Claim	2020-12-23	1200	0
	HAMBLETON	531257	Multi-cell Mining Claim	2020-12-23	10000	0
	hambleton	531268	Multi-cell Mining Claim	2020-12-23	4000	0
	HAMBLETON,ODLUM	531209	Multi-cell Mining Claim	2020-12-23	2400	1604
	ODLUM	531026	Multi-cell Mining Claim	2020-12-23	10000	0
	ODLUM	531182	Multi-cell Mining Claim	2020-12-23	10000	0
	OdLUM	531199	Multi-cell Mining Claim	2020-12-23	800	0
	OdLUM	531200	Multi-cell Mining Claim	2020-12-23	10000	0
	ODLUM, TEDDER	531027	Multi-cell Mining Claim	2020-12-23	9600	0
	ODLUM, TEDDER	531154	Multi-cell Mining Claim	2020-12-23	10000	0
	ODLUM, TEDDER	531173	Multi-cell Mining Claim	2020-12-23	10000	0
	ODLUM, TEDDER	531174	Multi-cell Mining Claim	2020-12-23	9600	0
	STRICKLAND,TEDDER	531156	Multi-cell Mining Claim	2020-12-23	10000	0
	tedder	531031	Multi-cell Mining Claim	2020-12-23	9600	0
	TEDDER	531153	Multi-cell Mining Claim	2020-12-23	8800	0
	tedder	531155	Multi-cell Mining Claim	2020-12-23	10000	0
	TEDDER	531172	Multi-cell Mining Claim	2020-12-23	10000	0
	ODLUM	531203	Multi-cell Mining Claim	2020-12-31	7000	0
	ODLUM	531204	Multi-cell Mining Claim	2020-12-31	3800	0
4288587	NAMEIGOS	125769	Boundary Cell Mining Claim	2021-01-08	200	0
4288587	NAMEIGOS	286343	Boundary Cell Mining Claim	2021-01-08	200	0
4288587	NAMEIGOS	286342	Boundary Cell Mining Claim	2021-01-08	200	0
4288587	NAMEIGOS	286341	Boundary Cell Mining Claim	2021-01-08	200	0
4288587	NAMEIGOS	274252	Boundary Cell Mining Claim	2021-01-08	200	0
4288587	NAMEIGOS	266283	Boundary Cell Mining Claim	2021-01-08	200	0
4288587	NAMEIGOS	189153	Boundary Cell Mining Claim	2021-01-08	200	11
4288587	NAMEIGOS	170388	Boundary Cell Mining Claim	2021-01-08	200	0
4288588	NAMEIGOS	102955	Boundary Cell Mining Claim	2021-01-08	200	0
4288588	NAMEIGOS	322925	Boundary Cell Mining Claim	2021-01-08	200	0
4288588	NAMEIGOS	286384	Boundary Cell Mining Claim	2021-01-08	200	0
4288588	NAMEIGOS	227074	Boundary Cell Mining Claim	2021-01-08	200	0
4288588	NAMEIGOS	219128	Boundary Cell Mining Claim	2021-01-08	200	0
4288588	NAMEIGOS	189186	Boundary Cell Mining Claim	2021-01-08	200	0
4288588	NAMEIGOS	170921	Boundary Cell Mining Claim	2021-01-08	200	0
4288588	NAMEIGOS	125817	Boundary Cell Mining Claim	2021-01-08	200	149
4288588	NAMEIGOS	102957	Boundary Cell Mining Claim	2021-01-08	200	0
4288588	NAMEIGOS	102956	Boundary Cell Mining Claim	2021-01-08	200	0
4288589	NAMEIGOS	287639	Boundary Cell Mining Claim	2021-01-08	200	0
4288589	NAMEIGOS	267591	Boundary Cell Mining Claim	2021-01-08	200	0
4288589	NAMEIGOS	220366	Boundary Cell Mining Claim	2021-01-08	200	423
4288589	NAMEIGOS	208950	Boundary Cell Mining Claim	2021-01-08	200	0
4288589	NAMEIGOS	173870	Boundary Cell Mining Claim	2021-01-08	200	0
4288589	NAMEIGOS	155027	Boundary Cell Mining Claim	2021-01-08	200	0
4288589	NAMEIGOS	117345	Boundary Cell Mining Claim	2021-01-08	200	0
4288589	NAMEIGOS	335993	Single Cell Mining Claim	2021-01-08	400	0
4288589	NAMEIGOS	220373	Single Cell Mining Claim	2021-01-08	400	423
4288589	NAMEIGOS	208958	Single Cell Mining Claim	2021-01-08	400	0
4288231	NAMEIGOS	104062	Boundary Cell Mining Claim	2021-01-09	200	0
4288231	NAMEIGOS	225048	Boundary Cell Mining Claim	2021-01-09	200	0
4288231	NAMEIGOS	159665	Boundary Cell Mining Claim	2021-01-09	200	0
	ABRAHAM, COOPER,TEDDER	531096	Multi-cell Mining Claim	2021-01-09	10000	0
	ABRAHAM, TEDDER	531094	Multi-cell Mining Claim	2021-01-09	10000	0
	ABRAHAM, TEDDER	531095	Multi-cell Mining Claim	2021-01-09	10000	0
	COOPER	531112	Multi-cell Mining Claim	2021-01-09	10000	0
	COOPER	531139	Multi-cell Mining Claim	2021-01-09	9200	0
	COOPER	531163	Multi-cell Mining Claim	2021-01-09	6000	0
	COOPER,STRICKLAND	531166	Multi-cell Mining Claim	2021-01-09	800	0
	COOPER,STRICKLAND,TEDDER	531152	Multi-cell Mining Claim	2021-01-09	6800	0
	COOPER,TEDDER	531097	Multi-cell Mining Claim	2021-01-09	10000	0
	COOPER,TEDDER	531100	Multi-cell Mining Claim	2021-01-09	9600	0
	COOPER,TEDDER	531111	Multi-cell Mining Claim	2021-01-09	10000	0
	COOPER,TEDDER	531151	Multi-cell Mining Claim	2021-01-09	10000	0
	MOSAMBIK	531287	Multi-cell Mining Claim	2021-01-09	10000	0
	MOSAMBIK	531348	Multi-cell Mining Claim	2021-01-09	8800	0

	MOSAMBIK,NAMEIGOS	531286	Multi-cell Mining Claim	2021-01-09	10000	0
	MOSAMBIK,NAMEIGOS	531288	Multi-cell Mining Claim	2021-01-09	8400	0
	MOSAMBIK,NAMEIGOS	531347	Multi-cell Mining Claim	2021-01-09	10000	0
	MOSAMBIK,NAMEIGOS	531349	Multi-cell Mining Claim	2021-01-09	6400	0
	MOSAMBIK,NAMEIGOS	531350	Multi-cell Mining Claim	2021-01-09	10000	0
	NAMEIGOS	531283	Multi-cell Mining Claim	2021-01-09	10000	0
	NAMEIGOS	531284	Multi-cell Mining Claim	2021-01-09	9200	0
	NAMEIGOS	531285	Multi-cell Mining Claim	2021-01-09	10000	0
	NAMEIGOS	531351	Multi-cell Mining Claim	2021-01-09	9600	0
	NAMEIGOS	531352	Multi-cell Mining Claim	2021-01-09	10000	0
	TEDDER	531046	Multi-cell Mining Claim	2021-01-09	8800	0
	TEDDER	531047	Multi-cell Mining Claim	2021-01-09	9600	0
	tedder	531079	Multi-cell Mining Claim	2021-01-09	9200	0
	tedder	531098	Multi-cell Mining Claim	2021-01-09	9600	0
	TEDDER	531099	Multi-cell Mining Claim	2021-01-09	9600	0
	COOPER	531126	Single Cell Mining Claim	2021-01-09	400	0
04288250	MOSAMBIK	125756	Single Cell Mining Claim	2021-01-09	400	0
04288250	MOSAMBIK	293144	Single Cell Mining Claim	2021-01-09	400	0
04288250	MOSAMBIK	274244	Single Cell Mining Claim	2021-01-09	400	0
04288250	MOSAMBIK	273605	Single Cell Mining Claim	2021-01-09	400	0
04288250	MOSAMBIK	153728	Single Cell Mining Claim	2021-01-09	400	0
4288237	MOSAMBIK	118071	Single Cell Mining Claim	2021-01-09	400	0
4288237	MOSAMBIK	273604	Single Cell Mining Claim	2021-01-09	400	0
4288237	MOSAMBIK	226382	Single Cell Mining Claim	2021-01-09	400	0
4288237	MOSAMBIK	188477	Single Cell Mining Claim	2021-01-09	400	0
4288237	MOSAMBIK	170250	Single Cell Mining Claim	2021-01-09	400	0
4288249	MOSAMBIK	117527	Single Cell Mining Claim	2021-01-09	400	0
4288249	MOSAMBIK	336697	Single Cell Mining Claim	2021-01-09	400	0
4288249	MOSAMBIK	276267	Single Cell Mining Claim	2021-01-09	400	0
4288249	MOSAMBIK	221060	Single Cell Mining Claim	2021-01-09	400	0
4288237	MOSAMBIK,NAMEIGOS	344618	Single Cell Mining Claim	2021-01-09	400	0
4288237	MOSAMBIK,NAMEIGOS	265657	Single Cell Mining Claim	2021-01-09	400	0
4288230	NAMEIGOS	103256	Single Cell Mining Claim	2021-01-09	400	0
4288230	NAMEIGOS	127131	Single Cell Mining Claim	2021-01-09	400	0
4288232	NAMEIGOS	102261	Single Cell Mining Claim	2021-01-09	400	0
4288232	NAMEIGOS	276303	Single Cell Mining Claim	2021-01-09	400	0
4288232	NAMEIGOS	229063	Single Cell Mining Claim	2021-01-09	400	0
4288232	NAMEIGOS	219164	Single Cell Mining Claim	2021-01-09	400	0
4288232	NAMEIGOS	170953	Single Cell Mining Claim	2021-01-09	400	0
4288232	NAMEIGOS	118285	Single Cell Mining Claim	2021-01-09	400	0
4288233	NAMEIGOS	286410	Single Cell Mining Claim	2021-01-09	400	0
4288233	NAMEIGOS	189211	Single Cell Mining Claim	2021-01-09	400	0
4288233	NAMEIGOS	170954	Single Cell Mining Claim	2021-01-09	400	0
4288233	NAMEIGOS	154316	Single Cell Mining Claim	2021-01-09	400	0
4288233	NAMEIGOS	125852	Single Cell Mining Claim	2021-01-09	400	0
4288233	NAMEIGOS	118287	Single Cell Mining Claim	2021-01-09	400	0
	NAMEIGOS	531290	Single Cell Mining Claim	2021-01-09	400	0
	NAMEIGOS	531291	Single Cell Mining Claim	2021-01-09	400	0
	NAMEIGOS	531292	Single Cell Mining Claim	2021-01-09	400	0
	NAMEIGOS	531293	Single Cell Mining Claim	2021-01-09	400	0
	NAMEIGOS	531294	Single Cell Mining Claim	2021-01-09	400	0
	NAMEIGOS	531295	Single Cell Mining Claim	2021-01-09	400	0
	NAMEIGOS	531296	Single Cell Mining Claim	2021-01-09	400	0
	NAMEIGOS	531297	Single Cell Mining Claim	2021-01-09	400	0
	NAMEIGOS	531298	Single Cell Mining Claim	2021-01-09	400	0
	NAMEIGOS	531299	Single Cell Mining Claim	2021-01-09	400	0
	NAMEIGOS	531300	Single Cell Mining Claim	2021-01-09	400	0
	NAMEIGOS	531301	Single Cell Mining Claim	2021-01-09	400	0
	NAMEIGOS	531302	Single Cell Mining Claim	2021-01-09	400	0
	NAMEIGOS	531304	Single Cell Mining Claim	2021-01-09	400	0
	NAMEIGOS	531305	Single Cell Mining Claim	2021-01-09	400	0
	NAMEIGOS	531306	Single Cell Mining Claim	2021-01-09	400	0
	NAMEIGOS	531309	Single Cell Mining Claim	2021-01-09	400	0
	NAMEIGOS	531316	Single Cell Mining Claim	2021-01-09	400	0

	NAMEIGOS	531317	Single Cell Mining Claim	2021-01-09	400	0
	COOPER	531115	Multi-cell Mining Claim	2021-01-10	9200	0
	COOPER	531116	Multi-cell Mining Claim	2021-01-10	9600	0
	COOPER	531117	Multi-cell Mining Claim	2021-01-10	10000	0
	COOPER	531118	Multi-cell Mining Claim	2021-01-10	10000	0
	COOPER,STRICKLAND	531119	Multi-cell Mining Claim	2021-01-10	8000	0
	COOPER,STRICKLAND	531120	Multi-cell Mining Claim	2021-01-10	6000	0
	COOPER,STRICKLAND	531121	Multi-cell Mining Claim	2021-01-10	6400	0
	COOPER,STRICKLAND	531164	Multi-cell Mining Claim	2021-01-10	7200	0
	ABRAHAM	531086	Multi-cell Mining Claim	2021-01-18	9600	0
	ABRAHAM, COOPER	531087	Multi-cell Mining Claim	2021-01-18	9600	0
4281802	NAMEIGOS	134919	Boundary Cell Mining Claim	2021-02-16	200	0
4281802	NAMEIGOS	302908	Boundary Cell Mining Claim	2021-02-16	200	0
4281802	NAMEIGOS	281507	Boundary Cell Mining Claim	2021-02-16	200	0
4281802	NAMEIGOS	151061	Boundary Cell Mining Claim	2021-02-16	200	0
4281802	NAMEIGOS	150356	Boundary Cell Mining Claim	2021-02-16	200	0
4281802	NAMEIGOS	141005	Boundary Cell Mining Claim	2021-02-16	200	1139
4281805	NAMEIGOS	122945	Boundary Cell Mining Claim	2021-02-16	200	0
4281805	NAMEIGOS	290157	Boundary Cell Mining Claim	2021-02-16	200	0
4281805	NAMEIGOS	186333	Boundary Cell Mining Claim	2021-02-16	200	0
4281805	NAMEIGOS	133689	Boundary Cell Mining Claim	2021-02-16	200	0
4285671	NAMEIGOS	186239	Boundary Cell Mining Claim	2021-02-16	200	0
4285671	NAMEIGOS	319552	Boundary Cell Mining Claim	2021-02-16	200	0
4285671	NAMEIGOS	282751	Boundary Cell Mining Claim	2021-02-16	200	0
4285671	NAMEIGOS	186240	Boundary Cell Mining Claim	2021-02-16	200	0
4285672	NAMEIGOS	157827	Boundary Cell Mining Claim	2021-02-16	200	0
4285672	NAMEIGOS	344511	Boundary Cell Mining Claim	2021-02-16	200	0
4285672	NAMEIGOS	238950	Boundary Cell Mining Claim	2021-02-16	200	0
	NAMEIGOS	531332	Multi-cell Mining Claim	2021-02-16	9600	768
	NAMEIGOS	531333	Multi-cell Mining Claim	2021-02-16	4800	0
	NAMEIGOS	531334	Multi-cell Mining Claim	2021-02-16	10000	0
	NAMEIGOS	531336	Multi-cell Mining Claim	2021-02-16	9200	0
	NAMEIGOS	531337	Multi-cell Mining Claim	2021-02-16	9200	0
	NAMEIGOS	531338	Multi-cell Mining Claim	2021-02-16	9600	0
	NAMEIGOS	531341	Multi-cell Mining Claim	2021-02-16	800	0
	NAMEIGOS	531345	Multi-cell Mining Claim	2021-02-16	800	0
	NAMEIGOS	531346	Multi-cell Mining Claim	2021-02-16	1600	496
	ABRAHAM	531081	Multi-cell Mining Claim	2021-02-22	10000	0
	ABRAHAM	531082	Multi-cell Mining Claim	2021-02-22	9600	0
	ABRAHAM	531083	Multi-cell Mining Claim	2021-02-22	9600	0
	ABRAHAM, TEDDER	531048	Multi-cell Mining Claim	2021-02-22	9000	859
	ABRAHAM, TEDDER	531080	Multi-cell Mining Claim	2021-02-22	9600	0
	NAMEIGOS,STRICKLAND	531276	Multi-cell Mining Claim	2021-02-22	10000	0
	NAMEIGOS,STRICKLAND	531279	Multi-cell Mining Claim	2021-02-22	4000	0
	STRICKLAND	531160	Multi-cell Mining Claim	2021-02-22	8400	0
	STRICKLAND	531161	Multi-cell Mining Claim	2021-02-22	8400	0
	STRICKLAND	531277	Multi-cell Mining Claim	2021-02-22	7200	0
	ABRAHAM, COOPER	531084	Multi-cell Mining Claim	2021-03-10	9600	0
	COOPER	531085	Multi-cell Mining Claim	2021-03-10	9600	0
	COOPER	531088	Multi-cell Mining Claim	2021-03-10	9600	0
	COOPER	531089	Multi-cell Mining Claim	2021-03-10	8000	0
	COOPER	531090	Multi-cell Mining Claim	2021-03-10	9600	0
	COOPER	531091	Multi-cell Mining Claim	2021-03-10	9600	0
	COOPER	531092	Multi-cell Mining Claim	2021-03-10	9600	0
	COOPER	531093	Multi-cell Mining Claim	2021-03-10	10000	0
	COOPER	531113	Multi-cell Mining Claim	2021-03-10	10000	0
	COOPER	531114	Multi-cell Mining Claim	2021-03-10	10000	0
	OdLum	531205	Multi-cell Mining Claim	2021-03-27	4800	278
	HAMBLETON,ODLUM	531206	Multi-cell Mining Claim	2021-04-26	8200	345634
	BAYFIELD	549597	Multi-cell Mining Claim	2021-05-10	9600	0
	BAYFIELD	549623	Multi-cell Mining Claim	2021-05-10	9200	0
	BAYFIELD	549624	Multi-cell Mining Claim	2021-05-10	9600	0
	BAYFIELD	549625	Multi-cell Mining Claim	2021-05-10	8800	0
	BAYFIELD,BEATON	549626	Multi-cell Mining Claim	2021-05-10	9200	0

Appendix B - Lynx Zone - Geological Legend

Mafic Intrusives	Intermediate Volcanics
7A-Diabase	\square 2E-Intermediate Tuff
7B-Diorite	
7C-Lamprophyre	Felsic Volcanics
6A-Diorite	\square 2A-Felsic Massive Flows
6A-Diorite	2B-Felsic Tuff
6B-Gabbro	\square 2S-Sericite Schist
6C-Amphibilite	
6D-Peridotite	Mafic Volcanics
6G-Pyroxenite	
6E-Intermediate Dyke	1A-Massive Mafic Flows
6F-Mafic Dyke	1B-Pillowed Mafic Flows
Felsic Intrusives	1C-Agglomerate
5A-Granite	1D-Variolitic Flows
5B-Granodiorite	1E-Amygdaloidal/Vesicular Flows
	1F-Flow-top Breccia
5D-Syenite	1G-Amphibolitic Flows
4A-Quartz Porphyry	1H-Mafic Tuff
4B-Feldspar Porphyry	1I-Volcaniclastic
4C-Quartz-Feldspar Porphyry	1ALT-Altered Mafic Volcanic
4D-Felsite	1N-Hydrothermally Altered Basalt
4E-Pegmatite	1N-Hydrothermally Altered Basalt
4F-Felsic Dyke	
4ALT-Altered Feldspar Porphyry	Early Mafic Intrusive
Sediments	1Z-Gabbroic with gradational contacts
3A-Greywacke	
\square 3ALT-Altered Iron Formation w/sulphides	Ultramafic Volcanics
3B-Argillite	\square UM-Ultramafic
\square 3D-Iron Formation	1U-Ultramafic Flows
3E-Ferruginous Chert	1UT-Ultramafic Talc/Chlorite Altered
3F-Chert	
3G-Sulfide Facies Iron Formation	
3H-Reworked Tuffs	
31-Arenite	
\square 3S-Siltstone	

Assay Color Legend

	Assay Color Legend
UZ-Upper Zone	0-0.5
MZ-Middle Zone	0.6-1
	1.1-3
LZ-Lower Zone	3.1-5
QCV-Quartz-Carbonate Vein	5.1-8
	8.1-12
QTCSW-Quartz-Carbonate Stockwork	12.1-659
QTSW-Quartz Stockwork	
QV-Quartz Vein	
QZ-Quartz Zone	
QZ-STR-Quartz Stringer	

Appendix C - Lynx Zone - 2021 Drill Logs

BHID	FROM_M	TO_M	LENGTH_M	ROCK_CODE	ROCK	COMMENTS
LZ-21-16	0	3	3	CAS	Casing	
LZ-21-16	3	4.27	1.27	5A	Granite	Fg to mg, Light pink. Contains mainly felsic minerals with ~1-2\% Mag. No visible sulfides. Sharp contact with lower unit at 50 dtca.
LZ-21-16	4.27	131.96	127.69	5B	Granodiorite	Mg to Cg , Gray, Predominately felsic minerals. Top of the unit is fg to mg , with a slight foliation, near perpendicular to core axis, then at $\sim 46 \mathrm{~m}$ unit becomes coarser grained and looses the foliation. With the exception of a coarse grained sub-euhedral Py grain at the contact with a minor Pegmatite at 5 m and a small patch of blebby Py at ${ }^{\sim} 104 \mathrm{~m}$, there is up to $.5 \%$ vfg disseminated Py. Few patches and 1 cm thick veins of pegmatitic smoky quartz.
LZ-21-16	131.96	133.29	1.33	4E	Pegmatite	VCg Pink with grayish Qtz. Trace Py.
LZ-21-16	133.29	140.45	7.16	5B	Granodiorite	Mg to Cg, Gray, Predominately felsic minerals. ${ }^{\sim} 0.5 \%$ disseminated Py
LZ-21-16	140.45	142	1.55	QV	Quartz Vein	VCg. Pegmatitic smoky Qtz vein. Minor Mg to Cg grains of feldspar disseminated throughout unit. Patches of platy Amph-Bt (+-Chl) that contain VFg disseminated Py.
LZ-21-16	142	150.95	8.95	5B	Granodiorite	Mg to Cg, Gray, Predominately felsic minerals. ${ }^{\sim} 0.5 \%$ vfg disseminated Py.
LZ-21-16	150.95	152.55	1.6	6F	Mafic Dyke	Grey to dark blackish grey, fine grained usually massive mafic dyke predominantly consisting of dark grey to black minerals (pyx+amph+Bt+plag feldspars+/-qz). Moderately foliated by dominant Bt? This unit contains minor xenoliths of granodiorite or greywacke (these xenoliths contain feld+qz+dark green amph?+/=k-feld?). The fractures within this unit is altered with some red to orange red minerals+/-carbonates+/-minor chl?)
LZ-21-16	152.55	159.95	7.4	5B	Granodiorite	Grey to dark grey, fine to medium grained, massive to foliated granodiorite mostly composed of $\mathrm{qz}, \mathrm{fs}, \mathrm{bt}$, hornblende(?) and other accessory minerals. The foliation is usually nearly parallel to the TCA and dominated by Bt and other dark grey minerals. There are minor interlayered units of mafic dyke, minor pegmatitic veins, smoky qz veins. From 153 to 153.5 m there are disseminated sulphides to up to 0.1% locally. Fractures are altered and healed by brownish-red minerals and some ser alt can be observed along them. Some sections within this unit are similar to the qz+feld+dark green amph zones usually seen in greywacke units?

LZ-21-16	159.95	161.41	1.46	6F	Mafic Dyke	Grey to dark blackish grey, fine grained usually massive mafic dyke predominantly consisting of dark grey to black minerals (pyx+amph+Bt+plag feldspars+/-qz). Moderately foliated by dominant Bt? This section has intersected granodiorite along the interval as drilling is along or nearly parallel to foliation. There is an irregular fragment of smoky-qz from 160.89 to 161 m with rare to no significant sulphides.
LZ-21-16	161.41	165.14	3.73	5B	Granodiorite	Grey to occasionally pinkish (k-fs?) grey, fine to medium grained, massive granodiorite mostly composed of $q z, f s$, $b t$, hornblende(?) and other accessory minerals. There are minor sections within the unit that has patches with composition similar to the qz feld+/-k-fs+dark green amph+/-epidote). This could be minor interlayers from greywacke units?
LZ-21-16	165.14	166.6	1.46	5A	Granite	Beige to light pink, fine grained, usually equigranular massive granites predominantly composed of $\mathrm{k}-\mathrm{fs} / \mathrm{fs}, \mathrm{qz}, \mathrm{bt}$, hornblende? and other accessory minerals. There are a couple of 1 to 2 cm smoky-qz veins that cut nearly 90 degrees to the TCA.
LZ-21-16	166.6	176	9.4	5B	Granodiorite	Grey to occasionally pinkish (k-fs?) grey, medium grained, massive to foliated granodiorite mostly composed of qz, fs, bt, hornblende(?) and other accessory minerals. The foliation is dominated by biotite and or dark grey felsic minerals. There are minor sections from 174 m within the unit that has patches with composition similar to the qz feld+/-k-fs+dark green amph+/-epidote). There are very rare specks of sulphides associated with these zones are usually attached to light to dark green zones (epidote - amph?). There is a smoky-qz irregular fragment/vein? from 171.26 to 171.36 m with insignificant sulphides. The fractured zones are occasionally mineralized with brownish-red minerals (hematite?) and also altered with sericite.
LZ-21-16	176	179.84	3.84	5A	Granite	Beige to reddish pink, fine to medium grained, massive granites predominantly composed of $\mathrm{k}-\mathrm{fs} / \mathrm{fs}, \mathrm{qz}$, bt, hornblende? and other accessory minerals. This unit is cut intermittently by fractures filled by a light- dark grey mineral. There are minor coarse grained fragments of smoky grey qz/pegmatitic units? The bottom contact with the 5B unit is very irregular/undulating.
LZ-21-16	179.84	181.37	1.53	5B	Granodiorite	Grey to occasionally pinkish (k-fs?) grey, fine to medium grained, massive granodiorite mostly composed of qz, fs, bt, hornblende(?) and other accessory minerals. This unit has patches with composition similar to the qz, feld+/-k-fs+dark green amph+/-epidote). This could be either be interlayers from greywacke units or altered sections of the granodiorite (epidote+dark green amph+k-fs)? The lower contact with the feldspar porphyry is irregular.

LZ-21-16	181.37	194.04	12.67	4B	Feldspar Porphy	Dark grey, fine to medium-grained, foliated, porphyritic feldspar porphyry?. This unit has feldspar phenocrysts? that are lightly strained? (but the dark grey to black layers of bt or amph seems stretched?), within a finer-grained, qz-fs matrix, producing a porphyritic like texture. The foliation is defined by dark grey bt or amph bands/layers. Sometimes these phenocrysts seems to be more evident when the dark grey layers of bt? bound these minerals. Also the phenocrysts are mostly aligned parallel to the TCA except along the bottom section (from 192 to 194 m) where it seems to be at a higher angle (approximately 75 to 80 degrees?). Throughout the unit, there are disseminations/blebs of a light pale-olive green mineral (could be an overprinting). Sometimes this mineral assumes a lathy habit? There are interlayers of minor granodiorite and granite within this unit. There is light to moderate sericite alteration (evident from 189.48 to 191.13m). This 4B unit could also be fol'td-alt 5B?
LZ-21-16	194.04	195.13	1.09	5A	Granite	Beige to reddish pink, fine to medium grained, massive granites predominantly composed of $\mathrm{k}-\mathrm{fs} / \mathrm{fs}, \mathrm{qz}$, bt, hornblende? and other accessory minerals. This unit is cut intermittently by fractures and occasionally filled by a brick red mineral. Irregular upper and sharp lower contacts with the wall rock.
LZ-21-16	195.13	205.55	10.42	4B	Feldspar Porphy	Dark grey, fine to medium-grained, foliated, porphyritic feldspar porphyry?. This unit has feldspar phenocrysts? that are lightly strained? (but the dark grey to black layers of bt or amph seems stretched?), within a finer-grained, qz-fs matrix, producing a porphyritic like texture. The foliation is defined by dark grey bt or amph bands/layers. Sometimes these phenocrysts seems to be more evident when the dark grey layers of bt? bound these minerals. This unit (from 195.13 to $198 \mathrm{~m})$, there are sections of alt patches with light green-pinkish red- beige colored minerals (ep-k-fs-fs+/chl?) also with minor disseminations/blebs of a light pale-olive green mineral (could be an overprinting). These alt patches could be associated to the intruding granites. There are interlayers of minor granodiorite like? and granite intrusions within this unit. There is light to moderate sericite alteration (evident from 198 to 201m). This 4B unit could also be a fol'td-alt 5B?

LZ-21-16	205.55	208.63	3.08	5B	Granodiorite	Grey, medium grained, massive to foliated granodiorite mostly composed of qz, fs, bt, hornblende(?) and other accessory minerals. This unit has minor patches with composition similar to the qz, feld+/-green amph+/-epidote). The lower contact with the feldspar porphyry is irregular. There are minor qz, qz-fs veinlets within this unit along with fragments of smoky-qz associated or bounded by light to pale green epidote? and k -fs?. The foliation is dominated dark grey amph? and/or biotite. Some fractures show sericite alt and others are observed to be healed with brownish-red minerals? Sulphides are very minor and occur as rare blebs and disseminations.
LZ-21-16	208.63	210.31	1.68	4E	Pegmatite	Pinkish grey to light brown, coarse grained, massive, qz-kfs-bt+/- accessory minerals pegmatite/granite (?). The unit has sharp upper and lower contacts with the granodiorite.
LZ-21-16	210.31	217.79	7.48	5B	Granodiorite	Grey to dark grey, medium grained, foliated granodiorite mostly composed of qz, fs, bt, hornblende(?) and other accessory minerals. The foliation is dominated dark grey amph? and/or biotite. Some fractures show sericite alteration and others are observed to be healed with brownish-red minerals? The foliation observed seems to be nearly parallel to the TCA (ranging between 5 to 10 degrees?). Minor disseminations of sulphides can be identified within this interval. Occasional epidote? is seen along the exposed fractures.
LZ-21-16	217.79	218.88	1.09	5A	Granite	Beige to reddish pink, fine to medium grained, massive granites predominantly composed of k-fs/fs, qz, bt, hornblende? and other accessory minerals. Appears to have a sharp upper and lower contact with the foliated granodiorite.
LZ-21-16	218.88	230	11.12	5B	Granodiorite	Dark grey, medium grained, foliated (moderate intensity?) granodiorite mostly composed of $\mathrm{qz}, \mathrm{fs}, \mathrm{bt}$, hornblende(?) and other accessory minerals. The foliation is dominated dark grey amph? and/or biotite. Some fractures show sericite alteration and others are observed to be healed with brownish-red minerals? The foliation observed seems to be nearly parallel to the TCA (ranging between 5 to 10 degrees?). Minor disseminations of sulphides can be identified within this interval throughout. There are minor intrusions of granites (5 to 15 cm) within this interval. There is also 1 cm smoky qz-k-fs vein at 224.74 to 224.88 m (true width is $1.5 \mathrm{~cm}, 20$ degree to TCA). This could be a pegmatitic intrusion.

LZ-21-16	230	231.96	1.96	5A	Granite	Brownish red, medium grained, massive granite predominantly composed of k $\mathrm{fs} / \mathrm{fs}, \mathrm{qz}, \mathrm{bt}$, hornblende? and other accessory minerals. This intruding unit is broken and fragmented throughout the interval. This unit has a broken upper and an irregular lower contact. The granitic intrusion seems to have enclosed or further intruded into a minor section of mafic dyke (dark grey green, sericite altered rock unit). The granite has a few 0.5 to up tp 4 cm quartz veins with no visible sulphides but at times enclosing some minor dark grey green mafic dyke? wall rock laminae?. The section is broken from 230.85 to 231.25 m . The fractured surfaces show chl? and some minor k-fs alteration.
LZ-21-16	231.96	241.9	9.94	5B	Granodiorite	Grey to dark grey, medium grained, foliated (moderate intensity?) granodiorite mostly composed of qz, fs, bt, hornblende(?) and other accessory minerals. The foliation is dominated dark grey amph? and/or biotite. Some fractures show sericite alteration and others are observed to be healed with brownish-red minerals? These reddish mineral healed fractures sometimes crosscut the nearly TCA parallel foliation. The foliation observed seems to be nearly parallel to the TCA (ranging between 5 to 10 degrees?). Disseminations of sulphides can be identified within this interval throughout ranging up to 0.1% locally. There are minor intrusions of granites and pegmatites within this unit.
LZ-21-16	241.9	244.17	2.27	5A	Granite	Pink to reddish pink, medium to coarse grained, massive granite predominantly composed of $\mathrm{k}-\mathrm{fs} / \mathrm{fs}, \mathrm{qz}, \mathrm{bt}$, hornblende? and other accessory minerals. This intruding unit is broken at certain sections of this interval (244.75 to 245 m). This unit has an intrusive upper contact (with pegmatite) and an irregular lower contact with the foliated granodiorite. The granitic intrusion seems to have enclosed or further intruded into a section of mafic dyke (dark grey green amph altered, minor sericite altered rock unit?) and granodiorite unit. There are minor fingers of pegmatitic intrusions as well within the unit.

LZ-21-16	244.17	256.46	12.29	5B	Granodiorite	Dark green grey to dark grey and occasionally lighter grey, medium grained, foliated (moderate intensity?) granodiorite mostly composed of qz, fs, bt, hornblende(?) and other accessory minerals. The foliation is dominated dark grey amph? and/or biotite. Some fractures show sericite alteration and others are observed to be healed with brownish-red minerals? The foliation observed seems to be nearly parallel to the TCA (ranging between 5 to 10 degrees?). There are minor intrusions of granites and pegmatites within this unit. Some patches of blebby Po and minor Py is observed with the altered granodiorite section within this interval. From 244.217 to 245.70 m , there appears to be a minor altered (dark grey green amph, chl?, minor sericite?) intrusive section of possible mafic dyke (?)
LZ-21-16	256.46	258.2	1.74	5A	Granite	Pink to reddish pink, medium to coarse grained, equigranular (some sections) massive granite predominantly composed of $\mathrm{k}-\mathrm{fs} / \mathrm{fs}, \mathrm{qz}, \mathrm{bt}$, hornblende? and other accessory minerals. Sharp upper and irregular lower contacts with the granodiorite unit.
LZ-21-16	258.2	272.05	13.85	5B	Granodiorite	Dark grey and occasionally lighter grey, medium grained, foliated (moderate intensity?) granodiorite mostly composed of qz, fs, bt, hornblende(?) and other accessory minerals. The foliation (5 to 10 degrees to TCA) is dominated by dark grey amph? and/or biotite. There appears to be a dark grey-green mafic dyke like intrusion from the upper contact to 258.56 m ?). This section is affected by sericite alt?, dark green amph and minor patchy epidote-k-fs alt?. Sulphides are present as disseminations from 258.65 to 259 m and 260 to 260.51 m and also as patches/blebs near to intrusive pegmatite contacts within this unit. There are minor intrusions of granite, pegmatites and a mafic dyke (?) within this interval.
LZ-21-16	272.05	278.1	6.05	5A	Granite	Pinkish grey, medium grained, equigranular, massive granite predominantly composed of k-fs/fs, qz, bt, hornblende? and other accessory minerals. Sharp upper and lower contacts with the granodiorite unit. There is a pegmatite intrusion within this interval.

LZ-21-16	278.1	293.3	15.2	5B	Granodiorite	Dark grey medium grained, foliated (moderate intensity?) granodiorite mostly composed of qz, fs, bt, hornblende(?) and other accessory minerals. The foliation (5 to 25 degrees to TCA) is dominated by dark grey amph? and/or biotite. Some fractures show sericite alteration and others are observed to be healed with brownish-red minerals? There are minor intrusions of granites and pegmatites within this unit. Sulphides occur as disseminations throughout some sections of this interval and as patchy blebs associated to a smoky qz vein/fragment /could be qz grains aligned parallel to dominant foliation from 291.22 to 291.46 m . Sulphides appear to overprint the dark green-grey minerals which bound the smoky-qz and occasionally occur within qz.
LZ-21-16	293.3	307.63	14.33	5A	Granite	Light grey to pinkish grey, medium grained, equigranular, occasionally massive granite predominantly composed of k-fs/fs, qz, bt, hornblende? and other accessory minerals. Sharp upper and lower contacts with the granodiorite unit. There are several interlayers of granodiorite within this interval. 5 to 90 cm sections of pegmatite intrusions are also common.
LZ-21-16	307.63	321.43	13.8	5B	Granodiorite	Dark grey medium grained, foliated (moderate intensity?) granodiorite mostly composed of qz, fs, bt, hornblende(?) and other accessory minerals. The foliation (5 to 25 degrees to TCA) is dominated by dark grey amph? and/or biotite. Some fractures show sericite alteration. There are minor intrusions of granites and pegmatites (certain section has up to 20\% Py locally as euhedral crystals and blebs) within this unit. From 315.59 to 315.96 m, there is an alteration patch consisting of qz-ep-qz/fs-dark green amph-bt-Kfs? (kfs alternating with dark grey bands). The dark grey bands trend at 30 degrees to TCA).
LZ-21-16	321.43	323.75	2.32	5A	Granite	Pinkish grey to beige, medium grained, equigranular, occasionally massive granite predominantly composed of $k-f s / f s, q z, b t$, hornblende? and other accessory minerals. Sharp upper and lower contacts with the granodiorite unit. There is a minor 4 cm pegmatite intrusion within this interval.
LZ-21-16	323.75	326.83	3.08	5B	Granodiorite	Dark grey medium grained, foliated (moderate intensity?) granodiorite mostly composed of qz, fs, bt, hornblende(?) and other accessory minerals. The foliation (5 to 25 degrees to TCA) is dominated by dark grey amph? and/or biotite. Some fractures show sericite alteration. There is a minor pegmatite intrusion within this interval. Appears to have sharp upper and lower contacts. Sulphides are observed as disseminations either adjacent to an intruding pegmatite at times following the trend of foliation and seeming to overprint the (dark grey-qz-fs bands?) within the granodiorite.

LZ-21-16	326.83	330.49	3.66	5A	Granite	Light grey medium grained, equigranular, occasionally massive, pegmatitic granite predominantly composed of k-fs/fs, qz, bt, hornblende? and other accessory minerals. Sharp upper contact with the granodiorite unit.
LZ-21-16	330.49	332.83	2.34	5B	Granodiorite	Dark grey medium grained, massive to foliated (low to moderate intensity?) granodiorite mostly composed of qz, fs, bt, hornblende(?) and other accessory minerals. The foliation (10 to 25 degrees to TCA) is dominated by dark grey amph? and/or biotite. Some fractures show sericite alteration. There is a minor pegmatite intrusion within this interval. Appears to have sharp upper and lower contacts. Sulphides are observed as disseminations usually overprinting the dark grey minerals which the define the foliation in this unit.
LZ-21-16	332.83	337.07	4.24	$5 A$		

LZ-21-16	361.15	366.82	5.67	5B	Granodiorite	Dark grey medium grained, foliated (moderate intensity?) granodiorite mostly composed of qz, fs, bt, hornblende(?) and other accessory minerals. The foliation (20 to 30 degrees to TCA) is dominated by dark grey amph? and/or biotite. Some fractures show sericite alteration. There are minor intrusions of granites within this unit. There are patches of pale green to beige alteration parallel to the trend of foliation (ep-fs alt?). Section 365.11 to 365.70 m and 366 to 366.82 m appears to have different fabric, more mafic minerals, bt? with respect to the granodiorite. This sections (foliated mafic dyke?) appears to more stressed? strongly foliated (30 degree TCA) with considerably lesser amounts of lighter grey felsic minerals.
LZ-21-16		366.82	368.34	1.52		

LZ-21-16	383.94	387.8	3.86	$4 B$		

LZ-21-16	404.76	419.76	15	1B	Pillowed Flows	Dark green, fine-grained, foliated, pillowed mafic unit, where the pillows are flattened and are dark grey and primarily composed of plagioclase and amphibole, and the pillow selvages are green and composed of plagioclase, epidote?/diopside +/- amphibole. Unit is composed predominately of mafic minerals with lesser amounts of interstitial plagioclase as well as minor amounts of biotite? Light green alteration bands could be composed of diopside-epidote? -dark green amph? intermittently throughout. This units consists of wisps of stretched and or boudinaged felsic veinlets which are parallel to the foliation of the unit. Sulphides occur as fine disseminations and also as fracture controlled blebs of up to 1% locally, at times parallel to remnant foliation. This unit has interlayers of feldspar porphyry's, pegmatite and fine grained mafic flows within this interval.
LZ-21-16	419.76	421.84	2.08	5A	Granite	Light grey to pink, medium grained, equigranular, occasionally massive and foliated, composed of $k-f s / f s, q z, b t$, hornblende? and other accessory minerals. Sharp upper and lower contacts with the pillowed mafic flows. Could this be more altered or silicified layer within the mafics. Foliation is present and dominated by wispy, dark grey green minerals with a trend almost parallel to the bounding pillowed flows?
LZ-21-16	421.84	431.21	9.37	1B	Pillowed Flows	Dark green, fine-grained, foliated, pillowed mafic unit, where the pillows are flattened and are dark grey and primarily composed of plagioclase and amphibole, and the pillow selvages are green and composed of plagioclase, epidote?/diopside +/- amphibole. Unit is composed predominately of mafic minerals with lesser amounts of interstitial plagioclase as well as minor amounts of biotite? Light green alteration bands could be composed of diopside-epidote? -dark green amph? intermittently throughout. Sulphides occur as fine disseminations and also as fracture controlled blebs of up to 1% locally, at times parallel to remnant foliation. Intermittently this unit grades into sections of massive flows. There are interlayers of feldspar porphyry's (some sections altered), minor felsic tuff bands? The 4B units within occasionally have up to 0.1% dissem sulphides. From 429.92 to 431.08 m-interlayered with 4B with irregular/undulating contact nearly parallel to TCA.

LZ-21-16	431.21	433.9	2.69	4B		

LZ-21-16	444	448.69	4.69	1A		

LZ-21-16	458.24	460.24	2		1B	

LZ-21-16	481.76	512.2	30.44	1B	Pillowed Flows	Dark green, fine-grained, foliated, pillowed mafic unit, where the pillows are flattened and are dark grey and primarily composed of plagioclase and amphibole, and the pillow selvages are green and composed of plagioclase, epidote?/diopside +/- amphibole. Unit is composed predominately of mafic minerals with lesser amounts of interstitial plagioclase as well as minor amounts of biotite? Light green alteration bands could be composed of diopside-epidote? -dark green amph? within this interval. This units consists of wisps of stretched and or boudinaged felsic veinlets, rotated porphyroblasts ? which are sometimes parallel to the foliation of the unit. There are several interlayers of granite, pegmatite, tuff bands? and feldspar porphyry's. Sulphides are usually present as patches (within the di-epidote alt sections) and along exposed fractures. There are several minor thin qz stringers/veinlets within this interval that do not have significant sulphides associated to it.
LZ-21-16	512.2	517.84	5.64	4B	Feldspar Porphy	Medium grained, felsic unit, light to dark grey, composed of predominately quartz, plagioclase and biotite. Millimetric sized feldspar phenocrysts throughout that produce a porphyritic texture (where phenocrysts are moderate to strongly foliated). Matrix may be is composed of qz, plagioclase fs and bt (?). The upper contact of the unit appears to be affected by bleaching? or epidote- $+/-\mathrm{ch}$ alteration?. This alt has obscured the texture compared to other parts of the interval. Certain sections do have bands of whitish grey/felsic minerals (qz-qz/fs with dark green (amph?) wisps. Sericite alt is observed along exposed fractures surfaces.
LZ-21-16	517.84	526.34	8.5	1A	Massive Flows	Dark greyish green, fine-grained, massive mafic flows. Unit is composed predominately of amphibole with lesser amounts of grey plagioclase interstitially. The upper section may have sections of pillowed flows with some selvages observed along sections of the interval. Amphibole alteration could be pervasive, but is obscure at most interval due to an overprinting olive green alteration halochl? (521.57 to $521.77 \mathrm{~m}, 523.15$ to $523.63 \mathrm{~m}, 524$ to 526.11 m . This unit is weakly foliated in certain sections of the interval. Patchy epidote alt is observed along fractures. No major visible sulphides are observed within the interval.

LZ-21-16	526.34	532.29	5.95	4B	Feldspar Porphy	Medium grained, felsic unit, light to dark grey, composed of predominately quartz, plagioclase and biotite. Millimetric sized feldspar phenocrysts throughout that produce a porphyritic texture (where phenocrysts are moderate to strongly foliated). Matrix may be is composed of qz, plagioclase fs and bt (?). Section 526.34 to 527 m show an overprinting pale olive green alt halo, but inherent texture of the rock can still be observed. The interval is crosscut by numerous light greenish white veinlets (usually at high angles with TCA) throughout the unit. Sulphides are rare in this interval. The lower contact is affected by a fault zone. From 531.44 to 532.29 m , the texture is affected by the pale green-greyish white alt possibly due to the FZ below or because of the crosscutting veinlets discussed above.
LZ-21-16	532.29	534.35	2.06	FZ	Fault Zone	Broken and brecciated with considerable amount of fault gouging. Minor broken pegmatitic intrusives can be observed within.
LZ-21-16	534.35	539.74	5.39	12	Gabbroic with gr	Fine to medium grained, grey to dark green gabbro with gradational contacts. Unit is composed predominately of mafic minerals with lesser amounts of grey plagioclase interstitially. Pervasive amphibole alteration present with biotite as well. The texture is obscured due to an overprinting of dark green alteration possibly due to the fault zone above. Weak foliation defined at places by whitegrey fs? and dark grey rounded mafic minerals. Sulphides occur as blebs and as euhedral grains randomly oriented and seems to be associated with the alteration halo.
LZ-21-16	539.74	547	7.26	1A	Massive Flows	Dark greyish green, fine-grained, massive mafic flows. Unit is composed predominately of amphibole with lesser amounts of grey plagioclase interstitially. The upper section may have sections of pillowed flows with some selvages observed along sections of the interval. Some sections also appear to be gabbroic with gradational contacts. Sulphides are insignificant and at times occur as minor disseminations.

LZ-21-16	547	P62.84	15.84	1B		

LZ-21-16	574	607.42	33.42	12	Gabbroic with gr	Fine to medium grained, grey to dark green gabbro with gradational contacts. Unit is composed predominately of mafic minerals with lesser amounts of grey plagioclase interstitially (seems to be boudinaged?). Pervasive amphibole alteration present with biotite as well occurring as random patches/wisps and occasionally as bands. This interval is weak to moderately foliated and is defined by white-grey fs? and dark grey rounded mafic minerals. Garnet porphyroblasts are observed as sections along various intervals within the unit mostly assuming a trend parallel to the remnant foliation. There are several fragments of qz veins/stringers that are irregular and discontinuous with minor to rare sulphides occurring as specks usually as overprinting on wall rock laminations bounding the vein. Sulphides also occur as very thin stringers and also as fractured controlled patches locally up to 0.5%. Section 598.93 to 599.50m (Band of alteration - Di-ep-bt-amph?) as very thin alternating bands)
LZ-21-16	607.42	625.35	17.93	1B	Pillowed Flows	Dark green, fine-medium grained, foliated, pillowed mafic unit, where the pillows are flattened and are dark grey and primarily composed of plagioclase and amphibole, and the pillow selvages are dark green and composed of plagioclase, epidote?/diopside +/- amphibole. Unit is composed predominately of mafic minerals with lesser amounts of interstitial plagioclase (seems to be boudinaged? or is it isolated eye shaped qz?) as well as minor amounts of biotite? Light green alteration bands could be composed of diopside-epidote? within this interval. This units consists of wisps of stretched qz, felsic veinlets, which are sometimes parallel or irregular to the remnant foliation of the unit. Sulphides are present within fractures as patches and occasionally as overprinting over the di-ep-amph alt bands? within this interval. Bands of bt layers and rare porphyroblasts of $g t$ is observed.
LZ-21-16	625.35	627.12	1.77	4B	Feldspar Porphy	Medium grained, felsic unit, light to dark grey, composed of predominately quartz, plagioclase and biotite. Millimetric sized feldspar phenocrysts throughout that produce a porphyritic texture (where phenocrysts are moderate to strongly foliated). Matrix may be is composed of qz, plagioclase fs and bt (?). The texture is defined by alternating dark grey felsic - whitish qz-fs - dark green amp? bands. There are wisps of sulphides in between the layers which are very minor within this interval. Bt alteration patches are observed along the lower contact.

LZ-21-16	627.12	640.96	13.84	1B	Pillowed Flows	Dark green, fine-medium grained, foliated, pillowed mafic unit, where the pillows are flattened and are dark grey and primarily composed of plagioclase and amphibole, and the pillow selvages are dark green and composed of plagioclase, epidote?/diopside +/- amphibole. Unit is composed predominately of mafic minerals with lesser amounts of interstitial plagioclase (seems to be boudinaged?) as well as minor amounts of biotite? Light green alteration bands could be composed of diopside-epidote? within this interval. This units consists of wisps of stretched qz, felsic veinlets?, which are sometimes irregular to the remnant foliation of the unit. Sulphides are present within fractures as patches within this interval. There are minor interlayers of feldspar porphyry's and thin granitic and pegmatitic intrusions. Certain sections have increased banding of biotite and mafic minerals with a blackish grey hue. This unit grades into an ultra mafic flow.
LZ-21-16	640.96	644.3	3.34	7A	Diabase	Very fine grained, dark greenish grey, massive mafic unit composed of mostly mafic minerals of amphibole/pyroxene and interstitial very fine grained greenish white plagioclase. Higher magnetic susceptibility and moderately magnetic compared to the mafic flows above and the below. Sharp upper and lower contacts. Sulphides are present as fracture controlled Py patches and also along minor veining as overprinting that crosscuts the diabase irregularly throughout the interval.
LZ-21-16	644.3	653	8.7	1A	Massive Flows	Dark greyish green, fine-grained, massive mafic flows. Unit is composed predominately of amphibole with lesser amounts of grey plagioclase interstitially. The interval have sections of pillowed flows with some selvages observed and minor sections of gabbro with gradational contacts. Sulphides (mostly Po) are insignificant as disseminations but at times occur as patches along fractures. Rarely sulphides occur as stringers as well. There are intermittent bands of alt zones usually Di-ep-dark green amph?. Biotite bands and patches can be observed throughout, but as wisps in the massive flow sections.

LZ-21-16	653	660	7	12	Gabbroic with gr	Fine grained, blackish green gabbro with gradational contacts. Unit is composed predominately of mafic minerals with lesser amounts of grey plagioclase interstitially. Pervasive amphibole alteration present with biotite as well occurring as random patches/wisps and occasionally as bands. This interval is moderately foliated and is defined by dark grey sub-rounded mafic minerals and biotite layers? There are several fragments of qz veins/stringers that are irregular and discontinuous with minor to rare sulphides Sulphides also occur as very thin stringers and also as fractured controlled patches locally up to 0.5-1\%.
LZ-21-16	660	674	14	1A	Massive Flows	Dark greyish green, fine-grained, massive mafic flows. Unit is composed predominately of amphibole with lesser amounts of grey plagioclase interstitially. The interval have sections of pillowed flows with some selvages observed and minor sections of gabbro with gradational contacts. Sulphides occur as very thin stringers usually parallel to remnant foliation? but at times occur as patches along fractures. There are intermittent bands of alt zones usually Di-ep-dark green amph?. Biotite bands and patches can be observed throughout, but as wisps in the massive flow sections. This units consists of wisps of stretched and or boudinaged qz/felsic veinlets, which are sometimes parallel to the foliation of the unit. Minor porphyroblasts of gt is observed within this interval randomly.
LZ-21-16	674	681.84	7.84	1B	Pillowed Flows	Dark green, fine grained, foliated, pillowed mafic unit, where the pillows are flattened and are dark grey and primarily composed of plagioclase and amphibole, and the pillow selvages are dark green and composed of plagioclase, epidote?/diopside +/- amphibole. Unit is composed predominately of mafic minerals with lesser amounts of interstitial plagioclase (seems to be boudinaged?) as well as minor amounts of biotite? Light green alteration bands could be composed of diopside-epidote? within this interval. This units consists of wisps of stretched qz, felsic veinlets? There are intervals within this unit that are more foliated that appears to be more of a $1 Z$ unit. Some sections also are very fine grained and massive with respect to texture.. Sulphides are present within fractures as patches within this interval. There are minor interlayers of granite within.

LZ-21-16	681.84	683.87	2.03	5A	Granite	Light grey to white, medium to coarse grained, massive, occasionally pegmatitic composed of k-fs/fs, qz, bt, hornblende? and other accessory minerals. Irregular upper and lower contacts with the mafic flows. Upper and lower contacts are bounded by a layer of biotite alteration. The core is broken from 683.15 to 683.70m.
LZ-21-16	683.87	688.95	5.08	1A	Massive Flows	Dark greyish green, fine-grained, massive mafic flows. Unit is composed predominately of amphibole with lesser amounts of grey plagioclase interstitially. The interval have sections of pillowed flows with some selvages observed and minor sections of gabbro with gradational contacts. Sulphides occur as very minor wisps and at times occur as patches along fractures of up to 0.5% locally. There are intermittent bands of alt zones usually Di-ep-dark green amph? adjacent to a silicified zone/qz/qz-fs veining?. Biotite bands are prominent in certain intervals and patches can be observed throughout, but as wisps in the massive flow sections. This units consists of wisps of stretched and or discontinuous boudinaged qz /felsic veinlets, which are sometimes parallel to the foliation of the unit. The core is broken from 685.44 ton 686.20 m .
LZ-21-16	688.95	711.25	22.3	1B	Pillowed Flows	Dark green, fine grained, foliated, pillowed mafic unit, where the pillows are flattened and are dark grey and primarily composed of plagioclase and amphibole, and the pillow selvages are dark green and composed of plagioclase, epidote?/diopside +/- amphibole. Unit is composed predominately of mafic minerals with lesser amounts of interstitial plagioclase, as well as minor amounts of biotite? Light green alteration bands could be composed of diopside-epidote? within this interval. This units consists of wisps of stretched qz, felsic veinlets? There are several thin qz, qz-fs, qz-carbonate/calcite veinlets crosscutting throughout the interval. There are intervals within this unit that are more foliated that appears to be more of a $1 Z$ unit. Some sections also are very fine grained and massive in nature with respect to texture. Sulphides are present within fractures as patches within this interval. Section 692.70 to 692.95 m - Broken, brecciated with minor offset across qz-qz-carb veins

LZ-21-16	711.25	713.03	1.78	4B		

LZ-21-16	729.85	731.78	1.93			

LZ-21-16	753.23	754.35	1.12		4B	

LZ-21-16	760.6	767.7	7.1	1A	Massive Flows	Dark greyish green, fine-grained, massive mafic flows. Unit is composed predominately of amphibole with lesser amounts of grey plagioclase interstitially. The interval have minor sections of pillowed flows with some selvages observed within the interval. There are intermittent bands of alt zones usually Di-ep-dark green amph?. Biotite wisps are prominent throughout. There are minor qz wisps/veinlet fragments within this section at around 762.30 to 762.42 m and 763.41 to 763.50 m respectively. There are no visible sulphides associated with this qz/qz-fs stringers/wisps. There is an irregular altered section from 765.57 to 765.85 m with diopside-epidote-Fe carbonates+/-K-fs?. No major visible sulphides associated to this section.
LZ-21-16	767.7	769.05	1.35	4B	Feldspar Porphy	Medium grained, felsic unit, light to dark grey, composed of predominately quartz, plagioclase and biotite. Millimetric sized feldspar/qz (eye shaped) phenocrysts throughout that produce a porphyritic texture (where phenocrysts are moderate to strongly foliated). Matrix may be is composed of qz, plagioclase fs and bt (?). The texture is defined by alternating dark grey felsic - whitish qz-fs phenocrysts - dark green amp or bt? Weak sericite alteration along fractures.
LZ-21-16	769.05	779.38	10.33	12	Gabbroic with gr	Fine to medium grained, blackish green gabbro with gradational contacts. Unit is composed predominately of mafic minerals with lesser amounts of grey plagioclase interstitially. Pervasive amphibole alteration present with biotite as well occurring as random patches/wisps and occasionally as bands. This interval is moderately foliated and is defined by dark grey sub-rounded mafic minerals and biotite layers? There are minor fragments of qz veins/stringers that are irregular and discontinuous with rare sulphides. Sulphides occur as fractured controlled patches locally up to 0.1% and as disseminations (overprinting the dark green amph? often bounding qz veining/stringers. Some sections of the interval appear to have remnants of pillowed mafic flows and are massive in texture in certain sections. There are minor interlayers of granite, pegmatite and feldspar porphyry's.
LZ-21-16	779.38	781.56	2.18	3A	Greywacke	Grey to dark grey, fine-grained, foliated, bedded greywacke. This unit is primarily composed of feldspar and biotite. This unit is mostly devoid of visible sulfides, but rare wisps or discontinuous stringers are observed usually parallel to the remnant bedding. There are several 2 cm sections of white to dark green minerals alternating as bands within this interval (qz-amph?). The dark green mineral in these bands or zones occur either as wisps, laths or irregular patches. Minor pervasive sericite alteration along fractures as well.

LZ-21-16	781.56	783.78	2.22		4B	

LZ-21-16	794.75	797.14	2.39			

LZ-21-16	803.59	806	2.41	1B	Pillowed Flows	Dark green, fine grained, foliated, pillowed mafic unit, where the pillows are flattened and are dark grey and primarily composed of plagioclase and amphibole, and the pillow selvages are dark green and composed of plagioclase, epidote?/diopside +/- amphibole. Unit is composed predominately of mafic minerals with lesser amounts of interstitial plagioclase, as well as minor amounts of biotite? Light green alteration bands could be composed of diopside-epidote? within this interval. Sulphides are rare and occur as minor fracture controlled patches of up to 0.1% locally. There a are a few qz stringers (discontinuous)/wisps within this interval.
LZ-21-16	806	808.08	2.08	4B	Feldspar Porphy	Medium grained, felsic unit, light to dark grey, composed of predominately quartz, plagioclase and biotite. Millimetric sized feldspar/qz (eye shaped) phenocrysts throughout that produce a porphyritic texture (where phenocrysts are moderate to strongly foliated). Matrix may be is composed of qz, plagioclase fs and bt (?). The texture is defined by alternating dark grey felsic - whitish qz-fs phenocrysts - dark green amp or bt? Weak to moderate sericite alteration along fractures. The unit appears to be more strained (stronger foliation?). Sulphides are rare and are found as disseminations randomly. From 806.45 to 807 m there is some patchy alteration defined by a pinkish beige color to the phenocrysts. This could be some k -fs alt? This colored alt is also associated to a fracture filling (10 degrees TCA) from 806.70 to 807 m .
LZ-21-16	808.08	816.3	8.22	1B	Pillowed Flows	Dark green, fine grained, foliated, pillowed mafic unit, where the pillows are flattened and are dark grey and primarily composed of plagioclase and amphibole, and the pillow selvages are dark green and composed of plagioclase, epidote?/diopside +/- amphibole. Unit is composed predominately of mafic minerals with lesser amounts of interstitial plagioclase, as well as minor amounts of biotite? Light green alteration bands could be composed of diopside-epidote? within this interval. Sulphides are rare and occur as minor fracture controlled disseminations. There is a minor interlayer of granite? or a possible siliceous tuff/band within the mafics. The core from 815.47 m to 815.86 m is broken.

LZ-21-16	816.3	819.51	3.21	3A	Greywacke	Grey to dark grey, fine-grained, foliated, bedded greywacke. This unit is primarily composed of feldspar and biotite. This unit is mostly devoid of visible sulfides, but rare wisps or discontinuous stringers are observed usually parallel to the remnant bedding. The darker green amph? minerals observed in the greywacke units above seems to be bleached to darker grey. This bleaching/alteration affect is seen throughout this interval. The dark green mineral in these bands or zones occur either as wisps, laths or irregular patches. Minor pervasive sericite alteration along fractures as well. There are minor sections which appears to be porphyritic which could be different than the feldspar porphyry units. There are minor interlayers of pegmatite/granite within this interval.
LZ-21-16	819.51	821.95	2.44	4B	Feldspar Porphy	Medium grained, felsic unit, light to dark grey, composed of predominately quartz, plagioclase and biotite. Millimetric sized feldspar/qz (eye shaped) phenocrysts throughout that produce a porphyritic texture (where phenocrysts are moderate to strongly foliated). Matrix may be is composed of $q z$, plagioclase fs and bt (?). The texture is defined by alternating dark grey felsic - whitish qz-fs phenocrysts - dark green amp or bt? Weak to moderate sericite alteration along fractures. The unit appears to be more strained. Sulphides are rare and are found as very fine disseminations and wisps randomly within this unit. Some of the porphyroblasts have undergone potential k-fs alteration (a light pinkish hue). The whole interval appears to have undergone a stronger strain (strongly foliated).
LZ-21-16	821.95	823.84	1.89	4E	Pegmatite	Pinkish beige to light brown, coarse to very coarse grained, massive pegmatite with qz-kfs-bt+/- accessory minerals. The unit has irregular upper and lower contacts with the mafic unit.
LZ-21-16	823.84	828	4.16	4B	Feldspar Porphy	Medium grained, felsic unit, light to dark grey, composed of predominately quartz, plagioclase and biotite. Millimetric sized feldspar/qz (eye shaped) phenocrysts throughout that produce a porphyritic texture (where phenocrysts are moderate to strongly foliated). Matrix may be is composed of $q z$, plagioclase fs and bt (?). The texture is defined by alternating dark grey felsic - whitish qz-fs phenocrysts - dark green amp or bt? Weak to moderate sericite alteration along fractures. The unit appears to be more strained. Sulphides are minor and found as fine disseminations and wisps/stringers randomly within this unit. Some of the porphyroblasts have undergone potential k-fs alteration (light pinkish hue).

LZ-21-16	P28	P29.09	1.09	1B		

LZ-21-16	841.29	848	6.71	1B	Pillowed Flows	Dark green, fine grained, foliated, pillowed mafic unit, where the pillows are flattened and are dark grey and primarily composed of plagioclase and amphibole, and the pillow selvages are dark green and composed of plagioclase, epidote?/diopside +/- amphibole. Unit is composed predominately of mafic minerals with lesser amounts of interstitial plagioclase, as well as minor amounts of biotite? Light green alteration bands could be composed of diopside-epidote? within this interval. Sulphides are rare and occur as minor fracture controlled disseminations. This unit is intruded into by a mafic dyke, minor granodiorite along the upper contact and has minor interlayer of greywacke towards the bottom contact. Bands of biotite and diopside-ep? alt zones are found within this interval throughout.
LZ-21-16	848	853.69	5.69	3A	Greywacke	Grey to dark grey, fine-grained, foliated, bedded greywacke. This unit is primarily composed of feldspar and biotite. This unit is mostly devoid of visible sulfides, but rare wisps or discontinuous stringers are observed usually parallel to the remnant bedding. The darker green amph? minerals observed in the greywacke units above seems to be bleached to darker grey. The dark green mineral in these bands or zones occur either as wisps, laths or irregular patches. There are a few 25 cm qz veins which do not have significant visible sulphides, but have wall rock (mafics?) laminas within. Also a minor pegmatitic intrusion and a few very thin qzfs veinlets/pegmatite are also observed within the unit. There is some pervasive sericite/biotite alteration as wisps throughout the interval. Also the unit is cut by fine healed fractures/veins crosscutting the remnant bedding at 50 degrees to TCA.
LZ-21-16	853.69	902.8	49.11	1B	Pillowed Flows	Dark green, fine grained, foliated, pillowed mafic unit, where the pillows are flattened and are dark grey and primarily composed of plagioclase and amphibole, and the pillow selvages are dark green and composed of plagioclase, epidote?/diopside +/- amphibole. Unit is composed predominately of mafic minerals with lesser amounts of interstitial plagioclase, as well as minor amounts of biotite? Light green alteration bands could be composed of diopside-epidote? within this interval. Sulphides are rare and occur as minor fracture controlled disseminations. There are several qz wisps/fragments/ discontinuous veinlets within this interval, some of which has rare sulphide specks as overprinting. There are minor interlayers of granodiorite and granite within this unit. From 865.76 to 833.14, we can observe some micro faulting and related juxta positioning of veinlets across the fracturing. No visible sulphides associated to this microfaulting.

LZ-21-16	902.8	F05.2	2.4	4B		

LZ-21-16	915.38	F18.68	3.3		4B	

LZ-21-16	937.38	940.26	2.88		4B	

LZ-21-16	951.71	P65.2	13.49		4B	

LZ-21-16	1008	1011	3	AB	Feldspar Porphy	Medium to coarse grained, felsic unit, light to dark grey, composed of predominately quartz, plagioclase and biotite. Millimetric sized feldspar/qz (eye shaped) phenocrysts throughout that produce a porphyritic texture (where
phenocrysts are moderate to strongly foliated). Matrix may be composed of qz,						
plagioclase fs and bt (?). The texture is defined by alternating dark grey felsic -						
whitish qz-fs phenocrysts - dark green amp or bt? Some of the porphyroblasts						
have undergone potential k-fs alteration (light pinkish hue). Discrete bands or						
xenoliths of remnant mafic flows are also scattered throughout this unit. Trace						
disseminated specks of sulphide occur throughout.						

GOLD CORP				Hole Number:	LZ-21-17									
				Drill Rig:	G4 \#9									
				Claim Number:	LEA-109592									
Location			Drill Hole Orientation		Dates Drilled:		Start Date:		End Date:					
Surface					12/12/2021	12/15/2021								
Planned Coordinates			Azimuth:	60			Drill Contractor:		G4 Drilling					
Easting	647251.62													
Northing		660.24	Dip:	-50	Dates Logged:		Start Date:		End Date:					
Elevation(m)	405						12/13/2021		12/22/2021					
Final Pick up			Depth(m):	449.00	Logger 1:		Derek Smyth							
Easting	647235.418				Logger 2:									
Northing		11.931	Core Size:	NQ	Logger 3:									
Elevation(m)	434.95				Assay Lab:		Actlabs							
Casin														
Purpose of Hole		Intersect the AU horizon from previously drilled holes in the area.			Dip Tests									
		Depth (m)	Az.	Dip	Mag	Notes	Az Un							
		15	61.1	-49.7	57354		68.7							
		24	60.3	-49.4	55905		67.9							
		30	10.5	-67	55681		18.1							
Results								36	10.1	-66.9	55703		17.7	
					57	62	-49.1	55634		69.6				
					69	9.3	-66.1	55470		16.9				
					87	59.6	-47.8	55482		67.2				
					105	11.3	-66.2	54460		18.9				
					117	63.4	-47.1	55549		71				
Comments								135	11.5	-65.3	55398		19.1	
					147	62.4	-45.9	55606		70				
					165	62.9	-44.9	55871		70.5				
					177	62	-43.5	55645		69.6				
					207	62.4	-42.5	55809		70				
					237	63.3	-41.6	55646		70.9				
					267	63.8	-40.1	55495		71.4				
Azimuth corrected to 7.6 degrees west declination					297	64.1	-38.5	55641		71.7				
					327	64.2	-37.2	55676		71.8				
					357	64.1	-35.8	55651		71.7				
								387	64.8	-34.2	55647		72.4	
								417	65.1	-32.8	55658		72.7	

BHID	FROM_M	TO_M	LENGTH_M	ROCK_CODE	ROCK	COMMENTS
LZ-21-17	0	3	3	OVB	Overburden	Casing to 3m.
LZ-21-17	3	7.28	4.28	5B	Granodiorite	Mg to Cg , dominantly white and black salt and pepper color. Massive granodiorite. Mostly composed of plagioclase, amphibole, biotite, and quartz with lesser amounts of K-feldspar. Mostly equigranular with some sections displaying a porphyrytic texture with feldspar phenocrysts. Intermittent bands/xenoliths of dark green massive mafic flows scattered throughout this unit (cm scale).
LZ-21-17	7.28	13.94	6.66	12	Gabbroic with gradational contacts	Fine to medium -grained, grey to dark green gabbro with gradational contacts. Unit is composed predominately of mafic minerals with lesser amounts of grey plagioclase interstitially. Pervasive amphibole alteration present with biotite as well. Moderate foliation white-grey fs? Dark grey/green rounded mafic minerals. Up to 30\% 1-3 mm, subhedral, phenocrysts/porphyroblasts of amphibole/chloritoid? Several intermittent granodiorite/feldspar porphyry fingers cross-cut this unit (cm to dcm scale). There are no visible sulfides in this unit.
LZ-21-17	13.94	16.6	2.66	5A	Granite	Medium to coarse grained, mixed grey, white, and pink. Massive. Composed mainly of quartz, plagioclase, amphibole, K feldspar, and biotite. Diffuse and broken lower contact with gabbro. Overall very homogenous unit.
LZ-21-17	16.6	24.44	7.84	12	Gabbroic with gradational contacts	Fine to medium -grained, grey to dark green gabbro with gradational contacts. Unit is composed predominately of mafic minerals with lesser amounts of grey plagioclase interstitially. Pervasive amphibole alteration present with biotite as well. Moderate foliation white-grey fs? Dark grey/green subhedral to euhedral mafic minerals. Up to 30% 1-3 mm, subhedral, phenocrysts/porphyroblasts of amphibole/chloritoid? Several intermittent granodiorite/feldspar porphyry fingers cross-cut this unit (cm to dcm scale). There are no visible sulfides in this unit.
LZ-21-17	24.44	27.28	2.84	1A	Massive Flows	Fine grained, dark green to black, massive mafic flow. Composed mainly of amphibole with lesser amounts of grey plagioclase interstitially. Veinlets of quartz/feldspar follow the same trend as foliation of surrounding units. Knife sharp upper and lower contacts with granodiorite. Sulphides are rare in this unit
LZ-21-17	27.28	32.58	5.3	5B	Granodiorite	Mg to Cg , dominantly white and black salt and pepper color. Massive granodiorite. Mostly composed of plagioclase, amphibole, biotite, and quartz with lesser amounts of K-feldspar. Mostly equigranular with some sections displaying a porphyrytic texture with feldspar phenocrysts. Intermittent bands/xenoliths of dark green massive mafic flows scattered throughout this unit (cm scale). Some bands/xenoliths are vuggy and may contain sulphides as pyrite.

LZ-21-17	32.58	33.99	1.41	1A	Massive Flows	Fine grained, dark green to black, massive mafic flow. Composed mainly of amphibole with lesser amounts of grey plagioclase interstitially. This unit is weakly foliated. Knife sharp upper and lower contacts with granodiorite. Sulphides are rare in this unit.
LZ-21-17	33.99	45	11.01	5B	Granodiorite	Mg to Cg , dominantly white and black salt and pepper color. Massive granodiorite. Mostly composed of plagioclase, amphibole, biotite, and quartz with lesser amounts of K-feldspar. Mostly equigranular with some sections displaying a porphyrytic texture with plagioclase phenocrysts. Sections of reddish potassic alteration occur along fracture zones.
LZ-21-17	45	47.5	2.5	1A	Massive Flows	Fine grained, dark green to black, massive mafic flow. Composed mainly of amphibole with lesser amounts of grey plagioclase interstitially. Veinlets of quartz/feldspar follow the same trend as foliation of surrounding units. Knife sharp upper and lower contacts with granodiorite. Sulphides are rare in this unit
LZ-21-17	47.5	52.32	4.82	4B	Feldspar Porphyry	Fine to medium grained, felsic unit, light to dark grey, composed of predominately quartz, plagioclase and biotite. Millimetric sized feldspar/qz (eye shaped) phenocrysts throughout that produce a porphyritic texture (where phenocrysts are moderate to strongly foliated). Matrix is composed of qz, plagioclase fs and bt (?). The texture is defined by alternating dark grey felsic whitish qz-fs phenocrysts - dark green to black amp or bt? wisps bounding the qz eyes.? Random whispy bands of light pistachio green epidote bands scattered throughout. Trace to 1% disseminated specks of sulphide as pyrite in this unit.
LZ-21-17	52.32	64.7	12.38	1B	Pillowed Flows	Fine grained, dark green to black, massive to very weakly foliated overall pillowed mafic flow. Pillows rims are often difficult to see in this unit. Composed mainly of amphibole with lesser amounts of grey plagioclase interstitially. Whispy often discontinuous bands/patches/veinlets of qz/plagioclase are more common in this unit than mafic flows above. These whispy bands/patches/veinlets may be epidotized/chloritized? Knife sharp upper and lower contacts with granodiorite. Sulphides are rare in this unit.
LZ-21-17	64.7	68.35	3.65	4B	Feldspar Porphyry	Fine to medium grained, felsic unit, light to dark grey, composed of predominately quartz, plagioclase and biotite. Millimetric sized feldspar/qz (eye shaped) phenocrysts throughout that produce a porphyritic texture (where phenocrysts are moderate to strongly foliated). Matrix is composed of qz, plagioclase fs and bt (?). The texture is defined by alternating dark grey felsic whitish qz-fs phenocrysts - dark green to black amp or bt? wisps bounding the qz eyes.? Random whispy bands of light pistachio green epidote bands scattered throughout. Trace to 1% disseminated specks of sulphide as pyrite in this unit.

LZ-21-17	68.35	77.75	9.4	1B	Pillowed Flows	Fine grained, dark green to black, massive to very weakly foliated overall pillowed mafic flow. Pillows rims are often difficult to see in this unit. Composed mainly of amphibole with lesser amounts of grey plagioclase interstitially. Whispy often discontinuous bands/patches/veinlets of qz/plagioclase are more common in this unit than mafic flows above. These whispy bands/patches/veinlets may be epidotized/chloritized?
LZ-21-17	77.75	78.82	1.07			

LZ-21-17	87.6	94.35	6.75	4B	Feldspar Porphyry	Fine to medium grained, felsic unit, light to dark grey, composed of predominately quartz, plagioclase and biotite. Millimetric sized feldspar/qz (eye shaped) phenocrysts throughout that produce a porphyritic texture (where phenocrysts are moderate to strongly foliated). Matrix is composed of qz, plagioclase fs and bt (?). The texture is defined by alternating dark grey felsic whitish qz-fs phenocrysts - dark green to black amp or bt? wisps bounding the qz eyes.? Random whispy bands of light pistachio green epidote bands scattered throughout. Trace disseminated specks of sulphide as pyrite in this unit.
LZ-21-17	94.35	99.24	4.89	1B	Pillowed Flows	Fine grained, dark green to black, massive to very weakly foliated overall pillowed mafic flow. Pillows rims are often difficult to see in this unit. Composed mainly of amphibole with lesser amounts of grey plagioclase interstitially. Minor whispy often discontinuous bands/patches/veinlets of quartz/plagioclase. These whispy bands/patches/veinlets may be epidotized/chloritized? Disseminated specks of 1\% pyrite, trace pyrrhotite.
LZ-21-17	99.24	103.07	3.83	4B	Feldspar Porphyry	Fine to medium grained, felsic unit, light to dark grey, composed of predominately quartz, plagioclase and biotite. Millimetric sized feldspar/qz (eye shaped) phenocrysts throughout that produce a porphyritic texture (where phenocrysts are moderate to strongly foliated). Matrix is composed of qz, plagioclase fs and bt (?). The texture is defined by alternating dark grey felsic whitish qz-fs phenocrysts - dark green to black amp or bt? wisps bounding the qz eyes.? Random whispy bands of light pistachio green epidote bands scattered throughout. Upper portion of this unit is more equigranular (granodiorite?). Minor bands/xenoliths of mafic flows are scattered throughout this unit. There are also minor units of mineralized iron formation with associated feldspar porphyrys defining the lower contact of this interval. Trace disseminated specks of sulphide as pyrite in this unit.
LZ-21-17	103.07	105.09	2.02	12	Gabbroic with gradational contacts	Fine to medium -grained, grey to dark green gabbro with gradational upper contact. Lower contact is sharp and defined by a granodiorite intrusion. Upper portion of unit may represent a minor interval of pillowed flows. Unit is composed predominately of mafic minerals with lesser amounts of grey plagioclase interstitially. Pervasive amphibole alteration present with biotite as well. Moderate foliation white-grey fs? Dark grey/green rounded mafic minerals. Up to 30\% 1-3 mm, subhedral, phenocrysts/porphyroblasts of amphibole/chloritoid?
LZ-21-17	105.09	113.64	8.55	5B	Granodiorite	Medium to Coarse grained, dominantly white and black salt and pepper color. Massive granodiorite. Mostly composed of plagioclase, amphibole, biotite, and quartz with lesser amounts of K-feldspar. Mostly equigranular with some sections displaying a porphyrytic texture with plagioclase phenocrysts.

LZ-21-17	113.64	126.4	12.76	1B	Pillowed Flows	Fine grained, dark green to black, massive to very weakly foliated overall pillowed mafic flow. Composed mainly of amphibole with lesser amounts of grey plagioclase interstitially. Pillow rims are are dark green to black and composed of amphibole and creamy white plagioclase. Minor whispy often discontinuous bands/patches/veinlets of quartz/plagioclase. These whispy bands/patches/veinlets may be epidotized/chloritized? Also minor veins of granodiorite occur within this interval. Trace disseminated specks of pyrite, pyrrhotite.
LZ-21-17	126.4	129.56	3.16	5B	Granodiorite	Medium to Coarse grained, dominantly white and black salt and pepper color. Massive granodiorite. Mostly composed of plagioclase, amphibole, biotite, and quartz with lesser amounts of K-feldspar. Mostly equigranular with some sections displaying a porphyrytic texture with plagioclase phenocrysts. This unit also has a minor section of $1 \mathrm{~A} / 1 \mathrm{~B}$ that is intensely altered with biotite. Lower contact is rubbly but sharp with mafics below. Trace disseminated specks of pyrite/pyrrhotite in this unit.
LZ-21-17	129.56	131.35	1.79	1B	Pillowed Flows	Fine grained, dark green to black, massive to very weakly foliated overall pillowed mafic flow. Composed mainly of amphibole with lesser amounts of grey plagioclase interstitially. Pillow rims are are dark green to black and composed of amphibole and creamy white plagioclase. Minor whispy often discontinuous bands/patches/veinlets of quartz/plagioclase. These whispy bands/patches/veinlets may be epidotized/chloritized? Also minor veins of granodiorite occur within this interval. Trace disseminated specks of pyrite, pyrrhotite.
LZ-21-17	131.35	135.05	3.7	5B	Granodiorite	Medium to Coarse grained, dominantly white and black salt and pepper color. Massive granodiorite. Mostly composed of plagioclase, amphibole, biotite, and quartz with lesser amounts of K-feldspar. This unit has a upper and lower contact intervals that are equigranular with a feldspar porphyry inner core. The feldspar porphyry is from 132.3-133.70m. Lower contact is rubbly but sharp with mafics below. Trace disseminated specks of pyrite/pyrrhotite in this unit.
LZ-21-17	135.05	139.35	4.3	12	Gabbroic with gradational contacts	Fine to medium grained, grey to dark green gabbro with gradational upper contact. Lower contact is sharp and defined by a granodiorite intrusion. Upper portion of unit may represent a minor interval of pillowed flows. Unit is composed predominately of mafic minerals with lesser amounts of grey plagioclase interstitially. Unit is intersected by numerous granodiorite intrusions scattered throughout. Pervasive amphibole alteration present with biotite as well. Moderate foliation white-grey fs? Dark grey/green rounded mafic minerals. Up to 30\% 1-3 mm, subhedral, phenocrysts/porphyroblasts of amphibole/chloritoid?

LZ-21-17	139.35	145.57	6.22	1A	Massive Flows	Fine grained, dark green to black, massive mafic flow. Composed mainly of amphibole with lesser amounts of grey plagioclase interstitially. Patchy epidote alteration throughout this unit. Sulphides are trace and rare in this unit.
LZ-21-17	145.57	153.24	7.67	5B	Granodiorite	Medium to Coarse grained, dominantly white and dark blue to nearly black. Massive granodiorite. Mostly composed of plagioclase, amphibole, biotite, and quartz with lesser amounts of K-feldspar. Intermittant minor intervals of mafic flows scattered throughout. Reddish brown potassic alteration is more abundant in this unit. Broken/blocky core from approximately 149.30-149.52m. Moderately to strongly magnetic.
LZ-21-17	153.24	171.58	18.34	1B	Pillowed Flows	Fine grained, dark green to black, massive to very weakly foliated overall pillowed mafic flow. Composed mainly of amphibole with lesser amounts of grey plagioclase interstitially. Pillow rims are are dark green to black and composed of amphibole and creamy white plagioclase. Minor whispy often discontinuous bands/patches/veinlets of quartz/plagioclase. These whispy bands/patches/veinlets may be epidotized/chloritized? Also minor veins of granodiorite/feldspar porphyry, and pegmatites occur within this interval. This unit becomes increasingly foliated along with an increase in whispy often discontinuous white banding down hole from 160.5 to lower contact. Trace disseminated specks of pyrite, pyrrhotite.
LZ-21-17	171.58	175.05	3.47	4B	Feldspar Porphyry	Fine to medium grained, felsic unit, light to dark grey, composed of predominately quartz, plagioclase and biotite. Millimetric sized feldspar/qz (eye shaped) phenocrysts throughout that produce a porphyritic texture (where phenocrysts are moderate to strongly foliated). Matrix is composed of qz, plagioclase fs and bt (?). The texture is defined by alternating dark grey felsic whitish qz-fs phenocrysts - dark green to black amp or bt? wisps bounding the qz eyes.? Random whispy bands of light pistachio green epidote bands scattered throughout. Trace disseminated specks of sulphide as pyrite in this unit. Broken core from 173 to 173.80 m . Broken core associated with minor intervals of mafic flows in this unit.
LZ-21-17	175.05	177.27	2.22	1B	Pillowed Flows	Fine grained, dark green to black, massive to very weakly foliated overall pillowed mafic flow. Composed mainly of amphibole with lesser amounts of grey plagioclase interstitially. Pillow rims are are dark green to black and composed of amphibole and creamy white plagioclase. Minor whispy often discontinuous bands/patches/veinlets of quartz/plagioclase. These whispy bands/patches/veinlets may be epidotized/chloritized? Also minor interval of feldspar porphyry within this unit.

LZ-21-17	177.27	180	2.73	4B	Feldspar Porphyry	Fine to medium grained, felsic unit, light to dark grey, composed of predominately quartz, plagioclase and biotite. Millimetric sized feldspar/qz (eye shaped) phenocrysts throughout that produce a porphyritic texture (where phenocrysts are moderate to strongly foliated). Matrix is composed of qz, plagioclase fs and bt (?). The texture is defined by alternating dark grey felsic whitish qz-fs phenocrysts - dark green to black amp or bt? wisps bounding the qz eyes.? Random whispy bands of light pistachio green epidote bands scattered throughout. Trace disseminated specks of sulphide as pyrite in this unit.
LZ-21-17	180	186.23	6.23	1B	Pillowed Flows	Fine grained, dark green to black, massive to very weakly foliated overall pillowed mafic flow. Composed mainly of amphibole with lesser amounts of grey plagioclase interstitially. Pillow rims are are dark green to black and composed of amphibole and creamy white plagioclase. Minor whispy often discontinuous bands/patches/veinlets of quartz/plagioclase. These whispy bands/patches/veinlets may be epidotized/chloritized? Numerous minor intervals of feldspar porphyry within this unit. Quartz vein from 180.79 to 180.91 m may contain potential VG. Trace disseminated pyrite/pyrrhotite throughout this unit.
LZ-21-17	186.23	189.15	2.92	4B	Feldspar Porphyry	Fine to medium grained, felsic unit, light to dark grey, composed of predominately quartz, plagioclase and biotite. Millimetric sized feldspar/qz (eye shaped) phenocrysts throughout that produce a porphyritic texture (where phenocrysts are moderate to strongly foliated). Matrix is composed of qz, plagioclase fs and bt (?). The texture is defined by alternating dark grey felsic whitish qz-fs phenocrysts - dark green to black amp or bt? wisps bounding the qz eyes.? Random whispy bands of light pistachio green epidote bands scattered throughout.
LZ-21-17	189.15	191.77	2.62	5B	Granodiorite	Medium to Coarse grained, dominantly white and dark blue to nearly black. Massive granodiorite. Mostly composed of plagioclase, amphibole, biotite, and quartz with lesser amounts of K-feldspar. Intermittent minor intervals of mafic flows scattered throughout. On average $5-10 \mathrm{~cm}$ size irregular shaped mafic flow xenoliths make up most of the minor mafic intervals in this unit.
LZ-21-17	191.77	196.07	4.3	1B	Pillowed Flows	Fine grained, dark green to black, massive to very weakly foliated overall pillowed mafic flow. Composed mainly of amphibole with lesser amounts of grey plagioclase interstitially. Pillow rims are are dark green to black and composed of amphibole and creamy white plagioclase. Minor whispy often discontinuous bands/patches/veinlets of quartz/plagioclase. These whispy bands/patches/veinlets may be epidotized/chloritized? Trace disseminated specks of pyrite throughout but sulphides are rare.

LZ-21-17	196.07	200.13	4.06	5B	Granodiorite	Medium to Coarse grained, dominantly white and dark blue to nearly black. Massive granodiorite. Mostly composed of plagioclase, amphibole, biotite, and quartz with lesser amounts of K-feldspar. Intermittent minor intervals of mafic flows scattered throughout. On average $5-10 \mathrm{~cm}$ size irregular shaped mafic flow xenoliths make up most of the minor mafic intervals in this unit.
LZ-21-17	200.13	212.45	12.32	1B	Pillowed Flows	Fine grained, dark green to black, massive to very weakly foliated overall pillowed mafic flow. Composed mainly of amphibole with lesser amounts of grey plagioclase interstitially. Pillow rims are are dark green to black and composed of amphibole and creamy white plagioclase. Minor whispy often discontinuous bands/patches/veinlets of quartz/plagioclase. These whispy bands/patches/veinlets may be epidotized/chloritized? Trace disseminated specks of pyrite throughout but sulphides are rare.
LZ-21-17	212.45	213.9	1.45	4B	Feldspar Porphyry	Fine to medium grained, felsic unit, light to dark grey, composed of predominately quartz, plagioclase and biotite. Millimetric sized feldspar/qz (eye shaped) phenocrysts throughout that produce a porphyritic texture (where phenocrysts are moderate to strongly foliated). Matrix is composed of qz, plagioclase fs and bt (?). The texture is defined by alternating dark grey felsic whitish qz-fs phenocrysts - dark green to black amp or bt? wisps bounding the qz eyes? This unit appears to be finer grained overall and phenocrysts of plagioclase are highly strained. No visible sulphides are present.
LZ-21-17	213.9	217.2	3.3	1B	Pillowed Flows	Fine grained, dark green to black, massive to very weakly foliated overall pillowed mafic flow. Composed mainly of amphibole with lesser amounts of grey plagioclase interstitially. Pillow rims are are dark green to black and composed of amphibole and creamy white plagioclase. Minor whispy often discontinuous bands/patches/veinlets of quartz/plagioclase. These whispy bands/patches/veinlets may be epidotized/chloritized? Trace disseminated specks of pyrite throughout but often fracture controlled.
LZ-21-17	217.2	226.22	9.02	4B	Feldspar Porphyry	Fine to medium grained, felsic unit, light to dark grey, composed of predominately quartz, plagioclase and biotite. Millimetric sized feldspar/qz (eye shaped) phenocrysts throughout that produce a porphyritic texture (where phenocrysts are moderate to strongly foliated). Matrix is composed of qz, plagioclase fs and bt (?). The texture is defined by alternating dark grey felsic whitish qz-fs phenocrysts - dark green to black amp or bt? wisps bounding the qz eyes? Millimetric sized subhedral phenocrysts of plagioclase become less abundant down hole and unit appears to become finer grained overall (higher strain downhole?). Several minor intervals of mafics (xenoliths?) throughout this unit that host the majority of quartz veins within this interval. Trace disseminated specks of pyrite/pyrrhotite throughout this unit.

LZ-21-17	226.22	228.12	1.9	1B	Pillowed Flows	Fine grained, dark green to black, massive to very weakly foliated overall pillowed mafic flow. Composed mainly of amphibole with lesser amounts of grey plagioclase interstitially. Pillow rims are are dark green to black and composed of amphibole and creamy white plagioclase. Minor whispy often discontinuous bands/patches/veinlets of quartz/plagioclase. These whispy bands/patches/veinlets may be epidotized/chloritized? Trace disseminated specks of pyrite throughout but often fracture controlled.
LZ-21-17	228.12	231.5	3.38			

LZ-21-17	254.35	256.2	1.85	4B	Feldspar Porphyry	Fine to medium grained, felsic unit, light to dark grey, composed of predominately quartz, plagioclase and biotite. Millimetric sized feldspar/qz (eye shaped) phenocrysts throughout that produce a porphyritic texture (where phenocrysts are moderate to strongly foliated). Matrix is composed of qz, plagioclase fs and bt (?). The texture is defined by alternating dark grey felsic - whitish qz-fs phenocrysts - dark green to black amp or bt? wisps bounding the qz eyes? Feldspar phenocrysts are not as abundant in this unit and likely highly strained and flattened. This unit is also intensely fractured with numberous healed fractures and open fractures with carbonates (calcite etc) coating the fracture surfaces. Minor intervals of mafics within this unit. Trace disseminated specks of sulphides confined to fracture surfaces although rare.

LZ-21-17	273	274.37	1.37	4B	Feldspar Porphyry	Fine to medium grained, felsic unit, light to dark grey, composed of predominately quartz, plagioclase and biotite. Millimetric sized feldspar/qz (eye shaped) phenocrysts throughout that produce a porphyritic texture (where phenocrysts are moderate to strongly foliated). Matrix is composed of qz, plagioclase fs and bt (?). The texture is defined by alternating dark grey felsic whitish qz-fs phenocrysts - dark green to black amp or bt? wisps bounding the qz eyes? Feldspar phenocrysts are abundant and moderately strained and flattened throughout. Trace disseminated specks of pyrite in this unit.
LZ-21-17	274.37	287.45	13.08	1B	Pillowed Flows	Fine grained, dark green to black, massive to very weakly foliated overall pillowed mafic flow. Composed mainly of amphibole with lesser amounts of grey plagioclase interstitially. Pillow rims are are dark green to black and composed of amphibole and creamy white plagioclase. Minor whispy often discontinuous bands/patches/veinlets of quartz/plagioclase. These whispy bands/patches/veinlets may be epidotized/chloritized? Trace disseminated specks of pyrite/pyrrhotite in this unit.
LZ-21-17	287.45	290.15	2.7	4B	Feldspar Porphyry	Fine to medium grained, felsic unit, light to dark grey, composed of predominately quartz, plagioclase and biotite. Millimetric sized feldspar/qz (eye shaped) phenocrysts throughout that produce a porphyritic texture (where phenocrysts are moderate to strongly foliated). Matrix is composed of qz, plagioclase fs and bt (?). The texture is defined by alternating dark grey felsic whitish qz-fs phenocrysts - dark green to black amp or bt? wisps bounding the qz eyes? Feldspar phenocrysts are abundant and moderately strained and flattened throughout. Unit becomes increasingly biotite rich and increasingly strained down hole from approximately 289.20 m to lower contact. Trace disseminated specks of pyrite in this unit.
LZ-21-17	290.15	303.22	13.07	1B	Pillowed Flows	Fine grained, dark green to black, massive to very weakly foliated overall pillowed mafic flow. Composed mainly of amphibole with lesser amounts of grey plagioclase interstitially. Pillow rims are are dark green to black and composed of amphibole and creamy white plagioclase. Minor whispy often discontinuous bands/patches/veinlets of quartz/plagioclase. These whispy bands/patches/veinlets may be epidotized/chloritized? Trace disseminated specks of pyrite/pyrrhotite in this unit.
LZ-21-17	303.22	306.9	3.68	12	Gabbroic with gradational contacts	Fine to medium -grained, grey to dark green gabbro with gradational contacts. Unit is composed predominately of mafic minerals with lesser amounts of grey plagioclase interstitially. Pervasive amphibole alteration present with biotite as well. Moderate foliation white-grey fs? Dark grey/green subhedral to euhedral mafic minerals. Up to $30 \% 1-3 \mathrm{~mm}$, subhedral, phenocrysts/porphyroblasts of amphibole/chloritoid? Gradational upper and lower contacts. Trace disseminated specks of pyrite throughout although rare.

LZ-21-17	306.9	345.8	38.9	1 B	Pillowed Flows	Fine grained, dark green to black, massive to very weakly foliated overall pillowed mafic flow. Composed mainly of amphibole with lesser amounts of grey plagioclase interstitially. Pillow rims are are dark green to black and composed of amphibole and creamy white plagioclase. Minor whispy often discontinuous bands/patches/veinlets of quartz/plagioclase. These whispy bands/patches/veinlets may be epidotized/chloritized? Trace disseminated specks of pyrite/pyrrhotite with some sections of banded pyrite/pyrrhotite concordant with foliation angle in this unit. Numerous quartz veins/veinlets scattered throughout this unit and are often combined with plagioclase and/or epidote, amphibole, chlorite (?) mineralization. 2 specks of VG within a quartz vein/pod within a minor interval of feldspar porphyry. A pegmatite envelopes this feldspar porphyry and mineralized quartz vein and nearly obliterates the AU/galena, and pyrite contained within the quartz vein.	
LZ-21-17							

LZ-21-17	359.25	367	7.75	1B	Pillowed Flows	Fine grained, dark green to black, massive to very weakly foliated overall pillowed mafic flow. Composed mainly of amphibole with lesser amounts of grey plagioclase interstitially. Pillow rims are are dark green to black and composed of amphibole and creamy white plagioclase. Minor whispy often discontinuous bands/patches/veinlets of quartz/plagioclase. These whispy bands/patches/veinlets may be epidotized/chloritized? Several veins/veinlets of quartz and quartz/plagioclase as well as granodiorite/feldspar porphyry veins scattered throughout this unit. Trace disseminated specks of pyrite.
LZ-21-17	367	368.1	1.1	4B	Feldspar Porphyry	Fine to coarse grained, felsic unit, light to dark grey, composed of predominately quartz, plagioclase amphibole, and biotite. Millimetric sized feldspar/qz (eye shaped) phenocrysts throughout that produce a porphyritic texture (where phenocrysts are moderate to strongly foliated). Matrix is composed of qz, plagioclase fs and bt (?). The texture is defined by alternating dark grey felsic whitish qz-fs phenocrysts - dark green to black amp or bt? wisps bounding the qz eyes? This unit has been heavily crushed and pulverized and is likely mechanical due to the result of drilling. The upper portion of this unit appears to be granodiorite grading into feldspar porphyry down hole to the lower contact with mafics. Trace disseminated specks of pyrite throughout this unit although rare.
LZ-21-17	368.1	373.67	5.57	1B	Pillowed Flows	Fine grained, dark green to black, massive to very weakly foliated overall pillowed mafic flow. Composed mainly of amphibole with lesser amounts of grey plagioclase interstitially. Pillow rims are are dark green to black and composed of amphibole and creamy white plagioclase. Minor whispy often discontinuous bands/patches/veinlets of quartz/plagioclase. These whispy bands/patches/veinlets may be epidotized/chloritized? Minor quartz and quartz/plagioclase veinlets scattered throughout this unit. Trace disseminated specks of pyrite in this unit. Sulphides of pyrite/pyrrhotite also occur as scattered bands concordant with foliation angle.
LZ-21-17	373.67	378.33	4.66	7A	Diabase	Very fine to fine grained, dark grey to black, massive mafic unit. Composed mainly of amphibole, magnetite, and interstitial plagioclase with lesser amounts of quartz, epidote, and chlorite. Epidote and chlorite (?) often coating fracture surfaces. Strongly magnetic unit. Minor felsic veins (5 cm wide) define upper and lower contact. Trace disseminated specks of pyrite throughout this unit.

LZ-21-17	378.33	397.16	18.83	1B	Pillowed Flows	Fine grained, dark green to black, massive to very weakly foliated overall pillowed mafic flow. Composed mainly of amphibole with lesser amounts of grey plagioclase interstitially. Pillow rims are are dark green to black and composed of amphibole and creamy white plagioclase. Minor whispy often discontinuous bands/patches/veinlets of quartz/plagioclase. These whispy bands/patches/veinlets may be epidotized/chloritized? Minor quartz and quartz/plagioclase veinlets scattered throughout this unit. Trace disseminated specks of pyrite in this unit. Sulphides of pyrite/pyrrhotite also occur as scattered bands concordant with foliation angle.
LZ-21-17	397.16	399.14	1.98	4B	Feldspar Porphyry	Fine to coarse grained, felsic unit, light to dark grey, composed of predominately quartz, plagioclase amphibole, and biotite. Millimetric sized feldspar/qz (eye shaped) phenocrysts throughout that produce a porphyritic texture (where phenocrysts are moderate to strongly foliated). Matrix is composed of qz, plagioclase fs and bt (?). The texture is defined by alternating dark grey felsic whitish qz-fs phenocrysts - dark green to black amp or bt? wisps bounding the qz eyes? This unit seems moderately strained with a mix of subhedral and flattened phenocrysts of millimetric sized plagioclase. Minor intervals of mafic xenoliths throughout. Trace disseminated specks of pyrite/pyrrhotite in this unit.
LZ-21-17	399.14	428.5	29.36	1B	Pillowed Flows	Fine grained, dark green to black, massive to very weakly foliated overall pillowed mafic flow. Composed mainly of amphibole with lesser amounts of grey plagioclase interstitially. Pillow rims are are dark green to black and composed of amphibole and creamy white plagioclase. Minor whispy often discontinuous bands/patches/veinlets of quartz/plagioclase. These whispy bands/patches/veinlets may be epidotized/chloritized? Minor quartz and quartz/plagioclase veinlets scattered throughout this unit. Trace disseminated specks of pyrite in this unit.
LZ-21-17	428.5	431.12	2.62	4B	Feldspar Porphyry	Fine to coarse grained, felsic unit, light to dark grey, composed of predominately quartz, plagioclase amphibole, and biotite. Millimetric sized feldspar/qz (eye shaped) phenocrysts throughout that produce a porphyritic texture (where phenocrysts are moderate to strongly foliated). Matrix is composed of qz, plagioclase fs and bt (?). The texture is defined by alternating dark grey felsic whitish qz-fs phenocrysts - dark green to black amp or bt? wisps bounding the qz eyes? This unit is moderately to highly strained with mostly millimetric sized flattened phenocrysts of plagioclase. Minor intervals of mafic xenoliths throughout. Trace disseminated specks of pyrite/pyrrhotite in this unit.

LZ-21-17	431.12	449	17.88	$1 B$	Pillowed Flows	Fine grained, dark green to black, massive to very weakly foliated overall pillowed mafic flow. Composed mainly of amphibole with lesser amounts of grey plagioclase interstitially. Pillow rims are are dark green to black and composed of amphibole and creamy white plagioclase. Minor whispy often discontinuous bands/patches/veinlets of quartz/plagioclase. These whispy bands/patches/veinlets may be epidotized/chloritized? Minor quartz and quartz/plagioclase veinlets, and minor granodiorite dykes scattered throughout this unit. Possibly hit Tonalite at very end of hole from 448.70-448.87m. Not enough core to make a positive identification. Trace disseminated specks of pyrite in this unit.

Appendix D - Lynx Zone - 2021 Drill Hole Cross Sections

Appendix E - Lynx Zone - 2021 Drill Hole Plans

Appendix F - Lynx Zone - 2021 Actlabs Assay Certificates

Report No.:	A21-22549
Report Date:	21-Jan-22
Date Submitted:	06-Dec-21
Your Reference:	Exploration/Prospecting

Harte Gold Corp.
161 Bay Street
Suite 2400
Toronto Ontario M5J 2S1
Canada

ATTN: David Stevenson

CERTIFICATE OF ANALYSIS

174 Rock samples were submitted for analysis.

The following analytical package(s) were requested:	Testing Date:	
UT-6	QOP Total/QOP Ulltratrace- 4acid Digest (Total Digestion ICPOES/ICPMS)	2021-12-23 15:11:13

REPORT A21-22549
This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:
If value exceeds upper limit we recommend reassay by fire assay gravimetric-Code 1A3
Values which exceed the upper limit should be assayed for accurate numbers.

Report No.: A21-22549
Report Date: 21-Jan-22
Date Submitted: 06-Dec-21
Your Reference: Exploration/Prospecting
Harte Gold Corp.
161 Bay Street
Suite 2400
Toronto Ontario M5J 2S1
Canada

ATTN: David Stevenson

CERTIFICATE OF ANALYSIS

174 Rock samples were submitted for analysis.

The following analytical package(s) were requested:	Testing Date:	
1A2-Tbay-Harte Gold	QOP AA-Au (Au - Fire Assay AA)	2021-12-08 07:06:37

REPORT A21-22549

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:
If value exceeds upper limit we recommend reassay by fire assay gravimetric-Code 1A3
Values which exceed the upper limit should be assayed for accurate numbers.

Analyte Symbol	Au	Li	Na	Mg	AI	K	Ca	Cd	V	Cr	Mn	Fe	Hf	Ni	Er	Be	Ho	Ag	Cs	Co	Eu	Bi	Se
Unit Symbol	ppb	ppm	\%	\%	\%	\%	\%	ppm	ppm	ppm	ppm	\%	ppm										
Lower Limit	5	0.5	0.01	0.01	0.01	0.01	0.01	0.1	1	1	1	0.01	0.1	0.5	0.1	0.1	0.1	0.05	0.05	0.1	0.05	0.02	0.1
Method Code	FA-AA	TD-MS																					
833703	6	68.4	> 3.00	0.40	8.72	1.42	1.82	<0.1	26	12	276	1.87	1.9	4.3	0.4	0.9	0.2	0.09	9.90	4.5	0.45	0.18	< 0.1
833704	< 5	175	> 3.00	0.58	8.56	1.54	2.05	<0.1	33	18	340	2.07	2.8	9.4	0.7	1.1	0.2	0.10	8.51	5.2	0.58	0.11	< 0.1
833705	< 5	98.8	> 3.00	0.46	8.23	1.32	2.00	<0.1	29	15	318	2.18	2.1	3.8	0.4	0.8	0.2	0.07	4.63	4.6	0.45	0.11	<0.1
833706	<5																						
833707	<5																						
833708	< 5																						
833709	6																						
833710	5																						
833711	<5																						
833712	< 5																						
833713	<5																						
833714	18																						
833715	<5																						
833716	<5																						
833717	<5																						
833718	< 5																						
833719	5																						
833720	7090																						
833721	11																						
833722	<5	107	> 3.00	0.41	8.03	1.62	2.03	<0.1	26	14	308	1.92	2.2	3.7	0.5	1.2	0.2	0.15	6.82	4.5	0.43	0.22	<0.1
833723	< 5																						
833724	<5																						
833725	<5																						
833726	8																						
833727	< 5																						
833728	7																						
833729	< 5																						
833730	< 5																						
833731	< 5																						
833732	5																						
833733	<5																						
833734	< 5																						
833735	7																						
833736	< 5																						
833737	6																						
833738	< 5																						
833739	<5																						
833740	5690																						
833741	< 5																						
833742	<5	101	> 3.00	0.69	8.72	1.53	2.37	<0.1	41	29	313	2.37	3.0	14.6	0.5	1.6	0.2	0.20	10.7	6.9	0.59	0.66	0.1
833743	<5																						
833744	<5																						
833745	< 5																						
833746	< 5																						
833747	<5																						
833748	< 5																						
833749	< 5																						
833750	<5																						
833751	<5																						
833752	< 5																						
833753	<5																						

Analyte Symbol	Au	Li	Na	Mg	AI	K	Ca	Cd	V	Cr	Mn	Fe	Hf	Ni	Er	Be	Ho	Ag	Cs	Co	Eu	Bi	Se
Unit Symbol	ppb	ppm	\%	\%	\%	\%	\%	ppm	ppm	ppm	ppm	\%	ppm										
Lower Limit	5	0.5	0.01	0.01	0.01	0.01	0.01	0.1	1	1	1	0.01	0.1	0.5	0.1	0.1	0.1	0.05	0.05	0.1	0.05	0.02	0.1
Method Code	FA-AA	TD-MS																					
833754	<5																						
833755	< 5																						
833756	7																						
833757	< 5																						
833758	< 5																						
833759	<5																						
833760	3550																						
833761	< 5																						
833762	6																						
833763	< 5																						
833764	< 5																						
833765	< 5																						
833766	< 5																						
833767	< 5																						
833768	< 5																						
833769	< 5																						
833770	< 5																						
833771	< 5																						
833772	12																						
833773	6																						
833774	< 5																						
833775	< 5																						
833776	< 5																						
833777	< 5																						
833778	< 5																						
833779	< 5																						
833780	6810																						
833781	< 5																						
833782	<5																						
833783	< 5																						
833784	6																						
833785	16																						
833786	< 5																						
833787	< 5																						
833788	< 5																						
833789	<5																						
833790	< 5																						
833791	< 5																						
833792	< 5																						
833793	<5																						
833794	< 5																						
833795	< 5																						
833796	< 5																						
833797	< 5																						
833798	< 5																						
833799	< 5																						
833800	5380																						
833801	6																						
833802	< 5																						
833803	< 5																						
833804	<5																						

Analyte Symbol	Au	Li	Na	Mg	AI	K	Ca	Cd	V	Cr	Mn	Fe	Hf	Ni	Er	Be	Ho	Ag	Cs	Co	Eu	Bi	Se
Unit Symbol	ppb	ppm	\%	\%	\%	\%	\%	ppm	ppm	ppm	ppm	\%	ppm										
Lower Limit	5	0.5	0.01	0.01	0.01	0.01	0.01	0.1	1	1	1	0.01	0.1	0.5	0.1	0.1	0.1	0.05	0.05	0.1	0.05	0.02	0.1
Method Code	FA-AA	TD-MS																					
833805	<5																						
833806	<5																						
833807	6																						
833808	< 5																						
833809	< 5																						
833810	7																						
833811	< 5																						
833812	< 5																						
833813	< 5																						
833814	< 5																						
833815	6																						
833816	20																						
833817	<5																						
833818	10																						
833819	<5																						
833820	3670																						
833821	< 5																						
833822	< 5																						
833823	< 5																						
833824	< 5																						
833825	< 5																						
833826	< 5																						
833827	67																						
833828	< 5																						
833829	< 5																						
833830	< 5																						
833831	< 5																						
833832	5																						
833833	<5																						
833834	< 5																						
833835	< 5																						
833836	< 5																						
833837	< 5																						
833838	< 5																						
833839	< 5																						
833840	7240																						
833841	< 5																						
833842	< 5																						
833843	8																						
833844	< 5																						
833845	< 5																						
833846	< 5																						
833847	< 5																						
833848	< 5																						
833849	< 5																						
833850	< 5																						
833851	< 5																						
833852	8																						
833853	< 5																						
833854	< 5																						
833855	<5																						

Analyte Symbol	Au	Li	Na	Mg	Al	K	Ca	Cd	V	Cr	Mn	Fe	Hf	Ni	Er	Be	Ho	Ag	Cs	Co	Eu	Bi	Se
Unit Symbol	ppb	ppm	\%	\%	\%	\%	\%	ppm	ppm	ppm	ppm	\%	ppm										
Lower Limit	5	0.5	0.01	0.01	0.01	0.01	0.01	0.1	1	1	1	0.01	0.1	0.5	0.1	0.1	0.1	0.05	0.05	0.1	0.05	0.02	0.1
Method Code	FA-AA	TD-MS																					
833856	<5																						
833857	<5																						
833858	10																						
833859	< 5																						
833860	5560																						
833861	8																						
833862	19																						
833863	5																						
833864	<5																						
833865	<5																						
833866	<5																						
833867	<5																						
833868	<5																						
833869	8																						
833870	< 5																						
833871	<5																						
833872	9																						
833873	< 5																						
833874	<5																						
833875	<5																						
833876	<5																						

Analyte Symbol	Zn	Ga	As	Rb	Y	Sr	Zr	Nb	Mo	In	Sn	Sb	Te	Ba	La	Ce	Pr	Nd	Sm	Gd	Tb	Dy	Cu
Unit Symbol	ppm																						
Lower Limit	0.2	0.1	0.1	0.2	0.1	0.2	1	0.1	0.05	0.1	1	0.1	0.1	1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2
Method Code	TD-MS																						
833703	46.3	16.0	1.9	54.2	3.7	418	55	3.6	1.30	<0.1	<1	< 0.1	<0.1	411	13.4	25.3	2.8	10.4	1.5	1.3	0.2	0.8	17.5
833704	61.8	21.9	1.4	66.9	6.1	511	82	3.4	0.99	<0.1	<1	<0.1	<0.1	394	13.3	27.7	3.2	12.5	2.5	1.7	0.2	1.2	2.5
833705	52.5	18.3	1.7	34.4	3.6	593	60	3.1	1.39	<0.1	<1	<0.1	<0.1	411	16.7	32.3	3.4	11.4	2.1	1.3	0.1	0.8	3.2
833706																							
833707																							
833708																							
833709																							
833710																							
833711																							
833712																							
833713																							
833714																							
833715																							
833716																							
833717																							
833718																							
833719																							
833720																							
833721																							
833722	47.3	17.4	1.7	48.5	4.4	479	62	3.4	1.21	<0.1	<1	<0.1	<0.1	580	13.4	26.2	2.9	9.8	1.9	1.3	0.2	0.9	48.6
833723																							
833724																							
833725																							
33726																							
33727																							
833728																							
833729																							
833730																							
833731																							
833732																							
833733																							
833734																							
833735																							
833736																							
833737																							
833738																							
833739																							
833740																							
833741																							
833742	60.4	20.1	1.4	57.1	4.0	554	96	2.8	7.66	<0.1	<1	<0.1	<0.1	378	15.0	29.1	3.4	13.0	2.8	1.6	0.2	0.9	53.9
833743																							
833744																							
833745																							
833746																							
833747																							
833748																							
833749																							
833750																							
833751																							
833752																							
833753																							

Analyte Symbol	Zn	Ga	As	Rb	Y	Sr	Zr	Nb	Mo	In	Sn	Sb	Te	Ba	La	Ce	Pr	Nd	Sm	Gd	Tb	Dy	Cu
Unit Symbol	ppm																						
Lower Limit	0.2	0.1	0.1	0.2	0.1	0.2	1	0.1	0.05	0.1	1	0.1	0.1	1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2
Method Code	TD-MS																						
833805																							
833806																							
833807																							
833808																							
833809																							
833810																							
833811																							
833812																							
833813																							
833814																							
833815																							
833816																							
833817																							
833818																							
833819																							
833820																							
833821																							
833822																							
833823																							
833824																							
833825																							
833826																							
833827																							
833828																							
833829																							
833830																							
833831																							
833832																							
833833																							
833834																							
833835																							
833836																							
833837																							
833838																							
833839																							
833840																							
833841																							
833842																							
833843																							
833844																							
833845																							
833846																							
833847																							
833848																							
833849																							
833850																							
833851																							
833852																							
833853																							
833854																							
833855																							

Analyte Symbol	Zn	Ga	As	Rb	Y	Sr	Zr	Nb	Mo	In	Sn	Sb	Te	Ba	La	Ce	Pr	Nd	Sm	Gd	Tb	Dy	Cu
Unit Symbol	ppm																						
Lower Limit	0.2	0.1	0.1	0.2	0.1	0.2	1	0.1	0.05	0.1	1	0.1	0.1	1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2
Method Code	TD-MS																						
833856																							
833857																							
833858																							
833859																							
833860																							
833861																							
833862																							
833863																							
833864																							
833865																							
833866																							
833867																							
833868																							
833869																							
833870																							
833871																							
833872																							
833873																							
833874																							
833875																							
833876																							

Analyte Symbol	Ge	Tm	Yb	Lu	Ta	W	Re	TI	Pb	Sc	Th	U	Ti	P	S
Unit Symbol	ppm	\%	\%	\%											
Lower Limit	0.1	0.1	0.1	0.1	0.1	0.1	0.001	0.05	0.5	1	0.1	0.1	0.0005	0.001	0.01
Method Code	TD-MS	TD-ICP	TD-MS	TD-MS	TD-ICP	TD-ICP	TD-ICP								
833703	< 0.1	< 0.1	0.3	<0.1	0.3	<0.1	< 0.001	0.36	7.1	3	1.9	0.7	0.145	0.031	0.07
833704	< 0.1	< 0.1	0.6	< 0.1	0.2	<0.1	< 0.001	0.45	8.7	4	2.0	0.8	0.185	0.045	0.01
833705	0.1	<0.1	0.4	<0.1	0.2	< 0.1	< 0.001	0.20	7.0	3	2.4	0.7	0.160	0.032	< 0.01
833706															
833707															
833708															
833709															
833710															
833711															
833712															
833713															
833714															
833715															
833716															
833717															
833718															
833719															
833720															
833721															
833722	< 0.1	< 0.1	0.4	<0.1	0.2	<0.1	< 0.001	0.26	7.1	3	2.1	0.8	0.151	0.031	0.14
833723															
833724															
833725															
833726															
833727															
833728															
833729															
833730															
833731															
833732															
833733															
833734															
833735															
833736															
833737															
833738															
833739															
833740															
833741															
833742	< 0.1	<0.1	0.4	<0.1	0.5	0.3	0.002	0.35	7.5	5	2.5	0.7	0.207	0.047	0.48
833743															
833744															
833745															
833746															
833747															
833748															
833749															
833750															
833751															
833752															
833753															

Analyte Symbol	Ge	Tm	Yb	Lu	Ta	W	Re	TI	Pb	Sc	Th	U	Ti	P	S
Unit Symbol	ppm	\%	\%	\%											
Lower Limit	0.1	0.1	0.1	0.1	0.1	0.1	0.001	0.05	0.5	1	0.1	0.1	0.0005	0.001	0.01
Method Code	TD-MS	TD-ICP	TD-MS	TD-MS	TD-ICP	TD-ICP	TD-ICP								
833754															
833755															
833756															
833757															
833758															
833759															
833760															
833761															
833762															
833763															
833764															
833765															
833766															
833767															
833768															
833769															
833770															
833771															
833772															
833773															
833774															
833775															
833776															
833777															
833778															
833779															
833780															
833781															
833782															
833783															
833784															
833785															
833786															
833787															
833788															
833789															
833790															
833791															
833792															
833793															
833794															
833795															
833796															
833797															
833798															
833799															
833800															
833801															
833802															
833803															
833804															

Analyte Symbol	Ge	Tm	Yb	Lu	Ta	W	Re	TI	Pb	Sc	Th	U	Ti	P	S
Unit Symbol	ppm	\%	\%	\%											
Lower Limit	0.1	0.1	0.1	0.1	0.1	0.1	0.001	0.05	0.5	1	0.1	0.1	0.0005	0.001	0.01
Method Code	TD-MS	TD-ICP	TD-MS	TD-MS	TD-ICP	TD-ICP	TD-ICP								
833805															
833806															
833807															
833808															
833809															
833810															
833811															
833812															
833813															
833814															
833815															
833816															
833817															
833818															
833819															
833820															
833821															
833822															
833823															
833824															
833825															
833826															
833827															
833828															
833829															
833830															
833831															
833832															
833833															
833834															
833835															
833836															
833837															
833838															
833839															
833840															
833841															
833842															
833843															
833844															
833845															
833846															
833847															
833848															
833849															
833850															
833851															
833852															
833853															
833854															
833855															

Analyte Symbol	Ge	Tm	Yb	Lu	Ta	W	Re	TI	Pb	Sc	Th	U	Ti	P	S
Unit Symbol	ppm	\%	\%	\%											
Lower Limit	0.1	0.1	0.1	0.1	0.1	0.1	0.001	0.05	0.5	1	0.1	0.1	0.0005	0.001	0.01
Method Code	TD-MS	TD-ICP	TD-MS	TD-MS	TD-ICP	TD-ICP	TD-ICP								
833856															
833857															
833858															
833859															
833860															
833861															
833862															
833863															
833864															
833865															
833866															
833867															
833868															
833869															
833870															
833871															
833872															
833873															
833874															
833875															
833876															

Analyte Symbol	Au	Li	Na	Mg	AI	K	Ca	Cd	V	Cr	Mn	Fe	Hf	Ni	Er	Be	Ho	Ag	Cs	Co	Eu	Bi	Se
Unit Symbol	ppb	ppm	\%	\%	\%	\%	\%	ppm	ppm	ppm	ppm	\%	ppm										
Lower Limit	5	0.5	0.01	0.01	0.01	0.01	0.01	0.1	1	1	1	0.01	0.1	0.5	0.1	0.1	0.1	0.05	0.05	0.1	0.05	0.02	0.1
Method Code	FA-AA	TD-MS																					
Oreas 72a (4 Acid) Meas										157		8.72		> 5000						140			
$\begin{aligned} & \text { Oreas 72a (4 } \\ & \text { Acid) Cert } \end{aligned}$										228		9.63		$\begin{array}{r} 6930.0 \\ 00 \\ \hline \end{array}$						157			
Oreas 72a (4 Acid) Meas										170		9.82		> 5000						165			
$\begin{aligned} & \text { Oreas 72a (4 } \\ & \text { Acid) Cert } \end{aligned}$										228		9.63		$\begin{array}{r} 6930.0 \\ 00 \\ \hline \end{array}$						157			
OREAS 101b (4 Acid) Meas				1.22		2.38			74		949	10.7		11.4	14.5		4.8			45.8	6.94		
OREAS 101b (4 Acid) Cert				1.23		2.36			77		927	10.7		8.2	15		5.2			45	8.1		
OREAS 101b (4 Acid) Meas				1.21		2.46			80		892	10.4		9.8	15.6		5.3			46.9	6.57		
OREAS 101b (4 Acid) Cert				1.23		2.36			77		927	10.7		8.2	15		5.2			45	8.1		
OREAS 98 (4 Acid) Meas																		43.9		119		87.8	160
OREAS 98 (4 Acid) Cert																		45.1		121		97.2	158
OREAS 98 (4 Acid) Meas																		44.2		134		98.8	174
OREAS 98 (4 Acid) Cert																		45.1		121		97.2	158
OREAS 13b (4-Acid) Meas										> 5000				2020				0.83		73.3			
OREAS 13b (4-Acid) Cert										$\begin{array}{r} 8650.0 \\ 00 \\ \hline \end{array}$				$\begin{array}{r} 2247.0 \\ 000 \\ \hline \end{array}$				0.86		75			
OREAS 904 (4 Acid) Meas		16.8	0.04	0.60	6.86	3.66	0.04		77	60	415	6.54	5.0	41.7		7.5		0.63	3.63	81.4		4.15	2.6
OREAS 904 (4 Acid) Cert		16.7	0.0340	0.556	6.30	3.31	0.0460		76.0	54.0	410	6.68	5.00	40.1		7.86		0.551	3.79	83.0		4.05	3.30
OREAS 45d (4-Acid) Meas		20.1	0.09	0.26	7.96	0.43	0.18		124	475	459	14.1	2.1	223	1.4	0.7	0.5		3.46	29.4	0.53	0.32	
OREAS 45d (4-Acid) Cert		21.5	0.101	0.245	8.150	0.412	0.185		235.0	549	490.000	14.5	3.830	231.0	1.38	0.79	0.46		3.910	29.50	0.57	0.31	
OREAS 96 (4 Acid) Meas																		10.5		48.7		27.7	38.8
OREAS 96 (4 Acid) Cert																		11.5		49.9		26.3	40.7
OREAS 96 (4 Acid) Meas																		11.2		48.0		27.6	41.5
OREAS 96 (4 Acid) Cert																		11.5		49.9		26.3	40.7
OREAS 923 (4 Acid) Meas		32.2	0.33	1.85	7.95	2.11	0.45	0.4	86	77	1000	6.47	3.5	34.8	2.6	2.2	0.9	1.64	6.90	22.5	1.25	22.9	6.4
OREAS 923 (4 Acid) Cert		31.4	0.324	1.69	7.29	2.51	0.473	0.420	91.0	71.0	950	6.43	3.42	35.8	2.86	2.42	0.960	1.60	6.70	23.1	1.37	21.4	6.54
OREAS 621 (4 Acid) Meas																							
OREAS 621 (4 Acid) Cert																							
Oreas E1336 (Fire Assay) Meas	508																						
Oreas E1336 (Fire Assay) Cert	510.000																						
Oreas E1336 (Fire Assay) Meas	518																						

Analyte Symbol	Au	Li	Na	Mg	AI	K	Ca	Cd	V	Cr	Mn	Fe	Hf	Ni	Er	Be	Ho	Ag	Cs	Co	Eu	Bi	Se
Unit Symbol	ppb	ppm	\%	\%	\%	\%	\%	ppm	ppm	ppm	ppm	\%	ppm										
Lower Limit	5	0.5	0.01	0.01	0.01	0.01	0.01	0.1	1	1	1	0.01	0.1	0.5	0.1	0.1	0.1	0.05	0.05	0.1	0.05	0.02	0.1
Method Code	FA-AA	TD-MS																					
$\begin{aligned} & \text { Oreas E1336 (Fire } \\ & \text { Assay) Cert } \end{aligned}$	510.000																						
Oreas E1336 (Fire Assay) Meas	506																						
$\begin{aligned} & \hline \begin{array}{l} \text { Oreas E1336 (Fire } \\ \text { Assay) Cert } \end{array} \\ & \hline \end{aligned}$	510.000																						
Oreas E1336 (Fire Assay) Meas	504																						
$\begin{aligned} & \hline \begin{array}{l} \text { Oreas E1336 (Fire } \\ \text { Assay) Cert } \end{array} \\ & \hline \end{aligned}$	510.000																						
$\begin{aligned} & \hline \text { OREAS } 681 \text { (4 } \\ & \text { Acid) Meas } \end{aligned}$																							
OREAS 681 (4 Acid) Cert																							
Oreas 521 (4 Acid) Meas		16.1	0.95	1.07	4.57	2.77	3.42		200	44	3280	20.6	3.0	67.0	2.1	0.8	0.7	0.83	0.74	373	1.52	5.99	1.4
Oreas 521 (4 Acid) Cert		16.4	0.98	1.13	4.77	3.16	3.86		209	31	3210	20.7	3.2	73.0	2.1	0.9	0.7	0.89	0.72	386	1.64	5.85	2.4
OREAS 70b (4 Acid) Meas																							
OREAS 70b (4 Acid) Cert																							
OREAS 256b (Fire Assay) Meas	8190																						
OREAS 256b (Fire Assay) Cert	7840																						
OREAS 256b (Fire Assay) Meas	8140																						
OREAS 256b (Fire Assay) Cert	7840																						
OREAS 256b (Fire Assay) Meas	7710																						
OREAS 256b (Fire Assay) Cert	7840																						
OREAS 256b (Fire Assay) Meas	7840																						
OREAS 256b (Fire Assay) Cert	7840																						
OREAS 256b (Fire Assay) Meas	7950																						
OREAS 256b (Fire Assay) Cert	7840																						
833712 Orig	< 5																						
833712 Dup	< 5																						
833722 Orig	12	104	> 3.00	0.41	7.63	1.62	2.07	< 0.1	25	15	298	1.86	2.1	3.7	0.5	1.2	0.2	0.11	6.82	4.5	0.42	0.22	< 0.1
833722 Dup	< 5	110	>3.00	0.41	8.44	1.61	1.99	<0.1	26	13	318	1.98	2.3	3.8	0.5	1.2	0.2	0.19	6.81	4.5	0.45	0.23	<0.1
833733 Orig	5																						
833733 Dup	< 5																						
833738 Orig	12																						
833738 Dup	< 5																						
833748 Orig	< 5																						
833748 Dup	< 5																						
833752 Orig	< 5																						
833752 Split PREP DUP	< 5																						
833757 Orig	<																						
833757 Dup	<5																						

Analyte Symbol	Au	Li	Na	Mg	AI	K	Ca	Cd	V	Cr	Mn	Fe	Hf	Ni	Er	Be	Ho	Ag	Cs	Co	Eu	Bi	Se
Unit Symbol	ppb	ppm	\%	\%	\%	\%	\%	ppm	ppm	ppm	ppm	\%	ppm										
Lower Limit	5	0.5	0.01	0.01	0.01	0.01	0.01	0.1	1	1	1	0.01	0.1	0.5	0.1	0.1	0.1	0.05	0.05	0.1	0.05	0.02	0.1
Method Code	FA-AA	TD-MS																					
833777 Orig	< 5																						
833777 Dup	< 5																						
833787 Orig	< 5																						
833787 Dup	< 5																						
833802 Orig	< 5																						
$\begin{aligned} & 833802 \text { Split } \\ & \text { PREP DUP } \end{aligned}$	< 5																						
833816 Orig	20																						
833826 Orig	< 5																						
833826 Dup	< 5																						
833846 Orig	12																						
833846 Dup	< 5																						
833852 Orig	8																						
833852 Split PREP DUP	< 5																						
833855 Orig	5																						
833855 Dup	< 5																						
833876 Orig	< 5																						
$\begin{aligned} & 833876 \text { Split } \\ & \text { PREP DUP } \end{aligned}$	< 5																						
Method Blank	< 5																						
Method Blank	< 5																						
Method Blank	< 5																						
Method Blank	< 5																						
Method Blank	< 5																						
Method Blank	< 5																						
Method Blank	< 5																						
Method Blank	< 5																						
Method Blank	< 5																						
Method Blank	< 5																						
Method Blank																							
Method Blank																							
Method Blank		< 0.5	< 0.01	< 0.01	< 0.01	<0.01	<0.01	<0.1	1	3	7	< 0.01	<0.1	<0.5	<0.1	<0.1	<0.1	< 0.05	< 0.05	<0.1	< 0.05	< 0.02	<0.1
Method Blank		< 0.5	< 0.01	<0.01	< 0.01	<0.01	<0.01	<0.1	<1	5	2	<0.01	< 0.1	< 0.5	< 0.1	<0.1	< 0.1	< 0.05	< 0.05	< 0.1	< 0.05	< 0.02	<0.1
Method Blank		<0.5	< 0.01	<0.01	<0.01	<0.01	<0.01	<0.1	1	6	2	< 0.01	<0.1	0.5	<0.1	<0.1	<0.1	<0.05	<0.05	<0.1	< 0.05	< 0.02	<0.1

Analyte Symbol	Zn	Ga	As	Rb	Y	Sr	Zr	Nb	Mo	In	Sn	Sb	Te	Ba	La	Ce	Pr	Nd	Sm	Gd	Tb	Dy	Cu
Unit Symbol	ppm																						
Lower Limit	0.2	0.1	0.1	0.2	0.1	0.2	1	0.1	0.05	0.1	1	0.1	0.1	1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2
Method Code	TD-MS																						
Oreas 72a (4 Acid) Meas			14.3																				307
$\begin{aligned} & \text { Oreas 72a (4 } \\ & \text { Acid) Cert } \end{aligned}$			14.7																				316
Oreas 72a (4 Acid) Meas			18.9																				319
$\begin{aligned} & \hline \text { Oreas 72a (4 } \\ & \text { Acid) Cert } \end{aligned}$			14.7																				316
OREAS 101b (4 Acid) Meas					111				20.5						668	1200	110	337	43.0	36.0	4.3	25.5	415
OREAS 101b (4 Acid) Cert					133				20.1						754	1325	127	388	48	40	5.4	27	412
OREAS 101b (4 Acid) Meas					116				19.7						725	1220	117	349	43.8	34.9	4.6	26.0	420
OREAS 101b (4 Acid) Cert					133				20.1						754	1325	127	388	48	40	5.4	27	412
OREAS 98 (4 Acid) Meas	1280										199	7.6											P10000
OREAS 98 (4 Acid) Cert	1360										206	20.1											$\begin{array}{r} 14800 \\ 0.0 \\ \hline \end{array}$
OREAS 98 (4 Acid) Meas	1330										> 200	8.1											P10000
OREAS 98 (4 Acid) Cert	1360										206	20.1											$\begin{array}{r} 14800 \\ 0.0 \\ \hline \end{array}$
OREAS 13b (4-Acid) Meas	131		47.2						8.51														2140
OREAS 13b (4-Acid) Cert	133		57						9.0														$\begin{array}{r} 2327.0 \\ 000 \\ \hline \end{array}$
OREAS 904 (4 Acid) Meas	26.6	14.3	94.7	124	29.0	24.1	184		2.29	0.2	3	1.4		210	41.3	82.7					0.9		5760
OREAS 904 (4 Acid) Cert	26.3	16.7	98.0	130	31.5	27.2	171		2.12	0.220	2.83	1.48		194	43.2	86.0					1.00		6120
OREAS 45d (4-Acid) Meas	41.4	20.1	7.7	40.6	9.7	27.3	67	0.8	0.33	< 0.1	<1	< 0.1		169	16.2	32.4	3.6	12.6	2.8	2.3	0.4	2.4	368
OREAS 45d (4-Acid) Cert	45.7	21.20	13.8	42.1	9.53	31.30	141	14.50	2.500	0.096	2.78	0.82		183.0	16.9	37.20	3.70	13.4	2.80	2.42	0.400	2.26	371
OREAS 96 (4 Acid) Meas	430										63	4.7											P10000
OREAS 96 (4 Acid) Cert	457										65.6	5.09											39300
OREAS 96 (4 Acid) Meas	406										66	4.8											P10000
OREAS 96 (4 Acid) Cert	457										65.6	5.09											39300
OREAS 923 (4 Acid) Meas	343	20.8	8.6	171	25.7	39.4	128	15.8	1.06	0.5	14	1.5		424	41.9	78.5	9.4	35.3	5.3	6.1	0.8	5.0	4040
OREAS 923 (4 Acid) Cert	345	20.3	7.61	166	26.4	43.0	116	14.1	0.930	0.520	13.3	1.29		434	42.2	83.0	9.58	35.4	6.64	5.73	0.850	5.05	4230
OREAS 621 (4 Acid) Meas																							
OREAS 621 (4 Acid) Cert																							
Oreas E1336 (Fire Assay) Meas																							
Oreas E1336 (Fire Assay) Cert																							
Oreas E1336 (Fire Assay) Meas																							

Analyte Symbol	Zn	Ga	As	Rb	Y	Sr	Zr	Nb	Mo	In	Sn	Sb	Te	Ba	La	Ce	Pr	Nd	Sm	Gd	Tb	Dy	Cu
Unit Symbol	ppm																						
Lower Limit	0.2	0.1	0.1	0.2	0.1	0.2	1	0.1	0.05	0.1	1	0.1	0.1	1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2
Method Code	TD-MS																						
$\begin{aligned} & \text { Oreas E1336 (Fire } \\ & \text { Assay) Cert } \end{aligned}$																							
$\begin{aligned} & \hline \begin{array}{l} \text { Oreas E1336 (Fire } \\ \text { Assay) Meas } \end{array} \\ & \hline \end{aligned}$																							
$\begin{aligned} & \text { Oreas E1336 (Fire } \\ & \text { Assay) Cert } \end{aligned}$																							
$\begin{aligned} & \hline \begin{array}{l} \text { Oreas E1336 (Fire } \\ \text { Assay) Meas } \end{array} \\ & \hline \end{aligned}$																							
Oreas E1336 (Fire Assay) Cert																							
$\begin{aligned} & \hline \text { OREAS } 681 \text { (4 } \\ & \text { Acid) Meas } \end{aligned}$																							
$\begin{array}{\|l} \hline \text { OREAS } 681 \text { (4 } \\ \text { Acid) Cert } \\ \hline \end{array}$																							
$\begin{aligned} & \text { Oreas } 521 \text { (4 } \\ & \text { Acid) Meas } \\ & \hline \end{aligned}$	24.0	16.2	232	97.0	18.3	97.9	118	1.7	118	0.2	6	3.6	0.2		85.7	103	7.9	24.4	4.1	4.3	0.6	3.5	5530
$\begin{array}{\|l\|} \hline \text { Oreas } 521 \text { (4 } \\ \text { Acid) Cert } \\ \hline \end{array}$	24.4	17.4	336	98.0	19.9	158	123	5.6	138	0.2	7	5.7	0.8		139	123	8.4	25.4	4.2	4.0	0.6	3.5	6070
OREAS 70b (4 Acid) Meas																							
$\begin{aligned} & \begin{array}{l} \text { OREAS 70b (4 } \\ \text { Acid) Cert } \end{array} \\ & \hline \end{aligned}$																							
OREAS 256b (Fire Assay) Meas																							
OREAS 256b (Fire Assay) Cert																							
OREAS 256b (Fire Assay) Meas																							
OREAS 256b (Fire Assay) Cert																							
OREAS 256b (Fire Assay) Meas																							
OREAS 256b (Fire Assay) Cert																							
OREAS 256b (Fire Assay) Meas																							
OREAS 256b (Fire Assay) Cert																							
OREAS 256b (Fire Assay) Meas																							
OREAS 256b (Fire Assay) Cert																							
833712 Orig																							
833712 Dup																							
833722 Orig	47.1	17.4	1.4	48.1	4.2	476	60	3.2	1.30	<0.1	<1	<0.1	<0.1	559	13.2	26.7	3.0	9.9	1.7	1.3	0.2	0.9	47.1
833722 Dup	47.5	17.3	1.9	48.8	4.5	481	65	3.5	1.13	<0.1	<1	<0.1	<0.1	601	13.7	25.7	2.8	9.8	2.0	1.2	0.2	1.0	50.1
833733 Orig																							
833733 Dup																							
833738 Orig																							
833738 Dup																							
833748 Orig																							
833748 Dup																							
833752 Orig																							
833752 Split PREP DUP																							
833757 Orig																							
833757 Dup																							

Analyte Symbol	Zn	Ga	As	Rb	Y	Sr	Zr	Nb	Mo	In	Sn	Sb	Te	Ba	La	Ce	Pr	Nd	Sm	Gd	Tb	Dy	Cu
Unit Symbol	ppm																						
Lower Limit	0.2	0.1	0.1	0.2	0.1	0.2	1	0.1	0.05	0.1	1	0.1	0.1	1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2
Method Code	TD-MS																						
833777 Orig																							
833777 Dup																							
833787 Orig																							
833787 Dup																							
833802 Orig																							
833802 Split PREP DUP																							
833816 Orig																							
833826 Orig																							
833826 Dup																							
833846 Orig																							
833846 Dup																							
833852 Orig																							
833852 Split PREP DUP																							
833855 Orig																							
833855 Dup																							
833876 Orig																							
833876 Split PREP DUP																							
Method Blank																							
Method Blank																							
Method Blank																							
Method Blank																							
Method Blank																							
Method Blank																							
Method Blank																							
Method Blank																							
Method Blank																							
Method Blank																							
Method Blank																							
Method Blank																							
Method Blank	<0.2	0.2	1.2	<0.2	<0.1	<0.2	<1	<0.1	0.05	<0.1	< 1	<0.1	<0.1	< 1	< 0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.8
Method Blank	<0.2	0.1	<0.1	<0.2	<0.1	<0.2	<1	<0.1	0.06	<0.1	<1	<0.1	<0.1	< 1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.6
Method Blank	0.6	0.2	0.9	<0.2	<0.1	<0.2	<1	<0.1	<0.05	<0.1	<1	<0.1	<0.1	<1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.2

Analyte Symbol	Ge	Tm	Yb	Lu	Ta	W	Re	TI	Pb	Sc	Th	U	Ti	P	S
Unit Symbol	ppm	\%	\%	\%											
Lower Limit	0.1	0.1	0.1	0.1	0.1	0.1	0.001	0.05	0.5	1	0.1	0.1	0.0005	0.001	0.01
Method Code	TD-MS	TD-ICP	TD-MS	TD-MS	TD-ICP	TD-ICP	TD-ICP								
Oreas 72a (4 Acid) Meas															1.65
$\begin{array}{\|l\|} \hline \text { Oreas 72a (4 } \\ \text { Acid) Cert } \end{array}$															1.74
Oreas 72a (4 Acid) Meas															
$\begin{array}{\|l\|} \hline \text { Oreas 72a (4 } \\ \text { Acid) Cert } \end{array}$															
OREAS 101b (4 Acid) Meas		2.0	13.3	1.7					23.3		35.5	323	0.373	0.120	
OREAS 101b (4 Acid) Cert		2.08	13.9	1.96					23		36.4	387	0.35		
OREAS 101b (4 Acid) Meas		2.0	12.9	1.7					21.1		35.6	369			
OREAS 101b (4 Acid) Cert		2.08	13.9	1.96					23		36.4	387			
OREAS 98 (4 Acid) Meas									291						14.9
OREAS 98 (4 Acid) Cert									345						15.5
OREAS 98 (4 Acid) Meas									307						
OREAS 98 (4 Acid) Cert									345						
OREAS 13b (4-Acid) Meas															1.18
OREAS 13b (4-Acid) Cert															1.2
OREAS 904 (4 Acid) Meas	< 0.1		3.2	0.4	0.9	2.7		0.54	12.9	13	15.1	8.8		0.112	0.07
OREAS 904 (4 Acid) Cert	0.180		3.14	0.470	0.540	2.12		0.520	10.6	11.2	14.3	8.43		0.0980	0.0630
OREAS 45d (4-Acid) Meas			1.4	0.2	< 0.1	< 0.1		0.24	19.5	55	13.8	2.6	0.305	0.038	0.05
OREAS 45d (4-Acid) Cert			1.33	0.18	1.02	1.62		0.27	21.8	49.30	14.5	2.63	0.773	0.042	0.049
OREAS 96 (4 Acid) Meas									130						4.38
OREAS 96 (4 Acid) Cert									101						4.19
OREAS 96 (4 Acid) Meas									94.4						
OREAS 96 (4 Acid) Cert									101						
OREAS 923 (4 Acid) Meas		0.4	2.5	0.4	1.1	5.9		0.86	91.5		17.9	3.3			
OREAS 923 (4 Acid) Cert		0.410	2.57	0.390	1.11	4.85		0.860	83.0		16.5	3.06			
OREAS 621 (4 Acid) Meas										5			0.191	0.038	4.94
OREAS 621 (4 Acid) Cert										6.24			0.149	0.0359	4.48
Oreas E1336 (Fire Assay) Meas															
Oreas E1336 (Fire Assay) Cert															
Oreas E1336 (Fire Assay) Meas															

Analyte Symbol	Ge	Tm	Yb	Lu	Ta	W	Re	TI	Pb	Sc	Th	U	Ti	P	S
Unit Symbol	ppm	\%	\%	\%											
Lower Limit	0.1	0.1	0.1	0.1	0.1	0.1	0.001	0.05	0.5	1	0.1	0.1	0.0005	0.001	0.01
Method Code	TD-MS	TD-ICP	TD-MS	TD-MS	TD-ICP	TD-ICP	TD-ICP								
$\begin{aligned} & \text { Oreas E1336 (Fire } \\ & \text { Assay) Cert } \end{aligned}$															
Oreas E1336 (Fire Assay) Meas															
Oreas E1336 (Fire Assay) Cert															
Oreas E1336 (Fire Assay) Meas															
Oreas E1336 (Fire Assay) Cert															
OREAS 681 (4 Acid) Meas										26			0.554	0.135	0.10
$\begin{aligned} & \hline \text { OREAS } 681 \text { (4 } \\ & \text { Acid) Cert } \\ & \hline \end{aligned}$										27.7			0.588	0.141	0.109
Oreas 521 (4 Acid) Meas		0.3	2.1	0.3	<0.1	21.2	0.066	0.28	6.4	13	4.2	32.2	0.347	0.078	1.72
$\begin{aligned} & \hline \text { Oreas } 521 \text { (4 } \\ & \text { Acid) Cert } \\ & \hline \end{aligned}$		0.3	2.1	0.3	0.5	92.0	0.064	0.27	9.3	14	8.3	31.0	0.393	0.081	1.80
OREAS 70b (4 Acid) Meas										11			0.171	0.022	0.29
$\begin{aligned} & \text { OREAS 70b (4 } \\ & \text { Acid) Cert } \\ & \hline \end{aligned}$										12			0.181	0.022	0.31
OREAS 256b (Fire Assay) Meas															
OREAS 256b (Fire Assay) Cert															
OREAS 256b (Fire Assay) Meas															
OREAS 256b (Fire Assay) Cert															
OREAS 256b (Fire Assay) Meas															
OREAS 256b (Fire Assay) Cert															
OREAS 256b (Fire Assay) Meas															
OREAS 256b (Fire Assay) Cert															
OREAS 256b (Fire Assay) Meas															
OREAS 256b (Fire Assay) Cert															
833712 Orig															
833712 Dup															
833722 Orig	<0.1	<0.1	0.4	<0.1	0.2	< 0.1	< 0.001	0.25	6.9	3	2.1	0.8	0.152	0.031	0.15
833722 Dup	<0.1	<0.1	0.4	<0.1	0.2	0.1	<0.001	0.27	7.2	3	2.1	0.8	0.150	0.030	0.14
833733 Orig															
833733 Dup															
833738 Orig															
833738 Dup															
833748 Orig															
833748 Dup															
833752 Orig															
833752 Split PREP DUP															
833757 Orig															
833757 Dup															

Analyte Symbol	Ge	Tm	Yb	Lu	Ta	W	Re	TI	Pb	Sc	Th	U	Ti	P	S
Unit Symbol	ppm	\%	\%	\%											
Lower Limit	0.1	0.1	0.1	0.1	0.1	0.1	0.001	0.05	0.5	1	0.1	0.1	0.0005	0.001	0.01
Method Code	TD-MS	TD-ICP	TD-MS	TD-MS	TD-ICP	TD-ICP	TD-ICP								
833777 Orig															
833777 Dup															
833787 Orig															
833787 Dup															
833802 Orig															
833802 Split PREP DUP															
833816 Orig															
833826 Orig															
833826 Dup															
833846 Orig															
833846 Dup															
833852 Orig															
$\begin{aligned} & 833852 \text { Split } \\ & \text { PREP DUP } \end{aligned}$															
833855 Orig															
833855 Dup															
833876 Orig															
833876 Split PREP DUP															
Method Blank															
Method Blank															
Method Blank															
Method Blank															
Method Blank															
Method Blank															
Method Blank															
Method Blank															
Method Blank															
Method Blank															
Method Blank										<1			0.0005	< 0.001	< 0.01
Method Blank										<1			0.0005	< 0.001	< 0.01
Method Blank	< 0.1	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.001	< 0.05	<0.5	<1	<0.1	<0.1	0.0005	< 0.001	< 0.01
Method Blank	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.001	< 0.05	<0.5	<1	< 0.1	<0.1	0.0005	< 0.001	< 0.01
Method Blank	<0.1	<0.1	<0.1	<0.1	< 0.1	<0.1	<0.001	<0.05	<0.5		<0.1	<0.1			

Report No.: A21-22797
Report Date: 14-Dec-21
Date Submitted: 09-Dec-21
Your Reference: Exploration/Prospecting

Harte Gold Corp.
161 Bay Street
Suite 2400
Toronto Ontario M5J 2S1
Canada

ATTN: David Stevenson

CERTIFICATE OF ANALYSIS

64 Rock samples were submitted for analysis.

The following analytical package(s) were requested:	Testing Date:	
1A2-Tbay-Harte Gold	QOP AA-Au (Au - Fire Assay AA)	2021-12-13 13:30:02

REPORT A21-22797
This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:
If value exceeds upper limit we recommend reassay by fire assay gravimetric-Code 1A3

LabID: 673

ACTIVATION LABORATORIES LTD.
1201 Walsh Street West, Thunder Bay, Ontario, Canada, P7E 4X6 TELEPHONE $+807622-6707$ or +1.888 .228 .5227 FAX +1.905 .648 .9613 TELEPHONE +807 622-6707 or +1.888.228.5227FAX + 1.905 .648 .9613

CERTIFIED BY:

Emmanuel Eseme, Ph.D.
Quality Control Coordinator

Analyte Symbol	Au
Unit Symbol	ppb
Lower Limit	5
Method Code	FA-AA
833877	< 5
833878	< 5
833879	13
833880	3460
833881	10
833882	5
833883	5
833884	6
833885	< 5
833886	< 5
833887	< 5
833888	5
833889	< 5
833890	< 5
833891	< 5
833892	< 5
833893	< 5
833894	6
833895	< 5
833896	< 5
833897	< 5
833898	5
833899	7
833900	5310
833901	22
833902	5
833903	6
833904	6
833905	7
833906	8
833907	8
833908	< 5
833909	< 5
833910	6
833911	< 5
833912	< 5
833913	< 5
833914	< 5
833915	< 5
833916	< 5
833917	< 5
833918	< 5
833919	< 5
833920	3500
833921	8
833922	5
833923	9
833924	18
833925	40
833926	< 5
833927	< 5

Analyte Symbol	Au
Unit Symbol	ppb
Lower Limit	5
Method Code	FA-AA
OREAS 238 (Fire Assay) Meas	2900
OREAS 238 (Fire Assay) Cert	3030
Oreas E1336 (Fire Assay) Meas	491
Oreas E1336 (Fire Assay) Cert	510
Oreas E1336 (Fire Assay) Meas	505
Oreas E1336 (Fire Assay) Cert	510
Oreas E1336 (Fire Assay) Meas	508
Oreas E1336 (Fire Assay) Cert	510
OREAS 256b (Fire Assay) Meas	7730
OREAS 256b (Fire Assay) Cert	7840
OREAS 256b (Fire Assay) Meas	7630
OREAS 256b (Fire Assay) Cert	7840
833878 Orig	< 5
833878 Dup	6
833892 Orig	5
833892 Dup	< 5
833901 Orig	21
833901 Dup	23
833913 Orig	< 5
833913 Dup	14
833926 Orig	< 5
833926 Split PREP DUP	9
833927 Orig	< 5
833927 Dup	5
833935 Orig	6
833935 Dup	< 5
833939 Orig	10
833939 Split PREP DUP	14
Method Blank	< 5
Method Blank	< 5
Method Blank	5
Method Blank	< 5

Report No.: A21-22865
Report Date: 04-Jan-22
Date Submitted: 10-Dec-21
Your Reference: Exploration/Prospecting

Harte Gold Corp.
161 Bay Street
Suite 2400
Toronto Ontario M5J 2S1
Canada

ATTN: David Stevenson

CERTIFICATE OF ANALYSIS

60 Rock samples were submitted for analysis.

The following analytical package(s) were requested:	Testing Date:	
UT-6	QOP Total/QOP Ulltratrace- 4acid Digest (Total Digestion ICPOES/ICPMS)	2021-12-22 10:09:39

REPORT A21-22865
This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:
If value exceeds upper limit we recommend reassay by fire assay gravimetric-Code 1A3
Values which exceed the upper limit should be assayed for accurate numbers.

Report No.: A21-22865
Report Date: 04-Jan-22
Date Submitted: 10-Dec-21
Your Reference: Exploration/Prospecting
Harte Gold Corp.
161 Bay Street
Suite 2400
Toronto Ontario M5J 2S1
Canada

ATTN: David Stevenson

CERTIFICATE OF ANALYSIS

60 Rock samples were submitted for analysis.

The following analytical package(s) were requested:	Testing Date:	
1A2-Tbay-Harte Gold	QOP AA-Au (Au - Fire Assay AA)	2021-12-13 11:55:31

REPORT A21-22865

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:
If value exceeds upper limit we recommend reassay by fire assay gravimetric-Code 1A3
Values which exceed the upper limit should be assayed for accurate numbers.

Analyte Symbol	Au	Li	Na	Mg	AI	K	Ca	Cd	V	Cr	Mn	Fe	Hf	Ni	Er	Be	Ho	Ag	Cs	Co	Eu	Bi	Se
Unit Symbol	ppb	ppm	\%	\%	\%	\%	\%	ppm	ppm	ppm	ppm	\%	ppm										
Lower Limit	5	0.5	0.01	0.01	0.01	0.01	0.01	0.1	1	1	1	0.01	0.1	0.5	0.1	0.1	0.1	0.05	0.05	0.1	0.05	0.02	0.1
Method Code	FA-AA	TD-MS																					
833941	< 5																						
833942	5																						
833943	8																						
833944	10																						
833945	8																						
833946	15																						
833947	10																						
833948	14																						
833949	17																						
833950	< 5																						
833951	< 5																						
833952	< 5																						
833953	6																						
833954	< 5																						
833955	< 5																						
833956	6																						
833957	9																						
833958	< 5																						
833959	6																						
833960	5440																						
833961	< 5																						
833962	< 5																						
833963	< 5																						
833964	11																						
833965	< 5																						
833966	< 5																						
833967	< 5																						
833968	< 5																						
833969	< 5																						
833970	< 5																						
833971	< 5																						
833972	< 5																						
833973	< 5																						
833974	< 5																						
833975	< 5																						
833976	< 5																						
833977	7																						
833978	8																						
833979	< 5																						
833980	3490																						
833981	< 5																						
833982	8																						
833983	< 5																						
833984	12																						
833985	5																						
833986	< 5																						
833987	< 5																						
833988	10																						
833989	9																						
833990	< 5																						
833991	<5																						

Analyte Symbol	Au	Li	Na	Mg	Al	K	Ca	Cd	V	Cr	Mn	Fe	Hf	Ni	Er	Be	Ho	Ag	Cs	Co	Eu	Bi	Se
Unit Symbol	ppb	ppm	\%	\%	\%	\%	\%	ppm	ppm	ppm	ppm	\%	ppm										
Lower Limit	5	0.5	0.01	0.01	0.01	0.01	0.01	0.1	1	1	1	0.01	0.1	0.5	0.1	0.1	0.1	0.05	0.05	0.1	0.05	0.02	0.1
Method Code	FA-AA	TD-MS																					
833992	5																						
833993	< 5																						
833994	< 5	106	>3.00	2.94	8.68	1.13	1.31	<0.1	48	95	293	2.35	3.5	103	0.6	10.5	0.2	0.10	10.4	13.9	0.25	0.30	<0.1
833995	12																						
833996	< 5																						
833997	<5																						
833998	<5																						
833999	<5																						
834000	7220																						

Analyte Symbol	Zn	Ga	As	Rb	Y	Sr	Zr	Nb	Mo	In	Sn	Sb	Te	Ba	La	Ce	Pr	Nd	Sm	Gd	Tb	Dy	Cu
Unit Symbol	ppm																						
Lower Limit	0.2	0.1	0.1	0.2	0.1	0.2	1	0.1	0.05	0.1	1	0.1	0.1	1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2
Method Code	TD-MS																						
833941																							
833942																							
833943																							
833944																							
833945																							
833946																							
833947																							
833948																							
833949																							
833950																							
833951																							
833952																							
833953																							
833954																							
833955																							
833956																							
833957																							
833958																							
833959																							
833960																							
833961																							
833962																							
833963																							
833964																							
833965																							
833966																							
833967																							
833968																							
833969																							
833970																							
833971																							
833972																							
833973																							
833974																							
833975																							
833976																							
833977																							
833978																							
833979																							
833980																							
833981																							
833982																							
833983																							
833984																							
833985																							
833986																							
833987																							
833988																							
833989																							
833990																							
833991																							

Analyte Symbol	Zn	Ga	As	Rb	Y	Sr	Zr	Nb	Mo	In	Sn	Sb	Te	Ba	La	Ce	Pr	Nd	Sm	Gd	Tb	Dy	Cu
Unit Symbol	ppm																						
Lower Limit	0.2	0.1	0.1	0.2	0.1	0.2	1	0.1	0.05	0.1	1	0.1	0.1	1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2
Method Code	TD-MS																						
833992																							
833993																							
833994	80.4	18.7	2.2	157	4.7	452	93	4.1	11.9	<0.1	2	<0.1	<0.1	321	9.3	22.6	2.3	8.4	1.7	1.3	0.2	1.0	18.6
833995																							
833996																							
833997																							
833998																							
833999																							
834000																							

Analyte Symbol	Ge	Tm	Yb	Lu	Ta	W	Re	TI	Pb	Sc	Th	U	Ti	P	S
Unit Symbol	ppm	\%	\%	\%											
Lower Limit	0.1	0.1	0.1	0.1	0.1	0.1	0.001	0.05	0.5	1	0.1	0.1	0.0005	0.001	0.01
Method Code	TD-MS	TD-ICP	TD-MS	TD-MS	TD-ICP	TD-ICP	TD-ICP								
833941															
833942															
833943															
833944															
833945															
833946															
833947															
833948															
833949															
833950															
833951															
833952															
833953															
833954															
833955															
833956															
833957															
833958															
833959															
833960															
833961															
833962															
833963															
833964															
833965															
833966															
833967															
833968															
833969															
833970															
833971															
833972															
833973															
833974															
833975															
833976															
833977															
833978															
833979															
833980															
833981															
833982															
833983															
833984															
833985															
833986															
833987															
833988															
833989															
833990															
833991															

Analyte Symbol	Ge	Tm	Yb	Lu	Ta	W	Re	TI	Pb	Sc	Th	U	Ti	P	S
Unit Symbol	ppm	\%	\%	\%											
Lower Limit	0.1	0.1	0.1	0.1	0.1	0.1	0.001	0.05	0.5	1	0.1	0.1	0.0005	0.001	0.01
Method Code	TD-MS	TD-ICP	TD-MS	TD-MS	TD-ICP	TD-ICP	TD-ICP								
833992															
833993															
833994	<0.1	<0.1	0.6	<0.1	0.4	0.5	<0.001	0.73	9.0	8	2.8	1.8	0.139	0.030	0.13
833995															
833996															
833997															
833998															
833999															
834000															

Analyte Symbol	Au	Li	Na	Mg	AI	K	Ca	Cd	V	Cr	Mn	Fe	Hf	Ni	Er	Be	Ho	Ag	Cs	Co	Eu	Bi	Se
Unit Symbol	ppb	ppm	\%	\%	\%	\%	\%	ppm	ppm	ppm	ppm	\%	ppm										
Lower Limit	5	0.5	0.01	0.01	0.01	0.01	0.01	0.1	1	1	1	0.01	0.1	0.5	0.1	0.1	0.1	0.05	0.05	0.1	0.05	0.02	0.1
Method Code	FA-AA	TD-MS																					
Oreas 72a (4 Acid) Meas										165		10.1		> 5000						166			
Oreas 72a (4 Acid) Cert										228		9.63		$\begin{array}{r} 6930.0 \\ 00 \\ \hline \end{array}$						157			
OREAS 101b (4 Acid) Meas				1.31		2.00			81		925	10.7		8.0	16.0		5.6			46.8	6.89		
OREAS 101b (4 Acid) Cert				1.23		2.36			77		927	10.7		8.2	15		5.2			45	8.1		
OREAS 98 (4 Acid) Meas																		45.9		128		98.4	173
OREAS 98 (4 Acid) Cert																		45.1		121		97.2	158
OREAS 13b (4-Acid) Meas																							
OREAS 13b (4-Acid) Cert																							
OREAS 904 (4 Acid) Meas																							
OREAS 904 (4 Acid) Cert																							
OREAS 45d (4-Acid) Meas																							
OREAS 45d (4-Acid) Cert																							
OREAS 96 (4 Acid) Meas																		10.3		46.2		27.4	37.7
OREAS 96 (4 Acid) Cert																		11.5		49.9		26.3	40.7
OREAS 923 (4 Acid) Meas																							
OREAS 923 (4 Acid) Cert																							
OREAS 621 (4 Acid) Meas																							
OREAS 621 (4 Acid) Cert																							
OREAS 238 (Fire Assay) Meas	2900																						
OREAS 238 (Fire Assay) Cert	3030																						
Oreas E1336 (Fire Assay) Meas	491																						
Oreas E1336 (Fire Assay) Cert	510																						
Oreas E1336 (Fire Assay) Meas	498																						
Oreas E1336 (Fire Assay) Cert	510																						
Oreas E1336 (Fire Assay) Meas	509																						
Oreas E1336 (Fire Assay) Cert	510																						
OREAS 681 (4 Acid) Meas																							
OREAS 681 (4 Acid) Cert																							
OREAS 147 (4 Acid) Meas																							

Analyte Symbol	Au	Li	Na	Mg	AI	K	Ca	Cd	V	Cr	Mn	Fe	Hf	Ni	Er	Be	Ho	Ag	Cs	Co	Eu	Bi	Se
Unit Symbol	ppb	ppm	\%	\%	\%	\%	\%	ppm	ppm	ppm	ppm	\%	ppm										
Lower Limit	5	0.5	0.01	0.01	0.01	0.01	0.01	0.1	1	1	1	0.01	0.1	0.5	0.1	0.1	0.1	0.05	0.05	0.1	0.05	0.02	0.1
Method Code	FA-AA	TD-MS																					
OREAS 147 (4 Acid) Cert																							
$\begin{aligned} & \text { OREAS 70b (4 } \\ & \text { Acid) Meas } \\ & \hline \end{aligned}$																							
$\begin{aligned} & \text { OREAS 70b (4 } \\ & \text { Acid) Cert } \end{aligned}$																							
OREAS 256b (Fire Assay) Meas	8050																						
OREAS 256b (Fire Assay) Cert	7840																						
OREAS 256b (Fire Assay) Meas	8170																						
OREAS 256b (Fire Assay) Cert	7840																						
833950 Orig	< 5																						
833950 Dup	< 5																						
833961 Orig	< 5																						
833961 Dup	< 5																						
833971 Orig	< 5																						
833971 Dup	< 5																						
833976 Orig	8																						
833976 Dup	< 5																						
833986 Orig	6																						
833986 Dup	< 5																						
833991 Orig	< 5																						
833991 Split PREP DUP	< 5																						
833995 Orig	16																						
833995 Dup	7																						
833999 Orig	< 5																						
833999 Split PREP DUP	< 5																						
Method Blank	5																						
Method Blank	6																						
Method Blank	< 5																						
Method Blank	< 5																						
Method Blank	< 5																						
Method Blank		< 0.5	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.1	2	6	2	< 0.01	< 0.1	< 0.5	< 0.1	< 0.1	< 0.1	< 0.05	< 0.05	< 0.1	<0.05	< 0.02	< 0.1
Method Blank		<0.5	< 0.01	< 0.01	<0.01	<0.01	<0.01	<0.1	2	4	1	<0.01	<0.1	<0.5	<0.1	<0.1	<0.1	<0.05	<0.05	<0.1	<0.05	< 0.02	< 0.1

Analyte Symbol	Zn	Ga	As	Rb	Y	Sr	Zr	Nb	Mo	In	Sn	Sb	Te	Ba	La	Ce	Pr	Nd	Sm	Gd	Tb	Dy	Cu
Unit Symbol	ppm																						
Lower Limit	0.2	0.1	0.1	0.2	0.1	0.2	1	0.1	0.05	0.1	1	0.1	0.1	1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2
Method Code	TD-MS																						
Oreas 72a (4 Acid) Meas			6.9																				339
$\begin{array}{\|l} \hline \text { Oreas 72a (4 } \\ \text { Acid) Cert } \\ \hline \end{array}$			14.7																				316
OREAS 101b (4 Acid) Meas					125				20.1						754	1300	122	362	50.4	37.4	4.7	26.5	448
OREAS 101b (4 Acid) Cert					133				20.1						754	1325	127	388	48	40	5.4	27	412
OREAS 98 (4 Acid) Meas	1370										> 200	10.2											P10000
OREAS 98 (4 Acid) Cert	1360										206	20.1											$\begin{array}{r} 14800 \\ 0.0 \\ \hline \end{array}$
OREAS 13b (4-Acid) Meas																							
OREAS 13b (4-Acid) Cert																							
OREAS 904 (4 Acid) Meas																							
OREAS 904 (4 Acid) Cert																							
OREAS 45d (4-Acid) Meas																							
OREAS 45d (4-Acid) Cert																							
OREAS 96 (4 Acid) Meas	410										65	5.1											P10000
OREAS 96 (4 Acid) Cert	457										65.6	5.09											39300
OREAS 923 (4 Acid) Meas																							
OREAS 923 (4 Acid) Cert																							
OREAS 621 (4 Acid) Meas																							
OREAS 621 (4 Acid) Cert																							
OREAS 238 (Fire Assay) Meas																							
OREAS 238 (Fire Assay) Cert																							
Oreas E1336 (Fire Assay) Meas																							
Oreas E1336 (Fire Assay) Cert																							
Oreas E1336 (Fire Assay) Meas																							
Oreas E1336 (Fire Assay) Cert																							
Oreas E1336 (Fire Assay) Meas																							
Oreas E1336 (Fire Assay) Cert																							
OREAS 681 (4 Acid) Meas																							
OREAS 681 (4 Acid) Cert																							
OREAS 147 (4 Acid) Meas																							

Analyte Symbol	Zn	Ga	As	Rb	Y	Sr	Zr	Nb	Mo	In	Sn	Sb	Te	Ba	La	Ce	Pr	Nd	Sm	Gd	Tb	Dy	Cu
Unit Symbol	ppm																						
Lower Limit	0.2	0.1	0.1	0.2	0.1	0.2	1	0.1	0.05	0.1	1	0.1	0.1	1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2
Method Code	TD-MS																						
OREAS 147 (4 Acid) Cert																							
OREAS 70b (4 Acid) Meas																							
$\begin{aligned} & \text { OREAS 70b (4 } \\ & \text { Acid) Cert } \end{aligned}$																							
OREAS 256b (Fire Assay) Meas																							
OREAS 256b (Fire Assay) Cert																							
OREAS 256b (Fire Assay) Meas																							
OREAS 256b (Fire Assay) Cert																							
833950 Orig																							
833950 Dup																							
833961 Orig																							
833961 Dup																							
833971 Orig																							
833971 Dup																							
833976 Orig																							
833976 Dup																							
833986 Orig																							
833986 Dup																							
833991 Orig																							
833991 Split PREP DUP																							
833995 Orig																							
833995 Dup																							
833999 Orig																							
833999 Split PREP DUP																							
Method Blank																							
Method Blank																							
Method Blank																							
Method Blank																							
Method Blank																							
Method Blank	0.4	0.2	1.5	<0.2	<0.1	<0.2	<1	< 0.1	< 0.05	<0.1	<1	<0.1	<0.1	< 1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1	<0.1	< 0.1	<0.2
Method Blank	0.5	0.3	1.2	<0.2	<0.1	<0.2	<1	<0.1	<0.05	<0.1	<1	<0.1	<0.1	<1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2

Analyte Symbol	Ge	Tm	Yb	Lu	Ta	W	Re	TI	Pb	Sc	Th	U	Ti	P	S
Unit Symbol	ppm	\%	\%	\%											
Lower Limit	0.1	0.1	0.1	0.1	0.1	0.1	0.001	0.05	0.5	1	0.1	0.1	0.0005	0.001	0.01
Method Code	TD-MS	TD-ICP	TD-MS	TD-MS	TD-ICP	TD-ICP	TD-ICP								
Oreas 72a (4 Acid) Meas															1.67
$\begin{array}{\|l\|} \hline \text { Oreas 72a (4 } \\ \text { Acid) Cert } \end{array}$															1.74
OREAS 101b (4 Acid) Meas		2.0	13.2	1.7					21.5		36.8	385	0.366	0.109	
OREAS 101b (4 Acid) Cert		2.08	13.9	1.96					23		36.4	387	0.35		
OREAS 98 (4 Acid) Meas									309						16.2
OREAS 98 (4 Acid) Cert									345						15.5
OREAS 13b (4-Acid) Meas															1.17
OREAS 13b (4-Acid) Cert															1.2
OREAS 904 (4 Acid) Meas										12				0.098	0.06
OREAS 904 (4 Acid) Cert										11.2				0.0980	0.0630
OREAS 45d (4-Acid) Meas										46			0.435	0.035	0.04
OREAS 45d (4-Acid) Cert										49.30			0.773	0.042	0.049
OREAS 96 (4 Acid) Meas									87.5						4.13
OREAS 96 (4 Acid) Cert									101						4.19
OREAS 923 (4 Acid) Meas										13			0.410	0.065	0.70
OREAS 923 (4 Acid) Cert										13.1			0.405	0.0630	0.691
OREAS 621 (4 Acid) Meas										6			0.192	0.037	4.73
OREAS 621 (4 Acid) Cert										6.24			0.149	0.0359	4.48
OREAS 238 (Fire Assay) Meas															
OREAS 238 (Fire Assay) Cert															
Oreas E1336 (Fire Assay) Meas															
Oreas E1336 (Fire Assay) Cert															
Oreas E1336 (Fire Assay) Meas															
Oreas E1336 (Fire Assay) Cert															
Oreas E1336 (Fire Assay) Meas															
Oreas E1336 (Fire Assay) Cert															
OREAS 681 (4 Acid) Meas										27			0.544	0.140	0.11
OREAS 681 (4 Acid) Cert										27.7			0.588	0.141	0.109
OREAS 147 (4 Acid) Meas										11			0.395	0.126	0.02

Analyte Symbol	Ge	Tm	Yb	Lu	Ta	W	Re	TI	Pb	Sc	Th	U	Ti	P	S
Unit Symbol	ppm	\%	\%	\%											
Lower Limit	0.1	0.1	0.1	0.1	0.1	0.1	0.001	0.05	0.5	1	0.1	0.1	0.0005	0.001	0.01
Method Code	TD-MS	TD-ICP	TD-MS	TD-MS	TD-ICP	TD-ICP	TD-ICP								
OREAS 147 (4 Acid) Cert										10.7			0.470	0.155	0.0300
OREAS 70b (4 Acid) Meas										12			0.173	0.022	0.30
OREAS 70b (4 Acid) Cert										12			0.181	0.022	0.31
OREAS 256b (Fire Assay) Meas															
OREAS 256b (Fire Assay) Cert															
OREAS 256b (Fire Assay) Meas															
OREAS 256b (Fire Assay) Cert															
833950 Orig															
833950 Dup															
833961 Orig															
833961 Dup															
833971 Orig															
833971 Dup															
833976 Orig															
833976 Dup															
833986 Orig															
833986 Dup															
833991 Orig															
833991 Split PREP DUP															
833995 Orig															
833995 Dup															
833999 Orig															
833999 Split PREP DUP															
Method Blank															
Method Blank															
Method Blank															
Method Blank															
Method Blank															
Method Blank	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	<0.001	<0.05	< 0.5	< 1	<0.1	<0.1	$0.0<$	<0.001	< 0.01
Method Blank	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	< 0.001	< 0.05	< 0.5	<1	< 0.1	<0.1	0.0005	< 0.001	< 0.01

Report No.:	A21-22945
Report Date:	30-Dec-21
Date Submitted:	13-Dec-21
Your Reference:	Exploration/Prospecting

Harte Gold Corp.

161 Bay Street
Suite 2400
Toronto Ontario M5J 2S1
Canada

ATTN: David Stevenson

CERTIFICATE OF ANALYSIS

170 Rock samples were submitted for analysis.

The following analytical package(s) were requested:	Testing Date:	
1A2-Tbay-Harte Gold	QOP AA-Au (Au - Fire Assay AA)	$2021-12-14$ 19:47:09
1A3-Tbay	QOP AA-Au (Au - Fire Assay Gravimetric)	$2021-12-16$ 09:30:46
1A4-1000 (100mesh)-Tbay	QOP AA-Au (Au-Fire Assay-Metallic Screen-1000g)	$2021-12-17$ 22:37:09

REPORT A21-22945

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

A representative 1000 gram split is seived at 100 mesh (149 micron) with assays performed on the entire +100 mesh and 2 splits of the -100 mesh fraction. A final assay is calculated based on the weight of each fraction.

If value exceeds upper limit we recommend reassay by fire assay gravimetric-Code 1A3

LabID: 673

CERTIFIED BY:

Elitsa Hrischeva, Ph.D.
Quality Control Coordinator

Analyte Symbol	Au	$\begin{aligned} & \text { Au + } \\ & 100 \\ & \text { mesh } \end{aligned}$	$\begin{aligned} & \mathrm{Au}- \\ & 100 \\ & \text { mesh } \\ & \text { (A) } \\ & \hline \end{aligned}$	Au 100 mesh (B)	Total Au	$\begin{aligned} & +100 \\ & \text { mesh } \end{aligned}$	$\begin{aligned} & -100 \\ & \text { mesh } \end{aligned}$	Total Weight	Au
Unit Symbol	ppb	g/mt	g / mt	g/mt	g/mt	g	g	g	g/tonne
Lower Limit	5	0.03	0.03	0.03	0.03				0.03
Method Code	FA-AA	FA-MeT	$\begin{aligned} & \text { FA- } \\ & \text { GRA } \end{aligned}$						
861347	< 5								
861348	7								
861349	7								
861350	7030								
861351	6								
861352	9								
861353	< 5								
861354	< 5								
861355	37								
861356	< 5								
861357	< 5								
861358	5								
861359	< 5								
861360	< 5								
861361	5								
861362	< 5								
861363	6								
861364	5								
861365	12								
861366	11								
861367	< 5								
861368	<5								
861369	<5								
861370	5350								
861371	< 5								
861372	6								
861373	17								
861374	348								
861375	< 5								
861376	< 5								
861377	< 5								
861378	< 5								
861379	5								
861380	< 5								
861381	< 5								
861382	< 5								
861383	< 5								
861384	< 5								
861385	<5								
861386	6								
861387	< 5								
861388	< 5								
861389	11								
861390	3610								
861391	7								
861392	< 5								
861393	7								
861394	16								

Analyte Symbol	Au	$\begin{aligned} & \text { Au + } \\ & 100 \\ & \text { mesh } \end{aligned}$	$\begin{array}{\|l} \hline \mathrm{Au}- \\ 100 \\ \text { mesh } \\ \text { (A) } \\ \hline \end{array}$	Au 100 mesh (B)	Total Au	$\begin{aligned} & +100 \\ & \text { mesh } \end{aligned}$	$\begin{aligned} & -100 \\ & \text { mesh } \end{aligned}$	Total Weight	Au
Unit Symbol	ppb	g / mt	g / mt	g/mt	g/mt	g	g	g	g/tonne
Lower Limit	5	0.03	0.03	0.03	0.03				0.03
Method Code	FA-AA	FA-MeT	$\begin{aligned} & \text { FA- } \\ & \text { GRA } \end{aligned}$						
861395	< 5								
861396	5								
861397	5								
861398	< 5								
861399	< 5								
861400	< 5								
861401	< 5								
861402	5								
861403	< 5								
861404	< 5								
861405	< 5								
861406	< 5								
861407	< 5								
861408	< 5								
861409	< 5								
861410	7290								
861411	5								
861412	< 5								
861413	< 5								
861414	< 5								
861415	< 5								
861416	< 5								
861417	6								
861418	< 5								
861419	< 5								
861420	< 5								

Analyte Symbol	Au	$\begin{aligned} & \mathrm{Au+}+ \\ & 100 \\ & \text { mesh } \end{aligned}$	Au100 mesh (A)	Au 100 mesh (B)	Total Au	$\begin{aligned} & +100 \\ & \text { mesh } \end{aligned}$	$\begin{aligned} & -100 \\ & \text { mesh } \end{aligned}$	Total Weight	Au
Unit Symbol	ppb	g / mt	g / mt	g/mt	g / mt	g	g	g	g/tonne
Lower Limit	5	0.03	0.03	0.03	0.03				0.03
Method Code	FA-AA	FA-MeT	$\begin{aligned} & \text { FA- } \\ & \text { GRA } \end{aligned}$						
OREAS 229b (Fire Assay) Meas					11.9				11.5
OREAS 229b (Fire Assay) Cert					11.9				11.9
OREAS 229b (Fire Assay) Meas									12.1
OREAS 229b (Fire Assay) Cert									11.9
OREAS 257b (Fire Assay) Meas					13.7				14.2
OREAS 257b (Fire Assay) Cert					14.2				14.2
OREAS 257b (Fire Assay) Meas									14.5
OREAS 257b (Fire Assay) Cert									14.2
Oreas E1336 (Fire Assay) Meas	513								
Oreas E1336 (Fire Assay) Cert	510								
Oreas E1336 (Fire Assay) Meas	503								
Oreas E1336 (Fire Assay) Cert	510								
Oreas E1336 (Fire Assay) Meas	503								
Oreas E1336 (Fire Assay) Cert	510								
Oreas E1336 (Fire Assay) Meas	492								
Oreas E1336 (Fire Assay) Cert	510								
Oreas E1336 (Fire Assay) Meas	496								
Oreas E1336 (Fire Assay) Cert	510								
OREAS 256b (Fire Assay) Meas	8020								
OREAS 256b (Fire Assay) Cert	7840								
OREAS 256b (Fire Assay) Meas	8140								
OREAS 256b (Fire Assay) Cert	7840								
OREAS 256b (Fire Assay) Meas	8030								
OREAS 256b (Fire Assay) Cert	7840								
OREAS 256b (Fire Assay) Meas	8080								
OREAS 256b (Fire Assay) Cert	7840								
OREAS 256b (Fire Assay) Meas	7860								
OREAS 256b	7840								

| Analyte Symbol | Au |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Analyte Symbol	Au	$\begin{aligned} & \mathrm{Au}+ \\ & 100 \\ & \text { mesh } \end{aligned}$	$\begin{array}{\|l} \hline \mathrm{Au}- \\ 100 \\ \text { mesh } \\ \text { (A) } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \mathrm{Au}- \\ 100 \\ \text { mesh } \\ \text { (B) } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { Total } \\ \text { Au } \end{array}$	$\begin{aligned} & +100 \\ & \text { mesh } \end{aligned}$	$\begin{array}{\|l} -100 \\ \text { mesh } \end{array}$	Total Weight	Au
Unit Symbol	ppb	g / mt	g / mt	g / mt	g / mt	g	g	g	g/tonne
Lower Limit	5	0.03	0.03	0.03	0.03				0.03
Method Code	FA-AA	FA-MeT	$\begin{aligned} & \text { FA- } \\ & \text { GRA } \end{aligned}$						
Method Blank	< 5								
Method Blank	< 5								
Method Blank	< 5								
Method Blank	5								
Method Blank	< 5								
Method Blank									< 0.03
Method Blank					< 0.03			0.00000	
Method Blank									< 0.03

Report No.:	A21-23105
Report Date:	31-Dec-21
Date Submitted:	15-Dec-21
Your Reference:	Exploration/Prospecting

Harte Gold Corp.
161 Bay Street
Suite 2400
Toronto Ontario M5J 2S1
Canada

ATTN: David Stevenson

CERTIFICATE OF ANALYSIS

201 Rock samples were submitted for analysis.

The following analytical package(s) were requested:	Testing Date:	
1A2-Tbay-Harte Gold	QOP AA-Au (Au - Fire Assay AA)	2021-12-31 11:25:20

REPORT A21-23105
This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:
If value exceeds upper limit we recommend reassay by fire assay gravimetric-Code 1A3
Footnote: insufficient material for sample 861622.

Accrédité CCN
LabID: 673 $\int_{T M}$

CERTIFIED BY:

Elitsa Hrischeva, Ph.D. Quality Control Coordinator

Analyte Symbol	Au
Unit Symbol	ppb
Lower Limit	5
Method Code	FA-AA
861421	< 5
861422	< 5
861423	< 5
861424	< 5
861425	< 5
861426	< 5
861427	< 5
861428	< 5
861429	< 5
861430	5250
861431	< 5
861432	< 5
861433	< 5
861434	< 5
861435	< 5
861436	< 5
861437	< 5
861438	< 5
861439	10
861440	< 5
861441	< 5
861442	< 5
861443	< 5
861444	< 5
861445	< 5
861446	< 5
861447	< 5
861448	< 5
861449	< 5
861450	6970
861451	< 5
861452	< 5
861453	< 5
861454	< 5
861455	< 5
861456	< 5
861457	< 5
861458	< 5
861459	< 5
861460	< 5
861461	< 5
861462	< 5
861463	< 5
861464	< 5
861465	< 5
861466	< 5
861467	< 5
861468	< 5
861469	< 5
861470	5500
861471	<5

Analyte Symbol	Au
Unit Symbol	ppb
Lower Limit	5
Method Code	FA-AA
861472	< 5
861473	< 5
861474	< 5
861475	< 5
861476	< 5
861477	< 5
861478	< 5
861479	< 5
861480	< 5
861481	< 5
861482	< 5
861483	< 5
861484	< 5
861485	< 5
861486	< 5
861487	< 5
861488	< 5
861489	< 5
861490	3550
861491	< 5
861492	< 5
861493	< 5
861494	< 5
861495	< 5
861496	< 5
861497	< 5
861498	< 5
861499	< 5
861500	< 5
861501	< 5
861502	< 5
861503	< 5
861504	< 5
861505	< 5
861506	< 5
861507	< 5
861508	< 5
861509	< 5
861510	< 5
861511	< 5
861512	< 5
861513	< 5
861514	< 5
861515	< 5
861516	< 5
861517	< 5
861518	< 5
861519	< 5
861520	6860
861521	< 5
861522	< 5

Analyte Symbol	Au
Unit Symbol	ppb
Lower Limit	5
Method Code	FA-AA
861523	< 5
861524	< 5
861525	< 5
861526	< 5
861527	< 5
861528	< 5
861529	< 5
861530	< 5
861531	< 5
861532	< 5
861533	< 5
861534	< 5
861535	< 5
861536	< 5
861537	< 5
861538	< 5
861539	< 5
861540	5420
861541	5
861542	< 5
861543	< 5
861544	< 5
861545	12
861546	< 5
861547	< 5
861548	< 5
861549	< 5
861550	< 5
861551	< 5
861552	< 5
861553	< 5
861554	< 5
861555	< 5
861556	< 5
861557	< 5
861558	< 5
861559	< 5
861560	3530
861561	< 5
861562	< 5
861563	< 5
861564	< 5
861565	< 5
861566	< 5
861567	<5
861568	10
861569	< 5
861570	< 5
861571	< 5
861572	5
861573	< 5

Analyte Symbol	Au
Unit Symbol	ppb
Lower Limit	5
Method Code	FA-AA
861574	7
861575	< 5
861576	< 5
861577	< 5
861578	< 5
861579	< 5
861580	6990
861581	< 5
861582	< 5
861583	< 5
861584	< 5
861585	< 5
861586	< 5
861587	< 5
861588	< 5
861589	< 5
861590	< 5
861591	< 5
861592	< 5
861593	< 5
861594	< 5
861595	< 5
861596	< 5
861597	5
861598	< 5
861599	6
861600	5690
861601	8
861602	6
861603	5
861604	< 5
861605	< 5
861606	5
861607	< 5
861608	< 5
861609	< 5
861610	5
861611	< 5
861612	< 5
861613	< 5
861614	< 5
861615	< 5
861616	< 5
861617	< 5
861618	< 5
861619	< 5
861620	3550
861621	< 5

Analyte Symbol	Au
Unit Symbol	ppb
Lower Limit	5
Method Code	FA-AA
Oreas E1336 (Fire Assay) Meas	497
Oreas E1336 (Fire Assay) Cert	510
Oreas E1336 (Fire Assay) Meas	513
Oreas E1336 (Fire Assay) Cert	510
Oreas E1336 (Fire Assay) Meas	493
Oreas E1336 (Fire Assay) Cert	510
Oreas E1336 (Fire Assay) Meas	502
Oreas E1336 (Fire Assay) Cert	510
Oreas E1336 (Fire Assay) Meas	520
Oreas E1336 (Fire Assay) Cert	510
Oreas E1336 (Fire Assay) Meas	507
Oreas E1336 (Fire Assay) Cert	510
OREAS 256b (Fire Assay) Meas	8150
OREAS 256b (Fire Assay) Cert	7840
OREAS 256b (Fire Assay) Meas	7910
OREAS 256b (Fire Assay) Cert	7840
OREAS 256b (Fire Assay) Meas	8170
OREAS 256b (Fire Assay) Cert	7840
OREAS 256b (Fire Assay) Meas	7940
OREAS 256b (Fire Assay) Cert	7840
OREAS 256b (Fire Assay) Meas	8010
OREAS 256b (Fire Assay) Cert	7840
OREAS 256b (Fire Assay) Meas	7800
OREAS 256b (Fire Assay) Cert	7840
861422 Orig	< 5
861422 Dup	< 5
861436 Orig	< 5
861436 Dup	< 5
861445 Orig	< 5
861445 Dup	< 5
861457 Orig	< 5
861457 Dup	< 5
861471 Orig	< 5

Analyte Symbol	Au
Unit Symbol	ppb
Lower Limit	5
Method Code	FA-AA
861471 Split PREP DUP	< 5
861472 Orig	< 5
861472 Dup	< 5
861479 Orig	< 5
861479 Dup	< 5
861491 Orig	<5
861491 Dup	< 5
861505 Orig	<5
861505 Dup	< 5
861514 Orig	<5
861514 Dup	< 5
861521 Orig	< 5
861521 Split PREP DUP	< 5
861525 Orig	< 5
861525 Dup	< 5
861539 Orig	< 5
861539 Dup	< 5
861548 Orig	<5
861548 Dup	< 5
861559 Orig	< 5
861559 Dup	< 5
861571 Orig	< 5
861571 Split PREP DUP	< 5
861573 Orig	< 5
861573 Dup	< 5
861582 Orig	< 5
861582 Dup	5
861594 Orig	< 5
861594 Dup	< 5
861608 Orig	< 5
861608 Dup	< 5
861617 Orig	<5
861617 Dup	< 5
861621 Orig	< 5
861621 Split PREP DUP	< 5
Method Blank	5

Report No.: A21-23564
Report Date: 16-Feb-22
Date Submitted: 22-Dec-21
Your Reference: Exploration/Prospecting

Harte Gold Corp.
161 Bay Street
Suite 2400
Toronto Ontario M5J 2S1
Canada

ATTN: David Stevenson

CERTIFICATE OF ANALYSIS

339 Rock samples were submitted for analysis.

The following analytical package(s) were requested:	Testing Date:	
UT-6	QOP Total/QOP Ulltratrace- 4acid Digest (Total Digestion ICPOES/ICPMS)	2022-02-03 12:04:23

REPORT A21-23564
This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:
If value exceeds upper limit we recommend reassay by fire assay gravimetric-Code 1A3
Values which exceed the upper limit should be assayed for accurate numbers.

Abstract

Report No.: A21-23564 Report Date: 16-Feb-22 Date Submitted: 22-Dec-21 Your Reference: Exploration/Prospecting Harte Gold Corp. 161 Bay Street Suite 2400 Toronto Ontario M5J 2S1 Canada

ATTN: David Stevenson

CERTIFICATE OF ANALYSIS

339 Rock samples were submitted for analysis.

The following analytical package(s) were requested:	Testing Date:	
1A2-Tbay-Harte Gold	QOP AA-Au (Au - Fire Assay AA)	2022-01-19 07:26:44

REPORT A21-23564

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:
If value exceeds upper limit we recommend reassay by fire assay gravimetric-Code 1A3
Values which exceed the upper limit should be assayed for accurate numbers.

Analyte Symbol	Au	Li	Na	Mg	AI	K	Ca	Cd	V	Cr	Mn	Fe	Hf	Ni	Er	Be	Ho	Ag	Cs	Co	Eu	Bi	Se
Unit Symbol	ppb	ppm	\%	\%	\%	\%	\%	ppm	ppm	ppm	ppm	\%	ppm										
Lower Limit	5	0.5	0.01	0.01	0.01	0.01	0.01	0.1	1	1	1	0.01	0.1	0.5	0.1	0.1	0.1	0.05	0.05	0.1	0.05	0.02	0.1
Method Code	FA-AA	TD-MS																					
861627	6																						
861628	6																						
861629	6																						
861630	5																						
861631	7																						
861632	6																						
861633	< 5																						
861634	5																						
861635	5																						
861636	5																						
861637	< 5																						
861638	7																						
861639	5																						
861640	7110																						
861641	31																						
861642	12																						
861643	6																						
861644	5																						
861645	5																						
861646	6																						
861647	6																						
861648	6																						
861649	6																						
861650	< 5																						
861651	7																						
861652	8																						
861653	6																						
861654	6																						
861655	6																						
861656	23																						
861657	13																						
861658	30																						
861659	18																						
861660	5530																						
861661	11																						
861662	15																						
861663	6																						
861664	6																						
861665	6																						
861666	< 5																						
861667	<5																						
861668	40																						
861669	10																						
861670	6																						
861671	<5																						
861672	5																						
861673	7																						
861674	10																						
861675	9																						
861676	7																						
861677	8																						

Analyte Symbol	Au	Li	Na	Mg	AI	K	Ca	Cd	V	Cr	Mn	Fe	Hf	Ni	Er	Be	Ho	Ag	Cs	Co	Eu	Bi	Se
Unit Symbol	ppb	ppm	\%	\%	\%	\%	\%	ppm	ppm	ppm	ppm	\%	ppm										
Lower Limit	5	0.5	0.01	0.01	0.01	0.01	0.01	0.1	1	1	1	0.01	0.1	0.5	0.1	0.1	0.1	0.05	0.05	0.1	0.05	0.02	0.1
Method Code	FA-AA	TD-MS																					
861678	7																						
861679	5																						
861680	3560																						
861681	16																						
861682	28																						
861683	7																						
861684	6																						
861685	< 5																						
861686	< 5																						
861687	< 5																						
861688	5																						
861689	< 5																						
861690	<5																						
861691	6																						
861692	6																						
861693	< 5																						
861694	< 5																						
861695	< 5																						
861696	5																						
861697	< 5																						
861698	7																						
861699	< 5																						
861700	7480																						
861701	< 5																						
861702	9																						
861703	< 5																						
861704	16																						
861705	9																						
861706	5																						
861707	1420																						
861708	22																						
861709	13																						
861710	< 5																						
861711	5																						
861712	< 5																						
861713	< 5																						
861714	< 5																						
861715	9																						
861716	< 5																						
861717	< 5																						
861718	5																						
861719	<5																						
861720	5630																						
861721	18																						
861722	5																						
861723	10																						
861724	< 5																						
861725	6																						
861726	13																						
861727	11																						
861728	115																						

Analyte Symbol	Au	Li	Na	Mg	AI	K	Ca	Cd	V	Cr	Mn	Fe	Hf	Ni	Er	Be	Ho	Ag	Cs	Co	Eu	Bi	Se
Unit Symbol	ppb	ppm	\%	\%	\%	\%	\%	ppm	ppm	ppm	ppm	\%	ppm										
Lower Limit	5	0.5	0.01	0.01	0.01	0.01	0.01	0.1	1	1	1	0.01	0.1	0.5	0.1	0.1	0.1	0.05	0.05	0.1	0.05	0.02	0.1
Method Code	FA-AA	TD-MS																					
861729	9																						
861730	<5																						
861731	5																						
861732	5																						
861733	12																						
861734	11																						
861735	< 5																						
861736	<5																						
861737	5																						
861738	21																						
861739	34																						
861740	3640																						
861741	22																						
861742	<5																						
861743	< 5																						
861744	<5																						
861745	9																						
861746	8																						
861747	<5																						
861748	16																						
861749	7																						
861750	<5																						
862501	8																						
862502	11																						
862503	10																						
862504	\%	37.0	2.30	4.62	7.83	0.41	7.18	0.2	186	76	1780	11.2	0.5	97.1	2.5	0.7	0.9	0.14	2.94	56.6	0.89	0.42	0.5
862505	5																						
862506	5																						
862507	<5																						
862508	<5																						
862509	<5																						
862510	7340																						
862511	5																						
862512	9																						
862513	7																						
862514	8																						
862515	7																						
862516	<5																						
862517	18																						
862518	<5																						
862519	11																						
862520	<5																						
862521	5																						
862522	6	1.9	0.05	15.7	2.94	<0.01	3.85	<0.1	98	2050	1170	7.14	0.2	1420	0.7	0.5	0.2	0.05	0.44	90.0	0.20	1.84	0.6
862523	10																						
862524	11																						
862525	8																						
862526	20																						
862527	<5																						
862528	<5																						
862529	<5																						

Analyte Symbol	Au	Li	Na	Mg	AI	K	Ca	Cd	V	Cr	Mn	Fe	Hf	Ni	Er	Be	Ho	Ag	Cs	Co	Eu	Bi	Se
Unit Symbol	ppb	ppm	\%	\%	\%	\%	\%	ppm	ppm	ppm	ppm	\%	ppm										
Lower Limit	5	0.5	0.01	0.01	0.01	0.01	0.01	0.1	1	1	1	0.01	0.1	0.5	0.1	0.1	0.1	0.05	0.05	0.1	0.05	0.02	0.1
Method Code	FA-AA	TD-MS																					
862530	5520																						
862531	< 5																						
862532	6																						
862533	5																						
862534	< 5																						
861931	< 5																						
861932	5																						
861933	5																						
861934	8																						
861935	5																						
861936	6																						
861937	5																						
861938	6																						
861939	6																						
861940	3530																						
861941	10																						
861942	< 5																						
861943	7																						
861944	< 5																						
861945	< 5																						
861946	6																						
861947	< 5																						
861948	< 5																						
861949	< 5																						
861950	< 5																						
861951	< 5																						
861952	< 5																						
861953	< 5																						
861954	<5																						
861955	< 5																						
861956	< 5																						
861957	< 5																						
861958	5																						
861959	< 5																						
861960	7190																						
861961	10																						
861962	6																						
861963	< 5																						
861964	< 5																						
861965	6																						
861966	6																						
861967	< 5																						
861968	7																						
861969	< 5																						
861970	< 5																						
861971	< 5																						
861972	< 5																						
861973	< 5																						
861974	< 5																						
861975	< 5																						
861976	<5																						

Analyte Symbol	Au	Li	Na	Mg	AI	K	Ca	Cd	V	Cr	Mn	Fe	Hf	Ni	Er	Be	Ho	Ag	Cs	Co	Eu	Bi	Se
Unit Symbol	ppb	ppm	\%	\%	\%	\%	\%	ppm	ppm	ppm	ppm	\%	ppm										
Lower Limit	5	0.5	0.01	0.01	0.01	0.01	0.01	0.1	1	1	1	0.01	0.1	0.5	0.1	0.1	0.1	0.05	0.05	0.1	0.05	0.02	0.1
Method Code	FA-AA	TD-MS																					
861977	<5																						
861978	< 5																						
861979	5																						
861980	5580																						
861981	36																						
861982	8																						
861983	5																						
861984	< 5																						
861985	6																						
861986	8																						
861987	7																						
861988	7																						
861989	9																						
861990	< 5																						
861991	5																						
861992	5																						
861993	< 5																						
861994	< 5																						
861995	< 5																						
861996	7																						
861997	6																						
861998	5																						
861999	< 5																						
862000	3650																						
862001	21																						
862002	7																						
862003	6																						
862004	7																						
862005	8																						
862006	9																						
862007	< 5																						
862008	15																						
862009	6																						
862010	< 5																						
862011	< 5																						
862012	9																						
862013	5																						
862014	17																						
862015	< 5																						
862016	< 5																						
862017	< 5																						
862018	< 5																						
862019	<5																						
862020	7100																						
862021	8																						
862022	8																						
862023	< 5																						
862024	< 5																						
862025	< 5																						
862026	< 5																						
862027	<5																						

Analyte Symbol	Au	Li	Na	Mg	AI	K	Ca	Cd	V	Cr	Mn	Fe	Hf	Ni	Er	Be	Ho	Ag	Cs	Co	Eu	Bi	Se
Unit Symbol	ppb	ppm	\%	\%	\%	\%	\%	ppm	ppm	ppm	ppm	\%	ppm										
Lower Limit	5	0.5	0.01	0.01	0.01	0.01	0.01	0.1	1	1	1	0.01	0.1	0.5	0.1	0.1	0.1	0.05	0.05	0.1	0.05	0.02	0.1
Method Code	FA-AA	TD-MS																					
862028	<5																						
862029	< 5																						
862030	< 5																						
862535	< 5																						
862536	< 5																						
862537	< 5																						
862538	< 5																						
862539	< 5																						
862540	< 5																						
862541	< 5																						
862542	7																						
862543	5																						
862544	< 5																						
862545	< 5																						
862546	< 5																						
862547	<5																						
862548	< 5																						
862549	8																						
862550	3560																						
862551	24																						
862552	9																						
862553	8																						
862554	6																						
862555	6																						
862556	7																						
862557	6																						
862558	7																						
862559	8																						
862560	< 5																						
862561	< 5																						
862562	7																						
862563	9																						
862564	162																						
862565	11																						
862566	5																						
862567	< 5																						
862568	< 5																						
862569	<5																						
862570	7080																						
862571	9																						
862572	< 5																						
862573	5																						
862574	<5																						
862575	< 5																						
862576	< 5																						
862577	< 5																						
862578	7																						
862579	7																						
862580	<5																						
862581	6																						
862582	5																						

Analyte Symbol	Au	Li	Na	Mg	AI	K	Ca	Cd	V	Cr	Mn	Fe	Hf	Ni	Er	Be	Ho	Ag	Cs	Co	Eu	Bi	Se
Unit Symbol	ppb	ppm	\%	\%	\%	\%	\%	ppm	ppm	ppm	ppm	\%	ppm										
Lower Limit	5	0.5	0.01	0.01	0.01	0.01	0.01	0.1	1	1	1	0.01	0.1	0.5	0.1	0.1	0.1	0.05	0.05	0.1	0.05	0.02	0.1
Method Code	FA-AA	TD-MS																					
862583	7																						
862584	<5																						
862585	6																						
862586	< 5																						
862587	8																						
862588	8																						
862589	< 5																						
862590	5600																						
862591	8																						
862592	< 5																						
862593	6																						
862594	8																						
862595	13																						
862596	9																						
862597	10																						
862598	7																						
862599	11																						
862600	< 5																						
862601	8																						
862602	14																						
862603	9																						
862604	9																						
862605	8																						
862606	18																						
862607	14																						
862608	8																						
862609	8																						
862610	3570																						
861622	6																						
861623	5																						
861624	7																						
861625	< 5																						
861626	6																						

Analyte Symbol	Zn	Ga	As	Rb	Y	Sr	Zr	Nb	Mo	In	Sn	Sb	Te	Ba	La	Ce	Pr	Nd	Sm	Gd	Tb	Dy	Cu
Unit Symbol	ppm																						
Lower Limit	0.2	0.1	0.1	0.2	0.1	0.2	1	0.1	0.05	0.1	1	0.1	0.1	1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2
Method Code	TD-MS																						
861627																							
861628																							
861629																							
861630																							
861631																							
861632																							
861633																							
861634																							
861635																							
861636																							
861637																							
861638																							
861639																							
861640																							
861641																							
861642																							
861643																							
861644																							
861645																							
861646																							
861647																							
861648																							
861649																							
861650																							
861651																							
861652																							
861653																							
861654																							
861655																							
861656																							
861657																							
861658																							
861659																							
861660																							
861661																							
861662																							
861663																							
861664																							
861665																							
861666																							
861667																							
861668																							
861669																							
861670																							
861671																							
861672																							
861673																							
861674																							
861675																							
861676																							
861677																							

Analyte Symbol	Zn	Ga	As	Rb	Y	Sr	Zr	Nb	Mo	In	Sn	Sb	Te	Ba	La	Ce	Pr	Nd	Sm	Gd	Tb	Dy	Cu
Unit Symbol	ppm																						
Lower Limit	0.2	0.1	0.1	0.2	0.1	0.2	1	0.1	0.05	0.1	1	0.1	0.1	1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2
Method Code	TD-MS																						
861678																							
861679																							
861680																							
861681																							
861682																							
861683																							
861684																							
861685																							
861686																							
861687																							
861688																							
861689																							
861690																							
861691																							
861692																							
861693																							
861694																							
861695																							
861696																							
861697																							
861698																							
861699																							
861700																							
861701																							
861702																							
861703																							
861704																							
861705																							
861706																							
861707																							
861708																							
861709																							
861710																							
861711																							
861712																							
861713																							
861714																							
861715																							
861716																							
861717																							
861718																							
861719																							
861720																							
861721																							
861722																							
861723																							
861724																							
861725																							
861726																							
861727																							
861728																							

Analyte Symbol	Zn	Ga	As	Rb	Y	Sr	Zr	Nb	Mo	In	Sn	Sb	Te	Ba	La	Ce	Pr	Nd	Sm	Gd	Tb	Dy	Cu
Unit Symbol	ppm																						
Lower Limit	0.2	0.1	0.1	0.2	0.1	0.2	1	0.1	0.05	0.1	1	0.1	0.1	1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2
Method Code	TD-MS																						
861729																							
861730																							
861731																							
861732																							
861733																							
861734																							
861735																							
861736																							
861737																							
861738																							
861739																							
861740																							
861741																							
861742																							
861743																							
861744																							
861745																							
861746																							
861747																							
861748																							
861749																							
861750																							
862501																							
862502																							
862503																							
862504	110	18.8	<0.1	9.8	21.0	277	12	<0.1	0.14	<0.1	<1	<0.1	<0.1	39	3.6	9.6	1.5	7.6	2.4	3.3	0.6	4.0	136
862505																							
862506																							
862507																							
862508																							
862509																							
862510																							
862511																							
862512																							
862513																							
862514																							
862515																							
862516																							
862517																							
862518																							
862519																							
862520																							
862521																							
862522	68.8	7.7	0.3	0.2	5.5	35.0	5	0.6	2.41	<0.1	<1	0.1	0.5	<1	0.7	1.7	0.2	1.4	0.6	0.8	0.2	1.1	41.2
862523																							
862524																							
862525																							
862526																							
862527																							
862528																							
862529																							

Analyte Symbol	Zn	Ga	As	Rb	Y	Sr	Zr	Nb	Mo	In	Sn	Sb	Te	Ba	La	Ce	Pr	Nd	Sm	Gd	Tb	Dy	Cu
Unit Symbol	ppm																						
Lower Limit	0.2	0.1	0.1	0.2	0.1	0.2	1	0.1	0.05	0.1	1	0.1	0.1	1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2
Method Code	TD-MS																						
861977																							
861978																							
861979																							
861980																							
861981																							
861982																							
861983																							
861984																							
861985																							
861986																							
861987																							
861988																							
861989																							
861990																							
861991																							
861992																							
861993																							
861994																							
861995																							
861996																							
861997																							
861998																							
861999																							
862000																							
862001																							
862002																							
862003																							
862004																							
862005																							
862006																							
862007																							
862008																							
862009																							
862010																							
862011																							
862012																							
862013																							
862014																							
862015																							
862016																							
862017																							
862018																							
862019																							
862020																							
862021																							
862022																							
862023																							
862024																							
862025																							
862026																							
862027																							

Analyte Symbol	Zn	Ga	As	Rb	Y	Sr	Zr	Nb	Mo	In	Sn	Sb	Te	Ba	La	Ce	Pr	Nd	Sm	Gd	Tb	Dy	Cu
Unit Symbol	ppm																						
Lower Limit	0.2	0.1	0.1	0.2	0.1	0.2	1	0.1	0.05	0.1	1	0.1	0.1	1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2
Method Code	TD-MS																						
862583																							
862584																							
862585																							
862586																							
862587																							
862588																							
862589																							
862590																							
862591																							
862592																							
862593																							
862594																							
862595																							
862596																							
862597																							
862598																							
862599																							
862600																							
862601																							
862602																							
862603																							
862604																							
862605																							
862606																							
862607																							
862608																							
862609																							
862610																							
861622																							
861623																							
861624																							
861625																							
861626																							

Analyte Symbol	Ge	Tm	Yb	Lu	Ta	W	Re	TI	Pb	Sc	Th	U	Ti	P	S
Unit Symbol	ppm	\%	\%	\%											
Lower Limit	0.1	0.1	0.1	0.1	0.1	0.1	0.001	0.05	0.5	1	0.1	0.1	0.0005	0.001	0.01
Method Code	TD-MS	TD-ICP	TD-MS	TD-MS	TD-ICP	TD-ICP	TD-ICP								
861627															
861628															
861629															
861630															
861631															
861632															
861633															
861634															
861635															
861636															
861637															
861638															
861639															
861640															
861641															
861642															
861643															
861644															
861645															
861646															
861647															
861648															
861649															
861650															
861651															
861652															
861653															
861654															
861655															
861656															
861657															
861658															
861659															
861660															
861661															
861662															
861663															
861664															
861665															
861666															
861667															
861668															
861669															
861670															
861671															
861672															
861673															
861674															
861675															
861676															
861677															

Analyte Symbol	Ge	Tm	Yb	Lu	Ta	W	Re	TI	Pb	Sc	Th	U	Ti	P	S
Unit Symbol	ppm	\%	\%	\%											
Lower Limit	0.1	0.1	0.1	0.1	0.1	0.1	0.001	0.05	0.5	1	0.1	0.1	0.0005	0.001	0.01
Method Code	TD-MS	TD-ICP	TD-MS	TD-MS	TD-ICP	TD-ICP	TD-ICP								
862028															
862029															
862030															
862535															
862536															
862537															
862538															
862539															
862540															
862541															
862542															
862543															
862544															
862545															
862546															
862547															
862548															
862549															
862550															
862551															
862552															
862553															
862554															
862555															
862556															
862557															
862558															
862559															
862560															
862561															
862562															
862563															
862564															
862565															
862566															
862567															
862568															
862569															
862570															
862571															
862572															
862573															
862574															
862575															
862576															
862577															
862578															
862579															
862580															
862581															
862582															

Analyte Symbol	Ge	Tm	Yb	Lu	Ta	W	Re	TI	Pb	Sc	Th	U	Ti	P	S
Unit Symbol	ppm	\%	\%	\%											
Lower Limit	0.1	0.1	0.1	0.1	0.1	0.1	0.001	0.05	0.5	1	0.1	0.1	0.0005	0.001	0.01
Method Code	TD-MS	TD-ICP	TD-MS	TD-MS	TD-ICP	TD-ICP	TD-ICP								
862583															
862584															
862585															
862586															
862587															
862588															
862589															
862590															
862591															
862592															
862593															
862594															
862595															
862596															
862597															
862598															
862599															
862600															
862601															
862602															
862603															
862604															
862605															
862606															
862607															
862608															
862609															
862610															
861622															
861623															
861624															
861625															
861626															

Analyte Symbol	Au	Li	Na	Mg	AI	K	Ca	Cd	V	Cr	Mn	Fe	Hf	Ni	Er	Be	Ho	Ag	Cs	Co	Eu	Bi	Se
Unit Symbol	ppb	ppm	\%	\%	\%	\%	\%	ppm	ppm	ppm	ppm	\%	ppm										
Lower Limit	5	0.5	0.01	0.01	0.01	0.01	0.01	0.1	1	1	1	0.01	0.1	0.5	0.1	0.1	0.1	0.05	0.05	0.1	0.05	0.02	0.1
Method Code	FA-AA	TD-MS																					
Oreas 72a (4 Acid) Meas																							
Oreas 72a (4 Acid) Cert																							
Oreas 72a (4 Acid) Meas																							
Oreas 72a (4 Acid) Cert																							
OREAS 101b (4 Acid) Meas																							
OREAS 101b (4 Acid) Cert																							
OREAS 101b (4 Acid) Meas																							
OREAS 101b (4 Acid) Cert																							
OREAS 98 (4 Acid) Meas																							
OREAS 98 (4 Acid) Cert																							
OREAS 98 (4 Acid) Meas																							
OREAS 98 (4 Acid) Cert																							
OREAS 13b (4-Acid) Meas																							
OREAS 13b (4-Acid) Cert																							
OREAS 13b (4-Acid) Meas																							
OREAS 13b (4-Acid) Cert																							
OREAS 904 (4 Acid) Meas																							
OREAS 904 (4 Acid) Cert																							
OREAS 904 (4 Acid) Meas																							
OREAS 904 (4 Acid) Cert																							
SBC-1 Meas																							
SBC-1 Cert																							
SBC-1 Meas																							
SBC-1 Cert																							
OREAS 45d (4-Acid) Meas																							
OREAS 45d (4-Acid) Cert																							
OREAS 45d (4-Acid) Meas																							
OREAS 45d (4-Acid) Cert																							
OREAS 96 (4 Acid) Meas																							
OREAS 96 (4 Acid) Cert																							
OREAS 96 (4 Acid) Meas																							

Analyte Symbol	Au	Li	Na	Mg	AI	K	Ca	Cd	V	Cr	Mn	Fe	Hf	Ni	Er	Be	Ho	Ag	Cs	Co	Eu	Bi	Se
Unit Symbol	ppb	ppm	\%	\%	\%	\%	\%	ppm	ppm	ppm	ppm	\%	ppm										
Lower Limit	5	0.5	0.01	0.01	0.01	0.01	0.01	0.1	1	1	1	0.01	0.1	0.5	0.1	0.1	0.1	0.05	0.05	0.1	0.05	0.02	0.1
Method Code	FA-AA	TD-MS																					
OREAS 96 (4 Acid) Cert																							
OREAS 923 (4 Acid) Meas																							
OREAS 923 (4 Acid) Cert																							
OREAS 923 (4 Acid) Meas																							
OREAS 923 (4 Acid) Cert																							
OREAS 621 (4 Acid) Meas																							
OREAS 621 (4 Acid) Cert																							
OREAS 621 (4 Acid) Meas																							
OREAS 621 (4 Acid) Cert																							
Oreas 77b (4 Acid) Meas																							
Oreas 77b (4 Acid) Cert																							
Oreas E1336 (Fire Assay) Meas	494																						
Oreas E1336 (Fire Assay) Cert	510.000																						
Oreas E1336 (Fire Assay) Meas	497																						
Oreas E1336 (Fire Assay) Cert	510.000																						
Oreas E1336 (Fire Assay) Meas	525																						
Oreas E1336 (Fire Assay) Cert	510.000																						
Oreas E1336 (Fire Assay) Meas	514																						
Oreas E1336 (Fire Assay) Cert	510.000																						
Oreas E1336 (Fire Assay) Meas	522																						
Oreas E1336 (Fire Assay) Cert	510.000																						
Oreas E1336 (Fire Assay) Meas	529																						
Oreas E1336 (Fire Assay) Cert	510.000																						
Oreas E1336 (Fire Assay) Meas	519																						
Oreas E1336 (Fire Assay) Cert	510.000																						
Oreas E1336 (Fire Assay) Meas	522																						
Oreas E1336 (Fire Assay) Cert	510.000																						
Oreas E1336 (Fire Assay) Meas	521																						
$\begin{aligned} & \text { Oreas E1336 (Fire } \\ & \text { Assay) Cert } \end{aligned}$	510.000																						

Analyte Symbol	Au	Li	Na	Mg	AI	K	Ca	Cd	V	Cr	Mn	Fe	Hf	Ni	Er	Be	Ho	Ag	Cs	Co	Eu	Bi	Se
Unit Symbol	ppb	ppm	\%	\%	\%	\%	\%	ppm	ppm	ppm	ppm	\%	ppm										
Lower Limit	5	0.5	0.01	0.01	0.01	0.01	0.01	0.1	1	1	1	0.01	0.1	0.5	0.1	0.1	0.1	0.05	0.05	0.1	0.05	0.02	0.1
Method Code	FA-AA	TD-MS																					
Oreas E1336 (Fire Assay) Meas	514																						
Oreas E1336 (Fire Assay) Cert	510.000																						
OREAS 681 (4 Acid) Meas																							
OREAS 681 (4 Acid) Cert																							
OREAS 681 (4 Acid) Meas																							
OREAS 681 (4 Acid) Cert																							
OREAS 148 (4 Acid) Meas																							
OREAS 148 (4 Acid) Cert																							
OREAS 148 (4 Acid) Meas																							
OREAS 148 (4 Acid) Cert																							
OREAS 148 (4 Acid) Meas																							
OREAS 148 (4 Acid) Cert																							
Oreas 521 (4 Acid) Meas																							
Oreas 521 (4 Acid) Cert																							
Oreas 521 (4 Acid) Meas																							
Oreas 521 (4 Acid) Cert																							
OREAS 70b (4 Acid) Meas																							
OREAS 70b (4 Acid) Cert																							
OREAS 256b (Fire Assay) Meas	8000																						
OREAS 256b (Fire Assay) Cert	7840																						
OREAS 256b (Fire Assay) Meas	8220																						
OREAS 256b (Fire Assay) Cert	7840																						
OREAS 256b (Fire Assay) Meas	8010																						
OREAS 256b (Fire Assay) Cert	7840																						
OREAS 256b (Fire Assay) Meas	8050																						
OREAS 256b (Fire Assay) Cert	7840																						
OREAS 256b (Fire Assay) Meas	8080																						
OREAS 256b (Fire Assay) Cert	7840																						
OREAS 256b (Fire Assay) Meas	8160																						

Analyte Symbol	Au	Li	Na	Mg	AI	K	Ca	Cd	V	Cr	Mn	Fe	Hf	Ni	Er	Be	Ho	Ag	Cs	Co	Eu	Bi	Se
Unit Symbol	ppb	ppm	\%	\%	\%	\%	\%	ppm	ppm	ppm	ppm	\%	ppm										
Lower Limit	5	0.5	0.01	0.01	0.01	0.01	0.01	0.1	1	1	1	0.01	0.1	0.5	0.1	0.1	0.1	0.05	0.05	0.1	0.05	0.02	0.1
Method Code	FA-AA	TD-MS																					
OREAS 256b (Fire Assay) Cert	7840																						
OREAS 256b (Fire Assay) Meas	8250																						
OREAS 256b (Fire Assay) Cert	7840																						
OREAS 256b (Fire Assay) Meas	8200																						
OREAS 256b (Fire Assay) Cert	7840																						
OREAS 256b (Fire Assay) Meas	8080																						
OREAS 256b (Fire Assay) Cert	7840																						
OREAS 753 (4 Acid) Meas																							
OREAS 753 (4 Acid) Cert																							
OREAS 753 (4 Acid) Meas																							
$\text { OREAS } 753 \text { (4 }$ Acid) Cert																							
861636 Orig	5																						
861636 Dup	5																						
861646 Orig	5																						
861646 Dup	6																						
861657 Orig	12																						
861657 Dup	13																						
861662 Orig	12																						
861662 Dup	17																						
861672 Orig	5																						
861672 Dup	5																						
861676 Orig	7																						
861676 Split PREP DUP	6																						
861681 Orig	25																						
861681 Dup	7																						
861701 Orig	< 5																						
861701 Dup	9																						
861711 Orig	5																						
861711 Dup	5																						
861721 Orig	24																						
861721 Dup	12																						
861726 Orig	13																						
861726 Split PREP DUP	16																						
861741 Orig	21																						
861741 Dup	22																						
861750 Orig	< 5																						
861750 Dup	<5																						
862504 Orig		36.6	2.27	4.47	7.59	0.40	7.17	0.2	204	77	1770	11.1	0.5	96.3	2.5	0.6	0.9	0.14	2.86	55.8	0.88	0.42	0.6
862504 Dup		37.5	2.33	4.77	8.06	0.42	7.19	0.2	168	75	1800	11.3	0.4	97.9	2.5	0.8	0.8	0.15	3.03	57.5	0.89	0.42	0.3
862511 Orig	5																						
862511 Dup	5																						

Analyte Symbol	Au	Li	Na	Mg	AI	K	Ca	Cd	V	Cr	Mn	Fe	Hf	Ni	Er	Be	Ho	Ag	Cs	Co	Eu	Bi	Se
Unit Symbol	ppb	ppm	\%	\%	\%	\%	\%	ppm	ppm	ppm	ppm	\%	ppm										
Lower Limit	5	0.5	0.01	0.01	0.01	0.01	0.01	0.1	1	1	1	0.01	0.1	0.5	0.1	0.1	0.1	0.05	0.05	0.1	0.05	0.02	0.1
Method Code	FA-AA	TD-MS																					
862520 Orig	< 5																						
862520 Dup	< 5																						
862526 Orig	20																						
$\begin{aligned} & 862526 \text { Split } \\ & \text { PREP DUP } \end{aligned}$	19																						
862529 Orig	< 5																						
862529 Dup	< 5																						
861935 Orig	5																						
861935 Dup	5																						
861955 Orig	< 5																						
861955 Dup	< 5																						
861965 Orig	6																						
861965 Dup	6																						
861972 Orig	< 5																						
861972 Split PREP DUP	< 5																						
861974 Orig	< 5																						
861974 Dup	< 5																						
861984 Orig	< 5																						
861984 Dup	< 5																						
861994 Orig	< 5																						
861994 Dup	< 5																						
862004 Orig	7																						
862004 Dup	6																						
862016 Orig	< 5																						
862016 Dup	< 5																						
862022 Orig	8																						
862022 Split PREP DUP	< 5																						
862023 Orig	< 5																						
862023 Dup	< 5																						
862547 Orig	< 5																						
862547 Dup	< 5																						
862554 Orig	5																						
862554 Dup	6																						
862561 Orig	5																						
862561 Dup	< 5																						
862576 Orig	< 5																						
862576 Split PREP DUP	< 5																						
862577 Orig	5																						
862577 Dup	< 5																						
862593 Orig	6																						
862593 Dup	6																						
862603 Orig	9																						
862603 Dup	8																						
861625 Orig	< 5																						
861625 Dup	6																						
861626 Orig	6																						
861626 Split PREP DUP	7																						
Method Blank																							

Analyte Symbol	Au	Li	Na	Mg	AI	K	Ca	Cd	V	Cr	Mn	Fe	Hf	Ni	Er	Be	Ho	Ag	Cs	Co	Eu	Bi	Se
Unit Symbol	ppb	ppm	\%	\%	\%	\%	\%	ppm	ppm	ppm	ppm	\%	ppm										
Lower Limit	5	0.5	0.01	0.01	0.01	0.01	0.01	0.1	1	1	1	0.01	0.1	0.5	0.1	0.1	0.1	0.05	0.05	0.1	0.05	0.02	0.1
Method Code	FA-AA	TD-MS																					
Method Blank																							
Method Blank																							
Method Blank																							
Method Blank																							
Method Blank																							
Method Blank																							
Method Blank																							
Method Blank		<0.5	<0.01	<0.01	< 0.01	<0.01	< 0.01	<0.1	1	7	14	< 0.01	<0.1	<0.5	<0.1	<0.1	<0.1	<0.05	<0.05	<0.1	<0.05	<0.02	0.4
Method Blank	< 5																						
Method Blank	< 5																						
Method Blank	5																						
Method Blank	5																						
Method Blank	51																						
Method Blank	< 5																						
Method Blank	< 5																						
Method Blank	< 5																						
Method Blank	< 5																						
Method Blank	< 5																						
Method Blank	<5																						
Method Blank	< 5																						
Method Blank	5																						
Method Blank	5																						
Method Blank	< 5																						
Method Blank	< 5																						
Method Blank	< 5																						
Method Blank	< 5																						
Method Blank	5																						

Analyte Symbol	Zn	Ga	As	Rb	Y	Sr	Zr	Nb	Mo	In	Sn	Sb	Te	Ba	La	Ce	Pr	Nd	Sm	Gd	Tb	Dy	Cu
Unit Symbol	ppm																						
Lower Limit	0.2	0.1	0.1	0.2	0.1	0.2	1	0.1	0.05	0.1	1	0.1	0.1	1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2
Method Code	TD-MS																						
Oreas 72a (4 Acid) Meas																							
Oreas 72a (4 Acid) Cert																							
Oreas 72a (4 Acid) Meas																							
Oreas 72a (4 Acid) Cert																							
OREAS 101b (4 Acid) Meas																							
OREAS 101b (4 Acid) Cert																							
OREAS 101b (4 Acid) Meas																							
OREAS 101b (4 Acid) Cert																							
OREAS 98 (4 Acid) Meas																							
OREAS 98 (4 Acid) Cert																							
OREAS 98 (4 Acid) Meas																							
OREAS 98 (4 Acid) Cert																							
OREAS 13b (4-Acid) Meas																							
OREAS 13b (4-Acid) Cert																							
OREAS 13b (4-Acid) Meas																							
OREAS 13b (4-Acid) Cert																							
OREAS 904 (4 Acid) Meas																							
OREAS 904 (4 Acid) Cert																							
OREAS 904 (4 Acid) Meas																							
OREAS 904 (4 Acid) Cert																							
SBC-1 Meas																							
SBC-1 Cert																							
SBC-1 Meas																							
SBC-1 Cert																							
OREAS 45d (4-Acid) Meas																							
OREAS 45d (4-Acid) Cert																							
OREAS 45d (4-Acid) Meas																							
$\begin{aligned} & \text { OREAS 45d } \\ & \text { (4-Acid) Cert } \end{aligned}$																							
OREAS 96 (4 Acid) Meas																							
OREAS 96 (4 Acid) Cert																							
OREAS 96 (4 Acid) Meas																							

Analyte Symbol	Zn	Ga	As	Rb	Y	Sr	Zr	Nb	Mo	In	Sn	Sb	Te	Ba	La	Ce	Pr	Nd	Sm	Gd	Tb	Dy	Cu
Unit Symbol	ppm																						
Lower Limit	0.2	0.1	0.1	0.2	0.1	0.2	1	0.1	0.05	0.1	1	0.1	0.1	1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2
Method Code	TD-MS																						
OREAS 96 (4 Acid) Cert																							
OREAS 923 (4 Acid) Meas																							
OREAS 923 (4 Acid) Cert																							
OREAS 923 (4 Acid) Meas																							
OREAS 923 (4 Acid) Cert																							
OREAS 621 (4 Acid) Meas																							
OREAS 621 (4 Acid) Cert																							
OREAS 621 (4 Acid) Meas																							
OREAS 621 (4 Acid) Cert																							
Oreas 77b (4 Acid) Meas																							
Oreas 77b (4 Acid) Cert																							
Oreas E1336 (Fire Assay) Meas																							
Oreas E1336 (Fire Assay) Cert																							
Oreas E1336 (Fire Assay) Meas																							
Oreas E1336 (Fire Assay) Cert																							
Oreas E1336 (Fire Assay) Meas																							
Oreas E1336 (Fire Assay) Cert																							
Oreas E1336 (Fire Assay) Meas																							
Oreas E1336 (Fire Assay) Cert																							
Oreas E1336 (Fire Assay) Meas																							
Oreas E1336 (Fire Assay) Cert																							
Oreas E1336 (Fire Assay) Meas																							
Oreas E1336 (Fire Assay) Cert																							
Oreas E1336 (Fire Assay) Meas																							
Oreas E1336 (Fire Assay) Cert																							
Oreas E1336 (Fire Assay) Meas																							
Oreas E1336 (Fire Assay) Cert																							
Oreas E1336 (Fire Assay) Meas																							
Oreas E1336 (Fire Assay) Cert																							

Analyte Symbol	Zn	Ga	As	Rb	Y	Sr	Zr	Nb	Mo	In	Sn	Sb	Te	Ba	La	Ce	Pr	Nd	Sm	Gd	Tb	Dy	Cu
Unit Symbol	ppm																						
Lower Limit	0.2	0.1	0.1	0.2	0.1	0.2	1	0.1	0.05	0.1	1	0.1	0.1	1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2
Method Code	TD-MS																						
Oreas E1336 (Fire Assay) Meas																							
Oreas E1336 (Fire Assay) Cert																							
OREAS 681 (4 Acid) Meas																							
OREAS 681 (4 Acid) Cert																							
OREAS 681 (4 Acid) Meas																							
OREAS 681 (4 Acid) Cert																							
OREAS 148 (4 Acid) Meas																							
OREAS 148 (4 Acid) Cert																							
OREAS 148 (4 Acid) Meas																							
OREAS 148 (4 Acid) Cert																							
OREAS 148 (4 Acid) Meas																							
OREAS 148 (4 Acid) Cert																							
Oreas 521 (4 Acid) Meas																							
Oreas 521 (4 Acid) Cert																							
Oreas 521 (4 Acid) Meas																							
Oreas 521 (4 Acid) Cert																							
OREAS 70b (4 Acid) Meas																							
OREAS 70b (4 Acid) Cert																							
OREAS 256b (Fire Assay) Meas																							
OREAS 256b (Fire Assay) Cert																							
OREAS 256b (Fire Assay) Meas																							
OREAS 256b (Fire Assay) Cert																							
OREAS 256b (Fire Assay) Meas																							
OREAS 256b (Fire Assay) Cert																							
OREAS 256b (Fire Assay) Meas																							
OREAS 256b (Fire Assay) Cert																							
OREAS 256b (Fire Assay) Meas																							
OREAS 256b (Fire Assay) Cert																							
OREAS 256b (Fire Assay) Meas																							

Analyte Symbol	Zn	Ga	As	Rb	Y	Sr	Zr	Nb	Mo	In	Sn	Sb	Te	Ba	La	Ce	Pr	Nd	Sm	Gd	Tb	Dy	Cu
Unit Symbol	ppm																						
Lower Limit	0.2	0.1	0.1	0.2	0.1	0.2	1	0.1	0.05	0.1	1	0.1	0.1	1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2
Method Code	TD-MS																						
OREAS 256b (Fire Assay) Cert																							
OREAS 256b (Fire Assay) Meas																							
OREAS 256b (Fire Assay) Cert																							
OREAS 256b (Fire Assay) Meas																							
OREAS 256b (Fire Assay) Cert																							
OREAS 256b (Fire Assay) Meas																							
OREAS 256b (Fire Assay) Cert																							
$\begin{aligned} & \text { OREAS } 753 \text { (4 } \\ & \text { Acid) Meas } \end{aligned}$																							
$\begin{aligned} & \begin{array}{l} \text { OREAS } 753 \text { (4 } \\ \text { Acid) Cert } \end{array} \\ & \hline \end{aligned}$																							
$\begin{aligned} & \begin{array}{l} \text { OREAS } 753 \text { (4 } \\ \text { Acid) Meas } \end{array} \\ & \hline \end{aligned}$																							
$\begin{array}{\|l\|} \hline \text { OREAS } 753 \text { (4 } \\ \text { Acid) Cert } \\ \hline \end{array}$																							
861636 Orig																							
861636 Dup																							
861646 Orig																							
861646 Dup																							
861657 Orig																							
861657 Dup																							
861662 Orig																							
861662 Dup																							
861672 Orig																							
861672 Dup																							
861676 Orig																							
861676 Split PREP DUP																							
861681 Orig																							
861681 Dup																							
861701 Orig																							
861701 Dup																							
861711 Orig																							
861711 Dup																							
861721 Orig																							
861721 Dup																							
861726 Orig																							
861726 Split PREP DUP																							
861741 Orig																							
861741 Dup																							
861750 Orig																							
861750 Dup																							
862504 Orig	109	18.7	0.5	9.7	20.9	282	15	<0.1	0.15	<0.1	<1	<0.1	<0.1	38	3.5	9.4	1.4	7.3	2.4	3.2	0.6	3.9	133
862504 Dup	112	19.0	<0.1	9.9	21.0	273	9	<0.1	0.13	<0.1	<1	<0.1	<0.1	41	3.7	9.8	1.5	7.8	2.4	3.4	0.6	4.1	139
862511 Orig																							
862511 Dup																							

Analyte Symbol	Zn	Ga	As	Rb	Y	Sr	Zr	Nb	Mo	In	Sn	Sb	Te	Ba	La	Ce	Pr	Nd	Sm	Gd	Tb	Dy	Cu
Unit Symbol	ppm																						
Lower Limit	0.2	0.1	0.1	0.2	0.1	0.2	1	0.1	0.05	0.1	1	0.1	0.1	1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2
Method Code	TD-MS																						
862520 Orig																							
862520 Dup																							
862526 Orig																							
862526 Split PREP DUP																							
862529 Orig																							
862529 Dup																							
861935 Orig																							
861935 Dup																							
861955 Orig																							
861955 Dup																							
861965 Orig																							
861965 Dup																							
861972 Orig																							
861972 Split PREP DUP																							
861974 Orig																							
861974 Dup																							
861984 Orig																							
861984 Dup																							
861994 Orig																							
861994 Dup																							
862004 Orig																							
862004 Dup																							
862016 Orig																							
862016 Dup																							
862022 Orig																							
862022 Split PREP DUP																							
862023 Orig																							
862023 Dup																							
862547 Orig																							
862547 Dup																							
862554 Orig																							
862554 Dup																							
862561 Orig																							
862561 Dup																							
862576 Orig																							
862576 Split PREP DUP																							
862577 Orig																							
862577 Dup																							
862593 Orig																							
862593 Dup																							
862603 Orig																							
862603 Dup																							
861625 Orig																							
861625 Dup																							
861626 Orig																							
861626 Split PREP DUP																							
Method Blank																							

Analyte Symbol	Zn	Ga	As	Rb	Y	Sr	Zr	Nb	Mo	1 n	Sn	Sb	Te	Ba	La	Ce	Pr	Nd	Sm	Gd	Tb	Dy	Cu
Unit Symbol	ppm	m	m	ppm	ppm	m	ppm	m	om														
Lower Limit	0.2	0.1	0.1	0.2	0.1	0.2	1	0.1	0.05	0.	1	0	0.	1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2
Method Code	TD-MS	D-MS																					
Method Blank																							
Method Blank																							
Method Blank																							
Method Blank																							
Method Blank																							
Method Blank																							
Method Blank																							
Method Blank	<0.2	0.3	<0.1	<0.2	<0.1	<0.2	<1	<0.1	0.06	<0.1	<1	<0.1	<0.1	<1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2
Method Blank																							
Method Blank																							
Method Blank																							
Method Blank																							
Method Blank																							
Method Blank																							
Method Blank																							
Method Blank																							
Method Blank																							
Method Blank																							
Method Blank																							
Method Blank																							
Method Blank																							
Method Blank																							
Method Blank																							
Method Blank																							
Method Blank																							
Method Blank																							
Method Blank																							

Analyte Symbol	Ge	Tm	Yb	Lu	Ta	W	Re	TI	Pb	Sc	Th	U	Ti	P	S
Unit Symbol	ppm	\%	\%	\%											
Lower Limit	0.1	0.1	0.1	0.1	0.1	0.1	0.001	0.05	0.5	1	0.1	0.1	0.0005	0.001	0.01
Method Code	TD-MS	TD-ICP	TD-MS	TD-MS	TD-ICP	TD-ICP	TD-ICP								
Oreas 72a (4 Acid) Meas															1.71
$\begin{array}{\|l\|} \hline \text { Oreas 72a (4 } \\ \text { Acid) Cert } \end{array}$															1.74
Oreas 72a (4 Acid) Meas															1.62
$\begin{array}{\|l\|} \hline \text { Oreas 72a (4 } \\ \text { Acid) Cert } \end{array}$															1.74
OREAS 101b (4 Acid) Meas													0.298	0.111	
OREAS 101b (4 Acid) Cert													0.35		
OREAS 101b (4 Acid) Meas													0.344	0.112	
OREAS 101b (4 Acid) Cert													0.35		
OREAS 98 (4 Acid) Meas															16.7
OREAS 98 (4 Acid) Cert															15.5
OREAS 98 (4 Acid) Meas															15.3
OREAS 98 (4 Acid) Cert															15.5
OREAS 13b (4-Acid) Meas															1.19
OREAS 13b (4-Acid) Cert															1.2
OREAS 13b (4-Acid) Meas															1.16
OREAS 13b (4-Acid) Cert															1.2
OREAS 904 (4 Acid) Meas										13				0.111	0.06
OREAS 904 (4 Acid) Cert										11.2				0.0980	0.0630
OREAS 904 (4 Acid) Meas										12				0.106	0.06
OREAS 904 (4 Acid) Cert										11.2				0.0980	0.0630
SBC-1 Meas										23			0.521		
SBC-1 Cert										20.0			0.51		
SBC-1 Meas										21			0.471		
SBC-1 Cert										20.0			0.51		
OREAS 45d (4-Acid) Meas										57			0.397	0.037	0.05
OREAS 45d (4-Acid) Cert										49.30			0.773	0.042	0.049
OREAS 45d (4-Acid) Meas										53			0.209	0.035	0.04
OREAS 45d (4-Acid) Cert										49.30			0.773	0.042	0.049
OREAS 96 (4 Acid) Meas															4.35
OREAS 96 (4 Acid) Cert															4.19
OREAS 96 (4 Acid) Meas															4.26

Analyte Symbol	Ge	Tm	Yb	Lu	Ta	W	Re	TI	Pb	Sc	Th	U	Ti	P	S
Unit Symbol	ppm	\%	\%	\%											
Lower Limit	0.1	0.1	0.1	0.1	0.1	0.1	0.001	0.05	0.5	1	0.1	0.1	0.0005	0.001	0.01
Method Code	TD-MS	TD-ICP	TD-MS	TD-MS	TD-ICP	TD-ICP	TD-ICP								
OREAS 96 (4 Acid) Cert															4.19
OREAS 923 (4 Acid) Meas										14			0.404	0.068	0.72
OREAS 923 (4 Acid) Cert										13.1			0.405	0.0630	0.691
OREAS 923 (4 Acid) Meas										14			0.398	0.067	0.71
OREAS 923 (4 Acid) Cert										13.1			0.405	0.0630	0.691
OREAS 621 (4 Acid) Meas										5			0.177	0.036	4.81
OREAS 621 (4 Acid) Cert										6.24			0.149	0.0359	4.48
OREAS 621 (4 Acid) Meas										5			0.170	0.035	4.60
OREAS 621 (4 Acid) Cert										6.24			0.149	0.0359	4.48
Oreas 77b (4 Acid) Meas										3			0.0563		
Oreas 77b (4 Acid) Cert										3.51			0.0640		
Oreas E1336 (Fire Assay) Meas															
Oreas E1336 (Fire Assay) Cert															
Oreas E1336 (Fire Assay) Meas															
Oreas E1336 (Fire Assay) Cert															
Oreas E1336 (Fire Assay) Meas															
Oreas E1336 (Fire Assay) Cert															
Oreas E1336 (Fire Assay) Meas															
Oreas E1336 (Fire Assay) Cert															
Oreas E1336 (Fire Assay) Meas															
Oreas E1336 (Fire Assay) Cert															
Oreas E1336 (Fire Assay) Meas															
Oreas E1336 (Fire Assay) Cert															
$\begin{array}{\|l\|} \hline \text { Oreas E1336 (Fire } \\ \text { Assay) Meas } \\ \hline \end{array}$															
Oreas E1336 (Fire Assay) Cert															
Oreas E1336 (Fire Assay) Meas															
$\begin{array}{\|l\|} \hline \begin{array}{l} \text { Oreas E1336 (Fire } \\ \text { Assay) Cert } \end{array} \\ \hline \end{array}$															
Oreas E1336 (Fire Assay) Meas															
Oreas E1336 (Fire Assay) Cert															

Analyte Symbol	Ge	Tm	Yb	Lu	Ta	W	Re	TI	Pb	Sc	Th	U	Ti	P	S
Unit Symbol	ppm	\%	\%	\%											
Lower Limit	0.1	0.1	0.1	0.1	0.1	0.1	0.001	0.05	0.5	1	0.1	0.1	0.0005	0.001	0.01
Method Code	TD-MS	TD-ICP	TD-MS	TD-MS	TD-ICP	TD-ICP	TD-ICP								
Oreas E1336 (Fire Assay) Meas															
$\begin{aligned} & \begin{array}{l} \text { Oreas E1336 (Fire } \\ \text { Assay) Cert } \end{array} \\ & \hline \end{aligned}$															
OREAS 681 (4 Acid) Meas										28			0.528	0.137	0.10
OREAS 681 (4 Acid) Cert										27.7			0.588	0.141	0.109
OREAS 681 (4 Acid) Meas										27			0.518	0.133	0.10
OREAS 681 (4 Acid) Cert										27.7			0.588	0.141	0.109
OREAS 148 (4 Acid) Meas										9			0.245	0.087	
OREAS 148 (4 Acid) Cert										8.23			0.345	0.131	
OREAS 148 (4 Acid) Meas										9			0.202	0.093	
OREAS 148 (4 Acid) Cert										8.23			0.345	0.131	
OREAS 148 (4 Acid) Meas										9			0.263	0.096	
$\begin{aligned} & \hline \text { OREAS } 148 \text { (4 } \\ & \text { Acid) Cert } \\ & \hline \end{aligned}$										8.23			0.345	0.131	
Oreas 521 (4 Acid) Meas										14			0.399	0.082	1.70
$\begin{aligned} & \text { Oreas } 521 \text { (4 } \\ & \text { Acid) Cert } \end{aligned}$										14			0.393	0.081	1.80
Oreas 521 (4 Acid) Meas										14			0.343	0.080	1.68
$\begin{aligned} & \hline \text { Oreas } 521 \text { (4 } \\ & \text { Acid) Cert } \\ & \hline \end{aligned}$										14			0.393	0.081	1.80
OREAS 70b (4 Acid) Meas										12			0.160	0.022	0.29
OREAS 70b (4 Acid) Cert										12			0.181	0.022	0.31
OREAS 256b (Fire Assay) Meas															
OREAS 256b (Fire Assay) Cert															
OREAS 256b (Fire Assay) Meas															
OREAS 256b (Fire Assay) Cert															
OREAS 256b (Fire Assay) Meas															
OREAS 256b (Fire Assay) Cert															
OREAS 256b (Fire Assay) Meas															
OREAS 256b (Fire Assay) Cert															
OREAS 256b (Fire Assay) Meas															
OREAS 256b (Fire Assay) Cert															
OREAS 256b (Fire Assay) Meas															

Analyte Symbol	Ge	Tm	Yb	Lu	Ta	W	Re	TI	Pb	Sc	Th	U	Ti	P	S
Unit Symbol	ppm	\%	\%	\%											
Lower Limit	0.1	0.1	0.1	0.1	0.1	0.1	0.001	0.05	0.5	1	0.1	0.1	0.0005	0.001	0.01
Method Code	TD-MS	TD-ICP	TD-MS	TD-MS	TD-ICP	TD-ICP	TD-ICP								
OREAS 256b (Fire Assay) Cert															
OREAS 256b (Fire Assay) Meas															
OREAS 256b (Fire Assay) Cert															
OREAS 256b (Fire Assay) Meas															
OREAS 256b (Fire Assay) Cert															
OREAS 256b (Fire Assay) Meas															
OREAS 256b (Fire Assay) Cert															
OREAS 753 (4 Acid) Meas										<1			0.0043	0.118	0.02
OREAS 753 (4 Acid) Cert										0.1			0.0040	0.111	0.01
OREAS 753 (4 Acid) Meas										<1			0.0042	0.114	0.01
OREAS 753 (4 Acid) Cert										0.1			0.0040	0.111	0.01
861636 Orig															
861636 Dup															
861646 Orig															
861646 Dup															
861657 Orig															
861657 Dup															
861662 Orig															
861662 Dup															
861672 Orig															
861672 Dup															
861676 Orig															
861676 Split PREP DUP															
861681 Orig															
861681 Dup															
861701 Orig															
861701 Dup															
861711 Orig															
861711 Dup															
861721 Orig															
861721 Dup															
861726 Orig															
861726 Split PREP DUP															
861741 Orig															
861741 Dup															
861750 Orig															
861750 Dup															
862504 Orig	0.2	0.4	2.5	0.4	< 0.1	< 0.1	0.007	0.05	6.9	43	0.3	<0.1	0.210	0.029	0.17
862504 Dup	0.3	0.4	2.5	0.4	< 0.1	<0.1	0.007	0.06	6.9	44	0.3	<0.1	0.158	0.029	0.17
862511 Orig															
862511 Dup															

Analyte Symbol	Ge	Tm	Yb	Lu	Ta	W	Re	TI	Pb	Sc	Th	U	Ti	P	S
Unit Symbol	ppm	\%	\%	\%											
Lower Limit	0.1	0.1	0.1	0.1	0.1	0.1	0.001	0.05	0.5	1	0.1	0.1	0.0005	0.001	0.01
Method Code	TD-MS	TD-ICP	TD-MS	TD-MS	TD-ICP	TD-ICP	TD-ICP								
862520 Orig															
862520 Dup															
862526 Orig															
862526 Split PREP DUP															
862529 Orig															
862529 Dup															
861935 Orig															
861935 Dup															
861955 Orig															
861955 Dup															
861965 Orig															
861965 Dup															
861972 Orig															
861972 Split PREP DUP															
861974 Orig															
861974 Dup															
861984 Orig															
861984 Dup															
861994 Orig															
861994 Dup															
862004 Orig															
862004 Dup															
862016 Orig															
862016 Dup															
862022 Orig															
862022 Split PREP DUP															
862023 Orig															
862023 Dup															
862547 Orig															
862547 Dup															
862554 Orig															
862554 Dup															
862561 Orig															
862561 Dup															
862576 Orig															
862576 Split PREP DUP															
862577 Orig															
862577 Dup															
862593 Orig															
862593 Dup															
862603 Orig															
862603 Dup															
861625 Orig															
861625 Dup															
861626 Orig															
861626 Split PREP DUP															
Method Blank										<1			0.0005	< 0.001	< 0.01

Analyte Symbol	Ge	Tm	Yb	Lu	Ta	W	Re	TI	Pb	Sc	Th	U	Ti	P	S
Unit Symbol	ppm	\%	\%	\%											
Lower Limit	0.1	0.1	0.1	0.1	0.1	0.1	0.001	0.05	0.5	1	0.1	0.1	0.0005	0.001	0.01
Method Code	TD-MS	TD-ICP	TD-MS	TD-MS	TD-ICP	TD-ICP	TD-ICP								
Method Blank										<1			0.0005	<0.001	< 0.01
Method Blank										<1			0.0005	<0.001	< 0.01
Method Blank										<1			0.0005	<0.001	< 0.01
Method Blank										<1			0.0005	<0.001	< 0.01
Method Blank										<1			0.0005	<0.001	< 0.01
Method Blank										<1			0.0005	<0.001	< 0.01
Method Blank										<1			0.0005	<0.001	< 0.01
Method Blank	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	0.007	<0.05	<0.5	<1	< 0.1	< 0.1	0.0005	<0.001	< 0.01
Method Blank															
Method Blank															
Method Blank															
Method Blank															
Method Blank															
Method Blank															
Method Blank															
Method Blank															
Method Blank															
Method Blank															
Method Blank															
Method Blank															
Method Blank															
Method Blank															
Method Blank															
Method Blank															
Method Blank															
Method Blank															
Method Blank															

Report No.:	A21-23626
Report Date:	$22-F e b-22$
Date Submitted:	24-Dec-21
Your Reference:	Exploration/Prospecting

Harte Gold Corp.
161 Bay Street
Suite 2400
Toronto Ontario M5J 2S1
Canada

ATTN: David Stevenson

CERTIFICATE OF ANALYSIS

279 Rock samples were submitted for analysis.

The following analytical package(s) were requested:	Testing Date:	
1A2-Tbay-Harte Gold	QOP AA-Au (Au - Fire Assay AA)	2022-01-19 16:45:52

REPORT A21-23626
This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:
If value exceeds upper limit we recommend reassay by fire assay gravimetric-Code 1A3
Values which exceed the upper limit should be assayed for accurate numbers.
Footnote: no material for sample 862780.

Report No.: A21-23626
Report Date: 22-Feb-22
Date Submitted: 24-Dec-21
Your Reference: Exploration/Prospecting
Harte Gold Corp.
161 Bay Street
Suite 2400
Toronto Ontario M5J 2S1
Canada

ATTN: David Stevenson

CERTIFICATE OF ANALYSIS

279 Rock samples were submitted for analysis.

The following analytical package(s) were requested:	Testing Date:	
UT-6	QOP Total/QOP Ulltatrace- 4acid Digest (Total Digestion ICPOES/ICPMS)	2022-02-02 15:17:38

REPORT A21-23626
This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:
If value exceeds upper limit we recommend reassay by fire assay gravimetric-Code 1A3
Values which exceed the upper limit should be assayed for accurate numbers.
Footnote: no material for sample 862780.

Analyte Symbol	Au	Li	Na	Mg	AI	K	Ca	Cd	V	Cr	Mn	Fe	Hf	Ni	Er	Be	Ho	Ag	Cs	Co	Eu	Bi	Se
Unit Symbol	ppb	ppm	\%	\%	\%	\%	\%	ppm	ppm	ppm	ppm	\%	ppm										
Lower Limit	5	0.5	0.01	0.01	0.01	0.01	0.01	0.1	1	1	1	0.01	0.1	0.5	0.1	0.1	0.1	0.05	0.05	0.1	0.05	0.02	0.1
Method Code	FA-AA	TD-MS																					
862031	6																						
862032	6																						
862033	7																						
862034	< 5																						
862035	5																						
862036	5																						
862037	< 5																						
862038	8																						
862039	7																						
862040	5520																						
862041	9																						
862042	9																						
862043	8																						
862044	5																						
862045	5																						
862046	8																						
862047	7																						
862048	8																						
862049	6																						
862050	6																						
862051	6																						
862052	9																						
862053	7																						
862054	8																						
862055	< 5																						
862056	7																						
862057	5																						
862058	< 5																						
862059	6																						
862060	3470																						
862061	11																						
862062	9																						
862063	6																						
862064	16																						
862065	< 5																						
862066	< 5																						
862067	5																						
862068	7																						
862069	6																						
862070	6																						
862071	5																						
862072	21																						
862073	6																						
862074	11																						
862075	7																						
862076	6																						
862077	5																						
862078	6																						
862079	5																						
862080	7150																						
862081	9																						

Analyte Symbol	Au	Li	Na	Mg	AI	K	Ca	Cd	V	Cr	Mn	Fe	Hf	Ni	Er	Be	Ho	Ag	Cs	Co	Eu	Bi	Se
Unit Symbol	ppb	ppm	\%	\%	\%	\%	\%	ppm	ppm	ppm	ppm	\%	ppm										
Lower Limit	5	0.5	0.01	0.01	0.01	0.01	0.01	0.1	1	1	1	0.01	0.1	0.5	0.1	0.1	0.1	0.05	0.05	0.1	0.05	0.02	0.1
Method Code	FA-AA	TD-MS																					
862611	8																						
862612	< 5																						
862613	5																						
862614	10																						
862615	6																						
862616	98																						
862617	16																						
862618	12																						
862619	10																						
862620	7																						
862621	8	53.6	1.42	3.76	6.81	0.42	8.88	0.2	260	102	1640	9.36	0.7	61.6	2.3	0.5	0.8	0.08	2.53	48.9	0.75	0.21	0.4
862622	5																						
862623	10																						
862624	12																						
862625	8																						
862626	10																						
862627	11																						
862628	9																						
862629	< 5																						
862630	7250																						
862631	9																						
862632	< 5																						
862633	< 5																						
862634	< 5																						
862635	< 5																						
862636	8																						
862637	119																						
862638	< 5																						
862639	< 5																						
862640	< 5																						
862641	< 5																						
862642	< 5																						
862643	< 5																						
862644	< 5																						
862645	< 5																						
862646	< 5																						
862647	< 5																						
862648	< 5																						
862649	< 5																						
862650	5870																						
862651	< 5																						
862652	< 5																						
862653	< 5																						
862654	< 5																						
862655	< 5																						
862656	< 5																						
862657	< 5																						
862658	5																						
862659	6																						
862660	< 5																						
862661	<5																						

Analyte Symbol	Au	Li	Na	Mg	AI	K	Ca	Cd	V	Cr	Mn	Fe	Hf	Ni	Er	Be	Ho	Ag	Cs	Co	Eu	Bi	Se
Unit Symbol	ppb	ppm	\%	\%	\%	\%	\%	ppm	ppm	ppm	ppm	\%	ppm										
Lower Limit	5	0.5	0.01	0.01	0.01	0.01	0.01	0.1	1	1	1	0.01	0.1	0.5	0.1	0.1	0.1	0.05	0.05	0.1	0.05	0.02	0.1
Method Code	FA-AA	TD-MS																					
862662	7																						
862663	9																						
862664	5																						
862665	< 5																						
862666	< 5																						
862667	< 5																						
862668	9																						
862669	< 5																						
862670	3650																						
862671	7																						
862672	5																						
862673	7																						
862674	9																						
862675	5																						
862676	10																						
862677	12																						
862678	11																						
862679	14																						
862680	8																						
862681	11																						
862682	7																						
862683	9																						
862684	15																						
862685	8																						
862686	17																						
862687	10																						
862688	8																						
862689	7																						
862690	7020																						
862691	11																						
862692	11																						
862693	9																						
862694	8																						
862695	8																						
862696	8																						
862697	6																						
862698	< 5																						
862699	6																						
862700	< 5																						
862701	< 5																						
862702	< 5																						
862703	< 5																						
862704	6																						
862705	< 5																						
862706	< 5																						
862707	< 5																						
862708	< 5																						
862709	< 5																						
862710	5420																						
862711	11																						
862712	<5																						

Analyte Symbol	Au	Li	Na	Mg	AI	K	Ca	Cd	V	Cr	Mn	Fe	Hf	Ni	Er	Be	Ho	Ag	Cs	Co	Eu	Bi	Se
Unit Symbol	ppb	ppm	\%	\%	\%	\%	\%	ppm	ppm	ppm	ppm	\%	ppm										
Lower Limit	5	0.5	0.01	0.01	0.01	0.01	0.01	0.1	1	1	1	0.01	0.1	0.5	0.1	0.1	0.1	0.05	0.05	0.1	0.05	0.02	0.1
Method Code	FA-AA	TD-MS																					
862713	5																						
862714	5																						
862715	< 5																						
862716	9																						
862717	5																						
862718	< 5																						
862719	5																						
862720	5																						
862721	< 5																						
862722	7																						
862723	6																						
862724	6																						
862725	8	40.2	1.81	4.30	7.59	0.29	8.01	0.1	248	61	1620	9.44	0.8	64.0	2.3	0.5	0.8	0.11	3.22	50.7	0.82	0.15	0.7
862726	5																						
862727	< 5																						
862728	5																						
862729	5																						
862730	3560																						
862731	6																						
862732	6																						
862733	6																						
862734	6																						
862735	7																						
862736	< 5																						
862737	< 5																						
862738	6																						
862739	< 5																						
862740	8																						
862741	5																						
862742	5																						
862743	< 5																						
862744	< 5																						
862745	< 5																						
862746	< 5																						
862747	6																						
862748	5																						
862749	6																						
862750	7100																						
862751	11																						
862752	6																						
862753	5																						
862754	5																						
862755	6																						
862756	8																						
862757	6																						
862758	< 5																						
862759	< 5																						
862760	8																						
862761	< 5																						
862762	6																						
862763	< 5																						

Analyte Symbol	Au	Li	Na	Mg	AI	K	Ca	Cd	V	Cr	Mn	Fe	Hf	Ni	Er	Be	Ho	Ag	Cs	Co	Eu	Bi	Se
Unit Symbol	ppb	ppm	\%	\%	\%	\%	\%	ppm	ppm	ppm	ppm	\%	ppm										
Lower Limit	5	0.5	0.01	0.01	0.01	0.01	0.01	0.1	1	1	1	0.01	0.1	0.5	0.1	0.1	0.1	0.05	0.05	0.1	0.05	0.02	0.1
Method Code	FA-AA	TD-MS																					
862764	5																						
862765	7																						
862766	<5																						
862767	< 5																						
862768	<5																						
862769	<5																						
862770	5660																						
862771	<5																						
862772	<5																						
862773	<5																						
862774	<5																						
862775	<5																						
862776	<5																						
862777	<5																						
862778	<5																						
862779	<5																						
862781	<5																						
862782	<5																						
862783	<5																						
862784	<5																						
862785	<5																						
862786	<5																						
862787	<5																						
862788	<5																						
862789	<5																						
862790	3570																						
862791	<5																						
862792	<5																						
862793	<5																						
862794	<5																						
862795	<5																						
862796	<5																						
862797	21																						
862798	<5																						
862799	13																						
862800	<5																						
862801	<5																						
862802	<5																						
862803	<5																						
862804	<5	33.6	1.70	4.75	7.87	0.28	8.67	0.1	242	195	1530	8.53	0.5	80.8	2.0	0.3	0.6	0.08	2.98	47.2	0.70	0.11	0.4
862805	<5																						
862806	<5																						
862807	<5																						
862808	<5																						
862809	<5																						
862810	7200																						
862811	<5																						
862812	5																						
862813	<5																						
862814	<5																						
862815	<5																						

Analyte Symbol	Au	Li	Na	Mg	Al	K	Ca	Cd	V	Cr	Mn	Fe	Hf	Ni	Er	Be	Ho	Ag	Cs	Co	Eu	Bi	Se
Unit Symbol	ppb	ppm	\%	\%	\%	\%	\%	ppm	ppm	ppm	ppm	\%	ppm										
Lower Limit	5	0.5	0.01	0.01	0.01	0.01	0.01	0.1	1	1	1	0.01	0.1	0.5	0.1	0.1	0.1	0.05	0.05	0.1	0.05	0.02	0.1
Method Code	FA-AA	TD-MS																					
862816	<5																						
862817	<5																						
862818	<5																						
862819	<																						
862820	<																						
862082	<																						
862083	<																						
862084	<5																						
862085	<5																						

Analyte Symbol	Zn	Ga	As	Rb	Y	Sr	Zr	Nb	Mo	In	Sn	Sb	Te	Ba	La	Ce	Pr	Nd	Sm	Gd	Tb	Dy	Cu
Unit Symbol	ppm																						
Lower Limit	0.2	0.1	0.1	0.2	0.1	0.2	1	0.1	0.05	0.1	1	0.1	0.1	1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2
Method Code	TD-MS																						
862031																							
862032																							
862033																							
862034																							
862035																							
862036																							
862037																							
862038																							
862039																							
862040																							
862041																							
862042																							
862043																							
862044																							
862045																							
862046																							
862047																							
862048																							
862049																							
862050																							
862051																							
862052																							
862053																							
862054																							
862055																							
862056																							
862057																							
862058																							
862059																							
862060																							
862061																							
862062																							
862063																							
862064																							
862065																							
862066																							
862067																							
862068																							
862069																							
862070																							
862071																							
862072																							
862073																							
862074																							
862075																							
862076																							
862077																							
862078																							
862079																							
862080																							
862081																							

Analyte Symbol	Zn	Ga	As	Rb	Y	Sr	Zr	Nb	Mo	In	Sn	Sb	Te	Ba	La	Ce	Pr	Nd	Sm	Gd	Tb	Dy	Cu
Unit Symbol	ppm																						
Lower Limit	0.2	0.1	0.1	0.2	0.1	0.2	1	0.1	0.05	0.1	1	0.1	0.1	1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2
Method Code	TD-MS																						
862611																							
862612																							
862613																							
862614																							
862615																							
862616																							
862617																							
862618																							
862619																							
862620																							
862621	97.0	17.4	<0.1	20.5	18.6	93.6	16	0.2	0.23	<0.1	<1	<0.1	< 0.1	46	3.0	8.9	1.3	6.6	2.5	2.9	0.5	3.5	122
862622																							
862623																							
862624																							
862625																							
862626																							
862627																							
862628																							
862629																							
862630																							
862631																							
862632																							
862633																							
862634																							
862635																							
862636																							
862637																							
862638																							
862639																							
862640																							
862641																							
862642																							
862643																							
862644																							
862645																							
862646																							
862647																							
862648																							
862649																							
862650																							
862651																							
862652																							
862653																							
862654																							
862655																							
862656																							
862657																							
862658																							
862659																							
862660																							
862661																							

Analyte Symbol	Zn	Ga	As	Rb	Y	Sr	Zr	Nb	Mo	In	Sn	Sb	Te	Ba	La	Ce	Pr	Nd	Sm	Gd	Tb	Dy	Cu
Unit Symbol	ppm																						
Lower Limit	0.2	0.1	0.1	0.2	0.1	0.2	1	0.1	0.05	0.1	1	0.1	0.1	1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2
Method Code	TD-MS																						
862662																							
862663																							
862664																							
862665																							
862666																							
862667																							
862668																							
862669																							
862670																							
862671																							
862672																							
862673																							
862674																							
862675																							
862676																							
862677																							
862678																							
862679																							
862680																							
862681																							
862682																							
862683																							
862684																							
862685																							
862686																							
862687																							
862688																							
862689																							
862690																							
862691																							
862692																							
862693																							
862694																							
862695																							
862696																							
862697																							
862698																							
862699																							
862700																							
862701																							
862702																							
862703																							
862704																							
862705																							
862706																							
862707																							
862708																							
862709																							
862710																							
862711																							
862712																							

Analyte Symbol	Zn	Ga	As	Rb	Y	Sr	Zr	Nb	Mo	1 n	Sn	Sb	Te	Ba	La	Ce	Pr	Nd	Sm	Gd	Tb	Dy	Cu
Unit Symbol	ppm																						
Lower Limit	0.2	0.1	0.1	0.2	0.1	0.2	1	0.1	0.05	0.1	1	0.1	0.1	1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2
Method Code	TD-MS																						
862713																							
862714																							
862715																							
862716																							
862717																							
862718																							
862719																							
862720																							
862721																							
862722																							
862723																							
862724																							
862725	91.2	17.4	0.6	9.5	19.7	144	19	0.1	0.23	< 0.1	<1	<0.1	< 0.1	62	5.0	12.2	1.8	8.5	2.3	2.9	0.6	3.7	143
862726																							
862727																							
862728																							
862729																							
862730																							
862731																							
862732																							
862733																							
862734																							
862735																							
862736																							
862737																							
862738																							
862739																							
862740																							
862741																							
862742																							
862743																							
862744																							
862745																							
862746																							
862747																							
862748																							
862749																							
862750																							
862751																							
862752																							
862753																							
862754																							
862755																							
862756																							
862757																							
862758																							
862759																							
862760																							
862761																							
862762																							
862763																							

nalyte Symbol	Zn	Ga	As	Rb	Y	Sr	Zr	Nb	Mo	In	Sn	Sb	Te	Ba	La	Ce	Pr	Nd	Sm	Gd	Tb	Dy	Cu
Unit Symbol	ppm	m	ppm	m	ppm	om	ppm	pm	m	ppm	ppm	m	ppm	m	pm	m	m	ppm	m	pm	ppm	pm	ppm
Lower Limit	0.2	0.1	0.1	0.2	0.1	0.2	1	0.1	0.05	0	1	0.1	0	1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2
Method Code	TD-MS	D-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	-MS	D-MS	TD-MS	D-MS	D-MS	TD-MS	D-MS								
862764																							
862765																							
862766																							
862767																							
862768																							
862769																							
862770																							
862771																							
862772																							
862773																							
862774																							
862775																							
862776																							
862777																							
862778																							
862779																							
862781																							
862782																							
862783																							
862784																							
862785																							
862786																							
862787																							
862788																							
862789																							
862790																							
862791																							
862792																							
862793																							
862794																							
862795																							
862796																							
862797																							
862798																							
862799																							
862800																							
862801																							
862802																							
862803																							
862804	82.8	15.3	0.2	14.7	16.2	148	8	<0.1	0.27	<0.1	<1	<0.1	<0.1	45	3.1	8.0	1.3	5.9	2.1	2.4	0.4	3.1	74.9
862805																							
862806																							
862807																							
862808																							
862809																							
862810																							
862811																							
862812																							
862813																							
862814																							
862815																							

Analyte Symbol	Zn	Ga	As	Rb	Y	Sr	Zr	Nb	Mo	In	Sn	Sb	Te	Ba	La	Ce	Pr	Nd	Sm	Gd	Tb	Dy	Cu
Unit Symbol	ppm																						
Lower Limit	0.2	0.1	0.1	0.2	0.1	0.2	1	0.1	0.05	0.1	1	0.1	0.1	1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2
Method Code	TD-MS																						
862816																							
862817																							
862818																							
862819																							
862820																							
862082																							
862083																							
862084																							
862085																							

Analyte Symbol	Ge	Tm	Yb	Lu	Ta	W	Re	TI	Pb	Sc	Th	U	Ti	P	S
Unit Symbol	ppm	\%	\%	\%											
Lower Limit	0.1	0.1	0.1	0.1	0.1	0.1	0.001	0.05	0.5	1	0.1	0.1	0.0005	0.001	0.01
Method Code	TD-MS	TD-ICP	TD-MS	TD-MS	TD-ICP	TD-ICP	TD-ICP								
862031															
862032															
862033															
862034															
862035															
862036															
862037															
862038															
862039															
862040															
862041															
862042															
862043															
862044															
862045															
862046															
862047															
862048															
862049															
862050															
862051															
862052															
862053															
862054															
862055															
862056															
862057															
862058															
862059															
862060															
862061															
862062															
862063															
862064															
862065															
862066															
862067															
862068															
862069															
862070															
862071															
862072															
862073															
862074															
862075															
862076															
862077															
862078															
862079															
862080															
862081															

Analyte Symbol	Au	Li	Na	Mg	AI	K	Ca	Cd	V	Cr	Mn	Fe	Hf	Ni	Er	Be	Ho	Ag	Cs	Co	Eu	Bi	Se
Unit Symbol	ppb	ppm	\%	\%	\%	\%	\%	ppm	ppm	ppm	ppm	\%	ppm										
Lower Limit	5	0.5	0.01	0.01	0.01	0.01	0.01	0.1	1	1	1	0.01	0.1	0.5	0.1	0.1	0.1	0.05	0.05	0.1	0.05	0.02	0.1
Method Code	FA-AA	TD-MS																					
Oreas 72a (4 Acid) Meas										194		8.92		> 5000						140			
$\begin{aligned} & \text { Oreas 72a (4 } \\ & \text { Acid) Cert } \end{aligned}$										228		9.63		$\begin{array}{r} 6930.0 \\ 00 \\ \hline \end{array}$						157			
Oreas 72a (4 Acid) Meas										214		9.93		> 5000						152			
$\begin{aligned} & \hline \text { Oreas 72a (4 } \\ & \text { Acid) Cert } \end{aligned}$										228		9.63		$\begin{array}{r} 6930.0 \\ 00 \\ \hline \end{array}$						157			
OREAS 101b (4 Acid) Meas				1.24		2.06			78		888	9.94		10.0	15.1		5.3			44.7	7.65		
OREAS 101b (4 Acid) Cert				1.23		2.36			77		927	10.7		8.2	15		5.2			45	8.1		
OREAS 101b (4 Acid) Meas				1.19		2.35			72		913	9.88		8.8	15.3		5.0			46.3	8.43		
OREAS 101b (4 Acid) Cert				1.23		2.36			77		927	10.7		8.2	15		5.2			45	8.1		
OREAS 101b (4 Acid) Meas				1.29		2.08			64		860	10.0		8.9	14.0		4.8			44.2	6.98		
OREAS 101b (4 Acid) Cert				1.23		2.36			77		927	10.7		8.2	15		5.2			45	8.1		
OREAS 98 (4 Acid) Meas																		40.7		113		84.2	175
OREAS 98 (4 Acid) Cert																		45.1		121		97.2	158
OREAS 98 (4 Acid) Meas																		41.3		111		84.5	164
OREAS 98 (4 Acid) Cert																		45.1		121		97.2	158
OREAS 13b (4-Acid) Meas										> 5000				1990				0.89		73.8			
OREAS 13b (4-Acid) Cert										$\begin{array}{r} 8650.0 \\ 00 \\ \hline \end{array}$				$\begin{array}{r} \hline 2247.0 \\ 000 \\ \hline \end{array}$				0.86		75			
OREAS 13b (4-Acid) Meas										> 5000				2360				0.90		75.0			
OREAS 13b (4-Acid) Cert										$\begin{array}{r} 8650.0 \\ 00 \\ \hline \end{array}$				$\begin{array}{r} \hline 2247.0 \\ 000 \\ \hline \end{array}$				0.86		75			
OREAS 13b (4-Acid) Meas										> 5000				1870				0.81		69.4			
OREAS 13b (4-Acid) Cert										$\begin{array}{r} 8650.0 \\ 00 \\ \hline \end{array}$				$\begin{array}{r} \hline 2247.0 \\ 000 \\ \hline \end{array}$				0.86		75			
OREAS 904 (4 Acid) Meas		18.4	0.04	0.64	7.42	3.67	0.05		81	60	467	7.57	0.7	44.7		8.4		0.64	3.90	96.4		4.16	2.5
OREAS 904 (4 Acid) Cert		16.7	0.0340	0.556	6.30	3.31	0.0460		76.0	54.0	410	6.68	5.00	40.1		7.86		0.551	3.79	83.0		4.05	3.30
OREAS 904 (4 Acid) Meas		15.8	0.03	0.60	6.66	3.74	0.04		69	64	390	6.44	3.1	40.9		8.4		0.50	3.57	81.7		3.97	2.7
OREAS 904 (4 Acid) Cert		16.7	0.0340	0.556	6.30	3.31	0.0460		76.0	54.0	410	6.68	5.00	40.1		7.86		0.551	3.79	83.0		4.05	3.30
SBC-1 Meas																							
SBC-1 Cert																							
SBC-1 Meas																							
SBC-1 Cert																							
OREAS 45d (4-Acid) Meas		22.7	0.10	0.20	8.46	0.43	0.19		89	538	459	14.1	1.7	226	1.3	0.8	0.5		3.65	28.5	0.61	0.32	
OREAS 45d (4-Acid) Cert		21.5	0.101	0.245	8.150	0.412	0.185		235.0	549	490.000	14.5	3.830	231.0	1.38	0.79	0.46		3.910	29.50	0.57	0.31	
OREAS 45d (4-Acid) Meas		22.2	0.10	0.22	8.65	0.46	0.18		119	586	504	14.9	2.6	241	1.4	0.9	0.5		4.05	31.7	0.66	0.33	

Analyte Symbol	Au	Li	Na	Mg	AI	K	Ca	Cd	V	Cr	Mn	Fe	Hf	Ni	Er	Be	Ho	Ag	Cs	Co	Eu	Bi	Se
Unit Symbol	ppb	ppm	\%	\%	\%	\%	\%	ppm	ppm	ppm	ppm	\%	ppm										
Lower Limit	5	0.5	0.01	0.01	0.01	0.01	0.01	0.1	1	1	1	0.01	0.1	0.5	0.1	0.1	0.1	0.05	0.05	0.1	0.05	0.02	0.1
Method Code	FA-AA	TD-MS																					
OREAS 45d (4-Acid) Cert		21.5	0.101	0.245	8.150	0.412	0.185		235.0	549	490.000	14.5	3.830	231.0	1.38	0.79	0.46		3.910	29.50	0.57	0.31	
OREAS 96 (4 Acid) Meas																		10.9		51.2		27.5	43.9
OREAS 96 (4 Acid) Cert																		11.5		49.9		26.3	40.7
OREAS 96 (4 Acid) Meas																		10.6		48.5		26.9	43.0
OREAS 96 (4 Acid) Cert																		11.5		49.9		26.3	40.7
OREAS 96 (4 Acid) Meas																		10.8		51.6		27.9	45.5
OREAS 96 (4 Acid) Cert																		11.5		49.9		26.3	40.7
OREAS 96 (4 Acid) Meas																		11.1		50.2		27.3	44.1
OREAS 96 (4 Acid) Cert																		11.5		49.9		26.3	40.7
OREAS 923 (4 Acid) Meas		33.2	0.31	1.80	7.95	2.49	0.46	0.4	94	69	935	6.64	3.5	35.2	2.8	2.8	1.0	1.88	6.80	22.7	1.33	21.5	6.1
OREAS 923 (4 Acid) Cert		31.4	0.324	1.69	7.29	2.51	0.473	0.420	91.0	71.0	950	6.43	3.42	35.8	2.86	2.42	0.960	1.60	6.70	23.1	1.37	21.4	6.54
OREAS 923 (4 Acid) Meas		33.5	0.32	1.88	8.31	2.66	0.50	0.4	91	86	956	6.72	3.4	37.7	2.7	2.3	1.0	1.79	6.47	23.1	1.30	22.1	6.6
OREAS 923 (4 Acid) Cert		31.4	0.324	1.69	7.29	2.51	0.473	0.420	91.0	71.0	950	6.43	3.42	35.8	2.86	2.42	0.960	1.60	6.70	23.1	1.37	21.4	6.54
OREAS 923 (4 Acid) Meas																							
$\text { OREAS } 923 \text { (4 }$ Acid) Cert																							
$\text { OREAS } 621 \text { (4 }$ Acid) Meas		14.9	1.24	0.52	5.38	1.48	1.95	304	32	36	492	3.37	4.2	25.1		1.7		70.2	3.60	26.3		4.31	6.1
$\begin{aligned} & \text { OREAS } 621 \text { (4 } \\ & \text { Acid) Cert } \end{aligned}$		14.2	1.31	0.507	6.40	2.20	1.97	284	31.8	37.1	532	3.70	4.41	26.2		1.69		69.0	3.28	29.3		3.93	5.64
OREAS 621 (4 Acid) Meas		14.4	1.38	0.52	6.01	2.31	2.01	293	33	35	529	3.78	4.0	26.7		1.7		63.5	3.28	29.9		4.01	4.8
$\begin{aligned} & \text { OREAS } 621 \text { (4 } \\ & \text { Acid) Cert } \end{aligned}$		14.2	1.31	0.507	6.40	2.20	1.97	284	31.8	37.1	532	3.70	4.41	26.2		1.69		69.0	3.28	29.3		3.93	5.64
OREAS 621 (4 Acid) Meas		15.2	1.50	0.53	5.62	1.72	2.04	263	36	48	544	4.12	4.0	29.6		2.0		61.2	3.40	32.3		4.19	5.4
$\begin{aligned} & \text { OREAS } 621 \text { (4 } \\ & \text { Acid) Cert } \\ & \hline \end{aligned}$		14.2	1.31	0.507	6.40	2.20	1.97	284	31.8	37.1	532	3.70	4.41	26.2		1.69		69.0	3.28	29.3		3.93	5.64
Oreas 77b (4 Acid) Meas		17.7	0.38	2.29	1.62	0.34	2.78	1.1	26	262	595	27.3	1.1	> 5000		0.3		1.54	2.10	> 500		3.39	
Oreas 77b (4 Acid) Cert		18.8	0.434	2.59	1.94	0.361	3.06	1.20	33.6	280	640	29.9	1.15	113000		0.470		1.62	2.32	1550		3.44	
Oreas 77b (4 Acid) Meas		16.4	0.35	2.27	1.62	0.33	2.69	1.2	25	261	614	27.7	1.1	> 5000		0.4		1.52	2.21	> 500		3.43	
Oreas 77b (4 Acid) Cert		18.8	0.434	2.59	1.94	0.361	3.06	1.20	33.6	280	640	29.9	1.15	113000		0.470		1.62	2.32	1550		3.44	
Oreas E1336 (Fire Assay) Meas	511																						
Oreas E1336 (Fire Assay) Cert	510.000																						
Oreas E1336 (Fire Assay) Meas	511																						
Oreas E1336 (Fire Assay) Cert	510.000																						

Analyte Symbol	Au	Li	Na	Mg	AI	K	Ca	Cd	V	Cr	Mn	Fe	Hf	Ni	Er	Be	Ho	Ag	Cs	Co	Eu	Bi	Se
Unit Symbol	ppb	ppm	\%	\%	\%	\%	\%	ppm	ppm	ppm	ppm	\%	ppm										
Lower Limit	5	0.5	0.01	0.01	0.01	0.01	0.01	0.1	1	1	1	0.01	0.1	0.5	0.1	0.1	0.1	0.05	0.05	0.1	0.05	0.02	0.1
Method Code	FA-AA	TD-MS																					
Oreas E1336 (Fire Assay) Meas	511																						
Oreas E1336 (Fire Assay) Cert	510.000																						
Oreas E1336 (Fire Assay) Meas	495																						
Oreas E1336 (Fire Assay) Cert	510.000																						
Oreas E1336 (Fire Assay) Meas	501																						
Oreas E1336 (Fire Assay) Cert	510.000																						
Oreas E1336 (Fire Assay) Meas	492																						
Oreas E1336 (Fire Assay) Cert	510.000																						
Oreas E1336 (Fire Assay) Meas	497																						
Oreas E1336 (Fire Assay) Cert	510.000																						
OREAS 681 (4 Acid) Meas		14.1	1.64	5.05	7.44	1.50	5.86		247	1440	1360	7.56	1.8	477	1.9	1.4	0.7	0.15	3.86	49.7	1.31	0.09	
$\begin{aligned} & \text { OREAS } 681 \text { (4 } \\ & \text { Acid) Cert } \\ & \hline \end{aligned}$		13.0	1.61	5.19	7.91	1.35	5.98		253	1640	1310	7.47	1.70	503	1.97	1.41	0.690	0.118	4.02	51.0	1.37	0.0980	
$\text { OREAS } 681 \text { (4 }$ Acid) Meas		12.8	1.67	5.55	8.43	1.58	6.23		243	1550	1340	7.86	1.8	482	2.1	1.5	0.7	0.15	4.25	52.0	1.46	0.09	
OREAS 681 (4 Acid) Cert		13.0	1.61	5.19	7.91	1.35	5.98		253	1640	1310	7.47	1.70	503	1.97	1.41	0.690	0.118	4.02	51.0	1.37	0.0980	
OREAS 148 (4 Acid) Meas		> 400	0.88	0.40	5.56	1.56	0.90		48	58	383	3.00	1.3	21.9	2.2	39.8	0.9		> 100	5.9	6.83	18.4	
OREAS 148 (4 Acid) Cert		4650	0.860	0.454	5.27	1.47	0.872		54.0	60.0	370	3.02	2.16	22.2	2.20	36.2	0.840		314	6.31	7.54	18.9	
OREAS 148 (4 Acid) Meas		> 400	0.90	0.40	5.77	1.48	0.88		45	51	363	2.91	1.1	21.9	2.1	40.1	0.9		> 100	5.7	6.73	17.7	
OREAS 148 (4 Acid) Cert		4650	0.860	0.454	5.27	1.47	0.872		54.0	60.0	370	3.02	2.16	22.2	2.20	36.2	0.840		314	6.31	7.54	18.9	
OREAS 148 (4 Acid) Meas																							
OREAS 148 (4 Acid) Cert																							
$\begin{array}{\|l} \hline \text { Oreas } 521 \text { (4 } \\ \text { Acid) Meas } \\ \hline \end{array}$																							
$\begin{array}{\|l\|} \hline \begin{array}{l} \text { Oreas } 521 \text { (4 } \\ \text { Acid) Cert } \end{array} \\ \hline \end{array}$																							
Oreas 521 (4 Acid) Meas																							
Oreas 521 (4 Acid) Cert																							
$\begin{aligned} & \text { OREAS 70b (4 } \\ & \text { Acid) Meas } \\ & \hline \end{aligned}$		33.6	0.83	14.1	4.11	0.68	3.18	0.4	50		1220	5.92	1.9	2090		1.0		0.19	3.60	83.0		1.10	
$\begin{aligned} & \text { OREAS 70b (4 } \\ & \text { Acid) Cert } \\ & \hline \end{aligned}$		34.4	0.77	13.4	3.87	0.62	3.05	0.4	67		1150	5.52	1.9	2180		1		0.17	3.44	78.0		0.840	
OREAS 256b (Fire Assay) Meas	8120																						
OREAS 256b (Fire Assay) Cert	7840																						
OREAS 256b (Fire Assay) Meas	8050																						

Analyte Symbol	Au	Li	Na	Mg	AI	K	Ca	Cd	V	Cr	Mn	Fe	Hf	Ni	Er	Be	Ho	Ag	Cs	Co	Eu	Bi	Se
Unit Symbol	ppb	ppm	\%	\%	\%	\%	\%	ppm	ppm	ppm	ppm	\%	ppm										
Lower Limit	5	0.5	0.01	0.01	0.01	0.01	0.01	0.1	1	1	1	0.01	0.1	0.5	0.1	0.1	0.1	0.05	0.05	0.1	0.05	0.02	0.1
Method Code	FA-AA	TD-MS																					
OREAS 256b (Fire Assay) Cert	7840																						
OREAS 256b (Fire Assay) Meas	8030																						
OREAS 256b (Fire Assay) Cert	7840																						
OREAS 256b (Fire Assay) Meas	8110																						
OREAS 256b (Fire Assay) Cert	7840																						
OREAS 256b (Fire Assay) Meas	8050																						
OREAS 256b (Fire Assay) Cert	7840																						
OREAS 256b (Fire Assay) Meas	7960																						
OREAS 256b (Fire Assay) Cert	7840																						
OREAS 256b (Fire Assay) Meas	7970																						
OREAS 256b (Fire Assay) Cert	7840																						
OREAS 256b (Fire Assay) Meas	8070																						
OREAS 256b (Fire Assay) Cert	7840																						
OREAS 753 (4 Acid) Meas																							
OREAS 753 (4 Acid) Cert																							
OREAS 753 (4 Acid) Meas																							
OREAS 753 (4 Acid) Cert																							
862039 Orig	8																						
862039 Dup	6																						
862049 Orig	6																						
862049 Dup	6																						
862061 Orig	11																						
862061 Dup	10																						
862066 Orig	6																						
862066 Dup	< 5																						
862076 Orig	6																						
862076 Dup	6																						
862081 Orig	9																						
862081 Split PREP DUP	6																						
862614 Orig	9																						
862614 Dup	10																						
862634 Orig	< 5																						
862634 Dup	< 5																						
862644 Orig	< 5																						
862644 Dup	< 5																						
862645 Orig	< 5																						
862645 Split PREP DUP	< 5																						

Analyte Symbol	Au	Li	Na	Mg	AI	K	Ca	Cd	V	Cr	Mn	Fe	Hf	Ni	Er	Be	Ho	Ag	Cs	Co	Eu	Bi	Se
Unit Symbol	ppb	ppm	\%	\%	\%	\%	\%	ppm	ppm	ppm	ppm	\%	ppm										
Lower Limit	5	0.5	0.01	0.01	0.01	0.01	0.01	0.1	1	1	1	0.01	0.1	0.5	0.1	0.1	0.1	0.05	0.05	0.1	0.05	0.02	0.1
Method Code	FA-AA	TD-MS																					
862653 Orig	6																						
862653 Dup	< 5																						
862673 Orig	7																						
862673 Dup	6																						
862683 Orig	8																						
862683 Dup	9																						
862693 Orig	7																						
862693 Dup	10																						
862695 Orig	8																						
862695 Split PREP DUP	8																						
862702 Orig	< 5																						
862702 Dup	< 5																						
862712 Orig	8																						
862712 Dup	< 5																						
862722 Orig	8																						
862722 Dup	5																						
862742 Orig	5																						
862742 Dup	5																						
862745 Orig	< 5																						
862745 Split PREP DUP	7																						
862751 Orig	12																						
862751 Dup	9																						
862761 Orig	< 5																						
862761 Dup	5																						
862771 Orig	< 5																						
862771 Dup	< 5																						
862782 Orig	< 5																						
862782 Dup	< 5																						
862792 Orig	< 5																						
862792 Dup	< 5																						
862795 Orig	< 5																						
$\begin{aligned} & 862795 \text { Split } \\ & \text { PREP DUP } \end{aligned}$	< 5																						
862803 Orig	< 5																						
862803 Dup	< 5																						
862811 Orig	< 5																						
862811 Dup	< 5																						
862085 Orig	< 5																						
862085 Split PREP DUP	< 5																						
Method Blank																							
Method Blank																							
Method Blank																							
Method Blank																							
Method Blank																							
Method Blank																							
Method Blank																							
Method Blank																							
Method Blank		< 0.5	< 0.01	< 0.01	< 0.01	<0.01	<0.01	<0.1	3	7	15	< 0.01	<0.1	< 0.5	< 0.1	0.5	<0.1	< 0.05	< 0.05	< 0.1	< 0.05	< 0.02	0.5
Method Blank		<0.5	< 0.01	< 0.01	< 0.01	<0.01	<0.01	<0.1	1	7	14	< 0.01	<0.1	<0.5	<0.1	<0.1	<0.1	<0.05	<0.05	<0.1	< 0.05	< 0.02	0.4

Analyte Symbol	Au	Li	Na	Mg	AI	K	Ca	Cd	V	Cr	Mn	Fe	Hf	Ni	Er	Be	Ho	Ag	Cs	Co	Eu	Bi	Se
Unit Symbol	ppb	ppm	\%	\%	\%	\%	\%	ppm	ppm	ppm	ppm	\%	ppm										
Lower Limit	5	0.5	0.01	0.01	0.01	0.01	0.01	0.1	1	1	1	0.01	0.1	0.5	0.1	0.1	0.1	0.05	0.05	0.1	0.05	0.02	0.1
Method Code	FA-AA	TD-MS																					
Method Blank	<5																						
Method Blank	<5																						
Method Blank	< 5																						
Method Blank	< 5																						
Method Blank	< 5																						
Method Blank	< 5																						
Method Blank	< 5																						
Method Blank	< 5																						
Method Blank	< 5																						
Method Blank	< 5																						
Method Blank	< 5																						
Method Blank	< 5																						
Method Blank	< 5																						
Method Blank		< 0.5	< 0.01	< 0.01	<0.01	<0.01	<0.01	<0.1	2	8	10	<0.01	< 0.1	<0.5	< 0.1	0.6	< 0.1	<0.05	<0.05	<0.1	<0.05	<0.02	0.3
Method Blank		<0.5	< 0.01	< 0.01	<0.01	<0.01	<0.01	<0.1	1	3	5	< 0.01	<0.1	<0.5	<0.1	< 0.1	<0.1	<0.05	<0.05	<0.1	<0.05	<0.02	< 0.1
Method Blank		< 0.5	< 0.01	< 0.01	<0.01	<0.01	<0.01	<0.1	1	2	7	< 0.01	<0.1	<0.5	<0.1	<0.1	< 0.1	<0.05	<0.05	< 0.1	<0.05	<0.02	< 0.1
Method Blank		< 0.5	< 0.01	< 0.01	<0.01	<0.01	<0.01	<0.1	1	5	9	<0.01	<0.1	<0.5	<0.1	<0.1	<0.1	<0.05	<0.05	<0.1	<0.05	<0.02	<0.1
Method Blank		< 0.5	< 0.01	< 0.01	<0.01	<0.01	<0.01	<0.1	2	2	1	< 0.01	<0.1	<0.5	<0.1	0.1	< 0.1	<0.05	<0.05	<0.1	<0.05	<0.02	< 0.1
Method Blank		1.8	<0.01	< 0.01	<0.01	<0.01	<0.01	<0.1	1	14	2	<0.01	<0.1	<0.5	<0.1	<0.1	<0.1	<0.05	<0.05	<0.1	<0.05	<0.02	<0.1

Analyte Symbol	Zn	Ga	As	Rb	Y	Sr	Zr	Nb	Mo	In	Sn	Sb	Te	Ba	La	Ce	Pr	Nd	Sm	Gd	Tb	Dy	Cu
Unit Symbol	ppm																						
Lower Limit	0.2	0.1	0.1	0.2	0.1	0.2	1	0.1	0.05	0.1	1	0.1	0.1	1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2
Method Code	TD-MS																						
Oreas 72a (4 Acid) Meas			5.8																				302
$\begin{aligned} & \text { Oreas 72a (4 } \\ & \text { Acid) Cert } \end{aligned}$			14.7																				316
Oreas 72a (4 Acid) Meas			4.2																				332
Oreas 72a (4 Acid) Cert			14.7																				316
OREAS 101b (4 Acid) Meas					126				19.4						718	1370	122	390	40.1	38.0	4.5	25.2	426
$\begin{aligned} & \text { OREAS 101b (4 } \\ & \text { Acid) Cert } \end{aligned}$					133				20.1						754	1325	127	388	48	40	5.4	27	412
OREAS 101b (4 Acid) Meas					134				20.4						663	1350	131	381	40.8	42.4	5.0	28.0	444
$\begin{aligned} & \hline \text { OREAS 101b (4 } \\ & \text { Acid) Cert } \\ & \hline \end{aligned}$					133				20.1						754	1325	127	388	48	40	5.4	27	412
OREAS 101b (4 Acid) Meas					116				16.0						644	1140	111	328	42.3	35.8	4.4	24.2	408
OREAS 101b (4 Acid) Cert					133				20.1						754	1325	127	388	48	40	5.4	27	412
OREAS 98 (4 Acid) Meas	1340										182	5.6											> 10000
OREAS 98 (4 Acid) Cert	1360										206	20.1											$\begin{array}{r} 14800 \\ 0.0 \\ \hline \end{array}$
OREAS 98 (4 Acid) Meas	1300										173	6.7											> 10000
OREAS 98 (4 Acid) Cert	1360										206	20.1											$\begin{array}{r} 14800 \\ 0.0 \\ \hline \end{array}$
OREAS 13b (4-Acid) Meas	146		58.7						9.82														2170
OREAS 13b (4-Acid) Cert	133		57						9.0														$\begin{array}{r} 2327.0 \\ 000 \\ \hline \end{array}$
OREAS 13b (4-Acid) Meas	142		49.8						8.31														2340
OREAS 13b (4-Acid) Cert	133		57						9.0														$\begin{array}{r} 2327.0 \\ 000 \\ \hline \end{array}$
OREAS 13b (4-Acid) Meas	140		54.4						8.62														2160
OREAS 13b (4-Acid) Cert	133		57						9.0														$\begin{array}{r} 2327.0 \\ 000 \\ \hline \end{array}$
OREAS 904 (4 Acid) Meas	29.9	16.7	105	156	34.5	30.2	58		1.95	0.2	3	1.2		209	38.5	87.9					1.0		6560
OREAS 904 (4 Acid) Cert	26.3	16.7	98.0	130	31.5	27.2	171		2.12	0.220	2.83	1.48		194	43.2	86.0					1.00		6120
OREAS 904 (4 Acid) Meas	27.6	13.6	87.7	140	30.6	25.3	126		1.81	0.2	3	0.7		189	40.5	78.3					0.9		6040
OREAS 904 (4 Acid) Cert	26.3	16.7	98.0	130	31.5	27.2	171		2.12	0.220	2.83	1.48		194	43.2	86.0					1.00		6120
SBC-1 Meas																							
SBC-1 Cert																							
SBC-1 Meas																							
SBC-1 Cert																							
OREAS 45d (4-Acid) Meas	48.9	18.8	9.4	43.9	11.1	31.1	62	0.6	0.21	< 0.1	<1	<0.1		174	16.1	34.0	4.0	13.7	2.4	2.5	0.4	2.4	367
OREAS 45d (4-Acid) Cert	45.7	21.20	13.8	42.1	9.53	31.30	141	14.50	2.500	0.096	2.78	0.82		183.0	16.9	37.20	3.70	13.4	2.80	2.42	0.400	2.26	371
OREAS 45d (4-Acid) Meas	53.9	20.0	5.3	47.0	12.2	33.9	98	1.9	0.68	0.1	<1	<0.1		192	17.9	38.0	4.4	15.2	2.9	2.7	0.4	2.5	401

Analyte Symbol	Zn	Ga	As	Rb	Y	Sr	Zr	Nb	Mo	In	Sn	Sb	Te	Ва	La	Ce	Pr	Nd	Sm	Gd	Tb	Dy	Cu
Unit Symbol	ppm																						
Lower Limit	0.2	0.1	0.1	0.2	0.1	0.2	1	0.1	0.05	0.1	1	0.1	0.1	1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2
Method Code	TD-MS																						
OREAS 45d (4-Acid) Cert	45.7	21.20	13.8	42.1	9.53	31.30	141	14.50	2.500	0.096	2.78	0.82		183.0	16.9	37.20	3.70	13.4	2.80	2.42	0.400	2.26	371
OREAS 96 (4 Acid) Meas	490										66	5.1											P10000
OREAS 96 (4 Acid) Cert	457										65.6	5.09											39300
OREAS 96 (4 Acid) Meas	470										62	2.8											P10000
OREAS 96 (4 Acid) Cert	457										65.6	5.09											39300
OREAS 96 (4 Acid) Meas	519										63	4.5											P10000
OREAS 96 (4 Acid) Cert	457										65.6	5.09											39300
OREAS 96 (4 Acid) Meas	512										66	3.0											P10000
OREAS 96 (4 Acid) Cert	457										65.6	5.09											39300
OREAS 923 (4 Acid) Meas	376	19.8	10.4	167	25.2	42.1	122	15.2	1.04	0.5	14	1.2		336	42.3	89.2	9.8	37.7	6.3	5.9	0.9	4.8	4370
$\begin{aligned} & \text { OREAS } 923 \text { (4 } \\ & \text { Acid) Cert } \end{aligned}$	345	20.3	7.61	166	26.4	43.0	116	14.1	0.930	0.520	13.3	1.29		434	42.2	83.0	9.58	35.4	6.64	5.73	0.850	5.05	4230
OREAS 923 (4 Acid) Meas	403	15.4	8.1	154	25.4	40.7	117	13.3	0.98	0.6	14	1.0		396	40.3	77.1	9.6	34.8	6.6	5.7	0.8	4.5	4270
$\begin{aligned} & \text { OREAS } 923 \text { (4 } \\ & \text { Acid) Cert } \end{aligned}$	345	20.3	7.61	166	26.4	43.0	116	14.1	0.930	0.520	13.3	1.29		434	42.2	83.0	9.58	35.4	6.64	5.73	0.850	5.05	4230
OREAS 923 (4 Acid) Meas																							
$\begin{aligned} & \text { OREAS } 923 \text { (4 } \\ & \text { Acid) Cert } \end{aligned}$																							
OREAS 621 (4 Acid) Meas	> 10000	24.2	73.4	75.6	10.4	49.8	151	8.9	14.1	2.0	6	16.4			12.2	39.8					0.5		3620
$\begin{aligned} & \text { OREAS } 621 \text { (4 } \\ & \text { Acid) Cert } \end{aligned}$	52200	24.6	77.0	84.0	11.1	91.0	168	8.61	13.6	1.83	5.25	139			21.6	46.6					0.460		3630
OREAS 621 (4 Acid) Meas	> 10000	26.4	74.1	72.2	10.0	62.3	143	8.6	12.7	1.6	5	20.4			15.6	42.8					0.4		3810
$\begin{aligned} & \text { OREAS } 621 \text { (4 } \\ & \text { Acid) Cert } \end{aligned}$	52200	24.6	77.0	84.0	11.1	91.0	168	8.61	13.6	1.83	5.25	139			21.6	46.6					0.460		3630
OREAS 621 (4 Acid) Meas	> 10000	25.3	75.5	76.0	10.9	48.6	147	9.0	13.5	1.9	6	14.7			13.5	37.6					0.5		3740
$\begin{aligned} & \text { OREAS } 621 \text { (4 } \\ & \text { Acid) Cert } \\ & \hline \end{aligned}$	52200	24.6	77.0	84.0	11.1	91.0	168	8.61	13.6	1.83	5.25	139			21.6	46.6					0.460		3630
Oreas 77b (4 Acid) Meas	234	4.2	1350	19.4	7.1	33.7	37	3.1		0.1	2	7.4	1.4	12	14.8	26.0							3050
Oreas 77b (4 Acid) Cert	205	4.61	2050	19.1	6.55	34.4	37.9	3.26		0.112	1.59	9.100	1.35	118	15.8	27.7							3430
Oreas 77b (4 Acid) Meas	222	3.9	1330	19.1	6.6	33.3	36	2.9		0.1	2	7.6	1.3	17	15.0	26.2							3040
Oreas 77b (4 Acid) Cert	205	4.61	2050	19.1	6.55	34.4	37.9	3.26		0.112	1.59	9.100	1.35	118	15.8	27.7							3430
Oreas E1336 (Fire Assay) Meas																							
Oreas E1336 (Fire Assay) Cert																							
Oreas E1336 (Fire Assay) Meas																							
$\begin{aligned} & \text { Oreas E1336 (Fire } \\ & \text { Assay) Cert } \\ & \hline \end{aligned}$																							

Analyte Symbol	Zn	Ga	As	Rb	Y	Sr	Zr	Nb	Mo	In	Sn	Sb	Te	Ba	La	Ce	Pr	Nd	Sm	Gd	Tb	Dy	Cu
Unit Symbol	ppm																						
Lower Limit	0.2	0.1	0.1	0.2	0.1	0.2	1	0.1	0.05	0.1	1	0.1	0.1	1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2
Method Code	TD-MS																						
Oreas E1336 (Fire Assay) Meas																							
$\begin{aligned} & \begin{array}{l} \text { Oreas E1336 (Fire } \\ \text { Assay) Cert } \end{array} \\ & \hline \end{aligned}$																							
Oreas E1336 (Fire Assay) Meas																							
$\begin{aligned} & \begin{array}{l} \text { Oreas E1336 (Fire } \\ \text { Assay) Cert } \end{array} \\ & \hline \end{aligned}$																							
Oreas E1336 (Fire Assay) Meas																							
$\begin{aligned} & \hline \begin{array}{l} \text { Oreas E1336 (Fire } \\ \text { Assay) Cert } \end{array} \\ & \hline \end{aligned}$																							
Oreas E1336 (Fire Assay) Meas																							
Oreas E1336 (Fire Assay) Cert																							
Oreas E1336 (Fire Assay) Meas																							
Oreas E1336 (Fire Assay) Cert																							
OREAS 681 (4 Acid) Meas	92.3	10.9		72.7	16.1	430	61	5.8	1.38	<0.1	2	0.2		421	17.6	36.9	5.1	21.0	4.0	3.9	0.6	3.0	273
OREAS 681 (4 Acid) Cert	88.0	17.6		80.0	17.5	478	58.0	6.17	1.38	0.0420	1.89	0.240		442	18.8	40.6	5.32	21.9	4.82	4.06	0.580	3.40	264
OREAS 681 (4 Acid) Meas	102	12.4		85.4	17.1	465	59	4.8	1.28	<0.1	1	<0.1		466	20.3	42.8	5.7	23.1	4.8	4.2	0.6	3.5	285
$\begin{aligned} & \hline \text { OREAS } 681 \text { (4 } \\ & \text { Acid) Cert } \\ & \hline \end{aligned}$	88.0	17.6		80.0	17.5	478	58.0	6.17	1.38	0.0420	1.89	0.240		442	18.8	40.6	5.32	21.9	4.82	4.06	0.580	3.40	264
OREAS 148 (4 Acid) Meas	175	24.2	29.0	1370	19.7	186	57	123	5.44	4.3		4.9		984	441	784	80.9	260	28.1	18.8	1.4	5.9	348
OREAS 148 (4 Acid) Cert	162	29.2	58.0	1320	18.5	204	79.0	1690	8.86	3.98		16.2		1000	446	725	82.0	267	34.2	17.1	1.71	6.66	338
OREAS 148 (4 Acid) Meas	172	25.0	24.0	1370	19.3	186	53	236	5.01	4.3		3.6		942	436	768	76.1	259	27.8	17.6	1.4	5.8	350
OREAS 148 (4 Acid) Cert	162	29.2	58.0	1320	18.5	204	79.0	1690	8.86	3.98		16.2		1000	446	725	82.0	267	34.2	17.1	1.71	6.66	338
OREAS 148 (4 Acid) Meas																							
$\begin{aligned} & \text { OREAS } 148 \text { (4 } \\ & \text { Acid) Cert } \end{aligned}$																							
Oreas 521 (4 Acid) Meas																							
$\begin{aligned} & \hline \text { Oreas } 521 \text { (4 } \\ & \text { Acid) Cert } \\ & \hline \end{aligned}$																							
Oreas 521 (4 Acid) Meas																							
$\text { Oreas } 521 \text { (} 4$ Acid) Cert																							
OREAS 70b (4 Acid) Meas	129	6.8	148		10.5	79.8	73	4.0	3.52	<0.1	1	0.5		228	16.6	29.9							59.6
OREAS 70b (4 Acid) Cert	112	10	148		9.85	74.0	66	3.7	3.30	0.05	1	0.6		202	15.3	28.2							52.0
OREAS 256b (Fire Assay) Meas																							
OREAS 256b (Fire Assay) Cert																							
OREAS 256b (Fire Assay) Meas																							

Analyte Symbol	Zn	Ga	As	Rb	Y	Sr	Zr	Nb	Mo	In	Sn	Sb	Te	Ba	La	Ce	Pr	Nd	Sm	Gd	Tb	Dy	Cu
Unit Symbol	ppm																						
Lower Limit	0.2	0.1	0.1	0.2	0.1	0.2		0.1	0.05	0.1	1	0.1	0.1	1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2
Method Code	TD-MS																						
OREAS 256b (Fire Assay) Cert																							
OREAS 256b (Fire Assay) Meas																							
OREAS 256b (Fire Assay) Cert																							
OREAS 256b (Fire Assay) Meas																							
OREAS 256b (Fire Assay) Cert																							
OREAS 256b (Fire Assay) Meas																							
OREAS 256b (Fire Assay) Cert																							
OREAS 256b (Fire Assay) Meas																							
OREAS 256b (Fire Assay) Cert																							
OREAS 256b (Fire Assay) Meas																							
OREAS 256b (Fire Assay) Cert																							
OREAS 256b (Fire Assay) Meas																							
OREAS 256b (Fire Assay) Cert																							
OREAS 753 (4 Acid) Meas																							
$\begin{aligned} & \text { OREAS } 753 \text { (4 } \\ & \text { Acid) Cert } \end{aligned}$																							
OREAS 753 (4 Acid) Meas																							
$\begin{aligned} & \text { OREAS } 753 \text { (4 } \\ & \text { Acid) Cert } \end{aligned}$																							
862039 Orig																							
862039 Dup																							
862049 Orig																							
862049 Dup																							
862061 Orig																							
862061 Dup																							
862066 Orig																							
862066 Dup																							
862076 Orig																							
862076 Dup																							
862081 Orig																							
$\begin{aligned} & 862081 \text { Split } \\ & \text { PREP DUP } \end{aligned}$																							
862614 Orig																							
862614 Dup																							
862634 Orig																							
862634 Dup																							
862644 Orig																							
862644 Dup																							
862645 Orig																							
$\begin{aligned} & 862645 \text { Split } \\ & \text { PREP DUP } \end{aligned}$																							

Analyte Symbol	Zn	Ga	As	Rb	Y	Sr	Zr	Nb	Mo	In	Sn	Sb	Te	Ba	La	Ce	Pr	Nd	Sm	Gd	Tb	Dy	Cu
Unit Symbol	ppm																						
Lower Limit	0.2	0.1	0.1	0.2	0.1	0.2	1	0.1	0.05	0.1	1	0.1	0.1	1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2
Method Code	TD-MS																						
862653 Orig																							
862653 Dup																							
862673 Orig																							
862673 Dup																							
862683 Orig																							
862683 Dup																							
862693 Orig																							
862693 Dup																							
862695 Orig																							
862695 Split PREP DUP																							
862702 Orig																							
862702 Dup																							
862712 Orig																							
862712 Dup																							
862722 Orig																							
862722 Dup																							
862742 Orig																							
862742 Dup																							
862745 Orig																							
862745 Split PREP DUP																							
862751 Orig																							
862751 Dup																							
862761 Orig																							
862761 Dup																							
862771 Orig																							
862771 Dup																							
862782 Orig																							
862782 Dup																							
862792 Orig																							
862792 Dup																							
862795 Orig																							
862795 Split PREP DUP																							
862803 Orig																							
862803 Dup																							
862811 Orig																							
862811 Dup																							
862085 Orig																							
862085 Split PREP DUP																							
Method Blank																							
Method Blank																							
Method Blank																							
Method Blank																							
Method Blank																							
Method Blank																							
Method Blank																							
Method Blank																							
Method Blank	<0.2	0.4	<0.1	<0.2	<0.1	<0.2	<1	<0.1	0.11	< 0.1	<1	< 0.1	< 0.1	<1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1	< 0.1	<0.2
Method Blank	<0.2	0.3	<0.1	<0.2	<0.1	<0.2	<1	<0.1	0.06	<0.1	< 1	<0.1	<0.1	<1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2

Analyte Symbol	Zn	Ga	As	Rb	Y	Sr	Zr	Nb	Mo	In	Sn	Sb	Te	Ba	La	Ce	Pr	Nd	Sm	Gd	Tb	Dy	Cu
Unit Symbol	ppm																						
Lower Limit	0.2	0.1	0.1	0.2	0.1	0.2	1	0.1	0.05	0.1	,	0.1	0.1	1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2
Method Code	TD-MS																						
Method Blank																							
Method Blank																							
Method Blank																							
Method Blank																							
Method Blank																							
Method Blank																							
Method Blank																							
Method Blank																							
Method Blank																							
Method Blank																							
Method Blank																							
Method Blank																							
Method Blank																							
Method Blank	<0.2	0.4	< 0.1	<0.2	<0.1	<0.2	<1	<0.1	<0.05	<0.1	<1	<0.1	< 0.1	<1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.2
Method Blank	<0.2	<0.1	<0.1	<0.2	<0.1	<0.2	<1	<0.1	0.10	<0.1	< 1	<0.1	< 0.1	< 1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.2
Method Blank	<0.2	0.1	0.9	<0.2	<0.1	<0.2	<1	<0.1	0.06	<0.1	<1	<0.1	<0.1	<1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	1.3
Method Blank	<0.2	0.1	0.3	<0.2	<0.1	<0.2	<1	<0.1	0.07	<0.1	<1	<0.1	<0.1	<1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	1.3
Method Blank	0.4	0.2	0.8	<0.2	<0.1	0.2	<1	< 0.1	< 0.05	<0.1	<1	<0.1	<0.1	< 1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.2
Method Blank	<0.2	0.2	0.2	<0.2	<0.1	0.2	<1	<0.1	<0.05	<0.1	<1	<0.1	<0.1	<1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2

Analyte Symbol	Ge	Tm	Yb	Lu	Ta	W	Re	TI	Pb	Sc	Th	U	Ti	P	S
Unit Symbol	ppm	\%	\%	\%											
Lower Limit	0.1	0.1	0.1	0.1	0.1	0.1	0.001	0.05	0.5	1	0.1	0.1	0.0005	0.001	0.01
Method Code	TD-MS	TD-ICP	TD-MS	TD-MS	TD-ICP	TD-ICP	TD-ICP								
Oreas 72a (4 Acid) Meas															1.71
$\begin{aligned} & \text { Oreas 72a (4 } \\ & \text { Acid) Cert } \\ & \hline \end{aligned}$															1.74
Oreas 72a (4 Acid) Meas															1.62
$\begin{aligned} & \begin{array}{l} \text { Oreas 72a (4 } \\ \text { Acid) Cert } \end{array} \\ & \hline \end{aligned}$															1.74
OREAS 101b (4 Acid) Meas		2.0	13.4	1.8					23.4		36.6	376	0.298	0.111	
$\begin{aligned} & \text { OREAS 101b (4 } \\ & \text { Acid) Cert } \end{aligned}$		2.08	13.9	1.96					23		36.4	387	0.35		
OREAS 101b (4 Acid) Meas		2.2	13.3	1.9					25.1		38.9	369	0.344	0.112	
$\begin{aligned} & \text { OREAS 101b (4 } \\ & \text { Acid) Cert } \end{aligned}$		2.08	13.9	1.96					23		36.4	387	0.35		
OREAS 101b (4 Acid) Meas		2.1	12.5	1.8					22.8		35.5	314			
$\begin{aligned} & \text { OREAS 101b (4 } \\ & \text { Acid) Cert } \end{aligned}$		2.08	13.9	1.96					23		36.4	387			
OREAS 98 (4 Acid) Meas									306						16.7
OREAS 98 (4 Acid) Cert									345						15.5
OREAS 98 (4 Acid) Meas									297						15.3
OREAS 98 (4 Acid) Cert									345						15.5
OREAS 13b (4-Acid) Meas															1.19
OREAS 13b (4-Acid) Cert															1.2
OREAS 13b (4-Acid) Meas															1.16
OREAS 13b (4-Acid) Cert															1.2
$\begin{aligned} & \text { OREAS 13b } \\ & \text { (4-Acid) Meas } \end{aligned}$															
OREAS 13b (4-Acid) Cert															
OREAS 904 (4 Acid) Meas	0.3		3.1	0.5	0.3	1.6		0.51	11.4	13	15.3	8.4		0.111	0.06
$\begin{aligned} & \text { OREAS } 904 \text { (4 } \\ & \text { Acid) Cert } \\ & \hline \end{aligned}$	0.180		3.14	0.470	0.540	2.12		0.520	10.6	11.2	14.3	8.43		0.0980	0.0630
OREAS 904 (4 Acid) Meas	0.2		3.1	0.5	0.1	0.9		0.51	11.1	12	15.3	8.0		0.106	0.06
$\begin{aligned} & \text { OREAS } 904 \text { (4 } \\ & \text { Acid) Cert } \\ & \hline \end{aligned}$	0.180		3.14	0.470	0.540	2.12		0.520	10.6	11.2	14.3	8.43		0.0980	0.0630
SBC-1 Meas										23			0.521		
SBC-1 Cert										20.0			0.51		
SBC-1 Meas										21			0.471		
SBC-1 Cert										20.0			0.51		
OREAS 45d (4-Acid) Meas			1.5	0.2	< 0.1	0.1		0.25	22.5	57	15.2	2.7	0.397	0.037	0.05
OREAS 45d (4-Acid) Cert			1.33	0.18	1.02	1.62		0.27	21.8	49.30	14.5	2.63	0.773	0.042	0.049
OREAS 45d (4-Acid) Meas			1.6	0.2	0.1	0.3		0.26	23.2	53	15.6	2.7	0.209	0.035	0.04

Analyte Symbol	Ge	Tm	Yb	Lu	Ta	W	Re	TI	Pb	Sc	Th	U	Ti	P	S
Unit Symbol	ppm	\%	\%	\%											
Lower Limit	0.1	0.1	0.1	0.1	0.1	0.1	0.001	0.05	0.5	1	0.1	0.1	0.0005	0.001	0.01
Method Code	TD-MS	TD-ICP	TD-MS	TD-MS	TD-ICP	TD-ICP	TD-ICP								
OREAS 45d (4-Acid) Cert			1.33	0.18	1.02	1.62		0.27	21.8	49.30	14.5	2.63	0.773	0.042	0.049
OREAS 96 (4 Acid) Meas									99.7						4.35
OREAS 96 (4 Acid) Cert									101						4.19
OREAS 96 (4 Acid) Meas									95.1						4.26
OREAS 96 (4 Acid) Cert									101						4.19
OREAS 96 (4 Acid) Meas									101						
OREAS 96 (4 Acid) Cert									101						
OREAS 96 (4 Acid) Meas									97.6						
OREAS 96 (4 Acid) Cert									101						
OREAS 923 (4 Acid) Meas		0.4	2.7	0.4	1.1	5.4		0.85	87.4	13	17.0	3.2	0.407	0.065	0.71
$\begin{aligned} & \text { OREAS } 923 \text { (4 } \\ & \text { Acid) Cert } \end{aligned}$		0.410	2.57	0.390	1.11	4.85		0.860	83.0	13.1	16.5	3.06	0.405	0.0630	0.691
OREAS 923 (4 Acid) Meas		0.4	2.5	0.4	1.1	5.7		0.85	87.0	14	17.2	3.1	0.404	0.068	0.72
$\begin{aligned} & \text { OREAS } 923 \text { (4 } \\ & \text { Acid) Cert } \end{aligned}$		0.410	2.57	0.390	1.11	4.85		0.860	83.0	13.1	16.5	3.06	0.405	0.0630	0.691
OREAS 923 (4 Acid) Meas										14			0.398	0.067	0.71
$\begin{aligned} & \text { OREAS } 923 \text { (4 } \\ & \text { Acid) Cert } \end{aligned}$										13.1			0.405	0.0630	0.691
OREAS 621 (4 Acid) Meas			1.0	0.1		1.9		2.10	> 5000	5	3.0	3.0	0.177	0.036	4.81
$\begin{aligned} & \hline \text { OREAS } 621 \text { (4 } \\ & \text { Acid) Cert } \\ & \hline \end{aligned}$			0.990	0.140		2.35		1.96	13600	6.24	7.48	2.83	0.149	0.0359	4.48
OREAS 621 (4 Acid) Meas			0.9	0.1		2.1		2.02	> 5000	5	4.2	2.9	0.170	0.035	4.60
$\begin{aligned} & \hline \text { OREAS } 621 \text { (4 } \\ & \text { Acid) Cert } \\ & \hline \end{aligned}$			0.990	0.140		2.35		1.96	13600	6.24	7.48	2.83	0.149	0.0359	4.48
OREAS 621 (4 Acid) Meas			0.9	0.1		2.0		2.06	> 5000		2.8	2.9			
$\begin{aligned} & \text { OREAS } 621 \text { (4 } \\ & \text { Acid) Cert } \end{aligned}$			0.990	0.140		2.35		1.96	13600		7.48	2.83			
Oreas 77b (4 Acid) Meas					0.3	3.4	0.020	1.36	59.3	3	6.7	1.8	0.0563		
Oreas 77b (4 Acid) Cert					0.280	3.07	0.0220	1.37	61.0	3.51	6.61	1.71	0.0640		
Oreas 77b (4 Acid) Meas					0.3	3.4	0.021	1.35	58.8		6.4	1.7			
Oreas 77b (4 Acid) Cert					0.280	3.07	0.0220	1.37	61.0		6.61	1.71			
Oreas E1336 (Fire Assay) Meas															
Oreas E1336 (Fire Assay) Cert															
Oreas E1336 (Fire Assay) Meas															
$\begin{aligned} & \text { Oreas E1336 (Fire } \\ & \text { Assay) Cert } \\ & \hline \end{aligned}$															

Analyte Symbol	Ge	Tm	Yb	Lu	Ta	W	Re	TI	Pb	Sc	Th	U	Ti	P	S
Unit Symbol	ppm	\%	\%	\%											
Lower Limit	0.1	0.1	0.1	0.1	0.1	0.1	0.001	0.05	0.5	1	0.1	0.1	0.0005	0.001	0.01
Method Code	TD-MS	TD-ICP	TD-MS	TD-MS	TD-ICP	TD-ICP	TD-ICP								
Oreas E1336 (Fire Assay) Meas															
$\begin{aligned} & \begin{array}{l} \text { Oreas E1336 (Fire } \\ \text { Assay) Cert } \end{array} \\ & \hline \end{aligned}$															
Oreas E1336 (Fire Assay) Meas															
$\begin{aligned} & \begin{array}{l} \text { Oreas E1336 (Fire } \\ \text { Assay) Cert } \end{array} \\ & \hline \end{aligned}$															
Oreas E1336 (Fire Assay) Meas															
$\begin{aligned} & \hline \begin{array}{l} \text { Oreas E1336 (Fire } \\ \text { Assay) Cert } \end{array} \\ & \hline \end{aligned}$															
Oreas E1336 (Fire Assay) Meas															
Oreas E1336 (Fire Assay) Cert															
Oreas E1336 (Fire Assay) Meas															
Oreas E1336 (Fire Assay) Cert															
OREAS 681 (4 Acid) Meas		0.3	1.7	0.3	0.4	1.2			11.7	28	6.2	1.4	0.528	0.137	0.10
$\begin{aligned} & \hline \text { OREAS } 681 \text { (4 } \\ & \text { Acid) Cert } \\ & \hline \end{aligned}$		0.280	1.77	0.270	0.420	1.09			10.2	27.7	6.55	1.44	0.588	0.141	0.109
OREAS 681 (4 Acid) Meas		0.3	1.8	0.3	0.3	0.6			10.5	27	7.0	1.4	0.518	0.133	0.10
OREAS 681 (4 Acid) Cert		0.280	1.77	0.270	0.420	1.09			10.2	27.7	6.55	1.44	0.588	0.141	0.109
OREAS 148 (4 Acid) Meas	<0.1	0.2	1.2	0.2	1.4	0.8		12.0	27.0	9	46.9	8.3	0.245	0.087	
OREAS 148 (4 Acid) Cert	0.550	0.200	1.15	0.170	23.1	6.45		12.2	24.9	8.23	48.2	8.10	0.345	0.131	
OREAS 148 (4 Acid) Meas	<0.1	0.2	1.1	0.2	2.6	1.2		11.6	25.5	9	46.7	8.4	0.202	0.093	
OREAS 148 (4 Acid) Cert	0.550	0.200	1.15	0.170	23.1	6.45		12.2	24.9	8.23	48.2	8.10	0.345	0.131	
OREAS 148 (4 Acid) Meas										9			0.263	0.096	
$\text { OREAS } 148 \text { (4 }$ Acid) Cert										8.23			0.345	0.131	
Oreas 521 (4 Acid) Meas										14			0.399	0.082	1.70
$\begin{aligned} & \hline \text { Oreas } 521 \text { (4 } \\ & \text { Acid) Cert } \\ & \hline \end{aligned}$										14			0.393	0.081	1.80
Oreas 521 (4 Acid) Meas										14			0.343	0.080	1.68
Oreas 521 (4 Acid) Cert										14			0.393	0.081	1.80
OREAS 70b (4 Acid) Meas					0.3	5.0		0.35	14.7	12	7.1	1.7	0.160	0.022	0.29
OREAS 70b (4 Acid) Cert					0.3	4.9		0.33	13.7	12	6.9	1.7	0.181	0.022	0.31
OREAS 256b (Fire Assay) Meas															
OREAS 256b (Fire Assay) Cert															
OREAS 256b (Fire Assay) Meas															

Analyte Symbol	Ge	Tm	Yb	Lu	Ta	W	Re	TI	Pb	Sc	Th	U	Ti	P	S
Unit Symbol	ppm	\%	\%	\%											
Lower Limit	0.1	0.1	0.1	0.1	0.1	0.1	0.001	0.05	0.5	1	0.1	0.1	0.0005	0.001	0.01
Method Code	TD-MS	TD-ICP	TD-MS	TD-MS	TD-ICP	TD-ICP	TD-ICP								
OREAS 256b (Fire Assay) Cert															
OREAS 256b (Fire Assay) Meas															
OREAS 256b (Fire Assay) Cert															
OREAS 256b (Fire Assay) Meas															
OREAS 256b (Fire Assay) Cert															
OREAS 256b (Fire Assay) Meas															
OREAS 256b (Fire Assay) Cert															
OREAS 256b (Fire Assay) Meas															
OREAS 256b (Fire Assay) Cert															
OREAS 256b (Fire Assay) Meas															
OREAS 256b (Fire Assay) Cert															
OREAS 256b (Fire Assay) Meas															
OREAS 256b (Fire Assay) Cert															
$\text { OREAS } 753 \text { (4 }$ Acid) Meas										<1			0.0043	0.118	0.02
$\begin{aligned} & \text { OREAS } 753 \text { (4 } \\ & \text { Acid) Cert } \end{aligned}$										0.1			0.0040	0.111	0.01
$\text { OREAS } 753 \text { (4 }$ Acid) Meas										<1			0.0042	0.114	0.01
$\begin{aligned} & \text { OREAS } 753 \text { (4 } \\ & \text { Acid) Cert } \end{aligned}$										0.1			0.0040	0.111	0.01
862039 Orig															
862039 Dup															
862049 Orig															
862049 Dup															
862061 Orig															
862061 Dup															
862066 Orig															
862066 Dup															
862076 Orig															
862076 Dup															
862081 Orig															
862081 Split PREP DUP															
862614 Orig															
862614 Dup															
862634 Orig															
862634 Dup															
862644 Orig															
862644 Dup															
862645 Orig															
862645 Split PREP DUP															

Analyte Symbol	Ge	Tm	Yb	Lu	Ta	W	Re	TI	Pb	Sc	Th	U	Ti	P	S
Unit Symbol	ppm	\%	\%	\%											
Lower Limit	0.1	0.1	0.1	0.1	0.1	0.1	0.001	0.05	0.5	1	0.1	0.1	0.0005	0.001	0.01
Method Code	TD-MS	TD-ICP	TD-MS	TD-MS	TD-ICP	TD-ICP	TD-ICP								
862653 Orig															
862653 Dup															
862673 Orig															
862673 Dup															
862683 Orig															
862683 Dup															
862693 Orig															
862693 Dup															
862695 Orig															
862695 Split															
862702 Orig															
862702 Dup															
862712 Orig															
862712 Dup															
862722 Orig															
862722 Dup															
862742 Orig															
862742 Dup															
862745 Orig															
862745 Split PREP DUP															
862751 Orig															
862751 Dup															
862761 Orig															
862761 Dup															
862771 Orig															
862771 Dup															
862782 Orig															
862782 Dup															
862792 Orig															
862792 Dup															
862795 Orig															
862795 Split PREP DUP															
862803 Orig															
862803 Dup															
862811 Orig															
862811 Dup															
862085 Orig															
862085 Split PREP DUP															
Method Blank										<1			$0.0<$	<0.001	< 0.01
Method Blank										<1			0.0005	<0.001	< 0.01
Method Blank										<1			0.0005	< 0.001	< 0.01
Method Blank										<1			0.0005	<0.001	< 0.01
Method Blank										<1			0.0005	< 0.001	< 0.01
Method Blank										<1			0.0005	<0.001	< 0.01

Analyte Symbol	Ge	Tm	Yb	Lu	Ta	W	Re	TI	Pb	Sc	Th	U	Ti	P	S
Unit Symbol	ppm	\%	\%	\%											
Lower Limit	0.1	0.1	0.1	0.1	0.1	0.1	0.001	0.05	0.5	1	0.1	0.1	0.0005	0.001	0.01
Method Code	TD-MS	TD-ICP	TD-MS	TD-MS	TD-ICP	TD-ICP	TD-ICP								
Method Blank										<1			0.0005	<0.001	< 0.01
Method Blank										< 1			0.0005	<0.001	< 0.01
Method Blank	< 0.1	<0.1	< 0.1	<0.1	< 0.1	<0.1	0.002	< 0.05	< 0.5	<1	< 0.1	< 0.1	0.0005	< 0.001	< 0.01
Method Blank	< 0.1	<0.1	< 0.1	<0.1	<0.1	<0.1	0.007	<0.05	<0.5		< 0.1	<0.1			
Method Blank															
Method Blank															
Method Blank															
Method Blank															
Method Blank															
Method Blank															
Method Blank															
Method Blank															
Method Blank															
Method Blank															
Method Blank															
Method Blank															
Method Blank															
Method Blank	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.002	< 0.05	<0.5		< 0.1	<0.1			
Method Blank	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.001	< 0.05	<0.5		<0.1	<0.1			
Method Blank	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.001	< 0.05	< 0.5		< 0.1	<0.1			
Method Blank	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.001	< 0.05	<0.5		<0.1	<0.1			
Method Blank	< 0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.006	< 0.05	< 0.5		< 0.1	<0.1			
Method Blank	< 0.1	< 0.1	<0.1	<0.1	<0.1	< 0.1	0.005	< 0.05	<0.5	< 1	<0.1	< 0.1	0.0005	< 0.001	< 0.01

Appendix G - Lynx Zone - 2021 Actlabs Invoices

Appendix H - Lynx Zone - 2021 G4 Drilling Invoices

[^0]: David B. Stevenson, M.Sc., P.Geo.

