

We are committed to providing <u>accessible customer service</u>. If you need accessible formats or communications supports, please <u>contact us</u>.

Nous tenons à améliorer <u>l'accessibilité des services à la clientèle</u>. Si vous avez besoin de formats accessibles ou d'aide à la communication, veuillez <u>nous contacter</u>.

ASSESSMENT REPORT

May 3, 2022

Manitou Project – 2021 Prospecting Program

For: Cross River Ventures Corp. 800 West Pender Street Suite 1430 Vancouver BC V6C 1J8

Prepared By: Steven Flank, P.Geo Bayside Geoscience Inc. 124 Sherwood Drive Thunder Bay, ON

CONTENTS

Contents

Int	oduction	. 3
1.	Location and Access	.3
2.	Property Ownership and Claims	.4
3.	Exploration History	.4
4.	Regional geology	.5
	I.1 Mineralization	. 9
5.	2021 Prospecting Program1	L2
	Summary1	12
	ampling Procedures & QA/QC1	12
	Results1	14
6.	Conclusions 1	16
7.	Statement of Expenditures1	18
8.	Signatures	20
9.	References	21
Ар	pendix A: Claim Details	23
Ар	pendix B: Daily Work Logs	25
Ар	pendix C: Station Descriptions4	2
Ар	pendix D: Maps	51
Ар	pendix E: Sample Locations and Au Results	58
Ар	pendix F: Assay Certificates	70

Assessment Report

MANITOU PROJECT - 2021 PROSPECTING PROGRAM

INTRODUCTION

Between May 12th and May 27th, 2021, Cross River Ventures initiated a prospecting and mapping program on their 100% owned Manitou Project, located in the Kenora Mining District, Ontario Canada. Cross River contracted Bayside Geoscience to complete the program which was staffed by a team of 4 personnel: Joseph Suk (Geologist in Training), Daniel Barrett (Geologist in Training), Carson Gdanski (Field Assistant) and Myles Harding (Field Assistant). Steven Flank, P.Geo, did regular site visits, oversaw all operations remotely and was responsible for final data compilation, interpretation and the technical contents of this report.

Three general target areas were investigated to follow up on historic mineral occurrences as well as structural and geological targets generated by Cross River's technical management team:

- Queen Alexandra Mine
- Reliance Shear
- Western Claims

A total of 207 outcrop stations were recorded and 83 grab samples were collected by the team during the work program. The team located and sampled a series of historic pits and mineshafts on the property and returned 6 samples that contained greater than 1 g/t from the historic Queen Alexadra Mine site.

The co-ordinate system used throughout this report is in UTM NAD 83 Zone 15U

1. LOCATION AND ACCESS

The Manitou Property is located within the Kenora Mining Division in northwestern Ontario (NTS 52 F/07 and O/12), approximately 50 km south of Dryden and 120 km north of Fort Frances (Figure 1).

The Manitou Property is accessible by land vehicle. The directions from Thunder Bay, Ontario to the property are as follows: Take HWY 11 westward and turn off onto HWY 502 northbound. Continue north and turn west on Cedar Narrows Road. Follow along Cedar Narrows Road for 120km and turn east on Lost Axe Road. The property is located approximately 20km along Lost Axe Road.

The crew's campsite was setup near the intersection of Cedar Narrows Road and Lost Axe Road in a large clearing near a small lake.

There is limited access into the property as it can only be accessed by an ATV or a vehicle similar. A

washout, located one kilometer away from the Lost Axe turnoff, makes it impossible to drive a truck in to the property so ATV's were utilized. Beyond the washout, the road is extremely grown in with alders, making the commute to site slow and/or hazardous. The work crews spent two days brushing it out so it could be travelled safely during the program.

2. PROPERTY OWNERSHIP AND CLAIMS

The Manitou Property is located in the Kenora Mining Division and is comprised of 33 contiguous mining claims totaling 6,561 ha (Figure 1). All claims are either 100% owned by Cross River Ventures, or currently under option to own, with current owners summarized in Appendix A. A claim location map is shown in Figure 2.

3. EXPLORATION HISTORY

Mineral exploration within the Manitou Property has occurred sporadically since the 1890's with a focus on gold mineralization. A summary of exploration is presented below in Table 1.

Company	Year	Activity	Target Area
Various prospectors	1890's	Prospecting, sampling, etc.	Frenchman Island
McInnes	1902	Geological survey	Manitou Lakes area
Ontario Department of Mines	1933	Geological mapping	Manitou Lakes area
Ontario Geological Survey	1979	Geological mapping	Manitou Lakes area
Ministry of Northern Affairs	1980	Airborne magnetic and electromagnetic surveys	Manitou Lakes area
Beth Canada Mining Company	1981	Line cutting, geological mapping, humus and rock sampling, magnetometer survey, VLF-EM survey.	Frenchman Island and surrounding area
St. Joe Canada	1983	Line cutting, geological mapping, prospecting, grab sampling, soil sampling	Manitou Lakes area
St. Joe Canada	1984-1987	Drilling (3420 m)	Harper Lake property claims covering: the Frenchman

Table 1: Summary of Exploration at the Manitou Project

			Island, North Island, Bird Island, Peninsula and Reliance Zones.
Manitou Gold	2011-2012	Prospecting and sampling of main showings	Frenchman Island, North Island, Bird Island, and Reliance Zones
Manitou Gold	2013	Mapping and sampling	Harper Lake property
David Healey	2015	Sampling and prospecting	Queen Alexandra

4. REGIONAL GEOLOGY

The Manitou property is located within the Western Wabigoon Subprovince in a package of maficintermediate volcanic rocks (Figure 3). The following summary of the Regional Geology of the Manitou Lakes area is summarized from Zammit, 2020.

The Manitou Lakes area represents a roughly 400 km² area, located at the intersection of the Mosher Bay-Washeibemaga deformation zone (MBWdz) and Manitou Dinorwic deformation zone (MDdz) (Figure 4). The map area is bounded to the northwest by the 2740-2720 Ma Atikwa Lawrence batholith (Davis et al., 1982b; Edwards and Davis, 1991), and to the southeast by the syn- to late-orogenic 2705-2695 Ma Taylor Lake and Scattergood stocks (Davis et al., 1982; Kamo, 2014).

The MDdz truncates the stratigraphy of the region into two distinct areas. Lithologies to the northwest of the MDdz are composed of mafic to felsic volcanic and volcaniclastic rocks of the 2755-2730 Ma Blanchard Lake, Upper Manitou Lake, and Pincher Lake groups (Figure 4, Thomson, 1934; Goodwin, 1965; Blackburn, 1978b, 1982). Lithologies to the southeast of the MDdz are composed of mafic to felsic volcanic rocks of the 2755-2700 Ma Wapageisi and Boyer Lake groups (Davis et al., 1982). Volcanic successions in both domains locally contain thin mudstone or chemical sedimentary units (Davis et al., 1982; Blackburn et al., 1982). They are unconformably overlain by, or structurally juxtaposed with, younger 2705-2695 Ma clastic and volcaniclastic sedimentary rocks of the E-SE-trending Manitou group (Teal and Walker, 1977; Dostal et al., 2004).

The MBWdz and the MDdz represent regional, possibly crustal-scale, brittle-ductile deformation zones that are E- and NE- trending, respectively. The MBWdz is identified based on the structural juxtaposition of the Boyer Lake and Manitou groups. Adjacent to the MBWdz, penetrative fabric is E- to ENE-trending, steeply dipping (Blackburn, 1981; Kresz, 1987), and is axial planar to tight km-scale folds (Blackburn, 1981). The MDdz is primarily identified by NE-trending steeply dipping zones of penetrative chlorite-mica foliation (Blackburn, 1982; Melling et al., 1988), and occurs as a ~30 m wide high-strain corridor and locally, with pervasive carbonate alteration and abundant quartz veins (Parker, 1989). NE-trending kink folds have also been documented in the Manitou Lakes area, which are more common adjacent to the MDdz (Wallace and

Clifford, 1983). Early deformation in the Manitou Lakes area has been interpreted as the result of N-S shortening (Blackburn 1980c, 1982).

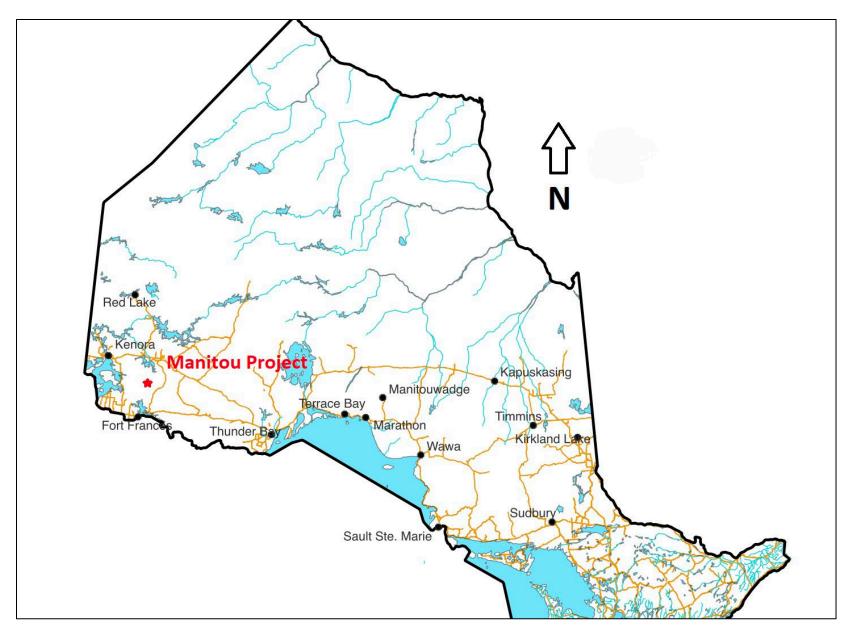


Figure 1: Manitou Project Location

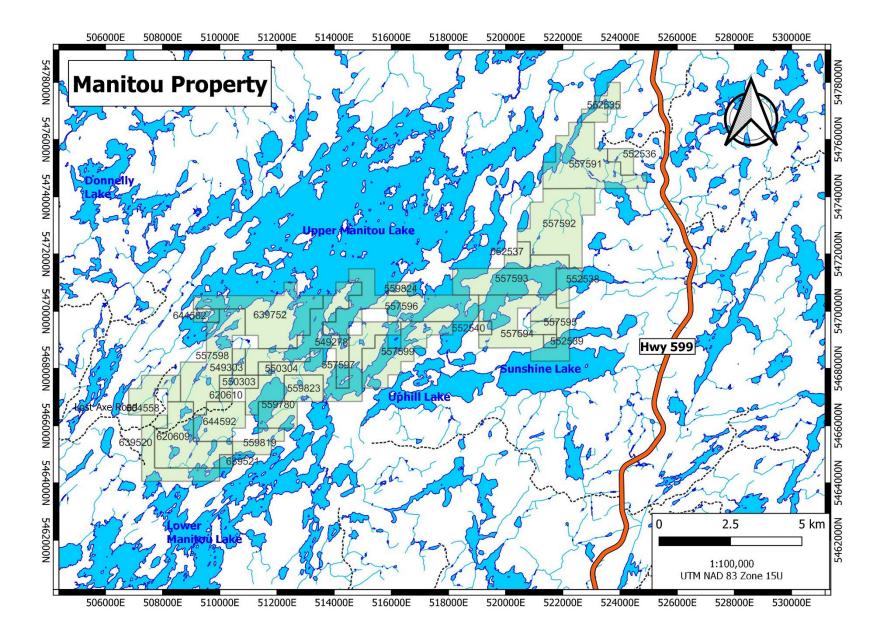


Figure 2: Manitou Claim Map

4.1 Mineralization

The following summary of gold mineralization in the Manitou Project locations is quoted from Assessment Report for Manitou Gold: Harper Lake Property (Taras, 2014).

The Manitou Lakes area has been the scene of mining exploration for almost a hundred years. In this time numerous gold prospects have been discovered. Gold occurrences in the area are variously in guartz veins, shears, and sulphide zones. Mineralization associated with the gold occurrences is pyrite, chalcopyrite, arsenopyrite, and galena. Alteration products include iron carbonate, chlorite, calcite, sericite, and silica. Gold deposits in the area are typical of Archean lode-gold deposits, and work by the OGS has indicated that almost all of the gold deposits in the Manitou Lakes area are controlled by shear and fracture zones which appear to be regionally related to movement along the Manitou Straits Fault. Gold-bearing quartz veins are commonly controlled by northeast- and east-trending shear zones which may be secondary shear bands subparallel to the shear boundaries of the Manitou Straits Fault. Most of the shearing and fracturing was developed after the emplacement of the Atikwa Batholith. However, there are other occurrences of gold mineralization that appear to be stratigraphically controlled, and possibly genetically related to volcanism (Parker, 1989). Davis and Smith (1991) indicate that the gold occurring in faults, shears, and tension veins developed in response to a late Archean northwest-directed contraction and emplacement of contemporaneous plutons, such as the Atikwa Batholith. Their work indicated that gold mineralization was closely linked in time to the emplacement of late intrusions and was likely a short-lived event that occurred at about 2709 Ma. The Harper Lake Property is located southeast of the Atikwa Batholith, northwest of the Miggisi Pluton and is proximal to the Manitou Anticline and the Manitou Straits Fault. There is excellent potential for gold mineralization in quartz veins related to shearing and fracturing caused by the emplacement of a late pluton.

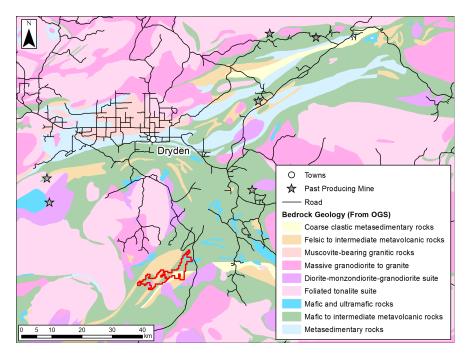


Figure 3: Regional Geology of the Manitou Property. Property outline in red.

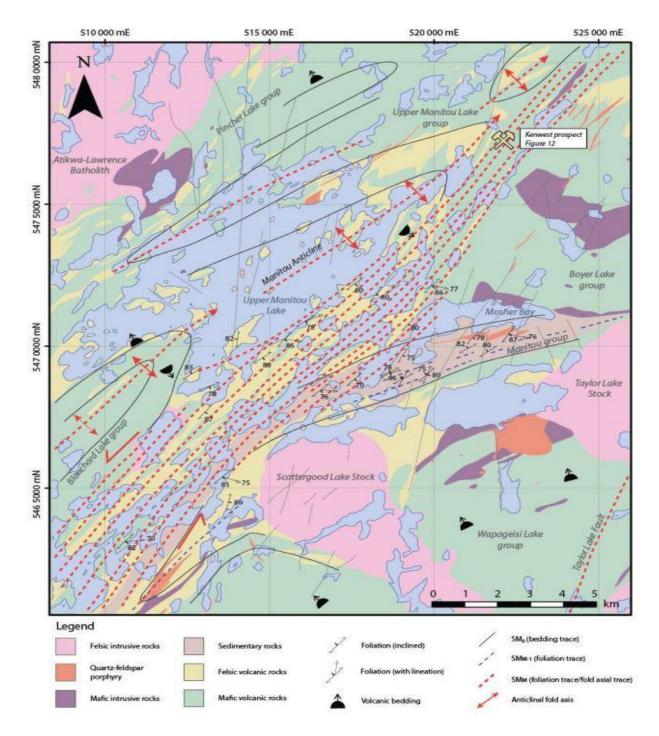


Figure 4: Geology and Structure of the Manitou Lakes area (Zammit, 2020)

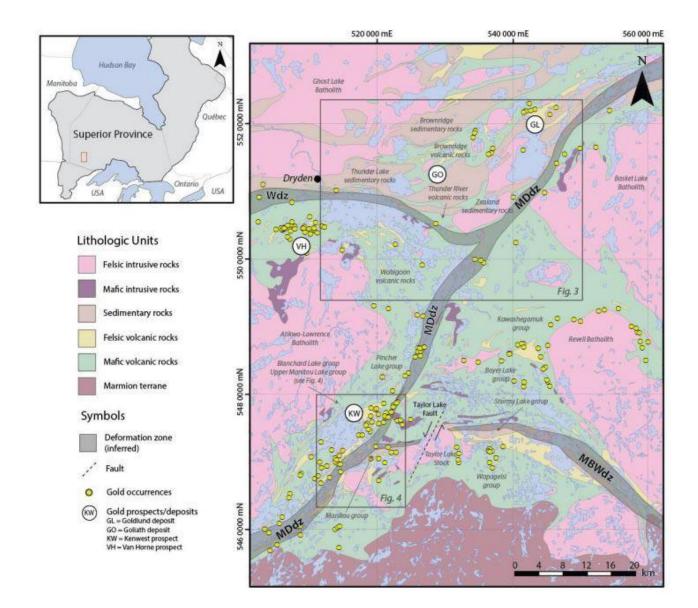


Figure 5: Deformation zones and gold occurrences surrounding the Manitou property. From Zammit, 2020.

5. 2021 PROSPECTING PROGRAM

Summary

The work crew mobilized from Thunder Bay and setup up a remote campsite near the intersection of Lost Axe Road and and Cedar Narrows Road, on May 12, 2021 and demobilized from camp to Thunder Bay on May 27, 2021. A total of 15 days were spent in the field by the crew with daily logs of their activities included in Appendix B. The objective of the program was to follow up on past exploration and prospecting in 3 areas: the Queen Alexander Shaft, the Reliance Shear, and the Western claims (Figure 5).

A total of 207 geological stations were recorded utilizing the QField application on a Samsung Tab A tablet. A sample database was setup in QField to capture predetermined fields consisting of sample ID, sample medium, lithology, structure, alteration, mineralization, photos and notes. A Garmin 64s handheld GPS was utilized to collect waypoints at each station as well as tracks. All coordinates are recorded in NAD 83 UTM Zone 15N.

A digital printout of the station database is included in Appendix C. Maps showing station and sample locations, as well as GPS tracks from each traverse are included in Appendix D. A total of 83 grab samples were collected during the program. Sample locations and results are included in Appendix E and assay certificates in Appendix F.

Sampling Procedures & QA/QC

Rock samples were collected by field personnel utilizing rock hammers and placed into poly bags labelled with a unique station ID and sample number. Field personnel recorded sample information in a digital data collector and recorded GPS coordinates, geological observations, and photographs at each sample location.

Field standards and blanks were not utilized on this sampling program. QAQC samples inserted by the laboratory were reviewed and found to show acceptable results for standards and duplicates.

Samples were transported by Bayside personnel to the ALS Chemex preparation laboratory in Thunder Bay, Ontario. ALS then ships sample pulps to ALS Chemex Vancouver for analysis. Au values were determined via fire assay with an ICP-AES finish. Any Au samples that were above the detection limits for this method were analyzed via fire assay with a gravimetric finish. Major and trace element geochemistry was analyzed via Aqua Regia digest followed by an ICP-MS finish.

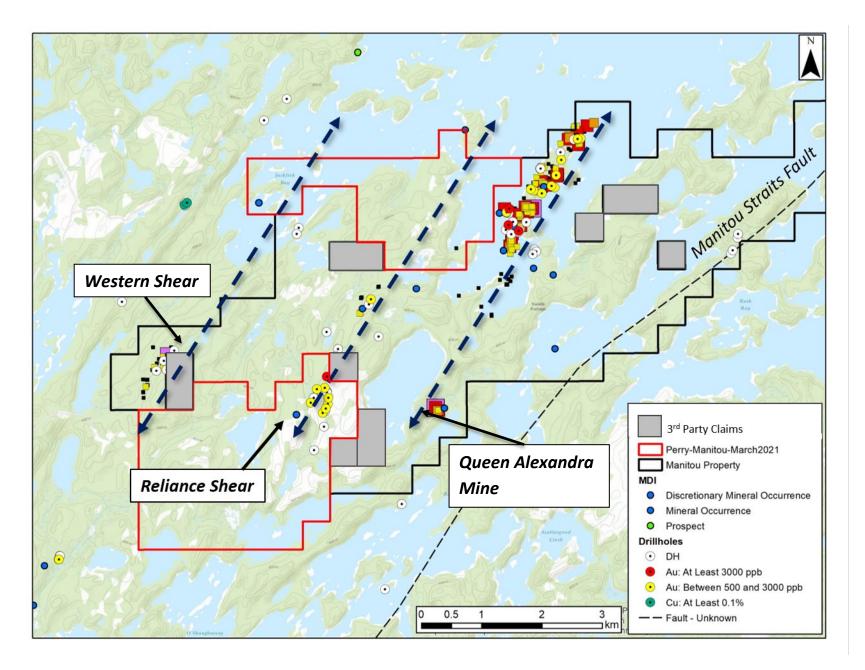


Figure 6: Manitou Property with historic sampling and interpreted shear zones

Results

Of the 83 grab samples collected, 6 returned values greater than 1 g/t Au and 3 values of 10 g/t Au or more. These results are summarized in Table 2 with assay results shown on Figure 7. All 6 of these samples were taken from dump piles from the Queen Alexander Shaft and an open cut located about 50m to the north. The mineralized samples were comprised of quartz veins with chalcopyrite, pyrite and minor arsenopyrite. Crack and seal textures are noted in the vein material as shown in Figure 6. These samples verified the high grade of the Queen Alexander vein and are consistent with sampling completed by previous operators.

The area around the Queen Alexandra shaft was thoroughly prospected with no further signs of mineralization noted. However, the area is extremely overgrown with brush, obscuring outcrop and a large swamp to the NE of the shaft covers a large area of ground on trend from the shear zone hosting the Queen Alexandra vein.

Anomalous gold was returned within historic pits located along the Reliance Shear, southwest of the historic Orion Mine shaft. The pits are water filled and poorly blockaded, so caution needed to be exercised when approaching them. Mineralization was hosted in mafic to intermediate sheared volcanics that contained small amounts of pyrite and chalcopyrite. Quartz veins here are boudinaged and discontinuous along the shear zone.

Sampling along a shear zone along the western portion of the property also returned minor anomalous gold. The shear zone here intersects gabbro and mafic volcanics and is characterized by schistose textures and boudinaged and discontinuous quartz veins.

Sample ID	Easting	Northing	Target Area	Au (g/t)
B731503	512199	5466403	Queen Alexandra	26.70
B731724	512204	5466406	Queen Alexandra	24.60
B731501	512244	5466359	Queen Alexandra	15.50
B731502	512199	5466403	Queen Alexandra	5.35
B731531	512238	5466365	Queen Alexandra	4.68
B731530	512238	5466365	Queen Alexandra	2.40

Table 2: Significant results from the 2021 prospecting program

Figure 7: Sample of mineralized quartz vein from dump pile adjacent to Queen Alexandra shaft (left). Overgrown shaft from the Queen Alexandra mine (right).

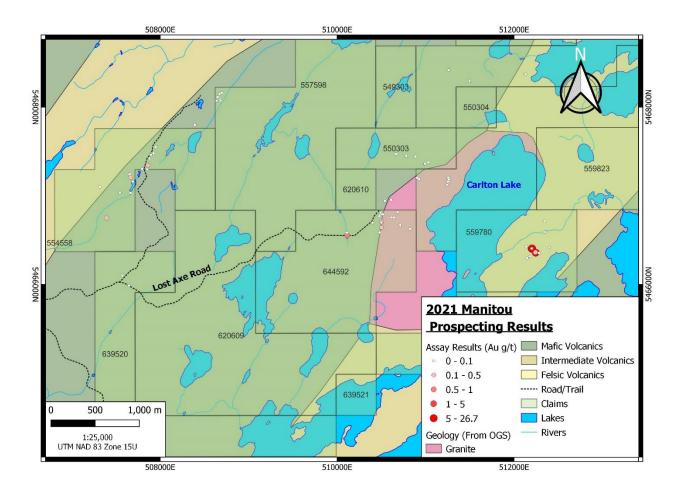


Figure 8: Results of 2021 Manitou Prospecting Program

6. CONCLUSIONS

The 2021 prospecting program focused on three areas of known mineralization, which appear to be controlled by NE-SW oriented shear zones. Sampling resulted in six samples that returned over 1 g/t of Au from dump piles surrounding the historic Queen Alexandra minesite, including two very high grade samples that returned 24.6 g/t and 26.7 g/t Au respectively. This area has seen no documented diamond drilling or sustained exploration since it's production and has emerged as the most intriguing target on the property so far.

Given the sparsity of outcrop in this location, follow up work consisting of stripping in the area of the Queen Alexandra shaft is recommended to better understand the structural controls on mineralization in this area.

Anomalous gold returned along the Reliance shear zone and the Western shear zone is encouraging. Additional prospecting along strike of these structures is recommended. Finally a property wide lidar survey may be useful in identifying structural trends that control gold mineralization at Queen Alexandra and possibly elsewhere on the property. Recessive shear zones could be remotely mapped then ground truthed more effectively.

7. STATEMENT OF EXPENDITURES

The total value of work completed during the 2021 Manitou Prospecting Project is summarized in Table 3. Allocations of expenditures by individual claim cell is summarized in Table 4.

Description	Cost
Mobilization	\$5,800
Demobilization	\$5,800
Senior Geologist	\$18,000
Junior Geologist	\$4,550
Field Assistant	\$13,050
Assay Costs	\$4,840
Truck Rental	\$2,340
UTV Rental	\$5,600
Camp Rental	\$6,300
Assessment Report	\$4,000
Total	\$70,280

Table 2: Total Expenditures on the 2021 Manitou Prospecting Program

Table 3: Expenditure	distribution o	on Manitou	Claim Cells
----------------------	----------------	------------	-------------

				Porportion of		Total
Claim Cell ID	Samples	Sample Costs	Stations	Stations/Cells	Labour/Fixed Costs	Cost/Cell
549278	5	\$302.47	15	0.080213904	\$5,249	\$5,551.67
557598	6	\$362.96	6	0.032085561	\$2,100	\$2,462.64
557594		\$0.00	0	0	\$0	\$0.00
554558	15	\$907.41	41	0.219251337	\$14,348	\$15,255.22
550303	6	\$362.96	16	0.085561497	\$5,599	\$5,962.11
549303		\$0.00	0	0	\$0	\$0.00
552540		\$0.00	0	0	\$0	\$0.00
557597	6	\$362.96	18	0.096256684	\$6,299	\$6,662.00
557591		\$0.00	0	0	\$0	\$0.00
557592		\$0.00	0	0	\$0	\$0.00
557593		\$0.00	0	0	\$0	\$0.00
557595		\$0.00	0	0	\$0	\$0.00
552535		\$0.00	0	0	\$0	\$0.00
550304		\$0.00	0	0	\$0	\$0.00
559780	22	\$1,330.87	44	0.235294118	\$15,398	\$16,728.51
552537		\$0.00	0	0	\$0	\$0.00
552536		\$0.00	0	0	\$0	\$0.00
557596		\$0.00	0	0	\$0	\$0.00
557599		\$0.00	0	0	\$0	
559823		\$0.00	0	0	\$0	\$0.00
559819		\$0.00	6	0.032085561	\$2,100	\$2,099.68
552538		\$0.00	0	0	\$0	\$0.00
552539		\$0.00	0	0	\$0	\$0.00
559824		\$0.00	0	0	\$0	
620610		\$0.00	0	0	\$0	\$0.00
644592	18	\$1,088.89	33	0.176470588	\$11,548	\$12,637.13
639520	2	\$120.99	6	0.032085561	\$2,100	
644582		\$0.00	0	0	\$0	
639752		\$0.00	0	0	\$0	
620609		\$0.00	2	0.010695187	\$700	\$699.89
639521		\$0.00	0	0	\$0	\$0.00
Samples Taken off Property and	Excluded from Assessment Credits					
Excluded	3	\$181.48				
Total Costs to File	80	\$4,839.52	187		\$65,440	\$70,279.52

8. SIGNATURES

I, Steven D. Flank, of the City of Thunder Bay, in the Province of Ontario, do hereby certify that:

- 1. I am the President and Principal Geoscientist of Bayside Geoscience Inc., a geological consulting company based in Thunder Bay, Ontario.
- 2. I am a member in good standing with the Association of Professional Geoscientists of Ontario (#2695), residing at 124 Sherwood Drive, Thunder Bay, Ontario, P7B 6L1.
- 3. I attained an H.BSc. in Geology from Lakehead University in Thunder Bay, Ontario (2011) and an M.Sc. in Mineral Exploration from Laurentian University in Sudbury, Ontario (2017).
- 4. I have worked as an exploration geologist for over 10 years focussing on project generation and early-stage gold projects including shear zone hosted lode gold and intrusion related disseminated gold deposits and intrusion related Ni-Cu-PGE deposits.

Type text here

5. I personally supervised the 2021 Prospecting Program at the Manitou Project as described in this report.

Dated

May 3rd, 2022

Thunder Bay, Ontario, Canada

Sten Hark

Steven D. Flank, M.Sc., P.Geo.

9. References

Blackburn, C.E., 1978b. Upper Manitou Lake. Ontario Geological Survey, Map 2409, scale 1:31680.

Blackburn, C.E., 1980c. Geology of the Manitou Lakes Area, stratigraphy and structure, District of Kenora. Ontario Geological Survey Open File Report 5298, 125p.

Blackburn, C.E., 1981. Geology of the Boyer Lake-Miggisi Lake area, District of Kenora. Ontario Geological Survey, Report 202, 194p. Accompanied by 2 maps, scale 1:15 840.

Blackburn, C.E., 1982. Geology of the Manitou Lakes area, District of Kenora (stratigraphy and petrochemistry). Ontario Geological Survey, Report 223, 61p. Accompanied by Map 2476, scale 1:50 000.

Davis, D.W., Blackburn, C.E., Krogh, T.E., 1982. Zircon U-Pb ages from the Wabigoon-Manitou lakes region, Wabigoon subprovince, northwestern Ontario. Canadian Journal of Earth Sciences 19, 254-266.

Davis, D.W., Blackburn, C.E., Krogh, T.E., 1982b. U-Pb zircon ages from the eastern Savant Lake-Crow Lake metavolcanics-metasedimentary belt, northwest Ontario. Canadian Journal of Earth Sciences 25, 2075-2088.

Davis, D.W., and Smith, P.M. 1991. Archean Gold Mineralization in the Wabigoon Subprovince, a Product of Crustal Accretion: Evidence from U-Pb Geochronology in the Lake of the Woods Area, Superior Province, Canada; The Journal of Geology, Volume 99, No. 3 (May, 1991), pp. 337-353.

Dostal, J., Mueller, W.U., Murphy, J.B., 2004. Archean molasse basin evolution and magmatism, Wabigoon Subprovince, Canada. Journal of Geology 112, 435-454.

Edwards, G.R., and Davis, D.W., 1991. A preliminary study of the magmatic evolution and geochronology of the Atikwa-Lawrence volcano-plutonic terrane, Wabigoon Subprovince. Ontario Geological Survey, Open File Report 5750, 41p.

Goodwin, A.M., 1965. Preliminary report on volcanism and mineralization in the Lake of the Woods – Manitou Lake – Wabigoon region of Northwestern Ontario. Ontario Department of Mines, Preliminary Report 1965-2, 63p.

Kamo, S.L., 2014. Report on U-Pb CA-ID-TIMS geochronology on volcanic and plutonic rocks, Superior and Grenville provinces, Ontario. Internal report for the Ontario Geological Survey, Jack Satterly Geochronology Laboratory, University of Toronto, Toronto, Ontario, 27p.

Melling, D.R., Blackburn, C.E., Watkinson, D.H., Parker, J. 1988. Geological setting of gold, western Wabigoon subprovince, Canadian Shield: exploration targets in mixed volcanic successions. Canadian Journal of Earth Science 25(12), 2075-2088.

Parker, J.R. 1989. Geology, gold mineralization and property visits in the area investigated by the Dryden-Ignace Economic Geologist, 1984-1987; Ontario Geological Survey, Open File Report 5723, 306p. Taras, T. 2014. Assessment Report on the Manitou Gold Inc. Harper Lake Property. AFRI file # 20012426

Thomson, J.E., 1934. Geology of the Manitou-Stormy Lakes area. Ontario Department of Mines, vol. 42 pt. 4, 1-40. Accompanied by map P42c, scale 1:63 360.

Wallace, P.I., Clifford, P.M., 1983. Kink folds at Upper Manitou Lake, northwestern Ontario. Canadian Journal of Earth Science 20, 1305-1313.

Zammit, K. 2020. Structural evolution and orogenic gold metallogeny of the western Wabigoon subprovince, Canada. Unpublished MSc. Thesis

APPENDIX A: CLAIM DETAILS

Tenure Number	Tenure Type	Issue Date	Anniversary Date	Holder
549278	Multi-cell Mining Claim	2019-05-04	2021-05-04	(100) EMX Properties (Canada) Inc.
549303	Multi-cell Mining Claim	2019-05-04	2021-05-04	(100) EMX Properties (Canada) Inc.
550303	Multi-cell Mining Claim	2019-05-22	2021-05-22	(100) EMX Properties (Canada) Inc.
550304	Single Cell Mining Claim	2019-05-22	2021-05-22	(100) EMX Properties (Canada) Inc.
552535	Multi-cell Mining Claim	2019-06-23	2021-06-23	(100) EMX Properties (Canada) Inc.
552536	Multi-cell Mining Claim	2019-06-23	2021-06-23	(100) EMX Properties (Canada) Inc.
552537	Multi-cell Mining Claim	2019-06-23	2021-06-23	(100) EMX Properties (Canada) Inc.
552538	Multi-cell Mining Claim	2019-06-23	2021-06-23	(100) EMX Properties (Canada) Inc.
552539	Single Cell Mining Claim	2019-06-23	2021-06-23	(100) EMX Properties (Canada) Inc.
552540	Single Cell Mining Claim	2019-06-23	2021-06-23	(100) EMX Properties (Canada) Inc.
552541	Single Cell Mining Claim	2019-06-23	2022-06-23	(100) EMX Properties (Canada) Inc.
554558	Multi-cell Mining Claim	2019-07-21	2021-07-21	(100) EMX Properties (Canada) Inc.
556480	Multi-cell Mining Claim	2019-08-26	2022-08-26	(100) EMX Properties (Canada) Inc.
557591	Multi-cell Mining Claim	2019-09-12	2021-09-12	(100) EMX Properties (Canada) Inc.
557592	Multi-cell Mining Claim	2019-09-12	2021-09-12	(100) EMX Properties (Canada) Inc.
557593	Multi-cell Mining Claim	2019-09-12	2021-09-12	(100) EMX Properties (Canada) Inc.
557594	Multi-cell Mining Claim	2019-09-12	2021-09-12	(100) EMX Properties (Canada) Inc.
557595	Multi-cell Mining Claim	2019-09-12	2021-09-12	(100) EMX Properties (Canada) Inc.
557596	Multi-cell Mining Claim	2019-09-12	2021-09-12	(100) EMX Properties (Canada) Inc.
557597	Multi-cell Mining Claim	2019-09-12	2021-09-12	(100) EMX Properties (Canada) Inc.
557598	Multi-cell Mining Claim	2019-09-12	2021-09-12	(100) EMX Properties (Canada) Inc.
557599	Multi-cell Mining Claim	2019-09-12	2021-09-12	(100) EMX Properties (Canada) Inc.
559780	Multi-cell Mining Claim	2019-09-27	2021-09-27	(100) EMX Properties (Canada) Inc.
559819	Multi-cell Mining Claim	2019-09-27	2021-09-27	(100) EMX Properties (Canada) Inc.
559823	Multi-cell Mining Claim	2019-09-27	2021-09-27	(100) EMX Properties (Canada) Inc.
559824	Multi-cell Mining Claim	2019-09-27	2021-09-27	(100) EMX Properties (Canada) Inc.
620609	Multi-cell Mining Claim	2020-11-25	2022-11-25	(100) Solstice Gold Corp.
620610	Single Cell Mining Claim	2020-11-25	2022-11-25	(100) Solstice Gold Corp.
639520	Multi-cell Mining Claim	2021-02-25	2023-02-25	(100) Solstice Gold Corp.
639521	Single Cell Mining Claim	2021-02-25	2023-02-25	(100) Solstice Gold Corp.
639752	Multi-cell Mining Claim	2021-02-25	2023-02-25	(100) Solstice Gold Corp.
644582	Multi-cell Mining Claim	2021-03-19	2022-05-22	(100) Solstice Gold Corp.
644592	Multi-cell Mining Claim	2021-03-19	2022-05-22	(100) Solstice Gold Corp.

APPENDIX B: DAILY WORK LOGS

Client: Cross River Ventures

Project: Manitou

Date: May 12, 2021

Team: Steven Flank, Joseph Suk, Myles Harding, Daniel Barrett, Carson Gdanski

Summary:

Location: Manitou Property Objective: Mobilize to site from Thunder Bay Notes:

Client: Cross River Ventures

Project: Manitou

Date: May 13, 2021

Team: Steven Flank, Joseph Suk, Daniel Barrett, Carson Gdanski, Myles Harding

Summary:

Location: Manitou Property and Queen Alexandria Mine Site

Objective: Reconnaissance trip into site to determine access points and location of Queen Alexandria Mine Site

Notes:

Drove to property via Lost Axe Road with 2 UTV's and chainsaws. ~15km ride each way. Road very overgrown in places and needs to be cleaned up for safe access. Walked into Queen Alexandria area and located historic shaft and open cut and sampled.

Field assistant suffered eye injury while clearing trail. Had to drive to hospital in Fort Frances for assessment.

Sample ID's

B731501			
B731502			
B731503			

Client: Cross River Ventures

Project: Manitou

Date: May 14, 2021

Team: Steven Flank, Joseph Suk, Daniel Barrett, Carson Gdanski, Myles Harding

Summary:

Location: Manitou Property Access Trail

Objective: Clear Lost Axe Road of blowdown, overgrown areas for safe access.

Notes:

Dan, Carson and Joe worked with chainsaws and hand tools to open up Lost Axe Road for safe travel. Steve Flank and Myles returned from Fort Frances to camp from hospital visit.

Client: Cross River Ventures

Project: Manitou

Date: May 15, 2021

Team: Steven Flank, Joseph Suk, Daniel Barrett, Carson Gdanski, Myles Harding

Summary:

Location: Manitou Property
Objective: Examine and sample road side outcrops on Lost Axe Road
Notes:
Sampled stripped outcrops along Lost Axe Road. Located historic Orion minesite and examined outcrops peripheral to it.

Field assistant eye injury got worse and requires a return to hospital. Steve Flank and Myles Harding return to Thunder Bay in evening.

Sample ID's

B731504		
B731505		
B731506		
B731507		
B731516		

Client: Cross River Ventures

Project: Manitou

Date: May 16, 2021

Team: Joseph Suk, Daniel Barrett, Carson Gdanski

Summary:

Location: Manitou Property: West ShearObjective: Map and sample shear zone on western portion of property.Notes:Located and followed out quartz bearing shear zone on west side of property.

Sample ID's

B731707			
B731706			
B731508			
B731509			

Client: Cross River Ventures

Project: Manitou

Date: May 17, 2021

Team: Joseph Suk, Daniel Barrett, Carson Gdanski

Summary:

Location: Manitou Property: West ShearObjective: Map and sample shear zone on western portion of property.Notes:Continued following out quartz bearing shear zone on west side of property.

Sample ID's

B731708			
B731713			
B731714			
B731510			

Client: Cross River Ventures

Project: Manitou

Date: May 18, 2021

Team: Joseph Suk, Daniel Barrett, Carson Gdanski

Summary:

Location: Manitou Property: West Shear
Objective: Map and sample shear zone on western portion of property.
Notes:
Continued following out quartz bearing shear zone on west side of property. Pushed further NE on trend.

Sample ID's

B731701			
B731702			
B731511			
B731512			
B731520			

Client: Cross River Ventures

Project: Manitou

Date: May 19, 2021

Team: Joseph Suk, Daniel Barrett, Carson Gdanski, Steve Flank

Summary:

Location: Manitou Property: West Shear Objective: Map and sample shear zone on western portion of property. Notes: Followed shear zone to NE extent of property. Steve Flank travelled back to site.

Sample ID's

1	
B731704	
B731709	
B731711	
B731712	
B731513	
B731514	
B731521	

Client: Cross River Ventures

Project: Manitou

Date: May 20, 2021

Team: Steve Flank, Joseph Suk, Daniel Barrett, Carson Gdanski

Summary:

Location: Manitou Property: West ShearObjective: Map and sample shear zone on western portion of property.Notes:Mapped further to south and west. Last day on this shear zone.

Sample ID's

B731703			
B731705			
B731541			

Client: Cross River Ventures

Project: Manitou

Date: May 21, 2021

Team: Steve Flank, Joseph Suk, Daniel Barrett, Carson Gdanski, Myles Harding

Summary:

Location: Manitou Property Objective: Weather Day Notes: Thunderstorms, heavy rain and wind. Repair camp damaged in wind. Myles Harding return to site.

Sample ID's

Client: Cross River Ventures

Project: Manitou

Date: May 22, 2021

Team: Steve Flank, Joseph Suk, Daniel Barrett, Carson Gdanski, Myles Harding

Summary:

Location: Manitou Property: Reliance Shear Area Objective: Map East and SW of Orion Mine. Notes:

Located shear zones along contact of volcanics and Carleton Lake diorite with sulfide mineralization. Prospected area near King Edward showing.

Sample ID's

B731515		
B731517		
B731518		
B731519		
B731522		
B731542		

Client: Cross River Ventures

Project: Manitou

Date: May 23, 2021

Team: Steve Flank, Joseph Suk, Daniel Barrett, Carson Gdanski, Myles Harding

Summary:

Location: Manitou Property: Reliance Shear Area Objective: Map SW and NE of Orion Mine. Notes:

Detailed prospecting and sampling near Orion Mine.

Steve Flank travel back to Thunder Bay.

Sample ID's

Sumple ib	
B731715	
B731716	
B731717	
B731718	
B731719	
B731720	
B731721	
B731722	
B731523	
B731524	
B731525	
B731526	
B731527	
B731528	

Client: Cross River Ventures

Project: Manitou

Date: May 24, 2021

Team: Joseph Suk, Daniel Barrett, Carson Gdanski, Myles Harding

Summary:

Location: Manitou Property: Queen Alexandria AreaObjective: Detailed prospecting proximal to Queen Alexandria mine.Notes: Focussed work on the shaft rubble pile and surrounding outcrops. Area is heavily overgrown with minimal exposure.

Sample ID's

B731723	
B731724	
B731725	
B731726	
B731727	
B731529	
B731530	
B731531	
B731532	

Client: Cross River Ventures

Project: Manitou

Date: May 25, 2021

Team: Joseph Suk, Daniel Barrett, Carson Gdanski, Myles Harding, Steve Flank

Summary:

Location: Manitou Property: Queen Alexandria Area
Objective: Detailed prospecting proximal to Queen Alexandria mine.
Notes: Focussed work on the shaft rubble pile and surrounding outcrops. Area is heavily overgrown with minimal exposure. Second team worked NE of mine, crossing swamp.
Steve Flank travel back to site from Thunder Bay.

Sample ID's

1	
B731728	
B731729	
B731730	
B731731	
B731732	
B731539	
B731540	
B731533	

Client: Cross River Ventures

Project: Manitou

Date: May 26, 2021

Team: Steve Flank, Joseph Suk, Daniel Barrett, Carson Gdanski, Myles Harding

Summary:

Location: Manitou Property: Reliance Shear Area

Objective: Map out historic workings along Reliance shear and prospect N extent of Reliance shear near magnetic anomalies

Notes: Located a series of 4 historic pits/shafts on the west side of trail. Some pits could be over 20' deep. All pits are poorly protected with old fencing being trampled down. To the North, quartz veins with malachite staining were located and sampled. Did not make it to furthest north part of planned traverse.

Sample ID's

oumpre ib c	
B731734	
B731735	
B731736	
B731737	
B731738	
B731739	
B731740	
B731741	
B731534	
B731535	
B731536	
B731537	
B731538	

Client: Cross River Ventures

Project: Manitou

Date: May 27, 2021

Team: Steve Flank, Joseph Suk, Daniel Barrett, Carson Gdanski, Myles Harding

Summary:

Location: Manitou Property Objective: Pack up camp and demobilize from site. Notes: APPENDIX C: STATION DESCRIPTIONS

5466360 5466404 5465988 5466556 5466943	402 391 391 395 402	JS JS	2021-05-13 2021-05-13 2021-05-13 2021-05-15	B731502	Float	Quartz Vein	Rubble pile, no structures recorded
5466404 5465988 5466556	391 395	JS	2021-05-13			•	Rubble pile, no su actures recorded
5465988 5466556	395				Float	Intermediate Volcanic	Rubble pile, no structures recorded
5466556		JS	2021-05-15		Float	Intermediate Volcanic	Rubble pile, no structures recorded
	402			B731504	Outcrop	Quartz Vein	Pinching and swelling quartz vein
	402						Red and orange quartz veins. Quartz veins were also
5466943		JS	2021-05-15	B731505	Outcrop	Quartz Vein	caught up in the shear zone.
5466943							Fg mafic-int. volcanic unit, strongly silicious. Trace sulfides
	437	JS	2021-05-15	B731506	Outcrop	Mafic Volcanic	observed.
5466956	441	JS	2021-05-15	B731507	Outcrop	Gabbro	Mg gabbro with minor silica alteration. Mg pyroxene(+bt?) within a fine-grained grey groundmass. Trace weathered blebby sulfides. 2x2 outcrop.
0.00000			2022 00 20	2702007	outorop		Mineralized quartz vein with gold potential(maybe a grain
							within a yellow-clear quartz crystal. Found within a
5467301	420	IS	2021-05-16	B731508	Outcrop	Quartz Vein	gabbroic host.
3107301	120	50	2021 05 10	5/51500	outerop		Reddish-orange qtz vein, sugary. Likely the same as 018
5467346	410	IS	2021-05-16	B731509	Outcron	Quartz Vein	but down strike.
3107310	110	50	2021 05 10	5751505	outerop		gtz vein within mafic metavolcanics/gabbro/chlorite
5467162	414	IS	2021-05-17	B731510	Outcrop	Quartz Vein	schist
							Up and to the East of 028, no acicular amphiboles.
							South of 031. Strongly sheared, but less strained than
5467550	431	JS	2021-05-18	B731512	Outcrop	Chlorite Schist	031. Oxidized pyrite.
							Silicified and sheared mafic metavolcanic. 30m x 30m
							outcrop with white spruces being the dominant tree in
5468114	419	JS	2021-05-19	B731513	Outcrop	Mafic Volcanic	area. Oxidation stains on surface.
5467801	414	JS	2021-05-19	B731514	Outcrop	Chlorite Schist	Strongly silicious and foliated schist unit with 0.5-1cm wide foliations. Minor amount of acicular amphiboles Shear zone with intercolated quartz. Reddish in
							appearance. Strongly foliated along strike. This is fg mv.
5467192		JS	2021-05-22	B731515	Outcrop	Mafic Volcanic	Different than the more int. 042 point.
							Quartz vein North of 006. Weakly oxidized with quartz
5466586	402	JS	2021-05-15	B731516	Outcrop	Quartz Vein	fracture infill. Pinch and swell vein.
5467181		JS	2021-05-22	B731517	Outcrop	Mafic Volcanic	
							Fg mv silicious outcrop. Sample has 5% silver
5467168		JS	2021-05-22	B731518	Outcrop	Mafic Volcanic	diseeminated and blebs of arseno. 1x1 m exposure.
							Sample taken from boulder pile. Strongly oxidized mafic
5467128		JS	2021-05-22	B731519	Outcrop	Mafic Volcanic	volcanic with fg pyrite.
5466100 5466775	406						1 meter wide bullish qtz vein with section of iron oxidation. Clasts of chloritized mv found within the vein.
	5467801 5467192 5466586 5467181 5467168 5467128 5466100	5467301 420 5467346 410 5467162 414 5467421 419 5467550 431 5468114 419 5467801 414 5467192 414 5466586 402 5467168 5467128 5466100 406	5467301 420 JS 5467346 410 JS 5467162 414 JS 5467421 419 JS 546750 431 JS 546750 431 JS 5467801 414 JS 5467801 414 JS 5467192 JS JS 54667181 JS JS 5467168 402 JS 5467181 JS JS 5467168 JS JS 5467108 JS JS 54667108 JS JS 54667108 JS JS 54667108 JS JS	5467301 420 JS 2021-05-16 5467346 410 JS 2021-05-16 5467162 414 JS 2021-05-17 5467421 419 JS 2021-05-18 5467550 431 JS 2021-05-18 5467550 431 JS 2021-05-18 5467142 419 JS 2021-05-18 546750 431 JS 2021-05-18 5467141 419 JS 2021-05-19 5467192 JS 2021-05-19 5466586 402 JS 2021-05-22 54667181 JS 2021-05-22 5467168 JS 2021-05-22 5467128 JS 2021-05-22 5466100 406 JS 2021-05-28	5467301 420 JS 2021-05-16 B731508 5467346 410 JS 2021-05-16 B731509 5467162 414 JS 2021-05-17 B731510 5467421 419 JS 2021-05-18 B731511 5467550 431 JS 2021-05-18 B731512 5468114 419 JS 2021-05-19 B731513 5467801 414 JS 2021-05-19 B731514 5467192 JS 2021-05-19 B731515 5466586 402 JS 2021-05-22 B731516 5467181 JS 2021-05-22 B731517 5467168 JS 2021-05-22 B731518 5467128 JS 2021-05-22 B731518 5466100 406 JS 2021-05-22 B731519	5467301 420 JS 2021-05-16 B731508 Outcrop 5467346 410 JS 2021-05-16 B731509 Outcrop 5467162 414 JS 2021-05-17 B731510 Outcrop 5467421 419 JS 2021-05-18 B731510 Outcrop 5467550 431 JS 2021-05-18 B731512 Outcrop 5468114 419 JS 2021-05-19 B731513 Outcrop 5467801 414 JS 2021-05-19 B731514 Outcrop 5467801 414 JS 2021-05-19 B731515 Outcrop 5467192 JS 2021-05-22 B731516 Outcrop 5466786 402 JS 2021-05-22 B731517 Outcrop 5467181 JS 2021-05-22 B731518 Outcrop 5467128 JS 2021-05-22 B731519 Outcrop 5466100 406 JS 2021-05-18 B731520 Outcrop <td>5467301 420 JS 2021-05-16 B731508 Outcrop Quartz Vein 5467346 410 JS 2021-05-16 B731509 Outcrop Quartz Vein 5467346 410 JS 2021-05-16 B731509 Outcrop Quartz Vein 5467162 414 JS 2021-05-17 B731510 Outcrop Quartz Vein 5467421 419 JS 2021-05-18 B731511 Outcrop Mafic Volcanic 546750 431 JS 2021-05-19 B731513 Outcrop Chlorite Schist 5468114 419 JS 2021-05-19 B731513 Outcrop Mafic Volcanic 5467801 414 JS 2021-05-19 B731514 Outcrop Chlorite Schist 5467192 JS 2021-05-22 B731515 Outcrop Mafic Volcanic 5466586 402 JS 2021-05-22 B731516 Outcrop Mafic Volcanic 5467168 JS 2021-05-22 B731518 Outcrop</td>	5467301 420 JS 2021-05-16 B731508 Outcrop Quartz Vein 5467346 410 JS 2021-05-16 B731509 Outcrop Quartz Vein 5467346 410 JS 2021-05-16 B731509 Outcrop Quartz Vein 5467162 414 JS 2021-05-17 B731510 Outcrop Quartz Vein 5467421 419 JS 2021-05-18 B731511 Outcrop Mafic Volcanic 546750 431 JS 2021-05-19 B731513 Outcrop Chlorite Schist 5468114 419 JS 2021-05-19 B731513 Outcrop Mafic Volcanic 5467801 414 JS 2021-05-19 B731514 Outcrop Chlorite Schist 5467192 JS 2021-05-22 B731515 Outcrop Mafic Volcanic 5466586 402 JS 2021-05-22 B731516 Outcrop Mafic Volcanic 5467168 JS 2021-05-22 B731518 Outcrop

Station_ID	Easting	Northing	Elevation	Sampler	Date	Sample_ID	Sample Medium	Lithology	Notes
									5 cm wide gtz vein within sheared mafic metavolcanics.
MT-JS-036	508673	5468150	420	JS	2021-05-19	B731521	Outcrop	Quartz Vein	Reddish-orange in some sections. No sulfides observed.
									Strongly oxidized, gossany section of fg mv with potential
MT-JS-049	511256	5467199		JS	2021-05-22	B731522	Outcrop	Mafic Volcanic	mineralization. Quartz pieces associated.
									Pillow breccia made oc fg mv chloritic with thin oxidized
									quartz veins within the pillow borders. Sample taken of
MT-JS-063	510783	5467450		JS	2021-05-23	B731523	Outcrop	Mafic Volcanic	host with the oxidized borders. Trace stringer pyrite.
									Strongly sheared fg mv or chlorite schist + oxidized qtz.
MT-JS-065	510884	5467444		JS	2021-05-23	B731524	Outcrop	Mafic Volcanic	Minor disseminated and oxidated sulfides.
									Chlorite schist adjacent to a qtz vein(69) which is next to a
MT-JS-068	510989	5467359		JS	2021-05-23	B731525	Subcrop	Chlorite Schist	quartz porphyry (70)
									Strongly oxidized qtz vein within a chlorite
MT-JS-069	510992	5467361		JS	2021-05-23	B731526	Subcrop	Quartz Vein	schist/porphyry.
									Super silicious chlorite schist/fg mv. Sampled along the
									side of a 5m cliff with nearby quartz vein. Flesic tuff unit
MT-JS-071	511031	5467376		IC	2021-05-23	0721527	Outoron	Chlorite Schist	
MT-DB-075	510536	5466603		JS DB	2021-05-23		Outcrop Outcrop	Mafic Volcanic	with porphyritic quartz to the Southwest.
WIT-DB-075	510550	5400005			2021-05-22	B731320	Outcrop		Fg mv, strongly foliated with a thin vein with one bleb of
MT-JS-074	510667	5467471		JS	2021-05-23	B731528	Outcrop	Mafic Volcanic	chalcopyrite.
1011 33 074	510007	5407471		10	2021 05 25	5751520	outerop		Fg chlorite schist, weakly foliated with mod silica
									alteration and fg silver dissemeniated pyrite. Located on
MT-JS-075	512234	5466356		JS	2021-05-24	B731529	Subcrop	Chlorite Schist	the SW side of the pit.
	512251	5100050		50	2021 05 21	5751525	Suberop		Samples taken of the float pile w high sulfide content.
MT-JS-079	512238	5466365		JS	2021-05-24	B731530	Float	Quartz Vein	Colorful quartz(red, orange, yellow) 5% py.
									Samples taken of the float pile w high sulfide content.
									White quartz with some chlorite fracture fill + po and py;
MT-JS-080	512238	5466365		JS	2021-05-24	B731531	Float	Quartz Vein	minor sericite alt. 81: host+ser
									Samples taken of the float pile w high sulfide content.
MT-JS-081	512238	5466365		JS	2021-05-24	B731532	Float	Quartz Vein	Host rock with sericite altn.
									Intercolated felsic-int tuff(pyroclastic) and chlorit schist
									shear zone. Weak amount of quartz veins. Felsics with
									strong relief. Minor sulfides. Outcrop has strong amount
MT-JS-090	512339	5466715		JS	2021-05-25	B731533	Outcrop	Intermediate Volcanic	of 0.1-1cm rounded qtz.
									Chl schist shear zone with intercolated quartz vein.
									Collected a sample with a mix of the schist a quartz.
									Quartz is white and sugary with sections of strong
MT-JS-092	511258	5468418		JS	2021-05-26	B731534	Outcrop	Chlorite Schist	oxidation. Minor chl fracture infill in vn

Station_ID	Easting	Northing	Elevation	Sampler	Date	Sample_ID	Sample Medium	Lithology	Notes
									15-20 cm wide quartz vein trending 160 with an adjacent
									vein 1 meter away, same strike. Within atrongly chloritic
									schist(095). Chalcopyrite seen around the chlorite
MT-JS-094	511496	5468292		JS	2021-05-26	B731535	Outcrop	Quartz Vein	fracture fill, large grains.
									MV unit (gabbroic when unstrained). Diss chalc associated
MT-JS-095	511499	5468293		JS	2021-05-26	B731536	Outcrop	Chlorite Schist	with silica.
									Oxidized red quartz vein with fully formed large sericite
									crystals. Highly mineralized with chalco as the most
									predominant. Found within a schistose mv unit with weak
MT-JS-098	512128	5468370		JS	2021-05-26	B731537	Subcrop	Quartz Vein	strain. The vein curves.
									Mg mafic vol. /chlorite schist with weak strain. Silica and
									carbonate flooded guartz vein contact. Chalcopyrite is the
MT-JS-099	512133	5468370		JS	2021-05-26	B731538	Outcrop	Mafic Volcanic	main sulfide found within. Sampled near the quartz vein.
	011100	0.00070			1011 00 10	2702000	e ater ep		Sample taken of the chlorite schist with some guartz.
MT-JS-084	512355	5466594		JS	2021-05-25	B731539	Outcrop	Chlorite Schist	Oxidized pyrite seen on surface.
	512555	5100001		55	2021 05 25	5751555	outerop		Sheared guartz vein intercolated with chlorite, sampled
									mostly the quartz, bullish white to clear and orange in
									colour. Strongly infkuenced by shear zone. Sulfides
MT-JS-085	512353	5466592		JS	2021-05-25	B731540	Outcrop	Quartz Vein	difficult to see, likely pyrite.
	512555	5100352		55	2021 05 25	5751510	outerop		Bt chl schist with oxidized sulphides adjacent to quartz
									veins. The outcop is small and covered, no strike or dip
MT-JS-041	507390	5466749		JS	2021-05-20	B731541	Outcrop	Chlorite Schist	achieved.
									Mafic lapilli tuff, potentially an intermediate. Feldspar
MT-JS-042	510906	5467208		JS	2021-05-22	B731542	Outcrop	Mafic Volcanic	phenocrysts and silica alt.
MT-DB-001	512242	5466364	399	DB	2021-05-13	B731733	Float	Mafic Volcanic	first Queen A pit
MT-DB-002	512200	5466414	396	DB	2021-05-13		Float	Felsic Volcanic	2nd Queen A pit
MT-DB-003	512196	5466405	386	DB	2021-05-13	B731710	Float	Intermediate Volcanic	distinct foliation
									qtz carbonate viens show a gradient of oxidization, blebby
MT-DB-004	507792	5467271	395	DB	2021-05-14		Outcrop	Mafic Volcanic	tp pervasive
MT-DB-005	507561	5465999		DB	2021-05-14		Outcrop	Mafic Volcanic	NOT ON CLAIM. aphanitic w/ gossanus weathering
MT-DB-006	510597	5466904		DB	2021-05-14		Outcrop	Mafic Volcanic	NOT ON CLAIM. possible lapilli tuff
MT-DB-007	510604	5466925		DB	2021-05-14		Outcrop	Mafic Volcanic	NOT ON CLAIM
									NOT ON CLAIM. Varried degee of oxidation/weathering of
MT-DB-008	510527	5466919		DB	2021-05-14		Outcrop	Mafic Volcanic	sulpides could indicate seprate species.
MT-DB-009	510533	5466912		DB	2021-05-14		Outcrop	Mafic Volcanic	NOT ON CLAIM. possible pyrrhotite.
MT-DB-010	510527	5466919		DB	2021-05-14		Outcrop	Mafic Volcanic	NOT ON CLAIM. Garnetiforus chlorite schist
		2.00010			00 11				NOT ON CLAIM. Sulphide rich crack and seal textures with
									in a highly deformed qtz vein. INterlated chloritized
MT-DB-011	510527	5466919		DB	2021-05-14		Outcrop	Quartz Vein	vienlets host mineralization
MT-DB-012	510527	5466919		DB	2021-05-14	1	Outcrop	Mafic Volcanic	not on claim

Station_ID	Easting	Northing	Elevation	Sampler	Date	Sample_ID	Sample Medium	Lithology	Notes
									not on claim. heavly gossanus qtz fragments from historic
MT-DB-013	510527	5466919		DB	2021-05-14		Outcrop	Mafic Volcanic	pit.
MT-DB-014	510527	5466913		DB	2021-05-14		Outcrop	Mafic Volcanic	not on claim
MT-DB-015	507798	5467297		DB	2021-05-15		Outcrop	Mafic Volcanic	NOT ON CLAIM
MT-DB-016	507795	5467304		DB	2021-05-15	B731707	Outcrop	Mafic Volcanic	less folliated wall rock from MT-DB-015
MT-DB-017	507724	5467214		DB	2021-05-15		Outcrop	Quartz vein	NOT ON CLAIM
MT-DB-018	507724	5467214		DB	2021-05-15		Outcrop	Mafic Volcanic	NOT ON CLAIM
MT-DB-019	507693	5467232		DB	2021-05-15		Outcrop	Mafic Volcanic	
MT-DB-020	507693	5467232		DB	2021-05-15		Outcrop	Mafic Volcanic	first ocurance of aciular black mineral, misoriented, medium-fine. (amphibole) weak to no folliation
									Highly angular float found in proximity to drill hole 002.
MT-DB-021	507685	5461210		DB	2021-05-15	B731706	Float	Mafic Volcanic	vaarrying degree's of gossanus weathering.
									distinct change in grain size of the metavolacanics in
MT-DB-022	507685	5461210		DB	2021-05-15		Outcrop	Mafic Volcanic	proximity to sample MT-DB-021
MT-DB-023	507691	5467162		DB	2021-05-16		Outcrop	Mafic Volcanic	mylontonized mafic meta volcanics. L
MT-DB-024	507655	5467033		DB	2021-05-16	B731714	Outcrop	Mafic Volcanic	
									moderatly foilliated angular float with jointing oblique to
MT-DB-025	507545	54677036		DB	2021-05-16	B731713	Float	Mafic Volcanic	folliation. sulfide rich.
MT-DB-026	507867	5467464		DB	2021-05-16		Outcrop	Quartz Vein	
MT-DB-027	507896	5467464		DB	2021-05-16	B731702	Outcrop	Mafic Volcanic	Very well folliated chlorite schist with discontinoius qtz veins. moiderate crenulations. Highest example of shearing found so far.
MT-DB-028	507926	5467479		DB	2021-05-16	B731701	Outcrop	Mafic Volcanic	NULLHost rock taken in proximiuty to sdample MT-DB- 029
MT-DB-029	507926	5267479		DB	2021-05-16		Outcrop	Quartz Vein	possible evidence for amphibolite grade conditions (black apahmitic lustreous mineral)
MT-DB-030	507887	5467498		DB	2021-05-16		Outcrop	Quartz Vein	Qtz vein in ciontact with meta volocanics, smoke qtz eyes cross cut vein (Sample missing)
MT-DB-031	508010	5467771		DB	2021-05-17			Mafic Volcanic	out of claim. Mafic volcanic with accicular plg crystals visable on weathered surface, minor sulfides
MT-DB-032	507964	5467642		DB	2021-05-17		Outcrop	Quartz Vein	in contact with mafiuc volcanics
MT-DB-033	507575	5466055		DB	2021-05-17		Outcrop	Mafic Volcanic	
MT-DB-034	507609	5466037		DB	2021-05-17		Outcrop	Mafic Volcanic	
MT-DB-035	508671	5468145		DB	2021-05-18		Outcrop	Mafic Volcanic	well folliated with a seccondary weaker crenulating folliation
MT-DB-036	508680	5468088		DB	2021-05-18	B/31704	Outcrop	Mafic Volcanic	deep and evidentian in place in contract with OTZ weights
MT-DB-037	508681	5480751		DB	2021-05-18			Mafic Volcanic	deep red oxidation in place in contact with QTZ vein. Dimension prefred orientation (DPO) acicular amnphibole is present.
MT-DB-038	508637	5468075		DB	2021-05-18	B731711	Outcrop	Mafic Volcanic	

Station_ID	Easting	Northing	Elevation	Sampler	Date	Sample_ID	Sample Medium	Lithology	Notes
MT-DB-039	508471	5467781		DB	2021-05-18		Outcrop	Mafic Volcanic	3 cm wide shear element with in mafic volvcanics
MT-DB-040	507659	5467244		DB	2021-05-19	B731703	Outcrop	Gabbro	
MT-DB-041	507668	5467244		DB	2021-05-19		Outcrop	Gabbro	Sampling qtz vien
MT-DB-042	507677	5467262		DB	2021-05-19		Outcrop	Gabbro	
MT-DB-043	507568	5467259		DB	2021-05-19		Outcrop	Gabbro	Porphritic plagiclase is present through out.some undeformed someappear stretched
MT-DB-043	507455	5467285		DB	2021-05-19		Float	Gabbro	Well followed float in proximity to tree crop
MT-DB-044	507462	5467261		DB	2021-05-19		Outcrop	Gabbro	
MT-DB-045	507402	5467201		DB	2021-05-19		Outcrop	Gabbro	Garnet bearing, very weak sulphide, meta gabbro
	507212	5467213		DB				Intermediate Volcanic	Intermediate Tuff to lapilli tuff
MT-DB-048	507212	5467184		DR	2021-05-19		Outcrop	Intermediate volcanic	Intermediate Furr to lapilit turi
MT-DB-049	507210	5467160		DB	2021-05-19		Outcrop	Mafic Volcanic	Interbedded mafic volcanic in contact with porphyric? Or intermediate volcaniclastic unit. Mafic volcanics observed as f.g, foliated unit with acicular amphibole.
MT-DB-049	507194	5467091		DB	2021-05-19		Outcrop	Gabbro	
									Foliations in host mafic volcanic are not well developed
MT-DB-051	507314	5467108		DB	2021-05-19	B/31/05	Outcrop	Quartz Vein	but subparallel to strike of vein. 10 cm vein
MT-DB-053	510520	5466342		DB	2021-05-21		Outcrop	Mafic Volcanic	Beside road to QA
MT-DB-054	510543	5466160		DB	2021-05-21		Outcrop	Mafic Volcanic	
MT-DB-055	510620	5466010		DB	2021-05-21		Outcrop	Mafic Volcanic	
MT-DB-056	510860	5465513		DB	2021-05-21		Outcrop	Mafic Volcanic	Not on claim. Possible arseno pyrite
MT-DB-057	510832	5465434		DB	2021-05-21		Outcrop	Mafic Volcanic	Aphanitic volcanic,very well folliated. Stretched qtz eyes present further down strike (5m)
MT-DB-058	510837	5465438		DB	2021-05-21		Outcrop	Mafic Volcanic	
MT-DB-059	510780	5465342		DB	2021-05-21		Outcrop	Mafic Volcanic	
MT-DB-060	510774	5465322		DB	2021-05-21		Outcrop	Intermediate Volcanic	Strong porphyritic textures . Porphry? In proximity to coarse volcaniclastic Coarse volcaniclastic with disseminated pyrite in
MT-DB-061	510761	5465322		DB	2021-05-21		Outcrop	Intermediate Volcanic	proximity (lower elavation/stratigraphy) to MTDB60 Porphry.
MT-DB-062	510687	5465269		DB	2021-05-21		Outcrop	Mafic Volcanic	
MT-DB-063	510433	5465398		DB	2021-05-21		Outcrop	Mafic Volcanic	
MT-DB-064	510428	5465401		DB	2021-05-21		Outcrop	Quartz Vein	
									Attitude inconclusive. Dark v weakly chloritized, possible
MT-DB-065	510493	5466809		DB	2021-05-21	B731715	Outcrop	Mafic Volcanic	intermediates?
MT-DB-066	510490	5466799		DB	2021-05-21		Float	Feldspar Porphyry	Buried within crack under roots and moss. Porphry sample with weak oxidation and two possible species of sulfide. In proximity to HIGHLY silicsous sample of meta volcanic MTDB067.
MT-DB-067	510481	5466786		DB	2021-05-22	B731716	Outcrop	Mafic Volcanic	Mafic meta volcanic. Dip inconclusive.near vertical. In proximity to "intermediate"

Station_ID	Easting	Northing	Elevation	Sampler	Date	Sample_ID	Sample Medium	Lithology	Notes
									Intermediated volcanics in proximity to porphry float.
MT-DB-068	510492	5466800		DB	2021-05-22		Subcrop	Intermediate Volcanic	Moderately oxidized.
MT-DB-069	510474	5466775		DB	2021-05-22	B731717	Float	Mafic Volcanic	Highly angular Float found under blowdown at whale back outcrop of same composition with folliation. Otz vein that follows folliation of host sheared mafic
MT-DB-070	510471	5466776		DB	2021-05-22	B731718	Outcrop	Quartz Vein	volcanic. Crenulating folliation could indicate solid-state deformation.
MT-DB-072	510428	5466759		DB	2021-05-22		Outcrop	Mafic Volcanic	
MT-DB-073	510378	5466709		JS	2021-05-22		Outcrop	Mafic Volcanic	Attitude inconclusive weakly chloritized
MT-DB-074	510411	5466692		DB	2021-05-21	B731719	Outcrop	Mafic Volcanic	
MT-DB-076	510513	5466584		DB	2021-05-22		Outcrop	Mafic Volcanic	Itermediate to maf8c volcanic, moderately silicous with v weak chlorite alt.
MT-DB-077	510471	5466583		DB	2021-05-22	B731720	Outcrop	Gabbro	Sudden appearance of medium grained black lustrous mineral. V minor sulfides. 5 m to the east is continuation of mafic volcanic unit. Topography did not allow for contact tracing.See photos in master
MT-DB-078	510463	5466573		DB	2021-05-22		Outcrop	Mafic Volcanic	
MT-DB-079	510388	5466671		DB	2021-05-22		Outcrop	Mafic Volcanic	Mafic volcanic with tree wedging. Appears to dip WNW. minor sulfides. Breciated qtz vein present. See master dcim photo.
MT-DB-080	510500	5466649		DB	2021-05-22	B731721	Float	Quartz Vein	Takem in proximity to historical pit. In pit we see well foliated prevasivly oxidized sik8c9us rock.unable to safely get attitude from pit wall rock.
MT-DB-081	510498	5466650		DB	2021-05-22		Float	Mafic Volcanic	Well folliated float found in proximity to historical pit. Medium grained subhedral sulfides present, crenulating folliation and possible classic elemnt
MT-DB-082	512183	5466404		DB	2021-05-23	B731723	Outcrop	Intermediate Volcanic	Actual exposed OC, In proximity to shaft.
MT-DB-083	512189	5466411		DB	2021-05-23		Outcrop	Intermediate Volcanic	Intermediate volcanics in 30Å,Ű~ trend from shaft. Following for intersect with qtz vein. Secondary foliation is coincident to jointing.
MT-DB-084	512162	5466373		DB	2021-05-23		Outcrop	Mafic Volcanic	found small sheared out crop trending 70, strong chlorite sudgest mafic volcanic. potential trend from heealy report?
MT-DB-085	512196	5466407		DB	2021-05-22	B731725	Float	Intermediate Volcanic	Less than 2% medium fine chalco pyrite diffuse in chloritized portion, v fine pyrite or a Arseno pyrite (silvery sulfide) disseminated in more intermediated portion. Found within historical QA rubble

Station_ID	Easting	Northing	Elevation	Sampler	Date	Sample_ID	Sample Medium	Lithology	Notes
									Fragments of float uncovered from within QA shaftrubble
									pile .well oxidized qtz vein with minor pyrite. V sugary in
MT-DB-086	512196	5466407		DB	2021-05-23	B731724	Float	Quartz Vein	some places
									"Intermediates" with sulfides in the qtx veinletts. There
									are a few examples of this relationship in the historical
MT-DB-087	512196	5466407		DB	2021-05-23	B731726	Outcrop	Intermediate Volcanic	pile
									From historical pit. Medium grained sulfides, in an
MT-DB-088	512196	5466407		DB	2021-05-22	B731727	Float	Mafic Volcanic	alteration zone?
MT-DB-089	512173	5466416		DB	2021-05-24		Outcrop	Intermediate Volcanic	
MT-DB-090	512137	5466436		DB	2021-05-24		Outcrop	Intermediate Volcanic	
									Sample taken from inside displaced block from conjugate
MT-DB-091	512139	5466432		DB	2021-05-24		Outcrop	Intermediate Volcanic	faults.
MT-DB-092	512168	5466325		DB	2021-05-24	B731729	Outcrop	Gabbro	
									Evidence for conjugate faulting along ridge. Striking 48
									and 318, cross cutting fault dips 45 degrees to the Sw
	F121C1	F4CC222			2021 05 24		0	Cabbra	
MT-DB-093	512161	5466322		DB	2021-05-24		Outcrop	Gabbro	and terminal fault dips 65 degrees to the NE. Boudinage within folliation of mafic to intermediate
	F12142	F466208		חח	2021 05 24	0721720	Outoron	Mafie Valennie	5
MT-DB-094	512142	5466298		DB	2021-05-24	B/31/30	Outcrop	Mafic Volcanic	volcanics. Qtz vein is sub paralle.
									Lapilli Tuff with coarse bombs on either side of shear zone
									(10 cm by 5 cm) clastsare pinched within shearzone.
									Lappilli are best preserved in proximity to coarse class.
MT-DB-095	512285	5466351		DB	2021-05-24	D721721	Outcrop	Mafic Volcanic	Qtz vein cuts at an oblique
1011-00-095	512265	5400551		08	2021-03-24	6731731	Outcrop		Pyrclastic felicity unit with interclated chlorite schist.
MT-DB-096	512399	5466413		DB	2021-05-24	8721722	Outcrop	Intermediate Volcanic	Further up strike
MT-DB-090	512333	5466407		DB	2021-05-24	D731732	Outcrop	Mafic Volcanic	Historic trench
1011-00-037	512251	5400407		00	2021-05-24		Outcrop		Taken from rubble pile south east of Orion shaft. Qtz vein
MT-DB-098	510617	5466756		DB	2021-05-25	B731734	Float	Quartz Vein	in contact with mafic volcanics
MT-DB-099	510645	5466755		DB	2021-05-25		Float	Intermediate Volcanic	Boulder SE of money pit, very angular.
MT-DB-100	510675	5466781		DB	2021-05-25	2/02/00	Outcrop	Mafic Volcanic	Ccontact between dyke and mafic volcanics
MT-DB-101	510682	5466814		DB	2021-05-25	B731736	Outcrop	Mafic Volcanic	
MT-DB-102	510824	5466628		DB	2021-05-25		Outcrop	Mafic Volcanic	Intersect between North and North East shearing
MT-DB-103	510714	5466670	409	DB	2021-05-25		Outcrop	Gabbro	
								-	Gossanus shear zone exposed by historic pit. Possible
									malachite alt at bottom. Dirdct measurement of attitude
MT-DB-104	510506	5466702		DB	2021-05-25		Outcrop	Intermediate Volcanic	not accessible
MT-DB-105	510502	5466704		DB	2021-05-25	B731739	Outcrop	Intermediate Volcanic	
MT-DB-106	510502	5466697		DB	2021-05-25		Outcrop	Quartz Vein	
									Taken in proximity to open hole. Approximately 15
MT-DB-107	510518	5466792		DB	2021-05-25	B731741	Outcrop	Quartz Vein	meters deep 5 meters wide
MT-DB-108	507518	5467277		DB	2021-05-19		Outcrop	Gabbro	

Station_ID	Easting	Northing	Elevation	Sampler	Date	Sample_ID	Sample Medium	Lithology	Notes
MT-DB-109	507382	5467234		DB	2021-05-19		Outcrop	Mafic Volcanic	Tuff breccia. Felsic clastss, with alteration halo
									Intermediate volcanics in 30Ã,°~ trend from shaft.
									Following for intersect with qtz vein. Secondary foliation
MT-DB-110	512289	5466521		DB	2021-05-23		Outcrop	Intermediate Volcanic	is coincident to jointing.
MT-JS-005	507655	5466002	404	JS	2021-05-15		Outcrop	Quartz Vein	Pinching and swelling quartz vein. Bullish here.
									Outcrop just left of the road coming in. There is a pit,
									filled wth wate, on the other side of the road; likely
									created to trace the shear zone. Channel samples were
MT-JS-007	510109	5466585	405	JS	2021-05-15		Outcrop	Chlorite Schist	also taken on the outcrop.
									Intermediate dyke composed of a fg dark-grey
									groundmass. Elongated amphibole crystals producing a
									lineation within. Roughly 1m wide. Downhill there is a
	540570	F 4 6 6 9 4 7		10	2024 05 45				- ·
MT-JS-009	510573	5466847	445	12	2021-05-15		Outcrop	Intermediate Volcanic	porphyritic with mg feldspar clasts + amphibole Quartz vein within a shear zone, slightly oxidized with red
	540640	F A C C A T		10	2024 05 45			o	
MT-JS-012	510613	5466947	440	12	2021-05-15		Outcrop	Quartz Vein	coloration. Minor chlorite fracture infill. Soft, sheared gabbro/chlorite schist, micaceous(90% chl).
									Secondary foliation measured on the fracture plane to be
MT-JS-013	507780	5467256	420	12	2021-05-15	ļ	Outcrop	Gabbro	30 degrees.
									Intercolated schist and guartz veins. sampled only the
MT-JS-014	507792	5467271	413	IC	2021-05-16		Outeren	Quartz Vein	quartz. Offshoot of quartz vein strinking 70 degrees.
1011-J3-014	507792	5407271	415	12	2021-05-10		Outcrop		Super silcious section of the high strain schist, adjacen to
	507792	E167071	413	IC	2021 OF 16		Outcrop	Chlorite Schist	the quartz vein.
MT-JS-015	507792	5467271	415	12	2021-05-16		Outcrop	Chiome Schist	Weakly strained gabbro with large(1-3 cm) plag
	507707	E167212	418	IC	2021-05-16		Outcrop	Gabbro	porphyroclasts. Weakly talcose?
MT-JS-016	507707	5467242	410	12	2021-05-10		Outcrop	Gabbio	Strongly silicified gabbro to chlorite schist with mg-cg
MT-JS-017	507832	5467294	426	IC	2021-05-16		Outcrop	Chlorite Schist	quartz blobs forming a weak lineation.
1011-12-017	507652	5407294	420	12	2021-05-10		Outcrop	Chiome Schist	Mg-cg gabbro with occasional marble-sized plag
MT-JS-019	507852	5467301	420	IC	2021-05-16		Outeren	Gabbro	porphyroclasts. Silicious.
1011-12-013	507852	5407301	420	12	2021-05-10		Outcrop	Gabbio	schistose unit composed of mostly chlorite. Randomly
									orientated groundmass with acicular amphiboles.
									Carbonate veins coming in, potentially causing a contact
	507674	F 4 6 7 2 0 0	110	10	2024 05 47		0	Chile vite Cabiet	
MT-JS-021	507674	5467200	416	12	2021-05-17		Outcrop	Chlorite Schist	metamorphism. strongly foliated, strongly silicified mafic volcanic wiith
	507550	F 4 C 7 C 7 7	440	IC	2021 05 17		0	MafiaValassis	randomly orientated amphiboles scattered throughout.
MT-JS-023	507559	5467027	412	12	2021-05-17		Outcrop	Mafic Volcanic	No sulfides observed. sheared fg mafic-int metavolcanic or schist. Red garnets
	F40000		407	10	2024 25 45		0		and little pits observed within the sample as well.
MT-JS-024	510839	5467715	407	12	2021-05-17		Outcrop	Chlorite Schist	Sampled a block of qtz + host rock.

Station_ID	Easting	Northing	Elevation	Sampler	Date	Sample_ID	Sample Medium	Lithology	Notes
									Strongly sheared and oxidized mafic volcanic + quartz.
									Located at the base of a 5m tall cliff face. Slickenlines
MT-JS-025	510950	5467972	411	JS	2021-05-17		Outcrop	Chlorite Schist	common on the surface.
									Folgie tuff unit composed of primarily cilica with ma
MT-JS-026	510948	5467970	414	IC	2021-05-17		Outcrop	Felsic Volcanic	Felsic tuff unit composed of primarily silica with mg acicular chlorite grains. Found just South and left of 025.
1011-13-020	510546	5407970	414	12	2021-05-17		Outcrop		Silicious and chloritic metavolcanic with randomly
MT-JS-027	507813	5467411	419	IS	2021-05-18		Outcrop	Mafic Volcanic	orientated black amphiboles. 1m x 0.5m outcrop.
1111 35 627	507015	5107111	115		2021 00 10		outerop		Mafic metavolcanic with lineated acicular amphiboles.
MT-JS-028	507875	5467421	420	JS	2021-05-18		Outcrop	Mafic Volcanic	Weak carbonate.
									Red quartz vein with minor chlorite fracture infill. Next to
MT-JS-030	507936	5467520	427	JS	2021-05-18		Outcrop	Quartz Vein	a silicified mafic volcanic unit.
									Intensely sheared mylonitic schist with acicular
MT-JS-031	507947	5467550	431	JS	2021-05-18		Outcrop	Chlorite Schist	amphiboles and mod silica alteration.
									Dark grey-black mafic volcanic with 30% qtz
									porphyroclasts. Moderately oxidized. Unable to attain
MT-JS-033	507951	5467654	429	JS	2021-05-18		Outcrop	Mafic Volcanic	strike or dip.
									Qtz vein within mafic metavolcanics. No sulfides
	500000	5460006	110	16	2024 05 40		. .	0 1 1 1 1	observed. Dan took a sample of the host rock here.
MT-JS-037	508680	5468086	416	12	2021-05-19		Outcrop	Quartz Vein	Reddish-pink colouration of the quartz.
									Acicular amphiboles, randomly orientated. Shearzone
MT-JS-039	507546	5466883	416	IS	2021-05-20		Outcrop	Gabbro	adjacent to Gaborone with plag porphyroclasts.
MT-JS-040	507552	5466870	410	JS	2021-05-20		Outcrop	Chlorite Schist	Silicious chlorite schist on East side of shear zone.
1111 33 040	507552	5400070		55	2021 05 20		outerop		Sample taken of quartz and the host rock. Host is fg mv,
									chlorite rich. Chl fracture infill within the quartz. Dip
MT-JS-044	510978	5467197		JS	2021-05-22		Outcrop	Mafic Volcanic	unattainable. No sulfides.
MT-JS-045	511025	5467175		JS	2021-05-22		Outcrop	Mafic Volcanic	Measured an aplitic dyke. Bull qtz vein in area as well.
									Thicker part of a massive flow, coarsening with some
MT-JS-046	511093	5467208		JS	2021-05-22		Outcrop	Mafic Volcanic	texture.
									MV fg dark black with a quartz veim coated on it.
MT-JS-047	511151	5467185		JS	2021-05-22		Outcrop	Mafic Volcanic	Potentiality low angle dip(<20).
									Fg mv unit with oxidized fault breccia and some feldspar
MT-JS-048	511213	5467200		JS	2021-05-22			Mafic Volcanic	veinlets to the West.
MT-JS-053	511292	5467116		JS	2021-05-22		Outcrop	Diorite	
MT-JS-054	511295	5467171		JS	2021-05-22		Outcrop	Mafic Volcanic	Fg mv with plag blocks within.
	E11204	F 4 C 7 4 O C		IC	2021 05 22		Outerer	MafiaValoasis	Shear composed oc mv with stretched quartz phenocrysts
MT-JS-055	511294	5467186		JS	2021-05-22		Outcrop	Mafic Volcanic	elomgated along strike 5:1.
									MV with tan alteration, possibly bleaching or albitization
MT-JS-056	511294	5467201		JS	2021-05-22		Outcrop	Mafic Volcanic	caused ny the contact pf the diorite and mv.
020-51-114	511294	5407201		10	2021-03-22	I	outcrop		caused by the contact priche dioffile and fiv.

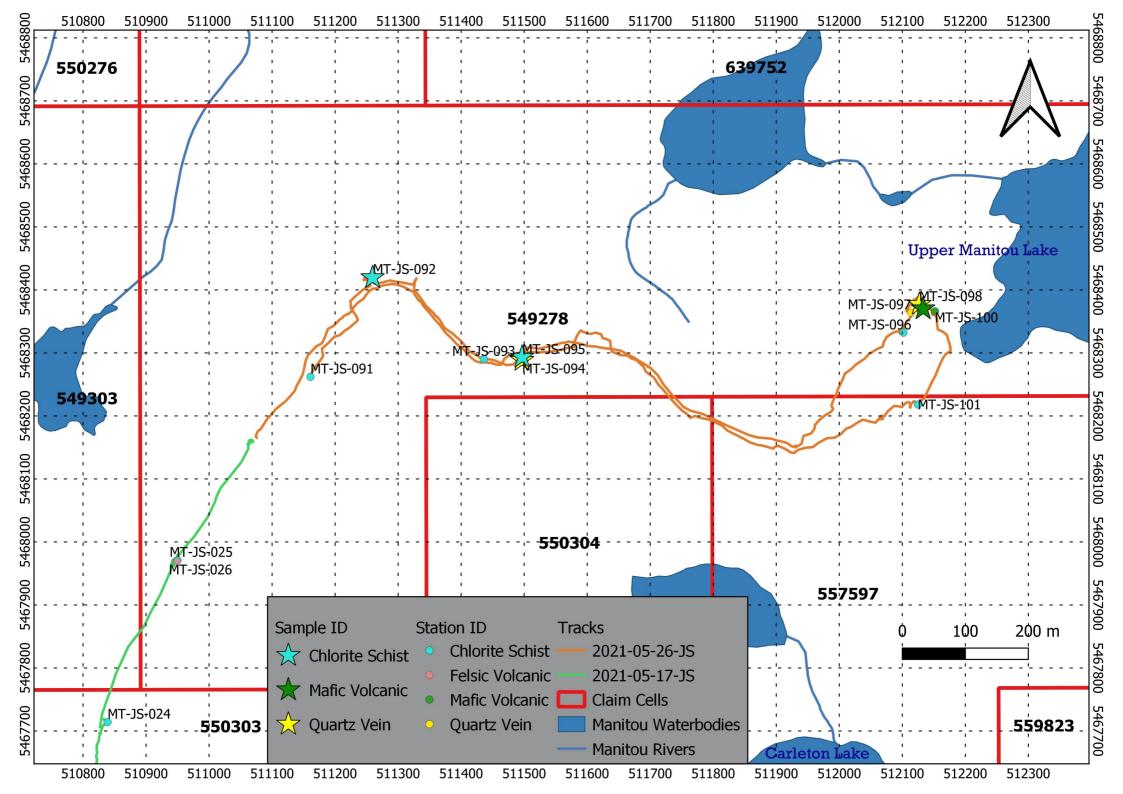
Station_ID	Easting	Northing	Elevation	Sampler	Date	Sample_ID	Sample Medium	Lithology	Notes
MT-JS-057	511291	5467246		JS	2021-05-22		Outcrop	Chlorite Schist	
									Diorite that looks like a gabbro with felsic blocks 5cm
MT-JS-058	511310	5467252		JS	2021-05-22		Outcrop	Diorite	wide within
									Fg mv with a mod-strong fabric. Potential felsic fluid
									injection from the nearby diorite. Mg black dense garnets
MT-JS-059	511299	5467289		JS	2021-05-22		Outcrop	Mafic Volcanic	found on surfac?
									Sheared pillowed mafic volcanic with the quartz vein.
MT-JS-060	511283	5467321		JS	2021-05-22		Outcrop	Mafic Volcanic	Stretched pillows and oxidized sugary quartz.
									Moderately sheared fg mv with trace sulfides occuring on
MT-JS-061	510709	5467369		JS	2021-05-23		Outcrop	Mafic Volcanic	one fracture surface, pyrite.
MT-JS-062	510757	5467410		JS	2021-05-23		Outcrop	Mafic Volcanic	Fg mv with beige weathering and minor oxidation.
									Strongly foliated fg mv, oxidized. Thin felsic stringer veins
MT-JS-064	510818	5467440		JS	2021-05-23		Outcrop	Mafic Volcanic	wrapped throughout.
									Fg mv outcrop with layered shelves. Weakly silicious.
MT-JS-066	510904	5467463		JS	2021-05-23		Outcrop	Mafic Volcanic	Tuffaceous.
MT-JS-067	510978	5467400		JS	2021-05-23		Outcrop	Mafic Volcanic	Moderately silicious fg mv with a strong foliation.
									Felsic tuffaceous unit composed of predominantly silica
MT-JS-070	510991	5467359		JS	2021-05-23		Subcrop	Felsic Volcanic	with quartz porphyroclasts.
MT-JS-072	510701	5467378		JS	2021-05-23		Outcrop	Mafic Volcanic	
									Strongly sheared fg mv or chlorite schist. Has minor silica
MT-JS-073	510663	5467509		JS	2021-05-23		Outcrop	Chlorite Schist	alt and oxidation.
									Contact between a felsic tuff unit and a chlorite schist.
									Felsic tuff composed of entirely of aphanitic blue silica
									with minor acicular bLc, amphiboles producing a
MT-JS-076	512250	5466394		JS	2021-05-24		Outcrop	Felsic Volcanic	lineation. No sulfides observed.
									Strongly foliated mv(chl schist) shear zone in contact with
MT-JS-077	512247	5466390		JS	2021-05-24		Outcrop	Intermediate Volcanic	strongly foliated felsic tuff.
									Strongly foliated chloritw schist with strong silica injection
									foliated within. Weather red and orange, strong potential
MT-JS-078	512243	5466366		JS	2021-05-24		Outcrop	Chlorite Schist	for sulfides. Just NE of the showing.
									Outcrop composed of schistose fg chloritic mv with felsic
									bombs. Felsic pyroclasts composed of predominately
									silica withporohyritic quartz and acicular amphiboles.
MT-JS-082	512329	5466549		JS	2021-05-25		Outcrop	Mafic Volcanic	Blobby high relief felsics on oc.
MT-JS-083	512320	5466529		JS	2021-05-25		Outcrop	Felsic Volcanic	Felsic-int tuff, looks like the bombs in 082.
									Intermediate-felsic crystal tuff with rich amount weakly
									stretched 0.1-1cm wide qtz crystals, weak lineation.
									Weakly foliated, no dip possible. Groundmass looks int-
MT-JS-086	512383	5466658		JS	2021-05-25		Outcrop	Intermediate Volcanic	mafic, dominantly chlorite.

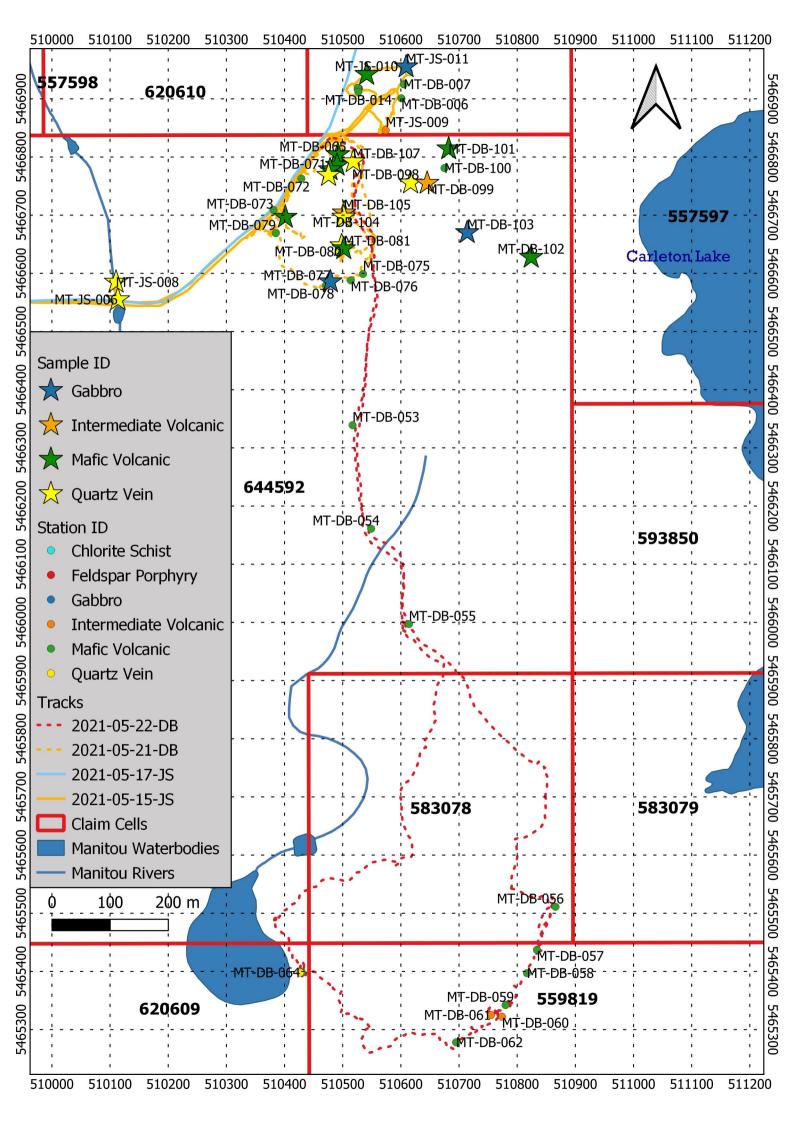
Station_ID	Easting	Northing	Elevation	Sampler	Date	Sample_ID	Sample Medium	Lithology	Notes
									Difficult to conclude if outcrop, seen the edge. Contact bw
									crystal tuff with qtz crystals in a fg foliated chlorite
MT-JS-087	512375	5466654		JS	2021-05-25		Subcrop	Felsic Volcanic	groundmass and a fg silicious tuff.
									Fg chloritic and silicious outcrop. Likely same unit as 087,
MT-JS-088	512354	5466671		JS	2021-05-25		Outcrop	Chlorite Schist	just mor chloritic.
									Int-felsic tuff, moderate foliation defined by the chlorite
MT-JS-089	512343	5466685		JS	2021-05-25		Subcrop	Intermediate Volcanic	within. 2 percent quartz crystals, rounded mg.
									Chloritized shear zone striking NE. Quartz vein 1cm wide
MT-JS-091	511164	5468262		JS	2021-05-26		Outcrop	Chlorite Schist	slightly oblique.
									Chlorite schist shear zone at same strike as 091. Wrapping
MT-JS-093	511436	5468293		JS	2021-05-26		Outcrop	Chlorite Schist	around a dense felsic clast.
									Chlorite schist strongly sheared and soft w minor silica.
MT-JS-096	512101	5468329		JS	2021-05-26		Outcrop	Chlorite Schist	No sample. Unable to see structures.
MT-JS-097	512110	5468361		JS	2021-05-26		Outcrop	Quartz Vein	Bull quartz within chlorite schist. Not sampled.
MT-JS-100	512132	5468372		JS	2021-05-26		Outcrop	Mafic Volcanic	Silicious mv/weakly strained schist. Looks like a gabbro.
MT-JS-101	512132	5468234		JS	2021-05-26		Outcrop	Chlorite Schist	

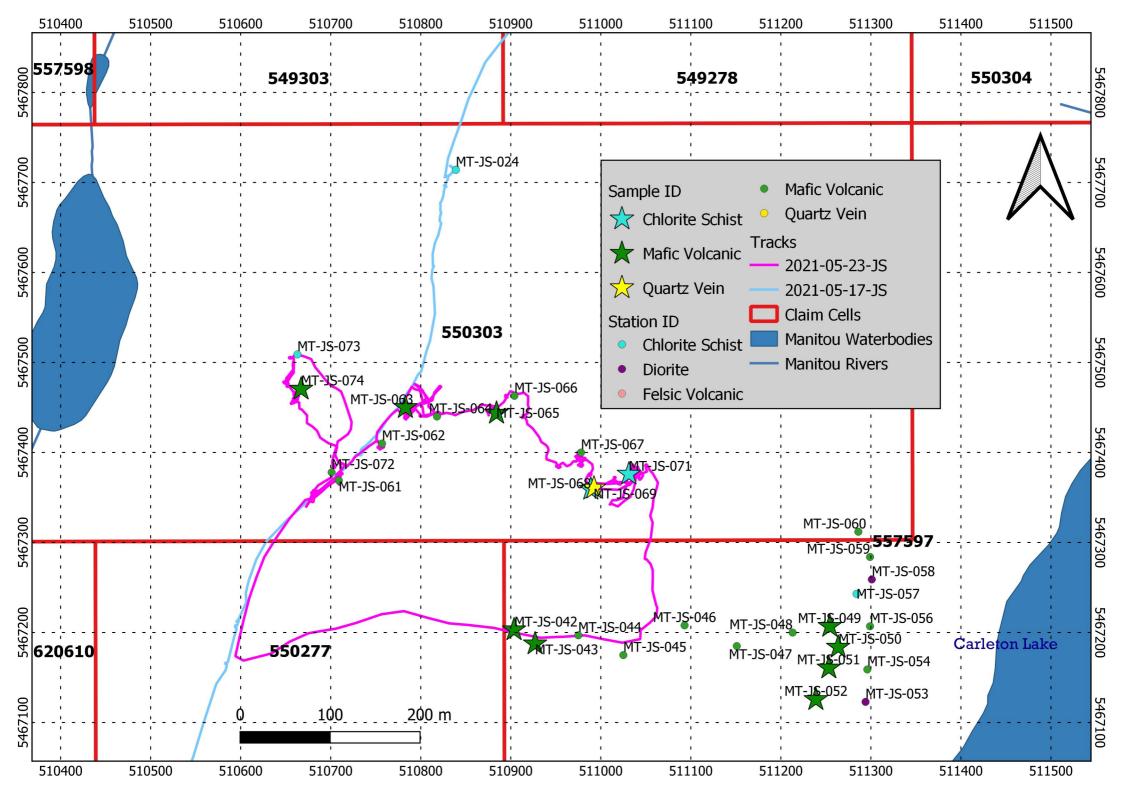
Station_ID	Alteration	Intensity	Style	Alteration	Intensity	Style	Mineralization Type	Style	%	Mineralization Type	Style	%	Mineralization Type	Style	%
MT-JS-001	Chlorite	Strong	Fracture Controlled				Pyrite	Disseminated	1	Chalcopyrite	Disseminated				
MT-JS-002	Silica	Strong	Pervassive	Chlorite	Strong	Fracture Controlled	Chalcopyrite	Disseminated	1	Arsenopyrite	Disseminated		Pyrite	Disseminated	1
MT-JS-003	Silica	Strong	Pervassive	Chlorite	Strong	Fracture Controlled	Chalcopyrite	Disseminated	1	Arsenopyrite	Disseminated		Pyrite	Disseminated	1
MT-JS-004	Calcite	Weak	Patchy	Chlorite	Strong	Fracture Controlled	Pyrite	Disseminated	1	Arsenopyrite	Disseminated				
MT-JS-006	Chlorite	Moderate	Fracture Controlled				Pyrite	Disseminated	1	_					
MT-JS-010	Silica	Strong	Pervassive	Chlorite	Strong	Pervassive	Pyrite	Disseminated	1						
MT-JS-011	Silica	Moderate	Patchy	Chlorite	Strong	Pervassive	Pyrite	Disseminated	1						
MT-JS-018	Silica	Strong	Patchy	Calcite	Weak	Patchy	Pyrite	Disseminated	1	-					
MT-JS-020	Calcite	Weak	Pervassive												
MT-JS-022							Pyrite	Disseminated	1	. Chalcopyrite		1			
MT-JS-029	Silica	Moderate	Pervassive	Calcite	Weak	Patchy	Pyrite	Disseminated	1						
MT-JS-032	Chlorite		Pervassive	Silica	Moderate	Pervassive	Pyrite	Disseminated	2	2					T
MT-JS-035	Silica	Moderate	Pervassive	Calcite	Weak	Patchy			1						1
MT-JS-038	Silica	Strong	Fracture Controlled	Amphibole	Weak	Patchy			1						1
MT-JS-043	Chlorite	Strong	Pervassive												1
MT-JS-008	Chlorite	0	Fracture Controlled						1						1
MT-JS-050	Silica		Pervassive				Arsenopyrite	Whispy	2	Pyrite	Whispy	1			1
MT-JS-051	Silica	-	Pervassive				Arsenopyrite	Disseminated	5						1
MT-JS-052	Silica		Pervassive				Pyrite	Disseminated	1						1
MT-JS-034	Chlorite		Fracture Controlled				i ynte	Disseminated	1						+
MT-DB-071	Chlorite	Strong							+						+
MT-JS-049	Silica	-	Pervassive												+
MT-JS-049	Silica		Fracture Controlled				Pyrite	Stringers	1						+
MT-JS-065	Chlorite		Pervassive	Silica	Weak	Patchy	Pyrite	Disseminated	1						+
MT-JS-068	Chlorite		Pervassive	Silica	WEak	Fatchy		Disseminated	+ +	-		-			+
MT-JS-069	Chlorite		Fracture Controlled				Pyrite Pyrite	Disseminated	2			-			+
MT-JS-069	Silica		Patchy	Chlorita	Strong	Domaccina			3			-			+
MT-DB-075		U	,	Chlorite	Strong Weak	Pervassive	Pyrite	Whispy	3	, 		-		-	+
MT-JS-075	Chlorite	0	Pervassive	Sericite Silica		Pervassive	Chalaanuwita	Vain	1					-	
	Chlorite		Pervassive		Weak	Fracture Controlled	Chalcopyrite	Vein	1			-			+
MT-JS-075	Silica		Pervassive	Chlorite	Strong	Pervassive	Pyrite	Disseminated	_			-	Duruch a tit a	Chuin anns	+-
MT-JS-079	Sericite		Banded	Chlorite	Strong	Fracture Controlled	Pyrite	Semi-Massive	5			-	Pyrrhotite	Stringers	5
MT-JS-080	Sericite		Banded	Chlorite	Strong	Fracture Controlled	Pyrite	Semi-Massive	5			-	Pyrrhotite	Stringers	5
MT-JS-081	Sericite	Moderate		Chlorite	Strong	Fracture Controlled	Pyrite	Semi-Massive	5			_	Pyrrhotite	Stringers	5
MT-JS-090	Chlorite		Banded	Silica	Strong	Pervassive	Pyrite	Disseminated	1	-		-			+
MT-JS-092	Chlorite	0	Pervassive	Silica	Weak	Fracture Controlled									_
MT-JS-094	Chlorite		Fracture Controlled				Chalcopyrite	Fracture Filling	3			_		Vein	_
MT-JS-095	Silica	Moderate					Chalcopyrite	Disseminated	2						
MT-JS-098	Sericite	-	Massive				Chalcopyrite	Fracture Filling		Malachite	Semi-Massive		Pyrite	Disseminated	1
MT-JS-099	Silica		Veins	Calcite	Moderate	Veins	Chalcopyrite	Stringers	2	Pyrite	Disseminated	<u> </u>			+
MT-JS-084	Chlorite	•	Pervassive	Silica	Moderate	Pervassive	Pyrite	Disseminated	1	-		<u> </u>			\perp
MT-JS-085	Chlorite		Fracture Controlled				Pyrite	Disseminated	1			<u> </u>			\downarrow
MT-JS-041	Biotite	0	Pervassive	Calcite	Weak	Patchy	Pyrite	Disseminated	1	-		1			\perp
MT-JS-042	Silica		Patchy						1			1			\downarrow
MT-DB-001	Chlorite	0	Pervassive	Silica	Strong	Pervassive	Pyrite	Disseminated	1	Chalcopyrite	Disseminated			ļ	
MT-DB-002	Silica	0	Pervassive	Sulfide	Strong	Pervassive	Pyrite	Disseminated	1					ļ	
MT-DB-003	Silica	0	Pervassive												
MT-DB-004	Calcite	Moderate	Patchy												
MT-DB-005	Silica		Pervassive	Calcite	Weak	Fracture Controlled									
MT-DB-006	Sulfide		Pervassive				Arsenopyrite	Disseminated	1						
MT-DB-007	Sulfide	Weak	Pervassive	Calcite	Weak	Patchy									
MT-DB-008	Sulfide	Weak	Patchy	Calcite	Weak	Patchy	Pyrite	Vein	1						

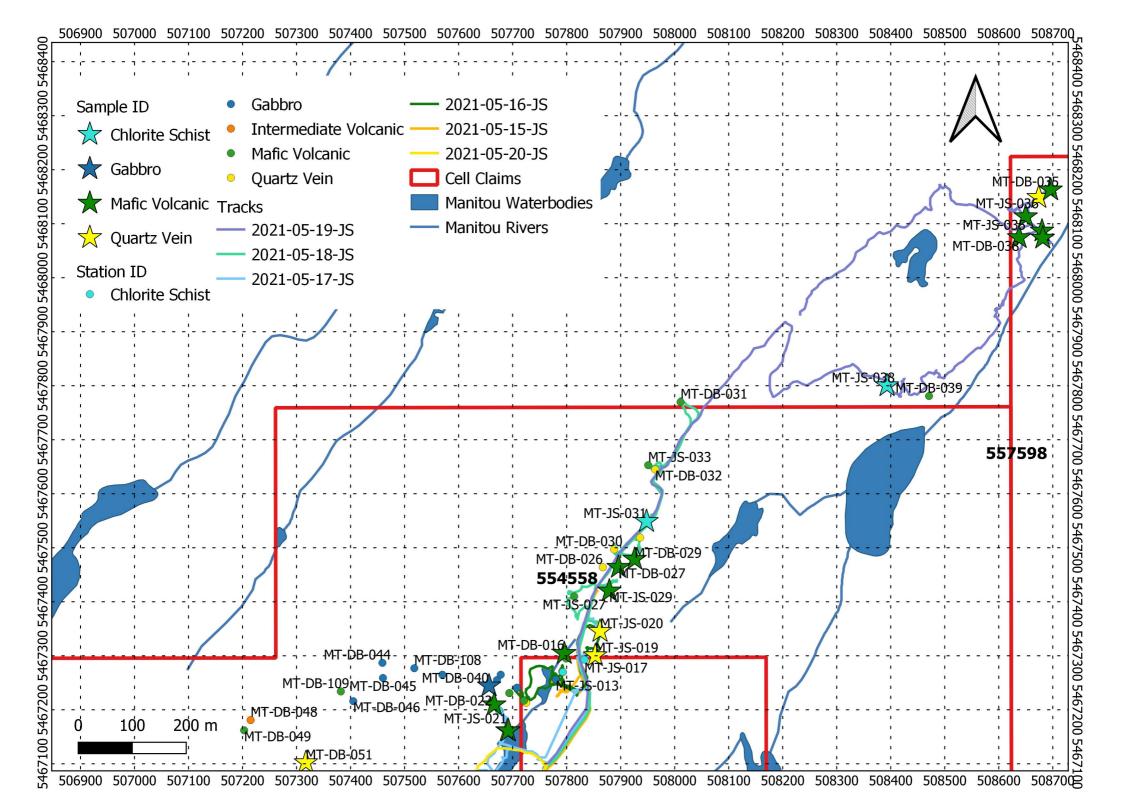
Station_ID	Alteration	Intensity	Style	Alteration	Intensity	Style	Mineralization Type	Style	%	Mineralization Type	Style	%	Mineralization Type	Style	%
MT-DB-009	Sulfide	Strong	Pervassive				Pyrite	Disseminated	5	туре			туре		
MT-DB-011		0	Fracture Controlled				Pyrite		5						
MT-DB-012		Strong					· ·								
MT-DB-013	Sulfide	Strong	Pervassive												
MT-DB-014	Sulfide	Moderate	Pervassive	Silica	Moderate	Pervassive	Pyrite	Disseminated	5						
MT-DB-015	Chlorite	Strong	Pervassive												
MT-DB-016	Chlorite	Strong	Pervassive												
MT-DB-017	Chlorite	Strong	Pervassive												
MT-DB-019	Chlorite	Moderate	Pervassive												
MT-DB-020	Chlorite	Moderate	Pervassive												
MT-DB-021	Sulfide	Strong	Pervassive	Chlorite	Moderate	Pervassive									
MT-DB-024							Pyrite	Disseminated	1						
MT-DB-025							Pyrite	Disseminated	2						
MT-DB-026	Sulfide	Moderate	Pervassive	Calcite	Weak	Patchy									
MT-DB-028	Silica	Strong	Pervassive												
MT-DB-029	Chlorite	Strong	Pervassive												
MT-DB-032	Chlorite	Strong	Pervassive												
MT-DB-033	Sulfide	Moderate	Pervassive				Pyrite	Disseminated	1						
MT-DB-034	Silica	Strong	Pervassive				Pyrite	Disseminated	1						
MT-DB-035	Silica	Strong	Pervassive	Sulfide	Weak	Pervassive	Pyrite	Disseminated	1						
MT-DB-036			Pervassive												
MT-DB-037	Amphibole		Pervassive												
MT-DB-038	Silica	Weak	Pervassive	Sulfide	Weak	Patchy									
MT-DB-040	Chlorite	Weak	Pervassive			,	Pyrite	Disseminated	5						
MT-DB-041	Chlorite	Moderate	Pervassive				Pyrite	Disseminated	5						
MT-DB-043	Chlorite		Pervassive				· ·								
MT-DB-044	Chlorite	Moderate	Pervassive	Sericite	Strong	Pervassive	Pyrite	Disseminated	5						
MT-DB-045	Chlorite	Moderate	Pervassive				· ·								
MT-DB-046	Chlorite	Moderate	Pervassive	Silica	Weak	Pervassive									
MT-DB-050	Sulfide	Moderate	Patchy				Pyrite	Disseminated	1						
MT-DB-054	Silica	Moderate	Veins	Chlorite	Moderate	Pervassive	· ·								
MT-DB-055	Chlorite	Strong	Pervassive	Sulfide	Moderate	Pervassive									
MT-DB-057		_	Fracture Controlled												
MT-DB-058			Patchy	Epidote	Weak	Patchy									
MT-DB-059	Sericite	Strong	Pervassive			,									
MT-DB-061							Pyrite	Disseminated	1						
MT-DB-065	Silica	Strong	Pervassive	Chlorite	Weak	Pervassive									
MT-DB-066	Sulfide	Weak	Patchy	Silica	Strong	Pervassive	Pyrite	Disseminated	1	Chalcopyrite	Disseminated				
MT-DB-067			Pervassive		Ŭ		1	l		. ,					1
MT-DB-068		Strong	Pervassive				1	l							
MT-DB-069							Pyrite	Disseminated	1						
MT-DB-073	Chlorite	Weak	Pervassive				1 ´	1							
MT-DB-074			Pervassive				1	l							
MT-DB-077		Moderate		Sericite	Moderate	Patchy	1								
MT-DB-079		Strong	Pervassive			, í	Pyrite	Disseminated	1						
	Sulfide	U	Pervassive	1			Pyrite	Disseminated	1						
			Pervassive	Silica	Moderate	Pervassive	1		\square			1			
	Silica	Strong	Pervassive				1	1							1
MT-DB-084		Strong	Pervassive	1			1	1				1			1
	Silica		Pervassive	1			Chalcopyrite	Disseminated	2	Pyrite	Disseminated	1			
MT-DB-086							Pyrite	Disseminated	1						

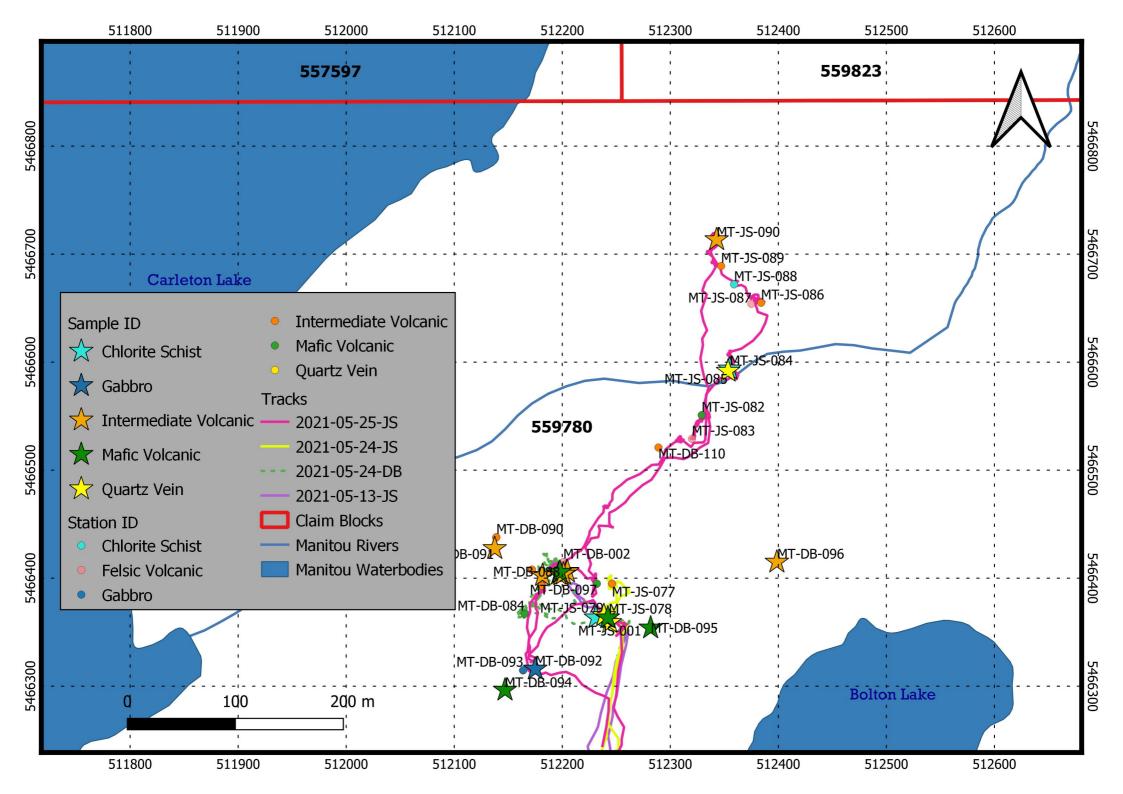
Station_ID	Alteration	Intensity	Style	Alteration	Intensity	Style	Mineralization Type	Style	%	Mineralization Type	Style	%	Mineralization Type	Style	%
MT-DB-087	Silica	Strong	Massive				Chalcopyrite	Disseminated	1						
MT-DB-088	Chlorite	Strong	Pervassive	Sericite	Weak	Pervassive	Pyrite	Disseminated	1						
MT-DB-091		Strong	Pervassive				Pyrite	Disseminated	1						
MT-DB-092	Chlorite	Moderate	Fracture Controlled	Silica	Weak	Pervassive	Pyrite	Disseminated							
MT-DB-094	Chlorite	Weak	Pervassive												
MT-DB-096	Silica	Strong	Pervassive												
MT-DB-098	Silica	Strong	Pervassive	Sulfide	Moderate	Pervassive	Pyrite	Disseminated	1						
MT-DB-099	Silica	Strong	Pervassive	Sulfide	Moderate	Pervassive	Pyrite	Disseminated	2						
MT-DB-101	Silica		Massive	Sulfide	Moderate	Pervassive									
MT-DB-103	Chlorite	Moderate	Pervassive				Pyrite	Disseminated	1						
MT-DB-104	Sulfide	Strong	Pervassive										Bornite		
MT-DB-105	Sulfide	Strong	Pervassive												
MT-DB-106	Sulfide	Moderate	Pervassive												
MT-DB-108	Chlorite	Moderate	Pervassive	Silica	Moderate	Pervassive									
MT-JS-007	Chlorite	Strong	Pervassive												
MT-JS-012	Chlorite	Strong	Fracture Controlled												
MT-JS-013	Silica	Strong	Patchy	Calcite	Weak	Patchy									
MT-JS-014	Calcite	Weak	Patchy	Chlorite	Strong	Fracture Controlled									
MT-JS-015	Silica	Strong	Patchy	Calcite	Weak	Patchy									
MT-JS-016	Silica	Moderate	Patchy	Chlorite	Moderate	Pervassive									
MT-JS-019	Silica	Moderate	Patchy												
MT-JS-021	Calcite	Moderate	Fracture Controlled												
MT-JS-023	Silica	Strong	Pervassive	Amphibole	Weak	Patchy									
MT-JS-024	Chlorite	Strong	Pervassive	Silica	Weak	Pervassive									
MT-JS-025	Chlorite	Strong	Pervassive	Calcite	Moderate	Patchy									
MT-JS-026	Calcite	Moderate	Pervassive	Chlorite	Moderate	Fracture Controlled									
MT-JS-027	Silica	Moderate	Pervassive	Chlorite	Strong	Pervassive									
MT-JS-028	Chlorite	Strong	Pervassive	Amphibole	Weak	Patchy									
MT-JS-030	Chlorite	Weak	Fracture Controlled	Calcite	Weak	Pervassive									
MT-JS-031	Chlorite	Strong	Pervassive	Amphibole	Weak	Patchy									
MT-JS-033	Chlorite	Strong	Pervassive	Silica	Moderate	Patchy									
MT-JS-037	Chlorite	Weak	Fracture Controlled	Calcite	Moderate	Pervassive									
MT-JS-039	Silica	Moderate	Patchy	Calcite	Weak	Patchy									
MT-JS-040	Silica	Moderate	Fracture Controlled	Calcite	Moderate	Fracture Controlled	Chalcopyrite	Disseminated	1						
MT-JS-044	Chlorite	Strong	Fracture Controlled												
MT-JS-045	Silica	Strong	Pervassive												
MT-JS-046			Patchy	Silica	Weak										
MT-JS-053	Silica	Moderate	Pervassive												
MT-JS-055	Silica														
MT-JS-060	Chlorite	Strong	Pervassive												_
MT-JS-061	Silica	Weak	Fracture Controlled				Pyrite	Stringers	1						_
MT-JS-064	Silica	Weak	Fracture Controlled	Chlorite	Strong	Pervassive									\perp
MT-JS-067	Silica		Patchy												
MT-JS-073	Chlorite	Strong	Pervassive	Silica	Weak	Patchy									
MT-JS-076	Silica	Strong	Pervassive												
MT-JS-077	Silica	Weak	Fracture Controlled	Chlorite	Strong	Pervassive									
MT-JS-078	Silica	_	Banded	Chlorite	Strong	Banded									
MT-JS-086	Chlorite		Pervassive												
MT-JS-089	Silica		Pervassive	Chlorite	Moderate	Pervassive									
MT-JS-091	Chlorite	Strong	Pervassive	Silica	Weak	Fracture Controlled									
MT-JS-096	Chlorite	Strong	Pervassive	Silica	Weak	Patchy									

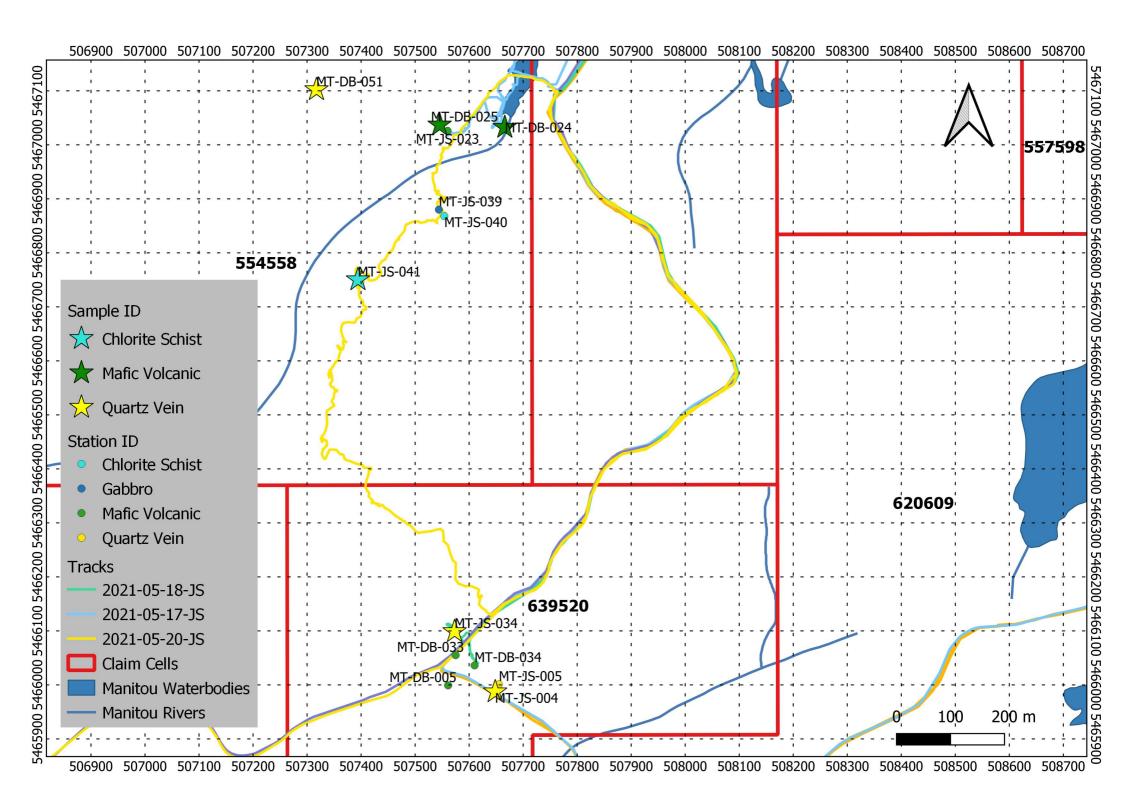

Station_ID	Alteration	Intensity	Style	Alteration	Intensity	Style	Mineralization Type	Style	%	Mineralization Type	Style	%	Mineralization Type	Style	%
MT-JS-100	Silica	Moderate	Patchy	Chlorite	Strong	Pervassive									


	Structure				Structure				Structure			
Station_ID	Туре	Az	Dip	Constructor	Туре	Az	Dip	Constructor	Туре	Az	Dip	Constructor
MT-DB-100	Dyke	290	88		турс				Type			
MT-JS-045	Dyke	204										
MT-JS-010	Foliation	48	86	Chlorite	Foliation	30	87	Chlorite				
MT-JS-029	Foliation	70	72				_					
MT-JS-032	Foliation	99	85									
MT-JS-035	Foliation	27	69									
MT-JS-038	Foliation	54	90									
MT-JS-051	Foliation	220	82									
MT-DB-071	Foliation	50	59	Chlorite								
MT-JS-049	Foliation	205	85									
MT-JS-071	Foliation	40	80									
MT-DB-075	Foliation	25	73	Chlorite								
MT-JS-074	Foliation	210	80									
MT-JS-099	Foliation	140										
MT-DB-014	Foliation	32	45	Chlorite								
MT-DB-018	Foliation	20	85	Chlorite								
MT-DB-023	Foliation	344	24									
MT-DB-027	Foliation	45	60	Chlorite								
MT-DB-034	Foliation	22	26	Chlorite								
MT-DB-035	Foliation	115	90	Chlorite								
MT-DB-036	Foliation	238	58	Chlorite								
MT-DB-038	Foliation	318	85	Chlorite	Vein	310	88	Quartz				
MT-DB-039	Foliation	352	44									
MT-DB-042	Foliation	24	68									
MT-DB-043	Foliation	50	65	Chlorite	Foliation	28		Chlorite				
MT-DB-045	Foliation	136	67	Chlorite	Vein	285	28	Quartz				
MT-DB-046	Foliation	40	72									
MT-DB-049	Foliation	50	40	Chlorite	Contact	58	26		Foliation	34	39	
MT-DB-050	Foliation	56										
MT-DB-053	Foliation	6	64	Chlorite								
MT-DB-054	Foliation	200	88									
MT-DB-055	Foliation	20	65	Chlorite	Vein	116	85					
MT-DB-056	Foliation	130	88	Chlorite								
MT-DB-057	Foliation	44	74									
MT-DB-058	Foliation	40	70									
MT-DB-063	Foliation	60	50									
MT-DB-067	Foliation	41	90									
MT-DB-069	Foliation	24		Chlorite								
MT-DB-072	Foliation	350	85									
MT-DB-076	Foliation	360	59	Chlorite								
MT-DB-078	Foliation	38	69	Chlorite								
MT-DB-082	Foliation	26	90									
MT-DB-083	Foliation	210	85									
MT-DB-084	Foliation	69	72									
MT-DB-089	Foliation	81	90		Vein	318	70					
MT-DB-090	Foliation	240	88		Vein	240	85					
MT-DB-091	Foliation	75	88		Fault	105	50		Fault	118	63	
MT-DB-094	Foliation	34	80		Vein	30	40					
MT-DB-095	Foliation	35	62		Vein	110	60					
MT-DB-096	Foliation	30	65									
MT-DB-102	Foliation	5	88	Sericite	Foliation	40	84	Quartz				
MT-DB-103	Foliation	360	71									
MT-DB-104	Foliation	10	85									
MT-DB-105	Foliation	360	76									
					1			1				·


Station ID	Structure	Az	Din	Constructor	Structure	Az	Din	Constructor	Structure	Az	Din	Constructor
Station_ID	Туре	AZ	Dip	Constructor	Туре	AZ	Dip	Constructor	Туре	AZ	Dip	Constructor
MT-DB-108	Foliation	25	70	Chlorite	Foliation	358		Chlorite				
	Foliation	210	85		Foliation	360	88					
MT-JS-009	Foliation	220	90									
MT-JS-013	Foliation	40			Fracture	30		Chlorite				
MT-JS-015	Foliation	16		Chlorite								
MT-JS-016	Foliation	44	40	Chlorite								
MT-JS-019	Foliation	60										
MT-JS-023	Foliation	40	50									
MT-JS-024	Foliation	5		Chlorite								
MT-JS-025	Foliation	10		Chlorite								
MT-JS-026	Foliation	30		Chlorite								
	Foliation	44	60									
MT-JS-031	Foliation	99	85									
MT-JS-048	Foliation	217	72		Foliation	210						
MT-JS-057	Foliation	206	67									
MT-JS-060	Foliation	55										
MT-JS-061	Foliation	92										
MT-JS-067	Foliation	210	80									
MT-JS-076	Foliation	45	85									
MT-JS-078	Foliation	232	88									
	Foliation	50										
MT-JS-101	Foliation	70	81									
MT-JS-063	Fracture	350	85		Foliation	220	38	-				
MT-JS-043	Shear Zone	35		Chlorite	Vein	35	65	Quartz				
MT-JS-050	Shear Zone	224	82									
MT-JS-065	Shear Zone	204	90	Chlorite								
MT-JS-090	Shear Zone	50	65									
MT-JS-092	Shear Zone	70	05	0								
MT-JS-094	Shear Zone	160		Quartz								
MT-JS-095	Shear Zone	160		Chlorite	\/_!-	50		Outente				
MT-JS-084	Shear Zone	50 50		Chlorite	Vein	50		Quartz				
MT-JS-085	Shear Zone			Quartz								
MT-DB-015	Shear Zone	23 41	85 60	Chlorite								
MT-DB-062	Shear Zone			Chlorito	Foliation	255	70					
MT-JS-007	Shear Zone	355			Foliation	355	70					
MT-JS-039 MT-JS-040	Shear Zone Shear Zone	38 38		Chlorite								
MT-JS-040	Shear Zone	198		Chionte								
MT-JS-055 MT-JS-059	Shear Zone	30										
MT-JS-039	Shear Zone	45		Chlorite								
MT-JS-077 MT-JS-082	Shear Zone	50	05	chionte								
MT-JS-091	Shear Zone	37	82	Chlorite	Vein	34						
MT-JS-091 MT-JS-093	Shear Zone	37		Chlorite	veni	54						
MT-JS-004	Vein	214		Quartz								
MT-JS-006	Vein	350		Quartz								
MT-JS-018	Vein	60	50	Quartz								
MT-JS-018 MT-JS-020	Vein	60		200112								
MT-JS-020 MT-JS-022	Vein	152		Quartz								
MT-JS-022 MT-JS-008	Vein	350	90	Quartz								
MT-JS-034	Vein	50	90	~~~~								
MT-JS-036	Vein	240		Quartz								
MT-JS-069	Vein	40										
MT-JS-098	Vein	142	50	Quartz								
MT-DB-026	Vein	54	85									
		7	55		I							L]


Station_ID	Structure Type	Az	Dip	Constructor	Structure Type	Az	Dip	Constructor	Structure Type	Az	Dip	Constructor
MT-DB-029	Vein	30	45									
MT-DB-032	Vein	216	85	Quartz								
MT-DB-041	Vein	40	55									
MT-DB-051	Vein	220	58									
MT-DB-064	Vein	49	40									
MT-DB-070	Vein	44	60	Quartz								
MT-JS-005	Vein	214	82	Quartz								
MT-JS-012	Vein	240	62	Quartz								
MT-JS-014	Vein	16	78	Quartz	Vein	70						
MT-JS-021	Vein	164										
MT-JS-030	Vein	20	90									
MT-JS-037	Vein	238		Quartz								
MT-JS-044	Vein	35		Quartz								
MT-JS-097	Vein	150	50									


APPENDIX D: MAPS



APPENDIX E: SAMPLE LOCATIONS AND AU RESULTS

Station_ID	Easting	Northing	Elevation (m)	Sample_ID	Au_ppm	Ag_ppm	Cu_ppm
MT-JS-001	512244	5466359	402	B731501	15.5	2.64	64.2
MT-JS-002	512199	5466403	391	B731502	5.35	0.5	41.5
MT-JS-003	512199	5466403	391	B731503	26.7	6.93	123.5
MT-JS-004	507648	5465987	395	B731504	0.07	0.05	95.7
MT-JS-006	510113			B731505	0.59	0.09	19.9
MT-JS-010	510541			B731506	0.01	0.05	71.2
MT-JS-011	510609			B731507	0	0.03	31.2
MT-JS-018	507853			B731508	0.01	1.29	1355
MT-JS-020	507862	5467345		B731509	0.46	0.1	36.6
MT-JS-022	507690			B731510	0.07	0.87	2090
MT-JS-029	507879	5467420		B731511	0.01	0.05	121
MT-JS-032	507948	5467549		B731512	0	0.04	58.4
MT-JS-035	508650	5468113		B731513	0	0.03	25
MT-JS-038	508393	5467800		B731514	0	0.03	113.5
MT-JS-038	510927	5467188		B731515	0	0.02	28.6
MT-JS-043	510527	5466585		B731516	0	0.02	28.9
MT-JS-050	510110			B731517	0	0.01	189
MT-JS-050	511253	5467161		B731518	0	0.05	113.5
MT-JS-051	511233	5467126		B731519	0	0.07	113.5
MT-JS-032	507573			B731520	0.05	0.05	179.5
MT-JS-034	508674	5468149		B731521	0.03	0.79	179.5
MT-JS-030	511254			B731522	0	0.01	548
MT-JS-049	510783	5467450		B731523	0	0.28	134
MT-JS-065	510783	5467444		B731524	0	0.00	71.1
MT-JS-068	510989	5467359		B731525	0	0.02	28
MT-JS-069	510989	5467361		B731526	0	0.01	13
MT-JS-069	5110392	5467376		B731527	0	0.01	91.9
MT-JS-071 MT-JS-074	510667	5467471		B731528	0	0.04	146
MT-JS-074	512231			B731528 B731529	0.01	0.04	91.8
MT-JS-075				B731529 B731530	2.4		103.5
	512238						
MT-JS-080 MT-JS-081	512238			B731531	4.68	0.4	179.5
	512238			B731532 B731533	0.5	0.03	31.1
MT-JS-090 MT-JS-092	512343				0	0.04	17.5
	511260			B731534 B731535	0	0.01	8.5
MT-JS-094	511497	5468288			0.04	0.36	692
MT-JS-095	511497			B731536	0.01	0.15	
MT-JS-098	512127	5468377		B731537	0.01	0.49	
MT-JS-099	512133			B731538	0	0.13	407
MT-JS-084	512355			B731539	0	0.04	34.3
MT-JS-085	512353			B731540	0 12	0.02	6.4
MT-JS-041	507394			B731541	0.12	1.91	2670
MT-JS-042	510904			B731542	0.04	0.22	149.5
MT-DB-028	507926			B731701	0	0.04	136.5
MT-DB-027	507896			B731702	0.01	0.04	86.8
MT-DB-040	507656			B731703	0.07	0.21	114.5
MT-DB-036	508680	5468087	413	B731704	0	0.12	153.5

Station_ID	Easting	Northing	Elevation (m)	Sample_ID	Au_ppm	Ag_ppm	Cu_ppm
MT-DB-051	507317	5467102	417	B731705	0	<0.01	10.3
MT-DB-021	507666	5467209	414	B731706	0.16	1.63	144.5
MT-DB-016	507796	5467305	415	B731707	0.01	0.03	43.3
MT-DB-023	507692	5467161	412	B731708	0	0.03	71.7
MT-DB-035	508696	5468163	417	B731709	0	0.02	37.4
MT-DB-003	512197	5466404	386	B731710	0	0.03	3.2
MT-DB-038	508638	5468074	420	B731711	0	0.01	23
MT-DB-037	508682	5468074	396	B731712	0	0.02	94.7
MT-DB-025	507545	5467037	407	B731713	0.01	0.09	87.3
MT-DB-024	507666	5467032	406	B731714	0.01	0.04	78.3
MT-DB-065	510492	5466804	424	B731715	0	0.05	45.2
MT-DB-067	510490	5466786	422	B731716	0	0.01	10.9
MT-DB-069	510478	5466778	424	B731717	0	0.03	83.4
MT-DB-070	510476	5466769	428	B731718	0	0.01	8.7
MT-DB-074	510401	5466697	413	B731719	0	0.02	38.1
MT-DB-077	510479	5466586	426	B731720	0	0.04	113
MT-DB-080	510498	5466648	422	B731721	0	0.01	12.3
MT-DB-081	510502	5466642	423	B731722	0.33	0.13	96.3
MT-DB-082	512182	5466403	394	B731723	0	0.02	3.8
MT-DB-086	512204	5466406	400	B731724	24.6	20.5	403
MT-DB-085	512205	5466406	400	B731725	0.02	0.08	62.2
MT-DB-087	512201	5466404	400	B731726	0.02	0.07	16.5
MT-DB-088	512198	5466406	395	B731727	0.04	0.07	19.1
MT-DB-091	512137	5466428	394	B731728	0.01	0.24	30.3
MT-DB-092	512175	5466316	406	B731729	0	0.04	68.5
MT-DB-094	512147	5466296	409	B731730	0	0.07	15.6
MT-DB-095	512282	5466354	395	B731731	0	0.01	9.4
MT-DB-096	512399	5466415	387	B731732	0	0.01	2.4
MT-DB-001	512242			B731733	0.24	0.41	680
MT-DB-098	510617	5466756	390	B731734	0	0.01	28.9
MT-DB-099	510645	5466755	395	B731735	0.01	0.09	79.3
MT-DB-101	510682	5466814	389	B731736	0	0.04	118.5
MT-DB-102	510824	5466628	402	B731737	0	0.01	24
MT-DB-103	510714	5466670	409	B731738	0	0.01	42
MT-DB-105	510502	5466704	404	B731739	0.24	0.32	59.9
MT-DB-106	510502	5466697	404	B731740	0.01	0.07	17.9
MT-DB-107	510518	5466792	401	B731741	0.01	0.12	121.5

APPENDIX F: ASSAY CERTIFICATES

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: NORTHERN DOMINION METALS CORPORATION 1430-800 WEST PENDER STREET VANCOUVER BC V6C 2V6

Page: 1 Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 23-JUN-2021 Account: NDMCDEZG

CERTIFICATE TB21144106

Project: Manitou

This report is for 83 samples of Rock submitted to our lab in Thunder Bay, ON, Canada on 4-JUN-2021.

The following have access to data associated with this certificate:

ROB CARPENTER	DAN MACNEL	LORI PASLAWSKI
ALAN WAINWRIGHT		

	SAMPLE PREPARATION
ALS CODE	DESCRIPTION
WEI-21	Received Sample Weight
CRU-QC	Crushing QC Test
PUL-QC	Pulverizing QC Test
CRU-31	Fine crushing – 70% <2mm
SPL-21	Split sample – riffle splitter
PUL-31	Pulverize up to 250g 85% <75 um
LOG-21	Sample logging – ClientBarCode
	ANALYTICAL PROCEDURES

	ANALYTICAL PROCEDURE	S
ALS CODE	DESCRIPTION	INSTRUMENT
Au-ICP21	Au 30g FA ICP–AES Finish	ICP-AES
Au-GRA21	Au 30g FA-GRAV finish	WST-SIM
ME-MS41	Ultra Trace Aqua Regia ICP-MS	

This is the Final Report and supersedes any preliminary report with this certificate number.Results apply to samples as submitted.All pages of this report have been checked and approved for release. ***** See Appendix Page for comments regarding this certificate *****

Signature: Saa Traxler, General Manager, North Vancouver

ALS

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: NORTHERN DOMINION METALS CORPORATION 1430-800 WEST PENDER STREET VANCOUVER BC V6C 2V6

Page: 2 – A Total # Pages: 4 (A – D) Plus Appendix Pages Finalized Date: 23–JUN–2021 Account: NDMCDEZG

Project: Manitou

								-								
Sample Description	Method Analyte Units LOD	WEI–21 Recvd Wt. kg 0.02	ME-MS41 Ag ppm 0.01	ME-MS41 Al % 0.01	ME-MS41 As ppm 0.1	ME-MS41 Au ppm 0.02	ME-MS41 B ppm 10	ME-MS41 Ba ppm 10	ME-MS41 Be ppm 0.05	ME-MS41 Bi ppm 0.01	ME-MS41 Ca % 0.01	ME-MS41 Cd ppm 0.01	ME-MS41 Ce ppm 0.02	ME-MS41 Co ppm 0.1	ME-MS41 Cr ppm 1	ME-MS41 Cs ppm 0.05
B731501 B731502 B731503 B731504 B731505		3.20 2.17 2.13 0.48 0.72	2.64 0.50 6.93 0.05 0.09	0.04 0.35 1.07 1.26 0.18	3.6 3.9 1.9 0.3 1.5	21.8 2.65 23.5 0.05 0.43	10 <10 <10 <10 <10	<10 20 20 20 10	<0.05 0.07 0.12 <0.05 <0.05	0.02 0.06 0.10 0.01 0.05	0.02 0.65 2.74 2.06 0.44	0.22 3.61 1.08 0.05 0.02	0.20 11.85 26.1 2.46 1.51	2.1 2.6 9.3 19.0 4.6	34 21 29 58 25	0.06 0.11 0.35 0.26 0.07
B731505 B731506 B731507 B731508 B731509 B731510		0.72 0.58 0.98 0.97 0.46 0.82	0.05 0.03 1.29 0.10 0.87	2.77 2.72 0.68 0.96 1.28	0.5 0.6 2.2 0.7 7.4	<0.43 <0.02 <0.02 <0.02 0.30 0.18	<10 <10 <10 <10 <10 <10	20 10 10 10 10 10	<0.05 0.08 <0.05 <0.05 <0.05 <0.05	0.03 0.02 0.01 0.02 0.01 0.02	10.15 1.12 1.23 0.22 3.17	0.02 0.23 0.04 0.22 0.09 0.38	7.10 5.14 0.27 0.44 0.37	37.6 24.1 15.0 7.1 36.7	115 50 52 117 107	0.09 0.17 0.10 0.11 0.06
B731510 B731511 B731512 B731513 B731514 B731515		1.82 1.10 0.85 0.49 0.65	0.05 0.04 0.03 0.10 0.02	4.17 2.78 1.68 1.74 0.93	0.1 0.2 0.2 <0.1 0.2	<0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02	<10 <10 <10 <10 <10 <10	10 20 20 110 280	<0.05 <0.05 <0.10 0.07 <0.05	0.01 0.01 0.02 0.02 0.01	1.84 2.28 1.80 3.47 0.65	0.04 0.06 0.06 0.09 0.05	0.98 2.45 12.85 12.45 12.45 6.50	24.2 20.2 15.3 20.8 7.6	305 170 39 52 29	0.06 0.12 0.13 0.44 1.22
B731516 B731517 B731518 B731519 B731520		0.96 1.48 0.71 1.24 0.73	0.01 0.09 0.07 0.05 0.79	0.40 0.87 2.29 1.48 0.06	1.5 0.3 0.4 0.2 0.8	<0.02 <0.02 0.05 <0.02 0.03	<10 <10 <10 <10 <10	10 10 10 10 <10	<0.05 0.07 0.15 0.07 <0.05	0.03 0.05 <0.01 0.01 0.02	0.14 1.36 1.58 0.77 0.02	0.02 0.03 0.04 0.02 0.01	1.21 14.50 17.85 18.35 0.13	6.2 44.0 29.9 10.1 1.2	30 51 87 119 30	0.07 <0.05 <0.05 <0.05 <0.05
B731521 B731522 B731523 B731523 B731524 B731525		0.83 0.42 0.77 0.89 0.75	0.01 0.28 0.06 0.02 0.01	0.07 1.20 4.11 2.26 3.87	0.1 1.7 0.3 0.7 0.6	<0.02 <0.02 <0.02 <0.02 <0.02 <0.02	<10 <10 <10 <10 <10	<10 10 50 20 50	<0.05 0.15 0.14 0.09 0.13	<0.01 0.09 0.02 0.01 0.02	0.03 1.14 0.85 3.54 1.55	0.01 0.21 0.12 0.06 0.05	0.11 3.07 8.72 5.99 26.0	0.4 68.7 45.6 20.8 33.4	26 35 91 45 46	<0.05 0.05 0.38 0.08 0.08
B731526 B731527 B731528 B731529 B731529 B731530		0.71 0.57 1.05 0.63 1.16	0.01 0.04 0.04 0.05 0.13	1.35 4.02 4.87 3.94 0.32	2.6 0.4 0.4 1.7 5.3	<0.02 <0.02 <0.02 <0.02 0.96	<10 <10 <10 <10 <10	50 10 10 160 10	0.07 0.11 0.10 0.24 <0.05	0.14 0.01 0.01 0.02 0.03	0.14 0.92 3.33 1.52 1.64	0.04 0.08 0.15 0.13 0.53	12.85 6.52 16.00 4.24 1.44	11.1 38.3 38.6 47.8 5.9	22 87 78 200 27	0.06 0.07 0.14 7.46 0.37
B731531 B731532 B731533 B731533 B731534 B731535		0.81 1.15 1.07 0.72 0.75	0.40 0.03 0.04 0.01 0.36	0.16 0.94 2.43 4.67 0.27	1.1 0.4 0.4 0.9 0.4	4.35 0.05 <0.02 <0.02 0.02	<10 <10 <10 <10 <10	10 50 430 20 <10	<0.05 0.06 0.28 0.09 <0.05	0.02 0.02 0.01 0.02 <0.01	0.38 0.70 0.69 4.72 1.13	1.56 0.06 0.04 0.15 0.11	0.20 47.2 33.2 3.60 0.26	5.4 1.6 19.4 44.5 4.4	37 22 88 169 26	0.10 0.52 1.70 0.13 0.05
B731536 B731537 B731538 B731539 B731540		0.61 0.50 0.93 0.76 0.69	0.15 0.49 0.13 0.04 0.02	5.19 0.60 2.79 2.02 0.20	0.3 1.5 0.6 0.5 0.2	<0.02 <0.02 <0.02 <0.02 <0.02 <0.02	<10 <10 <10 <10 <10	10 10 10 40 10	<0.05 <0.05 0.05 0.19 <0.05	<0.01 0.01 0.01 0.02 0.01	0.77 1.29 3.50 0.65 0.33	0.10 0.15 0.12 0.02 0.02	2.04 0.77 1.06 20.5 1.62	50.3 28.0 40.2 16.6 1.8	175 45 306 89 35	0.16 0.06 0.05 0.44 0.07

ALS

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: NORTHERN DOMINION METALS CORPORATION 1430-800 WEST PENDER STREET VANCOUVER BC V6C 2V6

Page: 2 - B Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 23-JUN-2021 Account: NDMCDEZG

Project: Manitou

Sample Description	Method	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41
	Analyte	Cu	Fe	Ga	Ge	Hf	Hg	In	K	La	Li	Mg	Mn	Mo	Na	Nb
	Units	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm
	LOD	0.2	0.01	0.05	0.05	0.02	0.01	0.005	0.01	0.2	0.1	0.01	5	0.05	0.01	0.05
B731501		64.2	0.47	0.19	<0.05	<0.02	0.09	0.006	0.01	<0.2	0.3	0.02	40	1.55	<0.01	0.10
B731502		41.5	0.99	1.14	<0.05	0.40	0.01	0.012	0.09	5.4	2.3	0.15	127	4.41	0.01	0.18
B731503		123.5	1.98	3.05	<0.05	0.45	0.06	0.011	0.15	12.0	5.0	0.70	477	3.77	0.01	0.24
B731504		95.7	2.38	3.05	0.06	<0.02	<0.01	<0.005	0.02	1.1	7.5	1.03	278	1.63	0.03	0.10
B731505		19.9	0.88	0.50	<0.05	0.02	<0.01	<0.005	0.02	0.8	0.6	0.15	178	1.84	<0.01	0.06
B731506		71.2	5.83	10.25	0.07	0.03	<0.01	0.031	0.06	2.7	9.4	1.66	1520	0.52	0.02	0.08
B731507		31.2	5.05	6.47	0.12	0.07	<0.01	0.008	0.02	2.0	6.1	1.97	566	0.76	0.07	0.51
B731508		1355	1.41	1.59	0.05	<0.02	<0.01	0.013	0.01	<0.2	2.2	0.34	211	1.40	0.03	0.12
B731509		36.6	1.14	2.05	<0.05	<0.02	0.01	<0.005	0.01	0.2	3.0	0.76	182	1.53	0.05	0.11
B731510		2090	1.76	2.82	0.06	<0.02	<0.01	0.036	0.01	0.2	3.4	0.87	395	1.35	0.06	0.10
B731511 B731512 B731513 B731513 B731514 B731515		121.0 58.4 25.0 113.5 28.6	2.45 2.47 3.11 3.46 1.89	5.33 4.34 5.11 5.36 3.54	0.07 0.08 0.13 0.15 0.05	0.02 0.02 0.04 0.03 0.03	<0.01 <0.01 <0.01 <0.01 <0.01	<0.005 0.007 0.018 0.019 0.011	0.01 0.02 0.04 0.21 0.32	0.4 1.0 5.0 4.8 2.6	10.3 10.1 4.3 6.7 4.3	2.41 1.74 1.17 1.07 0.49	303 515 464 735 320	0.75 0.78 0.64 0.12 1.39	0.27 0.21 0.14 0.13 0.03	<0.05 0.09 0.38 0.46 0.45
B731516		28.9	1.19	1.09	<0.05	<0.02	<0.01	<0.005	0.02	0.5	1.1	0.30	170	1.42	0.01	0.07
B731517		189.0	2.81	2.84	0.13	0.25	<0.01	0.008	0.02	6.8	1.3	0.26	210	1.28	0.05	1.22
B731518		113.5	4.78	5.79	0.13	0.10	<0.01	0.020	0.05	7.4	8.5	1.40	775	0.80	0.14	0.43
B731519		122.5	3.76	3.89	0.10	0.08	<0.01	0.008	0.04	7.5	5.4	0.79	300	0.78	0.07	0.79
B731520		179.5	0.73	0.24	<0.05	<0.02	<0.01	0.028	0.01	<0.2	0.4	0.03	44	1.69	0.01	0.11
B731521		4.0	0.32	0.15	<0.05	<0.02	<0.01	<0.005	<0.01	<0.2	0.3	0.01	74	1.46	0.02	0.10
B731522		548	11.75	7.23	0.23	0.12	<0.01	0.050	0.02	1.3	1.3	0.24	463	1.38	0.05	0.90
B731523		134.0	8.20	12.55	0.15	0.05	<0.01	0.029	0.04	3.4	13.8	2.91	1100	0.66	0.06	0.21
B731524		71.1	4.75	6.10	0.09	0.03	<0.01	0.014	0.03	2.3	5.8	1.56	1220	1.06	0.07	0.40
B731525		28.0	6.53	13.10	0.05	0.11	<0.01	0.014	0.10	12.7	20.4	2.90	576	0.60	0.03	<0.05
B731526 B731527 B731528 B731529 B731529 B731530		13.0 91.9 146.0 91.8 103.5	2.40 7.71 9.90 6.07 1.68	4.07 12.60 17.55 6.68 1.10	<0.05 0.13 0.19 0.12 <0.05	0.05 0.03 0.05 0.04 0.06	<0.01 <0.01 <0.01 <0.01 0.01	<0.005 0.013 0.066 0.006 0.007	0.12 0.02 0.01 0.94 0.05	4.5 2.5 6.1 2.0 0.7	5.0 18.0 13.4 20.3 1.0	0.84 3.11 3.45 3.28 0.25	393 850 960 873 251	1.43 0.92 0.46 1.10 1.56	0.02 0.05 0.03 0.01 0.01	0.07 0.20 0.06 0.07 0.09
B731531 B731532 B731533 B731533 B731534 B731535		179.5 31.1 17.5 8.5 692	0.91 1.30 3.21 7.30 0.92	0.43 2.65 8.36 9.73 0.74	<0.05 0.05 0.10 0.07 <0.05	<0.02 0.61 0.31 0.03 <0.02	0.03 <0.01 <0.01 <0.01 <0.01	<0.005 0.008 0.008 0.022 0.029	0.03 0.16 1.18 0.09 0.01	<0.2 23.1 15.3 1.3 <0.2	0.6 4.0 14.6 13.1 0.7	0.09 0.59 1.99 3.84 0.20	76 209 506 1280 160	2.59 6.90 1.13 1.03 1.81	0.01 0.02 0.04 0.01 0.01	0.08 0.67 0.21 0.06 0.12
B731536		407	8.83	13.00	0.11	0.03	<0.01	0.017	0.02	0.8	14.7	4.23	1090	0.84	0.03	0.07
B731537		1275	2.00	2.01	<0.05	<0.02	<0.01	0.027	0.02	0.4	1.2	0.21	299	1.40	0.01	0.12
B731538		407	4.46	5.81	0.12	0.05	<0.01	0.013	0.01	0.5	7.2	2.55	753	0.64	0.02	0.09
B731539		34.3	3.17	8.64	0.10	0.17	<0.01	0.014	0.10	10.2	18.5	1.74	429	1.01	0.04	0.24
B731540		6.4	0.55	0.78	<0.05	<0.02	<0.01	<0.005	0.02	0.9	1.1	0.15	85	1.28	0.01	0.15

ALS

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: NORTHERN DOMINION METALS CORPORATION 1430-800 WEST PENDER STREET VANCOUVER BC V6C 2V6

Page: 2 - C Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 23-JUN-2021 Account: NDMCDEZG

Project: Manitou

P																
Sample Description	Method Analyte Units LOD	ME-MS41 Ni ppm 0.2	ME-MS41 P ppm 10	ME-MS41 Pb ppm 0.2	ME-MS41 Rb ppm 0.1	ME-MS41 Re ppm 0.001	ME-MS41 S % 0.01	ME–MS41 Sb ppm 0.05	ME-MS41 Sc ppm 0.1	ME-MS41 Se ppm 0.2	ME-MS41 Sn ppm 0.2	ME-MS41 Sr ppm 0.2	ME-MS41 Ta ppm 0.01	ME-MS41 Te ppm 0.01	ME-MS41 Th ppm 0.2	ME–MS41 Ti % 0.005
B731501	LOD	7.2	20	2.7	0.3	<0.001	0,11	<0.05	0.3	0.4	<0.2	0.4	<0.01	0.02	<0.2	0.011
B731502		5.8	80	2.0	2.6	<0.001	0.20	0.05	0.5	0.5	0.2	8.4	<0.01	0.02	0.9	0.007
B731503		25.7	330	32.5	5.8	0.001	0.25	0.05	1.3	0.5	0.3	32.2	0.01	0.03	1.7	0.041
B731504		40.8	570	2.3	0.8	0.001	0.19	0.06	2.9	0.3	<0.2	4.8	<0.01	0.01	0.2	0.047
B731505		9.6	30	0.9	0.9	<0.001	0.04	0.05	1.0	<0.2	<0.2	4.1	<0.01	0.04	<0.2	<0.005
B731506		95.8	330	1.7	1.6	0.001	0.10	0.05	17 <u>.</u> 7	<0.2	<0.2	63.3	<0.01	0.01	0.3	0.086
B731507		35.8	700	2.1	1.2	0.001	0.03	0.05	6.1	<0.2	0.3	11.8	0.01	0.01	0.2	0.351
B731508		99.9	80	0.8	0.5	<0.001	0.14	0.05	1.1	1.8	<0.2	7.2	<0.01	0.40	<0.2	0.016
B731509		41.8	60	0.8	0.5	0.001	<0.01	<0.05	2.0	<0.2	<0.2	4.4	<0.01	0.02	<0.2	0.012
B731510		132.0	80	0.6	0.5	<0.001	0.23	<0.05	1.8	1.4	<0.2	13.4	<0.01	0.20	<0.2	0.028
B731511		147.5	110	0.8	0.5	<0.001	0.02	<0.05	2.4	<0.2	<0.2	45.2	<0.01	0.02	<0.2	0.052
B731512		77.9	220	1.0	1.5	0.001	0.02	<0.05	5.5	0.2	<0.2	27.9	<0.01	0.03	<0.2	0.131
B731513		27.8	580	4.0	1.7	<0.001	<0.01	0.05	7.5	<0.2	0.3	6.8	<0.01	0.01	0.5	0.157
B731514		63.6	630	1.1	11.4	<0.001	0.03	<0.05	9.5	<0.2	0.3	17.5	<0.01	0.01	0.5	0.168
B731515		13.1	350	0.6	25.8	0.001	0.01	<0.05	3.7	<0.2	0.3	6.3	<0.01	0.01	0.4	0.092
B731516		12 <u>.</u> 7	30	0.5	1.2	<0.001	0.03	<0.05	1.6	<0.2	<0.2	1.2	<0.01	0.02	<0.2	0.006
B731517		70.2	540	0.8	0.4	0.002	0.87	<0.05	6.6	1.1	0.5	7.4	0.01	0.09	0.6	0.390
B731518		67.8	630	0.6	0.4	0.002	0.25	<0.05	12.4	0.8	0.5	4.7	0.01	0.01	1.1	0.340
B731519		13.5	660	0.7	0.6	0.001	0.25	<0.05	10.4	0.4	0.2	4.7	0.01	0.04	0.9	0.307
B731520		5.4	30	0.8	0.4	0.001	0.04	<0.05	0.3	0.5	<0.2	0.9	<0.01	0.23	<0.2	0.005
B731521		2.3	30	0.3	0.1	<0.001	<0.01	<0.05	0.1	<0.2	<0.2	2.6	<0.01	<0.01	<0.2	<0.005
B731522		58.7	560	1.6	0.8	0.001	0.07	0.06	4.9	6.8	0.4	25.3	0.01	0.34	0.3	0.283
B731523		68.9	720	0.9	7.0	0.001	0.16	<0.05	16.0	0.6	0.3	10.2	< 0.01	0.01	0.4	0.147
B731524		34.6	490	0.5	2.0	< 0.001	0.02	<0.05	7.1	0.2	0.2	17.7	< 0.01	0.01	0.3	0.129
B731525		74.3	690	1.2	2.3	<0.001	<0.01	<0.05	4.3	<0.2	<0.2	19.6	<0.01	<0.01	1.8	0.037
B731526		23.0	480	1.1	2.5	<0.001	<0.01	<0.05	1.0	<0.2	<0.2	3.1	<0.01	0.05	0.7	0.012
B731527		56.6	550	0.7	1.3	0.001	0.16	<0.05	9.3	0.6	0.2	7.5	<0.01	0.01	0.4	0.193
B731528		41.0	660	0.4	0.7	<0.001	0.02	<0.05	31.5	0.2	0.3	22.8	< 0.01	0.01	0.7	0.109
B731529		128.5	250	1.1	46.4	0.002	0.16	<0.05	6.5	0.2	0.2	10.6	< 0.01	0.02	<0.2	0.257
B731530		13.0	30	4.8	2.2	<0.001	0.53	0.05	1.6	1.0	<0.2	7.7	<0.01	0.04	0.2	0.018
B731531		12.5 2.1	10 90	3.0 1.3	0.8 5.2	0.001 0.003	0.48 0.10	<0.05 <0.05	0.4 0.7	0.7 0.3	<0.2 0.2	3.2 6.1	<0.01 0.01	0.03 <0.01	<0.2 2.8	0.013 0.029
B731532		51.1	90 830	2.0	5.2 35.4	<0.003	0.02	<0.05 <0.05	3.3	0.3 <0.2	0.2	73.0	<0.01	<0.01 <0.01	2.8	0.029
B731533		140.0	640	2.0 0.7	35.4 4.4	<0.001 0.002	0.02	<0.05 <0.05	3.3 15.2	<0.2 0.2	0.3 <0.2	73.0 35.4	<0.01 <0.01	<0.01 0.02	3.3 0.3	0.222
B731534		140.0	840 30	0.7	4.4 0.6	<0.002	0.01	<0.05 <0.05	0.9	0.2	<0.2 <0.2	35.4 1.9	<0.01 <0.01	0.02	0.3 <0.2	0.060
B731535																
B731536		112.0	350	0.8	1.8	0.001	0.04	<0.05	4.8	0.2	<0.2	3.8	< 0.01	0.03	<0.2	0.202
B731537		109.5	140	0.8	1.0	<0.001	0.10	0.05	1.5	2.1	<0.2	15.9	< 0.01	0.27	<0.2	0.011
B731538		160.5	250	0.4	0.4	< 0.001	0.03	<0.05	4.4	0.7	<0.2	17.9	< 0.01	0.08	<0.2	0.178
B731539		47.6	410	1.1	3.4	<0.001	0.01	<0.05	6.1	<0.2	0.3	38.4	<0.01	0.01	1.5	0.158
B731540		6.3	220	0.6	0.7	<0.001	<0.01	<0.05	0.4	<0.2	<0.2	11.4	<0.01	<0.01	<0.2	0.012

ALS)

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: NORTHERN DOMINION METALS CORPORATION 1430-800 WEST PENDER STREET VANCOUVER BC V6C 2V6

Page: 2 - D Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 23-JUN-2021 Account: NDMCDEZG

Project: Manitou

Sample Description	Method Analyte Units LOD	ME-MS41 Tl ppm 0.02	ME-MS41 U ppm 0.05	ME-MS41 V ppm 1	ME-MS41 W ppm 0.05	ME-MS41 Y ppm 0.05	ME-MS41 Zn ppm 2	ME-MS41 Zr ppm 0.5	Au-ICP21 Au ppm 0.001	Au-GRA21 Au ppm 0.05	
B731501 B731502 B731503 B731504 B731505		<0.02 0.03 0.07 <0.02 <0.02	<0.05 0.15 0.25 <0.05 <0.05	2 3 11 35 6	0.14 0.09 0.15 0.07 0.17	0.39 3.38 6.18 2.43 1.43	8 224 117 38 5	<0.5 18.2 21.1 <0.5 0.8	>10.0 5.35 >10.0 0.074 0.588	15.50 26.7	
B731506 B731507 B731508 B731509 B731510		<0.02 <0.02 <0.02 <0.02 <0.02 <0.02	0.05 <0.05 <0.05 <0.05 <0.05	167 92 13 33 28	0.14 0.10 0.07 0.08 0.06	12.30 7.94 0.56 0.44 1.10	85 68 14 14 22	0.8 1.6 <0.5 <0.5 <0.5	0.008 0.001 0.009 0.463 0.066		
B731511 B731512 B731513 B731513 B731514 B731515		<0.02 <0.02 <0.02 0.04 0.11	<0.05 <0.05 0.09 0.10 0.06	23 55 84 107 56	0.05 0.12 0.11 0.07 0.06	1.37 2.75 7.86 8.61 2.84	25 26 42 55 32	0.6 0.6 1.2 1.1 1.0	0.008 0.002 0.001 0.001 <0.001		
B731516 B731517 B731518 B731519 B731520		<0.02 <0.02 <0.02 <0.02 <0.02 <0.02	<0.05 0.08 0.10 0.09 <0.05	16 77 136 117 2	0.22 0.11 0.08 0.10 0.06	0.80 9.94 10.35 8.47 0.08	9 13 74 46 3	<0.5 4.9 2.7 2.3 <0.5	<0.001 <0.001 <0.001 <0.001 0.045		
B731521 B731522 B731523 B731524 B731525		<0.02 <0.02 <0.02 <0.02 <0.02 <0.02	<0.05 0.05 0.06 <0.05 0.20	1 77 163 104 64	0.06 <0.05 0.05 0.06 0.05	0.23 4.32 9.54 5.45 4.45	<2 35 116 60 128	<0.5 3.7 1.1 0.7 5.5	<0.001 <0.001 <0.001 <0.001 <0.001		
B731526 B731527 B731528 B731529 B731530		<0.02 <0.02 <0.02 0.28 0.03	0.07 0.06 0.11 <0.05 0.05	18 140 314 129 13	0.05 0.09 0.08 0.57 0.12	1.87 7.71 18.25 4.89 1.96	45 98 134 78 21	2.7 1.0 2.0 1.1 2.2	0.002 <0.001 0.003 0.011 2.40		
B731531 B731532 B731533 B731533 B731534 B731535		0.02 0.03 0.16 <0.02 <0.02	<0.05 0.36 0.35 <0.05 <0.05	6 3 59 121 10	0.75 0.14 0.15 0.37 0.08	0.42 10.65 4.62 8.15 0.56	36 22 79 85 12	<0.5 25.8 10.7 0.9 <0.5	4.68 0.497 0.001 <0.001 0.041		
B731536 B731537 B731538 B731539 B731540		<0.02 0.02 <0.02 <0.02 <0.02 <0.02	<0.05 <0.05 <0.05 0.22 <0.05	123 19 77 59 5	0.13 0.08 0.07 0.14 0.05	4.43 0.93 3.32 4.39 0.32	108 12 40 72 9	1.1 <0.5 1.2 6.1 0.5	0.009 0.012 0.002 <0.001 <0.001		

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: NORTHERN DOMINION METALS CORPORATION 1430-800 WEST PENDER STREET VANCOUVER BC V6C 2V6

Page: 3 - A Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 23-JUN-2021 Account: NDMCDEZG

Project: Manitou

								-								
Sample Description	Method Analyte Units LOD	WEI–21 Recvd Wt. kg 0.02	ME-MS41 Ag ppm 0.01	ME-MS41 Al % 0.01	ME-MS41 As ppm 0.1	ME-MS41 Au ppm 0.02	ME-MS41 B ppm 10	ME-MS41 Ba ppm 10	ME-MS41 Be ppm 0.05	ME-MS41 Bi ppm 0.01	ME-MS41 Ca % 0.01	ME-MS41 Cd ppm 0.01	ME-MS41 Ce ppm 0.02	ME-MS41 Co ppm 0.1	ME-MS41 Cr ppm 1	ME-MS41 Cs ppm 0.05
B731541 B731542 B731701 B731702 B731703		1.54 1.11 0.95 1.35 0.75	1.91 0.22 0.04 0.04 0.21	2.07 5.61 3.42 6.00 3.08	0.4 0.5 0.2 0.2 24.5	0.13 0.04 <0.02 <0.02 0.03	<10 <10 <10 <10 <10	10 120 10 20 70	0.05 0.09 <0.05 <0.05 0.19	0.03 0.08 0.01 0.01 1.66	1.98 3.02 1.99 1.49 3.02	0.18 0.17 0.03 0.06 0.14	4.77 6.66 0.67 1.20 31.0	23.1 50.0 28.7 54.3 48.2	52 201 259 741 122	0.12 1.69 0.05 0.12 1.72
B731704 B731705 B731706 B731707 B731707 B731708		0.88 1.20 1.49 1.15 1.49	0.12 <0.01 1.63 0.03 0.03	4.46 0.19 0.75 2.95 3.48	0.5 0.2 1.5 0.1 0.2	<0.02 <0.02 0.14 <0.02 <0.02	<10 <10 <10 <10 <10	100 <10 10 10 10	<0.05 <0.05 0.09 <0.05 <0.05	0.03 0.01 0.25 0.01 <0.01	0.32 0.18 1.10 1.96 0.99	0.04 0.01 0.01 0.05 0.03	9.76 0.53 5.80 1.03 0.98	41.1 2.0 55.3 20.2 34.8	125 24 30 231 375	1.11 0.15 0.05 0.07 0.10
B731709 B731710 B731711 B731712 B731712		0.73 0.66 0.47 1.40 0.85	0.02 0.03 0.01 0.02 0.09	1.32 0.77 1.86 2.61 1.23	0.2 0.3 0.2 0.4 1.0	<0.02 <0.02 <0.02 <0.02 <0.02	<10 <10 <10 <10 <10	20 20 40 <10 50	<0.05 0.19 0.06 <0.05 0.07	0.02 0.02 0.04 0.01 0.07	1.35 1.39 0.91 0.41 1.15	0.06 0.04 0.04 0.03 0.03	16.70 63.9 8.28 2.93 2.32	15.5 1.6 21.0 31.4 28.3	35 9 45 50 58	0.25 0.37 1.61 0.07 0.36
B731714 B731715 B731716 B731717 B731717 B731718		0.81 1.29 1.68 0.78 1.23	0.04 0.05 0.01 0.03 0.01	2.82 0.52 1.17 2.79 3.81	0.3 0.3 0.2 0.4 0.5	<0.02 <0.02 <0.02 <0.02 <0.02 <0.02	<10 <10 <10 <10 <10	<10 40 40 10 50	<0.05 0.07 0.11 0.09 0.05	<0.01 0.05 0.03 <0.01 <0.01	1.38 1.08 0.86 0.95 0.50	0.03 0.06 0.03 0.04 0.05	1.00 63.3 29.3 4.69 2.15	21.3 10.9 7.5 29.3 32.1	108 6 13 46 46	0.05 0.08 0.08 0.05 0.55
B731719 B731720 B731721 B731722 B731722 B731723		1.18 2.94 2.45 1.21 0.82	0.02 0.04 0.01 0.13 0.02	2.67 2.10 0.56 4.11 2.09	0.2 0.5 0.8 1.1 0.1	<0.02 <0.02 <0.02 0.11 <0.02	<10 <10 <10 <10 <10	20 50 10 100 90	<0.05 0.15 <0.05 0.10 0.15	<0.01 0.02 0.01 0.30 0.02	1.10 0.98 1.86 2.93 0.67	0.06 0.06 0.04 0.33 0.03	2.56 7.15 2.26 13.10 27.2	26.9 26.8 1.7 34.4 16.2	77 30 26 101 80	0.15 0.51 0.29 1.89 1.77
B731724 B731725 B731726 B731727 B731727 B731728		1.61 1.49 1.30 0.85 1.49	20.5 0.08 0.07 0.07 0.24	0.24 1.96 1.49 1.74 1.94	87.0 1.0 1.0 2.2 0.5	>25.0 0.03 <0.02 0.03 <0.02	<10 <10 <10 <10 <10 <10	10 110 50 50 210	0.11 0.19 0.20 0.21 0.16	0.08 0.04 0.09 0.06 0.01	0.61 2.92 2.96 1.84 1.30	8.74 0.08 0.12 0.18 0.03	7.12 47.5 27.2 24.1 20.3	1.9 15.0 10.3 13.0 17.5	22 48 24 40 87	0.08 1.41 1.97 1.63 1.63
B731729 B731730 B731731 B731731 B731732 B731733		0.77 0.59 0.61 0.78 1.10	0.04 0.07 0.01 0.01 0.41	2.27 3.54 2.20 2.09 1.74	1.3 1.7 0.2 0.3 20.2	<0.02 <0.02 <0.02 <0.02 0.23	<10 <10 <10 <10 <10	10 90 110 30 40	0.06 0.46 0.22 0.16 0.05	<0.01 0.01 0.01 0.01 0.41	0.76 7.66 0.99 1.21 0.27	0.04 0.22 0.06 0.05 1.74	1.61 60.3 13.65 34.9 11.70	27.6 33.7 18.2 20.3 144.0	100 273 82 54 23	0.13 7.43 1.38 0.33 0.06
B731734 B731735 B731736 B731737 B731737 B731738		0.88 1.59 1.06 0.65 0.63	0.01 0.09 0.04 0.01 0.01	1.03 1.56 2.08 4.39 3.80	0.2 11.6 0.4 0.8 0.6	0.02 <0.02 <0.02 <0.02 <0.02	<10 <10 <10 <10 <10	10 30 20 30 70	0.05 0.25 0.11 0.05 0.11	0.01 0.06 0.02 <0.01 0.01	0.75 0.76 1.41 2.88 1.97	0.03 0.07 0.07 0.09 0.07	7.63 12.10 8.27 14.75 3.79	16.3 15.2 26.8 41.9 38.7	39 76 41 144 165	<0.05 0.15 0.13 0.43 0.44

ALS

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: NORTHERN DOMINION METALS CORPORATION 1430-800 WEST PENDER STREET VANCOUVER BC V6C 2V6

Page: 3 - B Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 23-JUN-2021 Account: NDMCDEZG

Project: Manitou

Method Sample Description Method Units Lob Method Fe Me	
E731541 2670 3.08 4.46 0.07 0.07 <0.01	Nb ppm
1231701 136.5 2.39 4.91 0.07 0.02 <0.01 0.02 8.2 1.99 311 0.52 0.05 0731702 86.8 6.40 10.00 0.01 0.22 0.01 0.52 2.7 6.49 786 0.50 0.50 0731703 114.5 5.01 10.45 0.11 0.28 <0.01	
	6 0.09
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	8 <0.05
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1 <0.05
	9 0.06
	4 0.11
$ \begin{array}{ccccccccccccccccccccccccccccccc$	3 0.12
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1 0.68
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	9 <0.05
B731710 3.2 1.84 4.18 0.07 1.08 0.01 0.010 0.15 30.4 4.8 0.23 366 2.21 0. B731711 23.0 3.21 5.43 0.10 0.04 <0.01	7 0.06
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3 0.32
B73171294.75.166.110.070.02<0.010.0060.011.16.62.024430.920.03 $B731713$ 87.3 2.73 3.41 0.100.05<0.01	4 0.64
B731713 87.3 2.73 3.41 0.10 0.05 <0.01 0.009 0.03 1.0 6.3 0.89 245 4.72 0.0 B731714 78.3 2.19 3.98 0.06 0.03 <0.01	9 0.39
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	4 0.10
B731715 45.2 2.00 2.14 0.06 0.38 <0.01 0.008 0.11 34.0 2.0 0.20 470 0.39 0.08731716 $B731716$ 10.9 2.19 5.54 <0.05 0.35 <0.01 0.010 0.10 14.9 5.1 0.63 208 0.46 0.08731717 $B3.4$ 5.15 5.93 0.11 0.04 <0.01 0.009 0.03 1.8 6.6 2.08 582 0.60 0.08731718 $B731718$ 8.7 7.13 10.25 0.12 <0.02 <0.01 0.009 0.03 1.8 6.6 2.08 582 0.60 0.087317179 $B731718$ 8.7 7.13 10.25 0.12 <0.02 <0.01 0.008 0.02 1.0 10.2 2.24 632 0.42 0.6777776 $B731720$ 113.0 4.25 6.22 0.13 0.07 <0.01 0.014 0.13 2.9 6.2 1.46 408 0.90 0.977776 $B731721$ 12.3 1.27 1.977 0.05 0.02 <0.01 0.014 0.13 2.9 6.2 1.46 408 0.90 0.977772 $B731722$ 96.3 9.64 14.55 0.23 0.14 0.01 0.043 0.40 4.8 18.1 3.70 1580 0.53 0.05 $B731725$ 62.2 3.45 5.70 0.14 0.31 0.32 $0.$	9 0.21
B731716 10.9 2.19 5.54 <0.05 0.35 <0.01 0.010 0.10 14.9 5.1 0.63 208 0.46 0.00 B731717 83.4 5.15 5.93 0.11 0.04 <0.01 0.009 0.03 1.8 6.6 2.08 582 0.60 0.00 B731718 8.7 7.13 10.25 0.12 <0.02 <0.01 0.006 0.12 0.9 12.5 2.91 668 0.87 0.0 B731719 38.1 4.44 6.21 0.12 0.06 <0.01 0.008 0.02 1.0 10.2 2.24 632 0.42 0.0 B731719 38.1 4.44 6.21 0.12 0.06 <0.01 0.014 0.13 2.9 6.2 1.46 408 0.90 0.0 B731721 12.3 1.27 1.97 0.05 0.02 <0.01 0.011 0.07 1.0 3.3 0.51 430 0.97 <0.05 B731722 96.3 9.64 14.55 0.	
B731717 83.4 5.15 5.93 0.11 0.04 <0.01 0.009 0.03 1.8 6.6 2.08 582 0.60 0.0 B731718 8.7 7.13 10.25 0.12 <0.02	
B7317188.77.1310.250.12<0.02<0.010.0060.120.912.52.916680.870.0B73171938.14.446.210.120.06<0.01	4 0.15
B731719 38.1 4.44 6.21 0.12 0.06 <0.01 0.008 0.02 1.0 10.2 2.24 632 0.42 0.06 B731719 113.0 4.25 6.22 0.13 0.07 <0.01	5 0.13
B731720113.04.256.220.130.07<0.010.0140.132.96.21.464080.900.0B73172112.31.271.970.050.02<0.01	1 0.12
B73172112.31.271.970.050.02<0.010.0110.071.03.30.514300.97<0<0B73172296.39.6414.550.230.140.010.0430.404.818.13.7015800.530.0B7317233.82.918.520.070.30<0.01	
B731722 96.3 9.64 14.55 0.23 0.14 0.01 0.043 0.40 4.8 18.1 3.70 1580 0.53 0.0 B731723 3.8 2.91 8.52 0.07 0.30 <0.01	
B731723 3.8 2.91 8.52 0.07 0.30 <0.01 0.009 0.52 12.2 18.7 1.74 348 0.63 0.00 B731724 403 1.16 0.96 <0.05	
B731724 403 1.16 0.96 <0.05 0.14 0.31 0.032 0.05 3.1 1.4 0.13 111 2.00 <0 B731725 62.2 3.45 5.70 0.11 0.80 <0.01	
B731725 62.2 3.45 5.70 0.11 0.80 <0.01 0.015 0.53 22.3 10.6 1.25 674 3.50 0.0 B731726 16.5 2.04 2.98 0.05 0.20 <0.01 0.005 0.64 12.5 8.1 0.97 544 1.14 <0 B731727 19.1 2.41 4.03 0.05 0.36 <0.01 0.007 0.51 10.8 6.8 1.21 521 1.13 0.0 B731728 30.3 2.72 6.78 0.09 0.18 <0.01 0.007 0.54 9.3 13.6 1.67 433 0.64 0.0 B731729 68.5 3.51 4.19 0.09 0.04 0.01 0.005 0.02 0.7 7.7 1.91 443 0.60 0.00	4 0.15
B731726 16.5 2.04 2.98 0.05 0.20 <0.01 0.005 0.64 12.5 8.1 0.97 544 1.14 <0 B731727 19.1 2.41 4.03 0.05 0.36 <0.01	
B731727 19.1 2.41 4.03 0.05 0.36 <0.01 0.007 0.51 10.8 6.8 1.21 521 1.13 0. B731728 30.3 2.72 6.78 0.09 0.18 <0.01	
B731728 30.3 2.72 6.78 0.09 0.18 <0.01 0.007 0.54 9.3 13.6 1.67 433 0.64 0.7 B731729 68.5 3.51 4.19 0.09 0.04 0.01 0.005 0.02 0.7 7.7 1.91 443 0.60 0.7	
B731729 68.5 3.51 4.19 0.09 0.04 0.01 0.005 0.02 0.7 7.7 1.91 443 0.60 0.	
LB731730 L 15.6 5.54 12.25 0.30 0.22 <0.01 0.046 0.53 28.8 15.7 4.22 1050 0.44 0	
B731731 9.4 2.95 7.04 <0.05 0.09 <0.01 0.008 0.57 5.7 13.7 1.96 477 0.45 0.	
B731732 2.4 3.48 8.40 0.05 0.14 <0.01 0.013 0.10 16.1 16.2 1.53 631 0.50 0.	
B731733 680 8.88 5.94 0.08 0.22 0.01 0.094 0.08 5.3 7.1 1.34 273 2.60 0.	
B731734 28.9 2.20 2.81 0.08 0.06 <0.01 0.009 0.02 2.8 3.8 0.71 341 0.86 0.	
B731735 79.3 3.86 3.25 <0.05 0.27 <0.01 0.010 0.08 5.4 5.6 1.16 396 1.13 0.	
B731736 118.5 4.29 5.81 0.13 0.05 <0.01 0.016 0.05 3.1 6.0 1.39 667 0.69 0.	
B731737 24.0 7.52 11.25 0.18 <0.02 <0.01 0.056 0.05 5.5 18.5 3.88 1080 0.24 0.	
B731738 42.0 6.13 10.20 0.13 0.03 <0.01 0.024 0.08 1.3 10.6 3.43 1180 0.14 0.	2 0.14

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: NORTHERN DOMINION METALS CORPORATION 1430-800 WEST PENDER STREET VANCOUVER BC V6C 2V6

Page: 3 - C Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 23-JUN-2021 Account: NDMCDEZG

Project: Manitou

	Method Analyte Units	ME-MS41 Ni ppm	ME-MS41 P ppm	ME-MS41 Pb ppm	ME-MS41 Rb ppm	ME-MS41 Re ppm	ME-MS41 S %	ME-MS41 Sb ppm	ME-MS41 Sc ppm	ME-MS41 Se ppm	ME-MS41 Sn ppm	ME-MS41 Sr ppm	ME-MS41 Ta ppm	ME-MS41 Te ppm	ME-MS41 Th ppm	ME–MS41 Ti %
Sample Description	LOD	0.2	10	0.2	0.1	0.001	0.01	0.05	0.1	0.2	0.2	0.2	0.01	0.01	0.2	0.005
B731541		60.5	510	0.8	1.8	<0.001	0.21	<0.05	5.0	1.3	0.2	10.5	<0.01	0.14	0.2	0.259
B731542		120.5	300	0.7	42.3	0.001	0.14	<0.05	27.4	0.7	0.4	25.3	<0.01	0.15	0.3	0.198
B731701		149.5	90	<0.2	0.8	0.001	0.07	<0.05	2.5	0.7	<0.2	30.1	<0.01	0.03	<0.2	0.044
B731702		256	240	0.8	3.2	<0.001	<0.01	<0.05	20.7	0.2	<0.2	2.7	<0.01	0.06	<0.2	0.056
B731703		88.6	1140	1.9	36.1	0.002	2.80	<0.05	13.7	1.1	0.4	83.7	<0.01	0.32	1.3	0.174
B731704		42.2	400	0.7	13.2	<0.001	0.02	<0.05	8.9	1.5	0.3	6.1	<0.01	0.06	1.0	0.101
B731705		4.7	50	0.2	0.8	<0.001	<0.01	<0.05	1.1	<0.2	<0.2	1.1	<0.01	0.01	<0.2	0.021
B731706		19.4	520	1.2	1.4	0.001	1.25	0.08	6.8	3.8	0.5	16.9	<0.01	0.50	0.3	0.231
B731707		113.5	90	0.2	0.7	<0.001	<0.01	<0.05	1.8	0.2	<0.2	27.3	<0.01	0.04	<0.2	0.042
B731708		176.0	120	<0.2	0.4	<0.001	<0.01	<0.05	2.5	<0.2	<0.2	6.9	<0.01	0.03	<0.2	0.073
B731709		28.0	650	0.2	3.0	0.001	0.01	<0.05	7.4	0.2	0.3	5.1	<0.01	0.01	0.6	0.140
B731710		1.1	230	1.0	6.4	0.001	0.02	<0.05	0.8	<0.2	0.5	17.2	0.01	<0.01	4.1	0.030
B731711		60.4	410	0.3	15.4	0.001	<0.01	<0.05	6.0	0.2	0.2	3.6	<0.01	0.02	0.3	0.185
B731712		40.1	330	<0.2	1.1	<0.001	<0.01	<0.05	4.1	0.5	<0.2	3.9	<0.01	0.02	0.2	0.072
B731713		36.8	330	0.5	5.1	0.005	0.29	<0.05	6.3	0.6	0.2	24.9	<0.01	0.05	<0.2	0.132
B731714		111.0	160	<0.2	1.7	<0.001	0.03	<0.05	2.3	0.3	<0.2	23.7	<0.01	0.02	<0.2	0.067
B731715		10.2	710	1.1	3.4	<0.001	0.09	<0.05	0.9	0.4	<0.2	13.2	<0.01	0.04	3.6	0.015
B731716		10.3	660	5.2	2.8	<0.001	0.01	<0.05	1.2	<0.2	0.2	16.9	<0.01	0.01	2.3	0.029
B731717		42.9	620	1.5	0.7	0.001	0.07	<0.05	5.7	0.5	0.2	13.3	<0.01	0.01	0.2	0.224
B731718		40.6	310	0.2	8.6	<0.001	<0.01	<0.05	3.8	<0.2	0.2	4.1	<0.01	0.01	<0.2	0.097
B731719		61.1	360	<0.2	2.2	<0.001	<0.01	<0.05	4.9	0.2	0.2	10.8	<0.01	0.01	<0.2	0.269
B731720		41.5	600	<0.2	6.2	0.001	0.05	<0.05	5.9	0.3	0.2	16.1	<0.01	0.01	0.3	0.186
B731721		4.4	40	<0.2	2.4	<0.001	0.11	<0.05	5.6	0.2	0.2	9.8	<0.01	0.02	<0.2	0.047
B731722		57.7	540	1.0	15.8	0.001	2.29	<0.05	18.2	1.6	0.9	26.4	<0.01	0.25	0.6	0.356
B731723		52.6	590	1.5	21.6	<0.001	<0.01	<0.05	3.1	<0.2	0.3	33.2	<0.01	<0.01	1.5	0.152
B731724		5.5	50	71.1	1.6	<0.001	0.58	0.13	0.7	1.7	<0.2	5.9	<0.01	0.06	0.3	0.007
B731725		34.9	300	1.4	22.8	0.001	0.11	<0.05	2.6	0.3	0.7	51.8	0.01	0.02	3.1	0.142
B731726		19.2	650	7.1	33.0	<0.001	0.04	<0.05	1.5	<0.2	<0.2	46.9	<0.01	0.01	1.4	0.108
B731727		45.4	540	1.8	28.1	<0.001	0.11	<0.05	1.7	0.2	<0.2	28.8	<0.01	0.01	1.6	0.108
B731728		49.7	540	0.5	23.3	<0.001	<0.01	<0.05	3.0	0.2	0.2	44.8	<0.01	<0.01	1.4	0.177
B731729		76.2	330	0.2	0.5	0.001	0.03	<0.05	3.5	0.4	<0.2	11.9	< 0.01	0.01	<0.2	0.138
B731730		221	980	1.3	27.6	<0.001	0.13	0.06	19.3	0.2	0.4	157.0	< 0.01	0.01	2.9	0.094
B731731		55.3	450	0.7	26.4	<0.001	< 0.01	<0.05	3.1	0.2	0.2	49.7	< 0.01	<0.01	1.2	0.152
B731732		65.1	710	0.7	4.0	<0.001	< 0.01	<0.05	3.8	<0.2	<0.2	41.8	< 0.01	0.01	1.8	<0.005
B731733		106.0	390	3.5	2.0	0.006	6.87	<0.05	2.4	12.9	<0.2	3.9	<0.01	1.52	1.0	0.006
B731734		32.6	390	<0.2	0.6	<0.001	0.05	<0.05	5.5	<0.2	0.2	5.8	<0.01	0.03	0.3	0.229
B731735		59.7	360	5.6	3.8	<0.001	0.70	0.32	3.4	0.5	0.6	22.6	0.01	0.10	1.1	0.233
B731736		42.3	640	0.2	3.5	0.001	0.03	<0.05	7.6	0.3	0.2	10.2	< 0.01	0.03	0.4	0.210
B731737		94.7	460	<0.2	4.3	< 0.001	<0.01	<0.05	29.1	0.2	0.3	10.6	< 0.01	0.01	0.6	0.083
B731738		96.0	160	0.6	9.5	<0.001	0.02	<0.05	15.9	0.3	0.2	8.8	<0.01	0.03	0.2	0.111

ALS)

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: NORTHERN DOMINION METALS CORPORATION 1430-800 WEST PENDER STREET VANCOUVER BC V6C 2V6

CERTIFICATE OF ANALYSIS TB21144106

Page: 3 - D Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 23-JUN-2021 Account: NDMCDEZG

Project: Manitou

Sample Description	Method Analyte Units LOD	ME-MS41 Tl ppm 0.02	ME-MS41 U ppm 0.05	ME-MS41 V ppm 1	ME-MS41 W ppm 0.05	ME-MS41 Y ppm 0.05	ME-MS41 Zn ppm 2	ME-MS41 Zr ppm 0.5	Au-ICP21 Au ppm 0.001	Au-GRA21 Au ppm 0.05	
B731541 B731542 B731701 B731702 B731703		<0.02 0.14 <0.02 <0.02 0.11	<0.05 0.06 <0.05 <0.05 0.11	112 246 24 126 116	0.42 8.24 0.08 0.12 1.54	8.11 5.84 1.42 1.97 10.15	43 101 23 65 44	1.3 0.7 0.6 <0.5 12.6	0.124 0.041 <0.001 0.011 0.067		
B731704 B731705 B731706 B731707 B731707		0.06 <0.02 0.02 <0.02 <0.02	0.08 <0.05 0.06 <0.05 <0.05	189 14 89 22 31	0.14 0.07 0.67 0.06 0.08	5.80 0.82 5.94 1.72 1.59	148 5 15 23 39	2.6 <0.5 3.7 <0.5 <0.5	<0.001 <0.001 0.157 0.005 <0.001		
B731709 B731710 B731711 B731712 B731713		<0.02 0.03 0.05 <0.02 <0.02	0.10 0.49 0.05 <0.05 <0.05	74 1 69 69 68	0.17 0.08 0.15 0.07 0.23	8.18 13.60 5.24 2.53 4.07	35 42 42 71 21	1.7 47.1 1.3 0.5 1.3	<0.001 <0.001 0.001 <0.001 0.006		
B731714 B731715 B731716 B731717 B731717		<0.02 <0.02 <0.02 <0.02 0.04	<0.05 0.30 0.25 <0.05 <0.05	26 5 12 85 133	0.08 0.07 0.08 0.09 0.09	1.72 3.06 2.40 6.63 2.27	23 23 69 72 91	0.8 17.0 14.3 1.0 <0.5	0.006 <0.001 <0.001 <0.001 <0.001		
B731719 B731720 B731721 B731722 B731722 B731723		<0.02 0.04 <0.02 0.08 0.10	<0.05 <0.05 <0.05 0.05 0.17	81 88 34 249 44	0.07 0.11 0.53 5.11 0.08	5.40 7.79 2.02 10.65 3.42	57 52 28 223 66	1.3 1.5 0.5 4.1 10.4	<0.001 0.001 0.004 0.332 0.001		
B731724 B731725 B731726 B731727 B731727 B731728		0.12 0.10 0.18 0.20 0.08	0.05 0.37 0.17 0.23 0.14	4 34 15 19 49	0.10 0.34 0.11 0.29 0.22	2.79 12.30 4.50 3.96 3.51	512 67 49 101 60	6.3 35.8 8.4 14.2 5.9	>10.0 0.019 0.018 0.039 0.010	24.6	
B731729 B731730 B731731 B731731 B731732 B731733		<0.02 0.12 0.08 0.02 <0.02	<0.05 0.29 0.13 0.10 0.16	62 172 43 32 21	0.08 0.09 <0.05 <0.05 0.70	3.18 7.47 2.47 4.81 3.48	47 83 80 76 263	0.9 10.3 3.3 6.6 9.5	0.004 <0.001 0.002 <0.001 0.236		
B731734 B731735 B731736 B731737 B731737 B731738		<0.02 0.02 <0.02 0.02 0.03	<0.05 0.14 0.06 0.07 <0.05	51 28 80 253 142	0.12 0.09 0.16 0.07 0.06	6.09 3.69 6.19 8.36 3.80	29 65 57 108 74	1.5 6.4 0.8 <0.5 0.8	<0.001 0.006 <0.001 0.003 <0.001		

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: NORTHERN DOMINION METALS CORPORATION 1430-800 WEST PENDER STREET VANCOUVER BC V6C 2V6

Page: 4 – A Total # Pages: 4 (A – D) Plus Appendix Pages Finalized Date: 23–JUN–2021 Account: NDMCDEZG

Project: Manitou

Sample Description	Method Analyte Units LOD	WEI-21 Recvd Wt. kg 0.02	ME-MS41 Ag ppm 0.01	ME-MS41 Al % 0.01	ME-MS41 As ppm 0.1	ME-MS41 Au ppm 0.02	ME-MS41 B ppm 10	ME-MS41 Ba ppm 10	ME-MS41 Be ppm 0.05	ME-MS41 Bi ppm 0.01	ME-MS41 Ca % 0.01	ME-MS41 Cd ppm 0.01	ME-MS41 Ce ppm 0.02	ME-MS41 Co ppm 0.1	ME-MS41 Cr ppm 1	ME-MS41 Cs ppm 0.05
Sample Description B731739 B731740 B731741	Units		ppm				ppm 10 <10 <10 <10									

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: NORTHERN DOMINION METALS CORPORATION 1430-800 WEST PENDER STREET VANCOUVER BC V6C 2V6

Page: 4 – B Total # Pages: 4 (A – D) Plus Appendix Pages Finalized Date: 23–JUN–2021 Account: NDMCDEZG

Project: Manitou

Sample Description	Method	ME-MS41														
	Analyte	Cu	Fe	Ga	Ge	Hf	Hg	In	K	La	Li	Mg	Mn	Mo	Na	Nb
	Units	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm
	LOD	0.2	0.01	0.05	0.05	0.02	0.01	0.005	0.01	0.2	0.1	0.01	5	0.05	0.01	0.05
B731739		59.9	10.70	8.03	0.16	0.15	0.01	0.033	0.57	2.2	10.5	1.68	612	0.34	0.02	0.48
B731740		17.9	1.26	0.46	<0.05	0.02	<0.01	<0.005	0.02	0.6	0.9	0.09	99	0.29	<0.01	0.08
B731741		121.5	1.20	1.79	<0.05	0.07	<0.01	0.023	0.08	2.1	2.2	0.27	228	0.99	0.01	0.11

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: NORTHERN DOMINION METALS CORPORATION 1430-800 WEST PENDER STREET VANCOUVER BC V6C 2V6

Page: 4 - C Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 23-JUN-2021 Account: NDMCDEZG

Project: Manitou

CERTIFICAT

TE OF ANALYSIS	TB21144106
----------------	------------

Sample Description	Method Analyte Units LOD	ME-MS41 Ni ppm 0.2	ME-MS41 P ppm 10	ME-MS41 Pb ppm 0.2	ME-MS41 Rb ppm 0.1	ME-MS41 Re ppm 0.001	ME-MS41 S % 0.01	ME-MS41 Sb ppm 0.05	ME-MS41 Sc ppm 0.1	ME-MS41 Se ppm 0.2	ME-MS41 Sn ppm 0.2	ME-MS41 Sr ppm 0.2	ME-MS41 Ta ppm 0.01	ME-MS41 Te ppm 0.01	ME-MS41 Th ppm 0.2	ME-MS41 Ti % 0.005
Sample Description B731739 B731740 B731741	LOD	0.2 12.7 9.5 7.3														

ALS)

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: NORTHERN DOMINION METALS CORPORATION 1430-800 WEST PENDER STREET VANCOUVER BC V6C 2V6

Page: 4 - D Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 23-JUN-2021 Account: NDMCDEZG

Project: Manitou

Sample Description	Method Analyte Units LOD	ME-MS41 Tl ppm 0.02	ME-MS41 U ppm 0.05	ME-MS41 V ppm 1	ME-MS41 W ppm 0.05	ME-MS41 Y ppm 0.05	ME-MS41 Zn ppm 2	ME-MS41 Zr ppm 0.5	Au-ICP21 Au ppm 0.001	Au-GRA21 Au ppm 0.05	
Sample Description B731739 B731740 B731741	Units LOD	ppm 0.02 0.11 <0.02 0.02	ррт 0.05 0.07 <0.05 0.05		ppm 0.05 0.70 0.44 0.09	ppm 0.05 2.76 0.72 1.94	ppm 2 51 8 135			ррт 0.05	

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: NORTHERN DOMINION METALS CORPORATION 1430-800 WEST PENDER STREET VANCOUVER BC V6C 2V6

Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 23-JUN-2021 Account: NDMCDEZG

Project: Manitou

		CERTIFICATE COMMENTS										
Applies to Method:	ANALYTICAL COMMENTS Gold determinations by this method are semi-quantitative due to the small sample weight used (0.5g). ME-MS41											
Applies to Method:	Processed at ALS Thunder Bay located CRU-31 PUL-QC	LABORATORY AD at 645 Norah Crescent, Thunder Bay, CRU-QC SPL-21		PUL-31								
Applies to Method:	Processed at ALS Vancouver located at Au-GRA21	t 2103 Dollarton Hwy, North Vancouv Au-ICP21	er, BC, Canada. ME-MS41									