

We are committed to providing <u>accessible customer service</u>. If you need accessible formats or communications supports, please <u>contact us</u>.

Nous tenons à améliorer <u>l'accessibilité des services à la clientèle</u>. Si vous avez besoin de formats accessibles ou d'aide à la communication, veuillez <u>nous contacter</u>.

ASSESSMENT REPORT

May 4, 2022 Shabu Project – 2021 Prospecting Program

For: Cross River Ventures Corp. 800 West Pender Street Suite 1430 Vancouver BC V6C 1J8

Prepared By: Steven Flank, P.Geo Bayside Geoscience Inc. 124 Sherwood Drive Thunder Bay, ON

CONTENTS

Contents

Intr	oduction	3
1.	Location and Access	3
2.	Property Ownership and Claims	3
3.	Exploration History	3
4.	Regional geology	4
4	.1 Mineralization	7
	Shabu Lake Occurrence	7
	Madsen Red Lake Gold Mines Occurrence	7
5.	2021 Prospecting Program	9
S	ummary	9
S	ampling Procedures & QA/QC	. 10
F	esults	. 10
6.	Conclusions	. 14
7.	Statement of Expenditures	. 15
8.	Signatures	. 17
9.	References	. 18
Арр	endix A: Claim Details	. 19
Арр	endix B: Daily Work Logs	. 21
Арр	endix C: Station Descriptions	41
Арр	endix D: Maps	. 71
Арр	endix E: Sample Locations and Au Results	.81
Арр	endix F: Assay Certificates	.88

Assessment Report

SHABU PROJECT - 2021 PROSPECTING PROGRAM

INTRODUCTION

Between June 3rd and June 17th, 2021, Cross River Ventures initiated a prospecting and mapping program on their 100% owned Shabu Project, located in the Red Lake District, Ontario Canada. Cross River contracted Bayside Geoscience to complete the program which was staffed by a team of 5 personnel: Jesse Koroscil (Senior Geologist), Steven Flank (Senior Geologist), Daniel Barrett (Junior Geologist in Training), Carson Gdanski (Field Assistant) and Myles Harding (Field Assistant). Steven Flank, P.Geo, oversaw all operations and was responsible for final data compilation, interpretation and the technical contents of this report.

The purpose of the program was to investigate historic gold occurrences on the property, in particular the Shabu Lake Occurrence, a high-grade narrow vein that had been traced over a strike length of 180m. The field crews recorded 311 outcrop station and collected 191 samples.

The co-ordinate system used throughout this report is in UTM NAD 83 Zone 15U

1. LOCATION AND ACCESS

The Shabu Property is located within the Red Lake Mining Division in northwestern Ontario (NTS 52 N/07 approximately 60 km NE of Red Lake Ontario (Figure 1).

The Shabu Property is only accessible by float plane during the summer months. A flight was chartered through Superior Airways based in Red Lake Ontario. The crew was lodged at a fly-in fishing cabin located on the southern end of Shabu Lake, operated by Jack Green's Fly-In Camps Ltd. Boats were utilized daily to access traverse locations, all of which were based from Shabu Lake.

2. PROPERTY OWNERSHIP AND CLAIMS

The Shabu Property is located in the Red Lake Division and is comprised of 6 contiguous multi cell mining claims totaling 6,561 ha (Figure 2). All claims are under option to Cross River Ventures from EMX Properties (Canada) Inc. A list of claims is shown in Appendix A. A claim location map is shown in Figure 2.

3. EXPLORATION HISTORY

Mineral exploration within the Shabu Property has been relatively sparse, with the exception being the historic Bathurst Mine, located approximately 300m south of the property boundary. From 1963-1987 Flint Rock Mines Ltd. explored the property after the discovery of a narrow, high grade gold vein west of Shabu

Lake. The most recent recorded work was completed by Perry English who completed a prospecting and sampling program on the project in 2010. A summary of historical work is provided below:

Company	Year	Activity	Target Area
Flint Rock Mines Ltd.	1963-1987	Drilling, sampling	Shabu Lake Occurence
Madson Red Lake Gold	1967	Drilling, EM survey	SE side of Shabu Lake
wines			
G.J Gilgean	1969	Drilling	West Shabu Lake
South Bay Mines	1970	Drilling	South portion of property
Fronteer Developmnet Corp.	2002-2004	Drilling, mapping and sampling	SE portion of property
Perry English	2010	Field Reconnaisance, sampling	Shabu Lake

Table 1: Summary of Exploration at the Shabu Project

4. REGIONAL GEOLOGY

The Shabu Property is focused around a 2km wide, NW trending sliver of Uchi-Confederation greenstone belt that is surrounded by gneissic granodiorite (Figure 3). The Birch-Confederation lakes metavolcanicmetasedimentary belt is situated within the western Uchi Subprovince. The belt includes Casummit and Birch lakes in the north, Bertha and Springpole lakes in the east, Shabu Lake in the west, Woman, Confederation and Okanse lakes in the central portion of the belt, Uchi and Slate lakes in the south, Papaonga Lake in the southeast and Snakeweed Lake in the southwest (Parker and Atkinson, 1992).

At Shabu Lake the volcanic and sedimentary rocks are folded into a tight NW syncline with a highly strained core (Parker & Atkinson, 1992). Northeast-trending, fine-grained metasediments are intercalated with minor metavolcanic flows of the Cycle II metavolcanic sequence (Thurston 1986) and are intruded by granodioritic rocks of the Mainprize Lake granitoid complex.

Fyon and O'Donnell (1986) noted that the main structure at Shabu Lake is a complex or refolded fold. According to Fyon and O'Donnell (1986): "A tight syncline with a highly strained (possibly sheared) core trends northwest, parallel to the northwestern arm of the lake. A second fold axial trace trends northnortheast, and defines a broad syncline in the southeastern section of the lake.

Figure 1: Shabu Project Location

Figure 2: Shabu Property Claim Map

4.1 Mineralization

Figure 4 shows the property scale geology and mineral occurrences found on the Shabu property. The Shabu Lake Occurrence and the Madsen Red Lake Gold Mines Occurrence received the most work and are described below.

Shabu Lake Occurrence

The Shabu Lake occurrence is an east-trending quartz vein that has been traced by diamond drilling along the contact between biotite granodiorite and a diorite dike, for a strike length of 800 m. The vein is 0.1 to 0.6 m wide and contains sparse amounts of disseminated galena, pyrite, chalcopyrite and visible gold (Pryslak 1974).

The No. 2 vein is approximately 460 m northwest of the No. 1 vein and is situated on leased mining claim KRL 51188. The east-trending vein dips 90° and is 5 cm to 30 cm wide with a strike length of 47 m. The vein is hosted by a narrow inclusion of metasediments and by biotite granodiorite and gabbro. Pryslak (1974) reported that the vein contained up to 10% galena and 2% chalcopyrite.

Alteration and deformation associated with the quartz veins is very minimal and consists of silicification, epidotization and hematization with very minor shearing (Parker and Atkinson, 1992).

Madsen Red Lake Gold Mines Occurrence

The showing is situated on the SE shore of Shabu Lake. Mineralization is hosted in marble and siliceous metasediments, comprised of disseminated and massive pyrrhotite, pyrite and minor chalcopyrite, sphalerite and galena. Historic drilling intersections of 0.04 oz/ton across 4.1 feet were reported from drillhole 5. (Parker and Atkinson, 1992).

Figure 3: Regional Geology of the Shabu Property. Property outline in red.

Figure 4: Geology and mineral occurrences of the Shabu Property

5. 2021 PROSPECTING PROGRAM

Summary

The work crew mobilized on June 3rd from Superior Airways Aerodrome located in Red Lake, Ontario. Jesse Koroscil (Senior Geologist), Daniel Barrett (Junior Geologist in Training), Carson Gdanski and Myles Harding (Field Assistants) arrived first, with Steven Flank (Senior Geologist) relieving Jesse Koroscil on June 12th and finishing the program. The crew demobilized from the project on June 17th, 2021. Steven Flank, P.Geo, oversaw all operations and was responsible for final data compilation, interpretation and the technical contents of this report.

The purpose of the program was to investigate historic gold occurrences on the property, in particular the Shabu Lake Occurrence, a high-grade narrow vein that had been traced over a strike length of 180m. Over the course of the program the field crews recorded 311 outcrop station and collected 191 samples. Data was entered into a Samsung Tab A tablet utilizing the QField application. A sample database was setup in QField to capture predetermined fields consisting of sample ID, sample medium, lithology, structure,

alteration, mineralization, photos and notes. A Garmin 64s handheld GPS was utilized to collect waypoints at each station as well as tracks. All coordinates are recorded in NAD 83 UTM Zone 15N.

A printout of the digital station database is included in Appendix C. Maps showing station locations, as well as GPS tracks from each traverse are included in Appendix D. Sample locations and results are included in Appendix E and assay certificates in Appendix F.

Sampling Procedures & QA/QC

Rock samples were collected by field personnel utilizing rock hammers and placed into poly bags labelled with a unique station ID and sample number. Field personnel recorded sample information in a digital data collector and recorded GPS coordinates, geological observations, and photographs at each sample location.

Field standards and blanks were inserted every 25 samples, alternating between blank and gold standards. Results of the standards and blanks were found to be within acceptable values.

Samples were transported by Bayside personnel to the ALS Chemex preparation laboratory in Thunder Bay, Ontario. ALS then ships sample pulps to ALS Chemex Vancouver for analysis. Au values were determined via fire assay with an ICP-AES finish. Any Au samples that were above the detection limits for this method were analyzed via fire assay with a gravimetric finish. Major and trace element geochemistry was analyzed via Aqua Regia digest followed by an ICP-MS finish.

Results

The field crews were able to locate and sample all 16 recorded mineral occurrences on the property during the program, as well as complete traverses across magnetic anomalies of interest. A total of 191 samples were collected by the crews.

Of the 191 grab samples collected, 5 returned values greater than 1 g/t Au with a high-grade sample of 126 g/t Au being the best result of the program. Significant assays are summarized in Table 2 and shown in Figures 8 and 9.

3 of these samples were taken from the Shabu Occurrence, a narrow, smokey quartz vein that cuts granodiorite host rocks (Figure 5). Directly adjacent to the vein is a 10-50cm wide chlorite schist. Outside of this rock type there seems to be very little alteration to the surrounding host rocks. The surrounding rocks are comprised of granodiorite which can show up 5% disseminated and blebby pyrite mineralization. Samples from this unit returned no Au results. Further west of this vein, narrow quartz veins returned up to 0.429 g/t near a historic Cu-Pb showing. This indicates further fertility in the veins in this area.

Historic drill core was found piled near the Shabu Lake Occurrence and a trench following the vein on strike in both directions are evidence of the past work done (Figure 6). The drill core was in poor condition and no tags were observed to identify the holes. 1 sample from the Madsen Occurrence returned 1.505 g/t Au from a silicified and ankerite altered gabbro near the shore of Shabu Lake (Figure 6). The sample was taken near a rubble pile that was previously blasted. Prospecting and sampling surrounding the showing did not return any appreciable results.

1 sample from a mineralized conglomerate, approximately 250m NE of the Madsen Occurrence returned 2.73 g/t Au (Figure 7). The sample is described as being strongly foliated, with chlorite, ankerite and pyrite found concentrated in foliation planes. Clasts are comprised of quartzite and are 2- 20m wide. This sample represents a novel gold discovery on the property.

Sample ID	Station ID	Easting	Northing	Target Area	Au (g/t)
B731554	SB-DB-108	502874	5685713	Shabu Occurrence	126.0
B731812	SB-SF-024	502854	5685719	Shabu Occurrence	8.28
B731001	SB-JK-005	505441	5683608	Conglomerate	2.73
B731806	SB-SF-014	502900	5685705	Shabu Occurrence	1.605
B731743	SB-DB-003	505247	5683444	Madsen Occurrence	1.505
B731817	SB-SF-033	502610	5685750	Shabu West	0.429

Table 2: Significant results from the 2021 prospecting program

Figure 5: Smokey quartz vein at the Shabu Occurrence which returned up to 126 g/t Au from a grab sample. Stations SB-DB-108 (left) and SB-SF-024 (right)

Figure 6: Historic trench following the mineralized quartz vein at the Shabu Occurrence (left). Right: Silica and ankerite altered gabbro at the Madsen Occurrence (SB-DB-003)

Figure 7: Mineralized conglomerate at SB-JK-005 that returned 2.73 g/t Au

Figure 8: Significant assay results near the Shabu Occurrence.

Figure 9: Significant assay results at the Madsen Occurrence (B731743) and the new Conglomerate hosted showing (B731001)

6. CONCLUSIONS

The 2021 prospecting program was a reconnaissance scale investigation of the mineral occurrences on the Shabu property. Based on sampling and field observations the following can be ascertained:

- The Shabu Occurrence is a narrow gold bearing vein hosted within granodiorite host rocks. 3 samples returned variable grades of gold mineralization with the best sample returning 126 g/t Au and the lowest grade returned 1.605 g/t Au.
- The Shabu Occurrence vein continues along strike to the East and West for about 100m beyond which the topography drops off and the vein is lost.
- The area east of the Shabu Occurrence vein is covered by glacial till, comprised of unconsolidated boulders and silt/sand. This area would be a good candidate for remote exploration techniques such as soil and/or till sampling and biogeochemical sampling to determine if a wider mineralized footprint is hidden. Essentially there is a 1km x 800m area of no outcrop exposure that the vein is trending under.
- The Madsen Occurrence returned low-grade gold values but prospecting around the showing did not return other significant results.
- The mineralized conglomerate sampled east of Shabu Lake is undocumented and represents a new gold discovery. Only one day was spent prospecting this area and more sampling and hand stripping is warranted.

7. STATEMENT OF EXPENDITURES

The total value of work completed during the 2021 Shabu Prospecting Project is summarized in Table 3. Allocations of expenditures by individual claim cell is summarized in Table 4.

Description	Cost
Mobilization	\$2,900
Demobilization	\$2,900
Senior Geologist	\$9,750
Junior Geologist	\$8,450
Field Assistants	\$11,700
Assay Costs	\$11,775
Truck Rental	\$1,170
Meals	\$1,300
Camp Rental	\$6,420
Flights	\$3,426
Assessment Report	\$4,000
Total	\$63,791

Table 3: Total Expenditures on the 2021 Shabu Prospecting Program

Claim Cell Number	Samples	Sample Costs	Stations	Proportion of Stations/Cell	Labour/Fixed Costs	Total Cost/Cell
557575	15	\$924.74	18	0.058064516	\$3,020.28	\$3,945.02
557576	38	\$2,342.67	71	0.229032258	\$11,913.34	\$14,256.01
557577	62	\$3,822.25	91	0.293548387	\$15,269.21	\$19,091.46
557578	53	\$3,267.41	87	0.280645161	\$14,598.04	\$17,865.45
557579	4	\$246.60	12	0.038709677	\$2,013.52	\$2,260.12
587409	19	\$1,171.34	31	0.1	\$5,201.60	\$6,372.94
Total	191	\$11,775	310	1	\$52,016	\$63,791

Table 4: Expenditure distribution on Shabu Claim Cells

8. SIGNATURES

I, Steven D. Flank, of the City of Thunder Bay, in the Province of Ontario, do hereby certify that:

- 1. I am the President and Principal Geoscientist of Bayside Geoscience Inc., a geological consulting company based in Thunder Bay, Ontario.
- 2. I am a member in good standing with the Association of Professional Geoscientists of Ontario (#2695), residing at 124 Sherwood Drive, Thunder Bay, Ontario, P7B 6L1.
- 3. I attained an H.BSc. in Geology from Lakehead University in Thunder Bay, Ontario (2011) and an M.Sc. in Mineral Exploration from Laurentian University in Sudbury, Ontario (2017).
- 4. I have worked as an exploration geologist for over 10 years focussing on project generation and early-stage gold projects including shear zone hosted lode gold and intrusion related disseminated gold deposits and intrusion related Ni-Cu-PGE deposits.
- 5. I personally supervised the 2021 Prospecting Program at the Shabu Project as described in this report.

Dated

May 4th, 2022

Thunder Bay, Ontario, Canada

Sten Hork

Steven D. Flank, M.Sc., P.Geo.

9. References

Pryslak, A.P. 1974. Shabumeni River-Narrow Lake Area (Northwestern Part), District of Kenora (Patricia Portion); Ontario Div. Mines, Prelim. Map P.973, Geol. Ser., scale 1 inch to ½ mile. Geology 1972

Fyon, A.J. and O'Donnell, L. 1986 Regional Strain State and Alteration Patterns Related to Gold Mineralization in the Uchi-Confederation-Woman Lakes area; in Summary of Field Work and Other Activities 1986, Ontario Geological Survey, Miscellaneous Paper 132 p. 266-275

Thurston, P.C, 1986. Geology of the Birch Lake area, Kenora District, Patricia Portion; Ontario Geological Survey, Open File Report 5607, 96p.

Parker, J.R. and Atkinson, B.T. 1992. Gold occurrences, prospects and past producing mines of the Birch-Confederation Lakes area; Ontario Geological Survey, Open File Report 5835, 332p.

APPENDIX A: CLAIM DETAILS

Claim ID	Issue Date	Expiry Date	Area (ha)	Claim Holder
557579	2019-09-12	2022-09-12	424.79	(100) EMX Properties (Canada) Inc.
557578	2019-09-12	2022-09-12	484.52	(100) EMX Properties (Canada) Inc.
557577	2019-09-12	2022-09-12	504.99	(100) EMX Properties (Canada) Inc.
587409	2020-05-05	2022-05-05	20.2	(100) EMX Properties (Canada) Inc.
557576	2019-09-12	2022-09-12	486.93	(100) EMX Properties (Canada) Inc.
557575	2019-09-12	2022-09-12	505.4	(100) EMX Properties (Canada) Inc.

APPENDIX B: DAILY WORK LOGS

Client: Cross River Ventures

Project: Shabu

Date: June 5, 2021 Team: Jesse Koroscil, Carson Gdanski Summary:

Location: Shabu south east Objective: check historical showing close to camp and traverse over the contacts between the granodiorite, conglomerate and mafic volcanics.

Notes: Went pretty good, geology map may be a bit off. Found some volcanics sitting well within conglomerate mapped zone.

Sample ID's

ID	Claim Number
SB-JK-001 – SB-JK-008	557576

Total Samples Taken: 5

Qfield Project Uploaded: Y / N

Waypoints Uploaded: Y / N

Tracks Uploaded: Y / N

Client: Cross River Ventures

Project: Shabu

Date: June 5, 2021

Team: Daniel Barrett, Myles Harding

Summary: Found historic occurrence on south part of Shabu Lake and made progress in prospecting lower region of the claim.

Location: Shabu

Objective: View Historic OGS occurrence in the bottom end of shabu lake. Aid in orientation on tablets. Notes:

Area had considerable coverage in growth and till. Out crop was best seen on ledges and mounds but were often covered by about a foot of well sorted sand/ Till. Good consistency for Black spruce and Jack Pine. Swamp at the top of 557576 has solid potential for a soil sampling program (B horizon or MMI)

Sample ID's

ID	Claim Number
SB-DB-001 : SB-DB-012	557576

Total Samples Taken:

Qfield Project Uploaded: Y / N

Waypoints Uploaded: Y / N

Tracks Uploaded: Y / N

Client: Cross River Ventures

Project: Shabu

Date: June 6, 2021 Team: Jesse Koroscil, Carson Gdanski, Summary:

Location: Shabu south east Objective: continue working north along eastern shore of shabu lake. Check historical mineral occurances

Notes: Pouring rain, didn't get out till around 10am. The day went well overall. Found an old trench and grabbed a few samples.

Sample ID's

ID	Claim Number
SB-JK-009 – SB-JK-015	557576
SB-JK-016 – SB-JK-018	557577

Total Samples Taken: 5

Qfield Project Uploaded: Y / N

Waypoints Uploaded: Y / N

Tracks Uploaded: Y / N

Client: Cross River Ventures

Project: Shabu

Date: June 6, 2021

Team:, Daniel Barrett, Myles Harding

Summary: Discovered contact and made progress in prospecting shore line.

Location: Shabu Lake Objective: shore line mapping and finding granite mafic contact. Notes: found contact between metased unit and granite contact.

Sample ID's

ID	Claim Number
SB-DB-13-SB-DB-029	557577

Total Samples Taken: 7

Qfield Project Uploaded: Y / N

Waypoints Uploaded: Y / N

Tracks Uploaded: Y / N

Client: Cross River Ventures

Project: Shabu

Date: June 7, 2021 Team: Jesse Koroscil , Carson Gdanski, Summary:

Location: Shabu south east

Objective: Continue working north along eastern shore of shabu lake. Check historical mineral occurrences hosted within Arenite and contact between mafic volcanics and granite at eastern margin of property

Notes: Believe we found the Cu/Au occurrence. Roughly 30m off but historical co-ords came from sketch maps. Found semi massive sulphides in felsic-int. We followed a magnetic mafic volcanic with strong ankerite which seems to point right to occurrence.

Sample ID's

ID	Claim Number
SB-JK-019 – SB-JK-030	557577

Total Samples Taken: 12

Qfield Project Uploaded: Y / N

Waypoints Uploaded: Y / N

Tracks Uploaded: Y / N

Client: Cross River Ventures

Project: Shabu

Date: June 7, 2021

Team: Daniel Barrett, Myles Harding

Summary: Traced contact between granite and mafic and prospected.

Location: Shabu lake Objective: trace contact to other lake, prospect for new occurrences. Notes: Promising samples, ridges were the only viable place for outcrop, encountered volcaniclastics in proximity to granite. Further traverse over the interpreted fold nose is required.

Sample ID's

ID	Claim Number
SB-DB-029 to SB-DB-042	557577

Total Samples Taken: 8

Qfield Project Uploaded: Y / N

Waypoints Uploaded: Y / N

Tracks Uploaded: Y / N

Client: Cross River Ventures

Project: Shabu

Date: June 8, 2021 Team:, Jesse Koroscil , Carson Gdanski, Summary:

Location: Shabu south east

Objective: Check historical mineral massive sulphide occurrences in trenches and look for Au occurrence. Think it is from one of the two trenches we located. Grabbed 3 samples from each trench and cleaned them up. Drop samples and start working on western shore of shabu lake near camp. Found premium quartz vein and stripped and searched

Notes:

Sample ID's

ID	Claim Number
SB-JK-031 to SB-JK-38	557577

Total Samples Taken: 12

Qfield Project Uploaded: Y / N

Waypoints Uploaded: Y / N

Tracks Uploaded: Y / N

Client: Cross River Ventures

Project: Shabu

Date: June 9, 2021 Team:, Jesse Koroscil , Carson Gdanski, Summary:

Location: Shabu south east

Objective: Return to quartz vein occurrence and continue stripping, sampling, structural measurements. Attempt to follow up on quartz vein and found another, possibly the same one, on another outcrop. The entire point has a lot of outcrop and would be nice to return and strip depending on assays. There was a lot of rain and thunderstorms/lightning today. We returned around 11 and got back out around 1230.

Notes: this will be money. I believe this is a new occurrence.

Sample ID's

ID	Claim Number
SB-JK-039 – SB-JK-051	557576

Total Samples Taken: 12

Qfield Project Uploaded: Y / N

Waypoints Uploaded: Y / N

Tracks Uploaded: Y / N

Client: Cross River Ventures

Project: Manitou

Date: June 9, 2021

Team: Daniel Barrett, Myles Harding

Summary: salvaged potential rain to with a search for the southern gabbro.

Location: Shabumeni Lake

Objective: shoot the narrows replicate historic samples with loops for extending prospect Notes: Thunderstorms, so kept boat ride short. Made it to the island Ag occurrence, sampled, will return for photos. Got back to camp and waited for clearing in storm. Went down to the south end in search of Gabbro-Granite-meta sed triple point. Roughly a foot of overburden. Best shot for outcrop was at the base of rolling hills.

Sample ID's

ID	Claim Number
SL-SB-DB-001	557576
SB-DB-061-62	557579

Total Samples Taken: 2

Qfield Project Uploaded: Y / N

Waypoints Uploaded: Y / N

Tracks Uploaded: Y / N

Client: Cross River Ventures

Project: Shabu

Date: June 10, 2021 Team: Daniel Barrett, Myles Harding Summary:

Location: South portion shabu claims Objective: ground truth historic showing, hero Trav Notes: Followed ridges into the southern portion. Outcrop was found under top highs after a bit of digging. Good prospects for soil sampling. The area had a mixed forest of poplar, jack pine, black spruce, and alders. Found Z-S fold and 3 congruent S folds at historic gold occurrence. Large 3 terrace OC approximately 30x80 meters. Encountered circling animals from a distance. Let off bear bangers and returned to camp with haste.

Sample ID's

ID	Claim Number
SB-DB-066-SB-DB-074	557575
SB-DB-065	557576

Total Samples Taken: 7

Qfield Project Uploaded: Y / N

Waypoints Uploaded: Y / N

Tracks Uploaded: Y / N

Client: Cross River Ventures

Project: Shabu

Date: June 11, 2021

Team: Daniel Barrett Myles Harding

Summary: Hit historic targets and prepared first batch of samples for departure.

Location: Shabu lake

Objective: Historic occurrences and shoreline mapping.

Notes: Down to one crew while Jesse's crew is away due to injury. Stuck close to shore, photographed and resampled Island Ag showing. White caps on the lake by noon. Returned to camp and began QAQC on samples and worked on data base.

Sample ID's

ID	Claim Number
SB-DB-075	557579
SB-DB-076,77	557578

Total Samples Taken: 3

Qfield Project Uploaded: Y / N

Waypoints Uploaded: Y / N

Tracks Uploaded: Y / N

Client: Cross River Ventures

Project: Shabu

Date: June 12, 2021

Team: Daniel Barrett, Myles Harding, Carson Gdanski, Steve Flank Summary:

Location: North-West region of Shabu lake, Elbow in narrows

Objective: Traverse Mafic volcanic package in area along contact with granite and meta sed Notes: Considerable Qtz veining in the area, Strong alteration with in both mafic, granite, and greywake package around contact. SB-DB-078-87 were done in the morning, returned for more sample bags and finished out the day. Steve and Carson returned to camp in the evening. New water heater was brought to camp by lodge owner but not installed.

Sample ID's

ID	Claim Number
SB-DB-072- SB-DB-092	557578

Total Samples Taken:

Qfield Project Uploaded: Y / N

Waypoints Uploaded: Y / N

Tracks Uploaded: Y / N

Client: Cross River Ventures

Project: Shabu

Date: June 13, 2021 Team: Steven Flank, Carson Gdanski Summary:

Location: Shabu Lake West

Objective: Locate py showing along shoreline then traverse to historic Au and Mo occurrences on newly acquired claims.

Notes: Shoreline sulfide occurrence hosted within Qtz arenite (Fels-Int volcaniclastic?) Sampled. Traversed into Au showing and located an unmapped oxide facies BIF that was strongly silicified with tr. Py. Au showing is a 20-30cm wide smokey qtz vein with tr. Py, cpy malachite. Followed it along strike and noted historic trenching attempted to follow it. A bit of confusion between the granite and qtz arenite units in this area as it is tightly folded and altered. Located the historic Mo occurrence on a narrow qtz vein and sampled. Looks similar to Au bearing vein but narrower (5cm)

Sample ID's

ID	Claim Number
SB-SF-001 – SB-SF-016	

Total Samples Taken: 16

Qfield Project Uploaded: Y / N

Waypoints Uploaded: Y / N

Tracks Uploaded: Y / N

Client: Cross River Ventures

Project: Shabu

Date: June 13, 2021

Team: Daniel Barrett Myles Harding

Summary: found historic core yard and potentially located occurrence

Location: West side of shabu lake

Objective: Locate historic gold occurrence and prospect newly acquired claim

Notes: located 6 historic drill collars, and approximately 300 meters of core in rotten moss-covered boxes. It appears as though each drill hole was going after the same trend (Qtz vein). Located contact between possible mafic and granite, located contact between meta sed and granite.

Sample ID's

ID	Claim Number
SB-DB-094 to SB-DB-111	587589

Total Samples Taken: 11

Qfield Project Uploaded: Y / N

Waypoints Uploaded: Y / N

Tracks Uploaded: Y / N
Client: Cross River Ventures

Project: Shabu

Date: June 14, 2021 Team: Steven Flank, Carson Gdanski Summary:

Location:

Objective: Traverse south of historic gold showing and push west to historic Cu, Pb showing Notes: First part of traverse confirmed lack of outcrop south of the Au showing. All glacial till that appears to be fairly deep (>1m). Walked back north to the showing area and mapped in outcrops and vein in better detail. Walked west to the Cu, Pb showing and located historic drill core as well as Cpy and Gn bearing vein.

Sample ID's

ID	Claim Number
B731809	
B731810	
B731811	
B731812	EEZEZZ small claim
B731813	
B731814	
B731815	
B731816	
B731817	
B731818	

Total Samples Taken: 10

Qfield Project Uploaded: Y / N

Waypoints Uploaded: Y / N

Tracks Uploaded: Y / N

Client: Cross River Ventures

Project: Manitou

Date: June 14, 2021

Team: Daniel Barrett, Myles Harding

Summary: traversed and prospected area with several suspected triple points

Location: Shabu lake- Bottom of question mark Granite.

Objective: Prospect and try and fine contacts

Notes: Contacts in region are in most part inferred. Areas that had the contacts were topographic lows between topographic highs of different composition. Difference between grey meta sed unit and volcanic was evident at SB-DB-116. The sed unit was much more siliceous where the mafic unit had a lustrous chlorite cleavage.

Sample ID's

ID	Claim Number				
SB-DB-112 to SB-DB-126	557578				

Total Samples Taken: 10

Qfield Project Uploaded: Y / N

Waypoints Uploaded: Y / N

Tracks Uploaded: Y / N

Client: Cross River Ventures

Project: Shabu

Date: June 15, 2021 Team: Steven Flank, Carson Gdanski Summary:

Location:

Objective: Investigate historic mineral occurrences north on Shabu Lake and visit vein found by crew a few days back.

Notes: Confirmed areas carbonate alteration mapped historically but it is not that strong. Checked out the vein system Jesse and Carson uncovered on the 10th and it looks interesting in that it is very smokey grey quartz. However no sulfide minz is noted and the wallrock is not particularly altered. We'll send a few samples that Jesse collected in but I'm not sure this will run. The guys did a great job hand stripping the moss and trees here to expose the vein.

Sample ID's

ID	Claim Number
B731819	
B731820	
B731821	
B731822	EE7E77 small claim
B731823	
B731824	
B731826	
B731827	

Total Samples Taken: 8

Qfield Project Uploaded: Y / N

Waypoints Uploaded: Y / N

Tracks Uploaded: Y / N

Client: Cross River Ventures

Project: Shabu

Date: June 16, 2021 Team: Steven Flank, Carson Gdanski Summary:

Location:

Objective: Prospect mafic volcanics and 'marble' unit near camp. Check west shoreline for outcrops and confirm geology.

Notes: Followed volcanics out past newly exposed veins but did not see anything of interest. No outcrop on peninsula south of marble showings. Marble unit looks like it could be carbonatized Ultramafics along with a carbonate vein? Very strong alteration and it's too bad there is not more exposure. Note that there is a prominent mag anomaly south of the marble that has no bedrock exposure. Sampled altered and sulfide bearing mafic volcanics close to here so if there is anomalous Au this area is of interest. Shoreline sampling for the rest of the day on the W margin of Shabu Lake. Nice looking feldspar porphyry with py minz on SB-SF-075. Lines up with station SB-JK-057 and historic py/sph showing in that vicinity.

Sample ID's

ID	Claim Number
B731828	
B731829	
B731830	
B731831	557577, 557576
B731832	
B731833	

Total Samples Taken: 6

Qfield Project Uploaded: Y / N

Waypoints Uploaded: Y / N

Tracks Uploaded: Y / N

Client: Cross River Ventures

Project: Shabu

Date: June 16, 2021

Team: Daniel Barrett, Myles Harding

Summary: traversed to the south and reached the southern gabbro's.

Location: Southern portion of claim behind camp. Objective: reach the southern gabbro's Notes:

Took more data at historic gold showing to help constrain the mafic volcanic/Gabbro boundary, attempted to reach further south but had to turn back given the weather and distance to camp (2.3 km). considerable out crop in the region. For adequate coverage traversing in from the tip of Leonard lake after boating in from the southern logging road would provide enough time to cover the region. At southern gabbro mafic volcaniclastic was found, lapilli tuff grading into tuff breccia 10m from Gabbro.

Sample ID's

ID	Claim Number
SB-DB-143 to SB-DB-152	55575

Total Samples Taken: 10

Qfield Project Uploaded: Y / N

Waypoints Uploaded: Y / N

Tracks Uploaded: Y / N

APPENDIX C: STATION DESCRIPTIONS

Station_ID	Sample_ID	Easting	Northing	Elevation	Sampler	Date	Sample Type	Notes
SB-DB-001	B7317/12	505266	5683/15/	370	DB	2021-06-05	Outcrop	Strong silicous element, Qtz dominate contact with (almost siliciclastic
38-08-001	D731742	303200	5085454	575	00	2021-00-05	Outcrop	breccia with mafic matrix photo B)
SB-DB-002		505261	5683454	410	DB	2021-06-05	Outcrop	
SB-DB-003	B731743	505247	5683444	412	DB	2021-06-05	Outcrop	
SB-DB-004		505217	5683339	416	DB	2021-06-05	Outcrop	
SB-DB-005		505441	5683316	430	DB	2021-06-05	Outcrop	Lithology control point
SB-DB-006		505559	5683383	444	DB	2021-06-05	Outcrop	Lithology control point. Weak fabric. Not confident in foliation
SB-DB-007		505498	5683498	432	DB	2021-06-05	Outcrop	Angular float.
SB-DB-008	B731744	505477	5683524	434	DB	2021-06-05	Outcrop	Impure Quartzite. 90 % qtz, %10 mafic mineral?
SB-DB-009	B731745	505432	5683617	432	DB	2021-06-05	Outcrop	Metased with gradational foliation, gradation of chlorite alt to the north
SB-DB-010		505277	5683711	420	DB	2021-06-05	Outcrop	Folliated mafics, no prevasive alteration but pretty fresh looking volacincs
SB-DB-011		505224	5683873	419	DB	2021-06-05	Outcrop	Noticable increase in qtz content with lack of chlorite alteration. Potential gradation?
SB-DB-012		505253	5683760	415	DB	2021-06-05	Outcrop	Foliated mafics with weak chlorite and weak silicification.
SB-DB-013		505016	5685803	426	DB	2021-06-06	Outcrop	K rich granite. No sense of shear or deformation.
	D72174C	504040	F C 0 F 7 2 2	424		2021 06 06	Quitaran	Contact between granite (north East) and quartz flooded metaseds in
3B-DB-014	B/31/40	504948	2082/33	424	υв	2021-00-00	outcrop	proximity to contact with mafics on other side of OC.
SB-DB-015		504964	5685787	421	DB	2021-06-06	Outcrop	Granite? Gradation into qtz flooded intermediate composition.[
								3 ft wide alteration zone with near perpendicular chlorite viening. Grain
SB-DB-016	B731747	504940	5685804	421	DB	2021-06-06	Outcrop	size increase Within zone from intermediate-mafic volcanic to leucocratic
								gabbro. Contact is sharper on the southern side.
								Boulder showing contact between Gabbro and granite. Topo high means
SB-DB-017		504910	5685845	423	DB	2021-06-06	Float	shoreline, Till + rubble, roughly a foot + over burden depth. Contact is
								clean with minor foliations im the mafic
SB-DB-018		504860	5685873	423	DB	2021-06-06	Outcrop	Leucogabbro with qtz veining.
SB-DB-019	B731758	504396	5686074	417	DB	2021-06-06	Outcrop	Mafic to intermediate.
	0721740	F04401	5696072	416	DD	2021 06 06	Fleat	Angular float found under moss at station 19. Discontinuous pyrite along
30-00-020	D/31/40	504401	5060075	410	υь	2021-00-00	FIUAL	weak foliation.
	D721700	E04460		422	DB	2021 06 06	Outcrop	Mafic volcanicclastic with stretched felsic clasts. Evidence of a possible
38-08-021	B/31/33	304409	2000030	422	υв	2021-00-00	Outcrop	crenulating foliation a meter up in stratigraphy.
SB-DB-022	B731749	504476	5686093	415	DB	2021-06-06	Outcrop	Ankerite bands within foliation of silicous mafic volcanic
כנט מים מא		504226	5606105	111	קח	2021 06 06	Outcrop	4ft zone interlated qtz carbonate veining parallel and perpendicular to
38-08-023		304320	2000102	414	ЪВ	2021-00-00	Outcrop	foliation of host mafic volcanic.
SB-DB-024		504334	5686174	415	DB	2021-06-06	Outcrop	Ankerite flooded folliated mafics in line with foliation on shore.
SB-DB-025		504405	5686106	413	DB	2021-06-06	Outcrop	Well foliated mafic volcanic inline with alteration and foliation at island. Direct measurement not available.

Station_ID	Sample_ID	Easting	Northing	Elevation	Sampler	Date	Sample Type	Notes
SB-DB-026	B731778	504786	5685564	418	DB	2021-06-06	Float	Angular gossanous float in proximity (under moss) to mafic volcanic with discontinuous carbonate weathering.
SB-DB-027		504819	5685412	416	DB	2021-06-06	Outcrop	Weakly foliated mafic volcanics.
SB-DB-028		504939	5685125	415	DB	2021-06-06	Outcrop	Ground truthing litho. Dead mafic. Weak vuggy weathering. Carbonate alt? Large outcrop at shore line
SB-DB-029	B731757	504952	5685718	412	DB	2021-06-06	Outcrop	Contact between mafic and granite. Strong clastic component in mafic. Transition to felsic bombs in proximal to granite. semi preferred orientation to clasts. Increase in alt moving to granite.
SB-DB-030	B731751	504952	5685722	418	DB	2021-06-07	Subcrop	RESAMPLE of historic found in alt zone of mafic volcanic moving into granite. foliation taken from outcrop in photo C. Strong oxidation. Moderate crenulation.
SB-DB-031		504935	5685667	419	DB	2021-06-07	Float	46
SB-DB-032	B731752	505016	5685701	415	DB	2021-06-07	Outcrop	Contact with Granite dyke in photo 3. Pinching and swelling present. 5 meters from photo 1 and 2
SB-DB-033		505037	5685694	419	DB	2021-06-07	Outcrop	Sample is of subcrop from OC in photos. Photo 3 subparallel qtz eye, qtz flooded volcaniclastic
SB-DB-035	B731753	505183	5685564	431	DB	2021-06-07	Outcrop	Moderately oxidized, no visible sulfides, minor crenulations to foliation. Altered portions of the mafic show pinching and swelling, correlating to crenulations
SB-DB-036		505212	5685568	417	DB	2021-06-07	Outcrop	Granite with fractures. Straight shot from SB-DB-035 through spruce swamp.
SB-DB-037		505292	5685588	419	DB	2021-06-07	Outcrop	Un-foliated mafic cliff face.
SB-DB-038	B731754	505357	5685395	415	DB	2021-06-07	Outcrop	Large mafic cliff face with signs of qtz carb alteration.
SB-DB-039	B731755	505496	5685110	417	DB	2021-06-07	Outcrop	Possible historic sample taken here. Silicous component has a medium fine grain size that makes up a well formed prophyroblastic texture. First OC moving out of swamp from lake
SB-DB-040	B731756	505497	5685084	421	DB	2021-06-07	Outcrop	
SB-DB-041	B731779	505486	5685085	422	DB	2021-06-07	Outcrop	Not sure if this is granite or highly altered mafics. In close proximity to qtz flooded mafics
SB-DB-042		505441	5685134	431	DB	2021-06-07	Outcrop	Semi diffuse contact between granite and mafics. Qtz carb alteration of the mafic makes it hard to draw the line but a shallow dip can be seen. Geotool shows trend in photo. 3 meter away clean mafic
SB-DB-043		505236	5683891	416	DB	2021-06-08	Outcrop	Foliated, weakly altered mafics at shore line.
SB-DB-044	B731765	505021	5685370	424	DB	2021-06-08	Outcrop	Contact between granite left (lower) and qtz arenite right (upper). Semi- diffuse. Visable change with granular component in granite roughly striking 280. Not clean contact
SB-DB-045		504990	5686052	414	DB	2021-06-08	Outcrop	Unaltered granite with no signs of deformation on outcrop. K rich.
SB-DB-047		505022	5687412	411	DB	2021-06-08	Outcrop	Granite just off claim. Swamp on claim. There is in fact granite here.

Station_ID	Sample_ID	Easting	Northing	Elevation	Sampler	Date	Sample Type	Notes
SB-DB-048		504654	5687009	415	DB	2021-06-08		Culture element. Old trappers cabin
SB-DB-049		504500	5686945	415	DB	2021-06-08	Outcrop	Granite. Large field of till directly inland.
		50/197	5696074	116	קח	2021 06 09	Outcrop	Granodiorite-granite outcrop visible from lake. Topo highs are
38-08-030		504167	5060974	410	DB	2021-00-08	Outcrop	continiuations of granite OC.
SB-DB-051	B731750	503658	5687088	111	DB	2021-06-08	Subcron	Sample taken from sheared off portion in lake. qtz flooded strong
30-00-031	0/31/33	202028	2007000	414	DB	2021-00-08	Subcrop	foliation.
SB-DB-052		503543	5687155	416	DB	2021-06-08	Outcrop	Close to a foot of over burden. Granite OC at bottom of till hill
SB-DB-053	B731760	503538	5687152	423	DB	2021-06-08	Outcrop	Significantly altered rusty mafic in close proximity to granite. Contact
50 00 000	5751700	505550	5007152	723	00	2021 00 00	Outerop	somewhere under trees. Third photo
SB-DB-054	B731761	503475	5687191	425	DB	2021-06-08	Outcrop	Quarts flooded mafics in proximity to granite. Qtz banded foliation
SB-DB-055	B731762	503479	5687199	424	DB	2021-06-08	Outcrop	Contact between mafic and granite. Sheared elements/clasts of mafic
							00000	with in the granite.
SB-DB-056	B731763	503471	5687154	425	DB	2021-06-08	Subcrop	Rusty mafics in proximity to granite, qtz flooded
SB-DB-057		503462	5687129	428	DB	2021-06-08	Outcrop	Well foliated mafics with discontinuous lighter weathering parallalel to
			000/ 110				00000	foliation. Some pinching and swelling.
SB-DB-058	B731764	503486	5687129	423	DB	2021-06-08	Outcrop	Well foliated rusty mafic volcwnics with qtz flooding.
SB-DB-059		503820	5686763	414	DB	2021-06-08	Outcrop	Smokey Qtz vein running through the granite, good indicators for
		000010					00000	deformation.
								Volcaniclastic mafic with strong qtz flooding on second island. Steep drop
SB-DB-060		504199	5686356	412	DB	2021-06-08	Outcrop	off into lake compared to first Island. Occasional granite splays that cross
								cut elongation direction of clasts
SB-DB-061		500969	5689785	411	DB	2021-06-09	Outcrop	3 parallel k rich granite dikes within granodiorite. No visible historic
00 00 001		500505	5005705			2021 00 05		workings. Black spruce dominant region. K rich granite across the lake
								Well folliated metaseds. Strong alteration can be traced gradatoinally
SB-DB-062		501100	5689364	411	DB	2021-06-09	Outcrop	across the island. Sulfide weathering strongest on flanks of crenulations.
								Pyrite coincident to foliation. 4 m by 3 m trench.
								Metased/quartzite, some float showing contact with mafic volcanic, some
SB-DB-063		505565	5682631	431	DB	2021-06-09	Outcrop	float angular granite. Roughly 2 feet of over burden burden over
								outcrop.
								Could not find triple point. Meta sed quartzite, some float showing
SB-DB-064		505554	5682644	425	DB	2021-06-09	Outcrop	contact with mafic volcanic, some float angular granite. Roughly 2 feet of
								over burden burden over outcrop.
	B721766	506214	5683303	1202 424	DB	2021-06-10	Outcrop	Medium grained Gabbro with surficial/ fracture controlled ankerite.
20-002	5/31/00	500514	5002255	431	00	2021-00-10	Outcrop	Minor pyrite. Porphyroblasts are moderately deformed
	B731767	506260	EC03164	64 429	DB	2021 06 10	Outcrop	Medium grained gabbro with surficial/ fracture controlled ankerite.
30-00-000	0121101	500200	5062104	430		2021-00-10	υπειομ	Minor pyrite. Porphyroblasts are moderately deformed

Station_ID	Sample_ID	Easting	Northing	Elevation	Sampler	Date	Sample Type	Notes
								Wall rock of qtz vein containing sulfides. See photos. Potential historic
SB-DB-067	B731768	506260	5682165	438	DB	2021-06-10	Outcrop	workings. Station 68 has the veins on the face. This vein is a third with in
								take from, on top. Also deformed.
								Bifurcating parallel qtz veins with 80 cm of off set up top and 5 bellow.
SB-DB-068	B731769	506234	5682153	444	DB	2021-06-10	Outcrop	Weak oxidation. Grain size reduction in gabbro in proximity. Top normal
								dip slip fault is st 2. Bottom obliqe strike slip st 3
SB-DB-069		506155	5682003	436	DB	2021-06-10	Outcrop	Well folliated mafic volcanic.
	0721770	505070	5602002	120	קח	2021 06 10	Outcrop	Mafic volcanic with anamolus beige-cream colored alt. Very strong
38-08-070	B/31//U	202878	3082003	439	ЪВ	2021-00-10	Outcrop	amphibole component gives misoriented cleavage.
								Strong deformation, 3 near parallel S Folds all within 1.5 meters of strike
SB-DB-071	B731773	505883	5682005	439	DB	2021-06-10	Outcrop	on qtz vein . From east west there is a decrease in the apical angle of the
								qtz vein. Strongest deff on west/left fold.
CD 00 070	D72177/		5602022	112	DB	2021 06 10	Outcrop	Weird mica mineral pervasive in mafic host. Several small pressure
30-00-072	D/31//4	505660	5062055	445	υь	2021-00-10	Outcrop	veinlet running through. Some evidence of offset on foliation photo C.
								Strong deformation visable in 4 cm to 10cm Z folded qtz vein with 8
SB-DB-073	B731775	505884	5682042	449	DB	2021-06-10	Outcrop	bifurcating pressure vienlets paralelle to sub paralelle to axis of Z fold.
								Grey to black veining. Carbonate rich. Chip sample.
	B731776	6 501100	F 600267	67 417	DD	2021 06 10	Outorop	Wall rock in proximity to z folded qtz vein. Well folliated. Stromg
30-00-074			5 5055507		00	2021-00-10	Cuttop	deformation characteristics.
	0721771	E02402	EC0C701	110	DB	2021 06 11	Outcrop	Second sample at occurrence with semi massive chalchopyrite. Dense.
3B-DB-075	в/31//1	503482	10/0005	418	υв	2021-06-11	Outcrop	Some mineralization appears fractue controlled along foliation
		503483	483 5686785	686785 414	DB	2021-06-11		Well foliated meta sed with weak to strong oxidation. Gossanus
SB-DB-076	B731772						Outcrop	weathering concentrated at shear. Semi massive to fracture controlled
								sulphides. 3x5 meter trench.
								Well foliated meta sed with weak to strong oxidation. Gossanus
SB-DB-077	B731777	503482	5686785	414	DB	2021-06-11	Outcrop	weathering concentrated at shear. Semi massive to fracture controlled
								sulphides. 3x5 meter trench.
								Altered mafic, darker bands of alt around fractures. silicous minor pyrite
SB-DB-078	B731564	501984	5687320	410	DB	2021-06-12	Outcrop	there appears to be weak foliation coincident to fracture. Not confident
								to measure on OC. Gradational contact?
SB-DB-079		501957	5687271	414	DB	2021-06-12	Outcrop	Definitive granite. SB DB 78 had a much stronger mafic component.
		502025	F C 0 7 1 0 1	422	DD	2021 06 12	Outorop	Dark mafic volcanic, sericite, qtz, episode alt. Possible damage zone of
28-08-080	B/31220	502035	208/191	423	υв	2021-06-12 0	Outcrop	fault. Not confident on measuring foliation.
	D721557	502070	070 5687135	7135 423	DB	2021 06 12	Outcrop	Contact between granite and mafic volcanic. Good indicators for
20-00-001	0/2722/	/ 502070			υB	2021-06-12	Outcrop	structural displacement.
	D721571	E02100	EC07121	101 400	DP	2021 06 12	Outeren	Intermediate to felsic volcanic. District porphyroblastic texture. Pink
20-90-92	0/312/1	302108	121/002	426	ив	2021-06-12	Outcrop	weathering, minor sericite alt. Fractured surface

Station_ID	Sample_ID	Easting	Northing	Elevation	Sampler	Date	Sample Type	Notes
SB-DB-083	B731553	502163	5687095	433	DB	2021-06-12	Subcrop	Qtz vein on supcrop in proximity to discontinuous granite splay. See photos. Strong oxidation, subhedral pyrite growth weak carbonate component.
SB-DB-084	B731552	502157	5687093	435	DB	2021-06-12	Float	Mafic volcanic host rock of SB-DB-083 from subcrop. Strong alteration in proximity to discontinuous granite splay. See photos.
SB-DB-085	B731560	502157	5687097	432	DB	2021-06-12	Outcrop	Intermediate to mafic volcanic OC with granite splay. Well oxidized qtz vien im sample has minor epidote alt. Sub to anhedral blebs pyrite on boundary with vein.
SB-DB-086		502165	5687099	438	DB	2021-06-12	Outcrop	Up the hill from Sb 83-85, strong pyroxene component within the granite. Leucogabbro? Rock on flag pointing north
SB-DB-087	B731558	502179	5687102	441	DB	2021-06-12	Outcrop	
SB-DB-088	B731561	502179	5687104	442	DB	2021-06-12	Outcrop	Host of sample 87. Distinct granular texture with a "felsic" ground mass. Dark pyroxene+amphibole.
SB-DB-089	B731562	502632	5687257	423	DB	2021-06-12	Outcrop	Sericite alt chlorite schist. Anamolus red alteration.
SB-DB-090	B731555	502632	5687257	423	DB	2021-06-12	Float	Sericite schist found under moss at station 89.
SB-DB-091		502640	5687243	424	DB	2021-06-12	Outcrop	Mafic schist with chlorite, sericite, sulphide and silica alt. Minor FG porphroblastic texture, DPO biotite presents as mm scale Fine grained laths
SB-DB-092	B731563	502591	5687215	424	DB	2021-06-12	Outcrop	
SB-DB-093	B731566	502722	5687181	434	DB	2021-06-13	Outcrop	5 cm qtz vein in granite. Chewed up. Not enough surface for sample. 3 parallel mafic splays that pinch and swell 2 to 4 cm granite Altered to cream pink colour.
SB-DB-094	B731780	503070	5686196	415	DB	2021-06-14	Outcrop	Strongly oxidized banded meta sed.
SB-DB-095	B731795	502796	5685977	421	DB	2021-06-15	Outcrop	Meta sed with mm well deformed smoky qtz vein in proximity. Pink white surficial weathering. Minor amphibole alt, pyrite is oxidized.
SB-DB-096	B731570	502794	5685930	426	DB	2021-06-16	Subcrop	30 by 10 m ridge trending NE-SW. Sample was takem from cleaved off portion of OC. No apparent foliation, 2 cm veneer of pink white alt
SB-DB-097	B731781	502822	5685909	427	DB	2021-06-17	Outcrop	Granite in contact with mafic slab. Almost looks porphyritic. Qtz vein is smoky and included in sample
SB-DB-098	B731785	502818	5685909	434	DB	2021-06-18	Outcrop	Mafic slab in contact with granite, chlorite veins extending into granite, no signs of alteration other than weak chlorite.
SB-DB-099		502834	5685879	436	DB	2021-06-19	Outcrop	Localized damage zone in QTZ rich meta sed with medium grained porphyroblastic qtz grains and minor amphibole. Dip inconclusive, between 70 and 90
SB-DB-100	B731796	502830	5685877	435	DB	2021-06-20	Outcrop	Cleaved surface of OC was oxidized with fracture controlled disseminated pyrite. Heavy.
SB-DB-101		502943	5685801	441	DB	2021-06-21	Outcrop	2 cm veneer of amphibole alt.
SB-DB-102	B731786	502919	5685777	441	DB	2021-06-22	Outcrop	Drill collar. Sample is of core found at collar. Surface OC is meta sed .

Station_ID	Sample_ID	Easting	Northing	Elevation	Sampler	Date	Sample Type	Notes
SB-DB-103		502956	5685768	440	DB	2021-06-23	Outcrop	Two historic drill collars. Bq core found in proximity. ST 1 is collar with the metal shaft.
SB-DB-104		502964	5685775	442	DB	2021-06-24	Outcrop	Two historic drill holes in proximity to station 103 drill holes.
SB-DB-105	B731790	502907	5685747	441	DB	2021-06-25	Float	Historic core yard found near drill collars. Grabbed a piece of core that
	D721700	E0200E	E60E7E7	440	DB	2021 06 26	Outcrop	Diago or core from historical ward that intersected at voin
SB-DB-100	D/31/00	502905	5065752	440		2021-06-20	Outcrop	Piece of core from historical yard that intersected qtz veni.
28-D8-101		502904	5085752	439	υв	2021-06-27		Difficultat at historic core farm.
SB-DB-108	B731554	502874	5685713	440	DB	2021-06-28	Outcrop	historic sample site.
SB-DB-109	B731559	502874	5685720	441	DB	2021-06-29	Outcrop	Metasediment host of qtz vein foliation of meta sed appears to run
								parallel to contact. Erosion makes the contact distinct.
SB-DB-110		502906	5685739	444	DB	2021-06-30	Outcrop	Qtz vein with lateral dilation.
SB-DB-111		503211	5686244	440	DB	2021-07-01	Outcrop	Mafic volcanic with distinct amphibole component.
								Meta sed (volcanic) weak discontinuous veneer of ankerite alt. Sample is
SB-DB-112	B731551	503300	5686837	392	DB	2021-06-14	Subcrop	from cleaved sub crop with QTZ Vein. Some pinch and swell with in
								foliation. Near vertical dip
							Outcrop	Significantly oxidized OC with pround weathering of a darker component.
SB-DB-113		503267	5686854	440	DR	2021-06-14		Anamolus ankerite alt "clasts "
				-			_	5 meters SE from 113 is an ankerite alt gtz vein w/ an M fold. Z transition
SB-DB-114		503264	5686854	434	DB	2021-06-14	Outcrop	into S. Actually gtz can e seen at end of 7 in photo 3
								"Metased" with a schistose texture 10% white mica. In proximity to 2 cm
SB-DB-115	B731798	503020	5686717	434	DB	2021-06-14	Outcrop	qtz vein. Vein has parallel counter part 2 cm away same width.
60 00 446	0704700	502077	500007	425		2024 06 44		Meta sed at contact with mafics. Weak ankerite veneer. Mafic on the left
SB-DB-116	B/31/92	502977	5686687	435	DR	2021-06-14	Outcrop	sed on the right.
CD DD 447	0704704	502070	F 606600	422		2024 06 44		Contact between mafic and meta sed, shows chloritic luster along
SB-DB-117	B731794	502979	5686690	433	DR	2021-06-14	Outcrop	cleavage. Moderate foliation. Both samples here appear to be dead.
							_	Mafic volcanic with interlated bands of weathered ankerite with in
SB-DB-118		502924	5686717	439	DB	2021-06-14	Outcrop	foliation next to portions of silicous mafics.
								Granite in triple point region V strong amphibole component. Busty well
SB-DB-119	B731797	502860	5686726	438	DB	2021-06-14	Outcrop	deformed cm atz vein sampled. Wall rock appears to be mafic schict
								deformed chi qiz veni sampled. Wan fock appears to be mand schist
SB-DB-120		502812	5686712	1/1	DB	2021-06-14	Outcrop	2 subparallel k rich dykes running through K poor granite. Off set exhibits
30-00-120		502012	5080712	441	00	2021-00-14	Outerop	Z fold
CD DD 131		502522	F C Q C Q 2 2	447		2021 06 14	Outoron	Mafic volcanic/ weird meta sed with surficial cream-pink alt. Step down
3P-DP-121		502552	5060925	447	υь	2021-00-14	Outcrop	foliation. (Fold nose?)
SB-DB-122	B731565	502535	5686912	447	DB	2021-06-14	Outcrop	"Fresh" mafic rock surrounded by Qtz flooded meta sed/ mafic. 1 m by 2 m
SB-DB-123	B731793	502535	5686911	446	DB	2021-06-14	Outcrop	
22 23 123	2,01,00	362333	1000011	440		1-0-1 00 14	- 410, OP	

Station_ID	Sample_ID	Easting	Northing	Elevation	Sampler	Date	Sample Type	Notes
SB-DB-124		502363	5686859	446	DB	2021-06-14	Outcrop	First Oc on other side of swamp. Amphibole rich granite or meta sed?
SB-DB-125	B731567	502271	5686896	449	DB	2021-06-14	Outcrop	"Bumpy" Mafic with qtz flooding and a moderate amphibole component.
SB-DB-126	B731791	503394	5686497	434	DB	2021-06-14	Outcrop	Carb alterd qtz vein in silicous meta sed.
								Meta sed with a schistose texture. Minor sulfides, minor oxidation.
SB-DB-127	B731576	503349	5686501	440	DB	2021-06-15	Outcrop	"Shear zone" is roughly 10 cm wide. Localized strain? Less tan 1 % sulphide
SB-DB-128	B731783	502992	5686433	431	DB	2021-06-15	Outcrop	Carb altered mafic volcanic. Rusty veneer. Lathic biotite.
SB-DB-129	B731572	502943	5686393	433	DB	2021-06-15	Outcrop	QV in quartzite, rusty, sugary, weak chalchopyrite weathering.
SB-DB-130	B731569	502916	5686410	438	DB	2021-06-15	Outcrop	QV in weird quartzite. Distinct amphibole component in host . Vein is smoky, pinch and swell 1 to 4 cm. Main vein is paralle to foliation of host with a series of cm-mm sub par veinlets,(st3) smoky.
SB-DB-131	B731782	502841	5686361	434	DB	2021-06-15	Outcrop	Two 3 cm paralle Qtz veins running through quartz rich meta sed (quartzite) strong sulphide weathering but constrained to the northern vein(right). Other portions appear more bull. Pinch/swell
SB-DB-132		502766	5686344	437	DB	2021-06-15	Outcrop	Smoky/rusty 1 cm vein in weird quartzite. Quick station for strike of vein
SB-DB-133	B731787	502781	5686312	442	DB	2021-06-15	Outcrop	Two shallow dipping 3 cm deformed qtz veins with 3 perpendicular steeper 1 cm qtz veins also smoky. 1 perpendicular vein was V oxidized, hosted in weird meta sed quartzite. Lighting bad
SB-DB-134	B731784	502748	5686244	445	DB	2021-06-15	Outcrop	Mafic volcanic with Gabbroic texture. VF pyrite and chalcho, sub hedral. Less than 1% contact with weird meta sed between here and sB 33
SB-DB-135		502759	5686212	447	DB	2021-06-15	Outcrop	Mafic volcanic next to metased boundary (undertrees?) Qtz flooded. Miles standing at meta sed photo 3.
SB-DB-136		502742	5686204	446	DB	2021-06-15	Outcrop	Quartzite metasediment , boundary with mafic under tree between here and 135. Weak mylonite texture?
SB-DB-137		502637	5686196	441	DB	2021-06-15	Outcrop	Contact between mafic volcanic an d quartzite. Th is region not as suitable for soil, Iblack spruce bark?
SB-DB-138	B731789	502606	5686174	443	DB	2021-06-15	Float	Mafic float found on mafic OC under moss. 1 mm stringer of pyrite. Moderarly silicsous.
SB-DB-139		502438	5686179	442	DB	2021-06-15	Outcrop	Flat mafic volcanic in middle of topographic low. Weak oxidation, weak carbonate alt. No available surface for foliation. Mafic body marker
SB-DB-140	B731568	502426	5686117	448	DB	2021-06-15	Outcrop	Rusty quartzite transitioning into a granite. Sedimentary wedge with granite on either side.
SB-DB-141	B731573	502431	5686125	434	DB	2021-06-15	Float	Angular sulphide rich float found next to 2 foot wide qtz vien. Vuggy erosion and subhedral pyrite.

Station_ID	Sample_ID	Easting	Northing	Elevation	Sampler	Date	Sample Type	Notes				
								2 FOOT QTZ VEIN. STRONG DEFORMATION FEATURES. SMOKEY BLUE TO				
SB-DB-142	B731574	502423	5686118	449	DB	2021-06-15	Outcrop	BLOOD RED. PYRITE AND Bornite in . Possible fold.St 1 N west limb st 2 SE				
								limb. Carb alt. Strong oxidation. Pinches to a foot.				
CD DD 1/2	D721577	505025	5602017	111	DP	2021 06 16	Outcrop	Weird quartzite unit except weak sericite alt + minor oxidation. Well				
30-00-143	B131311	202822	3082017	441	ЪВ	2021-00-10	Outcrop	folliated.				
SB-DB-144		505816	5682033	451	DB	2021-06-16	Outcrop	Well folliated 10 cm zone in mafic volcanic				
SB-DB-145		505801	5682069	446	DB	2021-06-16	Outcrop					
	B721578	505070	5682083	450	DB	2021-06-16	Outcrop	Mafic volcanic with gabbroic texture? Rusty qtx blend. Sampke taken				
30-00-140	0131310	303970	3082083	450	00	2021-00-10	Outcrop	from unde r n over turned tree.				
SB-DB-1/17	B731579	505959	5682120	152	DB	2021-06-16	Outcrop	Gabbro (bumby mafic) qtz carb alteration. Less than 1 % pyrite visabl3				
50 00 14/	0/313/3	505555	5002120	452	00	2021 00 10	Outerop	with hand lens. Weakly magnetic.				
SB-DB-148	B731580	505928	5682103	451	DB	2021-06-16	Outcrop	Sericite alt mafic volcanic with weak to moderate alteration. Heavey.				
50 DD 140	5751500	505520	5002105	431	00	2021 00 10	Moderate sulphide weathering.					
SB-DB-149	B731581	506239	5681790	442	DB	2021-06-16	Outcrop	Weakly chloritzed gabbro with a strong amphibole component. weak				
50 00 145	0/01001	500235	5001750	2	00	2021 00 10	surficial oxidation.					
SB-DB-150	B731582	506271	5681732	АЛА	DB	2021-06-16	Subcron	Did not find granite body. Qtz flooded mafic volcanic with weak to				
50-00-150	0751502	500271	5001752		00	2021-00-10	Subcrop	moderate oxidation. Some subhedral pyrite, minor chalco.				
								Tree crop. Mafic volcaniclastic that grades from lapilli tuff to tiff breccia.				
SB-DB-151	B731583	506422	5681607	454	DB	2021-06-16	Subcrop	Very silicsous. Elongation direction of clasts is 270 plunging less th an 80				
								greater than 60				
								Gabbro with minor sulphide.strong amphibole component. Ridge system				
SB-DB-152	B731584	506378	5681628	452	DB	2021-06-16	Outcrop	here is extensive. Lots of ground to cover. Coming in from leonard lake				
								would be best				
								Well deformed granite splay within mafic volcanics. Multiple sub parallel				
SB-DB-153		505022	5685692		DB	2021-06-16	Outcrop	splays, breciated granite fragments with in qtz vein. Sample not possible.				
								Deep till on either side.				
SB-JK-001		505337	5683320	441	JK	2021-06-05	Outcrop	Lineation taken of elongate quartz grains and eyes				
		505502	5682210	112	IK	2021-06-05	Outcrop	Structure 1 is elongate quartz grains. Structure 2 is 3cm wide,				
3D-3R-002		202202	5005215	442	217	2021-00-05	Outerop	massive, smokey quartz vein				
SB-JK-003		505563	5683340	436	JK	2021-06-05	Outcrop	Quick litho check. Granodiorite				
SB-JK-004		505569	5683600	427	JK	2021-06-05	Outcrop	Litho check near where Ct is marked on geology layer. Mg granodiorite				
								Fg dark grey, strongly foliated Conglomerate. 2-20mm quartzite clasts.				
SB-JK-005	B731001	505441	5683608	433	JK	2021-06-05	Outcrop	Moderate Ankerite alt in 10-20cm bands. Pervassive mod chl alt. mm				
								scale ribbons of Py between foliations.				
								Polymictic conglomerate. Clasts made up of fg sandstone, quartzite and				
SB-JK-006	B731002	505482	5683680	432	JK	2021-06-05	Outcrop	possibly finer grained grainte. Trace py>Po. Occurs as reaction rims or				
		1002 505482 5	5005000			2021-00-03		blebs ands as stringers between foliation.				

Station_ID	Sample_ID	Easting	Northing	Elevation	Sampler	Date	Sample Type	Notes					
SB-JK-007		505443	5683712	429	JK	2021-06-05	Outcrop	Med to dark greenish grey, very fg to aphanetic mafic volcanic. Trace diss fg py.					
SB-JK-008	B731003	505275	5683779	429	JK	2021-06-05	Outcrop	Dark green, aphanetic mafic volcanic. Pervassive weak carbonate and silica alt. 2 samples taken. A-mvol. B- piece with quartz vein					
SB-JK-008B	B731004	505275	5683779	415	JK	2021-06-05	Outcrop	Dark green, aphanetic mafic volcanic. Pervassive weak carbonate and silica alt. 2 samples taken. A-mvol. B- piece with quartz vein					
SB-JK-009	B731005	505270	5683716	420	JK	2021-06-06	Outcrop	Medium to dark greenish grey, very fine grained with few fragments of quartzite.					
SB-JK-010	B731006	505256	5683738	423	JK	2021-06-06	Outcrop	Dark greenish grey, very fg, weak to moderately altered mafic volcanic. Strong mm scale, bifrication and locally sinuous foliation. Rusty iron/ankertie staining on cleavage surfaces orbetween foliatio					
SB-JK-011	B731007	505261	5683773	419	JK	2021-06-06	Outcrop	Medium greenish grey, very fg to aphanetic mafic volcanic. Strong mm scale, bifricating and sinuous foliation. Ankerite occurs and fragmented veins and local flooding.					
SB-JK-012	B731008	505244	5683770	416	JK	2021-06-06	Subcrop	Dark green-blue, aphanenic mafic volcanic. Broken Q-carb veining. Gaussenous weathered surface.					
SB-JK-013	B731009	505228	5683835	419	JK	2021-06-06	Outcrop	Strongly gaussenous and rusty. Fg, strongly fol mafic volcanic? likely old workings					
SB-JK-014	B731010	505221	5683886	419	ЈК	2021-06-06	Outcrop	Dark greenish grey, aphanetic to fg, moderately fractured mafic volcanic. Looks like an old trench with small piles of rock near lake. Trench is roughly 2mx4m long, trending N-S. Fracture set at 094					
SB-JK-014b	B731011	505221	5683886	427	JK	2021-06-06	Outcrop	Dark greenish grey, aphanetic to fg, moderately fractured mafic volcanic. Looks like an old trench with small piles of rock near lake. Trench is roughly 2mx4m long, trending N-S. Fracture set at 094					
SB-JK-015	B731012	505355	5683896	418	JK	2021-06-06	Outcrop	Outcrop slopes to swampy area, thick tree cover surrounds. Dark green, fg, moderately magnetic groundmass with sandstone, quartzite and fg granitic clasts. Weak carbonate flooding. 1% diss py.					
SB-JK-016	B731013	505220	5684124	415	JK	2021-06-06	Outcrop	Dark blue, aphanetic, mod chl alt mafic volcanic. Bifricating fractures and fol have rusty surfaces, flow bands? With ank? Mod intensity chl alt. Biotite occurs locally in mm scale bands, biotite up to 2-3mm.					
SB-JK-017	B731014	505129	5684367	415	JK	2021-06-06	Outcrop	Quartz Arenite at eastern shore where drag fold is mapped on prizlak's detailed geology map. Folding observed in mm scale mafic layers. Sampled one gaussenous "pod" within folding.					
SB-JK-018	B731015	505122	5684376	424	JK	2021-06-06	Outcrop	Same outcrop as 017 but around 10m north at another lakeside outcrop. Grabbed fresher looking Quartz Arenite. Possible "limestone"?					
SB-JK-019	B731016	505176	5684421	428	JK	2021-06-07	Outcrop	Medium greenish grey, aphanetic to fg, massive mafic volcanic. Pervasive mod chl alt. 2% fg diss py. Unit itself is nonmagnetic					

Station_ID	Sample_ID	Easting	Northing	Elevation	Sampler	Date	Sample Type	e Notes					
SB-JK-020	B731017	505216	5684406	434	JK	2021-06-07	Float	Medium to dark grey, fg, foliated mafic volcanic-lapilli tuff subcrop or float. 2mm elongate rounded lapilli w dark grey aphanetic matrix. Trace fg py. Trace q carbonate vein.					
SB-JK-021	B731018	505212	5684378	439	JK	2021-06-07	Outcrop	Darrk grey, aphhanetic , moderately deformed pillow basaltt. Weak silicification. Wk to mod chl. Trace py.					
SB-JK-022	B731019	505301	5684355	418	JK	2021-06-07	Outcrop	Large topo high made of mvol and pillowbasalts. Few rims present are stretched out at roughly N-S. Pervassive mod chl, local weak silica. Pinki 1-2 cm q vein at 352/70. 2 samples taken, attempt to Q					
SB-JK-023		505531	5684519	427	JK	2021-06-07	Outcrop	Edge of swamp. Mg granite with rounded mafic xenos. Proximal to mapped contact with mvol					
SB-JK-024	B731020	505519	5684530	426	JK	2021-06-07	Outcrop	Medium to dark green, aphanetic mafic volcanic. Flow or deformed pillows. Located at granite contact. Moderate pervasive chl and patch v silica alt. Trace diss py.					
SB-JK-025		505486	5684563	428	JK	2021-06-07	Outcrop	Litho check. Same as previous					
SB-JK-026	B731021	505462	5684614	436	JK	2021-06-07	Outcrop	Medium greenish grey, aphanetic, massive mafic volcanic braccia. Angular dark green fragments set into light brownishbeige ankertie a matrix. Trace fg py.					
SB-JK-027a	B731022	505431	5684638	436	JK	2021-06-07	Outcrop	Light yellowish green, aphanetic, nonmagnetic mafic volcanic. Possible flow. Pervasive strong ankerite flooding and moderate chl. Trace diss fg euhedral to subhedral py.					
SB-JK-027b	B731023	505431	5684638	436	JK	2021-06-07	Outcrop	Light yellowish green, aphanetic, nonmagnetic mafic volcanic. Possible flow. Pervasive strong ankerite flooding and moderate chl. Trace diss fg euhedral to subhedral py.					
SB-JK-027c	B731024	505431	5684638	443	JK	2021-06-07	Outcrop	Light yellowish green, aphanetic, nonmagnetic mafic volcanic. Possible flow. Pervasive strong ankerite flooding and moderate chl. Trace diss fg euhedral to subhedral py.					
SB-JK-028	B731026	505385	5684650	447	JK	2021-06-07	Outcrop	Same as previous. Potential trace arseno					
SB-JK-029	B731027	505306	5684598	422	JK	2021-06-07	Outcrop	Aphanetic mafic volcanic. Pervassive strong ankerite and moderate chlorite. Rusty weathered surface. Trace py. Moderately magnetic					
SB-JK-030A	B731028	505114	5684659	422	JK	2021-06-07	Subcrop	Semi massive sulphide. Hosted in felsic or intermediate volcanic, close to contact with mafic volcanic, sitting within m a pp3d arenite.					
SB-JK-030B	B731029	505114	5684659	415	JK	2021-06-07	Subcrop	Semi massive sulphide. Hosted in felsic 9r intermediate volcanic, close to contact with mafic volcanic, sittimg within m a pp3d arenite.					
SB-JK-031	B731030	505124	5684821	419	JK	2021-06-08	Outcrop	Medium blueish green-grey, aphanetic, moderately ank and chl flooded mafic volcanic. Flow? Trace to 1% diss fg py with local fracture controlled.					
SB-JK-032	B731031	505135	5684812	427	JK	2021-06-08	Outcrop	Same as previous description					
SB-JK-033	B731032	505135	5684776	430	JK	2021-06-08	Outcrop	Fg mafic vol. Same as previous. Ttrace diss py					

Station_ID	Sample_ID	Easting	Northing	Elevation	Sampler	Date	Sample Type	Notes				
SB-JK-034	B731033	505105	5684665	430	JK	2021-06-08	Subcrop	Second historical trench marked on detailed geology map. Similar to first one. Semi massive py>po with potential cpy. Hosted in aphanetic, dark blue metased? Largely just silica,chem sed				
SB-JK-034B	B731034	505105	5684665	426	JK	2021-06-08	Subcrop	Second historical trench marked on detailed geology map. Similar to first one. Semi massive py>po with potential cpy. Hosted in aphanetic, dark blue metased? Largely just silica,chem sed				
SB-JK-035A	B731035	505114	5684686	426	JK	2021-06-08	Outcrop	Possible oldworking, very close to old pit where Cu-Au occuran is on detailed geology maps. Aphanetic quartz arenite, layed amd diss sulphide.				
SB-JK-035B	B731036	505114	5684686	430	JK	2021-06-08	Outcrop	Possible oldworking, very close to old pit where Cu-Au occuran is on detailed geology maps. Aphanetic quartz arenite, layed amd diss sulphide.				
SB-JK-036	B731037	505108	5684695	418	JK	2021-06-08	Outcrop	Historical Au/Cu occurqnce. Same litho as previous. Pit isroughly circular 5x4m, 2m deep.				
SB-JK-037	B731038	505107	5684734	422	JK	2021-06-08	Outcrop	Same description as previous. Semi massive sulphid3 in quartz arenite. Along contact 2ith mafic volcanic.				
SB-JK-038		505135	5684829	419	JK	2021-06-08	Outcrop Medium greenish blue, fg, weakly foliated mafic volcanic. Pervasive w chlorite alt. No sulphide observed					
SB-JK-039	B731039	504706	5683520	428	ЈК	2021-06-08	Outcrop	Light blueish grey, aphanetic, weakly foliated and weakly chlorite altered mafic volcanic. 0.1% diss and local fracture fill py				
SB-JK-040	B731040	504683	5683526	428	JK	2021-06-09	Outcrop	dark to medium blue-grey, mod alt mafic flow? Shearing at 330/44, 350/68, 322/80				
SB-JK-040b	B731041	504683	5683526	420	JK	2021-06-09	Outcrop	same unit as previous and same OC. Shearing at 305/40, 290/85.				
SB-JK-041	B731042	504678	5683527	421	JK	2021-06-09	Outcrop	Same unit and outcrop as previous but lacks deformation and shearing. Dark brown-rusty weathered surface. Fg-aphanetic, mafic vol with strong chl-ank alt. Strong brittle def. No sulphide observed				
SB-JK-042	B731043	504660	5683519	420	JK	2021-06-09	Subcrop	Rusted gossanous weathering. Dark blue, aphanetic, moderately foliated mafic volcanic with strong ankerite and mod chl alt.				
SB-JK-043	B731044	504667	5683512	420	JK	2021-06-09	Outcrop	Sampled upper most QV of MVOL Outcrop. Milky QV with smokey dark grey black Q at pinch points and margins. No sulphide observed				
SB-JK-043B	B731045	504667	5683512	420	JK	2021-06-09	Outcrop	Sample of host Mafic Volcanic. Sample taken adjacent to QV. Taken on hangingwall side of vein.				
SB-JK-044A	B731046	504663	5683509	420	JK	2021-06-09	Outcrop	Sample of a smaller splay of Q vein off the major. Sampled the host mvol and QV. Sample A is of mod chl alt mafic volcanic				
SB-JK-044b	B731047	504663	5683509	424	JK	2021-06-09	Outcrop Sample of milky QV. Had to chisel sample so there is a fair amo included with QV.					

Station_ID	Sample_ID	Easting	Northing	Elevation	Sampler	Date	Sample Type	Notes				
SB-JK-046	B731049	504665	5683514	424	JK	2021-06-09	Outcrop	Main QV, boudinaged and pinch amd swell. Massive white milky quartz atblowouts, dark grey, very fg mass8ve smokey quartz at pinch points. Massive vein is fractured with ankeriye fracture fill				
SB-JK-046B	B731051	504665	5683514	425	JK	2021-06-09	Outcrop	Main QV, boudinaged and pinch amd swell. Massive white milky quartz atblowouts, dark grey, very fg mass8ve smokey quartz at pinch points. Massive vein is fractured with ankeriye fracture fill				
SB-JK-047	B731052	504663	5683508	435	JK	2021-06-09	Outcrop	Main QV sampled where it folds to the NE and swells to 11cm wide. No sulfide but note x-cutting carb veins oriented oblique to vein strike.				
SB-JK-048	B731053	504666	5683506	427	JK	2021-06-09	Outcrop	Main q vein. Fracture measurement is fracturing within qvein.				
SB-JK-049	B731054	504659	5683511	420	JK	2021-06-09	Outcrop	QV is 20cm wide here, widest point before it pinches on either side. Smokey grey margins show shear fabrics. Anti-clockwise vein fibres				
SB-JK-050		504659	5683510	415	JK	2021-06-09	Outcrop	FW mafic volcanics sampled from within 20cm of qtz vein.				
SB-JK-051	B731055	504658	5683508	411	JK	2021-06-09	Outcrop	FW mafic volcanics appear tuffaceous here.				
SB-JK-052		504263	5684929	414	JK	2021-06-10	Outcrop	Dark blue grey, fg, moderately foliated greywacke. Foliation at 292/78 Mm scale QV is reddish and hosts trace py.				
SB-JK-053	B731056	504252	5684918	419	JK	2021-06-10	Outcrop	Another small oc by the lake. Mostly buried. Dark blue, fg, weakly folia amd weak chl and ank alt greywacke.				
SB-JK-054	B731057	504191	5684954	414	JK	2021-06-10	Subcrop	Stongly ankerite altered greywacke. Strong foliation, roughly 0.5% diss Py.				
SB-JK-055	B731058	504254	5684821	419	JK	2021-06-10	Outcrop	Checking between mvol and greywacke on island. Light to med grey greywacke. Mm scale bands of biotite with localized patches forming biotite schist				
SB-JK-056	B731059	504288	5684776	431	JK	2021-06-10	Outcrop	Dark blueishgreen, aphanetic, strongly foliated and weakly altered mvol. Weathered surface has "alligator skin" texture with weather resistant q felds veining. Trace py in rounded q blebs and as fg d				
SB-JK-057	B731060	504114	5684937	431	JK	2021-06-10	Outcrop	Rusty yellowish beige, fg, strongly sheared amd metamorphosed quartz porphyry. Strong pervassive sericite alt with patchy weak silica alt. Trace py in stringerz and diss, potential sphalerite in strin				
SB-JK-058a	B731061	504109	5684936	431	ЈК	2021-06-10	Outcrop	same as previous OC. Few meters S of shear. Sample is strongly weathered with pronounced weathering in mm scale Q-Sulphide V				
SB-JK-058B	B731062	504109	5684936	431	ЈК	2021-06-10	Outcrop	Same as previous. More intense weathering and more sulphide. Unit is nonmagnetic				
SB-JK-059A	B731063	504064	5684974	420	JK	2021-06-10	Outcrop	Brownish beige, fg, strongly foliated QFP. OC has several elongate weathered pits and mafic inclusions. Fg to mg mafic dike runs rough 090/70dip.				

Station_ID	Sample_ID	Easting	Northing	Elevation	Sampler	Date	Sample Type	Notes				
								Brownish beige, fg, strongly foliated QFP. OC has several elongate				
SB-JK-059B	B731064	504064	5684974	426	JK	2021-06-10	Outcrop	weathered pits and mafic inclusions. Fg to mg mafic dike runs roughly				
								090/70dip.				
		504006	569/009	122	1V	2021 06 10	Outcrop	Dark blueish, aphanetic greywacke? Sampled qv and host. Trying to find				
20-14-000		304000	3064336	432	Л	2021-00-10	Outcrop	the Sp occurance.				
		502887	568/082	125	IK	2021-06-10	Outcrop	Litho station. Dark blue, aphanetic mafic volcanic. Forms linear ridge to				
20-14-001		303667	3064963	423	Л	2021-00-10	Outcrop	Pb/cu occurrence				
SB-JK-062A	B731065	503902	5684972	425	JK	2021-06-10	Outcrop	Rusty quartz carbonate vein cutting foliated mafic volc.				
SB-JK-062B	B731066	503902	5684972	425	JK	2021-06-10	Outcrop	Same as previous but sampled more of the MVOL/host included				
								Following mafic vol along ridge to Pb/Cu occurance and contact with				
SB-JK-063	B731067	503895	5684961	425	JK	2021-06-10	Outcrop	quartz arenite. Aphanetic, dark greenish blue, moderately foliated mafic				
								volcanic. Fol @ 290/80, QV @ 250/80. QV is 4 to 13cm wide				
								Following mafic vol along ridge to Pb/Cu occurance and contact with				
SB-JK-063B	B731068	503895	5684961	422	JK	2021-06-10	Outcrop	quartz arenite. Aphanetic, dark greenish blue, moderately foliated mafic				
								volcanic. Fol @ 290/80, QV @ 250/80. QV is 4 to 13cm wide				
								Possible historic workings. Found gausenous, jaged, qfp that has become				
SB-JK-064	B731069	503838	5684903	422	JK	2021-06-10	Subcrop	a sericite schist. Sampled with milky quartz veins with trace py. Very				
								weathered amd fragmented but believe fol @280/84.				
						2021-06-10	Quberon	Possible historic workings. Found gausenous, jaged, qfp that has become				
SB-JK-064B	B731070	503838	5684903	422	JK	2021-06-10	Subcrop	a sericite schist. Sampled with milky quartz veins with trace py. Very				
								weathered amd fragmented but believe fol @280/84.				
SB-1K-065	B731071	503838	5684912	425	ік	2021-06-10	Subcron	Potential strongly meta Quartz Arenite? Litho stop with location of old				
55 JK 005	0/010/1	505050	5004512	425	510	2021 00 10	Suberop	trench. Trench is roughly 0.5m deep by 20m long.				
SB-JK-066		503681	5684904	421	JK	2021-06-10	Outcrop	Litho check. Strong fol mafic vol.				
SB-JK-067	B731072	503770	5684885	420	JK	2021-06-10	Subcrop	Quartz vein within mvol. No sulphide observed.				
								Shoreline outcrop of wht qtz arenite near historic py gn showing.				
SB-SF-001	B731801	503962	5686040		SF	2021-06-13	Outcrop	Strongly foliated defined by plag and minor bt. Tr. Cpy. Looks like				
								smokey quartz eyes. Silicious				
								10m2 outcrop of qtz arenite. Qtz pebbles are subrounded 1-2mm				
SB-SF-002		503885	5686048		SF	2021-06-13	Outcrop	smokey. Strong foliation stretches rare lenses of darker material (biotite				
								bearing).				
								30m2 outcrop of bt qtz feldspar, f.g, brown weathering. Looks volcanic				
SB-SF-003		503766	5686063		SF	2021-06-13	Outcrop	but composition is like greywacke. Sharp contact with fg green				
								amphibolite dyke?				
SB-SF-004		503718	5686015		SF	2021-06-13	Outcrop	Low lying 1m2 outcrop in moss. Back to wht-beige qtz arenite				
								Low lying outcrop with mixed litho. Matrix of brown siltstone hosting				
SB-SF-005		503741	5685988		SF	2021-06-13	Outcrop	mafic bands and pods that are localy folded. Also clasts of rounded				
								granite or arenite 2-4cm diameter.				

Station_ID	Sample_ID	Easting	Northing	Elevation	Sampler	Date	Sample Type	e Notes				
SB-SF-006		503257	5685880		SF	2021-06-13	Outcrop	Ridge outcrop beside alder stand. Qtz arenite. Rusty fractures.				
								Small exposure on ridge along edge of swamp. Rusty, black banded iron				
SB-SF-007	B731802	503255	5685875		SF	2021-06-13	Outcrop	fm. Interbedded with silicious mudstone? Sample taken from silicified				
								unit no sulfide noted.				
	D721002	502255	5605075		CE	2021 06 12	Outcrop	Sample taken from oxide rich bands. 1-2 cm bands of oxide surrounded				
38-31-0078	D/31003	503255	1001010		51	2021-00-13	Outcrop	by silicious mudstome				
								Followed bif along trend and found outcrop of chl altered qtz arenite.				
SB-SF-008	B731804	503230	5685867		SF	2021-06-13	Outcrop	Still looks granitic here but has same rounded grey qtz clasts. Weak				
								foliation. Blasted by chl veins. Trace py near fractures.				
SB-SE-000		502181	5685818		CE.	2021-06-13	Outcrop	Grey msv to foliated greywacke in contact with c.g qtz arenite. Looks				
38-31-009		202191	2082848		51	2021-00-13	Outcrop	really granitic here and the contact is irregular.				
SB-SE-010		503078	5685917		SE	2021-06-13	Outcrop	Walked over a series of ridges of dirty lookimg qtz arenite. Composition				
50-51-010		505078	5085517		51	2021-00-13	Outcrop	ranges from siltstone to sandstone.				
								Large low lying flat outcrop of mixed metasedimentary rocks. Almost				
SB-SF-011		502997	5685911		SF	2021-06-13	Outcrop	looks volcaniclastic in places but likely an arkosic sst. Found the odd				
								granitic pebble in here as well.				
								Large flat outcrop with contact between felsic unit (granite or qtz				
SB-SF-012		502967	5685914		SF	2021-06-13	Outcrop	arenite?). And amphibolite . Amphibolite may be greywacke altered.				
								Very schistose with clasts of granite being stretched in foln				
SB-SE-013	B731805	502827	5685773		SF	2021-06-13	Outcrop	Low lying, small oc near au showing. 5cm wide qtz vein cuts grewacke.				
58 51 015	5751005	502027	5005775		51	2021 00 15		5% py directly adjacent to vein. Sampled				
SB-SF-014	B731806	502900	5685705		SF	2021-06-13	Outcrop	20cm wide qtz vein adacent to 15cm mafic sheared wedge in turn				
					••		0 0 00 00	adjacent to granite. Trace py within vein.				
SB-SF-015	B731807	502765	5685584		SF	2021-06-13	Outcrop	Sheared and sericitized granite near historic Mo showing. Trace pyrite.				
					_			Sampled gtz vein within sheared granite. 5 cm wide with 2% pyrite. Vein				
SB-SF-016	B731808	502763	5685587		SF	2021-06-13	Outcrop	found as a veneer along edge of granite O/C.				
								Lakeside oc of strongly foliated qtz arenite unit. Comprised of mg				
SB-SF-017		504065	5685784		SF	2021-06-14	Outcrop	rounded smokey qtz and sub angular fspar. Elongated grey mica aligned				
								in foln. Still think this could be a volcaniclastic rhyolite				
								Strongly foliated granite with a series of smokey grey tension gash veins.				
SB-SF-018	B731809	502779	5685581		SF	2021-06-14	Outcrop	Tr py in granite adjacent to veins. Strong s2 shear fabric with s1				
								anticlockwise. Veins show s2 foln through them.				
CD CE 010	D724040	502040	E 6 0 E 6 E 7		с г	2024 06 44	<u>.</u>	Weakly foliated granite. Series of narrow cm scale wht qtz vns in random				
28-2F-019	R131810	502810	5685657		25	2021-06-14	Outcrop	orientation. Tr py.				
								Last ridge oc before low lying ground to south. Weakly foliated granite				
SB-SF-020	B731811	502830	5685659		SF	2021-06-14	Outcrop	with biotite defining foln. Weak silicification. Up to 2% patchy py. Looks				
								good!				

Station_ID	Sample_ID	Easting	Northing	Elevation	Sampler	Date	Sample Type	Notes					
SB-SF-021	B731818	502833	5685662		SF	2021-06-14	Outcrop	Granite with a series of cm scale qtz veins. Trend on veins is starting to be more n-s though there is some randomness. 5cm blowouts of py. Aggregates pf mm euhedral py form blebs					
SB-SF-022		502839	5685666		SF	2021-06-14	Outcrop	First oc north of granite. Likely a strongly altered metased. Albite altn? Resulting in bleaching. Amphibole porphyroclasts up to 1cm. Chl veining throughout. Could also be intermed tuff?					
SB-SF-023		502858	5685673		SF	2021-06-14	Outcrop	Anothe oc of unit mapped as metaseds. Weathered surface is beige with visible clasts of amphibole, qtz and plag. Looks like int-felsic lapilli tuff. Chloritic shear zone is 5cm wide.					
SB-SF-024	B731812	502854	5685719		SF	2021-06-14	Outcrop	West most exposure of smoky qtz vein. 8cm wide, sharp contacts with sericitic schist which in turn is in sharp contact with granite. Contacts an foln are parallel ro the vein.					
SB-SF-025	B731813	502935	5685717		SF	2021-06-14	Outcrop	10m north of old trench (followed qtz vein) and found flatter qtz vein trending closer to n-s trend. Vein cuts contact between granite and qtz arenite.					
SB-SF-026		502691	5685774		SF	2021-06-14	Outcrop	Outcrop in middle of swamp. Equigranular gabbro, weak amph alteratio					
SB-SF-027		502638	5685746		SF	2021-06-14	Outcrop	West end of oc in swamp, sugary metasediments, str foliation.					
SB-SF-028		502540	5685819		SF	2021-06-14	Outcrop	Gneissic metaseds with gabbroic bands					
SB-SF-029		502387	5685825		SF	2021-06-14	Outcrop	Gneissic metaseds in contact with granite.					
SB-SF-030	B731814	502359	5685885		SF	2021-06-14	Outcrop	1m wide shear zone with qtz/carb/alb vein in centre. 2% cpy, tr malachite, tr galena. Shear vein textures. Emplaced brtween granite and gabbro contact.					
SB-SF-031	B731815	502354	5685883		SF	2021-06-14	Outcrop	Second sample from qtz vein. Tr cpy. Vein is 20cm wide within 1m wide shear zone.					
SB-SF-032	B731816	502349	5685841		SF	2021-06-14	Outcrop	20 cm wide qtz vein emplaced in granite. Tough to sample. Mylonite developed around and within vein. Drill collar within 5m appears to target this vein. Lots of old core is lying around here.					
SB-SF-033	B731817	502610	5685750		SF	2021-06-14	Outcrop	2cm wide qtz vein in shear zone hosted by greywacke. No minz noted. Old hand dug trench to the west on trend. Looks like they didnt hit bedrock.					
SB-SF-034		503128	5687078		SF	2021-06-15	Outcrop	M.g equigranular ophitic . Pink staining of feldspar and occaisional granitic melts cutting gabbro.					
SB-SF-035	B731819	503237	5687110		SF	2021-06-15	Outcrop	Grey-beige banded qtz arenite unit. Tr f.g py occurs along foln planes. Strongly silicified. Plag, qtz, biotite.					
SB-SF-036	B731820	503347	5687139		SF	2021-06-15	Outcrop	High standing ridge near lakeshore. First oc of mafic volcanics. Strong foliation. Possibly tuffaceous. 2-3% f.g ds py within rusty band sampled.					

Station_ID	Sample_ID	Easting	Northing	Elevation	Sampler	Date	Sample Type	Notes				
								Interbanded mafic volc and felsic intrusive? Felsic material dominant				
SB-SF-037		503412	5687157		SF	2021-06-15	Outcrop	here, and is weekly sauseritized and possibly carb altered. Very soft.				
								Foliation observed to anastomose.				
SB-SF-038	B731821	503438	5687193		SF	2021-06-15	Outcrop	Band of felsic f.g massive material interbanded with maf volc. Tr py.				
00 01 000	5/01021	505 150	5007 155		5.	2021 00 15	Silicified.					
SB-SF-039		503424	5687236		SF	2021-06-15	Outcrop	First oc of granite very close to volcanics. Strongly foliated to banded.				
SB-SF-040		503339	5687211		SF	2021-06-15	Outcrop	Banded volcanic package, dominantly aphanitic felsic material. Possibly				
					.		0 0 00 00	int volcanics or granitic dykes caught in shear.				
SB-SF-041	B731822	503322	5687194		SF	2021-06-15	Outcrop	Granodiorite oc, closer to gabbroic texture. 5cm wide white qtz vein. Bull				
00 01 011	5/01022	505522	5007151		5.	2021 00 15	outerop	qtz.				
SB-SF-042	B731823	502551	5687826		SE	2021-06-15	Outcrop	Brown rusty, maf lapilli tuff. 1% f.g py. Carb altn is moderate, makes				
00 01 012	0/01020	502551	5007020		5.	2021 00 15		fresh surface ,ook silicious.				
SB-SF-043		502565	5687863		SF	2021-06-15	Outcrop	Leopard texture on weathered surface due to porphyritic amphibole.				
55 51 6 15		502505	5007000		5.	2021 00 15	outerop	Possibly associated with granite.				
SB-SF-044	B731824	502536	5687897		SE	2021-06-15	Outcrop	Well foliated mafic tuff. Found a rusty bed with 2% po. Po found along				
55 51 644	0731024	502550	3007037		51	2021 00 15	outerop	foln planes and near chl-silica vugs.				
SB-SF-045		502541	5687978		SE	2021-06-15	Outcrop	Mafic volc to south in contact with fspar porphyritic dyke. Volcs are				
38 31 043		502541	3007370		51	2021 00 15	outerop	strongly foliated, flat outcrop so no sample possible.				
SB-SE-046		502544	5687976		SE	2021-06-15	Outcrop	Cg white feldspar in grey-blue aphanitic groundmass. Dyke is folded				
50 51 040		502544	3007370		51	2021 00 15	Outerop	around a strongly foliated granite.				
SB-SF-047		502466	5687949		SE	2021-06-15	Outcrop	Banded tightly folded mafic volcanics. Z vergence noted on parasitic				
35 31 047		502400	5007545		51	2021 00 15	Outerop	folds defined by chl and bt rich bands.				
SB-SE-048		502/21	5687905		SE	2021-06-15	Outcrop	Grey foliated metaseds along pronounced ridge oc. Close to contact with				
30-31-040		502421	5087505		51	2021-00-13	Outcrop	volcanics to the nort				
SB-SF-049		502384	5687861		SF	2021-06-15	Outcrop	Typical bt-qtz foliated metaseds				
								Outcrop beside large boulders along shoreline at historic py sbowing.				
SB-SF-050	B731826	502838	5687425		SF	2021-06-15	Outcrop	Schistose meta-sandstone/qtz arenite. Py forms along fractures and foln				
								planes. White mica noted as well.				
								Similar smokey qtz vein located in ridge next to the jk 047-051 samples.				
SB-SF-051	B731827	504627	5683513		SF	2021-06-15	Outcrop	Vein shows fibres orientated clockwise to vein orientation indicating				
								sinistral shear.				
		504625	FC02F12		сг	2021 06 15	Outorop	Massive mafic volcanics host qtz vein. Hairline fractures with carb or				
3B-3F-03Z		504625	2083212		35	2021-00-15	Outcrop	albite veining throughout. Slightly bleached appearance overall.				
			FC02477		C.F.	2021 06 15	Outerer	First granite oc south of volcanics. Shear texture noted at bottom of oc				
38-3r-053		504554	50834//		55	2021-06-15	Outcrop	indicating potential sheared contact.				
		504577	EC02E47		C.L.	2021 06 15	Outorop	Mafia tuff with moderate albite alter. Closest as to grapite to the south				
30-31-034		504577	7155905		55	2021-00-15	Outcrop	ivianc turi with moderate ablite alth. Closest of to granite to the south.				

Station_ID	Sample_ID	Easting	Northing	Elevation	Sampler	Date	Sample Type	Notes
								Green mafic volcanics with tr ds py. High standing oc near lake edge mod
SB-SF-055		504617	5683650		SF	2021-06-16	Outcrop	foln. Felsic melts or possibly interflow seds appesr as beige mg veins,
								whisps within volcanics.
		F047F4			C.F.	2021 00 10	Outeren	Mafic flow top breccia. Felsic material infills breccia clasts. Outcrop has a
28-21-020		504754	5083504		5F	2021-06-16	Outcrop	rubbly appearance. Not sampled
		F04700	FC02C01		C.F.	2021 06 16	Outeren	Mafic volc exposed under tree root mix of tuff breccia and tuff. Tiny
28-2F-027		504798	5683601		5F	2021-06-16	Outcrop	albite-qtz veins trend parallel to foln.
SB-SF-058		504810	5683572		SF	2021-06-16	Outcrop	Small oc of msv mafic volcanics 10m from lakeshore.
SB-SF-059		504735	5683537		SF	2021-06-16	Outcrop	Feldspar porphyritic msv maf volc.
		E04467	EC02E42		CE	2021 06 16	Outcrop	Weakly to mod altered maf volcanic. Tuffaceous with flow top breccia
30-31-000		504407	5065545		эг	2021-00-10	Outcrop	observed.
SB-SF-061		504397	5683560		SF	2021-06-16	Outcrop	Green maf volc. Amygdules observed to be filled with albite.
SB-SF-062		504172	5683608		SF	2021-06-16	Outcrop	Mod albitized maf volcanics nesr lakeshore
								Intensly altered maf volc wedge in contact with unit previously mapped
SB-SF-063		504047	5683793		SF	2021-06-16	Outcrop	as marble. Brown weathered surface here, schistose and soft. Broken
								surface is white, comprised of almost entirely carbonate
								3 pronounced qtz veins on edge of oc. Carb rich host rocks weather
SB-SF-064	B731828	504041	5683785		SF	2021-06-16	Outcrop	recessively compared to veins. Veins are boudinaged and gently folded
								into s-assymetry. Sampled vein.
								Weathers beige brown. Fresh surface is white grey showing
SB-SF-065	B731829	504040	5683782		SF	2021-06-16	Outcrop	compositional banding. Completely carb altered 80% calcite. Pretty
								sure this entire unit could be reinterpreted from historic map.
								Int-mafic volcanic that is completely carbonitized. Possible ankerite altn
SB-SF-066	B731830	504073	5683826		SF	2021-06-16	Outcrop	as well. Oc is poorly exposed due to high water level but sampled
								rustiest material. No visible sulfide.
								Poor exposure along lake of limestonepossibly carbonitized
SB-SF-067	B731831	504163	5683882		SF	2021-06-16	Outcrop	intermediate volcnic unit? Banded with pure calcite and darker bands
								(pyroxene?). Sampled.
								Ridge oc coincident with mag high. Fissile maf volcanics, rusty, carb
SB-SF-068	B731832	504366	5683723		SF	2021-06-16	Outcrop	altered. 1% ds py associated with stronger carb altn. Not magnetic
								what lies beneath??
								Tall 150m long ridge near mag anomaly. Lots of feslic veinlets and pods
SB-SF-069		504464	5683695		SF	2021-06-16	Outcrop	likely flow top breccia. Pillows observed to E. Carb alt concentrates in
							-	felsic units and gives a rusty weathered appearance
								Island oc. Str foliated greywacke to sst. Possibly congl but heavy lichen
SB-SF-070		504012	5684044		SF	2021-06-16	Outcrop	cover. Reg foln of 270 cuts jointing oriented SE. Garnet porpbyroblasts
							-	in mud rich beds.
SB-SF-071		503685	5683864		SF	2021-06-16	Outcrop	Metasandstone on poorlt exposed lakeside oc.

Station_ID	Sample_ID	Easting	Northing	Elevation	Sampler	Date	Sample Type	Notes
SB-SF-072		503640	5683969		SF	2021-06-16	Outcrop	Metasandstone to siltstone. Biotite-qtz-fspar, strongly foliated. Minor small bull qtz veins.
SB-SF-073		503558	5684148		SF	2021-06-16	Outcrop	Lakeside oc of mg foliated diorite. Felsic melts are prevalent.
SB-SF-074		503598	5684395		SF	2021-06-16	Outcrop	Previously mapped as metaseds. Mafic volc. Str foliation. Lakeside oc.
SB-SF-075	B731833	503697	5684488		SF	2021-06-16	Outcrop	Plag feldspa porphyritic dyke? Strongly silicified, euhedral plag up to 5mm in dark grey aphanitic groundmass. Smokey grey quartz veins are cm scale and associated with f.g ds py.
SB-SF-076		503725	5684625		SF	2021-06-16	Outcrop	Lakeside oc of strongly foliated metasandstone? Looks more like a felsic lapilli tuff. Subrounded qtz eyes subhedral plag, aphanitic silicious groundmass.
SB-SF-077		503718	5684835		SF	2021-06-16	Outcrop	Foliated maficvolcanics on lakeside oc. Minor qtz albite veining

Station_ID	Structure Type	Az	Dip	Constructor	Structure Type	Az	Dip	Constructor	Structure Type	Az	Dip	Constructor
SB-DB-001	Foliation	0	70		Foliation	24	90	Chlorite	Contact			
SB-DB-002	Foliation	350	90									
SB-DB-009	Foliation	282	88									
SB-DB-010	Foliation	290	70									
SB-DB-012	Foliation	120	81									
SB-DB-014	Contact	260	68									
SB-DB-015	Foliation	300	70									
SB-DB-016	Contact	266	90		Vein	320		Chlorite				
SB-DB-018	Vein	310	85									
SB-DB-019	Foliation	130	82									
SB-DB-022	Foliation	294	90		Foliation							
SB-DB-023	Vein	320	85									
SB-DB-024	Foliation	344	90									
SB-DB-025	Foliation	132	85									
SB-DB-027	Foliation	243										
SB-DB-029	Lineation	340	90		Foliation	230	12	Chlorite	Vein	332	82	Quartz
SB-DB-030	Foliation	308	88									
SB-DB-031	Contact	320	80		Z-Fold Axis	79			Z-Fold Hinge	128	70	
SB-DB-032	Contact	260	60									
SB-DB-033	Foliation	340	51									
SB-DB-035	Foliation	290	78									
SB-DB-036	Fracture	260	51									
SB-DB-042	Contact	88	36									
SB-DB-043	Foliation	300	70									
SB-DB-053	Shear Zone	136	76									
SB-DB-054	Foliation	144	84									
SB-DB-055	Contact	142	70									
SB-DB-057	Foliation	138	90									
SB-DB-058	Foliation	142	73									
SB-DB-059	Vein	274	90									
SB-DB-060	Contact	260	88		Foliation	127	88	Chlorite		240	60	Chlorite
SB-DB-061	Contact	60	71									
SB-DB-062	Foliation	320	80		Bedding	190						
SB-DB-065	Foliation	72	67									
SB-DB-066	Foliation	72	67									
SB-DB-067	Foliation	267	69		Vein	282	63	Quartz				
SB-DB-068	Vein	71	67		Fault	167	80		Fault	100	80	

Station_ID	Structure Type	Az	Dip	Constructor	Structure Type	Az	Dip	Constructor	Structure Type	Az	Dip	Constructor
SB-DB-069	Foliation	279	80									
SB-DB-070	Fracture	234	79									
SB-DB-071	S-Fold Axis	280	67		S-Fold Axis	300	67	Quartz	S-Fold Axis	360	67	Quartz
SB-DB-072	Foliation	268	61									
SB-DB-073	Z-Fold Hinge	195	71		Z-Fold Axis	286	81	Quartz	Vein	118	71	Quartz
SB-DB-074	Foliation	280	77									
SB-DB-075	Foliation	151	70									
SB-DB-076	Foliation	122	82									
SB-DB-078	Fracture	187	37									
SB-DB-080	Fault	95	66									
SB-DB-081	Contact	44	57		Vein	180	72		Fault	211	20	
SB-DB-087	Vein	300	50		Vein	183	50					
SB-DB-089	Foliation	140	81									
SB-DB-093	Vein	158	61									
SB-DB-094	Bedding	35	84									
SB-DB-095	Vein	260	42									
SB-DB-097	Fracture	130	80		Vein	354	83	Quartz				
SB-DB-098	Vein	145	79		Contact	220	72					
SB-DB-109	Contact	116	66									
SB-DB-110	Vein	280	88									
SB-DB-111	Foliation	100	70									
SB-DB-112	Foliation	41	89									
SB-DB-114	Vein	34	86		Z-Fold Axis	74						
SB-DB-115	Foliation	284	79		Vein	290	85					
SB-DB-116	Foliation	300	78									
SB-DB-117	Contact	304	78		Foliation	313	73					
SB-DB-118	Foliation	305	87									
SB-DB-120	Z-Fold Axis	3	80		Z-Fold Hinge	290	72					
SB-DB-121	Foliation	349	40									
SB-DB-122	Contact	259	819									
SB-DB-123	Vein	7	81									
SB-DB-126	Vein	109	62									
SB-DB-127	Foliation	93	82									
SB-DB-129	Vein	316	77									
SB-DB-130	Foliation	109	84		Vein	110	88		Vein	149	84	
SB-DB-131	Vein	68	66									
SB-DB-132	Vein	300	90									

Station_ID	Structure Type	Az	Dip	Constructor	Structure Type	Az	Dip	Constructor	Structure Type	Az	Dip	Constructor
SB-DB-133	Vein	170	59		Vein	260	86	Quartz	Foliation	84	75	
SB-DB-137	Contact	284	72									
SB-DB-140	Contact	216	61		Contact	279	78					
SB-DB-142	Vein	302	85		Vein	244	47					
SB-DB-143	Foliation	284	88									
SB-DB-144	Foliation	274	90									
SB-DB-145	Fracture	120	77									
SB-DB-146	Foliation	269	86									
SB-DB-148	Fracture	110	88									
SB-DB-149	Foliation	230	32									
SB-DB-153	Contact	330	50									
SB-JK-001	Lineation	288										
SB-JK-002	Lineation	94			Vein	290	70					
SB-JK-005	Foliation	270	80									
SB-JK-007	Vein	330	70									
SB-JK-010	Foliation	284	80									
SB-JK-011	Foliation	278	85									
SB-JK-013	Fracture	28	80									
SB-JK-016	Fracture	352	70									
SB-JK-021	Fracture	356	72									
SB-JK-022	Vein	342	70									
SB-JK-029	Fracture	196	80									
SB-JK-031	Fracture	158	85									
SB-JK-035A	Bedding	332	85									
SB-JK-035B	Bedding	332	85									
SB-JK-036	Shear Zone	20	80									
SB-JK-037	Bedding	92	85									
SB-JK-039	Foliation	328	80									
SB-JK-040	Shear Zone	350	68									
SB-JK-040b	Shear Zone	350	68									
SB-JK-041	Fault	320	50		Fault	40	62		Fault	184	62	
SB-JK-043	Fault	320	50		Shear Zone	40	62		Shear Zone	184	62	
SB-JK-044A	Vein	320	50									
SB-JK-044b	Vein	320	50									
SB-JK-046	Vein	284	80		Shear Zone	250	60					
SB-JK-046B	Vein	284	80		Shear Zone	250	60					
SB-JK-048	Vein	290	58		Fracture	18	40					

Station_ID	Structure Type	Az	Dip	Constructor	Structure Type	Az	Dip	Constructor	Structure Type	Az	Dip	Constructor
SB-JK-049	Vein	298	58		Fracture	40	72					
SB-JK-052	Shear Zone	274	80									
SB-JK-053	Foliation	88	85		Fracture	22	74					
SB-JK-055	Foliation	310	75									
SB-JK-056	Foliation	280	70									
SB-JK-057	Foliation	280	78									
SB-JK-059A	Foliation	282	80		Vein	284	60					
SB-JK-059B	Foliation	282	80		Vein	284	60					
SB-JK-063	Foliation	290	80		Vein	250	80	Quartz				
SB-JK-063B	Foliation	290	80		Vein	250	80	Quartz				
SB-JK-064	Foliation	280	84									
SB-JK-064B	Foliation	280	84									
SB-JK-066	Foliation	118	85									
SB-SF-001	Foliation	300	88									
SB-SF-002	Foliation	316	84									
SB-SF-003	Foliation	280	80		Contact	196			Foliation	138	70	Biotite
SB-SF-005	Foliation	270			Contact	300						
SB-SF-007	Bedding	232	78									
SB-SF-008	Foliation	270	88		Fracture	185	65	Chlorite				
SB-SF-009	Foliation	270	86		Contact	359						
SB-SF-010	Foliation	280	90									
SB-SF-012	Foliation	280	85		Contact	70	80					
SB-SF-013	Vein	308	52									
SB-SF-014	Vein	280	82									
SB-SF-015	Shear Zone	104	72									
SB-SF-016	Vein	102	70									
SB-SF-017	Foliation	304	78									
SB-SF-018	Foliation	270	90		Foliation	75	75	Biotite				
SB-SF-019	Foliation	278	80									
SB-SF-021	Vein	184	85									
SB-SF-022	Foliation	275	85		Vein	285		Feldspar				
SB-SF-023	Foliation	120			Shear Zone	42	55	Chlorite				
SB-SF-024	Vein	270	86		Foliation	86	80	Sericite				
SB-SF-025	Vein	18	40		Contact	282	72					
SB-SF-027	Foliation	247	52									
SB-SF-028	Foliation	252	85		Foliation	2	285	Biotite				
SB-SF-029	Foliation	260										

Station_ID	Structure Type	Az	Dip	Constructor	Structure Type	Az	Dip	Constructor	Structure Type	Az	Dip	Constructor
SB-SF-030	Vein	74	72		Shear Zone	74	72	Chlorite				
SB-SF-031	Vein	266	82									
SB-SF-032	Vein	80	68									
SB-SF-033	Vein	92	90									
SB-SF-035	Foliation	170	88									
SB-SF-036	Foliation	290	78									
SB-SF-037	Foliation	310	90									
SB-SF-038	Foliation	317	88									
SB-SF-039	Foliation	324	82									
SB-SF-040	Foliation	318	82									
SB-SF-041	Vein	144	54									
SB-SF-042	Foliation	316	64									
SB-SF-043	Foliation	332	90									
SB-SF-044	Foliation	338	79									
SB-SF-045	Contact	136	81									
SB-SF-046	Fold Hinge	331	72									
SB-SF-047	Foliation	310			Z-Fold Axis	312						
SB-SF-048	Foliation	161	84									
SB-SF-049	Foliation	128	90									
SB-SF-050	Foliation	312	78									
SB-SF-051	Vein	242	70		Foliation	270		Quartz				
SB-SF-053	Foliation	88										
SB-SF-054	Foliation	348	84									
SB-SF-055	Foliation	287	87									
SB-SF-056	Foliation	75	85									
SB-SF-057	Foliation	74	78									
SB-SF-058	Foliation	110	86									
SB-SF-060	Foliation	270	67									
SB-SF-063	Foliation	234	70									
SB-SF-064	Lineation	70	62									
SB-SF-067	Foliation	92	81									
SB-SF-069	Foliation	220	90									
SB-SF-070	Foliation	272	70		Foliation	154	90					
SB-SF-071	Foliation	266	88									
SB-SF-072	Foliation	280	83									
SB-SF-073	Foliation	250	90									
SB-SF-074	Foliation	288	85		Foliation	271	90					

Station_ID	Structure Type	Az	Dip	Constructor	Structure Type	Az	Dip	Constructor	Structure Type	Az	Dip	Constructor
SB-SF-075	Foliation	278			Vein	339		Quartz	Contact	58	90	
SB-SF-076	Foliation	100										
SB-SF-077	Foliation	98	82									

Station_ID	Alteration Type	Intensity	Style	Alteration Type	Intensity	Style	Mineralization	%	Style	Mineralization	%	Style	Mineralization	%	Style
SB-DB-001	Silica	Strong	Pervassive	Silica	Strong	Pervassive									
SB-DB-004	Calcite	Weak	Patchy												
SB-DB-006	Calcite	Weak													
SB-DB-007	Silica	Strong	Pervassive												
SB-DB-008	Silica	Strong	Pervassive												
SB-DB-009	Chlorite	Weak	Pervassive	Serpentine	Moderate	Pervassive									
SB-DB-011	Silica														
SB-DB-014	Sulfide	Weak	Pervassive	Silica	Moderate	Pervassive	Pyrite	5	Disseminated	Pyrrhotite	1	Disseminated			
SB-DB-016	Silica	Moderate	Pervassive	Chlorite	Strong	Veins	Pyrite	1	Disseminated	Chalcopyrite	1	Disseminated			
SB-DB-019	Sulfide	Moderate	Pervassive	Silica	Weak	Pervassive	Pyrite	1	Fracture Filling						
SB-DB-020	Chlorite	Weak	Pervassive	Sulfide	Weak	Patchy	Pyrite	1	Disseminated						
SB-DB-021	Chlorite	Weak	Pervassive												
SB-DB-023	Silica	Strong	Pervassive	Sulfide	Moderate	Pervassive									
SB-DB-024	Sulfide	Moderate	Pervassive												
SB-DB-026	Sulfide	Weak	Pervassive	Calcite	Moderate	Veins	Pyrite	1	Disseminated						
SB-DB-028	Calcite	Weak	Patchy												
SB-DB-029	Sulfide	Moderate	Patchy	Calcite	Moderate	Pervassive	Pyrite	2	Semi-Massive	Pyrrhotite	1	Disseminated			
SB-DB-030	Silica	Moderate	Pervassive				Pyrite	1	Disseminated						
SB-DB-031	Epidote	Weak	Patchy	Silica	Weak	Massive	Pyrite	1	Disseminated						
SB-DB-032	Calcite	Weak	Patchy	Silica	Moderate	Veins	Pyrite	1	Disseminated						
SB-DB-033	Silica	Weak	Pervassive				Pyrite	1	Disseminated	Chalcopyrite	1	Disseminated			
SB-DB-035		Moderate	Pervassive												
SB-DB-037	Calcite	Weak	Patchy	Silica	Weak	Pervassive									
SB-DB-038							Pyrite	1	Disseminated						
SB-DB-039	Silica	Strong	Pervassive	Sulfide	Moderate	Patchy									
SB-DB-040	Silica	Strong	Pervassive	Sulfide	Moderate	Massive	Pyrite	1	Disseminated						
SB-DB-044							Pyrite	1	Disseminated						
SB-DB-051	Silica	Moderate	Pervassive												
SB-DB-053							Pyrite	1	Disseminated						
SB-DB-054	Silica	Strong	Pervassive												
SB-DB-056	Silica	Strong	Pervassive	Sulfide	Moderate	Pervassive	Pyrite	1	Disseminated						
SB-DB-057	Silica	Strong	Pervassive												
SB-DB-058	Silica	Strong	Pervassive	Sulfide	Weak	Pervassive									
SB-DB-060	Silica	Strong	Pervassive												
SB-DB-062	Ankerite	Moderate	Massive	Silica	Strong	Pervassive	Pyrite	30	Semi-Massive	Chalcopyrite	1	Disseminated	Bornite	1	Disseminated
SB-DB-065	Silica	Moderate	Pervassive	Ankerite	Weak	Pervassive	Pyrite	1	Disseminated						
SB-DB-066	Silica	Moderate	Pervassive	Ankerite	Weak	Pervassive	Pyrite	1	Disseminated						
SB-DB-067	Chlorite	Weak	Pervassive	Silica	Weak	Pervassive	Pyrite	1	Disseminated	Pyrrhotite	1	Disseminated	Chalcopyrite	1	Disseminated
SB-DB-068	Calcite	Weak	Patchy				Pyrite	1	Disseminated	Chalcopyrite	1	Disseminated			
SB-DB-069	Silica	Moderate	Massive				Pyrite	1	Disseminated						
SB-DB-070		Strong	Pervassive				Pyrite	1	Disseminated						
SB-DB-071	Calcite	Moderate	Pervassive												
SB-DB-072	Chlorite	Strong	Pervassive	Silica	Moderate	Pervassive									
SB-DB-073	Calcite	Moderate	Pervassive												
SB-DB-074	Silica	Strong	Pervassive	Ankerite	Weak	Pervassive									

Station_ID	Alteration Type	Intensity	Style	Alteration Type	Intensity	Style	Mineralization	%	Style	Mineralization	%	Style	Mineralization	%	Style
SB-DB-075	Ankerite	Strong	Pervassive	Silica	Moderate	Pervassive	Pyrite	15	Semi-Massive	Chalcopyrite	20	Semi-Massive			
SB-DB-076	Silica	Strong	Pervassive	Sulfide	Moderate	Fracture Cont	Pyrite	10	Semi-Massive						
SB-DB-077	Silica	Strong	Pervassive	Sulfide	Moderate	Fracture Cont	Pyrite	10	Semi-Massive						
SB-DB-078	Ankerite	Moderate	Pervassive	Silica	Weak	Massive	Pyrite	1	Disseminated						
SB-DB-080	Sericite	Moderate	Fracture Co	Epidote	Weak	Veins	Pyrite	2	Disseminated						
SB-DB-082	Ankerite	Weak	Pervassive	Silica	Moderate	Pervassive	Pyrite	1	Disseminated						
SB-DB-084	Sericite	Moderate	Pervassive	Sulfide	Moderate	Pervassive	Pyrite	1	Disseminated						
SB-DB-089	Sericite	Moderate	Pervassive	Chlorite	Strong	Pervassive									
SB-DB-094	Silica	Strong	Pervassive		Strong	Pervassive									
SB-DB-095	Silica	Moderate	Pervassive				Pyrite	1	Disseminated						
SB-DB-096	Silica	Strong	Pervassive												
SB-DB-100	Silica	Moderate	Pervassive				Chalcopyrite	1	Fracture Filling						
SB-DB-109	Silica	Strong	Pervassive				Pyrite	1							
SB-DB-112	Ankerite	Weak													
SB-DB-113	Ankerite	Weak													
SB-DB-114	Ankerite	Moderate	Pervassive												
SB-DB-116	Silica	Moderate	Pervassive	Ankerite	Weak										
SB-DB-121	Bleaching	Weak		Silica	Strong	Pervassive									
SB-DB-126	Calcite	Weak													
SB-DB-127	Sericite	Weak	Pervassive	Silica	Moderate	Pervassive	Pyrite	1	Disseminated						
SB-DB-128	Silica	Weak	Pervassive	Calcite	Moderate	Pervassive									
SB-DB-129	Calcite	Moderate	Pervassive	Sulfide	Moderate	Patchy	Pyrite	1	Disseminated						
SB-DB-131	Sulfide	Moderate	Patchy												
SB-DB-135	Ankerite	Weak		Silica	Strong	Pervassive									
SB-DB-138							Pyrite	1	Stringers						
SB-DB-139	Chlorite	Moderate	Pervassive	Silica	Moderate	Pervassive									
SB-DB-141	Sulfide	Moderate	Pervassive												
SB-DB-144	Sericite	Moderate	Pervassive	Silica	Moderate	Pervassive									
SB-DB-146	Sericite	Weak	Pervassive	Silica	Moderate	Pervassive									
SB-DB-147	Calcite	Weak	Pervassive	Silica	Weak	Pervassive	Pyrite	1	Disseminated						
SB-DB-149	Chlorite	Weak	Pervassive												
SB-DB-150	Sulfide	Weak	Pervassive				Pyrite	1	Disseminated	Chalcopyrite	1	Disseminated			
SB-DB-152							Pyrite	1	Disseminated						
SB-DB-153	Silica	Moderate													
SB-JK-002	Silica	Weak	Pervassive												
SB-JK-005	Ankerite	Moderate	Patchy				Pyrite	2	Stringers						
SB-JK-006	Chlorite	Weak	Pervassive				Pyrite	1	Stringers	Pyrrhotite	0.2	Disseminated			
SB-JK-007	Chlorite	Weak	Pervassive	Ankerite	Weak	Veins	Pyrite	5	Disseminated						
SB-JK-008	Ankerite	Weak	Patchy				Pyrite	1	Disseminated						
SB-JK-008B	Ankerite	Weak	Patchy				Pyrite	1	Disseminated						
SB-JK-009	Chlorite	Weak	Pervassive	Ankerite	Weak	Patchy	Pyrite	1	Stringers						
SB-JK-010	Chlorite	Weak	Pervassive	Ankerite	Weak	Fracture Cont	rolled								
SB-JK-011	Chlorite	Weak	Pervassive												
SB-JK-012	Ankerite	Moderate	Veins												
SB-JK-013	Chlorite	Moderate	Pervassive	Ankerite	Moderate	Fracture Cont	Pyrite	1	Fracture Filling						

Station_ID	Alteration Type	Intensity	Style	Alteration Type	Intensity	Style	Mineralization	%	Style	Mineralization	%	Style	Mineralization	%	Style
SB-JK-014	Ankerite	Moderate	Pervassive	Hematite	Strong	Pervassive	Pyrite	2	Stringers						
SB-JK-014b	Ankerite	Moderate	Pervassive	Hematite	Strong	Pervassive	Pyrite	2	Stringers						
SB-JK-015							Pyrite	1	Stringers						
SB-JK-016	Chlorite	Moderate	Pervassive	Biotite	Weak	Patchy	Pyrite	5	Disseminated						
SB-JK-019	Chlorite	Moderate	Pervassive				Pyrite	2	Disseminated	Pyrrhotite	1	Disseminated			
SB-JK-020	Chlorite	Weak	Pervassive				Pyrite	1	Vein						
SB-JK-021	Chlorite	Weak	Patchy				Pyrite	1	Stringers						
SB-JK-022	Chlorite	Moderate	Pervassive												
SB-JK-024	Chlorite	Moderate	Pervassive	Silica	Weak	Patchy	Pyrite	1	Disseminated						
SB-JK-025	Chlorite	Weak	Pervassive												
SB-JK-027a	Ankerite	Moderate	Pervassive	Chlorite	Moderate	Pervassive	Pyrite	1	Disseminated						
SB-JK-027b	Ankerite	Moderate	Pervassive	Chlorite	Moderate	Pervassive	Pyrite	1	Disseminated						
SB-JK-027c	Ankerite	Moderate	Pervassive	Chlorite	Moderate	Pervassive	Pyrite	1	Disseminated						
SB-JK-028	Ankerite	Strong	Pervassive	Chlorite	Moderate	Pervassive	Pyrite	1	Disseminated						
SB-JK-029	Ankerite	Strong	Pervassive	Chlorite	Moderate	Pervassive	Pyrite	1	Disseminated						
SB-JK-030A							Pyrite	10	Semi-Massive	Sphalerite	5	Semi-Massive			
SB-JK-030B							Pyrite	10	Semi-Massive	Sphalerite	5	Semi-Massive			
SB-JK-031	Ankerite	Moderate	Pervassive	Chlorite	Moderate	Pervassive									
SB-JK-032	Ankerite	Moderate	Fracture Co	Chlorite	Moderate	Pervassive	Pyrite	1	Disseminated						
SB-JK-033	Ankerite	Moderate	Fracture Co	Chlorite	Weak	Pervassive	Pyrite	1	Disseminated						
SB-JK-035A	Hematite	Moderate	Fracture Co	ntrolled			Pyrite	10	Disseminated						
SB-JK-035B	Hematite	Moderate	Fracture Co	ntrolled			Pyrite	10	Disseminated						
SB-JK-036	Ankerite	Strong	Pervassive				Pyrite	20	Semi-Massive						
SB-JK-037	Sericite	Moderate	Pervassive	Hematite	Moderate	Fracture Cont	Pyrite	25	Semi-Massive						
SB-JK-038	Chlorite	Weak	Pervassive												
SB-JK-039							Pyrite	1	Disseminated						
SB-JK-040	Chlorite	Moderate	Pervassive	Ankerite	Moderate	Pervassive	Pyrite	1							
SB-JK-040b	Chlorite	Moderate	Pervassive	Ankerite	Moderate	Pervassive	Pyrite	1							
SB-JK-041	Ankerite	Moderate	Fracture Co	I Chlorite	Moderate	Massive									
SB-JK-042	Ankerite	Strong	Fracture Co	I Chlorite	Moderate	Pervassive									
SB-JK-043	Ankerite	Moderate	Fracture Co	I Chlorite	Moderate	Patchy									
SB-JK-043B	Ankerite	Weak	Pervassive	Chlorite	Weak	Pervassive									
SB-JK-044A	Chlorite	Moderate	Pervassive												
SB-JK-044b	Chlorite	Moderate	Patchy	Ankerite	Weak	Fracture Cont	rolled								
SB-JK-046	Ankerite	Weak	Fracture Co	ntrolled											
SB-JK-046B	Ankerite	Weak	Fracture Co	ntrolled											
SB-JK-047	Ankerite	Weak	Fracture Co	ntrolled											
SB-JK-048	Ankerite	Weak	Fracture Co	ntrolled											
SB-JK-049	Ankerite	Weak	Fracture Co	ntrolled											
SB-JK-052	Chlorite	Weak	Pervassive	Ankerite	Weak	Fracture Cont	Pyrite	1	Disseminated						
SB-JK-053	Chlorite	Weak	Pervassive	Ankerite	Weak	Fracture Cont	Pyrite	1	Disseminated						
SB-JK-054	Ankerite	Moderate	Fracture Co	ntrolled											
SB-JK-055	Biotite	Weak	Pervassive				Pyrite	1	Stringers						
SB-JK-056	Chlorite	Weak	Pervassive	Ankerite	Weak	Fracture Cont	Pyrite	1	Disseminated						
SB-JK-057	Sericite	Strong	Pervassive	Silica	Moderate	Fracture Cont	Pyrite	1	Disseminated						

Station_ID	Alteration Type	Intensity	Style	Alteration Type	Intensity	Style	Mineralization	%	Style	Mineralization	%	Style	Mineralization	%	Style
SB-JK-058a	Sericite	Strong	Pervassive	Silica	Moderate	Fracture Cont	Pyrite	1	Vein						
SB-JK-058B	Sericite	Strong	Pervassive	Silica	Moderate	Fracture Cont	Pyrite	2	Disseminated	Pyrite	Vein	1			
SB-JK-059A	Sericite	Moderate	Fracture Co	ıSilica	Weak	Pervassive	Pyrite	1	Disseminated						
SB-JK-059B	Sericite	Moderate	Fracture Co	ıSilica	Weak	Pervassive	Pyrite	1	Disseminated						
SB-JK-060	Chlorite	Moderate	Pervassive												
SB-JK-061	Chlorite	Weak	Pervassive												
SB-JK-062A	Ankerite	Moderate	Fracture Co	ntrolled			Pyrite	2	Vein						
SB-JK-062B	Ankerite	Moderate	Fracture Co	ntrolled			Pyrite	2	Vein						
SB-JK-063	Chlorite	Moderate	Pervassive				Pyrite	1	Vein						
SB-JK-063B	Chlorite	Moderate	Pervassive				Pyrite	1	Vein						
SB-JK-064	Sericite	Strong	Pervassive	Silica	Moderate	Pervassive	Pyrite	1	Vein						
SB-JK-064B	Sericite	Strong	Pervassive	Silica	Moderate	Pervassive	Pyrite	1	Vein						
SB-JK-065	Sericite	Strong	Pervassive	Silica	Moderate	Pervassive									
SB-JK-066	Chlorite	Moderate	Pervassive												
SB-JK-067	Chlorite	Weak	Pervassive												
SB-SF-001	Silica	Moderate	Pervassive				Chalcopyrite	1	Disseminated						
SB-SF-005							Chalcopyrite	1	Disseminated						
SB-SF-007	Silica	Moderate	Banded				Magnetite	20	Banded						
SB-SF-007B							Magnetite	20	Banded	Pyrite	2	Disseminated			
SB-SF-008	Chlorite	Moderate	Fracture Co	ı Silica	Moderate	Pervassive	Pyrite	1	Disseminated						
SB-SF-009	Pottasium	Weak	Fracture Co	ntrolled											
SB-SF-010	Bleaching	Moderate	Fracture Co	ntrolled											
SB-SF-011	Chlorite	Weak	Fracture Co	ntrolled											
SB-SF-013	Sulfide	Weak	Veins				Pyrite	5	Disseminated						
SB-SF-014							Pyrite	1	Disseminated						
SB-SF-015	Sericite	Weak	Pervassive				Pyrite	1	Disseminated						
SB-SF-016							Pyrite	2	Vein						
SB-SF-017	Silica	Moderate	Pervassive												
SB-SF-018	Sericite	Weak	Pervassive	Silica	Weak	Pervassive	Pyrite	1	Disseminated						
SB-SF-019	Silica	Weak	Veins				Pyrite	1	Disseminated						
SB-SF-020	Silica	Moderate	Pervassive	Sulfide	Weak	Patchy	Pyrite	2	Disseminated						
SB-SF-021	Silica	Weak	Veins				Pyrite	5	Disseminated						
SB-SF-023	Bleaching	Moderate	Pervassive	Chlorite	Moderate	Veins									
SB-SF-031							Chalcopyrite	1	Disseminated						
SB-SF-034	Pottasium	Moderate	Pervassive												
SB-SF-035	Sericite	Weak	Pervassive	Silica	Strong	Pervassive	Pyrite	1	Banded						
SB-SF-036	Chlorite	Weak	Pervassive				Pyrite	2	Disseminated						
SB-SF-037	Epidote	Weak	Pervassive												
SB-SF-038	Silica	Moderate	Banded				Pyrite	1	Banded						
SB-SF-040	Sericite	Weak	Pervassive												
SB-SF-042	Ankerite	Moderate	Pervassive				Pyrite	1	Disseminated						
SB-SF-044	Chlorite	Weak	Pervassive				Pyrrhotite	2	Disseminated						
SB-SF-047	Ankerite	Weak	Banded												
SB-SF-050	Ankerite	Weak	Fracture Co	Sericite	Moderate	Pervassive	Pyrite	1	Fracture Filling						
SB-SF-052	Chlorite	Weak	Pervassive	Calcite	Weak	Fracture Cont	trolled								

Station_ID	Alteration Type	Intensity	Style	Alteration Type	Intensity	Style	Mineralization	%	Style	Mineralization	%	Style	Mineralization	%	Style
SB-SF-054	Bleaching	Moderate	Veins												
SB-SF-055	Chlorite	Moderate	Pervassive				Pyrite	1	Disseminated						
SB-SF-056	Chlorite	Weak	Pervassive	Silica	Weak	Patchy									
SB-SF-057	Chlorite	Weak	Pervassive												
SB-SF-058	Chlorite	Weak	Pervassive												
SB-SF-060	Ankerite	Weak	Fracture Co	ntrolled											
SB-SF-061	Chlorite	Moderate	Massive												
SB-SF-062	Bleaching	Moderate	Patchy												
SB-SF-063	Ankerite	Strong	Pervassive	Calcite	Strong	Pervassive									
SB-SF-064	Calcite	Strong	Pervassive												
SB-SF-065	Calcite	Strong	Pervassive												
SB-SF-066	Calcite	Strong	Pervassive	Ankerite	Weak	Fracture Cont	trolled								
SB-SF-067	Calcite	Strong	Pervassive												
SB-SF-068	Ankerite	Weak	Pervassive				Pyrite	1	Fracture Filling						
SB-SF-069	Ankerite	Moderate	Veins												
SB-SF-070	Epidote	Weak	Patchy												
SB-SF-071	Chlorite	Weak	Patchy												
SB-SF-072	Biotite	Moderate	Pervassive												
SB-SF-073	Hornblende	Moderate	Pervassive												
SB-SF-074	Chlorite	Weak	Pervassive												
SB-SF-075	Silica	Moderate	Pervassive				Pyrite	2	Disseminated						
SB-SF-076	Silica	Weak	Pervassive												
SB-SF-077	Chlorite	Weak	Pervassive												

APPENDIX D: MAPS

APPENDIX E: SAMPLE LOCATIONS AND AU RESULTS

Station_ID	Sample_ID	Easting	Northing	Elevation	Date	Sample Type	SAMPLE	Au (ppm)	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)
SB-JK-005	B731001	505441	5683608	433	2021-06-05	Outcrop	B731001	2.73	0.73	178.5	1.5	53
SB-JK-006	B731002	505483	5683680	432	2021-06-05	Outcrop	B731002	0.006	0.05	53.5	0.4	15
SB-JK-008	B731003	505275	5683779	429	2021-06-05	Outcrop	B731003	0.004	0.11	148	1.3	42
SB-JK-008B	B731004	505275	5683779	415	2021-06-05	Outcrop	B731004	0.001	0.05	47.4	1.4	30
SB-JK-009	B731005	505270	5683716	420	2021-06-06	Outcrop	B731005	0	0.02	6.6	0.7	5
SB-JK-010	B731006	505256	5683738	423	2021-06-06	Outcrop	B731006	0.004	0.08	57.4	2.5	63
SB-JK-011	B731007	505261	5683773	419	2021-06-06	Outcrop	B731007	0.001	0.11	55.7	1.7	41
SB-JK-012	B731008	505244	5683770	416	2021-06-06	Subcrop	B731008	0.006	0.06	58.6	0.6	22
SB-JK-013	B731009	505228	5683835	419	2021-06-06	Outcrop	B731009	0.004	0.23	455	1	18
SB-JK-014	B731010	505221	5683886	419	2021-06-06	Outcrop	B731010	0.005	0.32	115.5	3.6	363
SB-JK-014b	B731011	505221	5683886	427	2021-06-06	Outcrop	B731011	0.009	1.87	473	11.9	653
SB-JK-015	B731012	505355	5683896	418	2021-06-06	Outcrop	B731012	0.001	0.18	96.6	1.6	51
SB-JK-016	B731013	505220	5684124	415	2021-06-06	Outcrop	B731013	0	0.14	100.5	1.5	16
SB-JK-017	B731014	505129	5684367	415	2021-06-06	Outcrop	B731014	0.003	1.05	89.7	16.9	92
SB-JK-018	B731015	505122	5684376	424	2021-06-06	Outcrop	B731015	0	0.01	1.3	2.2	<2
SB-JK-019	B731016	505177	5684421	428	2021-06-07	Outcrop	B731016	0.001	0.04	31.4	2.7	16
SB-JK-020	B731017	505216	5684406	434	2021-06-07	Float	B731017	0	0.03	3.4	3	126
SB-JK-021	B731018	505212	5684378	439	2021-06-07	Outcrop	B731018	0	0.04	44.9	1.9	11
SB-JK-022	B731019	505302	5684355	418	2021-06-07	Outcrop	B731019	0	0.05	31.3	1.2	12
SB-JK-024	B731020	505519	5684530	426	2021-06-07	Outcrop	B731020	0.001	0.02	18.7	0.7	11
SB-JK-026	B731021	505462	5684614	436	2021-06-07	Outcrop	B731021	0	0.06	32.4	0.8	12
SB-JK-027a	B731022	505431	5684638	436	2021-06-07	Outcrop	B731022	0.003	0.26	264	1.2	26
SB-JK-027b	B731023	505431	5684638	436	2021-06-07	Outcrop	B731023	0	0.1	96	1.1	11
SB-JK-027c	B731024	505431	5684638	443	2021-06-07	Outcrop	B731024	0	0.12	103.5	1	10
SB-JK-028	B731026	505385	5684651	447	2021-06-07	Outcrop	B731026	0.001	0.19	166.5	1.7	28
SB-JK-029	B731027	505306	5684598	422	2021-06-07	Outcrop	B731027	0.004	0.36	124.5	1.3	5
SB-JK-030A	B731028	505114	5684659	422	2021-06-07	Subcrop	B731028	0.002	0.81	133	13.9	661
SB-JK-030B	B731029	505114	5684659	415	2021-06-07	Subcrop	B731029	0.001	0.91	428	9	114
SB-JK-031	B731030	505125	5684821	419	2021-06-08	Outcrop	B731030	0.002	0.23	141.5	1.5	14
SB-JK-032	B731031	505135	5684812	427	2021-06-08	Outcrop	B731031	0.003	0.24	154	2	11
SB-JK-033	B731032	505135	5684776	430	2021-06-08	Outcrop	B731032	0	0.19	124	1	8
SB-JK-034	B731033	505105	5684665	430	2021-06-08	Subcrop	B731033	0	0.44	93.1	15.4	207
SB-JK-034B	B731034	505105	5684665	426	2021-06-08	Subcrop	B731034	0	2.29	706	16.9	355
SB-JK-035A	B731035	505114	5684686	426	2021-06-08	Outcrop	B731035	0.006	2.23	142	7.8	45
SB-JK-035B	B731036	505114	5684686	430	2021-06-08	Outcrop	B731036	0	0.08	31.4	2.5	113
SB-JK-036	B731037	505108	5684695	418	2021-06-08	Outcrop	B731037	0	0.8	294	24.7	310
SB-JK-037	B731038	505107	5684734	422	2021-06-08	Outcrop	B731038	0.001	1.04	402	24.7	338

Station_ID	Sample_ID	Easting	Northing	Elevation	Date	Sample Type	SAMPLE	Au (ppm)	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)
SB-JK-039	B731039	504706	5683520	428	2021-06-08	Outcrop	B731039	0.003	0.04	62.4	1.3	61
SB-JK-040	B731040	504683	5683526	428	2021-06-09	Outcrop	B731040	0.054	0.25	388	2.3	38
SB-JK-040b	B731041	504683	5683526	420	2021-06-09	Outcrop	B731041	0.002	0.09	46.5	1.6	27
SB-JK-041	B731042	504678	5683527	421	2021-06-09	Outcrop	B731042	0.003	0.07	100.5	1.2	31
SB-JK-042	B731043	504660	5683519	420	2021-06-09	Subcrop	B731043	0.013	0.2	258	1.5	40
SB-JK-043	B731044	504667	5683512	420	2021-06-09	Outcrop	B731044	0.197	0.51	47.1	187.5	40
SB-JK-043B	B731045	504667	5683512	420	2021-06-09	Outcrop	B731045	0.042	0.06	76.3	4.3	40
SB-JK-044A	B731046	504663	5683509	420	2021-06-09	Outcrop	B731046	0.026	0.02	13.5	2.3	39
SB-JK-044b	B731047	504663	5683509	424	2021-06-09	Outcrop	B731047	0.001	0.01	3.2	0.3	2
SB-JK-046	B731049	504665	5683514	424	2021-06-09	Outcrop	B731049	0.056	0.05	5.6	0.3	2
SB-JK-046B	B731051	504665	5683514	425	2021-06-09	Outcrop	B731051	0.044	0.03	34.9	1	37
SB-JK-047	B731052	504663	5683508	435	2021-06-09	Outcrop	B731052	0.001	0.01	9.7	0.3	3
SB-JK-048	B731053	504666	5683506	427	2021-06-09	Outcrop	B731053	0.009	1.26	257	8.5	55
SB-JK-049	B731054	504659	5683511	420	2021-06-09	Outcrop	B731054	0.002	0.01	3.4	0.2	3
SB-JK-051	B731055	504658	5683508	411	2021-06-09	Outcrop	B731055	0	0.24	61.4	2.3	42
SB-JK-053	B731056	504252	5684918	419	2021-06-10	Outcrop	B731056	0	0.06	17.6	1.7	46
SB-JK-054	B731057	504191	5684954	414	2021-06-10	Subcrop	B731057	0	0.51	45.3	3.2	78
SB-JK-055	B731058	504254	5684821	419	2021-06-10	Outcrop	B731058	0	0.18	23.9	2.5	67
SB-JK-056	B731059	504288	5684776	431	2021-06-10	Outcrop	B731059	0	0.08	45.8	1.7	73
SB-JK-057	B731060	504114	5684937	431	2021-06-10	Outcrop	B731060	0	0.04	4.5	32.1	16
SB-JK-058a	B731061	504109	5684936	431	2021-06-10	Outcrop	B731061	0.002	0.33	62	42	7
SB-JK-058B	B731062	504109	5684936	431	2021-06-10	Outcrop	B731062	0.003	0.41	603	8.1	41
SB-JK-059A	B731063	504064	5684974	420	2021-06-10	Outcrop	B731063	0	0.01	3.6	2.2	66
SB-JK-059B	B731064	504064	5684974	426	2021-06-10	Outcrop	B731064	0	0.01	3.5	0.4	14
SB-JK-062A	B731065	503903	5684972	425	2021-06-10	Outcrop	B731065	0.001	0.11	14.5	1.6	71
SB-JK-062B	B731066	503903	5684972	425	2021-06-10	Outcrop	B731066	0	0.07	7.4	1.9	29
SB-JK-063	B731067	503895	5684961	425	2021-06-10	Outcrop	B731067	0.001	0.29	33.2	3.1	4
SB-JK-063B	B731068	503895	5684961	422	2021-06-10	Outcrop	B731068	0	0.03	18	2.8	29
SB-JK-064	B731069	503838	5684903	422	2021-06-10	Subcrop	B731069	0.018	1.87	190	41.3	19
SB-JK-064B	B731070	503838	5684903	422	2021-06-10	Subcrop	B731070	0	1.08	21	142	30
SB-JK-065	B731071	503838	5684913	425	2021-06-10	Subcrop	B731071	0	1.06	33.5	211	76
SB-JK-067	B731072	503770	5684885	420	2021-06-10	Subcrop	B731072	0	0.11	22	2.1	150
SB-DB-112	B731551	503301	5686837	392	2021-06-14	Subcrop	B731551	0.067	1.09	594	2.7	38
SB-DB-084	B731552	502157	5687093	435	2021-06-12	Float	B731552	0.001	0.02	23.9	1.2	75
SB-DB-083	B731553	502163	5687095	433	2021-06-12	Subcrop	B731553	0.008	0.08	35.7	2.7	12
SB-DB-108	B731554	502874	5685713	440	2021-06-28	Outcrop	B731554	126	20.3	75.6	120	43
SB-DB-090	B731555	502632	5687257	423	2021-06-12	Float	B731555	0.171	0.05	2.5	2.9	2

Station_ID	Sample_ID	Easting	Northing	Elevation	Date	Sample Type	SAMPLE	Au (ppm)	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)
SB-DB-080	B731556	502035	5687191	423	2021-06-12	Outcrop	B731556	0.132	0.16	55.5	5.6	137
SB-DB-081	B731557	502070	5687135	423	2021-06-12	Outcrop	B731557	0.001	0.01	1.3	1.7	67
SB-DB-087	B731558	502179	5687102	441	2021-06-12	Outcrop	B731558	0.007	0.04	39.3	0.8	8
SB-DB-109	B731559	502874	5685720	441	2021-06-29	Outcrop	B731559	0.008	0.06	29.1	6.6	122
SB-DB-085	B731560	502157	5687097	432	2021-06-12	Outcrop	B731560	0.003	0.02	23.9	1	47
SB-DB-088	B731561	502179	5687104	442	2021-06-12	Outcrop	B731561	0	0.03	50.1	1.7	51
SB-DB-089	B731562	502632	5687257	423	2021-06-12	Outcrop	B731562	0.017	0.1	67.1	7.7	131
SB-DB-092	B731563	502591	5687216	424	2021-06-12	Outcrop	B731563	0.023	0.65	12.2	1.5	86
SB-DB-078	B731564	501984	5687320	410	2021-06-12	Outcrop	B731564	0	0.02	3.5	3.3	55
SB-DB-122	B731565	502535	5686912	447	2021-06-14	Outcrop	B731565	0.001	0.01	9.9	2.2	39
SB-DB-093	B731566	502722	5687181	434	2021-06-13	Outcrop	B731566	0.001	0.12	39.5	3.1	160
SB-DB-125	B731567	502271	5686896	449	2021-06-14	Outcrop	B731567	0.004	0.04	42.1	1.4	29
SB-DB-140	B731568	502426	5686117	448	2021-06-15	Outcrop	B731568	0	0.02	8.4	6.8	13
SB-DB-130	B731569	502916	5686411	438	2021-06-15	Outcrop	B731569	0	<0.01	4.9	1.4	6
SB-DB-096	B731570	502794	5685930	426	2021-06-16	Subcrop	B731570	0	0.04	8.3	7	13
SB-DB-082	B731571	502108	5687121	426	2021-06-12	Outcrop	B731571	0	0.05	12	2.8	33
SB-DB-129	B731572	502943	5686393	433	2021-06-15	Outcrop	B731572	0	0.42	162.5	44.5	57
SB-DB-141	B731573	502431	5686125	434	2021-06-15	Float	B731573	0.006	0.11	2.7	0.5	<2
SB-DB-142	B731574	502423	5686118	449	2021-06-15	Outcrop	B731574	0	0.02	4	2.3	5
SB-DB-127	B731576	503349	5686501	440	2021-06-15	Outcrop	B731576	0.001	0.41	75.7	5.7	126
SB-DB-143	B731577	505835	5682017	441	2021-06-16	Outcrop	B731577	0.007	0.04	17.5	2.9	7
SB-DB-146	B731578	505970	5682083	450	2021-06-16	Outcrop	B731578	0	<0.01	7.9	0.8	134
SB-DB-147	B731579	505959	5682120	452	2021-06-16	Outcrop	B731579	0.005	0.08	87	1.7	85
SB-DB-148	B731580	505928	5682104	451	2021-06-16	Outcrop	B731580	0.02	0.25	147.5	1.5	92
SB-DB-149	B731581	506239	5681790	442	2021-06-16	Outcrop	B731581	0	0.04	50.7	0.8	59
SB-DB-150	B731582	506272	5681732	444	2021-06-16	Subcrop	B731582	0	0.03	73.2	0.8	64
SB-DB-151	B731583	506423	5681607	454	2021-06-16	Subcrop	B731583	0	<0.01	1.7	1.6	97
SB-DB-152	B731584	506378	5681629	452	2021-06-16	Outcrop	B731584	0.001	0.15	160.5	1.7	60
SB-DB-001	B731742	505266	5683454	379	2021-06-05	Outcrop	B731742	0.012	0.02	9.4	0.2	3
SB-DB-003	B731743	505247	5683444	412	2021-06-05	Outcrop	B731743	1.505	0.85	117	1.4	8
SB-DB-008	B731744	505477	5683524	434	2021-06-05	Outcrop	B731744	0.001	0.03	2.4	11.8	37
SB-DB-009	B731745	505432	5683617	432	2021-06-05	Outcrop	B731745	0	0.09	73.2	1.2	47
SB-DB-014	B731746	504948	5685733	424	2021-06-06	Outcrop	B731746	0	0.01	3.1	3.5	28
SB-DB-016	B731747	504940	5685804	421	2021-06-06	Outcrop	B731747	0	0.06	41.9	3.8	11
SB-DB-020	B731748	504401	5686073	416	2021-06-06	Float	B731748	0	0.05	61.3	0.6	15
SB-DB-022	B731749	504476	5686093	416	2021-06-06	Outcrop	B731749	0	0.07	86.7	1.3	12
SB-DB-030	B731751	504952	5685722	418	2021-06-07	Subcrop	B731751	0.003	0.11	111	2.4	16

Station_ID	Sample_ID	Easting	Northing	Elevation	Date	Sample Type	SAMPLE	Au (ppm)	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)
SB-DB-032	B731752	505016	5685701	415	2021-06-07	Outcrop	B731752	0.001	0.07	112.5	1.1	18
SB-DB-035	B731753	505183	5685564	431	2021-06-07	Outcrop	B731753	0	0.03	79.3	0.9	8
SB-DB-038	B731754	505357	5685395	415	2021-06-07	Outcrop	B731754	0	0.03	52.6	0.6	8
SB-DB-039	B731755	505497	5685110	417	2021-06-07	Outcrop	B731755	0.003	0.18	62	24.5	116
SB-DB-040	B731756	505497	5685084	422	2021-06-07	Outcrop	B731756	0.001	0.2	42.4	30.2	174
SB-DB-029	B731757	504952	5685718	412	2021-06-06	Outcrop	B731757	0.005	0.23	142.5	2.8	14
SB-DB-019	B731758	504396	5686074	417	2021-06-06	Outcrop	B731758	0.001	0.04	58	0.6	11
SB-DB-051	B731759	503658	5687088	414	2021-06-08	Subcrop	B731759	0	0.03	32.7	1.8	35
SB-DB-053	B731760	503538	5687152	423	2021-06-08	Outcrop	B731760	0	0.1	23	3	12
SB-DB-054	B731761	503475	5687191	425	2021-06-08	Outcrop	B731761	0	0.01	2.3	1.5	18
SB-DB-055	B731762	503479	5687199	424	2021-06-08	Outcrop	B731762	0	0.03	56.1	1.7	33
SB-DB-056	B731763	503471	5687154	425	2021-06-08	Subcrop	B731763	0	0.13	493	2.4	16
SB-DB-058	B731764	503486	5687129	423	2021-06-08	Outcrop	B731764	0	0.05	122.5	0.9	16
SB-DB-044	B731765	505021	5685370	424	2021-06-08	Outcrop	B731765	0	0.03	8.2	2.7	18
SB-DB-065	B731766	506314	5682293	431	2021-06-10	Outcrop	B731766	0	0.02	43.5	1.8	91
SB-DB-066	B731767	506260	5682164	438	2021-06-10	Outcrop	B731767	0	0.11	116.5	2.3	94
SB-DB-067	B731768	506260	5682165	438	2021-06-10	Outcrop	B731768	0	0.03	108.5	0.9	83
SB-DB-068	B731769	506234	5682153	445	2021-06-10	Outcrop	B731769	0.005	0.04	245	0.7	70
SB-DB-070	B731770	505878	5682003	439	2021-06-10	Outcrop	B731770	0.008	0.59	476	1.9	28
SB-DB-075	B731771	503482	5686781	418	2021-06-11	Outcrop	B731771	0.004	0.51	1070	2.2	10
SB-DB-076	B731772	503483	5686785	414	2021-06-11	Outcrop	B731772	0.087	22.2	6970	34.9	482
SB-DB-071	B731773	505883	5682005	439	2021-06-10	Outcrop	B731773	0.001	0.13	23.7	0.7	29
SB-DB-072	B731774	505886	5682034	443	2021-06-10	Outcrop	B731774	0.001	0.08	28	1.1	45
SB-DB-073	B731775	505884	5682042	449	2021-06-10	Outcrop	B731775	0	0.01	1.9	2.6	9
SB-DB-074	B731776	501100	5689367	417	2021-06-10	Outcrop	B731776	0	0.02	6.7	2.6	31
SB-DB-077	B731777	503482	5686785	414	2021-06-11	Outcrop	B731777	0.135	26.7	8880	28.2	528
SB-DB-026	B731778	504786	5685564	418	2021-06-06	Float	B731778	0	0.12	110.5	2.2	30
SB-DB-041	B731779	505486	5685085	422	2021-06-07	Outcrop	B731779	0.002	0.15	150.5	1.2	15
SB-DB-094	B731780	503070	5686196	415	2021-06-14	Outcrop	B731780	0.001	0.22	28.1	1.7	12
SB-DB-097	B731781	502822	5685909	427	2021-06-17	Outcrop	B731781	0.004	0.09	16.6	3.4	18
SB-DB-131	B731782	502841	5686361	434	2021-06-15	Outcrop	B731782	0	0.02	5.8	5	9
SB-DB-128	B731783	502993	5686433	431	2021-06-15	Outcrop	B731783	0	0.01	1.5	1.5	64
SB-DB-134	B731784	502748	5686244	445	2021-06-15	Outcrop	B731784	0.003	0.12	123.5	1.7	24
SB-DB-098	B731785	502818	5685909	434	2021-06-18	Outcrop	B731785	0	0.02	8	2	134
SB-DB-102	B731786	502920	5685777	441	2021-06-22	Outcrop	B731786	0	0.04	6.3	4.5	150
SB-DB-133	B731787	502781	5686312	442	2021-06-15	Outcrop	B731787	0.007	0.01	3	5.8	4
SB-DB-106	B731788	502905	5685752	440	2021-06-26	Outcrop	B731788	0	0.04	5.6	4.9	52

Station_ID	Sample_ID	Easting	Northing	Elevation	Date	Sample Type	SAMPLE	Au (ppm)	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)
SB-DB-138	B731789	502606	5686174	443	2021-06-15	Float	B731789	0.001	0.09	110	1.5	21
SB-DB-105	B731790	502907	5685747	441	2021-06-25	Float	B731790	0.008	0.21	166.5	0.6	40
SB-DB-126	B731791	503394	5686497	434	2021-06-14	Outcrop	B731791	0.001	0.06	134	0.9	17
SB-DB-116	B731792	502977	5686687	435	2021-06-14	Outcrop	B731792	0	0.01	3.6	2.1	78
SB-DB-123	B731793	502535	5686911	446	2021-06-14	Outcrop	B731793	0	0.02	8.4	2.8	47
SB-DB-117	B731794	502979	5686690	433	2021-06-14	Outcrop	B731794	0	0.3	18.5	2	98
SB-DB-095	B731795	502796	5685977	421	2021-06-15	Outcrop	B731795	0	0.05	19.8	3	68
SB-DB-100	B731796	502830	5685877	435	2021-06-20	Outcrop	B731796	0	0.07	27.2	7.8	51
SB-DB-119	B731797	502860	5686726	438	2021-06-14	Outcrop	B731797	0	0.02	17.7	0.6	5
SB-DB-115	B731798	503020	5686717	434	2021-06-14	Outcrop	B731798	0.015	0.09	39.2	10.8	62
SB-DB-021	B731799	504469	5686098	422	2021-06-06	Outcrop	B731799	0.003	0.03	16.3	0.7	13
SB-SF-001	B731801	503962	5686040		2021-06-13	Outcrop	B731801	0.003	0.45	187	8.1	31
SB-SF-007	B731802	503255	5685875		2021-06-13	Outcrop	B731802	0	0.73	25.4	0.8	11
SB-SF-007B	B731803	503255	5685875		2021-06-13	Outcrop	B731803	0	0.29	48.3	1	33
SB-SF-008	B731804	503230	5685867		2021-06-13	Outcrop	B731804	0.001	0.05	17.6	6.3	13
SB-SF-013	B731805	502827	5685773		2021-06-13	Outcrop	B731805	0.001	0.13	91.2	2.3	50
SB-SF-014	B731806	502900	5685705		2021-06-13	Outcrop	B731806	1.605	3.12	76.9	158	32
SB-SF-015	B731807	502765	5685584		2021-06-13	Outcrop	B731807	0.03	0.15	52.4	10.3	19
SB-SF-016	B731808	502763	5685587		2021-06-13	Outcrop	B731808	0.184	0.32	176.5	6.5	24
SB-SF-018	B731809	502779	5685581		2021-06-14	Outcrop	B731809	0.006	0.04	4.2	8.8	12
SB-SF-019	B731810	502810	5685657		2021-06-14	Outcrop	B731810	0.001	0.03	9.7	6.9	6
SB-SF-020	B731811	502830	5685659		2021-06-14	Outcrop	B731811	0.002	0.2	57.4	16.6	16
SB-SF-024	B731812	502854	5685719		2021-06-14	Outcrop	B731812	8.28	1.41	18.1	30.5	26
SB-SF-025	B731813	502935	5685717		2021-06-14	Outcrop	B731813	0.003	0.03	4.2	2.4	14
SB-SF-030	B731814	502359	5685885		2021-06-14	Outcrop	B731814	0.205	1.62	934	1700	320
SB-SF-031	B731815	502354	5685883		2021-06-14	Outcrop	B731815	0.048	0.74	225	592	730
SB-SF-032	B731816	502349	5685841		2021-06-14	Outcrop	B731816	0.005	2.59	98.5	223	109
SB-SF-033	B731817	502610	5685750		2021-06-14	Outcrop	B731817	0.429	0.1	40.1	13.9	56
SB-SF-021	B731818	502833	5685662		2021-06-14	Outcrop	B731818	0	0.05	8.3	12	11
SB-SF-035	B731819	503238	5687110		2021-06-15	Outcrop	B731819	0.001	0.38	135	17	31
SB-SF-036	B731820	503347	5687140		2021-06-15	Outcrop	B731820	0.004	0.06	66.9	1.4	19
SB-SF-038	B731821	503438	5687193		2021-06-15	Outcrop	B731821	0	0.03	163.5	0.9	4
SB-SF-041	B731822	503322	5687194		2021-06-15	Outcrop	B731822	0	0.03	1.6	2	14
SB-SF-042	B731823	502551	5687826		2021-06-15	Outcrop	B731823	0	0.14	205	1.2	12
SB-SF-044	B731824	502536	5687897		2021-06-15	Outcrop	B731824	0	0.12	170.5	0.6	8
SB-SF-050	B731826	502838	5687425		2021-06-15	Outcrop	B731826	0	0.05	15	8.8	15
SB-SF-051	B731827	504627	5683513		2021-06-15	Outcrop	B731827	0.088	0.05	8.7	0.8	5

Station_ID	Sample_ID	Easting	Northing	Elevation	Date	Sample Type	SAMPLE	Au (ppm)	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)
SB-SF-064	B731828	504041	5683785		2021-06-16	Outcrop	B731828	0	<0.01	0.9	0.6	2
SB-SF-065	B731829	504040	5683782		2021-06-16	Outcrop	B731829	0.006	<0.01	0.7	0.5	<2
SB-SF-066	B731830	504073	5683826		2021-06-16	Outcrop	B731830	0.009	0.08	9.3	0.9	7
SB-SF-067	B731831	504163	5683882		2021-06-16	Outcrop	B731831	0.001	<0.01	1.1	0.4	<2
SB-SF-068	B731832	504366	5683723		2021-06-16	Outcrop	B731832	0.003	0.07	160.5	0.7	8
SB-SF-075	B731833	503697	5684488		2021-06-16	Outcrop	B731833	0	0.12	18.5	5.8	27
CDN-GS-P4J	B731025						B731025	0.457	0.57	768	19	117
Blank	B731050						B731050	<0.001	0.02	20.5	0.9	32
Blank	B731575						B731575	<0.001	0.02	22.2	0.9	32
CDN-GS-P4J	B731750						B731750	0.516	0.5	759	20	123
Blank	B731775						B731775	<0.001	0.01	1.9	2.6	9
Blank	B731800						B731800	<0.001	0.01	18.6	0.7	30
CDN-GS-P4J	B731825						B731825	0.44	0.57	763	19	121

APPENDIX F: ASSAY CERTIFICATES

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: NORTHERN DOMINION METALS/CROSS RIVER VENTURE 1430-800 WEST PENDER STREET VANCOUVER BC V6C 2V6

Page: 1 Total # Pages: 6 (A - D) Plus Appendix Pages Finalized Date: 20-JUL-2021 This copy reported on 4-MAY-2022 Account: NDMCDEZG

CERTIFICATE	TB21164754	

Project: Shabu

This report is for 198 samples of Rock submitted to our lab in Thunder Bay, ON, Canada on 28-JUN-2021.

The following have access to data associated with this certificate:

ROB CARPENTER	DAN MACNEIL	LORI PASLAWSKI
ALAN WAINWRIGHT		

SAMPLE PREPARATION								
ALS CODE	DESCRIPTION							
WEI-21	Received Sample Weight							
LOG-21	Sample logging – ClientBarCode							
LOG-23	Pulp Login – Rcvd with Barcode							
CRU-QC	Crushing QC Test							
PUL-QC	Pulverizing QC Test							
CRU-31	Fine crushing – 70% <2mm							
SPL-21	Split sample – riffle splitter							
PUL-31	Pulverize up to 250g 85% <75 um							
•								

ANALYTICAL PROCEDURES								
ALS CODE	DESCRIPTION	INSTRUMENT						
ME–MS41 Au–ICP21	Ultra Trace Aqua Regia ICP-MS Au 30g FA ICP-AES Finish	ICP-AES						
Au-GRA21	Au 30g FA-GRAV finish	WST-SIM						

This is the Final Report and supersedes any preliminary report with this certificate number.Results apply to samples as submitted.All pages of this report have been checked and approved for release. ***** See Appendix Page for comments regarding this certificate *****

Signature: Saa Traxler, Director, North Vancouver Operations

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: NORTHERN DOMINION METALS/CROSS RIVER VENTURE 1430-800 WEST PENDER STREET VANCOUVER BC V6C 2V6

Page: 2 - A Total # Pages: 6 (A – D) Plus Appendix Pages Finalized Date: 20-JUL-2021 Account: NDMCDEZG

Project: Shabu

Sample Description	Method Analyte Units LOD	WEI–21 Recvd Wt. kg 0.02	Au-ICP21 Au ppm 0.001	Au-GRA21 Au ppm 0.05	ME-MS41 Ag ppm 0.01	ME-MS41 Al % 0.01	ME-MS41 As ppm 0.1	ME-MS41 Au ppm 0.02	ME-MS41 B ppm 10	ME-MS41 Ba ppm 10	ME-MS41 Be ppm 0.05	ME-MS41 Bi ppm 0.01	ME-MS41 Ca % 0.01	ME-MS41 Cd ppm 0.01	ME-MS41 Ce ppm 0.02	ME-MS41 Co ppm 0.1
B731001 B731002 B731003 B731004 B731005		1.91 1.81 1.83 2.94 2.17	2.73 0.006 0.004 0.001 <0.001		0.73 0.05 0.11 0.05 0.02	2.72 0.65 3.36 4.29 0.93	2170 19.3 50.6 40.4 10.6	3.41 <0.02 <0.02 <0.02 <0.02	<10 <10 <10 <10 <10	130 10 120 50 10	0.16 0.08 <0.05 0.06 <0.05	1.18 0.02 0.06 0.04 0.02	0.98 1.07 0.88 3.36 4.12	0.04 0.02 0.01 0.02 0.03	11.10 5.36 5.44 3.66 1.66	29.3 22.8 63.1 38.2 14.4
B731006 B731007 B731008 B731009 B731010		2.37 1.90 3.24 3.19 2.65	0.004 0.001 0.006 0.004 0.005		0.08 0.11 0.06 0.23 0.32	5.63 3.05 1.07 1.84 4.07	15.4 26.2 14.9 4.5 3.8	<0.02 <0.02 <0.02 <0.02 <0.02	<10 <10 <10 <10 <10	140 130 40 30 130	0.19 0.08 <0.05 <0.05 0.09	0.02 0.05 0.01 0.18 0.10	2.64 1.37 11.10 1.14 3.50	0.02 0.04 0.05 0.02 0.55	2.76 4.44 3.09 2.82 8.50	44.6 33.2 23.0 25.3 29.4
B731011 B731012 B731013 B731014 B731015		3.82 2.21 2.74 1.16 2.09	0.009 0.001 <0.001 0.003 <0.001		1.87 0.18 0.14 1.05 0.01	1.61 3.06 1.28 2.68 0.01	8.4 8.8 1.0 230 1.6	<0.02 <0.02 <0.02 <0.02 <0.02 <0.02	10 <10 <10 <10 <10	20 80 150 100 10	0.15 0.11 0.27 0.56 <0.05	0.50 0.06 0.11 0.58 0.01	0.72 1.42 1.27 1.33 >25.0	1.87 0.02 0.02 0.17 0.03	13.20 9.23 25.9 9.57 0.16	111.0 21.2 6.2 45.4 0.6
B731016 B731017 B731018 B731019 B731020		2.88 1.48 2.24 1.76 1.48	0.001 <0.001 <0.001 <0.001 0.001		0.04 0.03 0.04 0.05 0.02	3.12 1.42 3.77 2.68 1.39	22.3 6.5 2.3 4.1 20.3	<0.02 <0.02 <0.02 <0.02 <0.02 <0.02	<10 <10 <10 <10 <10	20 50 20 40 20	0.05 0.94 0.05 0.05 <0.05	0.04 0.03 0.02 0.02 0.01	2.18 0.76 2.96 1.98 1.41	0.03 0.12 0.03 0.02 0.04	3.24 51.6 2.90 3.23 1.86	20.2 2.5 12.5 10.3 21.5
B731021 B731022 B731023 B731024 B731025		1.85 3.13 2.01 2.35 0.04	<0.001 0.003 <0.001 <0.001 0.457		0.06 0.26 0.10 0.12 0.57	0.81 1.30 1.27 0.83 1.45	6.4 2.3 4.3 5.6 12.7	<0.02 <0.02 <0.02 <0.02 1.25	<10 <10 <10 <10 10	30 20 10 10 180	<0.05 <0.05 <0.05 <0.05 0.19	0.02 0.06 0.05 0.06 0.13	1.12 1.16 1.17 0.83 2.47	0.03 0.06 0.03 0.03 0.53	1.57 2.32 1.95 2.05 10.90	10.5 45.8 21.9 24.8 13.4
B731026 B731027 B731028 B731029 B731030		2.58 1.73 1.48 2.58 3.35	0.001 0.004 0.002 0.001 0.002		0.19 0.36 0.81 0.91 0.23	1.49 2.31 4.89 1.19 2.59	0.9 0.6 0.6 0.4 1.9	<0.02 <0.02 <0.02 <0.02 <0.02 <0.02	<10 <10 10 10 10	10 10 30 20 50	<0.05 0.06 0.53 0.29 0.05	0.09 0.16 0.15 0.11 0.10	1.39 1.69 3.05 0.54 1.71	0.06 0.03 1.95 0.38 0.07	1.66 2.25 13.05 29.0 3.21	31.6 45.9 14.7 6.5 40.3
B731031 B731032 B731033 B731034 B731035		2.83 2.46 2.30 3.32 1.79	0.003 <0.001 <0.001 <0.001 0.006		0.24 0.19 0.44 2.29 2.23	3.24 1.05 2.28 0.49 0.63	2.0 1.2 1.1 113.5 0.5	<0.02 <0.02 <0.02 <0.02 <0.02 <0.02	<10 <10 10 10 <10	70 40 30 10 50	0.05 0.05 0.31 0.09 0.06	0.19 0.11 0.19 0.74 0.93	2.21 1.30 1.32 0.24 0.91	0.02 0.03 0.64 1.06 0.07	2.19 2.80 48.2 3.79 17.95	23.2 32.0 6.8 64.2 6.4
B731036 B731037 B731038 B731039 B731040		2.63 2.70 2.35 2.04 2.29	<0.001 <0.001 0.001 0.003 0.054		0.08 0.80 1.04 0.04 0.25	0.56 1.14 2.45 3.19 2.47	0.4 0.6 1.2 41.1 1.0	<0.02 <0.02 <0.02 <0.02 0.04	<10 <10 10 <10 <10	10 30 30 60 20	<0.05 0.15 0.20 0.06 0.08	0.04 0.65 0.61 0.05 0.33	0.29 0.48 1.11 1.21 1.70	0.65 1.22 1.10 0.02 0.03	16.35 20.4 28.8 8.46 6.13	5.0 17.1 63.9 39.2 28.9

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry To: NORTHERN DOMINION METALS/CROSS RIVER VENTURE 1430-800 WEST PENDER STREET VANCOUVER BC V6C 2V6 Page: 2 – B Total # Pages: 6 (A – D) Plus Appendix Pages Finalized Date: 20-JUL-2021 Account: NDMCDEZG

CERTIFICATE OF ANALYSIS	TB21164754

Sample Description	Method	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME–MS41	ME-MS41
	Analyte	Cr	Cs	Cu	Fe	Ga	Ge	Hf	Hg	In	K	La	Li	Mg	Mn	Mo
	Units	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm
	LOD	1	0.05	0.2	0.01	0.05	0.05	0.02	0.01	0.005	0.01	0.2	0.1	0.01	5	0.05
B731001		150	7.70	178.5	7.09	8.53	0.12	0.10	0.01	0.024	0.61	4.8	20.6	0.72	475	0.81
B731002		38	0.19	53.5	1.77	1.39	0.09	0.07	<0.01	0.005	0.05	2.7	2.7	0.24	443	0.76
B731003		396	3.43	148.0	4.25	9.05	0.09	0.12	<0.01	0.015	0.47	2.2	24.9	1.00	529	0.85
B731004		198	1.57	47.4	2.41	8.11	0.11	0.04	<0.01	0.011	0.20	1.6	16.0	0.73	535	0.73
B731005		31	0.13	6.6	0.59	2.10	0.06	0.02	<0.01	0.007	0.02	1.1	5.3	0.13	778	0.65
B731006		297	4.56	57.4	3.77	10.05	0.09	0.02	<0.01	0.007	1.48	1.0	29.6	1.10	815	0.47
B731007		254	7.30	55.7	3.49	6.13	0.11	0.05	<0.01	0.011	0.78	1.7	28.2	0.94	826	0.82
B731008		81	2.13	58.6	1.75	1.72	0.05	0.03	<0.01	<0.005	0.19	1.4	6.2	0.29	1890	0.42
B731009		81	2.28	455	3.98	3.09	0.08	0.05	<0.01	0.007	0.30	1.3	13.1	0.65	349	0.82
B731010		183	4.94	115.5	6.90	9.74	0.13	0.10	<0.01	0.049	1.30	3.8	23.6	1.40	1740	0.97
B731011		18	0.64	473	29.5	5.28	0.18	0.29	0.04	0.229	0.17	6.9	3.9	0.26	1820	1.51
B731012		121	9.88	96.6	4.93	7.25	0.13	0.09	<0.01	0.012	0.77	4.3	24.8	0.86	656	0.91
B731013		52	2.80	100.5	1.41	3.18	0.13	0.24	<0.01	0.010	0.15	11.6	6.3	0.48	173	0.48
B731014		120	4.46	89.7	6.78	7.84	0.10	0.16	<0.01	0.008	1.01	3.4	47.2	1.08	1910	1.05
B731015		1	<0.05	1.3	0.47	0.09	<0.05	<0.02	<0.01	<0.005	<0.01	0.2	0.5	0.19	5290	0.07
B731016		21	0.74	31.4	1.47	4.57	0.09	0.04	<0.01	0.006	0.06	1.6	8.9	0.83	292	0.57
B731017		5	0.63	3.4	4.31	14.50	0.15	1.13	0.01	0.068	0.08	21.8	9.5	0.41	1000	1.11
B731018		40	0.52	44.9	1.01	4.92	0.05	0.05	<0.01	0.006	0.02	1.3	5.8	0.44	224	0.73
B731019		54	1.29	31.3	1.14	3.67	0.05	0.04	<0.01	0.005	0.10	1.4	7.0	0.59	185	0.62
B731020		42	0.46	18.7	0.72	1.98	0.05	0.08	<0.01	<0.005	0.03	0.8	3.5	0.22	255	0.75
B731021		44	0.30	32.4	1.23	1.39	0.07	0.05	<0.01	<0.005	0.02	0.7	2.1	0.17	328	0.72
B731022		75	2.47	264	3.23	2.08	0.06	0.09	<0.01	0.005	0.17	1.2	8.1	0.32	331	0.79
B731023		46	0.33	96.0	1.37	2.03	<0.05	0.08	<0.01	<0.005	0.03	0.9	2.9	0.14	148	1.79
B731024		53	0.40	103.5	1.38	1.52	<0.05	0.09	<0.01	<0.005	0.03	0.9	2.0	0.10	117	0.85
B731025		25	0.84	768	3.45	5.14	0.07	0.16	0.07	0.045	0.11	4.9	11.5	1.21	644	12.40
B731026		56	0.81	166.5	2.40	2.23	0.05	0.06	<0.01	<0.005	0.06	0.7	6.8	0.29	180	1.60
B731027		34	0.97	124.5	4.10	3.49	<0.05	0.06	<0.01	<0.005	0.03	2.1	6.3	0.19	137	0.60
B731028		44	2.42	133.0	8.27	11.90	0.07	0.20	0.08	0.139	0.28	6.6	10.8	0.40	515	0.89
B731029		11	1.44	428	9.73	3.18	0.07	0.64	0.01	0.044	0.21	16.0	9.8	0.25	289	1.39
B731030		30	3.42	141.5	2.92	4.19	0.05	0.08	<0.01	0.006	0.19	1.7	12.4	0.53	204	0.89
B731031 B731032 B731033 B731034 B731035		55 77 27 4 32	3.01 1.37 2.88 0.26 1.50	154.0 124.0 93.1 706 142.0	3.12 2.14 4.19 45.7 15.70	4.81 1.65 6.55 1.57 5.32	0.05 <0.05 0.08 0.13 0.14	0.07 0.07 0.75 0.08 0.30	<0.01 <0.01 0.03 <0.01	0.008 0.005 0.051 0.098 0.034	0.18 0.05 0.32 0.05 0.42	1.3 2.2 26.7 2.2 9.6	11.2 10.6 9.8 4.4 4.8	0.58 0.54 0.45 0.09 0.28	202 145 441 667 481	0.83 0.75 2.18 1.13 5.90
B731036		18	1.72	31.4	1.59	2.25	<0.05	0.19	<0.01	0.034	0.35	8.6	8.1	0.42	356	1.77
B731037		26	2.34	294	4.74	4.44	<0.05	0.72	<0.01	0.140	0.38	11.6	6.3	0.39	304	3.32
B731038		67	3.68	402	12.80	8.89	0.15	0.57	0.01	0.090	0.61	15.2	10.2	0.83	580	1.58
B731039		106	6.00	62.4	5.77	9.04	0.16	0.10	<0.01	0.015	0.33	3.8	21.6	1.19	712	0.93
B731040		80	0.98	388	8.44	6.31	0.23	0.12	<0.01	0.027	0.14	3.0	8.0	0.79	1040	1.05

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry To: NORTHERN DOMINION METALS/CROSS RIVER VENTURE 1430-800 WEST PENDER STREET VANCOUVER BC V6C 2V6 Page: 2 - C Total # Pages: 6 (A - D) Plus Appendix Pages Finalized Date: 20-JUL-2021 Account: NDMCDEZG

Project: Shabu

Sample Description	Method	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41
	Analyte	Na	Nb	Ni	P	Pb	Rb	Re	S	Sb	Sc	Se	Sn	Sr	Ta	Te
	Units	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm
	LOD	0.01	0.05	0.2	10	0.2	0.1	0.001	0.01	0.05	0.1	0.2	0.2	0.2	0.01	0.01
B731001		0.14	0.14	84.8	480	1.5	44.6	0.001	0.96	0.89	12.5	0.6	0.2	32.0	<0.01	0.63
B731002		0.06	0.26	67.2	250	0.4	2.0	0.001	0.16	0.19	4.2	<0.2	<0.2	13.0	<0.01	0.06
B731003		0.26	0.12	256	110	1.3	35.8	0.001	0.33	0.10	24.5	0.7	<0.2	31.1	<0.01	0.14
B731004		0.25	0.07	177.5	90	1.4	16.1	0.001	0.10	0.11	10.8	0.2	<0.2	60.2	<0.01	0.07
B731005		0.06	0.15	38.7	80	0.7	1.3	<0.001	0.01	0.33	2.2	<0.2	<0.2	29.5	<0.01	0.08
B731006		0.42	0.06	185.5	70	2.5	78.6	0.001	0.15	0.07	11.9	0.2	<0.2	52.9	<0.01	0.08
B731007		0.23	0.05	153.5	190	1.7	58.0	0.001	0.07	0.07	10.7	0.2	<0.2	25.4	<0.01	0.12
B731008		0.09	0.12	134.5	150	0.6	17.8	<0.001	0.08	0.16	4.5	0.3	<0.2	26.2	<0.01	0.05
B731009		0.08	0.15	68.3	190	1.0	25.6	0.001	0.61	0.18	8.0	1.8	<0.2	22.1	<0.01	0.40
B731010		0.28	0.05	108.0	260	3.6	79.2	0.002	2.63	0.17	7.9	2.4	0.7	39.5	<0.01	0.65
B731011		0.08	0.12	162.5	270	11.9	13.7	0.006	>10.0	0.78	2.5	10.5	0.8	15.8	<0.01	2.00
B731012		0.16	0.13	74.6	330	1.6	61.1	0.001	0.33	0.09	7.5	0.5	<0.2	42.5	<0.01	0.09
B731013		0.16	0.30	11.3	1640	1.5	11.9	<0.001	0.03	0.11	4.5	0.5	0.3	66.8	<0.01	0.07
B731014		0.01	0.27	102.0	330	16.9	50.0	0.001	2.13	0.29	9.0	0.8	0.4	7.7	<0.01	0.28
B731015		0.01	<0.05	0.4	20	2.2	0.2	<0.001	0.01	<0.05	0.1	0.2	<0.2	161.5	<0.01	<0.01
B731016		0.38	<0.05	65.9	130	2.7	3.7	0.001	0.09	0.12	4.0	0.2	<0.2	54.7	<0.01	0.05
B731017		0.05	0.98	1.2	310	3.0	23.3	<0.001	0.12	0.27	3.9	<0.2	0.3	32.5	0.02	0.01
B731018		0.30	0.12	60.9	130	1.9	2.3	0.001	0.07	0.07	3.2	0.3	<0.2	77.8	<0.01	0.03
B731019		0.25	0.13	47.0	140	1.2	8.6	<0.001	0.03	0.06	3.3	0.2	<0.2	60.2	<0.01	0.02
B731020		0.15	0.21	70.1	110	0.7	2.3	<0.001	0.05	0.09	2.9	0.2	<0.2	33.1	<0.01	0.05
B731021 B731022 B731023 B731024 B731025		0.04 0.15 0.19 0.12 0.10	0.29 0.20 0.22 0.26 0.06	38.6 177.5 116.5 114.0 13.4	150 210 110 130 830	0.8 1.2 1.1 1.0 19.0	1.3 17.3 1.7 2.4 5.2	<0.001 0.001 0.001 0.001 0.027	0.09 1.23 0.45 0.43 0.59	0.13 0.08 0.07 0.10 1.10	2.9 4.5 2.6 3.1 5.9	0.3 1.3 0.6 0.7 1.1	<0.2 <0.2 <0.2 <0.2 <0.2 0.7	15.6 19.3 27.1 17.8 121.0	<0.01 <0.01 <0.01 <0.01 <0.01	0.09 0.26 0.11 0.14 0.16
B731026		0.16	0.16	142.0	130	1.7	3.5	0.002	0.92	0.05	3.5	1.1	<0.2	23.6	<0.01	0.29
B731027		0.29	0.19	198.5	180	1.3	2.1	<0.001	2.18	0.07	2.3	0.7	<0.2	42.6	<0.01	0.44
B731028		0.32	0.14	50.5	410	13.9	24.7	0.002	5.69	0.60	5.5	2.8	0.3	61.6	<0.01	0.35
B731029		0.13	0.34	71.1	400	9.0	16.1	0.002	6.60	0.50	1.3	2.8	0.4	21.9	<0.01	0.48
B731030		0.29	0.09	200	160	1.5	15.7	0.001	0.99	0.21	3.7	0.6	<0.2	33.3	<0.01	0.32
B731031 B731032 B731033 B731033 B731034 B731035		0.27 0.03 0.22 0.02 0.13	0.11 0.18 0.31 0.15 1.11	156.0 323 28.1 251 12.5	160 160 560 70 580	2.0 1.0 15.4 16.9 7.8	18.1 5.4 26.6 3.2 33.1	0.001 0.001 0.004 0.006 0.002	0.58 0.60 2.76 >10.0 1.69	0.21 0.21 0.59 1.00 0.22	3.5 2.1 3.9 1.0 3.4	0.3 0.4 1.6 8.0 8.5	<0.2 <0.2 0.3 0.4 1.3	61.2 28.0 41.6 3.8 19.8	<0.01 <0.01 0.01 <0.01 0.01	0.49 0.22 0.19 1.40 1.96
B731036		0.03	0.17	6.7	450	2.5	26.5	0.001	0.49	0.10	1.2	0.5	0.3	2.7	<0.01	0.06
B731037		0.12	0.38	23.5	450	24.7	41.1	0.004	2.12	0.19	3.4	1.9	0.6	17.9	<0.01	0.49
B731038		0.20	0.32	95.8	310	24.7	51.2	0.003	5.61	0.31	8.1	4.3	0.8	50.3	<0.01	0.70
B731039		0.15	0.11	131.0	250	1.3	26.8	0.001	0.21	0.11	17.7	0.2	0.2	21.3	<0.01	0.03
B731040		0.15	0.07	80.7	280	2.3	4.4	0.002	0.91	0.17	10.2	0.6	0.2	5.3	<0.01	0.34

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry To: NORTHERN DOMINION METALS/CROSS RIVER VENTURE 1430-800 WEST PENDER STREET VANCOUVER BC V6C 2V6 Page: 2 - D Total # Pages: 6 (A - D) Plus Appendix Pages Finalized Date: 20-JUL-2021 Account: NDMCDEZG

CERTIFICATE	OF ANALYSIS	TB21164754

Sample Description	Method Analyte Units LOD	ME-MS41 Th ppm 0.2	ME-MS41 Ti % 0.005	ME-MS41 Tl ppm 0.02	ME-MS41 U ppm 0.05	ME-MS41 V ppm 1	ME-MS41 W ppm 0.05	ME-MS41 Y ppm 0.05	ME-MS41 Zn ppm 2	ME-MS41 Zr ppm 0.5	
3731001 3731002 3731003		1.0 0.4 0.6	0.120 0.116 0.094	0.71 0.04 0.62	0.15 0.05 0.14	111 30 220	17.00 0.26 0.64	8.82 3.52 4.07	53 15 42	3.1 1.9 4.1	
3731004 3731005		0.4 <0.2	0.064 0.042	0.28 <0.02	0.07 <0.05	96 20	0.47 0.24	2.72 1.30	30 5	1.4 0.5	
3731006 3731007 3731008 3731009 3731010		0.4 0.5 0.3 0.3 1.4	0.194 0.168 0.074 0.127 0.138	1.54 1.11 0.47 0.85 1.95	0.07 0.08 0.06 0.08 0.34	149 106 36 55 98	0.44 0.17 0.27 0.54 0.27	3.10 4.26 4.02 3.20 4 33	63 41 22 18 363	1.1 1.5 1.2 1.6 3.8	
3731011 3731012 3731013 3731014 3731014 3731015		1.3 1.1 2.4 0.7 <0.2	0.027 0.162 0.122 0.329 <0.005	0.44 0.98 0.30 2.99 <0.02	0.24 0.17 0.38 0.18 <0.05	17 86 38 153 1	0.18 0.78 0.28 2.67 <0.05	3.34 3.94 7.68 2.81 0.88	653 51 16 92 <2	11.0 3.1 8.7 5.7 <0.5	
3731016 3731017 3731018 3731019 3731020		0.4 1.9 0.3 0.3 0.2	0.066 0.033 0.084 0.074 0.122	0.19 0.05 0.04 0.20 0.04	0.07 0.39 0.06 0.07 0.06	26 2 21 24 24	0.09 0.11 0.13 0.69 0.22	2.51 20.2 3.22 2.59 3.36	16 126 11 12 11	1.2 49.3 1.2 1.3 2.1	
3731021 3731022 3731023 3731024 3731024 3731025		0.2 0.3 0.2 0.2 1.4	0.111 0.106 0.109 0.113 0.061	0.03 0.42 0.08 0.08 0.04	0.06 0.06 0.05 0.05 0.59	24 37 23 25 82	0.69 0.19 0.22 0.21 3.62	2.90 3.69 3.69 3.61 7.79	12 26 11 10 117	1.8 2.1 1.9 2.1 4.8	
3731026 3731027 3731028 3731029 3731030		0.2 0.2 3.5 6.3 0.4	0.098 0.089 0.041 0.019 0.100	0.10 0.03 1.55 0.97 0.57	0.05 <0.05 0.64 1.09 0.09	28 19 34 5 33	0.27 0.44 0.22 0.47 0.31	3.13 3.23 5.24 7.26 3.72	28 5 661 114 14	1.4 1.2 7.6 23.1 2.0	
3731031 3731032 3731033 3731034 3731035		0.3 0.2 7.7 0.7 1.6	0.105 0.094 0.046 0.012 0.148	0.44 0.20 1.43 0.21 1.03	0.08 0.05 1.32 0.14 0.30	29 18 16 6 51	0.29 0.59 0.57 0.59 1.68	2.61 2.71 10.15 1.37 2.99	11 8 207 355 45	1.5 1.5 25.6 3.1 11.0	
3731036 3731037 3731038 3731039 3731040		4.0 5.0 3.9 1.0 0.7	0.042 0.094 0.081 0.151 0.092	0.68 1.10 1.71 0.58 0.15	0.69 0.68 0.57 0.15 0.12	10 23 59 151 64	2.56 0.52 0.37 0.22 0.76	1.82 6.69 6.64 6.29 6.03	113 310 338 61 38	5.8 27.8 20.6 3.5 3.6	

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry To: NORTHERN DOMINION METALS/CROSS RIVER VENTURE 1430-800 WEST PENDER STREET VANCOUVER BC V6C 2V6 Page: 3 – A Total # Pages: 6 (A – D) Plus Appendix Pages Finalized Date: 20-JUL-2021 Account: NDMCDEZG

Project: Shabu

Sample Description	Method Analyte Units LOD	WEI-21 Recvd Wt. kg 0.02	Au-ICP21 Au ppm 0.001	Au-GRA21 Au ppm 0.05	ME-MS41 Ag ppm 0.01	ME-MS41 Al % 0.01	ME-MS41 As ppm 0.1	ME-MS41 Au ppm 0.02	ME-MS41 B ppm 10	ME-MS41 Ba ppm 10	ME-MS41 Be ppm 0.05	ME-MS41 Bi ppm 0.01	ME-MS41 Ca % 0.01	ME-MS41 Cd ppm 0.01	ME-MS41 Ce ppm 0.02	ME-MS41 Co ppm 0.1
B731041 B731042 B731043 B731044 B731044		2.03 2.91 2.08 1.40 1.68	0.002 0.003 0.013 0.197 0.042		0.09 0.07 0.20 0.51 0.06	2.92 2.14 3.12 0.98 2.55	20.7 9.5 1.0 221 112.5	<0.02 <0.02 <0.02 0.23 0.03	<10 <10 <10 <10 <10	60 20 110 20 110	0.13 0.09 0.10 0.05 0.10	0.13 0.05 0.25 1.43 0.07	2.31 2.25 1.85 0.80 1.93	0.02 0.04 0.02 0.27 0.05	7.74 7.54 5.09 4.74 6.98	24.0 30.3 15.3 11.5 38.7
B731046 B731047 B731049 B731050 B731051		2.00 0.61 1.97 0.04 2.58	0.026 0.001 0.056 <0.001 0.044		0.02 0.01 0.05 0.02 0.03	2.30 0.11 0.05 1.02 2.37	54.8 2.4 2.0 1.3 4.9	0.02 <0.02 0.36 <0.02 0.04	<10 <10 <10 <10 <10	140 <10 <10 60 90	0.07 <0.05 <0.05 0.19 0.07	0.06 0.01 0.85 0.01 0.17	1.40 0.07 0.08 0.81 2.49	0.03 0.01 <0.01 0.02 0.03	5.48 2.50 0.42 10.05 7.93	25.9 1.1 1.7 3.8 27.4
B731052 B731053 B731054 B731055 B731055		1.34 1.83 2.20 2.08 2.93	0.001 0.009 0.002 <0.001 <0.001		0.01 1.26 0.01 0.24 0.06	0.05 3.78 0.04 1.75 2.20	0.4 40.1 0.3 0.9 0.4	<0.02 <0.02 <0.02 <0.02 <0.02 <0.02	<10 <10 <10 <10 <10	<10 120 <10 100 150	<0.05 0.25 <0.05 0.07 0.12	0.19 0.30 0.09 0.16 0.14	0.08 1.75 0.04 0.51 2.22	<0.01 0.04 0.01 0.01 0.03	0.37 7.42 0.21 34.4 23.6	1.0 36.3 0.6 17.2 13.9
B731057 B731058 B731059 B731060 B731061		2.67 1.78 2.39 1.72 2.85	<0.001 <0.001 <0.001 <0.001 0.002		0.51 0.18 0.08 0.04 0.33	1.95 3.04 2.59 0.63 0.42	0.5 0.3 0.5 0.5 28.7	<0.02 <0.02 <0.02 <0.02 <0.02 <0.02	<10 <10 <10 <10 <10	170 190 640 30 60	0.07 0.08 0.12 0.18 0.09	0.12 0.05 0.03 0.08 0.94	0.68 0.47 0.72 0.27 0.16	0.09 0.02 0.01 0.06 0.06	22.9 21.3 39.2 33.0 9.48	14.2 21.4 19.9 1.1 5.8
B731062 B731063 B731064 B731065 B731066		1.65 1.99 2.23 1.99 3.09	0.003 <0.001 <0.001 0.001 <0.001		0.41 0.01 0.01 0.11 0.07	1.63 1.35 0.25 1.70 0.70	2.7 1.4 1.3 1.0 0.9	<0.02 <0.02 <0.02 <0.02 <0.02 <0.02	<10 <10 <10 <10 <10	60 60 10 330 90	0.37 0.29 <0.05 0.20 0.13	0.44 0.13 0.01 0.33 0.34	0.95 1.50 0.15 1.03 0.76	0.07 0.04 <0.01 0.04 0.02	10.45 22.3 1.55 21.5 13.75	36.8 9.6 2.3 28.9 20.8
B731067 B731068 B731069 B731070 B731071		1.25 1.46 3.32 1.66 1.75	0.001 <0.001 0.018 <0.001 <0.001		0.29 0.03 1.87 1.08 1.06	0.06 1.08 0.26 0.26 0.57	0.6 0.4 2.3 0.6 3.1	<0.02 <0.02 0.02 <0.02 <0.02	<10 10 <10 <10 <10	<10 10 10 10 30	<0.05 0.12 0.05 0.06 0.26	0.06 0.07 0.27 0.57 0.82	0.12 1.41 0.04 0.07 0.29	0.01 0.04 0.15 0.12 0.42	0.91 23.9 20.1 7.75 14.80	2.5 6.5 4.4 1.9 5.2
B731072 B731073 B731551 B731552 B731553		2.29 0.04 1.42 1.79 0.70	<0.001 0.499 0.067 0.001 0.008		0.11 0.47 1.09 0.02 0.08	2.01 1.42 1.77 1.71 0.38	0.4 12.6 0.7 0.9 0.8	<0.02 0.35 0.07 <0.02 <0.02	<10 10 <10 <10 <10	350 180 30 30 40	0.07 0.21 0.27 0.20 0.06	0.03 0.14 1.49 0.09 0.29	0.37 2.52 1.61 0.64 0.15	0.05 0.59 0.06 <0.01 <0.01	37.1 10.50 21.8 16.70 8.18	17.8 12.9 11.3 17.0 6.0
B731554 B731555 B731556 B731557 B731558		0.78 0.79 2.18 1.33 1.57	0.171 0.132 0.001 0.007	126.0	20.3 0.05 0.16 0.01 0.04	0.38 0.33 3.35 1.10 0.19	7.4 0.2 0.2 0.5 0.2	>25.0 0.03 0.16 <0.02 <0.02	<10 <10 <10 <10 <10	10 20 290 100 20	0.12 0.18 0.40 0.19 0.06	6.97 0.11 0.53 0.40 0.10	0.10 0.03 1.44 1.04 0.21	0.08 0.01 0.07 0.05 0.01	6.13 40.2 61.1 29.7 7.38	2.5 0.3 27.9 8.1 4.2

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry To: NORTHERN DOMINION METALS/CROSS RIVER VENTURE 1430-800 WEST PENDER STREET VANCOUVER BC V6C 2V6 Page: 3 – B Total # Pages: 6 (A – D) Plus Appendix Pages Finalized Date: 20-JUL-2021 Account: NDMCDEZG

Project: Shabu

Sample Description	Method	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME–MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME–MS41	ME-MS41
	Analyte	Cr	Cs	Cu	Fe	Ga	Ge	Hf	Hg	In	K	La	Li	Mg	Mn	Mo
	Units	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm
	LOD	1	0.05	0.2	0.01	0.05	0.05	0.02	0.01	0.005	0.01	0.2	0.1	0.01	5	0.05
B731041 B731042 B731043 B731044		63 63 58 31	3.87 1.42 5.60 2.12	46.5 100.5 258 47.1	3.70 3.65 8.05 2.21	6.11 5.68 6.59 2.53	0.12 0.10 0.13	0.08 0.12 0.10	<0.01 <0.01 <0.01	0.015 0.020 0.022 0.009	0.25 0.12 0.36	3.7 3.3 2.4	7.3 9.8 15.3 8.0	0.58 0.86 1.23 0.55	638 797 1120 724	1.08 0.86 0.63 1.49
B731045		75	7.39	76.3	4.09	6.28	0.09	0.05	<0.01	0.003	0.41	3.0	20.5	1.29	856	0.65
B731046		68	10.45	13.5	3.60	5.46	0.09	0.05	<0.01	0.015	0.56	2.2	14.9	1.23	729	0.89
B731047		20	0.31	3.2	0.40	0.36	<0.05	<0.02	<0.01	<0.005	0.01	1.2	1.1	0.06	64	1.06
B731049		30	0.16	5.6	0.40	0.15	<0.05	<0.02	<0.01	<0.005	0.01	0.2	0.9	0.03	57	1.81
B731050		14	0.12	20.5	2.46	3.89	0.06	0.16	<0.01	0.006	0.08	5.1	1.4	0.50	572	3.76
B731051		68	5.75	34.9	3.68	6.03	0.12	0.09	<0.01	0.015	0.29	3.5	14 6	1.18	888	0.70
B731052 B731053 B731054 B731055 B731055		27 80 27 9 12	0.28 14.30 0.09 3.46 2.44	9.7 257 3.4 61.4 17.6	0.40 9.20 0.37 3.41 2.70	0.18 9.65 0.16 5.89 5.30	<0.05 0.19 <0.05 0.09 0.10	<0.02 0.12 <0.02 0.38 0.19	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01	<0.005 0.038 <0.005 0.018 0.012	<0.01 0.66 <0.01 1.18 1.22	0.2 3.4 <0.2 18.8 12.7	0.5 25.1 0.7 17.9 18.9	0.03 1.27 0.02 1.16 1.15	56 1410 50 421 601	1.68 1.72 1.86 6.94 1.37
B731057		118	4.80	45.3	3.37	6.46	0.10	0.24	<0.01	0.019	1.12	13.1	21.3	1.49	454	2.45
B731058		163	8.51	23.9	4.29	10.00	0.13	0.57	<0.01	0.016	1.84	10.0	30.6	2.34	459	0.90
B731059		141	4.88	45.8	4.04	7.14	0.12	0.29	<0.01	0.009	1.75	20.0	21.8	1.91	571	0.67
B731060		12	0.68	4.5	0.37	1.88	<0.05	0.66	<0.01	0.007	0.27	16.6	2.9	0.10	73	19.55
B731061		15	0.25	62.0	1.25	1.29	<0.05	0.66	<0.01	0.005	0.24	7.0	2.0	0.09	52	19.85
B731062		71	4.75	603	3.84	3.40	0.08	0.24	<0.01	0.015	0.72	4.6	8.7	0.91	358	1.32
B731063		148	1.49	3.6	1.88	2.80	0.12	0.37	<0.01	0.007	0.70	10.5	12.8	1.22	484	0.87
B731064		32	0.60	3.5	0.64	0.69	<0.05	<0.02	<0.01	<0.005	0.18	0.8	4.0	0.23	111	1.41
B731065		109	5.40	14.5	3.21	4.43	0.12	0.16	<0.01	0.012	1.01	11.6	19.6	1.66	488	0.08
B731066		59	1.42	7.4	1.78	2.03	0.08	0.12	<0.01	0.006	0.30	6.7	8.1	0.72	243	0.07
B731067		19	0.06	33.2	0.56	0.22	<0.05	<0.02	<0.01	<0.005	<0.01	0.6	1.1	0.04	43	0.14
B731068		24	0.22	18.0	1.55	3.52	0.14	0.08	<0.01	0.009	0.04	12.2	5.2	0.48	275	0.14
B731069		11	0.24	190.0	0.42	0.70	<0.05	0.29	<0.01	0.020	0.17	10.3	0.8	0.06	32	1.22
B731070		5	0.12	21.0	0.30	0.57	<0.05	0.36	<0.01	0.015	0.18	3.3	0.7	0.02	22	1.21
B731071		12	0.41	33.5	0.87	1.30	<0.05	0.45	<0.01	0.010	0.26	6.9	6.3	0.15	76	0.85
B731072		87	6.06	22.0	3.04	7.49	0.14	0.37	<0.01	0.009	1.40	19.5	34.1	1.73	427	0.80
B731073		24	0.86	765	3.50	5.05	0.08	0.18	0.06	0.051	0.11	4.8	11.1	1.25	626	11.15
B731551		41	0.28	594	2.55	4.26	0.09	0.11	<0.01	0.009	0.12	11.6	10.4	0.72	459	0.53
B731552		174	1.71	23.9	3.55	8.15	0.09	0.30	<0.01	0.013	0.28	7.9	23.4	1.98	549	55.7
B731553		52	0.46	35.7	2.98	3.06	0.07	0.31	0.01	0.011	0.16	6.2	3.8	0.35	103	53.6
B731554		21	0.57	75.6	1.05	1.71	<0.05	0.11	0.02	0.016	0.12	3.0	3.6	0.28	166	3.56
B731555		2	0.28	2.5	0.19	1.09	<0.05	0.56	<0.01	<0.005	0.17	20.7	2.8	0.08	13	0.20
B731556		83	2.43	55.5	9.75	14.10	0.18	0.27	<0.01	0.053	1.09	29.4	27.2	2.26	662	1.34
B731557		46	1.17	1.3	1.84	4.47	0.14	0.21	<0.01	0.009	0.50	12.5	11.9	0.99	529	0.17
B731558		33	0.34	39.3	0.65	0.92	<0.05	0.08	<0.01	<0.005	0.08	4.8	3.0	0.22	108	10.10

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry To: NORTHERN DOMINION METALS/CROSS RIVER VENTURE 1430-800 WEST PENDER STREET VANCOUVER BC V6C 2V6 Page: 3 - C Total # Pages: 6 (A - D) Plus Appendix Pages Finalized Date: 20-JUL-2021 Account: NDMCDEZG

Project: Shabu

Sample Description	Method	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41
	Analyte	Na	Nb	Ni	P	Pb	Rb	Re	S	Sb	Sc	Se	Sn	Sr	Ta	Te
	Units	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm
	LOD	0.01	0.05	0.2	10	0.2	0.1	0.001	0.01	0.05	0.1	0.2	0.2	0.2	0.01	0.01
B731041		0.30	0.17	56.2	380	1.6	21.2	0.001	0.14	0.15	9.9	0.4	0.2	57.6	<0.01	0.11
B731042		0.23	0.15	88.6	330	1.2	5.8	0.001	0.11	0.18	13.1	<0.2	0.2	21.6	<0.01	0.02
B731043		0.17	0.08	33.4	310	1.5	30.5	0.001	0.25	0.18	10.9	1.2	0.3	12.4	<0.01	0.25
B731044		0.04	0.21	23.7	110	187.5	9.4	<0.001	0.03	0.30	2.6	0.7	<0.2	5.6	<0.01	0.41
B731044		0.15	0.15	104.0	300	4.3	33.8	0.001	0.09	0.15	9.4	0.2	0.2	23.0	<0.01	0.03
B731046 B731047 B731049 B731050 B731051		0.15 0.01 <0.01 0.07 0.18	0.14 0.09 0.07 0.34 0.10	72.9 4.8 6.3 6.7 92.3	250 20 10 400 310	2.3 0.3 0.3 0.9 1.0	43.9 1.3 0.7 1.8 25.3	0.001 <0.001 <0.001 0.001 0.001	0.01 <0.01 0.01 0.05 0.05	0.12 0.05 0.05 0.16 0.13	8.6 0.4 0.2 2.5 12.1	<0.2 <0.2 <0.2 0.2 0.2 0.2	0.2 <0.2 <0.2 1.8 <0.2	15.8 1.1 0.7 28.5 24.6	<0.01 <0.01 <0.01 0.01 <0.01	0.04 <0.01 0.50 <0.01 0.06
B731052		<0.01	0.09	4.7	10	0.3	0.9	<0.001	<0.01	<0.05	0.2	<0.2	<0.2	1.2	<0.01	0.11
B731053		0.17	0.09	100.0	340	8.5	40.3	0.001	0.76	0.22	15.8	1.1	0.4	26.4	<0.01	0.24
B731054		<0.01	0.09	3.6	10	0.2	0.4	<0.001	<0.01	<0.05	0.2	0.4	<0.2	0.7	<0.01	0.03
B731055		0.09	0.24	12.1	750	2.3	61.3	0.001	0.56	0.12	6.2	0.8	0.4	10.5	<0.01	0.10
B731055		0.10	0.19	24.7	640	1.7	56.6	0.001	0.02	0.11	2.7	0.5	0.3	24.2	<0.01	0.01
B731057		0.08	0.35	35.4	930	3.2	64.4	0.001	0.15	0.18	4.3	0.6	0.4	15.3	<0.01	0.05
B731058		0.09	0.16	69.2	990	2.5	79.3	0.001	0.01	0.05	6.3	0.6	0.4	6.3	<0.01	0.04
B731059		0.12	0.14	73.2	1090	1.7	74.2	<0.001	0.11	0.09	4.0	0.5	0.3	14.1	<0.01	0.04
B731060		0.04	0.52	4.6	260	32.1	16.7	0.006	<0.01	0.05	0.9	0.2	0.2	8.0	0.01	<0.01
B731061		0.01	0.69	8.5	240	42.0	8.8	0.004	0.46	1.19	1.4	1.3	0.3	9.3	<0.01	0.11
B731062		0.01	0.50	58.5	560	8.1	70.0	0.001	1.82	0.54	8.1	4.7	0.4	19.6	<0.01	0.20
B731063		0.04	0.26	19.2	1500	2.2	38.9	<0.001	0.01	0.19	7.1	0.4	0.4	42.9	<0.01	<0.01
B731064		0.01	0.09	6.5	300	0.4	12.1	0.001	0.01	0.06	0.7	0.7	<0.2	1.8	<0.01	<0.01
B731065		0.06	0.11	26.5	1200	1.6	48.6	<0.001	0.71	0.07	5.7	0.9	0.2	23.9	<0.01	0.09
B731066		0.04	0.10	15.4	760	1.9	13.0	<0.001	0.65	0.07	3.4	1.2	0.2	15.6	<0.01	0.08
B731067		0.01	0.12	8.8	440	3.1	0.3	<0.001	0.09	<0.05	0.2	0.6	<0.2	1.2	<0.01	0.06
B731068		0.15	0.76	17.0	1140	2.8	1.6	<0.001	0.02	0.28	3.6	0.8	0.2	32.6	<0.01	0.01
B731069		0.01	<0.05	1.6	200	41.3	7.5	<0.001	0.13	0.18	0.7	0.3	<0.2	0.8	<0.01	0.03
B731070		0.01	<0.05	1.3	300	142.0	6.1	<0.001	0.07	0.22	0.5	0.3	<0.2	0.9	<0.01	0.04
B731071		0.01	0.17	16.5	410	211	14.5	0.001	0.39	0.33	1.1	0.3	<0.2	5.0	<0.01	0.05
B731072		0.06	0.14	58.1	650	2.1	50.6	<0.001	0.02	0.05	5.3	0.8	0.3	5.9	<0.01	0.04
B731073		0.10	0.06	13.3	830	18.6	4.8	0.028	0.57	1.03	5.6	1.5	0.7	110.5	<0.01	0.16
B731551		0.15	0.30	36.1	570	2.7	3.7	<0.001	0.11	0.23	4.4	0.5	0.2	42.0	<0.01	0.10
B731552		0.03	0.26	46.5	1520	1.2	25.6	0.014	0.10	<0.05	3.0	0.7	0.4	33.3	<0.01	0.04
B731553		0.03	0.74	10.7	410	2.7	8.7	0.014	0.48	<0.05	1.5	2.7	0.4	38.7	<0.01	0.04
B731554		0.01	0.40	6.1	80	120.0	9.0	<0.001	0.12	0.41	0.9	0.5	0.3	2.1	<0.01	10.00
B731555		0.01	0.20	4.4	60	2.9	5.8	<0.001	<0.01	<0.05	0.5	0.6	<0.2	3.0	<0.01	0.17
B731556		0.26	0.25	95.1	1460	5.6	42.8	0.001	0.62	<0.05	12.6	0.6	1.2	72.1	<0.01	0.16
B731557		0.09	0.40	43.3	1100	1.7	25.2	<0.001	0.02	0.10	3.2	0.5	0.3	15.6	<0.01	0.03
B731558		0.01	0.08	6.8	210	0.8	5.0	0.004	0.07	<0.05	0.8	<0.2	<0.2	8.1	<0.01	0.03

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry To: NORTHERN DOMINION METALS/CROSS RIVER VENTURE 1430-800 WEST PENDER STREET VANCOUVER BC V6C 2V6 Page: 3 - D Total # Pages: 6 (A - D) Plus Appendix Pages Finalized Date: 20-JUL-2021 Account: NDMCDEZG

CERTIFICATE	OF ANALYSIS	TB21164754

Sample Description	Method Analyte Units LOD	ME-MS41 Th ppm 0.2	ME-MS41 Ti % 0.005	ME-MS41 Tl ppm 0.02	ME-MS41 U ppm 0.05	ME-MS41 V ppm 1	ME-MS41 W ppm 0.05	ME-MS41 Y ppm 0.05	ME-MS41 Zn ppm 2	ME-MS41 Zr ppm 0.5	
B731041 B731042 B731043 B731044 B731045		0.8 0.9 0.9 0.2 0.8	0.138 0.126 0.140 0.042 0.166	0.48 0.11 0.48 0.15 0.53	0.14 0.15 0.12 0.06 0.17	70 83 81 28 87	0.26 0.73 0.28 1.93 3.82	6.40 6.51 5.08 1.83 4.49	27 31 40 40 40	2.6 4.4 3.3 0.5 1.7	
B731046 B731047 B731049 B731050 B731051		0.7 <0.2 <0.2 1.8	0.160 0.007 <0.005 0.078 0.144	0.66 0.02 0.02 <0.02 <0.02	0.12 <0.05 <0.05 0.35 0.16	80 4 2 22 80	1.25 0.08 0.09 0.30 0.28	4.06 0.33 0.19 7.38 5.95	39 2 2 32 37	1.8 <0.5 <0.5 3.9 3.0	
B731052 B731053 B731054 B731055 B731055		<0.2 1.0 <0.2 3.5 2.5	<pre><0.005 0.228 <0.005 0.251 0.227</pre>	<0.02 0.83 <0.02 0.45 0.41	<0.05 0.17 <0.05 0.48 0.33	2 114 1 90 58	0.08 0.49 0.06 0.37 0.70	0.14 7.66 0.10 5.48 4.30	3 55 3 42 46	<0.5 4.4 <0.5 16.4 6.6	
B731057 B731058 B731059 B731060 B731061		3.3 3.5 3.1 13.6 10.0	0.237 0.258 0.285 0.025 0.050	0.59 0.80 0.82 0.18 0.24	0.40 0.40 0.43 3.23 1.84	67 94 77 4 9	0.43 0.35 0.27 0.15 0.18	5.50 5.61 7.16 6.84 3.52	78 67 73 16 7	9.4 23.7 12.8 25.3 25.6	
B731062 B731063 B731064 B731065 B731066		1.1 2.5 <0.2 1.6 1.1	0.330 0.162 0.027 0.148 0.067	1.26 0.26 0.09 0.37 0.10	0.51 0.41 <0.05 0.29 0.20	64 52 9 65 30	0.55 0.51 3.02 0.27 0.19	7.73 7.01 0.37 4.75 3.22	41 66 14 71 29	6.5 12.4 <0.5 6.1 4.3	
B731067 B731068 B731069 B731070 B731070 B731071		<0.2 1.4 1.1 3.3 2.0	0.011 0.147 <0.005 <0.005 0.030	<0.02 <0.02 0.12 0.06 0.18	<0.05 0.19 0.39 0.66 0.46	3 34 6 3 7	0.08 0.28 0.11 0.14 0.15	0.18 4.66 1.72 1.96 5.23	4 29 19 30 76	<0.5 2.6 11.8 16.6 19.3	
B731072 B731073 B731551 B731552 B731553		2.8 1.4 2.1 5.1 5.7	0.191 0.061 0.102 0.162 0.058	0.46 0.05 0.03 0.16 0.06	0.34 0.57 0.30 1.05 0.98	60 81 40 65 24	0.08 3.85 0.35 82.5 260	4.18 7.81 3.41 4.83 2.32	150 125 38 75 12	14.6 3.8 2.7 12.0 11.3	
B731554 B731555 B731556 B731557 B731558		0.9 10.8 4.5 3.4 0.8	0.044 0.017 0.179 0.199 0.029	0.08 0.02 0.56 0.19 0.03	0.21 0.87 0.53 0.46 0.20	14 4 116 40 10	3.24 0.79 0.29 1.49 0.25	1.64 6.18 9.97 6.80 1.20	43 2 137 67 8	3.8 27.0 12.1 7.0 2.3	

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry To: NORTHERN DOMINION METALS/CROSS RIVER VENTURE 1430-800 WEST PENDER STREET VANCOUVER BC V6C 2V6 Page: 4 – A Total # Pages: 6 (A – D) Plus Appendix Pages Finalized Date: 20-JUL-2021 Account: NDMCDEZG

Project: Shabu

Sample Description	Method Analyte Units LOD	WEI–21 Recvd Wt. kg 0.02	Au-ICP21 Au ppm 0.001	Au-GRA21 Au ppm 0.05	ME-MS41 Ag ppm 0.01	ME-MS41 Al % 0.01	ME-MS41 As ppm 0.1	ME-MS41 Au ppm 0.02	ME-MS41 B ppm 10	ME-MS41 Ba ppm 10	ME-MS41 Be ppm 0.05	ME-MS41 Bi ppm 0.01	ME-MS41 Ca % 0.01	ME-MS41 Cd ppm 0.01	ME-MS41 Ce ppm 0.02	ME-MS41 Co ppm 0.1
B731559 B731560 B731561 B731562 B731563		1.08 1.34 1.79 0.83 1.97	0.008 0.003 <0.001 0.017 0.023		0.06 0.02 0.03 0.10 0.65	3.23 1.12 1.12 2.85 2.05	4.6 0.4 0.7 0.3 0.6	<0.02 <0.02 <0.02 0.02 0.02	<10 <10 <10 20 <10	130 30 40 70 70	1.45 0.14 0.21 1.01 0.08	0.34 0.11 0.16 0.22 0.27	1.18 0.54 0.73 1.17 0.25	0.17 <0.01 0.03 0.08 0.01	77.2 14.40 26.5 51.0 12.30	21.0 15.2 16.0 20.5 11.0
B731564 B731565 B731566 B731567 B731567 B731568		1.07 0.91 1.27 0.99 1.45	<0.001 0.001 0.004 <0.001		0.02 0.01 0.12 0.04 0.02	1.00 0.89 2.69 1.74 0.38	0.4 0.4 0.2 0.3 0.3	<0.02 <0.02 <0.02 <0.02 <0.02	<10 <10 <10 <10 <10	30 20 300 10 20	0.18 0.15 0.18 0.10 0.11	0.39 0.42 0.17 0.06 0.08	0.39 1.08 0.30 1.66 0.09	0.01 0.06 0.03 0.06 0.02	36.5 43.3 13.85 7.31 62.1	5.3 7.0 12.0 11.9 0.8
B731569 B731570 B731571 B731572 B731573		1.31 0.92 1.28 1.10 1.57	<0.001 <0.001 <0.001 <0.001 0.006		<0.01 0.04 0.05 0.42 0.11	0.20 0.29 0.66 0.28 0.02	0.4 0.3 0.3 0.8 1.0	<0.02 <0.02 <0.02 <0.02 0.36	<10 <10 <10 <10 <10	20 30 20 20 <10	0.06 0.10 0.07 <0.05 <0.05	0.06 0.61 0.26 0.16 2.08	0.03 0.06 0.32 0.09 <0.01	0.01 0.03 0.04 1.25 0.01	11.85 47.5 16.25 20.4 0.31	0.3 0.9 12.3 3.5 2.8
B731574 B731575 B731576 B731576 B731577 B731578		2.48 0.04 0.81 0.60 0.83	<0.001 <0.001 0.001 0.007 <0.001		0.02 0.02 0.41 0.04 <0.01	0.17 0.98 2.62 0.19 4.00	0.4 1.5 0.2 16.4 10.5	<0.02 <0.02 <0.02 <0.02 <0.02 <0.02	<10 <10 <10 <10 <10	<10 60 380 30 260	0.05 0.22 0.15 0.08 0.15	0.43 0.02 1.26 0.12 0.02	0.05 0.78 0.69 0.07 2.44	0.01 0.02 0.02 0.04 0.07	6.13 10.40 21.9 17.80 7.49	0.4 3.9 20.4 1.1 35.4
B731579 B731580 B731581 B731581 B731582 B731583		1.47 1.18 0.99 1.44 1.07	0.005 0.020 <0.001 <0.001 <0.001		0.08 0.25 0.04 0.03 <0.01	2.93 2.71 1.47 2.03 3.30	34.7 21.7 1.7 8.1 0.4	<0.02 0.02 <0.02 <0.02 <0.02 <0.02	<10 <10 <10 <10 <10	20 100 10 20 220	0.13 0.17 0.09 0.17 0.17	0.02 0.06 0.05 0.13 0.08	1.26 1.16 0.96 0.85 0.98	0.09 0.15 0.11 0.02 0.03	7.51 13.45 10.85 6.86 41.2	38.9 27.2 16.1 22.1 18.5
B731584 B731742 B731743 B731744 B731744 B731745		1.08 1.14 2.19 1.25 1.58	0.001 0.012 1.505 0.001 <0.001		0.15 0.02 0.85 0.03 0.09	1.15 0.02 0.15 0.34 2.28	4.7 5.4 7.2 5.1 5.8	<0.02 <0.02 0.59 <0.02 <0.02	<10 <10 <10 <10 <10	50 10 <10 10 110	0.47 0.08 0.09 <0.05 0.09	0.05 0.01 0.56 0.05 0.09	1.22 0.32 0.14 1.45 1.39	0.12 0.02 0.02 0.10 0.03	45.0 0.84 2.89 14.75 9.58	24.4 0.9 11.0 1.9 28.5
B731746 B731747 B731748 B731749 B731750		0.59 0.93 1.59 0.71 0.04	<0.001 <0.001 <0.001 <0.001 0.516		0.01 0.06 0.05 0.07 0.50	0.92 0.61 0.94 2.08 1.46	0.7 1.2 0.7 1.8 13.6	<0.02 <0.02 <0.02 <0.02 0.44	<10 <10 <10 <10 10	40 30 50 40 180	0.06 0.10 <0.05 0.08 0.20	0.03 0.08 0.06 0.04 0.15	0.16 0.99 1.04 1.97 2.53	0.02 0.03 0.02 0.02 0.61	7.42 46.7 3.76 1.62 11.75	4.6 13.5 32.4 22.4 13.7
B731751 B731752 B731753 B731754 B731755		0.65 0.72 1.61 1.26 1.32	0.003 0.001 <0.001 <0.001 0.003		0.11 0.07 0.03 0.03 0.18	1.77 2.63 3.19 1.74 1.27	1.1 0.4 0.4 0.6 1.3	<0.02 <0.02 <0.02 <0.02 <0.02 <0.02	<10 <10 <10 <10 <10 <10	20 20 20 10 50	<0.05 <0.05 <0.05 <0.05 0.15	0.07 0.02 0.02 0.01 0.24	1.00 2.05 2.25 1.81 0.36	0.02 0.02 0.01 0.01 0.64	2.34 2.49 2.25 1.98 24.1	38.0 36.6 25.9 15.8 4.4

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: NORTHERN DOMINION METALS/CROSS RIVER VENTURE 1430-800 WEST PENDER STREET VANCOUVER BC V6C 2V6

Page: 4 - B Total # Pages: 6 (A – D) Plus Appendix Pages Finalized Date: 20-JUL-2021 Account: NDMCDEZG

<u> </u>	<u>.</u>			
	CERTIFICATE	OF	ANALYSIS	TB2

|--|

Sample Description	Method	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME–MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41
	Analyte	Cr	Cs	Cu	Fe	Ga	Ge	Hf	Hg	In	K	La	Li	Mg	Mn	Mo
	Units	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm
	LOD	1	0.05	0.2	0.01	0.05	0.05	0.02	0.01	0.005	0.01	0.2	0.1	0.01	5	0.05
B731559		69	6.67	29.1	5.19	9.77	0.22	0.58	<0.01	0.028	1.14	35.6	60.1	3.09	1200	0.91
B731560		150	0.25	23.9	2.99	5.42	0.07	0.33	<0.01	0.011	0.09	4.9	11.6	1.34	385	5.09
B731561		128	2.60	50.1	2.10	5.63	0.09	0.32	<0.01	0.009	0.46	14.5	17.1	1.25	376	1.40
B731562		33	1.79	67.1	3.94	11.80	0.12	0.84	<0.01	0.034	0.65	25.6	82.2	2.21	714	0.56
B731563		103	0.20	12.2	3.85	8.66	0.05	0.27	<0.01	0.015	0.10	6.2	28.0	2.30	577	4.76
B731564 B731565 B731566 B731566 B731567 B731568		11 61 28 53 8	0.75 1.02 5.56 0.27 0.37	3.5 9.9 39.5 42.1 8.4	1.68 1.44 4.10 2.21 0.75	5.44 4.01 10.95 4.50 2.62	0.07 0.13 0.12 0.10 0.07	0.51 0.30 0.29 0.06 0.58	<0.01 <0.01 <0.01 <0.01 <0.01	0.015 0.034 0.026 0.016 0.005	0.22 0.22 2.01 0.04 0.10	17.7 24.7 5.8 3.0 32.5	12.1 8.5 32.5 3.7 4.3	0.68 0.83 1.84 0.79 0.19	594 384 800 296 170	0.26 0.12 0.18 0.17 0.74
B731569 B731570 B731571 B731571 B731572 B731573		7 22 38 9 16	0.18 0.29 0.61 0.19 0.07	4.9 8.3 12.0 162.5 2.7	0.49 0.71 1.33 1.02 0.77	1.39 1.99 3.58 1.45 0.09	<0.05 0.05 <0.05 <0.05 <0.05	0.31 1.46 0.28 0.38 0.02	<0.01 <0.01 <0.01 <0.01 <0.01	<0.005 <0.005 0.011 0.015 <0.005	0.08 0.16 0.21 0.05 0.01	3.7 22.5 6.5 7.4 <0.2	1.8 1.9 8.4 2.1 0.1	0.07 0.10 0.30 0.07 <0.01	61 114 295 80 28	0.69 0.85 1.26 0.29 1.44
B731574 B731575 B731576 B731576 B731577 B731578		13 14 60 5 57	0.40 0.12 4.57 0.08 2.75	4.0 22.2 75.7 17.5 7.9	0.58 2.42 5.11 0.52 8.64	0.94 4.06 10.00 0.83 15.10	<0.05 0.07 0.14 <0.05 0.15	0.06 0.16 0.15 0.88 0.08	<0.01 <0.01 <0.01 <0.01 <0.01	<0.005 0.005 0.032 <0.005 0.020	0.05 0.07 1.65 0.11 0.61	2.6 5.0 12.7 7.2 3.4	1.9 1.4 21.5 0.5 26.9	0.07 0.49 1.68 0.01 2.50	66 558 583 53 853	1.79 3.51 14.45 0.97 0.20
B731579 B731580 B731581 B731581 B731582 B731583		68 54 53 24 212	0.18 0.67 0.44 0.67 3.77	87.0 147.5 50.7 73.2 1.7	6.12 5.79 4.05 5.33 4.94	8.14 9.08 7.13 9.09 11.60	0.15 0.15 0.13 0.12 0.14	0.10 0.11 0.11 0.07 0.14	<0.01 <0.01 0.01 <0.01 <0.01	0.011 0.030 0.024 0.022 0.005	0.03 0.20 0.05 0.03 1.08	2.9 5.6 4.4 2.6 20.4	12.0 12.3 7.7 10.0 39.5	2.04 1.77 0.93 1.37 3.09	727 741 350 474 545	0.35 0.32 0.26 0.30 0.16
B731584		2	1.96	160.5	6.77	5.19	0.14	0.20	<0.01	0.014	0.17	18.9	3.5	0.39	665	0.20
B731742		3	0.39	9.4	13.55	0.55	0.15	<0.02	0.01	<0.005	<0.01	0.5	0.1	0.07	580	0.11
B731743		9	2.29	117.0	14.30	0.60	0.18	0.03	<0.01	0.010	0.03	1.6	0.3	0.09	360	0.19
B731744		18	0.32	2.4	0.75	1.80	<0.05	0.15	<0.01	0.006	0.05	7.5	5.3	0.16	252	0.22
B731744		52	6.96	73.2	4.57	5.74	0.18	0.07	0.01	0.014	0.44	3.8	15.1	0.92	811	0.81
B731746		23	2.71	3.1	1.51	4.05	<0.05	0.11	<0.01	0.005	0.58	3.2	14.1	0.49	222	0.26
B731747		41	0.88	41.9	1.18	2.18	0.09	0.16	<0.01	<0.005	0.11	22.4	4.5	0.33	176	0.67
B731748		84	2.15	61.3	2.09	1.86	0.06	0.09	<0.01	0.007	0.25	2.0	10.1	0.51	414	0.22
B731749		52	1.04	86.7	1.85	2.75	0.07	0.05	<0.01	0.006	0.07	0.7	3.3	0.30	390	0.29
B731750		24	0.83	759	3.50	4.92	0.07	0.18	0.07	0.050	0.12	5.0	10.5	1.25	631	12.05
B731751		131	1.05	111.0	3.63	3.29	0.06	0.08	<0.01	0.005	0.07	1.1	19.4	0.71	418	0.49
B731752		99	0.72	112.5	2.69	4.14	0.09	0.07	<0.01	0.007	0.12	1.4	6.2	0.61	438	0.71
B731753		70	0.70	79.3	1.64	4.51	0.09	0.07	<0.01	0.006	0.08	1.2	4.7	0.42	275	1.39
B731754		45	0.28	52.6	0.99	2.56	<0.05	0.10	0.01	<0.005	0.04	0.9	4.9	0.27	134	0.47
B731755		46	2.54	62.0	1.57	4.44	0.06	0.29	0.01	0.011	0.70	11.5	13.2	0.77	442	0.35

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry To: NORTHERN DOMINION METALS/CROSS RIVER VENTURE 1430-800 WEST PENDER STREET VANCOUVER BC V6C 2V6 Page: 4 - C Total # Pages: 6 (A - D) Plus Appendix Pages Finalized Date: 20-JUL-2021 Account: NDMCDEZG

164754

Shabu	
CERTIFICATE OF ANALYSIS	TB21

Sample Description	Method Analyte Units LOD	ME-MS41 Na % 0.01	ME-MS41 Nb ppm 0.05	ME-MS41 Ni ppm 0.2	ME-MS41 P ppm 10	ME-MS41 Pb ppm 0.2	ME-MS41 Rb ppm 0.1	ME-MS41 Re ppm 0.001	ME-MS41 S % 0.01	ME-MS41 Sb ppm 0.05	ME-MS41 Sc ppm 0.1	ME-MS41 Se ppm 0.2	ME-MS41 Sn ppm 0.2	ME-MS41 Sr ppm 0.2	ME-MS41 Ta ppm 0.01	ME-MS41 Te ppm 0.01
B731559 B731560 B731561 B731562 B731563		0.02 0.03 0.05 0.03 0.03	0.31 0.26 0.32 0.16 0.13	19.3 31.4 27.4 83.0 58.7	2040 1260 1560 550 550	6.6 1.0 1.7 7.7 1.5	95.8 3.6 41.6 35.6 5.0	<0.001 0.004 <0.001 <0.001 0.001	0.12 0.45 0.08 <0.01 1.03	0.23 <0.05 <0.05 <0.05 <0.05	7.7 2.3 2.5 9.1 8.1	0.4 0.5 0.4 0.6 0.5	1.4 0.4 0.5 0.7 0.4	33.6 27.3 20.6 13.4 6.0	<0.01 <0.01 <0.01 0.01 <0.01	0.06 0.04 0.35 0.67
B731564 B731565 B731566 B731566 B731567 B731568		0.05 0.08 0.09 0.25 0.05	0.93 0.45 0.22 0.09 1.08	8.3 10.7 23.3 21.6 0.7	320 1010 620 380 40	3.3 2.2 3.1 1.4 6.8	11.5 17.8 110.0 2.2 6.0	<0.001 <0.001 <0.001 <0.001 0.001	0.03 0.02 0.09 0.03 0.01	0.07 0.17 <0.05 0.05 <0.05	2.9 4.0 7.6 8.2 1.2	0.4 0.6 0.2 0.4 0.2	0.8 0.6 0.8 <0.2 0.3	17.9 25.9 5.6 37.5 2.6	0.01 <0.01 <0.01 <0.01 0.01	0.02 0.02 0.13 0.02 0.03
B731569 B731570 B731571 B731572 B731572 B731573		0.04 0.06 0.05 0.05 0.01	1.34 2.69 0.70 1.37 <0.05	0.6 1.2 40.1 2.6 2.2	30 20 730 20 10	1.4 7.0 2.8 44.5 0.5	2.8 11.5 16.7 1.8 0.8	<0.001 <0.001 <0.001 0.001 <0.001	0.01 0.01 0.08 0.37 0.41	<0.05 <0.05 <0.05 0.05 <0.05	0.4 1.6 4.6 1.2 <0.1	0.3 0.3 0.4 1.4 0.6	0.2 0.4 0.5 0.2 <0.2	2.2 2.6 11.1 6.4 0.4	<0.01 0.01 <0.01 0.01 <0.01	0.02 0.05 0.11 0.08 1.05
B731574 B731575 B731576 B731576 B731577 B731578		0.02 0.07 0.11 0.04 0.04	0.19 0.38 0.37 1.30 0.10	3.5 6.7 33.4 0.4 45.3	40 380 790 60 1090	2.3 0.9 5.7 2.9 0.8	3.6 1.8 69.9 3.7 39.0	0.001 <0.001 0.003 <0.001 0.001	0.02 0.05 0.03 0.13 <0.01	<0.05 0.14 0.05 0.09 0.06	0.3 2.6 5.3 0.2 10.9	<0.2 0.5 0.7 0.6 0.5	<0.2 1.7 0.7 <0.2 0.4	1.8 28.5 10.3 2.9 23.4	<0.01 0.01 <0.01 <0.01 <0.01	0.42 0.03 0.05 0.01 0.02
B731579 B731580 B731581 B731581 B731582 B731583		0.06 0.07 0.10 0.07 0.02	0.17 0.19 0.18 0.25 0.10	68.4 34.2 21.5 30.3 118.0	590 1040 890 750 700	1.7 1.5 0.8 0.8 1.6	2.1 11.1 7.4 7.7 55.1	0.001 0.001 <0.001 0.001 <0.001	0.08 0.03 0.01 0.27 <0.01	0.32 0.35 0.12 0.12 0.08	5.5 7.0 5.7 5.8 4.9	0.4 0.2 0.3 0.4 0.2	0.2 0.6 0.2 0.2 0.2	15.2 21.4 9.3 14.8 25.5	<0.01 <0.01 <0.01 <0.01 <0.01	0.01 0.03 0.02 0.10 0.01
B731584 B731742 B731743 B731744 B731744 B731745		0.11 <0.01 <0.01 0.05 0.16	0.76 <0.05 0.06 0.33 0.17	2.7 1.5 22.2 4.9 72.1	910 150 340 190 340	1.7 0.2 1.4 11.8 1.2	10.5 0.8 2.5 3.4 30.3	<0.001 <0.001 <0.001 <0.001 0.001	0.08 0.02 4.34 0.02 0.19	0.26 0.18 0.18 0.06 0.17	0.4 0.1 0.2 0.6 10.7	0.3 <0.2 0.7 <0.2 0.3	0.5 <0.2 <0.2 <0.2 0.2 0.2	85.1 2.5 1.1 17.4 24.1	0.01 <0.01 <0.01 <0.01 <0.01	0.02 0.03 1.58 0.02 0.05
B731746 B731747 B731748 B731749 B731750		0.06 0.05 0.05 0.17 0.10	0.46 1.51 0.10 0.16 0.07	12.5 21.6 34.1 96.0 13.3	200 1170 140 120 810	3.5 3.8 0.6 1.3 20.0	43.6 8.6 20.1 7.6 4.8	<0.001 <0.001 0.001 <0.001 0.031	0.04 0.18 0.65 0.16 0.57	0.06 0.12 0.19 0.12 1.15	2.0 1.6 6.2 3.9 5.4	<0.2 0.5 0.5 0.4 1.2	0.2 0.4 <0.2 <0.2 0.7	15.0 48.5 11.8 32.0 112.5	<0.01 <0.01 <0.01 <0.01 <0.01	0.02 0.08 0.04 0.18 0.16
B731751 B731752 B731753 B731754 B731755		0.13 0.34 0.45 0.24 0.10	0.14 0.09 0.05 0.15 0.20	139.0 193.0 136.0 94.7 13.8	200 200 160 130 410	2.4 1.1 0.9 0.6 24.5	10.3 6.7 3.9 2.3 46.4	0.002 0.003 0.001 <0.001 <0.001	1.22 0.59 0.22 0.21 0.18	0.08 0.06 0.05 0.05 0.05	5.5 6.7 5.3 2.6 1.8	1.2 0.8 0.7 0.2 <0.2	<0.2 <0.2 <0.2 <0.2 <0.2 0.2	25.4 32.0 55.6 28.2 20.3	<0.01 <0.01 <0.01 <0.01 <0.01	0.15 0.11 0.09 0.05 0.08

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: NORTHERN DOMINION METALS/CROSS RIVER VENTURE 1430-800 WEST PENDER STREET VANCOUVER BC V6C 2V6

Page: 4 - D Total # Pages: 6 (A – D) Plus Appendix Pages Finalized Date: 20-JUL-2021 Account: NDMCDEZG

Project: Shabu

CERTIFICATE OF ANAL

212V	TR21	164754
1.31.3		1()+/)+

Sample Description	Method Analyte Units LOD	ME-MS41 Th ppm 0.2	ME–MS41 Ti % 0.005	ME-MS41 Tl ppm 0.02	ME-MS41 U ppm 0.05	ME-MS41 V ppm 1	ME-MS41 W ppm 0.05	ME-MS41 Y ppm 0.05	ME-MS41 Zn ppm 2	ME-MS41 Zr ppm 0.5	
B731559 B731560 B731561 B731562 B731563		9.8 4.1 5.1 8.1 4.8	0.242 0.130 0.182 0.192 0.135	0.62 0.02 0.25 0.22 0.03	1.93 0.99 1.19 0.86 0.38	97 53 56 76 75	5.18 4.06 1.62 0.86 0.17	17.00 4.53 6.53 14.95 4.03	122 47 51 131 86	21.9 11.1 10.8 35.3 10.6	
B731564 B731565 B731566 B731566 B731567 B731568		14.2 5.9 4.9 0.4 18.5	0.140 0.161 0.256 0.088 0.018	0.08 0.13 0.67 <0.02 0.04	2.21 0.91 0.76 0.06 2.88	21 37 83 57 3	0.46 0.55 0.53 0.15 0.26	9.77 10.80 7.57 4.96 11.70	55 39 160 29 13	17.2 8.9 11.5 1.4 14.2	
B731569 B731570 B731571 B731572 B731572 B731573		10.6 19.2 8.6 16.1 <0.2	0.006 0.025 0.102 0.011 <0.005	0.02 0.08 0.11 0.02 <0.02	1.04 3.37 1.00 2.92 0.19	2 1 51 4 1	0.28 0.45 0.15 0.16 3.10	3.59 10.35 7.30 10.10 0.10	6 13 33 57 <2	9.0 34.4 10.1 9.4 0.5	
B731574 B731575 B731576 B731576 B731577 B731578		2.9 1.8 2.8 8.2 0.3	0.005 0.072 0.246 <0.005 0.164	0.02 <0.02 0.57 0.02 0.32	0.28 0.34 0.38 1.61 <0.05	2 22 65 1 162	0.35 0.27 52.5 0.48 0.33	0.86 7.36 5.33 5.57 10.25	5 32 126 7 134	1.6 3.5 5.8 24.6 3.1	
B731579 B731580 B731581 B731582 B731583		0.3 0.5 0.4 0.4 2.7	0.258 0.238 0.163 0.202 0.184	<0.02 0.10 0.03 0.02 0.69	<0.05 0.05 0.07 0.06 0.30	86 83 89 126 92	0.43 0.36 0.16 0.30 0.27	7.82 11.80 12.95 9.33 4.52	85 92 59 64 97	3.0 3.3 2.6 1.7 4.7	
B731584 B731742 B731743 B731744 B731744		1.8 <0.2 <0.2 1.5 0.9	0.086 <0.005 0.008 0.039 0.156	0.12 0.02 0.09 0.02 0.40	0.19 <0.05 0.05 0.25 0.14	5 2 5 9 91	0.21 0.26 1.52 0.63 0.27	12.15 0.95 3.17 1.68 5.55	60 3 8 37 47	7.1 <0.5 0.9 5.6 2.3	
B731746 B731747 B731748 B731749 B731750		3.2 5.0 <0.2 0.3 1.5	0.100 0.190 0.138 0.088 0.063	0.29 0.07 0.19 0.09 0.06	0.65 0.95 <0.05 0.05 0.63	24 24 52 33 82	0.38 0.36 0.11 0.72 4.06	1.65 5.71 3.38 2.29 8.11	28 11 15 12 123	3.2 5.1 1.9 1.3 5.3	
B731751 B731752 B731753 B731754 B731755		0.3 0.4 0.4 0.2 3.0	0.110 0.084 0.057 0.107 0.085	0.12 0.09 0.05 0.05 0.37	0.10 0.18 0.11 0.07 0.78	54 47 35 25 22	0.22 0.16 0.35 0.18 1.04	4.25 2.85 2.05 3.92 2.83	16 18 8 8 116	1.5 1.5 3.2 2.4 8.8	

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry To: NORTHERN DOMINION METALS/CROSS RIVER VENTURE 1430-800 WEST PENDER STREET VANCOUVER BC V6C 2V6 Page: 5 - A Total # Pages: 6 (A - D) Plus Appendix Pages Finalized Date: 20-JUL-2021 Account: NDMCDEZG

Project: Shabu

Sample Description	Method Analyte Units LOD	WEI–21 Recvd Wt. kg 0.02	Au-ICP21 Au ppm 0.001	Au-GRA21 Au ppm 0.05	ME-MS41 Ag ppm 0.01	ME-MS41 Al % 0.01	ME-MS41 As ppm 0.1	ME-MS41 Au ppm 0.02	ME-MS41 B ppm 10	ME-MS41 Ba ppm 10	ME-MS41 Be ppm 0.05	ME-MS41 Bi ppm 0.01	ME-MS41 Ca % 0.01	ME-MS41 Cd ppm 0.01	ME-MS41 Ce ppm 0.02	ME-MS41 Co ppm 0.1
B731756 B731757 B731758 B731759 B731760		1.39 1.16 1.36 1.45 0.90	0.001 0.005 0.001 <0.001 <0.001		0.20 0.23 0.04 0.03 0.10	1.10 1 <u>.</u> 32 0.79 1.44 0.59	0.8 1.9 0.5 1.3 1.1	<0.02 <0.02 <0.02 <0.02 <0.02	<10 <10 <10 <10 <10	50 30 20 70 30	0.13 <0.05 0.06 0.19 0.08	0.44 0.11 0.05 0.07 0.22	0.39 0.74 1.60 0.97 0.46	2.31 0.02 0.02 0.02 0.01	14.30 2.15 3.34 37.1 41.7	3.0 37.4 13.3 15.4 5.1
B731761 B731762 B731763 B731764 B731765		0.60 0.89 1.15 0.58 1.03	<0.001 <0.001 <0.001 <0.001 <0.001		0.01 0.03 0.13 0.05 0.03	0.72 1.26 0.82 1.22 0.54	0.3 0.3 0.7 1.6 2.1	<0.02 <0.02 <0.02 <0.02 <0.02	<10 <10 <10 <10 <10	70 50 10 30 30	<0.05 0.11 <0.05 <0.05 0.07	0.02 0.06 0.12 0.07 0.06	0.11 0.58 0.87 1.02 0.25	0.01 0.01 0.03 0.02 0.02	5.18 25.4 1.70 1.66 16.45	3.2 18.0 47.4 12.6 3.1
B731766 B731767 B731768 B731769 B731770		0.93 1.22 1.10 0.80 1.25	<0.001 <0.001 <0.001 0.005 0.008		0.02 0.11 0.03 0.04 0.59	2.97 3.18 3.37 2.78 0.80	2.9 7.6 2.7 3.9 4.5	<0.02 <0.02 <0.02 <0.02 <0.02 <0.02	<10 <10 <10 <10 <10	120 390 290 60 40	0.15 0.10 0.18 0.16 0.27	0.02 0.09 0.05 0.05 0.24	2.57 0.34 1.18 1.17 1.81	0.07 0.08 0.03 0.07 0.06	29.4 19.85 14.00 14.10 17.95	26.2 33.4 40.8 30.6 19.6
B731771 B731772 B731773 B731774 B731775		3.09 2.16 1.07 0.95 0.48	0.004 0.087 0.001 0.001 <0.001		0.51 22.2 0.13 0.08 0.01	1.20 3.81 1.37 2.15 0.24	0.3 0.2 4.5 12.9 3.7	<0.02 0.07 <0.02 <0.02 <0.02	<10 10 <10 <10 <10	10 130 10 40 10	<0.05 0.40 <0.05 <0.05 <0.05	0.54 19.10 0.06 0.07 0.01	0.94 1.13 0.45 1.17 0.05	0.03 5.29 0.04 0.05 0.02	1.42 27.6 0.66 1.23 6.47	257 12.3 17.5 26.5 0.9
B731776 B731777 B731778 B731778 B731779 B731780		0.89 4.14 1.19 0.77 0.83	<0.001 0.135 <0.001 0.002 0.001		0.02 26.7 0.12 0.15 0.22	0.80 2.35 1.56 1.23 0.24	3.0 0.5 1.2 0.7 1.3	<0.02 0.10 <0.02 <0.02 <0.02	<10 10 <10 <10 <10	40 70 10 70 <10	0.05 0.20 0.09 <0.05 0.14	0.03 15.75 0.06 0.08 0.24	0.41 0.88 1.63 1.32 0.05	0.05 7.68 0.05 0.05 0.05	58.3 21.0 1.93 2.20 2.42	2.4 16.4 17.3 23.8 1.2
B731781 B731782 B731783 B731783 B731784 B731785		0.99 1.42 1.27 1.44 1.04	0.004 <0.001 <0.001 0.003 <0.001		0.09 0.02 0.01 0.12 0.02	0.55 0.27 1.56 2.50 3.04	0.3 0.4 0.1 0.8 0.7	<0.02 <0.02 <0.02 <0.02 <0.02 <0.02	<10 <10 <10 <10 <10	50 10 70 10 400	<0.05 <0.05 0.13 0.06 0.25	0.14 0.11 0.03 0.14 0.14	0.10 0.08 0.14 1.80 1.10	0.02 0.02 0.01 0.06 0.02	14.20 20.3 29.8 3.48 48.1	1.8 1.8 10.9 20.2 24.0
B731786 B731787 B731788 B731788 B731789 B731790		0.39 0.54 0.44 0.85 0.35	<0.001 0.007 <0.001 0.001 0.008		0.04 0.01 0.04 0.09 0.21	2.52 0.19 0.92 2.54 1.17	0.7 0.6 0.3 0.4 0.2	<0.02 <0.02 <0.02 <0.02 <0.02 <0.02	<10 <10 <10 <10 <10	70 20 40 20 30	0.13 0.08 0.08 0.06 <0.05	0.49 0.21 0.07 0.20 0.10	1.99 0.04 0.28 1.79 1.04	0.06 <0.01 0.05 0.06 0.10	56.1 10.30 54.8 3.45 7.62	21.7 0.6 5.9 25.6 16.6
B731791 B731792 B731793 B731794 B731795		1.48 0.72 0.98 1.14 1.27	0.001 <0.001 <0.001 <0.001 <0.001		0.06 0.01 0.02 0.30 0.05	1.91 1.85 1.09 2.16 1.56	0.3 0.2 0.3 0.3 0.5	<0.02 <0.02 <0.02 <0.02 <0.02 <0.02	<10 10 <10 10 <10	10 240 60 120 240	0.06 0.11 0.10 0.18 0.07	0.13 0.18 0.29 0.31 0.19	1.72 0.61 0.28 0.98 0.23	0.03 0.02 0.03 0.03 0.02	3.78 45.3 51.1 55.4 52.8	17.8 14.9 9.0 18.0 6.7

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry To: NORTHERN DOMINION METALS/CROSS RIVER VENTURE 1430-800 WEST PENDER STREET VANCOUVER BC V6C 2V6 Page: 5 – B Total # Pages: 6 (A – D) Plus Appendix Pages Finalized Date: 20-JUL-2021 Account: NDMCDEZG

164754

CERTIFICATE OF ANALYSIS	TB21

Sample Description	Method Analyte Units LOD	ME-MS41 Cr ppm 1	ME-MS41 Cs ppm 0.05	ME-MS41 Cu ppm 0.2	ME-MS41 Fe % 0.01	ME-MS41 Ga ppm 0.05	ME-MS41 Ge ppm 0.05	ME-MS41 Hf ppm 0.02	ME-MS41 Hg ppm 0.01	ME-MS41 In ppm 0.005	ME-MS41 K % 0.01	ME-MS41 La ppm 0.2	ME-MS41 Li ppm 0.1	ME-MS41 Mg % 0.01	ME-MS41 Mn ppm 5	ME-MS41 Mo ppm 0.05
B731756 B731757 B731758 B731759		42 125 51 35	1.55 1.11 0.65 2.56	42.4 142.5 58.0 32.7	1.44 3.94 3.00 2.86	3.72 3.02 1.79 5.30	0.05 0.07 0.07 0.12	0.23 0.12 0.11 0.30	0.02 <0.01 <0.01 <0.01	0.033 <0.005 0.007 0.012	0.52 0.16 0.06 1.04	7.0 1.0 1.7 16.9	9.3 13.0 3.4 22.2	0.59 0.61 0.35 1.32	433 316 484 381	0.66 0.38 0.14 0.17
B731760 B731761 B731762 B731763 B731764		13 141 69 103	1.51 2.56 2.37 0.27 1.93	23.0 2.3 56.1 493 122.5	2.32 1.04 2.10 3.67 2.83	3.26 3.65 5.11 1.73 3.13	<0.08 <0.05 0.08 0.07 0.08	0.27 0.14 0.26 0.07 0.08	<0.01 <0.01 <0.01 <0.01 <0.01	<0.007 <0.005 0.005 0.006 0.011	0.28 0.42 0.71 0.06 0.16	25.1 2.4 12.1 0.8 0.7	10.8 20.2 5.3 9.9	0.40 0.38 0.98 0.35 0.54	136 350 240 309	0.30 0.66 0.37 1.80 2.60
B731765 B731766 B731767 B731768 B731768 B731769 B731770		42 77 106 25 19 2	1.12 1.89 3.78 1.96 0.55 0.44	8.2 43.5 116.5 108.5 245 476	0.94 4.81 5.86 7.40 5.79 6.25	2.42 8.99 9.68 11.30 9.52 4.18	<0.05 0.13 0.15 0.15 0.14 0.11	0.20 0.23 0.11 0.14 0.15 0.25	<0.01 <0.01 <0.01 <0.01 <0.01 0.01	0.007 0.012 0.019 0.032 0.029 0.023	0.22 0.30 2.28 1.23 0.28 0.10	7.1 13.0 8.8 5.0 5.4 7.6	7.8 24.4 30.0 22.8 17.5 3.3	0.38 2.38 1.85 2.17 1.93 0.56	157 643 389 721 684 428	0.26 0.39 1.19 0.83 0.54 0.10
B731771 B731772 B731773 B731773 B731774 B731775		21 85 198 289 13	0.45 4.76 0.09 0.29 0.26	1070 6970 23.7 28.0 1.9	19.20 5.05 2.10 3.04 0.65	1.83 11.25 2.65 3.99 1.21	0.09 0.11 <0.05 0.06 <0.05	0.05 0.32 0.03 0.04 0.11	<0.01 0.06 <0.01 0.01 <0.01	<0.005 0.064 <0.005 <0.005 <0.005	0.06 1.64 0.03 0.14 0.13	0.7 13.5 0.3 0.5 3.0	11.9 27.2 8.9 14.6 2.4	0.16 1.34 1.30 1.99 0.08	137 853 309 525 77	2.03 1.41 0.93 0.08 0.12
B731776 B731777 B731778 B731779 B731789 B731780		4 61 43 20 13	0.78 2.43 1.66 0.86 0.16	6.7 8880 110.5 150.5 28.1	1.46 4.35 2.65 1.85 19.50	3.90 7.04 2.85 2.70 3.88	0.07 0.07 0.07 0.05 0.28	0.93 0.21 0.09 0.08 0.05	0.01 0.06 <0.01 0.01 <0.01	0.006 0.143 0.009 0.010 0.016	0.50 0.91 0.17 0.03 0.01	31.0 10.9 1.0 1.1 1.4	7.8 23.1 11.0 2.8 0.2	0.24 0.98 0.52 0.20 0.04	208 616 732 191 537	0.13 5.04 0.19 1.25 0.56
B731781 B731782 B731783 B731784 B731785		12 12 20 43 89	1.05 0.42 1.14 0.50 5.37	16.6 5.8 1.5 123.5 8.0	0.93 0.74 1.79 2.15 4.32	3.19 1.52 4.51 4.66 7.41	<0.05 <0.05 0.05 0.05 0.15	0.41 0.38 1.00 0.04 0.31	<0.01 <0.01 <0.01 <0.01 <0.01	0.008 0.006 0.008 0.009 0.016	0.21 0.10 1.16 0.11 2.11	5.9 7.0 12.7 1.5 22.9	2.8 1.8 15.3 10.2 22.1	0.30 0.14 0.99 1.07 2.25	165 100 441 279 930	0.25 0.87 0.57 0.23 0.59
B731786 B731787 B731788 B731789 B731789 B731790		73 3 17 58 34	2.28 0.13 1.15 0.37 1.25	6.3 3.0 5.6 110.0 166.5	3.74 0.66 1.67 2.00 2.32	9.10 1.50 4.65 4.80 3.54	0.24 <0.05 0.08 0.08 0.09	0.39 0.67 0.92 0.04 0.12	<0.01 <0.01 <0.01 <0.01 <0.01	0.042 0.007 0.010 0.012 0.014	1.55 0.08 0.56 0.06 0.20	28.3 3.5 28.2 1.4 3.2	19.1 1.3 11.5 5.5 6.7	1.75 0.03 0.57 0.95 0.98	1060 55 356 233 335	0.27 0.16 0.25 0.11 0.14
B731791 B731792 B731793 B731794 B731795		39 68 32 84 6	0.32 1.27 1.95 1.51 1.67	134.0 3.6 8.4 18.5 19.8	1.74 3.37 1.77 4.15 2.83	3.50 6.81 5.62 8.84 7.64	0.05 0.13 0.07 0.13 0.10	0.04 0.39 0.42 0.32 0.78	<0.01 <0.01 <0.01 <0.01 <0.01	0.006 0.014 0.019 0.011 0.020	0.08 0.90 0.54 0.73 1.16	1.9 23.6 25.1 26.7 23.3	10.0 22.8 13.5 33.7 15.8	0.86 1.34 0.71 1.65 0.81	259 434 390 395 464	0.43 <0.05 0.42 0.08 0.60

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: NORTHERN DOMINION METALS/CROSS RIVER VENTURE 1430-800 WEST PENDER STREET VANCOUVER BC V6C 2V6

Page: 5 – C Total # Pages: 6 (A – D) Plus Appendix Pages Finalized Date: 20-JUL-2021 Account: NDMCDEZG

bu							
C	CERTIFI	CATE O	F ANAL	.YSIS	TB2116	64754	
	ME_MS41	ME_MS/1	ME_MS41	ME_MS/1	ME_MS41	ME_MS41	ME_MS/1
	Sb	Sc Sc	Se	Sn	Sr	Ta	Te
	ppm						
	0.05	0.1	0.2	0.2	0.2	0.01	0.01
	0.05	1.4	0.2	0.2	19.3	<0.01	0.09

	Method	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41										
	Analyte	Na	Nb	Ni	Р	Pb	Rb	Re	S	Sb	Sc	Se	Sn	Sr	la	le
Sample Description	Units	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm
• •	LOD	0.01	0.05	0.2	10	0.2	0.1	0.001	0.01	0.05	0.1	0.2	0.2	0.2	0.01	0.01
B731756		0.10	0.32	8.2	390	30.2	32.0	0.001	0.19	0.05	1.4	0.2	0.2	19.3	<0.01	0.09
B731757		0.12	0.15	60.5	150	2.8	10.5	0.003	1.28	0.09	5.9	1.6	<0.2	15.9	<0.01	0.12
B731758		0.04	0.16	25.5	180	0.6	6.6	<0.001	0.27	0.18	4.6	0.5	<0.2	14.5	<0.01	0.03
B731759		0.08	0.33	12.2	1420	1.8	63.3	<0.001	0.12	0.11	5.0	0.2	0.3	30.0	<0.01	0.02
B731760		0.06	1.44	0.9	1060	3.0	15.6	<0.001	0.33	0.08	2.2	0.6	0.6	30.6	<0.01	0.13
B731761		0.07	0.21	7.5	160	1.5	33.4	<0.001	<0.01	<0.05	1.5	<0.2	<0.2	15.6	<0.01	0.01
B731762		0.09	0.32	51.1	510	1.7	52.6	<0.001	0.18	<0.05	4.1	0.3	0.4	20.0	<0.01	0.08
B731763		0.09	0.14	159.0	160	2.4	1.8	0.001	1.56	0.07	5.5	1.5	<0.2	14.0	<0.01	0.27
B731764		0.14	0.15	36.8	110	0.9	17.6	0.001	0.22	0.14	9.1	0.4	<0.2	13.8	<0.01	0.11
B731765		0.06	0.62	11.3	410	2.7	17.0	<0.001	0.10	0.10	1.2	<0.2	0.3	9.6	<0.01	0.02
B731766		0.02	0.35	69.4	1800	1.8	18.3	<0.001	0.02	0.45	4.4	<0.2	0.3	82.7	0.01	0.01
B731767		0.04	0.13	66.9	520	2.3	79.9	0.002	0.06	0.21	3.7	<0.2	1.5	21.7	<0.01	0.03
B731768		0.07	0.14	53.6	1520	0.9	47.6	0.001	0.16	0.29	8.6	0.6	0.9	14.7	<0.01	0.02
B731769		0.05	0.23	50.0	1070	0.7	13.9	0.002	0.02	0.23	5.9	0.4	0.5	16.4	<0.01	0.03
B731770		0.10	0.94	20.9	420	1.9	6.7	0.001	0.04	0.51	2.6	0.2	0.3	38.4	0.01	0.04
B731771		0.09	0.09	542	120	2.2	4.9	0.007	7.68	<0.05	1.5	12 <u>.</u> 4	<0.2	20.5	<0.01	1.39
B731772		0.18	0.21	33.4	480	34.9	93.5	<0.001	1.23	0.13	6.8	2.7	0.3	21.5	<0.01	0.73
B731773		0.01	0.07	62.8	120	0.7	1.7	0.009	0.02	0.16	2.3	0.2	<0.2	6.9	<0.01	0.02
B731774		0.02	0.10	97.4	160	1.1	8.2	<0.001	0.01	0.28	3.2	0.2	<0.2	15.9	<0.01	0.01
B731775		0.02	0.44	1.3	50	2.6	8.9	<0.001	0.01	<0.05	0.4	<0.2	<0.2	1.9	<0.01	0.01
B731776		0.07	0.49	1.1	270	2.6	30.4	<0.001	0.01	0.06	1.4	<0.2	0.2	5.8	<0.01	<0.01
B731777		0.05	0.25	27.9	410	28.2	50.9	<0.001	1.67	0.09	4.7	3.2	0.4	9.1	<0.01	1.14
B731778		0.10	0.16	70.6	140	2.2	16.0	<0.001	0.08	0.08	7.1	0.5	<0.2	17.2	<0.01	0.11
B731779		0.10	0.22	109.5	130	1.2	8.4	0.003	0.44	0.06	3.3	0.6	0.2	22.9	<0.01	0.17
B731780		<0.01	0.26	2.4	80	1.7	1.0	<0.001	0.05	0.17	0.5	1.5	0.6	0.4	<0.01	0.35
B731781		0.06	2.04	3.4	80	3.4	17.4	<0.001	0.01	<0.05	1.3	<0.2	0.8	2.7	0.01	0.04
B731782		0.03	0.85	3.1	100	5.0	7.3	<0.001	0.07	<0.05	1.1	0.4	0.5	2.3	<0.01	0.05
B731783		0.03	0.05	33.2	490	1.5	62.2	0.001	<0.01	<0.05	2.2	<0.2	0.3	1.0	<0.01	<0.01
B731784		0.24	0.07	66.0	220	1.7	6.2	0.001	0.11	<0.05	5.3	0.6	<0.2	30.5	<0.01	0.07
B731785		0.05	0.15	75.3	1240	2.0	118.5	<0.001	<0.01	0.05	3.2	<0.2	0.9	17.1	<0.01	0.02
B731786		0.08	0.18	53.1	870	4.5	80.3	<0.001	0.01	0.12	4.5	<0.2	1.5	41.6	<0.01	0.02
B731787		0.05	3.88	0.5	50	5.8	2.9	<0.001	0.09	<0.05	0.8	<0.2	0.6	3.6	0.01	0.04
B731788		0.04	0.33	11.0	380	4.9	38.5	<0.001	<0.01	<0.05	3.4	<0.2	0.6	5.8	<0.01	0.01
B731789		0.34	0.07	94.6	220	1.5	3.2	0.001	0.22	0.05	6.4	0.6	<0.2	37.1	<0.01	0.10
B731790		0.12	0.05	39.4	310	0.6	12.0	0.001	0.09	<0.05	6.7	0.6	0.2	6.7	<0.01	0.05
B731791		0.20	0.10	43.7	210	0.9	5.6	<0.001	0.12	<0.05	5.9	0.4	<0.2	23.0	<0.01	0.06
B731792		0.16	0.23	47.5	500	2.1	32.2	<0.001	<0.01	<0.05	4.8	<0.2	0.4	16.7	<0.01	0.01
B731793		0.05	0.39	17.8	450	2.8	35.5	<0.001	0.02	<0.05	5.4	<0.2	0.5	5.1	<0.01	0.05
B731794		0.12	0.20	46.2	790	2.0	28.0	<0.001	<0.01	0.06	4.8	0.2	0.3	22.0	<0.01	0.01
B731795		0.06	0.81	4.5	740	3.0	56.3	<0.001	0.02	<0.05	5.4	0.3	0.9	4.8	<0.01	0.02

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: NORTHERN DOMINION METALS/CROSS RIVER VENTURE 1430-800 WEST PENDER STREET VANCOUVER BC V6C 2V6

Page: 5 - D Total # Pages: 6 (A – D) Plus Appendix Pages Finalized Date: 20-JUL-2021 Account: NDMCDEZG

CERTIFICATE	OF ANALYSIS	TB21164754

Sample Description	Method Analyte Units LOD	ME-MS41 Th ppm 0.2	ME-MS41 Ti % 0.005	ME-MS41 Tl ppm 0.02	ME-MS41 U ppm 0.05	ME-MS41 V ppm 1	ME-MS41 W ppm 0.05	ME-MS41 Y ppm 0.05	ME-MS41 Zn ppm 2	ME-MS41 Zr ppm 0.5	
B731756 B731757 B731758		2.6 0.3 0.3	0.073 0.166 0.120	0.23 0.13 0.03	0.55 0.08 0.06	19 62 44	1.14 0.12 0.10	2.39 2.21 4.29	174 14 11	6.6 2.4 2.6	
B731759 B731760		5.3 5.2	0.216 0.218	0.38 0.17	1.12 1.04	77 48	0.12 0.23	6.94 3.83	35 12	9.9 8.4	
B731761 B731762 B731763 B731764 B731765		0.8 2.7 0.2 0.4 2.2	0.086 0.164 0.096 0.137 0.072	0.28 0.48 0.07 0.18 0.11	0.17 0.83 0.06 0.10 0.74	18 55 43 67 18	0.09 0.18 0.15 0.12 0.13	0.95 4.00 3.01 3.01 1.79	18 33 16 16 18	4.5 7.9 1.3 1.7 6.5	
B731766 B731767 B731768 B731769 B731770		1.3 2.2 0.5 0.6 0.6	0.143 0.303 0.462 0.364 0.423	0.14 0.60 0.35 0.09 0.03	0.16 0.38 <0.05 0.05 0.09	88 77 151 117 172	0.33 0.14 0.27 0.26 0.44	5.99 3.83 11.85 12.15 6.65	91 94 83 70 28	11.0 5.7 4.8 4.4 7.7	
B731771 B731772 B731773 B731774 B731775		<0.2 3.6 <0.2 <0.2 0.8	0.043 0.237 0.074 0.127 0.021	0.04 1.10 <0.02 0.04 0.06	<0.05 0.50 <0.05 <0.05 0.11	15 81 40 53 2	4.33 0.27 0.10 0.17 0.07	1.72 5.61 1.59 2.58 0.87	10 482 29 45 9	1.3 14.5 0.6 1.1 5.4	
B731776 B731777 B731778 B731778 B731779 B731780		6.0 2.4 0.4 0.2 0.5	0.081 0.157 0.121 0.112 0.018	0.22 0.55 0.24 0.08 0.02	0.71 0.32 0.09 0.07 0.11	4 52 55 28 23	0.10 0.26 0.50 10.75 0.16	6.14 5.79 2.68 4.05 1.40	31 528 30 15 12	41.8 9.6 2.6 2.3 2.4	
B731781 B731782 B731783 B731783 B731784 B731785		11.5 4.9 6.7 <0.2 4.0	0.051 0.034 0.149 0.099 0.285	0.10 0.05 0.45 0.06 0.78	2.40 0.70 1.26 <0.05 0.68	7 6 26 48 79	0.98 1.99 0.14 0.13 0.68	6.88 4.11 8.08 3.39 10.40	18 9 64 24 134	12.2 11.7 50.4 0.7 15.4	
B731786 B731787 B731788 B731788 B731789 B731790		8.1 15.3 7.0 0.2 0.6	0.277 0.011 0.131 0.075 0.132	0.70 0.02 0.32 0.05 0.09	1.20 3.00 1.08 0.05 0.13	62 2 25 43 66	0.36 0.59 0.37 0.28 0.14	10.55 10.20 9.54 2.96 4.56	150 4 52 21 40	15.7 21.2 36.2 0.8 3.7	
B731791 B731792 B731793 B731794 B731795		<0.2 5.0 9.7 4.5 7.4	0.116 0.165 0.139 0.157 0.218	0.03 0.30 0.28 0.24 0.35	<0.05 0.61 1.32 0.53 1.07	43 73 46 98 34	0.17 0.11 0.08 0.36 0.40	3.77 4.75 7.38 4.48 11.45	17 78 47 98 68	0.8 17.6 15.1 15.5 36.6	

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry To: NORTHERN DOMINION METALS/CROSS RIVER VENTURE 1430-800 WEST PENDER STREET VANCOUVER BC V6C 2V6 Page: 6 – A Total # Pages: 6 (A – D) Plus Appendix Pages Finalized Date: 20-JUL-2021 Account: NDMCDEZG

Project: Shabu

Sample Description	Method Analyte Units LOD	WEI–21 Recvd Wt. kg 0.02	Au-ICP21 Au ppm 0.001	Au-GRA21 Au ppm 0.05	ME-MS41 Ag ppm 0.01	ME-MS41 Al % 0.01	ME-MS41 As ppm 0.1	ME-MS41 Au ppm 0.02	ME-MS41 B ppm 10	ME-MS41 Ba ppm 10	ME-MS41 Be ppm 0.05	ME-MS41 Bi ppm 0.01	ME-MS41 Ca % 0.01	ME-MS41 Cd ppm 0.01	ME-MS41 Ce ppm 0.02	ME-MS41 Co ppm 0.1
B731796 B731797 B731798 B731799 B731800		1.69 0.70 0.70 1.11 0.04	<0.001 <0.001 0.015 0.003 <0.001		0.07 0.02 0.09 0.03 0.01	0.96 0.10 2.65 0.92 0.97	0.4 0.5 0.1 0.5 1.3	<0.02 <0.02 <0.02 <0.02 <0.02	<10 <10 <10 <10 <10	90 10 320 20 60	0.08 <0.05 0.14 <0.05 0.20	0.57 0.11 0.19 0.02 0.01	0.33 0.21 1.07 1.03 0.76	0.06 <0.01 0.10 0.02 0.01	62.8 2.48 41.3 2.62 9.80	3.9 2.0 16.4 16.9 3.7
B731801 B731802 B731803 B731804 B731805		0.77 1.98 1.51 1.42 1.06	0.003 <0.001 <0.001 0.001 0.001		0.45 0.73 0.29 0.05 0.13	0.66 0.06 0.49 0.37 1.41	0.7 3.4 2.1 0.3 1.0	<0.02 <0.02 <0.02 <0.02 <0.02	<10 <10 <10 <10 <10	40 <10 30 30 210	0.09 0.10 0.57 0.07 0.09	0.15 0.54 0.28 0.41 0.08	0.42 0.01 0.11 0.06 0.57	0.16 0.01 0.04 <0.01 0.03	56.6 5.56 17.75 35.2 35.8	2.8 0.7 4.3 1.2 15.7
B731806 B731807 B731808 B731808 B731809 B731810		1.07 1.30 1.28 1.01 1.25	1.605 0.030 0.184 0.006 0.001		3.12 0.15 0.32 0.04 0.03	0.43 0.55 0.54 0.31 0.20	2.3 1.2 2.2 0.9 0.4	2.67 <0.02 0.10 <0.02 <0.02	<10 <10 <10 <10 <10	10 30 50 20 20	0.08 0.14 0.10 0.06 0.06	6.64 0.20 0.16 0.07 0.14	0.11 0.31 0.12 0.06 0.04	0.22 0.04 0.04 0.02 0.01	4.94 44.3 4.69 22.5 33.4	2.7 1.3 6.5 0.5 0.4
B731811 B731812 B731813 B731813 B731814 B731815		1.47 0.86 0.47 1.36 1.13	0.002 8.28 0.003 0.205 0.048		0.20 1.41 0.03 1.62 0.74	0.44 0.21 0.32 0.34 0.38	0.9 2.2 0.4 0.6 1.0	<0.02 5.23 <0.02 0.10 0.02	<10 <10 <10 <10 <10	40 10 30 10 20	0.12 0.08 <0.05 0.14 0.06	3.48 0.88 0.07 1.39 1.86	0.37 0.07 0.08 0.20 0.06	0.06 0.07 0.01 1.04 11.00	54.3 5.13 5.42 2.28 3.59	2.8 1.4 1.1 2.4 3.5
B731816 B731817 B731818 B731818 B731819 B731820		0.98 0.42 1.37 1.38 0.92	0.005 0.429 <0.001 0.001 0.004		2.59 0.10 0.05 0.38 0.06	0.40 1.56 0.32 0.39 0.99	1.2 1.4 1.0 0.7 1.3	<0.02 0.20 <0.02 <0.02 <0.02	<10 <10 <10 <10 <10	20 20 20 30 30	0.08 0.32 0.05 0.05 <0.05	10.60 0.58 1.28 0.32 0.03	0.11 0.85 0.04 0.07 0.91	2.24 0.06 0.03 0.17 0.02	21.4 16.45 18.70 25.2 1.65	1.9 11.3 0.4 0.9 22.9
B731821 B731822 B731823 B731823 B731824 B731825		1.24 0.89 1.44 1.01 0.04	<0.001 <0.001 <0.001 <0.001 0.440		0.03 0.03 0.14 0.12 0.57	0.67 0.28 1.65 0.72 1.45	1.4 0.6 0.6 0.4 14.1	<0.02 <0.02 <0.02 <0.02 0.36	<10 <10 <10 <10 10	10 20 10 <10 180	<0.05 0.10 0.05 <0.05 0.20	0.06 0.03 0.03 0.06 0.14	0.98 0.59 1.41 0.84 2.55	0.01 0.03 0.03 0.01 0.59	2.39 21.2 2.04 2.32 11.70	32.5 0.8 38.8 47.1 14.0
B731826 B731827 B731828 B731828 B731829 B731830		0.80 1.19 0.72 1.12 0.91	<0.001 0.088 <0.001 0.006 0.009		0.05 0.05 <0.01 <0.01 0.08	0.36 0.11 0.03 0.03 0.14	0.6 0.6 0.8 0.1 0.7	<0.02 0.15 <0.02 <0.02 <0.02	<10 <10 <10 <10 <10	30 <10 30 10 <10	0.05 <0.05 <0.05 <0.05 <0.05	0.07 0.23 0.01 <0.01 0.09	0.03 0.09 5.16 >25.0 18.50	0.03 0.01 0.03 0.02 0.07	24.9 0.58 2.25 1.00 4.96	0.6 2.1 0.4 0.5 13.8
B731831 B731832 B731833		0.88 1.24 0.99	0.001 0.003 <0.001		<0.01 0.07 0.12	0.01 1.22 0.68	0.3 0.5 0.6	<0.02 <0.02 <0.02	<10 <10 <10	10 10 70	<0.05 <0.05 0.08	<0.01 0.09 0.09	>25.0 12.70 0.32	0.05 0.03 0.02	0.44 0.99 57.9	0.7 27.4 4.1

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry To: NORTHERN DOMINION METALS/CROSS RIVER VENTURE 1430-800 WEST PENDER STREET VANCOUVER BC V6C 2V6 Page: 6 – B Total # Pages: 6 (A – D) Plus Appendix Pages Finalized Date: 20-JUL-2021 Account: NDMCDEZG

CERTIFICATE OF A	ANALYSIS	TB2

	Account. NDMC
SIS	TB21164754

	Method	ME-MS41 Cr	ME-MS41	ME-MS41	ME-MS41 Fe	ME-MS41 Ga	ME-MS41	ME-MS41 Hf	ME-MS41 Ha	ME-MS41 In	ME-MS41 K	ME-MS41	ME-MS41	ME-MS41 Ma	ME-MS41 Mn	ME-MS41 Mo
	Analyte	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm
Sample Description	LOD	1	0.05	0.2	0.01	0.05	0.05	0.02	0.01	0.005	0.01	0.2	0.1	0.01	5	0.05
B731796		6	1.50	27.2	1.94	4.08	0.08	0.76	<0.01	0.010	0.67	31.1	7.2	0.41	352	2.03
B731797		29	0.21	17.7	0.78	0.64	<0.05	0.04	<0.01	<0.005	0.04	1.2	0.7	0.15	81	0.15
B731798		107	1.90	39.2	2.86	7.15	0.11	0.14	<0.01	0.010	1.14	17.0	21.5	1.73	299	1.25
B731799		61	0.45	16.3	1.46	2.03	0.06	0.08	<0.01	<0.005	0.15	1.4	5.9	0.51	211	0.17
B731800		14	0.11	18.6	2.38	3.72	0.08	0.14	<0.01	0.006	0.07	4.6	1.4	0.48	545	3.14
B731801		22	1.41	187.0	0.87	3.16	0.07	0.44	<0.01	0.012	0.33	28.6	4.5	0.18	227	0.21
B731802		9	0.39	25.4	10.50	1.46	0.15	<0.02	<0.01	0.012	0.02	3.1	0.1	0.03	202	1.09
B731803		12	1.94	48.3	33.1	3.61	0.53	0.09	<0.01	0.032	0.17	10.0	1.0	0.22	421	1.38
B731804		27	0.89	17.6	1.07	2.46	<0.05	0.83	<0.01	0.027	0.18	14.3	3.0	0.14	140	0.51
B/31805		39	1.58	91.2	2.88	5.81	0.09	0.25	<0.01	0.009	0.79	16.6	14./	1.02	309	1.23
B731806		26	0.17	76.9	1.17	2.34	<0.05	0.13	<0.01	0.027	0.03	1.7	4.2	0.39	189	3.35
B731807		9	0.43	52.4	0.94	2.71	0.06	0.31	0.01	0.014	0.15	21.5	3.2	0.20	162	7.22
B731808		30	1.65	176.5	1.86	2.31	<0.05	0.22	<0.01	<0.005	0.38	2.4	4.5	0.38	185	7.73
B731809		9	0.47	4.2	0.49	1.38	<0.05	0.42	<0.01	<0.005	0.19	7.2	1.6	0.08	73	22.9
B731810		12	0.34	9.7	0.48	1.19	<0.05	0.20	<0.01	<0.005	0.12	15.9	1.3	0.04	72	11.85
B731811		6	0.43	57.4	1.21	3.49	0.07	0.38	<0.01	0.139	0.19	29.5	2.7	0.08	181	0.57
B731812		17	0.37	18.1	0.62	1.17	<0.05	0.12	<0.01	<0.005	0.09	2.6	2 <u>.</u> 2	0.15	92	1.35
B731813		15	0.57	4.2	0.73	1.36	<0.05	0.16	<0.01	0.006	0.19	2.2	2.6	0.14	123	1.09
B731814		36	0.48	934	0.66	1.30	<0.05	0.07	<0.01	0.020	0.13	1.2	4.6	0.27	91	6.49
B731815		36	0.67	225	0.98	1.68	<0.05	0.06	0.14	0.071	0.24	1.8	4.1	0.23	91	2.27
B731816		16	0.49	98.5	0.85	2.63	<0.05	0.12	0.01	0.071	0.17	8.1	3.9	0.19	129	2.33
B731817		55	0.88	40.1	3.52	7.89	0.11	0.38	<0.01	0.012	0.09	6.6	10.3	1.18	414	4.98
B731818		9	0.45	8.3	1.02	2.36	<0.05	0.48	<0.01	0.005	0.09	9.3	1.4	0.11	117	4.07
B731819		16	0.81	135.0	0.95	2.26	<0.05	0.57	<0.01	0.016	0.14	12.8	2.8	0.13	147	1.84
B731820		34	1.13	66.9	2.23	2.00	0.06	0.07	<0.01	<0.005	0.19	0.9	10.0	0.63	250	0.25
B731821		24	0.11	163.5	1.84	1.33	0.07	0.06	<0.01	<0.005	0.01	1.1	1.4	0.15	106	1.29
B731822		22	0.16	1.6	0.28	0.77	<0.05	0.19	<0.01	<0.005	0.02	9.0	3.1	0.15	162	0.91
B731823		29	0.87	205	2.82	2.69	0.05	0.09	<0.01	<0.005	0.08	1.0	15.0	0.42	187	0.59
B/31824		50	0.20	170.5	2.71	1.78	0.06	0.08	<0.01	0.006	0.06	1.1	3.4	0.34	185	0.58
B/31825		24	0.87	763	3.50	5.32	0.08	0.19	0.07	0.049	0.12	5.0	11.1	1.25	624	12.15
B731826		10	0.35	15.0	0.74	1.24	< 0.05	0.40	< 0.01	<0.005	0.18	14.4	2.2	0.11	102	3.98
B731827		18	0.11	8.7	0.49	0.31	<0.05	<0.02	<0.01	<0.005	0.01	0.3	1.3	0.06	/8	0.39
B/31828		9	0.09	0.9	0.25	0.12	<0.05	<0.02	<0.01	<0.005	<0.01	0.8	0.5	0.08	1100	0.32
B/31829		2	<0.05	0.7	1.07	0.08	<0.05	<0.02	<0.01	<0.005	-0.01	1.0	0.3	1.70	3640	0.65
6/31830			<0.05	9.0	1.97	0.37	<0.05	<0.02	<0.01	<0.005	<0.01	3.1	0.5	1./U	7070	0.56
B731831		<1	<0.05	1.1	0.13	0.06	<0.05	<0.02	< 0.01	<0.005	<0.01	0.3	0.1	0.02	4200	0.21
B731832		36	0.81	160.5	1.80	1.76	0.05	0.02	<0.01	0.005	0.04	0.5	4.1	0.25	1110	1.32
B731833		11	2.35	18.5	1.67	3.20	0.07	0.69	<0.01	0.010	0.47	28.5	7.6	0.31	217	0.29
		1														
ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry To: NORTHERN DOMINION METALS/CROSS RIVER VENTURE 1430-800 WEST PENDER STREET VANCOUVER BC V6C 2V6 Page: 6 - C Total # Pages: 6 (A - D) Plus Appendix Pages Finalized Date: 20-JUL-2021 Account: NDMCDEZG

Project: Shabu

CERTIFICATE OF ANALYSIS TB21164754

Sample Description	Method Analyte Units LOD	ME-MS41 Na % 0.01	ME-MS41 Nb ppm 0.05	ME-MS41 Ni ppm 0.2	ME-MS41 P ppm 10	ME-MS41 Pb ppm 0.2	ME-MS41 Rb ppm 0.1	ME-MS41 Re ppm 0.001	ME-MS41 S % 0.01	ME-MS41 Sb ppm 0.05	ME-MS41 Sc ppm 0.1	ME-MS41 Se ppm 0.2	ME-MS41 Sn ppm 0.2	ME-MS41 Sr ppm 0.2	ME-MS41 Ta ppm 0.01	ME-MS41 Te ppm 0.01
B731796 B731797 B731798 B731799 B731799 B731800		0.06 0.01 0.22 0.08 0.06	0.44 0.46 0.16 0.23 0.29	1.6 4.9 50.0 43.9 6.0	400 330 1020 150 390	7.8 0.6 10.8 0.7 0.7	41.1 2.3 46.3 5.7 1.6	<0.001 <0.001 <0.001 <0.001 <0.001	0.04 0.08 <0.01 0.13 0.05	<0.05 <0.05 <0.05 0.07 0.14	1.8 0.5 4.3 4.6 2.4	0.4 0.6 <0.2 0.6 <0.2	0.3 0.2 0.2 <0.2 1.6	7.4 5.2 27.3 14.7 26.1	<0.01 <0.01 <0.01 <0.01 0.01	0.17 0.03 0.03 0.04 0.01
B731801 B731802 B731803 B731804 B731805		0.03 <0.01 0.01 0.05 0.06	1.68 0.15 0.24 1.27 0.49	8.9 1.7 6.6 1.3 17.2	390 90 650 60 1220	8.1 0.8 1.0 6.3 2.3	25.8 3.8 23.9 12.6 29.3	<0.001 <0.001 0.002 <0.001 <0.001	0.02 0.05 0.07 0.12 0.18	0.09 0.07 0.14 <0.05 <0.05	2.9 0.2 0.6 1.5 3.1	0.6 1.0 0.7 <0.2 0.4	0.9 0.3 0.5 1.2 0.3	10.8 0.5 6.0 2.5 8.5	0.01 <0.01 <0.01 0.01 <0.01	0.02 0.30 0.18 0.16 0.05
B731806 B731807 B731808 B731808 B731809 B731810		0.01 0.03 0.01 0.03 0.03	0.23 2.05 0.50 1.08 1.29	4.1 0.6 7.5 1.4 0.9	210 60 310 40 50	158.0 10.3 6.5 8.8 6.9	2.0 10.7 30.8 13.1 5.8	<0.001 0.003 0.002 0.008 0.003	0.08 0.20 0.41 <0.01 0.01	0.10 <0.05 0.40 0.12 0.06	1.3 1.6 1.6 0.6 0.5	0.7 0.5 1.0 0.2 <0.2	0.4 0.4 <0.2 <0.2	2.2 9.3 3.3 1.9 1.5	<0.01 0.01 <0.01 <0.01 <0.01	3.11 0.06 0.09 0.02 0.05
B731811 B731812 B731813 B731813 B731814 B731815		0.03 0.01 0.03 0.02 0.01	1.03 0.21 1.00 0.10 0.10	0.9 2.7 1.6 4.0 6.1	80 50 90 60 70	16.6 30.5 2.4 1700 592	9.5 6.8 15.8 7.9 16.6	<0.001 <0.001 <0.001 0.001 <0.001	0.42 0.05 <0.01 0.07 0.09	0.06 0.12 0.06 0.34 0.30	2.0 0.6 0.6 3.1 2.1	0.4 0.2 <0.2 2.4 0.2	2.1 0.2 0.3 <0.2 <0.2	5.9 1.7 3.3 5.5 2.0	0.01 <0.01 <0.01 <0.01 <0.01	1.51 0.90 0.02 0.21 0.14
B731816 B731817 B731818 B731818 B731819 B731820		0.02 0.03 0.04 0.04 0.04	0.62 0.81 2.58 1.27 0.19	1.4 18.2 0.6 1.4 55.2	70 1520 60 50 170	223 13.9 12.0 17.0 1.4	15.5 12.2 5.8 12.4 10.4	<0.001 0.001 0.001 <0.001 0.001	0.07 0.06 0.05 0.06 0.46	0.12 0.10 0.07 <0.05 0.14	1.0 3.4 1.1 1.5 3.5	0.3 <0.2 0.2 0.2 0.8	2.3 0.9 0.5 0.5 <0.2	2.1 26.0 2.0 4.2 27.4	<0.01 <0.01 0.01 0.01 <0.01	0.64 0.25 0.79 0.06 0.04
B731821 B731822 B731823 B731824 B731824 B731825		0.03 0.07 0.14 0.12 0.10	0.20 1.22 0.17 0.16 0.08	101.0 4.0 175.5 214 14.0	60 870 130 150 820	0.9 2.0 1.2 0.6 19.0	0.6 1.4 9.7 1.3 5.1	<0.001 <0.001 0.002 0.001 0.028	0.41 <0.01 1.12 1.22 0.57	0.10 0.07 0.07 0.06 1.23	2.3 0.6 3.5 6.1 5.7	0.9 <0.2 1.3 0.4 1.4	<0.2 0.3 <0.2 <0.2 0.8	15.1 22.4 16.9 9.9 117.5	<0.01 <0.01 <0.01 <0.01 <0.01	0.10 <0.01 0.10 0.34 0.17
B731826 B731827 B731828 B731828 B731829 B731830		0.02 <0.01 <0.01 <0.01 <0.01	0.31 0.07 0.06 <0.05 0.06	1.4 5.2 1.3 0.7 32.8	60 10 30 20 40	8.8 0.8 0.6 0.5 0.9	9.7 1.0 1.1 0.2 0.2	<0.001 <0.001 0.001 0.001 0.002	0.16 0.01 <0.01 <0.01 0.64	0.05 <0.05 0.12 <0.05 0.16	0.5 0.5 0.1 0.2 0.2	0.2 <0.2 <0.2 0.6 1.1	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2	2.3 1.3 8.2 81.8 43.1	<0.01 <0.01 <0.01 <0.01 <0.01	0.01 0.13 0.01 <0.01 0.14
B731831 B731832 B731833		<0.01 0.12 0.05	<0.05 0.05 0.92	1.6 85.7 6.3	10 110 480	0.4 0.7 5.8	0.1 4.4 28.5	<0.001 0.003 <0.001	0.03 0.49 0.41	0.05 0.09 0.05	0.1 2.0 2.0	0.5 0.8 0.3	<0.2 <0.2 0.3	37.4 39.3 3.6	<0.01 <0.01 <0.01	0.01 0.14 0.06

ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: NORTHERN DOMINION METALS/CROSS RIVER VENTURE 1430-800 WEST PENDER STREET VANCOUVER BC V6C 2V6

Page: 6 - D Total # Pages: 6 (A – D) Plus Appendix Pages Finalized Date: 20-JUL-2021 Account: NDMCDEZG

Project: Shabu

CERTIFICATE OF ANALYSIS

\		TP21	161751	
- 1	CIC 1	IDZI	104/34	

	Method	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41	
	Analyte	npm	11 %	npm	nnm	v nnm	vv ppm	r nnm	2n ppm	2r ppm	
Sample Description	LOD	0.2	0.005	0.02	0.05	1	0.05	0.05	2	0.5	
B731796		9.1	0.130	0.34	1.78	10	0.16	10.70	51	29.6	
B731797		0.5	0.048	<0.02	0.27	9	0.84	0.64	5	1.6	
B731798		2.9	0.182	0.33	0.46	60	0.10	4.15	62	5.8	
B731799		0.4	0.131	0.04	0.10	40	0.19	3.87	13	1.7	
B731800		1.7	0.074	<0.02	0.36	22	0.25	6.84	30	3.6	
B731801		16.0	0.103	0.28	2.98	13	0.65	10.25	31	13.7	
B731802		<0.2	0.005	0.07	0.06	5	0.17	0.97	11	0.7	
B731803		0.8	0.035	0.20	0.26	21	0.25	4.01	33	3.5	
B731804		17.2	0.035	0.11	3.54	3	0.17	9.85	13	22.5	
B731805		3.6	0.178	0.21	0.45	35	0.26	8.18	50	11.3	
B731806		0.9	0.035	0.02	0.31	16	3.44	1.36	32	4.9	
B731807		16.1	0.023	0.08	2.44	4	240	17.35	19	8.2	
B731808		1.2	0.056	0.19	0.64	13	1.04	2.76	24	8.4	
B731809		17.0	0.016	0.10	2.01	1	0.30	6.97	12	12.1	
B731810		12.5	0.010	0.03	2.29	1	0.20	7.07	6	6.4	
B731811		23.1	0.015	0.04	5.31	3	1.09	17.80	16	11.7	
B731812		1.2	0.022	0.06	0.26	8	1.94	1.47	26	4.5	
B731813		2.4	0.047	0.10	0.46	4	2.97	2.44	14	6.6	
B731814		0.2	0.057	0.08	0.13	28	1.06	1.93	320	2.2	
B731815		0.2	0.048	0.13	0.09	21	24.2	1.06	730	2.1	
B731816		4.5	0.022	0.11	1.07	8	1.41	7.69	109	4.1	
B731817		4.3	0.190	0.05	0.57	58	8.55	5.62	56	13.6	
B731818		19.5	0.033	0.03	3.08	3	0.20	5.87	11	13.8	
B731819		14.0	0.034	0.10	1.92	2	0.08	4.04	31	21.1	
B731820		0.2	0.132	0.05	<0.05	38	0.10	2.61	19	1.4	
B731821		0.3	0.094	<0.02	0.06	18	0.18	2,54	4	1.8	
B731822		16.3	0.134	<0.02	1.79	10	0.28	5,58	14	4.8	
B731823		0.3	0.110	0.07	0.06	38	0.22	3.64	12	2.0	
B731824		0.2	0.098	0.04	0.07	43	0.17	3.97	8	1.6	
B731825		1.4	0.064	0.05	0.59	82	3.88	8.74	121	4.8	
B731826		12.8	0.007	0.08	1.82	1	0.06	3.62	15	15.5	
B731827		<0.2	0.007	<0.02	<0.05	4	0.07	0.31	5	<0.5	
B731828		<0.2	<0.005	0.02	<0.05	1	0.11	0.44	2	<0.5	
B731829		<0.2	<0.005	<0.02	<0.05	<1	<0.05	4.91	<2	<0.5	
B731830		0.3	<0.005	<0.02	0.17	1	0.07	5.13	7	0.7	
B731831		<0.2	<0.005	<0.02	<0.05	<1	<0.05	0.82	<2	<0.5	
B731832		<0.2	0.027	0.09	<0.05	14	1.76	1.85	8	<0.5	
B731833		8.3	0.098	0.21	1.15	15	0.42	9.39	27	25.7	
·											

ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: NORTHERN DOMINION METALS/CROSS RIVER VENTURE 1430-800 WEST PENDER STREET VANCOUVER BC V6C 2V6

Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 20-JUL-2021 Account: NDMCDEZG

Project: Shabu

CERTIFICATE OF ANALYSIS TB21164754

		CERTIFICATE COMMENTS							
Applies to Method:	ANALYTICAL COMMENTS Gold determinations by this method are semi-quantitative due to the small sample weight used (0.5g). ME-MS41								
Applies to Method:	LABORATORY ADDRESSESProcessed at ALS Thunder Bay located at 645 Norah Crescent, Thunder Bay, ON, CanadaCRU-31CRU-QCLOG-21LOG-23PUL-31PUL-QCSPL-21WEI-21								
Applies to Method:	Processed at ALS Vancouver located Au-GRA21	at 2103 Dollarton Hwy, North Vanco Au-ICP21	ouver, BC, Canada. ME–MS41						