

We are committed to providing <u>accessible customer service</u>. If you need accessible formats or communications supports, please <u>contact us</u>.

Nous tenons à améliorer <u>l'accessibilité des services à la clientèle</u>. Si vous avez besoin de formats accessibles ou d'aide à la communication, veuillez <u>nous contacter</u>.

# 2021 GEOLOGICAL ASSESMENT REPORT ON THE CLEMENT PROPERTY

# CLEMENT AND MACBETH TOWNSHIPS SUDBURY MINING DIVISION, ONTARIO, CANADA

# **RANDY STEWART BSc**

213 Kingsmount Blvd, Sudbury, ON P3E 1L1

# **BRIAN WRIGHT**

92 Main St, Markstay, ON POM 2G0

February 21<sup>st</sup>, 2022

# TABLE OF CONTENTS

| EXECUTIVE SUMMARY                   | 4  |
|-------------------------------------|----|
| 1.0 INTRODUCTION                    | 6  |
| 2.0 PROPERTY DETAILS                |    |
| 2.1 Location and Access             | 6  |
| 2.2 Topography and Vegetation       | 6  |
| 2.3 Claims                          |    |
| 3.0 PREVIOUS WORK                   | 11 |
| 4.0 GEOLOGY                         | 17 |
| 4.1 Regional Geology                | 17 |
| 4.2 Property Geology                |    |
| 4.2.1 Alteration and Mineralization | 22 |
| 5.0 2021 PROGRAM                    |    |
| 5.1 Methods                         | 27 |
| 6.0 RESULTS AND CONCLUSIONS         |    |
| 7.0 RECOMMENDATIONS                 |    |
| 8.0 REFERENCES                      |    |

# LIST OF FIGURES

| Figure 1: Location of the Clement Property in Ontario, Canada                     | 7    |
|-----------------------------------------------------------------------------------|------|
| Figure 2: Tenure of the Clement Property, MacBeth and Clement Townships, Ontario. | . 10 |
| Figure 3: Regional Geology                                                        | 18   |
| Figure 4: Property Geology                                                        | 22   |
| Figure 5: P-1 Drill Hole Area and Nichol B Showing Sampling Results               | 36   |
| Figure 6: Massive Sulphide Zone Sampling Results                                  | 37   |
| Figure 7: P-3 Drill Hole Area Sampling Results                                    | .39  |

# LIST OF TABLES

| Table 1: | Claim Summary of the Clement Property. |  |
|----------|----------------------------------------|--|
| Table 2: | 2021 Work Areas and Work Days          |  |
|          | 2021 Sample Locations and Descriptions |  |
| Table 4: | 2021 Anomalous Geochemical Results     |  |

# LIST OF PHOTOS

| Photo 1: | Historical Adit (Location 554238E, 5186273N) | 13 |
|----------|----------------------------------------------|----|
| Photo 2: | Chert- Magnetite Iron Formation              | 23 |
| Photo 3: | Chert- Magnetite-Actinolite Iron Formation   | 24 |
| Photo 4: | Intermediate to Felsic Volcanic Breccia      | 25 |
| Photo 5: | Felsic Lapilli/Crystal Ash Tuff              | 26 |
|          | Interbedded Arkose and Greywacke             |    |

# APPENDICES

| Appendix I  | Statement of Qualifications | 44 |
|-------------|-----------------------------|----|
| Appendix II | Certificates of Analyses    | 16 |

# MAPS

| 2021 Geology Map, Clement Property (1:5,000)           | Back Pocket   |
|--------------------------------------------------------|---------------|
| Geological Compilation Map, Clement Property (1:5,000) | . Back Pocket |

# **EXECUTIVE SUMMARY**

This is a technical report for assessment purposes on the 2021 reconnaissance geological mapping, prospecting and sampling program on the Clement property in Clement and MacBeth Townships. All work was performed by Randy Stewart, BSc and Brian Wright, technologist.

The Clement property is located 130 km northeast of Sudbury, Ontario within Clement and MacBeth Townships in the Sudbury Mining Division. The property is bounded by UTM NAD83 coordinates 17U 550434E to 555243E and 5188816N to 5185595N. The property consists of 32 contiguous unpatented mining claims containing 8 boundary, 13 single cell and 11 multicell claims.

In the summer of 2021, a program of reconnaissance geological mapping, prospecting and sampling was completed on the Clement property. 45 grab samples were collected and sent to AGAT Labs. The 43 - day program commenced on May  $10^{\text{th}}$  and was completed by November  $16^{\text{th}}$ , 2021.

The objectives of the 2021 program were to:

- Map and prospect the newest acquired claims.
- Map and prospect anomalies from the recently acquired 2020 OGS Airborne Magnetic Gradiometer Survey maps.
- Define, map and prospect the magnetic trace of the main iron formation.
- Re-map and re-interpret and the main road outcrops.
- Map and prospect the Nichol B showing with a historical assay of 0.28 oz./t Au in siliceous iron formation.
- Re-map and sample outcrops of interest from previous programs.

The 2021 program was successful in:

- A better understanding of the volcanic stratigraphy and in this the development of a more refined geological legend.
- The recognition of the sulphide facies of the main iron formation (carbonaceous /graphitic argillite).
- The discovery of unknown historical pits and trenches in the vicinity of the Nichol B showing and along the trend of the main iron formation.
- The recognition of a fault adjacent to the geochemical anomalous P-1 drill hole area.
- Obtaining significant anomalous geochemistry from several different areas including a grab sample that returned 0.599 ppm Au.

Recommendations are presented for future work based on the 2021 program. Recommendations are also presented based on all previous programs completed on the Clement Property.

### **1.0 INTRODUCTION**

The Clement property is located 130 km northeast of Sudbury, Ontario within Clement and MacBeth townships in the Sudbury Mining Division. The property is bounded by UTM NAD83 coordinates 17U 550434E to 555243E and 5188816N to 5185595N. The property consists of 32 contiguous unpatented mining claims containing 8 boundary, 13 single cell and 11 multicell claims.

From May 10<sup>th</sup> to November 16<sup>th</sup>, 2021, a 43-day program of reconnaissance geological mapping, prospecting and sampling was completed on the Clement property. This work forms the basis of this report.

### 2.0 PROPERTY DETAILS

#### 2.1 Location and Access

The property is located 130 km northeast of Sudbury, Ontario within Clement and MacBeth Townships in the Sudbury Mining Division (Figure 1). The property is bounded by UTM NAD83 coordinates 17U 550434E to 555243E and 5188816N to 5185595N.

Excellent year-round access to the property is provided by Highway 17 East from Sudbury to the town of Warren and then north onto highways 539, 539a and 805.

A full range of services and supplies are provided in the city of Sudbury located 130 km to the southwest. Local accommodations can be found at lodges located along Highway 805.

#### 2.2 Topography and Vegetation

The local terrain is typical of the Precambrian Shield, with low rolling hills and marshy areas. Vegetation on higher ground consists of a variety of hardwoods such as poplar and birch, with coniferous trees that include spruce, balsam and pine. In the lower ground, typically more wet in character, black spruce, tamarack, alder and cedar predominate. Water for exploration purposes is available from beaver ponds, marshes, small streams and lakes. Snowfall generally begins in November and extends into late March, early April. Lakes are usually passable with adequate ice thickness from late December through to late March. Between 50 and 100

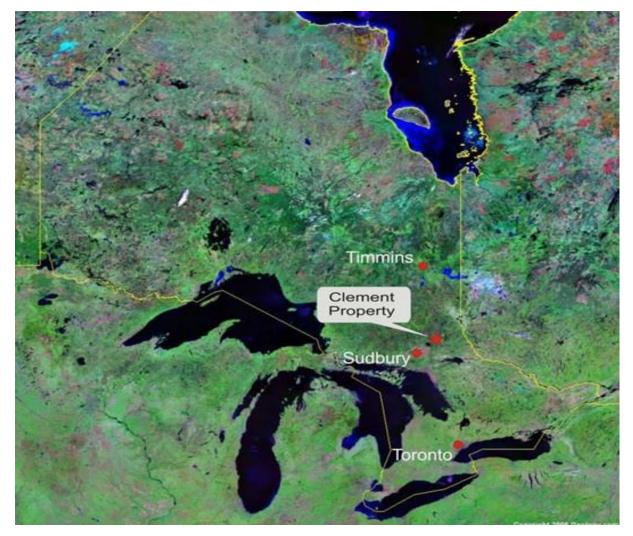



Figure 1: Location of the Clement Property in Ontario, Canada

mm of monthly rainfall is normal from April to October. The mean temperature is  $-13^{\circ}$ C in January and  $19^{\circ}$ C in July.

# 2.3 Claims

The property is located 130 km northeast of Sudbury, Ontario within Clement and MacBeth Townships in the Sudbury Mining Division. The property is bounded by UTM NAD83 coordinates 17U 550434E to 555243E and 5188816N to 5185595N. The property consists of 32 contiguous unpatented mining claims containing 8 boundary, 13 single cell and 11 multicell claims. (Table 1, Figure 2). The claims are held by Brian James Wright (60%), client number 210254 and Randy Irwin Stewart (40%), client number 408174.

| Claim<br>No | Due Date        | Туре            | Cells     | Township  | Required  | Applied | Banked |   |
|-------------|-----------------|-----------------|-----------|-----------|-----------|---------|--------|---|
| 204229      | May 12/2022     | 1 Cell          | 41I16F386 | MacBeth   | 172       | 428     | 0      |   |
| 128078      | May 12/2022     | 1 Cell          | 41I16F387 | MacBeth   | 200       | 400     | 0      |   |
| 314834      | May 12/2022     | 1 Cell          | 41I16F388 | MacBeth   | 200       | 400     | 0      |   |
| 174161      | May 12/2022     | 1 Cell          | 41I16F389 | MacBeth   | 200       | 400     | 0      |   |
| 245434      | June 30/2022    | 1 Cell          | 41I16F390 | MacBeth   | 200       | 400     | 0      |   |
| 342965      | June 30/2022    | 1 Cell          | 41I16F370 | MacBeth   | 200       | 400     | 0      |   |
| 136237      | June 30/2022    | Boundary        | 41I16F350 | MacBeth   | 200       | 400     | 0      |   |
| 188221      | June 30/2022    | Boundary        | 41I16F351 | MacBeth   | 200       | 400     | 0      |   |
| 107788      | June 30/2022    | Boundary        | 41I16F331 | MacBeth   | 200       | 400     | 0      |   |
| 304207      | June 30/2022    | Boundary        | 41I16F330 | MacBeth   | 200       | 400     | 0      |   |
| 124731      | June 30/2022    | 1 Cell          | 41I16F310 | MacBeth   | 200       | 400     | 0      |   |
| 185478      | June 30/2022    | Boundary        | 41I16C053 | MacBeth   | 200       | 400     | 131    |   |
|             |                 |                 |           | MacBeth   |           |         |        |   |
| 281341      | June 30/2022    | Boundary        | 41I16C054 | and       | 200       | 400     | 0      |   |
|             |                 |                 |           | Clement   |           |         |        |   |
| 122033      | June 30/2022    | Boundary        | 41I16C056 | Clement   | 200       | 400     | 0      |   |
| 233340      | June 30/2022    | Boundary        | 41I16C055 | Clement   | 200       | 600     | 0      |   |
|             |                 |                 | 41I16C006 |           |           |         |        |   |
| 546080      | May 12/2022     | 3 Cell          | 41I16C007 | MacBeth   | 1200      | 2400    | 149    |   |
|             |                 |                 | 41I16C008 |           |           |         |        |   |
|             |                 |                 | 41I16C009 |           |           |         |        |   |
|             |                 |                 | 41I16C010 |           |           |         |        |   |
| 546027      | May 12/2022     | 5 Cell          | 41I16C011 | MacBeth   | 2000      | 4000    | 0      |   |
|             |                 |                 | 41I16F371 |           |           |         |        |   |
|             |                 |                 | 41I16F391 |           |           |         |        |   |
|             |                 |                 | 41I16C026 |           |           |         |        |   |
|             |                 |                 | 41I16C027 |           |           |         |        |   |
| 546028      | May 12/2022     | 6 Cell          | 41I16C028 | MacBeth   | 2400      | 4800    | 0      |   |
| 0.0020      | , 111ay 12/2022 | 5 Willy 12/2022 | 0.0011    | 41I16C046 | MacDeth   |         |        | 0 |
|             |                 |                 | 41I16C047 |           |           |         |        |   |
|             |                 |                 | 41I16C048 |           |           |         |        |   |
| 546081      | May 12/2022     | 2 Cell          | 41I16C029 | MacBeth   | 800       | 1600    | 0      |   |
|             |                 |                 | 41I16C049 |           |           |         |        |   |
|             |                 |                 | 41I16C030 | MacBeth   | 1600 4800 |         |        |   |
| 546082      | June 30/2022    | 4 Cell          | 41I16C031 |           |           | 2110    |        |   |
|             |                 |                 | 41I16C050 |           |           |         |        |   |
|             |                 |                 | 41I16F351 |           |           |         |        |   |
|             |                 |                 |           |           |           |         |        |   |
|             |                 |                 |           |           |           |         |        |   |
|             |                 |                 |           |           |           |         |        |   |

| Claim<br>No | Due Date     | Туре    | Cells                                                                                                                                                    | Township                  | Required | Applied | Banked |
|-------------|--------------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|----------|---------|--------|
| 546024      | June 30/2022 | 7 Cell  | 41I16F311<br>41I16F312<br>41I16F313<br>41I16F314<br>41I16F332<br>41I16F333<br>41I16F333                                                                  | MacBeth<br>and<br>Clement | 2800     | 8400    | 0      |
| 546026      | June 30/2022 | 12 Cell | 41116C012<br>41116C013<br>41116C014<br>41116F352<br>41116F353<br>41116F354<br>41116F372<br>41116F373<br>41116F374<br>41116F392<br>41116F393<br>41116F394 | MacBeth<br>and<br>Clement | 4800     | 14400   | 0      |
| 545942      | June 30/2022 | 4 Cell  | 41116F355<br>41116F356<br>41116F375<br>41116F376                                                                                                         | Clement                   | 1200     | 3600    | 0      |
| 545943      | June 30/2022 | 4 Cell  | 41I16C015<br>41I16C016<br>41I16F395<br>41I16F396                                                                                                         | Clement                   | 1600     | 4800    | 0      |
| 546025      | June 30/2022 | 4 Cell  | 41116C032<br>41116C033<br>41116C034<br>41116C052                                                                                                         | MacBeth<br>and<br>Clement | 1600     | 4800    | 0      |
| 546083      | June 30/2022 | 2 Cell  | 41I16C035<br>41I16C036                                                                                                                                   | Clement                   | 800      | 2400    | 0      |
| 601268      | July 28/2022 | 1 Cell  | 41I16F369                                                                                                                                                | MacBeth                   | 400      | 0       | 0      |
| 601269      | July 28/2022 | 1 Cell  | 41I16F366                                                                                                                                                | MacBeth                   | 400      | 0       | 0      |
| 601270      | July 28/2022 | 1 Cell  | 41I16F368                                                                                                                                                | MacBeth                   | 400      | 0       | 0      |
| 601271      | July 28/2022 | 1 Cell  | 41I16F367                                                                                                                                                | MacBeth                   | 400      | 0       | 0      |
| 605894      | Aug 08/2022  | 1 Cell  | 41I16F349                                                                                                                                                | MacBeth                   | 400      | 0       | 0      |
| 605895      | Aug 08/2022  | 1 Cell  | 41I16F348                                                                                                                                                | MacBeth                   | 400      | 0       | 0      |
|             |              |         |                                                                                                                                                          | Totals                    | 26172    |         |        |

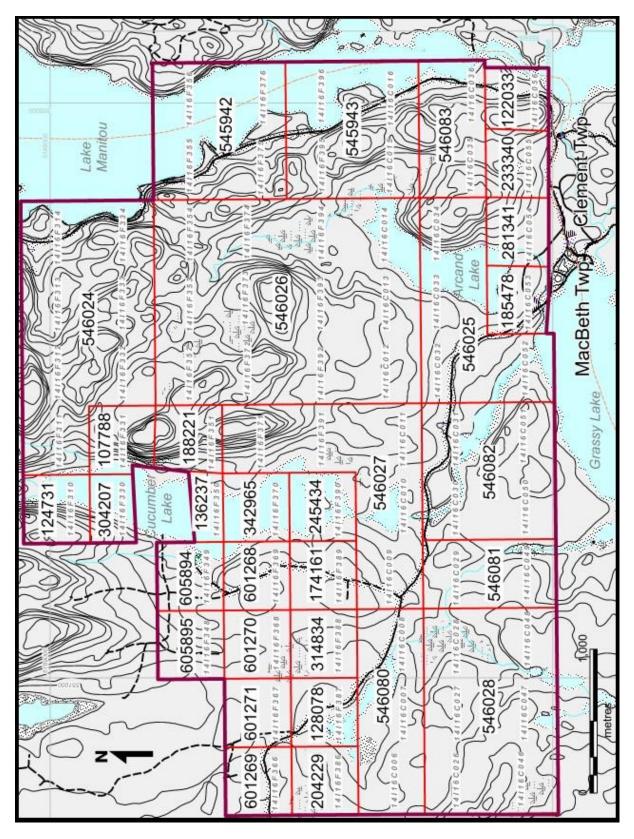



Figure 2: Tenure of the Clement Property, MacBeth and Clement Townships, Ontario.

#### **3.0 PREVIOUS WORK**

Since the late 1800's there has been mineral exploration in the area for gold, silver, copper and iron. The earliest known geological map of the area is by A.E. Barlow entitled "Maps of Parts of the Districts of Nipissing and Algoma" published by the Ontario Bureau of Mines in 1891. Barlow mapped the region around Lake Temagami and covered Scholes, Clement and the eastern half of Afton and MacBeth Townships (Meyn, 1977).

**1897:** Gold was first discovered in weathered iron formation on the northern-most peninsula of Emerald Lake in Afton Township.

**1900: J.L.R. Parsons** reported gold in quartz on Emerald Lake.

**1901: Miller** visited the gold occurrence on Emerald Lake. He stated that several pits were blasted in quartz veins. Cubic pyrite was noted in the quartz veins that were hosted in Jaspilite (jasper iron formation). He also visited a 5-foot quartz vein (dipping 35 degrees south) east of the shore of Arcand Lake. He mentioned that this was then known as the Turcotte mine (now known as the Adit Quartz Vein at 554238E, 5186273N) (Photo 1).

**1915-1916: The Golden Rose Mining Company** constructed a mill and sunk a 9 m deep shaft on the Emerald Lake gold discovery.

**1927: Afton Mines Limited** deepened the Golden Rose shaft to 30 m and did crosscutting and drifting. Diamond drilling was also reported.

**1934-1941:** New Golden Rose Mines Limited and The Consolidated Mining and Smelting Company of Canada Limited (Cominco) carried out extensive surface and underground exploration and development on the Golden Rose /New Golden Rose Mine and produced a total of 45,360 ounces of gold and 8,296 ounces of silver from 144,237 tons milled for a recovery grade of 0.31 oz./t Au. Gold is present in pyrite within quartz-carbonate (ankerite) veins in Archean magnetite-chert (jasper) iron formation (Meyn,1977).

**1937:** Walsh completed geological work on an old adit (possibly circa 1907) (Photo 1) east of Arcand Lake. The adit was driven on a flat 6-foot-thick quartz vein that was traced for 800 feet along a steep cliff face. There is mention of patchy chalcopyrite mineralization with chip samples returning very low values. This adit was previously known as the Turcotte mine mentioned by Miller, 1901. There is no record of the actual adit work.

**1958** – **1959:** W.H. Nichol optioned his seventeen claims to Little Long Lac Gold Mines Ltd. The claims were located on the eastern side of Cucumber Lake, on the eastern side of Arcand Lake and on Lake Manitou just east of the northern tip of Arcand Lake. Eight trenches and five diamond drill holes (210 feet) tested a quartz vein over a 210-foot strike length (the Nichol A showing) hosted in porphyritic andesite on the shore of Cucumber Lake. One trench sample returned 1.76 oz./t Au. This showing is now located on the present Anderson boundary claims 108367, 239481, 306805 and 345027 adjacent to the Clement property. The iron formation to the east of Arcand Lake was tested by five diamond drill holes totaling 1007 feet. An 82-foot hole, drilled south to north, also tested the iron formation but the exact location is not known. At the Nichol B showing, trenching in iron formation was performed between the beaver dam at the southern tip of Cucumber Lake and the beaver pond just to the south. A sample of siliceous iron formation returned 0.28 oz./t Au. At the C showing near the south-eastern corner of Arcand Lake a program of trenching and two diamond drill holes (W-E) totaling 750 feet was performed. Hole 2 returned a "6-inch section at depth of eighty feet; containing chalcopyrite and pyrrhotite of commercial grade" in Nipissing gabbro. Two holes were drilled close to the western shore of Lake Manitou totaling 685 feet testing the Nipissing/Gowganda contact. These holes encountered localized chalcopyrite and pyrrhotite mineralization but returned no significant values.

**1968: Kennco Explorations (Canada) Ltd.** performed airborne magnetic and electromagnetic surveys over the southwest corner of Clement Township and the southern third of Macbeth Township in search for copper in the Nipissing gabbro. No follow-up work was reported.



Photo 1: Historical Adit (Location 554238E, 5186273N)

**1974-1976: Pelican Mines Ltd.** performed geological mapping, ground magnetics and EM surveys and four diamond drill holes totaling 1403 feet. The drilling concentrated on the main iron formation and returned no significant values. The surveys were performed between the creek running out of the southern tip of Cucumber Lake and extending to the western edge of Arcand Lake. A grab sample from a large piece of quartz float and underlain by a large olivine diabase dike returned 0.15 oz./t Au (located on claim 546082 at approximately 552411E, 5185922N).

**1975:** M. Green and Associates Ltd. (Hames, C.M.) performed a ground magnetic survey encompassing Arcand Lake to the western shore of Lake Manitou. The magnetic survey outlined the iron formation previous recognized by Nichol at the south shore in the northern bend of Arcand Lake. The magnetic survey also outlined a mafic dike in the middle of the southern portion of the claim group and corresponds to an outcrop mapped by Meyn in 1977. Also, a quartz vein and trenching were noted on the large hill just east of Arcand Lake (most likely the Adit Quartz Vein).

**1977: H.D. Meyn** of the OGS mapped the townships of Afton, Scholes, Macbeth and Clement Townships.

1976 -1995: Temagami Land Caution, no work performed.

**1996: Brian Wright,** in the staking rush that followed the lifting of the Temagami Land Caution, staked the first claims that would become the present-day Clement property.

**1998:** Nipissing Exploration Services Limited cut 22.6 km of grid lines and performed a ground magnetic survey over claims that mirrored M. Green and Associates Ltd. Arcand Lake claims. The survey outlined the previously known iron formation and a NE trending mafic dike. Just south of the iron formation prospecting uncovered pits of mineralized quartz veining. Anomalous gold values were mentioned but no assays were reported.

**1998: Temex Resources** performed a ground magnetic and VLF-EM survey on the south western corner of the Clement property. The survey outlined two northwest trending diabase dikes.

**1998-2000:** Steve and Ted Anderson performed work on their claims surrounding Cucumber Lake including the quartz vein of the Nichol A showing (present claim 306805). The work performed was a ground magnetic and VLF survey and sampling of the old Nichol A showing trenches. This sampling returned 23.45 g/t Au in quartz and anomalous values in the host metavolcanics. The magnetic survey outlined a north-west trending diabase dike.

**2008:** GoldTrain Resources/ GoldWright Explorations Inc. (Brian Wright option) completed 13 kms of line cutting, ground magnetic and VLF surveys, and geological mapping around the northern tip of Arcand Lake. A total of 28 samples were assayed for gold however no significant results were obtained.

**2010:** GoldTrain Resources contracted Geotech Ltd. to carry out a helicopter-borne VTEM and aeromagnetic survey over the Clement property. Several significant VTEM anomalies and magnetic signatures were identified. An EMIT Maxwell Plate Modelling of selected VTEM anomalies outlined 3 areas of interest. Between March 23 and March 26, 2010, GoldTrain undertook a mechanical bedrock stripping, sampling and geological mapping program of the C anomaly area. Huronian cover rocks impeded any explanation of the anomaly. Between May and July 2010, a 35-day reconnaissance geological mapping and sampling program was also undertaken. A total of 28 grab and 19 channel samples were collected. No significant values were returned.

**2011:** GoldTrain Resources completed five diamond drill holes totaling 564.5 m on several of the VTEM conductors modelled by Geotech Ltd. Holes CL11-01 and CL11-02 intersected disseminated and stringer sulphide mineralization consisting of pyrite, pyrrhotite, and chalcopyrite. Hole CL11-03 outlined a newly discovered gold zone in intermediate to felsic volcanics. The gold is contained within an alteration envelope with quartz, carbonate and albite veining and semi-massive sulphide mineralization (0.4 g/t over 9 m including 2.95 g/t over 0.5 m and 1.06 g/t over 0.5 m). Holes CL11-04 and CL11-05 outlined a sulphide mineralized alteration envelope containing massive sulphide and chert horizons with locally anomalous Cu, Zn, Au and Ag (Massive Sulphide Zone).

**2014:** Randy Stewart and Brian Wright completed reconnaissance geological mapping and prospecting. The program outlined a previously unrecognized major N-S structure following the trend of Arcand Lake. Mapping concentrated on alteration, mineralization of select VTEM target locations. The most notable was a rusty 80cm wide quartz vein with 0.5% disseminated sulphides (The Quartz Vein Showing). The vein is hosted within a gossanous and siliceous intermediate to felsic metavolcanic (locally feldspar porphyritic) with 1-2% blebby, finely disseminated and

fracture filling sulphides. The vein has a 345-degree strike and a vertical dip. Also, of note was sulphide mineralization in a mafic dike now known as the Ditch Sulphide Showing.

**2015:** Randy Stewart and Brian Wright completed a reconnaissance geological mapping and prospecting program. The program increased the understanding of the volcanic stratigraphy by the recognition of volcanic breccia. It outlined a NE-SW trending mafic dike on claims 546083, 233340 and 281341, aided by historical geophysical surveys and one outcrop on Meyn's 1977 map. Reexamined the Quartz Vein Showing of 2014 and although it is smaller in scale it bears a striking resemblance to the Anderson/ Nichol A showing (trench sample of 23.45 g/t Au) on the shore of Cucumber Lake.

**2016: Trelawney Mining and Exploration/ IAM Gold** completed a 2-day re-logging and sampling program of diamond drill hole CL11-03. This program was unsuccessful in locating any new gold zones.

**2017:** Randy Stewart and Brian Wright completed a program of 10.45 kms of line cutting and geological mapping. The program delineated a possible eastern surficial expression of the gold zone alteration and mineralization envelope outlined in diamond drill hole CL11-03. The outcrop (554135E and 5186939N) is an altered intermediate tuff with 1-2% disseminated and stringer pyrrhotite and pyrite. The program has also identified a historic adit (Turcotte Mine) at 554238E, 5186273N blasted into a large quartz vein hosted in sheared Nipissing Gabbro. The vein is 1.3m thick and strikes at 120 degrees and dips at 30 degrees.

**2019:** Randy Stewart and Brian Wright completed a 38-day reconnaissance geological mapping and prospecting program. The program was successful in partially defining the aerial extent of the sulphide mineralized alteration envelope of the "Massive Sulphide Zone" and within this envelope the identification of an altered and sulphide mineralized feldspar porphyritic mafic intrusion. The program also recognized a lamprophyre dike with implications for associated major structures and gold mineralization.

**2020:** Randy Stewart completed a 10-day ground electromagnetic BeepMat survey program. The program was successful in the discovery of an altered and sulphide mineralized felsic volcanic rock now referred to as the Cairn Sulphide Showing (554012E, 5187053N).

#### **4.0 GEOLOGY**

#### 4.1 Regional Geology

The Clement property is located within the south-western extension of the Temagami greenstone belt part of the Western Abitibi Sub province (Figure 3). The greenstone belt is an Archean window within the Cobalt embayment of the Southern Province (Jackson and Fyon, 1991). The Cobalt Group is part of the Proterozoic Huronian Supergroup.

The area is underlain by a sequence of Early Precambrian metavolcanic and metasedimentary rocks locally interbedded with Algoma-type iron formation. The iron formation has been traced in outcrop and historical diamond drilling from the southern portion of claim 174161 to just east of Arcand Lake where it becomes covered by Nipissing gabbro. Airborne magnetic surveys suggest the iron formation continues to the east and is coincident with the iron formation in Vogt Township. Iron formation is spatially and temporally associated with several world class massive sulphide deposits and gold deposits. The metavolcanic and metasedimentary sequence has been classified as the Porcupine Assemblage (2690-2685 Ma +/- 5 Ma) from age dating by Ayer et al., 2006.

The Porcupine Assemblage is overlain unconformably by Early Proterozoic Huronian Supergroup sedimentary rocks of the Gowganda Formation. The Huronian Supergroup was deposited between 2.45 and 2.22 Ga, and reflects the initiation and development of a continental margin from an early transform margin (marked by left-lateral strike-slip activity), to a passive margin, facing a newly formed Paleoproterozoic Ocean (Long, 2009). The Gowganda Formation is characterized by a heterogeneous sequence of framework and matrix supported conglomerate (including diamictites), sandstone, siltstone and mudstone with marked vertical and lateral facies changes. Regionally, matrix-supported conglomerates and laminated mudstones with drop stones are more abundant at the base of the sequence (Long, 2009). The

conglomerate units have been interpreted as being glaciogenic in origin (e.g., Junnila and Young 1995, Fralick and Miall 1989), likely deposited in a marine environment adjacent to an ice shelf.

The Nipissing gabbro (*after Jobin-Bevans*, 2009), controlled by pre-existing structures (Choudhry, 1984), intrudes the supracrustal rocks of the Huronian Supergroup, as well as the underlying Archean granite-greenstone basement rocks. U-Pb geochronology has yielded crystallization ages of approximately 2200 Ma (2219 Ma: Corfu and Andrews, 1986), (2212 Ma: Conrod, 1989), (2210 Ma: Noble and Lightfoot, 1992). Most of the Nipissing gabbro intrusions are less than 1000 m thick and occur as horizontal sheets, as undulating sills (basins and arches), as subvertical dikes (Hriskevich, 1968; Jambor, 1971; Conrod, 1988 and 1989) and as arcuate and open-ring exposures or cone sheets (Buchan et al., 1989). The cone sheets are

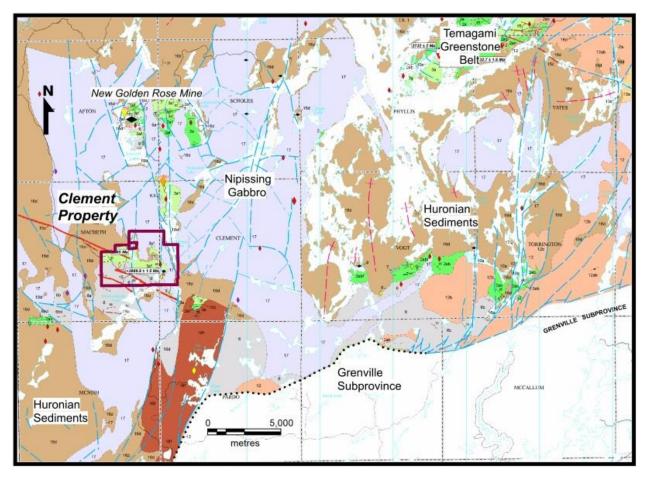



Figure 3: Regional Geology (after Ayer et al., 2006)

distinguished by structural features in surrounding sedimentary rocks that suggest the gabbro intrusions were emplaced as shallow (< 50°), inward-dipping, cone-shaped bodies that are tens of metres to several hundred metres thick (Jambor, 1971; Lovell and Caine, 1970; Jobin-Bevans et al., 1998). Another type of intrusion, the lopolithic-like form (i.e., saucer-shaped), is rare and is interpreted to represent deeper "feeder" systems to the stratigraphically higher sill, dike and cone-sheet type of intrusions.

These deeper exposures, which are fault bound on a regional scale, are thought to have been exposed through uplift along the bounding fault lines (Dressler, 1979; Innes and Colvine, 1984; Jobin-Bevans et al., 1998). The intrusions are dominantly tholeiitic and sub-alkalic, with evolved rock types and differentiated intrusions trending toward calc-alkalic affinities (Lightfoot and Naldrett, 1996). Based on geochemical characteristics and outcrop patterns, the Nipissing Gabbro represents the intrusive portion of an eroded continental flood basalt. Magmas apparently cut through Archean basement rocks and sedimentary rocks of the Huronian Supergroup as dikes, then spread laterally through the Huronian rocks as sills (Lightfoot et al., 1986 and 1987; Lightfoot and Naldrett, 1996).

The youngest rocks in the area are late olivine diabase and diabase dikes (Sudbury dike swarm 1238 +/- 4 Ma) following NW-SE structures and late mafic dikes following NE-SW structures, possibly part of the Preissac Dike Swarm (2150 Ma) (Osmani, 1991).

Several major structural trends are defined by north-south trending faults that include the Cucumber Lake Fault, Manitou Lake Faults (Meyn, 1977), Arcand Lake Faults, the recently named Brian's Fault and the newly mapped fault at the P-1 drill hole area. Also, many of the Nipissing gabbro contacts are fault bounded. Of note, the property lies on the southern edge of the Temagami (Wanapetei) magnetic anomaly that represents a mirror image of the prolific Sudbury structure (Kawohl et. al, 2017).

#### 4.2 Property Geology

The entire Archean metavolcanic/metasedimentary sequence of rocks on the property has an approximate trend of 275 to 280 degrees and a dip of 70 to 75 degrees northward. The rocks that have received the most attention from early workers is an E-W trending band of Archean, Algoma-type, oxide, silicate and sulphide facies iron formation occurring in the centre of the property (Figure 4). The intermittent beds of iron formation have been traced in outcrop and historical diamond drilling from the southern portion of claim 174161 to just east of Arcand Lake where it becomes covered by Nipissing gabbro. The iron formation is a banded sequence of chert, magnetite and actinolite (Photo 2 and Photo 3) interbedded and intimately associated with black aphanitic massive to banded carbonaceous (graphitic) argillite. The argillite is locally sulphide (pyrrhotite, pyrite and trace chalcopyrite) mineralized (Stringer Sulphide Pits) with localized bands of massive magnetite and represents the sulphide facies of the iron formation. The main iron formation shows intense ductile deformation and localized brittle fracturing. Also, small bands of chert-magnetite-actinolite iron formation with localized pyrite, pyrrhotite and trace chalcopyrite, quite recognizable in GoldTrain's airborne magnetic survey, has been mapped west of the outcrop stripping performed by GoldTrain and to the east of diamond drill hole CL11-03 on claim 546026. The main iron formation is found at the contact between felsic to intermediate metavolcanics to the north and metasediments to the south. The iron formation represents a quiescent period in volcanic activity and clastic accumulation. (Schnieders, 1987).

The felsic to intermediate metavolcanics have been age dated at 2685 Ma by Ayer (1986). The rocks consist mostly of lapilli tuffs, volcanic (tuff/pyroclastic) breccia (Photo 4), tuffs, localized crystal ash tuff (Photo 5), localized massive flows and possible flow breccias. The rocks are locally feldspar and quartz porphyritic. The lapilli tuffs are dominated by lapilli fragments of 2 mm to 64 mm. The tuff breccia contains 25% to 75% blocks and bombs (>64mm). The pyroclastic breccia contains >75% bombs. These two were difficult to differentiated between in the field and are group together as volcanic breccia.

The southern portion of the property is underlain by thick sequence of Archean metasediments consisting predominately of interbedded and locally laminated greywacke, arkose (Photo 6), arkosic wacke and conglomerate. Ayer (1986) has age dated these at 2689 +/- 1.5 Ma.

An altered and sulphide mineralized mafic feldspar porphyritic intrusion has been mapped in the area known the Massive Sulphide Zone (Figure 4). The intrusion is most likely related to the Nipissing gabbro suit. A lamprophyre dike has been traced for over 150 m in several outcrop exposures (Figure 4). The dike is dense, medium grained, green black with 1-2 mm biotite crystals in a mafic groundmass.

The Archean rock sequence is unconformably overlain by flat lying metasedimentary rocks of the Huronian Gowganda Formation. The Formation consist of conglomerate, arkose/quartzite and greywacke/lithic wacke. The conglomerate is matrix supported and composed of subrounded to angular pebbles, cobbles and minor boulders set in a fine to medium grained greywacke/lithic wacke. The clasts consist predominately of granitic rocks with lessor amounts of metasediments and metavolcanics. The greywacke/lithic wacke is feldspathic and forms interbeds in and is gradational to the conglomerate. The conglomerate and greywacke/lithic wacke can be difficult to distinguish between in limited outcrop exposure areas. The Archean and Huronian rocks are intruded by sheet like sills of Nipissing gabbro. The Nipissing gabbro rocks are massive, medium grained, dark greenish grey, finer grained near the margins with localized pegmatitic phases. The Nipissing gabbro are in sharp contact with the Gowganda Formation rocks with a contact zone ranging from 3 to 7.5 m wide in which the two rock types are indistinguishably fine grained and black (Meyn, 1977). The gabbro follows the bedding in the Gowganda Formation and is seldom disturbed; disturbance where it occurs, extends only over a distance of 1 to 3 m from the contact. Recrystallization of the sedimentary rocks and contamination of the Nipissing gabbro does take place (Meyn, 1977). In field mapping a brecciated contact was observed at 554166E, 5186171N. Mapping has also outlined fault bounded contacts of the Nipissing gabbro.

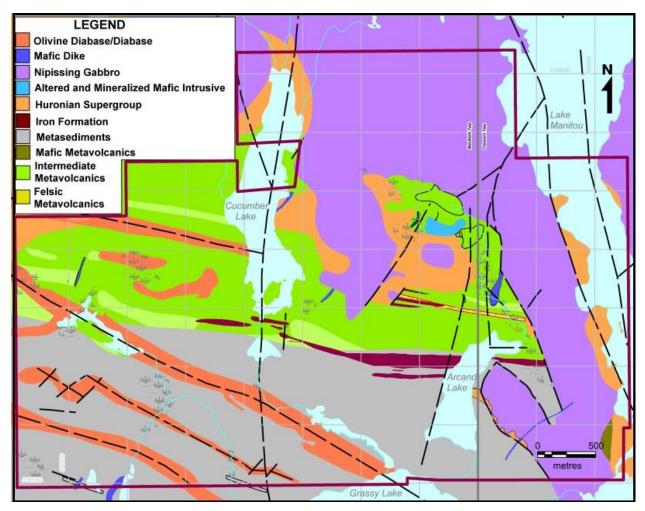



Figure 4: Property Geology

The youngest rocks on the property, following NW-SE structures, are olivine diabase and diabase dikes and, following NE-SW structures, are recently mapped unclassified mafic dikes (possibly Preissic aged). The most significant one of these mafic dikes is host to the Ditch Sulphide Showing on claim 281341. The dike was outlined by mapping, historical geophysical surveys and one outcrop on Meyn's 1977 map.

#### **4.21**Alteration and Mineralization

# **Gold Mineralization**

In 2011, GoldTrain Resources' diamond drill hole CL11-03 tested the VTEM anomaly area B. This hole outlined a new gold discovery (Clement Gold Zone: 0.4g/t over 9m including 2.95 g/t



Photo 2: Chert-Magnetite Iron Formation



Photo 3: Chert-Magnetite-Actinolite Iron Formation

over 0.5m and 1.06g/t over 0.5m) in altered intermediate to felsic metavolcanics. The alteration envelope consists of pervasive sericite, chlorite, epidote, carbonate and silica. Mineralization consists of disseminated and semi-massive pyrite, pyrrhotite and chalcopyrite. The greatest gold values occur in quartz, carbonate, chlorite and albite veining with semi massive pyrite pyrrhotite and chalcopyrite. Along strike there are untested VTEM and magnetic anomalies and the gold zone is open both at depth and along strike.

It is widely recognized that iron formation is spatially and temporally associated with several world class gold deposits. Historical sampling at the Nichol B showing returned an assay of 0.28 oz./t Au in siliceous iron formation.

Also, lamprophyre dikes (mapped in 2019) are known to be associated with major structures and gold mineralization (McNeil and Kerrich, 1985).



Photo 4: Intermediate to Felsic Volcanic Breccia

# **VMS Mineralization**

In 2011, GoldTrain Resources' diamond drill holes CL11-04 and CL11-05 tested the VTEM anomaly area A. The drill holes outlined a sericite, chlorite and silica alteration zone with areas of massive sulphides, chert horizons and locally anomalous Cu, Zn, Au and Ag (Massive Sulphide Zone). The zone has a possible true width of 15-16m and is coincident with a recognizable fault zone. The zone remains open at depth and along strike with several VTEM and coincident magnetic anomalies untested.

Geological mapping has partially defined the aerial extent of the alteration and mineralization of the Massive Sulphide Zone. The mapping has outlined an alteration envelope of silica, chlorite, amphibole, sericite, localized epidote and albite and quartz veining. Mineralization



Photo 5: Felsic Lapilli/Crystal Ash Tuff



Photo 6: Interbedded Arkose and Greywacke

consists of disseminated, stringer to blebby pyrite and pyrrhotite of up to 5% and minor amounts of chalcopyrite. Within this zone a sheared, altered and sulphide mineralized mafic feldspar porphyritic intrusion is present and is possibly related to the Nipissing gabbro suite.

Algoma-type iron formations display a spatial and temporal association with volcanic-hosted base metal sulphide deposits. These rocks typically occur in the immediate vicinity of the mineralization (Peter, 2003). The iron formations represent chemical sediments deposited from hydrothermal fluids that vented into a submarine environment and for that reason they are commonly referred to as exhalites. (Peter and Goodfellow, 1996; Peter, 2003). Exhalites refer to interbedded volcaniclastic and/or detrital and chemical sedimentary rocks. The volcaniclastic and/or detrital component typically consists of volcaniclastic sediment, siltstone and/or shale, whereas the chemical component may include chert, Fe-Mn oxide-carbonate-silicate sediment and/or polymetallic sulphides (Peter, 2003). Areally extensive, 1 to 5 m thick, Fe-rich exhalites (iron formations) may mark the most prospective VMS horizons (Spry et al 2000; Peter, 2003). Algoma-type iron formations typically occur within greywackes, turbidites and volcanic or volcaniclastic rocks and are thought to have formed in volcanic arcs or back arcs, spreading ridges and rifts. These iron formations were precipitated from venting hydrothermal fluids that are contemporaneous with volcanism (Peter, 2003).

#### **5.0 2021 PROGRAM**

#### 5.1 Methods

In the summer of 2021, a 43-day program of reconnaissance geological mapping, prospecting and sampling was completed on the Clement property (Table 2). Equipped with handheld GPS's, compasses, rock hammers and grub hoes, several targeted areas were prospected, field mapped, and grab samples taken. The samples were collected in plastic bags. Before being shipped the sample bags were tagged, stapled shut and placed in rice bags. They were then subsequently delivered to Agat Labs in Sudbury, Ontario. 17 samples were analyzed for Au using fire assay AA (30g) with AAS Finish. 28 were analyzed for 51 elements metal package using Aqua-regia ICP/ICPMS finish. The samples are dry crushed to 75% passing 2mm,

# split to 250g and pulverized to 85% passing 75um.

The objectives of the 2021 program were to:

- Map and prospect the newest acquired claims.
- Map and prospect anomalies from the recently acquired 2020 OGS Airborne Magnetic Gradiometer Survey maps.
- Define, map and prospect the magnetic trace of the main iron formation.
- Re-map and re-interpret and the main road outcrops.
- Map and prospect the Nichol B showing with a historical assay of 0.28 oz./t Au in siliceous iron formation.
- Re-map and sample outcrops of interest from previous programs.

| Claim  | Cells                                                                                             | Work Days |
|--------|---------------------------------------------------------------------------------------------------|-----------|
| 122033 | 14I16C056                                                                                         | 0.25      |
| 128078 | 14I16F387                                                                                         | 4.50      |
| 174161 | 14I16F389                                                                                         | 0.75      |
| 204229 | 14I16F386                                                                                         | 2.50      |
| 245434 | 14I16F390                                                                                         | 1.50      |
| 281341 | 14I16C054                                                                                         | 1.00      |
| 314834 | 14I16F388                                                                                         | 0.50      |
| 342965 | 14I16F370                                                                                         | 0.50      |
| 546025 | 14I16C032                                                                                         | 0.75      |
| 546026 | 41116C012, 41116C013, 41116F352, 41116F353, 41116F373, 41116F374, 41116F392, 41116F393, 41116F394 | 10.00     |
| 546027 | 14I16C009,14I16C010, 14I16C011, 14I16F391                                                         | 7.00      |
| 546080 | 14I16C006, 14I16C007, 14I16C008                                                                   | 1.00      |
| 546082 | 41116C030, 41116C031, 41116F351                                                                   | 0.75      |
| 546083 | 41116C035                                                                                         | 1.50      |
| 601268 | 14I16F369                                                                                         | 0.75      |

# Table 2: 2021 Work Areas and Work Days

| Claim  | Cells     | Work Days |
|--------|-----------|-----------|
| 601269 | 14I16F366 | 2.50      |
| 601270 | 14I16F368 | 0.75      |
| 601271 | 14I16F367 | 3.50      |
| 605894 | 14I16F349 | 1.50      |
| 605895 | 14I16F348 | 1.50      |
| Total  |           | 43.00     |

The 43-day program occurred between May 10<sup>th</sup> and November 16<sup>th</sup>, 2021. Certificates of analysis for the grab samples are located in Appendix II.

# 6.0 RESULTS and CONCLUSIONS

# **Mapping Results**

The 2021 mapping program of the main iron formation has located unknown historical pits and trenches (Figure 5 and Figure 7). One of the trenches has led to the recognition of the intimate relationship of the carbonaceous/graphitic argillite (sulphide facies) to the iron formation.

The program has also led to the mapping of a fault adjacent to the geochemical anomalous P-1 drill hole area (Figure 5).

The mapping has significantly enhanced the understanding of the Clement property volcanic stratigraphy. The recent mapping has invoked a newly refined geological legend. Although still a field legend, it is an attempt to better define the stratigraphy for the exploration for volcanic vents and thus VMS deposits.

### **Sampling Results**

45 grab samples were collected from outcrops of interest and are presented in Table 3. The geochemical data has been interpreted empirically and not statistically. Out of this interpretation has evolved two tiers of significant anomalous values (Table 3). Tier 1 represents multiple anomalous metals for one or more samples or a single anomalous metal for multiple samples in the same locality. Tier 2 represents individual samples with a single anomalous metal value.

# Tier 1

# <u>*P-1 Drill Hole Area*</u> (Figure 5):

This area was previously drilled by Pelican Mines in 1975. There are 4 anomalous samples that come from a felsic lapilli tuff in contact with the main iron formation to the north.

*E5252002:* (0.435 ppm Cu) 3-5% disseminated cubic and bleb pyrite and stringer sulphide.

*E5252003:* (0.599 ppm Au) Pervasive epidote + potassium feldspar + sericite alteration, chlorite + amphibole alteration, localized felsic fragments, epidote + albite + quartz alteration veinlets with 1% disseminated pyrite + trace chalcopyrite.

*E5252004:* (0.219 ppm Cu) Very siliceous, pervasive potassium feldspar and localized epidote alteration, possible layering/bedding, 0.5% disseminated sulphide + trace chalcopyrite.

*E5251998:* (0.161 ppm Zn) Localized patches of epidote + chlorite alteration, localized 0.5-1% disseminated pyrrhotite, 3mm elongate to sub-rounded felsic cherty fragments, possible felsic layers, rusty crust.

### Massive Sulphide Zone (Figure 6):

*E5251966:* (0.117 ppm Zn) Intermediate Lapilli Tuff, siliceous, 3-5% disseminated and stringer pyrite + pyrrhotite and along chlorite rich fractures.

*E5251967:* (267 ppm Cu, 158 ppm Zn) Intermediate Volcanic, very siliceous, rusty weathering, 1-2% disseminated sulphides and 2-3% in quartz veinlets (trace chalcopyrite?).

*E5251970:* (279 ppm Cu, 5.23 ppm W) Intermediate Volcanic, siliceous, 1-2 % finely disseminated pyrite + pyrrhotite and 1-2% disseminated pyrite + pyrrhotite in quartz veinlets.

*E5251988:* (119 ppm Zn) Intermediate Volcanic, 3-5% sulphides disseminated and in small quartz + albite veinlets, aphanitic, siliceous, possibly altered. *E5251981:* (124 ppm Cu, 216 ppm Cr, 7.56 ppm Mo) Feldspar Porphyry in sharp contact with lapilli tuff, 5% 2mm milky grey feldspars, matrix supported which is dark grey and aphanitic, 2-3% pyrite + pyrrhotite + chalcopyrite? in quartz rich clots and locally disseminated, tuff has chlorite altered matrix.

#### Tier 2

# Ditch Sulphide Showing:

*E5251960*: (395 ppm Cu) Locally laminated, locally arkosic to gabbroic texture, siliceous, quartz +/- chlorite, amphibole veining and pods possibly near gabbro contact, 1-2% disseminated pyrite + pyrrhotite +/- chalcopyrite along quartz vein margin and up to 5% pyrrhotite along siliceous fractures.

# Quartz Vein Showing:

*E5251964:* (0.175 ppm Au) Rusty white quartz vein, localized 0.5% disseminated pyrite, trace chalcopyrite, 80cm wide.

# <u>*P-3 Drill Hole Area*</u> (Figure 7):

*E5252005:* (209 ppm Cu, 165 ppm Zn) Graphitic argillite, massive to locally laminated, 3-5% disseminated pyrrhotite, trace yellowish pyrite, aphanitic, localized sericite alteration, crosscutting micro-veinlets of chlorite and albite, localized drop stones.

| Sample   | Rock Type                                  | Easting | Northing | Description                                                                                                                                                                                                                                                                                                                                                                  |
|----------|--------------------------------------------|---------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| E5251960 | Greywacke                                  | 553866  | 5185676  | Dark grey green, locally laminated, locally arkosic to gabbroic texture, siliceous, qtz+/-chl, amph veining and pods possibly near gabbro contact, 1-2% diss po+py+/-cpy along quartz vein margin and up to 5% po along siliceous fractures                                                                                                                                  |
| E5251961 | Mafic Intrusive                            | 555076  | 5185839  | Possible dike rock, med to fine grained, dark grey olive to black<br>green, chl rich possibly altered gabbro, possibly fp, cherty/siliceous<br>fracture, hbld crystals/alteration, local rusty weathering on fractures<br>(hem+qtz), non mag, loc 1-2% diss po+/- cpy, tr cpy in kspar<br>alteration patch, galena? and black red sphalerite? in calcite fracture<br>filling |
| E5251962 | Intermediate<br>Lapilli Tuff               | 553687  |          | Fragmental, 1% blebby and disseminated po+cpy in a qtz+amph patch/vein/frag                                                                                                                                                                                                                                                                                                  |
| E5251963 | Intermediate<br>Volcanic                   | 550864  |          | Gossanous, massive, dark charcoal grey, aphanitic, siliceous, 1-2% sulphides-blebby, finely diss and cubic py along fractures, loc discordant fp dikes                                                                                                                                                                                                                       |
| E5251964 | Quartz Vein                                | 550864  | 5187064  | Rusty white qv, loc 0.5% diss py, tr cpy, 80cm wide, 345/90(165/90)                                                                                                                                                                                                                                                                                                          |
| E5251965 | Intermediate<br>Volcanic                   | 550808  | 5186982  | Fp, Dark grey, very fine grained, very siliceous, local qtz+chl veinlets and boudins and veining, loc 1-2% diss py                                                                                                                                                                                                                                                           |
| E5251966 | Intermediate<br>Lapilli Tuff               | 553857  |          | Buff grey, fine grained to fragmental, siliceous, massive, 3-5% disseminated and stringer py+po and along chl rich fracture, jointed                                                                                                                                                                                                                                         |
| E5251967 | Intermediate<br>Volcanic                   | 553873  |          | Lite grey, fine grained, very siliceous, rusty weathering, 1-2% diss sulphides and 2-3% in q veinlets (tr cpy?)                                                                                                                                                                                                                                                              |
| E5251968 | Intermediate<br>Volcanic                   | 553914  |          | Buff grey, fine grained, massive to local fabric, very siliceous, local sulphide burns, 3-5% py+po disseminated and along fractures                                                                                                                                                                                                                                          |
| E5251969 | Intermediate<br>Volcanic                   | 550874  | 5187072  | Dark charcoal grey, medium grained, 5-8% fspar crystals up 1cm, 2-<br>5% disseminated/stringer sulphides and along fractures and possible<br>qvs, rusty weathering                                                                                                                                                                                                           |
| E5251970 | Intermediate<br>Volcanic                   | 553554  | 5187717  | Light grey, fine grained, siliceous, rusty weathering, 1-2 % finely disseminated po+py and1-2% diss po+py in qtz veinlets, massive                                                                                                                                                                                                                                           |
| E5251971 | Intermediate Tuff                          | 554135  | 5186939  | 1-2% disseminated/stringer po+py sulphides, alteration patches/<br>veinlets of hbld +chl +sericite +silica+sulphides, rusty weathered<br>crust, dark grey to mottled grey-white, fine grained, bedded? mafic<br>(hbld) rich matrix with fspar patches                                                                                                                        |
| E5251972 | Quartz Vein in<br>Gowganda<br>Conglomerate | 554337  |          | 10-15 cm flat lying qtz+kspar+amph(torm?) +epi vein in flat lying<br>kspar altered (metasomatism) conglomerate with 5 cm granitic<br>clasts, 3-5% cubic py in cm scale mafic clot (tourm?)                                                                                                                                                                                   |

# Table 3: 2021 Sample Locations and Descriptions

| Sample   | Rock Type                                             | Easting | Northing | Description                                                                                                                                                                                                                                             |  |  |
|----------|-------------------------------------------------------|---------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| E5251973 | Gowganda<br>Conglomerate                              | 554337  |          | Kspar altered (metasomatism) conglomerate with 5 cm granitic clasts, 3-5% cubic py in cm scale mafic clot (tourm?)                                                                                                                                      |  |  |
| E5251974 | Quartzite                                             | 554679  | 5186121  | Pinkey orange weathered crust, dark green/black, siliceous/cherty, 1-<br>3% diss sulphides                                                                                                                                                              |  |  |
| E5251975 | Quartz Vein in<br>Intermediate<br>Volcanic            | 552233  | 5186831  | Old trench, close to IF, rusty qtz veining in fp Tuff                                                                                                                                                                                                   |  |  |
| E5251976 | Intermediate<br>Volcanic                              | 552140  | 5186845  | Dark grey green hbld+chl? rich matrix, med-fine grained, xcutting<br>chl veinlets, loc epi+qtz py veinlets, loc perv epi alt, 1-2mm fp, 0.5-<br>1% disseminated py in matrix and in both sets of veinlets                                               |  |  |
| E5251977 | Quartz Vein in<br>Intermediate<br>Volcanic            | 552156  | 5186822  | qv (dark grey fine-grained matrix), float, 2-3% py in volcanic                                                                                                                                                                                          |  |  |
| E5251978 | Quartz Vein in<br>Arkose                              | 552538  | 5185756  | Massive arkose with rusty qtz boudins and veinlets.                                                                                                                                                                                                     |  |  |
| E5251981 | Feldspar<br>Porphyry/<br>Intermediate<br>Lapilli Tuff | 553745  | 5187924  | Feldspar Porphyry in sharp contact with lapilli tuff, med grained, FP 5% up to 2mm milky grey fspars, matrix supported which is dark grey and aphanitic, 2-3% po+py+cpy? in qtz rich clots and local disseminated, tuff is lite grey chl altered matrix |  |  |
| E5251982 | Intermediate<br>Lapilli Tuff                          | 554033  | 5187676  | Gossanous, lite grey, felsic fragments, 3-5% py+cpy disseminated<br>and in qtz+chl+alb? veinlets/alteration                                                                                                                                             |  |  |
| E5251983 | Intermediate<br>Volcanic                              | 554154  | 5187267  | Mottled light to dark grey, bleached, rusty, very siliceous,<br>sil+ser+chl alteration, albite? alteration patches, angular qtz boudins,<br>rusty weathering, loc 3-5% finely disseminated py+/- tr cpy and<br>stringer py                              |  |  |
| E5251984 | Intermediate to<br>Mafic Intrusive                    | 553538  | 5187688  | Rusty, fp/tiger striped, looks like it has fabric, local 0.5-1% disseminated sulphides, 3-5% pinkey beige up to 1cm fspar with hairline chl fractures, large patches of hbld                                                                            |  |  |
| E5251985 | Gowganda<br>Conglomerate                              | 553130  | 5188058  | Green grey to beige with black patches, fine grained, chl altered,<br>hbld patches, sil+chl+hbld alteration, 3-5% disseminated sulphides,<br>rounded granitic clasts up to 1cm                                                                          |  |  |
| E5251986 | Quartz Vein in<br>Intermediate<br>Volcanic            | 553547  |          | Smokey grey qv with patches/inclusions of epi+fspar+amph+/-<br>sulphide, local rusty weathering                                                                                                                                                         |  |  |
| E5251987 | Intermediate to<br>Mafic Intrusive                    | 553751  | 5187668  | Rusty almost gossanous, lite to dark grey purplish tinge, fp, 3-5% disseminated and blebby and alteration patches of py+cpy+qtz+hbld, 3-5% 1-2mm creamy fspars, local very siliceous sections, weak fabric, sil+ser+chl alteration                      |  |  |
| E5251988 | Intermediate<br>Volcanic                              | 553796  | 5187728  | Massive, 3-5% sulphides disseminated and in small qtz+alb veinlets,<br>dark green charcoal grey, aphanitic, siliceous, possibly altered, looks<br>fp on weathered surface                                                                               |  |  |
| E5251989 | Intermediate<br>Volcanic                              | 553891  | 5186965  | Fine grained, local lapillis, siliceous, purplish dark grey, qtz+2-3% py+cpy veinlets, chl+amph alteration rims, local cherty/siliceous, possibly bedded                                                                                                |  |  |
| E5251990 | Greywacke/<br>Argillite                               | 554485  | 5186396  | Interbedded, dark grey fine-grained greywacke/argillite and fine-<br>grained siliceous sediment with sulphides, possible cpy                                                                                                                            |  |  |
| E5251991 | Felsic Volcanic                                       | 554012  |          | Very siliceous, fine grained, mm-cm scale veinlets of qtz+chl<br>+amph+ sulphide, local 0.5% disseminated fine grained sulphides,<br>lager clots of qtz+amph+chl+cubic py crystals. Cairn Sulphide<br>Showing                                           |  |  |

| Sample   | Rock Type                                         | Easting | Northing | Description                                                                                                                                                                                                                                                                                                           |  |  |
|----------|---------------------------------------------------|---------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| E5251992 | Intermediate<br>Lapilli Tuff/<br>Volcanic Breccia | 550619  | 5187318  | Lite grey green weathered, lite to dark grey, 1-2% 1-2mm qtz eyes,<br>felsic clasts with 0.5% disseminated sulphides, possible cpy,<br>chl+hbld matrix, elongate rectangular crystals of qtz or glass shards,<br>local washed out grey to green (chl alteration?) matrix, weird                                       |  |  |
| E5251993 | Intermediate<br>Volcanic                          | 550591  | 5187159  | Mottled lite to dark grey, chl+ser altered matrix, alteration patches of qtz + epi +/- sulphide +/-fspar with albite rims and veinlets and boudins(eyes) of qtz +/- epi and loc 0.5% disseminated py                                                                                                                  |  |  |
| E5251994 | Mafic Dike                                        | 550811  |          | Rusty rind, dark charcoal grey, hbld rich matrix, looks mafic,<br>bio/hbld rich sediment or dike, local qtz+fspar+/-epi clots and<br>veinlets, loc 0.5-1% disseminated po                                                                                                                                             |  |  |
| E5251995 | Interbedded<br>Greywacke/<br>Arkose               | 550048  |          | Dark charcoal grey, fine grained, 0.5% disseminated py cubes and<br>local sulphide in patches and veinlets of qtz+epi+sericite, local<br>strongly magnetic, possible magnetite, close to dike                                                                                                                         |  |  |
| E5251996 | Felsic Volcanic<br>Breccia                        | 550800  | 5187014  | Lite grey to dark grey and green streaky veinlets, pervasive silica<br>and kspar (pinkish), abundant epi+qtz+/-hbld+chl veining and<br>alteration patches, 0.5% disseminated sulphide in matrix, alteration<br>and veining, pinkish lite grey green pot marked weathered, very<br>altered, very siliceous             |  |  |
| E5251997 | Felsic Lapilli Tuff                               | 552458  | 5186736  | Very siliceous, mottled lite creamy grey-green to dark charcoal grey,<br>2-3% disseminated po (magnetic), rusty weathering/gossanous,<br>pervasive epi alteration and alteration patches of epi+ amph+ alb+<br>qtz+ 2-3% disseminated magnetic po, local 3cm sugary smokey qv,<br>round to sub-round felsic fragments |  |  |
| E5251998 | Felsic Lapilli Tuff                               | 552428  | 5186705  | Mottled charcoal purplish grey to lite grey and epidote green,<br>rusty/gossanous rind, local patches of epi+chl? alteration, local 0.5-<br>1% disseminated po, 3mm elongate to sub-round felsic cherty<br>fragments, possible felsic layers, rusty crust                                                             |  |  |
| E5251999 | Quartz Vein in<br>Intermediate<br>Volcanic        | 552234  | 5186853  | Anastomosing /boudined/bx sugary qvs, angular/sub-round qtz<br>fragments surrounded by matrix of dark green /black qtz+hbld/act<br>alteration, rusty, 1% local 2-3% disseminated sulphide, po<br>(magnetic)+py in qtz and matrix, hbld alterated volcanics                                                            |  |  |
| E5252000 | Intermediate<br>Lapilli Tuff                      | 552325  | 5186835  | Dark buff grey, local zone of rusty weathering, 3-5% disseminated<br>and discontinuous stringers and pods of magnetic po, tr cpy or<br>tarnished py, local fp, local mm scale elongate qtz and felsic frags                                                                                                           |  |  |
| E5252001 | Quartz Vein in<br>Iron Formation                  | 552288  |          | Brecciated smokey sugary qtz, matrix of black hbld, non magnetic,<br>3-5% disseminated sulphide in qtz and matrix                                                                                                                                                                                                     |  |  |
| E5252002 | Intermediate<br>Volcanic                          | 552355  | 5186718  | Mafic looking, 3-5% disseminated cubic and bleb py and stringer sulphide, non magnetic, dark charcoal grey                                                                                                                                                                                                            |  |  |
| E5252003 | Felsic Lapilli Tuff                               | 552365  | 5186707  | Lite grey pink green, pervasive epi+kspar+sericite alteration, chl +<br>amph alteration, local felsic fragments, epi+albite? +qtz alteration<br>veinlets with 1% diss py+tr cpy                                                                                                                                       |  |  |
| E5252004 | Felsic Lapilli Tuff                               | 552360  | 5186719  | Pinky grey, very siliceous, pervasive kspar and local epidote<br>alteration, possible layering/bedding, 0.5% disseminated sulphide +<br>tr cpy                                                                                                                                                                        |  |  |
| E5252005 | Graphitic Argillite                               | 553206  | 5186490  | Massive to local laminated, 3-5% disseminated magnetic po, tr<br>yellowish py, dark black to dark greeney grey, aphanitic, rusty rind,<br>local sericite alteration, xcutting micro-veinlets of chl+albite, local<br>drop stones                                                                                      |  |  |
| E5252006 | Felsic Lapilli<br>Tuff/ Volcanic<br>Breccia       | 553602  | 5187089  | Possible felsic fragments up to bomb size? buff grey, siliceous, en<br>echelon /hash tag qtz veinlets, extensive pervasive chl alteration,<br>local pervasive epidote alteration, chl+amph alteration veinlets, tr<br>disseminated sulphide                                                                           |  |  |

The 2021 program was successful in:

- A better understanding of the volcanic stratigraphy and in this the development of a more refined geological legend.
- The recognition of the sulphide facies of the main iron formation (carbonaceous /graphitic argillite).
- The discovery of unknown historical pits and trenches in the vicinity of the Nichol B showing and along the trend of the main iron formation.
- The recognition of a fault adjacent to the geochemical anomalous P-1 drill hole area.
- Obtaining significant anomalous geochemistry from several different areas including a grab sample that returned 0.599 ppm Au.

The 2021 program has outlined several significant areas of interest that warrant future work:

- 1. Massive Sulphide Zone.
- 2. The old pits and trenches of the Nichol B showing and the main iron formation.
- 3. The P-1 Drill hole area

| Sample   | Au (ppm)     | Ag (ppm) | Cu (ppm)     | Zn (ppm)     | Area                   | Tier |
|----------|--------------|----------|--------------|--------------|------------------------|------|
| E5251960 | 0.026        | 0.89     | <u>395.0</u> | 93.5         | Ditch Sulphide Showing | 2    |
| E5251964 | <u>0.175</u> |          |              |              | Quartz Vein Showing    | 2    |
| E5251966 | 0.005        | 0.10     | 31.1         | <u>117.0</u> | Massive Sulphide Zone  | 1    |
| E5251967 | 0.038        | 0.34     | <u>267.0</u> | <u>158.0</u> | Massive Sulphide Zone  | 1    |
| E5251970 | 0.077        | 0.34     | <u>279.0</u> | 76.3         | Massive Sulphide Zone  | 1    |
| E5251981 | 0.008        | 0.20     | <u>124.0</u> | 66.3         | Massive Sulphide Zone  | 1    |
| E5251988 | 0.007        | 0.14     | 93.9         | <u>119.0</u> | Massive Sulphide Zone  | 1    |
| E5251998 | 0.005        | 0.15     | 47.1         | <u>161.0</u> | P-1 Drill Hole Area    | 1    |

 Table 4: 2021 Anomalous Geochemical Results

| Sample   | Au (ppm)     | Ag (ppm) | Cu (ppm)     | Zn (ppm)     | Area                | Tier |
|----------|--------------|----------|--------------|--------------|---------------------|------|
| E5252002 | 0.005        | 0.33     | <u>435.0</u> | 67.7         | P-1 Drill Hole Area | 1    |
| E5252003 | <u>0.599</u> | 0.22     | 15.6         | 72.4         | P-1 Drill Hole Area | 1    |
| E5252004 | 0.005        | 0.19     | <u>219.0</u> | 38.3         | P-1 Drill Hole Area | 1    |
| E5252005 | 0.009        | 0.22     | <u>209.0</u> | <u>165.0</u> | P-3 Drill Hole Area | 2    |

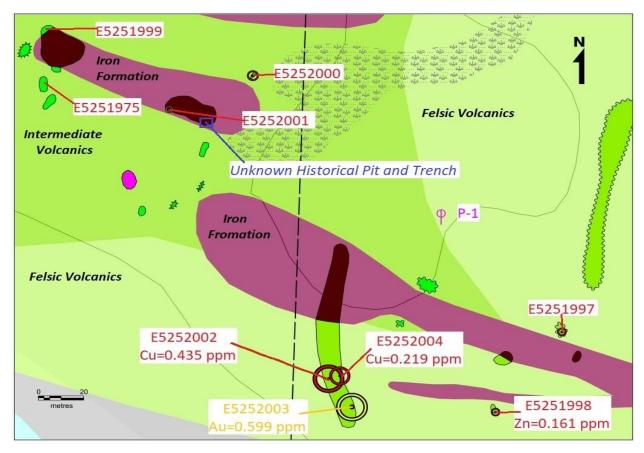



Figure 5: P-1 Drill Hole Area and Nichol B Showing Area Sampling Results

# 7.0 RECOMMENDATIONS

The following recommendations can be made based on the 2021 program completed on the Clement Property:

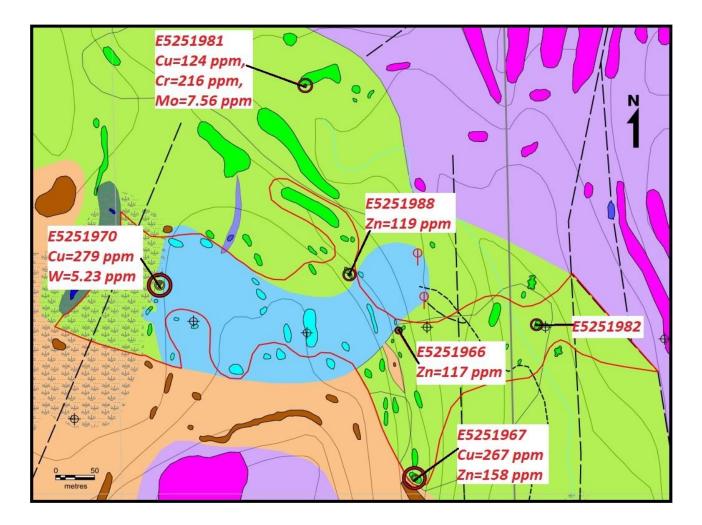



Figure 6: Massive Sulphide Zone Sampling Results

- Mechanical bedrock stripping, detailed mapping and channel sampling of the Nichol B showing area.
- 2) Mechanical bedrock stripping, detailed mapping and channel sampling of the P-1 drill hole area.
- Line cutting, detailed mapping and lithogeochemical sampling of the Massive Sulphide Zone area.
- 4) Mechanical bedrock stripping, detailed mapping and sampling of the Quartz Vein showing.
- 5) Line cutting, detailed mapping and sampling of the main iron formation trace.

The following recommendations can be made based on all the previous programs completed on the Clement Property:

- A diamond drill program to test the remaining VTEM and coincident magnetic anomalies. Drilling should also test the down dip and strike extension of the gold zone outlined in CL11-03.
- Line cutting, detailed mapping and lithogeochemical sampling of the CL11-03 Gold Zone area (Clement Gold Zone).
- Bedrock stripping, detailed mapping and channel sampling of the up-dip projection of the CL11-03 Gold Zone at 553749E and 5187010N to 553744E and 5186991N.
- 4) Detailed mapping and sampling of the Adit Quartz Vein.
- 5) Detailed mapping and sampling of the within the eastern extension of the iron formation (Stringer Sulphide Pits) on the Arcand Lake grid.

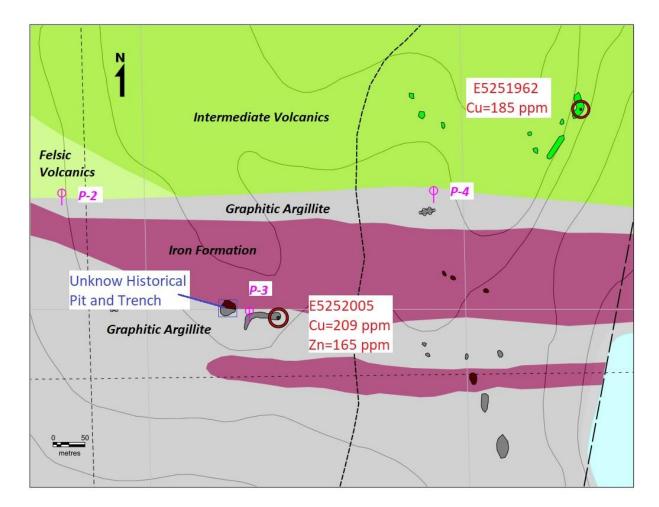



Figure 7: P-3 Drill Hole Area Sampling Results

# **8.0 REFERENCES**

Adlington, R. (1981). Clement Township, Nipissing District; Ontario Geological Survey, Preliminary Map P.2194. Sudbury Data Series.

Adlington, R. (1981). Macbeth Township, Sudbury District; Ontario Geological Survey, Preliminary Map P.2193, Sudbury Data Series.

Ayer, J.A. and Chartrand, J.E. 2011. Geological compilation of the Abitibi greenstone belt; Ontario Geological Survey, Miscellaneous Release---Data 282.

Ayer, J.A., Chartrand, J.E., Grabowski, G.P.D., Josey, S., Rainsford, D. and Trowell, N.F. (2006). Geological Compilation of the Cobalt–Temagami Area, Abitibi Greenstone Belt; Ontario Geological Survey, Preliminary Map P.3581, scale 1:100 000.

Choudhry, A.G. (1984). Geology of Hart, Ermatinger and Totten Townships, Ontario Geological Survey, open File Report 5525, p. 39–40.

Easton, R.M, Rainsford, D.R.B and Prefontaine, S. Project AS-19-002. Preliminary Interpretation of the Sturgeon River Area Aeromagnetic Survey, Northeastern Ontario in Summary of Field Work and Other Activities, 2020, Ontario Geological Survey, Open File Report 6370, p.6-1 to 6-15.

Frimmel, H.E. and Minter W.E.L (2002). Recent Developments Concerning the Geological History and Genesis of the Witwatersrand Gold Deposits, South Africa; Society of Economic Geologists, Special Publication 9, 2002, p. 17–45.

Geotech Ltd. (2010). Geotech Ltd. Report on Helicopter-Borne Versatile Time Domain Electromagnetic (VTEM) and Aeromagnetic Geophysical Survey, Cement Block, Sudbury, Ontario for GoldTrain Resources Inc.

Gourcerol, B, Thurston, P.C., Kontak, D.J., Cote-Mantha, O and Biczok, J. (2016). Depositional Setting of Algoma-type Banded Iron Formation, *in* Precambrian Research 281, p. 47-79.

Jackson, S.L., and Fyon, J.A. (1991). The Western Abitibi Sub province in Ontario, *in* Geology of Ontario, edited by P.C. Thurston, H.R. Williams, R.H. Sutcliffe, and G.M. Stott, Ontario Geological Survey, Special Volume 4, Part 1, p. 405-482.

Jobin-Bevans, L.S. (2009). Nipissing Gabbro; *in* A Field Guide to the Geology of Sudbury, Ontario; Ontario Geological Survey, Open File Report 6243, p. 31-36.

Kallio, E. and Vaz, N. (2014). 43-101 Technical Report, Updated Mineral Reserve Estimate for Timmins West Mine, Timmins, Ontario, Canada for Lake Shore Gold Corp.

Kawol, A., Frimmel H.E, Bite, A. and Whymark, W. (2017): What's Inside the Temagami Geophysical Anomaly, Sudbury District, Ontario? *In* Mineral Resources to Discover, 14<sup>th</sup> SGA Biennial Meeting 2017, Vol 4, p. 1543-1546.

Kerrich, R. and Wyman, D.A. (1994): The Mesothermal Gold-Lamprophyre Association: Significance for an Accretionary Geodynamic Setting, Supercontinent Cycles, and Metallogenic Processes *in* Mineralogy and Petrology, 51, p. 147-172.

Kleinboeck, J., Stewart, R., and Wright, B. (2011). Phase 1 Diamond Drilling Program: Clement Property for GoldTrain Resources Inc., 12 p.

Kleinboeck, J., Stewart, R., and Wright, B. (2011). Phase 2 Diamond Drilling Program: Clement Property for GoldTrain Resources Inc., 16 p.

Lightfoot, P.C. and Naldrett, A.J. (1996). Petrology and geochemistry of the Nipissing Gabbro: Exploration strategies for nickel, copper and platinum group elements in a large igneous province; Ontario Geological Survey, Study 58, 81 p.

Long, D.G.F. (1986). Stratigraphic and Depositional Setting of Placer Gold Concentrations in Basal Huronian Strata of the Cobalt Plain, Ontario Geological Survey, Open File Report 5593, 124 p.

Long, D.G.F. (2009). The Huronian Supergroup; *in* A Field Guide to the Geology of Sudbury, Ontario; Ontario Geological Survey, Open File Report 6243, p.14-30.

Long, D.G.F. Ulrich, T. and Kamber, B.S. (2010). Laterally Extensive Modified Placer Gold Deposits in the Paleoproterozoic Mississagi Formation, Clement and Pardo Townships, Ontario in Can. J. Earth Sci., Vol. 48, 2011, p. 779-792.

McNeil, A.M. and Kerrich, R. (1986): Archean Lamprophyre Dykes and Gold Mineralization, Matheson, Ontario: The Conjunction of LILE-enriched Mafic Magmas, Deep Crustal Structures and Au Concentration *in* Canadian Journal of Earth Science, Vol. 23, p. 324-343.

Meyn, H.D. (1973). Macbeth Township, District of Sudbury; Ontario Div. Mines, Prelim. Map P.834, Geol. Ser., scale 1 inch to <sup>1</sup>/<sub>4</sub> mile. Geology 1972.

Meyn, H.D. (1977). Geology of Afton, Scholes, MacBeth, and Clement Townships, Districts of Sudbury and Nipissing. Ontario Geological Survey Report 170, 77 p.

Meyn, H.D., Maynes, P.A. and Grunsky, E.C. (1974). Clement Township, District of Nipissing; Ontario Division of Mines, Prelim. Map P.930, Geol. Ser., scale 1 inch to <sup>1</sup>/<sub>4</sub> mile. Geology 1973.

Miller, W.G. (1901). Iron Ores of Nipissing District; Ont. Bur. Mines, Vol.10, p.160-180. Accompanied by one map, scale 1 inch to 4 miles.

Ministry of Northern Development and Mines; Geology of Ontario, Assessment File Research Information (AFRI) found at www.geologyontario.mndm.gov.on.ca.

Ontario Geological Survey (2006). 1:250,000 Scale Bedrock Geology of Ontario; Ontario Geological Survey, Miscellaneous Release Data 126 revised.

Ontario Geological Survey (2020). Airborne Magnetic Gradiometer Survey, Colour-Filled Contours of the Residual Magnetic Field, Sturgeon River Area; Ontario Geological Survey, Map 83 019, scale 1:50,000.

Ontario Geological Survey (2020). Airborne Magnetic Gradiometer Survey, Shaded Colour Image of the Second Vertical Derivative of the Residual Magnetic Field and Keating Correlation Coefficients, Sturgeon River area; Ontario Geological Survey, Map 83 025, scale 1:50 000.

Osmani, I.A. (1991): Proterozoic Mafic Dike Swarms in the Superior Province of Ontario; *in* Geology of Ontario, Ontario Geological Survey, Special Volume 4, Part 1, p.661-681.

Peter, J.M. (2003): Ancient Iron formations: Their Genesis and use in the Exploration for Stratiform Base Metal Sulphide deposits, with Examples from the Bathurst Mining Camp *in* Geological Association of Canada, Geotext 4, p. 145-176.

Peter, J.M. and W. D. Goodfellow (1996): Mineralogy, Bulk and Rare Earth Element Geochemistry of Massive Sulphide-Associated Hydrothermal Sediments of the Brunswick Horizon, Bathurst Mining Camp, New Brunswick *in* Canadian Journal of Earth Sciences, Vol. 33, number 2, p. 252-283.

Schnieders, B.R. (1987), Geology of Sulphide Facies Iron Formations and Associated Rocks in the Lower Steel River-Little Steel Lake Area, Terrace Bay Ontario, Lakehead University, MSc Thesis.

Slack, J.F. (2012): Exhalites in Volcanogenic Massive Sulphide Occurrence Model *in* U.S. Geological Survey Scientific Investigations Report 2010-5070-C, chap. 10, 6 p.

Sproule, R.A., R. Sutcliffe, H. Tracanelli and C. M. Lesher (2007): Paleoproterozoic Ni–Cu– PGE mineralization in the Shakespeare intrusion, Ontario, Canada: A New Style of Nipissing Gabbro-Hosted Mineralization *in* Applied Earth Science (Trans. Inst. Min. Metall. B) Vol 116, No 4, p. 188-200.

Spry, P.G., J.M. Peter and J.F. Slack (2000): Meta-exhalites as Exploration Guides to Ore *in* Metamorphosed and Metamorphogenic Ore Deposits, Reviews in Economic Geology 11, Society of Economic Geologists, p. 163-201.

Stewart, R., (2010). Geological Assessment Report on the GoldTrain Resources Inc. Clement Property, Clement and MacBeth Townships, Sudbury Mining Division, Ontario, Canada, 12 p.

Stewart, R., (2020). 2020 BeepMat Survey Report on the Clement Property, Clement and MacBeth Townships, Sudbury Mining Division, Ontario, Canada, 69 p.

Stewart, R. and Wright, B. (2014). 2014 Geological Assessment Report on the Clement Property, Clement and MacBeth Townships, Sudbury Mining Division, Ontario, Canada, 16 p.

Stewart, R. and Wright, B. (2015). 2015 Geological Assessment Report on the Clement Property, Clement and MacBeth Townships, Sudbury Mining Division, Ontario, Canada, 31 p.

Stewart, R. and Wright, B. (2016). 2016 Geological Assessment Report on the Clement Property (Performed by Trelawney Mining and Exploration/IAMGold Corporation), Clement and MacBeth Townships, Sudbury Mining Division, Ontario, Canada, 30 p.

Wright, B. (2008). Work Report Manitou Lake Gold Property, Clement and Macbeth Townships, Sudbury Mining Division, Ontario, Canada, Mapping and Sampling for GoldWright Explorations Inc. 14 p.

Wright, B. (2010). Work Report, Manitou Lake Gold Property, Ground Truthing and Trenching prepared for GoldTrain Resources Inc., Clement and Macbeth Townships, Sudbury Mining Division, Ontario, Canada 29 p.

#### Appendix I

#### **Statement of Qualifications**

I, Randy I. Stewart, B.Sc. of 213 Kingsmount Boulevard, Sudbury, Ontario, P3E 1L1, do hereby certify that:

I graduated from the Mining Engineering Technician program at Cambrian College of Applied Arts and Technology, Sudbury, Ontario, in 2002.

I graduated with a Bachelor of Science Degree (Honours) in geology in 1991 from the University of Waterloo, Waterloo, Ontario.

I have been actively involved in Mining and Exploration since 1986.

Randy Irwin Stewart

February 21, 2022 Sudbury, Ontario

# **Statement of Qualifications**

I, Brian James Wright, of 92 Main Street, Markstay, Ontario, POM 2G0, do hereby certify that:

I am a Geological Technologist receiving my education from Haileybury School of Mines.

I have been actively involved in Mining and Exploration for over 30 years.

Brian James Wright

February 21, 2021 Markstay, Ontario Appendix II

Certificates of Analyses



5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

#### CLIENT NAME: MISC AGAT CLIENT ON, ON

#### **ATTENTION TO: Randy Stewart** PROJECT: AGAT WORK ORDER: 22B861056 SOLID ANALYSIS REVIEWED BY: Xunjia Liang, Lab Analyst DATE REPORTED: Feb 17, 2022 PAGES (INCLUDING COVER): 8

Should you require any information regarding this analysis please contact your client services representative at (905) 501-9998

- An work conducted meter has been done doing accepted standard protocols, and generally accepted protoces and meteriods. RGAT lest methods they incorporate modifications from the specified reference methods to improve performance. All samples will be disposed of within 90 days following analysis, unless expressly agreed otherwise in writing. Please contact your Client Project Manager if you require additional sample storage time. GGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the pericence. services. This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement. Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines contained in this document. All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.

#### AGAT Laboratories (V1)

Page 1 of 8

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA) Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. the scope of accreditation.

| MISC AGAT CLIENT<br>Feb 06, 2022<br>Analyte: U<br>Unit: U<br>RDL: (                                                                                                                  | (200-) Sarr<br>DATE RECEIVED: Feb 04, 2022 |                            |                             |                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|----------------------------|-----------------------------|------------------------------|
| 8 4 1                                                                                                                                                                                | (2)<br>DATE RECEIVED: F                    |                            | ATTENTION TO: Randy Stewart | nup.//www.agauaps.com<br>art |
| 8 <b>4</b> 1                                                                                                                                                                         | DATE RECEIVED: F                           | (200-) Sample Login Weight | in Weight                   |                              |
| Analyte:<br>Unit:<br>RDL:                                                                                                                                                            |                                            | <sup>-</sup> eb 04, 2022   | DATE REPORTED: Feb 17, 2022 | SAMPLE TYPE: Rock            |
| RDL: 0                                                                                                                                                                               |                                            |                            |                             |                              |
|                                                                                                                                                                                      |                                            |                            |                             |                              |
|                                                                                                                                                                                      |                                            |                            |                             |                              |
|                                                                                                                                                                                      |                                            |                            |                             |                              |
|                                                                                                                                                                                      |                                            |                            |                             |                              |
|                                                                                                                                                                                      |                                            |                            |                             |                              |
| E5251973 (3487275) 1.54<br>E5251973 (3487275) 1.59                                                                                                                                   |                                            |                            |                             |                              |
|                                                                                                                                                                                      |                                            |                            |                             |                              |
|                                                                                                                                                                                      |                                            |                            |                             |                              |
|                                                                                                                                                                                      |                                            |                            |                             |                              |
|                                                                                                                                                                                      |                                            |                            |                             |                              |
|                                                                                                                                                                                      |                                            |                            |                             |                              |
|                                                                                                                                                                                      |                                            |                            |                             |                              |
|                                                                                                                                                                                      |                                            |                            |                             |                              |
|                                                                                                                                                                                      |                                            |                            |                             |                              |
|                                                                                                                                                                                      |                                            |                            |                             |                              |
|                                                                                                                                                                                      |                                            |                            |                             |                              |
|                                                                                                                                                                                      |                                            |                            |                             |                              |
|                                                                                                                                                                                      |                                            |                            |                             |                              |
| E5251999 (3487288) 1.72                                                                                                                                                              |                                            |                            |                             |                              |
| Comments: RDL - Reported Detection Limit<br>Analysis performed at AGAT 1046 Gorham St, Thunder Bay, ON (unless marked by *)<br>Insufficient Sample : IS<br>Sample Not Received : SNR | r Bay. ON (unless marked by *)             |                            |                             |                              |
|                                                                                                                                                                                      |                                            |                            |                             |                              |
|                                                                                                                                                                                      |                                            |                            |                             |                              |
|                                                                                                                                                                                      |                                            | 0                          | Certified By:               | Hites.                       |
| <b>AGAT</b> CERTIFICATE OF ANALYSIS (V1)                                                                                                                                             |                                            |                            |                             | Page 2 of 8                  |

| A and                                                 |                                                 |                                                                                                                             | Certificate              | Certificate of Analysis                                        | 5623 McADAM ROAD<br>MISSISSAUGA, ONTARIO                    |
|-------------------------------------------------------|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------|----------------------------------------------------------------|-------------------------------------------------------------|
|                                                       | C C C I                                         | Laboratories                                                                                                                | AGAT WORK OR<br>PROJECT: | AGAT WORK ORDER: 22B861056<br>PROJECT:                         | TEL (905)501-9998<br>TEL (905)501-9998<br>TEX (905)501-0589 |
| CLIENT NAME: MISC AGAT CLIEI                          | AGAT CLIENT ON                                  |                                                                                                                             |                          | ATTENTION TO: Randy Stewart                                    | http://www.agatlabs.com<br>cewart                           |
|                                                       |                                                 | (202-051) Fire Ass                                                                                                          | ay - Trace Au, AA        | (202-051) Fire Assay - Trace Au, AAS finish (30g charge) (ppm) |                                                             |
| DATE SAMPLED: Feb 06, 2022                            | 6, 2022                                         | DATE RECEIVED: Feb 04, 2022                                                                                                 | <sup>-</sup> eb 04, 2022 | DATE REPORTED: Feb 17, 2022                                    | SAMPLE TYPE: Rock                                           |
|                                                       | Analyte: Au                                     |                                                                                                                             |                          |                                                                |                                                             |
| Sample ID (AGAT ID)                                   | Unit: ppm<br>RDL: 0.002                         |                                                                                                                             |                          |                                                                |                                                             |
| E5251963 (3487270)                                    |                                                 |                                                                                                                             |                          |                                                                |                                                             |
| E5251964 (3487271)                                    | 0.175                                           |                                                                                                                             |                          |                                                                |                                                             |
| E5251969 (3487272)                                    | 0.006                                           |                                                                                                                             |                          |                                                                |                                                             |
| E5251971 (3487273)                                    | <0.002                                          |                                                                                                                             |                          |                                                                |                                                             |
| E5251972 (3487274)                                    | <0.002                                          |                                                                                                                             |                          |                                                                |                                                             |
| E5251973 (3487275)                                    | <0.002                                          |                                                                                                                             |                          |                                                                |                                                             |
| E5251974 (3487276)                                    | <0.002                                          |                                                                                                                             |                          |                                                                |                                                             |
| E5251975 (3487277)                                    | 0.012                                           |                                                                                                                             |                          |                                                                |                                                             |
| E5251977 (3487278)                                    | 0.006                                           |                                                                                                                             |                          |                                                                |                                                             |
| E5251978 (3487279)                                    | 0.032                                           |                                                                                                                             |                          |                                                                |                                                             |
| E5251979 (3487280)                                    | <0.002                                          |                                                                                                                             |                          |                                                                |                                                             |
| E5251980 (3487281)                                    | <0.002                                          |                                                                                                                             |                          |                                                                |                                                             |
| E5251983 (3487282)                                    | 0.008                                           |                                                                                                                             |                          |                                                                |                                                             |
| E5251984 (3487283)                                    | 0.005                                           |                                                                                                                             |                          |                                                                |                                                             |
| E5251985 (3487284)                                    | 0.003                                           |                                                                                                                             |                          |                                                                |                                                             |
| E5251986 (3487285)                                    | 0.011                                           |                                                                                                                             |                          |                                                                |                                                             |
| E5251987 (3487286)                                    | 0.006                                           |                                                                                                                             |                          |                                                                |                                                             |
| E5251989 (3487287)                                    | <0.002                                          |                                                                                                                             |                          |                                                                |                                                             |
| E5251999 (3487288)                                    | 0.008                                           |                                                                                                                             |                          |                                                                |                                                             |
|                                                       | DDI - Bonortod Dottotion   imit                 |                                                                                                                             |                          |                                                                |                                                             |
| Comments: KUL - Ker<br>Analysis performed at AGAT     | oorted Detection Limit<br>1046 Gorham St, Thunc | Comments: KUL - Reported Detection Limit<br>Analysis performed at AGAT 1046 Gorham St, Thunder Bay, ON (unless marked by *) |                          |                                                                |                                                             |
| Insufficient Sample : IS<br>Sample Not Received : SNR |                                                 |                                                                                                                             |                          |                                                                |                                                             |
|                                                       |                                                 |                                                                                                                             |                          |                                                                |                                                             |
|                                                       |                                                 |                                                                                                                             |                          |                                                                |                                                             |
|                                                       |                                                 |                                                                                                                             |                          |                                                                |                                                             |
|                                                       |                                                 |                                                                                                                             |                          |                                                                |                                                             |
|                                                       |                                                 |                                                                                                                             |                          |                                                                |                                                             |

**AGAT** CERTIFICATE OF ANALYSIS (V1)

Page 3 of B

I

Certified By:

| 5623 MADAM ROAD<br>MISSISSAUGA, ONTARIO<br>CANADA.142 1N9<br>TEL (905)501-9599<br>FAX (905)501-0599<br>http://www.agatabs.com |                                | SAMPLE TYPE: Rock           |                 |       |                     |                    |                                                                |                                                      |
|-------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-----------------------------|-----------------|-------|---------------------|--------------------|----------------------------------------------------------------|------------------------------------------------------|
| Certificate of Analysis<br>agat work order: 22B861056<br>project:<br>attention to: randy Stewart                              | 1g (Crushing)                  | DATE REPORTED: Feb 17, 2022 |                 |       |                     |                    |                                                                |                                                      |
| Laboratories AGAT WORK PROJECT:                                                                                               | Sieving - % Passing (Crushing) | DATE RECEIVED: Feb 04, 2022 |                 |       |                     |                    | on Limit<br>n St Thurder Bav ON (unless marked bv *)           |                                                      |
|                                                                                                                               |                                |                             | Crush-Pass<br>% | %     | 0.01                | 86                 | ction Limit<br>am St Thunder F                                 |                                                      |
|                                                                                                                               |                                | <sup>c</sup> eb 06, 2022    | Analyte:        | Unit: | RDL:                |                    | RDL - Reported Detection Limit<br>of at AGAT 1046 Gorham St Th | N N N N N N N N N N N N N N N N N N N                |
|                                                                                                                               |                                | DATE SAMPLED: Feb 06, 2022  |                 |       | Sample ID (AGAT ID) | E5251963 (3487270) | Comments: RDL<br>Analysis performed at                         | Insufficient Sample: IS<br>Sample Not Received : SNR |

Page 4 of B

| 5623 MeADAM ROAD<br>MISSISSUAGA ONTARIO<br>CANADA L42 1N9<br>TEL (905)501-1659<br>FAX (905)501-1658<br>http://www.acellers.com | 3                                |                                   | SAMPLE TYPE: Rock           |                     |         |                     |                    |                    |
|--------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-----------------------------------|-----------------------------|---------------------|---------|---------------------|--------------------|--------------------|
| Certificate of Analysis<br>AGAT WORK ORDER: 22B861056<br>PROJECT:                                                              | ATTENTION TO: Randy Stewart      | (Pulverizing)                     | DATE REPORTED: Feb 17, 2022 |                     |         |                     |                    |                    |
| Laboratories RealEct:                                                                                                          |                                  | Sieving - % Passing (Pulverizing) | DATE RECEIVED: Feb 04, 2022 |                     |         |                     |                    |                    |
|                                                                                                                                | AGAT CLIENT ON                   |                                   | 3, 2022                     | Analyte: Pul-Pass % | Unit: % | RDL: 0.01           | 85.64              | 90.00              |
|                                                                                                                                | CLIENT NAME: MISC AGAT CLIENT ON |                                   | DATE SAMPLED: Feb 06, 2022  |                     |         | Sample ID (AGAT ID) | E5251963 (3487270) | E5251964 (3487271) |

Comments: RDL - Reported Detection Limit Analysis performed at AGAT 1046 Gorham St, Thunder Bay, ON (unless marked by \*) Insufficient Sample :IS Sample Not Received : SNR

Certified By:

| 5623 McADAM ROAD<br>MISSISSAUGA, ONTARIO<br>CANADA 142 1N9<br>TEL (905)501-9598<br>TEL (905)501-9588 | http://www.agatiabs.com     |                                                                |                     |                              |         |
|------------------------------------------------------------------------------------------------------|-----------------------------|----------------------------------------------------------------|---------------------|------------------------------|---------|
| Quality Assurance - Replicate<br>AGAT WORK ORDER: 22B861056<br>PROJECT:                              | ATTENTION TO: Randy Stewart | (202-051) Fire Assay - Trace Au, AAS finish (30g charge) (ppm) |                     |                              |         |
| Assuran<br>JRK ORDE                                                                                  |                             | Au, AAS                                                        |                     | RPD                          | 55.6%   |
| Quality A<br>AGAT WOI<br>PROJECT:                                                                    |                             | Trace /                                                        | ATE #2              | Replicate                    | 0.019   |
|                                                                                                      |                             | Assay -                                                        | <b>REPLICATE #2</b> | Original                     | 0.011   |
| aboratories                                                                                          |                             | 1) Fire                                                        |                     | Sample ID Original Replicate | 3487285 |
| abor                                                                                                 |                             | (202-05                                                        |                     | RPD                          | 9.1%    |
|                                                                                                      | ENT ON                      |                                                                | CATE #1             | Replicate                    | 0.005   |
|                                                                                                      | AT CLIEN                    |                                                                | REPLIC/             | Original                     | 0.004   |
|                                                                                                      | E: MISC AG                  |                                                                |                     | Sample ID Original           | 3487270 |
|                                                                                                      | CLIENT NAME: MISC AGAT CLIE |                                                                |                     | Parameter                    | Αu      |

|           |           |          |           | :n-707) | 1) FILE /                       | Assay -      | I race A      | AU, AAS | LINISN ( | zuz-uoʻi) Fire Assay - Irace Au, AAS Tinisn (Jug charge) (ppm) | Je) (ppr | - |   |   |  |
|-----------|-----------|----------|-----------|---------|---------------------------------|--------------|---------------|---------|----------|----------------------------------------------------------------|----------|---|---|---|--|
|           |           | REPLIC/  | ICATE #1  |         |                                 | REPLICATE #2 | <b>VTE #2</b> |         |          |                                                                |          |   |   |   |  |
| Parameter | Sample ID | Original | Replicate | RPD     | PD Sample ID Original Replicate | Original     | Replicate     | RPD     |          |                                                                | _        |   | - | - |  |
| Au        | 3487270   | 0.004    | 0.005     | 9.1%    | 3487285                         | 0.011        | 0.019         | 55.6%   |          | <u>en e</u>                                                    |          |   |   |   |  |
|           |           |          |           |         |                                 |              |               |         |          |                                                                |          |   |   |   |  |

| SIN .                                                                                       | nttp://www.agatlabs.com<br>indy Stewart | (u                                                             |                    |
|---------------------------------------------------------------------------------------------|-----------------------------------------|----------------------------------------------------------------|--------------------|
| Quality Assurance - Certified Reference materials<br>AGAT WORK ORDER: 22B861056<br>PROJECT: | ATTENTION TO: Randy Stewart             | (202-051) Fire Assay - Trace Au, AAS finish (30g charge) (ppm) |                    |
| Cuality A<br>AGAT WOF<br>PROJECT:                                                           |                                         | -051) Fire Assay - Trace                                       | CRM #2 (ref.GS7J)  |
| AGAT Labo                                                                                   | LIENT NAME: MISC AGAT CLIENT ON         | (202                                                           | CRM #1 (ref.GSP8H) |
|                                                                                             | CLIENT NAM                              |                                                                |                    |

 Parameter
 Expect
 Actual
 Recovery
 Limits
 Expect
 Actual
 Recovery
 Limits

 Au
 0.833
 0.86
 103%
 90%-110%
 7.34
 7.47
 102%
 90%-110%

| 2021 Geological Assessment Report on the Clement Property |
|-----------------------------------------------------------|
|-----------------------------------------------------------|

**AGAT** QUALITY ASSURANCE REPORT

Page 7 of 8



5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L42 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

# **Method Summary**

| CLIENT NAME: MISC AGAT CLIEN<br>PROJECT:<br>SAMPLING SITE: | TON        | AGAT WORK OF<br>ATTENTION TO:<br>SAMPLED BY: | RDER: 22B861056<br>Randy Stewart |
|------------------------------------------------------------|------------|----------------------------------------------|----------------------------------|
| PARAMETER                                                  | AGAT S.O.P | LITERATURE REFERENCE                         | ANALYTICAL TECHNIQUE             |
| Solid Analysis                                             |            | L                                            | L                                |
| Sample Login Weight                                        | MIN-12009  |                                              | BALANCE                          |
| Au                                                         | MIN-12019  | BUGBEE, E: A Textbook of Fire<br>Assaying    | AA                               |
| Crush-Pass %                                               |            |                                              | BALANCE                          |
| Pul-Pass %                                                 |            |                                              | BALANCE                          |

AGAT METHOD SUMMARY (V1)

Results relate only to the items tested. Results apply to samples as received.

Page 8 of 8



5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

#### CLIENT NAME: MISC AGAT CLIENT ON, ON

ATTENTION TO: Randy Stewart PROJECT: AGAT WORK ORDER: 22B861049 SOLID ANALYSIS REVIEWED BY: Jing Xiao, Data Reviewer DATE REPORTED: Apr 01, 2022 PAGES (INCLUDING COVER): 15

Should you require any information regarding this analysis please contact your client services representative at (905) 501-9998

| otes |  |  |  |
|------|--|--|--|
|      |  |  |  |
|      |  |  |  |
|      |  |  |  |
|      |  |  |  |
|      |  |  |  |
|      |  |  |  |
|      |  |  |  |
|      |  |  |  |
|      |  |  |  |
|      |  |  |  |
|      |  |  |  |
|      |  |  |  |
|      |  |  |  |
|      |  |  |  |
|      |  |  |  |
|      |  |  |  |
|      |  |  |  |
|      |  |  |  |
|      |  |  |  |
|      |  |  |  |
|      |  |  |  |
|      |  |  |  |
|      |  |  |  |
|      |  |  |  |
|      |  |  |  |
|      |  |  |  |
|      |  |  |  |
|      |  |  |  |
|      |  |  |  |
|      |  |  |  |
|      |  |  |  |
|      |  |  |  |

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may .
- An work conducted interim has been tone using accepted standard protocols, and generally accepted practices and methods. NGAT lest methods may incorporate modifications from the specified reference methods to improve performance. All samples will be disposed of within 90 days following analysis, unless expressly agreed otherwise in writing. Please contact your Client Project Manager if you require additional sample storage time. GAGT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the sources. services. This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

- The test results reported herewith relate only to the samples as received by the laboratory. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement. Application of guidelines is provided "as is "without warranty of any kind, either expressed or implied, including, but not limited to, warranties of merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines contained in this document.
  - All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request

#### AGAT Laboratories (V1)

Page 1 of 15

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA) Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. the scope of accreditation

| IISC CALT CILENT ON ATTENTION ICI: Randy Stewart<br>Feb 06. 2022 DATE REPORTED: April 01, 2022 Sample Login Weight<br>Feb 06. 2022 DATE REPORTED: April 1, 2022 Sample Login Weight<br>Anjoin: Rome<br>Unit: Rome<br>1 2 200 Sample Login Weight<br>1 2 200 Sample Login Weight<br>1 2 201 Sample Login Weight<br>1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                        |                   |                           | Laboratories   | Certificate<br>AGAT WORK OR<br>- PROJECT: | CERTIFICATE OF ANALYSIS<br>AGAT WORK ORDER: 22B861049<br>PROJECT: | MISSISSAUGA, ONTARIO<br>MISSISSAUGA, ONTARIO<br>TEL (905)61-989<br>FAX (905)61-0589<br>MMX/MMA COMMA |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-------------------|---------------------------|----------------|-------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| (200-) Sample Login Weight         Total Colspane Login Weight         Antyre: Colspane         Antyre: Colspane       DATE RECEVED: Feb 04, 2023       DATE RECEVED: Apr 04, 2023         Antyre: Colspane       Colspane       DATE RECEVED: Feb 04, 2023       DATE RECEVED: Apr 04, 2023         Antyre: Colspane       Colspane       DATE RECEVED: Feb 04, 2023       DATE RECEVED: Feb 04, 2023       DATE RECEVED: Feb 04, 2023         Antyre: Colspane       Colspane       Colspane       DATE RECEVED: Feb 04, 2023       DATE RECEVED: Feb 04, 2023         Antyre: Colspane       Colspane       Colspane       DATE RECEVED: Feb 04, 2023       DATE RECEVED: Feb 04, 2023         Antyre: Colspane       Colspane       Colspane       Feb 04, 2023       DATE RECEVED: Feb 04, 2023         Antyre: Colspane       Colspane       Feb 04, 2023       DATE RECEVED: Feb 04, 2024       DATE RECEVED: Feb 04, 2024         Antyre: Colspane       Colspane       Feb 04, 2024       DATE RECEVED: Feb 04, 2024       DATE RECEVED: Feb 04, 2024         Antyre: Colspane       Colspane       Feb 04, 2024       DATE RECEVED: Feb 04, 2024       DATE RECEVED: Feb 04, 2024         Antyre: Colspane       Colspane       Feb 04, 2024       Feb 04, 2024       DATE RECEVED: Feb 04, 2024         Antyre: Colspane       Feb 04, 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CLIENT NAME: MI                        | SC AGAT CLI       | ENT ON                    |                |                                           | ATTENTION TO: Randy Ste                                           | 5,922                                                                                                |
| Induction         Data control of a co |                                        |                   |                           |                | (200-) Sample Logi                        | in Weight                                                         |                                                                                                      |
| Antive:         Semile<br>to the<br>mention           Uni:         000           BDL:         000           217         217           217         217           217         217           217         217           218         217           219         218           219         218           219         218           219         218           218         218           219         218           219         218           219         218           218         218           219         218           218         218           219         218           219         218           218         218           219         218           218         218           219         218           218         218           219         218           218         218           219         218           218         218                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DATE SAMPLED: Fé                       | sb 06, 2022       |                           | DATE RECEIVED: | Feb 04, 2022                              | DATE REPORTED: Apr 01, 2022                                       | SAMPLE TYPE: Rock                                                                                    |
| R0I. 0003<br>217<br>217<br>217<br>217<br>217<br>217<br>217<br>237<br>237<br>237<br>237<br>237<br>237<br>237<br>23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        | Analyte:<br>Unit: | Sample<br>Login<br>Weight |                |                                           |                                                                   |                                                                                                      |
| Zit<br>161<br>172<br>273<br>274<br>275<br>275<br>276<br>188<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Sample ID (AGAT ID)                    | RDL:              | 0.005                     |                |                                           |                                                                   |                                                                                                      |
| 23<br>24<br>24<br>25<br>26<br>26<br>28<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | E5251960 (3487026)                     |                   | 2.17                      |                |                                           |                                                                   |                                                                                                      |
| 11         217         217         217         218         188         188         188         188         188         188         188         188         188         188         188         188         188         188         188         188         188         188         188         188         188         188         188         256         257         258         258         258         258         258         258         258         258         258         258         258         258         258         258         258         258         258         258         258         258         258         258         258         25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5251961 (3487027)<br>5251067 (3487027) |                   | 2.28                      |                |                                           |                                                                   |                                                                                                      |
| 217<br>237<br>188<br>189<br>189<br>199<br>199<br>199<br>199<br>205<br>217<br>218<br>218<br>218<br>138<br>138<br>138<br>138<br>218<br>138<br>138<br>138<br>138<br>138<br>138<br>138<br>138<br>138<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5251965 (3487029)                      |                   | 1.64                      |                |                                           |                                                                   |                                                                                                      |
| 23<br>18<br>18<br>18<br>19<br>19<br>19<br>19<br>20<br>26<br>27<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | E5251966 (3487030)                     |                   | 2.17                      |                |                                           |                                                                   |                                                                                                      |
| 27<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5251967 (3487031)                      |                   | 2.37                      |                |                                           |                                                                   |                                                                                                      |
| Tag<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5251968 (3487032)                      |                   | 2.75                      |                |                                           |                                                                   |                                                                                                      |
| 100<br>101<br>102<br>103<br>103<br>103<br>103<br>103<br>104<br>104<br>105<br>105<br>105<br>105<br>105<br>105<br>105<br>105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5251970 (3487033)                      |                   | 1.92                      |                |                                           |                                                                   |                                                                                                      |
| 200<br>181<br>194<br>198<br>158<br>198<br>198<br>208<br>208<br>218<br>218<br>128<br>128<br>138<br>138<br>138<br>138<br>138<br>138<br>138<br>138<br>138<br>13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5251976 (3487034)<br>5251981 (3487035) |                   | 1.53<br>1.86              |                |                                           |                                                                   |                                                                                                      |
| 18<br>13<br>18<br>19<br>18<br>19<br>18<br>28<br>28<br>28<br>28<br>14<br>14<br>14<br>13<br>13<br>14<br>14<br>13<br>13<br>13<br>14<br>14<br>13<br>13<br>14<br>13<br>13<br>14<br>14<br>13<br>13<br>13<br>14<br>14<br>13<br>13<br>14<br>14<br>13<br>13<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5251982 (3487036)                      |                   | 2.03                      |                |                                           |                                                                   |                                                                                                      |
| 13<br>196<br>150<br>232<br>188<br>267<br>257<br>218<br>198<br>138<br>138<br>138<br>138<br>138                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5251988 (3487037)                      |                   | 1.66                      |                |                                           |                                                                   |                                                                                                      |
| 194<br>1.58<br>1.59<br>2.55<br>2.06<br>2.57<br>2.13<br>1.96<br>1.48<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5251990 (3487038)                      |                   | 1.32                      |                |                                           |                                                                   |                                                                                                      |
| 108<br>1.50<br>2.52<br>2.65<br>2.57<br>2.13<br>1.46<br>1.48<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5251991 (3487039)                      |                   | 1.94                      |                |                                           |                                                                   |                                                                                                      |
| 150<br>255<br>192<br>206<br>213<br>213<br>213<br>214<br>2145<br>1146<br>128<br>138<br>138<br>138                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5251992 (3487040)                      |                   | 1.68                      |                |                                           |                                                                   |                                                                                                      |
| 2.22<br>1.82<br>2.65<br>2.65<br>2.13<br>1.46<br>2.48<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5251993 (3487041)                      |                   | 1.50                      |                |                                           |                                                                   |                                                                                                      |
| 1.92<br>2.05<br>2.13<br>2.13<br>2.13<br>1.46<br>2.25<br>1.46<br>1.28<br>1.36<br>1.38<br>1.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5251994 (3487042)                      |                   | 2.52                      |                |                                           |                                                                   |                                                                                                      |
| 205<br>257<br>258<br>196<br>146<br>148<br>138<br>138<br>138                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5251995 (3487043)<br>5251006 (2487044) |                   | 1.92                      |                |                                           |                                                                   |                                                                                                      |
| 257<br>213<br>216<br>22<br>246<br>1.46<br>1.28<br>1.36<br>1.36<br><b>Certified By:</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5251997 (3487045)                      |                   | 2.06                      |                |                                           |                                                                   |                                                                                                      |
| 213<br>196<br>1-46<br>2-46<br>1-28<br>1-38<br>1-36<br>1-36<br>1-36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5251998 (3487046)                      |                   | 2.57                      |                |                                           |                                                                   |                                                                                                      |
| 196<br>222<br>146<br>2.46<br>1.38<br>1.38<br>1.38<br><b>Certified By:</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5252000 (3487047)                      |                   | 2.13                      |                |                                           |                                                                   |                                                                                                      |
| 222<br>146<br>128<br>136<br><b>Certified By:</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5252001 (3487048)                      |                   | 1.96                      |                |                                           |                                                                   |                                                                                                      |
| 246<br>128<br>138<br>138<br>Certified By:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5252002 (3487049)                      |                   | 2.22                      |                |                                           |                                                                   |                                                                                                      |
| 128<br>136<br>Certified By:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5252003 (3487050)                      |                   | 1.46                      |                |                                           |                                                                   |                                                                                                      |
| 1.36<br>Certified By:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5252004 (3487051)                      |                   | 2.46                      |                |                                           |                                                                   |                                                                                                      |
| Certified By:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5252005 (3487052)                      |                   | 1.28                      |                |                                           |                                                                   |                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5252006 (3487053)                      |                   | 1.36                      |                |                                           |                                                                   |                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                   |                           |                |                                           |                                                                   |                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                   |                           |                |                                           |                                                                   | the second                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                   |                           |                | Ū                                         | ertified By:                                                      |                                                                                                      |

2021 Geological Assessment Report on the Clement Property

| 5623 MCADAM ROAD<br>MISSISSAUGA, ONTARIO<br>CANADA L42 119<br>TEL (905)501-9998<br>FAX (905)501-9598<br>FAX (905)501-958 |                                  |                            | SAMPLE TYPE: Rock           |                                                                                                                                                                | the           |
|--------------------------------------------------------------------------------------------------------------------------|----------------------------------|----------------------------|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| Certificate of Analysis                                                                                                  | ATTENTION TO: Randy Stewart      | gin Weight                 | DATE REPORTED: Apr 01, 2022 |                                                                                                                                                                | Certified By: |
| Laboratories AGAT WORK OF                                                                                                | ĺ                                | (200-) Sample Login Weight | DATE RECEIVED: Feb 04, 2022 | mit<br>Thunder Bay, ON (unless marked by *)                                                                                                                    | 0             |
| THE CALL                                                                                                                 | CLIENT NAME: MISC AGAT CLIENT ON |                            | DATE SAMPLED: Feb 06, 2022  | Comments: RDL - Reported Detection Limit<br>hanajvisis performed at AGAT 1046 Gorham St, Thunder Bay<br>Instifficient Sample : IS<br>Sample Not Received : SNR |               |

|                                  |                         | Labo   | Laboratories | s                           | AGAT WORK ORDER: 22B861049                                      | RK ORD   | ER: 22B8                  | 61049                       |              |                             |            |                   | TEL (905)<br>FAX (905)  | CANADA L42 1N9<br>TEL (905)501-9998<br>FAX (905)501-0589 |
|----------------------------------|-------------------------|--------|--------------|-----------------------------|-----------------------------------------------------------------|----------|---------------------------|-----------------------------|--------------|-----------------------------|------------|-------------------|-------------------------|----------------------------------------------------------|
| CLIENT NAME: MISC AGAT CLIENT ON | T CLIENT ON             |        |              |                             | FRUJECI                                                         |          |                           | ATTEN                       | TION TO:     | ATTENTION TO: Randy Stewart | swart      | -                 | http://www.agatlabs.com | itlabs.com                                               |
|                                  |                         | (201-( | 74) Aqu      | a Regia                     | (201-074) Aqua Regia Digest - Metals Package, ICP/ICP-MS finish | Aetals P | ackage,                   | ICP/ICP-                    | MS finis     | Ļ                           |            |                   |                         |                                                          |
| DATE SAMPLED: Feb 06, 2022       | 2                       |        | DATE RECI    | DATE RECEIVED: Feb 04, 2022 | 04, 2022                                                        |          | DATEF                     | DATE REPORTED: Apr 01, 2022 | : Apr 01, 20 | 122                         | SAM        | SAMPLE TYPE: Rock | Rock                    |                                                          |
| Analyte:                         | rte: Ag                 | A      | As           | Au                          | в                                                               | Ba       | Be                        | Bi                          | Са           | Cd                          | e<br>C     | S                 | ŗ                       | Cs                                                       |
| U<br>Samula ID (AGAT ID) D       | Unit: ppm<br>PDI · 0.01 | %00    | ppm<br>10    | mqq                         | ppm<br>5                                                        | ppm<br>1 | mqq<br>0.05               | ppm<br>100                  | %            | mqq                         | mdd<br>100 | ppm<br>10         | mqq                     | ppm<br>0.05                                              |
|                                  |                         | 1.94   | 14.0         | 0.026                       | - 42                                                            | - 69     | 0.31                      | 0.23                        | 0.92         | 0.72                        | 17.5       | 52.3              | 337                     | 0.75                                                     |
| E5251961 (3487027)               | 0.09                    | 0.91   | 7.4          | 0.005                       | '¥?                                                             | ი<br>ი   | 0.36                      | 0.21                        | 0.65         | 0.05                        | 1.90       | 13.6              | 94.7                    | 0.10                                                     |
| E5251962 (3487028)               | 0.22                    | 1.04   | 11.2         | <0.005                      | \$                                                              | 73       | 0.28                      | 0.24                        | 0.94         | 0.06                        | 35.6       | 23.6              | 199                     | 0.42                                                     |
| E5251965 (3487029)               | 0.06                    | 2.76   | 12.7         | 0.009                       | \$                                                              | 145      | 0.43                      | 0.38                        | 0.31         | 0.02                        | 23.1       | 38.3              | 100                     | 1.54                                                     |
| E5251966 (3487030)               | 0.10                    | 2.44   | 3.1          | 0.005                       | s>                                                              | 80       | 0.56                      | 0.17                        | 0.61         | 0.11                        | 31.0       | 29.1              | 144                     | 0.38                                                     |
| E5251967 (3487031)               | 0.34                    | 1.07   | 4.2          | 0.038                       | \$ <u></u>                                                      | 67       | 0.25                      | 0.30                        | 1.14         | 0.36                        | 21.6       | 14.7              | 180                     | 0.17                                                     |
| E5251968 (3487032)               | 0.06                    | 1.51   | 1.8          | <0.005                      | \$                                                              | 163      | 0.26                      | 0.18                        | 0.84         | 0.09                        | 41.7       | 23.2              | 229                     | 1.16                                                     |
| E5251970 (3487033)               | 0.34                    | 1.68   | 5.8          | 0.077                       | \$5                                                             | 65       | 0.40                      | 0.18                        | 0.85         | 0.14                        | 17.1       | 32.3              | 181                     | 0.50                                                     |
| E5251976 (3487034)               | 0.46                    | 1.36   | 13.4         | 0.006                       | <5                                                              | 34       | 0.42                      | 0.16                        | 0.84         | 0.11                        | 26.6       | 18.1              | 136                     | 0.20                                                     |
| E5251981 (3487035)               | 0.20                    | 1.47   | 9.0          | 0.008                       | <5                                                              | 23       | 0.32                      | 0.13                        | 0.61         | 0.11                        | 56.4       | 22.5              | 218                     | 0.24                                                     |
| E5251982 (3487036)               | 0.05                    | 3.03   | 1.9          | <0.005                      | \$2                                                             | 158      | 0.42                      | 0.14                        | 0.71         | 0.06                        | 50.3       | 24.2              | <u> 6.99</u>            | 1.94                                                     |
| E5251988 (3487037)               | 0.14                    | 3.27   | 7.4          | 0.007                       | \$2                                                             | 146      | 0.47                      | 0.13                        | 0.91         | 0.13                        | 28.9       | 30.5              | 85.3                    | 0.97                                                     |
| E5251990 (3487038)               | 0.13                    | 2.65   | 1.8          | <0.005                      | \$                                                              | 104      | 0.32                      | 0.14                        | 0.65         | 0.10                        | 26.4       | 21.3              | 162                     | 1.16                                                     |
| E5251991 (3487039)               | 0.12                    | 1.38   | 4.6          | 0.014                       | ŝ                                                               | 88       | 0.24                      | 0.17                        | 0.57         | 0.04                        | 38.7       | 0.<br>0           | 139                     | 1.26                                                     |
| E5251992 (3487040)               | 0.12                    | 2.23   | 22.8         | 0.008                       | \$                                                              | 117      | 0.33                      | 60.0                        | 0.81         | 0.20                        | 11.9       | 28.9              | 113                     | 0.25                                                     |
| E5251993 (3487041)               | 0.06                    | 2.31   | 11.5         | <0.005                      | ŝ                                                               | 103      | 0.56                      | 0.11                        | 1.32         | 0.08                        | 16.6       | 18.4              | 113                     | 0.63                                                     |
| E5251994 (3487042)               | 0.06                    | 2.09   | 2.1          | 0.006                       | \$2                                                             | 173      | 0.63                      | 0.11                        | 0.48         | 0.02                        | 44.6       | 17.2              | 59.1                    | 1.68                                                     |
| E5251995 (3487043)               | 0.04                    | 3.44   | 3.0          | 0.011                       | \$2                                                             | 148      | 0.50                      | 0.20                        | 0.69         | 0.02                        | 15.1       | 24.5              | 125                     | 7.18                                                     |
| E5251996 (3487044)               | 0.55                    | 1.09   | 3.6          | 0.005                       | <5                                                              | 200      | 0.34                      | 0.13                        | 2.31         | 0.04                        | 16.5       | 5.0               | 65.7                    | 1.37                                                     |
| E5251997 (3487045)               | 0.07                    | 1.27   | 1.3          | <0.005                      | <5                                                              | 19       | 0.33                      | 0.24                        | 0.82         | 0.05                        | 13.6       | 19.0              | 284                     | 0.28                                                     |
| E5251998 (3487046)               | 0.15                    | 3.18   | 1.2          | <0.005                      | <b>~</b> 5                                                      | 255      | 0.59                      | 0.22                        | 0.66         | 0.53                        | 27.6       | 21.9              | 93.7                    | 4.24                                                     |
| E5252000 (3487047)               | 0.11                    | 2.75   | 2.2          | <0.005                      | \$                                                              | 174      | 09.0                      | 0.41                        | 0.71         | 0.06                        | 26.1       | 28.6              | 193                     | 1.92                                                     |
| E5252001 (3487048)               | 0.06                    | 2.88   | 4.1          | 0.045                       | \$5                                                             | 67       | 0.55                      | 0.33                        | 0.33         | 0.04                        | 8.33       | 6.3               | 162                     | 2.76                                                     |
| E5252002 (3487049)               | 0.33                    | 2.48   | 1.4          | <0.005                      | \$2                                                             | 104      | 0.61                      | 1.54                        | 0.64         | 0.09                        | 30.3       | 86.4              | 201                     | 1.28                                                     |
| E5252003 (3487050)               | 0.22                    | 2.51   | 27.5         | 0.599                       | \$2                                                             | 43       | 0.44                      | 0.85                        | 1.08         | 0.14                        | 24.7       | 26.6              | 94.3                    | 0.31                                                     |
| E5252004 (3487051)               | 0.19                    | 1.02   | 14.5         | <0.005                      | ŝ                                                               | 52       | 0.26                      | 0.12                        | 2.68         | 0.09                        | 19.7       | 14.3              | 331                     | 0.63                                                     |
| E5252005 (3487052)               | 0.22                    | 3.63   | 1.6          | 0.009                       | <b>€</b> 2                                                      | 113      | 0.26                      | 0.27                        | 0.83         | 0.38                        | 22.7       | 53.7              | 156                     | 4.17                                                     |
| E5252006 (3487053)               | 0.08                    | 1.09   | 2.0          | <0.005                      | <b>5</b>                                                        | 11       | 0.27                      | 0.08                        | 0.57         | 0.06                        | 18.8       | 11.1              | 118                     | 0.85                                                     |
|                                  |                         |        |              |                             |                                                                 |          |                           |                             |              |                             |            |                   |                         |                                                          |
|                                  |                         |        |              |                             |                                                                 |          |                           |                             |              |                             |            |                   |                         |                                                          |
|                                  |                         |        |              |                             |                                                                 |          |                           |                             |              |                             | A          | and the           |                         |                                                          |
|                                  |                         |        |              |                             |                                                                 | e<br>C   | Certified Bv <sup>-</sup> | BV.                         |              |                             | K          | 20                |                         |                                                          |
|                                  |                         |        |              |                             |                                                                 | >>>      |                           |                             |              |                             | 1          | 1                 |                         |                                                          |

| MISC AGAT CLIEN<br>MISC AGAT CLIEN<br>MISC AGAT CLIEN<br>MISC AGAT CLIEN | L     | Laboratories | atorios                                       |            | AGAT WC    | <b>JRK ORD</b> | <b>AGAT WORK ORDER: 22B861049</b> | 61049                       |                             |           |      |                   | TEL (905)501-9998<br>FAX (905)501-0589 | TEL (905)501-9998 |
|--------------------------------------------------------------------------|-------|--------------|-----------------------------------------------|------------|------------|----------------|-----------------------------------|-----------------------------|-----------------------------|-----------|------|-------------------|----------------------------------------|-------------------|
| MISC AGAT CLIEN<br>Feb 06, 2022<br>Analyte:<br>Unit:                     |       |              |                                               |            | PROJECT:   |                |                                   |                             |                             |           |      |                   |                                        | FAX (905)501-0589 |
| Feb 06, 2022<br>Analyte:<br>Unit: F                                      | IT ON |              |                                               | •          |            |                |                                   | ATTEN'                      | ATTENTION TO: Randy Stewart | Randy Ste | wart |                   | nup://www.agallabs.com                 | liabs.com         |
| Feb 06, 2022<br>Analyte:<br>Unit: F                                      | 0.00  | (201-07      | (201-074) Aqua Regia Digest - Metals Package, | Regia I    | Digest - I | Metals P       | ackage,                           | ICP/ICP-MS finish           | MS finis                    | ч         |      |                   |                                        |                   |
| Analyte:<br>Unit:                                                        |       | Ó            | DATE RECEIVED: Feb 04, 2022                   | VED: Feb ( | 04, 2022   |                | DATEF                             | DATE REPORTED: Apr 01, 2022 | : Apr 01, 2(                | 122       | SAM  | SAMPLE TYPE: Rock | : Rock                                 |                   |
| Unit:                                                                    | Cu    | Fe           | Ga                                            | Ge         | Ŧ          | ВН             | ٩                                 | ×                           | La                          | 5         | Mg   | Mn                | Mo                                     | Na                |
| - 100                                                                    | mdd   | %            | mdq                                           | mdq        | mdq        | mdq            | mdd                               | %                           | mdd                         | mdd       | %    | mqq               | mqq                                    | %                 |
| KUL:                                                                     | 0.5   | 0.01         | 0.05                                          | 0.05       | 0.02       | 0.01           | 0.005                             | 0.01                        | 0.1                         | 0.1       | 0.01 | -                 | 0.05                                   | 0.01              |
|                                                                          | 395   | 3.54         | 5.70                                          | 0.12       | 0.21       | 0.01           | 0.029                             | 0.23                        | 8.3                         | 22.7      | 1.88 | 536               | 0.93                                   | 0.05              |
|                                                                          | 4.9   | 1.46         | 2.74                                          | 0.09       | 0.06       | <0.01          | 0.013                             | 0.02                        | 1.0                         | 9.5       | 0.91 | 216               | 0.68                                   | 0.02              |
|                                                                          | 185   | 2.43         | 4.52                                          | 0.29       | 0.19       | <0.01          | 0.015                             | 0.33                        | 16.0                        | 7.0       | 0.52 | 364               | 1.17                                   | 0.07              |
|                                                                          | <0.5  | 4.39         | 11.7                                          | 0.18       | 0.23       | <0.01          | 0.014                             | 0.68                        | 9.9                         | 37.1      | 2.13 | 418               | 2.86                                   | 0.05              |
|                                                                          | 31.1  | 4.50         | 7.13                                          | 0.22       | 0.21       | 0.02           | 0.016                             | 0.20                        | 13.8                        | 20.9      | 1.65 | 1040              | 0.68                                   | 0.03              |
|                                                                          | 267   | 2.12         | 5.40                                          | 0.21       | 0.18       | 0.04           | 0.063                             | 0.14                        | 8.9                         | 9.4       | 0.49 | 325               | 1.35                                   | 0.05              |
|                                                                          | 42.4  | 2.69         | 7.12                                          | 0.23       | 0.20       | <0.01          | 0.011                             | 0.52                        | 21.1                        | 11.6      | 1.03 | 375               | 2.06                                   | 0.04              |
|                                                                          | 279   | 3.30         | 4.91                                          | 0.15       | 0.14       | <0.01          | 0.017                             | 0.39                        | 7.8                         | 15.8      | 1.11 | 488               | 1.37                                   | 0.05              |
|                                                                          | 90.2  | 2.26         | 4.85                                          | 0.20       | 0.24       | <0.01          | 0.011                             | 0.09                        | 12.3                        | 11.1      | 1.03 | 398               | 1.39                                   | 0.06              |
|                                                                          | 124   | 2.86         | 8.18                                          | 0.36       | 0.48       | <0.01          | 0.013                             | 0.07                        | 24.6                        | 10.7      | 0.87 | 357               | 7.56                                   | 0.07              |
|                                                                          | 80.4  | 5.37         | 8.27                                          | 0.30       | 0.31       | <0.01          | 0.013                             | 0.78                        | 23.7                        | 30.2      | 2.05 | 928               | 1.44                                   | 0.03              |
|                                                                          | 93.9  | 6.06         | 11.0                                          | 0.21       | 0.14       | 0.01           | 0.013                             | 0.41                        | 12.4                        | 18.6      | 2.17 | 1360              | 0.83                                   | 0.06              |
|                                                                          | 45.7  | 4.75         | 10.3                                          | 0.22       | 0.22       | <0.01          | 0.028                             | 0.38                        | 12.0                        | 30.2      | 1.46 | 526               | 1.06                                   | 0.06              |
|                                                                          | 65.1  | 2.54         | 6.87                                          | 0.34       | 0.45       | <0.01          | 0.024                             | 0.41                        | 17.0                        | 12.8      | 0.67 | 456               | 1.43                                   | 0.07              |
|                                                                          | 82.6  | 3.81         | 6.29                                          | 0.11       | 0.13       | <0.01          | 0.016                             | 0.23                        | 4.8                         | 23.9      | 1.20 | 795               | 0.30                                   | 0.03              |
|                                                                          | 16.7  | 4.49         | 7.14                                          | 0.12       | 0.35       | <0.01          | 0.017                             | 0.47                        | 7.1                         | 19.6      | 1.11 | 736               | 0.51                                   | 0.06              |
|                                                                          | 20.6  | 2.95         | 10.3                                          | 0.26       | 0.44       | <0.01          | 0.026                             | 1.04                        | 19.4                        | 23.6      | 0.89 | 218               | 1.24                                   | 0.11              |
|                                                                          | 106   | 8.49         | 7.68                                          | 0.18       | 0.18       | 0.01           | 0.013                             | 0.93                        | 6.3                         | 25.8      | 1.65 | 683               | 1.31                                   | <0.01             |
|                                                                          | <0.5  | 1.53         | 3.67                                          | 0.12       | 0.30       | <0.01          | 0.022                             | 0.70                        | 6.8                         | 9.2       | 0.49 | 350               | 0.47                                   | 0.03              |
|                                                                          | 43.2  | 3.76         | 3.86                                          | 0.08       | 0.15       | <0.01          | 0.012                             | 0.07                        | 6.0                         | 8.8       | 0.92 | 467               | 0.85                                   | 0.03              |
|                                                                          | 47.1  | 5.37         | 9.13                                          | 0.26       | 0.23       | <0.01          | 0.019                             | 1.65                        | 10.9                        | 32.8      | 2.43 | 855               | 1.17                                   | 0.05              |
|                                                                          | 74.8  | 6.51         | 5.99                                          | 0.22       | 0.30       | <0.01          | 0.011                             | 1.16                        | 11.4                        | 21.2      | 1.69 | 793               | 0.71                                   | 0.03              |
|                                                                          | 32.2  | 8.47         | 8.76                                          | 0.27       | 0.21       | <0.01          | 0.029                             | 0.45                        | 3.5                         | 20.2      | 0.85 | 837               | 1.31                                   | <0.01             |
|                                                                          | 435   | 7.01         | 7.85                                          | 0.24       | 0.45       | <0.01          | 0.011                             | 0.50                        | 12.0                        | 17.8      | 1.50 | 581               | 1.63                                   | 0.02              |
|                                                                          | 15.6  | 4.65         | 5.85                                          | 0.27       | 0.22       | 0.01           | 0.033                             | 0.20                        | 9.7                         | 21.4      | 1.18 | 645               | 1.61                                   | 0.02              |
|                                                                          | 219   | 2.19         | 3.78                                          | 0.18       | 0.33       | <0.01          | 0.019                             | 0.21                        | 8.9                         | 8.4       | 0.47 | 470               | 1.54                                   | 0.04              |
| E5252005 (3487052)                                                       | 209   | 7.89         | 13.1                                          | 0.29       | 0.20       | 0.02           | 0.026                             | 0.75                        | 10.3                        | 29.5      | 2.32 | 780               | 1.68                                   | 0.03              |
| E5252006 (3487053)                                                       | 5.1   | 2.22         | 3.49                                          | 0.14       | 0.32       | <0.01          | 0.013                             | 0.32                        | 8.1                         | 8.6       | 0.52 | 411               | 0.84                                   | 0.08              |
|                                                                          |       |              |                                               |            |            |                |                                   |                             |                             |           |      |                   |                                        |                   |
|                                                                          |       |              |                                               |            |            |                |                                   |                             |                             |           |      |                   |                                        |                   |
|                                                                          |       |              |                                               |            |            |                |                                   |                             |                             |           | 4    | 4.0               |                                        |                   |
|                                                                          |       |              |                                               |            |            | Ċ              |                                   | C                           |                             |           | ×    | 23                |                                        |                   |
|                                                                          |       |              |                                               |            |            | د<br>د         | Certified by:                     | DV.                         |                             |           |      | 1                 |                                        |                   |

| フら                           |                         | Labo       | Laboratories                                                    |           | AGAT WOI | AGAT WORK ORDER: 22B861049 | ER: 22B8      | 61049                       |            |                             |      |                   | CANADA L42 TN9<br>TEL (905)501-9998<br>FAX (905)501-0589 | CANADA L4Z 1N9<br>FEL (905)501-9998<br>AX (905)501-0589 |
|------------------------------|-------------------------|------------|-----------------------------------------------------------------|-----------|----------|----------------------------|---------------|-----------------------------|------------|-----------------------------|------|-------------------|----------------------------------------------------------|---------------------------------------------------------|
| CLIENT NAME: MISC AGAT CLIEN | T CLIENT ON             |            |                                                                 |           |          |                            |               | ATTEN                       | FION TO: F | ATTENTION TO: Randy Stewart | wart |                   | http://www.agatlabs.com                                  | atlabs.com                                              |
|                              |                         | (201-      | (201-074) Aqua Regia Digest - Metals Package, ICP/ICP-MS finish | Regia I   | Digest - | Metals P                   | ackage,       | ICP/ICP-                    | MS finis   | ч                           |      |                   |                                                          |                                                         |
| DATE SAMPLED: Feb 06, 2022   | 22                      |            | DATE RECEIVED: Feb 04, 2022                                     | IVED: Feb | 04, 2022 |                            | DATE          | DATE REPORTED: Apr 01, 2022 | Apr 01, 20 | 22                          | SAM  | SAMPLE TYPE: Rock | Rock                                                     |                                                         |
| Analyte:                     |                         | ī          | ٩                                                               | Pb        | ßb       | Re                         | S             | Sb                          | Sc         | Se                          | Sn   | S                 | Ta                                                       | Te                                                      |
|                              | Unit: ppm<br>PDI · 0.05 | mqq<br>4 c | %<br>%                                                          | mqq       | mdd      | mqq                        | %             | mdq                         | mqq        | mqq                         | mqq  | mqq               | mdd                                                      | ppm                                                     |
|                              |                         | 39.0       | 0.131                                                           | 6.1       | 11.1     | 0.008                      | 0.57          | 0.38                        | 3.7        | 2.4                         | 0.7  | 31.6              | 0.02                                                     | 0.20                                                    |
| E5251961 (3487027)           | 0.31                    | 32.3       | 0.010                                                           | 6.3       | 1.0      | 0.007                      | 0.05          | 0.25                        | 1.4        | 0.6                         | 0.4  | 41.4              | 0.02                                                     | 0.18                                                    |
| E5251962 (3487028)           | 0.65                    | 39.6       | 0.145                                                           | 3.3       | 22.5     | 0.007                      | 0.14          | 0.18                        | 2.9        | 1.6                         | 9.0  | 18.4              | 0.02                                                     | 0.08                                                    |
| E5251965 (3487029)           | 0.25                    | 41.4       | 0.102                                                           | 1.6       | 30.1     | 0.009                      | 0.40          | 0.35                        | 6.1        | 2.3                         | 0.7  | 9.2               | 0.01                                                     | 0.11                                                    |
| E5251966 (3487030)           | 0.82                    | 48.9       | 0.072                                                           | 6.0       | 11.7     | 0.005                      | 0.38          | 0.31                        | 3.2        | 1.3                         | 0.5  | 25.1              | 0.01                                                     | 0.13                                                    |
| E5251967 (3487031)           | 0.90                    | 3.0        | 0.115                                                           | 6.5       | 4.6      | 0.006                      | 0.19          | 0.21                        | 1.8        | 1.8                         | 0.9  | 23.7              | 0.01                                                     | 0.22                                                    |
| E5251968 (3487032)           | 0.46                    | 48.5       | 0.051                                                           | 4.8       | 28.6     | 0.006                      | 0.20          | 0.19                        | 3.1        | 1.9                         | 0.4  | 23.3              | 0.01                                                     | 0.08                                                    |
| E5251970 (3487033)           | 0.55                    | 42.2       | 0.127                                                           | 1.8       | 26.4     | 0.006                      | 0.27          | 0.17                        | 2.2        | 1.6                         | 0.6  | 18.3              | 0.01                                                     | 0.21                                                    |
| E5251976 (3487034)           | 0.62                    | 28.1       | 0.095                                                           | 3.8       | 3.5      | 0.006                      | 0.03          | 0.40                        | 3.0        | 1.6                         | 1.0  | 40.2              | 0.01                                                     | 0.08                                                    |
| E5251981 (3487035)           | 1.49                    | 7.5        | 0.072                                                           | 8.7       | 3.1      | 0.006                      | 0.18          | 0.16                        | 3.4        | 2.7                         | 0.5  | 15.3              | <0.01                                                    | 0.06                                                    |
| E5251982 (3487036)           | 0.37                    | 21.9       | 0.128                                                           | 2.6       | 30.4     | 0.006                      | 0.30          | 0.16                        | 3.0        | 1.3                         | 0.5  | 20.2              | 0.01                                                     | 0.14                                                    |
| E5251988 (3487037)           | 0.42                    | 48.4       | 0.132                                                           | 12.6      | 23.1     | 0.007                      | 0.22          | 0.25                        | 3.8        | 1.2                         | 0.5  | 17.1              | <0.01                                                    | 0.05                                                    |
| E5251990 (3487038)           | 0.70                    | 50.0       | 0.057                                                           | 15.5      | 19.6     | 0.007                      | 0.03          | 0.23                        | 4.4        | 1.6                         | 0.9  | 41.6              | <0.01                                                    | 0.15                                                    |
| E5251991 (3487039)           | 0.86                    | 10.7       | 0.081                                                           | 4.8       | 22.5     | 0.006                      | 0.14          | 0.12                        | 2.7        | 1.8                         | 0.6  | 15.8              | 0.01                                                     | 0.14                                                    |
| E5251992 (3487040)           | 0.41                    | 52.8       | 0.109                                                           | 3.9       | 7.2      | 0.008                      | <0.01         | 0.14                        | 2.6        | 1.7                         | 1.8  | 13.3              | 0.02                                                     | 0.24                                                    |
| E5251993 (3487041)           | 0.60                    | 25.9       | 0.131                                                           | 2.6       | 23.0     | 0.005                      | 0.01          | 0.25                        | 4.1        | 1.4                         | 0.6  | 20.2              | <0.01                                                    | 0.10                                                    |
| E5251994 (3487042)           | 0.49                    | 10.0       | 0.152                                                           | 2.0       | 39.1     | 0.004                      | 0.20          | 0.16                        | 4.5        | 1.6                         | 0.9  | 13.6              | <0.01                                                    | 0.05                                                    |
| E5251995 (3487043)           | 0.38                    | 49.9       | 0.091                                                           | 2.2       | 64.5     | 0.006                      | 0.17          | 0.34                        | 3.8        | 1.7                         | 0.5  | 94.6              | 0.02                                                     | 0.20                                                    |
| E5251996 (3487044)           | 0.78                    | 18.4       | 0.126                                                           | 3.1       | 24.7     | 0.004                      | 0.04          | 0.46                        | 3.0        | 0.8                         | 0.5  | 55.9              | 0.02                                                     | 0.08                                                    |
| E5251997 (3487045)           | 0.72                    | 25.8       | 0.124                                                           | 5.2       | 3.9      | 0.004                      | 0.92          | 0.25                        | 1.9        | <0.2                        | 0.5  | 26.7              | 0.01                                                     | 0.14                                                    |
| E5251998 (3487046)           | 0.39                    | 36.4       | 0.148                                                           | 7.1       | 77.1     | 0.006                      | 0.24          | 0.29                        | 3.8        | 2.9                         | 0.5  | 21.3              | 0.01                                                     | 0.06                                                    |
| E5252000 (3487047)           | 0.40                    | 38.5       | 0.145                                                           | 3.3       | 63.8     | 0.006                      | 1.11          | 0.31                        | 2.8        | 0.0                         | 0.5  | 20.9              | <0.01                                                    | 0.05                                                    |
| E5252001 (3487048)           | 0.25                    | 7.0        | 0.063                                                           | 2.6       | 35.6     | 0.006                      | 0.75          | 0.40                        | 3.4        | 1.3                         | 0.5  | 12.9              | <0.01                                                    | 0.21                                                    |
| E5252002 (3487049)           | 0.75                    | 140        | 0.126                                                           | 4.0       | 28.2     | 0.005                      | 2.98          | 0.36                        | 5.6        | 2.2                         | 0.4  | 16.1              | <0.01                                                    | 0.36                                                    |
| E5252003 (3487050)           | 0.55                    | 21.0       | 0.188                                                           | 5.0       | 6.2      | 0.005                      | 0.16          | 0.40                        | 2.5        | 0.5                         | 0.8  | 35.4              | <0.01                                                    | 0.57                                                    |
| E5252004 (3487051)           | 0.72                    | 16.9       | 0.126                                                           | 2.2       | 12.5     | 0.005                      | 0.03          | 0.26                        | 3.4        | 0.7                         | 0.5  | 22.1              | <0.01                                                    | 0.09                                                    |
| E5252005 (3487052)           | 0.24                    | 70.2       | 060.0                                                           | 7.4       | 52.7     | 0.004                      | 06.0          | 0.15                        | 4.0        | 1.9                         | 0.4  | 17.7              | <0.01                                                    | 0.16                                                    |
| E5252006 (3487053)           | 1.16                    | 17.9       | 0.074                                                           | 3.7       | 16.6     | 0.004                      | 0.04          | 0.10                        | 3.7        | 1.1                         | 0.5  | 19.9              | <0.01                                                    | 0.06                                                    |
|                              |                         |            |                                                                 |           |          |                            |               |                             |            |                             |      |                   |                                                          |                                                         |
|                              |                         |            |                                                                 |           |          |                            |               |                             |            |                             |      |                   |                                                          |                                                         |
|                              |                         |            |                                                                 |           |          |                            |               |                             |            |                             | 4    | 2.4               |                                                          |                                                         |
|                              |                         |            |                                                                 |           |          | Ce                         | Certified Bv: | BV:                         |            |                             | A    | en la             |                                                          |                                                         |
|                              |                         |            |                                                                 |           |          |                            |               |                             |            |                             |      |                   |                                                          |                                                         |

|                                          |       | Laboı          | Laboratories                         |           | Certificate of Analys<br>AGAT WORK ORDER: 22B861049<br>BRO IECT: | RK ORD   | Certificate of Analysis<br>AGAT WORK ORDER: 22B861049<br>BRO IECT. | alysis<br>61049 | <i>(</i> <b>)</b>           | MISSISAUGA, ONTARIO<br>NISSISAUGA, ONTARIO<br>EANADA LAZ 1N9<br>TEL (005)501-9998<br>FAX (905)501-9588 |
|------------------------------------------|-------|----------------|--------------------------------------|-----------|------------------------------------------------------------------|----------|--------------------------------------------------------------------|-----------------|-----------------------------|--------------------------------------------------------------------------------------------------------|
| CLIENT NAME: MISC AGAT CLIER             | NT ON |                |                                      |           |                                                                  |          |                                                                    | ATTEN'          | ATTENTION TO: Randy Stewart | http://www.agattabs.com<br>tewart                                                                      |
|                                          |       | (201-(         | (201-074) Aqua Regia Digest - Metals | n Regia I | Digest - I                                                       | Metals P | ackage,                                                            | ICP/ICP-        | Package, ICP/ICP-MS finish  |                                                                                                        |
| DATE SAMPLED: Feb 06, 2022               |       |                | DATE RECEIVED: Feb 04, 2022          | IVED: Feb | 04, 2022                                                         |          | DATEF                                                              | REPORTED:       | DATE REPORTED: Apr 01, 2022 | SAMPLE TYPE: Rock                                                                                      |
| Analyte:                                 | ЧL    | F              | E                                    | ∍         | >                                                                | M        | ۲                                                                  | Zh              | Zr                          |                                                                                                        |
|                                          | mqq   | %              | mqq                                  | mqq       | mqq                                                              | mqq      | mqq                                                                | mqq             | mqq                         |                                                                                                        |
| Sample ID (AGAT ID) RDL:                 | 0.1   | 0.005          | 0.01                                 | 0.05      | 0.5                                                              | 0.05     | 0.05                                                               | 0.5             | 0.5                         |                                                                                                        |
| E5251960 (3487026)                       | 1.6   | 0.105          | <0.01                                | 0.28      | 49.1                                                             | 0.64     | 4.34                                                               | 93.5            | 6.8                         |                                                                                                        |
| E5251961 (3487027)                       | 0.4   | 0.071          | <0.01                                | 0.06      | 20.6                                                             | 0.28     | 0.96                                                               | 20.1            | 1.3                         |                                                                                                        |
| E3231902 (3487028)<br>E6361066 (3487030) | - v   | 0.145<br>0.115 | <0.0F                                | 0.1Z      | 49<br>73 O                                                       | 00.U     | 4. 10<br>A 25                                                      | 33.U            | 0.0<br>6                    |                                                                                                        |
| E5251966 (3487030)                       | 66    | 0.279          | <0.01                                | 0.11      | 72.2                                                             | 0.35     | 3.82                                                               | 117             | 2.5                         |                                                                                                        |
| E5251967 (3487031)                       | 1.3   | 0.117          | <0.01                                | 0.09      | 7.2                                                              | 0.56     | 8.50                                                               | 158             | 5.9                         |                                                                                                        |
| E5251968 (3487032)                       | 5.4   | 0.099          | 0.11                                 | 1.03      | 27.3                                                             | 0.19     | 6.31                                                               | 58.9            | 6.5                         |                                                                                                        |
| E5251970 (3487033)                       | 0.9   | 0.207          | <0.01                                | 0.07      | 64.9                                                             | 5.23     | 3.47                                                               | 76.3            | 3.9                         |                                                                                                        |
| E5251976 (3487034)                       | 2.1   | 0.186          | <0.01                                | 0.16      | 36.4                                                             | 0.74     | 5.02                                                               | 50.1            | 6.4                         |                                                                                                        |
| E5251981 (3487035)                       | 3.8   | 0.123          | <0.01                                | 0.21      | 18.3                                                             | 0.28     | 7.29                                                               | 66.3            | 18.8                        |                                                                                                        |
| E5251982 (3487036)                       | 2.5   | 0.204          | 0.09                                 | 0.17      | 62.4                                                             | 0.85     | 4.65                                                               | 94.8            | 12.7                        |                                                                                                        |
| E5251988 (3487037)                       | 1.5   | 0.269          | <0.01                                | 0.07      | 122                                                              | 0.48     | 3.95                                                               | 119             | 5.5                         |                                                                                                        |
| E5251990 (3487038)                       | 3.7   | 0.185          | <0.01                                | 0.47      | 77.1                                                             | 0.45     | 5.77                                                               | 74.4            | 6.9                         |                                                                                                        |
| E5251991 (3487039)                       | 3.6   | 0.110          | <0.01                                | 0.35      | 12.0                                                             | 0.61     | 7.92                                                               | 49.8            | 16.0                        |                                                                                                        |
| E5251992 (3487040)                       | 1.4   | 0.164          | <0.01                                | 0.10      | 45.2                                                             | 0.10     | 3.33                                                               | 122             | 4.7                         |                                                                                                        |
| E5251993 (3487041)                       | 3.3   | 0.277          | <0.01                                | 0.25      | 62.1                                                             | 0.17     | 5.83                                                               | 92.9            | 13.5                        |                                                                                                        |
| E5251994 (3487042)                       | 4.3   | 0.146          | 0.05                                 | 0.28      | 30.8                                                             | 0.29     | 10.8                                                               | 34.4            | 19.0                        |                                                                                                        |
| E5251995 (3487043)                       | 2.0   | 0.201          | 0.38                                 | 0.28      | 59.3                                                             | 0.35     | 4.10                                                               | 84.7            | 5.4                         |                                                                                                        |
| E5251996 (3487044)                       | 2.3   | 0.199          | 0.06                                 | 0.18      | 30.9                                                             | 0.35     | 4.93                                                               | 24.2            | 10.3                        |                                                                                                        |
| E5251997 (3487045)                       | 1.2   | 0.169          | <0.01                                | 0.10      | 32.0                                                             | 0.20     | 3.48                                                               | 48.6            | 3.3                         |                                                                                                        |
| E5251998 (3487046)                       | 1.9   | 0.321          | 0.33                                 | 0.18      | 86.8                                                             | 0.30     | 5.21                                                               | 161             | 6.4                         |                                                                                                        |
| E5252000 (3487047)                       | 2.0   | 0.268          | 0.12                                 | 0.14      | 59.3                                                             | 0.22     | 4.36                                                               | 85.9            | 11.4                        |                                                                                                        |
| E5252001 (3487048)                       | 1.3   | 0.134          | 0.16                                 | 0.12      | 46.4                                                             | 0.51     | 5.36                                                               | 58.8            | 8.0                         |                                                                                                        |
| E5252002 (3487049)                       | 2.7   | 0.248          | 0.03                                 | 0.29      | 61.6                                                             | 0.53     | 5.29                                                               | 67.7            | 17.5                        |                                                                                                        |
| E5252003 (3487050)                       | 2.0   | 0.231          | <0.01                                | 0.17      | 43.0                                                             | 0.53     | 4.85                                                               | 72.4            | 7.3                         |                                                                                                        |
| E5252004 (3487051)                       | 2.9   | 0.177          | <0.01                                | 0.18      | 44.8                                                             | 0.37     | 3.97                                                               | 38.3            | 11.3                        |                                                                                                        |
| E5252005 (3487052)                       | 3.0   | 0.142          | 0.14                                 | 0.33      | 100                                                              | 0.11     | 8.50                                                               | 165             | 8.1                         |                                                                                                        |
| E5252006 (3487053)                       | 2.8   | 0.165          | <0.01                                | 0:30      | 27.7                                                             | 0.33     | 5.57                                                               | 35.0            | 12.1                        |                                                                                                        |
|                                          |       |                |                                      |           |                                                                  |          |                                                                    |                 |                             |                                                                                                        |
|                                          |       |                |                                      |           |                                                                  |          |                                                                    |                 |                             |                                                                                                        |
|                                          |       |                |                                      |           |                                                                  |          |                                                                    |                 |                             |                                                                                                        |
|                                          |       |                |                                      |           |                                                                  |          |                                                                    |                 |                             |                                                                                                        |
|                                          |       |                |                                      |           |                                                                  |          |                                                                    |                 |                             | th that                                                                                                |
|                                          |       |                |                                      |           |                                                                  |          |                                                                    |                 |                             | 62 th                                                                                                  |
|                                          |       |                |                                      |           |                                                                  | e        | Cartified Rv.                                                      | DV.             |                             |                                                                                                        |
|                                          |       |                |                                      |           |                                                                  |          |                                                                    |                 |                             | •                                                                                                      |

**AGAT** CERTIFICATE OF ANALYSIS (V1)

Page 7 of 15

Certified By:

| MISSISSAUCA, UNIXAIO<br>CANADA LAZ 1NB<br>TEL (905)501-9998<br>FLX (905)501-9398<br>HIV///www.analake.com |                                  |                                                                 | 2 SAMPLE TYPE: Rock                                                    |                                                                                                                                            | to the second se |
|-----------------------------------------------------------------------------------------------------------|----------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AGAT WORK ORDER: 22B861049<br>PROJECT:                                                                    | ATTENTION TO: Randy Stewart      | Is Package, ICP/ICP-MS finish                                   | DATE REPORTED: Apr 01, 2022                                            |                                                                                                                                            | Cortifiod Ru.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Laboratories AGAT WORK O<br>PROJECT:                                                                      |                                  | (201-074) Aqua Regia Digest - Metals Package, ICP/ICP-MS finish | DATE RECEIVED: Feb 04, 2022                                            | 1. ON (unless marked by *)                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| RACE T Ia                                                                                                 | CLIENT NAME: MISC AGAT CLIENT ON | (2                                                              | DATE SAMPLED: Feb 06, 2022<br>comments: RDL - Reported Detection Limit | Analysis performed at AGAT 5623 McAdam Rd., Mississauga, ON (unless marked by *)<br>Instriftclent Sample : IS<br>Sample Not Received : SNR |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| 5623 McADAM ROAD<br>MISSISSAUGA, ONTARIO<br>CANADA L42 1N9<br>TEL (905)501-9998<br>FAX (905)501-0589<br>http://www.agatlabs.com |                                | SAMPLE TYPE: Rock           |                                 |                     |                    |                    |                                |                                                                                                                                          |
|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-----------------------------|---------------------------------|---------------------|--------------------|--------------------|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| Certificate of Analysis<br>Agat work order: 22B861049<br>PROJECT: ATTENTION TO: Randy Stewart                                   | g (Crushing)                   | DATE REPORTED: Apr 01, 2022 |                                 |                     |                    |                    |                                |                                                                                                                                          |
| Laboratories AGAT WORK O<br>PROJECT:                                                                                            | Sieving - % Passing (Crushing) | DATE RECEIVED: Feb 04, 2022 |                                 |                     |                    |                    |                                | Analysis performed at AGAT 1046 Gorham St, Thunder Bay, ON (unless marked by *)<br>Insufficient Sample : IS<br>Sample Not Received : SNR |
|                                                                                                                                 |                                |                             | Crush-Pass<br>%                 | 0.01                | 93                 | 93                 | on Limit                       | St, Thunder B:                                                                                                                           |
|                                                                                                                                 |                                | 06, 2022                    | Analyte: <sup>Cr</sup><br>Unit: | RDL:                |                    |                    | RDL - Reported Detection Limit | .T 1046 Gorhar<br>R                                                                                                                      |
| CLIENT NAME: MISC AGAT CLI                                                                                                      |                                | DATE SAMPLED: Feb 06, 2022  |                                 | Sample ID (AGAT ID) | E5251960 (3487026) | E5251998 (3487046) | Comments: RDL - Re             | Analysis performed at AGA<br>Insufficient Sample : IS<br>Sample Not Received : SN                                                        |

**GGAT** CERTIFICATE OF ANALYSIS (V1)

Certified By:

I

the the

| 5623 McADAM ROAD<br>MISSISSALGA, ONTARIO<br>ACANADA L42 TN9<br>TEL (965)501-9988<br>FAX (965)501-9588 |                                  |                                   | ock                         |                     |         |                     |                    |                    |                                |                                                                                                             |                           |  |  |  |  |
|-------------------------------------------------------------------------------------------------------|----------------------------------|-----------------------------------|-----------------------------|---------------------|---------|---------------------|--------------------|--------------------|--------------------------------|-------------------------------------------------------------------------------------------------------------|---------------------------|--|--|--|--|
| 5<br>MISSI                                                                                            |                                  |                                   | SAMPLE TYPE: Rock           |                     |         |                     |                    |                    |                                |                                                                                                             |                           |  |  |  |  |
| Certificate of Analysis<br>AGAT WORK ORDER: 22B861049<br>PROJECT:                                     | ATTENTION TO: Randy Stewart      | ng (Pulverizing)                  | DATE REPORTED: Apr 01, 2022 |                     |         |                     |                    |                    |                                |                                                                                                             |                           |  |  |  |  |
| Laboratories AGAT WORK                                                                                |                                  | Sieving - % Passing (Pulverizing) | DATE RECEIVED: Feb 04, 2022 |                     |         |                     |                    |                    |                                | Analysis performed at AGAT 1046 Gorham St, Thunder Bay, ON (unless marked by *)<br>Insufficient Sample : IS |                           |  |  |  |  |
| C<br>C<br>C<br>L<br>D<br>D                                                                            | AGAT CLIENT ON                   |                                   | <b>)6, 2022</b>             | Analyte: Pul-Pass % | Unit: % | RDL: 0.01           | 93                 | 91                 | RDL - Reported Detection Limit | r 1046 Gorham St, Thunder                                                                                   | ~                         |  |  |  |  |
|                                                                                                       | CLIENT NAME: MISC AGAT CLIENT ON |                                   | DATE SAMPLED: Feb 06, 2022  |                     |         | Sample ID (AGAT ID) | E5251960 (3487026) | E5251961 (3487027) | Comments: RDL - Rej            | Analysis performed at AGAT<br>Insufficient Sample : IS                                                      | Sample Not Received : SNR |  |  |  |  |

**AGAT** CERTIFICATE OF ANALYSIS (V1)

Page 10 of 15

the the

Certified By:

| ATTENTION TO: ATTENTION |            |              | <b>D</b>         |           | Labor   | Laboratories |          | QUAINY P<br>AGAT WOI<br>PROJECT: | Assura<br>DRK ORL | uuality Assurance - Keplicate<br>AGAT WORK ORDER: 22B861049<br>PROJECT: | spiicate<br>361049 |           |           |        | MISSISSAUGA, ONTARIO<br>CANADA L4Z 1N9<br>TEL (905)501-9998<br>FAX (905)501-0589 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------|------------------|-----------|---------|--------------|----------|----------------------------------|-------------------|-------------------------------------------------------------------------|--------------------|-----------|-----------|--------|----------------------------------------------------------------------------------|
| (201-074) Aqua Regia Digest - Metals Package, ICP/ICP-NS fit           REPLICATE A         REPLICATE A           ATTENTITE         (201-074) Aqua Regia Digest - Metals Package, ICP/ICP-NS fit           Sampe D         Original Reginate RPD         A           Sampe D         Original Reginate RPD         A           3467027         0.01         0.02         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CLIENT NAN | AE: MISC AC  | 3AT CLIE         | NT ON     |         |              |          |                                  |                   |                                                                         | ATTE               | NTION TO  | : Randy S | tewart | http://www.agatlabs.com                                                          |
| <b>AFED-LATE A AFED-LATE A</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |              |                  |           | 201-074 | I) Aqua I    | Regia D  | )igest -                         | Metals            | Packag                                                                  |                    | CP-MS     | finish    |        |                                                                                  |
| Sample ID         Criginal         Replicate         Replicate <th< th=""><th></th><th></th><th>REPLIC</th><th>ATE #1</th><th></th><th></th><th>REPLIC,</th><th>ATE #2</th><th></th><th></th><th>REPLIC</th><th>ATE #3</th><th></th><th></th><th></th></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |              | REPLIC           | ATE #1    |         |              | REPLIC,  | ATE #2                           |                   |                                                                         | REPLIC             | ATE #3    |           |        |                                                                                  |
| 3467027         009         002         12.33%         347702         002         12.33%         347702         002         12.33%         547702         002         12.33         55.3         55.3         55.3         55.3         55.3         55.3         55.3         55.3         55.3         55.3         55.3         55.3         55.3         55.3         55.3         55.3         55.3         55.3         55.3         55.3         55.3         55.3         55.3         55.3         55.3         55.3         55.3         55.3         55.3         55.3         55.3         55.3         55.3         55.3         55.3         55.3         55.3         55.3         55.3         55.3         55.3         55.3         55.3         55.3         55.3         55.3         55.3         55.3         55.3         55.3         55.3         55.3         55.3         55.3         55.3         55.3         55.3         55.3         55.3         55.3         55.3         55.3         55.3         55.3         55.3         55.3         55.3         55.3         55.3         55.3         55.3         55.3         55.3         55.3         55.3         55.3         55.3         55.3         55.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Parameter  | Sample ID    | Original         | Replicate | RPD     | Sample ID    | Original | Replicate                        | RPD               | Sample ID                                                               | Original           | Replicate | RPD       |        |                                                                                  |
| 3467027         0.91         0.92         1.2%         347022         0.91         0.92         1.5%         347022         0.59         0.5%         347022         0.55         0.55         0.55         0.55         0.55         0.55         0.55         0.55         0.55         0.55         0.55         0.55         0.55         0.55         0.55         0.55         0.55         0.55         0.55         0.55         0.55         0.55         0.55         0.55         0.55         0.55         0.55         0.55         0.55         0.55         0.55         0.55         0.55         0.55         0.55         0.55         0.55         0.55         0.55         0.55         0.55         0.55         0.55         0.55         0.55         0.55         0.55         0.55         0.55         0.55         0.55         0.55         0.55         0.55         0.55         0.55         0.55         0.55         0.55         0.55         0.55         0.55         0.55         0.55         0.55         0.55         0.55         0.55         0.55         0.55         0.55         0.55         0.55         0.55         0.55         0.55         0.55         0.55         0.55         0.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ag         | 3487027      | 0.09             | 0.02      | 123.3%  | 3487042      | 0.06     | 0.05                             | 18.6%             | 3487052                                                                 | 0.22               | 0.25      | 15.6%     |        |                                                                                  |
| 347027         740         6.83         6.6%         347042         2.14         2.44         13.1%         347025         15         15         15           3467027         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5 <td>AI</td> <td>3487027</td> <td>0.91</td> <td>0.92</td> <td>1.2%</td> <td>3487042</td> <td>2.09</td> <td>2.03</td> <td>2.8%</td> <td>3487052</td> <td>3.63</td> <td>3.57</td> <td>1.8%</td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | AI         | 3487027      | 0.91             | 0.92      | 1.2%    | 3487042      | 2.09     | 2.03                             | 2.8%              | 3487052                                                                 | 3.63               | 3.57      | 1.8%      |        |                                                                                  |
| 3477027         0.005         0.006         347702         0.006         0.006         0.006         0.006         0.006         0.006         0.006         0.006         0.006         0.006         0.006         0.006         0.006         0.006         0.006         0.006         0.006         0.005           3477027         0.36         0.36         0.36         0.36         0.36         0.36         0.36         0.36         0.36         0.36         0.36         0.36         0.36         0.36         0.36         0.36         0.36         0.36         0.36         0.36         0.36         0.36         0.36         0.36         0.36         0.36         0.36         0.36         0.36         0.36         0.36         0.36         0.36         0.36         0.36         0.36         0.36         0.36         0.36         0.36         0.36         0.36         0.36         0.36         0.36         0.36         0.36         0.36         0.36         0.36         0.36         0.36         0.36         0.36         0.36         0.36         0.36         0.36         0.36         0.36         0.36         0.36         0.36         0.36         0.36         0.36         0.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | As         | 3487027      | 7.40             | 6.93      | 6.6%    | 3487042      | 2.14     | 2.44                             | 13.1%             | 3487052                                                                 | 1.6                | 1.5       | 6.5%      |        |                                                                                  |
| 3467027                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Au         | 3487027      | 0.005            | 0.005     | 0.0%    | 3487042      | 0.006    | 0.009                            |                   | 3487052                                                                 | 0.009              | < 0.005   |           |        |                                                                                  |
| 3467027         9         8         75%         3467042         173         167         33%         3467052         113         112           3467027         0.36         0.76         347702         0.36         0.76         346702         0.26         0.26           3467027         0.50         0.192         85%         348702         0.16         0.66         0.78         346702         0.26         0.26         0.26           3467027         0.50         0.175         82%         348702         0.16         0.146         32%         346702         236         0.36         0.36         0.36           3467027         1.50         1.50         0.75         346702         156         157         65%         346702         156         157         519         243           3467027         1.50         1.57         346702         156         157         557         519         243           3467027         1.56         1.57         346702         557         346702         156         243           3467027         1.46         1.45         346702         156         258         346702         156         243 <td< td=""><td>ß</td><td>3487027</td><td>\$</td><td>\$</td><td>%0</td><td>3487042</td><td>\$5</td><td>\$5</td><td>%0</td><td>3487052</td><td>&lt;2<br/>2</td><td>&lt;5</td><td>%0</td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ß          | 3487027      | \$               | \$        | %0      | 3487042      | \$5      | \$5                              | %0                | 3487052                                                                 | <2<br>2            | <5        | %0        |        |                                                                                  |
| 3487027         0.36         0.7%         3487042         0.56         0.7%         3487042         0.26         0.26         0.26         0.26         0.26         0.26         0.26         0.26         0.26         0.26         0.26         0.26         0.26         0.26         0.26         0.26         0.26         0.26         0.26         0.26         0.26         0.26         0.26         0.26         0.26         0.26         0.26         0.26         0.26         0.26         0.26         0.26         0.26         0.26         0.26         0.26         0.26         0.26         0.26         0.26         0.26         0.26         0.26         0.26         0.26         0.26         0.26         0.26         0.26         0.26         0.26         0.26         0.26         0.26         0.26         0.26         0.26         0.26         0.26         0.26         0.26         0.26         0.26         0.26         0.26         0.26         0.26         0.26         0.26         0.26         0.26         0.26         0.26         0.26         0.26         0.26         0.26         0.26         0.26         0.26         0.26         0.26         0.26         0.26         0.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ba         | 3487027      | თ                | ø         | 7.5%    | 3487042      | 173      | 167                              | 3.3%              | 3487052                                                                 | 113                | 112       | 0.7%      |        |                                                                                  |
| 3487027         0.206         0.192         8.87042         0.411         0.11         0.056         0.926         0.926         0.256         0.926         0.926         0.926         0.926         0.926         0.926         0.926         0.926         0.926         0.926         0.926         0.926         0.926         0.926         0.847022         0.847022         0.847022         0.847022         0.836         0.847022         0.938         0.938         0.936           3487027         1.916         1.756         3487042         5446         5440         1.476         3487052         5537         513         513         513         513         513         513         513         513         513         513         513         513         513         513         513         513         513         513         513         513         513         513         513         513         513         513         513         513         513         513         513         513         513         513         513         513         513         513         513         513         513         513         513         513         513         513         513         513         513                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Be         | 3487027      | 0.36             | 0.36      | 0.7%    | 3487042      | 0.63     | 0.58                             | 8.2%              | 3487052                                                                 | 0.26               | 0.28      | 5.6%      |        |                                                                                  |
| 3487027         0.65         0.96         3487027         0.65         0.96         3487027         0.81         0.81         0.81         0.81         0.81         0.81         0.81         0.81         0.81         0.81         0.81         0.81         0.81         0.81         0.81         0.81         0.81         0.81         0.81         0.81         0.81         0.81         0.81         0.81         0.81         0.81         0.81         0.81         0.81         0.81         0.81         0.81         0.81         0.81         0.81         0.81         0.81         0.81         0.81         0.81         0.81         0.81         0.81         0.81         0.81         0.81         0.81         0.81         0.81         0.81         0.81         0.81         0.81         0.81         0.81         0.81         0.81         0.81         0.81         0.81         0.81         0.81         0.81         0.81         0.81         0.81         0.81         0.81         0.81         0.81         0.81         0.81         0.81         0.81         0.81         0.81         0.81         0.81         0.81         0.81         0.81         0.81 <th0.81< th="">         0.81         0.81</th0.81<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Bi         | 3487027      | 0.209            | 0.192     | 8.5%    | 3487042      | 0.11     | 0.11                             | 0.0%              | 3487052                                                                 | 0.27               | 0.25      | 7.7%      |        |                                                                                  |
| 3487027         0.05         0.02         3487042         0.02         0.02         0.02         0.03         0.36         0.36         0.36           3487027         1.190         1.75         8.2%         3487042         145         3487052         53.7         51.9         21.5           3487027         156         13.4         15%         3487042         17.2         16.5         4.2%         3487052         53.7         51.9         51.9         51.9         51.9         51.9         51.9         51.9         51.9         51.9         51.9         51.9         51.9         51.9         51.9         51.9         51.9         51.9         51.9         51.9         51.9         51.9         51.9         51.9         51.9         51.9         51.9         51.9         51.9         51.9         51.9         51.9         51.9         51.9         51.9         51.9         51.9         51.9         51.9         51.9         51.9         51.9         51.9         51.9         51.9         51.9         51.9         51.9         51.9         51.9         51.9         51.9         51.9         51.9         51.9         51.9         51.9         51.9         51.9         51.9<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ca         | 3487027      | 0.65             | 0.66      | 0.9%    | 3487042      | 0.48     | 0.46                             | 3.2%              | 3487052                                                                 | 0.83               | 0.80      | 4%        |        |                                                                                  |
| 3487027         1:00         1:75         8487042         44.6         44.0         14.6         3487052         22.7         21.5           3487027         13.6         13.4         15.6%         3487042         55.1         5.1         5.1         5.1         5.1           3487027         13.6         13.4         15.6%         3487042         55.1         5.5         3487052         5.1         5.1         5.1         5.1         5.1         5.1         5.1         5.1         5.1         5.1         5.1         5.1         5.1         5.1         5.1         5.1         5.1         5.1         5.1         5.1         5.1         5.1         5.1         5.1         5.1         5.1         5.1         5.1         5.1         5.1         5.1         5.1         5.1         5.1         5.1         5.1         5.1         5.1         5.1         5.1         5.1         5.1         5.1         5.1         5.1         5.1         5.1         5.1         5.1         5.1         5.1         5.1         5.1         5.1         5.1         5.1         5.1         5.1         5.1         5.1         5.1         5.1         5.1         5.1         5.1<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Cd         | 3487027      | 0.05             | 0.02      |         | 3487042      | 0.02     | 0.02                             | %0:0              | 3487052                                                                 | 0.38               | 0.38      | 0.0%      |        |                                                                                  |
| 3487027         13.6         13.4         1.5%         3487042         1.5%         3487042         57.1         57.0         35%         3487052         51.7         51.9         57.0         35%         3487052         51.7         51.9         57.0         35%         3487052         156         2.33         51.9         2.43         2.43         2.43         2.43         3487052         156         156         2.43         2.43         3487027         1.46         1.49         1.4%         3487042         2.66         19.4         5.8%         3487052         7.89         7.78         2.43           3487027         1.46         1.49         1.4%         3487042         2.05         2.86         2.87052         7.89         7.78         7.78           3487027         1.46         1.49         1.4%         3487042         0.07         2.4704         0.78         3.487052         7.89         7.78         7.78           3487027         0.09         0.09         3487042         0.26         0.294         0.295         0.294         0.295         0.78         0.76         0.78         0.78         0.78         0.78         0.78         0.76         0.76         0.78         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ce         | 3487027      | 1.90             | 1.75      | 8.2%    | 3487042      | 44.6     | 44.0                             | 1.4%              | 3487052                                                                 | 22.7               | 21.5      | 5.4%      |        |                                                                                  |
| 3487027         94.7         99.1         4.5%         3487042         57.0         3.5%         3487052         166         2.43           3487027         0.104         0.114         92.%         3487042         1.66         1.57         6.8%         3487052         4.17         4.01         7.0           3487027         0.104         0.114         92.%         3487042         1.66         1.5.%         3487052         7.89         7.89         7.89         7.89         7.89         7.89         7.89         7.89         7.89         7.89         7.89         7.89         7.89         7.78         7.89         7.78         7.89         7.78         7.89         7.78         7.89         7.78         7.89         7.78         7.89         7.78         7.78         7.89         7.78         7.78         7.78         7.78         7.78         7.78         7.78         7.78         7.78         7.78         7.78         7.78         7.78         7.78         7.78         7.78         7.78         7.78         7.78         7.78         7.78         7.78         7.78         7.78         7.78         7.78         7.78         7.78         7.78         7.78         7.78         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ĉ          | 3487027      | 13.6             | 13.4      | 1.5%    | 3487042      | 17.2     | 16.5                             | 4.2%              | 3487052                                                                 | 53.7               | 51.9      | 3.4%      |        |                                                                                  |
| 3457027         0.104         0.114         92%         3467042         1.65         6.8%         3467052         4.17         4.01           3457027         1.49         1.49         1.49         1.49         1.49         1.49         206         19.4         5.8%         3467052         7.89         7.78           3457027         1.46         1.49         1.49         1.4%         3487042         2.95         2.88         2.3%         3487052         7.89         7.78           3457027         2.14         2.76         0.7%         3487042         0.77         5.3%         3487052         0.29         0.29           3457027         0.09         0.09         0.0%         3487042         0.244         6.7%         3487052         0.294         0.259           3457027         0.019         0.09         0.09         0.7%         348702         0.204         0.259           345702         0.019         0.019         0.7%         348702         0.29         0.074         0.259           345702         0.019         0.019         0.7%         348702         0.29         0.74           345702         0.02         0.14         1.04 <t< td=""><td>ບັ</td><td>3487027</td><td>94.7</td><td>99.1</td><td>4.5%</td><td>3487042</td><td>59.1</td><td>57.0</td><td>3.5%</td><td>3487052</td><td>156</td><td>243</td><td>43.4%</td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ບັ         | 3487027      | 94.7             | 99.1      | 4.5%    | 3487042      | 59.1     | 57.0                             | 3.5%              | 3487052                                                                 | 156                | 243       | 43.4%     |        |                                                                                  |
| 3457027         4.9         2.6         62.3%         3467042         2.06         19.4         5.8%         3467052         7.09         2.06         7.78           3457027         1.46         1.49         1.4%         3487042         2.95         2.88         2.3%         3487052         7.89         7.78           3457027         1.46         1.49         1.4%         3487042         2.95         2.88         2.3%         3487052         7.89         7.78           3457027         0.09         0.09         0.0%         3487042         0.24         0.24         0.29         0.29         0.29           3457027         0.09         0.09         0.0%         348702         0.09         0.29         0.29         0.29         0.29           345702         0.019         0.09         0.06         0.0%         348702         0.29         0.29         0.29           345702         0.019         0.16         0.06         0.06         0.4%         348702         0.29         0.78           345702         0.12         0.12         0.14         1.04         1.00         1.11         347052         0.76         0.74           345702                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | cs         | 3487027      | 0.104            | 0.114     | 9.2%    | 3487042      | 1.68     | 1.57                             | 6.8%              | 3487052                                                                 | 4.17               | 4.01      | 3.9%      |        |                                                                                  |
| 3487027         1.46         1.49         1.47%         3487042         2.95         2.88         2.3%         3487052         7.89         7.78           3487027         2.74         2.76         0.7%         3487042         0.7%         3487052         7.89         7.78         7.78           3487027         0.09         0.09         0.0%         3487042         0.07         5.3%         3487052         0.29         0.29         0.29           3487027         0.09         0.09         0.0%         3487042         0.44         0.42         4.7%         3487052         0.29         0.29           3487027         0.019         0.09         0.0%         3487042         0.04         0.25         0.24         0.25           3487027         0.019         0.146         12.4%         348702         0.02         0.02         0.02           3487027         0.019         0.146         12.4%         348702         0.16         0.02         0.02           3487027         0.021         0.146         12.4%         348705         0.02         0.16           3487027         0.921         0.48         149         192         146         146 <td< td=""><td>Cu</td><td>3487027</td><td>4.9</td><td>2.6</td><td>62.3%</td><td>3487042</td><td>20.6</td><td>19.4</td><td>5.8%</td><td>3487052</td><td>209</td><td>208</td><td>0.7%</td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Cu         | 3487027      | 4.9              | 2.6       | 62.3%   | 3487042      | 20.6     | 19.4                             | 5.8%              | 3487052                                                                 | 209                | 208       | 0.7%      |        |                                                                                  |
| 3487027         2.74         2.76         0.7%         3487052         0.37         5.3%         3487052         13.1         13.0           3487027         0.09         0.09         0.0%         3487042         0.24         6.7%         3487052         0.29         0.29         0.29           3487027         0.09         0.09         0.0%         3487042         0.44         0.42         4.7%         3487052         0.204         0.255           3487027         0.016         0.09%         3487042         0.047         0.047         0.020         0.026         0.026           3487027         0.0129         0.0146         12.4%         3487042         0.026         0.026         0.026         0.026           3487027         0.0129         0.0146         12.4%         3487042         0.026         0.026         0.026         0.026           3487027         0.012         0.02         0.487         0.027         0.023         0.147         104         100         114         102         104         104         104         104         104         104         104         104         104         104         104         104         104         104 <td< td=""><td>Fe</td><td>3487027</td><td>1.46</td><td>1.49</td><td>1.4%</td><td>3487042</td><td>2.95</td><td>2.88</td><td>2.3%</td><td>3487052</td><td>7.89</td><td>7.78</td><td>1.5%</td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Fe         | 3487027      | 1.46             | 1.49      | 1.4%    | 3487042      | 2.95     | 2.88                             | 2.3%              | 3487052                                                                 | 7.89               | 7.78      | 1.5%      |        |                                                                                  |
| 3487027         0.09         0.0%         3487042         0.281         0.244         6.7%         3487052         0.29         0.29         0.29           3487027         0.06         0.06         0.0%         3487042         0.44         0.42         4.7%         3487052         0.29         0.29         0.29           3487027         0.016         0.0%         3487042         0.014         0.247         0.017         0.005         0.020         0.026         0.026         0.026           3487027         0.019         0.0146         12.4%         3487042         0.020         10.11         3487052         0.026         0.016           3487027         0.012         0.0146         12.4%         3487042         10.4         100         4%         3487052         0.026         0.016           3487027         0.02         0.02         0.4%         3487042         10.4         100         4%         3487052         0.75         0.74         10.4           3487027         0.99         0.93         2.8%         348702         0.86         348705         2.85         2.83         2.87         2.87         2.87         2.87         2.83         2.84705         2.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ga         | 3487027      | 2.74             | 2.76      | 0.7%    | 3487042      | 10.3     | 9.77                             | 5.3%              | 3487052                                                                 | 13.1               | 13.0      | 0.8%      |        |                                                                                  |
| 3457027         0.006         0.00%         3487042         0.44         0.42         4.7%         3487052         0.204         0.225         0           3457027         <0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ge         | 3487027      | 0.09             | 0.09      | 0.0%    | 3487042      | 0.261    | 0.244                            | 6.7%              | 3487052                                                                 | 0.29               | 0.29      | 0.0%      |        |                                                                                  |
| 3487027         <0.01         0.0%         3487042         <0.01         0.0%         3487052         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ħ          | 3487027      | 0.06             | 0.06      | 0.0%    | 3487042      | 0.44     | 0.42                             | 4.7%              | 3487052                                                                 | 0.204              | 0.225     | 9.8%      |        |                                                                                  |
| 3457027         00126         01246         12.4%         3467042         0.026         0.026         0.016         0.018           3457027         0.02         0.0146         12.4%         3467042         0.026         0.026         0.018         0.014           3457027         0.02         0.02         0.4%         3467042         1.04         1.00         4%         3467052         0.75         0.75         0.74           3457027         0.99         0.93         6.3%         3467042         1.04         1.00         4%         3467052         0.75         0.75         0.74         780           3457027         0.99         0.93         5.3%         3487042         1.94         1.92         1.0%         3467052         2.85         2.83         2.87           3457027         0.91         0.93         2.3%         3487042         1.86         2.85         3487052         2.85         2.83         2.87         2.83         2.87         2.83         2.87         2.83         2.83         2.83         2.83         2.83         2.83         2.83         2.83         2.83         2.83         2.83         2.83         2.83         2.83         2.83         2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ВН         | 3487027      | < 0.01           | < 0.01    | %0'0    | 3487042      | < 0.01   | < 0.01                           | %0.0              | 3487052                                                                 | 0.02               | 0.02      | %0:0      |        |                                                                                  |
| 3487027         0.02         0.4%         3487057         0.75         0.75         0.75         0.74           3487027         0.99         0.93         63%         3487042         194         19.2         1.0%         3487052         0.75         0.75         0.74           3487027         0.99         0.93         63%         3487042         194         19.2         1.0%         3487052         10.3         99           3487027         95         98         2.9%         3487042         23.6         22.5         4.8%         3487052         29.5         28.3           3487027         0.91         0.93         2.2%         3487042         0.897         2.4%         3487052         2.32         2.37           3487027         0.91         0.93         2.2%         3487042         0.897         2.48         3487052         780         780           3487027         0.96         0.57         1.7%         348702         1.6%         3487052         780         780         774           3487027         0.92         1.7%         348702         0.17         780         780         774           3487027         0.92         1.7%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ч          | 3487027      | 0.0129           | 0.0146    | 12.4%   | 3487042      | 0.0257   | 0.0230                           | 11.1%             | 3487052                                                                 | 0.026              | 0.018     |           |        |                                                                                  |
| 3457027         0.99         0.93         5347042         194         19.2         1.0%         3457052         10.3         99         99           3457027         95         96         2.9%         3467042         2.36         2.35         4.8%         3467052         10.3         9.9         2.3%           3457027         95         96         2.9%         3467042         0.89         0.87         2.4%         3467052         2.35         2.3%           3457027         0.91         0.93         2.2%         3487042         0.89         0.87         2.4%         3487052         2.32         2.37           3457027         0.91         0.93         2.2%         3487042         0.89         0.87         2.4%         3487052         2.32         2.27         2.27           3457027         0.99         0.57         1.7%         3487022         1.68         1.74         1.75         7.5%         3487052         780         760         760         773         774           345702         0.020         0.75         348702         0.103         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03 <t< td=""><td>¥</td><td>3487027</td><td>0.02</td><td>0.02</td><td>0.4%</td><td>3487042</td><td>1.04</td><td>1.00</td><td>4%</td><td>3487052</td><td>0.75</td><td>0.74</td><td>1%</td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ¥          | 3487027      | 0.02             | 0.02      | 0.4%    | 3487042      | 1.04     | 1.00                             | 4%                | 3487052                                                                 | 0.75               | 0.74      | 1%        |        |                                                                                  |
| 3487027         95         98         2.9%         3487042         2.36         2.2.5         4.8%         3487052         2.9.5         2.8.3         2.8.3           3487027         0.91         0.93         2.2%         3487042         0.897         0.87         3.487052         2.9.5         2.8.3         2.27           3487027         0.91         0.93         2.2%         3487042         0.897         0.87         3.487052         2.32         2.27           3487027         216         219         1.4%         3487042         0.897         2.16         2.17%         3487052         780         780           3487027         0.68         0.57         1.76%         3487042         1.24         1.15         7.5%         3487052         780         774           3487027         0.090         0.57         1.76%         3487042         0.11         0.10         3.3%         3487052         0.03         0.03           3487027         0.306         0.257         1.74%         3487052         0.03         0.03         0.03           3487027         0.306         0.257         1.74%         3487052         0.33         3487052         0.33         0.33 </td <td>La</td> <td>3487027</td> <td>0.99</td> <td>0.93</td> <td>6.3%</td> <td>3487042</td> <td>19.4</td> <td>19.2</td> <td>1.0%</td> <td>3487052</td> <td>10.3</td> <td>9.9</td> <td>4.0%</td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | La         | 3487027      | 0.99             | 0.93      | 6.3%    | 3487042      | 19.4     | 19.2                             | 1.0%              | 3487052                                                                 | 10.3               | 9.9       | 4.0%      |        |                                                                                  |
| 3457027         0.91         0.93         2.2%         3467042         0.89         0.87         2.4%         3467052         2.32         2.27         2.27           3457027         216         219         1.4%         3487042         216         219         780         780         780         780         783         780         783         783         783         783         783         783         783         783         783         783         783         783         783         783         783         783         783         783         783         783         783         783         783         783         783         783         783         783         783         783         783         783         783         783         783         783         783         783         783         783         783         783         783         783         783         783         783         783         783         783         783         783         783         783         783         783         783         783         783         783         783         783         783         783         783         783         783         703         703                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            | 3487027      | 9.5              | 9.8       | 2.9%    | 3487042      | 23.6     | 22.5                             | 4.8%              | 3487052                                                                 | 29.5               | 28.3      | 4.3%      |        |                                                                                  |
| 3487027         216         219         1.4%         3487042         218         212         3.1%         3487052         780         783           3487027         0.68         0.57         17.6%         3487042         1.24         1.15         7.5%         3487052         1.68         1.74           3487027         0.68         0.57         17.6%         3487042         1.24         1.15         7.5%         3487052         1.68         1.74           3487027         0.02         0.02         1.3%         3487042         0.11         0.10         3.3%         3487052         0.03         0.03           3487027         0.026         0.257         1.74%         3487042         0.49         0.46         6.3%         3487052         0.03         0.03           3487027         0.306         0.257         1.74%         3487042         0.49         0.46         6.3%         3487052         70.2         68.8           3487027         0.010         0.000         0.2%         3487042         0.450         1.450         1.4%         2.48775         70.2         68.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Mg         | 3487027      | 0.91             | 0.93      | 2.2%    | 3487042      | 0.89     | 0.87                             | 2.4%              | 3487052                                                                 | 2.32               | 2.27      | 2.3%      |        |                                                                                  |
| 3487027         0.68         0.57         17.6%         3487042         1.24         1.15         7.5%         3487052         1.68         1.74           3487027         0.02         0.02         1.3%         3487042         0.11         0.10         3.3%         3487052         0.03         0.03           3487027         0.02         0.02         1.3%         3487042         0.11         0.10         3.3%         3487052         0.03         0.03           3487027         0.306         0.257         1.74%         3487042         0.49         0.46         6.3%         3487052         0.336         0.036           3487027         0.305         0.257         1.74%         3487042         10.0         9.7         3.5%         3487052         70.2         68.8           3487027         0.010         0.000         0.7%         3487042         10.10         9.7         3.5%         3487052         70.2         68.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Mn         | 3487027      | 216              | 219       | 1.4%    | 3487042      | 218      | 212                              | 3.1%              | 3487052                                                                 | 780                | 763       | 2.1%      |        |                                                                                  |
| 3487027         0.02         0.02         1.3%         3487052         0.03         0.03         0.03           3487027         0.306         0.257         17.4%         3487042         0.49         0.46         6.3%         3487052         0.03         0.03           3487027         0.306         0.257         17.4%         3487042         0.49         0.46         6.3%         3487052         0.236         0.204           3487027         32.3         32.4         0.2%         3487042         10.0         9.7         3.5%         3487052         70.2         68.8           3487027         32.3         32.4         0.2%         3487042         10.0         9.7         3.5%         3487052         70.2         68.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Мо         | 3487027      | 0.68             | 0.57      | 17.6%   | 3487042      | 1.24     | 1.15                             | 7.5%              | 3487052                                                                 | 1.68               | 1.74      | 3.5%      |        |                                                                                  |
| 3487027         0.306         0.257         17.4%         3487042         0.49         0.46         6.3%         3487052         0.236         0.204           3487027         32.3         32.4         0.2%         3487042         10.0         9.7         3.5%         3487052         70.26         68.8           3487027         32.3         32.4         0.2%         3487042         10.0         9.7         3.5%         3487052         70.2         68.8           3487027         0.010         0.000         3.7%         3487042         0.150         1.3%         3487052         70.2         68.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Na         | 3487027      | 0.02             | 0.02      | 1.3%    | 3487042      | 0.11     | 0.10                             | 3.3%              | 3487052                                                                 | 0.03               | 0.03      | 1.7%      |        |                                                                                  |
| 3487027 32.3 32.4 0.2% 3487042 10.0 9.7 3.5% 3487052 70.2 68.8 3487077 0.010 0.000 0.7% 3487047 0.150 1.3% 3487057 0.000 0.080                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ЧN         | 3487027      | 0.306            | 0.257     | 17.4%   | 3487042      | 0.49     | 0.46                             | 6.3%              | 3487052                                                                 | 0.236              | 0.204     | 14.5%     |        |                                                                                  |
| 3487037 0.010 0.000 0.7% 3487042 0.152 0.150 1.3% 3487052 0.060 0.080                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ī          | 3487027      | 32.3             | 32.4      | 0.2%    | 3487042      | 10.0     | 9.7                              | 3.5%              | 3487052                                                                 | 70.2               | 68.8      | 2.1%      |        |                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ч          | 3487027      | 0.010            | 0.009     | 9.7%    | 3487042      | 0.152    | 0.150                            | 1.3%              | 3487052                                                                 | 060'0              | 0.089     | 1.3%      |        |                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            | UALITY ASSUR | <b>ZANCE REP</b> | ORT       |         |              |          |                                  |                   |                                                                         |                    |           |           |        | Daria 11 of 15                                                                   |

| ATTENTION TO: Randy Stewart           2.0         1.9         3.1%         3487052         7.4         7.0         5.5%           39.1         37.5         4.2%         3487052         5.2.7         5.5.6         0.2%           0.004         0.005         2.2.2%         3487052         0.04         0.0%         0.0%           0.161         0.170         5.4%         3487052         0.192         0.161         5.8%           0.161         0.170         5.4%         3487052         0.161         5.8%         7.6           1.6         1.0         1.1%         3487052         0.164         2.10         7.9%         7.9%           1.6         1.0         1.12%         3487052         0.140         2.10         7.9%         7.9%           0.05         0.06         18.2%         3487052         0.16         0.19         17.1%         7.9%           0.05         0.06         18.2%         3487052         0.142         0.14         2.0%         7.9%           0.05         0.06         18.2%         3487052         0.142         0.14         0.0%         7.9%           0.05         0.06         18.2%         < | Laboratories |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| 1.9         3.1%         3487052         7.4           37.5         4.2%         3487052         5.2.7           0.005         22.2%         3487052         5.2.7           0.19         1.1%         3487052         0.004           0.170         5.4%         3487052         0.152           0.170         5.4%         3487052         0.152           1.1%         3487052         0.152         4.0           1.0         1.1%         3487052         0.152           1.10         1.1.2%         3487052         0.152           0.76         11.2%         3487052         0.16           1.1.1%         3487052         0.16         17.7           0.06         18.2%         3487052         0.16           0.141         3.6%         3487052         0.142           0.141         3.6%         3487052         0.142           0.26%         3487052         0.142         0.3           0.214         0.26%         3487052         0.141           0.26         10.9%         3487052         0.141           0.26         10.9%         3487052         0.141           0.26%                                                             |              |
| 37.5         4.2%         3487052         5.2.7           0.005         22.2%         3487052         0.004           0.170         1.1%         3487052         0.90           0.170         5.4%         3487052         0.152           4.5         0.9%         3487052         0.164           1.0         5.4%         3487052         0.152           4.5         0.9%         3487052         1.94           1.0         1.1.2%         3487052         0.45           13.1         4%         3487052         0.45           13.1         4%         3487052         0.46           0.06         18.2%         3487052         0.16           0.141         36%         3487052         0.142           0.141         36%         3487052         0.142           0.141         36%         3487052         0.142           0.26         10.9%         3487052         0.142           0.270         26%         3487052         0.14           0.26         10.9%         3487052         0.14           0.26         10.9%         3487052         0.14           0.26         10.9%                                                               | 3487042 2.   |
| 0.005         22.2%         3487052         0.004           0.19         1.1%         3487052         0.90           0.170         5.4%         3487052         0.152           4.5         0.9%         3487052         0.167           4.5         0.9%         3487052         1.94           1.0         1.1         3487052         1.94           1.10         3487052         0.45         1.77           0.76         11.2%         3487052         0.45           1.1         4%         3487052         0.45           1.3.1         4%         3487052         0.46           1.3.1         4%         3487052         0.16           1.3.1         4%         3487052         0.16           0.06         18.2%         3487052         0.16           0.141         36%         3487052         0.142           0.141         36%         3487052         0.142           0.014         256%         3487052         0.142           0.026         10.9%         3487052         0.142           0.26         0.9%         3487052         0.111           0.26         0.9%                                                                     | 3487042 39   |
| 0.19         1.1%         3487052         0.90           0.170         5.4%         3487052         0.152           4.5         0.9%         3487052         0.152           1.0         5.4%         3487052         1.94           1.0         7.12%         3487052         1.94           1.0         1.12%         3487052         0.45           1.1.0         1.12%         3487052         0.45           1.1.12%         3487052         0.45         17.7           0.76         11.2%         3487052         0.46           1.3.1         4%         3487052         0.46           1.3.1         4%         3487052         0.16           0.06         18.2%         3487052         0.16           0.141         36%         3487052         0.142           0.141         36%         3487052         0.142           0.141         36%         3487052         0.142           0.26         10.9%         3487052         0.142           0.270         26%         3487052         0.142           0.26         10.9%         3487052         0.111           0.26         10.9% </td <td>3487042 0.0</td>                                  | 3487042 0.0  |
| 0.170         5.4%         3487052         0.152           4.5         0.9%         3487052         4.0           1.0         3487052         1.94         3487052           1.0         3487052         1.94         3487052           1.0         3487052         0.45         3487052           0.76         11.2%         3487052         0.45           13.1         4%         3487052         0.45           13.1         4%         3487052         0.45           <0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3487042 0.1  |
| 4.5         0.9%         3487052         4.0           1.0         3487052         1.94         3487052         1.94           0.76         11.2%         3487052         0.45         17.7           13.1         4%         3487052         0.45         17.7           13.1         4%         3487052         0.45         17.7           <0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3487042 0.1  |
| 1.0         3487052         1.94           0.76         11.2%         3487052         0.45           13.1         4%         3487052         0.45           13.1         4%         3487052         0.45           <0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3487042 4.   |
| 0.76         11.2%         3487052         0.45           13.1         4%         3487052         17.7           <001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3487042 1    |
| 13.1         4%         3487052         17.7 $< 0.01$ $0.0\%$ $3487052$ $< 0.01$ $< 0.06$ $18.2\%$ $3487052$ $< 0.01$ $< 0.06$ $18.2\%$ $3487052$ $< 0.16$ $0.06$ $18.2\%$ $3487052$ $0.16$ $4.22$ $1.4\%$ $3487052$ $0.16$ $0.141$ $36\%$ $3487052$ $0.142$ $0.141$ $36\%$ $3487052$ $0.142$ $0.141$ $26\%$ $3487052$ $0.142$ $0.20$ $26\%$ $3487052$ $0.142$ $0.21$ $0.26\%$ $3487052$ $0.142$ $0.20$ $0.9\%$ $3487052$ $0.011$ $0.26$ $10.0\%$ $3487052$ $0.011$ $10.0$ $7.7\%$ $3487052$ $0.011$ $10.0$ $7.7\%$ $3487052$ $105$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3487042 0.4  |
| < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3487042 13   |
| 0.06         18.2%         3487052         0.16           4.22         1.4%         3487052         3.00           0.141         3.6%         3487052         0.142           0.141         3.6%         3487052         0.142           0.04         22.2%         3487052         0.142           0.070         2.6%         3487052         0.142           0.270         2.6%         3487052         0.142           0.270         2.6%         3487052         0.144           0.270         2.6%         3487052         0.144           9.0         0.860         3487052         0.111           0.26         10.9%         3487052         100           10.0         7.7%         3487052         111           10.0         7.7%         3487052         1550           34.4         0.1%         3487052         1550                                                                                                                                                                                                                                                                                                                            | 3487042 < 0  |
| 4.22         1.4%         3487052         3.00           0.141         3.6%         3487052         0.142           0.04         22.2%         3487052         0.142           0.270         2.6%         3487052         0.14           9.270         2.6%         3487052         0.14           0.270         2.6%         3487052         0.14           9.08         0%         3487052         0.11           9.08         0%         3487052         100           10.0         7.7%         3487052         0.111           10.0         7.7%         3487052         110           10.0         7.7%         3487052         1650           34.4         0.1%         3487052         1550                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3487042 0.0  |
| 0.141         36%         3487052         0.142           0.04         22.2%         3487052         0.14           0.270         26%         3487052         0.14           9.270         26%         3487052         0.14           9.270         26%         3487052         0.14           9.0270         26%         3487052         100           9.08         0%         3487052         100           10.0         7.7%         3487052         0.111           10.0         7.7%         3487052         110           34.4         0.1%         3487052         150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3487042 4.3  |
| 0.04         22.2%         3487052         0.14           0.270         2.6%         3487052         0.327           30.8         0%         3487052         100           30.8         0%         3487052         100           10.9%         3487052         0.111         110           110.0         7.7%         3487052         0.111           34.4         0.1%         3487052         160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3487042 0.1  |
| 0.270         2.6%         3487052         0.327           30.8         0%         3487052         100           0.26         10.9%         3487052         101           10.0         7.7%         3487052         0.111           34.4         0.1%         3487052         116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3487042 0.0  |
| 30.8         0%         3487052           0.26         10.9%         3487052           10.0         7.7%         3487052           34.4         0.1%         3487052                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3487042 0.2  |
| 0.26         10.9%         3487052           10.0         7.7%         3487052           34.4         0.1%         3487052                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3487042 30   |
| 10.0         7.7%         3487052           34.4         0.1%         3487052                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3487042 0.1  |
| 34.4 0.1% 3487052                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3487042 10   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3487042 34   |
| 19.0 18.0 5.4% 3487052 8.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3487042 19   |

# 5623 McADAM ROAD

**AGAT** QUALITY ASSURANCE REPORT

|           |        |            |             | Laboratories    | atories |           | Quality A:<br>AGAT WOR<br>PROJECT: | Quality Assurance - Certifiec<br>AGAT WORK ORDER: 22B861049<br>PROJECT: | nce - C(<br>)ER: 22B | 861049                        | Refere               | Quality Assurance - Certified Reference materials<br>46AT WORK ORDER: 22B861049<br>PROJECT: | ials | 5623 N<br>MISSISSAL<br>CA<br>CA<br>TEL<br>FAX<br>http://ww/ | 5623 McADAM ROAD<br>AISSISSAUGA, ONTARIO<br>CANADA LAZ 109<br>TEL (905)501-9998<br>FAX (905)501-0589<br>http://www.agatlabs.com |
|-----------|--------|------------|-------------|-----------------|---------|-----------|------------------------------------|-------------------------------------------------------------------------|----------------------|-------------------------------|----------------------|---------------------------------------------------------------------------------------------|------|-------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| <u>i</u>  | A DOIN |            |             | (201-074        | ) Aqua  | Regia     | Digest                             | (201-074) Aqua Regia Digest - Metals Package, ICP/ICP-MS finish         | Packag               | e, ICP/                       | ICP-MS               | o. ranuy sur                                                                                | Mair |                                                             |                                                                                                                                 |
|           |        | CRM #1 (re | ef.ME-1308) |                 | •       | CRM #2 (r | CRM #2 (ref.ME-1308)               |                                                                         |                      | CRM #3 (r                     | CRM #3 (ref.ME-1206) |                                                                                             |      |                                                             |                                                                                                                                 |
| Parameter | Expect | Actual     | Recovery    | Recovery Limits | Expect  | Actual    | Recovery                           | Expect Actual Recovery Limits                                           | Expect               | Expect Actual Recovery Limits | Recovery             | Limits                                                                                      |      |                                                             |                                                                                                                                 |
| _         | 45.7   | 44.7       | 98%         | 80% - 120%      | 45.7    | 45.0      | 98%                                | 80% - 120%                                                              | 274.0                | >100                          | 105%                 | 105% 80% - 120%                                                                             |      |                                                             |                                                                                                                                 |

2021 Geological Assessment Report on the Clement Property

80% - 120%

103%

8280

8010.0

80% - 120% 80% - 120% 80% - 120%

96% 103% 97%

3830 5570 4160

80% - 120% 3980.0 80% - 120% 5410.0 80% - 120% 4290.0

99% 106% 98%

3930 5720 4200

3980.0 5410.0 4290.0

Z B Cr

Page 13 of 15



5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

# Method Summary

| CLIENT NAME: MISC AGAT CLIENT ON<br>PROJECT: | AGAT WORK ORDER: 22B861049                 |                                                  |                      |
|----------------------------------------------|--------------------------------------------|--------------------------------------------------|----------------------|
| SAMPLING SITE:                               | ATTENTION TO: Randy Stewart<br>SAMPLED BY: |                                                  |                      |
| PARAMETER                                    | AGAT S.O.P                                 | LITERATURE REFERENCE                             | ANALYTICAL TECHNIQUE |
| Solid Analysis                               |                                            |                                                  |                      |
| Sample Login Weight                          | MIN-12009                                  |                                                  | BALANCE              |
| Ag                                           | MIN-200-12018                              | Fletcher, WK: Handbook of<br>Exploration Geochem | ICP-MS               |
| AI                                           | MIN-200-12020                              | Fletcher, WK: Handbook of<br>Exploration Geochem | ICP-OES              |
| As                                           | MIN-200-12018                              | Fletcher, WK: Handbook of<br>Exploration Geochem | ICP-MS               |
| Au                                           | MIN-200-12018                              | Fletcher, WK: Handbook of<br>Exploration Geochem | ICP-MS               |
| В                                            | MIN-200-12020                              | Fletcher, WK: Handbook of<br>Exploration Geochem | ICP-OES              |
| Ва                                           | MIN-200-12018                              | Fletcher, WK: Handbook of<br>Exploration Geochem | ICP-OES              |
| Ве                                           | MIN-200-12018                              | Fletcher, WK: Handbook of<br>Exploration Geochem | ICP-OES              |
| Ві                                           | MIN-200-12018                              | Fletcher, WK: Handbook of<br>Exploration Geochem | ICP-MS               |
| Са                                           | MIN-200-12020                              | Fletcher, WK: Handbook of<br>Exploration Geochem | ICP-OES              |
| Cd                                           | MIN-200-12018                              | Fletcher, WK: Handbook of<br>Exploration Geochem | ICP-MS               |
| Се                                           | MIN-200-12018                              | Fletcher, WK: Handbook of<br>Exploration Geochem | ICP-MS               |
| Co                                           | MIN-200-12018                              | Fletcher, WK: Handbook of<br>Exploration Geochem | ICP-MS               |
| Cr                                           | MIN-200-12020                              | Fletcher, WK: Handbook of<br>Exploration Geochem | ICP-OES              |
| Cs                                           | MIN-200-12018                              | Fletcher, WK: Handbook of<br>Exploration Geochem | ICP-MS               |
| Cu                                           | MIN-200-12018                              | Fletcher, WK: Handbook of<br>Exploration Geochem | ICP-OES              |
| Fe                                           | MIN-200-12020                              | Fletcher, WK: Handbook of<br>Exploration Geochem | ICP-OES              |
| Ga                                           | MIN-200-12018                              | Fletcher, WK: Handbook of<br>Exploration Geochem | ICP-MS               |
| Ge                                           | MIN-200-12018                              | Fletcher, WK: Handbook of<br>Exploration Geochem | ICP-MS               |
| Hf                                           | MIN-200-12018                              | Fletcher, WK: Handbook of<br>Exploration Geochem | ICP-MS               |
| Hg                                           | MIN-200-12018                              | Fletcher, WK: Handbook of<br>Exploration Geochem | ICP-MS               |
| In                                           | MIN-200-12018                              | Fletcher, WK: Handbook of<br>Exploration Geochem | ICP-MS               |
| κ                                            | MIN-200-12020                              | Fletcher, WK: Handbook of<br>Exploration Geochem | ICP-OES              |
| La                                           | MIN-200-12018                              | Fletcher, WK: Handbook of<br>Exploration Geochem | ICP-MS               |
| Li                                           | MIN-200-12018                              | Fletcher, WK: Handbook of<br>Exploration Geochem | ICP-OES              |
| Mg                                           | MIN-200-12020                              | Fletcher, WK: Handbook of<br>Exploration Geochem | ICP-OES              |
| Mn                                           | MIN-200-12020                              | Fletcher, WK: Handbook of<br>Exploration Geochem | ICP-OES              |
| Мо                                           | MIN-200-12018                              | Fletcher, WK: Handbook of<br>Exploration Geochem | ICP-MS               |

AGAT METHOD SUMMARY (V1)

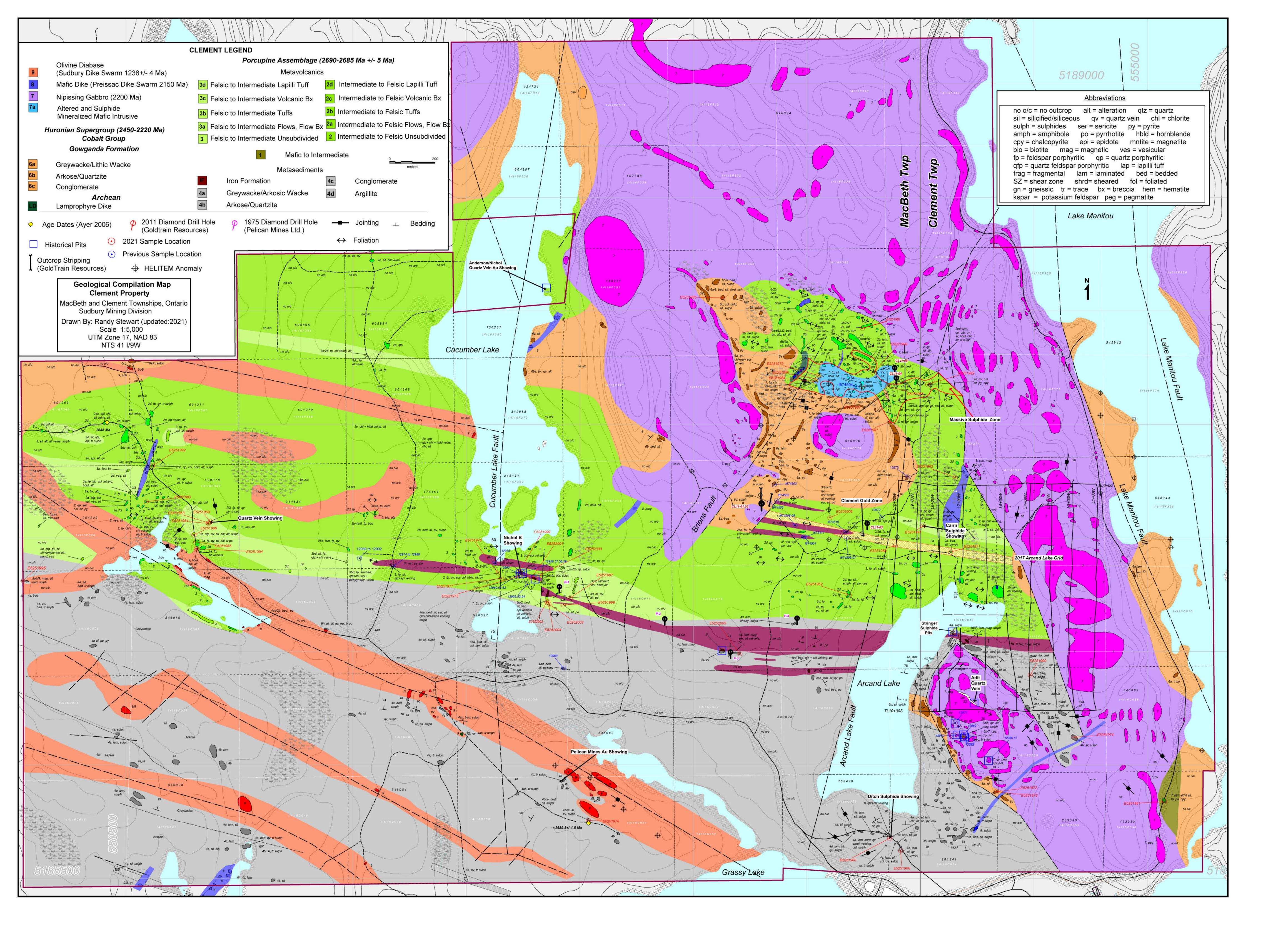
Results relate only to the items tested. Results apply to samples as received.

Page 14 of 15



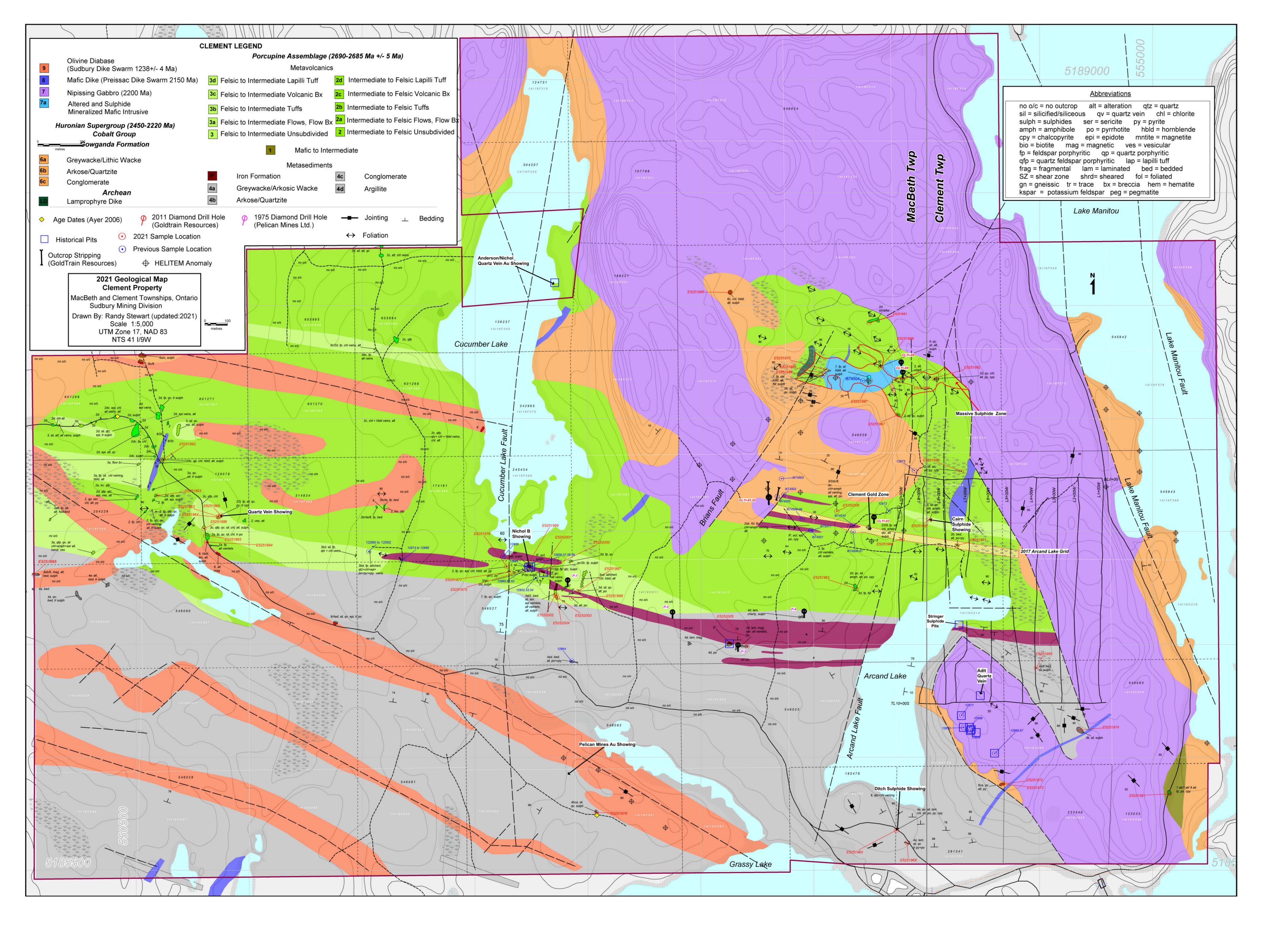
5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-9589 http://www.agatlabs.com

# **Method Summary**


| CLIENT NAME: MISC AGAT CLIEN | IT ON         | AGAT WORK OF                                     | RDER: 22B861049             |  |  |
|------------------------------|---------------|--------------------------------------------------|-----------------------------|--|--|
| PROJECT:                     |               | ATTENTION TO:                                    | ATTENTION TO: Randy Stewart |  |  |
| SAMPLING SITE:               |               | SAMPLED BY:                                      |                             |  |  |
| PARAMETER                    | AGAT S.O.P    | LITERATURE REFERENCE                             | ANALYTICAL TECHNIQUE        |  |  |
| Na                           | MIN-200-12020 | Fletcher, WK: Handbook of<br>Exploration Geochem | ICP-OES                     |  |  |
| Nb                           | MIN-200-12018 | Fletcher, WK: Handbook of<br>Exploration Geochem | ICP-MS                      |  |  |
| Ni                           | MIN-200-12018 | Fletcher, WK: Handbook of<br>Exploration Geochem | ICP-OES                     |  |  |
| Р                            | MIN-200-12020 | Fletcher, WK: Handbook of<br>Exploration Geochem | ICP-OES                     |  |  |
| Pb                           | MIN-200-12018 | Fletcher, WK: Handbook of<br>Exploration Geochem | ICP-MS                      |  |  |
| Rb                           | MIN-200-12018 | Fletcher, WK: Handbook of<br>Exploration Geochem | ICP-MS                      |  |  |
| Re                           | MIN-200-12018 | Fletcher, WK: Handbook of<br>Exploration Geochem | ICP-MS                      |  |  |
| S                            | MIN-200-12020 | Fletcher, WK: Handbook of<br>Exploration Geochem | ICP-OES                     |  |  |
| Sb                           | MIN-200-12018 | Fletcher, WK: Handbook of<br>Exploration Geochem | ICP-MS                      |  |  |
| Sc                           | MIN-200-12018 | Fletcher, WK: Handbook of<br>Exploration Geochem | ICP-OES                     |  |  |
| Se                           | MIN-200-12018 | Fletcher, WK: Handbook of<br>Exploration Geochem | ICP-MS                      |  |  |
| Sn                           | MIN-200-12018 | Fletcher, WK: Handbook of<br>Exploration Geochem | ICP-MS                      |  |  |
| Sr                           | MIN-200-12018 | Fletcher, WK: Handbook of<br>Exploration Geochem | ICP-OES                     |  |  |
| Та                           | MIN-200-12018 | Fletcher, WK: Handbook of<br>Exploration Geochem | ICP-MS                      |  |  |
| Те                           | MIN-200-12018 | Fletcher, WK: Handbook of<br>Exploration Geochem | ICP-MS                      |  |  |
| Th                           | MIN-200-12018 | Fletcher, WK: Handbook of<br>Exploration Geochem | ICP-MS                      |  |  |
| ті                           | MIN-200-12020 | Fletcher, WK: Handbook of<br>Exploration Geochem | ICP-OES                     |  |  |
| П                            | MIN-200-12018 | Fletcher, WK: Handbook of<br>Exploration Geochem | ICP-MS                      |  |  |
| U                            | MIN-200-12018 | Fletcher, WK: Handbook of<br>Exploration Geochem | ICP-MS                      |  |  |
| v                            | MIN-200-12020 | Fletcher, WK: Handbook of<br>Exploration Geochem | ICP-OES                     |  |  |
| w                            | MIN-200-12018 | Fletcher, WK: Handbook of<br>Exploration Geochem | ICP-MS                      |  |  |
| Y                            | MIN-200-12018 | Fletcher, WK: Handbook of<br>Exploration Geochem | ICP-MS                      |  |  |
| Zn                           | MIN-200-12018 | Fletcher, WK: Handbook of<br>Exploration Geochem | ICP-OES                     |  |  |
| Zr                           | MIN-200-12018 | Fletcher, WK: Handbook of<br>Exploration Geochem | ICP-MS                      |  |  |
| Crush-Pass %                 |               |                                                  | BALANCE                     |  |  |
| Pul-Pass %                   |               |                                                  | BALANCE                     |  |  |

AGAT METHOD SUMMARY (V1)

Results relate only to the items tested. Results apply to samples as received.


Page 15 of 15

MAPS





WWW.PRINT-DRIVER.COM





# $\bigcirc$ eat Φ D J demo ന ō D

WWW.PRINT-DRIVER.COM

# 2021 Clement Daily Log

|    | 2021   | Personnel                     | Task/Objective                    | Claims (Days)                |
|----|--------|-------------------------------|-----------------------------------|------------------------------|
| 1  | 10-May | Randy Stewart (Geologist) and | Mapping, Prospecting and Sampling | 281341 (1.00)                |
|    |        | Brian Wright (Technician)     |                                   |                              |
| 2  | 11-May | Randy Stewart (Geologist) and | Mapping, Prospecting and Sampling | 122033 (0.25), 174161 (0.75) |
|    |        | Brian Wright (Technician)     |                                   |                              |
| 3  | 12-May | Randy Stewart (Geologist) and | Mapping, Prospecting and Sampling | 128078 (1.00)                |
|    |        | Brian Wright (Technician)     |                                   |                              |
| 4  | 19-May | Randy Stewart (Geologist) and | Mapping, Prospecting and Sampling | 128078 (1.00)                |
|    |        | Brian Wright (Technician)     |                                   |                              |
| 5  | 20-May | Randy Stewart (Geologist) and | Mapping, Prospecting and Sampling | 128078 (1.00)                |
|    |        | Brian Wright (Technician)     |                                   |                              |
| 6  | 21-May | Randy Stewart (Geologist) and | Mapping, Prospecting and Sampling | 128078 (1.00)                |
|    |        | Brian Wright (Technician)     |                                   |                              |
| 7  | 29-May | Randy Stewart (Geologist) and | Mapping, Prospecting and Sampling | 128078 (0.50), 314834 (0.50) |
|    |        | Brian Wright (Technician)     |                                   |                              |
| 8  | 30-May | Randy Stewart (Geologist) and | Mapping, Prospecting and Sampling | 546026 (1.00)                |
|    |        | Brian Wright (Technician)     |                                   |                              |
| 9  | 01-Jun | Randy Stewart (Geologist) and | Mapping, Prospecting and Sampling | 546026 (1.00)                |
|    |        | Brian Wright (Technician)     |                                   |                              |
| 10 | 02-Jun | Randy Stewart (Geologist) and | Mapping, Prospecting and Sampling | 546026 (1.00)                |
|    |        | Brian Wright (Technician)     |                                   |                              |
| 11 | 03-Jun | Randy Stewart (Geologist) and | Mapping, Prospecting and Sampling | 546026 (1.00)                |
|    |        | Brian Wright (Technician)     |                                   |                              |
| 12 | 10-Jun | Randy Stewart (Geologist) and | Mapping, Prospecting and Sampling | 546026 (1.00)                |
|    |        | Brian Wright (Technician)     |                                   |                              |
| 13 | 11-Jun | Randy Stewart (Geologist) and | Mapping, Prospecting and Sampling | 546083 (1.00)                |
|    |        | Brian Wright (Technician)     |                                   |                              |
| 14 | 15-Jun | Randy Stewart (Geologist) and | Mapping, Prospecting and Sampling | 546083 (0.50), 342965 (0.50) |
|    |        | Brian Wright (Technician)     |                                   |                              |
| 15 | 16-Jun | Randy Stewart (Geologist) and | Mapping, Prospecting and Sampling | 546027 (1.00)                |
|    |        | Brian Wright (Technician)     |                                   |                              |
| 16 | 17-Jun | Randy Stewart (Geologist) and | Mapping, Prospecting and Sampling | 546027 (1.00)                |
|    |        | Brian Wright (Technician)     |                                   |                              |
| 17 | 06-Jul | Randy Stewart (Geologist) and | Mapping, Prospecting and Sampling | 546027 (1.00)                |
|    |        | Brian Wright (Technician)     |                                   |                              |
| 18 | 07-Jul | Randy Stewart (Geologist) and | Mapping, Prospecting and Sampling | 546082 (0.75), 546025 (0.25) |
|    |        | Brian Wright (Technician)     |                                   |                              |
| 19 | 13-Jul | Randy Stewart (Geologist) and | Mapping, Prospecting and Sampling | 546026 (1.00)                |
|    |        | Brian Wright (Technician)     |                                   |                              |
| 20 | 14-Jul | Randy Stewart (Geologist) and | Mapping, Prospecting and Sampling | 546026 (1.00)                |
|    |        | Brian Wright (Technician)     |                                   |                              |
| 21 | 16-Jul | Randy Stewart (Geologist) and | Mapping, Prospecting and Sampling | 546026 (1.00)                |
|    |        | Brian Wright (Technician)     |                                   |                              |

# 2021 Clement Daily Log

|    | 2021   | Personnel                     | Task/Objective                    | Claims (Days)                |
|----|--------|-------------------------------|-----------------------------------|------------------------------|
| 22 | 17-Jul | Randy Stewart (Geologist) and | Mapping, Prospecting and Sampling | 546026 (1.00)                |
|    |        | Brian Wright (Technician)     |                                   |                              |
| 23 | 03-Aug | Randy Stewart (Geologist) and | Mapping, Prospecting and Sampling | 546026 (1.00)                |
|    |        | Brian Wright (Technician)     |                                   |                              |
| 24 | 04-Aug | Randy Stewart (Geologist) and | Mapping, Prospecting and Sampling | 546080 (1.00)                |
|    |        | Brian Wright (Technician)     |                                   |                              |
| 25 | 05-Aug | Randy Stewart (Geologist) and | Mapping, Prospecting and Sampling | 546027 (1.00)                |
|    |        | Brian Wright (Technician)     |                                   |                              |
| 26 | 06-Aug | Randy Stewart (Geologist) and | Mapping, Prospecting and Sampling | 546027 (1.00)                |
|    |        | Brian Wright (Technician)     |                                   |                              |
| 27 | 16-Aug | Randy Stewart (Geologist) and | Mapping, Prospecting and Sampling | 546027 (1.00)                |
|    |        | Brian Wright (Technician)     |                                   |                              |
| 28 | 17-Aug | Randy Stewart (Geologist) and | Mapping, Prospecting and Sampling | 546027 (1.00)                |
|    |        | Brian Wright (Technician)     |                                   |                              |
| 29 | 26-Aug | Randy Stewart (Geologist) and | Mapping, Prospecting and Sampling | 546025 (0.50), 605895 (0.50) |
|    |        | Brian Wright (Technician)     |                                   |                              |
| 30 | 27-Aug | Randy Stewart (Geologist) and | Mapping, Prospecting and Sampling | 601268 (0.75), 601270 (0.25) |
|    |        | Brian Wright (Technician)     |                                   |                              |
| 31 | 12-Sep | Randy Stewart (Geologist) and | Mapping, Prospecting and Sampling | 601269 (0.50), 601270 (0.50) |
|    |        | Brian Wright (Technician)     |                                   |                              |
| 32 | 13-Sep | Randy Stewart (Geologist) and | Mapping, Prospecting and Sampling | 601269 (1.00)                |
|    |        | Brian Wright (Technician)     |                                   |                              |
| 33 | 14-Sep | Randy Stewart (Geologist) and | Mapping, Prospecting and Sampling | 601269 (1.00)                |
|    |        | Brian Wright (Technician)     |                                   |                              |
| 34 | 19-Sep | Randy Stewart (Geologist) and | Mapping, Prospecting and Sampling | 601271 (1.00)                |
|    |        | Brian Wright (Technician)     |                                   |                              |
| 35 | 20-Sep | Randy Stewart (Geologist) and | Mapping, Prospecting and Sampling | 601271 (1.00)                |
|    |        | Brian Wright (Technician)     |                                   |                              |
| 36 | 30-Sep | Randy Stewart (Geologist) and | Mapping, Prospecting and Sampling | 601271 (1.00)                |
|    |        | Brian Wright (Technician)     |                                   |                              |
| 37 | 01-Oct | Randy Stewart (Geologist) and | Mapping, Prospecting and Sampling | 601271 (0.50), 605894 (0.50) |
|    |        | Brian Wright (Technician)     |                                   |                              |
| 38 | 19-Oct | Randy Stewart (Geologist) and | Mapping, Prospecting and Sampling | 605894 (1.00)                |
|    |        | Brian Wright (Technician)     |                                   |                              |
| 39 | 20-Oct | Randy Stewart (Geologist) and | Mapping, Prospecting and Sampling | 605895 (1.00)                |
|    |        | Brian Wright (Technician)     |                                   |                              |
| 40 | 28-Oct | Randy Stewart (Geologist) and | Mapping, Prospecting and Sampling | 204229 (1.00)                |
|    |        | Brian Wright (Technician)     |                                   |                              |
| 41 | 29-Oct | Randy Stewart (Geologist) and | Mapping, Prospecting and Sampling | 204229 (1.00)                |
|    |        | Brian Wright (Technician)     |                                   |                              |
| 42 | 15-Nov | Randy Stewart (Geologist) and | Mapping, Prospecting and Sampling | 204229 (0.50), 245434 (0.50) |
|    |        | Brian Wright (Technician)     |                                   |                              |

# 2021 Clement Daily Log

|    | 2021   | Personnel                                                  | Task/Objective                    | Claims (Days) |
|----|--------|------------------------------------------------------------|-----------------------------------|---------------|
| 43 | 16-Nov | Randy Stewart (Geologist) and<br>Brian Wright (Technician) | Mapping, Prospecting and Sampling | 245434 (1.00) |
| 44 | 01-Dec | Randy Stewart (Geologist)                                  | Report Writing and Map Making     | All (1.00)    |
| 45 | 12-Dec | Randy Stewart (Geologist)                                  | Report Writing and Map Making     | All (1.00)    |
| 46 | 13-Dec | Randy Stewart (Geologist)                                  | Report Writing and Map Making     | All (1.00)    |
| 47 | 30-Dec | Randy Stewart (Geologist)                                  | Report Writing and Map Making     | All (1.00)    |
| 48 | 31-Dec | Randy Stewart (Geologist)                                  | Report Writing and Map Making     | All (1.00)    |
|    | 2022   |                                                            |                                   |               |
| 49 | 21-Feb | Randy Stewart (Geologist)                                  | Report Writing and Map Making     | All (1.00)    |

# 2021 Labour Costs: Clement Property

| 2021    | Personnel                 | Cost/Day (\$) |
|---------|---------------------------|---------------|
| 10-May  | Randy Stewart (Geologist) | 675.00        |
|         | Brian Wright (Technician) | 500.00        |
| 11-May  | Randy Stewart (Geologist) | 675.00        |
|         | Brian Wright (Technician) | 500.00        |
| 12-May  | Randy Stewart (Geologist) | 675.00        |
|         | Brian Wright (Technician) | 500.00        |
| 19-May  | Randy Stewart (Geologist) | 675.00        |
|         | Brian Wright (Technician) | 500.00        |
| 20-May  | Randy Stewart (Geologist) | 675.00        |
| ,       | Brian Wright (Technician) | 500.00        |
| 21-May  | Randy Stewart (Geologist) | 675.00        |
|         | Brian Wright (Technician) | 500.00        |
| 29-May  | Randy Stewart (Geologist) | 675.00        |
|         | Brian Wright (Technician) | 500.00        |
| 30-May  | Randy Stewart (Geologist) | 675.00        |
| So may  | Brian Wright (Technician) | 500.00        |
| 01-Jun  | Randy Stewart (Geologist) | 675.00        |
| 01 9411 | Brian Wright (Technician) | 500.00        |
| 02-Jun  | Randy Stewart (Geologist) | 675.00        |
| 02 Juli | Brian Wright (Technician) | 500.00        |
| 03-Jun  | Randy Stewart (Geologist) | 675.00        |
| 03-3011 | Brian Wright (Technician) | 500.00        |
| 10 Jun  | Randy Stewart (Geologist) | 675.00        |
| 10-Jun  | Brian Wright (Technician) | 500.00        |
| 11-Jun  | Randy Stewart (Geologist) | 675.00        |
| II-Juli | Brian Wright (Technician) | 500.00        |
| 15 100  | Randy Stewart (Geologist) | 675.00        |
| 15-Jun  | Brian Wright (Technician) | 500.00        |
| 16 Jun  | Randy Stewart (Geologist) | 675.00        |
| 16-Jun  | Brian Wright (Technician) | 500.00        |
| 17 100  | Randy Stewart (Geologist) | 675.00        |
| 17-Jun  | Brian Wright (Technician) | 500.00        |
|         | Randy Stewart (Geologist) | 675.00        |
| 06-Jul  | Brian Wright (Technician) | 500.00        |
| 07 101  | Randy Stewart (Geologist) | 675.00        |
| 07-Jul  | Brian Wright (Technician) | 500.00        |
| 12 1.1  | Randy Stewart (Geologist) | 675.00        |
| 13-Jul  | Brian Wright (Technician) | 500.00        |
| 14 1.1  | Randy Stewart (Geologist) | 675.00        |
| 14-Jul  | Brian Wright (Technician) | 500.00        |
| 16 1    | Randy Stewart (Geologist) | 675.00        |
| 16-Jul  | Brian Wright (Technician) | 500.00        |
| 17 11   | Randy Stewart (Geologist) | 675.00        |
| 17-Jul  | Brian Wright (Technician) | 500.00        |
| 02.4    | ÷ :                       | 675.00        |
| 03-Aug  | Randy Stewart (Geologist) |               |
|         | Brian Wright (Technician) | 500.00        |
| 04-Aug  | Randy Stewart (Geologist) | 675.00        |
|         | Brian Wright (Technician) | 500.00        |
| 05-Aug  | Randy Stewart (Geologist) | 675.00        |
|         | Brian Wright (Technician) | 500.00        |
| 06-Aug  | Randy Stewart (Geologist) | 675.00        |
|         | Brian Wright (Technician) | 500.00        |
| 16-Aug  | Randy Stewart (Geologist) | 675.00        |
|         | Brian Wright (Technician) | 500.00        |
| 17-Aug  | Randy Stewart (Geologist) | 675.00        |
|         | Brian Wright (Technician) | 500.00        |

# 2021 Labour Costs: Clement Property

| 2021    | Personnel                 | Cost/Day (\$) |
|---------|---------------------------|---------------|
| 26-Aug  | Randy Stewart (Geologist) | 675.00        |
|         | Brian Wright (Technician) | 500.00        |
| 27-Aug  | Randy Stewart (Geologist) | 675.00        |
|         | Brian Wright (Technician) | 500.00        |
| 12-Sep  | Randy Stewart (Geologist) | 675.00        |
|         | Brian Wright (Technician) | 500.00        |
| 13-Sep  | Randy Stewart (Geologist) | 675.00        |
|         | Brian Wright (Technician) | 500.00        |
| 14-Sep  | Randy Stewart (Geologist) | 675.00        |
|         | Brian Wright (Technician) | 500.00        |
| 19-Sep  | Randy Stewart (Geologist) | 675.00        |
|         | Brian Wright (Technician) | 500.00        |
| 20-Sep  | Randy Stewart (Geologist) | 675.00        |
|         | Brian Wright (Technician) | 500.00        |
| 30-Sep  | Randy Stewart (Geologist) | 675.00        |
|         | Brian Wright (Technician) | 500.00        |
| 01-Oct  | Randy Stewart (Geologist) | 675.00        |
|         | Brian Wright (Technician) | 500.00        |
| 19-Oct  | Randy Stewart (Geologist) | 675.00        |
|         | Brian Wright (Technician) | 500.00        |
| 20-Oct  | Randy Stewart (Geologist) | 675.00        |
|         | Brian Wright (Technician) | 500.00        |
| 28-Oct  | Randy Stewart (Geologist) | 675.00        |
|         | Brian Wright (Technician) | 500.00        |
| 29-Oct  | Randy Stewart (Geologist) | 675.00        |
|         | Brian Wright (Technician) | 500.00        |
| 15-Nov  | Randy Stewart (Geologist) | 675.00        |
|         | Brian Wright (Technician) | 500.00        |
| 16-Nov  | Randy Stewart (Geologist) | 675.00        |
|         | Brian Wright (Technician) | 500.00        |
|         | Labour                    | 50525.00      |
| 01-Dec  | Randy Stewart (Geologist) | 675.00        |
| 12-Dec  | Randy Stewart (Geologist) | 675.00        |
| 13-Dec  | Randy Stewart (Geologist) | 675.00        |
| 30-Dec  | Randy Stewart (Geologist) | 675.00        |
| 31-Dec  | Randy Stewart (Geologist) | 675.00        |
| Feb 21\ | Randy Stewart (Geologist) | 675.00        |
| 2022    |                           |               |
|         | Report                    | 4050.00       |
|         | Total Labour              | 54575.00      |
|         |                           | 54575.00      |
|         |                           |               |
|         |                           |               |
|         |                           |               |
|         |                           |               |