

We are committed to providing <u>accessible customer service</u>. If you need accessible formats or communications supports, please <u>contact us</u>.

Nous tenons à améliorer <u>l'accessibilité des services à la clientèle</u>. Si vous avez besoin de formats accessibles ou d'aide à la communication, veuillez <u>nous contacter</u>.

N.T.S. 41P14, 41P15

ROCK SAMPLE REPORT LAROMA PROSPECT: GREEN MONSTER PROJECT MIDLOTHIAN LAKE PROPERTY LARDER LAKE MINING DIVISION MIDLOTHIAN TOWNSHIP, ONTARIO

For:

GOLDENFIRE MINERALS INC.

London, Ontario

By: Robert Dillman ARJADEE PROSPECTING Mount Brydges, Ontario

INDEX

	page
Summary	2
Location and Access	3
Claim Logistics and Location of Work	3
Land Status and Topography	6
Regional and Local Geology	6
History of Exploration	11
Survey Dates and Personnel	13
Survey Logistics	13
Survey Results	14
Discussion of Results	20
Conclusions and Recommendations	21
References	22
Certificates of Author's	23
Figure 1. Property Location Map	4
Figure 2. Claim Map	5
Figure 3. Regional Geology Map	7
Figure 4. Geology Map of Midlothian and Halladay Townships	8
Figure 5. Geology of the Mitre Lake Are: Laroma Prospect	10
Table 1: History of Exploration	12
Table 2: Rock Sample Descriptions, Locations, Assay Results,	
Sample and Field Picture	es 15
APPENDIX	
Dimethylglyoxime Specifications	
Assay Certificate	
Geology and Rock Sample Locations + Au Assays Geology and Rock Sample Locations + Ni, Pt, Pd Assays	Map 1 : 5,000 Map 1 : 5,000

Summary

In December 2021 and January 2022, petrographic and microprobe examination of listwanite samples from the Laroma Prospect in Midlothian Township by Dr. Jim Renaud of Renaud Geological Consulting Ltd. (RGC), identified nickel-bearing sulphides in rock samples from the prospect. This report discloses assays for rock samples collected around the Laroma Prospect.

Rock samples contained in this report were previously collected during prospecting traverses conducted on the Midlothian Property in 2020 and 2021 and have been previously reported. Upon identification of nickel-sulphides by RGC, remaining pieces of the samples from the Laroma Prospect were tested for nickel using Dimethylglyoxime Powder. Twenty (20) samples had a reaction to the powder, turning bright red. These samples were sent to AGAT laboratory for a 45 element analyses which included nickel (Ni), and fire assays for gold (Au), platinum (Pt) and palladium (Pd). Assays for listwanite samples ranged 0.011 to 24.6 ppm Au, 379 to 1,950 ppm Ni, <0.005 to 0.010 ppm Pt, and 0.003 to 0.010 ppm Pd. A boulder of sulphide-bearing mafic metavolcanic rock found on the Laroma Prospect assayed 0.019 ppm Au, 3,630 ppm Ni, 0.109 ppm Pt, and 0.252 ppm Pd.

The Midlothian Property consists of 117 mining claim cells. The property covers an approximate area of 2,450 hectares.

At the time field work and petrology was completed, title to the claims were owned by Jim Renaud and (author) Robert Dillman. At the time of this report, title to all claims had been transferred to their company, Goldenfire Minerals Inc.

Location and Access

The Midlothian Lake Property is situated in Midlothian Township in the Larder Lake Mining Division of Ontario. The property is located approximately 23 kilometres southwest of the town of Matachewan (Figure 1).

The property is accessible by truck and ATV. From the town of Matachewan, the property can be reached by travelling 2.9 km southwest on Highway 566 to the Asbestos Mine Road. Go west on the mine road for 23 km at which point the road is washed out and the rest of the journey must be made on ATV. The road crosses onto the southeast corner of the property 2.3 km from the washout.

Claim Logistics and Location of Work

The Midlothian Lake Property consists of 117 mining claim cells. The property covers an approximate area of 2,450 hectares (Figure 2).

All claims comprising the Midlothian Lake Property are held by Goldenfire Minerals Inc. of London, Ontario.

Rock samples contained in this report were collected on claim 549439, cell 41P15E081.

	19	UN	18	TONTRO	SE	50 (B)	18	2	1)		MON	TROSE	/	15	12-		2h	50	1
581380 613 <i>0</i> 0	57939	2 57 0 97 9	570980	570978	1	27	639616	639617	35	5	to	-	Ø	80		Case		209 -	
81379 57308	Lake	57 0973	570981	570982	579366	579370	579360	579368	41P13 579362	579363	62997(629972	629969 41P15L	629971	//(
81378 573 08	56926	3 56 9269	552848	552838	5	579365	579369	579359	579372	579373	579391	579389	62996	629968	629967	SE	S	Maher Lak	,
81375 56926	100	569268	552844	552843	5793,57	5793.64	579358	579361	579371	579367	579388	579390	62996	629962	629959	629961	638853	638847	
08060 572939 56926	56926	5 56 9260	552846	552847	552849	549442	2 57 93 81	579375	579387	579377	579374	579378	579384	629964	629963	629960	638846	638852	F
-108058 13087 57097	57097	1 570973	552842	2552841	549444	549441	579380	579386	579382	579376	579385 MIDLO	579383 THIAN	579379	538085	538089	538083	538084	638862	
255176 57097	4 57097 41F	6 57 0972 214H	552845	552840	549445	549438	549440	552833	552830 41P15	552831	552837	552827	55283	2 538087	538088	538082	53 8086	638851	
267277 17130 36450 30446	7 32460	8 257309	275258 Lake	552839	549443	549437	549439	552829	552825	552826	552836	552834	552820	552835	538092	538090	538091	63885,7	
23262 11997	33450 4	9 33 4508	142567	159095	^{nge} 299139	tre Lake 165718	168597	272555	131568	213 596	108957	196438	19643	196436	549425	549426	53 8094	638865	3
131439 15394	3 20604	7 253783	272567	280462	260331	260330	302413	272556	242989	242988	317603	298160	28008	251064	549427	549428	53 8093	638856	
65155 27256	8 16861	0 153950	333331	159096	120634	104002	321922	133863	213616	280049	242990	299620	17691	280081	264552	ake 244495	244494	339755	

Midlothian Property

Area of Work

Figure 2. Claim Map: Midlothian Lake Property Midlothian Township, Ontario

Land Status and Topography

The Midlothian Lake Property is situated entirely on Crown Land. The property is uninhabited. There are no buildings or habitats. An electrical powerline follows the Asbestos Mine Road and crosses the southeast section of the property. A system of non-maintained logging roads provide access to most areas of the property.

Sections of the property have been logged within the last 3 decades. Some of these areas are partially reforested with spruce trees. Uncut forest consisting of large spruce, balsam and poplar trees can be found bordering bodies of water and growing in higher elevations. Cedar trees and alders grow in lower areas.

The property is at a mean elevation ranging 360 to 400 metres above sea level. Most of the property has gentle relief with rounded hills averaging 20 metres in height. Rugged terrain exists east of Elizabeth Lake where steep hills rise over 40 metres above the lake and, close to Midlothian Lake where ridges and knobby outcrops rise up to 40 metres above the lake. The northeast section of the property is situated at the base of a large, steep hill rising over 540 metres above sea level.

There are several lakes on the property. The largest is Midlothian Lake covering an approximate area of 366 hectares.

Regional and Local Geology

The Midlothian Lake Property is located in the Halliday Dome area within the western portion of the Abitibi Subprovince of the Superior Province. The Halliday Dome consists mainly of calc- alkaline felsic and intermediate volcanic rocks with minor quantities of iron formation and basaltic rocks of the Tisdale Assemblage, unconformably overlain by younger Kinojevis Assemblage rocks, which are in turn unconformably overlain by sedimentary rocks of the Porcupine Assemblage.

Figure 3. Schematic map of the study area depicting part of the Shaw Dome as well as the Bartlett and Halliday domes. The Bartlett and Halliday domes are further broken down into volcanic- and sediment-dominated episodes (assemblages) and formations. The green hatched pattern at the Zavitz-Hutt township boundary represents the boundary zone between the 2720–2710 Ma volcanic episode (Kidd–Munro) and the 2710–2704 Ma volcanic episode (Tisdale).

ARJADEE PROSPECTING JUNE 1, 2022

Midlothian Township is located on the southeast quadrant of the dome and consists of intermediate to felsic volcanics, flows and pyroclastics, "Temiskaming" sediments and a series of mafic to ultramafic sills. The Coleman Member of the Gowganda Formation lies unconformably on top of the Archean volcanics and sediments. It is thought that the Larder Lake Break extends beneath the Gowganda Formation west of Matachewan and continues through the south portion of Midlothian Township. Surrounding geology in the Bannockburn Township area describes Neoarchean-age calc-alkaline intermediate to felsic volcanic rocks, mafic volcanic rocks, komatiitic basalt to dunite, silicate to sulphide iron formation, gabbro intrusions, and a series of sedimentary rocks including diamictite, arkose, and conglomerate (Préfontaine and Berger, 2005). Proterozoic-age (Huronian Supergroup) sediments (Cobalt Group - Gowganda Formation), composed mainly of clastic metasedimentary rocks such as conglomerate, sandstone, wackes and argillite, unconformably overlie the Archean supracrustal assemblages.

The area northeast of Midlothian Lake is underlain by arkose, sandstone and conglomerates of the Midlothian Formation dated 2688.5 Ma (Préfontaine and Robichaud, 2013). Rock units generally strike northwest to southeast and dip steeply to the north. The area has been intruded by north trending diabase dikes of the Matachewan Swarm dated 2454 Ma (Préfontaine and Robichaud, 2013). To the east, rocks of the Midlothian Formation and Matachewan diabase swarm are unconformably overlain by Huronian rocks consisting of conglomerates, argillite and greywacke of the Cobalt Group of the Gowganda Formation dated *circa* 2300 Ma (Préfontaine and Robichaud, 2013). Diabase dikes of the Sudbury Swarm dated 1238 Ma also have intruded rocks of the Midlothian Formation and cross the unconformity into the Cobalt Group.

Midlothian Township is underlain by intermediate to felsic volcanics, flows and pyroclastics, "Temiskaming" sediments and a series of mafic to ultramafic sills. The Coleman Member of the Gowganda Formation lies unconformably on top of the Archean volcanics and sediments.

It is thought that the Larder Lake Break extends beneath the Gowganda Formation west of Matachewan and continues through the south portion of Midlothian Township.

The Midlothian Lake Property is underlain by intermediate to felsic flows and pyroclastic rocks to the south. The north half of the property is underlain by Temiskaming sediments: mostly conglomerates, greywackes and siltstone. Areas of carbonate and green mica alteration have been discovered on the property along the contact of the volcanics and sediments in the vicinity of Midlothian and Mitre Lakes.

INSET, scale 1:10 000

Figure 5. Mitre Lake Area, Midlothian Twp.

The Laroma Prospect is situated in ultramafic rocks which are strongly altered to green carbonate (dolomite-ankerite and magnesite-siderite solid solution), green Cr-bearing mica (fuchsite), silicified, and correspond to listwanite composition (Renaud, 2022). Listwanite occur as two sills within mafic metavolcanic rocks and arc to the northwest proximal to felsic metavolcanic rocks for approximately 1,700 metres. The sills range 50 to 125 metres wide and dip vertical to steeply east and northeast. Late-stage north striking diabase dikes cross the sequence. Several generations of quartz stringers and veining occur in the prospect, some carrying gold mineralization. Traces of fine-grained sulphides occur with the quartz but are mostly disseminated throughout the wallrock and have been found to contain nickel and minor cobalt.

History of Exploration

Historic mineral exploration in Midlothian Township has occurred in several periods from as early as 1907 to present day. As a result, different sections of the property have been explored at various times. Historic exploration has led to the discovery of gold, copper, pyrite, graphite and marcasite on the property. The Halliday Dome area has been explored since the turn of the century, with increased activity in the 1960's. Gold exploration has gone through several cycles including the early 1900's, the 1930's and from 1940 to the early 1970's. An Indian land caution halted exploration in the area for over two decades. Savage(1963), a government geologist reported that gold was first found in Midlothian Township in 1909.

In 1946, H. I. Marshall created a detailed geological examination of Midlothian Township for the Ontario Department of Mines (Marshall, 1947) and in 1970 E.G. Bright mapped Halliday and Midlothian Townships reported in Geological Report 79. Montrose Township was presented as "Digital GIS Compilation: Bedrock Geology of Powell, Bannockburn and Montrose Townships", Ontario Geological Survey, MRD 207 (Berger et al, 2006).

The following is a summary of recorded exploration near the property obtained through assessment filings from OGSEarth.

Table 1. Historic Exploration: Midlothian Lake Property, Mitre Lake Area

Company	Year	Work Description
Stairs Exploration & Mining	1959 – 1964	21 DDH
Rio Tinto Mines	1963	1 DDH
Laroma Midlothian Mines	1964	2 DDH
Ltd.		
Laroma Midlothian Mines	1964	3 DDH
Ltd.		
Timiskaming Nickel	1968	1 DDH
Canadian Johns-Manville	1970	3 DDH
Co. Ltd.		
Dennison Mines Ltd.	1971	Geological Survey, Geochemical Survey, EM Survey and 2 DDH
Dennison Mines Ltd.	1971	2 DDH
John Hogan	1971	2 DDH
John Hogan	1971	1 DDH
International Trust	1972	4 DDH
Company		
Larche/Rosseau	1972	8 DDH
Allied Mining Corp.	1972	1 DDH
Allied Mining Corp.	1972	2 DDH
Tojaro Holdings Ltd.	1973	Magnetometer Survey
Stump Mines Ltd.	1973	2 DDH
United Asbestos Inc.	1973	3 DDH
Hanna Mining Company	1974	6 DDH
Hanna Mining Company	1974	6 Holes
Northrim Mines Inc.	1975	2 DDH
International Trust	1976	3 DDH
Company		
Falconbridge Copper Mines	1978	7 DDH
Ltd.		
Shield Geophysics Ltd.	1981	Airborne EM
Regal Goldfields Ltd.	1983	9 DDH
Goldteck Mines Ltd.	1987 – 1988	Geological Mapping, Mechanical Stripping, Magnetometer and
		Resistivity Surveys and 94 DDH
Tom Obradovich	1996	Mechanical Stripping
Orezone Resources Inc.	1996	Prospecting, Sampling (Laroma Showing)
Orezone Resources Inc.	2000	7 DDH
Canadian Arrow Mines Ltd.	2002	10 DDH
Mustang Minerals	2004	Airborne EM
Explor Resources	2008	Heli-VTEM
Explor Resources	2009	Ground Mag/IP/VLF
Explor Resource	2011	DDH (Montrose Property)
R. Dillman, J. Renaud	2020 - 2022	Prospecting, Sampling, Petrology, Microprobe analyses

Survey Dates and Personal

Rock samples contained in this report were collected during prospecting traverses conducted in 2020 and 2021 and have been reported in previous reports of assessment work on the Midlothian Lake Property. For reference, 38 samples were collected between September 14, 2020 to September 18, 2020 and 8 samples were collected on the June 13 2021 traverse.

One (1) day between December 8, 2021 to December 10, 2021 was spent on sample logistics which included further analyzing, categorizing and shipping rock samples

This work was preformed by Dr. Jim Renaud of London, Ontario and by the author, Robert Dillman of Mount Brydges, Ontario. The work has been preformed for Goldenfire Minerals Inc. of London, Ontario.

Survey Logistics

As a result of the discovery of nickel sulphides in the Laroma Prospect, additional assays and nickel tests were preformed on 20 rock samples collected from the prospect and which had been previously analyzed for gold. Unfortunately, the pulps and rejects of the original samples had been discarded and further assays were preformed on small fragments of the original samples which had been retained for reference and further analyses. These samples were assigned new numbers. The locations of the original rock sample sites, corresponding new sample numbers, descriptions and assay results of both previous and subsequent analyses are presented in Table 1 and plotted at a scale of 1 : 5,000 with geology and surface features on the appended map.

Sample locations were recorded using a Garmin GPS model GPSMAP 66st and a CAT S42 smartphone handheld device equipped with the Discovery MapInfo. The GPS unit was set to NAD83, Zone 17.

All rock samples were delivered to AGAT Laboratory for analyses. The lab is in Mississauga, Ontario. All rock samples were Fire Assayed for gold, platinum and palladium using a 50 gram charge and finished by Inductively Coupled Plasma – Optical Emission Spectroscopy (ICP-OES) to measure the gold concentration. All samples were assayed for an additional 45 elements by Aqua Regia Digest - ICP-OES finish. Assay certificates from the lab are appended to this report.

Results of Survey

All listwanite samples tested with Dimethyglyxomine powder returned a red reaction indicating the presences of nickel. This was confirmed by assaying with results ranging 379 ppm to 1,950 ppm Ni and averaging 938 ppm Ni for 19 samples. Listwanite samples also returned high manganess values ranging 709 ppm to 4,670 ppm Mn, averaging 2,556 ppm Mn for 19 samples and a correlation with mercury ranging 3 ppm to 20 ppm Hg and averaging 11.2 ppm Hg for 19 samples. Assays also showed some elevated values for Sb and As. All listwanite samples except one show <1% sulfur reflecting the low sulphide content of the samples.

Gold assays were generally low for listwanite samples with a few exceptions, values ranging 0.004 ppm to 24.6 ppm Au. Multiple assays on each sample show a variable gold content and possible "nugget effect". Low silver values suggest good gold purity as electrum does not appear to be a factor.

Sample MID-11 returned the best nickel value of 3,630 ppm Ni (0.363% Ni) and was highly anomalous in platinum and pallidium values with 0.109 ppm Pt and 0.252 ppm Pd. The sample was taken from a large boulder of sulfide-bearing mafic metavolcanic rock found on the Laroma Prospect. Assays also showed highly anomalous copper, cobat and vanadium returning 517 ppm Cu, 447 ppm Co and 108 ppm V.

Table 2. Rock Sample Locations and Descriptions: Laroma Prospect, Midlothian Lake Property, Midlothian Township,Ontario NAD 83 Zone 17

Rock Sample	Original Sample	Easting	Northing	Claim Cell	Gold ppm	Previous Gold ppm	Ni ppm	Pt ppm	Pd ppm	Notes
MID-11	ML-41	500169	5304748	549939, 41P15E081	0.022	0.006	3630	0.109	0.252	Sheared mafic with 5% pyrite, qtz & carbonate, big boulder
MID-12	PIT sample	500168	5304820	549939, 41P15E081	0.045 0.035	NA	1010	<0.005	0.005	Office sample, large pit, green carbonate with grey and white quartz stringers , carbonated. Big Pit
MID-13	PIT sample	500168	5304820	549939, 41P15E081	24.6 2.23	NA	379	<0.005	0.003	Office Sample, same as above. Big Pit
MID-14	MID-5	500156	5304825	549939, 41P15E081	0.008 0.011	0.005	1320	<0.005	0.006	Weak green carbonate, dolomite &light brown altered wallrock to green carbonate. Grey quartz, trace epidote, no sulphides. Big Pit
MID-15	ML-5	500104	5304904	549439, 41P15E081	0.015	0.002	764	<0.005	0.007	Strong green carb close to diabase dike, siliceous, tr. fine py, stripped area.
MID-16	MID-6	500163	5304823	549939, 41P15E081	0.212 0.194	0.446	1950	0.005	0.007	strong green carbonate with grey – white qtz stringers 3 cm wide 1-5% fine pyrite in wallrock and along string contacts. Big Pit
MID-17	MID-8	500155	5304808	549939, 41P15E081	0.071 0.063	0.034	1010	<0.005	0.006	Moderate green carbonate + 50% quartz, 1-5% fine disseminated pyrite in wallrock. Loose, bottom of pit.
MID-18	MID-2	500108	5304837	549939 <i>,</i> 41P15E081	0.005 0.004	0.013	691	<0.005	0.004	Loose by small pit. Strong green carbonate. Same as MID 1, two generation grey & white quartz stringers, Tr-3% disseminated cubic py in wallrock
MID-19	MID-3	500160	5304823	549939, 41P15E081	0.604 0.840	3.65	745	0.007	0.005	Strong green carbonate with grey and white quartz stringers. Trace fine pyrite in wallrock. Resample of ML-50 Big Pit
MID-20	MID-4	500160	5304823	549939, 41P15E081	0.047 0.006	0.077	1100	0.009	0.010	Moderate green carbonate, same as MID 3, 50:50 grey & white qtz and wallrock 1- 5% fine cubic py in wallrock. Big Pit
MID-21	MID-7	500161	5304805	549939 <i>,</i> 41P15E081	0.028 0.034	0.013	866	<0.005	0.004	Strong green carbonate with trace – 3% fine pyrite & several generations of quartz, trace bornite with malachite. Loose in pit.
MID-22	MID-1	500103	5304840	549939, 41P15E081	0.004 0.003	0.048	865	0.008	0.009	Strong green carbonate, small pit east side of green carbonate unit. White to pink qtz stringers at various orientations. Trace pyrite in wallrock
MID-23	ML-45	500111	5304803	549939, 41P15E081	0.043 0.027	0.074	1700	0.006	0.007	Quartz + strong green carbonate, 1% pyrite in pit
MID-24	ML-6	500104	5304904	549439, 41P15E081	0.005 0.006	0.004	618	0.010	0.010	Diabase contact with conglomerate, qtz carb tr. cpy. Stripped area.
MID-25	ML-39	500161	5304733	549939, 41P15E081	0.027 0.028	0.018	892	<0.005	0.006	Moderate green carb with grey quartz outcrop, steep slope E, boulder.
MID-26	ML-49	500167	5304820	549939, 41P15F081	0.175	0.072	1050	<0.005	0.003	Qtz + fuch + black tourmaline 1-5% fine
MID-27	ML-46	500111	5304803	549939, 41P15E081	0.054 0.053	0.108	799	<0.005	0.004	Strong green carbonate with qtz stringers with 5% 2cm blebs of pyrite , loose beside pit
MID-28	ML-47	500113	5304803	549939, 41P15E081	2,94 1.72	0.527	463	<0.005	0.003	White to pink Qtz – carb – fuch stringers, Tr, - 2% cubic pyrite, loose beside pit. Fire Assay & Total Metallics Assay.
MID-29	ML-50	500165	5304821	549939, 41P15E081	0.070 IS	14.7	435	IS	IS	Quartz stringers/ veins in green carbonate, NW corner bottom of pit, chips 1m. Fire Assay & Total Metallic Assay. Big Pit
MID-30	ML-51	500163	5304822	549939, 41P15E081	0.070 0.070	0.104	1160	0.005	0.004	Grab at top W side of big pit, quartz + FeC + white quartz in green carb wallrock, 1- 5% py, tr. cpy. Big Pit

ARJADEE PROSPECTING JUNE 1, 2022

MID-11 (ML-41) 3,630 ppm Ni, 0.109 ppm Pt, 0.252 ppm Pd

MID-12 (ML-41) 1,010 ppm Ni

MID-14 (MID-5) 1,320 ppm Ni

MID-15 (ML-5) 764 ppm Ni

MID-16 (MID-6) 1,950 ppm Ni

MID-17 (MID-8) 1,010 ppm Ni

ARJADEE PROSPECTING JUNE 1, 2022

MID-18 (MID-2) 691 ppm Ni

MID-19 (MID-3) 745 ppm Ni

MID-20 (MID-4) 1,100 ppm Ni

MID-21 (MID-7) 866 ppm Ni

MID-22 (MID-1) 865 ppm Ni

MID-23 (ML-45) 1,700 ppm Ni

MID-26 (ML-49) 1,050 ppm Ni

MID-25 (ML-45) 892 ppm Ni

MID-27 (ML-46) 799 ppm Ni

MID-28 (ML-47) 463 ppm Ni

MID-29 (ML-50) 435 ppm Ni

ARJADEE PROSPECTING JUNE 1, 2022

MID-30 (ML-51) 1,160 ppm Ni

MID-11 Positive Dimethylglyoxime test

Positive Dimethylglyoxime test on all samples

ARJADEE PROSPECTING JUNE 1, 2022

Office Sample from Big Pit

Discussion of Results

The discovery of widespread nickel mineralization in listwanites of the Laroma Prospect was unexpected as the author is not aware of reports of nickel in historic literature for the prospect and may have been overlooked if not for the subsequent petrology and microprobe work by Dr. Renaud. The samples contained in this report were taken in an area roughly 175 m long and 60 m wide where there are numerous, pits, trenches and stripped areas associated with the Laroma Prospect and were not sampled. There are large areas south of the property which have been stripped also.

Nickel appears to be associated with very fine sulphides in the green carbonate/ listwanite rock. From microprobe examination, Dr. Renaud (2022) suggests,

"There were a number of different Ni-sulphides encountered through the investigation including: Ni-S (vaesite), As-Ni-Sb-S, As-Ni-Co-Sb-S, Sb-Ni-As-S, and Ni-As-S."

Assay results show elevated concentrations and a correlation of these elements including Hg and Mn.

Sampling during the program was mostly focused on gold mineralization with a biased towards sampling areas of quartz veining within the prospect. There appears to be several generations of quartz based on colour and cross-cutting features. There also appears to be variations in the amount of carbonate alteration throughout the prosect, evident on weathered surfaces in some of the rock sample pictures. Gold values obtained from the sampling are erratic and possibly influenced by nugget-like dispersion as multiple assays on samples has shown. Our biased towards sampling quartz-rich areas of the prospect may have had some influence on nickel values since the Ni-sulphides generally occur in the green carbonate wallrock as opposed to the quartz. Further rock sampling for nickel should focus on quartz-poor areas also.

Nickel and highly anomalous Pt, Pd, Cu and Co were discovered in a large boulder of sheared and sulphide-bearing mafic metavolcanic rock. The boulder was located on the east side of the Laroma Prospect and possibly comes from a low area coinciding with a fault striking northsouth along the east side of the prospect.

Conclusions and Recommendations

The discovery of nickel in the Laroma Prospect adds a new dimension to exploration on the prospect. The extent of the nickel mineralization is unknown and results from rock sampling suggest it is widespread. Additional exploration work is warranted to evaluate the nickel potential of Laroma Prospect. It is recommended that a grid be cut for additional prospecting, geological mapping, petrology, mechanized overburden stripping and ground geophysical surveys consisting of magnetometer, VLF and IP. The cost of the proposed work is \$110,000 and outlined as follows:

	\$110,000
Assays	<u> </u>
IP Survey	20,000
VLF Survey	15,000
Magnetometer Survey	15,000
Petrology	15,000
Geological Mapping	15,000
Prospecting	10,000
Grid	\$15,000

Respectfully submitted,

P.Geo

Robert James Dillman Arjadee Prospecting

Robert Dillman B.Sc. June 1, 2022

P.Geo.

References

- Bright, E. G. 1970. Geology of Halliday and Midlothian Townships. Geological Report 79. Ontario Department of Mines.
- **Buckman, Solomon & Ashley, Paul, 2010**. Silica-Carbonate (Listwanites) Related Gold Mineralization Associated with Epithermal Alteration of Serpentinite Bodies.
- **Dillman, R.J., and Renaud, R., 2022**. Report on a Prospecting Traverse, Midlothian Lake-Mitre Lake Area Midlothian Lake Property: Larder Lake Mining Division Midlothian Township, Ontario. Unpublished assessment report.
- Leblanc, M., 1986. Co-Ni Arsenide Deposits, with Accessory Gold, in Ultramafic Rocks from Morocco; Canadian Journal of Earth Sciences, Volume 23, pages 1592-1602.
- MacRea, William., 2011. Diamond Drill Report on the Montrose Property For Explor Resources Inc. Montrose and Midlothian Townships, Larder Lake Mining Division, Ontario. Unpublished assessment report 20000007609.
- Préfontaine, S. and Robichaud, L. 2013. Precambrian geology of Midlothian Township; Ontario Geological Survey, Preliminary Map P.3772, scale 1:20 000.
- Prefontaine, S., 2011. Geology and mineral potential of Midlothian Township, Halliday Dome, Abitibi greenstone belt; in Summary of Filed work and other activities 2011, Ontario Geological Survey, Open File Report 6270, p 4-1 to 4-12.
- **Renaud, J., 2022.** Petrographic and Electron Microprobe Examination of Listwanite Samples from the Laroma Prospect, Midlothian Lake Property, Larder Lake Mining Division, Midlothian Township, Ontario. Unpublished assessment report.

Robert J. Dillman P.Geo, B.Sc. ARJADEE PROSPECTING 8901 Reily Drive, Mount Brydges, Ontario, Canada, N0L1W0 Phone/ fax (519) 264-9278

CERIFICATE of AUTHOR

I, Robert J. Dillman, Professional Geologist, do certify that:

1. I am the President and the holder of a Certificate of Authorization for:

ARJADEE PROSPECTING 8901 Reily Drive, Mount Brydges, Ontario, Canada N0L1W0

- 2. I graduated in 1991 with a Bachelor of Science Degree in Geology from the University of Western Ontario.
- 3. I am an active member of:

Professional Geoscientists of Ontario, PGO Prospectors and Developers Association of Canada, PDAC

- 4. I have been a licensed Prospector in Ontario since 1984.
- 5. I have worked continuously as a Professional Geologist for 31 years.
- 6. Unless stated otherwise, I am responsible for the preparation of all sections of the Assessment Report titled:

ROCK SAMPLE REPORT LAROMA PROSPECT: GREEN MONSTER PROJECT MIDLOTHIAN LAKE PROPERTY, LARDER LAKE MINING DIVISION, MIDLOTHIAN TOWNSHIP, ONTARIO

dated, June 1, 2022

7. I am not aware of any material fact or material change with respect to the subject matter of the Assessment Report that is not contained in the Assessment Report and its omission to disclose makes the Assessment Report misleading.

Dated this 1st day of June, 2022

P.Geo

Robert James Dillman Arjadee Prospecting

ARJADEE PROSPECTING JUNE 1, 2022

Product Name:

Certificate of Analysis

Dimethylglyoxime – ACS reagent, ≥99%

Batch Number:

CAS Number: MDL Number: Formula: Formula Weight: Quality Release Date:

95-45-4 MFCD00002117 C4H8N2O2 116.12 g/mol 10 APR 2019

MKCJ7848

ALPHACHEM

1-888-338-2995 (905) 821-2995

Test	Specification	Result
Appearance (Color)	White to Off-White	Off-White
Appearance (Form)	Powder	Powder
Melting Point Approximate		239 °C
Infrared Spectrum	Conforms to Structure	Conforms
Carbon	40.9 - 41.8 %	41.6 %
Nitrogen	23.8 - 24.4 %	23.9 %
Residue on ignition (Ash)	<u><</u> 0.05 %	< 0.01 %
Insoluble Matter	<u><</u> 0.02 %	0.02 %
Suitability Suitability For Nickel Determination	Pass	Pass
Meets ACS Requirements	Current ACS Specification	Conforms

1 Sunt

Michael Grady, Manager Quality Control Milwaukee, WI US

5623 MCADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ROBERT DILLMAN 8901 REILY DRIVE MOUNT BRYDGES, ON NOL 1W0 519-264-9278

ATTENTION TO: ROBERT DILLMAN PROJECT: AGAT WORK ORDER: 21T843933 SOLID ANALYSIS REVIEWED BY: Sherin Moussa, Senior Technician DATE REPORTED: Apr 25, 2022 PAGES (INCLUDING COVER): 15

Should you require any information regarding this analysis please contact your client services representative at (905) 501-9998

<u>Notes</u>

Disclaimer:

All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
incorporate modifications from the specified reference methods to improve performance.

 All samples will be disposed of within 90 days following analysis, unless expressly agreed otherwise in writing. Please contact your Client Project Manager if you require additional sample storage time.

 AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the services.

- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
contained in this document.

All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.

AGAT Laboratories (V1)

Member of: Association of Professional Engineers and Geoscientists of Alberta	
(APEGA)	
Western Enviro-Agricultural Laboratory Association (WEALA)	
Environmental Services Association of Alberta (ESAA)	

Page 1 of 15

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

AGAT WORK ORDER: 21T843933 PROJECT: 5623 MCADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ROBERT DILLMAN

ATTENTION TO: ROBERT DILLMAN

(200-) Sample Login Weight										
DATE SAMPLED: De	c 12, 2021		DATE RECEIVED: Dec 13, 2021	DATE REPORTED: Apr 25, 2022	SAMPLE TYPE: Rock					
	Analyte:	Sample Login Weight								
	Unit:	g								
Sample ID (AGAT ID)	RDL:	0.01								
MID-11 (3337314)		269.7								
MID-12 (3337315)		288.0								
MID-13 (3337316)		571.0								
MID-14 (3337317)		252.7								
MID-15 (3337318)		367.7								
MID-16 (3337319)		135.1								
MID-17 (3337320)		246.4								
MID-18 (3337321)		87.8								
MID-19 (3337322)		174.5								
MID-20 (3337323)		164.6								
MID-21 (3337324)		281.0								
MID-22 (3337325)		157.2								
MID-23 (3337326)		134.6								
MID-24 (3337327)		89.5								
MID-25 (3337328)		72.3								
MID-26 (3337329)		184.5								
MID-27 (3337330)		98.6								
MID-28 (3337331)		128.3								
MID-29 (3337332)		34.2								
MID-30 (3337333)		122.4								

Comments: RDL - Reported Detection Limit

Analysis performed at AGAT 5623 McAdam Rd., Mississauga, ON (unless marked by *) Insufficient Sample : IS Sample Not Received : SNR

Certified By:

-Sherin Houss

AGAT WORK ORDER: 21T843933

PROJECT:

5623 MCADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ROBERT DILLMAN

			(201	-073) Aq	ua Regia	a Digest	- Metals	Package	e, ICP-O	ES finish	n				
DATE SAMPLED: De	ec 12, 2021			DATE REC	EIVED: Dec	13, 2021		DATE	REPORTED	D: Apr 25, 2	022	SAM	IPLE TYPE:	Rock	
	Analyte:	Ag	Al	As	В	Ва	Be	Bi	Ca	Cd	Ce	Со	Cr	Cu	Fe
	Unit:	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%
Sample ID (AGAT ID)	RDL:	0.2	0.01	1	5	1	0.5	1	0.01	0.5	1	0.5	0.5	0.5	0.01
MID-11 (3337314)		<0.2	3.26	228	<5	10	<0.5	6	5.15	2.4	<1	447	3080	517	9.67
MID-12 (3337315)		<0.2	0.09	809	<5	13	<0.5	1	12.6	8.0	<1	66.5	158	19.8	4.76
MID-13 (3337316)		<0.2	0.05	391	<5	8	<0.5	<1	15.0	3.9	<1	23.4	103	9.2	3.40
MID-14 (3337317)		<0.2	0.98	122	<5	3	<0.5	<1	3.30	1.3	<1	93.1	741	24.7	4.78
MID-15 (3337318)		<0.2	0.11	95	<5	23	<0.5	3	9.88	1.0	<1	60.0	183	47.5	5.22
MID-16 (3337319)		<0.2	0.11	2260	<5	8	<0.5	2	9.75	21.5	<1	138	232	21.6	4.21
MID-17 (3337320)		<0.2	0.09	392	<5	8	<0.5	<1	11.7	3.9	<1	112	147	9.5	4.63
MID-18 (3337321)		<0.2	0.52	169	<5	6	<0.5	3	12.0	2.0	<1	54.7	508	13.8	4.24
MID-19 (3337322)		<0.2	0.09	933	<5	8	<0.5	1	12.3	9.3	<1	60.0	167	18.1	4.94
MID-20 (3337323)		<0.2	1.14	201	<5	12	<0.5	2	7.91	2.1	<1	78.4	615	59.6	6.62
MID-21 (3337324)		<0.2	0.08	1000	<5	15	<0.5	3	11.9	10.6	<1	61.2	146	34.0	4.72
MID-22 (3337325)		<0.2	0.17	41	<5	12	<0.5	3	13.1	0.7	<1	62.9	257	20.0	5.42
MID-23 (3337326)		<0.2	0.11	3	<5	9	<0.5	2	16.9	<0.5	<1	71.6	268	36.6	5.03
MID-24 (3337327)		<0.2	2.38	81	<5	18	<0.5	2	7.35	1.1	<1	82.8	1500	80.2	5.76
MID-25 (3337328)		<0.2	0.74	508	<5	5	<0.5	<1	5.72	5.4	<1	64.9	1620	22.2	4.39
MID-26 (3337329)		<0.2	0.06	454	<5	5	<0.5	<1	11.5	4.4	<1	57.4	151	0.9	3.31
MID-27 (3337330)		<0.2	0.14	43	<5	7	<0.5	2	16.6	<0.5	<1	65.3	258	1.1	4.61
MID-28 (3337331)		<0.2	0.04	62	<5	5	<0.5	2	22.3	0.6	<1	29.6	146	<0.5	4.26
MID-29 (3337332)		<0.2	0.05	411	<5	6	<0.5	2	12.6	4.1	<1	31.6	147	36.4	4.65
MID-30 (3337333)		<0.2	0.08	1300	<5	13	<0.5	4	10.2	13.0	<1	62.9	175	18.7	4.60

Sherin Houss

AGAT WORK ORDER: 21T843933

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.aqatlabs.com

PROJECT:

CLIENT NAME: ROBERT DILLMAN

			(201	-073) Ac	qua Regia	a Digest	- Metals	Packag	e, ICP-OI	ES finisł	ו				
DATE SAMPLED: De	ec 12, 2021		[DATE REC	EIVED: Dec	: 13, 2021		DATE	REPORTED): Apr 25, 2	022	SAM	IPLE TYPE:	Rock	
	Analyte:	Ga	Hg	In	К	La	Li	Mg	Mn	Мо	Na	Ni	Р	Pb	Rb
	Unit:	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm	ppm
Sample ID (AGAT ID)	RDL:	5	1	1	0.01	1	1	0.01	1	0.5	0.01	0.5	10	0.5	10
MID-11 (3337314)		<5	5	<1	<0.01	<1	87	5.86	1450	2.9	<0.01	3630	197	<0.5	<10
MID-12 (3337315)		<5	11	<1	0.02	<1	3	5.63	2480	<0.5	0.03	1010	88	<0.5	<10
MID-13 (3337316)		<5	15	<1	<0.01	<1	3	7.53	3480	<0.5	0.03	379	74	<0.5	<10
MID-14 (3337317)		<5	3	<1	<0.01	<1	40	11.2	709	<0.5	<0.01	1320	78	<0.5	<10
MID-15 (3337318)		<5	8	<1	0.05	<1	3	3.96	2030	2.6	0.02	764	122	<0.5	<10
MID-16 (3337319)		<5	8	<1	0.02	<1	2	4.34	1980	<0.5	0.04	1950	139	<0.5	<10
MID-17 (3337320)		<5	10	<1	0.02	<1	2	5.19	2430	<0.5	0.03	1010	86	<0.5	<10
MID-18 (3337321)		<5	7	<1	0.01	<1	22	6.11	1940	<0.5	0.03	691	30	<0.5	<10
MID-19 (3337322)		<5	11	<1	0.02	<1	2	5.41	2690	<0.5	0.03	745	94	<0.5	<10
MID-20 (3337323)		<5	12	<1	0.02	<1	46	4.25	3140	<0.5	0.03	1100	119	<0.5	<10
MID-21 (3337324)		<5	10	<1	0.01	<1	2	5.33	2620	<0.5	0.03	866	131	<0.5	<10
MID-22 (3337325)		<5	13	<1	0.04	<1	5	5.33	2990	<0.5	0.04	865	97	<0.5	<10
MID-23 (3337326)		<5	17	<1	0.02	<1	3	3.97	4030	<0.5	0.03	1700	85	<0.5	<10
MID-24 (3337327)		<5	8	<1	0.05	<1	94	5.56	2030	<0.5	<0.01	618	226	<0.5	<10
MID-25 (3337328)		<5	4	<1	0.01	<1	33	9.41	1040	<0.5	0.02	892	63	<0.5	<10
MID-26 (3337329)		<5	9	<1	0.01	<1	2	5.53	2350	<0.5	0.02	1050	57	<0.5	<10
MID-27 (3337330)		<5	19	<1	<0.01	<1	5	4.30	4580	<0.5	0.03	799	61	<0.5	<10
MID-28 (3337331)		<5	20	<1	<0.01	1	2	3.39	4670	<0.5	0.01	463	54	<0.5	<10
MID-29 (3337332)		<5	14	<1	0.01	<1	2	5.40	3380	<0.5	0.01	435	32	<0.5	<10
MID-30 (3337333)		<5	14	<1	0.01	<1	2	4.44	3260	<0.5	0.02	1160	84	<0.5	<10

sherin Houss

AGAT WORK ORDER: 21T843933

PROJECT:

5623 MCADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ROBERT DILLMAN

			(201	-073) Aq	ua Regia	a Digest	- Metals	Package	e, ICP-Ol	ES finisł	า				
DATE SAMPLED: De	ec 12, 2021		l	DATE RECI	EIVED: Dec	13, 2021		DATE	REPORTED): Apr 25, 2	022	SAM	IPLE TYPE:	Rock	
	Analyte:	S	Sb	Sc	Se	Sn	Sr	Та	Te	Th	Ti	TI	U	V	W
	Unit:	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm
Sample ID (AGAT ID)	RDL:	0.01	1	0.5	10	5	0.5	10	10	5	0.01	5	5	0.5	1
MID-11 (3337314)		3.62	23	16.3	<10	<5	108	<10	<10	<5	<0.01	<5	<5	108	4
MID-12 (3337315)		0.29	41	9.5	<10	<5	96.3	<10	<10	<5	<0.01	<5	<5	15.2	2
MID-13 (3337316)		0.06	34	5.5	<10	<5	77.5	<10	<10	<5	<0.01	<5	<5	7.8	<1
MID-14 (3337317)		0.04	25	10.7	<10	<5	48.1	<10	<10	<5	<0.01	<5	<5	37.5	1
MID-15 (3337318)		0.35	4	11.0	<10	<5	106	<10	<10	<5	<0.01	<5	<5	12.1	<1
MID-16 (3337319)		1.06	104	10.9	<10	<5	83.0	<10	<10	<5	<0.01	<5	<5	15.5	2
MID-17 (3337320)		0.61	15	11.0	<10	<5	97.8	<10	<10	<5	<0.01	<5	<5	14.9	<1
MID-18 (3337321)		0.21	10	8.1	<10	<5	106	<10	<10	<5	<0.01	<5	<5	25.5	<1
MID-19 (3337322)		0.58	49	11.2	<10	<5	119	<10	<10	<5	<0.01	<5	<5	17.5	<1
MID-20 (3337323)		0.10	7	18.9	<10	<5	95.2	<10	<10	<5	<0.01	<5	<5	49.9	<1
MID-21 (3337324)		0.09	46	9.0	<10	<5	90.3	<10	<10	<5	<0.01	<5	<5	13.9	1
MID-22 (3337325)		0.05	4	13.9	<10	<5	119	<10	<10	<5	<0.01	<5	<5	17.1	1
MID-23 (3337326)		0.12	3	12.1	<10	<5	66.5	<10	<10	<5	<0.01	<5	<5	18.2	3
MID-24 (3337327)		0.02	10	19.2	<10	<5	125	<10	<10	<5	<0.01	<5	<5	77.7	<1
MID-25 (3337328)		0.03	40	9.6	<10	<5	53.3	<10	<10	<5	<0.01	<5	<5	32.3	<1
MID-26 (3337329)		0.19	26	6.4	<10	<5	87.3	<10	<10	<5	<0.01	<5	<5	8.3	1
MID-27 (3337330)		0.39	5	14.3	<10	<5	78.2	<10	<10	<5	<0.01	<5	<5	13.2	<1
MID-28 (3337331)		0.73	7	15.5	<10	<5	98.6	<10	<10	<5	<0.01	<5	<5	9.3	<1
MID-29 (3337332)		0.04	35	8.1	<10	<5	104	<10	<10	<5	<0.01	<5	<5	18.7	<1
MID-30 (3337333)		0.06	61	8.6	<10	<5	84.3	<10	<10	<5	<0.01	<5	<5	14.7	1

Sherin Houss

AGAT WORK ORDER: 21T843933 PROJECT: 5623 MCADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ROBERT DILLMAN

ATTENTION TO: ROBERT DILLMAN

			(=0)	ere), iqua riegia Digeet me		
DATE SAMPLED: De	c 12, 2021		[DATE RECEIVED: Dec 13, 2021	DATE REPORTED: Apr 25, 2022	SAMPLE TYPE: Rock
	Analyte:	Y	Zn	Zr		
	Unit:	ppm	ppm	ppm		
Sample ID (AGAT ID)	RDL:	1	0.5	5		
MID-11 (3337314)		6	54.6	<5		
MID-12 (3337315)		4	35.3	<5		
MID-13 (3337316)		5	21.6	<5		
MID-14 (3337317)		2	40.9	<5		
MID-15 (3337318)		4	44.8	<5		
MID-16 (3337319)		3	24.5	<5		
MID-17 (3337320)		5	24.4	<5		
MID-18 (3337321)		3	39.4	<5		
MID-19 (3337322)		4	32.3	<5		
MID-20 (3337323)		3	54.1	<5		
MID-21 (3337324)		3	29.2	<5		
MID-22 (3337325)		5	23.3	<5		
MID-23 (3337326)		3	39.5	<5		
MID-24 (3337327)		3	47.2	<5		
MID-25 (3337328)		2	35.2	<5		
MID-26 (3337329)		3	22.2	<5		
MID-27 (3337330)		4	23.8	<5		
MID-28 (3337331)		3	20.2	<5		
MID-29 (3337332)		3	31.9	<5		
MID-30 (3337333)		4	34.5	<5		

Comments: RDL - Reported Detection Limit

Analysis performed at AGAT 5623 McAdam Rd., Mississauga, ON (unless marked by *) Insufficient Sample : IS Sample Not Received : SNR

Sherin Mouss

TRORT (Laboratories
---------	--------------

AGAT WORK ORDER: 21T843933 PROJECT: 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ROBERT DILLMAN

ATTENTION TO: ROBERT DILLMAN

			(202-052) Fire Assay - Trace A	Au, ICP-OES finish (ppm)	
DATE SAMPLED: De	c 12, 2021		DATE RECEIVED: Dec 13, 2021	DATE REPORTED: Apr 25, 2022	SAMPLE TYPE: Rock
	Analyte:	Au			
	Unit:	ppm			
Sample ID (AGAT ID)	RDL:	0.001			
MID-11 (3337314)		0.022			
MID-12 (3337315)		0.045			
MID-13 (3337316)		24.6			
MID-14 (3337317)		0.008			
MID-15 (3337318)		0.015			
MID-16 (3337319)		0.212			
MID-17 (3337320)		0.071			
MID-18 (3337321)		0.005			
MID-19 (3337322)		0.604			
MID-20 (3337323)		0.047			
MID-21 (3337324)		0.028			
MID-22 (3337325)		0.004			
MID-23 (3337326)		0.043			
MID-24 (3337327)		0.005			
MID-25 (3337328)		0.027			
MID-26 (3337329)		0.175			
MID-27 (3337330)		0.054			
MID-28 (3337331)		2.94			
MID-29 (3337332)		0.246			
MID-30 (3337333)		0.070			

Comments: RDL - Reported Detection Limit

Analysis performed at AGAT 5623 McAdam Rd., Mississauga, ON (unless marked by *) Insufficient Sample : IS Sample Not Received : SNR

-Sherin Housse

Certified By:

AGAT WORK ORDER: 21T843933 PROJECT: 5623 MCADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ROBERT DILLMAN

ATTENTION TO: ROBERT DILLMAN

(202-055) Fire Assay - Au, Pt, Pd Trace Levels, ICP-OES finish								
DATE SAMPLED: De	c 12, 2021			DATE RECEIVE	D: Dec 13, 2021	DATE REPOR	RTED: Apr 25, 2022	SAMPLE TYPE: Rock
	Analyte:	Au	Pd	Pt				
	Unit:	ppm	ppm	ppm				
Sample ID (AGAT ID)	RDL:	0.001	0.001	0.005				
MID-11 (3337314)		0.019	0.252	0.109				
MID-12 (3337315)		0.035	0.005	<0.005				
MID-13 (3337316)		2.23	0.003	<0.005				
MID-14 (3337317)		0.011	0.006	<0.005				
MID-15 (3337318)		0.013	0.007	<0.005				
MID-16 (3337319)		0.194	0.007	0.005				
MID-17 (3337320)		0.063	0.006	<0.005				
MID-18 (3337321)		0.004	0.004	<0.005				
MID-19 (3337322)		0.840	0.005	0.007				
MID-20 (3337323)		0.006	0.010	0.009				
MID-21 (3337324)		0.034	0.004	<0.005				
MID-22 (3337325)		0.003	0.009	0.008				
MID-23 (3337326)		0.027	0.007	0.006				
MID-24 (3337327)		0.006	0.010	0.010				
MID-25 (3337328)		0.028	0.006	<0.005				
MID-26 (3337329)		0.157	0.003	<0.005				
MID-27 (3337330)		0.053	0.004	<0.005				
MID-28 (3337331)		1.72	0.003	<0.005				
MID-29 (3337332)		IS	IS	IS				
MID-30 (3337333)		0.070	0.004	0.005				

Comments: RDL - Reported Detection Limit

Analysis performed at AGAT 5623 McAdam Rd., Mississauga, ON (unless marked by *) Insufficient Sample : IS Sample Not Received : SNR

-Sherin Houss

AGAT	Laboratories
------	--------------

AGAT WORK ORDER: 21T843933 PROJECT:

5623 MCADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ROBERT DILLMAN

ATTENTION TO: ROBERT DILLMAN

Sieving - % Passing (Crushing)									
DATE SAMPLED: Dec 12, 2021 DATE RECEIVED: Dec 13, 2021 DATE REPORTED: Apr 25, 2022 SAMPLE TYPE: Rock									
	Analyte:	Crush-Pass %							
	Unit:	%							
Sample ID (AGAT ID)	RDL:	0.01							
MID-11 (3337314)		81.24							

Comments: RDL - Reported Detection Limit

Analysis performed at AGAT 5623 McAdam Rd., Mississauga, ON (unless marked by *) Insufficient Sample : IS

Sample Not Received : SNR

Certified By:

AGAT	Laboratories	Certificate of Analysis AGAT WORK ORDER: 21T843933 PROJECT:	5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589				
CLIENT NAME: ROBERT DILLMAN		ATTENTION TO: ROBERT DILLMAN					
Sieving - % Passing (Pulverizing)							
DATE SAMPLED: Dec 12, 2021			SAMDIE TYDE: Pock				

DATE SAMPLED: Dec	c 12, 2021		DATE RECEIVED: Dec 13, 2021	DATE REPORTED: Apr 25, 2022	SAMPLE TYPE: Rock
	Analyte: P	ul-Pass %			
	Unit:	%			
Sample ID (AGAT ID)	RDL:	0.01			
MID-11 (3337314)		87.50			

RDL - Reported Detection Limit Comments:

Analysis performed at AGAT 5623 McAdam Rd., Mississauga, ON (unless marked by *) Insufficient Sample : IS Sample Not Received : SNR

-Sherin Mouss

Quality Assurance - Replicate AGAT WORK ORDER: 21T843933 PROJECT: 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ROBERT DILLMAN

(201-073) Aqua Regia Digest - Metals Package, ICP-OES finish													
		REPLIC	ATE #1			REPLIC	ATE #2						
Parameter	Sample ID	Original	Replicate	RPD	Sample ID	Original	Replicate	RPD					
Ag	3337329	< 0.2	<0.2	0.0%	3337314	< 0.2	<0.2	0.0%					
AI	3337329	0.06	0.06	0.0%	3337314	3.26	3.30	1.2%					
As	3337329	454	477	4.9%	3337314	228	232	1.7%					
В	3337329	< 5	<5	0.0%	3337314	< 5	<5	0.0%					
Ва	3337329	5	6	18.2%	3337314	10	10	0.0%					
Be	3337329	< 0.5	<0.5	0.0%	3337314	< 0.5	<0.5	0.0%					
Bi	3337329	< 1	1	0.0%	3337314	6	5	18.2%					
Са	3337329	11.5	11.7	1.7%	3337314	5.15	5.28	2.5%					
Cd	3337329	4.4	4.8	8.7%	3337314	2.4	2.4	0.0%					
Ce	3337329	< 1	<1	0.0%	3337314	< 1	2						
Co	3337329	57.4	60.5	5.3%	3337314	447	455	1.8%					
Cr	3337329	151	154	2.0%	3337314	3080	3090	0.3%					
Cu	3337329	0.9	0.8	11.8%	3337314	517	529	2.4%					
Fe	3337329	3.31	3.38	2.1%	3337314	9.67	9.84	1.7%					
Ga	3337329	< 5	<5	0.0%	3337314	< 5	<5	0.0%					
Hg	3337329	9	10	10.5%	3337314	5	6	16.4%					
In	3337329	< 1	<1	0.0%	3337314	< 1	<1	0.0%					
к	3337329	0.01	0.01	0.0%	3337314	< 0.01	<0.01	0.0%					
La	3337329	< 1	<1	0.0%	3337314	< 1	<1	0.0%					
Li	3337329	2	2	0.0%	3337314	87	88	0.9%					
Mg	3337329	5.53	5.63	1.8%	3337314	5.86	5.96	1.8%					
Mn	3337329	2350	2400	2.1%	3337314	1450	1470	1.7%					
Мо	3337329	< 0.5	<0.5	0.0%	3337314	2.9	2.6	11.6%					
Na	3337329	0.02	0.02	0.0%	3337314	< 0.01	<0.01	0.0%					
Ni	3337329	1050	1080	2.8%	3337314	3630	3670	1.0%					
Р	3337329	57	41	32.7%	3337314	197	212	7.2%					
Pb	3337329	< 0.5	<0.5	0.0%	3337314	< 0.5	<0.5	0.0%					
Rb	3337329	< 10	<10	0.0%	3337314	< 10	<10	0.0%					
S	3337329	0.19	0.20	5.1%	3337314	3.62	3.70	2.2%					
Sb	3337329	26	26	0.0%	3337314	23	23	2.8%					
Sc	3337329	6.4	6.5	1.6%	3337314	16.3	16.5	1.2%					

Quality Assurance - Replicate AGAT WORK ORDER: 21T843933 PROJECT:

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ROBERT DILLMAN

Se	3337329	< 10	<10	0.0%	3337314	< 10	<10	0.0%								
Sn	3337329	< 5	<5	0.0%	3337314	< 5	<5	0.0%								
Sr	3337329	87.3	89.1	2.0%	3337314	108	109	1.6%								
Та	3337329	< 10	<10	0.0%	3337314	< 10	<10	0.0%								
Te	3337329	< 10	<10	0.0%	3337314	< 10	<10	0.0%								
Th	3337329	< 5	<5	0.0%	3337314	< 5	<5	0.0%								
Ti	3337329	< 0.01	<0.01	0.0%	3337314	< 0.01	<0.01	0.0%								
ТІ	3337329	< 5	<5	0.0%	3337314	< 5	<5	0.0%								
U	3337329	< 5	<5	0.0%	3337314	< 5	<5	0.0%								
V	3337329	8.3	9.3	11.4%	3337314	108	109	0.6%								
W	3337329	1	<1	0.0%	3337314	4	4	5.3%								
Y	3337329	3	3	0.0%	3337314	6	6	2.5%								
Zn	3337329	22.2	23.5	5.7%	3337314	54.6	56.0	2.5%								
Zr	3337329	< 5	<5	0.0%	3337314	< 5	<5	0.0%								
				(2	02-052) I	Fire As	say - Tr	ace Au	, ICP-OE	S finisl	n (ppm)			•		
		REPLIC	ATE #1		REPLICATE #2											
Parameter	Sample ID	Original	Replicate	RPD	Sample ID	Original	Replicate	RPD								
Au	3337314	0.022	0.021	4.7%	3337329	0.175	0.178	1.7%								
			11	(202-0	55) Fire	Assav	- Au. Pt	. Pd Tra	ace Leve	els. ICP	-OES fi	nish	1	1	I	I
			ΔTF #1	(====			ΔTE #2	,		,	• - • · ·					
										I				1	1	
Parameter	Sample ID	Original	Replicate	RPD	Sample ID	Original	Replicate	RPD								
Au	3337314	0.0192	0.0196	2.1%	3337329	0.157	0.146	7.3%								
Pd	3337314	0.252	0.253	0.4%	3337329	0.003	0.003	0.0%								
Pt	3337314	0.109	0.100	8.6%	3337329	< 0.005	< 0.005	0.0%								

Quality Assurance - Certified Reference materials AGAT WORK ORDER: 21T843933 PROJECT: 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ROBERT DILLMAN

	(201-073) Aqua Regia Digest - Metals Package, ICP-OES finish													
	CRM #1 (ref.ME-1206) CRM #2 (ref.ME-1308)					CRM #3 (ref.GS1P5T)								
Parameter	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits		
Ag	274.0	276	101%	80% - 120%	45.7	46.9	103%	80% - 120%						
Cu	7900.0	7830	99%	80% - 120%	3980.0	4280	107%	80% - 120%						
Pb	8010.0	7430	93%	80% - 120%	5410.0	5340	99%	80% - 120%						
Zn	23800.0	20600	87%	80% - 120%	4290.0	4190	98%	80% - 120%						
(202-052) Fire Assay - Trace Au, ICP-OES finish (ppm)														
		CRM #1	(ref.GS5X)		CRM #2 (ref.GS1P5T)				CRM #3 (ref.GS1P5T)			
Parameter	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits		
Au	5.04	5.35	106%	90% - 110%	1.75	1.74	100%	90% - 110%						
				(202-0	55) Fire	Assay	/ - Au, I	Pt, Pd Tra	ace Lev	els, IC	P-OES	finish		
		CRM #1	(ref.GS5X)			CRM #2 (ref.PGMS30))		CRM #3 (ref.GS1P5T)		
Parameter	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits		
Au	5.04	5.37	107%	90% - 110%					1.75	1.74	100%	90% - 110%		
Pd					1.660	1.583	95%	90% - 110%						
Pt					0.223	0.238	107%	90% - 110%						

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

Method Summary

CLIENT NAME: ROBERT DILLMAN PROJECT:

AGAT WORK ORDER: 21T843933 ATTENTION TO: ROBERT DILLMAN

SAMPLING SITE:		SAMPLED BY:							
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE						
Solid Analysis	I								
Sample Login Weight	MIN-12009		BALANCE						
Ag	MIN-200-12020	Fletcher, WK: Handbook of Exploration Geochem	ICP/OES						
AI	MIN-200-12020	Fletcher, WK: Handbook of Exploration Geochem	ICP/OES						
As	MIN-200-12020	Fletcher, WK: Handbook of Exploration Geochem	ICP/OES						
В	MIN-200-12020	Fletcher, WK: Handbook of Exploration Geochem	ICP/OES						
Ва	MIN-200-12020	Fletcher, WK: Handbook of Exploration Geochem	ICP/OES						
Ве	MIN-200-12020	Fletcher, WK: Handbook of Exploration Geochem	ICP/OES						
Ві	MIN-200-12020	Fletcher, WK: Handbook of Exploration Geochem	ICP/OES						
Са	MIN-200-12020	Fletcher, WK: Handbook of Exploration Geochem	ICP/OES						
Cd	MIN-200-12020	Fletcher, WK: Handbook of Exploration Geochem	ICP/OES						
Се	MIN-200-12020	Fletcher, WK: Handbook of Exploration Geochem	ICP/OES						
Со	MIN-200-12020	Fletcher, WK: Handbook of Exploration Geochem	ICP/OES						
Cr	MIN-200-12020	Fletcher, WK: Handbook of Exploration Geochem	ICP/OES						
Cu	MIN-200-12020	Fletcher, WK: Handbook of Exploration Geochem	ICP/OES						
Fe	MIN-200-12020	Fletcher, WK: Handbook of Exploration Geochem	ICP/OES						
Ga	MIN-200-12020	Fletcher, WK: Handbook of Exploration Geochem	ICP/OES						
Hg	MIN-200-12020	Fletcher, WK: Handbook of Exploration Geochem	ICP/OES						
In	MIN-200-12020	Fletcher, WK: Handbook of Exploration Geochem	ICP/OES						
к	MIN-200-12020	Fletcher, WK: Handbook of Exploration Geochem	ICP/OES						
La	MIN-200-12020	Fletcher, WK: Handbook of Exploration Geochem	ICP/OES						
Li	MIN-200-12020	Fletcher, WK: Handbook of Exploration Geochem	ICP/OES						
Mg	MIN-200-12020	Fletcher, WK: Handbook of Exploration Geochem	ICP/OES						
Mn	MIN-200-12020	Fletcher, WK: Handbook of Exploration Geochem	ICP/OES						
Мо	MIN-200-12020	Fletcher, WK: Handbook of Exploration Geochem	ICP/OES						
Na	MIN-200-12020	Fletcher, WK: Handbook of Exploration Geochem	ICP/OES						
Ni	MIN-200-12020	Fletcher, WK: Handbook of Exploration Geochem	ICP/OES						
Ρ	MIN-200-12020	Fletcher, WK: Handbook of Exploration Geochem	ICP/OES						
Pb	MIN-200-12020	Fletcher, WK: Handbook of Exploration Geochem	ICP/OES						

5623 MCADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

Method Summary

CLIENT NAME: ROBERT DILLMAN PROJECT:

AGAT WORK ORDER: 21T843933 ATTENTION TO: ROBERT DILLMAN

SAMPLING SITE.		SAMPLED BT.	r			
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE			
Rb	MIN-200-12020	Fletcher, WK: Handbook of Exploration Geochem	ICP/OES			
S	MIN-200-12020	Fletcher, WK: Handbook of Exploration Geochem	ICP/OES			
Sb	MIN-200-12020	Fletcher, WK: Handbook of Exploration Geochem	ICP/OES			
Sc	MIN-200-12020	Fletcher, WK: Handbook of Exploration Geochem	ICP/OES			
Se	MIN-200-12020	Fletcher, WK: Handbook of Exploration Geochem	ICP/OES			
Sn	MIN-200-12020	Fletcher, WK: Handbook of Exploration Geochem	ICP/OES			
Sr	MIN-200-12020	Fletcher, WK: Handbook of Exploration Geochem	ICP/OES			
Та	MIN-200-12020	Fletcher, WK: Handbook of Exploration Geochem	ICP/OES			
Те	MIN-200-12020	Fletcher, WK: Handbook of Exploration Geochem	ICP/OES			
Th	MIN-200-12020	Fletcher, WK: Handbook of Exploration Geochem	ICP/OES			
Ті	MIN-200-12020	Fletcher, WK: Handbook of Exploration Geochem	ICP/OES			
ті	MIN-200-12020	Fletcher, WK: Handbook of Exploration Geochem	ICP/OES			
U	MIN-200-12020	Fletcher, WK: Handbook of Exploration Geochem	ICP/OES			
V	MIN-200-12020	Fletcher, WK: Handbook of Exploration Geochem	ICP/OES			
w	MIN-200-12020	Fletcher, WK: Handbook of Exploration Geochem	ICP/OES			
Υ	MIN-200-12020	Fletcher, WK: Handbook of Exploration Geochem	ICP/OES			
Zn	MIN-200-12020	Fletcher, WK: Handbook of Exploration Geochem	ICP/OES			
Zr	MIN-200-12020	Fletcher, WK: Handbook of Exploration Geochem	ICP/OES			
Au	MIN-12006, MIN-12004		ICP/OES			
Au	MIN-12006, MIN-12004	Bugbee E: Textbook of Fire Assaying	ICP/OES			
Pd	MIN-12006, MIN-12004	Bugbee E: Textbook of Fire Assaying	ICP/OES			
Pt	MIN-12006, MIN-12004	Bugbee E: Textbook of Fire Assaying	ICP/OES			
Crush-Pass %			BALANCE			
Pul-Pass %			BALANCE			

Expenses: J. Renaud, R. Dillman Midlothian Lake Property: June 1, 2022 Report

Work					
December 8 -December 10, 2021	Sample Logistics 1 man 1 day \$500/ man	500	0		500
Descrit					
Report					
December 21 -December 28. 2021	3 days \$500/ day June 1,2022 Report	1500	0	1500	1500
Assays					
January 25, 2022	20 Assays @ \$44.25/ assay (No HST)	885.00			
April 26, 2022	20 Assays @ \$23.50/ assay (N0 HST)	470.00			1355
Sample Shipment					
December 10, 2021	Postnet North London	80.55			80.55

Expenses for June 1, 2022 Report

1 day Dec. 8 to Dec. 10 Sample Logistics 1 man	\$500 / day	500.00
3 days Report x 1 man	\$500 / day	1500.00
20 Assays Jan. 25, 2022	20 x \$44.25	885.00
20 Assays Apr. 26, 2022	20 x \$23.50	470.00
Sample Shipment Postnet North London	\$80.55	80.55
		\$3,435.55