Ontario \odot

We are committed to providing accessible customer service.
If you need accessible formats or communications supports, please contact us.

Nous tenons à améliorer l'accessibilité des services à la clientèle.
Si vous avez besoin de formats accessibles ou d'aide à la communication, veuillez nous contacter.

ROOT LAKE PROSPECTING EXPLORATION PROGRAM

 SPRING 2022ROOT LAKE PROPERTY
ROOT LAKE AREA, NORTH-WEST ONTARIO, CANADA RED LAKE MINING DIVISION G-2189

June 2022

By: Mitch Dumoulin, Principal Geologist, P. Geo
Rockex Mining Corporation
490 Maureen St., Thunder Bay, Ontario, P7B 6T2
(807) 683-8161

TABLE OF CONTENTS

1: Summary 3
2: Introduction 4
3: Access, Location and Vegetation 4
4: Description of the Property 5
5: Regional Geology 9
6: Previous Work in the Area of the Property Geology 13
7: Property Geology 14
8: Scope of Work - Root Lake Sripping and Prospecting 16
9: Root Lake Prospecting Work Results 30
10: Detail of the Costs - Root Lake Prospecting Program 33
11: Conclusion and Recommendations 48
Certificate of Qualifications 49
References 50
FIGURES
Figure 1: Root Lake Project Location 5
Figure 2: Root Lake Property Claim Map. 9
Figure 3: Location of Root Lake in relation with the Uchi Greenstone Belt 10
Figure 4: Regional Geological Location Map of the Property 11
Figure 5: Root Lake Area; Geological \& Mineral Compilation Map. 15
Figure 6: Root Lake Work Area Locations Map 17
Figure 7: MLAS Map of the Ontario Provincial Grid with cell claims on Mining Land 18
Figure 8: Excavator Hyundai HX 300L 19
Figure 9: Bulldozer Caterpillar D6. 19
Figure 10: Geotech cutting a Channel Sample. 20
Figure 11: Marking of Channel Sample Intervals and Located along Measurement Tape. 20
Figure 12: Root Lake Southwest Corner Strips 1 \& 2 Area 21
Figure 13: Strip \#2 Channel Sample Cut \& Bagged with its Tag\# 22
Figure 14: Root Lake Stripped Opening \#1 23
Figure 15: Strip 1 with GPS Coordinates taken in the field 23
Figure 16: Root Lake Stripped Opening \#2 24
Figure 17: Strip 2 with GPS Coordinates taken in the field 24
Figure 18: Root Lake South Central Area Prospecting 25
Figure 19: South Central Area Top of Pegmatitic Outcrop 26
Figure 20: Root Lake Northwest Corner Prospecting 27
Figure 21: Northwest Corner Property Access Trail Opening. 28
Figure 22: Northwest Corner Exposed Rock after Opening Trail. 28
Figure 23: Outcrop 004Bas11 with Grab Samples 1078088, 1078089 and 078090. 29
TABLES
Table 1: List of the Claims 8
Table 2: Regional Geology Stratigraphic Column (after Stott, 1996). 12
Table 3: Southwest Corner Strip \#1 Locations and Results. 30
Table 4: Southwest Corner Strip \#2 Locations and Results 31
Table 5: Northwest Corner Area Waypoints to Rock Exposures along the trail. 32
Table 6: South Central Area and Northwest Corner Sample Locations and Results. 33
Table 7: Root Lake Summary and Breakdown of the Costs. 38
Table 8: Root Lake Charges and Invoices for manpower and Labor. 43
Table 9: Root Lake Charges and Invoices for Equipment Rentals. 45
Table 10: Root Lake Charges and Invoices for Materials and Services. 48

APPENDICES

Appendix I, II, III and IV are all attached to this report for reference

1: Summary

Rockex Mining Corporation based in Thunder Bay, Ontario, and owns the Root Lake property in the Root Lake township of the Red Lake Mining Division, Northwest of Ontario. Rockex moved in the field with personnel and equipment starting on May $25^{\text {th }}, 2022$, to fulfill the necessary assessment work and thus keep its claims in good standing. It includes a temporary camp to shelter the personnel during the field work. This prospecting program is associated with NDMNRF Exploration Permit \# PR-21-000160 in accordance with O. Reg 308/12.

Initial work consisted of refreshing an old access road from the past exploration activities in the southwest area with an excavator, to clean the grown-up vegetation and reach the property boundary line. Once there, two areas were stripped on the property to expose the rock for channel sampling work, with the goal of cutting pegmatitic rocks, more particularly spodumene bearing pegmatites. The two stripped area named 1 and 2 were opened on surfaces of $\underline{425.6 \mathrm{~m}^{2}}$ and $\underline{\mathbf{7 4 2}} \mathbf{m}^{2}$ respectively for a total of $\underline{1167.6 \mathrm{~m}^{2}}$ of openings, and with a volume of $\mathbf{2 3 3 . 5 \mathrm { m } ^ { 3 }}$ of dirt removed. The next task consisted in prospecting and channel sampling newly discovered pegmatitic sub-outcrops in the central area exposed by recent logging activity. This area looks very promising for Lithium exploration. Finally, the northwest corner of the property has been partially opened by the D6 tractor and excavator up to the property line as well, and a few outcrops were stripped by this action then geologically mapped for reference.

Pierre Gagné Contracting has been contracted by Rockex to mobilize heavy equipment needed for this assessment work. Rock samples have been taken in specific locations to aim at the pegmatites, the samples being cut as channel samples with a portable diamond blade rock saw. Two to four workers at times carried out the field work for prospecting, mapping and sampling the representative samples sent to the assay laboratory. Activation Laboratory (Actlabs) of Thunder Bay, Ontario, is an ISO 9001 accredited laboratory where also Rockex Mining Corporation exploration office is located.

The costs for Root Lake Prospecting program amounted to a revised grand total of \$119,344 and cover all categories involved in the program such as labor/prospecting, equipment rentals and materials \& services. All costs have been covered by Pierre Gagné Contracting and charged later to Rockex Mining Corporation, the owner of Root Lake property. All invoices, receipts, time sheets and proof of payment can be consulted in Appendix IV of this report. The distribution of costs per cell claims for assessment is as such; \$59,672 for cell\# 100870, \$34,809 for cell\# 233644, \$4,521 for cell\# 159505 and \$20,342 for cell\# 100869 as described below in part 10 "Detail of the Costs" of this report.

2: Introduction

This report on the prospecting and mining exploration work at the Root Lake property is the result of necessary assessment work requirement. The property is in the Root Lake Area of the Red Lake Mining division, Northwest of Ontario. Due to its remote location, a team of two to four workers must establish a temporary camp for the duration of the field work. Such work will be supported by heavy equipment such as excavator, bulldozer and sampling gear like a portable rock saw and prospecting equipment. Prospecting consists as a first step to strip selected favorable surfaces with the goal of cutting pegmatite rocks, then walking the field in the search of those rocks. The northwest corner of the property is an area of interest to be visited as this is contiguous to the Australian Ardiden Limited grounds, and their work on the Pegmatites occurrences discovered recently straight west with us, as well as the known McCombe deposit some 2.7 kilometers west to the boundary that hosts a resource of 2.3 million tons at $1.3 \% \mathrm{Li} 2 \mathrm{O}$.

All channel samples taken in the stripped areas or elsewhere on the property will be sent to Actlabs (Activation Laboratory) in Thunder Bay, an accredited laboratory. At the end of field work, an assessment work report will be produced and sent to the NDMNRF recording office in Sudbury.

3: Access, Location and Vegetation

Root Lake property is situated near the western end of Lake St Joseph, 100 km south-west of Pickle Lake. Access is gained via an all-weather road that extends north from Sioux Lookout on highway 516 turning left on Vermilion River Road then right on the road to Slate Falls First Nation. The property is accessed by a logging road network that extends northeast from the main road at the point 133 (Figure 1).

Vegetation is typical of the northern boreal forest and that mainly consists in spruce trees, bogs and swamps with frequent alders in wet grounds and also birch trees and trembles where the forest is less dense often with lichen ground and local outcrops in those areas.

Figure 1: Root Lake Project Location Map

4: Description of the Property

Root Lake spreads over 1,640 hectares and consists in 80 contiguous cell claims. The list of the cell claims is shown in table 1 and visualized on the claim map figure 2 below and at scale in Appendix I. All expenditures cover claims 100870 in the southwest corner, 100869, 159505 in the south central area and 233644,116158 and 121821 in the north west corner of the property.

Rockex Mining Corporation - 410638
Root Lake Project

CLAIM HOLDER	\%	CLIENT \#	TOWNSHIP NAME	$\begin{gathered} \hline \text { CELL } \\ \text { CIAIM } \end{gathered}$	Due Date	Work Due
RXM	100	410638	ROOT LAKE AREA (RL)	165495	05-Jul-22	\$400
RXM	100	410638	ROOT LAKE AREA (RL)	194260	05-Jul-22	\$400
RXM	100	410638	ROOT LAKE AREA (RL)	100869	05-Jul-22	\$400
RXM	100	410638	ROOT LAKE AREA (RL)	194259	05-Jul-22	\$400
RXM	100	410638	ROOT LAKE AREA (RL)	159506	05-Jul-22	\$400
RXM	100	410638	ROOT LAKE AREA (RL)	268886	05-Jul-22	\$400
RXM	100	410638	ROOT LAKE AREA (RL)	280929	05-Jul-22	\$400
RXM	100	410638	ROOT LAKE AREA (RL)	339884	05-Jul-22	\$400
RXM	100	410638	ROOT LAKE AREA (RL)	100870	05-Jul-22	\$400
RXM	100	410638	ROOT LAKE AREA (RL)	224923	05-Jul-22	\$400
RXM	100	410638	ROOT LAKE AREA (RL)	268887	05-Jul-22	\$400
RXM	100	410638	ROOT LAKE AREA (RL)	159507	05-Jul-22	\$400
RXM	100	410638	ROOT LAKE AREA (RL)	165494	05-Jul-22	\$400
RXM	100	410638	ROOT LAKE AREA (RL)	120331	05-Jul-22	\$400
RXM	100	410638	ROOT LAKE AREA (RL)	159505	05-Jul-22	\$400
RXM	100	410638	ROOT LAKE AREA (RL)	165493	05-Jul-22	\$400
RXM	100	410638	ROOT LAKE AREA (RL)	233644	05-Jul-22	\$200
RXM	100	410638	ROOT LAKE AREA (RL)	116158	05-Jul-22	\$400
RXM	100	410638	ROOT LAKE AREA (RL)	341335	05-Jul-22	\$400
RXM	100	410638	ROOT LAKE AREA (RL)	289756	05-Jul-22	\$400
RXM	100	410638	ROOT LAKE AREA (RL)	262824	05-Jul-22	\$400
RXM	100	410638	ROOT LAKE AREA (RL)	179781	05-Jul-22	\$200
RXM	100	410638	ROOT LAKE AREA (RL)	121821	05-Jul-22	\$400
RXM	100	410638	ROOT LAKE AREA (RL)	329501	05-Jul-22	\$400
RXM	100	410638	ROOT LAKE AREA (RL)	101662	05-Jul-22	\$400
RXM	100	410638	ROOT LAKE AREA (RL)	262825	05-Jul-22	\$400
RXM	100	410638	ROOT LAKE AREA (RL)	101664	05-Jul-22	\$200
RXM	100	410638	ROOT LAKE AREA (RL)	289757	05-Jul-22	\$400
RXM	100	410638	ROOT LAKE AREA (RL)	101663	05-Jul-22	\$400

RXM	100	410638	ROOT LAKE AREA (RL)	166932	05-Jul-22	\$400
RXM	100	410638	ROOT LAKE AREA (RL)	233623	05-Jul-22	\$400
RXM	100	410638	ROOT LAKE AREA (RL)	282907	05-Jul-22	\$200
RXM	100	410638	ROOT LAKE AREA (RL)	282906	05-Jul-22	\$400
RXM	100	410638	ROOT LAKE AREA (RL)	289758	05-Jul-22	\$400
RXM	100	410638	ROOT LAKE AREA (RL)	329502	05-Jul-22	\$400
RXM	100	410638	ROOT LAKE AREA (RL)	101630	05-Jul-22	\$400
RXM	100	410638	ROOT LAKE AREA (RL)	160940	05-Jul-22	\$200
RXM	100	410638	ROOT LAKE AREA (RL)	341337	05-Jul-22	\$400
RXM	100	410638	ROOT LAKE AREA (RL)	329503	05-Jul-22	\$400
RXM	100	410638	ROOT LAKE AREA (RL)	341336	05-Jul-22	\$400
RXM	100	410638	ROOT LAKE AREA (RL)	166909	05-Jul-22	\$400
RXM	100	410638	ROOT LAKE AREA (RL)	116132	05-Jul-22	\$400
RXM	100	410638	ROOT LAKE AREA (RL)	262826	05-Jul-22	\$400
RXM	100	410638	ROOT LAKE AREA (RL)	101451	05-Jul-22	\$400
RXM	100	410638	ROOT LAKE AREA (RL)	329467	05-Jul-22	\$400
RXM	100	410638	ROOT LAKE AREA (RL)	282368	05-Jul-22	\$400
RXM	100	410638	ROOT LAKE AREA (RL)	160913	05-Jul-22	\$400
RXM	100	410638	ROOT LAKE AREA (RL)	289735	05-Jul-22	\$400
RXM	100	410638	ROOT LAKE AREA (RL)	101629	05-Jul-22	\$400
RXM	100	410638	ROOT LAKE AREA (RL)	282369	05-Jul-22	\$400
RXM	100	410638	ROOT LAKE AREA (RL)	196166	05-Jul-22	\$400
RXM	100	410638	ROOT LAKE AREA (RL)	116133	05-Jul-22	\$400
RXM	100	410638	ROOT LAKE AREA (RL)	329468	05-Jul-22	\$400
RXM	100	410638	ROOT LAKE AREA (RL)	329469	05-Jul-22	\$400
RXM	100	410638	ROOT LAKE AREA (RL)	160914	05-Jul-22	\$400
RXM	100	410638	ROOT LAKE AREA (RL)	179055	05-Jul-22	\$400
RXM	100	410638	ROOT LAKE AREA (PAT)	160202	05-Jul-22	\$400
RXM	100	410638	ROOT LAKE AREA (PAT)	194977	05-Jul-22	\$400
RXM	100	410638	ROOT LAKE AREA (PAT)	116780	05-Jul-22	\$400
RXM	100	410638	ROOT LAKE AREA (PAT)	121059	05-Jul-22	\$400
RXM	100	410638	ROOT LAKE AREA (PAT)	225650	05-Jul-22	\$400

RXM	100	410638	ROOT LAKE AREA (PAT)	116779	05-Jul-22	\$400
RXM	100	410638	ROOT LAKE AREA (PAT)	225649	05-Jul-22	\$200
RXM	100	410638	ROOT LAKE AREA (PAT)	121058	05-Jul-22	\$400
RXM	100	410638	ROOT LAKE AREA (PAT)	225651	05-Jul-22	\$400
RXM	100	410638	ROOT LAKE AREA (PAT)	179056	05-Jul-22	\$400
RXM	100	410638	ROOT LAKE AREA (PAT)	166224	05-Jul-22	\$200
RXM	100	410638	ROOT LAKE AREA (PAT)	286299	05-Jul-22	\$400
RXM	100	410638	ROOT LAKE AREA (PAT)	286298	05-Jul-22	\$400
RXM	100	410638	ROOT LAKE AREA (PAT)	118177	05-Jul-22	\$400
RXM	100	410638	ROOT LAKE AREA (PAT)	266238	05-Jul-22	\$400
RXM	100	410638	ROOT LAKE AREA (PAT)	322338	05-Jul-22	\$400
RXM	100	410638	ROOT LAKE AREA (PAT)	344720	05-Jul-22	\$400
RXM	100	410638	ROOT LAKE AREA (PAT)	293097	05-Jul-22	\$400
RXM	100	410638	ROOT LAKE AREA (PAT)	266239	05-Jul-22	\$400
RXM	100	410638	ROOT LAKE AREA (PAT)	344721	05-Jul-22	\$400
RXM	100	410638	ROOT LAKE AREA (PAT)	226465	05-Jul-22	\$200
RXM	100	410638	ROOT LAKE AREA (PAT)	293098	05-Jul-22	\$400
RXM	100	410638	ROOT LAKE AREA (PAT)	344722	05-Jul-22	\$400
RXM	100	410638	ROOT LAKE AREA (PAT)	322339	05-Jul-22	\$200

Total 80

Table 1: List of the claims

Figure 2: Root Lake Property Claim Map (see map at scale in Appendix I)

5: Regional Geology

Root Lake property is situated in the Superior geological province of the Canadian Shield. This property sits on a major junction between 2 geological sub-provinces such as Uchi to the north, and English River on the south side (figures $3 \& 4$). The 2 provinces are split by the very powerful Lake St Joseph Fault that is 1 to 2 kilometers wide by at least 330 kilometers long striking east-west (Stott, 1996). This fault is considered as a dextral transcurrent fault. The Uchi greenstone rocks bands are composed of mafic meta-volcanic rocks, intermediates and minor felsic rocks intercalated with meta-sedimentary rocks dominated by greywackes but time to time controlled by oxides and silicate Iron Formations with minor graphitic schists. Gabbroic syn-volcanic intrusions with few anorthosites and peridotites are frequently observed in the Uchi. Some of these ultramafic and komatiitic units are sometimes reported. These supracrustal rocks are invaded by metamorphic felsic intrusive pre to syn tectonic as well as by nonmetamorphic and post tectonic felsic intrusions (Stott, 1996). Table 2 shows some of the Uchi sub-province regional stratigraphy. Uchi rocks are generally metamorphosed at a metamorphic grade of greenschist facies but the edges of the granitic intrusion are higher at a grade of lower amphibolite. Kenoranian orogenesis is dated 2710-2700 MY and are responsible for phases of folding. The sub-province English River is mostly composed of highly metamorphosed and migmatised clastic meta-sedimentary rocks of a younger age roughly around 2.698 GY (Thurston et al., 1992). Rare bands of mafic rocks are reported in the sub-province. Many granitic and tonalitic intrusions are injected throughout.

Figure 3: Location of Root Lake in relation with the Uchi Greenstone Belt

Figure 4: Regional Geological Location Map of the Property

REGIONAL STRATIGRAPHIC COLUMN

(after Stott, 1996)

PHANEROZOIC

CENOZOIC

QUATERNARY

RECENT

Lake, stream and wetland deposits

PLEISTOCENE

Till, glaciofluvial sand and gravel, glaciolacustrine sand and clay
Unconformity

PRECAMBRIAN

PROTEROZOIC

PALEOPROTEROZOIC

Mafic Dikes
Diabase dikes
ARCHEAN

MESOARCHEAN to NEOARCHEAN

Felsic Intrusive Rocks
Unmetamorphosed late to post tectonic granitic rocks
Granodiorite, monzogranite, syenogranite, syenite, tonalite, trondhjemite, quartz diorite, granite pegmatite
intrusive contact
Metamorphosed pre- to syntectonic granitic rocks
Granodiorite, tonalite, trondhjemite, monzogranite, syenogranite, quartz diorite, granite pegmatite
intrusive contact
Metamorphosed felsic porphyry intrusive rocks
Quartz porphyry, feldspar porphyry, quartz-feldspar porphyry, felsite
intrusive contact
Mafic to Ultramafic Intrusive Rocks
Metamorphosed mafic intrusive rocks
Gabbro, diorite, anorthosite, melanocratic gabbro, leucocratic gabbro, plagioclase feldspar phyric mafic intrusive rock, quartz-bearing mafic intrusive rock, pegmatite
intrusive contact

Metavolcanics and Metasediments

Clastic metasediments
Lithic wacke, quartzose wacke, feldspathic wacke, mudstone

Chemical metasediments

Oxide facies (magnetite-bearing), sulphide facies (pyrite-bearing), silicate facies (amphibole -
rich), and carbonate facies (siderite/ankerite) iron formation
Felsic metavolcanics
Massive flows, tuff, lapilli tuff, lapillistone, quartz-feldspar porphyry
Intermediate metavolcanics
Massive flows, pillowed flows, tuff, crystal tuff, lithic tuff, lapilli tuff, lapillistone, tuff breccia, pyroclastic breccia, quartz-feldspar porphyry
Mafic metavolcanics
Massive flows, pillowed flows, pillowed breccia, amygdaloidal flows, variolitic flows, autoclastic flow breccia, tuff, crystal tuff, lapilli tuff, lapillistone, tuff breccia, pyroclastic breccia, ultramafic tuff, amphibolite, epidote-rich layered flows or pyroclastic rock

6: Previous Work in the Area of the Property

No exploration works have ever been reported in the Ministry of Northern Development and Mines of Ontario (MNDM) digital database in relation with Root Lake's Property. The main reason seems to be the fact that the opening of forestry bush roads in this area is as recent as 2005-2006. Closest work exploration to Root Lake by mining companies were rather west of Root Lake in the Root Lake Area for Lithium-Tantalum in the Pegmatite of McCombe (2.2297 Mt @ $1.3 \% \mathrm{Li} 2 \mathrm{O}$), and more to the east at Lake St Joseph for iron (1.0 billion tons @ 30.02\% FeS) and copper-gold ($0.525 \mathrm{oz} / \mathrm{t}$ Au over 0.5 m from diamond drilling \& $0.32 \mathrm{oz} / \mathrm{t}$ from grab.

The east part of the access road turning to the north on Root Lake property was covered in 2000 by a lake sediment geochemical survey carried out by Ontario Geological Survey (OGS) from a wide area covering Sturgeon Lake from the east to Lake St Joseph to the west (Russel et al. 2002, figure 5). The west part of this survey covers the southeast area of Lake St Joseph, then half of the property. Lake sediment samples were taken at an interval of 0.8 to 1.5 km spacing, and at least 20 cm deep from the bottom of the lakes. Fifty elements were analyzed including Au, Pt \& Pd by ICP-MS / ICP-OES methods. Some 30 geochemical anomalies were identified over an area of 6,500 square kilometers using 6 pertinent criteria on the quality of these targets. Abnormal elements are defined by statistic and comparative studies of each of these elements from the entire list of elements. Grades above 98% were categorized as highly anomalous, the ones above 95% as anomalous and above 90% as being elevated.

For 2 years, prospector Robert A. Ross carried out base prospection work on his property and along Lake St Joseph Fault. Following his mineral discoveries, including iron and sulfides, OGS geologists came over his property for field visits between 2006 and 2008 guided by Mr. Ross (Mark Smick (MNDM), 2008). In one of the non-published reports about these visits, several beds of magnetite banded Iron Formations were mentioned. Several sulfide occurrences were also reported, of which several ones are in or at the contact of these Iron Formation beds involving a replacement/remobilization process.

A statement from Mark Smick (MNDM) indicates the discovery of spodumene Pegmatites some 3.7 km west of Ross's property along the main logging road access (figure 2). According to Mr. Smick, this pegmatite dyke expands over 10 meters width at an azimuth of $\mathrm{N} 170^{\circ}$. It contains large crystals of albite and spodumene up to 10 cm long with spectacular coliform banded structures of quartz and feldspar composition. Electronic microwave analysis proceeded on some samples of this occurrence are indicative of lithium, tantalum, and niobium in the crystals of pegmatite although in very small quantities. This McCombe's spodumene pegmatite is located another 9 km to the west (figure 4).

7: Property Geology

Root Lake and Root Bay areas have been mapped by Clifford (1969) and Breaks et al. (1979) at scales of $1: 31,680$ and $1: 63,360$. Figure 5 demonstrates the stratigraphy and description of local rocks. Supra-crustal rocks located near the south limit of Uchi sub-province are part of the Birch-Uchi greenstone belt surrounding the Blackstone Pluton located north of Root Bay-Root Lake property (Figures 3 \& 4). This pluton has a granitic to granodiorite composition, also posttectonic and not metamorphosed. It is surrounded of a metamorphic halo that transformed the metavolcanic basalts at the contact with the amphibolite.

The property is located and underlain by rocks of the southern boundary of the Uchi Greenstone Belt sub-province for the North half of it, transitioning to the English River sub-province rock units into the South half of the property all parts of the Superior Province in Ontario. Root Lake is mainly underlain by mafic volcanics for the north half, and by meta sediments for its south half. It however contains several fields of pegmatite through the two halves of the property, those ones originally found during the Lithium rush of the late 1950's (Pye 1956, Mulligan 1965, Breaks et al. 2003). These dykes of pegmatite are contained in meta-sedimentary rocks and meta-volcanics ranging more than 4 kilometers over the property. The pegmatite dykes are genetically similar to the southern arm of the Allison Lake batholith to the west, and to the Root Bay pluton to the east. The McCombe deposit immediately west of the property has been drilled by Capital Lithium in 1956, delineating a non-compliant resource of 2.3 million tons at 1.3% Lithium (Li2O) with extensions to the east suggesting the presence of such dykes on the property. Also, another dyke of pegmatite was discovered in 2011 by MNDM geologists and exposed for 60 meters in length by about 10 meters wide. Root Lake is 4 kilometers wide and right in between those fields of pegmatite dykes. The southern part of the property is also host of a major structural unit such as the fold nose of the massive Lake St. Joseph Iron Formation laying along the Wabigoon Fault, and that plunges south into the English River meta-sediments. Several small dykes of pegmatite have been intersected by drilling by Capital Lithium in the late 1950's, also crossing copper (Cu) mineralization between the layers of Iron Formation.
Magnetite dominant beds of chert Iron Formations and silicate Iron Formations (amphiboles, garnets) are common (Figure 5).

Figure 5: Root Lake Area OGS Geological \& Mineral Compilation Map

8: Scope of work - Root Lake Stripping and Prospecting

Rockex Mining Corporation initiated field prospection work on its Root Lake property starting on May $25^{\text {th }}$, 2022, with mobilization of an excavator (backhoe) Hyundai HX 300L near the limits of the property. That same day, a trail (Tracking Trail) has been flagged through the typical dense boreal forest terrane up to the boundary of the northwest corner of the property as a start for coming work (see Figure 6 and map at scale in Appendix II).

Exploration Permit \# PR-21-000160 in accordance to O. Reg 308/12 was issued by NDMNRF to Rockex Mining Corporation for the rights of performing work on its property.

The personnel involved in the prospecting program consisted in two to four workers to operate the equipment, do the prospecting and sampling as well as some basic mapping with the goal of finding some spodumene bearing pegmatites. Pegmatitic rocks are the target of this prospecting program and consist in whitish leucocratic igneous rocks that contain crystals of spodumene with possible values in Lithium (Li2O). On May $27^{\text {th }}$, Pierre Gagné, hired by Rockex to perform the exploration program and prospecting, established a temporary camp for the duration of the program. Root Lake is located $11 / 2$ hour north of the town of Sioux Lookout and near Slate Falls First Nation reachable from Vermilion River turning right at kilometer 75 on Slate Falls Road all weather gravel road, then making it a quite isolated place to work so the need of this temporary camp. Jerry Nichols and Billy Laflamme were the two geotechs hired for this program, Jerry operating the heavy equipment to clean and open the access trails to the work areas. Pierre Gagné himself joined the team on May $30^{\text {th }}$ to help and supervise on the program. Later on June $5^{\text {th }}$, Mitch Dumoulin who is responsible for the project as well as compiling the data and then write this assessment report, made the trip to the property to assist on the stripping work and prospecting work in the three work areas; the southwest corner, the south central area and the northwest corner (see figure 6). All the prospecting and channel sampling works have been recorded by taking waypoints and tracking the trails as well as the stripping area contours with a GPS GARMIN GPSmap 60Cx manually operated by the geologist. The data can be found in Appendix I excepted for the channel samples that were positioned in Map Info GIS software from their original referenced locations in the two stripped openings.

All work performed and the location for all samples taken on this project were using the UTM coordinate system Datum NAD83 in Zone 15 of the Root Lake township. Also, all waypoints can be visualized in the Waypoints\&Tracks sheet in Appendix I of this report.

Figure 6: Root Lake Work Area Locations Map
Location of work area on provincial grid mining land as per Figure 6 above and positioned on maps at scale in Appendix II of this report

South-west corner Stripping \#1 \& \#2 and sampling area: Cell \# 100870

North-west corner prospecting, mapping \& sampling area: Cells \# 101503, 116158 and 121821
South Central prospecting and sampling area: Cells \# 100869 and 159505

Figure 7: MLAS Map of the Ontario Provincial Grid with the location of the claims worked by Rockex on Mining Land pinned with blue dots on the map (see Appendix I Work Cells on Mining Land)

Southwest Corner of the Property

Rockex contracted Pierre Gagné Contracting of Thunder Bay to bring and operate heavy equipment such as Hyundai HX 300L excavator and a Caterpillar D6 bulldozer, to open trails or refresh old bush roads. It started with two selected stripping of outcrops in the southwest corner of the property (Figure 6) to open the surface for marked channel samples along a measuring tape to locate along the stripped area, those samples cut with a portable diamond blade rock saw by two geotechs. An old road, just south of the temporary camp from past exploration activities, was refreshed with the excavator to access the location of this stripping work (see figures 8, 9, 10, 11 and 12).

Figure 8: Excavator Hyundai HX 300L

Figure 9: Bulldozer Caterpillar D6

Figure 10: Geotech cutting a channel sample

Figure 11: Marking of channel sample intervals and located along measuring tape.

Figure 12: Root Lake Southwest Corner Strips 1 \& 2 Area on cell claim \# 100870

Dimensions of opened areas and volume of material stripped

Strip \#1: area of $56.0 \times 7.6=425.6 \mathrm{~m} 2$ Strip \#2: area of $53.0 \times 14.0=742 \mathrm{~m} 2$

The average thickness of the two opened stripped area is 20 centimeters with already large patches of rock outcropping with no vegetation.

The total area stripped comes to $1,167.6 \mathrm{~m} 2 \times 0.2 \mathrm{~m}$ (20 cm average thickness) for approximately $\mathbf{2 3 3 . 5} \mathbf{~ m} 3$ of volume of material stripped.

Channel sampling was performed on cell claim 100870 and resulted in 47 samples taken over the two stripped area (figure 12), which samples were bagged and tagged for processing at the assay laboratory (Figure 13). The location of each sample has been positioned at best in the two stripped area, with a little bit of tweaking in the computer later with Map Info software for digitization with UTM coordinate system Nad83 Zone 15 positioning, then to be inserted in this report with their respective locations (figures $14 \& 16$). These 47 samples are the big part of this prospecting program for Lithium (Li2O) to be sent to Activation Laboratories (Actlabs) in Thunder Bay for processing. Actlabs is an accredited laboratory with ISO 9001 certification.

Figure 13: Strip \#2 Channel Sample Cut and Bagged with its tag\#

Figures 14, 15, 16 and 17 show the two strips 1 and 2 in their settings and locations with visualization of their coordinates in UTM Nad83 Zone 15 as well as the location of the channel samples taken in the field.

Figure 14: Root Lake Stripped Opening \#1 (map at scale in Appendix II)

Figure 15: Strip 1 GPS Coordinates with NE View of the Strip

Figure 16: Root Lake Stripped Opening \#2 (map at scale in Appendix II)

Figure 17: Strip 2 GPS Coordinates with NE View of the Strip

South Central Area

The next area of work was in the South-Central Area where recent logging activity took place (see Figure 6). The bush road (Logging Trail) was carefully accessible by pick-up trucks to the middle of the property. Logging resulted in exposing several tops of outcrops (Figure 19), many of them showing a white leucocratic and coarse-grained texture. It is believed to be pegmatitic intrusive rocks possibly containing spodumene and beryl, two minerals with possible values in Lithium (LI2O). Eleven (11) tops of pegmatite have been identified by prospecting and sampled by channel sampling with the portable diamond blade rock saw, the samples being tagged and bagged the same way as the ones from the two stripped openings of the southwest corner (see figure 18).

Figure 18: Root Lake South Central Area Prospecting (see map at scale in Appendix II)
The prospecting and sub-outcrop's sampling have been carried out on cell claims \# 100869 and \# 159505 as indicated on maps at scale in Appendix II

The South-Central Area is showing great interest for pegmatitic field and could become a prime target for a following phase of exploration for Lithium and associated minerals.

Figure 19: South Central Area Top of Pegmatitic Outcrop (with channel 1078156)

Northwest Corner of the Property

The third and last area of work of this prospecting program is in the northwest corner of the property (Figure 6). Some primary trail opening (GPS'd Tracking Trail (small red dots on the map, Figure 20) had to be done to access the limit or boundary of the property on Rockex ground through boundary cell claims with another company. This area was primarily chosen to plan a series of short diamond drill holes but due to the lack of time in relation with the claims, it has been decided to cancel this part of the actual exploration program and postpone it to a later date or next phase. Rockex is aiming at this area to explore the eastern extensions of Ardiden Limited pegmatites, which pegmatites occur immediately west of the property.

Opening the trails (Figure 20) to the boundary line and particularly through two of the cancelled drill hole sites, exposed several surfaces of rock located by GPS (GPSmap 60Cx on UTM Nad83, zone 15). These surfaces of rock (Figure 19) were mapped in the field although not sampled, and digitally positioned in a computer with GIS software Map Info (see rock surfaces contours in Figure 17 and Waypoints in Appendix I). Excepted for one, all of these exposed
outcrops revealed to be fairly chloritic altered basalts mafic volcanics with no interest in Lithium (Li2O) hence no samples taken. Only one of them was sampled with three samples and which is outcrop 004Bas11. That outcrop contains a dyke of aplite in host rock basalt mafic volcanics resulting in taking one sample of aplite and two basalts each side of the dyke (Figure 20).

Figure 20: Root Lake Northwest Corner Prospecting (see map at scale in Appendix II)
Work carried out in the northwest corner of the property is related on mining land cell claims \# 101503, \# 116158 and \# 121821 although only one outcrop has been samples, this one on cell claim \# 101503. Mapping and sampling work are represented in their respective map at scale in Appendix II (see figures 21, 22 and 23).

Figure 21: Northwest Corner Property Access Trail Opening

Figure 22: Northwest Corner Exposed Rock after opening trail

Figure 23: Outcrop 004Bas11 with Grab samples 1078088, 1078089 \& 1078090

9: Root Lake Prospecting Work Results

The bulk of the work at the Root Lake property during spring 2022, has been focused in three areas to produce assessment work in time to maintain the claims in good standing (see Figure 6). Mobilization of heavy equipment as described above was necessary to access the areas in the southwest and northwest areas. The South-Central Area was accessible by pick-up trucks. Most of the samples taken in the field in those areas were cut with a portable diamond blade rock saw as channel samples all roughly one meter long by 1.1-1.5 inch wide. Each sample was tagged with a numbered ticket, individually bagged with the sample number on the bag and finally the samples grouped by weight of about 18 kilograms in a "rice bag" with the from and to numbers before all the samples are brought to the assay laboratory. Activation Laboratory (Actlabs) of Thunder Bay is the chosen accredited laboratory that has processed all Rockex's samples and deliver the results. All results can be seen in Appendix III.

South-West Corner Strips \#1 and \#2

Two openings have been stripped in the Southwest Corner (Figures 12, 14 and 16) over roughly 55 meters at about 050° Azimuth. Some 30 to 36 meters of rock have been channeled up for 22 samples in strip \#1 and 25 samples in strip \#2 for a total of 47 samples in this area.

Stripping ID	Channel	Reference East	Reference North	Sample ID	UTM East	UTM North	Li2O \%	Lithology
Stripping 1	Point A	0	0		594940	5640064		Not Sampled
Stripping 1	1	1.2	1		594944	5640065		Not Sampled
Stripping 1	2	1.2	2.05		594945	5640066		Not Sampled
Stripping 1	3	1.2	3.05		594946	5640067		Not Sampled
Stripping 1	4	1.1	4.05		594945	5640069		Not Sampled
Stripping 1	5	-0.4	7		594946	5640070		Not Sampled
Stripping 1	6	-0.3	8		594947	5640071		Not Sampled
Stripping 1	7	-0.4	9.05	1078116	594948	5640072	<0.01	Felsic Metasediment
Stripping 1	8	-0.7	13	1078117	594950	5640074	<0.01	Pegmatitic Granite
Stripping 1	9	-0.6	14	1078118	594952	5640075	0.01	Felsic Metasediment
Stripping 1	10	-0.5	15	1078119	594953	5640076	0.01	Felsic Metasediment
Stripping 1	11	0.9	16	1078120	594956	5640076	0.01	Felsic Metasediment
Stripping 1	12	1	17	1078121	594957	5640076	0.01	Felsic Metasediment
Stripping 1	13	1	18	1078122	594958	5640077	<0.01	Felsic Metasediment
Stripping 1	14	1.1	19	1078123	594958	5640078	<0.01	Intermediate Metasediment
Stripping 1	15	1.2	20	1078124	594959	5640078	0.01	Intermediate Metasediment
Stripping 1	16	1.3	21	1078125	594960	5640079	<0.01	Mixed Sediment-Pegmatite
Stripping 1	17	1.3	22	1078126	594961	5640080	<0.01	Pegmatitic Granite
Stripping 1	18	1.3	23	1078127	594962	5640080	<0.01	Pegmatitic Granite
Stripping 1	19	1.3	24	1078128	594963	5640081	0.01	Intermediate Metasediment
Stripping 1	20	1.3	25.05	1078129	594963	5640082	0.01	Intermediate Metasediment
Stripping 1	21	1.3	26	1078130	594964	5640083	0.01	Intermediate Metasediment
Stripping 1	22	1.4	27	1078131	594964	5640083	0.01	Intermediate Metasediment
Stripping 1	23	-0.8	28	1078132	594963	5640085	0.01	Intermediate Metasediment
Stripping 1	24	-0.8	29	1078133	594963	5640085	0.01	Intermediate Metasediment
Stripping 1	25	-0.8	30	1078134	594963	5640086	0.01	Felsic Metasediment
Stripping 1	26	-0.8	31	1078135	594964	5640086	<0.01	Pegmatitic Granite
Stripping 1	27	-1	32	1078136	594964	5640087	<0.01	Pegmatitic Granite
Stripping 1	28	-1.3	33	1078137	594964	5640088	<0.01	Pegmatitic Granite
	Point B				594965	5640086		

Table 3: Southwest Corner Strip \#1 Locations and Results

Stripping ID	Channel	Reference East	Reference North	Sample ID	UTM East	UTM North	Li2O $\%$	Lithology
Stripping 2	Point A	0	0		595037	5640048		
Stripping 2	1	-1	2.1	1078091	595037	5640051	<0.01	Felsic Metasediment
Stripping 2	2	-1	3.2	1078092	595038	5640052	<0.01	Felsic Metasediment
Stripping 2	3	-1.5	4.3	1078093	595039	5640053	<0.01	Felsic Metasediment
Stripping 2	4	-1.5	5.55	1078094	595039	5640054	<0.01	Felsic Metasediment
Stripping 2	5	-2.2	7.55	1078095	595041	5640056	<0.01	Felsic Metasediment
Stripping 2	6	-2.2	9.5	1078096	595042	5640058	0.01	Felsic Metasediment
Stripping 2	7	2.3	9.85	1078097	595047	5640058	<0.01	Leuco Pegmatitic Granite
Stripping 2	8	-0.4	13.05	1078098	595043	5640062	<0.01	Felsic Metasediment
Stripping 2	9	3.5	14.65	1078099	595046	5640063	0.02	Felsic Metasediment
Stripping 2	10	3.4	15.55	1078100	595047	5640064	<0.01	Felsic Metasediment
Stripping 2	11	6.6	15.1	1078101	595050	5640064	0.01	Felsic Metasediment
Stripping 2	12	6.6	16.2	1078102	595051	5640065	0.01	Felsic Metasediment
Stripping 2	13	6.6	17.2	1078103	595052	5640066	0.01	Mafic Metavolcanics
Stripping 2	14	5.5	18.3	1078104	595052	5640067	0.02	Felsic Metasediment
Stripping 2	15	5.5	19.55	1078105	595053	5640068	0.01	Felsic Metasediment
Stripping 2	16	-2.5	18.15	1078106	595044	5640067	0.01	Mixed Sediment-Pegmatite
Stripping 2	17	-2.5	19.2	1078107	595045	5640068	0.01	Felsic Metasediment
Stripping 2	18	-2.2	20.4	1078108	595046	5640069	<0.01	Leuco Pegmatitic Granite
Stripping 2	19	-2.2	21.45	1078109	595047	5640070	<0.01	Leuco Pegmatitic Granite
Stripping 2	20	-2.2	26.45	1078110	595049	5640075	<0.01	Felsic Metasediment
Stripping 2	21	-2.2	27.4	1078111	595050	5640076	0.01	Mafic Metavolcanics
Stripping 2	22	-2.2	28.4	1078112	595051	5640077	0.01	Mafic Metavolcanics
Stripping 2	23	2.4	27.5	1078113	595055	5640076	<0.01	Intermediate Metasediment
Stripping 2	24	2.4	28.6	1078114	595056	5640077	0.01	Intermediate Metasediment
Stripping 2	25	-11	2.5	1078115	595026	5640051	<0.01	Leuco Pegmatite

Table 4: Southwest Corner Strip \#2 Sample Locations and Results

Strip \#1 and quite the same for strip \#2 are dominated by grey to darker grey fine grained felsic to intermediate volcanogenic metasediments possibly greywackes. They are locally cut by narrow white leucocratic coarse grained pegmatitic intrusive dykes also possibly pegmatites. There is also a few mafic volcanic intervals in strip \#2. The position of the channel samples has been measured in the field between points A and B for reference and adjusted with a GIS software called Map Info later in a computer to reflect the position of each sample in UTM Nad83 Zone 15 system to link the sample results to each of them (see table 4).

Actlabs returned to Rockex the 47 values in Lithium (Li2O) from the two stripped openings but unfortunately, no significant results came out to confirm the presence of Lithium at this point.

South Central Area Prospecting Channel Sampling

The South-Central Area was fairly easy to access from the main road into a logging trail from recent logging activity. Workers could reach the middle point of the trail and more samples could be taken by reaching more distance with an ATV 4×4 bike. Logging activity scraped a large band of forest uncovering several tops of outcrops. Many of these outcrops are white leucocratic with large crystals of albite, quartz and possibly beryl or spodumene in favorable ground for Lithium environment. Eleven (11) of these tops have been selected for sampling by channel sampling with a portable diamond blade rock saw, the same as the ones cut in strips \#1
and \#2 above. Each sample has been marked up by GPS (GPSmap 60 Cx) and positioned accordingly with their sample number and bagged as such in their individual plastic bags, also grouped together in larger "rice bags" for transportation to the assay laboratory with the other samples of the southwest corner (see Table 6).

Actlabs returned to Rockex the 11 values in Lithium (Li2O) from the area and no significant results other than a few very weak values between 0.02-0.03 \% Li2O came out to confirm the presence of more anomalous Lithium in this area.

Northwest Corner Prospecting Grab Sampling

The limit or boundary line to the Rockex property is about 1.35 kilometers from the main road to Slate Falls. Therefore, it necessitated some heavy equipment to refresh in part an old trail from past exploration activity and also new trails through heavy forest mostly spruce and bug environment (Figures 6, 8, 9 and 21, 22, 23). Making the trails uncover or exposed several surfaces of relatively flat rocks that were geologically mapped at the same time (see Figure 17 above). Most of these newly outcropping rock surfaces that were exposed uncovered mafic chlorite altered fine grained or aphanitic basalts or mafic volcanics that do not contain minerals susceptible to contain Lithium (Li2O). The path to these exposures has been tracked by GPS (GPSmap Cx) in UTM coordinates Nad83 Zone 15 and pointed as 004Bas1 to 004Bas11 (Table 5 and Waypoints in Appendix I).

Name	ZoneNum	ZoneChar	Easting	Northing	Month\#	Day\#	Year	
004Bas1	15	U	593447.5	5643321	6		7	
004Bas10	15	U	593599.5	5643223	6	7	2022	
004Bas11	15	U	593439.3	5643393	6	7	2022	
004Bas2	15	U	593450.7	5643324	6	7	2022	
004Bas3	15	U	593447.2	5643351	6	7	2022	
004Bas4	15	U	593566.2	5643381	6	7	2022	
004Bas5	15	U	593569.9	5643360	6	7	2022	
004Bas6	15	U	593571	5643351	6	7	2022	
004Bas6B	15	U	593565.9	5643338	6	7	2022	
004Bas7	15	U	593579.4	5643298	6	7	2022	
004Bas8	15	U	593594.2	5643257	6	7	2022	
004Bas9	15	U	593595.6	5643220	6	7	2022	

Table 5: Northwest Corner Area Waypoints to Rock Exposures along the Trail

One rock exposure outcrop has been sampled as 004Bas11 (Figure 23 above). This one just beside the claim line contains a dyke of white leucocratic intrusive rock, in this case a fine grained plagioclases rich aplite. Three samples have been taken; one each side of the aplite and one on the aplite. No significant values returned only very weak results at $0.02 \% \mathrm{Li} 2 \mathrm{O}$ (Table 6 below).

Location	Sample ID	UTM East	UTM North	Li2O	Lithology
North West Corner	1078088	593439	5643393	<0.01	Aplite
North West Corner	1078089	593439	5643391	0.02	Mafic Volcanics
North West Corner	1078090	593441	5643391	0.02	Mafic Volcanics
South Central Area	1078156	595977	5641060	0.02	Pegmatite
South Central Area	1078157	595965	5641058	0.02	Pegmatite
South Central Area	1078158	595950	5641042	0.02	Pegmatite
South Central Area	1078159	595946	5641033	<0.01	Pegmatite
South Central Area	1078160	595946	5640991	0.01	Pegmatite
South Central Area	1078161	595944	5640991	0.01	Pegmatite
South Central Area	1078162	595940	5640984	0.02	Pegmatite
South Central Area	1078163	595870	5641003	0.02	Pegmatite
South Central Area	1078164	595961	5641035	0.03	Pegmatite
South Central Area	1078165	596024	5641512	<0.01	Pegmatite
South Central Area	1078166	596193	5641614	0.01	Pegmatite

Table 6: South Central Area and Northwest Corner Sample Locations and Results

10: Detail of the Costs and Costs Breakdown - Root Lake Prospecting Program

Beginning of the work at Root Lake started on May 25^{h}, 2022, with the first piece of mobilization to site of a Hyundai HX 300L excavator and the geologist in charge of the project making up the first work area on the Northwest corner of the property. On May $27^{\text {th }}$, Jerry Nichols and Billy Laflamme drove to the property from Thunder Bay with equipment rented from Pierre Gagné Contracting for field work to establish a camp in an area well located on the property which has been used previously by another company in the past. Bunkhouses and a camp trailer were also brought to site to shelter staff and employees. The remote location of the property is somewhere two hours drive north of Sioux Lookout and highway 516 to gravel road Vermilion River Road, granted the need to set up this temporary camp. Billy Laflamme, Jerry Nichols, Mitch Dumoulin as the geologist in charge of the project and Pierre Gagné as the project manager complete the team that will carry out the project. Rockex Mining Corporation, that owns the Root Lake property, has contracted Pierre Gagné Contracting, 490 Maureen Street in Thunder Bay, Ontario, to perform the program and will charged as such by Pierre Gagné for the entire costs of the program, including payments to the assay laboratory and any rentals from Pierre Gagné and others needed for the work.

On May $29^{\text {th }}$, after organizing the camp and preparing the equipment for field work, some bush trail opening was started in the northwest area with the D6 tractor and the Hyundai excavator along an old trail mid-way to the boundary line of the property, then through dense boreal
spruce forest until reaching the property (see Figure 6). Then on June $3^{\text {rd }}$, the excavator was moved to the southwest corner to refresh an old road just south of the camp, to reach the southwest corner of the property. Once on the property, two openings were stripped for channel sampling work (see Figure 12 above).

On June $5^{\text {th }}$ and $6^{\text {th }}$, some trail-stripping work was done at the northwest corner area on the property, with a Caterpillar D6 bulldozer mobilized to site the day before, in the search for bedrock to identify the local lithology. Three samples were taken on one of the outcrops exposed near the boundary line (outcrop 004Bas11). It was the only outcrop showing the presence of pegmatitic rock.

Channel sampling of the two stripped area of the southwest corner was performed by all members of the team, bagging 47 samples that day on June $6^{\text {th }}$. On June $7^{\text {th }}$, the team moved in the South-Central area, which area had recent logging activity, and did prospecting-channel sampling over several tops of outcrops exposed by the logging work. It resulted in 11 more samples to bring in Thunder Bay to Actlabs, an accredited assay laboratory. A little bit later that day, the geologist moved to the northwest corner and mapped the new and fresh outcrops exposed by trail openings the days before.

Next days will serve to settle down the prospecting program and bring some material back to Thunder Bay, including all 58 channel samples to Actlabs. Demobilization of the equipment will follow soon after as well as tearing down the camp and return to Thunder Bay. A few more hours with be charged to the program by the geologist to write the activity report on the Root Lake program.

All the details related to the costs, including costs breakdown and charges by Pierre Gagné Contracting, and proof of payments are included in Appendix IV of this report and also in tables 7, 8, 9 and 10 below. Three categories; labor/prospecting, equipment rentals and services \& materials are detailed below in the costs breakdown (Table 7), as well as following tables provided by Pierre Gagné Contracting, the contractor that charges Rockex Mining Corporation for the entire work carried out at Root Lake project.

After thorough revision, Grand Total all categories for costs and invoicing at Root Lake Prospecting program amounted to $\$ 119,344.08$ before HST, and this is what Pierre Gagné Contracting charged to Rockex Mining Corporation for the exploration work carried out on Rockex property. For assessment work purpose, $\$ 119,344$ with be considered.

Adjusted Distribution of Costs in relation to the Work produced on the Claims

The expenses related to field work on the property were distributed with manpower per day of field work through the time sheets provided by Pierre Gagné (see Appendix IV at end of report), then distributed to the claims upon the number of samples taken on each individual claims. This was divided as such for the total amount of $\$ 119,344$;

Southwest corner area: 12 manpower/day-47 samples all on claim 100870 for $\$ 59,672$

Northwest corner area: 7 manpower/day-3 samples all on claim 233644 for $\$ 34,809$
South Central area: 5 manpower/day-11 samples, 2 samples on claim 159505 for $\mathbf{\$ 4 , 5 2 1}$
9 samples on claim 100869 for $\$ 20,342$

Costs breakdown for the prospecting program detailed in the tables below;

Categories: Prospecting-Grass Roots Prospecting and Associated Costs

Two categories comprise the Root Lake exploration program such as Prospecting-Grass Root Prospecting, and all the associated costs included in the expenses for this project. The associated costs include the assays, food, supplies, gas and all rental equipment needed for the project and taken care by Pierre Gagné Contracting. The full list of the cost breakdown can be consulted in Appendix IV of this report.

Pierre Gagné Contracting provided the employees dedicated at working on Root Lake project and invoiced Rockex Mining Corporation as such. It also brought all equipment rentals such as heavy machines, bunkhouses and trailers to site to lodge its employees, and perform the necessary work in the field. All parts, ATV's, pick-up trucks, pumps and accessories as well as the costs for food and the assay laboratory have been covered by Pierre Gagné Contracting with their related invoice numbers. All employee' time sheets and property owned by Pierre Gagné Contracting have been labelled under Invoice \# 4365.

Table 7 below elaborate breakdown of all the costs involved in the project (sheet in Appendix IV of this report):

Category	Date	Invoice	Day/Hour	Payee	Description	Amount
Grass Root Prospecting						
(See Contractor time sheets)	June 5, 2022	4365	1	Mitch Dumoulin \$925/day	Travel to site + flag work areas	\$925.00
	June 6, 2022	4365	1	Mitch Dumoulin \$925/day	Prospecting/sampling + GPS points	\$925.00
	June 7, 2022	4365	1	Mitch Dumoulin \$925/day	Mapping, GPS points, return home	\$925.00
	June 8, 2022	4365	1	Mitch Dumoulin \$925/day	Prep samples + bring to laboratory + download data in database	\$925.00
	June 9, 2022	4365	1	Mitch Dumoulin \$925/day	Manage field data, GIS work data	\$925.00
	June 10, 2022	4365	1	Mitch Dumoulin \$925/day	Manage field data, GIS work data	\$925.00
	June 14, 2022	4365	1	Mitch Dumoulin \$925/day	Build/write assessment report	\$925.00
	June 15, 2022	4365	1	Mitch Dumoulin \$925/day	Build/write assessment report	\$925.00
	June 16, 2022	4365	1	Mitch Dumoulin \$925/day	Build/write assessment report	\$925.00
	June 17, 2022	4365	1/2	Mitch Dumoulin \$925/day	Finish assessment report and send it out to MLAS to process	\$462.50
	May 27, 2022	4365	1	Pierre Gagné \$975/day	Travel to site + manage installation	\$975.00
	May 28, 2022	4365	1	Pierre Gagné \$975/day	Set up exploration camp, supervise	\$975.00
	May 29, 2022	4365	1	Pierre Gagné\$975/day	Supervise, start opening NW corner	\$975.00
	May 30, 2022	4365	1	Pierre Gagné \$975/day	Check activities, return home	\$975.00
	June 3, 2022	4365	1	Pierre Gagné \$975/day	Back to site, opens SW corner of property with D6 tractor	\$975.00
	June 4, 2022	4365	1	Pierre Gagné \$975/day	Back and forth to site with new supplies, set up bunkhouse + D6	\$975.00
	June 5, 2022	4365	1	Pierre Gagné \$975/day	Opens trails in NW corner of property and strip outcrops	\$975.00
	June 6, 2022	4365		Pierre Gagné \$975/day	Opens trails in NW corner of property and strip outcrops	\$975.00
	June 7, 2022	4365	1	Pierre Gagné \$975/day	Propect/sample NW corner and central area of property with geologist and return home	\$975.00
	May 27, 2022	4365	12.5	Jerry Nichols \$75/hour	Travel to site and install equipment	\$937.50
	May 28, 2022	4365	12	Jerry Nichols \$75/hour	Set up exploration camp	\$900.00
	May 29, 2022	4365	12.5	Jerry Nichols \$75/hour	Reconnaissance of NW corner of property and camp duties	\$937.50
	May 30, 2022	4365	10.5	Jerry Nichols \$75/hour	Walk NW corner, return home	\$787.50
	June 2, 2022	4365	13	Jerry Nichols \$75/hour	Bring equipment on work site and strip vegetation SW corner property	\$975.00
	June 3, 2022	4365	12	Jerry Nichols \$75/hour	Open trail at NW corner and strip rock	\$900.00
	June 4, 2022	4365	11.5	Jerry Nichols \$75/hour	Wash and clean rock at SW corner	\$862.50
	June 5, 2022	4365	12	Jerry Nichols \$75/hour	Wash and clean rock at SW corner	\$900.00
	June 6, 2022	4365	12	Jerry Nichols \$75/hour	Clean rock \& cut/sample at SW corner	\$900.00
	June 7, 2022	4365	12	Jerry Nichols \$ $75 /$ hour	Clean rock \& cut/sample at SW corner	\$900.00
	June 8, 2022	4365	12	Jerry Nichols \$75/hour	Gather \& load equipment on trailers	\$900.00
	June 9, 2022	4365	9.5	Jerry Nichols \$75/hour	Pack, secure camp \& return home	\$712.50
	May 27, 2022	4365	12.5	Billy Laflamme \$75/hour	Travel to site and install equipment	\$937.50
	May 28, 2022	4365	12	Billy Laflamme \$75/hour	Set up exploration camp	\$900.00
	May 29, 2022	4365	12.5	Billy Laflamme \$75/hour	Work on camp duties and equipment	\$937.50
	May 30, 2022	4365	9.5	Billy Laflamme \$75/hour	Work on camp duties and equipment	\$712.50
	May 31, 2022	4365	9.5	Billy Laflamme \$75/hour	Work on camp duties and equipment	\$712.50
	June 1, 2022	4365	9.5	Billy Laflamme \$75/hour	Work on camp duties and equipment	\$712.50
	June 2, 2022	4365	11.5	Billy Laflamme \$75/hour	Camp duties and move equipment site	\$862.50
	June 3, 2022	4365	11.5	Billy Laflamme \$75/hour	Camp duties \& equipment maintenance	\$862.50
	June 4, 2022	4365	14.5	Billy Laflamme \$75/hour	Prospecting, marking sampling locations	\$1,087.50
	June 5, 2022	4365	11.5	Billy Laflamme \$75/hour	Prospecting, marking sampling locations	\$862.50
	June 6, 2022	4365	13	Billy Laflamme \$75/hour	Clean rock \& cut/sample at SW corner	\$975.00
	June 7, 2022	4365	11.5	Billy Laflamme \$75/hour	Clean rock \& cut/sample at SW corner	\$862.50
	June 8, 2022	4365	11.5	Billy Laflamme \$75/hour	Pack and load equipment on trailers	\$862.50
	June 9, 2022	4365	8.5	Billy Laflamme \$75/hour	Cut \& sample samples, return home	\$637.50
					Total	\$40,100.00

Associated Costs for Prospecting					
Material \& Services					
Assays	June 15, 2022	A22-07755	Actlabs	8-Li (Sodium Peroxide Fusion	\$7,076.00
	June 6, 2022	A22-07281	Actlabs	8-Li (Sodium Peroxide Fusion	\$289.95
				Sub-total	\$7,365.95
Food	June 2, 2022	88249, 160626	Ignace \& Upsala resto	Meals (\$39.67,\$38.64,\$10.00)	\$88.31
	May 26, 2022	1137918	Superstore Thunder Bay	Grocery for field work	\$510.62
	May 25, 2022	0674603250524046	Wholesale club	Food and bug spray	\$89.65
	June 3, 2022	42556	Circle K 68	Ice for food	\$37.94
	May 27, 2022	39700	Circle K 68	Ice for food	\$14.94
	June 5, 2022	10119881388	Fresh market Food	Grocery in Sioux Lookout	\$127.26
	May 27, 2022	1137918	Superstore Thunder Bay	Grocery for field work	\$97.03
	June 3, 2022	296410	Maltese Thunder Bay	Grocery for field work	\$134.10
				Sub-total	\$1,099.85
Supplies	June 2, 2022	969176	Intercity Industrial	hammer, pump, bug spray	\$99.62
	June 6, 2022	969736	Intercity Industrial	paint, markers	\$63.48
	May 26, 2022	11404432-00	SPI Health \& Safety	First Aid kits	\$115.40
	May 31, 2022	01-124963	Northern Turf	ST Coupling	\$23.21
	May 30, 2022	01-124907	Northern Turf	concrete for saw blades	\$149.63
	May 25, 2022	967223	Intercity Industrial	Batteries, gloves, linings	\$79.50
	June 1, 2022	1132999	Hood Equipment	Excavator glass protector	\$215.90
	May 31, 2022	1962	2262649 Ontario Inc	$6 \times 14^{\prime \prime}$ diamond saw blades	\$1,620.00
	June 2, 2022	199809	Home Hardware	Clamp and padlock	\$27.47
	June 2, 2022	199816	Home Hardware	Washer for flat	\$4.64
	June 2, 2022	419662	Bumper to Bumper	Parts for rock saws	\$243.79
	June 2, 2022	419670	Bumper to Bumper	Clamps for rock saw	\$6.21
	May 30, 2022	IT85069	Kubota Thunder Bay	5 saw blades 14 inches	\$711.95
	May 31, 2022	IT85070	Kubota Thunder Bay	Parts for saw blades	\$55.06
	June 10, 2022	11215	L H North Ltd	Delivery of bunkhouse at site including transport on tractor trailer by Floating Services Slate Falls	\$5,775.00
				Sub-total	\$9,190.86
Gas	May 25, 2022	682240	Mastrangelo Fuels	Diesel fuel Thunder Bay	\$3,191.66
	June 2, 2022	10157	Wellington Center	Diesel fuel Sioux Lookout	\$142.28
	May 27, 2022	518185	Johnson's Esso	Diesel fuel in Atikokan	\$199.71
	May 30, 2022	10020	Wellington Center	Diesel fuel Sioux Lookout	\$74.16
	June 9, 2022	10151	Wellington Center	Diesel fuel Sioux Lookout	\$83.52
	May 26, 2022	63	Big Pines Thunder Bay	Propane	\$44.25
	June 3, 2022	R140275728	Canadian Tire	Propane	\$271.98
	June 9, 2022	866454804	Wellington Center	Regular gas Sioux Lookout	\$175.24
	May 28, 2022	93475	Memorial Ave Esso	Diesel fuel Thunder Bay	\$133.59
	June 3, 2022	129772	Petro-Canada	Diesel fuel in Ignace	\$99.72
	May 30, 2022	10006	Wellington Center	Diesel fuel Sioux Lookout	\$169.34
	June 7, 2022	10174	Wellington Center	Diesel fuel Sioux Lookout	\$132.74
	May 28, 2022	440844	Esso Express Pay	Diesel fuel in Ignace	\$44.19
	May 27, 2022	518218	Johnson's Esso	Diesel fuel in Atikokan	\$153.54
				Sub-total	\$4,915.92
				Total Material and Services	\$22,572.58

Table 7: Root Lake Summary and Breakdown of the Costs (Original sheet in Appendix IV)

Table 8: Root Lake Charges and Invoices for manpower and labor (Appendix IV)

Table 9: Root Lake Charges and Invoices for Equipment Rentals (Appendix IV)

Table 10: Root Lake Charges and Invoices for Materials \& Services (Appendix IV)

11: Conclusion and Recommendations

Rockex Mining Corporation's Root Lake property is surrounded by companies exploring for Lithium with Lithium discoveries both East and West and a know deposit known as McCombe a little less than three kilometers to the West. This makes it favorable grounds to explore for this metal and part of the reason for Rockex to move in and do some work.

The two stripped openings at the southwest corner revealed that a few small intrusions or dykes of pegmatitic rock occur in this area, an area closed to where Capital Lithium has been diamond drilling in 1957, intersecting several anomalous values of Lithium. The second area that has been prospected is in the central area of the property. Logging activities uncovered several tops of outcrops opening an easy access for sampling some of these. The pegmatite rocks of this area seem to cover a wide range and look very appealing to carry more exploration, those rock which contain large leucocratic crystals. The two areas did not return any significant values but the central area is surely interesting at more inquiry such as diamond drilling to test those rocks at depth, particularly that Lithium was found in prior years with this method.

The northwest corner has not been developed enough to conclude on its potential, however the north boundary of Rockex's claims coincide with the East extension of the pegmatites next door to the West owned by Ardiden Limited now Green Technology. Values up to 3\% Li2O have been recorded by these companies.

This is recommended in a first time to consider a modest diamond drill program in the northwest corner of the property, and test by drilling to intersect the Lithium rich extensions of Ardiden's pegmatites immediately west of the property. A second view at the pegmatites in the SouthCentral Area is also recommended, because their particularity at big crystals possibly containing spodumene and beryl as mentioned in the past. A series of short diamond drill holes is proposed to test the values of these rock at deeper ground.

Certificate of Qualifications

I, Mitch Dumoulin, of 507 McMaster St., Thunder Bay, Ontario, do hereby certify that:

1. I hold a Bachelor of Science Degree in Geology (1981) from Université du Québec à Chicoutimi, Chicoutimi, Québec.
2. I am a member of the Association of Professional Geoscientists of Ontario (P.Geo Registration \#0304);
3. I have practiced my profession in Ontario and Quebec since 1981 and have been employed directly by several large mining and exploration companies and also several junior mining companies.
4. I am presently an employee of Pierre Gagné Contracting Limited based in Thunder Bay, Ontario but also indirectly employed to Rockex Mining Corporation as Principal Geologist for the company.
5. I have supervised numerous projects similar to that represented by the Root Lake Project, also a 'Qualified Person' in the context of National Instrument 43101 and have been employed as such to represent Rockex Mining Corporation.
6. Permission is granted to Rockex Mining Corporation to use this report in a prospectus or other financial offering.

Dated June $20^{\text {th }}$, 2022 in Thunder Bay, Ontario.

Mitch Dumoulin., P.Geo
Consulting Geologist
Rockex Mining Corporation

References

Breaks et al., 1979

Clifford, 1969

Gross, 1995; Algoma type of BIF's of the Archean

Risto et al., 2008; Iron Ore Reserves at Eagle Island, Lake St Joseph, Northwest Ontario

Russel et al., 2002

Stott \& Corfu, 1991

Stott, 1996; Regional Stratigraphic Column

Appendix I
Root Lake Claim Map
1:25,000
Waypoints and Tracks
Work Cells on Mining Land

Appendix II

Root Lake Maps at Scale

Northwest corner 1:1,000
South Central Area 1:3,000
Strip \#1 1:250
Strip \#2 1:250
Work Areas Map 1:20,000
Root Lake Strips \#1 \& \#2 Southwest Corner (Figure 11)

Appendix III

Certificates of Analysis \& Results

Appendix IV

Detail of the Costs - Invoices \& Payments

Rockex - Root Lake - List of Claims

Provider
100870, 233644

Receivers

165495, 194260, 194259, 159506, 268886, 280929, 339884, 224923, 268887, 159507, 165494, 120331, 165493, 116158, 341335, 289756, 262824, 179781, 121821, 329501, 101662, 262825, 101664, 289757, 101663, 166932, 233623, 282907, 282906, 289758, 329502, 101630, 160940, 341337, 329503, 341336, 166909, 116132, 262826, 101451, 329467, 282368, 160913, 289735, 101629, 282369, 196166, 116133, 329468, 329469, 160914, 179055, 160202, 194977, 116780, 121059, 225650, 116779, 225649, 121058, 225651, 179056, 166224, 286299, 286298, 118177, 266238, 322338, 344720, 293097, 266239, 344721, 226465, 293098, 344722, 322339

Through
$159506,165495,165494,341336,329503,341337,160940,282907,101664,179781,233644,116158$, 341335, 329501, 101663, 166932, 233623, 196166, 289735, 329467, 282368, 101629, 116133, 160914, 159505, 100869, 280929, 268887, 159507, 339884, 194259, 160202, 121058, 101451, 262826, 116132, 166909, 286299, 286298, 118177, 344720, 344721, 344722, 116779, 179056, 116780

Root Lake Northwest Corner
Outcrop 004Bas11
View West

Version 2:CSV
Datum: NAD83

T	15 U	594058.3	5641560	6	6	2022
T	15 U	593982.8	5641474	6	6	2022
T	15 U	593889.6	5641378	6	6	2022
T	15 U	593772.1	5641294	6	6	2022
T	15 U	593650.6	5641193	6	6	2022
T	15 U	593556	5641104	6	6	2022
T	15 U	593458	5641024	6	6	2022
T	15 U	593415.6	5640932	6	6	2022
T	15 U	593380.3	5640769	6	6	2022
T	15 U	593362.2	5640732	6	6	2022
T	15 U	593286.6	5640663	6	6	2022
T	15 U	593292.6	5640632	6	6	2022
T	15 U	593295.1	5640628	6	6	2022
T	15 U	593308	5640600	6	6	2022
T	15 U	593328.8	5640560	6	6	2022
T	15 U	593331.7	5640556	6	6	2022
T	15 U	593349.2	5640539	6	6	2022
T	15 U	593388.7	5640510	6	6	2022
T	15 U	593427.8	5640467	6	6	2022
T	15 U	593446.7	5640437	6	6	2022
T	15 U	593463.8	5640395	6	6	2022
T	15 U	593479.5	5640362	6	6	2022
T	15 U	593512.9	5640318	6	6	2022
T	15 U	593517.7	5640301	6	6	2022
T	15 U	593525.5	5640287	6	6	2022
T	15 U	593535.8	5640276	6	6	2022
T	15 U	593548.5	5640263	6	6	2022
T	15 U	593589.3	5640234	6	6	2022
T	15 U	593629.7	5640213	6	6	2022
T	15 U	593671.4	5640219	6	6	2022
T	15 U	593709.9	5640226	6	6	2022
T	15 U	593756.1	5640220	6	6	2022
T	15 U	593814.7	5640217	6	6	2022
T	15 U	593862.8	5640222	6	6	2022
T	15 U	593914.9	5640213	6	6	2022
T	15 U	593924.8	5640211	6	6	2022
T	15 U	593975.5	5640207	6	6	2022
T	15 U	594024.6	5640206	6	6	2022
T	15 U	594069.7	5640201	6	6	2022
T	15 U	594100.7	5640195	6	6	2022
T	15 U	594115.9	5640194	6	6	2022
T	15 U	594167.8	5640189	6	6	2022
T	15 U	594221	5640187	6	6	2022
T	15 U	594272.2	5640180	6	6	2022
T	15 U	594298	5640175	6	6	2022
T	15 U	594316.1	5640169	6	6	2022
T	15 U	594339	5640164	6	6	2022

T	15 U	594402.3	5640147	6	6	2022
T	15 U	594420.3	5640144	6	6	2022
T	15 U	594471.9	5640139	6	6	2022
T	15 U	594516.9	5640134	6	6	2022
T	15 U	594573.7	5640130	6	6	2022
T	15 U	594593.3	5640127	6	6	2022
T	15 U	594671	5640122	6	6	2022
T	15 U	594711.2	5640117	6	6	2022
T	15 U	594758.6	5640113	6	6	2022
T	15 U	594826.2	5640086	6	6	2022
T	15 U	594830.9	5640085	6	6	2022
T	15 U	594843.6	5640083	6	6	2022
T	15 U	594882.2	5640072	6	6	2022
T	15 U	594924.4	5640062	6	6	2022
T	15 U	594982.2	5640048	6	6	2022
T	15 U	595012.2	5640046	6	6	2022
T	15 U	595025.9	5640044	6	6	2022
T	15 U	595027.5	5640044	6	6	2022
T	15 U	595031	5640046	6	6	2022
T	15 U	595033.4	5640046	6	6	2022
T	15 U	595041.9	5640046	6	6	2022
T	15 U	595050.4	5640054	6	6	2022
T	15 U	595057.2	5640062	6	6	2022
T	15 U	595058.9	5640066	6	6	2022
T	15 U	595059.5	5640071	6	6	2022
T	15 U	595059.1	5640074	6	6	2022
T	15 U	595060	5640077	6	6	2022
T	15 U	595059.1	5640080	6	6	2022
T	15 U	595055.7	5640084	6	6	2022
T	15 U	595050.7	5640081	6	6	2022
T	15 U	595047.5	5640075	6	6	2022
T	15 U	595041.7	5640067	6	6	2022
T	15 U	595035.1	5640059	6	6	2022
T	15 U	595025.8	5640053	6	6	2022
T	15 U	595020.6	5640047	6	6	2022
T	15 U	595020.4	5640047	6	6	2022
N	15 U	594939.4	5640063	6	6	2022
T	15 U	594945.2	5640065	6	6	2022
T	15 U	594948	5640068	6	6	2022
T	15 U	594952.2	5640072	6	6	2022
T	15 U	594957.9	5640076	6	6	2022
T	15 U	594962.8	5640081	6	6	2022
T	15 U	594965.8	5640083	6	6	2022
T	15 U	594968.5	5640084	6	6	2022
T	15 U	594970.4	5640088	6	6	2022
T	15 U	594971	5640091	6	6	2022
T	15 U	594969.6	5640093	6	6	2022

T	15 U	594966.6	5640092	6	6	2022
T	15 U	594963.1	5640091	6	6	2022
T	15 U	594960.1	5640087	6	6	2022
T	15 U	594953.8	5640081	6	6	2022
T	15 U	594945.3	5640074	6	6	2022
T	15 U	594941	5640072	6	6	2022
T	15 U	594935.8	5640070	6	6	2022
T	15 U	594932.8	5640067	6	6	2022
T	15 U	594932.2	5640063	6	6	2022
N	15 U	592313.6	5643089	6	7	2022
T	15 U	592314.4	5643091	6	7	2022
T	15 U	592318.7	5643090	6	7	2022
T	15 U	592320.7	5643090	6	7	2022
T	15 U	592320.2	5643088	6	7	2022
T	15 U	592319.3	5643089	6	7	2022
T	15 U	592324.7	5643097	6	7	2022
T	15 U	592330.5	5643095	6	7	2022
T	15 U	592330.6	5643097	6	7	2022
T	15 U	592341.4	5643102	6	7	2022
T	15 U	592353.2	5643109	6	7	2022
T	15 U	592367.8	5643116	6	7	2022
T	15 U	592385.2	5643123	6	7	2022
T	15 U	592401.6	5643130	6	7	2022
T	15 U	592413.6	5643138	6	7	2022
T	15 U	592429.2	5643146	6	7	2022
T	15 U	592442.8	5643153	6	7	2022
T	15 U	592453.6	5643158	6	7	2022
T	15 U	592464.5	5643162	6	7	2022
T	15 U	592469.7	5643163	6	7	2022
T	15 U	592475.8	5643163	6	7	2022
T	15 U	592486.1	5643163	6	7	2022
T	15 U	592491.3	5643164	6	7	2022
T	15 U	592512.7	5643165	6	7	2022
T	15 U	592529.6	5643164	6	7	2022
T	15 U	592549	5643162	6	7	2022
T	15 U	592571.8	5643157	6	7	2022
T	15 U	592598.2	5643154	6	7	2022
T	15 U	592617.9	5643158	6	7	2022
T	15 U	592630.1	5643164	6	7	2022
T	15 U	592637.2	5643178	6	7	2022
T	15 U	592639.6	5643187	6	7	2022
T	15 U	592643.1	5643192	6	7	2022
T	15 U	592642.3	5643193	6	7	2022
T	15 U	592641.6	5643200	6	7	2022
T	15 U	592641.9	5643198	6	7	2022
T	15 U	592641.9	5643192	6	7	2022
T	15 U	592639.7	5643188	6	7	2022

T	15 U	592641.8	5643193	6	7	2022
T	15 U	592645.5	5643189	6	7	2022
T	15 U	592640	5643192	6	7	2022
T	15 U	592639.4	5643188	6	7	2022
T	15 U	592636.3	5643183	6	7	2022
T	15 U	592635.8	5643181	6	7	2022
T	15 U	592636.8	5643177	6	7	2022
T	15 U	592637.2	5643174	6	7	2022
T	15 U	592636	5643178	6	7	2022
T	15 U	592633.5	5643178	6	7	2022
T	15 U	592632.5	5643174	6	7	2022
T	15 U	592632.2	5643174	6	7	2022
T	15 U	592628.2	5643174	6	7	2022
T	15 U	592625.2	5643171	6	7	2022
T	15 U	592623.3	5643170	6	7	2022
T	15 U	592619.1	5643169	6	7	2022
T	15 U	592611	5643165	6	7	2022
T	15 U	592610.3	5643162	6	7	2022
T	15 U	592606.5	5643166	6	7	2022
T	15 U	592610.5	5643167	6	7	2022
T	15 U	592603.3	5643164	6	7	2022
T	15 U	592589	5643165	6	7	2022
T	15 U	592568.6	5643163	6	7	2022
T	15 U	592545	5643167	6	7	2022
T	15 U	592522.1	5643168	6	7	2022
T	15 U	592518.6	5643169	6	7	2022
T	15 U	592492.6	5643170	6	7	2022
T	15 U	592491.4	5643170	6	7	2022
T	15 U	592481.6	5643171	6	7	2022
T	15 U	592462.7	5643171	6	7	2022
T	15 U	592454.1	5643166	6	7	2022
T	15 U	592448.5	5643162	6	7	2022
T	15 U	592448.4	5643163	6	7	2022
T	15 U	592463	5643170	6	7	2022
T	15 U	592480.5	5643171	6	7	2022
T	15 U	592491.7	5643170	6	7	2022
T	15 U	592494.8	5643171	6	7	2022
T	15 U	592506.6	5643173	6	7	2022
T	15 U	592522	5643173	6	7	2022
T	15 U	592542.4	5643168	6	7	2022
T	15 U	592559	5643167	6	7	2022
T	15 U	592577.4	5643167	6	7	2022
T	15 U	592595.3	5643166	6	7	2022
T	15 U	592613.2	5643167	6	7	2022
T	15 U	592626.9	5643171	6	7	2022
T	15 U	592633.5	5643180	6	7	2022
T	15 U	592639.1	5643190	6	7	2022

T	15 U	592644.6	5643205	6	7	2022
T	15 U	592652.3	5643212	6	7	2022
T	15 U	592657.6	5643219	6	7	2022
T	15 U	592662.4	5643228	6	7	2022
T	15 U	592667.8	5643236	6	7	2022
T	15 U	592671.3	5643245	6	7	2022
T	15 U	592673.8	5643249	6	7	2022
T	15 U	592679.7	5643257	6	7	2022
T	15 U	592686.6	5643265	6	7	2022
T	15 U	592692.5	5643274	6	7	2022
T	15 U	592694.1	5643288	6	7	2022
T	15 U	592696.5	5643300	6	7	2022
T	15 U	592702.3	5643315	6	7	2022
T	15 U	592706.2	5643325	6	7	2022
T	15 U	592711.1	5643327	6	7	2022
T	15 U	592722.6	5643333	6	7	2022
T	15 U	592735.2	5643335	6	7	2022
T	15 U	592747.7	5643336	6	7	2022
T	15 U	592761.6	5643336	6	7	2022
T	15 U	592772.8	5643337	6	7	2022
T	15 U	592786.2	5643335	6	7	2022
T	15 U	592797.6	5643336	6	7	2022
T	15 U	592814.2	5643337	6	7	2022
T	15 U	592820.3	5643338	6	7	2022
T	15 U	592831.3	5643343	6	7	2022
T	15 U	592842.1	5643346	6	7	2022
T	15 U	592849.2	5643348	6	7	2022
T	15 U	592855.8	5643352	6	7	2022
T	15 U	592861.2	5643353	6	7	2022
T	15 U	592872.3	5643354	6	7	2022
T	15 U	592883.1	5643359	6	7	2022
T	15 U	592893.2	5643357	6	7	2022
T	15 U	592902.5	5643361	6	7	2022
T	15 U	592909.9	5643365	6	7	2022
T	15 U	592917.4	5643365	6	7	2022
T	15 U	592923.4	5643368	6	7	2022
T	15 U	592934.8	5643371	6	7	2022
T	15 U	592942.4	5643372	6	7	2022
T	15 U	592946.6	5643372	6	7	2022
T	15 U	592955.5	5643373	6	7	2022
T	15 U	592969.3	5643377	6	7	2022
T	15 U	592978.4	5643379	6	7	2022
T	15 U	592988	5643378	6	7	2022
T	15 U	592996.2	5643380	6	7	2022
T	15 U	593007.6	5643382	6	7	2022
T	15 U	593016.3	5643384	6	7	2022
T	15 U	593026.7	5643386	6	7	2022

T	15 U	593037.7	5643387	6	7	2022
T	15 U	593047.6	5643387	6	7	2022
T	15 U	593059.9	5643389	6	7	2022
T	15 U	593067.6	5643391	6	7	2022
T	15 U	593081.6	5643392	6	7	2022
T	15 U	593089.8	5643393	6	7	2022
T	15 U	593100.3	5643395	6	7	2022
T	15 U	593110.3	5643395	6	7	2022
T	15 U	593122.1	5643395	6	7	2022
T	15 U	593134.1	5643393	6	7	2022
T	15 U	593142.6	5643393	6	7	2022
T	15 U	593151.7	5643394	6	7	2022
T	15 U	593157.3	5643395	6	7	2022
T	15 U	593166.5	5643395	6	7	2022
T	15 U	593178.7	5643397	6	7	2022
T	15 U	593188.7	5643400	6	7	2022
T	15 U	593197.5	5643401	6	7	2022
T	15 U	593203.8	5643398	6	7	2022
T	15 U	593212.6	5643400	6	7	2022
T	15 U	593226.7	5643403	6	7	2022
T	15 U	593234.9	5643400	6	7	2022
T	15 U	593244.4	5643403	6	7	2022
T	15 U	593246.3	5643403	6	7	2022
T	15 U	593258.2	5643403	6	7	2022
T	15 U	593267	5643403	6	7	2022
T	15 U	593279.8	5643404	6	7	2022
T	15 U	593283.9	5643403	6	7	2022
T	15 U	593292.1	5643403	6	7	2022
T	15 U	593303.8	5643403	6	7	2022
T	15 U	593311.8	5643402	6	7	2022
T	15 U	593322.3	5643405	6	7	2022
T	15 U	593324.9	5643405	6	7	2022
T	15 U	593334.7	5643403	6	7	2022
T	15 U	593341.7	5643403	6	7	2022
T	15 U	593350.5	5643401	6	7	2022
T	15 U	593360.6	5643401	6	7	2022
T	15 U	593367.3	5643400	6	7	2022
T	15 U	593376.9	5643400	6	7	2022
T	15 U	593383.2	5643400	6	7	2022
T	15 U	593389.2	5643396	6	7	2022
T	15 U	593394.7	5643393	6	7	2022
T	15 U	593406.1	5643389	6	7	2022
T	15 U	593416.1	5643386	6	7	2022
T	15 U	593424.5	5643383	6	7	2022
T	15 U	593428.7	5643382	6	7	2022
T	15 U	593437	5643386	6	7	2022
T	15 U	593437.6	5643390	6	7	2022

T	15 U	593444.8	5643383	6	7	2022
T	15 U	593449.7	5643377	6	7	2022
T	15 U	593446.2	5643369	6	7	2022
T	15 U	593446.8	5643366	6	7	2022
T	15 U	593448.5	5643365	6	7	2022
T	15 U	593451.6	5643365	6	7	2022
T	15 U	593449.1	5643366	6	7	2022
T	15 U	593449	5643365	6	7	2022
T	15 U	593449.7	5643365	6	7	2022
T	15 U	593447.6	5643360	6	7	2022
T	15 U	593445.1	5643354	6	7	2022
T	15 U	593445.4	5643349	6	7	2022
T	15 U	593447.3	5643342	6	7	2022
T	15 U	593446	5643337	6	7	2022
T	15 U	593447.7	5643330	6	7	2022
T	15 U	593443.8	5643323	6	7	2022
T	15 U	593443.9	5643322	6	7	2022
T	15 U	593446.7	5643320	6	7	2022
T	15 U	593447.9	5643322	6	7	2022
T	15 U	593450.7	5643324	6	7	2022
T	15 U	593450.6	5643323	6	7	2022
T	15 U	593450.6	5643329	6	7	2022
T	15 U	593449.9	5643340	6	7	2022
T	15 U	593448.1	5643349	6	7	2022
T	15 U	593447.2	5643354	6	7	2022
T	15 U	593450.4	5643358	6	7	2022
T	15 U	593451.3	5643364	6	7	2022
T	15 U	593449.3	5643371	6	7	2022
T	15 U	593455	5643377	6	7	2022
T	15 U	593464.2	5643374	6	7	2022
T	15 U	593472.9	5643371	6	7	2022
T	15 U	593482.6	5643373	6	7	2022
T	15 U	593490.9	5643371	6	7	2022
T	15 U	593496.8	5643375	6	7	2022
T	15 U	593504.4	5643377	6	7	2022
T	15 U	593511	5643375	6	7	2022
T	15 U	593518.2	5643376	6	7	2022
T	15 U	593525.5	5643377	6	7	2022
T	15 U	593534.9	5643379	6	7	2022
T	15 U	593548.9	5643375	6	7	2022
T	15 U	593559	5643374	6	7	2022
T	15 U	593565	5643370	6	7	2022
T	15 U	593564.5	5643377	6	7	2022
T	15 U	593563.6	5643383	6	7	2022
T	15 U	593564.1	5643385	6	7	2022
T	15 U	593566.2	5643381	6	7	2022
T	15 U	593565.7	5643378	6	7	2022

T	15 U	593564.4	5643372	6	7	2022
T	15 U	593565.2	5643361	6	7	2022
T	15 U	593569.2	5643359	6	7	2022
T	15 U	593573	5643351	6	7	2022
T	15 U	593567.8	5643351	6	7	2022
T	15 U	593570.8	5643346	6	7	2022
T	15 U	593570.6	5643337	6	7	2022
T	15 U	593570.2	5643333	6	7	2022
T	15 U	593565.7	5643338	6	7	2022
T	15 U	593569.1	5643329	6	7	2022
T	15 U	593572.1	5643319	6	7	2022
T	15 U	593574.3	5643309	6	7	2022
T	15 U	593577.4	5643302	6	7	2022
T	15 U	593578	5643300	6	7	2022
T	15 U	593580.9	5643293	6	7	2022
T	15 U	593585.8	5643281	6	7	2022
T	15 U	593591.8	5643270	6	7	2022
T	15 U	593594.9	5643259	6	7	2022
T	15 U	593594.3	5643257	6	7	2022
T	15 U	593595.9	5643256	6	7	2022
T	15 U	593595.9	5643253	6	7	2022
T	15 U	593589	5643253	6	7	2022
T	15 U	593590	5643246	6	7	2022
T	15 U	593589.2	5643242	6	7	2022
T	15 U	593591.9	5643237	6	7	2022
T	$15 U$	593596.8	5643231	6	7	2022
T	$15 U$	593599.3	5643227	6	7	2022
T	$15 U$	593597.6	5643222	6	7	2022
T	$15 U$	593594.5	5643222	6	7	2022
T	$15 U$	593596.4	5643219	6	7	2022
T	$15 U$	593600.6	5643219	6	7	2022
T	$15 U$	593599.7	5643225	6	7	2022
T	$15 U$	593599.8	5643230	6	7	2022

11	42	25	421.6754	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	85.2034	324.8775
11	42	39	420.7141	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	114.2801	439.1576
11	42	55	421.1948	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	133.7545	572.9121
11	43	12	424.0787	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	144.4182	717.3304
11	43	30	425.0402	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	157.5369	874.8672
11	43	45	426.9628	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	129.2751	1004.142
11	44	0	425.0402	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	126.653	1130.795
11	44	12	423.1174	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	101.2724	1232.068
11	44	31	423.598	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	166.2651	1398.333
11	44	36	423.1174	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	41.1961	1439.529
11	44	50	422.156	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	102.5548	1542.084
11	44	58	423.1174	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	31.3549	1573.439
11	44	59	423.1174	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	4.6505	1578.089
11	45	6	422.6367	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	30.2818	1608.371
11	45	17	420.7141	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	45.4441	1653.815
11	45	18	420.7141	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	4.5936	1658.409
11	45	23	419.7528	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	24.5001	1682.909
11	45	32	419.7528	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	48.8365	1731.745
11	45	44	420.2334	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	58.5233	1790.269
11	45	50	420.2334	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	35.2959	1825.564
11	46	0	419.2722	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	45.4221	1870.987
11	46	8	419.7528	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	36.5229	1907.509
11	46	20	421.1948	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	55.2457	1962.755
11	46	24	422.6367	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	17.391	1980.146
11	46	27	423.1174	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	15.6554	1995.802
11	46	30	423.1174	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	15.6447	2011.446
11	46	34	422.156	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	18.1473	2029.594
11	46	46	420.2334	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	49.4756	2079.069
11	46	57	417.8302	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	45.5408	2124.61
11	47	7	417.8302	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	41.9841	2166.594
11	47	16	418.3108	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	38.9475	2205.542
11	47	26	420.2334	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	46.4352	2251.977
11	47	39	422.6367	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	58.5003	2310.477
11	47	51	426.4821	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	48.223	2358.7
11	48	4	428.8854	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	52.8462	2411.546
11	48	6	429.366	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	9.9911	2421.537
11	48	17	428.4047	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	50.6729	2472.21
11	48	28	432.25	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	48.9611	2521.171
11	48	38	432.7307	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	45.3633	2566.535
11	48	45	431.7692	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	31.3336	2597.868
11	48	49	431.7692	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	15.1588	2613.027
11	49	2	433.2113	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	52.0757	2665.103
11	49	15	434.6533	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	53.0228	2718.125
11	49	27	433.2113	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	51.5588	2769.684
11	49	33	432.25	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	26.1805	2795.865
11	49	37	430.3273	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	19.1825	2815.047
11	49	42	428.8854	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	23.3269	2838.374

11	49	55	424.5594	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	65.283	2903.657
11	49	59	425.0402	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	18.3077	2921.965
11	50	11	425.0402	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	51.6555	2973.62
11	50	23	423.1174	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	45.1453	3018.765
11	50	34	423.1174	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	56.8661	3075.632
11	50	38	424.0787	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	19.6976	3095.329
11	50	53	423.598	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	77.6634	3172.993
11	51	2	424.0787	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	40.301	3213.294
11	51	13	423.598	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	47.5162	3260.81
11	51	28	424.5594	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	72.4786	3333.288
11	51	29	425.0402	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	4.8758	3338.164
11	51	32	425.0402	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	12.8423	3351.006
11	51	44	426.9628	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	40.1604	3391.167
11	51	55	427.924	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	43.1939	3434.361
11	52	10	425.5208	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	59.2211	3493.582
11	52	22	421.1948	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	30.0392	3523.621
11	52	35	418.7915	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	13.7887	3537.41
11	52	52	419.2722	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	1.5585	3538.968
11	53	7	419.7528	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	4.0144	3542.983
11	53	32	421.6754	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	2.3962	3545.379
11	53	47	422.156	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	8.4039	3553.783
11	54	2	422.6367	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	11.9493	3565.732
11	54	17	420.7141	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	10.1414	3575.874
11	54	31	417.8302	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	4.6528	3580.526
11	54	49	416.8689	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	4.8104	3585.337
11	54	58	417.3496	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	3.207	3588.544
11	55	7	417.8302	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	3.0584	3591.602
11	55	19	415.9075	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	3.7087	3595.311
11	55	32	415.9075	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	4.9473	3600.258
11	55	46	414.9462	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	5.6246	3605.883
11	55	59	417.8302	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	7.4596	3613.342
11	56	12	418.3108	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	9.2367	3622.579
11	56	29	420.2334	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	11.0105	3633.589
11	56	45	420.7141	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	10.6173	3644.207
11	57	0	420.7141	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	8.1501	3652.357
11	57	6	421.1948	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	0.1743	3652.531
13	38	40	426.0013	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	82.3609	0
13	38	58	422.6367	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	6.1004	6.1004
13	39	11	423.1174	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	4.6668	10.7672
13	39	25	420.7141	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	5.4749	16.2421
13	39	40	420.7141	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	6.7961	23.0382
13	39	55	421.1948	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	6.9154	29.9536
13	40	9	420.2334	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	3.7692	33.7227
13	40	29	417.8302	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	2.8556	36.5783
13	40	44	421.1948	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	4.2941	40.8724
13	40	59	420.7141	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	3.2036	44.076
13	41	14	419.2722	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	2.2937	46.3697

13	41	25	421.6754	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	3.0591	49.4288
13	41	40	422.156	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	3.7041	53.1328
13	41	54	422.156	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	5.0392	58.172
13	42	10	422.156	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	8.4934	66.6655
13	42	27	423.598	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	10.7342	77.3996
13	42	39	423.598	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	4.7862	82.1858
13	42	52	423.598	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	5.6042	87.79
13	43	3	423.598	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	4.1597	91.9497
13	43	15	424.5594	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	4.3136	96.2633
12	47	6	405.8137	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	3996.822	0
12	47	34	409.1783	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	2.0131	2.0131
12	48	11	411.5817	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	4.4144	6.4275
12	48	27	411.101	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	2.0101	8.4376
12	49	19	408.6976	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	1.6595	10.0971
12	50	3	401.4878	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	1.0071	11.1042
12	50	17	401.4878	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	9.4948	20.599
12	50	48	406.2943	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	5.9715	26.5705
12	51	16	411.101	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	1.2556	27.8261
12	52	34	409.1783	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	12.0268	39.8529
12	52	50	407.2556	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	13.7888	53.6417
12	53	9	407.7363	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	15.8781	69.5198
12	53	28	406.7749	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	18.7931	88.3129
12	53	44	404.8523	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	17.9749	106.2878
12	54	2	405.8137	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	14.2687	120.5565
12	54	21	411.101	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	17.6366	138.1931
12	54	37	411.101	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	15.0015	153.1946
12	54	52	411.101	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	12.0102	165.2048
12	55	8	409.6591	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	11.5835	176.7883
12	55	14	407.2556	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	5.315	182.1032
12	55	18	405.333	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	6.0584	188.1617
12	55	24	404.8523	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	10.2538	198.4155
12	55	27	405.333	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	5.276	203.6915
12	55	43	405.8137	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	21.4279	225.1194
12	55	57	405.333	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	16.8355	241.9549
12	56	13	407.7363	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	19.5151	261.47
12	56	29	410.6202	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	23.1711	284.6411
12	56	48	415.4269	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	26.5318	311.1729
12	57	4	415.9075	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	20.0842	331.2571
12	57	18	417.3496	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	13.4633	344.7204
12	57	32	415.4269	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	16.0639	360.7843
12	57	46	408.6976	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	9.6271	370.4113
12	58	20	413.0236	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	5.8392	376.2505
12	58	40	415.4269	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	1.4291	377.6796
12	59	51	416.8689	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	6.7739	384.4535
13	0	46	424.0787	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	2.3193	386.7728
13	1	48	428.8854	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	5.4618	392.2346
13	2	3	425.5208	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	4.5525	396.7871

13	2	22	425.5208	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	4.8181	401.6052
13	2	47	416.8689	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	4.8668	406.472
13	3	28	400.5265	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	6.0985	412.5705
13	3	54	411.101	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	4.1161	416.6866
13	4	11	417.8302	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	6.4495	423.1361
13	4	28	422.156	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	1.9449	425.081
13	4	51	413.5043	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	4.1736	429.2546
13	5	22	413.0236	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	2.2794	431.5339
13	5	50	406.7749	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	3.9787	435.5126
13	6	23	405.333	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	2.4407	437.9533
13	6	34	409.1783	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	3.9844	441.9377
13	6	44	410.1396	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	0.7415	442.6792
13	7	1	413.9849	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	4.0058	446.685
13	7	13	415.4269	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	4.2322	450.9172
13	7	44	420.2334	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	2.2463	453.1635
13	8	5	418.3108	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	4.1844	457.3479
13	8	19	413.9849	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	9.2523	466.6002
13	8	35	417.3496	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	2.6767	469.277
13	8	52	411.5817	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	5.071	474.3479
13	9	11	417.8302	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	4.3361	478.684
13	9	35	409.6591	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	7.9311	486.6151
13	9	46	411.5817	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	14.3433	500.9584
13	10	2	411.5817	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	20.3926	521.351
13	10	19	408.217	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	23.8796	545.2306
13	10	35	405.333	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	22.7955	568.0261
13	10	38	404.3717	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	3.5718	571.598
13	10	55	408.217	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	25.9179	597.5158
13	10	56	408.6976	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	1.2155	598.7313
13	11	3	407.2556	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	9.8343	608.5656
13	11	19	409.6591	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	18.8289	627.3945
13	11	37	408.6976	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	9.9275	637.322
13	11	51	404.3717	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	7.0271	644.3491
13	12	24	404.8523	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	0.448	644.7971
13	12	40	404.8523	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	16.1284	660.9255
13	12	57	402.4491	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	17.5374	678.4629
13	13	9	400.5265	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	11.1966	689.6595
13	13	12	401.0071	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	3.1217	692.7811
13	13	23	402.9297	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	11.8736	704.6547
13	13	40	400.5265	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	15.3801	720.0349
13	13	58	406.7749	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	20.7763	740.8111
13	14	17	401.9685	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	16.5653	757.3764
13	14	36	400.5265	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	18.3762	775.7527
13	14	53	403.8911	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	17.8739	793.6266
13	15	10	406.2943	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	17.868	811.4946
13	15	28	409.6591	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	14.2496	825.7442
13	15	45	411.101	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	10.9131	836.6573
13	16	4	413.9849	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	11.6617	848.3189

13	16	22	423.1174	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	15.4385	863.7575
13	16	39	420.2334	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	10.5362	874.2937
13	16	55	418.7915	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	8.9494	883.2431
13	17	11	418.3108	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	9.8459	893.0891
13	17	27	412.5428	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	10.2693	903.3584
13	17	41	411.5817	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	9.3927	912.7511
13	17	47	412.0623	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	4.5761	917.3271
13	18	0	411.5817	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	10.3658	927.693
13	18	15	415.9075	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	10.3501	938.0431
13	18	31	419.7528	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	10.7679	948.8109
13	18	45	417.3496	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	14.0925	962.9034
13	19	0	412.0623	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	12.0946	974.998
13	19	19	417.8302	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	16.2637	991.2617
13	19	38	415.9075	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	10.1198	1001.382
13	19	54	414.4655	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	5.7457	1007.127
13	20	12	413.5043	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	12.5936	1019.721
13	20	30	412.0623	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	12.7911	1032.512
13	20	46	411.101	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	12.4806	1044.993
13	21	4	410.6202	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	13.8647	1058.857
13	21	20	409.1783	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	11.1985	1070.056
13	21	37	411.5817	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	13.5108	1083.567
13	21	52	413.5043	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	11.3325	1094.899
13	22	12	412.5428	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	16.6809	1111.58
13	22	19	413.9849	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	6.2331	1117.813
13	22	34	414.9462	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	11.8125	1129.625
13	22	48	415.4269	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	11.2868	1140.912
13	23	1	415.4269	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	7.4253	1148.338
13	23	15	415.9075	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	7.5771	1155.915
13	23	29	417.3496	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	5.3562	1161.271
13	23	45	408.217	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	11.1381	1172.409
13	24	0	413.9849	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	12.0254	1184.434
13	24	14	423.1174	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	10.1993	1194.634
13	24	28	424.0787	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	9.9872	1204.621
13	24	41	420.2334	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	8.1864	1212.807
13	24	54	416.3882	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	7.54	1220.347
13	25	7	409.6591	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	6.3915	1226.739
13	25	24	413.9849	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	11.9142	1238.653
13	25	39	415.9075	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	7.7064	1246.359
13	25	49	415.9075	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	4.2348	1250.594
13	26	3	416.8689	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	8.9464	1259.541
13	26	21	408.217	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	14.3743	1273.915
13	26	32	409.1783	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	9.2678	1283.183
13	26	47	412.0623	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	9.5928	1292.776
13	27	2	405.8137	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	8.4329	1301.208
13	27	15	415.9075	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	11.4731	1312.681
13	27	28	418.7915	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	8.9754	1321.657
13	27	42	415.9075	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	10.6703	1332.327

13	27	57	413.5043	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	10.9403	1343.267
13	28	12	407.2556	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	9.8389	1353.106
13	28	28	410.1396	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	12.5181	1365.624
13	28	40	406.7749	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	7.8428	1373.467
13	28	54	414.9462	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	13.9565	1387.424
13	29	7	413.9849	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	8.2293	1395.653
13	29	20	413.9849	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	10.6435	1406.297
13	29	34	410.6202	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	10.0456	1416.342
13	29	50	410.6202	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	11.7122	1428.054
13	30	8	410.6202	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	12.1082	1440.162
13	30	23	411.5817	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	8.5451	1448.708
13	30	36	413.9849	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	9.0938	1457.801
13	30	45	412.5428	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	5.6188	1463.42
13	30	58	412.0623	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	9.2134	1472.634
13	31	15	416.3882	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	12.4081	1485.042
13	31	31	411.5817	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	10.3528	1495.395
13	31	45	414.9462	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	8.8063	1504.201
13	31	59	418.7915	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	7.1465	1511.347
13	32	11	415.4269	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	8.9395	1520.287
13	32	26	418.7915	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	14.4168	1534.704
13	32	34	422.6367	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	8.435	1543.139
13	32	46	416.8689	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	9.7569	1552.895
13	32	48	417.3496	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	1.9945	1554.89
13	33	1	414.9462	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	11.7807	1566.671
13	33	13	414.9462	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	8.7915	1575.462
13	33	28	413.9849	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	12.8163	1588.279
13	33	33	414.9462	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	4.2526	1592.531
13	33	44	413.0236	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	8.1596	1600.691
13	33	58	413.9849	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	11.7623	1612.453
13	34	11	414.9462	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	7.9757	1620.429
13	34	24	414.9462	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	10.8272	1631.256
13	34	27	415.9075	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	2.6112	1633.867
13	34	40	415.4269	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	10.0084	1643.875
13	34	48	416.8689	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	6.9711	1650.846
13	35	0	413.0236	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	8.959	1659.805
13	35	12	413.9849	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	10.0927	1669.898
13	35	21	413.0236	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	6.6482	1676.546
13	35	34	411.5817	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	9.6417	1686.188
13	35	44	410.6202	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	6.326	1692.514
13	35	57	411.5817	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	7.1776	1699.692
13	36	10	405.8137	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	5.8901	1705.582
13	36	26	408.6976	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	12.1571	1717.739
13	36	41	409.6591	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	10.6376	1728.376
13	36	53	411.101	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	8.8888	1737.265
13	37	0	409.6591	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	4.211	1741.476
13	37	12	408.6976	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	8.9858	1750.462
13	37	25	410.6202	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	4.2795	1754.742

13	37	42	412.5428	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	9.9307	1764.672
13	37	55	412.0623	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	7.5738	1772.246
13	38	8	413.5043	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	9.0793	1781.325
13	38	19	413.5043	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	2.5062	1783.832
13	38	33	413.5043	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	2.0933	1785.925
13	38	56	412.5428	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	3.0747	1789
13	39	9	412.0623	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	2.5388	1791.538
13	39	42	415.4269	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	0.733	1792.271
13	40	1	414.9462	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	0.8597	1793.131
13	40	22	414.9462	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	5.329	1798.46
13	40	35	416.3882	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	6.9638	1805.424
13	40	47	415.4269	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	4.9078	1810.332
13	41	3	415.4269	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	7.2522	1817.584
13	41	13	415.4269	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	5.6541	1823.238
13	41	24	416.3882	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	6.9099	1830.148
13	41	39	420.7141	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	8.2845	1838.432
13	41	57	421.1948	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	0.5914	1839.024
13	42	9	421.1948	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	3.35	1842.374
13	42	57	417.8302	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	1.881	1844.255
13	43	12	417.8302	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	3.9022	1848.157
13	43	36	427.924	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	1.2128	1849.37
13	44	5	425.5208	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	5.6583	1855.028
13	44	20	420.2334	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	10.9469	1865.975
13	44	34	417.8302	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	9.444	1875.419
13	44	59	419.7528	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	5.5031	1880.922
13	45	27	418.3108	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	4.5896	1885.512
13	45	41	417.8302	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	6.3414	1891.853
13	45	55	415.4269	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	6.8946	1898.748
13	46	11	414.4655	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	8.783	1907.531
13	46	25	414.4655	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	9.7818	1917.312
13	46	39	412.0623	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	9.1095	1926.422
13	46	53	413.5043	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	9.8308	1936.253
13	47	7	412.0623	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	8.373	1944.626
13	47	19	414.4655	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	6.7039	1951.33
13	47	33	412.0623	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	7.8109	1959.141
13	47	47	406.7749	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	6.8444	1965.985
13	48	0	410.1396	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	7.3171	1973.302
13	48	12	416.3882	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	7.3963	1980.698
13	48	26	413.5043	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	9.4482	1990.147
13	48	42	412.0623	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	14.4985	2004.645
13	48	56	416.3882	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	10.1397	2014.785
13	49	10	413.0236	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	7.3067	2022.091
13	49	23	414.9462	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	7.3701	2029.462
13	49	37	412.5428	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	5.8251	2035.287
13	49	57	411.5817	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	1.7766	2037.063
13	50	32	409.6591	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	3.6465	2040.71
13	50	53	409.1783	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	3.4014	2044.111

13	51	39	410.6202	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	6.5884	2050.7
13	51	56	411.5817	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	10.7546	2061.454
13	52	27	419.7528	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	4.5637	2066.018
13	53	25	422.6367	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	8.4062	2074.424
13	53	49	418.7915	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	5.1778	2079.602
13	54	22	416.8689	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	5.8134	2085.415
13	54	38	416.3882	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	8.4397	2093.855
13	54	49	418.7915	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	4.0894	2097.944
13	55	9	417.3496	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	6.5162	2104.461
13	56	0	417.3496	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	9.6249	2114.085
13	56	17	414.4655	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	9.9154	2124.001
13	56	33	416.8689	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	10.2998	2134.301
13	56	47	414.4655	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	7.873	2142.174
13	57	11	410.1396	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	2.5776	2144.751
13	57	41	416.8689	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	7.3359	2152.087
13	57	59	419.7528	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	13.1201	2165.207
13	58	17	419.2722	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	11.9458	2177.153
13	58	35	423.598	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	12.1462	2189.299
13	58	54	424.5594	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	1.3844	2190.684
13	59	55	422.6367	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	1.869	2192.553
14	0	34	435.1339	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	3.4113	2195.964
14	0	49	429.366	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	6.9508	2202.915
14	1	5	425.0402	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	7.0438	2209.959
14	1	22	422.6367	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	4.6145	2214.573
14	1	38	420.7141	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	5.6245	2220.198
14	1	50	420.7141	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	7.8622	228.06
14	2	6	421.6754	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	4.3636	2232.423
14	2	20	420.2334	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	5.2417	2237.665
14	2	52	425.0402	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	3.1366	2240.802
14	3	6	425.0402	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	3.0599	2243.861
14	3	45	422.156	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	4.1584	2248.02
14	4	21	420.7141	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	6.1587	2254.178
14	4	34	421.1948	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	4.4942	2258.673
14	5	10	422.6367	$1.00 \mathrm{E}+25$	$1.00 \mathrm{E}+25 \mathrm{M}$	5.4869	2264.16

Temp Deg	ef Dist	Ref units
$1.00 \mathrm{E}+25$	551086	M
$1.00 \mathrm{E}+25$	550905.6	M
$1.00 \mathrm{E}+25$	551131.5	M
$1.00 \mathrm{E}+25$	551085	M
$1.00 \mathrm{E}+25$	551102.4	M
$1.00 \mathrm{E}+25$	551018.1	M
$1.00 \mathrm{E}+25$	551003.5	M
$1.00 \mathrm{E}+25$	550997.8	M
$1.00 \mathrm{E}+25$	550995.2	M
$1.00 \mathrm{E}+25$	550962.7	M
$1.00 \mathrm{E}+25$	550928.2	M
$1.00 \mathrm{E}+25$	550907.2	M
$1.00 \mathrm{E}+25$	547746.4	M
$1.00 \mathrm{E}+25$	547755.6	M
$1.00 \mathrm{E}+25$	547759.2	M
$1.00 \mathrm{E}+25$	547758.5	M
$1.00 \mathrm{E}+25$	547735.8	M
$1.00 \mathrm{E}+25$	547737.8	M
$1.00 \mathrm{E}+25$	547736.9	M
$1.00 \mathrm{E}+25$	547805.9	M
$1.00 \mathrm{E}+25$	547746.1	M
$1.00 \mathrm{E}+25$	548092.7	M
$1.00 \mathrm{E}+25$	548104.5	M
$1.00 \mathrm{E}+25$	547746.3	M
$1.00 \mathrm{E}+25$	551109.5	M
$1.00 \mathrm{E}+25$	551930.2	M
$1.00 \mathrm{E}+25$	551094.3	M
$1.00 \mathrm{E}+25$	551018.4	M
$1.00 \mathrm{E}+25$	550918.4	M
$1.00 \mathrm{E}+25$	538734.7	M
$1.00 \mathrm{E}+25$	548092.1	M
$1.00 \mathrm{E}+25$	548082.6	M
$1.00 \mathrm{E}+25$	548001.9	M
$1.00 \mathrm{E}+25$	548003.9	M
$1.00 \mathrm{E}+25$	509621.5	M
DT 0	VP (m/sec)	TP
	INF	-
0.6158	0.307919	2
1.2393	0.028339	22
30.4943	2.089644	14
104.4488	6.162874	12
220.4767	6.82517	17
240.29	6.604431	3

325.4934	7.745764	11
439.7734	8.162861	14
573.528	8.359658	16
717.9462	8.49519	17
875.4831	8.752049	18
1004.758	8.618343	15
1131.411	8.443532	15
1232.684	8.439367	12
1398.949	8.750793	19
1440.145	8.239227	5
1542.7	7.325345	14
1574.055	3.919365	8
1578.705	4.650457	1
1608.987	4.325966	7
1654.431	4.131283	11
1659.024	4.593553	1
1683.525	4.900015	5
1732.361	5.426274	9
1790.884	4.876943	12
1826.18	5.882657	6
1871.602	4.542214	10
1908.125	4.565357	8
1963.371	4.603808	12
1980.762	4.347761	4
1996.417	5.218464	3
2012.062	5.214905	3
2030.209	4.536833	4
2079.685	4.122964	12
2125.226	4.140072	11
2167.21	4.198411	10
2206.157	4.327502	9
2252.593	4.643523	10
2311.093	4.500022	13
2359.316	4.018581	12
2412.162	4.06509	13
2422.153	4.995533	2
2472.826	4.606628	11
2521.787	4.451007	11
2567.15	4.536331	10
2598.484	4.476223	7
2613.643	3.789703	4
2665.719	4.00582	13
2718.741	4.078674	13
2770.3	4.296566	12
2796.481	4.363413	6
2815.663	4.795628	4
2838.99	4.665373	5

2904.273	5.021766	13
2922.581	4.576916	4
2974.236	4.304622	12
3019.381	3.762107	12
3076.247	5.169649	11
3095.945	4.924392	4
3173.608	5.177557	15
3213.909	4.477892	9
3261.426	4.319655	11
3333.904	4.831904	15
3338.78	4.875775	1
3351.622	4.280759	3
3391.783	3.346699	12
3434.976	3.926714	11
3494.198	3.948074	15
3524.237	2.503265	12
3538.025	1.060672	13
3539.584	0.091679	17
3543.598	0.267626	15
3545.995	0.095849	25
3554.399	0.560263	15
3566.348	0.796623	15
3576.489	0.676096	15
3581.142	0.332341	14
3585.953	0.267243	18
3589.16	0.35633	9
3592.218	0.339822	9
3595.927	0.309058	12
3600.874	0.380559	13
3606.498	0.401758	14
3613.958	0.573812	13
3623.195	0.710513	13
3634.205	0.647676	17
3644.822	0.66358	16
3652.973	0.543343	15
3653.147	0.029054	6
3735.508	0.013515	6094
3741.608	0.338914	18
3746.275	0.358981	13
3751.75	0.391066	14
3758.546	0.453071	15
3765.461	0.461023	15
3769.231	0.269227	14
3772.086	0.14278	20
3776.38	0.286271	15
3779.584	0.213571	15
3781.877	0.152914	15

3784.937	0.278099	11
3788.641	0.246938	15
3793.68	0.359944	14
3802.173	0.530838	16
3812.907	0.631421	17
3817.694	0.398849	12
3823.298	0.43109	13
3827.457	0.378156	11
3831.771	0.359465	12
7828.593	0.048137	83031
7830.606	0.071896	28
7835.021	0.119309	37
7837.031	0.125628	16
7838.69	0.031913	52
7839.698	0.02289	44
7849.192	0.6782	14
7855.164	0.192628	31
7856.419	0.044842	28
7868.446	0.15419	78
7882.235	0.861799	16
7898.113	0.835688	19
7916.906	0.989112	19
7934.881	1.123433	16
7949.15	0.792703	18
7966.787	0.928243	19
7981.788	0.937592	16
7993.798	0.800679	15
8005.382	0.723969	16
8010.697	0.885827	6
8016.755	1.51461	4
8027.009	1.70897	6
8032.285	1.758664	3
8053.713	1.339245	16
8070.548	1.202534	14
8090.063	1.219696	16
8113.234	1.448191	16
8139.766	1.39641	19
8159.85	1.255263	16
8173.314	0.961663	14
8189.378	1.147422	14
8199.005	0.687647	14
8204.844	0.171742	34
8206.273	0.071453	20
8213.047	0.095407	71
8215.366	0.042169	55
8220.828	0.088094	62
8225.381	0.3035	15

8230.199	0.253582	19
8235.065	0.194673	25
8241.164	0.148743	41
8245.28	0.158313	26
8251.729	0.379381	17
8253.674	0.114409	17
8257.848	0.181459	23
8260.127	0.073528	31
8264.106	0.142095	28
8266.547	0.07396	33
8270.531	0.362219	11
8271.273	0.074152	10
8275.278	0.235634	17
8279.511	0.352686	12
8281.757	0.072462	31
8285.941	0.199256	21
8295.194	0.660878	14
8297.87	0.167296	16
8302.941	0.298293	17
8307.277	0.228214	19
8315.208	0.330461	24
8329.552	1.30394	11
8349.944	1.274538	16
8373.824	1.404681	17
8396.62	1.424721	16
8400.191	1.190616	3
8426.109	1.52458	17
8427.325	1.215497	1
8437.159	1.404899	7
8455.988	1.176809	16
8465.915	0.551525	18
8472.942	0.501934	14
8473.391	0.013576	33
8489.519	1.008023	16
8507.056	1.031611	17
8518.253	0.93305	12
8521.375	1.040554	3
8533.248	1.079418	11
8548.628	0.904714	17
8569.405	1.154236	18
8585.97	0.87186	19
8604.346	0.96717	19
8622.22	1.051405	17
8640.088	1.05106	17
8654.338	0.791645	18
8665.251	0.641945	17
8676.912	0.613771	19

8692.351	0.857697	18
8702.887	0.619779	17
8711.837	0.55934	16
8721.682	0.61537	16
8731.952	0.641832	16
8741.344	0.670909	14
8745.921	0.762675	6
8756.286	0.797371	13
8766.636	0.690008	15
8777.404	0.672991	16
8791.497	1.006605	14
8803.591	0.806305	15
8819.855	0.855985	19
8829.975	0.532619	19
8835.721	0.359109	16
8848.314	0.699644	18
8861.105	0.710618	18
8873.586	0.780038	16
8887.451	0.770259	18
8898.649	0.699907	16
8912.16	0.794752	17
8923.492	0.7555	15
8940.173	0.834045	20
8946.406	0.890437	7
8958.219	0.787498	15
8969.506	0.806201	14
8976.931	0.571177	13
8984.508	0.54122	14
8989.864	0.382583	14
9001.002	0.696134	16
9013.028	0.801695	15
9023.227	0.728525	14
9033.214	0.713371	14
9041.401	0.629721	13
9048.941	0.579996	13
9055.332	0.491658	13
9067.246	0.700834	17
9074.953	0.513762	15
9079.188	0.423476	10
9088.134	0.639028	14
9102.508	0.798574	18
9111.776	0.842528	11
9121.369	0.639522	15
9129.802	0.56219	15
9141.275	0.882544	13
9150.25	0.690412	13
9160.92	0.762164	14

9171.861	0.729355	15
9181.7	0.655925	15
9194.218	0.782381	16
9202.061	0.65357	12
9216.017	0.996895	14
9224.246	0.63302	13
9234.89	0.818731	13
9244.935	0.71754	14
9256.648	0.732009	16
9268.756	0.672676	18
9277.301	0.569675	15
9286.395	0.699526	13
9292.014	0.624316	9
9301.227	0.708721	13
9313.635	0.729887	17
9323.988	0.647053	16
9332.794	0.629023	14
9339.941	0.510462	14
9348.88	0.744958	12
9363.297	0.961118	15
9371.732	1.054371	8
9381.489	0.813076	12
9383.483	0.997269	2
9395.264	0.90621	13
9404.056	0.732622	12
9416.872	0.854421	15
9421.124	0.850518	5
9429.284	0.74178	11
9441.046	0.840162	14
9449.022	0.613515	13
9459.849	0.832858	13
9462.46	0.870391	3
9472.469	0.76988	13
9479.44	0.871383	8
9488.399	0.746583	12
9498.492	0.841058	12
9505.14	0.738694	9
9514.781	0.741667	13
9521.107	0.632596	10
9528.285	0.552122	13
9534.175	0.453086	13
9546.332	0.759821	16
9556.97	0.709173	15
9565.859	0.74073	12
9570.07	0.601573	7
9579.055	0.748813	12
9583.335	0.329195	13

9593.266	0.584159	17
9600.839	0.582602	13
9609.919	0.698406	13
9612.425	0.227833	11
9614.518	0.14952	14
9617.593	0.133684	23
9620.132	0.195293	13
9620.865	0.022213	33
9621.724	0.045249	19
9627.053	0.25376	21
9634.017	0.535679	13
9638.925	0.408983	12
9646.177	0.453264	16
9651.831	0.565411	10
9658.741	0.628176	11
9667.026	0.5523	15
9667.617	0.032855	18
9670.967	0.279166	12
9672.848	0.039188	48
9676.75	0.260148	15
9677.963	0.050533	24
9683.621	0.195113	29
9694.568	0.729792	15
9704.012	0.674575	14
9709.515	0.220122	25
9714.105	0.163916	28
9720.446	0.452956	14
9727.341	0.492468	14
9736.124	0.548935	16
9745.906	0.698699	14
9755.015	0.650678	14
9764.846	0.702203	14
9773.219	0.598072	14
9779.923	0.558661	12
9787.734	0.557924	14
9794.578	0.488882	14
9801.895	0.562853	13
9809.292	0.616362	12
9818.74	0.674875	14
9833.238	0.906153	16
9843.378	0.724261	14
9850.685	0.521906	14
9858.055	0.566929	13
9863.88	0.416082	14
9865.657	0.088832	20
9869.303	0.104186	35
9872.705	0.16197	21

9879.293	0.143226	46
9890.048	0.632625	17
9894.611	0.147215	31
9903.017	0.144934	58
9908.195	0.215743	24
9914.009	0.176163	33
9922.448	0.527484	16
9926.538	0.371761	11
9933.054	0.325808	20
9942.679	0.188723	51
9952.594	0.583258	17
9962.894	0.643736	16
9970.767	0.562358	14
9973.345	0.1074	24
9980.68	0.244531	30
9993.801	0.728896	18
10005.75	0.663658	18
10017.89	0.674787	18
10019.28	0.072861	19
10021.15	0.030639	61
10024.56	0.08747	39
10031.51	0.463385	15
10038.55	0.44024	16
10043.17	0.271443	17
10048.79	0.351529	16
10056.65	0.655184	12
10061.02	0.272723	16
10066.26	0.374407	14
10069.39	0.098018	32
10072.45	0.218562	14
10076.61	0.106625	39
10082.77	0.171075	36
10087.27	0.345709	13
10092.75	0.152414	36
9		

Report No.:	A22-07281
Report Date:	06-Jun-22
Date Submitted:	31-May-22
Your Reference:	BOOT LAKE

Rockex Mining Corporation 490 Maureen st
Thunder Bay Ontario P7B 6T2
Canada

ATTN: Mitch Dumoulin

CERTIFICATE OF ANALYSIS

3 Rock samples were submitted for analysis.

The following analytical package(s) were requested:	Testing Date:	
8-Li (Sodium Peroxide Fusion)	QOP Sodium Peroxide (Sodium Peroxide Fusion)	2022-06-03 15:50:52

REPORT A22-07281
This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded wi hin 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

LabID: 266

ACTIVATION LABORATORIES LTD.
41 Bittern Street, Ancaster, Ontario, Canada, L9G 4V5
TELEPHONE $+905648-9611$ or +1 888.228.5227 FAX +1 905.648.9613
E-MAIL Ancaster@actlabs com ACTLABS GROUP WEBSITE www actlabs.com

CERTIFIED BY:

Emmanuel Eseme, Ph.D.
Quality Control Coordinator

Analyte Symbol	Li	Li2O
Unit Symbol	$\%$	$\%$
Lower Limit	00	00
Method Code	FUS Na 2 O 2	FUS Na 2 O 2
078088	<00	<00
078089	<00	002
078090	00	002

Analyte Symbol	Li	Li2O
Unit Symbol	\%	\%
Lower Limit	00	00
Method Code	$\begin{aligned} & \mathrm{FUS} \\ & \mathrm{Na} 2 \mathrm{O} 2 \end{aligned}$	$\begin{aligned} & \hline \mathrm{FUS} \\ & \mathrm{Na} 2 \mathrm{O} 2 \end{aligned}$
NCS DC86304 Meas	06	228
NCS DC86304 Cert	06	229
$\begin{aligned} & \hline \begin{array}{l} \text { NCS DC863 } 4 \\ \text { Meas } \end{array} \\ & \hline \end{aligned}$	76	379
$\begin{aligned} & \text { NCS DC863 } 4 \\ & \text { Cert } \end{aligned}$	8	389
	799	
	8	
	822	
	8	
OREAS 48 (Peroxide Fusion) Meas	047	00
OREAS 48 (Peroxide Fusion) Cert	048	03
078089 Orig	<00	002
078089 Dup	<00	002
Method Blank	<00	<00

Report No.:	A22-07755
Report Date:	15-Jun-22
Date Submitted:	08-Jun-22
Your Reference:	ROOT LAKE

Pierre Gagne Contracting
Your Reference: ROOT LAKE

580 New Vickers street
Thunder Bay ontario P7E 6P1
Canada

ATTN: Mitch Dumoulin

CERTIFICATE OF ANALYSIS

58 Core samples were submitted for analysis.
The following analytical package(s) were requested: \quad Testing Date:
8-Li (Sodium Peroxide Fusion)
QOP Sodium Peroxide (Sodium Peroxide Fusion) \quad 2022-06-14 15:42:18

REPORT A22-07755
This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded wi hin 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

LabID: 266

ACTIVATION LABORATORIES LTD.
41 Bittern Street, Ancaster, Ontario, Canada, L9G 4V5
TELEPHONE +905 648-9611 or +1 1 888.228.5227 FAX +1 905.648.9613
E-MAIL Ancaster@actlabs com ACTLABS GROUP WEBSITE www actlabs.com

CERTIFIED BY:

Emmanuel Eseme, Ph.D.
Quality Control Coordinator

Analyte Symbol	Li	Li2O
Unit Symbol	\%	\%
Lower Limit	00	00
Method Code	$\begin{aligned} & \text { FUS } \\ & \mathrm{Na} 2 \mathrm{O} 2 \end{aligned}$	$\begin{aligned} & \text { FUS } \\ & \mathrm{Na} 2 \mathrm{O} 2 \end{aligned}$
07809	<00	<00
078092	<00	<00
078093	<00	<00
078094	<00	<00
078095	<00	<00
078096	<00	00
078097	<00	<00
078098	<00	<00
078099	<00	002
07800	<00	<00
0780	<00	00
07802	<00	00
07803	<00	00
07804	<00	002
07805	<00	00
07806	<00	00
07807	<00	00
07808	<00	<00
07809	<00	<00
0780	<00	<00
078	<00	00
0782	<00	00
078	<00	<00
0784	<00	00
078	<00	<00
0786	<00	<00
0787	<00	<00
0788	<00	00
078 9	<00	00
07820	<00	00
0782	<00	00
07822	<00	<00
07823	<00	<00
07824	<00	00
07825	<00	<00
07826	<00	<00
07827	<00	<00
07828	<00	00
07829	<00	00
07830	<00	00
0783	<00	00
07832	<00	00
07833	<00	00
07834	<00	00
07835	<00	<00
07836	<00	<00
07837	<00	<00
07856	00	002
07857	00	002
07858	<00	002

Analyte Symbol	Li	Li2O
Unit Symbol	$\%$	$\%$
Lower Limit	00	00
Method Code	FUS Na 2 O 2	FUS Na 2 O 2 07859
07860	<00	<00
0786	<00	00
07862	<00	002
07863	<00	002
07864	00	003
07865	<00	<00
07866	<00	00

Analyte Symbol	Li	Li2O
Unit Symbol	\%	\%
Lower Limit	00	00
Method Code	$\begin{aligned} & \text { FUS } \\ & \mathrm{Na} 2 \mathrm{O} 2 \end{aligned}$	$\begin{aligned} & \text { FUS } \\ & \mathrm{Na} 2 \mathrm{O} 2 \end{aligned}$
NCS DC86304 Meas	08	233
NCS DC86304 Cert	06	229
NCS DC863 4 Meas	79	386
NCS DC863 4 Cert	8	389
Lithium etraborate FX L 00 lot\#2206 OB Meas	784	
Lithium etraborate FX L 00 lot\#2206 OB Cert	8	
Lithium etraborate FX L 00 lot\#2206 OB Meas	800	
Lithium etraborate FX L 00 lot\#2206 0B Cert	8	
$\begin{aligned} & \hline \text { Lithium } \\ & \text { etraborate FX L } \\ & 00 \text { lot\#2206 OB } \end{aligned}$ Meas	809	
Lithium etraborate FX L 00 lot\#2206 OB Cert	8	
OREAS 48 (Peroxide Fusion) Meas	049	05
OREAS 48 (Peroxide Fusion) Cert	048	03
07800 Orig	<00	<00
07800 Dup	<00	<00
078 0 Orig	<00	<00
078 0 Dup	<00	<00
07820 Orig	<00	00
07820 Dup	<00	00
07830 Orig	<00	00
07830 Dup	<00	00
07857 Orig	00	002
07857 Dup	00	002
07858 Orig	<00	002
07858 Split PREP DUP	<00	002
07865 Orig	<00	<00
07865 Dup	<00	<00
07866 Orig	<00	00
07866 Split PREP DUP	< 00	00
Method Blank	<00	<00

Analyte Symbol	Li	Li2O
Unit Symbol	$\%$	$\%$
Lower Limit	00	00
Method Code	FUS Na2O2	FUS Na2O2
Method Blank	<00	<00
Method Blank	<00	<00

Category Grass Root Prospecting (See Contractor time sheets)	Date	Invoice	Day/Hour	Payee	Description	Amount
	June 5, 2022	4365	1	Mitch Dumoulin \$925/day	Travel to site + flag work areas	\$925.00
	June 6, 2022	4365	1	Mitch Dumoulin \$925/day	Prospecting /sampling + GPS points	\$925.00
	June 7, 2022	4365	1	Mitch Dumoulin \$925/day	Mapping, GPS points, return home	\$925.00
	June 8, 2022	4365	1	Mitch Dumoulin \$925/day	Prep samples + bring to laboratory + download data in database	\$925.00
	June 9, 2022	4365	1	Mitch Dumoulin \$925/day	Manage field data, GIS work data	\$925.00
	June 10, 2022	4365	1	Mitch Dumoulin \$925/day	Manage field data, GIS work data	\$925.00
	June 14, 2022	4365	1	Mitch Dumoulin \$925/day	Build/write assessment report	\$925.00
	June 15, 2022	4365	1	Mitch Dumoulin \$925/day	Build/write assessment report	\$925.00
	June 16, 2022	4365	1	Mitch Dumoulin \$925/day	Build/write assessment report	\$925.00
	June 17, 2022	4365	1/2	Mitch Dumoulin \$925/day	Finish assessment report and send it out to MLAS to process	\$462.50
	May 27, 2022	4365	1	Pierre Gagné \$975/day	Travel to site + manage installation	\$975.00
	May 28, 2022	4365	1	Pierre Gagné \$975/day	Set up exploration camp, supervise	\$975.00
	May 29, 2022	4365	1	Pierre Gagné \$975/day	Supervise, start opening NW corner	\$975.00
	May 30, 2022	4365	1	Pierre Gagné \$975/day	Check activities, return home	\$975.00
	June 3, 2022	4365	1	Pierre Gagné \$975/day	Back to site, opens SW corner of property with D6 tractor	\$975.00
	June 4, 2022	4365	1	Pierre Gagné \$975/day	Back and forth to site with new supplies, set up bunkhouse + D6	\$975.00
	June 5, 2022	4365	1	Pierre Gagné \$975/day	Opens trails in NW corner of property and strip outcrops	\$975.00
	June 6, 2022	4365		Pierre Gagné \$975/day	Opens trails in NW corner of property and strip outcrops	\$975.00
	June 7, 2022	4365	1	Pierre Gagné \$975/day	Propect/sample NW corner and central area of property with geologist and return home	\$975.00
	May 27, 2022	4365	12.5	Jerry Nichols \$75/hour	Travel to site and install equipment	\$937.50
	May 28, 2022	4365	12	Jerry Nichols \$75/hour	Set up exploration camp	\$900.00
	May 29, 2022	4365	12.5	Jerry Nichols \$ $75 /$ hour	Reconnaissance of NW corner of property and camp duties	\$937.50
	May 30, 2022	4365	10.5	Jerry Nichols \$75/hour	Walk NW corner, return home	\$787.50
	June 2, 2022	4365	13	Jerry Nichols \$ $75 /$ hour	Bring equipment on work site and strip vegetation SW corner property	\$975.00
	June 3, 2022	4365	12	Jerry Nichols \$75/hour	Open trail at NW corner and strip rock	\$900.00
	June 4, 2022	4365	11.5	Jerry Nichols \$75/hour	Wash and clean rock at SW corner	\$862.50
	June 5, 2022	4365	12	Jerry Nichols \$75/hour	Wash and clean rock at SW corner	\$900.00
	June 6, 2022	4365	12	Jerry Nichols \$75/hour	Clean rock \& cut/sample at SW corner	\$900.00
	June 7, 2022	4365	12	Jerry Nichols \$75/hour	Clean rock \& cut/sample at SW corner	\$900.00
	June 8, 2022	4365	12	Jerry Nichols \$75/hour	Gather \& load equipment on trailers	\$900.00
	June 9, 2022	4365	9.5	Jerry Nichols \$75/hour	Pack, secure camp \& return home	\$712.50
	May 27, 2022	4365	12.5	Billy Laflamme \$75/hour	Travel to site and install equipment	\$937.50
	May 28, 2022	4365	12	Billy Laflamme \$75/hour	Set up exploration camp	\$900.00
	May 29, 2022	4365	12.5	Billy Laflamme \$75/hour	Work on camp duties and equipment	\$937.50
	May 30, 2022	4365	9.5	Billy Laflamme \$75/hour	Work on camp duties and equipment	\$712.50
	May 31, 2022	4365	9.5	Billy Laflamme \$ $75 /$ hour	Work on camp duties and equipment	\$712.50
	June 1, 2022	4365	9.5	Billy Laflamme \$75/hour	Work on camp duties and equipment	\$712.50
	June 2, 2022	4365	11.5	Billy Laflamme \$75/hour	Camp duties and move equipment site	\$862.50
	June 3, 2022	4365	11.5	Billy Laflamme \$75/hour	Camp duties \& equipment maintenance	\$862.50
	June 4, 2022	4365	14.5	Billy Laflamme \$75/hour	Prospecting, marking sampling locations	\$1,087.50
	June 5, 2022	4365	11.5	Billy Laflamme \$75/hour	Prospecting, marking sampling locations	\$862.50
	June 6, 2022	4365	13	Billy Laflamme \$75/hour	Clean rock \& cut/sample at SW corner	\$975.00
	June 7, 2022	4365	11.5	Billy Laflamme \$75/hour	Clean rock \& cut/sample at SW corner	\$862.50
	June 8, 2022	4365	11.5	Billy Laflamme \$ 75 /hour	Pack and load equipment on trailers	\$862.50
	June 9, 2022	4365	8.5	Billy Laflamme \$75/hour	Cut \& sample samples, return home	\$637.50

Associated Costs

for Prospecting
Program
Material \&
Services
Assays

June 15, 2022	A22-07755	Actlabs
June 6, 2022	A22-07281	Actlabs

Actlabs

Ignace \& Upsala resto
Superstore Thunder Bay
Wholesale club
Circle K 68
Circle K 68
Fresh market Food
Superstore Thunder Bay
Maltese Thunder Bay

Intercity Industrial	hammer, pump, bug spray	$\$ 99.62$
Intercity Industrial	paint, markers	$\$ 63.48$
SPI Health \& Safety	First Aid kits	$\$ 115.40$
Northern Turf	ST Coupling	$\$ 23.21$
Northern Turf	concrete for saw blades	$\$ 149.63$
Intercity Industrial	Batteries, gloves, linings	$\$ 79.50$
Hood Equipment	Excavator glass protector	$\$ 215.90$
2262649 Ontario Inc	6×14 " diamond saw blades	$\$ 1,620.00$
Home Hardware	Clamp and padlock	$\$ 27.47$
Home Hardware	Washer for flat	$\$ 4.64$
Bumper to Bumper	Parts for rock saws	$\$ 243.79$
Bumper to Bumper	Clamps for rock saw	$\$ 6.21$
Kubota Thunder Bay	5 saw blades 14 inches	$\$ 711.95$
Kubota Thunder Bay	Parts for saw blades	$\$ 55.06$
	Delivery of bunkhouse at site including	
L H North Ltd	transport on tractor trailer by Floating	$\$ 5,775.00$

\$9,190.86

Diesel fuel Thunder Bay	$\$ 3,191.66$
Diesel fuel Sioux Lookout	$\$ 142.28$
Diesel fuel in Atikokan	$\$ 199.71$
Diesel fuel Sioux Lookout	$\$ 74.16$
Diesel fuel Sioux Lookout	$\$ 83.52$
Propane	$\$ 44.25$
Propane	$\$ 271.98$
Regular gas Sioux Lookout	$\$ 175.24$
Diesel fuel Thunder Bay	$\$ 133.59$
Diesel fuel in Ignace	$\$ 99.72$
Diesel fuel Sioux Lookout	$\$ 169.34$
Diesel fuel Sioux Lookout	$\$ 132.74$
Diesel fuel in Ignace	$\$ 44.19$
Diesel fuel in Atikokan	$\$ 153.54$

Equipment Rental P. Gagné	May 25, 2022	4365	13.5 hours	Pierre Gagné	Tractor trailer with Hyundai excavator (trails, stripping)	\$3,037.50
Pierre Gagné	May 27, 2022	4365	9 hours	Pierre Gagné	Haul bunkhouse to Root Lake from Thunder Bay	\$1,755.00
provided all	May 27, 2022	4365	2 weeks	Pierre Gagné	Pick-up truck 350 to travel and work on Root Lake property	\$2,200.00
parts, tools and	May 27, 2022	4365	2 weeks	Pierre Gagné	Pick-up truck 150 to travel and work on Root Lake property	\$2,000.00
equipment for	May 27, 2022	4365	1 month	Pierre Gagné	37 feet bunkhouse	\$3,250.00
field work on	June 1, 2022	4365	1 month	Pierre Gagné	40 feet bunkhouse on 53 feet flat bed trailer	\$3,500.00
Rockex project	June 1, 2022	4365	1 month	Pierre Gagné	$5 \times$ Crane mats $8 \mathrm{ft} \times 16 \mathrm{ft}$	\$2,500.00
at Root Lake	June 1, 2022	4365	2 weeks	Pierre Gagné	Bull Dozer D6	\$10,000.00
	June 1, 2022	4365	2 weeks	Pierre Gagné	Hyundai excavator	\$11,000.00
	June 1, 2022	4365	2 weeks	Pierre Gagné	Suzuki 4x4 ATV 400cc	\$2,200.00
	June 1, 2022	4365	2 weeks	Pierre Gagné	Honda 4x4 ATV 350cc	\$2,000.00
	June 1, 2022	4365	1 month	Pierre Gagné	Flat bed trailer for the ATV's	\$500.00
	June 1, 2022	4365	1 month	Pierre Gagné	Double axle trailer	\$750.00
	June 1, 2022	4365	1 month	Pierre Gagné	Bush buggy trailer for ATV's	\$950.00
	June 1, 2022	4365	1 month	Pierre Gagné	Honda 2200 generator	\$550.00
	June 1, 2022	4365	1 month	Pierre Gagné	Honda 3000 generator	\$750.00
	June 1, 2022	4365	1 month	Pierre Gagné	Honda 5000 generator	\$950.00
	June 1, 2022	4365	1 month	Pierre Gagné	6×30 pounds propane tanks	\$210.00
	June 1, 2022	4365	1 month	Pierre Gagné	gas powered rock saws	\$1,200.00
	June 1, 2022	4365	1 month	Pierre Gagné	chainsaws for bush cutting	\$1,100.00
	June 1, 2022	4365	1 month	Pierre Gagné	Honda gas water pump	\$750.00
	June 1, 2022	4365	1 month	Pierre Gagné	Honda gas fire pump	\$990.00
	June 1, 2022	4365	1 month	Pierre Gagné	Aluminum ramp for ATV's	\$150.00
	June 1, 2022	4365	1 month	Pierre Gagné	2 x mobile fuel tanks 680L	\$1,100.00
	June 1, 2022	4365	1 month	Pierre Gagné	2 x water fire packs	\$150.00
	June 1, 2022	4365	1 month	Pierre Gagné	$3 \times 21 / 2^{\prime \prime}$ hoses 100 feet	\$1,050.00
	June 1, 2022	4365	1 month	Pierre Gagné	15×2 " water hoses 50 feet	\$1,125.00
	June 1, 2022	4365	1 month	Pierre Gagné	$4 \times 1 / 2^{\prime \prime}$ water hoses 100 feet	\$344.00
	June 1, 2022	4365	1 month	Pierre Gagné	water pump 1/2" to $21 / 2^{\prime \prime}$	\$225.00
	June 1, 2022	4365	1 month	Pierre Gagné	$2 \times$ extension chords $110 \mathrm{~V} 100^{\prime}$	\$190.00
	June 1, 2022	4365	1 month	Pierre Gagné	2 x extension chords $220 \mathrm{~V} 100^{\prime}$	\$195.00

Total equipment rental $\quad \mathbf{\$ 5 6 , 6 7 1 . 5 0}$

Total Associated Costs including Material \& Services + Equipment Rentals \$79,244.08
$(\$ 22,572.58+\$ 56,671.50)$
Grand Total Prospecting and Associated Costs \$119,344.08
(\$40,100 + \$79,244.08)
Costs of Root Lake Prospecting Program: \$119,344

