

We are committed to providing <u>accessible customer service</u>. If you need accessible formats or communications supports, please <u>contact us</u>.

Nous tenons à améliorer <u>l'accessibilité des services à la clientèle</u>. Si vous avez besoin de formats accessibles ou d'aide à la communication, veuillez <u>nous contacter</u>.

2020 PROSPECTING REPORT – Drill Holes: 20Swill-1 and 2

 $CLAIMS \# 104769, 105577, 105578, 105579, 109049, 110968, 110969, 111534, 111535, 111589, 112279, \\ 112280, 113567, 120809, 120810, 124353, 124354, 125977, 125978, 125979, 125980, 127905, \\ 135753, 135754, 137212, 137963, 137964, 137965, 139365, 139366, 139367, 141017, 142329, \\ 143191, 147142, 153306, 155910, 170517, 170518, 170519, 170520, 171913, 172389, 172390, \\ 172642, 172643, 176416, 177458, 183730, 184320, 184321, 187051, 188381, 188382, 191374, \\ 191375, 194516, 194517, 201041, 201042, 201904, 207066, 207882, 207883, 213692, 213693, \\ 213694, 213781, 213782, 220674, 224709, 224710, 231364, 238527, 240786, 243566, 245122, \\ 246321, 248084, 248085, 248086, 250481, 251609, 255686, 256630, 257433, 262469, 263125, \\ 265206, 266361, 266362, 267164, 267165, 267678, 269243, 269244, 269285, 271929, 275381, \\ 277882, 280120, 281514, 281515, 281516, 285805, 292880, 292881, 298702, 299657, 302945, \\ 305200, 306014, 312500, 315217, 315218, 317036, 317037, 317655, 317656, 319123, 322527, \\ 325111, 328015, 329185, 333019, 336634, 339030, 339031, 341737, 341738, 345446 \\$

Swill Diamond Drill Project THUNDER BAY MINING DISTRICT

Prepared By: Martin Drennan, P. Eng Robert Meek, MSc, GIT Ben Goldman, BSc

August 19, 2020

(Updated – M. Drennan, 2022/2023)

Contents

1.	W	Nork Summary1								
2.	In	ntroduction1								
3.	Lc	ocation and Access1								
4.	Pı	roperty Description								
5.	Re	Regional Geography5								
6.		Regional Geology5								
7.	Pı	roperty Geology5								
8.	Ν	Mineral deposit types-model-reasons								
9.	D	rill Hole Summary Tables:								
10.		Work History7								
11.		Work this Period9								
а		August, 20199								
b	b. September, 2019									
а	a. October - December, 2019									
b	b. May, 20201									
12.	. Conclusion and Recommendations22									
13.	. References									
14.	Appendices23									
1	4.1	Logging codes								
1	4.2	2 Drill hole Swill 2019-2								
1	14.5 Certificate of Analysis									

List of Figures:

Figure 1 – Location and Access	2
Figure 2 –Claim Group Map	4
Figure 3 – Phantom Geophysics Testing	8
Figure 4 - Trail Clearing for 2020 Drill Season (Start of Trail)	10
Figure 5 - Initial Trail Clearing	11
Figure 6 - Second Load of Plywood and wafer for Trail Development	12
Figure 7 - Moving Plywood for Trail Development in Swanp	13
Figure 8 - Trail around Beaver Dam	14

Figure 9 - Trail around Beaver Dam (Part 2)	15
-igure 10 - Pump Access Trail through Swamp	16
-igure 11 - Hole 1 after Teardown and Move	17
-igure 12 - Drill Hole 2 Setup	18
-igure 13 - Drill Access Road	19
-igure 14 - Planview Hole #1 and Hole#2	20
Figure 15 - Cross Section Hole#1 and Hole#2	21

1. Work Summary

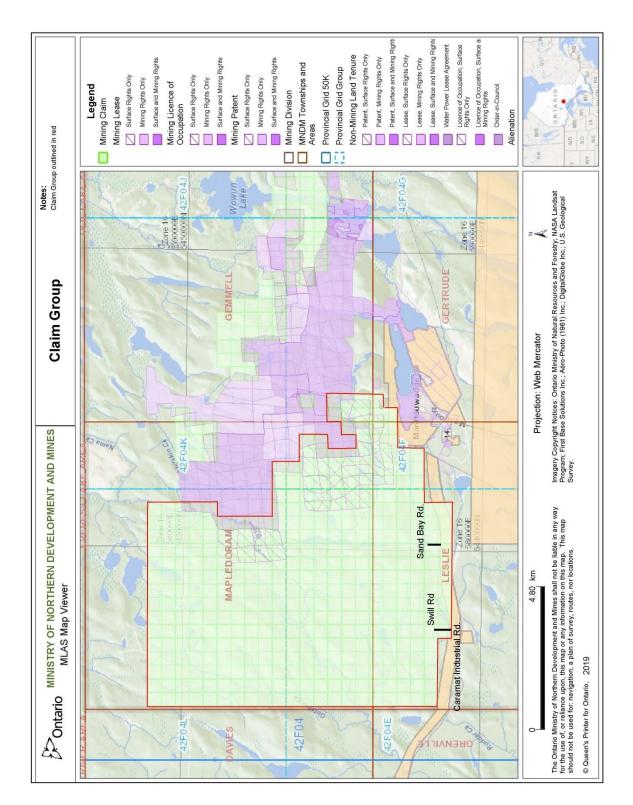
Work during Spring and Summer 2020 was based on a surface anomaly identified during 2016/2017 as well as drilling completed in 2019. Three drill holes were planned for this program. Two of the three holes were completed with the third hole collared and partially drilled. No core logging or assays were completed as the core is being logged and anticipated to be logged by next week as well as assay samples prepared. Work was performed by Martin Drennan, Christopher Bottomley, Riley Olsen, Raymond Osawamick, Brenden Anderson, and Dustin Danis. Work, specific to this drilling, began June 29th and finished August 16, 2020; Days in field 42 (1 week off). Core logging was July 15th through August 20th.

2. Introduction

This report is a description of the drilling completed on claim 139364 which is a claim in the Leslie Townships in the Thunder Bay Mining District. The claims can be described as being located in the Manitouwadge mining camp (as defined by previous copper producers – Wilroy and Geco Mines).

The work in this report has been reviewed by the author and determined to be accurate. These claims are held by the author.

3. Location and Access


Leslie Township is located south east of Thunder Bay. Access is via Regional Road 614 to Caramat Industrial road. Caramat Industrial leads to the access road – Swill Lake Road. Swill Lake road was used to access the work area. See Figure 1 – Location and Access (work areas are highlighted with blue lines). No area organize was established to define "working areas" as the initial work was to establish anomaly locations. Once anomaly locations are established – a reference will be defined.

Ĕ	Ontario 😵	MINISTRY	MINISTRY OF NORTHERN DEVELOPMENT AND MINES MLAS Map Viewer	ERN DEVEL	OPMENT A.	ND MINES	Loc	Location and Access	d Acces	1		
8 ès	42F04E109 172866 238112	42F04E110 143512	42F04E111 137502	42F04E112 181347	42F04E413 107714	42F04E114 136147	42F04F115 200324	42F04E116 217342	42F04E117 194516	42F04E118 11 0969	137965	Legend Provincial crid cell
	7				MAPLE	DOPANA	2		SHIK!	X	1	Available Pending
4 12551 42F 04E 1	1125511 42F04E129	137503 42F04E130 Swill	189494 42F04E131	136148 42F04E132	181349 42F04E133	235919 42F04E134	181348 42F04E135	124142 42F04E136	194517 42F04E137	277882 42F04E138	125980	Mining Claim Mining Claim Mining Claim Boundary Claim
08	4 13 9364 43 04E 149	000 000 000 000 000 000 000 000 000 00	295338 42F04E151	Zone 16 2 2005 4 2 2 504 5 15 2	188122 42F04E153	Zone 16 285289WE 2855690N 42F-04E134	236773 42F04E155	Zone 15 283 5920E 120809 42F04E156 42F04E157		2009 16 10904@11794320 42F04E384 00011	16 1989.320	Allenation Allenation Withdrawal Montes ENDM Administrative Boundaries ENDM Townships and Areas
00 3	41737248084 42F04E169	325111 42F04E170	104769 42F04E171	172389 42F04E172	269244 42F04E173	262469 42F04E174	269243 42F04E175	339030 42F04E176	280120 42F04E177	213692 42F04E178	317655	UTM Grid HK UTM Grid HK UTM Grid OK Mining Division Mining Division Mining Linkowski Awa - Fit Muth CLUDP Proved Awa - Fit Muth
03	7 13 9367 42E04E1880	13 9367 0115 000 15 13 9367 01130366 47 04 1800 4320046190	139365 42F04E191	2000 16 5/801 26 5/801 26 14200000002	42F 176416 42F04E133	oue 1孔認祥 4活的認知	147142 42F04E195	243 506 ¹	263125 4 ⁴ 2F04E197	299657003199031 42F04E5142000	329031 00E 00N	Readent Geologist Datrict Federal Land Other Matrix Reserves AMIIS Stes MAIIS Stes
6 00	6 248085 42F 04E 209	240786 42F04E210	191375 42F04E211	155910 42F04E212	183730 42F04E213	213782 42F04E214	213781 42F04E215	213694 42F04E216	120810 42F04E217	213693 42F04E218	251609	Drit Hole Muneral Occurrances MLAS Mining History Muckaeval - History Moke- History
16	E 29	42-04E 29 2nd 72390	127905 42E04E291	-248086	329185 42F04E233	250481 4250484	111535 BPF04F295/	298702 9426452350	177458 42F04E237	184321 317656 42F04E2389 15	317656	
* 5	12	42F04E250	42F04E251	42F04E252	42F 04E 253	42F04E254	42F04E255	42F04E256	42F04E257	42F 04E 258 42F 04E 205	2F04E259	
5		441040210	1.20	20 km	447 046413	+C 0+C 2/4	Projection - Manufer	4zr HEZIO	117360.376	ALT UPPER OPPER UPPER IN		Otas
in is a set	The Ontario Ministry of Northe for the use of or reliance upon should not be used for navigat © Queen's Printer for Ontario.	upon, this map or avigation, a plan of tario, 2019	ient and Mines shi any information c if survey, routes, n	The Ontario Ministry of Northern Development and Mines shall not be liable in any way for the use of user upon, this map or any information on this map. This map should not be used for: navigation, a plan of survey, routes, nor locations. © Queen's Printer for Ontario. 2019	/a/	r In nagery Copyright P ogram; First Base urvey.	vices: Ontario N Notices: Ontario N e Solutions Inc.; A	Mercator Inistry of Natural F éro-Photo (1961) I éro-Photo (1961) I	Resources and Fond For DigitalGlobe	Frojection: web mencator Imagery Copyright Notices: Ortanio Ministry of Natural Resources and Forestry; NASA Landsat Program; First Base Solutions Inc.; Aéro-Photo (1961) Inc.; DigitalGlobe Inc.; U.S. Geological Survey.	rdsat cal	

Figure 1 – Location and Access

4. Property Description

The claim group consists of 381 claims in Manitouwadge area within the Thunder Bay Mining District. See Figure 2 – Claim Group Map. The claims are a continuous package (outlined in red) with the eastern claims adjacent to the patented Geco Mine claims and some surface property lots. The claims are: 103541,103542,103543,103544,103545,104022,104769,105000,105001,105002,1 05003,105372,105577,105578,105579,105806,106894,107714,107882,109020,10 9049,110611,110968,110969,111534,111535,111589,111905,112279,112280,113 567,114381,118817,119279,120809,120810,122552,124142,124353,124354,1252 81,125282,125283,125511,125977,125978,125979,125980,127905,128642,13047 4,130899,130900,131647,132424,135753,135754,136147,136148,136739,136815 ,137212,137502,137503,137963,137964,137965,139364,139365,139366,139367, 140126,140127,140128,140129,140676,141017,142329,142466,143191,143512,1 44292,146080,146081,147142,147327,147328,147989,148331,148332,153306,15 5261,155262,155910,156587,157779,159618,161056,161363,162601,162602,165 736,165737,166690,167188,167189,167190,170517,170518,170519,170520,1717 33,171734,171913,172389,172390,172642,172643,172866,172867,172888,17339 8,175305,175306,175340,176208,176209,176210,176211,176416,176970,177458 ,179158,180515,181347,181348,181349,181588,182040,182310,183730,183771, 183772,184320,184321,184670,185112,186579,187051,188122,188381,188382,1 88807,189022,189265,189494,189749,190721,190810,191374,191375,192647,19 2684,193704,194516,194517,196452,196453,196648,200324,200982,201003,201 041,201042,201904,202442,202932,207066,207882,207883,208546,209592,2096 09,209754,212925,212926,212927,213160,213659,213692,213693,213694,21378 1,213782,213822,214677,215523,215853,217342,220513,220514,220515,220674 ,221930,224709,224710,226561,229860,229901,231364,232503,232504,232704, 234403,234404,234405,234406,235919,236773,238112,238388,238527,238691,2 39474,240124,240125,240786,241811,242068,242479,243566,245122,246321,24 6570,246571,246959,246974,247422,248084,248085,248086,249235,249884,250 317,250318,250481,251577,251578,251579,251609,252729,255686,256365,2566 30,257076,257433,260356,260357,260358,260359,261983,262374,262469,26312 5,263872,265206,266361,266362,267164,267165,267678,268654,268655,268656 ,269243,269244,269285,269701,269702,269703,271781,271929,275130,275381, 277882,278851,280092,280120,281514,281515,281516,281865,281866,283932,2 83933,285805,286538,286539,288462,288463,288464,289938,292647,292648,29 2649,292661,292880,292881,294115,295338,296566,296567,296568,297451,297 452,297453,297454,298702,299162,299657,299924,300526,300527,302945,3047 82,304820,304821,304822,305200,305314,305315,305491,306014,308719,30986 4,310185,312232,312500,315217,315218,316891,317035,317036,317037,317655 ,317656,319123,321819,321820,322527,323846,323847,323885,324447,325110, 325111,327733,327734,327735,328015,329185,329385,329386,329656,329657,3 30570,332376,332541,332542,333019,336634,336838,337292,337931,338494,33 9030,339031,341516,341737,341738,345446

5. Regional Geography

Topography in the area is a mix of low areas with water and hills/ridges with a general east-west orientation. Outcrops are common of hillsides with numerous fragmented rocks buried in soil.

Vegetation is principally coniferous, and deciduous trees as well as numerous alder bush. In low lying areas, grass and cedars are predominant.

Wildlife activity is principally moose, bear, wolves, and beaver. Numerous bird species are present including grouse, and crows.

6. Regional Geology

The property is located within the Manitouwadge greenstone belt, which is located within the Wawa subprovince of the Archean Superior province. The Manitouwadge greenstone belt is located south of a tectonic boundary between the volcanoplutonic Wawa subprovince and the metasedimentary-migmatitic Quetico subprovince to the north (Zaleski and Peterson 1995). The Manitouwadge greenstone belt consists of bimodal felsic-mafic volcanic rocks, greywacke, ironformation, and intrusive rocks that have all been metamorphosed to upper amphibolite facies and subject to four episodes of deformation (Zaleski and Peterson 1995). The Manitouwadge synform is the major structure present in the Swill Lake area. It is part of a group of regional Z-shaped D3 folds formed in response to dextral transpression (Zaleski and Peterson 1995). The Manitouwadge synform consists of an inner and outer volcanic belt which mantle a synvolcanic trondhjemite (Lodge 2013). The inner and outer belt are separated on the southern limb of the synform by metasedimentary rocks. Previously mined volcanogenic massive sulfide deposits are located on the southern limb of the Manitouwadge synform and have all been hosted in the inner volcanic belt (Lodge 2013).

7. Property Geology

The Swill Lake claims cover the hinge and the upper limbs of the Manitouwadge synform and have previously been interpreted to be stratigraphically above the Geco Mine Horizon (Degagne 1989). The metavolcanic rocks on this property belong to the outer volcanic belt of the Manitouwadge synform. The surficial geology of the claims from the southern limb to the core consists of mafic metavolcanics rocks including amphibolites, mafic schists and gneisses as well as foliated gabbroic units. Thin bands of felsic metavolcanics rocks including felsic gneisses and felsic schists are interlaid within the main mafic component. North of these units are felsic to intermediate metavolcanics rocks generally as muscovitegarnet to amph-muscovite-garnet schists and gneisses. Metasedimentary rocks, predominantly metagreywacke overlay the felsic to intermediate metavolcanics and are mainly located in the eastern claims. A massive tonalite is present in the core. In the northeastern portion of the claims granodiorite-monzadiorite of the Nama Creek pluton is present. NE-SW trending and NW-SE trending diabase dikes cut through the previously described units. A minor orthoamphibole-garnet \pm cordierite gneiss outcrops SW of Swill Lake. Quartz veining observed on outcrop consists of thin 1-15 cm veins with occasional minor pyrite mineralization.

8. Mineral deposit types-model-reasons

Exploration in the Swill Lake mining claims has targeted volcanogenic massive sulfide mineralization- Cu, $Zn \pm Au$, Ag.

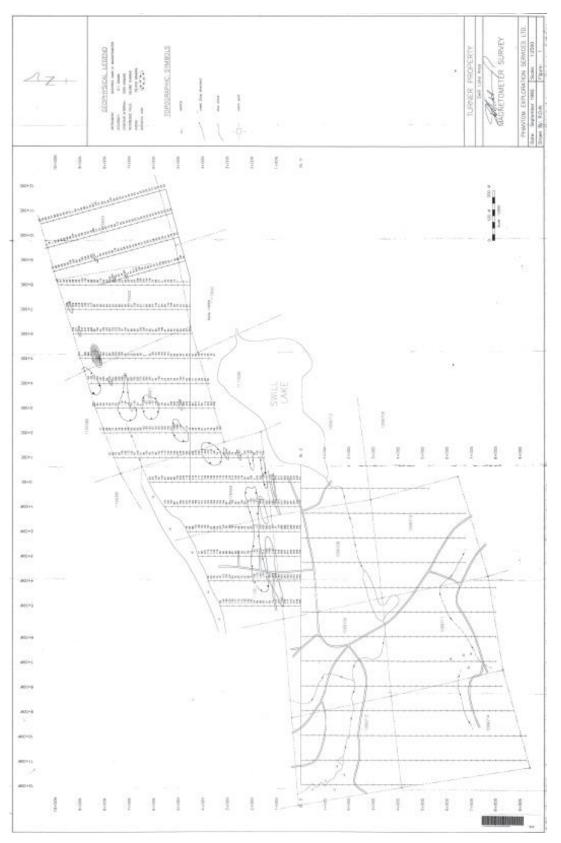
The Swill Lake mining claims lie east of four past producing volcanogenic massive sulfide deposits: Geco (55 Mt at 2.3% Cu, 8.2 Zn, 74 g/t Ag), Willroy (4.6 Mt at 1.3% Cu, 5.7% Zn, 48 g/t Ag), Willecho (3.8 Mt at 0.6% Cu, 3.9% Zn, 53 g/t Ag) and Nama Creek (0.3 Mt at 0.8% Cu, 3.9 % Zn, 28 g/t Ag) (Lodge 2012 and ref. within).

Although all known economic mineralization occurs in the inner volcanic belt, Zaleski and Peterson, 1995 correlated the inner and outer volcanic belts of the Manitouwadge synform as a product of D2 fold repetition. This is significant as, barring removal from erosion or faulting, altered and/or mineralized zones from the Wilroy-Geco area should be repeated (Zaleski and Peterson 1995).

9. Drill Hole Summary Tables:

Drill hole number:	Swill2020DH1
Collar Location (UTM Zone 16N)	577830 E, 5443040 N
Azimuth:	165°
Dip:	-80
Hole length:	428m
Number of Samples:	Х
Number of Assays:	Х

Drill hole number:	Swill2020DH2
Collar Location (UTM Zone 16N)	578036 E, 5442984 N
Azimuth:	165°
Dip:	-80
Hole length:	510m
Number of Samples:	Х
Number of Assays:	Х


10. Work History

Work has been completed by Noranda which included magnetometer, followed by diamond drilling in any anomalous areas.² Other companies such as OKLECO, OKLEND, Delmico Mines and C.H.I.P. Mines performed magnetometer and geological surveys.³ Anomalies appear to have been followed up with additional work including diamond drill. Unfortunately, no details on diamond drill results have been found by this author. Previous authors elude to finding results and reference to "G.D.I.F. 190 for further information".₄

Further research was performed and work of interest was identified. Claims in this area were held in the early 1990's by Albert Turner. Mr. Turner drilled several shallow (less than 30m) drill holes. No significant assay data was recorded. Assays were for Ag, Au, Cu, $Zn_{.5}$ Additionally, Mr. Turner employed Phantom Exploration Services Ltd. (Phantom) of Thunder Bay to perform a geophysics study. The study consisted of VLF and proton magnetometer surveys. The surveys were conducted as per Figure $3._6$

The results were summarized as a local magnetic high was noted as a diabase dyke. The next notable magnet anomaly was noted as iron rich mafic volcanics. Additionally, the results were cautioned as the topography and the soil clay content made all trends to be "considered superficial in nature"₇

11. Work this Period

a. April, 2020

Period Summary

Work during this period was focused on getting a new geologist hired and to site. Robert Meek was hired April 10, 2020 and arrived in Manitouwadge shortly there after. We organized office space and Robert took the initiative to familiarize himself with the geology in the area.

Robert had 2 key tasks at hand. Firstly, the work required for this year's drill program and secondly, logging over a 1000m of core that was logged but not documented.

Additionally, trips were taken to the claims of interest. Roads were snow covered so some ATV challenges were encountered. By the end of April, trails were established to the 2019 drill area and efforts turned to access routes for 2020/2021 drill targets.

b. May, 2020

Period Summary

Tasks were happening in the background for preparation for this season's drilling efforts. There was core logging in place for cleaning up some outstanding work that had been contracted out. The first key element of this year's work is establishing a trail/access for the drill that is in around 900m. Clearing has been completed for approximately 450m using machete, bush axe and a Stihl bush cutter (FS91). Personnel completing this work were Martin Drennan, Robert Meek, Chris Bottomley, Riley Olsenand Bruce Baziuk. Personnel maintained a 2m distance for this work with access being truck and ATV.

May was a busy month as another report was completed (Work Report 3440) and trail development during Spring melt in a swamp made for some exciting times! Doing trail development through a swamp – including beaver dam areas – resulted in numerous situations of ATVs stuck, dozers stuck and later in June even excavators stuck. Fun

times. Everyone put long hours in and after almost 2 months a very reasonable trail was developed.

Figure 4 - Trail Clearing for 2020 Drill Season (Start of Trail)

Swill Project

Figure 5 - Initial Trail Clearing

c. June, 2020

Trail work continued in June. Words like "impossible" were tossed around by numerous persons that operated equipment in the forestry industry. We were able to find some of a corduroy road that had been made years ago to harvest trees in the area. A significant bonus plus we were able to have our dozer work areas that were nested with fine and large tree cuttings from the trail. These started to hold solids and as the sun got warmer, the access Spring runoff reduced, ground water levels dropped and finally mud and ooze turned to branches and dirt.

Figure 6 - Second Load of Plywood and wafer for Trail Development

June saw the drill get from 2019 Swill-2 staging area to half way in on the trail. But all was not that easy sadly. The track drill had hydraulic and electric lines that were noticed as we walked in to be catching on branches used to raise the trail. We stopped the tram of the drill before any damage occurred and re-routed electrical for the lights and hydraulic lines that were low (specifically the track hydraulic lines) so they were out of harm's way. A week later and a trip to Thunder Bay for hydraulic fittings and the drill was tramming past some pretty water soaked ground like a champ. Finally, the drill was at the first hole site. Work was performed by Martin Drennan, Robert Meek, Chris Bottomley, Riley Olsen and Raymond Osawamick.

Figure 7 - Moving Plywood for Trail Development in Swanp

Swill Project

Figure 8 - Trail around Beaver Dam

Swill Project

Figure 9 - Trail around Beaver Dam (Part 2)

d. July, 2020

Work in July was focused on 2 fronts – getting to Hole 1 and establishing access for water, Hole 2 and Hole 3. Access to Hole 1 was accomplished in early July with the drill pad constructed and water access developed. Some delays from the DEF system were encountered but Itech2000 personnel identified issue and we were back up and running. Subsequently, it was determined a heat valve had failed. Cummins personnel will be onsite at a later date and the component will be changed under warranty. Drilling on Hole 1 was completed and the drill relocated to Hole 2.

Figure 10 - Pump Access Trail through Swamp

428m were drilled at Hole 1. Access development to Hole 2 and Hole 3 were ongoing while drilling on Hole 1.

Figure 11 - Hole 1 after Teardown and Move

Figure 12 - Drill Hole 2 Setup

e. August, 2020

Drilling on Hole 2 was going well. There were a few access challenges , specifically related to low areas and water collection. More plywood and wafer board were added which greatly helped access. Water on top of plywood wood evapourate in the sun and low areas were filled with branches cut locally. Large holes slowly filled as water percolation deposited fine mud in the road bed increasing the road bed height above the ground water table. Rain was the only nemesis in time.

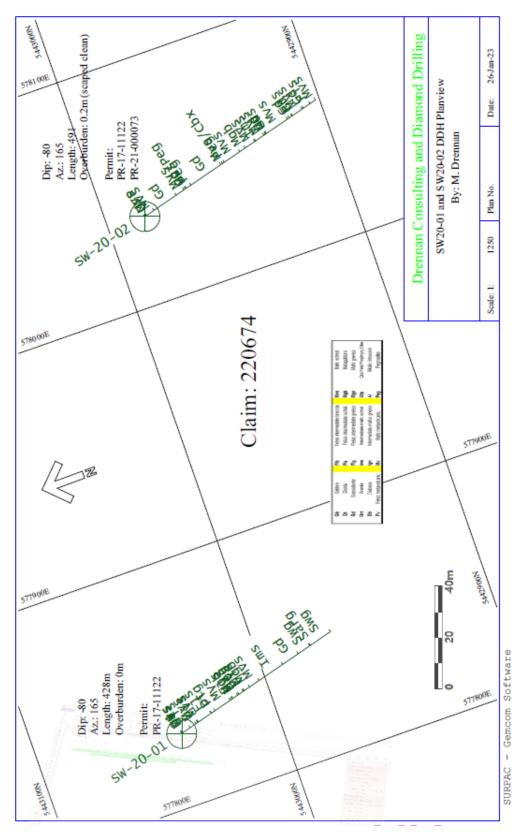

Swill Project

Figure 13 - Drill Access Road

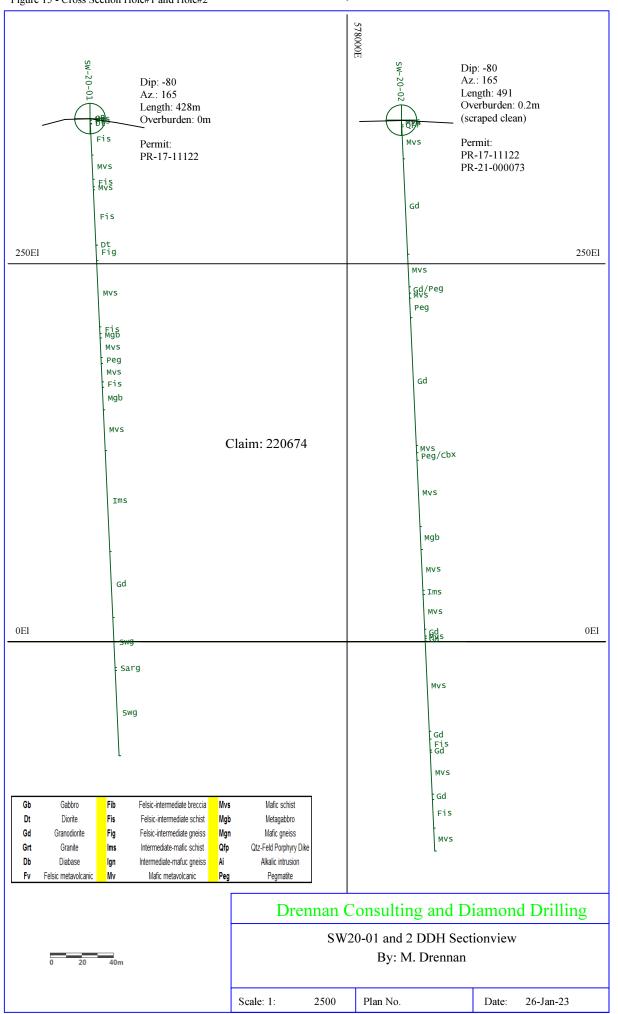

The move to Hole 3 occurred around mid-August. Hole 2 was drilled to in around 510m. Hole 3 is not reported in this report as it is incomplete and planned to be completed in November under a new Diamond Drill Permit.

Figure 14 - Planview Hole #1 and Hole#2

SURPAC -Gemcom Software

12. Conclusion and Recommendations

The work performed in 2020 was reasonable with respect to obtaining this drill hole data. The presence of granite and chloritized zones was noted in the drill core. The metres drilled were in the range for the program though having 2 of the planned 3 holes completed is a minor disappointment. Further drilling, specifically the completion of all or a significant part of the planned 9 hole program is the only recommendation at this time. The anticipated cost to complete this work is remaining holes (as of August 10, 2020) are 7 holes at a minimum of 400m per hole. Based on current projections the cost for this work is in around 7 holes x 400m/hole x \$105/m = \$294,000. This excludes logging, and assay work which may be warranted as results are evaluated. Other factors may impact this projection such as labour rates, equipment and fuel costs but as a rough working number this would be the projected "claimed" value.

13. References

- GRANGES INC., MAN PROJECT, GEMMEL, GERTRUDE, MAPLEDORAM AND LESLIE TOWNSHIPS CENTRAL AND NORTH CENTRAL GRID GEOLOGY REPORT, Warren Bates, B.Se., Hons. Geol August 6, 1993 (Page 2)
- GRANGES INC., MAN PROJECT, GEMMEL, GERTRUDE, MAPLEDORAM AND LESLIE TOWNSHIPS CENTRAL AND NORTH CENTRAL GRID GEOLOGY REPORT, Warren Bates, B.Se., Hons. Geol August 6, 1993 (Page 3)
- GRANGES INC., MAN PROJECT, GEMMEL, GERTRUDE, MAPLEDORAM AND LESLIE TOWNSHIPS CENTRAL AND NORTH CENTRAL GRID GEOLOGY REPORT, Warren Bates, B.Se., Hons. Geol August 6, 1993 (Page 3)
- GRANGES INC., MAN PROJECT, GEMMEL, GERTRUDE, MAPLEDORAM AND LESLIE TOWNSHIPS CENTRAL AND NORTH CENTRAL GRID GEOLOGY REPORT, Warren Bates, B.Se., Hons. Geol August 6, 1993 (Page 3)
- 5. 42F04NW0001-Turner Assessment work after staking a claim work report number 1
- 6. 42F04NW0033-Turner-Maps Geological and Geophysical Reports Phantom Exploration Services Ltd. September 1992
- 42F04NW0033-Turner Geological and Geophysical Reports Phantom Exploration Services Ltd. September 1992 (Page 5)

14. Appendices

14.1 Logging codes

Dt		Diorite			Grt		Granite
Gt		Granod	iorite		Db		Diabase
Fis		Felsic-ir schist	ntermediat	te Fig			Felsic-intermediate gneiss
Mvs		Mafic so	chist	Mgb			Metagabbro
Mgn		Mafic g	neiss		Peg		Pegmatite
Sgw		Metagr	eywacke				
ALTERA	FION CODES						
Unalt	Unalterated		Dol	Dolon	nite		
Chl	Chlorite		Cc	Calcit	е		
Qtz	Quartz		Ank	Ankerite		_	
Ser	Sericite		К	Potas	sic	_	
Bt	Biotite		Msc	Musc	ovite	_	
Fch	Fuchsite					_	
Sp	Serpentine		ALTERA	ATION II	NTENSITY	_	
Тс	Talc		Wk	Weak		-	
Ер	Epidote		Md	Moderate		-	
Ab	Albite		Str	Stron	g	-	
						_	

14.2 Drill hole Swill 2020DH1

Project:Swill 2019

Logged by: Ben Goldman

Hole ID: Swill 2020DH1

UTM E (survey): 577830 UTM N (survey): 5443040

UTM zone 16 N Azimuth: 165 Dip: 80 Collar Elev.: 346 Depth: 428 Overburden: 0.3 Dip srvy mthd: Cell Number: 42F04E151 Mining claim: 295338 Lease Numbers: Drilled by: Drennan Consulting and Diamond Drilling Core size: BQ

INTE	RVAL	гітногобу соре	DESCRIPTIVE LOG
From	То	5	
0.00	0.20	OB	Overburden
0.20	1.15	Mvs	Fine grained hornblende chlorite mafic schist. Foliation defined by alignment of chlorite and elongation of hbl 50 deg TCA. Minor Pervasive chlorite alteration. Trace pyrite proximal to 10 cm qz-carb vein at 60 cm. Lower contact is gradational over 10 cm.
1.15	3.35	Fis	Medium grained felsic intermediate chlorite magnetite schist pervasive weak chlorite alteration. Foliation defined by alignment of chlorite grains 50 deg TCA. Upper contact gradational over 10 cm. lower contact sharp and irregular. Magnetite throughout. Trace pyrite veinlets parallel to foliation. Minor qz-carb veining parallel to foliation.
3.35	3.65	Dt	Medium grained light grey bt hbl diorite with moderate potassic alteration proximal to contacts.
3.65	24.55	Fis	Medium grained felsic intermediate chlorite magnetite schist pervasive weak chlorite alteration. Foliation defined by alignment of chlorite grains 50 deg TCA. Upper contact gradational over 10 cm. lower contact sharp and irregular. Magnetite throughout. Trace pyrite veinlets parallel to foliation. Minor qz-carb veining parallel to foliation.

24.55	40.80	Mvs	Fine to medium grained hornblende chlorite mafic schist. Foliation defined by alignment of chlorite and elongation of hbl 45- 50 deg TCA. Minor Pervasive chlorite alteration. Trace pyrite along edges of small (<5 cm wide) quartz veins. Intercalated with Fis, Lower contact is where Fis begins to become predominant.
40.80	45.90	Fig	Medium grained felsic intermediate chlorite magnetite schist pervasive weak chlorite alteration. Foliation defined by alignment of chlorite grains 50 deg TCA. Upper contact gradational over 50 cm. Moderate secricitization with minor potassic alteration associated with one another. Intercalated with Mvs, lower contact is gradational over 10 cm.
40.80	45.80	Fis	10 cm.
45.80	47.85	Mvs	Fine grained hornblende chlorite mafic schist. Foliation defined by alignment of chlorite and elongation of hbl 50 deg TCA. Minor pervasive chlorite alteration, sericitization along fractures. Sharp lower contact.
47.85	85.05	Fis	Medium grained felsic intermediate chlorite magnetite schist pervasive weak chlorite alteration. Foliation defined by alignment of chlorite grains 50 deg TCA. Areas of strong sericitization and moderate chloritization, epidote and potassic alteration. Moderate sericitization occurs throughout the interval as haloes around fractures that range from parallel to foliation to 30 degrees TCA. Minor pyrite observed in the larger qz veins and 3% disseminated from 74 -76 m. Sharp lower contact with garnet bearing rock ~70 degrees tca
85.05	95.45	Fig	Medium to coarse grained felsic intermediate garnet amphibole gneiss, banding defined by alternating grain size parallel to foliation. Lighter bands consist of coarser grained plagioclase and amphibole rich. Darker bands are finer grained dark green. Both bands have eu to subhedral garnets present 10 mm diameter, which help easily identify this unit, prismatic amphibole is also easily identifiable. The upper contact is sharp and ~70 degrees tca. Weak sericite alteration present as haloes around fractures. ~1% 0.5 mm euhedral pyrite, locally the pyrite forms stringers parallel to the foliation ~45 degrees tca. Lower contact determined by the disappearance of large garnets.
95.45	138.75	Fis	Medium grained felsic intermediate chlorite schist pervasive weak chlorite alteration. Foliation defined by alignment of chlorite grains 50 deg TCA. Pervasive, weak potassic alteration with epidote in veins from 99 m to 104 m. 115 m to 138.5 m has strong potassic alteration associated with felsic intrusions <70 cm wide. The alteration in these sections appears as a reddish rock. Hydrothermal vein breccia 40 cm wide at 130.3 m, no sulfides associated, the vein is qz-carb fault breccia 10 cm wide at 136.6 m, with strong sericite and carbonate alteration, appearing bleached and very soft follows 45-50 degrees tca foliation. Gradational lower contact over 20 cm. 2 mm euhedral pyrite grains present throughout, <1%. Poor to moderate core recovery between 101 m to 128 m.
138.75	139.90	Mvs	Fine to medium grained hornblende chlorite mafic schist. Foliation defined by alignment of chlorite and elongation of hbl 50 deg TCA. Minor pervasive chlorite alteration, potassic alteration. Intercalated with the unit below. Gradational upper contact over 5 cm, parallel to foliation. Sharp lower contact, parallel to foliation.

		Fine grained light grey felsic metavolcanics (possibly a tuff unit). Hard, silica rich, with minor potassic alteration
144.30	Fv	associated with the upper contact and weak sericite alteration haloes around fractures. Sharp lower contact 40 degrees tca.
147.40	Mab	Coarse grained dark green metagabbro. Unit defined by 1.5 cm rounded pyroxenes. Sharp contacts parallel to foliation. Intercalated with the felsic volcanic above.
		Fine grained hornblende chlorite mafic schist. Foliation defined by alignment of chlorite and elongation of hbl 50 deg TCA. Minor Pervasive chlorite alteration. Coarse grained felsic intrusion with irregular contact <40 cm wide
160.55	Mvs	at 151.8 m, 156.6 m and, 158.8 m Gradational upper contact over 5 cm. Lower contact is sharp, 80 degrees tca.
164.50	Peg	Reddish, pink muscovite pegmatite. Large kspar crystals up to 5 cm, 2% muscovite up to 5 mm, sharp upper and lower contacts 80 degrees tca. The reddish colour is likely due to moderate potassic alteration.
	0	
170.00		Fine to medium grained hornblende chlorite mafic schist. Foliation defined by alignment of chlorite and elongation of hbl 50 deg TCA. Minor Pervasive chlorite alteration, minor sericitization at upper contact. Some
176.90	IVIVS	variation in grain size on the m scale, possibly defining different flows.
180 55	Fis	Fine grained light grey felsic metavolcanics (possibly a tuff unit). Hard, silica rich, with sericite alteration haloes around fractures. Sharp upper and lower contacts 40 degrees tca. Foliation is weak.
100.00	1 13	
195.65	Mgb	Coarse grained dark green metagabbro. Unit defined by 1.5 cm rounded pyroxenes, foliation 40 deg tca defined by elongation of pyroxenes and amphiboles. Minor qz veining parallel to foliation <1 cm wide, 2 larger qz veins at 195.2 -195.4 and 196.15 - 196.25 associated with moderate sericite alteration Sharp contacts parallel to foliation. Intercalated with the Mafic volcanic unit below. Feldspar porphyry intrusion at 185.7 - 188.1 with irregular contacts seen to crosscut foliation f Mgb unit, 2 cm wide chill margin at both contacts. Fp unit has 3 mm porphyritic feldspar within pink matrix, 1% 1 mm platy biotite grains.
	147.40 160.55 164.50 176.90 180.55	147.40 Mgb 160.55 Mvs 164.50 Peg 164.50 Peg 176.90 Mvs 180.55 Fis

Swill Project

Г

195.65	223.05	Fis	Fine to medium grained light grey felsic to intermediate schist with 5 mm rounded brown garnets present throughout, intercalated with mvs unit large 2 cm anhedral red garnets associated with strong sericite alteration. Mineralization of pyrite and cpy between 206 and 207 associated with gt and sericite alteration. Fis unit at 197.6 - 198.5 with hematite alteration associated with contacts, contacts are sharp and parallel to foliation. Foliation defined by alignment of chlorite and elongation of hbl 40 deg TCA. Minor Pervasive chlorite alteration, minor sericitization at upper contact. Some variation in grain size on the m scale, possibly defining different flows.
223.05	241.30	Sgw	Fine grained grey metagreywacke, very weakly foliated to non-foliated, qz carb veins near upper contact ~ 5 cm wide.
241.30	298.75	Fis	Fine to medium grained light grey felsic to intermediate schist, intercalated with Sgw unit near upper contact, large 2 cm anhedral red garnets associated with strong sericite alteration. Strong potassic alteration 284.25 - 286 m. Mineralization of pyrite associated with gt and sericite alteration. Foliation defined by alignment of chlorite and elongation of hbl 40 deg TCA. box 44 was measured backwards after the dropped box (dropped box was left unlabeled and should be box 43).
298.75	309.30	Gd	Pink-grey to light red eqigranular granodiorite, non-foliated, sharp contacts
309.30	335.15	Mvs	Fine to medium grained hornblende chlorite mafic schist. Foliation defined by alignment of chlorite and elongation of hbl 40 deg TCA. Strong epidote alteration associated with upper contact (wit Gd unit), likely a contact breccia with minor chlorite alteration and potassic alteration of feldspars. Below the epidote alteration is weak sericitization for ~5m. Trace pyrite is visible throughout this unit as veinlets <2 mm wide parallel to foliation. Granitoid intrusion for 30 cm at 317.3.
000.00	000.10	10103	
335.15	428.00	Sgw	Fine grained to very fine grained dark grey garnet metagreywacke, this unit is defined by the appearance of brown garnets 0.2 - 0.5 cm in diameter, reddish garnets are associated with veining. Garnet concentration varies between 1% to 45%. The garnets are stretched parallel to foliation ~40 degrees tca between 338.15 - 342.3 and 355 - 376. Molybdenite grains visible in blue quartz vein at 355.25, py and po mineralization is concentrated between 365.55 and 370.75. Upper contact is inferred based on reduction in grain size of the groundmass and appearance of garnets. Granodiorite to pegmatitic intrusion from 350 - 351 anastomosing contact. Graphitic subunit between 369.3 and 369.7. Bx 57 does not exist, only 15 cm between blocks 344 and 347.
		<u>_</u>	
			ALTERATION

			1	1	1	1	
From	То	ChI	Ser	х	Ep	Cc	Comments
0.2	1.15	Md					Pervasive chlorite alteration
0.2	1.10						
1.15	3.35	Wk					Pervasive chlorite alteration Patchy pink alteration of diorite, concentrated at the contacts of this
3.35	3.65			Md			dyke
3.65	24.55	Md	Md	Wk	Md		Pervasive weak Chlorite alteration throughout unit, pervasive moderate sericite alteration 12 m - 15 m followed by weak sericite alteration 15 m - 19.7 m. Minor amounts of potassic alteration around veinlets. Veins 5 cm wide of moderate epidote and chlorite alteration occur 15.8 - 22.8 m
24.55	40.80	Wk		Wk			Weak potassic and chlorite alteration
40.80	45.80	Wk	Wk			Wk	Weak sericitization along fractures forming halo of 1 cm around fractures. Pervasive chloritization with diffuse edges to areas of moderate chloritization. Very weak potassic alteration.
45.80	47.85	Wk	Wk				Weak pervasive chloritization, concentrated in some areas to moderate 2 cm chlorite alteration. Sercitization concentrated along fractures Moderate sericitization throughout the interval, concentrated in haloes around fractures. Pervasive seriticization from 52.4 - 58 m, and 64 - 67 m. Moderate potassic alteration and minor epidote alteration seen in
47.85	85.05	Wk	Str	Md	Wk	Wk	zones of high sericitization. Moderate chlorite, potassic alteration from 66.5 - 68 m
85.05	95.45	Wk	Wk				Pervasive weak chloritization. Sericite alteration present as 2 mm haloes around fractures
95.45	138.75	Wk		Md	Wk		Moderate to strong potassic alteration concentrated between 115 and 137 m associated with felsic granitic intrusions appearing as a red rock, little to no sulfides associated with this alteration. Similar style of alteration appears from 99 m to 104 m, lacking the associated intrusions but accompanies weak to moderate epidote alteration.
138.75	139.90	Wk					Weak pervasive chloritization, some minor potassic alteration.
139.90	144.30		Wk	Wk			Weak potassic alteration proximal to upper contact
144.30	147.40	Wk	Wk				Weak, pervasive chloritization
147.40	160.55	Wk					Weak, pervasive chloritization
160.55	164.50			Md			Pervasive
164.50	166.00	Wk	Wk				Minor sericitization at upper contact
180.55	195.65		Wk				Weak to moderate sericitization as haloes around fractures and veins up to 5 cm wide.
195.65	223.05	Wk	Md		Wk		Garnets associated with stronger sericite alteration
223.05	241.3		Wk				Weak sericite alteration associated with fractures up to 8 cm wide.
241.3	257.65		Md				Garnets associated with stronger sericite alteration pervasive through this unit

284.2	25		286	5			Str			Areas of biotite alteration 1 - 8 mm subhedral platy crystals, 2% amphiboles associated, appear shiny in core, light grey and show the foliation 40 deg tca strongly
299		309.3				Wk			Weak potassic alteration near the lower contact, alteration is gradual over 25 cm making the granodiorite appear reddish	
309.3		310			Md		Wk	Str	9	Strong epidote alteration below granodiorite unit in the mafic volcanics.
310		313				Wk				sericite alteration associated with upper contact of mvs unit.
373		374.5			Md					Moderate chlorite alteration associated with abundant garnets
									MINERALIZ	ZATION
Inte	Interval		Ру	Po	Сру	Comments & Textures				
From	То		%	%	%					
0.2	1.15	5	<1			1	minor an	nounts o	of anhedra	al py 1 - 3 mm long, surrounding 10 cm wide qz vein at 0.6 m.
1.15	3.35	5	<1			V	einlets o	of py foll	owing the	foliation at 1.8 m. Pervasive anhedral magnetite 2 mm in size.
3.35	3.65	5								None
3.65	24.5	5	1	<1					een as dis	- 3 mm anhedral. Pyrite veinlets associated with areas of moderate sseminated throughout the moderate and weak sericite altered zones. sociated with Py blebs in qz veins at 21.15
24.55	40.8	3	<1			С	heck Ma	ag and l	Po again.	Pyrite is concentrated along the margins of some quartz veins
40.8	45.8	3								None
45.8	47.8	5	1			minor amounts of anhedral py 1 - 3 mm long, within areas of moderate chloritization and along edges of quartz veins				
47.85	85.0)5	2			Pyrite concentrated in qz veins as well as 3 from 74 - 76 m				
85.05	95.4	5	1			Euhedral pyrite mineralization follows foliation				
95.45	138.7	75	<1			ру				
138.75	139.9	90	<1			Pyrite concentrated at lower contact ~3%				
206	207		3		1	Py and Cpy associated with sericite alteration, large 2 cm anhedral garnets. Cpy may be oxidized py. Pyrite is present throughout this unit but cpy seems to be associated with higher amounts of pyrite between 206 and 207 m.				
241.3	257.		1		,			Pyri	to associa	ted with strong sericite alteration and red garnets
298	298.		ı <1							associated with lower contact with granitoid unit
315.6	335.		<1				٦			ghout Mvs unit, concentrated in veinlets <2 mm wide.
355.3	355.					Molybdenite grains visible in blu guartz vein at 355.25				
365.6	370.		2	2		Molybdenite grains visible in blu quartz vein at 355.25 py and po mineralization is concentrated between 365.55 and 370.75, hosted in veins parallel to foliation (~60 deg tca), locally areas <5 cm of semi massive po.				

14.3 Drill hole Swill 2020DH2

Project:Swill 2019

Logged by: Ben Goldman

Hole ID: Swill 2020DH2

UTM E (survey): 578036 UTM N (survey): 5442984

UTM zone 16 N Azimuth: 165 Dip: 80

- 15. Collar Elev.: 345 Depth: 510
- 16. **Overburden**: 0.2 **Dip srvy mthd**:
- 17. Cell Number: 42F04E151 Mining claim: 220674
- 18. Lease Numbers:
- 19. Drilled by: Drennan Consulting and Diamond Drilling
- 20. Core size: BQ

INTERVA	L	LITHOLOGY CODE	DESCRIPTIVE LOG			
From	From To					
0.00	3.20	Mvs	Garnet amphibole mafic volcanic schist. Dark green in color, the garnets are sporadic between 2 mm and 8 mm in size, typically elongate parallel to foliation. Amphibole is likely hornblende, between 1 and 3 mm long.			
3.20	4.50	Fis	Felsic to intermediate schist, light grey in colour, feldspars u to 3 mm round are easily visible in this unit, the unit appears pitted, which may be a result of silicification. Pits are ~1 mm round. Sericite alteration appears lighter along fractures~ 35 deg tca.			
4.50	26.05	Mvs	Garnet amphibole mafic volcanic schist. Dark green in color, the garnets are sporadic between 2 mm and 8 mm in size, typically elongate parallel to foliation. Amphibole is likely hornblende, between 1 and 3 mm long. Felsic pegmatitic intrusion with irregular contacts at 11.95 - 12.7. Trace py and po present as veinlets parallel to foliation			
26.05	90.10	Gd	White to light pink biotite granodiorite non foliated, medium to coarse grained. Upper contact has 5 cm of weak potassic alteration. Relatively monotonous, cut by some pegmatitic dykes < 10 cm wide.			
90.10	112.05	Mvs	Amphibole mafic volcanic schist. Dark green in colour, amphibole is likely hornblende, disseminated trace pyrite. 0.8 m of sedimentary unite at 107. Contacts are sharp and regular.			

112.05	116.20	Peg	Complex pegmatite unit held within a granodiorite, the pegmatite intrusions are typically between 0.4 and 1 m in width. There are granitoid pegmatites with large ksap crystals and quartz, and another style with ab rich feldspars, a graphic texture and large biotite blades up to 3 cm long.
116.20	119.6	Mvs	Amphibole mafic volcanic schist. Dark green in colour, amphibole is likely hornblende, disseminated trace pyrite. 0.8 m of sedimentary unite at 107. Contacts are sharp and regular.
119.60	132.70	Peg	Complex pegmatite unit held within a granodiorite, the pegmatite intrusions are typically between 0.4 and 1 m in width. There are granitoid pegmatites with large ksap crystals and quartz, and another style with ab rich feldspars, a graphic texture and large biotite blades up to 3 cm long.
132.70	218.50	Gd	light grey granodiorite non foliated, medium to coarse grained. Relatively monotonous, cut by some pegmatitic dykes near the upper contact.
218.50	223.40	Mvs	Amphibole mafic volcanic schist. Dark green in colour, amphibole is likely hornblende, could be a large raft within the contact breccia unit, upper contact is ~ 40 deg tca, contacts are broken and hard to observe, the contact with the contact breccia unit is determined by the reappearance of granitoid material.
223.40	228.45	Cbx	Contact breccia between the Gd unit and Mvs, the overlying Mvs unit is thought to be a large raft held int the breccia. From 225 - 228.45 the breccia is predominantly gd breccia with ha jigsaw fit and very little Mvs included in it. The contacts for this unit are broken and unobservable.
228.45	270.00	Mvs	Amphibole mafic volcanic schist, this unit is intercalated with minor amounts of sgw and mgb all <0.7 m width. 245 - 248 m has minor sericite and epidote alteration associated with some fractures in the rock, minor py and po at 247 - 248. 251 - 252.3 m has chlorite veinlets with trace po in them, these veinlets are <5 cm wide.
270.00	510.00	Unk	Unknown/Not yet logged

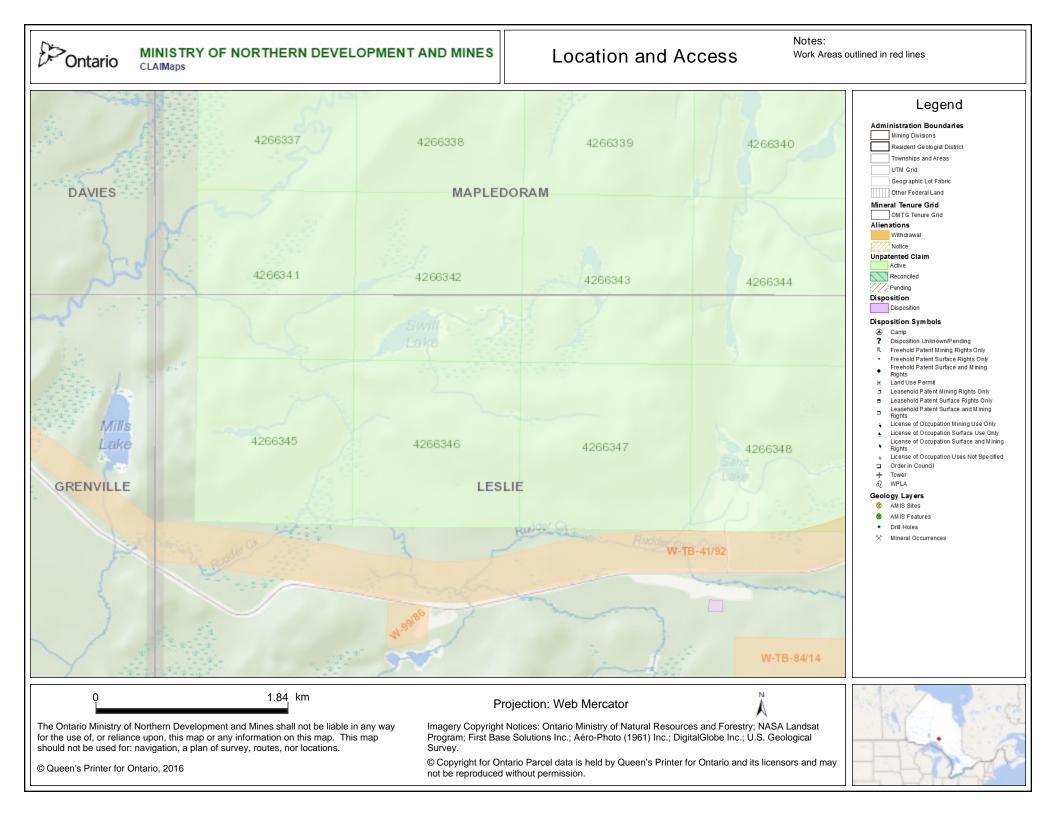
14.5 Certificate of Analysis

Not completed at this time.

Drennan Consulting and Diamond Drilling

Project:Swill Lake 2020Core Size = BQCollar Status: No casing (collared in outcrop); No cap (rock covered)Water Status: No water encountered. Hole not making water.UnaitLogged by:Robert Meek/Ben Goldman/Rob Reukl <td< th=""><th>ALTERATION CODES SAMPLE TYPES Unalterated Chlorite Quartz Dol Dolomite C C Calcite Ank Py Pyrite Po Vg Gold C Core Sericite K Potassic Pn Pentlandite Sph Sphalerite Bi Blank Biotite Msc Muscovite Bn Bom Bomite Galena Pup Pup Duplicate Serpentine ALTERATION INTENSITY D Dike S0 Bedding Talc Wk Weak F Fault C Contact Abite Str Strong Vnt Veinelst Vst Stringers DESCRIPTIVE LOG</th></td<>	ALTERATION CODES SAMPLE TYPES Unalterated Chlorite Quartz Dol Dolomite C C Calcite Ank Py Pyrite Po Vg Gold C Core Sericite K Potassic Pn Pentlandite Sph Sphalerite Bi Blank Biotite Msc Muscovite Bn Bom Bomite Galena Pup Pup Duplicate Serpentine ALTERATION INTENSITY D Dike S0 Bedding Talc Wk Weak F Fault C Contact Abite Str Strong Vnt Veinelst Vst Stringers DESCRIPTIVE LOG
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Chlorite Cc Calcite Po Pyrrhotite Him Hematite St Standard Quartz Ank Ankerite Cpy Chalcopyrite Him Hematite Bi Blank Sericite K Potassic Pn Perthantite Spit Sphalerite Bi Blank Biotite Msc Muscovite Pn Penthantite Spit Sphalerite Bi Dup Duplicate Fuchsite Msc Muscovite Pn Particular Structure CoDE C Dup Coarse Duplicate Serpentine ALTERATION INTENSITY D Dike S0 Bedding Talc Wk Weak F Fault C Contact Fol Foliation Epidote Md Moderate Vn Veinit J Joint Fr Fracture Albite Str Strong Vnit Veinlets Vsk Stokowk Stringers
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Quartz Ank Ankerite Cpy Chalcopyrite Mg Magentite BI Blank Sericite K Potassic Pn Pentlandite Sph Sphalerite Dup Duplicate Biotite Msc Muscovite Bn Bomite Galena Pulp Duplicate CDup Duplicate Fuchsite ALTERATION INTENSITY D Dike S0 Bedding Met Metallics Talc Wk Weak F Fault C Contact Fol Foliation Abite Str Strong Vnit Veinlets Vsk Stockwork Vsk Stockwork
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Sericite Biotite Fuchsite Serpentine K Potassic Msc Pn Pentlandite Bornite Sph Sphalerite Galena Dup Duplicate ALTERATION INTENSITY D Dike S0 Bedding Met Metallics Talc Wk Weak F Fault C Contact Fol Foliation Albite Md Moderate Vnt Vein J obint Fr Frautrue Stringers
UTM 16 E (survey): 577830 Azimuth: 165 Granite Dip: 800 Db Diabase Bt UTM 16 N (survey): 543300 Dip: 800 Db Diabase Bit Not survey): 643040 Dip: 800 Db Diabase Bit Not mediate-mafic schist Ai Alkalic intrusion Fch Fch Collar Elev: 346 Depth: Verburden: 0 Dip srvy mthd: Not Inspected Sedimentary Rock Tc Ep Sample By: M. Drennan Rob Reukl Core Storage Location Sarg Graphitic Argillite If Sgw Interwal Sms Ep NTERVAL 0 0 jf interval fg jf jf interval g g g interval g g g g g interval g </td <td>Biotite Fuchsite Serpentine AltERATION INTENSITY Albite Biotite Serpentine Albite Biotite Talc Biotite Albite Biotite Talc Biotite AlterATION INTENSITY Talc Biotote Albite Biotote Albite Biotote Albite Biotote Biotote Albite Biotote Biotote Albite Biotot</td>	Biotite Fuchsite Serpentine AltERATION INTENSITY Albite Biotite Serpentine Albite Biotite Talc Biotite Albite Biotite Talc Biotite AlterATION INTENSITY Talc Biotote Albite Biotote Albite Biotote Albite Biotote Biotote Albite Biotote Biotote Albite Biotot
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Fuchsite Serpentine STRUCTURE CODE C Dup Coarse Duplicate Talc ALTERATION INTENSITY D Dike S0 Bedding Met Metallics Talc Mk Weak F Fault C contact Fol Foliation Epidote Albite Md Moderate Vn Vein J Joint Fr Fracture Str Strong Vnit Veinlets Vsk Stockwork Vst Stringers
	Serpentine Taic ALTERATION INTENSITY D Dike S0 Bedding Met Metallics Taic Wk Weak F Fault C Contact Fol Foliation Epidote Albite Md Moderate Vn Vein J Joint Fr Fracture Str Strong Vnit Veinlets Vsk Stockwork Vst Stringers
Overburden: O Dip svy mthd: Not Inspected Sargi Graphitic Argillite Sedimentary Rock If on formation formation formation formation formation formation for formation formation for formation formation for formation formation formation formation for formation formation formation format	Talc Wk Weak F Fault C Contact Epidote Md Moderate Vn Vein J Joint Fr Fracture Albite Str Strong Vnt Veinlets Vsk Stockwork Vst Stringers
Sample By: Cut By: M. Drennan M. Drennan Rob Reukl Rob Reukl Core Storage Location 10 Kingfisher, Manifouwade Sarg Graphtic Argillite Image: Complex	Epidote Albite Md Str Moderate Strong Vn Vein Veinlets J Joint Vsk Fr Stockwork Fr Stringers BESCRIPTIVE LOG BESCRIPTIVE LOG Interval #0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Cut By: M. Drennan Rob Reukl 10 Kingfisher, Manilouwadge Sgw Metagreywack Sgw Metagreywack Ab Interval No Bernan V	Albite Str Strong Vnlt Veinlets Vsk Stockwork Vst Stringers
NTERVAL NO 000000000000000000000000000000000000	SAMPLES 0 0 0 <t< td=""></t<>
INTERVAL No <	DESCRIPTIVE LOG
From To S From To Int	
From To 5 From To 14 From To 11 Int Int 11 Int Int 11 Int 11 Int 11 Int 11 Int 11 Int	
From To 5 From To 5 From To 11 Int 11	From To
rrom io - z rom io in in int int int int int int int int i	8 From To ³³
	efined by alig Fine grained homblende chlorite mafic schist. Foliation defined by alignment of chlorite and elongation of hbl 50 des
	Bined by all me guinter minimeter eminer eminer eminer exhibit pervasive weak chlorite alteration. Foldation defined by a
	wer contact Medium grained light grev bt hbl diortie with moderate potassic alteration proximal to contacts.
3.65 24.55 Fis Ep. Md 3.65 24.55 Md Md Wk V Md V Weither	es of moder Medium grained felsic intermediate chlorite magnetite schist pervasive weak chlorite alteration. Foliation defined by
	ning towards Fine to med grained homblende chlorite mafic schist. Foliation defined by alignment of chlorite and elongation of h
	foliation Medium grained felsic intermediate dtz-feld-chl-mag schist pervasive weak chlorite alteration. Foliation defined by al
45.80 47.85 Mrvs Chr. Md 45.8 47.85 Md 4 8 47.85 Md 9 Prevasive 45.8 47.85 tr.1 disseminate 45.80 47.85 Fol 50 ment	nt of chlorite Fine to med grained gtz-feld-hbl-chl mafic schist. Foliation defined by alignment of chlorite and elongation of hbl/chl
47.85 85.05 Fis Ep Md 47.85 85.05 Md 2 Prevasive 47.85 85.05 tr disseminate 47.85 85.05 Fol 20-50 fot	foliation Medium grained felsic intermediate chlorite +/- magnetite schist pervasive weak chlorite alteration. Foliation defined
Dt Dt Dt On the second se	preferred on Med grained, med to dk green, intermediate intrusive at low angle (<20) to c/a. Upper contact 17, lower contact 13
85.05 95.45 Fig Chill Md 85.05 95.45 Md Md Md Md Md D D D pervasive 85.05 95.45 tr D D disseminate 85.05 95.45 Fol 40.45 vrolation of the second distribution of the second distributio	bliated to ma Med-crs grained qtz-feld-amph-grt gniess, banding defined by alternating grain size parallel to foliation. Lighter band
95.45 139.90 Mrs Cht, Md 95.45 139.9 Md 9 Md 9 Md 9 Protect A 139.9 For a second and a second an	on, locally m Medium grained mafic intermediate chlorite schist pervasive weak chlorite alteration. Foliation defined by alignment
139.90 144.30 Fis Cutz Md 139.9 144.3 Md pervasive 139.9 144.3 tr present 139.90 144.30 Fol 35-48 mode	derately well Fn/med grained light grey-buff felsic-intermediate metavolcanic, possibly tuffaceous(?). Siliceous, with minor potass
144.30 147.40 Mgb Ch Str 144.3 147.4 Str 144.5 147.4 Str 144.3 147.4 I str 144.3 147.4 0 None 144.30 147.44 Foi/Sh 15-40 evelo	loped folln/s Coarse grained dark green metagabbro, exhgibiting 0.4-0.7 cm rounded pyroxenes. Sharp contacts parallel to folia
147.40 160.55 Mrs Cat 147.40 160.55 Str 147.40 160.55 Str 147.40 160.55 For 40.50 For	locally Fine grained hornblende chlorite mafic schist. Foliation defined by alignment of chlorite and elongation of hbl 50 des
160.55 164.50 Peg K Md 160.55 164.50 Md 160.55 164.50 Md Md 100.55 164.50 Md	Massive Pale red to pink, coarse grained, qtz-feld-musc pegmatite. Large kspar crystals up to 5 cm, 2% muscivite up to 5 m
164.50 176.90 Mvs CA: Md 164.50 176.90 Md 164.50 176.90 Md 9 Pylocality 164.50 176.90 tr 9 Pylocality 164.50 176.90 Fol 45.55 Comparison of the temperature of	dev/d, Fine to medium grained qtz-feld- hbl-chl mafic schist. Foliation defined by alignment of chlorite and elongation of hb
	ak, pervasive Fn/med grained light grey-buff felsic-intermediate metavolcanic, possibly tuffaceous(?). Siliceous, with sericite altera
180.55 195.65 Mgb Carl Md 180.55 195.65 Md 10 pervasive 180.55 195.65 tr Plocal Pylocally 180.55 195.65 Fol 50-62 velope	ped, throug Coarse grained dark green metagabbro. Unit defined by 0.3-0.6 cm rounded pyroxenes, folation 38-44 tca defined
	ped, throug Fine to medium grained light grey to rey-green mafic to intermediate schist with 2-5 mm rounded brown garnets loc
	noderate, pe Fine grained, grey-grey-green ash tuff, weak to moderately well developed foliation, white peg veins near upper con
	ped, throug Fine to medium grained light grey to grey-green, mafic to intermediate schist, short sections of metagabbro locally n
290.80 335.15 Gd K Wk 290.80 309.30 Wk Wk 20 0 0 pervasive 298.75 309.30 0 None 298.75 309.30 M	Massive Pink-grey to light red, medium grained, eqigranular granodiorite, massive, sharp contacts
	noderate, pe Fine to medium grained hornblende chlorite mafic schist. Foliation defined by alignment of chlorite and elongation o
	kly bedded/fi Fine grained to very fine grained dark grey garnet metagreywacke, this unit is defined by the appearance of red-pak
	inly bedded Fine grained, to very fine grained meta-argillite, locally graphitic with narrow (2-6 mm) Py rich qtz-cc bands locally c
370.70 428.00 Swg Cht Md 370.70 428.00 Md Md 20.70 428.00 Md pervasive 370.70 428.00 <1 the throughout 370.70 428.00 s0 60-70 hickly	kly bedded/li Fine grained to very fine grained dark grey garnet metagreywacke, this unit is defined by the appearance of red-pak

					Ł	ALTERATION	MINERALIZATION	STRUCTURE				SAMP	LES	
	INTERVAL	ЮГОСЛ	SODE	I. CODE	NTENSI	Immunication Immunication<	Interval Py Po Cpy Pnt Bo Gd Hm Mg Sph Ga	Interval epice epi	ments	DESCRIPTIVE LOG	Inter	rval	ple#	ed/
Fron	n To	5		AL'	ALT. I	From To Int	From To % % % % % % % % % %	From To	Com		From	То	Sam	Ê


				≿		ALTERATION	MINERALIZATION	STRUCTURE		SA	MPLES
	INTERVAL	HOLOGY	T. CODE	NTENSI	Interv	land the set of the se	Interval Py Po Cpy Pnt Bo Gd Hm Mg Sph Ga	Interval e e e	DESCRIPTIVE LOG	Interval	tple #
Fro	om To	Ē	AL	ALT. I	From	m To Int	From To % % % % % % % % % % %	From To C S		From To	Sarr

Drennan Consulting and Diamond Drilling

														- SWILL F														
Project:	Swill Lak	ce 2020	Core Size = BQ	Collar Status: No	casing (collared in	n outcrop); No	o cap (rock cove	red)	Water	r Status: No	o water enco	untered. H	lole not ma	aking water.					ALTE	LTERATION CODES		T	MINERALIZAT	ION CODES		SAMPLE T	YPES	
Logged by:	Ben Goldman/Rob F	Reukl					LITHOLOGY	CODES									Unal	t	Jnalterated	ed Dol	Dolomite	Py	Pyrite	Vg Gold	С	Core	e	
Hole ID:	Swill 2020-2			Gb Gabbro)			Fib	Felsic-intermed	iate brecci	ia		Mvs I	Mafic schist			Chl		Chlorite	CC CC	Calcite	Po	Pyrrhotite	Hm Hematite	St	Stand	Jard	ļ
UTM 16 N (ideal):	578026	Start:	11-Aug-20	Dt Diorite				Fis	Felsic-inte	ermediate s	schist		Mgb I	Metagabbrc			Qtz		Quartz	Ank	Ankerite	Сру 🤇	Chalcopyrite	Mg Magnetite	BI	Blan	nk	ļ
UTM 16 N (ideal):	5442985	End:	20-Sep-20	Gd Granodio	rite			Fig	Felsic-inte	rmediate g	gneiss		Mgn I	Mafic gneiss			Ser		Sericite	. К	Potassic	Pn	Pentlandite	Sph Sphalerite	Dup	Duplic	cate	
UTM 16 E (survey):	578036	Azimuth:	165	Grt Granite	•			lms	Intermedia	te-mafic s	chist		QFP (Qtz-Feld Por	rphyry Di	ike	к		Potassic	c Msc	Muscovite	Bn	Bornite	Gn Galena	P Dup	Pulp Dup	plicate	
UTM 16 N (survey):		Dip:	80	Db Diabase	Э			lgn	Intermedia	ite-mafuc g	gneiss		Ai /	Alkalic intrus	sion		Bt		Biotite				STRUCTUR		C Dup	Coarse Du		
Collar Elev.:	345	Depth:	491	Fv Fel:	sic metavolcanic			Mv	Mafic n	netavolcar	nic		Peg	Pegmatite			Sp		Serpentine		RATION INTENSITY	, D	Dike	S0 Bedding	Met	Metall	lics	_
Overburden:		Dip srvy mthd:					Sedimentar	/ Rock									Gar		Garnet	Wk	Weak	F	Fault	C Contact	Fol	Foliation		
Sample By:	M. Drennan	Rob Reukl	Core Storage Location	Sarg (Graphitic Argillite				lf		ormation		5	Sms			Ep		Epidote	Md	Moderate	Vn	Vein	J Joint		Fracture		
Cut By:	M. Drennan	Rob Reukl	10 Kingfisher, Manitouwadge						Sgw	Meta	greywacke						Ab		Albite	Str	Strong	Vnlt	Veinlets	Vsk Stockwork	Vst	Stringers		
	N	Σ		ALTERATION						MINERAL	LIZATION					STRUCTU	IRE									SAMPLE	ES	
INTERVAL	DE E OG	Inter		v # 0	5 <u> </u>	o v ¥	\$	Interval		Dat Da	Gd Hm	Ma Cab	Ga	s s	Inte	n (n)	<u>e</u>	-82							Inte	n (el	#	
	HOLO CODE		^{rvai} ਤੁਹੁਰੁਲ	× m v	<u>о</u> ш < ,	o v ≯	nen	interval	Ру Ро Сру	Pht Bo	Ga Hm	wg Spn	Ga	ure *	inte	irvai	ang	nen			DESCRIPT	TIVE LOG			Intel	vai	blei	8
		⊢ i					u u							Text 8			S e	u n							-		am	ŕ
From To	-	From	To Int Int Int Int	Int Int Int	Int Int Int I	Int Int Int	0	From To	% %	% %	% %	% %	%	0 '	From	To	0	0							From	То	00	
0.00 3.20	Mvs Chl	Md 0.00	3.20 Md	Wk			e, local biotite	0.00 3.20	tr				ş	py locally visi	0.00	3.20	Fol 40-45	j y devekope	l pe Qtz-feld-h	ld-hbl-chl-bio, gar bearing, mafi	ic volcanic schist. Da	rk green to gre	y-green, occaisio	nal garnet clusters betwee				
3.20 4.50	QFP Ser	Wk 3.20	4.50 Wk				sericitic along	3.20 4.50	0					None	3.20	4.50	Fol 34-36	p upper (26	tcaQtz-feld-c	Id-chl intrusive, with chlorite alte	eration defining foliation	on in sheared r	margins					
4.50 26.05	Mvs Chl	Wk 4.50	26.05 Md				and silica	4.50 26.05	tr					py locally visil	4.50	26.05	Fol 35-55	ion of chlori	e b Qtz-feld-h	ld-hbl-chl-bio mafic volcanic sch	hist. Dark grey-green	, with well deve	loped foliation. H	bl laths 1 and 3 mm long				
26.05 90.10	Gd chl	Wk 26.05	90.10 Wk				alteration	26.05 90.10	0					None	26.05	90.10 Aa	assiv		Pale pink-	ink-grey to grey-white biotite gr	anodiorite non foliate	ed, meduim to c	oarse grained. U	pper contact has 5 cm of				
90.10 112.05			112.05 Wk	Md			alteration	90.10 112.05	tr					of diss Py	90.10	112.05	Fol 60	ely well deve	opeQtz-feld-h	ld-hbl-bio-chl mafic volcanic gn	eiss. Dark grey to gre	ey-green, with r	noderately develo	pped foliation. Hbl laths 1				
112.05 116.20	Gd/Peg K		116.20	Wk			pervasive	12.05 116.20	0					None	112.05	116.20 Aa	assiv	rite, with bra	nch Granodior	diorite exhibiting frequent section	ons of peg, the pegm	natite intrusions	are typically betw	veen 0.4 and 1 m in width				
116.20 119.60	Mvs Qrtz		119.60 Str				chlorite, local	16.20 119.60	tr-1				1	locally noted	116.20	119.60	Fol 40-50) well dev'e	-	ibole rich mafic schist. Dark gre								
119.60 132.70	Peg K	Wk 119.60	132.70	Wk			pervasive	19.60 132.70	0					None	119.60	132.70 Aa	assiv			diorite exhibiting frequent patch	* .							
132.70 218.50	Gd chl		218.50 Wk				chlorite, local	32.70 218.50	0						132.70	218.50 Ma	assiv			ink-grey to grey-white biotite gr								/
218.50 223.40		Md 218.50					chlorite,	18.50 223.40	tr						218.50	LL0.10	Fol 50-55			ibole rich mafic volcanic schist.								
223.40 228.45	Peg/Cbx Chl	Md 223.40				Wk	breccia,	23.40 228.45	0						223.40	228.45 k	brec	Irregular		atite breccia, coarse grained, pi								
228.45 273.00 273.00 288.50	Mvs Chl Mab Chl	Md 228.45 Md 273.00					chlorite, local chlorite	28.45 273.00 73.00 288.50	tr					locally locally	228.45 273.00	273.00 288.50	fol 50-65			ole mafic volcanic schist, this u			0 0					
273.00 288.50 288.50 315.85	Mgb Chl Mvs Chl		288.50 Md				chlorite. local	88 50 315 85	tr	_				locally	273.00	288.50	fol 60-65		5	abbro unit defined by the prese						ł		
288.50 315.85 315.85 318.70			315.85 Md 318.70 Md		Md		chlorite, iocal	15.85 318.70	tr 0					None	288.50		oandi 55-65			Id-amp-bio mafic volcanic schis Id-amp-gar mafic to intermediat								
315.85 318.70 318.70 331.40	Mys Chi		318.70 Md	-+ + +	IVIG		chlorite, local	18 70 331 40					+ +	locally	315.85	318.70 /b 331.40	Fol 60-65			Id-amp-gar maric to intermediat Id-amp-bio maric volcanic schis						ł		+
318.70 331.40 331.40 342.00			331.40 Md 342.00 Md	-+-+-+	Md		chlorite, local	31 40 342 00	u tr			_	+ +	,	318.70		Fol 55-60			Id-amp-bio matic volcanic schis Id-amp-gar matic volcanic schis						ł		+
331.40 342.00 342.00 346.62	Gd Chl	Wk 342.00	342.00 Md	-+ + +	IVIG		pervasive in	42.00 346.62	0				+ +	None	331.40	342.00 346.62 N	1000			ink-grey to grey-white biotite gr						ł		+
342.00 346.62 346.62			346.62 VVK 348.16 Md	-+-+	-+++		pervasive in ;	46.62 348.16	3-5			_	+ +	and stringer	342.00		SO 30-40			Id-amp-chl mafic volcanic schis					346.62	347.4	195771	2 half core
348.16 350.00			348.16 Mu 350.00 Wk					48 16 350 00	0			_	1 1	None	348.16	340.10 N		0		ink-grey to grey-white biotite gr					340.02	348.16		3 half core
350.00 410.56			410.56 Md				chlorite. local	50 00 410 56	tr					locally	350 00		Fol 55-65			Id-amp-bio mafic volcanic schis					347.4	540.10	103773	nan core
410.56 415.75			415.75 Wk				1	10.56 415.75	0				1 1	none	410.56	415.75 N	1 01 00 00	assive grand		white to white biotite granodiorit						t		1
415.75 423.22	Fis Ser		423.22 Wk Md		Wk		_	15 75 423 22	tr				1 1		415.75	423.22		0		ld-amp-gar mafic to intermediat				, , ,		t		1
423.22 424.58		Wk 423.22					alteration of	23.22 424.58	0					none	423.22	424.58 N		assive grand	-	white to white biotite granodiorit						t		
424.58 452.77	Mvs Chl		452.77 Md				chlorite, local	24.58 452.77	tr						424.58		Fol 60-70	5		Id-amp-bio mafic volcanic schis						t		
452.77 456.37	Gd Chl		456.37 Wk				alteration of	52.77 456.37	0				1	none	452.77	456.37 N		assive grand		white to white biotite, with occai								
456.37 475.56	Fis Chl	Md 456.37	475.56 Md				chlorite, local	56.37 475.56	tr					Py locally	456.37	475.56	Fol 65-75	iy well devel		Id-chl-bio mafic to intermediate								
475.56 491.00			491.00 Md				chlorite, local	75.56 491.00	tr				1	Py locally	475.56		Fol 75-80			ld-amp-bio mafic volcanic schis								
401.00			Notico Mid					401.00	<u>~ </u>		<u> </u>		1 1	. y loodily		101.00	/	y wen devel	apo diz-roid-a	a amp bio mane voicarile seriis	A. I me to meandingh	amou, uain gie	y groon, war wei	assolution to induorit. I the		L		4

				۲	ALTERATION	MINERALIZATION	STRUCTURE		SAMF	PLES
	INTERVAL	CODE	T. CODE	NTENSI	Chi Chi Lingth Instant Chi Ch	Interval Py Po Cpy Pnt Bo Gd Hm Mg Sph Ga	Interval e g st e e e	DESCRIPTIVE LOG	Interval	ple#
From	n To	5	AL	ALT.	From To Int	From To % % % % % % % % % % %	From To		From To	Sam

					۲		ALTERATION	MINERALIZATION STRUCTURE		SAMPLES	
	INTERV		HOLOGY	T. CODE	NTENSI	-	The second se	Interval Py Po Cpy Pnt Bo Gd Hm Mg Sph Ga 🛱 Sph Interval B B B B B B B B B B B B B B B B B B B	Interval	ple#	/be
1	From	То	5	AL	ALT.	From	rom To Int	From To % % % % % % % % % % ⁵ ⁵ From To ⁵ ⁸ 5	From	To	E.

