

We are committed to providing <u>accessible customer service</u>. If you need accessible formats or communications supports, please <u>contact us</u>.

Nous tenons à améliorer <u>l'accessibilité des services à la clientèle</u>. Si vous avez besoin de formats accessibles ou d'aide à la communication, veuillez <u>nous contacter</u>.

ZIGZAG LAKE PROJECT

CRESCENT LAKE AREA, NORTHWEST ONTARIO NTS 52108

FALL 2021 SAMPLING PROGRAM

L. Giroux, MSc., PGeo Nuinsco Resources Limited Ottawa, ON August 23, 2022

Revised December 15, 2022

ZIGZAG LAKE PROPERTY, CRESCENT LAKE AREA, NW ONTARIO

ASSESSMENT REPORT ON THE 2021 SAMPLING PROGRAM

Table of Contents

1.0	Introduction	2
2.0	Property Location, Access, and Ownership	4
	Property Location and Access	
	Property Ownership	
	Permitting and Annual Work Requirements	
3.0	Exploration History	7
4.0	Regional and Property Geology	8
5.0	2021 Sampling Program	
6.0	Petrographic Study	
7.0	Discussion and Recommendations	
8.0	References	
9.0	Certificate of Author	

List of Figures

1	Property Location	4
2	Claim Map	6
3	ZigZag Lake Regional Geology	9
4	ZigZag Lake Property Geology	10
5	2021 Sketch Sampling Plan	15

List of Tables

1	Glossary of Terms	3
2	ZigZag Lake Property Mining Claims	5
3	Daily Work Log.	.12
4	2021 Sampling Results	.13

Appendices

- A 2021 Sampling and Track Map
- B ActLabs Analytical Certificates
- C Petrographic Study and SEM Data
- D Tabulated Program Costs

ZIGZAG LAKE PROPERTY

1.0 Introduction

In June 2021, Nuinsco Resources Ltd (Nuinsco) optioned the Zigzag Lake Property (Property) in the Crescent Lake Area of northwestern Ontario. The Property includes the historic Tebishogeshik showing, a series of lithium and tantalum bearing pegmatite lenses.

In September 2021, Nuinsco was able to arrange a site visit to the Property after several delays due to lack of helicopter availability in the region because of a bad forest fire season. One day was spent on site during which geologists were able to investigate available exposures of the pegmatite lenses and to obtain samples for analysis and for petrographic study.

Grab sampling by Nuinsco returned values of up to **3.55% Li₂O** (sample 82063; with 113ppm Ta₂O₅ and 534ppm Rb₂O), and **836ppm Ta₂O₅** (82061; 0.02% Li₂O, 725ppm Rb₂O), and **4003ppm Rb₂O** (82067; with 0.09% Li₂O and 250ppm Ta₂O₅).

All coordinates provided in the report are given in a NAD 83 zone 16 projection. Units are metric unless otherwise specified. Historic references may be presented in imperial units. All dollar values are in Canadian dollars.

· · · · ·	
Code	Term
AA	Atomic Absorption
ACTLABS	Activation Laboratories Ltd
Az	Azimuth
BCMC	Boundary Cell Mining Claim
BR	Bedrock
Cs	Cesium
FA	Fire Assay
g	Gram
g/t	Grams per ton (metric)
HAE	Height Above Ellipsoid
IP	Induced Polarization
kg	Kilogram
km	Kilometre
Li	Lithium
m	Metre
MCMC	Multi-cell Mining Claim
MSL	Mean Sea Level
NAD83	North American Datum 83
NTS	National Topographic System
NWI	Nuinsco Resources Limited
ppm	Parts per million
Rb	Rubidium
SCMC	Single Cell Mining Claim
Та	Tantalum
UTM	Universal Transverse Mercator

Table 1. Glossary of Terms

2.0 Property Location, Access, and Ownership

Property Location and Access

The Zigzag Lake Property is located within the Crescent Lake Area of northwestern Ontario, NTS52I08, approximately 68 kilometres east-northeast of the town of Armstrong, Ontario. Armstrong is the nearest community for services.

During the summer the property is primarily accessible via helicopter. During the winter, the Tebishogeshik showing can be reached by old logging trails which are only suitable for winter use. These trails were last used for the 2010/2011 drilling program on the claims by the exploration company Canadian Orebodies and will require maintenance and upgrade to be used again.

Figure 1. Property Location

Property Ownership

The Zigzag Lake Property was optioned by Nuinsco Resources Limited ("Nuinsco") in June 2021 from Kenneth Fenwick (Thunder Bay, ON), George Lucuik (Sault Ste Marie, ON), and Donald Deveraux (Thunder Bay, ON).

The property consists of 6 unpatented mining claims (6 claim units). Of the 6 converted claims (Table 2), 4 are classified as Single Cell Mining Claims (SCMC) meaning that the claim holder holds the entirety of the mining cell, while the remaining 2 converted claims are classified as Boundary Cell Mining Claims (BCMC), meaning that it covers only part of the map-based claim cell, and the mining cell is shared with another property owner.

The terms of the option agreement on the Zigzag Lake property are an \$8,000 cash payment and 200,000 common shares of the Company on signing of the agreement; on the first anniversary a \$15,000 cash payment and 200,000 common shares of the Company; on the second anniversary a \$20,000 cash payment and 200,000 common shares of the Company; on the third anniversary a \$30,000 cash payment and 200,000 shares of the Company; on the fourth anniversary a \$40,000 cash payment and 200,000 shares of the Company; on the fourth anniversary a \$40,000 cash payment and 200,000 shares of the Company. The optionors will retain a 2% Net Smelter Return royalty, 1% of which can be acquired by Nuinsco for \$1,200,000. Work commitments of \$6,000, \$10,000, \$20,000, and \$40,000 are required in years one through four, respectively, of the option term.

Disposition No	Claim Type	Recording Date	Anniversary Date	Work Requirement (CDN \$)	Reserve (CDN \$)
296117	SCMC	Apr 10, 2018	Oct 27, 2022	400.00	-
146285	SCMC	Apr 10, 2018	Oct 27, 2022	400.00	-
109505	SCMC	Apr 10, 2018	Oct 27, 2022	400.00	-
192834	SCMC	Apr 10, 2018	Oct 27, 2022	400.00	-
192833	BCMC	Apr 10, 2018	Oct 27, 2022	200.00	-
140819	BCMC	Apr 10, 2018	Oct 27, 2022	200.00	-
			TOTAL =	\$2,000	\$0

Table 2. ZigZag Lake Property Mining Claims*

* Ownership = Kenneth George Fenwick (100%)

Permitting and Annual Work Requirements

The Zigzag Lake mining claims requires \$2,000 of work annually to keep the Property in good standing. There are no current exploration reserves for the Property.

Work during 2021 consisted solely of a site visit and prospecting and therefore did not require a permit. An Exploration Permit application was submitted by Nuinsco in May 2022 and is currently pending approval. The Exploration Permit would allow for:

Mechanized Drilling (assembles weight >150kg) Mechanized Stripping (>100m2 in 200m radius) Pitting and Trenching (>3m2 in 200m radius) Not prescribed activities which may also be undertaken in addition to those requested in the permit include:

Creating trails for the purpose of early exploration Ground geophysics without a generator Setting up a camp for up to 6 persons

The Ontario Government has identified that the following First Nations groups may be impacted by future work on the project and included them in consultations during the permitting process:

Animbiigoo Zaagi'igan Anishinaabek Métis Nation of Ontario – Region 2 Red Sky Métis Independent Nation Whitesand First Nation

The Property does not include any land with Surface Rights.

Figure 2. Claim Map

3.0 Exploration History

- 1956: The lithium-bearing pegmatite lenses known as the Tebishogeshik (or Zig Zag Lake) Deposit was first discovered by Frank Tebishogeshik (alternately Tebishgoeshik) – a prospector from Ferland, Ontario. The ground was staked and optioned to Dempster Explorations Limited.
- 1957: Detailed mapping, trenching, and sampling of the pegmatite dyke area by Dempster Explorations Ltd. One drill hole was attempted under the east end of lens No. 4 with a 7/8" core diameter packsack drill but it was found that the drill was too light for such hard rock as there was too much grinding of the core. No log was filed but it was reported by Hoiles (1958) that the dyke continued downwards at 65° at "about the sample attitude as at surface".
- 1958-1960: Dempster Explorations Ltd drilled 29 holes with a packsack drill on several pegmatite targets, primarily east of to the east Zig Zag Lake/Little Jackfish River/Tettares Lake. Four of the holes were drilled on the eastern most lens of the Tebishogeshik occurrence (holes 23, 24, 30 & 31). Logs are available for three of the holes but do not include assays. Hole 23 intersected 1.6 feet of pegmatite at the end of the hole containing some altered spodumene, fine grained feldspar, and green mica. Hole 31 intersected 4 inches of pegmatite plus 20.6 feet of barren pegmatite consisting of feldspar, dark quartz biotite and green mica.
- 1975-1982: Bird River Mines performed geochemical and magnetometer surveying over the Tebishogeshik occurrence. Their plans outline a target area 'Potential No. 2' to the southeast of the main occurrence and directly west of Tettares Lake. No description of the target area is provided in their reporting though another target outline (off the current property) is described to the east of Tettares Lake.
- 1979:A geochemical survey was completed under a joint venture between Cominco Ltd and
E&B Explorations Inc- (Burns, 1980). Five grid areas were mapped shortly after line-cutting
was completed. One grid, Grid C, included the current Zigzag property.
- 1997: Complex Minerals undertook MAG and VLF-EM geophysical and reconnaissance geological surveying (Bowbridge, 1998). Their aim was to determine if geophysical surveying could be used to locate further occurrences of the spodumene-bearing pegmatite. They determined that the geophysical methods were not effective, and that mechanical stripping of the overburden was a better option to trace the extension of the pegmatite bodies.
- 2002: Clark Exploration Consulting was hired to evaluate claims held by Platinova Resources Ltd sampling, which included the Tebishogeshik occurrence (Cullem, 2002). A one-day site visit to the property was done to confirm historic sampling. Grab samples returned

tantalum values of up to 0.17%. Eight (8) holes were drilled across the Tebishogeshik occurrence

- 2010-11: Canadian Orebodies Inc contracted Fladgate Exploration Consulting Corp to complete a diamond drilling program on the Zigzag Property (Thompson and Henderson, 2011). Eight (8) holes were drilled totalling 484.6m. Drill hole CO-10-007 intersected 1.49% Li₂O, 240.18ppm Ta₂O5, with 580ppm Rb, 146.8ppm Be, 39.07ppm Cs, 82.42ppm Nb. Grab samples were also collected.
- 2016: Canadian Orebodies commissioned a structural study of a larger property area which included the Tebishogeshik/Zigzag Lake area (Birt, 2016).

4.0 Regional and Property Geology

The Property is situated within the Caribou Lake Greenstone Belt (CLGB) which is located to the north of Lake Nipigon. The CLGB is an area that is 3.5-15km (N-S) wide by 80-100km (E-W) and is an extension of the Onaman-Tashota Greenstone Belt, which dominates the eastern portion of the Wabigoon Subprovince.

The Zigzag Property is comprised of a metamorphosed volcanic unit on the northern portion of the Property, and a granitic intrusion to the south. The volcanic unit has been metamorphosed to amphibolite facies.

The primary commodities of interest on the Property are lithium and tantalum, with rubidium and cesium also being of interest. Mineralization on the Property is confined to the pegmatite dykes of the Tebishogeshik occurrence. The pegmatite occurs as lenses within the volcanics, approximately 80-100 feet north of and along the strike of, the contact with the granitic intrusion to the south. The Tebishogeshik lithium-tantalum occurrence (MDI52I08NW00017), is a series of coarser grained pegmatite lenses containing large spodumene crystals, as well as equally large muscovite, feldspar, and quartz throughout the entire strike length of the showing (~800m).

Lithium mineralization occurs within the coarse-grained spodumene crystals which can be readily observed in outcrop and drill core, with crystal sizes averaging 3-15cm in size. Tantalum occurs as tantalite, which occurs as finer-grained crystals and is not as easily seen in outcrop or drill core, though historically up to 2-inch laths have been reported.

Figure 3. Zigzag Lake Regional Geology (Pye, 1968)

5.0 2021 Sampling Program

A site visit to the Zigzag Lake Property was undertaken on September 21st, 2021, by geologists Paul Jones (CEO, Nuinsco Resources Ltd) and Filippo Ferri (independent consultant). The site visit had been rescheduled several times because of a lack of availability earlier in the season in part due to a bad forest fire season.

During the summer the property is only accessible via helicopter. During the winter, the Tebishogeshik showing can be reached by old logging trails which are only suitable for winter use. These trails were last used for the 2010/2011 drilling program on the claims by the exploration company Canadian Orebodies and will require maintenance and upgrade to be used again.

The geologists obtained accommodations in Thunder Bay before and after the site visit. A Bell 206 helicopter was hired from Wiskair based Thunder Bay, Ontario. The flight initially scheduled to depart on the morning of the September 20th was further delayed by a day due to bad weather. The helicopter made stops in Armstrong, Ontario on route to the Property for refueling.

One day was spent on site during which geologists were able to investigate available exposures of the pegmatite lenses and to obtain samples for analysis and for petrographic study. Prior to any field work, an effort to compile all historic data for the Property was started with historic mapping including historic outcrop outlines/pegmatite lens outlines, drilling, and sampling information being digitized into MapInfo/Discover format.

Samples were organized and prepared for delivery to the laboratory the following day (September 22nd). Thirteen samples collected on the claims were submitted to ActLabs in Thunder Bay for analysis using their Ultratrace 7 (UT-7) package. Complete analytical data is provided in Appendix B.

The grab sampling by Nuinsco returned values of up to **3.55% Li₂O** (sample 82063; with 113ppm Ta_2O_5 and 534ppm Rb_2O), and **836ppm Ta_2O_5** (82061; 0.02% Li₂O, 725ppm Rb_2O), and **4003ppm Rb_2O** (82067; with 0.09% Li₂O and 250ppm Ta_2O_5). Figure 5 shows the distribution of the sampling.

Table 3. Daily Work Log

Date	Geologists	Work Description
Sept 19, 2021	P Jones, F	Travel by truck from another of Company's projects near Atikokan, ON.
	Ferri	Preparations to travel into site next day. Overnight in Thunder Bay.
Sept 20, 2021	P Jones, F	Waiting on break in weather, Helicopter flight called off. Additional
	rem	preparation for another attempt tomorrow. Overnight in Thunder Bay.
Sept 21, 2021	P Jones, F Ferri	To Thunder Bay airport at 0700. Departure to Armstrong at 0735.
		Helicopter from Thunder Bay (Wisk Air – Bel 206L LongRanger). Refueling
		at Armstrong airfield in both directions. Drop-off west of Nuinsco's property boundary on a suitable clearing located on the trend of the
		pegmatite bodies.
		From the landing site we initially followed a possible access trail until we
		found it detoured too far to the northwest (likely a drill trail dating from
		the last drill program, 2010). At that point we traversed through open
		bush on a compass heading to re-acquire the trend of pegmatite bodies.
		The bush consisted of relatively open birch, balsam, and evergreens
		(mainly spruce) trees with locally dense underbrush and heavy sphagnum
		moss.
		The pegmatite zone outcrop exposure is generally poor, with only local
		patches that are visible and not covered by moss. Considerable time was
		expended looking for outcrops and old trenches. Exposure was made by
		cleaning debris in old trenches and scraping moss where necessary
		Mineralization observed is consistently pegmatitic texture, coarse to very
		coarse grained. Spodumene crystals are of variable size ranging from sub
		centimetre to a maximum of 15 cm as randomly oriented, pale green
		Several old drill casings were located. One clearly marked as drill hole CO-
		10-006 (Canadian Orebodies).
		There was not enough time to examine pegmatite zone furthest to the
		east.
		13 samples collected for assay, 1 large specimen sample collected, 3
		samples typical of the mineralized pegmatite were collected for thin
		section study.
		Helicopter returned to Thunder Bay at approximately 1800.

Sept 22, 2021	P Jones, F	Preparation of samples (bagging and tagging, paperwork). Samples
	Ferri	delivered in person to ActLabs in Thunder Bay.

Table 4. 2021 Sampling Results

Sample	Data	NAD83 zone 16U		Li2O	Ta2O5	Rb2O	Cs2O	Sample				
ID	ID Date		Easting Northing		(ppm)	(ppm)	(ppm)	Description*				
82056	2021-09-21	406959	5589444	0.84	187	675	36.3	PEG, BR, subhedral mg-cg to vcg pale green elongate prismatic spodumene crystals with finer dark green mica books (MUSC?), FSP-QTZ matrix				
82057	2021-09-21	406959	5589444	2.00	129	918	53.2	PEG, BR, subhedral mg-cg to vcg pale green elongate prismatic spodumene crystals with finer dark green mica books (MUSC?), FSP-QTZ matrix				
82058	2021-09-21	406959	5589444	2.56	128	490	59.3	PEG, BR, subhedral mg-cg to vcg pale green elongate prismatic spodumene crystals with finer dark green mica books (MUSC?), FSP-QTZ matrix				
82059	2021-09-21	406962	5589447	0.63	300	890	68.6	PEG, BR, subhedral mg-cg to vcg pale green elongate prismatic spodumene crystals with finer dark green mica books (MUSC?), FSP-QTZ matrix				
82060	2021-09-21	406965	5589449	0.27	98	270	20.5	PEG, BR, subhedral mg-cg to vcg pale green elongate prismatic spodumene crystals with finer dark green mica books (MUSC?), FSP-QTZ matrix				
82061	2021-09-21	406959	5589444	0.02	836	725	54.9	PEG, BR, subhedral mg-cg to vcg pale green elongate prismatic spodumene crystals with finer dark green mica books (MUSC?), FSP-QTZ matrix				
82062	2021-09-21	406952	5589442	2.22	314	451	54.1	PEG, BR, subhedral mg-cg to vcg pale green elongate prismatic spodumene crystals with finer dark green mica books (MUSC?), FSP-QTZ matrix				
82063	2021-09-21	406918	5589456	3.55	113	534	40.4	PEG, BR, subhedral mg-cg to vcg pale green elongate prismatic spodumene crystals with finer dark green mica books (MUSC?), FSP-QTZ matrix				
82064	2021-09-21	406918	5589456	0.07	226	1148	62.0	PEG, BR, subhedral mg-cg to vcg pale green elongate prismatic spodumene crystals with finer dark green mica books (MUSC?), FSP-QTZ matrix				

82065	2021-09-21	406925	5589454	0.05	97	1542	89.1	PEG, BR, subhedral mg-cg to vcg pale green elongate prismatic spodumene crystals with finer dark green mica books (MUSC?), FSP-QTZ matrix
82066	2021-09-21	406918	5589450	0.05	58	3915	126.2	PEG, BR, subhedral mg-cg to vcg pale green elongate prismatic spodumene crystals with finer dark green mica books (MUSC?), FSP-QTZ matrix
82067	2021-09-21	406810	5589420	0.09	250	4003	287.3	PEG, BR, subhedral mg-cg to vcg pale green elongate prismatic spodumene crystals with finer dark green mica books (MUSC?), FSP-QTZ matrix
82068	2021-09-21	406803	5589424	0.02	155	3128	149.5	PEG, BR, subhedral mg-cg to vcg pale green elongate prismatic spodumene crystals with finer dark green mica books (MUSC?), FSP-QTZ matrix

* BR=bedrock, FL=float, FSP = feldspar, MUSC=muscovite, PEG=pegmatite, QTZ=quartz; fg=fine grained, mg=medium grained, cg=coarse grained, vcg=very coarse grained

6.0 Petrographic Study

During the September 2021 visit to the Property three pegmatite samples were collected for petrographic examination. The study was done by consulting mineralogist Ingrid Kjarsgaard, PhD in Ottawa, Ontario. The Kjarsgaard report is attached as Appendix C along with the semi-quantitative SEM data.

The samples were found to consist of feldspar (microcline and albite), quartz, muscovite, and varying amounts of pale green spodumene. Trace minerals included spessartine garnet, beryl, U-bearing microlite (Ta-pyrochlore), zircon, and columbite.

7.0 Discussion and Recommendations

The site visit in September 2021 provided the Company with a better understanding of access to the Property as well as the state of historic exposures to the pegmatite lenses. During the visit, the trend of the host-pegmatite was traversed for approximately 600m of strike. Discontinuous, exposed, coarsegrained, spodumene-bearing pegmatite outcrops were encountered, and grab samples were collected at several locations along 160m of strike. Sampling confirmed lithium and tantalum mineralization identified during historic work programs with peak grab sample assays of up to 3.55% Li2O, 836ppm, and 4003ppm Rb2O.

Permitting is currently under way to allow for a more substantial follow up work program on the Property including diamond drilling along the trend of the mineralized pegmatite bodies.

8.0 References

Anderson, C.D., 1979. 1979 Appendix to 1975 Interim Report, AFRI 52I08NE0007, 21p.

- Anderson, C.D., 1982. Bird River Mines Co. Ltd., Strategic Metals Zig Zag Lake Prospect Ontario, AFRI 52I08NW0002, 16p.
- Anderson, C.D., 1984. Geochemical Report, Bird River Mines Limited, AFRI 52I08NW0001, 55p.
- Birt, T., 2016. Assessment Report, Summer 2016 Regional Structural Study and Drilling Program, Crescent Lake Project, Falcon Lake and Zigzag Properties, Canadian Orebodies, 149p.
- Bowbridge, C.R., 1998. Nolan Cox, Complex Minerals Corp, Zigzag Lake Lithium Property, Report on Preliminary Geophysical Surveys and Geological Reconnaissance, AFRI 52108NW2001, 20p.
- Burns, R.F., 1980. Cominco Ltd, EBJV Crescent Lake 1979 Assessment Report on Claims..., AFRI 52I08NW0004, 14p.
- Cullen, D., 2002. Platinova Resources Ltd, Property Evaluation of The Zigzag Tantalum Lithium Property, AFRI 52108NW2002, 25p.
- Hoiles, R.G., 1958. Geological Report, The West Group of Claims of Dempster Explorations Limited, AFRI 52I08NW0028 (plus 52I08NW0010, -0012, & -0015), 12p.
- Map 2100, 1966. Crescent Lake Area, 1 inch to 50 miles.
- MDI52I08NW00017, Mineral Deposit Inventory for Ontario, Zig Zag Lake 1956, Tebishogeshik Deposit 1956
- Pye, E.G., 1968. Geology of Crescent Lake Area, Ontario Department of Mines, Geological Report 55, 72p.
- Smith, V., Vos, M.A., and Abolins, T., 1982, Zigzag Lake (Dempster) Lithium Deposit *in* Open File Report 5388, Industrial Minerals of Northern Ontario supplement 1, p. 187-191
- Thompson, M. and Henderson, A., 2011. Assessment Report, Winter 2010/2011 Drilling Program, ZigZag Property, Canadian Orebodies, 162p.

9.0 Certificate of Author

Certificate for the report titled "Nuinsco Resources Limited, Zigzag Lake Project, Crescent Lake Area, Northwestern Ontario, NTS 52108, Fall 2021 Sampling Program".

Laura Giroux, BScH, MSc, PGeo Chief Geologist, Nuinsco Resources Limited

23 August 2022

Revised 15 December 2022

APPENDIX A 2021 Sampling and Track Map

APPENDIX B

ActLabs Analytical Certificates

Quality Analysis ...

Innovative Technologies

Report No.:A21-17782Report Date:07-Oct-21Date Submitted:22-Sep-21Your Reference:

Nuinsco Resources Limited 80 Richmond St, West 18th Floor Toronto ON M5H2A4 Canada

ATTN: Paul Jones

CERTIFICATE OF ANALYSIS

22 Rock samples were submitted for analysis.

The following analytical package(s) were requested:		Testing Date:
UT-7	QOP Sodium Peroxide (Sodium Peroxide Fusion ICPOES + ICPMS)	2021-10-01 12:21:29

REPORT A21-17782

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

ACTIVATION LABORATORIES LTD. 41 Bittern Street, Ancaster, Onlario, Canada, L9G 4V5 TELEPHONE +906 648-9611 or +1.888.228.5227 FAX +1.905.648.9613 E-MAIL Ancaster@actlabs.com ACTLABS GROUP WEBSITE www.actlabs.com CERTIFIED BY:

Emmanuel Eseme , Ph.D. Quality Control Coordinator

LabID: 266

Results

Activation Laboratories Ltd.

	Ċ
8	č
1778	
rt: A21	1
Repo	1

Γ			ő, ő	c 0.2	0.2	: 0.2	5 0.2 2	: 0.2	: 0.2	0.2	0.2	c 0.2	0.2	: 0.2	: 0.2	< 0.2	c 0.2	: 0.2	: 0.2	0.3	: 0.2	0.2	: 0.2	: 0.2	0.2
5	udd	0.2	2 NaS	•	0	0	° ⊇	0	0	0	• 0	* 0	× 0	00	0	× 03	• •	•	0	0	•	• •	0	0	2
Ŧ	Edd	10	FUS- MS- Na2O		v		v	v	-	v	v	v	v		v		v	v	v	v	v	v			
ŝ	Шdd	0.2	FUS- MS- Na202	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
g	mdd	0.7	FUS- MS- Na202	5.1	5.5	6.3	5.7	5.6	4.1	5.8	6.7	4.0	5.8	5.0	5.3	4.0	5.7	4.0	4.5	3.1	3.6	5.0	6.0	5.6	6.4
Gd	шдо	1.0	FUS- MS- Va2O2	0.7	1.8	0.6	0.4	0.5	4.7	1.5	0.4	2.4	1.8	1.7	1.4	3.8	0.8	1.6	0.6	1.1	0.3	2.3	1.5	0.6	1.5
Ga	mdd	0.2	-US- MS- M2O2	92.8	131	87.4	93.8	78.2	75.6	81.0	71.6	68.8	60.09	80.0	1.77	111	52.2	104	41.4	155	75.2	81.0	90.8	67.1	78.1
e	, ,	.05 (0	US- la202	0.61	0.74	0.39	0.47	0.40	0.46	0.59	0.59	0.43	0.40	0:30	0.58	0.82	0.21	0.55	0.31	1.13	0.56	0.69	0.48	0.35	0.32
1 n	b md	.1 0	US- 18- 18202	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	d mo	1	US- S- a202 ► F	0.4	< 0.1	0.2	< 0.1	0.2	0.3	< 0.1	< 0.1	0.1	0.2	< 0.1	< 0.1	0.2	< 0.1	0.2	< 0.1	< 0.1	< 0.1	0.2	< 0.1	< 0.1	0.5
N N	m pi	3 0	PS-F S- B2O2 N	0.8	0.4	0.6	0.5	0.4	2.0	0.8	0.6	1.2	0.9	0.9	0.5	1.5	0.3	1.2	0.6	< 0.3	0.3	0.9	0.4	0.5	1.0
	id ua	Ö	S- S- 1202 № FI	< 2	2	< 2	<2	< 2	3	2	12	ß	m	2	< 2	< 2	< 2	< 2	< 2	4	< 2	4	9	< 2	< 2
ō	n pp	2	S- PO2 NE	55.5	6.99	57.6	72.0	96.0	34.2	50.2	55.9	64.7	19.3	51.8	51.0	38.1	58.5	84.0	119	271	141	77.2	55.5	27.8	50.2
S	I pp	0.1	- FU MS O2 Na.	110	110	06	120	110	90	110	110	110	90	80	06	120	90	100	02	80	60	80	120	60	50
ວັ	шdd	30	FUS MS- Na2	1.4	1.6	6.0	9.4	1.0	0.7	0.6	9.8	0.1	0.2	9.6	0.5	0.2	9.6	0.5	9.6	0.6	2.1	2.1	1.7	1.1	9.6
<u>8</u>	шad	0.2	FUS- MS- Na2C	8.	4	.2	2	6.	.6 (.1	.4	5	.4 <(.3	3 (.5 <(.6 (.5	1.	.8	8.	4	.2	.7	.4
පී	шdd	0.8	FUS- MS- Na2O	2 < 0	2 2	2 1	2 1	2 0	2 4	2 2	2	2	2 2	2 1	2 1	2 2	2 1	2 1	2 1	2 4	2 < 0	3	2 2	2 1	S
PO	ррт	2	FUS- MS- Na2O2	V	V	×	v	v	v	۷	v	v	v	×	Y	v	v	V	v	v	v	v	۷	v	v
රී	%	0.01	FUS- Na2O2	0.11	0.04	0.05	0.06	< 0.01	0.12	0.05	< 0.01	0.10	0.13	0.15	0.07	0.05	0.14	0.14	0.05	0.04	0.11	0.09	0.10	0.18	0.13
10	mdd	2	FUS- MS- Na2O2	18	3	8	84	86	9	2 2	13	29	N N	2	2	22	2 > 2	11	< 2	2 × 2	< 2	22	27	< 2	104
Be	mqq	3	FUS- MS- Na2O2	142	131	155	159	75	102	121	162	326	62	62	246	25	319	121	106	8	5	280	230	169	196
Ba	ppm	3	FUS- MS- Na202	53	21	14	17	10	12	7	7	15	23	8	5	6	9	6	< 3	52	78	17	5	6	8
0	mdo	10	FUS- MS- Na202	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	20	< 10	< 10	< 10	< 10	< 10	< 10	10	10	< 10	< 10	10	< 10	< 10
As	moc	2	HUS- MS- Va202 II	< 5	< 5	6	< 5	5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5 <
AI I	%	0.01	FUS- Na2O2	8.95	10.6	8.36	8.26	7.64	8.88	9.33	8.27	7.43	8.79	9.93	8.78	9.82	8.54	8.97	7.96	13.5	13.1	8.32	7.51	8.82	8.03
Analyte Symbol	Unit Symbol	Lower Limit (Method Code	82051	82052	82053	82054	82055	82056	82057	82058	82059	82060	82061	82062	82063	82064	82065	82066	82067	82068	82069	82070	82071	82072

10
ŧ
88
Ŷ

	ŕ
	ŀ
2	ċ
-1778	00
t: A21	5
Repo	101
	- 0
	40

						_							_							_		_			_
£	mqq	0.1	FUS- MS- Na202	3.2	4.0	5.9	3.2	2.7	10.9	3.6	3.4	6.4	5.1	6.8	4.6	7.2	3.2	5.1	2.0	8.3	2.9	5.1	4.3	4.3	5.7
Te	mqq	9	FUS- MS- Na202	7	9 V	9 >	< 6 < 6	9 >	9 V	9 V	1	9 V	2	9 v	9 V	< 6 <	2	9 ×	9 >	13	15	9 ×	2	9 ×	9 ×
ТЪ	ррт	0.1	FUS- MS- Na202	< 0.1	0.2	0.1	0.1	0.1	0.5	0.3	0.1	0.4	0.3	0.3	0.2	0.7	0.1	0.4	< 0.1	< 0.1	< 0.1	0.3	0.1	0.2	0.3
Ta	ppm	0.2	FUS- MS- Na202	110	54.5	233	257	219	153	106	105	246	80.1	685	257	92.9	185	79.5	47.7	205	127	149	235	348	352
Sr	ppm	3	FUS- MS- Na202	83	14	12	15	10	151	12	14	Ŧ	15	11	17	14	14	14	12	19	28	12	20	27	18
Sn	ррт	0.5	FUS- MS- Na202	20.3	25.9	20.3	19.2	22.0	22.2	30.5	20.4	30.2	9.8	21.6	21.8	42.3	15.8	62.1	10.3	92.8	28.1	21.9	23.3	10.9	14.6
Sm	ppm	0.1	FUS- MS- Na202	< 0.1	1.3	0.6	0.9	0.4	2.8	0.6	0.8	1.2	2.7	1.2	0.6	2.8	0.8	1.0	9.0	1.6	0.2	2.7	0.4	0.5	1.7
Si	%	0.01	FUS- Na202	> 30.0	29.3	> 30.0	> 30.0	> 30.0	> 30.0	> 30.0	> 30.0	> 30.0	> 30.0	> 30.0	> 30.0	> 30.0	> 30.0	> 30.0	> 30.0	> 30.0	> 30.0	> 30.0	> 30.0	> 30.0	> 30.0
Se	pom [8	FUS- MS- Na202	4	× 8	14	13	< 8 < 8	21	8 V	14	80	æ	34	14	< 8	< 8	< 8 8 >	14	80 V	< 8	< 8	< 8	80 V	 8 8
Sb	mdd	2	FUS- MS- Na2O2	< 2	<2	<2	< 2	< 2	< 2 >	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	2 >	< 2	<2	< 2
S	%	0.01	FUS- Na2O2	< 0.01	< 0.01	< 0.01	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Rb	mdq	0.4	FUS- MS- Na2O2	578	782	657	740	1270	617	839	448	814	247	699	412	488	1050	1410	3580	3660	2860	640	450	203	554
Pr	mdd	0.1	FUS- MS- Na202	< 0.1	0.2	0.1	< 0.1	< 0.1	0.4	0.2	< 0.1	0.2	0.3	< 0.1	0.1	0.5	0.1	0.2	< 0.1	0.6	< 0.1	0.5	0.3	0.2	0.4
Pb	ppm	0.8	FUS- MS- Na202	12.0	8.8	14.1	8.8	9.8	9.0	8.8	7.8	9.2	6.0	9.2	5.9	21.1	20.0	13.6	19.9	17.5	30.4	13.4	8.0	6.2	7.8
ž	ppm	10	FUS- MS- Na2O2	40	30	30	50	20	30	20	20	30	20	20	30	10	20	30	20	30	20	30	60	20	10
Nd	ppm	0.4	FUS- MS- Na2O2	< 0.4	1.3	< 0.4	< 0.4	< 0.4	3.7	< 0.4	0.4	1.0	1.0	< 0.4	< 0.4	1.6	0.9	0.5	0.7	2.0	0.7	1.0	0.6	< 0.4	1.8
QN	шод	2.4	FUS- MS- Na202	37.4	21.2	97.8	72.7	53.4	81.2	62.5	59.9	66.2	55.7	161.1	9 .66	69.7	53.5	44.0	27.3	143.7	23.3	61.1	65.2	106.5	152.1
Mo	ppm	1	FUS- MS- Na2O2	-	<1	5	<1	3	1	2	4	7	3	< 1	1	e	1	2	3	3	< 1	4	4	1	Ŧ
Mn	ppm	3	FUS- MS- Na202	1580	1030	1860	1200	847	852	1380	1440	691	1590	1650	1400	864	710	684	247	287	181	1030	1470	1490	1510
Mg	%	0.01	FUS- Na2O2	0.03	0.03	0.01	0.02	0.02	< 0.01	< 0.01	0.01	< 0.01	0.01	0.01	< 0.01	0.02	< 0.01	< 0.01	0.01	0.06	0.02	0.03	0.02	< 0.01	< 0.01
ĽÌ	ppm	3	FUS- MS- Na2O2	9160	> 10000	3870	7660	7720	3910	9290	> 10000	2920	1250	96	> 10000	> 10000	306	232	249	420	112	9840	8350	67	63
La	mqq	0.4	FUS- MS- Na202	0.5	1.1	0.9	< 0.4	0.7	1.8	0.7	0.9	0.7	0.7	0.6	0.5	1.1	0.8	< 0.4	0.6	2.6	< 0.4	1.2	1.3	1.0	1.7
¥	%	0.1	FUS- Na2O2	1.1	1.3	1.2	1.1	1.8	1.1	1.3	0.7	1.4	0.5	0.9	0.7	0.8	1.7	2.1	5.6	6.3	7.2	1.3	0.7	0.5	1.1
Analyte Symbol	Unit Symbol	Lower Limit	Method Code	82051	82052	82053	82054	82055	82056	82057	82058	82059	82060	82061	82062	82063	82064	82065	82066	82067	82068	82069	82070	82071	82072

Analyte Symbol	Ц	L	Tm	D	^	M	۲	٩٨	Zn
Unit Symbol	%	bpm	mdd	шdd	шdd	μudd	mqq	шда	Шod
Lower Limit	0.01	0.1	0.1	0.1	2	0.7	0.1	0.1	30
Method Code	FUS- Na2O2	FUS- MS- Na202	FUS- MS- Na202	FUS- MS- Na2O2	FUS- MS- Na2O2	FUS- MS- Na2O2	FUS- MS- Na2O2	FUS- MS- Na2O2	FUS- MS- Na202
82051	< 0.01	4,1	< 0.1	5.9	< 5	6.1	7.8	0.6	90
82052	< 0.01	6.5	< 0.1	2.4	< 5	4.0	2.1	< 0.1	60
82053	< 0.01	4.8	< 0.1	7.3	< 5 <	5.5	5.4	0.3	< 30
82054	< 0.01	5.2	< 0.1	4.9	< 5 <	5.7	1.7	0.2	130
82055	< 0.01	9.6	< 0.1	5.3	< 5	4.8	1.5	0.2	200
82056	< 0.01	3.6	< 0.1	10.4	< 5 <	3.8	13.4	< 0.1	290
82057	< 0.01	5.1	< 0.1	2.5	ς γ	4.5	4.2	< 0.1	6
82058	< 0.01	3.1	< 0.1	2.7	< 5	4.0	5.2	0.1	60
82059	< 0.01	4.8	< 0.1	7.6	< 5	4.3	3.6	0.3	140
82060	< 0.01	1.5	< 0.1	4.2	< 5	3.8	5.6	0.1	20
82061	< 0.01	3.6	< 0.1	8.6	9	5.8	6.3	0.2	4
82062	< 0.01	2.4	< 0.1	4.9	< 5	3.1	3.7	0.2	50
82063	< 0.01	2.8	< 0.1	5.2	< 5	3.5	16.9	4.0	240
82064	< 0.01	7.2	< 0.1	3.9	< 5	3.2	4.1	0.2	210
82065	< 0.01	8.2	< 0.1	4.8	14	5.3	6.4	0.3	60
82066	< 0.01	27.8	< 0.1	2.4	< 5	2.0	1.2	< 0.1	30
82067	0.03	23.9	< 0.1	1.8	51	8.7	1.0	0.2	60
82068	< 0.01	20.7	< 0.1	0.9	19.	4.9	0.6	< 0.1	40
82069	< 0.01	5.6	< 0.1	3.9	< 5 <	4.2	3.6	0.3	8
82070	< 0.01	2.8	< 0.1	5.0	< 5	3.4	3.7	< 0.1	190
82071	< 0.01	1.2	< 0.1	6.9	< 5	3.5	4.7	0.3	< 30
82072	< 0.01	3.6	< 0.1	7.6	۸ ۲	1.8	11.8	0.3	4

<u> </u>	mqq	0.2 FUS- MS-	Nazuz																						4.0	4.14				
Ŧ	Edd	10 FUS- MIS-	ZUZBNI																											
언	mdd	0.2 FUS- MS-	ZUZBYI																									8		
Ge	Eda	NS- MS-	ZUZBVI																											
99	Edd	U.I. MS-	INACUC																									2		
Ga	mad	PUS- MG-	INGCUC																						22.5	22.1				
Ъе	8	PUS- Na202							14.1	13.7	10.7	11.06					5.69	5.71	> 30.0	30.7	11.8	6.11	11.8	11.9	16.3	16.3	1.50	1.56	> 30.0	
Ēu	udd	MS- MS-	INACUC	ļ																										
Ē	Edd	PUS- MS-																 												
δ	mod	PUS- MS-														00														
IJ.	E d	FUS- MS-	1000	24960					119(1240.0					398(4030.(0(> 1000(22900(4 > 1000(30800				
ő	Edd	FUS-				0							293(283(57	1.3				
ö	Egg	MS-PUS-			32	321.			181	1800.0						10			(0											
ദ	Edd	FUS- MS-	> 500	20500					ŝ	8			-		85.	66			ð	ŝ					4 27	577				
පී	E d	NG PUS		-							ļ.,			 	0	00				0					33.	32.1				
8	m d	MS- MS-					**								254(2604.(00(~		2	74.	_				13	ξ.				
ខីរ	%	FUS- Na202					0.0	0.090									4 .0	0. <u>4</u>			5.61	5.8(1.2	1.2(2 1.5	3 1.4	< 0.0	0.088(
i 2 0	E d	MS- MS-		ļ																					Ň	51.5				
Be	E d	MS ^C																							0					
Ba	ud d	PUS- MS- MS-																							107	101				
æ	uud ,	FUS MS ² S	0	0					7	0					3	00			0	0					0	S				
As	Eod 4	Z FUS	225	8	0	6	N.	2	*	ŝ					17 34	5 356.0	-	0	4 110	9 101	ş	0	4	0	3 12	11	2	5		Ļ
آ ک	20.0	FUS- Na20			25.	28.	0.2	0.24			83				0.0	0.071	1.7	1 7.5	0.1	0.13) 7.4) 7.1	3.8) 3.7	4.4	4.3	4.5	4.6		Ļ
Analyte Symbol		Method Code	PTM-1a Meas	PTM-1a Cert	NIST 696 Meas	NIST 696 Cert	DTS-2b Meas	DTS-2b Cert	Oreas 74a (Fusion) Meas	Oreas 74a (Fusion) Cert	OREAS 101a (Fusion) Meas	OREAS 101a Fusion) Cert	NCS DC86314 Meas	NCS DC86314 Cert	CZN-4 Meas	CZN-4 Cert	OREAS 922 (Peroxide Fusion Veas	OREAS 922 Peroxide Fusion Cert	CCU-1e Meas	CCU-1e Cert	OREAS 680 (Peroxide Fusion Veas	OREAS 680 (Peroxide Fusion Cert	OREAS 139 Peroxide Fusion Veas	OREAS 139 Peroxide Fusion Sert	OREAS 624 Peroxide Fusion Veas	OREAS 624 Peroxide Fusion Cert	OREAS 124 Peroxide Fusion Meas	OREAS 124 Peroxide Fusion Sert	AMIS 0346 Peroxide Fusion Veas	

ဗွ

Page 5/10

ő

Report: A21-17782

_	_		7						_	_	-	_	_	-	_	-	_	_
<u>_</u>	udd	0.2	FUS- MS- Na202				3.9	4.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Ŧ	шда	10	FUS- MS- Na202				0	4	× 10	< 10	< 10	< 10	10	10	20	20	< 10 10	< 10
ę	Шdo	3.2	-US- AS- Va2O2				0.7	0.9	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
3e	mde	7.0	-US- AS- A202		5.4	6.0			5.8	5.7	4.5	3.5	5.6	5.7	6.4	5.4	< 0.7	< 0.7
Dd lo	d mdc	5	-US- MS- Va2O2				13.6	15.8	1.7	1.2	1.8	1.4	0.7	0.6	1.5	1.5	< 0.1	< 0.1
Ga	mdo	0.2	FUS- MS- Na2O2				20.6	29.2	7.67	82.4	101	107	65.1	69.2	78.1	74.5	< 0.2	< 0.2
Fe	%	0.05	FUS- Na202	44.3			2.97	3.06	0.61	0.58	0.53	0.56	0.34	0.35	0.32	0.32	× 0.05	< 0.05
Eu	mdd	0.1	FUS- MS- Na202				5.8	7.2	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
1 Li	шос	1.0	FUS- MS- Na2O2				1.6	2.0	0.2	< 0.1	0.2	0.2	< 0.1	0.1	0.5	0.3	< 0.1	< 0.1
<u>م</u>	mda	0.3	FUS- MS- Na202				5.4	6.1	1.0	0.6	1.0	1.5	0.5	0.5	1.0	1.7	< 0.3	< 0.3
Cu I	шdd	~	FUS- MS- Na2O2		49	46	343	351	Ξ	e	< 2	< 2	e	< 2	< 2	9	S	e
Cs S	шдо	0.1	FUS- MS- Na2O2				345	311	49.1	51.3	83.8	84.2	27.6	27.9	50.2	50.7	0.3	0.6
ŭ	шод	8	FUS- MS- Na202		20	20	120	69	120	100	100	06	60	50	50	50	40	80
Co	ppm	0.2	FUS- MS- Na2O2		14.5	12.9			0.5	0.6	0.4	0.5	1.2	1.1	0.6	1.3	0.7	1.4
e	ш	0.8	FUS- MS- Na202		<u> </u>		706	795	2.4	1.7	1.4	1.7	1.5	2.0	3.4	2.7	< 0.8	< 0.8
Cd	рт	~	FUS- MS- Na202		< 2	0.5			< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2 <
G	%	0.01	FUS- Na2O2				0.86	0.90	0.04	0.06	0.14	0.14	0.20	0.15	0.13	0.08	< 0.01	< 0.01
ŝ	bpm	2	FUS- MS- Na202		2	2	19	19	< 2	< 2	11	11	< 2	< 2	104	106	< 2	< 2 <
Be	ppm	3	FUS- MS- Na2O2				37	88	124	117	118	123	168	169	196	201	< 3	< 3
Ba	ррт	8	FUS- MS- Na202				1090	1010	6	4	11	6	9	7	8	6	< 3	< 3
8	ppm	10	FUS- MS- Na2O2						< 10	< 10	10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
As	mdd	5	FUS- MS- Na202		ŝ	2 Z	61	ŝ	<5	< 5	< 5	< 5.	< 5	< 5	< 5.	<5	<5	< 5
AI	%	0.01	FUS- Na2O2				5.42	5.37	9.41	9.26	8.75	9.19	8.75	8.89	8.03	8.04	< 0.01	< 0.01
Analyte Symbol	Unit Symbol	Lower Limit	Method Code	AMIS 0346 (Peroxide Fusion) Cert	NCS DC73520 Meas	NCS DC73520 Cert	OREAS 148 (Peroxide Fusion) Meas	OREAS 148 (Peroxide Fusion) Cert	82057 Orig	82057 Dup	82065 Orig	82065 Dup	82071 Orig	82071 Dup	82072 Orig	82072 Split PREP DUP	Method Blank	Method Blank

		-							_	_						_															-
Ę	шdd	0.1	FUS- MS- Na202																							3.9	4.12				
Te	mod	9	FUS- MS- Na202																	73	61.8										
٩	ррш	0.1	FUS- MS- Na202																												
Ta	mdd	0.2	MS- MS- Na202																												Ī
رد ا	ppm	3	FUS- MS- Na202							_																\$	47.6				ſ
Sn	ppm	0.5	FUS- MS- Na2O2											159	152																
ЕS	ppm	0.1	FUS- MS- Na2O2																												
ي.	%	0.01	FUS- Na202			-		19.2	18.4	15.8	15.14					0.26	0.295	> 30.0	30.51			21.3	20.6	16.9	16.34	21.0	20.5	> 30.0	38.2		
Se	mqq	8	FUS- MS- Na202													118	86.7	17													
ср Ср	Шdd	2	FUS- MS- Na2O2																	105	104					69	72.0				
s	%	0.01	FUS- Na2O2	22.4	22.4					7.64	7.25					> 25.0	33.07	0.37	0.389	> 25.0	35.3	5.15	5.14	16.0	16.04	13.4	13.2				
ЧЪ	mqq	0.4	FUS- MS- Na202											> 5000	11400											282	33.0				
خ	mod	0.1	FUS- MS- Na2O2																							4.9	4.27				
РР Р	mqq	0.8	FUS- MS- Na2O2													1750	1861.0			> 5000	7030					> 5000	6120				
ž	mod	10	FUS- MS- Na2O2	10000	474400					> 10000	32400 00																				
PN	Edd	0.4	FUS- MS- Na2O2																							16.5	16.8				
qN	ШÖd	2.4	FUS- MS- Na2O2																		3					8.0	5.78				
Mo	mdd	1	FUS- MS- Na202																							19	17.8				
ЧЧ	Edd	3	FUS- MS- Na2O2																	67	96.0					691	660				
ВW	%	0.01	FUS- Na2O2					> 30.0	29.8			1.15	1.23					1.60	1.61	0.73	0.706	3.65	3.71	0.50	0.501	1.28	1.31	0.21	0.224		
n	Eidd	3	FUS- MS- Na202											> 10000	18100. 00											8	10.3				
La	mqq	0.4	FUS- MS- Na202																							16.9	17.3				
¥	%	0.1	FUS- Na2O2									2.3	2.34					2.6	2.60			1.3	1.29	3.4	3.30	1.0	0.991	2.6	2.62		
Analyte Symbol	Unit Symbol	Lower Limit	Method Code	PTM-1a Meas	PTM-1a Cert	NIST 696 Meas	NIST 696 Cert	DTS-2b Meas	DTS-2b Cert	Oreas 74a (Fusion) Meas	Oreas 74a (Fusion) Cert	OREAS 101a Fusion) Meas	OREAS 101a (Fusion) Cert	NCS DC86314 Veas	NCS DC86314 Cert	CZN-4 Meas	CZN-4 Cert	OREAS 922 (Peroxide Fusion) Veas	OREAS 922 (Peroxide Fusion) Cert	CCU-1e Meas	CCU-1e Cert	OREAS 680 (Peroxide Fusion) Meas	OREAS 680 (Peroxide Fusion) Cert	OREAS 139 (Peroxide Fusion) Veas	OREAS 139 (Peroxide Fusion) Cert	OREAS 624 (Peroxide Fusion) Veas	OREAS 624 (Peroxide Fusion) Cert	OREAS 124 (Peroxide Fusion) Veas	OREAS 124 (Peroxide Fusion) Cert	AMIS 0346 Peroxide Fusion) Veas	

Report: A21-17782

Activation Laboratories Ltd.

ğ

Page 7/10

g

Report: A21-17782

_	_	_								<u> </u>	-			_				_
Ē	шdd	0.1	FUS- MS- Na2O2				47.8	51.0	3.7	3.5	5.1	5.0	4.4	4.2	5.7	6.1	< 0.1	< 0.1
Te	шdd	9	FUS- MS- Na202						15	< 6	6	< 6	7	< 6 < 6	< 6	< 6	7	4
Lb	mdo	0.1	FUS- MS- Na2O2				2.0	1.6	0.2	0.3	0.3	0.4	0.2	0.1	0.3	0.2	< 0.1	< 0.1
Ta	Шdd	0.2	FUS- MS- Na2O2						106	107	79.0	80.1	355	342	352	333	1.8	1.4
ې تە	udo		-US- MS- Na2O2				1 8	209	13	Ŧ	14	13	8	8	18	13	7	9
Sn	uda	0.5	FUS- MS- Na202		5.6	4.5	1300	1160	29.1	32.0	61.0	63.1	6.6	11.9	14.6	14.9	0.7	< 0.5
Sm	bm [0.1	FUS- MS- Na2O2		.		27.4	34.3	1.1	0.2	1.1	1.0	0.6	0.5	1.7	1.3	0.1	< 0.1
Si	%	0.01	FUS- Na2O2				> 30.0	36.0	> 30.0	> 30.0	> 30.0	> 30.0	> 30.0	> 30.0	> 30.0	> 30.0	< 0.01	< 0.01
Se	ppm	8	FUS- MS- Na202						21	80 ~	8	14	14	 8 8 	< 8 ×	< 8 8	14	13
Sb	ppm	2	FUS- MS- Na202		< 2	0.6	17	16	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2 <
S	%	0.01	FUS- Na2O2		0.41	0.44			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Rb	ррт	0.4	FUS- MS- Na2O2				1440	1360	663	840	1410	1420	198	207	554	550	1.8	2.7
Pr	pom	0.1	FUS- MS- Na2O2				75.8	82.0	0.1	0.3	0.3	0.2	0.2	0.2	0.4	0.5	< 0.1	< 0.1
Pb	ррт	0.8	FUS- MS- Na2O2		12.7	10.5			9.5	8.0	14.8	12.5	7.6	4.8	7.8	8.4	6.1	4.0
Z	ppm	10	FUS- MS- Na202		70	50			30	20	30	20	20	20	10	20	10	8
Nd	ррт	0.4	FUS- MS- Na2O2				240	260	1.0	< 0.4	0.4	0.6	< 0.4	< 0.4	1.8	1.2	< 0.4	< 0.4
Nb	ppm	2.4	FUS- MS- Na2O2				1622.6	1680.0	61.8	63.1	41.4	46.6	106.8	106.3	152.1	141.3	3.0	3.9
Mo	ppm	1	FUS- MS- Na202		1490	1500	10	10	2	3	2	1	1	2	1	1	2	< 1
Mn	рот	Э	FUS- MS- Na2O2		8290	9100	386	380	1420	1350	663	202	1520	1470	1510	1580	4	с Ч
Mg	%	0.01	FUS- Na2O2				0.44	0.47	0.01	< 0.01	< 0.01	< 0.01	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Li	ррт	3	FUS- MS- Na202				4820	4760	9490	9080	232	232	67	99	63	63	15	23
La	шод	0.4	FUS- MS- Na202				460	478	0.7	0.7	< 0.4	0.7	0.9	1.2	1.7	1.2	< 0.4	< 0.4
×	%	0.1	FUS- Na202				1.6	1.5	1.3	1.3	2.1	2.2	0.5	0.5	1.1	1.1	< 0.1	< 0.1
Analyte Symbol	Unit Symbol	Lower Limit	Method Code	AMIS 0346 (Peroxide Fusion) Cert	NCS DC73520 Meas	NCS DC73520 Cert	OREAS 148 (Peroxide Fusion) Meas	OREAS 148 (Peroxide Fusion) Cert	82057 Orig	82057 Dup	82065 Orig	82065 Dup	82071 Orig	82071 Dup	82072 Orig	82072 Split PREP DUP	Method Blank	Method Blank

g

Analyte Symbol	u.	Ц	Tm	n	~	M	۲	٩X	Zu
Unit Symbol	%	ppm	mdd	шdd	mod	mdd	mqq	шdd	шd
Lower Limit	0.01	0.1	0.1	0.1	5	0.7	0.1	0.1	30
Method Code	FUS- Na202	FUS- MS- Na2O2	FUS- MS- Na2O2	FUS- MS- Na202	FUS- MS- Na2O2	FUS- MS- Na2O2	FUS- MS- Na2O2	FUS- MS- Na2O2	FUS- MS- Na202
PTM-1a Meas									
PIM-Ta Cert NIST 696 Meas					384				
NIST 696 Cert					403.00				
DTS-2b Meas					8				
DTS-2b Cert									
Oreas 74a (Fusion) Meas									8
Oreas 74a (Fusion) Cert									
OREAS 101a (Fusion) Meas	0.38								
OREAS 101a (Fusion) Cert	0.395								
NCS DC86314 Meas						80.6			
NCS DC86314 Cert						79.0			
CZN-4 Meas				1					> 10000
CZN-4 Cert									550700 .00
OREAS 922 (Peroxide Fusion) Meas	0.43								
OREAS 922 (Peroxide Fusion) Cert	0.439								
CCU-1e Meas	10.000	2.6							> 10000
CCU-1e Cert		2.69							30200
OREAS 680 (Peroxide Fusion) Meas	0.52								
OREAS 680 (Peroxide Fusion) Cert	0.523					-			
OREAS 139 (Peroxide Fusion) Meas	0.16								
OREAS 139 (Peroxide Fusion) Cert	0.157								
OREAS 624 (Peroxide Fusion) Meas	0.15	1.1		1.3	38	8.1	17.2	2.4	• 10000
OREAS 624 (Peroxide Fusion) Cert	0.146	0.940		1.34	43.3	4.58	17.3	1.94	24100
OREAS 124 (Peroxide Fusion) Meas	0.26								
OREAS 124 (Peroxide Fusion) Cert	0.254								
AMIS 0346 (Peroxide Fusion) Meas	14.7				2800				

.

g

Analyte Symbol	I	IJ	Тm	n	>	×	٢	۲b	Zn
Unit Symbol	%	ppm	bpm	ppm	mqq	ppm	mqq	шdd	mad
Lower Limit	0.01	0.1	0.1	0.1	5	0.7	0.1	0.1	30
Method Code	FUS- Na202	FUS- MS- Na2O2	FUS- MS- Na2O2	FUS- MS- Na202	FUS- MS- Na2O2	FUS MS- Na202	FUS- MS- Na202	FUS- MS- Na2O2	FUS- MS- Na202
AMIS 0346 (Peroxide Fusion) Cert	15.0				2700				
NCS DC73520 Meas						\$25			410
NCS DC73520 Cert						518			370
OREAS 148 (Peroxide Fusion) Meas	0.34	11.0	0.2	8.2	53	10.0	16.7	1.2	180
OREAS 148 (Peroxide Fusion) Cert	0.35	12.3	0.2	8.6	56	6.42	19.4	1.4	160
82057 Orig	< 0.01	5.1	< 0.1	2.6	<5>	5.3	5.1	0.2	110
82057 Dup	< 0.01	5.2	< 0.1	2.3	< 5	3.8	3.2	< 0.1	70
82065 Orig	< 0.01	8.1	< 0.1	4.9	15	5.9	6.8	0.3	40
82065 Dup	< 0.01	8.2	< 0.1	4.8	13	4.7	6.1	0.3	90
82071 Orig	< 0.01	1.2	< 0.1	6.9	< 5	3.4	6.0	0.4	< 30
82071 Dup	< 0.01	1.3	< 0.1	6.8	< 5	3.6	3.4	0.2	< 30
82072 Orig	< 0.01	3.6	< 0.1	7.6	< 5	1.8	11.8	0.3	40
82072 Split PREP DUP	< 0.01	4.0	< 0.1	7.4	< 5	2.5	8.7	0.6	< 30
Method Blank	< 0.01	< 0.1	< 0.1	0.2	< 5	5.9	< 0.1	< 0.1	< 30
Method Blank	< 0.01	< 0.1	< 0.1	0.2	< 5	3.4	< 0.1	< 0.1	< 30

Quality Analysis ...

Innovative Technologies

Report No.:A21-17782-Final2Report Date:08-Oct-21Date Submitted:22-Sep-21Your Reference:100 - 100 -

Nuinsco Resources Limited 80 Richmond St, West 18th Floor Toronto ON M5H2A4 Canada

ATTN: Paul Jones

CERTIFICATE OF ANALYSIS

22 Rock samples were submitted for analysis.

The following analytical package(s) were requested:		Testing Date:
8-Peroxide ICPMS/ICP	QOP Sodium Peroxide (Sodium Peroxide Fusion ICPMS & ICP)	2021-10-07 14:47:00
UT-7	QOP Sodium Peroxide (Sodium Peroxide Fusion ICPOES + ICPMS)	

REPORT A21-17782-Final2

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

LabID: 266

ACTIVATION LABORATORIES LTD. 41 Bittern Street, Ancaster, Ontario, Canada, L9G 4V5 TELEPHONE +905 648-9611 or +1.888.228.527 FAX +1.905.648.9613 E-MAIL Ancaster@actlabs.com ACTLABS GROUP WEBSITE www.actlabs.com CERTIFIED BY:

Emmanuel Eseme , Ph.D. Quality Control Coordinator

Results

Activation Laboratories Ltd.

	Li Li	%	0.001	FUS-	Na202	1.98	1.19	1.03	1.65
1000	Analyte Symbol	Unit Symbol	Lower Limit	Method Code		82052	82058	82062	82063

Report: A21-17782

ö

و ا	0.001	FUS- MS- Na202	1.88	1.81	7.86	80	0.482	0.476
Analyte Symbol	Lower Limit	Method Code	NCS DC86314 Meas	NCS DC86314 Cert	Lithium Tetraborate FX-LT 100 lot#2206108 Meas	Lethium Tetraborate FX-LT 100 lot#220610B Cert	OREAS 148 (Peroxide Fusion) Meas	OREAS 148 (Peroxide Fusion) Ced

•

APPENDIX C Petrographic Study and SEM Data

THREE PEGMATITE SAMPLES

Petrographic Examination by Ingrid Kjarsgaard, Consulting Mineralogist, Ottawa for Paul Jones, NUINSCO Resources Ltd. October 2021

Overview

The three pegmatite samples consisted of feldspar (microcline and albite), quartz, muscovite and varying amounts of pale green spodumene, which in sample 1 was strongly altered but abundant and fresh in sample 3. Under the microscope additional trace minerals were discovered (most of them in sample 3A): spessartine garnet, beryl, U-bearing microlite (Tapyrochlore), zircon and columbite. One grain of microlite measured ca. 100µm (see photo on p.7), others were intergrown as an aggregate in a 550µm grain of columbite (photo on p.9). Tiny grains of columbite (≤25 µm) were also found disseminated in albite.

The individual petrographic descriptions follow below, including photos of the relevant minerals and areas. Note that the modal estimates vary strongly between thin sections because of the coarse grained nature of the rocks. SEM data were compiled on a separate page (wt.% oxide) in the workbook "Pegmatite SEM data" and fitted with a formula calculation.

SEM data

Semi-quantitative data for the major and minor mineral phases in sample 3 were obtained by SEM-EDS (see workbook "Pegmatite SEM data"). Li and Be could not be analyzed because they do not produce strong enough X-ray-fluorescence. Li₂O and BeO values from literature were added to the spodumene and beryl analyses, respectively, to produce a more complete analysis. The resulting formula calculation yielded a fairly close approximation of those minerals and confirms their identification.

Microlite contains between 59 to 77 wt.% Ta_2O_5 , 6.4 to 7.4 wt.% UO_2 and 2.5 to 4.8 wt.% Nb₂O₅. Columbite contained between 29 and 42 wt.% Ta_2O_5 and 30 to 50 wt.% Nb₂O₅. In sample 3A a colourless mineral with the optical characteristics of beryl was found, which showed wispy bright areas in BSE image in the centre of one grain that produced significant values of Cs (> 2wt.% Cs₂O), which is not unusual for beryl from LCT pegmatites (see attached excerpt on beryl from "Handbook of Mineralogy").

Petrographic Descriptions

Note that the modal estimates vary strongly between thin sections because of the coarse grained nature of the rocks.

- Sample 1: hand sample: triangular tapering piece, 13 x 6.5 x 7cm long consisting of ca. 60% pale feldspar (perthitic microcline and plagioclase), 25% grey quartz and 15% pale olive green muscovite; the thin section shows additional altered remnants of spodumene, trace fine grained, isometric spessartine garnet (≤ 0.5 mm), no opaques or other accessory minerals.
 - **Quartz** (60%) colourless, anhedral, medium to coarse grained (up to 1.2 cm), fractured, with slight undulous extinction (slightly deformed)
 - **Microcline** (10%) coarse (up to 1.5 cm), anhedral, perthitic with patchy exsolutions of plagioclase
 - **Muscovite** (10%) coarse, colourless, subhedral slightly bent grains (up to 1 cm), some with quite low ifc.
 - **Plagioclase** (5%) medium grained (up to 0.5 cm) elongate, subhedral to anhedral, tabular, slightly deformed crystals intergrown with quartz and microcline
 - **Spodumene** (1%) colourless, high relief, disaggregated remnants surrounded by pale beige micaceous alteration with low ifc. (Li-Al-clay?)
 - **Spessartine** garnet (tr.) small (. μm) colourless high relief isometric grains (≤ 400 μm) in muscovite
- 2) Sample 2: triangular tapering piece, 12 x 6 x 7cm long, consisting of ca. 75% feldspar, an elongated greenish-brownish mineral (altered spodumene?), grey quartz, minor pale olive green muscovite; potentially dark rectangular grain a few mm. The thinsection shows only quartz and feldspar with trace garnet.
 - **Quartz** (25%) colourless, anhedral, medium to coarse grained (up to 1.0 cm), fractured, with slight undulous extinction (slightly deformed)
 - **Microcline** (50%) fine granular to very coarse (up to 2 cm), anhedral, with small inclusions of plagioclase, and thin veinlets of qtz; finer grained around grain boundaries of large grains
 - **Plagioclase** (25%) medium grained (up to 1.5 cm) elongate, bladed crystals (cleavelandite?) intergrown with quartz and microcline
 - Almandine-spessartine garnet (tr.) small (≤300 µm) colourless high relief isometric grains in qtz-fsp
 - **Muscovite** (tr.) very small, very rare as single crystals or aggregates along grain boundaries of plagioclase

Sample 1 (1) spodumene remnants surrounded by alteration, intergrown with muscovite, plagioclase and fractured quartz; 4.50x 6.00mm; PPL (above), XPL (below)

Sample 1 (2) three small spessartine garnets in muscovite adjacent to quartz; 4.50x 6.00mm; PPL (above), XPL (below)

Sample 2 (1) small spessartine garnet in qtz-fsp with small muscovite flakes (lower left); F.o.V. 4.78x6.37mm (PPL, above, XPL, next page)

- 3) Sample 3: massive piece (13 x 10 x 8cm) with white fsp (albite), pale green elongate spodumene laths, grey quartz, white mica and some lichen. In addition, the thin section 3A shows a few isometric garnet grains (almost colourless, up to 1.2 mm), beryl, and small granular high relief grains of yellowish brown U-microlite, pale brown (zircon), and pale olive greenish microlite intergrown with very inhomogeneous opaque columbite. The section was examined by SEM to confirm the mineral identification, however, Li and Be cannot be detected by either SEM or microprobe because the elements are too light to produce characteristic X-rays. This means any Li-content in spodumene, muscovite or Be in beryl could not be detected. The beryl showed some Cs-rich domains in the BSE image.
 - **Spodumene** (55%) faintly coloured (pale yellowish to grey, pleochroic) coarse (up to 2cm long) colourless (low 1st order ifc.), subhedral, rounded, high relief grains with strong fracturing and cleavage, frayed around the edges and surrounded by myrmekitic intergrowth of quartz and colourless mica (muscovite, lepidolite?), some twinned
 - **Quartz** (18%) colourless, anhedral, medium grained (up to 0.3 cm), fractured, with slight undulous extinction (slightly deformed)
 - **Plagioclase** (22%) medium grained (up to 0.5 cm) elongate, bladed crystals intergrown with quartz
 - **Muscovite** (2%) colourless, anhedral deformed grains (up to 3 mm) intergrown with quartz & fsp; ii) in fine grained intergrowth with quartz around spodumene crystals
 - **Spessartine** garnet (tr.) small (200 to 800 μ m) colourless high relief isometric grains in qtz-fsp
 - **Beryl?** (3%) colourless, fine grained, euhedral to anhedral grains in qtz-fsp matrix (slightly higher relief and pebbly surface texture), largest grain 0.5 cm
 - **Columbite** (tr.) i) opaque subhedral grain (600µm) overgrowing granular aggregate of microlite; ii) as very fine grained (≤ 25 µm), deep red translucent almost opaque euhedral grains with high reflectance (light grey) intergrown with spodumene and albite
 - **U-Microlite** (tr.) dark yellowish brown translucent, round very high relief isometric grain (100 μm) with radioactive burn marks, isotropic (cubic and/or metamict). circle 1
 - **Zircon** (tr.) brown, anisotropic, high relief rounded lozenge shaped grains (50-100µm) attached to opaque columbite circle 2
 - **Microlite** (tr.) greenish-brownish translucent high relief granular aggregate (200µm) intergrown with opaque columbite

3A circles:

- 1) top right: U-microlite in albite between large apatite and spodumene, with garnet at edge
- 2) middle: zircon attached to columbite with inclusions of microlite in large beryl
- 3) large beryl in centre, garnet closer to edge and euhedral crystal of columbite

Sample 3A (1) brown U-bearing microlite (Ta-pyrochlore) adjacent to mica-rimmed spodumene and coarse colourless beryl(?) in qtz, F.o.V. 1.02 x 1.36 PPL (above) XPL (below)

Sample 3A (2) coarse twinned spodumene and two spessartine garnet grains in qtz-albite matrix; F.o.V. 4.68x 6.25mm; PPL (above), XPL (below)

Sample 3A (3) translucent brownish microlite intergrown with opaque columbite with a few elongate zircons attached at the lower left; 0.98 x 1.30mm PPL (above), RL (below)

Sample 3A (4) beryl(?) in centre in qtz-fsp matrix between spodumene with one spessartine grain top left (isotropic); F.o.V. 3.75 x 5.00mm; PPL (above), XPL (below)

Sample 3A (5) coarse muscovite between spodumene and quartz; F.o.V. 4.64x 6.18mm, PPL (above), XPL (below)

4) **Section 3B** consists almost entirely of extremely coarse subhedral crystals of microcline with blebby inclusions of plagioclase, and veined by fine to medium grained plagioclase and enclosing altered spodumene remnants intergrown with colourless mica (no photos)

Microcline (90%) extremely coarse single crystal occupying almost the entire section, faint tartan twinning, one good cleavage, blebby inclusions of plagioclase

Plagioclase (5%) small blebby inclusions in microcline and on grain boundaries

Spodumen-alteration (5%) high relief remnants in pale olive brownish alteration mineral

Muscovite (tr.) fine grained flakes surrounding altered spodumene

Project: NUINSCO Pegmatite Owner: INCA Site: Site of Interest 1(circle 1)

Sample: NUPEG 3A Type: Default ID: 3A

Processing option : Oxygen by stoichiometry (Normalised)

Spectrum	In stats.	Na	Al	Si	К	Са	Ti	Mn	Fe	Nb	Та	U	0	Total
Spectrum 1	Spessartine	0	10.14	16.77	0	0.19	0	27.42	7.22	0	0	0	38.26	100
Spectrum 2	microlite	0	0	3.19	0	11.56	1.43	0.85	1.03	3.44	49.68	5.82	22.99	100
Spectrum 3	spodumene	0	13.83	33.7	0	0	0	0	1.38	0	0	0	51.09	100
Spectrum 4	muscovite	0	19.44	22.88	9.73	0	0	0	2.01	0	0	0	45.93	100
Spectrum 5	? Li-min?	0.95	10.48	36.89	0	0	0	0	0	0	0	0	51.68	100
Spectrum 6	albite	8.43	9.8	32.64	0	0.21	0	0	0	0	0	0	48.92	100

close-up of microlite

Project: NUINSCO Pegmatite Owner: INCA Site: Site of Interest 1(circle 1) 2

Sample: NUPEG 3A Type: Default ID: 3A

Processing option : Oxygen by stoichiometry (Normalised)

Spectrum	In stats.	Al	Si	К	Са	Ti	Mn	Fe	Nb	Та	U	0	Total
Spectrum 1	microlite	0	2.84	0	11.18	0.95	0.67	0.95	3.27	51.45	6.25	22.43	100
Spectrum 2	microlite	0	4.07	0	10.96	1.09	0.94	0.83	3.47	48.56	6.7	23.38	100
Spectrum 3	muscovite	19.12	23.34	9.52	0	0	0	1.92	0	0	0	46.1	100

Project: NUINSCO Pegmatite Owner: INCA Site: Site of Interest 1(circle 2)

Sample: NUPEG 3A Type: Default ID: 3A

Processing option : Oxygen by stoichiometry (Normalised)

Spectrum	In stats.	Na	Са	Mn	Fe	Nb	Та	0	Total
Spectrum 1	columbite	0	0	7.99	6.06	20.67	42.84	22.43	100
Spectrum 2	microlite	1.15	11.04	0.73	0	1.76	65.15	20.18	100
Spectrum 3	columbite	0	0	8.87	7.17	35.2	23.73	25.03	100
Spectrum 4	columbite	0	0	8.29	6.2	27.65	34.21	23.65	100

Project: NUINSCO Pegmatite Owner: INCA Site: Site of Interest 1(circle 2) 2

Sample: NUPEG 3A Type: Default ID: 3A

Processing option : Oxygen by stoichiometry (Normalised)

Spectrum	In stats.	Si	Ca	Mn	Fe	Zr	Nb	Hf	Та	0	Total
Spectrum 1	zircon	15.01	1.27	0	0	39.91	1.29	8.78	0	33.74	100
Spectrum 2	zircon	14.03	0.91	0.41	0.59	42.41	2.01	6.16	0	33.48	100
Spectrum 3	columbite	3.22	0	8.26	7.55	0	21.36	0	34.54	25.07	100

there is some Cs in the schlieren of the dark phase probably contains Li, too

Project: NUINSCO Pegmatite Owner: INCA Site: Site of Interest 3

Sample: NUPEG 3A Type: Default ID: 3A

Processing option : Oxygen by stoichiometry (Normalised)

Spectrum	In stats.	Na	Al	Si	Ca	Mn	Fe	Nb	Cs	Та	0	Total
Spectrum 1	albite	8.26	9.88	32.81	0	0	0	0	0	0	49.05	100
Spectrum 2	albite	8.19	9.9	32.71	0.2	0	0	0	0	0	49	100
Spectrum 3	beryl?	1.03	10.94	36.44	0	0	0	0	0	0	51.6	100
Spectrum 4	beryl?	1.58	10.55	35.25	0	0	0	0	2.39	0	50.24	100
Spectrum 5	mixture	6.29	7.44	24.92	1.35	0.88	0.88	13.97	0	0	44.27	100
Spectrum 6	columbite	0	0	3.07	0	8.31	6.91	26.26	0	29.7	25.76	100
Spectrum 7	beryl?	1.8	9.59	35.9	0	0	0	0	2.5	0	50.21	100

circle	Spectrum	Mineral	Formula	Li20*	BeO*	Nb2O5	Ta2O5	ZrO2	HfO2	UO2	SiO2	TiO2	Al2O3
1	Spectrum 1	Spessartine	Mn3Al2(SiO4)3			0.00	0.00	0.00	0.00	0.00	35.88	0.00	19.16
1	Spectrum 2	microlite	(Ca,Na)2(Ta, Nb)2O6(O,OH,F)			4.77	58.84	0.00	0.00	6.40	6.62	2.31	0.00
1	Spectrum 3	spodumene	LiAlSi2O6	8.03		0.00	0.00	0.00	0.00	0.00	66.33	0.00	24.04
1	Spectrum 4	muscovite	KAI2AISi3O8			0.00	0.00	0.00	0.00	0.00	48.95	0.00	36.73
1	Spectrum 5	beryl ?	Be3Al2Si6O18		13.5	0	0	0	0	0	68.27	0	17.13
1	Spectrum 6	albite	NaAlSi3O8			0.00	0.00	0.00	0.00	0.00	69.83	0.00	18.52
1b	Spectrum 1	U-microlite	(Ca,Na)2(Ta, Nb)2O6(O,OH,F)			4.54	60.94	0.00	0.00	6.88	5.89	1.54	0.00
1b	Spectrum 2	U-microlite	(Ca,Na)2(Ta, Nb)2O6(O,OH,F)			4.82	57.52	0.00	0.00	7.37	8.45	1.76	0.00
1b	Spectrum 3	muscovite				0.00	0.00	0.00	0.00	0.00	49.93	0.00	36.13
2	Spectrum 1	columbite	(Fe,Mn)(Nb,Ta)2O6			29.57	52.31	0.00	0.00	0.00	0.00	0.00	0.00
2	Spectrum 2	microlite	(Ca,Na)2(Ta, Nb)2O6(O,OH,F)			2.44	77.16	0.00	0.00	0.00	0.00	0.00	0.00
2	Spectrum 3	columbite	(Fe,Mn)(Nb,Ta)2O6			50.35	28.98	0.00	0.00	0.00	0.00	0.00	0.00
2	Spectrum 4	columbite	(Fe,Mn)(Nb,Ta)2O6			39.55	41.77	0.00	0.00	0.00	0.00	0.00	0.00
2	Spectrum 1	zircon	ZrSiO4			1.85	0.00	53.91	10.35	0.00	32.11	0.00	0.00
2	Spectrum 2	zircon	ZrSiO4			2.88	0.00	57.29	7.26	0.00	30.01	0.00	0.00
2	Spectrum 3	columbite	(Fe,Mn)(Nb,Ta)2O6			30.56	42.18	0.00	0.00	0.00	6.89	0.00	0.00
3	Spectrum 1	albite	NaAlSi3O8			0.00	0.00	0.00	0.00	0.00	70.19	0.00	18.67
3	Spectrum 2	albite	NaAlSi3O8			0.00	0.00	0.00	0.00	0.00	69.98	0.00	18.71
3	Spectrum 3	beryl?	Be3Al2Si6O18		13.5	0.00	0.00	0.00	0.00	0.00	67.43	0.00	17.88
3	Spectrum 4	beryl? + Cs	Be3Al2Si6O18		11.5	0.00	0.00	0.00	0.00	0.00	66.74	0.00	17.64
3	Spectrum 5	mixture				19.98	0.00	0.00	0.00	0.00	53.31	0.00	14.06
3	Spectrum 6	columbite	(Fe,Mn)(Nb,Ta)2O6			37.57	36.27	0.00	0.00	0.00	6.57	0.00	0.00
3	Spectrum 7	beryl? + Cs	Be3Al2Si6O18		11.5	0.00	0.00	0.00	0.00	0.00	67.97	0.00	16.04
			molecular weight factor			0.6990	0.8190	0.7403	0.8480	0.8815	0.4674	0.5995	0.5293

Note: these are semi-quantitative SEM data

*Li2O and BeO from literature added and total adjusted to 100% including tho:

** Note: totals for microlite were normalized to 97% to account for OH, F, (

circle	FeO	MnO	CaO	Na2O	К2О	Cs2O	Total**		Li	Ве	Nb	Та	Zr	Hf	U	Si
1	9.29	35.41	0.27	0.00	0.00	0.00	100.00		0	0	0.000	0.000	0.000	0.000	0.000	2.997
1	1.29	1.06	15.69	0.00	0.00	0.00	96.99	0.97	0	0	0.175	1.297	0.000	0.000	0.116	0.537
1	1.63	0.00	0.00	0.00	0.00	0.00	100.03		1.006	0	0.000	0.000	0.000	0.000	0.000	2.066
1	2.59	0.00	0.00	0.00	11.72	0.00	99.99		0	0	0.000	0.000	0.000	0.000	0.000	3.122
1	0	0	0	1.11	0	0	100.00		0	2.914	0.000	0.000	0.000	0.000	0.000	6.134
1	0.00	0.00	0.29	11.36	0.00	0.00	100.00		0	0	0.000	0.000	0.000	0.000	0.000	3.041
1b	1.19	0.84	15.17	0.00	0.00	0.00	96.98	0.97	0	0	0.171	1.378	0.000	0.000	0.127	0.490
1b	1.04	1.18	14.88	0.00	0.00	0.00	97.00	0.97	0	0	0.174	1.247	0.000	0.000	0.131	0.673
1b	2.47	0.00	0.00	0.00	11.47	0.00	100.00		0	0	0.000	0.000	0.000	0.000	0.000	3.173
2	7.80	10.32	0.00	0.00	0.00	0.00	99.99		0	0	0.952	1.013	0.000	0.000	0.000	0.000
2	0.00	0.91	14.98	1.50	0.00	0.00	97.01	0.97	0	0	0.102	1.938	0.000	0.000	0.000	0.000
2	9.22	11.45	0.00	0.00	0.00	0.00	100.01		0	0	1.453	0.503	0.000	0.000	0.000	0.000
2	7.98	10.70	0.00	0.00	0.00	0.00	100.01		0	0	1.208	0.767	0.000	0.000	0.000	0.000
2	0.00	0.00	1.78	0.00	0.00	0.00	100.00		0	0	0.026	0.000	0.830	0.093	0.000	1.014
2	0.76	0.53	1.27	0.00	0.00	0.00	100.00		0	0	0.041	0.000	0.889	0.066	0.000	0.955
2	9.71	10.67	0.00	0.00	0.00	0.00	100.00		0	0	0.880	0.731	0.000	0.000	0.000	0.439
3	0.00	0.00	0.00	11.13	0.00	0.00	99.99		0	0	0.000	0.000	0.000	0.000	0.000	3.049
3	0.00	0.00	0.28	11.04	0.00	0.00	100.00		0	0	0.000	0.000	0.000	0.000	0.000	3.042
3	0.00	0.00	0.00	1.20	0.00	0.00	100.01		0	2.918	0.000	0.000	0.000	0.000	0.000	6.067
3	0.00	0.00	0.00	1.88	0.00	2.24	100.01		0	2.555	0.000	0.000	0.000	0.000	0.000	6.173
3	1.13	1.14	1.89	8.48	0.00	0.00	99.99		0	0	0.000	0.000	0.000	0.000	0.000	0.000
3	8.89	10.73	0.00	0.00	0.00	0.00	100.02		0	0	1.053	0.611	0.000	0.000	0.000	0.407
3	0.00	0.00	0.00	2.15	0.00	2.35	100.00		0	2.557	0.000	0.000	0.000	0.000	0.000	6.290
	0.7773	0.7745	0.7147	0.7419	0.8301	0.9432				25.01	265.8098	441.8928	123.2188	210.4888	270.0278	60.0843

se

0.5 1 2.5 2.5 2 2 2 2

CI

circle	Ti	Al	Fe2+	Mn	Ca	Na	К	Cs	∑cations	oxygens
1	0.000	1.886	0.649	2.505	0.024	0.000	0.000	0.000	8.060	12.000
1	0.141	0.000	0.087	0.073	1.363	0.000	0.000	0.000	3.788	7.000
1	0.000	0.882	0.043	0.000	0.000	0.000	0.000	0.000	3.996	6.000
1	0.000	2.761	0.138	0.000	0.000	0.000	0.954	0.000	6.974	11.000
1	0.000	1.814	0.000	0.000	0.000	0.193	0.000	0.000	11.055	18.000
1	0.000	0.950	0.000	0.000	0.014	0.959	0.000	0.000	4.964	8.000
1b	0.096	0.000	0.082	0.059	1.352	0.000	0.000	0.000	3.754	7.000
1b	0.106	0.000	0.069	0.080	1.271	0.000	0.000	0.000	3.749	7.000
1b	0.000	2.706	0.131	0.000	0.000	0.000	0.930	0.000	6.939	11.000
2	0.000	0.000	0.464	0.622	0.000	0.000	0.000	0.000	3.052	6.000
2	0.000	0.000	0.000	0.072	1.483	0.269	0.000	0.000	3.864	7.000
2	0.000	0.000	0.492	0.619	0.000	0.000	0.000	0.000	3.067	6.000
2	0.000	0.000	0.450	0.612	0.000	0.000	0.000	0.000	3.038	6.000
2	0.000	0.000	0.000	0.000	0.060	0.000	0.000	0.000	2.023	4.000
2	0.000	0.000	0.020	0.014	0.043	0.000	0.000	0.000	2.029	4.000
2	0.000	0.000	0.518	0.576	0.000	0.000	0.000	0.000	3.144	6.000
3	0.000	0.956	0.000	0.000	0.000	0.938	0.000	0.000	4.942	8.000
3	0.000	0.958	0.000	0.000	0.013	0.931	0.000	0.000	4.944	8.000
3	0.000	1.896	0.000	0.000	0.000	0.209	0.000	0.000	11.090	18.000
3	0.000	1.923	0.000	0.000	0.000	0.338	0.000	0.088	11.078	18.000
3	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
3	0.000	0.000	0.461	0.564	0.000	0.000	0.000	0.000	3.096	6.000
3	0.000	1.749	0.000	0.000	0.000	0.385	0.000	0.093	11.074	18.000
	79.8988	101.96128	71.8464	70.9374	56.0794	61.979	94.1954	281.8102		

2	1.5	1	1	1	0.5	0.5	0.5

APPENDIX D Tabulated Program Costs and Receipts

ZIGZAG 2021 WORK PROGRAM: Tabulated Program Costs

ZigZag Property September to November, 2021

Item	Date	<u>Name</u>	<u>Units</u>	Rate	<u>Subtotal</u>
SITE VISIT / SAMPLING					
Personnel & Accommodations					
Geologist	Sep 19th-22nd	F Ferri	3	650/day	\$ 1,950.00
Geologist	Sep 19th-22nd	P Jones	3	750/day	\$ 2,250.00
Hampton Inn	Sep 19th-21st	F Ferri			\$ 405.60
Hampton Inn	Sep 19th-21st	P Jones			\$ 367.12
Meals	Sep 19th-21st	Various			\$ 655.91
Transport					
Truck Rental (Budget) (25% of total invoice)					\$ 325.73
Fuel	22-Sep-21	Various			\$ 115.05
Flights (one way)	22-Sep-21	F Ferri			\$ 856.25
Flights (one way)	22-Sep-21	P Jones			\$ 479.12
Helicopter	21-Sep-21	WiskAir			\$ 7,734.00
Geochemistry					
Analytical (13 samples = 60% of total invoice)	7-Oct-21	Actlabs			\$ 1,108.80
PETROGRAPHIC STUDY					
Thin Section Prep		U of O	4 x \$45		\$ 180.00
Consultant		I.Kjarsgaard			\$ 1,385.00
DATA COMPILATION/MAP PREPARATION/REPOR	TING				
Geologist		L Giroux	8		\$ 4,000.00
	Tota	excluding H	ST) =		\$ 21,812.58