

We are committed to providing <u>accessible customer service</u>. If you need accessible formats or communications supports, please <u>contact us</u>.

Nous tenons à améliorer <u>l'accessibilité des services à la clientèle</u>. Si vous avez besoin de formats accessibles ou d'aide à la communication, veuillez <u>nous contacter</u>.

TECHNICAL REPORT ON PROSPECTING AND GEOCHEMICAL SAMPLING ON THE JACKRABBIT PROPERTY

Jackrabbit Property

Kenora Mining Division Kenora District, Ontario

NTS Sheet 52F/07 Boyer Lake Area - Map G-2572 NAD 83 UTM Zone 15N

Report Prepared For:

Blackrock Exploration Inc.

9 Blue Horizon Crescent Caledon Village, Ontario Canada L7K 0T9

Report Author: Thomas Baechler, BSc., G.I.T. Guelph, Ontario Completed November 17, 2022

Contents

1.0	Introduction	3
1.1	Summary	3
1.2	Location, Property, and Access	3
1.3	History	9
1.	.3.1 1980 to 2000	9
1.	.3.2 2004 – Temex Resources	9
1.	.3.3 2010 to 2012 – Treasury Metals	9
2.0	Geological Setting and Mineralization	10
2.1	Regional Geology	10
2.2	Property Geology and Mineralization	11
3.0	2022 Exploration Program	13
3.1	Overview	13
3.2	Sampling and Analysis	13
3.3	Interpretations and Conclusions	21
4.0	References	22
5.0	Statement of Qualifications	23
Appen	ndix A – Prospecting Daily Logs	24
Appen	ndix B – Summary of Costs	24
Appen	ndix C – Analytical Results	05
		25
Table	les & Figures	20
Table	les & Figures	25
Table	les & Figures 1 2	4
Table Table Table	les & Figures 1 2	23 4 10 13
Table Table Table Table	les & Figures 1 2 3 4	25 4 10 13 14
Table Table Table Table Table	les & Figures 1 2 3 4 1	23 4 10 13 14 6
Table Table Table Table Table Figure	les & Figures 1 2 3 4 1 2 3 4 2 3 4 5 5	23 4 10 13 14 6 7
Table Table Table Table Table Figure Figure	les & Figures 1 2 3 4 4 5.1. 5.2. 5.3. 5.3. 5.3. 5.3. 5.4. 5.4. 5.4. 5.4	23 4 10 13 14 6 7 8
Table Table Table Table Table Figure Figure Figure	les & Figures 1 2 3 4 2 3 4 2 3 4	23 4 10 13 14 6 7 8 12
Table Table Table Table Table Figure Figure Figure Figure	les & Figures 1 2 3 4 4 5	23 4 10 13 14 6 6 7 8 12 16
Table Table Table Table Table Figure Figure Figure Figure Figure	les & Figures 1 2 3 4 4 5 6.	25 4 10 13 14 6 7 8 12 16 17
Table Table Table Table Table Figure Figure Figure Figure Figure Figure	les & Figures 1 2 3 4 4 5 6 7.	25 4 10 13 14 6 7 8 12 16 17 18
Table Table Table Table Table Figure Figure Figure Figure Figure Figure Figure	les & Figures 1	25 4 10 13 14 6 7 8 12 16 17 18 19

1.0 Introduction

1.1 Summary

This report documents the findings resulting from reconnaissance prospecting and geochemical sampling work that was conducted on the Jackrabbit property between August 17th and August 22nd, 2022, a total of 6 days of field work. Mobilization to the project occurred on August 15th and 16th, 2022, with demobilization from the project occurring on August 23rd and 24th, 2022. Expenditures of \$48,404.22 are being submitted for assessment credit resulting from the prospecting, geochemical sampling, and report preparation work.

Mr. Cecil Johnson (#302389) and helper Mr. Dallas French under supervision of Mr. John Leliever were the individuals who performed the field work. Mr. Thomas Baechler, G.I.T., is the author of this technical report which was completed on November 17, 2022.

Field work, data analysis, and writing of this technical report were completed for Blackrock Exploration Inc. in accordance with the Technical Standards for Reporting Assessment Work for assessment work submission pursuant to the Mining Act, R.S.O. 1990, C. M.14 and the Assessment Work Regulation (O. Reg. 65/18). Blackrock Exploration Inc. is a private company controlled by Mr. John Leliever of Caledon Village, Ontario.

The objective of the work program was to: (a) identify new, prospective, Au-mineralized showings within sulfide-bearing mafic metavolcanic rocks that display structurally controlled shear-veining, and within quartz-feldspar porphyritic rocks across the property resulting from reconnaissance prospecting; (b) investigate and conduct reconnaissance resampling of legacy trench showings termed the "Goldcliff", "Sulfide", and "Shear Lake" (historically "Ange") showings.

Field work was comprised of prospecting and geochemical rock sampling of outcrop and float collected from the Goldcliff, Sulfide, and Shear Lake showings, and reconnaissance prospecting in unexplored areas of the property.

Sampling confirmed elevated gold values in rocks collected from the Ange showing, with smaller, elevated Au values returned from rocks collected from the Goldcliff showing. Slightly elevated Au, As, and Pb values were returned from gossanous outcrops in the northeastern part of the claims termed the "Donut Showing". Property-wide prospecting, targeting areas outside of the originally worked historical showings, and re-interpretation of the 2012 airborne electromagnetic and magnetic surveys, are recommended for future work. A broad soil sampling program could assist in highlighting northeast-trending anomalous gold zones that may exist corresponding to regional NE-trending shear and fracture zones from the Manitou Straits Fault.

All location data is reported in The North American Datum of 1983 (NAD 83) Universal Transverse Mercator (UTM) Zone 15N. Contained maps were produced by the author during preparation of this report.

1.2 Location, Property, and Access

The Jackrabbit Property is located within the Kenora Mining Division, in the Boyer Lake Area (G-2572) of the broader Kenora District (Figure 1). The center of the property is located at approximately 525640 m E, 5474739 m N (NAD 83 Zone 15N). The property is comprised of 82 contiguous single cell mining claims totalling approximately 1,722 Ha (Figure 3). Blackrock Exploration Inc. has 100% ownership of 63 single cell mining claims and earned interest in 19 single cell mining claims pursuant to an option agreement with Mr. Sherridon Johnson and Mr. Edward Barkauskas dating to April 1, 2021. Upon completion of the

satisfactory requirements outlined in the option agreement, Blackrock Exploration Inc. will acquire 100% ownership of the 19 optioned claims. A table summarizing the single cell mining claim numbers, Provincial Grid cell numbers, and ownership that comprise the Jackrabbit Property are shown in Table 1 below:

CLAIM NUMBER	PROVINCIAL GRID CELL NUMBER	OWNERSHIP	OWNER(S)
110007	52F07J315	Option	Sherridon Johnson, Edward Barkauskas
146603	52F07J357	Option	Sherridon Johnson, Edward Barkauskas
146604	52F07J356	Option	Sherridon Johnson, Edward Barkauskas Optioned to Blackrock Exploration Inc.
165474	52F07J336	Option	Sherridon Johnson, Edward Barkauskas Optioned to Blackrock Exploration Inc.
194749	52F07J335	Option	Sherridon Johnson, Edward Barkauskas Optioned to Blackrock Exploration Inc.
203773	52F07J275	Option	Sherridon Johnson, Edward Barkauskas Optioned to Blackrock Exploration Inc.
210555	52F07J294	Option	Sherridon Johnson, Edward Barkauskas Optioned to Blackrock Exploration Inc.
210556	52F07J313	Option	Sherridon Johnson, Edward Barkauskas Optioned to Blackrock Exploration Inc.
213296	52F07J316	Option	Sherridon Johnson, Edward Barkauskas Optioned to Blackrock Exploration Inc.
213297	52F07J355	Option	Sherridon Johnson, Edward Barkauskas Optioned to Blackrock Exploration Inc.
239703	52F07J274	Option	Sherridon Johnson, Edward Barkauskas Optioned to Blackrock Exploration Inc.
239704	52F07J312	Option	Sherridon Johnson, Edward Barkauskas Optioned to Blackrock Exploration Inc.
247782	52F07J295	Option	Sherridon Johnson, Edward Barkauskas Optioned to Blackrock Exploration Inc.
247783	52F07J293	Option	Sherridon Johnson, Edward Barkauskas Optioned to Blackrock Exploration Inc.
247784	52F07J314	Option	Sherridon Johnson, Edward Barkauskas Optioned to Blackrock Exploration Inc.
276459	52F07J292	Option	Sherridon Johnson, Edward Barkauskas Optioned to Blackrock Exploration Inc.
309143	52F07J317	Option	Sherridon Johnson, Edward Barkauskas Optioned to Blackrock Exploration Inc.
315874	52F07J337	Option	Sherridon Johnson, Edward Barkauskas Optioned to Blackrock Exploration Inc.
326471	52F07J273	Option	Sherridon Johnson, Edward Barkauskas Optioned to Blackrock Exploration Inc.
601324	52F07J215	100%	Blackrock Exploration Inc.
601325	52F07J216	100%	Blackrock Exploration Inc.
601326	52F07J217	100%	Blackrock Exploration Inc.
601327	52F07J218	100%	Blackrock Exploration Inc.
601328	52F07J234	100%	Blackrock Exploration Inc.
601329	52F07J235	100%	Blackrock Exploration Inc.
601330	52F07J236	100%	Blackrock Exploration Inc.
601331	52F07J237	100%	Blackrock Exploration Inc.
601332	52F07J238	100%	Blackrock Exploration Inc.
601333	52F07J254	100%	Blackrock Exploration Inc.
601334	52F07J255	100%	Blackrock Exploration Inc.
601335	52F07J256	100%	Blackrock Exploration Inc.
601336	52F07J257	100%	Blackrock Exploration Inc.
601337	52F07J258	100%	Blackrock Exploration Inc.
601338	52F07J276	100%	Blackrock Exploration Inc.
601339	52F07J277	100%	Blackrock Exploration Inc.
601340	52F07J278	100%	Blackrock Exploration Inc.
601341	52F07J296	100%	Blackrock Exploration Inc.
601342	52F07J297	100%	Blackrock Exploration Inc.
601343	52F07J298	100%	Blackrock Exploration Inc.
601344	52F07J318	100%	Blackrock Exploration Inc.
601345	52F07J338	100%	Blackrock Exploration Inc.

601346	52F07J358	100%	Blackrock Exploration Inc.
601347	52F07J376	100%	Blackrock Exploration Inc.
601348	52F07J377	100%	Blackrock Exploration Inc.
601349	52F07J378	100%	Blackrock Exploration Inc.
601394	52F07J392	100%	Blackrock Exploration Inc.
601395	52F07J393	100%	Blackrock Exploration Inc.
601396	52F07J394	100%	Blackrock Exploration Inc.
601397	52F07J395	100%	Blackrock Exploration Inc.
601398	52F07J396	100%	Blackrock Exploration Inc.
601399	52F07J397	100%	Blackrock Exploration Inc.
601400	52F07J398	100%	Blackrock Exploration Inc.
601401	52F07J399	100%	Blackrock Exploration Inc.
601402	52F07G012	100%	Blackrock Exploration Inc.
601403	52F07G014	100%	Blackrock Exploration Inc.
601404	52F07G015	100%	Blackrock Exploration Inc.
601405	52F07G016	100%	Blackrock Exploration Inc.
601406	52F07G017	100%	Blackrock Exploration Inc.
601407	52F07G018	100%	Blackrock Exploration Inc.
601408	52F07G019	100%	Blackrock Exploration Inc.
601409	52F07G034	100%	Blackrock Exploration Inc.
601410	52F07G035	100%	Blackrock Exploration Inc.
601411	52F07G036	100%	Blackrock Exploration Inc.
601412	52F07G037	100%	Blackrock Exploration Inc.
601413	52F07G038	100%	Blackrock Exploration Inc.
601414	52F07G039	100%	Blackrock Exploration Inc.
601415	52F07G054	100%	Blackrock Exploration Inc.
601416	52F07G055	100%	Blackrock Exploration Inc.
601417	52F07G056	100%	Blackrock Exploration Inc.
601418	52F07G057	100%	Blackrock Exploration Inc.
601419	52F07G058	100%	Blackrock Exploration Inc.
601420	52F07G059	100%	Blackrock Exploration Inc.
601421	52F07G060	100%	Blackrock Exploration Inc.
601422	52F07G074	100%	Blackrock Exploration Inc.
601423	52F07G075	100%	Blackrock Exploration Inc.
601424	52F07G076	100%	Blackrock Exploration Inc.
601425	52F07G077	100%	Blackrock Exploration Inc.
601426	52F07G078	100%	Blackrock Exploration Inc.
601427	52F07G079	100%	Blackrock Exploration Inc.
601428	52F07G080	100%	Blackrock Exploration Inc.
601429	52F07J379	100%	Blackrock Exploration Inc.
601430	52F07J359	100%	Blackrock Exploration Inc.

Table 1: Summary of Single Cell Mining Claims that comprise the Jackrabbit Property.

The closest population center is the City of Dryden, Ontario which is located approximately 41 km northwest of the property (Figure 2). The property is accessible via Highway 502, a Provincially maintained highway, which runs south of Dryden through the center of the property. The nearby community of Dryden has a population of 7,749 (2016 census) which can provide workers and supplies to support exploration programs. Numerous side ATV trails and minor forestry roads can provide access from the highway to the broader claim areas.

Figure 2. 100% owned and optioned Single Cell Mineral Claims that comprise the Jackrabbit Property, Kenora Mining Division, Ontario.

Figure 3. 100% Owned and Optioned Single Cell Mineral Claims with Claim Numbers that comprise the Jackrabbit Property, Boyer Lake Area, Kenora Mining Division, Ontario.

1.3 History

1.3.1 1980 to 2000

Between 1984 and 1987, J. R. Parker undertook geological characterization and mapping of the Dryden-Ignace area, including the Upper Manitou Lake area, which the Jackrabbit claims are located within. Results of this work are detailed in OGS Open File 5723 (Parker, 1989).

In 1986, Abermin Corporation conducted surface mapping, prospecting, and geochemical sampling on a group of legacy claims termed the Peri Project that overlapped parts of the current Jackrabbit claim group. A showing termed the "Road Showing" consisting of sulfide-bearing mafic metavolcanics was hand trenched, washed, mapped, and channel sampled, and property-wide prospecting and mapping was conducted. A total of 21 rock samples and 4 panned mineral concentrates were analyzed for Au. Exploration results were deemed unfavourable, with no significant gold mineralization or favourable alteration discovered resulting from the program (Hiltz, 1987).

Early prospecting, trenching, and channel sampling work was completed on the property by prospectors Mr. Sherridon Johnson and Mr. Edward Barkauskas between 1980 to the early 2000s (Gignac, 2011). At least 6 blast trenches were grab sampled, with samples reported to contain visible gold (Cheatle, 2011).

In the summer of 2003 and 2004, Mr. Johnson reported visible gold in dark mafic rocks from the southernmost Goldcliff trench (Johnson, 2004).

1.3.2 2004 – Temex Resources

In 2004, Temex conducted exploration work on the High Valley Property. Part of the current Jackrabbit Property claims overlap with the legacy claims originally owned by Temex. Work included traverse mapping, prospecting, detailed mapping and channel sampling of the Road Showing and Johnson-Mountdew Showing, and four reconnaissance MMI soil sampling lines. No significant gold values were obtained from property-wide prospecting. The highest Au values from channel samples taken from the Road Showing yielded 194 ppb Au over 0.30 m, and 977 ppb Au over 0.60 m from the Johnson-Mountdew Showing. Anomalous MMI soil sample response-ratios were reported for Au and Ag, corresponding linearly and broadly with the Johnson-Mountdew Showing. Further exploration work on the property was not encouraged (Lengyel, 2004).

It was later reported by Mr. Johnson and Mr. Barkauskas that the work was not completed within the area where samples containing visible Au were collected prior to 2004 (Gignac, 2011).

1.3.3 2010 to 2012 – Treasury Metals

In 2010, Treasury Metals entered into an option agreement with Mr. Sherridon Johnson and Mr. Edward Barkauskas on group of legacy claims termed the Goldcliff Property that overlapped the current Jackrabbit Property. Between 2010 and fall of 2011 Treasury Metals conducted prospecting, geological mapping, and geochemical sampling on the Goldcliff Property. An initial 14 samples were collected and assayed for Au, with a highest Au value yielding 612 ppb Au. An additional 59 samples were collected in June and July of 2011, with assays yielding a highest Au value of 792 ppb Au. The Au showings were termed the "Goldcliff", "Ange", and "Sulphide" showings (Cheatle, 2011).

In July of 2011, Treasury Metals contracted Fugro Airborne Surveys to conduct an airborne DIGHEM electromagnetic and magnetic survey over the Goldcliff Property. 648.42 line-km were flown with a spacing of 100 m, and 64.2 line-km of tie lines with a spacing of 1000 m (Fugro Airborne Surveys, 2011).

Exploration follow-up work was conducted in 2012, and was comprised of trench mapping, channel sampling, and handheld portable drilling up to 60 cm in depth (Krocker, 2012).

Diamond drilling commenced on the property in October, 2012 and consisted of 9 diamond drill holes totalling 1,386 m. One drill hole was drilled targeting the Goldcliff showing totalling 225 m, six targeting the Ange showing totalling 798 m, and two targeting the Sulphide showing totalling 363 m. Results from the drill program showed encouraging results. Drill hole GC1203 returned the best Au grades, with the highest Au grade interval being 1763.45 g/t Au over 0.75 m within a low-angle quartz vein containing flecks of visible gold. It was noted that elevated Au grades generally occurred at the contacts between quartz-feldspar porphyritic dykes and the host rocks, typically mafic metavolcanics (Krocker, 2012). Detailed information regarding the drill program results can be found in Krocker, 2012. A table summarizing the 2012 drill program is shown below (Table 2):

Drill Hole	Claim No.	Easting (m)	Northing (m)	Elevation (m.a.s.l.)	Azimuth (°)	Dip (°)	Length (m)	Start Date	End Date
GC1201	4241700	524959	5475237	438	240	-45	225	18-Oct- 12	22-Oct- 12
GC1202	4243498	524527	5476209	415	330	-45	126	23-Oct- 12	24-Oct- 12
GC1203	4243498	524527	5476208	415	325	-60	180	24-Oct- 12	25-Oct- 12
GC1204	4243498	524553	5476254	415	340	-63	63	26-Oct- 12	27-Oct- 12
GC1205	4243498	523553	5476253	414	340	-60	90	27-Oct- 12	28-Oct- 12
GC1206	4243498	524468	5476294	424	148	-45	177	29-Oct- 12	31-Oct- 12
GC1207	4243498	524523	5476182	417	345	-45	162	01-Nov- 12	02-Nov- 12
GC1208	4252787	524684	5475228	419	315	-45	162	03-Nov- 12	05-Nov- 12
GC1209	4252787	524673	5475256	417	260	-45	201	05-Nov- 12	07-Nov- 12

Table 2: Summary of drill holes from the Treasury Metals 2012 diamond drill program.

2.0 Geological Setting and Mineralization

2.1 Regional Geology

The Jackrabbit Project is situated within the Eagle-Wabigoon-Manitou Lakes Greenstone Belt of the Superior Province. The region comprises primarily Archean mafic to intermediate metavolcanic rocks, particularly basaltic and andesitic flows, tuffs and breccias; Archean felsic to intermediate metavolcanic rocks, comprised of ryolitic, rhyodacitic, dacitic and andesitic flows, tuffs and breccias, with chert, iron formation, with minor metasedimentary and intrusive rocks and related migmatites; coarse clastic metasedimentary rocks; diorite-monzondiorite-granodiorite suites; and massive granodiorite to granite (Blackburn, 1981).

Locally, the property geology is dominated by mafic to intermediate metavolcanic rocks. Mafic and ultramafic intrusive rocks, particularly gabbro, dominate the central part of the property. The mafic metavolcanic rocks are intruded by quartz-feldspar porphyritic dykes which have been observed both in the field and in drill core (Blackburn, 1981) (Krocker, 2012).

The Manitou Straits Fault is a major northeast-trending fault that skirts the northwestern claims, with movement along these faults resulting in widespread regional shearing and fracturing (Parker, 1989). The

fault separates the domains to the northwest and southeast into two distinct volcanic-sedimentary sequences. The northwest domain separated by the fault consists of coarse intermediate pyroclastic rocks and mafic flows with subsidiary felsic flows overlain by a thick sequence of mafic flows and pyroclastics, and subsidiary intermediate pyroclastics (Blackburn, 1981). The southeast domain is underlain by a thick sequence of mafic flows, with intermediate pyroclastic and epiclastic rocks, and an intercalated intermediate flow unit of alkaline affinity upwards in the stratigraphy (Blackburn, 1981). The upper part of the southeastern sequence consists of a thick sequence of mafic flows with one intercalated felsic flow unit that has been intruded by several concordant to discordant, gabbroic bodies (Blackburn, 1981). The Irene-Eltrut Lakes Batholithic Complex intruded the base of the southeastern metavolcanic-metasedimentary sequence in two stages and consists of syntectonic granodioritic and quartz monzonitic plutonic rocks (Blackburn, 1981). The Scattergood Lake Stock and the Taylor Lake Stock are two post-tectonic stocks that intrude the southeastern volcanic-sedimentary sequence (Blackburn, 1981).

The regional geology is described in detail in Ontario Geological Survey Open File Reports 5723 (OGS OFR 5723) and Ontario Geological Survey Report 202 (OGS R202).

2.2 Property Geology and Mineralization

The Jackrabbit Property is dominated by mafic metavolcanics intruded by the Mountdew Lake gabbro with minor diabase, which are constrained to the central area of the property (Blackburn, 1981). Widespread fracturing and shearing occur trending northeast-southwest due to the Manitou Straits Fault which is located proximal to the claims group (Hiltz, 1987).

The mafic metavolcanic rocks are typically flows of variable grain size, pillowed and porphyritic flows, and minor volcanic breccias. The mafic metavolcanics have greenschist metamorphism and display a strong, northeast-trending, vertical foliation (Hiltz, 1987).

Younger, quartz-feldspar porphyritic dykes have been observed cutting the mafic metavolcanic rocks across the property, with Au-mineralization occurring typically at the contacts between mafic metavolcanic rocks and quartz-feldspar porphyritic dykes (Krocker, 2012). Quartz-veins are also observed in contact between these two lithologies and can contain elevated Au-mineralization (Krocker, 2012).

Mineralization typically occurs within mafic metavolcanic rocks and at contacts between the country rock and quartz-feldspar porphyritic dykes (Krocker, 2012) (Gignac, 2011). Au-mineralization is often accompanied by pyrite, with trace chalcopyrite, pyrrhotite, and magnetite (Hiltz, 1987). Very fine-grained flecks of visible gold have been documented in grab samples from the Goldcliff trench by prospector Mr. Johnson (Johnson, 2004), from a grab sample of pyritic, mafic metavolcanics with fracture-controlled Aumineralization and auriferous quartz-veining collected by Mr. Krocker (Krocker, 2012), and from quartzvein at the contact between mafic metavolcanic rock and quartz-feldspar porphyritic dyke from drill hole GC1203 targeting the Ange Showing (Krocker, 2012). Mineralization is often associated with carbonate alteration (Krocker, 2012).

3.0 2022 Exploration Program

3.1 Overview

The 2022 Jackrabbit program was a short reconnaissance prospecting and sampling program. The objective of the work program was to: (a) identify new, prospective, Au-mineralized showings within sulfide-bearing mafic metavolcanic rocks that display structurally controlled shear-veining, and within quartz-feldspar porphyritic rocks across the property; (b) investigate and re-sample legacy trench showings termed the "Goldcliff", "Sulfide", and "Shear Lake" (historically "Ange") showings.

Field work was comprised of prospecting and geochemical sampling of outcrop and float rock across the Jackrabbit Property, with additional focus on sampling historical trench areas including the Goldcliff showing trench area, Shear Lake (Ange) trench area, and the Sulfide showing trench area.

Prospector Mr. Cecil Johnson and helper Mr. Dallas French travelled to the property on August 15th and 16th, 2022. Field work commenced on August 17th and was completed by August 23rd, 2022. Demobilization and travel off-site occurred on August 23rd and 24th, 2022. The table below summarizes field activities over the course of the work program:

Field Work Date	Description
August 17, 2022	Mobilization of camp, prospect and sampling of Goldcliff trenches and surrounding area
August 18, 2022	Prospecting and sampling of Shear Lake trenches and area
August 19, 2022	Prospect and sampling of eastern claims area
August 20, 2022	Prospect and sampling of central claims area
August 21, 2022	Prospect and sampling of Goldcliff trenches and northeastern claims area
August 22, 2022	Prospect and sampling of Sulfide trenches and south-central claims area
August 23, 2022	Camp demobilization

Table 3: Summary of field days from the 2022 field work on the Jackrabbit Property.

2 days were allocated additional to the field work for sample prep in advance of submission to AGAT Labs in Sudbury, Ontario, and data compilation by Mr. Johnson and Mr. French. 3.5 days of GIS compilation work and writing pertaining to preparation of this finalized report were completed in November 2022 by the author.

3.2 Sampling and Analysis

A total of 41 rock grab samples were collected across the property, with particular focus on re-sampling the Goldcliff, Sulfide, and Shear Lake (Ange) showings. 23 samples were taken via rock hammer and chisel from outcrop, with best efforts made to sample fresh material. 8 float samples were collected from trenched material next to the historical trenches. Samples were recorded and placed in polymer bags with premade sample tags and sealed with zip-ties. 10 of the 23 outcrop rock samples were collected from gossanous outcrops containing sulfides in the northeast area of the claims termed the "Donut Showing".

31 samples were submitted to AGAT Labs in Sudbury for analysis. Samples were weighed and dried, crushed to 90% passing 2mm, split to 250g and pulverized to 85% passing 75 µm. All samples underwent 4-acid digestion and analyzed with inductively coupled plasma optical emission spectrometry (ICP-OES) for 43 trace elements, and 30 g fire assay with ICP-OES finish for Au.

Of the 31 samples analyzed for Au, the highest value returned was 647 ppb Au sampled from the Shear Lake showing (historically Ange Showing) trench. All certificates and analytical results (including sample weights) of the 31 analyzed samples are included in Appendix C.

A table containing the recorded station and sample data is included below (Table 4):

SAMPLE ID	TYPE	UTM E (m)	UTM N (m)	ELEVATION (m)	SAMPLE DESCRIPTION	STATION DESCRIPTION	ROCK TYPE	SAMPLE CONDITION
682951	Sample	524897	5475203	424	Fine grain silicious altered basalt with dissemeninated py 2-3%.	GoldCliff Trench. Side of hill	Altered basalt	weathered and oxidized
682952	Sample	524899	5475201	421	Fine grain silicious altered basalt py 3-5% with Quartz stringers and trace py	GoldCliff Trench. Side of hill	Basalt with quartz vein	weathered and oxidized
682953	Sample	524900	5475204	428	Porphyry Dyke	GoldCliff Trench. 3 meter wide Porphyry Dyke cutting metavolcanics, strike 100, dip 070		fresh
682954	Sample	524905	5475253	444	Quartz stockwork in an altered silicious basalt, Trace to 1% cp and py	50cm-50cm angular Float at Goldcliff trench area	Metabasalt	fresh
682955	Sample	524137	5475913	438	Light pink to white and brown sheared medium to fine grain altered intermediate volcanic. Ankerite stained surface.	large sheared area, side of hill. porphyritic textured in places and ankerite noted	Intermediate metavolcanic	weathered and oxidized
682956	Sample	524513	5476229	459	Light pink to white Quartz feldspar porphyritic textured intermediate volcanic. With phenocryst 2- 3mm in a fine grained groudmass. Py 1-2%	Shear Lake Stripped area. Carbonate stained weathered surface	Quartz-feldspar porphyritic rock	weathered
682957	Sample	524511	5476229	455	Light pink to white Quartz feldspar porphyritic textured intermediate volcanic. With phenocryst 2- 3mm in a fine grained groudmass. Py 1-2%	Dump rock sample shear lake	Quartz-feldspar porphyritic rock	fresh
682958	Sample	524509	5476228	458	Light pink to white Quartz feldspar porphyritic textured intermediate volcanic. With phenocryst 2-3mm in a fine grained groudmass. Py 1-2%	Dump rock sample shear lake	Quartz-feldspar porphyritic rock	fresh
682959	Sample	525821	5477339	429	pink to brown inequigranular textured felsic to intermediate volcanic. Slightly sheared and foliated,trace py	OC 15-15M. Brown carbonate stained weathered surface. porphyritic textures in places	Intermediate metavolcanic	fresh
682960	Sample	525832	5477398	430	light blue medium to fine grain silicious metabasalt with 1-3mm quartz stringers. Disseminated and patchy Py 2-3%	4-4meter old blast trench. Some carbonate alteration in places	Metabasalt with quartz vein	fresh
682961	Sample	525831	5477407	429	brecciated Quartz veining in a intermediate metavolcanic with disseminated py 1-2%,	2-2meter blasted area in a intermediate volcanic Quartz breccia.	Intermediate metavolcanic wit quartz vein	fresh
682962	Sample	526065	5477503	434	light grey to blue fine grained intermediate highly silicious volcanic with 3-5%py and trace PO	Float sample from old trench	Intermediate metavolcanic	weathered and oxidized
682963	Sample	526058	5477526	439	light grey to blue fine grained intermediate highly silicious volcanic with 1-2% py	15m north of old trench, mixed forest of Birch, Alder and Poplar	Intermediate metavolcanic	fresh
682964	Sample	526064	5477506	433	light grey to blue fine grained intermediate highly silicious volcanic with 2-3% py	Large 2-2m blasted float from trench	Intermediate metavolcanic	fresh
682965	Sample	526065	5477499	431	light grey to blue fine grained intermediate highly silicious volcanic with 1-2% py	Large 2-2m blasted float from trench	Intermediate metavolcanic	fresh
682966	Sample	524135	5475948	385	pink to brown inequigranular textured felsic to intermediate volcanic. Slightly sheared and foliated,trace py	15-15meter OC. Some porphyritic textures in OC	Intermediate metavolcanic	fresh
682967	Sample	523466	5476252	389	pink grey to white phenocrysts of feldspar and Qtz in a intermediate metavolcanic with fine groundmass with asicular amphibole needles. Py trace to 1%		Intermediate metavolcanic	fresh
682968	Sample	523863	5475873	395	medium grained sheared and fractured grey brown to white altered intermediate volcanic, trace py	side of hill 15-15Meter OC. Brown carbonate weathered surface.	Intermediate metavolcanic	weathered
682969	Sample	524084	5475868	386	medium grained grey blue to white silicious intermediate volcanic. Disseminated py 1-2%	5-5meter OC, side of hill	Intermediate metavolcanic	fresh
682970	Sample	524102	5475889	392	dark grey to blue aphanitic textured highly altered mafic volcanic.with 1-2%py and 1-2mm stringers of magnetite	south side of hill in a mixed area of various geology.	Altered mafic volcanic	fresh

682971	Sample	524899	5475197	381	Fine grain silicious altered basalt with dissemeninated py 2-3%.	GoldCliff Trench. Side of hill	Altered basalt	weathered and oxidized
682972	Sample	524899	5475200	381	dark grey to blue aphanitic textured highly altered mafic volcanic.with 1-2%py	weathered and oxidized MV, goldcliff trench area	Altered mafic volcanic	weathered and oxidized
682973	Sample	524853	5475270	391	light blue grey highly silicious altered mafic volcanic. 1-1Meter rusty area top of hill west of goldcliff trench		Altered basalt	weathered and oxidized
682974	Sample	526009	5477504	390	light blue grey highly silicious fine to medium grained altered mafic volcanic. Disseminated py 1-2%	1-1meter exposure on side of small hill	Altered mafic volcanic	weathered and oxidized
682975	Sample	526046	5477529	402	light blue fine grained highly silicious intermediate metavolcanic with disseminated py 1-2%	trench dump float in old trench 2 meters wide, 2 meters deep and 10 meters long at 300 degrees	Intermediate metavolcanic	fresh
682976	Sample	526050	5477513	402	light blue fine grained highly silicious intermediate metavolcanic with disseminated py 1-2%	trench dump float in old trench 2 meters wide, 2 meters deep and 10 meters long at 300 degrees	Intermediate metavolcanic	fresh
682977	Sample	526050	5477513	402	light blue fine grained highly silicious intermediate metavolcanic with disseminated py 1-2%	trench dump float in old trench 2 meters wide, 2 meters deep and 10 meters long at 300 degrees	Intermediate metavolcanic	fresh
682978	Sample	524679	5475242	398	Dark blue fine grained altered basalt with 3-5%py	large stripped area known as the Sulfide trench area gossan zone	Altered mafic volcanic	weathered and oxidized
682979	Sample	524694	5475244	402	light grey to blue aphanitic textured highly silicious intermediate volcanic with2-3py	south east edge of stripped area known as the Sulfide trench	Intermediate metavolcanic	weathered and oxidized
682980	Sample	524671	5475241	399	semi massive PY in basalt	gossan zone at the stripped area known as the Sulfide trench	Gossan zone	weathered and oxidized
682981	Sample	524803	5474945	404	dark blue to grey Brecciated and altered medium grain metabasalt. Cloritized and silicious possible fault breccia. Py 2-3%	float, 2-2meter angular	Metabasalt	weathered and oxidized

 Table 4: Sample numbers, locations, and descriptions recorded by Mr. Cecil Johnson from the 2022 Jackrabbit Property field program.

Figure 6: Map showing samples collected from the Ange showing trench. Google Maps satellite imagery.

Figure 7: Map showing samples collected from prospecting the northeastern claims. Google Maps satellite imagery.

Figure 8: Map showing samples collected from the historical Goldcliff and Sulfide showing trenches. Google Maps satellite imagery.

Figure 9: Map showing samples collected from the historical Road Showing and prospecting the western claims. Google Maps satellite imagery.

3.3 Interpretations and Conclusions

Reconnaissance prospecting and geochemical sampling from the 2022 Jackrabbit field work confirmed anomalous Au-mineralization in the vicinity of the Shear Lake (Ange), Goldcliff, and Sulfide showings. Similar to what was encountered during the Treasury Metals 2011-2012 field and drill programs, the highest Au-mineralization from the 2022 reconnaissance sampling were constrained to the immediate area around the historical Ange showing. This showing also yielded the highest Au-grades in drill core.

Prospecting of the northeastern claims area yielded gossanous outcrop showings, which returned slightly elevated Au, the highest being 309 ppb Au. Samples collected from this area also returned elevated As and Pb. Follow-up prospecting extending beyond this original area is recommended.

Property-wide prospecting, particularly focusing on the northwestern area of the claim group proximal to the regional Manitou Straits Fault and outside of the historical work areas, is recommended for follow-up work. A broad soil reconnaissance grid across the property, with finer line-spacing covering the northeastern trend of the Ange showing, would assist in highlighting any property-wide, NE-trending anomalous Au-mineralization. Re-interpretation of the electromagnetic and magnetic surveys flown by Fugro Airborne Surveys for Treasury Metals in 2012 is also warranted. Expanding the prospecting and sampling footprint to the entire claim group would help identify new targets and assist in identifying any anomalous gold trends.

4.0 References

Blackburn, C. E. (1981). Geology of the Boyer Lake-Meggisi Lake Area, Ontario Geological Survey Report 202.

Cheatle, A. M. (2011). Prospecting and Sampling Report on the Goldcliff Property.

- Fugro Airborne Surveys. (2011). Logistics and Processing Report Airborne Magnetic and DIGHEM Survey for Treasury Metals Incorporated, Goliath and Goldcliff Properties, Dryden, Ontario, Canada.
- Gignac, J. (2011). Independent NI 43-101 Technical Report on the Jackrabbit Gold Project.
- Hiltz, M. (1987). Peri Project Geological Evaluation of the Peri Claims, Northwestern Ontario.

Johnson, S. (2004). Prospecting Report for Claim 1221078.

Krocker, R. (2012). Assessment Report for 2012 work performed on the Goldcliff Property.

Lengyel, J. P. (2004). 2004 Summer Program Report on the High Valley Property.

Ontario Geological Survey. (2011). 1:250 000 Scale Bedrock Geology of Ontario.

Parker, J. (1989). Geology, Gold Mineralization and Property Visits in the Area Investigated by the Dryden-Ignace Economic Geologist, 1984-1987. OGS Open File 5723.

5.0 Statement of Qualifications

I, Thomas G. Baechler of Guelph, Ontario certify that:

- 1. I am a registered Geoscientist-In-Training in good standing with the Professional Geoscientists of Ontario (PGO).
- 2. I graduated from Western University with a B.Sc. (Hons.) in geology in 2017.
- 3. I have reviewed and am familiar with the geology and analytical results pertaining to the 2022 work on the Jackrabbit Property.
- 4. I am responsible for preparation of the report titled "TECHNICAL REPORT ON PROSPECTING AND GEOCHEMICAL SAMPLING ON THE JACKRABBIT PROPERTY".
- 5. I have no material interest in the properties which are the subject of this report.

Thomas Backle

Dated November 17, 2022

Appendix A – Prospecting Daily Logs

Unit	Date	Notes
1 Day	August 15, 2022	August 15 th 2022, Travel Day. Sudbury Ontario to White River Ontario.8 Hrs. 625kms
1 Day	August 16, 2022	August 16 th 2022, Travel Day. White River Ontario to Dryden Ontario 9Hrs. 745kms
1 Day	August 17, 2022	August 17 th 2022, Travel from Dryden Ontario south on HWY 502 for 65kms to the Jackrabbit Project, mobilization of camp and Prep equipment. Prospect and Sample collection Gold cliff Trenches 8hrs
1 Day	August 18, 2022	August 18 th 2022, Shear Lake (Ange) Trench Area, Prospect and sample collection, 9 hrs.
1 Day	August 19, 2022	August 19 th 2022, Prospect and sample collection. East claim blocks area.8 Hrs.
1 Day	August 20, 2022	August 20 th 2022, Prospect and sample collection. Central claim blocks area. 9 Hrs.
1 Day	August 21, 2022	August 21 st 2022, Prospect and sample collection. Gold Cliff trench area and the North eastern claim block area. 8 Hrs.
1 Day	August 22, 2022	August 22 nd 2022, Prospect and sample collection. Sulfide trench area. South central claim blocks. 7 Hrs.
1 Day	August 23, 2022	August 23 rd 2022, Travel Day. Camp demobilization and travel from Jackrabbit Project to Hearst Ontario, 925km, 11 Hrs.
1 Day	August 24, 2022	August 24 th 2022, Travel day. Hearst Ontario to Sudbury Ontario. 575km, 9 Hrs.

Appendix B – Summary of Costs

Cost Summary	Cost Amount (\$CAD)
Field program labour - Mr. Leliever, project manager	\$ 8,475.00
Field program labour and rentals - Mr. Johnson, prospector	\$ 6,716.44
Field program labour - Mr. French, helper	\$ 3,000.00
Field progam labour - Ms. Stulberg, camp cook	\$ 2,582.63
Field program - service, equipment, supplies, and program management	\$ 22,837.55
Geochemical lab work - weigh, dry, crush, pulverize, dissolution and analysis	\$ 2,292.60
Background, GIS data compilation, map production, software, technical report writing - Mr. Baechler	\$ 2,500.00
TOTAL	\$ 48,404.22

Appendix C – Analytical Results

CLIENT NAME: MISC AGAT CLIENT ON, ON

ATTENTION TO: John Leliever; Tom Baechler PROJECT: AGAT WORK ORDER: 22T956901 SOLID ANALYSIS REVIEWED BY: Jeffrey Xiong, Lab Team Lead DATE REPORTED: Nov 14, 2022 PAGES (INCLUDING COVER): 18

Should you require any information regarding this analysis please contact your client services representative at (905) 501-9998

lotes	

Disclaimer:

All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
incorporate modifications from the specified reference methods to improve performance.

- All samples will be disposed of within 90 days following analysis, unless expressly agreed otherwise in writing. Please contact your Client Project Manager if you require additional sample storage time.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.

AGAT Laboratories (V1)

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA) Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) Page 1 of 18

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

AGAT WORK ORDER: 22T956901 PROJECT: 5623 MCADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: MISC AGAT CLIENT ON

(200-) Sample Login Weight						
DATE SAMPLED: Oc	t 12, 2022		DATE RECEIVED: Oct 12, 2022	DATE REPORTED: Nov 14, 2022	SAMPLE TYPE: Rock	
	Analyte:	Sample Login Weight				
	Unit:	kg				
Sample ID (AGAT ID)	RDL:	0.01				
682951 (4409196)		0.61				
682952 (4409198)		0.52				
682953 (4409199)		0.72				
682954 (4409200)		1.02				
682955 (4409202)		0.97				
682956 (4409204)		1.27				
682957 (4409205)		0.89				
682958 (4409207)		1.01				
682959 (4409208)		1.15				
682960 (4409210)		1.13				
682961 (4409211)		0.95				
682962 (4409213)		1.18				
682963 (4409214)		0.99				
682964 (4409215)		0.65				
682965 (4409217)		0.98				
682966 (4409218)		0.74				
682967 (4409219)		0.94				
682968 (4409220)		0.79				
682969 (4409221)		0.83				
682970 (4409223)		0.69				
682971 (4409224)		1.34				
682972 (4409226)		0.93				
682973 (4409227)		0.86				
682974 (4409229)		0.71				
682975 (4409230)		1.01				
682976 (4409232)		0.69				
682977 (4409233)		0.74				
682978 (4409234)		0.95				
682979 (4409236)		1.49				
682980 (4409238)		0.49				
682981 (4409239)		0.91				

Certified By:

AGAT WORK ORDER: 22T956901

PROJECT:

DATE RECEIVED: Oct 12, 2022

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

SAMPLE TYPE: Rock

CLIENT NAME: MISC AGAT CLIENT ON

ATTENTION TO: John Leliever; Tom Baechler

(200-) Sample Login Weight

DATE REPORTED: Nov 14, 2022

DATE SAMPLED: Oct 12, 2022

Comments: **RDL** - Reported Detection Limit

Analysis performed at AGAT 150 Jaguar Drive, Timmins, ON and 35 General Aviation Road, Timmins, ON (unless marked by *) Insufficient Sample : IS

Sample Not Received : SNR

Alto

AGAT WORK ORDER: 22T956901

PROJECT:

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: MISC AGAT CLIENT ON

			(2	201-070)	4 Acid D	igest - N	letals Pa	ickage, I	CP-OES	finish					
DATE SAMPLED: Oc	t 12, 2022			DATE REC	EIVED: Oct	12, 2022		DATE	REPORTED	D: Nov 14, 2	022	SAM	IPLE TYPE:	Rock	
	Analyte:	Ag	AI	As	Ва	Be	Bi	Са	Cd	Ce	Со	Cr	Cu	Fe	Ga
	Unit:	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm
Sample ID (AGAT ID)	RDL:	0.5	0.01	1	1	0.5	1	0.01	0.5	1	0.5	0.5	0.5	0.01	5
682951 (4409196)		<0.5	5.61	<1	129	0.8	<1	0.27	<0.5	29	235	124	599	15.4	46
682952 (4409198)		<0.5	2.67	<1	241	<0.5	<1	0.12	<0.5	13	94.7	311	763	8.90	28
682953 (4409199)		<0.5	9.04	<1	1040	1.6	<1	1.73	<0.5	120	2.2	109	<0.5	3.22	31
682954 (4409200)		<0.5	6.94	4	293	0.8	<1	6.41	<0.5	16	33.6	116	34.5	7.78	28
682955 (4409202)		<0.5	8.78	4	1310	2.0	<1	1.71	<0.5	116	10.1	99.3	6.8	2.85	32
682956 (4409204)		<0.5	8.50	4	368	1.5	<1	1.33	<0.5	78	6.9	50.3	5.8	2.59	33
682957 (4409205)		<0.5	8.27	32	311	1.1	<1	1.17	<0.5	73	11.9	62.3	14.9	2.83	27
682958 (4409207)		<0.5	8.07	7	380	1.3	<1	2.09	<0.5	76	8.0	52.5	12.7	2.50	29
682959 (4409208)		<0.5	8.37	<1	905	1.6	<1	2.11	<0.5	95	6.8	44.3	1.2	2.58	30
682960 (4409210)		<0.5	7.56	1	58	0.5	<1	3.98	<0.5	12	42.9	83.2	126	9.66	34
682961 (4409211)		1.7	1.80	103	179	<0.5	<1	3.45	<0.5	11	34.9	174	300	3.48	13
682962 (4409213)		<0.5	7.74	12	167	<0.5	<1	6.56	<0.5	14	36.1	69.4	239	10.0	35
682963 (4409214)		<0.5	7.53	10	52	0.5	<1	4.46	<0.5	12	31.3	57.6	195	12.9	46
682964 (4409215)		<0.5	6.90	53	398	0.5	<1	6.64	<0.5	12	37.8	83.8	255	9.45	34
682965 (4409217)		<0.5	7.96	27	1170	3.2	<1	4.91	<0.5	102	21.3	47.1	138	7.07	35
682966 (4409218)		<0.5	7.95	<1	826	1.5	<1	2.60	<0.5	98	7.9	59.6	5.2	2.36	29
682967 (4409219)		<0.5	9.27	6	1580	2.6	<1	1.61	<0.5	125	9.5	63.5	12.7	3.24	33
682968 (4409220)		<0.5	6.37	11	586	1.4	<1	6.04	<0.5	5	40.0	509	<0.5	5.99	25
682969 (4409221)		<0.5	8.88	8	829	2.3	<1	1.97	<0.5	106	11.8	67.1	12.9	2.78	33
682970 (4409223)		<0.5	5.22	57	420	0.9	<1	0.14	<0.5	20	73.8	96.9	372	11.4	44
682971 (4409224)		<0.5	2.59	6	228	<0.5	<1	0.09	0.5	13	89.4	219	1920	7.91	25
682972 (4409226)		<0.5	4.87	5	393	0.7	<1	0.23	<0.5	20	70.8	290	623	7.76	33
682973 (4409227)		<0.5	7.80	<1	797	0.7	<1	4.60	<0.5	16	35.3	165	207	9.71	38
682974 (4409229)		<0.5	6.14	15	38	<0.5	<1	5.68	<0.5	11	76.8	66.2	297	12.9	43
682975 (4409230)		<0.5	7.82	51	571	1.3	<1	3.85	<0.5	49	23.6	69.8	15.2	5.50	31
682976 (4409232)		<0.5	6.12	91	367	0.6	<1	5.31	<0.5	11	34.4	60.8	207	13.5	41
682977 (4409233)		<0.5	9.01	27	434	3.0	<1	2.83	<0.5	196	21.3	32.1	98.9	6.10	40
682978 (4409234)		<0.5	4.32	29	11	0.9	<1	3.87	<0.5	12	22.6	51.7	192	24.0	49
682979 (4409236)		<0.5	5.12	1400	311	1.4	<1	6.35	<0.5	13	29.7	62.7	52.6	16.0	40
682980 (4409238)		<0.5	1.93	219	72	0.7	<1	0.04	<0.5	19	107	130	269	34.4	86
682981 (4409239)		<0.5	2.29	31	149	0.5	<1	0.03	<0.5	27	103	144	2530	11.3	35

Certified By:

AGAT WORK ORDER: 22T956901

PROJECT:

5623 MCADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: MISC AGAT CLIENT ON

			(2	201-070)	4 Acid D	igest - N	letals Pa	ackage, I	CP-OES	finish					
DATE SAMPLED: Oc	t 12, 2022		I	DATE RECE	EIVED: Oct	12, 2022		DATE	REPORTED): Nov 14, 2	022	SAM	PLE TYPE	: Rock	
	Analyte:	In	К	La	Li	Mg	Mn	Мо	Na	Ni	Р	Pb	Rb	S	Sb
	Unit:	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm
Sample ID (AGAT ID)	RDL:	1	0.01	2	1	0.01	1	0.5	0.01	0.5	10	1	10	0.01	1
682951 (4409196)		<1	0.30	10	9	1.04	539	20.0	3.16	306	318	13	33	>10	<1
682952 (4409198)		<1	0.65	4	6	0.77	396	24.1	0.96	112	136	12	15	5.99	<1
682953 (4409199)		<1	1.69	60	11	1.27	679	8.1	5.06	7.8	1030	<1	123	0.02	<1
682954 (4409200)		<1	1.12	4	7	3.64	1810	1.2	2.68	46.4	504	2	19	0.04	<1
682955 (4409202)		<1	4.31	60	7	0.56	521	12.5	0.15	28.9	979	6	121	0.46	2
682956 (4409204)		<1	0.57	40	1	0.28	456	5.5	6.42	7.9	857	6	81	0.89	2
682957 (4409205)		<1	0.49	38	<1	0.39	418	8.9	6.14	8.4	885	6	74	1.54	3
682958 (4409207)		<1	0.57	39	<1	0.50	456	5.5	5.95	7.2	796	1	77	0.96	<1
682959 (4409208)		<1	1.61	46	4	0.80	467	4.8	4.28	13.9	958	<1	95	0.09	<1
682960 (4409210)		<1	0.12	2	22	3.50	1690	1.7	1.45	49.5	286	5	14	1.17	<1
682961 (4409211)		<1	0.88	5	2	1.23	745	23.3	0.04	14.9	123	13	13	1.74	26
682962 (4409213)		<1	0.75	4	39	3.33	1720	<0.5	1.46	60.4	300	7	17	1.49	2
682963 (4409214)		<1	0.21	<2	90	4.57	1930	<0.5	0.60	48.6	231	14	15	0.80	<1
682964 (4409215)		<1	1.89	3	19	2.64	1930	2.0	1.19	49.3	258	6	15	1.76	<1
682965 (4409217)		<1	1.56	49	13	1.99	1560	3.0	3.22	26.8	1160	4	108	0.80	<1
682966 (4409218)		<1	1.72	52	3	0.92	484	8.3	3.99	21.9	854	2	99	0.34	<1
682967 (4409219)		<1	2.48	63	11	0.81	518	5.2	4.50	21.1	1070	4	128	0.26	<1
682968 (4409220)		<1	2.66	<2	23	4.00	1180	0.7	0.10	155	179	3	<10	<0.01	2
682969 (4409221)		<1	3.41	55	24	0.93	456	8.3	2.77	19.4	1050	2	110	0.61	<1
682970 (4409223)		<1	1.93	7	28	1.18	609	20.8	0.04	82.6	236	14	21	3.82	<1
682971 (4409224)		<1	0.65	3	8	0.62	328	24.8	0.82	106	119	15	15	5.13	<1
682972 (4409226)		<1	1.04	6	12	1.25	655	16.4	2.01	106	216	8	22	4.17	<1
682973 (4409227)		<1	1.84	3	30	2.99	2070	7.4	1.69	51.5	512	4	19	1.61	<1
682974 (4409229)		<1	0.10	2	18	3.79	2870	<0.5	0.47	50.4	227	8	14	1.08	<1
682975 (4409230)		<1	2.86	23	22	2.02	1420	3.5	1.30	44.5	515	2	50	0.31	<1
682976 (4409232)		<1	0.84	<2	39	3.15	3050	<0.5	0.29	38.2	224	17	15	2.42	1
682977 (4409233)		<1	0.75	98	18	1.16	1310	5.0	5.12	17.0	2240	6	202	0.84	<1
682978 (4409234)		<1	0.03	<2	3	3.80	6660	<0.5	0.19	56.6	286	24	17	9.08	<1
682979 (4409236)		<1	1.24	<2	7	2.14	5860	1.6	2.65	37.5	380	21	17	2.01	<1
682980 (4409238)		<1	1.02	<2	4	0.28	577	5.8	0.07	57.2	149	40	23	>10	2
682981 (4409239)		<1	0.90	10	4	0.30	100	20.1	0.03	151	182	23	29	8.95	<1

AGAT WORK ORDER: 22T956901

PROJECT:

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: MISC AGAT CLIENT ON

			(2	201-070)	4 Acid D	igest - N	letals Pa	ackage, I	CP-OES	finish					
DATE SAMPLED: Oc	t 12, 2022		I	DATE RECI	EIVED: Oct	12, 2022		DATE I	REPORTED): Nov 14, 2	022	SAM	IPLE TYPE:	Rock	
	Analyte:	Sc	Se	Sn	Sr	Та	Те	Th	Ti	TI	U	V	W	Y	Zn
	Unit:	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm
Sample ID (AGAT ID)	RDL:	1	10	5	1	10	10	5	0.01	5	5	0.5	1	1	0.5
682951 (4409196)		20	<10	<5	71	<10	13	<5	0.19	<5	22	76.2	6	12	35.9
682952 (4409198)		11	<10	<5	18	<10	<10	<5	0.14	<5	13	62.8	<1	6	275
682953 (4409199)		9	<10	<5	300	<10	<10	11	0.28	<5	<5	78.5	5	20	52.4
682954 (4409200)		45	<10	<5	325	<10	<10	<5	0.62	<5	<5	287	<1	27	84.0
682955 (4409202)		7	<10	<5	102	<10	<10	7	0.12	<5	<5	64.2	10	11	43.4
682956 (4409204)		5	<10	<5	405	<10	<10	<5	0.14	<5	<5	46.4	5	10	28.2
682957 (4409205)		4	<10	<5	377	<10	<10	<5	0.12	<5	<5	34.6	14	10	26.9
682958 (4409207)		4	<10	<5	424	<10	<10	<5	0.11	<5	<5	36.9	5	9	33.0
682959 (4409208)		5	<10	<5	464	<10	<10	6	0.14	<5	<5	49.9	<1	11	75.0
682960 (4409210)		34	<10	<5	126	<10	<10	<5	0.44	<5	7	231	2	17	95.5
682961 (4409211)		4	<10	<5	181	<10	<10	<5	0.03	<5	<5	35.9	2	4	54.5
682962 (4409213)		35	<10	<5	149	<10	<10	<5	0.25	<5	6	228	1	9	118
682963 (4409214)		31	<10	<5	98	<10	13	<5	0.14	<5	9	242	2	8	177
682964 (4409215)		30	<10	<5	228	<10	<10	<5	0.15	<5	<5	196	1	7	104
682965 (4409217)		19	<10	<5	727	<10	<10	<5	0.30	<5	<5	170	3	19	127
682966 (4409218)		5	<10	<5	393	<10	<10	9	0.11	<5	<5	50.5	2	9	33.3
682967 (4409219)		6	<10	<5	1020	<10	<10	10	0.26	<5	<5	60.7	<1	16	64.7
682968 (4409220)		47	<10	<5	674	<10	<10	<5	0.16	<5	6	182	1	6	93.6
682969 (4409221)		7	<10	<5	262	<10	<10	10	0.21	<5	<5	56.9	13	15	40.8
682970 (4409223)		20	<10	<5	7	<10	<10	<5	0.19	<5	15	83.8	4	12	82.7
682971 (4409224)		11	<10	<5	16	<10	<10	<5	0.10	<5	10	49.9	<1	6	260
682972 (4409226)		14	<10	<5	36	<10	<10	<5	0.20	<5	10	86.3	2	11	222
682973 (4409227)		43	<10	<5	138	<10	<10	<5	0.69	<5	<5	318	3	29	86.7
682974 (4409229)		30	<10	<5	55	<10	11	<5	0.34	<5	<5	194	3	17	118
682975 (4409230)		23	<10	<5	150	<10	<10	<5	0.27	<5	<5	159	6	10	59.2
682976 (4409232)		29	<10	<5	172	<10	<10	<5	0.13	<5	<5	186	3	7	137
682977 (4409233)		10	<10	<5	792	<10	<10	7	0.32	<5	<5	138	1	34	115
682978 (4409234)		23	<10	<5	37	<10	28	<5	0.37	<5	<5	180	6	22	208
682979 (4409236)		26	<10	<5	209	<10	12	<5	0.12	<5	<5	184	5	7	104
682980 (4409238)		13	<10	<5	6	<10	42	<5	0.05	<5	53	117	9	6	32.0
682981 (4409239)		17	<10	7	10	<10	13	<5	0.09	<5	18	51.7	2	8	703
1															

				Certifica	ate of Analysis	MISSISSAUGA, ONTARIO
			Laboratories	AGAT WORK	ORDER: 22T956901	CANADA L4Z 1N9 TEL (905)501-9998
			Laboratories	PROJECT:		FAX (905)501-0589 http://www.agatlabs.com
CLIENT NAME: MIS	SC AGAT CLIE	NT ON			ATTENTION TO: John Le	eliever; Tom Baechler
			(201-070) 4 Ac	id Digest - Metal	ls Package, ICP-OES finish	
DATE SAMPLED: Oc	t 12, 2022		DATE RECEIVED	: Oct 12, 2022	DATE REPORTED: Nov 14, 2022	SAMPLE TYPE: Rock
	Analyte:	Zr				
	Unit:	ppm				
Sample ID (AGAT ID)	RDL:	5				
682951 (4409196)		108				
682952 (4409198)		56				
682953 (4409199)		240				
682954 (4409200)		92				
682955 (4409202)		171				
682956 (4409204)		184				
682957 (4409205)		176				
682958 (4409207)		173				
682959 (4409208)		165				
682960 (4409210)		62				
682961 (4409211)		21				
682962 (4409213)		64				
682963 (4409214)		61				
682964 (4409215)		56				
682965 (4409217)		163				
682966 (4409218)		146				
682967 (4409219)		222				
682968 (4409220)		15				
682969 (4409221)		213				
682970 (4409223)		117				
682971 (4409224)		58				
682972 (4409226)		106				
682973 (4409227)		84				
682974 (4409229)		50				
682975 (4409230)		117				
682976 (4409232)		50				
682977 (4409233)		289				
682978 (4409234)		47				
682979 (4409236)		56				
682980 (4409238)		29				
682981 (4409239)		56				

5623 McADAM ROAD

Asi		Certificate of Analysis
	Laboratories	AGAT WORK ORDER: 22T956901
		PROJECT:

5623 MCADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: MISC AGAT CLIENT ON

ATTENTION TO: John Leliever; Tom Baechler

(201-070) 4 Acid Digest - Metals Package, ICP-OES finish	
--	--

DATE RECEIVED: Oct 12, 2022

DATE REPORTED: Nov 14, 2022

SAMPLE TYPE: Rock

Comments: RDL - Reported Detection Limit

DATE SAMPLED: Oct 12, 2022

4409196-4409239 As, Sb values may be low due to digestion losses.

Analysis performed at AGAT 5623 McAdam Rd., Mississauga, ON (unless marked by *)

Insufficient Sample : IS Sample Not Received : SNR

Certified By:

	G	T	Laboratories	- Certifica AGAT WORK - PROJECT:	order: 22T956901	5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 bttp://www.acatlabs.com
CLIENT NAME: MISC	C AGAT CLIE	NT ON			ATTENTION TO: John Le	eliever; Tom Baechler
			(202-052) Fire	e Assay - Trace	Au, ICP-OES finish (ppm)	
DATE SAMPLED: Oct	12, 2022		DATE RECEIVED:	Oct 12, 2022	DATE REPORTED: Nov 14, 2022	SAMPLE TYPE: Rock
Sample ID (AGAT ID)	Analyte: Unit: RDL:	Au ppm 0.001				
682951 (4409196)		0.259				
682952 (4409198)		0.016				
682953 (4409199)		0.082				
682954 (4409200)		0.003				
682955 (4409202)		0.136				
682956 (4409204)		0.647				
682957 (4409205)		0.622				
682958 (4409207)		0.443				
682959 (4409208)		0.005				
682960 (4409210)		0.012				
682961 (4409211)		0.309				
682962 (4409213)		0.002				
682963 (4409214)		<0.001				
682964 (4409215)		0.004				
682965 (4409217)		0.002				
682966 (4409218)		0.038				
682967 (4409219)		0.002				
682968 (4409220)		0.003				
682969 (4409221)		0.004				
682970 (4409223)		0.035				
682971 (4409224)		0.028				
682972 (4409226)		0.018				
682973 (4409227)		0.017				
682974 (4409229)		0.010				
682975 (4409230)		0.003				
682976 (4409232)		0.003				
682977 (4409233)		0.004				
682978 (4409234)		0.052				
682979 (4409236)		0.023				
682980 (4409238)		0.234				
682981 (4409239)		0.057				

CAGAT Laboratories	Certificate of Analysis5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589PROJECT:FAX (905)501-0589 FAX (905)501-0589)) }
CLIENT NAME: MISC AGAT CLIENT ON	ATTENTION TO: John Laliovar: Tom Baachar	í.

CLIENT NAME: MISC AGAT CLIENT ON

ATTENTION TO: John Leliever; Tom Baechier

(202-052) Fire Assay - Trace A	Au, ICP-OES finish (ppm)	
DATE RECEIVED: Oct 12, 2022	DATE REPORTED: Nov 14, 2022	SAMPLE TYPE: Rock

DATE SAMPLED: Oct 12, 2022

RDL - Reported Detection Limit Comments:

Analysis performed at AGAT 5623 McAdam Rd., Mississauga, ON (unless marked by *) Insufficient Sample : IS Sample Not Received : SNR

Certified By:

AGAT WORK ORDER: 22T956901 PROJECT: 5623 MCADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: MISC AGAT CLIENT ON

ATTENTION TO: John Leliever; Tom Baechler

			Sieving - % Passir	ng (Crushing)	
DATE SAMPLED: Oct	12, 2022		DATE RECEIVED: Oct 12, 2022	DATE REPORTED: Nov 14, 2022	SAMPLE TYPE: Rock
	Analyte: C Unit:	crush-Pass % %			
Sample ID (AGAT ID)	RDL:	0.01			
682951 (4409196)		83.52			
682971 (4409224)		88.62			

Comments: RDL - Reported Detection Limit

Analysis performed at AGAT 150 Jaguar Drive, Timmins, ON and 35 General Aviation Road, Timmins, ON (unless marked by *)

Insufficient Sample : IS

Sample Not Received : SNR

Certified By:

AGAT WORK ORDER: 22T956901 PROJECT:

5623 MCADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: MISC AGAT CLIENT ON

ATTENTION TO: John Leliever; Tom Baechler

	Sieving - % Passing (Pulverizing)											
DATE SAMPLED: Oct	12, 2022		DATE RECEIVED: Oct 12, 2022	DATE REPORTED: Nov 14, 2022	SAMPLE TYPE: Rock							
	Analyte: Pu	ıl-Pass %										
	Unit:	%										
Sample ID (AGAT ID)	RDL:	0.01										
682951 (4409196)		89.79										
682969 (4409221)		88.24										

Comments: RDL - Reported Detection Limit

Analysis performed at AGAT 5623 McAdam Rd., Mississauga, ON (unless marked by *) Insufficient Sample : IS Sample Not Received : SNR

Certified By:

Quality Assurance - Replicate AGAT WORK ORDER: 22T956901 PROJECT: 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.aqatlabs.com

CLIENT NAME: MISC AGAT CLIENT ON

				(201	1-070) 4	Acid Di	gest - N	letals I	Package	, ICP-O	ES finis	h		
		REPLIC	CATE #1			REPLIC	ATE #2			REPLIC	ATE #3			
Parameter	Sample ID	Original	Replicate	RPD	Sample ID	Original	Replicate	RPD	Sample ID	Original	Replicate	RPD		
Ag	4409199	< 0.5	< 0.5	0.0%	4409218	< 0.5	< 0.5	0.0%	4409232	< 0.5	< 0.5	0.0%		
AI	4409199	9.04	9.35	3.4%	4409218	7.95	7.77	2.3%	4409232	6.12	6.16	0.7%		
As	4409199	< 1	< 1	0.0%	4409218	< 1	3		4409232	91	94	3.2%		
Ва	4409199	1040	1050	1.0%	4409218	826	795	3.8%	4409232	367	371	1.1%		
Be	4409199	1.6	1.7	6.1%	4409218	1.5	1.5	0.0%	4409232	0.62	0.65	4.7%		
Bi	4409199	< 1	< 1	0.0%	4409218	< 1	< 1	0.0%	4409232	< 1	< 1	0.0%		
Са	4409199	1.73	1.84	6.2%	4409218	2.60	2.61	0.4%	4409232	5.31	5.39	1.5%		
Cd	4409199	< 0.5	< 0.5	0.0%	4409218	< 0.5	< 0.5	0.0%	4409232	< 0.5	< 0.5	0.0%		
Ce	4409199	120	125	4.1%	4409218	98	101	3.0%	4409232	11	12	8.7%		
Со	4409199	2.21	2.26	2.2%	4409218	7.9	7.7	2.6%	4409232	34.4	32.6	5.4%		
Cr	4409199	109	79.2		4409218	59.6	63.1	5.7%	4409232	60.8	59.4	2.3%		
Cu	4409199	< 0.5	< 0.5	0.0%	4409218	5.19	5.01	3.5%	4409232	207	215	3.8%		
Fe	4409199	3.22	3.35	4.0%	4409218	2.36	2.32	1.7%	4409232	13.5	13.7	1.5%		
Ga	4409199	31	31	0.0%	4409218	29	29	0.0%	4409232	41	38	7.6%		
In	4409199	< 1	< 1	0.0%	4409218	< 1	< 1	0.0%	4409232	< 1	< 1	0.0%		
к	4409199	1.69	1.89	11.2%	4409218	1.72	1.74	1.2%	4409232	0.840	0.847	0.8%		
La	4409199	60	61	1.7%	4409218	52	53	1.9%	4409232	2	2	0.0%		
Li	4409199	11	12	8.7%	4409218	3	4	28.6%	4409232	39	39	0.0%		
Mg	4409199	1.27	1.31	3.1%	4409218	0.92	0.92	0.0%	4409232	3.15	3.20	1.6%		
Mn	4409199	679	689	1.5%	4409218	484	466	3.8%	4409232	3050	3130	2.6%		
Мо	4409199	8.1	6.3	25.0%	4409218	8.3	8.3	0.0%	4409232	< 0.5	< 0.5	0.0%		
Na	4409199	5.06	4.92	2.8%	4409218	3.99	3.75	6.2%	4409232	0.293	0.302	3.0%		
Ni	4409199	7.8	7.8	0.0%	4409218	21.9	22.1	0.9%	4409232	38.2	39.3	2.8%		
Р	4409199	1030	1060	2.9%	4409218	854	867	1.5%	4409232	224	226	0.9%		
Pb	4409199	< 1	< 1	0.0%	4409218	2	2	0.0%	4409232	17	13	26.7%		
Rb	4409199	123	126	2.4%	4409218	99	105	5.9%	4409232	15	15	0.0%		
S	4409199	0.02	0.01		4409218	0.340	0.348	2.3%	4409232	2.42	2.41	0.4%		
Sb	4409199	< 1	< 1	0.0%	4409218	< 1	< 1	0.0%	4409232	1	2			
Sc	4409199	9	10	10.5%	4409218	5	6	18.2%	4409232	29	28	3.5%		
Se	4409199	< 10	< 10	0.0%	4409218	< 10	< 10	0.0%	4409232	< 10	< 10	0.0%		
Sn	4409199	< 5	< 5	0.0%	4409218	< 5	< 5	0.0%	4409232	< 5	< 5	0.0%		

Quality Assurance - Replicate AGAT WORK ORDER: 22T956901 PROJECT:

5623 MCADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: MISC AGAT CLIENT ON

Sr	4409199	300	318	5.8%	4409218	393	395	0.5%	4409232	172	174	1.2%				
Та	4409199	< 10	< 10	0.0%	4409218	< 10	< 10	0.0%	4409232	< 10	< 10	0.0%				
Те	4409199	< 10	< 10	0.0%	4409218	< 10	< 10	0.0%	4409232	< 10	< 10	0.0%				
Th	4409199	11	12	8.7%	4409218	9	10	10.5%	4409232	< 5	< 5	0.0%				
Ti	4409199	0.28	0.29	3.5%	4409218	0.109	0.100	8.6%	4409232	0.13	0.20					
TI	4409199	< 5	< 5	0.0%	4409218	< 5	< 5	0.0%	4409232	< 5	< 5	0.0%				
U	4409199	< 5	< 5	0.0%	4409218	< 5	< 5	0.0%	4409232	< 5	< 5	0.0%				
V	4409199	78.5	80.4	2.4%	4409218	50.5	51.4	1.8%	4409232	186	185	0.5%				
W	4409199	5	7		4409218	2	2	0.0%	4409232	3	3	0.0%				
Y	4409199	20	20	0.0%	4409218	9	9	0.0%	4409232	7	7	0.0%				
Zn	4409199	52.4	51.5	1.7%	4409218	33.3	32.2	3.4%	4409232	137	138	0.7%				
Zr	4409199	240	242	0.8%	4409218	146	151	3.4%	4409232	50	50	0.0%				
(202-052) Fire Assay - Trace Au, ICP-OES finish (ppm)																
	REPLICATE #1 REPLICATE #2			ATE #2		REPLICATE #3				REPLICATE #4						
Parameter	Sample ID	Original	Replicate	RPD	Sample ID	Original	Replicate	RPD	Sample ID	Original	Replicate	RPD	Sample ID	Original	Replicate	RPD
Au	4409199	0.082	0.099	18.8%	4409218	0.038	0.010		4409232	0.003	0.004	28.6%	4409239	0.057	0.052	9.2%

Quality Assurance - Certified Reference materials AGAT WORK ORDER: 22T956901 PROJECT:

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: MISC AGAT CLIENT ON

(201-070) 4 Acid Digest - Metals Package, ICP-OES finish													
CRM #1 (ref.GTS-2a)					CRM #2 (ref.Till-2)								
Parameter	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits					
AI	6.96	7.42	107%		8.47	8.66	102%						
As	124	131	106%		26	28	106%						
Ва	186	191	103%		540	545	101%						
Be					4.0	3.6	91%						
Ca	4.01	3.91	97%		0.907	0.917	101%						
Ce	24	23	96%		98	102	104%						
Co	22.1	20.7	94%		15	12	78%						
Cr					60.3	59.8	99%						
Cu	88.6	81.4	92%		150	157	105%						
Fe	7.56	7.56	100%		3.77	3.82	101%						
к	2.021	2.149	106%										
La					44	45	103%						
Li					47	54	116%						
Mg	2.412	2.427	101%		1.10	1.08	98%						
Mn	1510	1524	101%		780	785	101%						
Мо					14	13	90%						
Na	0.617	0.709	115%		1.624	1.766	109%						
Ni	77.1	72.2	94%		32	32	101%						
Р	892	906	102%		750	742	99%						
Pb					31	25	82%						
Rb					143	105	74%						
S	0.348	0.327	94%										
Sc					12	13	107%						
Sr	92.8	87	94%		144	158	109%						
Ti					0.53	0.45	85%						
V					77	81	105%						
W					5	6	116%						
Zn	208	212	102%		130	126	97%						
(202-052) Fire Assay - Trace Au, ICP-OES finish (ppm)													
		CRM #1	(ref.GS7J)			CRM #2	? (ref.Till-2)						
Parameter	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits					

		(A)	G (,		Labor	atorie	S	Qualit AGAT \ PROJE	Quality Assurance - Certified Reference materials AGAT WORK ORDER: 22T956901 PROJECT:							5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-9998		
CLIENT NAME: MISC AGAT CLIENT ON									ATTE	INTION 1	TO: John Le	liever; To	m Baechle	ər	-			
	Au	7.34	7.31	100%														

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

Method Summary

CLIENT NAME: MISC AGAT CLIENT ON

PROJECT: SAMPLING SITE:

AGAT WORK ORDER: 22T956901

SAMPLING SITE:					
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE		
Solid Analysis					
Sample Login Weight	MIN-12009		BALANCE		
Ag	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES		
AI	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES		
As	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES		
Ва	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES		
Ве	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES		
Bi	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES		
Са	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES		
Cd	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES		
Се	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES		
Со	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES		
Cr	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES		
Cu	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES		
Fe	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES		
Ga	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES		
In	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES		
к	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES		
La	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES		
Li	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES		
Mg	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES		
Mn	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES		
Мо	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES		
Na	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES		
Ni	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES		
Р	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES		
Pb	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES		
Rb	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES		
S	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES		

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

Method Summary

CLIENT NAME: MISC AGAT CLIENT ON PROJECT:

AGAT WORK ORDER: 22T956901

SAMPLING SITE:		SAMPLED BY:						
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE					
Sb	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES					
Sc	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES					
Se	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES					
Sn	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES					
Sr	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES					
Та	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES					
Те	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES					
Th	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES					
ті	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES					
ті	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES					
U	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES					
V	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES					
w	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES					
Y	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES					
Zn	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES					
Zr	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES					
Au	MIN-12006, MIN-12004		ICP/OES					
Crush-Pass %			BALANCE					
Pul-Pass %			BALANCE					