Ontario \odot

We are committed to providing accessible customer service.
If you need accessible formats or communications supports, please contact us.

Nous tenons à améliorer l'accessibilité des services à la clientèle.
Si vous avez besoin de formats accessibles ou d'aide à la communication, veuillez nous contacter.

ZEN GEOMAP INC.

Assessment Report

Remote Sensing Survey
and
Outcrop Sampling Program 2022

Seymour Extension Property

Crescent Lake Area
Thunder Bay Mining Division

Prepared for:
Joshua Gold Resources Inc.
(Client \# 410637)

Prepared by:
Kevin Cool - Technical Report

Mining Claims Surveyed:

537741,537742,538061,538066,538051,538060,538063,
538048,538064,538065,538049,538054,538062,538047

December $20^{\text {th }}, 2022$

Table of Contents

1.0 Introduction 3
1.1 Summary 3-4
2.0 Location and Access 4-5
3.0 Regional and Local Geology 8-11
4.0 Property History 12
5.0 Summary of 2022 Remote Sensing Survey and Sampling Program 13-14
6.0 Processing 15
7.0 Conclusions and Recommendations 15-17
References 17
Statement of Qualifications
Kevin Cool - Technical Report 19

Appendices

Appendix 1 Sensefly - eBee drone specifications
Appendix 2 List of air photo images
Appendix 3 Field Sample Logs - summarized
Appendix 4 Sample Analytical Results (Actlabs)
Appendix 5 RS-121 Scintillometer Specifications
Appendix 6 Project Statement of Costs

List of Maps and Figures

Map

1 - Full-scale version of Figure 5 - Interpretive Map 20
Figures

1. Location and Access 5
2. Survey Outline and Sample Locations on current claim map 7
3. Regional Geology Map 8
4. Bedrock Geology Map (MRD 126) 11
5. Interpretive Map 18
Tables
6. List of Mining Claims covered by current survey 6
7. Enriched Lithium Values 16

1.0 Introduction

The Seymour Extension Property consists of 27 Active Mining Claims located in the Crescent Lake Area, Thunder Bay Mining Division. This report covers a remote sensing survey and outcrop sampling program carried out across 14 of the Active Claims in October / November 2022.

The remote sensing survey covers 14 mining claims, and the sampling program covers 3 mining claims.

Figure 2 shows the outline of the remote sensing survey and the outcrop / sample locations overlaid on a current claim map.

Table 1 provides a list of mining claims, including the work value completed on each claim.

1.1 Summary

Remote Sensing Survey

On October $11^{\text {th }}, 2022$, the mining claims were surveyed using an eBee fixed-wing drone equipped with a 20 -megapixel S.O.D.A. Camera. Zen Geomap Inc. of Timmins, Ontario carried out the survey on a contract basis for the client. The objectives of the survey were as follows;

1) Provide a high-resolution air photo mosaic across the proposed work area, to identify outcrop / exposed bedrock to be sampled in Fall, 2022.
2) Identify the type of terrain and ground access for the Fall 2022 sampling program.

Data processing and maps were completed between October $12^{\text {th }}$ and $15^{\text {th }}, 2022$ and the assessment report was prepared between October $10^{\text {th }}$ and December $20^{\text {th }}, 2022$. All of the objectives were reached and are described in detail under Section 5.

Fall 2022 Sampling Program

Between October $11^{\text {th }}$ and November $5^{\text {th }}, 2022$, six (6) outcrops were sampled. Samples were sent to Actlabs for analysis using their Ultratrace 7 (UT-7) package.

Sample Logs are provided in Appendix 3.
Analytical Results are provided in Appendix 4.
The coordinate system used throughout this report is Nad83, UTM Zone 16.

2.0 Location and Access

The property is accessed from Timmins by travelling to Armstrong, ON along highways 655, 11 and $527(993 \mathbf{~ k m})$, then along a well-maintained gravel road for $\mathbf{6 5 k m}$. The total driving distance from Timmins to site is $\mathbf{1 0 5 8} \mathbf{k m}$.

Figure 1 shows location and access from Armstrong to Site.

Figure 1 - Location and Access
-6-

Tenure ID	Anniversary	Tenure	Work	(Sq.m)	Area (\%)	(\$)	Number of	(\%)	(\$)
	Date	Status	Required	Area Surveyed	of total	Work Completed	Samples Taken	of total	Work Completed
				(Remote Sensing)		(Remote Sensing)	(Sampling)		(Sampling)
537741	2022-12-21	Active	400	17078	1.2	85			
537742	2022-12-21	Active	400	19418	1.3	96			
538031	2022-12-27	Active	400						
538032	2022-12-27	Active	400						
538033	2022-12-27	Active	400						
538034	2022-12-27	Active	400						
538036	2022-12-27	Active	400						
538045	2022-12-27	Active	400						
538046	2022-12-27	Active	400						
538047	2022-12-27	Active	400	8805	0.6	44			
538048	2022-12-27	Active	400	31165	2.1	155			
538049	2022-12-27	Active	400	45173	3.1	224			
538050	2022-12-27	Active	400						
538051	2022-12-27	Active	400	5253	0.4	26			
538052	2022-12-27	Active	400						
538053	2022-12-27	Active	400						
538054	2022-12-27	Active	400	136944	9.3	679			
538060	2022-12-28	Active	400	166065	11.2	824			
538061	2022-12-28	Active	400	199509	13.5	990	2	33.33	4866
538062	2022-12-28	Active	400	105805	7.2	525			
538063	2022-12-28	Active	400	205762	13.9	1021	1	16.66	2434
538064	2022-12-28	Active	400	135210	9.2	671			
538065	2022-12-28	Active	400	205781	13.9	1021			
538066	2022-12-28	Active	400	195210	13.2	967	3	50	7300
538067	2022-12-28	Active	400						
538068	2022-12-28	Active	400						
538069	2022-12-28	Active	400						
				1477178	100.0	7328		100	14600
				(148 ha)	CHK \%	(Remote Sensing)			(Sampling)

Table 1 - Work Completed on Active Mining Claims
-7-

Figure 2 - Survey Outline and Sample Locations

3.0 Regional and Local Geology

The Seymour Extension Property is located 230km NNE of Thunder Bay and sits within the Superior Province, near the subprovincial boundary between the English River and Wabigoon subprovinces. The property is located within the Caribou Lake Greenstone Belt, which sits along the north shore of Lake Nipigon and trends east-northeast.

Figure 3 shows the Seymour Extension Property location within the Superior Province.

Figure 3 Seymour Extension Property

Project Location within the Superior Province

Figure 3 - Project Location within the Superior Province

MRD126

Overlaid on available bedrock geology (Ref: MRD126 - Revised Bedrock 250K available through OGS Earth);

The Seymour Extension Property covers rock types 5,11 and 12b, as identified on the MRD126 rocktype legend.

Figure 4 presents above rock types, with the property outline and the location of 10 nearby MDI showings. Some of the key Lithium showings are described below;

MDI52I08NW00013 (North Aubry)

The North Aubry showing sits 2.8 km west of the Seymour Extension Property and is listed as a "developed prospect with reported reserves or resources" within MDI records. At the current time, the Aubry North showing is the focus of a diamond drill program by Green Technology Metals (see reference 4, Clapp, L., Jeffs, C., 2020 page 4).

According to Green Technology Metals’ website (2022), the Seymour Project resource currently stands at "4.8 Mt at 1.25% Li20 resource in accordance with the JORC Code".

MDI52I08NW00012 (South Aubry)

The South Aubry showing sits 3.2 km west of the Seymour Extension Property and is listed as a "developed prospect with reported reserves or resources" within MDI records. At the current time, the Aubry South showing is held by Green Technology Metals and is part of their exploration effort.

MDI0000000001274 (Kilometre 61)

The Kilometre 61 showing is listed with primary commodity as Molybdenum and secondary commodities as Copper and Silver. It is listed as a "developed prospect with reported reserves or resources" within MDI records.

MDI52I08NW00014 / 18 / 19 / 20 / 21

Above MDI records are all Lithium showings listed as "Occurrences" within MDI records.

MDI52I08NW00017 (Zig Zag Lake)

The Zig Zag Lake showing is listed with primary commodities as Lithium, Rubidium and Tantalum and secondary commodities as Cesium and Gallium. It is listed as a "Prospect" within MDI records.

Legend - MRD126

Figure 4
Local Geology - MRD126

- Mapped Pegmatite

Source: Green Technology Metals website map - Seymour Project
(5) Mafic to intermediate metavolcanic rocks Basaltic and andesitic flows, tuffs and breccias, chert, iron formation minor metasedimentary and intrusive rocks, related migmatites
(6) Felsic to intermediate metavolcanic rocks

Rhyolitic, rhyodacitic, dacitic and andesitic flows, tuffs and breccias, chert, iron formation minor metasedimentary and intrusive rocks; related migmatites

Gneissic tonalite suite
Tonalite to granodiorite-foliated to gneissic-with minor supracrustal inclusions
(120)

Foliated tonalite suite
Hornblende tonalite to granodiorite

Figure 4 - Seymour Extension Property overlaid on MRD126 bedrock geology

4.0 Property History

In February 2020 Ardiden Limited filed a lengthy report on their 2018 drill program (877 pages) carried out on the Seymour Lake LCT Pegmatite Property. This is the same property now / currently held by Green Technology Metals, which is directly adjacent / attached to the Seymour Extension Property.

As the history of the Seymour Pegmatite Property directly applies to the Seymour Extension Property, the exploration history section from the Ardiden report is included below. (See reference 4, Clapp, L., Jeffs, C., 2020 page 14).

Exploration History on the Property

Since the discovery of the "Aubry Pegmatites" in the 1950s, exploration work has identified significant concentrations of Ta, Be, and Li within the LCT Pegmatite dikes (e.g., Dimmell and Morgan, 2005). The exploration history is summarized as follows:

1957: Discovery of the Aubry Pegmatites by prospector Nelson Aubry (Nakina, Ontario).
1957: Anaconda Company (Canada) Limited - optioned from Aubry; mapping, sampling, diamond drilling (11 holes, 398m on North Aubry/4 holes, 100m on South Aubry). Drill core assayed for Li and Be .
1959-62: E.G. Pye (Ontario Department of Mines) mapped the area and described lithium occurrences in the area in addition to the Aubry pegmatites (Pye, 1968).
1969-70: Tantalum Corporation of Canada (Tanco) - ACA Howe International Ltd. completed geological mapping, geophysics, stripping, and chip sampling (110 samples) on North Aubry.

1979: E\&B Explorations Inc. and Cominco Ltd. - line cutting and ground magnetic surveys.
1999: Clark Exploration (Garry Clark) - grab sampling (Clark and Maitland, 2000).
2000-02: Linear Resources Inc. - gridding, prospecting, geological mapping, soil and Lithogeochemical sampling, trenching, channel sampling, and diamond drilling ($1,866 \mathrm{~m}$ in 32 holes).

2005: Dimmell and Morgan (2005) publish summary paper in Exploration and Mining Geology.
2008-09: Linear Resources Inc. - geological mapping, soil (640 enzyme leach samples; 200 m lines $/ 50 \mathrm{~m}$ stations) and rock sampling, and diamond drilling ($2,362 \mathrm{~m}$ in 19 holes; North (12) and South (7)).
2016: Benton Resources: diamond drilling (281m in 6 holes; February-March).
2016: Ardiden Limited: surface exploration (mapping, channel sampling; July-November).
2016: Ardiden Limited: diamond drilling (1728m in 27 holes; October-December)
2017: Ardiden Limited: diamond drilling (5049 meters; April $5^{\text {th }}$-September $29^{\text {th }}$)

5.0 Summary of the 2022 Remote Sensing Survey and Sampling Program

Objectives;

The objectives of the Remote Sensing survey are outlined below;

1) Provide a high-resolution air photo mosaic across the proposed work area, to identify outcrop / exposed bedrock to be sampled in Fall, 2022.
2) Identify the type of terrain and ground access for the Fall 2022 sampling program.

The objectives of the Sampling Program were to collect rock samples from outcrop / exposed bedrock as identified from the Remote Sensing survey. Samples were sent to Actlabs for analysis using their Ultratrace 7 (UT-7) package.

Remote Sensing Survey

A total of 279 air photos were taken using an eBee fixed-wing drone, with a 20 -megapixel S.O.D.A. Camera. The air photos were processed using Pix4D software, to produce a seamless air photo mosaic across the Seymour Extension Property.

The resulting mosaic was used to identify four (4) outcrops, which were sampled during the November 2022 sampling program. The 2 outcrops sampled in October 2022 had been identified earlier in 2022, based on a LiDAR survey.

The 2022 remote sensing survey is summarized as follows;

Survey Date:	${\text { October } 11^{\text {th }}, 2022}^{\text {Survey Area: }}$
148 ha	
Altitude:	150 m above terrain
Number of Pics:	279

Technical specs for the eBee drone are provided in Appendix 1.
A list of the 279 air photo images is provided in Appendix 2.

Sampling Program

Four (4) samples were collected from outcrop identified from the Remote Sensing Survey and 2 samples were collected from outcrop identified from a LiDAR survey carried out earlier in summer 2022.

Sampling Dates: \quad October $11^{\text {th }}$ and November $5^{\text {th }}, 2022$
Number of Samples:
Analysis: \quad Actlabs UT7 (Results provided in Appendix 4).

Scintillometer Readings

An RS-121 Gamma-ray scintillometer was used to collect readings at the 6 sample sites. Readings are expressed in cps (counts per second), where a background reading in a non-radioactive setting will typically range between 90 and 100 cps . The scintillometer readings are included on the sample logs in Appendix 3. Readings at all of the sites were elevated, ranging between 126 and 182 cps . Technical specifications for the RS-121 scintillometer are included as Appendix 5.

6.0 Processing

Remote Sensing Survey

279 air photo images were processed using Pix4D software, to produce a seamless air photo mosaic across the Seymour Extension Property.

Technical specs for the eBee drone are provided in Appendix 1.
A list of the 279 air photo images is provided in Appendix 2.

7.0 Interpretation, Conclusions and Recommendations

The 2022 Remote Sensing survey, carried out in October 2022, was successful at identifying outcrop within the Seymour Extension Property. The survey was further used to identify trails which were used during the November 2022 field sampling program. Figure 5 identifies 6 outcrops along with sample locations and access trails.

Sample results are summarized below. The full analytical results from Actlabs are found in Appendix 4. Analytical results for $\mathrm{Cs}, \mathrm{Li}, \mathrm{Nb}, \mathrm{Rb}$ and Ta (rare elements) from the 6 samples were compared to the average rare-element abundances for the upper continental crust as published by Taylor and McLennan 1985 (See Reference 6). The same 6 samples were compared to values that would be considered "Enriched", according to Taylor and McLennan 1985. Table 2 presents a summary of the results.

Report Number: A22-16831									
Report Date: 23/11/2022									
Analyte Symbol	Li	Mg	K	Rb	Nb	Ta	Cs	Ba	Sr
Unit Symbol	ppm	\%	\%	ppm	ppm	ppm	ppm	ppm	ppm
Detection Limit	15	0.01	0.1	0.4	2.4	0.2	0.1	3	3
Analysis Method	FUS-Na2O2	FUS-Na2O2	FUS-Na2O2	FUS-MS-Na2O2	FUS-MS-Na2O2	FUS-MS-Na2O2	FUS-MS-Na2O2	FUS-MS-Na2O2	FUS-MS-Na2O2
T2-A	41	4.83	1.1	85.5	4	1.1	2.1	638	251
3	75	0.23	0.7	46.8	7	1	3.2	116	218
4	104	0.99	2.5	83.3	7.2	1	5.8	1250	821
5	15	0.06	3.7	139	5.2	1.8	1.4	408	111
6	159	0.96	3.1	90.7	6.5	0.8	3.7	1550	866
T7-A	96	0.19	1.8	74.3	6.8	0.9	8.2	318	149
Green box indicates values exceeding what is considered to be Enriched (Lithium)									
Yellow box indicates values exceeding the average upper continental crust (Cesium)									
Average rare-element abundances for the upper continent crust (Taylor and McLennan 1985)									
Symbol	Element	Upper Continental Crust (UCC)	UCC Enriched x3						
		(Average ppm)							
Cs	Cesium	3.7	11.1						
Li	Lithium	20	60						
Nb	Niobium	25	75						
Rb	Rubidium	112	336						
Ta	Tantalum	2.2	6.6						

Table 2 - Enriched Lithium values Highlighted in Green

Four (4) out of 6 samples show Lithium values exceeding what is considered "enriched" relative to the average Lithium values found in the upper continental crust. Three (3) out of 6 samples show Cesium values exceeding what is considered to be the average found in the upper continental crust.

Recommendations

During the October and November field work programs, 7 additional outcrops (or broader areas with exposed bedrock) were visually identified in the field. The 7 areas are shown on Figure 5 as orange dashed outlines. Two (2) additional outcrops that fall within Seymour Extension Property were subsequently identified from satellite imagery.

It is recommended that the 9 additional outcrop areas be overlaid on the LiDar survey that was completed by the client in early summer 2022. This would help to further define or constrain the 9 outcrop areas. LiDar would help to resolve any exposed bedrock hidden below tree canopy. This basic map work would cost approximately $\$ 400$ to complete.

The resulting 9 outcrop areas (once better-defined using the existing LiDar data...) could be sampled in spring or summer 2023. Scintillometer readings could be taken in a grid pattern across the 9 outcrop areas, particularly in places that may have thin moss cover. This type of field sampling and scintillometer program would cost approximately $\$ 20,000$ to complete.

References;

1) MRD126 - Revised Bedrock 250K available through OGSEarth.

OGSEarth can be found at link: geologyontario.mndm.gov.on.ca/ogsearth.html
Under the main menu, you will see "Bedrock Geology" which includes a tab to download a KML file.
The KML file will launch automatically if you already have Google Earth installed on your computer.
2) MDI - Mineral Deposits Inventory, available through OGS Earth

OGSEarth can be found at link: geologyontario.mndm.gov.on.ca/ogsearth.html
Under the main menu, you will see "Ontario Mineral Inventory (OMI)" which includes a tab to download a KML file.

The KML file will launch automatically if you already have Google Earth installed on your computer.
3) OAFD - Ontario Assessment File Database, available through OGS Earth

OGSEarth can be found at link: geologyontario.mndm.gov.on.ca/ogsearth.html
Under the main menu, you will see "Ontario Assessment File Database (OAFD)" which includes a tab to download a KML file.

The KML file will launch automatically if you already have Google Earth installed on your computer.
4) Clapp, L., Jeffs, C. (2020). Technical Report for MNDM Assessment, 2018 Diamond Drill Program, Seymour Lake LCT Pegmatite Property. Prepared for Ardiden Limited, Feb 27, 2020.
5) Weicker, R. (2019). Assessment Report on Aerial Survey (Lidar) conducted by RME Geomatics on the Jackpot Property. Prepared for Infinite Lithium Corp, May 29, 2019.
6) Taylor, S R. and McLennan, S M. (1985). The continental crust : Its composition and evolution. Book published in the U.S.

Figure 5 - Interpretive Map

Statement of Qualifications

Author - Kevin Cool		
Education		
from	to	Description
	1983	Photography - 1 year, Humber College, Toronto Ontario
1988	1990	Survey Engineering Technician - 2 year honours diploma, Northern College Porcupine Campus
	2014	Received Permanent Prospectors Licence, by reason of having held a Prospector's Licence for 25 years or more
	2014	Aviation Ground School, Transport Canada Compliant Unmanned Aerial System training seminar
	2014	Radio Operators Certificate - Aeronautical
Companies owned and operated		
1990	2001	General Surveys \& Exploration - mining, exploration, aggregate, construction survey and computer drafting.
2000	2005	Big Red Diamond Corp. - traded publicly on TSX Venture excahange under symbol DIA. Junior mining company exploring for diamonds.
		Participated in and managed regional-scale airborne geophysical programs, stream sampling, geochem sampling and camp construction.
		Property-scale work includes ground magnetometer, grid cutting and survey.
2005	2011	True North Mineral Laboratories Inc. - heavy mineral separation by heavy liquid. Crushing / pulverizing for other assay. 30+ employees.
		Provided services to the mining and exploration industry such as claim staking, till and geochem sampling, magnetometer survey.
2014	current	UAV Timmins - drone aerial mapping and survey. 1st company to apply drone air photo survey as valid mining claim assessment in Ontario.
2017	current	Zen Geomap Inc. - drone magnetometer survey. 1st company to apply drone mag survey as valid mining claim assessment in Ontario.

I, Kevin Scott Cool, of 15 Prospector St., Gold Centre in the City of Timmins, Province of Ontario, hereby certify that:

1) I am a graduate of Northern College of Applied Arts and Technology, May $26^{\text {th }}$ 1990, Porcupine Campus, with a 2 year Honors Diploma in Survey Engineering Technology
2) I have subsequently operated above businesses, directly engaged with the mining and exploration industry.
3) I have been actively engaged in my profession since May, 1990, in all aspects of ground and airborne exploration programs including the planning and execution of regional and property-scale programs, supervision, data processing, maps, interpretation and reports.

Zen Geomap
204-70C Mountjoy ST. N. Timmins, ON P4N 4V7

Appendix 1

Sensefly - eBee Specifications

Technical specifications

- 96 cm wingspan
- Less than 700 g (1.5 lbs) take-off weight
- Lithium polymer battery powered
- 45 minutes of flight
- $36-57 \mathrm{~km} / \mathrm{h}(10-16 \mathrm{~m} / \mathrm{s})$ cruise speed
- Up to $45 \mathrm{~km} / \mathrm{h}(12 \mathrm{~m} / \mathrm{s})$ wind resistance
- Ground sensor and reverse engine technology for linear landing
- Up to 3 km radio link
- 16MP camera, electronically integrated and controlled
- On-board data logging
- Covers areas up to $10 \mathrm{~km}^{2}$
- Down to 3 cm Orthomosaic accuracy
- Down to 5 cm Digital Elevation Model (DEM) accuracy
- 3D flight planning and visualization
- Flight simulator
- Real time mission update and control
- Multiple drones operation capable (with midair collision avoidance)
- Easy data management system (geotag images, create KML files and memorize flight history)

Package contents

- eBee central body complete system with senseFly's built-in autopilot \& all electronics (ready to fly)
- Pair of detachable wings
- Still camera (includes memory card, battery, USB cable and charger)
- 2.4 GHz USB radio modem for data link (includes USB cable)
- Lithium-Polymer battery packs (includes charger)
- Spare propeller
- Carrying case with foam protection
- Remote control \& its accessories for safety pilots (if legally required)
- User manual
- Software access codes \& license keys (eMotion 2, Postflight Terra 3D-EB)

Appendix 2

List of 279 air Photo Images

Appendix 3

Field Sample Logs Summarized in Table format

Sample	Easting	Northing	Scintillometer	Type	Description													
			Reading (cps)															
T2-A	402164	5586010	135	Metavolcanic	Fine grained, d	d, dark green to black												
3	401838	5586775	126	Granodiorite	Fine grained,	, uniform groundmas	s, no phenocr	ocrysts, mino	or amounts	f fine grained biotite								
4	401874	5586731	155	Granite	medium grain	ined, uniform ground	dmass, up to	~10\% biotit										
5	401999	5586544	182	Granite	Fine grained, somer	d, some 1.3 cm feldsp	ar, plagioclas	, pheocyry	rsts. Some fi	fine grained mico (mus	scovite?) on	fracture su	rface					
6	402126	5586563	140	Granite	Fine grained g	groundmass with elo	ongate plaigi	ioclase phen	enocrysts up	to 1 cm								
T7-A	402052	5586489	138	Gneissic Tonalite, Tonalite	Part is gneissic	sic tonalite, with an a	Iterted (Tona	nalite?) in a fi	fine grained	d white ground mass w	with large pl	agioclase cr	crystals < 4cm	m. Some fin	ne grained bi	biotite throu	ughout	
							rdinates are	Nad83, UTM	M Zone 16									

Appendix 4

Analytical Results and Certificate of Analysis
 (Actlabs)

Report No.:	A22-16831
Report Date:	23-Nov-22
Date Submitted:	11-Nov-22
Your Reference:	SEYMOUR EXTENSION

ATTN: Drew Currah

CERTIFICATE OF ANALYSIS

7 Rock samples were submitted for analysis.

The following analytical package(s) were requested:	Testing Date:	
UT-7	QOP Sodium Peroxide (Sodium Peroxide Fusion ICPOES + ICPMS)	$2022-11-16$ 14:26:58

REPORT A22-16831
This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

LabID: 266

Mark Vandergeest
Quality Control Coordinator

Analyte Symbol	AI	As	B	Ba	Be	Bi	Ca	Cd	Ce	Co	Cr	Cs	Cu	Dy	Er	Eu	Fe	Ga	Gd	Ge	Ho	Hf	In
Unit Symbol	\%	ppm	ppm	ppm	ppm	ppm	\%	ppm	\%	ppm	ppm	ppm	ppm	ppm	ppm								
Lower Limit	0.01	5	10	3	3	2	0.01	2	0.8	0.2	30	0.1	2	0.3	0.1	0.1	0.05	0.2	0.1	0.7	0.2	10	0.2
Method Code	FUSNa 2 O 2	$\begin{aligned} & \hline \text { FUS- } \\ & \text { MS- } \\ & \mathrm{Na2O2} \end{aligned}$	$\begin{aligned} & \hline \text { FUS- } \\ & \text { MS- } \\ & \mathrm{Na2O2} \end{aligned}$	FUS-MSNa 2 O 2	$\begin{aligned} & \text { FUS- } \\ & \text { MS- } \\ & \mathrm{Na} 2 \mathrm{O} 2 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline \text { FUS- } \\ \text { MS- } \\ \text { Na2O2 } \\ \hline \end{array}$	FUSNa 2 O 2	$\begin{aligned} & \text { FUS- } \\ & \text { MS- } \\ & \mathrm{Na} 2 \mathrm{O} 2 \end{aligned}$	$\begin{aligned} & \text { FUS- } \\ & \text { MS- } \\ & \mathrm{Na} 2 \mathrm{O} 2 \end{aligned}$	$\begin{aligned} & \left\lvert\, \begin{array}{l} \text { FUS- } \\ \text { MS- } \\ \mathrm{Na2O2} \end{array}\right. \\ & \hline \end{aligned}$	$\begin{aligned} & \left\lvert\, \begin{array}{l} \text { FUS- } \\ \text { MS- } \\ \mathrm{Na2O2} \end{array}\right. \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { FUS- } \\ & \mathrm{MS}-- \\ & \mathrm{Na} 2 \mathrm{O} 2 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { FUS- } \\ & \text { MS- } \\ & \mathrm{Na} 2 \mathrm{O} 2 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline \text { FUS- } \\ \mathrm{MS}- \\ \mathrm{Na2O2} \\ \hline \end{array}$	$\begin{array}{\|l} \hline \text { FUS- } \\ \text { MS- } \\ \mathrm{Na2O2} \end{array}$	$\begin{array}{\|l\|} \hline \text { FUS- } \\ \text { MS- } \\ \mathrm{Na} 2 \mathrm{O} 2 \\ \hline \end{array}$	FUSNa 2 O 2	$\begin{aligned} & \text { FUS- } \\ & \text { MS- } \\ & \mathrm{Na} 2 \mathrm{O} 2 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline \text { FUS- } \\ \text { MS- } \\ \mathrm{Na} 2 \mathrm{O} 2 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { FUS- } \\ \text { MS- } \\ \mathrm{Na} 2 \mathrm{O} 2 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { FUS- } \\ \mathrm{MS}- \\ \mathrm{Na} 2 \mathrm{O} 2 \\ \hline \end{array}$	$\begin{aligned} & \hline \text { FUS- } \\ & \text { MS- } \\ & \mathrm{Na2O2} \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline \text { FUS- } \\ \text { MS- } \\ \mathrm{Na2O2} \end{array}$
P100	6.86	<5	< 10	544	4	<2	0.29	<2	4.3	0.8	30	14.6	5	1.5	0.4	0.4	0.43	40.9	1.2	2.7	<0.2	10	<0.2
T2-A	7.24	< 5	10	638	<3	<2	7.91	<2	5.2	50.1	310	2.1	146	2.8	1.6	0.9	8.27	16.0	1.6	1.9	0.5	<10	<0.2
3	7.00	<5	20	116	<3	<2	1.96	<2	10.2	4.0	30	3.2	13	0.5	0.4	0.1	1.46	19.2	0.4	0.7	<0.2	<10	<0.2
4	8.15	<5	20	1250	<3	<2	2.18	<2	49.3	10.5	50	5.8	6	1.3	0.5	1.3	2.51	21.5	2.0	< 0.7	0.2	<10	<0.2
5	7.32	< 5	< 10	408	< 3	<2	0.94	<2	6.7	0.7	30	1.4	8	1.6	0.8	0.5	0.71	14.4	1.2	0.9	0.4	<10	<0.2
6	8.40	<5	< 10	1550	<3	<2	2.31	<2	75.1	10.6	60	3.7	14	1.5	1.0	1.8	2.43	22.9	3.4	0.7	0.3	<10	<0.2
T7-A	6.80	< 5	<10	318	<3	<2	1.47	<2	10.6	2.2	<30	8.2	4	1.1	0.6	0.5	1.06	15.2	0.7	1.1	<0.2	<10	<0.2

Analyte Symbol	K	La	Li	Mg	Mn	Mo	Nb	Nd	Ni	Pb	Pr	Rb	S	Sb	Se	Si	Sm	Sn	Sr	Ta	Tb	Te	Th
Unit Symbol	\%	ppm	ppm	\%	ppm	\%	ppm	ppm	\%	ppm													
Lower Limit	0.1	0.4	15	0.01	3	1	2.4	0.4	10	0.8	0.1	0.4	0.01	2	8	0.01	0.1	0.5	3	0.2	0.1	6	0.1
Method Code	FUSNa 2 O 2	FUS-MSNa 2 O 2	FUS- Na 2 O 2	FUSNa 2 O 2	$\begin{array}{\|l\|} \hline \text { FUS- } \\ \text { MS- } \\ \mathrm{Na} 2 \mathrm{O} 2 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { FUS- } \\ \text { MS- } \\ \mathrm{Na} 2 \mathrm{O} 2 \\ \hline \end{array}$	FUS-MSNa 2 O 2	FUS-MSNa 2 O 2	$\begin{aligned} & \hline \text { FUS- } \\ & \mathrm{MS}- \\ & \mathrm{Na} 2 \mathrm{O} 2 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline \text { FUS- } \\ \mathrm{MS}- \\ \mathrm{Na} 2 \mathrm{O} 2 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { FUS- } \\ \mathrm{MS}- \\ \mathrm{Na} 2 \mathrm{O} 2 \\ \hline \end{array}$	$\begin{aligned} & \hline \text { FUS- } \\ & \mathrm{MS}- \\ & \mathrm{Na} 2 \mathrm{O} 2 \\ & \hline \end{aligned}$	FUSNa 2 O 2	$\begin{array}{\|l\|} \hline \text { FUS- } \\ \mathrm{MS}- \\ \mathrm{Na} 2 \mathrm{O} 2 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { FUS- } \\ \mathrm{MSS}- \\ \mathrm{Na} 2 \mathrm{O} 22 \\ \hline \end{array}$	FUSNa 2 O 2	FUS-MSNa 2 O 2	FUS-MSNa 2 O 2	FUS-MSNa 2 O 2	$\begin{array}{\|l\|} \hline \text { FUS- } \\ \text { MS- } \\ \mathrm{Na} 2 \mathrm{O} 2 \\ \hline \end{array}$	$\begin{aligned} & \mid \text { FUS- } \\ & \mathrm{MS}- \\ & \mathrm{Na} 2 \mathrm{O} 2 \end{aligned}$	$\begin{aligned} & \hline \text { FUS- } \\ & \text { MS- } \\ & \mathrm{Na} 2 \mathrm{O} 2 \\ & \hline \end{aligned}$	FUS-MSNa 2 O 2
P100	5.1	1.4	< 15	0.02	853	8	30.0	2.1	20	53.7	0.6	820	0.03	<2	13	> 30.0	1.2	2.0	128	12.9	0.3	12	8.4
T2-A	1.1	2.3	41	4.83	1610	7	4.0	3.0	140	1.3	0.7	85.5	0.06	<2	15	22.9	1.8	1.0	251	1.1	0.4	8	0.2
3	0.7	5.6	75	0.23	276	9	7.0	2.9	40	11.6	0.9	46.8	0.03	<2	<8	> 30.0	0.6	1.8	218	1.0	<0.1	11	8.9
4	2.5	22.6	104	0.99	420	9	7.2	20.5	30	26.9	5.6	83.3	0.03	<2	13	> 30.0	3.6	1.0	821	1.0	0.3	9	8.5
5	3.7	3.6	<15	0.06	135	7	5.2	2.1	20	20.9	0.8	139	0.02	<2	17	> 30.0	1.0	< 0.5	111	1.8	0.3	12	7.5
6	3.1	42.6	159	0.96	451	9	6.5	30.8	30	36.8	8.5	90.7	0.06	<2	8	> 30.0	4.9	< 0.5	866	0.8	0.4	11	9.9
T7-A	1.8	5.3	96	0.19	209	9	6.8	3.5	20	11.9	0.9	74.3	0.02	<2	10	> 30.0	0.7	1.5	149	0.9	0.1	12	4.8

Analyte Symbol	Ti	TI	Tm	U	V	W	Y	Yb	Zn
Unit Symbol	\%	ppm							
Lower Limit	0.01	0.1	0.1	0.1	5	0.7	0.1	0.1	30
Method Code	FUSNa 2 O 2	FUS-MSNa 2 O 2	$\begin{array}{\|l\|} \hline \text { FUS- } \\ \text { MS- } \\ \mathrm{Na} 2 \mathrm{O} 2 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { FUS- } \\ \text { MS- } \\ \mathrm{Na} 2 \mathrm{O} 2 \\ \hline \end{array}$	FUS-MSNa 2 O 2				
P100	< 0.01	5.4	< 0.1	6.0	6	1.6	18.0	1.2	50
T2-A	0.36	0.7	0.3	0.1	246	1.1	14.6	1.6	120
3	0.09	0.3	< 0.1	1.0	19	<0.7	2.9	0.3	90
4	0.23	0.4	<0.1	3.3	48	1.3	6.1	0.4	90
5	0.03	0.8	0.2	5.5	6	0.8	10.9	1.1	40
6	0.23	0.4	<0.1	3.0	52	0.8	7.1	0.6	80
T7-A	0.06	0.2	<0.1	3.0	11	0.7	6.6	0.7	50

Analyte Symbol	AI	As	B	Ba	Be	Bi	Ca	Cd	Ce	Co	Cr	Cs	Cu	Dy	Er	Eu	Fe	Ga	Gd	Ge	Ho	Hf	In
Unit Symbol	\%	ppm	ppm	ppm	ppm	ppm	\%	ppm	\%	ppm	ppm	ppm	ppm	ppm	ppm								
Lower Limit	0.01	5	10	3	3	2	0.01	2	0.8	0.2	30	0.1	2	0.3	0.1	0.1	0.05	0.2	0.1	0.7	0.2	10	0.2
Method Code	FUSNa 2 O 2	$\begin{array}{\|l\|} \hline \text { FUS- } \\ \text { MS- } \\ \mathrm{Na} 2 \mathrm{O} 2 \\ \hline \end{array}$	$\begin{aligned} & \hline \text { FUS- } \\ & \mathrm{MS}- \\ & \mathrm{Na} 2 \mathrm{O} 2 \\ & \hline \end{aligned}$	FUS-MSNa 2 O 2	$\begin{aligned} & \text { FUS- } \\ & \text { MS- } \\ & \mathrm{Na} 2 \mathrm{O} 2 \end{aligned}$	FUS-MS- Na 2 O 2	$\begin{aligned} & \left\lvert\, \begin{array}{l} \text { FUS- } \\ \mathrm{Na} 2 \mathrm{O} 2 \end{array}\right. \end{aligned}$	$\begin{aligned} & \hline \text { FUS- } \\ & \text { MS-- } \\ & \mathrm{Na} 2 \mathrm{O} 2 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { FUS- } \\ & \text { MS-- } \\ & \mathrm{Na} 2 \mathrm{O} 2 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { FUS- } \\ & \text { MS- } \\ & \mathrm{Na} 2 \mathrm{O} 2 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { FUS- } \\ & \mathrm{MS}-- \\ & \mathrm{Na} 2 \mathrm{O} 2 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline \text { FUS- } \\ \mathrm{MS}-- \\ \mathrm{Na} 2 \mathrm{O} 2 \\ \hline \end{array}$	FUS-MSNa 2 O 2	FUS-MSNa 2 O 2	FUS-MSNa 2 O 2	$\begin{aligned} & \hline \text { FUS- } \\ & \text { MS- } \\ & \mathrm{Na} 2 \mathrm{O} 2 \\ & \hline \end{aligned}$	FUSNa 2 O 2	FUS-MSNa 2 O 2	FUS-MS- Na 2 O 2	$\begin{array}{\|l\|} \hline \text { FUS- } \\ \mathrm{MS}- \\ \mathrm{Na} 2 \mathrm{O} 2 \\ \hline \end{array}$	$\begin{aligned} & \hline \text { FUS- } \\ & \mathrm{MS}- \\ & \mathrm{Na} 2 \mathrm{O} 2 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { FUS- } \\ & \text { MS-- } \\ & \mathrm{Na} 2 \mathrm{O} 2 \\ & \hline \end{aligned}$	$\begin{aligned} & \left\lvert\, \begin{array}{l} \text { FUS- } \\ \text { MS- } \\ \text { Na2O2 } \end{array}\right. \\ & \hline \end{aligned}$
PTM-1a Meas		2210								> 5000			>10000										
PTM-1a Cert		2200								$\begin{array}{r} 20500 . \\ 00 \\ \hline \end{array}$			$\begin{array}{r} \hline 249600 \\ \hline .00 \\ \hline \end{array}$										
NIST 696 Meas	> 25.0										340												
NIST 696 Cert	28.9										321.0												
Oreas 74a (Fusion) Meas		46								578	1720		1180				13.7						
Oreas 74a (Fusion) Cert		50								581	1800.00		$\begin{array}{r}1240.0 \\ 00 \\ \hline\end{array}$				13.7						
OREAS 101a (Fusion) Meas									1420	49.4			436	35.6	19.2	8.6	11.0		46.3		6.7		
OREAS 101a (Fusion) Cert									1400	48.8			434	33.3	19.5	8.06	11.06		43.4		6.46		
NCS DC86314 Meas												2850											
NCS DC86314 Cert												2830											
$\begin{aligned} & \hline \begin{array}{l} \text { NCS DC86313 } \\ \text { Meas } \end{array} \\ & \hline \end{aligned}$					> 5000																		
$\begin{aligned} & \text { NCS DC86313 } \\ & \text { Cert } \end{aligned}$					10880																		
CZN-4 Meas	0.08	360						2660		97.3			4070										
CZN-4 Cert	0.0715	$\begin{array}{r} 356.00 \\ 00 \\ \hline \end{array}$						$\begin{array}{r} 2604.0 \\ 000 \\ \hline \end{array}$		93.5			$\begin{array}{r} 4030.0 \\ 00 \\ \hline \end{array}$										
$\begin{aligned} & \hline \text { OREAS 183 } \\ & \text { (Fusion ICP) } \\ & \text { Meas } \\ & \hline \end{aligned}$										222													
OREAS 183 (Fusion ICP) Cert										$\begin{array}{r}222.00 \\ 00 \\ \hline\end{array}$													
Lithium Tetraborate FX-LT 100 lot\#220610B Meas			10000																				
Lithium Tetraborate FX-LT 100 lot\#220610B Cert			255700																				
OREAS 922 (Peroxide Fusion) Meas	7.95						0.41										5.81						
OREAS 922 (Peroxide Fusion) Cert	7.59						0.49										5.71						
OREAS 621 (Peroxide Fusion) Meas	6.68	82		2620	<3	4	2.02	267	54.2	30.0	70	3.6	3570				3.74	26.6					1.8
OREAS 621 (Peroxide Fusion) Cert	6.63	85		2610	2	4	2.00	295	52.0	31.4	50	3.6	3680				3.71	26.5					1.9
CCU-1e Meas	0.14	1110						75		318			>10000				> 30.0						
CCU-1e Cert	0.139	1010						74.2		301			229000				30.7						
$\begin{array}{\|l\|} \hline \text { OREAS 680 } \\ \text { (Peroxide Fusion) } \end{array}$ Meas	7.26						5.80										11.7						
OREAS 680 (Peroxide Fusion) Cert	7.19						5.80										11.9						

Analyte Symbol	AI	As	B	Ba	Be	Bi	Ca	Cd	Ce	Co	Cr	Cs	Cu	Dy	Er	Eu	Fe	Ga	Gd	Ge	Ho	Hf	In
Unit Symbol	\%	ppm	ppm	ppm	ppm	ppm	\%	ppm	\%	ppm	ppm	ppm	ppm	ppm	ppm								
Lower Limit	0.01	5	10	3	3	2	0.01	2	0.8	0.2	30	0.1	2	0.3	0.1	0.1	0.05	0.2	0.1	0.7	0.2	10	0.2
Method Code	FUSNa 2 O 2	$\begin{array}{\|l\|} \hline \text { FUS- } \\ \mathrm{MS}- \\ \mathrm{Na} 2 \mathrm{O} 2 \\ \hline \end{array}$	$\begin{aligned} & \hline \text { FUS- } \\ & \text { MS- } \\ & \mathrm{Na} 2 \mathrm{O} 2 \end{aligned}$	FUS-MSNa 2 O 2	FUS-MSNa 2 O 2	FUS-MSNa 2 O 2	$\begin{array}{\|l\|l\|} \hline \text { FUS- } \\ \text { Na2OO } \end{array}$	FUS-MSNa 2 O 2	$\begin{aligned} & \text { FUS- } \\ & \text { MS- } \\ & \mathrm{Na} 2 \mathrm{O} 2 \end{aligned}$	FUS-MSNa 2 O 2	FUS-MSNa 2 O 2	FUSNa 2 O 2	FUS-MSNa 2 O 2	$\begin{aligned} & \text { FUS- } \\ & \text { MS- } \\ & \mathrm{Na} 2 \mathrm{O} 2 \end{aligned}$									
OREAS 139 (Peroxide Fusion) Meas	3.86						1.24										11.8						
OREAS 139 (Peroxide Fusion) Cert	3.70						1.20										11.9						
OREAS 624 (Peroxide Fusion) Meas	4.36	122		992		21	1.48	125	29.6	280		1.5	> 10000				16.3	20.3					3.9
OREAS 624 (Peroxide Fusion) Cert	4.32	115		1070		21.3	1.49	133	32.9	273		1.32	30800				16.3	22.1					4.14
OREAS 124 (Peroxide Fusion) Meas	4.72			1040	<3		0.10		46.1		90			2.6	1.6	1.6	1.57	9.7	3.5		0.5	<10	
OREAS 124 (Peroxide Fusion) Cert	4.62			1020	1.83		0.0880		47.6		51.0			2.82	1.60	1.15	1.56	10.5	3.47		0.580	6.22	
AMIS 0346 (Peroxide Fusion) Meas																	> 30.0						
AMIS 0346 (Peroxide Fusion) Cert																	44.3						
NCS DC73520 Meas																							
$\begin{aligned} & \begin{array}{l} \text { NCS DC73520 } \\ \text { Cert } \end{array} \\ & \hline \end{aligned}$																							
OREAS 148 (Peroxide Fusion) Meas	5.36						0.86										3.02						
OREAS 148 (Peroxide Fusion) Cert	5.37						0.90										3.06						
Method Blank	< 0.01						<0.01										< 0.05						
Method Blank	< 0.01						<0.01										<0.05						
Method Blank	< 0.01						< 0.01										< 0.05						
Method Blank	< 0.01						<0.01										< 0.05						
Method Blank	< 0.01						<0.01										<0.05						
Method Blank	< 0.01	< 5	<10	<3	<3	<2	< 0.01	<2	< 0.8	<0.2	40	0.3	<2	< 0.3	< 0.1	< 0.1	< 0.05	<0.2	0.2	< 0.7	<0.2	< 10	<0.2
Method Blank	< 0.01						<0.01										<0.05						

Analyte Symbol	K	La	Li	Mg	Mn	Mo	Nb	Nd	Ni	Pb	Pr	Rb	S	Sb	Se	Si	Sm	Sn	Sr	Ta	Tb	Te	Th
Unit Symbol	\%	ppm	ppm	\%	ppm	\%	ppm	ppm	\%	ppm													
Lower Limit	0.1	0.4	15	0.01	3	1	2.4	0.4	10	0.8	0.1	0.4	0.01	2	8	0.01	0.1	0.5	3	0.2	0.1	6	0.1
Method Code	FUSNa 2 O 2	$\begin{array}{\|l\|} \hline \text { FUS- } \\ \mathrm{MS}-- \\ \mathrm{Na} 2 \mathrm{O} 2 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { FUS- } \\ \mathrm{Na} 2 \mathrm{O} 2 \end{array}$	$\begin{aligned} & \hline \text { FUS- } \\ & \mathrm{Na} 2 \mathrm{O} 2 \end{aligned}$	FUS-MSNa 2 O 2	$\begin{array}{\|l\|} \hline \text { FUS- } \\ \mathrm{MS}-- \\ \mathrm{Na} 2 \mathrm{O} 2 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { FUS- } \\ \mathrm{MS}-- \\ \mathrm{Na} 2 \mathrm{O} 2 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { FUS- } \\ \mathrm{MS}-- \\ \mathrm{Na} 2 \mathrm{O} 2 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { FUS- } \\ \mathrm{MS}- \\ \mathrm{Na} 2 \mathrm{O} 2 \\ \hline \end{array}$	FUS-MSNa 2 O 2	$\begin{aligned} & \text { FUS- } \\ & \text { MS- } \\ & \mathrm{Na} 2 \mathrm{O} 2 \end{aligned}$	$\begin{aligned} & \mid \text { FUS- } \\ & \mathrm{MS}- \\ & \mathrm{Na} 2 \mathrm{O} 2 \end{aligned}$	$\begin{aligned} & \left\lvert\, \begin{array}{l} \text { FUS- } \\ \mathrm{Na} 2 \mathrm{O} 2 \end{array}\right. \end{aligned}$	$\begin{array}{\|l\|} \hline \text { FUS- } \\ \mathrm{MSS}- \\ \mathrm{Na} 2 \mathrm{O} 2 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { FUS- } \\ \mathrm{MSS}- \\ \mathrm{Na} 2 \mathrm{O} 2 \\ \hline \end{array}$	FUS- Na 2 O 2	FUS-MSNa 2 O 2	$\begin{array}{\|l\|} \hline \text { FUS- } \\ \mathrm{MS}-- \\ \mathrm{Na} 2 \mathrm{O} 2 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { FUS- } \\ \mathrm{MS}-- \\ \mathrm{Na} 2 \mathrm{O} 2 \\ \hline \end{array}$	$\begin{aligned} & \text { FUS- } \\ & \text { MS- } \\ & \mathrm{Na2O2} \end{aligned}$	FUS-MSNa 2 O 2	FUS-MSNa 2 O 2	$\begin{array}{\|l\|} \hline \text { FUS- } \\ \mathrm{MS}-- \\ \mathrm{Na} 2 \mathrm{O} 2 \\ \hline \end{array}$
PTM-1a Meas									>10000				23.1										
PTM-1a Cert									$\begin{array}{\|r\|} \hline 474400 \\ \hline .00 \\ \hline \end{array}$				22.4										
NIST 696 Meas																							
NIST 696 Cert																							
Oreas 74a (Fusion) Meas									> 10000				7.50			15.6							
Oreas 74a (Fusion) Cert									$\begin{array}{r} 32400 . \\ 00 \\ \hline \end{array}$				7.25			15.14							
OREAS 101a (Fusion) Meas	2.2	841		1.17	962	21		447			135						49.3				5.9		35.0
OREAS 101a (Fusion) Cert	2.34	816		1.23	964	22		403			134						48.8				5.92		36.6
NCS DC86314 Meas			> 10000									> 5000						147					
$\begin{aligned} & \text { NCS DC86314 } \\ & \text { Cert } \end{aligned}$			$\begin{array}{r} 18100 . \\ 00 \end{array}$									11400						152					
NCS DC86313 Meas						4																	
NCS DC86313 Cert						3.37																	
CZN-4 Meas										1780			> 25.0		92	0.28							
CZN-4 Cert										$\begin{array}{r} 1861.0 \\ 000 \end{array}$			33.07		86.7	0.295							
OREAS 183 (Fusion ICP) Meas									9620														
OREAS 183 (Fusion ICP) Cert									$\begin{array}{r} 9830.0 \\ 00 \end{array}$														
			98																				
Lithium Tetraborate FX-LT 100 lot\#220610B Cert			82100																				
OREAS 922 (Peroxide Fusion) Meas	2.4		31	1.63									0.37			29.6							
OREAS 922 (Peroxide Fusion) Cert	2.60		29	1.61									0.389			30.51							
OREAS 621 (Peroxide Fusion) Meas	2.2	29.3		0.50	563	14	10.5	22.0		> 5000	6.5	82.7	4.43	135		27.5			101				8.1
OREAS 621 (Peroxide Fusion) Cert	2.23	26.1		0.516	554	14	10.4	24.2		13300	6.64	89.0	4.51	146		28.1			101				8.6
CCU-1e Meas				0.71	104					> 5000			> 25.0	107								60	
CCU-1e Cert				0.706	96.0					7030			35.3	104								61.8	
OREAS 680 (Peroxide Fusion) Meas	1.3		< 15	3.61									5.08			20.6							
OREAS 680 (Peroxide Fusion) Cert	1.29		14.5	3.71									5.14			20.6							

Analyte Symbol	K	La	Li	Mg	Mn	Mo	Nb	Nd	Ni	Pb	Pr	Rb	S	Sb	Se	Si	Sm	Sn	Sr	Ta	Tb	Te	Th
Unit Symbol	\%	ppm	ppm	\%	ppm	\%	ppm	ppm	\%	ppm													
Lower Limit	0.1	0.4	15	0.01	3	1	2.4	0.4	10	0.8	0.1	0.4	0.01	2	8	0.01	0.1	0.5	3	0.2	0.1		0.1
Method Code	FUSNa 2 O 2	FUS-MSNa 2 O 2	FUSNa 2 O 2	$\begin{aligned} & \left\lvert\, \begin{array}{l} \text { FUS- } \\ \mathrm{Na} 2 \mathrm{O} 2 \end{array}\right. \end{aligned}$	$\begin{array}{\|l\|} \hline \text { FUS- } \\ \mathrm{MS}- \\ \mathrm{Na} 2 \mathrm{O} 2 \\ \hline \end{array}$	FUS-MS- Na 2 O 2	$\begin{aligned} & \mid \text { FUS- } \\ & \mathrm{MS}- \\ & \mathrm{Na} 2 \mathrm{O} 2 \end{aligned}$	$\begin{array}{\|l\|} \hline \text { FUS- } \\ \text { MS- } \\ \mathrm{Na} 2 \mathrm{O} 2 \\ \hline \end{array}$	FUS-MSNa 2 O 2	FUSNa 2 O 2	$\begin{array}{\|l\|} \hline \text { FUS- } \\ \mathrm{MS}- \\ \mathrm{Na} 2 \mathrm{O} 2 \\ \hline \end{array}$	FUS-MSNa 2 O 2	FUSNa 2 O 2	FUS-MSNa 2 O 2	$\begin{array}{\|l\|} \hline \text { FUS- } \\ \text { MS- } \\ \mathrm{Na} 2 \mathrm{O} 2 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { FUS- } \\ \mathrm{MS}- \\ \mathrm{Na} 2 \mathrm{O} 2 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { FUS- } \\ \text { MS- } \\ \mathrm{Na} 2 \mathrm{O} 2 \\ \hline \end{array}$	FUS-MSNa 2 O 2	FUS-MSNa 2 O 2	$\begin{aligned} & \text { FUS- } \\ & \text { MS- } \\ & \mathrm{Na} 2 \mathrm{O} 2 \end{aligned}$			
$\begin{aligned} & \text { OREAS 139 } \\ & \text { (Peroxide Fusion) } \end{aligned}$ Meas	3.3		45	0.49									16.7			16.7							
$\begin{aligned} & \begin{array}{l} \text { OREAS 139 } \\ \text { (Peroxide Fusion) } \\ \text { Cert } \end{array} \\ & \hline \end{aligned}$	3.30		40.4	0.501									16.04			16.34							
OREAS 624 (Peroxide Fusion) Meas	1.0	16.4	< 15	1.29	659	16	5.8	13.4		> 5000	3.6	35.4	13.3	71		20.3			50				4.0
OREAS 624 (Peroxide Fusion) Cert	0.991	17.3	10.3	1.31	660	17.8	5.78	16.8		6120	4.27	33.0	13.2	72.0		20.5			47.6				4.12
OREAS 124 (Peroxide Fusion) Meas	2.7	19.8		0.22	703			19.3			5.3	81.0				> 30.0	3.6				0.5		5.8
OREAS 124 (Peroxide Fusion) Cert	2.62	21.6		0.224	700			20.8			5.39	86.0				38.2	4.21				0.480		5.74
AMIS 0346 (Peroxide Fusion) Meas																							
AMIS 0346 (Peroxide Fusion) Cert																							
$\begin{aligned} & \begin{array}{l} \text { NCS DC73520 } \\ \text { Meas } \end{array} \\ & \hline \end{aligned}$													0.45										
$\begin{aligned} & \text { NCS DC73520 } \\ & \text { Cert } \end{aligned}$													0.44										
OREAS 148 (Peroxide Fusion) Meas	1.6		4790	0.46												> 30.0							
$\begin{array}{\|l} \hline \begin{array}{l} \text { OREAS } 148 \\ \text { (Peroxide Fusion) } \\ \text { Cert } \end{array} \\ \hline \end{array}$	1.5		4760	0.47												36.0							
Method Blank	< 0.1		< 15	< 0.01									0.01			<0.01							
Method Blank	<0.1		< 15	<0.01									<0.01			<0.01							
Method Blank	<0.1		< 15	< 0.01									0.02			< 0.01							
Method Blank	<0.1		<15	< 0.01									0.01			< 0.01							
Method Blank	<0.1		<15	< 0.01									0.01			< 0.01							
Method Blank	< 0.1	<0.4	< 15	<0.01	4	2	<2.4	< 0.4	<10	1.6	<0.1	2.0	0.01	<2	< 8	< 0.01	<0.1	1.3	13	<0.2	<0.1	6	<0.1
Method Blank	<0.1		< 15	< 0.01									0.01			<0.01							

Analyte Symbol	Ti	TI	Tm	U	V	W	Y	Yb	Zn
Unit Symbol	\%	ppm							
Lower Limit	0.01	0.1	0.1	0.1	5	0.7	0.1	0.1	30
Method Code	FUSNa2O2	$\begin{aligned} & \hline \text { FUS- } \\ & \mathrm{MS}- \\ & \mathrm{Na} 2 \mathrm{O} 2 \\ & \hline \end{aligned}$	FUS-MSNa 2 O 2	FUS-MS- Na 2 O 2	$\begin{aligned} & \hline \text { FUS- } \\ & \text { MS- } \\ & \mathrm{Na} 2 \mathrm{O} 2 \end{aligned}$	FUS-MSNa 2 O 2			
PTM-1a Meas									
PTM-1a Cert									
NIST 696 Meas					402				
NIST 696 Cert					$\begin{array}{r} 403.00 \\ 00 \end{array}$				
$\begin{array}{\|l} \hline \text { Oreas 74a } \\ \text { (Fusion) Meas } \\ \hline \end{array}$									
Oreas 74a (Fusion) Cert									
OREAS 101a (Fusion) Meas	0.38		2.5	419	82		184	19.5	
OREAS 101a (Fusion) Cert	0.395		2.90	422	83		183	17.5	
NCS DC86314 Meas						74.6			
NCS DC86314 Cert						79.0			
$\begin{array}{\|l} \hline \text { NCS DC86313 } \\ \text { Meas } \end{array}$									
NCS DC86313Cert									
CZN-4 Cert									$\begin{array}{\|r\|} \hline 550700 \\ .00 \end{array}$
OREAS 183 (Fusion ICP) Meas 100 OREAS 183									
OREAS 183 (Fusion ICP) Cert									
Lithium Tetraborate FX-LT 100 lot\#220610B Meas									
Lithium Tetraborate FX-LT 100 lot\#220610B Cert									
OREAS 922 (Peroxide Fusion) Meas 0.45									
(Peroxide Fusion) Cert									
OREAS 621 (Peroxide Fusion) Meas	0.18	1.8		2.9	32	3.1	13.9	1.1	> 10000
OREAS 621 (Peroxide Fusion) Cert Cert	0.181	2.0		3.0	36.3	2.6	13.9	1.03	52200
CCU-1e Meas		2.7							>10000
CCU-1e Cert		2.69							30200
OREAS 680 (Peroxide Fusion) Meas	0.51								
OREAS 680 (Peroxide Fusion) Cert	0.523								

Analyte Symbol	Ti	TI	Tm	U	V	W	Y	Yb	Zn
Unit Symbol	\%	ppm							
Lower Limit	0.01	0.1	0.1	0.1	5	0.7	0.1	0.1	30
Method Code	FUSNa 2 O 2	FUS-MS- Na 2 O 2	FUS-MSNa 2 O 2						
OREAS 139 (Peroxide Fusion) Meas	0.16								
OREAS 139 (Peroxide Fusion) Cert	0.157								
OREAS 624 (Peroxide Fusion) Meas	0.15	1.1		1.3	32	4.5	14.5	1.6	P10000
OREAS 624 (Peroxide Fusion) Cert	0.146	0.940		1.34	43.3	4.58	17.3	1.94	24100
OREAS 124 (Peroxide Fusion) Meas	0.26		0.2	1790	27		15.3	2.0	
OREAS 124 (Peroxide Fusion) Cert	0.254		0.220	1790	23.3		14.2	1.63	
AMIS 0346 (Peroxide Fusion) Meas	14.9				2780				
AMIS 0346 (Peroxide Fusion) Cert	15.0				2700				
$\begin{aligned} & \text { NCS DC73520 } \\ & \text { Meas } \end{aligned}$									
$\begin{aligned} & \text { NCS DC73520 } \\ & \text { Cert } \end{aligned}$									
OREAS 148 (Peroxide Fusion) Meas	0.35								
$\begin{aligned} & \hline \text { OREAS } 148 \\ & \text { (Peroxide Fusion) } \\ & \text { Cert } \end{aligned}$	0.35								
Method Blank	<0.01								
Method Blank	<0.01								
Method Blank	<0.01								
Method Blank	<0.01								
Method Blank	<0.01								
Method Blank	<0.01	<0.1	<0.1	<0.1	< 5	<0.7	<0.1	<0.1	<30
Method Blank	<0.01								

Appendix 5

RS-121 Scintillometer Specifications

RS-121 Super GAMMA-RAY SCINTILLOMETER with Memory Providing Search and Scan Modes of Operation

RS-121 - Ideal For Field Exploration

The RS-121 Scintillometer is the state-of-the-art in a portable hand-held radiation survey search device for the geophysical industry. It offers an integrated design with a large detector, direct Survey readout, Scan mode, data storage, full weather protection and ease of use. In addition, it has Bluetooth (BT) connectivity providing for wireless connection to a Bluetooth equipped external GPS receiver, earphone or computer.

Features Include:

- High Sensitivity with large $2.0 \times 2.0 \mathrm{NaI}$ crystal $103 \mathrm{~cm}^{3}$ ($6.3 \mathrm{in}^{3}$)
- Lightweight \& rugged $4.4 \mathrm{lb}(2 \mathrm{~kg})$, including batteries
- Easy to use, single button
- survey and scan modes of operation
- 5-digit LCD display with high count rate $65,535 \mathrm{cps}$
- scrolling histogram graph display of last 100 readings
- Fast audio output with adjustable audio threshold set point
- BT earphone audio support for noisy area surveying
- Bluetooth and USB equipped with external GPS integrated into data stream via BT
- Special rugged design to withstand typical field usage, full IP67 weatherproofing short term water immersion and fully dust protected
- Low power (4 x AA batteries)
- typical 8-12 hour battery life at $20^{\circ} \mathrm{C}$
- No radioactive sources required for proper operation

The RS-121 allows the user to produce profiles of the total count data from either the Search or Scan modes. The data can be from a drill core scan or from a survey with GPS positioning data.

Survey Mode (Total Count)

The loud linear audio permits eyes-free operation with large easy to read 5 digit display showing the total count in cps at $1 / \mathrm{sec}$ update rate. It also has Bluetooth earphone support for noisy area surveying.

Specifications:

Temperature Range:

- $-20^{\circ} \mathrm{C}$ to $+50{ }^{\circ} \mathrm{C}$

Scan Mode

A variable rate scan mode ($1-20 \mathrm{sec}$.) stores the data in memory. An external GPS can also be integrated into the data system via Bluetooth connection to provide location data.

RS-Analyst Software

The RS-121 is provided with utility software to download the data that is stored in memory. All data in memory can be transmitted via Bluetooth or USB to the RS-Analyst program on a PC. This may take the form of field or Scan data + GPS. The program also gives graphical and numeric views of the data. The data can also be re-exported as a text file for further processing.

Standard Accessories

- RS-121 Scintillometer with carrying handle
- Removable protective boot with shoulder strap
- Battery cartridge with $4 \times$ AA rechargeable batteries \& charger
- Spare battery holder cartridge
- RS-Analyst utility software
- USB cable
- User guide
- Delivered in hard case with foam insert

Control:

- Single one button, thumb activated

Internal Memory:

- 4 MB providing more than $1,146,870$ one second readings

Data Output:

- Bluetooth (BT) and USB

Alarm:

- Audio via miniature speaker
- Variable audio threshold set point
- Audio proportional to count rate

Weight:

- $\quad 4.4 \mathrm{lb}(2 \mathrm{~kg})$ including batteries

Size \& Package Style:

- $10.2^{" \times} 3.2 " \times 3.8 "(259 \mathrm{~mm} \times 81 \mathrm{~mm} \times 96 \mathrm{~mm})$
- 1 mm aluminum thick outer case
- In a flashlight configuration with detachable handle

Display:

- 128×64 pixels, $11 / 8 \times 23 / 8$ "
- Graphic LCD display with white black light and automatic dimming
- Counts in CPS from 0 to 65,535 and Histogram chart
- Update Rate: 1x / sec

Energy Response:

- 30 keV 3000 keV

Internal Sampling:

- 30 / second

Batteries:

- Internal battery pack module (4xAA) easily replaceable
- Rechargeable or Alkaline
- Life: $8+$ hours at $20^{\circ} \mathrm{C}$

Specifications subject to change without notice \# 06.12

Appendix 6

Statement of Costs

Joshua Gold - Seymour Extension Property						
Remote Sensing Survey and Outcrop Sampling Program 2022						
Statement of Costs : Pre-HST costs catagorized as either Remote Sensing or Sampling						
				Remote Sensing	Sampling	CHK Total
		\$	\$			
Mobilization	qty	rate	amt			
Vehicle Km Timmins to Armstrong (Oct 10, 2022)	993.00	0.60	595.80	369.40	226.40	595.80
Vehicle Km Armstrong to Site (Oct 11, 2022)	65.00	0.60	39.00	24.18	14.82	39.00
Crew time Timmins to Site October 10 / 11, 2022)	13.00	165.00	2145.00	1329.90	815.10	2145.00
Food and Lodging (2 man crew October 10, 2022)	1.00	250.00	250.00	155.00	95.00	250.00
Field Work (October 11, 2022)						
3 flights - eBee fixed wing drone with 20 mp camera	3.00	550.00	1650.00	1650.00		1650.00
Sample 2 outcrops, Scintillometer 3 outcrops	6.25	165.00	1031.25		1031.25	1031.25
Demobilization (October 11, 2022)						
Vehicle Km Site to Armstrong	65.00	0.60	39.00	24.18	14.82	39.00
Vehicle km Armstrong to Timmins	993.00	0.60	595.80	369.40	226.40	595.80
Crew time Site to Timmins	13.00	165.00	2145.00	1329.90	815.10	2145.00
Scintillometer Rental @ \$80/day (Oct 8-14)	7.00	80.00	560.00		560.00	560.00
Computer Processing (October 12-15, 2022)						
Download and Process field data	6.00	88.00	528.00	528.00		528.00
Process air photo mosaic in Pix4D	4.50	88.00	396.00	396.00		396.00
Prepare field maps for Nov 2022 outcrop sampling	5.50	88.00	484.00	484.00		484.00
Outcrop Sampling Trip - November 4th to 6th, 2022						
Vehicle Km Timmins to Armstrong (Nov 4, 2022)	993.00	0.60	595.80		595.80	595.80
Vehicle Km Armstrong to Site (Nov 5, 2022)	65.00	0.60	39.00		39.00	39.00
Crew time Timmins to Site Nov 4 / 5, 2022)	13.00	165.00	2145.00		2145.00	2145.00
Food and Lodging (2 man crew Nov 4, 2022)	1.00	250.00	250.00		250.00	250.00
Field Work (November 5, 2022)						
Sample 4 outcrops, Scintillometer 4 outcrops	8.50	165.00	1402.50		1402.50	1402.50
Demobilization (November 5, 2022)						
Vehicle Km Site to Armstrong	65.00	0.60	39.00		39.00	39.00
Crew time Site to Armstrong	1.00	165.00	165.00		165.00	165.00
Food and Lodging (2 man crew Nov 5, 2022)	1.00	250.00	250.00		250.00	250.00
Demobilization (November 6, 2022)						
Vehicle Km Armstrong to Timmins	993.00	0.60	595.80		595.80	595.80
Crew time Armstrong to Timmins	12.00	165.00	1980.00		1980.00	1980.00
Scintillometer Rental @ \$80/day (Nov 3-9)	7.00	80.00	560.00		560.00	560.00
Geologist - describe, package, ship samples to Ancaster (Actlabs)	3.75	88.00	330.00		330.00	330.00
Prepare assessment report to ENDM standards (Oct 10 to Dec 20)	23.00	88.00	2024.00	667.92	1356.08	2024.00
Assay - Invoice from Actlabs (6 samples including rush surcharge)	6.00	182.15	1092.90		1092.90	1092.90
(6 out of 7 samples on Actlabs invoice relate to this project)						
SUB			21927.85	7328.00	14600.00	21928.00
HST			2850.62			
Total Project			24778.47			

