

We are committed to providing <u>accessible customer service</u>. If you need accessible formats or communications supports, please <u>contact us</u>.

Nous tenons à améliorer <u>l'accessibilité des services à la clientèle</u>. Si vous avez besoin de formats accessibles ou d'aide à la communication, veuillez <u>nous contacter</u>.



Assessment Report

### Remote Sensing Survey and Outcrop Sampling Program 2022

### Seymour Extension Property

Crescent Lake Area Thunder Bay Mining Division

Prepared for: Joshua Gold Resources Inc. (Client # 410637)

Prepared by: Kevin Cool – Technical Report

Mining Claims Surveyed:

537741,537742,538061,538066,538051,538060,538063, 538048,538064,538065,538049,538054,538062,538047

December 20<sup>th</sup>, 2022

### **Table of Contents**

| 4.0 Property<br>5.0 Summar<br>6.0 Processi                                                    | /<br>and Access<br>I and Local Geology<br>/ History<br>ry of 2022 Remote Sensing Survey and Sampling Program                                                                                                    | 3<br>3-4<br>4-5<br>8-11<br>12<br>13-14<br>15<br>15-17<br>17 |
|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
| Statement of                                                                                  | fQualifications                                                                                                                                                                                                 |                                                             |
| Kevin Cool –                                                                                  | Technical Report                                                                                                                                                                                                | 19                                                          |
|                                                                                               | Appendices                                                                                                                                                                                                      |                                                             |
| Appendix 1<br>Appendix 2<br>Appendix 3<br>Appendix 4<br>Appendix 5<br>Appendix 6              | Sensefly – eBee drone specifications<br>List of air photo images<br>Field Sample Logs - summarized<br>Sample Analytical Results (Actlabs)<br>RS-121 Scintillometer Specifications<br>Project Statement of Costs |                                                             |
|                                                                                               | List of Maps and Figures                                                                                                                                                                                        |                                                             |
| Мар                                                                                           |                                                                                                                                                                                                                 |                                                             |
| 1 – Full-scale                                                                                | version of Figure 5 – Interpretive Map                                                                                                                                                                          | 20                                                          |
| <ol> <li>Surve</li> <li>Regic</li> <li>Redro</li> <li>Bedro</li> <li>Interposition</li> </ol> | ion and Access<br>y Outline and Sample Locations on current claim map<br>onal Geology Map<br>ock Geology Map (MRD 126)<br>oretive Map                                                                           | 5<br>7<br>8<br>11<br>18                                     |
| Tables                                                                                        |                                                                                                                                                                                                                 |                                                             |

| 1. | List of Mining Claims covered by current survey | 6  |
|----|-------------------------------------------------|----|
| 2. | Enriched Lithium Values                         | 16 |

#### **1.0 Introduction**

The *Seymour Extension Property* consists of 27 Active Mining Claims located in the Crescent Lake Area, Thunder Bay Mining Division. This report covers a remote sensing survey and outcrop sampling program carried out across 14 of the Active Claims in October / November 2022.

The remote sensing survey covers 14 mining claims, and the sampling program covers 3 mining claims.

*Figure 2* shows the outline of the remote sensing survey and the outcrop / sample locations overlaid on a current claim map.

*Table 1* provides a list of mining claims, including the work value completed on each claim.

#### 1.1 Summary

### **Remote Sensing Survey**

On October 11<sup>th</sup>, 2022, the mining claims were surveyed using an eBee fixed-wing drone equipped with a 20-megapixel S.O.D.A. Camera. Zen Geomap Inc. of Timmins, Ontario carried out the survey on a contract basis for the client. The objectives of the survey were as follows;

- Provide a high-resolution air photo mosaic across the proposed work area, to identify outcrop / exposed bedrock to be sampled in Fall, 2022.
- 2) Identify the type of terrain and ground access for the Fall 2022 sampling program.

Data processing and maps were completed between October 12<sup>th</sup> and 15<sup>th</sup>, 2022 and the assessment report was prepared between October 10<sup>th</sup> and December 20<sup>th</sup>, 2022. All of the objectives were reached and are described in detail under *Section 5*.

### Fall 2022 Sampling Program


Between October 11<sup>th</sup> and November 5<sup>th</sup>, 2022, six (6) outcrops were sampled. Samples were sent to Actlabs for analysis using their Ultratrace 7 (UT-7) package.

Sample Logs are provided in *Appendix 3*.Analytical Results are provided in *Appendix 4*.The coordinate system used throughout this report is Nad83, UTM Zone 16.

### 2.0 Location and Access

The property is accessed from Timmins by travelling to Armstrong, ON along highways 655, 11 and 527 (**993 km**), then along a well-maintained gravel road for **65km**. The total driving distance from Timmins to site is **1058km**.

Figure 1 shows location and access from Armstrong to Site.



*Figure 1* – Location and Access

-5-

| Tenure ID | Anniversary | Tenure | Work     | (Sq.m)           | Area (%) | (\$)             | Number of     | (%)      | (\$)           |
|-----------|-------------|--------|----------|------------------|----------|------------------|---------------|----------|----------------|
|           | Date        | Status | Required | Area Surveyed    | of total | Work Completed   | Samples Taken | of total | Work Completed |
|           |             |        |          | (Remote Sensing) |          | (Remote Sensing) | (Sampling)    |          | (Sampling)     |
|           |             |        |          |                  |          |                  |               |          |                |
| 537741    | 2022-12-21  | Active | 400      | 17078            | 1.2      | 85               |               |          |                |
| 537742    | 2022-12-21  | Active | 400      | 19418            | 1.3      | 96               |               |          |                |
| 538031    | 2022-12-27  | Active | 400      |                  |          |                  |               |          |                |
| 538032    | 2022-12-27  | Active | 400      |                  |          |                  |               |          |                |
| 538033    | 2022-12-27  | Active | 400      |                  |          |                  |               |          |                |
| 538034    | 2022-12-27  | Active | 400      |                  |          |                  |               |          |                |
| 538036    | 2022-12-27  | Active | 400      |                  |          |                  |               |          |                |
| 538045    | 2022-12-27  | Active | 400      |                  |          |                  |               |          |                |
| 538046    | 2022-12-27  | Active | 400      |                  |          |                  |               |          |                |
| 538047    | 2022-12-27  | Active | 400      | 8805             | 0.6      | 44               |               |          |                |
| 538048    | 2022-12-27  | Active | 400      | 31165            | 2.1      | 155              |               |          |                |
| 538049    | 2022-12-27  | Active | 400      | 45173            | 3.1      | 224              |               |          |                |
| 538050    | 2022-12-27  | Active | 400      |                  |          |                  |               |          |                |
| 538051    | 2022-12-27  | Active | 400      | 5253             | 0.4      | 26               |               |          |                |
| 538052    | 2022-12-27  | Active | 400      |                  |          |                  |               |          |                |
| 538053    | 2022-12-27  | Active | 400      |                  |          |                  |               |          |                |
| 538054    | 2022-12-27  | Active | 400      | 136944           | 9.3      | 679              |               |          |                |
| 538060    | 2022-12-28  | Active | 400      | 166065           | 11.2     | 824              |               |          |                |
| 538061    | 2022-12-28  | Active | 400      | 199509           | 13.5     | 990              | 2             | 33.33    | 4866           |
| 538062    | 2022-12-28  | Active | 400      | 105805           | 7.2      | 525              |               |          |                |
| 538063    | 2022-12-28  | Active | 400      | 205762           | 13.9     | 1021             | 1             | 16.66    | 2434           |
| 538064    | 2022-12-28  | Active | 400      | 135210           | 9.2      | 671              |               |          |                |
| 538065    | 2022-12-28  | Active | 400      | 205781           | 13.9     | 1021             |               |          |                |
| 538066    | 2022-12-28  | Active | 400      | 195210           | 13.2     | 967              | 3             | 50       | 7300           |
| 538067    | 2022-12-28  | Active | 400      |                  |          |                  |               |          |                |
| 538068    | 2022-12-28  | Active | 400      |                  |          |                  |               |          |                |
| 538069    | 2022-12-28  | Active | 400      |                  |          |                  |               |          |                |
|           |             |        |          | 1477178          | 100.0    | 7328             |               | 100      | 14600          |
|           |             |        |          | (148 ha)         | CHK %    | (Remote Sensing) |               |          | (Sampling)     |

Table 1 – Work Completed on Active Mining Claims

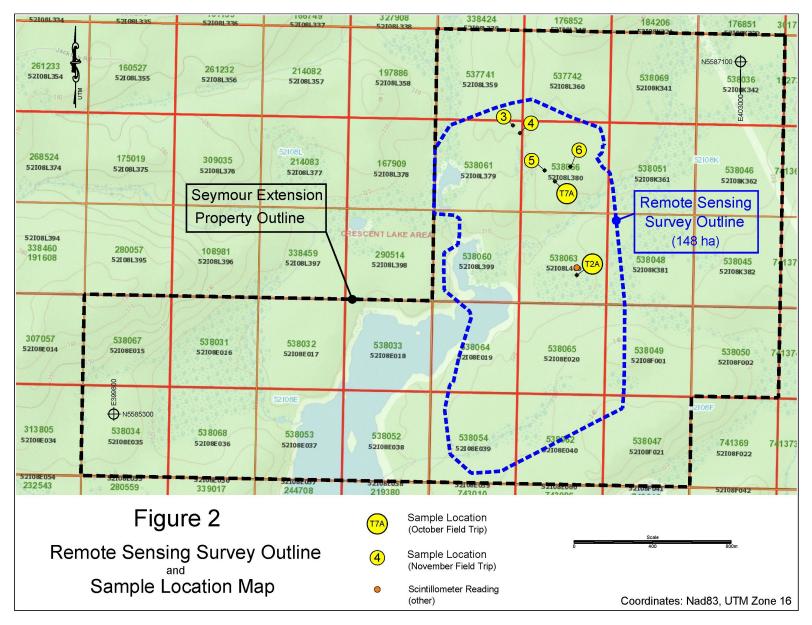



Figure 2 – Survey Outline and Sample Locations

### 3.0 Regional and Local Geology

The Seymour Extension Property is located 230km NNE of Thunder Bay and sits within the Superior Province, near the subprovincial boundary between the English River and Wabigoon subprovinces. The property is located within the Caribou Lake Greenstone Belt, which sits along the north shore of Lake Nipigon and trends east-northeast.

Figure 3 shows the Seymour Extension Property location within the Superior Province.

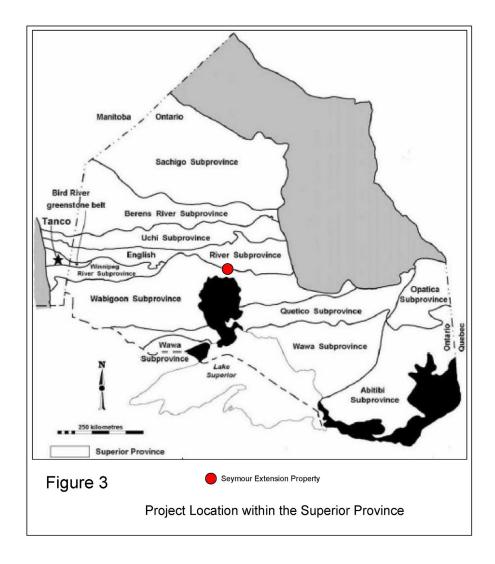



Figure 3 – Project Location within the Superior Province

### <u>MRD126</u>

Overlaid on available bedrock geology (Ref: MRD126 – Revised Bedrock 250K available through OGS Earth);

The Seymour Extension Property covers rock types 5,11 and 12b, as identified on the MRD126 rock-type legend.

*Figure 4* presents above rock types, with the property outline and the location of 10 nearby MDI showings. Some of the key Lithium showings are described below;

### MDI52I08NW00013 (North Aubry)

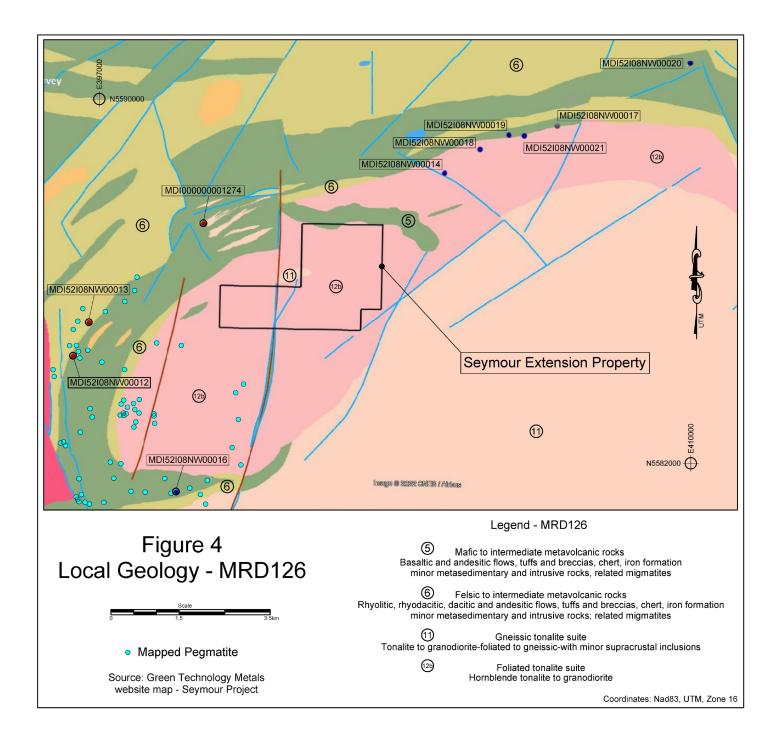
The North Aubry showing sits 2.8km west of the Seymour Extension Property and is listed as a "developed prospect with reported reserves or resources" within MDI records. At the current time, the Aubry North showing is the focus of a diamond drill program by *Green Technology Metals* (see reference 4, Clapp, L., Jeffs, C., 2020 page 4).

According to Green Technology Metals' website (2022), the Seymour Project resource currently stands at "4.8 Mt at 1.25% Li20 resource in accordance with the JORC Code".

### MDI52I08NW00012 (South Aubry)

The South Aubry showing sits 3.2km west of the Seymour Extension Property and is listed as a "developed prospect with reported reserves or resources" within MDI records. At the current time, the Aubry South showing is held by Green Technology Metals and is part of their exploration effort.

### MDI00000001274 (Kilometre 61)


The Kilometre 61 showing is listed with primary commodity as Molybdenum and secondary commodities as Copper and Silver. It is listed as a "developed prospect with reported reserves or resources" within MDI records.

### MDI52I08NW00014 / 18 / 19 / 20 / 21

Above MDI records are all Lithium showings listed as "Occurrences" within MDI records.

### MDI52I08NW00017 (Zig Zag Lake)

The Zig Zag Lake showing is listed with primary commodities as Lithium, Rubidium and Tantalum and secondary commodities as Cesium and Gallium. It is listed as a "Prospect" within MDI records.



*Figure 4* – Seymour Extension Property overlaid on MRD126 bedrock geology

#### 4.0 **Property History**

In February 2020 Ardiden Limited filed a lengthy report on their 2018 drill program (877 pages) carried out on the Seymour Lake LCT Pegmatite Property. This is the same property now / currently held by Green Technology Metals, which is directly adjacent / attached to the Seymour Extension Property.

As the history of the Seymour Pegmatite Property directly applies to the Seymour Extension Property, the exploration history section from the Ardiden report is included below. (See reference 4, Clapp, L., Jeffs, C., 2020 page 14).

#### **EXPLORATION HISTORY ON THE PROPERTY**

Since the discovery of the "Aubry Pegmatites" in the 1950s, exploration work has identified significant concentrations of Ta, Be, and Li within the LCT Pegmatite dikes (e.g., Dimmell and Morgan, 2005). The exploration history is summarized as follows:

- 1957: Discovery of the Aubry Pegmatites by prospector Nelson Aubry (Nakina, Ontario).
- 1957: Anaconda Company (Canada) Limited optioned from Aubry; mapping, sampling, diamond drilling (11 holes, 398m on North Aubry/4 holes, 100m on South Aubry). Drill core assayed for Li and Be.
- 1959-62: E.G. Pye (Ontario Department of Mines) mapped the area and described lithium occurrences in the area in addition to the Aubry pegmatites (Pye, 1968).
- 1969-70: Tantalum Corporation of Canada (Tanco) ACA Howe International Ltd. completed geological mapping, geophysics, stripping, and chip sampling (110 samples) on North Aubry.
- 1979: E&B Explorations Inc. and Cominco Ltd. line cutting and ground magnetic surveys.
- 1999: Clark Exploration (Garry Clark) grab sampling (Clark and Maitland, 2000).
- 2000-02: Linear Resources Inc. gridding, prospecting, geological mapping, soil and Lithogeochemical sampling, trenching, channel sampling, and diamond drilling (1,866m in 32 holes).
- 2005: Dimmell and Morgan (2005) publish summary paper in Exploration and Mining Geology.
- 2008-09: Linear Resources Inc. geological mapping, soil (640 enzyme leach samples; 200m lines/50m stations) and rock sampling, and diamond drilling (2,362m in 19 holes; North (12) and South (7)).
- 2016: Benton Resources: diamond drilling (281m in 6 holes; February-March).
- 2016: Ardiden Limited: surface exploration (mapping, channel sampling; July-November).
- 2016: Ardiden Limited: diamond drilling (1728m in 27 holes; October-December)
- 2017: Ardiden Limited: diamond drilling (5049 meters; April 5<sup>th</sup>-September 29<sup>th</sup>)

### 5.0 Summary of the 2022 Remote Sensing Survey and Sampling Program

### **Objectives;**

The objectives of the Remote Sensing survey are outlined below;

- 1) Provide a high-resolution air photo mosaic across the proposed work area, to identify outcrop / exposed bedrock to be sampled in Fall, 2022.
- 2) Identify the type of terrain and ground access for the Fall 2022 sampling program.

The objectives of the Sampling Program were to collect rock samples from outcrop / exposed bedrock as identified from the Remote Sensing survey. Samples were sent to Actlabs for analysis using their Ultratrace 7 (UT-7) package.

### **Remote Sensing Survey**

A total of 279 air photos were taken using an eBee fixed-wing drone, with a 20-megapixel S.O.D.A. Camera. The air photos were processed using Pix4D software, to produce a seamless air photo mosaic across the *Seymour Extension Property*.

The resulting mosaic was used to identify four (4) outcrops, which were sampled during the November 2022 sampling program. The 2 outcrops sampled in October 2022 had been identified earlier in 2022, based on a LiDAR survey.

The 2022 remote sensing survey is summarized as follows;

| Survey Date:    | October 11 <sup>th</sup> , 2022 |
|-----------------|---------------------------------|
| Survey Area:    | 148 ha                          |
| Altitude:       | 150m above terrain              |
| Number of Pics: | 279                             |

Technical specs for the eBee drone are provided in *Appendix 1*. A list of the 279 air photo images is provided in *Appendix 2*.

### Sampling Program

Four (4) samples were collected from outcrop identified from the Remote Sensing Survey and 2 samples were collected from outcrop identified from a LiDAR survey carried out earlier in summer 2022.

| Sampling Dates:    | October 11 <sup>th</sup> and November 5 <sup>th</sup> , 2022 |
|--------------------|--------------------------------------------------------------|
| Number of Samples: | 6                                                            |
| Analysis:          | Actlabs UT7 (Results provided in Appendix 4).                |

### **Scintillometer Readings**

An RS-121 Gamma-ray scintillometer was used to collect readings at the 6 sample sites. Readings are expressed in cps (counts per second), where a background reading in a non-radioactive setting will typically range between 90 and 100 cps. The scintillometer readings are included on the sample logs in *Appendix 3*. Readings at all of the sites were elevated, ranging between 126 and 182 cps. Technical specifications for the RS-121 scintillometer are included as *Appendix 5*.

### 6.0 Processing

### **Remote Sensing Survey**

279 air photo images were processed using Pix4D software, to produce a seamless air photo mosaic across the *Seymour Extension Property*.

Technical specs for the eBee drone are provided in *Appendix 1*. A list of the 279 air photo images is provided in *Appendix 2*.

#### 7.0 Interpretation, Conclusions and Recommendations

The 2022 Remote Sensing survey, carried out in October 2022, was successful at identifying outcrop within the *Seymour Extension Property*. The survey was further used to identify trails which were used during the November 2022 field sampling program. *Figure 5* identifies 6 outcrops along with sample locations and access trails.

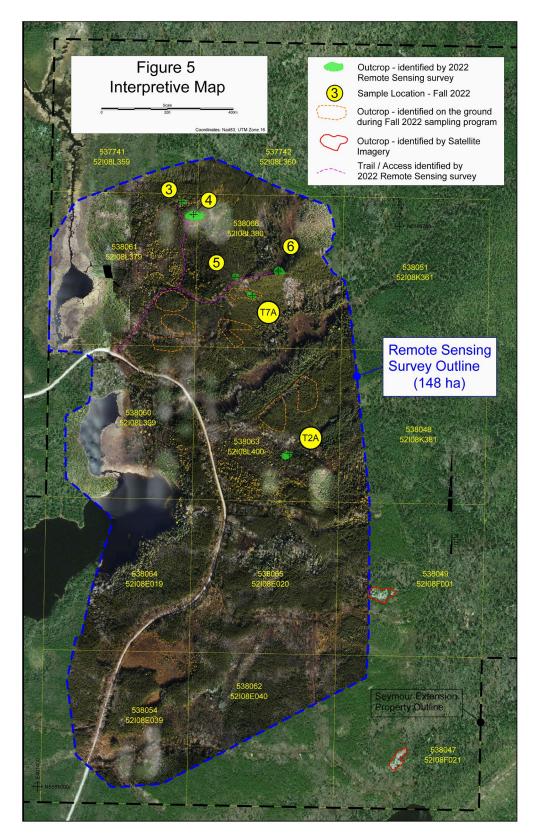
Sample results are summarized below. The full analytical results from Actlabs are found in *Appendix 4*. Analytical results for Cs, Li, Nb, Rb and Ta (rare elements) from the 6 samples were compared to the average rare-element abundances for the upper continental crust as published by Taylor and McLennan 1985 (See *Reference 6*). The same 6 samples were compared to values that would be considered "Enriched", according to Taylor and McLennan 1985. *Table 2* presents a summary of the results.

| Li              | Mg                                                                                                                                                                  | K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Rb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Nb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Та                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Cs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ba                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Sr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ppm             | %                                                                                                                                                                   | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 15              | 0.01                                                                                                                                                                | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| FUS-Na2O2       | FUS-Na2O2                                                                                                                                                           | FUS-Na2O2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | FUS-MS-Na2O2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | FUS-MS-Na2O2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | FUS-MS-Na2O2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | FUS-MS-Na2O2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | FUS-MS-Na2O2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | FUS-MS-Na2O2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 41              | 4.83                                                                                                                                                                | 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 85.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 638                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 251                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 75              | 0.23                                                                                                                                                                | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 46.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 218                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 104             | 0.99                                                                                                                                                                | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 83.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 821                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 15              | 0.06                                                                                                                                                                | 3.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 139                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 408                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 159             | 0.96                                                                                                                                                                | 3.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 90.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1550                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 866                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 96              | 0.19                                                                                                                                                                | 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 74.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 318                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 149                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                 |                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ates values exc | eeding what                                                                                                                                                         | is considered to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | be Enriched (Lithi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | um)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ates values exc | eeding the av                                                                                                                                                       | erage upper con                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ntinental crust (Ces                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | sium)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                 |                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| dances for the  | upper contin                                                                                                                                                        | ent crust (Taylo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | or and McLennan 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .985)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                 | Upper                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                 | Continental                                                                                                                                                         | UCC Enriched                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Element         | Crust (UCC)                                                                                                                                                         | x3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                 |                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Cesium          | 3.7                                                                                                                                                                 | 11.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Lithium         | 20                                                                                                                                                                  | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Niobium         | 25                                                                                                                                                                  | 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Rubidium        | 112                                                                                                                                                                 | 336                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Tantalum        | 2.2                                                                                                                                                                 | 6.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                 | ppm<br>15<br>FUS-Na2O2<br>41<br>75<br>104<br>15<br>96<br>ates values exc<br>tes values exc<br>dances for the<br>Element<br>Cesium<br>Lithium<br>Niobium<br>Rubidium | pp         9%           15         0.01           FUS-Na2O2         FUS-Na2O2           41         4.83           75         0.23           104         0.99           15         0.06           96         0.19           ates values exceeding what<br>tes values exceeding the av           dances for the upper contin<br>Continental<br>Element         Upper<br>Continental<br>Crust (UCC)           (Average pp)           Cesium         3.7           Lithium         20           Niobium         25           Rubidium         112 | ppm         %         %           15         0.01         0.1           FUS-Na2Q2         FUS-Na2Q2         FUS-Na2Q2           41         4.83         1.1           75         0.23         0.7           104         0.99         2.5           15         0.06         3.7           159         0.96         3.1           96         0.19         1.8           ates values exceeding the average upper contributer to crust (Taylor test values exceeding the average upper contributer to crust (Taylor test values exceeding the average upper contributer to crust (Taylor Continental UCC Enriched Crust (UCC) x3           Idances for the upper continent crust (Taylor Continental UCC Enriched Crust (UCC) x3           (Average ppm)         Cesium         3.7           Cesium         3.7         11.1           Lithium         20         60           Niobium         25         75           Rubidium         112         336 | ppm         %         %         ppm           15         0.01         0.1         0.4           FUS-Na2O2         FUS-Na2O2         FUS-Na2O2         FUS-Ns2O2           41         4.83         1.1         85.5           75         0.23         0.7         46.8           104         0.99         2.5         83.3           15         0.06         3.7         139           159         0.96         3.1         90.7           96         0.19         1.8         74.3           ates values exceeding what is considered to be Enriched (Lithi<br>its values exceeding the average upper continental crust (Cest         1           dances for the upper continent crust (Taylor and McLennan 1         1           continental<br>Upper<br>Continental         UCC Enriched         1           Element         Crust (UCC)         x3         1           (Average ppm)         1         1         1           Cesium         3.7         11.1         1           Lithium         20         60         1           Niobium         25         75         1 | ppm         %         %         ppm         ppm           15         0.01         0.1         0.4         2.4           FUS-Na2O2         FUS-Na2O2         FUS-Na2O2         FUS-NS-Na2O2         FUS-NS-Na2O2           41         4.83         1.1         85.5         4           75         0.23         0.7         46.8         7           104         0.99         2.5         83.3         7.2           15         0.06         3.7         139         5.2           159         0.96         3.1         90.7         6.5           96         0.19         1.8         74.3         6.8           ates values exceeding what is considered to be Enriched (Lithium) | ppm         %         %         ppm         ppm         ppm           15         0.01         0.1         0.4         2.4         0.2           FUS-Na2O2         FUS-Na2O2         FUS-Na2O2         FUS-MS-Na2O2         FUS-MS-Na2O2         FUS-MS-Na2O2           41         4.83         1.1         85.5         4         1.1           75         0.23         0.7         46.8         7         1           104         0.99         2.5         83.3         7.2         1           15         0.06         3.7         139         5.2         1.8           159         0.96         3.1         90.7         6.5         0.8           96         0.19         1.8         74.3         6.8         0.9           ates values exceeding what is considered to be Enriched (Lithium) | ppm         %         %         ppm         ppm         ppm         ppm         ppm           15         0.01         0.1         0.4         2.4         0.2         0.1           FUS-Na2O2         FUS-Na2O2         FUS-Na2O2         FUS-Na2O2         FUS-NsA2O2         FUS-NsA2O2         FUS-NsAS-Na2O2         FUS-NsAS-Na2O2         FUS-MS-Na2O2         FUS-Na2O2         FUS-MS-Na | ppm $\overline{0}$ $\overline{0}$ ppm         ppm         ppm         ppm         ppm         ppm         ppm           15         0.01         0.1         0.4         2.4         0.2         0.1         3           FUS-Na2O2         FUS-Na2O2         FUS-Na2O2         FUS-MS-Na2O2         FUS-MS-Na2O2 |

*Table 2* – Enriched Lithium values Highlighted in Green

Four (4) out of 6 samples show Lithium values exceeding what is considered "enriched" relative to the average Lithium values found in the upper continental crust. Three (3) out of 6 samples show Cesium values exceeding what is considered to be the average found in the upper continental crust.

### **Recommendations**


During the October and November field work programs, 7 additional outcrops (or broader areas with exposed bedrock) were visually identified in the field. The 7 areas are shown on *Figure 5* as orange dashed outlines. Two (2) additional outcrops that fall within *Seymour Extension Property* were subsequently identified from satellite imagery.

It is recommended that the 9 additional outcrop areas be overlaid on the LiDar survey that was completed by the client in early summer 2022. This would help to further define or constrain the 9 outcrop areas. LiDar would help to resolve any exposed bedrock hidden below tree canopy. This basic map work would cost approximately \$400 to complete.

The resulting 9 outcrop areas (once better-defined using the existing LiDar data...) could be sampled in spring or summer 2023. Scintillometer readings could be taken in a grid pattern across the 9 outcrop areas, particularly in places that may have thin moss cover. This type of field sampling and scintillometer program would cost approximately \$20,000 to complete.

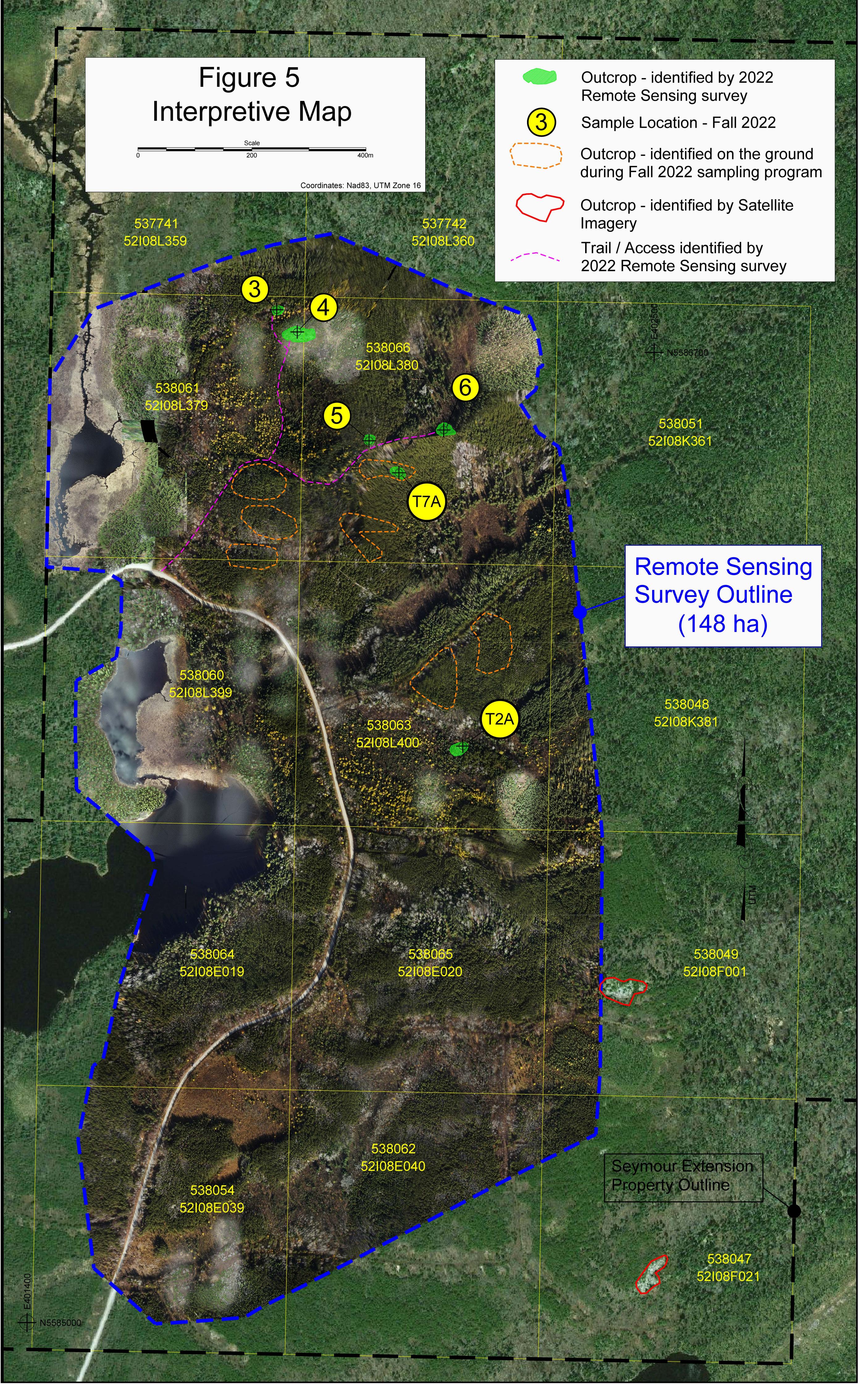
#### References;

- MRD126 Revised Bedrock 250K available through OGSEarth. OGSEarth can be found at link: geologyontario.mndm.gov.on.ca/ogsearth.html Under the main menu, you will see "Bedrock Geology" which includes a tab to download a KML file. The KML file will launch automatically if you already have Google Earth installed on your computer.
- 2) MDI Mineral Deposits Inventory, available through OGS Earth OGSEarth can be found at link: geologyontario.mndm.gov.on.ca/ogsearth.html Under the main menu, you will see "Ontario Mineral Inventory (OMI)" which includes a tab to download a KML file. The KML file will launch automatically if you already have Google Earth installed on your computer.
- 3) OAFD Ontario Assessment File Database, available through OGS Earth OGSEarth can be found at link: geologyontario.mndm.gov.on.ca/ogsearth.html Under the main menu, you will see "Ontario Assessment File Database (OAFD)" which includes a tab to download a KML file. The KML file will launch automatically if you already have Google Earth installed on your computer.
- Clapp, L., Jeffs, C. (2020). Technical Report for MNDM Assessment, 2018 Diamond Drill Program, Seymour Lake LCT Pegmatite Property. Prepared for Ardiden Limited, Feb 27, 2020.
- 5) Weicker, R. (2019). Assessment Report on Aerial Survey (Lidar) conducted by RME Geomatics on the Jackpot Property. Prepared for Infinite Lithium Corp, May 29, 2019.
- Taylor, S R. and McLennan, S M. (1985). The continental crust : Its composition and evolution. Book published in the U.S.



*Figure 5* – Interpretive Map

### Statement of Qualifications


|      |         | Author - Kevin Cool                                                                                                                     |
|------|---------|-----------------------------------------------------------------------------------------------------------------------------------------|
|      |         |                                                                                                                                         |
|      |         | Education                                                                                                                               |
| from | to      | Description                                                                                                                             |
| _    | 1983    | Photography - 1 year, Humber College, Toronto Ontario                                                                                   |
| 1988 | 1990    | Survey Engineering Technician - 2 year honours diploma, Northern College Porcupine Campus                                               |
|      | 2014    | Received Permanent Prospectors Licence, by reason of having held a Prospector's Licence for 25 years or more                            |
|      | 2014    | Aviation Ground School, Transport Canada Compliant Unmanned Aerial System training seminar                                              |
|      | 2014    | Radio Operators Certificate - Aeronautical                                                                                              |
|      |         |                                                                                                                                         |
|      |         | Companies owned and operated                                                                                                            |
| 1990 | 2001    | General Surveys & Exploration - mining, exploration, aggregate, construction survey and computer drafting.                              |
| 2000 | 2005    | Big Red Diamond Corp traded publicly on TSX Venture excahange under symbol DIA. Junior mining company exploring for diamonds.           |
|      |         | Participated in and managed regional-scale airborne geophysical programs, stream sampling, geochem sampling and camp construction.      |
|      |         | Property-scale work includes ground magnetometer, grid cutting and survey.                                                              |
| 2005 | 2011    | True North Mineral Laboratories Inc heavy mineral separation by heavy liquid. Crushing / pulverizing for other assay. 30+ employees.    |
|      |         | Provided services to the mining and exploration industry such as claim staking, till and geochem sampling, magnetometer survey.         |
| 2014 | current | UAV Timmins - drone aerial mapping and survey. 1st company to apply drone air photo survey as valid mining claim assessment in Ontario. |
| 2017 | current | Zen Geomap Inc drone magnetometer survey. 1st company to apply drone mag survey as valid mining claim assessment in Ontario.            |

I, Kevin Scott Cool, of 15 Prospector St., Gold Centre in the City of Timmins, Province of Ontario, hereby certify that:

- I am a graduate of Northern College of Applied Arts and Technology, May 26<sup>th</sup> 1990, Porcupine Campus, with a 2 year Honors Diploma in Survey Engineering Technology
- 2) I have subsequently operated above businesses, directly engaged with the mining and exploration industry.
- I have been actively engaged in my profession since May, 1990, in all aspects of ground and airborne exploration programs including the planning and execution of regional and property-scale programs, supervision, data processing, maps, interpretation and reports.

Kevin Scott Cool

Zen Geomap 204-70C Mountjoy ST. N. Timmins, ON P4N 4V7



### Sensefly - eBee Specifications

### **Technical** specifications

- 96cm wingspan
- Less than 700g (1.5lbs) take-off weight
- Lithium polymer battery powered
- 45 minutes of flight
- 36-57km/h (10-16m/s) cruise speed
- Up to 45km/h (12m/s) wind resistance
- Ground sensor and reverse engine
  technology for linear landing
- Up to 3km radio link
- 16MP camera, electronically integrated and controlled
- On-board data logging
- Covers areas up to 10km<sup>2</sup>

- Down to 3cm Orthomosaic accuracy
- Down to 5cm Digital Elevation Model (DEM) accuracy
- 3D flight planning and visualization
- Flight simulator
- · Real time mission update and control
- Multiple drones operation capable (with midair collision avoidance)
- Easy data management system (geotag images, create KML files and memorize flight history)

### Package contents

- eBee central body complete system with senseFly's built-in autopilot & all electronics (ready to fly)
- · Pair of detachable wings
- Still camera (includes memory card, battery, USB cable and charger)
- 2.4 GHz USB radio modem for data link (includes USB cable)
- Lithium-Polymer battery packs (includes charger)
- Spare propeller
- · Carrying case with foam protection
- Remote control & its accessories for safety pilots (if legally required)
- User manual
- Software access codes & license keys (eMotion 2, Postflight Terra 3D-EB)



### List of 279 air Photo Images

| ^ | DSC06553 | DSC06592 | DSC06631 | DSC06670 | DSC06709 | DSC06748 | DSC06787 | DSC0682 |
|---|----------|----------|----------|----------|----------|----------|----------|---------|
|   | DSC06554 | DSC06593 | DSC06632 | BSC06671 | DSC06710 | DSC06749 | BSC06788 | DSC0682 |
|   | DSC06555 | DSC06594 | DSC06633 | BSC06672 | DSC06711 | DSC06750 | DSC06789 | DSC0682 |
|   | DSC06556 | DSC06595 | DSC06634 | BSC06673 | DSC06712 | BSC06751 | DSC06790 | DSC0682 |
|   | DSC06557 | DSC06596 | DSC06635 | BSC06674 | DSC06713 | DSC06752 | DSC06791 | DSC0683 |
|   | DSC06558 | DSC06597 | DSC06636 | BSC06675 | DSC06714 | DSC06753 | DSC06792 | DSC0683 |
|   | DSC06559 | DSC06598 | DSC06637 | DSC06676 | DSC06715 | DSC06754 | DSC06793 |         |
|   | DSC06560 | DSC06599 | DSC06638 | BSC06677 | DSC06716 | DSC06755 | DSC06794 |         |
|   | DSC06561 | DSC06600 | DSC06639 | DSC06678 | DSC06717 | DSC06756 | DSC06795 |         |
|   | DSC06562 | DSC06601 | BSC06640 | BSC06679 | DSC06718 | BSC06757 | BSC06796 |         |
|   | DSC06563 | DSC06602 | BSC06641 | BSC06680 | DSC06719 | DSC06758 | DSC06797 |         |
|   | DSC06564 | DSC06603 | DSC06642 | BSC06681 | DSC06720 | BSC06759 | DSC06798 |         |
|   | DSC06565 | DSC06604 | DSC06643 | BSC06682 | DSC06721 | DSC06760 | DSC06799 |         |
|   | DSC06566 | DSC06605 | DSC06644 | DSC06683 | DSC06722 | DSC06761 | DSC06800 |         |
|   | DSC06567 | DSC06606 | DSC06645 | DSC06684 | DSC06723 | DSC06762 | DSC06801 |         |
|   | DSC06568 | DSC06607 | DSC06646 | BSC06685 | DSC06724 | BSC06763 | DSC06802 |         |
|   | DSC06569 | DSC06608 | DSC06647 | DSC06686 | DSC06725 | DSC06764 | DSC06803 |         |
|   | DSC06570 | DSC06609 | DSC06648 | DSC06687 | DSC06726 | DSC06765 | BSC06804 |         |
|   | DSC06571 | DSC06610 | DSC06649 | DSC06688 | DSC06727 | DSC06766 | DSC06805 |         |
|   | DSC06572 | DSC06611 | BSC06650 | DSC06689 | DSC06728 | BSC06767 | DSC06806 |         |
|   | DSC06573 | DSC06612 | DSC06651 | BSC06690 | DSC06729 | DSC06768 | DSC06807 |         |
|   | DSC06574 | DSC06613 | DSC06652 | BSC06691 | DSC06730 | DSC06769 | DSC06808 |         |
|   | DSC06575 | DSC06614 | DSC06653 | DSC06692 | DSC06731 | BSC06770 | DSC06809 |         |
|   | DSC06576 | DSC06615 | DSC06654 | DSC06693 | DSC06732 | BSC06771 | DSC06810 |         |
|   | DSC06577 | DSC06616 | DSC06655 | DSC06694 | DSC06733 | DSC06772 | DSC06811 |         |
|   | DSC06578 | DSC06617 | DSC06656 | DSC06695 | DSC06734 | DSC06773 | DSC06812 |         |
|   | DSC06579 | DSC06618 | DSC06657 | DSC06696 | DSC06735 | DSC06774 | DSC06813 |         |
|   | DSC06580 | DSC06619 | DSC06658 | BSC06697 | DSC06736 | BSC06775 | DSC06814 |         |
|   | DSC06581 | DSC06620 | DSC06659 | DSC06698 | DSC06737 | DSC06776 | DSC06815 |         |
|   | DSC06582 | DSC06621 | DSC06660 | DSC06699 | DSC06738 | DSC06777 | DSC06816 |         |
|   | DSC06583 | DSC06622 | DSC06661 | DSC06700 | DSC06739 | DSC06778 | DSC06817 |         |
|   | DSC06584 | DSC06623 | DSC06662 | BSC06701 | DSC06740 | BSC06779 | DSC06818 |         |
|   | DSC06585 | DSC06624 | DSC06663 | BSC06702 | DSC06741 | DSC06780 | DSC06819 |         |
|   | DSC06586 | DSC06625 | DSC06664 | DSC06703 | DSC06742 | DSC06781 | DSC06820 |         |
|   | DSC06587 | DSC06626 | DSC06665 | DSC06704 | DSC06743 | DSC06782 | DSC06821 |         |
|   | DSC06588 | DSC06627 | DSC06666 | BSC06705 | DSC06744 | DSC06783 | DSC06822 |         |
|   | DSC06589 | DSC06628 | DSC06667 | DSC06706 | DSC06745 | DSC06784 | DSC06823 |         |
|   | DSC06590 | DSC06629 | DSC06668 | BSC06707 | DSC06746 | DSC06785 | DSC06824 |         |
|   | DSC06591 | DSC06630 | DSC06669 | BSC06708 | DSC06747 | DSC06786 | DSC06825 |         |

### Field Sample Logs Summarized in Table format

| Sample | Easting | Northing | Scintillometer | Туре                        | Description | ı                                                                                     |                            |               |              |             |                       |              |              |              |             |             |              |        |  |
|--------|---------|----------|----------------|-----------------------------|-------------|---------------------------------------------------------------------------------------|----------------------------|---------------|--------------|-------------|-----------------------|--------------|--------------|--------------|-------------|-------------|--------------|--------|--|
|        |         |          | Reading (cps)  |                             |             |                                                                                       |                            |               |              |             |                       |              |              |              |             |             |              |        |  |
|        |         |          |                |                             |             |                                                                                       |                            |               |              |             |                       |              |              |              |             |             |              |        |  |
| T2-A   | 402164  | 5586010  | 135            | Metavolcanic                | Fine graine | d, dark gre                                                                           | en to black                |               |              |             |                       |              |              |              |             |             |              |        |  |
| 3      | 401838  | 5586775  | 126            | Granodiorite                | Fine graine | ne grained, uniform groundmass, no phenocrysts, minor amounts of fine grained biotite |                            |               |              |             |                       |              |              |              |             |             |              |        |  |
| 4      | 401874  | 5586731  | 155            | Granite                     | medium gr   | nedium grained, uniform groundmass, up to ~10% biotite                                |                            |               |              |             |                       |              |              |              |             |             |              |        |  |
| 5      | 401999  | 5586544  | 182            | Granite                     | Fine graine | d, some 1-                                                                            | 3 cm feldsp                | ar, plagiocla | se pheocyr   | ysts. Some  | fine grained mico (mu | uscovite?) o | n fracture s | urface       | 3           |             |              |        |  |
| 6      | 402126  | 5586563  | 140            | Granite                     | Fine graine | d groundm                                                                             | ass with eld               | ongate plaig  | ioclase phe  | nocrysts up | to 1cm                |              |              |              |             |             |              |        |  |
| T7-A   | 402052  | 5586489  | 138            | Gneissic Tonalite, Tonalite | Part is gne | ssic tonalit                                                                          | e, with a <mark>n</mark> a | Iterted (Tor  | alite?) in a | fine graine | white ground mass     | with large p | lagioclase c | rystals < 4c | m. Some fin | e grained b | iotite throu | Ighout |  |
|        |         |          |                |                             |             |                                                                                       |                            |               |              |             |                       |              |              |              |             |             |              |        |  |
|        |         |          |                |                             |             |                                                                                       | Coo                        | rdinates are  | Nad83, UT    | M Zone 16   |                       |              |              |              |             |             |              |        |  |

# Analytical Results and Certificate of Analysis (Actlabs)

Quality Analysis ...



Innovative Technologies

Report No.:A22-16831Report Date:23-Nov-22Date Submitted:11-Nov-22Your Reference:SEYMOUR EXTENSION

Joshua Gold Resources Unit 20-1033 Pattullo Ave Woodstock ON N4V 1C8 Canada

ATTN: Drew Currah

### CERTIFICATE OF ANALYSIS

7 Rock samples were submitted for analysis.

| The following analytical package(s) were requested: | Testing Date:                                               |                     |
|-----------------------------------------------------|-------------------------------------------------------------|---------------------|
| UT-7                                                | QOP Sodium Peroxide (Sodium Peroxide Fusion ICPOES + ICPMS) | 2022-11-16 14:26:58 |

#### REPORT **A22-16831**

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:



LabID: 266

ACTIVATION LABORATORIES LTD.

41 Bittern Street, Ancaster, Ontario, Canada, L9G 4V5 TELEPHONE +905 648-9611 or +1.888.228.5227 FAX +1.905.648.9613 E-MAIL Ancaster@actlabs.com ACTLABS GROUP WEBSITE www.actlabs.com CERTIFIED BY:

of Your

Mark Vandergeest Quality Control Coordinator

Results

Activation Laboratories Ltd.

| Analyte Symbol | Al    | As                   | В    | Ba                   | Be                   | Bi                   | Ca            | Cd  | Ce                   | Co                   | Cr                   | Cs   | Cu                   | Dy  | Er  | Eu                   | Fe            | Ga                   | Gd  | Ge                   | Ho                   | Hf   | In                   |
|----------------|-------|----------------------|------|----------------------|----------------------|----------------------|---------------|-----|----------------------|----------------------|----------------------|------|----------------------|-----|-----|----------------------|---------------|----------------------|-----|----------------------|----------------------|------|----------------------|
| Unit Symbol    | %     | ppm                  | ppm  | ppm                  | ppm                  | ppm                  | %             | ppm | ppm                  | ppm                  | ppm                  | ppm  | ppm                  | ppm | ppm | ppm                  | %             | ppm                  | ppm | ppm                  | ppm                  | ppm  | ppm                  |
| Lower Limit    | 0.01  | 5                    | 10   | 3                    | 3                    | 2                    | 0.01          | 2   | 0.8                  | 0.2                  | 30                   | 0.1  | 2                    | 0.3 | 0.1 | 0.1                  | 0.05          | 0.2                  | 0.1 | 0.7                  | 0.2                  | 10   | 0.2                  |
| Method Code    | Na2O2 | FUS-<br>MS-<br>Na2O2 |      | FUS-<br>MS-<br>Na2O2 | FUS-<br>MS-<br>Na2O2 | FUS-<br>MS-<br>Na2O2 | FUS-<br>Na2O2 | MS- | FUS-<br>MS-<br>Na2O2 | FUS-<br>MS-<br>Na2O2 | FUS-<br>MS-<br>Na2O2 | MS-  | FUS-<br>MS-<br>Na2O2 | MS- |     | FUS-<br>MS-<br>Na2O2 | FUS-<br>Na2O2 | FUS-<br>MS-<br>Na2O2 | MS- | FUS-<br>MS-<br>Na2O2 | FUS-<br>MS-<br>Na2O2 | MS-  | FUS-<br>MS-<br>Na2O2 |
| P100           | 6.86  | < 5                  | < 10 | 544                  | 4                    | < 2                  | 0.29          | < 2 | 4.3                  | 0.8                  | 30                   | 14.6 | 5                    | 1.5 | 0.4 | 0.4                  | 0.43          | 40.9                 | 1.2 | 2.7                  | < 0.2                | 10   | < 0.2                |
| T2-A           | 7.24  | < 5                  | 10   | 638                  | < 3                  | < 2                  | 7.91          | < 2 | 5.2                  | 50.1                 | 310                  | 2.1  | 146                  | 2.8 | 1.6 | 0.9                  | 8.27          | 16.0                 | 1.6 | 1.9                  | 0.5                  | < 10 | < 0.2                |
| 3              | 7.00  | < 5                  | 20   | 116                  | < 3                  | < 2                  | 1.96          | < 2 | 10.2                 | 4.0                  | 30                   | 3.2  | 13                   | 0.5 | 0.4 | 0.1                  | 1.46          | 19.2                 | 0.4 | 0.7                  | < 0.2                | < 10 | < 0.2                |
| 4              | 8.15  | < 5                  | 20   | 1250                 | < 3                  | < 2                  | 2.18          | < 2 | 49.3                 | 10.5                 | 50                   | 5.8  | 6                    | 1.3 | 0.5 | 1.3                  | 2.51          | 21.5                 | 2.0 | < 0.7                | 0.2                  | < 10 | < 0.2                |
| 5              | 7.32  | < 5                  | < 10 | 408                  | < 3                  | < 2                  | 0.94          | < 2 | 6.7                  | 0.7                  | 30                   | 1.4  | 8                    | 1.6 | 0.8 | 0.5                  | 0.71          | 14.4                 | 1.2 | 0.9                  | 0.4                  | < 10 | < 0.2                |
| 6              | 8.40  | < 5                  | < 10 | 1550                 | < 3                  | < 2                  | 2.31          | < 2 | 75.1                 | 10.6                 | 60                   | 3.7  | 14                   | 1.5 | 1.0 | 1.8                  | 2.43          | 22.9                 | 3.4 | 0.7                  | 0.3                  | < 10 | < 0.2                |
| T7-A           | 6.80  | < 5                  | < 10 | 318                  | < 3                  | < 2                  | 1.47          | < 2 | 10.6                 | 2.2                  | < 30                 | 8.2  | 4                    | 1.1 | 0.6 | 0.5                  | 1.06          | 15.2                 | 0.7 | 1.1                  | < 0.2                | < 10 | < 0.2                |

Results

Activation Laboratories Ltd.

| Analyte Symbol | К     | La   | Li            | Mg   | Mn   | Мо                   | Nb                   | Nd   | Ni  | Pb                   | Pr                   | Rb   | S    | Sb  | Se  | Si     | Sm                   | Sn                   | Sr  | Та                   | Tb                   | Te  | Th                   |
|----------------|-------|------|---------------|------|------|----------------------|----------------------|------|-----|----------------------|----------------------|------|------|-----|-----|--------|----------------------|----------------------|-----|----------------------|----------------------|-----|----------------------|
| Unit Symbol    | %     | ppm  | ppm           | %    | ppm  | ppm                  | ppm                  | ppm  | ppm | ppm                  | ppm                  | ppm  | %    | ppm | ppm | %      | ppm                  | ppm                  | ppm | ppm                  | ppm                  | ppm | ppm                  |
| Lower Limit    | 0.1   | 0.4  | 15            | 0.01 | 3    | 1                    | 2.4                  | 0.4  | 10  | 0.8                  | 0.1                  | 0.4  | 0.01 | 2   | 8   | 0.01   | 0.1                  | 0.5                  | 3   | 0.2                  | 0.1                  | 6   | 0.1                  |
| Method Code    | Na2O2 |      | FUS-<br>Na2O2 |      |      | FUS-<br>MS-<br>Na2O2 | FUS-<br>MS-<br>Na2O2 | MS-  |     | FUS-<br>MS-<br>Na2O2 | FUS-<br>MS-<br>Na2O2 |      |      | MS- |     |        | FUS-<br>MS-<br>Na2O2 | FUS-<br>MS-<br>Na2O2 | MS- | FUS-<br>MS-<br>Na2O2 | FUS-<br>MS-<br>Na2O2 | MS- | FUS-<br>MS-<br>Na2O2 |
| P100           | 5.1   | 1.4  | < 15          | 0.02 | 853  | 8                    | 30.0                 | 2.1  | 20  | 53.7                 | 0.6                  | 820  | 0.03 | < 2 | 13  | > 30.0 | 1.2                  | 2.0                  | 128 | 12.9                 | 0.3                  | 12  | 8.4                  |
| T2-A           | 1.1   | 2.3  | 41            | 4.83 | 1610 | 7                    | 4.0                  | 3.0  | 140 | 1.3                  | 0.7                  | 85.5 | 0.06 | < 2 | 15  | 22.9   | 1.8                  | 1.0                  | 251 | 1.1                  | 0.4                  | 8   | 0.2                  |
| 3              | 0.7   | 5.6  | 75            | 0.23 | 276  | 9                    | 7.0                  | 2.9  | 40  | 11.6                 | 0.9                  | 46.8 | 0.03 | < 2 | < 8 | > 30.0 | 0.6                  | 1.8                  | 218 | 1.0                  | < 0.1                | 11  | 8.9                  |
| 4              | 2.5   | 22.6 | 104           | 0.99 | 420  | 9                    | 7.2                  | 20.5 | 30  | 26.9                 | 5.6                  | 83.3 | 0.03 | < 2 | 13  | > 30.0 | 3.6                  | 1.0                  | 821 | 1.0                  | 0.3                  | 9   | 8.5                  |
| 5              | 3.7   | 3.6  | < 15          | 0.06 | 135  | 7                    | 5.2                  | 2.1  | 20  | 20.9                 | 0.8                  | 139  | 0.02 | < 2 | 17  | > 30.0 | 1.0                  | < 0.5                | 111 | 1.8                  | 0.3                  | 12  | 7.5                  |
| 6              | 3.1   | 42.6 | 159           | 0.96 | 451  | 9                    | 6.5                  | 30.8 | 30  | 36.8                 | 8.5                  | 90.7 | 0.06 | < 2 | 8   | > 30.0 | 4.9                  | < 0.5                | 866 | 0.8                  | 0.4                  | 11  | 9.9                  |
| T7-A           | 1.8   | 5.3  | 96            | 0.19 | 209  | 9                    | 6.8                  | 3.5  | 20  | 11.9                 | 0.9                  | 74.3 | 0.02 | < 2 | 10  | > 30.0 | 0.7                  | 1.5                  | 149 | 0.9                  | 0.1                  | 12  | 4.8                  |

Report: A22-16831

Results

#### Activation Laboratories Ltd.

| Analyte Symbol | Ti            | TI                   | Tm                   | U                    | V                    | W                    | Y                    | Yb                   | Zn                   |
|----------------|---------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|
| Unit Symbol    | %             | ppm                  |
| Lower Limit    | 0.01          | 0.1                  | 0.1                  | 0.1                  | 5                    | 0.7                  | 0.1                  | 0.1                  | 30                   |
| Method Code    | FUS-<br>Na2O2 | FUS-<br>MS-<br>Na2O2 |
| P100           | < 0.01        | 5.4                  | < 0.1                | 6.0                  | 6                    | 1.6                  | 18.0                 | 1.2                  | 50                   |
| T2-A           | 0.36          | 0.7                  | 0.3                  | 0.1                  | 246                  | 1.1                  | 14.6                 | 1.6                  | 120                  |
| 3              | 0.09          | 0.3                  | < 0.1                | 1.0                  | 19                   | < 0.7                | 2.9                  | 0.3                  | 90                   |
| 4              | 0.23          | 0.4                  | < 0.1                | 3.3                  | 48                   | 1.3                  | 6.1                  | 0.4                  | 90                   |
| 5              | 0.03          | 0.8                  | 0.2                  | 5.5                  | 6                    | 0.8                  | 10.9                 | 1.1                  | 40                   |
| 6              | 0.23          | 0.4                  | < 0.1                | 3.0                  | 52                   | 0.8                  | 7.1                  | 0.6                  | 80                   |
| T7-A           | 0.06          | 0.2                  | < 0.1                | 3.0                  | 11                   | 0.7                  | 6.6                  | 0.7                  | 50                   |

Activation Laboratories Ltd.

| Analyte Symbol                                          | AI            | As           | В                    | Ва   | Be     | Bi                   | Ca            | Cd                   | Ce                   | Co                   | Cr                   | Cs                   | Cu                   | Dy                   | Er   | Eu                   | Fe            | Ga                   | Gd                   | Ge                   | Ho                   | Hf                   | In                   |
|---------------------------------------------------------|---------------|--------------|----------------------|------|--------|----------------------|---------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|------|----------------------|---------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|
| Unit Symbol                                             | %             | ppm          |                      | ppm  | ppm    |                      | %             | ppm                  | ppm                  | ppm                  |                      | ppm                  | ppm                  | ppm                  |      | ppm                  | %             | ppm                  | ppm                  | ppm                  | ppm                  | ppm                  | ppm                  |
| Lower Limit                                             | 0.01          | 5            |                      | 3    | 3      |                      | 0.01          | 2                    | 0.8                  | 0.2                  |                      | 0.1                  | 2                    | 0.3                  | 0.1  |                      | 0.05          | 0.2                  | 0.1                  | 0.7                  | 0.2                  | 10                   | 0.2                  |
| Method Code                                             | FUS-<br>Na2O2 | MS-          | FUS-<br>MS-<br>Na2O2 | MS-  | MS-    | FUS-<br>MS-<br>Na2O2 | FUS-<br>Na2O2 | FUS-<br>MS-<br>Na2O2 | MS-  | FUS-<br>MS-<br>Na2O2 | FUS-<br>Na2O2 | FUS-<br>MS-<br>Na2O2 | FUS-<br>MS-<br>Na2O2 | FUS-<br>MS-<br>Na2O2 | FUS-<br>MS-<br>Na2O2 | FUS-<br>MS-<br>Na2O2 | FUS-<br>MS-<br>Na2O2 |
| PTM-1a Meas                                             |               | 2210         |                      |      |        |                      |               |                      |                      | > 5000               |                      |                      | > 10000              |                      |      |                      |               |                      |                      |                      |                      |                      |                      |
| PTM-1a Cert                                             |               | 2200         |                      |      |        |                      |               |                      |                      | 20500.<br>00         |                      |                      | 249600<br>.00        |                      |      |                      |               |                      |                      |                      |                      |                      |                      |
| NIST 696 Meas                                           | > 25.0        |              |                      |      |        |                      |               |                      |                      |                      | 340                  |                      |                      |                      |      |                      |               |                      |                      |                      |                      |                      | <u> </u>             |
| NIST 696 Cert                                           | 28.9          | 40           |                      |      |        |                      |               |                      |                      | 570                  | 321.0                |                      | 1100                 |                      |      |                      | 10.7          |                      |                      |                      |                      |                      | ──                   |
| Oreas 74a<br>(Fusion) Meas                              |               | 46           |                      |      |        |                      |               |                      |                      | 578                  | 1720                 |                      | 1180                 |                      |      |                      | 13.7          |                      |                      |                      |                      |                      |                      |
| Oreas 74a<br>(Fusion) Cert                              |               | 50           |                      |      |        |                      |               |                      |                      | 581                  | 1800.00              |                      | 1240.0<br>00         |                      | 10.0 |                      | 13.7          |                      | (0.0                 |                      |                      |                      | <u> </u>             |
| OREAS 101a<br>(Fusion) Meas                             |               |              |                      |      |        |                      |               |                      | 1420                 | 49.4                 |                      |                      | 436                  | 35.6                 | 19.2 | 8.6                  | 11.0          |                      | 46.3                 |                      | 6.7                  |                      |                      |
| OREAS 101a<br>(Fusion) Cert                             |               |              |                      |      |        |                      |               |                      | 1400                 | 48.8                 |                      |                      | 434                  | 33.3                 | 19.5 | 8.06                 | 11.06         |                      | 43.4                 |                      | 6.46                 |                      |                      |
| NCS DC86314<br>Meas                                     |               |              |                      |      |        |                      |               |                      |                      |                      |                      | 2850                 |                      |                      |      |                      |               |                      |                      |                      |                      |                      |                      |
| NCS DC86314<br>Cert                                     |               |              |                      |      |        |                      |               |                      |                      |                      |                      | 2830                 |                      |                      |      |                      |               |                      |                      |                      |                      |                      |                      |
| NCS DC86313<br>Meas                                     |               |              |                      |      | > 5000 |                      |               |                      |                      |                      |                      |                      |                      |                      |      |                      |               |                      |                      |                      |                      |                      |                      |
| NCS DC86313<br>Cert                                     |               |              |                      |      | 10880  |                      |               |                      |                      |                      |                      |                      |                      |                      |      |                      |               |                      |                      |                      |                      |                      |                      |
| CZN-4 Meas                                              | 0.08          | 360          |                      |      |        |                      |               | 2660                 |                      | 97.3                 |                      |                      | 4070                 |                      |      |                      |               |                      |                      |                      |                      |                      |                      |
| CZN-4 Cert                                              | 0.0715        | 356.00<br>00 |                      |      |        |                      |               | 2604.0<br>000        |                      | 93.5                 |                      |                      | 4030.0<br>00         |                      |      |                      |               |                      |                      |                      |                      |                      |                      |
| OREAS 183<br>(Fusion ICP)<br>Meas                       |               |              |                      |      |        |                      |               |                      |                      | 222                  |                      |                      |                      |                      |      |                      |               |                      |                      |                      |                      |                      |                      |
| OREAS 183<br>(Fusion ICP) Cert                          |               |              |                      |      |        |                      |               |                      |                      | 222.00<br>00         |                      |                      |                      |                      |      |                      |               |                      |                      |                      |                      |                      |                      |
| Lithium<br>Tetraborate FX-LT<br>100 lot#220610B<br>Meas |               |              | > 10000              |      |        |                      |               |                      |                      |                      |                      |                      |                      |                      |      |                      |               |                      |                      |                      |                      |                      |                      |
| Lithium<br>Tetraborate FX-LT<br>100 lot#220610B<br>Cert |               |              | 255700               |      |        |                      |               |                      |                      |                      |                      |                      |                      |                      |      |                      |               |                      |                      |                      |                      |                      |                      |
| OREAS 922<br>(Peroxide Fusion)<br>Meas                  | 7.95          |              |                      |      |        |                      | 0.41          |                      |                      |                      |                      |                      |                      |                      |      |                      | 5.81          |                      |                      |                      |                      |                      |                      |
| OREAS 922<br>(Peroxide Fusion)<br>Cert                  | 7.59          |              |                      |      |        |                      | 0.49          |                      |                      |                      |                      |                      |                      |                      |      |                      | 5.71          |                      |                      |                      |                      |                      |                      |
| OREAS 621<br>(Peroxide Fusion)<br>Meas                  | 6.68          | 82           |                      | 2620 | < 3    | 4                    | 2.02          | 267                  | 54.2                 | 30.0                 | 70                   | 3.6                  | 3570                 |                      |      |                      | 3.74          | 26.6                 |                      |                      |                      |                      | 1.8                  |
| OREAS 621<br>(Peroxide Fusion)<br>Cert                  | 6.63          | 85           |                      | 2610 | 2      | 4                    | 2.00          |                      | 52.0                 |                      | 50                   | 3.6                  |                      |                      |      |                      | 3.71          | 26.5                 |                      |                      |                      |                      | 1.9                  |
| CCU-1e Meas                                             | 0.14          | 1110         |                      |      |        |                      |               | 75                   |                      | 318                  |                      |                      | > 10000              |                      |      |                      | > 30.0        |                      |                      |                      |                      |                      |                      |
| CCU-1e Cert                                             | 0.139         | 1010         |                      |      |        |                      |               | 74.2                 |                      | 301                  |                      |                      | 229000               |                      |      |                      | 30.7          |                      |                      |                      |                      |                      | ──                   |
| OREAS 680<br>(Peroxide Fusion)<br>Meas                  | 7.26          |              |                      |      |        |                      | 5.80          |                      |                      |                      |                      |                      |                      |                      |      |                      | 11.7          |                      |                      |                      |                      |                      |                      |
| OREAS 680<br>(Peroxide Fusion)<br>Cert                  | 7.19          |              |                      |      |        |                      | 5.80          |                      |                      |                      |                      |                      |                      |                      |      |                      | 11.9          |                      |                      |                      |                      |                      |                      |

Activation Laboratories Ltd.

| Analyte Symbol                         | AI            | As  | в                    | Ba   | Be                   | Bi                   | Ca            | Cd                   | Ce                   | Co    | Cr   | Cs                   | Cu      | Dv                   | Er    | Eu                   | Fe            | Ga    | Gd   | Ge                   | Но                   | Hf   | In                   |
|----------------------------------------|---------------|-----|----------------------|------|----------------------|----------------------|---------------|----------------------|----------------------|-------|------|----------------------|---------|----------------------|-------|----------------------|---------------|-------|------|----------------------|----------------------|------|----------------------|
| Unit Symbol                            | %             |     |                      |      | ppm                  |                      | %             |                      | ppm                  | ppm   | -    |                      |         | ,                    |       | ppm                  | -             |       |      | ppm                  | ppm                  |      | ppm                  |
| Lower Limit                            | 0.01          | 5   | 10                   | 3    | 3                    |                      | 0.01          |                      | 0.8                  | 0.2   |      | 0.1                  | 2       |                      |       | 0.1                  |               |       |      | 0.7                  | 0.2                  |      | 0.2                  |
| Method Code                            | FUS-<br>Na2O2 | MS- | FUS-<br>MS-<br>Na2O2 | MS-  | FUS-<br>MS-<br>Na2O2 | FUS-<br>MS-<br>Na2O2 | FUS-<br>Na2O2 | FUS-<br>MS-<br>Na2O2 | FUS-<br>MS-<br>Na2O2 | MS-   | MS-  | FUS-<br>MS-<br>Na2O2 | MS-     | FUS-<br>MS-<br>Na2O2 | MS-   | FUS-<br>MS-<br>Na2O2 | FUS-<br>Na2O2 | MS-   | MS-  | FUS-<br>MS-<br>Na2O2 | FUS-<br>MS-<br>Na2O2 | MS-  | FUS-<br>MS-<br>Na2O2 |
| OREAS 139<br>(Peroxide Fusion)<br>Meas | 3.86          |     |                      |      |                      |                      | 1.24          |                      |                      |       |      |                      |         |                      |       |                      | 11.8          |       |      |                      |                      |      |                      |
| OREAS 139<br>(Peroxide Fusion)<br>Cert | 3.70          |     |                      |      |                      |                      | 1.20          |                      |                      |       |      |                      |         |                      |       |                      | 11.9          |       |      |                      |                      |      |                      |
| OREAS 624<br>(Peroxide Fusion)<br>Meas | 4.36          | 122 |                      | 992  |                      | 21                   | 1.48          | 125                  | 29.6                 | 280   |      | 1.5                  | > 10000 |                      |       |                      | 16.3          | 20.3  |      |                      |                      |      | 3.9                  |
| OREAS 624<br>(Peroxide Fusion)<br>Cert | 4.32          | 115 |                      | 1070 |                      | 21.3                 | 1.49          | 133                  | 32.9                 | 273   |      | 1.32                 | 30800   |                      |       |                      | 16.3          | 22.1  |      |                      |                      |      | 4.14                 |
| OREAS 124<br>(Peroxide Fusion)<br>Meas | 4.72          |     |                      | 1040 | < 3                  |                      | 0.10          |                      | 46.1                 |       | 90   |                      |         | 2.6                  | 1.6   | 1.6                  | 1.57          | 9.7   | 3.5  |                      | 0.5                  | < 10 |                      |
| OREAS 124<br>(Peroxide Fusion)<br>Cert | 4.62          |     |                      | 1020 | 1.83                 |                      | 0.0880        |                      | 47.6                 |       | 51.0 |                      |         | 2.82                 | 1.60  | 1.15                 | 1.56          | 10.5  | 3.47 |                      | 0.580                | 6.22 |                      |
| AMIS 0346<br>(Peroxide Fusion)<br>Meas |               |     |                      |      |                      |                      |               |                      |                      |       |      |                      |         |                      |       |                      | > 30.0        |       |      |                      |                      |      |                      |
| AMIS 0346<br>(Peroxide Fusion)<br>Cert |               |     |                      |      |                      |                      |               |                      |                      |       |      |                      |         |                      |       |                      | 44.3          |       |      |                      |                      |      |                      |
| NCS DC73520<br>Meas<br>NCS DC73520     |               |     |                      |      |                      |                      |               |                      |                      |       |      |                      |         |                      |       |                      |               |       |      |                      |                      |      |                      |
| Cert<br>OREAS 148<br>(Peroxide Fusion) | 5.36          |     |                      |      |                      |                      | 0.86          |                      |                      |       |      |                      |         |                      |       |                      | 3.02          |       |      |                      |                      |      |                      |
| Meas<br>OREAS 148<br>(Peroxide Fusion) | 5.37          |     |                      |      |                      |                      | 0.90          |                      |                      |       |      |                      |         |                      |       |                      | 3.06          |       |      |                      |                      |      |                      |
| Cert<br>Method Blank                   | < 0.01        |     |                      |      |                      |                      | < 0.01        |                      |                      |       |      |                      |         |                      |       |                      | < 0.05        |       |      |                      |                      |      |                      |
| Method Blank                           | < 0.01        |     |                      |      |                      |                      | < 0.01        |                      |                      |       |      |                      |         |                      |       |                      | < 0.05        |       |      |                      |                      |      |                      |
| Method Blank                           | < 0.01        |     |                      |      |                      |                      | < 0.01        |                      |                      |       |      |                      |         |                      |       |                      | < 0.05        |       |      |                      |                      |      |                      |
| Method Blank                           | < 0.01        |     |                      |      |                      |                      | < 0.01        |                      |                      |       |      |                      |         |                      |       |                      | < 0.05        |       |      |                      |                      |      |                      |
| Method Blank                           | < 0.01        |     |                      |      |                      |                      | < 0.01        |                      |                      |       |      |                      |         |                      |       |                      | < 0.05        |       |      |                      |                      |      |                      |
| Method Blank                           | < 0.01        | < 5 | < 10                 | < 3  | < 3                  | < 2                  | < 0.01        | < 2                  | < 0.8                | < 0.2 | 40   | 0.3                  | < 2     | < 0.3                | < 0.1 | < 0.1                | < 0.05        | < 0.2 | 0.2  | < 0.7                | < 0.2                | < 10 | < 0.2                |
| Method Blank                           | < 0.01        |     |                      |      |                      |                      | < 0.01        |                      |                      |       |      |                      |         |                      |       |                      | < 0.05        |       |      |                      |                      |      |                      |

#### Activation Laboratories Ltd.

| Analyta Symbol                                          | K           |             | Li           | Ma           | Mn                   | Mo       | Nb         | Nd          | Nij                  | Dh            | Dr          | Dh          | le            | Sh           | 50                   | Ci           | Sm           | len.         | lor.         | Та          | Ть          | То        | Ть           |
|---------------------------------------------------------|-------------|-------------|--------------|--------------|----------------------|----------|------------|-------------|----------------------|---------------|-------------|-------------|---------------|--------------|----------------------|--------------|--------------|--------------|--------------|-------------|-------------|-----------|--------------|
| Analyte Symbol                                          | К<br>%      |             |              | Mg<br>∞∕     | Mn                   |          | Nb         | Nd          | Ni                   | Pb            | Pr          | Rb          | S<br>%        | Sb           | Se                   | Si<br>%      | Sm           | Sn           | Sr           | Ta          | Tb          | Te        | Th           |
| Unit Symbol                                             |             | ppm         | ppm          | %            | ppm                  | ppm<br>1 | ppm<br>2.4 | ppm         | ppm<br>10            | ppm           | ppm         | ppm         |               | ppm<br>2     | ppm                  |              | ppm          | ppm          | ppm          | ppm<br>0.2  | ppm         | ppm       | ppm<br>0.1   |
| Lower Limit<br>Method Code                              | 0.1<br>FUS- | 0.4<br>FUS- | 15<br>FUS-   | 0.01<br>FUS- | 3                    |          |            | 0.4<br>FUS- | 10<br>FUS-           | 0.8<br>FUS-   | 0.1<br>FUS- | 0.4<br>FUS- | 0.01          | -            | 8                    | 0.01<br>FUS- | 0.1<br>FUS-  | 0.5<br>FUS-  | 3<br>FUS-    | 0.2<br>FUS- | 0.1<br>FUS- | 6<br>FUS- | FUS-         |
| Method Code                                             | Na2O2       | Na2O2       | Na2O2        | Na2O2        | FUS-<br>MS-<br>Na2O2 | MS-      | MS-        | MS-         | F05-<br>MS-<br>Na2O2 | MS-<br>Na2O2  | MS-         | Na2O2       | FUS-<br>Na2O2 | MS-<br>Na2O2 | FUS-<br>MS-<br>Na2O2 | Na2O2        | MS-<br>Na2O2 | MS-<br>Na2O2 | MS-<br>Na2O2 | MS-         | MS-         | MS-       | MS-<br>Na2O2 |
| PTM-1a Meas                                             |             |             |              |              |                      |          |            |             | > 10000              |               |             |             | 23.1          |              |                      |              |              |              |              |             |             |           |              |
| PTM-1a Cert                                             |             |             |              |              |                      |          |            |             | 474400<br>.00        |               |             |             | 22.4          |              |                      |              |              |              |              |             |             |           |              |
| NIST 696 Meas                                           |             |             |              |              |                      |          |            |             |                      |               |             |             |               |              |                      |              |              |              |              |             |             |           |              |
| NIST 696 Cert                                           |             |             |              |              |                      |          |            |             |                      |               |             |             |               |              |                      |              |              |              |              |             |             |           |              |
| Oreas 74a<br>(Fusion) Meas                              |             |             |              |              |                      |          |            |             | > 10000              |               |             |             | 7.50          |              |                      | 15.6         |              |              |              |             |             |           |              |
| Oreas 74a<br>(Fusion) Cert                              |             |             |              |              |                      |          |            |             | 32400.<br>00         |               |             |             | 7.25          |              |                      | 15.14        |              |              |              |             |             |           |              |
| OREAS 101a<br>(Fusion) Meas                             | 2.2         | 841         |              | 1.17         | 962                  | 21       |            | 447         |                      |               | 135         |             |               |              |                      |              | 49.3         |              |              |             | 5.9         |           | 35.0         |
| OREAS 101a<br>(Fusion) Cert                             | 2.34        | 816         |              | 1.23         | 964                  | 22       |            | 403         |                      |               | 134         |             |               |              |                      |              | 48.8         |              |              |             | 5.92        |           | 36.6         |
| NCS DC86314<br>Meas                                     |             |             | > 10000      |              |                      |          |            |             |                      |               |             | > 5000      |               |              |                      |              |              | 147          |              |             |             |           |              |
| NCS DC86314<br>Cert                                     |             |             | 18100.<br>00 |              |                      |          |            |             |                      |               |             | 11400       |               |              |                      |              |              | 152          |              |             |             |           |              |
| NCS DC86313<br>Meas                                     |             |             |              |              |                      | 4        |            |             |                      |               |             |             |               |              |                      |              |              |              |              |             |             |           |              |
| NCS DC86313<br>Cert                                     |             |             |              |              |                      | 3.37     |            |             |                      |               |             |             |               |              |                      |              |              |              |              |             |             |           |              |
| CZN-4 Meas                                              |             |             |              |              |                      |          |            |             |                      | 1780          |             |             | > 25.0        |              | 92                   | 0.28         |              |              |              |             |             |           |              |
| CZN-4 Cert                                              |             |             |              |              |                      |          |            |             |                      | 1861.0<br>000 |             |             | 33.07         |              | 86.7                 | 0.295        |              |              |              |             |             |           |              |
| OREAS 183<br>(Fusion ICP)<br>Meas                       |             |             |              |              |                      |          |            |             | 9620                 |               |             |             |               |              |                      |              |              |              |              |             |             |           |              |
| OREAS 183<br>(Fusion ICP) Cert                          |             |             |              |              |                      |          |            |             | 9830.0<br>00         |               |             |             |               |              |                      |              |              |              |              |             |             |           |              |
| Lithium<br>Tetraborate FX-LT<br>100 lot#220610B<br>Meas |             |             | 98           |              |                      |          |            |             |                      |               |             |             |               |              |                      |              |              |              |              |             |             |           |              |
| Lithium<br>Tetraborate FX-LT<br>100 lot#220610B<br>Cert |             |             | 82100        |              |                      |          |            |             |                      |               |             |             |               |              |                      |              |              |              |              |             |             |           |              |
| OREAS 922<br>(Peroxide Fusion)<br>Meas                  | 2.4         |             | 31           | 1.63         |                      |          |            |             |                      |               |             |             | 0.37          |              |                      | 29.6         |              |              |              |             |             |           |              |
| OREAS 922<br>(Peroxide Fusion)<br>Cert                  | 2.60        |             | 29           | 1.61         |                      |          |            |             |                      |               |             |             | 0.389         |              |                      | 30.51        |              |              |              |             |             |           |              |
| OREAS 621<br>(Peroxide Fusion)<br>Meas                  | 2.2         | 29.3        |              | 0.50         | 563                  | 14       | 10.5       | 22.0        |                      | > 5000        | 6.5         | 82.7        | 4.43          | 135          |                      | 27.5         |              |              | 101          |             |             |           | 8.1          |
| OREAS 621<br>(Peroxide Fusion)<br>Cert                  | 2.23        | 26.1        |              | 0.516        | 554                  | 14       | 10.4       | 24.2        |                      | 13300         | 6.64        | 89.0        | 4.51          | 146          |                      | 28.1         |              |              | 101          |             |             |           | 8.6          |
| CCU-1e Meas                                             |             |             |              | 0.71         | 104                  |          |            |             |                      | > 5000        |             |             | > 25.0        | 107          |                      |              |              |              |              |             |             | 60        |              |
| CCU-1e Cert                                             |             |             |              | 0.706        | 96.0                 |          |            |             |                      | 7030          |             |             | 35.3          | 104          |                      |              |              |              |              |             |             | 61.8      |              |
| OREAS 680<br>(Peroxide Fusion)<br>Meas                  | 1.3         |             | < 15         | 3.61         |                      |          |            |             |                      |               |             |             | 5.08          |              |                      | 20.6         |              |              |              |             |             |           |              |
| OREAS 680<br>(Peroxide Fusion)<br>Cert                  | 1.29        |             | 14.5         | 3.71         |                      |          |            |             |                      |               |             |             | 5.14          |              |                      | 20.6         |              |              |              |             |             |           |              |

#### Activation Laboratories Ltd.

| Analyte Symbol                         | К             | La                   | Li            | Mg            | Mn  | Мо   | Nb                   | Nd    | Ni                   | Pb                   | Pr                   | Rb                   | S             | Sb                   | Se                   | Si            | Sm    | Sn  | Sr   | Та                   | Tb                   | Те  | Th                   |
|----------------------------------------|---------------|----------------------|---------------|---------------|-----|------|----------------------|-------|----------------------|----------------------|----------------------|----------------------|---------------|----------------------|----------------------|---------------|-------|-----|------|----------------------|----------------------|-----|----------------------|
| Unit Symbol                            | %             | ppm                  | ppm           | %             | ppm | ppm  | ppm                  | ppm   | ppm                  | ppm                  | ppm                  | ppm                  | %             | ppm                  | ppm                  | %             | ppm   | ppm | ppm  | ppm                  | ppm                  | ppm | ppm                  |
| Lower Limit                            | 0.1           | 0.4                  | 15            | 0.01          | 3   | 1    | 2.4                  | 0.4   | 10                   | 0.8                  | 0.1                  | 0.4                  | 0.01          | 2                    | 8                    | 0.01          | 0.1   | 0.5 | 3    | 0.2                  | 0.1                  | 6   | 0.1                  |
| Method Code                            | FUS-<br>Na2O2 | FUS-<br>MS-<br>Na2O2 | FUS-<br>Na2O2 | FUS-<br>Na2O2 | MS- | MS-  | FUS-<br>MS-<br>Na2O2 | MS-   | FUS-<br>MS-<br>Na2O2 | FUS-<br>MS-<br>Na2O2 | FUS-<br>MS-<br>Na2O2 | FUS-<br>MS-<br>Na2O2 | FUS-<br>Na2O2 | FUS-<br>MS-<br>Na2O2 | FUS-<br>MS-<br>Na2O2 | FUS-<br>Na2O2 | MS-   | MS- | MS-  | FUS-<br>MS-<br>Na2O2 | FUS-<br>MS-<br>Na2O2 | MS- | FUS-<br>MS-<br>Na2O2 |
| OREAS 139<br>(Peroxide Fusion)<br>Meas | 3.3           |                      | 45            | 0.49          |     |      |                      |       |                      |                      |                      |                      | 16.7          |                      |                      | 16.7          |       |     |      |                      |                      |     |                      |
| OREAS 139<br>(Peroxide Fusion)<br>Cert | 3.30          |                      | 40.4          | 0.501         |     |      |                      |       |                      |                      |                      |                      | 16.04         |                      |                      | 16.34         |       |     |      |                      |                      |     |                      |
| OREAS 624<br>(Peroxide Fusion)<br>Meas | 1.0           | 16.4                 | < 15          | 1.29          | 659 | 16   | 5.8                  | 13.4  |                      | > 5000               | 3.6                  | 35.4                 | 13.3          | 71                   |                      | 20.3          |       |     | 50   |                      |                      |     | 4.0                  |
| OREAS 624<br>(Peroxide Fusion)<br>Cert | 0.991         | 17.3                 | 10.3          | 1.31          | 660 | 17.8 | 5.78                 | 16.8  |                      | 6120                 | 4.27                 | 33.0                 | 13.2          | 72.0                 |                      | 20.5          |       |     | 47.6 |                      |                      |     | 4.12                 |
| OREAS 124<br>(Peroxide Fusion)<br>Meas | 2.7           | 19.8                 |               | 0.22          | 703 |      |                      | 19.3  |                      |                      | 5.3                  | 81.0                 |               |                      |                      | > 30.0        | 3.6   |     |      |                      | 0.5                  |     | 5.8                  |
| OREAS 124<br>(Peroxide Fusion)<br>Cert | 2.62          | 21.6                 |               | 0.224         | 700 |      |                      | 20.8  |                      |                      | 5.39                 | 86.0                 |               |                      |                      | 38.2          | 4.21  |     |      |                      | 0.480                |     | 5.74                 |
| AMIS 0346<br>(Peroxide Fusion)<br>Meas |               |                      |               |               |     |      |                      |       |                      |                      |                      |                      |               |                      |                      |               |       |     |      |                      |                      |     |                      |
| AMIS 0346<br>(Peroxide Fusion)<br>Cert |               |                      |               |               |     |      |                      |       |                      |                      |                      |                      |               |                      |                      |               |       |     |      |                      |                      |     |                      |
| NCS DC73520<br>Meas                    |               |                      |               |               |     |      |                      |       |                      |                      |                      |                      | 0.45          |                      |                      |               |       |     |      |                      |                      |     |                      |
| NCS DC73520<br>Cert                    |               |                      |               |               |     |      |                      |       |                      |                      |                      |                      | 0.44          |                      |                      |               |       |     |      |                      |                      |     | 1                    |
| OREAS 148<br>(Peroxide Fusion)<br>Meas | 1.6           |                      | 4790          | 0.46          |     |      |                      |       |                      |                      |                      |                      |               |                      |                      | > 30.0        |       |     |      |                      |                      |     |                      |
| OREAS 148<br>(Peroxide Fusion)<br>Cert | 1.5           |                      | 4760          | 0.47          |     |      |                      |       |                      |                      |                      |                      |               |                      |                      | 36.0          |       |     |      |                      |                      |     |                      |
| Method Blank                           | < 0.1         |                      | < 15          | < 0.01        |     |      |                      |       |                      |                      |                      |                      | 0.01          |                      |                      | < 0.01        |       |     |      |                      |                      |     |                      |
| Method Blank                           | < 0.1         |                      | < 15          | < 0.01        |     |      |                      |       |                      |                      |                      |                      | < 0.01        |                      |                      | < 0.01        |       |     |      |                      |                      |     |                      |
| Method Blank                           | < 0.1         |                      | < 15          | < 0.01        |     |      |                      |       |                      |                      |                      |                      | 0.02          |                      |                      | < 0.01        |       |     |      |                      |                      |     |                      |
| Method Blank                           | < 0.1         |                      | < 15          | < 0.01        |     |      |                      |       |                      |                      |                      |                      | 0.01          |                      |                      | < 0.01        |       |     |      |                      |                      |     |                      |
| Method Blank                           | < 0.1         |                      | < 15          | < 0.01        |     |      |                      |       |                      |                      |                      |                      | 0.01          |                      |                      | < 0.01        |       |     |      |                      |                      |     |                      |
| Method Blank                           | < 0.1         | < 0.4                | < 15          | < 0.01        | 4   | 2    | < 2.4                | < 0.4 | < 10                 | 1.6                  | < 0.1                | 2.0                  | 0.01          | < 2                  | < 8                  | < 0.01        | < 0.1 | 1.3 | 13   | < 0.2                | < 0.1                | 6   | < 0.1                |
| Method Blank                           | < 0.1         |                      | < 15          | < 0.01        |     |      |                      |       |                      |                      |                      |                      | 0.01          |                      |                      | < 0.01        |       |     |      |                      |                      |     |                      |

| Analyte Symbol                                          | Ti            | TI                   | Tm                   | U                    | V                    | W                    | Y                    | Yb                   | Zn                   |
|---------------------------------------------------------|---------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|
| Unit Symbol                                             | %             | ppm                  |
| Lower Limit                                             | 0.01          | 0.1                  | 0.1                  | 0.1                  | 5                    | 0.7                  | 0.1                  | 0.1                  | 30                   |
| Method Code                                             | FUS-<br>Na2O2 | FUS-<br>MS-<br>Na2O2 |
| PTM-1a Meas                                             |               |                      |                      |                      |                      |                      |                      |                      |                      |
| PTM-1a Cert                                             |               |                      |                      |                      |                      |                      |                      |                      |                      |
| NIST 696 Meas                                           |               |                      |                      |                      | 402                  |                      |                      |                      |                      |
| NIST 696 Cert                                           |               |                      |                      |                      | 403.00<br>00         |                      |                      |                      |                      |
| Oreas 74a<br>(Fusion) Meas                              |               |                      |                      |                      |                      |                      |                      |                      |                      |
| Oreas 74a<br>(Fusion) Cert                              |               |                      |                      |                      |                      |                      |                      |                      |                      |
| OREAS 101a<br>(Fusion) Meas                             | 0.38          |                      | 2.5                  | 419                  | 82                   |                      | 184                  | 19.5                 |                      |
| OREAS 101a<br>(Fusion) Cert                             | 0.395         |                      | 2.90                 | 422                  | 83                   |                      | 183                  | 17.5                 |                      |
| NCS DC86314<br>Meas                                     |               |                      |                      |                      |                      | 74.6                 |                      |                      |                      |
| NCS DC86314<br>Cert                                     |               |                      |                      |                      |                      | 79.0                 |                      |                      |                      |
| NCS DC86313<br>Meas                                     |               |                      |                      |                      |                      |                      |                      |                      |                      |
| NCS DC86313<br>Cert                                     |               |                      |                      |                      |                      |                      |                      |                      |                      |
| CZN-4 Meas                                              |               |                      |                      |                      |                      |                      |                      |                      | > 10000              |
| CZN-4 Cert                                              |               |                      |                      |                      |                      |                      |                      |                      | 550700<br>.00        |
| OREAS 183<br>(Fusion ICP)<br>Meas                       |               |                      |                      |                      |                      |                      |                      |                      | 100                  |
| OREAS 183<br>(Fusion ICP) Cert                          |               |                      |                      |                      |                      |                      |                      |                      | 82.0000              |
| Lithium<br>Tetraborate FX-LT<br>100 lot#220610B<br>Meas |               |                      |                      |                      |                      |                      |                      |                      |                      |
| Lithium<br>Tetraborate FX-LT<br>100 lot#220610B<br>Cert |               |                      |                      |                      |                      |                      |                      |                      |                      |
| OREAS 922<br>(Peroxide Fusion)<br>Meas                  | 0.45          |                      |                      |                      |                      |                      |                      |                      |                      |
| OREAS 922<br>(Peroxide Fusion)<br>Cert                  | 0.439         |                      |                      |                      |                      |                      |                      |                      |                      |
| OREAS 621<br>(Peroxide Fusion)<br>Meas                  | 0.18          | 1.8                  |                      | 2.9                  | 32                   | 3.1                  | 13.9                 | 1.1                  | > 10000              |
| OREAS 621<br>(Peroxide Fusion)<br>Cert                  | 0.181         | 2.0                  |                      | 3.0                  | 36.3                 | 2.6                  | 13.9                 | 1.03                 | 52200                |
| CCU-1e Meas                                             |               | 2.7                  |                      |                      |                      |                      |                      |                      | > 10000              |
| CCU-1e Cert                                             |               | 2.69                 |                      |                      |                      |                      |                      |                      | 30200                |
| OREAS 680<br>(Peroxide Fusion)<br>Meas                  | 0.51          |                      |                      |                      |                      |                      |                      |                      |                      |
| OREAS 680<br>(Peroxide Fusion)<br>Cert                  | 0.523         |                      |                      |                      |                      |                      |                      |                      |                      |


| Analyte Symbol                         | Ti            | TI                   | Tm                   | U                    | V                    | W                    | Y                    | Yb                   | Zn                   |
|----------------------------------------|---------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|
| Unit Symbol                            | %             | ppm                  |
| Lower Limit                            | 0.01          | 0.1                  | 0.1                  | 0.1                  | 5                    | 0.7                  | 0.1                  | 0.1                  | 30                   |
| Method Code                            | FUS-<br>Na2O2 | FUS-<br>MS-<br>Na2O2 |
| OREAS 139<br>(Peroxide Fusion)<br>Meas | 0.16          |                      |                      |                      |                      |                      |                      |                      |                      |
| OREAS 139<br>(Peroxide Fusion)<br>Cert | 0.157         |                      |                      |                      |                      |                      |                      |                      |                      |
| OREAS 624<br>(Peroxide Fusion)<br>Meas | 0.15          | 1.1                  |                      | 1.3                  | 32                   | 4.5                  | 14.5                 | 1.6                  | > 10000              |
| OREAS 624<br>(Peroxide Fusion)<br>Cert | 0.146         | 0.940                |                      | 1.34                 | 43.3                 | 4.58                 | 17.3                 | 1.94                 | 24100                |
| OREAS 124<br>(Peroxide Fusion)<br>Meas | 0.26          |                      | 0.2                  | 1790                 | 27                   |                      | 15.3                 | 2.0                  |                      |
| OREAS 124<br>(Peroxide Fusion)<br>Cert | 0.254         |                      | 0.220                | 1790                 | 23.3                 |                      | 14.2                 | 1.63                 |                      |
| AMIS 0346<br>(Peroxide Fusion)<br>Meas | 14.9          |                      |                      |                      | 2780                 |                      |                      |                      |                      |
| AMIS 0346<br>(Peroxide Fusion)<br>Cert | 15.0          |                      |                      |                      | 2700                 |                      |                      |                      |                      |
| NCS DC73520<br>Meas                    |               |                      |                      |                      |                      |                      |                      |                      |                      |
| NCS DC73520<br>Cert                    |               |                      |                      |                      |                      |                      |                      |                      |                      |
| OREAS 148<br>(Peroxide Fusion)<br>Meas | 0.35          |                      |                      |                      |                      |                      |                      |                      |                      |
| OREAS 148<br>(Peroxide Fusion)<br>Cert | 0.35          |                      |                      |                      |                      |                      |                      |                      |                      |
| Method Blank                           | < 0.01        |                      |                      |                      |                      |                      |                      |                      |                      |
| Method Blank                           | < 0.01        |                      |                      |                      |                      |                      |                      |                      |                      |
| Method Blank                           | < 0.01        |                      |                      |                      |                      |                      |                      |                      |                      |
| Method Blank                           | < 0.01        |                      |                      |                      |                      |                      |                      |                      |                      |
| Method Blank                           | < 0.01        |                      |                      |                      |                      |                      |                      |                      |                      |
| Method Blank                           | < 0.01        | < 0.1                | < 0.1                | < 0.1                | < 5                  | < 0.7                | < 0.1                | < 0.1                | < 30                 |
| Method Blank                           | < 0.01        |                      |                      |                      |                      |                      |                      |                      |                      |

## **RS-121 Scintillometer Specifications**



### **RS-121 Super GAMMA-RAY SCINTILLOMETER with Memory**

**Providing Search and Scan Modes of Operation** 



### **RS-121** – Ideal For Field Exploration

The RS-121 Scintillometer is the state-of-the-art in a portable hand-held radiation survey search device for the geophysical industry. It offers an integrated design with a large detector, direct Survey readout, Scan mode, data storage, full weather protection and ease of use. In addition, it has <u>Bluetooth (BT) connectivity</u> providing for wireless connection to a Bluetooth equipped external GPS receiver, earphone or computer.



### Features Include:

- □ High Sensitivity with large 2.0 x 2.0 NaI crystal 103 cm<sup>3</sup> (6.3 in<sup>3</sup>)
- □ Lightweight & rugged 4.4 lb (2 kg), including batteries
- $\Box$  Easy to use, single button
- <u>survey</u> and <u>scan</u> modes of operation
- □ 5-digit LCD display with high count rate 65,535 cps
  - scrolling histogram graph display of last 100 readings
- □ Fast audio output with adjustable audio threshold set point
  - BT earphone audio support for noisy area surveying
- Bluetooth and USB equipped with external GPS integrated into data stream via BT
- Special rugged design to withstand typical field usage, full IP67 weatherproofing short term water immersion and fully dust protected
- $\Box \quad Low power (4 x AA batteries)$ 
  - typical 8 12 hour battery life at  $20^{\circ}$ C
- No radioactive sources required for proper operation









RCHAEOLOGY

### Terraplus Inc.

120 West Beaver Creek Rd, Unit #15 Richmond Hill, ON, Canada, L4B 1L2

### Terraplus empowering discovery

The RS-121 allows the user to produce profiles of the total count data from either the Search or Scan modes. The data can be from a drill core scan or from a survey with GPS positioning data.

### Survey Mode (Total Count)

The loud linear audio permits eyes-free operation with large easy to read 5 digit display showing the total count in cps at 1/sec update rate. It also has Bluetooth earphone support for noisy area surveying.

### Scan Mode

A variable rate scan mode (1 - 20 sec.) stores the data in memory. An external GPS can also be integrated into the data system via Bluetooth connection to provide location data.

### **RS-Analyst Software**

The RS-121 is provided with utility software to download the data that is stored in memory. All data in memory can be transmitted via Bluetooth or USB to the RS-Analyst program on a PC. This may take the form of field or Scan data + GPS. The program also gives graphical and numeric views of the data. The data can also be re-exported as a text file for further processing.



### **Standard Accessories**

- RS-121 Scintillometer with carrying handle
- Removable protective boot with shoulder strap
- Battery cartridge with 4 x AA rechargeable batteries & charger
- Spare battery holder cartridge
- RS-Analyst utility software
- USB cable
- User guide
- Delivered in hard case with foam insert

### 

### Specifications:

### **Temperature Range:**

•  $-20^{\circ}C$  to  $+50^{\circ}C$ 

### **Control:**

• Single one button, thumb activated

### **Internal Memory:**

• 4MB providing more than 1,146,870 one second readings

### Data Output:

• Bluetooth (BT) and USB

### Alarm:

- Audio via miniature speaker
- Variable audio threshold set point
- Audio proportional to count rate

### Weight:

• 4.4 lb (2 kg) including batteries

### Size & Package Style:

- 10.2" x 3.2" x 3.8" (259mm x 81 mm x 96 mm)
- 1 mm aluminum thick outer case
- In a flashlight configuration with detachable handle

### Display:

- 128 x 64 pixels, 1 1/8 x 2 3/8"
- Graphic LCD display with white black light and automatic dimming
- Counts in CPS from 0 to 65,535 and Histogram chart
- Update Rate: 1x / sec

### **Energy Response:**

• 30 keV 3000 keV

### **Internal Sampling:**

• 30 / second

### **Batteries:**

- Internal battery pack module (4xAA) easily replaceable
- Rechargeable or Alkaline
- Life: 8 + hours at  $20^{\circ}$ C

#### Specifications subject to change without notice # 06.12

#### Terraplus Inc.

120 West Beaver Creek Rd, Unit #15 Richmond Hill, ON, Canada, L4B 1L2 terraplus.ca 1.905.764.5505 sales@terraplus.ca

# Appendix 6 Statement of Costs

| Joshua Gold - S                                                   | -      |        |                     |                |          |           |
|-------------------------------------------------------------------|--------|--------|---------------------|----------------|----------|-----------|
| Remote Sensing Survey Statement of Costs : Pre-HST costs          |        | • •    |                     |                |          |           |
|                                                                   |        |        |                     |                |          |           |
|                                                                   |        |        |                     | Remote Sensing | Sampling | CHK Total |
|                                                                   |        | \$     | \$                  |                |          |           |
| Mobilization                                                      | qty    | rate   | amt                 |                |          |           |
| Vehicle Km Timmins to Armstrong (Oct 10, 2022)                    | 993.00 | 0.60   | 595.80              | 369.40         | 226.40   | 595.80    |
| Vehicle Km Armstrong to Site (Oct 11, 2022)                       | 65.00  | 0.60   | 39.00               | 24.18          | 14.82    | 39.00     |
| Crew time Timmins to Site October 10 / 11, 2022)                  | 13.00  | 165.00 | 2145.00             | 1329.90        | 815.10   | 2145.00   |
| Food and Lodging (2 man crew October 10, 2022)                    | 1.00   | 250.00 | 250.00              | 155.00         | 95.00    | 250.00    |
| Field Work (October 11, 2022)                                     |        |        |                     |                |          |           |
| 3 flights - eBee fixed wing drone with 20mp camera                | 3.00   | 550.00 | 1650.00             | 1650.00        |          | 1650.00   |
| Sample 2 outcrops, Scintillometer 3 outcrops                      | 6.25   | 165.00 | 1031.25             |                | 1031.25  | 1031.25   |
| Demobilization (October 11, 2022)                                 |        |        |                     |                |          |           |
| Vehicle Km Site to Armstrong                                      | 65.00  | 0.60   | 39.00               | 24.18          | 14.82    | 39.00     |
| Vehicle km Armstrong to Timmins                                   | 993.00 | 0.60   | 595.80              | 369.40         | 226.40   | 595.80    |
| Crew time Site to Timmins                                         | 13.00  | 165.00 | 2145.00             | 1329.90        | 815.10   | 2145.00   |
| Scintillometer Rental @ \$80/day (Oct 8 - 14)                     | 7.00   | 80.00  | 560.00              |                | 560.00   | 560.00    |
|                                                                   | 7.00   | 00.00  | 500.00              |                | 300.00   | 500.00    |
| Computer Processing (October 12-15, 2022)                         |        |        |                     |                |          |           |
| Download and Process field data                                   | 6.00   | 88.00  | 528.00              | 528.00         |          | 528.00    |
| Process air photo mosaic in Pix4D                                 | 4.50   | 88.00  | 396.00              | 396.00         |          | 396.00    |
| Prepare field maps for Nov 2022 outcrop sampling                  | 5.50   | 88.00  | 484.00              | 484.00         |          | 484.00    |
| Outcrop Sampling Trip - November 4th to 6th, 2022                 |        |        |                     |                |          |           |
| Vehicle Km Timmins to Armstrong (Nov 4, 2022)                     | 993.00 | 0.60   | 595.80              |                | 595.80   | 595.80    |
| Vehicle Km Armstrong to Site (Nov 5, 2022)                        | 65.00  | 0.60   | 39.00               |                | 39.00    | 39.00     |
| Crew time Timmins to Site Nov 4 / 5, 2022)                        | 13.00  | 165.00 | 2145.00             |                | 2145.00  | 2145.00   |
| Food and Lodging (2 man crew Nov 4, 2022)                         | 1.00   | 250.00 | 250.00              |                | 250.00   | 250.00    |
| Field Work (November 5, 2022)                                     |        |        |                     |                |          |           |
| Sample 4 outcrops, Scintillometer 4 outcrops                      | 8.50   | 165.00 | 1402.50             |                | 1402.50  | 1402.50   |
|                                                                   |        |        |                     |                |          |           |
| Demobilization (November 5, 2022)                                 | 65.00  | 0.60   | 20.00               |                | 20.00    | 20.00     |
| Vehicle Km Site to Armstrong                                      | 65.00  | 0.60   | 39.00               |                | 39.00    | 39.00     |
| Crew time Site to Armstrong                                       | 1.00   | 165.00 | 165.00              |                | 165.00   | 165.00    |
| Food and Lodging (2 man crew Nov 5, 2022)                         | 1.00   | 250.00 | 250.00              |                | 250.00   | 250.00    |
| Demobilization (November 6, 2022)                                 |        |        |                     |                |          |           |
| Vehicle Km Armstrong to Timmins                                   | 993.00 | 0.60   | 595.80              |                | 595.80   | 595.80    |
| Crew time Armstrong to Timmins                                    | 12.00  | 165.00 | 1980.00             |                | 1980.00  | 1980.00   |
| Scintillometer Rental @ \$80/day (Nov 3 - 9)                      | 7.00   | 80.00  | 560.00              |                | 560.00   | 560.00    |
| Geologist - describe, package, ship samples to Ancaster (Actlabs) | 3.75   | 88.00  | 330.00              |                | 330.00   | 330.00    |
| Prepare assessment report to ENDM standards (Oct 10 to Dec 20)    | 23.00  | 88.00  | 2024.00             | 667.92         | 1356.08  | 2024.00   |
| Assay - Invoice from Actlabs (6 samples including rush surcharge) | 6.00   | 182.15 | 1092.90             |                | 1092.90  | 1092.90   |
| (6 out of 7 samples on Actlabs invoice relate to this project)    | 0.00   | 102.13 | 1052.50             |                | 1052.50  | 1052.50   |
| CUD.                                                              |        |        | 21027.05            | 7000.00        | 14600.00 | 24022.02  |
| SUB<br>HST                                                        |        |        | 21927.85<br>2850.62 | 7328.00        | 14600.00 | 21928.00  |
|                                                                   |        |        |                     |                |          |           |
| Total Project                                                     |        |        | 24778.47            |                |          |           |