

We are committed to providing <u>accessible customer service</u>. If you need accessible formats or communications supports, please <u>contact us</u>.

Nous tenons à améliorer <u>l'accessibilité des services à la clientèle</u>. Si vous avez besoin de formats accessibles ou d'aide à la communication, veuillez <u>nous contacter</u>.

NI 43-101

INDEPENDENT TECHNICAL REPORT

ON THE

SOBESKI LAKE PROPERTY

FOR

WINDFALL GEOTEK INCORPORATED

Red Lake, Ontario

51.354°N, -93.427°W

Michael Kilbourne, P.Geo. Bruce MacLachlan, P.Geo.(Limited) Effective date August 15, 2021

Table of Contents

List of Figures									
List of Tables	2								
1.0 SUMMARY									
3.0 RELIANCE ON OTHER EXPERTS	9								
4.0 PROPERTY DESCRIPTION and LOCATION									
4.1 Location									
INFRASTRUCTURE and PHYSIOGRAPHY	16								
	,								
	,								
6.1 Exploration History of the Sobeski lake Property									
. 0									
	-								
	-								
9.1 Soll Sample Results									
•	•								
•									
a 3 b SUMMARY 3 c INTRODUCTION 8 c RELLANCE ON OTHER EXPERTS 9 c PROPERTY DESCRIPTION and LOCATION 10 4.1 Location 10 4.2 Mining Tenure 10 4.3 Ownership and Underlying Agreements. 14 4 Environmental Liabilities 14 6 ACCESSIBILTY, CLIMATE, LOCAL RESOURCES, 16 5.1 Accessibility 16 5.2 Climate 16 5.3 Local Resources 17 5.4 Infrastructure 17 5.4 Infrastructure 17 5.4 Infrastructure 17 6.1 Exploration History of the Sobeski lake Property 19 6 GEOLOGICAL SETTING AND MINERALIZATION 20 7.1.2 Regional Structural Setting 22 7.1.3 Regional Metamorphism 23 7.2 Property Mineralization 24 0 DEPOSIT TYPES 26 8.1.1									

20.0	CERTIFICATES	58
------	--------------	----

List of Figures

Figure 4.1 Regional location map of the Sobeski Lake Property in Ontario10
Figure 4.2 Claim fabric of the Sobeski Lake Property
Figure 5.1 Access map to the Property. Source Google Earth
Figure 6.1 George Campbell staking a claim in 1944. Source Red Lake Museum
Figure 7.2. Regional geology showing geological subprovinces and major tectonic units of the Red
Lake area. Source OGS Map 2542 21
Figure 7.3 Local known geology of the Sobeski Lake Property. Source Rampart Ventures, 2004 and
MacLachlan, 2021
Figure 8.1 Geology and structural fabric of the Red Lake mine complex. Source Evolution Mining 27
Figure 8.2 Mapped veined systems from the 305m level at the F2 deposit. Source Battle North Gold
Corp
Figure 8.3 Geology and structural fabric of the Sidace Lake gold deposits. Source Power-Fardy and
Breede, 2009
Breede, 2009
Figure 8.4 Geotek's CARDS analysis location of the Sobeski Lake Property
Figure 8.4 Geotek's CARDS analysis location of the Sobeski Lake Property

List of Tables

Table 1.1 Exploration budget for the Sobeski Lake Property.	6
Table 4.1 List of the Sobeski Lake Property mining claims.	11
Table 9.1 Soil sampling statistics and conditions of the Windfall sampling program. Source DPE	
Exploration Ltd.	34
Table 12.1 Points of interest and grab sample locations, Sobeski Lake property. Source Bruce	21
MacLachlan	47
Table 18.1 Exploration budget for the Sobeski Lake Property.	

Appendix I

Certificate of Analysis for the Windfall Geotek Soil Sampling

1.0 SUMMARY

This technical report, entitled "43-101 Independent Technical Report on the Sobeski Lake Property for Windfall Geotek Inc., Red Lake, Ontario" (this "Report") was prepared by Michael Kilbourne, P.Geo. (the "Author") and Bruce MacLachlan, P.Geo. (Limited) (the "Co-Author") at the request of Windfall Geotek Inc. ("Geotek" or the "Company") (TSXV:WIN) a public company listed on the TSX Venture Exchange. This Report is specific to the standards dictated by National Instrument 43-101 *Standards of Disclosure for Mineral Projects* ("NI 43-101") in respect to the Sobeski Lake Property (the "Property"), which consists of a total of 113 unpatented mining claims and covers an area of approximately 2,253 hectares near Red Lake, Ontario. This Report assesses the technical merit and economic potential of the project area and recommends additional exploration.

Property Description, Location and Access

The Property is located approximately 45 kilometres northeast of Red Lake, Ontario (Figure 4.1). The property lies within NTS map sheet 52N/o6 in Sobeski Lake Area and Hanton Lake Area Townships in the Kenora Mining District of Ontario. The approximate geographic centre coordinates of the Sobeski Lake Property are 51.354°N, -93.427°W (UTM coordinates 470240E, 5689350N, Zone 15U, NAD83). The overall Property covers an area of approximately 2,253 hectares. The southern part of the property is accessible by logging roads.

Ownership

The Property consists of a total of 113 unpatented mining claims (113 cells) and covers an area of approximately 2,253 hectares. All claims are registered to Windfall Geotek Inc. 100% according to the Ministry of Energy, Northern Development and Mines on-line Mining Land Administration System (MLAS). There are no underlying property agreements and no underlying royalties on the Property.

History of Exploration

The Property has seen very little historical exploration. There are only three registered MENDM assessment files that cover portions of the property. These include an airborne magnetic and EM survey completed by Dome Exploration in 1978, an airborne magnetic survey completed by Terraquest Ltd. for Rampart Ventures and geological mapping, prospecting and soil sampling.

Geology and Mineralization

The Sobeski Lake Property lies within the Red Lake Greenstone Belt (RLGB) of the Uchi Subprovince of the Superior Province of Canada. The Uchi Subprovince is a 50-100 km wide east-west trending belt extending from Lake Winnipeg in the west to the James Bay Lowlands in the east. It is dominated by a series of predominantly volcanic greenstone belts which occupy interstitial spaces between mainly elliptical shaped granitoid batholiths. The RLGB is bound to the north by the Berens River Subprovince (pluton dominated) and to the south by the English River Subprovince (metasedimentary rock

dominated). These three subprovinces amalgamated through tectonic processes at ca. 2700 Ma during the Kenoran orogeny.

The western Uchi Subprovince is divided up into 3 major tectonic divisions of the Red Lake area (OGS, 1991). These are: the Red Lake belt, the Confederation Lake belt and the Birch-Uchi Lake belt. The Sobeski Lake Property is located off the northeast tip of the Red Lake Belt or at the southern extremity of the Nungesser Lake greenstone belt. The Nungesser Lake belt has been described as 'greenstone slivers' that extend north from the Red Lake belt to the McInnes Lake greenstone belt for approximately 85 km in a northerly direction. The ages for the McInnes Lake greenstone belt suggest a link between it and the Red Lake greenstone belt, specifically the Balmer assemblage. This link is important in the context of Red Lake geology as a majority of the deposits in the Red Lake gold camp are hosted by Balmer assemblage rocks. Since 1925, the Red Lake mining district has hosted 29 gold mines producing over 30 million of ounces of gold.

The structural history of the Berens River area can be correlated between all of the greenstone slivers (Nungesser Lake greenstone belt) and north to the McInnes Lake greenstone belt. The D₂ deformational event includes a regional-scale dextral-transpressive event, is likely responsible for the large-scale Z-fold pattern of all of the greenstone slivers.

There is no documented mineralization on the Property. The staking acquisition of the Sobeski Lake Property was conceptualized by Windfall Geotek through proven and industry leading digital platform leveraging Artificial Intelligence (AI) technology. Windfall Geotek uses its proprietary CARDS (Computer Aided Resources Detection System) platform to identify a high statistical probability of target identification within known areas of interest. After the Red Lake Camp large scale CARDS analysis, Geotek found the Sobeski Lake target had a >98% similarity to Red Lake style gold mineralization.

Gold deposits in the Red Lake district are typical of most Archean, greenstone, shear-zone-hosted, vein-type orogenic gold deposits.

Deposit Types

Gold deposits in the Red Lake district are atypical of most Archean, greenstone, shear-zone-hosted, vein-type orogenic gold deposits. There are four types of orogenic gold mineralization in the Red Lake mine complex (Cochenour, Campbell and Red Lake gold mines) now being mined by Evolution Mining:

- 1) Vein-style gold mineralization
- 2) Vein and sulphide style gold mineralization
- 3) Disseminated sulphide style mineralization (often referred to as replacement style mineralization)
- 4) Free gold mineralization style.

The F2 deposit located 7km northeast (Evolution Mining) of the Red Lake mine complex shares attributes with other orogenic gold deposits of the Red Lake mining district where most of the gold

production is derived from orogenic-style high-grade quartz-carbonate veins that are associated with deformation of the Balmer Assemblage mafic and ultramafic volcanic rocks.

The structural and geological architecture of the Nungesser Lake greenstone belt (NLGB) is conducive to Archean orogenic lode gold deposits.

Exploration by Windfall Geotek

Since staking the Sobeski Lake Property, Geotek has completed a soil sampling program. A total of 497 samples were taken. The objective of the program was to determine if there were coincident gold-in-soil anomalies over the statistical analysis of the area using Geotek's proprietary AI system that led Geotek to stake the area. The results of this program were successful as anomalous gold-in-soil samples returned values as high a 640-ppb gold. One large gold-in-soil anomaly was outlined with several smaller outlier anomalies detected.

Interpretation and Conclusions

The Sobeski Lake Property lies at the junction of the Red Lake greenstone belt (RLGB) of the Uchi Subprovince and the Nungesser Lake greenstone (NLGB) of the Berens River Subprovince. Since 1926 the Red Lake mining district has hosted 29 gold mines producing over 30 million of ounces of gold.

Greenstone belt 'slivers' extend north from the RLGB within the NLGB to the McInnes greenstone belt 85 km to the north. Geochronological ages of the McInnes greenstone belt suggest a link between it and the Red Lake greenstone belt, specifically the Balmer assemblage. The Balmer assemblage is an important host to a majority of the gold mines in the RLGB. Due to the location of the greenstone slivers between the McInnes Lake and Red Lake greenstone belt, the slivers could either be Balmer or Ball assemblage in origin.

The structural history of the NLGB area can be correlated between all of the greenstone slivers north to the McInnes Lake greenstone belt. The D₂ deformational event includes a regional-scale dextral-transpressive event, likely responsible for the large-scale Z-fold pattern of all of the greenstone slivers.

The Property has had very limited exploration. Windfall Geotek's proprietary CARDS AI system deemed the Sobeski Lake Property >98% of hosting gold mineralization similar to the systems and environment hosting the Red Lake area gold mines. Soil sampling over a select portion of the property outlined gold-in-soil anomalies, supporting the CARDS analysis of the region for hosting gold mineralization.

Based on the results received to date, the structural and geological environment of the Property, the author is of the opinion that that the property remains highly prospective for the discovery of significant gold mineralization.

Recommendations

The Sobeski Lake Property is an underexplored property that has geological and structural elements that are conducive to gold mineralization. Applying modern day exploration techniques and up to date geological modeling based on orogenic gold deposit models within an Archean-aged and structurally

favourable terrane will undoubtedly unlock its full potential and provide clues to a deposit of merit. For this, methodical, patient and diligent exploration is needed, and when the details of the combined efforts and methods are considered and studied, the benefit of a substantial discovery will be reaped by all who are involved.

As the property is in the greenfield status with very little historical exploration, Geotek has already taken the first steps in exploration by completing a soil sampling program. Due to the very low outcrop exposure, a high resolution heliborne magnetic survey at 50m line spacing is recommended to determine lithologies and outline structural features of the Property. Following the results of the heliborne magnetic survey a competent structural geologist should interpret the results of the magnetic survey integrating lithologies known to date, results of the soil sampling program and the area of interest resulting from the CARDS geostatistical study. Those areas of high merit for gold mineralization determined from the structural and lithological study should then be ground-truthed for possible outcrop exposure, alteration and mineralization. An induced polarization (IP) ground geophysical survey could also be incorporated if favourable looking outcrop is found. This survey would aid in producing viable drill targets.

When the above is compiled, interpreted and applied to modern day gold deposit model types, drilling should be performed on those targets with the highest merit and potential. A budget for a Phase I program of the above is estimated to cost \$764,980 (Table 1.1).

Sobeski Lake Property Phase I Exploration Budget								
Exploration Item	Units	Unit Cost	Item Cost					
High resolution heliborne magnetic survey	650 line km	\$50/km	\$32,500					
Mob-demob for heliborne survey	1	\$15,000	\$15,000					
Lidar survey	25.3 square km	\$1,500	\$37,950					
Mob-demob for Lidar survey	1	\$10,000	\$10,000					
Linecutting for IP Survey	20 km	\$950/km	\$19,000					
Mobilization for IP Survey	1	\$2,000	\$2,000					
Pole-DiPole IP Survey	20 km	\$2100/km	\$42,000					
Room and Board for IP Survey, 3 men	7 days	\$450/day	\$3,150					
Data Processing and Report for IP Survey	1	\$3,600	\$3,600					
Diamond Drilling (all-in costs of direct drilling, Senior	2500	\$200/m	\$500,000					
Geologist, Technician, Room and Board, Supplies,								
Analyses, Rentals								
Sub-total			\$665,200					
			400 700					
15% Contingency			\$99,780					
Total			\$764,980					

Table 1.1 Exploration budget for the Sobeski Lake Property.

The author Michael Kilbourne P.Geo. is a Qualified Person as defined by Regulation 43-101, and that by reason of my education, affiliation with a professional association and past relevant work experience fulfil the requirements to be a "Qualified Person" for the purposes of Regulation 43-101.

2.0 INTRODUCTION

At the request of Windfall Geotek Inc., a publicly traded company under the Toronto Venture Exchange (TSXV: WIN), Michael Kilbourne, P.Geo. and Bruce MacLachlan, P.Geo.(Limited) have completed an 43-101 technical report on the company's Sobeski Lake Property. Geotek has a 100% interest in the Property. This report is an Independent Technical Report prepared to Canadian National Instrument 43-101 standards. This report assesses the technical merit and economic potential of the project area and recommends additional exploration.

This report has principally been prepared by Michael Kilbourne, P.Geo., PGO #1591 who has over 35 years of experience in the exploration and mining industry. Much of that experience has been in gold exploration and in greenstone belts of the Canadian Shield similar to the Red Lake Greenstone Belt which hosts the Sobeski Lake Property. The author has not visited property. The co-author visited the property on May 16, 2021.

Neither Michael Kilbourne, P.Geo. or Bruce MacLachlan, P.Geo. (Limited) have a business relationship other than acting as independent geological consultants with Geotek and as independent Qualified Persons as defined by the National Instrument 43-101. The author or co-author own no common shares, warrants or options of the company. The views expressed herein are genuinely held and considered independent of Geotek.

The report is based on the author's knowledge of precious and base metal deposits hosted within the Superior Province of the Canadian Shield, their mineralization, alteration and structural environments, observations of bedrock exposures, drill core and former underground and open pit experience at the Pamour Gold Mine in Timmins, Ontario from 1991-1996.

The report is also based on the co-author's knowledge of precious and base metal deposits hosted within the Superior Province of the Canadian Shield, their mineralization, alteration and structural environments, observations of bedrock exposures and drill core. The co-author is credited with the discovery numerous occurrences including the Eagle River Deposit located near Wawa Ontario (Wesdome) and the Sugar Zone Mine north of White River (Harte Gold).

This report was based on information known to the authors as of August 15th, 2021.

3.0 RELIANCE ON OTHER EXPERTS

The author and co-author, Qualified and Independent Persons as defined by Regulation 43-101, was contracted by Geotek to study technical documentation relevant to the report and to recommend a work program if warranted. The author has reviewed the mining titles and their statuses, as well as technical data supplied by the issuer (or its agents) and any available public sources of relevant technical information.

Claim status was supplied by the Issuer. The author has verified the status of the original claims using the Ontario government's online claim management system via the MLAS website at: <u>https://www.mlas.mndm.gov.on.ca</u>. The author is not qualified to express any legal opinion with respect to the government of Ontario mining claim allocations.

The author relied on reports and opinions as follows for information that is not within the authors' fields of expertise:

• Information about the mining titles (Section 4.2) was supplied by the issuer through an email to the author dated June 1, 2021. The author is not qualified to express any legal opinion with respect to the property titles and possible litigation.

4.0 PROPERTY DESCRIPTION and LOCATION

4.1 LOCATION

The Property is located approximately 45 kilometres northeast of Red Lake, Ontario (Figure 4.1). The property lies within NTS map sheet 52N/o6 in Sobeski Lake Area and Hanton Lake Area Townships in the Kenora Mining District of Ontario. The approximate geographic centre coordinates of the Sobeski Lake Property are 51.354°N, -93.427°W (UTM coordinates 470240E, 5689350N, Zone 15U, NAD83). The overall Property covers an area of approximately 2,253 hectares.

Figure 4.1 Regional location map of the Sobeski Lake Property in Ontario.

4.2. MINING TENURE

The Property consists of a total of 113 unpatented mining claims (113 cells) and covers an area of approximately 2,253 hectares. Table 4.1 provides details of the mining claims registered to Geotek. Figure 4.2 displays the claim fabric of registered claims to Geotek.

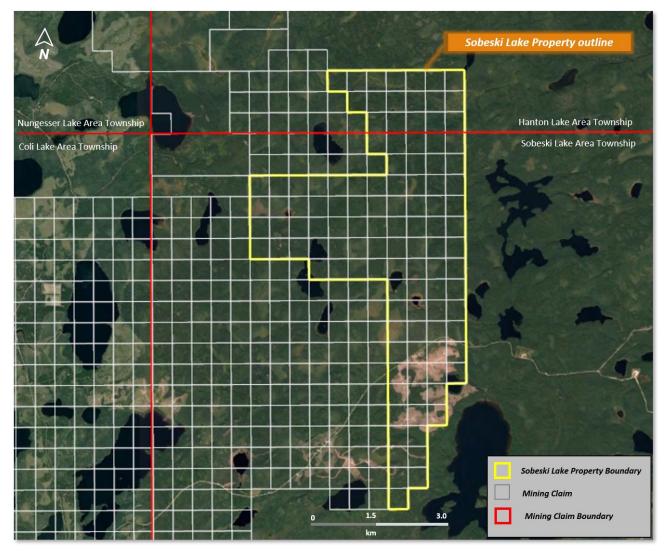

Township	Cell Number	Title Type	Tenure Status	Registration Date	Anniversary Date	Registered Owner 100%
Sobeski Lake Area	640328	Single Cell Mining Claim	Active	March 3, 2021	March 3, 2023	Windfall Geotek Inc.
Sobeski Lake Area	640329	Single Cell Mining Claim	Active	March 3, 2021	March 3, 2023	Windfall Geotek Inc.
Sobeski Lake Area	640330	Single Cell Mining Claim	Active	March 3, 2021	March 3, 2023	Windfall Geotek Inc.
Sobeski Lake Area	640331	Single Cell Mining Claim	Active	March 3, 2021	March 3, 2023	Windfall Geotek Inc.
Sobeski Lake Area	640332	Single Cell Mining Claim	Active	March 3, 2021	March 3, 2023	Windfall Geotek Inc.
Sobeski Lake Area	640333	Single Cell Mining Claim	Active	March 3, 2021	March 3, 2023	Windfall Geotek Inc.
Sobeski Lake Area	640334	Single Cell Mining Claim	Active	March 3, 2021	March 3, 2023	Windfall Geotek Inc.
Sobeski Lake Area	640335	Single Cell Mining Claim	Active	March 3, 2021	March 3, 2023	Windfall Geotek Inc.
Sobeski Lake Area	640336	Single Cell Mining Claim	Active	March 3, 2021	March 3, 2023	Windfall Geotek Inc.
Sobeski Lake Area	640337	Single Cell Mining Claim	Active	March 3, 2021	March 3, 2023	Windfall Geotek Inc.
Sobeski Lake Area	640338	Single Cell Mining Claim	Active	March 3, 2021	March 3, 2023	Windfall Geotek Inc.
Sobeski Lake Area	640339	Single Cell Mining Claim	Active	March 3, 2021	March 3, 2023	Windfall Geotek Inc.
Sobeski Lake Area	640340	Single Cell Mining Claim	Active	March 3, 2021	March 3, 2023	Windfall Geotek Inc.
Sobeski Lake Area	640341	Single Cell Mining Claim	Active	March 3, 2021	March 3, 2023	Windfall Geotek Inc.
Sobeski Lake Area	640342	Single Cell Mining Claim	Active	March 3, 2021	March 3, 2023	Windfall Geotek Inc.
Sobeski Lake Area	640343	Single Cell Mining Claim	Active	March 3, 2021	March 3, 2023	Windfall Geotek Inc.
Sobeski Lake Area	640344	Single Cell Mining Claim	Active	March 3, 2021	March 3, 2023	Windfall Geotek Inc.
Sobeski Lake Area	640345	Single Cell Mining Claim	Active	March 3, 2021	March 3, 2023	Windfall Geotek Inc.
Sobeski Lake Area	640346	Single Cell Mining Claim	Active	March 3, 2021	March 3, 2023	Windfall Geotek Inc.
Sobeski Lake Area	640347	Single Cell Mining Claim	Active	March 3, 2021	March 3, 2023	Windfall Geotek Inc.
Sobeski Lake Area	640359	Single Cell Mining Claim	Active	March 3, 2021	March 3, 2023	Windfall Geotek Inc.
Sobeski Lake Area	640360	Single Cell Mining Claim	Active	March 3, 2021	March 3, 2023	Windfall Geotek Inc.
Sobeski Lake Area	640361	Single Cell Mining Claim	Active	March 3, 2021	March 3, 2023	Windfall Geotek Inc.
Sobeski Lake Area	640362	Single Cell Mining Claim	Active	March 3, 2021	March 3, 2023	Windfall Geotek Inc.
Sobeski Lake Area	640363	Single Cell Mining Claim	Active	March 3, 2021	March 3, 2023	Windfall Geotek Inc.
Sobeski Lake Area	640348	Single Cell Mining Claim	Active	March 3, 2021	March 3, 2023	Windfall Geotek Inc.
Sobeski Lake Area	640349	Single Cell Mining Claim	Active	March 3, 2021	March 3, 2023	Windfall Geotek Inc.
Sobeski Lake Area	640350	Single Cell Mining Claim	Active	March 3, 2021	March 3, 2023	Windfall Geotek Inc.
Sobeski Lake Area	640351	Single Cell Mining Claim	Active	March 3, 2021	March 3, 2023	Windfall Geotek Inc.
Sobeski Lake Area	640352	Single Cell Mining Claim	Active	March 3, 2021	March 3, 2023	Windfall Geotek Inc.
Sobeski Lake Area	640353	Single Cell Mining Claim	Active	March 3, 2021	March 3, 2023	Windfall Geotek Inc.
Sobeski Lake Area	640354	Single Cell Mining Claim	Active	March 3, 2021	March 3, 2023	Windfall Geotek Inc.
Sobeski Lake Area	640355	Single Cell Mining Claim	Active	March 3, 2021	March 3, 2023	Windfall Geotek Inc.
Sobeski Lake Area	640356	Single Cell Mining Claim	Active	March 3, 2021	March 3, 2023	Windfall Geotek Inc.
Sobeski Lake Area	640357	Single Cell Mining Claim	Active	March 3, 2021	March 3, 2023	Windfall Geotek Inc.
Sobeski Lake Area	640358	Single Cell Mining Claim	Active	March 3, 2021	March 3, 2023	Windfall Geotek Inc.
Sobeski Lake Area	640321	Single Cell Mining Claim	Active	March 3, 2021	March 3, 2023	Windfall Geotek Inc.
Sobeski Lake Area	640322	Single Cell Mining Claim	Active	March 3, 2021	March 3, 2023	Windfall Geotek Inc.
Sobeski Lake Area	640323	Single Cell Mining Claim	Active	March 3, 2021	March 3, 2023	Windfall Geotek Inc.
Sobeski Lake Area	640324	Single Cell Mining Claim	Active	March 3, 2021	March 3, 2023	Windfall Geotek Inc.
Sobeski Lake Area	640325	Single Cell Mining Claim	Active	March 3, 2021	March 3, 2023	Windfall Geotek Inc.
Sobeski Lake Area	640326	Single Cell Mining Claim	Active	March 3, 2021	March 3, 2023	Windfall Geotek Inc.
Sobeski Lake Area	640327	Single Cell Mining Claim	Active	March 3, 2021	March 3, 2023	Windfall Geotek Inc.
Sobeski Lake Area	645143	Single Cell Mining Claim	Active	March 24, 2021	March 24, 2023	Windfall Geotek Inc.
Sobeski Lake Area	645144	Single Cell Mining Claim	Active	March 24, 2021	March 24, 2023	Windfall Geotek Inc.
Hanton Lake Area	645145	Single Cell Mining Claim	Active	March 24, 2021	March 24, 2023	Windfall Geotek Inc.
Hanton Lake Area	645146	Single Cell Mining Claim	Active	March 24, 2021	March 24, 2023	Windfall Geotek Inc.
Sobeski Lake Area	645147	Single Cell Mining Claim	Active	March 24, 2021	March 24, 2023	Windfall Geotek Inc.
Sobeski Lake Area	645148	Single Cell Mining Claim	Active	March 24, 2021	March 24, 2023	Windfall Geotek Inc.

Table 4.1List of the Sobeski Lake Property mining claims.

Township	Cell Number	Title Type	Tenure Status	Registration Date	Anniversary Date	Registered Owner 100%
Sobeski Lake Area	645149	Single Cell Mining Claim	Active	March 24, 2021	March 24, 2023	Windfall Geotek Inc.
Sobeski Lake Area	645150	Single Cell Mining Claim	Active	March 24, 2021	March 24, 2023	Windfall Geotek Inc.
Hanton Lake Area	645151	Single Cell Mining Claim	Active	March 24, 2021	March 24, 2023	Windfall Geotek Inc.
Sobeski Lake Area	645152	Single Cell Mining Claim	Active	March 24, 2021	March 24, 2023	Windfall Geotek Inc.
Sobeski Lake Area	645153	Single Cell Mining Claim	Active	March 24, 2021	March 24, 2023	Windfall Geotek Inc.
Hanton Lake Area	645154	Single Cell Mining Claim	Active	March 24, 2021	March 24, 2023	Windfall Geotek Inc.
Sobeski Lake Area	645155	Single Cell Mining Claim	Active	March 24, 2021	March 24, 2023	Windfall Geotek Inc.
Sobeski Lake Area	645156	Single Cell Mining Claim	Active	March 24, 2021	March 24, 2023	Windfall Geotek Inc.
Hanton Lake Area	645157	Single Cell Mining Claim	Active	March 24, 2021	March 24, 2023	Windfall Geotek Inc.
Sobeski Lake Area	645158	Single Cell Mining Claim	Active	March 24, 2021	March 24, 2023	Windfall Geotek Inc.
Sobeski Lake Area	645159	Single Cell Mining Claim	Active	March 24, 2021	March 24, 2023	Windfall Geotek Inc.
Sobeski Lake Area	645160	Single Cell Mining Claim	Active	March 24, 2021	March 24, 2023	Windfall Geotek Inc.
Sobeski Lake Area	645161	Single Cell Mining Claim	Active	March 24, 2021	March 24, 2023	Windfall Geotek Inc.
Sobeski Lake Area	645162	Single Cell Mining Claim	Active	March 24, 2021	March 24, 2023	Windfall Geotek Inc.
Sobeski Lake Area	645163	Single Cell Mining Claim	Active	March 24, 2021	March 24, 2023	Windfall Geotek Inc.
Hanton Lake Area	645164	Single Cell Mining Claim	Active	March 24, 2021	March 24, 2023	Windfall Geotek Inc.
Sobeski Lake Area	645165	Single Cell Mining Claim	Active	March 24, 2021	March 24, 2023	Windfall Geotek Inc.
Sobeski Lake Area	645166	Single Cell Mining Claim	Active	March 24, 2021	March 24, 2023	Windfall Geotek Inc.
Sobeski Lake Area	645167	Single Cell Mining Claim	Active	March 24, 2021	March 24, 2023	Windfall Geotek Inc.
Sobeski Lake Area	645168	Single Cell Mining Claim	Active	March 24, 2021	March 24, 2023	Windfall Geotek Inc.
Sobeski Lake Area	645169	Single Cell Mining Claim	Active	March 24, 2021	March 24, 2023	Windfall Geotek Inc.
Sobeski Lake Area	645170	Single Cell Mining Claim	Active	March 24, 2021	March 24, 2023	Windfall Geotek Inc.
Hanton Lake Area	645171	Single Cell Mining Claim	Active	March 24, 2021	March 24, 2023	Windfall Geotek Inc.
Hanton Lake Area	645172	Single Cell Mining Claim	Active	March 24, 2021	March 24, 2023	Windfall Geotek Inc.
Sobeski Lake Area	645173	Single Cell Mining Claim	Active	March 24, 2021	March 24, 2023	Windfall Geotek Inc.
Hanton Lake Area	645174	Single Cell Mining Claim	Active	March 24, 2021	March 24, 2023	Windfall Geotek Inc.
Sobeski Lake Area	645175	Single Cell Mining Claim	Active	March 25, 2021	March 25, 2023	Windfall Geotek Inc.
Sobeski Lake Area	645176	Single Cell Mining Claim	Active	March 25, 2021	March 25, 2023	Windfall Geotek Inc.
Sobeski Lake Area	645177	Single Cell Mining Claim	Active	March 25, 2021	March 25, 2023	Windfall Geotek Inc.
Sobeski Lake Area	645178	Single Cell Mining Claim	Active	March 25, 2021	March 25, 2023	Windfall Geotek Inc.
Sobeski Lake Area	645179	Single Cell Mining Claim	Active	March 25, 2021	March 25, 2023	Windfall Geotek Inc.
Sobeski Lake Area	645180	Single Cell Mining Claim	Active	March 25, 2021	March 25, 2023	Windfall Geotek Inc.
Sobeski Lake Area	645181	Single Cell Mining Claim	Active	March 25, 2021	March 25, 2023	Windfall Geotek Inc.
Sobeski Lake Area	645182	Single Cell Mining Claim	Active	March 25, 2021	March 25, 2023	Windfall Geotek Inc.
Sobeski Lake Area	645183	Single Cell Mining Claim	Active	March 25, 2021	March 25, 2023	Windfall Geotek Inc.
Sobeski Lake Area	645184	Single Cell Mining Claim	Active	March 25, 2021	March 25, 2023	Windfall Geotek Inc.
Sobeski Lake Area	645185	Single Cell Mining Claim	Active	March 25, 2021	March 25, 2023	Windfall Geotek Inc.
Sobeski Lake Area	645186	Single Cell Mining Claim	Active	March 25, 2021	March 25, 2023	Windfall Geotek Inc.
Sobeski Lake Area	645187	Single Cell Mining Claim	Active	March 25, 2021	March 25, 2023	Windfall Geotek Inc.
Sobeski Lake Area	645188	Single Cell Mining Claim	Active	March 25, 2021	March 25, 2023	Windfall Geotek Inc.
Hanton Lake Area	645189	Single Cell Mining Claim	Active	March 25, 2021	March 25, 2023	Windfall Geotek Inc.
Hanton Lake Area	645189	Single Cell Mining Claim	Active	March 25, 2021	March 25, 2023	Windfall Geotek Inc.
Hanton Lake Area	645190	Single Cell Mining Claim	Active	March 25, 2021	March 25, 2023	Windfall Geotek Inc.
Hanton Lake Area	645191	Single Cell Mining Claim	Active	March 25, 2021	March 25, 2023	Windfall Geotek Inc.
Hanton Lake Area	645192	Single Cell Mining Claim	Active	March 25, 2021	March 25, 2023	Windfall Geotek Inc.
	645193			-		Windfall Geotek Inc.
Hanton Lake Area		Single Cell Mining Claim Single Cell Mining Claim	Active	March 25, 2021	March 25, 2023	
Hanton Lake Area	645195		Active	March 25, 2021	March 25, 2023	Windfall Geotek Inc.
Hanton Lake Area	645196	Single Cell Mining Claim	Active	March 25, 2021	March 25, 2023	Windfall Geotek Inc.
Hanton Lake Area	645197	Single Cell Mining Claim	Active	March 25, 2021	March 25, 2023	Windfall Geotek Inc.
Sobeski Lake Area	645198	Single Cell Mining Claim	Active	March 25, 2021	March 25, 2023	Windfall Geotek Inc.

Township	Cell Number	Title Type	Tenure Status	Registration Date	Anniversary Date	Registered Owner 100%
Sobeski Lake Area	645199	Single Cell Mining Claim	Active	March 25, 2021	March 25, 2023	Windfall Geotek Inc.
Sobeski Lake Area	645200	Single Cell Mining Claim	Active	March 25, 2021	March 25, 2023	Windfall Geotek Inc.
Sobeski Lake Area	645201	Single Cell Mining Claim	Active	March 25, 2021	March 25, 2023	Windfall Geotek Inc.
Sobeski Lake Area	645202	Single Cell Mining Claim	Active	March 25, 2021	March 25, 2023	Windfall Geotek Inc.
Sobeski Lake Area	645203	Single Cell Mining Claim	Active	March 25, 2021	March 25, 2023	Windfall Geotek Inc.
Sobeski Lake Area	645204	Single Cell Mining Claim	Active	March 25, 2021	March 25, 2023	Windfall Geotek Inc.
Sobeski Lake Area	645205	Single Cell Mining Claim	Active	March 25, 2021	March 25, 2023	Windfall Geotek Inc.
Sobeski Lake Area	645206	Single Cell Mining Claim	Active	March 25, 2021	March 25, 2023	Windfall Geotek Inc.
Sobeski Lake Area	645207	Single Cell Mining Claim	Active	March 25, 2021	March 25, 2023	Windfall Geotek Inc.
Sobeski Lake Area	645208	Single Cell Mining Claim	Active	March 25, 2021	March 25, 2023	Windfall Geotek Inc.
Sobeski Lake Area	645209	Single Cell Mining Claim	Active	March 25, 2021	March 25, 2023	Windfall Geotek Inc.
Sobeski Lake Area	645210	Single Cell Mining Claim	Active	March 25, 2021	March 25, 2023	Windfall Geotek Inc.
Sobeski Lake Area	645211	Single Cell Mining Claim	Active	March 25, 2021	March 25, 2023	Windfall Geotek Inc.

Figure 4.2 Claim fabric of the Sobeski Lake Property.

4.3 OWNERSHIP AND UNDERLYING AGREEMENTS

All claims are registered to Windfall Geotek Inc. according to the Ministry of Energy, Northern Development and Mines on-line Mining Land Administration System (MLAS). There are no underlying property agreements and no underlying royalties on the Property.

4.4 ENVIROMENTAL LIABILITIES

The author is unaware of any current environmental liabilities connected with the Property.

Permitting is required for many aspects of mineral exploration. Since the type of work being proposed for the Sobeski Lake Property is considered preliminary exploration by the Ontario government, the permitting process isn't particularly onerous. These permits will be acquired by Geotek when required.

Under the Mining Act, prospecting and staking in Ontario can occur on privately owned lands. A prospector must respect the rights of the property owner. Staking cannot disrupt other land use such as crops, gardens or recreation areas, and the prospector is liable for any damage made while making property improvements. A claim holder may also explore on privately owned lands. Prior notification is required, and exploration must be done in a way that respects the rights of the property owner.

Water crossings, including culverts, bridges and winter ice bridges, require approval from the Ministry of Natural Resources. This applies to all water crossings whether on Crown, municipal, leased or private land and includes water crossings for trails. Authorization may take the form of a work permit under the Public Lands Act ("PLA") or approvals under the Lakes and Rivers Improvement Act ("LRIA").

In circumstances where there is potential to affect fish or fish habitat, the federal Department of Fisheries and Oceans ("DFO") must be contacted. Proper planning and care must be taken to mitigate impact on water quality and fish habitat. Where impact on fish habitat is unavoidable, a Fisheries Act Authorization will be required from DFO. In some cases, the Ministry of Natural Resources and your local conservation authority may also be involved.

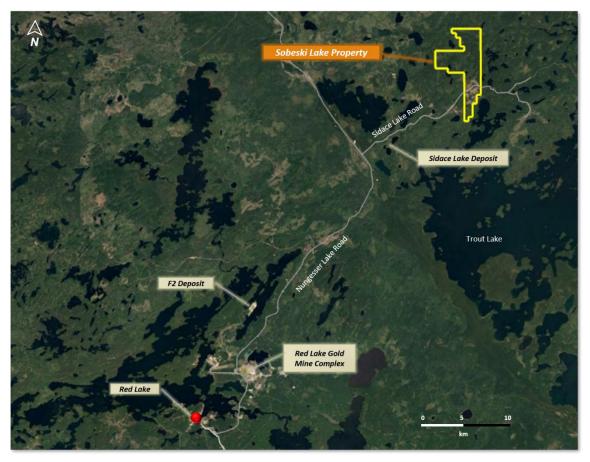
A work permit is required from MNR for the construction of all roads, buildings or structures on Crown lands with the exception of roads already approved under the Crown Forest Sustainability Act. Private forest access roads may not be accessible to the public unless under term and conditions of an agreement with the land holder.

Exploration diamond drilling may only occur on a valid mining claim. Ministry of Labour regulations regarding the workplace safety and health standards must be met during a drilling project. Notice of drilling operations must be given to the Ministry of Labour.

All drill and boreholes should be properly plugged if there is a risk of the following:

- a physical hazard,
- groundwater contamination,
- artesian conditions, or
- adverse intermingling of aquifers

Appropriate plugging methods may vary and will depend on the type of hole and geology. Ontario Water Resources Act water well regulations may apply.


The author knows of no significant factors and risks that may affect access, title or the right or ability to perform work on the property. The claim group is located within First Nation Treaty Lands. It is the responsibility of Geotek to consult and build agreeable relationships with those First Nations group(s) before any exploration efforts or mining is to proceed.

5.0 ACCESSIBILTY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE and PHYSIOGRAPHY

5.1 ACCESSIBILITY

The Sobeski Lake Property is located 45km northeast of Red Lake, Ontario. The property is accessible via a series of highway, all-weather roads and logging roads. The Property can be reached by traveling north for 9km on Highway 125 from Highway 105 in the town of Red Lake. Traveling north on the Nungesser Road, at 29km, the Sidace Lake Road runs primarily northeast and enters the western boundary of the property after approximately 15km. (Figure 5.1).

Figure 5.1 Access map to the Property. Source Google Earth.

5.2 CLIMATE

Climate in the area is typical of the northwestern Ontario Boreal climate, with cold winters exhibiting moderate snowfall and warm summers. Average January temperatures range from -10°C (day) to -22°C (night), and average July temperatures are between 24°C (day) and 13°C (night) with extremes of about -40°C in winter and 35°C in summer (www.meteoblue.com). Work can be done (subject to snow and freezing) for most of the year. Certain mapping, mechanized stripping, and soil sampling activities are PAGE 16

best performed in snow-free conditions. Drilling can be done almost any time of year, though freeze up periods may be best in swampy or wetter topographical conditions.

5.3 LOCAL RESOURCES

The closest community where local supplies may be purchased is Red Lake, Ontario with a population of approximately 4,500. Winnipeg, Manitoba is the closest community of substantial size 480 km to the southwest by road with a population of 817,000. Bearskin Airways provides regular flights to Red Lake from Winnipeg, Manitoba or Red Lake, Ontario. Red Lake has an economy primarily driven by mining thus exploration and mining supplies and personnel are readily available.

5.4 INFRASTRUCTURE

Infrastructure located near the Property includes a hydro-electric power and natural gas lines located in the town of Red Lake. The expanse of the property of 2,253 hectares provides ample space for the sufficiency of surface rights for mining operations, potential tailings storage areas, potential waste disposal areas, heap leach pad areas, and potential processing plant sites.

5.5 PHYSIOGRAPHY

The Property is located within the Canadian Shield, which is a major physiographic division of Canada. The property is situated in an area of mixed wetlands and extensive glacial deposits. Forest cover is dominated by black spruce and tamarack which graduate to spruce, balsam-pine and poplar in areas of higher relief. Elevation across the Property is fairly flat and ranges from \sim 392 m to \sim 400 m.

Water for drilling is readily available from small ponds located within the claim block. The rock exposures on the Property are rare and are found as moss-covered knolls. Total rock exposure and areas with thin overburden cover comprise only <1% of the Property.

6.0 HISTORY OF EXPLORATION

As one of the most prolific gold mining camps in Canada, Red Lake has witnessed almost 100 years of exploration and mining. In the summer of 1925, two groups of prospectors arrived in the Red Lake area after reading a mineralization report from the Ontario Department on Mines. The prospectors consisted of independently funded Lorne Howey and George McNeely and Ray Howey and W.F. Morgan who were working for McIntyre Porcupine Mines. On July 25, 1925, as the groups were preparing to relocate to the Woman Lake area, a discovery was made. Lorne Howey and George McNeely found a large quartz stringer with visible gold under the roots of an upturned tree. Shortly afterwards Ray Howey and W.F. Morgan discovered part of the same vein. *The Ottawa Journal* published news of the Howey discovery on October 10, 1925. While a few prospectors made the journey to Red Lake in 1925, it was not until January 1926 that the gold rush began. Although most of the prospectors would leave empty-handed, some of them staked what would become producing mines. The Howey Gold Mine, McKenzie Red Lake Gold Mine, Gold Eagle Mine and Cochenour-Willans Gold Mine had their origins in the gold rush period.

The majority of the mines founded in the gold rush period did not find their footing until the 1930's. The Gold Reserve Act passed by the United States in 1934 helped shape Red Lake. The *Act* raised the sale price of gold and started to move away from the gold standard. In 1936 alone there were over 10,000 new claims staked in Red Lake. More significantly mines like McMarmac Red Lake Gold Mines, Cochenour-Willans Gold Mines and Madsen Red Lake Gold Mines were able to go into production.

Similar to how the Howey discovery sparked the first gold rush, the Campbell discovery triggered the second. George Campbell first arrived in Red Lake as part of the 1926 gold rush. While Campbell prospected himself, for the most part, he worked for other prospectors and mining companies. Campbell never gave up on his hunt for gold and continued to prospect around the Red Lake area in his spare time. In early 1944 with financial assistance from his cousin Colin, Campbell staked 12 claims near Balmer Lake (Figure 6.1). After several months of exploration, Campbell struck gold. On October 4, 1944, Campbell was developing a new trench when he found samples with fine visible gold. Campbell reportedly told prospector Bill Skene that he finally found his gold mine. The assay results from the samples ranged from nine to five ounces of gold per tonne. News of the discovery quickly spread throughout the mining community in Red Lake, but it was not until after the conclusion of World War II that thousands of prospectors flooded to the area (https://www.redlakemuseum.com/the-red-lake-gold-rushes.html).

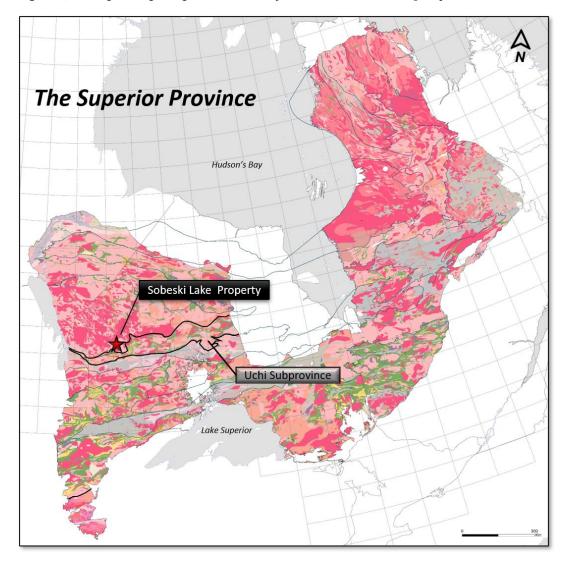
Since then, the Red Lake mining district has hosted 29 gold mines producing over 30 million of ounces of gold. The Red Lake Mine Complex (Campbell, Cochenour and Red Lake mines) operated by Evolution Mining is still producing today. Pure Gold Mining has just recently started pouring gold again after reopening the Madsen Mine. The Great Bear Resources discovery in 2019 15 km south of town has sparked another gold rush, not seen since the days of 1926.

Figure 6.1 George Campbell staking a claim in 1944. Source Red Lake Museum.

6.1 EXPLORATION HISTORY OF THE SOBESKI LAKE PROPERTY

There are only three registered MENDM assessment files that cover potions of the property representing the only historical exploration. A brief history of exploration is summarized below.

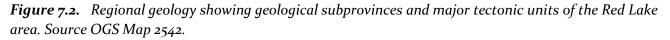
1978: Dome Exploration Ltd. flew an airborne EM and magnetic survey using the Questor INPUT system. The survey covered an area of about 30 km long (measured in a northwest-southeast direction) and up to 25 km wide northeast of Red Lake. Flight line spacing was completed at 200m. The airborne was followed by line-cutting over select anomalies, and ground magnetic and horizontal loop EM surveys. The more promising conductors were drilled in 1980. No conductors were drilled within the current property boundaries (AFRI 52N12SE0252).


2004: Terraquest Ltd. completed a tri-sensor high sensitivity magnetic fixed-wing airborne survey for Rampart Ventures Ltd. over a portion of the current property. Flight-line spacing was 100m with sample reading points every 6m (AFRI 20001314).

2004: Rampart Ventures Ltd. completed geological mapping, soil sampling and prospecting over a portion of the current property. Very little outcrop was found. No significant results were reported (AFRI 20001424).

7.0 GEOLOGICAL SETTING AND MINERALIZATION

7.1 REGIONAL GEOLOGICAL SETTING


The Sobeski Lake Property lies at the junction of the northeastern tip of the Red Lake Greenstone Belt (RLGB) of the Uchi Subprovince and the southern end of the Nungesser Lake Greenstone Belt (NLGB) of the Berens River Subprovince. Both Subprovinces belong to the Superior Province of Canada. (Figure 7.1) The Superior Province which spans the provinces of Manitoba, Quebec and Ontario is the earth's largest Archean craton that accounts for roughly a quarter of the planet's exposed Archean crust and consists of linear, fault bounded Subprovinces that are characterized by volcanic, sedimentary and plutonic rocks (William et al., 1991).

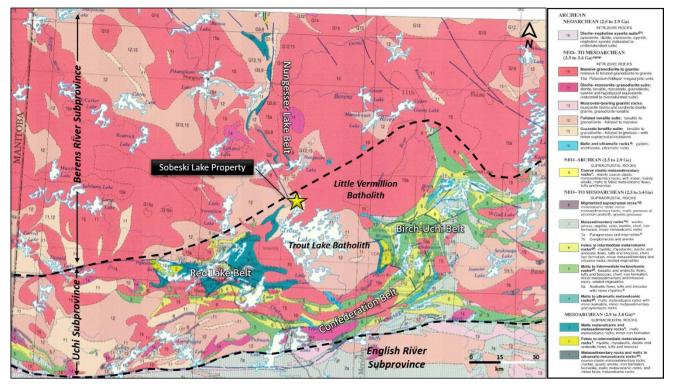


Figure 7.1 Regional geological location of the Sobeski Lake Property. Source OGS.

The Uchi Subprovince is a 50-100 km wide east-west trending belt extending from Lake Winnipeg in the west to the James Bay Lowlands in the east. It is dominated by a series of predominantly volcanic greenstone belts which occupy interstitial spaces between mainly elliptical shaped granitoid batholiths. is bound to the north by the Berens River Subprovince (pluton dominated) and to the south by the English River Subprovince (metasedimentary rock dominated). These three subprovinces amalgamated through tectonic processes at ca. 2700 Ma during the Kenoran orogeny (Stott et al., 1989).

The western Uchi Subprovince is divided up into 3 major tectonic divisions of the Red Lake area (OGS, 1991). These are the Red Lake belt, the Confederation Lake belt and the Birch-Uchi Lake belt. These are bounded by granitoid batholiths namely the Trout Lake batholith and the Little Vermilion batholith. In addition, there is a previously unnamed, thin and discontinuous, greenstone belt running north from the northeast arm off the Red Lake belt. For the purposes of this report, it will be referred to as the Nungesser Lake greenstone belt (NLGB) (Figure 7.2).

The following is taken from assessment file 20001424 where Colin Cowbridge, Ph.D., P.Geo. discusses the regional geology of the Red Lake belt.

"Recent studies [e.g., Pirie (1981), Andrews et al. (1986), Sanborn-Barrie et al. (2001)] have led to an increasingly complex stratigraphic division of the rocks making up the Red Lake belt and other greenstone belts of the area. It is not necessary to repeat these divisions in detail here, but it is important to highlight a major time-stratigraphic division between older (Mesoarchean >2.8 Ga) and younger

(Neoarchean <2.8 Ga) supracrustal rocks. Much of the Red Lake belt and a small part of the Birch-Uchi belt are made up of 3.0 Ga mafic (and locally ultramafic) volcanics, collectively called the Balmer assemblage. All the Confederation Lake belt, most of the Birch-Uchi belt, and some parts of the Red Lake belt, are made up of 2.7 Ga volcanics and sediments called the Confederation assemblage. This division between older and younger assemblages is important in the context of Red Lake geology because most of the gold deposits of the camp are hosted by Balmer assemblage rocks".

The NLGB has been described as 'greenstone slivers' that extend north from the Red Lake belt to the McInnes Lake greenstone belt for approximately 85 km in a northerly direction. The ages for the McInnes Lake greenstone belt suggest a link between it and the Red Lake greenstone belt, specifically the Balmer assemblage with an age circa 2.99 to 2.95 Ga (Sanborn-Barrie, Skulski and Parker 2001; Corfu and Wallace 1986) and the Ball assemblage with an age circa 2.92 to 2.94 Ga (Sanborn-Barrie, Skulski and Parker 2004; Corfu and Wallace 1986). Due to the location of the greenstone slivers, between the McInnes Lake and Red Lake greenstone belts, the slivers could either be Balmer or Ball assemblage in origin (Buse and Prefontaine, 2007).

7.1.2 Regional Structural Setting

The following is largely taken from Buse and Prefontaine, 2007. This describes the structural history and make-up of the greenstone slivers of the NLGB.

"The structural history of the Berens River area can be correlated between all of the greenstone slivers and north to the McInnes Lake greenstone belt. The penetrative foliation within the slivers follows the trend of the belts and dips steeply to the southwest. This foliation is parallel to bedding. The D1 deformational event responsible for this foliation is a regional flattening causing thinning of all volcanic and sedimentary units as well as boudinage within many of the tuffaceous and gneissic units.

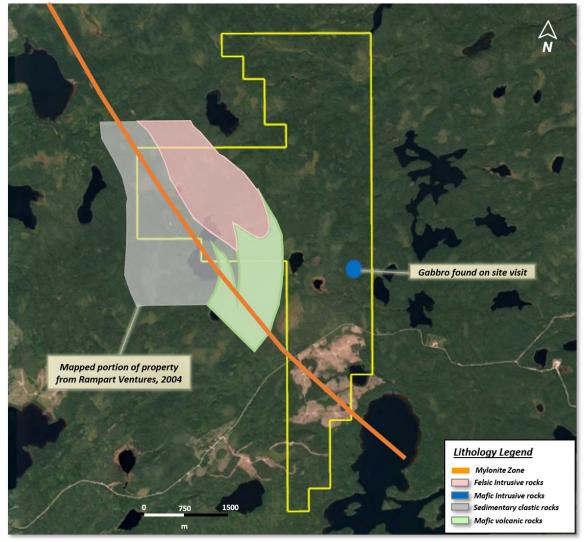
Following the D₁ deformational event, regional plutonism occurred throughout the entire Berens River Subprovince. The onset of this plutonism occurred during and subsequent to the D₂ deformational event. The greenstone slivers of this time would have been largely digested by the granitoids, which is evidenced by the extensive xenoliths of the greenstone rocks within the surrounding granitoids. This plutonism likely occurred at a mid-crustal level where the greenstone belts would have been facies metamorphism of the greenstone rocks. The intermediate to felsic granitoids are interpreted to be syndeformational and intruded as sheets. The felsic plutons intruded syn-deformation to post-deformation, as thin sheets along lithologic boundaries or as round batholiths that press against the greenstone rocks causing their arcuate shape.

The D₂ deformational event includes a regional-scale dextral-transpressive event, likely responsible for the large-scale Z-fold pattern of all of the greenstone slivers. Evidence for this D₂ deformational event is seen as tight isoclinal folds within the intermediate gneisses, sedimentary rocks and locally in the mafic metavolcanic rocks. The last deformational event in the McInnes Lake and Berens River map areas is recorded as small northwest-trending faults with sinistral offset of no more than a few centimetres with unknown vertical displacements, observed by the offset of dikes and veins".

7.1.3 Regional Metamorphism

Metamorphism in the greenstone slivers ranges from upper greenschist to upper amphibolite facies (Buse and Prefontaine, 2007).

7.2 PROPERTY GEOLOGY


Due to the excessive overburden and till coverage of the property little is known about the geology of the property. Outcrop exposure is extremely rare. A majority of the geology has been interpreted from airborne magnetic surveys conducted by the OGS.

Stone's (1998) map shows the Property to be underlain by a variety of granitoid intrusive rocks making up the marginal zone between the Trout Lake batholith to the South and the Little Vermilion batholith to the north.

Mapping by Rampart Ventures Inc. within the current property boundary mapped the following rock types (Figure 7.3).

- 1) Mafic volcanic rocks consisting of medium-grained, schistose with black amphibolite.
- 2) Clastic metasediments (arkose and greywacke) which grade into biotite gneisses and migmatites.
- 3) Felsic intrusive rocks of a granite to granodiorite suite.

Figure 7.3 Local known geology of the Sobeski Lake Property. Source Rampart Ventures, 2004 and MacLachlan, 2021.

During the Property visit by Bruce MacLachlan, two closely spaced small gabbroic outcrops. The gabbro was medium to coarse grained and foliated (335°) and weakly oxidized with trace to 0.5% fine pyrite (Figure 7.3). Two other outcrops surrounding the gabbro consisted of hematized granite.

The NNW-trending deformation zone (mylonite zone) mapped by Stone (1998) appears to be based mainly on the well-foliated tonalite gneiss outcrops. This band of mylonite is up to 1,300m wide (Figure 7.3).

7.3 PROPERTY MINERALIZATION

There are no documented and registered Ministry Energy Department and Mines (MENDM) Mineral Deposit Inventory (MDI) occurrences within the Sobeski Lake Property. There has been no historical

sampling (grab sampling, channel sampling or trenching) performed on the property due to excessive overburden and very limited exploration.

8.0 DEPOSIT TYPES

8.1 OROGENIC LODE GOLD DEPOSITS

The structural and geological architecture of the NLGB is conducive to Archean orogenic lode gold deposits.

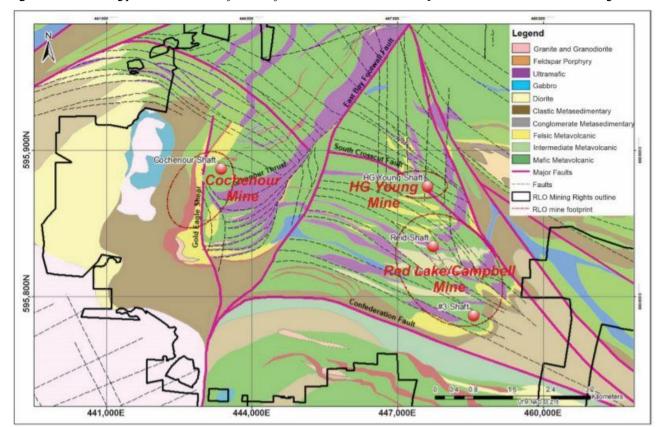
Orogenic lode gold deposits throughout the world show very distinct clustering along major lineaments and deformation zones (shear zones) which tend to be crustal scale, terrane bounding features. Feng and Kerrich (1992) summarize: "The giant quartz vein systems with lateral extents of tens of kilometers and up to 3 kilometers in depth are hosted in brittle-ductile shear zones and are restricted to terrane boundaries. These are regional structures that cut through the lithosphere, but are usually recognized at strike-slip fault, duplexes and second and third order splays at mid-crustal levels."

Deposition of gold is generally syn-kinematic, syn- to post-peak metamorphism and is largely restricted to the brittle-ductile transition zone. However, deposition over a much broader range of pressure-temperature conditions (200–6500C; 1–5 kbar) has been demonstrated. Host rocks are highly variable, but typically include mafic and ultramafic volcanic rocks, banded iron formation, sedimentary rocks and more rarely granitoid rocks. Alteration mineral assemblages are dominated by quartz, carbonate, mica, albite, chlorite, pyrite, scheelite and tourmaline, although there is much inter-deposit variation (Kerrich et al., 2000).

Gold deposits in the Red Lake district are atypical of most Archean, greenstone, shear-zone-hosted, vein-type orogenic gold deposits and remain the subject of much debate in terms of deposit type, genesis, and timing relative to regional deformation and metamorphism (Sanborn et al. 2000).

8.1.1 Red Lake Mine Complex

The Red Lake Mine Complex is comprised of the Campbell, Cochenour and Red Lake (Dickenson) gold mines. Since 1925, these three mines have produced over 70% of the 29.2 million ounces of gold at an average grade of 19 g/t Au. (Desjardins, 2016). Now owned by Evolution Mining the Red Lake mine Complex boasts group resources of 13.9 million ounces (ASX:EVN press release of February 17, 2021).


The following is largely taken from Mining Data Online (<u>https://miningdataonline.com/property/234/Red-Lake-Mine.aspx#Documents</u>).

The Red Lake Campbell deposit has approximate dimensions of 2.2 km north-south, 3.2 km east-west and remains open down dip and along strike. Mine workings extend to 2,260m depth with the deepest drill intercept currently around 2,600m as of 2016.

Mineralization is primarily localized within tholeiitic mafic rocks and shows strong structural control to broad to discrete shear structures running along a trend of 135° trend in the east to 120° trend in the west. Other significant mineralization zones occur along discordant brittle structures which most commonly appear as s conjugates system generally oriented east-west and north-south. Competency

and permeability contrasts between adjacent lithologies is also important as seen by strong association of higher-grade mineralization when basalt comes in contact with ultramafic rocks.

Mineralized zones in the Red Lake-Campbell deposit are distinguished first by spatial orientation relative to structural corridors and second by the style of mineralization. It is common for mineralized zones to have multiple styles of mineralization within the same host lithology (Figure 8.1).

Figure 8.1 Geology and structural fabric of the Red Lake mine complex. Source Evolution Mining.

There are four types of orogenic gold mineralization in the Red Lake-Campbell deposit:

- 1) Vein-style gold mineralization
- 2) Vein and sulphide style gold mineralization
- 3) Disseminated sulphide style mineralization (often referred to as replacement style mineralization)
- 4) Free gold mineralization style.

The Cochenour Complex covers mineralization discovered in the Western Discovery Zone deposit, the former Cochenour-Willans mine. It also includes the former Gold Eagle Mines Joint venture property, host to the Bruce Channel gold deposit and the former Gold Eagle mine.

The Cochenour Complex appears folded about a southwest trending antiform plunging to the southwest at 50° immediately in the hanging wall of the East Bay deformation corridor. A series of

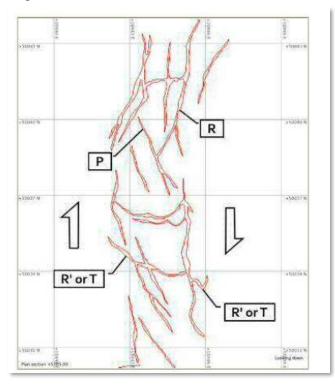
massive, felsic tuffs and felsic intrusions occurs along the western flank of the former Cochenour mine, which makes up the base of the overlying Bruce Channel assemblage. At surface these rocks define the location of a north south running shear zone, referred to as the Gold Eagle Shear which dips steeply due west at approximately 65° underneath the Bruce Channel of Red Lake.

Mineralization in the Cochenour complex is made up of the same styles of the Red Lake-Campbell complex. Mineralized zones in the Cochenour complex are distinguished first by spatial orientation relative to major structural features.

8.1.2 The F₂ Deposit

The F2 Deposit was recently purchased by Evolution Mining. It is located 7km northeast of the Cochenour Complex along the East Bay of Red Lake. The description of the F2 Deposit is largely taken from the Bateman Gold Project 43-101 dated January 27, 2021, prepared by T. Maunula and Associates Consulting Inc.

Mineralization at the F₂ Gold Deposit shares attributes with other orogenic gold deposits of the Red Lake mining district where most of the gold production is derived from orogenic-style high-grade quartz-carbonate veins that are associated with deformation of the Balmer Assemblage mafic and ultramafic volcanic rocks.


Gold mineralization occurs primarily within panels of high-Ti Basalt in the form of mineralized quartz ± carbonate ± actinolite veins with variable sulphide contents, within quartz-breccia zones and in association with disseminated sulphides hosted by zones of silica alteration and veining. Lesser amounts of similar styles of mineralization are also hosted within the felsic intrusive units. Previous studies (SRK, 2013) have identified an earlier low-grade gold mineralization event, and a later, overprinting, higher-grade gold mineralization event.

The early low-grade gold mineralization event is thought to have formed pre- to syn-D₁ as the mineralization is overprinted by the S₁ foliation. The early phase of mineralization is generally low grade with gold grades generally less than 4.0 g/t Au and occurs as quartz \pm actinolite \pm carbonate veins and stringers and as disseminated mineralization associated with quartz-biotite-sulphide alteration in the high-Ti Basalt and felsic intrusive units (Golder, 2018).

The higher-grade second mineralization event is associated with shear-related veins and minor localized shear zones and breccias that are interpreted to have formed as a result of D₂ dextral transpression along the East Bay deformation zone. The gold mineralization occurs in association with disseminated sulphide mineralization in the high-Ti Basalt and also in gold-bearing quartz ± actinolite ± carbonate veins (V₂) in the high-Ti Basalt and Felsic Intrusive units (Golder, 2018).

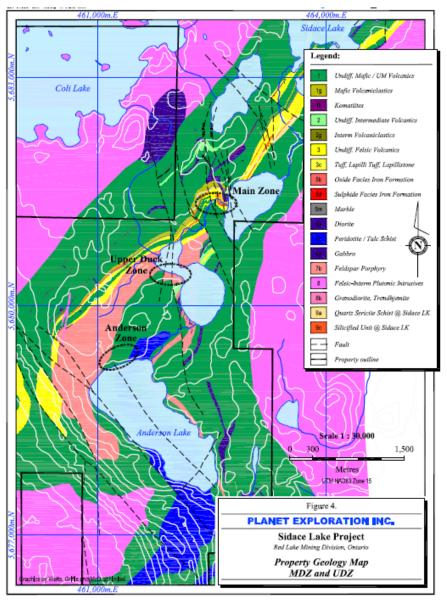
Figure 8.2 illustrates the type of network defined by the mineralized V2-type veins as mapped within high-Ti Basalt on the 305 m Level at the F2 Gold Deposit (Golder, 2018) and that might be representative of mineralized vein networks throughout much of the F2 Gold Deposit. The vein network is interpreted in the framework of a classical Riedel shear system formed during D2 bulk dextral shear.

Figure 8.2 Mapped veined systems from the 305m level at the F2 deposit. Source Battle North Gold Corp.

Another important structural control on gold mineralization (other than the V2 vein sets) at the F2 Gold Deposit is represented by the quartz breccia zones (QBZ). Underground mapping on 183 m, 244 m, and 305 m Levels (Golder, 2018) and inspection of the intervals in the drill hole database suggest the QBZ units tend to have a broadly east-west orientation. It is likely that the QBZ represent zones of brecciation associated with shear elements (potentially conjugate R-shears) of brittle to brittle-ductile Riedel-type shear systems.

8.2 SIDACE LAKE DEPOSIT

The Sidace Lake gold deposit is located 9km to the southwest of the Property. The deposit is in a joint venture between Pacton Gold (39.5%) and Evolution Mining 60.5%. The Sidace Lake deposits contain 3.47Mt at an average grade of 3.22 gpt Au for 360,100 ounces of gold in the inferred and indicated categories (Power-Fardy and Breede, 2009). These Sidace Lake mineral resource estimates were prepared in strict compliance with the provisions of NI 43-101 guidelines and CIM standards and guidelines for the estimation of Mineral Resources and Mineral Reserves.


Mineralization at the Sidace Lake shares attributes with other orogenic gold deposits of the Red Lake mining district (Figure 8.3). There are four styles of gold mineralization as follows:

1) Quartz veining associated with an intense potassic alteration zone. Gold is associated with minor pyrite, pyrrhotite, arsenopyrite, stibnite, molybdenum and rarely realgar and orpiment.

This mineral assemblage occurs within quartz-sericite-schist ("QSS") and the footwall microcline alteration unit, both being host to the quartz veining, e.g., the Main Discovery Zone.

- 2) Silicification associated with arsenopyrite within grunerite-magnetite iron formation, e.g., the Upper Duck Zone.
- 3) arsenopyrite, pyrrhotite associated with quartz-diopside-veining and observed in all of the major lithologies on the Property, except the granites, e.g., the Skarn Zone.
- 4) shearing of ultramafic lithologies, particularly along the contacts with other supra-crustal rocks (Power-Fardy and Breede, 2009).

Figure 8.3 Geology and structural fabric of the Sidace Lake gold deposits. Source Power-Fardy and Breede, 2009.

Orogenic gold deposits similar in geological nature should be the focus of future exploration activities on the Sobeski Lake Property. Gold mineralization of this nature is not necessarily indicative of mineralization on the Property.

8.3 CONCEPTS UNDERPINNING THE ACQUISITON OF SOBESKI LAKE

The staking acquisition of the Sobeski Lake Property was conceptualized by Windfall Geotek through proven and industry leading digital platform leveraging Artificial Intelligence (AI) technology. Windfall Geotek uses its proprietary CARDS (Computer Aided Resources Detection System) platform to identify a high statistical probability of target identification within known areas of interest. The CARDS AI system works by three main steps:

- 1) Data gathering and process. CARDS manages this comprehensive and complex process, compiling and utilizing all available information modeling the target area of interest. CARDS identifies the positive points (drill holes and public mineral occurrences) according to established thresholds for each of the commodity and mineralization style sought. By using a moving window, neighbouring patterns around each point are captured and expressed by new calculated variables for each primary exploration layer. In the analysis of each point in the database, the characteristics of all points within a specified distance (neighbourhood) are weighted into the evaluation of that point. The combination of their limited characteristics and their proximity to points with other significant characteristics similar to that of known positive points is identified. Some examples of data used at this stage are:
 - Proximity to mineral occurrences / mineralized drill holes
 - Geophysical surveys: MAG, EM, IP, gravity, radiometry
 - Geochemical surveys: rock, soil, lake bottom, drill hole assays
 - Satellite imagery
 - Geological maps: rock type, alteration
 - Digital elevation models
 - Proximity to lithological contacts / specific intrusive suites
 - Proximity to interpreted lineaments / mapped faults and shear zones
- 2) <u>Model set up</u>. Generated signature of known positive occurrences using multiple models that discriminate between the positive and unknown points using all existing information. Aggregate the different rules of all models by achieving a probability between zero (o) (unlike-positive) and one (1) (like-positive) computed as the average of the different classification results. This probability represents the level of similarity of each point to the existing positive sites based on all variables employed in the modeling.
- 3) *Data Mining and Prediction*. CARDS classifies each new unknown point based on the rules of classification already generated: a point is considered as positive if its probability is higher than a specified threshold level. The platform employs a validation learning algorithm using

the same input data of the predictive algorithm to ensure that the statistical process is working properly and that the results intuitively make sense.

The targets generated by CARDS are evaluated in conjunction with all readily available geological data as part of the evaluation for the economic potential of a property, as well as the primary identification of exploration targets. After the Red Lake Camp large scale CARDS analysis, Geotek found the Sobeski Lake target had a 98% similarity to Red Lake style gold mineralization. Favourable lithologies and structure played a key role in the target acquisition (Figure 8.4).

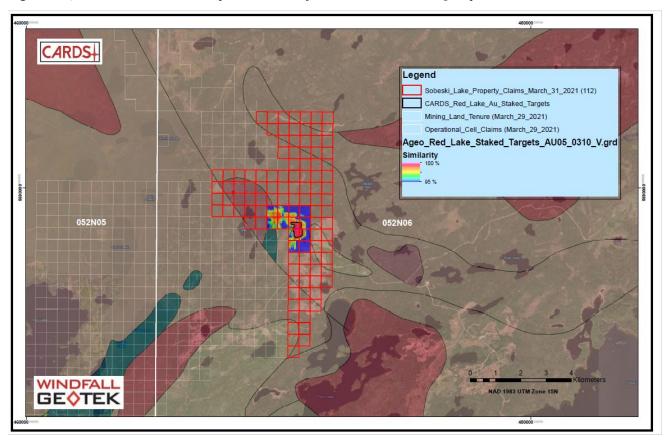



Figure 8.4 Geotek's CARDS analysis location of the Sobeski Lake Property.

9.0 EXPLORATION

Since staking the Sobeski Lake Property, Geotek has completed a soil sampling program. A total of 512 samples were taken covering approximately 25.4 kilometres of line. Line spacing was at 100m with samples taken every 50m (Figure 9.1). Samples consisted of B-horizon samples in dry forested pine terrain and A-horizon samples in wetter swampy terrain (Table 9.1). Of the 497 samples, 73 samples were B-horizon sand and dry while 424 samples were A-horizon, organic and wet.

Figure 9.1 Soil and organic sampling program of the Sobeski Lake Property. Source DPE Exploration Ltd.

Label	Line	Station	Easting	Northing	Sample	Sample 2 Type	Depth Te	errain	Condition
L 7450/3300		3300	471300	5687450	-	1 Organic	25 sv		wet
L 7450/3250	1	3250	471250	5687450	1	2 Organic	25 sv		wet
L 7450/3200	L 7450	3200	471200	5687450	SLP003	3 Organic	25 sv	vamp	wet
L 7450/3150	L 7450	3150	471150	5687450	SLP004	4 Organic	25 sv	vamp	wet
L 7450/3100	L 7450	3100	471100	5687450	SLP005	5 Organic	25 sv	vamp	wet
L 7450/3050	L 7450	3050	471050	5687450	SLP006	6 Organic	25 sv	vamp	wet
L 7450/3000	L 7450	3000	471000	5687450	SLP007	7 Organic	25 sv	vamp	wet
L 7450/2950	L 7450	2950	470950	5687450	SLP008	8 Organic	25 sv	vamp	wet
L 7450/2900	L 7450	2900	470900	5687450	SLP009	9 Organic	25 sv	vamp	wet
L 7450/2850	L 7450	2850	470850	5687450	SLP010	10 Organic	25 sv	vamp	wet
L 7450/2800	L 7450	2800	470800	5687450	SLP011	11 Organic	25 sv	vamp	wet
L 7450/2750	L 7450	2750	470750	5687450	SLP012	12 Organic	25 sv	vamp	wet
L 7450/2700	L 7450	2700	470700	5687450	SLP013	13 Organic	25 sv	vamp	wet
L 7450/2650	L 7450	2650	470650	5687450	SLP014	14 Organic	25 sv	vamp	wet
L 7450/2600	L 7450	2600	470600	5687450	SLPO15	15 Organic	25 sv	vamp	wet
L 7450/2550	L 7450	2550	470550	5687450	SLP016	16 Organic	25 sv	vamp	wet
L 7450/2500	L 7450	2500	470500	5687450	SLP017	17 Organic	25 sv	vamp	wet
L 7450/2450	L 7450	2450	470450	5687450	SLP018	18 Organic	25 sv	vamp	wet
L 7450/2400	L 7450	2400	470400	5687450	SLP019	19 Organic	25 sv	vamp	wet
L 7550/3300	L 7550	3300	471300	5687550	SLP038	38 Organic	25 sv	vamp	wet
L 7550/3250	L 7550	3250	471250	5687550	SLP037	37 Organic	25 sv	vamp	wet
L 7550/3200	L 7550	3200	471200	5687550	SLP036	36 Organic	25 sv	vamp	wet
L 7550/3150	L 7550	3150	471150	5687550	SLP035	35 Organic	25 sv	vamp	wet
L 7550/3100	L 7550	3100	471100	5687550	SLP034	34 Organic	25 sv	vamp	wet
L 7550/3050	L 7550	3050	471050	5687550	SLP033	33 Organic	25 sv	vamp	wet
L 7550/3000	L 7550	3000	471000	5687550	SLP032	32 Organic	25 sv	vamp	wet
L 7550/2950	L 7550	2950	470950	5687550	SLP031	31 Organic	25 sv	vamp	wet
L 7550/2900	L 7550	2900	470900	5687550	SLP030	30 Organic	25 sv	vamp	wet
L 7550/2850	L 7550	2850	470850	5687550	SLP029	29 Organic	25 sv	vamp	wet
L 7550/2800	L 7550	2800	470800	5687550	SLP028	28 Organic	25 sv	vamp	wet
L 7550/2750	L 7550	2750	470750	5687550	SLP027	27 Sand	15 pi	ne	dry
L 7550/2700	L 7550	2700	470700	5687550	SLP026	26 Sand	15 pi	ne	dry
L 7550/2650	L 7550	2650	470650	5687550	SLP025	25 Sand	15 pi	ne	dry
L 7550/2600	L 7550	2600	470600	5687550	SLP024	24 Sand	15 pi	ne	dry
L 7550/2550	L 7550	2550	470550	5687550	SLP023	23 Sand	15 pi	ne	dry
L 7650/3300		3300	471300	5687650	SLP039	39 Sand	15 pi	ne	dry
L 7650/3250	L 7650	3250	471250	5687650	SLP040	40 Sand	15 pi	ne	dry
L 7650/3200	L 7650	3200	471200	5687650	SLP041	41 Sand	15 pi	ne	dry
L 7650/3150	L 7650	3150	471150	5687650	SLP042	42 Sand	15 pi	ne	dry
L 7650/3100		3100	471100	5687650	1	43 Sand	15 pi		dry
L 7650/3050	1	3050	471050	5687650	1	44 Organic	25 sv		wet
L 7650/3000	L 7650	3000	471000	5687650		45 Organic	25 sv		wet
L 7650/2950	1	2950	470950	5687650	1	46 Organic	25 sv		wet
L 7650/2900		2900	470900	5687650		47 Organic	25 sv		wet
L 7650/2850	1	2850	470850	5687650	1	48 Organic	25 sv		wet
L 7650/2800		2800	470800	5687650		49 Sand	15 pi		dry
L 7650/2750	L 7650	2750	470750	5687650		50 Sand	15 pi		dry
L 7650/2700		2700	470700	5687650	SLP051	51 Sand	15 pi		dry
L 7650/2650	L 7650	2650	470650	5687650	SLP052	52 Sand	15 pi	ne	dry

Table 9.1 Soil sampling statistics and conditions of the Geotek sampling program. Source DPEExploration Ltd.

Label	Line	Station	Easting	Northing Sample	Sample 2 Type	Depth Terrain	Condition
L 7650/2600	L 7650	2600	470600	5687650 SLP053	53 Organic	25 swamp	wet
L 7750/3300	L 7750	3300	471300	5687750 SLP076	76 Organic	25 swamp	wet
L 7750/3250	L 7750	3250	471250	5687750 SLP075	75 Organic	25 swamp	wet
	L 7750	3200	471200	5687750 SLP074	74 Organic	25 swamp	wet
L 7750/3150	L 7750	3150	471150	5687750 SLP073	73 Organic	25 swamp	wet
	L 7750	3100	471100	5687750 SLP072	72 Organic	25 swamp	wet
L 7750/3050	L 7750	3050	471050	5687750 SLP071	71 Organic	25 swamp	wet
	L 7750	3000	471000	5687750 SLP070	70 Organic	25 swamp	wet
L 7750/2950	L 7750	2950	470950	5687750 SLP069	69 Organic	25 swamp	wet
L 7750/2900	L 7750	2900	470900	5687750 SLP068	68 Organic	25 swamp	wet
L 7750/2850		2850	470850	5687750 SLP067	67 Organic	25 swamp	wet
	L 7750	2800	470800	5687750 SLP066	66 Organic	25 swamp	wet
L 7750/2750	L 7750	2750	470750	5687750 SLP065	65 Organic	25 swamp	wet
L 7750/2700	L 7750	2700	470700	5687750 SLP064	64 Organic	25 swamp	wet
L 7750/2650	L 7750	2650	470650	5687750 SLP063	63 Organic	25 swamp	wet
L 7850/2900	L 7850	2900	470900	5687850 SLP077	77 Organic	25 swamp	wet
L 7850/2850	L 7850	2850	470850	5687850 SLP078	78 Organic	25 swamp	wet
	L 7850	2800	470800	5687850 SLP079	79 Organic	25 swamp	wet
L 7850/2750	L 7850	2750	470750	5687850 SLP080	80 Organic	25 swamp	wet
	L 7850	2700	470700	5687850 SLP081	81 Organic	25 swamp	wet
L 7850/2650	L 7850	2650	470650	5687850 SLP082	82 Organic	25 swamp	wet
L 7850/2600	L 7850	2600	470600	5687850 SLP083	83 Organic	25 swamp	wet
L 7850/2550	L 7850	2550	470550	5687850 SLP084	84 Organic	25 swamp	wet
	L 7850	2500	470500	5687850 SLP085	85 Organic	25 swamp	wet
L 7850/2450	L 7850	2450	470450	5687850 SLP086	86 Organic	25 swamp	wet
	L 7850	2400	470400	5687850 SLP087	87 Organic	25 swamp	wet
L 7950/2850	L 7950	2850	470850	5687950 SLP097	97 Organic	25 swamp	wet
L 7950/2800	L 7950	2800	470800	5687950 SLP096	96 Organic	25 swamp	wet
L 7950/2750	L 7950	2750	470750	5687950 SLP095	95 Organic	25 swamp	wet
	L 7950	2700	470700	5687950 SLP094	94 Organic	25 swamp	wet
L 7950/2650	L 7950	2650	470650	5687950 SLP093	93 Organic	25 swamp	wet
	L 7950	2600	470600	5687950 SLP092	92 Organic	25 swamp	wet
L 7950/2550	L 7950	2550	470550	5687950 SLP091	91 Organic	25 swamp	wet
L 7950/2500	L 7950	2500	470500	5687950 SLP090	90 Organic	25 swamp	wet
L 7950/2450		2450	470450	5687950 SLP089	89 Organic	25 swamp	wet
L 7950/2400	L 7950	2400	470400	5687950 SLP088	88 Organic	25 swamp	wet
L 8050/3300	L 8050	3300	471300	5688050 SLP098	98 Sand	15 pine	dry
	L 8050	3250	471250	5688050 SLP099	99 Sand	15 pine	dry
L 8050/2850		2850	470850	5688050 SLP100	100 Sand	15 pine	dry
L 8050/2800	1	2800	470800	5688050 SLP101	101 Sand	15 pine	dry
L 8050/2750		2750	470750	5688050 SLP102	102 Sand	15 pine	dry
L 8050/2700		2700	470700	5688050 SLP103	103 Organic	25 swamp	wet
L 8050/2650		2650	470650	5688050 SLP104	104 Organic	25 swamp	wet
L 8050/2600	1	2600	470600	5688050 SLP105	105 Organic	25 swamp	wet
L 8050/2550		2550	470550	5688050 SLP106	106 Organic	25 swamp	wet
L 8050/2500	1	2500	470500	5688050 SLP107	107 Organic	25 swamp	wet
L 8050/2300		2450	470450	5688050 SLP108	108 Organic	25 swamp	wet
L 8050/2400	1	2400	470400	5688050 SLP109	109 Organic	25 swamp 25 swamp	wet
L 8150/3300		3300	471300	5688150 SLP123	123 Organic	25 swamp 25 swamp	wet
L 8150/3250	1	3250	471250	5688150 SLP122	122 Organic	25 swamp 25 swamp	wet
L 8150/3200		3200	471200	5688150 SLP121	122 Organic	25 swamp 25 swamp	wet
L 0130/3200	L 0120	5200	4/1200	2000120 2LP121		23 Swaiiip	wei

Label	Line	Station	Easting	Northing Sample	Sample 2 Type	Depth Terrain	Condition
L 8150/3200		3200	471200	5688150 SLP121	121 Organio	•	wet
	L 8150	3150	471150	5688150 SLP120	120 Organio		wet
L 8150/3100		3100	471100	5688150 SLP119	119 Organio		wet
L 8150/3050	1	3050	471050	5688150 SLP118	118 Organio		wet
L 8150/3000		3000	471000	5688150 SLP117	117 Organio		wet
	L 8150	2950	470950	5688150 SLP116	116 Organio		wet
L 8150/2900		2900	470900	5688150 SLP115	115 Organio	· · · · ·	wet
	L 8150	2850	470850	5688150 SLP114	114 Organio		wet
L 8150/2800	L 8150	2800	470800	5688150 SLP113	113 Organio		wet
L 8150/2750	1	2750	470750	5688150 SLP112	112 Organio		wet
L 8150/2700		2700	470700	5688150 SLP111	111 Organio	· · ·	wet
L 8150/2650	1	2650	470650	5688150 SLP110	110 Organio		wet
L 8250/3300		3300	471300	5688250 SLP124	124 Organic		wet
L 8250/3250	1	3250	471250	5688250 SLP125	125 Organic		wet
L 8250/3200	L 8250	3200	471200	5688250 SLP126	126 Organic		wet
	L 8250	3150	471200	5688250 SLP127	120 Organio		wet
L 8250/3100	-	3100	471130	5688250 SLP127	127 Organic	· · · · ·	wet
	L 8250	3050	471050	5688250 SLP128	128 Organio		wet
L 8250/3000		3000	471000	5688250 SLP130	130 Organic	· · · · ·	-
L 8250/2950		2950	470950	5688250 SLP131	130 Organio		wet wet
L 8250/2930		2930	470930		131 Organic		
L 8250/2900 L 8250/2850	L 8250	2900	470900	5688250 SLP132 5688250 SLP133	132 Organio		wet
						· · ·	wet
L 8250/2800	1	2800	470800	5688250 SLP134	134 Organio		wet
L 8250/2750		2750	470750	5688250 SLP135	135 Organio		wet
L 8350/3300	1	3300	471300	5688350 SLP146	146 Organio		wet
L 8350/3250		3250	471250	5688350 SLP145	145 Organio		wet
L 8350/3200	1	3200	471200	5688350 SLP144	144 Organio	· · · · ·	wet
L 8350/3150	L 8350	3150	471150	5688350 SLP143	143 Organio		wet
L 8350/3100	1	3100	471100	5688350 SLP142	142 Organio		wet
L 8350/3050		3050	471050	5688350 SLP141	141 Organio		wet
L 8350/3000		3000	471000	5688350 SLP140	140 Organio		wet
L 8350/2950		2950	470950	5688350 SLP139	139 Organio	· · · · ·	wet
L 8350/2900	1	2900	470900	5688350 SLP138	138 Organio		wet
L 8350/2850	L 8350	2850	470850	5688350 SLP137	137 Organio		wet
L 8350/2800	1	2800	470800	5688350 SLP136	136 Organio		wet
L 8450/3300		3300	471300	5688450 SLP147	147 Organio		wet
L 8450/3250	1	3250	471250	5688450 SLP148	148 Organio		wet
L 8450/3200		3200	471200	5688450 SLP149	149 Organio	· · ·	wet
L 8450/3150	1	3150	471150	5688450 SLP150	150 Organio		wet
L 8450/3100		3100	471100	5688450 SLP151	151 Organio		wet
L 8450/3050		3050	471050	5688450 SLP152	152 Organio		wet
L 8450/3000		3000	471000	5688450 SLP153	153 Organio	· · ·	wet
L 8450/2950	1	2950	470950	5688450 SLP154	154 Organio		wet
L 8450/2900		2900	470900	5688450 SLP155	155 Organio		wet
L 8450/2300	1	2300	470300	5688450 SLP156	156 Organio	· · · · ·	wet
L 8450/2250		2250	470250	5688450 SLP157	157 Organio	· · · · ·	wet
L 8450/2200		2200	470200	5688450 SLP158	158 Organio		wet
L 8450/2150		2150	470150	5688450 SLP159	159 Organio	25 swamp	wet
L 8450/2100	L 8450	2100	470100	5688450 SLP160	160 Organio	25 swamp	wet
L 8450/2050	L 8450	2050	470050	5688450 SLP161	161 Organio	25 swamp	wet

Label Line	Station	Easting	Northing Sample	Sample 2 Type	Depth Terrain	Condition
L 8450/20501 L 8450		470050	5688450 SLP162	162 Organic	25 swamp	wet
L 8450/2000 L 8450	1	470000	5688450 SLP163	163 Organic	25 swamp	wet
L 8450/1950 L 8450	1	469950	5688450 SLP164	164 Organic	25 swamp	wet
L 8450/1900 L 8450		1	5688450 SLP165	165 Organic	25 swamp	wet
L 8450/1850 L 8450		469850	5688450 SLP166	166 Organic	25 swamp	wet
L 8450/1800 L 8450	1	469800	5688450 SLP167	167 Organic	25 swamp	wet
L 8450/1750 L 8450	1	469750	5688450 SLP168	168 Organic	25 swamp	wet
L 8450/1700 L 8450		469700	5688450 SLP169	169 Organic	25 swamp	wet
L 8450/1650 L 8450	-	469650	5688450 SLP170	170 Organic	25 swamp	wet
L 8450/1600 L 8450			5688450 SLP171	170 Organic	25 swamp	wet
L 8450/1550 L 8450	1	469550	5688450 SLP172	172 Organic	25 swamp	wet
L 8450/1500 L 8450	1	469500	5688450 SLP173	172 Organic	25 swamp	wet
L 8450/1450 L 8450	-	469450	5688450 SLP174	174 Organic	25 swamp	wet
L 8450/1400 L 8450		469400	5688450 SLP175	175 Organic	25 swamp	wet
L 8450/1350 L 8450	-	469350	5688450 SLP176	176 Organic	25 swamp	wet
L 8450/1300 L 8450			5688450 SLP177	177 Organic	25 swamp	wet
L 8450/1250 L 8450	-	469250	5688450 SLP178	178 Organic	25 swamp	wet
L 8450/1200 L 8450	1	469200	5688450 SLP179	179 Organic	25 swamp	wet
L 8450/1150 L 8450		469150	5688450 SLP180	180 Organic	25 swamp	wet
L 8450/1100 L 8450	1	469100	5688450 SLP181	181 Organic	25 swamp	wet
L 8450/1050 L 8450		469050	5688450 SLP182	182 Organic	25 swamp	wet
L 8450/1000 L 8450	1	469000	5688450 SLP183	183 Organic	25 swamp	wet
L 8450/950 L 8450		468950	5688450 SLP184	184 Organic	25 swamp	wet
	5 550	400550	SLP185	185 Organic	25 swamp	wet
L 8450/900 L 8450) 900	468900	5688450 SLP186	186 Organic	25 swamp	wet
L 8450/850 L 8450	1	468850	5688450 SLP187	187 Organic	25 swamp	wet
L 8450/800 L 8450		468800	5688450 SLP188	188 Organic	25 swamp	wet
L 8450/750 L 8450		468750	5688450 SLP189	189 Organic	25 swamp	wet
L 8550/3300 L 8550			5688550 SLP231	231 Organic	25 swamp	wet
L 8550/3250 L 8550			5688550 SLP230	230 Organic	25 swamp	wet
L 8550/3200 L 8550		471200	5688550 SLP229	229 Organic	25 swamp	wet
L 8550/3150 L 8550			5688550 SLP228	228 Organic	25 swamp	wet
L 8550/3100 L 8550	1	471100	5688550 SLP227	227 Organic	25 swamp	wet
L 8550/3050 L 8550		471050	5688550 SLP226	226 Organic	25 swamp	wet
L 8550/3000 L 8550	1	471000	5688550 SLP225	225 Organic	25 swamp	wet
L 8550/2950 L 8550			5688550 SLP224	224 Organic	25 swamp	wet
L 8550/2900 L 8550	1	470900	5688550 SLP223	223 Organic	25 swamp	wet
L 8550/2850 L 8550	1	470850	5688550 SLP222	222 Organic	25 swamp	wet
L 8550/2800 L 8550		470800	5688550 SLP221	221 Organic	25 swamp	wet
L 8550/2750 L 8550			5688550 SLP220	220 Organic	25 swamp	wet
L 8550/2700 L 8550		470700	5688550 SLP219	219 Organic	25 swamp	wet
L 8550/2150 L 855			5688550 SLP218	218 sand	15 pine	dry
L 8550/2100 L 8550			5688550 SLP217	217 sand	15 pine	dry
L 8550/2050 L 855	1	(5688550 SLP216	216 sand	15 pine	dry
L 8550/2000 L 8550			5688550 SLP215	215 sand	15 pine	dry
L 8550/1950 L 8550			5688550 SLP214	214 sand	15 pine	dry
L 8550/1900 L 8550		469900	5688550 SLP213	213 sand	15 pine	dry
L 8550/1850 L 8550			5688550 SLP212	213 sand 212 sand	15 pine	dry
L 8550/1800 L 8550		469800	5688550 SLP211	211 sand	15 pine	dry
L 8550/1750 L 8550			5688550 SLP210	210 sand	15 pine	dry
2000, 1,00 2000	1,20	105750	5000500 56 210	210 34114	10 pine	, i i j

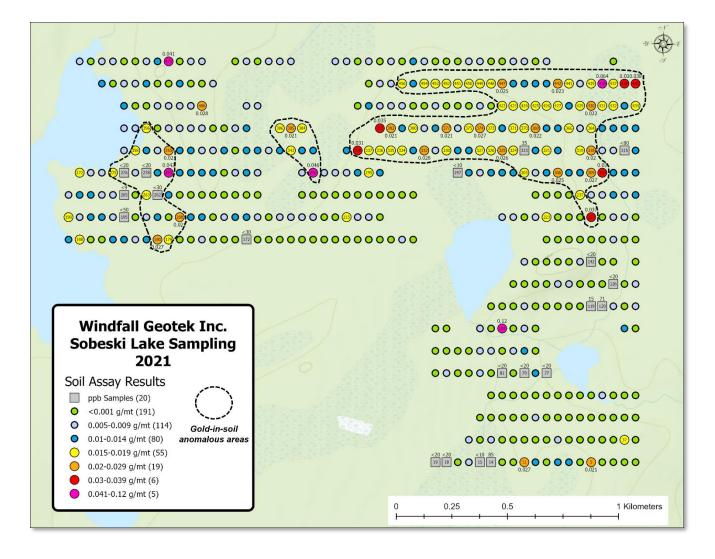
Label	Line	Station	Easting	Northing	Sample	Sample 2	Туре	Depth	Terrain	Condition
L 8550/1700	L 8550	1700	469700	5688550	SLP209	-	Organic	25	swamp	wet
-	L 8550	1650	469650	5688550	1		Organic	1	swamp	wet
L 8550/1600		1600	469600	5688550			Organic	25	swamp	wet
L 8550/1550	1	1550		5688550	1		Organic	1	swamp	wet
L 8550/1500		1500	469500	5688550	SLP205		Organic		swamp	wet
L 8550/1450	1	1450	469450	5688550	1		Organic		swamp	wet
L 8550/1400		1400	469400	5688550			Organic		swamp	wet
-	L 8550	1350	469350	5688550	1		Organic		swamp	wet
L 8550/1300	1	1300	469300	5688550			Organic		swamp	wet
L 8550/1250	1	1250		5688550	1		Organic	1	swamp	wet
L 8550/1200		1200	469200	5688550			Organic		swamp	wet
L 8550/1150	1	1150	469150	5688550	1		Organic	1	swamp	wet
L 8550/1100		1100	469100	5688550			Organic		swamp	wet
L 8550/1050	L 8550	1050	469050	5688550	1		Organic	1	swamp	wet
L 8550/1000		1000	469000	5688550			Organic		swamp	wet
L 8550/950	L 8550	950	468950	5688550			Organic		swamp	wet
L 8550/900	L 8550	900	468900	5688550			Organic		swamp	wet
L 8550/850	L 8550	850	468850	5688550			Organic		swamp	wet
L 8550/800	L 8550	800	468800	5688550			Organic		swamp	wet
L 8550/750	L 8550	750	468750	5688550	-	1	Organic	1	swamp	wet
L 8650/3300		3300	471300	5688650			Organic		swamp	wet
L 8650/3250	1	3250	471250	5688650	1		Organic	1	swamp	wet
L 8650/3200	1	3200	471200	5688650			Organic		swamp	wet
L 8650/3150	1	3150	471150	5688650	1		Organic		swamp	wet
L 8650/3100	L 8650	3100	471100	5688650			Organic		swamp	wet
L 8650/3050	1	3050	471050	5688650	1		Organic	1	swamp	wet
L 8650/3000		3000	471000	5688650			Organic		swamp	wet
L 8650/2950	1	2950	470950	5688650			Organic	1	swamp	wet
L 8650/2900		2900	470900	5688650	1		Organic		swamp	wet
	L 8650	2850	470850	5688650	1		Organic		swamp	wet
L 8650/2300	L 8650	2300	470300	5688650			Organic		swamp	wet
L 8650/2250	1	2250		5688650			Organic	1	swamp	wet
L 8650/2200		2200	470200	5688650			Organic		swamp	wet
	L 8650	2150	470150	5688650			Organic		swamp	wet
L 8650/2100	1	2100	470100	5688650			Organic		swamp	wet
	L 8650	2050	470050	5688650	1		Organic		swamp	wet
L 8650/2000		2000	470000	5688650			Organic		swamp	wet
L 8650/1950		1950		5688650			Organic		swamp	wet
L 8650/1900	L 8650	1900	469900	5688650			Organic		swamp	wet
L 8650/1850		1850	469850	5688650	~		Organic		swamp	wet
L 8650/1800		1800	469800	5688650			Organic		swamp	wet
L 8650/1600		1600	469600	5688650	-		Organic	1	swamp	wet
L 8650/1550		1550	469550	5688650			Organic		swamp	wet
L 8650/1500	1	1500	469500	5688650	1		Organic	1	swamp	wet
L 8650/1450	1	1450	469450	5688650			Organic		swamp	wet
L 8650/1400	1	1400		5688650	1		Organic	1	swamp	wet
L 8650/1350		1350	469350	5688650			Organic		swamp	wet
L 8650/1300	L 8650	1300	469300	5688650	1		Organic		swamp	wet
L 8650/1250	1	1250	469250	5688650			Organic		swamp	wet
L 8650/1200	1	1200		5688650	1		Organic	1	swamp	wet
- 0000/ 1200		1200		2000000		201	5.0ame	25		

Label	Line	Station	Easting	Northing Sample	Sample 2 Type	Depth Terrain	Condition
L 8650/1150	L 8650	1150	469150	5688650 SLP262	262 Organic	25 swamp	wet
L 8650/1100	L 8650	1100	469100	5688650 SLP263	263 Organic	25 swamp	wet
L 8650/1050	L 8650	1050	469050	5688650 SLP264	264 Organic	25 swamp	wet
L 8650/1000	L 8650	1000	469000	5688650 SLP265	265 Organic	25 swamp	wet
L 8650/950	L 8650	950	468950	5688650 SLP266	266 Organic	25 swamp	wet
L 8650/900	L 8650	900	468900	5688650 SLP267	267 Organic	25 swamp	wet
L 8650/850	L 8650	850	468850	5688650 SLP268	268 Organic	25 swamp	wet
L 8650/800	L 8650	800	468800	5688650 SLP269	269 Organic	25 swamp	wet
L 8650/750	L 8650	750	468750	5688650 SLP270	270 Organic	25 swamp	wet
-	L 8750	3300	471300	5688750 SLP313	313 Organic	25 swamp	wet
L 8750/3250	L 8750	3250	471250	5688750 SLP312	312 Organic	25 swamp	wet
	L 8750	3200	471200	5688750 SLP311	311 Organic	25 swamp	wet
L 8750/3150		3150	471150	5688750 SLP310	310 Organic	25 swamp	wet
L 8750/3100	L 8750	3100	471100	5688750 SLP309	309 Organic	25 swamp	wet
L 8750/3050	L 8750	3050	471050	5688750 SLP308	308 Organic	25 swamp	wet
-	L 8750	3000	471000	5688750 SLP307	307 Organic	25 swamp	wet
L 8750/2950	L 8750	2950	470950	5688750 SLP306	306 Organic	25 swamp	wet
L 8750/2900	L 8750	2900	470900	5688750 SLP305	305 Organic	25 swamp	wet
L 8750/2850	1	2850	470850	5688750 SLP304	304 Organic	25 swamp	wet
L 8750/2800	L 8750	2800	470800	5688750 SLP303	303 Organic	25 swamp	wet
L 8750/2750		2750	470750	5688750 SLP302	302 Organic	25 swamp	wet
L 8750/2700		2730	470700	5688750 SLP301	301 Organic	25 swamp 25 swamp	wet
L 8750/2650	L 8750	2650	470650			· · ·	wet
	L 8750	2600	470600	5688750 SLP300 5688750 SLP299	300 Organic 299 Organic	25 swamp	wet
L 8750/2550		2550	470550	5688750 SLP298	299 Organic	25 swamp 25 swamp	
L 8750/2500	L 8750	2500	470500	5688750 SLP298	298 Organic	· · · · · · · · · · · · · · · · · · ·	wet
L 8750/2300	L 8750	2300	470300	5688750 SLP297	297 Organic	25 swamp	wet
	L 8750	2130	470130	5688750 SLP295	295 Organic	25 swamp	wet
L 8750/2100						25 swamp	
-	L 8750	2050	470050	5688750 SLP294	294 Organic	25 swamp	wet
L 8750/2000 L 8750/1950	L 8750 L 8750	2000 1950	470000 469950	5688750 SLP293	293 Organic 292 Organic	25 swamp	wet
-		1		5688750 SLP292		25 swamp	wet
L 8750/1900	L 8750	1900	469900	5688750 SLP291	291 Organic	25 swamp	wet
L 8750/1850	L 8750	1850	469850	5688750 SLP290	290 Organic	25 swamp	wet
L 8750/1800	L 8750	1800	469800	5688750 SLP289	289 Organic	25 swamp	wet
L 8750/1600	L 8750	1600	469600	5688750 SLP288	288 Organic	25 swamp	wet
	L 8750	1550	469550	5688750 SLP287	287 Organic	25 swamp	wet
L 8750/1500	L 8750	1500	469500	5688750 SLP286	286 Organic	25 swamp	wet
L 8750/1450	L 8750	1450	469450	5688750 SLP285	285 Organic	25 swamp	wet
L 8750/1400	1	1400	469400	5688750 SLP284	284 Organic	25 swamp	wet
L 8750/1350		1350		5688750 SLP283	283 Organic	25 swamp	wet
L 8750/1300	1	1300	469300	5688750 SLP282	282 Organic	25 swamp	wet
L 8750/1250		1250	469250	5688750 SLP281	281 Organic	25 swamp	wet
L 8750/1200	1	1200	469200	5688750 SLP280	280 Organic	25 swamp	wet
L 8750/1150	L 8750	1150	469150	5688750 SLP279	279 Organic	25 swamp	wet
L 8750/1100	1	1100	469100	5688750 SLP278	278 Organic	25 swamp	wet
L 8750/1050		1050	469050	5688750 SLP277	277 Organic	25 swamp	wet
L 8750/1000	1	1000	469000	5688750 SLP276	276 Organic	25 swamp	wet
L 8750/950	L 8750	950	468950	5688750 SLP275	275 Organic	25 swamp	wet
L 8750/900	L 8750	900	468900	5688750 SLP274	274 Organic	25 swamp	wet
L 8750/850	L 8750	850	468850	5688750 SLP273	273 Organic	25 swamp	wet

Label	Line	Station	Easting	Northing Sample	Sample 2 Type	Depth Terrain	Condition
L 8750/800	L 8750	800	468800	5688750 SLP272	272 Organic	25 swamp	wet
L 8750/750	L 8750	750	468750	5688750 SLP271	271 Organic	25 swamp	wet
L 8850/3300		3300	471300	5688850 SLP314	314 Organic	25 swamp	wet
L 8850/3250	1	3250	471250	5688850 SLP315	315 Organic	25 swamp	wet
	L 8850	3200	471200	5688850 SLP316	316 Organic	25 swamp	wet
	L 8850	3150	471150	5688850 SLP317	317 Organic	25 swamp	wet
L 8850/3100		3100	471100	5688850 SLP318	318 Organic	25 swamp	wet
L 8850/3050	L 8850	3050	471050	5688850 SLP319	319 Organic	25 swamp	wet
L 8850/2950		2950	470950	5688850 SLP320	320 Organic	25 swamp	wet
L 8850/2900	1	2900	470900	5688850 SLP321	321 Organic	25 swamp	wet
L 8850/2850		2850	470850	5688850 SLP322	322 Organic	25 swamp	wet
L 8850/2800		2800	470800	5688850 SLP323	323 Organic	25 swamp	wet
L 8850/2750		2750	470750	5688850 SLP324	324 Organic	25 swamp	wet
L 8850/2700	L 8850	2700	470700	5688850 SLP325	325 Organic	25 swamp	wet
L 8850/2650		2650	470650	5688850 SLP326	326 Organic	25 swamp 25 swamp	wet
	L 8850	2600	470600	5688850 SLP327	327 Organic	25 swamp 25 swamp	wet
L 8850/2550		2550	470550	5688850 SLP328	328 Organic	25 swamp 25 swamp	wet
L 8850/2500		2500	470500	5688850 SLP329	329 Organic	25 swamp 25 swamp	wet
L 8850/2300		2300	470450	5688850 SLP330	330 Organic	25 swamp 25 swamp	wet
L 8850/2400	L 8850	2400	470400	5688850 SLP331	331 Organic	25 swamp 25 swamp	wet
L 8850/2400		2400	470400	5688850 SLP332		25 swamp 25 swamp	
	L 8850	2330	470330	5688850 SLP333	332 Organic	25 swamp 25 swamp	wet
L 8850/2300					333 Organic 334 Organic	· · ·	wet
L 8850/2250	÷	2250	470250	5688850 SLP334 5688850 SLP335		25 swamp	wet
L 8850/2200		2200	470200		335 Organic	25 swamp	wet
•	1	2150	470150	5688850 SLP336	336 Organic	25 swamp	wet
· · · ·		2100	470100	5688850 SLP337	337 Organic	25 swamp	wet
L 8850/2050	L 0050	2050	470050	5688850 SLP338	338 Organic	25 swamp	wet
1 8850/2000		2000	470000	SLP339	339 Organic	25 swamp	wet
L 8850/2000		2000	470000	5688850 SLP340	340 Organic	25 swamp	wet
L 8850/1850	L 8850	1850	469850	5688850 SLP341	341 Organic	25 swamp	wet
L 8850/1800	L 8850	1800	469800	5688850 SLP342	342 Organic	25 swamp	wet
L 8850/1750	L 8850	1750	469750	5688850 SLP343	343 Organic	25 swamp	wet
1 9950/1700	1.0050	1700	400700	SLP344	344 Organic	25 swamp	wet
L 8850/1700	L 8850	1700	469700	5688850 SLP345	345 Organic	25 swamp	wet
L 8850/1650 L 8850/1600	1	1650	469650	5688850 SLP346	346 Organic	25 swamp	wet
	L 8850	1600	469600	5688850 SLP347	347 Organic	25 swamp	wet
L 8850/1550	L 8850	1550	469550	5688850 SLP348	348 Organic	25 swamp	wet
L 8850/1500		1500	469500	5688850 SLP349	349 Organic	25 swamp	wet
L 8850/1450		1450	469450	5688850 SLP350	350 Organic	25 swamp	wet
L 8850/1400		1400	469400	5688850 SLP351	351 Organic	25 swamp	wet
L 8850/1350		1350	469350	5688850 SLP352	352 Organic	25 swamp	wet
L 8850/1300		1300	469300	5688850 SLP353	353 Organic	25 swamp	wet
L 8850/1250		1250	469250	5688850 SLP354	354 Organic	25 swamp	wet
L 8850/1200		1200	469200	5688850 SLP355	355 Organic	25 swamp	wet
L 8850/1150	1	1150	469150	5688850 SLP356	356 Organic	25 swamp	wet
L 8850/1100		1100	469100	5688850 SLP357	357 sand	15 pine	dry
L 8850/1050	1	1050	469050	5688850 SLP358	358 sand	15 pine	dry
		1000	469000	5688850 SLP359	359 sand	15 pine	dry
L 8950/3300	-	3300	471300	5688950 SLP360	360 sand	15 pine	dry
L 8950/3250	L 8950	3250	471250	5688950 SLP361	361 sand	15 pine	dry

Label	Line	Station	Easting	Northing Sample	Sample 2 Type	Depth Terrain	Condition
L 8950/3200	L 8950	3200	471200	5688950 SLP362	362 sand	15 pine	dry
L 8950/3150	L 8950	3150	471150	5688950 SLP363	363 sand	15 pine	dry
L 8950/3100	L 8950	3100	471100	5688950 SLP364	364 sand	15 pine	dry
L 8950/3050	L 8950	3050	471050	5688950 SLP365	365 sand	15 pine	dry
L 8950/3000	L 8950	3000	471000	5688950 SLP366	366 sand	15 pine	dry
L 8950/2950	L 8950	2950	470950	5688950 SLP367	367 sand	15 pine	dry
L 8950/2900	L 8950	2900	470900	5688950 SLP368	368 sand	15 pine	dry
L 8950/2850	L 8950	2850	470850	5688950 SLP369	369 sand	15 pine	dry
L 8950/2800	L 8950	2800	470800	5688950 SLP370	370 sand	15 pine	dry
L 8950/2750	L 8950	2750	470750	5688950 SLP371	371 sand	15 pine	dry
L 8950/2700	L 8950	2700	470700	5688950 SLP372	372 sand	15 pine	dry
L 8950/2650	1	2650	470650	5688950 SLP373	373 sand	15 pine	dry
L 8950/2600		2600	470600	5688950 SLP374	374 sand	15 pine	dry
L 8950/2550	L 8950	2550	470550	5688950 SLP375	375 sand	15 pine	dry
L 8950/2500	L 8950	2500	470500	5688950 SLP376	376 sand	15 pine	dry
L 8950/2450		2450	470450	5688950 SLP377	377 Organic	25 swamp	wet
L 8950/2400		2400	470400	5688950 SLP378	378 Organic	25 swamp	wet
L 8950/2350	1	2350	470350	5688950 SLP379	379 Organic	25 swamp	wet
L 8950/2300		2300	470300	5688950 SLP380	380 Organic	25 swamp	wet
L 8950/2250	L 8950	2250	470250	5688950 SLP381	381 Organic	25 swamp	wet
L 8950/2200	L 8950	2200	470200	5688950 SLP382	382 Organic	25 swamp	wet
L 8950/2150		2150	470150	5688950 SLP383	383 Organic	25 swamp	wet
L 8950/1800		1800	469800	5688950 SLP384	384 Organic	25 swamp	wet
L 8950/1750	1	1750	469750	5688950 SLP385	385 Organic	25 swamp	wet
L 8950/1700		1700	469700	5688950 SLP386	386 Organic	25 swamp	wet
L 8950/1550	L 8950	1550	469550	5688950 SLP387	387 Organic	25 swamp	wet
L 8950/1500	L 8950	1500	469500	5688950 SLP388	388 Organic	25 swamp	wet
L 8950/1500		1450	469450		389 Organic	25 swamp	wet
L 8950/1400	L 8950	1400	469400	5688950 SLP390	390 Organic	25 swamp	wet
L 8950/1350	1	1350	469350	5688950 SLP391	391 Organic	25 swamp	wet
L 8950/1300		1300	469300	5688950 SLP392	392 Organic	25 swamp	wet
L 8950/1300	L 8950	1250	469250	5688950 SLP393	393 Organic	25 swamp	wet
L 8950/1250	L 8950	1200	469200	5688950 SLP394	393 Organic	25 swamp 25 swamp	wet
L 8950/1200	-	1150	469150		395 Organic	25 swamp 25 swamp	wet
L 8950/1100	L 8950	1100	469100	5688950 SLP396	396 Organic	25 swamp 25 swamp	wet
L 8950/1100	1	1050	469050	5688950 SLP397	390 Organic	25 swamp 25 swamp	wet
L 8950/1000		1000	469000	5688950 SLP398	398 Organic	25 swamp 25 swamp	wet
L 9050/3300	L 9050	3300	409000	5689050 SLP434	434 Organic	25 swamp 25 swamp	wet
L 9050/3300 L 9050/3250		3250	471250	5689050 SLP433	434 Organic 433 Organic	25 swamp 25 swamp	wet
L 9050/3250 L 9050/3200	1	3230		5689050 SLP433	433 Organic	25 swamp 25 swamp	wet
L 9050/3200 L 9050/3150			471200		432 Organic 431 Organic		
L 9050/3150 L 9050/3100		3150 3100	-	5689050 SLP431 5689050 SLP430	431 Organic 430 Organic	25 swamp 25 swamp	wet
L 9050/3100 L 9050/3050		3100	471050	5689050 SLP430	430 Organic 429 Organic	25 swamp 25 swamp	wet
L 9050/3000	-	3000	471030		429 Organic	25 swamp 25 swamp	wet
		1	470950		e e e e e e e e e e e e e e e e e e e	· · ·	wet
L 9050/2950		2950			427 Organic	25 swamp	wet
L 9050/2900		2900			426 Organic	25 swamp	wet
L 9050/2850	1	2850	470850	5689050 SLP425	425 Organic	25 swamp	wet
L 9050/2800		2800	470800 470750		424 Organic	25 swamp	wet
L 9050/2750		2750		5689050 SLP423	423 Organic	25 swamp	wet
L 9050/2700	L 9050	2700	470700	5689050 SLP422	422 Organic	25 swamp	wet

Label	Line	Station	Easting	Northing Sample	Sample 2	Туре	Depth Terrain	Condition
L 9050/2650	L 9050	2650	470650	5689050 SLP421		Organic	25 swamp	wet
	L 9050	2600	470600	5689050 SLP420		Organic	25 swamp	wet
L 9050/2550	L 9050	2550	470550	5689050 SLP419		Organic	25 swamp	wet
L 9050/2500	1	2500	470500	5689050 SLP418	418	Organic	25 swamp	wet
L 9050/2450	L 9050	2450	470450	5689050 SLP417	1	Organic	25 swamp	wet
L 9050/2400	L 9050	2400	470400	5689050 SLP416	1	Organic	25 swamp	wet
L 9050/2350		2350	470350	5689050 SLP415	1	Organic	25 swamp	wet
L 9050/2300	L 9050	2300	470300	5689050 SLP414	414	Organic	25 swamp	wet
L 9050/2250	L 9050	2250	470250	5689050 SLP413	413	Organic	25 swamp	wet
L 9050/2200	L 9050	2200	470200	5689050 SLP412	412	Organic	25 swamp	wet
L 9050/2150	L 9050	2150	470150	5689050 SLP411	411	sand	15 pine	dry
L 9050/2100	L 9050	2100	470100	5689050 SLP410	410	sand	15 pine	dry
L 9050/2050	L 9050	2050	470050	5689050 SLP409	409	sand	15 pine	dry
L 9050/1600	1	1600	469600	5689050 SLP408	1	sand	15 pine	dry
L 9050/1550		1550	469550	5689050 SLP407	407	sand	15 pine	dry
L 9050/1350	1	1350	469350	5689050 SLP406		sand	15 pine	dry
L 9050/1300		1300	469300	5689050 SLP405	1	sand	15 pine	dry
L 9050/1250	L 9050	1250	469250	5689050 SLP404		sand	15 pine	dry
L 9050/1200		1200	469200	5689050 SLP403	403	sand	15 pine	dry
L 9050/1150	1	1150	469150	5689050 SLP402	402	sand	15 pine	dry
L 9050/1100		1100	469100	5689050 SLP401		sand	15 pine	dry
L 9050/1050	1	1050	469050	5689050 SLP400	400	sand	15 pine	dry
L 9050/1000		1000	469000	5689050 SLP399	399	sand	15 pine	dry
-	L 9150	3300	471300	5689150 SLP435	1	sand	15 pine	dry
L 9150/3250	L 9150	3250	471250	5689150 SLP436		sand	15 pine	dry
L 9150/3200	1	3200	471200	5689150 SLP437		sand	15 pine	dry
L 9150/3150	L 9150	3150	471150	5689150 SLP438		sand	15 pine	dry
L 9150/3100	1	3100	471100	5689150 SLP439		sand	15 pine	dry
L 9150/3050	L 9150	3050	471050	5689150 SLP440	440	sand	15 pine	dry
L 9150/3000	L 9150	3000	471000	5689150 SLP441	1	sand	15 pine	dry
L 9150/2950	L 9150	2950	470950	5689150 SLP442	442	sand	15 pine	dry
L 9150/2900	L 9150	2900	470900	5689150 SLP443		sand	15 pine	dry
L 9150/2850	L 9150	2850	470850	5689150 SLP444	444	sand	15 pine	dry
L 9150/2800	L 9150	2800	470800	5689150 SLP445	445	sand	15 pine	dry
L 9150/2750	L 9150	2750	470750	5689150 SLP446	446	sand	15 pine	dry
L 9150/2700	L 9150	2700	470700	5689150 SLP447	447	Organic	25 swamp	wet
L 9150/2650	L 9150	2650	470650	5689150 SLP448		Organic	25 swamp	wet
L 9150/2600	L 9150	2600	470600	5689150 SLP449	449	Organic	25 swamp	wet
L 9150/2550	L 9150	2550	470550	5689150 SLP450	450	Organic	25 swamp	wet
L 9150/2500	L 9150	2500	470500	5689150 SLP451	451	Organic	25 swamp	wet
L 9150/2450	L 9150	2450	470450	5689150 SLP452		Organic	25 swamp	wet
L 9150/2400	L 9150	2400	470400	5689150 SLP453	453	Organic	25 swamp	wet
L 9150/2350	L 9150	2350	470350	5689150 SLP454	454	Organic	25 swamp	wet
L 9150/2300	L 9150	2300				Organic	25 swamp	wet
L 9150/2250		2250	470250	5689150 SLP456		Organic	25 swamp	wet
L 9150/2200	1	2200	470200	5689150 SLP457	-	Organic	25 swamp	wet
L 9150/2150		2150				Organic	25 swamp	wet
L 9150/2100		2100	470100			Organic	25 swamp	wet
L 9150/1400	1	1400	469400	5689150 SLP460		Organic	25 swamp	wet
L 9150/1350	L 9150	1350			-	Organic	25 swamp	wet


Label	Line	Station	Easting	Northing Sample	Sample 2	Туре	Depth Terrain	Condition
L 9150/1300	L 9150	1300	469300	5689150 SLP462	-	Organic	25 swamp	wet
L 9150/1250	L 9150	1250	469250	5689150 SLP463	1	Organic	25 swamp	wet
L 9150/1200	L 9150	1200	469200	5689150 SLP464		Organic	25 swamp	wet
L 9150/1150	L 9150	1150	469150	5689150 SLP465	1	Organic	25 swamp	wet
L 9150/1100	L 9150	1100	469100	5689150 SLP466		Organic	25 swamp	wet
	L 9150	1050	469050	5689150 SLP467		Organic	25 swamp	wet
L 9150/1000	L 9150	1000	469000	5689150 SLP468		Organic	25 swamp	wet
L 9150/950	L 9150	950	468950	5689150 SLP469		Organic	25 swamp	wet
L 9150/900	L 9150	900	468900	5689150 SLP470		Organic	25 swamp	wet
L 9250/3200	L 9250	3200	471200	5689250 SLP512	512	Organic	25 swamp	wet
L 9250/2900	L 9250	2900	470900	5689250 SLP509		Organic	25 swamp	wet
	L 9250	2850	470850	5689250 SLP508		Organic	25 swamp	wet
L 9250/2800	L 9250	2800	470800	5689250 SLP507		Organic	25 swamp	wet
L 9250/2750	L 9250	2750	470750	5689250 SLP506		Organic	25 swamp	wet
L 9250/2700		2700	470700	5689250 SLP504		Organic	25 swamp	wet
L 9250/2650		2650	470650	5689250 SLP503		Organic	25 swamp	wet
	L 9250	2600	470600	5689250 SLP502		Organic	25 swamp	wet
L 9250/2550		2550	470550	5689250 SLP501		Organic	25 swamp	wet
L 9250/2500		2500	470500	5689250 SLP500		Organic	25 swamp	wet
L 9250/2450	L 9250	2450	470450	5689250 SLP499		Organic	25 swamp	wet
L 9250/2400	L 9250	2400	470400	5689250 SLP498		Organic	25 swamp	wet
L 9250/2350	1	2350	470350	5689250 SLP497		Organic	25 swamp	wet
L 9250/2300	L 9250	2300	470300	5689250 SLP496		Organic	25 swamp	wet
L 9250/2250	L 9250	2250	470250	5689250 SLP495		Organic	25 swamp	wet
L 9250/2200		2200	470200	5689250 SLP494	494	Organic	25 swamp	wet
L 9250/2150	L 9250	2150	470150	5689250 SLP493	493	Organic	25 swamp	wet
L 9250/2100	L 9250	2100	470100	5689250 SLP492		Organic	25 swamp	wet
L 9250/2050	L 9250	2050	470050	5689250 SLP491	1	Organic	25 swamp	wet
L 9250/2000	L 9250	2000	470000	5689250 SLP490		Organic	25 swamp	wet
L 9250/1950	1	1950	469950	5689250 SLP489		Organic	25 swamp	wet
L 9250/1750	L 9250	1750	469750	5689250 SLP488	488	Organic	25 swamp	wet
L 9250/1700	L 9250	1700	469700	5689250 SLP487		Organic	25 swamp	wet
L 9250/1650	L 9250	1650	469650	5689250 SLP486		Organic	25 swamp	wet
L 9250/1600	L 9250	1600	469600	5689250 SLP485	485	Organic	25 swamp	wet
L 9250/1550	L 9250	1550	469550	5689250 SLP484		Organic	25 swamp	wet
L 9250/1500	L 9250	1500	469500	5689250 SLP483		Organic	25 swamp	wet
L 9250/1350	L 9250	1350	469350	5689250 SLP482		Organic	25 swamp	wet
L 9250/1300	L 9250	1300	469300	5689250 SLP481		Organic	25 swamp	wet
L 9250/1250	L 9250	1250	469250	5689250 SLP480		Organic	25 swamp	wet
L 9250/1200	1	1200	469200	5689250 SLP479		Organic	25 swamp	wet
L 9250/1150	L 9250	1150	469150	5689250 SLP478		Organic	25 swamp	wet
L 9250/1100	L 9250	1100	469100	5689250 SLP477	1	Organic	25 swamp	wet
L 9250/1050	L 9250	1050	469050	5689250 SLP476		Organic	25 swamp	wet
L 9250/1000		1000	469000	5689250 SLP475		Organic	25 swamp	wet
L 9250/950	L 9250	950	468950	5689250 SLP474		Organic	25 swamp	wet
L 9250/900	L 9250	900	468900	5689250 SLP473	1	Organic	25 swamp	wet
L 9250/850	L 9250	850	468850	5689250 SLP472		Organic	25 swamp	wet
L 9250/800	L 9250	800	468800	5689250 SLP471		Organic	25 swamp	wet

The objective of the soil sampling program was to determine if there were anomalous gold values coincident with the CARDS statistical analysis of the Red Lake area which led Geotek to staking the Sobeski Property. The soil sampling grid was designed over the >98% success similarity to the Red Lake style gold mineralization analysis as seen in Figure 8.3.

9.1 SOIL SAMPLE RESULTS

The soil sampling program was deemed successful. Values anomalous in gold reached 640 ppb or 0.064 g/t Au. A large gold-in-soil anomaly is evident in the northeast corner of the grid, with other gold-in-soil anomaly outliers within the grid system (Figure 9.2).

Figure 9.2. Results of the soil sampling program in plan view showing anomalous gold-in-soil results. Source DPE Exploration.

10.0 DRILLING

Windfall Geotek has not completed any drilling on the property.

11.0 SAMPLE PREPARATION, ANALYSIS and SECURITY

Since acquisition Geotek has completed a soil sampling program referred to in Section 9.0. DPE Exploration Ltd. performed the sampling.

A total of 497 soil samples were taken. As mentioned, of the 497 samples, 73 samples were B-horizon sand and dry while 424 samples were A-horizon, organic and wet. Samples were placed in soil bags with the type (organic or dry), depth taken, terrain sampled (swamp or pine) and condition (wet or dry) recorded.

The samples were hand-delivered to ActLabs Laboratories in Thunder Bay, Ontario. The samples were dried utilizing Code S1 which employs drying to 60°C and sieving to -177 microns and saving all portions. Analysis of the samples then underwent Code 1A2 where a 30-gram sample by weight was analyzed by fire assay with an AA (atomic absorption) finish.

All Actlabs Laboratories are ISO 17025:2005 accredited.

Actlabs Laboratories practices stringent Quality Control Protocols with an insertion frequency of 14% for exploration and ore grade samples which includes sample reduction blanks and duplicates, method blanks, weighted pulp replicates and reference materials. There were no QA/QC failures in the above sample batch.

The author cannot verify security and quality control protocols utilized by DPE Exploration in the 2021 soil sampling program. The author can only rely on that DPE Exploration would have followed protocols under the ethical guidance and standard procedures as samplers. There is no reason to doubt the validity of these results in the express opinion of the Qualified Person for this Technical Report.

The certificate of analysis for the soil sampling program can be found in Appendix I.

12.0 DATA VERIFICATION

Some of the exploration summary reports and Assessment reports for the Property were prepared before the implementation of National Instrument 43- 101 in 2001 and Regulation 43-101 in 2005. The authors of such reports appear to have been qualified and the information prepared according to standards that were acceptable to the exploration community at the time. In some cases, however, the data is incomplete and do not fully meet the current requirements of Regulation 43- 101. The author has no known reason to believe that any of the information used to prepare this report is invalid or contains misrepresentations.

12.1 SITE VISIT

The author has not visited the property. The co-author, Bruce MacLachlan, P. Geo (Limited) visited the property on May 16th, 2021. He was accompanied by Coleman Robertson, (GIT) geologist.

Very little outcrop was found during the visit. Below are the points of interest and samples taken during the site visit.

Table 12.1 Points of interest and grab sample locations, Sobeski Lake property. Source Bru	ce
MacLachlan.	

Area	Claim	Source	Easting	Northing	MSL	Rock Type	Description	Au_ppb_final
Northern offshoot of Coli Lake Road east of Uren Lake and southwest of Hakala Lake	640357	Outcrop	471700	5688081	444	Gabbro	Rusty, foliated, medium to coarse-grained gabbro with some granitic material, minor pyrite. Fractured outcrop*. Banding in adjacent outcrop trends 335 degrees, and mafic banding is locally brecciated by granitic intrusive.	<5 ppb
Northern offshoot of Coli Lake Road east of Uren Lake	640357	Outcrop	471696	5688092	444	Granite	Rusty, hematized granite, outcrop. Contact with gabbro to west trends ~335 degrees.	<5 ppb
Northern offshoot of Coli Lake Road east of Uren Lake and southwest of Hakala Lake	640357	Outcrop	471694	5688098	442	Gabbro	Rusty, foliated, medium to coarse-grained gabbro with minor granitic material, trace- 0.5% disseminated pyrite. Fractured outcrop.	<5 ppb
Northern offshoot of Coli Lake Road east of Uren Lake and southwest of Hakala Lake	645205	Outcrop	471725	5688043	442	Granite	Rusty, moderately to strongly hematized granite with gabbro component. Fractured outcrop.	<5 ppb

A summary of the visit is described below:

- Travelled along the Coli Lake logging road to the eastern part of the claims, where a northern offshoot runs up close to the southeast corner of the soil 'grid.'
- Observed mostly interbanded granite and gabbro (migmatite?) at ~335 degrees, sub-parallel to a linear magnetic feature in this part of the property.
- Occasionally the mafic/gabbroic bands are intruded and locally brecciated by a younger phase of hematized granite, resulting in some narrow rusty zones with trace-0.5% disseminated pyrite mostly within the gabbro.
- The soil 'grid' area is mostly open and burnt. We walked part of the southeast corner. Did not observe any signs of soil sampling, flags/holes etc.
- Tried to access a more western part of the property via a north-trending logging road but found it to be grown in after a fairly short distance.

No significant results in Au, Pt or Pd were reported from the 4 grab samples taken. The outcrops sampled were in a non-anomalous area within the soil sampling grid.

13.0 MINERAL PROCESSING and METALLURGICAL TESTING

Geotek has not performed any mineral processing or metallurgical testing within the Property.

14.0 MINERAL RESOURCE ESTIMATES

Geotek has not performed any resource estimates on the Property.

15.0 ADJACENT PROPERTIES

It is the express opinion of the author that the Property is currently in a greenfield exploration stage. There are no adjacent properties that have advanced beyond the status of the Property.

16.0. OTHER RELEVANT DATA and INFORMATION

There is no additional data or information that the author is aware of that would change his findings, interpretation, conclusions and recommendations of the potential of the Property.

17.0 INTERPRETATION and CONCLUSIONS

The Sobeski Lake Property lies within the Red Lake greenstone gelt (RLGB) of the Uchi Subprovince of the Superior Province of Canada. The Uchi Subprovince is a 50-100 km wide east-west trending belt extending from Lake Winnipeg in the west to the James Bay Lowlands in the east. It is dominated by a series of predominantly volcanic greenstone belts which occupy interstitial spaces between mainly elliptical shaped granitoid batholiths. is bound to the north by the Berens River Subprovince (pluton dominated) and to the south by the English River Subprovince (metasedimentary rock dominated).

Since 1926 the Red Lake mining district has hosted 29 gold mines producing over 30 million of ounces of gold. The Red Lake Mine Complex (Campbell, Cochenour and Red Lake mines) operated by Evolution Mining is still producing today. Pure Gold Mining has just recently started pouring gold after reopening the Madsen Mine. The Great Bear Resources discovery in 2019 15 km south of Red Lake has sparked another gold rush, not seen since the days of 1926.

Greenstone belt 'slivers' extend north from the RLGB within the Nungesser Lake greenstone belt to the McInnes greenstone belt 85 km to the north. Geochronological ages of the McInnes greenstone belt suggest a link between it and the Red Lake greenstone belt, specifically the Balmer assemblage. The Balmer assemblage is an important host to a majority of the gold mines in the RLGB. Due to the location of the greenstone slivers between the McInnes Lake and Red Lake greenstone belts, the slivers could either be Balmer or Ball assemblage in origin.

The structural history of the NLGB area can be correlated between all of the greenstone slivers north to the McInnes Lake greenstone belt. The D₂ deformational event includes a regional-scale dextral-transpressive event, likely responsible for the large-scale Z-fold pattern of all of the greenstone slivers. Evidence for this D₂ deformational event is seen as tight isoclinal folds within the intermediate gneisses, sedimentary rocks and locally in the mafic metavolcanic rocks. A north-northwest trending fault zone transects portions of the property characterized by shearing and the presence of mylonite up to 1,300m wide.

The Property has had very limited exploration. Windfall Geotek's proprietary CARDS AI system deemed the Sobeski Lake Property >98% of hosting gold mineralization similar to the systems and environment hosting the Red Lake area gold mines. Soil sampling over the area selected by Geotek's CARDS statistical analysis was successful in outlining areas of gold-in-soil anomalies with values up to 640 ppb (.o64 g/t Au).

Based on the results received to date, the structural and geological environment of the Property, the author is of the opinion that that the property remains highly prospective for the discovery of significant gold mineralization.

18.0 RECOMMENDATIONS

The Sobeski Lake Property is an underexplored property that has geological and structural elements that are conducive to gold mineralization. Applying modern day exploration techniques and up to date geological modeling based on orogenic gold deposit models within an Archean-aged and structurally favourable terrane will undoubtedly unlock its full potential and provide clues to a deposit of merit. For this, methodical, patient and diligent exploration is needed, and when the details of the combined efforts and methods are considered and studied, the benefit of a substantial discovery will be reaped by all who are involved.

As the property is in the greenfield status with very little historical exploration, Geotek has already taken the first steps in exploration by completing a soil sampling program. Due to the very low outcrop exposure, a high resolution heliborne magnetic survey at 50m line spacing is recommended to determine lithologies and outline structural features of the Property. Following the results of the heliborne magnetic survey a competent structural geologist should interpret the results of the magnetic survey integrating lithologies known to date, results of the soil sampling program and the area of interest resulting from the CARDS geostatistical study. Those areas of high merit for gold mineralization determined from the structural and lithological study should then be ground-truthed for possible outcrop exposure, alteration and mineralization. An induced polarization (IP) ground geophysical survey could also be incorporated if favourable looking outcrop is found. This survey would aid in producing viable drill targets.

When the above is compiled, interpreted and applied to modern day gold deposit model types, drilling should be performed on those targets with the highest merit and potential. A budget for a Phase I program of the above is estimated to cost \$764,980 (Table 18.1).

Sobeski Lake Property Phase I Explo	ration Budge	et		
Exploration Item	Units	Unit Cost	Item Cost	
High resolution heliborne magnetic survey	650 line km	\$50/km	\$32,500	
Mob-demob for heliborne survey	1	\$15,000	\$15,000	
Lidar survey	25.3 square km	\$1,500	\$37,950	
Mob-demob for Lidar survey	1	\$10,000	\$10,000	
Linecutting for IP Survey	20 km	\$950/km	\$19,000	
Mobilization for IP Survey	1	\$2,000	\$2,000	
Pole-DiPole IP Survey	20 km	\$2100/km	\$42,000	
Room and Board for IP Survey, 3 men	7 days	\$450/day	\$3,150	
Data Processing and Report for IP Survey	1	\$3,600	\$3,600	
Diamond Drilling (all-in costs of direct drilling, Senior	2500	\$200/m	\$500,000	
Geologist, Technician, Room and Board, Supplies,				
Analyses, Rentals				
Sub-total			\$665,200	
15% Contingency			\$99,780	
Total			\$764,980	

Table 18.1 Exploration budget for the Sobeski Lake Property.

Subsequent exploration programs beyond the above phase will depend upon the success and findings of the proposed exploration programs.

19.0 REFERENCES

Bowdidge, C., 2005. Rampart Ventures Ltd., Inlet Resources Ltd., North Red Lake Property, Nungesser-Trout Lake Areas, Red Lake Mining Division, Ontario, Report on the 2004 Exploration Program (AFRI 20001424).

Buse, **S. and Préfontaine**, **S. 2007**. Precambrian geology of the McInnes Lake greenstone belt, the supracrustal remnants study area and the Frame Lake pluton, Berens River Subprovince, Ontario; Ontario Geological Survey, Open File Report 6210, 128p.

Corfu, F., and Wallace, H. 1986. U–Pb zircon ages for magmatism in the Red Lake greenstone belt, northwestern Ontario. Canadian Journal of Earth Sciences, 23: 27–42.

Dome Exploration Ltd., 1978. Airborne Magnetic Survey, Dome Exploration (CAN) Ltd., Trout Lake Area, Ontario, File No: 19043 (AFRI 52N12SE0252).

Feng, R, and Kerrich, R., 1992. Geochemical evolution of granitoids from the Archean Abitibi Southern Volcanic Zone and the Pontiac subprovince, Superior Province, Canada: Implications for tectonic history and source regions, Chemical Geology, Volume 98, Issues 1–2, pp 23-70.

Golder Associates Ltd., 2018. Phoenix Gold Project: 2017 Updated Structural Geology Report, Report Number: 1671445-008-R-Revo.

Kerrich, R., Goldfarb, R., Groves, D., and Garwin, S., 2000. "The Geodynamics of World-Class Gold Deposits: Characteristics, Space-Time Distribution, and Origins", Gold in 2000, Steffan G. Hagemann, Philip E. Brown.

T. Maunula and Associates, 2021. Technical Report, Bateman Gold Project: F2 Gold Deposit Feasibility Study and McFinley Zone Mineral Resource Estimate, Cochenour, Ontario.

Power-Fardy, D. and Breede, K., 2009. Technical Review of the Sidace Lake Gold Property, Including Mineral Resource Estimates for the Main Discovery and Upper Duck Zones, Red Lake Mining Division, Northwestern Ontario for Planet Exploration Inc.

Sanborn-Barrie, M., Skulski, T. and Parker, J., 2001. Three Hundred Million Years of Tectonic History Recorded by the Red Lake Greenstone Belt, Ontario. Geological Survey Canada, Current Research 2001-C-19.

Stone, **D.**, **1998**. Precambrian Geology of the Berens River Area, Northwest Ontario. Ontario Geological Survey Open File Report 5963.

SRK Consulting (Canada) Inc., 2013. Preliminary Geotechnical Assessment of the Phoenix Gold Project. Prepared for Rubicon Minerals Corporation.

Terraquest Ltd., 2004. Operations Report, Tri-Sensor High Sensitivity Magnetic Airborne Survey, North Red Lake Project, Red Lake Area, Ontario, for Rampart Ventures Ltd. (AFRI 20001314).

Williams, H.R., Stott, G.M., Heather, K.B., Muir, T.L., and Sage, R.P. 1991. Wawa subprovince. In Geology of Ontario. Edited by P.C. Thurston, H.R. Williams, R.H. Sutcliffe, and G.M. Stott. Ontario Geological Survey, Special Volume 4, Part 1, pp. 485–539.

20.0 CERTIFICATES

CERTIFICATE OF QUALIFIED PERSONS

MICHAEL KILBOURNE, P.GEO.

I, Michael Kilbourne, P. Geo., of 20 Park View Avenue, Oro Station, Ontario, LoL 2Eo, do hereby certify that:

- 1) I am an independent consulting professional geologist.
- 2) This certificate applies to the technical report titled "NI 43-101 Independent Technical Report on the Sobeski Lake Property for Windfall Geotek Inc., Red Lake, Ontario", (the "Technical Report") with an effective date of August 15th, 2021.
- 3) I graduated with a degree of Bachelor of Science Honours, Geology from the University of Western Ontario in 1985.
- 4) I am a Professional Geoscientist (P.Geo.) registered with the Professional Geoscientists of Ontario (PGO No. 1591) am registered with the Odres des Geologues du Quebec (OGQ, restrictive license No. 1971) and am a member of the Prospectors and Developers Association of Canada
- 5) I have over 35 years of experience in the exploration and mining industry with various junior exploration and mining companies throughout North America. I have supervised and managed over 100,000 meters of diamond drilling, with over 85% of that drilling performed for gold exploration in the Abitibi Subprovince throughout Ontario and Quebec. I was a production geologist at the Pamour Gold Mine in Timmins from 1991 to 1996 gaining invaluable experience in underground narrow vein, underground bulk and open pit gold mining. I have managed and been involved in various geological exploration programs for precious and base metals throughout Archean and Proterozoic aged environments since 1980. I have held former executive positions with former publicly traded junior resource companies.
- 6) I have read the definition of "Qualified Person" set out in NI 43-101 and Form 43-101F1 and certify that by reason of my education, affiliation with a professional association (as defined in Regulation 43-101) and past relevant work experience, I fulfil the requirements to be a "Qualified Person" for the purposes of Regulation 43-101.
- 7) I have read NI 43-101 and Form 43-101F1 and I am responsible for authoring Sections 1-11 and 13-20 of the Technical Report, which has been prepared in compliance with NI 43-101 and Form 43-101F1.
- 8) I have no prior involvement with the property that is the subject of this Technical Report. I own no shares, warrants or options of Windfall Geotek Inc.
- 9) I have not visited the Property.
- 10) I am independent of the Issuer applying all of the tests in Section 1.5 of NI 43-101.

- 11) I, Michael Kilbourne, do hereby consent to the public filing of the Technical Report titled "NI 43-101 Independent Technical Report on the Sobeski Lake Property for Windfall Geotek Inc., Red Lake, Ontario" dated August 15, 2021, by Windfall Geotek Inc. (the "Issuer"), with Sedar under its applicable policies and forms, and I acknowledge that the Technical Report will become part of the Issuer's public record.
- 12) As of the effective date of the Technical Report, to the best of my knowledge, information and belief, the Technical Report contains all scientific and technical information that is required to be disclosed to make the Technical Report not misleading.

Dated at Oro Station, Ontario this 15th day of August 2021.

{SIGNED}

[Michael Kilbourne]

Michael Kilbourne, P.Geo. (PGO # 1591)

CERTIFICATE OF QUALIFIED PERSONS

BRUCE MACLACHLAN, P.GEO (LIMITED).

I, Bruce MacLachlan, P. Geo. (Limited) of 222 Emerald St., Timmins, Ontario, P4R 1N3, do hereby certify that:

- 1) I am a professional geoscientist.
- 2) This certificate applies to the technical report titled "NI 43-101 Independent Technical Report on the Sobeski Lake Property for Windfall Geotek Inc., Red Lake, Ontario", (the "Technical Report") with an effective date of August 15th, 2021.
- 3) I am a Professional Geoscientist (P.Geo.) (Limited) registered with the Professional Geoscientists of Ontario (PGO No. 1025).
- 4) I have continuously practiced my profession as a geologist for over 38 years. I have prepared reports, conducted, supervised and managed exploration programs for several major and junior mining companies including Noranda Exploration Company Limited, CanAlaska Uranium Ltd., Noront Resources Ltd., Bold Ventures Inc., GoldON Resources Inc., and others.
- 5) I have read NI 43-101 and Form 43-101F1 and I am responsible for authoring Section 12 of the Technical Report, which has been prepared in compliance with NI 43-101 and Form 43-101F1.
- 6) I have no prior involvement with the property that is the subject of this Technical Report. I own no shares, warrants or options of Windfall Geotek Inc.
- 7) I visited the Property on May 16, 2021.
- 8) I am independent of the Issuer applying all of the tests in Section 1.5 of NI 43-101.
- 9) I, Bruce MacLachlan, do hereby consent to the public filing of the Technical Report titled "NI 43-101 Independent Technical Report on the Sobeski Lake Property for Windfall Geotek Inc., Red Lake, Ontario" dated August 15, 2021, by Windfall Geotek Inc. (the "Issuer"), with Sedar under its applicable policies and forms, and I acknowledge that the Technical Report will become part of the Issuer's public record.
- 10) As of the effective date of the Technical Report, to the best of my knowledge, information and belief, the Technical Report contains all scientific and technical information that is required to be disclosed to make the Technical Report not misleading.

Dated at Timmins, Ontario this 15th day of August 2021.

{SIGNED}

[Bruce MacLachlan]

gere Nortal

Bruce MacLachlan, P.Geo. (Limited) (PGO # 1025)

APPENDIX I

Certificate of Analyses

Soil Sampling Program 2021

		Report No.:	A21-08403
		Report Date:	30-Jun-21
		Date Submitted: Your Reference:	11-May-21 Windfall Geotek
Dan Patrie Exploration			
ATTN: Dan Patrie			
<u>C</u>	ERTIFICATE OF ANAI	LYSIS	
500 Soil samples were submitted for anal	ysis.		
The following analytical package(s) were	requested:	Testing Da	
		Testing Da 2021-06-28	
The following analytical package(s) were	requested:		
The following analytical package(s) were 1A2 (10g/m t) REPORT A21-08403 This report may be reproduced without or	requested:	2021-06-26	3 13:40:37
Action Action The following analytical package(s) were 1A2 (10g/m t) REPORT A21-08403 This report may be reproduced without or given at time of sample submittal regardin of these analyses. Test results are represent the representation of the re	requested: QOP AA-Au (Au - Fire Assay AA)	2021-06-26	3 13:40:37
The following analytical package(s) were 1A2 (10g/m t) REPORT A21-08403 This report may be reproduced without or given at time of sample submittal regardir of these analyses. Test results are repressively and the second structures and the second structure of the sec	requested: QOP AA-Au (Au - Fire Assay AA) ur consent. If only selected portions of the report are g excess material, it will be discarded within 90 day entative only of material submitted for analysis.	2021-06-26	3 13:40:37
The following analytical package(s) were 1A2 (10g/m t) REPORT A21-08403 This report may be reproduced without or given at time of sample submittal regardin of these analyses. Test results are repressively analyses. Test results are repressively analyses. Notes: If value exceeds upper limit we recommendation of the second structure of the second	requested: QOP AA-Au (Au - Fire Assay AA) ir consent. If only selected portions of the report are gexcess material, it will be discarded within 90 day entative only of material submitted for analysis. Ind reassay by fire assay gravimetric-Code 1A3	2021-06-26	3 13:40:37
The following analytical package(s) were 1A2 (10g/m t) REPORT A21-08403 This report may be reproduced without or given at time of sample submittal regardir of these analyses. Test results are repressively and the second structures and the second structure of the sec	requested: QOP AA-Au (Au - Fire Assay AA) ir consent. If only selected portions of the report are gexcess material, it will be discarded within 90 day entative only of material submitted for analysis. Ind reassay by fire assay gravimetric-Code 1A3	2021-06-26	3 13:40:37
The following analytical package(s) were 1A2 (10g/m t) REPORT A21-08403 This report may be reproduced without or given at time of sample submittal regardir of these analyses. Test results are repressively analyses. Test results are repressively analyses. Notes: If value exceeds upper limit we recomment Footnote: Insufficient sample for SLP-017	requested: QOP AA-Au (Au - Fire Assay AA) ir consent. If only selected portions of the report are gexcess material, it will be discarded within 90 day entative only of material submitted for analysis. Ind reassay by fire assay gravimetric-Code 1A3	2021-06-26	3 13:40:37
The following analytical package(s) were 1A2 (10g/m t) REPORT A21-08403 This report may be reproduced without or given at time of sample submittal regardin of these analyses. Test results are repressively analyses. Test results are repressively analyses. Notes: If value exceeds upper limit we recommendation of the second structure of the second	requested: QOP AA-Au (Au - Fire Assay AA) ir consent. If only selected portions of the report are gexcess material, it will be discarded within 90 day entative only of material submitted for analysis. Ind reassay by fire assay gravimetric-Code 1A3	2021-06-26	3 13:40:37 must be obtained. If no instructions w ity is limited solely to the analytical co
The following analytical package(s) were 1A2 (10g/m t) REPORT A21-08403 This report may be reproduced without or given at time of sample submittal regardin of these analyses. Test results are repressed to the second support limit we recomment Footnote: Insufficient sample for SLP-017 SCC Accredited	requested: QOP AA-Au (Au - Fire Assay AA) ir consent. If only selected portions of the report are gexcess material, it will be discarded within 90 day entative only of material submitted for analysis. Ind reassay by fire assay gravimetric-Code 1A3	2021-06-26	3 13:40:37 must be obtained. If no instructions w ity is limited solely to the analytical co
The following analytical package(s) were 1A2 (10g/m t) REPORT A21-08403 This report may be reproduced without ou given at time of sample submittal regardir of these analyses. Test results are repres Notes: If value exceeds upper limit we recomment Footnote: Insufficient sample for SLP-017 SCC According LB SCC According	requested: QOP AA-Au (Au - Fire Assay AA) ir consent. If only selected portions of the report are ig excess material, it will be discarded within 90 day entative only of material submitted for analysis. Ind reassay by fire assay gravimetric-Code 1A3 1.	2021-06-26	3 13:40:37 must be obtained. If no instructions w ity is limited solely to the analytical co
The following analytical package(s) were 1A2 (10g/m t) REPORT A21-08403 This report may be reproduced without or of these analyses. Test results are represent Notes: If value exceeds upper limit we recomment Footnote: Insufficient sample for SLP-017 SCC Accretized LAB Accretized LAB Accretized LAB Accretized LAB Accretized LAB Accretized Accretized LAB Accretized Accretized LAB Accretized Accretize	requested: QOP AA-Au (Au - Fire Assay AA) ir consent. If only selected portions of the report are gexcess material, it will be discarded within 90 day entative only of material submitted for analysis. Ind reassay by fire assay gravimetric-Code 1A3	2021-06-26	B 13:40:37 must be obtained. If no instructions with is limited solely to the analytical co CERTIFIED BY:

Analyte Symbol	Au	Au
Unit Symbol	g/mt	ppb
Lower Limit	0.005	2
Method Code	FA-AA	FA-ICP
SLP-001	< 0.005	1
SLP-002	< 0.005	
SLP-003	< 0.005	
SLP-004	< 0.005	
SLP-005	0.021	
SLP-006	< 0.005	
SLP-007	0.012	
SLP-008	0.013	
SLP-009	< 0.005	
SLP-010	0.013	
SLP-011	0.027	
SLP-012	< 0.005	
SLP-013	< 0.005	
SLP-014		85
SLP-015		< 10
SLP-016	0.006	
SLP-017	< 0.005	
SLP-018		< 20
SLP-019		< 20
SLP-023	0.006	
SLP-024	< 0.005	
SLP-025	0.005	
SLP-026	< 0.005	
SLP-027	< 0.005	
SLP-028	< 0.005	
SLP-029	< 0.005	
SLP-030	< 0.005	
SLP-031	0.005	
SLP-032	< 0.005	
SLP-032 SLP-033	< 0.005	
SLP-034	< 0.005	
SLP-035	< 0.005	
SLP-036	< 0.005	
SLP-037	0.016	
SLP-038	< 0.005	
SLP-039	< 0.005	
SLP-039 SLP-040	< 0.005	
SLP-040 SLP-041		
SLP-041 SLP-042	< 0.005	
	< 0.005	
SLP-043	< 0.005	
SLP-044	< 0.005	
SLP-045	< 0.005	
SLP-046	< 0.005	\vdash
SLP-047	< 0.005	
SLP-048	0.005	
SLP-049	< 0.005	
OLD AFA	< 0.005	
SLP-050		
SLP-051	< 0.005	
SLP-051 SLP-052	< 0.005 < 0.005	
SLP-051	< 0.005	

g/mt 0.005	ppb
	0
	2
FA-AA	FA-ICP
< 0.005	
< 0.005	
_	
_	
< 0.005	
	<2
0.011	
	<2
< 0.005	
	<2
-	
_	
-	
-	
-	
_	
-	
-	
-	
	<u> </u>
-	
-	
	<u> </u>
	<u> </u>
< 0.005	
	 < 0.005 < 0.005

Analyte Symbol	Au	Au
Unit Symbol	g/mt	ppb
Lower Limit	0.005	2
Method Code	FA-AA	FA-ICP
SLP-0117	< 0.005	
SLP-0118	< 0.005	
SLP-0119		15
SLP-0120		71
SLP-0121	0.008	
SLP-0122	< 0.005	
SLP-0123	0.006	
SLP-0124	0.005	
SLP-0125	< 0.005	
SLP-0126		< 20
SLP-0127	< 0.005	
SLP-0128	< 0.005	
SLP-0129	< 0.005	
SLP-0130	0.009	
SLP-0131	0.006	
SLP-0132	< 0.005	
SLP-0133	< 0.005	
SLP-0134	< 0.005	
SLP-0135	< 0.005	
SLP-0136	0.007	
SLP-0137	< 0.005	
SLP-0138	< 0.005	
SLP-0139	< 0.005	
SLP-0140	< 0.005	
SLP-0141	0.007	
SLP-0142		< 20
SLP-0143	< 0.005	
SLP-0144	< 0.005	
SLP-0146	< 0.005	
SLP-0147	< 0.005	
SLP-0148	< 0.005	
SLP-0149	0.006	
SLP-0150	< 0.005	
SLP-0151	< 0.005	
SLP-0152	< 0.005	
SLP-0153	< 0.005	
SLP-0154	< 0.005	
SLP-0155	< 0.005	
SLP-0156	< 0.005	
SLP-0157	0.006	
SLP-0158	< 0.005	
SLP-0159	< 0.005	
SLP-0160	< 0.005	
SLP-0161	< 0.005	
SLP-0162	0.005	
SLP-0163	< 0.005	
SLP-0164	< 0.005	
SLP-0165	< 0.005	
SLP-0166	< 0.005	
SLP-0167	< 0.005	
SLP-0168	< 0.005	

Analyte Symbol	Au	Au
Unit Symbol	g/mt	ppb
Lower Limit	0.005	2
Method Code	FA-AA	FA-ICP
SLP-0169	< 0.005	
SLP-0170	< 0.005	
SLP-0171	< 0.005	
SLP-0172		< 30
SLP-0173	< 0.005	
SLP-0174	< 0.005	
SLP-0175	< 0.005	
SLP-0176	0.005	
SLP-0177	< 0.005	
SLP-0178	< 0.005	
SLP-0179	0.018	
SLP-0180	0.027	
SLP-0181	0.010	
SLP-0182	0.005	
SLP-0183	0.000	<u> </u>
SLP-0184	0.014	
SLP-0185	0.011	
SLP-0186	< 0.005	
SLP-0187	< 0.005	<u> </u>
SLP-0188	0.018	
SLP-0189	0.010	
	-	
SLP-0190 SLP-0191	0.018	
SLP-0191	0.009	
SLP-0192 SLP-0193	0.010	
SLP-0193		<u> </u>
SLP-0194 SLP-0195	0.009	
	0.005	< 50
SLP-0196	< 0.005	
SLP-0197	0.009	
SLP-0198	0.011	
SLP-0199	< 0.005	
SLP-0200	0.021	
SLP-0201	0.010	
SLP-0202	0.011	
SLP-0203	< 0.005	
SLP-0204	0.009	
SLP-0205	0.011	
SLP-0206	0.013	
SLP-0207	0.009	
SLP-0208	< 0.005	
SLP-0209	0.005	
SLP-0210	0.008	
SLP-0211	0.006	
SLP-0212	0.008	
SLP-0213	< 0.005	
SLP-0214	< 0.005	
SLP-0215	0.017	
SLP-0216	0.007	
SLP-0217	0.008	
SLP-0218	< 0.005	
SLP-0219	0.007	
1		

Analyte Symbol	Au	Au
Jnit Symbol	g/mt	ppb
ower Limit	0.005	2
Method Code	FA-AA	FA-ICP
SLP-0220	0.005	
LP-0221	< 0.005	
LP-0222	0.005	
LP-0223	0.018	
LP-0224	< 0.005	
SLP-0225	< 0.005	
LP-0226	< 0.005	<u> </u>
SLP-0227	0.037	<u> </u>
LP-0228	< 0.005	
SLP-0229 SLP-0230	0.007	
SLP-0230	0.006	<u> </u>
	< 0.005	
SLP-0232 SLP-0233	0.010	<u> </u>
SLP-0233 SLP-0234	0.005	
	0.010	<u> </u>
SLP-0235	0.007	<u> </u>
SLP-0236	0.005	
SLP-0237 SLP-0238	0.015	
LP-0238	< 0.005	
	< 0.005	
SLP-0240 SLP-0241	< 0.005	
SLP-0241	< 0.005	
SLP-0242	< 0.005	<u> </u>
SLP-0243	< 0.005	
LP-0245	< 0.005	<u> </u>
LP-0246	< 0.005	
SLP-0240	< 0.005	<u> </u>
LP-0248	< 0.005	<u> </u>
SLP-0249	< 0.005	
SLP-0249	< 0.005	
SLP-0251	< 0.005	
SLP-0252	< 0.005	
SLP-0252 SLP-0253	< 0.005	
SLP-0253	< 0.005	
SLP-0255	< 0.005	
SLP-0256	< 0.005	
SLP-0257	< 0.005	
SLP-0258	< 0.005	<u> </u>
SLP-0259	< 0.005	<u> </u>
SLP-0260	< 0.005	
SLP-0261	0.012	
LP-0262	0.012	< 30
LP-0263	0.015	4.00
SLP-0263	< 0.005	
SLP-0265	- 0.000	< 9
SLP-0266	0.008	< 8
SLP-0266	0.008	
SLP-0267	0.007	
SLP-0269	0.012	<u> </u>
LP-0209	0.009	—

Analyte Symbol	Au	Au
Unit Symbol	g/mt	ppb
Lower Limit	0.005	2
Method Code	FA-AA	FA-ICP
SLP-0271	0.040	
SLP-0272	0.016	
SLP-0273	0.009	
SLP-0274	0.008	
SLP-0275	0.015	
SLP-0276	0.005	< 20
SLP-0277	0.005	
SLP-0278 SLP-0279	0.012	< 20
SLP-0279 SLP-0280	0.012	
SLP-0280 SLP-0281	0.042	
SLP-0282	0.011	
SLP-0283	0.010	
SLP-0284	0.011	
SLP-0285	< 0.005	
SLP-0286	0.009	
SLP-0287	0.003	
SLP-0288	0.008	
SLP-0289	0.005	
SLP-0200	0.005	
SLP-0291	0.040	
SLP-0292	0.009	
SLP-0293	0.007	
SLP-0294	0.014	
SLP-0295	0.018	
SLP-0296	0.010	
SLP-0297		< 10
SLP-0298	0.010	
SLP-0299	0.009	
SLP-0300	0.013	
SLP-0301	0.011	
SLP-0302	0.012	
SLP-0303	0.017	
SLP-0304	0.005	
SLP-0305	0.014	
SLP-0306	0.025	
SLP-0307	0.014	
SLP-0308	0.012	
SLP-0309	0.027	
SLP-0310	0.030	
SLP-0311	0.011	
SLP-0312	0.013	
SLP-0313	0.011	
SLP-0314	0.010	
SLP-0315		< 80
SLP-0316	0.009	
SLP-0317	0.007	
SLP-0318	0.020	
SLP-0319	0.015	
SLP-0320	0.011	
SLP-0321	0.018	
	1	

Analyte Symbol	Au	Au	Analyte Symbol
Unit Symbol	g/mt	ppb	Unit Symbol
Lower Limit	0.005	2	Lower Limit
Method Code	FA-AA	FA-ICP	Method Code
SLP-0322	0.014		SLP-0373
SLP-0323		35	SLP-0374
SLP-0324	0.015		SLP-0375
SLP-0325	0.026		SLP-0376
SLP-0326	0.018		SLP-0377
SLP-0327	0.019		SLP-0378
SLP-0328	0.012		SLP-0379
SLP-0329	0.012		SLP-0380
SLP-0330	0.015		SLP-0381
SLP-0331	0.008		SLP-0382
SLP-0332	0.028		SLP-0383
SLP-0333	0.013		SLP-0384
SLP-0334	0.016		SLP-0385
SLP-0335	0.019		SLP-0386
SLP-0336	0.018		SLP-0387
SLP-0337	0.015		SLP-0388
SLP-0338	0.031		SLP-0389
SLP-0339	0.010		SLP-0390
SLP-0340	0.013		SLP-0391
SLP-0341	0.012		SLP-0392
SLP-0342	0.013		SLP-0393
SLP-0343	0.015		SLP-0394
SLP-0344	0.010		SLP-0395
SLP-0345	0.012		SLP-0396
SLP-0346	0.006		SLP-0397
SLP-0347	0.011		SLP-0398
SLP-0348	0.014		SLP-0399
SLP-0349	< 0.005		SLP-0400
SLP-0350	0.014		SLP-0401
SLP-0351	0.009		SLP-0402
SLP-0352	0.009		SLP-0403
SLP-0353	0.011		SLP-0404
SLP-0354	0.012		SLP-0404
SLP-0355	0.020		SLP-0405
SLP-0356	0.006		SLP-0405
SLP-0357	0.012		SLP-0408
SLP-0358	0.016		SLP-0408
SLP-0359	0.009		SLP-0410
SLP-0360	0.011	-	SLP-0410
SLP-0361	0.013		SLP-0411 SLP-0412
SLP-0362	0.011		SLP-0412 SLP-0413
SLP-0363	0.012		
SLP-0364	0.012		SLP-0414
SLP-0365	0.008		SLP-0415
SLP-0366	0.008		SLP-0416
			SLP-0417
SLP-0367	0.011		SLP-0418
SLP-0368	0.013		SLP-0419
SLP-0369	0.022		SLP-0420
SLP-0370	0.018		SLP-0421
SLP-0371	0.015		SLP-0422
			1910.0/22

SLP-0372

0.013

Au

g/mt

0.005 2

FA-AA

0.015

0.027

0.018

0.005

0.021

0.014

0.009

0.018

0.013

0.021

0.035

0.016

0.021

0.017

0.012

0.008

< 0.005

< 0.005

0.005

0.006

0.006

0.006

< 0.005

0.015

0.006

0.007

0.013

< 0.005

< 0.005

0.007

0.006

0.005

0.005

0.028

0.009

0.009

< 0.005

0.011

0.006

0.009

0.007

< 0.005

< 0.005

0.007

< 0.005

< 0.005

< 0.005

0.007

< 0.005

0.019

0.016

SLP-0423

Au

ppb

FA-ICP

Analyte Symbol	Au	Au
Unit Symbol	g/mt	ppb
Lower Limit	0.005 FA-AA	2 FA-ICP
Method Code SLP-0424	0.018	FA-ICP
SLP-0425	0.019	
SLP-0426	0.019	
SLP-0427	0.016	
SLP-0428	0.012	
SLP-0429	0.012	
SLP-0430	0.022	
SLP-0431	0.018	
SLP-0432	0.015	
SLP-0433	0.010	
SLP-0434	0.018	<u> </u>
SLP-0435	0.038	
SLP-0436	0.030	
SLP-0437	0.017	
SLP-0438	0.064	
SLP-0439	0.016	
SLP-0440	0.009	
SLP-0441	0.016	
SLP-0442	0.023	
SLP-0443	0.014	
SLP-0444	0.014	
SLP-0445	0.013	
SLP-0446	0.014	
SLP-0447	0.025	
SLP-0448	0.016	
SLP-0449	0.015	
SLP-0450	0.019	
SLP-0451	0.015	
SLP-0452	0.015	
SLP-0453	0.019	
SLP-0454	0.015	
SLP-0455	0.011	
SLP-0456	0.019	
SLP-0457	0.007	
SLP-0458	0.005	
SLP-0459	< 0.005	
SLP-0460	0.006	
SLP-0461	< 0.005	
SLP-0462	< 0.005	
SLP-0463	0.011	
SLP-0464	< 0.005	
SLP-0465	< 0.005	
SLP-0466	0.010	
SLP-0467	0.009	
SLP-0468	0.006	
SLP-0469	< 0.005	
SLP-0470	0.010	
SLP-0471	0.005	<u> </u>
SLP-0472	< 0.005	
SLP-0473	0.007	
SLP-0474	0.007	

Analyte Symbol	Au	Au
Unit Symbol	g/mt	ppb
Lower Limit	0.005	2
Method Code	FA-AA	FA-ICP
SLP-0475	< 0.005	
SLP-0476	< 0.005	
SLP-0477	0.008	
SLP-0478	0.010	
SLP-0479	0.041	
SLP-0480	< 0.005	
SLP-0481	0.008	
SLP-0482	0.009	
SLP-0483	< 0.005	
SLP-0484	0.008	
SLP-0485	< 0.005	
SLP-0486	0.006	
SLP-0487	0.008	
SLP-0488	0.009	
SLP-0489	0.007	
SLP-0490	0.006	
SLP-0491	< 0.005	
SLP-0492	0.008	
SLP-0493	< 0.005	
SLP-0494	0.006	
SLP-0495	< 0.005	
SLP-0496	0.014	
SLP-0497	0.005	
SLP-0498	< 0.005	
SLP-0499	< 0.005	
SLP-0500	< 0.005	
SLP-0501	0.006	
SLP-0502	0.007	
SLP-0503	< 0.005	
SLP-0504	< 0.005	
SLP-0505	0.011	
SLP-0506	0.006	
SLP-0507	0.007	
SLP-0508	< 0.005	
SLP-0509	0.008	
SLP-0510	< 0.005	
SLP-0511	< 0.005	
SLP-0512	< 0.005	