

We are committed to providing <u>accessible customer service</u>. If you need accessible formats or communications supports, please <u>contact us</u>.

Nous tenons à améliorer <u>l'accessibilité des services à la clientèle</u>. Si vous avez besoin de formats accessibles ou d'aide à la communication, veuillez <u>nous contacter</u>.

Prospecting Program Fall 2022: Fulcrum Metal's Syenite Lake Property

Priske Twp. Lower Aguasabon Lake Area

NTS Sheet# 042D14

For: Fulcrum Metals 800 West Pender Street Suite 1430 Vancouver, BC V6C 1J8

Prepared By:

Steven Flank, P.Geo Jeremie Rioux-Frison

Bayside Geoscience Inc. 1179 Carrick St Thunder Bay, ON P7B6M3

January 16, 2023

Summary

During and between October 26th to October 31st, 2022, a surficial prospecting program was completed on three properties held by Fulcrum Metals: Beavertrap Lake, Syenite Lake, and Carib Creek. The properties are located 35km, 26km, and 12km, respectively, from Terrace Bay, Ontario. Bayside Geoscience, based out of Thunder Bay, ON, was contracted to complete the program. The crew consisted of two geologists in training and two field assistants. The crew mobilized daily from their accommodations in Terrace Bay, ON to the Terrace Bay Airport to begin their commute via helicopter to the three land packages. Helicopter services were provided by Whiskair Helicopters based out of Thunder Bay, ON.

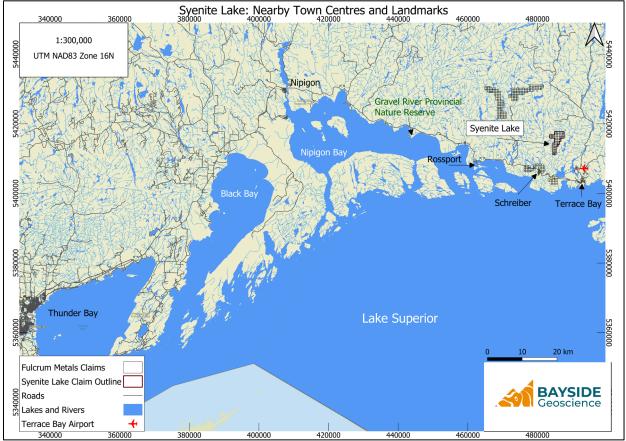
The program was split into two-day blocks on each property to cover as much ground as possible within the timeframe. The crew was tasked with prospecting Syenite Lake on the 28th and the 29th of October. On the 28th of October the crew focused on the large quartz porphyry unit to the east of the property. On October 29th the team prospected zones to the west of the property where multiple magnetic and conductive geophysical anomalies were seen trending NE from the Ansell Lake project towards the Syenite Lake Claim package. Outcrops were mapped and prospective lithologies were sampled and sent for assay.

Table of Contents

Summary	2
ist of Figures	3
ist of Tables	4
_ocation and Access	5
Physiography	5
Property Ownership and Claims	7
Syenite Lake Property	9
Exploration History	9
Regional Geology1	1
Local Geology1	2
2022 Prospecting Program1	3
Sampling Procedures & QA/QC14	4
Assay Methodology1	5
Results1	5
Conclusions and Recommendations	C
Expenditures	1
Statement of Qualifications	2
References	3
Appendix A: Claim Details	4
Appendix B: Tracks and Station Locations2	7
Appendix C: Daily Work Logs	8
Appendix D: Station Descriptions	C
Appendix E: Assay Certificates	4

List of Figures

Figure 1: Location of the Syenite Lake Property	5
Figure 2 - Location of the Syenite Lake property and its proximity to town centers	7
Figure 3: Claim cells of the Syenite Lake Property	8
Figure 4:The regional geology of the Syenite Lake Property	.13
Figure 5: Traverse maps overlain on satellite imagery	.14
Figure 6: Zn concentrations accompanied by sample location within the Syenite Lake property	.18
Figure 7: Cu concentrations accompanied by sample location within the Syenite Lake property	.18
Figure 8: Photograph of the sample 1101738 (SL-JS-010a)	.19


Figure 9: Photograph of sample 1101740 (SL-JS-010c)	19
Figure 10: Map demonstrating the various lithologies encountered at each sample/station location	on20

List of Tables

Table 1 - Local exploration history	9
Table 2 - Location and claim block associated with samples collected during the field program E	rror!
Bookmark not defined.	
Table 3 - Assay results for the Syenite Lake property	17
Table 4 - Summary of Expenditures on the 2022 Syenite Lake Exploration Program	21
Table 5 - Distribtion of Expenditures	21

Location and Access

The Syenite Lake property is approximately 12 km north of Terrace Bay, Ontario in Priske Township and Lower Aguasabon Lake Area (Figure 1, 2). The closest road access to the property is approximately 5km away (Figure 2). Therefore, the property

was accessed by helicopter through Wisk-Air Helicopters Ltd from the Terrace Bay Airport.

Physiography

The Syenite Lake property is situated in the Abitibi upland region of the Canadian Shield (Hancox and Schneider, 2013). The terrain in the Lower Aguasabon Area has broadly rolling surfaces with a wide range in elevations ranging from 585masl in the north to 183masl in the south along the shores of Lake Superior (Hancox and Schneider,

2013). Syenite Lake is situated in the Lake Superior drainage basin and the Little Pic tertiary watershed (Hancox and Schneider, 2013).

Within the rolling hills lies multiple swamps and un-named ponds. Muskegs are also a common occurrence within the area's lowlands. These being covered by several feet of spongy sphagnum mosses. The majority of shorelines are covered in coniferous trees such as pines, cedars and spruces. The flat land is heavily forested with a thick layer of detritus and organic rich soils. Outcrops within these regions are far and few between and typically covered in granite/rock moss. Streams and creeks flowing through these regions are typically surrounded by thick brush such as alders, shrubs and various other small plant species. They are also of interest due to their ability to follow the lowest land, which tends to follow the ridges of outcrops. As elevation increases, the population of deciduous trees such as poplars, birch, and occasionally maples also increase. Jackpine and cedar are also seen within areas of higher elevation.

The regions wildlife consists of moose, bears, beavers, foxes, small mammals, and various species of birds. During the October months, moose may be in or finishing up their mating season. Be wary of moose during these times due to their aggression and territorial behavior. Other species such as woodland caribou are uncommon but may still be encountered.

Climate within the Terrace Bay area, based on Environment Canada's Terrace Bay climate station from 1971-2000 is within the temperate continental climate zone. The area is host to large seasonal temperature differences from typically hot and humid summers and cold and often severely cold winters (Hancox and Schneider, 2013). Temperatures range from -20.5°C in the winters to 20°C in the summers with a mean temperature of 1.5°C. According to Statistics Canada (2022), the average annual precipitation is of 809.4 mm with precipitation being highest in September and October.

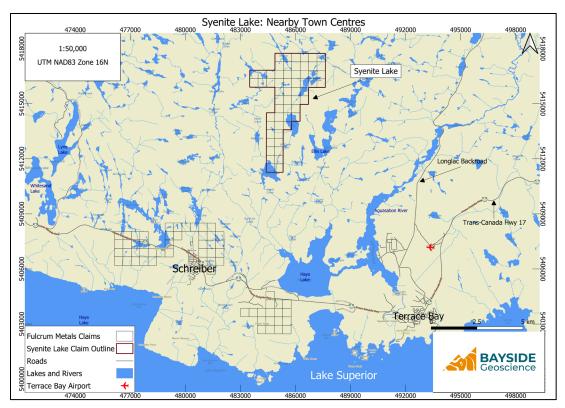


Figure 2 - Location of the Syenite Lake property and its proximity to town centers.

Property Ownership and Claims

The Syenite Lake property is located within the Thunder Bay Mining Division and comprises 58 contiguous single cell claim blocks, totalling 1,218ha. All the claims are 100% owned by Fulcrum Metals (Canada) Limited. The claim assemblage of the Syenite Lake property is shown in Figure 3.

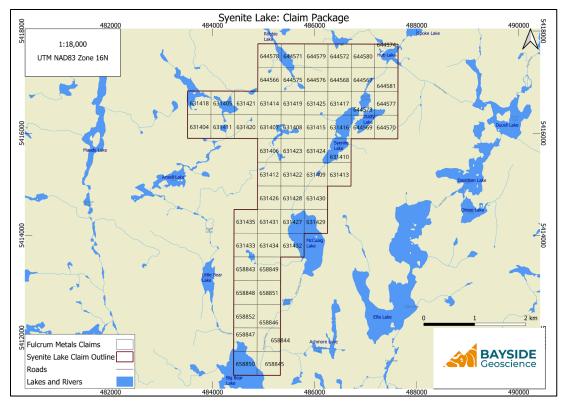


Figure 3: Claim cells of the Syenite Lake Property

Syenite Lake Property

Exploration History

The following table is a summary of the work performed within or near the Syenite Lake property.

Table 1 - Local exploration history

Year	Company	Type of Work	Property	Assessment
				ID
1950	E Sullivan Mines Ltd	Geological Survey / Mapping	Mitto Option	42D14NE0092
1954	Ascot Metals Corp Ltd	Diamond Drilling	Ansell Lake Property	42D15NW0086
1973	Sturgex Mines Ltd	Other	Squaw Lake, James Township, Little Bruin Lake, Tommyhow Lake	42D14SE0095
1982	Westfield Minerals Ltd	Electromagnetic Very Low Frequency, Geochemical, Geological Survey / Mapping, Magnetic / Magnetometer Survey, Prospecting By Licence Holder	Little Bruin Lake Property	42D14SE0092
1983	Chapel Bay Expl Inc	Electromagnetic, Geochemical, Geological Survey / Mapping, Magnetic / Magnetometer Survey, Other	Ansell Lake Property	42D14NE0048
1983	Chapel Bay Expl Inc	Electromagnetic, Geochemical, Geological Survey / Mapping, Magnetic / Magnetometer Survey, Other	Ansell Lake Property	42D14NE0048
1984	Noranda Exploration Co	Airborne Electromagnetic, Airborne Magnetometer	Bellevue	42D14NE0044
1984	Flint Rock Mines Ltd	Electromagnetic, Magnetic / Magnetometer Survey	Ansell Lake Property	42D14NE0028
1984	Noranda Exploration Co	Assaying and Analyses, Geological Survey / Mapping	United Westland Property	42D14SE0075
1984	Chapel Bay Expl Inc	Induced Polarization, Resistivity	Ansell Lake Property	42D14NE0045
1984	Noranda Exploration Co	Assaying and Analyses, Geological Survey / Mapping	Bellevue	42D14NE0037
1984	Noranda Exploration Co	Electromagnetic, Electromagnetic Very Low Frequency, Magnetic / Magnetometer Survey	Bellevue	42D14NE0026

1984	Noranda	Electromagnetic, Electromagnetic	United Westland	42D14SE0072
	Exploration Co	Very Low Frequency, Magnetic / Magnetometer Survey	Property	
1985	Flint Rock	Geochemical, Geological Survey /	Ansell Lake	42D14NE0016
	Mines Ltd	Mapping, Prospecting By Licence Holder	Property	
1985	Schreiber	Geochemical, Geological Survey /	Hays Lake	42D14SE0066
	Resources Ltd	Mapping		
1989	Ansell Lake	Electromagnetic Very Low	Ansell Lake	42D14NE0002
	Resources Ltd	Frequency, Magnetic /	Property	
		Magnetometer Survey		
1989	Ansell Lake	Diamond Drilling	Ansell Lake	42D14NE0008
	Resources Ltd		Property	
1989	Ansell Lake	Diamond Drilling	Ansell Lake	42D14NE0008
	Resources Ltd		Property	
1989	Ansell Lake	Diamond Drilling	Ansell Lake	42D14NE0008
	Resources Ltd		Property	
1992	D M Kukkee	Geochemical, Prospecting By	Big Bear, Little	42D14SE0010
		Licence Holder	Bear Lake	
2011	Brian David	Electromagnetic Very Low	Little Bear	2000006573
	Fowler	Frequency, Linecutting, Magnetic	Property	
		/ Magnetometer Survey		
2020	Panther	Airborne Electromagnetic,	Big Bear Project	20000018662
	Metals	Airborne Magnetometer		
	(Canada) Ltd			
2022	Transition	Aboriginal Consultation, Airborne	Maude Lake	20000020225
	Metals Corp	Electromagnetic, Airborne	Property	
		Gradiometer		

Historic work around the property suggests VMS style mineralization is of interest within the Syenite Lake property. VMS deposits can be some of the richest in the world due to their high-grade and often high-tonnage. They are typically rich in base-metals such as copper, zinc, lead and other minerals like silver and gold. Typically, VMS deposits are characterized by the alteration patterns surrounding the main deposit. These can be mapped out and help locate the main vent where most of the mineralization occurs.

The Ansell Lake occurrence is the nearest prospect to Syenite Lake and is currently part of Transition Metals Corp's Maude Lake Property. Ansell Lake consists of primarily metavolcanic-flows with narrow cross-cutting felsic-intermediate volcanic flows. Prospecting has outlined a linear zone of disseminate to semi-massive pyrite, chalcopyrite and pyrrhotite mineralization which extends ENE. The mineralization occurs mainly within sheared metavolcanics and correlates with a well defined magneticelectromagnetic anomaly (Sanders, 1985). Multiple trenches and pits can be located around the property. Multiple holes have been drilled totalling about 1000 feet with variable results. Analytical data shows a large variability in concentrations with Rhyolites and Basalt-Dacites being the main contributor to the larger concentrations. Copper concentrations ranged from 8 to 19,400 ppm, zinc concentrations ranged from 10 to 580 ppm, and gold concentrations ranged from 2 to 252 ppb (Sanders, 1985).

The Nicopor Ni occurrence is located 7km to the west of the Syenite Lake property and is part of Transition Metals Corp's Maude Lake property. Ni-Cu mineralization is associated with disseminated, blebby, semi-massive and massive sulfide mineralization within a pyroxenitic intrusion. Diamond drilling completed by Transition Metals in 2022 returned up to 20.01m of 0.50% Ni equivalent (Transition Metals press release dated November 28, 2022).

Regional Geology

Most of the geological information originates from the Report on geological mapping, prospecting programs, Pick Lake project by Golden Share Mining Corporation (Huss, 2014) and the Ontario Geological Survey Open File Report 6282 (Lodge, 2012).

"The Syenite Lake property sits within the Northern Wawa Terrane east, north and south-west of the Winston Lake Zn-Cu-Ag massive sulphide deposit in the Archean Superior province. The Wawa subprovince is a granite-greenstone terrane in which contrasting units, and well-defined greenstone belts of metamorphosed komatiite, basalt, dacite and rhyolite and associated metasedimentary rocks are dispersed in a sea of granitoid rocks. The metasedimentary rocks include turbiditic wacke, minor conglomerate and iron formation. The Winston Lake greenstone belt is a small belt located directly north of, and almost connected to the Schreiber–Hemlo greenstone belt (Williams et al., 1991); however, the contact relationship of these belts is poorly constrained. The Winston Lake greenstone belt has not been mapped at a regional scale since the 1960s (Pye, 1964). The belt is bound to the north by the Quetico subprovince, to the west by the Winston Lake batholith, and to the south by the Crossman Lake batholith (Severin et al., 1991). Regional metamorphic grade in the belt is lower amphibolite facies (Williams et al., 1991). Metamorphosed hydrothermally altered rocks

near the VMS deposits were initially interpreted as metasedimentary rocks because of the presence of aluminosilicate minerals (Pye, 1964)."

"The belt is informally divided into two lithotectonic assemblage: the Winston Lake and Big Duck assemblages (a thick mafic unit composing most of the belt). The WLGB is characterized by mafic to felsic volcanic and siliciclastic sedimentary rocks, which are collectively intruded by tonalite-trondhjemite-granodiorite and gabbroic rocks. There is polyphase deformation, and greenschist to amphibolite facies metamorphism. The volcanic sequence is known for its Pick Lake, Winston Lake and Zenith volcanic hosted massive sulphide (VMS) deposits. These deposits are underlain by an association of mafic to felsic volcanic flows and pyroclastic rocks, and are overlain by tholeiitic basalts. The Pick Lake, Winston Lake and Zenith deposits were classified bimodal-mafic VMS type."

Local Geology

Most of the local geology is summarized from the Flint Rock Mines Limited geophysical surveys report on the Ansell Lake Property (Sanders, 1984). It is located slightly west of the Syenite Lake property and consisting of very similar geological formations and structures.

"Generally, the property is underlain by a steeply dipping, ENE trending, south facing Archean metavolcanic sequence which is composed largely of very fine grained pillowed and massive, intermediate to mafic flows. (Carter, 1981). Restricted interflow volcanoclastic and clastic sedimentary horizons are also present. A series of narrow, elongate subvolcanic intrusive bodies are evident on the property. These intrusives are generally oriented 060 and are of two main types:

- i) medium grained, massive to porphyritic diorites, and,
- ii) intermediate to felsic quartz feldspar porphyries.

Small scale secondary structures are mainly oriented sub-parallel to stratigraphy. Shearing and the development of schistosity is most evident in proximity to volcanic/intrusive contacts (East Sullivan Mines, 1950). Larger scale faults and lineaments are generally oriented NNE to NNW and ENE. Metamorphism is of greenschist to amphibolite grade."

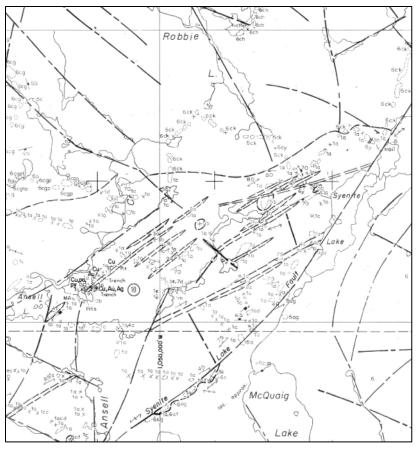


Figure 4:The regional geology of the Syenite Lake Property. 1: Mafic Metavolcanics; 2: Intermediate Metavolcanics. 3: Felsic Metavolcanics; 4: Metavolcanics and metasediments; 5: Metamorphosed intrusive; 6: Felsic Intrusives; 7: Mafic Intrusives. Historical Ansell Lake Property Located to the west, outside of the Syenite Lake Property. Dashed lines: Interpreted contact; Solid Line: Observed Contact. (Carter, 1982).

2022 Prospecting Program

The Syenite Lake program was completed over a 2-day period from October 28th, 2022 to October 29th, 2022. A crew of 4 personnel, contracted from and managed by Bayside Geoscience mobilized from Thunder Bay to Terrace Bay on October 26th, 2022 and demobilized from Terrace Bay on October 31st, 2022. The Syenite Lake property was prospected for 2 of those days by two teams. A daily log of their activities is available in Appendix C. The objective of the program was to investigate and sample the various magnetic and conductivity anomalies within the property. The secondary objective was to cover as much ground as possible within the 2-day time frame.

34 geological stations were recorded utilizing the QField application using Samsung Tab A tablets. A sample database with predetermined fields was setup in QField consisting of sample ID, sample type, lithology, structure, alteration, mineralization, photos and notes. A Garmin 64s handheld GPS was utilized to collect high accuracy waypoints at each station, as well as tracks.

A digital printout of the station database is included in Appendix D. Maps showing station and sample locations, as well as GPS tracks from each traverse were included in Appendix B. A total of 34 grab samples were collected during the program. Results are seen in Table 3 with assay certificates in Appendix E. All coordinates were presented in NAD 83 UTM Zone 16N.

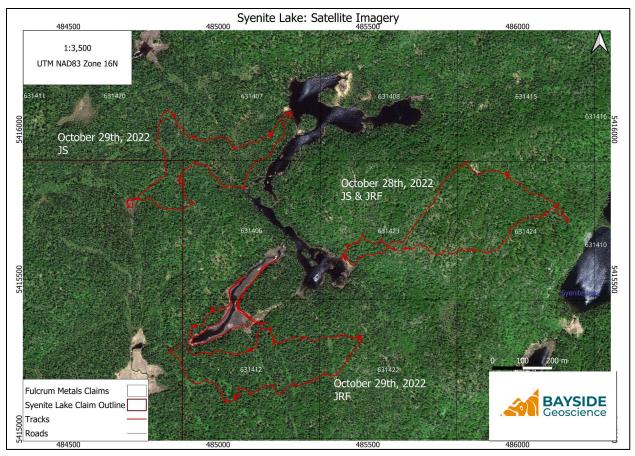


Figure 5: Traverse maps overlain on satellite imagery.

Sampling Procedures & QA/QC

Rock samples were collected by field personnel utilizing rock hammers and placed into sample bags labelled with unique station ID's and sample numbers. The station ID naming scheme was based on the property name, the geologist's initials, and the station number. Field personnel recorded sample information in a digital data collector and recorded GPS coordinates, geological observations, and photographs at each sample location. Control samples or blanks were not inserted for analysis, therefore these results are not National Instrument 43-101 compliant.

Assay Methodology

The samples were sent to Activation Laboratories Ltd. in both Ancaster, Ontario for Ultratrace and in Thunder Bay, Ontario for Fire Assay. A total of 34 samples from Syenite Lake and 60 samples collected from other properties were sent for assay. Each sample was analyzed utilizing Fire Assay (for Au) and Ultratrace ICPMS (for Ag, Al, As, Au, B, Ba, Bi, Ca, Cd, Co, Cr, Cu, Fe, Ga, Hg, K, La, Mg, Mn, Mo, Na, Ni, P, Pb, S, Sb, Sc, Se, Sr, Te, Th, Ti, Tl, V, W, Zn). Assay preparation was accomplished by crushing samples to a 2mm particle size, mechanically splitting the samples to 250g, and then pulverizing to 105µm. Appendix E contains the Assay certificates.

Results

34 samples were collected from 7 different claim blocks (Table 2). The rock samples collected from the Syenite Lake property consist of various Felsic to Mafic volcanic lithologies, gabbro and pyroxenite, as well as quartz veins. (Figure 10).

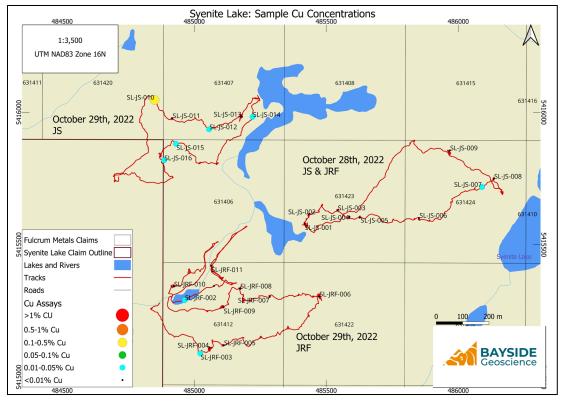

Au, Zn and Cu results are summarized in Table 3. The highest Cu and Zn results came from samples 1101738 and 1101740 (Figure 8, 9). Sample 1101738 had concentrations of 1050 ppm Cu and 148 ppm Zn. Sample 1101740 had concentrations of 1120 ppm Cu and 150 ppm Zn. The highest Au assay value encountered was 62 ppb Au from sample 1101734. The three samples were all taken from mafic volcanic units.

Table 2 - Location and claim	block associated with samples	collected during the field program
	biock associated with sumples	concerca daring the field program

Project Area	Sample #	Township/Area	Tenure ID	Anniversary Date	Claim Holder
Syenite Lake	1101728- 1101732	Lower Aguasabon Lake Area	631423	2023-01-19	Fulcrum Metals (Canada) Ltd.
Syenite Lake	1101733- 1101737	Lower Aguasabon Lake Area	631424	2023-01-19	Fulcrum Metals (Canada) Ltd.
Syenite Lake	1101738- 1101740	Lower Aguasabon Lake Area	631420	2023-01-19	Fulcrum Metals (Canada) Ltd.
Syenite Lake	1101741- 1101746	Lower Aguasabon Lake Area	631407	2023-01-19	Fulcrum Metals (Canada) Ltd.
Syenite Lake	1101747- 1101750	Lower Aguasabon Lake Area	631406	2023-01-19	Fulcrum Metals (Canada) Ltd.
Syenite Lake	1101763- 1101767; 1101769- 1101773	Lower Aguasabon Lake Area	631412	2023-01-19	Fulcrum Metals (Canada) Ltd.
Syenite Lake	1101768	Lower Aguasabon Lake Area	631422	2023-01-19	Fulcrum Metals (Canada) Ltd.

Table 3 - Assay results for the Syenite Lake property with respective Station ID, UTM coordinates, and lithologies.

						Au	Cu	Zn
						ppb	ppm	ppm
						5	0.2	1
Station ID	Sample ID	Easting	Northing	Elevation	Lithology	FA-AA	AR-MS	AR-MS
SL-JS-001	1101728	485418	5415579	418	Gabbro	< 5	1.9	52
SL-JS-002	1101729	485434	5415615	431	Mafic Volcanic	< 5	39.2	79
SL-JS-003	1101730	485543	5415630	462	Intermediate Volcanic	< 5	29.3	115
SL-JS-004	1101731	485588	5415605	480	Mafic Volcanic	< 5	28.8	79
SL-JS-005	1101732	485626	5415604	479	Intermediate Volcanic	< 5	1.2	35
SL-JS-006	1101733	485851	5415601	472	Mafic Volcanic	< 5	20.3	102
SL-JS-007a	1101734	486090	5415718	457	Mafic Volcanic	62	343	52
SL-JS-007b	1101735	486090	5415718	457	Mafic Volcanic	22	138	45
SL-JS-008	1101736	486135	5415749	452	Quartz Vein	< 5	7	35
SL-JS-009	1101737	485968	5415856	461	Mafic Volcanic	< 5	59.2	85
SL-JS-010a	1101738	484850	5416047	413	Mafic Volcanic	< 5	1050	148
SL-JS-010b	1101739	484850	5416047	413	Mafic Volcanic	< 5	476	130
SL-JS-010c	1101740	484850	5416047	413	Mafic Volcanic	8	1120	150
SL-JS-011	1101741	484917	5415978	417	Mafic Volcanic	< 5	57	109
SL-JS-012a	1101742	485056	5415936	420	Gabbro	< 5	36.1	122
SL-JS-012b	1101743	485056	5415936	420	Gabbro	< 5	220	90
SL-JS-013a	1101744	485180	5415984	419	Pyroxenite	< 5	39.3	143
SL-JS-013b	1101745	485180	5415984	419	Pyroxenite	< 5	69.6	115
SL-JS-014	1101746	485221	5415983	421	Mafic Volcanic	< 5	192	120
SL-JS-015	1101747	484931	5415881	424	Gabbro	< 5	124	72
SL-JS-016a	1101748	484886	5415819	427	Felsic Volcanic	< 5	262	23
SL-JS-016b	1101749	484886	5415819	427	Felsic Volcanic	< 5	266	23
SL-JS-016c	1101750	484886	5415819	427	Felsic Volcanic	< 5	375	26
SL-JRF-001	1101763	485075	5415344	422	Intermediate Volcanic	< 5	12.2	58
SL-JRF-002	1101764	484964	5415290	421	Intermediate Volcanic	< 5	125	43
SL-JRF-003	1101765	485023	5415089	439	Mafic Volcanic	< 5	196	79
SL-JRF-004	1101766	485057	5415111	440	Mafic Volcanic	< 5	78.1	97
SL-JRF-005	1101767	485112	5415120	436	Intermediate Volcanic	< 5	79.4	107
SL-JRF-006	1101768	485473	5415304	433	Intermediate Volcanic	< 5	5.6	30
SL-JRF-007	1101769	485286	5415304	435	Mafic Volcanic	< 5	64.8	130
SL-JRF-008	1101770	485173	5415334	431	Intermediate Volcanic	< 5	44.6	60
SL-JRF-009	1101771	485111	5415263	430	Intermediate Volcanic	< 5	7.7	57
SL-JRF-010	1101772	484922	5415342	438	Intermediate Volcanic	< 5	15.5	29
SL-JFR-011	1101773	485064	5415420	431	Intermediate Volcanic	< 5	19.1	92

Figure 7: Cu concentrations accompanied by sample location within the Syenite Lake property

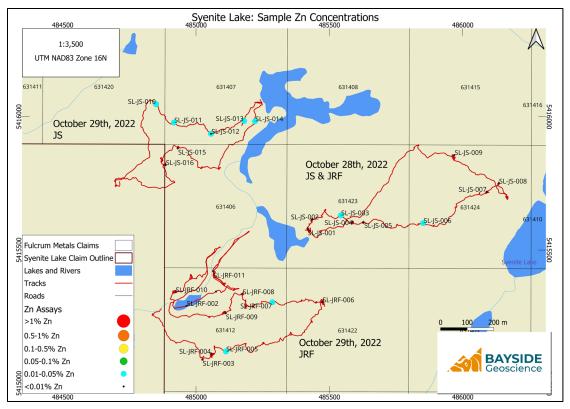


Figure 6: Zn concentrations accompanied by sample location within the Syenite Lake property

As seen in figures 6 and 7, the two significant Cu and Zn samples were taken at the same location, with station names for the samples SL-JS-010a and SL-JS-010c. The samples within figures 8 and 9 were determined to be fine-grained weakly silicified sheared mafic volcanic with an abundance of quartz stringers. Chalcopyrite mineralization occurred readily within the veins with biotite alteration often occurring within silicified sections.

Figure 8: Photograph of the sample 1101738 (SL-JS-010a).

Figure 9: Photograph of sample 1101740 (SL-JS-010c).

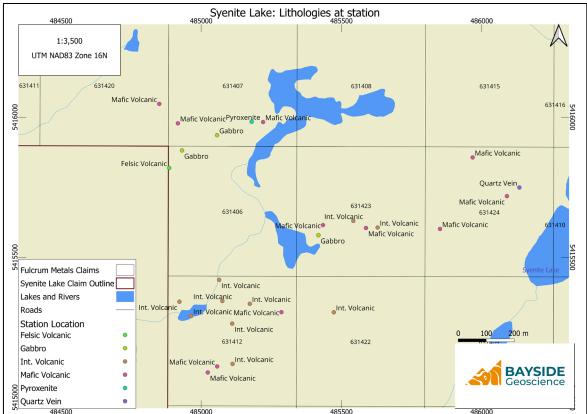


Figure 10: Map demonstrating the various lithologies encountered at each sample/station location.

Conclusions and Recommendations

The 2022 prospecting program at Syenite Lake resulted in the discovery of anomalous Cu mineralization along strike and ENE from the Ansell Lake Cu occurrence. Two samples returned Cu values of 1050ppm and 1120ppm respectively in silicified, chalcopyrite bearing mafic volcanics. Additional prospecting to the south and east of these samples did not return favourable assays but given the short time on the ground these areas can not be written off yet.

The discovery of mafic intrusives (gabbro and pyroxenite) on the east side of the property is novel as these have not been documented from previous geological surveys. The Maude Lake Ni occurrence is located 7km W of these sample locations and mineralization there is also hosted within pyroxenitic intrusions. Although no sulfide mineralization was observed in these samples, the extent of the intrusion should be defined and more thorough prospecting for sulfide mineralization should be completed.

In consideration of the geology and mineralization observed at Syenite Lake an airborne electromagnetic survey is recommended to focus a second, more robust prospecting and mapping program. Any conductors should be ground truthed and more detailed geological mapping should be completed.

Expenditures

Expenditure Type	Cost/Unit	Units	Total
Geologist in Training	\$750.00	4	\$3,000.00
Field Assistant	\$525.00	3	\$1,575.00
Management Fee	\$100.00	2	\$200.00
Truck Rental	\$100.00	2	\$200.00
Supplies	\$167.00	1	\$167.00
Helicopter Costs	\$2,443.00	1	\$2,443.00
Lodging	\$1,039.92	1	\$1,039.92
Meals	\$60.00	8	\$480.00
Assays	\$51.20	33	\$1,689.60
Report Writing	\$4,000.00	1	\$4,000.00
		Total	\$14,794.52

Table 4: Summary of Expenditures on the 2022 Syenite Lake Exploration Program

Table 5: Distribution of Expenditures

Cell ID	Grab Sample	Sample Analysis	Mapping Station	Proportion of	Labour/Fixed	Total Cost/Cell
Centro	Count	Costs	Count	Stations/Cell	Costs	Total Cost/Cell
631406	4	\$198.78	2	7.41%	\$970.73	\$1,169.51
631407	6	\$298.16	4	14.81%	\$1,941.47	\$2,239.63
631412	10	\$496.94	10	37.04%	\$4,853.67	\$5,350.62
631420	3	\$149.08	1	3.70%	\$485.37	\$634.45
631422	1	\$49.69	1	3.70%	\$485.37	\$535.06
631423	5	\$248.47	5	18.52%	\$2,426.84	\$2,675.31
631424	5	\$248.47	4	14.81%	\$1,941.47	\$2,189.94
Total	34	\$1,689.60	• 27	100.00%	\$13,104.92	\$14,794.52

Statement of Qualifications

I, Steven D. Flank, of the City of Thunder Bay, in the Province of Ontario, do hereby certify that:

- 1. I am the President and Principal Geoscientist of Bayside Geoscience Inc., a geological consulting company based in Thunder Bay, Ontario.
- I am a member in good standing with the Association of Professional Geoscientists of Ontario (#2695), residing at 124 Sherwood Drive, Thunder Bay, Ontario, P7B 6L1.
- 3. I attained an H.BSc. in Geology from Lakehead University in Thunder Bay, Ontario (2011) and an M.Sc. in Mineral Exploration from Laurentian University in Sudbury, Ontario (2017).
- I have worked as an exploration geologist for over 10 years focusing on project generation and early-stage gold projects including shear zone hosted lode gold and intrusion related disseminated gold deposits and intrusion related Ni-Cu-PGE deposits.
- 5. I personally supervised work at the 2022 Prospecting Program at the Syenite Lake Preoperty as described in this report.

Dated

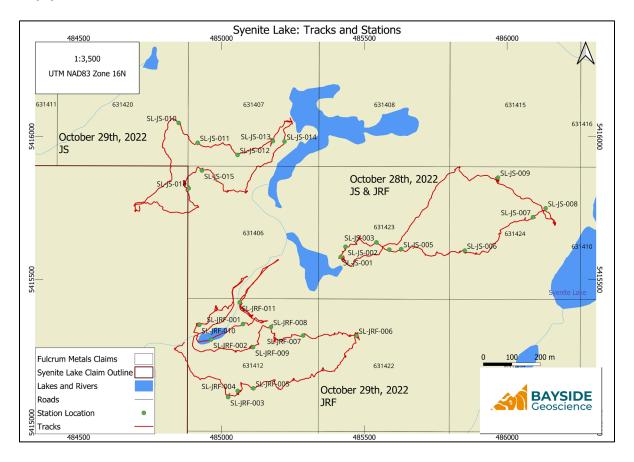
January 17, 2023

Thunder Bay, Ontario, Canada

Steven D. Flank, M.Sc., P.Geo.

References

- Carter, M.W. (1982). Precambrian Geology of the Terrace Bay Area, Northeast Sheet, Thunder Bay District; Ontario Geological Survey, Map P2557. Geological Series Preliminary Map, Scale 1:15840 or 1 icnch to ¼ mile. Geology 1981.
- East Sullivan Mines Limited (1950). Geological report submitted for assessment credit Regional Geologist's Files, Thunder Bay, Ontario.
- Hancox J., and Schneider G. (2013). Phase 1 Desktop Assessment. Environmental Report - Township of Schreiber, Ontario. Report No. 12-1152-0026 (4002), APM-REP 06144-0034, 54p.
- Huss, L. (2014). Report on Geological Mapping Prospecting Programs, Pick Lake Project. Golden Share Mining Corporation Assessment Report. 96p.
- Lodge, R.W.D. (2012) Winston Lake and Manitouwadge revisited: modern views of two volcanogenic massive sulphide (VMS)-endowed greenstone belts. A field trip guidebook; Ontario Geological Survey, Open File Report 6282, 34p.
- Pye, E. G. (1964). Mineral Deposits of the Big Duck Lake Area. Ontario Department of Mines Geological Report 27, 61p.
- Sanders T.S.J. (1984). Report of Work Geophysical Surveys Ansell Lake Property. Flint Rock Mines Limited Assessment Report, 34p.
- Sanders T.S.J (1985). Report of Work Weisner Lake Property. Flint Rock Mines Limited Assessment Report. 21p.
- Severin, P.W.A., Balint, F. and Sim, R. (1991). Geological Setting of the Winston Lake
 Massive Sulphide Deposit. Mineral Deposits in the Wester Superior Province,
 Ontario Field Trip 9. Geological Survey of Canada, Open File Report 2164, 58-73p.
- Statistics Canada. (2022). Canadian Climate Normals 1971-2000 Station Data. https://climate.weather.gc.ca/climate_normals/results_e.html?searchType=stnN me&txtStationName=Terrace+Bay&searchMethod=contains&txtCentralLatMin 0&txtCentralLatSec=0&txtCentralLongMin=0&txtCentralLongSec=0&stnID=40 &dispBack=1
- Williams, H.H., Stott, G.M., Heather, K.B., Muir, T.L., and Sage, R.P. (1991). Wawa Subprovince: introduction; in Geology of Ontario, Ontario Geological Survey, Special Volume 4, Part 1, p. 485 – 539.


Appendix A: Claim Details

Claim	Claim	Expiry	Haldar	Township/Are
ID	Туре	Date	Holder	а
631426	SCMC	2023-01-19	(100) Fulcrum Metals (Canada) Ltd.	Lower Aguasabon Lake Area, Priske
631427	SCMC	2023-01-19	(100) Fulcrum Metals (Canada) Ltd.	Priske
631428	SCMC	2023-01-19	(100) Fulcrum Metals (Canada) Ltd.	Lower Aguasabon Lake Area, Priske
631429	SCMC	2023-01-19	(100) Fulcrum Metals (Canada) Ltd.	Priske
631430	SCMC	2023-01-19	(100) Fulcrum Metals (Canada) Ltd.	Lower Aguasabon Lake Area, Priske
631431	SCMC	2023-01-19	(100) Fulcrum Metals (Canada) Ltd.	Priske
631432	SCMC	2023-01-19	(100) Fulcrum Metals (Canada) Ltd.	Priske
631433	SCMC	2023-01-19	(100) Fulcrum Metals (Canada) Ltd.	Priske
631434	SCMC	2023-01-19	(100) Fulcrum Metals (Canada) Ltd.	Priske
631435	SCMC	2023-01-19	(100) Fulcrum Metals (Canada) Ltd.	Priske
631404	SCMC	2023-01-19	(100) Fulcrum Metals (Canada) Ltd.	Lower Aguasabon Lake Area
631405	SCMC	2023-01-19	(100) Fulcrum Metals (Canada) Ltd.	Lower Aguasabon Lake Area
631406	SCMC	2023-01-19	(100) Fulcrum Metals (Canada) Ltd.	Lower Aguasabon Lake Area
631407	SCMC	2023-01-19	(100) Fulcrum Metals (Canada) Ltd.	Lower Aguasabon Lake Area
631408	SCMC	2023-01-19	(100) Fulcrum Metals (Canada) Ltd.	Lower Aguasabon Lake Area
631409	SCMC	2023-01-19	(100) Fulcrum Metals (Canada) Ltd.	Lower Aguasabon Lake Area
631410	SCMC	2023-01-19	(100) Fulcrum Metals (Canada) Ltd.	Lower Aguasabon Lake Area
631411	SCMC	2023-01-19	(100) Fulcrum Metals (Canada) Ltd.	Lower Aguasabon Lake Area

631412	SCMC	2023-01-19	(100) Fulcrum Metals (Canada) Ltd.	Lower Aguasabon Lake Area
631413	SCMC	2023-01-19	(100) Fulcrum Metals (Canada) Ltd.	Lower Aguasabon Lake Area
631414	SCMC	2023-01-19	(100) Fulcrum Metals (Canada) Ltd.	Lower Aguasabon Lake Area
631415	SCMC	2023-01-19	(100) Fulcrum Metals (Canada) Ltd.	Lower Aguasabon Lake Area
631416	SCMC	2023-01-19	(100) Fulcrum Metals (Canada) Ltd.	Lower Aguasabon Lake Area
631417	SCMC	2023-01-19	(100) Fulcrum Metals (Canada) Ltd.	Lower Aguasabon Lake Area
631418	SCMC	2023-01-19	(100) Fulcrum Metals (Canada) Ltd.	Lower Aguasabon Lake Area
631419	SCMC	2023-01-19	(100) Fulcrum Metals (Canada) Ltd.	Lower Aguasabon Lake Area
631420	SCMC	2023-01-19	(100) Fulcrum Metals (Canada) Ltd.	Lower Aguasabon Lake Area
631421	SCMC	2023-01-19	(100) Fulcrum Metals (Canada) Ltd.	Lower Aguasabon Lake Area
631422	SCMC	2023-01-19	(100) Fulcrum Metals (Canada) Ltd.	Lower Aguasabon Lake Area
631423	SCMC	2023-01-19	(100) Fulcrum Metals (Canada) Ltd.	Lower Aguasabon Lake Area
631424	SCMC	2023-01-19	(100) Fulcrum Metals (Canada) Ltd.	Lower Aguasabon Lake Area
631425	SCMC	2023-01-19	(100) Fulcrum Metals (Canada) Ltd.	Lower Aguasabon Lake Area
644566	SCMC	2023-03-19	(100) Fulcrum Metals (Canada) Ltd.	Lower Aguasabon Lake Area
644567	SCMC	2023-03-19	(100) Fulcrum Metals (Canada) Ltd.	Lower Aguasabon Lake Area
644568	SCMC	2023-03-19	(100) Fulcrum Metals (Canada) Ltd.	Lower Aguasabon Lake Area
644569	SCMC	2023-03-19	(100) Fulcrum Metals (Canada) Ltd.	Lower Aguasabon Lake Area
644570	SCMC	2023-03-19	(100) Fulcrum Metals (Canada) Ltd.	Lower Aguasabon Lake Area
644571	SCMC	2023-03-19	(100) Fulcrum Metals (Canada) Ltd.	Lower Aguasabon Lake Area
644572	SCMC	2023-03-19	(100) Fulcrum Metals (Canada) Ltd.	Lower Aguasabon Lake Area

644573	SCMC	2023-03-19	(100) Fulcrum Metals (Canada) Ltd.	Lower Aguasabon Lake Area
644574	SCMC	2023-03-19	(100) Fulcrum Metals (Canada) Ltd.	Lower Aguasabon Lake Area
644575	SCMC	2023-03-19	(100) Fulcrum Metals (Canada) Ltd.	Lower Aguasabon Lake Area
644576	SCMC	2023-03-19	(100) Fulcrum Metals (Canada) Ltd.	Lower Aguasabon Lake Area
644577	SCMC	2023-03-19	(100) Fulcrum Metals (Canada) Ltd.	Lower Aguasabon Lake Area
644578	SCMC	2023-03-19	(100) Fulcrum Metals (Canada) Ltd.	Lower Aguasabon Lake Area
644579	SCMC	2023-03-19	(100) Fulcrum Metals (Canada) Ltd.	Lower Aguasabon Lake Area
644580	SCMC	2023-03-19	(100) Fulcrum Metals (Canada) Ltd.	Lower Aguasabon Lake Area
644581	SCMC	2023-03-19	(100) Fulcrum Metals (Canada) Ltd.	Lower Aguasabon Lake Area
658843	SCMC	2023-05-27	(100) Fulcrum Metals (Canada) Ltd.	Priske
658844	SCMC	2023-05-27	(100) Fulcrum Metals (Canada) Ltd.	Priske
658845	SCMC	2023-05-27	(100) Fulcrum Metals (Canada) Ltd.	Priske
658846	SCMC	2023-05-27	(100) Fulcrum Metals (Canada) Ltd.	Priske
658847	SCMC	2023-05-27	(100) Fulcrum Metals (Canada) Ltd.	Priske
658848	SCMC	2023-05-27	(100) Fulcrum Metals (Canada) Ltd.	Priske
658849	SCMC	2023-05-27	(100) Fulcrum Metals (Canada) Ltd.	Priske
658850	SCMC	2023-05-27	(100) Fulcrum Metals (Canada) Ltd.	Priske
658851	SCMC	2023-05-27	(100) Fulcrum Metals (Canada) Ltd.	Priske
658852	SCMC	2023-05-27	(100) Fulcrum Metals (Canada) Ltd.	Priske

Appendix B: Tracks and Station Locations

Appendix C: Daily Work Logs

Table 2 - Daily Work Logs

Personnel	Date	Details	Samples
Joe/Jules/Jeremie	28-Oct-22	 Location: Syenite Lake Objective: Identify and sample large quartz porphyry unit described in historic map. Notes: Cameron sick, stayed back. No quartz porphyry located. Gabbro with porphyritic texture and brecciated quartz veins located. Majority of area is covered by mafic volcanics. Intensely mineralized float sample with up to 10% pyrrhotite. Gossanous and mineralization is banded. 	1101728 - 1101737
Jeremie/Cameron	29-Oct-22	 Location: Syenite Lake Objective: Locate and sample mineralization associated with conductivity anomaly. Notes: Multiple quartz porphyry dykes striking NE with abundant euhedral pyrite. Weakly mineralized intermediate-mafic volcanics. Porphyritic samples typically found on edges of swamps and within topographic lows. 	1101763 - 1101773
Joe/Jules	29-Oct-22	Location: Syenite Lake Objective: Locate and sample mineralization associated with conductivity anomaly. Notes: Multiple oxidized mafic volcanic outcrops with minor sulphides and variable amounts of quartz stockwork.	1101738 - 1101750

Appendix D: Station Descriptions

Station_ID	Sample_ID	Easting	Northing	Elevation	Sampler	Date	Sample_Med	Lithology	Lith_Mod	Struct_1	Struc_1_A	z St	truc_1_Di	Str_1_Cor	ns Str_	1_Gen	Struct_2	Struc_2_Az	Struc_2_Di	Str_2_Cons	Str_2_Gen
SL-JS-001	1101728	485418	5415579	418	JS	2022-10-28	Outcrop		Porphyritic	Foliation		60									
SL-JS-002	1101729	485434	5415615	431	JS	2022-10-28	Outcrop	Mafic Volcanic													
SL-JS-003	1101730	485543	5415630	462	JS	2022-10-28	Outcrop	Intermediate Volcanic	Tuff	Foliation	3	52	52								
SL-JS-004	1101731	485588	5415605	480	JS	2022-10-28	Outcrop	Mafic Volcanic		Foliation	2	60	80								
SL-JS-005	1101732	485626	5415604	479	JS	2022-10-28	Subcrop			Shear Zone	2	28	80			1	Vein	ç	95 85	Quartz	2
SL-JS-006	1101733	485851	5415601	472	JS	2022-10-28	Outcrop	Mafic Volcanic		Vein	2	55									
SL-JS-007a	1101734	486090	5415718	457	JS	2022-10-28	Float	Mafic Volcanic													
SL-JS-007b	1101735	486090	5415718	457	JS	2022-10-28	Float	Mafic Volcanic													
SL-JS-008	1101736	486135	5415749	452	JS	2022-10-28	Outcrop	Quartz Vein	Breccia												
SL-JS-009	1101737	485968	5415856	461	JS	2022-10-28	Outcrop	Mafic Volcanic													
SL-JS-010a	1101738	484850	5416047	413	JS	2022-10-29	Outcrop	Mafic Volcanic		Foliation	2	40	78								
SL-JS-010b	1101739	484850	5416047	413	JS	2022-10-29	Outcrop	Mafic Volcanic		Foliation	2	40	78								
SL-JS-010c	1101740	484850	5416047	413	JS	2022-10-29	Outcrop	Mafic Volcan	ic	Foliation	2	40	78								
SL-JS-011	1101741	484917	5415978	417	JS	2022-10-29	Outcrop	Mafic Volcan	ic												

Station_ID	Sample_ID	Easting	Northing	Elevation	Sampler	Date	Sample_Me	d Lithology	Lith_Mod	Struct_1	Struc_1_Az	Struc_1_Di	Str_1_Cons	Str_1_Gen	Struct_2	Struc_2_Az	Struc_2_Di	Str_2_Cons	Str_2_Gen
SL-JS-012a	1101742	485056	5415936	420	JS	2022-10-29	Outcrop	Gabbro		Vein	150	60							
SL-JS-012b	1101743	485056	5415936	420	IS	2022-10-29	Outcrop	Gabbro		Vein	150	60							
										Vent	100	00							
SL-JS-013a	1101744	485180	5415984	419	JS	2022-10-29	Outcrop	Pyorxenite											
SL-JS-013b SL-JS-014	1101745 1101746	485180 485221	5415984 5415983	419 421		2022-10-29 2022-10-29		Pyorxenite Mafic Volcan	ic.										
	1101740	403221				2022-10-23	Fillal												
SL-JS-015	1101747	484931	5415881	424	JS	2022-10-29	Outcrop	Gabbro											
SL-JS-016a	1101748	484886	5415819	427	19	2022-10-29	Outerop	Felsic Volcar	Tuff	Foliation	70	60							
3L-33-010a	1101740	404000	3413013	421	35	2022-10-23	Outerop	I CISIC VOICAI	run	1 Olladori	10	00							
SL-JS-016b	1101749	484886	5415819	427	JS	2022-10-29	Outcrop	Felsic Volcani	Tuff	Foliation	70	60							
SL-JS-016c	1101750	484886	5415819	427	JS	2022-10-29	Outcrop	Felsic Volcani	Tuff	Foliation	70	60							
SL-JRF-001	1101763	485075	5415344	422	JRF	2022-10-29	Outorop	Intermediate V	Dorphyritia	Contact	227				Vein	34	20	Quartz	
															ven		50	Quartz	
SL-JRF-002	1101764	484964	5415290		JRF	2022-10-29	•	Intermediate V		Foliation	258								
SL-JRF-003	1101765	485023	5415089	439	JRF	2022-10-29	Subcrop	Mafic Volcanic											
SL-JRF-004	1101766	485057	5415111	440	JRF	2022-10-29	Outcrop	Mafic Volcanic			3								
SL-JRF-005	1101767	485112	5415120	436	JRF	2022-10-29	Outcrop	Intermediate V	olcanic		0								
SL-JRF-006	1101768	485473	5415304	433	JRF	2022-10-29	Outcrop	Intermediate V	Porphyritic	Vein	114				Foliation	246		Chlorite	
SL-JRF-007	1101769	485286	5415304	435	JRF	2022-10-29	Outcrop	Mafic Volcanic											
SL-JRF-008	1101770	485173	5415334	431	JRF	2022-10-29	Outcrop	Intermediate V	olcanic										
SL-JRF-009	1101771	485111	5415263	430	JRF	2022-10-29	Outcrop	Intermediate V	olcanic	Shear Zone	238								
SL-JRF-010	1101772	484922	5415342	438	JRF	2022-10-29	Outcrop	Intermediate V	Porphyritic										
SL-JFR-011	1101773	485064	5415420	431	JRF	2022-10-29	Outcrop	Intermediate V	Porphyritic	Foliation	73								

Station_ID	Sample_ID	Easting	Northing	Elevation	Alt_1	Alt_1_Inte	Alt_1_Styl	Alt_2	Alt_2_Inte	Alt_2_Styl	Minz_1	Minz_1_Per	Minz_1_Sty	Minz_2	Minz_2_Per	Minz_2_Sty	Minz_3	Minz_3_Per Minz_3_St	/ Notes
SL-JS-001	1101728	485418	5415579	418	Chlorite	Weak	Fracture Controlled												Weakly schistose fine grained matrix with quartz phenocrysts. Non magnetic and no mineralization. Found on edge of swamp.
SL-JS-002	1101729	485434	5415615	431							Pyrite	1	Stringers						Fg massive magic volcanic with no alt and 1 stringer of pyrite. Non magnetic. Sample taken. On side of 3 meter shear face on hill.
SL-JS-003	1101730	485543	5415630	462	Calcite	Weak	Fracture Controlled	Silica	Moderate	Pervassive	Pyrite	2	Stringers						5x5 outcrop. Intermediate volcanic tuff. More felsic near sheared section. Sulfides fracture filling carb veinlets. Sample taken.
SL-JS-004	1101731	485588	5415605	480	Calcite	Weak	Patchy				Pvrite	2	Whispy						Fine grained mafic volcanic moderate shear approx. 1-2 ft wide. Patchy magnetism most likely due to magnetite. Sample taken from angular float sitting on outcrop with 2% bleary ovrite
SL-JS-005	1101732	485626			Silica	Moderate		Chlorite	Weak	Fracture Controlled	Pyrite	1	Vein						Sheared felsic-int volcanic. Looks to be sheared porphyry. Sheared is atleast 1 meter wide. Weak to no minz. Sampled quartz vein cross cutting the shear.
SL-JS-006	1101733	485851	5415601	472	Epidote	Moderate	Veins	Calcite	Weak	Patchy									Side of hill. Strong epidote stringer veins running through fg mv. No minz.
SL-JS-007a	1101734	486090	5415718	457	Silica	Weak	Fracture Controlled				Pyrrhotite	10	Fracture Filling	Chalcopyrite	1	Fracture Filling			2 samples taken of gossanous mafic volcanic(potentially seds) magnetic pyrrhotite bands throughout unit. Orange- purple staining. Black fg-aphanitic. Minor color observed. Float. Proximal to mv oc.
SL-JS-007b	1101735	486090	5415718	457	Silica	Weak	Fracture Controlled				Pvrrhotite	10	Fracture Filling	Chalcopyrite	1	Fracture Filling			2 samples taken of gossanous mafic volcanic(potentially seds) magnetic pyrrhotite bands throughout unit. Orange- purple staining. Black fg-aphanitic. Minor color observed. Float. Proximal to mv oc.
SL-JS-008	1101736	486135			Chlorite	Weak		Pottasium	Moderate	Patchy	Pyrite	1	Vein						White quartz vein running through mafic volcanic. Minor mineralization. Brown-green service found as well.
SL-JS-009	1101737	485968	5415856	461	Calcite	Weak	Pervassive				Pyrite	1	Disseminate d						Sampled mv. Not altered. Trace pyrite. Minor qtz sweats. Blocky outcrop on side of valley. Both sides composed of same. No strain.
SL-JS-010a	1101738	484850	5416047	413	Silica	Moderate	Veins	Calcite	Moderate	Patchy	Chalcopyrite	2	Stringers	Pyrite	2	Whispy			Oxidized outcrop composed of sheared fg mv with strong quartz stringer vein stockwork. Cpy occuring readily within the veins. 3 samples taken. Bt alt occuring in silicious sections.
SL-JS-010b	1101739	484850	5416047	413	Silica	Moderate	Veins	Calcite	Moderate	Patchy	Chalcopyrite	2	Stringers	Pyrite	2	Whispy			Oxidized outcrop composed of sheared fg mv with strong quartz stringer vein stockwork. Cpy occuring readily within the veins. 3 samples taken. Bt alt occuring in silicious sections.
SL-JS-010c	1101740	484850	5416047	413	Silica	Moderate	Veins	Calcite	Moderate	Patchy	Chalcopyrite	2	Stringers	Pyrite	2	Whispy			Oxidized outcrop composed of sheared fg mv with strong quartz stringer vein stockwork. Cpy occuring readily within the veins. 3 samples taken. Bt alt occuring in silicious sections.
SL-JS-011	1101741	484917	5415978	417	Calcite	Strong	Veins				Chalcopyrite	1	Fracture Filli	ng					Stronglt altered mv. Grain size increase, almost looks like gabbro due to hydrothermal alt. Less cpy here. Patchy oxidation. Non magnetic. 1 sample here. 5x5 oc.

Station_ID	Sample_ID	Easting	Northing	Elevation	Alt_1	Alt_1_Inte	Alt_1_Styl	Alt_2	Alt_2_Inte	Alt_2_Styl	Minz_1	Minz_1_Per	Minz_1_Sty	Minz_2	Minz_2_Per	Minz_2_Sty Minz_3	Minz_3_Per Minz_3_Sty Notes
																	Non magnetic mafic volcanic that resembles a gabbro. 2 2cm guartz veins running through.
SL-JS-012a	1101742	485056	5415936	420	Chlorite	Strong	Pervassive	Calcite	Moderate	Veins	Pyrite	3	Fracture Fillir	ng			Moderate sulfides occuring within host and vein. 042 vein, 043 host.
																	Non magnetic mafic volcanic that resembles a gabbro. 2 2cm guartz veins running through.
SL-JS-012b	1101743	485056	5415936	6 420	Chlorite	Strong	Pervassive	Calcite	Moderate	Veins	Pyrite	3	Fracture Fillir	ng			Moderate sulfides occuring within host and vein. 042 vein, 043 host.
						1					ſ			ľ			Moderately magnetic ultramafic composed of cq-pegmatitic hornblende. Disseminated
SL-JS-013a	1101744	485180	5415984	419	Chlorite	Moderate	Pervassive	Calcite	Moderate	Veins	Pyrite	3	Disseminate	Magnetite	1	Disseminated	sulfides throughout. 044 has a gtz carb vein within. Silicified in the host. 045 host.
											ſ						Moderately magnetic ultramafic composed of cq-pegmatitic hornblende. Disseminated
SL-JS-013b	1101745	485180	5415984	419	Chlorite	Moderate	Pervassive	Calcite	Moderate	Veins	Pyrite	3	Disseminate	Magnetite	1	Disseminated	sulfides throughout. 044 has a gtz carb vein within. Silicified in the host. 045 host.
SL-JS-014	1101746	485221	5415983	3 421	Calcite	Moderate	Pervassive	Chlorite	Weak	Pervassive	Pyrrhotite	3	Whispy				Float of fg mv with blebs of silvery po, magnetic on the sulfides.
																	Fg-mg gabbrp with patchy mag. Silvery sulfides seen along some faces but not all. Related
SL-JS-015	1101747	484931	5415881	424	Calcite	Weak	Patchy	Chlorite	Moderate	Pervassive	Pvrrhotite	3	Disseminate	d			to carb alteration. Sampled.
							<u> </u>				· ·						Strongly silicified volcanic. Tuffaceous. Close to mafic volcanic to the east. Sheared.
																	Patchy oxidation on surface. Quartz eyes speckled throughout. Light grey to beige. Strongly
SL-JS-016a	1101748	484886	5415819	427	Silica	Strong	Pervassive	Calcite	Weak	Veins	Pvrite	5	Whispy				mineralized. Not mag
								-									
																	Strongly silicified volcanic. Tuffaceous. Close to mafic volcanic to the east. Sheared. Patchy oxidation
SL-JS-016b	1101749	484886	5415819	427	Silica	Strong	Pervassive	Calcite	Weak	Veins	Pyrite	5	Whispy				on surface. Quartz eyes speckled throughout. Light grey to beige. Strongly mineralized. Not mag
							L .										Strongly silicified volcanic. Tuffaceous. Close to mafic volcanic to the east. Sheared. Patchy oxidation
SL-JS-016c	1101750	484886	5415819	42/	Silica	Strong	Pervassive	Calcite	Weak	Veins	Pyrite	5	Whispy				on surface. Quartz eyes speckled throughout. Light grey to beige. Strongly mineralized. Not mag
																	Contact between an intermediate and mafic porphyry. Possible shear. Very fine graines matrix with gtz-
SL-JRF-001	1101763	485075	5415344	422	Chlorite	Weak	Pervassive										carb phenocrysts. Light and dark green. Sample contains vein material. Found on side of swamp.
																	Medgrained with quartz phenocrysts as well as bull white qtz veins. Foliated possible shear. Euhedral
SL-JRF-002	1101764	484964	5415290	421	Silica	Moderate	Pervassive				Pyrite	3	Disseminated				disseminated pyrite edge of swamp.
																	FG massive mafix volcanic. No prominent alteration. Vfg-fg mineralization. Found within woodland on
SL-JRF-003	1101765	485023	5415089	439	9						Pyrite	1	Disseminated	Chalcopyrite	1	Whispy Pyrrhotite	
																	Massive vfg mafic volcanic with weak silica alteration. Patchy pyrite and highly oxidized fracture
SL-JRF-004	1101766	485057	5415111	440	Silica	Weak	Pervassive				Pyrite	4	Whispy				surfaces. Found on ledge within a hill
SL-JRF-005	1101767	485112	5415120	426	Biotite	Moderate	Patchy				Pvrite	.	Disseminated				Weakly metamorphosed fg-mg mafic volcanic with amphibole porphyroblasts. Patchy disseminated pyrite. Found on ledge parallel to hill side
SL-JRF-000	1101707	400112	0410120	430	DIULILE	Woderate	Fatony				Fynte	· · · ·	Disseminateu				Foliated and silicified int. Volcanic. Chloritized shear planes with a fine to med grain matrix. Hars to
SL-JRF-006	1101768	485473	5415304	433							Pvrite	1 1	Disseminated				distinguish due to intense silicification. Found on hill side SE of W15.
02010 000		100110	011000	100							i jiio		Diocominatod				Aphanitic or vig mafic volcanic with vig disseminated pyrite. Very dark grey in colour with moderate
SL-JRF-007	1101769	485286	5415304	435	5	1	1				Pyrite	1 1	Disseminated				oxidation on weathered surfacea
											ĺ						
SL-JRF-008	1101770	485173	5415334	431	Chlorite	Weak	Pervassive				Pyrrhotite	2	Disseminated		0		0 Med grained with red pink minerals and chlorite within. Possible foliation. Found on ridge near stream
												I .					Dighly sheared intermediate volcanic with laths of chlorite running parallel to shear strike. Scattered
SL-JRF-009	1101771	485111	5415263	430) Chlorite	Moderate	Fracture Cont	rolled			Pyrite	2	Disseminated				qtz veins and multiple displaced veins
	4404770	40.4000	E AAE O A		0	0	Demonster				Durite	,	Discourses				Porphyritic int volcanic with coarse quartz phenocrysts. Oxidized weathered surfaces and fractures.
SL-JRF-010	1101772	484922	5415342	438	Silica	Strong	Pervassive				Pyrite	- 2	Disseminated				Found north of pond by W15. Possible carb alt.
SL-JFR-011	1101773	485064	5415420	121	Chlorite	Weak	Fracture Cont	Silica	Strong	Pervassive	Pvrite		Disseminated				porphyrytic with vitreous quartz phenocrysts. Chlorite along foliation planes. Found on edge of swamp.
JL-JFR-UII	1101//3	400004	0410420	43	GIIUIILE	vvedr.	In acture Cont	Sillea	Juniy	I CIVASSIVE	rynte	4	Disseminated	L	J	II	porphytytic with viteous quartz phenocrysts. Chiome along ionation planes. Found on edge of swamp.

Appendix E: Assay Certificates

Quality Analysis ...

Innovative Technologies

Report No.:	A22-16328
Report Date:	23-Dec-22
Date Submitted:	03-Nov-22
Your Reference:	SYENITE, BEAVERTRAP, CARIB

Bayside Geoscience 124 Sherwood Dr. Thunder Bay ON P7B 6L1 Canada

ATTN: Steve Flank

CERTIFICATE OF ANALYSIS

94 Rock samples were submitted for analysis.

The following analytical package(s) were requested:		Testing Date:
UT-1M	QOP Ultratrace-1 (Aqua Regia ICPMS)	2022-12-21 16:10:45

REPORT A22-16328

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

If value exceeds upper limit we recommend reassay by fire assay gravimetric-Code 1A3

The Au from AR-MS is for information purposes, for accurate Au fire assay 1A2 should be requested.

LabID: 266

ACTIVATION LABORATORIES LTD. 41 Bittern Street, Ancaster, Ontario, Canada, L9G 4V5 TELEPHONE +905 648-9611 or +1.888.228.5227 FAX +1.905.648.9613 E-MAIL Ancaster@actlabs.com ACTLABS GROUP WEBSITE www.actlabs.com CERTIFIED BY:

Elitsa Hrischeva, Ph.D. Quality Control Coordinator

Quality Analysis ...

Innovative Technologies

Report No.:	A22-16328
Report Date:	23-Dec-22
Date Submitted:	03-Nov-22
Your Reference:	SYENITE, BEAVERTRAP, CARIB

Bayside Geoscience 124 Sherwood Dr. Thunder Bay ON P7B 6L1 Canada

ATTN: Steve Flank

CERTIFICATE OF ANALYSIS

94 Rock samples were submitted for analysis.

The following analytical package(s) were requested:		Testing Date:
1A2-Tbay	QOP AA-Au (Au - Fire Assay AA)	2022-12-15 12:45:51

REPORT A22-16328

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

If value exceeds upper limit we recommend reassay by fire assay gravimetric-Code 1A3

The Au from AR-MS is for information purposes, for accurate Au fire assay 1A2 should be requested.

LabID: 673

ACTIVATION LABORATORIES LTD. 1201 Walsh Street West, Thunder Bay, Ontario, Canada, P7E 4X6 TELEPHONE +807 622-6707 or +1.888.228.5227 FAX +1.905.648.9613 E-MAIL Tbay@actlabs.com ACTLABS GROUP WEBSITE www.actlabs.com CERTIFIED BY:

Elitsa Hrischeva, Ph.D. Quality Control Coordinator

ſ	IZ	D.1	AR-MS	20.8	2.9	22.1	27.2	31.6	3.9	67.5	30.1	65.0	23.6	15.1	1660	43.4	29.8	43.2	3.4	3.2	6.7	24.4	23.2	4.5	0.8	1.6	1.7	2.3	2.4	1.1	1.8	1.7	64.5	94.2	88.8	1.6	132	60.8	44.6	26.6	88.8	67.5	62.9	10
		0.001	S	0.188	0.055	0.133	0.232	0.197	0.196	0.106	0.025	0.121	0.473	0.351	0.009	0.317	0.256	0.324	0.143	0.205	0.069	0.287	0.273	0.081	0.041	0.113	0.049	0.031	0.105	0.110	0.079	0.086	0.408	0.208	0.429	0.168	0.083	0.097	0.079	0.050	0.284	0.389	0.422	1001
		D.1	-MS	0.6	0.8	0.7	1.0	1.0	1.1	1.5	0.7	1.3	0.7	1.2	0.3	1.0	0.8	0.6	0.7	0.9	0.5	0.8	20.4	1.7	0.5	0.7	0.8	0.9	1.0	1.0	4.4	0.8	1.1	0.6	2.0	0.9	2.0	2.8	2.3	0.8	0.7	1.0	2.4	
		1 1	AR-MS		123			2710	2250	203	121	181	2130	1430	723	2350	2710	1180	1250	2990	327	1540	1010	549	89	117	106	128	208	155	164	271	629	901	1390	545	1690	2770	2500	698	006	1050	1040	
	_	% 0.01	MS	1.25	0.04	0.97	1.01	0.75	0.62	0.28	0.12	0.20	2.67	1.81	> 10.0	1.65	1.31	1.86	0.58	0.60	0.40	1.55	1.40	0.53	0.03	0.07	0.07	0.33	0.25	0.12	0.33	0.62	1.75	1.75	1.57	0.70	2.97	1.02	0.86	0.83	1.21	1.17	1.19	
		pprn 1	AR-MS	5	4	7	7	8	5	20	14	21	5	5	< 1	4	4	4	8	3	L L	7	F	5	12	21	15	14	9	34	8	20	11	11	0	13	22	7	7	4	7	10	10	
	X Q	0.01	MS			0.53		0.27	0.28	0.02	0.01	0.04	0.06	0.17	< 0.01	0.13	0.09	0.15	0.20	0.25	0.21	0.22	0.12	0.07	0.03	0.28	0.04	0.07	0.11	0.04	0.31	0.40	0.26				0.04			0.13	0.08		0.55	
	Hg	0.01	AR-MS	0.03	0.04	0.03	0.05	0.05	0.04	0.04	0.03	0.04	0.03	0.03	0.04	0.05	0.04	0.05	0.02	0.03	0.03	0.02	0.07	0.04	0.03	0.03	0.03	0.06	0.05	0.04	0.04	0.04	0.03	0.02	0.03	0.05	0.05	0.04	0.03	0.03	0.03	0.05	0.04	
	Ga	ppm 1	AR-MS	8	1	9	10	10	9	2	< 1	2	19	12	4	13	11	12	8	10	5	6	8	11	4	3	2	7	5	4	7	5	11	15	12	5	16	9	8	4	9	14	13	
	Fe o'	% 0.01	AR-MS	6.38	0.66	5.76	10.9	11.9	10.1	3.39	1.67	3.01	11.5	9.26	6.39	12.2	10.6	6.46	9.68	10.5	1.21	6.72	5.82	5.43	1.47	1.04	1.07	1.36	1.50	1.95	3.29	2.12	5.29			1.71	9.69	15.7	13.3	2.59	6.87	7.09	6.72	
		ppm 0.2	AR-MS	198	5.1	74.5	293	323	59.2	30.9	16.7	31.9	278	232	6.0	816	632	311	269	415	8.1	237	46.8	301	4.9	2.4	1.9	5.0	5.6	3.7	54.7	1.9	39.2	29.3	28.8	1.2	20.3	343	138	7.0	59.2	1050	476	
		1	AR-MS	8	6	43	28	25	22	82	30	57	15	12	2820	24	11	46	7	9	17	55	122	35	5	6	6	6	8	7	8	7	46	56	64	8	70	29	27	34	70	91	86	20
	8		-MS	22.5	1.4					19.3	9.9	20.1	27.8	21.4	116	50.8	41.6	30.2	4.5	5.9	6.8	21.2	16.9	4.4	0.6	0.7	0.7	2.1	1.3	0.7	1.3	3.7	24.8	36.6	40.0	2.4	46.0	23.2	29.8			25.9		2
		D.1	-MS	0.1	< 0.1	< 0.1	0.2	0.2	0.1	< 0.1	< 0.1	0.1	0.1	0.2	< 0.1	0.5	0.3	0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	0.2	0.3	< 0.1	< 0.1	0.2	< 0.1	0.2	0.1	0.1	< 0.1	0.7	0.3	0.0
	Ca o'	% 0.01	ИS	3.44	0.41	0.88	3.23	3.04	2.55	0.40	0.35	0.66	3.72	4.04	0.12	4.31	3.64	4.99	2.09	3.22	2.80	3.28					0.10	0.55	0.09	0.95	0.04	0.22	3.23	3.17	3.23	0.81	1.86	2.83	2.86				3 56	
	Bi	ppm 0.1	AR-MS	2.9	0.7	0.5	11.1	8.5	7.7	0.4	0.2	0.4	0.1	0.6	1.2	0.4	0.4	< 0.1	5 .0	0.6	< 0.1	0.2	< 0.1	0.2	< 0.1	0.1	< 0.1	< 0.1	< 0.1	< 0.1	0.3	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	6.7	3.2	0.2	< 0.1	3.0	VC	i
		1 1	AR-MS	37	8	C		24	53	12	7	22	14	44	18	27	19	31	45	52	34	20	23	17	20	57	11	10	18	9	113	65	99				24	12	12	42			1 A A	
1	8	50 midd	AR-MS		< 20					< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	20	< 20	< 20	< 20		< 20		< 20	< 20	< 20	< 20	< 20						< 20				V		< 20		001	
-	Au				-							LO		1.1	2.0	10.4	4.6		5.9	1.0	3.1		1.0	5.6	< 0.5		< 0.5	1.3	< 0.5	< 0.5		< 0.5		V		V		64.6				2.3		
	As	0.5	AR-MS		0.7					2.7			1.2	1.1	2.4	1.5	1.5	2.1	1.5	1.7	1.0		1.7		0.7	< 0.5	0.7	< 0.5	0.6	< 0.5		< 0.5						-			0.0		102	
5	A	% 0.01				1.88				0.33					1.49	3.60	2.80	3.31	1.64		1.86	2.66	2.10	2.45	0.13		0.26	0.81	0.65												2.32		3 50	
	Ag	0.1	AR-MS	0.3	< 0.1	0.2								0.2	< 0.1	1.0	0.8	< 0.1	0.4	0.8	< 0.1	0.1	< 0.1	0.5	0.5	< 0.1	< 0.1	< 0.1	< 0.1		0.1	V					V		0.7	< 0.1	V		00	
	Au	2 bbo	FA-AA	6	12	6	161	129	96	09	42	95 95	10	о	< 5	8	<u></u> S >	< 5	< 2	11	< 5	< 5	2° 2	5	2 >	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	62	22	< 5	< 5	< 5	и \	
	loqu		e																																									

01816 01818 01819

01821

01721

01815

01813

01807 01808

01810

01809

01805

01803

01806

inalyte Symbol Jnit Symbol

196 80.7 74.7 35.4 35.4 79.1 71.8 71.8 1.4 1.4 5.7 5.7

0.196 0.375 0.496 0.517

0.5 1.4 0.8 0.7 0.6 0.6 0.6 1.7 1.7

803 757 735 735 726 726 615 155 155 179 162

877

0.13 0.05 0.09 0.14 0.13 0.13 0.13 0.13

0.03 0.02 0.03 0.06 0.07

 6.58

 9.56

 9.56

 6.99

 6.45

 7.40

 7.40

 3.43

 3.43

 3.81

 4.96

57.0 36.1 220 220 192 192 192 124 124 124 266 266 266 275

34.1 32.6 37.3 37.3 37.3 25.0 25.0 25.8 26.4 4.1 4.1 4.7

2:09 2:53 3:31 2:99 2:99 3:02 4:08 3:49 0.15 0.15 0.15 0.08

0.7 0.9 0.9 0.9 0.6 0.6 0.8 3.2 3.2 3.3 3.3

19 15 17 17 14 14 14 14 14 75 33 33

< 20</pre>< 20</pre>< 20</pre>< 20</pre>< 20</pre>< 20</pre>< 20</pre>< 20</pre><

 $\begin{array}{c} < 0.5 \\ 2.0 \\ 2.0 \\ 3.7 \\ -0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ \end{array}$

2.6 1.9 1.9 1.0 1.0 6.0 6.0 6.0 11.1

2:91 4.69 3.60 3.00 3.59 3.59 0.96 0.96 1.42

1101742 1101743 1101744 1101745 1101746 1101748 1101748 1101749 1101750

< 0.1 < 0.1 0.3

101740

739 101741

01738

< 0.10.20.20.40.40.6

214 109 90 145 123 90 95 7

< 0.1
 < 0.1

2.14 1.55 1.95 0.29 0.23 0.38

6 19 19 26

0.06

6 12

> 47 S

< 0.1 < 0.1

÷ Ξ

0.357

1.4

0.111

0.133

0.130 0.427

3.00 4.05 2.11

47

0.06 0.05 0.04

9 12 13 12 11 12

Results

Activation Laboratories Ltd.

Report: A22-16328

ïz	mdd		AR-MS	1.1	6 1.6	0 1.6	1 1.3	7 13.7	7.7 C	3 4.3	3 1.2	8 4.6	2 31.1	0 44.2	2 55.4	7 41.8	4 17.9	8 67.0	1 112	5 105	2 5.3	2 95.1	3 35.3		8 2.2		2 43.5					5 30.1	5 10.5	7 2.1	2 1.2	5 1.3	3.3	5 50.6			2 34.3			2 72.5	
Na	%	0.001	AR-MS	0.18		0.110	0.101	0.117	0.200	0.083	0.103	0.108	0.212	0.250	0.172	0.117	0.074	0.308	0.181	0.175	0.082	0.822	0.113		0.068	0.089	0.052	0.376			0.036			0.047	0.072	0.015	0.038	0.105						0.062	l
Mo	mdd	0.1	AR-MS	1.4	1.0	0.9	0.8	0.8	1.3	0.8	1.0	2.0	1.2	0.4	0.4	0.6	1.4	0.7	0.5	0.8	0.8	0.7	0.4	1.9		0.8	1.3	9.6	1.2	12.4	3.2	10.6	1.0	2.9	1.5	2.0	1.9	0.5	0.8	0.8	35.0	1.0	1.1	1.0	
Mn	mdd	-	AR-MS	233	138	166	120	443	453	177	155	204	443	1050	807	715	274	771	1400	657	593	626	522	1740	282	338	536	254	701	575	1100	879	1880	114	49	387	249	211	543	503	549	343	112	1020	
			AR-MS	0.36	0.05	0.07	0.07	0.66	0.89	0.17	0.07	0.34	1.62	2.03	1.59	1.10	0.54	1.22	1.81	1.71	0.84	1.57	1.64	1.13	0.22	0.38	1.25	1.64	1.88	1.21	0.55	0.54	1.17	0.06	< 0.01	0.07	0.07	1.09	2.05	1.71	1.28	0.40	0.24	1.22	
Π	mdd		AR-MS	14	30	60	< 1 <	10	20	5	5	61	10	ດ	5	7	16	œ	7	ດ	÷	10	152	13	12	21	10	37	19	11	5	0 S	с С	2	2	<mark><</mark> 1	2	4	23	14	9	ø	-	÷	
		_		0.07	0.08	0.06	0.16	0.51	0.66	0.07	0.09	0.16	0.16	0.22	0.13	0.05	0.16	0.10	0.07	0.27	0.08	1.62	0.06	0.14	0.13	0.24	0.25	0.30	0.91	0.78	0.12	0.12	0.07	0.04	0.17	0.03	0.12	0.11	1.50	0.12	0.16	0.08	0.07	0.14	
			AR-MS A	0.03	0.04	0.04	0.07	0.05	0.05	0.04	0.05	0.04	0.04	0.04	0.05	0.03	0.03	0.07	0.06	0.04	0.05	0.05	0.04	0.06	0.06	0.04	0.05	0.04	0.04	0.04	0.04	0.06	0.06	0.04	0.05	0.05	0.04	0.06	0.06	0.04	5.43	0.06	0.05	0.05	
			AR-MS AF	ω	03	3	3	9	6	4	n	5	9	15	10	7	4	8	14	13	7	18	œ	4	4	9	10	14	6	8	4	4	7	2	,	< 1	3	7	თ	7	7	n	-	÷	
	mdd		AR-MS AR	2.62	1.61	1.82	1.02	2.93	4.89	1.22	1.18	1.55	3.29	8.73	5.91	4.27	2.13	5.28	8.19	7.22	2.59	5.66	3.17	1.99	1.91	2.50	3.71	3.72	4.35	4.60	8.31	9.20	7.51	1.58	1.52	1.59	1.80	3.43	5.47	4.03	3.88	1.78	1.15	6.60	
				88.8	3.5	7.0	1.6		8.7	2.3	1.3	40.7	114	247	100	12.2	125	196	78.1	79.4	5.6	64.8	44.6		15.5			5.5	37.9	63.5	43.2	70.1	117	6.1	9.6	5.7	15.1	98.8	72.3			4.0	2.1	48.5	
	T		AR-		8	8	8	17	21	12	7	14	68	11	91						<mark>б</mark>	131 6	139	9	7	8	94	75	208	148 6	14 4	56	<mark>б</mark>	19	7	8	10				32	÷	17	81	
ັວ	mdd		IS AR-MS	2	1.1	1.4	0.4	3.1	9.6	2.6	0.6	2.5	21.6	34.8	23.0	18.0	3.1	23.3	52.1	37.9	5.0	35.2		6.	4.1	7.9	11.7	8.5	15.2		17.0	8.7	11.7	0.9	0.6	0.4	2.4	15.2	21.5	5.2	15.9	3.9	2.3	31.0	
8	mod	_	S AR-MS											0.1 34													0.1 11	_			1.2 17	1.6 8					0.1 2							e)	
PO	mdd		ΑF				2 < 0.1		4 < 0.1			8 < 0.1	9 < 0.1					v			2 < 0.1	3 < 0.1			5 < 0.1			2 < 0.1		8 < 0.1				V	2 < 0.1	V		V			4 < 0.1			0 < 0.1	
Ca	%		AR-MS			0.19	0.12				0.13	0.08	1.99	3.69		1.51					0.22	3.33				0.31	1.06	0.22	0.49	1.18	0.07	0.11		0.02	0.02	0.07	0.02	0.62			3.94			1.00	
Ē	mdd	0.1	AR-MS							< 0.1				0.6	0.4	< 0.1									0.6				0.1			0.3	0.5			0.2	0.9			< 0.1					
Ba	mdd	-	AR-MS	4	36	33	25	87	185	15	13	68	14	37	17	19	66	18	19	44	19	249	102	38	37	67	84	86	247	254	9	9	11	12	38	8	10	42	232	27	134	18	10	23	
В	mdd			< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	
				< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.6	< 0.5	< 0.5	1.4	2.1	1.1	< 0.5	< 0.5	0.5	< 0.5	0.8	1.7	< 0.5	< 0.5	< 0.5	0.6	< 0.5	< 0.5	2.1	< 0.5	< 0.5	5.1	1.6	2.6	1.2	< 0.5	< 0.5	15.0	< 0.5	2.7	1.2	1.5	0.8	< 0.5	< 0.5	< 0.5	
	_			1.0	0.8	1.2	0.8	1.0	0.5	< 0.5	0.5	< 0.5	0.7	1.3	1.1	0.8	1.0	< 0.5	1.5	1.0	1.6	0.7	< 0.5	0.8	1.3	1.7	<u>9.0</u>	0.9	3.6	1.5	43.6	23.1	< 0.5	2.4	1.7	14.7	1.5	1.0	< 0.5	1.0	1.2	0.9	< 0.5	1.0	
			_	0.89	0.30	0.33	0.42	1.14	1.41	0.56	0.35	0.75	1.73	3.11	2.00	1.57	0.89	1.97	3.54	3.53	1.21	7.02	1.30	1.23	0.68	1.00	2.10	2.17	2.46	2.49	0.89	1.06	2.32	0.19	0.30	0.05	0.23	1.25	2.24	1.91	2.34	0.71	0.39	2.50	
				0.1	0.2	0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	0.1	< 0.1	< 0.1	0.5	0.2	< 0.1	0.1	< 0.1	0.2	0.1	< 0.1	0.1	0.3	< 0.1	< 0.1	< 0.1	0.2	0.3	0.2	0.2	< 0.1	0.2	0.1	0.1	0.1	0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	
			FA-AA AF	< 5 <	< 5		< 5		< 5					< 5 <		< 5 <		< 5		< 5 <	< 5	< 5	< 5 <		< 5 <					10	< 5	< 5	< 5		< 5	< 5	< 5	< 5	< 5 <		< 5			< 5	
	qdd	2	FA	┥	_		L	\vdash		╞	╞	╞		╞	╞	╞	╞		╞	╞			╞	╞	╞				\square									╞	╞	┝	┝	╞	╞	┝	
Analyte Symbol	Unit Symbol	Lower Limit	Method Code	101751	1101752	1101753	1101754	101755	1101756	1101757	1101758	1101759	1101760	1101761	1101762	1101763	1101764	1101765	1101766	1101767	1101768	1101769	1101770	1101771	1101772	1101773	1101774	1101775	1101776	1101777	1101778	1101779	1101780	1101781	1101782	1101783	1101784	1101785	1101786	1101787	1101788	1101789	1101790	1101791	

Dim Dim <th>Analyte Symbol</th> <th></th> <th>Pb</th> <th>S o</th> <th>Sb</th> <th>Sc</th> <th></th> <th></th> <th></th> <th>Th</th> <th>E a</th> <th>F</th> <th></th> <th></th> <th>Zu</th>	Analyte Symbol		Pb	S o	Sb	Sc				Th	E a	F			Zu
Mitter Mitter<	aymbol er l imit		ppm 1	%		D 1					0.001				1 1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	nod Code	S	AR-MS		AR-MS	AR-MS				AR-MS	AR-MS	AR-MS	1S	NS	AR-MS
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1801	0.043					1.2		< 0.2		0.202	< 0.1	-		50
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1802	0.051						15	< 0.2				6	0.2	9
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1803	0.080						29	< 0.2		0.323			0.3	55
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1804	0.055						17	0.6					0.3	74
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1805	0.064						23	0.4	1.2				0.4	70
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1806	0.054		V				22	0.4	1.0			52	0.3	57
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1807	0.036						15	< 0.2	5.0			30	0.5	23
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1808	0.029		V				7	< 0.2	3.2			15	0.5	15
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1809	0.035						23	< 0.2	6.2			40	1.0	17
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1810	0.054						7	< 0.2		0.189		200	< 0.1	77
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1811	0.049						19	< 0.2		0.240		180	0.4	78
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1812	0.006			V			1	< 0.2	V	0.032	0.1	34	0.6	42
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1813	0.045		1	0.2			18	0.3	0.6	0.244	< 0.1	155	0.6	495
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1814	0.041						17	0.3	0.6			134	0.6	387
0.037 0.03 0.03 0.03 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01 </td <td>1815</td> <td>0.045</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>21</td> <td>< 0.2</td> <td>0.4</td> <td></td> <td></td> <td>153</td> <td>0.2</td> <td>71</td>	1815	0.045						21	< 0.2	0.4			153	0.2	71
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1816	0.037						20	0.3	0.5			101	0.3	72
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1817	0.032				-		24	0.4	0.5		< 0.1	130	0.6	95
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1818	0.052						14	< 0.2	0.1		< 0.1	29	0.3	26
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1819	0.037						40	< 0.2	0.4		< 0.1	140	0.2	53
	820	0.019						15	< 0.2	0.2		< 0.1	73	0.9	46
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	821	0.046						112	< 0.2	0.4			65	0.5	44
	721	0.001						S	< 0.2	8.2			5	0.1	11
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	722	0.014						6	< 0.2	18.3			5	< 0.1	13
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	723	0.002						œ	< 0.2		0.013		4	< 0.1	o
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	724	0.011						42	< 0.2		0.012		19	< 0.1	12
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	725	0.004						9 1	< 0.2	17.5			9	0.1	32
0.004 5.3 < 1 < 0.1 1.0 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 $<$	120	1/0.0						/	< 0.2	4.5			14	< 0.1	2
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	121	0.004						4	< 0.2	4.0			× 7	0.3	44
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1 20					1			2.0 2	4.0	+CD.0		- 007	- · · ·	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	120	0.150						54	< 0 <	0.0			105	.0 1	110
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	731	0 132						ι Γ	< 0 >	0.7			170	0.0	5
	732	0.017						21	< 0.2				9	0.2	35
	733	0.163						96	< 0.2				166	0.4	102
	734	0.088	-					30	0.4	0.7			84	0.6	52
	735	0.086						28	< 0.2	0.8	0.172		77	0.5	45
	736	0.057	5.0					33	< 0.2	0.2	0.170		64	0.2	35
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	737	0.149					< 0.5	18	< 0.2	0.4	0.215		163	0.1	85
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	738	0.175						37	< 0.2	1.4	0.419			5.4	148
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	739	0.183						37	< 0.2	1.4	0.368			4.3	130
	740	0.187				CI		41	0.3	1.4	0.548			19.8	150
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	741	0.128						17	< 0.2	0.2	0.244			3.6	109
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	742	0.152						10	< 0.2	0.3	0.279		166	3.5	122
	743	0.177						51	< 0.2	0.3	0.181	0.1	160	0.7	06
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	744	0.178						20	< 0.2	0.3	0.191	V	186	0.7	143
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	745	0.182					< 0.5	29	< 0.2	0.3	0.170			0.7	115
0.159 1.7 <1 <0.1 1.0.1 <0.5 104 <0.2 0.141 <0.1 <0.1 0.007 2.7 <1	746	0.162					0.8	70	< 0.2	0.3	0.304			0.8	120
0.007 2.7 <1 <0.1 1.8 1.3 6 <0.2 5.4 0.027 <0.1 0.008 3.6 <1	747	0.159				-		104	< 0.2	0.2	0.141	< 0.1	124	1.2	72
0.008 3.6 <1 <0.1 2.3 1.4 15 <0.2 5.6 0.029 0.1 0.08 3.3 1 <0.01 0.17 2.1 6 <0.2 6.3 0.024 <0.1	748	0.007						9	< 0.2			V	ω.	7.5	23
0.008 3.3 1 < 0.1 1.7 2.1 6 < 0.2 6.3 0.024 < 0.1	749	0.008						15	< 0.2				4	7.2	23
	750	0.008		-	< 0.1	1.7	2.1	9	< 0.2		0.024		< 2	14.9	26

	bpm		AR-MS	33	12	15	15	55	48	13	13	42	50	79	59	58	43	79	97	107	30	130	60	57	29	92	47	15	99	45	321	555	74	11	11	11	15	37	95	37	48	36	10	132	244	
Zn		1	_	0.1	0.1	< 0.1	0.1	0.1	< 0.1	0.2	< 0.1	0.1	< 0.1	0.2	0.1	< 0.1	0.1	1.3	0.2	0.2	0.1	0.2	< 0.1	0.2	0.2	< 0.1	32.7	0.1	0.3	1.1	0.3	0.5	0.3	0.9	2.1	< 0.1	0.2	0.3	< 0.1	0.3	200	21.3	3.5	3.6	1.8	
Μ	mdd	0.1	AR-MS	0	9	<	4	~		_	۷ 9	6			6		2	2	0	(6	~		0					_	6	Ħ	(0	0	5	3	4 <	6	(0)			^				~	
>	bpm	2	AR-MS	< 2	9	-	7	43	37	14			84	199	136	113	15	175	230	170	19	243	67	10	11	19	06	48	94	69	24	16	120	4,		7	0,	76	116	132	117	21	10	181	133	
	d mod	0.1	AR-MS	< 0.1	< 0.1	< 0.1	< 0.1	0.4	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	0.4	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	0.3	0.2	0.4	0.2	< 0.1	< 0.1	0.2	< 0.1	0.1	< 0.1	0.2	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	
-	%	0.001 0	AR-MS /	0.131	0.035	0.060	0.029	0.173	0.233	0.033	0.015	0.015	0.124	0.137	0.144	0.175	0.059	0.153	0.374	0.207	0.105	0.295	0.095	0.047	0.065	0.104	0.155	0.010	0.264	0.212	0.030	0.011	0.185	< 0.001	< 0.001	0.007	0.003	0.219	0.102	0.184	0.197	0.081	0.001	0.317	0.345	
Th	b mdd	0.1 0	AR-MS /		7.0	9.0	15.8	8.5	3.8	11.8	15.3	33.6	1.1	0.5	0.4	0.9	5.0	1.4	0.6	1.0	2.9	1.0	18.4	3.2	6.2	5.5	4.1	7.5	7.2	4.6	0.9	0.6	0.5	5.1	1.4	< 0.1	1.5	1.1	2.5	1.1	0.3	0.6	0.5	1.4	0.6	
Te -	ppm p	0.2	AR-MS	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	0.2	0.3	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	
Sr -	E		AR-MS /	12	6	13	6	8	13	16	10	20	19	99	31	6	7	13	15	25	8	74	289	42	7	9	35	26	33	130	5	5	12	4	6	3	e	19	13	73	88	17	-	18	42	
Se	bpm 1	0.5	AR-MS	6.0	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.9	0.7	< 0.5	< 0.5	< 0.5	0.5	1.1	0.6	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.7	2.4	1.7	0.8	< 0.5	2.1	0.7	0.8	1.4	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.9	0.7	
Sc	E		AR-MS	10.2	0.8	1.8	1.4	5.6	9.1	2.6	0.5	0.7	10.2	22.1	13.8	9.7	1.9	12.3	16.7	14.3	3.3	20.1	4.0	1.3	1.6	2.7	10.2	2.5	11.3	8.7	3.1	2.9	14.1	0.5	0.2	0.2	1.0	4.2	0.6	11.5	11.9	2.8	0.5	13.7	11.1	I
Sb	bpm	0.1	AR-MS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	0.2	0.2	0.7	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	İ
	%	-	AR-MS	< 1	< 1	< 1	< 1	<mark>ہ</mark> 1	× ۲	<mark>۲</mark>	،	۲.	 1 	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	<1	< 1 </td <td>1</td> <td>< 1</td> <td>< 1</td> <td>۰ ۲</td> <td><1</td> <td>< 1</td> <td>5</td> <td>5</td> <td>< 1</td> <td>< 1</td> <td>< 1</td> <td>< 1</td> <td>^</td> <td><mark>~</mark>1</td> <td>, L</td> <td>^</td> <td>, L</td> <td>۲.</td> <td><mark>ہ 1</mark></td> <td>< 1</td> <td>^</td> <td></td>	1	< 1	< 1	۰ ۲	<1	< 1	5	5	< 1	< 1	< 1	< 1	^	<mark>~</mark> 1	, L	^	, L	۲.	<mark>ہ 1</mark>	< 1	^	
Pb	mdd	0.1	AR-MS	3.5	2.4	2.7	8.7	4.1	1.7	9.5	12.5	6.2	1.2	1.2	0.9	1.2	3.8	1.0	1.1	1.3	3.5	2.9	13.3	4.1	4.3	16.4	6.6	2.3	7.4	7.3	6.0	12.5	1.0	3.8	10.3	0.8	21.0	2.1	2.8	0.7	0.7	3.0	0.5	3.3	51.0	
Ч	%	0.001 (AR-MS	0.066	0.004	0.005	< 0.001	0.044	0.070	0.003	0.003	0.021	0.074	0.407	0.150	0.092	0.026	0.105	0.136	0.110	0.016	0.143	0.158	0.016	0.021	0.035	0.075	0.093	0.075	0.060	0.014	0.013	0.041	0.011	0.006	0.003	0.010	0.084	0.270	0.164	0.137	0.030	0.008	0.124	0.127	
Analyte Symbol	Jnit Symbol	-ower Limit	Method Code	751	752	753	754	755	756	757	758	759	760	761	762	763	764	765	766	767	768	269	770	771	772	773	774	775	776	777	778	779	780	781	782	783	784	785	786	787	788	789	260	791	792	
Analy	Unit S	Lowei	Methc	110175	1101752	11017	1101754	1101755	1101756	1101757	1101758	1101759	11017	1101761	1101762	1101763	1101764	1101765	1101766	1101767	1101768	1101769	1101770	1101771	1101772	1101773	1101774	1101775	1101776	1101777	1101778	1101779	1101780	1101781	1101782	1101783	1101784	1101785	1101786	1101787	1101788	1101789	1101790	1101791	1101792	

Ř

Activation Laboratories Ltd.

g

C	O
¢	N
C	n
é	Ó
1	
ç	N
ç	N
-	-
3	
7	
1	5
	2
1	
(Ð
•	-

ïZ	bpm	AR-MS	210	176	34.6	34.3	5.1	4.74							73.8	72.0	35.3	35.2	14.7	15.6									71.8
Na	-	S	0.034	0.031	0.024	0.021	0.080	0.0860							0.085	0.0790			0.067	0.0680									0.047
Mo	_	-MS			0.8	0.69	5.6	5.64							0.7	0.570	7.9	8.25	6.3	8.38									144
	d mdd	AR-MS		400	783	730	312	330							509	490	1600	1630	569	570									3100
Mn		MS		0.144	1.36	1.33	0.20	0.221							0.61	0.593	0.81	0.892	1.06	1.11									1.01
Ň	m %	AR-MS AF		10.0	35	32.5	36	36.1									23	26.4	16	17.9									106
La		MS	0.10	0.097	0.43	0.376	0.32	0.286							0.39	0.288	0.47	0.500	0.17	0.175					_				0.42
×		NS		0		0		0	-							0.170 0	0.68	0.670 0	0.72	0.830 0		-			_				
Hg	bbu			17.9	ω	7.62	14	14.7							9	4.92 0.	2	4.78 0.	12	11.9 0.									12
Ga	bpm •	IS AR-MS		13.7 1	5.59	5.05 7	7.87	8.18 1							3.97	3.68 4	7.50	7.27 4	12.9	13.0 1					_				21.1
Fe	%																												
Cu	udd		10		3 2220	7 2176	9 6190	9 6370							88.3	0 87.0	3 216		9 > 10000	4 17200									2 5750
č	bpm	AR-MS		467	46	40.7		8.59							60	48.0	26	23.2	19	19.4									32
ර	mod	AR-MS	28.6	26.2	17.8	19.4	39.0	43.7							30.5	31.0	26.0	27.1	202	216									378
Cd	ppm	AR-MS			0.2	0.28	0.5	0.540							0.2	0.270	29.1	28.8	49.0	52.0									
Ca		٨S		0.089	0.40	0.324	0.26	0.280							1.03	1.03	1.78	1.81	1.04	1.09									3.31
	b mdd	-MS		0.30	10.8	10.3	22.3	22.3							0.6	0.570	3.2	3.05	17.1	16.9									5.9
	bpm p	AR-MS A	80	80	80	70	235	225							183	175													
Ba		AR-MS AF																											
В	udd	SM-		21			99.4	101											722	797									419
Ν	ddd 1			6.50	6.5	6.12	34.7	37.0	-						31.3	30.8	209	205	77.1	76.0				-					318
As	bpm			4.86 (2.88	2.72 (1.08	0.945							1.91	1.29	1.14	1.10	1.72	1.80									1.25
A	%			4	0.9 2		1.3 1	1.30 0.9							0.3		5.8	6.27 1	18.6 1	20.4 1									0.9
Ag	bpm					0.851	-	F.	R	06	02	õ	00	00		0.285	47	.9	15	20	54	Q	8	Q	17	Q	90	Q	
Au	ppb 5	FA-AA		+					3120	9030		3030	3060	3030		4		t			e 524	.e 510.000	е 528	.e 510.000	e 517	6 510.000	e 506	e 510.000	
Analyte Symbol	Unit Symbol	Method Code	OREAS 45d (Aqua Regia) Meas	OREAS 45d Aqua Regia) Cer	OREAS 922 (AQUA REGIA) Meas	OREAS 922 (AQUA REGIA) Cert	OREAS 907 (Aqua Regia) Meas	OREAS 907 (Aqua Regia) Cert	OREAS 238 (Fire Assay) Meas	OREAS 238 (Fire Assay) Cert	OREAS 238 (Fire Assay) Meas	OREAS 238 (Fire Assay) Cert	OREAS 238 (Fire Assay) Meas	OREAS 238 (Fire Assay) Cert	OREAS 263 (Aqua Regia) Meas	OREAS 263 (Aqua Regia) Cert	OREAS 130 (Aqua Regia) Meas	OREAS 130 (Aqua Regia) Cer	Oreas 623 (Aqua Regia) Meas	Oreas 623 (Aqua Regia) Cert	Oreas E1336 (Fire Assay) Meas	Oreas E1336 (Fire Assay) Cert	Oreas E1336 (Fire Assay) Meas	Oreas E1336 (Fir Assay) Cert	Oreas E1336 (Fire Assay) Meas	Oreas E1336 (Fire Assay) Cert	Oreas E1336 (Fire Assay) Meas	Oreas E1336 (Fire Assay) Cert	OREAS 521

Page 7/12

Activation Laboratories Ltd.

g

Ni	bpm	AR-MS		68.0	15.1	14.4	24.6	24.3			26.4	28.0				0.8	0.8		601	65.9				1	5.7	2.0		2	4.2 4.3	36.2	34.4		0	0.2	ż	Γ		Π	1.8	1.8	1.8	Π
_		AR-MS		0.045	0.136	0.117	0.054	0.049			0.227	0.238				0.042	0.040		1001	0.397					0.357	162.0			0.080	0.122	0.105		1	0.04/	0.047	Ī			0.059	0.056	0.056	
Π	F	AR-MS		133	9.1	9.0	4.5	4.5			1.0	1.0				0.5	0.5		-	- -					13.0	10.0		1	0.8	0.4	0.4		c c	N C	K.3				1.0	1.0	1.0	
Π	bpm	AR-MS		3000	418	414	65	99			2610	2680				89	89		1000	1010					179	180			174	534	509		1	011	2				138	139	139	
Mg		AR-MS		1.10	0.27	0.27	0.11	0.11			1.03	0.99				0.03	0.03		1 15	1.18					0.23	0.24			0.16	1.68	1.61		000	00.0	00				0.23	0.23	0.23	
La	bpm	AR-MS		147	25	25	9	7			7	/				20	21		UF	10					19	20		1	ע ע	151	152		C	N	N				8	6	თ	
¥	%	AR-MS		0.53	0:30	0.31	0.26	0.21			0.26	0.28				0.03	0.03		0 EO						0.25	0.19			0.07	0.07	0.06		100	0.04	0.04				0.23	0.23	0.23	
Hg	bpm b 0 0	AR-MS			1.99	2.14	0.73	0.80				0.06				0.02	0.04			0.04						0.04		1	0.04	0.05	0.04			cn.u	0.03				0.06	0.05	0.05	
Ga	bpm	AR-MS		14	8	9	2	9				10				4	4		VF						; 4	01			4 4	00	8		C	N	N				9	9	9	
Fe		AR-MS		20.0	2.76	2.58	2.27	2.27				1.11				1.47	1.47		UV L						3.81				1.21		3.04				CC.1				6.27	6.47	6.47	
Cu	mdd	0.2 AR-MS		5990	1820	1750	9410	9720				300					5.2		1020					Ц	266				C C C	4					р. С					12.1	12.1	
č	ppm	AR-MS		33	19	17	34	33			27						5			91					47				12	-					<u>ת</u>					9	9	
<mark>ර</mark>	mod	AR-MS		374	14.1	12.2	1.7	7.7				18.3					0.6		0 90							4.1				19.0					0.9			Ц		3.8	3.8	
Cd	bpm	AR-MS			163.8	161.0	12.1	12.3				0.2					< 0.1		10						V	< 0.1			<pre></pre>						< 0.1					< 0.1	< 0.1	
Ca		AR-MS		3.66	1.45	1.29	0.11	0.12				3.37					0.07		00 0						0.15					2.60					0.02						0.28	
Bi	bpm	AR-MS		5.8	1.9	1.9	209	220				1.11					< 0.1		r c						3.6					0.2	0.2				< 0.1					0.3	0.3	
Ba	mqq	AR-MS			12	450						53				20			171						75				15		101				N				27		27	
в		AR-MS										< 20					< 20		00 1						< 20					< 20					N2 >						< 20	
Au	dqq	0.0 AR-MS		365	239	666						186					< 0.5		ac							c.u >				< 0.5					c.u >						20.1	
As	ppm 2 C	AR-MS		333	52.4	47.2	2760	2810				0.8				0.7	0.6		101							9.2			c.0 >	V	< 0.5				A.4					18.7	18.7	
AI	%	AR-MS		3 1.44	1.41	1.12	1.15	1 0.847				7.5/				0.14	1 0.13		0000							+ 1.24			0.53		1.32				0.13				5 0.84	t 0.78	1 0.78	
Ag		0.1 AR-MS		0.8	37.2	38.4	47.4	48.4			0.5	9.0			-	0.5	0.4		4	1.7		10	10		0.4		10		<pre>> 0.1</pre>	0.1	0.1	10		0.1			10			t 0.4	0.4	
Au	ppb	5A-AA							<mark>^</mark>	7180		131	128	1	< 5			ν ν	Ω V		< 5	< 5	< 5	< 5	2 2 V	V	< 5	< 5				< 5	4 V		2 V	2 2	< 5	< 5	19	24		< 5
Analyte Symbol	Unit Symbol	Method Code	(Aqua Regia) Meas	OREAS 521 (Aqua Regia) Cert	Oreas 620 (Aqua Regia) Meas	Oreas 620 (Aqua Regia) Cert	Oreas 610 (Aqua Regia) Meas	Oreas 610 (Aqua Regia) Cert	OREAS L15 Meas	OREAS L15 Cert	1101804 Orig	1101804 Dup 1101805 Orio	1101805 Dup	1101816 Orig	1101816 Dup	1101721 Orig	1101721 Dup	1101724 Orig	1101/24 Dup	1101738 Dup	1101739 Orig	1101739 Dup	1101748 Orig	1101748 Dup	1101749 Orig	PREP DUP	1101750 Orig	1101750 Dup	1101/5/ Orig 1101757 Dun	1101770 Orig	1101770 Dup	1101776 Orig	1101776 Dup	1101/81 Orig	1101782 Orig	1101782 Dup	1101791 Orig	1101791 Dup	1101793 Orig	1101793 Split PREP DUP	1101793 Split PREP DUP	Method Blank

A

g

Activation Laboratories Ltd.

Report: A22-16328

Ni	mdd	0.1	S AR-MS							17 < 0.1	101
Na	%	0.001	AR-MS AR-MS							0.007	0,006
Mo	mdd	0.1	AR-MS							< 0.1	T C T
Mn	mdd	+	AR-MS							< 1	
٨g	%	0.01	AR-MS							< 0.01	1001
La	, mdd		NR-MS							< 1	
		0.01	R-MS A							< 0.01	1001
g K	% udd	0.01 0.	R-MS A		-					0.04	000
۲ H		0	-MS AF	_						< 1	7
Ga	mdd	+	-MS AF		_		_			< 0.01	10.01
Fe	%	0.01	MS AR		_	_				< 0.2 <	
Cu	mdd	0.2	AR-	_	_			_		2 <	c
č	mdd	Ŧ	IS AR-N	_	_					1.1	F C
8	mod	0.1	S AR-N	_	_			_		1 < 0.1	T C T
Cd	mdd	0.1	AR-M8							1 < 0.1	
Ca	%	0.01	AR-MS							< 0.01	100
Bi	udd	0.1	AR-MS							< 0.1	T C T
Ba	bpm	F	AR-MS							2	C
×	d mdd	20	R-MS							< 20	00 .
u B	d qd	0.5 2	R-MS A							3.2	10
s Au	d mdd	0.5 0	R-MS A							< 0.5	10
As	d	0.01 0.	AR-MS AR-MS AR-MS AR-MS AR-MS AR-MS	_						< 0.01	100
a AI	<mark>%</mark> ш	1	R-MS AI						_	< 0.1 <	
Ag	ndd o	0.1	FA-AA AF	<u>د</u> 5	< 5	< 5	< 5	< 5	< 5		
I Au	qdd	5	FA	_	┝			_			
Analyte Symbol	Unit Symbol	Lower Limit	Method Code	Method Blank	Jucia bodtoh						

g

Analyte symbol		Pb					Sr	Te	Th	μ	Ē			Zn
		ppm 2	%	c	_	_	mdd	ppm 0.0	bpm b c	%	mod	mo	u	bpm
Lower Limit Method Code	AR-MS	0.1 AR-MS	1 AR-MS	0.1 AR-MS	0.1 AR-MS	0.5 AR-MS	AR-MS	0.2 AR-MS	0.1 AR-MS	AR-MS	AR-MS	Z AR-MS	0.1 AR-MS	AR-MS
	0.034						~		10.8			2007000	1	37
OREAS 45d (Aqua Regia) Cert	0.035	17.0	0.045		41.50		11.0		11.3			201		30.6
OREAS 922 (AQUA REGIA) Meas	0.068	62.6	۰ ۲	0.6	3.3	3.3	16		16.2		0.2	32	1.1	256
OREAS 922 (AQUA REGIA) Cert	0.063	60	0.386	0.57	3.15	3.44	15.0		14.5		0.14	29.4	1.12	256
OREAS 907 (Aqua Regia) Meas	0.022	34.4	۰ ۲	2.4	2.2	9.1	12	0.2	8.5	0.018	0.1	5	1.4	135
AS 907 a Regia) Cert	0.0240	34.1	0.0660	2.28	2.16	9.05	11.7	0.230	8.04	0.0170	0.120	5.12	0.980	139
OREAS 238 (Fire Assay) Meas														
EAS 238 (Fire ay) Cert														
OREAS 238 (Fire Assay) Meas														
OREAS 238 (Fire Assay) Cert														
OREAS 238 (Fire Assay) Meas														
OREAS 238 (Fire Assay) Cert														
OREAS 263 (Aqua Regia) Meas	0.047	36.1	۰ ۲	7.7	3.5		18	< 0.2	11.8		0.6	28		127
OREAS 263 (Aqua Regia) Cert	0.0410		0.126	7.37	3.52		16.9	0.210	10.6		0.530	22.8		127
OREAS 130 (Aqua Regia) Meas	0.087	1360	9	4.2	3.4		21	< 0.2	10.0	0.027	5.4	35	1.2	> 5000
OREAS 130 (Aqua Regia) Cert	0.0860		6.02	4.69	3.42		23.2	0.170	10.3	0.0270	5.92	33.1	1.40	16900
Oreas 623 (Aqua Regia) Meas	0.044		8	17.7	4.0	19.2	14	0.6	4.6		0.3		3.2	> 5000
Oreas 623 (Aqua Regia) Cert	0.0400	2520	8.75	20.2	4.63	18.6	14.2	0.570	4.72		0.260	15.8	2.62	10100
Oreas E1336 (Fire Assay) Meas														
Oreas E1336 (Fire Assay) Cert														
Oreas E1336 (Fire Assay) Meas														
Oreas E1336 (Fire Assay) Cert														
Oreas E1336 (Fire Assay) Meas														
Oreas E1336 (Fire Assay) Cert														
Oreas E1336 (Fire Assay) Meas														
Oreas E1336 (Fire Assay) Cert														
OREAS 521	0.081	8.1	N	3.8	8.1	2.1	28	0.8	5.8	0.119	0.1	191	66.2	22

Page 10/12

g

Analyte Symbol	d.	Pb	S	Sb	Sc	Se	Sr	Te	Th	μ	F	~	M	Zn
Unit Symbol	%	mdd	%	mdd	E	mdd	mdd	mdd	mdd	%	mod	mdd	mdd	mdd
		0.1	1	0.1				0.2		0.001		2		
Method Code	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AH-MS	AR-MS	AH-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS
Meas														
OREAS 521 (Aqua Regia) Cert	0.081	9.0	2	3.6	10	2.4	54	0.7	7.8	0.141	0.1	200	71.0	24
Oreas 620 (Aqua Regia) Meas	0.036	> 5000	с,	66.3			20		7.5		0.7	10	0.9	> 5000
Oreas 620 (Aqua Regia) Cert	0.031	7740	2	62.0			20		7.5		0.5	2	0.8	31200
Oreas 610 (Aqua Regia) Meas	0.025	488	2	250	1.0	29.8	41	40.4	2.9		1.4	13	3.7	1590
Oreas 610 (Aqua Regia) Cert	0.025	512	3	265	0.84	27.7	39	41.7	3.1		1.5	12	3.6	1760
OREAS L15 Meas														
OREAS L15 Cert														
1101804 Orig	0.057	2.5		< 0.1	6.5	1.5	17	0.5	1.4	0.188		64	0.3	72
1101804 Dup	0.054	2.4	N	< 0.1	6.7	1.5	17	0.6	1.4	0.199	0.2		0.3	76
1101805 Orig														
1101816 Oria														
1101816 Dup														
1101721 Orig	0.001	2.5	< 1	< 0.1	0.9	< 0.5	З	< 0.2	8.3	0.031	< 0.1	5	0.2	12
1101721 Dup	0.001	2.4	< 1	< 0.1	0.9	< 0.5	3	< 0.2	8.1	0.029	< 0.1	5	0.1	10
1101724 Orig														
1101724 Dup	OF LO							0		011 0			L	1
1101/38 Orig	0.176			< 0.1	21.2	0.7	38	< 0.2	1.4	0.419	1.0	169	5.4	147
1101/38 Dup	0.174	1.4	·	< 0.1				< 0.2	1.4	0.419			5.4	150
1101/39 Orig														
1101748 Orig														
1101748 Dup														
1101749 Orig	0.008	3.6	 1 	< 0.1	2.3	1.4	15	< 0.2	5.6	0.029	0.1	4	7.2	23
1101749 Split PREP DUP	0.008	3.4	v L	< 0.1	2.0	1.4	12	< 0.2	5.5	0.024		4	7.8	24
1101750 Orig														
1101750 Dup														
1101757 Orig	0.003	9.5		< 0.1	2.5	< 0.5		< 0.2	11.7	0.033			0.2	13
1101757 Dup	0.003	9.5		< 0.1	2.6	< 0.5		< 0.2	11.9	0.034		14	0.2	14
1101770 Orig	0.156	13.2		0.1	4.0	< 0.5	290	< 0.2	18.5	0.092	< 0.1	67 66	0.3	60
1101776 Orig	0.100	t.0-	~	5	0.0	0.0 >		2.0.2	10.4	0.030		00	0	8
1101776 Dup														
1101781 Orig	0.011	3.9	< 1	< 0.1	0.5	0.6	4	< 0.2	5.2	< 0.001			0.9	12
1101781 Dup	0.011	3.8	< 1	< 0.1	0.6	< 0.5	4	< 0.2	5.1	< 0.001	< 0.1	5	1.0	11
1101782 Orig														
1101782 Dup														
1101/91 Urig														
1101793 Orig	0.234	4.8	-	0.4	4.3	< 0.5	9	< 0.2	0.9	0.179			2.3	18
1101793 Split	0.227	4.9	-	0.4		< 0.5		< 0.2	0.9	0.158	< 0.1	25	2.1	19
1101703 Shlit	700 0	10	•	V U		105	7	001	00	0 158	101	25	10	0
	177.0	4. v	-	0.4	4	c.u >	`	> 0.2	0.9	001.0			i	מ
Method Blank														
_	_		_		_	_	_	-	_		_	_		_

Page 11/12

g

Analyte Symbol	Ъ	Pb	S	Sb	Sc	Se	Sr	Te	Th	Ē	F	>	N	Zn
Unit Symbol	%	mdd	%	mdd	mdd	mdd	mdd	mdd	mdd	%	mcd	mdd	mdd	mdd
Lower Limit	0.001	0.1	1	0.1	0.1	0.5	1	0.2	0.1	0.001	0.1	2	0.1	1
Method Code	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS
Method Blank														
Method Blank														
Method Blank														
Method Blank														
Method Blank														
Method Blank														
Method Blank	< 0.001	< 0.1	< 1	< 0.1	< 0.1	< 0.5	< 1	< 0.2	< 0.1	< 0.1 < 0.001	< 0.1	4	< 0.1	<1>
Method Blank	< 0.001	< 0.1	< 1	< 0.1	< 0.1	< 0.5	<1	< 0.2	< 0.1	< 0.1 < 0.001 < 0.1	< 0.1	4	< 0.1	< 1