

We are committed to providing <u>accessible customer service</u>. If you need accessible formats or communications supports, please <u>contact us</u>.

Nous tenons à améliorer <u>l'accessibilité des services à la clientèle</u>. Si vous avez besoin de formats accessibles ou d'aide à la communication, veuillez <u>nous contacter</u>.

2022 Assessment Report on Janes Property

Line cutting and IP survey

Geological mapping and bedrock sampling

Diamond drilling

Janes Property

Janes Township, Sudbury Mining Division, Ontario, Canada

NTS Sheet 41I/09

Prepared for:

SPC Nickel Corp

9C-1351 Kelly Lake Road

Sudbury, Ontario

P3E 5P5

Prepared by:

Rachel Chouinard, M.Sc., P.Geo.

Date: February 7, 2023

Table of Contents

Summary	4
Location and Access	4
Project Description	4
History	8
Geological Setting	9
Regional Geology	9
Property Geology	12
Mineralization	12
Exploration Permits	14
2022 Line Cutting and IP Survey	14
Summary	14
Objectives	17
Results and Interpretation	17
2022 Bedrock Mapping and Sampling	18
Summary	18
Objectives	18
Sample Collection, Preparation and Analysis	18
Results, Interpretation and Conclusions	18
Recommendations	19
2022 Diamond Drilling Program	22
Diamond Drilling Summary	22
Sample Preparation and Analysis	24
Results	24
Interpretation and Conclusions	25
Recommendations	26
Recommendations for Future Work	26
References	27
STATEMENT OF OUALIFICATIONS – RACHEL CHOLLINARD	28

List of Figures

- Figure 1. Location of Janes Project (Page 5)
- Figure 2. Regional geology in Janes Project area (Page 11)
- Figure 3. Property Geology of Janes Project (Page 13)
- Figure 4. Location of grid lines and points for 2022 cut grid (Page 15)
- Figure 5. Map of 2022 3D distributed array induced polarization survey (Page 16)
- Figure 6. Anomalous areas delineated by 2022 3D IP survey (Page 17)
- Figure 7. Map of 2022 outcrop geology, interpreted bedrock geology, and grab sample locations on main grid (Page 20)
- Figure 8. Ni and Cu assay results for 2022 grab samples on Janes Property (Page 21)
- Figure 9. 2022 diamond drilling locations and permits PR-21-000349 and PR-21-000350 (Page 23)
- Figure 10. MgO values in different units on the Janes Property (Page 25)

List of Tables

- Table 1. List of Janes Property mining claims and ownership (Page 6)
- Table 2. History of exploration work on Janes Property (Page 8)
- Table 3. Summary of 2022 diamond drill holes on Janes Property. All UTM coordinates are in datum NAD83 zone 17N (Page 22)
- Table 4. Highlights of assay results from 2022 diamond drill holes on Janes Property (Page 24)
- Table 5. Recommended work for 2023 (Page 26)

List of Appendices

- Appendix 1. Janes Property Tenure Map
- Appendix 2. Canadian Exploration Services 3D IP Survey Report
- Appendix 3. Daily Activities Log
- Appendix 4. Grab Sample Locations and Descriptions
- Appendix 5. Grab Sample Certificates of Analysis
- Appendix 6. Diamond Drill Logs
- Appendix 7. Diamond Drill Plans and Sections
- Appendix 8. Diamond Drilling Certificates of Analysis
- Appendix 9. Expenditures and Invoices

Abbreviations and Initialisms

3D - three-dimensional

BHEM – borehole electromagnetic

CRM – certified reference material

EM – electromagnetic

Ga – billion years ago

HELITEM – helicopter borne electromagnetic/magnetic

HRGC/MS – high-resolution gas chromatographer mass spectrometer

ICP-AES – inductively-coupled plasma atomic emission spectrometer

ICP-MS – inductively-coupled plasma mass spectrometer

IP – induced polarization

IRM – internal reference material

LIP – large igneous province

PGE – platinum group element

PGM – platinum group metal

QA/QC – quality assurance/quality control

UTEM – University of Toronto electromagnetic

UTM – Universal Transverse Mercator

VLF-EM – very low frequency electromagnetic

VMS – volcanogenic massive sulphide

Summary

This report outlines the work completed by SPC Nickel Corp in 2022 for assessment purposes on the Janes Property. The Property is approximately 50 km east of Sudbury, in the Janes, McNish and Davis townships. The Janes Property consists of 95 contiguous claims.

The target of exploration on the Property consists of magmatic sulphide hosted Ni-Cu-PGE mineralization hosted in a Proterozoic-aged Nipissing gabbro sill which intrudes Huronian sediments. Objectives of the work completed by SPC Nickel were to locate and test additional bodies of sulphide mineralization in a part of the property which has seen limited exploration.

A 3D distributed array IP survey covered 26.7 line-kilometres of the Property and defined two strong subsurface anomalies. A diamond drilling program totaling 1,212 metres intersected a mineralized body at one of the two IP anomalies. Assay results indicate anomalous zones of Ni-Cu-PGE mineralization within the sulphide body.

Location and Access

The Janes Property is in the Janes, McNish and Davis townships, in the Sudbury Mining District, approximately 50 km east of Sudbury (Figure 1). The property is accessed via the Trans-Canada Highway (ON-17), following ON-535 to Boundary Road, and continuing onto secondary dirt roads. The property is an approximately 1.5-hour drive (98 km) from Sudbury. All 2022 drill sites and work detailed in this report are within the Janes Township.

Project Description

The Janes Property consists of 95 mining claims. The outline of the property is shown in Figure 1 and the individual claims on the map in Appendix 1. SPC Nickel Corp is in an option agreement to earn a 100% interest in the Property. The current Property ownership is summarized in Table 1.

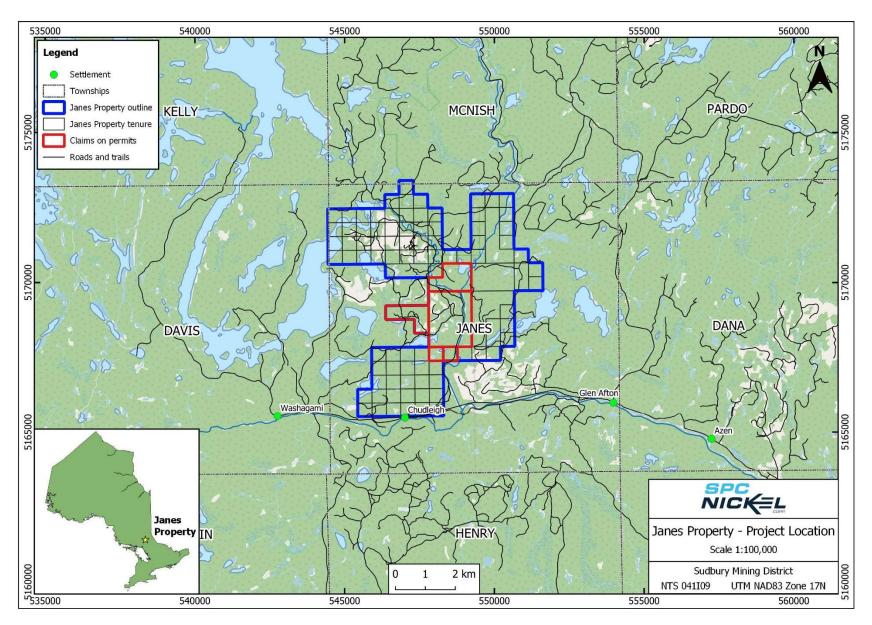


Figure 1. Location of Janes Project

Table 1. List of Janes Property mining claims and ownership

Tenure Number	Title Type	Holder
107975	Boundary Cell Mining Claim	(50) BRIAN JAMES WRIGHT, (50) RANDY IRWIN STEWART
107977	Single Cell Mining Claim	(50) BRIAN JAMES WRIGHT, (50) RANDY IRWIN STEWART
112768	Single Cell Mining Claim	(50) BRIAN JAMES WRIGHT, (50) RANDY IRWIN STEWART
135162	Single Cell Mining Claim	(50) BRIAN JAMES WRIGHT, (50) RANDY IRWIN STEWART
135992	Single Cell Mining Claim	(50) BRIAN JAMES WRIGHT, (50) RANDY IRWIN STEWART
135993	Single Cell Mining Claim	(50) BRIAN JAMES WRIGHT, (50) RANDY IRWIN STEWART
135994	Single Cell Mining Claim	(50) BRIAN JAMES WRIGHT, (50) RANDY IRWIN STEWART
136835	Single Cell Mining Claim	(50) BRIAN JAMES WRIGHT, (50) RANDY IRWIN STEWART
136836	Single Cell Mining Claim	(50) BRIAN JAMES WRIGHT, (50) RANDY IRWIN STEWART
151229	Single Cell Mining Claim	(50) BRIAN JAMES WRIGHT, (50) RANDY IRWIN STEWART
154035	Single Cell Mining Claim	(50) BRIAN JAMES WRIGHT, (50) RANDY IRWIN STEWART
154707	Single Cell Mining Claim	(50) BRIAN JAMES WRIGHT, (50) RANDY IRWIN STEWART
167974	Single Cell Mining Claim	(50) BRIAN JAMES WRIGHT, (50) RANDY IRWIN STEWART
172765	Single Cell Mining Claim	(50) BRIAN JAMES WRIGHT, (50) RANDY IRWIN STEWART
182044	Single Cell Mining Claim	(50) BRIAN JAMES WRIGHT, (50) RANDY IRWIN STEWART
182055	Single Cell Mining Claim	(50) BRIAN JAMES WRIGHT, (50) RANDY IRWIN STEWART
182129	Boundary Cell Mining Claim	(50) BRIAN JAMES WRIGHT, (50) RANDY IRWIN STEWART
185809	Single Cell Mining Claim	(50) BRIAN JAMES WRIGHT, (50) RANDY IRWIN STEWART
186107	Single Cell Mining Claim	(50) BRIAN JAMES WRIGHT, (50) RANDY IRWIN STEWART
187994	Single Cell Mining Claim	(50) BRIAN JAMES WRIGHT, (50) RANDY IRWIN STEWART
187995	Single Cell Mining Claim	(50) BRIAN JAMES WRIGHT, (50) RANDY IRWIN STEWART
187996	Single Cell Mining Claim	(50) BRIAN JAMES WRIGHT, (50) RANDY IRWIN STEWART
188835	Single Cell Mining Claim	(50) BRIAN JAMES WRIGHT, (50) RANDY IRWIN STEWART
190187	Boundary Cell Mining Claim	(50) BRIAN JAMES WRIGHT, (50) RANDY IRWIN STEWART
199200	Single Cell Mining Claim	(50) BRIAN JAMES WRIGHT, (50) RANDY IRWIN STEWART
201016	Single Cell Mining Claim	(50) BRIAN JAMES WRIGHT, (50) RANDY IRWIN STEWART
201017	Single Cell Mining Claim	(50) BRIAN JAMES WRIGHT, (50) RANDY IRWIN STEWART
202326	Single Cell Mining Claim	(50) BRIAN JAMES WRIGHT, (50) RANDY IRWIN STEWART
206671	Single Cell Mining Claim	(50) BRIAN JAMES WRIGHT, (50) RANDY IRWIN STEWART
215325	Single Cell Mining Claim	(50) BRIAN JAMES WRIGHT, (50) RANDY IRWIN STEWART
218722	Single Cell Mining Claim	(50) BRIAN JAMES WRIGHT, (50) RANDY IRWIN STEWART
218723	Single Cell Mining Claim	(50) BRIAN JAMES WRIGHT, (50) RANDY IRWIN STEWART
226024	Single Cell Mining Claim	(50) BRIAN JAMES WRIGHT, (50) RANDY IRWIN STEWART
226041	Single Cell Mining Claim	(50) BRIAN JAMES WRIGHT, (50) RANDY IRWIN STEWART
226042	Single Cell Mining Claim	(50) BRIAN JAMES WRIGHT, (50) RANDY IRWIN STEWART
226043	Single Cell Mining Claim	(50) BRIAN JAMES WRIGHT, (50) RANDY IRWIN STEWART
233888	Single Cell Mining Claim	(50) BRIAN JAMES WRIGHT, (50) RANDY IRWIN STEWART
235844	Single Cell Mining Claim	(50) BRIAN JAMES WRIGHT, (50) RANDY IRWIN STEWART

235845	Single Cell Mining Claim	(50) BRIAN JAMES WRIGHT, (50) RANDY IRWIN STEWART
237389	Single Cell Mining Claim	(50) BRIAN JAMES WRIGHT, (50) RANDY IRWIN STEWART
237390	Single Cell Mining Claim	(50) BRIAN JAMES WRIGHT, (50) RANDY IRWIN STEWART
238837	Boundary Cell Mining Claim	(50) BRIAN JAMES WRIGHT, (50) RANDY IRWIN STEWART
253860	Single Cell Mining Claim	(50) BRIAN JAMES WRIGHT, (50) RANDY IRWIN STEWART
254651	Single Cell Mining Claim	(50) BRIAN JAMES WRIGHT, (50) RANDY IRWIN STEWART
256125	Single Cell Mining Claim	(50) BRIAN JAMES WRIGHT, (50) RANDY IRWIN STEWART
256126	Single Cell Mining Claim	(50) BRIAN JAMES WRIGHT, (50) RANDY IRWIN STEWART
256127	Single Cell Mining Claim	(50) BRIAN JAMES WRIGHT, (50) RANDY IRWIN STEWART
256128	Single Cell Mining Claim	(50) BRIAN JAMES WRIGHT, (50) RANDY IRWIN STEWART
256129	Single Cell Mining Claim	(50) BRIAN JAMES WRIGHT, (50) RANDY IRWIN STEWART
265931	Single Cell Mining Claim	(50) BRIAN JAMES WRIGHT, (50) RANDY IRWIN STEWART
271931	Single Cell Mining Claim	(50) BRIAN JAMES WRIGHT, (50) RANDY IRWIN STEWART
272513	Single Cell Mining Claim	(50) BRIAN JAMES WRIGHT, (50) RANDY IRWIN STEWART
273352	Single Cell Mining Claim	(50) BRIAN JAMES WRIGHT, (50) RANDY IRWIN STEWART
284640	Single Cell Mining Claim	(50) BRIAN JAMES WRIGHT, (50) RANDY IRWIN STEWART
286010	Single Cell Mining Claim	(50) BRIAN JAMES WRIGHT, (50) RANDY IRWIN STEWART
291864	Single Cell Mining Claim	(50) BRIAN JAMES WRIGHT, (50) RANDY IRWIN STEWART
294034	Boundary Cell Mining Claim	(50) BRIAN JAMES WRIGHT, (50) RANDY IRWIN STEWART
294035	Single Cell Mining Claim	(50) BRIAN JAMES WRIGHT, (50) RANDY IRWIN STEWART
301447	Single Cell Mining Claim	(50) BRIAN JAMES WRIGHT, (50) RANDY IRWIN STEWART
301795	Single Cell Mining Claim	(50) BRIAN JAMES WRIGHT, (50) RANDY IRWIN STEWART
302535	Single Cell Mining Claim	(50) BRIAN JAMES WRIGHT, (50) RANDY IRWIN STEWART
311585	Single Cell Mining Claim	(50) BRIAN JAMES WRIGHT, (50) RANDY IRWIN STEWART
312931	Single Cell Mining Claim	(50) BRIAN JAMES WRIGHT, (50) RANDY IRWIN STEWART
320389	Single Cell Mining Claim	(50) BRIAN JAMES WRIGHT, (50) RANDY IRWIN STEWART
320390	Single Cell Mining Claim	(50) BRIAN JAMES WRIGHT, (50) RANDY IRWIN STEWART
321293	Single Cell Mining Claim	(50) BRIAN JAMES WRIGHT, (50) RANDY IRWIN STEWART
322043	Single Cell Mining Claim	(50) BRIAN JAMES WRIGHT, (50) RANDY IRWIN STEWART
331079	Single Cell Mining Claim	(50) BRIAN JAMES WRIGHT, (50) RANDY IRWIN STEWART
331080	Single Cell Mining Claim	(50) BRIAN JAMES WRIGHT, (50) RANDY IRWIN STEWART
333022	Single Cell Mining Claim	(50) BRIAN JAMES WRIGHT, (50) RANDY IRWIN STEWART
333438	Single Cell Mining Claim	(50) BRIAN JAMES WRIGHT, (50) RANDY IRWIN STEWART
333439	Single Cell Mining Claim	(50) BRIAN JAMES WRIGHT, (50) RANDY IRWIN STEWART
333440	Single Cell Mining Claim	(50) BRIAN JAMES WRIGHT, (50) RANDY IRWIN STEWART
333441	Single Cell Mining Claim	(50) BRIAN JAMES WRIGHT, (50) RANDY IRWIN STEWART
333791	Single Cell Mining Claim	(50) BRIAN JAMES WRIGHT, (50) RANDY IRWIN STEWART
333792	Single Cell Mining Claim	(50) BRIAN JAMES WRIGHT, (50) RANDY IRWIN STEWART
339677	Boundary Cell Mining Claim	(50) BRIAN JAMES WRIGHT, (50) RANDY IRWIN STEWART
339680	Boundary Cell Mining Claim	(50) BRIAN JAMES WRIGHT, (50) RANDY IRWIN STEWART
340870	Single Cell Mining Claim	(50) BRIAN JAMES WRIGHT, (50) RANDY IRWIN STEWART

WART
NART
/

History

Previous exploration work completed on the Janes Property is summarized in Table 2.

Table 2. History of exploration work on Janes Property

Year	Company	Description	Report
1958	Norseman Nickel	Prospectus, notes, correspondence	41I09NW0203
	Corp		
1968	Ossington	Line cutting; ground magnetometer survey; ground EM	20006899
	Explorations Ltd	survey; stripping, trenching and sampling	
1968	Triller Explorations	Line cutting; ground magnetometer survey; ground EM	41I09NW0207
	Ltd	survey; stripping, trenching and sampling	
1969	Kennco Explorations	Diamond drilling (9 holes, 1999.49 m); IP survey	41I09NW0210
	(Canada) Ltd		41I09NW0054
			41I09NW0206
1988	BP Resources Canada	Helicopter-borne magnetic and VLF-EM survey	41I14NE0203
1988-	Falconbridge Ltd	IP survey; ground magnetometer survey; pulse EM survey	41I09NW0200
89		(DEEPEM); stripping; historical core re-assay	41I14SW0014
			41I09NW5000
1991	T Kampman	Prospecting; soil sampling (OPAP program)	41I09NW9500
1995	Falconbridge Ltd	BEEPMAT survey	41I09NW0012
1998-	L S Jobin-Bevans	Line cutting; geological mapping; prospecting	41I09NW2003
99			
1999–	Pacific North West	Diamond drilling (26 holes, 2552.66 m)	41I09NW2038
2001	Capital Corp and		
	Anglo Platinum		
2007	GoldTrain Resources	Diamond drilling (9 holes, 826 m)	20008291

	Inc		
2011	GoldTrain Resources	Stripping, trenching and geological mapping; diamond	20009380
	Inc	drilling (4 holes, 572 m)	20011419
2014-	Pacific North West	Geological mapping and prospecting	20012877
15	Capital Corp and R.		
	Stewart		
2015	North American	Airborne HELITEM EM and magnetic survey; geological	20000013856
	Palladium, R Stewart,	mapping and prospecting	
	B Wright		
2016	R Stewart and B	Geological mapping and prospecting	20000015250_01
	Wright		
2018	R Stewart and B Wright	Line cutting; geological mapping; prospecting	20000017135_01
2020	SPC Nickel Corp	Line cutting; IP survey; ground magnetometer survey;	20000019455
		stripping/trench rehabilitation; air photo and remote	
		imagery interpretation; channel sampling (16 channels,	
		273 samples)	
2021	SPC Nickel Corp	Geological mapping; prospecting; biogeochemical	TBD
		sampling; soil sampling; BHEM survey; diamond drilling	
		(18 holes, 921 m)	

Geological Setting

This section of the report is modified after an NI 43-101 technical report by Hadyn Butler in 2008 on behalf of GoldTrain Resources Inc.

Regional Geology

To the north and west of the Janes Property, the Archean basement is dominated by complex mesozonal gregarious granite-gneiss batholiths. As part of the Superior Province, a major portion of these gneisses consists of granodioritic gneiss. Interfolded into these granodioritic gneiss domes are narrow greenstone belts with submarine tholeitic basalts and andesites along with interflow chert horizons, banded iron formations and acidic volcanics. Past producers in these greenstones include small volcanogenic massive sulphide (VMS) deposits (mostly zinc) and iron deposits.

Sometime before 2.4 billion years ago (Ga) passive anoxic sedimentation (with uraniferous conglomerates) and basaltic volcanism (Elsie Mountain and Stobie formations) commenced above a major unconformity at the southern-rifted margin of the Archean-aged Superior Province. This sedimentation was subsequently accompanied by the injection of anorthosite-ultramafic complexes (East Bull Lake gabbros and the Matachewan dike swarm) and acidic volcanics (Copper Cliff formation) representing the remains of an early Proterozoic large igneous province (LIP). Episodic sedimentation continued. The sedimentary-volcanic packages are collectively known as the Huronian Supergroup (Figure 2). To the northeast, Huronian sedimentation occurred in fault-bounded basins, forming the Cobalt Embayment. Part of the Cobalt Embayment is controlled by long-lived north-northwest faults showing sinistral displacements for a period of nearly 1 Ga. The Janes Property lies near the southern margin of the Cobalt Embayment, and about 20 km north of the later Proterozoic (~1 Ga) Grenville Front Tectonic Zone.

In the period from 2.4 to 2.2 Ga, folding and metamorphism (to upper amphibolite facies) of the Huronian sedimentary-volcanic packages commenced to the south during the Blezardian orogeny. Small-sized granitic plutons were injected. Just before the Blezardian folding ceased, regional basaltic magmatism in the form of well-differentiated tholeiitic diabase sheets (the Nipissing diabase LIP) injected into the Huronian units and the upper parts of the underlying Archean basement. The initiation of Huronian deformation occurred pre-Nipissing, as indicated by the Nipissing sheets cutting early folds within the Huronian units. In places, pre-Nipissing metamorphism attained amphibolite facies. In the South Range of the Sudbury Structure, Blezardian tectonism led to a southward overturning of Huronian units.

The subsequent 1.9–1.7 Ga Penokean Orogeny imposed a static greenschist overprint on to Blezardian metamorphics accompanied by northward thrusting and dextral transpression. This new tectonometamorphic event was accompanied by shearing and faulting along east-northeast lines following major faults that were part of the pre-2.4 Ga rifting event. The Sudbury Basin (Figure 2) and associated Ni-Cu-PGE orebodies are the result of a 1.85 Ga meteorite impact melt sheet near the centre of a ~260 km wide impact basin. The impact hit the active Penokean mountain belt and its adjacent Archean-Proterozoic basement. Penokean shearing and east-northeast faulting continued after the impact. The Janes Property resides within the "outer zone of damage" of this large impact structure.

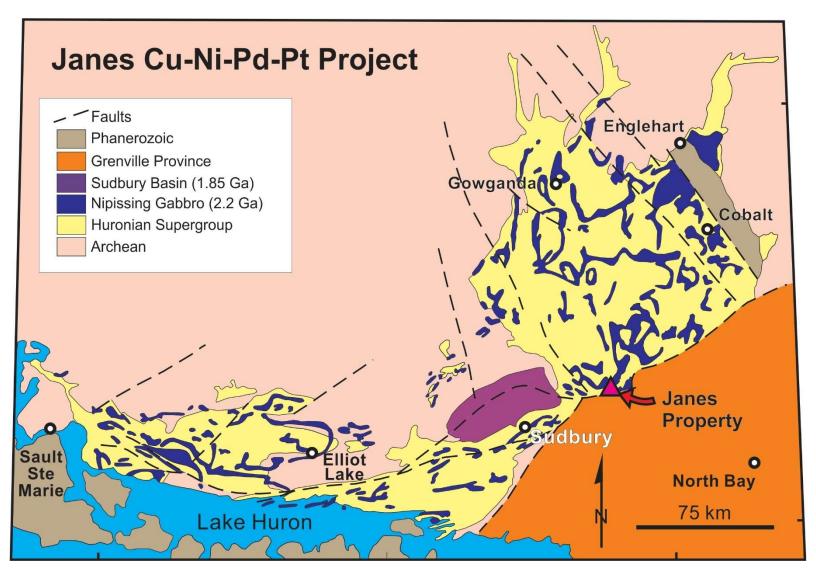


Figure 2. Regional geology in Janes Project area

Property Geology

The Janes Property (Figure 3) consists mainly of Nipissing gabbros and Huronian sediments (Gowganda and Lorrain formations of the Cobalt Group). The gabbro has inward-dipping lower contacts that might define an original lopolith. Called the Chiniguchi River intrusion, this Nipissing body hosts several compact zones of sulphide-hosted Ni-Cu-PGE mineralization near the footwall contact with the Huronian sediments. Irregularities in an undulating footwall contact may be of consequence in the localization of mineralization. Bedrock mapping did not recognize any lithological patterns suggestive of cryptic or rhythmic intrusive layering. Nonetheless, previous mapping has shown a crude change from fine-grained gabbro to the west to a medium-grained hypersthene gabbro, medium-to coarse-grained leucocratic gabbro and coarse-grained to pegmatitic and vari-textured gabbro in the east (Jobin-Bevans, 1998). Gabbro units to the east contain more modal quartz. Hypersthene gabbro, the host rock to most of the known mineralization, is recognized in outcrop to occur within 150 m of the basal contact with Gowganda formation sediments and most of the hypersthene gabbro occurs within 75–100 m of the basal contact (Jobin-Bevans, 1998).

All units show the effects of greenschist facies regional metamorphism. Metamorphic mineral assemblages in Nipissing gabbro on the Property include chlorite, albite, epidote and saussurite after plagioclase, as well as chlorite and actinolite after pyroxene. These effects are more obvious in leucocratic phases of the gabbro. Minor biotite occurs in some locations in the gabbro, but it is uncertain whether the mineral is a primary magmatic or a secondary metamorphic phase. A late northwest-striking olivine diabase dike, part of the Sudbury Dike Swarm, cuts through the centre of the property. The southernmost portion of the property contains a portion of Mississagi Formation sediments of the Hough Lake Group between the northern branch of the Ess Creek Fault and the Grenville Front, which occurs just metres south of the property boundary.

Mineralization

Known Ni-Cu-PGE mineralization on the Janes Property comprises PGE-rich sulphide mineralization near the base of the Nipissing gabbro intrusion. Sulphides consist of varying amounts of chalcopyrite, pyrrhotite and pentlandite, along with minor pyrite. The sulphides occur as disseminated and blebby, with lesser veinlets, breccia zones and net-textured patches. Total sulphide content commonly ranges from <1% to as much as 15% in some of the disseminated and blebby sections and is hosted by a weakly metamorphosed medium-grained, massive hypersthene (1–10% orthopyroxene) gabbro. Rare semimassive (25–75% total sulphide) to massive (>75% total sulphide) sulphide veins and pods occur near the basal contact of the intrusion possibly in primary contact crenulations, near the basal contact of the intrusion associated with shears, and within sediment-gabbro breccias that are proximal (<1–30 m) to the basal contact. The greatest known potential for mineralization is within 10–30 m of the lower gabbro contact. However, anomalous Ni-Cu-PGE mineralization has been observed substantially higher in the gabbro and it is undetermined whether this is primary in nature or due to fault-fracture remobilization.

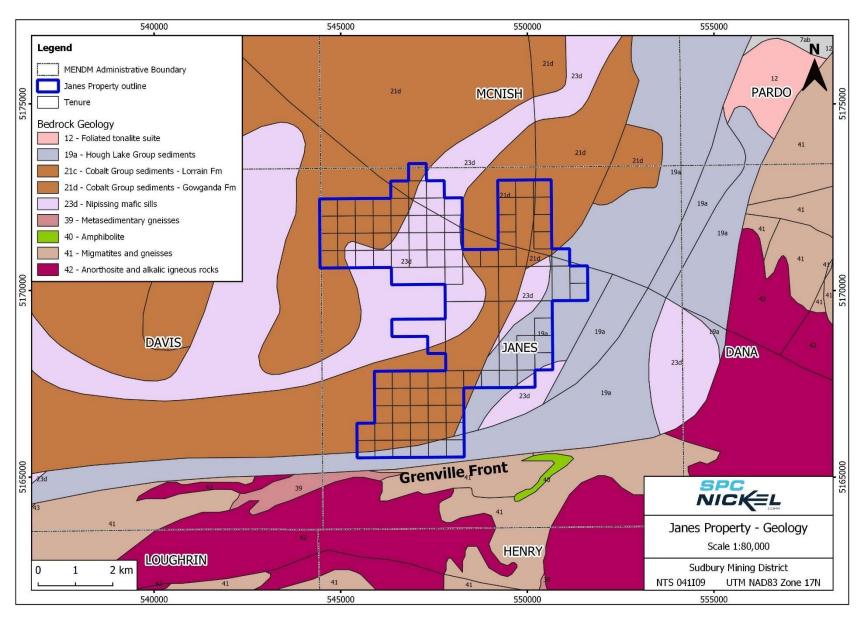


Figure 3. Property geology of Janes Project

Exploration Permits

The exploration permits issued applicable to the 2022 diamond drilling covered in this report are PR-21-000349 and PR-21-000350, in the name of SPC Nickel Corp., covering diamond drillholes JP-22-019 to JP-22-022. The same permits also cover the line cutting and IP geophysical survey. These permits were issued on January 18, 2022. They cover the activities of "mechanized drilling" and "ground geophysical survey requiring a generator" on claims 233888, 340870, 548578, 548579 (PR-21-000349); and 582748 (PR-21-000350).

2022 Line Cutting and IP Survey

Summary

Five on Line Contracting based out of Belleterre, Quebec conducted line cutting from June 20 to July 6, 2022 on the Janes Property. A total of 19.975-line kilometres were cut on the 2022 grid (Figure 4). The grid is at its longest measurements 2.4 km wide by 1.9 km long. The grid consists of 11 E-W cut lines which are spaced 200 m apart. A series of N-S lines with irregular spacing tie a number of the E-W lines together, acting as mini baselines. The configuration of the grid was optimized by Canadian Exploration Services (CXS) based out of Larder Lake, Ontario for the purpose of the IP survey.

CXS conducted a 3D distributed IP survey on the grid from July 25 to August 19, 2022. A total of 26.7-line kilometres of current injection were performed at an approximate injection interval between 25 and 50 metres (Figure 5). There was a total of 538 injection locations over 3 survey setups. A total of 20 two-channel IRIS Full Waver IP receivers were employed for the survey. The transmitter consisted of a GDDII (5 kW) with a Honda 6500 as a power plant. A current monitor was connected to the transmitter to record the current transmitted over 90 seconds for each injection point. Time-domain IP surveys involve measurement of the magnitude of the polarization voltage that results from the injection of pulsed current into the ground. Apparent resistivity and chargeability are the parameters of interest measured through this procedure. Additional information including calibration, quality control measures and injection site conditions can be found in the CXS report as Appendix 2.

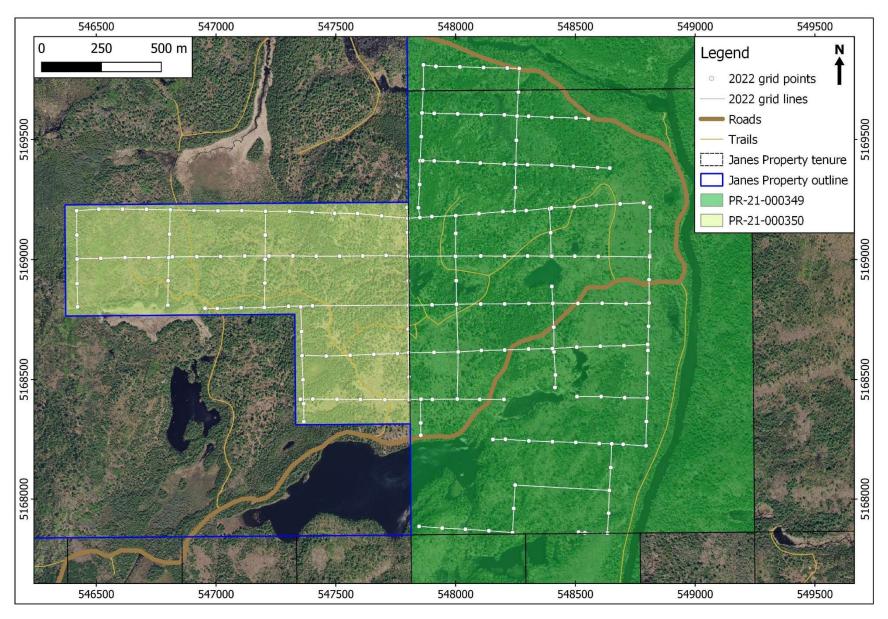


Figure 4. Location of grid lines and points for 2022 cut grid

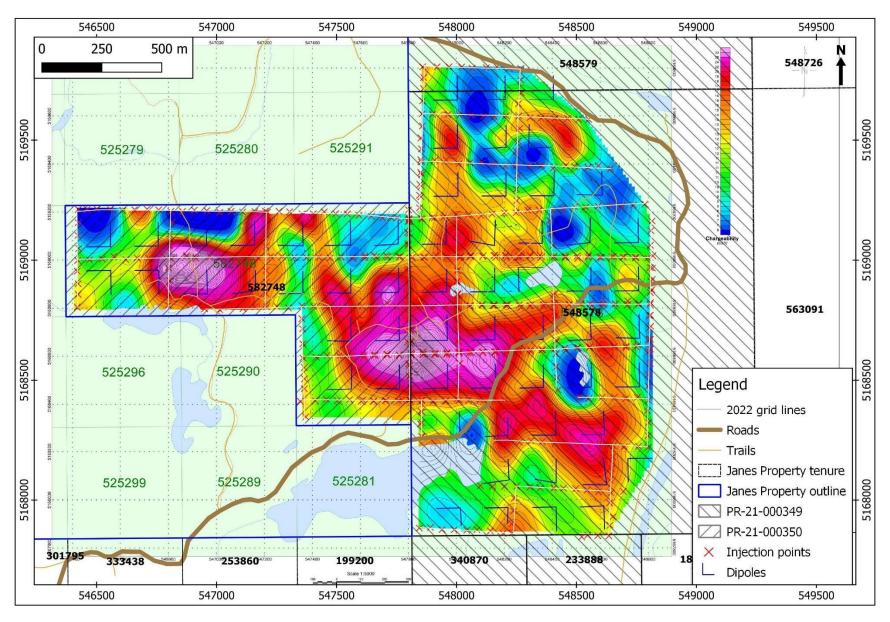


Figure 5. Map of 2022 3D distributed array induced polarization survey

Objectives

The objective of the line cutting was to cut a grid for the IP survey, with a secondary benefit being the ease of access for grid mapping afterwards.

The objective of the IP survey was to detect anomalously conductive bodies which could represent sulphide mineralized bedrock under the surface. These anomalies, if found, would be the target of diamond drilling.

Results and Interpretation

The 3D distributed IP survey highlighted numerous anomalies, most of which present themselves as weaker anomalies on surface and strengthen with depth. The two strongest areas of anomalous chargeability results on the grid will be referred to as the 'western' and 'eastern' anomalies (Figure 6). The western anomaly apparently starts at surface with the Kirkland Townsite showing and dips below surface to the east. The eastern anomaly occurs separated from the western anomaly but along the same general trend, perhaps separated by a fault for which evidence was observed at surface while mapping. It is worth noting that the strength of the anomalies detected by the 2022 IP survey is greater than those detected by the 2020 IP survey on a grid to the north. The 2022 anomalies represented compelling drill targets due to their strength and apparent connection to surface mineralization. Both anomalies appear to sit within the Nipissing gabbro body, though the eastern anomaly comes close to the contact with the Gowganda sediments to the southwest.

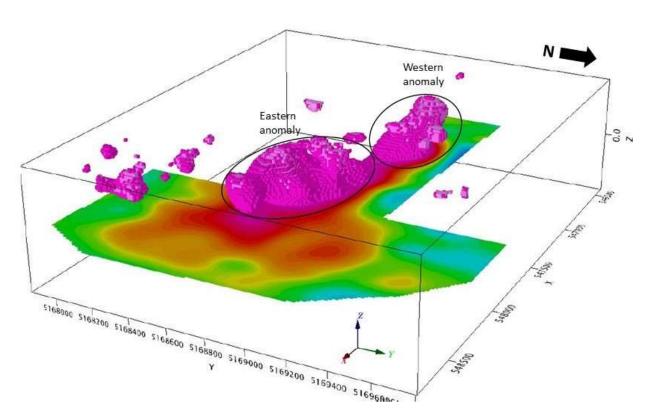


Figure 6. Anomalous areas delineated by 2022 3D IP survey

2022 Bedrock Mapping and Sampling

Summary

Bedrock mapping was conducted on the 2022 grid on the Janes Property from August 9 to September 19, 2021 (6 days total). A daily log summarizing the bedrock mapping and sampling activities can be found in Appendix 3. Coordinates and descriptions of observations and sample sites can be found in Appendix 4.

Objectives

The main objectives of the bedrock mapping were to:

- constrain the contact between the Gowganda sediment host rock and the Nipissing gabbro intrusion;
- map the different gabbro compositions within the Nipissing intrusion;
- measure any structures found such as contacts, faults and shears to better understand the geological setting; and
- visit the surface over IP anomalies generated in 2022 and attempt to explain these anomalies.

Sample Collection, Preparation and Analysis

Grab samples were collected on two east-west traverses on two grid lines to assess for lateral differences in the geochemistry of the Nipissing gabbro intrusion. A total of 18 grab samples were submitted by SPC Nickel Corp to ALS Geochemistry prep laboratory in Sudbury Ontario where they were prepared for analysis by crushed, split and pulverized to <75 microns. The prepared samples were then sent to the ALS Geochemistry commercial laboratory in North Vancouver, BC. Aliquots of a homogenized pulp for each sample were analyzed separately by fusion, acid digestion and ICP-AES finish (method ME-ICP06), by lithium borate fusion and ICP-MS finish (method ME-MS81), fire assay and ICP-AES finish (method PGM-ICP23), and by four acid digest and ICP-AES finish (method ME-4ACD81). Elements analyzed and their detection limits are listed on the certificates of analysis, available in Appendix 5.

Results, Interpretation and Conclusions

The contact between the Gowganda sediment host rock and the Nipissing gabbro intrusion was further constrained by the bedrock mapping efforts. A focus was put on obtaining structural measurements, specifically dip measurements, to help interpret the bedrock geology through 3D modelling. The resultant 3D model for the 2022 grid area is a weakly folded Nipissing gabbro sill sitting atop the Gowganda sediments. Structural measurements and observations at surface (e.g. very steep, sheer cliffs) allowed for the interpretation of some faults that follow the same general NE-SW trend as other mapped faults on the property.

Different gabbro units mapped were gabbro and vari-textured gabbro. Different Gowganda sediments observed are a clast-bearing massive greywacke commonly observed across the entire property (in the past referred to as a "tillite"), a finely-bedded siltstone and a clast-supported conglomerate.

The entirety of the grid was traversed, and overburden observation points were taken to mark areas where no outcrop was observed.

Grab sample locations and the mapped grid geology are presented in Figure 7.

The 2022 grab samples show a general trend of increasing Cu and Ni content to the west, with the highest sample being within the vicinity of the Kirkland Townsite occurrence (Figure 8). This could reflect the IP results which seem to indicate that mineralization connects to surface at the Kirkland Townsite occurrence in the west and dips below surface as it goes eastward on the grid.

Recommendations

Future mapping efforts on the Janes Property should focus on any areas outside of the mapped grid where the gabbro-sediment contact is likely to occur. Focus should remain on observing and measuring structures wherever possible.

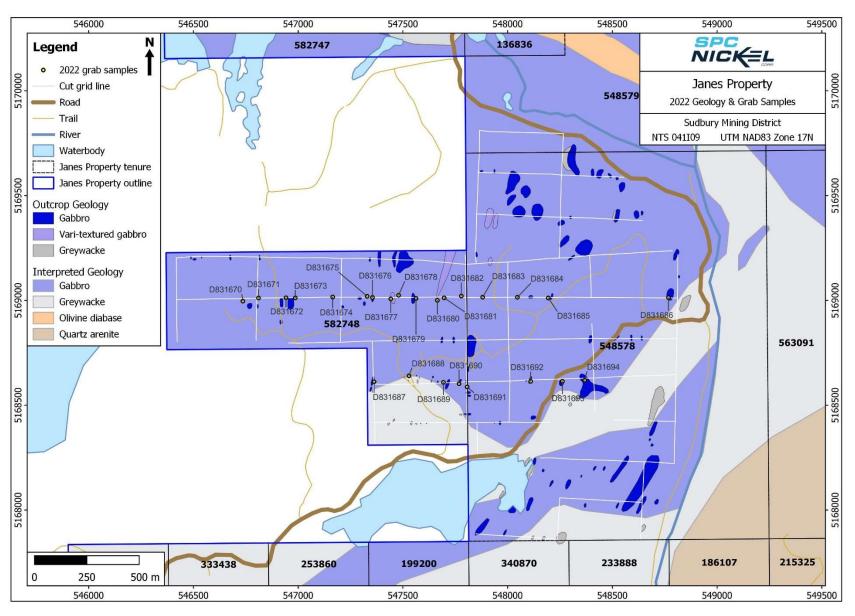


Figure 7. Map of 2022 outcrop geology, interpreted bedrock geology, and grab sample locations on main grid

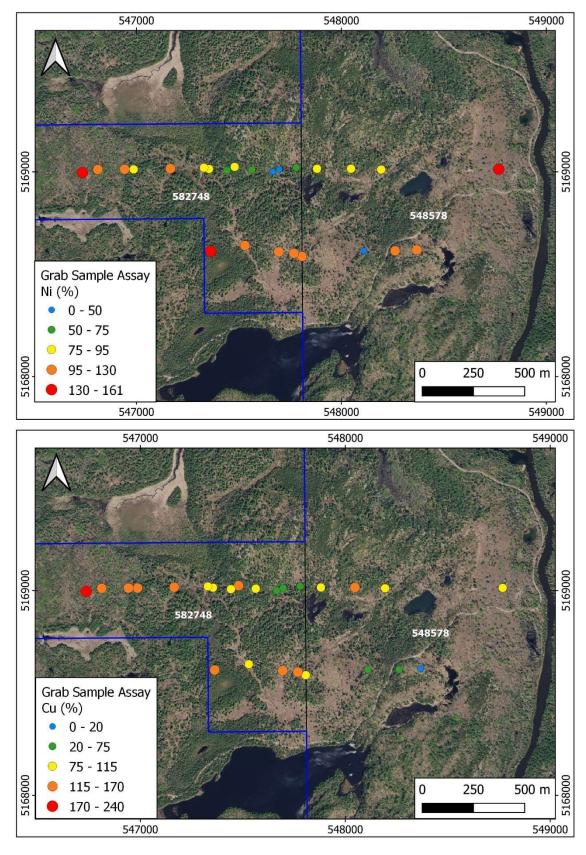


Figure 8. Ni and Cu assay results for 2022 grab samples on Janes Property

2022 Diamond Drilling Program

Diamond Drilling Summary

From October 22 to November 22, 2022, Major Drilling completed 4 NQ-sized diamond drillholes for SPC Nickel Corp (Table 3) totaling 1,212 m on the Janes Property. The relevant permits for the 2022 diamond drilling program are PR-21-000349 and PR-21-000350 (Figure 9).

Table 3. Summary of 2022 diamond drill holes on Janes Property. All UTM coordinates are in datum NAD83 zone 17N. Number of samples collected and analyzed does not include QA/QC.

Hole ID	Easting	Northing	Elevation	Claim	Azimuth	Dip	Final Depth	No. Samples
				No.			(m)	Collected and
								Analyzed
JP-22-019	546885	5168980	269	582748	260	-70	270	80
JP-22-020	546885	5168980	269	582748	260	-90	360	82
JP-22-021	546915	5168855	269	582748	335	-50	300	80
JP-22-022	547835	5168670	270	548578	180	-75	370	0

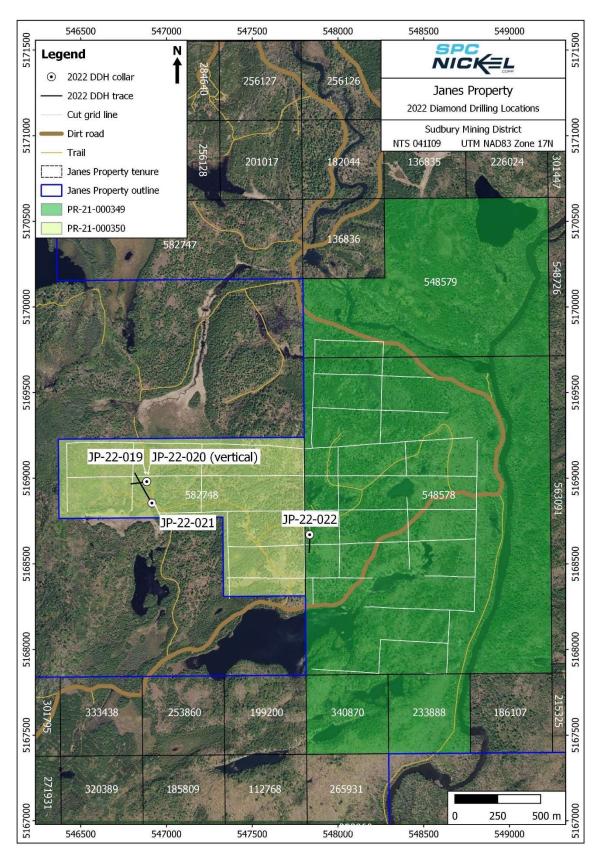


Figure 9. 2022 diamond drilling locations and permits PR-21-000349 and PR-21-000350

In preparation for the diamond drilling program, Sturgeon Falls Brush and Contracting was contracted to brush parts of two overgrown dirt roads for 1,175 m and 700 m, to widen an ATV trail for 360 m, and to cut 515 m of new trail. The resulting work widened the road for safe and efficient access to three of the diamond drilling sites by pickup truck, and to the fourth site by UTV, as well as allowing for the main drill move to be a much shorter distance. Additional work was conducted by Sturgeon Falls Brush and Contracting to clear drill pads and dig sumps for the 2022 diamond drilling program.

The diamond drilling program focused on testing the 2022 IP anomalies, with the aim of intersecting sulphide mineralization significant enough to explain the anomalies. Three holes were drilled into the western anomaly (JP-22-019 to -021) and one was drilled into the eastern anomaly (JP-22-022).

Sample Preparation and Analysis

All core was logged in detail by Rachel Chouinard of SPC Nickel Corp. Core was cut and sampled by Chris Caron of SPC Nickel Corp. A total of 242 core samples (not including QA/QC) were submitted by SPC Nickel Corp to ALS Geochemistry prep laboratory in Sudbury, ON where they were prepared for analysis by crushing, splitting and pulverizing to <75 microns. The prepped samples were then sent to ALS Geochemistry commercial laboratory in North Vancouver, BC for analysis. Aliquots of a homogenized pulp for each sample were analyzed separately by sodium peroxide fusion and ICP-AES finish for multi-element geochemistry (method ME-ICP81), by aqua regia digest and atomic absorption spectrometry (AAS) for silver (method Ag-AA45), and by fire assay and ICP-AES finish for Pt, Pd and Au (method PGM-ICP23). The elements determined by ALS Geochemistry's sodium peroxide fusion and ICP-AES finish (method ME-ICP81) are: Al, As, Ca, Co, Cr, Cu, Fe, K, Mg, Mn, Ni, Pb, S, Si, Ti, and Zn. Detection limits for these elements are listed on the certificates of analysis, available in Appendix 8. Diamond drill logs, plans and sections, and assay results are available as Appendices 6, 7 and 8, respectively.

Results

Table 4 highlights significant results from the 2022 diamond drilling on the Janes Property. All results are available in Appendix 8.

Table 4. Highlights o	f assay results from 2022	2 diamond drill holes	on Janes Property

		Interval		Base I	Base Metals		Precious Metals			
Hole ID	From	То	Length	Ni	Cu	Pt	Pd	Au	Ag	3E PGM
	(m)	(m)	(m)	(%)	(%)	(g/t)	(g/t)	(g/t)	(g/t)	(g/t)
JP-22-019	217	222	5	0.029	0.043	0.033	0.137	0.014	0.160	0.184
JP-22-020	204	205	1	0.112	0.236	0.077	0.149	0.082	0.700	0.308
JP-22-020	216	244	28	0.049	0.072	0.061	0.312	0.030	0.279	0.402
including	240	244	4	0.124	0.187	0.118	0.868	0.056	0.575	1.043
JP-22-021	75	77	2	0.125	0.433	0.008	0.007	0.041	1.400	0.056
JP-22-021	129	131	2	0.104	0.343	0.007	0.007	0.035	1.050	0.049
JP-22-021	181	186	5	0.168	0.524	0.120	0.148	0.057	1.600	0.325
JP-22-021	190	211	8	0.112	0.285	0.022	0.023	0.060	0.813	0.105
including	208	210	2	0.177	0.451	0.050	0.051	0.138	1.250	0.239
JP-22-021	243	244	1	0.154	0.332	0.082	0.114	0.119	0.900	0.315
JP-22-022	No significant mineralization encountered									

Drilling at the western IP anomaly identified a zone of disseminated sulphide mineralization. The mineralization exists as 0.5-10% fine- to medium-grained disseminated sulphides occurring within a zone of the gabbro that spatially coincides with the central core of the 3D IP anomaly. In a sample from JP-22-020 (from 242-243 m), 2.27 g/t of Pd was encountered. This interval has approximately 10% disseminated fine- to medium-grained pyrrhotite and chalcopyrite. The first three drill holes (JP-22-019 to -021) targeted the western IP anomaly and were each ended when geologists were confident that the hole was out of the sulphide zone and IP anomaly. The holes were not extended to the footwall sediments because a historic hole (70-01) showed that the sediments are over 700 m below surface in this area. The fourth and final hole (JP-22-022) targeted the eastern IP anomaly. It intersected through the central core of the 3D IP anomaly, however no sulphides were observed in the drill core.

Interpretation and Conclusions

The results from drilling in 2022 confirm the presence of a mineralized body on the property other than those at the Rastall showing (e.g. Trench 1 and Trench 4). The sulphides intersected in the first three holes seem to explain the western IP anomaly. However, it remains unexplained why no sulphides were intersected when drilling the fourth hole which targeted the equally strong eastern IP anomaly.

Preliminary geochemical investigations indicate that the gabbro hosting mineralization at the western anomaly (part of the Kirkland Townsite Occurrence; KTO) is not the hypersthene-bearing gabbro like that of Trench 1 of the Rastall showing. Joban-Bevins (2004) found that the hypersthene-bearing gabbro has lower MgO (Figure 10), lower SiO₂ and higher Fe₂O₃ compared to "regular" gabbros from higher up in the sequence. Comparison of mineralized hypersthene gabbro and overlying "regular" gabbro from SPC Nickel Corp.'s 2021 drilling confirmed these findings. The gabbro intersected in the 2022 drilling at the KTO area is geochemically comparable to the "regular" gabbro from Trench 1, indicating that it is not a hypersthene-bearing gabbro despite being mineralized.

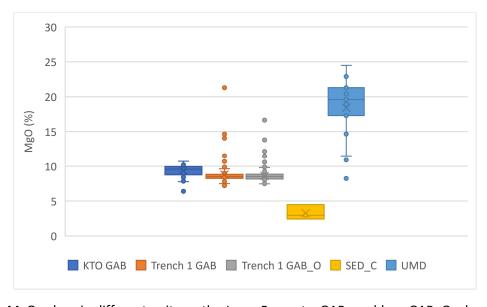


Figure 10. MgO values in different units on the Janes Property. GAB = gabbro, GAB_O = hypersthene-bearing gabbro, SED_C = sediment, UMD = ultramafic dike

Recommendations

When the seasonal conditions allow, it is recommended to conduct down-hole IP and physical properties surveys on each of the 2022 drillholes. The aim of this work would be to attempt to confirm the 2022 3D IP anomalies from a down-hole perspective rather than from surface.

Recommendations for Future Work

Based on the results of work completed on the Janes Property in 2022, the following work for 2023 is recommended for the area worked on in 2022:

Table 5. Recommended work for 2023

Activity	Duration	Estimated Cost
Downhole IP and physical properties surveys	4 days	\$32,560

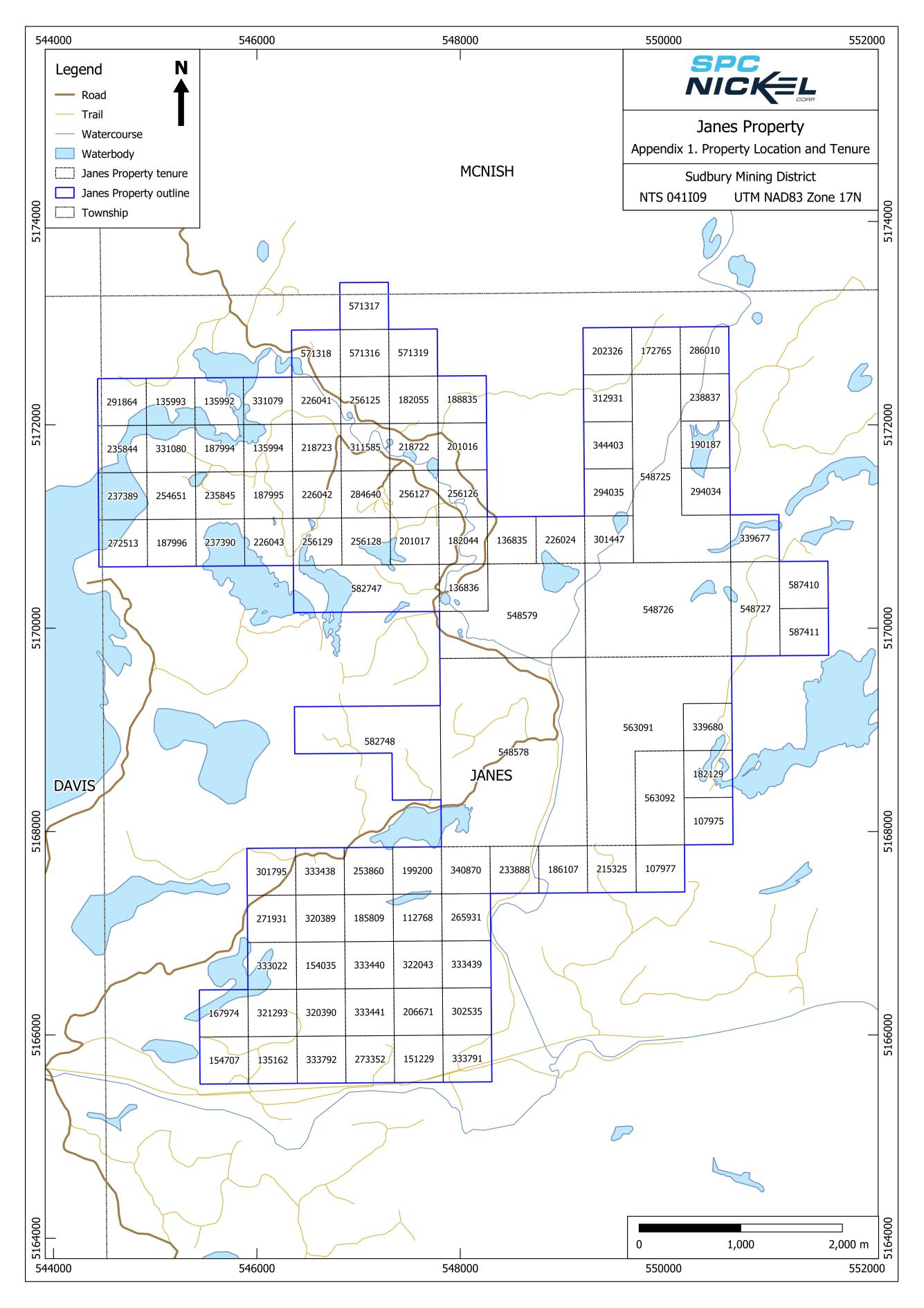
The objective of the recommended work is to confirm the presence of the western and eastern 3D IP anomalies and attempt to further explain their source.

References

Butler, H.R., 2009. Technical (geological) report on the Chiniguchi River Property. National Instrument 43-101 prepared for GoldWright Explorations Inc.

Jobin-Bevans, L.S., 1998. Report on the 1998 exploration program, Janes Project (Jackie Rastall Prospect). Prepared for Pacific North West Capital Corp.

Jobin-Bevans, L.S., 2004. Platinum-group element mineralization in Nipissing gabbro intrusions and the River Valley intrusion, Sudbury Region, Ontario. PhD thesis, The University of Western Ontario.


STATEMENT OF QUALIFICATIONS – RACHEL CHOUINARD

I, Rachel Chouinard, do hereby certify that:

- 1. I am a Project Geologist employed by SPC Nickel Corp.
- 2. I graduated with a Bachelor of Science (Earth Sciences) from Brock University in 2014 and a Master of Science (Geological Sciences) from the University of British Columbia in 2018.
- 3. My Master of Science degree focused on surficial geochemical exploration including surficial mapping, geochemical sample survey planning and execution, and interpretation of a variety of geochemical data.
- 4. I have worked as a geologist both during co-op placements while completing my undergraduate degree and since my graduation from university.
- 5. I acquired my P.Geo. designation with the Professional Geoscientists of Ontario on May 12, 2021.
- 6. I completed 8 days of interpretation and report writing for the Janes Property between November 2022 and February 2023.
- 7. I am responsible for the preparation of this report.

Dated this February 7, 2023.

Rachel Chouinard

Appendix 2. Canadian Exploration Services 3D IP Survey Report

CANADIAN EXPLORATION SERVICES LTD

SPC Nickel Corp. Q2999 – Janes Property 3D Distributed Induced Polarization Survey

C Jason Ploeger, P.Geo. Kajal P. Makwana, BSc

September 2, 2022

Abstract

Canadian Exploration Services Limited (CXS) was contracted to perform 3D Distributed IP surveys on Sudbury Platinum Corporation's Janes Property. The survey was designed as a recognisance survey for chargeable features.

The 3D Distributed IP surveys highlighted numerous anomalies. Most of the responses presented themselves as weaker anomalies on surface and strengthening with depth. The anomaly strongest and most pronounced anomaly may be related to alteration around an intrusive.

SPC Nickel Corp.

Q2845 – Janes Property
3D Distributed Induced Polarization
C Jason Ploeger, P.Geo.
Kajal P. Makwana, BSc September 2, 2022

3D Distributed Induced Polarization and Magnetometer Surveys Janes Property Janes Township, Ontario

TABLE OF CONTENTS

1.		Survey Details	
	1.1	Project Name	<u>[</u>
	1.2	CLIENT	
	1.3	Overview	
	1.4	Objective	
	1.5	Survey & Physical Activities Undertaken	
	1.6	SUMMARY OF RESULTS, CONCLUSIONS & RECOMMENDATIONS	
	1.7	CO-ORDINATE SYSTEM	
2.		Survey Location Details	
	2.1	LOCATION	
	2.2	ACCESS	
	2.3	MINING CLAIMS	8
	2.4	Property History	11
	2.5	GENERAL REGIONAL/LOCAL GEOLOGICAL SETTINGS	
	2.6	TARGET OF INTEREST	14
3.		PLANNING	15
	3.1	EXPLORATION PERMIT/PLAN	15
	3.2	Survey Design	15
4.		SURVEY WORK UNDERTAKEN	2 ²
	4.1	SUMMARY	21
	4.2	Survey Grid	21
	4.3	Survey Setup	22
	4.4	Data Acquisition	25
	4.5	Survey Log s	34
	4.6	Personnel	38
	4.7	FIELD NOTES: CONDITION AND CULTURE	38
	4.8	SAFETY	61
5.		INSTRUMENTATION & METHODS	63
	5.1	INSTRUMENTATION	63
	5.2	THEORETICAL BASIS	63
	5.3	SURVEY SPECIFICATIONS	64
6.		QUALITY CONTROL & PROCESSING	66
	6.1	FIELD QUALITY CONTROL	66
	6.2	Processing	66
	6.3	Inversion	72
7.		RESULTS, INTERPRETATION & CONCLUSIONS	75
	7.1	Results	75
	7.2	INTERPRETATIONS	79
	7.3	RECOMMENDATIONS	85

3D Distributed Induced Polarization and Magnetometer Surveys Janes Property Janes Township, Ontario

LIST OF APPENDICES

APPENDIX A: STATEMENT OF QUALIFICATIONS APPENDIX B: INSTRUMENT SPECIFICATIONS

APPENDIX C: REFERENCES APPENDIX D: DIGITAL DATA

APPENDIX E: LIST OF MAPS (IN MAP POCKET)

LIST OF TABLES AND FIGURES

Figure 1: Location of the Janes Property (Map data ©2022 Google)
Figure 2: Operational Claim Map with 3D IP Electrode sites for West Setup - Red=Transmit Locations – Blue =Read Dipole
Figure 3: Operational Claim Map with 3D IP Electrode sites for North Setup - Red=Transmit Locations - Blue = Read Dipole
Figure 4: Operational Claim Map With 3D IP Electrode Sites for South Setup Red = Transmit Locations - Blue =Read Dipole
Figure 5: Survey Design Model Looking Down - Pink =Current Injection, Blue=Receiver Electrodes, Green= Theoretical Data Point (Image ©2022 Maxar Technologies, Image ©2022
16
Figure 6: Survey Design Model Looking Northwest - Red=Current Injection, Blue=Receiver Electrodes, Green=Theoretical Data Point (Image ©2022 Maxar Technologies, Image ©2022 Google)
Figure 7: Planned Survey Layout for West Setup - Green Circles = Current Injections, Pink Lines = Dipoles, Black Dots=Red Electrodes
Figure 8: Planned Survey Layout for North Setup – Green Circles = Current Injections, Pink Lines=Dipoles, Black Dots=Read Electrodes
Figure 9: Planned Survey Layout for South Setup – Green Circles =Current Injections, Pink Lines=Dipoles, Black Dots=Read Electrodes
Figure 10: Survey Grid Image (©2022 Google, Image ©2022 CNES/Airbus)
Figure 11: Field survey layout with injection sites for North Setup (green dots) and dipoles 26
Figure 12: Receiver Dipole Orientations for North Setup on Google Earth (©2022 Google, Image ©2022 CNES/Airbus)
Figure 13: Topographical Relief with the Survey Deployment for North Setup Looking Northwest (©2022 Google, Image ©2022 CNES/Airbus)
Figure 14: Field Survey Layout with Injection Sites for South Setup (green dots) and dipoles (pink lines)
Figure 15: Receiver Dipole Orientations for South Setup on Google Earth (©2022 Google, Image ©2022 CNES/Airbus)
Figure 16: Topographical Relief with the Survey Deployment for South Setup Looking Northwest (©2022 Google, Image ©2022 CNES/Airbus)31
Figure 17: Field Survey Layout with Injection Sites for West Setup (green dots) and dipoles (pink lines)
Figure 18: Receiver Dipole Orientations for West Setup on Google Earth (©2020 Google, Image ©2020 CNES/Airbus)
Figure 19: Topographical Relief with the Survey Deployment for West Setup Looking Northwest (©2022 Google, Image ©2022 CNES/Airbus)

Figure 20: 3D Distributed IP Configuration	65
Figure 21: Transmit Cycle Used	65
Figure 22: Receiver recordings (red) synchronized with the current injections (blue)	67
Figure 23: Good 90 second transmit/read pair. Injection (blue), read signal (red), transmit signal (bottom left), decay curve (bottom centre), FFT (bottom right).	
Figure 24: Output .bin file viewed in Prosys. Larger abnormal M values circled in red	68
Figure 25: Signal, cycle, and curves of abnormal unaccepted M values	69
Figure 26: Filtering options	70
Figure 27: Measured chargeability data points (top down)	
Figure 28: Side view of the complete measured chargeability dataset facing north with the surv	
Figure 29: Export settings selection from Prosys to RES3DINV	73
Figure 30: 8 IP depth sections ranging from 0-171.6m from iteration 10 of West Inversion as viewed in RES3DINV	
Figure 31: 8 resistivity depth sections ranging from 0-171.6m from iteration 10 of West Inversion as viewed in RES3DINV	
Figure 32: 8 IP depth sections ranging from 0-171.6m from iteration 5 of North and South Inversion as viewed in RES3DINV	76
Figure 33: 8 resistivity depth sections ranging from 0-171.6m from iteration 5 of North and Sou Inversion as viewed in RES3DINV	
Figure 34: Chargeability grid (150m RL) overlaying Google Earth. (©2022 Google, Image ©202 CNES/Airbus)	
Figure 35: Resistivity grid (100m RL) overlaying Google Earth. (©2022 Google, Image ©2022 CNES/Airbus)	79
Figure 36: 3D chargeability model (red=25mV/V) with a -50m RL chargeability slice	80
Figure 37: Top view of the 3D chargeability model (pink=25mV/V) with a -5m RL chargeability slice with interpretations	
Figure 38: 3D resistivity model with a 100m RL slice (purple = <2500 ohm*m)	82
Figure 39: 3D resistivity model with a 100m RL slice (purple = <2500 ohm*m) and interpretatio	
Figure 40: Anomaly Map	85
Table 1: Survey and Physical Activity Details	
Table 2: Mining Lands and Cells Information	
Table 3: Receiver Electrode Coordinates for West Grid	
Table 4: Receiver Electrode coordinates for North Grid	
Table 5: Receiver Electrode coordinates for South Grid	
Table 6: 3D IP Survey Log	
Table 7: CXS Induced Polarization Personnel	
Table 8: Logger Electrode & Dipole Field Notes North Setup	
Table 9: Logger Electrode & Dipole Field Notes South setup	
Table 10: Logger Electrode & Dipole Field Notes West Setup	
Table 11: Current Injection Field Notes West Setup	
Table 12: Current Injection Field Notes North Setup	
Table 13: Current Injection Field Notes South Setup	60

Table 14: General Safety Topic Protocols	62
Table 15: Inversion Parameter Descriptions (© (1996-2018) M.H.Loke)	
Table 16: Recommended Prospecting Targets	. 86
Table 17: Recommended Diamond Drilling Targets	. 86

1. SURVEY DETAILS

1.1 PROJECT NAME

This project is known as the **Janes Property**

1.2 CLIENT

SPC Nickel Corp.

1351C, Kelly Lake Road, Unit 9 Sudbury, Ontario P3E 5P5

1.3 OVERVIEW

In the mid summer of 2022, Canadian Exploration Services Limited (CXS) performed a 3D distributed induced polarization (3D IP) survey for Sudbury Platinum Corporation over the Janes Property in Janes Township. A total of 26.7-line kilometres of current injection was performed at an approximate injection interval between 25m and 50m. CXS began acquiring data on July 25th, 2022. Current injection sites were injected along the select grid lines at approximately 50-metre increments. GPS points were collected at each injection rod location prior to each current injection and recorded along with their respective injection details, such as, injection file numbers and ground conditions. There was a total of 538 injection locations for this survey over the three survey setups. 184 injections in North grid, 166 injections in South grid, and 188 injections in the West grid.

1.4 OBJECTIVE

The objective of 3D distributed IP surveys were to perform a multidirectional reconnaissance survey of the area. The surveys were designed to investigate the signature of the mineralization and to assist in the determination of the extent of the mineralization

1.5 Survey & Physical Activities Undertaken

Survey/Physical Activity	Dates	Total Days in Field	Total Line Kilometres
Line Cutting	June 20 to July 6, 2022	17	19.975
3D Distributed IP	July 25 to August 19, 2022	24	26.7

Table 1: Survey and Physical Activity Details

1.6 SUMMARY OF RESULTS, CONCLUSIONS & RECOMMENDATIONS

The 3D Distributed IP surveys highlighted numerous anomalies. Most of the responses presented themselves as weaker anomalies on surface and strengthening with depth. The anomaly strongest and most pronounced anomaly may be related to alteration around an intrusive.

1.7 CO-ORDINATE SYSTEM

Projection: UTM zone 17N

Datum: NAD83

UTM Coordinates near center of grid: 547811 Easting, 5168815 Northing

2. SURVEY LOCATION DETAILS

2.1 LOCATION

The Janes Property is located in Janes Township, approximately 20 kilometres northwest of River Valley, Ontario or 50 km northeast of Sudbury, Ontario.

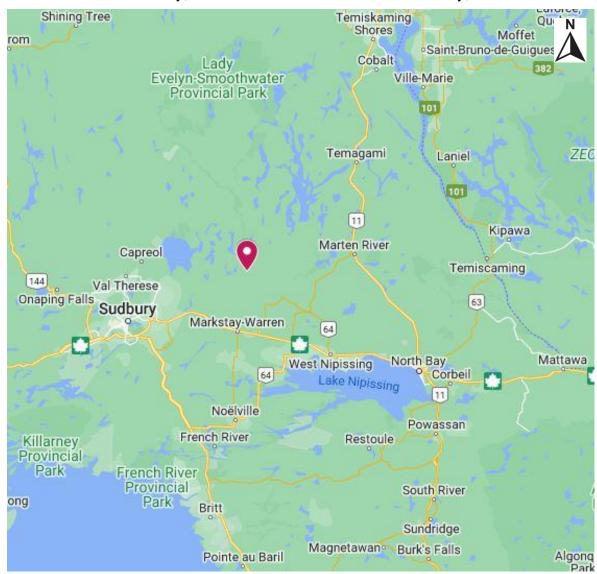
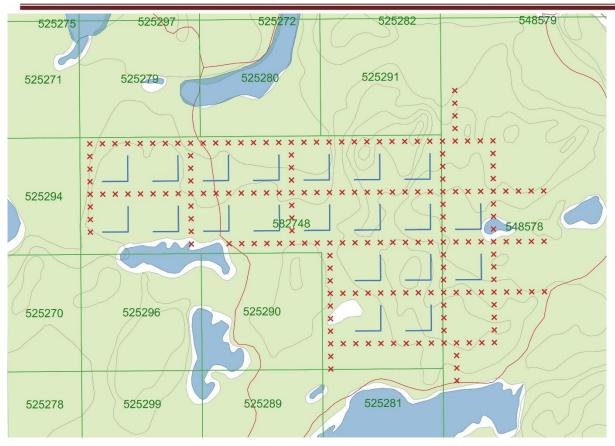


Figure 1: Location of the Janes Property (Map data ©2022 Google)

2.2 Access

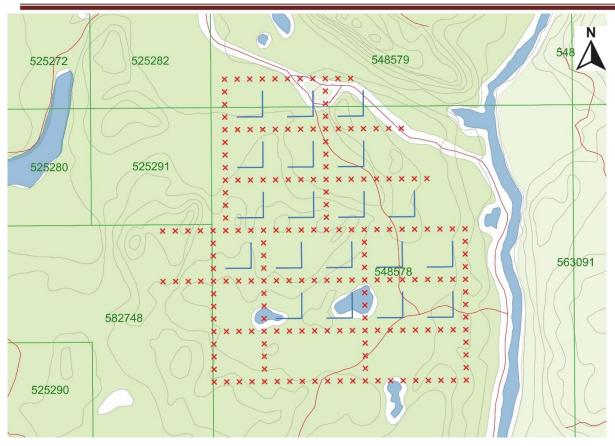
Access to the property was attained with a 4x4 truck. Highway 535 runs north from the town of Markstay-Warren until the name changes to the Boundary Road. This combination was travelled 28.5 km to the survey area.

2.3 MINING CLAIMS

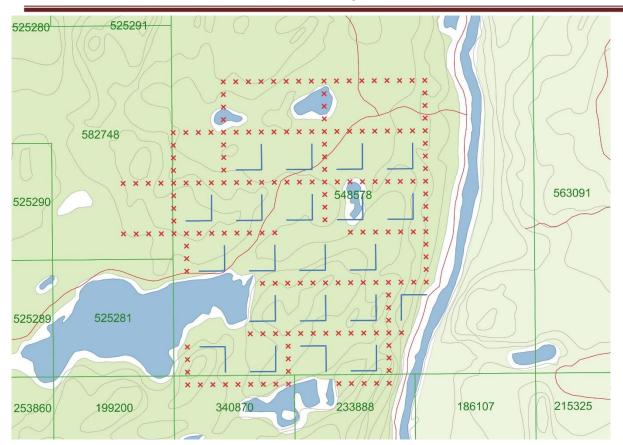

The survey area covers a portion of mining claims 548579, 548578, 340870, 233888 and 582748 located in Janes Township, within the Sudbury Mining Division.

Cell Number	Provincial Grid Cell ID	Ownership of Land	Township
548579	41109K302 41109K303 41109K321 41109K322 41109K323	(50) BRIAN JAMES WRIGHT, (50) RANDY IRWIN STEWART	Janes
548578	41109K341 41109K342 41109K363 41109K361 41109K363 41109K383 41109K382 41109K383 41109F001 41109F002 41109F003	(50) BRIAN JAMES WRIGHT, (50) RANDY IRWIN STEWART	Janes
340870	41I09F021	(50) BRIAN JAMES WRIGHT, (50) RANDY IRWIN STEWART	Janes
233888	41I09F022	(50) BRIAN JAMES WRIGHT, (50) RANDY IRWIN STEWART	Janes
582748	41109L378 41109L379 41109L380 41109L400	(50) BRIAN JAMES WRIGHT, (50) RANDY IRWIN STEWART	Janes

Table 2: Mining Lands and Cells Information



<u>Figure 2: Operational Claim Map with 3D IP Electrode sites for West Setup - Red=Transmit Lo-</u> cations - Blue =Read Dipole



<u>Figure 3: Operational Claim Map with 3D IP Electrode sites for North Setup - Red=Transmit Locations - Blue = Read Dipole</u>

<u>Figure 4: Operational Claim Map With 3D IP Electrode Sites for South Setup Red = Transmit</u>
Locations - Blue =Read Dipole

2.4 PROPERTY HISTORY

Some historical exploration has been carried out over the years over the survey area. The following list describes details of the previous geoscience work which was collected by the Mines and Minerals division and provided by OGSEarth (MNDM & OGSEarth, 2020).

1965: Ossington Exploration Ltd (File 20000004731)

Assaying and Analyses, Electromagnetic, Linecutting, Magnetic / Magnetometer Survey – Janes Townships

In 1965 Ossington Exploration Ltd. Performed Electromagnetic and Magnetometer Survey and linecutting on the property.

1968: Triller Exploration Ltd. (File 41109NW0207)

Electromagnetic Very Low Frequency, Magnetic / Magnetometer Survey, Other – Janes Townships

In 1968, triller Exploration Ltd. performed Electromagnetic and Magnetometer Survey on the property.

• 1969-1970: Kennco Exploration (Canada) Ltd (File 41I16SW0020, 41I09NW0054, 41I09NW0206, 41I09NW0210)

Airborne Geophysics, Induced Polarization, Geological and Diamond Drilling – Janes, Dana and Davis Townships

Kennco Exploration contracted an Airborne Mag and EM survey to be flown. Along with this they compiled historic data and mapped the geology. A 6560-foot drilling campaign was then performed.

1988: Bp Resources Canada (File 41I14NE0203)

Airborne Electromagnetic Very Low Frequency, Airborne Magnetometer– Janes Townships

In 1988, Bp Resources Canada performed Airborne Electomagnetic and Magnetometer Survey on the property.

- 1991: T Kampman (File 41109NW9500)
- Assaying and Analyses, Geochemical, Prospecting by Licence Holder In 1991, T Kampman performed Prospecting and geochemical Analysis and assaying on the property.
- 1998-1999: Goldwright Exploration Inc. (File 41I09NW2012) Bedrock Trenching, Electromagnetic Very Low Frequency, Geochemical, Geological Survey / Mapping, Open Cutting, Overburden Stripping, Prospecting By Licence Holder– Janes Townships

In 1998 and 1999 Goldwright Exploration mapped the geology, they also performed mechanical stripping and trenching. They also performed Geochemical and geological Survey.

- 2000: Intl Freegold Mineral Development Inc (File 41I09NW2027)

 Geochemical, Geological Survey / Mapping— Janes Townships
 In 2000, Intl Freegold Mineral Development Inc. Performed Geochemical and Geological Survey and mapping on the property.
 - 2001/ 2011-2012: Goldtrain Resources Inc and Pacific Northwest Capital Corp. (File 20000006549, 20000007743)

Physical and Diamond Drilling – Janes Townships

In 2001 Goldtrain Resources and Pacific Northwest Capital Corp. performed some stripping and Diamond drilling (5 holes – 572m of depth) on the property.

• 2007-2010: Pacific Northwest Capital Corp. (File 20000005851) Diamond Drilling— Janes Townships

In 2007 to 2010 Pacific Northwest Capital performed Diamond Drilling with 9 holes and 861m.

 2014-2017: Brian Wright, Randy Stewart and Pacific Northwest Capital Corp. (File 20000008340, 20000015250, 20000013856)

Geological and Ground Geophysics – Janes Townships

During this period parts of the property were mapped, and magnetometer surveys performed.

2.5 GENERAL REGIONAL/LOCAL GEOLOGICAL SETTINGS

Regional Geology:

The geology was taken from 2014 Geologic Assessment by Randy Stewart (OAFD 20000008340). Randy Stewart adapted the geology from Butler (2009) and Jobin-Bevans (1998)

To the north and west of the properties, the Archean basement is dominated by complex meso-zonal gregarious granite-gneiss batholiths. As part of the Superior Province, a major portion of these gneisses consists of granodioritic gneiss. Infolded into these granite-gneiss domes are narrow greenstone belts with submarine tholeitic basalts and andesites along with interflow chert horizons, some very large, banded Janes and Janes South Property 2014 Geological Assessment Program 9 iron formations, and acid volcanics. Past producers in these greenstones included small volcanogenic massive sulphide ("VMS") deposits (mostly zinc) and iron mines.

Sometime before 2.4 gigayears ("Ga") passive anoxic sedimentation (with uraniferous conglomerates) and basaltic volcanism (Elsie Mountain and Stobie formations) commenced above a major unconformity at the southern-rifted margin of the Archeanaged Superior Province. This sedimentation was accompanied by the injection of anorthosite-ultramafic complexes (East Bull Lake gabbros, and the Matachewan dyke swarm), and acid volcanics (Copper Cliff formation) representing the remains of an early Proterozoic Large Igneous Province ("LIP"). Episodic sedimentation continued, and the sediments and volcanics are collectively known as the Huronian Supergroup. To the NE, Huronian sedimentation occurred in fault-bounded basins, forming the Cobalt Embayment. Part of the Cobalt Embayment is controlled by long lived NNW faults showing sinistral displacements for a period of nearly 1Ga. The Janes and Janes South Properties lie near the southern margin of the Cobalt Embayment, and about 20 km north of the later Proterozoic (~1Ga) Grenville Front Tectonic Zone.

In the period 2.4 to 2.2 Ga, folding and metamorphism (up to upper amphibolite facies) of the Huronian sedimentary-volcanic packages commenced to the south during the Blezardian orogeny, and small-sized granitic plutons were injected. Just before the Blezardian folding ceased, regional basaltic magmatism in the form of well-differentiated tholeiitic diabase sheets (the Nipissing diabase LIP) injected the Huronian units, and the upper parts of its underlying Archean basement. The initiation of Huronian deformation certainly occurred pre-Nipissing, as indicated by the Nipissing sheets cutting early folds within the Huronian units. In places, pre-Nipissing metamorphism attained amphibolite facies. In the South Range of the Sudbury Structure, Blezardian tectonism led to a southward overturning of Huronian units.

The subsequent 1.9-1.7 Ga Penokean Orogeny imposed a static greenschist overprint on to Blezardian metamorphics accompanied by northward thrusting and dextral trans-pression. This new tectono-metamorphic event was accompanied by shearing and faulting along ENE lines following major faults that were part of the pre-2.4 Ga rifting Janes and Janes South Property 2014 Geological Assessment Program 10 event. The Sudbury Basin and its Ni-Cu-PGE ore bodies are the result of a 1.85 Ga meteorite impact melt sheet near the centre of a ~260 km wide impact basin. The impact hit the active Penokean mountain belt and its adjacent Archean-Proterozoic basement. Penokean shearing and ENE faulting continued after the impact. The Janes and Janes South Properties reside within the "outer zone of damage" of this large impact structure.

The Property is underlain by Nipissing gabbro and Huronian sediments (Gowganda and Mississagi Formations). The gabbro has inward-dipping lower contacts that might define an original lopolith. Called the Chiniquchi River intrusion, this Nipissing body hosts NiCu- PGE mineralization at the Main Showing. Irregularities in an undulating footwall Janes and Janes South Properties Janes and Janes South Property 2014 Geological Assessment Program 11 contact may be of consequence in the localization of mineralization. Localized lithological patterns suggestive of cryptic or rhythmic intrusive layering were noted in the Main Trench area. Previous mapping has shown a crude change from fine-grained gabbro to the west to a medium-grained hypersthene gabbro, medium-to coarse grained leucocratic gabbro and coarse-grained to pegmatitic and vari-textured gabbro in the east. Gabbro units to the east contain more modal quartz. Furthermore, hypersthene gabbro, the host rock to the majority of known mineralization is recognized in outcrop to occur within ~150 m of the basal contact with Gowganda Formation sediments and the majority of the hypersthene gabbro occurs within ~75 to 100 m of the basal contact. All units show the effects of greenschist facies regional metamorphism. Metamorphic mineral assemblages in Nipissing gabbro on the properties include chlorite, albite, epidote and saussurite after plagioclase as well as chlorite and actinolite after pyroxene - these effects are more obvious in leucocratic phases. Minor biotite occurs in some gabbro but it is uncertain whether the mineral is a primary magmatic or a secondary metamorphic phase. A late NW-striking olivine diabase dyke crosses the Janes property – part of the Sudbury Dyke Swarm.

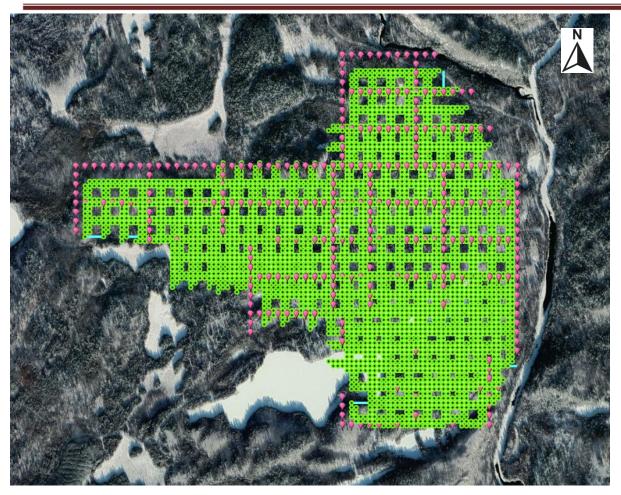
2.6 Target of Interest

The targeting of the survey was a recognisance survey over the area to explore for chargeable features.

3. PLANNING

3.1 EXPLORATION PERMIT/PLAN

The 3D Distributed Induced Polarization survey was performed over mining claims held by Brian James Wright and Randy Irwin Stewart. These required plans PR-21-000349 and PR-21-000350 for the entire area of the survey coverage.


3.2 SURVEY DESIGN

Specialized IP survey design software was used as a tool to assist in the targeting of the survey. In this case a theoretical survey distribution scenario was established to determine the survey results coverage.

For optimal coverage, three setups with 19 receivers in North setup, 21 receivers in South setup and 20 receivers in West setup, each with 3 read electrodes, were placed in selected locations in between the current injection paths. The 3 read electrodes of each receiver were placed in 2 orthogonal directions, with 25 to 150-metre dipole lengths (grid north-south and grid east-west). Current injections were placed at 25 to 50 metre intervals along cut lines. An infinite was placed far from the survey location to achieve a pole-dipole array scenario. A theoretical depth of 500 metres was obtained from the software with this layout.

<u>Figure 5: Survey Design Model Looking Down - Pink =Current Injection, Blue=Receiver Electrodes, Green= Theoretical Data Point (Image ©2022 Maxar Technologies, Image ©2022 google)</u>

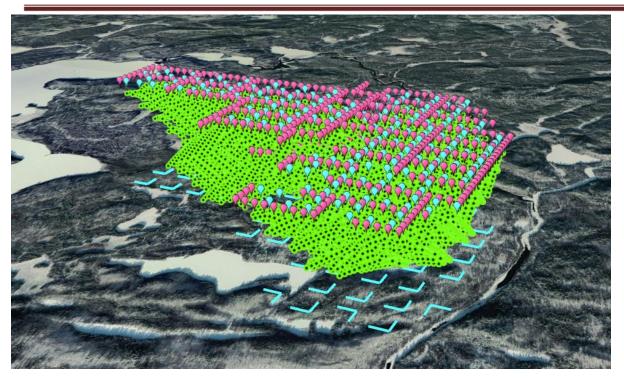
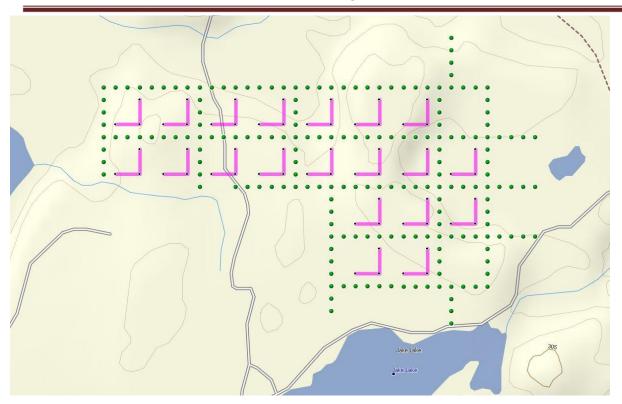
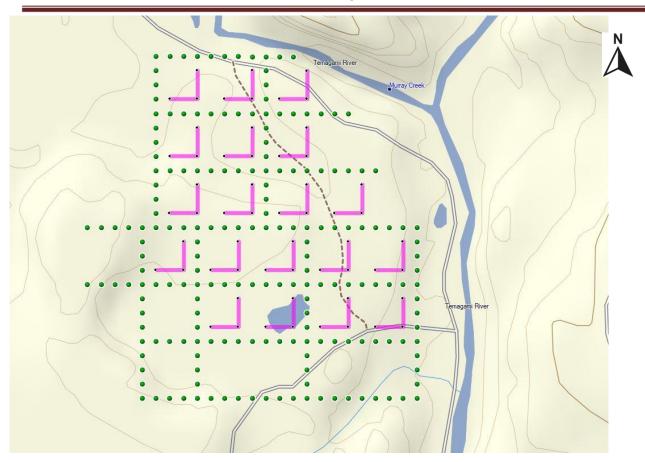
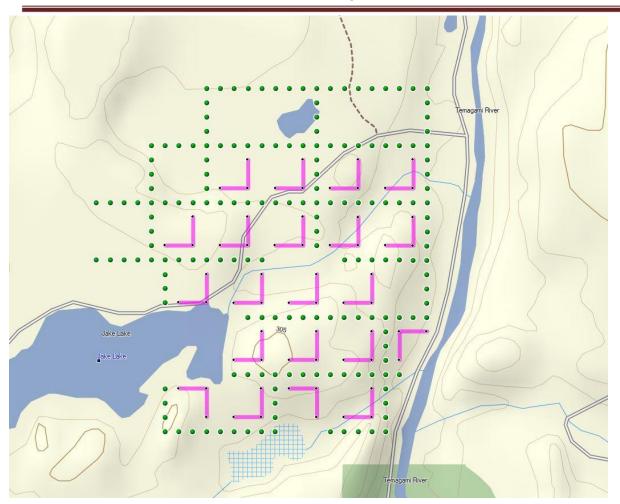



Figure 6: Survey Design Model Looking Northwest - Red=Current Injection, Blue=Receiver Electrodes, Green=Theoretical Data Point (Image ©2022 Maxar Technologies, Image ©2022 Google)



<u>Figure 7: Planned Survey Layout for West Setup - Green Circles = Current Injections, Pink</u>
<u>Lines = Dipoles, Black Dots=Red Electrodes</u>



<u>Figure 8: Planned Survey Layout for North Setup – Green Circles =Current Injections, Pink Lines=Dipoles, Black Dots=Read Electrodes</u>

<u>Figure 9: Planned Survey Layout for South Setup – Green Circles =Current Injections, Pink Lines=Dipoles, Black Dots=Read Electrodes</u>

4. SURVEY WORK UNDERTAKEN

4.1 SUMMARY

The CXS 3D IP crew occupied the site in the end of July, 2022. A total length of 26.7 kilometers was covered with IP current injections and three setups and 538 injected current points for this survey occurring between July 26th and August 20, 2020. True GPS locations were collected upon setting up the grid and utilized as field electrode locations for data processing. The survey area footprint was 2.04 km² (1200m x 1700m).

4.2 SURVEY GRID

A grid was cut along the intended current injection paths. The grid consisted of 11 east-west lines spaced at 100-metre intervals and 11 north-south baseline at 25 degrees, with stations picketed at 25-metre intervals (Figure 10). All lines were cut by Five on Line Contracting based out of Belleterre, Quebec in the summer of 2022.

Figure 10: Survey Grid Image (©2022 Google, Image ©2022 CNES/Airbus)

4.3 SURVEY SETUP

A total of 60 receivers were placed in 60 previously selected locations scattered between the grid lines, spanning 3 separate grids. 20 in the West grid, 19 in the North grid, and 21 in the South grid. Each receiver was connected to 2 approximately orthogonal, ~150-metre and ~25-metre dipoles (grid north-south and grid east-west). The coordinates of the read electrodes were recorded by GPS and are listed in Table 3. Due to field conditions, exact locations and directions were not always achieved. The infinite was located approximately 5 km south-west from the centre of the grid survey area at 544247E, 5166233N to achieve a pole-dipole array scenario. The survey layout covered a total footprint of 5.04 km² with dimensions of 2.4 km (X) x 2.1 km (Y). The West grid covered a footprint of 0.8 km² with dimensions 1.6 km (X) x 0.8 km (Y), the North grid covered a footprint of 1.32 km² with dimensions 1.2 km (X) x 1.1 km (Y), and the final grid in the South covered a footprint of 1.56 km² with dimensions 1.3 km (X) 1.2 km (Y).

Read Elec-	UTM X	UTM Y
trode	(m)	(m)
402-P1	546558	5169154
402-P2	546559	5169055
402-P3	546460	5169054
403-P1	546757	5169155
403-P2	546758	5169058
403-P3	546659	5169057
404-P1	546959	5169156
404-P2	546958	5169059
404-P3	546861	5169058
405-P1	547159	5169160
405-P2	547159	5169061
405-P3	547060	5169060
406-P1	547359	5169161
406-P2	547361	5169059
406-P3	547259	5169061
407-P1	547558	5169162
407-P2	547559	5169062
407-P3	547452	5169060
408-P1	547758	5169164
408-P2	547758	5169066
408-P3	547660	5169060
409-P1	546561	5168855
409-P2	546560	5168956
409-P3	546458	5168954

Read Elec-	UTM X	UTM Y
trode	(m)	(m)
412-P1	547162	5168956
412-P2	547163	5168872
412-P3	547064	5168859
413-P1	547360	5168952
413-P2	547360	5168860
413-P3	547261	5168859
414-P1	547559	5168963
414-P2	547560	5168862
414-P3	547461	5168863
415-P1	547759	5168965
415-P2	547761	5168865
415-P3	547661	5168865
416-P1	547960	5168966
416-P2	547960	5168867
416-P3	547860	5168865
417-P1	547559	5168762
417-P2	547562	5168662
417-P3	547462	5168664
418-P1	547761	5168764
418-P2	547763	5168666
418-P3	547663	5168664
419-P1	547961	5168766
419-P2	547963	5168666
419-P3	547862	5168664

410-P1	546760	5168858
410-P2	546760	5168957
410-P3	546660	5168956
411-P1	546960	5168958
411-P2	546962	5168859
411-P3	546861	5168858

420-P1	547564	5168561
420-P2	547562	5168463
420-P3	547462	5168461
421-P1	547763	5168563
421-P2	547763	5168464
421-P3	547663	5168465

Table 3: Receiver Electrode Coordinates for West Grid

Read Elec-	UTM X	UTM Y
trode	(m)	(m)
402-P1	548004	5169767
402-P2	548004	5169666
402-P3	547905	5169666
403-P1	548203	5169768
403-P2	548204	5169668
403-P3	548104	5169667
404-P1	548404	5169767
404-P2	548405	5169669
404-P3	548303	5169668
405-P1	548005	5169566
405-P2	548006	5169467
405-P3	547906	5169465
406-P1	548208	5169561
406-P2	548207	5169470
406-P3	548113	5169463
407-P1	548304	5169565
407-P2	548301	5169466
407-P3	548395	5169470
408-P1	548007	5169366
408-P2	548007	5169266
408-P3	547907	5169266
409-P1	548207	5169368
409-P2	548207	5169267
409-P3	548107	5169267
410-P1	548408	5169370
410-P2	548407	5169268
410-P3	548308	5169268
411-P1	548606	5169370
411-P2	548608	5169270

Read Elec-	UTM X	UTM Y
trode	(m)	(m)
412-P1	547958	5169166
412-P2	547958	5169066
412-P3	547859	5169065
413-P1	548163	5169164
413-P2	548159	5169060
413-P3	548057	5169078
414-P1	548357	5169164
414-P2	548358	5169069
414-P3	548260	5169071
415-P1	548559	5169175
415-P2	548557	5169072
415-P3	548462	5169061
416-P1	548758	5169173
416-P2	548759	5169072
416-P3	548659	5169071
417-P1	548160	5168967
417-P2	548160	5168868
417-P3	548061	5168867
418-P1	548261	5168867
418-P2	548259	5168969
418-P3	548361	5168969
419-P1	548561	5168970
419-P2	548561	5168871
419-P3	548461	5168870
420-P1	548759	5168972
420-P2	548760	5168872
420-P3	548660	5168871

411-P3 548504 5169273

Table 4: Receiver Electrode coordinates for North Grid

Read Elec-	UTM X	UTM Y
trode	(m)	(m)
402-P1	548161	5168767
402-P2	548161	5168668
402-P3	548064	5168666
403-P1	548361	5168768
403-P2	548363	5168670
403-P3	548262	5168670
404-P1	548559	5168770
404-P2	548562	5168668
404-P3	548466	5168666
405-P1	548762	5168772
405-P2	548761	5168672
405-P3	548666	5168676
406-P1	547963	5168566
406-P2	547963	5168467
406-P3	547863	5168465
407-P1	548162	5168567
407-P2	548164	5168468
407-P3	548063	5168467
408-P1	548363	5168565
408-P2	548363	5168470
408-P3	548266	5168467
409-P1	548562	5168570
409-P2	548563	5168471
409-P3	548463	5168467
410-P1	548763	5168572
410-P2	548763	5168472
410-P3	548663	5168472
411-P1	548013	5168366
411-P2	548015	5168366
411-P3	547917	5168260
412-P1	548215	5168339
412-P2	548215	5168268
412-P3	548120	5168263

Read Elec-	UTM X	UTM Y
trode	(m)	(m)
413-P1	548414	5168368
413-P2	548415	5168269
413-P3	548317	5168269
414-P1	548614	5168369
414-P2	548617	5168270
414-P3	548520	5168271
415-P1	548216	5168168
415-P2	548220	5168083
415-P3	548116	5168068
416-P1	548416	5168168
416-P2	548416	5168069
416-P3	548329	5168085
417-P1	548613	5168173
417-P2	548627	5168061
417-P3	548529	5168063
418-P1	548716	5168074
418-P2	548715	5168171
418-P3	548816	5168172
419-P1	548021	5167895
419-P2	548017	5167967
419-P3	547917	5167965
420-P1	548213	5167903
420-P2	548216	5167969
420-P3	548117	5167967
421-P1	548418	5167871
421-P2	548416	5167971
421-P3	548318	5167969
422-P1	548618	5167879
422-P2	548615	5167975
422-P3	548516	5167970

Table 5: Receiver Electrode coordinates for South Grid

4.4 DATA ACQUISITION

CXS began acquiring data on July 25th, 2022. Current injection sites were injected along the select grid lines at approximately 50-metre increments. GPS points were collected at each injection rod location prior to each current injection and recorded along with their respective injection details, such as, injection file numbers and ground conditions. There was a total of 506 injection locations for this survey over the three survey setups. 185 injections in North grid, 133 injections in South grid, and 188 injections in the West grid.

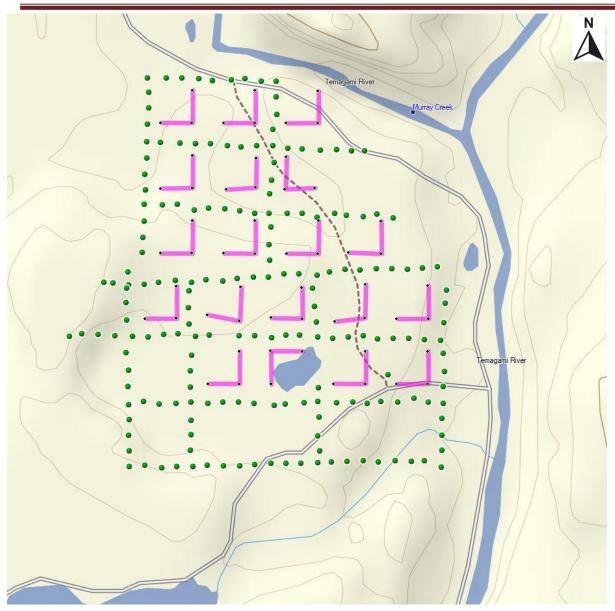


Figure 11: Field survey layout with injection sites for North Setup (green dots) and dipoles

(pink lines)

Figure 12: Receiver Dipole Orientations for North Setup on Google Earth (©2022 Google, Image ©2022 CNES/Airbus)

Figure 13: Topographical Relief with the Survey Deployment for North Setup Looking Northwest
(©2022 Google, Image ©2022 CNES/Airbus)

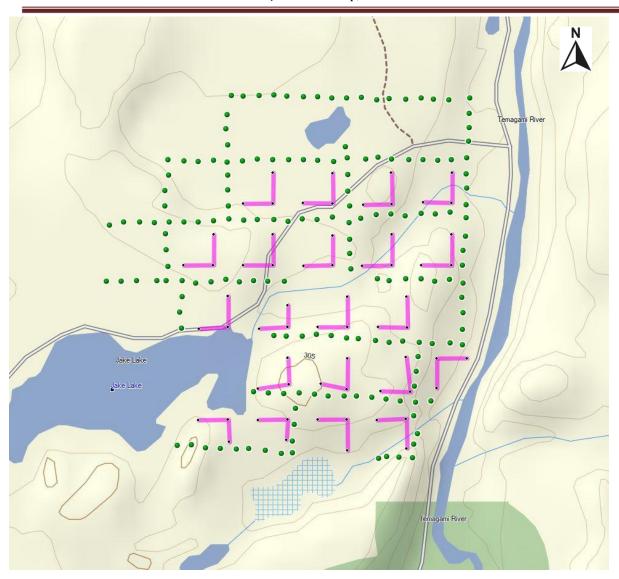


Figure 14: Field Survey Layout with Injection Sites for South Setup (green dots) and dipoles (pink lines)

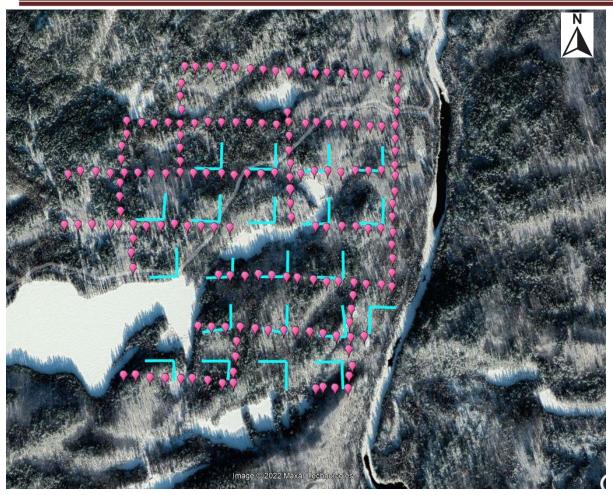
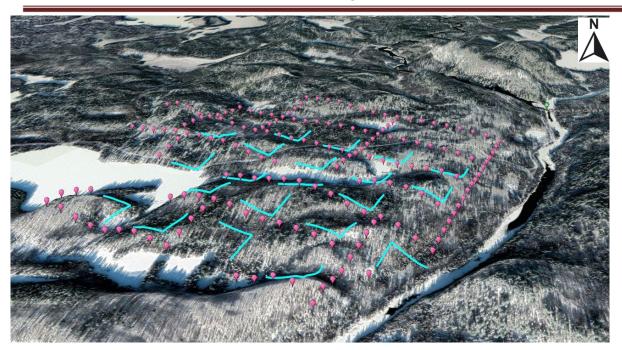



Figure 15: Receiver Dipole Orientations for South Setup on Google Earth (©2022 Google, Image ©2022 CNES/Airbus)

<u>Figure 16: Topographical Relief with the Survey Deployment for South Setup Looking Northwest</u>

(©2022 Google, Image ©2022 CNES/Airbus)

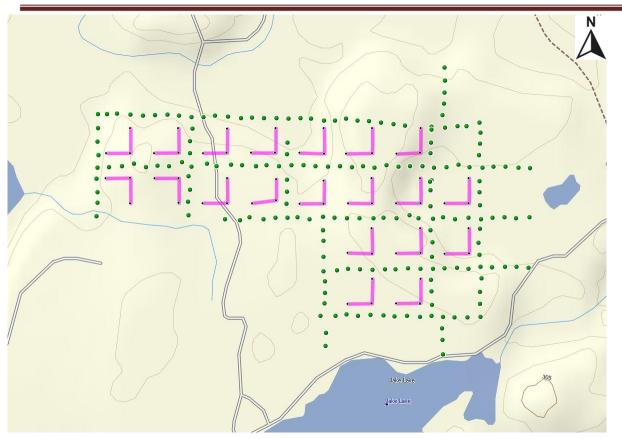


Figure 17: Field Survey Layout with Injection Sites for West Setup (green dots) and dipoles

(pink lines)

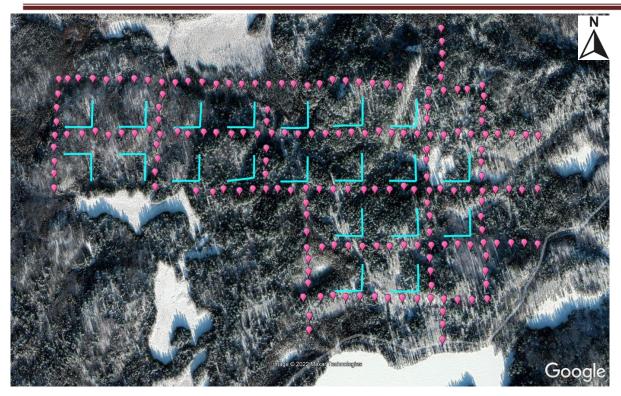


Figure 18: Receiver Dipole Orientations for West Setup on Google Earth (©2020 Google, Image ©2020 CNES/Airbus)

Figure 19: Topographical Relief with the Survey Deployment for West Setup Looking Northwest (©2022 Google, Image ©2022 CNES/Airbus)

4.5 SURVEY LOGS

3D IP Survey Log					
Date	Description	Line	Min Extent	Max Extent	Total Survey (m)
July 20 th , 2022	Partial crew mobilization. Safety briefing.	-	1	-	-
July 21 st , 2022	Locate survey area and evaluate and establish access.	-	ı	-	ı
July 22 nd , 2022	Continue to locate and establish access.	-	-	-	-

July 25 th , 2022	Remainder of crew mobilizes. Safety briefing.	-	-	-	-
July 26 th , 2022	Started setup of loggers and infinite sites on setup 1.	-	-	-	-
July 27 th , 2022	Started setup of loggers and infinite sites on setup 1.	-	-	-	-
July 28 th , 2022	Prep wire and cut access.	-	-	-	-
	B 11 (2011 11 1 B 1	400N	1400W	1000W	400
	Read L400N partial. Read	200N	1400W	950W	450
	L1400W complete. Read L200N Partial. Read L1000W	1400W	0N	400N	400
July 29 th , 2022	complete. Read L0N partial.	1000W	0N	400N	400
	Continued cutting access for	0N	850W	650W	200
	second setup.	40 i	njections	and 1.85	km
		I	•		
	Read Remainder of L0N, Read	0N	500W	400E	900
July 30 th , 2022	remainder of L200N. Contin-	200N	950W	400E	1350
	ued access trails for second setup.	46 injections and 2.25 km			
	T	400NI	4000\4/	2005	4000
	Read reminder of L400N. Read L50E, L400E, L200E complete. Read L400S partial. Continued cutting access trails for second setup.	400N	1000W	200E	1000
		400S 50E	50E	200E	150
July 31 st , 2022		50E	400N	600N	200 150
		200E	550S 400S	400S 400N	800
		48 injections and 2.5 km			
		400S	450W	200E	650
August 1 st , 2022	Reminder of L400S. Read L200S, L600W, L450W, L0E complete. Finished remainder of setup #1.	200S	450W	400E	850
		600W	0N	400L 400N	400
		450W	500S	0	500
		0E	400S	400N	800
54 injections and 3.2 km					
August 2 nd , 2022	Picked up line wire. Moved and brushed out new doghouse location. Picked up all logger sites on setup #1. Started setting up logger sites on setup #2.	-	-	-	-

August 8 th , 2022	Mobilized from Larder Lake to work area. Cleared spot for trailers at new doghouse location. Setup logger sites.	-	-	-	-
August 9 th , 2022	Setup remaining logger sites and troubleshot high contacts. Setup additional 2.5km of infinite wire to new doghouse location. Setup power wire to new doghouse location. Read 900m on L200N.	200N	100E	1000E	900
August 9 , 2022		19 injections and 0.9 km			
	I	400N	10014/	1000	1100
	Read remainder of L200N.		100W	1000E	
	Read L400N, L1000E, L200S	200N	200W	100E	300
August 10th, 2022	complete. Read L0E partial.	200S	0E	1000E	1000
,	Started access to third setup. Setup 2 logger sites on south-	0E	200S	0S	200
	eastern block.	1000E	200S	400N	600
	Custom block.	64 injections and 3.2 km			km
		0N	0E	1000E	1000
	Read remainder of L0E. Read L200E, L0N, L600E and L450E complete.	0E	0N	400N	400
August 11 th , 2022		200E	200S	400N	600
		450E	400N	1000N	600
		600E	200S	400N	500
		54 injections and 3.2 km			
	Read L1000N, L50E, L600N and L800N complete. Continued cutting access to setup #3. Setup logger site 1 and fin-	1000N	50E	400E	350
		50E	450N	950N	500
August 12 th , 2022		600N	100E	850E	750
		800N	100E	750E	650
	ished read setup #2.	47 injections and 2.25 km			
		T	1		
August 13 th , 2022	Picked up all logger sites. Picked up all unused line wire from previous setup. Setup logger sites. Continued cutting access to setup #3. Training on DGPS, Wilson, Isaiah, Mike, and Cameron.	-	-	-	-

August 18th, 2022	Read L400S, L0E and L50E complete. Picked up all line wire. Started picking up logger	400S 0E	200W 50S	400E 350S	600 300
	Reads remainder of L200S.	200S	200E	400E	200
		72 i	njections	and 3.35	km
	Read remainder of L1000S. Read L850E, L200N, L200E, L0N complete. Read L200S partial.	200S	450E	950E	700
		0N	0E	950E	950
August 17th, 2022		200E	200S	150N	350
August 17th 2000		600E	350S	50N	400
		200N	200E	950E	750
		850E	650S	950S	300
		1000S	700E	850E	150
60 injections and 2.95 km					
	paa	800S 1000S	300E 50E	900E 450E	400
August 10 , 2022	L400S and L1000S partial.	600S	350E	1000E	650 600
August 16 th , 2022	Read L1000E, L600S, L450E and L800S complete. Read	400S	700E	1000E	300
	Dood 4000F 450F	450E	800S	1000S	200
		1000E	600S	200N	800
		1	Т	T	
August 15 th , 2022	Setup remaining logger sites. Setup power wire. Finished remainder of DGPS.	-	-	-	-
	,				
August 14 th , 2022	Rick finished off trail in the south and ran wire on L1000S partial. Continued setting up logger sites. Started DGPS today (13400m)	-	-	-	-

Table 6: 3D IP Survey Log

4.6 PERSONNEL

Crew Member	Position	Resident	Province
Bruce Lavalley	Crew Chief	Dobie	Ontario
Claudia Moraga	Transmitter Operator/Mag- netometer Operator	Dobie	Ontario
Wilson Bonney	IP Technician	Kirkland Lake	Ontario
Cameron Hansen	IP Technician	Kirkland Lake	Ontario
Richard Bates	IP Technician	Virginiatown	Ontario
Michael Sheldon Jr.	IP Technician	Larder Lake	Ontario
Isaiah Yoder	IP Technician	Kirkland Lake	Ontario
Five on Line Contracting	Line Cutters	Belleterre	Quebec
C Jason Ploeger P.Geo.	Senior Geophysicist	Larder Lake	Ontario

Table 7: CXS Induced Polarization Personnel

4.7 FIELD NOTES: CONDITION AND CULTURE

3D IP Distributed Array IP Survey

The average weather over the ten field days was 18.54°C with highs up to 27.9°C and lows down to 6°C. There was heavy rain on July 28 and August 3.

No culture was noted in the survey area that would affect the data. Topographical features and ground characteristics along the read dipoles and current injection lines are noted in the following three tables (Table 8, 9 & 10 respectively).

	no	Logger Field Notes North grid (Soil/Topography/Vegetation/Culture otes on dipoles and corresponding electrodes P1/P2/P3)
	Soil	P1, P2 and P3 Sandy, Rocky
402	Торо	P2 hill, P1 and P2 Uphill and downhill
	Veg	P1, P2 and P3 Mixed Vegetation
	Soil	P1, P2 and P3 Sandy, Rocky
403	Торо	P1 and P2 Flat, P3 sidehill
	Veg	P1, P2 and P3 Mixed Vegetation
	Soil	P1, P2 and P3 sandy with rocks
404	Торо	P1 and P2 Downhill, P3 Flat
	Veg	P1, P2 and P3 Mixed Vegetation
405	Soil	P1, P2 and P3 Sandy, Rock

Logger Field Notes North grid (Soil/Topography/Vegetation/Culture notes on dipoles and corresponding electrodes P1/P2/P3) Topo P1, P2 and P3 Flat Veg P1, P2 and P3 Mixed Vegetation Soil P1 Loam, P2 Soil, P3 Rocky Soil 406 Topo P1 and P2 Flat, P3 Uphill P1, P2 and P3 Mixed Vegetation Veg Soil P1, P2 and P3 Soft Soil 407 Topo P1, P2 and P3 Flat Veg P1, P2 and P3 Mixed Vegetation Soil P1, P2 and P3 Sandy with Rocky Topo P1, P2 and P3 Flat 408 Veq P1, P2 and P3 Mixed Vegetation Culture P1 and P2 Beside trail Soil P1, P2 and P3 Sandy with Rocky 409 Topo P1 Downhill; P2 Flat; P3 Uphill P1, P2 and P3 Mixed Vegetation Veg Soil P1, P2 and P3 Sandy and Rocky Topo P1 and P3 Flat; P2 Sidehill 410 Veg P1, P2 and P3 Mixed Vegetation Culture Soil P1 and P2 Sandy, Rocky; P3 Sandy 411 Topo P1 Uphill; P2 Flat; P3 Downhill Veg P1, P2 and P3 Mixed Vegetation Soil P1, P2 and P3 sandy and Rocky Topo P1, P2 and P3 Flat 412 P1, P2 and P3 Mixed Vegetation Veg Culture P2 to P3 Crosses trail Soil P1 Sandy; P2 Very Rocky; P3 Rocky

P1, P2 and P3 Flat

P1, P2 and P3 Flat

P1 ferns; P2 and P3 Mixed Vegetation

P1 Rocky Soil; P2 and P3 Loam

413

414

Topo Veg

Soil

Topo

	Logger Field Notes North grid (Soil/Topography/Vegetation/Culture notes on dipoles and corresponding electrodes P1/P2/P3)							
	Veg	P1, P2 and P3 Mixed Vegetation						
	Culture							
	Soil	P1, P2 and P3 Very Rocky						
415	Торо	P1 and P3 Flat; P2 Hill						
	Veg	P1, P2 (thin forest) and P3 Mixed Vegetation						
	Soil	P1, P2 and P3 Rocky						
416	Торо	P1, P3 Hills; P2 Flat						
	Veg	Veg P1, P2 and P3 Mixed Vegetation						
	Soil	P1 and P2 Rocky and Sandy; P3 Muddy with Boulders						
417	Торо	P1, P2 and P3 Flat						
	Veg	P1, P2 Mixed Vegetation, P3 Grass						
	Soil	P1 Clay; P2 Sandy Clay; P3 Black Earth						
418	Торо	P1 and P2 Flat						
	Veg	P1, P2 and P3 Mixed Vegetation						
	Soil	-						
419	Торо	P1 and P3 Hill; P2 Flat						
	Veg P1, P2 and P3 Mixed Vegetation							
	Soil	P1, P2 and P3 Rocky						
420	Topo P1 and P3 Uphill; P2 flat							
	Veg P1, P2 and P3 Mixed Vegetation							
	Soil	Muddy / Swampy						
Infi-	Торо	Flat						
nite	Veg	Mixed Vegetation						
	Culture							

Table 8: Logger Electrode & Dipole Field Notes North Setup

	Logger Field Notes South grid (Soil/Topography/Vegetation/Culture notes on dipoles and corresponding electrodes P1/P2/P3)				
402	Soil P1 & P3 sandy, P2 rocky soil				
402	Торо	P1, P2 & P3 Flat			

Logger Field Notes South grid (Soil/Topography/Vegetation/Culture notes on dipoles and corresponding electrodes P1/P2/P3) Veg P1, P2 & P3 mixed trees P1 & P3 sand, P2 loam Soil 403 Topo P1, P2 & P3 Flat Veg P1, P2 & P3 mixed trees Soil P1, P2 & P3 sandy 404 Topo P1 & P3 flat, P2 hill P1 & P2 mixed trees, P3 dense brush Veg P1 & P3 loam, P2 sandy + rocky Soil 405 Topo P1, P2 & P3 flat Veg P1 mixed trees, P2 birch, P3 birch/pine Soil P1 & P2 loam, P3 rocky 406 Topo P1 & P2 flat, P3 uphill P1, P2 & P3 mixed trees Veg Soil P1 loam, P2 & P3 rocky 407 Topo P1 flat, P2 trough, P3 uphill Veg P1, P2 & P3 mixed trees Soil P1, P2 & P3 sandy 408 Topo P1, P2 & P3 flat P1 & P3 mixed trees, P2 pine/birch Veg Soil P1, P2 & P3 sand + rock 409 Topo P1 & P2 flat, P3 uphill Veg P1 & P3 dense brush, P2 mixed Soil P1, P2 & P3 rocky Topo P1, P2 & P3 hill 410 P1, P2 & P3 mixed trees Veg Soil P1, P2 & P3 rocky 411 Topo P1 uphill, P2 & P3 flat P1 mixed, P2 trail, P3 main road Veg P1 mud + sand, P2 & P3 sand + rock Soil 412 P1 flat, P2 downhill, P3 sidehill Topo P1 water (open), P2 & P3 mixed bush Veg Culture P3-P2 Crosses creek, P2-P1 into a pond Soil P1 sand + lots of rock, P2 & P3 sand + rock P1 & P3 downhill, P2 flat 413 Topo P1. P2 & P3 mixed Veg P1, P2 & P3 sand 414 Soil

	Logger Field Notes South grid (Soil/Topography/Vegetation/Culture notes on dipoles and corresponding electrodes P1/P2/P3)						
	Торо	P1 & P2 flat, P3 downhill					
	Veg	P1, P2 & P3 mixed					
	Soil	P1 & P2 sand + rock, P3 rocky					
415	Торо	P1 & P2 flat, P3 downhill					
	Veg	P1, P2 & P3 mixed					
	Soil	P1 sand + rock, P2 loam, P3 rocky					
416	Торо	P1, P2 & P3 flat					
	Veg	P1 thin mixed trees, P2 & P3 mixed trees					
	Soil	P1 rocky, P2 & P3 very rocky					
417	Торо	P1 & P3 flat, P2 hill					
	Veg	P1, P2 & P3 mixed trees					
	Soil	P1, P2 & P3 rocky					
418	Торо	P1 downhill, P2 hill, P3 hill					
	Veg	P1, P2 & P3 mixed trees					
	Soil	P1 loam + rock, P2 & P3 rock + moss					
419	Торо	P1 flat, P2 uphill, P3 sidehill					
	Veg	P1, P2 & P3 mixed trees					
	Soil	P1 & P2 sand, P3 sand + rock					
420	Торо	P1 & P2 flat, P3 uphill					
Veg		P1, P2 & P3 mixed					
	Soil	P1 sand + rock, P2 sand, P3 sand + rock					
421	Торо	P1 & P2 flat, P3 uphill					
	Veg	P1, P2 & P3 mixed					
Soil P1 rocky, P2 & P3 sand + rock		P1 rocky, P2 & P3 sand + rock					
422	Торо	P1 uphill, P2 flat, P3 on hill					
722	Veg	P1 & P2 mixed trees, P3 thick brush					
	Culture	creek, large valley					
Infinite	Soil	Muddy / Swampy					
	Торо	Flat					
	Veg	Mixed Vegetation					

Table 9: Logger Electrode & Dipole Field Notes South setup

	Logger Field Notes West Setup (Soil/Topography/Vegetation/Culture notes on dipoles and corresponding electrodes P1/P2/P3)							
	Soil P1, P2 and P3 Soft with Rock							
402	Торо	P1, P2 and P3 Flat						
	Veg	P1, P2 and P3 Mixed Vegetation						
	Soil	P1, P2 Soft with Rock, P3 Loam with Rocky						
403	Торо	P1 Slope; P2 Side Hill; P3 Flat						
	Veg	P1, P2 and P3 Mixed Vegetation						
	Soil	P2 Sandy Soil						
404	,							
	Veg	P1, P2 and P3 Mixed Vegetation						
	Soil	P2 Rocky						
405	405 Topo P1 and P2 Hill, P2 Flat							
	Veg P1, P2 and P3 Mixed Vegetation							
	Soil	· · · · · · · · · · · · · · · · · · ·						
406	Торо	P1 Hill; P2 and P3 Flat						
	Veg	P1, P2 and P3 Mixed Vegetation						
	Soil	P2 and P3 Very Rocky Ground P1 P2 and P3 Flat						
407	Торо	P1, P2 and P3 Flat						
	Veg	P1, P2 and P3 Mixed Vegetation						
	Soil P2 Dense; P3 Shallow soil							
408	Торо	P2 and P3 Hill						
	Veg	P1, P2 and P3 Mixed Vegetation						
	Soil	P1, P2 and P3 Sandy with Rocky						
409	Торо	P1, P2 and P3 Flat						
	Veg P1, P2 and P3 Mixed Vegetation							
	Soil P1, P2 and P3 Sandy with Rocky							
410								
	Veg	P1, P2 and P3 Mixed Vegetation						
	Soil	P2 Rocky						
411	Торо	P1, P2 and P3 Flat						
	Veg	P1, P2 and P3 Mixed Vegetation						
412	Soil	P1 Rocky; P2 Soft Soil and P3 Shallow soil						

	not	Logger Field Notes West Setup (Soil/Topography/Vegetation/Culture es on dipoles and corresponding electrodes P1/P2/P3)						
	Торо	P1 top of hill; P2 Flat; P3 Rocky						
	Veg	P1, P2 and P3 Mixed Vegetation						
	Soil	P1 sandy; P2 Loam; P3 Soil						
413	Торо	P1, P2 and P3 Flat						
	Veg	P1, P2 and P3 Mixed Vegetation						
	Soil	P1 sandy; P2 coarse sandy; P3 soil						
414	Торо	P1, P2 and P3 Hilly						
	Veg	P1, P3 mixed vegetation; P2 Pine						
	Soil	P1, P2 and P3 Sandy with Rocky						
415	Торо	P1, P2 and P3 Flat						
	Veg	P1, P2 and P3 Mixed Vegetation						
	Soil	3. 3.						
416	Торо							
	Veg	P1, P2 and P3 Mixed Vegetation						
	Soil	P1 and P2 Sandy, P3 Loam P1 and s P2 Flat						
417	Торо							
	Veg	P1, P2 and P3 Mixed Vegetation						
	Soil	P1, P2 and P3 Soft with Rocky						
418	Topo P1 and P2 Flat							
	Veg	P1, P2 and P3 Mixed Vegetation						
	Soil P1 Soft Rocky; P2 Sandy with Rock; P3 Soft Sandy							
419	Торо	P1 Flat; P2 and P3 Slope						
	Veg	P1, P2 and P3 Mixed Vegetation						
	Soil	P1 Sandy; P2 sandy; P3 Rocky Soft Soil						
420	Topo P2 and P3 Flat							
	Veg	P1, P2 and P3 Mixed Vegetation						
	Soil	P1 Soft, P2 and P3 Soft with rock						
421	Торо	P1, and P3 Flat, P2 Up outcrop						
	Veg	P1, P2 and P3 Mixed Vegetation						
	Culture							
	Soil	Muddy / Swampy						

Logger Field Notes West Setup (Soil/Topography/Vegetation/Culture notes on dipoles and corresponding electrodes P1/P2/P3) Topo Flat Veg Mixed Vegetation Culture

Table 10: Logger Electrode & Dipole Field Notes West Setup

	Line/	UTM X	UTM Y		Cround & Surrounding Area
Date	Station	(m)	(m)	I (mA)	Ground & Surrounding Area Characteristics
7/29/2022	400N				
	1000W	546810	5169203	270	Flat Rocky Loam
	1050W	546759	5169209	300	Sandy
	1100W	546711	5169212	370	Flat Soil
	1150W	546659	5169210	560	Flat Rocky Soil
	1200W	546609	5169206	310	Flat Sandy
	1250W	546558	5169211	400	Flat Soil
	1300W	546502	5169213	460	Rocky Downhill
	1350W	546461	5169211	410	Sandy Loam Downhill
	1400W	546424	5169211	1080	Flat Muddy
7/29/2022	1400W				•
	350N	546424	5169155	450	Side hill Soft Soil
	300N	546423	5169102	380	Side hill Rocky
	250N	546426	5169048	420	Sandy side hill
	200N	546422	5168998	290	Side hill Sandy
	150N	546420	5168953	470	Side hill sandy
	100N	546424	5168901	400	Sandy
	50N	546424	5168857	310	Flat Sandy ?
	0N	546420	5168804	470	Flat Sandy Rocky
7/29/2022	200N				
	1350W	546471	5169000	290	Flat Sandy
	1300W	546524	5169004	280	Flat Sandy
	1250W	546573	5169014	600	Flat Soft Soil
	1200W	546623	5169001	520	Flat Soft Soil
	1150W	546670	5169008	390	Flat Sandy
	1100W	546718	5169007	240	Flat Sandy
	1050W	546773	5169023	570	Flat Soft Soil
	1000W	546812	5169004	400	Flat Soft Soil
	950W	546876	5169017	380	Flat Soft Soil
7/29/2022	1000W				
	350N	546815	5169157	470	Flat Soft Soil
	300N	546804	5169107	750	Flat Soft Soil
	250N	546805	5169059	518	Flat Rocky
	150N	546800	5168967	240	Flat Rocky
	100N	546805	5168914	380	Uphill Sandy
	50N	546798	5168865	430	Flat Sandy
	0N	546799	5168811	770	Flat Sandy

7/29/2022	0N				
	850W	546951	5168797	340	Flat Sandy
	W008	547014	5168793	370	Flat Sandy
	750W	547052	5168805	220	Flat Sandy
	700W	547111	5168798	310	Uphill Sandy
	650W	547161	5168805	330	Flat Sandy
	600W	547209	5168805	250	Uphill Sandy
	550W	547252	5168807	400	Flat Sandy
07/30/2022	0N				
	500W	547300	5168800	460	Flat Sandy
	450W	547356	5168809	1.47	Flat Muddy
	400W	547404	5168807	310	Sidehill Soft soil
	350W	547455	5168805	300	Flat Sandy
	300W	547508	5168805	360	Flat Soft soil
	250W	547566	5168804	450	Uphill Sandy
	200W	547606	5168807	260	Flat Sandy
	150W	547660	5168806	360	Flat Soft soil
	100W	547714	5168819	650	Sidehill Sandy
	50W	547751	5168806	370	Downhill Sandy
	0E	547811	5168804	420	Downhill Rocky
	50E	547853	5168812	370	Flat Sandy
	100E	547903	5168805	230	Flat soft ground
	150E	547957	5168810	250	Flat Sandy
	200E	548010	5168805	310	Flat Sandy
	250E	548058	5168811	170	Sidehill Sandy Rocky
	300E	548107	5168814	290	Flat Rocky
	350E	548154	5168810	350	Flat Rocky
	400E	548210	5168815	240	Flat Sandy Rocky
07/30/2022	200N				
	400E	548211	5169010	310	Uphill Rocky
	350E	548164	5169011	200	Flat Sandy
	300E	548110	5169015	310	Flat Sandy
	250E	548060	5169014	300	Sidehill Rocky
	200E	548016	5169011	310	Flat Rocky
	150E	547962	5169013	270	Flat Rocky Sandy
	100E	547915	5169021	730	Flat Hard Rocky
	50E	547865	5169011	440	Flat Rocky
	0E	547815	5169009	530	Flat Hard Ground
	50W	547766	5169014	410	Downhill Hard Rocky
	100W	547714	5169013	690	Sidehill Hard Rocky

	150W	547667	5169012	350	Sidehill Soft Ground
	200W	547619	5169017	260	Sidehill Hard Rocky
	250W	547569	5169007	170	Flat Rocky Sandy
	300W	547520	5169012	360	Flat Rocky
	350W	547474	5169008	380	Downhill Rocky Sandy
	400W	547426	5169011	170	Sidehill Rocky
	450W	547375	5169010	600	Flat Hard Ground
	500W	547324	5169011	630	Flat Hard
	550W	547274	5169015	800	Flat sandy soil
	600W	547226	5169014	290	Flat Rocky Sandy
	650W	547174	5169009	310	Flat Sandy
	700W	547121	5169014	370	Sidehill rocky Sandy
	750W	547078	5169008	220	Flat Rocky sandy
	W008	547021	5169012	200	Sandy Flat
	850W	546974	5169014	220	Downhill Rocky Sandy
	900W	546915	5169007	530	Flat sandy soil
07/31/2022	400N				
	950W	546859	5169203	780	Flat Sandy Rocky
	900W	546908	5169208	530	Flat Topsoil
	850W	546960	5169206	1260	Flat Soft Ground
	800W	547014	5169199	1350	Flat Sandy Soft
	750W	547061	5169203	1200	Flat Soft Soil
	700W	547109	5169200	1030	Flat Soft Soil
	650W	547160	5169202	1350	Flat Soft Soil
	600W	547212	5169199	1590	Flat Muddy Soil
	550W	547261	5169203	1240	Flat Muddy Soil
	500W	547305	5169201	1540	Flat Mossy Soil
	450W	547357	5169192	380	Uphill Sandy Rocky
	400W	547403	5169193	350	Uphill Rocky
	350W	547449	5169201	220	Flat Rocky
	300W	547497	5169193	260	Uphill Mossy Rocky
	250W	547545	5169192	410	Flat Sandy Rocky
	200W	547594	5169186	300	Flat Sandy Rocky
	150W	547645	5169182	410	Flat Sandy Rocky
	100W	547693	5169175	270	Flat Sandy Rocky
	0E	547803	5169173	360	Flat Rocky Ground
	50E	547858	5169170	340	Flat Rocky Soil
07/31/2022	50E				
	400N	547847	5169218	450	Flat Rocky Soil
	450N	547853	5169264	470	Flat Hard Ground

	500N	547855	5169309	320	Sidehill Hard
	550N	547856	5169357	330	Sidehill Hard Rocky
	600N	547855	5169409	470	Couldn't Hear Discrip
07/31/2022	400N				
	100E	547909	5169175	390	Flat Rocky Soil
	150E	547947	5169176	170	Flat Rocky Mossy
	200E	548000	5169190	270	Flat Hard Rocky
07/31/2022	200E				
	350N	548006	5169150	300	Flat Hard Ground
	300N	548003	5169105	290	Flat Sandy Rocky
	250N	548000	5169060	410	Flat Sandy Rocky
	150N	548004	5168956		Downhill Sandy Rocky
	100N	548003	5168912	540	Flat Sandy Soft Ground
	50N	548006	5168860	520	Flat Sandy
	50S	548006	5168767	420	Flat Sandy
	100S	548001	5168711	530	Flat Sandy Rocky
	150S	548006	5168662	580	Sidehill Hard Ground
	200S	548009	5168615	610	Uphill Hard Rocky
	250S	548015	5168569	470	Flat Sandy Soil
	300S	548008	5168515	290	Flat Sandy
	350S	548009	5168468	380	Flat Sandy Soil
	400S	548012	5168416	370	Flat Sandy Soil
07/31/2022	400S				
	150E	547957	5168412	320	Flat Rocky
	100E	547904	5168412	360	Flat Rocky Soil
	50E	547856	5168415	350	Side hill Rocky
07/31/2022	50E				
	450S	547853	5168369	250	Flat Rocky
	500S	547855	5168322	250	Flat Hard Rocky
	550S	547856	5168265	320	Flat Hard Rocky
08/01/2022	400S				
	0E	547808	5168418	190	Flat Rocky Ground
	50W	547760	5168414	290	Sidehill Sandy Rocky
	100W	547707	5168416	480	Flat Sandy Rocky
	150W	547656	5168414	190	Uphill Hard Rock
	200W	547609	5168418	260	Flat Rocky Soil
	250W	547555	5168420	260	Flat Rocky Soil
	300W	547504	5168415	270	Uphill Sandy Rocky
	350W	547458	5168421	170	Flat Sandy Rocky
	400W	547412	5168415	200	Flat Hard Rocky

	450W	547349	5168413	190	Flat Hard Rocky
08/01/2022	200S				
	450W	547360	5168592	970	Flat Soft Sandy Soil
	400W	547416	5168595	1130	Flat Mossy Muddy Soil
	350W	547461	5168603	1090	Flat Muddy Soil
	300W	547512	5168601	2170	Flat Muddy Soil
	250W	547562	5168599	420	Flat Rocky Sandy
	200W	547614	5168602	240	Uphill Hard Sandy
	150W	547657	5168602	260	Flat Rocky Hard
	100W	547710	5168607	260	Downhill Hard Rocky
	50W	547762	5168605	640	Flat Rocky Hard
	0E	547812	5168605	370	Sidehill Sandy Rocky
	50E	547861	5168608	270	Flat Rocky
	100E	547911	5168611	320	Downhill Rocky
	150E	547959	5168607	630	Flat Soft Sandy Soil
	250E	548056	5168614	360	Flat Sandy Rocky
	300E	548110	5168616	310	Flat Very Rocky
	350E	548159	5168617	250	Sidehill Soft Sandy
	400E	548208	5168612	330	Sidehill Sandy Rocky
08/01/2022	600W				
	350N	547204	5169204	1070	Flat Sand
	300N	547208	5169103	1010	Uphill Sandy Soil
	250N	547206	5169057	440	Flat Sand
	150N	547207	5168956	150	Uphill Sand
	100N	547207	5168908	450	Flat Sand
	50N	547206	5168860	230	Uphill Sand
08/01/2022	450W				
	50S	547356	5168755	2140	Flat Muddy
	100S	547359	5168713	330	Uphill Sandy
	150S	547360	5168651	350	Flat Sandy
	250S	547366	5168553	1900	Flat Muddy
	300S	547367	5168506	2020	Flat Muddy
	350S	547366	5168465	450	Flat Rocky Sand
	450S	547372	5168346	970	Downhill Rocky
	500S	547371	5168295	2000	Flat Muddy
08/01/2022	0E				
	350N	547803	5169161	270	Flat Hard Rocky
	300N	547801	5169109	270	Flat Soft Soil Sandy
	250N	547799	5169067	200	Downhill Rocky Sandy
	350S	547811	5168462	200	Flat Sand

150N	547797	5168954	650	Flat
300S	547807	5168515	240	Flat Soil
100N	547800	5168918	930	Flat Sandy Muddy
250S	547805	5168561		Downhill Rocky Sandy
50N	547802	5168855	290	Uphill sandy Rocky
150S	547808	5168653	290	Flat rocky
50S	547802	5168759	470	Sidehill Very Rocky
100S	547810	5168712	190	Downhill Rocky

Table 11: Current Injection Field Notes West Setup

Date	Line/ Station	UTM X (m)	UTM Y (m)	I (mA)	Ground & Surrounding Area Characteristics
08/09/2022	200N				
	1000E	548798	5169008	280	Uphill Sandy Rocky
	950E	548746	5169010	420	Flat Sandy Rocky
	900E	548696	5169013	380	Flat Soft Soil
	850E	548648	5169013	270	Flat sandy hard soil
	800E	548598	5169010	360	Uphill Sandy Rocky
	750E	548552	5169020	310	Uphill Sandy Rocky
	700E	548504	5169016	300	Downhill Sandy Rocky
	650E	548455	5169010	420	Sidehill hard rocky
	600E	548407	5169015	570	Sidehill hard rocky
	550E	548349	5169020	420	Uphill Hard Sandy
	500E	548306	5169019	460	Flat Soft Sandy
	450E	548260	5169011	480	Flat Soft sandy soil
	400E	548207	5169018	340	Uphill Hard Sandy
	350E	548157	5169018	370	Flat Sandy Rocky
	300E			370	Flat Hard Ground
	250E	548061	5169017	460	Flat Rocky
	200E	548019	5169014	460	Flat Hard Rocky
	150E	547963	5169022	380	Flat Hard Ground
	100E	547918	5169018	730	Flat Hard Rocky
08/10/2022	200N				
	50E	547868	5169011	320	Flat Hard Sandy Soil
	0E	547818	5169012	560	Flat Hard Sandy Soil
	50W	547762	5169013	530	Downhill Rocky
	100W	547708	5169018	700	Downhill Soft Sandy
	150W	547657	5169018	370	Flat Rocky Sandy
	200W	547618	5169010	220	Sidehill hard Rocky

08/10/2022	400N				
	100W	547727	5169177	270	Downhill Hard Rocky
	50W	547754	5169176	290	Uphill Sandy Rocky
	0E	547804	5169169	420	Flat Rocky Sandy
	50E	547854	5169173	480	Flat Rocky Hard Ground
	100E	547900	5169177	440	Flat Rocky Sandy
	150E	547953	5169185	260	Flat Rocky Sandy
	200E	548005	5169178	440	Flat Sandy Soft
	250E	548050	5169188	330	Flat Soft Sandy
	300E	548104	5169184	230	Downhill Hard Rocky
	350E	548149	5169192	250	Flat Hard Sandy
	400E	548200	5169196	460	Flat Hard Sandy
	450E	548249	5169197	290	flat Rocky Sandy
	500E	548298	5169208	260	Flat Soft Sandy
	550E	548345	5169208	300	Downhill rocky sandy
	600E	548403	5169205	350	Downhill Rocky Sandy
	650E	548443	5169215	310	Flat Soft Sandy soil
	700E	548493	5169223	420	Flat Sandy Rocky
	750E	548540	5169221	200	Flat Soft Sandy
	800E	548591	5169225	280	Flat Soft Sandy
	850E	548642	5169227	270	Flat Sandy
	900E	548691	5169225	270	Flat Hard Sandy
	950E	548738	5169229	300	Flat Soft Sandy
	1000E	548786	5169233	300	Downhill Hard Sandy
08/10/2022	1000E				
	350N	548816	5169162	480	Sidehill Rocky
	300N	548811	5169122	580	Flat Soft Sandy
	250N	548809	5169061	440	Flat Soft Sandy
	150N	548808	5168968	500	Flat Rocky
	100N	548811	5168912	750	Flat Hard Rocky
	50N	548808	5168865	580	Flat Hard Rocky
	ON	548807	5168815	420	Flat Hard Rocky
	50\$	548805	5168768	440	Flat Hard Rocky
	100S	548804	5168717	650	Sidehill Soft Rocky
	150S	548804	5168670	470	Flat Rocky Sandy
	200S	548803	5168618	650	Flat Soft Sandy
08/10/2022	200S				
	950E	548750	5168638	220	Uphill Rocky Sandy
	900E	548708	5168636	270	Flat Rocky Sandy
	850E	548656	5168637	540	Flat Hard Rocky

	800E	548602	5168632	710	Uphill Rocky Sandy
	750E	548554	5168636	300	Flat Soft Sandy
	700E	548504	5168634	1690	Flat Swamp
	650E	548453	5168632	450	Flat Rocky Sandy
	600E	548409	5168629	250	Flat Rocky Sandy
	550E	548356	5168626	370	Sidehill Rocky Sandy
	500E	548309	5168627	260	Flat Soft Sandy
	450E	548261	5168625	280	Flat Rocky Sandy
	400E	548211	5168622	290	Sidehill Rocky Sandy
	350E	548162	5168617	260	Sidehill Rocky Sandy
	300E	548111	5168617	310	Flat Very Rocky
	250E	548059	5168618	340	Flat Hard Sandy
	200E	548014	5168615	550	Flat Soft Sandy
	150E	547962	5168614	510	Flat Rocky Soil
	100E	547914	5168609	290	Uphill Rocky Soil
	50E	547861	5168617	210	Flat Sandy
	0E	547811	5168612	390	Sidehill Rocky
08/10/2022	0E				
	150S	547811	5168661	390	Flat Sandy
	100S	547809	5168708	210	Sidehill Very Rocky
	50\$	547810	5168756	570	Flat Very Rocky
	0S	547808	5168802	300	Sidehill Very Rocky
08/11/2022	0E				
	50N	547806	5168858	560	Downhill Rocky Sandy
	100N	547805	5168908	1300	Flat Muddy
	150N	547799	5168962	560	Flat Muddy
	250N	547800	5169061	470	Uphill Rocky Sandy
	300N	547797	5169115	250	Flat Hard Ground
	350N	547799	5169160	380	Uphill Soft Sandy
	400N	547801	5169209	340	Flat Rocky
08/11/2022	200E				
	350N	547997	5169153	300	Flat Hard Sandy
	300N	547995	5169102	380	Flat Hard Rocky
	250N	547999	5169051	490	Flat Rocky Sandy
	150N	548006	5168956	220	Flat Soft Sandy
	100N	548002	5168907	620	Downhill Muddy
	50N	548003	5168857	900	Flat Muddy
	ON	548005	5168812	220	Flat Soft Sandy
	50S	548007	5168755	540	Flat Rocky Sandy
	100S	548006	5168713	400	Flat Soft Sandy

	150S	548006	5168665	470	Flat Rocky Sandy
08/11/2022	ON				
	50E	547856	5168812	430	Flat Rocky Sandy
	100E	547905	5168805	200	Flat Hard Ground
	150E	547958	5168807	240	Flat Hard Ground
	250E	548059	5168809	190	Flat Rocky Sandy
	300E	548108	5168812	360	Flat Rocky Sandy
	350E	548156	5168814	270	Flat Rocky Sandy
	400E	548206	5168809	170	Flat Rocky Sandy
	450E	548269	5168803	260	Flat Rocky Sandy
	500E	548306	5168808	350	Flat Rocky Sandy
	550E	548364	5168813	260	Flat Sandy Ground
	600E	548408	5168817	290	Flat Soft Sandy
	650E	548469	5168814	230	Flat Hard Sandy
	700E	548520	5168817	220	Uphill Soft Sandy
	750E	548566	5168812	240	Flat Hard Sandy
	800E	548609	5168818	410	Flat Rocky Sandy
	850E	548663	5168817	320	Flat Soft Sandy
	900E	548715	5168829	340	Sidehill Soft Sandy
	950E	548761	5168818	380	Flat Rocky Sandy
08/11/2022	600E				
	150S	548416	5168665	470	Flat Soft Sandy
	100S	548410	5168712	200	Flat Rocky Sandy
	50S	548413	5168768	525	Flat Sandy
	50N	548411	5168860	320	Downhill Soft Sandy
	250N	548403	5169060	270	Downhill Rocky Sandy
	300N	548395	5169109	230	Flat Rocky Sandy
	350N	548389	5169164	210	Uphill Rocky Sandy
08/11/2022	450E				
	450N	548252	5169248	530	Flat Soft Sandy
	500N	548250	5169296	280	Downhill Soft Sandy
	550N	548256	5169352	470	Downhill Rocky Moss
	600N	548250	5169394	380	Flat Very Rocky
	650N	548250	5169453	650	Flat Hard Ground
	700N	548258	5169494	590	Flat Soft Ground
	750N	548264	5169548	660	Flat Hard Ground
	800N	548260	5169601	550	Flat Soft Sandy
	850N	548259	5169651	310	Sidehill very rocky
	900N	548271	5169697	620	Sidehill Rocky
	950N	548269	5169751	310	Flat Rocky Sandy

	1000N	548269	5169798	180	Flat Very Sandy
08/12/2022	1000N				
	400E	548221	5169798	360	Flat Rocky Sandy
	350E	548169	5169805	460	Flat Hard Ground
	300E	548125	5169801	260	Flat Soft Sandy
	250E	548066	5169799	480	Flat Soft Sandy
	200E	548022	5169804	320	Flat Soft Sandy
	150E	547970	5169805	540	Flat Soft Sandy
	100E	547920	5169805	650	Flat Hard Sandy
	50E	547860	5169805	580	Flat Soft Sandy
08/12/2022	50E				
	950N	547864	5169760	560	Flat Soft Sandy
	900N	547863	5169714	580	Flat Soft Sandy
	850N	547860	5169663	530	Uphill Rocky Sandy
	800N	547858	5169609	200	Flat Soft Sandy
	750N	547859	5169559	700	Flat Soft Sandy
	700N	547853	5169509	550	Flat Soft Mossy
	650N	547855	5169463	550	Flat Soft Mossy
	600N	547853	5169418	430	Uphill Rocky Sandy
	550N	547852	5169365	380	Sidehill Very Rocky
	500N	547848	5169316	400	Sidehill Soft Sandy
	450N	547847	5169270	400	Flat Soft Sandy
08/12/2022	600N				
	100E	547910	5169416	360	Uphill Very Rocky
	150E	547958	5169418	590	Flat Soft Mossy
	200E	548011	5169401	430	Flat Soft Sandy
	250E	548057	5169406	430	Sidehill Rocky Sandy
	300E	548108	5169405	500	Sidehill Rocky Sandy
	350E	548157	5169399	420	Flat Rocky Sandy
	400E	548204	5169392	330	Sidehill Rocky Sandy
	500E	548307	5169394	490	Flat Soft Sandy
	550E	548355	5169394	640	Flat Soft Sandy
	600E	548403	5169382	470	Flat Rocky
08/12/2022	600N				
	650E	548457	5169394	390	Flat Hard Sandy
	700E	548494	5169389	170	Flat Very Rocky
	750E	548549	5169385	280	Flat Soft sandy
	800E	548592	5169393	220	Uphill Soft Ground
	850E	548643	5169381	500	Flat Soft Sandy
08/12/2022	800N				

750E	548552	5169586	210	Flat Rocky Sandy
700E	548510	5169586	290	Flat Rocky Sandy
650E	548463	5169589	260	Downhill Very Rocky
600E	548410	5169588	270	Flat Sandy
550E	548353	5169591	440	Flat Sandy
500E	548307	5169593	310	Downhill Rocky Sandy
400E	548208	5169601	650	Flat Hard ground
350E	548159	5169596	450	Flat Sandy
300E	548114	5169599	430	Uphill Rocky Sandy
250E	548062	5169604	460	Sidehill s Rocky Sandy
200E	548014	5169604	610	Flat Mossy
150E	547964	5169606	640	Flat Hard ground
100E	547901	5169607	390	Flat Rocky Sandy

Table 12: Current Injection Field Notes North Setup

Date	Line/ Station	UTM X (m)	UTM Y (m)	I (mA)	Ground & Surrounding Area Characteristics
08/16/2022	1000E				
	200N	548819	5169017	220	Flat Rocky Ground
	150N	548817	5168966	270	Flat Rocky Sandy
	100N	548817	5168919	690	Flat Rocky
	50N	548815	5168876	330	Flat Rocky
	ON	548809	5168822	250	Flat Very rocky
	50S	548809	5168770	330	Flat Rocky Sandy
	100S	548810	5168724	440	Bottom of Raven Rocky
	150S	548809	5168670	260	Flat Very Rocky
	200S	548809	5168629	360	Flat Rocky Sandy
	250S	548808	5168569	300	Flat Very Rocky
	300S	548800	5168523	200	Flat Very Rocky
	350S	548799	5168475	200	Flat Rocky Sandy
	400S	548801	5168416	360	Flat Rocky Sandy
08/16/2022	400S				
	950E	548755	5168429	210	Uphill Rocky Sandy
	900E	548706	5168423	300	Uphill Very Rocky
	850E	548660	5168429	130	Flat Rocky Sandy
	800E	548609	5168429	200	Downhill Rocky
	750E	548553	5168424	110	Flat Very Rocky

	700E	548514	5168429	310	Downhill Rocky Sandy
08/16/2022	1000E				
	450S	548797	5168371	250	Sidehill Rocky Sandy
	500S	548801	5168321	370	Sidehill Rocky Sandy
	550S	548799	5168267	340	Flat Rocky Sandy
	600S	548799	5168218	560	Flat Soft Sandy
08/16/2022	600S				
	950E	548759	5168223	140	Uphill Rocky Sandy
	900E	548700	5168221	170	Uphill Rocky
	850E	548655	5168225	280	Flat Rocky Sandy
	800E	548599	5168228	550	Uphill Rocky Sandy
	750E	548555	5168223	480	Uphill Rocky Sandy
	700E	548508	5168230	250	Flat Rocky Sandy
	650E	548451	5168235	240	Uphill Soft Sandy
	600E	548412	5168236	300	Downhill Rocky Sandy
	550E	548359	5168243	240	Downhill Rocky Sandy
	500E	548311	5168246	300	Downhill Rocky Sandy
	450E	548263	5168240	220	Flat soft Sandy
	400E	548209	5168241	150	Downhill Rocky Sandy
	350E	548167	5168243	200	Flat Rocky Sandy
08/16/2022	450E	3.0107	32002.13	200	riae neeky canay
00/ 10/ 1011	8005	548253	5168058	180	Flat Soft Sandy
	850S	548241	5168007	130	Downhill Rocky Sandy
	900\$	548239	5167954	130	Flat Rocky Sandy
	950S	548231	5167901	300	Flat Rocky Sandy
	1000S	548233	5167863	210	Flat Rocky Sandy
08/16/2022	1000S	310233	3107003	210	Tide Nocky Salidy
00/10/2022	400E	548195	5167861	280	Flat Rocky Sandy
	350E	548142	5167871	200	downhill Rocky sandy
	300E	548086	5167876	360	downhill Rocky sandy
	250E	548044	5167874	550	Flat Muddy Rocky
	200E	547991	5167876	300	Uphill very rocky
	150E	547941	5167877	180	Uphill rocky
	100E	547892	5167886	120	Flat Rocky
	50E	547846	5167883	230	Flat Rocky
08/16/2022	800S	347040	210/003	230	I lat NOCKY
00/ 10/ 2022		E/10100	E1690E0	220	Linhill Vany Backy
	300E	548100	5168059	220	Uphill Very Rocky
	350E	548151	5168056	120	Uphill Rocky
	400E	548201	5168056	190	Flat Rocky
	500E	548306	5168053	310	Flat Very Rocky

	550E	548350	5168049	170	Downhill Sandy
	600E	548406	5168049	250	Flat Rocky sandy
	650E	548447	5168048	660	Flat Rocky Soil
	700E	548498	5168046	210	Flat Rocky
	750E	548545	5168040	190	Downhill Rocky Sandy
	800E	548593	5168033	290	Downhill Rocky
	900E	548696	5168035	230	Flat Rocky sandy
08/17/2022	1000S	340030	3100033		Tide Nocky Salidy
00/17/2022	700E	548523	5167847	290	Downhill Rocky Sandy
	750E	548548	5167854	250	Downhill Rocky Sandy
	800E	548590	5167852	220	Uphill Rocky Sandy
	850E	548636	5167851	200	Downhill Sandy
08/17/2022	850E	340000	3107031	200	Downini Sandy
08/17/2022	950S	548640	5167894	170	Downhill very rocky
	900\$	548652	5167929	430	Flat Sandy
	850S	548639	5167987	310	Uphill Rocky Sandy
	800S	548645	5168029	300	Flat Rocky Sandy
	750S	548640	5168029	500	Flat Very Rocky
			5168129	240	, ,
	700S	548645			Flat Rocky Sandy
00/17/2022	650S	548652	5168178	250	Downhill rocky Sandy
08/17/2022	200N 950E	548749	5169010	280	Flat Sandy
			5169010	210	,
	900E	548697			Flat Rocky Sandy
	850E	548655	5169014	220	Flat Rocky Sandy
	800E	548604	5169010	200	Uphill Very Rocky
	750E	548549	5169012	230	Uphill Very Rocky
	700E	548506	5169007	290	Downhill rocky Sandy
	650E	548454	5169015	320	Sidehill rocky
00/47/0000	600E	548406	5169013	390	Sidehill rocky Sandy
08/17/2022	200N				
	550E	548355	5169013	300	Flat Rocky Sandy
	500E	548309	5169017	350	Sidehill Rocky Sandy
	450E	548261	5169016	380	Flat Rocky Sandy
	400E	548204	5169018	460	Uphill Very Rocky
	350E	548161	5169020	340	Flat Rocky Sandy
	300E	548112	5169017	280	Flat Rocky Sandy
	250E	548057	5169016	240	Downhill Rocky Sandy
	200E	548018	5169017		Flat Rocky Sandy
08/17/2022	600E				
	50N	548403	5168855	220	Uphill Rocky

	ON	548408	5168819	250	Flat Sandy
	50\$	548411	5168766	160	Flat Rocky Sandy
	100S	548411	5168711	140	Flat Rocky Sandy
	150S	548419	5168662	350	Flat Soil
	200S	548417	5168609	170	Flat Rocky Soil
	250S	548418	5168556	160	Flat Rocky
	300S	548420	5168510	160	Downhill Rocky Soil
	350S	548424	5168459	160	Downhill Rocky
08/17/2022	200E				
	150N	548004	5168956	250	Downhill Sandy
	100N	548001	5168909	880	Downhill Sandy
	50N	548008	5168858	780	Flat Rocky Sandy
	ON	548005	5168803	170	Flat sandy
	50\$	548008	5168759	440	Flat Rocky
	100S	548008	5168711	360	Flat Rocky Sandy
	150S	548011	5168660	550	Uphill Rocky Sandy
	200S	548013	5168618	450	Flat Rocky Sandy
08/17/2022	ON				
	0E	547807	5168808	300	Downhill Very Rocky
	50E	547861	5168804	210	Flat Hard Sandy
	100E	547908	5168804	220	Flat Hard Rocky Sandy
	150E	547960	5168808	230	Flat Rocky Sandy
	250E	548058	5168807	120	Sidehill Very Rocky
	300E	548108	5168814	270	Flat Rocky Sandy
	350E	548159	5168811	250	Flat Very Rocky
	400E	548213	5168811	180	Flat Rocky
	450E	548262	5168811	240	Flat Rocky Sandy
	500E	548309	5168810	270	Flat Rocky Sandy
	550E	548363	5168806	240	Flat Rocky Sandy
	650E	548471	5168815	210	Flat Sandy Ground
	700E	548512	5168821	160	Uphill Rocky Sandy
	750E	548558	5168817	250	Flat Rocky Sandy
	800E	548615	5168815	350	Flat Rocky
	850E	548663	5168816	290	Flat Rocky Sandy
	900E	548714	5168814	320	Sidehill Very Rocky
	950E	548758	5168816	310	Flat Rocky Sandy
08/17/2022	200S				
	950E	548756	5168646	180	Uphill Very Rocky
	900E	548707	5168641	140	Flat Sandy Ground
	850E	548659	5168641	540	Flat Rocky

800E	548605	5168634	640	Uphill Rocky Sandy
750E	548557	5168638	250	Flat Soft Sandy
700E	548507	5168635	750	Flat Soft Sandy
650E	548457	5168624	250	Flat Sandy
550E	548360	5168626	400	Flat Very Rocky
500E	548310	5168619	170	Flat Rocky Sandy
450E	548259	5168619	320	Flat Rocky Sandy

Table 13: Current Injection Field Notes South Setup

4.8 SAFETY

Canadian Exploration Services Ltd prides itself in creating and maintaining a safe work environment for its employees. Each crew member is briefed on the jobsite location, equipment safety, standard operating procedures along with our health and safety manual. An emergency response plan is generated relating to the specific job and with the jobsite predominantly in the field, which is unpredictable, morning safety briefings are essential. Topics are generally chosen based off jobsite characteristics of the area, weather conditions, timing and crew experience. All possible topics discussed during a survey, dependent on field conditions and time of the year, are listed in the following table.

Safety Topic	Protocol
Active Work Site	Be aware of surrounding activities – drilling, mine monitoring, and traffic. Caution when working near roads, and post safety signs to alert passers-by of ongoing geophysical surveys.
ATV	Conduct circle check before operating an ATV. Ensure brakes and tires are in good working condition. Drive at reasonable speeds according to terrain to avoid accidents. The use of helmets is mandatory.
Extreme Temperatures	With temperatures down to -40, there is an increased risk of cold related injuries (i.e. frostbite, hypothermia). Dress accordingly and take breaks to warm up if necessary. Bring extra clothing to anticipate for possible drop in temperature throughout the day. With temperatures up to +30C, there is an increased risk of heat stroke. Keep hydrated throughout the day and in shaded areas if possible.
Communication	Check in with the crew leader or any crew member when working individually to inform the team of your safety and well-being.
Heavy Lifting	When lifting equipment individually, always lift with your legs rather than your back. Always ask fellow crew members for help when lifting or moving heavy and large equipment (i.e transmitter, generator, snowmobile, etc.).
Hunting Seasons	There may be more traffic during hunting season. Be careful when crossing. Wear proper (high visibility) attire to avoid being mistaken for an animal in the bush.
Power Protocol	When in doubt, always assume that power is on and stay clear of survey circuits until confirmed otherwise.
Power Tools	Be alert when operating power tools – chainsaw, Tanaka, etc. Do not operate equipment when unsure of safety instructions for the specific tool.

Safety Topic	Protocol
Rain	Terrains may be slippery. Traverse carefully to avoid slipping, especially when ascending, descending, or walking along side of hills. When there is a chance of thunderstorm, notify person in-charge of transmitter when thunder is heard. Be extra careful with power protocol due to increased risk of shock. Bring extra clothing in case gear gets too wet and heavy.
Sharp Tools	Be careful when handling tools such as a machete and knives to avoid injuries. Inform another crew member of any injuries.
Slips, Trips and Falls	Increased risk of hidden hazards with snow coverage. Proper use of snow shoes is encouraged to avoid injuries from slipping, tripping, or falling. 3 points of contact is encouraged.
Snowmobile	Proper use of PPE (i.e. safety helmet, high visibility attire, etc.). Practice safety checks before operating snowmobiles. Ensure that engines and brakes are in good working condition. Ensure that oil, coolant, and gasoline levels are sufficient for distance of travel. Check that snowmobile is physically safe to operate (i.e. no broken parts).
Truck and Trailer	Conduct safety checks prior to operation of company trucks to ensure engines, brakes, tires, and etc. are in good working condition prior to operating vehicle. Conduct circuit checks when mobilizing and de-mobilizing trailers.
Water Hazards	Creeks, lakes, and swamps may not be fully frozen even under very low temperatures. The use of a stick or pole is encouraged for testing water bodies prior to crossing.
Wildlife	Always be aware of surroundings, keeping an eye out for animals such as bears, moose and wolves. Carry bear spray when in the field during the summer.
Winter Driving	Snow accumulation, freezing rain and icy conditions create added road hazards. Road into field sites may be rough. Drive at appropriate speeds according to road conditions.

Table 14: General Safety Topic Protocols

5. INSTRUMENTATION & METHODS

5.1 INSTRUMENTATION¹

20 two-channel IRIS Full Waver IP receivers were employed for the 3D IP survey. The transmitter consisted of a GDDII (5kW) with a Honda 6500 as a power plant. A current monitor was connected to the transmitter to record the current transmitted over 90s for each injection point.

Time-domain IP surveys involve measurement of the magnitude of the polarization voltage that results from the injection of pulsed current into the ground. Apparent resistivity and chargeability are the parameters of interest measured through this procedure.

5.2 THEORETICAL BASIS

Time domain IP (TD-IP) surveys involve measurement of the magnitude of the polarization voltage that results from the injection of pulsed current into the ground.

Two main mechanisms are known to be responsible for the IP effect although the exact causes are still poorly understood. The main mechanism in rocks containing metallic conductors is electrode polarization (overvoltage effect). This results from the buildup of charge on either side of conductive grains within the rock matrix as they block the flow of current. Upon removal of this current the ions responsible for the charge slowly diffuse back into the electrolyte (groundwater) and the potential difference across each grain slowly decays to zero.

The second mechanism, membrane polarization, results from a constriction of the flow of ions around narrow pore channels. It may also result from the excessive build up of positive ions around clay particles. This cloud of positive ions similarly blocks the passage of negative ions through pore spaces within the rock. Upon removal of the applied voltage the concentration of ions slowly returns to its original state resulting in the observed IP response.

In TD-IP, the current is usually applied in the form of a square waveform, with the polarization voltage being measured over a series of short time intervals after each current cut-off, following a short delay of approximately 0.5s. These readings are integrated to give the area under the decay curve. The integral voltage is divided by the observed steady voltage (the voltage due to the applied current, plus the polarization voltage) to give the apparent chargeability (Ma) measured in milliseconds. For a given charging period and integration time the measured apparent chargeability provides qualitative information on the subsurface geology.

¹ Refer to appendix B for instrument specifications.

The polarization voltage is measured using a pair of non-polarizing electrodes like those used in spontaneous potential measurements and other IP techniques.

5.3 SURVEY SPECIFICATIONS

The 3D Distributed Induced Polarization array configuration was used for this survey. This array consisted of between 57 and 66 mobile stainless steel read electrodes and two current electrodes in each setup. Up to 22 portable receivers over 3 setups, were each connected to 3 read electrodes (P1, P2, and P3) to create 2 orthogonal components with 100m dipole spacings. The power location (CA) was chosen based on field conditions but placed throughout the survey area (randomly or in a grid-like manner). In this case, there were 11 east-west, spaced at 200m intervals and 11 north-south lines, spaced at 50-400m intervals. Along various lines the power transmits were injected at approximately every 50m. The infinite was located approximately 4.5 kilometres southwest of the center of the survey grid at 544247E and 5166233N. The infinite was placed as far as possible to achieve a pole-dipole array. The maximum theoretical depth obtained was approximately 500 metres. An 8 second transmit cycle time, with a 2 second energizing time was used for a duration of 90 seconds for approximately 12 stacks.

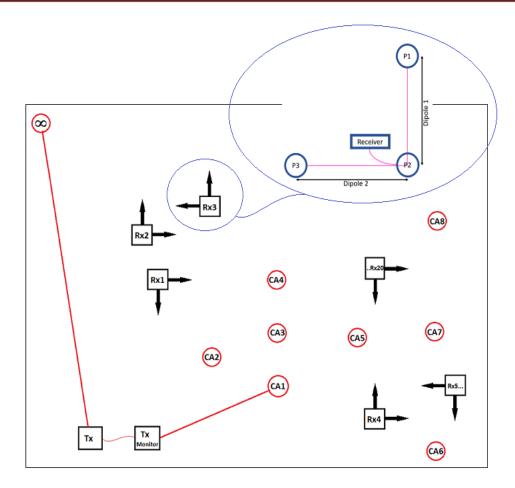


Figure 20: 3D Distributed IP Configuration

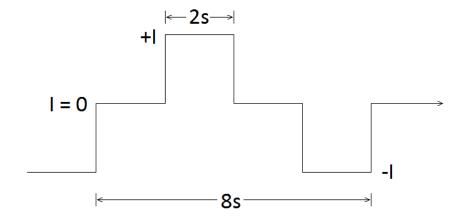


Figure 21: Transmit Cycle Used

6. QUALITY CONTROL & PROCESSING

6.1 FIELD QUALITY CONTROL

Daily field quality control steps consisted of the following:

- Resistivity checks the resistivity of each dipole was recorded in the field preand post-acquisition to ensure dipoles were connected to the receiver properly and the electrode was well contacted with the ground.
- 2. GPS checks internal GPS of each receiver was checked that they were placed in the proper position. GPS and injection file time stamps were compared to confirm correlation.
- 3. Data check data was dumped daily and confirmed that the number of GPS points matched the number of injection files.
- 4. Backup a second current monitor recorded the transmit cycles continuously throughout every acquisition day. If necessary, the backup was used.
- 5. Repeats repeats of lines/data were taken if necessary.

6.2 Processing

In the office, processing of the data and quality control was done interchangeably. The steps included:

- Import positions GPS coordinates were imported into each corresponding current injection file (IAB) and receiver file (VMN) using the Fullwave Viewer Software.
- 2. GPS check the imported positions were confirmed on Google Earth.
- 3. Synchronization check in case of GPS lags or different time settings the synchronization of the files was checked to determine they match (Figure 12).

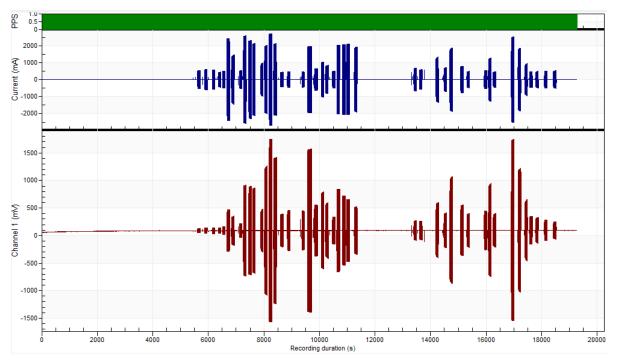


Figure 22: Receiver recordings (red) synchronized with the current injections (blue)

- 4. Prosys output a complete .bin file was output from the Fullwave Viewer software.
- 5. Data quality control values were viewed in the complete .bin file. Accepted values with a normal M1-M20 range would have a proper transmit cycle, a smooth curve, and a high amplitude low frequency narrow peak (Figure 13). Unaccepted values with an abnormal M1-M20 range (Figure 14, red circle) would not have proper signals (Figure 15). These abnormal values could be due to a few different things or a combination of the following: the dipole being too far from the current injected, the background noise being greater than that of the current injected, poor dipole coupling, and/or cultural features on surface causing coupling or a significant background noise interference. These were removed in step 7.
- 6. Topography 1 arc-second Shuttle Radar Topography Mission (SRTM) topography data for Canada was downloaded from the Geosoft Public DAP server. This was then combined with the DGPS data. The grid was sampled to the receiver and injection electrode coordinates to produce topography values above mean sea level (MSL) for each electrode.

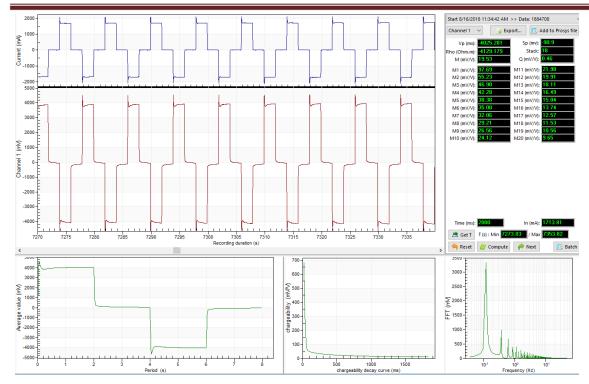


Figure 23: Good 90 second transmit/read pair. Injection (blue), read signal (red), transmit signal (bottom left), decay curve (bottom centre), FFT (bottom right).

📁 M1 (💢 M2 (🗯 МЗ (≭ M4 (💢 M5 (🗯 М6 (💢 M7 (💢 M8 (
69.11	45.44	39.99	36.58	33.48	30.76	28.53	26.05
75.78	48.86	41.69	37.53	34.34	31.16	27.97	25.89
75.73	50.14	43.65	39.60	36.34	33.18	30.49	27.90
81.56	54.13	46.51	41.97	38.16	34.65	31.68	28.80
69.46	44.71	38.75	35.17	32.20	29.45	27.06	24.76
94.25	68.44	57.79	52.34	47.77	43.66	48.14	36.61
128554.88	-11085.17	-14311.44	-14973.24	-16379.58	-4281.03	4318.25	-3929.44
67.53	41.83	35.53	32.24	29.30	28.85	24.26	22.33
65.87	42.73	37.79	34.62	31.80	29.44	27.04	24.97
91.27	62.90	54.94	49.39	45.30	41.31	37.83	34.67
91.55	63.34	55.08	50.01	45.57	41.54	38.07	34.83
124.30	92.27	80.17	72.73	66.38	61.02	56.01	50.97
66.66	44.00	37.08	32.36	29.95	27.68	24.13	22.05

Figure 24: Output .bin file viewed in Prosys. Larger abnormal M values circled in red.

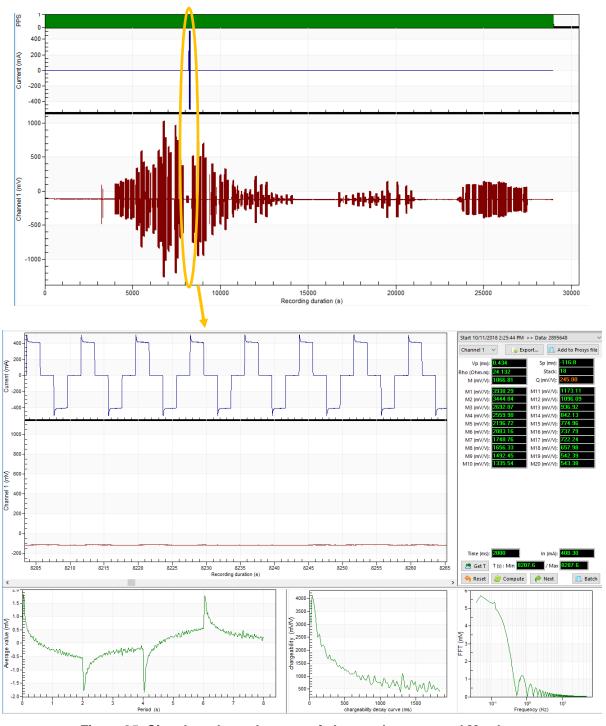


Figure 25: Signal, cycle, and curves of abnormal unaccepted M values.

7. Filtering – Values with unrealistic resistivities and chargeabilities, high standard deviations, large geometric factors, and that are oversaturated were filtered out (Figure 16).

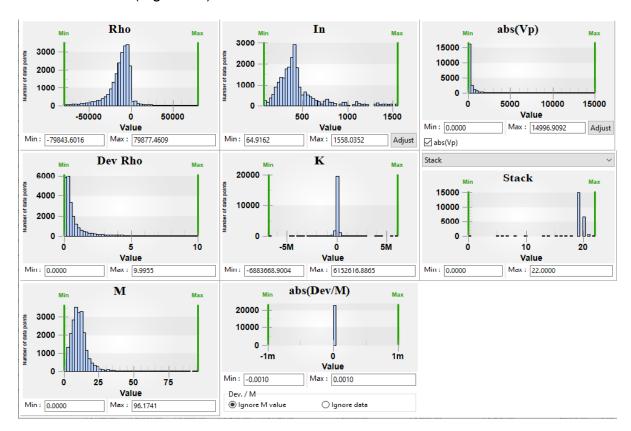


Figure 26: Filtering options

3D viewing of the raw calculated chargeability and resistivity results was observed in Geosoft Oasis (Figures 17-19; Y=North). Calculated report points from acquisition were recorded at a maximum depth of approximately 750 metres depth.

A total of 18913 filtered data points was collected from this 3D IP survey configuration over a period of 24 days.

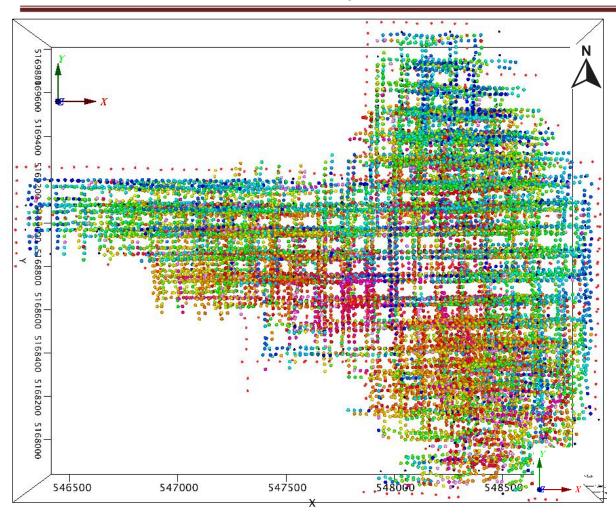
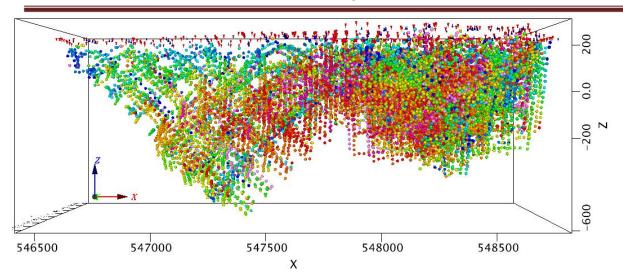



Figure 27: Measured chargeability data points (top down).

<u>Figure 28: Side view of the complete measured chargeability dataset facing north with the survey layout on top</u>

6.3 INVERSION

Inversions of the filtered data was done in RES3DINV Professional version 3.15.11. RES3DINV is a 3D inversion software specifically used for resistivity and induced polarization data. A RES3DINV format was created from the finalized Prosys file with specific selections depending on the survey type completed. The selections seen in Figure 20 are standard 3D distributed IP array settings. Depending on the intended survey array type, including the remote may or may not be used. For example, in this case there was a single remote electrode placed as far from the survey grid as possible to achieve a pole-dipole array scenario, thus it was not necessary to include the remote. Topography was included.

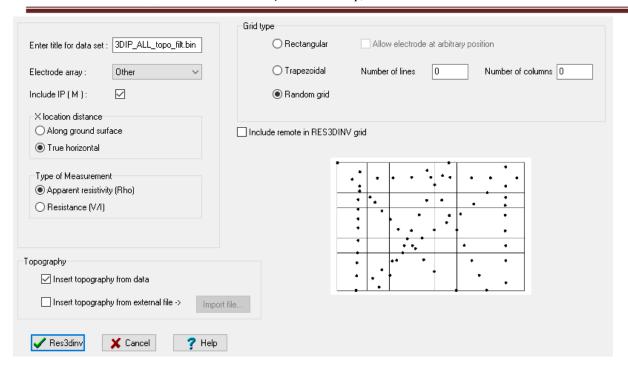


Figure 29: Export settings selection from Prosys to RES3DINV

Model grid settings were chosen based on the infinite locations and the dipole lengths. A uniform cell size was chosen to be ¼ or 1/5 of the dipole length, in this survey case a cell size of 20m was used (Figure 21). To reduce edge artifacts a few cells extension was added. Manual edits to the cell uniformity may be necessary depending on the location of the infinite. In this case manual edits were not made.

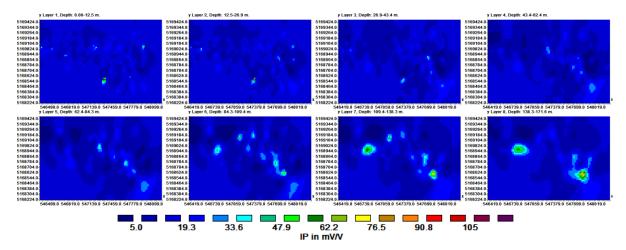
The theoretical maximum depth obtained from the Fullwave Designer was 750 metres. Calculated report points from acquisition were recorded at a maximum depth of approximately 750 metres depth. However, a maximum depth of 400 metres was used because resolution and sensitivity decrease as depth increases. Sensitivity values represent how well the model is constrained, with higher sensitivities providing less uncertainty and greater validity. Data density also decreases at a certain depth with increasing depth, so beyond a certain maximum depth there is limited data to produce valuable information for the whole survey area.

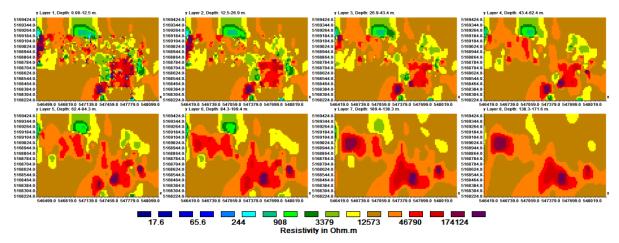
Important inversion parameters used for the creation of the model are described in Table 9².

Parameter	Description
Refined	Estimates topography of each interior node individually to take non-
Topography	linear topography variations within each model block into account.

² Refer to the RES3DINV manual and tutorial by Dr. M.H. Loke.

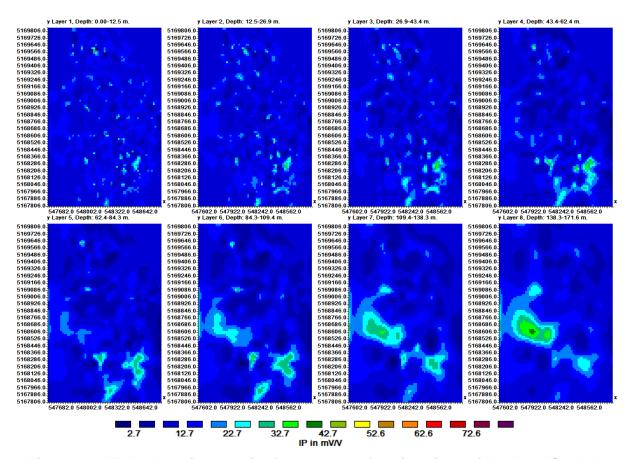
Higher Damping of 1 st layer	Useful to avoid unusually large resistivity variations in the top layer (Loke and Dahlin 2010).
Diagonal Filter	Reduces effects of produced structures with boundaries aligned
Components	along the horizontal and vertical directions.
Robust Data	Attempts to minimize the absolute difference between the measured
Constraint	and calculated apparent resistivity values (Claerbout and Muir 1971).
	Less sensitive to very noisy data point.
Robust Model	Produces models with regions of more uniform resistivity values with
Constraint	sharper boundaries.
Incomplete	An approximate solution of the least-squares equation that uses an
Gauss-Newton	iterative linear conjugate-gradient method.
Reference Model	An additional constraint on the model to limit the deviation of the
	model resistivity from a homogenous reference model. This is normally the average of the apparent resistivity values.
Logarithm of	In 2D systems it is ~impossible to determine whether the measured
Apparent	potential has the same sign as the transmitted current, thus it was
Resistivity	assumed apparent resistivity is always positive and the logarithm is
	used. However, negative apparent resistivity values not caused by
	noise are observed in 3D distributed IP systems, especially with
	near-surface large resistivity contrasts and topography. Thus, the
	logarithm of apparent resistivity is not used because negative appar-
	ent resistivity values are real and kept throughout the inversion for a
	more accurate model. (Loke, 2018)
Forward Modeling	The finite-element method with a medium extended 4 horizontal
Method	node mesh between electrodes is used for datasets with topography
Non-Linear IP	and for improved accuracy.
Complex Method	The non-linear method calculates apparent IP using a complex resistivity formula. This method treats the conductivity as a complex
Complex Method	quantity with real and imaginary components (Kenma et al. 2000).
	The complex conductivity and complex potential are calculated.
	These components are calculated in a two-step inversion process
	during each iteration. First the resistivity model is calculated, then
	the IP model is calculated.
IP Model	The "range-bound" transformation method is used to ensure the
Transformation	model IP values produced by the inversion program does not exceed
	the lower or upper limits set by the user.


Table 15: Inversion Parameter Descriptions (© (1996-2018) M.H.Loke)


7. RESULTS, INTERPRETATION & CONCLUSIONS

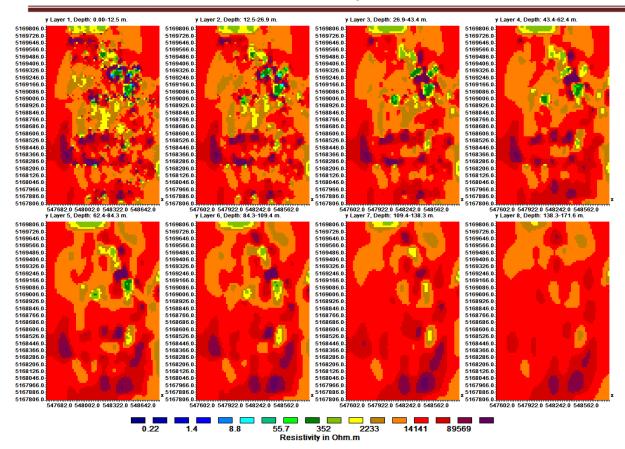
7.1 RESULTS

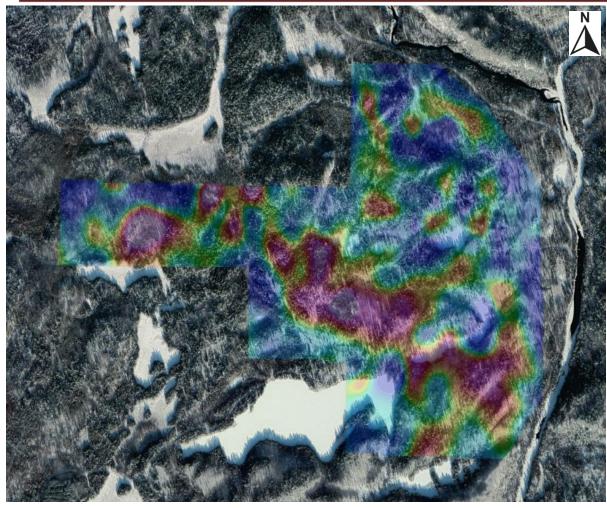
Two inversions were run to produce this model. Due to size an inversion was run on the north-south data and one on the western data. Each inversion was run through multiple iterations to reduce the misfit error of the model. Iteration 5 was chosen for the north-south inversion and iteration 10 was chosen for the west inversion. See the following figure for the correlation plots and histograms of the data misfits. Eight of the depth sections of the IP and resistivity from the RES3DINV viewer of iteration 7 is shown in the next two figures, respectively. From top left to top right and bottom left to bottom right the blocks are at depths: 0.00-12.5m, 12.5-26.9m, 26.9-43.4m, 43.4-62.4m, 62.4-84.3m, 84.3-109.4m, 109.4-138.3m and 138.3-171.6m.


<u>Figure 30: 8 IP depth sections ranging from 0-171.6m from iteration 10 of West Inversion as viewed in RES3DINV</u>

<u>Figure 31: 8 resistivity depth sections ranging from 0-171.6m from iteration 10 of West Inversion as viewed in RES3DINV</u>

<u>Figure 32: 8 IP depth sections ranging from 0-171.6m from iteration 5 of North and South Inversion as viewed in RES3DINV</u>




Figure 33: 8 resistivity depth sections ranging from 0-171.6m from iteration 5 of North and South Inversion as viewed in RES3DINV

A final XYZ was output from iteration 10 and 5 of the inversions and provided the resistivity, conductivity, chargeability, and sensitivity values at the centre and the corner of the model blocks. In this case resolution was also calculated. This was imported and modelled in Geosoft Oasis. The model was then trimmed to the survey boundary to refrain from including edge effects into the interpretation.

A horizontal slice of the chargeability and resistivity from the final inversion model overlaid in Google Earth is seen in the following two figures.

<u>Figure 34: Chargeability grid (150m RL) overlaying Google Earth. (©2022 Google, Image ©2022 CNES/Airbus)</u>

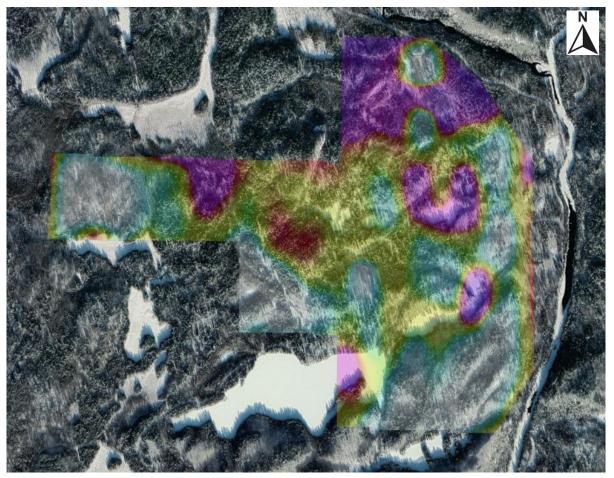


Figure 35: Resistivity grid (100m RL) overlaying Google Earth. (©2022 Google, Image ©2022 CNES/Airbus)

7.2 Interpretations³

Targeting of the 3D Distributed IP array was based on favourable geology.

Due to the size two inversions were required. The first inversion consisted of the North and South block with the second inversion consisting of the west block. Both inversions agreed on the anomaly located near the merge point of the blocks. Both the inverted chargeability and resistivity data were modelled in 3D. Some chargeability and low resistivity responses were detected.

Examples of the 3D chargeability model at 25mV/V superimposed on a -50 metre RL chargeability slice (Figures 26 and 27) are shown in the next figure.

³ Note for all interpretation figures North is in the Y-direction.

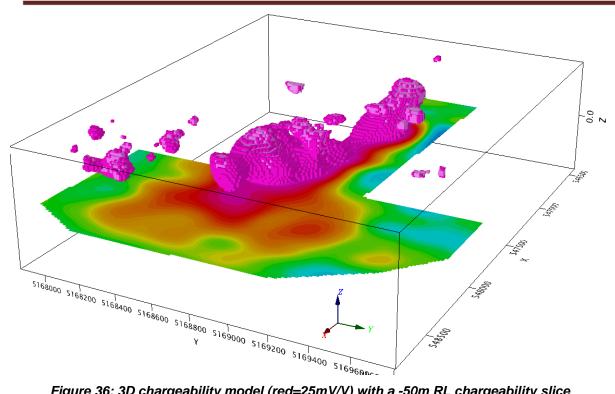


Figure 36: 3D chargeability model (red=25mV/V) with a -50m RL chargeability slice

<u>Figure 37: Top view of the 3D chargeability model (pink=25mV/V) with a -5m RL chargeability slice with interpretations</u>

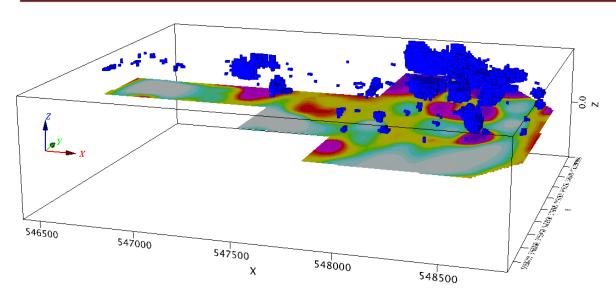


Figure 38: 3D resistivity model with a 100m RL slice (purple = <2500 ohm*m)

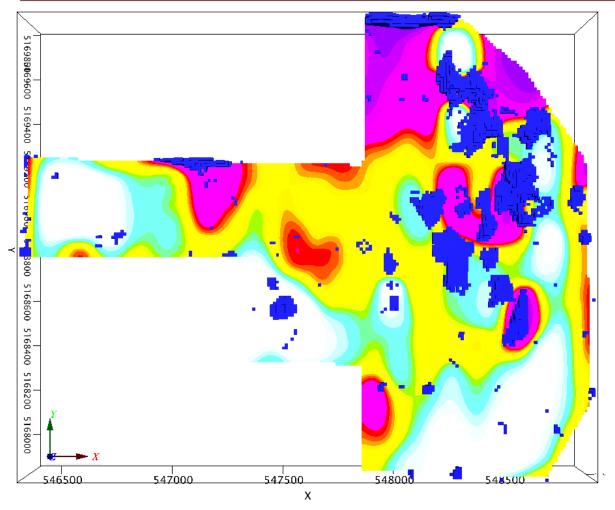


Figure 39: 3D resistivity model with a 100m RL slice (purple = <2500 ohm*m) and interpretations

The resistivity signature indicates that the majority of the underlying geology is resistive with the low resistivity signatures being more constrained to the upper layers of the model. This indicates that the resistivity low signatures are more likely to be a result of conductive overburden.

Anomaly A is a shallow chargeability anomaly that extends from surface to approximately 50m depth. The signature continues deeper, however being close to the edge of the survey area, the depth may be a factor of cell padding needed for the inversion. There may be some surface exposure to this anomaly near 546570E and 5169025N.

<u>Anomaly B</u> is a chargeability anomaly that appears near 546780E / 5168940N and would most likely outcrop near this location; however the model indicates it may be slightly to the north of this location. The anomaly presents itself strong at surface

but weakens from surface through 50m depth then begins to strengthen again by a depth of 100m. The anomaly plunges steeply and slightly south of east and strengthens with depth.

Anomaly C represents a cluster of weak chargeability anomalies at various elevations below the ground. One anomaly from this cluster appears to come close to surface and might outcrop near 547235E and 5169060N and appears to plunge steeply and can be seen in the model to 100m depth. This anomaly appears close to the edge of the dataset and may be influenced by some of the padding from the inversion.

Anomaly D represents a strong chargeability signature starts to emerge at depth. This anomaly is apparent in the raw data from all three survey blocks. Three chutes appear to come near surface as weak anomalies at 547525E / 5168880N, 547680E / 5168750N and 547837E / 5168645N. These plunge steeply to the point where they merge at a depth near 125m and appear to broaden and strengthen.

Anomaly E represents chargeability signature that becomes apparent at approximately 100m and then continues to plunge steeply to depth.

Anomaly F is a cluster of chargeability anomalies. Some anomalies are shallow and may come to surface. At depth a trend begins to appear, however the strike of the trend appears to shift with depth and may incorporate anomalies A through F. The strike of this trend also shifts with depth, which may indicate that it is more related to possible alteration or mineralization around the edge of an intrusive contact. The broadening of the signature may also be a factor of the cell sizes.

Anomaly G is a small anomaly with a steep plunge at 548250E and 5169011. The dataset indicates that this anomaly may outcrop.

Anomaly H represents a strong resistivity low with a chargeability anomaly building with depth. This anomaly may represent an area of strong sulphide mineralization but with the low resistivity area being close to surface, may represent an overburden feature or shallow bedrock feature. The low resistivity area is located near 548500E and 5169095N.

Anomaly I is a north south weak chargeability trend that presents itself at approximately 50m in depth.

Anomaly J is a north south chargeability trend that appears to strengthen with depth. This anomaly does not appear to present itself at surface but builds with depth. When compared with anomaly I a north-south trend begins to emerge. This may indicate the presence of a north-south structure.

Anomaly K represents a cluster of anomalies at various depths however none of the

cluster appears to outcrop. This area represents a region of strong topography which may indicate that this cluster is a result of a structural feature.

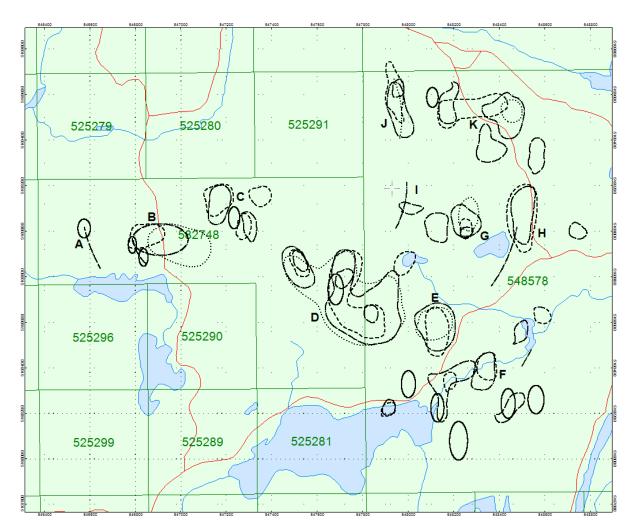


Figure 40: Anomaly Map

7.3 RECOMMENDATIONS

It is recommended that the areas surrounding the surface expression of the anomalies be prospected.

Anomaly	Easting	Northing
Α	546570	5169025
В	546780	5168940
С	547235	5169060

D	547525	5168880
D	547680	5168750
D	547837	5168645
G	548250	5169011
Н	548500	5169095

Table 16: Recommended Prospecting Targets

Some anomalies present themselves as deeper responses that would need to be drill tested for confirmation.

Anomaly	Easting	Northing	Depth below Surface
В	546900	5168990	100m +
С	547165	5169140	100m +
D	547500	5168840	75m +
D	547700	5168800	100m +
E	548115	5168575	125m +

Table 17: Recommended Diamond Drilling Targets

It is also recommended to perform soil sampling in these areas to help determine if favorable mineralization is the source of the anomalous responses.

7.4 CONCLUSIONS

The 3D Distributed IP surveys highlighted numerous anomalies. Most of the responses presented themselves as weaker anomalies on surface and strengthening with depth. The anomaly strongest and most pronounced anomaly may be related to alteration around an intrusive.

APPENDIX A

STATEMENT OF QUALIFICATIONS

- I, C. Jason Ploeger, hereby declare that:
- I am a professional geophysicist with residence in Larder Lake, Ontario and am presently employed as a Geophysicist and Geophysical Manager of Canadian Exploration Services Ltd. of Larder Lake, Ontario.
- 2. I am a Practicing Member of the Association of Professional Geoscientists, with membership number 2172.
- 3. I graduated with a Bachelor of Science degree in geophysics from the University of Western Ontario, in London Ontario, in 1999.
- 4. I have practiced my profession continuously since graduation in Africa, Bulgaria, Canada, Mexico and Mongolia.
- 5. I am a member of the Ontario Prospectors Association, a Director of the Northern Prospectors Association and a member of the Society of Exploration Geophysicists.
- 6. I do have an interest in the securities but do not expect any additional interest in the properties and securities of **SPC Nickel Corp.**
- 7. I am responsible for the final processing and validation of the survey results and the compilation of the presentation of this report. The statements made in this report represent my professional opinion based on my consideration of the information available to me at the time of writing this report.

C. Jason Ploeger, P.Geo., B.Sc. Geophysical Manager Canadian Exploration Services Ltd.

> Larder Lake, ON September 2, 2022

APPENDIX A

STATEMENT OF QUALIFICATIONS

- I, Kajal P. Makwana, hereby declare that:
- I am a Junior Geologist/Exploration Geologist with residence in Virginiatown, Ontario and employed with Canadian Exploration Services Ltd. of Larder Lake, Ontario.
- 2. I graduated with a Bachelor of Science degree in Geology from The Maharaja Sayajirao University of Baroda, Gujarat, India, in 2017.
- 3. I have previous geological work experience with Battery Mineral Resources, 2021-2022.
- 4. I do not have nor expect interest in the properties and securities of **SPC Nickel Corp.**
- 5. I am responsible for the final processing and validation of the survey results and the compilation of the presentation of this report. The statements made in this report represent my professional opinion based on my consideration of the information available to me at the time of writing this report.

Kajal P. Makwana, B.Sc. Junior Geologist/Exploration Geologist Canadian Exploration Services Ltd.

> Larder Lake, ON September 2nd, 2022

APPENDIX B

IRIS V-FullWaver Receiver⁴

2 CHANNELS IP FULL WAVE RECORD

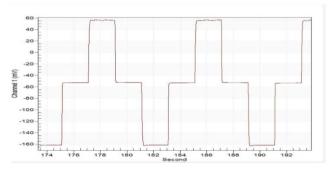
- 2 simultaneous dipoles
- Several weeks recording
- Time stamped data

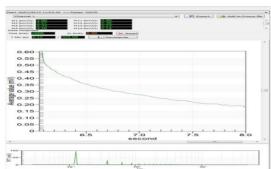
V-Full Waver: this logger for electrical signal is a new concept of compact and low consumption unit designed for advanced Time Domain Induced Polarization, Resistivity and SP measurements. It can work in all field conditions, small, discrete, autonomous and can record continuously without operator.

Compactness: light, discrete and easy to setup on the field, even on remote areas. Autonomous two dipoles logger, no need of the operator during acquisition. V-Full Waver allows a high productivity for dipole-dipole, gradient, extended pole-pole and other arrays. A network of several tens of channels can be quickly installed on the field for deep exploration and advanced processing (perpendicular dipoles, remote reference...)

Internal GPS: an integrated GPS, very accurate and providing PPS signal (one pulse per second) allows to store all time series with time information. This is crucial to process data from several V-Full Waver loggers installed in a same area. This is

⁴ Information obtained from http://www.iris-instruments.com/Pdf_file/V_fullwaver.pdf





also useful to correlate with injection dipole waveform, in case this has also been recorded with a I-Full Waver logger.

High resolution: samples are recorded every 10 (ten) milliseconds (100 Hz sampling frequency). Data from several recorders can be merged and processed together with the Full Wave Viewer program delivered with the system. All data is synchronized through the GPS-PPS time stamping. A post acquisition processing permits to improve the signal-to-noise ratio. This also allows good quality IP data for deep investigations and for noisy areas.

Internal memory: the memory can store up to one month recording time. Then data can directly be transferred to a USB key in a few seconds.

TECHNICAL SPECIFICATIONS

Max. input voltage: 15 V
Protection: up to 1 000 V
Accuracy: 0.2 % typical

• Resolution: 10 μV

Sampling rate: 10 milli seconds (100 Hz)

Induced Polarization (chargeability) measured every 10 milliseconds (200 IP windows for a 2 sec pulse)

• Input impedance: 100 MΩ

Low pass filter Cut off frequency: 10 Hz

• Upper frequency which can be resolved: 50 Hz

Frequency resolution: up to 34 micro Hz

• Internal GPS with PPS (one pulse per second)

• Time resolution: 250 micro seconds (time stamped samples)

Battery test

Contact resistance check

GENERAL SPECIFICATIONS

- LCD display, graphic and alpha numeric with 16 lines of 40 characters
- Data flash memory: one-month recording
- After acquisition: possibility of data storage on a USB key (8 GB or more).

- Power supply: internal Li-Ion rechargeable battery; optional external 12V standard car battery can be also used
- Autonomy: 20 operating hours with the internal Li-Ion battery
- Weather proof IP 67
- Shock resistant resin NK-7, case with handle
- Operating temperature: -20 °C to +70 °C
- Dimensions: 31 x 25 x 15 cm
- · Weight: 2.8 kg

APPENDIX B

IRIS I-FullWaver Current Monitor⁵

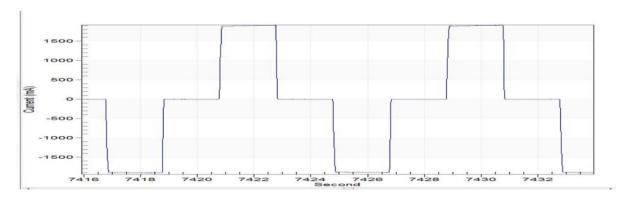
IP Fullwave Record

- Recording injected current
- Several weeks recording
- Time stamped data

Fullwaver: this logger for electrical signal is a new concept of compact and low consumption unit designed for advanced Time Domain Induced Polarization, Resistivity and SP measurements. It can work in all field conditions, small, discrete, autonomous and can record continuously without operator. I-Fullwaver is connected in series on the AB injection line, it measures and logs very accurately the injected current IAB.

Compactness: light, discrete and easy to setup on the field, even on remote areas. This autonomous logger does not need any operator during the acquisition. I-Fullwaver is connected close to the transmitter or close to any injection electrode

Integrated GPS: an integrated gps, very accurate and providing PPS signal (one pulse per second) allows to store all time series with time information. This is crucial to correlate and process data with V-Fullwaver receiver loggers installed in a same area. This information displays the behaviour of the transmitter, its regulation specifications and the value of lab in order to compute accurately the apparent resistivity.


⁵ Information obtained from http://www.iris-instruments.com/Pdf_file/I_fullwaver.pdf

High resolution: samples are recorded every 10 (ten) milliseconds (100 Hz sampling frequency). Data from several recorders (for current and received voltages) can be merged and processed together with the FullWaveViewer program delivered with the system. All data is synchronized through the GPS-PPS time stamping. A post acquisition processing allows to improve the signal-to-noise ratio, giving good quality IP data for deep investigations in noisy areas.

Internal memory: the memory can store up to three months recording time. Then data can directly be transferred to a USB key in a few seconds.

TECHNICAL SPECIFICATIONS

- Current range: +/- 25 000 mA
- Current resolution: 0.1 mA
- Accuracy: +/- 1 mA
- Protection: up to 50 A and 3 000 V
- Magnetic sensor
- Magnetization offset (offset memory): up to 0.05%
- Offset calibration
- Sampling rate: 10 milliseconds (100 Hz)
- Integrated GPS with PPS (one pulse per second)
- Time resolution: 250 micro seconds (time stamped samples)
- Battery test

GENERAL SPECIFICATIONS

- LCD display, alpha numeric with 4 lines of 20 characters
- Data flash memory: three months recording
- After acquisition: possibility of data storage on a USB key (8 Gb or more).
- Power supply: internal Li-Ion rechargeable battery; optional external 12V standard car battery can be also used
- Autonomy: 20 operating hours with the internal Li-Ion battery.
- Weather proof IP 67
- Shock resistant resin NK-7, case with handle
- Operating temperature: -20 °C to +70 °C

Dimensions: 31 x 25 x 15 cm

- Weight: 3.0 kg

APPENDIX B

GGD II 5kW

SPECIFICATIONS

- Protection against short circuits even at 0 ohms
- Output Voltage range: 150V to 2400V in 14 steps
- Power source is a standard 220/240V, 20/60 Hz source
- Displays electrode contact, transmitting power and current

ELECTRICAL CHARACTERISTICS

- Standard Time Base of 2 seconds for time domain 2 seconds on, 2 seconds' off
- Optional Time Base of DC, 0.5, 1, 2, 4 or 8 seconds
- Output Current Range, 0.030 to 10A
- Output Voltage Range, 150 to 2400V in 14 steps
- Ability to Link 2 GDD transmitters to double power output

CONTROLS

- Switch ON/OFF
- Output Voltage Range Switch: 150V, 180V, 350V, 420V, 500V, 600V, 700V, 840V, 1000V, 1200V, 1400V, 1680V, 2000V and 2400V

DISPLAYS

- Output Current LCD: reads +- 0.0010A
- Electrode Contact Displayed when not Transmitting
- Output Power Displayed when Transmitting
- Automatic Thermostat controlled LCD heater for LCD
- Total Protection Against Short Circuits
- Indicator Lamps Indicate Overloads

•

GENERAL SPECIFICATIONS

- Weather proof
- Shock resistant pelican case
- Operating temperature: -40 °C to +65 °C
- Dimensions: 26 x 45 x 55 cm
- Weight: 40 kg

APPENDIX C

REFERENCES

- Bauer, R.L., Czeck, D.M., Hudleston, P.J., and Tikoff, B., 2011, Structural geology of the subprovince boundaries in the Archean Superior Province of northern Minnesota and adjacent Ontario. In: Miller, J.D., Hudak, G.J., Wittkop, C., McLaughlin, P.I. (Eds.), Archean to Anthropocene: Field Guides to the Geology of the Mid-Continent of North America: Geological Society of America Field Guide 24, p. 203–241.
- Bleeker, W., 2015, Synorogenic gold mineralization in granite-greenstone terranes: the deep connection between extension, major faults, synorogenic clastic basins, magmatism, thrust inversion, and long-term preservation, In: Targeted Geoscience Initiative 4: Contributions to the Understanding of Precambrian Lode Gold Deposits and Implications for Exploration, (ed.) B. Dubé and P. Mercier-Langevin; Geological Survey of Canada, Open File 7852, p. 24–47.
- Claerbout, J.F., Kuras, O., Meldrum, P.I., Ogilvy, R.O. and Hollands, J., 2006. Electrical resistivity tomography applied to geologic, hydrogeologic, and engineering investigations at a former waste-disposal site. Geophysics, 71, B231-B239.
- Corfu, F., and Andrews, A.J., 1986, A U-Pb age for mineralized Nipissing diabase, Gowganda, Ontario: Canadian Journal of Earth Sciences, v. 23, p.107–109.
- Google. (2020). Location of the Janes Property. Retrieved December 2020 from https://www.google.com/maps/
- Google, CNES/Airbus (2020). Accessed on December, 2020.
- Kenma, A., Binley, A., Ramirez, A. and Daily, W., 2000. Complex resistivity tomography for environmental applications. Chemical Engineering Journal, 77, 11-18.
- Loke, M. H., 2018. Tutorial: 2-D and 3-D electrical imaging surveys. (Available for download from www.geotomosoft.com)
- Loke, M. H. (1996-2018). Rapid 3-D Resistivity & IP inversion using the least-squares method (For 3-D surveys using the pole pole, pole-dipole, dipole-dipole, rectangular, Wenner, Wenner-Schlumberger and non-conventional arrays) On land, aquatic, cross-borehole and time-lapse surveys. Geotomo Software Sdn Bhd.

- Loke, M.H. and Dahlin, T., 2010. Methods to Reduce Banding Effects in 3-D Resistivity Inversion. Near Surface 2010 16th European Meeting of Environmental and Engineering Geophysics 6 8 September 2010, Zurich, Switzerland, A16.
- Mercier-Langevin, P., Gibson, H.L., Hannington, M.D., Goutier, J., Monecke, T., Dubé, B. and Houlé, M.G., 2014, A special issue on Archean magmatism, volcanism, and ore deposits: part 2. Volcanogenic massive sulfide deposits preface: Economic Geology, v. 109(1), p.1-9.
- MNDM & OGSEarth. (2020). *OGSEarth*. Ontario Ministry of Northern Development and Mines.
- Stott, G.M., 2011, A Revised Terrane Subdivision of the Superior Province of Ontario: Ontario Geological Survey, Miscellaneous Release Data, 278 p.
- Stott, G.M., Corkery, M.T., Percival, J.A., Simard, M., and Goutier, J., 2010, A revised terrane subdivision of the Superior Province. In: Summary of Field Work and Other Activities, Open File Report 6260: Ontario Geological Survey, pp. 20–21 to 20–10.
- Young, G.M., Long, D.G., Fedo, C.M., and Nesbitt, H.W., 2001, Paleoproterozoic Huronian basin: product of a Wilson cycle punctuated by glaciations and a meteorite impact: Sedimentary Geology, v. 141, p. 233-254.

APPENDIX D

DIGITAL DATA

The digital data contains

- PDF copy of this report
- PDF copy of the maps
- Raw data in binary format
- Raw data in CSV format
- Ascii XYZ of inversion results
- RES3DINV INV output of inversion results
- Text document of electrode GPS Coordinates
- KMZ of final survey layout
- Packed Oasis maps
- Oasis databases
- 3D Oasis voxels created

APPENDIX E

LIST OF MAPS (IN MAP POCKET)

Grid Sketch (1:5000)

- 1) Q2999-SPC-Janes-3DIP-Western-Setup
- 2) Q2999-SPC-Janes-3DIP-Northern-Setup
- 3) Q2999-SPC-Janes-3DIP-Southern-Setup

IP Plan Map (1:5000)

- 4) Q2999-SPC-Janes-3DIP- CHR-Surface
- 5) Q2999-SPC-Janes-3DIP- CHR-50m-depth
- 6) Q2999-SPC-Janes-3DIP- CHR-100m-depth
- 7) Q2999-SPC-Janes-3DIP- CHR-150m-depth
- 8) Q2999-SPC-Janes-3DIP- CHR-200m-depth
- 9) Q2999-SPC-Janes-3DIP- CHR-250m-depth
- 10) Q2999-SPC-Janes-3DIP- RES-Surface
- 11) Q2999-SPC-Janes-3DIP- RES -50m-depth
- 12) Q2999-SPC-Janes-3DIP- RES -100m-depth
- 13) Q2999-SPC-Janes-3DIP- RES -150m-depth
- 14) Q2999-SPC-Janes-3DIP- RES -200m-depth
- 15) Q2999-SPC-Janes-3DIP- RES -250m-depth

Plan Maps (1:5000)

- 16) Q2999-SPC-Janes-3DIP-DGPS
- 17) Q2999-SPC-Janes-3DIP-Anomaly

TOTAL MAPS = 17

877.504.2345 | info@cxsltd.com | www.cxsltd.com

Appendix 3. Daily log for 2022 activities on Janes Property

Entry #	Date	Geologist	Assistant	Work performed	Vehicle	km	Travel hrs	Field hrs
1	9-Aug-22	Rachel Chouinard	Brad Clarke	Bedrock mapping	Black Dodge	195	3	5
2	10-Aug-22	Rachel Chouinard	Chris Caron	Bedrock mapping	Black Dodge	195	3	5
3	11-Aug-22	Rachel Chouinard	Chris Caron	Bedrock mapping	Black Dodge	195	3	5
4	15-Aug-22	Rachel Chouinard	Brad Clarke	Bedrock mapping	Black Dodge	195	3	5
5	31-Aug-22	Rachel Chouinard	Brad Clarke	Bedrock mapping	Black Dodge	195	3	5
6	19-Sep-22	Rachel Chouinard	Brad Clarke	Bedrock mapping	Black Dodge	195	3	5
7	20-Sep-22	Rachel Chouinard	Brad Clarke	Geochemical sampling	Black Dodge	195	3	5
8	22-Sep-22	Rachel Chouinard	Brad Clarke	Geochemical sampling	Black Dodge	195	3	5
9	27-Sep-22	Rachel Chouinard	Brad Clarke	Flagging drill trails	Black Dodge	195	3	3
10	29-Sep-22	Rachel Chouinard		Meeting contractor on site	Black Dodge	195	3	2
11	11-Oct-22	Rachel Chouinard		Meeting contractor on site	Black Dodge	195	3	2
12	20-Oct-22	Rachel Chouinard	Chris Caron	Meeting contractor on site	Black Dodge	195	3	2
12	21-Oct-22	Rachel Chouinard	Chris Caron	Meeting contractor on site	Black Dodge	195	3	2
13	22-Oct-22	Rachel Chouinard		Line up drill; safety induction	Black Dodge	195	3	1
14	23-Oct-22	Rachel Chouinard		Inspect drill; foreman site tour	Black Dodge	195	3	1
15	3-Nov-22	Rachel Chouinard		Post site inspection	Black Dodge	195	3	2
16	6-Nov-22	Rachel Chouinard		Line up drill	Black Dodge	195	3	3
				Post site inspection; drill				
17	7-Nov-22	Rachel Chouinard		inspection	Black Dodge	195	3	2
18	12-Nov-22	Rachel Chouinard		Post site inspection	Black Dodge	195	3	1

Appendix 3. Daily log for 2022 activities on Janes Property

Entry #	Date	Claims	Sample type	# samples for analysis	Comments
1	9-Aug-22	548578		0	
2	10-Aug-22	548578		0	
3	11-Aug-22	548578		0	
		582748		0	
4	15-Aug-22	548578		0	
		548579		0	
5	31-Aug-22	548578		0	
		582748		0	
6	19-Sep-22	136836		0	
		548579		0	
7	20-Sep-22	582748	Grab sample	11	For geochem
		548578		0	
8	22-Sep-22	582748	Grab sample	7	For geochem
		548578	Grab sample	7	For geochem
9	27-Sep-22	582748		0	
		548578		0	
10	29-Sep-22	582748		0	
11	11-Oct-22	582748		0	
		548578		0	
12	20-Oct-22	582748		0	
		548578		0	
12	21-Oct-22	582748		0	
		548578		0	
13	22-Oct-22	582748		0	
14	23-Oct-22	582748		0	
		548578		0	
15	3-Nov-22	582748		0	
16	6-Nov-22	582748		0	
17	7-Nov-22	582748		0	
18	12-Nov-22	582748		0	

Appendix 4. Grab sample coordinates and descriptions

Sample ID	Туре	Date	Sampler	Grid	Northing	Easting	Lithology	Texture	Mineralization Type
D831670	Grab	9/20/2022	Rachel Chouinard	NAD83 / UTM zone 17N	5168996	546736	GAB		
D831671	Grab	9/20/2022	Rachel Chouinard	NAD83 / UTM zone 17N	5169011	546811	GAB		
D831672	Grab	9/20/2022	Rachel Chouinard	NAD83 / UTM zone 17N	5169012	546942	GAB		PO
D831673	Grab	9/20/2022	Rachel Chouinard	NAD83 / UTM zone 17N	5169012	546986	GAB		PO
D831674	Grab	9/20/2022	Rachel Chouinard	NAD83 / UTM zone 17N	5169016	547165	GAB		PO
D831675	Grab	9/20/2022	Rachel Chouinard	NAD83 / UTM zone 17N	5169020	547329	GAB		
D831676	Grab	9/20/2022	Rachel Chouinard	NAD83 / UTM zone 17N	5169014	547354	GAB		
D831677	Grab	9/20/2022	Rachel Chouinard	NAD83 / UTM zone 17N	5169007	547442	GAB		PO
D831678	Grab	9/20/2022	Rachel Chouinard	NAD83 / UTM zone 17N	5169024	547479	GAB		
D831679	Grab	9/20/2022	Rachel Chouinard	NAD83 / UTM zone 17N	5169009	547563	GAB		
D831680	Grab	9/20/2022	Rachel Chouinard	NAD83 / UTM zone 17N	5169000	547665	GAB_VT	VT	PO
D831681	Grab	9/22/2022	Rachel Chouinard	NAD83 / UTM zone 17N	5169012	547697	GAB		
D831682	Grab	9/22/2022	Rachel Chouinard	NAD83 / UTM zone 17N	5169021	547779	GAB		
D831683	Grab	9/22/2022	Rachel Chouinard	NAD83 / UTM zone 17N	5169015	547881	GAB		
D831684	Grab	9/22/2022	Rachel Chouinard	NAD83 / UTM zone 17N	5169015	548047	GAB		PO
D831685	Grab	9/22/2022	Rachel Chouinard	NAD83 / UTM zone 17N	5169011	548194	GAB		
D831686	Grab	9/22/2022	Rachel Chouinard	NAD83 / UTM zone 17N	5169013	548768	GAB		
D831687	Grab	9/22/2022	Rachel Chouinard	NAD83 / UTM zone 17N	5168612	547362	GAB		
D831688	Grab	9/22/2022	Rachel Chouinard	NAD83 / UTM zone 17N	5168640	547529	GAB		
D831689	Grab	9/22/2022	Rachel Chouinard	NAD83 / UTM zone 17N	5168609	547694	GAB		
D831690	Grab	9/22/2022	Rachel Chouinard	NAD83 / UTM zone 17N	5168602	547768	GAB		
D831691	Grab	9/22/2022	Rachel Chouinard	NAD83 / UTM zone 17N	5168587	547807	GAB_LE		
D831692	Grab	9/22/2022	Rachel Chouinard	NAD83 / UTM zone 17N	5168614	548110	GAB	Sh	
D831693	Grab	9/22/2022	Rachel Chouinard	NAD83 / UTM zone 17N	5168614	548262	GAB		
D831694	Grab	9/22/2022	Rachel Chouinard	NAD83 / UTM zone 17N	5168619	548368	GAB		

Appendix 4. Grab sample coordinates and descriptions

Sample ID	Mineralization Style	Mineralization %	Description
D831670			Medium-grained; no visible sulphides; mag 1.16
D831671			Medium-grained gabbro; rusty spots but no visible sulphides; mag 8.06
D831672	DS	0.1	Medium-grained; trace pyrrhotite; mag 14.9
D831673	DS	0.1	Medium-grained; trace pyrrhotite; mag 12.0
D831674	DS	0.1	Medium-grained; trace pyrrhotite; mag 1.0
D831675			Medium-grained gabbro; no visible sulphides; mag 1.0
D831676			Medium-grained; no visible sulphides; mag 0.9
D831677	DS	0.1	Medium-grained gabbro; trace pyrrhotite; mag 0.9
D831678			Medium-grained; no visible sulphides; mag 0.9
D831679			Medium-grained; no visible sulphides; mag 1.04
D831680	DS	0.1	Medium- to coarse-grained vari-textured gabbro; trace pyrrhotite; mag 0.97
D831681			Medium-grained gabbro; moderate strain in outcrop; no visible sulphides; mag 0.98
D831682			Medium-grained; no visible sulphides; mag 1.08
D831683			Medium-grained; no visible sulphides; mag 1.08
D831684	DS	0.1	Medium-grained; trace pyrrhotite; mag 5.11
D831685			Medium-grained; no visible sulphides; mag 0.93
D831686			Medium-grained; no visible sulphides; mag 1.31
D831687			Medium-grained; no visible sulphides; mag 1.82
D831688			Medium-grained; no visible sulphides; mag 1.16
D831689			Medium-grained; no visible sulphides; slightly more felsics; mag 6.8
D831690			Medium-grained; no visible sulphides; slightly more felsics; mag 0.97
D831691			Medium-grained leucogabbro; no visible sulphides; mag 0.6
D831692			Sheared fine-grained gabbro with carbonate tension gashes; mag 0.16
D831693			Medium-grained; no visible sulphides; mag 0.57
D831694			Medium-grained; slightly more felsics; no visible sulphides; mag 1.08

Appendix 5. Grab Sample Certificate of Assay

Fax: +1 604 984 0218 2103 Dollarton Hwy
North Vancouver BC V7H 0A7
Phone: +1 604 984 0221 Fax: +1 60
www.alsglobal.com/geochemistry

9C - 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5 To: SPC NICKEL CORP.

Page: 1 Total # Pages: 2 (A - E)Plus Appendix Pages Finalized Date: 18-OCT-2022

Account: SDPTCP

SD22271296 CERTIFICATE

This report is for 25 samples of Rock submitted to our lab in Sudbury, ON, Canada on 23-SEP-2022.

Project: Janes

GRANT MOURRE The following have access to data associated with this certificate:

RACHEL CHOUINARD | BRAD CLARKE | GRAI

	SAMPLE PREPARATION
ALS CODE	DESCRIPTION
WEI-21	Received Sample Weight
CRU-QC	Crushing QC Test
PUL-QC	Pulverizing QC Test
CRU-31	Fine crushing - 70% <2mm
SPL-21	Split sample – riffle splitter
CRU-21	Crush entire sample
PUL-31	Pulverize up to 250g 85% <75 um
LOG-21	Sample logging – ClientBarCode

	ANALYTICAL PROCEDURES	
ALS CODE	DESCRIPTION	INSTRUMENT
PGM-ICP23	Pt, Pd, Au 30g FA ICP	ICP-AES
ME-ICP06	Whole Rock Package - ICP-AES	ICP-AES
OA-GRA05	Loss on Ignition at 1000C	WST-SEQ
ME-MS81	Lithium Borate Fusion ICP-MS	ICP-MS
TOT-ICP06	Total Calculation for ICP06	
ME-4ACD81	Base Metals by 4-acid dig.	ICP-AES

This is the Final Report and supersedes any preliminary report with this certificate number.Results apply to samples as submitted.All pages of this report have been checked and approved for release. ***** See Appendix Page for comments regarding this certificate *****

Signature:
Saa Traxler, Director, North Vancouver Operations

ALS Canada Ltd.
2103 Dollarton Hwy
North Vancouver BC V7H 0A7
Phone: +1 604 984 0221 Fax: +1 604 984 0218
www.alsglobal.com/geochemistry

To: SPC NICKEL CORP. 9C – 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5

Page: 2 - A
Total # Pages: 2 (A - E)
Plus Appendix Pages
Finalized Date: 18-OCT-2022
Account: SDPTCP

Project: Janes

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry ALS Canada Ltd.

To: SPC NICKEL CORP. 9C - 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5

Page: 2 - B
Total # Pages: 2 (A - E)
Plus Appendix Pages
Finalized Date: 18-OCT-2022
Account: SDPTCP

Project: Janes

ALS Canada Ltd.
2103 Dollarton Hwy
North Vancouver BC V7H 0A7
Phone: +1 604 984 0221 Fax: +1 604 984 0218
www.alsglobal.com/geochemistry

To: SPC NICKEL CORP. 9C - 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5

Page: 2 - C
Total # Pages: 2 (A - E)
Plus Appendix Pages
Finalized Date: 18-OCT-2022
Account: SDPTCP

Project: Janes

Method M	No. No.										Joseph Janes		10 11 4	1 4 1 4 4			2001	
Wethod ME-MSSI MSSI MS	Methods Methods <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>ار</th><th>EKIIFIC</th><th>AIEU</th><th>ANAL</th><th></th><th>SD2221</th><th>9671,</th><th></th></t<>										ار	EKIIFIC	AIEU	ANAL		SD2221	9671,	
223 0.7 13.8 1.34 37 52.2 12.30 11.55 9.71 9.70 1.77 0.62 0.018 201 6.05 12.0 12.3 39 54.2 12.30 11.55 10.05 1.74 0.47 0.010 206 0.5 12.0 12.3 13.8 54.2 13.85 11.75 1.05 1.74 0.47 0.010 210 0.8 12.8 12.8 54.3 14.70 10.46 10.25 7.58 1.89 0.47 0.000 226 0.5 14.4 1.36 57 52.0 10.43 8.16 1.72 0.49 0.010 226 0.7 18.7 1.75 52.0 13.35 12.10 9.43 6.74 1.72 0.44 0.010 226 0.7 11.7 11.2 52.0 12.50 13.2 10.55 11.75 11.75 0.43 0.74 0.010 226	282 6.07 138 134 97 126 115 97 115 105 105 105 105 0.08 0.09 0.08 0.09 0.08 0.08 0.09 0.08 0.09 0.08 0.09 0.08 0.09 0.09 0.08 0.09	_	Method Analyte Units LOD	ME-MS81 U ppm 0.05	ME-MS81 V ppm S	ME-MS81 W ppm 0.5	ME-MS81 Y ppm 0.1	ME-MS81 Yb ppm 0.03	ME-MS81 Zr ppm 1	ME-ICP06 SiO2 % 0.01	ME-ICP06 AI2O3 % 0.01	ME-ICP06 Fe2O3 % 0.01	ME-ICP06 CaO % 0.01	ME-ICP06 MgO % 0.01	ME-ICP06 Na2O % 0.01	ME-ICP06 K2O % 0.01	ME-ICP06 Cr2O3 % 0.002	ME-ICP06 TiO2 % 0.01
256 0.5 14.4 1.36 57 52.0 13.05 12.10 9.16 7.52 1.59 0.010 299 0.7 18.7 1.78 73 54.0 13.35 12.10 9.43 6.74 1.72 0.82 0.010 239 0.7 18.2 1.78 7.5 54.0 13.15 6.0 1.88 0.43 0.01 1.89 0.01 274 1.7 18.2 1.66 6.3 51.6 1.72 0.46 0.01 312 0.9 1.78 1.86 6.4 52.6 14.65 10.36 6.20 1.72 0.46 0.01 325 0.6 1.97 1.96 6.7 52.8 14.35 11.05 8.70 5.16 0.04 0.01 267 0.8 6.7 1.05 8.29 6.8 1.72 0.46 0.01 270 0.8 1.5 1.4 5.2 14.05 10.80	266 0.5 144 1.36 6.7 6.20 13.00 14.00 <td></td> <td></td> <td>0.26 0.58 0.52 0.42 0.81</td> <td>223 201 206 210 277</td> <td>0.7 <0.5 0.5 0.8</td> <td>13.8 12.0 12.3 12.8</td> <td>1.34 1.23 1.38 1.25 1.55</td> <td>37 39 40 38 52</td> <td>52.2 54.2 54.2 54.3 53.0</td> <td>12.30 13.85 14.20 14.70</td> <td>11.55 11.15 10.65 10.40</td> <td>9.71 10.05 10.35 10.25 9.18</td> <td>9.70 8.46 7.94 7.58 8.16</td> <td>1.77</td> <td>0.62 0.47 0.48 0.47 0.47</td> <td>0.018 0.010 0.009 0.008 0.008</td> <td>0.50 0.47 0.47 0.48</td>			0.26 0.58 0.52 0.42 0.81	223 201 206 210 277	0.7 <0.5 0.5 0.8	13.8 12.0 12.3 12.8	1.34 1.23 1.38 1.25 1.55	37 39 40 38 52	52.2 54.2 54.2 54.3 53.0	12.30 13.85 14.20 14.70	11.55 11.15 10.65 10.40	9.71 10.05 10.35 10.25 9.18	9.70 8.46 7.94 7.58 8.16	1.77	0.62 0.47 0.48 0.47 0.47	0.018 0.010 0.009 0.008 0.008	0.50 0.47 0.47 0.48
325 0.6 19.7 1.96 67 53.8 14.35 11.05 8.70 5.16 2.44 0.66 0.003 267 0.8 1.56 1.6 1.6 61 52.6 14.05 10.80 8.29 6.35 2.73 0.32 0.007 220 0.5 1.5 1.6 1.6 5.5 11.35 10.30 8.29 6.35 2.73 0.08 0.007 220 0.5 1.2 1.2 40 50.7 14.30 10.10 8.67 7.96 1.30 0.007 221 0.5 10.3 10.20 10.05 7.96 1.80 0.04 0.008 221 0.7 11.4 1.25 42 51.7 14.45 10.05 7.96 1.75 0.66 0.008 256 0.5 1.2 1.4 1.4 9.84 9.84 7.96 1.75 0.22 0.008 254 0.5 1.4	325 0.6 19,7 136 67 53.8 14.35 11.05 8.70 51.6 244 0.66 0.003 220 0.5 9.0 1.0 0.5 14.05 10.80 8.29 5.37 0.09 0.007 220 0.5 9.0 1.0 3.5 5.5 14.35 10.10 8.87 7.88 1.92 0.00 0.007 221 0.6 10.2 1.0 1.0 8.67 7.88 1.9 0.00 0.007 221 0.6 1.0 1.0 8.67 7.88 1.9 0.0 0.007 222 1.2 1.2 4.2 51.7 14.40 9.84 5.48 7.88 1.9 0.009 240 0.7 11.4 1.25 4.2 51.7 14.40 9.84 5.48 7.88 1.9 0.009 254 0.5 1.2 1.45 10.05 11.75 8.0 1.7 0			0.79 0.62 0.71 0.53	256 299 332 274 312	0.5 0.7 0.8 1.7	14.4 18.7 19.3 18.2 17.8	1.36 1.78 1.88 1.66	57 73 76 63	52.0 54.0 52.0 51.6 52.6	13.05 13.35 12.60 14.55 14.60	12.10 12.10 13.15 10.35 11.25	9.16 9.43 8.39 10.10	7.52 6.74 6.60 6.30 6.20	1.59 1.72 1.98 1.82 1.72	0.88 0.82 0.43 0.51 0.46	0.010 0.012 0.010 0.011	0.53 0.68 0.83 0.65 0.76
253 0.5 13.4 1.05 53 51.9 15.55 9.63 11.65 7.24 2.02 0.42 0.025 296 0.8 16.6 1.46 66 51.0 13.90 11.95 9.96 6.79 1.79 0.42 0.009 225 0.8 10.7 0.94 40 50.8 15.80 9.26 11.75 7.06 2.03 0.40 0.026 202 0.7 14.2 1.31 103 60.6 12.90 7.07 4.67 3.91 3.17 0.84 0.006 258 0.9 15.8 1.37 57 51.8 14.30 9.57 10.35 7.50 1.84 0.48 0.030 269 1.2 1.2 15.5 13.10 9.71 10.10 6.83 3.40 0.06 0.010	253 0.5 13.4 1.05 53 51.9 15.55 9.68 11.65 7.24 2.02 0.51 0.025 296 0.8 16.6 1.46 66 51.0 13.90 11.35 9.96 6.79 1.79 0.42 0.009 225 0.8 10.7 0.94 40 50.8 15.80 9.26 11.75 7.06 2.03 0.40 0.026 202 0.7 14.2 1.31 10.3 6.6 5.24 13.10 9.77 10.35 7.50 1.84 0.06 0.010 203 1.2 1.36 66 52.4 13.10 9.77 10.10 6.83 3.40 0.06 0.010			0.73 0.80 0.31 0.38 0.32 0.38 0.34	325 267 220 228 221 221 240 256 354	0.0000 0.0000 0.0000 0.0000 0.0000	19.7 15.6 9.0 12.3 10.9 11.4 12.9 12.9	1.96	67 33 39 40 39 50 50 50	53.8 52.6 55.5 50.7 51.3 51.7 51.3	14.35 14.05 11.95 14.30 14.75 14.40 14.45 13.55	11.05 10.80 10.30 10.10 10.20 9.84 10.05 11.80	8.70 8.29 5.32 8.67 10.05 9.48 11.75 11.75	5.16 6.35 7.56 7.88 7.96 8.02 7.96	2.44 2.73 5.35 1.92 1.80 1.75 1.68	0.66 0.32 0.08 0.66 0.41 0.55	0.003 0.007 0.008 0.009 0.009 0.033 0.033	0.73 0.65 0.38 0.49 0.43 0.43 0.61
				0.47 0.30 1.77 0.48 0.83	253 202 202 269 269 269	0.5 0.8 0.7 0.9	13.4 16.6 10.7 14.2 15.8 15.8	1.05 1.46 0.94 1.37 1.37	53 66 40 103 57 66	51.9 50.8 60.6 51.8 52.4	15.55 13.90 15.80 12.90 14.30	9.63 11.95 9.26 7.07 9.57 9.57	9.96 11.75 4.67 10.35	7.24 6.79 7.06 3.91 7.50 6.83	2.02 1.79 2.03 3.17 1.84 3.40	0.51 0.42 0.84 0.08 0.06	0.025 0.009 0.026 0.006 0.030 0.010	0.63 0.87 0.57 0.59 0.63

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry ALS Canada Ltd.

9C – 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5 To: SPC NICKEL CORP.

Page: 2 - D
Total # Pages: 2 (A - E)
Plus Appendix Pages
Finalized Date: 18-OCT-2022
Account: SDPTCP

Project: Janes

	ME-4ACD81 Pb ppm 2	८ & & & & & & & & & & & & & & & & & & &	22 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ωω ω το 4 το 17 το 18	Θ Ω Ω [↑] [↑] [↑]
71296	ME-4ACD81 Ni ppm 1	161 112 102 89 104	81 76 64 76 72 73 46	51 84 93 82 131 152 111	106 115 116 110
SD22271296	ME-4ACD81 ME-4ACD81 Li Mo ppm ppm 10 1	7	7 7 7	V V V - V	- 7 7 7 -
YSIS		20 10 10 20	20 10 20 20 10 30	20 20 20 20 20 20 10 10	8 8 9 8 9 9
- ANAL	ME-4ACD81 Cu ppm 1	240 160 142 123 169	115 115 107 125 111 62	23 100 121 129 129 88 88 88	92 92 48 48 57 5
ATE OF	ME-4ACD81 Co ppm 1	54 51 50 48 57	54 46 52 44 44 40 14	37 49 50 53 43 45 45	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
CERTIFICATE OF ANALYSIS	ME-4ACD81 ME-4ACD81 AS Cd Co As Cd Co Ppm Ppm Ppm Ppm Ppm S OS 1	60.5 60.5 60.5 60.5 60.5	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
O	ME-4ACD81 As As ppm 5	∠ ዼ ዼ ዼ ዼ	ο ψ ν ψ <u>τ</u> ς ξ	5	8 th 12 12 th 12 t
	ME-4ACD81 Ag ppm 0.5	00 00 00 00 00 00 00 00 00 00 00 00 00	60.55 60.55 60.55 60.55 60.55 60.55 60.55	6.0.5 % % % % % % % % % % % % % % % % % % %	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
	TOT-ICP06 1 Total %	100.98 101.02 101.21 101.46 100.57	99.40 101.07 98.78 98.04 100.30 99.30	98.66 98.70 98.63 99.47 101.76 100.91 98.73	99.41 100.46 100.42 99.28 99.00
	OA-GRA05 LOI % 0.01	2.32 0.37 0.91 1.14 2.25	2.31 1.95 2.48 1.87 3.07 2.13 2.96	1.94 3.71 1.46 3.07 2.20 1.28 2.88 0.73	2.41 2.58 6.46 2.55 2.55 2.55
	ME-ICP06 BaO % 0.01	0.02 0.01 0.01 0.01	0.02	0.01 0.01 0.01 0.01 0.01 0.01	0.01 0.02 0.02 0.01 60.01
	ME-ICP06 SrO % 0.01	0.02 0.02 0.01 0.02	0.01 0.01 0.02 0.02 0.02 0.03	0.02 0.02 0.02 0.02 0.02 0.03	0.02 0.02 <0.01 0.02 0.03
	ME-ICP06 P2O5 % 0.01	0.04 0.03 0.04 0.06	0.04 0.06 0.08 0.06 0.07 0.07	0.05 0.05 0.05 0.05 0.04 0.05 0.05	0.08 0.04 0.06 0.05
	ME-ICP06 MnO % 0.01	0.21 0.19 0.18 0.17 0.21	0.19 0.18 0.21 0.19 0.19 0.16	0.22 0.28 0.18 0.16 0.16 0.17	0.20 0.14 0.12 0.18 0.13
	Method Analyte Units LOD				
	Sample Description	D831670 D831671 D831672 D831673 D831673	D831675 D831676 D831677 D831678 D831679 D831680	D831682 D831683 D831684 D831685 D831686 D831686 D831687	D831690 D831691 D831692 D831693 D831694

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: SPC NICKEL CORP. 9C - 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5

Page: 2 – E
Total # Pages: 2 (A – E)
Plus Appendix Pages
Finalized Date: 18-OCT-2022
Account: SDPTCP

CERTIFICATE OF ANALYSIS SD22271296 Project: Janes

		ME-4ACD81	ME-4ACD81 ME-4ACD81 ME-4ACD81	ME-4ACD81	
	Method	Sc	F	Zn	
	Ilnite	mdd	mdd	mdd	
Sample Description	LOD	1	10	2	
D831670		28	<10	98	
D831671		36	<10	79	
D831672		30	<10	7	
D831673		30	<10	73	
D831674		14	<10	92	
D831675		35	<10	85	
D831676		38	~10	87	
D831677		42	<10	26	
D831678		36	<10	78	
D831679		34	×10	109	
D831680		40	<10	76	
D831681		37	<10	91	
D831682		58	<10	8	
D831683		35	<10	86	
D831684		27	<10	76	
D821685		35	110	115	
0031003		9 6	7 7	2 0	
D83 686		5.6	2 5	9 8	
D83168/		- u	010	n (6	
D831688		SS 8	, v10	90 1	
D831689		82	01>	L/	
D831690		33	<10	92	
D831691		28	<10	09	
D831692		24	×10	23	
D831603		30	V10	86	
D831694		34	95	28	
	Ī				
		-			

ALS Canada Ltd.
2103 Dollarton Hwy
North Vancouver BC V7H 0A7
Phone: +1 604 984 0221 Fax: +1 604 984 0218
www.alsglobal.com/geochemistry

To: SPC NICKEL CORP. 9C – 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5

Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 18-OCT-2022 Account: SDPTCP

Project: Janes

ā
σ
\sim
` `
_
^
Š
\sim
5022271296
_
v
v
~
۲.
_
mpos
⋖
-
Z
Z
ANAI YSIS
F AN
DF AN
OF AN
F OF AN
TF OF AN
TE OF AN
ATF OF AN
CATE OF AN
ICATE OF AN
FICATE OF AN
THICATE OF AN
TIFICATE OF AN
RTIFICATE OF AN
FRTIFICATE OF AN
PERTIFICATE OF AN
CERTIFICATE OF AN
CERTIFICATE OF AN
CERTIFICATE OF AN

	LOG-21 WEI-21	OA-GRA05
CERTIFICATE COMMENTS	LABORATORY ADDRESSES 1351–B Kelly Lake Road, Unit #1, Sudbury, ON, Canada. CRU–31 PUL–QC at 2103 Dollarton Hwy, North Vancouver, BC, Canada.	ME-MS81
CERTIFICA	ALS Sudbury located at ALS Vancouver located	ME-1CP06 PGM-ICP23 TOT-ICP06
		Applies to Method: ME-4 PGM-

Project name:	Janes Project	Easting:	546885	Contractor:	Major Drilling
Hole diameter:	NQ	Northing:	5168980	Company:	SPC Nickel Corp
Azimuth:	260	Elevation:	269	Claim number:	582748
Dip:	-70	Survey instrument:	WPA-GPS	Casing:	Capped
Start depth:	0 m	Start date:	10/23/2022	Core location:	SPC core shack
End depth:	261 m	End date:	10/27/2022	Grid:	UTM NAD83 Z17N
Logged by:	Rachel Chouinard	Finished logging:	10/28/2022		

From	То	Lithology	Comments
0	3	CAS	
3	18.3	GAB	Medium-grained massive gabbro; occasional hairline calcite veinlet; chlorite alteration; patchy weak biotite; local trace po +/- cpy; nonmagnetic to very weakly magnetic.
			Mineralization
			6.6-6.8: pyrrhotite-chalcopyrite; disseminated; trace
18.3	20	GAB	Medium-grained gabbro with weak to moderate strain and a calcite stockwork of veinlets causing minor brecciation in places; veinlets 60 dtca; nonmagnetic; no visible sulphides.
20	85	GAB	Medium-grained gabbro; calcite veinlets 50-60 dtca; three small black nonmagnetic dikelets with feldspar phenocrysts; chlorite alteration; very weak very patchy biotite; local trace po +/- cpy; nonmagnetic to very weakly magnetic.
			Minor lithology
			36.5-36.55: MD; black nonmagnetic dikelet with feldspar phenocrysts
			69.4-69.6: MD; black nonmagnetic dikelet with feldspar phenocrysts
			74.4-74.6: MD; black nonmagnetic dikelet with feldspar phenocrysts
			Mineralization
			26-27: pyrrhotite-chalcopyrite; disseminated; trace
			30-34.5: pyrrhotite-chalcopyrite; disseminated; trace
			35.8-37.3: pyrrhotite-chalcopyrite; disseminated; trace

			42.3-85: pyrrhotite-chalcopyrite; disseminated; trace
85	88	GAB	Fine-grained gabbro with disseminated medium-grained magnetite; chlorite alteration; occasional calcite veinlet
00		07.15	at 60 dtca; nonmagnetic to weakly magnetic; no visible sulphides.
88	96	GAB VT	Fine- to medium-grained gabbro with medium- to coarse-grained patches; local disseminated magnetite;
		_	occasional calcite veinlet at 60 dtca; chlorite alteration; no visible sulphides; nonmagnetic to weakly magnetic.
96	97.7	GAB	Fine-grained gabbro with moderate strain and calcite veinlets stockwork at 60 dtca; local trace pyrite in calcite
			veinlet; chlorite alteration; nonmagnetic.
97.7	105	GAB	Medium-grained gabbro; occasional calcite veinlet at 60 dtca; local trace disseminated po; chlorite alteration; nonmagnetic.
			Mineralization
			97.7-105: pyrrhotite; disseminated; trace
105	107.2	GAB	Fine-grained gabbro; chlorite alteration; occasional calcite veinlet at 70 dtca; nonmagnetic; no visible sulphides.
107.2	125.6	GAB_VT	Fine- to medium-grained gabbro with occasional coarser-grained patch; sections of strain with abundant calcite
			tension gashes/veinlets; pervasive moderate to strong calcite alteration bleaching the core; local trace blebby
			pyrrhotite; nonmagnetic.
			Minor lithology
			113-113.2: MD; grey fine-grained dikelet with calcite overprint; vague feldspar phenocrysts; nonmagnetic
			Mineralization
			116-125.6: pyrrhotite; blebby; trace
125.6	126.6	MD	Dark fine-grained mafic dike overprinted with calcite alteration causing bleaching; vague feldspar phenocrysts; nonmagnetic; minor strain with calcite tension gashes/veinlets. upper contact irregular; lower contact 40 dtca.
126.6	135	GAB_VT	Fine- to medium-grained gabbro with occasional coarser-grained patch; sections of strain with abundant calcite
120.0	133	OAD_VI	tension gashes/veinlets; pervasive moderate to strong calcite alteration bleaching the core; local trace blebby
			pyrrhotite; nonmagnetic.
			Mineralization
			126.6-135: pyrrhotite-chalcopyrite; disseminated; trace
135	142	GAB_VT	Fine- to medium-grained gabbro with occasional coarser-grained patch; occasional hairline calcite veinlet at 60
		_	dtca; chlorite alteration; local trace disseminated pyrrhotite; nonmagnetic.
			Mineralization

Appendix 6. Drill logs

			135-145: pyrrhotite-chalcopyrite; disseminated; trace
142	261	GAB	Medium-grained massive gabbro; chlorite alteration; occasional hairline calcite veinlet; one small mafic dikelet;
			local trace blebby and disseminated pyrrhotite; nonmagnetic.
			Minor lithology
			167.15-167.25: MD; black nonmagnetic dikelet with feldspar phenocrysts
			Mineralization
			142-143: pyrrhotite-chalcopyrite; blebby; 0.5%
			143-171: pyrrhotite-chalcopyrite; disseminated; trace
			184.9-194.5: pyrrhotite-chalcopyrite; blebby; minor
			218-219: pyrrhotite-chalcopyrite; blebby; minor
			219-222: pyrrhotite-chalcopyrite; blebby; trace

Project name:	Janes Project	Easting:	546885	Contractor:	Major Drilling
Hole diameter:	NQ	Northing:	5168980	Company:	SPC Nickel Corp
Azimuth:	0	Elevation:	269	Claim number:	582748
Dip:	-90	Survey instrument:	WPA-GPS	Casing:	Capped
Start depth:	0 m	Start date:	10/27/2022	Core location:	SPC core shack
End depth:	276 m	End date:	10/31/2022	Grid:	UTM NAD83 Z17N
Logged by:	Rachel Chouinard	Finished logging:	11/02/2022		

From	То	Lithology	Comments
0	2.3	CAS	
2.3	90	GAB	Massive medium-grained gabbro; chlorite alteration; occasional calcite veinlet; local trace pyrrhotite speck; nonmagnetic.
			Mineralization
			2.3-5: pyrrhotite-chalcopyrite; disseminated; trace
			16-31: pyrrhotite-chalcopyrite; disseminated; trace
			38-48: pyrrhotite-chalcopyrite; disseminated; trace
			67-72: pyrrhotite-chalcopyrite; disseminated; trace
90	91.5	GAB	Fine-grained gabbro with minor calcite alteration; numerous calcite veinlets; no visible sulphides;
			nonmagnetic.
91.5	99.1	GAB	Massive medium-grained gabbro; chlorite alteration; no visible sulphides; nonmagnetic.
99.1	102.1	GAB	Fine-grained gabbro with moderate calcite alteration; occasional calcite veinlet; no visible sulphides; nonmagnetic.
102.1	104	GAB	Massive medium-grained gabbro with moderate calcite alteration; calcite tension gash veinlets; no visible sulphides; nonmagnetic.
104	121	GAB	Massive medium-grained gabbro; chlorite alteration; no visible sulphides; one small mafic dikelet breccia; nonmagnetic.
			Minor lithology
			117.23-117.27: MD; aphanitic nonmagnetic dark grey mafic dike brecciating host gabbro

121	123	GAB	Massive fine-grained gabbro; chlorite alteration; no visible sulphides; nonmagnetic.
123	133	GAB_VT	Medium-grained gabbro with very minor vari-texture look; chlorite alteration; no visible sulphides;
			nonmagnetic.
133	141	GAB	Massive medium-grained gabbro; chlorite alteration; trace disseminated po-cpy; nonmagnetic.
			Mineralization
			135-137: pyrrhotite-chalcopyrite; disseminated; trace
			137-141: pyrrhotite-chalcopyrite; disseminated; minor
141	235.6	GAB	Massive medium-grained gabbro; local calcite alteration; chlorite alteration; trace to locally 1% disseminated
			and blebby po-cpy; occasional calcite veinlet; nonmagnetic.
			Mineralization
			141-146: pyrrhotite-chalcopyrite; disseminated; trace
			146-151: pyrrhotite-chalcopyrite; disseminated; minor
			151-151.2: pyrrhotite-chalcopyrite; disseminated; 1%
			151.2-158: pyrrhotite-chalcopyrite; disseminated; minor
			158-164: pyrrhotite-chalcopyrite; disseminated; trace
			164-164.3: pyrrhotite-chalcopyrite; blebby; minor
			164.3-169: pyrrhotite-chalcopyrite; disseminated; trace
			169-169.85: pyrrhotite-chalcopyrite; blebby; minor
			169.85-170.3: pyrrhotite-chalcopyrite; blebby; 2%
			170.3-177: pyrrhotite-chalcopyrite; blebby; 0.5%
			177-191: pyrrhotite-chalcopyrite; disseminated; minor
			191-204.5: pyrrhotite-chalcopyrite; blebby; minor
			204.5-204.9: pyrrhotite-chalcopyrite; blebby; 2%
			204.9-223: pyrrhotite-chalcopyrite; blebby; minor
			223-226: pyrrhotite-chalcopyrite; blebby; 0.5%
			226-235.6: pyrrhotite-chalcopyrite; blebby; minor
235.6	244	GAB	Finer-grained more mafic unit of gabbro; chlorite alteration; trace to locally 2% po-cpy disseminated and
			blebby; weakly magnetic due to pyrrhotite.
			Mineralization
			235.6-240: pyrrhotite-chalcopyrite; blebby; minor
			240-242: pyrrhotite-chalcopyrite; disseminated; 0.5%

Appendix 6. Drill logs

			242-243.5: pyrrhotite-chalcopyrite; disseminated; 2%
			243.5-244: pyrrhotite-chalcopyrite; disseminated; trace
244	264.35	GAB	Fine- to medium-grained gabbro; ends in slightly brecciated chill contact with coarser-grained gabbro; chlorite
			alteration; occasional calcite veinlet; nonmagnetic; local trace po.
264.35	267.9	GAB	Fine- to medium-grained gabbro; one dark nonmagnetic mafic dike; occasional calcite veinlet; nonmagnetic; no
			sulphides.
			Minor lithology
			265.35-265.5: MD; dark grey to black aphanitic mafic dikelet stockwork brecciated by calcite; nonmagnetic
267.9	269.15	GAB_BX	Medium-grained gabbro brecciated by fine-grained grey material. Looks like a Sudbury Breccia. No sulphides.
269.15	276	GAB	Fine-grained gabbro; chlorite alteration; occasional calcite veinlet; no sulphides; nonmagnetic.

Project name:	Janes Project	Easting:	546915	Contractor:	Major Drilling
Hole diameter:	NQ	Northing:	5168855	Company:	SPC Nickel Corp
Azimuth:	335	Elevation:	269	Claim number:	582748
Dip:	-50	Survey instrument:	WPA-GPS	Casing:	Capped
Start depth:	0 m	Start date:	10/31/2022	Core location:	SPC core shack
End depth:	321.6 m	End date:	11/06/2022	Grid:	UTM NAD83 Z17N
Logged by:	Rachel Chouinard	Finished logging:	11/08/2022		

From	То	Lithology	Comments
0	3.35	CAS	
3.35	39.3	GAB	Medium-grained massive gabbro; chlorite alteration; moderate amount of calcite veinlets; local talc vein; rusty
			weathered fault/fracture at 22.5 m; trace local pyrrhotite speck; nonmagnetic.
39.3	41.25	GAB	Medium-grained gabbro with moderate calcite alteration; moderate strain and/or folding; calcite veinlets; nonmagnetic; no visible sulphides.
41.25	84	GAB	Medium-grained massive gabbro; chlorite alteration; calcite veinlets locally with calcite alteration halos; local trace disseminated pyrrhotite; nonmagnetic.
			Mineralization
			50-73: pyrrhotite-chalcopyrite; disseminated; trace
			73-77.2: pyrrhotite-chalcopyrite; disseminated; 0.5%
			77.2-77.3: pyrrhotite-chalcopyrite; veinlets; 5%
			77.3-84: pyrrhotite-chalcopyrite; disseminated; trace
84	92.4	GAB	Medium-grained gabbro with moderate strain and calcite alteration; numerous calcite tension veinlets; local
			trace pyrrhotite alteration; nonmagnetic.
			Mineralization
			91-92.4: pyrrhotite-chalcopyrite; disseminated; trace
92.4	127.5	GAB	Medium-grained massive gabbro with patchy calcite alteration; calcite wisps and veinlets; two small felsic
			dikelets; local trace pyrrhotite; nonmagnetic.

			Minor lithology
			105.4-105.6: FD; grey silicified felsic dike with chlorite specks; slightly brecciated
			109.3-109.55: FD; grey silicified felsic dike with chlorite specks
			10510 105155115) g.e.y smonted relate different contents appeals
			Mineralization
			92.4-97: pyrrhotite-chalcopyrite; disseminated; trace
			100-104: pyrrhotite-chalcopyrite; disseminated; trace
			111-115: pyrrhotite-chalcopyrite; disseminated; trace
			120-127.5: pyrrhotite-chalcopyrite; disseminated; trace
127.5	129.5	GAB	Medium-grained gabbro with moderate calcite alteration and abundant calcite veins +/- quartz; trace to minor
			pyrrhotite +/- chalcopyrite; nonmagnetic.
			Mineralization
			127.5-128.8: pyrrhotite-chalcopyrite; disseminated; trace
			128.8-128.9: pyrrhotite-chalcopyrite; veinlets; 3%
			128.9-129.5: pyrrhotite-chalcopyrite; disseminated; 1%
129.5	142.5	GAB	Medium-grained massive gabbro; chlorite alteration; calcite wisps and veinlets; trace to 1% disseminated po-
			cpy; nonmagnetic to very weakly magnetic.
			Mineralization
			129.5-135.3: pyrrhotite-chalcopyrite; disseminated; 1%
			135.3-139: pyrrhotite-chalcopyrite; disseminated; 0.5%
142.5	157.7	GAB	Medium-grained strained gabbro with strong calcite alteration and abundant calcite tension gashes and veinlets
			parallel to strain; minor disseminated pyrite; nonmagnetic.
157.7	170	GAB	Medium-grained gabbro with strong calcite alteration; local moderate strain; core more broken than normal;
			zones of calcite veinlets parallel to strain; one small felsic dikelet; one small bleb of cpy in a quartz veinlet;
			nonmagnetic.
			Minor lithology
			167.18-167.32: FD; grey silicified felsic dike
170	181	GAB_VT	Medium-grained vari-textured gabbro with coarser-grained patches; dark irregular shaped blebs of mafic
			material could be clasts of different phase of gabbro; chlorite alteration; no visible sulphides; nonmagnetic.
151	248	GAB	Medium-grained gabbro; chlorite alteration; local disseminated and blebby po-cpy up to 8%; locally magnetic
			due to pyrrhotite.

			Mineralization
			181.2-184: pyrrhotite-chalcopyrite; disseminated; 8%
			184-185.6: pyrrhotite-chalcopyrite; disseminated; 4%
			188-190: pyrrhotite-chalcopyrite; disseminated; 0.5%
			190-191: pyrrhotite-chalcopyrite; disseminated; 1%
			191-193: pyrrhotite-chalcopyrite; disseminated; trace
			198-203: pyrrhotite-chalcopyrite; disseminated; trace
			206.8-208: pyrrhotite-chalcopyrite; disseminated; trace
			208-209: pyrrhotite-chalcopyrite; disseminated; 2%
			209-212: pyrrhotite-chalcopyrite; disseminated; 5%
			212-215: pyrrhotite-chalcopyrite; disseminated; 0.5%
			215-216: pyrrhotite-chalcopyrite; disseminated; 1%
			216-218.2: pyrrhotite-chalcopyrite; disseminated; minor
			218.2-219: pyrrhotite-chalcopyrite; disseminated; 1%
			219-228: pyrrhotite-chalcopyrite; disseminated; minor
			228-234: pyrrhotite-chalcopyrite; disseminated; 0.5%
			234-241: pyrrhotite-chalcopyrite; disseminated; minor
			241-243.3: pyrrhotite-chalcopyrite; disseminated; 0.5%
			243.3-245: pyrrhotite-chalcopyrite; disseminated; 1%
			245-245.8: pyrrhotite-chalcopyrite; disseminated; 0.5%
			245.8-248: pyrrhotite-chalcopyrite; disseminated; trace
248	315	GAB	Medium-grained gabbro; chlorite alteration; occasional calcite veinlet; local trace pyrrhotite speck;
			nonmagnetic.
			Minor lithology
			306.21-306.21: MD; black aphanitic nonmagnetic dikelet with feldspar phenocrysts
			315.04-315.07: MD
			315.49-316.44: MD; 25% mafic dike in gabbro host
			Mineralization
			248-254: pyrrhotite-chalcopyrite; disseminated; trace
			284.8-285.5: pyrrhotite-chalcopyrite; disseminated; minor

Appendix 6. Drill logs

315	321.6	GAB	Medium-grained gabbro with aphanitic grey altered mafic dikelets; dikelets slightly brecciated with vague
			feldspar phenocrysts; chlorite alteration; no visible sulphides; nonmagnetic. EOH at 321.6 m.

Project name:	Janes Project	Easting:	547835	Contractor:	Major Drilling
Hole diameter:	NQ	Northing:	5168670	Company:	SPC Nickel Corp
Azimuth:	180	Elevation:	270	Claim number:	548578
Dip:	-75	Survey instrument:	WPA-GPS	Casing:	Capped
Start depth:	0 m	Start date:	11/6/2022	Core location:	SPC core shack
End depth:	355 m	End date:	11/10/2022	Grid:	UTM NAD83 Z17N
Logged by:	Rachel Chouinard	Finished logging:	11/11/2022		

From	То	Lithology	Comments
0	4.5	CAS	
4.5	37	GAB	Medium-grained gabbro; chlorite alteration; occasional calcite veinlet; no visible sulphides; nonmagnetic.
37	42	GAB_VT	Medium-grained gabbro with coarse-grained sections; chlorite alteration; no visible sulphides; nonmagnetic.
42	51	GAB	Medium-grained gabbro decreasing in grain size gradually downhole; chlorite alteration; patchy biotite; no visible sulphides; nonmagnetic.
51	57.2	GAB	Fine-grained gabbro; chlorite alteration; no visible sulphides; nonmagnetic.
57.2	58.74	MD	Dark grey aphanitic mafic dike with small feldspar phenocrysts; nonmagnetic.
			Minor lithology 58.02-58.27: GAB
58.74	72.05	GAB	Fine- to medium-grained gabbro; occasional calcite veinlet; chlorite alteration; weak biotite specks; no visible sulphides; nonmagnetic.
72.05	73.3	MD	Grey aphanitic mafic dike with small feldspar phenocrysts; nonmagnetic.
73.3	82	GAB_VT	Medium-grained gabbro with occasional coarser-grained patch; chlorite alteration; no visible sulphides; nonmagnetic.
82	133	GAB_VT	Fine-grained gabbro with occasional coarser-grained patch increasing in frequency towards end of interval; occasional calcite veinlet; pyrrhotite veinlets from 89.45-89.9; one small bleb of pyrrhotite at 118 m; nonmagnetic.
			Mineralization
			89.4-89.9: pyrrhotite; veinlet; 0.5%

133	148.6	GAB_VT	Medium-grained gabbro with coarser-grained patches; weak to moderate strain; moderate calcite wisps; one patch of minor pyrrhotite blebs at 138 m; nonmagnetic.
148.6	155.3	GAB_VT	Fine-grained gabbro with more mafic patches; chlorite alteration; occasional calcite veinlet; no visible sulphides; nonmagnetic.
			Minor lithology
			155.9-156.1: FD; felsic dike clast in gabbro breccia
155.3	156.1	GAB_BX	Fine-grained more mafic gabbro matrix with clasts of less mafic medium-grained gabbro and silicified sediment.
156.1	190	GAB_VT	Medium-grained gabbro with coarse-grained patches; occasional calcite veinlet +/- quartz; chlorite alteration; no visible sulphides; nonmagnetic.
190	328.8	GAB	Medium-grained gabbro; chlorite alteration; occasional calcite veinlet; no visible sulphides; nonmagnetic.
			Minor lithology
			314.35-314.85: FD; strained felsic dike with quartz-calcite veining/brecciation
			324.55-324.7: FD; felsic dikelet
328.8	329.5	FD	Pinkish-grey siliceous felsic dike with chlorite specks
329.5	329.95	GAB	Medium-grained massive gabbro; occasional calcite veinlet; no visible sulphides; nonmagnetic.
329.95	331.1	FD	Pinkish-grey siliceous felsic dike with chlorite specks
331.1	341.35	GAB	Medium-grained massive gabbro; occasional calcite veinlet; no visible sulphides; nonmagnetic.
341.35	342.7	FD	Pinkish-grey siliceous felsic dike with chlorite specks
342.7	355	GAB	Medium-grained massive gabbro; occasional calcite veinlet; no visible sulphides; nonmagnetic. EOH at 354 m.

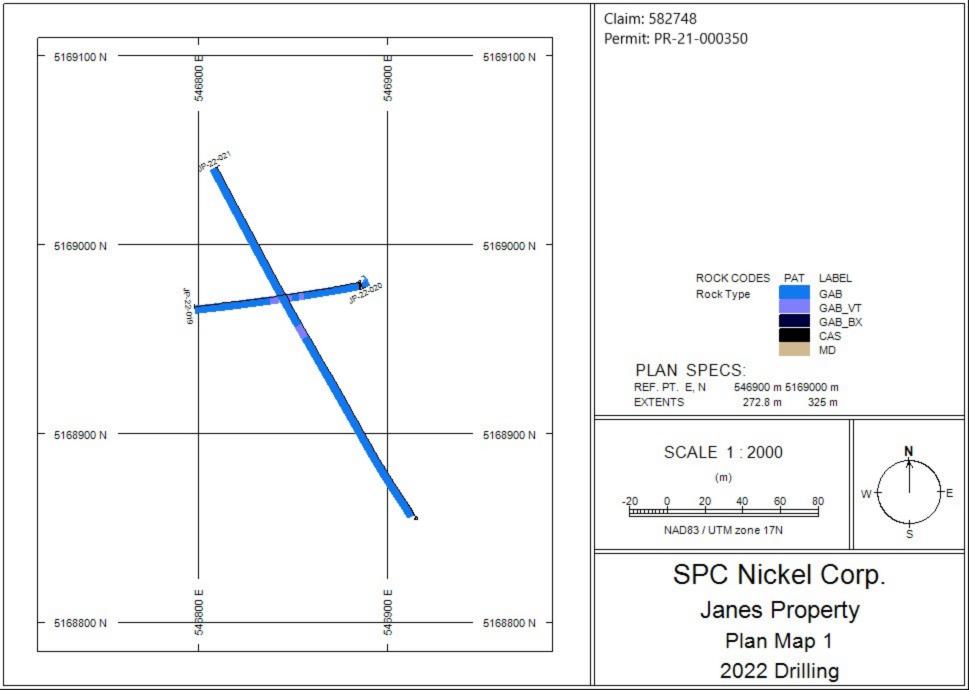
Hole number	From	То	Sample Number	Sample Type	Control Type
JP-22-019	142	143	H721701	Original	
JP-22-019	143	144	H721702	Original	
JP-22-019	144	145	H721703	Original	
JP-22-019	145	146	H721704	Original	
JP-22-019	146	147	H721705	Original	
JP-22-019	147	148	H721706	Original	
JP-22-019	148	149	H721707	Original	
JP-22-019	149	150	H721708	Original	
JP-22-019	150	151	H721709	Original	
JP-22-019			H721710	Control	CRM
JP-22-019	151	152	H721711	Original	
JP-22-019	152	153	H721712	Original	
JP-22-019	153	154	H721713	Original	
JP-22-019	154	155	H721714	Original	
JP-22-019	155	156	H721715	Original	
JP-22-019	156	157	H721716	Original	
JP-22-019	157	158	H721717	Original	
JP-22-019	158	159	H721718	Original	
JP-22-019	159	160	H721719	Original	
JP-22-019			H721720	Control	Blank
JP-22-019	160	161	H721721	Original	
JP-22-019	161	162	H721722	Original	
JP-22-019	162	163	H721723	Original	
JP-22-019	163	164	H721724	Original	
JP-22-019	164	165	H721725	Original	
JP-22-019	165	166	H721726	Original	
JP-22-019	166	167	H721727	Original	
JP-22-019	167	168	H721728	Original	
JP-22-019	168	169	H721729	Original	
JP-22-019			H721730	Control	CRM

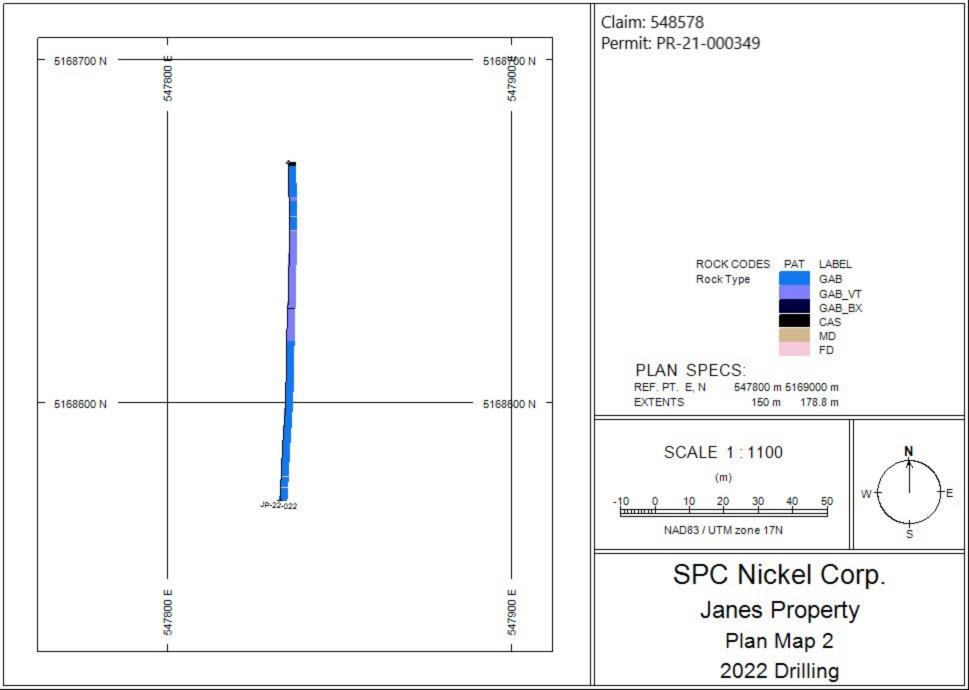
Hole number	From	То	Sample Number	Sample Type	Control Type
JP-22-019	169	170	H721731	Original	
JP-22-019	170	171	H721732	Original	
JP-22-019	171	172	H721733	Original	
JP-22-019	172	173	H721734	Original	
JP-22-019	173	174	H721735	Original	
JP-22-019	174	175	H721736	Original	
JP-22-019	175	176	H721737	Original	
JP-22-019	176	177	H721738	Original	
JP-22-019	177	178	H721739	Original	
JP-22-019	177	178	H721740	Prep	Duplicate
JP-22-019	178	179	H721741	Original	
JP-22-019	179	180	H721742	Original	
JP-22-019	180	181	H721743	Original	
JP-22-019	181	182	H721744	Original	
JP-22-019	182	183	H721745	Original	
JP-22-019	183	184	H721746	Original	
JP-22-019	184	185	H721747	Original	
JP-22-019	185	186	H721748	Original	
JP-22-019	186	187	H721749	Original	
JP-22-019			H721750	Control	CRM
JP-22-019	187	188	H721751	Original	
JP-22-019	188	189	H721752	Original	
JP-22-019	189	190	H721753	Original	
JP-22-019	190	191	H721754	Original	
JP-22-019	191	192	H721755	Original	
JP-22-019	192	193	H721756	Original	
JP-22-019	193	194	H721757	Original	
JP-22-019	194	195	H721758	Original	
JP-22-019	195	196	H721759	Original	
JP-22-019			H721760	Control	Blank

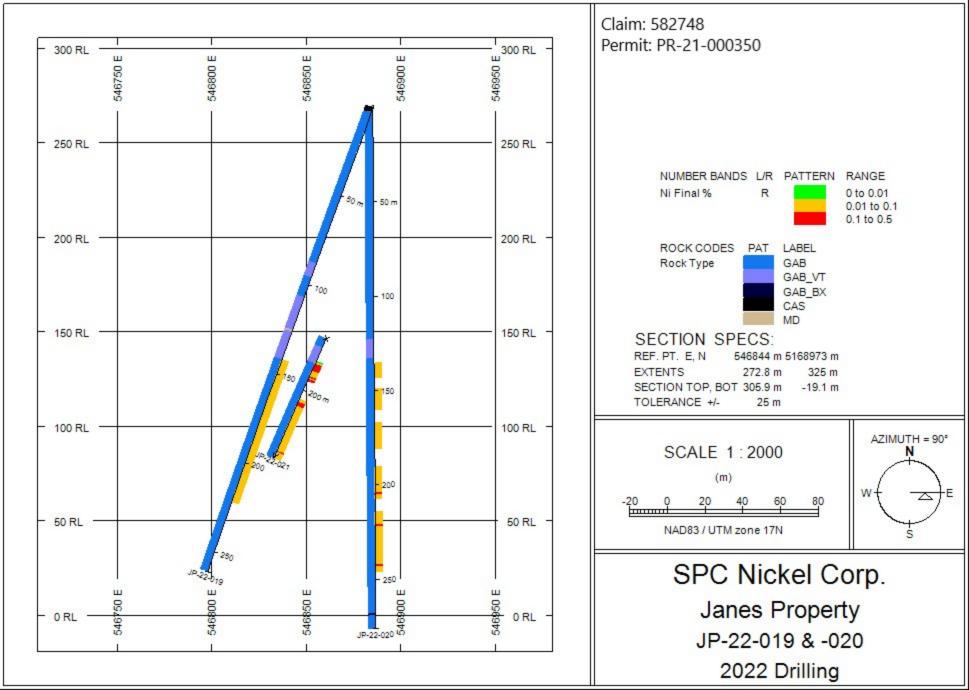
Hole number	From	То	Sample Number	Sample Type	Control Type
JP-22-019	196	197	H721761	Original	
JP-22-019	197	198	H721762	Original	
JP-22-019	198	199	H721763	Original	
JP-22-019	199	200	H721764	Original	
JP-22-019	200	201	H721765	Original	
JP-22-019	201	202	H721766	Original	
JP-22-019	202	203	H721767	Original	
JP-22-019	203	204	H721768	Original	
JP-22-019	204	205	H721769	Original	
JP-22-019			H721770	Control	CRM
JP-22-019	205	206	H721771	Original	
JP-22-019	206	207	H721772	Original	
JP-22-019	207	208	H721773	Original	
JP-22-019	208	209	H721774	Original	
JP-22-019	209	210	H721775	Original	
JP-22-019	210	211	H721776	Original	
JP-22-019	211	212	H721777	Original	
JP-22-019	212	213	H721778	Original	
JP-22-019	213	214	H721779	Original	
JP-22-019	213	214	H721780	Prep	Duplicate
JP-22-019	214	215	H721781	Original	
JP-22-019	215	216	H721782	Original	
JP-22-019	216	217	H721783	Original	
JP-22-019	217	218	H721784	Original	
JP-22-019	218	219	H721785	Original	
JP-22-019	219	220	H721786	Original	
JP-22-019	220	221	H721787	Original	
JP-22-019	221	222	H721788	Original	
JP-22-020	135	136	H721789	Original	
JP-22-020			H721790	Control	CRM

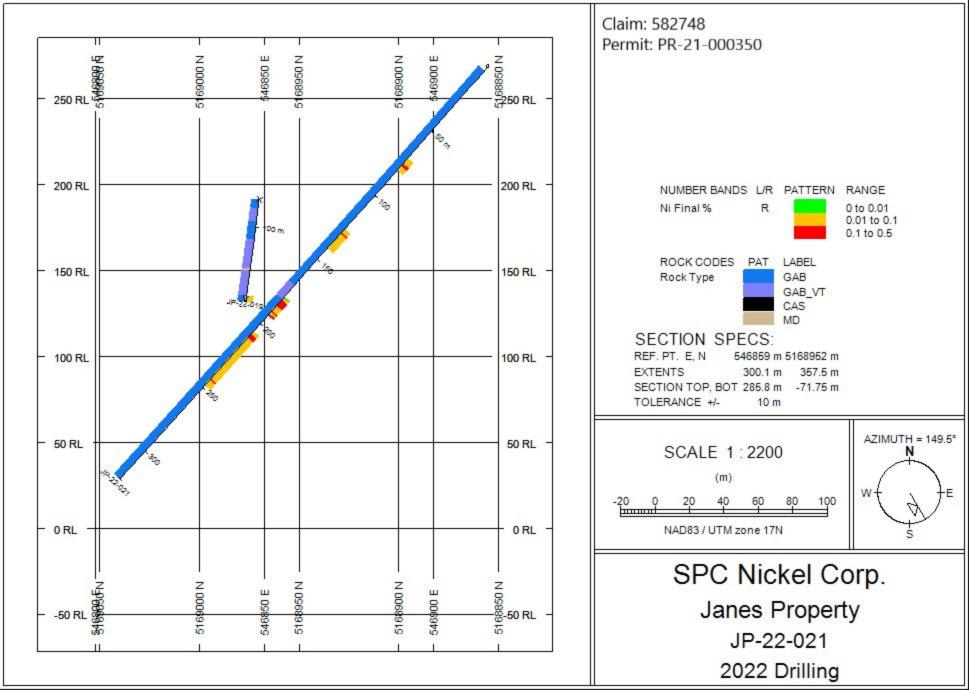
Hole number	From	То	Sample Number	Sample Type	Control Type
JP-22-020	136	137	H721791	Original	
JP-22-020	137	138	H721792	Original	
JP-22-020	138	139	H721793	Original	
JP-22-020	139	140	H721794	Original	
JP-22-020	140	141	H721795	Original	
JP-22-020	141	142	H721796	Original	
JP-22-020	142	143	H721797	Original	
JP-22-020	149	150	H721798	Original	
JP-22-020	150	151	H721799	Original	
JP-22-020			H721800	Control	Blank
JP-22-020	151	152	H721801	Original	
JP-22-020	152	153	H721802	Original	
JP-22-020	153	154	H721803	Original	
JP-22-020	154	155	H721804	Original	
JP-22-020	155	156	H721805	Original	
JP-22-020	156	157	H721806	Original	
JP-22-020	157	158	H721807	Original	
JP-22-020	158	159	H721808	Original	
JP-22-020	159	160	H721809	Original	
JP-22-020			H721810	Control	CRM
JP-22-020	167	168	H721811	Original	
JP-22-020	168	169	H721812	Original	
JP-22-020	169	170	H721813	Original	
JP-22-020	170	171	H721814	Original	
JP-22-020	171	172	H721815	Original	
JP-22-020	172	173	H721816	Original	
JP-22-020	173	174	H721817	Original	
JP-22-020	174	175	H721818	Original	
JP-22-020	175	176	H721819	Original	
JP-22-020	175	176	H721820	Prep	Duplicate

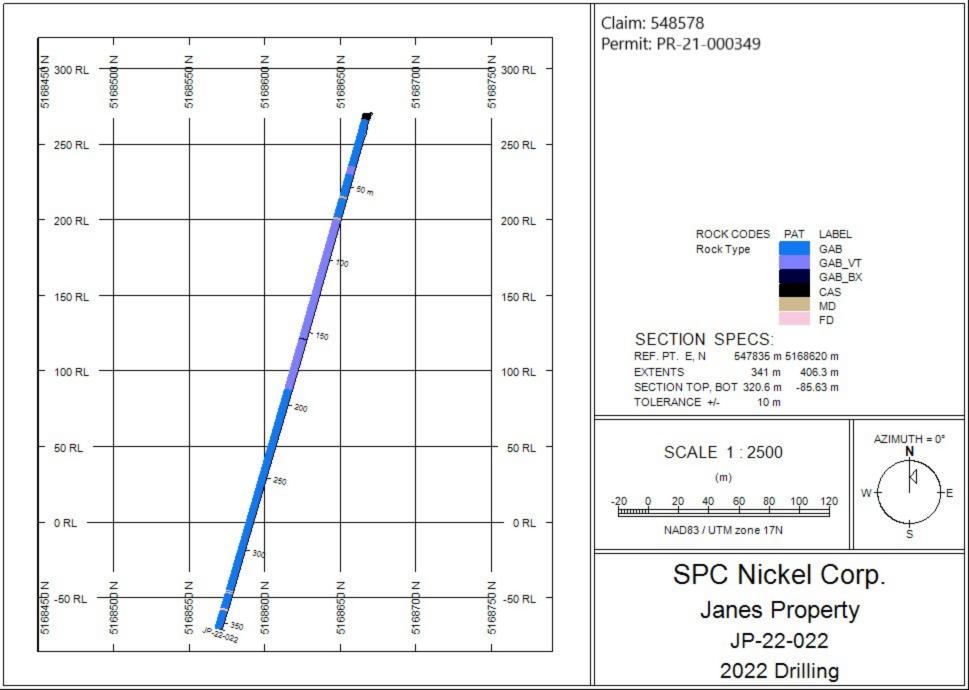
Hole number	From	То	Sample Number	Sample Type	Control Type
JP-22-020	176	177	H721821	Original	
JP-22-020	177	178	H721822	Original	
JP-22-020	178	179	H721823	Original	
JP-22-020	179	180	H721824	Original	
JP-22-020	180	181	H721825	Original	
JP-22-020	190	191	H721826	Original	
JP-22-020	191	192	H721827	Original	
JP-22-020	192	193	H721828	Original	
JP-22-020	193	194	H721829	Original	
JP-22-020			H721830	Control	CRM
JP-22-020	194	195	H721831	Original	
JP-22-020	195	196	H721832	Original	
JP-22-020	196	197	H721833	Original	
JP-22-020	197	198	H721834	Original	
JP-22-020	198	199	H721835	Original	
JP-22-020	199	200	H721836	Original	
JP-22-020	200	201	H721837	Original	
JP-22-020	201	202	H721838	Original	
JP-22-020	202	203	H721839	Original	
JP-22-020			H721840	Control	Blank
JP-22-020	203	204	H721841	Original	
JP-22-020	204	205	H721842	Original	
JP-22-020	205	206	H721843	Original	
JP-22-020	206	207	H721844	Original	
JP-22-020	214	215	H721845	Original	
JP-22-020	215	216	H721846	Original	
JP-22-020	216	217	H721847	Original	
JP-22-020	217	218	H721848	Original	
JP-22-020	218	219	H721849	Original	
JP-22-020			H721850	Control	CRM


Hole number	From	То	Sample Number	Sample Type	Control Type
JP-22-020	219	220	H721851	Original	
JP-22-020	220	221	H721852	Original	
JP-22-020	221	222	H721853	Original	
JP-22-020	222	223	H721854	Original	
JP-22-020	223	224	H721855	Original	
JP-22-020	224	225	H721856	Original	
JP-22-020	225	226	H721857	Original	
JP-22-020	226	227	H721858	Original	
JP-22-020	227	228	H721859	Original	
JP-22-020	227	228	H721860	Prep	Duplicate
JP-22-020	228	229	H721861	Original	
JP-22-020	229	230	H721862	Original	
JP-22-020	230	231	H721863	Original	
JP-22-020	231	232	H721864	Original	
JP-22-020	232	233	H721865	Original	
JP-22-020	233	234	H721866	Original	
JP-22-020	234	235	H721867	Original	
JP-22-020	235	236	H721868	Original	
JP-22-020	236	237	H721869	Original	
JP-22-020			H721870	Control	CRM
JP-22-020	237	238	H721871	Original	
JP-22-020	238	239	H721872	Original	
JP-22-020	239	240	H721873	Original	
JP-22-020	240	241	H721874	Original	
JP-22-020	241	242	H721875	Original	
JP-22-020	242	243	H721876	Original	
JP-22-020	243	244	H721877	Original	
JP-22-020	244	245	H721878	Original	
JP-22-020	245	246	H721879	Original	
JP-22-020			H721880	Control	Blank


Hole number	From	То	Sample Number	Sample Type	Control Type
JP-22-021	71	72	H721881	Original	
JP-22-021	72	73	H721882	Original	
JP-22-021	73	74	H721883	Original	
JP-22-021	74	75	H721884	Original	
JP-22-021	75	76	H721885	Original	
JP-22-021	76	77	H721886	Original	
JP-22-021	77	78	H721887	Original	
JP-22-021	78	79	H721888	Original	
JP-22-021	79	80	H721889	Original	
JP-22-021			H721890	Control	CRM
JP-22-021	126	127	H721891	Original	
JP-22-021	127	128	H721892	Original	
JP-22-021	128	129	H721893	Original	
JP-22-021	129	130	H721894	Original	
JP-22-021	130	131	H721895	Original	
JP-22-021	131	132	H721896	Original	
JP-22-021	132	133	H721897	Original	
JP-22-021	133	134	H721898	Original	
JP-22-021	134	135	H721899	Original	
JP-22-021	134	135	H721900	Prep	Duplicate
JP-22-021	135	136	H721901	Original	
JP-22-021	136	137	H721902	Original	
JP-22-021	137	138	H721903	Original	
JP-22-021	138	139	H721904	Original	
JP-22-021	139	140	H721905	Original	
JP-22-021	140	141	H721906	Original	
JP-22-021	179	180	H721907	Original	
JP-22-021	180	181	H721908	Original	
JP-22-021	181	182	H721909	Original	
JP-22-021			H721910	Control	CRM


Hole number	From	То	Sample Number	Sample Type	Control Type
JP-22-021	182	183	H721911	Original	,,
JP-22-021	183	184	H721912	Original	
JP-22-021	184	185	H721913	Original	
JP-22-021	185	186	H721914	Original	
JP-22-021	186	187	H721915	Original	
JP-22-021	187	188	H721916	Original	
JP-22-021	188	189	H721917	Original	
JP-22-021	189	190	H721918	Original	
JP-22-021	190	191	H721919	Original	
JP-22-021			H721920	Control	Blank
JP-22-021	191	192	H721921	Original	
JP-22-021	192	193	H721922	Original	
JP-22-021	206	207	H721923	Original	
JP-22-021	207	208	H721924	Original	
JP-22-021	208	209	H721925	Original	
JP-22-021	209	210	H721926	Original	
JP-22-021	210	211	H721927	Original	
JP-22-021	211	212	H721928	Original	
JP-22-021	212	213	H721929	Original	
JP-22-021			H721930	Control	CRM
JP-22-021	213	214	H721931	Original	
JP-22-021	214	215	H721932	Original	
JP-22-021	215	216	H721933	Original	
JP-22-021	216	217	H721934	Original	
JP-22-021	217	218	H721935	Original	
JP-22-021	218	219	H721936	Original	
JP-22-021	219	220	H721937	Original	
JP-22-021	220	221	H721938	Original	
JP-22-021	221	222	H721939	Original	
JP-22-021	221	222	H721940	Prep	Duplicate


Hole number	From	То	Sample Number	Sample Type	Control Type
JP-22-021	222	223	H721941	Original	/,
JP-22-021	223	224	H721942	Original	
JP-22-021	224	225	H721943	Original	
JP-22-021	225	226	H721944	Original	
JP-22-021	226	227	H721945	Original	
JP-22-021	227	228	H721946	Original	
JP-22-021	228	229	H721947	Original	
JP-22-021	229	230	H721948	Original	
JP-22-021	230	231	H721949	Original	
JP-22-021			H721950	Control	CRM
JP-22-021	231	232	H721951	Original	
JP-22-021	232	233	H721952	Original	
JP-22-021	233	234	H721953	Original	
JP-22-021	234	235	H721954	Original	
JP-22-021	235	236	H721955	Original	
JP-22-021	236	237	H721956	Original	
JP-22-021	237	238	H721957	Original	
JP-22-021	238	239	H721958	Original	
JP-22-021	239	240	H721959	Original	
JP-22-021			H721960	Control	Blank
JP-22-021	240	241	H721961	Original	
JP-22-021	241	242	H721962	Original	
JP-22-021	242	243	H721963	Original	
JP-22-021	243	244	H721964	Original	
JP-22-021	244	245	H721965	Original	
JP-22-021	245	246	H721966	Original	
JP-22-021	246	247	H721967	Original	
JP-22-021	247	248	H721968	Original	


Appendix 7. Diamond Drilling Plans and Sections

Appendix 8. Diamond Drilling Certificates of Analysis

Fax: +1 604 984 0218 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 60 www.alsglobal.com/geochemistry ALS Canada Ltd.

9C – 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5 To: SPC NICKEL CORP.

Page: 1 Total # Pages: 4 (A - B)

Plus Appendix Pages Finalized Date: 14-DEC-2022

Account: SDPTCP

SD22318727 CERTIFICATE

Project: Janes

This report is for 88 samples of 1/2 Core submitted to our lab in Sudbury, ON, Canada on 4-NOV-2022. The following have access to data associated with this certificate: RACHEL CHOUINARD

= = = = = = = = = = = = = = = = = = =) 1 1 1	CRU-31	C G2
	Lagi Cra Fire at	CRAIN I MOURRE	
	1/100 1/100	BRAD CLARKE	

	SAMPLE PREPARATION
ALS CODE	DESCRIPTION
WEI-21	Received Sample Weight
LOG-21d	Sample logging – ClientBarCode Dup
PUL-31d	Pulverize Split – duplicate
SPL-21d	Split sample – duplicate
CRU-QC	Crushing QC Test
PUL-QC	Pulverizing QC Test
CRU-31	Fine crushing – 70% <2mm
SPL-21	Split sample – riffle splitter
PUL-31	Pulverize up to 250g 85% <75 um
L0G-21	Sample logging – ClientBarCode
LOG-23	Pulp Login – Rcvd with Barcode

	ANALYTICAL PROCEDURES	
ALS CODE	DESCRIPTION	INSTRUMENT
ME-ICP81	ICP Fusion – Ore Grade	ICP-AES
PGM-ICP23	Pt, Pd, Au 30g FA ICP	ICP-AES
Aq-AA45	Trace Ag – aqua regia/AAS	AAS

This is the Final Report and supersedes any preliminary report with this certificate number.Results apply to samples as submitted.All pages of this report have been checked and approved for release. ***** See Appendix Page for comments regarding this certificate *****

Signature:
Saa Traxler, Director, North Vancouver Operations

Sample Description

H721702 H721703

H721704 H721705 H721706 H721707 H721708

H721709 H721710 H721712 H721713

H721711

H721714 H721715 H721716 H721717

H721718 H721719

H721720

H721721

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: SPC NICKEL CORP. 9C – 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5

Page: 2 - A
Total # Pages: 4 (A - B)
Plus Appendix Pages
Finalized Date: 14-DEC-2022
Account: SDPTCP

Project: Janes

ME-ICP81 0.34 0.33 0.18 0.17 0.16 0.13 0.33 0.17 0.23 0.15 0.16 0.21 0.21 0.18 0.12 0.16 0.14 0.15 0.25 0.15 0.27 1.74 0.21 0.75 0.13 0.69 1.79 0.19 0.20 0.22 0.23 0.19 0.21 0.35 0.21 0.21 %0.0 SD22318727 ME-ICP81 <0.01<0.01<0.01<0.01 <0.01 <0.01 <0.01 0.01 <0.01 0.01 0.01 60.01 0.01 60.01 60.01 70.03 0.00 % 0.0 Pb ME-ICP81 0.030 0.034 0.016 0.019 0.024 0.074 0.022 0.079 0.310 0.029 0.024 0.025 0.025 0.033 0.025 0.024 0.029 0.005 0.028 0.021 0.023 0.029 0.029 0.026 0.037 0.031 0.038 0.309 0.027 0.026 0.028 0.033 0.033 0.035 0.052 0.034 0.032 %0.002 ï ME-ICP81 0.16 0.15 0.17 0.17 0.10 0.17 0.17 0.17 0.16 0.16 0.17 0.18 0.18 0.18 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.16 0.17 0.17 0.17 0.18 Mno **CERTIFICATE OF ANALYSIS** % 0.0 ME-ICP81 9.80 9.73 9.78 9.85 10.25 10.25 10.00 10.25 7.11 9.28 10.20 10.25 10.15 9.79 9.48 9.92 9.98 Mgo 8.31 9.49 9.49 9.49 9.31 9.23 9.56 9.53 9.49 7.19 9.84 9.79 9.84 9.97 5.06 % ME-ICP81 Х % 0.05 0.40 0.44 0.60 0.45 0.41 0.35 0.28 0.28 0.26 0.68 0.23 0.32 0.35 0.35 0.22 0.26 0.30 0.31 1.10 0.28 0.26 0.24 0.23 0.24 0.27 0.27 0.27 0.26 0.29 0.26 0.32 0.25 0.25 0.23 0.34 0.31 0.32 ME-ICP81 9.83 9.89 9.99 10.10 6.36 9.85 10.15 9.80 10.15 Fe2O3 % 0.07 10.60 10.80 10.05 10.15 10.25 11.15 10.00 11.00 15.80 9.93 10.50 10.10 9.92 9.66 9.66 9.66 9.71 9.83 9.85 9.85 9.85 9.90 9.91 9.62 9.46 9.77 9.64 9.57 ME-ICP81 7.17 7.79 7.01 7.71 6.89 6.89 6.93 6.93 6.89 7.09 6.85 7.09 11.00 7.41 7.55 7.04 7.09 7.18 7.24 6.95 7.34 7.06 6.94 7.01 6.87 6.99 7.06 4.45 Fe % 0.05 ME-ICP81 0.057 0.036 0.039 0.049 0.042 0.029 0.033 0.037 0.046 0.036 0.065 0.045 0.078 0.342 0.054 0.036 0.043 0.061 0.060 0.061 0.061 0.101 0.055 0.055 0.086 0.082 0.025 0.026 0.028 0.047 0.191 0.036 0.188 0.343 0.044 0.044 0.094 0.039 0.039 0.002 % ME-ICP81 0.02 0.02 0.02 0.02 0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.04 0.04 0.04 0.04 0.03 0.03 0.04 0.04 0.04 0.04 0.04 0.04 0.04 ე% c. 0.00 0.003 0.004 0.005 0.005 0.003 0.004 -0.004 0.004 0.006 0.007 0.006 0.006 0.006 0.003 0.002 0.002 %0.002 0.007 0.008 0.006 0.006 0.006 0.009 0.004 0.009 0.019 0.005 0.004 0.003 0.004 0.003 ပိ ME-ICP81 11.25 11.30 11.25 11.10 10.85 10.75 10.60 10.75 10.75 11.05 10.70 10.70 7.67 10.50 10.55 10.70 10.80 11.10 10.95 11.30 11.40 11.20 10.95 11.25 11.25 11.20 11.55 11.45 11.45 11.25 11.50 11.55 11.85 7.56 0.07 % 60.01 0.00 0.01 0.01 0.00 1 6.01 6.01 7.00 <0.01 <a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a>< 60.01 0.01 0.01 0.01 60.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 <0.01 0.01 <0.01 0.01 0.01 0.01 As ME-ICP81 AI203 13.60 12.65 13.15 13.00 12.85 12.60 12.50 12.85 12.50 12.35 12.65 12.80 12.45 12.60 12.60 12.60 12.65 12.70 12.70 17.80 12.65 12.75 13.10 12.90 12.35 12.45 12.55 12.45 12.20 12.70 12.80 12.65 12.45 0.02 WEI-21 Recvd Wt. 2.05 1.95 2.11 2.02 2.17 2.04 2.07 2.08 2.05 2.05 2.14 2.17 1.91 2.18 0.06 2.07 2.02 2.08 2.08 2.06 2.19 2.09 2.11 1.97 2.11 2.20 1.99 2.07 1.99 2.05 0.06 2.07 1.89 1.96 1.99 0.96 Method Analyte Units LOD

H721722 H721723 H721724 H721725 H721726 H721727 H721729

H721730

H721728

H721731 H721732 H721733 H721734 H721739 H721740

H721736 H721737 H721738

H721735

ALS Canada Ltd.
2103 Dollarton Hwy
North Vancouver BC V7H 0A7
Phone: +1 604 984 0221 Fax: +1 604 984 0218
www.alsglobal.com/geochemistry

To: SPC NICKEL CORP. 9C – 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5

Page: 2 - B
Total # Pages: 4 (A - B)
Plus Appendix Pages
Finalized Date: 14-DEC-2022
Account: SDPTCP

Project: Janes

									U	CERTIFICATE OF ANALYSIS S	SD22318727
Sample Description	Method Analyte Units LOD	ME-ICP81 SiO2 % 0.2	ME-ICP81 TiO2 % 0.02	ME-ICP81 Zn % 0.002	PGM-ICP23 Au ppm 0.001	PGM-ICP23 Pt ppm 0.005	PGM-ICP23 Pd ppm 0.001	Ag-AA45 Ag ppm 0.2	CRU-QC Pass2mm % 0.01	PUL-QC Pass75um % 0.01	
H721701 H721702 H721703 H721704		50.7 50.5 50.5 50.9 50.9	0.51 0.50 0.49 0.48	0.006 0.005 0.005 0.005	0.010 0.008 0.003 0.004 0.003	0.006 <0.005 <0.005 0.005 <0.005	0.004 0.003 0.003 0.003	0.2 0.3 0.5 0.5 0.5 0.5	75.6	87.7 92.1	
H721706 H721707 H721708 H721709 H721710		50.1 49.6 50.5 49.6 47.3	0.52 0.48 0.49 0.47 0.74	0.006 0.005 0.005 0.007 0.009	0.008 0.025 0.007 0.031 0.176	<0.005 0.011 0.006 0.012 0.307	0.005 0.012 0.005 0.012 0.365	60.2 0.6 0.6 0.6 2.0			
H721711 H721712 H721713 H721714 H721715		50.7 50.1 50.5 50.5 50.5	0.50 0.47 0.50 0.50 0.48	0.006 0.006 0.007 0.006	0.009 0.008 0.022 0.011	0.009 0.007 0.013 0.010	0.007 0.005 0.012 0.008 0.008	<0.2<0.2<0.3<0.3<0.3			
H721716 H721717 H721718 H721719 H721720		51.6 51.8 52.2 56.0	0.49 0.50 0.49 0.49	0.005 0.006 0.005 0.005	0.015 0.008 0.008 0.012 <0.001	0.014 0.008 0.009 0.013 <0.005	0.012 0.009 0.008 0.010	60.2 0.2 60.2 60.2 60.2			
H721721 H721722 H721723 H721724 H721725		51.6 50.9 52.0 50.7 52.0	0.47 0.47 0.48 0.47 0.47	0.005 0.006 0.005 0.005 0.005	0.010 0.008 0.009 0.010 0.008	0.010 0.009 0.012 0.013 0.013	0.008 0.009 0.011 0.009	60.2 60.2 60.2 60.2 60.2 60.2			
H721726 H721727 H721728 H721729 H721730		51.1 51.8 51.1 51.3 47.7	0.48 0.47 0.46 0.47 0.73	0.005 0.006 0.006 0.006 0.010	0.009 0.019 0.011 0.020 0.175	0.011 0.014 0.012 0.015 0.321	0.011 0.015 0.011 0.017 0.362	0.2 0.2 0.4 0.3 2.1			
H721731 H721732 H721733 H721734 H721735		51.1 51.6 51.6 50.7 51.8	0.70 0.46 0.45 0.45 0.46	0.005 0.005 0.005 0.006 0.006	0.015 0.012 0.012 0.015 0.013	0.016 0.015 0.014 0.016 0.021	0.014 0.011 0.013 0.015 0.015	0.4 <0.2 <0.2 0.2 <0.2			
H721736 H721737 H721738 H721739 H721740		51.1 50.7 50.9 52.0 51.8	0.45 0.43 0.44 0.44 0.44	0.005 0.005 0.006 0.005 0.005	0.015 0.015 0.024 0.016 0.015	0.017 0.017 0.021 0.018 0.019	0.013 0.016 0.024 0.017 0.016	0.2 <0.2 0.3 <0.2 <0.2			

Fax: +1 604 984 0218 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 60 www.alsglobal.com/geochemistry ALS Canada Ltd.

9C - 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5 To: SPC NICKEL CORP.

Page: 3 - A Total # Pages: 4 (A - B)

Plus Appendix Pages Finalized Date: 14-DEC-2022 Account: SDPTCP

Project: Janes

								<u> </u>	O O O O O O O O O O O O O O O O O O O	ERTIFIC	CERTIFICATE OF ANALYSIS	F ANAL		SD22318727	18727	
Sample Description	Method Analyte Units LOD	WEI-21 Recvd Wt. kg 0.02	ME-ICP81 AI2O3 % 0.02	ME-ICP81 As % 0.01	ME-ICP81 CaO % 0.07	ME-ICP81 Co % 0.002	ME-ICP81 Cr %	ME-ICP81 Cu % 0.002	ME-ICP81 Fe % 0.05	ME-ICP81 Fe2O3 % 0.07	ME-ICP81 K % 0.05	ME-ICP81 MgO % 0.02	ME-ICP81 MnO % 0.01	ME-ICP81 Ni % 0.002	ME-ICP81 Pb % 0.01	ME-ICP81 S % 0.01
H721741 H721742 H721743 H721744 H721745		2.01 2.13 2.11 2.06 2.39	13.05 13.25 12.75 13.30	60.01 60.01 60.01 6.01	11.25 11.60 11.30 11.05	0.004 0.005 0.006 0.005	0.04 0.04 0.04 0.04 0.04	0.041 0.061 0.080 0.057 0.064	6.50 6.68 6.65 6.55 6.32	9.30 9.55 9.36 9.06	0.28 0.28 0.27 0.27 0.31	10.05 9.94 9.69 9.96 9.43	0.16 0.17 0.16 0.15	0.027 0.034 0.043 0.030 0.037	<0.01 <0.01 <0.01 <0.01	0.16 0.26 0.30 0.22 0.24
H721746 H721747 H721748 H721749 H721750	The second secon	2.17 2.24 2.13 2.19 0.06	13.20 13.40 13.05 13.15	60.01 60.01 60.01 60.01	11.20 11.30 11.20 7.39	0.004 0.005 0.005 0.007 0.019	0.04 0.05 0.05 0.05 0.03	0.047 0.052 0.072 0.132 0.336	6.57 6.58 6.74 6.96 10.85	9.39 9.40 9.64 9.95 15.50	0.30 0.27 0.27 0.26 0.64	9.88 9.98 10.10 10.25 7.02	0.16 0.16 0.17 0.16 0.16	0.030 0.033 0.041 0.064 0.306	<0.01 <0.01 <0.01 <0.01 <0.01	0.20 0.19 0.24 0.40 1.73
H721751 H721752 H721753 H721754 H721755		2.17 2.36 2.29 2.30 2.53	13.20 13.60 13.35 13.35	<0.01 <0.01 0.01 <0.01	11.25 11.40 11.30 11.30	0.007 0.005 0.007 0.005 0.005	0.05 0.05 0.05 0.05 0.05	0.125 0.045 0.079 0.091 0.041	6.78 6.67 6.63 6.69 6.44	9.70 9.54 9.48 9.57	0.25 0.26 0.26 0.24 0.24	10.05 10.05 10.15 10.55	0.16 0.17 0.16 0.16	0.061 0.032 0.048 0.051 0.030	<0.01 <0.01 <0.01 <0.01 <0.01	0.38 0.16 0.29 0.28 0.16
H721756 H721757 H721758 H721759 H721760		2.14 2.15 2.16 2.25 0.93	13.75 13.85 13.75 14.10 17.80	0.01 <0.01 <0.01 <0.01	11.65 11.75 11.60 12.10 7.39	0.005 0.005 0.005 0.005 0.002	0.05 0.05 0.05 0.05	0.089 0.040 0.072 0.030 0.003	6.67 6.45 6.56 6.29 4.39	9 53 9 23 8 99 6 28 6 28	0.27 0.26 0.25 0.24 1.16	9.90 9.86 9.71 9.51 5.08	0.16 0.16 0.16 0.10	0.053 0.030 0.044 0.024 0.005	0.01 0.01 0.03 0.01 0.01	0.30 0.15 0.26 0.13
H721761 H721762 H721763 H721764 H721765		2.10 2.30 2.18 2.05 1.65	14.45 14.30 14.15 13.65 14.25	0.01 <0.01 0.01 0.01	11.95 11.80 12.25 11.25	0.006 0.006 0.006 0.004 0.006	0.05 0.05 0.05 0.06 0.06	0.016 0.020 0.025 0.030 0.085	6.18 5.99 5.96 6.25 6.09	8.84 8.56 8.51 8.94 8.71	0.28 0.21 0.24 0.27	8.81 8.76 9.19 9.06 8.97	0.16 0.15 0.16 0.15	0.017 0.017 0.019 0.025 0.056	<0.01 <0.01 <0.01 <0.01 <0.01	0.10 0.13 0.13 0.09 0.33
H721766 H721767 H721768 H721769 H721770		2.21 2.09 2.10 2.09 0.07	14.05 14.10 14.40 14.50	<0.01 0.01 <0.01 <0.01 0.01	12.40 11.70 12.70 12.80 5.67	0.006 0.004 0.005 0.005 0.036	0.06 0.05 0.05 0.06 0.03	0.042 0.034 0.019 0.028 0.889	5.98 6.25 5.94 6.00 18.00	8.54 8.94 8.49 8.58 25.7	0.34 0.27 0.32 0.24 0.60	9.23 8.69 8.64 8.64 5.70	0.15 0.16 0.15 0.15	0.032 0.023 0.021 0.021 1.185	40.01 40.01 40.01 40.01 40.01	0.18 0.17 0.14 0.12 6.89
H721771 H721772 H721773 H721774 H721775		2.18 2.15 2.02 2.02 2.15	14.50 14.50 14.95 14.65	0.01 <0.01 <0.01 <0.01	12.10 12.75 12.80 12.85 12.40	0.007 0.005 0.002 0.005 0.003	0.06 0.06 0.06 0.06	0.014 0.014 0.012 0.011 0.011	6.62 5.94 5.46 5.45 6.34	9.46 8.49 7.80 7.79 9.07	0.14 0.18 0.22 0.24 0.12	8.28 8.31 8.31 8.26	0.16 0.15 0.14 0.14	0.016 0.016 0.016 0.015	0.01 0.03 0.03 0.04 0.04	0.06 0.06 0.10 0.10
H721776 H721777 H721778 H721779 H721780		2.09 2.23 1.95 2.23 <0.02	14.55 14.35 14.15 14.50	<0.01 <0.01 <0.01 0.01	12.10 12.35 11.95 11.96	0.006 0.004 0.004 0.003 0.006	0.06 0.06 0.06 0.06	0.013 0.017 0.020 0.015 0.013	6.25 6.22 6.47 6.32 6.30	8.94 8.89 9.25 9.03	0.12 0.16 0.12 0.12	8.54 8.32 8.41 8.42 8.48	0.15 0.15 0.16 0.15	0.017 0.019 0.018 0.019	0.01 0.03 0.03 0.04	0.05 0.08 0.08 0.06

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry ALS Canada Ltd.

To: SPC NICKEL CORP. 9C - 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5

Page: 3 – B Total # Pages: 4 (A – B) Plus Appendix Pages Finalized Date: 14-DEC-2022 Account: SDPTCP

Project: Janes

SD22318727 **CERTIFICATE OF ANALYSIS**

									-
i 1									
2									
	E								
	PUL-QC Pass75um %	94.5							
	CRU-QC Pass2mm % 0.01	78.2							
	Ag-AA45 Ag ppm 0.2	60.20.20.20.20.2	0.2 0.2 0.2 0.4 0.4	0.5 0.2 0.2 0.2 0.2	0.3 60.2 60.2 60.2 60.2	60.2 60.2 60.2 60.2 0.3	60.260.260.260.23.3	00 00 00 00 00 00 00 00 00 00 00 00 00	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	PGM-ICP23 Pd ppm 0.001	0.015 0.024 0.030 0.023 0.024	0.024 0.025 0.028 0.041 0.360	0.044 0.027 0.037 0.041 0.028	0.046 0.012 0.054 0.036 <0.001	0.029 0.029 0.038 0.042 0.110	0.064 0.058 0.050 0.060 0.595	0.042 0.048 0.047 0.045 0.059	0.041 0.069 0.079 0.066 0.063
	PGM-ICP23 F Pt ppm 0.005	0.018 0.026 0.029 0.023 0.028	0.026 0.025 0.026 0.037	0.036 0.034 0.035 0.039 0.029	0.045 0.012 0.047 0.038 <0.005	0.034 0.034 0.041 0.040 0.056	0.045 0.038 0.037 0.040 0.549	0.034 0.034 0.036 0.033 0.034	0.031 0.035 0.031 0.035 0.038
	PGM-ICP23 P Au ppm 0.001	0.012 0.019 0.029 0.017	0.015 0.019 0.033 0.172	0.038 0.030 0.030 0.030	0.034 0.007 0.034 0.014 <0.001	0.009 0.009 0.012 0.013	0.022 0.014 0.010 0.012 0.177	0.004 0.006 0.006 0.006 0.005	0.005 0.009 0.009 0.006 0.006
	ME-ICP81 PG Zn % 0.002	0.005 0.005 0.005 0.005	0.006 0.006 0.005 0.005	0.005 0.006 0.005 0.006 0.005	0.006 0.005 0.005 0.005	0.006 0.005 0.004 0.006	0.005 0.007 0.005 0.006	0.006 0.006 0.005 0.005 0.005	0.006 0.005 0.006 0.006 0.006
	ME-ICP81 N TiO2 % 0.02	0.44 0.46 0.45 0.45 0.44	0.45 0.45 0.45 0.44 0.72	0.45 0.45 0.44 0.43	0.46 0.45 0.45 0.45	0.48 0.46 0.45 0.43 0.45	0.46 0.46 0.48 0.46	0.47 0.47 0.47 0.47 0.45	0.47 0.46 0.49 0.49 0.47
	ME-ICP81 N SiO2 % 0.2	51.8 52.0 51.3 50.7 50.7	51.3 52.0 51.8 51.6 47.5	51.3 51.1 51.6 52.0 52.0	52.2 52.2 52.2 52.0 56.5	52.2 51.1 51.8 51.1 50.9	51.6 50.3 50.3 50.1	49.6 50.1 50.3 49.6 48.6	49.4 49.2 49.0 49.8 50.1
	Method Nanalyte Units LOD								
	Sample Description	41 42 43 44 45	46 47 48 19 10	12 23 23 43 54	55 57 58 59 50	51 52 53 54 55	56 57 58 59 70	71 72 73 74 75	76 77 78 79 30
	Sample	H721741 H721742 H721743 H721744	H721746 H721747 H721748 H721749 H721750	H721751 H721752 H721753 H721754 H721755	H721756 H721757 H721758 H721759 H721760	H721761 H721762 H721763 H721764 H721765	H721766 H721767 H721768 H721769 H721770	H721771 H721772 H721773 H721774 H721775	H721776 H721777 H721778 H721779 H721780

To: SPC NICKEL CORP. 9C – 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5

Page: 4 – A
Total # Pages: 4 (A – B)
Plus Appendix Pages
Finalized Date: 14-DEC-2022
Account: SDPTCP

ME-ICP81 S % 0.01	0.09 0.08 0.06 0.16 0.26	0.13
ME-ICP81 Pb % 0.01	0.01 60.01 60.01 60.01	0.00 0.00 0.01 0.00
ME-ICP81 Ni % 0.002	0.020 0.017 0.014 0.026 0.035	0.028
ME-ICP81 MnO % 0.01	0.15 0.16 0.15 0.16	0.16 0.16 0.15
ME-ICP81 MgO % 0.02	8.26 8.01 7.76 7.84 8.31	9.20 9.01
ME-ICP81 K % 0.05	0.19 0.17 0.20 0.24 0.31	0.27
ME-ICP81 Fe2O3 % 0.07	8.66 8.75 8.88 8.89 9.02	8.57 9.04 5.52 8.52
ME-ICP81 Fe % 0.05	6.06 6.12 6.21 6.22 6.31	6.00 6.33 8.33 8.33
ME-ICP81 Cu % 0.002	0.014 0.011 0.012 0.036 0.062	0.028
ME-ICP81 Cr % 0.01	0.06 0.06 0.05 0.06	0.00
ME-ICP81 Co % 0.002	0.006 0.004 0.005 0.005 0.005	0.006 0.006 0.006
ME-ICP81 CaO % 0.07	11.90 12.70 12.35 12.15	12.70
ME-ICP81 As % 0.01	60.01 60.01 6.01 6.01	0.00
ME-ICP81 Al203 % 0.02	14.75 14.45 14.45 13.80	14.15
WEI-21 Recvd Wt. kg 0.02	2.09 2.27 2.18 2.10 2.13	2.16 2.33 2.33
Method Analyte Units LOD		
sample Description	H721781 H721782 H721783 H721784 H721785	H721786 H721787 H721788
	WEI-21 ME-ICP81 <	Method Lobs WEI-21 ME-ICP81 ME-ICP81

ALS Canada Ltd.

9C – 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5 To: SPC NICKEL CORP.

Page: 4 - B Plus Appendix Pages Finalized Date: 14-DEC-2022 Account: SDPTCP Total # Pages: 4 (A - B)

		r	T
SD22318727			
CERTIFICATE OF ANALYSIS S			
ERTIFICA	PUL-QC Pass/Sum % 0.01	87.6	
	CRU-QC Pass2mm % 0.01	72.7	
	Ag-AA45 Ag ppm 0.2	60.260.260.260.260.260.260.260.260.2	60.3 60.2 60.2
	PGM-ICP23 Pd ppm 0.001	0.093 0.047 0.037 0.114 0.231	0.105
	PGM-ICP23 Pt ppm 0.005	0.039 0.028 0.021 0.031 0.054	0.029 0.029 0.021
	PGM-ICP23 Au ppm 0.001	0.008 0.004 0.004 0.011 0.023	0.018
	ME-ICP81 Zn % 0.002	0.006 0.005 0.005 0.006	0.005 0.005 0.005 0.005
	ME-ICP81 TiO2 % 0.02	0.49 0.53 0.53 0.48 0.53	0.54 0.51 0.48
	ME-ICP81 SIO2 % 0.2	50.1 49.8 49.6 48.6 50.3	50.5 50.5 30.3
	Method Analyte Units LOD		
	Sample Description	H721781 H721782 H721783 H721784 H721785	H721786 H721787 H721788

To: SPC NICKEL CORP. 9C - 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5

Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 14-DEC-2022 Account: SDPTCP

CERTIFICATE OF ANALYSIS SD22318727		da. LOG-21d PUL-QC	_			
CERTIFICATE	CERTIFICATE COMMENTS	LABORATORY ADDRESSES I at 1351–B Kelly Lake Road, Unit #1, Sudbury, ON, Canada. CRU-QC PUL-31 SPL-21d WEI-21	ed at 2103 Dollarton Hwy, North Vancouver, BC, Canada. ME-ICP81			
		Processed at ALS Sudbury located at Method: CRU-31 LOG-23 SPL-21	Method: Ag-AA45			
		Applies to Method:	Applies to Method:			

Fax: +1 604 984 0218 2103 Dollarton Hwy
North Vancouver BC V7H 0A7
Phone: +1 604 984 0221 Fax: +1 60
www.alsglobal.com/geochemistry ALS Canada Ltd.

9C - 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5 To: SPC NICKEL CORP.

Total # Pages: 4 (A - B) Plus Appendix Pages Finalized Date: 18-DEC-2022 Page: 1

Account: SDPTCP

SD22324859 CERTIFICATE

This report is for 92 samples of 1/2 Core submitted to our lab in Sudbury, ON, Project: Janes

The following have access to data associated with this certificate: BRAD CLARKE Canada on 10-NOV-2022. RACHEL CHOUINARD

GRANT MOURRE

	SAMPLE PREPARATION
ALS CODE	DESCRIPTION
WEI-21	Received Sample Weight
LOG-21d	Sample logging – ClientBarCode Dup
PUL-31d	Pulverize Split – duplicate
SPL-21d	Split sample – duplicate
CRU-QC	Crushing QC Test
PUL-QC	Pulverizing QC Test
CRU-31	Fine crushing - 70% <2mm
SPL-21	Split sample – riffle splitter
PUL-31	Pulverize up to 250g 85% <75 um
LOG-21	Sample logging – ClientBarCode
LOG-23	Pulp Login – Rcvd with Barcode

	ANALYTICAL PROCEDURES	S
ALS CODE	DESCRIPTION	INSTRUMENT
ME-ICP81	ICP Fusion – Ore Grade	ICP-AES
PGM-ICP23	Pt, Pd, Au 30g FA ICP	ICP-AES
Aq-AA45	Trace Ag – aqua regia/AAS	AAS

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted.All pages of this report have been checked and approved for release. ***** See Appendix Page for comments regarding this certificate *****

Signature:
Saa Traxler, Director, North Vancouver Operations

Fax: +1 604 984 0218 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 60 www.alsglobal.com/geochemistry ALS Canada Ltd.

9C - 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5 To: SPC NICKEL CORP.

Page: 2 - A Total # Pages: 4 (A - B) Plus Appendix Pages Finalized Date: 18-DEC-2022 Account: SDPTCP

										CERTIFICATE OF ANALYSIS	ATE O	- ANAL		SD22324859	24859	
Sample Description	Method Analyte Units LOD	WEI-21 Recvd Wt. kg 0.02	ME-ICP81 AI2O3 % 0.02	ME-ICP81 As % 0.01	ME-ICP81 CaO % 0.07	ME-ICP81 Co % 0.002	ME-ICP81 Cr % 0.01	ME-ICP81 Cu % 0.002	ME-ICP81 Fe % 0.05	ME-ICP81 Fe2O3 % 0.07	ME-ICP81 K % 0.05	ME-ICP81 MgO % 0.02	ME-ICP81 MnO % 0.01	ME-ICP81 Ni % 0.002	ME-ICP81 Pb % 0.01	ME-ICP81 5 % 0.01
H721789 H721790 H721791 H721792 H721793		2.24 0.06 2.26 2.29 2.27	12.50 12.20 12.60 12.50 12.50	-0.010.020.010.01-0.01	10.15 7.42 10.60 10.60 10.50	0.005 0.020 0.005 0.005	0.01 0.04 0.01 0.02	0.048 0.343 0.054 0.143 0.041	7.67 11.05 7.54 7.84 7.44	10.95 15.80 10.80 11.20	0.39 0.68 0.48 0.43	9.49 7.14 9.29 9.09 8.98	0.18 0.16 0.18 0.18 0.18	0.021 0.315 0.024 0.050 0.019	<0.01 <0.01 <0.01 <0.01	0.18 1.78 0.22 0.52 0.20
H721794 H721795 H721796 H721797 H721797		2.26 2.24 2.19 2.35 2.38	12.40 12.90 13.15 12.80 13.00	0.01 0.01 0.01 0.01	10.60 11.05 11.05 10.85	0.005 0.005 0.005 0.005	0.02 0.01 0.02 0.02 0.02	0.063 0.040 0.020 0.018 0.040	7.53 7.40 7.29 7.07	10.75 10.60 10.45 10.10	0.44 0.37 0.39 0.36	8.98 9.04 8.89 9.44	0.18 0.18 0.18 0.18	0.027 0.020 0.013 0.013	60.01 60.01 60.01 60.01	0.27 0.18 0.12 0.09 0.17
H721799 H721800 H721801 H721802 H721803		2.48 1.13 2.19 2.33 2.28	12.85 17.50 12.75 12.30 12.55	0.01 <0.01 0.01 <0.01	11.70 7.14 11.40 11.10	0.005 0.002 0.003 0.007 0.004	0.02 0.02 0.02 0.02 0.03	0.039 0.003 0.049 0.115 0.048	7.25 4.49 7.09 7.48 7.05	10.35 6.42 10.15 10.70 10.05	0.30 1.20 0.30 0.25 0.31	9.95 4.95 9.71 9.98 9.72	0.18 0.10 0.18 0.18 0.18	0.025 0.004 0.027 0.047 0.025	<0.01 <0.01 <0.01 <0.01	0.17 0.10 0.20 0.49 0.20
H721804 H721805 H721806 H721807 H721808		2.28 2.31 2.34 2.31 2.27	12.70 12.40 12.30 12.35	0.01 0.01 0.01 0.01	11.30 11.20 10.85 11.20	0.005 0.006 0.005 0.007 0.004	0.02 0.02 0.03 0.03 0.03	0.042 0.058 0.083 0.119 0.106	6.87 6.87 7.17 7.08 7.12	9.82 9.83 10.25 10.15	0.28 0.27 0.30 0.30	9.55 9.73 10.00 9.97 9.79	0.17 0.17 0.17 0.17	0.024 0.030 0.038 0.053 0.048	<0.01 <0.01 <0.01 <0.01	0.18 0.22 0.25 0.43 0.38
H721809 H721810 H721811 H721812 H721813		2.37 0.05 2.72 2.34 2.27	12.45 12.20 12.45 12.70 12.50	0.01 0.01 0.01 <0.01	10.80 7.40 10.85 10.85	0.004 0.020 0.003 0.005 0.005	0.03 0.03 0.03 0.03	0.114 0.337 0.044 0.055 0.095	7.13 10.90 6.88 6.92 7.05	10.20 15.60 9.83 9.89 10.05	0.36 0.65 0.30 0.27 0.33	9.66 7.04 9.58 9.69 9.77	0.17 0.16 0.17 0.18 0.18	0.049 0.309 0.027 0.032 0.046	<0.01 <0.01 <0.01 <0.01 <0.01	0.37 1.76 0.14 0.15
H721814 H721815 H721816 H721817 H721818		2.44 2.36 2.32 2.39 2.23	12.70 12.50 12.65 12.30 12.40	0.02 <0.01 0.01 <0.01 0.01	11.20 11.10 11.55 11.25	0.004 0.005 0.004 0.007 0.005	0.03 0.04 0.04 0.04 0.04	0.122 0.060 0.060 0.103 0.103	7.19 7.03 7.08 7.22 7.20	10.30 10.05 10.10 10.30	0.30 0.26 0.28 0.26 0.29	9.77 10.25 10.35 10.60	0.17 0.17 0.18 0.18 0.17	0.054 0.032 0.034 0.047 0.048	<0.01 <0.01 <0.01 <0.01 0.01	0.39 0.20 0.22 0.32 0.35
H721819 H721820 H721821 H721822 H721823		2.28 <0.02 2.44 2.30 2.36	12.10 12.05 12.35 12.50 12.35	0.01 <0.01 0.01 <0.01	10.85 10.60 11.25 10.90 11.00	0.007 0.006 0.005 0.005 0.005	0.04 0.04 0.04 0.04 0.04	0.147 0.154 0.082 0.094 0.090	7.06 7.03 6.84 6.81 6.92	10.10 10.05 9.78 9.73 9.89	0.31 0.29 0.30 0.32 0.26	10.05 9.98 10.15 10.05	0.16 0.16 0.17 0.16 0.17	0.072 0.079 0.042 0.047 0.046	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01	0.51 0.55 0.28 0.34 0.28
H721824 H721825 H721826 H721827 H721828		2.10 2.44 2.26 2.32	13.05 12.90 12.90 12.80 13.30	0.01 <0.01 <0.01 <0.01	11.35 11.50 11.75 11.45	0.004 0.004 0.005 0.005	0.04 0.04 0.04 0.04	0.050 0.050 0.043 0.117 0.102	6.68 6.76 6.66 6.83 6.63	9.56 9.67 9.53 9.76 9.47	0.32 0.28 0.20 0.32	9.91 9.86 9.93 9.98 9.74	0.16 0.17 0.18 0.16	0.027 0.030 0.031 0.052 0.056	0.00 0.00 0.00 0.00 0.00	0.19 0.16 0.13 0.31

9C – 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5 To: SPC NICKEL CORP.

Total # Pages: 4 (A – B)
Plus Appendix Pages
Finalized Date: 18-DEC-2022
Account: SDPTCP Page: 2 - B

									O	CERTIFICATE OF ANALYSIS	SD22324859
Sample Description	Method Analyte Units LOD	ME-ICP81 SiO2 % 0.2	ME-ICP81 TiO2 % 0.02	ME-ICP81 Zn % 0.002	PGM-ICP23 Au ppm 0.001	PGM-ICP23 Pt ppm 0.005	PGM-ICP23 Pd ppm 0.001	Ag-AA45 Ag ppm 0.2	CRU-QC Pass2mm % 0.01	PUL-QC Pass75um % 0.01	
H721789 H721790 H721791 H721792 H721793		52.8 49.0 53.1 52.4 53.1	0.52 0.73 0.53 0.52 0.52	0.006 0.010 0.006 0.007 0.006	0.005 0.178 0.004 0.011	<0.005 0.314 <0.005 0.005 <0.005	<0.001 0.365 <0.001 0.001 <0.001	0.3 0.3 0.7 0.2	82.1	0.08	
H721794 H721795 H721796 H721797		52.0 53.5 53.3 52.6 53.1	0.51 0.54 0.54 0.51 0.50	0.006 0.008 0.006 0.006	0.005 0.003 0.002 0.001	<0.005 <0.005 <0.005 <0.005 <0.005 <0.005	<0.001 <0.001 <0.001 <0.001	0.4 <0.2 <0.2 0.2 <0.2			
H721799 H721800 H721801 H721802 H721803		53.9 57.8 53.3 52.8 52.8	0.48 0.46 0.48 0.49 0.48	0.007 0.005 0.006 0.006 0.006	0.006 <0.001 0.008 0.017 0.006	<0.005 <0.005 0.006 0.010 0.005	0.001 <0.001 0.003 0.008 0.003	60.2 60.2 0.3 0.3 60.2		83.5 88.7	
H721804 H721805 H721806 H721807 H721808		52.2 52.2 52.2 52.4 52.4	0.48 0.48 0.48 0.48 0.47	0.005 0.005 0.005 0.005 0.005	0.007 0.010 0.014 0.021	<0.0050.0090.0060.0100.008	0.003 0.004 0.005 0.009 0.009	60.2 0.2 0.2 0.4 0.6			
H721809 H721810 H721811 H721812 H721813		52.2 48.6 51.8 52.2 52.0	0.48 0.72 0.49 0.49	0.007 0.009 0.005 0.006 0.006	0.019 0.175 0.013 0.013 0.028	0.011 0.313 0.013 0.013 0.019	0.010 0.364 0.010 0.011 0.017	0.5 0.3 0.5 0.5	,		
H721814 H721815 H721816 H721817 H721818		52.4 53.1 53.7 53.5 53.3	0.47 0.47 0.47 0.47	0.006 0.006 0.006 0.006	0.033 0.017 0.019 0.025 0.024	0.024 0.015 0.014 0.021 0.023	0.022 0.013 0.014 0.019	0.3 0.3 0.6 0.4			
H721819 H721820 H721821 H721822 H721823		50.9 50.3 52.4 52.2 51.8	0.45 0.45 0.46 0.44 0.46	0.006 0.007 0.006 0.006 0.006	0.036 0.039 0.022 0.027 0.024	0.028 0.032 0.019 0.021 0.018	0.027 0.030 0.016 0.019 0.018	0.5 0.3 0.4 0.3			
H721824 H721825 H721826 H721827 H721828		52.4 51.1 51.1 50.9 51.6	0.46 0.45 0.46 0.47 0.48	0.005 0.006 0.007 0.007	0.013 0.014 0.016 0.034 0.031	0.015 0.016 0.025 0.042 0.035	0.013 0.013 0.022 0.037 0.034	40.20.20.30.60.4	73.1	85.9 91.8	

To: SPC NICKEL CORP. 9C - 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5

Page: 3 – A
Total # Pages: 4 (A – B)
Plus Appendix Pages
Finalized Date: 18–DEC–2022
Account: SDPTCP

										CERTIFICATE OF ANALYSIS	ATE OF	- ANAL		SD22324859	4859	
Sample Description	Method Analyte Units LOD	WEI-21 Recvd Wt. kg 0.02	ME-ICP81 AI2O3 % 0.02	ME-ICP81 As % 0.01	ME-ICP81 CaO % 0.07	ME-ICP81 Co % 0.002	ME-ICP81 Cr % 0.01	ME-ICP81 Cu % 0.002	ME-ICP81 Fe % 0.05	ME-ICP81 Fe2O3 % 0.07	ME-ICP81 K % 0.05	ME-ICP81 MgO % 0.02	ME-ICP81 MnO % 0.01	ME-ICP81 Ni % 0.002	ME-ICP81 Pb % 0.01	ME-ICP81 S % 0.01
H721829 H721830 H721831 H721832 H721833		2.20 0.07 2.41 2.27 2.31	12.60 10.20 12.55 13.20	60.01 0.01 0.01 0.01	11.00 5.82 11.20 10.95 11.55	0.005 0.036 0.007 0.004 0.006	0.05 0.03 0.04 0.04	0.057 0.863 0.101 0.059	6.86 17.90 7.01 6.84 6.75	9.81 25.6 10.05 9.78 9.65	0.19 0.61 0.17 0.15	10.25 5.73 9.53 9.46 9.85	0.18 0.14 0.17 0.16	0.036 1.175 0.052 0.034 0.043	0.00 0.00 0.00 0.00	0.16 6.83 0.18 0.12 0.24
H721834 H721835 H721836 H721837 H721838		2.19 2.32 2.23 2.28 2.28	13.35 13.40 13.55 13.30	0.01 <0.01 0.01 <0.01	11.70 11.70 11.50 11.20	0.004 0.005 0.004 0.006 0.003	0.04 0.05 0.04 0.04 0.05	0.038 0.050 0.051 0.107 0.103	6.47 6.64 6.66 6.66 6.71	9.24 9.49 9.52 9.52 9.59	0.21 0.32 0.36 0.26 0.39	9.35 9.77 9.77 9.52 9.83	0.16 0.17 0.17 0.15	0.031 0.035 0.034 0.056 0.054	0.05 0.05 0.05 0.05 0.05	0.13 0.18 0.33 0.30
H721839 H721840 H721841 H721842 H721843		2.20 0.86 2.15 2.23 2.22	13.45 17.40 13.90 13.85 14.20	60.01 60.01 60.01 60.01	11.70 7.58 12.10 12.30 12.35	0.005 0.003 0.005 0.006	0.05 0.02 0.05 0.06 0.06	0.077 0.004 0.047 0.236 0.040	6.50 4.42 6.44 6.86 6.32	9.29 6.32 9.21 9.80 9.03	0.33 0.99 0.32 0.28 0.31	9.49 5.20 9.61 9.41	0.16 0.10 0.16 0.16	0.044 0.006 0.032 0.112 0.028	0.00 0.00 0.00 0.00 0.00	0.23 0.07 0.14 0.68 0.15
H721844 H721845 H721846 H721847 H721847		2.28 2.25 2.13 2.14 2.20	14.10 14.40 14.60 14.30	0.00 0.00 0.00 0.00 0.00	12.20 12.75 12.65 12.45 12.85	0.004 0.003 0.003 0.004 0.004	0.06 0.06 0.06 0.06	0.024 0.018 0.019 0.032 0.020	6.29 6.27 6.31 6.11	9.00 8.96 9.03 8.74 8.74	0.25 0.25 0.29 0.27 0.28	8.95 8.94 8.91 8.71	0.16 0.16 0.16 0.15	0.020 0.020 0.020 0.028 0.028	0.05 0.00 0.00 0.00 0.00	0.10 0.07 0.09 0.12 0.09
H721849 H721850 H721851 H721852 H721853		2.11 0.06 2.14 2.35 2.18	14.15 12.15 14.00 14.15 14.15	0.01 0.01 0.01 0.01	13.30 7.60 12.60 12.90 13.05	0.003 0.020 0.004 0.004	0.07 0.03 0.07 0.07 0.08	0.034 0.330 0.040 0.095 0.224	6.07 10.90 6.19 6.33 6.76	8.68 15.60 8.85 9.05 9.66	0.24 0.65 0.23 0.23	8.44 7.11 8.73 8.73 8.73	0.15 0.16 0.15 0.15	0.024 0.308 0.027 0.056 0.112	0.00 0.00 0.00 0.00 0.00	0.14 1.74 0.16 0.30 0.60
H721854 H721855 H721856 H721857		2.23 2.32 2.17 2.26 2.27	14.50 14.45 14.10 14.35 14.05	60.01 60.01 60.01 60.01	13.10 13.50 13.10 13.50	0.003 0.005 0.002 0.005	0.07 0.08 0.08 0.08 0.08	0.017 0.053 0.053 0.080 0.043	6.18 6.21 6.03 6.18	8.88 8.36 8.62 8.83	0.23 0.23 0.21 0.22 0.22	8.60 8.64 8.34 8.46 8.61	0.16 0.15 0.15 0.15	0.019 0.032 0.036 0.051 0.036	60.07 60.07 60.07 70.00	0.09 0.16 0.18 0.24 0.17
H721859 H721860 H721861 H721862 H721863		2.10 <0.02 2.19 2.11 2.26	14.70 14.70 14.40 13.80 14.10	60.01 60.01 6.01 6.01	13.65 14.20 13.05 13.05 13.05	0.003 0.003 0.004 0.003 0.003	60.0 60.0 60.0 60.0	0.041 0.042 0.077 0.078 0.080	5.79 5.97 5.96 5.92 6.05	8.28 8.53 8.52 8.46 8.64	0.22 0.22 0.20 0.25 0.25	8.40 8.63 8.43 8.47 8.41	0.14 0.15 0.13 0.14 0.15	0.034 0.034 0.051 0.049 0.053	0.05 0.00 0.00 0.00 0.00	0.15 0.16 0.24 0.24 0.26
H721864 H721865 H721866 H721867		2.24 2.29 2.19 2.24	14.05 14.00 14.00 14.40 14.35	0.01 0.01 0.01 0.01 0.01	13.00 12.70 12.75 12.80 13.05	0.004 0.005 0.003 <0.002 0.004	0.09 0.08 0.08 0.08 0.09	0.073 0.035 0.033 0.017 0.039	5.90 6.00 6.00 6.00 5.94	8.44 8.58 8.58 8.58 8.49	0.24 0.27 0.26 0.27 0.22	8.36 8.23 8.23 8.29 8.36	0.14 0.15 0.15 0.15 0.15	0.045 0.028 0.026 0.021 0.032	0.00 0.00 0.00 0.00 0.00	0.24 0.14 0.13 0.09 0.14

To: SPC NICKEL CORP. 9C – 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5

Page: 3 - B
Total # Pages: 4 (A - B)
Plus Appendix Pages
Finalized Date: 18-DEC-2022
Account: SDPTCP

Project: Janes

ines

IS SD22324859									
CERTIFICATE OF ANALYSIS	PUL-QC Pass75um % 0.01								93.1 86.2
0	CRU-QC Pass2mm % 0.01	73.8							1.77
	Ag-AA45 Ag ppm 0.2	0.5 0.6 0.3 0.2	0.3 0.5 0.5 0.5	0.4 <0.2 <0.2 0.7 <0.2	0.2 0.3 <0.2 <0.2 0.3	0.4 0.2 0.2 0.4 0.8	0.2 0.3 0.5 0.3	60.2 0.2 0.2 0.2 0.2	<0.2 0.2 0.2 0.2 <0.2
	PGM-ICP23 Pd ppm 0.001	0.024 0.599 0.037 0.029 0.032	0.024 0.029 0.028 0.046 0.046	0.045 <0.001 0.036 0.149 0.042	0.041 0.068 0.069 0.146 0.083	0.119 0.362 0.133 0.315 0.845	0.057 0.198 0.189 0.332 0.215	0.214 0.205 0.313 0.265 0.346	0.320 0.148 0.165 0.089 0.214
	PGM-ICP23 Pt ppm 0.005	0.025 0.558 0.034 0.032 0.035	0.028 0.033 0.031 0.043 0.038	0.042 <0.005 0.040 0.077 0.041	0.036 0.038 0.038 0.051 0.039	0.040 0.340 0.045 0.071 0.160	0.029 0.061 0.051 0.070 0.051	0.054 0.051 0.064 0.057 0.062	0.055 0.035 0.037 0.029 0.043
	PGM-ICP23 Au ppm 0.001	0.017 0.193 0.030 0.023 0.023	0.018 0.020 0.018 0.041 0.035	0.030 <0.001 0.014 0.082 0.019	0.009 0.007 0.009 0.025 0.014	0.013 0.176 0.014 0.034 0.108	0.005 0.019 0.017 0.058 0.017	0.011 0.013 0.029 0.036 0.031	0.069 0.019 0.014 0.006 0.017
	ME-ICP81 Zn % 0.002	0.007 0.014 0.009 0.007 0.007	0.006 0.006 0.005 0.006	0.006 0.006 0.006 0.006 0.005	0.005 0.005 0.006 0.005 0.005	0.005 0.010 0.006 0.005 0.005	0.006 0.005 0.005 0.005 0.005	0.005 0.005 0.004 0.004	0.005 0.005 0.005 0.005 0.005
	ME-ICP81 TiO2 % 0.02	0.48 0.61 0.46 0.46 0.47	0.48 0.48 0.45 0.45	0.47 0.43 0.45 0.44 0.47	0.47 0.48 0.49 0.46 0.46	0.47 0.72 0.46 0.47 0.48	0.47 0.49 0.44 0.47 0.49	0.45 0.45 0.44 0.45 0.45	0.47 0.48 0.49 0.49
	ME-ICP81 SiO2 % 0.2	50.7 40.2 49.2 49.6 51.6	50.7 51.6 51.6 50.1 50.9	50.9 56.3 51.8 50.7 52.2	51.1 51.8 52.2 50.7 51.1	50.7 47.5 50.3 50.7 50.7	51.8 51.3 49.4 50.5 51.1	50.5 51.8 51.3 50.9 51.1	51.1 51.6 51.6 52.2 51.8
	Method Analyte Units LOD								
	Sample Description	H721829 H721830 H721831 H721832 H721833	H721834 H721835 H721836 H721837 H721838	H721839 H721840 H721841 H721842 H721843	H721844 H721845 H721846 H721847 H721848	H721849 H721850 H721851 H721852 H721853	H721854 H721855 H721856 H721857 H721858	H721859 H721860 H721861 H721862 H721863	H721864 H721865 H721866 H721867 H721868

To: SPC NICKEL CORP. 9C - 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5

Page: 4 - A
Total # Pages: 4 (A - B)
Plus Appendix Pages
Finalized Date: 18-DEC-2022
Account: SDPTCP

	ME-ICP81 S % 0.01	0.16 1.76 0.13 0.09 0.09 0.41 0.30 1.32 0.07	90.0
4859	ME-ICP81 Pb % 0.01	6.	6.6.6.2 2.0.6.6.1
SD22324859	ME-ICP81 Ni % 0.002	0.032 0.308 0.027 0.017 0.079 0.061 0.060 0.013	0.016
YSIS	ME-ICP81 MnO % 0.01	0.15 0.16 0.15 0.15 0.16 0.16 0.16	0.09
F ANAL	ME-ICP81 MgO % 0.02	8.26 7.07 8.23 8.23 8.51 8.51 8.84 8.74 8.74 8.76	8.68 4.84 4.84
CATE 0	ME-ICP81 K % 0.05	0.23 0.67 0.26 0.27 0.24 0.24 0.28 0.28	1.18
CERTIFICATE OF ANALYSIS	ME-ICP81 Fe203 % 0.07	8.79 15.50 9.05 8.94 8.90 9.06 9.22 11.25 9.62 9.28	6.70
	ME-ICP81 Fe % 0.05	6.14 10.85 6.33 6.25 6.23 6.23 7.87 7.87 6.73 6.49	6.44 4.68
	ME-ICP81 Cu % 0.002	0.037 0.338 0.036 0.015 0.026 0.117 0.084 0.462 0.085	0.008
	ME-ICP81 Cr %	0.08 0.08 0.08 0.09 0.09 0.07 0.07	0.00
	ME-ICP81 Co % 0.002	0.004 0.019 0.004 0.003 0.006 0.006 0.005 0.001 0.004	0.002
	ME-ICP81 CaO % 0.07	12.85 7.29 12.70 12.65 12.70 13.25 12.45 11.90 11.90	11.60 6.45
	ME-ICP81 As % 0.01	0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01	0.01
	ME-ICP81 Al2O3 % 0.02	14.40 13.85 14.05 14.05 14.05 14.05 13.95 13.95	13.75
	WEI-21 Recvd Wt. kg 0.02	2.33 0.06 2.24 2.30 2.16 2.24 2.29 2.27 2.29	0.87
	Method Analyte Units LOD		
	Sample Description	H721869 H721870 H721871 H721872 H721873 H721874 H721876 H721876	H721880 H721880

To: SPC NICKEL CORP. 9C - 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5

Page: 4 - B
Total # Pages: 4 (A - B)
Plus Appendix Pages
Finalized Date: 18-DEC-2022
Account: SDPTCP

SD22324859				
CERTIFICATE OF ANALYSIS	PUL-QC Pass75um % 0.01			
CER	CRU-QC PL Pass2mm Pas % 0.01			
	Ag-AA45 Ag ppm 0.2	<0.22.00.2<0.2<0.2	0.3 0.3 1.6 0.2 0.2	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
	PGM-ICP23 Pd ppm 0.001	0.233 0.364 0.164 0.058 0.102	0.438 0.369 2.27 0.396	0.003
	PGM-ICP23 Pt ppm 0.005	0.043 0.321 0.034 0.019 0.027	0.054 0.057 0.301 0.061	0.011 <0.005
	PGM-ICP23 Au ppm 0.001	0.025 0.176 0.013 0.005 0.009	0.028 0.025 0.147 0.025 0.003	0.005 <0.001
	ME-ICP81 Zn % 0.002	0.005 0.009 0.006 0.005 0.005	0.004 0.005 0.006 0.006 0.004	0.005 4 4 00.00
	ME-ICP81 TiO2 % 0.02	0.49 0.72 0.52 0.51 0.50	0.45 0.48 0.47 0.50 0.49	0.49 0.47
	ME-ICP81 SiO2 % 0.2	52.0 48.3 52.6 51.8 52.2	52.0 52.4 50.5 52.6 52.0	8.18 4.88
	Method Analyte Units LOD			
	Sample Description	H721869 H721870 H721871 H721872 H721873	H721874 H721875 H721876 H721877	H721879 H721880

To: SPC NICKEL CORP. 9C – 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5

.KE ROAD T

Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 18-DEC-2022 Account: SDPTCP

SD22324859	
CERTIFICATE OF ANALYSIS	A CONTRACTOR OF THE PROPERTY O

בוסום סבבבסב וספס		LOG–21d PUL–QC		
	CERTIFICATE COMMENTS	LABORATORY ADDRESSES Processed at ALS Sudbury located at 1351–B Kelly Lake Road, Unit #1, Sudbury, ON, Canada. CRU–31 LOG–23 SPL–21 SPL–21d WEI–21	Processed at ALS Vancouver located at 2103 Dollarton Hwy, North Vancouver, BC, Canada. Ag-AA45	
		Applies to Method: CRU-31 LOG-23 SPL-21	Proc Applies to Method: Ag-	

Fax: +1 604 984 0218 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 60 www.alsglobal.com/geochemistry ALS Canada Ltd.

9C - 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5 To: SPC NICKEL CORP.

Plus Appendix Pages Finalized Date: 21–DEC–2022 Account: SDPTCP Total # Pages: 4 (A - B) Page: 1

SD22333531 CERTIFICATE

Project: Janes

certificate:	GRANT MOURRE
he following have access to data associated with this certificate:	BRAD CLARKE
he following have access	RACHEL CHOUINARD

	SAMPLE PREPARATION
ALS CODE	DESCRIPTION
WEI-21	Received Sample Weight
LOG-21d	Sample logging – ClientBarCode Dup
PUL-31d	Pulverize Split – duplicate
SPL-21d	Split sample – duplicate
CRU-QC	Crushing QC Test
PUL-QC	Pulverizing QC Test
CRU-31	Fine crushing – 70% <2mm
SPL-21	Split sample – riffle splitter
PUL-31	Pulverize up to 250g 85% <75 um
LOG-21	Sample logging – ClientBarCode
LOG-23	Pulp Login – Rcvd with Barcode

	ANALYTICAL PROCEDURES	
ALS CODE	DESCRIPTION	INSTRUMENT
ME-ICP81	ICP Fusion – Ore Grade	ICP-AES
PGM-ICP23	Pt, Pd, Au 30g FA ICP	ICP-AES
Aq-AA45	Trace Ag – aqua regia/AAS	AAS

This is the Final Report and supersedes any preliminary report with this certificate number.Results apply to samples as submitted. All pages of this report have been checked and approved for release. ***** See Appendix Page for comments regarding this certificate *****

Signature:
Saa Traxler, Director, North Vancouver Operations

To: SPC NICKEL CORP. 9C - 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5

Page: 2 - A
Total # Pages: 4 (A - B)
Plus Appendix Pages
Finalized Date: 21-DEC-2022
Account: SDPTCP

									C	CERTIFICATE OF ANALYSIS	ATE OF	- ANAL		SD22333531	33531	
Sample Description	Method Analyte Units LOD	WEI-21 Recvd Wt. kg 0.02	ME-ICP81 AI2O3 % 0.02	ME-ICP81 As % 0.01	ME-ICP81 CaO % 0.07	ME-ICP81 Co % 0.002	ME-ICP81 Cr % 0.01	ME-ICP81 Cu % 0.002	ME-ICP81 Fe % 0.05	ME-ICP81 Fe2O3 % 0.07	ME-ICP81 K % 0.05	ME-ICP81 MgO % 0.02	ME-ICP81 MnO % 0.01	ME-ICP81 Ni % 0.002	ME-ICP81 Pb % 0.01	ME-ICP81 S % 0.01
H721881 H721882 H721883 H721884 H721885		2.12 2.29 2.27 2.17 2.28	13.10 13.05 12.90 12.95 12.95	0.01 0.02 0.01 0.01	9.68 9.21 10.70 10.55	0.006 0.004 0.009 0.008 0.008	0.0 0.0 10.0 10.0 10.0	0.087 0.099 0.207 0.216	7.69 7.81 8.71 8.46 9.34	11.00 11.15 12.45 12.10 13.35	0.28 0.23 0.27 0.40 0.48	8.57 8.71 8.99 8.82 8.85	0.18 0.18 0.18 0.18	0.034 0.036 0.074 0.067 0.104	0.07 0.00 0.00 0.00 0.00	0.45 0.44 1.02 0.86
H721886 H721887 H721888 H721889 H721890		2.24 2.54 2.18 2.11 0.06	13.05 13.70 14.15 13.45 12.85	0.01 0.04 0.01 0.01	10.20 9.50 10.85 9.71 7.98	0.013 0.035 0.007 0.005 0.020	0.01 0.01 0.01 0.04	0.499 0.101 0.050 0.030 0.350	9.76 8.57 7.91 7.15	13.95 12.25 11.30 10.20 16.10	0.41 0.30 0.43 0.36 0.71	8.57 8.84 8.92 8.42 7.43	0.18 0.19 0.17 71.0	0.146 0.046 0.024 0.014 0.315	0.00	2.08 1.00 0.25 0.14 1.83
H721891 H721892 H721893 H721894 H721895		2.18 2.26 2.26 2.13 2.23	12.55 11.95 9.68 11.55	60.01 0.01 0.01 0.01	10.50 10.35 15.30 10.20 9.96	0.007 0.005 0.004 0.011	0.01 0.02 0.01 0.01	0.119 0.104 0.098 0.375 0.310	8.01 7.63 5.97 8.89 8.50	11.45 10.90 8.54 12.70	0.25 0.12 <0.05 0.11	9.50 9.30 6.77 9.04	0.20 0.18 0.16 0.17 0.18	0.048 0.040 0.040 0.114 0.093	0.00 10.00 10.00 10.00 10.00	0.51 0.40 0.40 1.50
H721896 H721897 H721898 H721899 H721900		2.19 2.19 2.10 2.10	11.60 11.85 12.25 12.25 12.05	0.01 0.01 0.01 0.01	10.40 9.64 10.05 10.20 10.20	0.008 0.007 0.008 0.008	0.01 0.01 0.01 0.01	0.251 0.208 0.214 0.222 0.221	8.39 8.64 8.51 8.57 8.44	12.00 12.35 12.15 12.25 12.05	0.13 0.16 0.24 0.18 0.16	9.39 9.88 9.55 9.53	0.18 0.19 0.19 0.19	0.083 0.065 0.067 0.071	<0.01<0.01<0.01<0.01<0.01	0.92 0.79 0.86 0.90 0.95
H721901 H721902 H721903 H721904 H721905		2.22 2.21 2.39 2.33 2.17	12.05 12.50 11.95 12.40 12.30	60.01 0.01 0.01 0.01	10.30 10.10 9.37 9.83 9.63	0.007 0.008 0.010 0.008	0.01 0.02 0.01 0.02 0.01	0.189 0.194 0.249 0.199 0.111	8.24 8.34 8.37 8.01 7.80	11.75 11.90 11.95 11.45	0.20 0.27 0.18 0.22 0.19	9.62 9.90 9.68 9.55 9.48	0.18 0.19 0.18 0.18 0.18	0.067 0.079 0.070 0.043	60.0160.0160.0160.0160.01	0.71 0.74 0.89 0.75 0.45
H721906 H721907 H721908 H721909 H721910		2.13 2.16 2.22 0.07	11.90 15.70 15.10 12.15	<0.01 <0.01 0.01 <0.01 0.02	8.92 11.05 11.15 10.35 5.59	0.007 0.005 0.005 0.010	0.01 0.01 0.02 0.03	0.159 0.012 0.025 0.456 0.876	7.94 6.99 7.36 9.20 17.90	11.35 10.00 10.55 13.15 25.6	0.15 0.40 0.54 0.34 0.68	9.75 6.40 7.94 9.00 5.80	0.18 0.17 0.18 0.18 0.15	0.052 0.008 0.014 0.137 1.200	<0.01 <0.01 <0.01 <0.01 <0.01	0.60 0.12 0.17 1.57 7.06
H721911 H721912 H721913 H721914 H721915		2.19 2.15 2.10 2.10 2.04	11.65 11.30 12.50 13.25 17.60	60.01 60.01 60.01 0.01 0.01	9.81 9.97 9.61 9.71 10.25	0.016 0.012 0.012 0.005 0.005	0.02 0.02 0.02 0.02 0.02	0.658 0.604 0.496 0.405 0.028 0.033	10.35 9.66 9.25 8.52 5.87 7.19	14.80 13.80 13.20 12.20 8.39 10.30	0.29 0.30 0.31 0.31 0.50	8.56 8.76 8.61 8.52 6.85 6.26	0.17 0.17 0.16 0.16 0.16	0.227 0.192 0.163 0.122 0.015	0.00 0.00 0.00 0.00 0.00 0.00 0.00	2.54 2.19 1.82 1.37 0.12
H721917 H721918 H721919 H721920		2.15 2.26 0.90	12.60 12.10 17.30	<0.01 <0.01 <0.01	10.75 10.55 9.50 6.68	0.006 0.014 0.003	0.02 0.02 0.01	0.036 0.113 0.557 0.003	7.79 9.42 4.82	11.15 13.45 6.88	0.32 0.29 1.15	9.53 9.53 8.77 5.04	0.10 0.10 0.10	0.042 0.199 0.003	0.00	0.40 1.94 0.09

ME-ICP81

Si02 % 0.2

Method Analyte Units LOD

Sample Description

H721882 H721883

H721881

H721884 H721885 49.6 51.3 53.5 50.7

H721886 H721887 H721888 H721889

49.6

52.4 50.3 46.6 49.0 50.5

H721891 H721892 H721893

H721890

49.2 50.3 51.1 50.7 49.8

H721896 H721897 H721898

H721895

H721894

H721899 H721900 50.1 52.0 50.1 50.9 50.9

> H721902 H721903

H721901

H721904 H721905 50.1 52.4 53.3 49.8 40.6

> H721908 H721909

H721910

H721906 H721907

ALS Canada Ltd.

To: SPC NICKEL CORP. 9C - 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5

Page: 2 – B
Total # Pages: 4 (A – B)
Plus Appendix Pages
Finalized Date: 21-DEC-2022
Account: SDPTCP

Project: Janes

SD2233353 **CERTIFICATE OF ANALYSIS** Pass75um PUL-QC 85.4 84.7 %0.01 Pass2mm CRU-QC 74.0 %0.0 Ag-AA45 ppm 0.2 1.6 0.4 0.2 0.2 2.0 2.0 4.0 4.0 7.0 2.1 0.4 60.2 60.2 1.4 3.3 Αg 0.3 0.3 1.1 0.7 0.5 0.7 0.7 0.5 0.7 0.8 0.6 0.4 PGM-ICP23 0.001 <0.003 0.003 0.006 0.008 <0.001 <0.001 <0.001 0.372 0.003 0.004 0.001 0.008 0.006 0.002 <0.001 <0.001 0.010 0.005 0.003 0.004 0.005 0.003 0.004 0.004 0.002 ppm 0.001 PGM-ICP23 <0.005 <0.005 0.005 0.006 0.007 0.009 <0.005 <0.005 <0.005 0.343 0.006 0.006 <0.005 0.007 0.007 0.008 0.006 <0.005 0.008 0.005 0.006 0.007 0.005 0.005 <0.005 0.005 <0.005 <0.005 0.012 0.540 ppm 0.005 PGM-ICP23 0.014 0.012 0.004 0.039 0.031 0.021 0.018 0.019 0.021 0.019 0.017 0.017 0.027 0.019 0.009 0.001 0.006 0.005 0.016 0.021 0.044 0.038 0.010 0.002 0.001 0.177 0.015 <0.001 0.001 0.045 0.162 Αn ME-ICP81 0.009 0.009 0.010 0.010 0.011 0.016 0.012 0.011 0.012 0.008 0.008 0.008 00.00 0.009 0.009 0.009 0.009 0.007 0.006 0.005 0.005 0.006 0.005 0.003 0.005 0.010 % 0.002 ME-ICP81 0.48 0.50 0.51 0.49 0.76 0.53 0.50 0.38 0.48 0.49 0.48 0.51 0.49 0.48 0.49 0.02 0.48 0.50 0.50 0.50 0.49 0.48 0.51 0.48 0.49 0.49 0.47 0.53 0.47 0.46 0.61 **Ti02**

85.1

79.5

0.2 0.2 0.2 1.5 0.2

<0.001</p>
0.003
0.021
<0.001</p>

<0.005 <0.005 <0.005 0.019

0.004 0.009 0.013 0.071

0.003 0.005 0.008 0.003

0.53 0.53 0.47 0.49

53.1 53.1 52.4 48.1 58.6

> H721918 H721919 H721920

H721917

2.0 1.8 1.6 1.2 0.2

0.019 0.016 0.016 0.013

0.012 0.012 0.012 0.012 <0.005

0.069 0.070 0.064 0.038 0.005

0.007 0.006 0.006 0.006 0.002

0.45 0.47 0.50 0.43 0.40

47.5 48.8 49.2 49.0 50.5

> H721913 H721914 H721915 H721916

H721912

H721911

9C – 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5 To: SPC NICKEL CORP.

Page: 3 – A
Total # Pages: 4 (A – B)
Plus Appendix Pages
Finalized Date: 21–DEC–2022
Account: SDPTCP

										ERTIFIC	ATE OI	CERTIFICATE OF ANALYSIS		SD2233	3531	
Sample Description	Method Analyte Units LOD	WEI-21 Recvd Wt. kg 0.02	ME-ICP81 AI2O3 % 0.02	ME-ICP81 As % 0.01	ME-ICP81 CaO % 0.07	ME-ICP81 Co % 0.002	ME-ICP81 Cr % 0.01	ME-ICP81 Cu % 0.002	ME-ICP81 Fe % 0.05	ME-ICP81 Fe2O3 % 0.07	ME-ICP81 K % 0.05	ME-ICP81 MgO % 0.02	ME-ICP81 MnO % 0.01	ME-ICP81 Ni % 0.002	ME-ICP81 Pb % 0.01	ME-ICP81 5 % 0.01
H721921		2.25	12.85	<0.01	10.45	0.007	0.02	0.200	7.65	10.95	0.37	9.58	0.17	0.066	<0.01	0.65
H721922		2.38	12.70	0.01	9.78	0.010	0.02	0.322	8.52	12.20	0.28	9.68	0.17	0.122	<0.01	1.13
H721923		2.09	12.70	<0.01	10.95	900.0	0.03	0.030	6.74	9.64	0.31	10.00	0.18	0.023	<0.01	0.13
H721924		2.17	12.70	<0.01	10.85	0.006	0.03	0.037	6.77	9.68	0.35	9.83	0.18	0.024	<0.01	0.15
H721925		2.28	12.70	<0.01	10.75	0.009	0.03	0.348	8.13	11.60	0.29	9.88	0.17	0.137	<0.01	1.15
H721926		2.34	12.35	<0.01	10.80	0.013	0.03	0.554	8.82	12.60	0.32	9.90	0.16	0.217	<0.01	1.75
H721927		2.49	12.30	0.01	10.95	0.000	0.03	0.233	7.65	10.95	0.35	10.00	0.17	0.108	<0.01	0.83
H721928		2.35	12.45	0.01	10.55	0.007	0.03	0.219	7.56	10.80	0.31	9.63 63	0.17	0.098	40.01 0.01	0.74
H721929 H721930		2.15 0.06	13.15 12.30	0.01	7.53	0.020	0.03	0.344	10.80	3.62 15.45	0.71	7.15	0.16	0.313	<0.01	1.78
H721931		2.15	12.85	<0.01	11.05	0.007	0.03	0.039	99.9	9.53	0.34	9.80	0.17	0.026	<0.01	0.18
H721932		2.40	12.60	<0.01	11.05	0.004	0.03	0.043	6.75	9.65	0.29	9.93	0.16	0.028	6.01	0.18
H721933		2.03	12.90	<0.01	11.10	0.005	0.03	0.057	6.70	9.58 10.0	0.39	9.75	71.0	0.031	0.0	42.0
H721934 H721935		2.08	12.40 12.70	60.0 0.04	10.90	0.006	0.0 4.0.0	0.044	6.75 6.77	6.68 6.68	0.30	9.93 10.10	0.17	0.031	, 0.07 0.01	0.18
H721036		2.05	12 40	0.01	11.00	0.007	0.04	0.110	7.10	10.15	0.37	10.10	0.17	0.049	<0.01	0.38
H721937		2.25	12.45	<0.01	11.05	0.006	0.04	0.092	6.96	9.95	0.27	10.10	0.17	0.046	<0.01	0.31
H721938		1.99	13.45	<0.01	11.30	0.005	0.04	0.046	6.74	9.63	0.27	10.20	0.17	0.031	<0.01	0.20
H721939		2.29	13.60	<0.01	11.80	0.005	0.04	0.036	6.53	9.34	0.40	10.25	0.17	0.027	<0.01	0.18
H721940	:	<0.02	13.65	0.01	11.80	0.005	0.04	0.037	6.53	9.34	0.35	10.20	0.17	0.026	<0.01	0.17
H721941		2.07	13.30	0.01	11.30	0.006	0.04	0.035	69.9	9.56	0.38	9.97	0.17	0.025	<0.01	0.15
H721942		2.19	13.30	<0.01	11.20	0.006	0.04	0.028	6.33	9.05	0.32	9.60	0.16	0.023	60.01 60.01	0.14
H721943		2.07	12.50	6.07	11.05 70.71	0.005	0.04	0.105	6.62 8.31	9.47	0.24 0.24	9.97 10.05	0.16	0.047	20.00	0.32
H721945		2.07	12.70	0.01	10.70	0.007	0.04	0.045	6.51	9.31	0.27	9.95	0.16	0.031	<0.01	0.17
H721946		2.19	12.90	0.01	11.20	0.005	0.04	0.039	6.57	9.39	0.30	10.30	0.17	0.029	<0.01	0.15
H721947		2.18	13.00	0.01	11.30	0.006	0.04	0.062	6.74	9.64	0.28	10.40	0.17	0.040	<0.01	0.24
H721948		2.13	12.60	0.01	11.05	0.007	0.04	0.077	6.86	9.81	0.29	10.40	0.17	0.042	0.00	0.28
H721950		0.06	12.20	0.01	7.24	0.021	0.03	0.339	10.95	3.7.3 15.65	0.67	7.06	0.16	0.313	× 0.07	1.79
H721951		2.17	12.60	0.01	11.30	0.006	0.05	0.146	7.12	10.20	0.26	10.45	0.17	0.077	<0.01	0.50
H721952		2.30	12.65	0.01	11.30	900.0	0.05	0.092	69.9	9.57	0:30	10.30	0.17	0.049	<0.01	0.33
H721953		2.07	12.80	0.01	11.10	0.006	0.05	0.092	6.62	9.47	0.30	10.15	0.16	0.051	<0.01	0.32
H721954		2.33	13.20	0.01	11.20	0.008	0.05	0.127	6.87	9.82 00.0	0.29	10.10	0.17	0.066	6. 6. 10. 5.	0.43
H/21955		70.7	00:51	100	00:1	700:0	20:00	201.0	2 1	27:0	3::0	0.15	5	2000		. 0
H721956		2.35	13.45	0.01	11.15	0.005	0.04	0.091	6.55	9.36	0.24	9.78	0.16	0.045	5 6	65.0
H721957		2.48	13.85	0.01	10.50	0.00	0.05	0.033	6.03 6.03	9.40 0.43	0.32	9.32 8.85	0.0	0.033	5 5	0.32
H/21958 H721959		2.22	13.40	0.01	11.10	0.000	0.05	0.045	6.54	9.36	0.29	9.72	0.16	0.031	40.03 40.03	0.18
H721960		0.76	16.90	0.01	6.12	0.004	0.01	<0.002	4.82	6.89	1.04	4.96	0.10	0.004	<0.01	0.08

To: SPC NICKEL CORP. 9C - 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5

Page: 3 – B Total # Pages: 4 (A – B) Plus Appendix Pages Finalized Date: 21-DEC-2022 Account: SDPTCP

SD22333531								
CERTIFICATE OF ANALYSIS								
ERTIFIC	PUL-QC Pass75um % 0.01				98.55 8.55		97.8 96.3	98.8 96.8
	CRU-QC Pass2mm % 0.01							73.1
	Ag-AA45 Ag ppm 0.2	0.5 1.1 <0.2 <0.2 1.0	1.5 0.7 0.8 <0.2 2.0	0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.4 0.2 <0.2 0.4 0.3	0.3 60.2 60.2 60.2 60.2
	PGM-ICP23 Pd ppm 0.001	0.007 0.014 0.005 0.006 0.006	0.060 0.029 0.036 0.010	0.010 0.010 0.012 0.011	0.019 0.018 0.012 0.011 0.011 0.010	0.015 0.016 0.014 0.020 0.024 0.023 0.351	0.041 0.031 0.036 0.049 0.047	0.033 0.033 0.029 0.027 <0.001
	PGM-ICP23 Pt ppm 0.005	0.005 0.011 0.005 0.006 0.044	0.056 0.028 0.038 0.008 0.309	0.010 0.009 0.012 0.014	0.031 0.018 0.015 0.012 0.013 0.013	0.018 0.019 0.015 0.025 0.029 0.0312	0.040 0.031 0.033 0.044 0.038	0.031 0.029 0.027 0.026 <0.005
	PGM-ICP23 Au ppm 0.001	0.023 0.042 0.008 0.009 0.087	0.189 0.053 0.051 0.010	0.013 0.012 0.015 0.012 0.015	0.032 0.023 0.014 0.013 0.012 0.012 0.012	0.013 0.018 0.014 0.023 0.024 0.035	0.042 0.034 0.032 0.045 0.053	0.029 0.027 0.028 0.020 0.001
	ME-ICP81 Zn % 0.002	0.004 0.007 0.004 0.004 0.006	0.008 0.006 0.005 0.004 0.008	0.004 0.005 0.004 0.004 0.004	0.005 0.004 0.004 0.003 0.003 0.003 0.003	0.009 0.004 0.003 0.004 0.004	0.003 0.004 0.004 0.004 0.004	0.003 0.003 0.003 0.004 0.002
	ME-ICP81 TiO2 % 0.02	0.51 0.47 0.48 0.47 0.49	0.42 0.45 0.46 0.47 0.73	0.48 0.47 0.46 0.46 0.47	0.48 0.45 0.47 0.46 0.47 0.43 0.43	0.45 0.44 0.44 0.70	0.43 0.45 0.43 0.44	0.47 0.45 0.44 0.45
	ME-ICP81 SiO2 % 0.2	51.3 50.9 51.6 51.6	50.5 51.1 50.3 52.2 47.7	51.6 51.6 51.1 50.5 51.3	50.3 50.7 52.8 53.3 52.8 51.8 50.5	50.5 49.4 51.3 51.8 50.9 51.1 47.3	50.7 50.9 50.5 50.9 50.1	51.1 50.7 50.9 50.7 56.7
	Method Analyte Units LOD	1						
	Sample Description	H721921 H721922 H721923 H721924 H721925	H721926 H721927 H721928 H721929 H721930	H721931 H721932 H721933 H721934 H721935	H721936 H721937 H721938 H721940 H721941 H721941 H721943	H721944 H721946 H721946 H721947 H721948 H721950	H721951 H721952 H721953 H721954 H721955	H721956 H721957 H721958 H721959 H721960

To: SPC NICKEL CORP. 9C - 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5

Page: 4 - A
Total # Pages: 4 (A - B)
Plus Appendix Pages
Finalized Date: 21-DEC-2022
Account: SDPTCP

	ME-ICP81 S % 0.01	0.16 0.33 0.44 0.96 0.28	0.35
33531	ME-ICP81 Pb % 0.01	<0.01<0.01<0.01<0.01<0.01	6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6
SD2233353	ME-ICP81 Ni % 0.002	0.031 0.057 0.074 0.154 0.057	0.059 0.024 0.047
	ME-ICP81 MnO % 0.01	0.16 0.17 0.16 0.16 0.16	0.16 0.16 0.16
- ANAL	ME-ICP81 MgO % 0.02	9.72 9.53 9.92 9.85 9.47	9.37 4.14 8.84
ATE OF	ME-ICP81 K % 0.05	0.27 0.26 0.28 0.29 0.31	0.30 0.25 0.23 0.23
CERTIFICATE OF ANALYSIS	ME-ICP81 Fe2O3 % 0.07	9.24 9.69 10.05 10.70 9.56	9.73 9.17 9.26
O	ME-ICP81 Fe % 0.05	6.46 6.78 7.03 7.48 6.68	6.81 6.48 6.48
	ME-ICP81 Cu % 0.002	0.044 0.100 0.146 0.332 0.074	0.087
	ME-ICP81 Cr % 0.01	0.05 0.04 0.05 0.05 0.05	0.05 0.05 0.05 0.05
,	ME-ICP81 Co % 0.002	0.004 0.007 0.006 0.009 0.008	0.007 0.005 0.006
	ME-ICP81 CaO % 0.07	10.95 11.00 11.15 11.15	11.25 11.25 11.55
	ME-ICP81 As % 0.01	<0.01 0.01 <0.01 <0.01 0.01	60.01 0.01 0.01
	ME-ICP81 A1203 % 0.02	13.35 13.50 13.40 13.30 14.10	13.65 13.75 13.85
	WEI-21 Recvd Wt. kg 0.02	2.31 2.25 2.20 2.40 2.32	2.34 2.26 2.15
	Method Analyte Units LOD		
	Sample Description	H721961 H721962 H721963 H721964 H721965	H721966 H721968 H721968

To: SPC NICKEL CORP. 9C - 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5

Page: 4 – B Total # Pages: 4 (A – B) Plus Appendix Pages Finalized Date: 21-DEC-2022 Account: SDPTCP

,			
JL-QC .s75um %			
CRU-QC Pass2mr % 0.01			
.A45 g m	બં4 4 છે બં	બ બું બ	
	0000		
M-ICP23 Pd ppm 0.001	0.027 0.043 0.052 0.114 0.051	0.065	
	35424	0 0 8	
PGM-IC Pt ppm 0.00	0.02 0.03 0.04 0.08	90.0 80.0 80.0	
-ICP23 Au pm pm	.019 .036 .044 .119	012 028 028	
ME-ICP8 Zn % 0.002	0.005 0.005 0.005 0.005 0.005	0.004 0.004 0.004	
CP81 02 6 5	3 4 5 5 3 4 5 5 4 5 5 5 5 5 6 6 5 5 6 6 7 6 6 7 6 6 7 6 7 6 7 <td>14 8 4 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8</td> <td></td>	14 8 4 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	
ME-10 Tic 9.0	80000	ò ò ò	
IE-ICP81 SiO2 % 0.2	50.5 50.5 50.9 50.5 51.8	50.7 50.3 50.3	
Methi Analy Unit: LOD			
ption			
: Descri	61 62 63 64 65	0	
Sample	H7219 H7219 H7219 H7219	H7219 H7219 H7219	
	81 ME-ICP81 ME-ICP81 PGM-ICP23 PGM-ICP23 A9-AA45 C TiO2 Zn Au Pt Pd A9 Pr % % ppm ppm ppm ppm 0.02 0.001 0.005 0.001 0.2	Method Analysista ME-ICP81 ME-ICP81 PCM-ICP23 PCM-ICP23	Amethod Scription Met-ICP81 LDD ME-ICP81 Sign ME-ICP81 TiO2 ME-ICP81 Sign ME-I

To: SPC NICKEL CORP.

9C – 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5

Page: Appendix 1
Total # Appendix Pages: 1
Finalized Date: 21-DEC-2022
Account: SDPTCP

۲		
r	۲	
Ĺ	۲ ۲	
r	v	
ì	ċ	
	÷	
ì		
(_	
(
ζ	/	
ι	1	
-		
(/	
7	>	
*		
•	1	
-		
2	7	
4	2	
	727	
L (_	
L (_	
L (_	
L	1 1	
L	1 1	
L	1 1	
L	1	
L	1	
L	1	
L	1	
L	1	
L	_	
L	1	

	LOG-21d PUL-QC			
CERTIFICATE COMMENTS	Processed at ALS Sudbury located at 1351–B Kelly Lake Road, Unit #1, Sudbury, ON, Canada. CRU–31 LOG–23 PUL–31 SPL–21d WEI–21	Processed at ALS Vancouver located at 2103 Dollarton Hwy, North Vancouver, BC, Canada. Ag-AA45		
	Applies to Method:	Applies to Method:		,

Appendix 9. Expenditures and Invoices

Total expenditure claimed within this report is \$457,398.89. A breakdown is summarized in Table 1 below, with further details in Tables 2-11. To accompany the summarized tables is a compiled list of receipts and invoices associated with the work conducted in 2022 on the Janes Property.

Table 1: Summary of Expenditures

Work Type	Work Subtype	Subtotal	Total	Summary Table
Prospecting			1,315.36	2
	Grass Roots Prospecting	1,315.36		
Physical Worl	(0.00	
	Bedrock Pitting and Trenching (>1m3 and <3m3 in 200 m Radius)			
	Bedrock Pitting and Trenching (>3m3 in 200 m Radius)			
	Mechanized Stripping (<100m2 in 200 m Radius)			
	Mechanized Stripping (>100m2 in 200m Radius)			
	Manual Stripping			
	Manual work			
Sampling Prog	gram		4,672.80	3
	Bulk Sampling			
	Drill Core Sampling	4,672.80		
	Non-core Drill Sampling			
	Overburden Heavy Mineral Processing			
	Metallurgical Testing			
	Beneficiation			
	Industrial Mineral Testing			
	Dimensional Stone Removal			
	Other Sampling			
Remote Sensi	ng Imagery		0.00	
	Imagery			
	LiDAR			
Geological Su	rvey Work		3,836.48	4
	Geological Survey	3,836.48		
Geochemical	Survey Work		0.00	
	Geochemical Survey			
Ground Geop	hysical Survey Work		158,397.41	5
	Borehole Geophysics			
	Magnetics			
	Electromagnetics			
	Gravity			
	Induced Polarization	158,397.41		
	Magnetotellurics			
	Radiometrics			
	Resistivity			
	Seismic			
	Self-Potential			
	Other Ground Geophysics			
Airborne Geo	physical Survey Work		0.00	
	Airborne Magnetics			
	Airborne Electromagnetics			
	Airborne Gravity			
	Airborne Radiometrics			

	Other Airborne Geophysics			
Modelling or I	Reprocessing of Data		0.00	
	Data Modelling			
	Data Reprocessing			
Exploratory D	rilling		215,842.97	6
	Core Drilling	215,842.97		
	Non-core Drilling			
Drill Core or D	Prill Sample Submissions		22,974.24	7
	Drill Core Submission	22,974.24		
	Drill Sample Submission			
Petrographic \	Work		0.00	
	Microscopy			
	Scanning Electron Microscopy			
	Electron Microprobe Study			
	Other Petrographic Work			
Environmenta	al Baseline Study		0.00	
	Environmental Baseline Study			
Rehabilitation	Required or Permitted Under the Act		0.00	
	Rehabilitation			
Associated Wo	ork types		50,359.63	8
	Line Cutting	30,202.34		
	Assays	2,536.99		
	Transportation	3,579.55		
	Contractor Mobilization/Demobilization			
	Supplies			
	Equipment Rental			
	Report/Map			
	Shipping of Samples			
	Food			
	Lodgings			
	Shipping of Supplies			
	Access Trail building	14,040.75		
	Industrial Mineral Marketing			
Aboriginal Co.	nsultation Costs		0.00	
	•••••••••••••••••		7.00	

Table 2: Summary of Grass Roots Prospecting Expenditures

Description	Da	ate	Invoice / Receipt Number	Cost		Hst	Total
Description	From	То	invoice / Receipt Number			пъс	iotai
Salaries for SPC employees	20-Sep-22	22-Sep-22			1,315.36		
			Total	\$	1,315.36		

Table 3: Summary of Drill Core Sampling Expenditures

Description	Da	ate	Invoice / Receipt Number	Cost	Hst	Total
Bescription	From	То	mvoice / neceipt number	COST	1130	Total
Salaries for SPC employees	24-Oct-22	11-Nov-22		4,672.80		

Total \$ 4,672.80

Table 4: Summary of Geological Survey Expenditures

Description	D	ate	Invoice / Receipt Number	Cost		Hst	Total
Description	From	То	invoice / Receipt Number			пы	TOTAL
Salaries for SPC employees	9-Aug-22	19-Sep-22			3,836.48		
			Total	Ś	3,836.48		

Table 5: Ground Geophysical Survey Expenditures

Description	Date From To		Invoice / Receipt Number		Hst	Total
CXS 3D IP Survey	25-Jul-22 19-Aug-22		6419	128,195.07	16,665.36	144,860.43
			Total	\$ 128,195.07		

Table 6: Summary of Core Drilling Expenditures

Description	Date		Invoice / Receipt Number	Cost	Hst	Total	
Description	From	То	invoice / Receipt Number	Cost	пъс	Total	
Major Drilling core drilling	16-Oct-22	31-Oct-22	2237-SDD132-106	\$106,858.63	13,891.62	120,750.25	
Major Drilling core drilling	1-Nov-22	15-Nov-22	2237-SDD132-107	\$104,028.79	13,523.74	117,552.53	
Major Drilling core drilling	16-Nov-22	30-Nov-22	2237-SDD132-108	\$4,955.55	644.22	5,599.77	
	•		Total	\$ 215,842.97			

Table 7: Summary of Drill Core Submission Expenditures

Description	Date		Invaine / Dessint Number	Cost	Cat	Total	
Description	From	То	Invoice / Receipt Number	Cost	Gst		
ALS drill core assay	14-Dec-22		6191198	\$7,540.72	377.04	7,917.76	
ALS drill core assay	18-Dec-22		6198595	\$7,885.46	394.27	8,279.73	
ALS drill core assay	21-Dec-22		6209294	\$7,548.06	377.40	7,925.46	
			Total	\$ 22,974,24			

Table 8: Summary of Assay Expenditures

Description	Date From To		Invoice / Receipt Number	Cost	Gst	Total	
ALS grab sample assay	18-Oct-22 18-Oct-22		6130158	\$2,536.99	126.85	2,663.84	
			Total	\$ 2536.99			

Table 9: Summary of Personal Transportation Expenditures

B	Date		Invoice / Receipt	01		T. 1. 1
Description	From	То	Number	Cost	Hst	Total
Truck rental for SPC Nickel Corp (19 days total)	9-Aug-22	12-Nov-22	INV-67	2,850.00		
Gas	9-Aug-22	12-Nov-22		729.55	94.85	824.40

Total \$ 3,579.55

Table 10: Summary of Access Trail Building Expenditures

Description	Date From To		Invoice / Receipt Number	Cost	Hst	Total
Sturgeon Falls Brush trail brushing	7-Oct-22 17-Oct-22		J004617	14,040.75	1,825.30	\$15,866.05
·					·	

Total \$ 14,040.75

Table 11. Summary of Support Activities Expenditures

Description	Date		Invoice / Receipt Number	Cost	Hst	Total	
	From	То	, , , , , , , , , , , , , , , , , , , ,				
CXS line cutting & DGPS	20-Jun-22 6-Jul-22		6419	30,202.34	3,926.31	34,128.65	
			Total	\$ 30 202 34			