

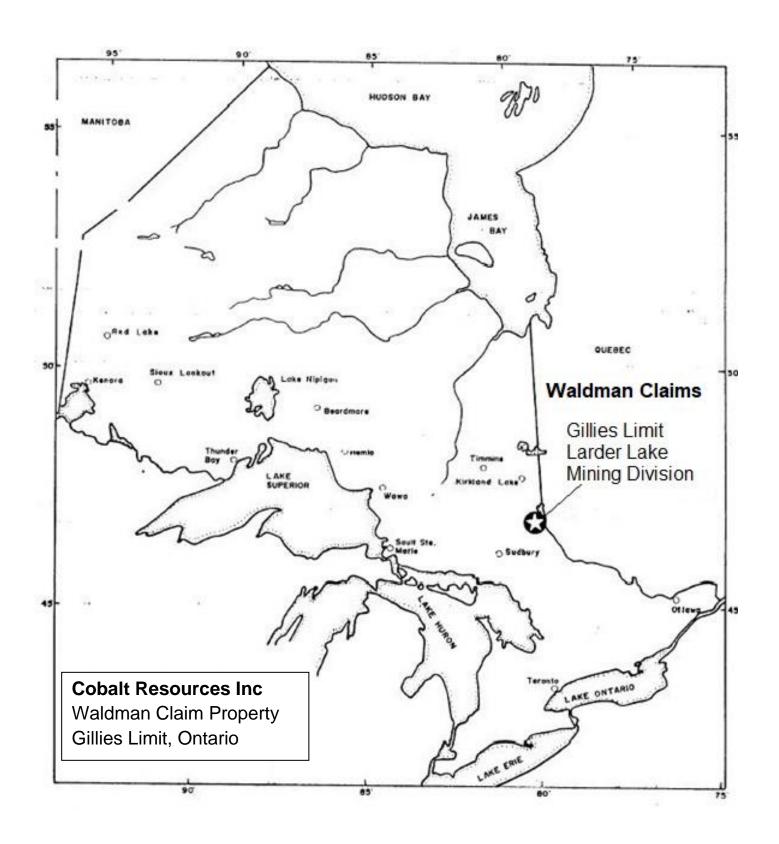
We are committed to providing <u>accessible customer service</u>. If you need accessible formats or communications supports, please <u>contact us</u>.

Nous tenons à améliorer <u>l'accessibilité des services à la clientèle</u>. Si vous avez besoin de formats accessibles ou d'aide à la communication, veuillez <u>nous contacter</u>.

Assessment Work Report

On the

Waldman Claim Property
For Cobalt Resources Inc
By Al Kon


February 17, 2023

THE WALDMAN AND WYANDOH MINES IN GILLIES LIMIT, BOTH OF WHICH ARE GETTING GOOD ORE.

Index

Introduction	1
Access & Location Topographical & Vegetation	2
Geology & Property Geology	2
Wildlife & History	3
Work Program	4
Samples & Geology	5&6
Daily Logs	7
Recommendations	8
Statement of Qualifications	9
Assay Lab Results	Appendix I
Sample Pictures	Appendix II
Prospecting & Sample Maps	Appendix III
Claim Man	Back Page

Introduction

A follow up sampling and short prospecting program was conducted across three claims of the Waldman property group of claims from November 8th to November 15th 2022. The samples were taken from earlier prospecting programs in which several locations were identified and recorded for future sampling. A total of 24 samples were taken of which 22 were rock and 2 from the old tailings pond. The samples were sent to ALS Timmins for ICP analysis. Al Kon of Haileybury/N Cobalt and Tammy Huard of Haileybury preformed all the work.

Because of time restraints and weather, only 1 half day was spent prospecting on claim 203057 south triangle.

The Waldman property is currently held by Cobalt Resources Inc of Perth Australia and is situated in Gillies Limit twp, Larder Lake Mining Division. There are 19 cell and boundary claims in the group which are listed below.

```
    189303
    324858
    236093
    227355

    321848
    115118
    283242
    306085

    296687
    236092
    290776
    203057

    156804
    199634
    320124
    275742

    174898
    123450
    203776
```

Transportation to the claims was by Chevy RX2 4x4. A Garmin GPSmap 66s, Garmin 64 were used for sample recording and navigation, (17 N, NAD 83). A Stihl TS 410 rock/concrete saw was used for several of the samples because the rock is completely flat in most areas.

Location and Access

The area was once known as the "A" claims and all are within close proximity of the historical silver mining town of Cobalt, Ontario. These claims can be accessed fairly easily by taking Coleman Rd south from Cobalt to Hound Chutes Rd. The Waldman claims can also be accessed via a trail that was once the rail/street car line which begins at the Little Silver Vein mine on the west side of Cobalt along Coleman Road.

Topographical & Vegetation

The topographical setting for the property is much the same as elsewhere in the Cobalt camp. Rolling hills, steep but low cliffs, and an average amount of exposed rock. There a few small hills in the area. Water is sparse is the area with only few small lakes and creeks. Giroux Lake is a large lake which is less than a kilometer from the Waldman claims. Several swamps and low wet areas are fairly common.

Vegetation is very heavy. Tree types are varied from small to medium sized cedar, birch and willow to medium and large poplar. There are also a few very large old white and red pines in the area. Undergrowth is thick with dogwood, scrub brush and other vegetation.

Regional and Property Geology

The Waldman claims are located within a geological area known as the Cobalt embayment. The rocks that underlie the project area include basement forming Keewatin mafic to felsic metavolcanics and Algoman granitic rocks overlain by relatively flat lying Huronian metasediments. A Nipissing aged diabase unit, in the form of sills and dykes, intrudes all of these rock types. Younger diabase dykes locally cross cut all of these rocks. Lamprophyre dykes of various ages intrude the Keewatin and Algoman rocks. The youngest rock in the area is the Kon Kimberlite at ~ 153.5 Ma.

The rocks in the area are strongly influenced by at least four major northwest trending regional scale fault structures. These include the Temiskaming Fault, the Crosswise Lake Fault, the Montreal River Fault and the Latchford Fault. Numerous cross-faults connect these major structures.

Wildlife

The wildlife in the area is much the same as other areas of northern Ontario although in lesser numbers now. The bugs during the summer months are a nightmare.

Historical Work

The Waldman claims have had several owners over the years and have not sat idle or open for very long. The original Waldman property consisted of 5 "A" claims; A10, 12, 13, 21, & 22 but has since grown to include the Wallingford mine property, the Sagdola Mine property, the east part of the Red Jacket mine property and 1 claim from the Mensilvo mine property.

Some of the previous owners are: J Waldman, Mining Corp of Canada, Camburn Silver Mines, Waldag Mining Company, Sisco Metals Corp, Teck Cominco, and Outcrop Resources optioned to Cabo Mining Ent and Canagco Mining Corp.

Even though the Waldman claims have 3 shafts on the original property, all production came from shaft #1. A total of 33500oz of silver and 2066lbs of cobalt was recorded with unknown amounts of copper and nickel.

The adjoining Wyandoh Silver Mine produced similar amounts with 33700 oz of silver and 1235lbs of cobalt. Both the Waldman and Wyandoh worked the same vein.

The Wallingford shaft produced an unknown amount of cobalt and silver but massive cobalt has been observed in the muck/waste piles beside the shaft.

The Red Jacket North and south shaft which is now part of the Waldman property on the west side of the claim group reported an undisclosed amount of silver and cobalt.

The Sagdola shaft which was sunk to a depth of ~ 100 feet did not record any production.

Trenching and pits are abundant on the Waldman claims and it would be very difficult to map them all. The depth and lengths of the trenches varies widely from less than a metre in depth to 3 + metres deep. Lengths are varied as well with some trenches less than 5 metres long and others 150 + metres long. The size and depth of the pits are varied as well with some only a metre or so deep and others 10m+ deep. Pits are sometimes situated at the end of or in the middle of intersecting trenches which makes walking in them very dangerous and not advised at any time.

Al Kon has worked on The Waldman claims since 2004 for various companies and claim holders and has extensive knowledge of the property as well as most of the Cobalt mining camp.

Work Program

Prospecting

Only about one half day was spent prospecting on the eastern triangle portion of claim 156804. This portion of the claim borders on the old streetcar rail line trail and much of the area is a deep gully. The power line also runs through it. Very little exposed rock or outcropping is in this portion of the claim but there are several old trenches and pits dug and are in close proximity to the Wyandoh shaft # 2. Accessing this part of the claim can be difficult from Hound Chutes Rd or the old streel car line because of the steep sides and also because of people who seem think this is a good place to dump their household garbage.

Near the intersection of Hound Chutes Rd and the old street car line trail is a fairly large outcrop. The rock is volcanic most likely andesite with minor quartz/calcite veining and trace to 1% sulphides possibly chalcopyrite. One sample was taken from the outcrop.

Sampling

As mention before, most of the work conducted was follow up sampling from previous prospecting programs where several possible locations were identified as potential sample areas.

Most of the samples were taken from the stripped outcrop south of the headframe, with the exception of three from an old backfilled Adit and outcropping on the north triangle claim #275742, near the power line and two from the dried up tailings pond. Several of the samples taken on the stripped outcrop had to be cut with a concrete/rock saw in order to be broken out as many were vertical veins, flush with the outcrop or flat lying blowouts.

Sample results were not bad but not as good as hoped for. Four samples for gold ICP analysis was included with this batch of samples as small gold lenses have been known to occur in the Cobalt camp including across the road at the Mensilvo mine. These samples did not produce any significant results.

Sample Q29614 from a small quartz vein returned somewhat higher values of silver, cobalt, copper & arsenic and is on strike with a quartz vein discovered in 2004 with similar results indicating a possible extension to the west towards the volcanic/conglomerate contact at the edge of the stripped area. Sample and geology descriptions are on the following pages.

Sample results can be viewed in Appendix I & prospecting & sample station map in Appendix II.

Date	Sample	Easting	Northing	Description
11/11/2022	Q296503	599393	5247075	Dark grey aphanitic possible disseminated pyrrhotite. Near pit 2m x 1m. Sample Q296503 - dark grey aphanitic disseminated pyrrhotite. ~1cm brecciated vein. Minor hematite and epidote staining.
11/13/2022	Q296504	599273	5247102	Quartz vein in volcanics, ~3 inches wide. Grey green grey aphanitic with very minor sulphides, cpy & py blebs.
11/13/2022	Q296509	599273	5247102	Grey green aphanitic volcanics with rusty surface. Mottled appearance. Minor disseminated py.
11/13/2022	Q296510	599267	5247100	Quartz/Calcite intermixed with volcanics. Minor calcopyrite.
11/13/2022	Q296511	599267	5247100	Quartz/Calcite intermixed with volcanics. Minor calcopyrite.
11/13/2022	Q296512	599268	5247105	Quartz blowout at contact with grey green aphanitic volcanic.
11/13/2022	Q296513	599263	5247122	Grey green aphanitic volcanic. Rusty surface. Stinky smell.
11/13/2022	Q296514	599264	5247124	cm quartz vein with malachite and cpy within volcanics. Grey green aphanitic volcanic with minor disseminated sulphides.
11/13/2022	Q296515	599259	5247128	Grey green aphanitic volcanic with rusty weathering. Mottled quartz on surface. Minor disseminated py.
11/13/2022	Q296516	599259	5247128	Grey green aphanitic volcanic with rusty weathering. Quartz on surface. Minor to moderate disseminated and blebs of py.
11/13/2022	Q296517	599265	5247130	Grey green aphanitic volcanic with cm quartz vein with minor disseminated sulphides.
11/13/2022	Q296518	599253	5247138	Grey green aphanitic volcanic with cm quartz vein with minor disseminated sulphides.
11/13/2022	Q296519	599253	5247141	Grey green aphanitic volcanic with rusty weathering.
11/14/2022	Q296520	599249	5247133	Grey green aphanitic volcanic. Rusty surface. Minor to moderate disseminated and blebs of sulphides (py & possible cpy)

11/14/2022	Q296521	599238	5247134	Grey green aphanitic volcanic with mm and cm scaled qtz vein. Minor disseminated sulphides.
11/14/2022	Q296522	599238	5247130	Grey green aphanitic volcanic with rusty surface. Minor sulphides.
11/14/2022	Q296523	599238	5247130	Grey green aphanitic volcanic with rusty surface. Massive sulphides.
11/14/2022	Q296524	599251	5247150	Grey green aphanitic volcanic with minor stringers of sulphides (py).
11/14/2022	Q296525	599246	5247149	Grey green aphanitic volcanics that appear rusty. Minor to moderate disseminated sulphides (py).
11/15/2022	Q296526	599513	5247319	Volcanic. Highly weathered on surface. Possible fault zone located ~1m in the adit/opening. Trenched in this area, possible backfill.
11/15/2022	Q296527	599526	5247292	dark grey aphanitic volcanic. Very minor disseminated sulphides.
11/15/2022	Q296528	599462	5247324	Dark grey aphanitic volcanic. Possible fault zone.
11/15/2022	Q296529	599427	5247361	Sandy grey material from Waldman tailings.
11/15/2022	Q296530	599548	5247319	Greenish grey clay tailings from E/NE Triangle Claim.

Daily Log

- Nov 8 Waldman claim 156804, check access/hazards, check stripped outcrop
- Nov 11 Prospect claim 156804 south triangle east of Hound Chutes Rd, 1 sample taken
- Nov 12 Sample Prep with rock saw on stripped OC. Several Qu/Cc veins
- Nov 13 Sample stripped outcrop on claim 156804, 15 samples taken
- Nov 14 Sample stripped outcrop on claim 156804, 5 samples taken
- Nov 15 Sample north triangle claim 275742 in small adit opening & faulted area. Sampled tailings on claim 275742 on east and west side, 2 rock and 2 tailings samples taken

Recommendations

A full prospecting and sampling program should be carried out across the entire Waldman claim property focusing on the areas near and around the diabase, sediment and volcanic contacts and near some of the old workings.

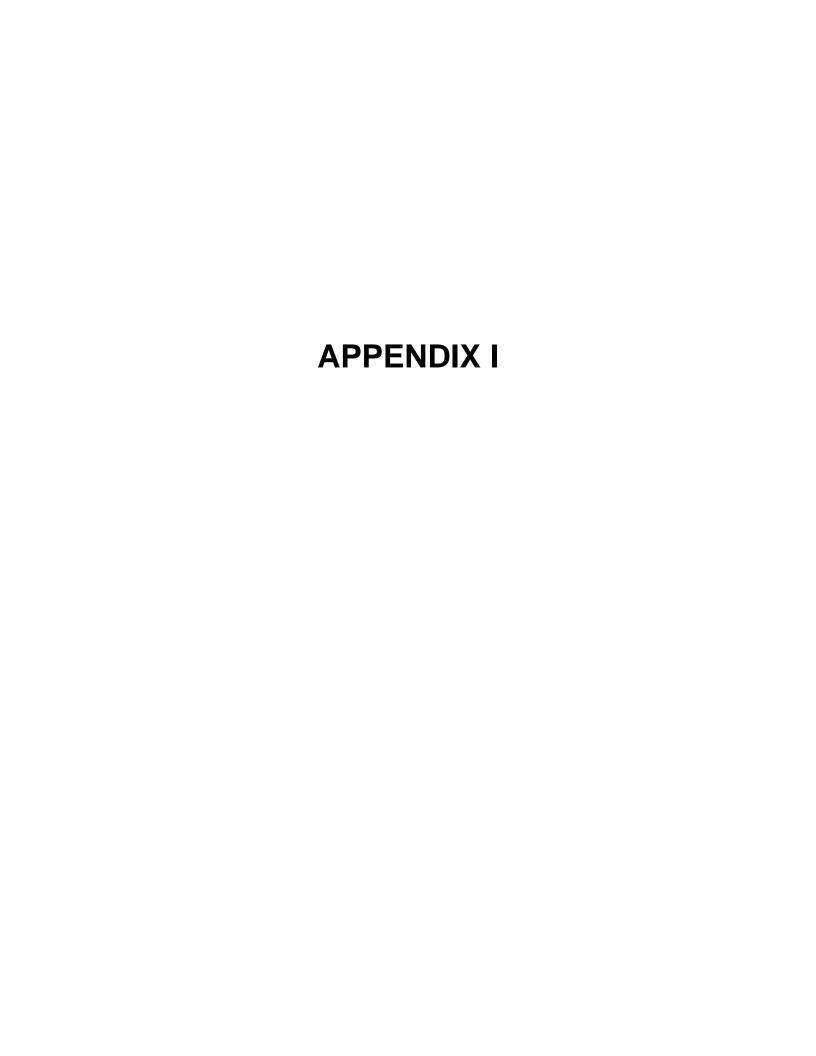
Several areas need closer examinations including, the old adit on claim 275742 near the power line, the south triangle claim east of Hound Chutes Rd. Another possible area is in and around the 100m long trench on the east boundary lines of claims 275742 & 156804. The trench has never been fully prospected or drilled.

Thank you.

Alan Kon

Alan Kon

Statement of Qualifications


I, Alan Kon attended Haileybury School of Mines from 1999 to 2002 in the Mining Engineering Technician/Technologist program where I was educating in geology, mineralogy, geophysics, field sampling and mapping and mine engineering.

I have nearly 29yrs experience and have worked mostly in prospecting/geological exploration in several locations across Ontario as well as Saskatchewan, Quebec and Nunavut along with two US states, Nevada and Washington State.

Prior to attending Haileybury School of Mines I worked in an assay lab in Saskatoon SK and at the University of Saskatchewan Geological Science Dept under the direction of Dr Robert Kerrich (deas) and Microprobe manager Tom Bonli.

I am a director of the Rock Walk Park in Haileybury and vice president of the HSM Gangue-sters Rock and Mineral Show.

Alan Kon

ALS Canada Ltd. To: COBALT RESOURCES INC. 1ST FLOOR, 8 PARLIAMENT PLACE WEST PERTH WA 6005 AUSTRALIA

Page: 1 Total # Pages: 2 (A – F) Plus Appendix Pages Finalized Date: 30–JAN–2023 This copy reported on 9-FEE–2023 Account: CRISQGX

CERTIFICATE TM22362294

Project: WALDMAN PROPERTY

This report is for 24 samples of Rock submitted to our lab in Timmins, ON, Canada on 16-DEC-2022.

The following have access to data associated with this certificate:

JON DUCDALE

ALKON

MICH MICHAEL MUHLING

	SAMPLE PREPARATION	
ALS CODE	DESCRIPTION	
WEI-21	Received Sample Weight	
LOG-21	Sample logging - ClientBarCode	
CRU-QC	Crushing QC Test	
PUL-QC	Pulverizing QC Test	
CRU-31	Fine crushing - 70% <2mm	
SPL-21	Split sample – riffle splitter	
PUL-31	Pulverize up to 250g 85% <75 um	

	ANALYTICAL PROCEDURES	
ALS CODE	DESCRIPTION	INSTRUMENT
AuME-TL43	25g Trace Au + Multi Element PKG	
ME-ICP41	35 Element Aqua Regia ICP-AES	ICP-AES
Hq-MS42	Trace Hg by ICPMS	ICP-MS

This is the Final Report and supersedes any preliminary report with this certificate number.Results apply to samples as submitted.All pages of this report have been checked and approved for release.

***** See Appendix Page for comments regarding this certificate *****

Signature:
Saa Traxler, Director, North Vancouver Operations

To: COBALT RESOURCES INC. 1ST FLOOR, 8 PARLIAMENT PLACE WEST PERTH WA 6005 AUSTRALIA Page: 2 – A Total # Pages: 2 (A – F) Plus Appendix Pages Finalized Date: 30–JAN–2023 Account: CRISQGX

								C	ERTIFIC	CATE O	F ANAL	YSIS	TM223	62294	
Metho Analy Sample Description Unit LOD	e Recvd Wt.	ME-ICP41 Ag ppm 0.2	ME-ICP41 AI % 0.01	ME-ICP41 As ppm 2	ME-ICP41 B ppm 10	ME-ICP41 Ba ppm 10	ME-ICP41 Be ppm 0.5	ME-ICP41 Bi ppm 2	ME-ICP41 Ca % 0.01	ME-ICP41 Cd ppm 0.5	ME-ICP41 Co ppm 1	ME-ICP41 Cr ppm 1	ME-ICP41 Cu ppm 1	ME-ICP41 Fe % 0.01	ME-ICP41 Ga ppm 10
Sample Description Unit															

^{****} See Appendix Page for comments regarding this certificate ****

To: COBALT RESOURCES INC. 1ST FLOOR, 8 PARLIAMENT PLACE WEST PERTH WA 6005 AUSTRALIA Page: 2 - B Total # Pages: 2 (A - F) Plus Appendix Pages Finalized Date: 30-JAN-2023 Account: CRISQGX

									C	ERTIFIC	ATE O	F ANAL	YSIS	TM223	62294	
Sample Description	Method Analyte Units LOD	Hg-MS42 Hg ppm 0.005	ME-ICP41 La ppm 10	ME-ICP41 Li ppm 10	ME-ICP41 K % 0.01	ME-ICP41 Mg % 0.01	ME-ICP41 Mn ppm 5	ME-ICP41 Mo ppm 1	ME-ICP41 Na % 0.01	ME-ICP41 Ni ppm 1	ME-ICP41 P ppm 10	ME-ICP41 Pb ppm 2	ME-ICP41 S % 0.01	ME-ICP41 Sb ppm 2	ME-ICP41 Sc ppm 1	ME-ICP41 Sr ppm 1
Q296503 Q296504 Q296509 Q296510 Q296511 Q296512 Q296513 Q296514 Q296515 Q296516		0.005 0.009 0.010 0.096 0.041 0.006 0.019 0.134 0.023 0.049	20 <10 20 10 10 10 <10 10 10	20 10 60 30 60 20 60 60 80 30	0.02 0.03 0.52 0.29 0.98 0.01 1.05 0.01 0.35 0.14	0.89 0.57 2.02 1.80 2.27 1.27 2.47 2.83 3.54 1.35	517 563 631 489 563 669 836 1715 1165 434	<1 <1 <1 2 3 <1 5 11 11	0.03 0.04 0.05 0.03 0.04 0.02 0.19 0.02 0.04 0.04	30 42 52 57 89 60 90 118 215 83	140 290 1770 970 1270 200 290 1560 1080 320	49 28 177 6920 1735 34 26 36 35 208	0.07 0.06 0.58 0.47 0.95 0.01 0.82 0.72 0.91 0.95	<2 <2 <2 <2 <2 <2 <2 <4 <2 <2 <2	4 7 4 2 3 3 8 14 4 2	10 35 14 6 9 8 17 17 5 3
Q296517 Q296518 Q296519 Q296520 Q296520 Q296521 Q296522 Q296523 Q296524 Q296525 Q296525 Q296525		0.534 0.050 0.031 0.095 0.009 0.011 0.018 0.021 0.026 <0.005	<10 <10 <10 <10 10 <10 <10 <10 <10 <10	50 60 140 60 50 80 90 30 30 70	0.16 0.39 0.50 0.66 0.05 1.41 1.00 0.27 0.20 0.05	2.62 2.61 5.56 2.52 2.51 3.26 4.53 1.28 1.24 1.95	1270 972 1485 1135 1295 1195 1275 1240 1175 1210	1 2 2 1 2 2 3 <1 4	0.06 0.04 0.02 0.07 0.04 0.11 0.01 0.08 0.12	103 100 104 153 105 96 80 63 81	340 260 1100 250 340 320 300 260 260 370	350 19 41 120 11 13 41 7 9	0.77 0.26 0.26 6.24 0.19 1.10 3.33 1.47 1.80 0.01	<2 <2 <2 5 <2 <2 <2 <2 <2 <2	7 11 27 6 17 11 3 7 8	3 5 5 21 13 2 14 15 5
Q296527 Q296528 Q296529 Q296530		0.134 <0.005 0.118 0.215	10 <10 20 10	70 90 50 60	0.34 0.34 0.11 0.16	1.74 2.25 2.00 2.25	1895 1245 929 1185	<1 <1 4 2	0.09 0.11 0.05 0.04	85 103 132 238	340 420 480 620	189 4 765 480	0.11 <0.01 0.10 0.08	<2 <2 7 14	8 15 13 13	11 11 12 22

^{*****} See Appendix Page for comments regarding this certificate *****

To: COBALT RESOURCES INC. 1ST FLOOR, 8 PARLIAMENT PLACE WEST PERTH WA 6005 AUSTRALIA Page: 2 - C Total # Pages: 2 (A - F) Plus Appendix Pages Finalized Date: 30-JAN-2023 Account: CRISQGX

									C	ERTIFIC	CATE O	F ANAL	YSIS	TM223	52294	
	Method Analyte Units LOD	ME-ICP41 Th ppm 20	ME-ICP41 Ti % 0.01	ME-ICP41 TI ppm 10	ME-ICP41 U ppm 10	ME-ICP41 V ppm 1	ME-ICP41 W ppm 10	ME-ICP41 Zn ppm 2	AuME-TL43 Au ppm 0.001	AuME-TL43 Ag ppm 0.01	AuME-TL43 Al % 0.01	AuME-TL43 As ppm 0.1	AuME-TL43 B ppm 10	AuME-TL43 Ba ppm 10	AuME-TL43 Be ppm 0.05	AuME-TL43 Bi ppm 0.01
2296503 Q296504 Q296509 Q296510 Q296511 Q296511 Q296511 Q296513 Q296516 Q296516 Q296516 Q296517 Q296518 Q296520 Q296520 Q296522 Q296522 Q296523 Q296523 Q296523 Q296525 Q296525 Q296525 Q296525 Q296525 Q296526 Q296527 Q296527 Q296527 Q296527 Q296527 Q296528 Q296529 Q296529 Q296529 Q296529	Lob	20 28 28 28 28 28 28 28 28 28 28	0.08 0.33 0.19 0.15 0.21 0.04 0.26 0.12 0.05 0.18 0.22 0.18 0.19 0.17 0.32 0.18 0.14 0.24 0.21 0.33 0.14 0.24 0.14 0.24 0.14 0.14	10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <	10 <10 <10 <10 <10 <10 <10 <10 <10 <10	1 54 87 92 64 111 149 149 149 225 1390 230 2217 101 140 151 229 132 146	10 <10 <10 <10 <10 <10 <10 <10 <10 <10	2 75 94 135 446 276 59 133 139 156 98 97 74 167 221 141 140 123 163 93 97 63 157 63	0.001 0.003 0.003 0.003 0.001	0.01 0.54 0.71 2.76 0.29	1.30 2.02 1.65 1.24	0.1 5.9 30.9 18.4 1.6	10 <10 <10 <10 <10	10 30 90 10	0.05 0.09 0.44 0.21 0.42	0.01 0.41 0.24 0.61 0.01

^{*****} See Appendix Page for comments regarding this certificate *****

To: COBALT RESOURCES INC. 1ST FLOOR, 8 PARLIAMENT PLACE WEST PERTH WA 6005 AUSTRALIA Page: 2 - D Total # Pages: 2 (A - F) Plus Appendix Pages Finalized Date: 30-JAN-2023 Account: CRISQGX

									C	ERTIFIC	CATE O	F ANAL	YSIS	TM223	62294	
Sample Description	Method Analyte Units LOD	AuME-TL43 Ca % 0.01	AuME-TL43 Cd ppm 0.01	AuME-TL43 Ce ppm 0.02	AuME-TL43 Co ppm 0.1	AuME-TL43 Cr ppm 1	AuME-TL43 Cs ppm 0.05	AuME-TL43 Cu ppm 0.2	AuME-TL43 Fe % 0.01	AuME-TL43 Ga ppm 0.05	AuME-TL43 Ge ppm 0.05	AuME-TL43 Hf ppm 0.02	AuME-TL43 Hg ppm 0.01	AuME-TL43 In ppm 0.005	AuME-TL43 K % 0.01	AuME-TL43 La ppm 0.2
Q296503 Q296504 Q296509 Q296510 Q296511		1.16 1.04 0.54	0.27 0.11 1.39	6.08 46.2 18.30	20.7 28.8 28.5	69 256 223	0.22 2.84 0.94	90.7 64.0 275	2.76 4.21 3.57	5.23 10.20 9.61	0.19 0.13 0.09	0.08 0.24 0.18	0.01 0.01 0.11	0.038 0.061 0.103	0.03 0.55 0.29	3.6 22.1 9.3
Q296512 Q296513 Q296514 Q296515 Q296516		0.98	0.05	13.40	12.3	165	0.22	24.0	2.48	7.03	0.09	0.12	0.01	0.031	0.01	5.2
Q296517 Q296518 Q296519 Q296520 Q296521																
Q296522 Q296523 Q296524 Q296525 Q296526																
Q296527 Q296528 Q296529 Q296530																

^{*****} See Appendix Page for comments regarding this certificate *****

To: COBALT RESOURCES INC. 1ST FLOOR, 8 PARLIAMENT PLACE WEST PERTH WA 6005 AUSTRALIA

Page: 2 – E Total # Pages: 2 (A – F) Plus Appendix Pages Finalized Date: 30–JAN–2023 Account: CRISQGX

Project: WALDMAN PROPERTY

									C	ERTIFIC	CATE O	F ANAL	YSIS	TM223	62294	
Sample Description	Method Analyte Units LOD	AuME-TL43 Li ppm 0.1	AuME-TL43 Mg % 0.01	AuME-TL43 Mn ppm 5	AuME-TL43 Mo ppm 0.05	AuME-TL43 Na % 0.01	AuME-TL43 Nb ppm 0.05	AuME-TL43 Ni ppm 0.2	AuME-TL43 P ppm 10	AuME-TL43 Pb ppm 0.2	AuME-TL43 Rb ppm 0.1	AuME-TL43 Re ppm 0.001	AuME-TL43 S % 0.01	AuME-TL43 Sb ppm 0.05	AuME-TL43 Sc ppm 0.1	AuME-TL43 Se ppm 0.2
Q296503 Q296504 Q296509 Q296510 Q296511		15.0 63.6 31.9	0.60 2.10 1.88	541 630 501	0.09 0.18 1.53	0.04 0.05 0.03	0.15 0.07 <0.05	44.3 56.4 62.0	290 1850 990	30.1 182.5 6970	7.3 42.1 17.0	<0.001 <0.001 <0.001	0.06 0.59 0.48	0.21 2.17 0.86	6.3 3.4 2.0	0.2 0.9 1.0
Q296512 Q296513 Q296514 Q296515 Q296516		20.3	1.30	658	0.23	0.03	<0.05	63.9	200	36.6	0.7	<0.001	0.02	0.06	2.7	<0.2
Q296517 Q296518 Q296519 Q296520 Q296521																
Q296522 Q296523 Q296524 Q296525 Q296526																
Q296527 Q296528 Q296529 Q296530																

***** See Appendix Page for comments regarding this certificate *****

ALS Canada Ltd.

TO: COBALT RESOURCES INC. Page: 2 - F

1ST FLOOR, 8 PARLIAMENT PLACE Total # Pages: 2 (A - F)

WEST PERTH WA 6005 Plus Appendix Pages

AUSTRALIA Finalized Date: 30-JAN-2023

Account: CRISQGX

(ALS)			iobai.com/		-,			Proje	ect: WALD	MAN PRO	PERTY			Account: CRISC	JGX
											CATE O	F ANAL	YSIS	TM22362294	
Sample Description	Method Analyte Units LOD	AuME-TL43 Sn ppm 0.2	AuME-TL43 Sr ppm 0.2	AuME-TL43 Ta ppm 0.01	AuME-TL43 Te ppm 0.01	AuME-TL43 Th ppm 0.2	AuME-TL43 Ti % 0.005	AuME-TL43 TI ppm 0.02	AuME-TL43 U ppm 0.05	AuME-TL43 V ppm 1	AuME-TL43 W ppm 0.05	AuME-TL43 Y ppm 0.05	AuME-TL43 Zn ppm 2	AuME-TL43 Zr ppm 0.5	
Q296503 Q296504 Q296509 Q296510 Q296511		0.2 0.6 0.8	27.4 13.2 6.8	<0.01 <0.01 <0.01	0.02 0.04 0.04	0.2 3.3 1.2	0.237 0.141 0.106	0.02 0.20 0.08	0.18 0.30 0.36	77 94 64	0.12 0.24 0.39	6.62 5.63 5.07	94 136 453	1.7 11.5 8.4	
Q296512 Q296513 Q296514 Q296515 Q296516		0.5	9.0	<0.01	0.01	0.4	0.029	0.02	0.23	40	0.44	4.54	57	5.8	
Q296517 Q296518 Q296519 Q296520 Q296521															
Q296522 Q296523 Q296524 Q296525 Q296526															
Q296527 Q296528 Q296529 Q296530															

^{*****} See Appendix Page for comments regarding this certificate *****

 To: COBALT RESOURCES INC. 1ST FLOOR, 8 PARLIAMENT PLACE WEST PERTH WA 6005 AUSTRALIA

Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 30–JAN–2023 Account: CRISQGX

	_	•	
		CERTIFICATE OF ANALYSIS	TM22362294
	CERTIFICATE COI	MMENTS	
	LABO	RATORY ADDRESSES	
Proc	cessed at ALS Vancouver located at 2103 Dollarton Hwy, N	lorth Vancouver, BC, Canada.	
	ME-TL43 Hg-MS42	ME-ICP41	
	cessed at ALS Timmins located at Unit 10 – 2090 Riverside	Drive, Timmins, ON, Canada.	
Applies to Method: CRU	U-31 CRU-QC	LOG-21	PUL-31
PUL-	L-QC SPL-21	WEI-21	

To: COBALT RESOURCES INC. 1ST FLOOR, 8 PARLIAMENT PLACE WEST PERTH WA 6005 AUSTRALIA

Page: 1 Total # Pages: 3 (A – F) Plus Appendix Pages Finalized Date: 30–JAN–2023 This copy reported on 9-FEB-2023 Account: CRISQGX

QC CERTIFICATE TM22362294

Project: WALDMAN PROPERTY

This report is for 24 samples of Rock submitted to our lab in Timmins, ON, Canada on 16-DEC-2022.

The following have access to data associated with this certificate:

JON DUGDALE

ALKON

MICHAEL MUHLING

MICHAEL MUHLING AL KON

	SAMPLE PREPARATION	
ALS CODE	DESCRIPTION	
WEI-21	Received Sample Weight	
LOG-21	Sample logging - ClientBarCode	
CRU-QC	Crushing QC Test	
PUL-QC	Pulverizing QC Test	
CRU-31	Fine crushing - 70% <2mm	
SPL-21	Split sample – riffle splitter	
PUL-31	Pulverize up to 250g 85% <75 um	

	ANALYTICAL PROCEDURES	5
ALS CODE	DESCRIPTION	INSTRUMENT
AuME-TL43	25g Trace Au + Multi Element PKG	
ME-ICP41	35 Element Aqua Regia ICP-AES	ICP-AES
Hq-MS42	Trace Hg by ICPMS	ICP-MS

This is the Final Report and supersedes any preliminary report with this certificate number.Results apply to samples as submitted.All pages of this report have been checked and approved for release.

***** See Appendix Page for comments regarding this certificate *****

Signature: Saa Traxler, Director, North Vancouver Operations

 To: COBALT RESOURCES INC. 1ST FLOOR, 8 PARLIAMENT PLACE WEST PERTH WA 6005 AUSTRALIA Page: 2 – A Total # Pages: 3 (A – F) Plus Appendix Pages Finalized Date: 30–JAN–2023 Account: CRISQGX

									QC		FICATE	OF ANA	ALYSIS	TM22	36229	4
An	ethod nalyte Inits LOD	ME-ICP41 Ag ppm 0.2	ME-ICP41 AI % 0.01	ME-ICP41 As ppm 2	ME-ICP41 B ppm 10	ME-ICP41 Ba ppm 10	ME-ICP41 Be ppm 0.5	ME-ICP41 Bi ppm 2	ME-ICP41 Ca % 0.01	ME-ICP41 Cd ppm 0.5	ME-ICP41 Co ppm 1	ME-ICP41 Cr ppm 1	ME-ICP41 Cu ppm 1	ME-ICP41 Fe % 0.01	ME-ICP41 Ga ppm 10	Hg-MS42 Hg ppm 0.005
							STAN	IDARDS								
EMOG-17 EMOG-17 Target Range – Lower Bour Upper Bour		66.1 68.5 60.1 73.9	1.58 1.65 1.45 1.79	564 583 520 640	10 10 <10 20	50 50 30 80	<0.5 <0.5 <0.5 1.5	8 8 <2 10	0.98 1.02 0.87 1.09	19.4 20.0 17.9 22.9	747 782 679 833	46 48 42 54	8290 8560 7780 8960	4.54 4.71 4.18 5.14	<10 <10 <10 30	0.558 0.582 0.490 0.610
MRCA-21 Target Range - Lower Bour Upper Bour OREAS 139 Target Range - Lower Bour Upper Bour OREAS 47	nd nd	78.7 70.1 86.1	0.66 0.63 0.79	322 288 356	<10 <10 20	20 2630 3590	1.2 <0.5 2.5	10 3 12	1.14 1.02 1.26	264 252 309	22 19 26	15 13 19	282 249 289	11.35 10.50 12.85	<10 <10 30	3.99 3.76 4.60
Target Range - Lower Bour Upper Bour OREAS-45h Target Range - Lower Bour Upper Bour	nd nd	<0.2 <0.2 0.5	4.27 3.49 4.29	9 4 13	10 <10 20	290 220 320	0.9 <0.5 1.9	3 <2 4	0.11 0.08 0.13	<0.5 <0.5 1.0	79 70 88	507 456 560	725 666 768	18.40 16.35 20.0	20 <10 40	0.026
							BL	ANKS								
BLANK Target Range – Lower Bour Upper Bour BLANK Target Range – Lower Bour Upper Bour	nd nd	<0.2 <0.2 0.4	<0.01 <0.01 0.02	<2 <2 4	<10 <10 20	<10 <10 20	<0.5 <0.5 1.0	<2 <2 4	<0.01 <0.01 0.02	<0.5 <0.5 1.0	<1 <1 2	<1 <1 2	<1 <1 2	<0.01 <0.01 0.02	<10 <10 20	<0.005 <0.005 0.010
							DUPL	ICATES								
ORIGINAL DUP Target Range – Lower Bour Upper Bour							501.5									

^{****} See Appendix Page for comments regarding this certificate ****

To: COBALT RESOURCES INC. 1ST FLOOR, 8 PARLIAMENT PLACE WEST PERTH WA 6005 AUSTRALIA Page: 2 – B Total # Pages: 3 (A – F) Plus Appendix Pages Finalized Date: 30–JAN–2023 Account: CRISQGX

									QC	CERTII	FICATE	OF ANA	ALYSIS	TM22	36229	4
Sample Description	Method Analyte Units LOD	ME-ICP41 La ppm 10	ME-ICP41 Li ppm 10	ME-ICP41 K % 0.01	ME-ICP41 Mg % 0.01	ME-ICP41 Mn ppm 5	ME-ICP41 Mo ppm 1	ME-ICP41 Na % 0.01	ME-ICP41 Ni ppm 1	ME-ICP41 P ppm 10	ME-ICP41 Pb ppm 2	ME-ICP41 S % 0.01	ME-ICP41 Sb ppm 2	ME-ICP41 Sc ppm 1	ME-ICP41 Sr ppm 1	ME-ICP41 Th ppm 20
							STAN	IDARDS								
EMOG-17 EMOG-17 Target Range - Lower I Upper E		20 20 <10 40	20 20 <10 40	0.67 0.69 0.60 0.76	0.77 0.80 0.69 0.87	623 645 598 742	1045 1090 970 1190	0.17 0.18 0.15 0.20	7630 7920 6930 8470	740 770 680 850	7130 7450 6500 7950	3.07 3.17 2.90 3.56	686 714 572 778	5 5 3 7	54 56 47 59	<20 <20 <20 50
MRCA-21 Target Range - Lower I Upper E OREAS 139 Target Range - Lower I Upper E OREAS 47	Bound Bound	10 <10 40	20 <10 40	0.32 0.31 0.41	0.38 0.35 0.45	5810 5560 6800	11 7 12	0.01 <0.01 0.02	45 30 39	900 800 1000	>10000 20100 >10000	>10.0 14.35 10.00	65 40 58	2 <1 5	52	<20 <20 50
Target Range – Lower I Upper E OREAS-45h Target Range – Lower I Upper E	Bound Bound	10 <10 30	10 <10 30	0.09 0.06 0.11	0.19 0.14 0.19	256 229 291	1 <1 3	0.03 <0.01 0.06	371 312 384	180 150 210	13 6 15	0.03 <0.01 0.05	<2 <2 4	49 44 56	16 13 18	<20 <20 50
							BL	ANKS								
BLANK Target Range – Lower I Upper E BLANK Target Range – Lower I Upper E	Bound Bound	<10 <10 20	<10 <10 20	<0.01 <0.01 0.02	<0.01 <0.01 0.02	<5 <5 10	<1 <1 2	<0.01 <0.01 0.02	1 <1 2	<10 <10 20	<2 <2 4	<0.01 <0.01 0.02	<2 <2 4	<1 <1 2	<1 <1 2	<20 <20 40
							DUPL	ICATES								
ORIGINAL DUP Target Range – Lower E Upper E																

^{****} See Appendix Page for comments regarding this certificate ****

To: COBALT RESOURCES INC. 1ST FLOOR, 8 PARLIAMENT PLACE WEST PERTH WA 6005 AUSTRALIA Page: 2 - C Total # Pages: 3 (A - F) Plus Appendix Pages Finalized Date: 30-JAN-2023 Account: CRISQGX

									QC	CERTIF	ICATE	OF ANA	ALYSIS	TM22	36229	4
Sample Description	Method Analyte Units LOD	ME-ICP41 Ti % 0.01	ME-ICP41 TI ppm 10	ME-ICP41 U ppm 10	ME-ICP41 V ppm 1	ME-ICP41 W ppm 10	ME-ICP41 Zn ppm 2	AuME-TL43 Au ppm 0.001	AuME-TL43 Ag ppm 0.01	AuME-TL43 Al % 0.01	AuME-TL43 As ppm 0.1	AuME-TL43 B ppm 10	AuME-TL43 Ba ppm 10	AuME-TL43 Be ppm 0.05	AuME-TL43 Bi ppm 0.01	AuME-TL43 Ca % 0.01
							STAN	IDARDS								
EMOG-17 EMOG-17 Target Range - Lower Upper		0.21 0.22 0.18 0.25	<10 <10 <10 20	<10 <10 <10 20	63 65 58 74	<10 10 <10 20	7160 7380 6780 8290									
MRCA-21 Target Range - Lower Upper OREAS 139		0.01	10	<10	35	<10	>10000	0.121 0.116 0.144	8.00 7.59 9.29	1.97 1.81 2.23	18.9 17.0 21.0	10 <10 30	60 50 110	1.51 1.38 1.80	1.51 1.39 1.73	0.44 0.38 0.49
Target Range - Lower Upper OREAS 47 Target Range - Lower Upper	Bound Bound	<0.01 0.04	<10 30	<10 30	32 41	<10 20	122500 >10000	0.030 0.025 0.033	0.12 0.08 0.13	0.74 0.72 0.90	10.3 8.5 10.6	<10	60 40 90	0.17 0.07 0.29	0.15 0.11 0.17	0.52 0.48 0.61
OREAS-45h Target Range - Lower Upper	Bound	0.12 0.09 0.14	<10 <10 20	<10 <10 20	225 209 257	<10 <10 20	26 21 32									
							BL	ANKS								
BLANK Target Range - Lower Upper BLANK		<0.01	<10	<10	<1	<10	<2	<0.001 <0.001 0.002	<0.01 <0.01 0.02	<0.01 <0.01 0.02	<0.1 <0.1 0.2	<10 <10 20	<10 <10 20	<0.05 <0.05 0.10	<0.01 <0.01 0.02	<0.01 <0.01 0.02
Target Range - Lower Upper		<0.01 0.02	<10 20	<10 20	<1 2	<10 20	<2 4									
							DUPL	ICATES								
ORIGINAL DUP Target Range - Lower	Bound							<0.001 <0.001 <0.001	0.25 0.25 0.23	1.48 1.42 1.37	9.0 8.9 8.4	10 10 <10	90 90 70	0.80 0.78 0.70	1.15 1.15 1.08	1.13 1.08 1.04
larget kange - Lower Upper								0.002	0.27	1.53	9.5	20	110	0.88	1.22	1.17

^{****} See Appendix Page for comments regarding this certificate ****

To: COBALT RESOURCES INC. 1ST FLOOR, 8 PARLIAMENT PLACE WEST PERTH WA 6005 AUSTRALIA Page: 2 - D Total # Pages: 3 (A - F) Plus Appendix Pages Finalized Date: 30-JAN-2023 Account: CRISQGX

									QC	CERTIF	ICATE	OF ANA	ALYSIS	TM22	36229	4
Sample Description	Method Analyte Units LOD	AuME-TL43 Cd ppm 0.01	AuME-TL43 Ce ppm 0.02	AuME-TL43 Co ppm 0.1	AuME-TL43 Cr ppm 1	AuME-TL43 Cs ppm 0.05	AuME-TL43 Cu ppm 0.2	AuME-TL43 Fe % 0.01	AuME-TL43 Ga ppm 0.05	AuME-TL43 Ge ppm 0.05	AuME-TL43 Hf ppm 0.02	AuME-TL43 Hg ppm 0.01	AuME-TL43 In ppm 0.005	AuME-TL43 K % 0.01	AuME-TL43 La ppm 0.2	AuME-TL43 Li ppm 0.1
							STAN	DARDS								
EMOG-17 EMOG-17 Target Range - Lower	Bound Bound															
MRCA-21		1.97	43.3	29.2	52	9.83	950	3.19	9.53	0.12	0.20	0.07	0.115	1.00	25.6	47.0
Target Range - Lower Upper	Bound Bound	1.86 2.30	40.3 49.3	28.0 34.4	46 58	8.77 10.85	887 1020	2.96 3.64	8.91 11.00	<0.05 0.23	0.19 0.29	0.04	0.103 0.137	0.91	23.1 28.7	42.5 52.1
OREAS 139 Target Range - Lower																
OREAS 47 Target Range - Lower	. Dad	0.53	45.3 38.1	51.0 42.7	28 26	1.24 0.96	158.0 148.5	1.49	2.92 2.53	0.09 <0.05	0.15 0.10	0.02 <0.01	0.037	0.10	27.1 22.5	8.2 7.8
Upper		0.56	46.6	52.4	34	1.28	171.5	1.74	3.21	0.18	0.10	0.04	0.049	0.14	27.9	9.8
OREAS-45h Target Range - Lower Upper	Bound Bound						RI A	ANKS								
RLANK		<0.01	<0.02	<0.1	<1	< 0.05	<0.2	<0.01	< 0.05	< 0.05	<0.02	< 0.01	< 0.005	<0.01	<0.2	<0.1
Target Range - Lower Upper	Bound Bound	<0.01 0.02	<0.02 0.04	<0.1 0.2	<1 2	<0.05 0.10	<0.2 0.4	<0.01 <0.02	<0.05 0.10	<0.05 0.10	<0.02 0.04	<0.01 0.02	<0.005 0.010	<0.01 0.02	<0.2 0.4	<0.1 0.2
BLANK Target Range – Lower Upper	Bound Bound															
							DUPL	ICATES								
ORIGINAL DUP		0.80 0.79	30.9 31.3	13.7 13.9	21 20	1.84 1.75	72.8 72.8	3.99 3.96	5.96 5.96	0.12 0.10	80.0 80.0	0.05	0.052 0.052	0.45 0.43	15.5 15.2	16.2 15.7
Target Range – Lower Upper	Bound Bound	0.75 0.84	29.5 32.7	13.0 14.6	18 23	1.66 1.93	70.1 75.5	3.77 4.18	5.61 6.31	<0.05 0.17	0.06 0.10	0.04 0.06	0.044 0.060	0.41 0.47	14.4 16.3	15.1 16.8

^{****} See Appendix Page for comments regarding this certificate ****

To: COBALT RESOURCES INC. 1ST FLOOR, 8 PARLIAMENT PLACE WEST PERTH WA 6005 AUSTRALIA Page: 2 – E Total # Pages: 3 (A – F) Plus Appendix Pages Finalized Date: 30–JAN–2023 Account: CRISQGX

									QC	CERTIF	ICATE	OF ANA	ALYSIS	TM22	36229	4
Sample Description	Method Analyte Units LOD	AuME-TL43 Mg % 0.01	AuME-TL43 Mn ppm 5	AuME-TL43 Mo ppm 0.05	AuME-TL43 Na % 0.01	AuME-TL43 Nb ppm 0.05	AuME-TL43 Ni ppm 0.2	AuME-TL43 P ppm 10	AuME-TL43 Pb ppm 0.2	AuME-TL43 Rb ppm 0.1	AuME-TL43 Re ppm 0.001	AuME-TL43 S % 0.01	AuME-TL43 Sb ppm 0.05	AuME-TL43 Sc ppm 0.1	AuME-TL43 Se ppm 0.2	AuME-TL43 Sn ppm 0.2
							STAN	DARDS								
EMOG-17 EMOG-17 Target Range - Lower Upper	Bound Bound															
MRCA-21 Target Range - Lower	Pound	0.71 0.63	7860 7360	24.3 21.6	0.14 0.11	0.26	937 860	610 560	852 796	100.0 95.3	0.013	0.40	19.00 17.30	8.5 7.5	1.1 0.6	3.7 3.2
Upper		0.79	9000	26.5	0.16	0.45	1050	700	974	116.5	0.015	0.48	23.5	9.4	1.5	4.3
OREAS 139 Target Range - Lower Upper																
OREAS 47 Target Range - Lower		0.43	248 217	13.70 11.40	0.07	0.33	84.2 71.8	530	275 255	7.4 6.0	<0.001 <0.001	0.05	0.21	2.9 2.5	0.2 <0.2	2.4
Upper	Bound	0.51	277	14.00	0.10	0.41	88.2		313	7.6	0.003	0.07	0.32	3.3	0.5	2.7
OREAS-45h Target Range - Lower Upper																
							BL/	ANKS								
BLANK Target Range - Lower	Bound	<0.01 <0.01	<5 <5	<0.05 <0.05	<0.01 <0.01	<0.05 <0.05	<0.2 <0.2	<10 <10	<0.2 <0.2	<0.1 <0.1	<0.001 <0.001	<0.01 <0.01	<0.05 <0.05	<0.1 <0.1	<0.2 <0.2	<0.2 <0.2
Upper		0.02	10	0.10	0.02	0.10	0.4	20	0.4	0.2	0.002	0.02	0.10	0.2	0.4	0.4
Target Range - Lower Upper																
							DUPL	ICATES								
ORIGINAL DUP		1.07 1.04	758 735	0.58 0.60	0.01 0.01	0.33	20.0 20.0	490 480	40.3 40.1	33.4 32.8	<0.001	0.01 0.01	0.59 0.61	3.6 3.6	0.6 0.4	0.7 0.7
Target Range - Lower Upper		0.99 1.12	704 789	0.51 0.67	<0.01 0.02	0.29 0.43	18.8 21.2	450 520	38.0 42.4	31.3 34.9	<0.001 0.002	<0.01 0.02	0.51 0.70	3.3 3.9	0.3 0.7	0.5 0.9

^{****} See Appendix Page for comments regarding this certificate ****

To: COBALT RESOURCES INC. 1ST FLOOR, 8 PARLIAMENT PLACE WEST PERTH WA 6005 AUSTRALIA Page: 2 – F Total # Pages: 3 (A – F) Plus Appendix Pages Finalized Date: 30–JAN–2023 Account: CRISQGX

								,		CERTII		OF ANA	ALYSIS	TM22362294	
Sample Description	Method Analyte Units LOD	AuME-TL43 Sr ppm 0.2	AuME-TL43 Ta ppm 0.01	AuME-TL43 Te ppm 0.01	AuME-TL43 Th ppm 0.2	AuME-TL43 Ti % 0.005	AuME-TL43 TI ppm 0.02	AuME-TL43 U ppm 0.05	AuME-TL43 V ppm 1	AuME-TL43 W ppm 0.05	AuME-TL43 Y ppm 0.05	AuME-TL43 Zn ppm 2	AuME-TL43 Zr ppm 0.5		
							STAN	DARDS							
EMOG-17 EMOG-17 Target Range - Lower	. David														
Upper	Bound	32.6	<0.01	0.12	4.4	0.265	0.81	3.59	62	5.16	11.35	789	5.9		
	Bound Bound	29.6 36.6	<0.01 <0.01 0.03	0.12 0.10 0.16	3.5 4.7	0.233 0.295	0.81 0.70 1.00	3.07 3.87	56 70	4.11 5.67	10.05 12.35	721 885	5.0 8.3		
OREAS 139 Target Range – Lower Upper	Bound Bound														
OREAS 47 Target Range - Lower		31.4 27.2 33.6	<0.01 <0.01 0.02	0.02 <0.01 0.03	3.6 2.5 3.6	0.061 0.050 0.076	0.08 0.03 0.12	0.45 0.30 0.54	22 20 27	0.11 <0.05 0.21	5.74 4.68 5.83	202 190 236	5.5 3.8 6.9		
OREAS-45h Target Range - Lower															
							BLA	ANKS							
	Bound Bound	<0.2 <0.2 0.4	<0.01 <0.01 0.02	<0.01 <0.01 0.02	<0.2 <0.2 0.4	<0.005 <0.005 0.010	<0.02 <0.02 0.04	<0.05 <0.05 0.10	<1 <1 2	<0.05 <0.05 0.10	<0.05 <0.05 0.10	<2 <2 4	<0.5 <0.5 1.0		
BLANK Target Range - Lower Upper	Bound Bound														
							DUPL	ICATES							
ORIGINAL DUP		38.0 38.1	<0.01 <0.01	0.12 0.11	11.9 13.1	0.076 0.072	0.22 0.22	1.27	42 42	0.40 0.48	8.17 8.05	192 187	3.1 3.2		
Target Range - Lower Upper	Bound Bound	35.9 40.2	<0.01 0.02	0.10 0.13	11.7 13.3	0.065 0.083	0.18 0.26	1.20 1.43	39 45	0.36 0.52	7.65 8.57	178 201	2.4 3.9		

^{****} See Appendix Page for comments regarding this certificate ****

To: COBALT RESOURCES INC. 1ST FLOOR, 8 PARLIAMENT PLACE WEST PERTH WA 6005 AUSTRALIA Page: 3 – A Total # Pages: 3 (A – F) Plus Appendix Pages Finalized Date: 30–JAN–2023 Account: CRISQGX

									QC	CERTI	FICATE	OF ANA	ALYSIS	TM22	36229	4
Sample Description	Method Analyte Units LOD	ME-ICP41 Ag ppm 0.2	ME-ICP41 Al % 0.01	ME-ICP41 As ppm 2	ME-ICP41 B ppm 10	ME-ICP41 Ba ppm 10	ME-ICP41 Be ppm 0.5	ME-ICP41 Bi ppm 2	ME-ICP41 Ca % 0.01	ME-ICP41 Cd ppm 0.5	ME-ICP41 Co ppm 1	ME-ICP41 Cr ppm 1	ME-ICP41 Cu ppm 1	ME-ICP41 Fe % 0.01	ME-ICP41 Ga ppm 10	Hg-MS42 Hg ppm 0.005
							DUPL	ICATES								
Q296516 DUP Target Range – Lower Upper	Bound Bound	0.8 0.9 0.6 1.1	1.28 1.33 1.23 1.38	43 44 39 48	<10 <10 <10 20	10 10 <10 20	<0.5 <0.5 <0.5 1.0	<2 <2 <2 4	0.32 0.34 0.30 0.36	<0.5 <0.5 <0.5 1.0	28 28 26 30	141 147 136 152	146 155 144 157	3.33 3.45 3.21 3.57	10 10 <10 20	0.049 0.054 0.044 0.059

^{*****} See Appendix Page for comments regarding this certificate *****

 To: COBALT RESOURCES INC. 1ST FLOOR, 8 PARLIAMENT PLACE WEST PERTH WA 6005 AUSTRALIA Page: 3 – A Total # Pages: 3 (A – F) Plus Appendix Pages Finalized Date: 30–JAN–2023 Account: CRISQGX

									QC	CERTI	FICATE	OF AN	ALYSIS	TM22	36229	4
Sample Description	Method Analyte Units LOD	ME-ICP41 Ag ppm 0.2	ME-ICP41 AI % 0.01	ME-ICP41 As ppm 2	ME-ICP41 B ppm 10	ME-ICP41 Ba ppm 10	ME-ICP41 Be ppm 0.5	ME-ICP41 Bi ppm 2	ME-ICP41 Ca % 0.01	ME-ICP41 Cd ppm 0.5	ME-ICP41 Co ppm 1	ME-ICP41 Cr ppm 1	ME-ICP41 Cu ppm 1	ME-ICP41 Fe % 0.01	ME-ICP41 Ga ppm 10	Hg-MS42 Hg ppm 0.005
							DUPL	ICATES								
Q296516 DUP Target Range – Lowe Upper	r Bound Bound	0.8 0.9 0.6 1.1	1.28 1.33 1.23 1.38	43 44 39 48	<10 <10 <10 20	10 10 <10 20	<0.5 <0.5 <0.5 1.0	<2 <2 <2 4	0.32 0.34 0.30 0.36	<0.5 <0.5 <0.5 1.0	28 28 26 30	141 147 136 152	146 155 144 157	3.33 3.45 3.21 3.57	10 10 <10 20	0.049 0.054 0.044 0.059

^{****} See Appendix Page for comments regarding this certificate ****

To: COBALT RESOURCES INC. 1ST FLOOR, 8 PARLIAMENT PLACE WEST PERTH WA 6005 AUSTRALIA Page: 3 - B Total # Pages: 3 (A - F) Plus Appendix Pages Finalized Date: 30-JAN-2023 Account: CRISQGX

								,								
									QC	CERTI	FICATE	OF AN	ALYSIS	TM22	36229	4
Sample Description	Method Analyte Units LOD	ME-ICP41 La ppm 10	ME-ICP41 Li ppm 10	ME-ICP41 K % 0.01	ME-ICP41 Mg % 0.01	ME-ICP41 Mn ppm 5	ME-ICP41 Mo ppm 1	ME-ICP41 Na % 0.01	ME-ICP41 Ni ppm 1	ME-ICP41 P ppm 10	ME-ICP41 Pb ppm 2	ME-ICP41 S % 0.01	ME-ICP41 Sb ppm 2	ME-ICP41 Sc ppm 1	ME-ICP41 Sr ppm 1	ME-ICP41 Th ppm 20
							DUPL	LICATES								
Q296516 DUP Target Range – Lower Upper	Bound Bound	10 10 <10 20	30 30 20 40	0.14 0.14 0.12 0.16	1.35 1.42 1.31 1.46	434 453 416 471	3 3 2 4	0.04 0.04 0.03 0.05	83 85 79 89	320 340 300 360	208 216 199 225	0.95 0.98 0.91 1.02	<2 2 <2 4	2 2 <1 3	3 4 2 5	<20 <20 <20 40

^{****} See Appendix Page for comments regarding this certificate ****

To: COBALT RESOURCES INC. 1ST FLOOR, 8 PARLIAMENT PLACE WEST PERTH WA 6005 AUSTRALIA Page: 3 - C Total # Pages: 3 (A - F) Plus Appendix Pages Finalized Date: 30-JAN-2023 Account: CRISQGX

									QC	CERTII	FICATE	OF ANA	ALYSIS	TM22	36229	4
Sample Description	Method Analyte Units LOD	ME-ICP41 Ti % 0.01	ME-ICP41 TI ppm 10	ME-ICP41 U ppm 10	ME-ICP41 V ppm 1	ME-ICP41 W ppm 10	ME-ICP41 Zn ppm 2	AuME-TL43 Au ppm 0.001	AuME-TL43 Ag ppm 0.01	AuME-TL43 Al % 0.01	AuME-TL43 As ppm 0.1	AuME-TL43 B ppm 10	AuME-TL43 Ba ppm 10	AuME-TL43 Be ppm 0.05	AuME-TL43 Bi ppm 0.01	AuME-TL43 Ca % 0.01
							DUPL	ICATES								
Q296516 DUP Target Range – Lower Upper	Bound Bound	0.05 0.05 0.04 0.06	<10 <10 <10 20	<10 <10 <10 20	47 49 45 51	<10 <10 <10 20	98 109 96 111									

^{****} See Appendix Page for comments regarding this certificate ****

To: COBALT RESOURCES INC. 1ST FLOOR, 8 PARLIAMENT PLACE WEST PERTH WA 6005 AUSTRALIA

Page: 3 - D Total # Pages: 3 (A - F) Plus Appendix Pages Finalized Date: 30-JAN-2023 Account: CRISQGX

(ALS)			iobai.com/	geochenns	,										Account	CRISQG)
		Project: WALDMAN PROPERTY														
									QC	CERTIFICATE OF AN			ALYSIS	TM22362294		4
Sample Description	Method Analyte Units LOD	AuME-TL43 Cd ppm 0.01	AuME-TL43 Ce ppm 0.02	AuME-TL43 Co ppm 0.1	AuME-TL43 Cr ppm 1	AuME-TL43 Cs ppm 0.05	AuME-TL43 Cu ppm 0.2	AuME-TL43 Fe % 0.01	AuME-TL43 Ga ppm 0.05	AuME-TL43 Ge ppm 0.05	AuME-TL43 Hf ppm 0.02	AuME-TL43 Hg ppm 0.01	AuME-TL43 In ppm 0.005	AuME-TL43 K % 0.01	AuME-TL43 La ppm 0.2	AuME-TL43 Li ppm 0.1
							DUPL	ICATES								
Q296516 DUP Target Range – Lower Upper	Bound Bound															

^{****} See Appendix Page for comments regarding this certificate ****

To: COBALT RESOURCES INC. 1ST FLOOR, 8 PARLIAMENT PLACE WEST PERTH WA 6005 AUSTRALIA Page: 3 – E Total # Pages: 3 (A – F) Plus Appendix Pages Finalized Date: 30–JAN–2023 Account: CRISQGX

									ect. WALD								
									QC CERTIFICATE OF ANALYSIS						TM22362294		
Sample Description	Method Analyte Units LOD	AuME-TL43 Mg % 0.01	AuME-TL43 Mn ppm 5	AuME-TL43 Mo ppm 0.05	AuME-TL43 Na % 0.01	AuME-TL43 Nb ppm 0.05	AuME-TL43 Ni ppm 0.2	AuME-TL43 P ppm 10	AuME-TL43 Pb ppm 0.2	AuME-TL43 Rb ppm 0.1	AuME-TL43 Re ppm 0.001	AuME-TL43 S % 0.01	AuME-TL43 Sb ppm 0.05	AuME-TL43 Sc ppm 0.1	AuME-TL43 Se ppm 0.2	AuME-TL43 Sn ppm 0.2	
							DUPL	ICATES									
Q296516 DUP Target Range – Lower Upper	Bound Bound																

 $[\]ensuremath{^{\diamond\diamond\diamond\diamond\diamond}}$ See Appendix Page for comments regarding this certificate $\ensuremath{^{\diamond\diamond\diamond\diamond\diamond}}$

ALS Canada Ltd.
2103 Dollarton Hwy
North Vancouver BC V7H 0A7
Phone: +1 604 984 0221 Fax: +1 604 984 0218
WWw.alsglobal.com/geochemistry

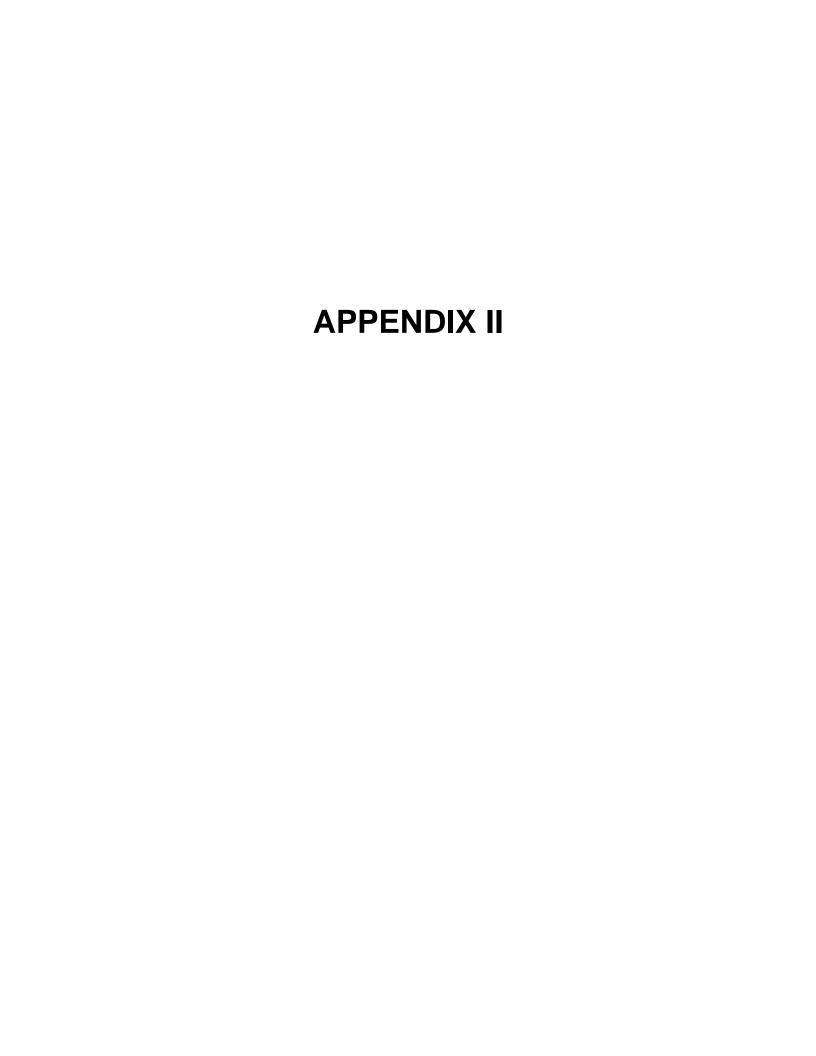
To: COBALT RESOURCES INC. 1ST FLOOR, 8 PARLIAMENT PLACE WEST PERTH WA 6005 AUSTRALIA

Page: 3 - F Total # Pages: 3 (A - F) Plus Appendix Pages Finalized Date: 30-JAN-2023 Account: CRISQGX

Project: WALDMAN PROPERTY

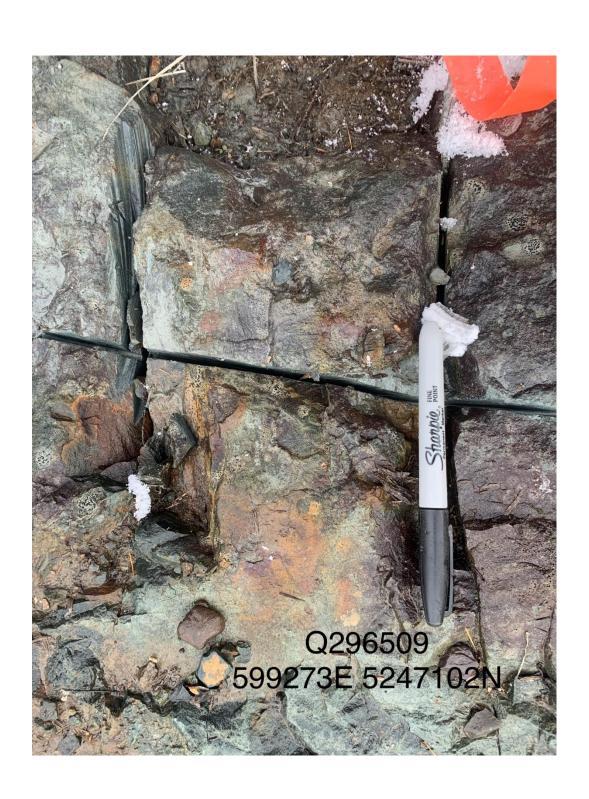
									QC	CERTII	FICATE	OF ANA	ALYSIS	TM22362294	
Sample Description	Method Analyte Units LOD	AuME-TL43 Sr ppm 0.2	AuME-TL43 Ta ppm 0.01	AuME-TL43 Te ppm 0.01	AuME-TL43 Th ppm 0.2	AuME-TL43 Ti % 0.005	AuME-TL43 TI ppm 0.02	AuME-TL43 U ppm 0.05	AuME-TL43 V ppm 1	AuME-TL43 W ppm 0.05	AuME-TL43 Y ppm 0.05	AuME-TL43 Zn ppm 2	AuME-TL43 Zr ppm 0.5		
							DUPL	ICATES							
Q296516 DUP															
Target Range - Lower Upper	Bound Bound														

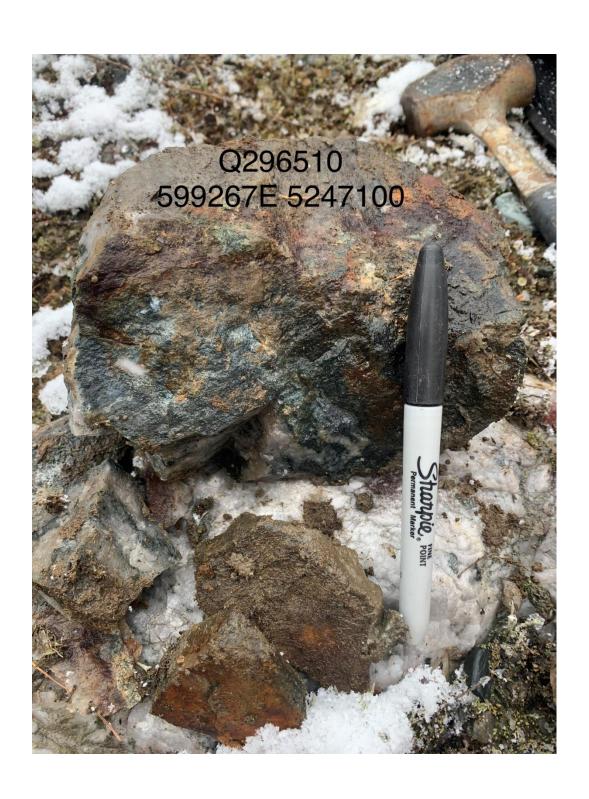
^{****} See Appendix Page for comments regarding this certificate ****


ALS Canada Ltd.
2103 Dollarton Hwy
North Vancouver BC V7H 0A7
Phone: +1 604 984 0221 Fax: +1 604 984 0218
WWw.alsglobal.com/geochemistry

To: COBALT RESOURCES INC. 1ST FLOOR, 8 PARLIAMENT PLACE WEST PERTH WA 6005 AUSTRALIA

Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 30–JAN–2023 Account: CRISQGX


Project: WALDMAN PROPERTY


		QC CERTIFICATE OF ANALYSIS	TM22362294				
	CERTIFICATE (COMMENTS					
	LABORATORY ADDRESSES Processed at ALS Vancouver located at 2103 Dollarton Hwy, North Vancouver, BC, Canada.						
Applies to Method:	AuME-TL43 Hg-MS42	ME-ICP41					
	Processed at ALS Timmins located at Unit 10 - 2090 River	rside Drive, Timmins, ON, Canada.					
Applies to Method:	CRU-31 CRU-QC	LOG-21	PUL-31				
	PUL-QC SPL-21	WEI-21					

