
We are committed to providing <u>accessible customer service</u>. If you need accessible formats or communications supports, please <u>contact us</u>.

Nous tenons à améliorer <u>l'accessibilité des services à la clientèle</u>. Si vous avez besoin de formats accessibles ou d'aide à la communication, veuillez <u>nous contacter</u>.

Assessment Report on Exploration on the Dalton Mills Claims, Echum and Laforme Townships, Ontario

UTM 16U 716945mE 5332060mN 350m asl

Report Prepared for 12551110 Canada Inc.

Report Prepared By:

Ryder & Associates, 118 Fletcher St. Bradford, ON L3Z-2Y9

February 25th 2023

Assessment Report on Exploration on the Dalton Mills, Claims Echum and Laforme Townships, Ontario

UTM 16U 716945mE 5332060mN 350m asl

12551110 Canada Inc. 10 Malvern Court, Brampton, Ontario, Canada L6W 1H1

Ryder & Associates 118 Fletcher St. Bradford, ON

Canada L3Z-2Y9

RA Project Number DMAR2301

Effective Date: 25 February 2023 Signature Date: 25 February 2023

Author(s):

John M. Ryder P.Geo. (ON # 2105)

Notice/Avis

This Assessment Report was prepared for 12551110 Canada Inc. by Ryder & Associates, Bradford, ON, Canada. Estimates, information, conclusions, and recommendations are consistent with the information received from outside sources, information generated as a result of works overseen by the author, and the assumptions and conditions specified in this Assessment Report.

This Assessment Report is intended for 12551110 Canada Inc. as part of a scope of work agreed with 12551110 Canada Inc. under relevant securities legislation. Except for uses defined under the Ontario Mining Act as well as under the Business Corporations Acts of Provinces in which 12551110 Canada Inc. is a non reporting issuer, all other uses are at the sole risk of the reader.

© 2023 Ryder & Associates. All rights reserved, except in accordance with regulatory authority policies and requirements.

Contents

1.0 Summary	6
1.1 Scope of Work and Location	6
1.2 Tenure and Encumbrances	6
1.3 History	7
1.4 Geology & Mineralization	7
1.5 Exploration	7
1.6 Conclusions	7
1.7 Recommendations	7
2.0 Introduction	8
2.1 Introduction and Terms of Reference	8
2.2 Site Visits	8
2.3 Sources of Information	8
2.4 Disclaimer	8
3.0 ClaimsDescription	9
3.1 Project Location	9
3.2 Tenure	9
3.4 Permits	11
3.4 Royalties and Taxes	11
3.5 Environmental Liabilities	11
4.0 Accessibility, Climate, Local Resources, Infrastructure, and Physiography	
4.1 Accessibility	
4.2 Climate	
4.3 Local Resources	14
4.4 Infrastructure	14
4.5 Physiography	14
5.0 History	16
6.0 Geological Setting and Mineralization	17
6.1 Regional & Local Geology	17
6.2 Claims Geology	22
6.3 Mineralization	22
7.0 Exploration	23
7.1 Spectral Analysis (SWIR)Helium, Hydrogen & Methane Gas Survey	23
7.2 Helium	23
7.3 Hydrogen	23
7.4 Methane	23

8.0 Interpretation	29
9.0 Conclusions	
10.0 Recommendations	
11.0 Cited References	

Figures

Figure 1.1 Location Map6
Figure 3.1 Claim Location Map 9
Figure 3.2 Dalton Mills Claims11
Figure 4.1 Claim Access – Logging Roads & Trails12
Figure 4.2 Climate Wawa Airport13
Figure 4.3 Temperature Data13
Figure 4.4 NDVI Image15
Figure 4.5 VNIR Image15
Figure 6.1 Tectonic Map of North America17
Figure 6.2 Terrane and Geological map18
Figure 6.3 Regional Geology – Sub provinces19
Figure 6.4 Local Geology20
Figure 6.3 Dalton Mills Claims Geology22
Figure 7.1 Helium, Hydrogen & Methane Over Island Gold Shaft23
Figure 7.2 Helium Gas Spectrum25
Figure 7.3 Spectral bands For Sentinel-2 Sensors25
Figure 7.4 Helium Abundance Map26
Figure 7.5 Hydrogen Sources -Geological Environments27
Figure 7.6 Hydrogen Abundance Map27
Figure 7.7 Methane Abundance Map28
Figure 8.1 Gas Overlap Map + Targets29
Tables
Table 1 Dalton Mills Claim Data
Table 2 Helium Content of Certain Minerals 24

Frontispiece: Dalton Mills Claims on Sentinel Satellite False Colour Image

1.0 Summary

1.1 Scope of Work and Location

This report was prepared by Ryder & Associates ("RA") at the request of Mr. Jim Steel, CEO of 12551110 Canada Inc. ("12551110") an Ontario based, privately held company that does not have Reporting Issuer status. The purpose of this report is to satisfy assessment requirements for the Dalton Mills claims totalling 72 claims located in Echum and Laforme Townships in the Sault Ste. Marie Mining District. as described under Section 65 (1) of the *Mining Act* and Ontario Regulation 65/18.

The aim of the work was to identify gas anomalies/targets that maybe related to gold and/or uranium/rare earth mineralization and assist in prioritizing previous gold and metallic targets outlined by 2002-2022 exploration.

The Dalton Mills claims are located in northern Ontario, approximately 175 km directly north of the city of Sault Ste. Marie and 70 km directly north east of the town of Wawa, in the Echum and Laforme Townships on the 1:250,000 NTS sheet 042C.

Figure 1.1 Location Map

1.2 Tenure and Encumbrances

The Dalton Mills Block total 72 contiguous mining claims for combined 1,552.77 hectares. Required work for 34 contiguous claims due in March 2023 totals \$27,200.00 with a reserve of \$24,169.00 available.

As of the date of this report there are no encumbrances on the claims in question, save the requirement to file annual assessment.

1.3 History

Initial recorded exploration occurred in 1935 followed in the 1950's by drilling electromagnetic (EM) and magnetic anomalies for iron and base metals in the adjacent townships.

In the mid-1990's and early 2000's extensive diamond exploration programmes of airborne/ground geophysics, till sampling for indicator minerals, rock sampling and drilling were conducted by Canabrava, Kennecott and Chalice Diamonds Canada in their search for kimberlites. A number of kimberlite dykes were discovered.

2021-2022 Remote sensing surveys over the claims outlined gold targets.

1.4 Geology & Mineralization

The claims are underlain by Archean rocks of the Wawa subprovince, of the Superior Province. The Dalton Mills Claims are located between the Michipicoten Greenstone Belt on the west and the western margin of the Kapuskasing Structural Zone to the east. They are underlain by gneissic tonalite suite of rocks of the Wawa gneiss domain.

The Goudreau Gold Camp including the Island Lake and Magino gold mines is approximately 30 kilometres to the north west of the Dalton Mills claims while the former Renabie Mine is located 35 kilometres to the north east. A number of kimberlite dykes and gold occurrences are located between 5 and 8 kilometres north of the Dalton Mills Claims.

1.5 Exploration

Exploration consisted of a Short-Wave InfraRed (SWIR) spectral gas survey namely helium, hydrogen and methane conducted over all the seventy-two (72) Dalton Mills Claims (Table 1) in February 2023 utilizing proprietary algorithms to build a digital signal model of the gasses by Aster Funds Ltd. of Toronto.

All data locations reported within are in UTM NAD 83, UTM zone 16U or WGH 84 latitude/longitude coordinates.

1.6 Conclusions

The Short-Wave Infrared remote sensing gas survey identified helium, hydrogen and methane over the Dalton Mills claims. A number of overlapping gas targets possibly related to gold and/or uranium plus rare earths were identified by the survey. Previous exploration delineated gold and metallic remote sensing targets. The current gas survey identified high abundance gas (Anomalies) spatially associated with a number of these targets.

1.7 Recommendations

It is recommended that prospecting over gas targets, integration of all data to prioritize targets for Mobile Metal Ion (MMI) soil surveys be conducted.

2.0 Introduction

2.1 Introduction and Terms of Reference

The following is a summary of remote sensing Short Wave Infrared gas survey conducted by Aster Funds Ltd over the seventy-two Dalton Mills Claims.

2.2 Site Visits

No site visits were made.

2.3 Sources of Information

This Report is based, in part, on internal company technical reports, and maps, published government reports and public information. Several sections from assessment and technical reports authored by other geoscientists have been directly quoted or summarized in this Report, and are so indicated where appropriate.

2.4 Disclaimer

This technical report represents the professional opinions of Ryder & Associates as to the interpretations to be made and conclusions drawn in light of information made available to, inspections performed by, and assumptions made by the author using his professional judgment and reasonable care. This document has been prepared based on a scope of work agreed with 12551110 Canada Inc. and is subject to inherent limitations in light of the scope of work, the methodology, procedures, and sampling techniques used. This document is meant to be read as a whole, and portions thereof should not be read or relied upon unless in the context of the whole.

The opinions expressed herein are based on data and information supplied by, or gathered from 12551110 Canada Inc., from regulatory filings of other companies, and from Government of Ontario geoscientific and related data. This document is written for the sole and exclusive benefit of 12551110 Canada Inc. Any other person or entity choosing to rely on this document does so at his/her own risk and the author disclaims all liability to any such person or entity.

Information on tenure was obtained from 12551110 Canada Inc. and the Ontario government MLAS website.

Any statements and opinions expressed in this document are given in good faith and in the belief that such statements and opinions are not false and misleading at the date of this Report.

3.0 Claims Description

3.1 Project Location

The Dalton Mills Claims (the Claims) are located in northern Ontario, approximately 175 km directly north of the city of Sault Ste. Marie and 70 km directly north east of the town of Wawa, in the Echum and Laforme Townships on the 1:250,000 NTS sheet 042C and 1:50,000 NT sheet 042C/01.

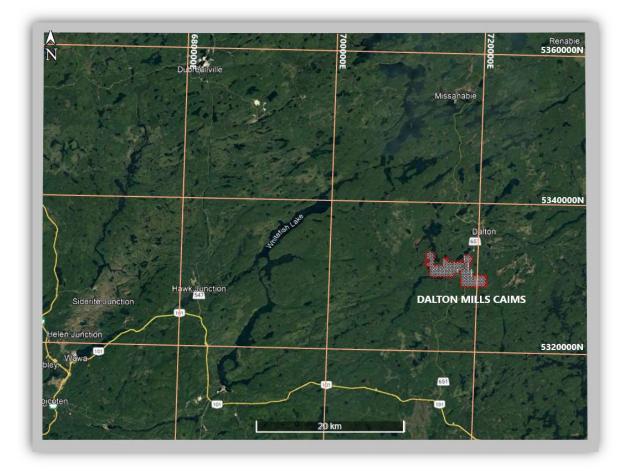


Figure 3.1 Dalton Mills Claims Location Map

The centre of the claim group is located at UTM 16U 716945mE 5332060mN 350m asl with the northern half of the claims in Echum Township and the southern half in Laforme Township.

°All data locations reported in UTM NAD 83, zone 16U or WGH 84 latitude/longitude.

3.2 Tenure

The Dalton Mills claims block is comprised of seventy-two (72) claims and totalling 1,552.77 hectares (Figure 3.1) above and in Table 1 overleaf.

CLAIM	PROJECT	CELL		ANNIVERSARY	CLAIM OWNER	TOWNSHIP	WORK	APPROVED	
#	NAME	ID	ТҮРЕ	DATE			REQUIRED	RES	SERVE
580835	Dalton Mills	42C01H230	SCMC	2023-03-05	(100) 12551110 Canada Inc.	ECHUM	\$ 800	\$	1
580836	Dalton Mills	42C01H231	SCMC	2023-03-05	(100) 12551110 Canada Inc.	ECHUM	\$ 800	\$	
580837	Dalton Mills	42C01H250	SCMC	2023-03-05	(100) 12551110 Canada Inc.	ECHUM	\$ 800	\$	
580838	Dalton Mills	42C01H251	SCMC	2023-03-05	(100) 12551110 Canada Inc.	ECHUM	\$ 800	\$	
580839	Dalton Mills	42C01H264	SCMC	2023-03-05	(100) 12551110 Canada Inc.	ECHUM	\$ 800	\$	
580840	Dalton Mills	42C01H265	SCMC	2023-03-05	(100) 12551110 Canada Inc.	ECHUM	\$ 800	\$	
580841	Dalton Mills	42C01H266	SCMC	2023-03-05	(100) 12551110 Canada Inc.	ECHUM	\$ 800	\$	190
580842	Dalton Mills	42C01H267	SCMC	2023-03-05	(100) 12551110 Canada Inc.	ECHUM	\$ 800	\$	358
580843	Dalton Mills	42C01H268	SCMC	2023-03-05	(100) 12551110 Canada Inc.	ECHUM	\$ 800	\$	358
580844	Dalton Mills	42C01H269	SCMC	2023-03-05	(100) 12551110 Canada Inc.	ECHUM	\$ 800	\$	1,275
580845	Dalton Mills	42C01H270	SCMC	2023-03-05	(100) 12551110 Canada Inc.	ECHUM	\$ 800	\$	1,275
580846	Dalton Mills	42C01H281	SCMC	2023-03-05	(100) 12551110 Canada Inc.	LAFORME, ECHUM	\$ 800	\$	358
580847	Dalton Mills	42C01H282	SCMC	2023-03-05	(100) 12551110 Canada Inc.	LAFORME, ECHUM	\$ 800	\$	35
580848 580849	Dalton Mills Dalton Mills	42C01H283 42C01H284	SCMC SCMC	2023-03-05 2023-03-05	(100) 12551110 Canada Inc. (100) 12551110 Canada Inc.	LAFORME, ECHUM	\$ 800 \$ 800	\$ \$	358 358
580850	Dalton Mills	42C01H284 42C01H285	SCMC	2023-03-05	(100) 12551110 Canada Inc.	LAFORME, ECHUM	\$ 800	ş Ş	35
580850	Dalton Mills	42C01H285 42C01H286	SCIVIC	2023-03-05	(100) 12551110 Canada Inc.	LAFORME, ECHUM	\$ 800 \$ 800	\$	35
580852	Dalton Mills	42C01H280 42C01H287	SCMC	2023-03-05	(100) 12551110 Canada Inc.	LAFORME, ECHUM	\$ 800	\$	35
580853	Dalton Mills	42C01H287 42C01H288	SCMC	2023-03-05	(100) 12551110 Canada Inc.	LAFORME, ECHUM	\$ 800	\$	35
580854	Dalton Mills	42C01H288	SCIVIC	2023-03-05	(100) 12551110 Canada Inc.	LAFORME, ECHUM	\$ 800	\$ \$	1,27
580855	Dalton Mills	42C01H289 42C01H290	SCIVIC	2023-03-05	(100) 12551110 Canada Inc. (100) 12551110 Canada Inc.	LAFORME, ECHUM	\$ 800 \$ 800	\$ \$	35
580855	Dalton Mills	42C01H290 42C01H301	SCMC	2023-03-05	(100) 12551110 Canada Inc.	LAFORME	\$ 800	ş Ş	35
580850	Dalton Mills	42C01H301 42C01H302	SCMC	2023-03-05	(100) 12551110 Canada Inc.	LAFORME	\$ 800	\$	35
580858	Dalton Mills	42C01H302 42C01H303	SCMC	2023-03-05	(100) 12551110 Canada Inc.	LAFORME	\$ 800	Ş	35
580858	Dalton Mills	42C01H303	SCMC	2023-03-05	(100) 12551110 Canada Inc.	LAFORME	\$ 800	\$	35
580855	Dalton Mills	42C01H305	SCMC	2023-03-05	(100) 12551110 Canada Inc.	LAFORME	\$ 800	\$	35
580861	Dalton Mills	42C01H306	SCMC	2023-03-05	(100) 12551110 Canada Inc.	LAFORME	\$ 800	\$	35
580862	Dalton Mills	42C01H307	SCMC	2023-03-05	(100) 12551110 Canada Inc.	LAFORME	\$ 800	\$	35
580863	Dalton Mills	42C01H321	SCMC	2023-03-05	(100) 12551110 Canada Inc.	LAFORME	\$ 800	\$	35
580864	Dalton Mills	42C01H322	SCMC	2023-03-05	(100) 12551110 Canada Inc.	LAFORME	\$ 800	\$	35
580865	Dalton Mills	42C01H323	SCMC	2023-03-05	(100) 12551110 Canada Inc.	LAFORME	\$ 800	Ś	35
580866	Dalton Mills	42C01H324	SCMC	2023-03-05	(100) 12551110 Canada Inc.	LAFORME	\$ 800	\$	35
580867	Dalton Mills	42C01H325	SCMC	2023-03-05	(100) 12551110 Canada Inc.	LAFORME	\$ 800	\$	35
580868	Dalton Mills	42C01H326	SCMC	2023-03-05	(100) 12551110 Canada Inc.	LAFORME	\$ 800	\$	
615738	Dalton Mills	42C01H309	SCMC	2023-10-20	(100) 12551110 Canada Inc.	LAFORME	\$ 400	\$	35
615739	Dalton Mills	42C01H310	SCMC	2023-10-20	(100) 12551110 Canada Inc.	LAFORME	\$ 400	\$	
615740	Dalton Mills	42C01H311	SCMC	2023-10-20	(100) 12551110 Canada Inc.	LAFORME	\$ 400	\$	35
615743	Dalton Mills	42C01H329	SCMC	2023-10-20	(100) 12551110 Canada Inc.	LAFORME	\$ 400	\$	34
615744	Dalton Mills	42C01H330	SCMC	2023-10-20	(100) 12551110 Canada Inc.	LAFORME	\$ 400	\$	34
615745	Dalton Mills	42C01H331	SCMC	2023-10-20	(100) 12551110 Canada Inc.	LAFORME	\$ 400	\$	
615746	Dalton Mills	42C01H349	SCMC	2023-10-20	(100) 12551110 Canada Inc.	LAFORME	\$ 400	\$	34
615747	Dalton Mills	42C01H350	SCMC	2023-10-20	(100) 12551110 Canada Inc.	LAFORME	\$ 400	\$	34
615748	Dalton Mills	42C01H351	SCMC	2023-10-20	(100) 12551110 Canada Inc.	LAFORME	\$ 400	\$	69
615749	Dalton Mills	42C01H352	SCMC	2023-10-20	(100) 12551110 Canada Inc.	LAFORME	\$ 400	\$	39
615750	Dalton Mills	42C01H353	SCMC	2023-10-20	(100) 12551110 Canada Inc.	LAFORME	\$ 400	\$	74
615751	Dalton Mills	42C01H354	SCMC	2023-10-20	(100) 12551110 Canada Inc.	LAFORME	\$ 400	\$	35
615752	Dalton Mills	42C01H355	SCMC	2023-10-20	(100) 12551110 Canada Inc.	LAFORME	\$ 400	\$	35
615753	Dalton Mills	42C01H369	SCMC	2023-10-20	(100) 12551110 Canada Inc.	LAFORME	\$ 400		35
615754	Dalton Mills	42C01H370	SCMC	2023-10-20	(100) 12551110 Canada Inc.	LAFORME	\$ 400	\$	35
615755	Dalton Mills	42C01H371	SCMC	2023-10-20	(100) 12551110 Canada Inc.	LAFORME	\$ 400	\$	35
615756	Dalton Mills	42C01H372	SCMC	2023-10-20	(100) 12551110 Canada Inc.	LAFORME	\$ 400	\$	35
615757	Dalton Mills	42C01H373	SCMC	2023-10-20	(100) 12551110 Canada Inc.	LAFORME	\$ 400		35
615758	Dalton Mills	42C01H374	SCMC	2023-10-20	(100) 12551110 Canada Inc.	LAFORME	\$ 400		35
615759	Dalton Mills	42C01H375	SCMC	2023-10-20	(100) 12551110 Canada Inc.	LAFORME	\$ 400		35
615760	Dalton Mills	42C01H389	SCMC	2023-10-20	(100) 12551110 Canada Inc.	LAFORME	\$ 400		35
615761	Dalton Mills	42C01H390	SCMC	2023-10-20	(100) 12551110 Canada Inc.	LAFORME	\$ 400		74
615762	Dalton Mills	42C01H391	SCMC	2023-10-20	(100) 12551110 Canada Inc.	LAFORME	\$ 400		35
615763	Dalton Mills	42C01H392	SCMC	2023-10-20	(100) 12551110 Canada Inc.	LAFORME	\$ 400		35
615764	Dalton Mills	42C01H393	SCMC	2023-10-20	(100) 12551110 Canada Inc.	LAFORME	\$ 400		35
615765	Dalton Mills	42C01H394	SCMC	2023-10-20	(100) 12551110 Canada Inc.		\$ 400		35
615766	Dalton Mills	42C01H395	SCMC	2023-10-20	(100) 12551110 Canada Inc.	LAFORME	\$ 400		35
615767	Dalton Mills	42C01G219 42C01G220	SCMC	2023-10-20	(100) 12551110 Canada Inc.	ECHUM	\$ 400		
615768 615769	Dalton Mills Dalton Mills	42C01G220 42C01G239	SCMC SCMC	2023-10-20 2023-10-20	(100) 12551110 Canada Inc. (100) 12551110 Canada Inc.	ECHUM ECHUM	\$ 400 \$ 400		
615769	Dalton Mills	42C01G239 42C01G240	SCIVIC	2023-10-20	(100) 12551110 Canada Inc. (100) 12551110 Canada Inc.	ECHUM	\$ 400 \$ 400		
615770	Dalton Mills	42C01G240 42C01G260	SCIVIC	2023-10-20	(100) 12551110 Canada Inc. (100) 12551110 Canada Inc.	ECHUM			
	Dalton Mills Dalton Mills	42C01G260 42C01G279	SCMC	2023-10-20	(100) 12551110 Canada Inc. (100) 12551110 Canada Inc.	ECHUM	\$ 400 \$ 400		
615772 615773	Dalton Mills Dalton Mills	42C01G279 42C01G280	SCMC	2023-10-20	(100) 12551110 Canada Inc. (100) 12551110 Canada Inc.	ECHUM			
615773 615783	Dalton Mills Dalton Mills	42C01G280 42C01H244	SCMC	2023-10-20	(100) 12551110 Canada Inc. (100) 12551110 Canada Inc.	ECHUM	\$ 400 \$ 400		- 35
579217	Dalton Mills	42C01H244 42C01G300	SCIVIC	2023-10-20	(100) 12551110 Canada Inc.	LAFORME, ECHUM	\$ 400 \$ 400		5
579217	Dalton Mills	42C01G300 42C01G340	SCIVIC	2024-02-21	(100) 12551110 Canada Inc. (100) 12551110 Canada Inc.	LAFORME	\$ 400 \$ 400		5 7
	Dalton Mills	42C01G340 42C01G320	SCIVIC	2024-02-21	(100) 12551110 Canada Inc.	LAFORME	\$ 400 \$ 400	\$ \$	35
5/9//6-		120010520		2024-02-21	(100) 12001110 Canada IIIC.	DALONNE	÷ 400		
579276									

Table 1: Dalton Mills Claim Data

As the map-designated claims have pre-established positions, a legal survey of them is not required and none of the staked claims have been surveyed.

Work expenditures by 12551110 Canada Inc. in 2023 plus reserves are sufficient for renewal of the thirty-four claims due on March 5th 2023, highlighted in yellow, in Figure 3.2 below.

Figure 3.2: Dalton Mills Claims + Claim Numbers

3.3 Permits

There are no permits required for current exploration works on the Dalton Mills claims apart from First Nations consultation which has commenced.

3.4 Royalties and Taxes

There are no royalties payable on Dalton Mills claims production and only municipal taxes area to be paid.

3.5 Environmental Liabilities

There are no known defined environmental liabilities on the claims.

4.0 Accessibility, Climate, Local Resources, Infrastructure, and Physiography

4.1 Accessibility

Main access to the claim block area is by Hwy 651 which runs north south through the Dalton Mills Claims with old logging roads and ATV trails off the paved Highway 651 (Figure 4.1).

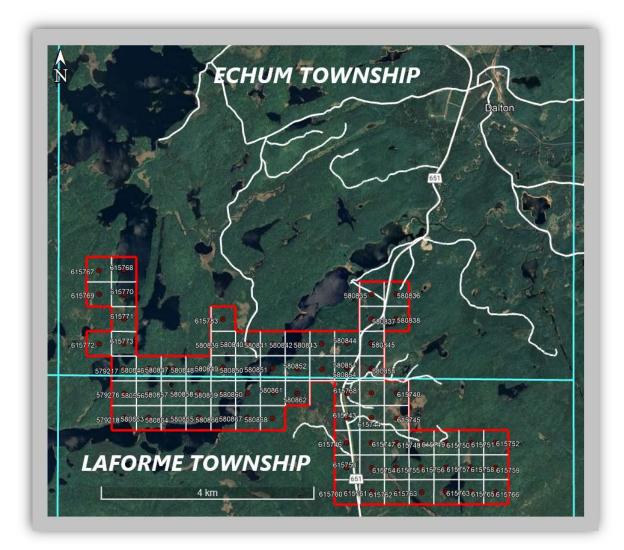


Figure 4.1: Claim Access - Access Roads & Trails

4.2 Climate

The climate in the area is typical of northern Ontario as the claims lie within the Lake Superior Regional climatic zone. This area borders the north shore of Lake Superior from Sault Ste. Marie to Thunder Bay and extends inland approximately 40 to 80 km. The continental climate is modified due to impacts of Lake Superior. Climatologic records for temperature, precipitation and wind obtained from the Wawa weather station are considered to be representative of the actual conditions in the Dalton Mills area as seen in Figures 4.2 and 4.3 overleaf.

ASSESSMENT REPORT DALTON MILLS CLAIMS, ECHUM & LAFORME TOWNSHIPS, ONTARIO 25 February 2023

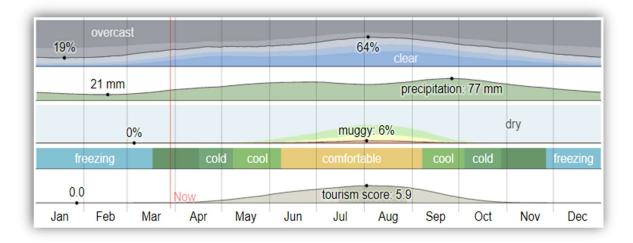
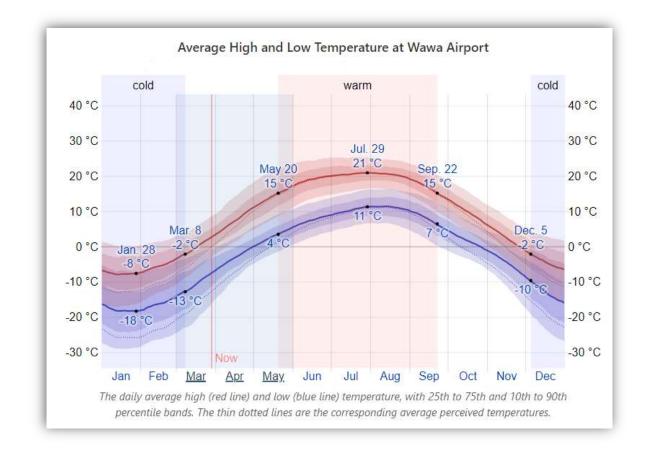



Figure 4.2: Climate Wawa Airport Data (Weatherspark.com)

Figure 4.3: Temperature Data (Weatherspark.com)

The summers are long, comfortable, and partly cloudy and the winters are frigid, snowy, and overcast (Figure 4.2). Over the course of the year, the temperature typically varies from -18 °C to 21 °C and is rarely below -29 °C or above 26 °C (Figure 4.3). Lakes are ice-free starting from late May to early June through until late-October. Snow alone is most common from November 20 to March 25

The *snowy* period of the year lasts for *6.7 months*, from *October 18* to *May 7*, with a sliding 31-day snowfall of at least *25 millimetres*. The month with the most snow is *December*, with an average snowfall of *252 millimetres*.

The climate in the area is typical of northern Ontario. The summers are long, comfortable, and partly cloudy and the winters are frigid, snowy, and overcast. Over the course of the year, the temperature typically varies from -18 °C to 21 °C and is rarely below -29 °C or above 26 °C. Lakes are ice-free starting from late May to early June through until late-October. Snow alone is most common from November 20 to March 25

4.3 Local Resources

A full variety of services, including fuel, stores, hospital, policing, various mining contractors, an airport, and a helicopter base are available in the town of Wawa and the main regional centre Sault Ste. Marie

4.4 Infrastructure

There is presently no infrastructure on the Claims. Abundant water supply is available from nearby lakes.

4.5 Physiography

The claims lie within the Precambrian shield and topography within the general area is typical of the shield north of Lake Superior from moderately rugged hills to gentle undulating or flat sand planes to swamps. Within the claims area topographic relief ranges from 330m asl to 454m asl. The higher ground occurs in the claims east of HWI 651 in the south quadrant.

The claims are covered by a discontinuous thin layer of till deposited during the Late Wisconsinan by the Labrador sector of the Laurentide Ice Sheet.

Vegetation is characterized by the northern extent of hardwood forest and the southern limit of the boreal forest of pine, balsam, birch, cedar and poplar. A thick forest covers 95% of the claims and the NDVI (Normalized Difference Vegetation Index) Short Wave InfraRed (SWIR) Sentinel satellite image clearly shows (Figure 4.4) the vegetation and shows no recent clear cut logging operations.

The NDVI is a dimensionless index that describes the difference between visible and near-infrared reflectance of vegetation cover and can be used to estimate the density of green on an area of land. Very low values of NDVI (0.1 and below) correspond to barren areas of rock, sand, snow, roads, clear cuts (White). Moderate values (0.2 to 0.3) represent bogs, shrub and/or grassland (very light green), while high values (0.6 to 0.8) indicate temperate forests (Dark Green).

Colour variations change dependent on the season and the image below was taken on September 4th 2022 and is more reflective of conifer and deciduous tree cover of early fall accounts for small variation in green colour.

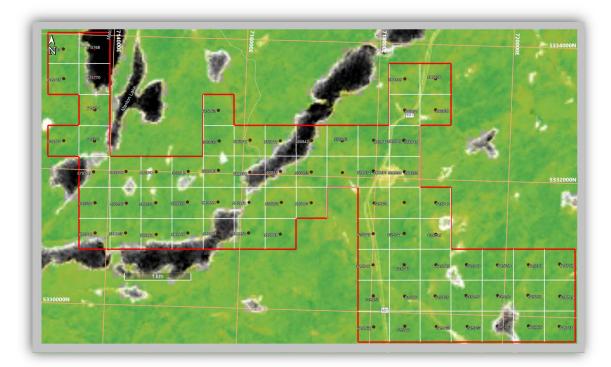


Figure 4.4: NDVI Image – Dalton Mills Claims (September 4th 2022)

Figure 4.5 below is a VNIR image of the Dalton Claims showing dense vegetation coverage on the claims.

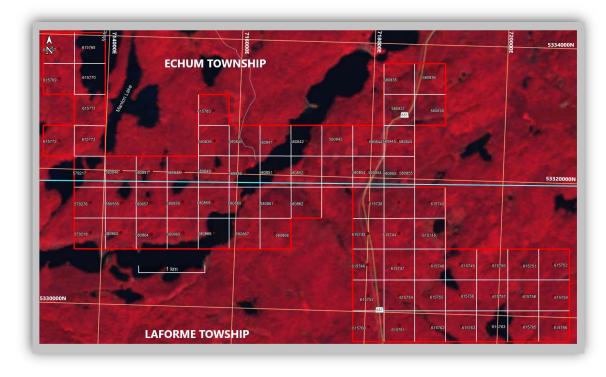


Figure 4.5: VNIR Image – Dalton Mills Claims (September 4th 2022)

5.0 History

The Dalton Mills Claims are located in the townships of Echum and Laforme and a detailed list of exploration work downloaded from OGS Earth for each of the townships is to be found in Appendix I. The most relevant work history is described below. Previous work carried out on the Dalton Mills Claim was restricted to diamond exploration by Canabrava and Chalice Diamond Corp. apart from numerous airborne geophysical surveys. Recent exploration by 12551110 Canada Inc. in the 2019-2022 period consisted of prospecting, rock sampling and remote sensing surveys.

Mapping was conducted in 1974 by Algoma Central Railway.

In 1983 Tundra Gold Mines conducted electromagnetic, magnetic and VLF airborne surveys over their claims in western quadrant of Echum Township and covered one western claim of the Dalton Mills claims.

International Corona in 1984 undertook a major airborne geophysical survey over numerous townships in the Wawa region that covered the Dalton Mills claims.

From 1997 to 1999 Canabrava Diamonds commenced an extensive till sampling programme (1,092 samples) and airborne geophysical survey in the Wawa area incorporating the current Dalton Mills claims.

Kennecott Canada Inc. in 2000 completed airborne electromagnetic, magnetic, ground magnetic surveys over the area including the current Dalton Mills claims with one drill hole was drilled south of the claims.

From 2005 to 2009 Golden Chalice Resources Inc. and Chalice Diamonds conducted extensive till and bedrock sampling in the area with over 50 till samples taken in the area of the current Dalton Mills Claim. Numerous geophysical surveys magnetic, electro magnetic and VLF, airborne and ground were carried out in different areas during this period. A number of the surveys covered the current claims. Beneficiation studies were conducted on samples from kimberlite dykes discovered in the area.

Since 2009 to 2018 no exploration work has been conducted on or over the Dalton Mills claims apart from the work in the 2019-2022 period reported on in the previous assessment report by 12551110 Canada Inc.

6.0 Geological Setting and Mineralization

6.1 Regional & Local Geology

Data in this section is largely from Percival & Easton (2007); Easton (2000); Masun & Chamois (2020); Morris (2001)

The Claims are located in the Superior Province of Northern Ontario. The Superior Province makes up approximately 70 percent of the Canadian Shield in Ontario and forms the core of the North American continent, surrounded by provinces of Paleoproterozoic age on the west, north and east, and Mesoproterozoic age (Grenville Province) on the southeast (Figures 6.1). Tectonic stability has prevailed since circa 2.5 Ga in large parts of the Superior Province. Proterozoic and younger activity is limited to rifting of the margins, emplacement of several mafic dyke swarms, compressional reactivation and large-scale rotation at circa 1.9 Ga, as well as failed rifting at circa 1.1 Ga

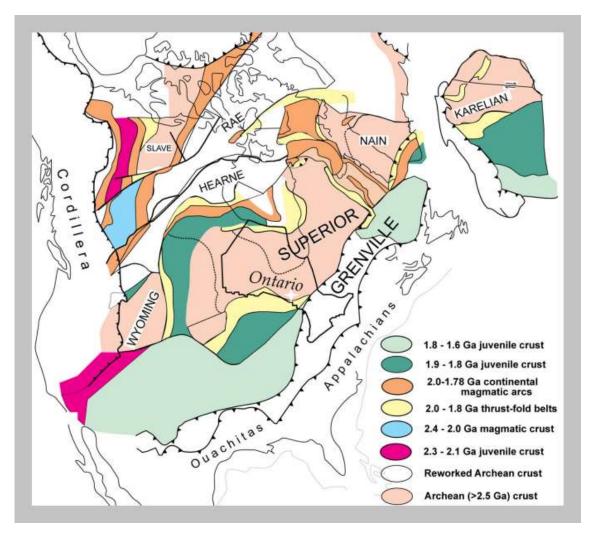


Figure 6.1: Tectonic Map of North America (2007 Percival & Easton)

The Superior Province is seen as a collage (Figure 6.2) made up of small continental and oceanic plates with a complex history of aggregation between 2.72 and 2.68 Ga, followed by post-orogenic effects.

Sedimentary rocks as old as 2.48 Ga uncomfortably overlie Superior Province granites, indicating that most erosion had occurred prior to circa 2.5 Ga. The claims are situated in the Wawa terrane in the Wawa gneiss domain and in the Michipicoten Greenstone Belt (Figure 6.2)

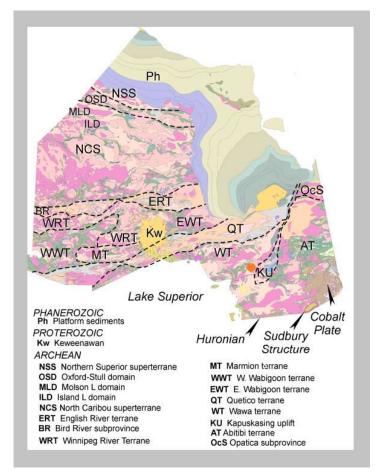


Figure 6.2: Terrane & Geological Map (Percival & Easton)

The Superior Province is divided into numerous subprovinces/terranes (Figure 6.3), each bounded by linear faults and characterized by differing lithologies, structural/tectonic conditions, ages, and metamorphic conditions. These subprovinces are classified into four types by Card and Ciesielski (1986):

- Volcano-plutonic: consisting of low-grade metamorphic greenstone belts, typically intruded by granitic magmas, and products of multiple deformation events.
- Metasedimentary: dominated by clastic sedimentary rocks and displaying low grade metamorphism at the subprovince boundary and amphibolite to granulite facies towards the centres.
- Gneissic-plutonic: comprised of tonalitic gneiss containing early plutonic and volcanic mafic enclaves, and larger volumes of granitoid plutons, which range from sodic (early) to potassic (late).

• High grade gneissic subprovinces: characterized by amphibolite to granulite facies igneous and metasedimentary gneisses intruded by tonalite, granodioritic, and syenitic magmas.

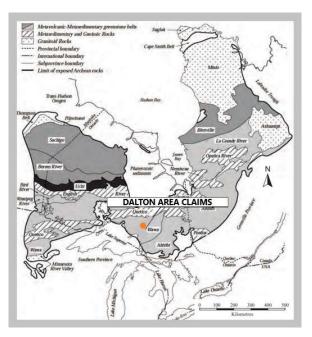


Figure 6.3 Regional Geology-Sub-Provinces.

The claims are situated in the Wawa subprovince/terrane that has a large variation in regional metamorphic grade that is related in part, to the ratio of supracrustal to plutonic rocks; the lowest grades of metamorphism are found within large greenstone belts that contain few internal granitic bodies (e.g., Michipicoten greenstone belt), and the highest grades of metamorphism are found in small greenstone belts containing a greater volume of internal granitic rocks (e.g., Manitouwadge greenstone belt). In addition, metamorphic grade increases in the Wawa subprovince from Lake Superior eastward toward the Kapuskasing structural zone, generally reflecting increasing depths of exposure.

The Wawa gneiss domain within which the Claims are located, lies between the Michipicoten–Gamitagama greenstone belts and the Kapuskasing structural zone (Figure 6.4). Geobarometric studies of amphibole-bearing tonalitic rocks across the Wawa gneiss domain indicate pressures of crystallization of 5 kbar in the west, increasing to 6.5 kbar in the east. U–Pb ages obtained on titanite also decrease from 2685 Ma in the west to ~2600 Ma in the east, possible reflecting prolonged high temperatures at deeper structural levels for rocks in the eastern part of the domain. Metamorphism and deformation in the Wawa subprovince have been related to accretion to the Quetico subprovince. There is a similarity of timing and sequence of events between the two subprovinces, with evidence of an earlier, localized, amphibolite-facies metamorphic event in both occurring at between 2700 and 2688 Ma, followed by a regional, slightly lower pressure event at 2689–2678 Ma.

Figure 6.4 Local Geology

The Wawa subprovince is composed of two linear concentrations, or zones of greenstone belts:

- one along its northern border with the Quetico subprovince, comprising the Shebandowan, Schreiber-Hemlo, Manitouwadge-Hornepayne, White River, Dayohessarah, and Kabinakagarni greenstone belts; and
- 2) a second in the south-central portion of the Wawa subprovince, including the Mishibishu, Michipicoten, and Gamitagama greenstone belts (Figure 6.4).

These supracrustal zones are composed dominantly of mafic volcanic rocks, with subordinate ultramafic, intermediate, and felsic flows. Sedimentary rocks are predominantly siliciclastic turbiditic wackes and shales, with minor conglomerates, iron formations, cherts, and carbonates. The two linear concentrations of greenstone belts are separated by domains of tonalite-trondhjemite-granodioritic (TTG) plutonic rocks. For the Wawa subprovince, geological relationships between lithotectonic assemblages and greenstone belts suggest that the various greenstone belts were tectonically assembled prior to the coalescence of the subprovinces of the Superior Province (Williams et al., 1991)

On a local scale there are underlain dominantly by suites of rocks of metavolcanic, metasedimentary and plutonic origin of Archean age. are 4 major sedimentary and metavolcanic rock types recognized within the Michipicoten greenstone belt. These are:

- 1. intermediate to mafic metavolcanic rocks;
- 2. intermediate to felsic metavolcanic rocks;
- 3. clastic metasedimentary rocks;
- 4. chemical metasedimentary rocks.

Intermediate to mafic metavolcanic rock is exposed throughout most of the greenstone belt. The intermediate to felsic metavolcanic rocks are less widespread and restricted to belts and blocks

scattered across the greenstone belt. The intermediate to mafic and felsic metavolcanic rocks were deposited during 2 major, and a third minor, volcanic cycles. The materials of the 2 major volcanic cycles range in composition from tholeiitic basalt to calc-alkalic felsic volcanics (Thurston 1986). Materials of the third minor volcanic cycle represent basaltic to peridotitic komatiite volcanism followed by calc-alkalic felsic volcanism (Sage and Heather 1991)

Metasedimentary rocks are more common in the west than in the east. They were deposited within a marine alluvial fan depositional environment and were subsequently buried by materials of a shallow braided stream environment (Neale 1981, Thomas 1984). The metasedimentary rocks consist of either conglomerate, wacke or siltstone or argillite (Sage and Heather 1991).

Iron formation is the dominant chemical metasedimentary rock found within the greenstone belt and most commonly is found in the southwestern, central and northeastern parts of the study area. The iron formation consists of 5 facies that include, in ascending order:

- 1. siderite (carbonate facies);
- 2. pyrite (sulphide facies);
- 3. chert-magnetite wacke (oxide facies);
- 4. argillite-pyrite-graphite;
- 5. facies where calcite occasionally substitutes for siderite (Sage and Heather 1991).

Origin of the iron formation is summarized by Sage and Heather (1991). Several stocks are scattered across the greenstone belt and range in composition from trondhjemite to granodiorite to granite. All are younger than the surrounding supracrustal rocks and may have been emplaced at the same time as the felsic intrusive rocks external to the greenstone belt. Surrounding the supracrustal rocks are felsic intrusive rocks that range in composition from tonalite and trondhjemite to granite (Sage and Heather 1991). Felsic intrusive rocks on the south side of the greenstone belt are older than the same rocks on the north side. Within the felsic intrusive rocks to the southeast is a thin belt of migmatized supracrustal rocks (Ontario Geological Survey 1991).

At present, two tectonic models have been set forth as possible histories for the Early to Middle Archean rocks of the Superior province. The first suggests the Superior province may have formed by repeated accretion of terranes as a result of subduction in a compressional margin (Hoffman, 1989; Williams et al., 1991). This model is supported by seismic, structural and geological data (Calvert et al., 1995; Calvert and Ludden, 1999; Thurston, 2002). Under this model, deformation within the Michipicoten Greenstone Belt resulted from subsequent accretion of volcanic arcs during formation of the belt, and by accretion of the Wawa subprovince to the Superior Craton nucleus (Arias, 1996). The volcanic rocks of Wawa are interpreted to be allochthonous assemblages of island and continental arcs (Sylvester et al., 1987), tectonically transported to their present position (Thurston, 2002). 16 An alternative model calls for an autochthonous origin for the Michipicoten Greenstone Belt, with greenstones being accumulated in place, erupting through and being deposited upon older units (Thurston, 2002; Ayer et al., 2003). Under this model, the Superior Province would have experienced orderly, autochthonous progression from platforms through rifting of continental fragments, and late assembly during the Kenoran orogeny. This interpretation of all cycles of Michipicoten volcanics as intra-cratonic magmatism is supported by geochemical evidence, which records crustal geochemical signatures and significant contributions from continental passive margin sources (Sage and Lightfoot, 1996).

6.2 Claims Geology

The western claims are on or adjacent to the Michipicoten Greenstone Belt and underlain by mafic metavolcanics and metasediments (Figure 6.5) while gneissic tonalite underlies the majority of the claims.

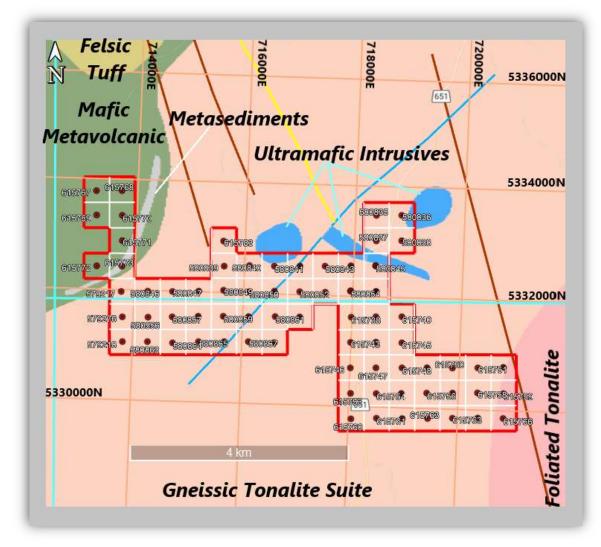


Figure 6.5 Dalton Mills Claims - Geology

6.3 Mineralization

No mineralization reported on any of the claims apart from:

• Single rock chip sample with 4.5g/t gold from claim #580845 sampled June 15th 2020 by James Steel P. Geo during the course of the 2019-2020 exploration programme.

Outside the claims area it is reported:

- Gold occurrences from 5 to 9 kilometres NNW of the Dalton Mills Claims
- The Goudreau Gold Camp of the Michipicoten greenstone belt and the Island gold mine is located 30kms northwest of the claims.

7.0 Exploration

Exploration consisted of a three-gas survey over the seventy-two Dalton Mills claims located in Echum and Laforme Townships in February 2023 by Aster Funds Ltd., Toronto, Ontario.

SWIR imagery is collected by the European Space Agency's (ESA) Sentinel satellites and the SWIR data with 20 metre resolution was downloaded from the Sentinel-2 download site <u>https://scihub.copernicus.eu/dhus/</u> for the Claims by Aster Funds Ltd, Toronto, Ontario on February 10th 2023.

7.1 Spectral Analysis (SWIR) - Helium, Hydrogen and Methane Gas Survey

Aster Funds Ltd takes the Short-Wave Infrared (SWIR) thermal signals and processes them through proprietary methods to stitch Aster scenes together, leaving out cloud and cloud shadow; water bodies; vegetation; and overburden. The Spectral Analysis of the resultant scene is used to map the three- gas 'endmembers' over client exploration and mining claims.

With the Short-Wave Infrared (SWIR) the minimum resolvable distance is 10m to 20m, but the signal emanates from the first millimetre of surface content, whatever it may be. Sentinel satellite revisit time to a particular area is about seven to ten days giving a digital reference time series for any physical point.

Sentinel-2 satellite of the European Space Agency [ESA] collects ten bands of VNIR/SWIR at 10m-20 m spatial resolution and the SWIR imagery is purely surficial, the lithologies mapped may be less diagnostic than those determined by the LWIR but then the increased spatial resolution of 10m-20m as opposed to 90 m for LWIR brings other advantages in terms of spatial definition.

A SWIR Sentinel-2 Helium/Hydrogen/Methane survey was tested over the claims to determine if there is a gas response similar to that seen for hydrogen and methane over the Island Gold Deposit shaft located in the Goudreau gold belt from a 2022 survey. High abundance hydrogen and methane (warm colours) occurs over the shaft opening. There is no corresponding helium response. (Figure 7.1 below)

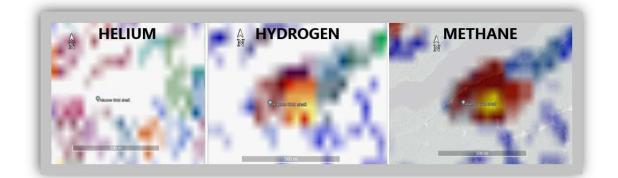


Figure 7.1: Helium, Hydrogen & Methane Over Island Gold Shaft

In late 2021 Aster Funds Ltd. (AFL) developed a new image processing algorithm to map gases in satellite image which uses spectral unmixing to estimate He, H2, CH4, C2H6, Radon and other gasses

in radiance-reflectance imagery. The Sentinel satellite orbits at an altitude of 786 km, far above the atmosphere so Sentinel actually senses reflected light at the top of the atmosphere (TOA). This reflected signal may be converted to radiance and then, after sophisticated atmospheric correction has been applied, to bottom of atmosphere (BOA) reflectance.

The difference between TOA radiance and BOA reflectance contains the emitted gas signals. Band 8A is used to estimate the aerosol optical thickness above each pixel in the scene and gas emissions are mapped. The warmer colours indicate gas thickness above a pixel and the apparent optical thickness is the volume of gas in a column from the surface to 122 km (TOA).

A SWIR Sentinel-2 Helium, Hydrogen and Methane survey was conducted over the survey area and raw data - abundance map were produced for each gas.

7.2 Helium

Helium is an inert gas, showing no tendency to combine with other elements under any temperatures and pressures. It usually occurs in nature associated with a group of inert gaseous elements commonly referred to as the rare gases. It is a product of the decay of the radio-elements, generated by the decay of uranium. Therefore, "each occurrence of radioactive material connotes the presence of helium".

It is a minor constituent of many minerals and rocks and that it occurs in small proportions in some mine gases and in the gases of many mineral springs and fumaroles.

The USGS 1921 publication on Helium states that uranium minerals" Uraninite, fergusonite, broggerite, yttrotantalite, pitchblende, thorianite, and polycrase, as well as <u>certain rare earth</u> <u>minerals</u>, <u>such as monazite</u>, <u>orangeite</u>, <u>samarskite</u>, <u>columbite and xenotime yield helium</u> in varying quantities" (Table 2). It also can be used as a proxy for Rare Earths

	Helium content of certain minerals. [Helium extracted by heat, except as otherwise noted.]			
Mineral.	Locality.	Helium (cubic millimeters per gram).	U ₃ O ₈ (grams per 100 grams).	
are-earth minerals: Pitch blende a. Samarkite a. Cyrtolite a. Sipilite a. Euxenite-a. Euxenite-a. Euxenite-a. Euxenite-a. Euxenite-a. Euxenite- Gadolinite. Cerite. Cerite. Fluorije. re minerals and native elements: Galena. Cinnabar. Bornite. Stibnite. Stibnite. Stibnite. Tin pyrites. Tin pyrites. Hematite b. Limonite b. Cassiterite. Wolframite. Vanadinite. Kastanite. Ka	Joachimsthal, Austria. North Carolina	$\begin{array}{c} 1,150\\ \overline{590}\\ 730\\ 1,46\\ 10,5\\ 16,3\\ 3,60\\ 1,16\\ 1,26\\ 27,00\\ .0007\\ .0\\ .0007\\ .0\\ .0007\\ .0007\end{array}$	$\begin{array}{c} 73.5 \\ 10.3 \\ 3.67 \\ 2.56 \\ 2.64 \\ 3.9 \times 10^{-1} \\ 4.2 \times 10^{-1} \\ 1.4 \times 10^{-1} \\ 3.0 \times 10^{-1} \\ 4.5 \times 10^{-3} \\ 9.3 \times 10^{-1} \\ 9.3 \times 10^{-1} \\ 9.3 \times 10^{-1} \\ 9.0 \times 10^{-1} \\ 3.2 \times 10^{-3} \\ 1.3 \times 10^{-1} \\ 7.3 \times 10^{-1} \\ 1.3 \times 10^{-1} \\ 1.3 \times 10^{-1} \\ 1.3 \times 10^{-1} \\ 1.3 \times 10^{-1} \\ 1.5 \times 10^{-2} \\ 1.5 $	
Quartz. Flint (from chalk) Garnierite Beryl c Phosphatized shark teeth b Phosphatic indules b Phosphatic limestone b	Ilfracombe, Devonshire, England. Brandon, Norfolk, England Oregon Acworth, N. H. Chester, Pa Florida Potron, Bedfordshire, England Chirbury, Shropshire, England	. 0012 . 0002 . 0027 12. 8 6. 69 . 0017 . 021 . 056	$\begin{array}{c} 2.31 \times 10^{-6} \\ 1.33 \times 10^{-4} \\ 2.2 \times 10^{-3} \\ 2.48 \times 10^{-2} \\ 5.83 \times 10^{-3} \\ 7.90 \times 10^{-4} \end{array}$	

Table 2: Helium Content of Certain Minerals

Helium (He) usually thought of as a colourless gas, has emission spectral lines in the visible spectrum (Figure 7.2). He has a red tinge.

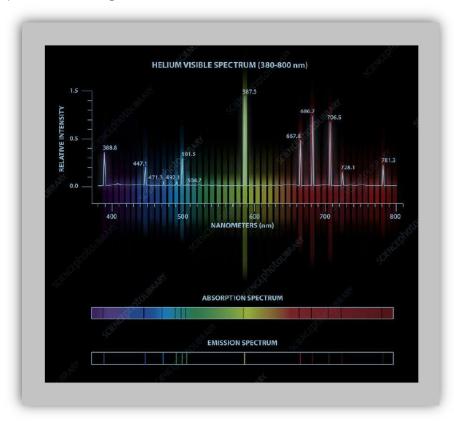


Figure 7.2: Helium Gas Spectrum

The Sentinel-2A and 2B satellites of the European Space Agency have a 10 m spatial resolution red band centered at 665 nm with a width of 30 nm i.e., the interval [635,695] nm is imaged. This region contains two He emission lines, so He will be anomalously bright in this band.

Sentinel-2 bands	Sentinel-2	A.	Sentinel-2	в	
Sentinel-2 Danus	Central wavelength (nm)	Bandwidth (nm)	Central wavelength (nm)	Bandwidth (nm)	Spatial resolution (m)
Band 1 – Coastal aerosol	442.7	21	442.2	21	60
Band 2 – Blue	492.4	66	492.1	66	10
Band 3 – Green	559.8	36	559.0	36	10
Band 4 – Red	664.6	31	664.9	31	10
Band 5 – Vegetation red edge	704.1	15	703.8	16	20
Band 6 – Vegetation red edge	740.5	15	739.1	15	20
Band 7 – Vegetation red edge	782.8	20	779.7	20	20
Band 8 – NIR	832.8	106	832.9	106	10
Band 8A – Narrow NIR	864.7	21	864.0	22	20
Band 9 – Water vapour	945.1	20	943.2	21	60
Band 10 – SWIR – Cirrus	1373.5	31	1376.9	30	60
Band 11 - SWIR	1613.7	91	1610.4	94	20
Band 12 - SWIR	2202.4	175	2185.7	185	20

Figure 7.3: Spectral Bands for Sentinel-2 Sensors

Helium mapping shows a series of NE-SW trending bands of helium gas with areas of moderate to high abundance (warm colours). A circular area of helium abundance occurs adjacent to and east of HWY 651 over claims 580854 and 580855. The narrow metasediments are coincident with a narrow band of weak to moderate helium abundance on claims 615771 and 615773(Figure 7.4).

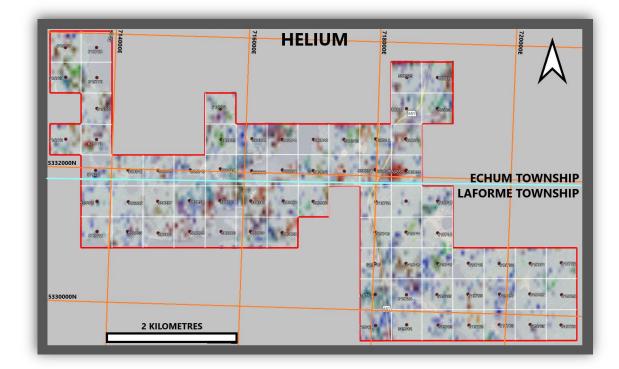


Figure 7.4 Helium Abundance Map

7.3 Hydrogen

Hydrogen has been detected at high concentrations, often as the major gas, in all types of geologic environment and data shows that a deep-seated origin is potentially the most likely explanation for its abundance in nature (Figure 7.5 overleaf)

A 2022 gas survey by Aster Funds Ltd. over the Gaudreau Gold Belt revealed hydrogen and methane in high abundance being emitted from shafts from the Island Gold Mine.

It occurs as a free gas in different environments, inclusions in various rock types, dissolved gas in ground water.

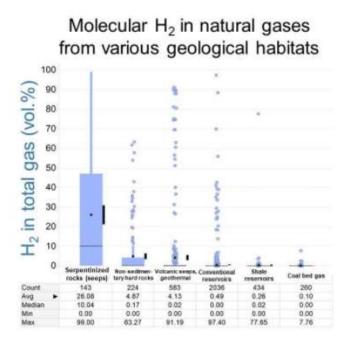


Figure 7.5: Hydrogen Sources – Geological Environments

Overall, the hydrogen response is similar to that of helium with a weak to moderate response west of HWY 651 with a high hydrogen abundances east of the highway. The highway 651 is mapped by hydrogen and methane, a product of gas emissions from the tarmac surface and is easily discernable on the maps (Figures 7.6 and 7.7).

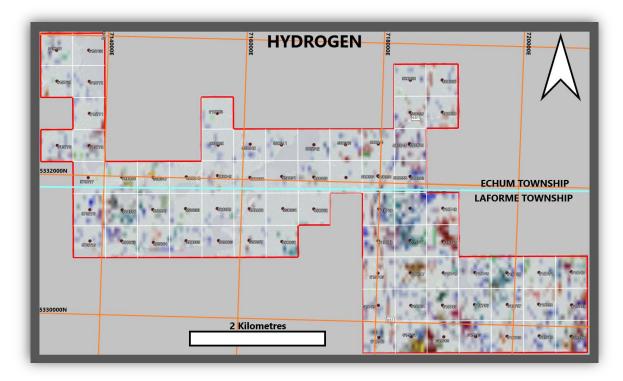


Figure 7.6: Hydrogen Abundance Map

7.4 Methane

Methane is a well-known gas with many potential sources of generation. Methane (CH4) can be mapped from space using all 10 spectral bands and not just bands 11 and 12. An algorithm for extracting methane from Sentinel-2 imagery, a spectral unmixing using 20m resolution, was applied and the result is the methane abundance map below (Figure 7.7).

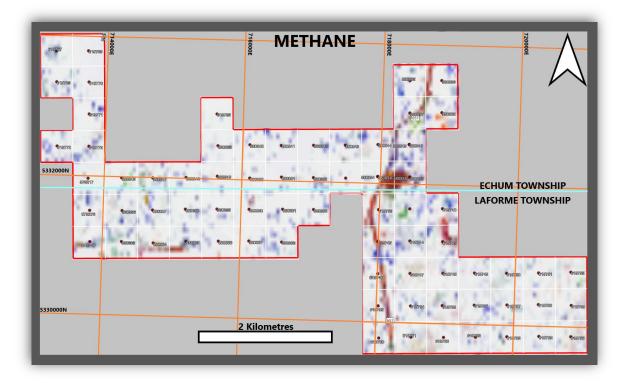


Figure 7.7: Methane Abundance Map

Methane abundance differs from both helium and hydrogen with the main abundances related to the paved highway 651 and two areas east of the highway.

High methane abundance occurs over claims 580854 and 580855 and are coincident with helium.

A second high methane abundance associated with a swamp surrounding a small lake is also coincident with the hydrogen abundance over claim number 614745 (Figure 7.7).

8.0 Interpretation

Satellite gas mapping as applicable to mineral exploration:

- > Helium use directly to outline helium deposits
- Helium is also a decay product of uranium and thus can be used to detect uranium mineralization in either exposed or buried bedrock. As buried uranium decays it releases Helium which percolates through the sand and/or soil and emerges along cracks and fissures.
- Helium uranium invariably accompanies IOCG (Iron Oxide Copper Gold) and AFL research has shown that Helium and Hydrogen (if water present) makes it perfect for under cover exploration by mapping helium gas from the uranium.
- Helium can be used to determine lithium content in brines (salars) due to chemical reactions with lithium carbonate that liberates helium and hydrogen.
- > Helium can be used as a proxy for certain rare earths (Table2)
- > Hydrogen use directly to outline hydrogen deposits
- Hydrogen is also detected <u>over certain gold deposits</u>, IOCG deposits and copper deposits.
- Methane use directly to outline methane deposits
- Methane the ability to map methane from space is useful when it comes to exploring for Mississippi Valley Type [MVT] deposits.
- > Methane traces out anomalous Cu in soil samples in certain terrains.
- > Methane Sedimentary copper deposits that contain limestone.

The above gasses are useful for targeting various mineral deposits either singularly or in combination.

Areas of high helium on their own are targets for uranium and possibly rare earths.

Areas of moderate to high abundances for each gas were outlined, plotted on Google Earth and the areas of overlap are targets for field follow up (Figure 8.1).

Figure 8.1: Gas Overlap Map + Targets

9.0 Conclusions

Fourteen gas overlap target areas, dominantly helium and hydrogen including one with all three gasses were outlined.

A number of moderate to high abundance gasses are spatially associated with know metallic TVM Overlap and gold TVM Overlap anomalies (Dalton Area Claims Assessment Report February 2022).

- 1. Helium is associated with two metallic TVM Overlap targets and two gold TVM Overlap targets.
- 2. Hydrogen is spatially associated with five metallic TVM Overlap targets and gold TVM Overlap targets.
- 3. Methane is associated with one metallic TVM Overlap target and two small gold TVM Overlap targets.

A number of moderate to high abundance helium areas, not related to gold targets maybe associated with uranium and/or rare earths,

All spectral data and interpretations should be integrated with other exploration datasets such as geochemistry, geophysics (gravity, magnetics, radiometric) as well lithological and structural interpretations for better results.

The various gas abundances presented in this report need to be correlated with geological information and fieldwork to improve the interpretation and generate other reliable exploration targets.

10.0 Recommendations

Field follow-up work is recommended. Details:

- Field follow-up of Hydrogen, Helium, Methane targets
- Integration of geophysics, geology, and spectral surveys to prioritize targets.
- Ground truthing of targets by detailed prospecting, rock sampling
- MMI soil sampling traverses across selected target areas.

11.0 Cited References

Easton, R.M. 200. METAMORPHISM OF THE CANADIAN SHIELD, ONTARIO, CANADA. I. THE SUPERIOR PROVINCE in The Canadian Mineralogist Vol. 38, pp. 287-317

Masun, K. M., Chamois, P. 2021. TECHNICAL REPORT ON THE STARGROVE DIAMOND PROJECT, ALGOMA DISTRICT, NORTHERN ONTARIO, CANADA NI 43-101 Technical Report.

Morris, T.F 2001. ONTARIO GEOLOGICAL SURVEY Open File Report 6055 Quaternary Geology of the Wawa Area, Northeastern Ontario.

Percival, J.A., Easton, R.M. 2007. Geology of the Canadian Shield in Ontario: An Update. Geological Survey Open File Report 6196 Geological Survey of Canada Open File 5511 Ontario Power Generation Report Number 06819-REP-01200-10158-R00

Ryder, J.M. 2022. Report on Exploration at the Dalton Mills Claims and Claim Blocks #1 to #4, Dolson, Keesickquayash, Echum and Laforme Townships, Ontario. February 2022.

Sage, R.P. 1993. Ontario Geological Survey Open File Report 5586, Geology of Chabanel, Esquega, Lastheels and McMurray Townships, District of Algoma 1993

<u>APPENDIX I</u>

HISTORY

ECHUM TOWNSHIP

Report Number	Year	Company	Property	Work Type
20000019621	2019	CJP Exploration Inc	Wawa Diamonds Property	Prospecting By Licence Holder, Rock Sampling
20000014471 20000008242		RT Minerals Corp Lakeland Resources Inc	Ballard Lake Property Ballard Project	Assaying and Analyses, Overburden Stripping, Rock Sampling Assaying and Analyses, Prospecting By Licence Holder
20000005868	2014			
20000005868	2009	Chalice Diamond Corp, Golden Chalice Resources Inc Chalice Diamond Corp	Bird Property	Assaying and Analyses, Diamond Drilling Magnetic / Magnetometer Survey
20000003370		Chalice Diamond Corp		Airborne Electromagnetic, Airborne Magnetometer
2000003614	2008	Chalice Diamond Corp		Assaying and Analyses, Prospecting By Licence Holder
20000004069	2008- 2009	Campbell James Laidlaw, Chalice Diamond Corp, Golden Chalice Resources Inc, Gord Alexander Hume, Graham Stone, Joseph Frank Mihelcic, Terrance Stanley Nicholson		Assaying and Analyses, Prospecting By Licence Holder
2000004576	2008	Chalice Diamond Corp		Benefication Studies, Geochemical
20000005617	2008- 2009	Dan Patrie Exploration Ltd, Precambrian Ventures Ltd		Airborne Electromagnetic, Airborne Magnetometer
2000000041		Chalice Diamond Corp		Airborne Electromagnetic, Airborne Magnetometer
2000000060	2007-	Chalice Diamond Corp	Chapleau Main Block	Airborne Electromagnetic, Airborne Magnetometer
2000000114	2008 2007- 2009	Chalice Diamond Corp	Chapleau Diamond Project	Assaying and Analyses, Overburden Stripping
20000002709	2007-	Golden Chalice Resc Inc	Floject	Electromagnetic Very Low Frequency, Linecutting, Magnetic /
20000002005	2008	C James Laidlaw, Chalice Diamond Corp, Golden Chalice Resources Inc, Gord Hume,		Magnetometer Survey
20000003905	2009	Graham Stone, Joe Mihelcic, Michael A Tremblay, Rudolf Wahl, Terrence Stanley Nicholson		Assaying and Analyses, Prospecting By Licence Holder
2000004067	2007- 2009	Chalice Diamond Corp		Benefication Studies, Geochemical
20000015208	2007- 2008	Golden Chalice Res Ltd	Bader and Marsh Township Properties	Magnetic / Magnetometer Survey
2000000008	2006- 2007	Golden Chalice Resc Inc		Airborne Electromagnetic, Airborne Magnetometer
2000003170		Chalice Diamond Corp		Assaying and Analyses, Prospecting By Licence Holder
20000004095	2006-	Chalice Diamond Corp		Benefication Studies, Geological Survey / Mapping, Prospecting By
2000004190	2009 2006-	Golden Chalice Resources Inc, Terrence Stanley Nicholson		Licence Holder Benefication Studies, Prospecting By Licence Holder
	2009			
20000015211	2006- 2007	Golden Chalice Resources Inc	Abbey, Addison and Bader Township Properties	Magnetic / Magnetometer Survey
2000000047	2005-2007	Golden Chalice Resources Inc	Echum and Marsh Township Properties	Linecutting, Magnetic / Magnetometer Survey
20000002080		Golden Chalice Resc Inc	iomonip i ropenieo	Geochemical
2000002408	2005- 2007	Golden Chalice Resc Inc		Linecutting, Magnetic / Magnetometer Survey
20000002483	2005-2007	Golden Chalice Resources Inc		Benefication Studies, Geochemical
20000004307		Golden Chalice Resources Inc, Terrence Stanley Nicholson		Benefication Studies, Prospecting By Licence Holder
42C01NE2006		Jacques Robert, Michael Tremblay	Matchinameigo and Fletch properties	Benefication Studies, Geological Survey / Mapping, Overburden Stripping
42B04NW2002	2000- 2002	1447539 Ontario Ltd	rieten properties	Benefication Studies, Mechanical, Microscopic Studies,
42C01NE2005	2000-	Michael A Tremblay	Matchinameigo and	Overburden Stripping, Prospecting By Licence Holder Geochemical, Mechanical, Microscopic Studies, Overburden
42C01NE2002	2002 1998	2973090 Canada Inc, David R Healey	Fletch properties Ballard Lake Project	Stripping, Prospecting By Licence Holder Geochemical, Geological Survey / Mapping, Induced Polarization,
42G02NE2002	1997-	Canabrava Diamond Corp	Kapuskasing Area	Open Cutting, Prospecting By Licence Holder Airborne Electromagnetic, Airborne Electromagnetic Very Low
	1999			Frequency, Airborne Magnetometer, Geochemical, Microscopic Studies
42C01NE0004		Consolidated Cline Development Corp, D Patrie		Assaying and Analyses, Boring Other Than Core Drilling
42C01NE0007		Consolidated Cline Development Corp Anglo Porcupine Gold Mines Ltd	Echum-Dolson	Overburden Drilling Geochemical, Geological Survey / Mapping, Mechanical,
			Property	Overburden Stripping
42C01NE0401			Chum Group	Electromagnetic Very Low Frequency, Magnetic / Magnetometer Survey
42C01NE0400	1983	Tundra Gold Mines Ltd	Matchinameigus Lake Area	Airborne Electromagnetic, Airborne Electromagnetic Very Low Frequency, Airborne Magnetometer
		Noranda Exploration Co	Echum Anomaly A	Electromagnetic, Magnetic / Magnetometer Survey
42C01NE0409	1980	Noranda Exploration Co	G Longhurst Au-Ag Property	Geological Survey / Mapping
42C01NE0409	1980	Noranda Exploration Co	G Longhurst Au-Ag Property	Geological Survey / Mapping
42C01NE8675	1976	Cordell Gold Mines Ltd	Cordell Gold Mines Ltd Property	Miscellaneous Compilation and Interpretation
42C08SE0674	1975	Umex Inc		Assaying and Analyses, Diamond Drilling, Electromagnetic, Geological Survey / Mapping, Magnetic / Magnetometer Survey
42C01NE8674	1974	Ontario Dept Of Mines	Matchinameigos Lake Area	Geological Survey / Mapping
42C01NW0013	1974	Umex Corp Ltd		Other
42C01NE8814	1973	J Davies	Sault algoma No 1 Project (ACR)	Assaying and Analyses, Bedrock Trenching, Manual Labour
42C01NE0408				Manual Labour, Mechanical, Overburden Stripping
20000019833	1962	Algoma Central Railway Co	Sault algoma No 1 Project (ACR)	Geological Survey / Mapping
42C01NE0426	1962	Algoma Central Railway	Sault algoma No 1 Project (ACR)	Geological Survey / Mapping
42C01NE8667	1953- 1956	Frobisher Ltd	Dalton Project, Lake Matchinameighs Area	Airborne Electromagnetic, Airborne Magnetometer, Electromagnetic, Geological Survey / Mapping
42C08SE0771		Algoma Central Railway		Other

LAFORME TOWNSHIP

Report Number	Year	Company	Property	Work Type
2000005868	2009	Chalice Diamond Corp, Golden Chalice Resources Inc	Bird Property	Assaying and Analyses, Diamond Drilling
2000003370	2008	Chalice Diamond Corp		Airborne Electromagnetic, Airborne Magnetometer
2000000041	2007	Chalice Diamond Corp		Airborne Electromagnetic, Airborne Magnetometer
2000000060	2007- 2008	Chalice Diamond Corp	Chapleau Main Block	Airborne Electromagnetic, Airborne Magnetometer
2000004067	2007- 2009	Chalice Diamond Corp		Benefication Studies, Geochemical
2000003170	2006- 2008	Chalice Diamond Corp		Assaying and Analyses, Prospecting By Licence Holder
2000002408	2005- 2007	Golden Chalice Resc Inc		Linecutting, Magnetic / Magnetometer Survey
2000002483	2005- 2007	Golden Chalice Resources Inc		Benefication Studies, Geochemical
2000004307	2005- 2009	Golden Chalice Resources Inc, Terrence Stanley Nicholson		Benefication Studies, Prospecting By Licence Holder
42C01SE2001	2000	Kennecott Canada Inc		Diamond Drilling
42C01SE2002	2000	Kennecott Can Expl Inc		Electromagnetic, Magnetic / Magnetometer Survey, Open Cutting
42G02NE2002	1997- 1999	Canabrava Diamond Corp	Kapuskasing Area	Airborne Electromagnetic, Airborne Electromagnetic Very Low Frequency, Airborne Magnetometer, Geochemical, Microscopic Studies
42C01SE0002	1990	R Gilbert		Airborne Electromagnetic Very Low Frequency, Airborne Magnetometer
42C01NE0400	1983	Tundra Gold Mines Ltd	Matchinameigus Lake Area	Airborne Electromagnetic, Airborne Electromagnetic Very Low Frequency, Airborne Magnetometer
42C01NE8674	1974	Ontario Dept Of Mines	Matchinameigos Lake Area	Geological Survey / Mapping
42C01NW0013	1974	Umex Corp Ltd		Other
20000019833	1962	Algoma Central Railway Co	Sault algoma No 1 Project (ACR)	Geological Survey / Mapping
42C01SE0005	1962- 1963	Algoma Central Railway		Geological Survey / Mapping
42C01SE0200	1962	J Macintosh		Geological Survey / Mapping
42C01SE0001	1961	Algoma Central Railway		Geochemical, Geological Survey / Mapping

Company	Invoice ID	Date	Amount (\$CAD)	Rounded Total	Work Type
Aster Funds Ltd.	2086	06-Feb-23	\$10,081.50	\$10,082	Remote Sensing
Ryder & Associates	2302	24-Feb-23	\$3,000.00	\$3,000	Report / Maps
-			\$13,081.50	\$13,082	

Tenure ID	Cell ID(s)	Holder	Area (ha)	Remote Sensing	Report /Maps	Sub-Total	Rounded Total	Assign Total
580865	42C01H323	(100) 12551110 Canada Inc.	21.57	140.0381617	41.66975652	181.7079	182	181
580866	42C01H324	(100) 12551110 Canada Inc.	21.57	140.0381617	41.66975652	181.7079	182	181
580867	42C01H325	(100) 12551110 Canada Inc.	21.57	140.0381617	41.66975652	181.7079	182	181
580868	42C01H326	(100) 12551110 Canada Inc.	21.57	140.0381617	41.66975652	181.7079	182	181
615738	42C01H309	(100) 12551110 Canada Inc.	21.57	140.0269481	41.6664198	181.6934	182	181
615739	42C01H310	(100) 12551110 Canada Inc.	21.57	140.0269481	41.6664198	181.6934	182	181
615740	42C01H311	(100) 12551110 Canada Inc.	21.57	140.0269481	41.6664198	181.6934	182	181
615743	42C01H329	(100) 12551110 Canada Inc.	21.57	140.0381617	41.66975652	181.7079	182	181
615744	42C01H330	(100) 12551110 Canada Inc.	21.57	140.0381617	41.66975652	181.7079	182	181
615745	42C01H331	(100) 12551110 Canada Inc.	21.57	140.0381617	41.66975652	181.7079	182	181
615746	42C01H349	(100) 12551110 Canada Inc.	21.57	140.0490384	41.67299299	181.722	182	181
615747	42C01H350	(100) 12551110 Canada Inc.	21.57	140.0490384	41.67299299	181.722	182	181
615748	42C01H351	(100) 12551110 Canada Inc.	21.57	140.0490384	41.67299299	181.722	182	181
615749	42C01H352	(100) 12551110 Canada Inc.	21.57	140.0490384	41.67299299	181.722	182	181
615750	42C01H353	(100) 12551110 Canada Inc.	21.57	140.0490384	41.67299299	181.722	182	181
615751	42C01H354	(100) 12551110 Canada Inc.	21.57	140.0490384	41.67299299	181.722	182	181
615752	42C01H355	(100) 12551110 Canada Inc.	21.57	140.0490384	41.67299299	181.722	182	181
615753	42C01H369	(100) 12551110 Canada Inc.	21.57	140.0605866	41.67642927	181.737	182	181
615754	42C01H370	(100) 12551110 Canada Inc.	21.57	140.0605866	41.67642927	181.737	182	181
615755	42C01H371	(100) 12551110 Canada Inc.	21.57	140.0605866	41.67642927	181.737	182	181
615756	42C01H372	(100) 12551110 Canada Inc.	21.57	140.0605866	41.67642927	181.737	182	181
615757	42C01H373	(100) 12551110 Canada Inc.	21.57	140.0605866	41.67642927	181.737	182	181
615758	42C01H374	(100) 12551110 Canada Inc.	21.57	140.0605866	41.67642927	181.737	182	182
615759	42C01H375	(100) 12551110 Canada Inc.	21.57	140.0605866	41.67642927	181.737	182	182
615760	42C01H389	(100) 12551110 Canada Inc.	21.57	140.0717979	41.6797653	181.7516	182	182
615761	42C01H390	(100) 12551110 Canada Inc.	21.57	140.0717979	41.6797653	181.7516	182	182
615762	42C01H391	(100) 12551110 Canada Inc.	21.57	140.0717979	41.6797653	181.7516	182	182
615763	42C01H392	(100) 12551110 Canada Inc.	21.57	140.0717979	41.6797653	181.7516	182	182
615764	42C01H393	(100) 12551110 Canada Inc.	21.57	140.0717979	41.6797653	181.7516	182	182
615765	42C01H394	(100) 12551110 Canada Inc.	21.57	140.0717979	41.6797653	181.7516	182	182
615766	42C01H395	(100) 12551110 Canada Inc.	21.57	140.0717979	41.6797653	181.7516	182	182
615767	42C01G219	(100) 12551110 Canada Inc.	21.56	139.9708687	41.6497328	181.6206	182	182
615768	42C01G220	(100) 12551110 Canada Inc.	21.56	139.9708687	41.6497328	181.6206	182	182
615769	42C01G239	(100) 12551110 Canada Inc.	21.56	139.9817502	41.65297069	181.6347	182	182
615770	42C01G240	(100) 12551110 Canada Inc.	21.56	139.9817502	41.65297069	181.6347	182	182
615771	42C01G260	(100) 12551110 Canada Inc.	21.56	139.9933028	41.65640828	181.6497	182	182

	_							-
615772	42C01G279	(100) 12551110 Canada Inc.	21.56	140.0045187	41.65974568	181.6643	182	182
615773	42C01G280	(100) 12551110 Canada Inc.	21.56	140.0045187	41.65974568	181.6643	182	182
615783	42C01H244	(100) 12551110 Canada Inc.	21.56	139.9933028	41.65640828	181.6497	182	182
579217	42C01G300	(100) 12551110 Canada Inc.	21.56	140.0153977	41.66298286	181.6784	182	182
579218	42C01G340	(100) 12551110 Canada Inc.	21.57	140.0381617	41.66975652	181.7079	182	182
579276	42C01G320	(100) 12551110 Canada Inc.	21.57	140.0269481	41.6664198	181.6934	182	182
580835	42C01H230	(100) 12551110 Canada Inc.	21.56	139.9817502	41.65297069	181.6347	182	182
580836	42C01H231	(100) 12551110 Canada Inc.	21.56	139.9817502	41.65297069	181.6347	182	182
580837	42C01H250	(100) 12551110 Canada Inc.	21.56	139.9933028	41.65640828	181.6497	182	182
580838	42C01H251	(100) 12551110 Canada Inc.	21.56	139.9933028	41.65640828	181.6497	182	182
580839	42C01H264	(100) 12551110 Canada Inc.	21.56	140.0045187	41.65974568	181.6643	182	182
580840	42C01H265	(100) 12551110 Canada Inc.	21.56	140.0045187	41.65974568	181.6643	182	182
580841	42C01H266	(100) 12551110 Canada Inc.	21.56	140.0045187	41.65974568	181.6643	182	182
580842	42C01H267	(100) 12551110 Canada Inc.	21.56	140.0045187	41.65974568	181.6643	182	182
580843	42C01H268	(100) 12551110 Canada Inc.	21.56	140.0045187	41.65974568	181.6643	182	182
580844	42C01H269	(100) 12551110 Canada Inc.	21.56	140.0045187	41.65974568	181.6643	182	182
580845	42C01H270	(100) 12551110 Canada Inc.	21.56	140.0045187	41.65974568	181.6643	182	182
580846	42C01H281	(100) 12551110 Canada Inc.	21.56	140.0153977	41.66298286	181.6784	182	182
580847	42C01H282	(100) 12551110 Canada Inc.	21.56	140.0153977	41.66298286	181.6784	182	182
580848	42C01H283	(100) 12551110 Canada Inc.	21.56	140.0153977	41.66298286	181.6784	182	182
580849	42C01H284	(100) 12551110 Canada Inc.	21.56	140.0153977	41.66298286	181.6784	182	182
580850	42C01H285	(100) 12551110 Canada Inc.	21.56	140.0153977	41.66298286	181.6784	182	182
580851	42C01H286	(100) 12551110 Canada Inc.	21.56	140.0153977	41.66298286	181.6784	182	182
580852	42C01H287	(100) 12551110 Canada Inc.	21.56	140.0153977	41.66298286	181.6784	182	182
580853	42C01H288	(100) 12551110 Canada Inc.	21.56	140.0153977	41.66298286	181.6784	182	182
580854	42C01H289	(100) 12551110 Canada Inc.	21.56	140.0153977	41.66298286	181.6784	182	182
580855	42C01H290	(100) 12551110 Canada Inc.	21.56	140.0153977	41.66298286	181.6784	182	182
580856	42C01H301	(100) 12551110 Canada Inc.	21.57	140.0269481	41.6664198	181.6934	182	182
580857	42C01H302	(100) 12551110 Canada Inc.	21.57	140.0269481	41.6664198	181.6934	182	182
580858	42C01H303	(100) 12551110 Canada Inc.	21.57	140.0269481	41.6664198	181.6934	182	182
580859	42C01H304	(100) 12551110 Canada Inc.	21.57	140.0269481	41.6664198	181.6934	182	182
580860	42C01H305	(100) 12551110 Canada Inc.	21.57	140.0269481	41.6664198	181.6934	182	182
580861	42C01H306	(100) 12551110 Canada Inc.	21.57	140.0269481	41.6664198	181.6934	182	182
580862	42C01H307	(100) 12551110 Canada Inc.	21.57	140.0269481	41.6664198	181.6934	182	182
580863	42C01H321	(100) 12551110 Canada Inc.	21.57	140.0381617	41.66975652	181.7079	182	182
580864	42C01H322	(100) 12551110 Canada Inc.	21.57	140.0381617	41.66975652	181.7079	182	182
	-		1552.77	10082	3000	13082	13104	13082