

We are committed to providing <u>accessible customer service</u>. If you need accessible formats or communications supports, please <u>contact us</u>.

Nous tenons à améliorer <u>l'accessibilité des services à la clientèle</u>. Si vous avez besoin de formats accessibles ou d'aide à la communication, veuillez <u>nous contacter</u>.

# 2022 GEOLOGICAL MAPPING, GRASSROOTS PROSPECTING AND SAMPLING IN WABIKOBA AND WHITE LAKE AREAS

## **APOLLO EXPLORATION**

#### **PROJECT NAME**

HEES project Hemlo, Ontario

#### **CLIENT**

Apollo Exploration 150 King Street West, Suite 2800 Toronto, Ontario, Canada, M5H 1J9

#### **DATE**

October 24, 2022

# 2022 GEOLOGICAL MAPPING, GRASSROOTS PROSPECTING AND SAMPLING IN WABIKOBA AND WHITE LAKE AREAS

### Contents

| Introduction                            | 3  |
|-----------------------------------------|----|
| Location, Access, and Physiography      | 3  |
| Exploration History                     | 4  |
| Regional Geology                        | 5  |
| Hemlo Geology                           | 6  |
| Property Geology                        |    |
| 2022 Geological Mapping and Prospecting |    |
| Recommendations                         | 11 |
| The West Block                          | 12 |
| The East Block                          | 14 |
| References                              | 17 |
| Certificate of Author                   | 18 |
| Appendix                                | 19 |

## 2022 GEOLOGICAL MAPPING, GRASSROOTS PROSPECTING AND SAMPLING IN WABIKOBA AND WHITE LAKE AREAS

#### Introduction

Inventus was contracted to conduct geological mapping and grassroots prospecting at Apollo Explorations HEES Project. As part of this work a compilation of historic data was gathered and reprocessed to build a GIS database to help preform the work. The data compilation was conducted prior to the field program to help better understand the projects geology and confirming all previous geological mapping to identify areas. Areas with high geological interest were then mapped and prospected in detail to identify and sample any mineralized outcrops.

### Location, Access, and Physiography

The land packages are located approximately 38 km west of the town of White River and 57 km east of the town of Marathon in the Thunder Bay mining division, north-western Ontario (Figure 1). The packages are 4 km east-west of each other, with the western claims falling in Wabikoba Lake area and the eastern claims in White Lake area. The west and east claim packages are approximately 5.6 km² and 8.0 km², respectively.

The properties are located 1 to 2 km north of Highway 17, approximately 10 km east of the Hemlo Mining Camp. Access to the eastern property is excellent. To access it, turn right while heading west on the Trans-Canada Highway on an unnamed gravel road near Kichidabidik Inlet on White Lake. This road will cross a power line corridor, which if travelled, transect the claims in their entirety. This gravel road also loops west and allows access to the northern portion of the claims as well. In the south, the highway intersects the claims and can also be used as an access. The western claims, however, are more difficult to access. Continuing west along the Trans-Canada Highway past the eastern claim block, turn right on Highway 614. Continue for 5.5 km and turn right on Wabikoba Lake Road. Continue for another 5.6 km to an ATV trail that heads south. The ATV trail leads to the northern extent of the claims and provides the best access to the area.

# 2022 GEOLOGICAL MAPPING, GRASSROOTS PROSPECTING AND SAMPLING IN WABIKOBA AND WHITE LAKE AREAS

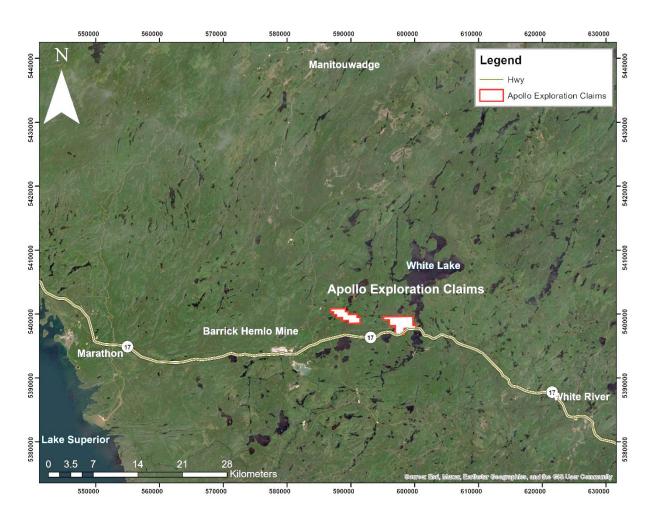



Figure 1. Project location.

### **Exploration History**

Although the Hemlo area has seen significant exploration from as far back as 1869, the specific grounds being prospected in this program remained unexplored until the early 1980's.

In the eastern claim package, the first work carried out was a 1983-1984 exploration program carried out by Golden Terraces Resources Corporation. The property was flown by Aerodat Ltd. with high resolution EM, VLF and magnetics at a 100m flight line spacing. Furthermore, the area was geologically mapped along 100m spaced cut grid line and was simultaneously sampled, although no economically significant assay results were returned. An "A" horizon humus soil survey at a 25m sample spacing interval was conducted, again with inconclusive results.

Similarly, the western block was first explored in 1983. Golden Century Resources Ltd. conducted line cutting followed by detailed geological mapping on a property that comprised the west-central portion of the present western block. This mapping was followed up with a soil sampling survey targeting the "B" horizon. This was conducted along a 25m sample interval on 100m cut lines. Some

# 2022 GEOLOGICAL MAPPING, GRASSROOTS PROSPECTING AND SAMPLING IN WABIKOBA AND WHITE LAKE AREAS

elevated gold values were identified as a result of the survey. Later in 1983 an EM and magnetics ground survey was conducted along the previously cut lines and yielded some data concordant with previously gathered geochemical anomalies.

Later that year R.J. McGowan commissioned an exploration program from Manwa Exploration Services Ltd. covering the north-west of the western block as well as a large amount of ground beyond the current claims. The program consisted of detailed geological mapping and sampling. Sampling was mostly inconclusive.

In the south-central section of the western block Aerodat carried out an airborne geophysical survey on behalf of Onitap Resources Inc. A total of 23-line kilometers of EM, VLF and magnetic surveys were flown on this portion of the property. Narex Ore Search Consultants were contracted to cut lines, produce detailed geological maps and to carry out ground EM-16 and magnetometer surveys.

### **Regional Geology**

Geological mapping by the Ontario Geological Survey has defined an east trending belt of metasedimentary and metavolcanic rocks, forming a broad synform with granitic plutons (Musher Lake Pluton to the north and Cedar Lake Pluton to the south) along its axis (Smith 1985). The belt can be divided into a northern and southern sequence. In the north, the Heron Bay Sequence consists of felsic to intermediate metavolcanics and sediments. The coarsest pyroclastic rocks occur near Heron Bay. Towards the east, rocks become finer grained with higher degrees of reworked material (Smith 1985). Closer to Hemlo (and the HEES project area), metapelitic rocks interfinger within the metavolcanic and tuffaceous metasedimentary rocks. Continuing east, metapelites dominate the area (Smith 1985). Regional geological maps and cross sections suggest the Hemlo deposit exists along the hanging-wall transition between these dominantly volcaniclastic rocks and the adjacent fine grained metasedimentary rocks. It is largely unclear however, whether this transition is reflective of the original tectonic-stratigraphy or is a superimposed structural control. A popular model for the formation of the Hemlo deposit involves magmatic fluids from local plutonic systems. Based on the relative structural position of nearby plutons and the deposit, it is argued that the Cedar Lake Pluton is best situated to fill this role, however this is not definitive theory (Davis, Lin 2003).

The youngest volcanic rocks in the area were approximately coeval with the Cedar Lake Pluton at around 2,688 Ma (Davis, Lin 2003). The first phase of greenstone development was likely an arc building process. Peak metamorphism would have also occurred at this time due to the massive heat produced in the arc development. During late-stage arc development, an influx of clastic sediments occurred between 2,693 and 2,688 Ma, representing many of the metasedimentary rocks seen in the field area at present (Davis, Lin 2003).



## 2022 GEOLOGICAL MAPPING, GRASSROOTS PROSPECTING AND SAMPLING IN WABIKOBA AND WHITE LAKE AREAS

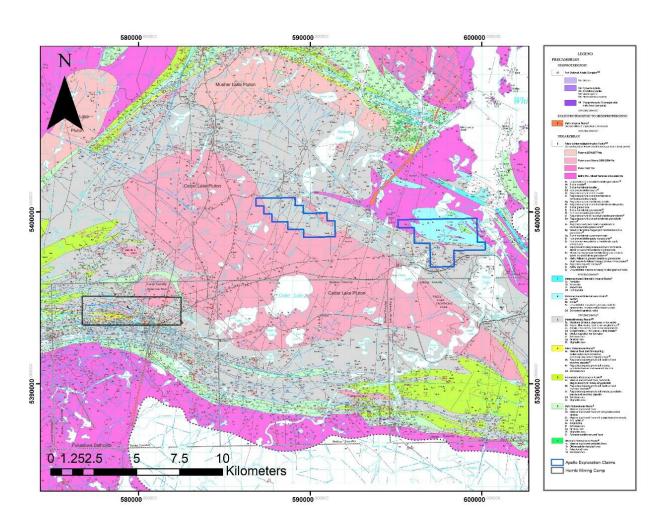



Figure 2. Regional geology.

### Hemlo Geology

The Hemlo deposit is one of the largest gold camps in Canada. The gold mineralization at Hemlo is mostly found near the deformed contact between the Moose Lake quartz porphyry volcanic complex, and the stratigraphically underlying metasedimentary rocks. All of which has underwent camp-sized folding. Evidence suggests gold is both structurally and lithologically controlled, likely being deposited within chemical and mechanical traps along jogs in a sinistral shear zone (Davis, Lin 2003). This likely occurred during a second deformation event in the region and representing the most intense phase.

Post mineralization, the area underwent amphibolite facies metamorphism. Geochronological studies suggest that this primary gold-forming event began during a period of plutonism intruding in an actively deforming crust providing a catalyst for the metamorphism (Davis, Lin 2003). During this amphibolite-facies metamorphism, the ore mineral assemblage underwent partial melting, with the concurrent deformation resulting in a Sb – As rich sulfosalt melt (Tomkins, Pattison, Zaleski 2004). This gold bearing melt was transported into dilational zones such as boudin necks and extensional fracturing. However,

# 2022 GEOLOGICAL MAPPING, GRASSROOTS PROSPECTING AND SAMPLING IN WABIKOBA AND WHITE LAKE AREAS

less mobile ore minerals remained in compressional sites resulting in the heterogeneous nature of the ore at the Hemlo deposit (Tomkins, Pattison, Zaleski 2004).

### **Property Geology**

In the HEES project areas, previous mapping has identified intense metamorphism and migmatization, leading to a variety of different classifications for the same rock types. In general, previous mapping has identified the primary lithologies as leucogranites, paragneisses or metasedimentary rocks characterized by their observed mineralogy. Regardless of classification, it appears the area is largely dominated by pelitic rocks that have been subjected to varying degrees of metamorphism and migmatization, with less common intermediate to intrusive bodies stemming from the proximal Cedar Lake Pluton, also subjected to metamorphism. Interestingly, the Ontario Geological Survey's map of the Schreiber-Hemlo Greenstone Belt represents the northern portion of the eastern block as metamorphosed mafic intrusive rocks, but historic work done on the property suggests it is instead paragneisses and conglomerates. Furthermore, medium grained diabase dykes predominately striking north-south with some branching towards the northwest represent the youngest unit in the area.

A 1 km thick sequence of sedimentary and volcanoclastic rocks with a transition zone was mapped on the eastern block. This sequence is similar to Hemlo, and it has been historically hypothesized to have the most potential for a discovery of gold mineralization of similar style to the Hemlo gold deposit (Smith 1985).

### 2022 Geological Mapping and Prospecting

Between the dates of August 1st to August 25<sup>th</sup> Inventus Mining performed a geological mapping and prospecting program on the HEES project owned by Apollo Exploration. Work was preformed by Winston Whymark and Alec Graham both who are employed by Inventus Mining. This work was split between two claim blocks, the "West Block" and the "East Block" (Figures 3 and 4) over the course 14 days.

As part of the work conducted on the properties, historical data; including geological mapping, geophysical surveys and OGS data was compiled and digitized to create an ArcGIS database. This database was then used to identify areas that had no previously known exploration work and areas that had higher potential for mineralization. Areas that had been previously mapped were also visited to confirm geological descriptions of the rocks.

Areas on the property that were not previously mapped or prospected were visited. During this work any prospective outcrops that were identified were then subject to detailed prospecting and mapping, including the collection of grab samples and/or sediment samples. A total of 28 rock samples and 8 sediment samples were collected as part of the work (Table 1).



# 2022 GEOLOGICAL MAPPING, GRASSROOTS PROSPECTING AND SAMPLING IN WABIKOBA AND WHITE LAKE AREAS

Overall, the program identified five areas of high potential and eight areas that should be sampled using a diamond saw (Figure 3 and 4). This follow up work has been described in the following section.

Table 1. Rock and Sediment Grab Samples.

| Sample ID | Easting | Northing | Description                                                                  | Date          |
|-----------|---------|----------|------------------------------------------------------------------------------|---------------|
| E5703519  | 587593  | 5400151  | Creek Sediment                                                               | Aug 10 '22    |
| E5703520  | 587593  | 5400151  | Creek Sediment                                                               | Aug 10 '22    |
| E5703521  | 587593  | 5400151  | Creek Sediment                                                               | Aug 10 '22    |
| E5703522  | 588150  | 5400625  | Dark gray, bt-qtz metasandstone. ~1%                                         | Aug 10 '22    |
|           |         |          | disseminated pyrite. Near diabase contact.                                   |               |
| E5703523  | 588524  | 5400382  | Mg qtz-bt metasediment. Trace fg pyrite.                                     | Aug 11 '22    |
| E5703524  | 588830  | 5400400  | Fly rock. Sugary, fg qtz-bt-plag schist.                                     | Aug 11 '22    |
|           |         |          | Rusty.                                                                       |               |
| E5703525  | 589500  | 5400235  | Creek sediment                                                               | Aug 15 '22    |
| E5703526  | 589500  | 5400235  | Creek sediment                                                               | Aug 15 '22    |
| E5703527  | 597218  | 5397096  | Cg diabase with trace pyrite.                                                | Aug 12 '22    |
| E5703528  | 597276  | 5397262  | Intense pervasive sil+alb(?) alteration. Very                                | Aug 12 '22    |
|           |         |          | pink, epidote veining, vuggy w/ a brown                                      |               |
|           |         |          | fibrous mineral.                                                             |               |
| E5703529  | 597655  | 5399163  | Schistose qtz-bt-plag metasediment w/ k-                                     | Aug 16 '22    |
|           |         |          | spar veining parallel to fabric                                              |               |
| E5703530  | 597375  | 5398825  | Contact between ~10cm folded qtz-diorite                                     | Aug 16 '22    |
| 55700504  | 507000  | 5200657  | dyke in a banded paragneiss.                                                 | 4.6.100       |
| E5703531  | 597233  | 5398657  | Mg. fissile, feldspar-bt schist w/ rusty                                     | Aug 16 '22    |
| FF702F22  | F0717F  | F200F02  | leucosome.                                                                   | A.v. 4.C.12.2 |
| E5703532  | 597175  | 5398593  | Discrete qtz vein, banding concordant w/ ~20% pyrite. Magnetic. 5-10cm wide. | Aug 16 '22    |
| E5703533  | 596645  | 5398765  | K-Feldspar porphyritic metavolcanic(?).                                      | Aug 16 '22    |
| 23703333  | 330043  | 3330703  | ~50% strongly foliated bt, ~50% coarse,                                      | Aug 10 22     |
|           |         |          | euhedral feldspar crystals. Trace sulphides.                                 |               |
| E5703534  | 596645  | 5398765  | Adjacent to last, compositionally the same                                   | Aug 16 '22    |
|           |         |          | but less porphyroclasts and more                                             |               |
|           |         |          | crystalline. ~3% rusty py pods.                                              |               |
| E5703535  | 597135  | 5399436  | Feldspar porphyry in 60% dark gray-blue                                      | Aug 16 '22    |
|           |         |          | amphibole matrix w/ patchy epidote.                                          |               |
|           |         |          | Adjacent to migmatitic rocks.                                                |               |
| E5703536  | 595953  | 5399360  | Mg magnetic diabase dyke.                                                    | Aug 17 '22    |
| E5703537  | 596355  | 5399050  | Creek sediment                                                               | Aug 17 '22    |
| E5703538  | 596355  | 5399050  | Creek sediment                                                               | Aug 17 '22    |
| E5703539  | 597252  | 5399139  | Feldspar porphyry with biotite matrix. <1%                                   | Aug 17 '22    |
|           |         |          | py.                                                                          |               |

# 2022 GEOLOGICAL MAPPING, GRASSROOTS PROSPECTING AND SAMPLING IN WABIKOBA AND WHITE LAKE AREAS

| 598522 | 5398721                                        | Mg paragneiss w/ irregular dioritic                                                    | Aug 17 '22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
|--------|------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|        |                                                | intrusions. Sample from rusty leucosome.                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|        |                                                | <1% sulphides.                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| 597710 | 5398302                                        | Mg muscovite-biotite schist w/ ~3% patchy                                              | Aug 17 '22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
|        |                                                | sulphides. Rusty patches. Equant, coarse                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|        |                                                | qtz porphyroblasts (?)                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| 597848 | 5398342                                        | Mg muscovite-biotite schist w/ ~3% patchy                                              | Aug 17 '22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
|        |                                                | sulphides. Rusty patches. Equant, coarse                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|        |                                                | qtz porphyroblasts (?)                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| 597655 | 5399163                                        | Schistose qtz-bt-plag metasediment w/k-                                                | Aug 16 '22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
|        |                                                | spar veining parallel to fabric. Trace py.                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| 587593 | 5400151                                        | Fly rock. Pegmatitic granite w/ cg biotite an                                          | d subhedral                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|        |                                                | tourmalines.                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| 588802 | 5400535                                        | Vuggy hydrothermally altered zone in a                                                 | fg pelitic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
|        |                                                | metasedimentary rock. Pink-green irregular                                             | veining and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|        |                                                | bx. Mostly qtz-ep-fspar veining. <1% v. fine cpy+py                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|        |                                                | rimming veins.                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| 588417 | 5400027                                        | Mg, mesocratic weakly schistose metasedim                                              | entary rock.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|        |                                                | Qtz-bt-plag.                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| 5 5    | 597710<br>597848<br>597655<br>587593<br>588802 | 597710 5398302<br>597848 5398342<br>597655 5399163<br>587593 5400151<br>588802 5400535 | intrusions. Sample from rusty leucosome. <1% sulphides.  97710 5398302 Mg muscovite-biotite schist w/ ~3% patchy sulphides. Rusty patches. Equant, coarse qtz porphyroblasts (?)  97848 5398342 Mg muscovite-biotite schist w/ ~3% patchy sulphides. Rusty patches. Equant, coarse qtz porphyroblasts (?)  97655 5399163 Schistose qtz-bt-plag metasediment w/ k-spar veining parallel to fabric. Trace py.  97655 Fly rock. Pegmatitic granite w/ cg biotite an tourmalines.  988802 5400535 Vuggy hydrothermally altered zone in a metasedimentary rock. Pink-green irregular bx. Mostly qtz-ep-fspar veining. <1% v. fir rimming veins.  988417 5400027 Mg, mesocratic weakly schistose metasedimentary rock. |  |

# 2022 GEOLOGICAL MAPPING, GRASSROOTS PROSPECTING AND SAMPLING IN WABIKOBA AND WHITE LAKE AREAS

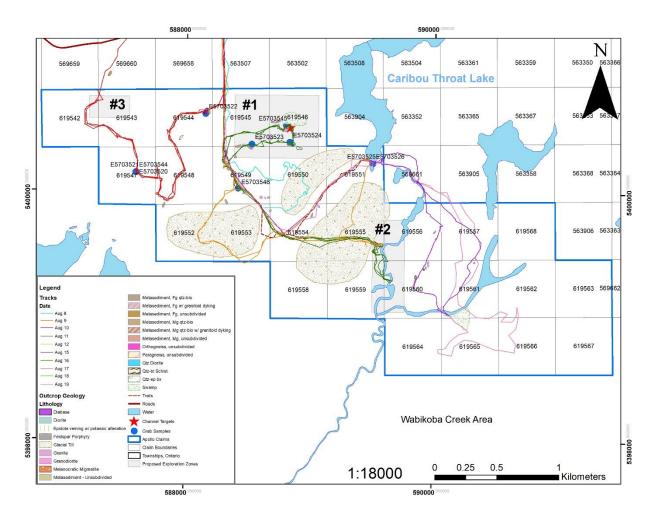



Figure 3. West Block.

# 2022 GEOLOGICAL MAPPING, GRASSROOTS PROSPECTING AND SAMPLING IN WABIKOBA AND WHITE LAKE AREAS

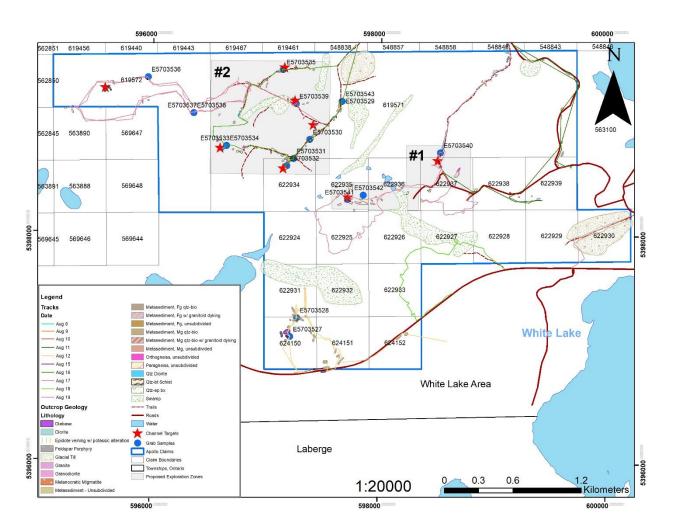



Figure 4. East Block.

#### Recommendations

The geological mapping and prospecting program identified five prospective areas for additional work. It is recommended that follow up mapping and sampling in greater detail be conducted at these locations.

Samples should be taken from eight locations that have been indicated on the east block map (Figure 4). At these locations a sample could not be acquired and follow up sampling, requiring use of a diamond saw should be undertaken

A more detailed description of the five recommended prospective areas from the West and East block are discussed below.

# 2022 GEOLOGICAL MAPPING, GRASSROOTS PROSPECTING AND SAMPLING IN WABIKOBA AND WHITE LAKE AREAS

#### The West Block

**#1** - The area was mapped on Aug 11<sup>th</sup> and is located in a swampy low land with outcrops of hydrothermal alteration. This area had the most interesting geology and two samples from the area were collected. The area has a massive feldspathic rock containing hydrothermal quartz vugs and veins, with epidote, potassic alteration and sulphide mineralization associated with a breccia unit. This area should be revisited for additional detailed mapping and sampling.



# 2022 GEOLOGICAL MAPPING, GRASSROOTS PROSPECTING AND SAMPLING IN WABIKOBA AND WHITE LAKE AREAS

**#2** - The Wabikoba Creek area had visual evidence of historic exploration that was targeting creek sediments. At Caribou Throat Lake there were multiple old trenches and evidence of a dam at the south end of the lake. An old camp site was located south of Caribou Throat Lake and west of Wabikoba Creek. The area also had evidence of what looked to be old sluice boxes and an old framed 1.5mx1.5m shaft or pit. These were all located on the creek shore and according to old claim map research, this work likely dates back to the 1940's.





# 2022 GEOLOGICAL MAPPING, GRASSROOTS PROSPECTING AND SAMPLING IN WABIKOBA AND WHITE LAKE AREAS

**#3** - The "P anomaly" area was indicated in a 1984 assessment report by Golden Century Resources. This anomaly is a combination of magnetics and soil geochemistry. The magnetic survey shows a linear mag feature coinciding with a few anomalous gold soil samples. During the mapping program samples were collected from a seasonal creek directly on bedrock which is located down stream of the "P anomaly". If the samples come back with anomalous gold values, the area should be considered for detailed mapping and prospecting.

#### The East Block

**#1** – The Power Line area had very interesting outcrop, including metasediments which contained sulphide burns and localized areas of sulphide mineralization in fresh unweather rock. The rock contained 1-3% disseminated sulphide mineralization and is hosted in a quartz eye – muscovite schist with boudinage quartz veins. Two samples were collected from the area and further mapping and prospecting is warranted.



# 2022 GEOLOGICAL MAPPING, GRASSROOTS PROSPECTING AND SAMPLING IN WABIKOBA AND WHITE LAKE AREAS

Approximately 900m to the northeast, just to the north of the power lines is another zone of interest. At this location the metasediments have a high degree of metamorphism and have undergone partial melting, creating migmatities. These migmatites contain leucosomes and melt pods with patches of sulphides and is cut by a small feldspar porphyry dyke.



# 2022 GEOLOGICAL MAPPING, GRASSROOTS PROSPECTING AND SAMPLING IN WABIKOBA AND WHITE LAKE AREAS

**#2** – This 1km N/S x 1km E/W block of metasediments include several feldspar porphyry zones with blebby and vein type sulphide mineralization. These zones are also crosscut by late-stage quartz veining. The majority of these outcrops require diamond saw to collect an adequate sample.



# 2022 GEOLOGICAL MAPPING, GRASSROOTS PROSPECTING AND SAMPLING IN WABIKOBA AND WHITE LAKE AREAS

### References

- Andrew G. Tomkins, David R. M. Pattison, Eva Zaleski; The Hemlo Gold Deposit, Ontario: An Example of Melting and Mobilization of a Precious Metal-Sulfosalt Assemblage during Amphibolite Facies Metamorphism and Deformation. Economic Geology 2004;; 99 (6): 1063–1084. doi: https://doi.org/10.2113/gsecongeo.99.6.1063
- Donald W. Davis, Shoufa Lin; Unraveling the Geologic History of the Hemlo Archean Gold Deposit,

  Superior Province, Canada: A U-Pb Geochronological Study. Economic Geology 2003;; 98 (1): 51–67. doi: https://doi.org/10.2113/gsecongeo.98.1.51
- Smith, G. K. (1985, January). Golden Terraces Resources Hemlo "White Lake' Property 1983-1984 Exploration Report. Retrieved August 24, 2022.



# 2022 GEOLOGICAL MAPPING, GRASSROOTS PROSPECTING AND SAMPLING IN WABIKOBA AND WHITE LAKE AREAS

### Certificate of Author

- 1) I am a Geological Engineering Tech with residence in Sudbury, Ontario and currently employed as Operations Manager for Inventus Mining Corp.
- 2. I am an Associate Member #921699 of the Ontario Association of Certified Engineering Technicians and Technologists.
- 3. I graduated from Cambrian College with a Diploma in Mining/Geological Engineering Technology.
- 4. I do not have nor expect an interest in the properties and securities of Apollo Exploration.
- 5. I am not aware of any material fact or material change with respect to the subject matter of this report, the omission to disclose which makes this report misleading.
- 6. I am independent of Apollo Exploration., applying all tests in section 1.5 of NI43-101. I am under contract to the company.
- 7. As of the date of this certificate, and to the best of my knowledge, information and belief, the Technical Report contains all scientific and technical information related to the program here in described.

Dated: Oct 24th, 2022

Signed:

Winston Whymark

# 2022 GEOLOGICAL MAPPING, GRASSROOTS PROSPECTING AND SAMPLING IN WABIKOBA AND WHITE LAKE AREAS

## Appendix

- Invoices
- Cost Break Down
- Assay Cert



#### **ANALYSIS REPORT BBM22-21409**

INVENTUS MINING CORP WESLEY WHYMARK 1-1785 FROBISHER ST. SUDBURY P3A 6C8 ON CANADA

| Project               | Apollo Exploration / Hemlo Project | Date Received    | 19-Sep-2022               |
|-----------------------|------------------------------------|------------------|---------------------------|
| Submission Number     | APOLLO_EXPLORATION-                | Date Analysed    | 15-Sep-2022 - 18-Oct-2022 |
| HEMLO_PROJECT / 29 Sa | amples                             | Date Completed   | 18-Oct-2022               |
| Number of Samples     | 29                                 | SGS Order Number | BBM22-21409               |

| Methods Summary  |             |                                                      |
|------------------|-------------|------------------------------------------------------|
| Number of Sample | Method Code | <u>Description</u>                                   |
| 29               | G_WGH_KG    | Weight of samples received                           |
| 29               | GE_FAI50V5  | Au, Pt, Pd, FAS, exploration grade, ICP-AES, 50g-5mL |
| 21               | GE_ICP40Q12 | 4 Acid Digest (HCL/HCLO4/HF/HNO3), ICP               |
| 21               | GE_IMS40Q12 | 4 Acid Digest Package (HCL/HCLO4/HF/HNO3),ICP-MS     |
|                  |             |                                                      |

#### Comments

Preparation of samples was performed at the SGS Sudbury Analysis of samples was performed at the SGS Burnaby site

Authorised Signatory

John Chiang

**Laboratory Operations Manager** 



This document is issued by the Company under its General Conditions of Service accessible at https://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was(were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativeness of any goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes.

> - not analysed -- element not determined | I.S. insufficient sample | L.N.R. listed not received

20-Oct-2022 7:16PM BBM\_U0030335838 Page 1 of 11 MIN-M\_COA\_ROW-Last Modified Date: 05-Nov-2019



APOLLO\_EXPLORATION-

HEMLO\_PROJECT / 29 Samples **Number of Samples** 29

### **ANALYSIS REPORT BBM22-21409**

| Element     | WTG      | @Au        | @AI         | @Ва         | @Ca         | @Cr         |
|-------------|----------|------------|-------------|-------------|-------------|-------------|
| Method      | G_WGH_KG | GE_FAI50V5 | GE_ICP40Q12 | GE_ICP40Q12 | GE_ICP40Q12 | GE_ICP40Q12 |
| Lower Limit | 0.01     | 1          | 0.01        | 1           | 0.005       | 1           |
| Upper Limit |          | 10,000     | 15          | 10,000      | 15          | 10,000      |
| Unit        | kg       | ppb        | %           | ppm m / m   | %           | ppm m / m   |
| E5703519    | 0.65     | 1          | -           | -           | -           | -           |
| E5703520    | 0.82     | 1          | -           | -           | -           | -           |
| E5703521    | 1.19     | <1         | -           | -           | -           | -           |
| E5703525    | 0.25     | 17         | -           | -           | -           |             |
| E5703526    | 2.34     | 1          | -           | -           | -           |             |
| E5703537    | 0.73     | <1         | -           | -           | -           | -           |
| E5703538    | 0.54     | 1          | -           | -           | -           | -           |
| E5703522    | 1.31     | <1         | 7.84        | 1110        | 2.159       | 86          |
| E5703523    | 0.92     | <1         | 7.69        | 653         | 3.019       | 109         |
| E5703524    | 1.04     | <1         | 8.15        | 253         | 2.980       | 650         |
| E5703527    | 1.54     | 2          | 5.73        | 203         | 4.458       | 15          |
| E5703528    | 0.41     | <1         | 7.57        | 921         | 3.860       | 43          |
| E5703529    | 0.82     | 2          | 7.45        | 304         | 3.357       | 81          |
| E5703530    | 0.29     | <1         | 7.87        | 1141        | 1.669       | 3           |
| E5703531    | 0.14     | <1         | 7.95        | 1545        | 3.161       | 38          |
| E5703532    | 0.16     | 32         | 5.33        | 282         | 1.846       | 24          |
| E5703533    | 0.97     | <1         | 7.80        | 1089        | 3.652       | 109         |
| E5703534    | 1.39     | 1          | 7.67        | 1726        | 2.953       | 81          |
| E5703535    | 1.20     | <1         | 6.71        | 578         | 5.870       | 312         |
| E5703536    | 0.49     | 1          | 7.28        | 129         | 7.485       | 211         |
| E5703539    | 0.60     | <1         | 7.85        | 982         | 4.101       | 79          |
| E5703540    | 0.31     | <1         | 7.37        | 366         | 2.464       | 33          |
| E5703541    | 1.70     | 3          | 7.20        | 284         | 3.868       | 95          |
| E5703542    | 0.88     | 1          | 7.36        | 400         | 4.027       | 97          |
| E5703543    | 0.42     | 6          | 7.52        | 467         | 1.242       | 42          |
| E5703544    | 0.74     | <1         | 7.33        | 654         | 1.799       | 14          |
| E5703545    | 2.11     | <1         | 5.27        | 490         | 4.772       | 38          |
| E5703546    | 0.17     | <1         | 8.02        | 339         | 1.974       | 14          |
| E5703547    | 0.49     | <1         | -           | -           | -           |             |

- not analysed | -- element not determined | I.S. insufficient sample | L.N.R. listed not received

20-Oct-2022 7:16PM BBM\_U0030335838 Page 2 of 11 MIN-M\_COA\_ROW-Last Modified Date: 05-Nov-2019



APOLLO\_EXPLORATION-

HEMLO\_PROJECT / 29 Samples **Number of Samples** 29

### **ANALYSIS REPORT BBM22-21409**

| Element         | WTG      | @Au        | @AI         | @Ba         | @Ca         | @Cr         |
|-----------------|----------|------------|-------------|-------------|-------------|-------------|
| Method          | G_WGH_KG | GE_FAI50V5 | GE_ICP40Q12 | GE_ICP40Q12 | GE_ICP40Q12 | GE_ICP40Q12 |
| Lower Limit     | 0.01     | 1          | 0.01        | 1           | 0.005       | 1           |
| Upper Limit     |          | 10,000     | 15          | 10,000      | 15          | 10,000      |
| Unit            | kg       | ppb        | %           | ppm m / m   | %           | ppm m / m   |
| *Std OREAS 601b | -        | -          | 6.27        | 1496        | 0.841       | 26          |
| *BIk BLANK      | -        | -          | <0.01       | <1          | <0.005      | <1          |
| *Rep E5703534   | -        | -          | 7.68        | 1732        | 2.973       | 74          |
| *Std OREAS 905  | -        | -          | 7.11        | 2638        | 0.560       | 16          |
| *Std SL105      | -        | 5210       | -           | -           | -           | -           |
| *Rep E5703542   | -        | 1          | -           | -           | -           | -           |
| *Std OREAS 501d | -        | 231        | -           | -           | -           | -           |
| *BIk BLANK      | _        | 1          | _           | -           | _           |             |

| Element     | @Cu         | @Fe         | @K          | @Mg         | @Mn         | @Na         |
|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Method      | GE_ICP40Q12 | GE_ICP40Q12 | GE_ICP40Q12 | GE_ICP40Q12 | GE_ICP40Q12 | GE_ICP40Q12 |
| Lower Limit | 0.5         | 0.01        | 0.01        | 0.002       | 2           | 0.005       |
| Upper Limit | 10,000      | 15          | 15          | 15          | 10,000      | 15          |
| Unit        | ppm m / m   | %           | %           | %           | ppm m / m   | %           |
| E5703522    | 33.4        | 3.10        | 1.95        | 1.482       | 514         | 3.058       |
| E5703523    | 43.8        | 3.67        | 1.29        | 1.829       | 562         | 3.416       |
| E5703524    | 50.8        | 6.87        | 0.99        | 3.339       | 1184        | 2.271       |
| E5703527    | 320         | 12.05       | 0.79        | 1.563       | 1608        | 1.988       |
| E5703528    | 5.5         | 2.63        | 2.65        | 0.362       | 239         | 2.423       |
| E5703529    | 1.8         | 3.34        | 1.32        | 1.143       | 596         | 2.875       |
| E5703530    | 7.5         | 1.39        | 2.29        | 0.521       | 143         | 3.469       |
| E5703531    | 26.3        | 3.87        | 2.17        | 1.426       | 592         | 3.135       |
| E5703532    | 838         | >15.00      | 0.75        | 0.498       | 416         | 2.163       |
| E5703533    | 23.9        | 4.28        | 2.58        | 2.099       | 707         | 2.898       |
| E5703534    | 23.5        | 3.68        | 3.42        | 1.750       | 623         | 2.447       |
| E5703535    | 43.9        | 7.23        | 1.20        | 4.864       | 1237        | 2.422       |
| E5703536    | 111         | 7.13        | 0.64        | 4.651       | 1630        | 1.504       |
| E5703539    | 27.6        | 4.57        | 1.88        | 2.208       | 764         | 3.209       |
| E5703540    | 18.0        | 2.29        | 1.16        | 0.591       | 404         | 3.470       |

- not analysed | -- element not determined | I.S. insufficient sample | L.N.R. listed not received

20-Oct-2022 7:16PM BBM\_U0030335838 Page 3 of 11 MIN-M\_COA\_ROW-Last Modified Date: 05-Nov-2019

www.sgs.com



APOLLO\_EXPLORATION-

HEMLO\_PROJECT / 29 Samples **Number of Samples** 29

#### **ANALYSIS REPORT BBM22-21409**

| Element         | @Cu         | @Fe         | @K          | @Mg         | @Mn         | @Na         |
|-----------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Method          | GE_ICP40Q12 | GE_ICP40Q12 | GE_ICP40Q12 | GE_ICP40Q12 | GE_ICP40Q12 | GE_ICP40Q12 |
| Lower Limit     | 0.5         | 0.01        | 0.01        | 0.002       | 2           | 0.005       |
| Upper Limit     | 10,000      | 15          | 15          | 15          | 10,000      | 15          |
| Unit            | ppm m / m   | %           | %           | %           | ppm m / m   | %           |
| E5703541        | 52.1        | 10.07       | 0.87        | 2.203       | 1469        | 2.486       |
| E5703542        | 53.2        | 7.92        | 0.89        | 2.475       | 1121        | 2.872       |
| E5703543        | 25.3        | 2.69        | 1.31        | 1.164       | 383         | 3.606       |
| E5703544        | 41.9        | 2.83        | 2.52        | 0.981       | 463         | 2.750       |
| E5703545        | 3.6         | 3.75        | 1.41        | 1.084       | 578         | 1.829       |
| E5703546        | 10.8        | 1.70        | 0.95        | 0.426       | 206         | 4.014       |
| *Std OREAS 601b | 1010        | 2.28        | 2.28        | 0.094       | 211         | 1.907       |
| *Blk BLANK      | <0.5        | <0.01       | <0.01       | <0.002      | <2          | <0.005      |
| *Rep E5703534   | 23.7        | 3.68        | 2.90        | 1.760       | 627         | 2.446       |
| *Std OREAS 905  | 1543        | 4.06        | 2.77        | 0.267       | 362         | 2.388       |

| Element     | @Ni         | @P          | @S          | @Sr         | @Ti         | @V          |
|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Method      | GE_ICP40Q12 | GE_ICP40Q12 | GE_ICP40Q12 | GE_ICP40Q12 | GE_ICP40Q12 | GE_ICP40Q12 |
| Lower Limit | 1           | 0.001       | 0.005       | 0.5         | 0.001       | 2           |
| Upper Limit | 10,000      | 15          | 5           | 10,000      | 15          | 10,000      |
| Unit        | ppm m / m   | %           | %           | ppm m / m   | %           | ppm m / m   |
| E5703522    | 68          | 0.092       | 0.141       | 705         | 0.288       | 87          |
| E5703523    | 70          | 0.094       | 0.129       | 1035        | 0.310       | 92          |
| E5703524    | 137         | 0.050       | 0.008       | 456         | 0.552       | 227         |
| E5703527    | 64          | 0.194       | 0.644       | 168         | 0.960       | 229         |
| E5703528    | 23          | 0.050       | 0.056       | 988         | 0.187       | 59          |
| E5703529    | 72          | 0.071       | 0.009       | 661         | 0.450       | 82          |
| E5703530    | 7           | 0.044       | 0.017       | 850         | 0.160       | 26          |
| E5703531    | 14          | 0.131       | 0.127       | 1171        | 0.344       | 91          |
| E5703532    | 27          | 0.037       | >5.000      | 355         | 0.290       | 116         |
| E5703533    | 17          | 0.139       | 0.099       | 1042        | 0.375       | 116         |
| E5703534    | 17          | 0.117       | 0.079       | 1060        | 0.313       | 96          |
| E5703535    | 84          | 0.192       | 0.060       | 955         | 0.545       | 213         |
| E5703536    | 96          | 0.037       | 0.090       | 194         | 0.454       | 226         |

- not analysed | -- element not determined | I.S. insufficient sample | L.N.R. listed not received

20-Oct-2022 7:16PM BBM\_U0030335838 Page 4 of 11 MIN-M\_COA\_ROW-Last Modified Date: 05-Nov-2019



APOLLO\_EXPLORATION-

HEMLO\_PROJECT / 29 Samples **Number of Samples** 29

### **ANALYSIS REPORT BBM22-21409**

| Element         | @Ni         | @P          | @S          | @Sr         | @Ti         | @V          |
|-----------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Method          | GE_ICP40Q12 | GE_ICP40Q12 | GE_ICP40Q12 | GE_ICP40Q12 | GE_ICP40Q12 | GE_ICP40Q12 |
| Lower Limit     | 1           | 0.001       | 0.005       | 0.5         | 0.001       | 2           |
| Upper Limit     | 10,000      | 15          | 5           | 10,000      | 15          | 10,000      |
| Unit            | ppm m / m   | %           | %           | ppm m / m   | %           | ppm m / m   |
| E5703539        | 27          | 0.140       | 0.229       | 1114        | 0.377       | 121         |
| E5703540        | 24          | 0.043       | 0.049       | 549         | 0.213       | 60          |
| E5703541        | 81          | 0.065       | 0.100       | 488         | 1.064       | 175         |
| E5703542        | 66          | 0.060       | 0.161       | 474         | 0.964       | 160         |
| E5703543        | 31          | 0.060       | 0.162       | 531         | 0.284       | 57          |
| E5703544        | 8           | 0.060       | 0.080       | 635         | 0.225       | 64          |
| E5703545        | 17          | 0.079       | 0.045       | 1281        | 0.422       | 134         |
| E5703546        | 9           | 0.031       | 0.042       | 664         | 0.155       | 33          |
| *Std OREAS 601b | 6           | 0.028       | 1.453       | 230         | 0.127       | 12          |
| *Blk BLANK      | <1          | <0.001      | <0.005      | 0.6         | <0.001      | <2          |
| *Rep E5703534   | 17          | 0.117       | 0.078       | 1057        | 0.315       | 96          |
| *Std OREAS 905  | 8           | 0.027       | 0.066       | 150         | 0.117       | 10          |

| Element     | @Zn         | @Zr         | @Ag         | @As         | @Be         | @Bi         |
|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Method      | GE_ICP40Q12 | GE_ICP40Q12 | GE_IMS40Q12 | GE_IMS40Q12 | GE_IMS40Q12 | GE_IMS40Q12 |
| Lower Limit | 1           | 0.5         | 0.02        | 1           | 0.05        | 0.01        |
| Upper Limit | 10,000      | 10,000      | 100         | 10,000      | 2,500       | 10,000      |
| Unit        | ppm m / m   | ppm m / m   | ppm m/m     | ppm m / m   | ppm m / m   | ppm m / m   |
| E5703522    | 55          | 104         | 0.06        | <1          | 1.37        | 0.10        |
| E5703523    | 81          | 83.6        | 0.09        | <1          | 1.32        | 0.07        |
| E5703524    | 130         | 70.0        | 0.07        | <1          | 0.77        | 0.12        |
| E5703527    | 157         | 270         | 0.28        | <1          | 1.48        | 0.10        |
| E5703528    | 14          | 60.6        | 0.07        | <1          | 0.88        | 0.27        |
| E5703529    | 54          | 46.8        | 0.04        | <1          | 1.17        | 0.55        |
| E5703530    | 43          | 103         | 0.04        | <1          | 1.13        | 0.03        |
| E5703531    | 82          | 106         | 0.13        | <1          | 1.58        | 0.10        |
| E5703532    | 52          | 34.1        | 2.55        | <1          | 0.57        | 1.00        |
| E5703533    | 111         | 98.7        | 0.41        | <1          | 1.71        | 0.25        |
| E5703534    | 76          | 99.4        | 0.16        | <1          | 1.60        | 0.29        |

- not analysed | -- element not determined | I.S. insufficient sample | L.N.R. listed not received

20-Oct-2022 7:16PM BBM\_U0030335838 Page 5 of 11 MIN-M\_COA\_ROW-Last Modified Date: 05-Nov-2019

www.sgs.com



APOLLO\_EXPLORATION-

HEMLO\_PROJECT / 29 Samples **Number of Samples** 29

#### **ANALYSIS REPORT BBM22-21409**

| Element         | @Zn         | @Zr         | @Ag         | @As         | @Be         | @Bi         |
|-----------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Method          | GE_ICP40Q12 | GE_ICP40Q12 | GE_IMS40Q12 | GE_IMS40Q12 | GE_IMS40Q12 | GE_IMS40Q12 |
| Lower Limit     | 1           | 0.5         | 0.02        | 1           | 0.05        | 0.01        |
| Upper Limit     | 10,000      | 10,000      | 100         | 10,000      | 2,500       | 10,000      |
| Unit            | ppm m / m   | ppm m/m     | ppm m / m   | ppm m / m   | ppm m/m     | ppm m / m   |
| E5703535        | 117         | 25.3        | 0.07        | <1          | 1.20        | 0.07        |
| E5703536        | 59          | 41.2        | 0.06        | <1          | 0.32        | 0.02        |
| E5703539        | 89          | 82.9        | 0.16        | <1          | 1.76        | 0.12        |
| E5703540        | 54          | 54.3        | 0.07        | <1          | 1.03        | 0.10        |
| E5703541        | 101         | 57.3        | 0.16        | <1          | 0.74        | 0.19        |
| E5703542        | 112         | 79.0        | 0.14        | <1          | 1.06        | 0.20        |
| E5703543        | 53          | 71.0        | 0.11        | <1          | 1.04        | 0.12        |
| E5703544        | 68          | 55.8        | 0.37        | <1          | 2.57        | 0.40        |
| E5703545        | 68          | 65.5        | 0.04        | <1          | 0.73        | 0.12        |
| E5703546        | 47          | 28.6        | 0.05        | <1          | 0.78        | 0.17        |
| *Std OREAS 601b | 317         | 177         | 48.82       | 287         | 2.40        | 17.39       |
| *BIk BLANK      | <1          | <0.5        | <0.02       | <1          | <0.05       | <0.01       |
| *Rep E5703534   | 76          | 106         | 0.16        | <1          | 1.55        | 0.29        |
| *Std OREAS 905  | 138         | 247         | 0.56        | 33          | 3.01        | 5.79        |

| Element     | @Cd         | @Ce         | @Co         | @Cs         | @Ga         | @Hf         |
|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Method      | GE_IMS40Q12 | GE_IMS40Q12 | GE_IMS40Q12 | GE_IMS40Q12 | GE_IMS40Q12 | GE_IMS40Q12 |
| Lower Limit | 0.02        | 0.05        | 0.1         | 0.05        | 0.05        | 0.02        |
| Upper Limit | 10,000      | 1,000       | 10,000      | 1,000       | 1,000       | 500         |
| Unit        | ppm m / m   | ppm m/m     | ppm m / m   |
| E5703522    | 0.07        | 52.40       | 17.0        | 1.34        | 20.30       | 2.96        |
| E5703523    | 0.08        | 65.62       | 19.2        | 1.67        | 21.24       | 2.33        |
| E5703524    | 0.16        | 10.62       | 39.6        | 2.75        | 21.96       | 2.16        |
| E5703527    | 0.34        | 58.33       | 48.9        | 5.67        | 22.73       | 7.47        |
| E5703528    | 0.05        | 27.23       | 12.0        | 0.88        | 23.50       | 1.87        |
| E5703529    | 0.18        | 43.37       | 13.8        | 2.70        | 26.86       | 1.45        |
| E5703530    | 0.03        | 32.56       | 5.3         | 2.29        | 20.20       | 2.83        |
| E5703531    | 0.11        | 71.80       | 11.0        | 1.29        | 21.35       | 2.93        |
| E5703532    | 0.08        | 11.75       | 103         | 1.86        | 18.79       | 1.10        |

- not analysed | -- element not determined | I.S. insufficient sample | L.N.R. listed not received

20-Oct-2022 7:16PM BBM\_U0030335838 Page 6 of 11 MIN-M\_COA\_ROW-Last Modified Date: 05-Nov-2019



APOLLO\_EXPLORATION-

HEMLO\_PROJECT / 29 Samples **Number of Samples** 29

#### **ANALYSIS REPORT BBM22-21409**

| Element         | @Cd         | @Ce         | @Co         | @Cs         | @Ga         | @Hf         |
|-----------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Method          | GE_IMS40Q12 | GE_IMS40Q12 | GE_IMS40Q12 | GE_IMS40Q12 | GE_IMS40Q12 | GE_IMS40Q12 |
| Lower Limit     | 0.02        | 0.05        | 0.1         | 0.05        | 0.05        | 0.02        |
| Upper Limit     | 10,000      | 1,000       | 10,000      | 1,000       | 1,000       | 500         |
| Unit            | ppm m / m   | ppm m / m   | ppm m / m   | ppm m/m     | ppm m/m     | ppm m / m   |
| E5703533        | 0.23        | 62.01       | 12.4        | 5.90        | 21.68       | 2.83        |
| E5703534        | 0.20        | 54.24       | 10.1        | 5.28        | 20.25       | 2.93        |
| E5703535        | 0.13        | 56.36       | 37.4        | 0.54        | 20.61       | 1.3         |
| E5703536        | 0.09        | 13.23       | 48.1        | 2.98        | 14.69       | 1.2         |
| E5703539        | 0.12        | 59.53       | 15.4        | 1.10        | 20.92       | 2.4         |
| E5703540        | 0.06        | 35.14       | 10.0        | 1.23        | 20.92       | 1.5         |
| E5703541        | 0.09        | 11.80       | 34.1        | 2.11        | 20.90       | 1.8         |
| E5703542        | 0.10        | 15.75       | 33.5        | 4.48        | 22.01       | 2.5         |
| E5703543        | 0.04        | 40.83       | 13.1        | 3.00        | 19.52       | 1.9         |
| E5703544        | 0.04        | 39.62       | 9.3         | 6.78        | 25.14       | 1.6         |
| E5703545        | 0.02        | 51.20       | 15.5        | 0.56        | 18.72       | 1.8         |
| E5703546        | 0.04        | 24.32       | 5.7         | 1.34        | 20.71       | 0.7         |
| *Std OREAS 601b | 2.08        | 67.26       | 3.0         | 4.71        | 23.43       | 4.9         |
| *BIk BLANK      | <0.02       | <0.05       | <0.1        | <0.05       | <0.05       | 0.0         |
| *Rep E5703534   | 0.19        | 54.80       | 9.9         | 5.09        | 20.03       | 3.0         |
| *Std OREAS 905  | 0.36        | 93.15       | 14.7        | 6.90        | 24.65       | 6.8         |

| Element     | @In         | @La         | @Li         | @Lu         | @Mo         | @Nb         |
|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Method      | GE_IMS40Q12 | GE_IMS40Q12 | GE_IMS40Q12 | GE_IMS40Q12 | GE_IMS40Q12 | GE_IMS40Q12 |
| Lower Limit | 0.005       | 0.05        | 0.2         | 0.01        | 0.05        | 0.1         |
| Upper Limit | 500         | 10,000      | 10,000      | 1,000       | 10,000      | 1,000       |
| Unit        | ppm m / m   |
| E5703522    | 0.032       | 22.60       | 17.0        | 0.18        | 1.37        | 5.2         |
| E5703523    | 0.036       | 28.46       | 17.8        | 0.16        | 1.50        | 4.5         |
| E5703524    | 0.070       | 4.49        | 42.2        | 0.30        | 1.44        | 3.7         |
| E5703527    | 0.148       | 24.81       | 14.1        | 1.25        | 1.43        | 13.3        |
| E5703528    | 0.025       | 9.02        | 3.4         | 0.06        | 1.22        | 3.0         |
| E5703529    | 0.036       | 17.11       | 8.0         | 0.11        | 1.46        | 6.5         |
| E5703530    | 0.010       | 13.90       | 12.3        | 0.05        | 1.00        | 2.1         |

- not analysed | -- element not determined | I.S. insufficient sample | L.N.R. listed not received

20-Oct-2022 7:16PM BBM\_U0030335838 Page 7 of 11 MIN-M\_COA\_ROW-Last Modified Date: 05-Nov-2019



APOLLO\_EXPLORATION-

HEMLO\_PROJECT / 29 Samples **Number of Samples** 29

### **ANALYSIS REPORT BBM22-21409**

| Element         | @In         | @La         | @Li         | @Lu         | @Mo         | @Nb         |
|-----------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Method          | GE_IMS40Q12 | GE_IMS40Q12 | GE_IMS40Q12 | GE_IMS40Q12 | GE_IMS40Q12 | GE_IMS40Q12 |
| Lower Limit     | 0.005       | 0.05        | 0.2         | 0.01        | 0.05        | 0.1         |
| Upper Limit     | 500         | 10,000      | 10,000      | 1,000       | 10,000      | 1,000       |
| Unit            | ppm m / m   |
| E5703531        | 0.047       | 21.60       | 9.5         | 0.16        | 7.87        | 6.          |
| E5703532        | 0.042       | 4.64        | 10.0        | 0.08        | 4.24        | 2.          |
| E5703533        | 0.049       | 22.09       | 7.2         | 0.16        | 0.91        | 5.          |
| E5703534        | 0.043       | 20.15       | 7.5         | 0.13        | 1.25        | 4.          |
| E5703535        | 0.078       | 18.24       | 12.7        | 0.34        | 0.67        | 6.          |
| E5703536        | 0.052       | 5.33        | 15.8        | 0.25        | 0.47        | 4.          |
| E5703539        | 0.051       | 21.28       | 6.9         | 0.18        | 0.62        | 5.          |
| E5703540        | 0.026       | 14.72       | 11.1        | 0.10        | 1.10        | 2.          |
| E5703541        | 0.060       | 4.21        | 16.2        | 0.25        | 1.19        | 6.          |
| E5703542        | 0.065       | 4.98        | 17.0        | 0.24        | 0.63        | 6.          |
| E5703543        | 0.023       | 16.69       | 28.3        | 0.08        | 0.98        | 2.          |
| E5703544        | 0.039       | 17.37       | 20.1        | 0.22        | 0.88        | 7.          |
| E5703545        | 0.061       | 22.64       | 19.2        | 0.20        | 0.76        | 4.          |
| E5703546        | 0.012       | 10.79       | 13.2        | 0.03        | 0.63        | 1.          |
| *Std OREAS 601b | 0.464       | 33.47       | 22.5        | 0.07        | 4.97        | 14.         |
| *BIK BLANK      | <0.005      | <0.05       | <0.2        | <0.01       | <0.05       | <0.         |
| *Rep E5703534   | 0.040       | 19.81       | 7.6         | 0.13        | 1.17        | 4.          |
| *Std OREAS 905  | 0.646       | 44.21       | 19.8        | 0.10        | 3.44        | 17.         |

| Element     | @Pb         | @Rb         | @Sb         | @Sc         | @Se         | @Sn         |
|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Method      | GE_IMS40Q12 | GE_IMS40Q12 | GE_IMS40Q12 | GE_IMS40Q12 | GE_IMS40Q12 | GE_IMS40Q12 |
| Lower Limit | 0.5         | 0.1         | 0.05        | 0.1         | 1           | 0.2         |
| Upper Limit | 10,000      | 10,000      | 10,000      | 10,000      | 1,000       | 1,000       |
| Unit        | ppm m / m   |
| E5703522    | 15.6        | 50.0        | <0.05       | 10.9        | <1          | 1.0         |
| E5703523    | 11.6        | 40.9        | <0.05       | 11.1        | <1          | 0.9         |
| E5703524    | 7.4         | 32.6        | <0.05       | 31.5        | <1          | 0.8         |
| E5703527    | 7.1         | 49.0        | <0.05       | 33.6        | 4           | 2.6         |
| E5703528    | 7.2         | 74.8        | <0.05       | 6.6         | <1          | 0.7         |

- not analysed | -- element not determined | I.S. insufficient sample | L.N.R. listed not received

20-Oct-2022 7:16PM BBM\_U0030335838 Page 8 of 11 MIN-M\_COA\_ROW-Last Modified Date: 05-Nov-2019



APOLLO\_EXPLORATION-

HEMLO\_PROJECT / 29 Samples **Number of Samples** 29

### **ANALYSIS REPORT BBM22-21409**

| Element         | @Pb         | @Rb         | @Sb         | @Sc         | @Se         | @Sn         |
|-----------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Method          | GE_IMS40Q12 | GE_IMS40Q12 | GE_IMS40Q12 | GE_IMS40Q12 | GE_IMS40Q12 | GE_IMS40Q12 |
| Lower Limit     | 0.5         | 0.1         | 0.05        | 0.1         | 1           | 0.2         |
| Upper Limit     | 10,000      | 10,000      | 10,000      | 10,000      | 1,000       | 1,000       |
| Unit            | ppm m / m   |
| E5703529        | 7.0         | 41.0        | 0.24        | 8.9         | <1          | 1.0         |
| E5703530        | 14.9        | 50.7        | 0.06        | 2.1         | <1          | 0.5         |
| E5703531        | 15.9        | 48.5        | 0.05        | 9.2         | <1          | 1.3         |
| E5703532        | 8.4         | 28.9        | <0.05       | 12.7        | 2           | 3.0         |
| E5703533        | 101         | 58.7        | 0.12        | 13.0        | <1          | 1.3         |
| E5703534        | 53.8        | 74.5        | 0.13        | 10.7        | <1          | 1.2         |
| E5703535        | 4.4         | 27.6        | <0.05       | 30.1        | 1           | 1.6         |
| E5703536        | 3.9         | 39.5        | <0.05       | 40.1        | 1           | 0.6         |
| E5703539        | 15.8        | 35.8        | <0.05       | 13.7        | <1          | 1.3         |
| E5703540        | 9.3         | 31.8        | <0.05       | 7.8         | <1          | 0.7         |
| E5703541        | 6.0         | 33.6        | <0.05       | 19.5        | 1           | 0.0         |
| E5703542        | 6.2         | 35.1        | <0.05       | 17.3        | 1           | 1.3         |
| E5703543        | 6.3         | 35.8        | 0.07        | 6.2         | <1          | 0.7         |
| E5703544        | 15.1        | 77.0        | 0.22        | 12.9        | <1          | 1.3         |
| E5703545        | 4.5         | 36.8        | <0.05       | 14.6        | <1          | 0.9         |
| E5703546        | 7.0         | 27.0        | <0.05       | 2.7         | <1          | 0.5         |
| *Std OREAS 601b | 312         | 98.3        | 23.46       | 3.7         | 10          | 3.6         |
| *BIK BLANK      | 0.7         | <0.1        | <0.05       | <0.1        | <1          | <0.2        |
| *Rep E5703534   | 53.7        | 61.9        | 0.13        | 10.5        | <1          | 1.1         |
| *Std OREAS 905  | 30.5        | 136         | 1.92        | 4.9         | 3           | 4.5         |

| Element Method Lower Limit Upper Limit Unit | @Ta GE_IMS40Q12 0.05 10,000 | @Tb GE_IMS40Q12 0.05 10,000 | @Te GE_IMS40Q12 0.05 1,000 | @Th GE_IMS40Q12 0.01 10,000 | @TI GE_IMS40Q12 0.02 10,000 | @U<br>GE_IMS40Q12<br>0.05<br>10,000 |
|---------------------------------------------|-----------------------------|-----------------------------|----------------------------|-----------------------------|-----------------------------|-------------------------------------|
| E5703522                                    | ppm m / m<br>0.45           | ppm m / m<br>0.44           | ppm m / m<br>0.05          | ppm m / m<br>6.52           | ppm m / m<br>0.28           | ppm m / m<br>1.44                   |
| E5703523                                    | 0.33                        | 0.48                        | <0.05                      | 4.20                        | 0.24                        | 0.83                                |
| E5703524                                    | 0.38                        | 0.39                        | <0.05                      | 1.67                        | 0.21                        | 0.55                                |

- not analysed | -- element not determined | I.S. insufficient sample | L.N.R. listed not received

20-Oct-2022 7:16PM BBM\_U0030335838 Page 9 of 11 MIN-M\_COA\_ROW-Last Modified Date: 05-Nov-2019



APOLLO\_EXPLORATION-

HEMLO\_PROJECT / 29 Samples **Number of Samples** 29

#### **ANALYSIS REPORT BBM22-21409**

| Element         | @Ta         | @Tb         | @Te         | @Th         | @TI         | @U          |
|-----------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Method          | GE_IMS40Q12 | GE_IMS40Q12 | GE_IMS40Q12 | GE_IMS40Q12 | GE_IMS40Q12 | GE_IMS40Q12 |
| Lower Limit     | 0.05        | 0.05        | 0.05        | 0.01        | 0.02        | 0.05        |
| Upper Limit     | 10,000      | 10,000      | 1,000       | 10,000      | 10,000      | 10,000      |
| Unit            | ppm m / m   | ppm m/m     | ppm m / m   |
| E5703527        | 0.90        | 1.87        | 0.14        | 4.86        | 0.28        | 1.1         |
| E5703528        | 0.20        | 0.14        | 0.05        | 2.01        | 0.48        | 0.4         |
| E5703529        | 0.38        | 0.37        | <0.05       | 2.70        | 0.25        | 1.0         |
| E5703530        | 0.20        | 0.11        | <0.05       | 2.40        | 0.27        | 0.6         |
| E5703531        | 0.47        | 0.60        | 0.05        | 6.49        | 0.26        | 1.8         |
| E5703532        | 0.18        | 0.17        | 0.41        | 2.23        | 0.17        | 0.6         |
| E5703533        | 0.36        | 0.53        | <0.05       | 7.44        | 0.34        | 1.9         |
| E5703534        | 0.31        | 0.41        | 0.05        | 6.58        | 0.43        | 2.6         |
| E5703535        | 0.44        | 0.82        | <0.05       | 1.84        | 0.16        | 0.7         |
| E5703536        | 0.27        | 0.39        | <0.05       | 0.85        | 0.16        | 0.1         |
| E5703539        | 0.32        | 0.57        | 0.08        | 6.06        | 0.20        | 1.5         |
| E5703540        | 0.18        | 0.24        | <0.05       | 3.06        | 0.16        | 1.0         |
| E5703541        | 0.38        | 0.65        | 0.07        | 0.85        | 0.26        | 0.1         |
| E5703542        | 0.38        | 0.62        | 0.06        | 1.44        | 0.24        | 0.4         |
| E5703543        | 0.16        | 0.28        | 0.05        | 2.61        | 0.24        | 0.7         |
| E5703544        | 0.37        | 0.35        | <0.05       | 5.01        | 0.39        | 2.4         |
| E5703545        | 0.29        | 0.54        | <0.05       | 2.43        | 0.22        | 0.4         |
| E5703546        | 0.12        | 0.11        | <0.05       | 1.05        | 0.15        | 0.1         |
| *Std OREAS 601b | 1.14        | 0.52        | 13.00       | 12.62       | 1.50        | 4.8         |
| *BIK BLANK      | <0.05       | <0.05       | <0.05       | 0.05        | <0.02       | <0.0        |
| *Rep E5703534   | 0.32        | 0.41        | <0.05       | 6.68        | 0.44        | 2.6         |
| *Std OREAS 905  | 1.33        | 0.78        | 0.07        | 15.06       | 0.71        | 5.1         |

| Element     | @W          | @Y          | @Yb         |
|-------------|-------------|-------------|-------------|
| Method      | GE_IMS40Q12 | GE_IMS40Q12 | GE_IMS40Q12 |
| Lower Limit | 0.1         | 0.1         | 0.1         |
| Upper Limit | 10,000      | 10,000      | 1,000       |
| Unit        | ppm m / m   | ppm m / m   | ppm m / m   |
| E5703522    | 0.3         | 11.7        | 1.2         |

- not analysed | -- element not determined | I.S. insufficient sample | L.N.R. listed not received

20-Oct-2022 7:16PM BBM\_U0030335838 Page 10 of 11 MIN-M\_COA\_ROW-Last Modified Date: 05-Nov-2019



**Project** Apollo Exploration / Hemlo Project

Submission Number APOLLO EXPLORATION-

HEMLO\_PROJECT / 29 Samples Number of Samples

#### Element @W @Yb @Y Method GE\_IMS40Q12 GE\_IMS40Q12 GE\_IMS40Q12 **Lower Limit** 0.1 0.1 0.1 **Upper Limit** 10,000 1,000 10,000 Unit ppm m / m ppm m/m ppm m / m E5703523 12.2 02 1 1 E5703524 0.5 14.1 1.8 E5703527 1.3 66.6 7.8 E5703528 0.3 3.8 0.4 E5703529 0.9 8.9 0.7 0.2 E5703530 28 0.3 E5703531 0.5 13.8 1 1 E5703532 0.4 5.0 0.5 E5703533 1.0 12.5 1.0 E5703534 0.8 9.6 8.0 E5703535 0.1 23.2 2.2 E5703536 0.2 14.2 1.6 E5703539 0.6 13.4 1.2 E5703540 0.3 6.4 0.6 E5703541 0.6 19.2 1.6 E5703542 0.6 17.8 1.6 E5703543 0.3 6.3 0.5 E5703544 0.3 11.5 1.3 E5703545 0.3 15.2 1.2 E5703546 0.2 2.5 0.2

6.0

<0.1

8.0

2.9

SGS Canada Minerals Burnaby conforms to the requirements of ISO/IEC17025 for specific tests as listed on their scope of accreditation found at https://www.scc.ca/en/search/laboratories/sgs Tests and Elements marked with an "@" symbol in the report denote ISO/IEC17025 accreditation.

0.6

<0.1

8.0

0.7

11.4

<0.1

9.3

15.6

- not analysed -- element not determined | I.S. insufficient sample L.N.R. listed not received

20-Oct-2022 7:16PM BBM\_U0030335838 Page 11 of 11 MIN-M\_COA\_ROW-Last Modified Date: 05-Nov-2019

\*Std OREAS 601b

\*Blk BLANK

\*Rep E5703534

\*Std OREAS 905

**ANALYSIS REPORT BBM22-21409** 

## 2022 Daily Activities Log: "HEES" Project - Apollo Exploration

### Mapping/Prospecting

| Names        | Work type                                                                                                                                                                                                       |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Winston/Alec | Travel                                                                                                                                                                                                          |
| Winston/Alec | Prospecting/mapping west block see track on map figure #3                                                                                                                                                       |
| Winston/Alec | Prospecting/mapping west block see track on map figure #3                                                                                                                                                       |
| Winston/Alec | Prospecting/mapping west block see track on map figure #3. Collected 4 samples E5703519-E5703522 see sample description on table #1                                                                             |
| Winston/Alec | Prospecting/mapping west block see track on map figure #3. Collected 2 samples E5703523-E5703524 see sample description on table #1                                                                             |
| Winston/Alec | Prospecting East block see track on map figure #2. Collected 2 samples E5703527-E5703528 see sample description in sample table #1                                                                              |
| Winston/Alec | Travel                                                                                                                                                                                                          |
| Winston/Alec | Travel                                                                                                                                                                                                          |
| Winston/Alec | Prospecting East block see track on map figure #2. Collected 2 samples E5703525-E5703526 see sample description in sample table #1                                                                              |
| Winston/Alec | Prospecting East block see track on map figure #2. Collected 8 samples E5703529-E5703535 & E5703543 see sample description in sample table #1                                                                   |
| Winston/Alec | Prospecting/mapping west block see track on map figure #3. Collected 7 samples E5703536-E5703542 see sample description in sample table #1                                                                      |
| Winston/Alec | Prospecting East block see track on map figure #2. Collected 1 sample E5703544 see sample description in sample table #1                                                                                        |
| Winston/Alec | Prospecting/mapping west block see track on map figure #3. Collected 2 samples E5703545-E5703546 see sample description in sample table #1                                                                      |
| Winston/Alec | Travel                                                                                                                                                                                                          |
|              | Winston/Alec |