

We are committed to providing <u>accessible customer service</u>. If you need accessible formats or communications supports, please <u>contact us</u>.

Nous tenons à améliorer <u>l'accessibilité des services à la clientèle</u>. Si vous avez besoin de formats accessibles ou d'aide à la communication, veuillez <u>nous contacter</u>.

Exploration Summary Report for 2021 Fieldwork program of the Electra Property

SEPTEMBER 1ST, 2021 TO SEPTEMBER 12TH 2021

E:294033/N:5375103

HORNE AND CONMEE TOWNSHIPS, ONTARIO, CANADA
NTS 52A/05W
UTM ZONE 16

PREPARED FOR:
ALX RESOURCES CORP.
SUITE 408 – 1199 WEST PENDER STREET
VANCOUVER, B.C., CANADA V6E 2R1

PREPARED BY:

Dahrouge Geological Consulting Ltd

AUTHOR
TAYLOR MCPHERSON G.I.T.
NOVEMBER 2022

Contents

A.	Prog	gram Objectives & Summary	5
В.	Intr	oduction	5
C.	Pro	perty Description and Location	6
D.	Prop	perty Access, Climate, Local Resources, Infrastructure and Physiography	9
E.	Clai	ms and Land Status	10
F.	Exp	oration History	20
G.	Geo	logical Setting	21
Н.	Dep	osit Types	23
	H.1.	1 Regional Volcanic Hosted Base Metal Deposit Model	24
	H.1.	2 Gold Mineralization Model	26
l.	Min	eralization	30
J.	202	2 Prospecting Summary	32
J.	1	Overview VTEM prospecting	35
J.	2	Historical Showings	46
J.	3	Discoveries of Interest	49
	J.3.1	Russell showing sequence similarity	49
	J.3.2	2 Komatiite "Spinifex" Textures	55
K.	Port	able XRF Data Compilation	58
L.	202	1 Prospecting Analytical Results	66
L.	.1	Ni – Cu and Au 2021 Assay Results	66
L.	.2	PGE 2021 Assay Results	66
M.	Con	clusion and Recommendations	83
N	R△fa	arancac	Ω/I

FIGURES

Figure 1. Regional Location Map	7
Figure 2. Property Access Map	8
Figure 3. Claims Deposition Map	19
Figure 4. Regional geology of the Shebandowan Greenstone Belt (from Hinz, S.; 2018)	21
Figure 5. Local Geology at Electra (from Hinz, S., 2018)	22
Figure 6. VTEM Near-surface Targets	34
Figure 7. Traverse and samples taken from near-surface EM targets	35
Figure 8. Traverse and samples taken from near-surface EM targets	36
Figure 9. Traverse and samples taken from near-surface EM targets	37
Figure 10. Traverse and samples taken from near-surface EM targets	38
Figure 11. Traverse and samples taken from near-surface EM targets	39
Figure 12. Traverse and samples taken from near-surface EM targets	40
Figure 13. Traverse and samples taken from near-surface EM targets	41
Figure 14. Traverse and samples taken from near-surface EM targets	42
Figure 15. Traverse and samples taken from near-surface EM targets	
Figure 16. Traverse and samples taken from near-surface EM targets	
Figure 17. Traverse and samples taken from near-surface EM targets	
Figure 18. Sample 152324 taken from Russel's Showing.	
Figure 19. Sample taken from a sub crop 30 northwest of apparent B1 sample location	
Figure 20. Ultra Mafic and komatiite outcrop on peninsula on Thunder Lake	
Figure 21. (left) Fine grained Ultramafic rock, (right) Fine grained Komatiite	
Figure 22. Potential contact between mafic and Argillite similar to that at Russell's showing	50
Figure 23. (Left) Outcrop from sample 152347, and (right) hand sample picture of sample	
152347 Error! Bookmark not defin	າed.
Figure 24. (Left) Outcrop from sample 152348, and (right) hand sample picture of sample	
152348	52
Figure 25. (Left) Outcrop from sample 152349, and (right) hand sample picture of sample	
152349	53
Figure 26. (Left) Outcrop from sample 152350, and (right) hand sample picture of sample	
152350	54
Figure 27. (Left) Outcrop from sample 152362, and (right) hand sample picture of sample	
152362	
Figure 28. Spinifex texture seen on outcrop and hand sample	
Figure 29. Spinifex textures showing alignment in outcrop, offset by small mm fractures	
Figure 30. PXrf Nickel results (ppm) from 2021 prospecting program	
Figure 31. PXrf Nickel ppm with prospected rock type in SW portion of property	
Figure 32. PXrf Nickel ppm with prospected rock type near Thunder Lake, in the central part of the central	
the property.	
Figure 33. PXrf Nickel ppm with prospected rock type from western portion of property	
Figure 34. PXrf Nickel ppm with prospected rock type from NE portion of property	
Figure 35. Historical Grab samples assay results for Nickel (ppm)	
Figure 36. 2021 grab sample PXrf analysis results for Nickel (ppm)	64

Figure 37. 2021 grab sample PXrf analysis results for copper (ppm)	65
Figure 38. 2021 Prospecting Assay Results for Ni ppm	67
Figure 39. 2021 Prospecting Assays Results Cu ppm	68
Figure 40. SW Zone 2021 Prospecting Assay Results for Ni ppm	69
Figure 41. SW Zone 2021 Prospecting Assay Results for Cu ppm	70
Figure 42. Historical Trenches 2021 Prospecting Assay Results for Ni ppm	71
Figure 43. Historical Trenches 2021 Prospecting Assay Results for Cu ppm	72
Figure 44. 2021 Prospecting Assay Results for Au ppb	73
Figure 45. 2021 Prospecting Assay Results Pd ppb	74
Figure 46. 2021 Prospecting Assay Results Pt pp	75
Tables	
Table 1. Electra Property Claims	10
Table 2. Summary of Significant Float Discoveries, Shebandowan Area	31
Table 3. Dahrouge Staff	
Table 4. 2021 Prospecting Assays Results	
Table 5. 2021 Prospecting Assay Results	
Table 6. PXrf Data compilation for prospective elements	
Table 7. Xrf data compilation based on rock type and element type, Mean, median, mi	in, max
and sample quantity.	82

Appendix (attached to report)

APPENDIX 1: 2022 Rock Assays and Sample Descriptions

APPENDIX 2: XRF Results

APPENDIX 3: XRF Calfactors Calibration

APPENDIX 4: Cost Summary

APPENDIX 5: Assay Certificates

APPENDIX 6: Assay QC Certificate

A. PROGRAM OBJECTIVES & SUMMARY

This project memo summarizes the field exploration work completed on the Electra property located near Kakabeka Falls in western Ontario, Canada, by Dahrouge Geological Consulting Ltd. (DGC), on behalf of ALX Resources Corp.

The Electra property is located at 18 km northwest of Kakabeka Falls, Ontario. The Electra property is considered prospective for nickel, copper and gold. Nickel, copper and gold mineralization has been documented on the Electra property through several historical assessment reports, while Dahrouge Geological Consulting conducted historical data compilation in preparation for the 2021 Electra prospecting exploration program.

Objectives on the Electra property included exploring the surface trace of VTEM targets generated by a 2021 Airborne EM survey, expanding the known mineralized showings and exploring historical trenches of interest.

Exploration was conducted by ATV and a series of traverses over surface VTEM targets. Samples taken on the Electra property were focused on Ultramafic, Mafic, and Sedimentary rock types to verify and expand the Ni, Cu and Au mineralization cited in historical reports. Samples taken on the Electra Property were focused around near-surface VTEM target areas. The map in Error! Reference source not found. displays the location of the Electra property in relation to Kakabeka Falls, Ontario.

B. Introduction

The Electra Nickel property ("Electra") straddles the boundary of Horne and Conmee Townships, and is located approximately 35 kilometres west of Thunder Bay, Ontario. The main exploration targets at Electra are ultramafic intrusives and komatilitic basalts carrying anomalous nickel values, and the goldbearing, hematite-stained polymictic conglomerate unit. Electra is situated on the eastern end of the Shebandowan Greenstone Belt where historically, the primary targets have been gold in shear zones and large disseminated deposition in Timiskaming sediments. The Property is comprised of 211 contiguous mineral dispositions, totaling 4,517 hectares (ha). The work described in this report was completed by Dahrouge Geological Consulting Ltd. The prospecting commenced on September 1 and was completed September 12th, 2021. This report incorporates the results of the prospecting program.

C. Property Description and Location

Electra, formerly known as the Bateman Lake property, covers portions of Horne and Conmee Townships, Thunder Bay Mining Division, NTS 52A/05 W, and is situated approximately 39 kilometres west of Thunder Bay, Ontario (see Figure 1). In December 2020, ALX Resources Corp. acquired an option to earn a 100% interest in Electra from a vendor group, subject to a 2.5% net smelter returns royalty "NSR") that can be reduced to a 1.0% NSR by payment of \$1.5 million to the vendors.

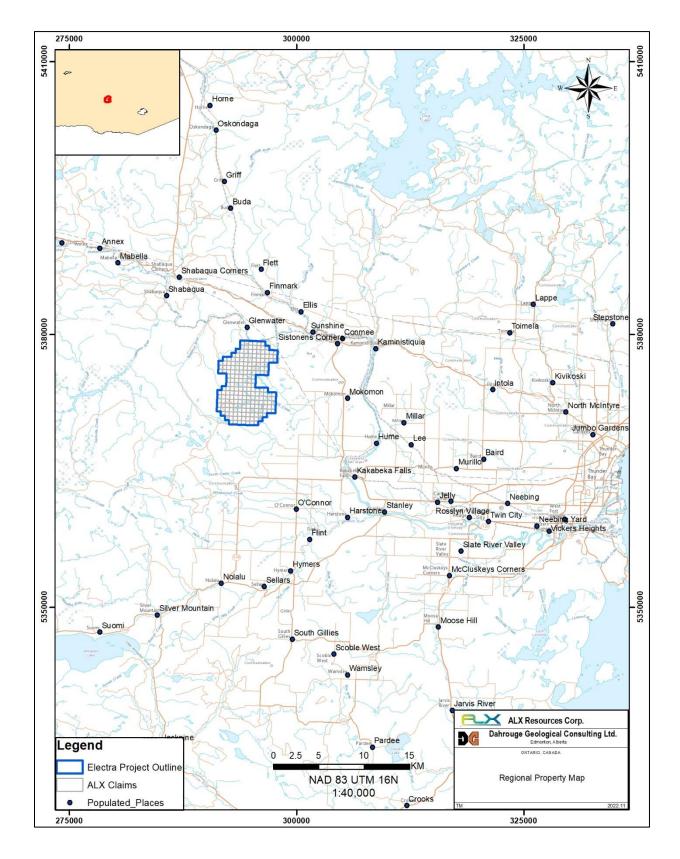


Figure 1. Regional Location Map

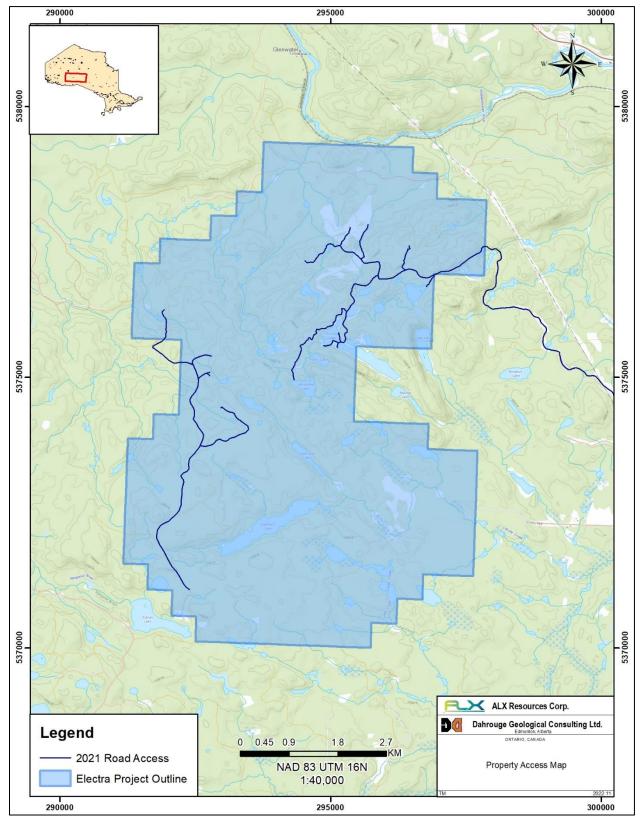


Figure 2. Property Access Map

D. PROPERTY ACCESS, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE AND PHYSIOGRAPHY

Electra is accessed by road from Kakabeka Falls, Ontario along Highway 11/17 west 9.5 kilometres to Mokoman Road. Take Mokoman Road south 5.0 kilometres to Tienhara Road at the power line, then west along an unmaintained gravel road west for 6.0 kilometres to the eastern boundary of the property. Float planes can land on lakes on the property, if necessary.

Access to the claims was available through ATV, as there was limited road access throughout the property. ATV trails, non-maintained and maintained logging roads were accessible near the Electra Property, with access to the property achievable in two locations (Figure 2).

The Electra project area has been previously logged and second growth is well-established, which can cause difficulty traversing some areas of the property. However, old grown-in logging roads have been partially cleaned to obtain better access, and new roads have been constructed by foresters in recent years. The main road north of Bateman Lake provides access into the northern part of the property, and other historical forestry roads and trails provide access by truck, ATV, and foot traffic to most areas of the property.

The local forest is mixed vegetation with poplar, birch and spruce with abundant heavy alders.

Topography is high, rolling hills with relief of approximately 100 meters. Steep cliffs are present around Gold Lake and Thunder Lake on the central part of the property.

The Electra project area is subject to a moderate boreal climate, with warm to hot summers and cold winters. Temperatures may vary from 30°C in summer to -35°C in winter. Snow cover is common from November through March.

No major watercourses traverse the property. The closest potential source of electric power is from a northwesterly striking power line a short distance east of the northeastern corner of the property. The mean elevation on the property ranges from 400 metres to 550 metres above sea level. Topographic relief generally varies from 10 to 30 metres. Bedrock outcrop in much of the project area is buried

beneath variable thicknesses of bouldery glacial till, with outcrop exposure varying between zero and approximately 25%.

Drainage in the area is to the south, toward Lake Superior. Numerous swamps, ponds and small lakes occupy topographic depressions.

E. Claims and Land Status

The Electra Property includes 211 claims totaling 4,517 ha spread over one distinct claim block. At the time the work was completed, there were 211 claims totaling 4,517 ha optioned to earn 100% interest ALX.

Table 1. Electra Property Claims

Tenure Number	Anniversary	Holder	Claim Size (ha)
641031	2023-03-08 0:00	(100) ALX RESOURCES CORP.	21.42
641032	2023-03-08 0:00	(100) ALX RESOURCES CORP.	21.41
641022	2023-03-08 0:00	(100) ALX RESOURCES CORP.	21.41
641023	2023-03-08 0:00	(100) ALX RESOURCES CORP.	21.41
641024	2023-03-08 0:00	(100) ALX RESOURCES CORP.	21.41
641025	2023-03-08 0:00	(100) ALX RESOURCES CORP.	21.41
641026	2023-03-08 0:00	(100) ALX RESOURCES CORP.	21.42
641027	2023-03-08 0:00	(100) ALX RESOURCES CORP.	21.42
641028	2023-03-08 0:00	(100) ALX RESOURCES CORP.	21.42
641029	2023-03-08 0:00	(100) ALX RESOURCES CORP.	21.42
641030	2023-03-08 0:00	(100) ALX RESOURCES CORP.	21.42
641033	2023-03-08 0:00	(100) ALX RESOURCES CORP.	21.41
641034	2023-03-08 0:00	(100) ALX RESOURCES CORP.	21.41
641035	2023-03-08 0:00	(100) ALX RESOURCES CORP.	21.41
641036	2023-03-08 0:00	(100) ALX RESOURCES CORP.	21.41
641037	2023-03-08 0:00	(100) ALX RESOURCES CORP.	21.41
641038	2023-03-08 0:00	(100) ALX RESOURCES CORP.	21.42
641039	2023-03-08 0:00	(100) ALX RESOURCES CORP.	21.41
641040	2023-03-08 0:00	(100) ALX RESOURCES CORP.	21.41

Tenure Number	Anniversary	Holder	Claim Size (ha)
641041	2023-03-08 0:00	(100) ALX RESOURCES CORP.	21.42
641042	2023-03-08 0:00	(100) ALX RESOURCES CORP.	21.42
641043	2023-03-08 0:00	(100) ALX RESOURCES CORP.	21.42
641044	2023-03-08 0:00	(100) ALX RESOURCES CORP.	21.42
641045	2023-03-08 0:00	(100) ALX RESOURCES CORP.	21.42
641046	2023-03-08 0:00	(100) ALX RESOURCES CORP.	21.42
641047	2023-03-08 0:00	(100) ALX RESOURCES CORP.	21.42
641048	2023-03-08 0:00	(100) ALX RESOURCES CORP.	21.42
641049	2023-03-08 0:00	(100) ALX RESOURCES CORP.	21.42
641050	2023-03-08 0:00	(100) ALX RESOURCES CORP.	21.42
641051	2023-03-08 0:00	(100) ALX RESOURCES CORP.	21.42
641052	2023-03-08 0:00	(100) ALX RESOURCES CORP.	21.42
641053	2023-03-08 0:00	(100) ALX RESOURCES CORP.	21.42
641054	2023-03-08 0:00	(100) ALX RESOURCES CORP.	21.42
641055	2023-03-08 0:00	(100) ALX RESOURCES CORP.	21.42
641056	2023-03-08 0:00	(100) ALX RESOURCES CORP.	21.42
641057	2023-03-08 0:00	(100) ALX RESOURCES CORP.	21.42
641058	2023-03-08 0:00	(100) ALX RESOURCES CORP.	21.42
641059	2023-03-08 0:00	(100) ALX RESOURCES CORP.	21.42
641060	2023-03-08 0:00	(100) ALX RESOURCES CORP.	21.42
641061	2023-03-08 0:00	(100) ALX RESOURCES CORP.	21.42
641062	2023-03-08 0:00	(100) ALX RESOURCES CORP.	21.42
641063	2023-03-08 0:00	(100) ALX RESOURCES CORP.	21.42
663435	2023-06-26 0:00	(100) ALX RESOURCES CORP.	21.42
663436	2023-06-26 0:00	(100) ALX RESOURCES CORP.	21.42
663437	2023-06-26 0:00	(100) ALX RESOURCES CORP.	21.42
663438	2023-06-26 0:00	(100) ALX RESOURCES CORP.	21.42
663439	2023-06-26 0:00	(100) ALX RESOURCES CORP.	21.42
663440	2023-06-26 0:00	(100) ALX RESOURCES CORP.	21.42
663441	2023-06-26 0:00	(100) ALX RESOURCES CORP.	21.42
663442	2023-06-26 0:00	(100) ALX RESOURCES CORP.	21.42

Tenure Number	Anniversary	Holder	Claim Size (ha)
663443	2023-06-26 0:00	(100) ALX RESOURCES CORP.	21.42
663444	2023-06-26 0:00	(100) ALX RESOURCES CORP.	21.42
663445	2023-06-26 0:00	(100) ALX RESOURCES CORP.	21.42
663446	2023-06-26 0:00	(100) ALX RESOURCES CORP.	21.42
663447	2023-06-26 0:00	(100) ALX RESOURCES CORP.	21.42
663448	2023-06-26 0:00	(100) ALX RESOURCES CORP.	21.42
663449	2023-06-26 0:00	(100) ALX RESOURCES CORP.	21.42
663450	2023-06-26 0:00	(100) ALX RESOURCES CORP.	21.43
663451	2023-06-26 0:00	(100) ALX RESOURCES CORP.	21.43
663452	2023-06-26 0:00	(100) ALX RESOURCES CORP.	21.43
663453	2023-06-26 0:00	(100) ALX RESOURCES CORP.	21.43
663454	2023-06-26 0:00	(100) ALX RESOURCES CORP.	21.43
663455	2023-06-26 0:00	(100) ALX RESOURCES CORP.	21.43
663456	2023-06-26 0:00	(100) ALX RESOURCES CORP.	21.43
563892	2021-11-05 0:00	(100) HAVEMAN BROTHERS FORESTRY SERVICES LTD.	21.40
563893	2021-11-05 0:00	(100) HAVEMAN BROTHERS FORESTRY SERVICES LTD.	21.40
618939	2022-11-13 0:00	(100) HAVEMAN BROTHERS FORESTRY SERVICES LTD.	21.40
618940	2022-11-13 0:00	(100) HAVEMAN BROTHERS FORESTRY SERVICES LTD.	21.39
618941	2022-11-13 0:00	(100) HAVEMAN BROTHERS FORESTRY SERVICES LTD.	21.40
618942	2022-11-13 0:00	(100) HAVEMAN BROTHERS FORESTRY SERVICES LTD.	21.40
618943	2022-11-13 0:00	(100) HAVEMAN BROTHERS FORESTRY SERVICES LTD.	21.41
618945	2022-11-13 0:00	(100) HAVEMAN BROTHERS FORESTRY SERVICES LTD.	21.39
618946	2022-11-13 0:00	(100) HAVEMAN BROTHERS FORESTRY SERVICES LTD.	21.39
618944	2022-11-13 0:00	(100) HAVEMAN BROTHERS FORESTRY SERVICES LTD.	21.40
618947	2022-11-13 0:00	(100) HAVEMAN BROTHERS FORESTRY SERVICES LTD.	21.39

Tenure Number	Anniversary	Holder	Claim Size (ha)
		(100) HAVEMAN	
618948	2022-11-13 0:00	BROTHERS FORESTRY	21.40
		SERVICES LTD.	
		(100) HAVEMAN	
618949	2022-11-13 0:00	BROTHERS FORESTRY	21.39
		SERVICES LTD.	
		(100) HAVEMAN	
618950	2022-11-13 0:00	BROTHERS FORESTRY	21.40
		SERVICES LTD.	
		(100) HAVEMAN	
618951	2022-11-13 0:00	BROTHERS FORESTRY	21.39
		SERVICES LTD.	
540050	2022 44 42 2 22	(100) HAVEMAN	24.22
618952	2022-11-13 0:00	BROTHERS FORESTRY	21.39
		SERVICES LTD.	
		(100) HAVEMAN	
618953	2022-11-13 0:00	BROTHERS FORESTRY	21.41
		SERVICES LTD.	
64.005.4	2022 44 42 0 00	(100) HAVEMAN	24.40
618954	2022-11-13 0:00	BROTHERS FORESTRY	21.40
		SERVICES LTD.	
640055	2022 44 42 2 22	(100) HAVEMAN	24.22
618955	2022-11-13 0:00	BROTHERS FORESTRY	21.39
		SERVICES LTD.	
540055	2022 44 42 2 22	(100) HAVEMAN	24.22
618956	2022-11-13 0:00	BROTHERS FORESTRY	21.39
		SERVICES LTD.	
640057	2022 44 42 0 00	(100) HAVEMAN	24.40
618957	2022-11-13 0:00	BROTHERS FORESTRY	21.40
		SERVICES LTD.	
618058	2022 11 12 0:00	(100) HAVEMAN	21.40
618958	2022-11-13 0:00	BROTHERS FORESTRY	21.40
		SERVICES LTD.	
618959	2022-11-13 0:00	(100) HAVEMAN BROTHERS FORESTRY	21.39
010939	2022-11-13 0.00	SERVICES LTD.	21.59
		(100) HAVEMAN	
618960	2022-11-13 0:00	BROTHERS FORESTRY	21.40
018300	2022-11-13 0.00	SERVICES LTD.	21.40
		(100) HAVEMAN	
618961	2022-11-13 0:00	BROTHERS FORESTRY	21.39
010301	2022 22 23 0.00	SERVICES LTD.	22.03
		(100) HAVEMAN	
619498	2022-11-20 0:00	BROTHERS FORESTRY	21.42
		SERVICES LTD.	
		(100) HAVEMAN	
619499	2022-11-20 0:00	BROTHERS FORESTRY	21.42
		SERVICES LTD.	
		(100) HAVEMAN	
619500	2022-11-20 0:00	BROTHERS FORESTRY	21.41
		SERVICES LTD.	
		(100) HAVEMAN	
619501	2022-11-20 0:00	BROTHERS FORESTRY	21.41
		SERVICES LTD.	
		(100) HAVEMAN	
619502	2022-11-20 0:00	BROTHERS FORESTRY	21.41
		SERVICES LTD.	
		(100) HAVEMAN	
619503	2022-11-20 0:00	BROTHERS FORESTRY	21.42
		SERVICES LTD.	
		(100) HAVEMAN	
619504	2022-11-20 0:00	BROTHERS FORESTRY	21.42
		SERVICES LTD.	

Tenure Number	Anniversary	Holder	Claim Size (ha)
		(100) HAVEMAN	
619505	2022-11-20 0:00	BROTHERS FORESTRY	21.41
		SERVICES LTD.	
		(100) HAVEMAN	
619506	2022-11-20 0:00	BROTHERS FORESTRY	21.42
		SERVICES LTD.	
		(100) HAVEMAN	
619507	2022-11-20 0:00	BROTHERS FORESTRY	21.42
		SERVICES LTD.	
		(100) HAVEMAN	
619539	2022-11-20 0:00	BROTHERS FORESTRY	21.42
		SERVICES LTD.	
		(100) HAVEMAN	
619508	2022-11-20 0:00	BROTHERS FORESTRY	21.42
		SERVICES LTD.	
		(100) HAVEMAN	
619509	2022-11-20 0:00	BROTHERS FORESTRY	21.42
		SERVICES LTD.	
		(100) HAVEMAN	
619510	2022-11-20 0:00	BROTHERS FORESTRY	21.41
		SERVICES LTD.	
		(100) HAVEMAN	
619511	2022-11-20 0:00	BROTHERS FORESTRY	21.41
		SERVICES LTD.	
		(100) HAVEMAN	
619512	2022-11-20 0:00	BROTHERS FORESTRY	21.41
		SERVICES LTD.	
		(100) HAVEMAN	
619513	2022-11-20 0:00	BROTHERS FORESTRY	21.42
		SERVICES LTD.	
		(100) HAVEMAN	
619514	2022-11-20 0:00	BROTHERS FORESTRY	21.42
		SERVICES LTD.	
		(100) HAVEMAN	
619515	2022-11-20 0:00	BROTHERS FORESTRY	21.41
		SERVICES LTD.	
		(100) HAVEMAN	
619516	2022-11-20 0:00	BROTHERS FORESTRY	21.41
		SERVICES LTD.	
		(100) HAVEMAN	
619517	2022-11-20 0:00	BROTHERS FORESTRY	21.42
		SERVICES LTD.	
		(100) HAVEMAN	
619518	2022-11-20 0:00	BROTHERS FORESTRY	21.42
		SERVICES LTD.	
<u> </u>		(100) HAVEMAN	
619519	2022-11-20 0:00	BROTHERS FORESTRY	21.41
		SERVICES LTD.	
		(100) HAVEMAN	
619520	2022-11-20 0:00	BROTHERS FORESTRY	21.42
		SERVICES LTD.	
		(100) HAVEMAN	
619521	2022-11-20 0:00	BROTHERS FORESTRY	21.42
		SERVICES LTD.	
		(100) HAVEMAN	
619522	2022-11-20 0:00	BROTHERS FORESTRY	21.41
		SERVICES LTD.	
		(100) HAVEMAN	
619523	2022-11-20 0:00	BROTHERS FORESTRY	21.42
		SERVICES LTD.	
		(100) HAVEMAN	
619524	2022-11-20 0:00	BROTHERS FORESTRY	21.42
		SERVICES LTD.	

Tenure Number	Anniversary	Holder	Claim Size (ha)
619525	2022-11-20 0:00	(100) HAVEMAN BROTHERS FORESTRY	21.41
619526	2022-11-20 0:00	SERVICES LTD. (100) HAVEMAN BROTHERS FORESTRY SERVICES LTD.	21.41
619527	2022-11-20 0:00	(100) HAVEMAN BROTHERS FORESTRY SERVICES LTD.	21.41
619528	2022-11-20 0:00	(100) HAVEMAN BROTHERS FORESTRY SERVICES LTD.	21.42
619529	2022-11-20 0:00	(100) HAVEMAN BROTHERS FORESTRY SERVICES LTD.	21.42
619530	2022-11-20 0:00	(100) HAVEMAN BROTHERS FORESTRY SERVICES LTD.	21.42
619531	2022-11-20 0:00	(100) HAVEMAN BROTHERS FORESTRY SERVICES LTD.	21.42
619532	2022-11-20 0:00	(100) HAVEMAN BROTHERS FORESTRY SERVICES LTD.	21.42
619533	2022-11-20 0:00	(100) HAVEMAN BROTHERS FORESTRY SERVICES LTD.	21.42
619534	2022-11-20 0:00	(100) HAVEMAN BROTHERS FORESTRY SERVICES LTD.	21.41
619535	2022-11-20 0:00	(100) HAVEMAN BROTHERS FORESTRY SERVICES LTD.	21.42
619536	2022-11-20 0:00	(100) HAVEMAN BROTHERS FORESTRY SERVICES LTD.	21.41
619537	2022-11-20 0:00	(100) HAVEMAN BROTHERS FORESTRY SERVICES LTD.	21.42
619538	2022-11-20 0:00	(100) HAVEMAN BROTHERS FORESTRY SERVICES LTD.	21.42
619540	2022-11-20 0:00	(100) HAVEMAN BROTHERS FORESTRY SERVICES LTD.	21.41
619541	2022-11-20 0:00	(100) HAVEMAN BROTHERS FORESTRY SERVICES LTD.	21.42
549508	2022-05-08 0:00	(100) MICHAEL ALBERT HAVEMAN	21.40
549509	2022-05-08 0:00	(100) MICHAEL ALBERT HAVEMAN	21.40
549510	2022-05-08 0:00	(100) MICHAEL ALBERT HAVEMAN	21.40
549511	2022-05-08 0:00	(100) MICHAEL ALBERT HAVEMAN	21.40
549512	2022-05-08 0:00	(100) MICHAEL ALBERT HAVEMAN	21.40
549513	2022-05-08 0:00	(100) MICHAEL ALBERT HAVEMAN	21.40
549485	2022-05-08 0:00	(100) MICHAEL ALBERT HAVEMAN	21.41

Tenure Number	Anniversary	Holder	Claim Size (ha)
549486	2022-05-08 0:00	(100) MICHAEL ALBERT HAVEMAN	21.41
549487	2022-05-08 0:00	(100) MICHAEL ALBERT HAVEMAN	21.41
549488	2022-05-08 0:00	(100) MICHAEL ALBERT HAVEMAN	21.40
549489	2022-05-08 0:00	(100) MICHAEL ALBERT HAVEMAN	21.40
549490	2022-05-08 0:00	(100) MICHAEL ALBERT HAVEMAN	21.40
549491	2022-05-08 0:00	(100) MICHAEL ALBERT HAVEMAN	21.41
549492	2022-05-08 0:00	(100) MICHAEL ALBERT HAVEMAN	21.40
549493	2022-05-08 0:00	(100) MICHAEL ALBERT HAVEMAN	21.40
549494	2022-05-08 0:00	(100) MICHAEL ALBERT HAVEMAN	21.41
549495	2022-05-08 0:00	(100) MICHAEL ALBERT HAVEMAN	21.41
549496	2022-05-08 0:00	(100) MICHAEL ALBERT HAVEMAN	21.41
549497	2022-05-08 0:00	(100) MICHAEL ALBERT HAVEMAN	21.41
549498	2022-05-08 0:00	(100) MICHAEL ALBERT HAVEMAN	21.41
549499	2022-05-08 0:00	(100) MICHAEL ALBERT HAVEMAN	21.41
549500	2022-05-08 0:00	(100) MICHAEL ALBERT HAVEMAN	21.41
549501	2022-05-08 0:00	(100) MICHAEL ALBERT HAVEMAN	21.41
549502	2022-05-08 0:00	(100) MICHAEL ALBERT HAVEMAN	21.41
549503	2022-05-08 0:00	(100) MICHAEL ALBERT HAVEMAN	21.41
549504	2022-05-08 0:00	(100) MICHAEL ALBERT HAVEMAN	21.41
549505	2022-05-08 0:00	(100) MICHAEL ALBERT HAVEMAN	21.41
549506	2022-05-08 0:00	(100) MICHAEL ALBERT HAVEMAN	21.41
549507	2022-05-08 0:00	(100) MICHAEL ALBERT HAVEMAN	21.41
564578	2021-11-26 0:00	(100) MICHAEL ALBERT HAVEMAN	21.41
564579	2021-11-26 0:00	(100) MICHAEL ALBERT HAVEMAN	21.41
564584	2021-11-26 0:00	(100) MICHAEL ALBERT HAVEMAN	21.40
564580	2021-11-26 0:00	(100) MICHAEL ALBERT HAVEMAN	21.40
564581	2021-11-26 0:00	(100) MICHAEL ALBERT HAVEMAN	21.40
564582	2021-11-26 0:00	(100) MICHAEL ALBERT HAVEMAN	21.40
564583	2021-11-26 0:00	(100) MICHAEL ALBERT HAVEMAN	21.40
564586	2021-11-26 0:00	(100) MICHAEL ALBERT HAVEMAN	21.40
564587	2021-11-26 0:00	(100) MICHAEL ALBERT HAVEMAN	21.40

Tenure Number	Anniversary	Holder	Claim Size (ha)
564593	2021-11-26 0:00	(100) MICHAEL ALBERT HAVEMAN	21.41
564588	2021-11-26 0:00	(100) MICHAEL ALBERT HAVEMAN	21.40
564589	2021-11-26 0:00	(100) MICHAEL ALBERT HAVEMAN	21.40
564590	2021-11-26 0:00	(100) MICHAEL ALBERT HAVEMAN	21.40
564591	2021-11-26 0:00	(100) MICHAEL ALBERT HAVEMAN	21.40
564592	2021-11-26 0:00	(100) MICHAEL ALBERT HAVEMAN	21.40
564585	2021-11-26 0:00	(100) MICHAEL ALBERT HAVEMAN	21.40
564594	2021-11-26 0:00	(100) MICHAEL ALBERT HAVEMAN	21.40
564604	2021-11-26 0:00	(100) MICHAEL ALBERT HAVEMAN	21.40
564605	2021-11-26 0:00	(100) MICHAEL ALBERT HAVEMAN	21.41
564603	2021-11-26 0:00	(100) MICHAEL ALBERT HAVEMAN	21.40
564606	2021-11-26 0:00	(100) MICHAEL ALBERT HAVEMAN	21.40
564607	2021-11-26 0:00	(100) MICHAEL ALBERT HAVEMAN	21.41
564608	2021-11-26 0:00	(100) MICHAEL ALBERT HAVEMAN	21.40
564609	2021-11-26 0:00	(100) MICHAEL ALBERT HAVEMAN	21.40
564610	2021-11-26 0:00	(100) MICHAEL ALBERT HAVEMAN	21.40
564595	2021-11-26 0:00	(100) MICHAEL ALBERT HAVEMAN	21.40
564596	2021-11-26 0:00	(100) MICHAEL ALBERT HAVEMAN	21.40
564597	2021-11-26 0:00	(100) MICHAEL ALBERT HAVEMAN	21.40
564598	2021-11-26 0:00	(100) MICHAEL ALBERT HAVEMAN	21.40
564599	2021-11-26 0:00	(100) MICHAEL ALBERT HAVEMAN	21.41
564600	2021-11-26 0:00	(100) MICHAEL ALBERT HAVEMAN	21.40
564602	2021-11-26 0:00	(100) MICHAEL ALBERT HAVEMAN	21.40
564601	2021-11-26 0:00	(100) MICHAEL ALBERT HAVEMAN	21.40
570524	2022-01-23 0:00	(100) MICHAEL ALBERT HAVEMAN	21.40
570525	2022-01-23 0:00	(100) MICHAEL ALBERT HAVEMAN	21.40
570526	2022-01-23 0:00	(100) MICHAEL ALBERT HAVEMAN	21.40
564611	2021-11-26 0:00	(100) MICHAEL ALBERT HAVEMAN	21.40
564612	2021-11-26 0:00	(100) MICHAEL ALBERT HAVEMAN	21.40
564613	2021-11-26 0:00	(100) MICHAEL ALBERT HAVEMAN	21.40
564614	2021-11-26 0:00	(100) MICHAEL ALBERT HAVEMAN	21.40

Tenure Number	Anniversary	Holder	Claim Size (ha)
564618	2021-11-26 0:00	(100) MICHAEL ALBERT HAVEMAN	21.40
564619	2021-11-26 0:00	(100) MICHAEL ALBERT HAVEMAN	21.40
564620	2021-11-26 0:00	(100) MICHAEL ALBERT HAVEMAN	21.40
564621	2021-11-26 0:00	(100) MICHAEL ALBERT HAVEMAN	21.40
564622	2021-11-26 0:00	(100) MICHAEL ALBERT HAVEMAN	21.40
564623	2021-11-26 0:00	(100) MICHAEL ALBERT HAVEMAN	21.40
570576	2022-01-23 0:00	(100) MICHAEL ALBERT HAVEMAN	21.40
570577	2022-01-23 0:00	(100) MICHAEL ALBERT HAVEMAN	21.40
540186	2022-01-28 0:00	(100) MICHAEL ALBERT HAVEMAN	21.39
540187	2022-01-28 0:00	(100) MICHAEL ALBERT HAVEMAN	21.39

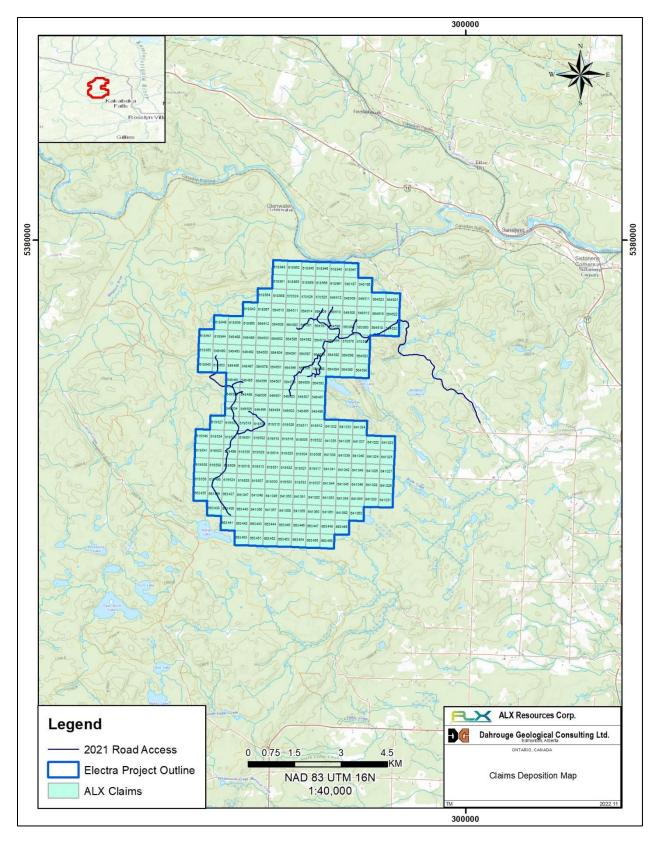


Figure 3. Claims Deposition Map

F. EXPLORATION HISTORY

Information from MNDM assessment files and other sources used for compilation of the property history:

1924: Tanton, T.L., Ontario Dept. of Mines, mapped Conmee Township.

1967: International Nickel Co. of Canada; two (2) diamond drill holes (301m).

1969: Acorn Mining Syndicate; geological & geophysical surveys, three (3) diamond drill holes near Thunder Lake and Gold Lake (367m).

1990: Carter, M.W., Ontario Geological Survey; regional mapping survey.

1990: Ontario Geological Survey; Airborne Electromagnetic Surveys.

1994: Kwiatkowski, R. and Kukkee, E.; OPAP prospecting program (gold discovered on northwest shore of Bateman Lake).

1995: Hemlo Gold Mines Inc. (optioned part of property); geophysics, geology and geochemical survey; one diamond drill hole (154.8m).

1995-1996: Winslow Gold Corp. (optioned part of property); 11 diamond drill holes (1,785.1m).

1996: Avalon Ventures/Bema Gold (optioned part of property); data compilation, line- cutting; ground magnetometer survey, I.P. survey, soil geochemistry survey, prospecting, geological mapping and diamond drill holes (300m).

2002-2003: Valgold Resources (optioned part of property); prospecting and geological mapping.

2006: Kwiatkowski, R.; prospecting.

2007: Sabina Silver Corporation; airborne electromagnetic VTEM survey on adjacent property. Several geophysical conductors were interpreted as trending onto the western edge of the current boundaries of the Electra property, but were not surveyed in their entirety.

2008: Linear Metals Corp.; Completed prospecting, trenching and sampling of the nickel, cobalt mineralization located on the property.

2011: Denari Resources Corp.; A series of samples were taken from historical trenches. The sampling program focused brushing out the trenches and verifying the anomalous gold mineralization indicated in channeling sampling.

2011: Double Crown Resources; A series of samples were taken from various outcrops, and a baseline lake bottom sampling program was completed.

2016: Hinz, S.L.K; Mapping survey carried out for Masters thesis, Lakehead University, Thunder Bay, Ontario.

2021: ALX Resources Corp.; A comprehenseive Time Domain Electromagnetic (VTEM Plus) survey was completed over property.

G. GEOLOGICAL SETTING

The following section has been modified from Electra Property, Report on a Helicoptert-Borne Versatile Time Domain Electromagnetic (VTEM Plus) and Horizontal Magnetic Gradiometer Geophysical Survey, 2021. Horne & Conmee Twps., Ontario Thunder Bay Mining Division. (McCallum, 2021).

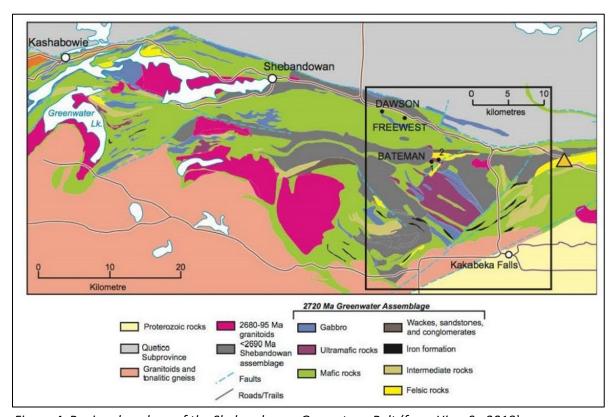


Figure 4. Regional geology of the Shebandowan Greenstone Belt (from Hinz, S.; 2018).

Electra is located at the east end of the Shebandowan Greenstone Belt of the Abitibi Sub-province (known locally and informally as the "Matawin Gold Belt"). This greenstone belt is comprised of late Archean rocks of the Keewatin-type sequence of the Greenwater Assemblage. These rocks include sub-alkalic to alkali metavolcanics with interlayered metasediments, granitic to dioritic intrusive rocks, gabbroic to ultramafic intrusive rocks, and "Timiskaming-type" elastic sediments and metavolcanics. Late-stage diabase and lamprophyre intrusive rocks are Archean to Proterozoic in age. The belt strikes to the northwest with a near vertical dip to the northeast. The regional grade of metamorphism is lower greenschist facies, with lower grade amphibole facies proximal to intrusions.

The Electra property is underlain in the north by "Timiskaming-type" elastic sediments intercalated with ultramafic to felsic metavolcanics. Ultramafics show some spinifex texture and are locally serpentinized and pillowed. Ultramafic (peridotite) to gabbroic intrusives intrude into southern portions of the property and are related to magnetic highs. The belt strikes to the northwest with a near vertical dip to the northeast. The regional grade of metamorphism is lower greenschist facies with lower grade amphibole facies proximal to intrusions.

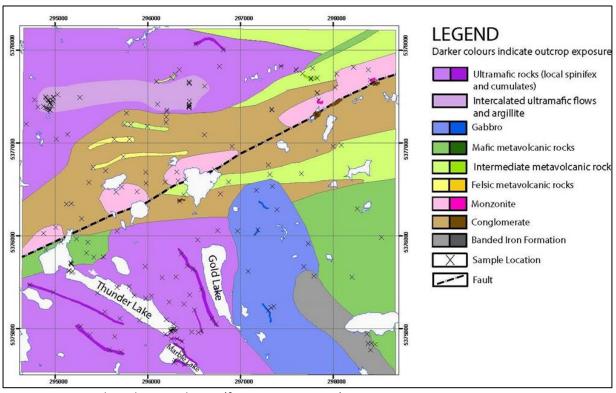


Figure 5. Local Geology at Electra (from Hinz, S., 2018)

The property is underlain in the north by Timiskaming clastic sediments intercalated with ultramafic to felsic metavolcanics. Ultramafics show some spinifex texture and are locally serpentinized and pillowed Ultramafic (peridotite) to gabbroic intrusives intrude into the central and southern portions of the property and are related to magnetic highs. A major northwest trending fault called the Thunder Lake Fault displaces the Keewatin basement assemblage.

H. DEPOSIT TYPES

Regional Mafic Intrusion Hosted Base Metal Deposit Model (adapted from "Discover Prospecting - An Introductory Prospecting Manual", Parker, J.R., 1992, revised in 2004 and 2007 by Parker, D. P. and D'Silva, B.V.).

Electra hosts a geological environment that is similar to many Ni-Cu-Co + PGE mining camps. A well-defined model of magmatic sulphide deposits has been developed that has application to this area.

Iron-nickel-copper sulphide deposits, platinum and chromium deposits are characteristically associated with mafic and ultramafic igneous rocks. The iron-nickel-copper sulphide deposits consist of massive, semi-massive and disseminated pyrrhotite, pentlandite (nickel sulphide) and chalcopyrite (copper sulphide), and contain variable amounts of cobalt, platinum group elements, gold and silver. The deposits generally occur at the base of irregular gabbro intrusions, but may be found in ultramafic intrusive lenses or extrusive flows. The sulphides may also be concentrated in shear zones, and faults within the intrusions or may occur as veins or lenses in country rocks adjacent to the intrusions. Examples of significant iron-nickel-copper sulphide deposits in Ontario are: the complex and enormous deposits at Sudbury; the Shebandowan and Great Lakes Nickel deposits near Thunder Bay; and the Gordon Lake Mine at Rex-Werner lakes north of Kenora.

Chromium and platinum deposits occur in layered, sill-like or funnel-shaped, mafic to ultramafic intrusions. The layering consists of different rock types formed when various minerals are concentrated and segregated into layers as the intrusion crystallizes. The intrusions consist of layers of ultramafic rocks at the base with more felsic, granitic layers at the top. Individual layers may be a few centimetres to hundreds of metres thick. The chromium and/or platinum mineralization is commonly concentrated in ultramafic, peridotite layers that are rich in olivine. The deposits form tabular, parallel layers with remarkable lateral continuity. Chromite forms semi-massive or massive chromitite seams that contain

no sulphide minerals. Platinum group elements are also associated with sulphide minerals (pyrrhotite, chalcopyrite, pentlandite) that comprise less than 5% of the rock.

Chromium deposits may also occur as intensely deformed pods or lenses of mineralization in highly deformed and altered ultramafic rocks. The ultramafic rocks are commonly serpentinized sheared and faulted. Chromium deposits are known to occur in intrusions at Puddy, Obonga and Shebandowan lakes and in the Crystal Lake Gabbro near Thunder Bay; in the Big Trout Lake layered intrusion north of Pickle Lake in Northwestern Ontario; and in the Rex-Werner lakes area north of Kenora. Platinum is produced at Sudbury and occurs in the Lac Des Illes Intrusion north of Thunder Bay; in the Big Trout Lake Intrusion; and in the Rex-Werner Lakes area. Platinum is found in very low or anomalous amounts in many ultramafic intrusions throughout Ontario. Nickel, Copper, Au and PGE mineralization was mined at the Shebandowan Mine 35 kilometres to the west. A significant Chromium resource was also outlined at the Shebandowan Mine.

H.1.1 Regional Volcanic Hosted Base Metal Deposit Model

Mineral concentrations in volcanic rocks are formed by the discharge of hot, hydrothermal solutions onto the seafloor. Metal-rich, sulphide minerals precipitate from the solutions and accumulate amongst volcanic and sedimentary rocks. These deposits form disseminated, semi-massive and massive, lens-shaped bodies of volcanogenic massive sulphides ("VMS") which are a major source of copper, zinc, lead, silver, gold and minor amounts of tin, cadmium, antimony and bismuth. The typical economic deposit consists of several individual massive sulphide lenses that contain 1 to 10 million tonnes of ore grading 2% to 10% combined Cu, Zn and Pb. The largest deposits contain in excess of 100 million tonnes of ore. Deposits tend to occur in clusters and individual deposits occur within a single, specific sequence of rocks.

Massive sulphide deposits form in areas of underwater volcanic activity where seawater is drawn down through fractures in volcanic rocks and heated by cooling igneous intrusions beneath the seafloor. The heated seawater circulates through fractures and reacts with the rocks, leaching out metallic elements. Continued heating causes the solutions to circulate upwards along fractures. The solutions eventually pour out into the sea where metallic sulphide minerals precipitate from the solutions on or near the seafloor. The form of the massive sulphide deposits range from steep-sided cones to flat, tabular, sheets

that accumulate in deep water on the flanks of felsic, volcanoes or in topographic depressions. The most common metallic mineral in a massive sulphide lens is pyrite accompanied by pyrrhotite, chalcopyrite, sphalerite and galena. Chalcopyrite content decreases upward and outward from the base of the massive sulphide lens. A thinly bedded unit of iron-rich chert 10 commonly overlies a sulphide deposit and may extend laterally away from the deposit. In some cases, the massive sulphides are spatially associated with magnetite-hematite and pyrite-pyrrhotite iron deposits. VMS can be divided into two types: 1) a Zn-Pb-Cu type associated with intermediate to felsic volcanic flows, felsic quartz and quartz-feldspar porphyries, felsic pyroclastic rocks and fine-grained sedimentary rocks; and 2) a Cu-Zn type associated with mafic, volcanic flows and fine-grained sedimentary rocks (Lydon, 1984). Deposits of the Cu-Zn type occur where the rocks below the deposit consist of mafic volcanic rocks or their direct sedimentary derivatives, whereas deposits of the Zn-Pb-Cu type occur where the rocks below the deposit consist of felsic volcanic rocks or fine-grained, shaly sedimentary rocks.

Massive sulphide deposits are commonly underlain by a wide and extensive alteration found in rocks that lie below the ore body (footwall rocks). Hot solutions that deposited the sulphides on the seafloor circulated through the rocks and chemically changed them by adding or removing elements during vigorous chemical reactions that occurred between the rocks and the solutions. Most footwall rocks beneath a massive sulphide lens are enriched in magnesium (Mg), iron (Fe), silicon (Si), potassium (K), copper (Cu) and zinc (Zn) and depleted in sodium (Na) and calcium (Ca). The altered rocks contain large amounts of minerals that would not normally occur in unaltered rocks, such as chlorite, sericite, biotite, talc, quartz, iron carbonate and disseminated sulphides. If the altered rocks are metamorphosed they may contain unusual concentrations and assemblages of very coarse-grained minerals, such as anthophyllite, kyanite, cordierite, sillimanite, staurolite, garnet, biotite and sericite.

The occurrence of such minerals serves as guides to exploration for VMS deposits, which occur across Ontario and are mined at the Kidd Creek Mine at Timmins; the Winston Lake Mine near Schreiber; and the Geco Mine at Manitouwadge. Past producers are the South Bay Mine near Red Lake; the Mattabi and Lyon Lake mines near Ignace; and the Temagami Mine at Temagami Lake. VMS deposits are found at the Vanguard Property 90 kilometres to the west and were mined at the Coldstream Mine 65 kilometres to the west.

H.1.2 Gold Mineralization Model

The Shebandowan area also exhibits many of the important elements of a distinct class of gold deposits found within the Abitibi belt. The main characteristics of these gold deposits are their close spatial association with Timiskaming aged felsic to intermediate stocks and dykes, Timiskaming type fluvial-alluvial sedimentary and volcanic rocks, which have intruded 25 to 35 Ma older rocks in unconformable contact along major fault zones.

Gold ore bodies occur within composite stocks or along their margins (Beattie, Young-Davidson), adjacent satellite dykes and sills (Ross, Douay No 531, Holt McDermott South zone), and along faults and lithological contacts away from the intrusions (Lightning zone, Douay No. 68) commonly with mafic to ultramafic volcanics and graphitic argillites. Orebodies in such positions are interpreted to represent proximal to distal components of large magmatic hydrothermal systems (Robert, 1997). Ore bodies consist of disseminated sulphides with variably developed stockworks of quartz-carbonate-albite +/- K-feldspar veinlets, within zones of carbonate, albite, sericite and locally K feldspar alteration. Examples of gold deposits from the area that fit this model include the Pistol Lake Property located 35 kilometres and the Tower Property, which is contiguous to northeastern part of the Electra property.

The most favourable host rocks for gold mineralization occur within greenstone belts and include ironrich rocks such as magnetite-rich iron deposits, gabbros and mafic volcanic rocks. The sulphur in the
hydrothermal solutions reacts with the iron in the rocks to form iron sulphide minerals, such as pyrite.

This process stimulates the precipitation of gold, which commonly coats or "plates" the pyrite crystals.

Ultramafic, magnesium-rich rocks and carbon-rich, graphitic rocks are also good chemical traps for vein
minerals such as gold-bearing veins. Other rock types, such as intermediate to felsic, igneous intrusive
rocks, are also closely related to vein deposits. These intrusive rocks may have been sources for
hydrothermal fluids that escaped from the intrusions as they cooled and transported minerals and
elements into open fractures. This may explain why many vein deposits are spatially associated with
intrusive igneous rocks.

Many gold vein deposits, for example, occur at or near the margins of felsic intrusions and silver vein deposits are closely related to intrusions of diabase. Secondary enrichment is almost always a major characteristic of economic Archean gold deposits. Three important factors are often present in

secondary enrichment of gold: deformation of rocks (folding and fracturing); hydrothermal processes; and vein development. Hydrothermal solutions originate from the dehydration of rocks during compaction and metamorphism; and from cooling, igneous intrusions. The water (seawater, groundwater, rainwater) may also originate on the Earth's surface but percolates downwards into the crust where it is heated and circulated.

These fluids are highly mobile and chemically reactive, making them excellent solvents for metals and minerals. Open fractures and porous rocks allow the passage and circulation of these solutions. Vigorous chemical reactions occur between the fluids and minerals in rocks that are exposed along the walls of the fractures. These chemical reactions change the composition of the rocks and the fluids. When the composition of the hot solutions are changed their ability to transport dissolved elements quickly diminishes and metals and minerals are precipitated and deposited in the open fractures.

Mineral fillings in open fractures or veins are typical hydrothermal mineral deposits. A typical vein is a mineral deposit which has filled an open fissure solidly from wall to wall. Veins usually have sharply defined boundaries but there may be a complete gradation from the vein into the surrounding wall rocks. The shape and physical character of a vein depends upon the type of fissure it has filled, such as an opening formed by structural deformation, or an original opening in the rock. Veins may be any size and form; they can be found in any rock type; and they may be composed of only one type of mineral or extensive assemblages of minerals. The majority of veins are dominantly composed of quartz and/or carbonate minerals with a wide variety of accessory minerals. Mineralization may be evenly distributed throughout the veins; concentrated along vein-wall rock contacts; or concentrated around rock fragments in the vein. Some mineralization may also extend outwards from the vein into the surrounding wall rocks. Replacement deposits are formed by the deposition of abundant vein minerals in the wall rocks without the formation of veins. Veins represent mineral fillings of open spaces in rocks, therefore, they are very closely associated with strongly deformed rocks.

Most veins occur in very structurally complicated deformation zones and tectonic breaks that provide an abundance of open spaces for vein development. Veins may be associated with small-scale faults, shear zones, folds structures and fracture systems or large deep-seated fracture and fault systems developed during regional earth movements. The composition of rocks localize deformation zones and specific

types of structures. Felsic rocks, iron formation and small igneous intrusions commonly host fracture systems and brecciated zones. Mafic and ultramafic rocks host shear and fracture zones.

Rock contacts between different rock types are also the site of deformation due to the contrast in composition between the rocks. Vein systems are usually tabular, sub-vertical, structures. The thickness of a vein system is commonly measured in metres and its strike and dip dimensions measured in tens or hundreds of metres. The economically valuable part of the vein may be considerably smaller than the vein itself because the majority of veins are not evenly mineralized. The vein system may also be part of a larger structure consisting of a system of separate shear zones each hosting their own vein systems. Vigorous chemical reactions occur between hydrothermal fluids and wall rocks as the fluids circulate through open spaces. These chemical reactions promote the precipitation of minerals from the solutions and change the mineralogical and chemical composition of the wall rocks. The chemical reactions commonly remove and/or add elements to the rocks resulting in the destruction of pre-existing minerals and the formation of new minerals. This effect is called wall rock alteration, which accompanies all mineral deposits formed by hydrothermal fluids. Wall rock alteration is readily visible to the eye and commonly results in discolouration of the rocks and the growth of new minerals. It can also change the physical properties of rocks and make them harder or softer. In a simple fissure vein the alteration extends parallel to the walls of the fissure and forms an alteration halo around the vein.

The halo is relatively uniform in width but can vary according to the size of the vein, or the intensity/amount of fluid movement. If the veins are closely spaced, the alteration halo of one vein may merge with the halos of other veins. The alteration may also be very extensive and widespread affecting a large area of rocks. The type, extent and intensity of the alteration depends upon the chemical, composition of the wall rocks and solutions; temperature and pressure of the mineralizing solutions; the amount of solutions involved; and the size of the open spaces. Rocks that are easily altered, such as mafic and ultramafic rocks, will exhibit intense and extensive alteration. The reverse is true for less chemically reactive rocks, such as felsic, silica-rich rocks.

Large structural systems that allowed the passage of enormous quantities of solutions will host extensive vein systems with widespread alteration. Many vein systems are relatively small and difficult to locate, therefore, recognizing wall rock alteration is important. The alteration that surrounds a vein system may be much more extensive and widespread than the smaller vein system. Therefore,

recognition of rock alteration may lead a prospector to the mineralized veins. Wall rock alteration is not only associated with veins, but occurs with any mineral deposits formed by the circulation of hydrothermal fluids in rocks. Below are descriptions of the more common types of wall rock alteration.

Carbonatization: This involves the formation of carbonate minerals (calcite, ankerite, dolomite) in the wall rocks. This alteration "bleaches" or discolours the rock and gives it a distinctive orange-brown appearance on weathered surfaces and a pale grey or buff colour on fresh surfaces. Small crystals or "rhombs" of carbonate can sometimes be seen in the rocks. Carbonatization is most well-developed in intermediate to mafic and ultramafic rocks.

Chloritization: This is the formation of abundant dark green chlorite in wall rocks due to enrichments in magnesium (Mg). Chloritized rocks are soft dark green and schistose. Chloritization is associated with carbonatization and is usually well developed in mafic rocks. It can also occur in very felsic rocks such as rhyolite. Albitization: This is the formation of albite feldspar in wall rocks due to enrichments in sodium (Na). Albitized rocks are mottled white to grey and may contain small laths of secondary feldspar.

Epidotization: This is caused by the pervasive enrichment of epidote in wall rocks. Epidotized rocks are pale apple green and can be extremely hard with conchoidal fractures. Epidotization is most prominently developed in intermediate to mafic rocks.

Potassic Alteration: This type of alteration is caused by the enrichment of potassium (K) in wall rocks. Minerals that contain high amounts of potassium such as biotite mica, sericite mica and potash feldspar are abundant in potassium-enriched rocks. Rocks containing abundant, fine-grained, biotite may be schistose with a shiny, purple-brown tinge on weathered surfaces. Sericite is very fine-grained, muscovite mica, which is very white and shiny giving the altered rock a platy, schistose texture. Rocks enriched in potash feldspar are commonly pink or pink-orange and may contain laths of feldspar. Sericitization: As mentioned above, sericitization is a result of potassium enrichment forming sericite mica. Sericite is commonly accompanied by quartz and pyrite. If the sericite is enriched in chromium it becomes a bright emerald green and is known as fuchsite or mariposite. Sericitization commonly occurs in felsic and sedimentary rocks while green sericite forms in mafic, ultramafic and felsic rocks. Green sericite is commonly associated with carbonate.

Silicification: This alteration occurs when there is a major enrichment of silica (SiO2) in the wall rocks. Silicified wall rocks are very quartz-rich; have a cherty, porcelain or dull lustre; and are very hard with a conchoidal fracture. Silicification can occur in any rock type.

Sulphidation: This alteration consists of the development of iron sulphides (pyrite, arsenopyrite) in wall rocks due to the addition of sulphur to the iron-rich rocks. The sulphur combines with iron released during the decomposition of iron-rich minerals and forms iron sulphides. Sulphidation commonly occurs in iron-rich, mafic rocks and iron formation. Many other types of alteration can occur, such as tourmalinitization (development of tourmaline due to enrichments in boron); dolomitization (addition of magnesium to limestone forms dolomite); garnetization (abundant garnet developed in an altered rock).

Enrichments of aluminum in rocks commonly form assemblages of aluminum silicate minerals, such as andalusite, sillimanite and kyanite. Other minerals such as biotite, cordierite, chloritoid staurolite and anthophyllite may be formed by the metamorphism of altered rocks with enrichments of aluminum iron and magnesium. Gold has been mined in various locations across Ontario including Red Lake, Hemlo, Pickle Lake, Beardmore, Geraldton, Kirkland Lake and Timmins. The gold deposits at Timmins, Kirkland Lake, Hemlo and Red Lake are famous world-class ore bodies, e.g., the Dome Mine in Timmins has produced gold for over 100 years.

I. MINERALIZATION

Although no economic values of nickel-copper-cobalt mineralization have been encountered to date in the few holes drilled within the current boundaries of the Electra property, there are examples of significant mineral occurrences in the area. The past-producing Shebandowan Mine, operated by Inco Ltd. from 1972 until 1998, is located approximately 35 kilometres to the northwest of Electra. Production consisted of 9.29 million tons grading 1.75% nickel, 0.88% copper, 0.063% cobalt and 1.85 grams/tonne PGE.

Prospecting by Russel Kwiatkowski and other sampling work at Electra has located nickel in outcrop northwest of Bateman Lake as high as 9,482 ppm (Double Crown Resources, 2011, Sample B-1).

In 1996, well-mineralized, glacially-transported boulders were found by prospectors to the southwest of Electra. Some of these are noted in the table below which is taken from Bottrill, 2003.

Table 2. Summary of Significant Float Discoveries, Shebandowan Area

Sample	Cu %	Zn %	Pb %	Au g/t	Ag g/t	Description
Stares Boulder Field.	0.4	10.5	0.9	3.27	179	Stares (Cumberland-A), 3 tonne,
Original discovery						sphalerite, average of samples by
1996						Kennecott, Cominco, OGS, etc.
Additional samples in	0.3	26		3.54	127	Cumblerland-B, 1996
surrounding area	0.2	4.32				Cumberland-E, 1996
	0.2	6.48		0.15	12	50 lb. crumbly, highly magnetic (2002
						- 55704)
		6.33		0.31	10	Crumbly, magnetic (2002 - 55705)
	0.5	34.3		2.95	88	Massive Zn (2002 – 55706)
	0.1	2.7	0.8	0.47	88	Looks like Boomer boulder, 5 –
						60% pyrite, galena (2002 – 55707)
	0.2	2.63		0.1	14	Crumbly, highly magnetic (2002 –
						55708)
		8.27		0.06	23	(2002 – 4070)
Calvert – Boomer Area.	0.2	18.6	0.7	1.76	93	Calvert – 15 tonne; average of various
Float discovered						analyses
in 2000	0.6	0.38		2.19	56	Boomer – 10 tonne, mostly pyrite

J. 2022 Prospecting Summary

One crew of two geologists (Table 3) spent 12 days prospecting the Electra property focusing efforts on near-surface VTEM targets and historical showings (Error! Reference source not found.). Eighty-Two (82) rock grab samples were taken throughout the property focusing on potential Ni-Cu and Au mineralization (see sample descriptions in Appendix 1 attached to report). Multiple samples were taken from interpreted Ultramafic to mafic outcrops, with trace to ~6% dissemenated pyrite. An overview of the VTEM prospecting and analytical results is below.

Table 3. Dahrouge Staff

Name	Title	Days on Project
Taylor McPherson	Exploration Geologist	12
Jordan Pearson	Exploration Geologist	12

Handheld Garmin GPSMap 64s, and Samsung work tablets were used to aid navigation, record waypoint, sample, and track information. Equipment used included Estwing rock hammers, chisels, scribes, hand lenses (10x and 20x).

Below is a table is the samples taken with the corresponding claims.

Table 4. Claims with Corresponding Samples

Claim #	# of Samples	Date Sampled
549486	2	2021-09-08
549487	1	2021-09-09
549491	3	2021-09-09
549492	1	2021-09-09
549499	1	2021-09-06
549500	11	2021-09-06
549504	4	2021-09-10
549505	4	2021-09-06
549509	2	2021-09-02

Claim #	# of Samples	Date Sampled
549510	1	2021-09-02
549511	6	2021-09-02
549513	1	2021-09-03
564579	1	2021-09-06
564581	9	2021-09-03
564588	5	2021-09-04
564592	2	2021-09-03
564600	4	2021-09-09
564601	1	2021-09-10
564605	3	2021-09-05
564606	2	2021-09-10
564609	5	2021-09-05
570525	2	2021-09-05
618953	1	2021-09-02
619501	2	2021-09-04
619519	3	2021-09-08
619536	5	2021-09-10

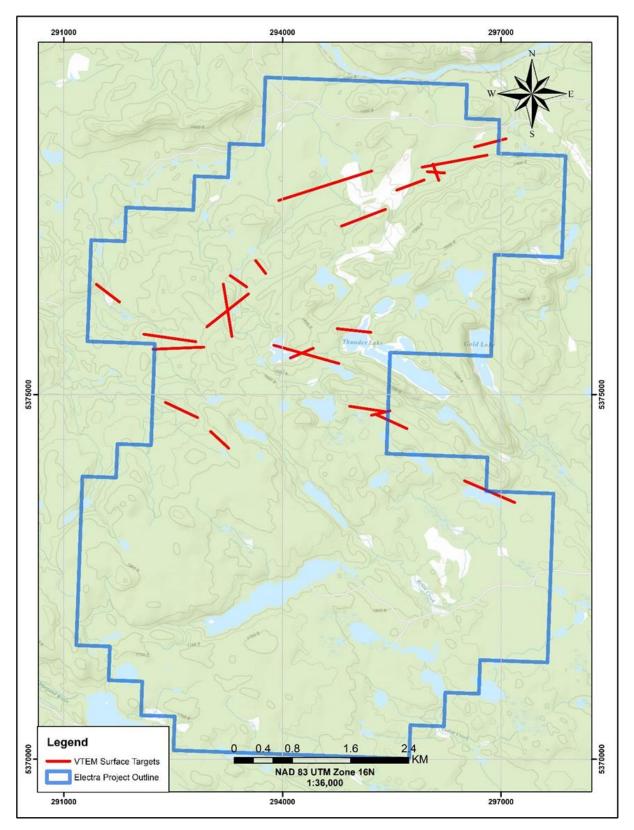


Figure 6. VTEM Near-surface Targets

J.1 Overview VTEM prospecting

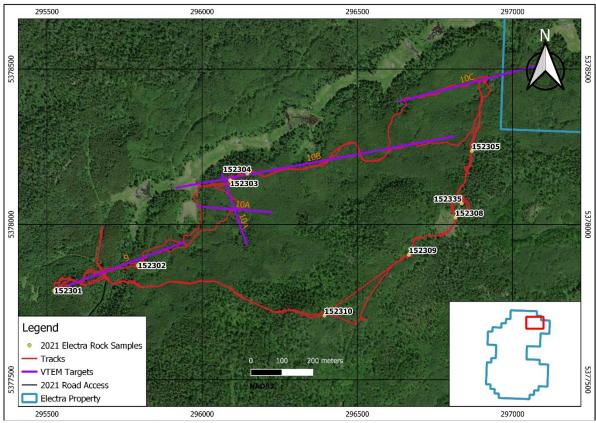


Figure 7. Traverse and samples taken from near-surface EM targets.

EM Target "9"

- Two samples taken (152301 and 152302)
- West side of conductor was along the edge of a ridge. The ridge was mostly boulders, but some Intermediate Volcanics were found on the top
- The NE side of the target was mostly low lying with little outcrop

EM Target "10 A"

- No samples were taken
- Location was low lying with no outcrop

EM Target "10 B"

- Samples 152304 (Volcanoclastic) and 152303 (Qtz vein)
- West side of target had a couple outcrop showings that where sampled
- The East side of the target was in a low lying area, possible clear cut with no visible outcrop

EM Target "10 C"

- No samples were taken

- Location was low lying with no outcrop

Figure 8. Traverse and samples taken from near-surface EM targets.

EM Target "4 B"

- Several samples were taken along the EM target
- Samples 152318 and 152319 were an Argillic Chert/Graphite, that may have been the cause of the EM anomaly
- Two trench samples were taken (152323 and 152324) with ~5% on avg disseminated (py-cpy)
- Multiple outcrops were visible and sampled along the EM target

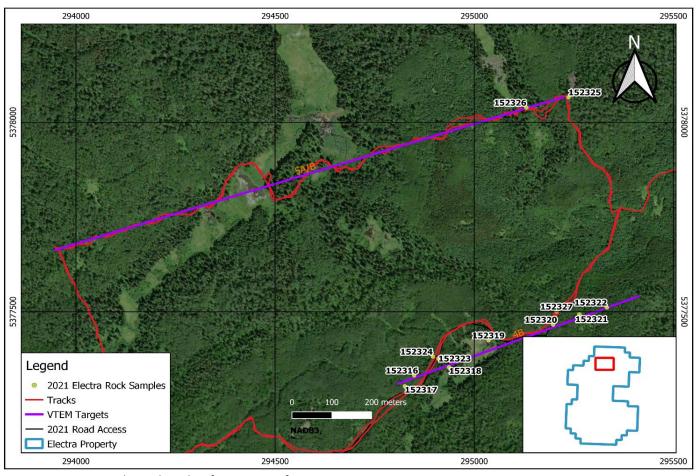


Figure 9. Traverse and samples taken from near-surface EM targets.

EM Target "5 A/B"

- Two samples were taken along the EM target
- Samples 152325 and 152326. Sample 152326 was an Argillic Chert/Graphite, that may have been the cause of the EM anomaly
- Most eastern side of the target had visible outcrop, but the rest was barren and in a low lying area with dense foliage

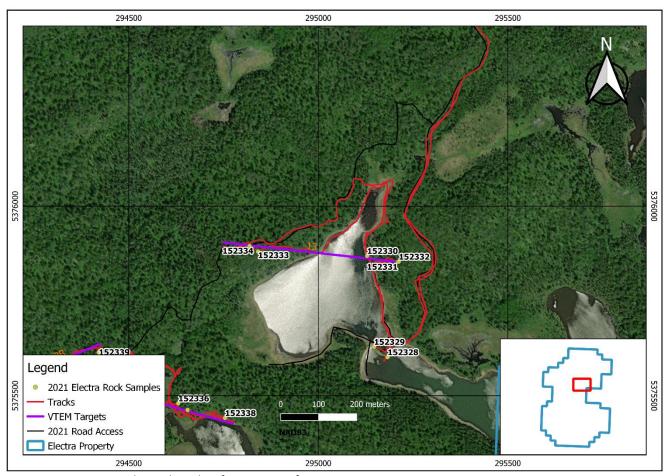


Figure 10. Traverse and samples taken from near-surface EM targets.

EM Target "13"

- Six samples were taken along the EM target, including pillow basalt, komatiite and Ultra Mafic
- Sample to note is 152335. This sample contained ~5%, ~2mm euhedral magnetite grains. This potentially could be a reason for the EM target anomaly

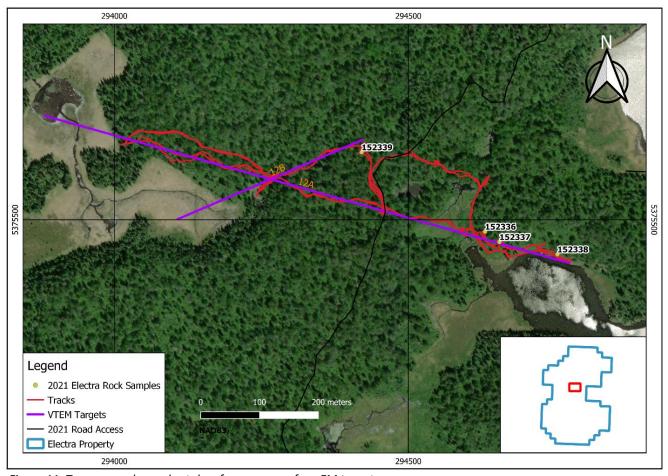


Figure 11. Traverse and samples taken from near-surface EM targets.

EM Target "12 A/B"

- Four samples were taken along the EM target, including peridotite, gabbro and intermediate volcanics
- Sample to note is 152338. This sample contained on avg ~2% disseminated Po and locally ~5%
- The eastern side of the EM target was barren for outcrop and had portions of the EM target that were in swamps

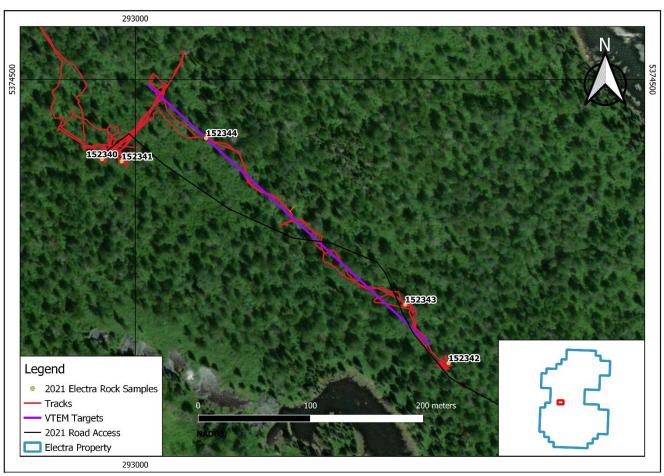


Figure 12. Traverse and samples taken from near-surface EM targets.

EM Target "1"

- Five samples were taken along the EM target, including UM, and argillite/chert
- Samples to note is 152340 which was taken along a fault line and sample 152342 and 152343 which both had notable sulphides in fine grained ultramafic rock
- The EM target had several good showings along the road for outcrop, including a large fault zone in the Ultra Mafic rock were sample 152340 was taken

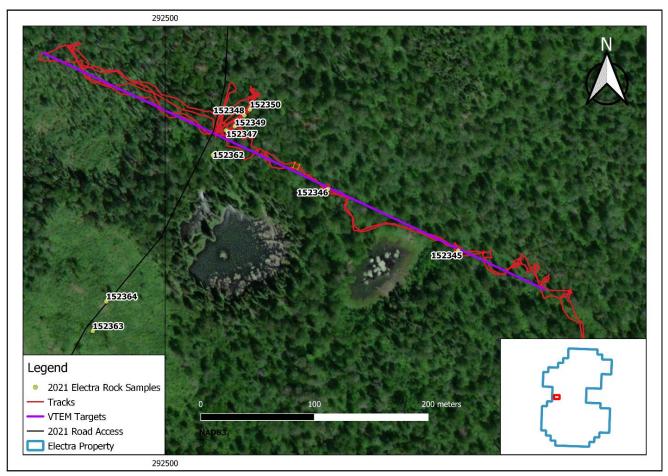


Figure 13. Traverse and samples taken from near-surface EM targets.

EM Target "11"

- Six samples were taken along the EM target, including UM, Mafic Volcanics and argillite/chert
- Samples to note is 152348. This sample contained on avg ~5%, ~10% Locally pyrite and sample 152348 which had ~7% locally ~20% disseminated pyrite
- The EM target had several good showings along the road for outcrop, including a lithological sequence in rock type that were similar to the sequences seen at the trench near Russell's showing

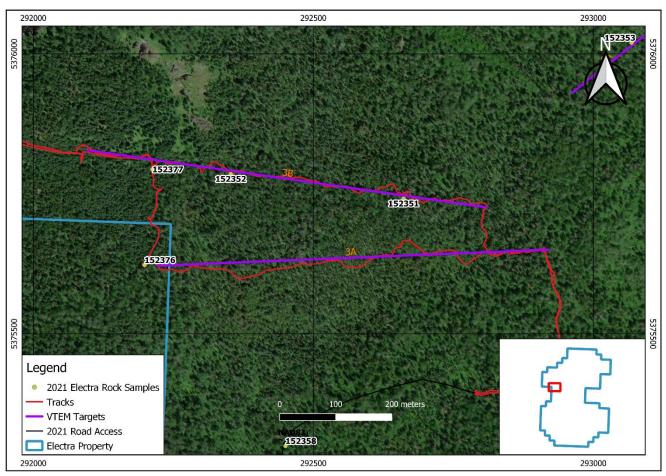


Figure 14. Traverse and samples taken from near-surface EM targets.

EM Target "3 A"

- One sample was taken at the west end of the EM target, sample was a fine grained mafic
- EM target was in a low lying swamp area with no outcrop

EM Target "3 B"

- Three samples were taken along the EM target. All samples were mafic volcaniclastic, one sample with trace disseminated pyrite
- Only sub-crop available, slight slopes were able to expose slight sections of outcrops

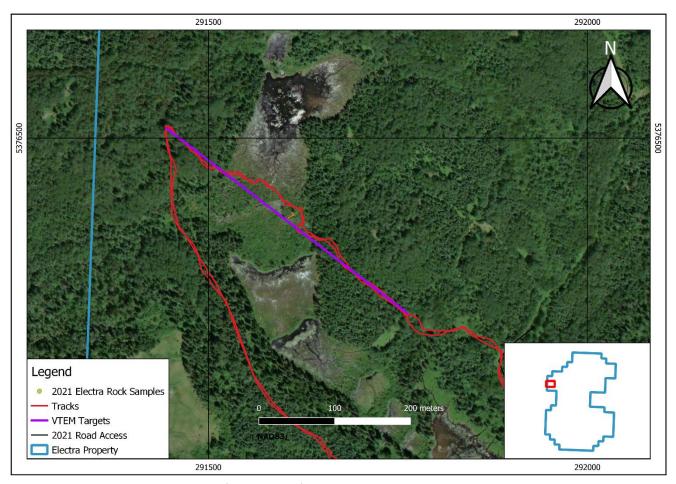


Figure 15. Traverse and samples taken from near-surface EM targets.

EM Target "7"

- No samples were taken along the EM target
- Area was low lying, and no outcrop was observed, 50% of target was in swamp

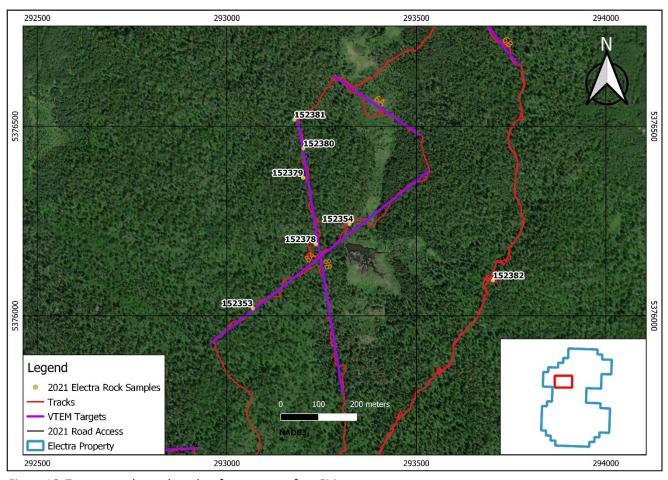


Figure 16. Traverse and samples taken from near-surface EM targets.

EM Target "8A"

- Three samples were taken along the EM target. All samples were mafic volcaniclastic, one sample with trace disseminated pyrite
- Outcrop was visible on the northern portion of the EM target. On the SE side slight slopes were able to expose slight sections of outcrops

EM Target "8B"

- Two samples were taken along the EM target. Both were mafic volcaniclastic samples, one sample 152353 had $^{\sim}1\%$ Po disseminated throughout
- Small outcrops available on ridges under fallen trees, with moss peeling necessary

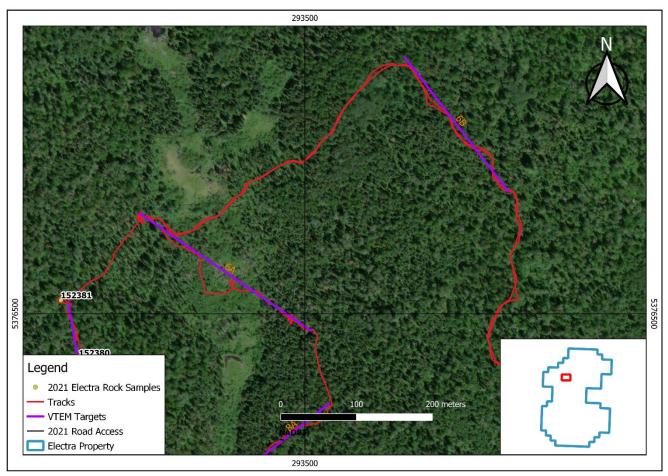


Figure 17. Traverse and samples taken from near-surface EM targets.

EM Target "6 A"

- No samples were taken along the EM target
- EM line was in low lying swamp with no visible outcrop

EM Target "6 B"

- No samples were taken along the EM target
- EM line was in low lying dense alder area with no visible outcrop

J.2 Historical Showings

During the 11 days the prospecting crew were also able to investigate multiple historical showings. Such as, Russell's Showing, which historically ran 4000 ppm Ni. Sample 152324 and was taken from the suspected location of Russell's showing. The sample was taken at contact between ultramafic and graphitic/chert horizon (argillite). The outcrop had trace chalcopyrite locally as fracture fill. Pyrite was ~5% and disseminated throughout. Assay results came back with 266ppm Ni.

Figure 18. Sample 152324 taken from Russel's Showing.

The crew was also able to investigate historical sample B1 which ran 9482 ppm nickel. The crew attempted to find the source of the sample, but unfortunately, they where unable to find any outcrop or possible source within proximity to the B1 sample location. The historical B1 sample location was in a low lying glacially filled area, with abundant large rounded to angular boulders (Figure 19). The crew were able to take a sub crop sample 152312 within the vicinity of the ~1% Ni samples. The sample came back with no significant mineralization. Multiple other samples were taken within close vicinity to historical sample that ran over 2000ppm Ni. Another example is samples 152328 and 152329 taken from a small peninsula on Thunder Lake. Sample 152328 had an aphanitic dark grey background with a green hue, resulted from serpentine alteration. ~90% pyx with trace olivine (~2mm grains opaque with green hue) outcrop is weathered in a subparallel blocky pattern. Assay results came

Figure 19. Sample taken from a sub crop 30 northwest of apparent B1 sample location.

back with 2060ppm Ni. Sample 152329 was a background in fine grained dark grey to black, large komatiite outcrop very close to a large fine grained ultramafic outcrop, where sample 152328 was taken. The sample has spinifex texture present at ~5mm long prismatic/acicular crystals. Assay results came back with 175ppm Ni.

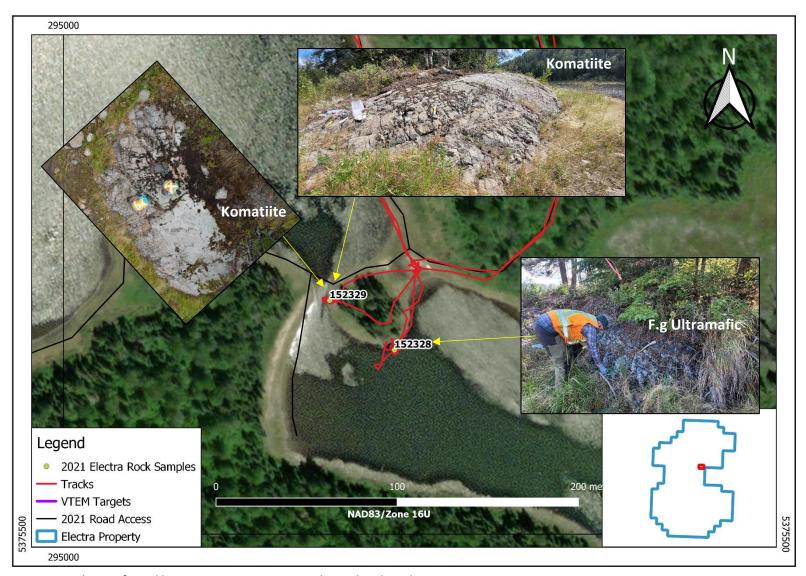


Figure 20. Ultra Mafic and komatiite outcrop on peninsula on Thunder Lake

Figure 21. (left) Fine grained Ultramafic rock, (right) Fine grained Komatiite.

J.3 Discoveries of Interest

J.3.1 Russell showing sequence similarity

During the prospecting we came across a sequence of rocks that were very similar to that seen near the Russell's showing, which had a Ni showing of 4000 ppm. The sequence was found in the southern portion of the property, In the center of EM target "11". The sequence consisted of massive to sheared Argillic chert/graphite, fine grained mafic/ultramafic rock, and a fine-grained mafic rock, slightly sheared with carb/qtz veining (Figure 22).

Figure 22. Potential contact between mafic and Argillite similar to that at Russell's showing.

The samples taken are described below and assay results are in Error! Reference source not found..

152347 (Argillite): Black on fresh, limonite yellow to red and black, on weathered. Aphanitic dark grey/black with weak fissile texture. trace relict pyrite nodules present ~1cm with calcite rims on nodules. Sample was taken from an outcrop showing of 1x2 meters, on road cut. One or two other outcrops showing near sample location. Near ultramafic outcrop.

152348 (Brecciated Mafic Volcanic): Fine grained to medium grained, dark greyish black with a green hue, and Fe-Stained reddish brown on weathered surface. Mafic volcanic, brecciation present as angular ~3cm pieces with mm fine-grained black infill between clasts. ~5% disseminated and, ~10% Locally, pyrite with trace Po (weakly magnetic). Strong silicification, Weak carbonate and strong Fe stainingon weathered and fracture surfaces. Outcrop is near contact with graphite. Seems to be a volcanic flow sequences present near outcrop. Small outcrop 1x1 meters on road cut near conductor and Argillic graphite/chert outcrop.

152349 ("Boulder" Mafic Volcanic): Fine to medium grained, brecciation present as angular ~5mm pieces with~40% mm fine-grained black infill btw clast. Dark grey to black on fresh, and dark red to brown on weathered. Strong fe staining as dark red to yellow on weathered surface. ~7% disseminated and locally ~20% pyrite with trace cpy. Samples was a taken from a small angular boulder found near possible contact between, graphite and mafic volcanic flow sequence.

152350 (Mafic Volcanic "Basalt"): Aphanitic to fine grained, massive dark grey with a green tinge on fresh and brown to red. Fe staining on weathered and fractures, weak carbonate disseminated throughout. ~3% disseminated pyrite. Sample was taken from a small 5x5 meter outcrop on road cut.

152362 (Argillite Chert/Graphite): Aphanitic, Massive black on fresh and dark grey to black on weathered. Strong fe staining on weathered surfaces. Trace relict pyrite nodules ~1cm round weathered out nodules, with calcite rims. ~5mm milky white irregular to subparallel qtz/carb veining. Sample was taken from a 5x6 meter outcrop with shearing on road cut. Shear (286/84).

Table 5. 2021 Prospecting Assays Results of Road Cut

Sample #	Ni ppm	Cu ppm	Au ppb	Pt ppb	Pd ppb
152347	16.5	98	6	0.7	1
152348	344	110	2	13.3	13.7
152349	799	71.1	3	13.8	14.3
152350	910	80.30	2	11.60	11.9
152362	6.2	15.10	2	0.10	<0.20

Figure 23. (Left) Outcrop from sample 152348, and (right) hand sample picture of sample 152348

Figure 24. (Left) Outcrop from sample 152349, and (right) hand sample picture of sample 152349

Figure 25. (Left) Outcrop from sample 152350, and (right) hand sample picture of sample 152350

Figure 26. (Left) Outcrop from sample 152362, and (right) hand sample picture of sample 152362

J.3.2 Komatiite "Spinifex" Textures

During the prospecting seven prospective Komatiite outcrops were found, with defining spinifex texture. This generates greater potential for Ni mineralization as the 'Spinifex" texture is know to be in close association with Nickel mineralization. Pictures below show some of the spinifex textures that were note in the field.

Figure 27. Spinifex texture seen on outcrop and hand sample.

Figure 28. Spinifex textures showing alignment in outcrop, offset by small mm fractures.

K. PORTABLE XRF DATA COMPILATION

Portable XRF data was taken on all the 82 samples collected in the field. Attached to this document will be an Excel sheet with compiled data. Below is a map that shows Nickel results in ppm from the PXRF.

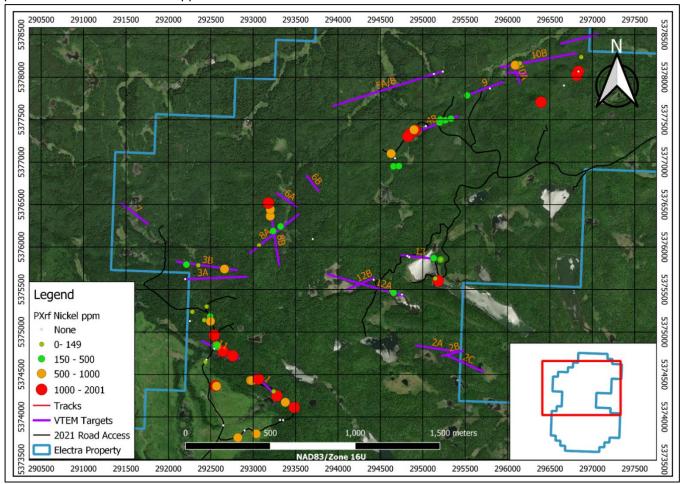


Figure 29. PXrf Nickel results (ppm) from 2021 prospecting program.

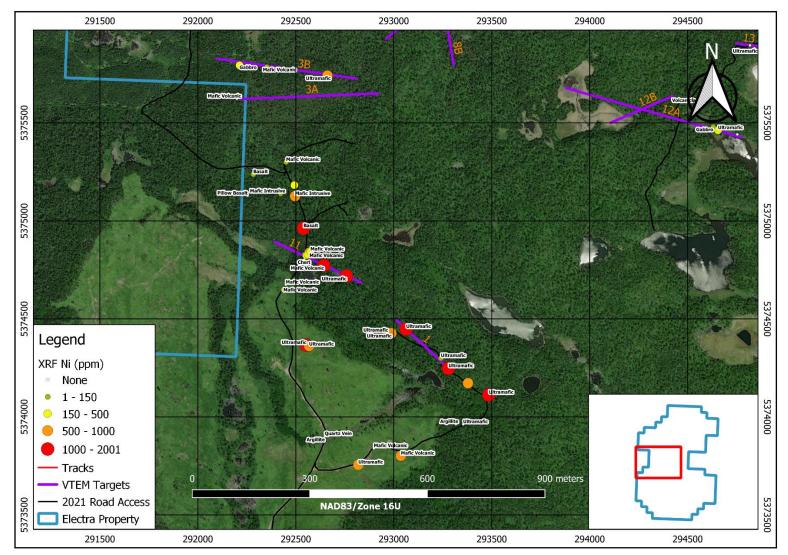


Figure 30. PXrf Nickel ppm with prospected rock type in SW portion of property.

Figure 31. PXrf Nickel ppm with prospected rock type near Thunder Lake, in the central part of the property.

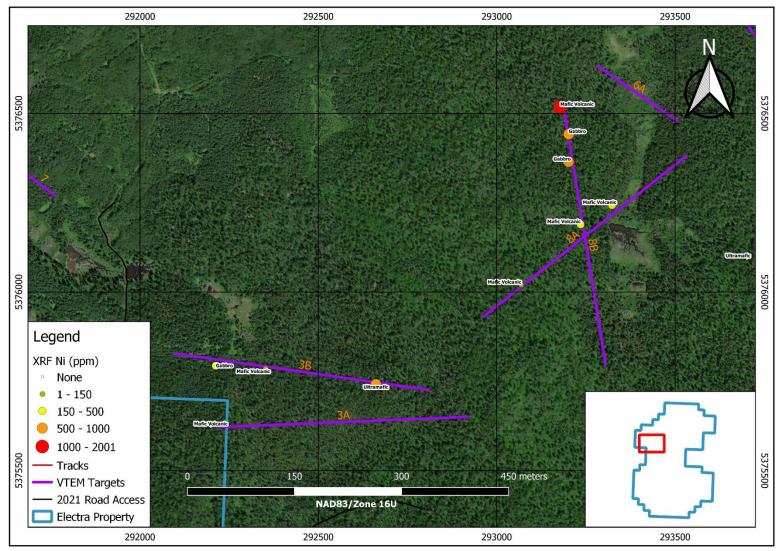


Figure 32. PXrf Nickel ppm with prospected rock type from western portion of property.

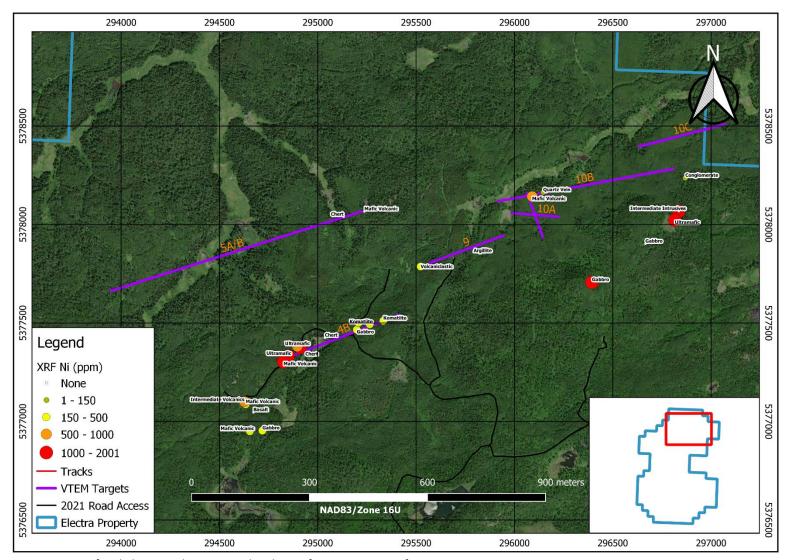


Figure 33. PXrf Nickel ppm with prospected rock type from NE portion of property.

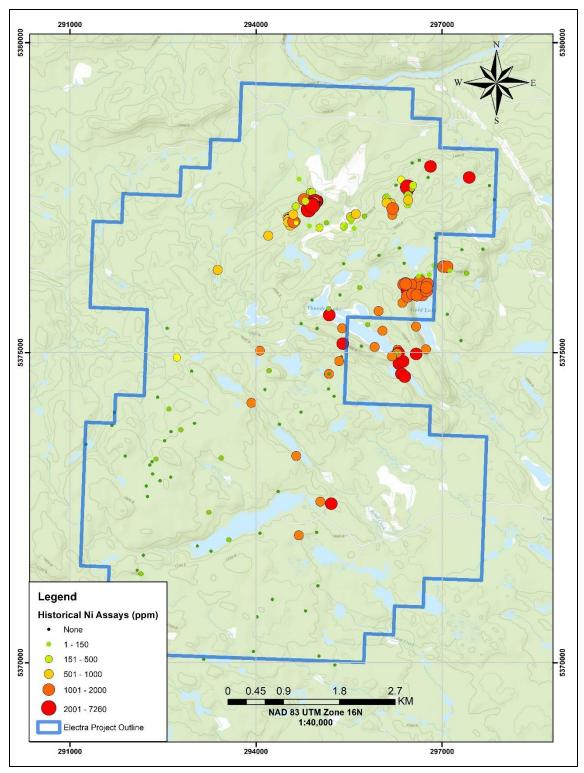


Figure 34. Historical Grab samples assay results for Nickel (ppm)

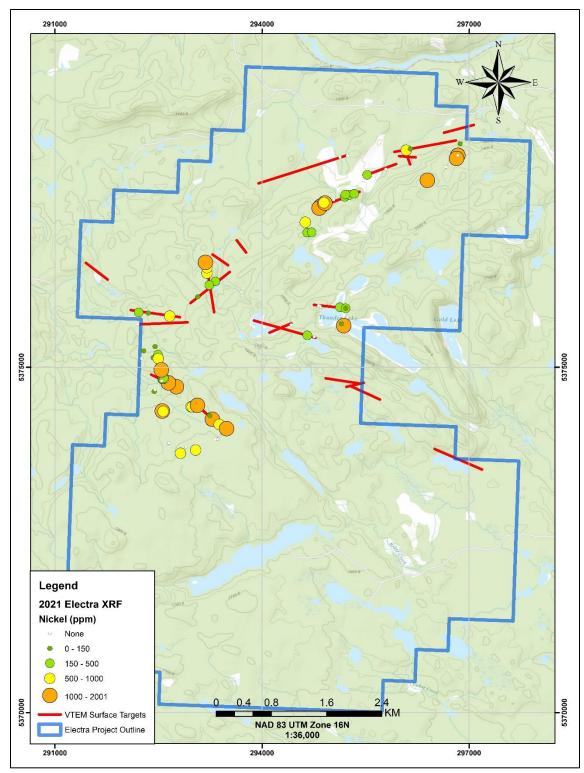


Figure 35. 2021 grab sample PXrf analysis results for Nickel (ppm)

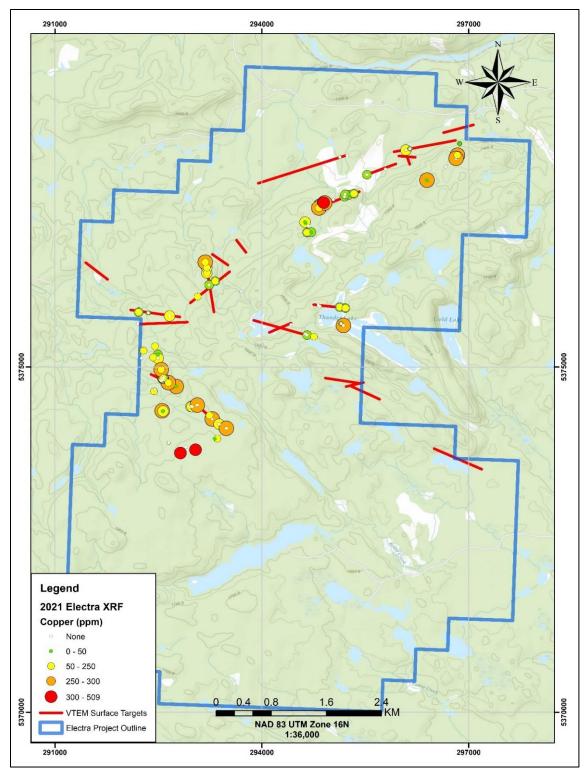


Figure 36. 2021 grab sample PXrf analysis results for copper (ppm)

L. 2021 Prospecting Analytical Results

Eighty-Two (82) rock grab samples were taken throughout the property focusing on potential Ni-Cu, Au and PGE mineralization. Multiple samples were taken from suspected ultramafic to mafic outcrops, with trace to ~6% disseminated pyrite. The samples were sent to ALS Laboratories in Thunder Bay, ON. Forty-eight (48) element Four acid ICP-MS super trace analysis (ME-MS61) and a Platinum group elements (PGM-MS23L) analysis were done on all 82 samples. The purpose for the Four acid super trace analysis (ME-MS61) analysis was to detect potential anomalous Cu and Ni that may have been present within the samples. The Platinum group elements (PGM-MS23L) analysis was done to detect any potential Pt-Pd-Au that may have been present in anomalous values. Lab certificates can be found in and analytical results in Appendix 6 and 7 attaches to the report.

L.1 Ni – Cu and Au 2021 Assay Results

Several of the Ultramafic Identified rock grab samples came back with slightly anomalous Ni results. The highest results were seen at the historical trenches and sample locations (Figure 41). Notably there where anomaly samples in the SW portion of the property collected near a VTEM line and Large ultramafic outcrop running along a logging road (Figure 39). Cu assay results came back with slightly anomalous values, commonly in correlation to the high Ni values, as seen in the figures 41 to 43. Au values came back with no anomalous values (Figure 43).

L.2 PGE 2021 Assay Results

Both Pt and Pd came back with weakly anomalous results in association with ultra-mafic rock types. Figure 44 and Figure 45.

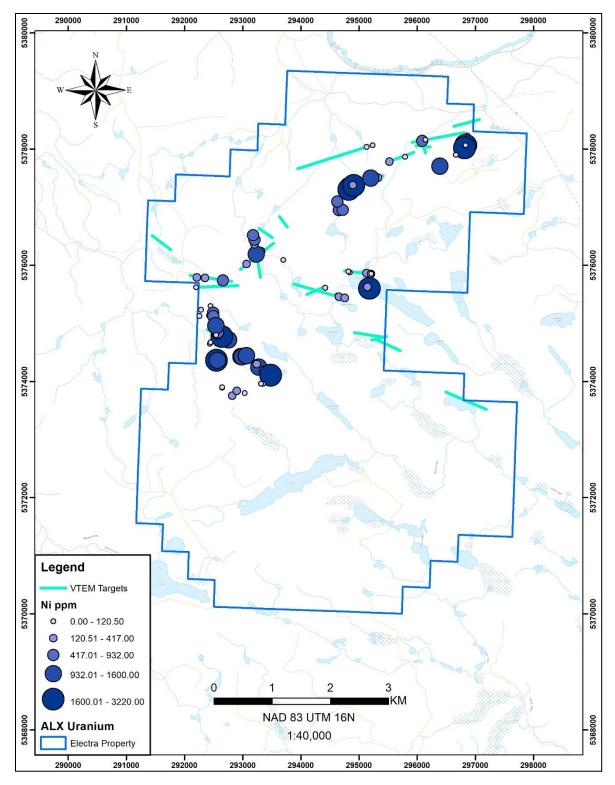


Figure 37. 2021 Prospecting Assay Results for Ni ppm

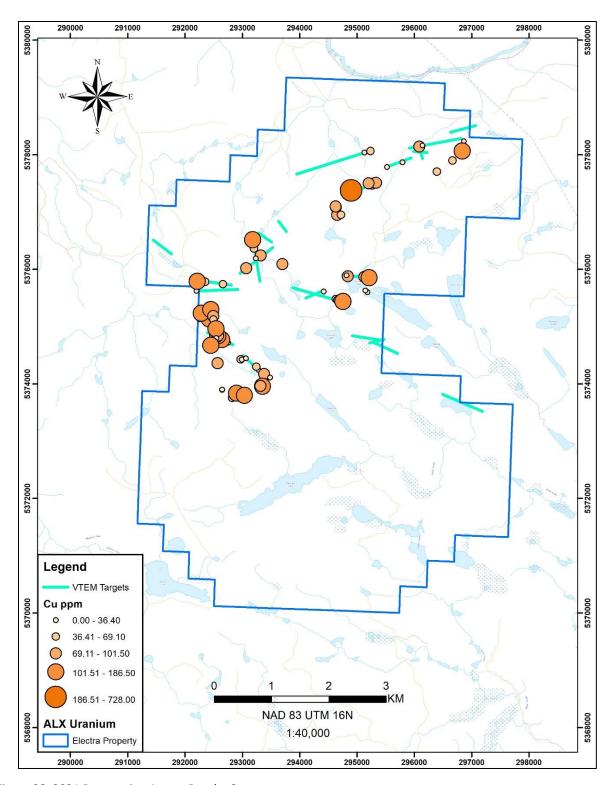


Figure 38. 2021 Prospecting Assays Results Cu ppm.

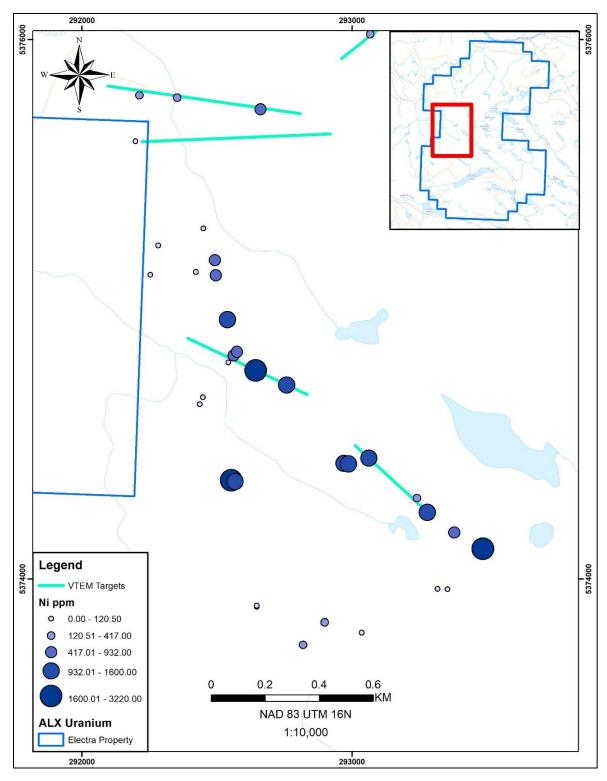


Figure 39. SW Zone 2021 Prospecting Assay Results for Ni ppm

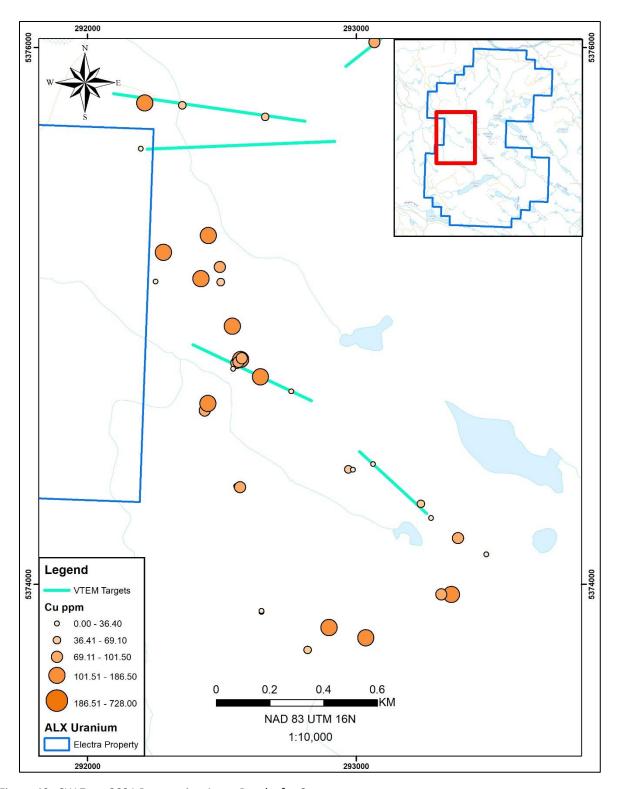


Figure 40. SW Zone 2021 Prospecting Assay Results for Cu ppm

Figure 41. Historical Trenches 2021 Prospecting Assay Results for Ni ppm

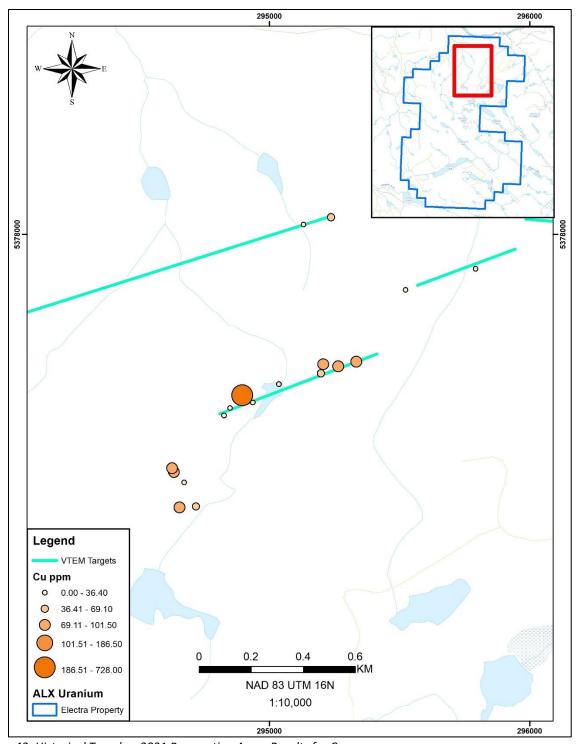


Figure 42. Historical Trenches 2021 Prospecting Assay Results for Cu ppm

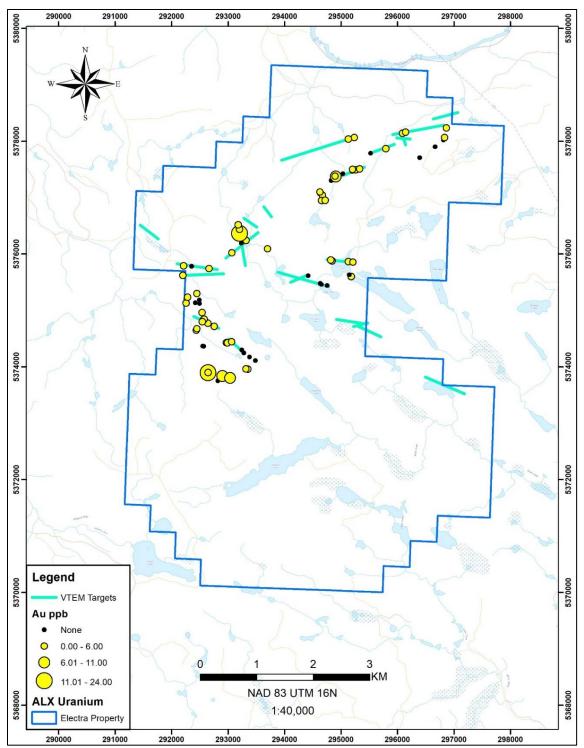


Figure 43. 2021 Prospecting Assay Results for Au ppb.

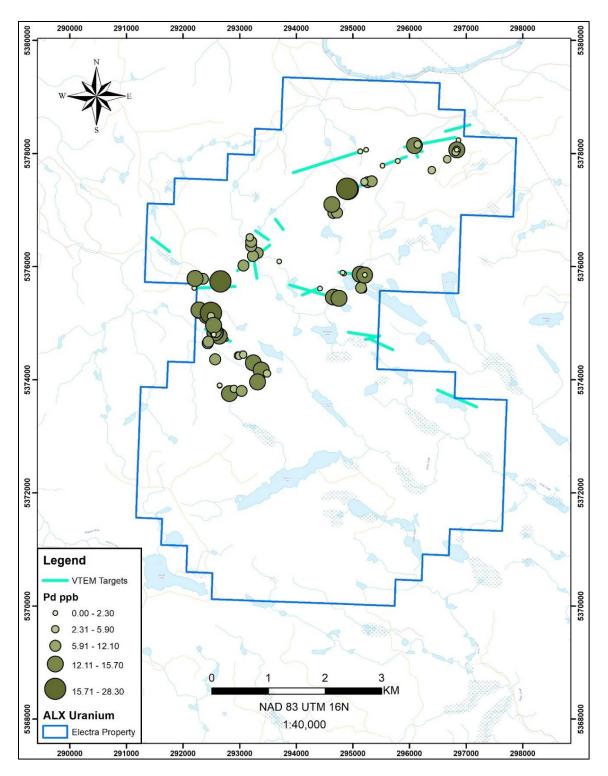


Figure 44. 2021 Prospecting Assay Results Pd ppb

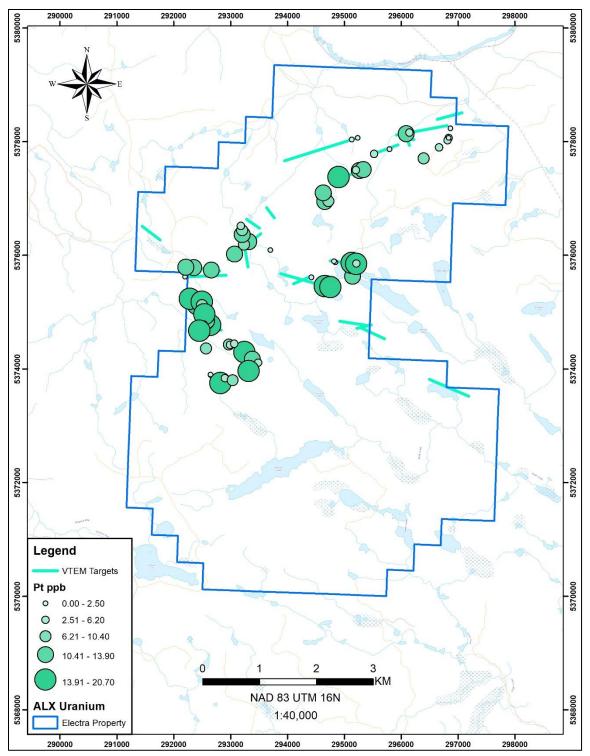


Figure 45. 2021 Prospecting Assay Results Pt pp

Table 6. 2021 Prospecting Assay Results

Sample #	Rock Type	Cu ppm	Ni ppm	Au ppb	Pt ppb	Pd ppb
152302	Argillite	11.40	3.20	1.00	0.00	0.00
152318	Argillite	15.90	17.90	3.00	0.10	0.00
152319	Argillite	32.70	17.50	0.00	0.10	0.00
152347	Argillite	98.80	16.50	6.00	0.70	1.00
152367	Argillite	35.30	75.20	17.00	0.00	0.20
152374	Argillite	122.50	69.60	1.00	4.10	4.10
152382	Argillite	78.80	57.10	1.00	2.50	2.30
152312	Basalt	22.20	20.90	1.00	0.20	0.00
152357	Basalt	116.00	89.40	2.00	14.30	14.60
152361	Basalt	124.50	1135.00	4.00	15.00	13.90
152326	Chert	17.00	13.00	2.00	0.10	0.00
152362	Chert	15.10	6.20	2.00	0.10	0.00
152305	Conglomerate	30.00	53.50	1.00	0.50	0.40
152309	Gabbro	41.80	92.70	0.00	5.50	4.30
152310	Gabbro	63.80	1255.00	0.00	8.90	5.40
152314	Gabbro	68.30	513.00	6.00	10.40	10.50
152320	Gabbro	50.70	365.00	0.00	1.50	0.90
152334	Gabbro	25.40	40.60	1.00	0.20	0.00
152336	Gabbro	58.80	106.50	0.00	4.20	2.50
152338	Gabbro	156.50	168.50	0.00	15.20	13.80
152376	Gabbro	21.30	14.70	1.00	0.40	0.40
152378	Gabbro	33.50	1090.00	0.00	9.30	9.30
152379	Gabbro	46.60	325.00	24.00	10.80	10.20
152335	Intermediate Volcanics	109.50	27.00	2.00	1.80	1.60
152315	Intermediate Volcanics	89.10	744.00	2.00	12.60	12.80
152301	Komatiite	30.70	171.00	0.00	2.80	2.10
152321	Komatiite	83.50	329.00	2.00	12.70	11.60

Sample #	Rock Type	Cu ppm	Ni ppm	Au ppb	Pt ppb	Pd ppb
152322	Komatiite	90.80	416.00	2.00	12.90	10.20
152355	Mafic Intrusive	115.50	115.50	0.00	15.50	14.60
152360	Mafic Intrusive	61.90	893.00	0.00	9.50	5.60
152303	Mafic Volcanic	79.90	731.00	2.00	13.10	12.60
152311	Mafic Volcanic	90.40	544.00	1.00	11.70	11.20
152313	Mafic Volcanic	89.50	509.00	1.00	11.50	11.60
152317	Mafic Volcanic	19.40	1910.00	0.00	3.00	2.80
152325	Mafic Volcanic	41.00	86.10	1.00	0.50	0.40
152327	Mafic Volcanic	73.40	1100.00	2.00	6.00	5.60
152330	Mafic Volcanic	91.50	232.00	1.00	15.00	14.00
152332	Mafic Volcanic	113.50	81.80	1.00	4.30	2.00
152346	Mafic Volcanic	118.50	1780.00	2.00	15.50	15.70
152348	Mafic Volcanic	110.00	344.00	2.00	13.30	13.70
152349	Mafic Volcanic	71.10	799.00	3.00	13.80	14.30
152350	Mafic Volcanic	80.30	910.00	2.00	11.60	11.90
152352	Mafic Volcanic	51.60	244.00	0.00	10.90	11.60
152353	Mafic Volcanic	80.70	222.00	1.00	11.30	11.00
152354	Mafic Volcanic	80.60	417.00	1.00	12.50	11.90
152358	Mafic Volcanic	114.00	63.10	1.00	5.90	3.50
152359	Mafic Volcanic	78.20	602.00	0.00	20.70	17.90
152363	Mafic Volcanic	81.10	55.40	2.00	8.00	8.00
152364	Mafic Volcanic	109.50	120.50	6.00	15.80	12.10
152370	Mafic Volcanic	158.00	215.00	8.00	5.20	5.20
152371	Mafic Volcanic	127.50	57.60	11.00	8.40	8.80
152375	Mafic Volcanic	87.60	119.00	1.00	14.70	14.60
152377	Mafic Volcanic	113.00	303.00	4.00	13.80	13.70
152380	Mafic Volcanic	33.10	669.00	1.00	9.80	9.30
152356	Pillow Basalt	22.90	19.00	1.00	1.50	1.00

Sample #	Rock Type	Cu ppm	Ni ppm	Au ppb	Pt ppb	Pd ppb
152304	Quartz Vein	34.10	113.50	5.00	3.30	3.00
152368	Quartz Vein	3.60	75.50	2.00	0.30	0.40
152306	Ultramafic	49.30	1315.00	1.00	5.80	14.80
152307	Ultramafic	5.70	2160.00	1.00	3.80	3.30
152308	Ultramafic	25.40	2160.00	0.00	4.50	4.30
152316	Ultramafic	19.50	1915.00	0.00	3.30	2.40
152323	Ultramafic	76.10	3220.00	11.00	12.80	17.80
152324	Ultramafic	728.00	266.00	2.00	20.20	18.30
152328	Ultramafic	21.40	2060.00	1.00	4.40	3.50
152329	Ultramafic	36.40	175.50	0.00	12.80	10.80
152331	Ultramafic	81.90	263.00	0.00	14.40	12.90
152333	Ultramafic	77.70	38.20	1.00	1.70	1.70
152337	Ultramafic	59.90	173.50	0.00	15.20	14.10
152340	Ultramafic	55.80	1390.00	3.00	7.70	5.90
152341	Ultramafic	13.70	1090.00	2.00	5.90	4.90
152342	Ultramafic	18.00	1600.00	0.00	4.90	4.40
152343	Ultramafic	69.10	176.50	0.00	16.90	15.20
152344	Ultramafic	13.30	1280.00	2.00	3.20	2.50
152345	Ultramafic	20.20	1355.00	1.00	4.50	1.50
152351	Ultramafic	57.40	739.00	3.00	12.30	28.30
152365	Ultramafic	30.00	1770.00	0.00	4.90	5.00
152366	Ultramafic	73.10	1050.00	0.00	8.90	8.00
152369	Ultramafic	67.40	231.00	0.00	15.50	14.40
152372	Ultramafic	101.50	748.00	0.00	13.90	12.90
152373	Ultramafic	16.40	2250.00	0.00	3.30	2.90
152381	Ultramafic	186.50	932.00	2.00	6.20	4.30
152339	Volcaniclastic	20.00	57.70	0.00	0.30	0.00

Table 7. PXrf Data compilation for prospective elements.

Sample #	Rock Type	Cu ppm	Ni ppm	Fe ppm	Mn ppm	Cr ppm	Mg ppm
152302	Argillite	0	0	54316.45	0	0	22138.1
152367	Argillite	38.25	0	11271.37	0	0	0
152374	Argillite	59.55	0	77232.88	0	2499.64	0
152382	Argillite	0	0	22976.29	0	0	0
152312	Basalt	0	0	37567.8	0	0	0
152357	Basalt	65.6	87.81	35564.79	0	2812.91	50227.6
152361	Basalt	128.87	1174.04	34935.72	0	1048.27	37443.8
152318	Chert	0	0	88516.76	0	1688.81	92700.1
152319	Chert	0	0	63603.09	0	0	11422.7
152326	Chert	0	0	102559	2685.1	2533.09	48198.1
152347	Chert	218.5	193.29	44197.52	0	0	0
152362	Chert	0	0	35771.78	0	0	0
152305	Conglomerate	26.19	58.6	32604.13	0	1173.32	0
152309	Gabbro	0	0	47495.71	0	1993.97	0
152310	Gabbro	42.87	1088.42	66184.68	0	0	0
152314	Gabbro	36.32	419.38	58072.41	0	1871.51	44337.1
152320	Gabbro	0	280.21	67365.84	3022.67	3061.16	59083.1
152334	Gabbro	0	0	2758.21	0	0	0
152336	Gabbro	0	70.89	8150.55	0	0	0
152338	Gabbro	62.65	0	75655.09	0	0	16984.2
152376	Gabbro	0	0	59934.23	3941.92	0	0
152378	Gabbro	0	291.34	95183.61	0	0	0
152379	Gabbro	73.37	564.3	170713.3	4794.26	2574.18	33793.7
152335	Intermediate Intrusive	159.72	0	315894.8	0	0	0
152315	Intermediate Volcanic	41.09	635.8	54284.56	0	0	16007.1
152321	Komatiite	31.23	171.83	52854.53	0	0	0
152322	Komatiite	58.85	259.57	37521.43	0	0	0

Sample #	Rock Type	Cu ppm	Ni ppm	Fe ppm	Mn ppm	Cr ppm	Mg ppm
152355	Mafic Intrusive	59.01	103.06	69271.34	0	2839.75	103053
152360	Mafic Intrusive	0	852.31	79890.94	0	0	40481.6
152303	Mafic Volcanic	0	704.59	64910.33	0	0	15246.4
152311	Mafic Volcanic	43.45	272.07	62165.9	0	1644.47	17314
152313	Mafic Volcanic	55.83	294.71	56287.98	0	0	10704.2
152317	Mafic Volcanic	84.71	1929.99	84095.05	0	0	0
152325	Mafic Volcanic	0	0	31255.73	0	0	0
152327	Mafic Volcanic	0	469.44	73986.25	0	0	0
152330	Mafic Volcanic	113.48	219.16	94985.48	0	0	0
152332	Mafic Volcanic	123.7	118.88	92186.2	0	0	29701.4
152346	Mafic Volcanic	58.93	1593.74	43692.07	0	0	0
152348	Mafic Volcanic	132.95	556.69	35697.79	0	0	0
152349	Mafic Volcanic	0	338.33	72326.17	0	2825.29	22577
152350	Mafic Volcanic	0	461.83	64587.2	0	6606.41	71140.8
152352	Mafic Volcanic	0	149.92	78978.8	0	2873.19	99775.9
152353	Mafic Volcanic	52.67	99.38	91058.31	0	0	0
152354	Mafic Volcanic	70.2	426.5	67467.65	0	5786.73	49258.1
152358	Mafic Volcanic	85.33	64.88	85367.09	0	7846.19	42995.6
152359	Mafic Volcanic	49.92	347.17	73104.06	3433.47	3779.3	11817.5
152363	Mafic Volcanic	123.08	80.91	134125.1	0	0	0
152364	Mafic Volcanic	0	0	80311.85	0	0	0
152370	Mafic Volcanic	0	0	73540.44	0	2813.51	0
152371	Mafic Volcanic	342.43	649.89	83783.6	0	2061.17	0
152375	Mafic Volcanic	38.21	0	123662.1	4914.7	2268.12	0
152377	Mafic Volcanic	107.3	324.57	107663.9	0	0	0
152380	Mafic Volcanic	59.28	612.22	15081.57	0	0	0
152356	Pillow Basalt	0	0	101452.7	0	0	22833.1
152304	Quartz Vein	0	106.3	84562.52	0	0	10769.1
152368	Quartz Vein	0	0	4697.48	0	0	0

Sample #	Rock Type	Cu ppm	Ni ppm	Fe ppm	Mn ppm	Cr ppm	Mg ppm
152306	Ultramafic	148.92	1598.7	75264.34	0	0	0
152307	Ultramafic	0	1532.55	93286.03	0	0	18411
152308	Ultramafic	0	1889.08	68662.24	0	0	20769.8
152316	Ultramafic	0	1189.23	75409.63	0	0	64235.1
152323	Ultramafic	43.09	1923.66	68468.75	0	0	0
152324	Ultramafic	509.51	699.47	1433.77	0	0	0
152328	Ultramafic	0	1831.12	126106.3	0	0	0
152329	Ultramafic	0	148.68	98204.89	0	0	0
152331	Ultramafic	90.93	260.14	77235.07	0	3625	89656.7
152333	Ultramafic	0	0	86097.26	0	3012.64	57831
152337	Ultramafic	0	178.63	99335.36	0	0	0
152340	Ultramafic	0	901.45	2748.61	0	0	0
152341	Ultramafic	0	827.23	111122.7	0	2571.84	50751.5
152342	Ultramafic	0	1395.55	35904.95	0	0	0
152343	Ultramafic	127.81	139.28	64543.33	14674.16	0	0
152344	Ultramafic	0	1298.82	81163.1	0	0	33090.3
152345	Ultramafic	43.78	1372.27	64245.44	0	2591.35	120777
152351	Ultramafic	0	561.28	83556.9	0	0	0
152365	Ultramafic	0	1367.86	67766.31	0	0	0
152366	Ultramafic	42.98	757.59	102998.5	0	0	0
152369	Ultramafic	396.91	846.38	90387.3	0	0	0
152372	Ultramafic	0	536.07	30491.34	0	0	0
152373	Ultramafic	0	2000.99	87738.84	3336.56	0	0
152381	Ultramafic	204.3	1384.42	129350.9	4615.3	2183.08	0
152301	Volcaniclastic	0	242.93	135625.6	4970.58	3401.61	0
152339	Volcaniclastic	0	0	70719.31	0	0	0

Table 8. Xrf data compilation based on rock type and element type, Mean, median, min, max and sample quantity.

Ultramafic	Mean	Median	Minimum	Maximum	Count
Cu ppm	1022.56	1045.34	0	2000.99	24
Ni ppm	5.13	0	0	509.51	24
Fe ppm	2387.26	2573.01	0	7846.19	24
Cr ppm	92926.82	80527.02	34935.72	315894.84	24
Mafic	Mean	Median	Minimum	Maximum	Count
Cu ppm	21.52	0.00	0.00	73.37	10
Ni ppm	271.45	175.55	0.00	1088.42	10
Fe ppm	68047.48	69629.09	30491.34	102998.45	10
Cr ppm	452.71	0.00	0.00	2533.09	10
Gabbro	Mean	Median	Minimum	Maximum	Count
Cu ppm	21.52	0.00	0.00	73.37	10
Ni ppm	271.45	175.55	0.00	1088.42	10
Fe ppm	68047.48	69629.09	30491.34	102998.45	10
Cr ppm	452.71	0.00	0.00	2533.09	10

M. CONCLUSION AND RECOMMENDATIONS

Based on the results the following conclusions are made:

- 1) Further prospecting along zones with Ultra Mafics on Surface is needed to determine potential
- 2) Surficial overburden in several target areas limited prospecting

Recommendations are:

- 1) Backpack drilling on previously sampled areas that show high-grade potential
- 2) Complete biogeochemical survey over areas with mag targets and surficial overburden. Here we can look for Ni-Cu-Co + PGE and Au
- 3) Potential drone Lidar survey target areas, which can be followed up with more detailed prospecting
- 4) Drill holes to follow up Ultra Mafic outcrops in southern portion of property

N. REFERENCES

- Assessment Files, Ontario Ministry of Northern Development and Mines, Thunder Bay Regional/Resident Geologist's Office.
- Carter, M.W., 1990: Geology of Forbes and Conmee Townships; Ontario Geological Survey, Open File Report 5726, 188p.
- Carter, M.W., 1990: Geology of Goldie and Horne Townships; Ontario Geological Survey, Open File Report 5720, 189p.
- Carter, M.W., 1990: Geology of Goldie and Horne Townships; Ontario Geological Survey, Open File Report 5720, 189p.
- Hinz, S. L. K., 2018: Geochemistry and Petrography of the Ultramafic Metavolcanic Rocks in the Eastern Portion of the Shebandowan Greenstone Belt, Northwestern Ontario, 167p.
- MacLean, D., 2008: Report on Soil Geochemistry, Prospecting & Trenching, Bateman Lake Property, District of Thunder Bay, Northwestern Ontario, Linear Metals Corporation.
- Map P.2990: Forbes and Conmee Townships Area (North Half), Geological Series Preliminary Map, Ontario Geological Survey, 1986.
- Map P.2856: Horne Township, Geological Series Preliminary Map, Ontario Geological Survey, 1985.
- McCullum, N 2021: Electra Property, Report on a Helicoptert-Borne Versatile Time Domain Electromagnetic (VTEM Plus) and Horizontal Magnetic Gradiometer Geophysical Survey, 2021. Horne & Conmee Twps., Ontario Thunder Bay Mining Division.
- Morgan, Jeff & Campbell, Ian, 1998: Bateman Lake Property, Phase 1 Exploration Program, Summary Report, Horne & Conmee Twps., Ontario Thunder Bay Mining Division.

- Ontario Geological Survey, 1991: Airborne electromagnetic and total intensity magnetic survey, Shebandowan Area; Ontario Geological Survey Map 81578, scale 1:20,000.
- Ontario Geological Survey, 1991: Airborne electromagnetic and total intensity magnetic survey, Shebandowan Area; Ontario Geological Survey Map 81579, scale 1:20,000.
- Ontario Geological Survey, 1991: Airborne electromagnetic and total intensity magnetic survey, Shebandowan Area; Ontario Geological Survey Map 81590, scale 1:20,000.
- Ontario Geological Survey, 1991: Airborne electromagnetic and total intensity magnetic survey, Shebandowan Area; Ontario Geological Survey Map 81591, scale 1:20,000.
- Tims, Andrew, 1995: Hemlo Gold Mines Inc., Annual Work Report for the Conmee-Kwiatkwoski Option, Conmee & Horne Townships, Thunder Bay Mining District, NTS 52A/5
- William, H.R. et al., 1991: Wawa Subprovince; in Geology of Ontario, Ontario Geological Survey, Special Volume 4, Part 1. pp.512-518.

Sample ID	Date (Ctrl+;)	Easting	Northing	Zone	Sample type	Source	Sample length (m)	Lithological Code	Rock Type	Sub Rock Type	Rock Texture	Alteration	Alteration Intensity	Roundness	Spericity
152301	2021-09-02	295523.017	5377786.605		Grab		N/A	VOLC	Volcaniclastic		Conglomeratic	N/A	N/A	Rounded	Moderate
152302	2021-09-02	295792.474			Grab	Outcrop			Argillite		Massive	Fe-Oxidation	Weak		
152303	2021-09-02					Outcrop			Mafic Volcanic		Brecciated	Fe-Oxidation	Weak	Angular	Low
152304 152305	2021-09-02	296146.019			Grab	Outcrop Boulder		QTZV CONG	Quartz Vein Conglomerate		Conglomeratic	N/A N/A	N/A N/A	Rounded	High
152306	2021-09-02	296836.13			Grab	Outcrop			Ultramafic		Massive	serpentine	moderate	Koulidea	High
152307	2021-09-02				Grab	Outcrop			Ultramafic		Massive	serpentine	Weak	1	<u> </u>
152308	2021-09-02		5378021.898		Grab	Outcrop	N/A	UTMF	Ultramafic		Massive	serpentine	moderate		
152309	2021-09-02	296665.903		16U	Grab	Outcrop	N/A	GBBO	Gabbro		Massive	Fe-Oxidation	weak		
152310	2021-09-02	296394.039	5377706.477		Grab	Outcrop	N/A	GBBO	Gabbro		Massive	serpentine	weak		
152311	2021-09-03	294633.313	5377086.869	16U	Grab	Outcrop	N/A	MAFV	Mafic Volcanic		Brecciation	Calcite	Weak	Angular	Low
152312	2021-09-03	294672.491	5377045.937	16U	Grab	Subcrop	N/A	BAST	Basalt		Massive	Fe-Oxidation	Weak		
152313	2021-09-03	294654.286			Grab			MAFV	Mafic Volcanic		Pillow?				
152313	2021-09-03	294654.286		160		Outcrop	N/A		Matic Voicanic Gabbro		Massive	Fe-Oxidation	Weak		
132314	2021-09-03	254710.22	3370933.332	100	GIAU	Outcrop	IN/A	ОВВО	Gabbio		ividssive	re-Oxidation	weak		
152315	2021-09-03	294626.787	5377100.572	16U	Grab	Outcrop	N/A	INTM	Intermediate Volcanics		Massive	Fe-Oxidation	Weak		
152316	2021-09-03					Outcrop		UTMF	Ultramafic		Massive				
152317	2021-09-03			16U	Grab	Outcrop			Mafic Volcanic		Massive	Fe-Oxidation	Weak		
152318	2021-09-03	294936.468	5377353.507	16U	Grab	Outcrop	N/A	ARGL	Argillite		Fissile				
						1									
152319	2021-09-03	295035.822	5377424.348		Grab	Outcrop	N/A	ARGL	Argillite		Massive	Fe-Oxidation	Weak		
152320	2021-09-03	295197.985	5377465.757	16U	Grab	Outcrop	N/A	GBBO	Gabbro		Massive				
	2021 00	205251.0	F377.00 C	1000	Comb	0	A1 / A	KONT	W	W	Calalfan				
152321 152322	2021-09-03	295264.034	5377492.963 5377511.157	160	Grab	Outcrop Boulder		KOMT	Komatiite Komatiite	Komatiite Komatiite	Spinifex Spinifex	Fe-Oxidation	Weak	Angular	low
152322	2021-09-03	295333.083			Grab Grab			UTMF	Ultramafic	KOHIALIILE	Brecciation	I E-Oxidation	** CdX	Angular Sub-angular	Low
132323	2021-03-03	25-303.333	33.7370.203	200		renell	,**			†				_uu ungulai	1
152324	2021-09-03	294895.936	5377381.577	16U	Grab	Trench	N/A	UTMF	Ultramafic		Massive	Fe-Oxidation	moderate		
							,								
152325	2021-09-04	295236.694	5378065.856	16U	Grab	Outcrop	N/A	MAFV	Mafic Volcanic		Porphyritic				
152326	2021-09-04	295131.026	5378038.643	16U	Grab	Outcrop	N/A	CHRT	Chert		Massive	Fe-Oxidation	Weak		
						_									
152327	2021-09-04	295206.64	5377500.498	160	Grab	Outcrop	N/A	MAFV	Mafic Volcanic		porphyritic	Fe-Oxidation	moderate		
152328	2021-09-04	295182.633	5375601.714	1611	Grab	Outcrop	N/A	UTME	Ultramafic		Massive	serpentine	moderate		
132320	2021-09-04	293102.033	33/3001./14	100	GIAU	Outcrop	IN/A	UTIVIF	Oltramant		ividssive	serpentine	moderate		
152329	2021-09-04	295146.868	5375629.052	1611	Grab	Outcrop	N/A	UTME	Ultramafic	Komatiite	Spinifex	serpentine	moderate		
132323	2021 05 04	233140.000	3373023.032	100	GIGD	Outerop	1471	011111	oldaniane	Komatike	Sprinex	Serpertune	moderate		
152330	2021-09-04	295128.501	5375868.872	16U	Grab	Outcrop	N/A	MAFV	Mafic Volcanic		pillows	Fe-Oxidation	Weak		
152331	2021-09-04	295209.568			Grab		N/A	UTMF	Ultramafic	Komatiite	Spinifex	Chlorite	Weak		
152332	2021-09-04					Outcrop			Mafic Volcanic		Massive	Chlorite	Weak		
152333	2021-09-04	294840.94			Grab	Outcrop		UTMF	Ultramafic		Massive	Silicification	Weak		
152334	2021-09-04	294818.401	5375895.157	16U	Grab	Outcrop	N/A	GBBO	Gabbro		Equigranular	Chlorite	Weak		-
152335	2021-09-04	296836.13	5378067.685	16/1	Grab	Outcrop	N/A	INTI	Intermediate Intrusives	1	Porphyritic				
152335	2021-09-04	230830.13	33/800/.085	100	GIBU	Juictob	IN/M	11411	incermediate intrusives	1	rorphylluc		1	1	+
152336	2021-09-05	294630.46	5375479.768	1611	Grab	Outcrop		GBBO	Gabbro	1	eguagranular mg homogenous				
132330		1050.40	22.3473.700		1	, op					5 5				
152337	2021-09-05	294654.967	5375462.184	16U	Grab	Outcrop		UTMF	Ultramafic	1	porphyritic				
										1					
152338	2021-09-05	294753.605	5375441.126	16U	Grab	Outcrop		GBBO	Gabbro		Medium to Course grained	Chlorite	wk		
				1						_					
152339	2021-09-05	294420.595	5375614.828	16U	Grab	Outcrop		VOLC	Volcaniclastic		porphyritic	Silicification	wk	Sub-angular	1
										1					
										1			Mod, Mod (only on fracture		
152340	2021-09-06	292970.332	5374428.95	1011	Comb	0		UTME	Ultramafic		Manaka	Forestellar Chlorita Cod	surfaces), mod Carb diss in		
152340	2021-09-06	2929/0.332	53/4428.95	TOU	Grab	Outcrop		UTIVIF	OIU dMdHC	 	Massive	Fe staining, Chlorite, Carbonate	rock and in mm stringers.	+	
152341	2021-09-06	292987.776	5374426.969	160	Grab	Outcrop		UTME	Ultramafic	1	Massive	Fe staining, Chlorite, Carbonate	wk, mod, carb mod to str veining stockwork		
132341	2021-03-00	232301.1/0	3374420.305	100	GIAD	Juictup		O 1.WII	Ora diliana	1	1103376	i e staming, emorite, cardonate	wk fe on weathered surface.	1	+
													serpentine seen as green hue		
													and in slick and slides and wk		
152342	2021-09-06	293279.044	5374247.262	16U	Grab	Outcrop		UTMF	Ultramafic	1	Massive	Fe staining, serpentine, carb	carb		
										1			fe staining on weathered and		
152343	2021-09-06	293240.509	5374299.453	16U	Grab	Outcrop		UTMF	Ultramafic	Komatiite	Spinefex	Fe staining, serpentine, carb	fractures, wk serpentine		
					L .					1	L				
152344	2021-09-06	293063.049	5374447.81	16U	Grab	Outcrop	1	UTMF	Ultramafic	+	Stockwork, Sheared	Carbonate, chl,	Strong, mod		1
453345	2024 00 00	292757.743	5374718.644	1611	Grab	Outers		UTMF	Ultramafia	1	Stanlaugek Shaarad	Carbonata Chi	Strong mad		
152345	2021-09-06	292/5/./43	53/4/18.644	TOO	oran	Outcrop	1	UTIVIE	Ultramafic	1	Stockwork, Sheared	Carbonate, Chl	Strong, mod	1	1

Sample ID	Date (Ctrl+;)	Easting	Northing	Zone	Sample type	Source	Sample length (m)	Lithological Code	Rock Type	Sub Rock Type	Rock Texture	Alteration	Alteration Intensity	Roundness	Spericity
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						, ,						wk on fracture surfaces, mod		
452246	2024 00 00	202642 222	5374772.92	1611	C	0		MAFV	Mafic Volcanic		Manaka	For abolish and Control of the Contr	carb diss and in mm		
152346	2021-09-06	292643.332	53/4//2.92	100	Grab	Outcrop		IVIAFV	Maric Voicanic		Massive	Fe staining, Carbonate	stockworks Str on weathered, py nodules		
													~1cm and calcite rims on		
152347	2021-09-06	292553.718	5374824.398	16U	Grab	Outcrop		ARGL	Argillite		Aphanetic	fe staining	nodules str sil, wk carb, str fe Staining		
													on weathered surfaces and		
152348	2021-09-06	292569.664	5374837.613	16U	Grab	Outcrop		MAFV	Mafic Volcanic		Brecciation	Silicification, Carbonation, Fe staining	fractures		
													dark red to yellow highly		
152349	2021-09-06	292561.248	5374828.017	16U	Grab	Boulder		MAFV	Mafic Volcanic		Brecciation	Fe Staining	oxidized mafic rock		
													fe staining on weathered and		
152350	2021-09-06	292574.44	5374842.779	16U	Grab	Outcrop		MAFV	Mafic Volcanic		Massive	Chlorite, Carbonate	fractures, wk carb diss througout		
					5.55	о в того в									
152351	2021-09-07	292661.138	5375741.372	16U	Grab	Outcrop		UTMF	Ultramafic		Massive	Chlorite	Weak		
152352	2021-09-07	292352.418	5375785.325	16U	Grab	Outcrop		MAFV	Mafic Volcanic		Aphanitic	Carbonate, chl,	moderate		
152353	2021-09-08	293068.292	5376020.015	16U	Grab	Subcrop		MAFV	Mafic Volcanic		Massive	Carbonate, Chl	moderate		
152354	2021-09-08	293323.251	5376243.158	16U	Grab	Outcrop		MAFV	Mafic Volcanic		Pillow; weak - moderate Brecciation	Carbonate, Chl	weak		
152355	2021-09-09	292422.14	5375138.84	16U	Grab	Outcrop		MAFINT	Mafic Intrusive		Massive	Fe staining, Carbonate	fe on weathered surface, carb diss throughout and infrac fill		
132333	2021 03-03	252-12.14	337,3130.04	-00		Juttrop			THE STATE OF THE S						
													mod within qtz vein,		
152356	2021-09-09	292253.538	5375128.012	16U	Grab	Outcrop		BASP	Pillow Basalt		Quartz Vein	Carbonate, Fe Staining	throughout rock, dominantly on fracture surfaces		
152357	2021-09-09	292282.491	5375237.458	1611	Grab	Outcrop		BASLT	Basalt		Quartz Vein	Fe staining, Carbonate	fe on weathered surface, carb diss throughout and infrac fill		
132337					GIAD	Outcrop					Quartz veni	re stairing, Carbonate	fe staining on weathered		
152358	2021-09-09	292450.17	5375299.736	16U	Grab	Outcrop		MAFV	Mafic Volcanic		Massive	Fe staining	surface		
152359	2021-09-09	292492.38	5375182.332	1611	Grab	Outcrop		MAFV		Massive Basalt	Massive	Carbonate, Chl	moderate; weak		
132333	2021 03 03	232432.30	3373102.332	100	Citto	Outerop		140.0		IVIOSSIVE BUSUIC	massive	carbonate, em	moderate, weak		
													mod carb in irregular veining,		
152360	2021-09-09	292495.719	5375126.231	16U	Grab	Outcrop		MAFINT	Mafic Intrusive	Gabbro	Massive	Carbonate, Chlorite	chl within veining and overprinting amph grains		
132300	2021 03 03	232433.713	3373120.231	100	Citab	Cuttrop		140.000	Wate merasive	Gabbio	industrie.	carbonate, emone	Str Fe staining on weathered		
152361	2021-09-09	292539.02	5374961.935	1611	Grab	Boulder		BASLT	Basalt	Basalt	Massive	For abolish and Control of the Contr	surfave, wk carb on fracture surfaces		
152361	2021-09-09	292539.02	5374961.935	100	Grab	Boulder		BASLI	Basait	Basait	Massive	Fe staining, Carbonate	surraces		
152362	2021-09-09	292541.973	5374802.683	16U	Grab	Outcrop		CHRT	Chert	Massive	Fe staining	str Fe staining on weathered surfaces			black
152363	2021-09-09	292436.273	5374647.868	16U	Grab	Outcrop		MAFV	Mafic Volcanic	Massive Basalt	Qtz Veining	Carbonate, Chl	moderate		
												Str fe staining on fracture surfaces and weathered			
152364	2021-09-09	292448.178	5374673.918					MAFV	Mafic Volcanic	Shear Zone		surfaces. Carb stockwork veining along strike with			
152364	2021-09-09	292448.178	53/46/3.918	160	Grab	Outcrop		MAFV	Matic Volcanic	Shear Zone	Fe staining, Carbonate,	shear zone.			fg grey green
152365	2021-09-10	292553.08	5374365.911	16U	Grab	Outcrop		UTMF	Ultramafic		Massive	Fe-Oxidation	Weak		
152366	2021-09-10	292567.487	5374361.375	160	Grab	Boulder		UTMF	Ultramafic	Massive	Fe staining	Mod fe staining on weathered surface			black grey
132300	2021-03-10	232307.407	33/4301.3/3	200	0.30	Soulder		0.181	OLG GATGING	**************************************	i e stammig	str fe staining along fracture surfaces and			orden Brey
												weathered surfaces, silicification in irregular milky			
152367	2021-09-10	292646.793	5373897.839	16U	Grab	Outcrop		ARGL	Argillite	Aphanetic	Fe staining, silicification	white to opaque ~5mm veining. Pyrite seen along qtz veins.			black grey
			22.222.000	1					J						
152368	2021-09-10	292647.207	5373901.051	16U	Grab	Outcrop		QTZV	Quartz Vein		Qtz Veining	Fe-Oxidation	weak		
												very soft on outcrop, easily scratched. with a greer			
152369	2021-09-10	292818.98	5373755.304	16U	Grab	Outcrop		UTMF	Ultramafic	Komatiite	serp? chl? very soft. Carbonate	hue over rock, wk to mod chl.			med grey to green.
152370	2021-09-10	292898.256	5373839.552	1611	Grab	Outcrop		MAFV	Mafic Volcanic	Shear, in Breccia	fe staining	str fe staining along fractures and weathered surfaces	Sub-rounded		black to grey
1323/0	2021-03-10	2,20,00,200	55,3033,332	100	2.00	Бактор				ocur, in Dieccid					
												str limonite to red yellow on weathered surface.			
152371	2021-09-10	293036.06	5373801.263	1611	Grab	Outcrop		MAFV	Mafic Volcanic	Aphanetic	Fe Staining, Qtz	weathering goes down severeal cms into bedrock. Qtz has secondary growth on fracture surfaces.			black
1323/1	2021 03-10	255555.00	3373001.203		30	Juttrop			Toleanic	. p. onese					
152372	2021-09-10	293378.75	5374171.944	1611	Grab	Outcron		UTME	Ultramafic	Komatiite	sern? chi? yery soft. Carbonata	very soft on outcrop, easily scratched. with a greer hue over rock, wk to mod chl.	1		med grey to green
152372	∠∪∠1-09-10	2933/8.75	55/41/1.944	100	GEAD	Outcrop	1	UTWIF	oluamanc	komatiitė	serp? chl? very soft. Carbonate	nue over rock, wk to mod chi.			med grey to green.
152373	2021-09-10	293484.779	5374111.866	16U	Grab	Outcrop		UTMF	Ultramafic	Aphanetic	Serpentine				black ish green
152374	2021-09-10	293353.971	5373961.737	1611	Grab	Boulder		ARGL	Argillite	Aphanetic	Silicification, Fe staining	mod, overprinting rock, making it very hard. fe staining on weathered surface			light grey with fg black mm whisps
132374	2021-09-10	223333.3/1	3373301./3/	100	CIAD	ooulder	1	ringt	i, «Punce	, phaneut	Janean Catalon, 1 e Stalling	John Weathered Sullate	1	1	"B" SICY WILL IS DIRCK HILL WHISPS

Sample ID	Date (Ctrl+;)	Easting	Northing	Zone	Sample type	Source	Sample length (m)	Lithological Code	Rock Type	Sub Rock Type	Rock Texture	Alteration	Alteration Intensity	Roundness	Spericity
												fe staining on weathered surface, and chl wk			
152375	2021-09-10	293316.726	5373962.877	7 16U	Grab	Outcrop		MAFV	Mafic Volcanic	Aphanetic	Fe staining, Chlorite	overprinting rock			med grey green
													wk diss throughout and fe is on		
152376	2021-09-07	292265	5375628	3 16U	Grab	Outcrop		GBBO	Gabbro		Massive	Chlorite, Fe staining	weathered surface		
													wk, mod, wk along fracture		
152377	2021-09-07	292212.421	5375793.591	16U	Grab	Outcrop		MAFV	Mafic Volcanic		Massive	Chlorite, Silicification, Carbonation	surfaces and in mm stringers		
													mod fracfill, wk sil overprint		
152378	2021-09-08	293235.05	5376189.297	7 16U	Grab	Outcrop		GBBO	Gabbro		Massive	Carbonate, silicification	(very hard)		
152379	2021-09-08	293201.241	5376364.59	16U	Grab	Outcrop		GBBO	Gabbro		Massive, wk Brecciation	Carbonate, Chl	Mod carb, wk chl		
152380	2021-09-08	293201.781	5376441.916	16U	Grab	Outcrop		MAFV	Mafic Volcanic		Massive	Carbonate, Chl	Mod carb, wk chl		
													mot to wk carb, mod chl, wk fe		
152381	2021-09-08	293178.091	5376517.904	16U	Grab	Outcrop		UTMF	Ultramafic		Massive	Carbonate, chl, Fe staining	on fresh surface		
1															<u> </u>
152382	2021-09-08	293702.044	5376093.643	16U	Grab	Boulder		ARGL	Argillite		Brecciation	Qtz; Carb;	weak	Sub-angular	Low

152301 Creamy W	- Fresh	Colour - Weathered	Grain Size - Min	Grain Size - Max	Sulphide%	Mineralization Type	Mineralized Description	Outcrop Description	Structural Type
			Fine	Coarse	1	ру		5x5m outcrop	
152302 Dark Grey			Aphanitic	fine				OC on NW slop of hill	
152303 Creamy W	White/green		Aphanitic	fine	1	ру		Prominent ridge ~2x8m	
152304 Milky Whi		White	fine	medium	<u> </u>	<u> </u>		20mx10m dome shaped outcrop.	
152305 Grey		Light Brown	Fine	Coarse	tr	ру		3mx3m boulder	
152306 Dark Grey		green brown	Aphanitic	fine				30mx10m outcrop ridge up to 3m high. Outcrop concealed by moss cover	
152307 Dark Grey	ey/black	Dark Brown	Aphanitic	fine					
152308 Dark Grey	rey/black	Dark Brown	Aphanitic	fine	1	py			Fault
152309 Dark Grey	rey	Brownish Red	Fine	medium	tr	py		Small outcrop in dense bush	
152310 Dark Gree	een/Grey	Brown	Fine	medium					
152311 dark grey		Brown	Aphanitic	fine				20m long outcrop	
152312 Grey		Orange Brown	Aphanitic	fine	1	py		Subcrop below ~30cm of till cover	
152313 Dark Gree	een/black	Brown	Aphanitic	fine	tr	py		5mx2m outcrop on small slope	
152314 dark grey	PV	dark brown	Aphanitic	Aphanitic	1	py		3mx2m with multiple small outcrops in the area	
	-1				_	F1			
152315 Medium 6	o Cross	Dark Brown	Aphanitic	fine		2 py		Large descrete outcrops which all appear to be mafic volcanics. Outcrop is expressed by a tall ridge	
			Fine		<u> </u>	Py			
152316 Dark Grey	еу/ ріаск	Dark Brown		medium	4	<u> </u>		Ultramafic peridotite outcrop	
152317 Dark Grey	ey	Pale White	Aphanitic	fine	_				
				_					
152318 Black		dark grey	Aphanitic	fine		 		5mx10m outcrop representing chert/graphite horizon	1
152319 Black		dark grey	Aphanitic	fine	<u> </u>	<u> </u>		Dried up stream/lake bed near swamp	
152320 Dark Gree	een Grey	grey black	Fine	medium		<u> </u>	1	Small outcrop on the edge of a ridge	
								Small 3mx5m. Brecciation with subangular clasts of Komatilte. Matrix of breccia is aphanitic black	
152321 green/Gre	Grey	Pale Green	Aphanitic	fine	tr	ру		mineral (Chert/graphite?)	
152322 green/Gre	Grey	Pale Green	Aphanitic	fine	8	ру		Small 30cm long boulder rich in sulphides	
152323 Dark Grey		Dark Grey	Aphanitic	fine		ру		Historical trench with up to 4000ppm Ni	
	.,							The second secon	
152324 Dark Grey	rev/Black	purple brown	Aphanitic	fine	F	сру; ру		Historical trench with up to 4000ppm Ni (Russells Trench)	
	-,,	p	, 4		 				
152225 calt and r	Looppor look light to mod grow	nale white with clight groon hus	Fine	Medium	none			large ridge outcrop on NE edge of the EM target 5A/B	
132323 Sait allu pi	pepper look, light to med grey.	pale white with slight green hue	rille	Wediaiii	none	<u> </u>			
								small 1x2 m outcrop on the SW downslope of a hill. low laying area down slope. graphite/chert OC	
								may be reasoning for EM 5A/B. aphanetic massive chert/graphite oc. no structures or veining	
152326 grey/black	ack	black	Very fine	Fine	none			present	
152327 pink ish re	red to brown	dark grey ish green	Very fine	Medium	~.5% euhedral py. ~2mm		diss throughout rock	larger 10x15 m outcrop at top of ridge.	
152328 dark grey	ey/black with a green hue.	dark brown to black	Very fine	Medium	none			large 30x40m island of UM rocks. A lot of fe staining and weathering on surface but no sulphides.	
132320 dark grey	ty black with a green rac.	dark brown to black	very mic	mediam	Hone	-		inge sow-on build of our rocks. A for or to stalling and weathering on surface but to surprides.	
152220 dark grov	ey/black with a slight pale blue tinge	light grow/brown	Fine	Coarse	none			large outcrop on the West side of small island with UM rock.	
132323 dark grey/	ey/ black with a slight pale blue thige	light grey/brown	Time	Coarse	none	+		large outcop on the west side of small island with old rock.	
								5.2	
453330 de-lete III	Habit and with a second burn	Haba bassalah and	A - b lal -	£1				5x3 m pillow basalt outcrop, with multiple phases, from lots of pillows to finner grained. possible	
152330 dark to lig	light grey, with a green hue	light brownish red	Aphanitic	rine	tr	Py		contact with brecciated komatite aswell.	
					none				
152331 dark grey	ey aphanetic	pale white to brown	Aphanitic	tine	HOHE			3x2 komatite outcrop on edge of lake near pillow basalt.	
152331 dark grey 152332 dark grey	ey/black	pale white/peach	Aphanitic	Very fine	tr	Ру	diss throughout	small 2m oc, covered by trees	
152332 dark grey, 152333 dark grey	ey/black ey	pale white/peach pale grey to brown	Aphanitic Aphanitic	Very fine	tr tr	Py		small 2m oc, covered by trees outcrop on west shore of thunder lake. outcrop showing on ridge	
152332 dark grey,	ey/black ey	pale white/peach	Aphanitic		tr tr tr	Py Py	diss throughout ~2mm subhedral	small 2m oc, covered by trees	
152332 dark grey, 152333 dark grey 152334 dark greyi	ey/black ey eyish green	pale white/peach pale grey to brown	Aphanitic Aphanitic	Very fine	tr tr	Py		small 2m oc, covered by trees outcrop on west shore of thunder lake. outcrop showing on ridge	
152332 dark grey, 152333 dark grey 152334 dark greyi	ey/black ey eyish green	pale white/peach pale grey to brown	Aphanitic Aphanitic	Very fine	tr tr tr none	Py Py		small 2m oc, covered by trees outcrop on west shore of thunder lake. outcrop showing on ridge	
152332 dark grey, 152333 dark grey	ey/black ey eyish green	pale white/peach pale grey to brown pale white to brown/peach	Aphanitic Aphanitic Medium	Very fine Coarse	tr tr tr none	Py Py magnitite. ~ 5% ~2mm euhedral to	~2mm subhedral	small Zm oc, covered by trees outcrop on west shore of thunder lake. outcrop showing on ridge outcrop on east edge of ridge.	
152332 dark grey, 152333 dark grey 152334 dark greyi 152335 light grey	ey/black ey eyish green ey pale	pale white/peach pale grey to brown pale white to brown/peach pale brown/creamy white	Aphanitic Aphanitic Medium	Very fine Coarse	tr tr tr none	Py Py magnitite. ~ 5% ~2mm euhedral to	~2mm subhedral	small Zm oc, covered by trees outcrop on west shore of thunder lake. outcrop showing on ridge outcrop on east edge of ridge. small outcrop 1x2 m on small raised area	
152332 dark grey, 152333 dark grey 152334 dark greyi	ey/black ey eyish green ey pale	pale white/peach pale grey to brown pale white to brown/peach	Aphanitic Aphanitic Medium Fine	Very fine Coarse Medium	tr tr tr none	Py Py magnitite. ~ 5% ~2mm euhedral to	~2mm subhedral	small Zm oc, covered by trees outcrop on west shore of thunder lake. outcrop showing on ridge outcrop on east edge of ridge.	
152332 dark grey, 152333 dark grey 152334 dark greyi 152335 light grey 152336 med to da	ey/black ey eyish green ey pale dark grey	pale white/peach pale grey to brown pale white to brown/peach pale brown/creamy white dark grey to brown	Aphanitic Aphanitic Medium Fine	Very fine Coarse Medium	tr tr tr none	Py Py magnitite. ~ 5% ~2mm euhedral to	~2mm subhedral	small Zm oc, covered by trees outcrop on west shore of thunder lake. outcrop showing on ridge outcrop on east edge of ridge. small outcrop 1x2 m on small raised area large 10x8 outcrop on North side of lake near EM.	
152332 dark grey, 152333 dark grey 152334 dark greyi 152335 light grey	ey/black ey eyish green ey pale dark grey	pale white/peach pale grey to brown pale white to brown/peach pale brown/creamy white	Aphanitic Aphanitic Medium Fine	Very fine Coarse Medium medium	tr tr tr none	Py Py magnitite. ~ 5% ~2mm euhedral to	~2mm subhedral	small Zm oc, covered by trees outcrop on west shore of thunder lake. outcrop showing on ridge outcrop on east edge of ridge. small outcrop 1x2 m on small raised area	
152332 dark grey, 152333 dark grey 152334 dark greyi 152335 light grey 152336 med to da	ey/black ey eyish green ey pale dark grey	pale white/peach pale grey to brown pale white to brown/peach pale brown/creamy white dark grey to brown pale white to brown	Aphanitic Aphanitic Medium Fine	Very fine Coarse Medium medium	tr tr tr none	Py Py magnitite. ~ 5% ~2mm euhedral to	~2mm subhedral	small Zm oc, covered by trees outcrop on west shore of thunder lake. outcrop showing on ridge outcrop on east edge of ridge. small outcrop 1x2 m on small raised area large 10x8 outcrop on North side of lake near EM.	
152332 dark grey 152334 dark grey 152334 dark greyi 152335 light grey 152336 med to da 152337 dark greyi	ey/black ey eyish green ey pale dark grey eyish brown	pale white/peach pale grey to brown pale white to brown/peach pale brown/creamy white dark grey to brown pale white to brown dark grey/brown. some sections	Aphanitic Aphanitic Medium Fine Fine Medium	Very fine Coarse Medium medium Coarse	tr tr tr none none	Py nagnitie. ~ 5% ~2mm euhedral to subhedral	~2mm subhedral diss throught rock	small Zm oc, covered by trees outcrop on west shore of thunder lake. outcrop showing on ridge outcrop on east edge of ridge. small outcrop 1x2 m on small raised area large 10x8 outcrop on North side of lake near EM. large 20x10m on north edge of swamp near EM conductor.	
152332 dark grey, 152333 dark grey 152334 dark greyi 152335 light grey 152336 med to da	ey/black ey eyish green ey pale dark grey eyish brown	pale white/peach pale grey to brown pale white to brown/peach pale brown/creamy white dark grey to brown pale white to brown	Aphanitic Aphanitic Medium Fine	Very fine Coarse Medium medium	tr tr tr none	Py Py magnitite. ~ 5% ~2mm euhedral to	~2mm subhedral	small Zm oc, covered by trees outcrop on west shore of thunder lake. outcrop showing on ridge outcrop on east edge of ridge. small outcrop 1x2 m on small raised area large 10x8 outcrop on North side of lake near EM.	
152332 dark grey. 152334 dark greyi 152335 light greyi 152336 med to da 152337 dark greyi 152338 light greyi	ey/black ey ey pale dark grey eyish brown	pale white/peach pale grey to brown pale white to brown/peach pale brown/creamy white dark grey to brown pale white to brown dark grey/brown. some sections have a red hue	Aphanitic Aphanitic Medium Fine Fine Medium Medium Medium	Very fine Coarse Medium medium Coarse Coarse	tr tr tr none none -2%	Py nagnitie. ~ 5% ~2mm euhedral to subhedral	~2mm subhedral diss throught rock	small Zm oc, covered by trees outcrop on west shore of thunder lake. outcrop showing on ridge outcrop on east edge of ridge. small outcrop 1x2 m on small raised area large 10x8 outcrop on North side of lake near EM. large 20x10m on north edge of swamp near EM conductor. large OC on S side of peridotite lake.	
152332 dark grey 152334 dark grey 152334 dark greyi 152335 light grey 152336 med to da 152337 dark greyi	ey/black ey ey pale dark grey eyish brown	pale white/peach pale grey to brown pale white to brown/peach pale brown/creamy white dark grey to brown pale white to brown dark grey/brown. some sections	Aphanitic Aphanitic Medium Fine Fine Medium	Very fine Coarse Medium medium Coarse	tr tr tr none none	Py nagnitie. ~ 5% ~2mm euhedral to subhedral	~2mm subhedral diss throught rock	small Zm oc, covered by trees outcrop on west shore of thunder lake. outcrop showing on ridge outcrop on east edge of ridge. small outcrop 1x2 m on small raised area large 10x8 outcrop on North side of lake near EM. large 20x10m on north edge of swamp near EM conductor.	
152332 dark grey. 152334 dark greyi 152335 light greyi 152336 med to da 152337 dark greyi 152338 light greyi	ey/black ey ey pale dark grey eyish brown	pale white/peach pale grey to brown pale white to brown/peach pale brown/creamy white dark grey to brown pale white to brown dark grey/brown. some sections have a red hue	Aphanitic Aphanitic Medium Fine Fine Medium Medium Medium	Very fine Coarse Medium medium Coarse Coarse	tr tr tr none none -2%	Py nagnitie. ~ 5% ~2mm euhedral to subhedral	~2mm subhedral diss throught rock	small 2m oc, covered by trees outcrop on west shore of thunder lake. outcrop showing on ridge outcrop on east edge of ridge. small outcrop 1x2 m on small raised area large 10x8 outcrop on North side of lake near EM. large 20x10m on north edge of swamp near EM conductor. large 0C on 5 side of peridotite lake. small outcrop near end on EM target	
152332 dark grey. 152334 dark greyi 152335 light greyi 152336 med to da 152337 dark greyi 152338 light greyi	ey/black ey ey pale dark grey eyish brown	pale white/peach pale grey to brown pale white to brown/peach pale brown/creamy white dark grey to brown pale white to brown dark grey/brown. some sections have a red hue	Aphanitic Aphanitic Medium Fine Fine Medium Medium Medium	Very fine Coarse Medium medium Coarse Coarse	tr tr tr none none -2%	Py nagnitie. ~ 5% ~2mm euhedral to subhedral	~2mm subhedral diss throught rock	small 2m oc, covered by trees outcrop on west shore of thunder lake. outcrop showing on ridge outcrop on east edge of ridge. small outcrop 1x2 m on small raised area large 10x8 outcrop on North side of lake near EM. large 20x10m on north edge of swamp near EM conductor. large OC on S side of peridotite lake. small outcrop near end on EM target large 50x4(high) outcrop on side of road. recently cleared off by road builders. large fault zone	
152332 dark grey 152334 dark grey 152335 dight grey 152335 light grey 152336 med to da 152337 dark greyi 152338 light greyi 152339 dark to lig	ey/black py ey by ey by ey pale dark grey eyish brown eyish green	pale white to med brown pale white to brown/peach pale grey to brown pale white to brown/peach pale brown/creamy white dark grey to brown pale white to brown dark grey/brown. some sections have a red hue pale white to med brown	Aphanitic Aphanitic Medium Fine Fine Medium Medium Very fine	Very fine Coarse Medium medium Coarse Coarse Medium	tr tr tr none none none none	Py nagnitie. ~ 5% ~2mm euhedral to subhedral	~2mm subhedral diss throught rock	small 2m oc, covered by trees outcrop on west shore of thunder lake. outcrop showing on ridge outcrop on east edge of ridge. small outcrop 1x2 m on small raised area large 10x8 outcrop on North side of lake near EM. large 20x10m on north edge of swamp near EM conductor. large OC on 5 side of peridotite lake. small outcrop near end on EM target large 50x4(high) outcrop on side of road. recently cleared off by road builders. large fault zone present on side of outcrop, sample was taken from shear zone and sample 152341 was taken from	
152332 dark grey. 152334 dark greyi 152335 light greyi 152336 med to da 152337 dark greyi 152338 light greyi	ey/black py ey by ey by ey pale dark grey eyish brown eyish green	pale white/peach pale grey to brown pale white to brown/peach pale brown/creamy white dark grey to brown pale white to brown dark grey/brown. some sections have a red hue	Aphanitic Aphanitic Medium Fine Fine Medium Medium Very fine	Very fine Coarse Medium medium Coarse Coarse	tr tr tr none none -2%	Py nagnitie. ~ 5% ~2mm euhedral to subhedral	~2mm subhedral diss throught rock	small 2m oc, covered by trees outcrop on west shore of thunder lake. outcrop showing on ridge outcrop on east edge of ridge. small outcrop 1x2 m on small raised area large 10x8 outcrop on North side of lake near EM. large 20x10m on north edge of swamp near EM conductor. large OC on 5 side of peridotite lake. small outcrop near end on EM target large 50x4(high) outcrop on side of road. recently cleared off by road builders. large fault zone present on side of outcrop, sample was taken from shear zone and sample 152341 was taken from	Fault
152332 dark grey 152334 dark grey 152336 med to da 152337 dark grey 152338 light grey 152337 dark greyi 152338 light grey 152338 light greyi 152339 dark to lig	ey/black ey eyish green ey pale dark grey eyish brown eyish green light grey	pale white to brown pale white to brown/peach pale prey to brown pale brown/creamy white dark grey to brown pale white to brown dark grey/brown. some sections have a red hue pale white to med brown dark grey/shown with fe staining	Aphanitic Aphanitic Medium Fine Fine Medium Medium Very fine	Very fine Coarse Medium medium Coarse Coarse Medium Medium	tr tr tr none none none none	Py nagnitie. ~ 5% ~2mm euhedral to subhedral	~2mm subhedral diss throught rock	small 2m oc, covered by trees outcrop on west shore of thunder lake. outcrop showing on ridge outcrop on east edge of ridge. small outcrop 1x2 m on small raised area large 10x8 outcrop on North side of lake near EM. large 20x10m on north edge of swamp near EM conductor. large OC on 5 side of peridotite lake. small outcrop near end on EM target large 50x4(high) outcrop on side of road, recently cleared off by road builders. large fault zone present on side of outcrop, sample was taken from shear zone and sample 152341 was taken from un faulted zone, wk magnetism	Fault
152332 dark grey 152334 dark grey 152335 dight grey 152335 light grey 152336 med to da 152337 dark greyi 152338 light greyi 152339 dark to lig	ey/black ey eyish green ey pale dark grey eyish brown eyish green light grey	pale white to med brown pale white to brown/peach pale grey to brown pale white to brown/peach pale brown/creamy white dark grey to brown pale white to brown dark grey/brown. some sections have a red hue pale white to med brown	Aphanitic Aphanitic Medium Fine Fine Medium Medium Very fine	Very fine Coarse Medium medium Coarse Coarse Medium	tr tr tr none none none none	Py nagnitie. ~ 5% ~2mm euhedral to subhedral	~2mm subhedral diss throught rock	small 2m oc, covered by trees outcrop on west shore of thunder lake. outcrop showing on ridge outcrop on east edge of ridge. small outcrop 1x2 m on small raised area large 10x8 outcrop on North side of lake near EM. large 20x10m on north edge of swamp near EM conductor. large OC on 5 side of peridotite lake. small outcrop near end on EM target large 50x4(high) outcrop on side of road. recently cleared off by road builders. large fault zone present on side of outcrop, sample was taken from shear zone and sample 152341 was taken from	Fault
152332 dark grey 152334 dark grey 152336 med to da 152337 dark grey 152338 light grey 152337 dark greyi 152338 light grey 152338 light greyi 152339 dark to lig	ey/black ey eyish green ey pale dark grey eyish brown eyish green light grey	pale white to brown pale white to brown/peach pale prey to brown pale brown/creamy white dark grey to brown pale white to brown dark grey/brown. some sections have a red hue pale white to med brown dark grey/shown with fe staining	Aphanitic Aphanitic Medium Fine Fine Medium Medium Very fine	Very fine Coarse Medium medium Coarse Coarse Medium Medium	tr tr tr none none none none	Py nagnitie. ~ 5% ~2mm euhedral to subhedral	~2mm subhedral diss throught rock	small 2m oc, covered by trees outcrop on west shore of thunder lake. outcrop showing on ridge outcrop on east edge of ridge. small outcrop 1x2 m on small raised area large 10x8 outcrop on North side of lake near EM. large 20x10m on north edge of swamp near EM conductor. large OC on 5 side of peridotite lake. small outcrop near end on EM target large 50x4(high) outcrop on side of road, recently cleared off by road builders. large fault zone present on side of outcrop, sample was taken from shear zone and sample 152341 was taken from un faulted zone, wk magnetism	Fault
152332 dark grey 152334 dark grey 152336 med to da 152337 dark grey 152338 light grey 152337 dark greyi 152338 light grey 152338 light greyi 152339 dark to lig	ey/black ey eyish green ey pale dark grey eyish brown eyish green light grey	pale white to brown pale white to brown/peach pale prey to brown pale brown/creamy white dark grey to brown pale white to brown dark grey/brown. some sections have a red hue pale white to med brown dark grey/shown with fe staining	Aphanitic Aphanitic Medium Fine Fine Medium Medium Very fine	Very fine Coarse Medium medium Coarse Coarse Medium Medium	tr tr tr none none none none	Py nagnitie. ~ 5% ~2mm euhedral to subhedral	~2mm subhedral diss throught rock	small 2m oc, covered by trees outcrop on west shore of thunder lake. outcrop showing on ridge outcrop on east edge of ridge. small outcrop 1x2 m on small raised area large 10x8 outcrop on North side of lake near EM. large 20x10m on north edge of swamp near EM conductor. large OC on 5 side of peridotite lake. small outcrop near end on EM target large 50x4(high) outcrop on side of road, recently cleared off by road builders. large fault zone present on side of outcrop, sample was taken from shear zone and sample 152341 was taken from un faulted zone, wk magnetism	Fault
152332 dark grey 152334 dark grey 152336 med to da 152337 dark grey 152338 light grey 152337 dark greyi 152338 light grey 152338 light greyi 152339 dark to lig	ey/black ey eyish green ey pale dark grey eyish brown eyish green light grey	pale white to brown pale white to brown/peach pale prey to brown pale brown/creamy white dark grey to brown pale white to brown dark grey/brown. some sections have a red hue pale white to med brown dark grey/shown with fe staining	Aphanitic Aphanitic Medium Fine Fine Medium Medium Very fine	Very fine Coarse Medium medium Coarse Coarse Medium Medium	tr tr tr none none none none	Py nagnitie. ~ 5% ~2mm euhedral to subhedral	~2mm subhedral diss throught rock	small 2m oc, covered by trees outcrop on west shore of thunder lake. outcrop showing on ridge outcrop on east edge of ridge. small outcrop 1x2 m on small raised area large 10x8 outcrop on North side of lake near EM. large 20x10m on north edge of swamp near EM conductor. large OC on 5 side of peridotite lake. small outcrop near end on EM target large 50x4(high) outcrop on side of road, recently cleared off by road builders. large fault zone present on side of outcrop, sample was taken from shear zone and sample 152341 was taken from un faulted zone, wk magnetism	Fault
152332 dark grey 152334 dark grey 152336 dark grey 152336 light grey 152336 med to da 152337 dark grey 152338 light grey 152339 dark to lig 152340 dark grey 152341 greenish b	ey/black py py pale dark grey eyish brown eyish green light grey ey to black green h black/grey	pale white / peach pale grey to brown pale white to brown/peach pale brown/creamy white dark grey to brown dark grey/brown. some sections have a red hue pale white to med brown dark grey/sh green with fe staining light brown to dark grey	Aphanitic Aphanitic Medium Fine Fine Medium Medium Very fine	Very fine Coarse Medium medium Coarse Coarse Medium Medium	tr tr tr none none none none	Py magnitie. ~5% ~2mm euhedral to subhedral Diss po. ~1mm	~2mm subhedral diss throught rock diss throughout rock.	small 2m oc, covered by trees outcrop on west shore of thunder lake. outcrop showing on ridge outcrop on east edge of ridge. small outcrop 1x2 m on small raised area large 10x8 outcrop on North side of lake near EM. large 20x10m on north edge of swamp near EM conductor. large OC on S side of peridotite lake. small outcrop near end on EM target large 50x4(high) outcrop on side of road. recently cleared off by road builders. large fault zone present on side of outcrop, sample was taken from shear zone and sample 152341 was taken from un faulted zone. wk magnetism Same as 152341, but just east of the fault zone in less altered rock.	Fault
152332 dark grey 152334 dark grey 152336 med to da 152337 dark grey 152338 light grey 152337 dark greyi 152338 light grey 152338 light greyi 152339 dark to lig	ey/black py py pale dark grey eyish brown eyish green light grey ey to black green h black/grey	pale white to brown pale white to brown/peach pale prey to brown pale brown/creamy white dark grey to brown pale white to brown dark grey/brown. some sections have a red hue pale white to med brown dark grey/shown with fe staining	Aphanitic Aphanitic Medium Fine Fine Medium Medium Very fine Fine Fine	Very fine Coarse Medium medium Coarse Coarse Medium Medium Medium	tr tr tr none none none none	Py nagnitie. ~ 5% ~2mm euhedral to subhedral	~2mm subhedral diss throught rock	small 2m oc, covered by tress outcrop on west shore of thunder lake. outcrop showing on ridge outcrop on east edge of ridge. small outcrop 1x2 m on small raised area large 10x8 outcrop on North side of lake near EM. large 20x10m on north edge of swamp near EM conductor. large OC on 5 side of peridotite lake. small outcrop near end on EM target large 50x4(high) outcrop on side of road. recently cleared off by road builders. large fault zone present on side of outcrop, sample was taken from shear zone and sample 152341 was taken from un faulted zone. wk magnetism Same as 152341, but just east of the fault zone in less altered rock. outcrop zone along road cut. several angular boulders present and small outcrops availible along	Fault
152332 dark grey 152334 dark grey 152336 dark grey 152336 light grey 152336 med to da 152337 dark grey 152338 light grey 152339 dark to lig 152340 dark grey 152341 greenish b	ey/black py py pale dark grey eyish brown eyish green light grey ey to black green h black/grey	pale white / peach pale grey to brown pale white to brown/peach pale brown/creamy white dark grey to brown dark grey/brown. some sections have a red hue pale white to med brown dark grey/sh green with fe staining light brown to dark grey	Aphanitic Aphanitic Medium Fine Fine Medium Medium Very fine Fine Fine	Very fine Coarse Medium medium Coarse Coarse Medium Medium Medium	tr tr tr none none none none	Py magnitie. ~5% ~2mm euhedral to subhedral Diss po. ~1mm "trace cpy, po ~5%	~2mm subhedral diss throught rock diss throughout rock.	small 2m oc, covered by tress outcrop on west shore of thunder lake. outcrop showing on ridge outcrop on east edge of ridge. small outcrop 1x2 m on small raised area large 10x8 outcrop on North side of lake near EM. large 20x10m on north edge of swamp near EM conductor. large OC on 5 side of peridotite lake. small outcrop near end on EM target large 50x4(high) outcrop on side of road. recently cleared off by road builders. large fault zone present on side of outcrop, sample was taken from shear zone and sample 152341 was taken from un faulted zone. wk magnetism Same as 152341, but just east of the fault zone in less altered rock. outcrop zone along road cut. several angular boulders present and small outcrops availible along	Fault
152332 dark grey 152334 dark grey 152336 light grey 152336 med to da 152337 dark greyi 152338 light grey 152338 light grey 152339 dark to lig 152340 dark greyi 152341 greenish t	ey/black ey eyish green ey pale dark grey eyish brown eyish green light grey ey to black green ey to black green h black/grey	pale white to brown/peach pale grey to brown pale grey to brown pale brown/creamy white dark grey to brown dark grey to brown dark grey/brown. some sections have a red hue pale white to med brown dark grey/shown with fe staining light brown to dark grey dark brown black.	Aphanitic Aphanitic Medium Fine Fine Medium Very fine Fine Fine Fine	Very fine Coarse Medium medium Coarse Coarse Medium Medium Medium Medium Medium	tr tr tr none none none none -2% none	Py Py magnitite.~5%~2mm euhedral to subhedral Diss po.~1mm "trace cpy, po ~5% diss blotchy py/po(slightly magnetic)	~2mm subhedral diss throught rock diss throughout rock.	small 2m oc, covered by tress outcrop on west shore of thunder lake. outcrop showing on ridge outcrop on east edge of ridge. small outcrop 1x2 m on small raised area large 10x8 outcrop on North side of lake near EM. large 20x10m on north edge of swamp near EM conductor. large OC on S side of peridotite lake. small outcrop near end on EM target large 50x4(high) outcrop on side of road, recently cleared off by road builders. large fault zone present on side of outcrop, sample was taken from shear zone and sample 152341 was taken from un faulted zone, wk magnetism Same as 152341, but just east of the fault zone in less altered rock. outcrop zone along road cut. several angular boulders present and small outcrops availible along roads.	
152332 dark grey 152334 dark grey 152336 dark grey 152336 light grey 152336 med to da 152337 dark grey 152338 light grey 152339 dark to lig 152330 dark grey 152340 dark grey 152341 greenish b	ey/black ey eyish green ey pale dark grey eyish brown eyish green light grey ey to black green ey to black green h black/grey	pale white / peach pale grey to brown pale white to brown/peach pale brown/creamy white dark grey to brown dark grey/brown. some sections have a red hue pale white to med brown dark grey/sh green with fe staining light brown to dark grey	Aphanitic Aphanitic Medium Fine Fine Medium Medium Very fine Fine Fine	Very fine Coarse Medium medium Coarse Coarse Medium Medium Medium	tr tr tr none none none none	Py magnitie. ~5% ~2mm euhedral to subhedral Diss po. ~1mm "trace cpy, po ~5%	~2mm subhedral diss throught rock diss throughout rock.	small 2m oc, covered by tress outcrop on west shore of thunder lake. outcrop showing on ridge outcrop on east edge of ridge. small outcrop 1x2 m on small raised area large 10x8 outcrop on North side of lake near EM. large 20x10m on north edge of swamp near EM conductor. large OC on 5 side of peridotite lake. small outcrop near end on EM target large 50x4(high) outcrop on side of road. recently cleared off by road builders. large fault zone present on side of outcrop, sample was taken from shear zone and sample 152341 was taken from un faulted zone. wk magnetism Same as 152341, but just east of the fault zone in less altered rock. outcrop zone along road cut. several angular boulders present and small outcrops availible along	Fault
152332 dark grey 152334 dark grey 152336 med to da 152337 dark grey 152338 light grey 152339 dark to lig 152339 dark to lig 152340 dark grey 152341 greenish b 152342 black with	ey/black ey eyish green ey pale dark grey eyish brown eyish brown light grey ey to black green h black/grey ith green hue ey black green	pale white to brown pale white to brown/peach pale grey to brown pale brown/creamy white dark grey to brown dark grey/brown. some sections have a red hue pale white to med brown dark grey/shown with fe staining light brown to dark grey dark brown black. pale brown/grey	Aphanitic Aphanitic Medium Fine Fine Medium Very fine Fine Fine Fine	Very fine Coarse Medium medium Coarse Coarse Medium Medium Medium Medium Medium Coarse	tr tr tr none none none none -2% none -7.5	Py Py magnitite.~5%~2mm euhedral to subhedral Diss po.~1mm "trace cpy, po ~5% diss blotchy py/po(slightly magnetic)	~2mm subhedral diss throught rock diss throughout rock.	small 2m oc, covered by tress outcrop on west shore of thunder lake. outcrop showing on ridge outcrop on east edge of ridge. small outcrop 1x2 m on small raised area large 10x8 outcrop on North side of lake near EM. large 20x10m on north edge of swamp near EM conductor. large OC on S side of peridotite lake. small outcrop near end on EM target large 50x4(high) outcrop on side of road. recently cleared off by road builders. large fault zone present on side of outcrop, sample was taken from shear zone and sample 152341 was taken from un faulted zone. wk magnetism Same as 152341, but just east of the fault zone in less altered rock. outcrop zone along road cut. several angular boulders present and small outcrops availible along roads.	Bedding
152332 dark grey 152334 dark grey 152336 med to da 152337 dark grey 152338 light grey 152339 dark to lig 152339 dark to lig 152340 dark grey 152341 greenish b 152342 black with	ey/black ey eyish green ey pale dark grey eyish brown eyish green light grey ey to black green ey to black green h black/grey	pale white to brown/peach pale grey to brown pale grey to brown pale brown/creamy white dark grey to brown dark grey to brown dark grey/brown. some sections have a red hue pale white to med brown dark grey/shown with fe staining light brown to dark grey dark brown black.	Aphanitic Aphanitic Medium Fine Fine Medium Very fine Fine Fine Fine	Very fine Coarse Medium medium Coarse Coarse Medium Medium Medium Medium Medium	tr tr tr none none none none -2% none	Py Py magnitite.~5%~2mm euhedral to subhedral Diss po.~1mm "trace cpy, po ~5% diss blotchy py/po(slightly magnetic)	~2mm subhedral diss throught rock diss throughout rock.	small 2m oc, covered by tress outcrop on west shore of thunder lake. outcrop showing on ridge outcrop on east edge of ridge. small outcrop 1x2 m on small raised area large 10x8 outcrop on North side of lake near EM. large 20x10m on north edge of swamp near EM conductor. large OC on S side of peridotite lake. small outcrop near end on EM target large 50x4(high) outcrop on side of road, recently cleared off by road builders. large fault zone present on side of outcrop, sample was taken from shear zone and sample 152341 was taken from un faulted zone, wk magnetism Same as 152341, but just east of the fault zone in less altered rock. outcrop zone along road cut. several angular boulders present and small outcrops availible along roads.	

Sample ID	Colour - Fresh	Colour - Weathered	Grain Size - Min	Grain Size - Max	Sulphide%	Mineralization Type	Mineralized Description	Outcrop Description	Structural Type 1
152346	dark greyish green	pale white /brown	Aphanitic	Fine	~1%	Diss Py trace Po	diss throught, small blebbs as well.	small 2x3 m outcrop on the side of ride	
152347	black	limonite yellow to red and black, highly weathered	Aphanitic	Very fine	trace	relect py nodules ~1cm		small showing of OC 1x2 m on rock cut. one or 2 outcrops showing. near UM outcrop	
132347	DIACK	ingniy weathered	Aprianiuc	very line	trace	relect by floudies 1cm		Small showing of OC 1x2 in on fock cut. One of 2 outcrops showing, near own outcrop	
152348	dark greyish black with a green hue	Fe-Stained redish brown.	Fine	Medium	~5%, ~10% Locally	Py with trace Po(wk magnetic)		small outcrop 1x1 on road cut near conductor and graphite/chert oc	
152349	dark grey to black	dark red to brown	Fine	Medium	~7% locally ~20%	Diss Py with trace Cpy?		small boulder found near possible contact btw graphite and mafics	
	dark grey with a green tinge	light brown to red	Aphanitic	Fine	~3%	Diss Py		small 5x5 outcrop on road clearing.	
152351	greyish Blavk	dark red to brown	Fine	medium	none			Small 1mx1m section. Hand to dig below moss to expose	
152352	grey green	reddish brown	Aphanitic	Fine	none			small 5mx1m east facing moss covered slope. Had to peel moss to expose rock	
152353	Medium Grey	brown	Aphanitic	Fine	1	ро	diss po. most found adjacent to carbonate vein	small subcrop ~1m x 5m, moss covered	
152354	grey green	Light Brown	Aphanitic	Fine	tr	ру	diss throughout	large 10m tall ridge with runs for > 20m. Near vertical and faces SE 10m for lake	
							diss throughout, with some concentration along fractures	large 20x10 m outcrop of mafic intrusive "gabbro" homogenous mg massive, with ~60% plag with	
152355	light to med grey	pale white to brown	Medium	Medium	trace	Pyrrhotite	mm scale	trace qtz, and ~35% amph? diss po some magnetism present and mod diss carb alt.	
	host is fg aphanetic and black/grey, vein is								
152356	milky white to opaque.	Med grey to green	Aphanitic	Very fine	trace	Pyrite	Diss in veinging mm grains	small outcrop showing 1x1 under tree	Vein
								large 20×10m outcrop visible due to road cut. mild shearing? seen on oc, and where shearing is more	
	fg grey/green to black	pale brown to pale white	Aphanitic	Very fine	trace	Pyrite	Diss througout and concentrated in qtz/carb veining	intense so is carb/qtz veining.	
152358	dark grey to black	dark brown to red	Aphanitic	Fine	~3%	Pyrite	~2mm subhedral diss py. mm-scale po disseminated throughout exhibiting weak	small 2x3 outcrop on road cut.	
152359	grey green	light brown	Aphanitic	Fine	3	ро	magnetics	outcrop exposed NE of new road cut. some glacial striae visible on rounded surfaces (1	Glacial striae
152360	med grey to opaque grey, mix of plag and amph	pale white to brown	Medium	Coarse	none			5x3m outcrop on road cut. slight spinifex texture?? 4mm long prismatic mm width. no spinifex on fresh? only weathered?	
		limonite orange yellow to red, some							
152361	black to grey	dark grey/black patches	Aphanitic	Fine	~5%	Pyrite	Diss throughout ~5% pyrite with ~10% locally. Trace diss Po	large area 5x3 with several angualr weathered boulders. Provence is presumed to be close.	
152262	dark grey to blaci	Aphanitic	Very fine			relect pyrite nodules trace ~1cm round weathered out nodules	5x6 m outcrop with shearing on road cut	Shear	286/84
132302	dark grey to blaci	Арпапии	very line			Tourid weathered out floudies	3x6 iii Outerop with shearing on road cut	Sited	200/04
							Vein associated pyrite and cpy? mineralization. found in		
152363	grey green; milky white qtz	Orange Brown	Aphanitic	Aphanitic	1	ру; сру	bith wall rock and within vein	recently excavated rock outcrop exposure.	Vein
152364	orange red to dark grey green	Aphanitic	Very fine	none				Shear	263/86
152365	black	reddish brown	Aphanitic	Fine	none			Outcrop exposed in excavation pit along roadside. 8m x 2m	
152366	black with brown to red weathered spot	Aphanitic	Medium	~1%	Pyrite	diss througohut in~2mm subhedral to eubedral grains	large angular boulder patch with rusted UM rock fragments		
152367	red to brown fe staining	Aphanitic	Very fine	~2%	Pyrite	diss in atz yeins and along fractures	fg aphanetic outcrop on road cut. sample was taken from 50cm shear zone that is heavily oxidized	Shear	358/90
152307		Cope and a second secon	y mic	2,2			The site of the state of the st		, 50
152368	milky white	drak red brown	Fine	Medium	none		outcrop is 3x2m with a very prismatic needle like look, with	west facing roadside outcrop ridge 20m x 2m tall	Vein
							orientations grains in a patterned look, orientation almost looks folded? fractures along outcrop create micro offsets		
152369	pale white	Aphanitic	Very fine	none			in the grains.		
4505						diss withing viens ~1cm and diss	large area 5x8 full of rubble, i was able to find a piece of		
152370	pale orange to red	Aphanitic	Medium	~5%	Pyrite	throught gnass and clast.	outcrop with a oxidized shear zone to grab a sample		
						fg diss through and in large blebs			
152371	limonite yellow to orange to red	Aphanitic	Very fine	~6%, trace	Pyrite, Cpy	~1cm and rounded	small 1x.5m outcrop of gossan rich mafic rock		
453373	also white to brown	Anhanitis	Vary fine	none			large kematika autoran an the side of seed		
	plae white to brown	Aphanitic	Very fine				large komatiite outcrop on the side of road.		
	light green to black	Aphanitic	Very fine	none			small 3x4 UM outcropp with str chl serp alt taking from rubble are with very angular boulders.		
152374	brown to red fe staini g	Aphanitic	Very fine	~3%	Pyrite	blebs.	provinence seems fairly close		

Sample ID	Colour - Fresh	Colour - Weathered	Grain Size - Min	Grain Size - Max	Sulphide%	Mineralization Type	Mineralized Description	Outcrop Description S	Structural Type 1
						diss throughout, some ~5mm			
						subhedral blebs present. trace po			
						diss, wk magnetism. Sulphides are	outcrop on road cut 10x3 m alot of angular rubble with		
152375	pale orange to white	Aphanitic	Fine	~2%	Pyrite, trace Po	along fractures.	small 1x1 out crops underneath rubble		
152376	dark grey to black with green hue	pale to dark brownish grey	Aphanitic	Fine	~1%	Diss Py		large 20x5 m outcrop on road cut	
152277	darg greyish green	pale white to brown	Aphanitic	Fine	Trace	Pyrite	diss	large 30x20m outcrop making up most of down slope or hill. at the end of clear cut.	
132377	daig greyisii green	pale writte to brown	Aprianiuc	ine	Trace	rynte	uiss	large 30x20111 outclop making up most of down slope of mil. at the end of clear cut.	
152378	med to dark grey with a slight green hue	med to dark brown	Fine	Medium	none			small outcrop 1x1 in low laying area	
452270	and to deal, and the allelet areas has	med to dark brown	£	an addition				and the second s	
152375	med to dark grey with a slight green hue	med to dark brown	nne	medium	none			small 8x3 m outcrop on small ridge in low laying area	
152380	Dark Green/Grey	med brown to grey	Fine	Medium	trace	Pyrite	diss in ~3mm subhedral grains.	small outcrop on hill. 1x1	
152381	dark dark grey to black	dark brown with wk fe staining	Fine	Medium	trace	Pyrite	~2mm sunhedral to euherdral diss grains	large 10m high 30 m wide outcrop ridge near the end of EM target	
								small 30cm x 30cm subangular boulder with medium grained Pyrite and stockwork qtz veining with	
152382	grey/black	Brown	Aphanitic	Fine		3 py	diss throughout; mm scale subhedral	chert lenses.	

Sample ID	Structural Measurement (strike/dip RHR) 1	Structural Type 2	Structural Measurement (strike/dip RHR) 2	Observations/Comments
152301				Potential Trachylte texture. Local brecciation with fine grained black chert horizon. 1% euherdal Pyrite
152302 152303				~60% graphite and chert; Frequent qtz veinlets Weak chlorite alteration. Fine grained graphite
152304				Frequent parallel veins sets averaging 1cm in thickness
152305				Polymictic conglomeratic boulder with black and light grey chert clasts. Locally 80% clasts.
152306				Local pitted weathering (olivine?) no sulphides observed
152307				Opaque green subhedral crystals
152308 152309	232/34	Fault	244/34	1mm-5mm sporadic calcite veins. Historical Sample location 60-70% mafics with trace pyrite
132309				60-70% manes with trace pyrite
152310				Possibly peridotite if subhedral round clasts are olivine. Weak chlorite alteration present. Slightly fissile
152311				Mafic Volcanic, with brecciated lenses, wk fe staining in clast, clast are angular.
152312				Sample taken from the area that had ~1% Ni assay. No outcrop was visible. Sample had to be dug out.
152313				Potential brecciation instead of pillow texture. Black round rims around rock (salvages or breccia fill?)
152314				Potential for patches of fine grained graphite \
152315				Rock is competent proving hard to break. Potential for moderate silicitication. Local 2% sulphides
152316				~75% dark mafic minerals. 20% plag. 5% olivine?
152317				Trace mm qtz stringers. Moderate to strong graphite present in the sample mixed with chert. Local shear textures?? Trace mm qtz
152318				stringers
152319				Relic pyrite globular pyrite nodules that have been weathered out which is attributed to the Fe staining.
152320				~75% pyx; ~25% plag seem on weathered surfaces. No sulphides visible
		1		
152321 152322		<u> </u>		Many sulphide bearing boulders in the area. No visible outcrop.
152322				One 1mm clast with light grey-green infill. Moderate brecciation
				Sample taken at contact between ultramafics and graphitic chert horizon (argillite). Outcrop has trace cpy
152324				as fracture fill locally. Pyrite was ~5% and disseminated throughout.
				hetrogenous sample with ~35% euhedral plag grains, and ~35% darker pyx/amph grains. fg dark grey ash?
152325				gm.
152326				
				outcrop may possiblely be pillow basalts. there is what looks to be 5mm to 2cm pale white salvages on
				weathered surfaces. rock has a fg gmass with a greenish hue, possibly wk chl alt and there seems to be wk
152327				to mod sil.
				fg dark grey aphenetic background with a green huepossibly serp? ~90% pyx with some possible trace
152328				olivine (opaque with green hue) outcrop is weathered in a subparallel blocky pattern. historical sample taken previosuly ran high in ppm.
152520				large komatitie outcrop very close to a large fg UM outcrop. spinefex texture present at ~5mm long
152329				prismtic/asicular crystals. bakgroound in fg dark grey to black.
				Pillows range in size from 1cm to 30cm. some are more rounded while other are elongate. inner pillows
152330				have a aphanetic texture, with salvages that are slightly cg and darker on surface. outcrop is similar to sample 152329, but fresh sample looks almost like chert with very fine grained
				texture and light grey surface. Spinifex texture is present on on weathered surface? possible connection
152331				with pillow basalts?
152332				aphenitic grey mafic rock with trace py and trace qtz/carb veining.
152333				aphenitic grey ultra mafic rock with trace py and trace qtz/carb veining.
152334				
152225				fine grained grey gm with diss 1mm euhedral magnetite grainspossible conductor? possible mm plag
152335		 		grains. mod to strong magnetism. mix of plag and amph. with fg grey aphanetic ground mass. no sulphides present. ~60%amph. ~40mix of
152336		1		qtz/plag.
				UM rock with a med grey fg ground mass, with ~30% 5mm prismatic brown black grains?? look cleaved.
152337				possible hornblende? gmass may be compossed of some plag?
				N. 11-10-2
152338				possible peridotite? mg grey plag/amph gmass with ~35%, ~7mm prismatic greygreen laths with 90° cleavage. we called it gabbro due to its light color plag content. ~2% diss po with localized zones of ~5%.
132330				same as OC_31fg grey aphanetic ground mass. with ~2mm subhedral to euhedral clast of ~20%plag, ~15%
152339		1		qtz, ~5% amph and rest ground mass.
1		1		fg dark grey aphenetic background with a green huepossibly chl or wk serp ~90% pyx with some possible
	100/74	rh	24.6 /76	trace olivine (opaque with green hue) outcrop is weathered in a subparallel blocky pattern and large ~1m
152340	190/74	Fault	216/76	fault zone is present with strong fe staining. fault surface undulates, slick and slide surface
152341				fg dark grey/black green, massive, with mm mod carb stringers throught. just east of last sample
		1		O O, O,
		1		
				fg to mg massive UM rock with fark grey to black gmass with a green hue. wk carb. visible serpentine
152342				along fracture surfaces and slick and slides. diss ~.5. strongly magnetic most likely the conductor.
		1		rock is grouish black with groon bug and spinifov touture with askmatic grains 32 %F
152343	110	1		rock is greyish black with green hue and spinifex texture with prismatic grains?? ~5mm. rock sample was gossanes and 5m from small graphite rich horizon.
132343	110	1		strongly sheared with carbonate stockwork veining. ~50% of outcrop is carb stock work with the rest being
152344	89/88	1		a UM fissile host.
				same as 125344, but less carb stock work. fg to mg with a dark greenish grey gmass and ~5mm carb
152345	74/70			stockwork.
	·			

Sample ID	Structural Measurement (strike/dip RHR) 1	Chrustural Tuna 2	Structural Measurement (strike/dip RHR) 2	Observations/Comments
Sample ID	Structural Measurement (strike/dip KHK) 1	Structural Type 2	Structural Measurement (strike/dip KHK) 2	Observations/ Comments
152346				aphanetic grey with a slight green hue, massivr basalt. with diss sulphides ~1% Py trace Po
				aphanetic dark grey/black with wk fissile texture. trace relect py nodules present ~1cm. strong weathered
152347				surface, limonite visible.
152348				mafic volcanic, brecciation present as angular "3cm pieces with mm fg black infill btw clast. diss sulphide througout. near contact with graphiteseems to be a volcanic flow sequences present near oc
152349				mafic volcanic, brecciation present as angular ~5mm pieces with~40% mm fg black infill btw clast. diss sulphide througout. near contact with graphiteseems to be a volcanic flow sequences present near oc
152350				fg aphanetic mafic volcanic basalt? with ~3% diss Py.
152351				is a primeter. Infance volcanic usuari, With 1 270 uss 1 y. dark ultramafic rock with a massive equigranular texture. Rock exhibita no magnetism and no visible sulphides. Weak - Moderate carbonate present surrounding grains
152352				Grey Green aphanitic Mafic Volcanic rock with no observable sulphides. Rock in non-magnetic. moderate carbonate effervecence throughout.
152353				medium grey aphanitic mafic volcanics with moderate carbonate alteration. weak-moderately magnetic associated with po mineralization. (Intermediate composition?)
152354				grey green Mafiv Volcanics with pillow salvages and brecciation (flow breccia?). breccia infill is a aphanitic black mineral. very weakly magnetic
132334				Diduk Hilliet di. Yet y Wedikiy Hidgiretic
152355				
152356	vein trends 175, not enough OC to determine dip			fg aphanetic mafc volcanic with irregular ~5cm milky white to opaque with secondary vuggy infilling textures and fg black mm whisps throughout.
152357				fg basalt? with wk shearing and qtz carb veining, diss py, and wk fe staining. fg dark basalt. very wk reaction to hcl, trace to no carb/qtz veining, darker than previous basat on SW side.
152358				no mag, more massive look. (more sulphides present aswell) Aphanitic massive grey green mafic volcanics (Massive Basalt). weak magnetism from 1-3% disseminated
152359	352			pyrrhotite. moderate effervesence with HCl
152360				mg gabbro with ~65% grey to opaque plag grains (possible Qtz) and ~35% med grey to green amph grains? with chi alt. irregular carb veining on fracture surfaces and spinifex texture on weathered oc but not on fresh.
152361				fg aphanetic grey to green gmass with diss sulphides, in blebbs and grains ~3mm. trace Po diss. wk carb and strong fe staining on weathered surface.
152362			fg chert/graphite sheared outcrop near road cut. relect py nodules present with ~5mm milky white irregular to subparallel velning.	
152363	064/38			Qtz carb vening in aphanitic grey green Mafic Volcanics, due to excavation if road exact location of larger veins cannot be determined however, highly angular boulders suggest there are veins >10 cm. sulphides locally found with veins and are more abundant in smaller veins.
152364			sample was taken from a approx 1m shear zone within a fg mafic rock. no sulphides present. heavy fe staining along shear. qtz veing sample tooken from 20m SW from here, potential for mineralization. rock is to aphanitic to see any grains, possible fg black brecciation seen.	
152365				Black massive aphanitic to fine grained ultramafic rock (peridotite?). no reaction with HCI. rock is strongly magnetic containing magnetite.
152366			fg aphanetic black green, with diss py. no mag and no carb	
152367			aphanetic fg blact argillite with irregular smokey grey ro opaque qtz veins "5mm with diss vfg pyrite "2%, sample was taken from a shear zone within outcrop, seems shear is argillite and surronding rock is fg mafic?	
152368	150/79			frequent qtz veining in a aphanitic mafic volcanic unit. vein sampled is Scm wide. has red brown oxides (ankerite?) within vein. could be relic sulphides. veing could be related to shearing (sample 152367) and
152368	130/10			there are slicken striae on blocks around outcrop. non visible insitu
152369			fg aphanitic grey/green rock, very very soft, with a prismatic needle textured look. lineations in mineral grains create fold in OC. possibly needle are due to a cooling phase?	
152370			fg aphanetic black gmass, with ~10% pale grey to opaque ~4mm subrounded clast. sample was taken from an oxidized shear zone with a 1cm Py vein visible. limonite to red fe seen. rock was very brittle. wk mag. nocarb.	
152371			fg aphanetic black, highly weathered on surface and ~6% diss py throught. some seen as ~1cm bleebs.	
1323/1			prismatic spinifex texture on oc weathered surface and in hand sample, blades range frommm	
152372			prismatic spinitex texture on oc weathered surface and in nano sample, blades range from min wide to mm "Ticm long, fig aphanetic greygreen, very soft. aphanetic black green ultramafic rock with strong serp and chi alt on fracture surfaces, chlorite	
152373			apnaneuc black green uitramanc rock with strong serp and chi alt on fracture surfaces, chlorite seems to be throughout.	
152374			fg aphanetic grey gmass with ~8% fg mm black whisps. diss py througout	

Sample ID	Structural Measurement (strike/dip RHR) 1	Structural Type 2	Structural Measurement (strike/dip RHR) 2	Observations/Comments
			aphanitic grey green with diss sulphide and mm fg black stringers. very hard. pillow basalt seen	
152375			on outcrop. wk magnetism. no carb hcl reaction	
				(Mafic Intrusive) massive dark greyish green, with ~50% amph/pyx and ~40% plag with ~10%qtz? ~1%
152376				Pyrite diss throughout. Trace ~1cm qtz/carb veinlets running in an irregular pattern.
				fg mafic volcanic/basalt? with wk brecciation seen by mm fg black veinlets btw angular clast? overprinted
152377				by sil and chl? no magnetism.
				possible intermediate massive mix of plag and amp? ~70% plag with some qtz? pale white grains
152378				subhedral with ~30% darkey grey to green amph? no magnetism and mod carb.
				same as 152378 but there is mod to wk localized brecciation. fg black material present near clast in trace
152379				amount. clast are angular to rounded.
				gabbro? dark green/grey aphanetic gmass, with ~5% ~3mm subrounded plag? diss throught. on
152380				weathered surface white grains are more visible. trace diss py and no mag. mod carb
				massive fg to mg UM. ~85% black brown grains, some showing a prismatic habit. ~15% ~2mm plag grains?
152381		1		no magnetism, mod carb, fg 5mm black vein running through sample?
152382				

Project: Electra Date: September 14th, 2021								
Reading No SAMPLE Easting Northing Zone 541 152301 295523 5377787 16U	Duration Units Sigma 120 ppm	a Valu Nd Error Pr 2 1018.1 135.94 5	Pr Error Ce Ce Erro 579.41 86.61 355.61 64	La La Error Ba 89 220.85 51.87 923.72	Ba Error Bal Bal Error M 52.56 636214.3 6963.61	o Mo Error Nb -99 2.04	Nb Error Th -99 2.68	Th Error Zr Zr Error Y Y Error Sr Sr Error U U Error Rb Rb Error Se Se Error As As Error Pb -99 12.22 121.17 3.32 25.53 2.06 120.97 3.12 -99 3.81 4.2 1 -99 3.37 -99 10.48 -9
542 152302 295792.5 5377868 16U	120 ppm		371.17 67.07 171.29 50		37.51 690193.6 2933.16	3.15 1.35	-99 2	-99 8.62 13.44 1.37 5.58 1.5 6.73 1 -99 2 6.79 1.01 -99 3.45 228.58 14.44 240.2
543 152303 296090 5378142 16U 544 152304 296146 5378163 16U	120 ppm 120 ppm		678.27 90.38 382.55 67 405.04 75.69 242.76 5	52 279.55 54.21 222.23 7.2 132.08 45.77 173.92	49.21 660080.3 6237.94 42.32 603341.8 4246.5	-99 2.21 -99 2	-99 2.79 -99 2	-99 12.22 50.01 2.39 18.2 1.93 45.17 2.04 -99 2.44 -99 2 -99 4.09 -99 8.99 -9 -99 9.31 15.66 1.54 2.55 1.24 28.5 1.5 -99 2.51 2.28 1 -99 3.48 -99 7.83 -9
545 152305 296869 5378236 16U	120 ppm			3.6 223.38 50.47 498.3	48.25 588963.4 5102.78	-99 2	-99 2.33	-99 1.07 61.5 2.62 7.41 1.73 160.04 3.54 -99 4.81 2.939 1.82 -99 2.68 -99 9.31 -9
546 152306 296836.1 5378068 16U	120 ppm		623.51 83.44 345.69 62		45.36 663622.8 6803.37	-99 2	-99 2	-99 11.13 3.38 1.3 -99 2.49 12.76 1.16 -99 2.18 -99 2 -99 2.71 -99 8.6 -9
547 152307 296836.1 5378068 16U 548 152308 296815.9 5378022 16U	120 ppm		357.41 71.95 161.83 54 468.74 86.68 314.86 65		79.5 802254.7 4307.61 47.7 661146.9 6860.84	-99 2 -99 3.08	-99 2 -99 2.66	-99 10.38 6.43 1.25 .99 2.32 2.8 1 .99 2 .99 2 .99 2.25 .99 7.19 .9 -99 11.79 5.07 1.4 .99 2.72 2.95 1 .99 2.15 .99 2 .99 2.88 .99 9.04 .9
548 152308 296815.9 5378022 16U 549 152309 296665.9 5377902 16U	120 ppm 120 ppm			5.9 212.07 53.23 1221.81	47.7 661146.9 6860.84 56.84 469639.1 6218.84	-99 3.08 -99 2.71	-99 2.66 -99 2.76	-99 11.79 5.07 1.4 -99 2.72 2.95 1 -99 2.15 -99 2 -99 2.88 -99 9.04 -9 -99 12.4 41.21 2.38 14.33 1.96 104.37 3.01 -99 5.18 21.55 1.7 -99 2.94 -99 9.33 -9
550 152310 296394 5377706 16U	120 ppm	2 1310.87 153.3	676.6 96.74 412.61 72	65 217.36 57.59 189.12	52.52 614091.4 7619.42	-99 2.12	-99 2	-99 10.79 16.24 1.73 7.2 1.64 5.61 1.05 -99 2.46 -99 2 -99 3.49 -99 9.38 -9
551 152311 294633.3 5377087 16U	120 ppm		558.87 83.59 328.13 62		47.33 655087.2 5657.38	-99 2	-99 2	-99 11.63 28.05 2.06 12.79 1.67 105.69 2.88 -99 2.53 4.63 1 -99 2.64 -99 8.02 -9
552 152312 294672.5 5377046 16U 553 152313 294654.3 5376950 16U	120 ppm 120 ppm		484.77 79.93 297.31 60 520.35 77.01 316.59 57		47.63 697846.1 4449.67 42.63 604566.6 4826.35	-99 2 -99 2	2.8 1.32 -99 2.43	-99 11.83 113.56 3.14 8.22 1.87 126.33 3.09 -99 5.93 47.17 2.21 -99 3.7 45.32 6.49 -9 -99 11.52 16.95 1.92 6.7 1.39 146.89 3.27 -99 2.35 -99 2 -99 2.52 -99 8.7 -9
554 152314 294718.2 5376953 16U	120 ppm		396.72 80.79 262.83 61		45.16 762446.1 4422.48	-99 2	-99 2.52	-99 10.34 28.04 2.09 9.45 1.52 124.6 3.12 -99 2.41 -99 2 -99 2.43 -99 8.48 -9
555 152315 294626.8 5377101 16U	120 ppm	2 1167.96 138.19	600 87.25 373.29 65		47.75 611281.6 5685.35	-99 3.09	-99 2.66	-99 11.76 28.6 1.98 15.02 1.78 43.44 1.97 -99 2.07 -99 2 -99 3.69 -99 9.07 -9
556 152316 294849 5377332 16U 557 152317 294825.6 5377304 16U	120 ppm		640.45 92.12 427.91 69		50.22 693468.8 6887.86	-99 2 -99 2	-99 2 -99 2	-99 10.36 7.82 1.58 -99 2.75 36.84 1.87 -99 2.53 -99 2 -99 2.91 -99 9.21 -9 -99 9.67 7.01 1.36 4.56 1.38 -99 2 -99 2.17 -99 2 -99 2.57 -99 8.49 -9
557 152317 294825.6 5377304 16U 558 152318 294936.5 5377354 16U	120 ppm 120 ppm		568.82 83.15 322.96 62 207.16 61.25 118.99 46		45.33 656918.9 5782.86 69.15 744585.8 2477.16	-99 2 -99 2	-99 2 -99 2	-99 9.67 7.01 1.36 4.56 1.38 -99 2 -99 2.17 -99 2 -99 2.57 -99 8.49 -9 -99 8.48 10.61 1.26 5.13 1.23 2.37 1 -99 2 2.65 1 -99 2.71 33.63 6.36 14.3
559 152319 295035.8 5377424 16U	120 ppm	2 485.47 93.38 3	337.58 60.45 200.13 45	76 122.86 36.79 142.17	33.93 709083.5 2745.85	-99 2.6	-99 2	-99 8.3 9.22 1.26 2.73 1.18 10.1 1 -99 2 3.52 1 -99 2 39.36 6.5 11.
560 152320 295198 5377466 16U	120 ppm		608.19 96.27 479.56 73		52.88 670073.8 6720.33	-99 3.52	-99 2.96	-99 14.13 90.13 3.43 17.73 2.02 201.48 4.51 -99 3.19 -99 2 -99 3.37 -99 11.45 -9
561 152321 295264 5377493 16U 562 152322 295333.1 5377511 16U	120 ppm 120 ppm		474.4 97.52 308 73 647.78 94.56 361.97 70		60.76 656947.4 7103.2 51.54 539561.4 7983.56	-99 2.73 -99 2.09	-99 2.84 -99 2.82	-99 12.73 27.02 2.19 13.57 1.9 90.74 2.91 -99 3.12 9.07 1.28 -99 4.2 -99 9.39 -9 -99 12.54 27.93 2.06 8.33 1.71 30.53 1.79 -99 2.69 3.84 1.03 -99 3.37 -99 10.64 -9
563 152323 294909.9 5377376 16U	120 ppm		650.43 107.93 366.27 80		58.66 542528.4 9251.28	-99 2.59	-99 2.89	-99 12.58 11.24 2.01 10.56 2.2 47.22 2.47 -99 4.95 18.39 1.89 -99 4.39 -99 11.14 -9
564 152324 294895.9 5377382 16U	120 ppm			57 584.26 122.71 391.51	109.74 267341.7 18333.21	-99 5.97	-99 5.12	-99 22.68 23.37 3.3 7.39 3.08 6.29 1.85 8.94 4.07 -99 3.14 51.28 7.88 59.65 19.23 -9
565 152325 295236.7 5378066 16U 566 152326 295131 5378039 16U	120 ppm 120 ppm		588.49 79.6 372 59 154.58 63.22 114.88 48		45.29 594640.6 5923.06 36.17 864022 3329.45	-99 2 -99 2	-99 2.36 -99 2	-99 14.68 83.67 3.67 12.11 1.78 580.29 7.8 -99 5.25 9.04 1.27 -99 2.63 -99 8.86 -9 -99 8.73 4.21 1.22 -99 2 11.6 1.06 -99 2 3.52 1 -99 3.32 67.69 7.27 -9
567 152327 295206.6 5377500 16U	120 ppm		397.06 81.27 263.52 61		44.97 663919.9 4220.79	-99 2 -99 2	-99 2 -99 2	-99 6.73 4.71 1.22 -99 2 11.0 1.00 -99 2 5.52 1 -99 5.32 07.09 7.21 -99 1.137 5.66 1.38 3.78 1.31 16.77 1.27 -99 2.02 -99 2 99 2 4.6 -99 8.17 -99
568 152328 295182.6 5375602 16U	120 ppm	2 989.44 128.17 5	539.97 81.47 289.36 61	04 202.32 49.04 125.47	44.4 627925.1 6910.42	-99 2	-99 2	-99 9.69 7.85 1.4 4.14 1.38 7.34 1.01 -99 2 2.68 1 -99 2.49 -99 8.66 -9
569 152329 295146.9 5375629 16U	120 ppm		650.24 89.56 373.25 66		57.09 559877.8 7566.62	-99 2.04	-99 2	-99 11.33 25.49 2.21 10.99 1.9 121.71 3.31 -99 5.37 21.69 1.73 -99 2.99 -99 9.1 -9
570 152330 295128.5 5375869 16U 571 152331 295209.6 5375853 16U	120 ppm 120 ppm		602.56 90.46 354.39 67 658.44 92.08 356.81 68		49.41 655822.1 6321.13 51.21 599609.5 6685.44	-99 3.14 -99 2	-99 2.45 -99 2	-99 12.25 32.22 2.15 10.88 1.66 73.14 2.52 -99 3.31 -99 2 -99 2.83 -99 9.12 -9 -99 12.05 27.1 2.01 9.05 1.72 53.23 2.18 -99 4.54 12.24 1.37 -99 3.09 -99 9.14 -9
572 152332 295212.2 5375853 160	120 ppm		729.41 90.41 388.98 67		49.16 622771.9 6120.09	-99 2	-99 2.65	-99 10.7 36.73 2.27 13.37 1.73 11.181 3.06 -99 2.55 -99 2 -99 2.89 -99 8.99 -99
573 152333 294840.9 5375880 16U	120 ppm			5.8 330.26 60.57 539.72	57.18 630597.3 7124.52	-99 2.65		19.45 7.83 160.05 4.55 22.41 2.44 319.37 6.01 -99 4.8 26.01 1.98 -99 3.51 -99 11.55 -9
574 152334 294818.4 5375895 16U 575 152335 296836.1 5378068 16U	120 ppm 120 ppm		408.31 75.2 242.02 56 556.07 101.28 482.26 7	62 148.98 45.43 599.71 7.4 293.75 61.51 595.19	44.89 652485.7 4307.13 58.98 664200.2 6661.02	-99 2 -99 4.06	-99 2 5.94 1.68	-99 14.64 43.4 3.29 6.75 1.62 635.97 8.1 -99 5.37 13.06 1.4 -99 2.43 39.17 6.96 -9 22.65 9.25 198.89 5.71 25.52 2.56 827.13 11.26 -99 6.94 20.98 1.92 -99 3.52 -99 13.78 -9
576 152336 294630.5 5375480 16U	120 ppm		556.07 101.28 482.26 7 699.66 89.57 341.76 66		49.34 757724.1 6124.19	-99 4.06 -99 2	-99 2.12	22.05 9.25 198.69 5.71 25.52 2.50 627.13 11.20 -99 0.94 20.96 1.92 -99 5.52 -99 15.76 -9 -99 12.19 32.54 2.15 11 1.77 55.91 2.26 -99 2.82 7.23 1.17 -99 3.07 -99 9.29 -9
577 152337 294655 5375462 16U	120 ppm	2 1249.14 151.97 6	635.18 95.91 374.68 71		52.57 628220.5 7168.46	-99 2.81	-99 2.81	-99 11.1 18 1.94 9.65 1.73 58.43 2.38 -99 2.81 3.78 1.03 -99 3.64 -99 10.13 -9
578 152338 294753.6 5375441 16U	120 ppm		661.52 104.94 408.84 78		58.14 641065.9 7686.68	-99 3.43	-99 2.66	-99 13.48 26.97 2.22 15.66 1.99 63.45 2.56 -99 3.63 2.5 1 -99 4.46 -99 10.26 -9
580 152339 294420.6 5375615 16U 581 152340 292970.3 5374429 16U	120 ppm 120 ppm		550.47 77.64 341.81 58 432.16 91.16 329.68 69		45.36 659002.3 4878.9 50.6 742747.5 5872.99	-99 2 -99 2	4.82 1.39	16.08 7.6 97.5 3.9 11.77 1.87 735.63 8.87 -99 6.12 26.21 1.78 -99 2.66 -99 10.58 -9 -99 11.94 10.63 1.54 3.49 1.42 3.36 1 -99 3.4 -99 2 -99 3.13 -99 8.64 -9
582 152341 292987.8 5374427 16U	120 ppm	2 1196.76 137.77 5	562.37 86.57 326.56 65	04 222.36 52.16 158.92	47.33 612879.8 7903.99	-99 2	-99 2	-99 11.93 8.52 1.54 3.28 1.36 26.62 1.57 -99 2.35 -99 2 -99 2.7 -99 9.71 -9
585 152342 293279 5374247 16U	120 ppm			98 182.52 49.77 159.87	45.44 609287.8 7286.76	-99 2	-99 2	-99 9.82 9.99 1.45 6.45 1.46 4.36 1 -99 2.05 2.27 1 -99 3.02 -99 8.73 -9
586 152343 293240.5 5374299 16U 587 152344 293063 5374448 16U	120 ppm 120 ppm		633.72 100.75 363.73 75 738.84 104.65 423.88 7	46 191.12 60 467.8 3 267.64 62.48 166.89	57.24 588694.6 7483.95 56.42 587840.9 8895.29	-99 2.16 -99 2.38	-99 2.9 -99 2.87	-99 13 27.98 2.24 10.74 1.96 76.68 2.76 -99 3.9 18 1.68 -99 4.55 -99 10.26 -9 -99 12.85 5.1 1.78 8.12 1.68 76.56 2.75 -99 2.75 -99 2 -99 3.42 -99 9.64 -9
588 152345 292757.7 5374719 16U	120 ppm		604.17 88.28 435.33 66		47.96 628575.4 7541.52	-99 2	-99 2	-99 12.14 8.91 1.66 6.11 1.52 44.36 2.04 -99 2.17 -99 2 -99 3.61 -99 9.04 -99
589 152346 292643.3 5374773 16U	120 ppm		714.1 95.05 374.08 70		51.63 649397.3 6815.73	-99 2.02	-99 2.61	-99 10.9 31.17 2.13 10.24 1.7 57.43 2.31 -99 4.03 -99 2 -99 3.13 -99 9.38 -9
590 152347 292553.7 5374824 16U 591 152348 292569.7 5374838 16U	120 ppm 120 ppm		406.58 83.35 282.85 63 738.92 96.4 363.8 71	35 191.15 50.9 186.2 49 220.12 57.04 169.66	46.62 769748.1 5705.79 51.85 519569.4 6775.69	-99 2.3 -99 3.29	-99 2 -99 2.83	-99 10.76 38.21 2.36 .99 3.9 31.93 1.94 .99 4.91 36.57 2.35 .99 11.43 598.42 20.35 .99 11.93 28.44 2.06 10.97 1.74 36.45 1.91 .99 2.81 .99 2 .99 3.61 .99 9.3 .9
591 152346 292569.7 5374836 16U 592 152349 292561.2 5374828 16U	120 ppm		490.73 90.1 335.14 68		49.97 707270.5 5982.78	-99 3.29 -99 3.22	-99 2.83 -99 2	-99 11.93 28.44 2.06 10.97 1.74 36.43 1.91 -99 2.81 -99 2 -99 3.61 -99 9.5 -99 1.07 35.68 2.19 11.55 1.77 54.83 2.25 -99 2.86 5.25 1.08 -99 2.91 -99 9.46 -99
593 152350 292574.4 5374843 16U	120 ppm		614.41 104.29 402.57 78		57.67 653461.6 7064.88	-99 3.53	-99 2.54	-99 11.83 32.53 2.21 12.78 2.06 9.49 1.27 -99 3.72 12.76 1.55 -99 3.94 -99 10.55 -9
594 152351 292661.1 5375741 16U	120 ppm		777.39 106.03 501.8 79		57.4 670264.2 7950.01	-99 2.35	-99 3.04	-99 11.94 25.2 2.15 11.57 1.93 28.9 1.89 -99 2.63 -99 2 -99 4.81 -99 10.8 -9
595 152352 292352.4 5375785 16U 596 152353 293068.3 5376020 16U	120 ppm 120 ppm		856.06 132.46 425.59 97 808.63 92.69 484.75 69	86 274.23 78.08 277.05 35 301.91 55.2 215.9	71.5 750958.4 8001.06 49.91 611785.7 8425.13	-99 4.16 -99 2.64	-99 3.59 -99 2.69	-99 16.11 32.69 2.61 16.24 2.55 11.72 1.56 -99 4.5 14.66 1.84 -99 5.06 -99 13.11 -9 -99 10.65 8.85 1.73 6.08 1.5 73.55 2.55 -99 3.05 -99 2 -99 4.07 -99 9.57 -9
597 152354 293323.3 5376243 16U	120 ppm		712.53 92.85 360.64 69		50.67 543976 7438.78	-99 2.01	-99 2.8	-99 12.34 31.83 2.1 13.18 1.9 33.48 1.82 -99 2.96 10.72 1.34 -99 2.82 31.74 6.87 -9
598 152355 292422.1 5375139 16U	120 ppm		716.78 91.11 374.79 67		50.68 683781.1 7037.99	-99 2.08	-99 2.22	-99 12.77 43.58 2.47 10.56 1.83 106.44 3.11 -99 4.96 14.25 1.48 -99 2.89 -99 9.44 -9
599 152356 292253.5 5375128 16U 600 152357 292282.5 5375237 16U	120 ppm 120 ppm		268.61 65.96 106.44 49 630.76 101.18 354.78 75	72 102.79 40.43 74.14 85 220.62 60.62 189.1	37.01 657460.8 2955.26 55.29 683279.3 8329.19	-99 2 -99 2.29	-99 2 -99 2.8	-99 8.37 -99 2 -99 2 2.28 1 -99 2 -99 2 0.5 -99 6.99 -9 -99 13.12 33.67 2.34 15.12 1.99 59.67 2.51 -99 3.44 -99 2 -99 3.45 -99 12.74 -9
601 152358 292450.2 5375300 16U	120 ppm		638.14 93.14 401.34 70		51.52 562660 7344.26	-99 3.33	-99 2.5	99 13.18 38.18 2.45 13.17 1.9 107.25 3.19 -99 3.49 7.24 1.2 -99 3.18 17.06 6.45 -9
602 152359 292492.4 5375182 16U	120 ppm		770.86 94.67 415.83 70		55.38 628832.7 6703.45	-99 2.01	-99 2.43	-99 12.88 9.12 1.91 5.25 1.83 103.44 3.09 -99 4.42 30.37 2 -99 3.15 -99 9.69 -9
603 152360 292495.7 5375126 16U 604 152361 292539 5374962 16U	120 ppm 120 ppm			7.5 208.38 53.71 128.89 59 137.05 61.66 7615.06	48.63 594768.4 7978.55 125.76 593566.1 6415.27	-99 2 -99 2.25	-99 2 -99 2.99	-99 10.65 24.16 1.77 10.51 1.63 2.58 1 -99 2.27 -99 2 -99 2.73 -99 9.26 -9 -99 13.19 29.96 2.33 12.06 2.34 98.4 3.12 -99 7.18 54.49 2.71 -99 5.85 -99 12.31 -9
606 152362 292542 5374803 16U	120 ppm		244.65 60.69 162.88 46		34.41 545076.1 3318.73	-99 2.25 -99 2	-99 2.99	-99 15.19 29.96 2.33 12.06 2.34 96.4 5.12 -99 7.16 54.49 2.71 -99 3.65 -99 12.31 -97 9.844 4.67 1.15 -99 2 42.4 6.62 15.25
607 152363 292436.3 5374648 16U	120 ppm		761.13 113.93 501.57 85	79 356.84 68.66 222.15	61.58 647231.8 8366.31	-99 2.64	-99 3.21	-99 14.47 31.39 2.47 12.37 2.07 51.96 2.54 -99 3.3 -99 2.04 -99 3.91 -99 11 -99 -99 11 -99 10 -99 10 -99 10 -99 10 -99 10 -99 -99 10 -99 -99 10 -99 -99 10 -99 -99 -99 -9
608 152364 292448.2 5374674 16U 609 152365 292553.1 5374366 16U	120 ppm		683.56 114.45 393.01 85 589.29 86.22 355.3 64		61.99 742132.3 7080.8 46.79 637063.7 7111.11	-99 3.76 -99 2	-99 3.22 -99 2	-99 13.93 26.56 2.19 7.84 1.88 2.9 1.04 -99 2.66 -99 2 -99 4.47 -99 11.27 -9 -99 10.11 11.13 1.51 3.15 1.37 4.68 1 -99 2.23 -99 2 -99 2.85 -99 8.91 -9
610 152365 292563.1 5374366 16U	120 ppm 120 ppm		589.29 86.22 355.3 64 650.51 90.26 405.06 67		48.98 645710.3 6656.27	-99 2 -99 2	-99 2 -99 2	-99 10.11 11.13 1.51 3.15 1.37 4.88 1 -99 2.25 -99 2 -99 2.85 -99 8.91 -99 10.34 13.31 1.57 6.92 1.54 2.07 1 -99 2.45 -99 2 -99 3.09 -99 8.73 -99
611 152367 292646.8 5373898 16U	120 ppm		614.04 78.86 377.13 59		43.16 571230.7 3714.71	-99 2	-99 2	-99 10.15 -99 2.6 -99 2.84 3.15 1 -99 2.49 5.1 1.05 -99 2.87 -99 8.52 -9
612 152368 292647.2 5373901 16U	120 ppm		297.42 63.76 174.5 48		35.82 588780.8 3179	-99 2	-99 2	-99 8.35 -99 2 -99 2 2.49 1 -99 2 2.29 1 -99 2 -99 7.18 -9
613 152369 292819 5373755 16U 614 152370 292898.3 5373840 16U	120 ppm		732.85 94.13 434.59 70 314.53 76.12 224.46 57		56.85 612535.7 8399.63 43.19 662614.4 3876.62	-99 2.22 -99 2.93	-99 2.94 -99 2.44	-99 12.69 82.41 3 25.31 2.34 57.13 2.36 -99 3.41 16.41 1.57 -99 4.27 -99 10.71 -9 -99 11.27 58.27 2.22 6.07 1.5 28.17 1.49 -99 2.92 17.32 1.39 -99 2.49 -99 7.91 -9
615 152370 292898.3 5373840 16U	120 ppm 120 ppm		314.53 /6.12 224.46 5/ 509.42 84.78 315.73 63		43.19 662614.4 3876.62 47.28 719519.5 6196.29	-99 2.93 -99 3.03	-99 2.44 -99 2.81	-99 11.27 58.27 2.22 6.07 1.5 28.17 1.49 -99 2.92 17.32 1.39 -99 2.49 -99 7.91 -9 -99 12.11 54.82 2.47 24.83 2.24 63.84 2.36 -99 3.93 22.3 1.7 -99 2.96 -99 11.72 -9
616 152372 293378.8 5374172 16U	120 ppm	2 1206.57 145.92 6	631.37 92.23 377.34 69	06 243 55.19 533.24	52.86 628084 7100.2	-99 3.25	-99 2	-99 10.88 25.3 2.05 10.83 1.83 63.5 2.42 -99 3.08 12.57 1.41 -99 3.45 -99 9.35 -9
617 152373 293484.8 5374112 16U	120 ppm		542.87 80.05 339.97 60		43.68 620197.3 6633.54	-99 2	-99 2	-99 10.76 6.88 1.33 -99 2.55 6.06 1 -99 2.04 3.18 1 -99 2.48 -99 8.01 -9
618 152374 293354 5373962 16U 619 152375 293316.7 5373963 16U	120 ppm 120 ppm		615.57 95.77 333.47 71 502.31 84.2 320.08 63		52.48 659973 7719.52 51.81 589954.8 6616.38	-99 2.22 -99 2.5	-99 2.95 -99 2.65	-99 12.7 47.46 2.55 15.78 2.11 72.4 2.69 -99 5.14 16.33 1.62 -99 3.43 -99 12.53 -9 -99 12.61 35.41 2.42 10.95 1.79 172.72 3.85 -99 3.23 14.91 1.44 -99 2.93 11.9 5.9 -9
620 152376 292265 5375628 16U	120 ppm		656.44 101.77 462.31 76	76 252.57 60.79 735.21	59.82 624327.2 7631.59		18.27 1.91	99 16.05 167.86 4.81 20.54 2.41 376.54 6.78 -99 4.82 21 1.86 -99 3.7 -99 10.76 -9
621 152377 292212.4 5375794 16U	120 ppm		486.36 94.33 338.59 71		52.19 709998.7 6450.96	-99 2.44	-99 2.53	-99 12.7 27.12 2.17 23.27 2.15 73.57 2.66 -99 2.55 2.19 1 -99 3.21 -99 10.7 -9
622 152378 293235.1 5376189 16U 623 152379 293201.2 5376365 16U	120 ppm 120 ppm		624.52 87.69 406.75 66 714.86 99.9 429.49 7	16 249.95 52.75 201.12 1.9 238.72 59.46 236.83	47.98 600564.9 7393.23 54.44 671362 8457.84	-99 2.12 -99 2.11	-99 2.43 -99 2	-99 10.51 20.87 1.89 7.6 1.53 65.78 2.35 -99 2.81 -99 2 -99 2.8 14.13 5.78 -9 -99 11.03 37.55 2.27 18.02 2.02 49 2.2 -99 2.75 2.21 1 -99 3.43 -99 10.07 -9
623 152379 293201.2 5376365 16U 624 152380 293201.8 5376442 16U	120 ppm 120 ppm		714.86 99.9 429.49 7 766.96 99.92 410.67 74		54.44 671362 8457.84 56.02 585405.1 7557.42	-99 2.11 -99 2.65	-99 2 -99 2.62	-99 11.03 37.55 2.27 18.02 2.02 49 2.2 -99 2.75 2.21 1 -99 3.43 -99 10.07 -99 13.38 28.47 2.17 13.17 2.01 25.49 1.75 -99 3 8.18 1.28 -99 3.64 -99 9.89 -9
625 152381 293178.1 5376518 16U	120 ppm	2 1299.76 170.26 5	591.38 106.72 351.79 80	19 261.2 64.49 279.06	59.22 694330.6 7926.42	-99 3.13	-99 3.09	-99 13.51 19.19 2 13.82 2.15 9.03 1.3 -99 3.43 6.62 1.28 -99 4.53 -99 10.98 -9
626 152382 293702 5376094 16U	120 ppm	2 1090.06 152.46 6	661.16 97.39 356.62 72	08 222.99 57.58 1312.8	62.06 646749.8 5075.01	-99 2.89	-99 2.9	-99 13.58 77.13 3.17 10.78 1.78 168.97 4.07 -99 3.04 -99 2 -99 3.26 -99 9.8 -9

Project: Electra

Project: Electra																																	
	Error Z		Error Cu		26.07	Ni N 242.93	Ni Error Co		Co Error	Fe F 54316.45	643.57		Mn Error (Cr Error	Ca C	1472.76		K Error A		Al Error F 1829 26		P Error S	Si 5	i Error C	778.04	Error S	331 16	Error N				E Error
541 542	7.68 10.58	163.63 112.56	12.1 9.74	-99 -99	26.07	242.93 -99	30.69 43.03	-99 -99		54316.45 11271.37	643.57 426.25	-99	3061.67 2740.8	-99 -99	2098.28 573.78		123.16	-99 6243.48	1726.53 312.43		1829.26 597.37	1512.41 -99			3426.61 2904.47	778.04 594.74	55.94 39.52	331.16	103.76	-99	4939.44 4131.84	1200.07	0
542 543	8.29	55.9	9.74	-99	29.56	704.59	41.57	-99		77232.88	734.52	-99	2790.63	2499.64	859 27	32180.79	919.13	-99	1495.45		1348 69	-99		169605.2	3114.93	982 92	57.61	4316.69	148.73	-99	8895.83	2567.52	0
544	7	16.17	6.88	-99	23.30	106.3	26.39	-99		22976.29	475.78	-99	2798.62	-99	921.81	50753.7	930.13	-99		12246.76	821.74	-99		303831.1	3348.18	504.76	51.78	275.87	69.84	-99	6664.16	1465.24	0
545	8.08	50.99	8.5	26.19	12.83	58.6	26.61	-99	206.49	37567.8	540.02	-99	2818.26	-99		43162.44		13376.29		40649.09	1404.05	-99		265941.3	3332.8	516.11	54.98	3206.44	126.48	-99	7464.59	2219.8	0
546	7.57	37.57	8.13	148.92	18.01	1598.7	50.78	-99	202.81	35564.79	520.91	-99	2730.36	2812.91	447.57	84686.37	1288.13	-99	716.18	5612.22	809.75	-99	434.96	148695.3	1899.26	1312.81	67.35	496.14	83.49	50227.61	6138.39	2222.68	0
547	6.54	39.51	7.44	-99	26.07	1532.55	47.6	333.09		34935.72	457.37	-99	2315.56	1048.27	316.31	1683.03	126.73	-99	619.82	1536.11	393.29	381.04	137.92	113495.4	1490.74	1518.53	52.62	362.5	58.03	37443.8	3778.25	1168.33	0
548	7.17	56.45	9.27	-99	32.08	1889.08	58.36	282.8	131.84	88516.76	717.84	-99	2219.03	1688.81	478.55	11884.93	428.85	-99	891.29	3115.29	631.29	-99	318.28	133229.6	1843.06	1504.45	58.43	-99	109.64	92700.05	6155.12	1887.69	0
549	8.1	52.49	9.18	-99	27.11	-99	57.97	-99	250.67	63603.09	662.75	-99	2748.87	-99	1315.56	20104.26	634.03	5743.62	620.54	32929.41	1430.3	-99	669.01	389621.5	4874.27	821.87	63.18	-99	131.47	11422.7	4825.02	2317.53	0
550	8.28	74.36	10.47	42.87	16.85	1088.42	50.07	-99	294.41	102559	857.8	2685.1	1273.18	2533.09	709.6	39417.14	1016.63	-99	1218.4	21346.48	1189.3	-99	408.25	162966	2574.32	790.03	56.46	-99	123.2	48198.08	6278.33	2617.45	0
551	7.18	46.31	8.32	43.45	13.7	272.07	31.15	-99		44197.52	569.4	-99	2786.9	-99		73843.41	1453.76	2418.22	556.98		1312.1	-99	436.7	179753	2685.14	768.17	56.38	167.14	71.72	-99	8555.62	2056.79	0
552	7.7	51.04	8.4	-99	24.03	-99	49.29	-99		35771.78	537.44	-99	2880.19	-99	1310.69	1394.47	208.4	20804.9	762.72		1390.77	1162.9		178769.4	3056.55	760.08	50.59	3176.98	117.42	-99	5901.8	1804.91	0
553	6.98	35.37	7.73	55.83	13.56	294.71	30.34	-99		32604.13	500.32	-99	2688.64	1173.32		33535.95	752	-99		39975.79	1303.85	-99		280395.4	3539.92	1067.17	58.2	-99	132.2	-99	7086.15	1954.27	0
554	7.04	65.62	8.94	36.32	13.84	419.38	34.07	-99		47495.71	556.49	-99	2595.21	1993.97		15368.65	480.85	-99	1139.2		709.48	2473.45		147955.5	2476.87	964.13	53.56	1480.33	87.5	-99	6354.41	1434.09	0
555	7.95	89.84	10.37	41.09	14.94	635.8	39.37	-99		66184.68	668.89	-99	2713.36	-99		38615.68	1004.77	-99	1322.96		1358.25	-99		234029.3	3683.82	738.82	56.38	2346.86	112.42	-99	8426.45	2405.8	0
556	8.27	29.26	8.3	-99	30.68	1189.23	49.33	-99		58072.41	635.71	-99	2676.63	1871.51		65081.09	1223.22	-99	899.79	8096.13	827.33	-99		121497.5	1814.52	1015.08	61.99	431.86	80.97		6022.21	2455.01	0
557	7.63	63.4	9.25	84.71	17.19	1929.99	56.54	415.45		67365.84	621.13	3022.67	1190.56	3061.16	515.55	1818.02	175.97	-99	987.28	10667.8	755.44	855.2		191037.7	2644.14	823.07	48.36	-99		59083.09	4953.4	2088.12	0
558	4.91	-99	11.31	-99	19.68	-99	41.04	-99	122.57	2758.21	392.37	-99	2616.48	-99	419.36	194.89	54.18	3699.57		4536.87	412.17	505.65		237246.1	2536.68	743.74		3839.64	99.5	-99	3508.44	784.59	0
559 560	4.85 9.53	38.46 78.66	7.18 10.6	-99 -99	19.65 29.3	-99 280.21	41.44 35.93	-99 -99	137.92	8150.55 75655.09	405.49 752.3	-99 -99	2635.5 2827.86	-99 -99	468.12	2169.4 55494.24	115.9 1259.87	2040.75 1324.5		4225.17 19564.78	444.32 1077.67	1561.81 3900.34		265661.3 148747.4	2722.26	488.24 917.56	38.12	3163.77	92.5 140.47	-99	3990.07 5339.38	1146.05 2387.15	0
560 561	9.53 8.19	71.03	10.15	-99 31.23	15.03	171.83	35.93	-99 -99		75655.09 59934.23	682.09	-99 3941.92	1453.89	-99		85903.98	1812.22	3265.17		30572.02	1420.43	-99	253.6 463.98	149957	2491.94 2595.53	917.56 856.53	60.65 66.88	-99 474.87	91.89		10984.12	1895.89	U
561 562	8.19	77.86	10.15	58.85	16.01	259.57	32.86 35.08	-99		95183.61	842.09	-99 -99	2701.18	-99		85903.98 35502.52	959.16	-99		31940.1	1547.19	-99		149957		1168.03		118478 9	1935.87		13081.64	2363.93	0
563	9.95	91.23	12.57	43.09	20.41	1923.66	69.31	-99		170713.3	1357.89	4794.26	1186.6	2574.18		55663.03	1402.36	6689.33		18751 28	1347.19	-99		155373.6		1036.03		1298.22	100.49		7531 98	2600.93	0
564	27.85	151.03	23.97	509.51	48.69	699.47	81.5	-99		315894.8	3436.7	-99	3342.03	-99	2592.72	-99	439.86	-99	2263.64			3371.49		54831.71		2345.52		322199.8	6271.75		32291.76	6736.53	0
565	7.9	73.6	9.46	-99	25.06	-99	53.78	-99		54284.56	615.56	-99	2825.99	-99		34309.15	916.72	3549.35		62368.79	1750.03	1405.77		223838.3	3680.72	564.76	47.5	182.45	61.93	16007.1	4201.74	2217.69	0
566	9.45	56.34	7.81	-99	21.96	-99	43.25	-99		52854.53	515.97	-99	2217.63	-99	781.25		166.53	3025.22		3804.88	371.08	2880		59807.9	957.7	970.07	42.04	9587.79	178.74	-99	4185.46	724.34	0
567	6.93	34.07	7.77	-99	26.65	469 44	34.6	-99		37521.43	517.68	-99	2626.91	-99		41026.61	807.28	-99	747.95	6694.42	679.65	-99		241190.7	2720.24	972.39	56.38	2389.69	104.29	-99	6851.68	1567.73	0
568	7.36	45.87	8.44	-99	30.55	1831.12	54.82	-99		69271.34	624.73	-99	2338.38	2839.75		12635.75	444.31	-99	971.66	10805.9	836.14	667.29		164313.5		1161.58	54.3	784.95		103052.5	6145.03	2021.1	0
569	8.26	48.75	8.99	-99	27.4	148.68	30.58	-99		79890.94	749.11	-99	2752.23	-99		56503.51		12450.85		43404.4	1669.96	-99		198128.3	3174.38	892.48	59.88	-99	125.97		5932.25	2418.48	0
570	7.81	79.75	10.14	113.48	16.67	219.16	32.16	-99	247.34	64910.33	668.23	-99	2757.94	-99	1625.85	28569.99	835.81	-99	1440.16	41166.57	1439.9	548.53	215.25	183555.9	3340.02	882.7	57.47	-99	136.1	15246.4	4696.07	2152.43	0
571	7.68	60.86	9.51	90.93	16.11	260.14	33.21	-99	250.11	62165.9	671.46	-99	2867.75	1644.47	819.33	30850.85	900.53	29289.56	943.04	46304.64	1606.71	1039.45	237.77	203242	3368.15	587.07	57.01	-99	130.49	17314.01	5060.33	2344.09	0
572	7.92	83.02	10.11	123.7	16.48	118.88	29.31	-99	238.44	56287.98	643	-99	2919.92	-99	1541.04	47363.12	1144.87	-99	1307.56	39822.96	1439.87	-99	460.64	213215.3	3468.62	751.65	56.11	-99	136.77	10704.23	4634	2532.94	0
573	9.48	94.66	11.48	-99	30.16	-99	63.47	-99	288.95	84095.05	826.51	-99	3094.96	-99	2233.21	25545.11	927.7	8472.26	1001.05	52402.56	1719.64	3871.51	269.55	179490.5	3971.83	958.15	62.68	-99	138.43	-99	9638.77	2827.26	0
574	10.43	32.92	7.78	-99	24.37	-99	50.53	-99	196.83	31255.73	509.92	-99	2773.99	-99	879.68	115160.3	1535.58	3447.73	346.25	26725.78	1013.41	431.24	190.47	164454.4	1819.36	623.88	45.15	-99	114.97	-99	6349.61	1511.89	0
575	13.02	100.51	12.1	159.72	19.67	-99	62.12	-99		73986.25	775.87	-99	3047.04	-99		45885.52	1244.05	8120.43		31698.34	1349.59	4540.15		159538.2	3088.16	845.94	64.58	178.38	83.26	-99	9557.32	2474.13	0
576	7.97	60.45	9.5	-99	26.42	70.89	29.31	-99		94985.48	799.6	-99	2573.39	-99		33276.56	969.7	4201.62		14805.75		1215.39		84759.83	1754.8	1028.32	58.89	965.45	82.05	-99	7214.66	2463.31	0
577	7.8	45.99	9.21	-99	29.47	178.63	33.2	-99	282.89	92186.2	814.21	-99	2666.42	-99		45755.08	1203.46	1641.58		30068.67	1312.23	-99		164392.3	2890.81	771.11	55.58	-99	129.92		5542.64	2447.19	0
578	9.06	-99	16.98	62.65	16.89	-99	63	-99		43692.07	645.83	-99	3130.76	-99		191610.9	2602.58	975.48		14437.85	1261.42	-99		96340.44		1111.21	79.48	3382.59	158.48		13109.11	2586.55	0
580	10.55	38.57	8.03	-99	22.97	-99	50.65	-99		35697.79	534.56	-99	2853.53	-99		21966.2	630.05	9404.79		46178.91	1348.72	2697.24		214940.3	3417.77	1406.46	61.45	157.14	64.76	-99	6965.71	1970.72	0
581	7.42	67.93	9.85	-99	29.19	901.45	45.33	-99		72326.17	679.44	-99	2470.44	2825.29		24887.91	670.2	-99	1000.99		735.28	-99		117911		1204.66	59.32	-99	134.23		4790.2	1759.19	0
582 585	6.84 7.54	39.26 52.98	8.29 8.77	-99 -99	27.57	827.23 1395.55	41.64	-99 -99	240.59	64587.2 78978.8	641.51	-99 -99	2530	6606.41 2873.19		78205.71 22911.43	1403.87 657.52	-99 -99	944.62 1053.69	16393.52	1127.47 970.66	-99		143117.2	2027.64	788.88 1079.77	58.45 53.97	-99 647 71	69.03	71140.84	6918.42	2308.05	0
585 586		70.05	10.47	-99 127.81	18.35	1395.55	49.43 33.13	-99 -99		78978.8 91058.31	838.69	-99	2337.04	28/3.19 -99		21022.52		27237.45		31777.1	1467.74	-99 -99	595.97	162829.6 150969	2379.05	1110.7		78761.01	1350.15		12065.14	22/3.66	U
586 587	8.95 8.56	34.16	8.98	-99	32.18	139.28	53.13	-99 -99		67467.65	720.16	-99	2804.17	-99 5786 73		92133.09	1646.31	-99		11268.48	1212.46	-99 -99		177646.9	2495.39	689.03	74.19	-99	171.65		7911.25	2722.39	0
588	7.75	49.37	9.2	43.78	16.31	1372.27	51.41	-99		85367.09	748 32	-99	2445.92	7846.19	732.37	71365.1	1490.57	-99	1168.78		1170.8	-99		135471.5	2154.75	953.41	59.07	-99	132.29		6189.3	2450.12	0
589	8.72	123.62	11.82	58.93	17.38	1593.74	55.29	-99		73104.06	718.76	3433.47	1395.17	3779.3		34360.73	1057.09	-99	1676.78		1535.39	-99		170479.2	3450.11	723.68	55.08	-99	131.03		4819.94	2513.38	0
590	13.95	492.33	21.88	218.5	20.49	193.29	31.23	-99		134125.1	1054.24	-99	2452.25	-99	1469.68	1866.8	243.83	8649.45	727.85		649.18	728.13		62862.68	1248.92	885.35		2516.19	91.28	-99	5144.19	1695.13	0
591	8.28	94.07	11.25	132.95	18.46	556.69	40.34	-99		80311.85	762.76	-99	2759.01	-99		49541.16	1254.63	-99	1418.87		1535.61	-99		284772.9	4286.81	759.65		11805.85	294.28		10482.42	2614.37	0
592	8.05	92.34	10.71	-99	27.83	338.33	35.52	-99		73540.44	704.93	-99	2670.71	2813.51	881.33		442.1	2576.15	817.62		1123.64	-99		153914.8	3137.76	948.08		4114.46	144.19		8174.63	1912.88	0
593	8.7	82.45	11.5	-99	32.84	461.83	42.41	-99	294.55	83783.6	829.64	-99	2888.75	2061.17	875.53	45799.89	1209.73	4236.71	749.8	30594.16	1373.65	-99	452.2	170204.5	3103.34	1104.5	70.01	-99	169.96	-99	10576.79	2307.39	0
594	8.59	67.88	11.24	-99	33.63	561.28	44.51	-99	328.86	123662.1	1041.13	4914.7	1302.06	2268.12	911.93	64789.04	1578.26	-99	1446.74	17311.81	1135.28	-99	393.74	108122.7	2084.53	910.16	64.67	-99	150	-99	11729.68	3091.09	0
595	11.04	90.1	14.09	-99	42.15	149.92	44.46	-99	355.7	107663.9	1081.03	-99	3101.57	-99	2011.97	8243.57	466.31	3573.82	930.43	17719.47	1031.42	-99	361.74	99355.3	2406.59	1740.51	84.74	-99	163.87	-99	10278.88	2862.9	0
596	8.56	38.5	8.63	52.67	14.82	99.38	29.14	-99		15081.57	523.08	-99	3232.35	-99	1036.89	322704	3098.8	-99		10056.93	1331.93	-99		33111.54	919.86	337.36	74.82	-99	200.7		15284.54	3085.82	0
597	8.08	100.76	10.92	70.2	15.88	426.5	36.74	-99		101452.7	844.56	-99	2634.8	-99		32384.25	1020.54	4452.17		51077.63	1809.75	-99		232214.8	4228.92	744.2	57.8	-99			5536.31	2632.68	0
598	8.03	79.74	10.1	59.01	15.06	103.06	29.97	-99		84562.52	758.81	-99	2647.3	-99		50360.81	1290.63	1561.59	744.38		1395.76	616.89	198.1	121735	2370.35	981.06	60.66	1393.51		10769.1	5023.41	2604	0
599	5.91	-99	11.34	-99	20	-99	41.49	-99	126.38	4697.48	388.7	-99	2573.27	-99	309.9	5652.35	164.3	344.38	153.87	1920.56	450.67	-99		327207.1	2848.27	645.19	42.11	124.69	54.27	-99	4248.02	866.93	0
600 601	9.38 8.46	59.91 89.39	10.27 10.84	65.6 85.33	17 16.24	87.81 64.88	33.23 30.03	-99 -99		75264.34 93286.03	817.57 824.97	-99 -99	3172.96 2771.85	-99 -99	1994.47 1834.01	171091 39931.3	3101.52 1136.36	-99 3009.77	1249.74 787.43		1064.26 1887.65	-99 -99		50273.44 210012.1	1192.89 3708.16	1095.12 816.57	74.54 58.23	-99 4984.46	161.22 167.15		13097.36 5368.02	2332.55 2621.15	0
602	8.67	98.84	11.1	49.92	15.56	347.17	35.56	-99		68662.24	705.04	-99	2819.69	-99		43950.15	1079.29	7737.54		41189.72	1489.05	-99		178903.8	2846.35	817.5		1360.72	94.71		5143.69	2831.82	0
603	7.35	52.15	8.95	-99	29.1	852.31	42.55	-99		75409.63	702.04	-99	2691.98	-99		40112.39	1107.5	-99	1482.08		1633.61	-99		173486.7	3194.57	694.59	55.43	-99	129.88		6401.87	2306.07	0
604	10.61	604.1	23.52	128.87	19.61	1174.04	51.42	-99		68468.75	800.78	-99	3596.7	-99		15374.52		20485.15	1125.82		1436.81	-99		231516.7	4850.94	696.87		16664.98	468.24	-99	9310.07	1257.04	0
606	4.93	-99	11.77	-99	18.74	-99	41.29	-99	123.33	1433.77	403.74	-99	2697.32	-99	338.76	177.97	38.22	822.79	170.34		556.66	-99		446434.3	3563.72	131.76	38.06	-99	92.54		4371.34	959.58	0
607	8.88	109.6	13.23	123.08	20.55	80.91	36.37	-99		126106.3	1110.59	-99	2798.7	-99		51534.35	1465.1	5405.37		31257.66	1484.15	-99		123705.3	2610.35	3828.95	123.03	-99	161.28		11667.96	3035.64	0
608	10.24	39.54	10.53	-99	35.86	-99	74.62	-99		98204.89	936.84	-99	2916.84	-99		17028 15	638.34	-99	1564.15		959.28	-99		115369.8		1402.19	71.74	-99	153.72	-99	9863.57	2378.68	0
609	7.19	48.69	8.74	-99	28.78	1367.86	50.36	-99	250.45	77235.07	674.57	-99	2367.02	3625	609.19	8792.7	390.69	-99	1144.92	13541.44	913.8	-99	362.61	161668.1	2547.39	1092.22	56.18	791.42	73.86	89656.74	6185.28	2229.68	0
610	7.12	57.59	9.48	42.98	15.48	757.59	42.26	-99	263.43	86097.26	733.05	-99	2461.19	3012.64	672.98	3885.13	267.08	-99	1275.73	17583.63	965.32	-99	379.1	173925.2	2866.06	942.21	53.99	3738.59	127.01	57830.95	5514.48	2527.48	0
611	7.52	-99	13.51	38.25	13.61	-99	53.27	-99	265.19	99335.36	773.04	-99	2253.36	-99	786.38	1289.07	149.68	957.04	377.36	2599.52	610.05	-99	479.12	308732.3	2897.08	515.59	42.03	10378.98	190.12	-99	5486.44	2281.94	0
612	5.98	-99	11.62	-99	18.76	-99	41.7	-99	122.46	2748.61	391.52	-99	2601.17	-99	379	1006.34	77.02	1351.95		2602.48	534.78	-99		398742.6		1192.02	52.92	-99	98.64	-99	4306.22	1138.34	0
613	8.52	110.35	11.68	396.91	24.55	846.38	44.95	-99	298.63	111122.7	935.34	-99	2855.08	2571.84	1187.62	18721.47	788.5	4323.55	1057.76	52827.97	1764.93	-99	335.36	134483.8	3283.75	616.28	48.26	-99	109	50751.46	5668.11	2854.21	0
614	7.06	52.3	8.1	-99	22.52	-99	49.78	-99		35904.95	490.68	-99	2528.9	-99	810.08		182.84	7351.18	428.76		789.82	-99		265302.4	3087.88	589.84	47.94	6054.76	151.65	-99	5972.96	1277.5	0
615	8.47	325.65	16.64	342.43	22.34	649.89	40.57	807.67		64543.33		14674.16	1287.89	-99	1559.16	3250.81	243.56	1814.52	732.64		2042.13	-99		70166.66	1504.06	775.26		28980.94	622.01		7125.86	1915.94	0
616	8.01	76.42	10.06	-99	29.69	536.07	39.21	-99	270.51	81163.1	753.4	-99	2726.91	-99		39049.18	1104.14	3119.62		28195.7	1284.67	-99		176686.7	3258.55	711.56	55.95	-99	123.48		5541.44	2458.28	0
617	7.04	43.11	8.05	-99	28.99	2000.99	54.86	-99		64245.44	582.45	-99	2286.31	2591.35	462.64		308.68	-99		10392.93	779.31	-99	322.65	167736	2219.54	1010.53	48.23	-99	102.59		5956.46	2047.45	0
618	9.41	66.3	10.38	59.55	16.13	-99	62.13	-99	289.12	83556.9	821.05	-99	3005.85	-99	2089.77		2081.45	5834.79	816.05		1463.72	-99	442.94	102489	2109.64	864.68		19221.71	453.14		11089.95	2242.04	0
619	8.25	67.9	9.44	38.21	13.67	-99	54.67	-99		67766.31	683.52	-99	2800.42	-99		51164.39	1304.69	5889.23	754.42		1736.81	-99		207624.5		1064.68	63.26	6761.29	201.55	-99	9668.98	2003.85	0
620	9.25	83.33	11.2	-99	28.95	-99	62.71	-99		102998.5	945.81	-99	3122.57	-99		39053.24	1321.77	9514.83	1091.69		1522.45	2216		168412.9	3915.66	1154.31	70.01	751.61	90.5	-99	9956.43	2621.83	0
621 622	8.54 8.11	117.33 31.81	11.9 8.15	107.3 -99	17.45 27.38	324.57 291.34	35.56 32.8	-99 285.7	275.91	90387.3 30491.34	801.44 525.04	-99 -99	2675.41 2811.68	-99 -99		34418.61 228046.3	1009.21 2517.34	-99 659.35	1528.18 319.12	26039.41 6450.19	1118.47 1079.03	-99 -99	362.39 524.63	129341.8 126385	2555.27 1688.44	898.28 348.77	57.31 65.73	343.48 -99	73.17 180.59	-99	8668.55 13152.58	2077.16 2503.13	0
622 623	8.11 8.66	31.81 110.62	8.15 11.63	-99 73.37	27.38 16.86	291.34 564.3	32.8 40.46	285.7 -99		30491.34 87738.84	525.04 832.49	-99 3336.56	2811.68 1517.48	-99 -99		228046.3 66348.51	1970.62	-99	319.12 2016.59		1079.03	-99 -99		126385 114858.2		348.77 1124.09	69.64	-99 -99	180.59		13152.58 11179.82	2503.13 2778.8	0
623 624	8.66 8.54	110.62 88.48	11.63	73.37 59.28	16.86 17.15	564.3 612.22	40.46 43.3	-99 -99			832.49 1061.78			-99 2183.08		72354.17	1970.62	-99 2552.4	2016.59 815.61		1542.11	-99 -99			2818.58 3019.51	1124.09 676.3	69.64 57.11	-99 265.13	148.12 74.68		11179.82 10489.42	2778.8	0
625	9.45	95.4	12.68	204.3	23.86	1384.42	60.13	-99		135625.6						21622.16	826.02	1843.98		12779.65	903.91	-99			2609.8	1018	61.87	1480.28	98.61			2504.14	0
626	8.55	49.28	9.6	-99	28.57	-99	60.59	-99		70719.31	707.01	-99	2657.18	-99		31902.85	789.66	-99		16240.84	933.78	-99		219607.4		1400.65	65.17	5393.5	157.01	-99	7913.1	2330.84	0
520	0.33	75.20	5.0		20.57		00.33		202.30	. 3, 13.31	,0,.01	23	2037.20	23	****	_1502.05	,05.00	23	337.01		333.70	23	-07.00		-003.22	_ 100.03	03.17	3333.3	137.01		, , , , , ,		

Appendix 3 - XRF Calfactors Calibrations

Project: Ele Date: Sept 3rd, 2021

y=mx+b

Cu	Cu Error	Ni	Ni Error	Co	Co Error	Cu_BTM	Cu_Error_E Ni_	_BTM	Ni_Error_B Co_	BTM	Co_BTM_Error
0.168198	0.00949	3.539015	0.053973	0.101677	0.032622	0.17	0.014	3.57	0.308	0.126	0.02
0.176695	0.009519	3.540674	0.05344	0.122121	0.032301	0.17	0.014	3.57	0.308	0.126	0.02
0.185093	0.009493	3.485547	0.051975	0.126225	0.031894	0.17	0.014	3.57	0.308	0.126	0.02
0.173325	0.009448	3.515474	0.053022	0.098028	0.032046	0.17	0.014	3.57	0.308	0.126	0.02
0.17701	0.009408	3.487704	0.052317	0.104857	0.03185	0.17	0.014	3.57	0.308	0.126	0.02
0.190882	0.009745	3.528946	0.053376	0.104905	0.032228	0.17	0.014	3.57	0.308	0.126	0.02
0.182721	0.009489	3.466163	0.052018	0.121854	0.031937	0.17	0.014	3.57	0.308	0.126	0.02
0.182633	0.00973	3.486805	0.053513	0.133602	0.032757	0.17	0.014	3.57	0.308	0.126	0.02
0.1831	0.009529	3.480669	0.052329	0.107856	0.031997	0.17	0.014	3.57	0.308	0.126	0.02
0.190847	0.00981	3.524246	0.0537	0.070979	0.032397	0.17	0.014	3.57	0.308	0.126	0.02
0.180869	0.009434	3.438159	0.051606	0.088271	0.031809	0.17	0.014	3.57	0.308	0.126	0.02

Appendix 4 - Expenditure Summary

	<u>Invoice</u>	Description	<u>AMT</u>	<u>Subtotal</u>
Geological Service	Contractor			
	15796 Aug2021 15796 Sep2021	0,	\$ 7,311.25 \$ 36,302.21	\$ 43,613.46
Analytical	5677355	Analytical	\$ 6,309.81	\$ 6,309.81
			Total	\$ 49,923.27

To: ALX RESOURCES CORP.

SUITE 408 – 1199 WEST PENDER STREET

VANCOUVER BC V6E 2R1

Page: 1
Total # Pages: 4 (A - D)
Plus Appendix Pages
Finalized Date: 14-OCT-2021
This copy reported on
15-OCT-2021
Account: ARCCVUJT

CERTIFICATE TB21244101

This report is for 82 samples of Rock submitted to our lab in Thunder Bay, ON, Canada on 11-SEP-2021.

The following have access to data associated with this certificate:

NEIL MCCALLUM

TAYLOR MCPHERSON

WARREN STANYER

	SAMPLE PREPARATION	
ALS CODE	DESCRIPTION	
WEI-21	Received Sample Weight	
LOG-22	Sample login – Rcd w/o BarCode	
CRU-31	Fine crushing - 70% <2mm	
CRU-QC	Crushing QC Test	
PUL-QC	Pulverizing QC Test	
SPL-21	Split sample – riffle splitter	
PUL-31	Pulverize up to 250g 85% <75 um	

	ANALYTICAL PROCEDURES	
ALS CODE	DESCRIPTION	INSTRUMENT
PGM-MS23L ME-MS61	Low level PGM – FA ICPMS 48 element four acid ICP–MS	ICP-MS

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

***** See Appendix Page for comments regarding this certificate *****

Signature:

Saa Traxler, General Manager, North Vancouver

To: ALX RESOURCES CORP.
SUITE 408 – 1199 WEST PENDER STREET
VANCOUVER BC V6E 2R1

Total # Pages: 4 (A - D)
Plus Appendix Pages
Finalized Date: 14-OCT-2021
Account: ARCCVUJT

Page: 2 - A

Sample Description	Method Analyte Units LOD	WEI-21 Recvd Wt. kg 0.02	ME-MS61 Ag ppm 0.01	ME-MS61 Al % 0.01	ME-MS61 As ppm 0.2	ME-MS61 Ba ppm 10	ME-MS61 Be ppm 0.05	ME-MS61 Bi ppm 0.01	ME-MS61 Ca % 0.01	ME-MS61 Cd ppm 0.02	ME-MS61 Ce ppm 0.01	ME-MS61 Co ppm 0.1	ME-MS61 Cr ppm 1	ME-MS61 Cs ppm 0.05	ME-MS61 Cu ppm 0.2	ME-MS61 Fe % 0.01
152301		1.52	0.27	7.60	8.8	740 60	0.50	0.02	2.83	0.80	13.85	35.6	340 23	0.90	30.7	4.22
152302		1.17	0.31	0.57	16.1	60	0.07	0.29	0.05	0.10	4.86	0.5		0.37	11.4	0.58
152303		1.55 0.73	0.05	7.26	<0.2	50 40	0.19	0.02	5.27	0.21	7 . 48	82.0	1240	0.09	79.9	6.00
152304		1.35	0.04 0.06	2.58 7.51	2.6 9.9	40 650	0.08 0.91	0.02 0.05	3.18 2.81	0.21 0.05	2.74 46.1	24.2 17.0	355 99	0.12 1.85	34.1 30.0	2.24 3.51
152305																
152306		1.18	0.01	1.48	0.3	20	0.07	0.01	10.95	0.03	1.40	86.4	2780	0.70	49.3	5.93
152307		1.07	0.01	1.25	0.2	10	<0.05	< 0.01	0.51	0.10	1.02	130.0	5870	0.68	5.7	7.34
152308		1.50	<0.01	1.34	0.4	10	0.05	< 0.01	0.38	0.04	1.10	120.5	3010	0.28	25.4	8.85
152309		1.19	0.01	7.01	0.5	1410	0.31	0.01	3.68	0.07	8.36	52.9	54	0.63	41.8	9.40
152310		1.53	0.01	3 . 78	0.3	20	0.21	0.01	4.81	0.09	3.99	142.0	1540	0.29	63.8	9.96
152311		1.31	0.07	6.92	3.0	150	0.48	0.01	3.64	0.13	6.76	90.1	1120	0.64	90.4	6.05
152312		1.12	0.05	7.85	16.5	310	0.80	0.25	0.37	0.10	18.95	4.7	43	0.67	22.2	2.34
152313		1.74	0.03	6.53	4.8	100	0.24	0.02	5.42	0.20	6.62	78.0	1200	0.53	89.5	7.70
152314		1.29	0.04	5.50	1.6	80	0.19	0.01	6.93	0.14	5.25	68.6	1240	0.49	68.3	6.46
152315		1.70	0.03	6.86	1.1	50	0.27	0.01	5.83	0.12	7.19	91.5	1480	0.18	89.1	6.56
152316		1.23	0.02	1.84	1.0	10	0.09	0.01	5,21	0.19	1.54	96.3	1520	0.96	19.5	6.03
152317		0.96	0.01	2.10	0.4	10	0.08	0.01	0.49	0.02	1.27	105.0	2910	0.11	19.4	6.92
152318		0.93	0.25	0.65	46.0	70	0.10	0.39	0.04	< 0.02	7.61	0.9	90	0.73	15.9	0.53
152319		0.62	0.20	0.55	61.6	70	0.13	0.61	0.05	0.21	6.58	2.8	38	0.51	32.7	0.91
152320		1.09	0.02	5.56	2.3	160	1.54	0.05	6.35	0.21	109.5	56.6	606	0.10	50.7	8.30
152321		0.85	0.04	6.78	3.6	990	0.29	0.03	6.30	0.26	7.63	60.2	644	0.63	83.5	6.23
152322		1.38	0.05	6.84	7.8	60	0.27	0.03	2.48	0.16	7.01	82.1	953	1.25	90.8	10.05
152323		1,11	0.14	3.06	5.4	70	0.32	0.04	5.37	0.21	5.98	198.0	1220	14.10	76.1	15.95
152324		1.43	0.23	7.09	15.1	10	0.18	0.46	0.06	0.29	10.35	124.0	989	0.22	728	16.65
152325		1.28	0.05	7.89	2.7	330	0.80	0.03	3.26	0.09	34.7	24.0	174	0.51	41.0	4.90
152326		0.94	0.07	0.54	22.1	90	0.24	0.28	0.03	0.05	3.03	1.3	55	0.26	17.0	0.83
152327		0.91	0.02	4.60	2.3	60	0.19	0.02	1.27	0.16	3.36	105.0	2560	0.26	73.4	9.65
152328		1.23	0.01	2.02	1.1	10	0.05	< 0.01	1.06	0.03	1.72	116.5	6000	3.14	21.4	7.48
152329		1.17	0.01	6.61	8.0	680	0.21	0.01	4.40	0.05	7.92	50.8	374	0.59	36.4	7.31
152330		0.83	0.03	6.79	9.2	130	0.23	0.01	5.63	0.09	6.42	54.0	657	0.47	91.5	5.25
152331		1.37	0.02	6.82	3.9	140	0.25	0.01	5.35	0.10	6.54	61.2	636	0.42	81.9	6.52
152332		1.01	0.03	7.67	1.2	220	0.27	0.01	3.20	0.13	8.43	52.6	49	0.50	113.5	6.92
152333		0.67	0.06	8.31	18.5	400	1.63	0.11	2.67	0.02	147.5	30.3	45	1.47	77.7	7.24
152334		0.94	0.08	8.00	11.2	580	1.14	0.11	1.22	0.03	45.4	14.8	61	0.90	25.4	3.84
152335		1.29	0.06	7.69	3.0	720	4.78	0.21	5.77	0.16	172.5	32.5	30	1.17	109.5	7.93
152336		1,12	0.01	7.30	0.7	130	0.29	<0.01	3.46	0.05	7.45	55.4	55	0.74	58.8	9.08
152337		1.23	0.01	5.95	1.8	170	0.31	0.01	4.08	0.05	8.07	57.1	451	0.82	59.9	8.62
152338		2.01	0.03	6.30	0.4	130	0.29	0.01	5.61	0.07	7.78	55.7	458	0.53	156.5	8.63
152339		1.23	0.04	7.94	1.8	470	1.16	0.11	3.21	0.09	53.9	15.1	93	0.96	20.0	3.61
152340		0.76	0.02	3.88	0.4	10	0.13	0.01	0.81	0.08	3.50	103.5	2500	1.79	55.8	8.32
		ı														

To: ALX RESOURCES CORP. SUITE 408 – 1199 WEST PENDER STREET **VANCOUVER BC V6E 2R1**

Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 14-OCT-2021

Account: ARCCVUIT

Page: 2 - B

								<u> </u>		CLIXIIII	<u> </u>	I ANAL		IDZIZ		
Sample Description	Method	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61
	Analyte	Ga	Ge	Hf	In	K	La	Li	Mg	Mn	Mo	Na	Nb	Ni	P	Pb
	Units	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm	ppm
	LOD	0.05	0.05	0.1	0.005	0.01	0.5	0.2	0.01	5	0.05	0.01	0.1	0.2	10	0.5
152301		18.10	0.09	2.4	0.035	0.35	6.3	68.3	3.81	672	0.20	2.27	2.9	171.0	370	162.5
152302		3.22	0.06	0.3	0.051	0.21	2.3	2.4	0.03	49	1.19	0.02	0.6	3.2	30	35.0
152303		14.00	0.07	1.3	0.043	0.03	3.4	27.6	3.30	1260	0.21	3.82	1.9	731	350	9.7
152304		6.51	0.05	0.4	0.022	0.05	1.4	17.1	0.75	358	2.51	0.33	0.8	113.5	180	10.3
152305		18.15	0.16	3.0	0.031	2.42	23.0	13.7	0.93	860	0.74	1.30	4.6	53.5	890	6.3
152306		2.61	0.05	0.3	0.013	0.01	0.6	52.1	14.30	1030	0.28	0.01	0.3	1315	60	0.6
152307		3.07	<0.05	0.2	0.011	0.01	<0.5	9.5	22.0	1100	0.11	0.01	0.2	2160	70	<0.5
152308		3.10	<0.05	0.2	0.012	0.02	<0.5	18.5	21.2	1420	0.28	<0.01	0.2	2160	60	<0.5
152309		17.00	0.08	1.8	0.054	1.83	3.0	57.1	5.00	1380	0.19	1.37	2.0	92.7	320	1.1
152310		8.67	0.06	0.8	0.034	0.02	1.4	16.5	12.85	2050	0.25	0.06	0.9	1255	180	<0.5
152311 152312 152313 152314 152315		13.45 18.25 14.10 11.55 13.40	0.06 0.08 0.06 0.05 0.05	1.3 2.1 1.4 1.1	0.055 0.024 0.066 0.046 0.054	0.28 1.20 0.14 0.04 0.03	2.6 8.7 2.5 2.1 2.7	56.6 13.5 40.4 39.3 15.4	2.74 0.78 4.31 3.99 2.89	1510 241 1780 2070 1800	0.25 1.37 0.21 0.20 0.31	2.60 4.19 1.61 1.01 3.23	1.5 2.3 1.7 1.4 1.6	544 20.9 509 513 744	250 380 230 200 250	2.9 4.2 1.4 1.4 0.5
152316		3.83	0.05	0.3	0.014	0.02	0.6	20.6	16.75	1400	0.33	0.02	0.3	1915	60	1.2
152317		4.38	<0.05	0.3	0.015	0.01	<0.5	8.8	16.25	941	0.08	0.02	0.3	1910	70	<0.5
152318		3.99	0.06	0.4	0.150	0.22	3.3	2.4	0.10	48	2.42	0.07	0.7	17.9	40	38.7
152319		3.11	0.06	0.3	0.114	0.16	2.9	9.0	0.05	106	2.89	0.04	0.5	17.5	50	21.5
152320		15.05	0.18	3.4	0.062	0.23	47.5	56.4	10.30	1400	0.05	0.86	3.6	365	2620	12.5
152321		14.50	0.06	1.4	0.063	0.53	3.2	52.7	5.02	2070	0.36	1.10	1.8	329	280	1.3
152322		14.50	0.07	1.4	0.063	0.15	2.9	57.9	5.20	1120	0.53	0.78	1.6	416	250	2.3
152323		6.30	0.08	0.5	0.030	0.63	3.5	7.3	6.15	4990	0.35	0.04	0.5	3220	110	2.9
152324		21.5	0.13	1.8	0.103	0.01	3.9	64.5	7.95	1330	0.82	0.01	2.1	266	310	11.1
152325		22.3	0.09	2.3	0.042	0.49	14.5	34.1	3.04	876	0.22	3.42	2.4	86.1	760	4.4
152326		2.50	0.05	0.3	0.044	0.17	1.4	2.9	0.03	63	2.31	0.04	0.5	13.0	60	8.2
152327		11.55	<0.05	0.9	0.038	0.01	1.3	42.0	6.13	2410	0.14	0.01	1.2	1100	210	5.1
152328		4.44	<0.05	0.3	0.016	0.03	0.7	15.4	20.5	1070	0.25	0.02	0.3	2060	80	<0.5
152329		12.80	0.08	1.2	0.046	1.52	3.2	40.1	6.41	1320	0.12	2.25	1.4	175.5	230	0.7
152330		13.90	0.05	1.2	0.049	0.12	2.5	37.9	4.55	1180	0.34	2.00	1.1	232	250	0.6
152331		14.60	0.06	1.3	0.052	0.19	2.7	41.5	6.22	1480	0.34	1.33	1.3	263	220	0.7
152332		19.20	0.06	1.8	0.066	0.28	3.1	48.9	4.02	1170	0.90	2.18	2.3	81.8	390	0.8
152333		24.0	0.26	5.3	0.056	1.17	62.9	41.7	2.70	899	0.39	2.74	9.4	38.2	2520	4.7
152334		22.1	0.11	2.0	0.025	0.92	20.6	21.1	1.21	680	0.62	4.08	3.2	40.6	700	6.8
152335		25.1	0.27	6.8	0.083	1.22	76.2	32.0	3.27	1740	0.39	1.43	7.8	27.0	3380	25.0
152336		18.15	0.07	1.7	0.058	0.45	2.7	45.0	4.24	1130	0.56	2.73	2.2	106.5	360	0.5
152337		13.55	0.07	1.3	0.053	0.55	3.2	45.4	7.38	1090	0.06	1.75	1.5	173.5	230	<0.5
152338		13.95	0.07	1.3	0.056	0.40	3.0	40.6	6.40	1170	0.17	2.57	1.5	168.5	240	0.5
152339		20.9	0.12	2.6	0.029	1.63	24.2	36.6	1.75	495	0.11	2.86	4.5	57.7	730	12.0
152340		8.05	0.05	0.7	0.032	0.02	1.9	43.9	17.90	1420	0.21	0.03	0.8	1390	150	0.5

To: ALX RESOURCES CORP. SUITE 408 – 1199 WEST PENDER STREET **VANCOUVER BC V6E 2R1**

Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 14-OCT-2021

Account: ARCCVUIT

Page: 2 - C

152301											CLKIIII	<u> </u>	I ANAL		IDZ IZ-		
192302 8.6 0.004 0.05 1.88 2.1 2 2.1 5.4 0.05 0.12 0.39 0.023 0.55 0.2 10 192303 0.5 0.002 0.20 0.16 12.9 2 0.3 33.0 0.05 0.05 0.05 0.06 0.16 0.06 0.05 192306 0.8 0.002 0.01 0.05 1.8 1.5 2 0.3 33.0 0.05 0.05 0.05 0.05 0.05 0.05 0.05 192306 0.8 0.002 0.01 0.05 1.6 1.1 0.2 116.5 0.05 0.05 0.05 0.05 0.05 0.05 192308 1.3 0.002 0.01 0.05 1.8 1.5 2 0.7 2.06 0.05 0.05 0.05 0.05 0.05 0.05 192308 1.3 0.002 0.01 0.05 12.8 1 0.2 18.5 0.05 0.05 0.05 0.06 0.05 0.05 0.05 192309 34.5 0.002 0.01 0.07 37.2 1 0.3 18.5 0.1 0.05 0.05 0.05 0.04 0.067 0.02 0.01 0.05 192310 1.1 0.002 0.01 0.07 37.2 1 0.3 18.5 0.05 0.05 0.04 0.067 0.05 0.05 0.05 192311 5.6 0.002 0.01 0.77 2.8 1 0.3 18.5 0.1 0.05 0.05 0.04 0.05 0.05 0.04 0.05 0	Sample Description	Analyte Units	Rb ppm	Re ppm	S %	Sb ppm	Sc ppm	Se ppm	Sn ppm	Sr ppm	Ta ppm	Te ppm	Th ppm	Ti %	Tl ppm	U ppm	V ppm
192303 0.5 0.002 0.37 0.13 41.5 1 0.4 98.7 0.11 0.05 0.28 0.465 0.20 0.1 247								•									
152305 75.3	152303		0.5					•	0.4								
152306																	
152308										116.5						<0.1	
152319	152307																
152310																	
152312 88,8 <0,0002 0,40 0,77 4,8 1 1,2 243 0,18 <0,05 1,60 0,173 0,48 0,5 38 152313 1,6 <0,0002 0,16 0,49 31,6 1 0,4 112,5 0,01 <0,05 0,19 0,356 0,09 <0,1 198 152315 0,5 0,0002 0,28 0,22 40,1 1 0,4 112,5 0,01 <0,05 0,19 0,356 0,09 <0,1 198 152316 2,6 <0,0002 0,11 0,47 12,7 1 0,02 46,2 <0,05 0,05 0,06 0,09 0,10 <0,1 64 152317 0,4 <0,0002 0,11 0,47 12,7 1 <0,02 46,2 <0,05 0,06 0,07 0,107 <0,02 <0,1 78 152318 9,4 <0,0004 0,09 1,62 4,5 2 5,7 7,0 0,06 0,06 0,07 0,107 <0,02 <0,1 78 152319 8,1 <0,0002 0,08 1,39 2,7 3 3,2 10,2 <0,05 0,33 0,49 0,023 0,82 0,2 13 152321 15,6 0,0002 0,18 0,24 39,0 1 0,5 135,5 0,11 <0,05 0,35 0,416 0,45 0,2 233 152322 5,3 0,0002 4,58 0,52 37,0 1 0,5 53,7 0,10 0,06 0,31 0,49 0,02 0,44 0,2 237 152324 0,2 0,0002 0,45 0,45 18,9 1 0,3 81,0 0,00 0,14 0,19 0,6 0,52 0,02 0,1 0,1 152325 6,8 0,0002 0,45 0,45 18,9 1 0,3 81,0 0,05 0,35 0,416 0,45 0,2 237 152326 6,8 0,0002 0,05 0,15 0,15 0,00 0,00 0,15 0,15 0,00 0,1 0,00 152327 0,9 0,0002 0,05 0,15 0,15 0,00 0,00 0,15 0,15 0,00 0,1 0,1 0,00 152328 3,9 0,0002 0,05 0,14 13,4 1 0,0 0,3 0,14 0,19 0,6 0,25 0,00 0,1 0,1 0,0 0,0 0,0 0,1 0,1 0,0 0,																	
152313 7.8																	
152314								•									
152315 Q.5 Q.002 Q.28 Q.22 40.1 1 Q.4 94.3 Q.11 C.05 Q.22 Q.430 Q.11 Q.1 Q.1								•									
152317 0,4 -0,002 0,01 0,24 14.4 1 -0,02 9,4 -0,05 0,05 0,07 0,107 -0,02 -0,1 78 152318 9,4 0,004 0,09 1,62 4.5 2 5.7 7.0 0,06 0,24 0,62 0,039 1,52 0,2 17 152319 8,1 -0,002 0,08 1,39 2.7 3 3.2 10.2 -0,05 0,33 0,49 0,023 0,82 0,2 13 152320 2,4 -0,002 0,01 0,24 27,6 1 1,0 341 0,21 -0,05 0,33 0,49 0,023 0,82 0,2 15 152322 15,6 0,002 0,18 0,24 39,0 1 0,5 53,7 0,10 0,06 0,35 0,416 0,45 0,2 223 152323 27,5 -0,002 0,45 0,54 18,9 1 0,5 53,7 0,10 0,06 0,31 0,49 0,24 0,2 237 152325 3,0 0,2 0,002 0,45 0,54 18,9 1 0,3 81,0 -0,05 0,08 0,15 0,135 0,49 0,1 97 152326 6,1 -0,002 0,15 0,26 14.4 1 0,6 831 0,13 -0,05 0,18 0,55 0,13 0,49 0,13 0,49 152327 0,9 -0,002 0,25 1,21 26,1 1 0,3 8,3 0,8 -0,05 0,13 0,51 0,023 0,63 0,1 16 152328 3,9 -0,002 0,08 0,14 13,4 1 -0,2 10,8 -0,05 0,05 0,08 0,10 0,18 0,11 20 152331 3,0 -0,002 0,01 0,07 41,8 1 0,4 122,5 0,08 -0,05 0,33 0,39 0,28 0,1 20 152331 3,3 -0,002 0,10 0,17 7,5 1 0,6 907 0,20 0,07 2,56 0,25 0,24 0,8 71 152333 3,4 -0,002 0,10 0,17 7,5 1 0,6 907 0,20 0,05 0,31 0,50 0,49 0,1 22 0,1 284 152336 5,2 0,002 0,10 0,17 7,5 1 0,6 907 0,20 0,05 0,31 0,50 0,40 0,14 0,19 0,46 0,40 0,15 0,13 0,40 0,14 0,14 0,14 0,14 0,14 0,14 0,14 0,14 0,14 0,15 0,14								1			0.11		0.22		0.11		
152318 9,4 0,004 0,09 1,62 4,5 2 5,7 7,0 0,06 0,24 0,62 0,039 1,52 0,2 17 152319 2,4 0,002 0,08 1,39 2,7 3 3,2 10,2 0,05 0,33 0,49 0,023 0,82 0,2 13 152320 2,4 0,002 0,18 0,24 27,6 1 1,0 341 0,21 0,05 0,35 0,416 0,45 0,22 23 152321 15,6 0,002 0,18 0,24 39,0 1 0,5 135,5 0,11 0,06 0,31 0,409 0,24 0,2 237 152322 5,3 0,002 4,58 0,52 37,0 1 0,5 53,7 0,10 0,66 0,31 0,409 0,24 0,2 237 152323 27,5 0,002 0,45 0,54 18,9 1 0,3 81,0 0,05 0,8 0,15 0,135 0,49 0,1 97 152324 0,2 0,002 4,09 1,22 48,3 13 1,3 2,0 0,14 0,19 0,46 0,529 0,02 0,1 299 152327 0,9 0,002 0,07 0,81 3,2 2 1,1 22,0 0,05 0,13 0,51 0,023 0,63 0,1 16 152328 3,9 0,002 0,05 0,14 13,4 1 0,2 1,8 3,0 0,8 0,05 0,05 0,08 0,15 0,023 0,63 0,1 16 152329 25,6 0,002 0,00 0,14 13,4 1 0,2 1,8 0,05 0,05 0,05 0,05 0,03 0,08 0,1 0,1 0,0 152331 6,5 0,002 0,01 0,27 41,8 1 0,4 124,5 0,08 0,05 0,29 0,39 0,28 0,1 28 152332 3,3 0,002 0,13 0,17 7,5 1 0,6 907 0,20 0,07 0,25 0,22 0,24 0,8 0,1 232 152333 3,4 0,002 0,10 0,17 7,5 1 0,6 907 0,20 0,07 2,56 0,25 0,22 0,24 0,8 71 152337 12,8 0,002 0,01 0,17 7,5 1 0,6 907 0,20 0,07 2,56 0,25 0,24 0,8 71 152338 3,4 0,002 0,01 0,16 40,6 1 0,3 124,5 0,10 0,05 0,34 0,51 0,09 0,1 29 152339 3,4 0,002 0,01 0,16 40,6 1 0,3 124,5 0,10 0,05 0,34 0,51 0,09 0,1 29 152337 12,8 0,002 0,01 0,16 40,6 1 0,3 12,45 0,10 0,05 0,34 0,51 0,09 0,1 29 152337 12,8 0,002 0,01 0,16 40,6 1 0,3 12,45 0,10 0,05 0,34 0,51 0,09 0,1 22 0,9 75 152338 3,44								•									
152310								•									
152320 2.4 < 0.002 0.01 0.24 27.6 1 1.0 341 0.21 < 0.05 7.85 0.557 0.02 1.5 202 152321 15.6 0.002 0.18 0.24 39.0 1 0.5 135.5 0.11 < 0.05 0.35 0.416 0.46 0.2 223 152322 5.3 0.002 4.58 0.52 37.0 1 0.5 53.7 0.10 0.06 0.31 0.409 0.24 0.2 237 152323 27.5 < 0.002 0.45 0.54 18.9 1 0.3 81.0 < 0.05 0.08 0.15 0.135 0.49 0.1 27 152324 0.2 0.002 0.49 1.22 48.3 13 1.3 2.0 0.14 0.19 0.46 0.529 0.02 0.1 299 152325 6.1 < 0.002 0.15 0.26 14.4 1 0.6 831 0.13 < 0.05 1.46 0.351 0.13 0.4 134 152326 6.8 0.002 0.07 0.81 3.2 2 1.1 22.0 < 0.05 0.13 0.51 0.023 0.63 0.1 16 152327 0.9 < 0.002 0.25 1.21 26.1 1 0.3 8.3 0.08 < 0.05 0.22 0.288 0.12 0.1 168 152328 3.9 < 0.002 0.08 0.14 13.4 1 < 0.2 10.8 < 0.05 < 0.05 0.08 0.10 0.18 0.18 0.1 152339 2.56 < 0.002 0.01 0.27 41.8 1 0.4 124.5 0.08 < 0.05 0.29 0.357 0.09 0.1 227 152334 2.5 < 0.002 0.11 0.07 36.5 1 0.4 124.5 0.08 < 0.05 0.31 0.36 0.08 0.1 0.28 0.1 152334 2.5 < 0.002 0.01 0.27 41.8 1 0.4 124.5 0.08 < 0.05 0.29 0.357 0.09 0.1 227 152334 2.5 < 0.002 0.11 0.07 36.5 1 0.6 907 0.20 0.07 2.66 0.25 0.24 1.6 210 152336 5.2 0.002 0.01 0.17 7.5 1 0.6 907 0.20 0.07 2.66 0.25 0.24 0.48 71 152337 12.8 < 0.002 0.01 0.10 0.77 7.5 1 0.6 907 0.20 0.07 2.66 0.25 0.24 0.48 71 152338 7.5 0.002 0.01 0.10 0.10 0.20 36.1 1 0.2 109.5 0.13 0.05 0.34 0.516 0.09 0.1 239 152339 34.4 < 0.002 0.01 0.10 0.10 0.20 3.61 1 0.2 109.5 0.13 0.05 0.34 0.516 0.09 0.1 239 152339 34.4 < 0.002 0.01 0.10 0.20 3.61 1 0.2 109.5 0																	
152322			2.4	<0.002	0.01	0.24	27.6	1	1.0	341	0.21	<0.05	7.85	0.557	0.02	1.5	202
152323 27.5 <0.002								•									
152324								•									
152326								13									
152327 0.9 <0.002	152325			<0.002	0.15	0.26		1	0.6	831				0.351		0.4	
152328																	
152329 25.6 <0.002																	
152331																	
152332 3.3 <0.002	152330		4.0	0.002	0.06	0.14	38.5	1	0.4	124.5	0.08		0.29		0.09	0.1	
152333 34.3 <0.002																	
152334 25.5 <0.002																	
152335 34.5 <0.002								•									
152337 12.8 <0.002								1									
152338 7.5 0.002 0.39 0.44 41.7 2 0.3 87.0 0.10 <0.05	152336							•									
152339 34.4 <0.002 0.01 0.20 8.9 1 0.6 809 0.24 <0.05 3.01 0.275 0.22 0.9 75								•									
								1									
								1									

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7

Phone: +1 604 984 0221 Fax: +1 604 984 0218

www.alsglobal.com/geochemistry

To: ALX RESOURCES CORP. SUITE 408 – 1199 WEST PENDER STREET **VANCOUVER BC V6E 2R1**

Page: 2 - D Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 14-OCT-2021

Account: ARCCVUIT

									CLIVIII ICATI	E OF ANALTSIS	1021244101
Sample Description	Method Analyte Units LOD	ME-MS61 W ppm 0.1	ME-MS61 Y ppm 0.1	ME-MS61 Zn ppm 2	ME-MS61 Zr ppm 0.5	PGM-MS23L Au ppb 1	PGM-MS23L Pt ppb 0.1	PGM-MS23L Pd ppb 0.2			
152301 152302	LOD	0.2 0.2	12.5 2.8	353 43	97.9 10.4	<1 1	2.8 <0.1	2.1 <0.2			
152303 152304 152305		0.3 0.1 0.3	18.2 4.5 12.7	109 82 57	47.2 15.6 129.0	2 5 1	13.1 3.3 0.5	12.6 3.0 0.4			
152306 152307 152308		<0.1 <0.1 <0.1	3.6 2.3 3.1	43 101 76	9.4 6.5 8.1	1 1 <1	5.8 3.8 4.5	14.8 3.3 4.3			
152309 152310		0.1 <0.1	17.7 9.8	75 100	57.9 28.3	<1 <1	5.5 8.9	4.3 5.4			
152311 152312 152313 152314		0.1 1.8 0.1 0.1	15.3 4.8 16.9 13.0	102 78 131 93	41.4 76.4 43.0 36.3	1 1 1 6	11.7 0.2 11.5 10.4	11.2 <0.2 11.6 10.5			
152315 152316		0.1	17.1	96 88	43.7 9.1	2 <1	12.6 3.3	12.8 2.4			
152317 152318 152319		0.1 0.3 0.3	4.1 4.2 3.0	62 8 133	10.8 15.5 9.9	<1 3 <1	3.0 0.1 0.1	2.8 <0.2 <0.2			
152320 152321 152322		0.2 0.2 0.2	19.4 14.3 14.2	151 141 109	50.0 45.8	<1 2 2	1.5 12.7 12.9	0.9 11.6 10.2			
152323 152324 152325		0.1 1.2 0.2	10.1 9.4 9.9	95 209 95	16.4 62.0 76.3	11 2 1	12.8 20.2 0.5	17.8 18.3 0.4			
152326 152327 152328		0.1 0.1 <0.1	1.6 9.6 3.8	24 139 65	10.7 31.1 11.0	2 2 1	0.1 6.0 4.4	<0.2 5.6 3.5			
152329 152330		0.2 0.3	13.3 13.0	50 79	42.6 38.5	<1 1	12.8 15.0	10.8 14.0			
152331 152332 152333		0.2 0.2 2.0	14.0 16.4 21.5	86 115 121	43.2 59.2 210	<1 1 1	14.4 4.3 1.7	12.9 2.0 1.7			
152334 152335 152336		0.4 0.3 0.1	7.8 29.8 14.5	62 148 64	70.4 263 57.6	1 2 <1	0.2 1.8 4.2	<0.2 1.6 2.5			
152337 152338 152339		0.2 0.1 0.5	13.6 13.1 8.2	50 56 71	45.0 44.4 99.7	<1 <1 <1	15.2 15.2 0.3	14.1 13.8 <0.2			
152340		0.1	7.5	101	23.5	3	7.7	5.9			

To: ALX RESOURCES CORP. SUITE 408 – 1199 WEST PENDER STREET **VANCOUVER BC V6E 2R1**

Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 14-OCT-2021

Account: ARCCVUIT

Page: 3 - A

								<u> </u>			CATE	/ / / / / / / / / / / / / / / / / / / /		IDLIL	1101	
Sample Description	Method Analyte Units LOD	WEI-21 Recvd Wt. kg 0.02	ME-MS61 Ag ppm 0.01	ME-MS61 Al % 0.01	ME-MS61 As ppm 0.2	ME-MS61 Ba ppm 10	ME-MS61 Be ppm 0.05	ME-MS61 Bi ppm 0.01	ME-MS61 Ca % 0.01	ME-MS61 Cd ppm 0.02	ME-MS61 Ce ppm 0.01	ME-MS61 Co ppm 0.1	ME-MS61 Cr ppm 1	ME-MS61 Cs ppm 0.05	ME-MS61 Cu ppm 0.2	ME-MS61 Fe % 0.01
152341		0.86	<0.01	2,82	13.4	10	0.07	<0.01	9,24	0.04	2.08	86.7	3470	1,57	13.7	5.87
152342		1.77	0.02	2.85	2.0	10	0.09	0.01	3.07	0.05	2.83	102.0	2870	1.36	18.0	7.59
152343		1.72	0.03	6.68	1.4	490	0.22	0.03	5.22	0.06	6.18	47.5	622	0.81	69.1	7.39
152344		1.37	0.01	1.47	0.2	10	0.07	0.01	19.50	0.03	1.73	67.3	2830	0.43	13.3	4.46
152345		1.20	0.01	2.15	<0.2	20	0.08	0.01	12.15	0.05	1.82	73.6	3920	0.12	20.2	5.98
152346		1,42	0.03	8.23	5.6	110	0.31	0.02	3.56	0.13	5.61	159.5	3190	0,22	118.5	6.73
152347		1.46	0.35	0.83	94.1	50	0.07	0.38	0.09	0.14	2.15	3.2	61	0.59	98.8	2.64
152348		1.72	0.04	7.15	0.7	10	0.28	0.02	7.25	0.07	7.42	74.9	1030	0.19	110.0	9.05
152349		0.92	0.06	6.94	5.6	60	0.27	0.02	1.25	0.69	4.73	120.0	1920	0.54	71.1	9.59
152350		1.49	0.03	7.16	5.5	210	0.27	0.01	5.92	0.10	5.50	104.0	2410	0.71	80.3	8.91
152351		1,44	0.02	4,34	16.6	30	0.39	0.01	4.73	0.11	5,58	97.9	2120	3,23	57.4	13,20
152352		1.28	0.01	7,50	0.6	200	0.12	0.01	1.66	0.06	6.67	65.7	798	0.61	51.6	11,15
152353		1.45	0.02	6.32	0.7	20	0.21	0.02	9.52	0.11	5.91	56.2	693	0.18	80.7	6.99
152354		1.32	0.02	6.68	44.2	130	0.25	0.01	4.67	0.07	5.98	77.2	1250	1.48	80.6	8.35
152355		1.64	0.03	7.38	1.0	120	0.34	0.01	5.59	0.08	7.75	52.7	59	0.55	115.5	6.90
152356		1,64	0.01	1,61	1.2	30	<0.05	<0.01	1,98	0,07	1,98	13.0	27	0,16	22.9	2,16
152357		0.88	0.06	6.65	9.1	30	0.41	0.01	5.90	0.13	7.87	49.2	258	0.42	116.0	7.52
152358		1.48	0.05	7.29	22.9	140	0.29	0.01	4.35	0.15	8.97	47.3	76	0.71	114.0	8.77
152359		1.93	0.03	5.78	1.2	490	0.22	0.01	7.18	0.09	5.13	75.6	565	0.62	78.2	6.49
152360		1.10	0.01	4.36	2.1	10	0.18	<0.01	3.91	0.05	3.28	105.0	1500	0.18	61.9	6.92
152361		1.33	0.06	6,81	74.2	2790	0.16	0.41	3.40	0.42	6,81	79.8	780	0.86	124.5	8.54
152362		0.98	0.15	0.46	44.3	50	<0.05	0.24	0.03	< 0.02	1.18	0.8	40	0.40	15.1	0.83
152363		1.59	0.03	4.27	1.4	20	<0.05	0.01	10.00	0.08	4.92	30.9	71	0.13	81.1	6.49
152364		1.06	0.04	6.16	0.8	80	0.19	0.01	2.69	0.08	5.34	55.0	368	0.29	109.5	10.30
152365		0.95	0.03	2.36	9.4	<10	0.08	0.01	1.49	0.05	2.15	108.0	4140	1.08	30.0	7.77
152366		1,01	0.04	3,47	1.8	10	0.14	0,01	0.86	0,14	3.90	104.5	2210	1,45	73.1	9,02
152367		1.37	0.18	1.34	1.9	160	1.37	0.03	0.54	0.22	16.75	5.5	23	14.90	35.3	24.3
152368		1.07	0.04	4.70	33.0	630	0.54	0.07	2.32	0.05	39.0	10.3	109	0.23	3.6	2.47
152369		1.18	0.01	7.22	2.1	810	0.22	0.01	4.00	0.05	4.87	64.3	585	0.40	67.4	6.43
152370		1.36	0.20	4.73	0.7	150	0.29	0.16	0.51	0.73	7.76	39.0	524	0.29	158.0	9.87
152371		1,67	0.30	6,42	6.9	180	0,51	0,24	1,27	0,31	14.45	27,6	116	0,61	127.5	8,44
152372		1.27	0.02	6.58	4.1	450	0.22	0.02	4.60	0.07	6.07	74.1	578	1.28	101.5	7.97
152373		1.14	0.01	1.86	0.5	10	0.06	< 0.01	2.76	0.03	1.60	106.5	4240	2.53	16.4	7.01
152374		1.78	0.10	6.80	11.0	60	0.33	0.03	3.03	0.06	8.16	57.1	50	0.44	122.5	9.02
152375		1.04	0.03	6.55	15.1	480	0.28	0.01	4.18	0.08	8.70	51.7	438	0.42	87.6	9.35
152376		1.49	0.02	7.43	0.9	610	1.82	0.01	5.39	0.10	98.8	45.7	18	1.19	21.3	9.40
152377		1.38	0.06	6.60	9.3	60	0.18	0.02	6.62	0.15	7.72	86.0	628	0.26	113.0	5.57
152378		1.14	0.06	5.49	26.5	40	0.32	0.02	6.23	0.16	5.22	105.5	1610	0.58	33.5	7.22
152379		0.97	0.02	6.74	3.1	150	0.28	0.01	6.59	0.12	6.99	61.4	549	0.49	46.6	9.10
152380		1.31	0.02	5.89	1.2	150	0.15	0.01	5.61	0.13	5.69	76.2	1860	0.83	33.1	11.70
																ŀ

To: ALX RESOURCES CORP.
SUITE 408 – 1199 WEST PENDER STREET
VANCOUVER BC V6E 2R1

Page: 3 - B
Total # Pages: 4 (A - D)
Plus Appendix Pages
Finalized Date: 14-OCT-2021
Account: ARCCVUIT

CERTIFICATE OF ANALYSIS TRAINALOL

									(CERTIFI	CATE C	F ANAL	<u>.YSIS</u>	TB2124	4101	
Sample Description	Method	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61
	Analyte	Ga	Ge	Hf	In	K	La	Li	Mg	Mn	Mo	Na	Nb	Ni	P	Pb
	Units	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm	ppm
	LOD	0.05	0.05	0.1	0.005	0.01	0.5	0.2	0.01	5	0.05	0.01	0.1	0.2	10	0.5
152341		5.96	<0.05	0.4	0.021	0.01	0.8	46.6	13.50	1580	0.08	0.02	0.5	1090	110	<0.5
152342		6.02	0.07	0.6	0.025	0.03	1.2	16.2	17.05	1200	0.06	0.31	0.7	1600	130	0.7
152343		12.75	0.09	1.2	0.046	1.10	2.6	56.8	7.05	1050	0.18	1.52	1.2	176.5	220	1.9
152344		2.99	0.05	0.2	0.014	0.01	0.9	8.3	8.02	3130	0.17	0.02	0.2	1280	80	0.5
152345		4.33	0.05	0.3	0.018	0.01	0.8	17.2	8.91	3050	<0.05	0.01	0.4	1355	110	<0.5
152346 152347 152348 152349 152350		17.50 3.29 14.95 13.00 14.90	0.07 0.05 0.07 0.07 0.07	1.4 0.4 1.3 1.3	0.073 0.229 0.065 0.061 0.059	0.10 0.26 0.01 0.23 0.50	2.1 1.3 3.0 1.6 1.9	36.9 2.4 23.0 84.2 30.1	3.36 0.12 3.08 4.45 3.64	1980 88 1690 883 2070	0.40 2.00 0.90 0.80 0.29	2.85 0.12 0.32 1.36 0.11	1.9 0.7 1.9 1.5 1.7	1780 16.5 344 799 910	330 70 260 250 190	1.1 23.7 1.2 2.9 0.7
152351		9.55	0.08	0.9	0.038	0.12	2.4	12.1	7.68	5940	0.18	0.09	1.2	739	210	0.6
152352		14.50	0.07	1.4	0.063	0.60	2.5	55.8	6.02	2840	0.36	0.13	1.9	244	270	0.6
152353		12.85	0.05	1.3	0.050	0.03	2.3	28.3	3.37	1820	0.21	0.50	1.6	222	250	<0.5
152354		13.55	0.08	1.0	0.060	0.86	2.2	66.2	4.35	1880	0.34	0.38	1.5	417	220	<0.5
152355		17.55	0.08	1.6	0.071	0.40	2.9	40.7	3.97	1210	0.36	1.83	2.2	115.5	330	<0.5
152356		4.46	<0.05	0.2	0.010	0.08	0.7	11.3	1.13	692	0.06	0.03	0.3	19.0	70	0.9
152357		13.45	0.09	1.4	0.051	0.05	3.1	25.2	3.69	1540	0.42	2.01	1.7	89.4	290	0.8
152358		15.75	0.09	1.4	0.058	0.43	3.6	38.9	4.46	1440	0.17	1.36	2.0	63.1	320	0.9
152359		12.40	0.07	1.0	0.052	1.02	2.0	31.9	5.67	1570	0.53	1.25	1.2	602	180	<0.5
152360		9.20	0.07	0.8	0.038	0.01	1.1	49.8	10.10	1400	0.09	0.06	0.8	893	160	<0.5
152361		13.85	0.11	1.2	0.092	1.54	2.7	53.7	4.85	1240	0.80	0.54	1.3	1135	230	5.2
152362		3.80	0.05	0.2	0.114	0.17	0.5	9.9	0.07	54	1.86	0.01	0.5	6.2	70	14.2
152363		12.30	0.06	0.8	0.042	0.06	1.9	16.0	2.53	1200	0.82	0.26	1.0	55.4	160	0.6
152364		17.10	0.09	1.4	0.067	0.32	2.0	79.6	7.53	1960	0.12	0.32	1.7	120.5	280	<0.5
152365		4.97	0.06	0.4	0.021	0.02	0.9	5.8	18.25	1190	0.18	0.01	0.5	1770	100	0.5
152366		7.55	0.06	0.7	0.027	0.01	2.1	15.6	15.45	1220	0.14	0.01	0.9	1050	150	<0.5
152367		3.27	0.08	0.6	0.022	0.54	9.2	1.6	1.04	2610	3.43	0.02	1.0	75.2	820	5.7
152368		6.25	0.11	1.8	0.015	2.23	19.7	15.7	0.77	1020	0.17	1.78	2.0	75.5	220	7.2
152369		13.60	0.09	1.1	0.042	1.12	2.0	50.9	5.92	1190	0.12	1.43	1.2	231	240	0.8
152370		9.40	0.08	1.5	0.047	1.05	3.3	30.8	2.88	613	1.56	0.74	2.1	215	240	10.3
152371		15.45	0.10	2.1	0.082	1.57	6.4	35.4	1.77	850	1.01	1.79	3.0	57.6	390	14.2
152372		13.05	0.11	1.1	0.054	0.92	2.6	84.9	8.00	1050	0.47	1.33	1.1	748	210	<0.5
152373		3.80	0.05	0.3	0.013	0.03	0.6	14.4	20.2	1170	0.06	0.03	0.3	2250	90	<0.5
152374		15.85	0.10	1.5	0.061	0.55	3.2	54.3	3.97	1700	0.46	1.59	1.8	69.6	290	4.0
152375		15.15	0.09	1.4	0.061	0.61	3.4	33.1	5.64	2000	0.18	1.27	1.8	119.0	290	1.7
152376		21.1	0.20	6.6	0.078	1.30	45.8	28.8	2.53	1240	1.82	2.09	32.6	14.7	1700	3.3
152377		12.10	0.12	1.2	0.057	0.07	3.1	13.5	2.94	1300	0.26	2.72	1.5	303	290	2.0
152378		9.57	<0.05	1.2	0.052	0.06	2.0	75.5	5.85	1780	0.51	0.68	1.4	1090	240	1.9
152379		12.75	<0.05	1.4	0.056	0.12	2.7	19.8	3.29	3180	0.18	1.46	1.7	325	270	0.6
152380		12.65	<0.05	1.2	0.053	0.22	2.2	26.2	3.55	3990	0.41	0.20	1.4	669	190	0.8

To: ALX RESOURCES CORP. SUITE 408 – 1199 WEST PENDER STREET **VANCOUVER BC V6E 2R1**

Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 14-OCT-2021

Account: ARCCVUIT

Page: 3 - C

										CEKTIFI	CAILO	1 /11/12	. 1 313	IDZIZ	17101	
Sample Description	Method	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61
	Analyte	Rb	Re	S	Sb	Sc	Se	Sn	Sr	Ta	Te	Th	Ti	TI	U	V
	Units	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
	LOD	0.1	0.002	0.01	0.05	0.1	1	0.2	0.2	0.05	0.05	0.01	0.005	0.02	0.1	1
152341		1.4	<0.002	0.01	0.06	17.6	1	<0.2	52.2	<0.05	<0.05	0.11	0.146	0.03	<0.1	104
152342		2.2	<0.002	0.06	0.06	18.4	1	0.2	8.5	0.06	<0.05	0.10	0.184	0.11	<0.1	111
152343		25.5	<0.002	0.75	0.35	37.3	1	0.5	124.0	0.09	<0.05	0.29	0.359	0.18	0.1	226
152344		0.8	<0.002	<0.01	<0.05	9.6	1	<0.2	104.0	<0.05	<0.05	0.05	0.065	<0.02	<0.1	54
152345		0.8	<0.002	<0.01	<0.05	13.2	<1	<0.2	94.6	<0.05	<0.05	0.07	0.119	<0.02	<0.1	87
152346 152347 152348 152349 152350		0.6 11.7 0.7 2.8 30.9	<0.002 0.004 0.002 0.003 0.002	0.28 0.20 1.17 3.30 0.48	0.06 2.04 0.34 0.06 0.14	46.1 2.4 42.1 39.9 42.5	1 4 1 <1	0.5 4.7 0.5 0.5 0.4	136.5 15.5 81.6 64.2 43.5	0.13 0.05 0.12 0.11 0.12	<0.05 0.47 <0.05 <0.05 <0.05	0.21 0.61 0.25 0.24 0.24	0.552 0.044 0.467 0.444 0.459	0.15 1.75 0.19 0.33 0.48	0.3 0.2 0.2 0.4 0.2	323 19 258 268 259
152351 152352 152353 152354 152355		7.7 30.4 1.3 37.7 8.3	<0.002 <0.002 <0.002 <0.002 0.002	0.01 0.01 0.13 0.03 0.21	0.17 <0.05 0.27 0.05 0.50	26.4 39.4 36.2 37.6 35.9	<1 <1 1 <1	0.3 0.6 0.4 0.5 0.3	67.2 29.2 36.7 70.5 133.5	0.08 0.13 0.11 0.10 0.14	<0.05 <0.05 <0.05 0.06 <0.05	0.23 0.27 0.21 0.20 0.31	0.276 0.517 0.421 0.428 0.542	0.13 0.39 0.05 0.61 0.13	0.1 0.1 0.1 0.1 0.1	158 277 229 239 273
152356		3.7	<0.002	0.01	0.19	4.4	<1	<0.2	7.8	<0.05	<0.05	0.07	0.064	0.04	<0.1	43
152357		2.0	<0.002	0.13	0.17	37.1	<1	0.5	104.0	0.11	<0.05	0.32	0.464	0.06	0.1	248
152358		10.0	<0.002	1.01	0.21	35.7	1	0.4	158.0	0.12	<0.05	0.41	0.496	0.27	0.1	255
152359		38.3	<0.002	0.17	0.19	49.1	1	0.2	145.0	0.08	<0.05	0.19	0.370	0.36	<0.1	251
152360		0.6	<0.002	0.01	0.12	28.5	<1	0.2	8.3	0.06	<0.05	0.12	0.261	<0.02	<0.1	164
152361		51.7	0.002	1.61	3.45	41.0	13	1.6	119.5	0.09	0.52	0.28	0.380	0.81	0.1	246
152362		8.8	0.002	0.08	1.08	2.2	2	4.0	5.0	<0.05	0.27	0.41	0.022	0.76	0.2	12
152363		1.3	<0.002	0.23	0.14	20.1	1	0.3	56.8	0.06	<0.05	0.16	0.268	0.04	<0.1	139
152364		9.6	<0.002	0.02	0.05	44.0	<1	0.5	27.9	0.11	<0.05	0.26	0.442	0.08	0.1	255
152365		2.1	<0.002	0.08	0.85	15.4	<1	<0.2	15.5	<0.05	<0.05	0.10	0.161	0.16	<0.1	100
152366		1.3	<0.002	0.31	0.19	23.2	<1	0.2	10.0	0.06	<0.05	0.17	0.241	0.09	0.1	141
152367		55.6	<0.002	0.85	1.10	1.7	2	0.4	22.0	0.06	<0.05	0.78	0.058	0.47	0.2	17
152368		43.3	<0.002	0.01	0.11	5.4	<1	0.5	128.0	0.12	<0.05	2.74	0.154	0.37	0.7	29
152369		39.9	<0.002	0.02	0.19	42.4	1	0.3	120.5	0.08	<0.05	0.27	0.394	0.29	0.1	258
152370		26.1	0.002	4.30	0.32	16.6	2	0.6	52.2	0.16	0.22	0.99	0.258	0.40	0.3	107
152371		45.3	0.002	1.78	0.33	23.1	3	1.1	83.0	0.21	0.28	1.25	0.420	0.55	0.4	186
152372		25.0	<0.002	0.02	0.25	38.7	<1	0.3	110.5	0.08	<0.05	0.25	0.345	0.12	0.1	223
152373		3.1	<0.002	0.03	<0.05	12.3	<1	<0.2	12.2	<0.05	<0.05	0.07	0.095	0.02	<0.1	74
152374		30.0	<0.002	2.67	0.64	34.8	1	0.9	103.5	0.12	0.06	0.32	0.453	0.48	0.1	237
152375		14.8	<0.002	0.72	0.32	42.6	1	0.6	171.5	0.11	<0.05	0.35	0.467	0.36	0.1	255
152376		37.1	<0.002	0.23	0.09	20.9	<1	1.4	640	1.92	<0.05	4.26	1.775	0.40	0.9	262
152377		3.5	<0.002	0.30	0.06	39.7	1	0.4	101.0	0.10	<0.05	0.23	0.437	0.10	0.1	238
152378		2.6	<0.002	0.03	0.23	32.0	1	0.4	63.5	0.09	0.07	0.22	0.348	0.08	0.1	198
152379		5.8	<0.002	0.01	0.07	36.6	<1	0.4	76.1	0.11	<0.05	0.25	0.415	0.03	0.1	222
152380		11.1	<0.002	0.04	<0.05	34.4	1	0.4	38.1	0.09	<0.05	0.26	0.364	0.07	0.1	206

To: ALX RESOURCES CORP. SUITE 408 – 1199 WEST PENDER STREET **VANCOUVER BC V6E 2R1**

Page: 3 - D Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 14-OCT-2021

Account: ARCCVUIT

									CERTIFICATE OF ANALYSIS	1821244101
Sample Description	Method Analyte Units	ME-MS61 W ppm 0.1	ME-MS61 Y ppm 0.1	ME-MS61 Zn ppm 2	ME-MS61 Zr ppm 0.5	PGM-MS23L Au ppb 1	PGM-MS23L Pt ppb 0.1	PGM-MS23L Pd ppb 0.2		
	LOD									
152341		<0.1	4.6	52	16.7	2	5.9	4.9		
152342		<0.1	7.2	68	20.6	<1	4.9	4.4		
152343		0.1	13.7	88	41.7	<1	16.9	15.2		
152344		<0.1	9.7	29 59	7.2	2 1	3.2	2.5 1.5		
152345		<0.1	4.8		11.8		4.5			
152346		0.5	9.9	151	50.3	2	15.5	15.7		
152347		0.4	2.1	147	15.2	6	0.7	1.0		
152348		0.2	19.2	114	42.3	2	13.3	13.7		
152349		0.2	11.3	277	46.8	3	13.8	14.3 11.9		
152350		0.1	16.9	123	44.6	2	11.6			
152351		0.2	15.5	114	34.4	3	12.3	28.3		
152352		0.1	18.0	132	32.9	<1	10.9	11.6		
152353		0.1	16.4	84	41.1	1	11.3	11.0		
152354		0.3	9.8	129	46.6	1	12.5	11.9		
152355		0.9	14.3	91	55.7	<1	15.5	14.6		
152356		0.1	4.0	32	6.1	1	1.5	1.0		
152357		0.5	14.9	104	49.9	2	14.3	14.6		
152358		0.3	15.5	118	47.6	1	5.9	3.5		
152359		0.2	12.1	78	35.0	<1	20.7	17.9		
152360		0.2	9.4	54	27.4	<1	9.5	5.6		
152361		0.1	15.3	271	42.1	4	15.0	13.9		
152362		0.3	1.7	15	9.0	2	0.1	<0.2		
152363		0.1	10.8	75 70	29.3	2	8.0	8.0		
152364		0.1	15.4	79 67	51.0	6	15.8	12.1		
152365		0.9	4.7	67	13.4	<1	4.9	5.0		
152366		0.2	7.6	107	23.1	<1	8.9	8.0		
152367		0.3	10.4	70	24.5	17	<0.1	0.2		
152368		0.5	6.4	33	71.9	2	0.3	0.4		
152369		0.1 0.3	9 . 5 7 . 6	72 132	38.2 61.8	<1 8	15.5 5.2	14.4 5.2		
152370										
152371		0.4	11.5	220	77.8	11	8.4	8.8		
152372		0.1	13.8	84	39.1	<1	13.9	12.9		
152373		<0.1	3.7	64	10.2 53.0	<1 1	3.3	2.9 4.1		
152374 152375		0.4 0.2	11.8 14.1	106 107	53 . 0 44.4	1	4.1 14.7	4.1 14.6		
152376		0.4	26.1	129	261	1	0.4	0.4		
152377		0.2	14.3	86	43.6	4	13.8	13.7		
152378		0.5	9.9	131	38.0	<1	9.3	9.3		
152379 152380		0.1 0.1	18.4 16.2	102 120	44.4 41.5	24 1	10.8 9.8	10 . 2 9.3		
132380			10.2	120	41.0	<u> </u>	3. 0	J.J		

ton Hwy
uver BC V7H 0A7

To: ALX RESOURCES CORP.
SUITE 408 – 1199 WEST PENDER STREET
VANCOUVER BC V6E 2R1

Page: 4 - A
Total # Pages: 4 (A - D)
Plus Appendix Pages
Finalized Date: 14-OCT-2021

Account: ARCCVUJT

CERTIFICATE OF ANALYSIS TB21244101	
Method Analyte Sample Description WEI-21 ME-MS61 ME-MS	ME-MS61 Fe % 0.01
152381	11.15 5.89

VANCOUVER BC V6E 2R1

SUITE 408 – 1199 WEST PENDER STREET

To: ALX RESOURCES CORP.

Page: 4 - B Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 14-OCT-2021

Account: ARCCVUJT

CERTIFICATE OF ANALYSIS	TB21244101
-------------------------	------------

									CERTIFICATE OF ANALYSIS TB21244101								
Sample Description	Method Analyte Units LOD	ME-MS61 Ga ppm 0.05	ME-MS61 Ge ppm 0.05	ME-MS61 Hf ppm 0.1	ME-MS61 In ppm 0.005	ME-MS61 K % 0.01	ME-MS61 La ppm 0.5	ME-MS61 Li ppm 0.2	ME-MS61 Mg % 0.01	ME-MS61 Mn ppm 5	ME-MS61 Mo ppm 0.05	ME-MS61 Na % 0.01	ME-MS61 Nb ppm 0.1	ME-MS61 Ni ppm 0.2	ME-MS61 P ppm 10	ME-MS61 Pb ppm 0.5	
152381 152382	LOD						2.1 8.2							932 57.1			

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 To: ALX RESOURCES CORP. SUITE 408 – 1199 WEST PENDER STREET VANCOUVER BC V6E 2R1

Page: 4 - C Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 14-OCT-2021

Account: ARCCVUJT

Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

(ALS									CERTIFICATE OF ANALYSIS TB21244101								
Sample Description	Method Analyte Units LOD	ME-MS61 Rb ppm 0.1	ME-MS61 Re ppm 0.002	ME-MS61 S % 0.01	ME-MS61 Sb ppm 0.05	ME-MS61 Sc ppm 0.1	ME-MS61 Se ppm 1	ME-MS61 Sn ppm 0.2	ME-MS61 Sr ppm 0.2	ME-MS61 Ta ppm 0.05	ME-MS61 Te ppm 0.05	ME-MS61 Th ppm 0.01	ME-MS61 Ti % 0.005	ME-MS61 TI ppm 0.02	ME-MS61 U ppm 0.1	ME-MS61 V ppm 1	
152381 152382	LOD	14.3 15.6	<0.002 0.002	0.24 1.34	0.07 0.39	22.4 20.2	1 1	0.2	39.0 401	0.05 0.23	<0.05 0.05	0.12 0.97	0.195 0.334	0.16 0.11	<0.1 <0.3	120 127	

To: ALX RESOURCES CORP.

SUITE 408 – 1199 WEST PENDER STREET
VANCOUVER BC V6E 2R1

Page: 4 - D Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 14-OCT-2021

Account: ARCCVUJT

									CERTIFIC	ATE OF AN	ALT3I3	1821244101	
Sample Description	Method Analyte Units LOD	ME-MS61 W ppm 0.1	ME-MS61 Y ppm 0.1	ME-MS61 Zn ppm 2	ME-MS61 Zr ppm 0.5	PGM-MS23L Au ppb 1	PGM-MS23L Pt ppb 0.1	PGM-MS23L Pd ppb 0.2					
152381 152382		0.1 0.8	12.5 16.3	96 160	19.9 72.7	2	6.2 2.5	4.3 2.3					

To: ALX RESOURCES CORP. SUITE 408 – 1199 WEST PENDER STREET **VANCOUVER BC V6E 2R1**

Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 14-OCT-2021

Account: ARCCVUJT

	CERTIFICATE CO	OMMENTS	
		ALYTICAL COMMENTS	
Applies to Method:	REEs may not be totally soluble in this method. ME-MS61		
	LAB	ORATORY ADDRESSES	
	Processed at ALS Thunder Bay located at 645 Norah Crescer	ıt, Thunder Bay, ON, Canada	
Applies to Method:	CRU-31 CRU-QC PUL-QC SPL-21	LOG-22 WEI-21	PUL-31
Applies to Method:	Processed at ALS Vancouver located at 2103 Dollarton Hwy, ME-MS61 PGM-MS23L	North Vancouver, BC, Canada.	

To: ALX RESOURCES CORP.
SUITE 408 – 1199 WEST PENDER STREET
VANCOUVER BC V6E 2R1

Page: 1 Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 14-OCT-2021 This copy reported on 15-OCT-2021

15-OCT-2021 Account: ARCCVUJT

QC CERTIFICATE TB21244101

This report is for 82 samples of Rock submitted to our lab in Thunder Bay, ON, Canada on 11-SEP-2021.

The following have access to data associated with this certificate:

NEIL MCCALLUM TAYLOR MCPHERSON WARREN STANYER

	SAMPLE PREPARATION									
ALS CODE	DESCRIPTION									
WEI-21	Received Sample Weight									
LOG-22	Sample login – Rcd w/o BarCode									
CRU-31	Fine crushing - 70% < 2mm									
CRU-QC	Crushing QC Test									
PUL-QC	Pulverizing QC Test									
SPL-21	Split sample – riffle splitter									
PUL-31	Pulverize up to 250g 85% <75 um									
<u> </u>										

	ANALYTICAL PROCEDURES	
ALS CODE	DESCRIPTION	INSTRUMENT
PGM-MS23L ME-MS61	Low level PGM – FA ICPMS 48 element four acid ICP–MS	ICP-MS

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

***** See Appendix Page for comments regarding this certificate *****

Signature:

Saa Traxler, General Manager, North Vancouver

To: ALX RESOURCES CORP.

SUITE 408 – 1199 WEST PENDER STREET
VANCOUVER BC V6E 2R1

Total # Pages: 4 (A - D)
Plus Appendix Pages
Finalized Date: 14-OCT-2021

Account: ARCCVUJT

Page: 2 - A

Sample Description	Method Analyte Units LOD	ME-MS61 Ag ppm 0.01	ME-MS61 Al % 0.01	ME-MS61 As ppm 0.2	ME-MS61 Ba ppm 10	ME-MS61 Be ppm 0.05	ME-MS61 Bi ppm 0.01	ME-MS61 Ca % 0.01	ME-MS61 Cd ppm 0.02	ME-MS61 Ce ppm 0.01	ME-MS61 Co ppm 0.1	ME-MS61 Cr ppm 1	ME-MS61 Cs ppm 0.05	ME-MS61 Cu ppm 0.2	ME-MS61 Fe % 0.01	ME-MS61 Ga ppm 0 . 05
							STAN	IDARDS								
EMOG-17		68.0	4.60	578	150	1.78	5.49	1.95	20.4	45.8	744	56	7,21	8000	4.89	11.80
EMOG-17		68.1	4.65	606	200	1.81	5.76	1.92	20.6	47.3	756	58	7.24	8170	4.85	12.15
Target Range - Lower	r Bound	60.9	4.18	522	310	1.60	5.31	1.72	18.15	42.9	686	49	6.56	7750	4.42	10.75
	r Bound	74.5	5.13	638	440	2.06	6.51	2.12	22.2	52.5	838	62	8.12	8910	5.42	13.25
GPP-14																
Target Range – Lower Upper	r Bound r Bound															
MRGeo08		3.95	7.11	33.9	1060	3.37	0.64	2.66	2.30	64.4	19.7	94	12.05	598	3.90	19.20
MRGeo08		4.91	7.58	34.5	1130	3.45	0.69	2.83	2.38	65.6	20.7	93	13.25	672	4.10	20.0
Target Range – Lower		3.93	6.64	29 . 5 36 . 5	920 1270	2.98	0.58	2.35	2.00	66.2	17.7	81	11.20	587 675	3.55	17.50
OREAS 682	r Bound	4.83	8.14	30.3	1270	3.76	0.73	2.90	2.48	81.0	21.9	102	13.80	675	4.37	21.5
Target Range - Lower	r Bound r Bound															
OREAS 905	Bouria	0.62	7.57	36.7	2780	3.05	5.68	0.63	0.37	96.2	15.5	19	7.18	1495	4.17	25.9
OREAS 905		0.57	7.55	33.1	2740	2.94	5.69	0.61	0.34	96.5	13.7	22	7.27	1540	4.06	24.0
Target Range - Lower	r Bound	0.46	6.67	31.0	2280	2.69	5.14	0.52	0.30	82.8	13.2	16	6.05	1425	3.66	22.5
Upper	r Bound	0.58	8.17	38.4	3110	3.39	6.30	0.66	0.42	101.0	16.4	22	7.51	1640	4.50	27.7
OREAS 920		0.10	7.92	5.4	560	2.68	0.57	0.52	0.05	95.3	14.6	88	8.64	114.0	4.13	19.70
Target Range - Lower		0.08	6.91	4.6	450	2.54	0.61	0.44	0.04	84.6	13.9	75	7.72	104.0	3.72	18.65
	r Bound	0.13	8.47	6.1	640	3.22	0.77	0.56	0.12	103.5	17.3	93	9.54	120.0	4.56	22.9
OREAS-45h Target Range - Lower	r Bound															
							BL	ANKS								
BLANK		<0.01	<0.01	<0.2	<10	<0.05	0.01	<0.01	<0.02	0.01	<0.1	<1	<0.05	0.2	<0.01	<0.05
BLANK		<0.01	<0.01	0.2	<10	<0.05	<0.01	<0.01	<0.02	<0.01	<0.1	1	<0.05	<0.2	<0.01	<0.05
BLANK		<0.01	<0.01	<0.2	<10	<0.05	0.01	<0.01	<0.02	<0.01	<0.1	1	<0.05	<0.2	<0.01	<0.05
BLANK		<0.01	<0.01	<0.2	<10	<0.05	<0.01	<0.01	<0.02	0.01	<0.1	1	<0.05	<0.2	<0.01	<0.05
Target Range - Lower		<0.01	<0.01	<0.2	<10	<0.05	<0.01	<0.01	<0.02	<0.01	<0.1	<1	<0.05	<0.2	<0.01	<0.05
	r Bound	0.02	0.02	0.4	20	0.10	0.02	0.02	0.04	0.02	0.2	2	0.10	0.4	0.02	0.10
BLANK																
BLANK	r Pound															
Target Range – Lower Upper	r Bound r Bound															

To: ALX RESOURCES CORP.

SUITE 408 – 1199 WEST PENDER STREET
VANCOUVER BC V6E 2R1

Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 14-OCT-2021

Account: ARCCVUJT

Page: 2 - B

		<u> </u>								QC CERTIFICATE OF ANALTSIS TB21244101							
Sample Description	Method Analyte Units LOD	ME-MS61 Ge ppm 0.05	ME-MS61 Hf ppm 0.1	ME-MS61 In ppm 0.005	ME-MS61 K % 0.01	ME-MS61 La ppm 0.5	ME-MS61 Li ppm 0.2	ME-MS61 Mg % 0.01	ME-MS61 Mn ppm 5	ME-MS61 Mo ppm 0.05	ME-MS61 Na % 0.01	ME-MS61 Nb ppm 0.1	ME-MS61 Ni ppm 0.2	ME-MS61 P ppm 10	ME-MS61 Pb ppm 0.5	ME-MS61 Rb ppm 0.1	
							STAN	DARDS									
EMOG-17 EMOG-17 Target Range – Lower	^r Bound	0.14 0.13 0.06	1.7 1.9 1.6	0.887 0.933 0.823	1.65 1.65 1.49	25.3 25.1 20.7	24.2 29.2 23.9	0.96 0.94 0.86	737 747 670	1055 1065 997	1.10 1.09 0.99	15.0 15.3 12.7	7470 7610 6820	810 810 700	7140 7250 6570	112.5 111.0 98.9	
GPP-14	Bound	0.30	2.2	1.015	1.85	26.4	29.7	1.08	830	1220	1.23	15.7	8330	880	8030	121.0	
	·Bound ·Bound																
MRGeo08 MRGeo08		0.14	3.2 3.5	0.172 0.195	3.12 3.27	29.7 30.8	32.9 36.2	1.32 1.36	548 587	14.45 16.15	1.96 2.10	20.2 22.9	686 746	1020 1080	1065 1115	174.5 171.5	
Target Range – Lower Upper OREAS 682	· Bound · Bound	<0.05 0.28	2.8 3.6	0.155 0.201	2.79 3.43	31.1 39.1	29 . 5 36 . 5	1.17 1.45	497 619	13.65 16.75	1.76 2.18	19.0 23.4	622 760	930 1160	971 1185	173 . 5 212	
Target Range – Lower	Bound Bound																
OREAS 905 OREAS 905	Davind	0.18 0.12 <0.05	7.0 6.9 6.1	0.668 0.649 0.571	2.98 2.94 2.58	48.1 49.2 40.9	21.8 21.0 17.8	0.28 0.27 0.24	372 371 333	3.14 3.20 2.89	2.47 2.44 2.15	18.0 18.3 16.2	9.4 9.0 8.4	280 270 240	30.2 28.8 26.9	141.0 136.0 124.0	
Target Range – Lower Upper OREAS 920	· Bound	0.28 0.21	7.6 4.6	0.709 0.083	3.18 2.93	51.1 47.1	22.2	0.24 0.31 1.36	418 611	3.65 0.45	2.65 0.65	20.0	10.7 42.4	320 780	33.9 21.4	152.0 177.0	
Target Range – Lower	Bound Bound	<0.05 0.29	4.0 5.2	0.070 0.098	2.59 3.19	41.0 51.2	26.0 32.2	1.23 1.53	535 665	0.34 0.58	0.56 0.71	15.6 19.2	37.4 46.2	670 840	20 . 7 26 . 4	158.5 193.5	
OREAS-45f Target Range – Lower Upper OREAS-45h	Bound Bound																
Target Range - Lower	Bound Bound																
							BLA	ANKS									
BLANK BLANK BLANK BLANK		<0.05 0.07 0.08 <0.05	<0.1 <0.1 <0.1 <0.1	<0.005 <0.005 <0.005 <0.005	<0.01 <0.01 <0.01 <0.01	<0.5 <0.5 <0.5 <0.5	<0.2 <0.2 <0.2 <0.2	<0.01 <0.01 <0.01 <0.01	<5 <5 <5 <5	<0.05 <0.05 <0.05 <0.05	<0.01 <0.01 <0.01 <0.01	<0.1 <0.1 <0.1 <0.1	<0.2 <0.2 <0.2 <0.2	<10 <10 <10 <10	<0.5 <0.5 <0.5 <0.5	<0.1 <0.1 <0.1 <0.1	
Target Range – Lower Upper BLANK BLANK	Bound Bound	<0.05 0.10	<0.1 0.2	<0.005 0.010	<0.01 0.02	<0.5 1.0	<0.2 0.4	<0.01 0.02	<5 10	<0.05 0.10	<0.01 0.02	<0.1 0.2	<0.2 0.4	<10 20	<0.5 1.0	<0.1 0.2	
Target Range – Lower	Bound Bound																

To: ALX RESOURCES CORP.

SUITE 408 – 1199 WEST PENDER STREET
VANCOUVER BC V6E 2R1

Total # Pages: 4 (A - D)
Plus Appendix Pages
Finalized Date: 14-OCT-2021

Account: ARCCVUJT

Page: 2 - C

									Qt	CENTI	FICATE	OF AIN	AL I DID	IDZI	244101	
Sample Description	Method Analyte Units LOD	ME-MS61 Re ppm 0.002	ME-MS61 S % 0.01	ME-MS61 Sb ppm 0.05	ME-MS61 Sc ppm 0.1	ME-MS61 Se ppm 1	ME-MS61 Sn ppm 0.2	ME-MS61 Sr ppm 0.2	ME-MS61 Ta ppm 0.05	ME-MS61 Te ppm 0.05	ME-MS61 Th ppm 0.01	ME-MS61 Ti % 0.005	ME-MS61 Tl ppm 0.02	ME-MS61 U ppm 0.1	ME-MS61 V ppm 1	ME-MS61 W ppm 0.1
							STAN	DARDS								
	· Bound · Bound	0.312 0.321 0.286 0.354	3.19 3.30 2.91 3.57	786 803 643 869	7.8 7.6 7.2 9.0	7 7 4 9	2.5 2.5 2.2 3.2	197.5 206 184.5 226	0.89 0.94 0.78 1.08	1.36 1.30 1.10 1.46	10.70 10.95 10.35 12.65	0.312 0.322 0.294 0.370	2.01 2.10 1.89 2.61	3.2 3.1 2.8 3.7	73 73 67 84	3.8 4.0 3.3 4.7
GPP-14 Target Range – Lower Upper	Bound Bound															
MRGeo08 MRGeo08 Target Range – Lower		0.007 0.007 0.004 0.013	0.30 0.32 0.27 0.35	4.41 5.01 3.89 5.39	11.3 11.4 11.1 13.7	1 1 <1 4	3.9 4.2 3.5 4.7	294 317 277 339	1.49 1.57 1.39 1.81	<0.05 <0.05 <0.05 0.12	16.65 16.30 17.90 21.9	0.485 0.519 0.443 0.553	1.06 1.17 0.86 1.21	5.0 4.6 4.9 6.2	108 115 97 121	4.7 5.2 4.1 5.8
Target Range – Lower Upper OREAS 905 OREAS 905 Target Range – Lower Upper	Bound	<0.002 <0.002 <0.002 0.004	0.07 0.07 0.04 0.09	2.06 2.04 1.61 2.29	5.3 4.7 4.3 5.5	3 2 <1 4	4.0 3.9 3.4 4.6	159.5 155.5 141.0 173.0	1.34 1.27 1.16 1.52	0.07 0.09 <0.05 0.17	14.50 14.55 13.15 16.05	0.124 0.122 0.105 0.139	0.73 0.72 0.58 0.83	4.9 5.2 4.4 5.6	10 10 8 13	2.8 2.8 2.3 3.3
OREAS-45f	Bound	<0.002 <0.002 0.004	0.03 <0.01 0.05	1.48 1.22 1.76	12.8 12.8 15.8	<1 <1 2	4.8 4.3 5.7	86.3 73.6 90.4	1.37 1.17 1.55	<0.05 <0.05 0.12	20.0 17.35 21.2	0.485 0.434 0.542	0.85 0.73 1.03	3.6 3.3 4.2	98 86 108	3.3 2.5 3.7
OREAS-45h Target Range - Lower	Bound															
							BLA	ANKS								
	· Bound · Bound	<0.002 <0.002 <0.002 <0.002 <0.002 0.004	<0.01 <0.01 <0.01 <0.01 <0.01 0.02	<0.05 <0.05 <0.05 <0.05 <0.05	<0.1 <0.1 <0.1 <0.1 <0.1 0.2	1 1 <1 <1 <1 = <1 2	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2	<0.05 <0.05 <0.05 <0.05 <0.05	<0.05 <0.05 <0.05 <0.05 <0.05	<0.01 <0.01 <0.01 <0.01 <0.01 0.02	<0.005 <0.005 <0.005 <0.005 <0.005	<0.02 <0.02 <0.02 <0.02 <0.02 0.04	<0.1 <0.1 <0.1 <0.1 <0.1 0.2	<1 <1 <1 <1 <1 2	<0.1 <0.1 <0.1 <0.1 <0.1
BLANK BLANK Target Range – Lower Upper	Bound Bound															

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 To: ALX RESOURCES CORP. SUITE 408 - 1199 WEST PENDER STREET **VANCOUVER BC V6E 2R1**

Page: 2 - D Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 14-OCT-2021

Account: ARCCVUJT

Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

QC CERTIFICATE OF ANALYSIS TB21244101 ME-MS61 ME-MS61 ME-MS61 PGM-MS23L PGM-MS23L PGM-MS23L Method Zn Zr Au Analyte ppb ppb ppb Units ppm ppm ppm Sample Description 0.1 2 0.5 0.1 0.2 LOD **STANDARDS** EMOG-17 16.9 7510 61.4 65.4 EMOG-17 16.4 7410 55.6 Target Range - Lower Bound 14.3 6800 17.7 8320 76.4 Upper Bound 476 GPP-14 915 488 853 473 452 Target Range - Lower Bound 965 533 510 Upper Bound MRGeo08 24.4 786 104.5 25.5 834 112.5 MRGeo08 Target Range - Lower Bound 23.8 722 92.2 Upper Bound 29.3 886 126.0 834 427 OREAS 682 71 816 417 Target Range - Lower Bound 70 81 920 471 Upper Bound OREAS 905 16.3 144 258 136 253 OREAS 905 16.2 Target Range - Lower Bound 14.0 122 214 17.4 154 290 Upper Bound OREAS 920 34.0 118 160.5 29.8 102 128.0 Target Range - Lower Bound 130 174.0 Upper Bound 36.6 OREAS-45f 16 34.7 53.1 17 35.6 53.4 Target Range - Lower Bound Upper Bound 21 40.4 60.6 42 OREAS-45h 87.7 136.5 38 Target Range - Lower Bound 82.2 120.0 Upper Bound 45 92.9 136.0 **BLANKS BLANK** < 0.1 <2 < 0.5 < 0.1 <2 < 0.5 **BLANK BLANK** < 0.1 <2 < 0.5 <2 < 0.1 < 0.5 **BLANK** Target Range - Lower Bound < 0.1 <2 < 0.5 0.2 1.0 Upper Bound **BLANK** < 0.1 0.3 2 0.1 0.6 **BLANK** Target Range - Lower Bound <1 < 0.1 < 0.2 Upper Bound 0.4

^{*****} See Appendix Page for comments regarding this certificate *****

To: ALX RESOURCES CORP.

SUITE 408 – 1199 WEST PENDER STREET VANCOUVER BC V6E 2R1

Total # Pages: 4 (A - D)
Plus Appendix Pages
Finalized Date: 14-OCT-2021

Account: ARCCVUJT

Page: 3 - A

|--|

								<u> </u>		, 	ICAIL	U . ,,			277101	
	Method Analyte Units LOD	ME-MS61 Ag ppm 0.01	ME-MS61 Al % 0.01	ME-MS61 As ppm 0.2	ME-MS61 Ba ppm 10	ME-MS61 Be ppm 0.05	ME-MS61 Bi ppm 0.01	ME-MS61 Ca % 0.01	ME-MS61 Cd ppm 0.02	ME-MS61 Ce ppm 0.01	ME-MS61 Co ppm 0.1	ME-MS61 Cr ppm 1	ME-MS61 Cs ppm 0.05	ME-MS61 Cu ppm 0.2	ME-MS61 Fe % 0.01	ME-MS61 Ga ppm 0.05
							DUPL	ICATES								
ORIGINAL DUP Target Range – Lower B Upper B																
ORIGINAL DUP Target Range – Lower B Upper B																
152315 DUP Target Range – Lower B Upper B		0.03 0.03 0.02 0.04	6.86 7.03 6.59 7.30	1.1 1.0 0.8 1.3	50 50 40 60	0.27 0.27 0.21 0.33	0.01 0.01 <0.01 0.02	5.83 5.96 5.59 6.20	0.12 0.12 0.09 0.15	7.19 7.04 6.75 7.48	91.5 93.2 87.6 97.1	1480 1600 1460 1620	0.18 0.19 0.13 0.24	89.1 91.1 86.7 93.5	6.56 6.74 6.31 6.99	13.40 13.55 12.75 14.20
152318 DUP Target Range – Lower B Upper B																
152351 DUP Target Range – Lower B Upper B		0.02 0.02 <0.01 0.03	4.34 4.58 4.23 4.69	16.6 15.9 15.2 17.3	30 30 20 40	0.39 0.36 0.31 0.44	0.01 0.01 <0.01 0.02	4.73 5.01 4.62 5.12	0.11 0.12 0.09 0.14	5.58 5.60 5.30 5.88	97.9 102.0 94.9 105.0	2120 2250 2070 2300	3.23 3.22 3.01 3.44	57.4 59.3 56.1 60.6	13.20 13.90 12.85 14.25	9.55 9.81 9.15 10.20
152354 DUP Target Range – Lower B Upper B																
152374 DUP Target Range – Lower B Upper B																
ORIGINAL DUP Target Range – Lower B Upper B		1.07 1.09 1.02 1.14	7.18 7.42 6.93 7.68	353 354 336 371	910 940 850 1000	0.77 0.77 0.68 0.86	1.36 1.41 1.31 1.46	4.60 4.71 4.41 4.90	0.19 0.16 0.15 0.20	9.71 9.59 9.16 10.15	19.4 20.2 18.7 20.9	54 54 50 58	11.95 12.15 11.40 12.70	84.6 86.7 82.5 88.8	5.03 5.19 4.84 5.38	13.70 13.95 13.10 14.55

To: ALX RESOURCES CORP.
SUITE 408 – 1199 WEST PENDER STREET
VANCOUVER BC V6E 2R1

Page: 3 - B
Total # Pages: 4 (A - D)
Plus Appendix Pages
Finalized Date: 14-OCT-2021

Account: ARCCVUJT

	Method Analyte Units LOD	ME-MS61 Ge ppm	ME-MS61 Hf	ME-MS61	ME-MS61	ME-MS61	NE NCC1									
	LOD	0.05	ppm 0.1	In ppm 0 . 005	K % 0.01	La ppm 0.5	ME-MS61 Li ppm 0.2	ME-MS61 Mg % 0.01	ME-MS61 Mn ppm 5	ME-MS61 Mo ppm 0.05	ME-MS61 Na % 0.01	ME-MS61 Nb ppm 0.1	ME-MS61 Ni ppm 0.2	ME-MS61 P ppm 10	ME-MS61 Pb ppm 0.5	ME-MS61 Rb ppm 0.1
							DUPL	ICATES								
ORIGINAL DUP Target Range – Lower B Upper Bo																
ORIGINAL DUP Target Range – Lower Bo Upper Bo																
152315 DUP Target Range – Lower Bo Upper Bo		0.05 0.05 <0.05 0.10	1.4 1.4 1.2 1.6	0.054 0.057 0.048 0.063	0.03 0.03 0.02 0.04	2.7 2.6 2.0 3.3	15.4 14.7 14.1 16.0	2.89 2.99 2.78 3.10	1800 1800 1705 1895	0.31 0.34 0.26 0.39	3.23 3.31 3.10 3.44	1.6 1.6 1.4 1.8	744 769 718 795	250 250 230 270	0.5 0.6 <0.5 1.0	0.5 0.5 0.4 0.6
152318 DUP Target Range – Lower Bo Upper Bo																
152351 DUP Target Range – Lower Bo Upper Bo		0.08 0.08 <0.05 0.10	0.9 1.0 0.8 1.1	0.038 0.039 0.032 0.045	0.12 0.13 0.11 0.14	2.4 2.4 1.8 3.0	12.1 13.3 11.9 13.5	7.68 8.12 7.50 8.31	5940 6230 5780 6390	0.18 0.21 0.14 0.25	0.09 0.10 0.08 0.11	1.2 1.2 1.0 1.4	739 780 721 798	210 220 190 240	0.6 0.6 <0.5 1.0	7.7 7.6 7.2 8.1
152354 DUP Target Range – Lower Bo Upper Bo																
152374 DUP Target Range – Lower Bo Upper Bo																
ORIGINAL DUP Target Range – Lower Bo Upper Bo		0.09 0.07 <0.05 0.10	1.0 0.7 0.7 1.0	0.099 0.101 0.090 0.110	3.01 3.15 2.92 3.24	5.1 4.9 4.3 5.8	46.1 46.1 43.6 48.6	2,25 2,32 2,16 2,41	1070 1100 1025 1145	0.81 0.88 0.75 0.94	0.03 0.03 0.02 0.04	4.4 4.5 4.1 4.8	18.1 17.8 16.9 19.0	1520 1580 1460 1640	16.3 16.3 15.0 17.6	128.5 122.0 119.0 131.5

To: ALX RESOURCES CORP. SUITE 408 – 1199 WEST PENDER STREET **VANCOUVER BC V6E 2R1**

Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 14-OCT-2021

Account: ARCCVUIT

Page: 3 - C

								<u> </u>	<u> </u>	CLINIII	I IC/ TIL	01 7 11 17	121313	1021	277101	
And Sample Description	thod alyte nits OD	ME-MS61 Re ppm 0.002	ME-MS61 S % 0.01	ME-MS61 Sb ppm 0.05	ME-MS61 Sc ppm 0.1	ME-MS61 Se ppm 1	ME-MS61 Sn ppm 0.2	ME-MS61 Sr ppm 0.2	ME-MS61 Ta ppm 0.05	ME-MS61 Te ppm 0.05	ME-MS61 Th ppm 0.01	ME-MS61 Ti % 0.005	ME-MS61 Tl ppm 0.02	ME-MS61 U ppm 0.1	ME-MS61 V ppm 1	ME-MS61 W ppm 0.1
							DUPL	ICATES								
ORIGINAL DUP Target Range – Lower Bour Upper Bour																
ORIGINAL DUP Target Range – Lower Bour Upper Bour																
152315 DUP Target Range – Lower Bour Upper Bour		0.002 0.002 <0.002 0.004	0.28 0.30 0.27 0.31	0.22 0.22 0.15 0.29	40.1 39.7 37.8 42.0	1 1 <1 2	0.4 0.4 <0.2 0.6	94.3 96.6 90.5 100.5	0.11 0.11 <0.05 0.17	<0.05 <0.05 <0.05 0.10	0.22 0.23 0.20 0.25	0.430 0.433 0.405 0.458	0.11 0.12 0.09 0.14	0.1 0.1 <0.1 0.2	242 247 231 258	0.1 0.1 <0.1 0.2
152318 DUP Target Range – Lower Bour Upper Bour																
152351 DUP Target Range – Lower Bour Upper Bour		<0.002 <0.002 <0.002 0.004	0.01 0.01 <0.01 0.02	0.17 0.17 0.11 0.23	26.4 26.7 25.1 28.0	<1 <1 <1 2	0.3 0.3 <0.2 0.4	67.2 68.4 64.2 71.4	0.08 0.08 <0.05 0.10	<0.05 <0.05 <0.05 0.10	0.23 0.24 0.21 0.26	0.276 0.294 0.266 0.304	0.13 0.12 0.10 0.15	0.1 0.1 <0.1 0.2	158 166 153 171	0.2 0.2 <0.1 0.3
152354 DUP Target Range – Lower Bour Upper Bour																
152374 DUP Target Range – Lower Bour Upper Bour																
ORIGINAL DUP Target Range – Lower Bour Upper Bour		0.002 <0.002 <0.002 0.004	2.58 2.66 2.48 2.76	10.80 11.10 10.10 11.80	28.0 28.2 26.6 29.6	5 5 4 6	1.2 1.3 1.0 1.5	136.0 138.5 130.0 144.5	0.24 0.26 0.19 0.31	0.52 0.49 0.43 0.58	1.24 1.13 1.12 1.25	0.278 0.293 0.266 0.305	3.35 3.37 3.09 3.63	0.6 0.5 0.4 0.7	201 207 193 215	1.6 1.7 1.4 1.9

To: ALX RESOURCES CORP.

SUITE 408 – 1199 WEST PENDER STREET
VANCOUVER BC V6E 2R1

Total # Pages: 4 (A - D)
Plus Appendix Pages
Finalized Date: 14-OCT-2021

Account: ARCCVUJT

Page: 3 - D

Sample Description Method Analyte Units LOD	ME-MS61 ME-MS61 Y Zn ppm ppm 0.1 2	ME-MS61 Zr ppm 0.5	PGM-MS23L Au ppb 1	PGM-MS23L Pt ppb	Pd	
				0.1	ppb 0 . 2	
					DUPLIC	ATFS
ORIGINAL DUP Target Range – Lower Bound Upper Bound			5 2 2 5	0.2 0.1 <0.1 0.2	0.7 0.5 0.4 0.8	· · · - ·
ORIGINAL DUP Target Range – Lower Bound Upper Bound			4 4 3 5	0.1 0.1 <0.1 0.2	0.2 0.2 <0.2 0.4	
	17.1 96 17.4 98 16.3 90 18.2 104	43.7 44.6 40.3 48.0				
152318 DUP Target Range – Lower Bound Upper Bound			3 3 2 4	0.1 0.1 <0.1 0.2	<0.2 0.3 <0.2 0.4	
152351 DUP Target Range – Lower Bound Upper Bound	15.5 114 15.5 120 14.6 109 16.4 125	34.4 34.9 31.6 37.7				
152354 DUP Target Range – Lower Bound Upper Bound			1 <1 <1 2	12.5 12.0 11.5 13.0	11.9 11.7 11.0 12.6	
152374 DUP Target Range – Lower Bound Upper Bound			1 1 <1 2	4.1 4.4 3.9 4.6	4.1 3.9 3.6 4.4	
ORIGINAL DUP Target Range – Lower Bound Upper Bound	8.5 31 8.3 32 7.9 28 8.9 35	25.0 19.9 20.3 24.6				

To: ALX RESOURCES CORP. SUITE 408 – 1199 WEST PENDER STREET VANCOUVER BC V6E 2R1

Page: 4 - A Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 14-OCT-2021

Account: ARCCVUIT

(, , , ,									Q(C CERTI	FICATE	OF AN	ALYSIS	TB21	244101	
Sample Description	Method Analyte Units LOD	ME-MS61 Ag ppm 0.01	ME-MS61 Al % 0.01	ME-MS61 As ppm 0.2	ME-MS61 Ba ppm 10	ME-MS61 Be ppm 0.05	ME-MS61 Bi ppm 0.01	ME-MS61 Ca % 0.01	ME-MS61 Cd ppm 0.02	ME-MS61 Ce ppm 0.01	ME-MS61 Co ppm 0.1	ME-MS61 Cr ppm 1	ME-MS61 Cs ppm 0.05	ME-MS61 Cu ppm 0.2	ME-MS61 Fe % 0.01	ME-MS61 Ga ppm 0.05
							DUPL	ICATES								
ORIGINAL		0.08	3.30	13.6	50	0.58	1.11	7.79	0.11	51.1	10.7	93	1.25	2.2	2,20	6.04
DUP		0.08	3.32	14.4	50	0.69	1.07	7.74	0.11	51.8	11.0	93	1.28	2.2	2.22	6.02
Target Range - Lower	r Bound	0.07	3.13	13.1	40	0.55	1.03	7.37	0.08	48.9	10.2	87	1.15	1.9	2.09	5.68
Uppei	Bound	0.09	3.49	14.9	60	0.72	1.15	8.16	0.14	54.0	11.5	99	1.38	2.5	2.33	6.38
							PREP DU	JPLICATE	:S							
152354 152354 PREP DUP		0.02 0.03	6.68 6.94	44.2 43.5	130 130	0.25 0.25	0.01 0.02	4.67 4.73	0.07 0.06	5.98 6.74	77.2 81.1	1250 1240	1.48 1.77	80.6 83.8	8.35 8.44	13.55 14.70

152354

152354 PREP DUP

ALS Canada Ltd.

2103 Dollarton Hwy
North Vancouver BC V7H 0A7
Phone: +1 604 984 0221 Fax: +1 604 984 0218
www.alsglobal.com/geochemistry

To: ALX RESOURCES CORP.

SUITE 408 – 1199 WEST PENDER STREET
VANCOUVER BC V6E 2R1

0.34

0.24

0.38

0.40

1.5

1.6

417

418

220

220

QC CERTIFICATE OF ANALYSIS TB21244101

Page: 4 - B
Total # Pages: 4 (A - D)
Plus Appendix Pages
Finalized Date: 14-OCT-2021

<0.5

0.5

37.7

38.0

Account: ARCCVUJT

Sample Description	Method Analyte Units LOD	ME-MS61 Ge ppm 0.05	ME-MS61 Hf ppm 0.1	ME-MS61 In ppm 0.005	ME-MS61 K % 0.01	ME-MS61 La ppm 0.5	ME-MS61 Li ppm 0.2	ME-MS61 Mg % 0.01	ME-MS61 Mn ppm 5	ME-MS61 Mo ppm 0.05	ME-MS61 Na % 0.01	ME-MS61 Nb ppm 0.1	ME-MS61 Ni ppm 0.2	ME-MS61 P ppm 10	ME-MS61 Pb ppm 0.5	ME-MS61 Rb ppm 0.1
							DUPL	ICATES								
ORIGINAL DUP Target Range – Lower Upper	Bound Bound	0.09 0.10 <0.05 0.10	1.1 1.1 0.9 1.3	0.046 0.046 0.039 0.053	1.14 1.15 1.08 1.21	29.2 28.7 27.0 30.9	14.5 15.5 14.1 16.0	3.98 4.01 3.79 4.20	2050 2040 1940 2150	2.40 2.47 2.26 2.61	0.02 0.02 <0.01 0.03	4.0 4.4 3.9 4.5	15.1 15.3 14.2 16.2	470 490 450 510	24.1 21.0 20.9 24.2	47.9 47.9 45.4 50.4

PREP DUPLICATES

4.35

4.41

1890

66.2

73.4

0.08

< 0.05

1.0

1.4

0.060

0.070

0.86

0.87

2.2

2.5

To: ALX RESOURCES CORP.
SUITE 408 – 1199 WEST PENDER STREET
VANCOUVER BC V6E 2R1

Page: 4 - C Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 14-OCT-2021

Account: ARCCVUJT

									QC	CERTI	FICATE	OF AN	ALYSIS	TB21	<u> 244101</u>	
Sample Description	Method Analyte Units LOD	ME-MS61 Re ppm 0.002	ME-MS61 S % 0.01	ME-MS61 Sb ppm 0.05	ME-MS61 Sc ppm 0.1	ME-MS61 Se ppm 1	ME-MS61 Sn ppm 0.2	ME-MS61 Sr ppm 0.2	ME-MS61 Ta ppm 0.05	ME-MS61 Te ppm 0.05	ME-MS61 Th ppm 0.01	ME-MS61 Ti % 0.005	ME-MS61 Tl ppm 0.02	ME-MS61 U ppm 0.1	ME-MS61 V ppm 1	ME-MS61 W ppm 0.1
							DUPL	ICATES								
ORIGINAL DUP Target Range – Lower Upper	Bound Bound	0.003 <0.002 <0.002 0.004	0.25 0.25 0.23 0.27	1.51 1.54 1.36 1.69	5.4 5.5 5.1 5.8	1 1 <1 2	0.8 0.8 0.6 1.0	31.8 32.4 30.3 33.9	0.30 0.30 0.24 0.37	<0.05 <0.05 <0.05 0.10	5.71 5.91 5.51 6.11	0.113 0.119 0.105 0.127	0.17 0.17 0.14 0.20	1.7 1.7 1.5 1.9	48 49 45 52	0.8 0.9 0.7 1.0
							PREP DU	JPLICATE	:S							
152354 152354 PREP DUP		<0.002 <0.002	0.03 0.03	0.05 0.07	37.6 41.4	<1 1	0.5 0.5	70 . 5 71 . 5	0.10 0.10	0.06 0.06	0.20 0.25	0.428 0.423	0.61 0.66	0.1 0.1	239 241	0.3 0.4

To: ALX RESOURCES CORP.

SUITE 408 – 1199 WEST PENDER STREET
VANCOUVER BC V6E 2R1

Page: 4 - D Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 14-OCT-2021

Account: ARCCVUJT

									QC CERTIFIC	AIL OI AI	IALIJIJ	IDZIZ	11101
	Method	ME-MS61	ME-MS61	ME-MS61		PGM-MS23L	PGM-MS23L						
	Analyte	Y ppm	Zn ppm	Zr ppm	Au ppb	Pt ppb	Pd ppb						
Sample Description	Units LOD	0.1	2	0.5	1	0.1	0.2						
							DUPLIC	ATES					
ORIGINAL		12.6	47	38.1									
DUP		13.0	47	40.6									
Target Range – Lower Upper	r Bound r Bound	12.1 13.5	43 51	35.9 42.8									
							PREP DUP	LICATES					
152354 152354 PREP DUP		9.8 9.7	129 129	46.6 46.1	1 1	12.5 12.3	11.9 12.2						
1323341 REI DOI					•								

To: ALX RESOURCES CORP. SUITE 408 - 1199 WEST PENDER STREET **VANCOUVER BC V6E 2R1**

Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 14-OCT-2021

Account: ARCCVUJT

· · · · · · · · · · · · · · · · · · ·			QC CERTIFICATE OF AUTOETSIS	1821211101
		CERTIFICATE COMMENT	S	
		ANALYTICAL	COMMENTS	
Applies to Method:	REEs may not be totally soluble in this ME-MS61		COMMENTS	
		LABORATORY	ADDRESSES	
	B. L. MCTL L. B. L	LABORATORY		
Applies to Method:	Processed at ALS Thunder Bay located CRU-31	CRU-QC	LOG-22	PUL-31
Applies to Method.	PUL-QC	SPL-21	WEI-21	102 31
Applies to Method	Processed at ALS Vancouver located a	t 2103 Dollarton Hwy, North Vanc		
Applies to Method:	ME-MS61	PGM-MS23L		