

We are committed to providing <u>accessible customer service</u>. If you need accessible formats or communications supports, please <u>contact us</u>.

Nous tenons à améliorer <u>l'accessibilité des services à la clientèle</u>. Si vous avez besoin de formats accessibles ou d'aide à la communication, veuillez <u>nous contacter</u>.

2022 REPORT ON PROSPECTING AND DRILLING PROGRAM ON THE AYLMER PROPERTY

Aylmer and Telfer Townships

Sudbury Mining Division

NTS 41I15

Tuesday, 28 February 2023

Benjamin Williams, P.Geo Sarah Reese

CONTENTS

LIST O	OF FIGURES	II
LIST O	OF TABLES	II
LIST O	OF APPENDICIES	II
1.0	INTRODUCTION	3
2.0	PROPERTY LOCATION, ACCESS, AND DESCRIPTION	4
3.0	HISTORICAL WORK	9
4.0	GEOLOGICAL SETTING AND MINERALIZATION	10
4.1	REGIONAL GEOLOGY	10
4.2	Property Geology	12
4.3	MINERALIZATION	13
5.0	EXPLORATION	14
5.1	PROSPECTING	15
5.2	DRILLING	16
5.	.2.1 Hole AY-22-01 Summary	17
5.	.2.1 Hole AY-22-02 Summary	18
5.	.2.1 Hole AY-22-03 Summary	18
5.4	SAMPLE PREPARATION, METHODOLOGY, ANALYSIS AND SECURITY	
5.	.4.1 Field Sample Collection and Security	19
5.	.4.2 Sample Analysis	20
5.	.4.3 Internal QA/QC Monitoring	20
6.0	EXPENDITURES	21
7.0	RECOMMENDATIONS	22
8.0	STATEMENT OF AUTHORS	23
8.1	STATEMENT OF AUTHOR: WILLIAMS, B	23
8.2	STATEMENT OF AUTHOR: REESE, S	24
9.0	REFERENCES	25

LIST OF FIGURES

Figure 1: Aylmer Property Location Map	5
Figure 2: Aylmer Property Tenure Map	6
Figure 3: Geology of Aylmer and Telfer townships after Dressler (1981)	10
Figure 4: Geology Legend for Aylmer and Telfer townships after Dressler (1981)	11
Figure 5: Generalized stratigraphy of the Huronian Supergroup; Modified after Young (1991)	12
Figure 6: Plan Map of 2022 Drilling Activities	16

LIST OF TABLES

Table 1: List of Claims comprising the Aylmer Property	7
Table 2: Highlights of results from Prospecting Samples	. 15
Table 3: Summary of Drilling and Core Sampling	. 16
Table 4: Summary of Expenditures	. 21

LIST OF APPENDICIES

Appendix A:	Maps, Sample Locations, Sample Descriptions & Activity Logs
Appendix B:	Drill Logs, Plots & Drill Sections
Appendix C:	Assay Certificates
Appendix D:	Expenditures & Invoices

1.0 INTRODUCTION

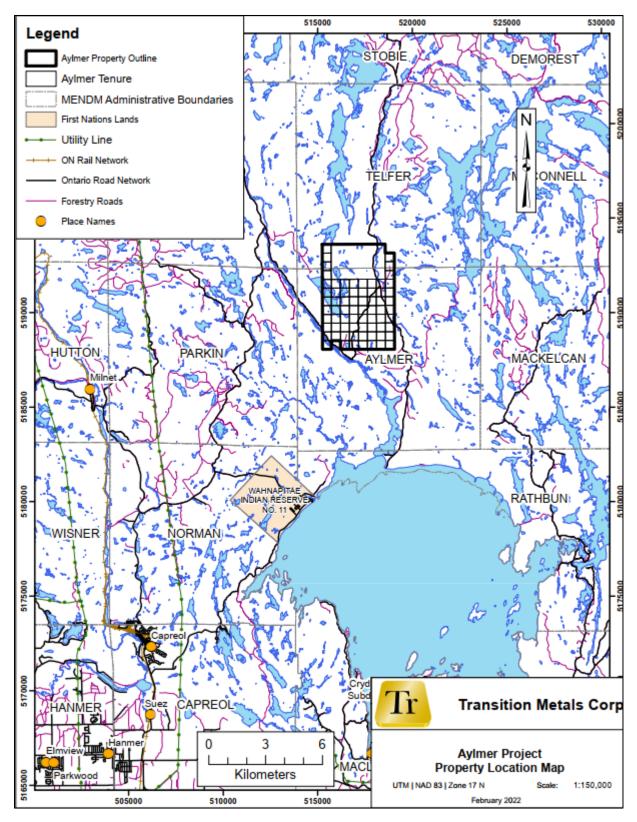
This report has been prepared by Transition Metals Corp. to document the prospecting activities and diamond drilling on the Aylmer Property undertaken in 2022. Transition Metals Corp. initiated a small diamond drill program to test the mineralization and extent of material underneath the historical showing locations in the centre of the property.

The combined work activities, of prospecting, drilling, core logging, and core sampling activities were conducted over the period between May 16th, 2022, and September 30th, 2022, by Transition Metals staff: Senior Geologists Benjamin Williams, P.Geo; Field Geologists Sarah Reese; and geological assistants Carolyn Hatton and Brian Williams. Additional confirmation prospecting activities were undertaken by Thomas Hart, and Fred Delabbio.

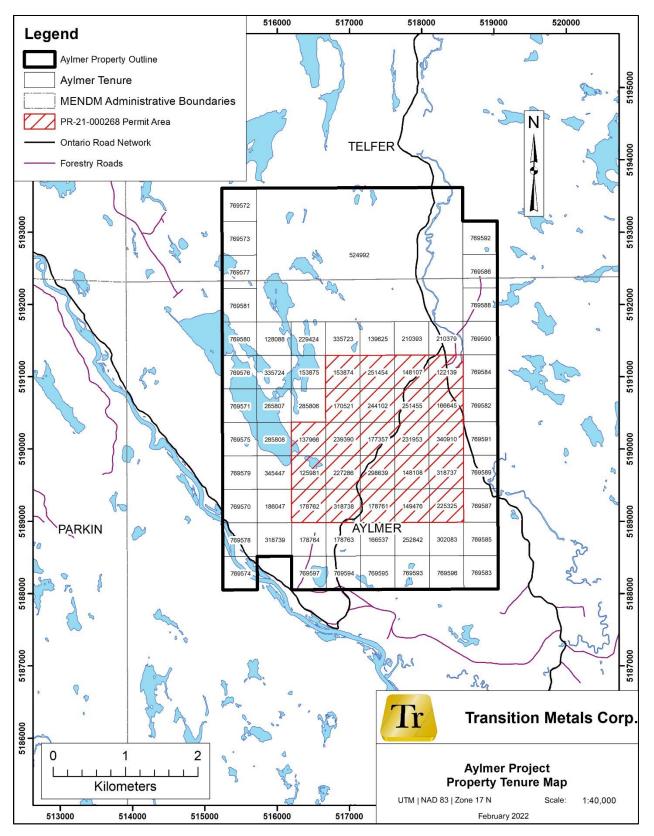
Drilling services were provided by Jacob & Samuel Drilling Ltd. (J & S Drilling) of Azilda, ON, who supplied diamond drill machinery, ancillary equipment, and skilled drillers, drill-helpers, and foreman. Site preparation and rehabilitation activities in relation to this work were provided by Gervais Forest Products Ltd. Further rehabilitation activities, such as post-site inspection, re-planting of mixed seeds, etc. were undertaken by Transition Metals staff, in accordance with the Provincial Standards for Early Exploration. The exploration goals were achieved, completing three (3), BTW core diameter, drill holes for a total of 1,047 m Metres, testing the extent of brecciation and associated with surface mineralization and geophysical targets.

A total of 163 samples were assayed in relation to this work report; with 9 samples from prospecting activities (Section 5.1), and the remaining 154 samples were submitted in connection with the drilling (Section 5.2). All drilling activities were conducted under early exploration permit PR-21-000268, issued October 4th, 2021, held by proponent Thomas Sheppard.

The above-mentioned exploration program was supported in part by the 2022/2023 Ontario Junior Exploration Program (OJEP) funding, within the reporting period of April 1st, 2022, through to February 15th, 2023. All aspects of the conduct and timing of the exploration activities mentioned above were supervised by management personnel employed by Transition Metals Corp.


2.0 PROPERTY LOCATION, ACCESS, AND DESCRIPTION

The Aylmer Property is located within the north-central portion of Aylmer township (Figure 1), as well as small portions of Telfer Township; with the property centred about 46° 2.37' N latitude, $080^{\circ} - 2.4'$ W longitude (UTM coordinates of NAD 83, Zone 17, 517,500 m E, 5,190,000 m N), approximately 63 km north of Capreol by road. The property is located within the Sudbury Mining Division and the District of Sudbury, Ontario.


Access to the property from Sudbury, Ontario, is north through Hanmer and Capreol along highway 545 for approximately 10 km onto Portelance Road. Turing East, follow Portelance road for approximately 18 km to take a (Right), east across the bridge over the North Wanapitei River. Crossing the bridge, follow south along Poupore Road for approximately 10 km to the central parts of the property (Figure 2).

The Property is comprised of seventy (70) single cell claims, and one (1) multi-cell mining claim, covering an area of approximately 2,073.1 hectares, as listed in Table 1, and shown in Figure 2. A portion of the claims are 100% held in the name of Tom Sheppard, a member of the "IOCG Joint Venture Group", an entity in which Transition Metals has entered into an option agreement with, with the other portion of the property held 100% by Transition Metals Corp (See Table 2 for ownership breakdown).

Figure 1: Aylmer Property Location Map

Figure 2: Aylmer Property Tenure Map

Claim Tenure	Туре	Area (ha)	Holder
122139	Single Cell Mining Claim	22.1	(100) THOMAS HUGH SHEPPARD
125981	Single Cell Mining Claim	22.1	(100) THOMAS HUGH SHEPPARD
128088	Single Cell Mining Claim	22.1	(100) THOMAS HUGH SHEPPARD
137966	Single Cell Mining Claim	22.1	(100) THOMAS HUGH SHEPPARD
139625	Single Cell Mining Claim	22.1	(100) THOMAS HUGH SHEPPARD
148107	Single Cell Mining Claim	22.1	(100) THOMAS HUGH SHEPPARD
148108	Single Cell Mining Claim	22.1	(100) THOMAS HUGH SHEPPARD
149476	Single Cell Mining Claim	22.1	(100) THOMAS HUGH SHEPPARD
153874	Single Cell Mining Claim	22.1	(100) THOMAS HUGH SHEPPARD
153875	Single Cell Mining Claim	22.1	(100) THOMAS HUGH SHEPPARD
166537	Single Cell Mining Claim	22.1	(100) THOMAS HUGH SHEPPARD
166645	Single Cell Mining Claim	22.1	(100) THOMAS HUGH SHEPPARD
170521	Single Cell Mining Claim	22.1	(100) THOMAS HUGH SHEPPARD
177357	Single Cell Mining Claim	22.1	(100) THOMAS HUGH SHEPPARD
178761	Single Cell Mining Claim	22.1	(100) THOMAS HUGH SHEPPARD
178762	Single Cell Mining Claim	22.1	(100) THOMAS HUGH SHEPPARD
178763	Single Cell Mining Claim	22.1	(100) THOMAS HUGH SHEPPARD
178764	Single Cell Mining Claim	22.1	(100) THOMAS HUGH SHEPPARD
186047	Single Cell Mining Claim	22.1	(100) THOMAS HUGH SHEPPARD
210379	Single Cell Mining Claim	22.1	(100) THOMAS HUGH SHEPPARD
210393	Single Cell Mining Claim	22.1	(100) THOMAS HUGH SHEPPARD
225325	Single Cell Mining Claim	22.1	(100) THOMAS HUGH SHEPPARD
227286	Single Cell Mining Claim	22.1	(100) THOMAS HUGH SHEPPARD
229424	Single Cell Mining Claim	22.1	(100) THOMAS HUGH SHEPPARD
231953	Single Cell Mining Claim	22.1	(100) THOMAS HUGH SHEPPARD
239390	Single Cell Mining Claim	22.1	(100) THOMAS HUGH SHEPPARD
244102	Single Cell Mining Claim	22.1	(100) THOMAS HUGH SHEPPARD
251454	Single Cell Mining Claim	22.1	(100) THOMAS HUGH SHEPPARD
251455	Single Cell Mining Claim	22.1	(100) THOMAS HUGH SHEPPARD
252842	Single Cell Mining Claim	22.1	(100) THOMAS HUGH SHEPPARD
285806	Single Cell Mining Claim	22.1	(100) THOMAS HUGH SHEPPARD
285807	Single Cell Mining Claim	22.1	(100) THOMAS HUGH SHEPPARD
285808	Single Cell Mining Claim	22.1	(100) THOMAS HUGH SHEPPARD
298639	Single Cell Mining Claim	22.1	(100) THOMAS HUGH SHEPPARD
302083	Single Cell Mining Claim	22.1	(100) THOMAS HUGH SHEPPARD
318737	Single Cell Mining Claim	22.1	(100) THOMAS HUGH SHEPPARD
318738	Single Cell Mining Claim	22.1	(100) THOMAS HUGH SHEPPARD

Table 1: List of Claims comprising the Aylmer Property

Claim Tenure	Туре	Area (ha)	Holder
318739	Single Cell Mining Claim	22.1	(100) THOMAS HUGH SHEPPARD
335723	Single Cell Mining Claim	22.1	(100) THOMAS HUGH SHEPPARD
335724	Single Cell Mining Claim	22.1	(100) THOMAS HUGH SHEPPARD
340910	Single Cell Mining Claim	22.1	(100) THOMAS HUGH SHEPPARD
345447	Single Cell Mining Claim	22.1	(100) THOMAS HUGH SHEPPARD
524992	Multi-cell Mining Claim	529.1	(100) THOMAS HUGH SHEPPARD
769570	Single Cell Mining Claim	22.1	(100) TRANSITION METALS CORP.
769571	Single Cell Mining Claim	22.1	(100) TRANSITION METALS CORP.
769572	Single Cell Mining Claim	22.0	(100) TRANSITION METALS CORP.
769573	Single Cell Mining Claim	22.0	(100) TRANSITION METALS CORP.
769574	Single Cell Mining Claim	22.1	(100) TRANSITION METALS CORP.
769575	Single Cell Mining Claim	22.1	(100) TRANSITION METALS CORP.
769576	Single Cell Mining Claim	22.1	(100) TRANSITION METALS CORP.
769577	Single Cell Mining Claim	22.0	(100) TRANSITION METALS CORP.
769578	Single Cell Mining Claim	22.1	(100) TRANSITION METALS CORP.
769579	Single Cell Mining Claim	22.1	(100) TRANSITION METALS CORP.
769580	Single Cell Mining Claim	22.1	(100) TRANSITION METALS CORP.
769581	Single Cell Mining Claim	22.0	(100) TRANSITION METALS CORP.
769582	Single Cell Mining Claim	22.1	(100) TRANSITION METALS CORP.
769583	Single Cell Mining Claim	22.1	(100) TRANSITION METALS CORP.
769584	Single Cell Mining Claim	22.1	(100) TRANSITION METALS CORP.
769585	Single Cell Mining Claim	22.1	(100) TRANSITION METALS CORP.
769586	Single Cell Mining Claim	22.0	(100) TRANSITION METALS CORP.
769587	Single Cell Mining Claim	22.1	(100) TRANSITION METALS CORP.
769588	Single Cell Mining Claim	22.0	(100) TRANSITION METALS CORP.
769589	Single Cell Mining Claim	22.1	(100) TRANSITION METALS CORP.
769590	Single Cell Mining Claim	22.1	(100) TRANSITION METALS CORP.
769591	Single Cell Mining Claim	22.1	(100) TRANSITION METALS CORP.
769592	Single Cell Mining Claim	22.0	(100) TRANSITION METALS CORP.
769593	Single Cell Mining Claim	22.1	(100) TRANSITION METALS CORP.
769594	Single Cell Mining Claim	22.1	(100) TRANSITION METALS CORP.
769595	Single Cell Mining Claim	22.1	(100) TRANSITION METALS CORP.
769596	Single Cell Mining Claim	22.1	(100) TRANSITION METALS CORP.
769597	Single Cell Mining Claim	22.1	(100) TRANSITION METALS CORP.
Total Number of Tenures	71	2073.1	Total Area (ha)

3.0 HISTORICAL WORK

Below is a brief summary of historical work conducted over the Property as compiled by Winter (2017).

- 1950- H. Barry discovered copper mineralization in the matrix of a breccia; a 2 m chip sample from 1949 returned 2.07% Cu. Three drill holes totalling 182.7 m were drilled in 1952. A 4.1 m intersection adjacent to the showing was estimated to run 0.5% Cu.
- 1958 Kennco Exploration completed an airborne EM and magnetic surveys, but no bedrock conductors were identified. Three pits were excavated, and 2 packsack diamond drill holes were completed with scattered pyrite and trace chalcopyrite were present in the first hole, but no sulphides were identified in the second hole.
- 1964 R.C. Dennie drilled a 61 m hole in reporting pyrite in the core.
- 1965 L.L. Billoki conducted an IP survey and completed two drill holes totalling 277 m reporting up to 10% pyrite and 2% chalcopyrite across 3 meters.
- 1979 Kerr Addison Mines Limited completed ground VLF-EM and magnetometer surveys.
- 1991 Falconbridge flew a GEOTEM fixed wing airborne EM survey covering part of the current property. No anomalies were identified.
- 2002 Roger Poulin investigated the property area for possible decorative stone quarrying.
- 2008 2017 F. Delabbio reported on mapping, trenching, sampling, geophysics, soil sampling, and prospecting in claim 4203306 and adjacent areas on the behave of the IOCG Joint Venture Group. Copper values of 1.8% Cu and 0.25% Cu were reported. VLF and vertical loop ground EM surveys indicated the presence of possible conductors.
- 2011 Geotech conducted an airborne VTEM horizontal magnetic gradient survey for the IOCG Joint Venture Group covering 9 km² over 51 line kilometres. Geotech stated that the area does not have anomalies that have EM response.
- 2017 S. Winter completed a mapping and sampling program for the IOCG Joint Venture Group.
- 2019 T. Hart summarizes a Property Visit to the IOCG Joint Venture Claims.
- 2020 Transition Metals Corp completed a Geophysical reinterpretation, airborne electromagnetic and magnetic survey, and 3-D inversion modeling on the Aylmer Property.
- 2021 Transition Metals Corp completed Prospecting, outcrop stripping (trenching), mapping, and petrographic studies on rocks of the known copper showing.

4.0 GEOLOGICAL SETTING AND MINERALIZATION

4.1 **REGIONAL GEOLOGY**

The property is located within the southern portion of the Cobalt Embayment, northeast of the Sudbury Igneous Complex. Rocks of the Huronian Supergroup have been intruded by sills, dykes, and irregular bodies of Nipissing gabbro (Figure 3, and Figure 4). Archean age rocks of the Superior Province occur to the west, while metasedimentary and intrusive rocks of the Grenville Province occur to the south. Several Sudbury olivine diabase dykes cut the older lithologies. Bedrock is locally well exposed.

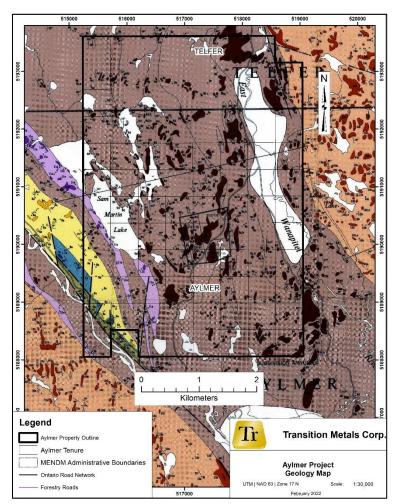


Figure 3: Geology of Aylmer and Telfer townships after Dressler (1981)

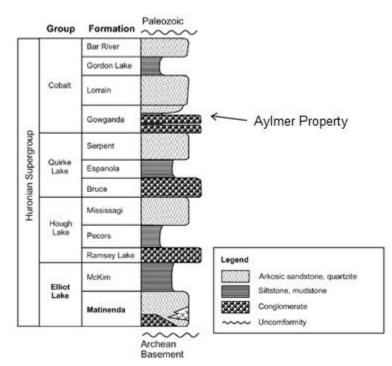

The Huronian metasedimentary rocks lie unconformably above the Archean basement. They are part of the Huronian Supergroup, portions of which extend across the region from Sault Ste. Marie in the west to the Cobalt area near the Quebec border in the east. The Huronian sediments are interpreted to have been deposited during a period of marine transgression from south to north, commencing with sandstones, conglomerates, and argillites with local intercalated mafic volcanics followed by more mature clastic sediments and marine evaporates. The sediments are thought to have been deposited from the northwest towards the southeast, with the clastic material derived from gradual uplift of the foreland to the north. The unconformity with the basement rocks is sharply defined in some places and at others is represented by several meters of regolith. The Huronian Supergroup has been divided into four groups, each containing several formations, as seen summarized after Young (1991) (Figure 5).

Figure 4: Geology Legend for Aylmer and Telfer townships after Dressler (1981)

The primary intrusive event affecting the region was the emplacement of the Nipissing diabase sills and dykes which are dated at 2120 Ma. The sills and dykes were folded during the Penokean Orogeny and metamorphosed to greenschist facies. The Nipissing diabase is found as intrusions in the Huronian sediments as well as the underlying Archean rocks.

Figure 5: Generalized stratigraphy of the Huronian Supergroup; Modified after Young (1991)

The major structural event that deformed the Huronian sediments was the Penokean Orogeny, which affected the region between ca. 1850 Ma and 1750 Ma. The deformation caused by the Penokean Orogeny resulted in folding and thrust faulting of the Huronian sediments. The Murray fault system and Onaping fault systems are composed predominantly of strike-slip faults that were formed sometime after the Grenville Orogeny (post ca. 1000 Ma). In the area of the property, the major fold axes trend approximately north-south. The major north-northwest fault is the McLaren Lake-Wanapitei River Fault; the major north-south faults are the McLaren Creek and Laundry Lake Faults.

4.2 PROPERTY GEOLOGY

The Gowganda Formation is the basal formation of the Cobalt Group and underlies the property (Figure 3 and 4). This formation is composed of conglomerates, sandstones, quartzites, siltstones and argillites, but consists of wackes, sandstones and siltstones in the property area. A northwest-trending exposure of Nipissing gabbro is located in the southwest part of the property. Structurally, the property lies on the western limb of a syncline trending north-northwest. Overburden consists of a coarse glacial till ranging from a few centimetres to several meters in depth.

Alteration appears to be dominantly albitic (pink) with chloritization and carbonatization. The wackes appear to be very fine grained, chloritized and extensively albitized. Mineralization in the central part of the property area consists of a number of showings mainly composed of coarse breccias with quartz and

or quartz-carbonate as the matrix with variable amounts of pyrites, chalcopyrite, and in some cases trace bornite. A dark green-black chlorite accompanies some of the quartz veining and mineralization. Much of the pyrite occurs as coarse cubic, disseminated throughout the breccia matrix. In some locations the breccia matrix hosts cubic shaped cavities filled with limonite, which may be a weathering product of the pyrite. Regionally in some of the showings, gold values have historically been reported, associated with the copper mineralization.

Some of the breccia bodies appear to be more or less "stratiform" however others are crosscutting. On a property in Scadding township to the southeast, similar mineralization shows a crude zoning of hydrothermal alteration in breccia near gold mineralization. The pattern of alteration from proximal to distal includes:

- Green chloritic breccia with quartz + ankerite + sulphide stringers and/or matrix material.
- Pink albitic + hematitic breccia with coarse dolomite + quartz stringers and/or matrix material.

On the property, the East Quarry breccia appears to be controlled by a near-vertical north trending structure with an indeterminate width due to the limited exposure. But the structure appeared to narrow towards the north. The orientation of the West Quarry breccia is difficult to determine as the limits of the breccia were only observed in plan. However, the exposures in the quarry face, in outcrop downhill from the quarry, as well as intersections in historical drill holes, suggest the potential for a greater vertical and horizontal extent. Dressler (1981) described the mineralization and brecciation as appearing to be related to a minor east steeply dipping fault. The brecciation and hydrothermal impregnations of the breccia by quartz and carbonate are not uncommon in the vicinity of the property. A thin gabbro dike was observed just west of the mineralized showing.

4.3 MINERALIZATION

There is a broad regional structural zone in the order of 14 to 15 km wide that extends from the Grenville Front, northwest from Dana, Janes, Davis and Scadding townships and that then turns to trend more north – north westerly through the eastern part of Lake Wanapitei and the area to the east of the lake. From here the zone continues through the eastern part of Fraleck and Aylmer townships. The western limit of the structural zone is the upper Wanapitei Fault which follows the Wanapitei River. The Property lies approximately 1 km east of this major fault in Aylmer township (Fig. 3).

Gates (1991) describes in the order of 30 mineral showings or occurrences that, for the most part, lie within the indicated structural zone and of these, approximately 25 are characterized by soda metasomatism as expressed by albitization. The associated mineralization varies from quartz veins with pyrite and chalcopyrite to breccia bodies mineralized with quartz, pyrite and chalcopyrite. Also, arsenopyrite is not uncommon.

Iron carbonate alteration and silicification are usually present and all zones appear to be structurally controlled. The property in Aylmer township is not described by Gates (1991), however, it falls within the indicated structural zone and shows the same features of soda metasomatism etc. as for the majority of the occurrences described in OFR 5771.

5.0 **EXPLORATION**

This report has been prepared by Transition Metals Corp. to document the prospecting activities (Section 5.1) and diamond drilling (Section 5.2) on the Aylmer Property undertaken in 2022. A small diamond drill program was completed to test the mineralization and extent of material underneath the historical showing locations in the centre of the property.

The combined work activities, of prospecting, drilling, core logging, and core sampling activities were conducted over the period between May 16th, 2022, and September 30th, 2022, by Transition Metals staff: Senior Geologists Benjamin Williams, P.Geo; Field Geologists Sarah Reese; and geological assistants Carolyn Hatton and Brian Williams. Additional confirmation prospecting activities were undertaken by Thomas Hart, and Fred Delabbio. All aspects of the conduct and timing of the exploration activities mentioned above were supervised by management personnel employed by Transition Metals Corp, including T. Hart of Hart Geoscience Inc., G. Collins of G.Collins Geoscience Inc.. A detailed activity log & activity summary log corresponding to work activities decried in Sections 5.1 and 5.2 below, has been attached to Appendix A, as well as within Appendix D.

Drilling services were provided by Jacob & Samuel Drilling Ltd. (J & S Drilling) of Azilda, ON, who provided diamond drill machinery, ancillary equipment, and skilled drillers, drill-helpers, and foreman. Site preparation, and rehabilitation activities in relation to this work, were provided by Gervais Forest Products Ltd, who providing heavy machinery for drill pad development, silt/cuttings sump creation, and drill trail access maintenance. Further rehabilitation activities, such as post-site inspection, re-planting of mixed seeds, etc. were undertaken by Transition Metals staff, in accordance with Provincial Standards for Early Exploration. Three (3), BTW core diameter, drill holes were completed for a total of 1,047 m Metres, testing the extent of brecciation and associated with surface mineralization and geophysical targets.

A total of 163 samples were submitted for analysis in relation to this work report; 9 samples from Prospecting (Section 5.1), and 154 samples in connection with the drilling (Section 5.2). All drilling activities were conducted under early exploration permit PR-21-000268, issued October 4th, 2021 effective for a period of three (3) years, held by permit holder Thomas Sheppard.

The work program was supported in part by the 2022/2023 Ontario Junior Exploration Program (OJEP) funding, within the reporting period of April 1st, 2022, through to February 15th, 2023.

5.1 **PROSPECTING**

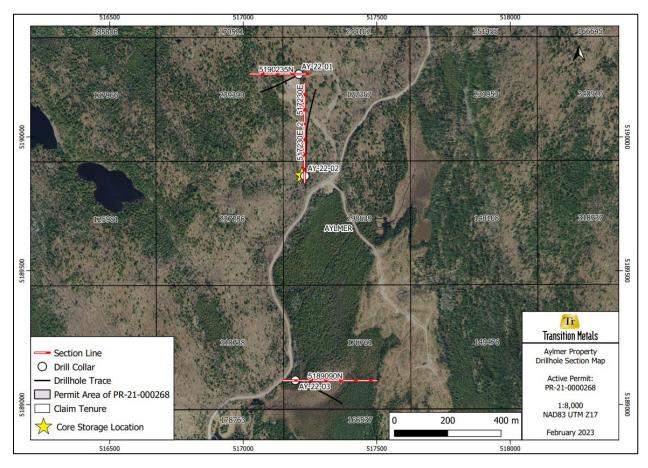
Between May 16th, 2022, and September 30th, 2022, Transition Metals staff conducted prospecting and "resampling activities" on various parts of the Aylmer Property (see Appendix A for sample locations).

The Company performed traverses focused on prospecting and sampling material for favourable mineralization, alteration, and structural settings on the property similar to those of the historic showings, as described in Section 4.2 of this report. Brecciated occurrences, as well as prospective quartz veins and breccias which exhibited sulphide mineralization were sampled. A table of highlighted results are contained within Table 2 below. Further details such as: the sample locations, sample descriptions, and accompanying maps are provided within Appendix A. Corresponding analytical certificates and QA/QC documentation is contained within Appendix C. In summary, a total of 9 samples were analysed, of which 7 were grab samples, with the balance of 2 samples being QA/QC reference material inserted into the sampling sequences, representing all samples generated for from prospecting activities.

SamplaiD	Certificate of Analysys	Sample Type	Au	Ag	As	Со	Cu	Мо	Pb	Cu
Sampleid	Certificate of Analysys	Sample Type	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%
X924613	SD22128706	Grab	< 0.001	0.28	2.2	5.3	8	0.68	36.7	
X924614	SD22128706	Grab	< 0.001	0.18	1.6	1.1	6	0.63	20.7	
X924615	SD22128706	Grab	< 0.001	0.04	1.8	1.6	9.7	0.6	5.9	
X924616	SD22128706	QA/QC	0.004	5.01	9.1	30.2	>10000	1.05	130	1.54
X924617	SD22128706	QA/QC	< 0.001	0.07	0.5	0.3	9.3	1.76	9.4	
X924618	SD22128706	Grab	< 0.001	0.03	7.5	6.1	2.3	0.23	3.9	
X924619	SD22128706	Grab	< 0.001	0.03	1.4	15	3.1	0.75	4.8	
D842811	SD22255045	Grab	0.027	0.04	131.5	361	5.5	55.6	0.6	
D842812	SD22255045	Grab	0.019	0.05	71.8	137	7.9	94.9	0.6	

Table 2: Highlights of results from Prospecting Samples

The lithologies encountered while sampling consist of those described in the local geology section above. Generally, the outcrops observed were not heavily veined or mineralized. However, outcrops leading into topographical lows (lakes and swamps), especially those associated with Northwest/Southeast trending lineaments displayed increasing signs of intense alteration and an increase in favourable brecciation and mineralization. These zones were typically of intense albite alteration, iron-carbonate alteration and to a lesser extent, areas of moderate silicification.


5.2 DRILLING

Transition Metals Corp, with the aid of Jacob & Samuel Drilling Ltd. completed the drilling of three (3) holes for a total of 1,047 m between May 16th and September 30th, 2022, (Figure 6, Table 3). All drilling activities were conducted under early exploration permit PR-21-000268, issued October 4th, 2021 as referred to in section 5.0.

Hole ID	Collar L	ocation	Azimuth	Dip	Longth (m)	# . f C	Sample Sequence				
Hole ID	Easting*	Northing*	Azimuti	ыр	Length (m)	# of Samples Assayed $$	Sample Sequence				
AY-22-01	517,208.86	5,190,234.30	240°	-50°	243	86	D843001 - D843086				
AY-22-02	517,231.20	5,189,854.98	360°	-50°	504	68	D843087 - D843154				
AY-22-03	509,627.00	5,186,436.00	110°	-51°	300	0	-				
				Total	1047 m	154 Samples					
Notes: * Northing & Easting units are in UTM NAD 83, Zone 17 coordinates (in metres).											
۸	Total number of o	camples are inclus	ive of QA/	QC referer	nce material						

Table 3: Summary of Drilling and Core Sampling

Figure 6: Plan Map of 2022 Drilling Activities

Detailed geological logs, related sample intervals, core photography, plan maps and sections can be found within Appendix B. Due to staff availability, core logging happened through a mix of concurrent and sequential workflow, as described in the detailed activity log summary found withing Appendix A & B. Analytical Certificates relating to the sampled and analysed material are contained within Appendix C.

The drill core was transported from site to Transition Metals core facility in Sudbury Ontario, where Transition Metals staff, logged and sampled the drill core. The remaining unsampled core was subsequently transported back to site, cross piled, and labelled on the aggregate property, behind locked gate for safe keeping, located at: UTM 517,230 m E, 5,189,960 m N (NAD 83, Zone 17).

A total of 154 samples were analysed from drill core (Table 3), of which 140 samples are ½ core samples, with the remaining balance of 14 samples reflecting certified reference standards and blank material for internal quality assurance and quality control.

For further details regarding the Drill Logs, Plan Maps, and Sections, can be found within Appendix B, with accompanying assay certificates within Appendix C.

5.2.1 Hole AY-22-01 Summary

Hole AY-22-01 was collared on the Hilltop Breccia Exposure. This is an impressive breccia exposed on the hilltop characterized by subangular to subrounded metasedimentary fragments hosted within a finegrained matrix of iron-carbonate and quartz. The hole was drilled oblique to the contact but perpendicular to the sediment stratigraphy in which it was collared with an objective to test extensions to the exposed breccia at depth.

Hole AY-22-01 collared in greywacke for approximately 37 metres before transitioning into a monomictic breccia. An inferred fault was intersected at 40 metres within the breccia. Generally, the breccia material encountered were observed to host sulfide mineralization. The breccia material was intersected over approximately 60 metres before its lower contact with the greywacke unit (at 96.76 m). The greywacke to pebble conglomerate unit continues through the rest of the hole, with shorter intervals of breccia material (mainly crackle breccia) interspersed downhole. The sediments and pebble conglomerates are interpreted to belong to the Gowganda Formation (the basal formation of the Cobalt Group). The lithology encountered in AY-22-01 is consistent with the units described in the local geology section 4.1 & 4.2.

A total of 86 samples were taken sequentially through hole AY-22-01, from 35.07 metres to 114.00 metres, of which 78 were ½ core samples, with the balance of 8 being QA/QC material. The highlight interval for this hole is from sample D84085, 112.05 to 113.10 metres (length of 1.05 m) which returned 0.163 g/t Au.

For further details regarding the Drill Logs, Plan Maps, and Sections, can be found within Appendix B, with accompanying assay certificates within Appendix C.

5.2.1 Hole AY-22-02 Summary

Hole AY-22-02 targeted the Copper Trench Breccia. It is an albite-chlorite-replaced breccia with laminated metasedimentary fragments within a quartz-iron carbonate-chalcopyrite-chlorite matrix. The Copper Trench Breccia is located approximately 200 metres to the south of the Hilltop Breccia. Drilling was done oblique to the north-south trend of the breccia and extended northward to also test an area of pervasive and intense alteration located to the northeast.

Hole AY-22-02 collared within greywacke and continues through intervals of crackle breccia and greywacke until an interpreted fault is intersected at approximately 51 metres. The alternating breccia and greywacke units continue until approximately 90 metres where a polymictic conglomerate unit begins. The conglomerate and breccia units continue to alternate downhole, with a small interval of greywacke observed from approximately 146-147 metres. Two interpreted faults are intersected at approximately 321 and 328 metres within the polymictic conglomerate. The remainder of the hole consists of alternating units of breccia, minor greywacke, and polymictic conglomerate. The sediments and pebble conglomerates are interpreted to belong to the Gowganda Formation (the basal formation of the Cobalt Group). The lithology encountered in AY-22-02 is consistent with the units described in the local geology section 4.1 & 4.2. Generally, the breccia material intersected were observed to not contain sulphide mineralization.

A total of 68 samples were taken sequentially through hole AY-22-02, from 51.00 metres to 85.11 metres, and 143.03 metres to 171.00 metres, of which 62 were ½ core samples, with the balance of 6 being QA/QC material. The highlight intervals for this hole are samples D843111 and D843117, from 73.01 to 74.02 metres and 79.01 to 79.97 metres respectively, which both returned 0.006 g/t Au.

For further details regarding the Drill Logs, Plan Maps, and Sections, can be found within Appendix B, with accompanying assay certificates within Appendix C.

5.2.1 Hole AY-22-03 Summary

Hole AY-22-03 was targeted on a deep-rooted magnetotelluric (MT) low resistivity anomaly. The MT anomaly is located approximately 775 metres south of the Copper Trench Breccia. The aim of the drillhole was to test the MT anomaly at a vertical depth of about 200 metres. At depth, this anomaly appears to connect to a larger, strong MT anomaly at approximately 1,000 metres depth.

Hole AY-22-02 collared within greywacke and intersected a unit of crackle breccia beginning at approximately 10 metres and continuing to approximately 58 metres with short intervals of greywacke and polymictic conglomerate within this section. From about 58 metres to approximately 205 metres,

there is a unit of polymictic conglomerate containing short intervals of greywacke and minor brecciation. From 205 metres to the end of the hole is the greywacke unit, with two short intervals of crackle breccia. Generally, the breccia material intersected were observed to not contain sulfide mineralization. The sediments and pebble conglomerates are interpreted to belong to the Gowganda Formation (the basal formation of the Cobalt Group). The lithology encountered in AY-22-03 is consistent with the units described in the local geology section 4.1 & 4.2. There were no samples taken from drill hole AY-22-03.

For further details regarding the Drill Logs, Plan Maps, and Sections, can be found within Appendix B, with accompanying assay certificates within Appendix C.

5.4 SAMPLE PREPARATION, METHODOLOGY, ANALYSIS AND SECURITY

Information within this section contains detailed overview of the sampling method(s), preparation, methodology, and security throughout the sampling procedure. In a general sense, this is a guideline of industry best practices, which were followed during this program of work.

5.4.1 Field Sample Collection and Security

Exposed bedrock was observed, mapped, and sampled at an approximate 1:500 scale to identify any potential controls on mineralization including structure, lithology, and alteration.

Drill core was Transported from site to core facility by Transition Metals personal. Detail core logging and sampling was conducted within a rented core logging facility in Sudbury, ON, with sampled intervals being transported to ALS-Chemex Prep facility in Sudbury Ontario. The remaining unsampled core was subsequently transported back to site, cross piled, and labelled on the aggregate property, behind locked gate for safe keeping, located at: UTM 517,230 m E, 5,189,960 m N (NAD 83, Zone 17).

Sample lengths were determined by lithology but restricted to being no less than 0.3 m and no more than 1.5 m long. Individual samples were cut, labelled, placed into sample bags, and sealed. Groups of seven to ten sequentially numbered samples were then placed in woven industrial engineered fabric shipping bags, securely closed with zip ties, labeled and recorded, and stored until such time as Transition personnel could transport them directly to the ALS-Chemex processing facilities for sample preparation. Further analyses were completed in ALS-Chemex facilities in North Vancouver, B.C. The sample assurance system used by ALS-Chemex complies with international standards ISO 9001:2000 and ISO 17025:2005.

5.4.2 Sample Analysis

Samples submitted to ALS-Chemex were prepared using the analytical methods as described in the corresponding analytical certificates contained within Appendix C.

At ALS-Chemex, the samples were dried as required, crushed to 70% less than 2 mm or better using a jaw and/or roller crusher. The crushed sample was split using a riffle splitter and an approximately 1-kilogram split was pulverized to better than 85% passing 75 microns or better using a ring and puck grinding mill. The pulverized splits of the samples were transported by ALS-Chemex to their facility in North Vancouver for analyses.

5.4.3 Internal QA/QC Monitoring

Internal quality assurance and quality control (QAQC) samples were added to the regular sampling sequence. Certified reference Blanks (Silica Blanks) and Standard Material (OREAS Au/Cu standards) were generally inserted in the sample numbering sequence at regular intervals, easily denoted within Appendix A. Additionally, standards and blanks are identifiable within the Assay Certificates (Appendix C), as they typically have significantly lower 'received weights', which can be used to denote the reference blanks and standard material. Internal QA-QC reports (not included within this assessment report) were generated by Transition Metals staff, for each laboratory batch, as received, with an internal continual compilation of QA-QC results being maintained and monitored.

There were no undue analytical failures for this work program.

6.0 **EXPENDITURES**

The total value of the work completed on the claims is summarized in Table 4 below. The total work expenditures for the work program(s) contained within this report were completed during the period from May 16th, 2022, and September 30th, 2022; with an exploration expenditure of **\$ 270,756** (Table 4). More information regarding expenditures and associated invoices can be found in Appendix D and the detailed tables and invoices contained within. In support of these cost measures, are inclusive of the detailed activity log and the activity summary log corresponding to work activities decried within this work report, has been attached to Appendix A, as well as within Appendix D.

Work Type	Work Subtype	Subtotal	Total
Prospecting	•		\$ 2,615
	Grass Roots Prospecting	2,615	
Exploratory [Drilling		\$ 220,272
	Core Drilling	220,272	
Associated V	Vork types		\$ 47,869
	Assays	12,234	
	Personal Transportation	4,136	
	Supplies	1,737	
	Equipment Rental	13,262	
	Report/Map	5,000	
	Food	5,750	
	Lodgings	5,750	
Totals		Total Expenditures	\$ 270,756

Table 4: Summary of Expenditures

Work described in this report was supported in part by the 2022/2023 Ontario Junior Exploration Program (OJEP) funding, within the reporting period of April 1st, 2022, through to February 15th, 2023. Appendix D contains notes and comments in relation to the costs and expense which are subject to the OJEP grant Funding. Further, the reader is cautioned that the comments contained within Appendix D are made in relation OJEP and Transfer Payment Platform of Ontario (TPON) cost centers, which may differ in both definition and category, as those defined and stipulated by Mining Lands (MLAS).

7.0 RECOMMENDATIONS

This property is located within the regional structural zone that extends north from the Grenville Front, and hosts breccias and metasomatic alteration which seems to occur in some locations within rocks of the Huronian Supergroup. The presence of sulphide mineralization hosting elevated copper mineralization suggests a potential for a copper-gold mineralization system, such as an IOCG style as proposed by Gates (1991), or of a structurally hydrothermal breccia system.

The drilling did not return results favourable towards identifying economic concentrations of metals in the areas targeted. There remains an un-evaluated potential on the property for the presence of placer gold deposits within the unconsolidated gravels and sands within the property boundaries.

8.0 STATEMENT OF AUTHORS

8.1 STATEMENT OF AUTHOR: WILLIAMS, B.

I, Benjamin Williams do hereby certify that:

- 1) I am an employee of Transition Metals Corp.
- 2) I currently reside at 407 Cartier Ave, Unit 3, Sudbury, Ontario, Canada, P3B 1C7,
- 3) I graduated with a B.Sc. Hon. Geology degree in 2013 from Saint Mary's University, Halifax, NS.
- 4) I am a registered Professional Geologist (P.Geo) with the Association of Professional Geoscientists of Ontario (APGO) 2022 (Membership # 3627), prior to which I was a registered Geologist in Training (GIT) with the Association of Professional Geoscientists of Ontario (APGO) since 2015 (Membership # 10309).
- 5) I have been working as a Geologist in Canada since 2011.

Signed this Tuesday, 28 February 2023, in the City of Sudbury, Ontario

Buch/

Benjamin Williams, P.Geo

8.2 STATEMENT OF AUTHOR: REESE, S.

I, Sarah Reese, do hereby certify that:

- 1) I am an employee of Transition Metals Corp.
- 2) I currently reside at 91 Hyland Drive, Unit 3, Sudbury, ON P3E 1R7.
- 3) I graduated with a B.A.Sc. in Geological Engineering in 2022 from Queen's University.
- 4) I have been working in geological capacity within Canada since 2019.

Signed this Tuesday, 28 February 2023, in the City of Sudbury, Ontario

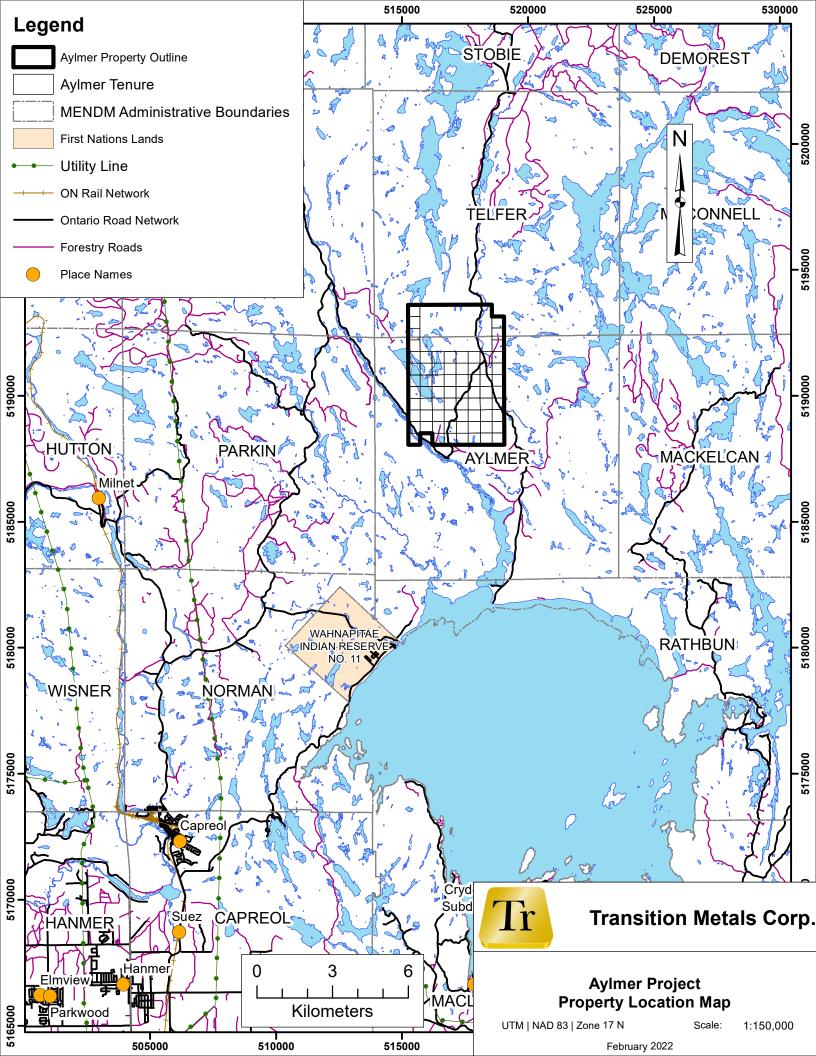
Sarah Reese

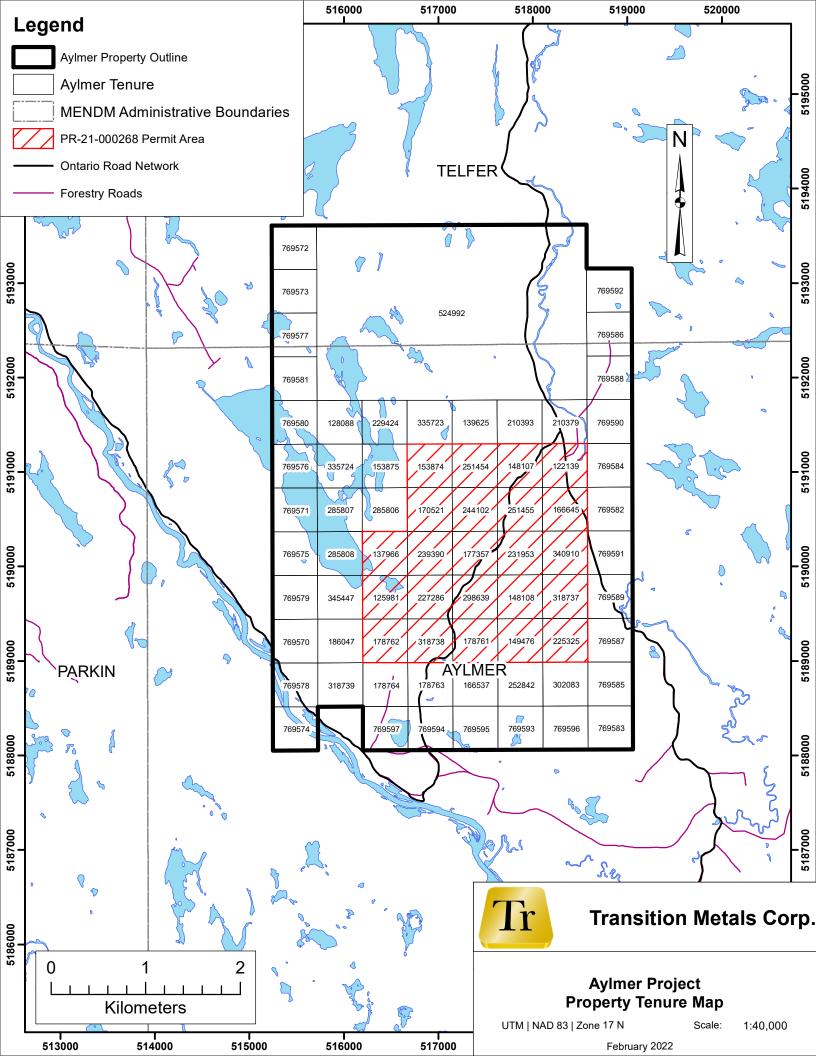
9.0 **REFERENCES**

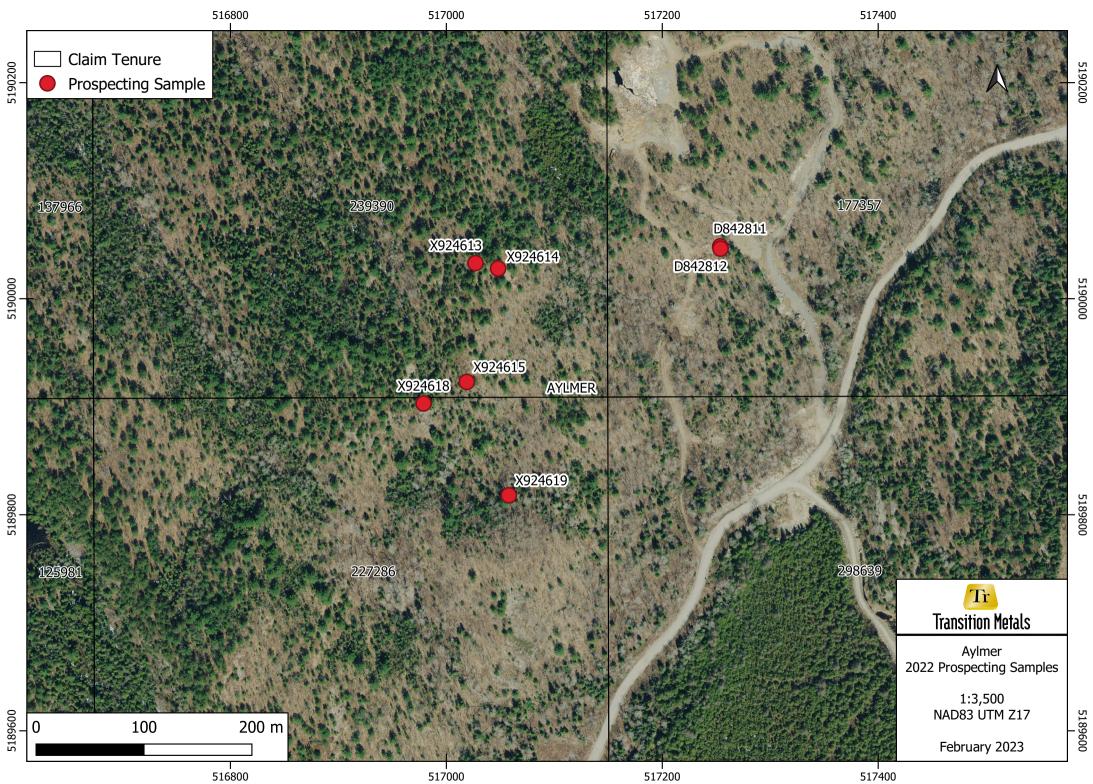
- Debicki, R.L. 1987: Stratigraphy, Paleoenvironment and Economic Potential of the Huronian Supergroup in the Southern Cobalt Embayment; Ontario Geological Survey, Open File Report 5665, 251 pages, 21 figures, 24 tables, 27 photographs, and 2 maps.
- Dressler, B.O. 1981: Otter Lake; Ontario Geological Survey, Map 2450, Precambrian Geology Series, Scale 1 inch to 1/2 mile, 1:31360. Geology 1978.
- Dressler, B.O., 1980. Geology of the Wanapitei Lake Area, District of Sudbury, Ontario. Geological Survey, Open File 5287
- Gates, B.I., 1991. Sudbury Mineral Occurrence Study; Ontario Geological Survey, Open File Report 5771, 235 p.
- Hart, T. 2018. Report on Property Visit to the IOCG Joint Venture Group Claims, Aylmer Township, Ontario, 26p; Ministry of Northern Development and Mines assessment file.
- Myer, W., 1995. Exploration Potential in the Sudbury Area; in Ontario Canada Explore the Opportunities, Mines and Minerals Division, Ontario Ministry of Northern Development and Mines, p. 16.
- Schandl, E.S., Gorton, M.P. and Davis, D.W., 1994. Albitization of 1700 + 2 Ma in the Sudbury Wanapitei Lake area, Ontario; implications for deep-seated alkali magmatism in the Southern Province; Can.
 J. Earth Sci., vol. 31, pp. 597-607
- Smith, D., 2014. Site Visit, Delabbio Property, Aylmer Township, Ontario, Canada, 10 p.
- Williams, B., 2021. Report on the 2020 Geophysical Reinterpretation, Airborne Electromagnetic and Magnetic Survey, and 3D Inversion modelling for the Aylmer Property, Ministry of Northern Development and Mines assessment file.
- Williams, B., Hatton, C., 2022. Report on the 2021 Prospecting, Mapping and Trenching Program on the Aylmer Property, Ministry of Northern Development and Mines assessment file (pending).
- Winter, L.D.S., 2017. Geological Mapping and Sampling Program, Sheppard Property, ITownship, District of Sudbury, Ontario; Ministry of Northern Development and Mines assessment file 2.58251, 49 p.

Appendix A: Maps, Sample Locations, Sample Descriptions & Activity Logs

Contents


1.	Note on Maps & Plots	1
2.	Property Location Map	2
3.	Claim Tenure Map	3
4.	Aylmer 2022 Prospecting Sample Map	4
5.	Aylmer 2022 Prospecting Sample Descriptions	5
6.	Detailed Drilling Activity Logs	7
7.	Post-Drilling Collar Site Inspection Logs	35
8.	2022 Daily Activity Log Summary	39


1. Note on Maps & Plots


Below contains a sample location maps for the 2022 Prospecting samples collected within the Aylmer Property. Discussion and summary about the program can be found within section 5.1 of the main report. Analytical Certificates can be found within Appendix C.

*Northing & Easting units are in UTM NAD 83 Zone 17 coordinates (in metres).

- 2. Property Location Map
- 3. Claim Tenure Map
- 4. Aylmer 2022 Prospecting Sample Map
- 5. Aylmer 2022 Prospecting Sample Descriptions
- 6. Detailed Drilling Activity Logs
- 7. Post-Drilling Collar Site Inspection Logs
- 8. 2022 Daily Activity Log Summary

	SampleID	Certificate of Analysys	StationID	Area			Easting	Northing	Sample Type						Outcrop	
Activity	(LAB ID)	(Batch ID)	(Personal Sample or	(Project)	Sample Date	UTM Info	(m)	(m)	(Station/Sample)	Lithology	Notes on Lithology	Notes on Alteration	Notes on Veining	Notes on Mineralization	Size (est.)	Structures
	II		Station ID)							Geological (Pros	pecting) Station Information			1	1	
											The rock is brecciated quartzite. The sediment is very fine to fine	The rock is highly silicified,			1	
			225R012	Automat	May 16, 2022	Nod 97 mms 17	517125	5190137	Station	Breccia	grained. The weathered surface is light grey to beige and the	albitized with weak oxidation	Quartz carbonate patches and	No mineralisation was		
		-	225RU12	Aylmer	May 16, 2022	Nad 83 zone 17	517135	5190137	Station	Breccia	fresh surface is tan to salmon pink. The rock is highly fractured,	from hematite and iron	veins occur	observed.	< 5m	
											veins and quartzite clasts occur.	carbonate staining.				
											The rock consists of very fine to fine-grained siltstone. Beds or					
											joints of 0.5 to 3 cm occur. The weathered surface is light grey to	Hematite and iron carbonate	Cross-cutting veins [083/89]			
			225R013	Aylmer	May 16, 2022	Nad 83 zone 17	517077	5190125	Station	Siltstone	pale pink. The rock contains weathered out to heavily oxidized	staining was observed in the	occur, Hematite and iron	Disseminated weathered out	<5m	[226/24]: bedding,
			2251015	Ayinei	11107 10, 2022	1400 00 10/10 17	51/0//	5150115	Station	Sildtone	pyrite grains. The rock appears to be bleached. The fresh	stanning was observed in the	carbonate staining was	sulphides occurs.	<5m	[083/89] Quartz veins
											surface is medium grey to light grey.	venis	observed.			
											The siltstone has a slaty appearance. The sediments are very well			No mineralisation was		
	-	-	225R014	Aylmer	May 16, 2022	Nad 83 zone 17	517038	5190113	Station	Siltstone	laminated. The bedding surface dips into the valley which strikes		No veins were observed	observed.	10-12 m	bedding [260/28]
											[010 N].	sericitization			_	
											The rock consists of very fine to fine-grained siltstone. The	Hematite and iron carbonate				
			225R015	Aylmer	May 16, 2022	Nad 83 zone 17	517005	5190041	Station	Siltstone	weathered surface is light grey to pale pink. The rock contains weathered out to heavily oxidized pyrite grains. The rock	staining was observed in the	Hematite and iron carbonate	Disseminated weathered out	<5m	[034/52]: bedding
			2231013	Ayimer	IVIBY 10, 2022	1480 05 2011E 17	51/005	5150041	Station	Sitstone		veins	staining was observed.	sulphides occurs.	<5m	[US4/S2]. Deduling
											appears to be bleached. The fresh surface is medium grey to light grey.	venis				
											The rock is brecciated quartzite. The sediment is very fine to fine-	The rock is highly silicified,				
											grained. The weathered surface is light grey to beige and the	albitized, carbonaceous and				
			225R018	Aylmer	May 16, 2022	Nad 83 zone 17	517088	5190039	Station	Breccia	fresh surface is tan to salmon pink. The rock is highly fractured,	contains with weak oxidation	Quartz carbonate patches and	No mineralisation was	<5m	
					., ., .						veins and quartzite clasts occur.	from hematite and iron	veins occur	observed.		
												carbonate staining.				
											The Siltstone is very well bedded and contains fine sub mm scale					
											laminations. The beds are more pronounced than 22SR014 and					
		-	225R019	Aylmer	May 16, 2022	Nad 83 zone 17	517126	5189989	Station	Siltstone	has a less slaty appearance. The sediments are purple to grey	No major alterations were observed	No veins were observed	No mineralisation was observed.	4m	laminations [232/26]
											along the fresh surface and a bleached grey to purple on the	observed		observed.		
											weathered surface					
											The Siltstone is very well bedded and contains fine sub mm scale					
~											laminations. The beds are more pronounced than 22SR014 and	No major alterations were		No mineralisation was		
ţi	-	-	22SR020	Aylmer	May 16, 2022	Nad 83 zone 17	517141	5190015	Station	Siltstone	have a less slaty appearance. The sediments are purple to grey	observed	No veins were observed	observed.	4m	laminations [230/18]
, ma											along the fresh surface and a bleached grey to purple on the					
fo											weathered surface					
-											The weathered rock was light grey and the fresh surface was					
atio			2250024		14. 46 2022	1. 102	547475	5400054	C 1.11.1		medium grey. Five cm wide rounded to subrounded granite	No major alterations were		No mineralisation was		
St		-	225R021	Aylmer	May 16, 2022	Nad 83 zone 17	517176	5190051	Station	ebble Conglomera	clasts occurred in the matrix. The outcrop was poorly bedded.	observed	No veins were observed	observed.	50-100m	
ing]											The trough measurment for the outcrop was [120 or 300]					
ect	-															
dso											The Siltstone is well bedded and contains fine sub mm scale	No major alterations were		No mineralisation was		
<u>a</u>	-	-	225R022	Aylmer	May 16, 2022	Nad 83 zone 17	517129	5189941	Station	Siltstone	laminations . The sediments are purple to grey along the fresh	observed	No veins were observed	observed.	4m	laminations [282/32]
[ca]											surface and a bleached grey to purple on the weathered surface					
go																
ge			2260022		14. 46 2022	1. 102	547055	5400050	C 1.11.1	C	The Siltstone is well bedded and contains fine sub mm scale	No major alterations were		No mineralisation was	-	()
		-	225R023	Aylmer	May 16, 2022	Nad 83 zone 17	517065	5189953	Station	Siltstone	laminations. The sediments are purple to grey along the fresh	observed	No veins were observed	observed.	<5m	laminations [332/22]
											surface and a bleached grey to purple on the weathered surface					
											The rock is a moderately well-bedded fine to medium-grained					
		-	225R024	Aylmer	May 16, 2022	Nad 83 zone 17	517033	5189953	Station	one to bedded qu	siltstone to quartzite. The weathered surface is light grey to	Moderatly to highly silicified	Quartz carbonate patches and	No mineralisation was	15m	bedding [320/20]
					,,						beige and the fresh surface is tan to salmon pink. The rock is	with strong albitization	veins occur	observed.	1.5	Dedding [520/20]
											highly fractured.				1	
										1	The rock is a moderately well-bedded fine to medium-grained			1 .	1	
	-	-	22SR025	Aylmer	May 16, 2022	Nad 83 zone 17	517021	5189929	Station	Siltstone	siltstone to quartzite. The weathered surface is light grey to	Moderatly to highly silicified	Veins and quartzite clasts occur	No mineralisation was	15m	bedding [338/42]
										1	beige and the fresh surface is tan to salmon pink. The rock is	with strong albitization		observed.	1	
											highly fractured.				_	
			225R027	Aylmer	May 16, 2022	Nad 83 zone 17	517003	5189939	Station	Siltstone	The Siltstone is moderately bedded [334/30]. The sediments are blue to grey along the fresh surface and are bleached grey to	Moderate Silicification	No veins were observed	No mineralisation was	<5m	bedding [334/30]
			2231027	Ayimer	IVIBY 10, 2022	1480 05 2011E 17	51/005	5105555	Station	Sitstone		woderate silicification	No verns were observed	observed.	<5m	bedding [554/50]
										1	purple on the weathered surface The Siltstone is moderately bedded. The sediments are blue to			1	1	
	.		22SR028	Aylmer	May 16, 2022	Nad 83 zone 17	516963	5189932	Station	Siltstone	grey along the fresh surface and are bleached grey to purple on	Moderate Silicification	No veins were observed	No mineralisation was	<5m	
					., .,					1	the weathered surface			observed.	1	
										1	The Siltstone is moderately bedded [334/30]. The sediments are	Moderately to highly silicified		Fully oxidized, fine to medium	1	1
	-	-	22SR030	Aylmer	May 16, 2022	Nad 83 zone 17	517009	5189874	Station	Siltstone	pink to grey along the fresh surface and are bleached grey along		No veins were observed	grained cubic pyrite (2%) was	<5m	
											the weathered surface	albitization		observed		
												No alterations were observed at				
											The weathered rock is light grey and the fresh surface is medium	the northern margins of the			1	1
										1	grey. Five cm wide rounded to subrounded granite clasts occur in the matrix. No hedding surfaces were observed. The outcoop	outcrop. At the southern	A few mm wide quartz veinels	1	1	
	-	-	225R032	Aylmer	May 16, 2022	Nad 83 zone 17	517060	5189722	Station	Siltstone	in the matrix. No bedding surfaces were observed. The outcrop	margins of the outcrop, strong	were observed within the	No mineralisation was observed	20m	
											was poorly bedded. Near the southern part of the outcrop, the dropstone clasts were no longer observed, the sediments were	albitization, silicification and	sediments		1	1
										1	however brecciated.	moderate hematization was		1	1	
												observed.				
											The outcrop consists of a poorly bedded siltstone at the eastern			1 .	1	
	·		22SR033	Aylmer	May 16, 2022	Nad 83 zone 17	517035	5189670	Station	Siltstone	margins of a trough [296 to 118]. The sediments are purple to	No alteration was observed	No veins were observed	No mineralisation was	5m	
											grey along the fresh surface and a bleached grey to purple on			observed	ſ	1
											the weathered surface					

	SampleID Certificate of Analysys StationID		Area			Easting	Northing	Sample Type	be .					Outcrop		
Activity	(LAB ID)	(Batch ID)	(Personal Sample or Station ID)	(Project)	Sample Date	UTM Info	(m)	(m)	(Station/Sample)	Lithology	Notes on Lithology	Notes on Alteration	Notes on Veining	Notes on Mineralization	Size (est.)	Structures
										Geological (Pros	pecting) Sample Information	•				
	X924613	SD22128706	225R016	Aylmer	May 16, 2022	Nad 83 zone 17	517027	5190033	Grab Sample	Breccia	The rock is brecciated quartzite. The sediment is very fine to fine- grained. The weathered surface is light grey to beige and the fresh surface is tan to salmon pink. The rock is highly fractured, veins and quartzite dasts occur. Smaller brecciated clasts occur near the contact interface	The rock is highly silicified, albitized with weak oxidation from hematite and iron carbonate staining.	Quartz carbonate patches and veins occur	No mineralisation was observed.	15m	The Brecciated zone occurs in contact with planar laminated siltstone [030/56]. The contact measurements are [020/52]. Joint measurements were measured [308/48]
	X924614	SD22128706	225R017	Aylmer	May 16, 2022	Nad 83 zone 17	517048	5190028	Grab Sample	Breccia	The rock is brecciated quartite. The sediment is very fine to fine- grained. The weathered surface is light grey to beige and the fresh surface is tan to salmon pink. The rock is highly fractured, weins and quartrite clasts occur. A valley with a strike of [174] occurs near the outcron.	The rock is highly silicified, albitized, carbonaceous and contains with weak oxidation from hematite and iron carbonate staining.	Quartz carbonate patches and veins occur	No mineralisation was observed.	8m	
le Information	X924615	SD22128706	225R026	Aylmer	May 16, 2022	Nad 83 zone 17	517019	5189923	Grab Sample	Siltstone	The rock is a moderately well-bedded fine to medium-grained siltstone to quartzite. The weathered surface is light grey to beige and the fresh surface is tan to salmon pink. The rock is highly fractured. The outcrop may represent the initial stage of Brecciation	Moderatly to highly silicified with strong albitization, green fuchsite or malachite staining was observed along certain joint fractures or weathered surfaces	Quartz carbonate veins were observed along the bedding planes and perpendicular to bedding	No mineralisation was observed.	15m	The bedding surface measurements are [338/42].
đ	X924616	SD22128706	Standard	QA/QC	May 16, 2022	QA/QC		QA/QC	Standard	Standard	OREAS 704 Standard Reference Material	Standard	Standard	Standard	Standard	Standard
s Sa	X924617	SD22128706	Blank	QA/QC	May 16, 2022	QA/QC	QA/QC	QA/QC	Blank	Blank	OREAS High Si Blank Reference Material	Blank	Blank	Blank	Blank	Blank
Prospecting	X924618	SD22128706	22SR029	Aylmer	May 16, 2022	Nad 83 zone 17	516979	5189903	Grab Sample	Breccia	The rock is a moderately well-bedded fine to medium-grained siltstone to quartzite. The weathered surface is light grey to beige and the fresh surface is tan to salmon pink. The rock is highly fractured and contains clasts of breccia. The entire outrow is not fully brecciated.	Moderatly to highly silicified with strong albitization	Minor quartz veins	Trace sulphides were observed (1-3%)	<5m	The bedding surface measurements are [338/42]
	X924619	SD22128706	225R031	Aylmer	May 16, 2022	Nad 83 zone 17	517058	5189818	Grab Sample	Breccia	The rock consists of angular to subangular dasts ranging from a few mm to three to four cm in diameter. The weathered surface is light grey to white and bleached. The clasts are dominantly medium to dark grey magnetic sitistones? The dark sediment clasts are weakly magnetic The marit has a salmon pink appearance. Does the breccia appear to switch to polymicic conglomerate?	The rock is silicified and albitized. Hematization occurs within the matrix.	No veins were observed	No mineralisation was observed.	<5m	
	D842811	SD22255045	22TRH001	Aylmer	September 7, 2022	Nad 83 zone 17	517254	5190049	Grab Sample	Sandstone	pink, pink-red weathered colour, pink, pink-red fresh colour; massive santdtone. From the "gold zone?"; pink to red rather than grey of unaltered Huronian sediment	possibly potassic alteration	No veins were observed	2-4% disseminated fine-grained pyrite	<5m	
	D842812	SD22255045	22TRH001	Aylmer	September 7, 2022	Nad 83 zone 17	517254	5190046	Grab Sample	Sandstone	pink, pink-red weathered colour, pink, pink-red fresh colour; massive santdtone. From the "gold zone?"; pink to red rather than grey of unaltered Huronian sediment	possibly potassic alteration	No veins were observed	2-4% disseminated fine-grained pyrite	<5m	

Tr Transition Meta

	Project	Date	Geo
als	Aylmer	July 25, 2022	B. Williams, C. Hatton,
ILS -			

			Drilling Update					
Shift	Activity	Comm	nments	Hole ID	Size Di	p From (m)	To (m)	Drilled (m)
	Casing / OB Drilling	Equipment MO	B, with one float					
Day	Drilling	containing Bull Do	zer, and Rod Sloop.					
Day	Moving	Arrived at site	at 4pm, moved					
	Waterline	equipment t	o Drill PAD A					
	Casing / OB Drilling							
Night	Drilling							
INIGIIL	Moving							
	Waterline							
	Hole 1	of 3				Daily	/ Total (m)	0
	Planned 45	0 metres				Progam Mete	rage Total	0
			Activity Update					
Time	Activity			Com	ments			
4:00 PM	Site Inspection		all debrie, Pads A & uipment which was		•		-	•
		Ho	e ID	Box #	# From	Box	# To	Total Boxes
	Core Box Collection							
	-	Mineraliz	ation & Observatior	Update				
Hole ID	Box #	From (m)	To (m)			Comme	ents	

Project	Date	Geo
Aylmer	July 26, 2022	B. Williams, C. Hatton,

Shift	Activity	Comm	iments	Hole ID	Az	Dip	From (m)	To (m)	Drilled (m
	Casing / OB Drilling								
Day	Drilling	Equipment MOB,	awaiting 2nd float	AY-22-01	240	-50	0	0	0
Day	Moving	with drill &	pump shack.						
	Waterline								
	Casing / OB Drilling								
Night	Drilling								
Might	Moving								
	Waterline								
	Currer	ntly							
Located on	PAD A	Hole	AY-22-01				Daily	Total (m)	0
	Planned 450	0 metres				Pro	ogam Meter	rage Total	0
Expected P	Program Total	125	0 m						
		-	Activity Update						
Time	Activity			Comr	nents				
-	Site Inspection	Site not Inspected							
		Hol	e ID	Box #	From	1	Box	# To	Total Boxe
_	Core Box Collection		e ID - -		From	1	Box #		Total Boxe - -
-	Core Box Collection		-		-		-		-
- 3:00 PM	Core Box Collection	Weather St	- - ation (SUZ)	Fuel Grou	-		- - DP Code		- - C
- 3:00 PM		Weather St Drilling with Water	- - ation (SUZ) = Low Fire Risk Ope	Fuel Grou	-		- - DP Code Work N		- - C n Status
		Weather St Drilling with Water	- - :ation (SUZ) = Low Fire Risk Ope igh Fire Risk Operat	Fuel Grou	- - up 3	IC	- - DP Code Work N	Aodificatio	- - C n Status
	IOP Fire Code	Weather St Drilling with Water Drill Move = Very H	- - :ation (SUZ) = Low Fire Risk Ope igh Fire Risk Operat	Fuel Grou rations ions C, L = 9°C, P	- - up 3	IC	- - DP Code Work N	Aodificatio	- - C n Status
	IOP Fire Code	Weather St Drilling with Water Drill Move = Very H	- - :ation (SUZ) = Low Fire Risk Ope igh Fire Risk Operat H = 24°C	Fuel Grou rations ions C, L = 9°C, P	- - up 3	IC	- - DP Code Work N	Aodificatio P) Preventi	- - C n Status
24H \	IOP Fire Code Neather	Weather St Drilling with Water Drill Move = Very H Mineraliza	- cation (SUZ) = Low Fire Risk Ope igh Fire Risk Operat H = 24°(ation & Observatior	Fuel Grou rations ions C, L = 9°C, P	- - up 3	IC	- 	Aodificatio P) Preventi	- - C n Status
24H \	IOP Fire Code Neather	Weather St Drilling with Water Drill Move = Very H Mineraliza	- cation (SUZ) = Low Fire Risk Ope igh Fire Risk Operat H = 24°(ation & Observatior	Fuel Grou rations ions C, L = 9°C, P	- - up 3	IC	- 	Aodificatio P) Preventi	- - C n Status
24H \	IOP Fire Code Neather	Weather St Drilling with Water Drill Move = Very H Mineraliza	- cation (SUZ) = Low Fire Risk Ope igh Fire Risk Operat H = 24°(ation & Observatior	Fuel Grou rations ions C, L = 9°C, P	- - up 3	IC	- 	Aodificatio P) Preventi	- - C n Status
24H \	IOP Fire Code Neather	Weather St Drilling with Water Drill Move = Very H Mineraliza From (m)	- cation (SUZ) = Low Fire Risk Ope igh Fire Risk Operat H = 24°(ation & Observatior	Fuel Grou rations ions C, L = 9°C, P Update	- - up 3	IC	- 	Aodificatio P) Preventi	- - C n Status

	ſr							
Transiti	Transition Metals							
Shift	Activity							
	Casing / OB Drilling	Equipmen						
1	D (11)							

Project	Date	Geo
Aylmer	July 27, 2022	B. Williams, C. Hatton,

Shift			Drilling Update						
	Activity		ments	Hole ID	Az	Dip I	From (m)	To (m)	Drilled (m)
	Casing / OB Drilling	Equipment MOB, 2							
Day	Drilling	pump shack arrive		AY-22-01	240	-50	0	0	0
Day	Moving	moved up hill ar	nd fully set up by						
	Waterline	3:50)pm.						
	Casing / OB Drilling								
Night	Drilling								
Night	Moving								
	Waterline	No night shif	t on this date						
	Curre	ntly							
Located on	PAD A	Hole	AY-22-01				-	Total (m)	0
	Planned 45	0 metres				Prog	gam Meter	age Total	0
Expected P	Program Total	125							
		1	Activity Update						
Time	Activity			Comr	nents				
2:15:00PM	Site Inspection		a by moving around n, temporary water s				-		
		Hol	e ID	Box #	From	1	Box #	‡ To	Total Boxe
-	Core Box Collection		-		-		-		-
		Weather St	ation (SUZ)	Fuel Grou	up 3	IOF	Ode Code		E
-	IOP Fire Code	Drilling with Water	= Low Fire Risk Ope	rations	-		Work N	Iodificatio	n Status
			igh Fire Risk Operat				(F) Preventi	on
24H \	Veather		H = 23°C,	L = 13°C, F	POP =	10 %, '	~>1 mm		
		Mineraliza	ation & Observation	Update					
			-				-		
Hole ID	Box #	From (m)	To (m)				Comme	nts	
Hole ID	Box #	From (m)	To (m)				Comme	nts	
Hole ID	Box #	From (m)	To (m)				Comme	nts	
Hole ID	Box #	From (m)	To (m)				Comme	nts	
Hole ID	Box #	From (m)	To (m)				Comme	nts	
Hole ID	Box #		To (m)					nts	

Tr	
Transition	Metals

Project	Date	Geo
Aylmer	July 28, 2022	B. Williams, C. Hatton,

			Drilling Update						
Shift	Activity	Comm		Hole ID	Az	Dip	From (m)	To (m)	Drilled (m)
Day	Casing / OB Drilling Drilling Moving Waterline	Drill running upon arrival Casing		AY-22-01 AY-22-01			0 3	3 15	3 15
Night	Casing / OB Drilling Drilling Moving Waterline	until temporary wa	ey drilled two feet iter source ran dry.	AY-22-01	240	-50	15	?	?
	Currei	ntly							
Located on		Hole	AY-22-01				-	Total (m)	15
	Planned 45					Pro	ogam Meter	rage Total	15
Expected	Program Total	125	-						
	1	1	Activity Update						
Time	Activity			Comi	ments				
11:25 AM	Site Inspection		e checklist preform		U				
-		Hol	e ID	ed, everyth Box #	U		oar. Clean ar Box f		
11:25 AM -	Site Inspection Core Box Collection	Hol No core	e ID		U				
-		Hol No core Weather St	e ID collected - ation (SUZ)	Box #	From	<u> </u>	Box ‡ - - PP Code	# To	Total Boxes - - E
-		Hol No core	e ID collected - ation (SUZ)	Box #	From	<u> </u>	Box ‡ - - PP Code		Total Boxes - - E
-	Core Box Collection	Hol No core Weather St	e ID collected ation (SUZ) = Low Fire Risk Ope igh Fire Risk Operat	Box # Fuel Gro rations ions	• From - - up 3		Box # - - OP Code Work M (F	# To	Total Boxes - - E n Status
- 3:00 PM	Core Box Collection	Hol No core Weather St Drilling with Water Drill Move = Very H	e ID collected ation (SUZ) = Low Fire Risk Ope igh Fire Risk Operat H = 22°C,	Box # Fuel Gro rrations ions L = 12°C, I	• From - - up 3		Box # - - OP Code Work M (F	# To 1odificatio	Total Boxes - - E n Status
- 3:00 PM 24H	Core Box Collection	Hol No core Weather St Drilling with Water Drill Move = Very H Mineraliza	e ID collected ation (SUZ) = Low Fire Risk Ope igh Fire Risk Operat H = 22°C, ation & Observatior	Box # Fuel Gro rrations ions L = 12°C, I	• From - - up 3		Box # - - PP Code Work N (F ,~12 mm	# To Modificatio P) Preventi	Total Boxes - - E n Status
- 3:00 PM	Core Box Collection	Hol No core Weather St Drilling with Water Drill Move = Very H	e ID collected ation (SUZ) = Low Fire Risk Ope igh Fire Risk Operat H = 22°C,	Box # Fuel Gro rrations ions L = 12°C, I	• From - - up 3		Box # - - OP Code Work M (F	# To Modificatio P) Preventi	Total Boxes - - E n Status
- 3:00 PM 24H	Core Box Collection	Hol No core Weather St Drilling with Water Drill Move = Very H Mineraliza	e ID collected ation (SUZ) = Low Fire Risk Ope igh Fire Risk Operat H = 22°C, ation & Observatior	Box # Fuel Gro rrations ions L = 12°C, I	• From - - up 3		Box # - - PP Code Work N (F ,~12 mm	# To Modificatio P) Preventi	Total Boxes - - E n Status
- 3:00 PM 24H	Core Box Collection	Hol No core Weather St Drilling with Water Drill Move = Very H Mineraliza	e ID collected ation (SUZ) = Low Fire Risk Ope igh Fire Risk Operat H = 22°C, ation & Observatior	Box # Fuel Gro rrations ions L = 12°C, I	• From - - up 3		Box # - - PP Code Work N (F ,~12 mm	# To Modificatio P) Preventi	Total Boxes - - E n Status
- 3:00 PM 24H	Core Box Collection	Hol No core Weather St Drilling with Water Drill Move = Very H Mineraliza From (m)	e ID collected ation (SUZ) = Low Fire Risk Ope igh Fire Risk Operat H = 22°C, ation & Observatior	Box # Fuel Gro orations ions L = 12°C, I Update	• From - - up 3		Box # - - PP Code Work N (F ,~12 mm	# To Modificatio P) Preventi	Total Boxes - - E n Status

There was an extra ~2 feet after the 15m drill block; this might affect the meterage if they run 3 meters in the rod after startup tomorrow. J&S Truck & Trailer with additional supplies passed Ben & Carolyn on Poupore Rd. around 1pm (unsure what is inside - pump equiptment/supplies?).

Tr	
Transition	Metals

Project	Date	Geo
Aylmer	July 29, 2022	B. Williams, C. Hatton,

			Drilling Update						
Shift	Activity	Comm	iments	Hole ID	Az	Dip F	rom (m)	To (m)	Drilled (m
	Casing / OB Drilling	No one on site upo	on arrival. No work						
Day	Drilling	being done. Wate	erline switched to	AY-22-01 240	-50	15	?	0	
Day	Moving	bottom sump, Purr	np shack arrived on						
	Waterline	site ^	~4pm						
Night	Casing / OB Drilling Drilling Moving Waterline	After pump setup, there being too m the incline (see	•	AY-22-01	240	-50	15	?	0
	Curre	ntly							
Located or	n PAD A	Hole	AY-22-01					Total (m)	0
	Planned 45	0 metres				Prog	am Meter	rage Total	15
Expected	Program Total	125	0 m						
			Activity Update						
Time									
7:15 AM	Activity Site Inspection		side, grease buckets		e dispo	osed of			
-	Activity Site Inspection	stopped	due to temporary	s need to be water supp	e dispo ly run	osed of ning ou	ut at some	point last	night
7:15 AM	Site Inspection	stopped Hol	d due to temporary	s need to be water supp Box #	e dispo ly run From	osed of ning ou	ut at some Box #	e point last # To	night Total Boxe
-		stopped Hol	due to temporary	s need to be water supp Box #	e dispo ly run	osed of ning ou	ut at some	e point last # To	night
7:15 AM 7:30 AM	Site Inspection	Stopped Hol AY-2 Weather St	e ID 22-01 - cation (SUZ)	s need to be water supp Box #	e dispo ly run From 1	osed of	ut at some Box # 2 - ? Code	t point last # To	Total Boxe 2 - E
7:15 AM	Site Inspection	Stopped Hol AY-2 Weather St	e ID 	s need to be water supp Box #	e dispo ly run From 1	osed of	ut at some Box # 2 - ? Code	e point last # To	Total Boxe 2 - E
7:15 AM 7:30 AM 1:45 PM	Site Inspection Core Box Collection IOP Fire Code	Stopped Hol AY-2 Weather St Drilling with Water	e ID 2-01 	Box #	e dispo ly run From 1 - up 3	osed of ning ou IOP	Box # Box # 2 - 2 Code Work M (F	t point last # To	Total Boxe 2 - E n Status
7:15 AM 7:30 AM 1:45 PM	Site Inspection	stopped Hol AY-2 Weather St Drilling with Water Drill Move = Very H	e ID 2-01 	Box # Box # Fuel Grou erations cions C, L = 12°C,	e dispo ly run From 1 - up 3	osed of ning ou IOP	Box # Box # 2 - 2 Code Work M (F	# point last # To Modificatio	Total Boxe 2 - E n Status
7:15 AM 7:30 AM 1:45 PM 24H	Site Inspection Core Box Collection IOP Fire Code	stopped Hol AY-2 Weather St Drilling with Water Drill Move = Very H Mineraliza	e ID 2-01 	Box # Box # Fuel Grou erations cions C, L = 12°C,	e dispo ly run From 1 - up 3	osed of ning ou IOP	ut at some Box # 2 - 2 Code Work M (F <1 mm	Point last To Modificatio P) Preventi	Total Boxe 2 - E n Status
7:15 AM 7:30 AM 1:45 PM 24H Hole ID	Site Inspection Core Box Collection IOP Fire Code	stopped Hol AY-2 Weather St Drilling with Water Drill Move = Very H	e ID 2-01 	Box # Box # Fuel Grou erations c, L = 12°C, DUpdate	e dispo ly run From 1 - up 3 POP =	ining ou	Box # Box # 2 - 2 Code Work M (F <1 mm	 point last # To Modificatio P) Preventi nts 	night Total Boxe 2 - E n Status on
7:15 AM 7:30 AM 1:45 PM 24H	Site Inspection Core Box Collection IOP Fire Code Weather	stopped Hol AY-2 Weather St Drilling with Water Drill Move = Very H Mineraliza	e ID 2-01 	Box # Box # Fuel Grou erations c, L = 12°C, Dupdate Sediments	e dispo ly run From 1 - up 3 POP =	IOP	Box # Box # 2 - 2 Code Work M (F <1 mm Commen qtz vein &	<pre>point last # To Modificatio P) Preventi nts a associated</pre>	Total Boxe 2 - E n Status on d alteration
7:15 AM 7:30 AM 1:45 PM 24H Hole ID AY-22-01	Site Inspection Core Box Collection IOP Fire Code Weather Box # 1	stopped Hol AY-2 Weather St Drilling with Water Drill Move = Very H Mineraliza From (m) 3	e ID 2-01 	Box # Box # Fuel Grou rations c, L = 12°C, Dupdate Sediments Sediments	e dispo ly run From up 3 POP =	IOP	Box # Box # 2 2 Code Work M (F <1 mm 4 2 vein & nm qtz vei	<pre>point last # To Modificatio D) Preventi nts associatee ns/mosaic</pre>	Total Boxe 2 - E n Status on d alteration
7:15 AM 7:30 AM 1:45 PM 24H Hole ID	Site Inspection Core Box Collection IOP Fire Code Weather Box #	stopped Hol AY-2 Weather St Drilling with Water Drill Move = Very H Mineraliza From (m)	e ID 2-01 	Box # Box # Fuel Grou erations c, L = 12°C, Dupdate Sediments	e dispo ly run From up 3 POP =	IOP	Box # Box # 2 2 Code Work M (F <1 mm 4 2 vein & nm qtz vei	<pre>point last # To Modificatio D) Preventi nts associatee ns/mosaic</pre>	Total Boxe 2 - E n Status on d alteration
7:15 AM 7:30 AM 1:45 PM 24H Hole ID AY-22-01	Site Inspection Core Box Collection IOP Fire Code Weather Box # 1	stopped Hol AY-2 Weather St Drilling with Water Drill Move = Very H Mineraliza From (m) 3	e ID 2-01 	Box # Box # Fuel Grou rations c, L = 12°C, Dupdate Sediments Sediments	e dispo ly run From up 3 POP =	IOP	Box # Box # 2 2 Code Work M (F <1 mm 4 2 vein & nm qtz vei	<pre>point last # To Modificatio D) Preventi nts associatee ns/mosaic</pre>	Total Boxe 2 - E n Status on
7:15 AM 7:30 AM 1:45 PM 24H Hole ID AY-22-01	Site Inspection Core Box Collection IOP Fire Code Weather Box # 1	Stopped Hol AY-2 Weather St Drilling with Water Drill Move = Very H Mineraliza From (m) 3 6	e ID 2-01 	Box # Box # Fuel Grou erations cons C, L = 12°C, DUpdate Sediments parallel TC	e dispo ly run From up 3 POP =	IOP	Box # Box # 2 2 Code Work M (F <1 mm 4 2 vein & nm qtz vei	<pre>point last # To Modificatio D) Preventi nts associatee ns/mosaic</pre>	Total Boxe 2 - E n Status on d alteration

Morning Comments (7 AM): Driller's log says they worked a 12-hour shift but no one was on site when we arrived.

Evening Comments (9 PM): Pump Shack installed and tested, however there is too much pressure from the incline. A release valve was placed at the bottom of the hill to release some pressure, as well as some high pressure hose at bottom. They received good water at drill, however, Only for 10 minutes, then the engine gets overloaded and shuts down. They are going to have to put a bigger engine on that pump in morning. They have one in North Bay, ready for pick up at 9am, so should be up and running by lunch time on the 30th. No productions during overnight shift.

Project	Date	Geo
Aylmer	July 30, 2022	B. Williams, Br. Williams

Activity g / OB Drilling Drilling Moving Vaterline g / OB Drilling Drilling Moving Vaterline PAD A Planned 450 Total	Hole	np engine, replace o drill, and started again roken ground. fault at 41m.	Hole ID AY-22-01 AY-22-01		-50	From (m) 15 21	To (m) 21 45	Drilled (m) 6 24
Drilling Moving Vaterline g / OB Drilling Drilling Moving Vaterline Curren PAD A Planned 450	engine, got water t drilling slow drilling, b Encountered tly Hole	o drill, and started again roken ground. fault at 41m.				_		
g / OB Drilling Drilling Moving Vaterline PAD A Planned 450	Encountered tly Hole	fault at 41m.	AY-22-01	240	-50	21	45	24
PAD A Planned 450	Hole							
Planned 450								
		AY-22-01				Daily	Total (m)	30
Total	metres				Pro	gram Meter	age Total	45
	1250) m						
		Activity Update						
Activity			Comr	nents				_
Inspection	Site	e was clean, all refu	se from the	e day	befor	e had been	picked up.	
	Hole	e ID	Box #	From	1	Box #	‡ To	Total Boxe
Box Collection	AY-2	2-01	3	3		5		3
	Drilling with Water	= Low Fire Risk Ope						
r				POP =	10 %		,	-
	Mineraliza			-		,		
Box #	From (m)	To (m)				Commer	nts	
	Ad	ditional Comments	5					
3	ox Collection Fire Code	ox Collection AY-2 Fire Code Urilling with Water Drill Move = Very H Mineraliza Box # From (m)	Hole ID AY-22-01 Fire Code Weather Station (SUZ) Drilling with Water = Low Fire Risk Operat Drill Move = Very High Fire Risk Operat Drill Move = Very High Fire Risk Operat H = 25°C Mineralization & Observation Box # From (m) To (m) Image: State of the state of	Hole ID Box # ox Collection AY-22-01 AY-22-01 Secondary Fire Code Weather Station (SUZ) Drilling with Water = Low Fire Risk Operations Drill Move = Very High Fire Risk Operations H = 25°C, L = 11°C, Mineralization & Observation Update	Hole ID Box # From ox Collection AY-22-01 3 AY-22-01 3 - Fire Code Weather Station (SUZ) Fuel Group 3 Drilling with Water = Low Fire Risk Operations Drill Move = Very High Fire Risk Operations Drill Move = Very High Fire Risk Operations H = 25°C, L = 11°C, POP = Mineralization & Observation Update Box # Box # From (m) To (m) Image: Second	Hole ID Box # From ox Collection AY-22-01 3 AY-22-01 3 - Fire Code Weather Station (SUZ) Fuel Group 3 IO Drilling with Water = Low Fire Risk Operations Drill Move = Very High Fire Risk Operations IO H = 25°C, L = 11°C, POP = 10 % Mineralization & Observation Update IO Box # From (m) To (m) IO Image: Solution of the second sec	Hole ID Box # From Box # ox Collection AY-22-01 3 5 - - - - - Fire Code Weather Station (SUZ) Fuel Group 3 IOP Code Drilling with Water = Low Fire Risk Operations Work N Work N Drill Move = Very High Fire Risk Operations (F H = 25°C, L = 11°C, POP = 10 %, <1 mm	Hole ID Box # From Box # To ox Collection AY-22-01 3 5 - - - - Weather Station (SUZ) Fuel Group 3 IOP Code Drilling with Water = Low Fire Risk Operations Work Modification (P) Prevention Drill Move = Very High Fire Risk Operations (P) Prevention H = 25°C, L = 11°C, POP = 10 %, <1 mm

Night Shift Comments: slow drilling, broken ground. Encounter contact / fault at 41m depth, poor recovery in fault, with blocky material afterwards.

Project	Date	Geo
Aylmer	July 31, 2022	B. Williams, Br. Williams

		Dri							
Shift	Activity	Comment	s	Hole ID	Az	Dip	From (m)	To (m)	Drilled (m
Day	Casing / OB Drilling Drilling Moving Waterline	Slow Drilling broken h downhole survey at 51r 50.57 , Az: 24	n depth (Dip: -	AY-22-01	240	-50	45	63	18
Night	Casing / OB Drilling Drilling Moving Waterline	Slow Drilling, broken	& hard rock	AY-22-01	240	-50	63	81	18
	Curren	ntly							
Located on	PAD A	Hole	AY-22-01				Daily	Total (m)	36
	Planned 45) metres					ŀ	Hole Total	81
Expected	Program Total	1250 m				Pro	gram Metei	rage Total	81
		Act	ivity Update						
Time	a								
11:30 AM	Activity Site Inspection	Site was clean, and ever	vthing looked a		nents steps		it of drill we	ere installe	d in the morn
-	Site Inspection	Site was clean, and ever Hole ID	ything looked §		steps	in/ou	it of drill we		
-				good. New Box #	steps	in/ou		# To 1	
11:30 AM	Site Inspection	Hole ID	, , , , ,	good. New Box #	steps From	in/ou	Box #	# To 1	Total Boxe
11:30 AM	Site Inspection	Hole ID AY-22-01	n (SUZ)	Box #	steps From	in/ou	Box # 1: - PP Code	# To 1	Total Boxe 6 - D
11:30 AM 12:50 PM	Site Inspection	Hole ID AY-22-01 Weather Station	n (SUZ) w Fire Risk Ope	Box #	steps From	in/ou	Box # 1: - - PP Code Work N	# To 1	Total Boxe 6 - D n Status
11:30 AM 12:50 PM 2:00 PM	Site Inspection	Hole ID AY-22-01 Weather Station Drilling with Water = Lo	n (SUZ) w Fire Risk Ope ire Risk Operat	Box #	steps From 5 - up 3	in/ou IC	Box 4 1: - - - - - - - - - - - - - - - - - -	# To 1 Aodificatio	Total Boxe 6 - D n Status
11:30 AM 12:50 PM 2:00 PM	Site Inspection Core Box Collection IOP Fire Code	Hole ID AY-22-01 Weather Station Drilling with Water = Lo	n (SUZ) w Fire Risk Ope ire Risk Operat H = 27°	Box # Box # Fuel Grou erations cions C, L = 16°C,	steps From 5 - up 3	in/ou IC	Box 4 12 - - - - - - - - - - - - - - - - - -	# To 1 Aodificatio	Total Boxe 6 - D n Status
11:30 AM 12:50 PM 2:00 PM	Site Inspection Core Box Collection IOP Fire Code	Hole ID AY-22-01 Weather Station Drilling with Water = Lo Drill Move = Very High F	n (SUZ) w Fire Risk Ope ire Risk Operat H = 27°	Box # Box # Fuel Grou erations cions C, L = 16°C,	steps From 5 - up 3	in/ou IC	Box 4 12 - - - - - - - - - - - - - - - - - -	# To 1 Modificatio P) Preventi	Total Boxe 6 - D n Status
11:30 AM 12:50 PM 2:00 PM 24H	Site Inspection Core Box Collection IOP Fire Code Weather	Hole ID AY-22-01 Weather Station Drilling with Water = Lo Drill Move = Very High F Mineralization	n (SUZ) w Fire Risk Ope ire Risk Operat H = 27° & Observation	Box # Box # Fuel Grou erations cions C, L = 16°C,	steps From 5 - up 3	in/ou IC	Box # 1: 	# To 1 Modificatio P) Preventi	Total Boxe 6 - D n Status
11:30 AM 12:50 PM 2:00 PM 24H	Site Inspection Core Box Collection IOP Fire Code Weather	Hole ID AY-22-01 Weather Station Drilling with Water = Lo Drill Move = Very High F Mineralization	n (SUZ) w Fire Risk Ope ire Risk Operat H = 27° & Observation	Box # Box # Fuel Grou erations cions C, L = 16°C,	steps From 5 - up 3	in/ou IC	Box # 1: 	# To 1 Modificatio P) Preventi	Total Boxe 6 - D n Status
11:30 AM 12:50 PM 2:00 PM 24H	Site Inspection Core Box Collection IOP Fire Code Weather	Hole ID AY-22-01 Weather Station Drilling with Water = Lo Drill Move = Very High F Mineralization	n (SUZ) w Fire Risk Ope ire Risk Operat H = 27° & Observation	Box # Box # Fuel Grou erations cions C, L = 16°C,	steps From 5 - up 3	in/ou IC	Box # 1: 	# To 1 Modificatio P) Preventi	Total Boxe 6 - D n Status
11:30 AM 12:50 PM 2:00 PM 24H	Site Inspection Core Box Collection IOP Fire Code Weather	Hole ID AY-22-01 Weather Station Drilling with Water = Lo Drill Move = Very High F Mineralization	n (SUZ) w Fire Risk Ope ire Risk Operat H = 27° & Observation	Box # Box # Fuel Grou erations cions C, L = 16°C,	steps From 5 - up 3	in/ou IC	Box # 1: 	# To 1 Modificatio P) Preventi	Total Boxe 6 - D n Status
11:30 AM 12:50 PM 2:00 PM 24H	Site Inspection Core Box Collection IOP Fire Code Weather	Hole ID AY-22-01 Weather Station Drilling with Water = Lo Drill Move = Very High F Mineralization From (m)	n (SUZ) w Fire Risk Ope ire Risk Operat H = 27° & Observation	Box # Box # Fuel Grou erations cions C, L = 16°C, DUpdate	steps From 5 - up 3	in/ou IC	Box # 1: 	# To 1 Modificatio P) Preventi	Total Boxe 6 - D n Status

Day Shit Comments: Site was inspected at 11:30am, drill foreman was on site upon arrival. New steps (wider) were installed for easy access in/out of drill. First downhole survey was conducted at 51m depth (Dip: -50.57, Az: 243.07), which was an acceptable (and expected) deviation through this material. Material being recover is blocky, and slow going.

Night Shift Comments: Slow drilling, broken and block material. Hard drilling.

Project	Date	Geo
Aylmer	August 1, 2022	B. Williams, Br. Williams

			Drilling Update						
Shift	Activity	Comr	ments	Hole ID	Az	Dip	From (m)	To (m)	Drilled (m)
	Casing / OB Drilling								
Day	Drilling	Drilling, test at 10	2 m (Dip: -50 , Az:	AY-22-01	240	-50	81	111	30
Day	Moving	24	12)						
	Waterline								
	Casing / OB Drilling			NW Casi	-		3	6	3
Night	Drilling	Drilling, Ream cas	ing down from 3m	AY-22-01	240	-50	111	141	30
Mant	Moving	to	6m						
	Waterline								
	Curre	ntly							
Located o		Hole	AY-22-01					Total (m)	60
	Planned 45							lole Total	141
Expected	Program Total	125	-			Pro	gram Meter	rage Total	141
		1	Activity Update						
Time	Activity			Comr	nents				
9:45 AM	Site Inspection		Site was cle				0.000		
		Hol	e ID	Box #	From	1	Box #	# To	Total Boxes
10:45 AM	Core Box Collection		l e ID 22-01	-	From	<u> </u>	Box #	-	Total Boxes
10:45 AM	Core Box Collection	AY-2	-	-	.2		-	-	
10:45 AM 3:00 PM	Core Box Collection	AY-2 Weather St	22-01	1 Fuel Gro	.2		21 DP Code	-	10 E
		AY-2 Weather St Drilling with Water Drill Move = Very H	22-01 tation (SUZ) = Low Fire Risk Ope ligh Fire Risk Operat	1 Fuel Grou erations tions	.2 up 3	IC	21 DP Code Work M	1 Aodificatio P) Preventi	10 E n Status
3:00 PM		AY-2 Weather St Drilling with Water Drill Move = Very H	22-01 tation (SUZ) = Low Fire Risk Ope ligh Fire Risk Operat H = 24°C, L = 11°C, F	Fuel Grou erations tions POP = 56 %,	.2 up 3	IC	21 DP Code Work M	1 Aodificatio P) Preventi	10 E n Status
3:00 PM 24H	IOP Fire Code Weather	AY-2 Weather St Drilling with Water Drill Move = Very H	22-01 tation (SUZ) = Low Fire Risk Ope ligh Fire Risk Operat H = 24°C, L = 11°C, F ation & Observation	Fuel Grou erations tions POP = 56 %,	.2 up 3	IC	21 DP Code Work M (I nance Thunc	1 Aodificatio P) Preventi derstorm	10 E n Status
3:00 PM	IOP Fire Code	AY-2 Weather St Drilling with Water Drill Move = Very H	22-01 tation (SUZ) = Low Fire Risk Ope ligh Fire Risk Operat H = 24°C, L = 11°C, F	Fuel Grou erations tions POP = 56 %,	.2 up 3	IC	21 DP Code Work M	1 Aodificatio P) Preventi derstorm	10 E n Status
3:00 PM 24H	IOP Fire Code Weather	AY-2 Weather St Drilling with Water Drill Move = Very H	22-01 tation (SUZ) = Low Fire Risk Ope ligh Fire Risk Operat H = 24°C, L = 11°C, F ation & Observation	Fuel Grou erations tions POP = 56 %,	.2 up 3	IC	21 DP Code Work M (I nance Thunc	1 Aodificatio P) Preventi derstorm	10 E n Status
3:00 PM 24H	IOP Fire Code Weather	AY-2 Weather St Drilling with Water Drill Move = Very H	22-01 tation (SUZ) = Low Fire Risk Ope ligh Fire Risk Operat H = 24°C, L = 11°C, F ation & Observation	Fuel Grou erations tions POP = 56 %,	.2 up 3	IC	21 DP Code Work M (I nance Thunc	1 Aodificatio P) Preventi derstorm	10 E n Status
3:00 PM 24H	IOP Fire Code Weather	AY-2 Weather St Drilling with Water Drill Move = Very H	22-01 tation (SUZ) = Low Fire Risk Ope ligh Fire Risk Operat H = 24°C, L = 11°C, F ation & Observation	Fuel Grou erations tions POP = 56 %,	.2 up 3	IC	21 DP Code Work M (I nance Thunc	1 Aodificatio P) Preventi derstorm	10 E n Status
3:00 PM 24H	IOP Fire Code Weather	AY-2 Weather St Drilling with Water Drill Move = Very H	22-01 tation (SUZ) = Low Fire Risk Ope ligh Fire Risk Operat H = 24°C, L = 11°C, F ation & Observation	Fuel Grou erations tions POP = 56 %,	.2 up 3	IC	21 DP Code Work M (I nance Thunc	1 Aodificatio P) Preventi derstorm	10 E n Status
3:00 PM 24H	IOP Fire Code Weather	AY-2 Weather St Drilling with Water Drill Move = Very H Mineraliza From (m)	22-01 tation (SUZ) = Low Fire Risk Ope ligh Fire Risk Operat H = 24°C, L = 11°C, F ation & Observation	1 Fuel Groo erations tions POP = 56 %, n Update	.2 up 3	IC	21 DP Code Work M (I nance Thunc	1 Aodificatio P) Preventi derstorm	10 E n Status

Day Shit Comments: Site was clean, drilling at 87m when site inspection was conducted. Material is becoming more competent.

Night Shift Comments: Drilling, Ream casing down from 3m to 6m to secure water return.

Project	Date	Geo
Aylmer	August 2, 2022	C. Hatton, Br. Williams

			Drilling Update						
Shift	Activity	Comm	ents	Hole ID	Az	Dip	From (m)	To (m)	Drilled (m
	Casing / OB Drilling								
Davi	Drilling	Drilling, test at 150	m (Dip: -49.82 ,	AY-22-01	240	-50	141	183	42
Day	Moving	Az: 246	.80)						
	Waterline								
	Casing / OB Drilling								
Night	Drilling	Drilli	29	AY-22-01	240	-50	183	222	39
Night	Moving	Driin	Ig						
	Waterline								
	Curre	ntly							
Located o	n PAD A	Hole	AY-22-01				Daily	Total (m)	81
	Planned 45	0 metres					ŀ	lole Total	222
Expected	l Program Total	1250	m			Prog	gram Meter	age Total	222
			Activity Update						
Time	Activity			Comr	nents				
10:30 AM			Site was cle	ean, and ev	erythi	ng lo	oked good.		
5:45 PM	Site Inspection		Site was cle	ean, and ev	erythi	ng lo	oked good.		
		Hole	ID	Box #	From		Box #	# To	Total Boxe
11:00 AM	Core Box Collection			2	-		34	-	13
6:00 PM		AY-22	-01	2	5		43	2	-
					5)	9
		Weather Sta	tion (SUZ)	-	-	10	P Code	,	9 E
3:00 PM	IOP Fire Code			Fuel Grou	-	10	P Code	, lodificatio	E
	IOP Fire Code	Weather Sta Drilling with Water = Drill Move = Very Hig	Low Fire Risk Ope	Fuel Grou erations	-	10	P Code Work N		E n Status
3:00 PM	IOP Fire Code	Drilling with Water =	Low Fire Risk Operat	Fuel Grou erations	2 193	_	P Code Work N	lodificatio	E n Status
3:00 PM		Drilling with Water = Drill Move = Very Hig	Low Fire Risk Operat	Fuel Grou erations tions , L = 12°C, F	2 193		P Code Work N	lodificatio	E n Status
3:00 PM		Drilling with Water = Drill Move = Very Hig	Low Fire Risk Ope h Fire Risk Operat H = 22°C	Fuel Grou erations tions , L = 12°C, F	2 193		P Code Work N	lodificatio P) Prevention	E n Status
3:00 PM 24 F	l Weather	Drilling with Water = Drill Move = Very Hig Mineralizat	Low Fire Risk Ope h Fire Risk Operat H = 22°C ion & Observation	Fuel Grou erations tions , L = 12°C, F	2 193		P Code Work M (F N/A mm	lodificatio P) Prevention	E n Status
3:00 PM 24 F	l Weather	Drilling with Water = Drill Move = Very Hig Mineralizat	Low Fire Risk Ope h Fire Risk Operat H = 22°C ion & Observation	Fuel Grou erations tions , L = 12°C, F	2 193		P Code Work M (F N/A mm	lodificatio P) Prevention	E n Status
3:00 PM 24 F	l Weather	Drilling with Water = Drill Move = Very Hig Mineralizat	Low Fire Risk Ope h Fire Risk Operat H = 22°C ion & Observation	Fuel Grou erations tions , L = 12°C, F	2 193		P Code Work M (F N/A mm	lodificatio P) Prevention	E n Status
3:00 PM 24 F	l Weather	Drilling with Water = Drill Move = Very Hig Mineralizat	Low Fire Risk Ope h Fire Risk Operat H = 22°C ion & Observation	Fuel Grou erations tions , L = 12°C, F	2 193		P Code Work M (F N/A mm	lodificatio P) Prevention	E n Status
3:00 PM 24 F	l Weather	Drilling with Water = Drill Move = Very Hig Mineralizat	Low Fire Risk Ope h Fire Risk Operat H = 22°C ion & Observation	Fuel Grou erations tions , L = 12°C, F	2 193		P Code Work M (F N/A mm	lodificatio P) Prevention	E n Status

Day Shift Comments: Noticed core box's were mislabelled from box 22 onwards, so we picked up what they labelled as "box 34" but it should actually be box 35. Noted, and will correct box IDs in core shack. Surveys were done at 99m & 150m, survey reports were collected and brought back to office

Night Shift Comments: survey was completed at 201m, drilling in sediments, with minor brecciation.

Project	Date	Geo
Aylmer	August 3, 2022	B. Williams, S. Reese

Shift	Activity	Comm	ents	Hole ID	Az	Dip	From (m)	To (m)	Drilled (n
Day	Casing / OB Drilling Drilling Moving Waterline	Drilling, good recov survey done at 240 Rods pulled, and	m. Hole stopped.	AY-22-01	240	-50	222	240	18
	Casing / OB Drilling			AY-2	2-02		0-3m NV	V Casing	3
NI:-b+	Drilling	Finished Drill move,	, install the water	AY-22-02	0	-50	0	0	0
Night	Moving	lines, started di	rilling Casing.						
	Waterline								
	Currer	ntly		1					
Located or	n PAD A	Hole	AY-22-01				Daily	Total (m)	18
Hole AY-	22-01 Stopped at 240m	. Moved to PAD B, (A	Y-22-02)				I	Hole Total	240
Expected	Program Total	1250	m			Prog	gram Meter	rage Total	240
			Activity Update						
Time	Activity			Comr	nents				
Time 7:00 AM 3:00 PM	Activity Site Inspection		n & tidy, few empt tidy, all pails from	y grease pa	ils ne	ed to			
7:00 AM			tidy, all pails from	y grease pa	nils ne ng ha	ed to ve be		up and sto	
7:00 AM 3:00 PM		Site was clean & Hole	tidy, all pails from	y grease pa this morni Box #	nils ne ng ha	ed to ve be	en cleaned	up and sto # To	red correctly
7:00 AM 3:00 PM Time	- Site Inspection	Site was clean &	tidy, all pails from	y grease pa this morni Box # 4	nils ne ng ha From	ed to ve be	en cleaned Box i	up and sto # To 0	red correctly Total Box
7:00 AM 3:00 PM Time 11:00 AM	- Site Inspection	Site was clean & Hole	tidy, all pails from ID -01	y grease pa this morni Box # 4	ng ha From 4	ed to ve be	en cleaned Box i 50	up and sto # To 0	red correctly Total Box 7
7:00 AM 3:00 PM Time 11:00 AM	- Site Inspection	Site was clean & Hole AY-22	tidy, all pails from ID -01 tion (SUZ)	y grease pa this morni Box # 4 5 Fuel Grou	ng ha From 4	ed to ve be	en cleaned Box a 50 57 (E PP Code	up and sto # To 0	red correctly Total Box 7 7 E
7:00 AM 3:00 PM Time L1:00 AM 6:00 PM	Site Inspection	Site was clean & Hole AY-22 Weather Sta	tidy, all pails from ID -01 tion (SUZ) Low Fire Risk Ope	y grease pa this morni Box # 4 5 Fuel Grou erations	ng ha From 4	ed to ve be	en cleaned Box 5 57 (E P Code Work N	up and sto # To 0 :OH)	red correctly Total Box 7 7 E n Status
7:00 AM 3:00 PM Time 11:00 AM 6:00 PM 3:00 PM	Site Inspection	Site was clean & Hole AY-22 Weather Sta Drilling with Water = Drill Move = Very Hig	tidy, all pails from ID -01 tion (SUZ) Low Fire Risk Ope	y grease pa this morni Box # 4 5 Fuel Grou erations cions	ng ha From 4 1 up 3	ed to ve be	en cleaned Box 5 57 (E 9P Code Work N	up and sto # To 0 :OH) Modificatio P) Preventi	red correctly Total Box 7 7 E n Status on
7:00 AM 3:00 PM Time 11:00 AM 6:00 PM 3:00 PM	Site Inspection Core Box Collection IOP Fire Code	Site was clean & Hole AY-22 Weather Sta Drilling with Water = Drill Move = Very Hig H = 22	tidy, all pails from ID -01 tion (SUZ) <u>Low Fire Risk Ope</u> gh Fire Risk Operat	y grease pa this morni Box # 4 5 Fuel Grou erations cions = 100%, ~1	ng ha From 4 1 up 3	ed to ve be	en cleaned Box 5 57 (E 9P Code Work N	up and sto # To 0 :OH) Modificatio P) Preventi	red correctly Total Box 7 7 E n Status on
7:00 AM 3:00 PM Time 11:00 AM 6:00 PM 3:00 PM	Site Inspection Core Box Collection IOP Fire Code	Site was clean & Hole AY-22 Weather Sta Drilling with Water = Drill Move = Very Hig H = 22	tidy, all pails from ID -01 tion (SUZ) Low Fire Risk Operat gh Fire Risk Operat 2°C, L = 17°C, POP	y grease pa this morni Box # 4 5 Fuel Grou erations cions = 100%, ~1	ng ha From 4 1 up 3	ed to ve be	en cleaned Box 5 57 (E 9P Code Work N	up and sto # To 0 COH) Modificatio P) Preventi in afternoo	red correctly Total Box 7 7 E n Status on
7:00 AM 3:00 PM Time 11:00 AM 6:00 PM 3:00 PM 24H	Site Inspection Core Box Collection IOP Fire Code Weather	Site was clean & Hole AY-22 Weather Sta Drilling with Water = Drill Move = Very Hig H = 2: Mineralizat	tidy, all pails from ID -01 tion (SUZ) Low Fire Risk Operat gh Fire Risk Operat 2°C, L = 17°C, POP tion & Observation	y grease pa this morni Box # 4 5 Fuel Grou erations cions = 100%, ~1	ng ha From 4 1 up 3	ed to ve be	en cleaned Box i 50 57 (E PP Code Work N (I inderstorms	up and sto # To 0 COH) Modificatio P) Preventi in afternoo	red correctly Total Box 7 7 E n Status on
7:00 AM 3:00 PM Time 11:00 AM 6:00 PM 3:00 PM 24H	Site Inspection Core Box Collection IOP Fire Code Weather	Site was clean & Hole AY-22 Weather Sta Drilling with Water = Drill Move = Very Hig H = 2: Mineralizat	tidy, all pails from ID -01 tion (SUZ) Low Fire Risk Operat gh Fire Risk Operat 2°C, L = 17°C, POP tion & Observation	y grease pa this morni Box # 4 5 Fuel Grou erations cions = 100%, ~1	ng ha From 4 1 up 3	ed to ve be	en cleaned Box i 50 57 (E PP Code Work N (I inderstorms	up and sto # To 0 COH) Modificatio P) Preventi in afternoo	red correctly Total Box 7 7 E n Status on
7:00 AM 3:00 PM Time 11:00 AM 6:00 PM 3:00 PM 24H	Site Inspection Core Box Collection IOP Fire Code Weather	Site was clean & Hole AY-22 Weather Sta Drilling with Water = Drill Move = Very Hig H = 2: Mineralizat	tidy, all pails from ID -01 tion (SUZ) Low Fire Risk Operat gh Fire Risk Operat 2°C, L = 17°C, POP tion & Observation	y grease pa this morni Box # 4 5 Fuel Grou erations cions = 100%, ~1	ng ha From 4 1 up 3	ed to ve be	en cleaned Box i 50 57 (E PP Code Work N (I inderstorms	up and sto # To 0 COH) Modificatio P) Preventi in afternoo	red correctly Total Box 7 7 E n Status on
7:00 AM 3:00 PM Time 11:00 AM 6:00 PM 3:00 PM 24H	Site Inspection Core Box Collection IOP Fire Code Weather	Site was clean & Hole AY-22 Weather Sta Drilling with Water = Drill Move = Very Hig H = 2: Mineralizat	tidy, all pails from ID -01 tion (SUZ) Low Fire Risk Operat gh Fire Risk Operat 2°C, L = 17°C, POP tion & Observation	y grease pa this morni Box # 4 5 Fuel Grou erations cions = 100%, ~1	ng ha From 4 1 up 3	ed to ve be	en cleaned Box i 50 57 (E PP Code Work N (I inderstorms	up and sto # To 0 COH) Modificatio P) Preventi in afternoo	red correctly Total Box 7 7 E n Status on
7:00 AM 3:00 PM Time 11:00 AM 6:00 PM 3:00 PM 24H	Site Inspection Core Box Collection IOP Fire Code Weather	Site was clean & Hole AY-22 Weather Sta Drilling with Water = Drill Move = Very Hig H = 2: Mineralizat	tidy, all pails from ID -01 tion (SUZ) Low Fire Risk Operat gh Fire Risk Operat 2°C, L = 17°C, POP tion & Observation	y grease pa this morni Box # 4 5 Fuel Grou erations cions = 100%, ~1	ng ha From 4 1 up 3	ed to ve be	en cleaned Box i 50 57 (E PP Code Work N (I inderstorms	up and sto # To 0 COH) Modificatio P) Preventi in afternoo	red correctly Total Box 7 7 E n Status on

Day Shift Comments: morning drilling at 222m, minor breccia zones observed in matrix supported pebble conglomerate. Downhole survey done at 240m. Hole stopped @240m. Rods pulled, and move started to PAD B

Night Shift Comments: Finished Drill move, install the water lines, started drilling Casing, lost of rubble, slow going.

Project	Date	Geo
Aylmer	August 4, 2022	B. Williams, C. Hatton

			Drilling Update						
Shift	Activity	Com	ments	Hole ID	Az	Dip	From (m)	To (m)	Drilled (m)
Day	Casing / OB Drilling Drilling Moving	Dril	lling	AY-22-02	0	-50	3	42	39
Night	Waterline Casing / OB Drilling Drilling Moving Waterline	No night shift, see	e comments below	AY-22-02	0	-50			0
	Currei	ntly							
Located on	PAD B	Hole	AY-22-02				Daily	Total (m)	39
	Planned 50						ŀ	lole Total	39
Expected	Program Total	125	0 m			Pro	gram Meter	age Total	279
	1	r	Activity Update						
Time	Activity			Comr	nents	;			
10:30 AM	Site Inspection	inspected after drill was area is drying out. Re-se	tidy, few lengths of wate s removed. Overall site w seding to take place once oreman to remove all ga	vas in good sta e drill is off site	inding e. Mino	& clear or one	n, cutting sump	o & ditches w	ere filled in, and
Time		Hol	e ID	Box #	From	ı	Box #	‡ To	Total Boxes
11:00 AM	Core Box Collection	AY-2	22-02	1	L		2		2
		Weather St	tation (SUZ)	Fuel Grou	Jp 3	IC	OP Code		E
3:00 PM	IOP Fire Code	Drilling with Water	= Low Fire Risk Ope	erations			Work N	Iodificatio	n Status
		Drill Move = Very H	ligh Fire Risk Operat				,	P) Preventi	on
24H	Weather			C, L = 13°C,	POP	= 4%,	,~0 mm		
	1		ation & Observation	n Update					
Hole ID	Box #	From (m)	To (m)	ļ			Comme	nts	
			dditional Comment						

Day Shift Comments: Collared and active drilling on Pad B (Hole AY-22-02). Drill set up on Pad B was clean, tidy, and safe. There are a few lengths of waterline which were laid out drying, soon to be stored properly. Drill Pad A was inspected after drill was removed. Overall site was in good standing & clean, cutting sump & ditches were back-filled and the area is drying out. Re-seeding to take place once drill is off site. Minor one or two rags & small wood off-cuts to be cleaned up, mentioned to drill foreman to remove all garbage by end of shift.

Night Shift Comments: The night shift driller is going on is time off. The cross shift is flying in tonight from N-B. He gets here too late to work tonight. We will miss 1 night shift tonight then will be good for the rest of the job.

	Tr	Project		Date			Geo	
Transit	ion Metals	Aylmer	Augu	st 5, 2	2022		C. Hatton, S. Re	ese
manon		Drilling Update						
Shift	Activity	Comments	Hole ID	Az	Dip	From (m)	To (m)	Drilled (m)
Day	Casing / OB Drilling Drilling Moving Waterline	Drilling, test at 51 m (Dip: -51.29 , Az: 3.4	8) AY-22-02	0	-50	42	84	42
Night	Casing / OB Drilling Drilling Moving Waterline Curre	Drilling, test at 102 m (Dip: -50.98 , Az: 358.19)	AY-22-02	0	-50	84	123	39
Located or		Hole AY-22-02					Daily Total (m)	81
Located of	PAD B Planned 45						Hole Total	123
Expect	ed Program Total	1250 m				Program M	leterage Total	363
Expects		Activity Update				1105101111	leteruge rotai	505
Time	Activity			mme	nts			
10:20 AM	Site Inspection	Site was clean, and everything looke	-			inp, everything	g is good, water	level is still
			- 1	onsiste				
10:45 AM	Core Box Collection	Hole ID AY-22-01	- 1	# Frc 3			# To .2	Total Boxes
10:45 AM	Core Box Collection		- 1	3	om		.2	
10:45 AM 3:00 PM	Core Box Collection	AY-22-01	Box Fuel Grou	3	om	1 DP Code	.2	10 M
		AY-22-01 Weather Station (SUZ)	Box Fuel Grou tions	3	om	1 DP Code Work Me	.2	10 M
3:00 PM		AY-22-01 Weather Station (SUZ) Drilling with Water = Low Fire Risk Operatio Drill Move = Very High Fire Risk Operatio	Box Fuel Grou tions	3 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	om IC	1 DP Code Work Ma	.2 odification Stat	10 M
3:00 PM	IOP Fire Code	AY-22-01 Weather Station (SUZ) Drilling with Water = Low Fire Risk Operatio Drill Move = Very High Fire Risk Operatio H Mineralization & Observation	Fuel Grou tions = 25°C, L = 13	a # Frc 3 up 3	om IC	1 DP Code Work Ma (P) , <1 mm	.2 odification Stat	10 M
3:00 PM	IOP Fire Code	AY-22-01 Weather Station (SUZ) Drilling with Water = Low Fire Risk Opera Drill Move = Very High Fire Risk Operatio H	Fuel Grou tions = 25°C, L = 13	a # Frc 3 up 3	om IC	1 DP Code Work Ma	.2 odification Stat	10 M
3:00 PM	IOP Fire Code	AY-22-01 Weather Station (SUZ) Drilling with Water = Low Fire Risk Operatio Drill Move = Very High Fire Risk Operatio H Mineralization & Observation	Fuel Grou tions = 25°C, L = 13	a # Frc 3 up 3	om IC	1 DP Code Work Ma (P) , <1 mm	.2 odification Stat	10 M
3:00 PM	IOP Fire Code	AY-22-01 Weather Station (SUZ) Drilling with Water = Low Fire Risk Operatio Drill Move = Very High Fire Risk Operatio H Mineralization & Observation	Box Fuel Grow tions = 25°C, L = 13 ion Update	a # Frc 3 up 3	om IC	1 DP Code Work Ma (P) , <1 mm	.2 odification Stat	M

	Ir	Project	Date			Geo	
ransit	ion Metals	Aylmer	August 6, 2	022		C. Hatton, S. Re	ese
		Drilling Upda	ate				
Shift	Activity	Comments	Hole ID Az	Dip	From (m)	To (m)	Drilled (m
Day	Casing / OB Drilling Drilling Moving Waterline	Drilling, pulled rods for bit change	AY-22-02 0	-50	123	147	24
Night	Casing / OB Drilling Drilling Moving Waterline	lowered rods, drilling	AY-22-02 0	-50	147	171	24
	Curre	ntly					
Located or	n PAD B	Hole AY-22-02			C	Daily Total (m)	48
	Planned 45					Hole Total	171
Expect	ed Program Total	1250 m			Program M	leterage Total	411
	A 11	Activity Upda					
Time	Activity	Activity Upd	ate Comme	nts			
Time 11:15 AM	Activity Site Inspection	Site was clean, and everyt	Comme hing looked good. Dril	l running			
11:15 AM	Site Inspection		Comme	l running		nd upon depart # To	
		Site was clean, and everyt	Comme hing looked good. Dril	l running	Вох		
11:15 AM	Site Inspection	Site was clean, and everyt	Comme hing looked good. Dril Box # Fro	l running m	Вох	#To	Total Boxe
11:15 AM	Site Inspection	Site was clean, and everyt Hole ID AY-22-01	Comment hing looked good. Dril Box # Fro 13 Fuel Group 3	l running m	Box 3 DP Code	#To	Total Boxe 19 E
11:15 AM 11:25 AM	Site Inspection Core Box Collection	Site was clean, and everyt Hole ID AY-22-01 Weather Station (SUZ)	Comment hing looked good. Dril Box # Fro 13 Fuel Group 3 trations	l running m	Box 3 DP Code Work M	# To	Total Boxe 19 E
11:15 AM 11:25 AM 3:00 PM	Site Inspection Core Box Collection	Site was clean, and everyt Hole ID AY-22-01 Weather Station (SUZ) Drilling with Water = Low Fire Risk Operat	Comment hing looked good. Dril Box # Fro 13 Fuel Group 3 erations cions H = 30°C, L = 16°C, PO	l running m	Box 3 DP Code Work Mo (P)	# To 31 odification Stat	Total Boxe 19 E
11:15 AM 11:25 AM 3:00 PM 2 4	Site Inspection Core Box Collection IOP Fire Code	Site was clean, and everyt Hole ID AY-22-01 Weather Station (SUZ) Drilling with Water = Low Fire Risk Operat Drill Move = Very High Fire Risk Operat Mineralization & Observe	Comment hing looked good. Dril Box # Fro 13 Fuel Group 3 erations cions H = 30°C, L = 16°C, PO	l running m	Box 3 DP Code Work Mo (P , <1 mm	# To 31 odification Stat) Prevention	Total Boxe 19 E
11:15 AM 11:25 AM 3:00 PM	Site Inspection Core Box Collection IOP Fire Code	Site was clean, and everyt Hole ID AY-22-01 Weather Station (SUZ) Drilling with Water = Low Fire Risk Operat	Comment hing looked good. Dril Box # Fro 13 Fuel Group 3 erations cions H = 30°C, L = 16°C, PO	l running m	Box 3 DP Code Work More (P)	# To 31 odification Stat) Prevention	Total Boxe 19 E
11:15 AM 11:25 AM 3:00 PM 2 4	Site Inspection Core Box Collection IOP Fire Code	Site was clean, and everyt Hole ID AY-22-01 Weather Station (SUZ) Drilling with Water = Low Fire Risk Operat Drill Move = Very High Fire Risk Operat Mineralization & Observe	Comment hing looked good. Dril Box # Fro 13 Fuel Group 3 erations cions H = 30°C, L = 16°C, PO	l running m	Box 3 DP Code Work Mo (P , <1 mm	# To 31 odification Stat) Prevention	Total Boxe 19 E
11:15 AM 11:25 AM 3:00 PM 2 4	Site Inspection Core Box Collection IOP Fire Code	Site was clean, and everyt Hole ID AY-22-01 Weather Station (SUZ) Drilling with Water = Low Fire Risk Operat Drill Move = Very High Fire Risk Operat Mineralization & Observe	Comment hing looked good. Dril Box # Fro 13 Fuel Group 3 erations cions H = 30°C, L = 16°C, PO	l running m	Box 3 DP Code Work Mo (P , <1 mm	# To 31 odification Stat) Prevention	Total Boxe 19 E
11:15 AM 11:25 AM 3:00 PM 2 4	Site Inspection Core Box Collection IOP Fire Code	Site was clean, and everyt Hole ID AY-22-01 Weather Station (SUZ) Drilling with Water = Low Fire Risk Operat Drill Move = Very High Fire Risk Operat Mineralization & Observe	Comment hing looked good. Dril Box # Fro 13 Fuel Group 3 erations cions H = 30°C, L = 16°C, PO	l running m	Box 3 DP Code Work Mo (P , <1 mm	# To 31 odification Stat) Prevention	Total Box 19 E
11:15 AM 11:25 AM 3:00 PM 2 4	Site Inspection Core Box Collection IOP Fire Code	Site was clean, and everyt Hole ID AY-22-01 Weather Station (SUZ) Drilling with Water = Low Fire Risk Operat Drill Move = Very High Fire Risk Operat Mineralization & Obsen From (m) To (m) From (a label{eq:alpha})	Comment hing looked good. Dril Box # Fro 13 Fuel Group 3 erations cions H = 30°C, L = 16°C, PO vation Update	l running m	Box 3 DP Code Work Mo (P , <1 mm	# To 31 odification Stat) Prevention	Total Boxe 19 E
11:15 AM 11:25 AM 3:00 PM 2 4	Site Inspection Core Box Collection IOP Fire Code	Site was clean, and everyt Hole ID AY-22-01 Weather Station (SUZ) Drilling with Water = Low Fire Risk Operat Drill Move = Very High Fire Risk Operat Mineralization & Observe	Comment hing looked good. Dril Box # Fro 13 Fuel Group 3 erations cions H = 30°C, L = 16°C, PO vation Update	l running m	Box 3 DP Code Work Mo (P , <1 mm	# To 31 odification Stat) Prevention	Total Boxe 19 E

Day Shift Comments: Site was clean, drilling at 138m when site inspection was conducted. Drilling upon arrival and departure. Bit changed

Night Shift Comments: Rods lowered, drilling continued.

Itte 7, 2022 Az Dip 0 -50 0 -50	Geo S. Reese, Br. Wi From (m) To (m) 171 192 192 213 Daily Total (m) Hole Total	Drilled (m) 21 21 21 42
Az Dip 0 -50	From (m) To (m) 171 192 192 213 Daily Total (m)	Drilled (m) 21 21 21 42
0 -50	171 192 192 213 Daily Total (m)	21 21 21 42
0 -50	171 192 192 213 Daily Total (m)	21 21 21 42
0 -50	171 192 192 213 Daily Total (m)	21 21 21 42
0 -50	Daily Total (m)	42
	1 1	
	1 1	
	Hole Total	
	Program Meterage Total	213 453
	Flogram Weterage Total	433
ments		
good. Drill w	vas not running upon arrival.	
From	Box # To	Total Boxe
3	39	8
3 IC		E
	(P) Prevention	itus
POP = 100%	, ~20 mm	
	Comments	
g 3	From 3 3 10	good. Drill was not running upon arrival. From Box # To 3 39 3 IOP Code Work Modification Sta

Day Shift Comments: Site was clean, drilling at 174m when site inspection was conducted. Drilling was not running upon arrival/departure. The replacement crew for Yvon + assistant had got a call at 7:30am to go to site to get everything running. When leaving, crew was emptying rod that had rock content stuck inside.

Night Shift Comments: Drilling, Ream and wash broken rock. Test at 204m; but Reflex tool internal Battery was dead, and night shift drillers did not know how to replace. Kept drilling. Will need foreman to instruct and re-survey at 204m depth when pulling rods.

	ion Metals								
Shift	Activity	Comm	Drilling Update	Hole ID	Az	Din	Erom (m)	To (m)	Drilled (m
Day	Casing / OB Drilling Drilling Moving Waterline	Drilli		AY-22-02		Dip -50	From (m)	To (m) 237	24
Night	Casing / OB Drilling Drilling Moving Waterline	Drilling, installed 500 wireline drum.		AY-22-02	0	-50	237	264	27
	Curre	,							
Located on	PAD B	Hole	AY-22-02				D	aily Total (m) Hole Total	51
Exporto	Planned 45 d Program Total	0 metres 1250) m				Brogram M	Hole Total	264 504
Expected		1250	Activity Update				FIOgrami	eterage rotai	504
Time	Activity		Activity Opuate	Co	mmei	nts			
10:30 AM	Site Inspection	Si	te was clean, and eve	erything look	ked go	od. Drill	was running u	pon arrival.	
		Si Hole			ked go # Fro			pon arrival. # To	Total Boxe
10:30 AM 11:00 AM	Site Inspection		e ID				Box		Total Boxe
		Hole AY-22 Weather Sta Drilling with Water = L	2-02 ation (SUZ) ow Fire Risk Operatic	Box Fuel Grou	# Fro	m	Box 5 DP Code Work Ma	# To 1 odification Stat	12 E
11:00 AM 3:00 PM	Core Box Collection	Hole AY-22 Weather Sta	2-02 ation (SUZ) ow Fire Risk Operation Fire Risk Operations	Box Fuel Grou	40 40	m IC	Box 5 DP Code Work Ma (P)	# To 1	12 E
11:00 AM 3:00 PM 244	Core Box Collection	Hole AY-2; Weather Sta Drilling with Water = L Drill Move = Very High Mineral	2-02 ation (SUZ) ow Fire Risk Operation Fire Risk Operations H = 1 ization & Observatio	Box Fuel Grou ons 6°C, L = 10°C	40 40	m IC	Box 5 DP Code Work Ma (P) ~15 mm	# To 1 Odification Stat Prevention	12 E
11:00 AM 3:00 PM	Core Box Collection	Hole AY-22 Weather Sta Drilling with Water = L Drill Move = Very High	2-02 ation (SUZ) ow Fire Risk Operation Fire Risk Operations H = 1	Box Fuel Grou ons 6°C, L = 10°C	40 40	m IC	Box 5 DP Code Work Ma (P)	# To 1 Odification Stat Prevention	12 E
11:00 AM 3:00 PM 244	Core Box Collection IOP Fire Code	Hole AY-2; Weather Sta Drilling with Water = L Drill Move = Very High Mineral	2-02 ation (SUZ) ow Fire Risk Operation Fire Risk Operations H = 1 ization & Observatio	Box Fuel Grou ons 6°C, L = 10°C	40 40	m IC	Box 5 DP Code Work Ma (P) ~15 mm	# To 1 Odification Stat Prevention	12 E
11:00 AM 3:00 PM 244	Core Box Collection IOP Fire Code	Hole AY-2; Weather Sta Drilling with Water = L Drill Move = Very High From (m) From (m)	2-02 ation (SUZ) ow Fire Risk Operation Fire Risk Operations H = 1 ization & Observatio	Box Fuel Grou nns 6°C, L = 10°(n Update	40 40	m IC	Box 5 DP Code Work Ma (P) ~15 mm	# To 1 Odification Stat Prevention	E

Casing / OB Drilling Slow drilling, hard rock AY-22-02 Day Moving Moving Waterline Slow drilling, hard rock AY-22-02 Night Casing / OB Drilling Drilling Moving Waterline Slow drilling, hard rock AY-22-02 Located on PAD B Hole AY-22-02 Planned 450 metres Planned 450 metres AY-22-02 Expected Program Total 1250 m Attivity Update	Az	-50 -50	From (m) 264 282	To (m) 282 300 Daily Total (m) Hole Total leterage Total	ams Drilled (m 18 18 18 36 300 540
Shift Activity Comments Hole ID Shift Activity Comments Hole ID Casing / OB Drilling Slow drilling, hard rock AY-22-02 Day Drilling Slow drilling, hard rock AY-22-02 Moving Vaterline AY-22-02 Night Drilling Slow drilling, hard rock AY-22-02 Night Drilling AY-22-02 AY-22-02 Moving Slow drilling, hard rock AY-22-02 Vaterline Slow drilling, hard rock AY-22-02 Vaterline Slow drilling, hard rock AY-22-02 Planned 450 metres Planned 450 metres Image: Slow drilling and stress in the stress	0	-50	264 282	282 300 Daily Total (m) Hole Total	18 18 <u>36</u> <u>300</u>
Shift Activity Comments Hole ID Casing / OB Drilling Drilling Slow drilling, hard rock AY-22-02 Moving Waterline Casing / OB Drilling AY-22-02 Night Casing / OB Drilling Slow drilling, hard rock AY-22-02 Night Drilling Slow drilling, hard rock AY-22-02 Moving Waterline AY-22-02 AY-22-02 Vaterline Vaterline AY-22-02 Use of the set of the se	0	-50	264 282	282 300 Daily Total (m) Hole Total	18 18 <u>36</u> <u>300</u>
Casing / OB Drilling Slow drilling, hard rock AY-22-02 Day Drilling Slow drilling, hard rock AY-22-02 Night Casing / OB Drilling Slow drilling, hard rock AY-22-02 Night Drilling Slow drilling, hard rock AY-22-02 Night Drilling Slow drilling, hard rock AY-22-02 Vaterline Vaterline AY-22-02 Located on PAD B Hole AY-22-02 Planned 450 metres Planned 450 metres Activity Update Time Activity Cor	0	-50	264 282	282 300 Daily Total (m) Hole Total	18 18 <u>36</u> <u>300</u>
Day Drilling Moving Waterline Slow drilling, hard rock AY-22-02 Night Casing / OB Drilling Drilling Moving Waterline Slow drilling, hard rock AY-22-02 Night Drilling Moving Waterline AY-22-02 Located on PAD B Hole Aty - 22-02 Planned 450 metres Expected Program Total 1250 m Time Activity	0	-50	282	300 Daily Total (m) Hole Total	18 36 300
Day Moving Waterline Slow drilling, hard rock Waterline Casing / OB Drilling Drilling Moving Waterline AY-22-02 Drilling Slow drilling, hard rock AY-22-02 Uccated on PAD B Hole AY-22-02 Planned 450 metres Planned 450 metres Image: Comparison of the strest	0		282	Daily Total (m) Hole Total	18 36 300
Waterline Night Casing / OB Drilling Drilling Moving Waterline Slow drilling, hard rock AY-22-02 Located on PAD B Hole AY-22-02 Located on PAD B Hole AY-22-02 Planned 450 metres Planned 450 metres 1250 m Expected Program Total 1250 m 1250 m Time Activity Corr				Daily Total (m) Hole Total	36 300
Drilling Moving Waterline Slow drilling, hard rock AY-22-02 Located on PAD B Hole AY-22-02 Located on PAD B Hole AY-22-02 Expected Program Total 1250 m Time Activity Corr				Daily Total (m) Hole Total	36 300
Night Moving Waterline Slow drilling, hard rock Uocated on PAD B Hole AY-22-02 Planned 450 metres Planned 450 metres Expected Program Total 1250 m Activity Update Time Activity				Daily Total (m) Hole Total	36 300
Moving Waterline Moving Waterline Currently Located on PAD B Hole AY-22-02 Planned 450 metres Expected Program Total 1250 m Time Activity Corr	ommen	ts		Hole Total	300
Currently Located on PAD B Hole AY-22-02 Planned 450 metres Planned 450 metres Activity Update Expected Program Total 1250 m Activity Update Time Activity Corr	ommen	ts		Hole Total	300
Located on PAD B Hole AY-22-02 Planned 450 metres Planned 450 metres Expected Program Total 1250 m Time Activity Con	ommen	ts		Hole Total	300
Planned 450 metres Expected Program Total 1250 m Activity Update Time Activity Corr	ommen	ts		Hole Total	300
Expected Program Total 1250 m Activity Update Time Activity Corr	ommen	ts	Program N		
Activity Update Time Activity Con	ommen	ts	Program N	leterage Total	540
Time Activity Cor	ommen	its			
	ommen	its			
10:30 AM Site Inspection Site was clean, and everything look					
	(# Fror	n	Box	# To	Total Boxe
11:00 AM Core Box Collection AY-22-02	52		e	51	10
Weather Station (SUZ) Fuel Grou	up 3	101	P Code		E
3:00 PM IOP Fire Code Drilling with Water = Low Fire Risk Operations			Work M	odification Stat	us
Drill Move = Very High Fire Risk Operations			(P) Prevention	
24H Weather H = 23°C, L = 12°	2°C, PO	P = 0%, ^	'0 mm		
Mineralization & Observation Update					
Hole ID Box # From (m) To (m)			Commen	ts	
Additional Comments					

Day Shift Comments: Site was clean, old wire line was coiled up and in garbage bags awaitting foremans arrival for removal. Semi-massive sulfide blobs (upto 3 cm) observed in core box on site.

Night Shift Comments: Slow drilling, hard rock. Reflecx test done at 300m.

	I r	Р	roject	1	Date			Geo	
Fransit	ion Metals	А	ylmer	Augus	t 10, 2	022		S. Reese, C. Hat	ton
nunsn	Ion netuco		Drilling Update						
Shift	Activity	60	mments	Hole ID	Az	Dip	From (m)	To (m)	Drilled (m)
Day	Casing / OB Drilling Drilling Moving Waterline	Drilling, test at 30 10.80), slow drilli	00 m (Dip: -49.40 , Az: ing, hard rock. Drill bit nanged	AY-22-02		-50	300	318	18
Night	Casing / OB Drilling Drilling Moving Waterline		ing, hard rock	AY-22-02	0	-50	318	336	18
	Curre		AV 22.02					the Testal (m)	
Located or		Hole	AY-22-02				L	aily Total (m) Hole Total	36
Export	Planned 45 ed Program Total	-	250 m				Brogram M	eterage Total	336 576
стреск	eu Program rotai								
							Fiogramie	leterage rotar	570
Time	Activity		Activity Update	Co	mmei	nts	Flogram		570
Time 10:45 AM	Activity Site Inspection				-				
-		Site w	Activity Update	g looked goo	-	l was rui	nning upon arr		ıre.
-		Site wa	Activity Update	g looked goo	d. Dril	l was rui	nning upon arr	ival and departu	ıre.
10:45 AM	Site Inspection	Site w	Activity Update	g looked goo	d. Dril # Fro 62	l was rui m	nning upon arr Box 7 DP Code	ival and departu	ure. Total Boxe 11 E
10:45 AM	Site Inspection	Site was stated by Site was stat	Activity Update Activity Updat	g looked goo Box Fuel Grou	d. Dril # Fro 62	l was rui m	nning upon arr Box 7 DP Code	ival and departu	ure. Total Boxe 11 E
10:45 AM 10:55 AM	Site Inspection Core Box Collection	Site was stated by Site was stat	Activity Update Activity Updat	g looked goo Box Fuel Grou	d. Dril # Fro 62 Jp 3	l was rui m IC	nning upon arr Box 7 DP Code Work Ma (P)	# To 2 odification Stat) Prevention	ure. Total Boxe 11 E
10:45 AM 10:55 AM 3:00 PM	Site Inspection Core Box Collection	Site was Site was H An Weather Drilling with Water Drill Move = Very H	Activity Update Activity Constant Activity Constant	g looked goo Box Fuel Grou ons °C, POP = 40	d. Dril # Fro 62 Jp 3	l was rui m IC	nning upon arr Box 7 DP Code Work Ma (P)	# To 2 odification Stat) Prevention	ure. Total Boxe 11 E
10:45 AM 10:55 AM 3:00 PM 24	Site Inspection Core Box Collection IOP Fire Code	Site was Sit	Activity Update Activity Octoor Activity Octoo	g looked goo Box Fuel Grou ons °C, POP = 40	d. Dril # Fro 62 Jp 3	l was rui m IC	nning upon arr Box 7 DP Code Work Ma (P) k of Thundersta	# To # To 2 odification Stat Prevention	ure. Total Boxe 11 E
10:45 AM 10:55 AM 3:00 PM	Site Inspection Core Box Collection IOP Fire Code	Site was Site was H An Weather Drilling with Water Drill Move = Very H	Activity Update Activity Constant Activity Constant	g looked goo Box Fuel Grou ons °C, POP = 40	d. Dril # Fro 62 Jp 3	l was rui m IC	nning upon arr Box 7 DP Code Work Ma (P)	# To # To 2 odification Stat Prevention	ure. Total Boxe 11 E
10:45 AM 10:55 AM 3:00 PM 24	Site Inspection Core Box Collection IOP Fire Code	Site was Sit	Activity Update Activity Octoor Activity Octoo	g looked goo Box Fuel Grou ons °C, POP = 40	d. Dril # Fro 62 Jp 3	l was rui m IC	nning upon arr Box 7 DP Code Work Ma (P) k of Thundersta	# To # To 2 odification Stat Prevention	ure. Total Boxe 11 E
10:45 AM 10:55 AM 3:00 PM 24	Site Inspection Core Box Collection IOP Fire Code	Site was Sit	Activity Update Activity Octoor Activity Octoo	s looked goo Box Fuel Grou ons °C, POP = 40 on Update	d. Dril # Fro 62 Jp 3	l was rui m IC	nning upon arr Box 7 DP Code Work Ma (P) k of Thundersta	# To # To 2 odification Stat Prevention	ure. Total Boxe 11 E

Day Shift Comments: Site was clean, drilling at 306m when site inspection was conducted. Drilling was running upon arrival/departure. Caugh up on drill surveys -- @ 200m Az = 357, Dip = -49.72, @ 250m Az = 3.99, Dip = -49.47. Drillers accidentally misblocked from 273 meters until the end of the boxes we picked up -- make sure to mention them so they change the blocks +3 meters moving forwards. Bit changed

Night Shift Comments: slow drilling, hard rock

	Ir							-	
	- -	Project	:	D	oate			Geo	
Fransit	ion Metals	Aylmer		August	: 11, 2	022	B.	. Williams, C. Ha	tton
nanon			Drilling Update						
Shift	Activity	Commer	its I	Hole ID	Az	Dip	From (m)	To (m)	Drilled (m
Day	Casing / OB Drilling Drilling Moving Waterline	Drilling, test a	t 350m A	AY-22-02	0	-50	336	366	30
Night	Casing / OB Drilling Drilling Moving Waterline Curre	Drilling	A	AY-22-02	0	-50	366	393	27
Located on		Hole	AY-22-02				D	aily Total (m)	57
	Planned 45	0 metres						Hole Total	393
Expecte	d Program Total	1250 m					Program M	eterage Total	633
		1230 11					Trogrammi	eterage rotar	033
		1250 11	Activity Update				Togramma	leterage rotar	035
Time	Activity			Сог	mmer	nts	Tiogramma		033
Time 10:05 AM	-	Empty box and pails be	Activity Update	eds to be	clean	ed up for			
	Activity		Activity Update side the drill that nee Drill was ru	eds to be running up	clean	ed up for ival and	shift change. departure.		
	Activity	Empty box and pails be	Activity Update	eeds to be running up Box	clean on ari	ed up for ival and	shift change. departure.	Drill site was cle	ean otherwise
10:05 AM	Activity Site Inspection	Empty box and pails be Hole IE	Activity Update	eeds to be running up Box	cleand on arr # Fro i 73	ed up for ival and n	shift change. departure. Box 8 P Code	Drill site was cle	an otherwise Total Boxe 9 D
10:05 AM	Activity Site Inspection	Empty box and pails be Hole IE AY-22-0	Activity Update	eeds to be o unning up Box Fuel Grou	cleand on arr # Fro i 73	ed up for ival and n	shift change. departure. Box 8 P Code	Drill site was cle	an otherwise Total Boxe 9 D
10:05 AM 10:20 AM	Activity Site Inspection Core Box Collection	Empty box and pails be Hole IE AY-22-0 Weather Static	Activity Update Activity Updat	eeds to be e running up Box <u>Fuel Grou</u> s	cleand on arr # Fro 73 p 3	ed up for ival and m IO	shift change. departure. Box 8 P Code Work Mo (P)	Drill site was cle	an otherwise Total Boxe 9 D
10:05 AM 10:20 AM 3:00 PM	Activity Site Inspection Core Box Collection	Empty box and pails be Hole ID AY-22-0 Weather Static Drilling with Water = Low Drill Move = Very High Fin	Activity Update	eeds to be e running up Box Fuel Grou s = 24°C, L =	cleand on arr # Fro 73 p 3	ed up for ival and m IO	shift change. departure. Box 8 P Code Work Mo (P)	Drill site was cle	an otherwise Total Boxe 9 D
10:05 AM 10:20 AM 3:00 PM	Activity Site Inspection Core Box Collection IOP Fire Code	Empty box and pails be Hole ID AY-22-0 Weather Static Drilling with Water = Low Drill Move = Very High Fin	Activity Update Activity Updat	eeds to be e running up Box Fuel Grou s = 24°C, L =	cleand on arr # Fro 73 p 3	ed up for ival and m IO	Box Box P Code Work Ma (P)	Drill site was cle # To 1:1 odification Stat	an otherwise Total Boxe 9 D
10:05 AM 10:20 AM 3:00 PM	Activity Site Inspection Core Box Collection IOP Fire Code	Empty box and pails be Hole ID AY-22-0 Weather Static Drilling with Water = Low Drill Move = Very High Fin	Activity Update	eeds to be e running up Box Fuel Grou s = 24°C, L =	cleand on arr # Fro 73 p 3	ed up for ival and m IO	shift change. departure. Box 8 P Code Work Mo (P)	Drill site was cle # To 1:1 odification Stat	an otherwis Total Boxe 9 D
10:05 AM 10:20 AM 3:00 PM 24	Activity Site Inspection Core Box Collection IOP Fire Code H Weather	Empty box and pails be Hole IE AY-22-0 Weather Static Drilling with Water = Low Drill Move = Very High Fin Mineraliza	Activity Update Activity Activit	eeds to be e running up Box Fuel Grou s = 24°C, L =	cleand on arr # Fro 73 p 3	ed up for ival and m IO	Box Box P Code Work Ma (P)	Drill site was cle # To 1:1 odification Stat	an otherwise Total Boxe 9 D

Day Shift Comments: Site was clean, drilling at 345m when site inspection was conducted. Drilling was running upon arrival/departure. Drillers accidentally misblocked from 273 meters until the end of the boxes we picked up -- make sure to mention them so they change the blocks +3 meters moving forwards.

Night Shift Comments: Drilling

	Ir	Pi	roject		Date			Geo	
Transit	ion Metals	A	ylmer	August	t 12, I	2022		C. Hatton	
nunsn									
ch ift	A		Drilling Update	11-1-10		D '	5	T = (+++)	Duille d (m)
Shift	Activity	Con	nments	Hole ID	Az	Dip	From (m)	To (m)	Drilled (m)
	Casing / OB Drilling	D 1111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(405) (D: 40.05						10
Day	Drilling	.	(405) m (Dip: -48.35 ,	AY-22-02	0	-50	393	411	18
•	Moving	Az:	13.38)						
	Waterline								
	Casing / OB Drilling								
Night	Drilling			AY-22-02	0	-50	411	429	18
Might	Moving								
	Waterline								
	Curre	ntly							
Located on	PAD B	Hole	AY-22-02				D	aily Total (m)	36
	Planned 45	0 metres						Hole Total	429
Expecte	d Program Total	12	50 m				Drogram M	eterage Total	669
			50 111				Flugrannivi	eterage rotar	009
			Activity Update	<u> </u>			FIOGRAFITIV	eterage rotar	009
Time	Activity		-	Co	mme	nts	Flogram		005
Time 11:25 AM	Activity Site Inspection		-		-				
-		Site wa	Activity Update	looked goo	-	ll was ru		val and departu	
-		Site wa	Activity Update	looked goo	d. Dri	ll was ru	nning upon arri	val and departu	ure.
11:25 AM	Site Inspection	Site wa	Activity Update	looked goo	d. Dri # Fro 82	ll was rui m	nning upon arri	val and departu	ure. Total Boxe
11:25 AM	Site Inspection	Site wa	Activity Update Activity Updat	looked goo Box Fuel Grou	d. Dri # Fro 82	ll was rui m	nning upon arri Box 9 DP Code	val and departu	ure. Total Boxe 14 D
11:25 AM 11:35 AM	Site Inspection Core Box Collection	Site wa Site wa Hu Ay Weather Drilling with Water =	Activity Update Activity Updat	looked goo Box Fuel Grou	d. Dri # Fro 82	ll was rui m	nning upon arri Box 9 DP Code Work Mc	val and departu	ure. Total Boxe: 14 D
11:25 AM 11:35 AM 3:00 PM	Site Inspection Core Box Collection	Site wa Site wa Hu Ay Weather Drilling with Water =	Activity Update Activity Updat	looked goo Box Fuel Grou	d. Dri # Fro 82 up 3	ll was rui m IC	nning upon arri Box 9 DP Code Work Mc (P)	val and departu # To 5 odification Stat	ure. Total Boxe: 14 D
11:25 AM 11:35 AM 3:00 PM	Site Inspection Core Box Collection IOP Fire Code	Site wa Site wa AY Weather Drilling with Water = Drill Move = Very Hi	Activity Update Activity Updat	looked goo Box Fuel Grou ns 25°C, L = 12'	d. Dri # Fro 82 up 3	ll was rui m IC	nning upon arri Box 9 DP Code Work Mc (P)	val and departu # To 5 odification Stat	ure. Total Boxe: 14 D
11:25 AM 11:35 AM 3:00 PM	Site Inspection Core Box Collection IOP Fire Code	Site wa Site wa AY Weather Drilling with Water = Drill Move = Very Hi	Activity Update Activity Update Is clean, and everything Del ID -22-02 Station (SUZ) = Low Fire Risk Operations gh Fire Risk Operations H = 2	looked goo Box Fuel Grou ns 25°C, L = 12'	d. Dri # Fro 82 up 3	ll was rui m IC	nning upon arri Box 9 DP Code Work Mc (P)	val and departu # To 5 Ddification Stat Prevention	ure. Total Boxe: 14 D
11:25 AM 11:35 AM 3:00 PM 24	Site Inspection Core Box Collection IOP Fire Code H Weather	Site wa Site wa AY Weather Drilling with Water = Drill Move = Very Hi Mine	Activity Update Activity Octoor Activity Octoo	looked goo Box Fuel Grou ns 25°C, L = 12'	d. Dri # Fro 82 up 3	ll was rui m IC	nning upon arri Box 9 DP Code Work Mc (P) , <1mm	val and departu # To 5 Ddification Stat Prevention	ure. Total Boxe 14 D
11:25 AM 11:35 AM 3:00 PM 24	Site Inspection Core Box Collection IOP Fire Code H Weather	Site wa Site wa AY Weather Drilling with Water = Drill Move = Very Hi Mine	Activity Update Activity Octoor Activity Octoo	looked goo Box Fuel Grou ns 25°C, L = 12'	d. Dri # Fro 82 up 3	ll was rui m IC	nning upon arri Box 9 DP Code Work Mc (P) , <1mm	val and departu # To 5 Ddification Stat Prevention	ure. Total Boxe 14 D
11:25 AM 11:35 AM 3:00 PM 24	Site Inspection Core Box Collection IOP Fire Code H Weather	Site wa Site wa AY Weather Drilling with Water = Drill Move = Very Hi Mine	Activity Update Activity Octoor Activity Octoo	looked goo Box Fuel Grou ns 25°C, L = 12'	d. Dri # Fro 82 up 3	ll was rui m IC	nning upon arri Box 9 DP Code Work Mc (P) , <1mm	val and departu # To 5 Ddification Stat Prevention	ure. Total Boxe 14 D
11:25 AM 11:35 AM 3:00 PM 24	Site Inspection Core Box Collection IOP Fire Code H Weather	Site wa Site wa AY Weather Drilling with Water = Drill Move = Very Hi Mine	Activity Update Activity Octoor Activity Octoo	looked goo Box Fuel Grou ns 25°C, L = 12'	d. Dri # Fro 82 up 3	ll was rui m IC	nning upon arri Box 9 DP Code Work Mc (P) , <1mm	val and departu # To 5 Ddification Stat Prevention	ure. Total Boxe 14 D
11:25 AM 11:35 AM 3:00 PM 24	Site Inspection Core Box Collection IOP Fire Code H Weather	Site wa Site wa AY Weather Drilling with Water = Drill Move = Very Hi Mine	Activity Update Activity Octoor Activity Octoo	looked goo Box Fuel Grou ns 25°C, L = 12'	d. Dri # Fro 82 up 3	ll was rui m IC	nning upon arri Box 9 DP Code Work Mc (P) , <1mm	val and departu # To 5 Ddification Stat Prevention	ure. Total Boxe 14 D

Day Shift Comments: Site was clean, drilling at 402m when site inspection was conducted. Drilling was running upon arrival/departure. Survey from yesterday @ 351m (354m) = Az: 11.69, Dip: -49.05. Drillers accidentally misblocked from 273 meters until the end of the boxes we picked up -- make sure to mention them so they change the blocks +3 meters moving forwards.

Night Shift Comments: Drilling, slow hard rock

-	Ir	Project		Date			Geo	
Franciti	ion Metals	Aylmer	Augu	st 13,	2022	В	. Williams, S. Re	eese
παποπ								
			g Update	-		,		
Shift	Activity	Comments	Hole ID	Az	Dip	From (m)	To (m)	Drilled (m
	Casing / OB Drilling							
Day	Drilling	Drilling	AY-22-02	0	-50	429	444	15
.,	Moving	5						
	Waterline							
	Casing / OB Drilling							
Night	Drilling	Drilling, test at 450	AY-22-02	0	-50	444	459	15
	Moving							
	Waterline							
	Curre	ntly						
Located on	PAD B		2-02			D	aily Total (m)	30
	Planned 45	1					Hole Total	459
Expected	d Program Total	1250 m				Program M	eterage Total	699
							eterage rota.	000
		Activi	ty Update					
Time	Activity	Activi		omme	ents			
Time 10:30 AM	Activity Site Inspection							
			C		ill was ru		val and departu	
		Site was clean, and	C	od. Dr	ill was ru	nning upon arri	val and departu	ure.
10:30 AM	Site Inspection	Site was clean, and Hole ID	C I everything looked go Bo	od. Dr x # Fr 96	ill was rui om	nning upon arri Box	val and departu	ure. Total Boxe
10:30 AM	Site Inspection	Site was clean, and Hole ID AY-22-02	C l everything looked go Bo	od. Dr x # Fr 96	ill was rui om	nning upon arri Box 10 DP Code	val and departu	ure. Total Boxe 6 D
10:30 AM 11:00 AM	Site Inspection	Site was clean, and Hole ID AY-22-02 Weather Station (SU	C l everything looked go Bo 2) Fuel Gro isk Operations	od. Dr x # Fr 96	ill was rui om	nning upon arri Box 10 DP Code Work Mo	val and departu	ure. Total Boxe 6 D
10:30 AM 11:00 AM 3:00 PM	Site Inspection	Site was clean, and Hole ID AY-22-02 Weather Station (SU Drilling with Water = Low Fire R	C l everything looked go Bo 2) Fuel Gro isk Operations	od. Dr x # Fro 96 oup 3	ill was rui om IC	nning upon arri Box 10 DP Code Work Mo (P)	wal and departu # To D1 Ddification Stat	ure. Total Boxe 6 D
10:30 AM 11:00 AM 3:00 PM	Site Inspection Core Box Collection IOP Fire Code	Site was clean, and Hole ID AY-22-02 Weather Station (SU Drilling with Water = Low Fire R Drill Move = Very High Fire Risk	C l everything looked go Bo Z) Fuel Gro isk Operations Operations	od. Dr x # Fro 96 oup 3	ill was rui om IC	nning upon arri Box 10 DP Code Work Mo (P)	wal and departu # To D1 Ddification Stat	ure. Total Boxe 6 D
10:30 AM 11:00 AM 3:00 PM	Site Inspection Core Box Collection IOP Fire Code	Site was clean, and Hole ID AY-22-02 Weather Station (SU Drilling with Water = Low Fire R Drill Move = Very High Fire Risk Mineralization &	C l everything looked go Bo Z) Fuel Gro isk Operations Operations H = 27°C, L = 1	od. Dr x # Fro 96 oup 3	ill was rui om IC	nning upon arri Box 10 DP Code Work Mo (P)	# To D1 Ddification Stat	ure. Total Boxe 6 D
10:30 AM 11:00 AM 3:00 PM 24H	Site Inspection Core Box Collection IOP Fire Code H Weather	Site was clean, and Hole ID AY-22-02 Weather Station (SU Drilling with Water = Low Fire R Drill Move = Very High Fire Risk Mineralization &	C l everything looked go Bo 2) Fuel Gro isk Operations Operations H = 27°C, L = 1 Observation Update	od. Dr x # Fro 96 oup 3	ill was rui om IC	nning upon arri Box 10 DP Code Work Mo (P) , 0 mm	# To D1 Ddification Stat	ure. Total Boxe 6 D
10:30 AM 11:00 AM 3:00 PM 24H	Site Inspection Core Box Collection IOP Fire Code H Weather	Site was clean, and Hole ID AY-22-02 Weather Station (SU Drilling with Water = Low Fire R Drill Move = Very High Fire Risk Mineralization &	C l everything looked go Bo 2) Fuel Gro isk Operations Operations H = 27°C, L = 1 Observation Update	od. Dr x # Fro 96 oup 3	ill was rui om IC	nning upon arri Box 10 DP Code Work Mo (P) , 0 mm	# To D1 Ddification Stat	ure. Total Boxe 6 D
10:30 AM 11:00 AM 3:00 PM 24H	Site Inspection Core Box Collection IOP Fire Code H Weather	Site was clean, and Hole ID AY-22-02 Weather Station (SU Drilling with Water = Low Fire R Drill Move = Very High Fire Risk Mineralization &	C l everything looked go Bo 2) Fuel Gro isk Operations Operations H = 27°C, L = 1 Observation Update	od. Dr x # Fro 96 oup 3	ill was rui om IC	nning upon arri Box 10 DP Code Work Mo (P) , 0 mm	# To D1 Ddification Stat	ure. Total Boxe 6 D
10:30 AM 11:00 AM 3:00 PM 24H	Site Inspection Core Box Collection IOP Fire Code H Weather	Site was clean, and Hole ID AY-22-02 Weather Station (SU Drilling with Water = Low Fire R Drill Move = Very High Fire Risk Mineralization &	C l everything looked go Bo 2) Fuel Gro isk Operations Operations H = 27°C, L = 1 Observation Update	od. Dr x # Fro 96 oup 3	ill was rui om IC	nning upon arri Box 10 DP Code Work Mo (P) , 0 mm	# To D1 Ddification Stat	ure. Total Boxe 6 D
10:30 AM 11:00 AM 3:00 PM 24H	Site Inspection Core Box Collection IOP Fire Code H Weather	Site was clean, and Hole ID AY-22-02 Weather Station (SU Drilling with Water = Low Fire R Drill Move = Very High Fire Risk Mineralization &	C l everything looked go Bo 2) Fuel Gro isk Operations Operations H = 27°C, L = 1 Observation Update	od. Dr x # Fro 96 oup 3	ill was rui om IC	nning upon arri Box 10 DP Code Work Mo (P) , 0 mm	# To D1 Ddification Stat	ure. Total Box 6 D

Day Shift Comments: Site was clean, drilling at 429 m when site inspection was conducted. Drilling was running upon arrival/departure. Showed driller where next hole was, need to clear and open the pad before moving. Driller was going to get to that tomorrow.

Night Shift Comments: Drilling, slow, hard rock.

	Ir	Pi	roject		Date			Geo	
Franciti	ion Metals	A	ylmer	Augus	t 14, 2	2022	В	. Williams, S. Re	eese
Iulioli									
-			Drilling Update		. 1			- () [
Shift	Activity	Con	nments	Hole ID	Az	Dip	From (m)	To (m)	Drilled (m
	Casing / OB Drilling				•	50	450	100	24
Day	Drilling	D	rilling	AY-22-02	0	-50	459	483	24
	Moving								
	Waterline Casing / OB Drilling			_					
	Drilling	Drilling Tost	at 500. Hole done	AY-22-02	0	-50	483	500	17
Night	Moving	.	pack for move	A1-22-02	0	-50	483	500	17
	Waterline	Full Kous,	pack for move						
	Currer	l htlv		-					
Located on	PAD B	Hole	AY-22-02				D	aily Total (m)	41
	Planned 45							Hole Total	500
Expected	d Program Total	12	250 m				Program M	eterage Total	740
•	•		Activity Update					<u> </u>	
Time									
Time	Activity			Co	mmei	nts			
10:30 AM	Activity Site Inspection		as clean, and everythin	ng looked goo	d. Dril	ll was rur			
10:30 AM	Site Inspection		as clean, and everythin	ng looked goo		ll was rur		ival and departu	
		Hi AY	ole ID /-22-02	ng looked goo Box	d. Dril	ll was rur	Вох		
10:30 AM 11:00 AM	Site Inspection	H AY Weather	ole ID /-22-02 Station (SUZ)	Boxed goo	d. Dril # Fro 102	ll was rur m	Box 11 DP Code	# To	Total Boxe 10 D
10:30 AM	Site Inspection	H AY Weather Drilling with Water	ole ID /-22-02 Station (SUZ) = Low Fire Risk Operat	Boxed goo Box Fuel Grou	d. Dril # Fro 102	ll was rur m	Box 11 DP Code Work Mo	# To 11 odification Stat	Total Boxe 10 D
10:30 AM 11:00 AM 3:00 PM	Site Inspection Core Box Collection IOP Fire Code	H AY Weather Drilling with Water	ole ID /-22-02 Station (SUZ) = Low Fire Risk Operation igh Fire Risk Operation	Box Box Fuel Grou	d. Dril # Fro 102 	ll was rur m IC	Box 11 DP Code Work Ma (P)	# To	Total Boxe 10 D
10:30 AM 11:00 AM 3:00 PM	Site Inspection	H AY Weather Drilling with Water = Drill Move = Very Hi	ole ID '-22-02 Station (SUZ) = Low Fire Risk Operation igh Fire Risk Operation H	Box Box Fuel Grou ions = 24°C, L = 12	d. Dril # Fro 102 	ll was rur m IC	Box 11 DP Code Work Ma (P)	# To 11 odification Stat	Total Boxe
10:30 AM 11:00 AM 3:00 PM 24F	Site Inspection Core Box Collection IOP Fire Code	H AY Weather Drilling with Water Drill Move = Very Hi Mine	ole ID /-22-02 Station (SUZ) = Low Fire Risk Operation igh Fire Risk Operation H ralization & Observat	Box Box Fuel Grou ions = 24°C, L = 12	d. Dril # Fro 102 	ll was rur m IC	Box 11 DP Code Work Ma (P) , 0 mm	# To 11 Dodification Stat Prevention	Total Boxe
10:30 AM 11:00 AM 3:00 PM	Site Inspection Core Box Collection IOP Fire Code	H AY Weather Drilling with Water = Drill Move = Very Hi	ole ID '-22-02 Station (SUZ) = Low Fire Risk Operation igh Fire Risk Operation H	Box Box Fuel Grou ions = 24°C, L = 12	d. Dril # Fro 102 	ll was rur m IC	Box 11 DP Code Work Ma (P)	# To 11 Dodification Stat Prevention	Total Boxe
10:30 AM 11:00 AM 3:00 PM 24F	Site Inspection Core Box Collection IOP Fire Code	H AY Weather Drilling with Water Drill Move = Very Hi Mine	ole ID /-22-02 Station (SUZ) = Low Fire Risk Operation igh Fire Risk Operation H ralization & Observat	Box Box Fuel Grou ions = 24°C, L = 12	d. Dril # Fro 102 	ll was rur m IC	Box 11 DP Code Work Ma (P) , 0 mm	# To 11 Dodification Stat Prevention	Total Boxe
10:30 AM 11:00 AM 3:00 PM 24F	Site Inspection Core Box Collection IOP Fire Code	H AY Weather Drilling with Water Drill Move = Very Hi Mine	ole ID /-22-02 Station (SUZ) = Low Fire Risk Operation igh Fire Risk Operation H ralization & Observat	Box Box Fuel Grou ions = 24°C, L = 12	d. Dril # Fro 102 	ll was rur m IC	Box 11 DP Code Work Ma (P) , 0 mm	# To 11 Dodification Stat Prevention	Total Boxe 10 D
10:30 AM 11:00 AM 3:00 PM 24F	Site Inspection Core Box Collection IOP Fire Code	H AY Weather Drilling with Water Drill Move = Very Hi Mine	ole ID /-22-02 Station (SUZ) = Low Fire Risk Operation igh Fire Risk Operation H ralization & Observat	Box Box Fuel Grou ions = 24°C, L = 12	d. Dril # Fro 102 	ll was rur m IC	Box 11 DP Code Work Ma (P) , 0 mm	# To 11 Dodification Stat Prevention	Total Boxe 10 D
10:30 AM 11:00 AM 3:00 PM 24F	Site Inspection Core Box Collection IOP Fire Code	H AY Weather Drilling with Water Drill Move = Very Hi Mine	ole ID /-22-02 Station (SUZ) = Low Fire Risk Operation igh Fire Risk Operation H ralization & Observat	Box Box Fuel Grou ions = 24°C, L = 12	d. Dril # Fro 102 	ll was rur m IC	Box 11 DP Code Work Ma (P) , 0 mm	# To 11 Dodification Stat Prevention	Total Boxe 10 D

Day Shift Comments: Site was clean, drilling at 429 m when site inspection was conducted. Drilling was running upon arrival/departure. Showed driller where next hole was, need to clear and open the pad before moving. Driller was going to get to that tomorrow.

Night Shift Comments: Drilling, test at 500m. hole done, pull rods out, packup for the move.

	TT	Project	C	Date			Geo	
Fransit	ion Metals	Aylmer	August	: 15, 2	022		C. Hatton	
		Drilling Update						
Shift	Activity	Comments	Hole ID	Az	Dip	From (m)	To (m)	Drilled (m)
Day	Casing / OB Drilling Drilling Moving Waterline	Move to next site, drill over burden. Start Drillin from 6m	AY-22-03	105	-50	0	6	6
Night	Casing / OB Drilling Drilling Moving Waterline	Drilling, broken rock, slow going	AY-22-02	0	-50	6	36	30
	Curre	ntly						
Located on		Hole AY-22-03				D	aily Total (m)	36
	Planned 30						Hole Total	36
Expecte	ed Program Total	1250 m				Program M	eterage Total	776
Time 10:30 AM	Activity Site Inspection	Activity Update Pad B was being cleaned as drill was being		mmer Pad C		ng set up on; w	vill review agair	n tomorrow.
-			eing moved.	-	was bei		vill review agair # To	n tomorrow. Total Boxe
-		Pad B was being cleaned as drill was be	eing moved.	Pad C	was bei	Вох		
10:30 AM	Site Inspection	Pad B was being cleaned as drill was be Hole ID AY-22-02 (EOH) Weather Station (SUZ) Drilling with Water = Low Fire Risk Operation	Box Box Fuel Grou ons	Pad C # Froi 112	was bei n	Box 11 DP Code Work Mo	# To 19 odification Stat	Total Boxe 8 D
10:30 AM 11:00 AM 3:00 PM	Site Inspection Core Box Collection IOP Fire Code	Pad B was being cleaned as drill was be Hole ID AY-22-02 (EOH) Weather Station (SUZ) Drilling with Water = Low Fire Risk Operation Drill Move = Very High Fire Risk Operations	Box Box Fuel Grou	Pad C # Froi 112	was bei n IC	Box 11 DP Code Work Ma (P)	# To 19	Total Boxe 8 D
10:30 AM 11:00 AM 3:00 PM	Site Inspection	Pad B was being cleaned as drill was be Hole ID AY-22-02 (EOH) Weather Station (SUZ) Drilling with Water = Low Fire Risk Operations Drill Move = Very High Fire Risk Operations H =	Box Box Fuel Grou 23°C, L = 14°	Pad C # Froi 112	was bei n IC	Box 11 DP Code Work Ma (P)	# To 19 odification Stat	Total Boxe 8 D
10:30 AM 11:00 AM 3:00 PM	Site Inspection Core Box Collection IOP Fire Code	Pad B was being cleaned as drill was be Hole ID AY-22-02 (EOH) Weather Station (SUZ) Drilling with Water = Low Fire Risk Operation Drill Move = Very High Fire Risk Operations	Box Box Fuel Grou 23°C, L = 14°	Pad C # Froi 112	was bei n IC	Box 11 DP Code Work Ma (P)	# To 19 odification Stat Prevention	Total Boxe 8 D
10:30 AM 11:00 AM 3:00 PM 24	Site Inspection Core Box Collection IOP Fire Code H Weather	Pad B was being cleaned as drill was be Hole ID AY-22-02 (EOH) Weather Station (SUZ) Drilling with Water = Low Fire Risk Operations Drill Move = Very High Fire Risk Operations H = Mineralization & Observation	Box Box Fuel Grou 23°C, L = 14°	Pad C # Froi 112	was bei n IC	Box 11 DP Code Work Ma (P) 5, 0 mm	# To 19 odification Stat Prevention	Total Boxe 8 D
10:30 AM 11:00 AM 3:00 PM 24	Site Inspection Core Box Collection IOP Fire Code H Weather	Pad B was being cleaned as drill was be Hole ID AY-22-02 (EOH) Weather Station (SUZ) Drilling with Water = Low Fire Risk Operations Drill Move = Very High Fire Risk Operations H = Mineralization & Observation	Box Fuel Grou Dns 23°C, L = 14' n Update	Pad C # Froi 112	was bei n IC	Box 11 DP Code Work Ma (P) 5, 0 mm	# To 19 odification Stat Prevention	Total Boxe 8 D

Night Shift Comments: Drilling, broken ground, slow going.

	ion Metals		na lladat-					
Shift	Activity	Drill Comments	ng Update Hole	e ID Az	Dip	From (m)	To (m)	Drilled (m)
Day	Casing / OB Drilling Drilling Moving Waterline	Drilling, broken rock, slow go 50m		2-03 10!		36	57	21
Night	Casing / OB Drilling Drilling Moving Waterline	Drilling	AY-22	2-03 10	-50	57	93	36
	Curre	ntly						
Located on	PAD C	Hole AY-	22-03			C	Daily Total (m)	57
	Planned 30						Hole Total	93
Expecte	d Program Total	1250 m				Program N	leterage Total	833
Time	Activity	Activ	ity Update	Comm				
10:30 AM	Site Inspection	Pad B has	been cleaned, in go	ood shape	. Pad C is s	et up and safe	e and clean.	
		Pad B has	been cleaned, in go	ood shape Box # Fr			e and clean. # To	Total Boxe
10:30 AM 11:00 AM	Site Inspection	Hole ID AY-22-03		Box # Fr	om	Вох	# To 8	8
		Hole ID	IZ) Fue Risk Operations	Box # Fr	om	Box P Code Work M	# To 8	8 D
11:00 AM 3:00 PM	Core Box Collection	Hole ID AY-22-03 Weather Station (SU Drilling with Water = Low Fire Drill Move = Very High Fire Ris	IZ) Fue Risk Operations Operations H = 26°C, L	Box # Fr 1 Group 3 = 14°C, Pf	om IO	Box P Code Work M (P	# To 8 odification Stat	8 D
11:00 AM 3:00 PM 24	Core Box Collection IOP Fire Code H Weather	Hole ID AY-22-03 Weather Station (SU Drilling with Water = Low Fire Drill Move = Very High Fire Ris Mineralization 4	IZ) Fue Risk Operations < Operations H = 26°C, L & Observation Upd	Box # Fr 1 Group 3 = 14°C, Pf	om IO	Box P Code Work M (P ~ 3 mm	# To 8 odification Stat) Prevention	8 D
11:00 AM 3:00 PM	Core Box Collection	Hole ID AY-22-03 Weather Station (St Drilling with Water = Low Fire Drill Move = Very High Fire Ris Mineralization & From (m) To	IZ) Fue Risk Operations Operations H = 26°C, L	Box # Fr 1 Group 3 = 14°C, Pf	om IO	Box P Code Work M (P	# To 8 odification Stat) Prevention	8 D

	Ir	Project		Date			Geo	
Fransit	ion Metals	Aylmer	Augus	t 17, 20	022		B. Williams	
		Drilling Upda	to					
Shift	Activity	Comments	Hole ID	Az	Dip	From (m)	To (m)	Drilled (m)
Day	Casing / OB Drilling Drilling Moving Waterline	Drilling, , Test at 100m	AY-22-03		-50	93	123	30
Night	Casing / OB Drilling Drilling Moving Waterline	Drilling	AY-22-03	105	-50	123	150	27
	Curre	ntly						
Located or	PAD C	Hole AY-22-03				C	Daily Total (m)	57
	Planned 30	0 metres					Hole Total	150
Evnorte								
Lypecte	ed Program Total	1250 m				Program M	leterage Total	890
Expecte	ed Program Total	1250 m Activity Upda	ate			Program M	leterage Total	890
Time	Activity			mmen	ts	Program M	leterage Total	890
			Co Few waterline h		oiled and			
Time	Activity	Activity Upda	Co Few waterline h lc	oses co	oiled and	waitting for p		& pump shac
Time	Activity	Activity Upda Site is clean, drill running on arrival.	Co Few waterline h lc	oses co ocation	oiled and	waitting for p	bickup at Pad B	& pump shac
Time 10:30 AM	Activity Site Inspection	Activity Upda Site is clean, drill running on arrival.	Co Few waterline h lc	oses co ocation # Fron 9	viled and n	waitting for p	bickup at Pad B	& pump shac Total Boxe
Time 10:30 AM	Activity Site Inspection	Activity Upda Site is clean, drill running on arrival. Hole ID AY-22-03	Co Few waterline h lc Box Fuel Grou	oses co ocation # Fron 9	viled and n	waitting for p Box 2 P Code	bickup at Pad B	& pump shac Total Boxe 13 D
Time 10:30 AM 11:00 AM	Activity Site Inspection Core Box Collection	Activity Upda Site is clean, drill running on arrival. Hole ID AY-22-03 Weather Station (SUZ)	Co Few waterline h lc Box Fuel Grou rations	oses co ocation # Fron 9	viled and n	waitting for p Box 2 P Code Work Mo	bickup at Pad B	& pump shac Total Boxe 13 D
Time 10:30 AM 11:00 AM 3:00 PM	Activity Site Inspection Core Box Collection	Activity Upda Site is clean, drill running on arrival. Hole ID AY-22-03 Weather Station (SUZ) Drilling with Water = Low Fire Risk Operat Drill Move = Very High Fire Risk Operat	Co Few waterline h lc Box Fuel Grou rations	oses co ocation # Fron 9 up 3	n IOI	waitting for p Box 2 P Code Work Mi (P)	<pre>bickup at Pad B # To 21 odification Stat) Prevention</pre>	& pump shac Total Boxe 13 D
Time 10:30 AM 11:00 AM 3:00 PM	Activity Site Inspection Core Box Collection IOP Fire Code	Activity Upda Site is clean, drill running on arrival. Hole ID AY-22-03 Weather Station (SUZ) Drilling with Water = Low Fire Risk Operat Drill Move = Very High Fire Risk Operat	Co Few waterline h lo Box Fuel Grou rations ions .6°C, POP = 25 %	oses co ocation # Fron 9 up 3	n IOI	waitting for p Box 2 P Code Work More (P) (cce of thunder	bickup at Pad B # To 11 odification Stat) Prevention rstroms	& pump shac Total Boxe 13 D
Time 10:30 AM 11:00 AM 3:00 PM	Activity Site Inspection Core Box Collection IOP Fire Code	Activity Upda Site is clean, drill running on arrival. Hole ID AY-22-03 Weather Station (SUZ) Drilling with Water = Low Fire Risk Operat Drill Move = Very High Fire Risk Operat H = 28°C, L = 1	Co Few waterline h lo Box Fuel Grou rations ions .6°C, POP = 25 %	oses co ocation # Fron 9 up 3	n IOI	waitting for p Box 2 P Code Work Mi (P)	bickup at Pad B # To 11 odification Stat) Prevention rstroms	& pump shar Total Box 13 D
Time 10:30 AM 11:00 AM 3:00 PM 24	Activity Site Inspection Core Box Collection IOP Fire Code	Activity Upda Site is clean, drill running on arrival. Hole ID AY-22-03 Weather Station (SUZ) Drilling with Water = Low Fire Risk Operat Drill Move = Very High Fire Risk Operat H = 28°C, L = 1 Mineralization & Observe	Co Few waterline h lo Box Fuel Grou rations ions .6°C, POP = 25 %	oses co ocation # Fron 9 up 3	n IOI	waitting for p Box 2 P Code Work More (P) (cce of thunder	bickup at Pad B # To 11 odification Stat) Prevention rstroms	& pump shac Total Boxe 13 D
Time 10:30 AM 11:00 AM 3:00 PM 24	Activity Site Inspection Core Box Collection IOP Fire Code	Activity Upda Site is clean, drill running on arrival. Hole ID AY-22-03 Weather Station (SUZ) Drilling with Water = Low Fire Risk Operat Drill Move = Very High Fire Risk Operat H = 28°C, L = 1 Mineralization & Observe	Co Few waterline h lo Box Fuel Grou rations ions .6°C, POP = 25 % ration Update	oses co ocation # Fron 9 up 3	n IOI	waitting for p Box 2 P Code Work More (P) (cce of thunder	bickup at Pad B # To 11 odification Stat) Prevention rstroms	& pump shac Total Boxe 13 D

Day Shift Comments: Drilling, test at 100. At core shed, notice a missed block numbering sequence, and boxnumbering is off as well. Will talk to foreman tomorrow, as the hole is 3 m shorter then they believe (from blocks).

Night Shift Comments: Drilling test at 150m.

	on Metals	Detille	a lindato					
Shift	Activity	Comments	g Update Hole ID	Az	Dip	From (m)	To (m)	Drilled (m
Day	Casing / OB Drilling Drilling Moving Waterline	Drilling, ,pull rods out for bit	ΔΥ-22-03		-50	150	171	21
Night	Casing / OB Drilling Drilling Moving Waterline	No night shift, helper called	in sick AY-22-03	105	-50			0
	Curre							
Located on	PAD C	Hole AY-2	2-03			0	Daily Total (m)	21
	Planned 30						Hole Total	171
Europeter		1250 m				Program IV	leterage Total	911
Expected	Flografit fotal		v Lindata					
Expected Time 10:30 AM	Activity		luring inspect. Two ba	•	garbage &	& some wirelin	ne neatly placed	for removal
Time	Activity	Activit	Curing inspect. Two bas		garbage & nge.	Вох	ne neatly placed # To	for removal Total Boxe 16
Time 10:30 AM	Activity Site Inspection	Activit Site was clean and organized o Hole ID AY-22-03	luring inspect. Two bases of the second seco	iges of ift char x # Fro 21	garbage & nge. m	<u>Вох</u> З	# To	Total Boxe
Time 10:30 AM 11:00 AM	Activity Site Inspection Core Box Collection	Activit Site was clean and organized o Hole ID AY-22-03 Weather Station (SUZ	luring inspect. Two bases of the second seco	iges of ift char x # Fro 21	garbage & nge. m	Box 3 P Code	# To	Total Boxe
Time 10:30 AM	Activity Site Inspection	Activit Site was clean and organized o Hole ID AY-22-03 Weather Station (SUZ Drilling with Water = Low Fire Ri	luring inspect. Two bases of the second seco	iges of ift char x # Fro 21	garbage & nge. m	Box 3 P Code Work Mo	# To 36 odification Stat	Total Boxe
Time 10:30 AM 11:00 AM 3:00 PM	Activity Site Inspection Core Box Collection	Activit Site was clean and organized of Hole ID AY-22-03 Weather Station (SUZ Drilling with Water = Low Fire Ris Drill Move = Very High Fire Risk	luring inspect. Two bases of the second seco	ift char ift char x # Fro 21 oup 3	garbage & nge. m IO	Box 3 P Code Work Ma (P)	# To 36 odification Stat) Prevention	Total Boxe
Time 10:30 AM 11:00 AM 3:00 PM 24+	Activity Site Inspection Core Box Collection IOP Fire Code	Activit Site was clean and organized of Hole ID AY-22-03 Weather Station (SUZ Drilling with Water = Low Fire Ris Drill Move = Very High Fire Risk H = 26° Mineralization &	luring inspect. Two bash	ift char ift char x # Fro 21 oup 3	garbage & nge. m IO	Box 3 P Code Work Mo (P) nce of thunder	# To 36 odification Stat) Prevention rstroms	Total Boxe
Time 10:30 AM 11:00 AM 3:00 PM	Activity Site Inspection Core Box Collection IOP Fire Code	Activit Site was clean and organized of Hole ID AY-22-03 Weather Station (SUZ Drilling with Water = Low Fire Ris Drill Move = Very High Fire Risk H = 26°	luring inspect. Two bash	ift char ift char x # Fro 21 oup 3	garbage & nge. m IO	Box 3 P Code Work Ma (P)	# To 36 odification Stat) Prevention rstroms	Total Boxe
Time 10:30 AM 11:00 AM 3:00 PM 24+	Activity Site Inspection Core Box Collection IOP Fire Code	Activit Site was clean and organized of Hole ID AY-22-03 Weather Station (SUZ Drilling with Water = Low Fire Ris Drill Move = Very High Fire Risk H = 26° Mineralization &	luring inspect. Two bash	ift char ift char x # Fro 21 oup 3	garbage & nge. m IO	Box 3 P Code Work Mo (P) nce of thunder	# To 36 odification Stat) Prevention rstroms	Total Boxe
Time 10:30 AM 11:00 AM 3:00 PM 24+	Activity Site Inspection Core Box Collection IOP Fire Code	Activit Site was clean and organized of Hole ID AY-22-03 Weather Station (SUZ Drilling with Water = Low Fire Ris Drill Move = Very High Fire Risk H = 26 ⁶ Mineralization & From (m) To b	luring inspect. Two bash	ift char ift char x # Fro 21 oup 3	garbage & nge. m IO	Box 3 P Code Work Mo (P) nce of thunder	# To 36 odification Stat) Prevention rstroms	Total Boxe
Time 10:30 AM 11:00 AM 3:00 PM 24+	Activity Site Inspection Core Box Collection IOP Fire Code	Activit Site was clean and organized of Hole ID AY-22-03 Weather Station (SUZ Drilling with Water = Low Fire Ris Drill Move = Very High Fire Risk H = 26 ⁶ Mineralization & From (m) To b	luring inspect. Two bash	ift char ift char x # Fro 21 oup 3	garbage & nge. m IO	Box 3 P Code Work Mo (P) nce of thunder	# To 36 odification Stat) Prevention rstroms	Total Boxe

Shift Day	on Metals		roject		Date	022		Geo	
Shift		A	ylmer	Augus	t 19, 2	022		B. Williams	
			Drilling Update						
	Activity	Co	nments	Hole ID	Az	Dip	From (m)	To (m)	Drilled (m
	Casing / OB Drilling Drilling Moving	Drilling, ream broke	en section, test at 200m	AY-22-03	105	-50	171	201	30
Night	Waterline Casing / OB Drilling Drilling Moving Waterline	drilling, rear	n broken section	AY-22-03	105	-50	201	231	30
	Curre								
Located on	PAD C	Hole	AY-22-03				D	Daily Total (m)	60
	Planned 30	1						Hole Total	231
Expected P	rogram Total	1	250 m				Program M	eterage Total	971
Time	Activity		Activity Update	6-	mmer				
	Site Inspection	Site was clean and	l organized during inspec	LL. TWO Dag			some wireim	le fieatly placed	
10:30 AM	Site inspection				t chan	-			
10:30 AM 11:00 AM	Core Box Collection		ole ID -22-03		t chan # Froi 37	-		# To	Total Boxe
		AY	-22-03	Вох	# Fro i 37	n	4	.0	4
		AY Weather		Box Fuel Grou	# Fro i 37	n	4 P Code	.0	4 D
11:00 AM 3:00 PM	Core Box Collection	AY Weather Drilling with Water	-22-03 Station (SUZ) = Low Fire Risk Operation gh Fire Risk Operations	Box Fuel Grou	# Froi 37 лр 3	n IOI	4 P Code Work Mo (P)	0 odification Stat	4 D
11:00 AM 3:00 PM	Core Box Collection	AY Weather Drilling with Water Drill Move = Very H	-22-03 Station (SUZ) = Low Fire Risk Operation igh Fire Risk Operations H = 26°C, L = 15°C,	Box Fuel Grou ns POP = 70 %	# Froi 37 лр 3	n IOI	4 P Code Work Mo (P)	0 odification Stat	4 D
11:00 AM 3:00 PM 24H W	Core Box Collection IOP Fire Code Veather	AY Weather Drilling with Water Drill Move = Very H Mine	-22-03 Station (SUZ) = Low Fire Risk Operation gh Fire Risk Operations H = 26°C, L = 15°C, ralization & Observation	Box Fuel Grou ns POP = 70 %	# Froi 37 лр 3	n IOI	4 P Code Work Mo (P) Ice of thunder	odification Stat	4 D
11:00 AM 3:00 PM	Core Box Collection	AY Weather Drilling with Water Drill Move = Very H	-22-03 Station (SUZ) = Low Fire Risk Operation igh Fire Risk Operations H = 26°C, L = 15°C,	Box Fuel Grou ns POP = 70 %	# Froi 37 лр 3	n IOI	4 P Code Work Mo (P)	odification Stat	4 D
11:00 AM 3:00 PM 24H W	Core Box Collection IOP Fire Code Veather	AY Weather Drilling with Water Drill Move = Very H Mine	-22-03 Station (SUZ) = Low Fire Risk Operation gh Fire Risk Operations H = 26°C, L = 15°C, ralization & Observation	Box Fuel Grou ns POP = 70 %	# Froi 37 лр 3	n IOI	4 P Code Work Mo (P) Ice of thunder	odification Stat	4 D
11:00 AM 3:00 PM 24H W	Core Box Collection IOP Fire Code Veather	AY Weather Drilling with Water Drill Move = Very H Mine	-22-03 Station (SUZ) = Low Fire Risk Operation gh Fire Risk Operations H = 26°C, L = 15°C, ralization & Observation	Box Fuel Grou ns POP = 70 %	# Froi 37 лр 3	n IOI	4 P Code Work Mo (P) Ice of thunder	odification Stat	4 D

Aylmer Drilling Upda Comments Drilling, test at 250m drilling Die AY-22-03	August 20 te Hole ID Az AY-22-03 10 AY-22-03 10	z Dip	From (m) 231 261	S. Reese To (m) 261 288	Drilled (n 30 27	
Comments Drilling, test at 250m drilling Die AY-22-03	Hole ID A: AY-22-03 10	95 -50	231	261	30	
Comments Drilling, test at 250m drilling Die AY-22-03	Hole ID A: AY-22-03 10	95 -50	231	261	30	
Drilling, test at 250m drilling Die AY-22-03	AY-22-03 10	95 -50	231	261	30	
drilling Die AY-22-03			-			
drilling Die AY-22-03			-			
ole AY-22-03	AY-22-03 10	95 -50	261	288	27	
ole AY-22-03	AY-22-03 10	95 -50	261	288	27	
ole AY-22-03	_					
4350 -			Da	ily Total (m)	57	
				Hole Total	288	
1250 m			Program Me	terage Total	1028	
Activity Upda						
Site was clean and organized during inspection						
Hole ID	Box # F	rom	Box #	То	Total Box	
AY-22-03	41	41			17	
Weather Station (SUZ)		10				
,					us	
e = Verv High Fire Risk Onerat	High Fire Risk Operations			(P) Prevention		
H = 28°C, L = 1	.7°C, POP = 15 %, ~	1 mm, Char	ice of thunders			
H = 28°C, L = 1 Mineralization & Observ	.7°C, POP = 15 %, ~	1 mm, Char		troms		
H = 28°C, L = 1	.7°C, POP = 15 %, ~	1 mm, Char	ce of thunders	troms		
H = 28°C, L = 1 Mineralization & Observ	.7°C, POP = 15 %, ~	1 mm, Char		troms		
H = 28°C, L = 1 Mineralization & Observ	.7°C, POP = 15 %, ~	1 mm, Char		troms		
	Hole ID AY-22-03 Weather Station (SUZ) ith Water = Low Fire Risk Ope	Site was clean and organ Hole ID Box # F AY-22-03 41 Weather Station (SUZ) Fuel Group 3 ith Water = Low Fire Risk Operations	Hole ID Box # From AY-22-03 41 Weather Station (SUZ) Fuel Group 3 IO ith Water = Low Fire Risk Operations IO	Site was clean and organized during inspection Hole ID Box # From Box # AY-22-03 41 57 Weather Station (SUZ) Fuel Group 3 IOP Code ith Water = Low Fire Risk Operations Work Mode	Site was clean and organized during inspection Hole ID Box # From Box # To AY-22-03 41 57 Weather Station (SUZ) Fuel Group 3 IOP Code ith Water = Low Fire Risk Operations Work Modification State	

	Ir	P	roject	I	Date			Geo	
ransit	ion Metals	A	ylmer	Augus	t 21, 2(022		S. Reese	
			Drilling Update						
Shift	Activity	Co	mments	Hole ID	Az	Dip	From (m)	To (m)	Drilled (m
Day	Casing / OB Drilling Drilling Moving Waterline		00 m. Hole Done, Pull nd pack up	AY-22-03	105	-50	288	300	12
Night	Casing / OB Drilling Drilling Moving Waterline	No r	ight Shift	AY-22-03	105	-50	0	0	
	Curre	ntly		1					
Located on		Hole	AY-22-03				D	aily Total (m)	12
		ned 300 metres Hole Total						300	
Expecte	d Program Total	1	250 m				Program M	1040	
				_			-	<u> </u>	
Time	Activity	Site was	Activity Update		mmen		t down and a	ulling rods to as	ock up
Time 10:30 AM	Activity Site Inspection		Activity Update	ing inspectio	on. Dril	l shutting			•
10:30 AM	Site Inspection		Activity Update	ing inspectio		l shutting		ulling rods to pa	•
			Activity Update	ing inspectio	on. Dril	l shutting	Вох		•
10:30 AM	Site Inspection	<u>н</u> А	Activity Update	ing inspectio	on. Dril # Fron 58	l shutting	Вох	# To	Total Box
10:30 AM	Site Inspection	A Weather Drilling with Water	Activity Update clean and organized dur lole ID (-22-03 Station (SUZ) = Low Fire Risk Operatio	Box Box Fuel Grou	on. Dril # Fron 58	l shutting	Box 7 P Code Work Ma	# To 3 odification Stat	Total Box 16 E
10:30 AM 11:00 AM 3:00 PM	Site Inspection Core Box Collection IOP Fire Code	A Weather Drilling with Water	Activity Update clean and organized dur lole ID (-22-03 Station (SUZ) = Low Fire Risk Operations	Box Box Fuel Grou	900. Dril # Fron 58 4p 3	l shutting n IOF	Box 7 P Code Work Mo (P)	# To 3 odification Stat Prevention	Total Box 16 E
10:30 AM 11:00 AM 3:00 PM	Site Inspection Core Box Collection	H A Weather Drilling with Water Drill Move = Very H	Activity Update clean and organized dur lole ID (-22-03 Station (SUZ) = Low Fire Risk Operations H = 4°C, L = 16°C,	Box Box Fuel Grou Dons POP = 80 %	900. Dril # Fron 58 4p 3	l shutting n IOF	Box 7 P Code Work Mo (P)	# To 3 odification Stat Prevention	Total Box 16 E
10:30 AM 11:00 AM 3:00 PM 24	Site Inspection Core Box Collection IOP Fire Code H Weather	A Weather Drilling with Water Drill Move = Very H Mine	Activity Update clean and organized dur lole ID (-22-03 Station (SUZ) = Low Fire Risk Operations H = 4°C, L = 16°C, ralization & Observation	Box Box Fuel Grou Dons POP = 80 %	900. Dril # Fron 58 4p 3	l shutting n IOF	Box 7 P Code Work Ma (P) ce of thunders	# To 3 odification Stat Prevention stroms	Total Boxe 16 E
10:30 AM 11:00 AM 3:00 PM	Site Inspection Core Box Collection IOP Fire Code	H A Weather Drilling with Water Drill Move = Very H	Activity Update clean and organized dur lole ID (-22-03 Station (SUZ) = Low Fire Risk Operations H = 4°C, L = 16°C,	Box Box Fuel Grou Dons POP = 80 %	900. Dril # Fron 58 4p 3	l shutting n IOF	Box 7 P Code Work Mo (P)	# To 3 odification Stat Prevention stroms	Total Box 16 E
10:30 AM 11:00 AM 3:00 PM 24	Site Inspection Core Box Collection IOP Fire Code H Weather	H A Weather Drilling with Water Drill Move = Very H Mine	Activity Update clean and organized dur lole ID (-22-03 Station (SUZ) = Low Fire Risk Operations H = 4°C, L = 16°C, ralization & Observation	Box Box Fuel Grou Dons POP = 80 %	900. Dril # Fron 58 4p 3	l shutting n IOF	Box 7 P Code Work Ma (P) ce of thunders	# To 3 odification Stat Prevention stroms	Total Box 16 E
10:30 AM 11:00 AM 3:00 PM 24	Site Inspection Core Box Collection IOP Fire Code H Weather	H A Weather Drilling with Water Drill Move = Very H Mine	Activity Update clean and organized dur lole ID (-22-03 Station (SUZ) = Low Fire Risk Operations H = 4°C, L = 16°C, ralization & Observation	Box Box Fuel Grou Dons POP = 80 %	900. Dril # Fron 58 4p 3	l shutting n IOF	Box 7 P Code Work Ma (P) ce of thunders	# To 3 odification Stat Prevention stroms	Total Box 16 E
10:30 AM 11:00 AM 3:00 PM 24	Site Inspection Core Box Collection IOP Fire Code H Weather	H A Weather Drilling with Water Drill Move = Very H Mine	Activity Update clean and organized dur lole ID (-22-03 Station (SUZ) = Low Fire Risk Operations H = 4°C, L = 16°C, ralization & Observation	Box Box Fuel Grou Dons POP = 80 %	900. Dril # Fron 58 4p 3	l shutting n IOF	Box 7 P Code Work Ma (P) ce of thunders	# To 3 odification Stat Prevention stroms	Total Box 16 E
10:30 AM 11:00 AM 3:00 PM 24	Site Inspection Core Box Collection IOP Fire Code H Weather	H A Weather Drilling with Water Drill Move = Very H Mine	Activity Update clean and organized dur lole ID (-22-03 Station (SUZ) = Low Fire Risk Operations H = 4°C, L = 16°C, ralization & Observation	Box Fuel Grou Drs POP = 80 %	900. Dril # Fron 58 4p 3	l shutting n IOF	Box 7 P Code Work Ma (P) ce of thunders	# To 3 odification Stat Prevention stroms	Total Boxe 16 E

Day Shift Comments: Drilling, test at 300 m. Hole Done, Pull Rods and pack up, DE-MOB scheduled for Monday August 22

Night Shift Comments: no night shift

POST DRILLING COLLAR SITE INSPECTION CHECKLIST

IIuliji	TIOTITICIALO					
Hole No:	AY-22-01			Inspected By:	B. Williams, S. Reese, C. Hatton	
Property / Location:	Aylmer (PAD A)			Date:	August 24 th , 2022	
Froperty / Location.	Ayimer (FAD A)			Date.	August 24 , 2022	
Overall appearance of	the drill collar site		Clean		Unclean	
		Comments	: Clean site aside	from a few earplugs, cig butts, s	ilt, and small glob of drillers grease	
Drill Collar			YYYY / MM / DD	N		
	Casing Pulled	Date:	N.A.	Yes	No V	
	Hole Cemented	Date:	N.A.	Yes	No V	
	Capped	Date:	2022-08-03	Yes	No No	
	Making Water			Yes		
	Casing Damaged Picket with Aluminum Tag Affixed			Yes Yes		
	Drill Cuttings			Yes		
	If yes, specify condition		Comments:	small amount of silt near casin		
	Were drilling additives used?			Yes	No	
	If yes, specify additives used		Additive Used:	linseed oil, drillers mud		
	Were oil licks used (absorbent carpet	ting)?		Yes	No No	
	· · ·	0,		-		
Debris Left	(Specify in Comments)	Yes No.		(nt/area/severity etc.)	
Debris Leit	metal, wire, rods, cans, cable		Comments:	(amou	it/area/seventy etc.)	
	fuel drums	- V	Comments:			
	containers for oil, kutwell, grease		Comments:			
	tools, machine parts		Comments:			
	hose		Comments:			
	core boxes		Comments:			
	plastic tarps burlap, work gloves, clothing		Comments: Comments:	a few earplugs, rags; XTM staf	f removed from site	
	garbage bags		Comments:	a lew carpings, rags, xrim star		
	food containers/wrappers	V.	Comments:			
	absorbent padding/mud		Comments:			
	leaning trees		Comments:			
	other comments	V	Comments:	a few cigarette butts, XTM staf	removed from site	
Spills	(Specify in Comments)					
		Yes No	-	(a	mount/area/severity etc.)	
	Oil		Comments:			
	Fuel Grease	<u>Y</u>	Comments: Comments:			
	Mud		Comments:			
			-			
All Reportable Spills	(Specify in Comments) Authorities Notified?	Yes No	T o	(a	mount/area/severity etc.)	
	MOE/Dept. of Environment	N.A. N.A.	Comments: Comments:			
	MNR/Dept. of Natural Resources	N.A.	Comments:			
	Transition Metals Office	N.A.	Comments:			
Fire Pit	Applicable	Yes No	Comments:			
	all contents burnt	N.A.	Comments:			
	contents remaining unburned	N.A.	Comments:			
	wire	N.A.	Comments:			
	cans	N.A.	Comments:			
	foil	N.A.	Comments:			
	other	N.A.	Comments:			
Additional Notes:						

Grass seed was spread to stabilise disturbed ground.

All rags, litter, and spilled grease was picked up/dug up/collected by Transition Metals staff while inspection was being conducted, and disposed of properly off site.

POST DRILLING COLLAR SITE INSPECTION CHECKLIST

IIuliji					
Hole No:	AY-22-02			Inspected By:	B. Williams, S. Reese, C. Hatton
Property / Location:	Aylmer (PAD B)			Date:	August 24 th , 2022
Froperty / Location.	Ayiniei (FAD B)			Dale.	August 24 , 2022
Overall appearance of	the drill collar site		Clean		Unclean
		Comments	: Area around cas	sing wet, but from ground water.	Hose left behind. Overall a clean site.
Drill Collar	Casing Pulled Hole Cemented Capped	Date: Date: Date:	YYYY / MM / DD N.A. N.A. 2022-08-14	Yes Yes Yes	No No No
	Making Water Casing Damaged Picket with Aluminum Tag Affixed Drill Cuttings If yes, specify condition		Comments:	Yes Yes Yes Yes minor silt around casing area	No V No V No No No No
	Were drilling additives used? If yes, specify additives used		Additive Used:	Yes	No No
	Were oil licks used (absorbent carpe	eting)?		Yes	No No
Debris Left	(Specify in Comments) metal, wire, rods, cans, cable fuel drums containers for oil, kutwell, grease tools, machine parts hose core boxes plastic tarps burlap, work gloves, clothing garbage bags food containers/wrappers absorbent padding/mud leaning trees other comments	Yes No.	Comments: Comments: Comments: Comments: Comments: Comments: Comments: Comments: Comments: Comments: Comments: Comments:	one length of hose left behind	t behind. XTM staff removed from site
Spills	(Specify in Comments) Oil	Yes No	Comments: Comments:	(amount/area/severity etc.)
	Grease Mud	- V	Comments: Comments:		
All Reportable Spills	(Specify in Comments) Authorities Notified? MOE/Dept. of Environment MNR/Dept. of Natural Resources Transition Metals Office	Yes No N.A. N.A. N.A. N.A. N.A. N.A.	Comments: Comments: Comments: Comments:	(amount/area/severity etc.)
Fire Pit	_	Yes No	-		
	Applicable		Comments:		
	all contents burnt	N.A. N.A.	Comments: Comments:		
	contents remaining unburned wire	N.A. N.A.	Comments:		
	cans	N.A.	Comments:		
	foil	N.A.	Comments:		
	other	N.A.	Comments:		
Additional Notes:					

Grass seed was spread to stabilise disturbed ground.

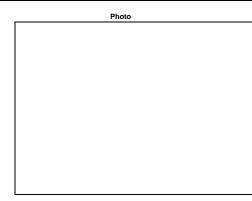
All rags, litter, and spilled grease was picked up/dug up/collected by Transition Metals staff while inspection was being conducted, and disposed of properly off site.

POST DRILLING COLLAR SITE INSPECTION CHECKLIST

IIuliji	Internet					
Hole No:	AY-22-03			Inspected By:	B. Williams, S. Ree	se, C. Hatton
Property / Location:	Aylmer (PAD C)			Date:	August 24 th	2022
Overall appearance of	the drill collar site		Clean		Unclean	
				· · · · ·		
		Comment	s: Clean site aside	e from a few earplugs, cigarette	butts, minior silt around ca	sing, and a small glob of grease
Drill Collar			YYYY / MM / DE	2		
	Casing Pulled	Date:	N.A.	Yes	No	
	Hole Cemented	Date:	N.A.	Yes	No	
	Capped	Date:	2022-08-21	Yes	No No	
	Making Water			Yes	No	
	Casing Damaged			Yes	No	
	Picket with Aluminum Tag Affixed Drill Cuttings			Yes Yes		
	If yes, specify condition		Comments:	minor silt around casing area		
	in yes, speciny contaition		Comments.	minor sin around casing area	•	
	Were drilling additives used?			Yes	No No	
	If yes, specify additives used		Additive Used:	linseed oil, drillers mud	<u> </u>	
	Were oil licks used (absorbent carp	eting)?		Yes		
		ioung):		105		
				,		
Debris Left	(Specify in Comments) metal, wire, rods, cans, cable	Yes No.	Comments:	(amo	unt/area/severity etc.)	
	fuel drums		Comments:			
	containers for oil, kutwell, grease		Comments:			
	tools, machine parts		Comments:			
	hose	V.	Comments:	one length of hose left behind	d. XTM staff removed from	site
	core boxes		Comments:			
	plastic tarps	. 🗸	Comments:			
	burlap, work gloves, clothing		Comments:	a few ear plugs left behind, X	TM staff removed from site	9.
	garbage bags		Comments:			
	food containers/wrappers		Comments:			
	absorbent padding/mud	<u> </u>	Comments:	small glob of drillers grease le	eft behind. X I M staff remo	ved from site
	leaning trees		Comments:	a few cigarette butts, XTM sta	off romoved from site	
	other comments	•	Comments:	a lew cigarette butts, × rivi sta	an removed norm site	
Spills	(Specify in Comments)					
	Oil	Yes No	Comments:		(amount/area/severity et	c.)
	Fuel	- Ž	Comments:			
	Grease	- V.	Comments:			
	Mud		Comments:			
All Reportable Spills	(Specify in Comments)	Yes No			(amount/area/severity et	•)
	Authorities Notified?	N.A.	Comments:		(amoundarea/seventy et	.,
	MOE/Dept. of Environment	N.A.	Comments:			
	MNR/Dept. of Natural Resources	N.A.	Comments:			
	Transition Metals Office	N.A.	Comments:			
Fire Pit		Yes No.				
	Applicable		Comments:			
	all contents burnt	N.A.	Comments:			
	contents remaining unburned	N.A.	Comments:			
	wire	N.A.	Comments:			
	cans	N.A.	Comments:			
	foil	N.A. N.A.	Comments:	-		
	other	N.A.	Comments:			
Additional Notes:						

Grass seed was spread to stabilise disturbed ground.

All rags, litter, and spilled grease was picked up/dug up/collected by Transition Metals staff while inspection was being conducted, and disposed of properly off site.


POST DRILLING COLLAR SITE INSPECTION CHECKLIST

Inditor								
Hole No:	Pump Pad				Inspected By:	B. Williams, S.	Reese, C	Hatton
Property / Location:	Aylmer (Pump Pad)				Date:	August	24 th , 2022	1
					•			
Overall appearance of	f the drill collar site		Clean		\checkmark	Unclean		
overall appearance of			olean			onoican	L	
		. .	01 01					
		Comments	: Clean Site					
Drill Collar			YYYY/MM/D)				
	Casing Pulled	Date:	N.A.		Yes		No	
	Hole Cemented	Date:	N.A.		Yes		No	
	Capped	Date:	N.A.		Yes		No	
	Making Water				Yes		No	
	Casing Damaged Picket with Aluminum Tag Affixed				Yes Yes		No No	
	Drill Cuttings				Yes		No	
	If yes, specify condition		Comments:	N.A.	163		NO	•
	in yes, speeny contaiton		o on monto.					
	Were drilling additives used?				Yes		No	
	If yes, specify additives used		Additive Used:	N.A.				
	Ware all liels used (should and some die	-)0			No.		NI-	
	Were oil licks used (absorbent carpeting	g) /			Yes		No	
Debris Left		Yes No.	-		(amo	ount/area/severity etc.)	
	metal, wire, rods, cans, cable		Comments:					
	fuel drums		Comments:					
	containers for oil, kutwell, grease tools, machine parts		Comments: Comments:					
	hose	`	Comments:					
	core boxes	`	Comments:					
	plastic tarps		Comments:					
	burlap, work gloves, clothing		Comments:					
	garbage bags		Comments:					
	food containers/wrappers		Comments:					
	absorbent padding/mud leaning trees		Comments: Comments:					
	other comments		Comments:					
			_ commonto:					
Spills	(Specify in Comments)							
	Oil	Yes No	T o			(amount/area/severi	ty etc.)	
	Fuel		Comments: Comments:					
	Grease	- V.	Comments:					
	Mud	- V	Comments:					
			_					
All Reportable Spills		Yes No	T o 1			(amount/area/severi	ty etc.)	
	Authorities Notified? MOE/Dept. of Environment	N.A. N.A.	Comments: Comments:					
	MOE/Dept. of Environment MNR/Dept. of Natural Resources	N.A.	Comments:					
	Transition Metals Office	N.A.	Comments:					
Fire Pit		Yes No						
	Applicable	N.A.	Comments: Comments:					
	all contents burnt contents remaining unburned	N.A. N.A.	Comments: Comments:					
	wire	N.A.	Comments:					
	cans	N.A.	Comments:					
	foil	N.A.	Comments:					
	other	N.A.	Comments:					

Additional Notes:

Grass seed was spread to stabilise disturbed ground.

Page :	1 of 4
--------	--------

		2022 Daily Activity Log; Summar	ry - Aylmer					
Date	Activity	Activity Description	# People	Personnel	# Vehicles	Mileage (km)*	# UTV	# Samples **
May 16 2022	Prospecting	Two (2) persons prospecting (SR + BrW), see sample location map & sample description table for details of samples recovered and distribution of prospecting activities. Inserting of Standards & Blanks (total QA/QC samples = 2), preparation of batch of samples (SD22128706), Sample Dropped off.		Sarah Reese (SR), Brian Williams (BrW)	1	160	0	7
May 16, 2022	Drill Pad Development	2 persons (BW + CH), overseeing and directing subcontractor (Gervais Forest Products Ltd) with drill pad, sump, and trail development, inclusive of rehabilitation activities to meet the requirement for rehabilitation in the Provincial Standards for Early Exploration; such as slop stabilization, re-seeding of disturbed areas, and marking of potential hazards	4	Ben Williams (BW), Carolyn Hatton (CH)	1	160	1	0
July 25, 2022	Drill MOB & Setup	2 persons (BW + CH), overseeing Drill MOB & Setup, see Daily Drilling Activity Summary for more details on activities.	2	Ben Williams (BW), Carolyn Hatton (CH)	1	160	1	0
July 26, 2022	Drill MOB & Setup	2 persons (BW + CH), overseeing Drill MOB & Setup, see Daily Drilling Activity Summary for more details on activities.	2	Ben Williams (BW), Carolyn Hatton (CH)	1	160	1	0
July 27, 2022	Drill MOB & Setup	2 persons (BW + CH), overseeing drill production activity & site inspection, see Daily Drilling Activity Summary for more details on activities.	2	Ben Williams (BW), Carolyn Hatton (CH)	1	160	1	0
July 28, 2022	Drill MOB & Setup	2 persons (BW + CH), overseeing drill production activity & site inspection, see Daily Drilling Activity Summary for more details on activities.	2	Ben Williams (BW), Carolyn Hatton (CH)	1	160	1	0
July 29, 2022	Drilling	2 persons (BW + CH), overseeing drill production activity, site inspection, and core collection, see Daily Drilling Activity Summary for more details on activities.	2	Ben Williams (BW), Carolyn Hatton (CH)	1	160	1	0
July 30, 2022	Drilling	2 persons (BW + BrW), overseeing drill production activity, site inspection, and core collection, see Daily Drilling Activity Summary for more details on activities.	2	Ben Williams (BW), Brian Williams (BrW)	1	160	1	0
July 31, 2022	Drilling	2 persons (BW + BrW), overseeing drill production activity, site inspection, and core collection, see Daily Drilling Activity Summary for more details on activities.	2	Ben Williams (BW), Brian Williams (BrW)	1	160	1	0
August 1, 2022	Drilling	2 persons (BW + BrW), overseeing drill production activity, site inspection, and core collection, see Daily Drilling Activity Summary for more details on activities.	2	Ben Williams (BW), Brian Williams (BrW)	1	160	1	0
August 2, 2022	Drilling	2 persons (CH + BrW), overseeing drill production activity, site inspection, and core collection, see Daily Drilling Activity Summary for more details on activities.	4	Carolyn Hatton (CH), Brian Williams (BrW)	1	160	1	0
	Core Logging & Teching	2 persons (BW + SR), Core logging and Core Teching (Hole AY-22-01)		Ben Williams (BW), Sarah Reese (SR)	0	0	0	0
August 3, 2022	Drilling	2 persons (BW + SR), overseeing drill production activity, site inspection, and core collection, see Daily Drilling Activity Summary for more details on activities.	4	Ben Williams (BW), Sarah Reese (SR)	1	160	1	0
	Core Logging & Teching	2 persons (CH + BrW), Core logging and Core Teching (Hole AY-22-01)		Carolyn Hatton (CH), Brian Williams (BrW)	0	0	0	0
August 4, 2022	Drilling	2 persons (BW + CH), overseeing drill production activity, site inspection, and core collection, see Daily Drilling Activity Summary for more details on activities.	4	Ben Williams (BW), Carolyn Hatton (CH)	1	160	1	0
	Core Logging & Teching	2 persons (SR + BrW), Core logging and Core Teching (Hole AY-22-01)		Sarah Reese (SR), Brian Williams (BrW)	0	0	0	0
August 5, 2022	Drilling	2 persons (CH+ SR), overseeing drill production activity, site inspection, and core collection, see Daily Drilling Activity Summary for more details on activities.	4	Carolyn Hatton (CH), Sarah Reese (SR)	1	160	1	0
	Core Logging & Teching	2 persons (BW + BrW), Core logging and Core Teching (Hole AY-22-01)		Ben Williams (BW), Brian Williams (BrW)	0	0	0	0

2022 Daily Activity Log; Summary - Aylmer											
Date	Activity	Activity Description	# People	Personnel	# Vehicles	Mileage (km)*	# UTV	# Samples **			
August 6, 2022	Drilling	2 persons (CH+ SR), overseeing drill production activity, site inspection, and core collection, see Daily Drilling Activity Summary for more details on activities.	4	Carolyn Hatton (CH), Sarah Reese (SR)	1	160	1	0			
	Core Logging & Teching	2 persons (BW + BrW), Core Logging, Core Teching (Hole AY-22-01)		Ben Williams (BW), Brian Williams (BrW)	0	0	0	0			
August 7, 2022	Drilling	2 persons (SR+ BrW), overseeing drill production activity, site inspection, and core collection, see Daily Drilling Activity Summary for more details on activities.	4	Sarah Reese (SR), Brian Williams (BrW)	1	160	1	0			
	Core Logging & Teching	2 persons (BW + CH), Core Logging, Core Teching (Hole AY-22-02)		Ben Williams (BW), Carolyn Hatton (CH)	0	0	0	0			
August 8, 2022	Drilling	2 persons (CH+ SR), overseeing drill production activity, site inspection, and core collection, see Daily Drilling Activity Summary for more details on activities.	4	Carolyn Hatton (CH), Sarah Reese (SR)	1	160	1	0			
-	Core Logging & Teching	2 persons (BW + BrW), Core Logging, Core Teching (Hole AY-22-02)		Ben Williams (BW), Brian Williams (BrW)	0	0	0	0			
August 9, 2022	Drilling	2 persons (SR+ BrW), overseeing drill production activity, site inspection, and core collection, see Daily Drilling Activity Summary for more details on activities.	4	Sarah Reese (SR), Brian Williams (BrW)	1	160	1	0			
-	Core Logging & Teching	2 persons (BW + CH), Core Logging, Core Teching (Hole AY-22-02)		Ben Williams (BW), Carolyn Hatton (CH)	0	0	0	0			
August 10, 2022	Drilling	2 persons (CH+ SR), overseeing drill production activity, site inspection, and core collection, see Daily Drilling Activity Summary for more details on activities.	4	Carolyn Hatton (CH), Sarah Reese (SR)	1	160	1	0			
-	Core Logging & Teching	2 persons (BW + BrW), Core Logging, Core Teching (Hole AY-22-02)		Ben Williams (BW), Brian Williams (BrW)	0	0	0	0			
August 11, 2022	Drilling	2 persons (BW + CH), overseeing drill production activity, site inspection, and core collection, see Daily Drilling Activity Summary for more details on activities.	4	Ben Williams (BW), Carolyn Hatton (CH)	1	160	1	0			
	Core Logging & Teching	2 persons (SR + BrW), Core Logging, Core Teching (Hole AY-22-02)		Sarah Reese (SR), Brian Williams (BrW)	0	0	0	0			
August 42, 2022	Drilling	1 person (CH), overseeing drill production activity, site inspection, and core collection, see Daily Drilling Activity Summary for more details on activities.	4	Carolyn Hatton (CH)	1	160	1	0			
August 12, 2022	Core Logging & Teching	3 persons (BW + SR + BrW), Core Logging, Core Teching of (Hole AY-22-02), Sampling of (Hole AY-22-01)	4	Ben Williams (BW), Sarah Reese (SR), Brian Williams (BrW)	0	0	0	0			
August 13, 2022	Drilling	2 persons (BW + SR), overseeing drill production activity, site inspection, and core collection, see Daily Drilling Activity Summary for more details on activities.	4	Ben Williams (BW), Sarah Reese (SR)	1	160	1	0			
	Core Logging & Teching	2 persons (CH + BrW), Core Logging, Core Teching (Hole AY-22-02)		Carolyn Hatton (CH), Brian Williams (BrW)	0	0	0	0			
August 14, 2022	Drilling	2 persons (BW + SR), overseeing drill production activity, site inspection, and core collection, see Daily Drilling Activity Summary for more details on activities.	4	Ben Williams (BW), Sarah Reese (SR)	1	160	1	0			
	Core Logging & Teching	2 persons (CH + BrW), Core Logging, Core Teching (Hole AY-22-02)		Carolyn Hatton (CH), Brian Williams (BrW)	0	0	0	0			

		2022 Daily Activity Log; Summar	ry - Aylmer					
Date	Activity	Activity Description	# People	Personnel	# Vehicles	Mileage (km)*	# UTV	# Samples **
August 15, 2022	Drilling	1 person (CH), overseeing drill production activity, site inspection, and core collection, see Daily Drilling Activity Summary for more details on activities.	4	Carolyn Hatton (CH)	1	160	1	0
August 15, 2022	Core Logging & Teching	3 persons (BW + SR + BrW), Core Logging, Core Teching of (Hole AY-22-02), Sampling of (Hole AY-22-01)	4	Ben Williams (BW), Sarah Reese (SR), Brian Williams (BrW)	0	0	0	0
August 16, 2022	Drilling	1 person (BW), overseeing drill production activity, site inspection, and core collection, see Daily Drilling Activity Summary for more details on activities.	4	Ben Williams (BW)	1	160	1	0
August 10, 2022	Core Logging & Teching	3 persons (CH + SR + BrW), Core Logging, Core Teching of (Hole AY-22-03), Sampling of (Hole AY-22-01)	4	Carolyn Hatton (CH), Sarah Reese (SR), Brian Williams (BrW)	0	0	0	0
August 17, 2022	Drilling	1 person (BW), overseeing drill production activity, site inspection, and core collection, see Daily Drilling Activity Summary for more details on activities.	4	Ben Williams (BW)	1	160	1	0
August 17, 2022	Core Logging & Teching	3 persons (CH + SR + BrW), Core Logging, Core Teching of (Hole AY-22-03), Sampling of (Hole AY-22-01 & AY-22-02)	4	Carolyn Hatton (CH), Sarah Reese (SR), Brian Williams (BrW)	0	0	0	0
August 18, 2022	Drilling	1 person (BW), overseeing drill production activity, site inspection, and core collection, see Daily Drilling Activity Summary for more details on activities.	ampling 4	Ben Williams (BW)	1	160	1	0
August 18, 2022	Core Logging & Teching	3 persons (CH + SR + BrW), Core Logging, Core Teching of (Hole AY-22-03), Sampling of (Hole AY-22-02)		Carolyn Hatton (CH), Sarah Reese (SR), Brian Williams (BrW)	0	0	0	0
August 10, 2022	Drilling	1 person (BW), overseeing drill production activity, site inspection, and core collection, see Daily Drilling Activity Summary for more details on activities.		Ben Williams (BW)	1	160	1	0
August 19, 2022	Core Logging & Teching	3 persons (CH + SR + BrW), Core Logging, Core Teching of (Hole AY-22-03), Sampling of (Hole AY-22-02)	4	Carolyn Hatton (CH), Sarah Reese (SR), Brian Williams (BrW)	0	0	0	0
August 20, 2022	Drilling	1 person (SR), overseeing drill production activity, site inspection, and core collection, see Daily Drilling Activity Summary for more details on activities.	4	Sarah Reese (SR)	1	160	1	0
August 20, 2022	Core Logging & Teching	3 persons (BW + CH + BrW), Core Logging, Core Teching of (Hole AY-22-03), Sampling of (Hole AY-22-02)	4	Ben Williams (BW), Carolyn Hatton (CH), Brian Williams (BrW)	0	0	0	0
August 21, 2022	Drilling	1 person (SR), overseeing drill production activity, site inspection, and core collection, see Daily Drilling Activity Summary for more details on activities.	4	Sarah Reese (SR)	1	160	1	0
August 21, 2022	Core Logging & Teching	3 persons (BW + CH + BrW), Core Logging, Core Teching of (Hole AY-22-03), Sampling of (Hole AY-22-02)	-	Ben Williams (BW), Carolyn Hatton (CH), Brian Williams (BrW)	0	0	0	0
August 22, 2022	Core Logging Review & Sample Drop Off	1 person (BW), finalizing & reviewing Core Logs, Inserting of Standards & Blanks (total QA/QC samples = 8), preparation of batch of samples (SD22236507)	1	Ben Williams (BW)	0	0	0	86
August 23, 2022	Core Logging Review	1 person (BW), finalizing & reviewing Core Logs	1	Ben Williams (BW)	0	0	0	0
August 24, 2022	Drill De-Mob, & Sample Drop Off	3 persons (BW + SR + CH), overseeing drill de-MOB, and conducting post site inspections on drill pads (x3) and pump pad (x1), see Daily Drilling Activity Summary for more details on activities. Inserting of Standards & Blanks (total QA/QC samples = 6), preparation batch of samples (SD22238064), and sample drop off.	3	Ben Williams (BW), Sarah Reese (SR), Carolyn Hatton (CH)	1	160	1	68

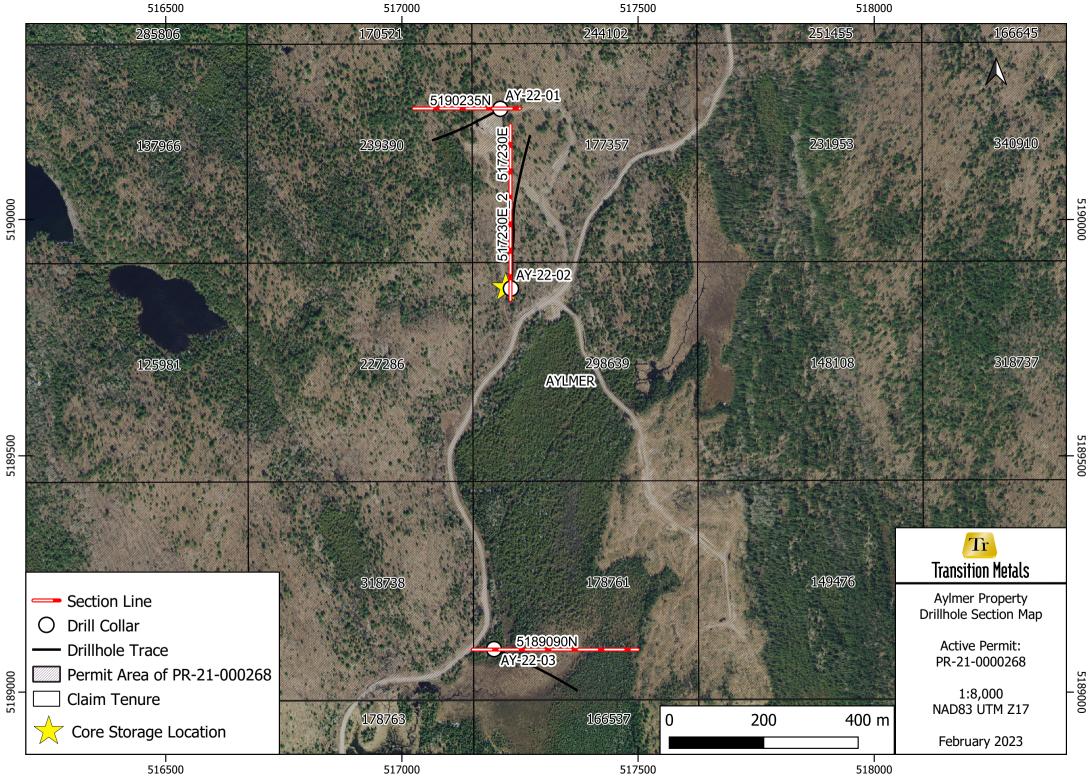
		2022 Daily Activity Log; Summar	ry - Aylmer					
Date	Activity	Activity Description	# People	Personnel	# Vehicles	Mileage (km)*	# UTV	# Samples **
September 7, 2022	Prospecting	Two (2) persons prospecting (TH + FD), see sample location map & sample description table for details of samples recovered and distribution of prospecting activities. Preparation batch of samples (SD22255045), and sample drop off (no QA/QC Samples)	2	Thomas Hart (TR), Fred Fed Delabbio (FD)	1	160	0	2
September 27, 2022	Drill Core Moving, Sample Storage, Site Rehabilitation	2 Persons (BW + SR), transported all core (including the remaining unsampled core, and sampled cut half-core), back to site, cross piled, and labelled on the aggregate permit property, behind gated access for safe keeping. Further Post-site inspections were carried out, facilitating rehabilitation activities to meet the requirement for rehabilitation in the Provincial Standards for Early Exploration; such as re-seeding of disturbed areas, and marking of potential hazards	2	Ben Williams (BW), Sarah Reese (SR)	2	320	0	0
September 28, 2022	Drill Core Moving, Sample Storage, Site Rehabilitation	2 Persons (BW + SR), transported all core (including the remaining unsampled core, and sampled cut half-core), back to site, cross piled, and labelled on the aggregate permit property, behind gated access for safe keeping. Further Post-site inspections were carried out, facilitating rehabilitation activities to meet the requirement for rehabilitation in the Provincial Standards for Early Exploration; such as re-seeding of disturbed areas, and marking of potential hazards	2	Ben Williams (BW), Sarah Reese (SR)	2	320	0	0
September 29, 2022	Drill Core Moving, Sample Storage, Site Rehabilitation	2 Persons (BW + SR), transported all core (including the remaining unsampled core, and sampled cut half-core), back to site, cross piled, and labelled on the aggregate permit property, behind gated access for safe keeping. Further Post-site inspections were carried out, facilitating rehabilitation activities to meet the requirement for rehabilitation in the Provincial Standards for Early Exploration; such as re-seeding of disturbed areas, and marking of potential hazards	2	Ben Williams (BW), Sarah Reese (SR)	2	320	0	0
September 30, 2022	Drill Core Moving, Sample Storage, Site Rehabilitation	2 Persons (BW + SR), transported all core (including the remaining unsampled core, and sampled cut half-core), back to site, cross piled, and labelled on the aggregate permit property, behind gated access for safe keeping. Further Post-site inspections were carried out, facilitating rehabilitation activities to meet the requirement for rehabilitation in the Provincial Standards for Early Exploration; such as re-seeding of disturbed areas, and marking of potential hazards	2	Ben Williams (BW), Sarah Reese (SR)	2	320	0	0
		nary represents the total mileage traveled by field crews in (up to 3) vehicles from camp d here are inclusive of standards and blank QA/QC material inserted and submitted alon			Site averages	approximately 80) km.	

Daily Log Program Summary				
Total # of Field Days	37	(Calendar Days)	Total # of Samples	163
Total # of Person Days	115	(Person Days)		
Total # of Days of UTV Usage	30			
Total # of Days of Truck Usage	40	(recalculated as 1-truck/day)	Total Mileage (km)	6400

Summary of Work by Activity	Summary of Samples by Activity				
Activity Type	# of Calander Days	# of Person Days	tal	Prospecting Samples	7
# of Prospecting Activity Days^	2	4	oto	Core Samples	140
# of Drilling & Core Logging/Teching/Sampling Activity Days^	35	111	sul	Standards & Blanks	16
то	115	TOTAL # of Samples		163	
Note on Sums: Summing of the number of working days by activity may not sum to the total number of Field Days (Calendar Days), as some activities were undertaken concurrently.					

Appendix B: Drill Logs, Plots & Drill Sections

Contents


1	•	Note	e on Logs, Plots & Sections	2
2	•	Drill	Hole Details	2
3	•	Drill	Plan Map	3
4	•	Hole	e AY-22-01	4
	4.:	1.	Drill Log: AY-22-01	4
	4.2	2.	Drill Section: AY-22-01, Lithology1	3
	4.4	4.	Drill Section: AY-22-01, Assays1	4
5	•	Hole	2 AY-22-02	5
	5.3	1.	Drill Log: AY-22-02	5
	5.2	2.	Drill Section: AY-22-02, Lithology	6
	5.3	3.	Drill Section: AY-22-02, Assays	7
6	•	Hole	e AY-22-03	8
	6.:	1.	Drill Log: AY-22-03	8
	6.2	2.	Drill Section: AY-22-03, Lithology	4
	6.3	3.	Drill Section: AY-22-03, Assays	5

1. Note on Logs, Plots & Sections

Below contains a drill logs, plots, and sections for the 2022 drilling activities within the Aylmer Property. Discussion and summary about the program can be found within section 5.2 of the main report. Analytical Certificates can be found within Appendix C.

*Northing & Easting units are in UTM NAD 83 Zone 17 coordinates (in metres).

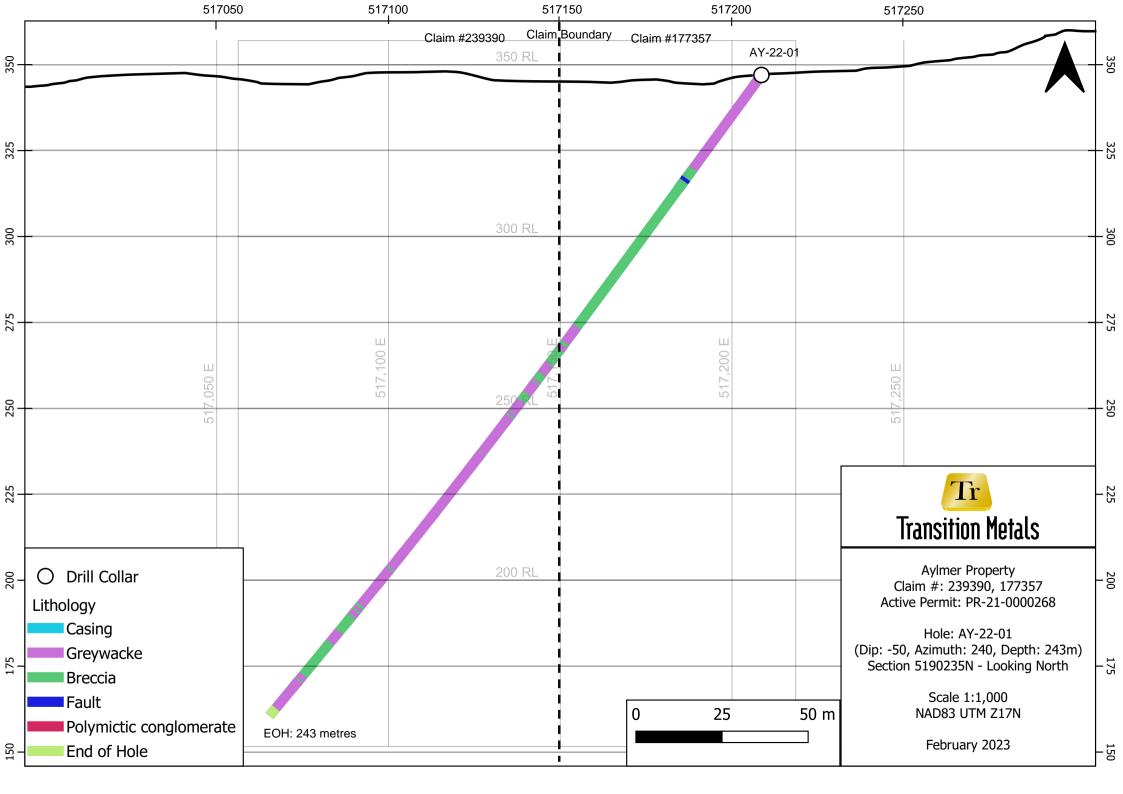
Hole ID	Collar Location		Azimuth	Din	Longth (m)	# - f C l A l ^	Sample Sequence	
	Easting*	Northing*	Azimuth	Dip	Length (m)	# of Samples Assayed ^	Sample Sequence	
AY-22-01	517,208.86	5,190,234.30	240°	-50°	243	<mark>8</mark> 6	D843001 - D843086	
AY-22-02	517,231.20	5,189,854.98	360°	-50°	504	68	D843087 - D843154	
AY-22-03	509,627.00	5,186,436.00	110°	-51°	300	0	-	
Total 1047 m 154 Samples								
Notes: * Northing & Easting units are in UTM NAD 83, Zone 17 coordinates (in metres).								
^	^ Total number of camples are inclusive of QA/QC reference material							

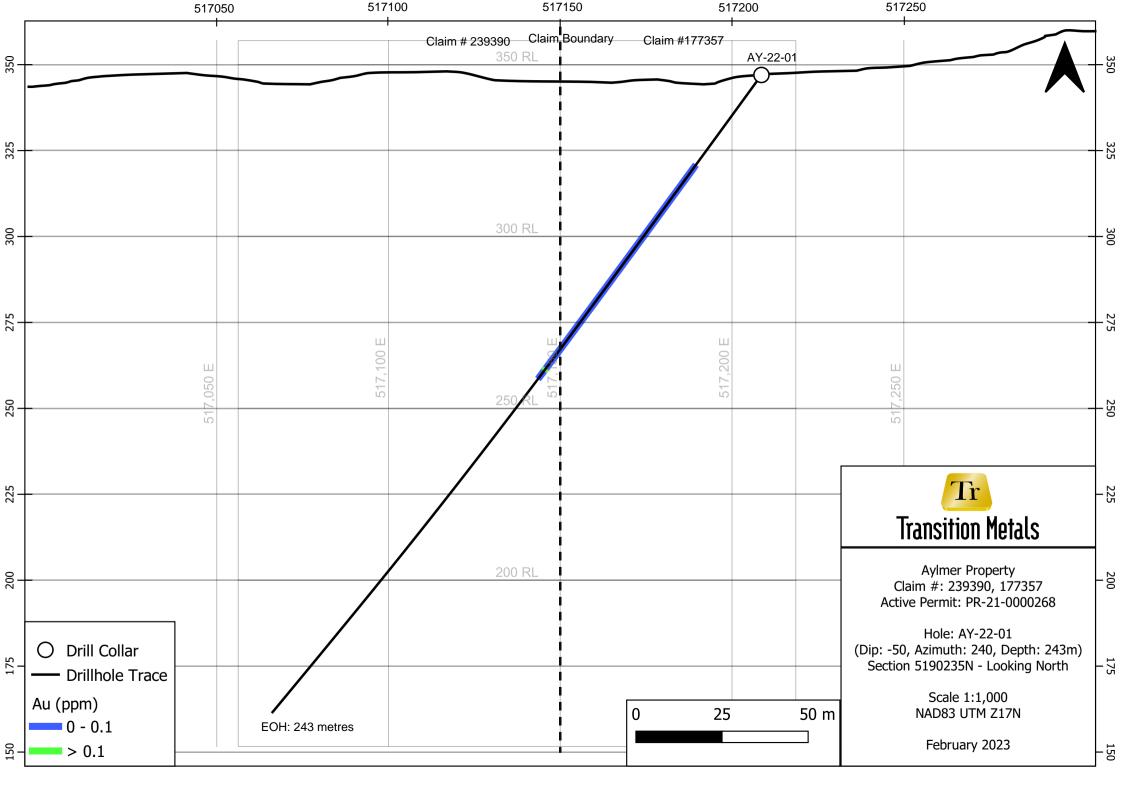
				Detailed Drill Log	
	AV 22 CT				
ole ID:	AY-22-01				
•	ame: Aylmer			ordinate System UTM NAD 83, Zone 17	Hole Type Diamond Drill
	ation: Aylmer Tow	nsnip		Coordinate Type Actual	Hole Size BTW
Claim Nu	mber 177357			Northing (m) 5,190,234.30	Plugged Yes
				Easting (m) 517,208.86	Casing Left-in ground
	ated: 07/27/2022			Elevation (m) 347	Contractor J & S Drilling
•	eted: 08/03/2022			Azimuth 240°	Core Location On Site
Logg	ed by B. Williams			Dip -50°	(517,230 m E, 5,189,960 m
urvey		Survey Type R	eflex, Single-shot		
•		Depth (m)	Dip (°)	Azimuth (°)	
		0	-50.00	240.00	
		51	-50.57	243.07	
		99	-50.00	242.00	
		150	-49.82	246.80	
		201	-48.81	249.09	
		240	-48.52	249.87	
ithology					
From	m (m) To (m)	Litho Code	Litho Name		Description
	0.00 2.89	CAS	Casing	Casing, no recovery	
	2.89 37.12	GWKY	Greywacke	speckled appearance to the core. Bedding is 52degrees T breccia veinlets, often at a high angle to core axis (5-10 T	(wackies), with euhedral albite xenomorphs throughout giving ICA. Unit contains sparce 1-3mm brecciated quartz-carbonate mosaic ICA), contain trace py-po-mag in vein margins. Alteration about veins ng along bedding plain, giving a tiger-stripe appearance. veining and ontact.
	37.12 40.64	BX-M	Breccia	sized crystals in fragments. Fragments often have alterat angular fragments up to 15cm. matrix consists of qtz-cark fragments are smaller and more ground. Breccia matrix h boundaries. Some fragments are strongly chlorite altered	I and albite altered, with speckled xenomorphic albite euhedral mm tion halos about their outer margins, matrix supported breccia, bonate (iron carb.), with trace chlorite about breccia margins, where has trace, fine grained cubic pyrite deiminated about grain d, and there is very fine to fine grinned fuchsite within the matrix e increases in matrix material down hole. Core is block with poor
	40.64 41.78	Fx	Fault		and vuggy like breccia was returned. Breccia is angular, fragments ed but chaotic, fragments align approx. 60 degrees TCA. matrix ained disseminated cubic pyrite.

Lithology (continued)				
From (m)	To (m)	Litho Code	Litho Name	Description
41.78	96.78	BX-M	Breccia	Breccia. Matrix is majority quartz with ankerite alteration appearing within the fractures of the quartz material. The clasts range in size from mm-~20cm and have different bedding orientations implying that they have been rounded. Clasts are sedimentary in origin and have been altered by albite and chlorite. The clasts alternate between a dark salmony colour and a medium greenish grey with less matrix component within them to a lighter salmony, light grey colour. The pinker clasts contain more quartz matrix surrounding them. The darker grey clasts are strongly chloritized and contain albite alteration bleeding out from the fractures. Chlorite alteration appears around smaller lighter coloured clasts and on the margin of the matrix around the areas where the clasts go from light to dark. From 80.80m-81.20m there is a very red zone altered strongly by hematite containing ~5% sulfides (pyrite) within. This unit appears again in a vein for 2cm at 87.50m. Dodecahedral and cubic pyrite are visible within the paler pink clasts, there are trace spots of an apple green mineral (fuchsite?) and then from 86.70m-89.80m this mineral takes over about 60-70% of the matrix. Following 87.50m-93.88m the breccia in this section is composed of the darker orange-y salmon colour mentioned above, but contains strong hematite and chlorite alteration along the margins of the clasts and the quartz matrix. From 93.88-96.78, the clasts return to the darker grey, darker salmony colour with 30% biotite alteration making the core very speckly.
96.78	102.81	GWKY	Greywacke	Sediment? Fine grained, light pinkish brown and dark grey beds averages ~1-2mm with veinlets running through the section (37 degree to CA) with speckly biotite alteration throughout the whole unit. No reaction to HCl, non-magnetic.
102.81	103.81	BX-F	Breccia	Closed spaced crackle breccia, no displacement. Clasts are medium greyish green with hematite staining radiating from veinlets along bedding planes. Bedding in 48 degrees to CA. Infill of v.f.g veinlets, quartz carb matrix, speckled biotite alteration. Xenomorphic albite, euhedral, fine-grained. Non-magnetic unit. Chlorite alteration to darker clasts and along veinlet margins & fractures.
103.81	105.45	GWKY	Greywacke	Magnetic unit. Dark grey and dark pink/salmony coloured. Hematite altered greywacke breccia. Veinlet of fine grained quartz carb matrix with strong chlorite alteration along vein margins. Hematite radiates from fractures and veinlets and also gathers along the fractures of larger veinlets.
105.45	110.83	BX-F	Breccia	Dark grey, reddish crackle breccia with trace pebble conglomerates up to 2cm but are very rare. Unit is moderately magnetic. Matrix is composed of veinlets that are strongly chlorite altered quartz carbonate with hematite staining radiating from veinlets. Biotite alteration appearing as speckles consuming ~20% of the fragments. Trace sulfides (py, po)
110.83	114.72	GWKY	Greywacke	Fine grained grey/green greywacke with hematite alteration affecting the first 50cm of the unit. Bedding is 2-3mm and is 62 degrees to ca. Moderate pervasive magnetism (po?). 0.5cm veinlet (9 degrees from CA) runs parallel to core from 112.04m-113.56 that is strongly altered by chlorite with blebs of sulfides (py+po) along fractures. Smaller veinlets ~2mm branch off and contain same content as the main veinlet. Very weak reaction on quartz carb. Unit contains 20% xenomorphic albite. 1-2% fine-grained pyrite throughout.
114.72	117.00	BX-F	Breccia	Brecciated fine-grained greyish/blue/green greywacke. Matrix infill consists of strongly chlorite altered quartz carbonate. Blebs of sulfides collect within fractures and margins of veinlets. Trace-3% pyrite in some places. Moderate pervasive magnetism throughout unit (po?). Weak reaction to HCl in veinlets. Hematite alteration within veinlets. Biotite speckled alteration appears around dark green chlorite veinlets.

Lithology (continued)				
From (m)	To (m)	Litho Code	Litho Name	Description
117.00	117.59	GWKY	Greywacke	Fine grained grey/green greywacke. Thin bedding ranges from 2mm-5mm and measures 45 degrees to core axis. Moderate pervasive magnetism (po?). Mm veinlets with strong chlorite alteration and moderate hematite alteration crosscutting bedding 25 degrees to core axis. Trace-1% pyrite within altered veins. 5-10% of xenomorphic albite appears within unit
117.59	118.06	BX-F	Breccia	Brecciated fine-grained greyish/blue/green greywacke. Matrix infill consists of strongly chlorite altered quartz carbonate. Blebs of sulfides collect within fractures and margins of veinlets. Trace pyrite in fragments. Moderate pervasive magnetism throughout unit (po?). Weak reaction to HCI in veinlets. Hematite alteration within veinlets. Trace biotite alteration. Trace albite xenomorphs.
118.06	122.12	GWKY	Greywacke	Fine grained grey/green greywacke. Thin bedding ranges from 2mm-5mm and measures 62 degrees to core axis. Moderate pervasive magnetism (po?). Mm veinlets with strong chlorite alteration and moderate hematite alteration crosscutting bedding 25 degrees to core axis. Trace-1% pyrite within altered veins. 5-10% of xenomorphic albite appears within unit. Weak HCI reaction on veinlets.
122.12	124.95	BX-F	Breccia	Crackle brecciated fine grained greywacke. First 50cm of unit is altered strongly by hematite making the beds salmony red in colour. From 122.57m-123.64m is dark grey. The remainder of this unit is also hematite stained as well as contains biotite alteration creating a speckly texture on the fragments in some regions. This area also contains clasts that range from mm-5cm in size. Smaller fragments seem milled as well as slightly rotated. Matrix is quartz carbonate and strongly altered by chlorite long margins and within fractures. Matrix is weakly reactive to HCl. Chlorite alteration is also very strong along fractures of fragments and makes them appear quite dark greyish, green on those margins. Unit is moderately magnetic and scratches relatively easy with a scribe. Magnetism is spotty and prefers the darker beds at the beginning of this section, however when the fragments decrease in size and the unit is very brecciated, the magnetism doesn't exist. No visible sulfides
124.95	129.24	GWKY	Greywacke	Fine grained greywacke. Bedding ranges 1-3mm, 52 degrees to ca. Strong hematite alteration along unit making the rock appear salmony coloured. Strong chlorite alteration along fractures making them radiate a dark grey/green from them. Section is non-magnetic. Scribe scratches easily implying little silicification. Biotite alteration creates a speckly black texture throughout the unit (10% of core) 0.5cm quartz veinlet with strong chlorite alteration along margins and trace sulfides. Veinlet is also altered by hematite and contains small (3mm) pink inclusions within the veinlet. No apparent mineralization.
129.24	129.52	BX-F	Breccia	Mosaic brecciated fine grained grey wacke. Fragments are strongly altered by hematite making them salmony/orange. Chlorite has strongly altered the quartz carbonate matrix making it dark greyish green. Weak reaction on fractures in matrix. Scribe scratches both matrix and fragments. Unit I non-magnetic. No apparent mineralization
129.52	130.44	GWKY	Greywacke	Fine grained greywacke. Bedding ranges 1-3mm, 78 degrees to ca. Moderate hematite alteration along unit making the rock appear to have a pinkish hue to the grey beds. Section is non-magnetic. Scribe scratches easily implying little silicification. Biotite alteration creates a speckly black texture throughout the unit (10% of core) Veinlets through unit that are strongly altered by chlorite appearing grey/green on very small (1mm) ones and coating the margins of a larger 5mm veinlet. No apparent mineralization.

From (m)	To (m)	Litho Code	Litho Name	Description
130.95	144.38	GWKY	Greywacke	Fine grained 1-3mm bedded greywacke measuring 68 degrees to ca. Hematite alters the first ~50cm making the rock appear slightly pink but then fades as you move further down the section. Veinlets throughout the unit have radiating hematite alteration along the margins. Very red distinctive beds appear frequently but are only 2mm in width. Unit has pervasive magnetism throughout (po?). Alite xenomorphs overprint the whole unit ranging from 10-15% of the rock. Trace sulfides (py, po +/- cpy ((very little))) favouring veinlets. 1cm Quartz carb vein @ 135.35m 72 degrees to ca - strongly altered by chlorite along margins and within fractures of vein. Trace-1% sulfides (py) on margins gathering a little blebs. 2cm Quartz carb vein @ 136.21m 70 degrees to ca - strongly altered by chlorite within margins and strongly altered by hematite causing the surrounding rock to be pinker than the rest of the unit. Trace-1% sulfides (py) Bedding between 135-138 = 74 degrees to ca between 138-141 = 71 degrees to ca between 141-144 = 68 degrees to ca
144.38	144.60	BX-F	Breccia	Crackle brecciated greywacke. Fine grained. Fragments are medium greyish green blue. Purply-red hematite alteration radiating from the quartz carbonate matrix breaking up the fragments. Matrix is strongly altered by chlorite. Unit has pervasive magnetism throughout (po?). Trace-1% (py, po) very fine grained sulfides favouring veinlets. Scratches easily with scribe.
144.60	145.95	GWKY	Greywacke	Fine grained 1-3mm bedded greywacke. Bedding is 69 degrees to ca. Medium grey/green in colour. Quartz carbonate veinlets wisping throughout with strong chlorite alteration along the margins. Veinlets react weakly to HCI. Trace fine-grained pyrite within unit, collecting along some veinlet margins. Unit has pervasive magnetism throughout. Trace very fine grained pyrite throughout.
145.95	148.57	GWKY	Greywacke	Fine-grained, 1-3mm bedded greywacke. Bedding is 76 degrees to ca. Unit is lighter in colour than previous unit and shows a slight pinkish colour as hematite has altered this region. Unit is no longer magnetic. Veinlets are lightly larger in size (2mm) and they contain larger crystals of quartz carbonate (void spaces?). Chlorite alters veinlet margins as well. Biotite and chlorite alteration appears around 147.12m after a hematite/chlorite altered quartz carb veinlet creating a speckly texture on the rock (20%). Quartz carbonate veinlet at the end of the section is strongly altered by hematite and chlorite and shows blebs of pyrite, +/- chalcopyrite. Veinlet reacts moderately to HCI (stronger than the preceding veinlets in this drillhole. Trace pyrite throughout rest of unit.
148.57	167.00	GWKY	Greywacke	Fine grained 1-3mm bedded greywacke. Medium grey/green in colour. Quartz carbonate veinlets wisping throughout with strong chlorite alteration along the margins. Veinlets react weakly to HCI. Trace fine-grained pyrite within unit, collecting along some veinlet margins. Unit has pervasive magnetism throughout. The first meter of the unit contains chlorite and biotite alteration causing black speckly minerals within core (15%). Trace-1% very fine grained pyrite throughout unit and collecting in blebs along fractures and within quartz carbonate veinlets. A 1cm vein quartz carbonate vein runs parallel to the core from 148.77m-149.21m dipping 25 degrees to ca. Strongly chloritized along vein margins and fractures. Contains Galena, Pyrite +/- chalcopyrite collecting in clumps along the vein margins. Strong hematite alteration from 157.88m-159.39m making the rock appear darkish orangy red. Hematite alteration is radiating from veinlets. This section also has strong biotite + chlorite alteration creating a black speckly look to the core. Veinlet passed this region contain moderate hematite alteration on veinlet margins. 1cm quartz carbonate vein at 160.40m 30 degrees to ca at 15 blog suffide mineralization throughout the entirety of it taking up about 20% of vein. Vein is also strongly chlorite altered along margins and react moderately to HCI. Bedding 148.57-150m = 66 degrees to ca 150-153m = 66 degrees to ca 153-156 = 64 degrees to ca 156-159 = 68 degrees to ca 159-162 = 72 degrees to ca 162-165 = 70 degrees to ca 165-167 = 72 degrees to ca


Lithology (continued)				
From (m)	To (m)	Litho Code	Litho Name	Description
167.00	182.22	GWKY	Greywacke	Fine grained 1-3mm bedded greywacke. Paler than previous unit. No magnetism within. Xenomorphic albite favours the lighter beds. Unit is strongly chloritized making it appear greener than previous units. Veinlets throughout are strongly altered by hematite and have a pinkish orange colour radiating outwards from margins. Trace-1% sulfides (py +/- cpy) very fine grained for the most part and collecting in blebs along some veinlets and fractures. Compared to previous units, veinlets in this section all contain pink within them (hematite altered), weak reaction to HCl and measure ~70 degrees to ca. They also have crystal content that is much more developed (void space) compare to the crack seal veins in previous units. Bedding 167-171 = 79 degrees to ca 171-174 = 66 degrees to ca 174-177 = 76 degrees to ca 177-180 = 74 degrees to ca 180-182.22 = 75 degrees to ca
188.80	189.30	BX-F	Breccia	Milled brecciated fine grained greywacke. Clasts range from mm-3cm. Hematite alteration to clasts. Matrix is strongly chloritized. Unit has moderate pervasive magnetism (po?) . Missing material(?) as the ending for this unit is undetermined. Trace sulfides (py).
189.30	192.00	GWKY	Greywacke	Fine-grained 1-3mm greywacke. Dark grey/green. Bedding measures 73 degrees to CA. Moderate pervasive magnetism throughout (po?). Wisping quartz carbonate veinlets throughout (roughly 80 degrees to ca) that are moderately hematized giving them a pinkish colour. Moderate reaction to HCl Unit contains trace-1% sulfides (very fine grained pyrite). Albite xenomorphs covering 10% of rock. Unit is strongly chloritized.
192.00	203.06	GWKY	Greywacke	Fine-grained 1-3mm greywacke. Dark grey/green. No magnetism present. Wisping sugary textured quartz carbonate veinlets throughout (general direction = 80 degrees to ca) and moderately altered by hematite making them appear slightly pink. Moderate reaction on fractures. Bedding measures 72 degrees to CA. Unit contains trace-1% sulfides (very fine grained pyrite). Unit is strongly chloritized.
203.06	203.88	BX-F	Breccia	Crackle brecciated greywacke. Fragments are dark grey green, fine grained greywacke. Matrix is composed of a hematized quartz carbonate and appears slightly pink with a sugary texture. Quartz carbonate grains are medium grained (void space?) cause some fragments to appear lighter in colour (slightly pink). Moderate reaction along fractures of fragments and in quartz carb material. Unit is strongly chloritized.
203.88	204.84	GWKY	Greywacke	Fine-grained 1-3mm greywacke. Dark grey/green. No magnetism present. Wisping sugary textured quartz carbonate veinlets throughout (general direction = 80 degrees to ca) and moderately altered by hematite making them appear slightly pink. Moderate reaction on fractures. Bedding measures 72 degrees to CA. Unit contains trace-1% sulfides (very fine grained pyrite). Unit is strongly chloritized. 1cm quartz carbonate vein @204.24 17 degrees to CA. Strongly altered by chlorite along margins and fractures. Hematite altered in areas creating spotty pink to the vein.
204.84	205.40	BX-F	Breccia	Crackle brecciated greywacke. Fragments are dark grey green, fine grained greywacke. Matrix is composed of a hematized quartz carbonate and appears slightly pink. Quartz carbonate grains are medium grained (void space?) cause some fragments to appear lighter in colour (slightly pink). Moderate reaction along fractures of fragments and in quartz carb material. Unit is strongly chloritized.
205.40	206.85	GWKY	Greywacke	Fine-grained 1-3mm greywacke. Dark grey/green. No magnetism present. Wisping quartz carbonate veinlets throughout (general direction = 80 degrees to ca) and moderately altered by hematite making them appear slightly pink. Moderate reaction on fractures. Bedding measures 72 degrees to CA. Unit contains trace-1% sulfides (very fine grained pyrite). Unit is strongly chloritized.


Lithology (continued)				
From (m)	To (m)	Litho Code	Litho Name	Description
206.85	207.17	BX-F	Breccia	Crackle brecciated greywacke. Fragments are fine grained and a grey green. Matrix is a milky white quartz carbonate that reacts moderately to HCl. Weak hematite alteration along margins of matrix. Unit is strongly chloritized. Trace very fine grained sulfides. Non-magnetic. Unit scratches relatively easy with scribe.
207.17	207.52	GWKY	Greywacke	Fine-grained 1-3mm greywacke. Dark grey/green. No magnetism present. Wisping sugary textured quartz carbonate veinlets throughout (general direction = 80 degrees to ca) and moderately altered by hematite making them appear slightly pink. Moderate reaction on fractures. Bedding measures 76 degrees to CA. Unit contains trace-1% sulfides (very fine grained pyrite). Unit is strongly chloritized.
207.52	213.28	BX-F	Breccia	Crackle brecciated greywacke. Fragments are dark grey green, fine grained greywacke. Matrix is composed of a hematized quartz carbonate and appears slightly pink as well as other veinlets that are less hematized. Quartz carbonate grains are medium grained (void space?) cause some fragments to appear lighter in colour (slightly pink). Moderate reaction along fractures of fragments and in quartz carb material. Unit is strongly chloritized heavily on margins of fragments and within quartz carbonate material. Trace sulfides (py+cpy) throughout rock very fines grained as well as collecting in little 2x2mm blebs along fractures and vein margins. Few medium grained granitic, speckled pink, grey and black clasts present throughout unit roughly ranging 2-3cm in size. Non-magnetic.
213.28	217.53	GWKY	Greywacke	Very-fine grained grey/green pebble conglomerate with pink/grey/black speckled clasts throughout. Bedding is undistinguishable. Unit is non-magnetic. Clasts range from 5mm-5cm in size, subrounded. Strongly chloritized veinlets with hematite alteration appear throughout unit and contain trace-1% sulfides (fine graine py) within the margins and fractures. Trace cubic pyrite in host rock.
217.53	230.18	BX-F	Breccia	Crackle brecciated very fine grained pebble conglomerate. From 217.53m-219.37m the breccia appears a light-brown pink in colour due to the hematite alteration strongly radiating out from the fractures in the fragments. Matrix is quartz carbonate with a very weak reaction to HCI. The fragments and matrix are silicified and not affected by the scribe's scratch. The contact between the matrix and the fragments are strongly chloritized. Albite alters the fragments causing a white speckly pattern through core. Trce-1% fine grained pyrite favouring fractures and veinlet margins. From 219.37m-230.18m the matrix is composed of veinlets that crack the fragments apart. The matrix is strongly altered by chlorite along margins as well as altered moderately by hematite causing a slight pinkish colour to veinlet. In some cracks the hematite alteration radiates outwards from the veinlets. Few coarse grained pink/grey/black speckled granitic pebble clasts are present hematite alteration radiation is also present in these areas. 1-2% fine grained pyrite collects in blebs in fractures and upon breccia matrix cracks. Pyrite appears cubic within fragments. Veinlets react moderately to HCl.
230.18	231.87	GWKY	Greywacke	Fine-grained pebble conglomerate. Host rock is a lighter grey/green than previous units. Clasts are subrounded, medium grained, pink/black/grey granitic and range from mm-5cm in size. Wisping quartz carbonate veinlets throughout unit react moderately to HCl on fractures. Chlorite strongly alters the margins of the clasts and veinlets. Hematite also alters the veinlets and in some cases, bleeds onto the rock causing a lighter brown/pink colour. Scribe scratches the rock lightly, slight silicification(?). Trace very fine grained pyrite throughout unit and along veinlet margins. Non-magnetic. Cannot measure bedding.
231.87	232.32	BX-F	Breccia	Crackle brecciated greywacke. Fragments are fine grained and a grey green. Matrix is a milky white quartz carbonate that reacts moderately to HCI. Unit is strongly chloritized. Trace very fine grained pyrite. Non-magnetic. Unit scratches weakly, slightly silicified.

Lithology (continued)				
From (m)	To (m)	Litho Code	Litho Name	Description
232.32	242.99	GWKY	Greywacke	Fine-grained pebble conglomerate. Host rock has returned to the darker green/grey. Clasts are subrounded, medium grained, white/black/grey granitic and smaller in size than previous unit (mm-2cm). Wisping quartz carbonate veinlets throughout unit react moderately to HCI on fractures. Chlorite strongly alters the margins of the clasts and veinlets. Hematite alteration occur moderately on the veinlet margins as well. Scribe scratches the rock lightly, slight silicification(?). Trace-1% cubic pyrite throughout unit and along veinlet margins. Non-magnetic. Cannot measure bedding.
242.99	243.00	EOH	End of Hole	End of hole in Greywacke

Sample Interval: AY	-22-01	ample Interval: AY-22-01									
	Sample Informatio			Sample In				Analytical I			
Sample Type	ALS Batch #	Sample ID	From (m)	To (m)	Length (m)	Sample Weight (kg)		Ag (ppm) 🛛 A			o (ppm)
Core 1/2	SD22236507	D843001	35.07	36.00	0.93	2.10	0.001	0.03	2.1	15.2	6
Core 1/2	SD22236507	D843002	36.00	37.03	1.03	2.08	<0.001	0.01	0.8	4.9	1.6
Core 1/2	SD22236507	D843003	37.03	37.99	0.96	1.87	<0.001	0.01	0.7	5.6	2.5
Core 1/2	SD22236507	D843004	37.99	39.00	1.01	1.74	<0.001	<0.01	0.8	4.2	5.7
Core 1/2	SD22236507	D843005	39.00	40.01	1.01	1.80	<0.001	0.01	3.6	13.1	2.9
Core 1/2	SD22236507	D843006	40.01	40.68	0.67	1.51	<0.001	0.01	2.4	8.4	2.7
Core 1/2	SD22236507	D843007	41.79	42.98	1.19	2.25	< 0.001	<0.01	3.5	15.1	2.3
Core 1/2	SD22236507	D843008	42.98	43.81	0.83	1.62	<0.001	0.01	2.3	10.3	1.2
Core 1/2	SD22236507	D843009	43.81	45.00	1.19	0.76	<0.001	0.03	4.2	16.1	2.3
Core 1/2	SD22236507	D843010	45.00	45.75	0.75	1.54	<0.001	0.02	4.3	14.5	4.6
Core 1/2	SD22236507	D843011	45.75	47.00	1.25	1.61	<0.001	0.01	1.2	2.3	1.7
Core 1/2	SD22236507	D843012	47.00	48.00	1.00	2.16	<0.001	0.02	1.3	2.8	1.1
Core 1/2	SD22236507	D843013	48.00	49.16	1.16	2.11	<0.001	0.01	4.6	23	2.3
Core 1/2	SD22236507	D843014	49.16	50.16	1.00	1.88	<0.001	0.02	66.8	400	7.8
Core 1/2	SD22236507	D843015	50.16	51.00	0.84	1.86	<0.001	0.01	2.9	12	2.1
Core 1/2	SD22236507 SD22236507	D843015 D843016	51.00	51.00	0.99	2.14	<0.001	0.02	1.9	9	1.9
Core 1/2	SD22236507 SD22236507	D843010 D843017	51.00	52.86	0.87	1.61	<0.001	0.02	1.6	5.9	1.9
Core 1/2	SD22236507	D843017 D843018	52.86	54.00	1.14	1.66	<0.001	< 0.01	1.0	6.5	2
Core 1/2	SD22236507	D843018 D843019	54.00	54.86	0.86	1.00	<0.001	0.01	2.3	7.8	2.3
Core 1/2	SD22236507					2.04		0.01	2.3	14.1	2.3 7.3
		D843020	54.86	55.90	1.04		0.001				
ore 1/2	SD22236507	D843021	55.90	57.00	1.10	1.18	< 0.001	0.01	1.1	6.4	8.2
Core 1/2	SD22236507	D843022	57.00	58.03	1.03	2.06	<0.001	0.01	2.8	8.7	3.4
Core 1/2	SD22236507	D843023	58.03	59.01	0.98	2.03	0.001	<0.01	4.1	11.6	2.6
QA/QC	SD22236507	D843024		BLANK		0.15	<0.001	0.01	1.4	0.4	1
QA/QC	SD22236507	D843025		OREAS 60c		0.06	2.42	4.78		11.4	73.2
QA/QC	SD22236507	D843026		BLANK		0.10	0.001	0.02	0.3	0.1	1.1
Core 1/2	SD22236507	D843027	59.01	60.00	0.99	2.13	0.001	0.01	3.7	17.6	2.3
Core 1/2	SD22236507	D843028	60.00	61.06	1.06	2.00	<0.001	<0.01	2.2	15.2	2.5
Core 1/2	SD22236507	D843029	61.06	62.14	1.08	2.16	<0.001	0.01	1.5	11.3	1.2
Core 1/2	SD22236507	D843030	62.14	63.00	0.86	1.66	<0.001	<0.01	1.6	4.7	1.4
Core 1/2	SD22236507	D843031	63.00	63.99	0.99	2.07	<0.001	<0.01	1.7	6.4	1.7
Core 1/2	SD22236507	D843032	63.99	64.98	0.99	1.79	<0.001	0.02	2.6	9.1	4.9
Core 1/2	SD22236507	D843033	64.98	66.00	1.02	2.14	0.019	0.02	49.5	429	5.8
Core 1/2	SD22236507	D843034	66.00	67.03	1.03	2.39	<0.001	0.01	1.7 🖡	5.1	3
Core 1/2	SD22236507	D843035	67.03	68.11	1.08	2.09	<0.001	0.01	0.7 🖡	3.3	4.6
Core 1/2	SD22236507	D843036	68.11	69.00	0.89	1.46	<0.001	0.01	2	10.6	3.2
Core 1/2	SD22236507	D843037	69.00	69.87	0.87	1.84	< 0.001	<0.01	2.4	5.6	1.8
Core 1/2	SD22236507	D843038	69.87	70.92	1.05	2.21	< 0.001	<0.01	4.7	14.2	1.6
Core 1/2	SD22236507	D843039	70.92	72.00	1.08	2.09	<0.001	<0.01	0.9	2.5	1.9
Core 1/2	SD22236507	D843040	72.00	73.01	1.01	2.25	<0.001	<0.01	0.9	3	1.7
Core 1/2	SD22236507	D843041	73.01	74.01	1.00	2.15	< 0.001	<0.01	1.9	5.1	2
ore 1/2	SD22236507	D843042	74.01	75.00	0.99	1.69	<0.001	0.01	7.9	21.6	2.4
ore 1/2	SD22236507	D843043	75.00	76.00	1.00	2.25	< 0.001	< 0.01	2.9	7.5	1.1
ore 1/2	SD22236507	D843044	76.00	76.92	0.92	1.88	<0.001	< 0.01	3.3	7.8	1.4
ore 1/2	SD22236507	D843045	76.92	78.00	1.08	2.24	<0.001	< 0.01	1.3	5.1	2.3
		D843046	78.00	79.08	1.08	2.33	<0.001	< 0.01	1.5	6.4	6.8
							~0.001	~U.UI	T.2 4	0.4 🖬	0.0
Core 1/2	SD22236507 SD22236507						<0.001	<0.01	1 🖡	20	17
Core 1/2 Core 1/2 Core 1/2	SD22236507 SD22236507 SD22236507	D843047 D843048	79.08	80.14 81.00	1.06 0.86	2.00 1.79	<0.001 <0.001	<0.01	1 3	2.9 13.8	1.7 1.9

	Sample Information	on		Sample In	terval		Analytical Results					
Sample Type	ALS Batch #	Sample ID	From (m)	To (m)	Length (m)	Sample Weigh	t (kg)	Au (ppm) Ag	g (ppm) As	(ppm) Cu	ı (ppm) Pb	(ppm)
QA/QC	SD22236507	D843050		OREAS 60c		C	0.06	2.54	4.86	20.6	11.4	75.6
QA/QC	SD22236507	D843051		BLANK		C).11	<0.001	0.02 < 0.2		0.1	0.7
Core 1/2	SD22236507	D843052	81.00	81.95	0.95	2	.08	<0.001 🖡	0.03	5.2 📘	39.5 🖡	1.1
Core 1/2	SD22236507	D843053	81.95	82.96	1.01	2	2.11	<0.001	0.01 🔲	11 🔲	73.1	4.6
Core 1/2	SD22236507	D843054	82.96	84.00	1.04	2	2.11	<0.001	<0.01	2.1	7	2.5
Core 1/2	SD22236507	D843055	84.00	85.04	1.04	2	2.12	<0.001	<0.01	1.4	5.9	1.2
Core 1/2	SD22236507	D843056	85.04	86.01	0.97	1	.93	<0.001	<0.01	0.8	1.6 🎙	0.9
Core 1/2	SD22236507	D843057	86.01	87.00	0.99	1	.95	<0.001	0.14	2.4	3.8	0.6
Core 1/2	SD22236507	D843058	87.00	88.01	1.01	1	97	<0.001	<0.01	3.1	6.8	1.6
Core 1/2	SD22236507	D843059	88.01	89.07	1.06	2	2.05	<0.001	<0.01	2.2	8.2 🖡	0.8
Core 1/2	SD22236507	D843060	89.07	90.00	0.93	1	.88	<0.001	<0.01	1.7 🖡	3.3	2
Core 1/2	SD22236507	D843061	90.00	91.00	1.00	1	.90	<0.001	<0.01	2.3 🖡	4	2.1
Core 1/2	SD22236507	D843062	91.00	91.96	0.96	1	79	<0.001	<0.01	1.4	2.1 📕	8.2
Core 1/2	SD22236507	D843063	91.96	93.00	1.04	1	93	<0.001	<0.01	1.8	1.9	2
Core 1/2	SD22236507	D843064	93.00	94.01	1.01	2	2.02	<0.001	<0.01	1.1	1.9	3.1
Core 1/2	SD22236507	D843065	94.01	95.00	0.99	1	87	<0.001	0.01	0.9 🎙	5	2.5
Core 1/2	SD22236507	D843066	95.00	96.00	1.00	2	2.01	0.001	<0.01	6.2	30.6	5.5
Core 1/2	SD22236507	D843067	96.00	96.98	0.98	1	.80	<0.001	<0.01	4.2	3	1.6
Core 1/2	SD22236507	D843068	96.98	98.00	1.02	1	.86	0.001	<0.01	1.3	1.8	0.8
Core 1/2	SD22236507	D843069	98.00	99.00	1.00	1	85	<0.001	<0.01	1.9	1 <0.2	
Core 1/2	SD22236507	D843070	99.00	100.12	1.12	2	2.12	<0.001	<0.01	0.7	1.4 < 0.2	
Core 1/2	SD22236507	D843071	100.12	100.94	0.82	1	72	<0.001	<0.01	1.9	1.6 <0.2	
Core 1/2	SD22236507	D843072	100.94	102.00	1.06	2	.27	<0.001	0.01	0.7	2	2.1
Core 1/2	SD22236507	D843073	102.00	103.01	1.01	2	2.05	<0.001	0.01	0.6	2.6	1.2
QA/QC	SD22236507	D843074		OREAS 60c		C).07	2.48	4.73	19.8	10.6	72.3
QA/QC	SD22236507	D843075		BLANK		C).18	<0.001	0.01	0.3	0.4	0.6
Core 1/2	SD22236507	D843076	103.01	103.95	0.94	1	65	<0.001	<0.01	0.6	2.4	0.3
Core 1/2	SD22236507	D843077	103.95	105.00	1.05	2	.37	<0.001	0.01	0.4	6.7	0.2
Core 1/2	SD22236507	D843078	105.00	106.02	1.02	1	.94	<0.001	0.01	2.6	9.4	0.7
Core 1/2	SD22236507	D843079	106.02	106.95	0.93	1	87	<0.001	<0.01	1.2	10.4	0.2
Core 1/2	SD22236507	D843080	106.95	108.00	1.05		85	<0.001	<0.01	1.1	9.8	0.4
Core 1/2	SD22236507	D843081	108.00	109.00	1.00		.05	<0.001	<0.01	2.1	9.7 < 0.2	
Core 1/2	SD22236507	D843082	109.00	110.04	1.04		2.11	<0.001	0.02	1.2	10.5	1.5
Core 1/2	SD22236507	D843083	110.04	111.00	0.96		30	<0.001	0.01	0.7	15	0.4
Core 1/2	SD22236507	D843084	111.00	112.05	1.05		2.03	<0.001	0.01	1	9.3	0.7
Core 1/2	SD22236507	D843085	112.05	113.10	1.05			0.163	0.01 🔲	15.4	274	2
Core 1/2	SD22236507	D843086	113.10	114.00	0.90		.18		<0.01	3.6 📕	55.4	1.1
Summary of Sampli	ng from AY-22-01											
Number of ½	Core Samples	78										
Number of Q/	A/QC Samples	8										
Total Numb	er of Samples	86										

					Detailed Drill Log		
1 15							
ole ID:	AY-22-02			Coordinate System		Hele Tune	Diamond Drill
Project Name:	Aylmer			Coordinate System	UTM NAD 83, Zone 17	Hole Type	Diamond Drill
Location:	Aylmer Towns	•		Coordinate Type	Actual	Hole Size	BTW
Claim Number	298639, 1773	57		Northing (m)	5,189,854.98	Plugged	Yes
	/ /			Easting (m)	517,231.20	Casing	Left-in ground
Date Stated:	08/03/2022			Elevation (m)	301	Contractor	J & S Drilling
Date Completed:	08/14/2022			Azimuth	360°	Core Location	On Site
Logged by E	3. Williams			Dip	-50°		(517,230 m E, 5,189,960 m
urvey		Survey Type	Reflex, Single-shot				
		Depth (m)	Dip (°)	1	Azimuth (°)		
		0	-50.00		360.00		
		6	-51.16		4.16		
		51	-51.29		3.48		
		102	-50.98		358.19		
		150	-50.11		7.77		
		200	-49.72		357.00		
		250	-49.47		3.99		
		303	-49.40		10.80		
		354	-49.05		11.69		
		405	-48.35		13.38		
		450	-48.32		14.19		
		501	-47.68		16.29		
					10:20		
ithology (continued)							
From (m)	To (m)	Litho Code	Litho Name			Description	
0.00	3.00	CAS	Casing	Casing, no re	ecovery.		
3.00	15.45	GWKY	Greywacke	are pinkish o speckled pa follow the si a chaotic rei to scribe. Ur	orange and strongly altered by hematite/a ttern. Quartz carbonate veinlets appear th ame general direction of 60 degrees to CA d/orange bleeding colour from fractures a	nm) are dark grey/green and chlorite altered. Wide ankerite. Biotite alteration waves in and out of the l aroughout area measuring maximum 1cm and react Fractures throughout the unit radiate the ankerite and quartz carb veinlets. Sediments are silicified and grained pyrite +/- chalcopyrite and collect in quartz to ca 12-15m = 27 degrees to ca.	beds creating a black t weakly to HCl. They e alteration creating d do not scratch due
15.45	18.50	BX-F	Breccia	hematite. Cl cpy) collect	lasts are dark grey, purply, red. Bedding of along clast/quartz carb margins. Biotite al	is quartz carbonate veinlets that are strongly alter f greywacke is visible and wavy. Unit is nonmagneti teration appears in areas creating a speckly black te d section. ***Speckled yellow throughout crack se	c. Trace Sulfides (py, exture on unit. Albite

Lithology (continued)				
From (m)	To (m)	Litho Code	Litho Name	Description
18.50	38.73	GWKY	Greywacke	Fine grained, thinly bedded (1-3mm) greywacke. Beds go backend fourth from a grey/green and brownish/red/orange as well as a consistent strongly hematite altered bed measuring 5mm. Quartz carbonate veinlets measuring ~30 degrees and ~70 degrees to CA throughout the unit. Strong chlorite alteration along the margins. Around 33m, the veinlets become pink silicified carbonate(dolomite) with glassy quartz clasts within. Unit is altered by biotite creating a speckly black look to the core. Ankerite alteration bleeds from the strongly chlorite altered veinlets. Sulfides appear along the margins of the veins in a very fine grained matter - trace py, Galena(?) One sulfide vein @ 19.72m (1cm 30 degrees to ca) 80% composed of pyrite+chalcopyrite. Unit has moderate magnetism that favours the darker beds. Bedding 18-21m = 24 degrees to ca 21-24m = 28 degrees to ca 24-27m = 33 degrees to ca 27-30m = 29 degrees to ca 30-33m = 32 degrees to ca 33-36m = 27 degrees to ca 36-39m = 25 degrees to ca.
38.73	39.37	BX-F	Breccia	Crackle brecciated greywacke. Fragments are broken apart by very thin quartz ankerite carbonate veinlets that are altered by hematite along margins and ankerite alteration that bleeds outwards from the fracture. The greywacke alters in colour between a light and dark grey bedding as well as a orangy/pink/brown and dark grey bedding (ankerite altered). Fracture react moderately to HCl. Very fine grained pyrite favouring fractures. Unit has pervasive moderate magnetism favouring the dark coloured beds.
39.37	51.82	GWKY	Greywacke	***Fine-grained, bedded 1-3mm. Bedding alternates between dark grey/green and medium grey green as well as strongly red/orange ankerite altered beds. Ankerite also bleeds out of the fractures along this unit as well as radiating outwards from quartz ankerite and pink dolomitic veins. Dolomitic veinlets are strongly altered by chlorite along margins, appear pink in colour and have a sugary texture. They are parallel to bedding for the most part. Albite xenomorphs appear pinker in this section compared the pale white colour in previous units. Trace-1% fine grained pyrite in sediment, blebs of sulfides (py+/-cpy) in margins of veins and within the fractures of the vein. Unit is moderately magnetic. Beddings 39.37-42m = 27 degrees to ca 42-45m = 26 degrees to ca 4548m = 25 degrees to ca 48-51m = 24 degrees to ca *** vein between 45-48 has dark shiny mineral assuming it's biotite but need to clarify.
51.82	52.15	Fx	Fault	Strongly chlorite altered greywacke lots of chlorite slip planes creating very broken, blocky content and hard to piece back together. Content is the same as previous unit but very brittle.
52.15	71.44	BX-F	Breccia	Crackle breccia - matrix is strongly altered by chlorite and the clasts are strongly altered by ankerite creating a black matrix and orange/brown clasts. Biotite alters the unit creating a very speckled black texture through the core. Unit is not magnetic. Matrix has milled breccia clasts 2x2mm in size in some areas. Albite xenomorphs appear throughout the unit and contain a dark grey halo around them (chlorite alteration?) . Some areas have small 2x2mm sized xenomorphs but closer to the end of the unit, they grow larger in size (4x4mm). Trace-1% fine grained pyrite (+/- chalaco) favour the fractures and collect in blebs along vein margins. From 60.20m - 60.70m and 69.20m - 69.70m the breccia is milled the matrix is mostly quartz carbonate (calcite), pink in colour, has a very sugary texture, reacts strongly to HCl, and contains mm sized milled clasts within. Chlorite moderately alters the margins of the matrix and clasts. Clasts show different content some have biotite alteration and no visible bedding, others are very angular with prominent bedding, some are large (up to 7cm) and rounded, as well as the very little milled clasts inside the matrix. Trace-1% sulfides (py+/-cpy) collecting in blebs along fractures and on margins of contact between matrix/clasts.
71.44	73.14	GWKY	Greywacke	Fine-grained, strongly bedded (1-5mm) greywacke. Unit contains very wavy bedding implying that it may be placed in a ductile environment. Beds are alternating units of brownish red beds and dark grey beds. Biotite alteration appears throughout the beds giving the core a black speckly texture. No magnetism. Bedding is steep ~15 degrees to ca.

Lithology (continued)				
From (m)	To (m)	Litho Code	Litho Name	Description
73.14	74.50	BX-F	Breccia	Milled breccia. The matrix is mostly quartz carbonate (calcite), pink in colour (altered by hematite), has a very sugary texture, reacts strongly to HCl, and contains mm sized milled clasts within. Chlorite moderately alters the margins of the matrix and fragments. Fragments are angular, range from mm-7cm in size and appear orange/brown as well as dark grey/green in places. Unit is altered by biotite and creates a black speckled texture throughout preferring the lighter orange/brown fragments. Trace-1% sulfides (py+cpy) collecting in blebs along fractures and on margins of contact between matrix/clasts.
74.50	76.53	GWKY	Greywacke	Fine-grained well-bedded (1-3mm) alternating from a dark grey/green and a lighter grey/green. Bedding measures ~20 degrees to ca. Biotite alters the unit creating a black speckled textures - areas where this texture is very prominent, the bedding becomes more orangey/brown in colour. Ankerite alteration bleeds from fractures as well as very thin quartz ankerite veinlets creating a orange/brown colour along fractures/veinlets. Albite xenomorphs appear on the darker beds, very euhedral and about 2x2mm in size. Unit has pervasive moderate magnetism (po). Trace fine grained pyrite favours fractures and veinlet margins.
76.53	81.60	BX-F	Breccia	Milled breccia. The matrix is mostly quartz carbonate (calcite), pink in colour (hematite alteration), has a very sugary texture, reacts strongly to HCl, and contains mm sized milled clasts within. Chlorite moderately alters the margins of the matrix and clasts. Clasts are angular, range from mm-7cm in size. Unit is altered by biotite and creates a black speckled texture throughout. Trace-1% sulfides (py+cpy) collecting in blebs along fractures and on margins of contact between matrix/clasts mostly favouring the areas of tiny milled clasts.
81.60	84.06	GWKY	Greywacke	Fine grained bedded (1-5mm) greywacke. Beds are a lighter purply/grey with some beds that are altered by hematite and appear red. Fractures throughout the unit are filled with very thin 0.5mm veinlets that react strongly to HCI. Xenomorphs appear throughout the unit, have a black coating around them as well as the middle is black appearing like a 1-numbered dice with a black outline dolomitized and react to HCI strongly for the first 3 meters of the unit. Weak-very weak pervasive magnetism throughout unit (po/mg?). Pink quartz carbonate (calcite), sugary textured, hematite altered veinlets crosscut the unit - altered by chlorite along the margins and contain trace fine grained pyrite along the margins as well.
84.06	90.27	BX-F	Breccia	Crackle brecciated greywacke. Clasts are orange/brown and dark grey bedded greywacke. Matrix contains very small milled fragments that are altered strongly by chlorite around them making them appear to be floating in a blackish/green matrix. Pink quartz carbonate (calcite) veinlets crosscut the unit and are altered strongly by chlorite along the margins and react moderately to HCI. Trace fine grained pyrite along margins of clasts and matrix. Biotite alters the unit creating a black speckled texture. Unit has spotty magnetism around darker fragments.
90.27	93.46	SCNG	Polymictic conglomerate	Fine-grained dark grey matrix supported pebble conglomerate. Fragments are subrounded, sized mm-2cm, blood red in colour, granitic in content. Unit is fractured in a wispy veinlet manner and they react moderately to HCI. Fractures are also altered moderately-strongly by ankerite causing a orange/brown colour to bleed outwards from them. Pervasive magnetism throughout unit. Matrix scratches easy with scribe, granitic clasts do not. Unit is strongly altered by chlorite and contains slip planes along fractures. Trace very fine grained pyrite appears on fractures and veinlet margins. One lighter brownish/red unit (beds) (20cm - 36 degrees to ca) appears near the end of the unit and is strongly altered by biotite and has a black speckled texture to it.

Lithology (continued)				
From (m)	To (m)	Litho Code	Litho Name	Description
93.46	110.68	BX-F	Breccia	Brecciated. Fragments are separated by a pink sugary silicified carbonate (dolomite) matrix and contains few mm-1cm void spaces throughout. This unit is mostly crackle breccia, and in some areas contains milled/mosaic matrix supported breccia with fragments that are mm-1m in size. Trace-1% sulfides (py + cpy +/- galena) collect in blebs in these areas, and appear as very fine grained throughout the fractures of the rest of the unit. Chlorite strongly alters the unit with multiple slip planes breaking up the core, as well as altering the contact between the matrix and fragments. Pebbles from the pebble conglomerates on each side also appear within this breccia and are also broken up in places implying that they occurred before the brecciation. Unit is not magnetic. From 101.85m-103.80m the milled matrix appears much darker surrounding the fragments as it's strongly altered by chlorite. From 103.80m - 110.68 the fragments appear lighter in colour, transitioning to the brownish orange colour altered strongly by hematite. Scm Quartz ankerite +/- biotite vein with blebby sulfides (py) 25 degrees to ca. Chlorite alters margins and fractures.
110.68	112.47	SCNG	Polymictic conglomerate	Fine-grained dark grey matrix supported pebble conglomerate. Trace-1% clasts are rounded-subrounded, sized mm-2cm and are granitic (red and speckled back), dioritic (glassy pale pink/white and speckled back) as well as some sediment fragments that are altered by ankerite. Unit is fractured in a wispy veinlet manner and they react moderately to HCI. Fractures are also altered moderately-strongly by ankerite causing a radiation halo of an orange/brown colour to bleed outwards from them. Matrix and sediment scratches easy with scribe, granitic and dioritic clasts do not. Unit is strongly altered by chlorite and contains slip planes along fractures. Non-magnetic. Trace-1% very fine grained pyrite, as well as cubic pyrite appears on fractures and veinlet margins. Trace-1% albite xenomorphs in unit Contact between breccia and p.con is separated by a quartz, ankerite, chlorite vein measuring 30 degrees to ca. Ankerite alteration radiates outwards creating a brownish orange colour on the first 40 cm of this unit.
112.47	112.78	BX-F	Breccia	Small crackle brecciated unit - crackle breccia with dark grey/green fragments. Trace pebbles from surrounding pebble conglomerate units. Matrix is the pink moderately dolomitized silicified carbonate material and reacts moderately to HCl. Thin wispy veinlets of quartz ankerite and pink carbonate crosscut the area. Pink veinlets react strongly to HCl. Strong chlorite alteration along matrix margins.
112.78	117.40	SCNG	Polymictic conglomerate	Fine-grained dark grey matrix supported pebble conglomerate. Fragments are subrounded, sized mm-2cm, granitic (red + black specked), dioritic (glassy pink/pale white + black specked) in content. Unit is fractured in a wispy veinlet manner at contacts with brecciated material on either side and they react moderately to HCI. Fractures are also altered moderately-strongly by ankerite causing an orange/brown colour to bleed outwards from them. Matrix scratches easy with scribe, pebble clasts do not. Unit is strongly altered by chlorite and contains slip planes along fractures. Few quartz ankerite veinlets contain blebby pyrite accumulating along margins and fractures. Ankerite alteration bleeds from veinlets creating a orange/brown colour to the surrounding rock (1-2cm outwards). Non-magnetic. Trace-1% very fine grained pyrite, as well as cubic pyrite appears on fractures and veinlet margins. Trace-1% albite xenomorphs in unit.
117.40	117.60	BX-F	Breccia	Small crackle brecciated unit - crackle breccia with dark grey/green fragments. Trace pebbles from surrounding pebble conglomerate units. Matrix is the pink moderately dolomitized silicified carbonate material and reacts moderately to HCl. Thin wispy veinlets of quartz ankerite and pink carbonate crosscut the area. Pink veinlets react strongly to HCl. Strong chlorite alteration along matrix margins.

gy (continued)	T = ()	Little Code		Description
From (m)	To (m)	Litho Code	Litho Name	Description
117.60	118.75	SCNG	Polymictic conglomerate	Unit starts out as a orange/light brown (ankerite altered) fine grained siltstone with a 1.5cm brecciated quartz/ankerite/chlorite vein measuring 25 degrees to core axis and contains patches of blebby sulfides along the margins. The ankerite alteration within the vein radiates this orangey-brown colour until 18.20m. After that, the unit is dark grey/green pebble conglomerate with trace mm-1cm sized granitic (red+black speckled) and dioiritic (pink/clear white+black specked) clasts. Non-magnetic. Trace fine -grained disseminated pyrite throughout.
118.75	119.10	BX-F	Breccia	Small crackle brecciated unit - crackle breccia with dark grey/green fragments. Trace pebbles from surrounding pebble conglomerate units. Matrix is the pink moderately dolomitized silicified carbonate material and reacts moderately to HCl. Thin wispy veinlets of quartz ankerite and pink carbonate crosscut the area. Pink veinlets react strongly to HCl. Strong chlorite alteration along matrix margins.
119.10	120.18	SCNG	Polymictic conglomerate	Fine-grained dark grey matrix supported pebble conglomerate. 2% fragments are subrounded, sized mm-2cm, granitic (red+black speckled) and dioritic (glassy white/pale pink+speckled black) in content. Unit is fractured in a wispy veinlet manner and they react moderately to HCI. Fractures are also altered moderately-strongly by ankerite causing a orange, brown colour to bleed outwards from them. Matrix scratches easy with scribe, clasts do not. Unit is strongly altered by chlorite and contains slip planes along fractures. Unit has very weak pervasive magnetism. Trace-1% very fine grained pyrite appears on fractures and veinlet margins. Trace-1% albite xenomorphs in unit.
120.18	120.44	BX-F	Breccia	Small crackle brecciated unit - crackle breccia with dark grey/green fragments. Trace pebbles from surrounding pebble conglomerate units. Matrix is the pink moderately dolomitized silicified carbonate material and reacts moderately to HCI. Thin wispy veinlets of quartz ankerite and pink carbonate crosscut the area. Pink veinlets react strongly to HCI. Strong chlorite alteration along matrix margins
120.44	124.65	SCNG	Polymictic conglomerate	Fine-grained dark grey matrix supported pebble conglomerate. Fragments are subrounded, sized mm-2cm, granitic (red+black specked) and dioritic (glassy pale pink/white+speked black) in content. Unit is fractured in a wispy veinlet manner and they react moderately to HCI. Fractures are also altered moderately-strongly by ankerite causing an orange/brown colour to bleed outwards from them. Two types of vein(let)s crosscut this zone one is quartz/ankerite/chlorite vein, the other is a pink, sugary textured silicified carbonate vein with mm-1cm sized brecciated fragments within. Both veins radiate ankerite alteration creating a halo of brownish/orange colour to the surrounding rock. Matrix scratches easy with scribe, clasts and vein material does not. Unit is strongly altered by chlorite and contains slip planes along fractures. Unit has very weak pervasive magnetism. Trace-1% very fine grained pyrite appears throughout unit and collect in blebs within the quartz/ankerite/chlorite veins. Trace-1% albite xenomorphs in unit. Unit contains 2 pink sugary textured silicified carbonate veins that measure 2cm and contain small mm-1cm clasts within. HCI reacts strongly around the fragments but not in the vein content itself.

Lithology (continued)				
From (m)	To (m)	Litho Code	Litho Name	Description
124.65	125.53	BX-F	Breccia	Small brecciated unit - crackle breccia with angular dark grey/green fragments. Trace pebbles from surrounding p. con units. Matrix is a silicified pink carbonate material that reacts moderately to HCI. Little wispy veinlets crosscut the area and react strongly to HCI and are strongly altered by chlorite along veinlet margins. Two quartz/ankerite veins that are strongly altered by chlorite along margins, as well as hematite which causes a radiating alteration zone around them making the rock to turn an orangey brown. Trace fine grained pyrite throughout unit.
125.53	126.25	SCNG	Polymictic conglomerate	Fine grained matrix supported (trace) pebble conglomerate. Pebbles are paler pink in colour than previous units and smaller in size (mm-1cm). The matrix starts off a dark grey/green and fades into a lighter brown/orange due to the ankerite alteration radiating from the quartz ankerite+chlorite vein at the contact between the breccia and the pebble conglomerate. Unit altered by biotite causing a speckled black appearance throughout it. Non-magnetic. Trace very fine grained pyrite.
126.25	127.07	BX-F	Breccia	This crackle breccia unit commences with a 3cm quartz ankerite chlorite vein that is strongly altered by ankerite and radiates an orange/brown colour to the bulk of this rock. The vein measures 20 degrees to ca. There is a large collection of sulfides (massive pyrite) that collected in the middle of the vein. The unit then becomes a dark green/grey and contains veinlets wisping through it that react moderately to HCI. Albite xenomorphs decorate the unit creating a white speckled texture all over the rock. Pebbles from the pebble conglomerate units on both sized are also included in this unit. Non-magnetic. Chlorite strongly alters the unit as various slip planes are present throughout the unit making some places crumbly.
127.07	133.24	SCNG	Polymictic conglomerate	Fine-grained dark grey matrix supported pebble conglomerate. 2 different fragments are present, the first ones are subrounded, sized mm-2cm, blood red in colour, granitic in content and the second are subrounded, mm-2cm in size, sedimentary in nature, and are brownish/orange (moderately hematized). Unit is fractured in a wispy veinlet manner and they react very weakly to HCl. Albite xenomorphs (1x1mm) create a white specked pattern throughout unit. Matrix scratches easy with scribe, clasts and vein material does not. Unit is strongly altered by chlorite and contains slip planes along fractures. Trace-1% very fine grained pyrite.
133.24	146.32	BX-F	Breccia	Cracke brecciated pebble conglomerate. Subrounded granitic (red+speckled black) clasts and sedimentary clasts sizing mm- 2cm appear throughout unit. The fractures between fragments are infilled with two types of matrix mediums. One contains wispy veinlets (1mm) made of silicified carbonate (dolomite), pale pink in colour, react moderately to HCl, and are moderately altered by ankerite creating a small halo of orange/brown on surrounding rock. The second type of matrix is a quartz/ankerite vein altered strongly by chlorite and hematite. These vein(lets) range from mm-1cm in size ~30 degrees to ca and contain a larger halo of ankerite alteration making the surrounding 10cm of core that orange/brown colour. Trace fine- grained pyrite favours the fractures and veinlet margins. Unit is not magnetic. At the end of the unit there is a brecciated black/dark green chlorite vein sized 5cm that contains mm-1cm sized clasts within measuring 30 degrees to ca. 2-3% Albite xenomorphs favour darker beds, biotite alteration favours orange/brown fragment/beds.
146.32	147.52	GWKY	Greywacke	Fine-grained, bedded (1-3mm) 25 degrees to core axis, dark grey/green greywacke. Veinlets run parallel to bedding, contain strong chlorite alteration along margins as well as hematite alteration causing the veinlets to appear slightly pink. Secondary wispy carbonate veinlets travel through the small fractures on this unit in no general direction and react strongly to HCI. Moderate pervasive magnetism in sediments. Trace pyrite favours the fractures and veinlet margins.

Lithology (continued)				
From (m)	To (m)	Litho Code	Litho Name	Description
147.52	155.60	BX-F	Breccia	Cracke brecciated pebble conglomerate. Subrounded pink granitic clasts and sedimentary clasts sizing mm-8cm appear throughout unit. The fractures between fragments are infilled with 3 types of matrix mediums. One contains wispy veinlets (1mm) that become more thicker and more mosaic-like and vuggy towards the end of the unit. This material is silicified carbonate, pale pink colour, react moderately to HCl, and are moderately altered by hematite creating a small halo of orange/brown on surrounding rock. The second type of matrix is a quartz/ankerite vein altered strongly by chlorite and hematite. These vein(lets) range from mm-1cm in size and contain a larger halo of hematite alteration making the surrounding 10cm of core that orange/brown colour. The third type seems to be a mixture of the two of them with very strong chlorite alteration making them mostly black/dark green with glimpses of the pink silicified carbonate as well as the quartz/ankerite. These veins measure roughly ~30 degrees to core axis and contains mm-1cm sized clasts within of angular and milled appearance. Trace fine grained pyrite favours the fractures and veinlet margins. Unit is not magnetic. Trace very fine grained pyrite throughout unit.
155.60	161.55	BX-M	Breccia	Matrix supported chaotic rotated breccia. Matrix is composed of a silicified carbonate (dolomite) that is pink in colour (hematite altered), vuggy in areas, and does not react to HCI. Fragments range from mm-10cm in size. For the majority of the content, the fragments that are quite angular, but few show a milling to them. Various lithologies appear in the fragments most are darker grey/green in colour and few of these contain pebble clasts. The secondary fragments are brown/orange in colour, sometimes show biotite alteration (black speckled texture). Chlorite alters the edges of the fragments very strongly. Trace-1% disseminated cubic pyrite favours the matrix material and shows up as a black dusty finish to exposed surfaces in areas. Veinlets whisp through unit and react moderately to HCI. At the end of this unit, there is a sharp contact between this breccia and the following breccia unit that measures 38 degrees to ca.
161.55	171.36	BX-F	Breccia	The first portion (161.55m-163.84) of this breccia fragments are strongly silicified, orange/brown in colour, strongly ankerite altered. Chlorite alters along the margins of the matrix and the fragments. The matrix is composed of pink silicified carbonate (dolomite). In areas where the matrix is thicker than 2cm between fragments, smaller, milled fragments are visible. Clasts from the pebble conglomerates appear throughout the unit. Range from mm-5 cm in size and are dioritic (glassy, slightly pink from hematite alteration and speckly black), granitic (red+speckled black) and sedimentary (bedded) in content . Non-magnetic. From 163.84m-171.35m, the rock alternates between dark grey/green and orange/brown. There are two matrix components to this portion of the rock. One of which is strongly altered by chlorite appearing as a dark grey/green infill with milled mm sized fragments within. The other is a salmony pink silicified carbonate (looks like an event that occurred after as it's included in the first matrix described unit) that is altered by hematite. Fine grained pyrite favours fractures and matrix margins, trace cubic pyrite in some fragments.
171.36	176.64	BX-F	Breccia	This unit is very blocky. Between the chlorite slip planes and broken rock, the core is difficult to put back together and there is a weak recovery (possible fault?). Crackle brecciated pebble conglomerate. Fragments are dark grey/green with two events that fracture the rocks. One consists of the hematite altered silicified carbonate that is slightly pink (mostly veinlets), and the other is a quartz/ankerite material that contains orange/brown alteration halos that extend outwards from the vein (ankerite alteration). Granitic (red+black), dioritic (glassy, pale pink+ black) and sediment clasts appear in unit (mm-5cm). No magnetism throughout. Small veinlets taking advantage of the fractures react moderately-strongly to HCl. The scribe leaves a mark on the clasts. Trace disseminated very fine grained pyrite throughout unit.

Lithology (continued)				
From (m)	To (m)	Litho Code	Litho Name	Description
176.64	188.87	BX-F	Breccia	This unit starts off very blocky (from 176.64m-180m). Between the chlorite slip planes and broken rock, the core is difficult to put back together and there is a weak recovery (possible fault?), then has a much stronger recovery after the 180m wood block. Material is dark grey/green, fine grained, few small (mm-1cm) pebble clasts are in this portion. Up until 182.26m the matrix breaking up the rock is strongly altered by chlorite, appears dark grey/green and contains mm-sized small clasts within. Albite xenomorphs (5%) create a whiteish-pink speckle to the core. Hematite moderately alters the rock around veinlets, ankerite changes from weak alteration to strong alteration as you move down the core/hole. Carbonate veinlets whisp through the core and react moderately to HCl. After 182.26m the fragments are strongly silicified. The colour changes to orange/brown due to the mixture of ankerite and hematite alteration radiating from the cracks and matrix. The two matrix include the chlorite altered one mentioned above, as well as a pink silicified carbonate (dolomite) that may overprint the material from the matrix supported breccia units above and below. This matrix is sugary textured, salmon pink in colour and contains void spaces within. The lighter fragments have biotite alteration zone into the matrix supported breccia that sits below it. No magnetism through entire unit. Trace very fine grained disseminated pyrite throughout entire unit as well as collections of blebby sulfides (1x1cm) where the chlorite matrix and the pink silicified carbonate matrix come in contact with another.
188.87	199.33	BX-M	Breccia	Matrix supported chaotic rotated breccia. Matrix is composed of a pink silicified carbonate (hematite altered), vuggy in areas, and does not react to HCl. Fragments range from mm-20cm in size. For the majority of the content, the fragments that are quite angular, but the larger (>10cm) ones show a rounded-like contact with the matrix. Various lithologies appear in the fragments most are darker grey/green in colour and few of these contain pebble clasts. The secondary fragments are brown/orange in colour, sometimes show biotite alteration (black speckled texture). Chlorite alters the edges of the fragments very strongly. Trace-1% disseminated cubic pyrite + fine-grained chalcopyrite favours the matrix material and shows up as a black dusty finish to exposed surfaces in areas. Veinlets whisp through unit and react moderately to HCl.
199.33	207.57	SCNG	Polymictic conglomerate	Fine grained matrix supported pebble conglomerate. Clasts contain mm-2cm sized red+black specked granitic clasts and glassy white/pink+speckled black diorite clasts. Wispy, very thin carbonate veinlets run through this unit and react moderately to HCl. Quartz/ankerite veinlets (mm-2cm) appear in unit. Strong chlorite and hematite alteration along margins as well as ankerite alteration creating an alteration halo around vein(let)s. At the end of this section, the pink silicified carbonate vein matrix appears again measuring 35 degrees to CA. Unit has moderate pervasive magnetism from 199.33m-203.45m. Then it is crosscut by the 35 degree silicified carbonate vein and loses its magnetism. Trace-1% disseminated very fine grained pyrite(+/- cpy), collecting in the odd bleb in vein margins. Chlorite alters the whole unit. Strong reaction to HCl in areas where the carbonate isn't completely dolomitized (one area @ 204.47m)
207.57	209.26	BX-M	Breccia	Chaotic breccia. Fragments range from mm-50cm in length. Fragments are dark grey/green, fine-grained and strongly altered by chlorite. They are very angular, but some clasts have one rounded edge to them. Chlorite alters the fractures in the matrix creating a squiggly appearance along fractures. Matrix is a silicified carbonate (dolomite) that is pink due to hematite alteration and appears vuggy in areas showing euhedral dolomitized calcite crystals. In the voided areas, trace very fined- grained oxidized chalcopyrite is dusted within. Ankerite alteration radiates outwards from the smaller fractures in the unit creating a brownish/orange colour along the margins. Trace very-fine grained pyrite in the fragments.

hology (continued)	To (m)	Lithe Code	Lithe Name	Description
From (m)	To (m)	Litho Code	Litho Name	Description
209.26	211.95	SCNG	Polymictic conglomerate	Fine grained matrix supported pebble conglomerate. Clasts contain mm-3cm sized red+black specked granitic clasts and glassy white/pink+speckled black diorite clasts. Whispy, very thin silicified carbonate veinlets run through this unit and do not react to HCI. Strong chlorite and hematite alteration along margins as well as ankerite alteration creating an alteration halo around vein(let)s. Non-magnetic. 2% Xenomorphic albite creating a faint white speckled appearance to core. Trace disseminated very fine grained pyrite(+/- cpy.) Unit scratches relatively easily with scribe. Matrix of brecciated unit veins into this section the pink dolomite is mixed with quartz carbonate and reacts strongly to HCI. These areas till appear vuggy and have bleb of sulfides within. 4cm quartz/ankerite/dolomite/chlorite vein at 205.83m with trace blebby sulfide (py+/-cpy) measuring 15 degrees to CA
211.95	230.71	BX-M	Breccia	Chaotic breccia. Fragments range from mm-1m in length. Fragments are dark grey/green, fine-grained and strongly altered by chlorite. They are very angular, but some clasts have one rounded edge to them. Chlorite alters the fractures in the matrix creating a squiggly appearance along fractures (find out technical term for this). Matrix is a silicified carbonate (dolomite) that is pink due to hematite alteration and appears vuggy in areas showing euhedral dolomitized calcite crystals. Some areas the matrix isn't completely silicified and reacts strongly to HCI (from 216.95m- end of unit). In the voided areas, trace-1% very fined-grained oxidized chalcopyrite is dusted within. Ankerite alteration radiates outwards from the smaller fractures in the unit creating a brownish/orange colour along the margins. Trace very-fine grained pyrite in the fragments, the odd blebs of mm-2cm of massive sulfides in the pink silicified matrix as well . Two 0.5cm semi massive pyrite veinlets appear at 217.47.
230.71	231.48	SCNG	Polymictic conglomerate	Fine grained matrix supported pebble conglomerate. Clasts contain mm-2cm sized red+black specked granitic clasts and glassy white/pink+speckled black diorite clasts. wispy, very thin carbonate veinlets run through this unit and do not react to HCl. Strong chlorite and hematite alteration along margins as well as ankerite alteration creating an alteration halo around vein(let)s. Non-magnetic. 2% Xenomorphic albite creating a faint white speckled texture to core. Trace disseminated very fine grained pyrite(+/- cpy.) Unit scratches relatively easily with scribe.
231.48	231.86	BX-M	Breccia	Small brecciated unit. Fragments are from p. con sections, mosaic in nature, mm-3cm in size, and appear lighter than other units due to ankerite alteration. Matrix is salmony pink silicified carbonate that altered by chlorite along margins and throughout fractures creating a squiggly dark line within. Vuggy voids are present. Trace disseminated pyrite +/- chalcopyrite in matrix material. Non-magnetic, no reaction to HCl.
231.86	233.32	SCNG	Polymictic conglomerate	Fine grained matrix supported pebble conglomerate. Clasts contain mm-2cm sized red+black specked granitic clasts and glassy white/pink+speckled black diorite clasts. wispy, very thin carbonate veinlets run through this unit and do not react to HCl. Strong chlorite and hematite alteration along margins as well as ankerite alteration creating an alteration halo around vein(let)s. Non-magnetic. 2%. Trace disseminated very fine grained pyrite(+/- cpy.) Unit scratches relatively easily with scribe.

Lithology (continued)				
From (m)	To (m)	Litho Code	Litho Name	Description
233.32	254.83	BX-F	Breccia	Fragment supported pebble conglomerate breccia. Fragments range from mm-sized apparent in a milled fashion in the matrix separating the clasts, and can be as large as 50cm. They are dark grey/green and lightened to a brown/orange colour along the margins of the matrix as well as the fractures in the fragments due to ankerite alteration radiating outward. Rounded-subrounded pebble clasts are included in some fragments granitic (red+black speckled) and dioritic (glassy pale pink/white quartz + black speckled) in nature. The matrix of this brecciated unit is mainly milled breccia floating in a salmony pink vuggy (in some places) dolomite mixed with a quartz carbonate material, losing the bright pink colour as you go down the hole/core becoming more silicified. Chlorite strongly alters the fragments and the margins of veinlets, and matrix creating a dark grey/green margin. Matrix reacts weakly to HCl on fractures. Unit is not magnetic other than one veinlet that is 25 degrees to CA, 5mm wide and radiates a blood red colour 1cm in each direction with magnetite inside. Trace-1% pyrite (+/- cpy) collects in blebs within veins and in matrix where it is very chloritized. Trace pyrite also appears in a very fine-grained nature in the fragments as well as on the margins of fractures.
254.83	260.83	BX-F	Breccia	Silica flooded breccia. Compared to the previous unit, the fragments appear light grey in colour and are strongly altered by biotite pseudomorphs making about 50% of the core appear speckled black throughout the unit. Matrix is composed of two types of matrix. The first is a silicified pink dolomite that appears vuggy in areas, and has rotated clasts ranging from mm (milled) to 3 cm angular fragments. The secondary matrix is a strongly chlorite altered dark grey/green matrix with mm (milled/rounded) to cm sized blocky angular fragments. Moderate reaction to HCI in the fractures of the breccia. Non-magnetic. Trace pyrite blebs our within the chloritized matrix of this section.
260.83	265.60	BX-F	Breccia	This breccia is a lot lighter than previous units. It appears orange/light brown/pinkish as it is strongly altered by both hematite and ankerite. The fragments are broken up intensely by a dark grey chlorite altered silicious fluid that makes the fractures about 0.5mm wide. Blebs of pyrite show up to as large as quarter sized throughout the unit bringing the % of sulfides up to about 2% in this section, favouring quartz veiny material. Unit is not magnetic. Granitic and dioritic pebble clasts show up from underlying pebble conglomerate unit. Very weak reaction to HCl on dolomite/quartz calcite zones.
265.60	278.76	SCNG	Polymictic conglomerate	Fine-grained matrix supported pebble conglomerate. Clasts are granitic (red+black speckled) and dioritic (glassy white/pale pink+black speckled) and range from mm-5cm in size. This unit is crosscut with various wispy pink silicified carbonate veinlets that do not react to HCl but is strongly altered by ankerite creating a radiating halo creating a lighter colour to the surrounding rocks. Unit has pervasive moderate magnetism. Strong chlorite alteration to entire unit and within larger veinlet margins + fractures. Albite xenomorphs appear throughout the unit creating a faint white specked pattern throughout core. Moderate hematite alteration around fractures of unit creating a darker red to appear in places.
278.76	283.30	BX-F	Breccia	Mille brecciaed (same as 260.83-265.60m) orange/light brown/pinkish in colour as it is strongly altered by both hematite and ankerite. The fragments are broken up intensely by a dark grey chlorite altered silicious fluid that makes the fractures about 0.5mm wide. Trace blebs of pyrite show up to as large as dime sized, favouring ticker quartz/ankerite/dolomite matrix vein material. Unit is not magnetic. Granitic and dioritic pebble clasts show up from underlying pebble conglomerate unit. Very weak reaction to HCl on dolomite/quartz calcite zones. Biotite alteration throughout the unit creates a black speckled look to the core.

ology (continued)	To (m)	Litho Code	Litho Name	Description
From (m) 283.30	<u>To (m)</u> 288.18	BX-F	Breccia	Description Crackle breccia unit appears to be ductility deformed. Fragments are dark grey and chlorite altered. Trace-1% pebble clasts ranging from mm-2cm size are included in the fragments granitic and dioritic in content. Faint biotite alteration creates a faint darker spotty took to the rock. HCl does not react along unit other than one very fractured area with matrix material consuming more space. Matrix is silicified carbonate (dolomite) and is altered by hematite appearing pink (like previous units). Areas where the matrix takes up to 5cm on the core, you can see smaller (mm-2cm), angular fragments within. Non- magnetic. Trace sulfide blebs favouring the quartz vein material where ankerite alteration makes the core appear a lighter brown/orange colour as well as very fine grained pyrite along margins of quartz veinlet material
288.18	292.01	SCNG	Polymictic conglomerate	Fine-grained matrix supported pebble conglomerate. Clasts are granitic (red+black speckled) and dioritic (glassy white/pale pink+black speckled) and range from mm-5cm in size. This unit is crosscut with various wispy pink silicified carbonate veinlets that do not react to HCl but is strongly altered by ankerite creating a radiating halo creating a lighter colour to the surrounding rocks. Unit has pervasive moderate magnetism. Strong chlorite alteration to entire unit and within larger veinlet margins + fractures. Albite xenomorphs appear throughout the unit creating a faint white specked pattern throughout core. Moderate hematite alteration around fractures of unit creating a darker red to appear in places.
292.01	294.75	BX-F	Breccia	Brecciated pebble conglomerate. Fragments are dark grey with mm-3cm sized dioritic and granitic clasts within. Matrix is composed of a mixture of silicified carbonate that appears salmony pink (and vuggy in areas) mixed quartz ankerite creating glassy appearances throughout the unit. No reaction to HCI. Brecciation turns into wispy veinlets near pebble conglomerate contact (end). Chlorite strongly alters the margins of veinlets and matrix. Trace blebby pyrite in veinlet/matrix material blebs are 5x5mm at the most. Ankerite alteration bleeds out of the veinlets creating a 5mm alteration halo on them. Hematite strongly alters margins of the veinlets as well.
294.75	296.48	SCNG	Polymictic conglomerate	Fine grained dark grey pebble conglomerate. Con clasts range mm-5cm in size, rounded-subrounded. Mostly granitic (red+black specked) in content with some dioritic (glassy+specked black). wispy pink silicified dolomite veinlets run through unit, no reaction to HCl, strong ankerite alteration bleeding a lighter colour 5mm outwards from veinlets. Strong hematite and chlorite alteration along veinlet margins. Non-magnetic. Trace very fine grained pyrite along veinlet margins.
296.48	305.94	BX-F	Breccia	This brecciated unit starts out as a dark grey fine grained brecciated pebble conglomerate from 296.48m-300.55m. Pebble clasts are inside fragments ranging from mm-5cm in size, mostly granitic (red+specked black) and dioritic (glassy pink/white+speckled black) and rounded-subrounded. The matrix content is ankerite altered veinlets with a radiation halo bleeding into the 5mm surrounding rock as well as strongly chlorite altered veinlets and quartz ankerite matrix too. Hematite and chlorite also strongly alter the margins of this matrix/veinlet material. Non-magnetic. Trace very fined grained pyrite favouring margins of veinlets/matrix. After 300.55m the colour changes to a lighter grey/brown/orange colour due to ankerite alteration radiating from larger veiny material. A series of pink dolomite 1cm veins crosscut unit measuring 36 degrees to ca. Trace very fine grained powdery pyrite favours the margins of quartz vein material and collects in blebs in the larger dolomitic matrix areas where multiple mm-1cm sized clasts are visible. 1cm massive sulfide quartz vein at 302.57m measuring 7 degrees to ca contains massive pyrite collecting along the margin taking up 60% of the vein.

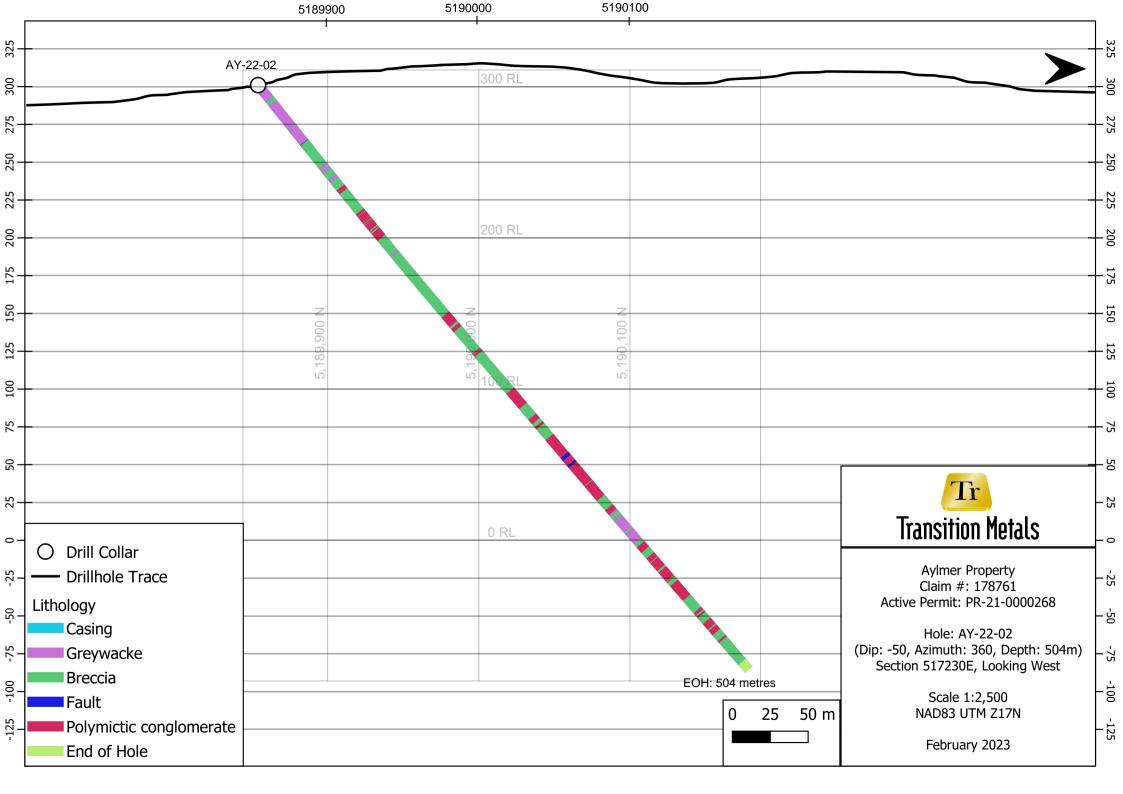
thology (continued)				
From (m)	To (m)	Litho Code	Litho Name	Description
305.94	321.53	SCNG	Polymictic conglomerate	Fine grained dark grey pebble conglomerate. Con clasts range mm-3cm in size, rounded-subrounded. Mostly granitic (red+black specked) in content with some dioritic (glassy+specked black). wispy pink silicified dolomite veinlets run through unit, no reaction to HCl, strong ankerite alteration bleeding a lighter colour 5mm outwards from veinlets. Strong hematite and chlorite alteration along veinlet margins. Non-magnetic. 2% albite xenomorphs creating a faint white speckled appearance to the core. Trace disseminated very fine grained pyrite.
321.53	324.00	Fx	Fault	Blocky, 3.5m section that is so broken the core is impossible* to put back together. Recovery is low.
324.00	328.46	SCNG	Polymictic conglomerate	Fine grained dark grey pebble conglomerate. Con clasts range mm-3cm in size, rounded-subrounded. Mostly granitic (red+black specked) in content with some dioritic (glassy+specked black). Whispy pink silicified dolomite veinlets run through unit, no reaction to HCl, strong ankerite alteration bleeding a lighter colour 5mm outwards from veinlets. Strong hematite and chlorite alteration along veinlet margins. Weak pervasive magnetism. 2% albite xenomorphs creating a faint white speckled appearance to the core. Trace disseminated very fine grained pyrite.
328.46	330.00	Fx	Fault	Blocky./broken section of pebble conglomerate, weak recovery
330.00	332.33	SCNG	Polymictic conglomerate	Fine grained silicified pebble conglomerate. This unit is strongly silicified and appears much redder than the other pebble conglomerate units. The pebble clasts are Trace-1% and no larger than 1cm. Unit is strongly hematized and vein(let)ed throughout the unit. The veinlets consist of pink dolomitic veinlets as well as quartz ankerite veinlets. Chlorite strongly alters the margins of the quartz ankerite veinlets. Hematite + ankerite alteration bleeds from the fractures and veinlet margins. 5% albite xenomorphs create a faint white speckled pattern on the core. 1-2% fine grained disseminated pyrite favours fractures and veinlet margins. Trace cubic pyrite runs throughout the unit. Moderate magnetism throughout unit.
332.33	344.08	SCNG	Polymictic conglomerate	Fine grained dark grey pebble conglomerate. Con clasts range mm-3cm in size, rounded-subrounded. Mostly granitic (red+black specked) in content with some dioritic (glassy+specked black). wispy thin pink silicified dolomite veinlets and quartz ankerite veinlets run through unit, no reaction to HCl, strong ankerite alteration bleeding a lighter colour 5mm-1cm outwards from veinlets. Strong hematite and chlorite alteration along veinlet margins. No magnetism. Trace disseminated very fine grained pyrite favouring margins of veinlets and fractures.
344.08	345.00	SCNG	Polymictic conglomerate	Fine grained silicified pebble conglomerate. This unit is strongly silicified and appears much redder than the other pebble conglomerate units. The pebble clasts are Trace-1% and no larger than 1cm. Unit is strongly hematized and vein(let)ed throughout the unit. The veinlets consist of pink dolomitic veinlets as well as quartz ankerite veinlets. Chlorite strongly alters the margins of the quartz ankerite veinlets. Hematite + ankerite alteration bleeds from the fractures and veinlet margins. 5% albite xenomorphs create a faint white speckled pattern on the core. 1-2% fine grained disseminated pyrite favours fractures and veinlet margins. Trace cubic pyrite runs throughout the unit. Moderate magnetism throughout unit.

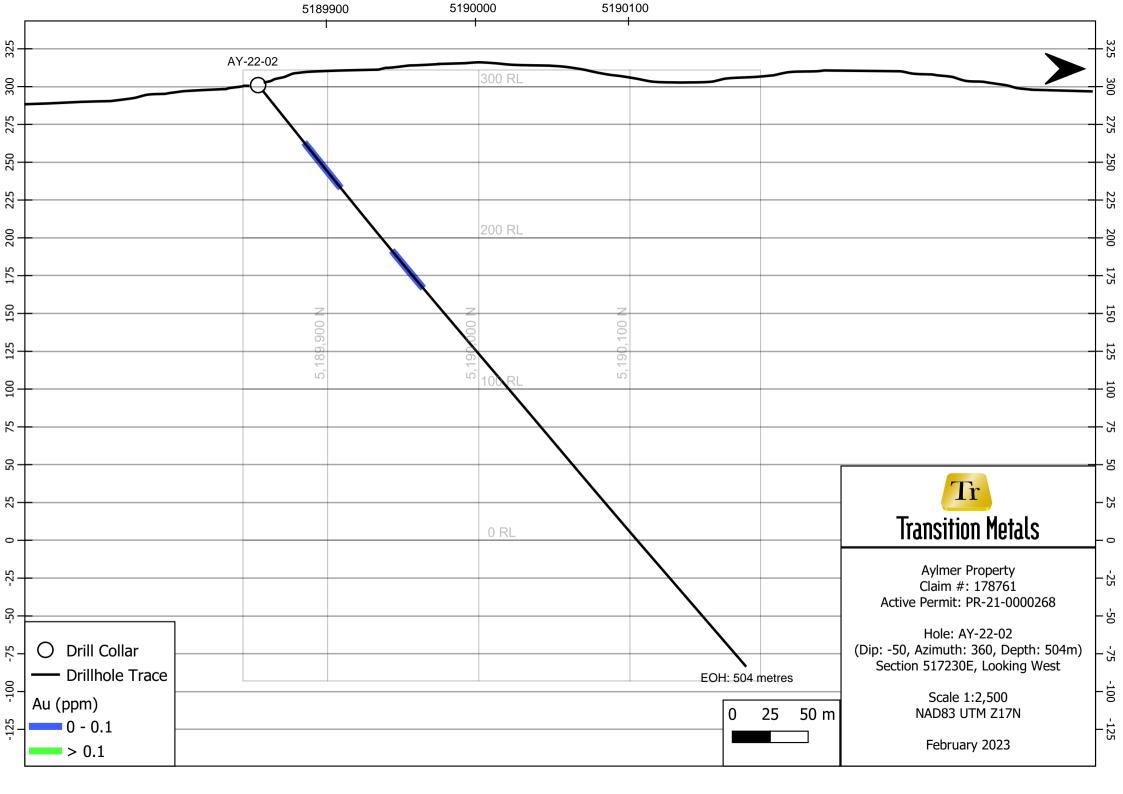
Lithology (continued)				
From (m)	To (m)	Litho Code	Litho Name	Description
345.00	345.92	SCNG	Polymictic conglomerate	Fine grained dark grey silicified pebble conglomerate. Conglomerate clasts range mm-1cm in size, rounded-subrounded. Mostly granitic (red+black specked) in content with some dioritic (glassy+specked black). wispy thin pink silicified dolomite veinlets and quartz ankerite veinlets run through unit, no reaction to HCl, strong ankerite alteration bleeding a lighter colour 2mm outwards from veinlets. Strong hematite and chlorite alteration along veinlet margins. No magnetism. Trace disseminated very fine grained pyrite favouring margins of veinlets and fractures.
345.92	346.42	BX-F	Breccia	Small wispy fractured brecciated unit in the silicified pebble conglomerate. Fragments are fine-grained dark grey, matrix is quartz ankerite with ankerite alteration affecting the margins of the veinlets/matrix bleeding outwards 2mm. Non-magnetic. No reaction to HCI. Moderate hematite alteration along veinlets appearing red along the margins. Strong chlorite alteration along veinlets and matrix/veinlet material.
346.42	358.90	SCNG	Polymictic conglomerate	Fine grained dark grey silicified pebble conglomerate. Conglomerate clasts range mm-1cm in size, rounded-subrounded. Mostly granitic (red+black specked) in content with some dioritic (glassy+specked black). wispy thin pink/red silicified dolomite veinlets and quartz ankerite veinlets run through unit and also taking advantage of the fractures in the unit much more veinlets than previously described units making the core look more chaotic. No reaction to HCl, strong ankerite alteration bleeding a lighter colour 2mm outwards from veinlets. Strong hematite and chlorite alteration along veinlet margins. No magnetism from 346.42m-353.79m then the unit becomes moderately magnetic until the end. Trace-1% disseminated very fine grained pyrite favouring margins of veinlets and fractures and collecting in blebs along some of them. 1cm quartz/ankerite vein @ 349.02 that is 35 degrees to CA. Incredibly strong hematite alteration along margins and radiates outwards 1cm. Strong ankerite alteration radiating 3cm outwards. Strong chlorite alteration along margins and fractures of the veins. Non-magnetic. No reaction to HCl.
358.90	367.31	BX-F	Breccia	Breccia unit stars off with vuggy pink silicified carbonate (dolomite) matrix with smaller fragments visible where the matrix content is large. It is strongly hematized and ankerite altered radiating from matrix, fractures and veinlets creating a reddish/orange/brown alteration zone. Biotite alteration creates a speckled pattern on core on the lighter coloured areas. Chlorite alteration strongly alters the fractures and veinlet margins creating a dark fine lines along them. No magnetism. From 364m-364.82m, recovery is weak and really blocky. Core feels chalky and brittle. From 364.82m-366.52m, unit tis mosaic brecciated, core is very chalky and brittle. Matrix is the same as previously described and breaks apart fragments no larger than 5cm. This area is strongly chlorite altered making matrix very dark grey/green. From 366.52-end of unit, recover is once again weak and really blocky. Core is brittle and chalky. Trac-1% very fine grained pyrite throughout unit favouring matrix and fractures. Few 2mm veinlets of pure chalky massive pyrite different degrees to CA.
367.31	371.28	SCNG	Polymictic conglomerate	Fine grained silicified pebble conglomerate. This unit is strongly silicified and appears much redder than the other pebble conglomerate units. The pebble clasts are Trace-1% and no larger than 1cm. Unit is strongly hematized and vein(let)ed throughout the unit. The veinlets consist of pink dolomitic veinlets as well as quartz ankerite veinlets. Chlorite strongly alters the margins of the quartz ankerite veinlets. Hematite + ankerite alteration bleeds from the fractures and veinlet margins. 5% albite xenomorphs create a faint white speckled pattern on the core. 1-2% fine grained disseminated pyrite favours fractures and veinlet margins. Trace cubic pyrite runs throughout the unit. Moderate magnetism throughout unit.

ology (continued)				
From (m)	To (m)	Litho Code	Litho Name	Description
371.28	371.49	BX-F	Breccia	Small brecciated unit of fine grained siltstone. Unit is green grey, with quartz ankerite veinlets running through the unit. No reaction to HCl . Ankerite alteration radiates 2mm outwards from veinlets. Strong chlorite alteration along margins. Moderate hematite alteration along few veinlets. Trace very-fine grained pyrite favouring veinlets.
371.49	372.87	GWKY	Greywacke	** no longer conglomerate clasts ^{**} Fine-grained grey/siltstone. wispy quartz ankerite veinlets run though unit. Spotty HCl reaction on quartz ankerite veinlets (carbonate content within). Non-magnetic. Hematite, ankerite alteration on veinlets and radiate 2mm outwards from veinlets. Strongly chlorite alteration along veinlet margins. Trace very fined grained pyrite favouring fractures and veinlets. No magnetism.
372.87	375.81	BX-F	Breccia	Fine grained dark grey/green brecciated siltstone. Unit is fractured by quart ankerite veinlets that have hematite staining along the margins and ankerite alteration radiating 2mm about the margins. Hematite strongly alters the unit from 374.87m to the end making the core appear rusty red. Chlorite strongly alters the margins of the veinlets as well as within the veinlet fracture. Trace-% albite xenomorphs run through the unit creating a faint white speckled appearance through the core. Trace-1% fine grained pyrite throughout the unit, collecting in small blebs within the quartz ankerite veinlets/matrix. Unit has pervasive moderate magnetism.
375.81	377.17	GWKY	Greywacke	Fine grained very dark grey siltstone. Unit appears darker than previous units described and is white silicified. wispy quartz/ankerite veinlets run through the unit with moderate hematite alteration along the margins and 2mm outwards radiated ankerite alteration as well. No reaction to HCI. Chlorite alteration along margins of veinlets. No magnetism. Trace very-fine grained pyrite favours veinlets.
377.17	377.84	BX-F	Breccia	Fine grained dark grey/grey/reddish brecciated siltstone. Unit is fractured by quart ankerite veinlets that have hematite staining along the margins and ankerite alteration radiating 2mm about the margins. Chlorite strongly alters the margins of the veinlets as well as within the veinlet fracture. Trace-% albite xenomorphs run through the unit creating a faint white speckled appearance through the core. Trace-1% fine grained pyrite throughout the unit, collecting in small blebs within the quartz ankerite veinlets/matrix. Unit has pervasive moderate magnetism. Moderate-strong silicification.
377.84	386.89	GWKY	Greywacke	Fine grained dark grey/green greywacke. Quartz ankerite veinlets are taking advantages of the fractures. Ankerite radiates an alteration up to 5cm from veinlets, the larger the vein(let) the larger the radiation halo. Hematite alters the margins of the veinlets creating a stronger orangy/red colour on top of the ankerite alteration. Chlorite strongly alters the margins of vein(let)s. Fine grained albite xenomorphs create a faint white speckled appearance to the core. Non-magnetic. No reaction to HCI. Trace very fine grained pyrite favouring veinlet and vein margins. 3cm brecciated quartz ankerite/pinkish dolomite vein. 23 degrees to CA. Chlorite alters the fragments and margins. Hematite alters the matrix making the dolomite portion pink. Ankerite alteration radiates throughout the breccia and 1cm outwards from vein. No reaction. Non-magnetic. Trace very fine grained pyrite along margins and in matrix. Moderate-strong silicification.

thology (continued)	_ / `			
From (m)	To (m)	Litho Code	Litho Name	Description
386.89	388.02	BX-F	Breccia	Fine grained dark grey/grey/reddish brecciated siltstone. Unit is fractured by quart ankerite veinlets that have hematite staining along the margins and ankerite alteration radiating 2mm about the margins. Chlorite strongly alters the margins of the veinlets as well as within the veinlet fracture. Trace-% albite xenomorphs run through the unit creating a faint white speckled appearance through the core. Trace-1% fine grained pyrite throughout the unit, collecting in small blebs within the quartz ankerite veinlets/matrix. Non-magnetic. No reaction to HCl. Moderate-strong silicification.
388.02	397.05	GWKY	Greywacke	Fine grained dark grey/green greywacke. Quartz ankerite veinlets are taking advantages of the fractures. Ankerite radiates an alteration up to 5cm from veinlets, the larger the vein(let) the larger the radiation halo. Hematite alters the margins of the veinlets creating a stronger orangy/red colour on top of the ankerite alteration. Chlorite strongly alters the margins of vein(let)s. Fine grained albite xenomorphs create a faint white speckled appearance to the core. Non-magnetic. No reaction to HCI. Trace very fine grained pyrite favouring veinlet and vein margins. Moderate-strong silicification. 1cm quartz ankerite vein @ 388.66m that is 55 degrees to ca with massive sulfide (pyrite bleb within). Vein radiates ankerite 10cm from margins on both sides. Strong chlorite alteration along margins and fractures within vein. Biotite alteration has a speckled appearance in the ankerite altered area.
397.05	399.84	BX-F	Breccia	Brecciated greywacke. Fragment content is dark grey/green with some visible ankerite altered beds (orangy brown). Matrix is composed of quartz ankerite veinlets as well as little lenses of silicified pink carbonate (dolomite). Areas with dolomite have hematite alteration around the matrix. Zones around the fractures/quartz ankerite veinlets there is a small alteration halo that makes the rocks appear a lighter grey/green colour. Weak HCI reaction on fractures infilled with quartz ankerite (+calcite?). Non-magnetic. Trace very fine grained pyrite along fractures.
399.84	404.67	SCNG	Polymictic conglomerate	Fine grained dark grey/green pebble conglomerate. Pebble clasts are trace amounts and appear no larger than 1x1cm in size. Unit has wispy quartz ankerite +/- calcite veinlets throughout that react weakly to HCl. Alteration halos surround the veinlets making the surrounding rock a lighter grey/green colour (weak ankerite alteration?) and become more orange brown at 401.40m to the end of the unit, radiating 2mm outwards. Moderate chlorite alteration throughout unit. Trace very fine grained pyrite favouring veinlet margins.
404.67	409.67	BX-F	Breccia	Brecciated pebble conglomerate. Quartz ankerite +/-calcite veinlets run through the section and react weakly to HCl. Ankerite alteration weakly-moderately radiates outwards from these veinlets changing the first 1mm outwards to a orange/brown colour then followed by a lighter grey/green. Pink dolomitic matrix appears in minor amounts throughout the unit, and the fragments are moderately altered by hematite, making the surrounding rock a slight tone of red. Trace fine grained pyrite along veinlet margins and in dolomitic matrix. No magnetism for the first portion of the unit and then has pervasive magnetism at 408.20m to the end. Very brecciated/lighter areas are strongly altered by chlorite making the matrix colour appear dark grey/green. 4% albite xenomorphs creating a white speckled appearance on core.

Lithology (continued)				
From (m)	To (m)	Litho Code	Litho Name	Description
409.67	413.40	SCNG	Polymictic conglomerate	Fine grained dark grey/green pebble conglomerate. Pebble clasts are trace amounts, dioritic and granitic, and appear no larger than 1x1cm in size. Unit has wispy quartz ankerite veinlets as well as being crosscut by a pink silicified carbonate (dolomite) veinlets. Ankerite and hematite alter the margins of the veinlets and fractures radiating a reddish orange colour about 2mm outwards from veinlets/fractures. No reaction to HCl. Moderate pervasive magnetism throughout unit.
413.40	413.90	BX-F	Breccia	Small brecciated pebble conglomerate section. Quartz ankerite veinlets run through the section where ankerite alteration weakly-moderately radiates outwards from these veinlets changing the first 1mm outwards to a orange/brown colour. Hematite alters margins of fractures. Blocky quart ankerite section at 413.65m that is strongly altered by chlorite along the margins and fractures. Surrounding rock in this area is much lighter in colour due to ankerite alteration. Trace fine grained pyrite along veinlet and fracture margins. Magnetism in darker beds but not in quartz material or lighter orangy/brown coloured rock.
413.90	420.72	SCNG	Polymictic conglomerate	Fine grained dark grey/green pebble conglomerate. Pebble clasts are trace amounts, dioritic and granitic, mostly rounded and mm size but there is one 5cm granitic clast. Unit has wispy quartz ankerite veinlets as well as being crosscut by a pink silicified carbonate (dolomite) veinlets. Ankerite and hematite alter the margins of the veinlets and fractures radiating a reddish orange colour about 2mm outwards from veinlets/fractures. Strong chlorite alteration on veinlet margins creating a thin black/dark green line. No reaction to HCI. No magnetism.
420.72	422.17	BX-F	Breccia	Brecciated pebble conglomerate. Wispy quartz ankerite veinlets run through the unit, no reaction to HCl. Ankerite alteration radiates outwards from veinlets making 2mm from the veinlet appear an orangey brown. Hematite alters the margins of the veinlets. There is a 4cm quartz ankerite brecciated vein @421.49m that is strongly hematized (+ ankerite alteration) in the fragment portion appearing orangy red. Areas between fragments are strongly altered by chlorite. No magnetism throughout unit. Trace very fine grained pyrite favouring fractures and veinlet margins and collecting in small blebs.
422.17	430.02	SCNG	Polymictic conglomerate	Fine grained darker grey/green pebble conglomerate (darker than previous units). Pebble clasts are trace amounts, dioritic and granitic, mostly rounded and mm-2cm size. Unit has wispy quartz ankerite veinlets as well as being crosscut by a pink silicified carbonate (dolomite) veinlets. Ankerite and hematite alter the margins of the veinlets and fractures radiating a reddish orange colour about 2mm outwards from veinlets/fractures. Strong chlorite alteration on veinlet margins creating a thin black/dark green line. 3% albite xenomorphs creating a faint speckled white pattern on core. No reaction to HCl. No magnetism. 2cm milky quartz ankerite vein @ 428.06m measuring 35 degrees to CA. Strong radiated ankerite alteration 5cm about margins. Strong chlorite alteration along margins. Fine grained (+blebby) pyrite along margins. Non-magnetic. No reaction to HCl. 3 veinlets abut 0.5cm that have same description as the larger one, but less milky white, more glassy and chlorite alteration within fractures of the veinlets. They all measure roughly 15 degrees to core axis.
430.02	430.52	BX-F	Breccia	Small brecciated pebble conglomerate unit. Trace clasts from pebble conglomerate. Rock is dark grey/green with very thin quartz ankerite veinlets breaking up the rock. Ankerite alteration causes a orange/brown halo 1cm from margins. Strong chlorite alteration within rock. Trace fine-grained pyrite along fractures and veinlets. 2% albite xenomorphs altered by ankerite creating a faint pinkish brown speckled pattern on rock.


ithology (continued)				
From (m)	To (m)	Litho Code	Litho Name	Description
430.52	431.11	SCNG	Polymictic conglomerate	Fine grained darker grey/green pebble conglomerate. Pebble clasts are trace amounts, dioritic and granitic, mostly rounded and mm-2cm size. Unit has wispy quartz ankerite veinlets. Ankerite and hematite alter the margins of the veinlets and fractures ankerite alteration radiates an orange/brown colour about 2mm outwards from veinlets/fractures. Strong chlorite alteration on veinlet margins creating a thin black/dark green line. Trace albite xenomorphs creating a faint speckled white pattern on core. No reaction to HCl. No magnetism. Strongly silicified.
431.11	434.06	BX-F	Breccia	Breccia unit starts off with a 3cm orange/red strongly hematite altered vein measuring 35 degrees to ca and is followed by a 5cm strongly chlorite altered matrix with mm sized orange/brown milled clasts within. The unit is then orange/brown in colour with quartz ankerite veinlets crosscutting it that are strongly altered by chlorite along the margins and radiate the ankerite alteration onto the surrounding rock and creating a boarder around the original dark grey/green fragments. The pink silicified carbonate (dolomite) veinlets also crosscut this breccia. It appears pink due to hematite alteration, slightly vuggy in areas. The unit then goes back to the chlorite altered matrix described before. Then changes back into brecciated pebble conglomerate with very thin wispy quartz ankerite veinlets running through the core. Weak reaction on quartz ankerite veinlets for the first 20cm then no reaction to HCl following. Trace-1% fine grained pyrite favouring veinlet margins and chlorite altered milled breccia.
434.06	446.95	SCNG	Polymictic conglomerate	Fine grained darker grey/green pebble conglomerate. Pebble clasts are trace amounts, dioritic and granitic, mostly rounded and mm-5cm size. Unit starts off with a large quantity of wispy quartz ankerite veinlets, but around 436.82, the veinlets settle down and the ankerite alteration no longer affects them (and the fractures) as strongly (the surrounding rock has a lighter grey/green colour to it just no longer that orange/brown colour). Ankerite and hematite alter the margins of the veinlets and fractures strongly until 436.82m ankerite alteration radiates an orange/brown colour about 2mm outwards from veinlets/fractures. Strong chlorite alteration on veinlet margins creating a thin black/dark green line. Trace albite xenomorphs creating a faint speckled white pattern on core. No reaction to HCI. Patchy magnetism that seems to be favouring veinlets/fractures in areas, but not all of them. Trace-1% fine grained pyrite favouring fractures mainly but still show up in random areas within the core. Strongly silicified.
446.95	458.06	BX-F	Breccia	Unit starts off minorly fractured, dark grey/green brecciated pebble conglomerate with strong chlorite alteration on thin veinlets making it wispy black fractures until 448.14m the unit has two 1mm veinlets, 7cm apart measuring 42 degrees to ca that radiated an orange/brown colour around them. The unit then changes to a lighter medium grey/green with slight purple tinge to it. Quartz ankerite veinlets whisp through the rock and radiate an orange/brown halo 1mm outwards from the margins and are altered by chlorite along the margins as well. Pink silicified carbonate veinlets are also present in this unit as well. The purple tinge fades around the 453m block and returns to a more medium grey/green colour with subtle hints of purple, then goes back to the purple tinge core once again. Veinlets of both kind + their descriptions are still present for the rest of the unit. Pervasive moderate magnetism in the purple coloured (magnetite bleb in few areas). Trace-1% fine grained pyrite (+/- magnetite along ankerite altered veinlets. Moderately silicified. Trace-3% albite xenomorphs throughout unit creating a faint pale pink/white specked pattern.

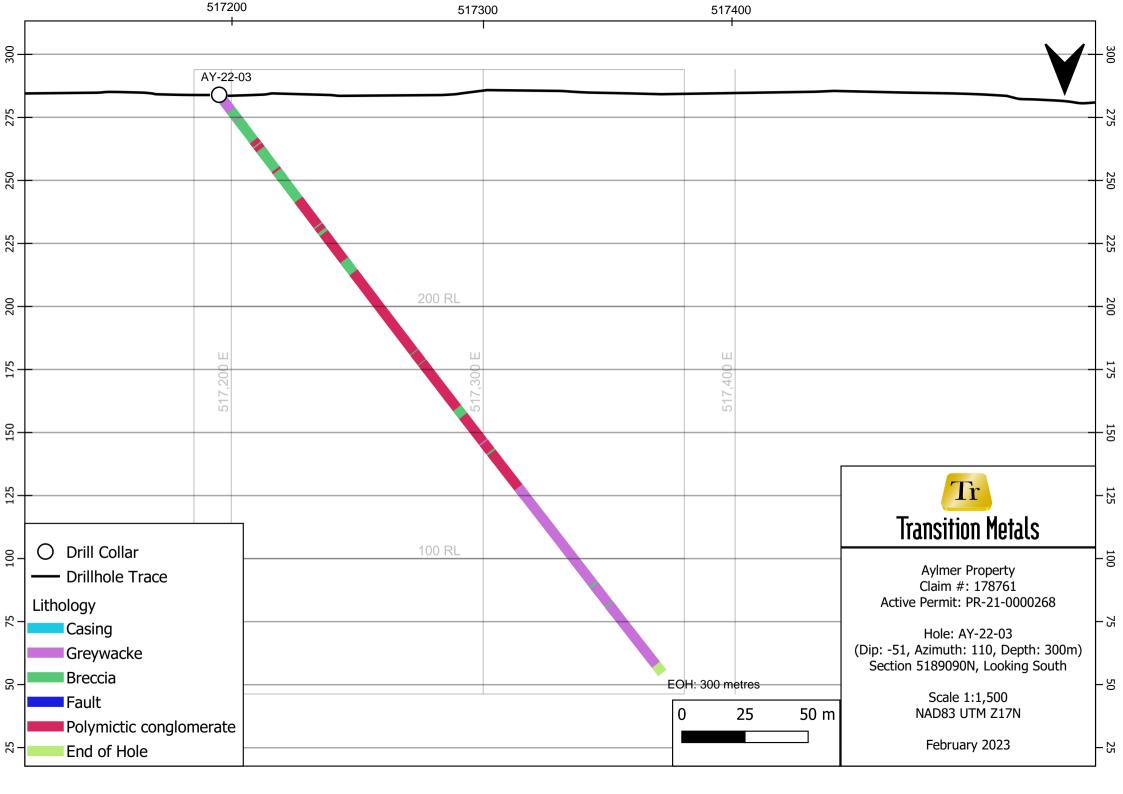

ogy (continued) From (m)	To (m)	Litho Code	Litho Name	Description
458.06	460.20	SCNG	Polymictic conglomerate	Fine-grained dark grey/green matrix supported pebble conglomerate. Pebble clasts range from mm-2cm and are dioritic (glassy white/pale pink+black speckled) as well as granitic (red+black speckled) in content. Few quartz ankerite veinlets whisp through with weak ankerite alteration creating a 1mm pink alteration halo along fractures/veinlets. There are 2 1cm quartz ankerite veins and those ones radiate a darker orange/brown ankerite alteration These veinlets are also altered by hematite along the margins and strongly altered by chlorite along the margins and on internal fractures Unit is non magnetic and does not react to HCI. Trace very fine grained pyrite favouring fractures and veinlets. Trace albite xenomorphs creating faint white specked pattern on unit.
460.20	461.30	BX-F	Breccia	Small brecciated zone of pebble conglomerate. Clasts from p. conglomerate are mm-2cm and appear in trace amounts. Fragments are fine grained and dark grey/green in colour. There is a few areas that show the purple tone colour mentioned in 446.95m-458.06m that is moderately magnetic (magnetite). Thin quartz ankerite veinlets whisp through that radiate an orange/brown halo 2mm away from margins and are also strongly altered by hematite along the margins appearing more pink in that area. Trace fine grained pyrite (+/- magnetite) favours fractures and veinlets.
461.30	462.40	SCNG	Polymictic conglomerate	Fine grained darker grey/green pebble conglomerate. Pebble clasts are mm-1cm in size and appear in trace amount of the rock. This unit is strongly silicified and has no magnetism. Fractures seem lighter than the bedding, possible alteration?
462.40	467.58	BX-F	Breccia	This unit starts off dark grey/green and slightly fractured pebble conglomerate but then changes to a lighter grey green at 462.86m. Pebble clasts are diritic and granitic and are mm-2cm in size. The unit has two quartz ankerite veinlets in this are measuring 20 degrees to CA and causes a orange/brown alteration halo 10cm outwards from both sides. It then becomes heavily fractured by bother quartz ankerite veinlets as well as the pink silicified carbonate veinlets. Ankerite creates a 2mm alteration boarder around fragments in areas that are fractured by quartz ankerite and dolomitic weinlets. Chlorite lines the margins of the dolomitic matrix material. Hematite moderately alters some veinlets creating an orange/red colour on top of the ankerite alteration. Trace fine grained pyrite favouring fractures and veinlet margins. Unit become moderately magnetic by 465.20m-465.50m but no where else it seems to favour the less chaotic breccia that is not affected by the pink dolomitic content
467.58	472.65	SCNG	Polymictic conglomerate	Fine grained darker grey/green pebble conglomerate. Pebble clasts are mm-1cm in size and appear in trace amount of the rock. This unit is strongly silicified and has no magnetism. Fractures seem lighter than the bedding, possible alteration, and have slight ankerite alteration to them in some areas with a radiating orange/brown halo 1mm outwards. Unit has very weak magnetism favouring some veinlets. Trace very fine grained disseminated pyrite.
472.65	473.68	BX-F	Breccia	Small brecciated pebble conglomerate section. Quartz ankerite veinlets infill fractures and cause an orange/brown alteration halo around dark grey/green fragments. Hematite the margins of the quartz ankerite veinlets and chlorite alters the margins and the internal fractures of the veinlets. Patchy magnetism in areas that are redder and altered by hematite with more quartz ankerite material. Trace very fine grained pyrite favouring fractures and veinlets/matrix.

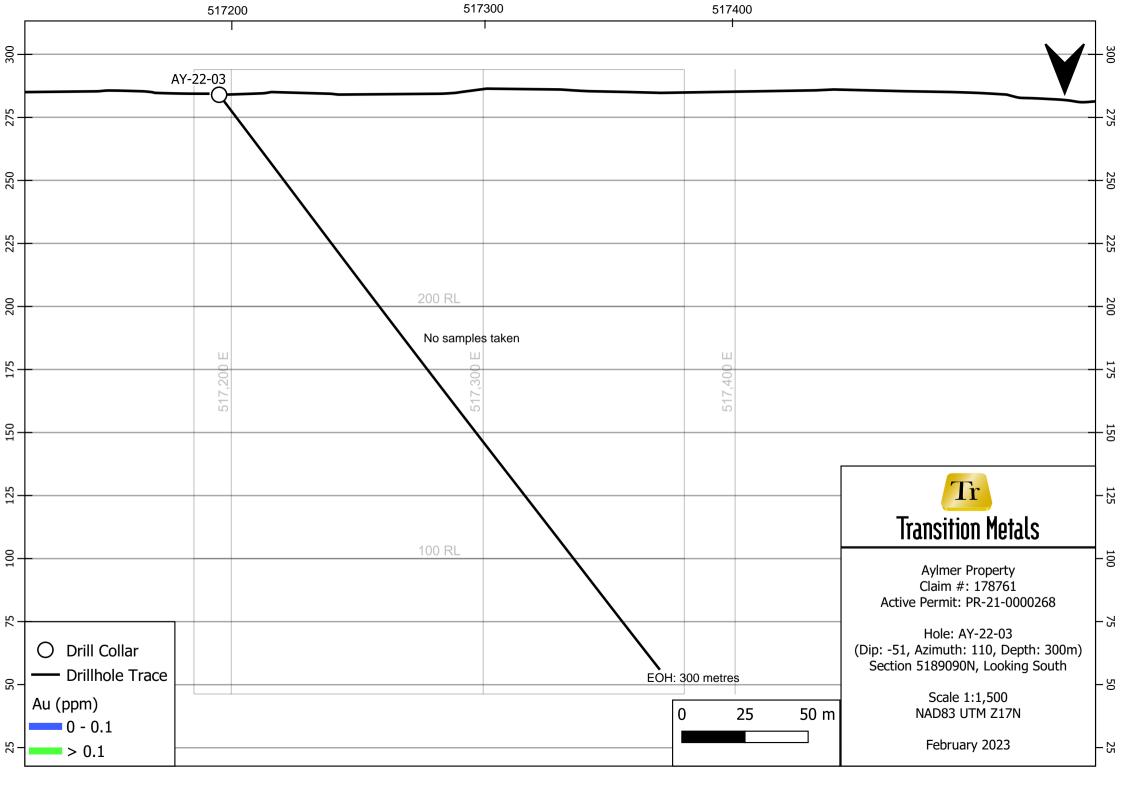
From (m)	To (m)	Litho Code	Litho Name	Description
473.68	477.52	SCNG	Polymictic conglomerate	Fine grained darker grey/green pebble conglomerate. Pebble clasts are mm-10cm in size and appear in trace amount of the rock. This unit is strongly silicified and has no magnetism. Fractures seem lighter than the bedding, possible alteration, and have slight ankerite alteration to them in some areas with a radiating orange/brown halo 1mm outwards. Pink silicified carbonate veinlets appear at 477m with strong hematite alteration and chlorite alteration along the margins. Unit has very weak magnetism favouring some veinlets. Trace very fine grained disseminated pyrite.
477.52	478.62	BX-M	Breccia	Unit starts off with the breccia described around 70m. It is composed of matrix supported angular fine grained pebble conglomerate clasts. The matrix is a silicified pink dolomitic vuggy unit that reacts weak-moderately to HCl along fragment margins as well as in the vuggy. Trace fine-grained pyrite favours the margins of the fragments and matrix. No magnetism. Large 10cm clast from pebble conglomerate at the end of this unit with strong hematite alteration around the margins of the fragment.
478.62	482.85	BX-F	Breccia	Fragment supported breccia that is fractured by very thin pink dolomite veinlets and quartz ankerite veinlets. From 478.6m- 481.39m the unit is minorly brecciated and only contains wispy slightly pale pink veinlets. This area is non-magnetic and contains very-fine grained trace disseminated pyrite. From 481.39m-482.85m it starts off with a 3mm blebby massive sulfide (pyrite +/- chalcopyrite) veinlet with strong hematite alteration on margins. From there, there is strong ankerite alteration creating a radiating orange/brown halo from fractures and veinlets. Patchy magnetism on few veinlets.
482.85	484.30	SCNG	Polymictic conglomerate	Fine grained dark grey/green pebble conglomerate. Pebble clasts are mm-2cm in size and appear in trace amount of the rock. This unit is strongly silicified and has no magnetism. wispy quartz ankerite veinlets through unit. Fractures and veinlets have ankerite alteration with a radiating orange/brown halo 3mm outwards. Unit has moderate patchy magnetism favouring some veinlets. Trace very fine grained disseminated pyrite.
484.30	503.99	BX-F	Breccia	From 484.30m-486.66m the breccia is fractured by quartz ankerite as well as pink silicified dolomite veinlets with strong radiating alteration halo of ankerite 2mm outwards from margins. From 8486.66m-490.05m the ankerite alteration becomes more severe making the rock mainly appear orange/brown in colour. There is strong chlorite and hematite alteration along the veinlets and fractures. Few veinlets react moderately to HCI. Unit is strongly silicified. From 492m-EOH the ankerite altered fractures take up 40% of the rock making it appear chaotically tiger striped. Trace-1% very fine grained pyrite along margins of the veinlets that collect in blebs in larger quartz/dolomite lenses throughout the breccia. Few magnetite veinlets show up at the 495m block with strong hematite alteration along the margins. Chlorite strongly alters this unit.
503.99	504.00	EOH	End of Hole	end of hole

amples: SM-21-02												
	Sample Information	on	Sample Interval				Analytical Results					
Sample Type	ALS Batch #	Sample ID	From (m)	To (m)	Length (m)		Sample Weight (kg)	Au (ppm)	Ag (ppm)		u (ppm) 🛛 F	
Core 1/2	SD22238064	D843087	51.00	52.07	1.07		2.06	<0.001	0.02		12.8 🔲	2.5
Core 1/2	SD22238064	D843088	52.07	53.05	0.98		1.72	<0.001	0.02		8.2	1
Core 1/2	SD22238064	D843089	53.05	54.00	0.95		2.07	<0.001	0.02		7.5	0.9
Core 1/2	SD22238064	D843090	54.00	54.97	0.97		1.96	< 0.001	<0.01	1.3 🗖	10.6	1.1
Core 1/2	SD22238064	D843091	54.97	55.98	1.01		2.00	<0.001	0.01	3.3	2.4	1.2
Core 1/2	SD22238064	D843092	55.98	57.00	1.02		1.69	<0.001	0.01	3.1	3.4	1
Core 1/2	SD22238064	D843093	57.00	58.01	1.01		1.83	<0.001	0.02	2.4	2.2	0.9
Core 1/2	SD22238064	D843094	58.01	59.04	1.03		1.73	<0.001	0.02	2.1	1.8	1
Core 1/2	SD22238064	D843095	59.04	60.00	0.96		2.35	<0.001	0.06	19.8	2.2 🛽	1.7
Core 1/2	SD22238064	D843096	60.00	60.96	0.96		1.72	0.001	0.03	19.7	6.5	1.1
Core 1/2	SD22238064	D843097	60.96	62.01	1.05		2.23	<0.001	0.01	1.9	1.2	0.9
Core 1/2	SD22238064	D843098	62.01	63.00	0.99		1.75	<0.001	0.01	1.4	1.2	0.9
QA/QC	SD22238064	D843099		OREAS 60c			0.07	2.51	5.17	21.9	77.8	18.3
QA/QC	SD22238064	D843100		BLANK			0.18	<0.001	0.02	1.3	1.3	1
Core 1/2	SD22238064	D843101	63.00	64.02	1.02		1.84	<0.001	0.01	1.7	0.9	0.9
Core 1/2	SD22238064	D843102	64.02	65.03	1.01		2.24	0.001	0.02		1.7	0.9
Core 1/2	SD22238064	D843103	65.03	66.00	0.97		2.08	<0.001	0.02		7	1.6
Core 1/2	SD22238064	D843104	66.00	67.08	1.08		2.27	<0.001	0.02	15.1	2.1	1.4
Core 1/2	SD22238064	D843105	67.08	67.99	0.91		1.75		0.03		7.8 🚺	2.2
Core 1/2	SD22238064	D843106	67.99	69.00	1.01		2.07	<0.001	0.03			1.3
Core 1/2	SD22238064	D843107	69.00	69.85	0.85		1.68	<0.001	0.02		4.3	1.2
Core 1/2	SD22238064	D843108	69.85	70.94	1.09		2.17		0.02		8.6	1.5
Core 1/2	SD22238064	D843109	70.94	72.00	1.06		2.31	<0.001	0.02		7.4	1.3
Core 1/2	SD22238064	D843110	72.00	73.01	1.01		2.15	<0.001	0.01		12	1.5
Core 1/2	SD22238064	D843111	73.01	74.02	1.01		2.03		0.06	_	1.9	2
Core 1/2	SD22238064	D843112	74.02	75.00	0.98		2.10		0.06		2.6	2.8
Core 1/2	SD22238064	D843112 D843113	75.00	75.99	0.99		2.10	<0.001	0.01		0.6	1.4
Core 1/2	SD22238064	D843114	75.99	76.96	0.97		2.01		0.06	_	2.5	2.2
Core 1/2	SD22238064	D843115	76.96	78.00	1.04		2.12	0.002	0.04		3.2	2.2
Core 1/2	SD22238064	D843116	78.00	79.01	1.01		1.98	0.003	0.04		2.9	2.3
Core 1/2	SD22238064	D843110 D843117	78.00	79.97	0.96		1.98		0.04		9.4	2.3
Core 1/2	SD22238064	D843117 D843118	79.97	81.00	1.03		1.94	0.000	0.04		12.3	1.3
Core 1/2	SD22238064	D843118 D843119	81.00	81.00	1.06		2.15	< 0.001	0.02		1.3	1.5
Core 1/2	SD22238064	D843119 D843120	81.00	82.00	0.87		1.68	0.001	0.01	_	6.3	1.0
Core 1/2	SD22238064 SD22238064	D843120 D843121	82.00	82.93 84.00	1.07		2.01	<0.001	0.03		5.4	1.4 1.4
Core 1/2	SD22238064 SD22238064	D843121 D843122	82.93	84.00 85.11	1.07		2.01	0.001	0.03		5.4 1 .6	1.4 1.8
Core 1/2 Core 1/2	SD22238064 SD22238064	D843122 D843123	143.03	85.11 144.00	0.97		1.85	<0.001	0.05		0.7	1.8 1
QA/QC	SD22238064 SD22238064	D843123 D843124		OREAS 60c	0.97		0.07	< 0.001	4.9	22	72.2	1
QA/QC QA/QC	SD22238064 SD22238064	D843124 D843125		BLANK			0.19	<0.001	0.01		2.1	1.3
Core 1/2	SD22238064 SD22238064	D843125 D843126	144.00	145.02	1.02			<0.001	0.01		1.1	0.9
	SD22238064 SD22238064	D843126 D843127					2.06		0.01		1.1	
Core 1/2			145.02	145.97	0.95		2.03	< 0.001	0.03		3.1	1.1
Core 1/2	SD22238064	D843128	145.97	147.00	1.03		2.18	0.001		_	-	1.3
Core 1/2	SD22238064	D843129	147.00	148.00	1.00		1.90	<0.001	0.01		8	1.2
Core 1/2	SD22238064	D843130	148.00	148.97	0.97		1.95	< 0.001	0.01		4.8	1
Core 1/2	SD22238064	D843131	148.97	150.00	1.03		2.08	0.001	0.01		4.7	1.2
Core 1/2	SD22238064	D843132	150.00	150.98	0.98		1.68	< 0.001	0.01		2.5	1.4
Core 1/2	SD22238064	D843133	150.98	152.05	1.07		1.89	0.002	0.03		4.2	1.7
Core 1/2	SD22238064	D843134	152.05	153.00	0.95		1.96	<0.001	0.02		3.1	2
Core 1/2	SD22238064	D843135	153.00	154.01	1.01		2.29	<0.001	0.02	2.8	3.4 🛽	1.7

	Sample Information	on		Sample Int	erval		Analytical Results					
Sample Type	ALS Batch #	Sample ID	From (m)	To (m)	Length (m)	Sample Weight (kg)	Au (ppm)	Ag (ppm)	As (ppm)	Cu (ppm)	Pb (ppm)	
Core 1/2	SD22238064	D843136	154.01	154.99	0.98	1.89	<0.001	0.03	2.9	5.5	1.9	
Core 1/2	SD22238064	D843137	154.99	156.00	1.01	1.92	<0.001	0.01 🛽	2	3.4	1.5	
Core 1/2	SD22238064	D843138	156.00	157.00	1.00	1.89	<0.001 🖡	0.02	1	2.7	0.9	
Core 1/2	SD22238064	D843139	157.00	158.01	1.01	1.99	<0.001	0.01	1.4	2.1	0.9	
Core 1/2	SD22238064	D843140	158.01	159.00	0.99	1.92	<0.001	0.01	1.2	2.2	0.9	
Core 1/2	SD22238064	D843141	159.00	160.00	1.00	1.80	<0.001	0.01	1.4	3	0.9	
Core 1/2	SD22238064	D843142	160.00	161.07	1.07	1.97	<0.001	0.02	0.8	3.3	0.9	
Core 1/2	SD22238064	D843143	161.07	162.00	0.93	1.88	< 0.001	<0.01	1	2.3	1	
Core 1/2	SD22238064	D843144	162.00	162.97	0.97	1.85	<0.001	0.01	0.9	1.8	1.1	
Core 1/2	SD22238064	D843145	162.97	164.02	1.05	2.14	<0.001	0.02 🚺	2.3	2.3	1.2	
Core 1/2	SD22238064	D843146	164.02	165.00	0.98	1.93	0.001 🖡	0.01 🛽	1.9	1.8	1.4	
Core 1/2	SD22238064	D843147	165.00	166.01	1.01	1.99	0.001	0.02 🛽	2.2	3.3	1.5	
Core 1/2	SD22238064	D843148	166.01	166.99	0.98	2.05	<0.001	0.01	0.5	3 🛽	1.5	
QA/QC	SD22238064	D843149	C	REAS 60c		0.07	2.6	4.69	18.6	71.2	18.8	
QA/QC	SD22238064	D843150		BLANK		0.18	<0.001	0.02	<0.2	1.6	1.3	
Core 1/2	SD22238064	D843151	166.99	168.00	1.01	1.98	<0.001	0.01	1.3	2.4	1.1	
Core 1/2	SD22238064	D843152	168.00	168.98	0.98	2.30	<0.001	<0.01	1.1	3	1.1	
Core 1/2	SD22238064	D843153	168.98	170.02	1.04	2.09	<0.001	0.02	2.9	2.6	1	
Core 1/2	SD22238064	D843154	170.02	171.00	0.98	2.39	<0.001	0.02	3.6	2.5	1.2	
Sampling from AY-2	2-02											
Number of ½	Core Samples	62										
Number of Q/	A/QC Samples	6										
Total Numb	er of Samples	68										

					Detailed Drill Log		
Hole ID:	AY-22-03						
Project Name:	Aylmer			Coordinate System	UTM NAD 83, Zone 17	Hole Type	Diamond Drill
Location:	Aylmer Townsh	hip		Coordinate Type	Actual	Hole Size	BTW
Claim Number	178761	r.		Northing (m)	5,189,090.99	Plugged	Yes
				Easting (m)	517,195.19	Casing	Left-in ground
Date Stated:	08/15/2022			Elevation (m)	300	Contractor	J & S Drilling
Date Completed:	08/21/2022			Azimuth	110°		On Site
Logged by: E				Dip	-51°	Core Location	(517,230 m E, 5,189,960 m
				r.			
Survey		Survey Type	Reflex, Single-shot				
		Depth (m)	Dip (°)	L.	Azimuth (°)		
		0	-51.00		110.00		
		51	-50.65		113.37		
		99	-50.20		114.31		
		150	-49.36		116.47		
		201	-48.61		118.08		
		252	-48.36		119.86		
		300	-47.40		121.45		
Lithology	_ / >						
From (m)	To (m)	Litho Code	Litho Name			Description	
0.00	5.27	CAS	Casing	Casing, no re	ecovery		
5.27	10.08	GWKY	Greywacke	and chlorite alteration al	alteration along the margins. Smoke	c. No reaction to HCl. Veinlet present that is 12 degrees y white in colour. Brecciated veins also with the hematit eins have blebs of pyrite along the margins, trace amoun ragments are mm scale up to 1cm.	e and chlorite
10.08	14.05	BX-F	Breccia	No reaction in one bleb alteration al	to HCl elsewhere. Vein content has h on a vein at 11.75m. At 12.44m there long fractures, and appears dioritic in	agment supported. Weak reaction to HCl on fractures of nematite and chlorite alteration along the margins. Pink e is a 16cm long clast (?). The clast is strongly silicified, ha n composition. The contact with the sediments on both s n (beds look wavy). Trace to 1% cubic, very fine grained	dolomite is collected is hematite ides has either
14.05	14.72	GWKY	Greywacke		Dark grey, fine grained, non magneti re mm scale up to 1cm. Pyrite also pr	c. No reaction to HCl. host rock has trace to 1% cubic pyr resent in blebs along fractures.	rite. Brecciated
14.72	25.43	BX-F	Breccia	both sides h grey/green i	as either ductile deformation or soft in colour compared to shallower dep	agment supported. No reaction with HCI. The contact wi sediment deformation (beds look wavy). The wavy bedo ths. Trace to 1% cubic, very fine grained pyrite. Unit has and fragments. Pyrite blebs along fractures and quartz	ling is more light brecciated quartz


Lithology (continued)				
From (m)	To (m)	Litho Code	Litho Name	Description
27.49	28.08	BX-F	Breccia	Fine grained, dark grey brecciated greywacke. Fragment supported. No reaction with HCl. The contact with the sediments on both sides has either ductile deformation or soft sediment deformation (beds look wavy). The wavy bedding is more light grey/green in colour compared to shallower depths. Trace to 1% cubic, very fine grained pyrite. Unit has brecciated quartz veining with strong chlorite alteration in the rock and fragments. Pyrite blebs along fractures and quartz material. Dioritic clasts present that range from mm to about 3cm in size.
28.08	29.91	SCNG	Polymictic conglomerate	Matrix supported pebble conglomerate. Clasts are trace amounts and range from mm-1cm in size. Surrounded. Non magnetic. Strongly chlorite altered. No reaction to HCI. Trace to 1% blebby/cubic pyrite. Colour of bedding is dark grey and unit is fine grained.
29.91	40.21	BX-F	Breccia	Fine grained, dark grey brecciated greywacke. Fragment supported. No reaction with HCl. Non magnetic. The contact with the sediments on both sides has either ductile deformation or soft sediment deformation (beds look wavy). The wavy bedding is more light grey/green in colour compared to shallower depths. Trace to 1% cubic, very fine grained pyrite. Unit has brecciated quartz veining with strong chlorite alteration in the rock and fragments. Pyrite blebs along fractures and quartz material. Dioritic clasts present that range from mm to about 3cm in size. About 8m long brecciated quartz vein at 36.7m that measures 15 degrees to CA. Has strong chlorite alteration along margins and along fractures. Orangey red alteration (hematite?) that also collects in fractures.
40.21	41.17	SCNG	Polymictic conglomerate	Matrix supported pebble conglomerate. Clasts are trace amounts and range from mm-1cm in size, subrounded. Non magnetic. Strongly chlorite altered. No reaction to HCI. Trace to 1% blebby/cubic pyrite. Colour of bedding is dark grey and unit is fine grained.
41.17	55.82	BX-F	Breccia	Fine grained, dark grey brecciated greywacke. Fragment supported. No reaction with HCl. Non magnetic. The contact with the sediments on both sides has either ductile deformation or soft sediment deformation (beds look wavy). The wavy bedding is more light grey/green in colour compared to shallower depths. Trace cubic, very fine grained pyrite. Pyrite also collects along margins of veinlets throughout the breccia. Unit has brecciated quartz veining with strong chlorite alteration in the rock and fragments. Pyrite blebs along fractures and quartz material. Dioritic and granitic clasts present that range from mm to about 3cm in size. Dioritic clasts are white and speckled black, and the granitic clasts are red and speckled black. Near contact with p-seds there is a brecciated veinlet that reacts strongly with HCl, has hematite alteration along margins, and is a sugary texture (potentially calcite?).
55.82	68.85	SCNG	Polymictic conglomerate	Matrix supported pebble conglomerate. Clasts are trace amounts and range from mm-5cm in size. Clasts are subrounded. Non magnetic. Strongly chlorite altered. No reaction to HCl. Trace to 1% blebby/cubic pyrite. Colour of bedding is dark grey and unit is fine grained. Significant amount of veinlets throughout the unit that react moderately with HCl along fractures and margins. There are two types, first is a quartz carbonate veinlet with pink dolomite in it which is also strongly altered with chlorite along margins and fractures and are 30 degrees to CA, also have hematite alteration along margins, pyrite collects in trace blebs along margins. Second type is white, very thin veinlets that don't react to HCl, are likely just quartz.
68.85	69.44	BX-F	Breccia	Fine grained, dark grey brecciated greywacke. Fragment supported. No reaction with HCl. Non magnetic. The contact with the sediments on both sides has either ductile deformation or soft sediment deformation (beds look wavy). The wavy bedding is more light grey/green in colour compared to shallower depths. Trace cubic, very fine grained pyrite. Pyrite blebs along fractures. Dioritic and granitic clasts present that range from mm to about 3cm in size. Dioritic clasts are white and speckled black, and the granitic clasts are red and speckled black.


Lithology (continued)				
From (m)	To (m)	Litho Code	Litho Name	Description
69.44	71.61	SCNG	Polymictic conglomerate	Matrix supported pebble conglomerate. Clasts are trace amounts and range from mm-5cm in size. Clasts are subrounded. Non magnetic. Strongly chlorite altered. No reaction to HCI. Trace to 1% blebby/cubic pyrite. Colour of bedding is dark grey and unit is fine grained.
71.61	73.03	BX-F	Breccia	Fine grained, medium grey, slightly blue brecciated greywacke. Fragment supported. No reaction with HCl. Non magnetic. Trace cubic, very fine grained pyrite. Pyrite blebs along fractures. Dioritic and granitic clasts present that range from mm to about 3cm in size. Dioritic clasts are white and speckled black, and the granitic clasts are red and speckled black.
73.03	86.87	SCNG	Polymictic conglomerate	Matrix supported pebble conglomerate. Clasts are about 5% and range from mm-5cm in size. Clasts are subrounded and non magnetic. Strongly chlorite altered. No reaction to HCI. Trace to 1% blebby/cubic pyrite. Blebby pyrite collects along margins of veinlets/veins. Colour of bedding is dark grey and unit is fine grained. There are quartz veinlets throughout unit, two types. First is quartz with chlorite alteration along fractures and margins of the veins. Second type is quartz with dolomite blebs throughout, has chlorite and hematite alteration along margins. Veins are generally oriented 30 degrees to CA. Potentially some sediment clasts present.
86.87	93.22	BX-F	Breccia	Fine grained, dark grey brecciated greywacke. Lightens in colour moving down the hole. Fragment supported. No reaction with HCl. Non magnetic. Trace cubic, very fine grained pyrite. Pyrite blebs along fractures. Dioritic and granitic clasts present that range from mm to about 3cm in size. Dioritic clasts are white and speckled black, and the granitic clasts are red and speckled black. Fractures at 87.57m look to have an alteration halo around them causing a light brown colour radiating about 2mm outward. That colour turns into an orange brown going further down hole. Ankerite alteration potentially? Hematite alteration around fractured veinlets. At 90.65m the unit becomes strongly fractured and blocky (poor recovery?). Within the blocky section there is a 3cm vein with 15% fine grained blebby pyrite with hematite alteration along margins and chlorite alteration along margins and fractures. The unit ends in a lighter grey/slightly blue colour.
93.22	134.35	SCNG	Polymictic conglomerate	Unit starts off a medium grey, fine grained, matrix supported pebble conglomerate. Unit and clasts are non magnetic. Clasts are dioritic and granitic and potentially sedimentary in composition. They range from mm to 5cm in diameter. There is a 3cm quartz vein at 96.5m that is 35 degrees to CA, has chlorite alteration along fractures and margins, no visible sulfides. There are a few quartz ankerite veinlets that have blebs of dolomite with chlorite alteration along fractures. The bedding in areas becomes really wavy (ductile deformation/soft sediment deformation?). In these areas the bedding is a lighter grey/green in colour, unsure if due to alteration. Around the 123m block, there are a few 1cm quartz ankerite veins that make the bedding in the area that lighter grey/green colour as well. At the 132m block to the end of the unit/becomes brecciated, there is weak hematite alteration along the fractures. Trace disseminated very fine grained pyrite which is cubic in some places.
134.35	134.74	BX-F	Breccia	Medium grey blue brecciated pebble conglomerate with mm to 1cm clasts. Fragment supported. Fractured by carbonate veinlets that react strongly to HCl and appear to be chlorite altered along the margins as well as hematite altered. Trace very fine grained pyrite that favours the veinlet margins and fractures.

Lithology (continued)				
From (m)	To (m)	Litho Code	Litho Name	Description
134.74	139.70	SCNG	Polymictic conglomerate	Unit is medium grey, slight green in colour, fine grained, matrix supported pebble conglomerate. Unit and clasts are non magnetic. Clasts are dioritic and granitic and potentially sedimentary in composition. They range from mm to 2cm in diameter. Chlorite and sericite alteration at the beginning of the unit and at the contact with the breccia. The bedding in areas around the sericite alteration becomes really wavy (ductile deformation/soft sediment deformation?). In these areas the bedding is a lighter grey/green in colour, unsure if due to alteration. Trace disseminated very fine grained pyrite which is cubic in some places. Trace speckled biotite alteration making a speckled black pattern on the core. Weak reaction to HCl along few fractures, where the break is actually exposed.
139.70	140.02	BX-F	Breccia	Small area of brecciated pebble conglomerate. Fractures are infilled with strong chlorite alteration, making a dark grey spider webby type of break, sericite alteration along both sides of contact. Blebby pyrite favouring the chlorite altered infill. Weak magnetism along the chlorite altered material. No reaction with HCI.
140.02	163.77	SCNG	Polymictic conglomerate	Unit is medium grey, slight green in colour, fine grained, matrix supported pebble conglomerate. Unit and clasts are non magnetic. Clasts are dioritic and granitic and potentially sedimentary in composition. They range from mm to 2cm in diameter. Chlorite and sericite alteration patchy throughout unit, roughly every 3m. The bedding in areas around the sericite alteration becomes really wavy (ductile deformation/soft sediment deformation?). In these areas the bedding is a lighter grey/green in colour, unsure if due to alteration. Trace disseminated very fine grained pyrite which is cubic in some places. Trace speckled biotite alteration making a speckled black pattern on the core. Weak reaction to HCl along few fractures, where the break is actually exposed. At the 150m block there is a 4cm pinkish-white quartz vein that is 35 degrees to the core axis, has strong hematite alteration throughout, along fractures and margins. Chlorite alteration along margins. Does not react to HCl. Blebs of pyrite and chalcopyrite along margins and fractures. At 150.72m there is another pinkish white quartz vein (2cm width this time) and one at 152.36m which is 1cm wide. Trace very fine grained pyrite favouring fractures and margins of quartz veins.
163.77	167.90	BX-F	Breccia	chl + ser sheared bx-f. Light grey green, fine grained brecciated pebble conglomerate. Strongly altered by chlorite and sericite which causes change in colour. There seems to be 2 different types of veinlets, one is calcite with chlorite along margins. The second is hematite altered quartz ankerite which radiates a light orange brown colour for about 1mm outward along margins. Trace pyrite which prefers veinlet margins. Non magnetic. Dioritic and granitic clasts which range from mm to 2cm in size. At the end of the unit, it returns to a dark grey and is no longer altered by chlorite and sericite.
167.90	181.41	SCNG	Polymictic conglomerate	Unit is medium grey, slight green in colour, fine grained, matrix supported pebble conglomerate. Unit and clasts are non magnetic. Clasts are dioritic and granitic and potentially sedimentary in composition. They range from mm to 2cm in diameter. Trace disseminated very fine grained pyrite which is cubic in some places. Trace speckled biotite alteration making a speckled black pattern on the core. Weak reaction to HCl along few fractures, where the break is actually exposed. Chlorite altered veinlets wisping throughout the unit.
181.41	182.03	GWKY	Greywacke	sed - sandy bed. Light grey green in colour, fine grained. No reaction to HCl. Trace very fine grained pyrite. Weakly magnetic, patchy (magnetite?).
182.03	186.41	SCNG	Polymictic conglomerate	Unit is medium grey, slight green in colour, fine grained, matrix supported pebble conglomerate. Unit and clasts are non magnetic. Clasts are dioritic and granitic and potentially sedimentary in composition. They range from mm to 2cm in diameter. Trace disseminated very fine grained pyrite which is cubic in some places. Trace speckled biotite alteration making a speckled black pattern on the core. No reaction to HCI. Chlorite altered veinlets wisping throughout the unit.

hology (continued) From (m)	To (m)	Litho Code	Litho Name	Description
From (m) 186.41	187.17	BX-F	Breccia	Light grey green, fine grained brecciated pebble conglomerate. First 25cm is strongly altered by chlorite and sericite which causes change in colour. Calcite veinlets present with chlorite alteration along margins. Second type of veinlet is also calcite with hematite alteration along margins, these are larger in size than the first type. Both types react strongly with HCl. Chlorite infilling along fractures. Trace pyrite which prefers veinlet margins. Non magnetic. Dioritic and granitic clasts which range from mm to 2cm in size.
187.17	205.53	SCNG	Polymictic conglomerate	Unit is medium grey, slight green in colour, fine grained, matrix supported pebble conglomerate. Unit and clasts are non magnetic. Clasts are dioritic and granitic and potentially sedimentary in composition. They range from mm to 2cm in diameter. Trace disseminated very fine grained pyrite which is cubic in some places. Trace speckled biotite alteration making a speckled black pattern on the core. No reaction to HCl. Chlorite altered veinlets wisping throughout the unit. Calcite veinlets wisping through unit also which react moderately with HCl. At 189.50m as well as 190.7m and 192.93m there are 5cm sections of strongly chlorite and sericite altered areas making the core appear a lighter grey green colour. There is a 2cm quartz carbonate vein at 196.34m that has chlorite alteration along margins and is oriented 35 degrees to CA and reacts strongly to HCl, with blebby chalcopyrite and pyrite within the vein. There is another 2cm vein at 198.54m that is also 35 degrees to CA with blebby pyrite along margins and sericite and chlorite alteration in blebs along the margin as well.
205.53	256.70	GWKY	Greywacke	wackie Unit is dark grey, fine grained with bedding that ranges from 1-7mm. There are multiple areas that are about 50cm- 1m with very blocky content, a large number of chlorite slip planes and poor recovery (possible small fault zones?). Vey thin white quartz carbonate appear in trace-1% throughout the rock that react strongly to HCl. Some exposed fractures also react strongly to HCl. Lighter grey, green colour wavy beds show up in areas lasting up to 30cm showing ductile deformation/soft sediment deformation(?) Possible relation to Sudbury Breccia (same characteristics)(?). Trace very fine-grained pyrite from 205.53m-231.00m and then contains trace-1% of the same fine grained as well as blebs collecting in fractures for the rest of the unit. Chlorite strongly alters the whole unit. Unit is non-magnetic for the most part but shows very weak magnetism in spotty areas (cannot figure out what it is related to). Unit becomes lighter grey/green at 252.47m with blocky, strongly chlorite alteration sections on both ends of the colour transition (possibly something on both ends caused this alteration(?)). Bedding in areas is hard to see/hard to measure. Ones that are measurable are in these areas: 213.76m = 28 degrees to CA 216m = 22 degrees to CA 234m = 15 degrees to CA 239.2m = 14 degrees to CA
256.70	257.60	BX-F	Breccia	Light grey/green brecciated greywacke small section. Chlorite altered infill between fragments making a wispy black/green colour separating the fragments. The contacts on both end of the breccia is composed of very wavy altering light grey/green and dark grey beds. Section has weak magnetism, preferring darker, chlorite altered infill. Weak reaction to HCl on fractures. Trace-1% blebs of pyrite collecting along fractures.
257.60	267.32	GWKY	Greywacke	wackie unit is dark grey, fine grained with bedding that ranges from 1-5mm. Vey thin white quartz carbonate appear in trace- 1% throughout the rock that react strongly to HCI. Some exposed fractures also react strongly to HCI. Lighter grey, green colour wavy beds show up in areas lasting up to 30cm showing ductile deformation/soft sediment deformation(?) Possible relation to Sudbury Breccia (same characteristics)(?). Trace very fine-grained pyrite as well as blebs collecting along fractures (visible on chlorite slip planes). Chlorite strongly alters the whole unit. Unit is non-magnetic for the most part but shows very weak magnetism in spotty areas (cannot figure out what it is related to). Trace subrounded-rounded dioritic (white and speckled black) clasts in section. Bedding: 264.35m = 20 degrees to CA

Lithology (continued)													
From (m)	To (m)	Litho Code		Litho Name		Description							
267.32	267.99	BX-F		Breccia	black/green colour separating the fragments.	hall section. Chlorite altered infill between fragments making a wispy The contacts on both end of the breccia is composed of very wavy altering light weak magnetism, preferring darker, chlorite altered infill. No reaction to HCI. tures.							
267.99	299.99	GWKY		Greywacke	throughout the rock that react strongly to HCI. Some exposed fractures also react strongly to HCI. Lighter grey, green colour wavy beds show up in areas lasting up to 30cm showing ductile deformation/soft sediment deformation(?) Possible relation to Sudbury Breccia (same characteristics)(?). Trace very fine-grained pyrite as well as blebs collecting along fractures (visible on chlorite slip planes). Chlorite strongly alters the whole unit. Unit is non-magnetic. Trace subrounded-rounded sediment (light grey/green) clasts in rection. Around 276m, unit becomes slightly lighter in colour and contains two 1cm quartz carbonate veins. The first one is mosaic brecciated, with mm-1cm fragments. Chlorite strongly alters the margins. Reacts strongly to HCl. Non magnetic. Second is also slightly brecciated and contains pink silicified carbonate (dolomite within). Veir reacts strongly to HCl and has chlorite and sericite alteration along margins and creates a halo 3mm outwards of a green/light grey colour. Both measure 30 degrees to CA. From 282m-283.78m recovery is very weak, content is still greywacke but very broken, blocky and strongly altered by chlorite. After 283.78m, when the recovery improves, the bedding is very ductile deformed/soft sediment deformed and beds are wavy and alternate from light grey/green and medium grey. Unit returns to the description at the start. Bedding: 276m = 22 degrees to ca 283.78m = 15 degrees to ca 293.79m = 16 degrees to ca								
299.99	300.00	EOH		End of Hole	End of hole								
Samples: SM-21-03				1									
Comula Trus	Sample Inform		Commite ID	Fuery ()	Sample Interval	Analytical Results							
Sample Type	ALS Batch No Samples T		Sample ID	From (m)	m) To (m) Length (m) Sample Weight (kg) Au (ppm) Ag (ppm) As (ppm) Cu (ppm) Pb (ppm) No Samples Taken 0 </td								
	NO Samples I	arell			Summary of Sampling from AY-22-01								
Number of ½ Cor	e Samples	0			Summary of Sampling from AT-22-01								
Number of QA/Q	•	0											
Total Number of	· · ·	0											
		÷											

Appendix C: Analytical Certificates

Contents

1. Ana	alytical Certificate	2
1.1	SD22128706	2
1.2	SD22236507	8
1.3	SD22238064	22
1.4	SD22255045	
2. QC	Certificates	
2.1	SD22128706	
2.2	SD22236507	
2.3	SD22238064	70
2.4	SD22255045	84

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: TRANSITION METALS CORP. 9C - 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5

Page: 1 Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 4-JUN-2022 Account: TRAMET

CERTIFICATE SD22128706

Project: Aylmer

This report is for 7 samples of Rock submitted to our lab in Sudbury, ON, Canada on 17-MAY-2022.

The following have access to data associated with this certificate:

GREG COLLINS	THOMAS HART	GRANT MOURRE
BEN WILLIAMS		

	SAMPLE PREPARATION
ALS CODE	DESCRIPTION
WEI-21	Received Sample Weight
LOG-21	Sample logging – ClientBarCode
LOG-23	Pulp Login – Rcvd with Barcode
CRU-31	Fine crushing – 70% <2mm
SPL-21	Split sample – riffle splitter
PUL-31	Pulverize up to 250g 85% <75 um
CRU-21	Crush entire sample
CRU-QC	Crushing QC Test
PUL-QC	Pulverizing QC Test

	ANALYTICAL PROCEDURE	S
ALS CODE	DESCRIPTION	INSTRUMENT
ME-MS61	48 element four acid ICP-MS	
ME-OG62	Ore Grade Elements – Four Acid	ICP-AES
Cu-OG62 Au-ICP21	Ore Grade Cu – Four Acid Au 30g FA ICP-AES Finish	ICP-AES

This is the Final Report and supersedes any preliminary report with this certificate number.Results apply to samples as submitted.All pages of this report have been checked and approved for release. ***** See Appendix Page for comments regarding this certificate *****

Signature: Saa Traxler, Director, North Vancouver Operations

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: TRANSITION METALS CORP. 9C − 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5

Page: 2 - A Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 4-JUN-2022 Account: TRAMET

Project: Aylmer

Sample Description	Method Analyte Units LOD	WEI–21 Recvd Wt. kg 0.02	CRU-QC Pass2mm % 0.01	PUL-QC Pass75um % 0.01	Au-ICP21 Au ppm 0.001	ME-MS61 Ag ppm 0.01	ME-MS61 Al % 0.01	ME-MS61 As ppm 0.2	ME-MS61 Ba ppm 10	ME-MS61 Be ppm 0.05	ME-MS61 Bi ppm 0.01	ME-MS61 Ca % 0.01	ME-MS61 Cd ppm 0.02	ME-MS61 Ce ppm 0.01	ME-MS61 Co ppm 0.1	ME-MS61 Cr ppm 1
X924613 X924614 X924615 X924616 X924617		0.60 1.08 1.47 0.06 0.19	79.6	89.9 87.1	<0.001 <0.001 <0.001 0.004 <0.001	0.28 0.18 0.04 5.01 0.07	7.76 7.38 7.10 6.41 0.17	2.2 1.6 1.8 9.1 0.5	70 30 70 320 10	1.35 0.83 1.23 1.73 0.07	0.22 0.11 0.05 82.6 0.08	0.50 0.86 1.97 0.46 0.02	0.60 0.36 0.15 0.71 0.18	82.9 57.3 67.4 77.3 4.35	5.3 1.1 1.6 30.2 0.3	160 112 109 65 22
X924618 X924619		2.10 1.74			<0.001 <0.001	0.03 0.03	7.92 7.62	7.5	60 20	1.26 1.24	0.06 0.03	2.31 0.31	0.07	28.4 47.5	6.1 15.0	121 128

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: TRANSITION METALS CORP. 9C - 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5

Page: 2 - B Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 4-JUN-2022 Account: TRAMET

Project: Aylmer

Sample Description	Method	ME-MS61														
	Analyte	Cs	Cu	Fe	Ga	Ge	Hf	In	K	La	Li	Mg	Mn	Mo	Na	Nb
	Units	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm
	LOD	0.05	0.2	0.01	0.05	0.05	0.1	0.005	0.01	0.5	0.2	0.01	5	0.05	0.01	0.1
X924613		0.09	8.0	0.31	21.2	<0.05	4.0	0.014	0.32	40.0	0.7	0.19	98	0.68	7.50	10.3
X924614		0.13	6.0	0.40	16.50	0.06	3.5	0.008	0.17	28.1	0.8	0.34	187	0.63	6.80	5.3
X924615		0.25	9.7	1.72	18.45	0.08	3.2	0.017	1.02	31.9	1.6	0.89	590	0.60	4.62	5.5
X924616		5.20	>10000	8.51	17.70	0.12	2.7	1.425	1.91	39.5	29.4	1.71	1115	1.05	0.19	11.4
X924617		0.14	9.3	0.33	0.48	<0.05	0.9	0.005	0.04	2.3	6.7	0.01	40	1.76	0.05	0.5
X924618		0.14	2.3	0.93	20.8	<0.05	3.4	0.006	0.48	12.1	1.9	1.07	377	0.23	6.91	6.8
X924619		0.26	3.1	6.43	25.4	0.09	3.2	0.012	0.19	22.9	13.9	3.27	200	0.75	3.90	6.8

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: TRANSITION METALS CORP. 9C - 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5

Page: 2 - C Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 4-JUN-2022 Account: TRAMET

Project: Aylmer

Sample Description	Method	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61
	Analyte	Ni	P	Pb	Rb	Re	S	Sb	Sc	Se	Sn	Sr	Ta	Te	Th	Ti
	Units	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%
	LOD	0.2	10	0.5	0.1	0.002	0.01	0.05	0.1	1	0.2	0.2	0.05	0.05	0.01	0.005
X924613		8.3	530	36.7	11.2	<0.002	0.05	1.08	11.0	<1	1.6	54.4	0.93	<0.05	15.20	0.437
X924614		10.9	1160	20.7	5.5	<0.002	0.01	0.61	6.7	<1	0.6	57.6	0.54	<0.05	11.70	0.289
X924615		38.9	680	5.9	35.7	<0.002	0.01	0.44	14.3	<1	0.5	62.7	0.47	<0.05	8.22	0.230
X924616		29.4	550	130.0	122.5	<0.002	1.77	1.37	10.3	20	25.3	32.0	0.87	<0.05	13.10	0.323
X924617		1.6	10	9.4	1.8	<0.002	0.01	0.19	0.3	<1	0.2	2.2	0.08	<0.05	1.20	0.012
X924618 X924619		43.2 107.0	590 640	3.9 4.8	10.5 6.8	<0.002 <0.002	0.04 0.01	0.72 0.68	18.4 17.7	<1 <1	0.8	66.9 23.5	0.75 0.66	<0.05 <0.05	8.90 12.55	0.414 0.248

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: TRANSITION METALS CORP. 9C - 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5

Page: 2 - D Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 4-JUN-2022 Account: TRAMET

Project: Aylmer

Sample Description	Method Analyte Units LOD	ME-MS61 TI ppm 0.02	ME-MS61 U ppm 0.1	ME-MS61 V ppm 1	ME-MS61 W ppm 0.1	ME-MS61 Y ppm 0.1	ME-MS61 Zn ppm 2	ME-MS61 Zr ppm 0.5	Cu-OG62 Cu % 0.001	
X924613 X924614 X924615 X924616 X924617		0.03 0.02 0.06 0.69 0.02	1.9 1.5 1.1 2.5 0.4	146 58 111 77 2	3.9 0.6 0.6 11.9 0.1	11.2 7.8 6.7 20.9 1.4	154 88 33 462 48	147.5 127.5 116.5 98.3 24.7	1.540	
X924618 X924619		0.04 0.04	1.0 4.9	125 151	1.0 0.7	9.6 13.6	20 22	123.5 117.0		

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: TRANSITION METALS CORP. 9C - 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5

Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 4-JUN-2022 Account: TRAMET

Project: Aylmer

		CERTIFICATE COMMENTS		
	REEs may not be totally soluble in thi	ANALYTICAL CO	MMENTS	
Applies to Method:	ME-MS61			
		LABORATORY AD	DDRESSES	
Applies to Method:	Processed at ALS Sudbury located at CRU-21	1351-B Kelly Lake Road, Unit #1, Sud CRU-31	bury, ON, Canada. CRU-QC	LOG-21
Applies to Method.	LOG-23 WEI-21	PUL-31	PUL-QC	SPL-21
	Processed at ALS Vancouver located a			
Applies to Method:	Au-ICP21	Cu-OG62	ME-MS61	ME-OG62

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: TRANSITION METALS CORP. 9C - 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5

Page: 1 Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 19-SEP-2022 Account: TRAMET

CERTIFICATE SD22236507

Project: Aylmer

This report is for 86 samples of 1/2 Core submitted to our lab in Sudbury, ON, Canada on 22-AUG-2022.

The following have access to data associated with this certificate:

GREG COLLINS SARAH REESE	THOMAS HART BEN WILLIAMS	GRANT MOURRE

	SAMPLE PREPARATION	
ALS CODE	DESCRIPTION	
WEI-21	Received Sample Weight	
LOG-21	Sample logging – ClientBarCode	
CRU-QC	Crushing QC Test	
PUL-QC	Pulverizing QC Test	
LOG-23	Pulp Login – Rcvd with Barcode	
CRU-31	Fine crushing – 70% <2mm	
SPL-21	Split sample – riffle splitter	
PUL-31	Pulverize up to 250g 85% <75 um	

ANALYTICAL PROCEDURES

ALS CODE	DESCRIPTION	INSTRUMENT
Au-ICP21	Au 30g FA ICP-AES Finish	ICP-AES
ME-MS61	48 element four acid ICP-MS	

This is the Final Report and supersedes any preliminary report with this certificate number.Results apply to samples as submitted.All pages of this report have been checked and approved for release. ***** See Appendix Page for comments regarding this certificate *****

Signature: Saa Traxler, Director, North Vancouver Operations

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: TRANSITION METALS CORP. 9C - 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5

Page: 2 – A Total # Pages: 4 (A – D) Plus Appendix Pages Finalized Date: 19-SEP-2022 Account: TRAMET

Project: Aylmer

	Method	WEI-21	Au-ICP21	ME-MS61												
	Analyte	Recvd Wt.	Au	Ag	Al	As	Ва	Be	Bi	Ca	Cd	Ce	Со	Cr	Cs	Cu
Sample Description	Units	kg	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm
	LOD	0.02	0.001	0.01	0.01	0.2	10	0.05	0.01	0.01	0.02	0.01	0.1	1	0.05	0.2
D843001		2.10	0.001	0.03	7.98	2.1	360	2.02	0.15	1.12	<0.02	62.5	15.2	129	2.52	6.0
D843002		2.08	<0.001	0.01	8.05	0.8	100	1.82	0.01	1.08	<0.02	68.8	4.9	127	0.62	1.6
D843003		1.87	<0.001	0.01	8.24	0.7	100	1.68	0.08	1.38	<0.02	78.6	5.6	122	0.72	2.5
D843004		1.74	<0.001	<0.01	7.26	0.8	60	1.42	0.02	2.11	<0.02	97.6	4.2	114	0.44	5.7
D843005		1.80	<0.001	0.01	6.25	3.6	80	1.16	0.14	4.66	<0.02	78.4	13.1	88	0.54	2.9
D843006		1.51	<0.001	0.01	5.51	2.4	50	0.72	0.02	2.14	<0.02	56.4	8.4	72	0.44	2.7
D843007		2.25	<0.001	<0.01	5.91	3.5	40	0.66	0.04	2.03	<0.02	40.1	15.1	75	0.37	2.3
D843008		1.62	<0.001	0.01	6.12	2.3	50	0.86	0.06	1.91	<0.02	57.5	10.3	92	0.42	1.2
D843009		0.76	<0.001	0.03	6.81	4.2	80	0.89	0.11	1.04	<0.02	39.7	16.1	88	0.66	2.3
D843010		1.54	<0.001	0.02	6.53	4.3	80	0.99	0.05	1.04	<0.02	36.0	14.5	182	0.89	4.6
D843011		1.61	<0.001	0.01	6.82	1.2	110	0.98	0.02	0.48	<0.02	86.3	2.3	436	1.92	1.7
D843012		2.16	<0.001	0.02	6.90	1.3	100	1.12	0.02	0.27	<0.02	36.0	2.8	358	1.19	1.1
D843013		2.11	<0.001	0.01	7.69	4.6	100	1.25	0.06	0.64	<0.02	68.6	23.0	313	1.17	2.3
D843014		1.88	<0.001	0.02	5.76	66.8	30	0.59	0.21	2.19	<0.02	35.4	400	63	0.30	7.8
D843015		1.86	<0.001	0.01	5.61	2.9	60	0.79	0.09	2.10	<0.02	36.1	12.0	86	0.59	2.1
D843016		2.14	<0.001	0.02	6.55	1.9	80	0.88	0.06	1.88	<0.02	56.2	9.0	93	0.60	1.9
D843017		1.61	<0.001	0.01	5.07	1.6	90	0.81	0.04	2.30	<0.02	49.6	5.9	75	0.74	1.9
D843018		1.66	<0.001	<0.01	5.50	1.0	90	0.78	0.06	2.17	<0.02	37.3	6.5	89	0.79	2.0
D843019		1.93	<0.001	0.01	5.35	2.3	70	0.89	0.09	2.34	<0.02	36.8	7.8	90	0.63	2.3
D843020		2.04	0.001	0.03	6.38	2.4	60	0.92	0.39	1.91	<0.02	51.3	14.1	85	0.77	7.3
D843021		1.18	<0.001	0.01	6.80	1.1	40	0.85	0.07	1.77	<0.02	51.6	6.4	89	0.39	8.2
D843022		2.06	<0.001	0.01	6.07	2.8	70	0.86	0.07	1.70	<0.02	35.7	8.7	85	0.66	3.4
D843023		2.03	0.001	<0.01	5.83	4.1	90	0.79	0.09	1.79	<0.02	31.1	11.6	90	0.83	2.6
D843024		0.15	<0.001	0.01	0.16	1.4	20	0.07	0.02	0.02	<0.02	3.75	0.4	27	0.15	1.0
D843025		0.06	2.42	4.78	5.48	20.5	360	1.00	0.09	4.19	0.38	24.7	11.4	25	6.43	73.2
D843026		0.10	0.001	0.02	0.04	0.3	<10	<0.05	<0.01	0.01	<0.02	2.61	0.1	1	<0.05	1.1
D843027		2.13	0.001	0.01	6.33	3.7	100	0.90	0.18	1.76	<0.02	50.5	17.6	111	0.88	2.3
D843028		2.00	<0.001	<0.01	7.03	2.2	30	0.90	0.09	1.93	<0.02	60.6	15.2	98	0.21	2.5
D843029		2.16	<0.001	0.01	5.48	1.5	30	0.65	0.08	1.77	<0.02	72.8	11.3	88	0.33	1.2
D843030		1.66	<0.001	<0.01	5.46	1.6	50	0.83	0.02	2.24	<0.02	61.2	4.7	96	0.41	1.4
D843031		2.07	<0.001	<0.01	6.70	1.7	50	0.92	0.04	1.73	<0.02	70.5	6.4	115	0.45	1.7
D843032		1.79	<0.001	0.02	6.74	2.6	50	1.18	0.07	1.69	<0.02	108.5	9.1	114	0.40	4.9
D843033		2.14	0.019	0.02	6.07	49.5	30	0.65	0.99	1.32	<0.02	53.5	429	75	0.27	5.8
D843034		2.39	< 0.001	0.01	5.82	1.7	40	0.83	0.03	2.36	< 0.02	41.1	5.1	92	0.32	3.0
D843035		2.09	<0.001	0.01	6.59	0.7	50	1.12	0.03	1.29	<0.02	24.8	3.3	96	0.35	4.6
D843036		1.46	<0.001	0.01	7.77	2.0	80	1.54	0.04	1.84	<0.02	68.9	10.6	138	0.55	3.2
D843037		1.84	< 0.001	< 0.01	5.69	2.4	60	0.93	0.02	2.28	< 0.02	60.3	5.6	95	0.38	1.8
D843038		2.21	<0.001	<0.01	5.12	4.7	40	0.69	0.03	2.43	<0.02	32.8	14.2	82	0.36	1.6
D843039		2.09	< 0.001	< 0.01	6.62	0.9	90	1.10	0.02	1.52	< 0.02	141.0	2.5	100	0.55	1.9
D843040		2.25	<0.001	<0.01	5.76	0.9	50	0.84	0.01	2.24	<0.02	38.3	3.0	98	0.39	1.7

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: TRANSITION METALS CORP. 9C - 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5

Page: 2 - B Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 19-SEP-2022 Account: TRAMET

Project: Aylmer

	Method	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61
	Analyte	Fe	Ga	Ge	Hf	In	К	La	Li	Mg	Mn	Мо	Na	Nb	Ni	Р
Commits Description	Units	%	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm
Sample Description	LOD	0.01	0.05	0.05	0.1	0.005	0.01	0.5	0.2	0.01	5	0.05	0.01	0.1	0.2	10
D843001		3.22	18.95	0.13	3.2	0.035	1.70	31.1	5.9	0.91	244	3.22	4.18	4.4	53.2	650
D843002		2.57	22.2	0.14	3.4	0.010	0.60	32.3	7.4	0.87	235	0.75	6.11	4.9	61.7	720
D843003		1.40	21.0	0.16	3.5	0.015	0.71	38.7	4.7	0.74	291	0.91	6.26	5.6	45.6	850
D843004		1.05	18.95	0.16	3.2	0.009	0.60	46.6	2.9	0.95	281	1.17	5.90	6.7	19.4	760
D843005		1.88	14.95	0.16	2.4	0.020	0.61	39.4	1.9	2.05	668	6.50	4.42	5.6	18.0	580
D843006		1.24	11.50	0.15	2.1	0.011	0.42	28.0	2.0	0.72	399	1.50	4.22	4.0	15.2	540
D843007		1.08	11.90	0.12	2.2	0.008	0.40	19.7 27.9	1.9	0.84	315	1.57	4.54 4.68	4.5 5.6	14.4 15.9	510
D843008		1.23 0.97	13.35 13.35	0.12 0.11	2.5 2.5	0.012 0.014	0.46 0.70	19.9	2.4 1.8	0.83 0.26	456 183	1.68 1.92	4.87	5.6	15.9	550 510
D843009 D843010		0.80	14.25	0.10	2.5	0.014	1.03	18.0	1.6	0.20	173	2.71	4.31	5.0	13.0	450
		0.50	18.45	0.13	3.2	0.008	2.19	43.5	2.2	0.26	94	2.00	3.99	5.5	8.6	310
D843011		0.51	17.45	0.13	2.9	0.008	1.70	43.5 18.6	1.8	0.26	94 65	1.41	3.99 4.26	5.8	7.6	350
D843012 D843013		0.52	20.0	0.11	3.2	0.007	1.88	33.5	2.2	0.15	117	1.41	4.20 5.01	5.8 7.0	13.9	620
D843013 D843014		2.87	10.00	0.10	2.4	0.010	0.46	17.2	2.1	0.92	437	3.48	4.45	3.0	83.8	640
D843014 D843015		0.95	10.60	0.10	2.3	0.010	0.40	17.7	1.4	0.90	408	3.24	4.05	4.6	12.0	450
D843016		0.90	14.25	0.10	2.6	0.009	0.72	27.0	1.4	0.81	352	1.96	4.74	5.5	10.4	470
D843016 D843017		1.04	14.25	0.10	2.0	0.003	0.72	23.6	1.4	0.81	455	1.43	3.67	4.5	12.3	400
D843017 D843018		1.04	11.60	0.10	2.3	0.011	0.86	17.1	1.7	0.92	492	2.26	3.93	4.9	11.0	470
D843019		1.04	11.75	0.12	2.1	0.010	0.70	17.3	1.4	0.97	503	2.25	4.19	4.8	10.2	440
D843020		1.09	13.35	0.12	2.5	0.011	1.05	24.4	3.3	0.84	435	1.87	4.47	5.0	12.0	530
D843021		0.87	14.60	0.11	2.8	0.013	0.57	24.7	1.9	0.70	415	8.03	5.49	5.9	9.9	590
D843022		1.05	13.05	0.10	2.3	0.014	0.63	16.9	1.6	0.70	466	2.22	4.34	4.9	13.6	490
D843023		1.11	11.85	0.10	2.4	0.013	0.71	15.0	1.7	0.76	468	2.25	4.03	5.5	15.9	440
D843024		0.54	0.48	<0.05	0.8	<0.005	0.05	2.0	6.5	0.01	62	1.96	0.04	0.5	1.1	20
D843025		3.21	11.65	0.10	1.7	0.050	2.44	11.4	42.7	0.98	723	6.63	0.93	2.4	11.3	660
D843026		0.02	0.16	<0.05	1.0	<0.005	0.01	1.4	1.9	<0.01	<5	0.05	0.01	0.2	0.3	10
D843027		1.12	13.30	0.13	2.5	0.014	0.82	23.5	1.8	0.78	406	2.26	4.32	5.8	22.5	510
D843028		0.92	14.55	0.14	2.9	0.008	0.32	30.2	1.7	0.89	278	9.08	5.80	5.8	14.8	580
D843029		0.81	11.15	0.13	2.2	0.006	0.27	36.1	1.2	0.77	336	3.43	4.49	4.3	13.3	420
D843030		0.87	13.40	0.11	2.4	0.006	0.33	29.0	1.2	1.02	283	2.15	4.54	5.3	13.9	460
D843031		0.73	15.15	0.12	2.8	0.007	0.42	33.7	1.2	0.79	228	2.34	5.28	6.3	11.7	550
D843032		0.80	16.60	0.16	2.8	0.010	0.50	53.3	1.4	0.79	242	3.18	5.18	6.2	11.7	520
D843033		4.12	12.50	0.12	2.5	0.005	0.44	26.5	1.1	0.57	201	4.70	4.63	3.2	95.9	300
D843034		0.87	13.45	0.11	2.4	0.006	0.50	19.4	1.2	1.04	312	1.88	4.70	5.1	11.6	520
D843035		0.63	14.60	0.06	2.8	0.005	0.69	12.0	1.7	0.61	190	2.61	4.77	5.4	13.0	490
D843036		0.82	20.3	0.10	3.3	0.009	1.37	33.0	2.3	0.89	250	2.60	4.95	7.8	16.9	540
D843037		0.82	13.75	0.11	2.4	0.005	0.55	28.6	1.3	1.08	260	1.98	4.45	5.0	13.0	440
D843038		0.89	12.00	0.08	2.1	0.006	0.37	15.3	0.8	1.07	319	1.89	4.44	4.3	12.5	390
D843039		0.67	15.00	0.17	2.5	0.008	0.66	68.0	1.5	0.72	228	1.94	4.90	5.8	13.0	570
D843040		0.77	13.05	0.09	2.4	0.006	0.50	18.7	1.1	1.05	262	1.90	4.60	5.4	10.3	470

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: TRANSITION METALS CORP. 9C - 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5

Page: 2 - C Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 19-SEP-2022 Account: TRAMET

Project: Aylmer

	Method	ME-MS61														
	Analyte	Pb	Rb	Re	S	Sb	Sc	Se	Sn	Sr	Та	Te	Th	Ti	TI	U
Sample Description	Units	ppm	ppm	ppm	%	ppm	%	ppm	ppm							
Sample Description	LOD	0.5	0.1	0.002	0.01	0.05	0.1	1	0.2	0.2	0.05	0.05	0.01	0.005	0.02	0.1
D843001		1.7	84.6	<0.002	0.07	0.36	15.2	<1	1.8	40.6	0.42	<0.05	12.25	0.157	0.29	5.3
D843002		1.6	23.9	<0.002	0.01	0.33	17.4	<1	1.4	47.4	0.49	<0.05	13.25	0.158	0.08	4.1
D843003		1.5	26.9	<0.002	0.01	0.35	17.5	<1	1.3	51.2	0.57	<0.05	14.70	0.162	0.08	3.9
D843004		1.4	14.0	<0.002	0.01	0.37	16.1	<1	0.9	46.4	0.65	0.05	11.25	0.194	0.05	2.3
D843005		1.3	20.4	<0.002	0.06	0.28	34.6	1	0.8	57.1	0.52	<0.05	8.65	0.162	0.05	2.8
D843006		1.5	11.8	<0.002	0.01	0.29	15.9	<1	0.5	40.2	0.35	<0.05	5.77	0.133	0.04	1.2
D843007		1.6	9.7	<0.002	0.03	0.34	11.7	<1	0.5	54.7	0.40	<0.05	6.34	0.165	0.03	1.4
D843008		1.6	12.8	<0.002	0.04	0.42	11.8	<1	0.6	61.0	0.53	<0.05	7.62	0.219	0.04	1.6
D843009		1.7	26.3	<0.002	0.01	0.36	9.7	<1	0.6	44.5	0.49	<0.05	7.68	0.204	0.08	1.8
D843010		3.5	32.5	<0.002	0.05	0.66	13.0	<1	0.7	45.5	0.47	<0.05	7.50	0.202	0.07	1.7
D843011		1.6	56.1	<0.002	<0.01	0.38	16.2	<1	0.8	30.2	0.51	<0.05	9.65	0.192	0.12	1.7
D843012		1.3	51.4	<0.002	<0.01	0.39	13.9	<1	0.8	29.9	0.54	<0.05	8.36	0.225	0.12	2.1
D843013		1.4	56.7	<0.002	0.12	0.52	14.2	1	0.9	43.9	0.63	<0.05	9.14	0.289	0.12	2.4
D843014		2.1	9.3	<0.002	2.34	0.33	6.7	5	0.3	61.9	0.26	0.09	6.71	0.115	0.03	2.2
D843015		1.8	19.9	<0.002	0.09	0.42	10.4	<1	0.5	58.7	0.42	<0.05	6.48	0.185	0.06	1.6
D843016		2.0	24.2	<0.002	0.06	0.49	11.6	1	0.7	65.5	0.51	<0.05	8.27	0.231	0.08	1.6
D843017		1.8	24.1	<0.002	0.03	0.32	10.4	<1	0.6	55.8	0.42	<0.05	5.32	0.183	0.09	1.1
D843018		1.6	25.0	<0.002	0.04	0.37	10.2	<1	0.5	52.7	0.43	<0.05	6.01	0.196	0.09	1.2
D843019		1.8	17.6	<0.002	0.05	0.43	10.3	1	0.5	62.2	0.42	<0.05	5.29	0.199	0.07	1.0
D843020		1.8	22.0	<0.002	0.03	0.47	10.1	<1	0.6	54.7	0.46	0.08	7.24	0.209	0.07	1.5
D843021		1.4	12.0	<0.002	0.03	0.57	9.1	<1	0.7	70.9	0.55	<0.05	7.02	0.247	0.03	1.9
D843022		1.6	24.2	<0.002	0.05	0.48	10.0	<1	0.6	52.8	0.44	<0.05	6.91	0.204	0.08	1.4
D843023		1.7	29.7	<0.002	0.09	0.44	9.8	<1	0.6	47.0	0.49	<0.05	7.68	0.214	0.10	1.6
D843024		1.3	1.7	<0.002	<0.01	0.19	0.3	<1	<0.2	2.5	0.07	< 0.05	0.99	0.011	0.02	0.3
D843025		19.7	93.2	0.002	0.88	2.20	13.8	1	0.8	283	0.12	2.74	2.77	0.286	0.93	0.7
D843026		0.9	0.2	<0.002	0.01	<0.05	0.2	<1	<0.2	2.4	<0.05	<0.05	0.27	0.006	<0.02	0.2
D843027		1.8	33.0	<0.002	0.16	0.49	11.2	1	0.6	54.1	0.51	0.06	8.60	0.241	0.10	1.7
D843028		1.6	7.6	<0.002	0.13	0.57	12.3	1	0.7	78.7	0.53	<0.05	8.58	0.247	0.02	2.2
D843029		1.8	7.7	<0.002	0.09	0.46	9.1	1	0.5	56.2	0.40	<0.05	7.19	0.187	0.03	1.4
D843030		1.8	11.6	<0.002	0.03	0.48	12.8	<1	0.7	50.0	0.48	<0.05	7.60	0.216	0.05	1.5
D843031		1.7	15.0	<0.002	0.05	0.53	12.0	1	0.8	57.3	0.60	<0.05	9.77	0.272	0.05	1.9
D843032		1.7	14.3	<0.002	0.13	0.52	11.9	1	0.9	68.5	0.58	<0.05	11.65	0.253	0.04	2.2
D843033		2.1	9.5	0.005	4.20	0.34	6.7	9	0.4	62.3	0.30	0.24	8.11	0.128	0.03	2.9
D843034		1.7	11.9	<0.002	0.03	0.48	11.8	<1	0.7	63.0	0.45	<0.05	7.47	0.207	0.03	1.4
D843035		1.3	19.0	<0.002	0.02	0.47	9.5	<1	0.9	71.9	0.52	<0.05	8.58	0.229	0.05	2.3
D843036		1.6	41.8	<0.002	0.08	0.54	18.2	<1	1.5	83.8	0.75	< 0.05	12.45	0.318	0.08	2.3
D843037		2.0	15.2	< 0.002	0.03	0.46	11.6	<1	0.8	66.6	0.47	< 0.05	7.00	0.205	0.04	1.3
D843038		1.7	8.6	<0.002	0.08	0.40	10.3	<1	0.6	57.6	0.38	< 0.05	5.44	0.180	0.04	1.1
D843039		1.8	23.9	< 0.002	0.01	0.46	10.9	<1	0.8	57.5	0.48	< 0.05	14.05	0.231	0.06	2.1
D843040		1.7	13.4	<0.002	0.02	0.50	11.1	<1	0.7	56.8	0.48	<0.05	9.21	0.221	0.03	1.7

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: TRANSITION METALS CORP. 9C - 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5

Page: 2 - D Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 19-SEP-2022 Account: TRAMET

Project: Aylmer

Sample Description	Method Analyte Units LOD	ME-MS61 V ppm 1	ME-MS61 W ppm 0.1	ME-MS61 Y ppm 0.1	ME-MS61 Zn ppm 2	ME-MS61 Zr ppm 0.5	CRU-QC Pass2mm % 0.01	PUL-QC Pass75um % 0.01	
D843001 D843002 D843003		106 125 125	0.8 0.5 0.7	12.8 12.9 13.3	<2 <2 <2	118.0 126.5 127.0	70.2	97.9 98.3	
D843004 D843005		109 93	0.7 0.8	11.3 13.1	<2 <2	116.5 88.3			
D843006 D843007 D843008		60 58 83	0.4 0.5 0.5	6.1 6.3 7.1	2 2 2	81.5 80.0 91.9			
D843009 D843010		67 208	0.6 0.5	6.2 5.7	<2 3	93.4 93.2			
D843011 D843012 D843013		493 435 393	0.6 0.6 0.8	5.8 5.4 7.4	<2 <2 <2	115.5 110.0 122.0			
D843014 D843015 D843016		45 69 103	0.4 0.3 0.6	6.9 6.2 6.7	<2 2 2	84.8 85.5 96.0			
D843017 D843018 D843019		78 69 75	0.3 0.3 0.4	5.2 5.5 5.1	2 2 2	78.8 84.6 79.9			
D843020 D843021		68 73	0.4 0.6	7.4 8.2	2	90.7			
D843022 D843023 D843024 D843025		77 64 3 107	0.4 0.3 0.1 3.2	6.0 6.4 1.3 10.7	2 2 2 93	86.6 90.6 20.2 66.8			
D843026 D843027 D843028		1 78 73	<0.1 0.3 0.8	2.1 7.2 9.0	2 <2 <2	34.7 96.1 110.0			
D843029 D843030		66 87	0.4 0.4	6.2 6.8	2 <2	81.6 89.4			
D843031 D843032 D843033 D843034		101 104 52 84	0.5 0.9 0.5 0.6	8.3 8.9 6.3 6.7	<2 <2 <2 <2	102.0 102.5 92.7 91.7			
D843035 D843036		87 212	0.7	6.9 10.2	<2	101.0			
D843037 D843038 D843039		90 73 95	0.6 0.4 0.5	6.7 4.9 8.9	2 2 2	85.4 78.4 92.7		96.9	
D843040		77	0.5	7.2	2	88.4	72.9	97.2	

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: TRANSITION METALS CORP. 9C - 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5

Page: 3 - A Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 19-SEP-2022 Account: TRAMET

Project: Aylmer

	Method	WEI-21	Au-ICP21	ME-MS61	ME-MS61	ME-MS61	ME-MS61 Ba	ME-MS61 Be	ME-MS61 Bi	ME-MS61	ME-MS61 Cd	ME-MS61 Ce	ME-MS61 Co	ME-MS61	ME-MS61	ME-MS61 Cu
	Analyte	Recvd Wt. kg	Au ppm	Ag ppm	Al %	As ppm	ва ppm	ррт	ррт	Ca %	ppm	ppm	ppm	Cr ppm	Cs ppm	ppm
Sample Description	Units LOD	0.02	0.001	0.01	0.01	0.2	10	0.05	0.01	0.01	0.02	0.01	0.1	1	0.05	0.2
D843041	200	2.15	<0.001	<0.01	6.22	1.9	50	0.89	0.02	1.84	<0.02	43.2	5.1	95	0.36	2.0
D843041 D843042		1.69	<0.001	0.01	6.82	7.9	50 60	0.89	0.02	1.73	<0.02	22.1	21.6	113	0.38	2.0
D843042 D843043		2.25	< 0.001	<0.01	5.67	2.9	30	0.34	0.10	1.94	<0.02	32.9	7.5	97	0.38	1.1
D843043 D843044		1.88	<0.001	<0.01	6.19	3.3	30	0.70	0.02	1.41	<0.02	15.15	7.8	82	0.23	1.4
D843045		2.24	< 0.001	< 0.01	5.51	1.3	20	0.68	0.02	2.02	<0.02	10.85	5.1	85	0.33	2.3
D843046		2.33	<0.001	<0.01	5.56	1.5	40	0.75	0.04	2.28	<0.02	29.5	6.4	86	0.38	6.8
D843047		2.00	<0.001	<0.01	5.99	1.0	40	0.87	0.02	2.38	<0.02	43.2	2.9	100	0.29	1.7
D843048		1.79	<0.001	0.01	6.63	3.0	40	0.83	0.04	2.09	<0.02	190.5	13.8	97	0.23	1.9
D843049		0.17	<0.001	0.01	0.20	0.9	20	0.07	0.02	0.02	<0.02	4.17	0.4	27	0.14	0.9
D843050		0.06	2.54	4.86	5.55	20.6	360	0.92	0.09	4.19	0.35	25.6	11.4	25	5.93	75.6
D843051		0.11	<0.001	0.02	0.04	<0.2	<10	<0.05	0.01	0.01	<0.02	2.61	0.1	1	<0.05	0.7
D843052		2.08	<0.001	0.03	6.38	5.2	30	0.84	0.09	2.72	<0.02	373	39.5	86	0.17	1.1
D843053		2.11	<0.001	0.01	5.94	11.0	40	0.79	0.17	2.35	<0.02	10.95	73.1	91	0.34	4.6
D843054		2.11	<0.001	<0.01	5.89	2.1	40	0.84	0.03	2.05	<0.02	21.9	7.0	102	0.32	2.5
D843055		2.12	<0.001	<0.01	7.54	1.4	80	1.29	0.04	2.03	<0.02	62.2	5.9	114	0.41	1.2
D843056		1.93	<0.001	<0.01	8.20	0.8	70	1.23	0.04	1.82	<0.02	124.0	1.6	123	0.39	0.9
D843057		1.95	<0.001	0.14	7.39	2.4	40	1.06	0.03	3.66	<0.02	7.94	3.8	107	0.17	0.6
D843058		1.97	<0.001	<0.01	7.96	3.1	140	1.62	0.05	4.08	<0.02	494	6.8	131	0.45	1.6
D843059		2.05	<0.001	<0.01	8.05	2.2	120	1.77	0.05	3.41	<0.02	4.44	8.2	124	0.56	0.8
D843060		1.88	<0.001	<0.01	8.27	1.7	70	1.37	0.03	2.34	<0.02	3.94	3.3	125	0.26	2.0
D843061		1.90	< 0.001	< 0.01	8.89	2.3	110	1.76	0.03	2.08	< 0.02	60.6	4.0	136	0.61	2.1
D843062		1.79	< 0.001	< 0.01	7.21	1.4	40	1.16	0.02	3.59	< 0.02	70.3	2.1	105 110	0.24	8.2
D843063		1.93	< 0.001	< 0.01	6.97 7.27	1.8	40 120	1.06 1.39	0.03 0.02	3.28 3.20	< 0.02	96.8 94.0	1.9 1.9	110	0.20 0.39	2.0
D843064 D843065		2.02 1.87	<0.001 <0.001	<0.01 0.01	9.04	1.1 0.9	120	1.39	0.02	3.20 2.32	<0.02 <0.02	94.0 131.5	5.0	134	0.39	3.1 2.5
D843066		2.01	0.001	<0.01	7.59	6.2	90	1.23	0.14	3.40	<0.02	49.2	30.6	101	0.40	5.5
D843067		1.80	< 0.001	< 0.01	8.50	4.2	270	2.31	0.05	3.55	< 0.02	79.6	3.0	136	1.42	1.6
D843068		1.86	0.001	< 0.01	8.17	1.3	240	2.64	0.03	3.26	< 0.02	84.5	1.8	133	1.19	0.8
D843069		1.85	<0.001	<0.01	9.08	1.9	210	2.52	0.03	2.54	<0.02	78.8	1.0	143	1.05	<0.2
D843070		2.12	<0.001	<0.01	8.94	0.7	190	2.72	0.02	2.59	<0.02	63.5	1.4	142	0.74	<0.2
D843071		1.72	<0.001	<0.01	9.25	1.9	180	2.49	0.03	2.58	<0.02	69.2	1.6	145	0.70	<0.2
D843072		2.27	<0.001	0.01	8.88	0.7	140	2.54	0.01	2.17	<0.02	80.8	2.0	143	0.53	2.1
D843073		2.05	<0.001	0.01	8.18	0.6	120	2.26	0.09	2.78	<0.02	78.1	2.6	132	0.63	1.2
D843074		0.07	2.48	4.73	5.44	19.8	350	0.92	0.09	4.14	0.36	25.2	10.6	26	5.74	72.3
D843075		0.18	<0.001	0.01	0.22	0.3	20	0.08	0.02	0.06	<0.02	5.19	0.4	32	0.17	0.6
D843076		1.65	< 0.001	<0.01	8.80	0.6	110	2.40	0.02	2.18	<0.02	77.9	2.4	137	0.65	0.3
D843077		2.37	< 0.001	0.01	9.23	0.4	190	2.50	0.01	1.51	< 0.02	72.9	6.7	146	1.22	0.2
D843078		1.94	< 0.001	0.01	9.44	2.6	220	2.84	0.01	1.73	< 0.02	98.4	9.4	157	1.26	0.7
D843079		1.87	< 0.001	< 0.01	9.25	1.2	160	2.87	0.01	1.26	< 0.02	66.6	10.4	158	0.97	0.2
D843080		1.85	<0.001	<0.01	9.16	1.1	100	2.79	0.01	1.72	<0.02	100.5	9.8	151	0.74	0.4

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: TRANSITION METALS CORP. 9C - 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5

Page: 3 – B Total # Pages: 4 (A – D) Plus Appendix Pages Finalized Date: 19–SEP–2022 Account: TRAMET

Project: Aylmer

Sample Description	Method Analyte Units LOD	ME-MS61 Fe % 0.01	ME-MS61 Ga ppm 0.05	ME-MS61 Ge ppm 0.05	ME-MS61 Hf ppm 0.1	ME-MS61 In ppm 0.005	ME-MS61 K % 0.01	ME-MS61 La ppm 0.5	ME-MS61 Li ppm 0.2	ME-MS61 Mg % 0.01	ME-MS61 Mn ppm 5	ME-MS61 Mo ppm 0.05	ME-MS61 Na % 0.01	ME-MS61 Nb ppm 0.1	ME-MS61 Ni ppm 0.2	ME-MS61 P ppm 10
D843041		0.72	13.15	0.11	2.5	0.005	0.59	20.7	1.4	0.84	255	1.76	4.57	5.3	12.9	490
D843042		0.78	15.30	0.08	2.8	0.005	0.79	10.1	1.4	0.79	239	1.98	5.03	6.4	17.5	580
D843043		0.69	12.75	0.10	2.1	0.010	0.52	16.1	0.8	0.87	247	2.86	4.31	4.9	11.3	410
D843044		0.68	11.50	0.08	2.0	0.006	0.49	7.0	1.9	0.67	225	3.12	4.80	3.9	14.1	410
D843045		0.70	10.75	0.06	2.3	0.006	0.41	4.9	1.0	0.90	270	3.66	4.45	4.0	10.3	390
D843046		0.88	9.63	0.08	2.1	0.008	0.39	13.3	1.2	1.00	416	3.09	4.37	4.2	8.9	420
D843047		0.84	12.10	0.16	2.3	0.005	0.39	19.2	1.2	1.08	349	2.91	4.57	4.9	11.4	450
D843048		0.77	13.75	0.23	2.6	<0.005	0.39	86.7	0.9	0.93	259	7.35	5.30	4.8	9.1	480
D843049		0.61	0.49	<0.05	0.8	<0.005	0.04	2.1	6.3	0.02	67	1.88	0.05	0.6	0.8	20
D843050		3.23	11.45	<0.05	1.7	0.051	2.46	11.6	40.8	0.99	725	6.88	0.94	2.4	10.1	660
D843051		0.02	0.07	<0.05	1.0	<0.005	0.01	1.4	1.8	<0.01	<5	<0.05	0.01	0.1	<0.2	10
D843052		1.06	14.30	0.37	2.5	0.005	0.34	158.0	0.9	1.19	298	6.89	5.64	4.2	17.9	620
D843053		1.17	11.85	0.09	2.3	<0.005	0.53	4.4	1.6	1.07	298	4.09	4.50	3.9	32.2	450
D843054		0.85	11.45	0.11	2.4	<0.005	0.47	9.4	1.4	0.95	260	3.35	4.46	4.5	17.0	410
D843055		0.68	21.1	0.16	3.1	<0.005	0.82	27.2	1.5	0.91	252	2.29	5.62	7.4	11.8	690
D843056		0.61	22.3	0.23	3.5	0.006	0.67	55.5	1.2	0.79	227	1.23	6.56	9.0	8.9	810
D843057		1.00	17.45	0.12	3.1	<0.005	0.46	3.1	0.9	1.63	357	1.84	5.80	7.3	14.4	710
D843058		1.16	24.1	0.53	3.6	0.007	1.42	209	1.9	1.74	434	0.80	6.06	10.6	25.8	1020
D843059		0.92	24.0	0.13	3.6	0.008	1.64	1.5	1.8	1.48	353	0.44	5.72	9.7	16.6	840
D843060		0.68	21.9	0.13	3.5	<0.005	0.80	1.4	1.1	0.99	248	0.74	6.41	9.4	11.3	900
D843061		0.70	25.0	0.18	3.8	0.010	1.01	25.4	1.6	0.90	241	0.57	6.78	11.1	14.4	920
D843062		1.07	17.60	0.16	3.3	0.005	0.42	30.5	1.2	1.57	442	1.66	6.09	6.8	11.4	810
D843063		1.06	16.80	0.20	3.5	0.008	0.37	42.4	1.0	1.36	486	1.09	6.30	6.6	14.1	730
D843064		1.05	21.2	0.24	3.9	0.008	0.97	38.4	1.4	1.37	359	0.85	5.90	6.6	13.6	840
D843065		1.39	27.5	0.26	4.5	0.015	1.46	58.7	5.6	1.32	366	0.22	6.31	6.1	54.0	790
D843066		1.70	19.70	0.16	3.4	0.012	0.88	21.4	4.1	1.57	565	0.91	6.17	5.7	42.7	730
D843067		1.69	25.2	0.18	3.7	0.072	2.08	34.6	3.9	1.52	863	0.44	5.36	9.8	35.6	840
D843068		1.34	26.2	0.17	3.4	0.025	1.79	37.1	4.6	1.60	461	0.45	5.50	8.3	51.6	870
D843069		1.02	25.2	0.22	3.7	0.029	1.62	35.4	2.6	1.16	495	1.34	6.14	9.0	24.3	860
D843070		1.33	25.5	0.20	3.7	0.022	1.26	28.3	3.8	1.28	417	0.32	6.40	6.3	45.1	800
D843071		1.11	25.5	0.22	3.7	0.020	1.19	30.3	2.4	1.16	407	0.28	6.76	6.1	35.6	850
D843072		2.06	26.0	0.18	3.7	0.018	0.88	35.5	5.0	1.21	366	0.17	6.71	5.3	71.6	870
D843073		1.70	23.3	0.18	3.4	0.020	0.92	33.8	3.5	1.36	395	0.23	6.46	5.9	41.9	830
D843074		3.19	11.30	0.14	1.7	0.051	2.41	11.4	39.7	0.97	722	6.55	0.92	2.3	10.1	660
D843075		0.55	0.61	0.12	0.9	<0.005	0.05	2.6	6.3	0.02	76	2.21	0.07	0.8	0.8	30
D843076		1.91	24.6	0.16	3.6	0.015	0.80	36.0	4.9	1.20	335	0.23	6.76	7.0	57.1	730
D843077		3.53	27.4	0.19	3.5	0.016	1.25	34.7	8.9	1.41	235	0.18	5.78	5.6	100.5	860
D843078		4.15	27.6	0.20	3.7	0.021	1.35	48.3	6.3	1.55	350	0.18	5.98	5.1	91.1	810
D843079		4.29	25.1	0.15	3.9	0.014	0.98	31.6	5.5	1.46	278	0.14	6.54	5.4	74.3	780
D843080		3.35	25.9	0.19	3.8	0.011	0.79	48.7	5.6	1.43	359	1.34	6.78	5.6	90.3	760

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: TRANSITION METALS CORP. 9C - 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5

Page: 3 - C Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 19-SEP-2022 Account: TRAMET

Project: Aylmer

|--|

	Method	ME-MS61														
	Analyte	Pb	Rb	Re	S	Sb	Sc	Se	Sn	Sr	Та	Te	Th	Ti	TI	U
Sample Description	Units	ppm	ppm	ppm	%	ppm	%	ppm	ppm							
Sample Description	LOD	0.5	0.1	0.002	0.01	0.05	0.1	1	0.2	0.2	0.05	0.05	0.01	0.005	0.02	0.1
D843041		1.7	14.4	<0.002	0.04	0.46	10.5	<1	0.8	63.6	0.49	<0.05	8.73	0.224	0.03	1.9
D843042		1.5	18.5	<0.002	0.19	0.63	12.1	<1	1.0	69.0	0.57	<0.05	10.30	0.266	0.04	3.0
D843043		1.1	11.2	<0.002	0.07	0.45	9.5	<1	0.7	68.8	0.41	<0.05	6.03	0.192	0.03	1.7
D843044		1.5	9.1	<0.002	0.07	0.43	6.1	<1	0.6	75.3	0.37	<0.05	6.64	0.160	0.03	2.0
D843045		1.3	5.9	<0.002	0.04	0.41	7.6	<1	0.6	71.8	0.38	<0.05	5.31	0.176	0.02	1.3
D843046		2.5	8.4	<0.002	0.05	0.42	10.1	<1	0.5	70.9	0.39	<0.05	7.02	0.176	0.03	1.4
D843047		1.7	10.1	0.002	0.02	0.44	11.1	<1	0.7	70.6	0.45	<0.05	8.02	0.201	0.04	1.7
D843048		1.8	7.3	0.003	0.07	0.43	10.0	<1	0.6	75.1	0.43	<0.05	23.9	0.193	0.03	2.3
D843049		1.2	1.9	<0.002	<0.01	0.21	0.4	<1	<0.2	2.6	0.07	<0.05	1.37	0.015	0.02	0.6
D843050		20.4	100.0	0.004	0.89	2.20	13.5	1	0.8	284	0.12	2.82	2.66	0.287	0.90	0.7
D843051		0.7	0.2	0.003	0.01	<0.05	0.2	<1	<0.2	2.3	<0.05	<0.05	0.29	0.006	0.02	0.2
D843052		2.0	3.5	0.002	0.24	0.39	10.7	1	0.6	100.0	0.39	<0.05	23.1	0.164	0.03	3.6
D843053		2.2	9.8	0.003	0.42	0.38	11.3	1	0.6	87.4	0.37	0.05	6.68	0.157	0.05	1.7
D843054		2.0	10.5	0.002	0.04	0.41	9.6	<1	0.6	85.2	0.40	<0.05	7.72	0.171	0.04	1.6
D843055		1.4	20.4	0.003	0.02	0.62	14.6	<1	1.4	79.3	0.66	<0.05	12.90	0.294	0.06	2.2
D843056		1.4	19.1	0.003	0.01	0.77	15.7	<1	1.4	74.6	0.80	<0.05	15.45	0.348	0.07	2.9
D843057		0.9	10.0	0.002	0.03	0.56	16.7	<1	1.0	97.2	0.67	<0.05	8.25	0.299	0.04	2.2
D843058		2.1	22.0	<0.002	0.04	0.62	17.5	<1	2.3	110.0	0.88	<0.05	42.8	0.404	0.05	4.4
D843059		0.9	25.9	0.003	0.04	0.63	18.7	<1	2.1	94.4	0.86	<0.05	6.36	0.395	0.06	2.4
D843060		0.9	18.5	0.003	0.02	0.74	15.4	<1	1.4	87.7	0.81	<0.05	9.25	0.379	0.06	2.4
D843061		1.3	29.5	0.003	0.03	0.81	16.8	<1	1.8	84.2	0.93	<0.05	14.45	0.434	0.10	3.0
D843062		1.2	7.5	0.002	0.01	0.62	15.0	<1	0.9	77.7	0.62	<0.05	11.10	0.294	0.04	2.1
D843063		1.2	6.1	0.002	<0.01	0.61	13.6	<1	0.8	73.3	0.59	<0.05	9.69	0.298	0.04	1.7
D843064		1.1	24.2	<0.002	<0.01	0.42	15.5	<1	1.2	73.0	0.58	<0.05	10.40	0.261	0.07	2.1
D843065		1.3	42.5	<0.002	0.01	0.48	19.5	<1	1.3	74.9	0.60	<0.05	12.55	0.274	0.12	2.8
D843066		1.3	18.5	0.002	0.18	0.45	15.5	1	0.8	85.2	0.56	0.05	8.44	0.237	0.07	2.6
D843067		1.1	66.0	0.005	0.02	0.48	22.2	<1	1.8	69.2	0.81	<0.05	12.95	0.298	0.19	3.4
D843068		1.3	50.0	<0.002	0.01	0.44	23.6	<1	2.4	69.4	0.74	<0.05	12.40	0.251	0.16	3.6
D843069		1.1	58.9	0.002	0.01	0.45	23.3	<1	2.4	56.1	0.76	<0.05	15.10	0.271	0.18	4.1
D843070		1.1	43.9	<0.002	<0.01	0.42	22.3	<1	2.6	58.8	0.61	<0.05	14.40	0.225	0.14	4.1
D843071		1.1	42.7	<0.002	0.01	0.43	23.8	<1	2.5	62.9	0.60	<0.05	14.65	0.206	0.14	4.3
D843072		1.2	31.1	<0.002	<0.01	0.45	22.3	<1	2.4	52.6	0.53	<0.05	14.95	0.175	0.11	4.0
D843073		1.3	26.2	0.002	0.01	0.43	21.5	<1	2.1	50.0	0.55	< 0.05	12.20	0.181	0.10	3.8
D843074		19.4	99.0	0.004	0.87	2.10	13.5	1	0.7	281	0.12	2.73	2.61	0.283	0.87	0.7
D843075		1.1	2.4	<0.002	<0.01	0.14	0.4	<1	<0.2	3.5	0.12	<0.05	1.46	0.016	0.02	0.4
D843076		1.2	32.9	< 0.002	< 0.01	0.68	22.3	<1	2.2	50.6	0.60	< 0.05	14.30	0.209	0.10	4.2
D843077		1.3	76.5	0.004	< 0.01	0.35	25.0	<1	2.9	46.2	0.50	< 0.05	16.65	0.177	0.20	5.3
D843078		1.5	80.8	<0.002	0.01	0.31	27.1	<1	2.8	66.8	0.47	0.05	17.00	0.187	0.24	5.4
D843079		1.6	57.0	0.002	<0.01	0.27	24.5	<1	2.0	68.4	0.50	< 0.05	16.95	0.164	0.15	5.8
D843080		1.8	46.8	<0.002	0.01	0.28	23.8	<1	1.7	78.0	0.50	<0.05	16.55	0.171	0.11	5.9

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: TRANSITION METALS CORP. 9C - 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5

Page: 3 - D Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 19-SEP-2022 Account: TRAMET

Project: Aylmer

Sample Description	Method Analyte Units LOD	ME-MS61 V ppm 1	ME-MS61 W ppm 0.1	ME-MS61 Y ppm 0.1	ME-MS61 Zn ppm 2	ME-MS61 Zr ppm 0.5	CRU-QC Pass2mm % 0.01	
D843041		89	0.6	7.0	2	91.9		
D843042		114	0.9	8.4	<2	105.5		
D843043		85	0.7	6.4	<2	81.4		
D843044		51	0.5	4.9	2	73.6		
D843045		50	0.7	4.9	<2	81.4		
D843046		56	0.4	5.7	6	80.7		
D843047		74	0.5	6.7	2	85.7		
D843048		64	0.8	9.5	2	95.4		
D843049		3	0.1	1.5	3	23.3		
D843050		108	3.1	11.0	93	69.3		
D843051		<1	<0.1	2.1	2	36.2		
D843052		56	1.1	11.2	2	94.3		
D843053		75	0.6	5.7	3	81.8		
D843054		78	0.6	5.7	4	89.5		
D843055		159	1.2	10.0	<2	122.5		
D843056		141	1.7	12.9	<2	131.5		
D843057		125	1.8	10.9	<2	114.5		
D843058		223	1.4	18.1	<2	135.5	76.0	
D843059		216	1.3	10.0	<2	135.0		
D843060		167	1.4	9.9	<2	128.0		
D843061		195	2.0	12.3	<2	146.0		
D843062		114	1.5	9.8	<2	126.5		
D843063		114	1.1	9.2	<2	132.0		
D843064		146	1.0	10.0	2	147.0		
D843065		201	1.2	11.6	<2	171.0		
D843066		103	1.2	9.7	<2	128.0		
D843067		183	1.1	17.4	<2	140.5		
D843068		182	1.2	16.7	<2	130.0		
D843069		198	1.1	17.5	<2	138.5		
D843070		168	1.2	17.3	<2	134.5		
D843071		182	1.0	17.3	<2	139.0		
D843072		151	0.8	17.6	<2	135.5		
D843073		140	0.8	16.4	<2	128.0		
D843074		106	3.0	11.0	91	67.6		
D843075		3	0.1	1.6	2	25.5		
D843076		152	0.8	18.1	<2	135.0		
D843077		157	0.6	19.0	<2	133.0		
D843078		165	0.7	19.0	<2	139.0		
D843079		160	0.5	17.8	<2	141.5		94.2
D843080		159	0.6	18.2	<2	140.0	74.2	94.1

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: TRANSITION METALS CORP. 9C - 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5

Page: 4 – A Total # Pages: 4 (A – D) Plus Appendix Pages Finalized Date: 19-SEP-2022 Account: TRAMET

CERTIFICATE OF ANALYSIS SD22236507

Project: Aylmer

Sample Description	Method Analyte Units LOD	WEI-21 Recvd Wt. kg 0.02	Au-ICP21 Au ppm 0.001	ME-MS61 Ag ppm 0.01	ME-MS61 Al % 0.01	ME-MS61 As ppm 0.2	ME-MS61 Ba ppm 10	ME-MS61 Be ppm 0.05	ME-MS61 Bi ppm 0.01	ME-MS61 Ca % 0.01	ME-MS61 Cd ppm 0.02	ME-MS61 Ce ppm 0.01	ME-MS61 Co ppm 0.1	ME-MS61 Cr ppm 1	ME-MS61 Cs ppm 0.05	ME-MS61 Cu ppm 0.2
D843081 D843082 D843083 D843084 D843085		2.05 2.11 1.30 2.03 2.33	<0.001 <0.001 <0.001 <0.001 0.163	<0.01 0.02 0.01 0.01 0.01	9.12 8.79 8.62 9.07 8.92	2.1 1.2 0.7 1.0 15.4	110 110 120 240 370	2.72 2.46 2.43 2.28 2.28	0.01 <0.01 <0.01 <0.01 0.17	0.90 0.62 0.98 0.55 0.61	<0.02 <0.02 <0.02 <0.02 <0.02	84.6 54.7 43.4 37.7 55.0	9.7 10.5 15.0 9.3 274	159 151 146 160 158	0.66 0.79 0.78 1.29 2.34	<0.2 1.5 0.4 0.7 2.0
D843086		2.18	0.007	<0.01	9.22	3.6	520	2.46	0.06	0.28	<0.02	60.2	55.4	155	3.14	1.1

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: TRANSITION METALS CORP. 9C - 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5

Page: 4 – B Total # Pages: 4 (A – D) Plus Appendix Pages Finalized Date: 19–SEP–2022 Account: TRAMET

Project: Aylmer

Sample Description	Method Analyte Units LOD	ME-MS61 Fe % 0.01	ME-MS61 Ga ppm 0.05	ME-MS61 Ge ppm 0.05	ME-MS61 Hf ppm 0.1	ME-MS61 In ppm 0.005	ME-MS61 K % 0.01	ME-MS61 La ppm 0.5	ME-MS61 Li ppm 0.2	ME-MS61 Mg % 0.01	ME-MS61 Mn ppm 5	ME-MS61 Mo ppm 0.05	ME-MS61 Na % 0.01	ME-MS61 Nb ppm 0.1	ME-MS61 Ni ppm 0.2	ME-MS61 P ppm 10
D843081 D843082 D843083 D843084 D843084 D843085		3.17 3.22 3.59 4.21 7.46	26.7 25.7 27.6 25.6 27.9	0.17 0.14 0.12 0.12 0.12	3.8 3.5 3.4 3.6 3.4	0.011 0.011 0.014 0.022 0.038	0.87 0.80 0.82 1.22 1.91	39.6 26.2 20.1 18.2 27.2	4.0 3.5 6.8 3.2 7.1	1.48 1.45 1.29 1.18 1.87	261 209 186 206 100	2.26 0.52 0.24 0.38 5.07	6.93 6.66 6.28 5.98 3.95	5.9 5.3 4.3 5.8 4.6	86.4 79.2 94.3 64.4 111.5	770 730 610 700 670
D843086		6.29	28.7	0.12	3.2	0.058	2.42	29.9	8.2	1.81	39	1.79	3.11	5.7	89.8	710

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: TRANSITION METALS CORP. 9C - 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5

Page: 4 - C Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 19-SEP-2022 Account: TRAMET

Project: Aylmer

Sample Description	Method Analyte Units LOD	ME-MS61 Pb ppm 0.5	ME-MS61 Rb ppm 0.1	ME-MS61 Re ppm 0.002	ME-MS61 S % 0.01	ME-MS61 Sb ppm 0.05	ME-MS61 Sc ppm 0.1	ME-MS61 Se ppm 1	ME-MS61 Sn ppm 0.2	ME-MS61 Sr ppm 0.2	ME-MS61 Ta ppm 0.05	ME-MS61 Te ppm 0.05	ME-MS61 Th ppm 0.01	ME-MS61 Ti % 0.005	ME-MS61 TI ppm 0.02	ME-MS61 U ppm 0.1
D843081 D843082 D843083 D843084 D843084 D843085		1.6 2.4 1.4 1.2 1.5	50.7 47.1 46.6 71.4 114.5	0.003 <0.002 <0.002 <0.002 <0.002	<0.01 0.01 0.02 0.01 1.15	0.29 0.40 0.27 0.25 0.27	23.7 21.5 23.2 21.6 21.8	<1 <1 <1 <1 7	1.9 1.8 2.0 2.4 2.7	54.8 52.7 58.9 42.9 34.8	0.52 0.48 0.41 0.52 0.43	<0.05 <0.05 <0.05 <0.05 0.74	17.05 16.85 14.90 16.50 15.70	0.178 0.155 0.130 0.168 0.128	0.10 0.11 0.10 0.18 0.35	10.3 7.9 5.4 6.4 6.4
D843086		1.3	138.0	<0.002	0.21	0.26	21.2	1	3.1	31.3	0.48	0.13	16.70	0.144	0.44	5.4

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: TRANSITION METALS CORP. 9C - 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5

Page: 4 - D Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 19-SEP-2022 Account: TRAMET

Project: Aylmer

Sample Description D843081 D843082 D843083 D843084	Method Analyte Units LOD	ME-MS61 V ppm 1 160 144 146 143	ME-MS61 W ppm 0.1 0.7 0.7 0.8 1.5	ME-MS61 Y ppm 0.1 17.4 15.1 16.0 17.0	ME-MS61 Zn ppm 2 <2 <2 <2 <2 <2 <2 <2	ME-MS61 Zr ppm 0.5 145.0 140.0 132.5 137.5	CRU-QC Pass2mm % 0.01	PUL-QC Pass75um % 0.01		 	
D843085		154	0.8	16.2	<2	129.5					
D843086		148	1.0	17.4	<2	129.5					

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: TRANSITION METALS CORP. 9C - 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5

Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 19-SEP-2022 Account: TRAMET

Project: Aylmer

	CERTIFICATE COMMENTS
Applies to Method:	ANALYTICAL COMMENTS REEs may not be totally soluble in this method. ME-MS61
Applies to Method:	LABORATORY ADDRESSESProcessed at ALS Sudbury located at 1351–B Kelly Lake Road, Unit #1, Sudbury, ON, Canada.CRU-31CRU-QCLOG-21LOG-23PUL-31PUL-QCSPL-21WEI-21
Applies to Method:	Processed at ALS Vancouver located at 2103 Dollarton Hwy, North Vancouver, BC, Canada. Au-ICP21 ME-MS61

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: TRANSITION METALS CORP. 9C - 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5

Page: 1 Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 15-SEP-2022 Account: TRAMET

CERTIFICATE SD22238064

Project: Aylmer

This report is for 68 samples of 1/2 Core submitted to our lab in Sudbury, ON, Canada on 24-AUG-2022.

The following have access to data associated with this certificate:

GREG COLLINS SARAH REESE	THOMAS HART BEN WILLIAMS	GRANT MOURRE

	SAMPLE PREPARATION	
ALS CODE	DESCRIPTION	
WEI-21	Received Sample Weight	
LOG-21	Sample logging – ClientBarCode	
LOG-23	Pulp Login – Rcvd with Barcode	
CRU-QC	Crushing QC Test	
PUL-QC	Pulverizing QC Test	
CRU-31	Fine crushing – 70% <2mm	
SPL-21	Split sample – riffle splitter	
PUL-31	Pulverize up to 250g 85% <75 um	

ANALYTICAL PROCEDURES

ALS CODE	DESCRIPTION	INSTRUMENT
Au-ICP21	Au 30g FA ICP-AES Finish	ICP-AES
ME-MS61	48 element four acid ICP-MS	

This is the Final Report and supersedes any preliminary report with this certificate number.Results apply to samples as submitted.All pages of this report have been checked and approved for release. ***** See Appendix Page for comments regarding this certificate *****

Signature: Saa Traxler, Director, North Vancouver Operations

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: TRANSITION METALS CORP. 9C - 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5

Page: 2 – A Total # Pages: 3 (A – D) Plus Appendix Pages Finalized Date: 15-SEP-2022 Account: TRAMET

Project: Aylmer

	Method	WEI-21	Au-ICP21	ME-MS61												
	Analyte	Recvd Wt.	Au	Ag	Al	As	Ba	Be	Bi	Ca	Cd	Ce	Co	Cr	Cs	Cu
	Units	kg	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm
Sample Description	LOD	0.02	0.001	0.01	0.01	0.2	10	0.05	0.01	0.01	0.02	0.01	0.1	1	0.05	0.2
D843087		2.06	<0.001	0.02	8.00	2.0	20	1.11	0.07	0.90	<0.02	77.0	12.6	127	0.14	12.8
D843088		1.72	<0.001	0.02	8.40	2.5	20	1.19	0.07	1.31	<0.02	61.7	11.3	134	0.18	8.2
D843089		2.07	<0.001	0.02	8.36	2.9	60	1.01	0.06	2.50	<0.02	25.2	2.8	111	0.22	7.5
D843090		1.96	<0.001	<0.01	8.35	1.3	30	1.19	0.03	2.32	<0.02	47.1	3.0	116	0.16	10.6
D843091		2.00	<0.001	0.01	8.74	3.3	30	1.14	0.06	2.22	<0.02	51.2	4.0	116	0.09	2.4
D843092		1.69	<0.001	0.01	8.35	3.1	20	1.06	0.04	2.89	<0.02	44.5	1.9	111	0.06	3.4
D843093		1.83	<0.001	0.02	8.72	2.4	50	1.24	0.03	2.50	<0.02	49.3	1.8	108	0.15	2.2
D843094		1.73	<0.001	0.02	8.61	2.1	30	0.98	0.01	2.26	<0.02	29.4	5.5	116	0.08	1.8
D843095		2.35	<0.001	0.06	8.65	19.8	30	0.91	0.04	2.24	<0.02	52.3	27.1	103	0.08	2.2
D843096		1.72	0.001	0.03	7.66	19.7	30	0.87	0.34	4.69	<0.02	55.3	61.8	91	0.11	6.5
D843097		2.23	<0.001	0.01	9.21	1.9	140	1.88	0.03	2.31	<0.02	42.1	5.8	139	0.30	1.2
D843098		1.75	<0.001	0.01	9.32	1.4	150	1.72	0.01	2.16	<0.02	40.2	5.7	142	0.29	1.2
D843099		0.07	2.51	5.17	5.57	21.9	370	0.97	0.09	4.19	0.42	25.8	11.2	27	6.24	77.8
D843100		0.18	<0.001	0.02	0.20	1.3	30	0.09	0.01	0.04	<0.02	4.07	0.3	18	0.14	1.3
D843101		1.84	<0.001	0.01	8.99	1.7	110	1.36	0.01	1.74	<0.02	24.5	9.5	147	0.18	0.9
D843102		2.24	0.001	0.02	8.69	0.7	10	1.10	0.02	1.61	<0.02	42.9	8.2	142	0.06	1.7
D843103		2.08	<0.001	0.02	8.04	1.7	10	1.13	0.01	2.39	<0.02	27.0	6.3	115	0.05	7.0
D843104		2.27	<0.001	0.02	8.54	15.1	10	1.13	0.04	2.53	<0.02	52.0	36.1	119	<0.05	2.1
D843105		1.75	0.005	0.03	7.99	2.6	20	1.22	0.07	2.96	<0.02	64.8	4.0	118	<0.05	7.8
D843106		2.07	<0.001	0.03	7.56	2.2	20	1.38	0.06	2.83	<0.02	70.8	5.7	107	<0.05	37.5
D843107		1.68	<0.001	0.02	4.90	4.3	20	0.78	0.38	10.50	<0.02	87.5	16.9	61	0.09	4.3
D843108		2.17	0.006	0.02	8.00	6.0	20	1.38	0.54	2.76	<0.02	77.6	29.0	115	0.09	8.6
D843109		2.31	<0.001	0.02	8.45	1.7	10	1.59	0.05	1.79	<0.02	58.3	12.6	121	0.09	7.4
D843110		2.15	<0.001	0.01	8.76	2.0	10	1.63	0.03	1.23	<0.02	82.2	11.0	129	0.07	12.0
D843111		2.03	0.006	0.06	8.79	3.2	70	1.72	1.10	2.18	<0.02	90.0	16.0	135	0.32	1.9
D843112		2.10	0.005	0.06	8.92	3.3	50	1.36	1.10	1.28	<0.02	70.0	24.4	149	0.25	2.6
D843113		2.10	<0.001	0.01	9.50	1.6	20	1.18	0.01	0.62	<0.02	87.2	5.1	157	0.15	0.6
D843114		2.01	0.006	0.06	9.18	2.6	40	1.20	1.12	0.59	<0.02	48.9	10.8	156	0.27	2.5
D843115		2.12	0.002	0.04	8.89	3.3	40	1.20	0.53	0.76	<0.02	47.1	9.8	149	0.29	3.2
D843116		1.98	0.003	0.04	8.69	3.8	30	1.31	0.69	1.10	<0.02	83.5	13.4	144	0.26	2.9
D843117		1.94	0.006	0.04	9.07	2.3	30	0.96	0.83	1.14	< 0.02	47.0	13.8	149	0.20	9.4
D843118		1.94	0.002	0.02	6.95	8.8	20	0.90	0.26	3.75	< 0.02	70.8	37.7	103	0.11	12.3
D843119		2.15	< 0.001	0.01	8.15	1.4	20	1.27	0.05	3.55	< 0.02	54.0	6.0	138	0.08	1.3
D843120		1.68	0.001	0.03	8.06	2.0	20	1.22	0.13	3.41	< 0.02	71.7	8.0	139	0.12	6.3
D843121		2.01	<0.001	0.03	8.25	9.6	20	1.21	0.43	2.18	<0.02	110.5	32.7	138	0.11	5.4
D843122		2.29	0.001	0.05	8.81	2.5	30	1.42	0.45	1.40	< 0.02	110.0	14.9	142	0.34	1.6
D843123		1.85	< 0.001	0.01	8.29	0.8	220	1.54	0.05	0.96	< 0.02	86.4	11.0	135	0.50	0.7
D843124		0.07	2.50	4.90	5.41	22.0	350	1.02	0.08	4.03	0.40	26.7	10.8	26	6.20	72.2
D843125		0.19	<0.001	0.01	0.19	0.4	10	0.07	0.02	0.05	<0.02	4.89	0.4	21	0.13	2.1
D843126		2.06	<0.001	0.01	7.98	0.7	210	1.59	0.10	1.89	<0.02	86.2	4.8	128	0.53	1.1

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: TRANSITION METALS CORP. 9C - 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5

Page: 2 – B Total # Pages: 3 (A – D) Plus Appendix Pages Finalized Date: 15-SEP-2022 Account: TRAMET

Project: Aylmer

	Method	ME-MS61														
	Analyte	Fe	Ga	Ge	Hf	In	К	La	Li	Mg	Mn	Мо	Na	Nb	Ni	Р
Comula Decerintian	Units	%	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm
Sample Description	LOD	0.01	0.05	0.05	0.1	0.005	0.01	0.5	0.2	0.01	5	0.05	0.01	0.1	0.2	10
D843087		2.90	19.90	0.15	3.1	0.014	0.37	37.3	8.7	2.20	116	2.47	5.38	5.5	74.7	710
D843088		2.70	23.4	0.14	3.4	0.013	0.38	28.5	8.8	2.08	310	2.05	6.03	5.8	85.0	790
D843089		1.15	19.55	0.12	3.4	0.016	0.73	11.0	3.7	1.41	495	0.38	6.76	3.2	70.9	850
D843090		1.59	22.5	0.14	3.7	0.014	0.44	22.3	7.9	1.80	494	0.52	6.53	6.6	77.2	750
D843091		1.27	23.9	0.18	3.6	0.011	0.29	24.8	6.5	1.70	411	0.49	6.89	6.2	90.9	760
D843092		0.89	20.7	0.19	3.6	0.016	0.30	20.7	2.5	1.55	377	1.39	7.01	5.6	38.7	740
D843093		1.00	19.40	0.17	3.7	0.009	0.51	22.9	4.0	1.54	350	0.35	6.99	4.5	55.0	770
D843094		1.58	20.1	0.17	3.4	0.013	0.37	13.1	3.9	2.07	316	0.58	6.74	3.3	72.6	790
D843095		1.15	19.20	0.19	3.9	0.017	0.40	24.2	2.4	1.46	398	1.29	7.23	4.9	57.7	780
D843096		1.65	16.70	0.20	3.0	0.031	0.66	24.9	2.9	2.86	575	2.51	5.71	4.0	53.5	600
D843097		1.90	26.3	0.21	3.7	0.014	1.02	18.0	8.7	1.98	355	0.84	6.00	4.4	109.5	850
D843098		2.25	25.6	0.22	3.5	0.014	0.93	17.0	9.1	1.87	380	1.00	6.14	4.9	123.0	860
D843099		3.24	11.75	0.22	1.9	0.054	2.42	12.5	42.5	0.99	738	7.06	0.94	2.5	13.2	670
D843100		0.34	0.56	0.11	0.8	<0.005	0.04	2.1	6.3	0.02	40	1.35	0.05	0.6	2.0	20
D843101		2.77	24.3	0.22	3.5	0.012	0.64	10.2	9.5	2.15	296	1.63	6.08	4.2	102.0	860
D843102		2.88	22.2	0.22	3.1	0.009	0.17	20.6	9.5	2.30	334	1.31	6.27	5.1	86.3	780
D843103		1.98	21.2	0.21	3.2	0.010	0.22	12.8	8.6	1.79	485	1.54	6.47	4.8	50.7	750
D843104		1.65	22.4	0.22	3.5	0.006	0.13	24.9	4.8	1.83	284	3.95	6.87	6.6	70.0	740
D843105		0.85	21.5	0.23	3.4	0.018	0.29	29.7	3.1	1.64	382	3.31	6.97	9.1	32.1	720
D843106		0.91	24.5	0.23	3.8	0.026	0.40	32.7	4.4	1.32	417	1.17	6.63	8.9	122.5	690
D843107		1.37	11.20	0.32	2.0	0.090	0.80	41.7	4.5	5.95	1270	0.68	3.27	4.2	22.1	400
D843108		1.85	19.45	0.27	3.4	0.018	0.40	37.8	6.9	1.01	354	1.11	6.26	6.5	59.4	740
D843109		2.26	21.8	0.24	3.8	0.013	0.22	28.7	11.1	1.19	220	0.45	6.38	6.5	63.5	760
D843110		2.24	23.7	0.28	3.9	0.012	0.24	40.5	11.5	1.33	189	0.72	6.70	5.7	75.1	740
D843111		2.67	20.9	0.32	3.6	0.029	0.73	45.5	7.4	1.73	244	0.52	6.12	6.5	76.7	740
D843112		3.03	22.9	0.18	3.8	0.018	0.73	36.3	9.1	1.53	215	0.40	6.45	7.9	91.4	850
D843113		4.38	25.8	0.17	4.0	0.011	0.29	43.7	13.9	1.67	116	0.16	6.81	8.2	126.0	780
D843114		3.23	22.5	0.13	4.0	0.014	0.50	23.9	9.4	1.33	102	2.33	6.84	9.1	81.7	880
D843115		2.07	21.9	0.16	4.0	0.013	0.65	22.9	7.7	1.19	92	0.43	6.78	10.0	73.2	910
D843116		2.21	23.9	0.23	4.1	0.022	0.67	40.8	9.2	1.59	118	0.45	6.63	10.4	103.0	840
D843117		3.21	18.45	0.10	3.1	0.012	0.56	23.8	8.5	1.96	174	0.14	6.39	7.9	86.3	830
D843118		2.38	16.85	0.21	2.7	0.027	0.48	35.6	7.9	2.09	526	1.30	4.90	6.2	52.6	590
D843119		1.45	22.9	0.18	3.0	0.021	0.20	25.7	8.4	1.08	412	1.54	6.73	4.9	69.4	750
D843120		1.45	21.9	0.18	3.0	0.022	0.25	34.0	5.9	0.92	438	1.78	6.78	4.2	59.4	750
D843121		1.46	21.4	0.26	2.8	0.024	0.39	55.6	5.0	1.32	407	1.73	6.73	6.1	42.6	750
D843122		1.47	21.6	0.21	3.5	0.015	0.67	56.0	5.9	1.03	220	1.64	7.00	8.7	35.0	880
D843123		3.51	23.8	0.24	2.9	0.026	0.87	42.6	10.1	2.22	185	1.69	5.01	4.1	97.4	710
D843124		3.15	12.00	0.17	1.7	0.048	2.36	12.7	40.6	0.96	716	6.56	0.91	2.3	12.6	650
D843125		0.51	0.63	0.07	0.8	<0.005	0.03	2.6	6.0	0.02	63	1.31	0.05	0.6	2.4	20
D843126		1.95	23.9	0.26	2.9	0.034	1.05	42.5	7.3	1.76	470	1.80	5.40	5.1	48.6	790

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: TRANSITION METALS CORP. 9C - 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5

CERTIFICATE OF ANALYSIS

Page: 2 – C Total # Pages: 3 (A – D) **Plus Appendix Pages** Finalized Date: 15-SEP-2022 Account: TRAMET

SD22238064

0.408

0.257

0.238

0.225

0.295

0.383

0.191

0.278

0.013

0.220

14.45

11.55

8.38

8.30

9.60

16.05

12.70

2.34

1.31

12.10

0.06

0.02

< 0.02

0.03

0.03

0.11

0.13

0.90

< 0.02

0.15

4.5

3.6

2.5

2.3

4.0

5.4

4.4

0.7

0.4

4.1

Project: Aylmer

1.7

1.5

1.3

0.9

1.3

0.8

1.3

0.7

0.3

1.6

<1

1

1

<1

1

1

1

1

<1

<1

37.0

54.8

94.4

81.0

60.2

63.6

66.3

278

2.7

71.8

0.81

0.60

0.49

0.43

0.59

0.82

0.39

0.12

0.07

0.48

< 0.05

< 0.05

< 0.05

< 0.05

0.05

0.05

< 0.05

2.61

< 0.05

< 0.05

Sample Description	Method Analyte Units LOD	ME-MS61 Pb ppm 0.5	ME-MS61 Rb ppm 0.1	ME-MS61 Re ppm 0.002	ME-MS61 S % 0.01	ME-MS61 Sb ppm 0.05	ME-MS61 Sc ppm 0.1	ME-MS61 Se ppm 1	ME-MS61 Sn ppm 0.2	ME-MS61 Sr ppm 0.2	ME-MS61 Ta ppm 0.05	ME-MS61 Te ppm 0.05	ME-MS61 Th ppm 0.01	ME-MS61 Ti % 0.005	ME-MS61 Tl ppm 0.02	ME-MS61 U ppm 0.1
D843087		2.5	2.4	0.002	0.06	0.37	13.8	<1	0.4	54.5	0.48	<0.05	8.02	0.242	0.03	6.1
D843088		1.0	3.1	<0.002	0.04	0.41	14.8	<1	0.6	66.0	0.52	<0.05	8.27	0.237	0.04	3.7
D843089		0.9	9.7	<0.002	0.02	0.31	21.1	<1	0.6	74.8	0.31	<0.05	6.30	0.131	0.04	2.7
D843090		1.1	4.8	<0.002	0.01	0.46	16.1	1	0.8	76.1	0.63	<0.05	12.30	0.239	0.03	4.2
D843091		1.2	4.7	0.002	0.03	0.49	15.8	<1	0.8	76.4	0.58	<0.05	14.50	0.213	0.02	5.4
D843092		1.0	3.0	0.003	0.02	0.37	13.6	<1	1.4	88.0	0.52	<0.05	9.49	0.199	<0.02	3.9
D843093		0.9	8.4	<0.002	0.01	0.34	14.0	<1	1.7	95.9	0.39	<0.05	9.88	0.153	0.03	2.7
D843094		1.0	4.3	<0.002	0.02	0.28	18.2	<1	1.0	88.8	0.30	<0.05	8.88	0.114	0.02	2.8
D843095		1.7	4.0	0.002	0.29	0.59	12.6	1	1.1	83.8	0.50	<0.05	12.30	0.145	0.03	4.6
D843096		1.1	7.9	0.003	0.82	0.33	29.4	2	0.8	77.3	0.38	<0.05	10.50	0.111	0.03	4.3
D843097		0.9	24.4	0.002	0.02	0.40	23.2	<1	1.5	102.0	0.42	<0.05	8.16	0.158	0.07	3.7
D843098		0.9	17.6	<0.002	0.01	0.32	20.6	<1	1.0	92.1	0.47	<0.05	7.91	0.157	0.04	3.4
D843099		18.3	104.5	0.002	0.89	2.27	13.0	1	0.8	288	0.12	3.04	2.47	0.286	0.93	0.7
D843100		1.0	1.9	<0.002	<0.01	0.17	0.4	<1	<0.2	2.6	0.06	<0.05	1.29	0.013	<0.02	0.4
D843101		0.9	9.9	<0.002	0.02	0.29	17.6	<1	0.9	80.3	0.38	<0.05	7.70	0.167	0.03	3.6
D843102		0.9	0.9	0.002	0.01	0.28	16.6	<1	0.5	75.5	0.44	<0.05	9.22	0.207	<0.02	3.3
D843103		1.6	0.7	<0.002	0.02	0.39	18.1	<1	0.5	68.9	0.42	<0.05	7.97	0.165	<0.02	3.0
D843104		1.4	0.7	0.006	0.41	0.43	16.5	1	0.8	78.0	0.59	<0.05	12.85	0.230	<0.02	4.9
D843105		2.2	0.9	0.007	0.05	0.42	15.2	<1	1.6	78.4	0.82	<0.05	11.25	0.329	<0.02	3.5
D843106		1.3	1.3	0.002	0.07	0.45	13.9	1	1.7	74.2	0.78	<0.05	9.99	0.304	<0.02	4.3
D843107		1.2	10.6	0.002	0.22	0.31	44.6	1	0.8	55.1	0.40	<0.05	7.03	0.148	0.02	3.2
D843108		1.5	4.4	<0.002	0.33	0.44	13.0	1	0.8	53.7	0.61	0.05	11.35	0.180	0.04	3.8
D843109		1.3	1.9	<0.002	0.05	0.37	15.2	<1	0.5	61.9	0.61	<0.05	12.45	0.165	<0.02	4.5
D843110		1.5	1.3	0.002	0.02	0.36	17.6	<1	0.4	56.1	0.57	<0.05	14.25	0.155	<0.02	4.5
D843111		2.0	27.4	<0.002	0.21	0.48	22.3	<1	1.6	38.9	0.62	<0.05	14.15	0.201	0.08	4.1
D843112		2.8	37.7	<0.002	0.27	0.58	22.7	1	1.9	48.4	0.83	<0.05	18.85	0.290	0.08	6.7
D843113		1.4	14.0	<0.002	<0.01	0.43	25.5	<1	1.9	46.9	0.89	<0.05	18.90	0.298	0.04	5.5
D843114		2.2	30.1	<0.002	0.17	0.55	18.7	<1	2.2	46.1	0.94	<0.05	19.20	0.345	0.07	5.9
D843115		2.0	33.1	<0.002	0.13	0.63	15.4	<1	2.3	45.4	1.01	<0.05	17.85	0.403	0.07	7.6
D843116		2.3	29.7	<0.002	0.15	0.70	21.2	<1	2.4	49.0	1.02	<0.05	18.30	0.389	0.07	6.2

D843117

D843118

D843119

D843120

D843121

D843122

D843123

D843124

D843125

D843126

2.0

1.3

1.6

1.4

1.4

1.8

1.0

18.0

1.3

0.9

25.8

7.2

1.5

2.6

6.2

30.8

47.9

106.0

1.6

59.2

<0.002

< 0.002

< 0.002

< 0.002

< 0.002

< 0.002

< 0.002

0.002

< 0.002

< 0.002

0.22

0.50

0.05

0.08

0.31

0.16

0.04

0.86

< 0.01

0.02

0.51

0.43

0.27

0.31

0.34

0.61

0.32

2.14

0.15

0.31

17.2

14.8

15.4

15.4

14.0

11.1

17.9

13.6

0.3

16.8

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: TRANSITION METALS CORP. 9C - 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5

Page: 2 - D Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 15-SEP-2022 Account: TRAMET

Project: Aylmer

Sample Description	Method Analyte Units LOD	ME-MS61 V ppm 1	ME-MS61 W ppm 0.1	ME-MS61 Y ppm 0.1	ME-MS61 Zn ppm 2	ME-MS61 Zr ppm 0.5	CRU-QC Pass2mm % 0.01	PUL-QC Pass75um % 0.01	
D843087		96	0.5	11.6	7	117.5	72.9	93.8	
D843088		112	0.7	12.7	2	127.0	. 210	97.1	
D843089		120	0.6	9.3	<2	128.5		0/11	
D843090		108	0.7	12.2	<2	141.5			
D843091		116	0.9	13.2	<2	132.5			
D843092		102	3.1	13.3	<2	135.0			
D843093		124	3.4	11.1	<2	143.5			
D843094		103	2.1	12.5	<2	132.5			
D843095		87	3.1	14.7	<2	146.5			
D843096		57	2.7	24.0	<2	114.5			
D843097		125	1.5	12.8	<2	140.5			
D843098		118	0.4	12.3	<2	134.0			
D843099		109	3.4	10.2	95	75.9			
D843100		2	0.1	1.3	2	25.9			
D843101		106	0.3	9.8	<2	128.5			
D843102		107	0.5	10.6	2	124.0			
D843103		86	0.6	9.8	2	123.0			
D843104		101	1.1	13.7	<2	132.5			
D843105		110	3.2	14.4	<2	127.0			
D843106		96	5.7	15.4	<2	136.5			
D843107		47	0.9	63.7	<2	74.1			
D843108		84	1.0	14.7	<2	129.5			
D843109		107	0.6	10.7	<2	143.5			
D843110		109	0.3	12.1	8	146.0			
D843111		122	1.5	19.8	<2	138.5			
D843112		157	1.8	21.3	2	149.0			
D843113		167	1.6	20.0	2	148.0			
D843114		152	2.4	21.8	3	154.0			
D843115		149	2.2	23.7	2	154.5			
D843116		135	2.1	25.7	2	157.5			
D843117		157	1.8	18.5	5	124.0			
D843118		82	2.1	19.2	3	106.0			
D843119		105	1.6	14.2	3	115.5			
D843120		108	1.1	16.1	<2	110.5			
D843121		107	1.0	19.9	<2	109.0			
D843122		104	0.6	18.4	<2	130.5			
D843123		123	0.6	10.2	<2	110.5			
D843124		105	3.1	9.9	92	72.6			
D843125		3	0.1	1.4	2	25.4			
D843126		112	0.6	15.3	<2	110.5	75.8	99.0	

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: TRANSITION METALS CORP. 9C - 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5

Page: 3 – A Total # Pages: 3 (A – D) Plus Appendix Pages Finalized Date: 15-SEP-2022 Account: TRAMET

Project: Aylmer

Sample Description	Method Analyte Units LOD	WEI–21 Recvd Wt. kg 0.02	Au-ICP21 Au ppm 0.001	ME-MS61 Ag ppm 0.01	ME-MS61 Al % 0.01	ME-MS61 As ppm 0.2	ME-MS61 Ba ppm 10	ME-MS61 Be ppm 0.05	ME-MS61 Bi ppm 0.01	ME-MS61 Ca % 0.01	ME-MS61 Cd ppm 0.02	ME-MS61 Ce ppm 0.01	ME-MS61 Co ppm 0.1	ME-MS61 Cr ppm 1	ME-MS61 Cs ppm 0.05	ME-MS61 Cu ppm 0.2
D843127	LOD	2.03	<0.001	0.03	8.80	0.9	220	1.54	0.08	0.69	<0.02	77.1	8.5	155	0.52	12.0
D843128		2.18	0.001	0.02	7.95	1.4	190	1.49	0.09	0.88	<0.02	74.6	10.9	111	0.32	3.1
D843129		1.90	<0.001	0.01	7.10	1.8	130	1.34	0.09	0.96	<0.02	68.4	10.2	84	0.27	8.0
D843130		1.95	<0.001	0.01	6.93	1.1	110	1.32	0.08	1.25	<0.02	65.9	7.0	83	0.18	4.8
D843131		2.08	0.001	0.01	6.65	1.8	120	1.40	0.08	1.58	<0.02	66.3	10.2	78	0.21	4.7
D843132		1.68	<0.001	0.01	7.19	2.0	160	1.42	0.09	0.97	<0.02	65.4	13.4	89	0.26	2.5
D843133		1.89	0.002	0.03	6.22	3.3	80	1.43	0.18	2.04	<0.02	63.1	16.7	74	0.15	4.2
D843134		1.96	<0.001	0.02	6.66	1.3	80	1.28	0.11	1.57	<0.02	64.8	12.4	74	0.14	3.1
D843135		2.29	<0.001	0.02	7.37	2.8	80	1.20	0.12	0.87	<0.02	73.3	15.2	84	0.16	3.4
D843136		1.89	<0.001	0.03	6.34	2.9	130	1.29	0.13	3.83	0.04	82.8	13.9	68	0.24	5.5
D843137		1.92	<0.001	0.01	6.82	2.0	140	1.49	0.09	1.83	<0.02	70.5	13.0	77	0.22	3.4
D843138		1.89	<0.001	0.02	5.16	1.0	110	0.94	0.11	7.22	<0.02	78.3	11.2	54	0.20	2.7
D843139		1.99	<0.001	0.01	6.07	1.4	100	0.99	0.09	6.58	<0.02	83.5	10.0	66	0.25	2.1
D843140		1.92	<0.001	0.01	5.55	1.2	80	0.92	0.08	6.87	<0.02	93.2	7.9	57	0.15	2.2
D843141		1.80	<0.001	0.01	5.30	1.4	80	0.90	0.08	6.92	<0.02	97.9	16.0	57	0.14	3.0
D843142		1.97	<0.001	0.02	5.80	0.8	100	1.01	0.08	6.24	<0.02	109.0	10.0	57	0.18	3.3
D843143		1.88	<0.001	<0.01	6.20	1.0	70	1.04	0.11	4.25	<0.02	86.7	9.7	62	0.12	2.3
D843144		1.85	<0.001	0.01	6.44	0.9	90	1.20	0.09	1.83	<0.02	62.8	7.7	71	0.14	1.8
D843145		2.14	<0.001	0.02	6.79	2.3	90	1.50	0.21	1.09	<0.02	76.4	7.7	78	0.14	2.3
D843146		1.93	0.001	0.01	7.42	1.9	110	1.43	0.21	0.78	<0.02	65.1	10.5	85	0.19	1.8
D843147		1.99	0.001	0.02	6.75	2.2	70	1.60	0.27	1.17	<0.02	67.2	17.1	76	0.11	3.3
D843148		2.05	<0.001	0.01	6.41	0.5	60	1.30	0.14	1.76	<0.02	66.0	11.6	76	0.13	3.0
D843149		0.07	2.60	4.69	5.17	18.6	340	0.95	0.08	3.90	0.33	23.6	11.2	25	6.01	71.2
D843150		0.18	<0.001	0.02	0.15	<0.2	10	0.06	0.02	0.02	<0.02	3.68	0.4	6	0.12	1.6
D843151		1.98	<0.001	0.01	6.68	1.3	60	1.30	0.17	1.42	<0.02	74.0	14.2	72	0.17	2.4
D843152		2.30	<0.001	<0.01	6.33	1.1	60	1.20	0.16	1.58	<0.02	61.4	13.7	74	0.20	3.0
D843153		2.09	<0.001	0.02	6.41	2.9	50	1.02	0.14	1.45	<0.02	67.7	15.0	74	0.15	2.6
D843154		2.39	<0.001	0.02	6.65	3.6	70	1.24	0.17	1.36	<0.02	56.5	19.0	79	0.18	2.5

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: TRANSITION METALS CORP. 9C - 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5

Page: 3 - B Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 15-SEP-2022 Account: TRAMET

Project: Aylmer

	Method	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61
	Analyte	Fe %	Ga	Ge	Hf	In	K %	La	Li	Mg %	Mn	Mo	Na %	Nb	Ni	P
Sample Description	Units LOD	% 0.01	ppm 0.05	ppm 0.05	ppm 0.1	ppm 0.005	% 0.01	ppm 0.5	ppm 0.2	% 0.01	ppm 5	ppm 0.05	% 0.01	ppm 0.1	ppm 0.2	ppm 10
D843127		4.00	25.7	0.23	2.9	0.023	0.86	37.5	9.6	2.27	131	2.04	5.30	5.0	121.0	780
D843128		2.53	20.0	0.20	3.3	0.020	0.60	36.0	7.4	1.53	141	1.92	5.47	4.5	66.4	640
D843129		2.01	16.15	0.20	3.3	0.015	0.64	34.5	6.8	1.24	134	1.65	4.71	4.2	50.3	550
D843130		1.21	15.10	0.17	3.0	0.016	0.60	33.3	3.5	0.96	180	1.66	5.11	3.5	24.7	600
D843131		1.56	16.15	0.18	3.0	0.022	0.65	32.9	5.0	1.31	347	1.75	4.75	3.9	40.4	530
D843132		2.11	18.15	0.18	3.2	0.017	0.69	31.7	6.3	1.33	143	2.09	4.64	4.0	61.9	550
D843133		1.86	15.00	0.19	2.9	0.026	0.55	30.2	6.5	1.64	458	1.96	4.58	3.5	45.1	550
D843134		1.68	16.45	0.19	3.1	0.017	0.45	32.4	5.4	1.44	177	1.89	4.89	3.8	53.2	510
D843135		2.07	16.05	0.19	3.2	0.011	0.50	36.0	6.4	1.17	116	1.95	5.06	3.8	64.0	570
D843136		2.23	16.05	0.26	2.9	0.052	0.66	40.8	7.4	2.89	356	1.77	3.84	4.2	59.5	470
D843137		2.11	17.45	0.21	3.0	0.024	0.61	34.9	6.0	1.72	212	1.72	4.61	3.9	53.6	550
D843138		2.17	12.20	0.29	2.1	0.078	0.75	37.5	6.5	4.72	843	1.85	2.94	3.0	47.7	370
D843139		2.32	14.35	0.29	2.4	0.058	0.66	40.7	6.6	2.45	925	1.39	3.71	4.0	47.4	470
D843140		1.96	12.65	0.29	2.4	0.071	0.64	44.5	5.3	3.42	950	1.21	3.48	2.9	41.4	400
D843141		2.01	12.70	0.30	2.4	0.079	0.51	45.1	5.1	4.46	695	1.45	3.35	2.9	41.7	390
D843142		2.37	13.70	0.25	2.4	0.076	0.64	49.7	7.0	4.30	582	1.18	3.40	3.3	52.5	420
D843143		1.41	13.80	0.27	2.7	0.050	0.53	41.4	4.1	2.64	446	1.54	4.36	3.2	33.7	460
D843144		0.82	14.60	0.20	3.1	0.023	0.53	31.3	2.4	1.05	234	1.99	4.98	3.2	8.4	560
D843145		0.92	15.55	0.19	3.2	0.018	0.47	38.5	2.9	0.74	134	1.64	5.25	3.8	18.8	550
D843146		1.83	17.40	0.16	3.2	0.014	0.52	32.9	5.6	0.95	112	1.84	5.15	3.8	50.1	560
D843147		1.04	14.60	0.15	3.0	0.012	0.44	33.9	2.6	0.70	125	1.90	5.33	3.3	12.0	540
D843148		1.25	15.15	0.16	3.0	0.013	0.40	32.5	4.3	1.23	173	2.02	4.79	3.5	23.2	490
D843149		2.99	11.60	0.13	1.7	0.041	2.26	11.3	38.7	0.92	690	6.54	0.87	2.4	11.4	620
D843150 D843151		0.75 1.79	0.49 15.00	0.08 0.18	0.8 3.1	<0.005 0.014	0.03 0.40	2.1 37.0	6.2 6.9	0.01 1.25	87 191	0.16 1.66	0.04 4.63	0.5 3.3	1.7 29.4	10 510
D843152		1.91	14.20	0.18	3.1	0.019	0.44	31.2	8.0	1.42	203	1.97	4.24	3.7	28.9	470
D843153 D843154		1.59 1.76	13.65 16.00	0.16 0.15	3.0 3.0	0.020 0.017	0.40 0.46	34.5 28.2	5.9 5.8	1.16 1.16	198 195	4.43 1.58	4.54 4.57	3.5 3.5	23.2 40.8	470 510

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: TRANSITION METALS CORP. 9C - 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5

Page: 3 - C Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 15-SEP-2022 Account: TRAMET

Project: Aylmer

																1
	Method	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61
	Analyte	Pb	Rb	Re	S	Sb	Sc	Se	Sn	Sr	Та	Те	Th	Ti	TI	U
	Units	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm
Sample Description	LOD	0.5	0.1	0.002	0.01	0.05	0.1	1	0.2	0.2	0.05	0.05	0.01	0.005	0.02	0.1
D843127		1.1	45.5	<0.002	0.05	0.25	20.9	<1	1.5	71.9	0.49	<0.05	12.70	0.246	0.16	4.5
D843128		1.3	29.6	<0.002	0.10	0.25	12.3	<1	1.0	87.7	0.47	<0.05	12.15	0.184	0.09	4.4
D843129		1.2	29.8	<0.002	0.10	0.19	9.8	<1	0.8	97.7	0.45	<0.05	8.81	0.152	0.08	3.7
D843130		1.0	21.9	<0.002	0.08	0.21	7.9	<1	0.8	91.8	0.38	<0.05	8.27	0.137	0.06	3.4
D843131		1.2	24.4	<0.002	0.08	0.24	10.1	<1	0.8	91.5	0.42	<0.05	7.81	0.138	0.07	3.2
D843132		1.4	30.4	<0.002	0.09	0.26	9.7	<1	1.0	92.0	0.45	<0.05	8.87	0.159	0.08	3.6
D843133		1.7	10.2	< 0.002	0.16	0.32	11.6	<1	0.7	79.1	0.38	0.05	6.83	0.127	0.04	2.8
D843134		2.0	12.5	< 0.002	0.08	0.25	10.2	<1	0.8	84.3	0.44	< 0.05	8.19	0.141	0.05	3.3
D843135		1.7	13.6	<0.002	0.11	0.27	8.2	<1	0.9	88.3	0.44	< 0.05	9.25	0.164	0.05	4.1
D843136		1.9	26.5	<0.002	0.11	0.33	18.6	<1	0.9	87.6	0.44	<0.05	8.72	0.156	0.08	3.8
D843137		1.5	17.4	<0.002	0.12	0.24	11.1	<1	1.0	99.9	0.42	<0.05	7.67	0.161	0.05	3.1
D843138		0.9	21.0	<0.002	0.09	0.16	22.3	<1	0.7	73.1	0.33	<0.05	6.17	0.117	0.05	3.0
D843139		0.9	27.0	<0.002	0.08	0.18	20.4	<1	0.8	80.4	0.37	<0.05	7.91	0.142	0.07	3.1
D843140		0.9	15.7	<0.002	0.07	0.15	21.1	1	0.7	84.8	0.31	<0.05	6.68	0.111	0.04	2.9
D843141		0.9	13.8	<0.002	0.17	0.16	21.6	1	0.7	84.7	0.31	<0.05	6.36	0.108	0.04	2.8
D843142		0.9	19.0	<0.002	0.08	0.21	18.2	1	0.8	82.8	0.36	<0.05	6.66	0.132	0.05	2.8
D843143		1.0	12.7	<0.002	0.09	0.19	11.0	1	0.6	88.9	0.33	<0.05	7.22	0.106	0.04	3.1
D843144		1.1	19.4	<0.002	0.08	0.16	8.6	<1	0.6	99.1	0.35	<0.05	7.54	0.098	0.06	2.8
D843145		1.2	19.5	<0.002	0.09	0.19	7.0	1	0.7	108.5	0.40	<0.05	8.79	0.116	0.05	4.0
D843146		1.4	25.7	<0.002	0.12	0.25	9.2	<1	0.8	107.0	0.42	<0.05	9.47	0.136	0.07	5.0
D843147		1.5	14.5	<0.002	0.34	0.22	6.7	<1	0.6	110.5	0.36	< 0.05	8.83	0.094	0.05	3.6
D843148		1.5	12.1	0.002	0.09	0.21	9.0	<1	0.6	94.5	0.35	< 0.05	8.70	0.109	0.04	3.3
D843149		18.8	89.0	0.004	0.83	2.06	13.0	1	0.7	269	0.12	2.48	2.54	0.270	0.86	0.7
D843150		1.3	1.3	< 0.002	< 0.01	0.18	0.3	<1	0.2	2.5	0.09	< 0.05	0.92	0.010	<0.02	0.3
D843151		1.1	12.6	0.004	0.10	0.26	8.3	1	0.8	80.8	0.37	0.05	9.65	0.120	0.05	4.0
D843152		1.1	16.9	0.002	0.10	0.24	9.4	<1	0.8	77.7	0.39	<0.05	9.07	0.132	0.06	3.8
D843153 D843154		1.0 1.2	11.6 15.5	0.002 0.002	0.13 0.19	0.27 0.26	8.7 8.8	<1 <1	0.7 0.8	68.5 75.5	0.36 0.37	<0.05 0.06	8.33 8.58	0.122 0.125	0.05 0.06	3.2 3.2

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: TRANSITION METALS CORP. 9C – 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5

Page: 3 - D Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 15-SEP-2022 Account: TRAMET

Project: Aylmer

Sample Description	Method Analyte Units LOD	ME-MS61 V ppm 1	ME-MS61 W ppm 0.1	ME-MS61 Y ppm 0.1	ME-MS61 Zn ppm 2	ME-MS61 Zr ppm 0.5	CRU-QC Pass2mm % 0.01	PUL-QC Pass75um % 0.01
D843127 D843128 D843129 D843130 D843131		139 97 87 66 65	0.6 0.5 0.5 0.5 0.5	15.0 13.4 9.6 9.9 15.4	2 <2 <2 <2 <2 <2	111.0 128.0 127.0 121.0 120.5		98.0 98.5
D843132 D843133 D843134 D843135 D843136		79 57 65 68 64	0.5 0.4 0.5 0.5 0.6	9.7 16.7 14.3 10.5 39.7	<2 <2 3 2 6	123.0 115.0 119.0 123.5 112.5		
D843137 D843138 D843139 D843140 D843141		64 50 61 51 50	0.5 0.5 0.7 0.4 0.5	23.8 76.9 49.3 72.1 81.0	3 <2 <2 <2 <2 <2	121.0 80.4 93.7 93.1 91.2		
D843142 D843143 D843144 D843145		56 50 52 60	0.4 0.4 0.4 0.5	70.8 46.4 15.6 16.1	2 <2 <2 <2	96.3 108.0 115.5 123.0	74.6	
D843146 D843147 D843148 D843149 D843150		94 44 58 101 2	0.5 0.4 3.0 0.1	13.9 14.7 16.8 10.4 1.4	<2 <2 <2 89 <2	125.0 117.5 106.0 63.8 21.8		
D843151 D843152 D843153 D843154		55 54 61 64	0.4 0.4 0.6 0.4	16.4 16.4 18.0 14.7	<2 <2 <2 <2 <2	111.5 108.0 105.5 106.5		

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: TRANSITION METALS CORP. 9C - 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5

Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 15-SEP-2022 Account: TRAMET

Project: Aylmer

	CERTIFICATE COMMENTS	
Applies to Method:	ANALYTICAL COMMENTS REEs may not be totally soluble in this method. ME-MS61	
Applies to Method:	LABORATORY ADDRESSESProcessed at ALS Sudbury located at 1351–B Kelly Lake Road, Unit #1, Sudbury, ON, Canada.CRU-31CRU-QCLOG-21LOG-23PUL-31PUL-QCSPL-21WEI-21	
Applies to Method:	Processed at ALS Vancouver located at 2103 Dollarton Hwy, North Vancouver, BC, Canada. Au-ICP21 ME-MS61	

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: TRANSITION METALS CORP. 9C - 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5

Page: 1 Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 26-OCT-2022 Account: TRAMET

CERTIFICATE SD22255045

Project: Aylmer

This report is for 2 samples of Rock submitted to our lab in Sudbury, ON, Canada on 8-SEP-2022.

The following have access to data associated with this certificate:

GREG COLLINS SARAH REESE	THOMAS HART BEN WILLIAMS	GRANT MOURRE

	SAMPLE PREPARATION						
ALS CODE	DESCRIPTION						
WEI-21	Received Sample Weight						
LOG-21	Sample logging – ClientBarCode						
CRU-QC	Crushing QC Test						
PUL-QC	Pulverizing QC Test						
CRU-31	Fine crushing – 70% <2mm						
SPL-21	Split sample – riffle splitter						
PUL-31	Pulverize up to 250g 85% <75 um						

	ANALYTICAL PROCEDURI	ES
ALS CODE	DESCRIPTION	INSTRUMENT
Au-ICP21 ME-MS61	Au 30g FA ICP-AES Finish 48 element four acid ICP-MS	ICP-AES

This is the Final Report and supersedes any preliminary report with this certificate number.Results apply to samples as submitted.All pages of this report have been checked and approved for release. ***** See Appendix Page for comments regarding this certificate *****

Signature: Saa Traxler, Director, North Vancouver Operations

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: TRANSITION METALS CORP. 9C – 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5

Page: 2 - A Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 26-OCT-2022 Account: TRAMET

Project: Aylmer

Sample Description	Method Analyte Units LOD	WEI-21 Recvd Wt. kg 0.02	Au-ICP21 Au ppm 0.001	ME-MS61 Ag ppm 0.01	ME-MS61 Al % 0.01	ME-MS61 As ppm 0.2	ME-MS61 Ba ppm 10	ME-MS61 Be ppm 0.05	ME-MS61 Bi ppm 0.01	ME-MS61 Ca % 0.01	ME-MS61 Cd ppm 0.02	ME-MS61 Ce ppm 0.01	ME-MS61 Co ppm 0.1	ME-MS61 Cr ppm 1	ME-MS61 Cs ppm 0.05	ME-MS61 Cu ppm 0.2
D842811 D842812		0.84 1.68	0.027 0.019	0.04 0.05	8.55 8.75	131.5 71.8	20 20	0.61 0.61	0.28 0.16	0.77 1.05	<0.02 <0.02	6.51 2.10	361 137.0	102 64	0.09 0.11	5.5 7.9

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: TRANSITION METALS CORP. 9C − 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5

Page: 2 - B Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 26-OCT-2022 Account: TRAMET

Project: Aylmer

Sample Description	Method Analyte Units LOD	ME-MS61 Fe % 0.01	ME-MS61 Ga ppm 0.05	ME-MS61 Ge ppm 0.05	ME-MS61 Hf ppm 0.1	ME-MS61 In ppm 0.005	ME-MS61 K % 0.01	ME-MS61 La ppm 0.5	ME-MS61 Li ppm 0.2	ME-MS61 Mg % 0.01	ME-MS61 Mn ppm 5	ME-MS61 Mo ppm 0.05	ME-MS61 Na % 0.01	ME-MS61 Nb ppm 0.1	ME-MS61 Ni ppm 0.2	ME-MS61 P ppm 10
D842811 D842812	LOD	4.21 2.35	22.4 26.4	0.06 0.06	2.9 3.2	0.007	0.39 0.44	2.7 1.0	0.2 <0.2 <0.2	0.24 0.50	101 126	55.6 94.9	7.11 7.26	1.0	101.5 26.6	970 40

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: TRANSITION METALS CORP. 9C – 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5

Page: 2 - C Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 26-OCT-2022 Account: TRAMET

Project: Aylmer

Sample Description	Method	ME-MS61														
	Analyte	Pb	Rb	Re	S	Sb	Sc	Se	Sn	Sr	Ta	Te	Th	Ti	Tl	U
	Units	ppm	ppm	ppm	%	ppm	%	ppm	ppm							
	LOD	0.5	0.1	0.002	0.01	0.05	0.1	1	0.2	0.2	0.05	0.05	0.01	0.005	0.02	0.1
D842811		0.6	3.4	0.011	3.45	0.19	4.7	5	0.2	36.6	0.08	0.45	5.45	0.051	0.03	2.9
D842812		0.6	5.1	0.006	1.62	0.27	8.7	4	0.2	38.2	0.12	0.13	9.32	0.051	0.03	3.3

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: TRANSITION METALS CORP. 9C – 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5

Page: 2 - D Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 26-OCT-2022 Account: TRAMET

Project: Aylmer

Sample Description	Method Analyte Units LOD	ME-MS61 V ppm 1	ME-MS61 W ppm 0.1	ME-MS61 Y ppm 0.1	ME-MS61 Zn ppm 2	ME-MS61 Zr ppm 0.5	CRU-QC Pass2mm % 0.01	PUL-QC Pass75um % 0.01	
Sample Description	Analyte Units	ppm	ppm	ppm	ppm	ppm	%	%	

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: TRANSITION METALS CORP. 9C - 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5

Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 26-OCT-2022 Account: TRAMET

Project: Aylmer

	CERTIFICATE COMMENTS
Applies to Method:	ANALYTICAL COMMENTS REEs may not be totally soluble in this method. ME-MS61
Applies to Method:	LABORATORY ADDRESSESProcessed at ALS Sudbury located at 1351–B Kelly Lake Road, Unit #1, Sudbury, ON, Canada.CRU-31CRU-QCLOG-21PUL-31PUL-QCSPL-21WEI-21
Applies to Method:	Processed at ALS Vancouver located at 2103 Dollarton Hwy, North Vancouver, BC, Canada. Au-ICP21 ME-MS61

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: TRANSITION METALS CORP. 9C - 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5

Page: 1 Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 4-JUN-2022 Account: TRAMET

QC CERTIFICATE SD22128706

Project: Aylmer

This report is for 7 samples of Rock submitted to our lab in Sudbury, ON, Canada on 17-MAY-2022.

The following have access to data associated with this certificate:

GREG COLLINS BEN WILLIAMS	THOMAS HART	GRANT MOURRE

	SAMPLE PREPARATION						
ALS CODE	DESCRIPTION						
WEI-21	Received Sample Weight						
LOG-21	Sample logging – ClientBarCode						
LOG-23	Pulp Login – Rcvd with Barcode						
CRU-31	Fine crushing – 70% <2mm						
SPL-21	Split sample – riffle splitter						
PUL-31	Pulverize up to 250g 85% <75 um						
CRU-21	Crush entire sample						
CRU-QC	Crushing QC Test						
PUL-QC	Pulverizing QC Test						

	ANALYTICAL PROCEDURE	S
ALS CODE	DESCRIPTION	INSTRUMENT
ME-MS61 ME-OG62	48 element four acid ICP-MS Ore Grade Elements - Four Acid	ICP-AES
Cu-OG62 Au-ICP21	Ore Grade Cu – Four Acid Au 30g FA ICP-AES Finish	ICP-AES

This is the Final Report and supersedes any preliminary report with this certificate number.Results apply to samples as submitted.All pages of this report have been checked and approved for release. ***** See Appendix Page for comments regarding this certificate *****

Signature: Saa Traxler, Director, North Vancouver Operations

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: TRANSITION METALS CORP. 9C - 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5

QC CERTIFICATE OF ANALYSIS

Page: 2 – A Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 4-JUN-2022 Account: TRAMET

SD22128706

Project: Aylmer

2																
Sample Description	Method Analyte Units LOD	Au-ICP21 Au ppm 0.001	ME-MS61 Ag ppm 0.01	ME-MS61 Al % 0.01	ME-MS61 As ppm 0.2	ME-MS61 Ba ppm 10	ME-MS61 Be ppm 0.05	ME-MS61 Bi ppm 0.01	ME-MS61 Ca % 0.01	ME-MS61 Cd ppm 0.02	ME-MS61 Ce ppm 0.01	ME-MS61 Co ppm 0.1	ME-MS61 Cr ppm 1	ME-MS61 Cs ppm 0.05	ME-MS61 Cu ppm 0.2	ME-MS61 Fe % 0.01
							STAN	IDARDS								
EMOG-17																
Target Range – Lowe	er Bound															
	r Bound															
EMOG-17			68.4	4.64	581	370	1.82	6.06	1.94	20.4	49.0	767	59	7.03	8400	4.86
Target Range - Lowe			60.9	4.18	522	310	1.60	5.31	1.72	18.15	42.9	686	49	6.56	7750	4.42
	r Bound	0.929	74.5	5.13	638	440	2.06	6.51	2.12	22.2	52.5	838	62	8.12	8910	5.42
GPP-14 Target Range - Lowe	r Pound	0.929														
	r Bound	0.855														
KIP-19	i bound	2.49														
Target Range - Lowe	er Bound	2.28														
	r Bound	2.58														
MRGeo08			4.41	7.65	32.7	1100	3.52	0.65	2.69	2.12	70.0	19.4	98	12.60	615	3.95
Target Range - Lowe			3.93 4.83	6.64 8.14	29.5 36.5	920 1270	2.98 3.76	0.58 0.73	2.35 2.90	2.00 2.48	66.2 81.0	17.7 21.9	81 102	11.20 13.80	587 675	3.55 4.37
OREAS 681	r Bound	0.049	4.00	0.14	50.5	1270	5.70	0.75	2.30	2.40	01.0	21.5	102	13.00	0/5	4.57
Target Range – Lowe	er Bound	0.047														
	r Bound	0.055														
OREAS 906			0.71	7.76	21.3	2860	2.84	10.15	0.62	0.37	88.6	22.8	13	6.41	3140	5.73
Target Range - Lowe			0.67	6.61	20.3	2300	2.60	9.98	0.50	0.36	83.7	21.7	7	6.07	2880	4.94
OREAS 920	r Bound		0.84	8.11 7.76	25.3 4.7	3130 560	3.28 2.74	12.20 0.63	0.63 0.50	0.48	102.5 96.5	26.7 15.0	11 88	7.53 8.50	3320 117.5	6.06 4.07
Target Range – Lowe	ar Bound		0.12	6.91	4.7	450	2.74	0.63	0.50	0.06	96.5 84.6	13.9	75	7.72	104.0	3.72
	r Bound		0.13	8.47	6.1	640	3.22	0.77	0.56	0.12	103.5	17.3	93	9.54	120.0	4.56
OREAS 932																
Target Range - Lowe																
	r Bound															
OREAS-134b																
Target Range – Lowe	r Bound r Bound															
TAZ-20	i bound	0.301														
Target Range - Lowe	er Bound	0.283														
Upper	r Bound	0.321														

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: TRANSITION METALS CORP. 9C - 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5

Page: 2 - B Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 4-JUN-2022 Account: TRAMET

QC CERTIFICATE OF ANALYSIS SD22128706

	Method	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61
	Analyte	Ga	Ge	Hf	In	к	La	Li	Mg	Mn	Мо	Na	Nb	Ni	Р	Pb
Sample Description	Units	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm	ppm
sample Description	LOD	0.05	0.05	0.1	0.005	0.01	0.5	0.2	0.01	5	0.05	0.01	0.1	0.2	10	0.5
							STAN	NDARDS								
EMOG-17																
Target Range - Lower																
EMOG-17	Bound	12.15	0.08	1.9	0.925	1.65	23.5	25.4	0.94	749	1070	1.07	15.2	7630	810	7290
Target Range – Lower	Round	10.75	0.06	1.6	0.823	1.49	20.7	23.9	0.86	670	997	0.99	12.7	6820	700	6570
	Bound	13.25	0.30	2.2	1.015	1.85	26.4	29.7	1.08	830	1220	1.23	15.7	8330	880	8030
GPP-14																
Target Range – Lower	^r Bound Bound															
KIP-19	воина															
Target Range – Lower	^r Bound															
	Bound															
MRGeo08		17.70	0.15	3.1	0.159	3.15	33.3	33.5	1.35	562	14.25	2.02	20.4	713	1070	1075
Target Range – Lower	r Bound Bound	17.50 21.5	<0.05 0.28	2.8 3.6	0.155 0.201	2.79 3.43	31.1 39.1	29.5 36.5	1.17 1.45	497 619	13.65 16.75	1.76 2.18	19.0 23.4	622 760	930 1160	971 1185
OREAS 681	bound		••				••••									
Target Range – Lower Upper	r Bound Bound															
OREAS 906		27.0	0.15	6.4	1.165	2.97	44.4	19.1	0.28	390	3.77	2.55	17.2	5.8	290	34.0
Target Range - Lower		25.5	0.07	6.2	1.100	2.55	41.5	17.2	0.24	328	3.60	2.17	15.9	4.2	230	32.0
Upper OREAS 920	Bound	31.3 20.8	0.31 0.07	7.8 4.7	1.360 0.086	3.13 2.85	51.9 47.9	21.4 28.9	0.31 1.33	412 596	4.51 0.40	2.67 0.62	19.7 18.5	5.6 40.3	310 740	40.2 25.1
Target Range – Lower	Round	18.65	< 0.07	4.7	0.088	2.65	47.9	26.0	1.23	535	0.40	0.62	15.6	37.4	670	20.7
	Bound	22.9	0.29	5.2	0.098	3.19	51.2	32.2	1.53	665	0.58	0.71	19.2	46.2	840	26.4
OREAS 932																
Target Range – Lower	^r Bound Bound															
OREAS-134b	DUUIIU															
Target Range – Lower	Bound															
Upper	Bound															
TAZ-20																
Target Range – Lower																
opper	Bound															

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: TRANSITION METALS CORP. 9C - 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5

Page: 2 - C Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 4-JUN-2022 Account: TRAMET

QC CERTIFICATE OF ANALYSIS SD22128706

									*							-
Sample Description	Method Analyte Units LOD	ME-MS61 Rb ppm 0.1	ME-MS61 Re ppm 0.002	ME-MS61 S % 0.01	ME-MS61 Sb ppm 0.05	ME-MS61 Sc ppm 0.1	ME-MS61 Se ppm 1	ME-MS61 Sn ppm 0.2	ME-MS61 Sr ppm 0.2	ME-MS61 Ta ppm 0.05	ME-MS61 Te ppm 0.05	ME-MS61 Th ppm 0.01	ME-MS61 Ti % 0.005	ME-MS61 Tl ppm 0.02	ME-MS61 U ppm 0.1	ME-MS61 V ppm 1
	LOD	0.1	0.002	0.01	0.05	0.1		0.2	0.2	0.05	0.05	0.01	0.005	0.02	0.1	
							STAN	IDARDS								
EMOG-17																
Target Range - Lower	Bound															
	Bound															
EMOG-17		106.0	0.312	3.16	788	7.8	6	2.7	206	0.88	1.22	10.65	0.316	2.26	3.0	74
Target Range – Lower		98.9	0.286 0.354	2.91 3.57	643 869	7.2 9.0	4 9	2.2 3.2	184.5 226	0.78 1.08	1.10 1.46	10.35 12.65	0.294 0.370	1.89 2.61	2.8 3.7	67 84
GPP-14	Bound	121.0	0.354	3.57	009	9.0	9	3.2	220	1.06	1.40	12.00	0.370	2.01	3.7	04
Target Range – Lower	Round															
	Bound															
KIP-19																
Target Range - Lower	Bound															
	Bound															
MRGeo08		196.5	0.008	0.31	4.44	12.2	1	3.8	310	1.53	< 0.05	20.5	0.505	1.03	5.6	110
Target Range - Lower		173.5 212	0.004 0.013	0.27 0.35	3.89 5.39	11.1 13.7	<1 4	3.5 4.7	277 339	1.39 1.81	<0.05 0.12	17.90 21.9	0.443 0.553	0.86 1.21	4.9 6.2	97 121
OREAS 681	Bound	212	0.013	0.55	5.59	13.7	4	4.7	339	1.01	0.12	21.9	0.555	1.21	0.2	121
Target Range – Lower	Bound Bound															
OREAS 906	bound	129.5	<0.002	0.04	2.34	4.6	4	3.9	160.0	1.21	0.13	13.70	0.122	0.64	4.9	6
Target Range – Lower	Bound	124.0	< 0.002	0.02	1.96	4.0	3	3.7	140.0	1.17	< 0.05	13.30	0.097	0.58	4.5	3
	Bound	152.0	0.004	0.06	2.76	5.2	7	5.0	172.0	1.54	0.25	16.30	0.129	0.84	5.7	8
OREAS 920		177.0	<0.002	0.03	1.43	13.8	<1	5.2	82.2	1.34	<0.05	18.50	0.468	0.96	3.7	98
Target Range - Lower		158.5	< 0.002	< 0.01	1.22	12.8	<1	4.3	73.6	1.17	< 0.05	17.35	0.434	0.73	3.3	86
	Bound	193.5	0.004	0.05	1.76	15.8	2	5.7	90.4	1.55	0.12	21.2	0.542	1.03	4.2	108
OREAS 932 Target Range – Lower	Pound															
	Bound															
OREAS-134b	bound															
Target Range – Lower	Bound															
Upper	Bound															
TAZ-20																
Target Range – Lower																
Upper	Bound															

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: TRANSITION METALS CORP. 9C - 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5

Page: 2 - D Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 4-JUN-2022 Account: TRAMET

Project: Aylmer

, All and a second s	Method Analyte Units LOD	ME-MS61 W ppm 0.1	ME-MS61 Y ppm 0.1	ME-MS61 Zn ppm 2	ME-MS61 Zr ppm 0.5	Cu-OG62 Cu % 0.001	
EMOG-17 Target Range - Lower Bo Upper Boi EMOG-17 Target Range - Lower Bo Upper Boi GPP-14 Target Range - Lower Bo Upper Boi MRGe008 Target Range - Lower Bo Upper Boi OREAS 681 Target Range - Lower Bo Upper Boi OREAS 906 Target Range - Lower Bo Upper Boi OREAS 920 Target Range - Lower Bo Upper Boi OREAS 932 Target Range - Lower Bo Upper Boi OREAS 932 Target Range - Lower Bo Upper Boi OREAS - 134b Target Range - Lower Bo Upper Boi OREAS - 134b Target Range - Lower Bo Upper Boi	ound ound ound ound ound ound ound ound	0.1 4.2 3.3 4.7 4.5 4.1 5.8 2.4 2.2 3.2 3.4 2.5 3.7	0.1 16.1 14.3 17.7 25.2 23.8 29.3 14.8 14.1 17.5 33.9 29.8 36.6	2 7390 6800 8320 810 722 886 170 145 181 129 102 130	0.5 69.1 55.6 76.4 109.0 92.2 126.0 263 221 301 164.5 128.0 174.0	0.001 0.838 0.803 0.863 0.863 0.863 0.16 5.91 6.35 0.135 0.129 0.141	STANDARDS

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: TRANSITION METALS CORP. 9C – 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5

OC CERTIFICATE OF ANALYSIS

Page: 3 - A Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 4-JUN-2022 Account: TRAMET

SD22128706

Project: Aylmer

Au-ICP21 ME-MS61 Method Au Ag Al As Ba Be Bi Ca Cd Ce Co Cr Cs Cu Fe Analvte % % % ppm Units Sample Description 0.001 0.01 0.01 0.2 10 0.05 0.01 0.01 0.02 0.01 0.1 1 0.05 0.2 0.01 LOD **BLANKS BI ANK** < 0.001 Target Range – Lower Bound < 0.001 0.002 Upper Bound BLANK Target Range – Lower Bound Upper Bound <0.01 0.2 < 0.05 0.01 < 0.01 < 0.02 0.01 <0.1 < 0.05 <0.2 < 0.01 BLANK < 0.01 <10 <1 BLANK < 0.01 < 0.01 <0.2 <10 < 0.05 < 0.01 < 0.01 < 0.02 0.01 <0.1 <1 < 0.05 <0.2 < 0.01 < 0.01 < 0.01 <0.2 <10 <1 <0.2 < 0.01 Target Range – Lower Bound < 0.05 < 0.01 < 0.01 < 0.02 < 0.01 <0.1 < 0.05 **Upper Bound** 0.02 0.02 0.4 20 0.10 0.02 0.02 0.04 0.02 0.2 2 0.10 0.4 0.02 DUPLICATES ORIGINAL DUP Target Range - Lower Bound Upper Bound 0.001 ORIGINAL 0.001 DUP < 0.001 Target Range - Lower Bound 0.002 Upper Bound 0.7 4.57 29.6 183 13.70 46.0 0.03 7.00 750 1.09 0.13 0.05 113.5 4.55 ORIGINAL DUP 0.03 7.10 0.7 770 1.03 0.14 4.64 0.07 117.5 29.9 187 13.80 46.9 4.65 4.36 0.02 6.69 0.5 690 0.96 0.12 4.36 0.04 109.5 28.2 175 13.00 44.6 Target Range – Lower Bound Upper Bound 0.04 7.41 0.9 830 1.16 0.15 4.85 0.08 121.5 31.3 195 14.50 48.3 4.84 ORIGINAL 0.05 9.04 6.8 40 0.47 0.03 5.11 0.09 18.05 31.7 109 0.16 65.0 5.91 0.05 0.03 0.09 66.0 5.89 9.07 7.1 40 0.44 5.07 18.40 31.9 110 0.17 DUP 0.04 8.59 6.4 30 0.38 0.02 4.83 0.07 17.30 30.1 103 0.11 63.0 5.60 Target Range - Lower Bound 0.06 9.52 7.5 50 0.53 0.04 5.35 0.11 19.15 33.5 116 0.22 68.0 6.21 Upper Bound ORIGINAL 0.004 0.004 DUP Target Range – Lower Bound 0.003 Upper Bound 0.005

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: TRANSITION METALS CORP. 9C - 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5

Page: 3 - B Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 4-JUN-2022 Account: TRAMET

QC CERTIFICATE OF ANALYSIS SD22128706

Sample Description	Method Analyte Units LOD	ME-MS61 Ga ppm 0.05	ME-MS61 Ge ppm 0.05	ME-MS61 Hf ppm 0.1	ME-MS61 In ppm 0.005	ME-MS61 K % 0.01	ME-MS61 La ppm 0.5	ME-MS61 Li ppm 0.2	ME-MS61 Mg % 0.01	ME-MS61 Mn ppm 5	ME-MS61 Mo ppm 0.05	ME-MS61 Na % 0.01	ME-MS61 Nb ppm 0.1	ME-MS61 Ni ppm 0.2	ME-MS61 P ppm 10	ME-MS61 Pb ppm 0.5
							BL	ANKS								
BLANK Target Range – Lower Upper BLANK Target Range – Lower	Bound															
Upper BLANK BLANK Target Range – Lower	Bound	0.10 <0.05 <0.05 0.10	0.10 0.06 <0.05 0.10	<0.1 <0.1 <0.1 0.2	<0.005 <0.005 <0.005 0.010	<0.01 <0.01 <0.01 0.02	<0.5 <0.5 <0.5 1.0	0.2 <0.2 <0.2 0.4	<0.01 <0.01 <0.01 0.02	<5 <5 <5 10	<0.05 <0.05 <0.05 0.10	<0.01 <0.01 <0.01 0.02	<0.1 <0.1 <0.1 0.2	<0.2 <0.2 <0.2 0.4	<10 <10 <10 20	<0.5 <0.5 <0.5 1.0
ORIGINAL DUP Target Range – Lower	^r Bound Bound						DUPL	ICATES								
ORIGINAL DUP Target Range – Lower																
ORIGINAL DUP Target Range – Lower Upper	^r Bound Bound	20.2 20.8 19.45 21.6	0.24 0.13 0.12 0.25	3.3 3.3 3.0 3.6	0.037 0.042 0.033 0.046	2.55 2.63 2.45 2.73	51.4 51.6 48.4 54.6	62.3 58.6 57.2 63.7	3.48 3.56 3.33 3.71	833 854 796 891	0.12 0.16 0.08 0.20	2.81 2.89 2.70 3.00	2.8 2.9 2.6 3.1	159.0 162.0 152.5 168.5	1490 1530 1420 1600	6.6 7.2 6.1 7.7
ORIGINAL DUP Target Range – Lower Upper	^r Bound Bound	17.80 17.95 16.95 18.80	0.08 0.09 <0.05 0.10	2.3 2.2 2.0 2.5	0.046 0.055 0.043 0.058	0.03 0.02 <0.01 0.04	8.2 8.3 7.3 9.2	19.7 19.8 18.6 20.9	3.06 3.06 2.90 3.22	998 1005 946 1055	0.59 0.60 0.52 0.67	3.25 3.25 3.08 3.42	3.5 3.7 3.3 3.9	109.0 111.0 104.5 115.5	470 470 440 500	1.8 1.8 1.2 2.4
ORIGINAL DUP Target Range – Lower Upper	r Bound Bound															

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: TRANSITION METALS CORP. 9C - 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5

Page: 3 - C Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 4-JUN-2022 Account: TRAMET

QC CERTIFICATE OF ANALYSIS SD22128706

Sample Description	Method Analyte Units LOD	ME-MS61 Rb ppm 0.1	ME-MS61 Re ppm 0.002	ME-MS61 S % 0.01	ME-MS61 Sb ppm 0.05	ME-MS61 Sc ppm 0.1	ME-MS61 Se ppm 1	ME-MS61 Sn ppm 0.2	ME-MS61 Sr ppm 0.2	ME-MS61 Ta ppm 0.05	ME-MS61 Te ppm 0.05	ME-MS61 Th ppm 0.01	ME-MS61 Ti % 0.005	ME-MS61 Tl ppm 0.02	ME-MS61 U ppm 0.1	ME-MS61 V ppm 1
							BL	ANKS								
BLANK Target Range – Lower Upper	[.] Bound Bound															
BLANK																
Target Range – Lower Upper	Bound															
BLANK		<0.1	< 0.002	< 0.01	< 0.05	<0.1	<1	<0.2	<0.2	< 0.05	< 0.05	< 0.01	< 0.005	<0.02	<0.1	<1
BLANK Target Range – Lower	Bound	<0.1 <0.1	<0.002 <0.002	<0.01 <0.01	<0.05 <0.05	<0.1 <0.1	<1 <1	<0.2 <0.2	<0.2 <0.2	<0.05 <0.05	<0.05 <0.05	<0.01 <0.01	<0.005 <0.005	<0.02 <0.02	<0.1 <0.1	<1 <1
	Bound	0.2	0.004	0.02	0.10	0.2	2	0.4	0.4	0.10	0.10	0.02	0.010	0.04	0.2	2
							ומו ורם	ICATES								
ORIGINAL							DUFL									
DUP Target Range – Lower	Pound															
	Bound															
ORIGINAL																
DUP																
Target Range – Lower	Bound Bound															
Оррег	bound															
ORIGINAL DUP		69.1 68.5	<0.002 <0.002	<0.01 <0.01	0.28 0.29	14.4 14.7	<1 <1	0.7 0.7	708 725	0.14 0.14	<0.05 <0.05	6.50 6.47	0.338 0.340	0.50 0.57	1.2 1.3	119 122
Target Range – Lower	Bound	65.3	< 0.002	< 0.01	0.29	13.7	<1	0.7	680	0.14	< 0.05	6.15	0.340	0.37	1.1	113
	Bound	72.3	0.004	0.02	0.36	15.4	2	0.9	753	0.20	0.10	6.82	0.361	0.60	1.4	128
ORIGINAL		0.3	<0.002	0.37	0.17	27.5	<1	0.7	157.5	0.27	<0.05	1.16	0.495	0.04	0.3	200
DUP		0.3	<0.002	0.37	0.16	28.0	<1	0.8	155.5	0.28	<0.05	1.17	0.496	0.04	0.3	199
Target Range – Lower Upper	Bound Bound	0.2	<0.002 0.004	0.34 0.40	0.10 0.23	26.3 29.2	<1 2	0.5 1.0	148.5 164.5	0.21 0.34	<0.05 0.10	1.10 1.23	0.466 0.525	<0.02 0.06	0.2 0.4	189 210
ORIGINAL DUP																
Target Range - Lower																
Upper	Bound															

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: TRANSITION METALS CORP. 9C - 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5

Page: 3 - D Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 4-JUN-2022 Account: TRAMET

Project: Aylmer

An Sample Description U	ethod nalyte Inits -OD	ME-MS61 W ppm 0.1	ME-MS61 Y ppm 0.1	ME-MS61 Zn ppm 2	ME-MS61 Zr ppm 0.5	Cu-OG62 Cu % 0.001	
BLANK Target Range – Lower Bour Upper Boun BLANK Target Range – Lower Bour Upper Boun BLANK BLANK Target Range – Lower Bour Upper Boun	nd nd nd	<0.1 <0.1 <0.1 0.2	<0.1 <0.1 <0.1 0.2	<2 <2 <2 <2 4	<0.5 <0.5 <0.5 1.0	<0.001 <0.001 0.002	BLANKS
ORIGINAL DUP Target Range – Lower Bour Upper Boun						0.175 0.169 0.167 0.177	DUPLICATES
ORIGINAL DUP Target Range – Lower Bour Upper Boun	nd 1d						
ORIGINAL DUP Target Range – Lower Bour Upper Boun	nd 1d	1.1 1.1 0.9 1.3	11.6 12.3 11.3 12.6	90 98 87 101	126.0 133.0 119.5 139.5		
ORIGINAL DUP Target Range – Lower Bour Upper Boun	nd 1d	0.3 0.3 0.2 0.4	19.8 19.8 18.7 20.9	84 85 78 91	83.6 85.4 77.7 91.3		
ORIGINAL DUP Target Range – Lower Bour Upper Boun	nd 1d						

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: TRANSITION METALS CORP. 9C - 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5

Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 4-JUN-2022 Account: TRAMET

Project: Aylmer

		CERTIFICATE COMMENTS		
Applies to Method:	REEs may not be totally soluble in thi ME-MS61	ANALYTICAL COI s method.	MMENTS	
Applies to Method:	Processed at ALS Sudbury located at CRU-21	LABORATORY AD 1351–B Kelly Lake Road, Unit #1, Sudl CRU–31		LOG-21
	LOG-23 WEI-21	PUL-31	PUL-QC	SPL-21
Applies to Method:	Processed at ALS Vancouver located a Au-ICP21	at 2103 Dollarton Hwy, North Vancouv Cu-OG62	ver, BC, Canada. ME-MS61	ME-OG62

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: TRANSITION METALS CORP. 9C - 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5

Page: 1 Total # Pages: 6 (A - D) Plus Appendix Pages Finalized Date: 19-SEP-2022 Account: TRAMET

QC CERTIFICATE SD22236507

Project: Aylmer

This report is for 86 samples of 1/2 Core submitted to our lab in Sudbury, ON, Canada on 22-AUG-2022.

The following have access to data associated with this certificate:

GREG COLLINS SARAH REESE	THOMAS HART BEN WILLIAMS	GRANT MOURRE

SAMPLE PREPARATION								
ALS CODE	DESCRIPTION							
WEI-21	Received Sample Weight							
LOG-21	Sample logging – ClientBarCode							
CRU-QC	Crushing QC Test							
PUL-QC	Pulverizing QC Test							
LOG-23	Pulp Login – Rcvd with Barcode							
CRU-31	Fine crushing – 70% <2mm							
SPL-21	Split sample – riffle splitter							
PUL-31	Pulverize up to 250g 85% <75 um							

ANALYTICAL PROCEDURES

ALS CODE	DESCRIPTION	INSTRUMENT
Au-ICP21	Au 30g FA ICP-AES Finish	ICP-AES
ME-MS61	48 element four acid ICP-MS	

This is the Final Report and supersedes any preliminary report with this certificate number.Results apply to samples as submitted.All pages of this report have been checked and approved for release. ***** See Appendix Page for comments regarding this certificate *****

Signature: Saa Traxler, Director, North Vancouver Operations

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: TRANSITION METALS CORP. 9C – 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5

Page: 2 – A Total # Pages: 6 (A – D) Plus Appendix Pages Finalized Date: 19-SEP-2022 Account: TRAMET

Project: Aylmer

Sample Description	Method Analyte Units LOD	Au-ICP21 Au ppm 0.001	ME-MS61 Ag ppm 0.01	ME-MS61 Al % 0.01	ME-MS61 As ppm 0.2	ME-MS61 Ba ppm 10	ME-MS61 Be ppm 0.05	ME-MS61 Bi ppm 0.01	ME-MS61 Ca % 0.01	ME-MS61 Cd ppm 0.02	ME-MS61 Ce ppm 0.01	ME-MS61 Co ppm 0.1	ME-MS61 Cr ppm 1	ME-MS61 Cs ppm 0.05	ME-MS61 Cu ppm 0.2	ME-MS61 Fe % 0.01
							STAN	DARDS								
EMOG-17			69.2	4.76	588	160	1.78	5.63	1.99	20.1	49.3	764	56	6.86	8320	5.02
Target Range – Lower			60.9 74.5	4.18 5.13	522 638	310 440	1.60 2.06	5.31 6.51	1.72 2.12	18.15 22.2	42.9 52.5	686 838	49 62	6.56 8.12	7750 8910	4.42 5.42
G919-10 G919-10 Target Range - Lower Upper GPP-14 GPP-14 GPP-14 Target Range - Lower Upper KIP-19 KIP-19 KIP-19 Target Range - Lower MRGe008 MRGe008 Target Range - Lower	Bound Bound Bound Bound	7.86 7.80 7.12 8.04 0.933 0.918 0.923 0.853 0.965 2.50 2.50 2.50 2.41 2.28 2.58	4.45 4.55 3.93 4.83	7.81 7.47 6.64 8.14	34.5 34.9 29.5 36.5	1110 1100 920 1270	3.60 3.25 2.98 3.76	0.71 0.64 0.73	2.78 2.71 2.35 2.90	2.29 2.21 2.00 2.48	80.6 73.2 66.2 81.0	20.5 20.0 17.7 21.9	99 96 81 102	12.85 13.40 11.20 13.80	637 616 587 675	4.08 4.00 3.55 4.37
Target Range – Lower Upper	Bound Bound	0.047	0.72	7.63	22.8	2850	2 82	11 70	0.61	0.42	93.3	24.1	11	6.99	3080	5.68
OREAS 906 OREAS 906			0.73 0.76	7.63 7.54	22.8 22.9	2850 2810	2.82 2.86	11.70 10.70	0.61 0.60	0.42	93.3 97.1	24.1	10	6.91	3080 3050	5.68 5.70
Target Range – Lower	Bound Bound		0.67 0.84	6.61 8.11	20.3 25.3	2300 3130	2.60 3.28	9.98 12.20	0.50 0.63	0.36 0.48	83.7 102.5	21.7 26.7	7 11	6.07 7.53	2880 3320	4.94 6.06
OREAS 920	Dound		0.11	7.70	5.4	550	2.76	0.88	0.51	0.06	95.4	15.7	86	8.76	113.5	4.07
OREAS 920 Target Range – Lower Upper	⁻ Bound Bound		0.11 0.08 0.13	8.00 6.91 8.47	5.9 4.6 6.1	560 450 640	2.77 2.54 3.22	0.67 0.61 0.77	0.53 0.44 0.56	0.05 0.04 0.12	101.5 84.6 103.5	16.1 13.9 17.3	85 75 93	9.22 7.72 9.54	111.5 104.0 120.0	4.18 3.72 4.56

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: TRANSITION METALS CORP. 9C - 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5

Page: 2 - B Total # Pages: 6 (A - D) Plus Appendix Pages Finalized Date: 19-SEP-2022 Account: TRAMET

									QC		FICATE	OF AN/	ALYSIS	SD22	236507	7
Sample Description	Method Analyte Units LOD	ME-MS61 Ga ppm 0.05	ME-MS61 Ge ppm 0.05	ME-MS61 Hf ppm 0.1	ME-MS61 In ppm 0.005	ME-MS61 K % 0.01	ME-MS61 La ppm 0.5	ME-MS61 Li ppm 0.2	ME-MS61 Mg % 0.01	ME-MS61 Mn ppm 5	ME-MS61 Mo ppm 0.05	ME-MS61 Na % 0.01	ME-MS61 Nb ppm 0.1	ME-MS61 Ni ppm 0.2	ME-MS61 P ppm 10	ME-MS61 Pb ppm 0.5
							STAN	IDARDS								
EMOG-17 Target Range - Lower Upper G919-10 G919-10 Target Range - Lower Upper	Bound Bound	11.60 10.75 13.25	0.16 0.06 0.30	1.8 1.6 2.2	0.934 0.823 1.015	1.72 1.49 1.85	24.0 20.7 26.4	25.0 23.9 29.7	0.99 0.86 1.08	748 670 830	1085 997 1220	1.14 0.99 1.23	15.0 12.7 15.7	7710 6820 8330	830 700 880	7170 6570 8030
GPP-14 GPP-14 GPP-14 Target Range - Lower Upper KIP-19 KIP-19 Target Range - Lower Upper	Bound Bound															
MRGeo08 MRGeo08 Target Range – Lower Upper		18.65 19.95 17.50 21.5	0.13 0.15 <0.05 0.28	3.1 2.9 2.8 3.6	0.184 0.180 0.155 0.201	3.27 3.18 2.79 3.43	39.1 33.3 31.1 39.1	33.6 30.6 29.5 36.5	1.41 1.35 1.17 1.45	581 561 497 619	14.95 15.00 13.65 16.75	2.05 2.02 1.76 2.18	20.7 21.4 19.0 23.4	718 701 622 760	1070 1050 930 1160	1075 1060 971 1185
OREAS 681 OREAS 681 Target Range – Lower Upper	Bound															
OREAS 906 OREAS 906 Target Range – Lower Upper OREAS 920 OREAS 920		26.7 29.2 25.5 31.3 20.4 20.3	0.16 0.15 0.07 0.31 0.12 0.18	6.7 6.5 6.2 7.8 4.3 4.3	1.295 1.300 1.100 1.360 0.083 0.093	2.99 2.94 2.55 3.13 2.89 2.98	45.7 47.2 41.5 51.9 47.1 47.3	19.4 17.8 17.2 21.4 29.9 29.3	0.28 0.28 0.24 0.31 1.37 1.42	376 371 328 412 593 615	3.88 3.83 3.60 4.51 0.44 0.35	2.56 2.47 2.17 2.67 0.64 0.66	17.5 18.8 15.9 19.7 16.9 18.2	5.5 4.3 4.2 5.6 41.4 38.2	280 280 230 310 740 770	35.1 33.7 32.0 40.2 23.9 26.0
Target Range – Lower Upper		18.65 22.9	<0.05 0.29	4.0 5.2	0.070 0.098	2.59 3.19	41.0 51.2	26.0 32.2	1.23 1.53	535 665	0.34 0.58	0.56 0.71	15.6 19.2	37.4 46.2	670 840	20.7 26.4

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: TRANSITION METALS CORP. 9C - 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5

Page: 2 - C Total # Pages: 6 (A - D) Plus Appendix Pages Finalized Date: 19-SEP-2022 Account: TRAMET

QC CERTIFICATE OF ANALYSIS	SD22236507

Image: Lower Bound DOT D.002 D.01 D.03 D.1 I D.2 D.03 D.03 </th <th></th>																	
STANDARDS	Sample Description	Analyte Units	Rb ppm	Re ppm	S %	Sb ppm	Sc ppm	Se ppm	Sn ppm	Sr ppm	Ta ppm	Te ppm	Th ppm	Ti %	TI ppm	U ppm	V ppm
MAGC-17 116.0 0.329 3.30 802 7.9 7 2.5 207 0.92 1.36 11.90 0.324 2.06 3.0 75 Target Range - Lower Bound Upper Bound 121.0 0.354 3.57 869 9.0 9 3.2 2.6 1.06 1.46 10.25 0.370 2.61 3.7 84 319-10 319-10 319-10 319-10 319-10 316 1.46 1.265 0.370 2.61 3.7 84 JPP-14	• •	LOD	0.1	0.002	0.01	0.03	0.1	I	0.2	0.2	0.03	0.03	0.01	0.003	0.02	0.1	I
Target Range - Lower Bound Upper Bound IXC=008 9.0 2.0 0.0 0.00 0.00 0.00 0.0 0.00 0.0 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>STAN</td> <td>IDARDS</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								STAN	IDARDS								
Target Range - Lower Bound Upper Bound IRCe008 9.0 9.	FMOC-17		116.0	0.329	3 30	802	79	7	25	207	0.92	1 36	11 90	0.324	2.06	3.0	75
Upper Bound 3919-10 121.0 0.354 3.57 869 9.0 9 3.2 2.26 1.08 1.46 12.65 0.370 2.61 3.7 84 3919-10 Garget Range - Lower Bound Upper Bound Upper Bound V		r Bound															
jaja-10 farget Range - Lower Bound jpp-14 jpp-16 lpper Bound (lp-19) (lp-19) (lp-19) (lp-19) (lp-19) (lp-12) (lp-13) (lp-14) upper Bound MRGe008 194.5 0.007 0.31 4.60 13.4 1 4.1 307 1.44 0.07 21.6 0.512 1.09 5.9 114 MRGe008 194.5 0.009 0.31 4.56 12.3 1 3.9 201 1.43 -0.05 18.90 0.443 0.86 4.99 97 farget Range - Lower Bound 1212 0.013 0.35 5.39 13.7 <td></td> <td></td> <td>121.0</td> <td>0.354</td> <td>3.57</td> <td>869</td> <td>9.0</td> <td>9</td> <td>3.2</td> <td>226</td> <td>1.08</td> <td>1.46</td> <td>12.65</td> <td>0.370</td> <td>2.61</td> <td>3.7</td> <td>84</td>			121.0	0.354	3.57	869	9.0	9	3.2	226	1.08	1.46	12.65	0.370	2.61	3.7	84
Farget Range - Lower Bound Upper Bound JPP - 14 JPP - 14	G919-10																
Upper Bound JPP-14 JPP-14 Upper Bound Upper Bound Upper Bound Upper Bound Upper Bound Upper Bound Upper Bound Upper Bound Upper Bound RGe008 207 0.007 0.31 4.60 13.4 1 4.1 307 1.44 0.07 21.6 0.512 1.09 5.9 114 RGe008 207 0.007 0.31 4.60 13.4 1 4.1 307 1.44 0.07 21.6 0.512 1.09 5.9 114 RGe008 194.5 0.009 0.31 4.66 12.3 1 3.9 301 1.43 -0.05 18.90 0.496 1.02 5.2 110 Arget Range - Lower Bound Upper Bound 122 0.013 0.35 5.39 13.7 4 4.7 339 1.81 0.12 21.9 0.533 1.21 6.2 121 DREAS 681 122 0.013 0.35 5.39 13.7 4 4.7 339 1.81 0.12 21.9 0.533 1.21 6.2 121 <td< td=""><td></td><td>. David</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>		. David															
TPP-14 TPP-14 Target Range - Lower Bound Upper Bound UIP-19 Target Range - Lower Bound 173.5 0.007 0.31 4.60 13.4 1 4.1 307 1.44 0.07 21.6 0.512 1.09 5.9 114 RGec008 194.5 0.009 0.31 4.56 12.3 1 3.9 301 1.43 0.05 17.90 0.443 0.86 4.9 97 Upper Bound 173.5 0.004 0.27 3.89 11.1 <1																	
Prp-14 Frage Lower Bound Upper Bound (IP-19 (IP-19 (IP-19 (IP-19 (IP-19 (IP-19 (IP-19 (IP-19 (IP-19 (IP-10) (IP-19 (IP-10) (IP-19 (IP-10) (IP-19 (IP-10) (IP-10) (IP-10) <	GPP-14	bound															
Arget Range - Lower Bound Upper Bound Upper Bound (IP-19) (IP-19) (IP-19) (IP-19) (IP-19) (IP-19) (IP-10) (IP-	GPP-14																
Upper Bound (IP-19 (IP-19) (IP-19) Upper Bound Upper Bound 207 0.007 0.31 4.60 13.4 1 4.1 307 1.44 0.07 21.6 0.512 1.09 5.9 114 MRGe008 194.5 0.009 0.31 4.66 12.3 1 3.9 301 1.43 -0.05 18.90 0.496 1.02 5.2 110 arget Range - Lower Bound Upper Bound 173.5 0.004 0.27 3.89 11.1 -1 3.5 277 1.39 <0.05	GPP-14																
KIP-19 (IP-19 (IP-19) KIP-19 (IP-19) Carget Range - Lower Bound Upper Bound 207 0.007 0.31 4.60 13.4 1 4.1 307 1.44 0.07 21.6 0.512 1.09 5.9 114 MRGe008 194.5 0.009 0.31 4.56 12.3 1 3.9 301 1.43 <0.05																	
KIP-19 (IP-19) CIP-19 (IP-19) CIP-19 (IP-19) CIP-19 (IP-19) CIP-19 (IP-19) Target Range - Lower Bound (MCeo08) 207 0.007 0.31 4.60 13.4 1 4.1 307 1.44 0.07 21.6 0.512 1.09 5.9 114 MCeo08 194.5 0.009 0.31 4.56 12.3 1 3.9 301 1.43 -0.05 18.90 0.496 1.02 5.2 110 Farget Range - Lower Bound Upper Bound 173.5 0.004 0.27 3.89 11.1 <1		Бойпа															
Karget Range - Lower Bound Upper Bound Vertical Stress Vertical Stress <td>KIP-19</td> <td></td>	KIP-19																
Upper Bound MRGe008 207 0.007 0.31 4.60 13.4 1 4.1 307 1.44 0.07 21.6 0.512 1.09 5.9 114 MRGe008 194.5 0.009 0.31 4.56 12.3 1 3.9 301 1.43 <0.05	KIP-19																
MRGeo08 207 0.007 0.31 4.60 13.4 1 4.1 307 1.44 0.07 21.6 0.512 1.09 5.9 114 MRGeo08 194.5 0.009 0.31 4.56 12.3 1 3.9 301 1.43 <0.05	2 2																
MRGeo08 194.5 0.009 0.31 4.56 12.3 1 3.9 301 1.43 <0.05 18.90 0.496 1.02 5.2 110 Farget Range - Lower Bound Upper Bound 173.5 0.004 0.27 3.89 11.1 <1 3.5 277 1.39 <0.05 17.90 0.443 0.86 4.9 97 DREAS 681 0.02 0.013 0.35 5.39 13.7 4 4.7 339 1.81 0.12 21.9 0.553 1.21 6.2 121 DREAS 681 0.02 0.002 0.04 2.43 4.9 5 4.1 161.0 1.30 0.13 14.95 0.117 0.73 5.0 6 DREAS 906 137.0 <0.002 0.04 2.46 4.5 5 4.1 158.0 1.26 0.13 14.75 0.118 0.66 4.7 6 DREAS 906 137.0 <0.002 0.02 1.96 4.0 3 3.7 140.0 1.17 <0.05 13.30 0.097 0.58 <t< td=""><td></td><td>Bound</td><td>007</td><td>0.007</td><td>0.01</td><td>4.00</td><td>10.4</td><td>4</td><td>4.4</td><td>207</td><td>1 4 4</td><td>0.07</td><td>01.0</td><td>0.510</td><td>1.00</td><td>5.0</td><td>114</td></t<>		Bound	007	0.007	0.01	4.00	10.4	4	4.4	207	1 4 4	0.07	01.0	0.510	1.00	5.0	114
Target Range - Lower Bound Upper Bound 173.5 0.004 0.27 3.89 11.1 <1 3.5 277 1.39 <0.05 17.90 0.443 0.86 4.9 97 DREAS 681 DREAS 681 Upper Bound Upper Bound 0.12 21.9 0.553 1.21 6.2 121 OREAS 681 Upper Bound																	
Upper Bound 212 0.013 0.35 5.39 13.7 4 4.7 339 1.81 0.12 21.9 0.553 1.21 6.2 121 DREAS 681 DREAS 681 DREAS 681 DREAS 906		r Bound									-						
DREAS 681 Farget Range - Lower Bound Upper Bound 130.0 <0.002 0.04 2.43 4.9 5 4.1 161.0 1.30 0.13 14.95 0.117 0.73 5.0 6 DREAS 906 137.0 <0.002	Upper		212	0.013	0.35	5.39	13.7	4	4.7	339	1.81	0.12	21.9	0.553	1.21		121
Farget Range - Lower Bound Upper Bound 130.0 <0.002 0.04 2.43 4.9 5 4.1 161.0 1.30 0.13 14.95 0.117 0.73 5.0 6 DREAS 906 137.0 <0.002	OREAS 681																
Upper Bound Upper Bound DREAS 906 130.0 <0.002		D I															
DREAS 906 130.0 <0.002 0.04 2.43 4.9 5 4.1 161.0 1.30 0.13 14.95 0.117 0.73 5.0 6 DREAS 906 137.0 <0.002 0.04 2.46 4.5 5 4.1 161.0 1.30 0.13 14.95 0.117 0.73 5.0 6 Graget Range - Lower Bound Upper Bound 124.0 <0.002 0.02 1.96 4.0 3 3.7 140.0 1.17 <0.05 13.30 0.097 0.58 4.5 3 OREAS 920 0.014 0.66 2.76 5.2 7 5.0 172.0 1.54 0.25 16.30 0.129 0.84 5.7 8 OREAS 920 170.5 <0.002 0.03 1.47 14.4 <1 4.8 80.9 1.32 <0.05 19.40 0.486 0.85 3.6 97 OREAS 920 187.0 0.002 0.03 1.43 14.6 <1 4.8 84.8 1.33 <0.05 19.40 0.486 0.85 3.6																	
DREAS 906 137.0 <0.002 0.04 2.46 4.5 5 4.1 158.0 1.26 0.13 14.75 0.118 0.66 4.7 6 Farget Range - Lower Bound Upper Bound 124.0 <0.002 0.02 1.96 4.0 3 3.7 140.0 1.17 <0.05 13.30 0.097 0.58 4.5 3 Opper Bound 152.0 0.004 0.06 2.76 5.2 7 5.0 172.0 1.54 0.25 16.30 0.129 0.84 5.7 8 OREAS 920 170.5 <0.002 0.03 1.47 14.4 <1 4.8 80.9 1.32 <0.05 19.40 0.486 0.85 3.6 97 OREAS 920 187.0 0.002 0.03 1.43 14.6 <1 4.8 80.9 1.33 <0.05 19.40 0.486 0.85 3.6 97 OREAS 920 187.0 0.002 0.03 1.43 14.6 <1 4.8 84.8 1.33 <0.05 19.90 0.491 0.87 <td></td> <td>bound</td> <td>130.0</td> <td><0.002</td> <td>0.04</td> <td>2.43</td> <td>4.9</td> <td>5</td> <td>4.1</td> <td>161.0</td> <td>1.30</td> <td>0.13</td> <td>14.95</td> <td>0.117</td> <td>0.73</td> <td>5.0</td> <td>6</td>		bound	130.0	<0.002	0.04	2.43	4.9	5	4.1	161.0	1.30	0.13	14.95	0.117	0.73	5.0	6
Upper Bound 152.0 0.004 0.06 2.76 5.2 7 5.0 172.0 1.54 0.25 16.30 0.129 0.84 5.7 8 DREAS 920 170.5 <0.002	OREAS 906																
DREAS 920 170.5 <0.002 0.03 1.47 14.4 <1 4.8 80.9 1.32 <0.05 19.40 0.486 0.85 3.6 97 DREAS 920 187.0 0.002 0.03 1.43 14.6 <1																	
DREAS 920 187.0 0.002 0.03 1.43 14.6 <1 4.8 84.8 1.33 <0.05 19.90 0.491 0.87 3.6 100 Farget Range - Lower Bound 158.5 <0.002		Bound					-	-		-							
Farget Range - Lower Bound 158.5 <0.002 <0.01 1.22 12.8 <1 4.3 73.6 1.17 <0.05 17.35 0.434 0.73 3.3 86																	
		r Bound															

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: TRANSITION METALS CORP. 9C – 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5

Page: 2 - D Total # Pages: 6 (A - D) Plus Appendix Pages Finalized Date: 19-SEP-2022 Account: TRAMET

Project: Aylmer

Sample Description	Method Analyte Units LOD	ME-MS61 W ppm 0.1	ME-MS61 Y ppm 0.1	ME-MS61 Zn ppm 2	ME-MS61 Zr ppm 0.5	
						STANDARDS
EMOG-17		3.7	16.6	7440	62.8	
Target Range – Lower	Bound	3.3	14.3	6800	55.6	
Upper	Bound	4.7	17.7	8320	76.4	
G919-10 G919-10						
Target Range – Lower	Bound					
Upper	Bound					
GPP-14 GPP-14						
GPP-14						
Target Range – Lower	Bound					
Upper KIP-19	Bound					
KIP-19 KIP-19						
KIP-19						
Target Range – Lower	Bound					
Upper MRGeo08	Bound	4.5	28.5	830	111.0	
MRGeo08		4.4	26.0	808	107.5	
Target Range – Lower		4.1	23.8	722	92.2	
Upper	Bound	5.8	29.3	886	126.0	
OREAS 681 OREAS 681						
Target Range – Lower	Bound					
Upper						
OREAS 906 OREAS 906		2.6 2.5	16.2 16.6	165 166	260 264	
Target Range – Lower	Bound	2.5	14.1	145	204	
Upper		3.2	17.5	181	301	
OREAS 920		3.0	33.7	116	154.0	
OREAS 920 Target Range – Lower	Bound	3.0 2.5	34.8 29.8	119 102	162.5 128.0	
Upper	Bound	3.7	36.6	130	174.0	

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: TRANSITION METALS CORP. 9C - 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5

QC CERTIFICATE OF ANALYSIS

Page: 3 – A Total # Pages: 6 (A - D) Plus Appendix Pages Finalized Date: 19-SEP-2022 Account: TRAMET

SD22236507

Project: Aylmer

Sample Description	Method Analyte Units LOD	Au-ICP21 Au ppm 0.001	ME-MS61 Ag ppm 0.01	ME-MS61 Al % 0.01	ME-MS61 As ppm 0.2	ME-MS61 Ba ppm 10	ME-MS61 Be ppm 0.05	ME-MS61 Bi ppm 0.01	ME-MS61 Ca % 0.01	ME-MS61 Cd ppm 0.02	ME-MS61 Ce ppm 0.01	ME-MS61 Co ppm 0.1	ME-MS61 Cr ppm 1	ME-MS61 Cs ppm 0.05	ME-MS61 Cu ppm 0.2	ME-MS61 Fe % 0.01
							STAN	IDARDS								
OREAS-45h		0.041														
OREAS-45h		0.039														
OREAS-45h		0.040														
Target Range – Lower B		0.038														
Upper Bo OxE166	ound	0.044 0.656														
OxE166		0.649														
OxE166		0.626														
Target Range - Lower B		0.612														
Upper Bo	ound	0.692														
PK03		5.26														
PK03) a constal	5.19 4.73														
Target Range – Lower B Upper Bo		5.34														
TAZ-20	ound	0.319														
TAZ-20		0.307														
Target Range – Lower B		0.283														
Upper Bo	ound	0.321														
							BL/	ANKS								
		0.002														
BLANK BLANK		< 0.002														
BLANK		< 0.001														
BLANK		< 0.001														
BLANK		<0.001														
Target Range – Lower B		< 0.001														
Upper Bo	ound	0.002	0.01	0.01	0.0	10	0.05	0.01	0.01	0.00	0.01	0.1		0.05	0.0	0.01
BLANK BLANK			<0.01 <0.01	<0.01 <0.01	0.2 <0.2	<10 <10	<0.05 <0.05	<0.01 <0.01	<0.01 <0.01	<0.02 <0.02	<0.01 <0.01	<0.1 <0.1	1 <1	<0.05 <0.05	<0.2 <0.2	<0.01 <0.01
BLANK			<0.01	< 0.01	<0.2	<10	<0.05	< 0.01	< 0.01	<0.02	< 0.01	<0.1	<1	<0.05	<0.2	<0.01
BLANK			<0.01	< 0.01	0.2	<10	< 0.05	<0.01	< 0.01	< 0.02	<0.01	<0.1	<1	<0.05	<0.2	< 0.01
Target Range – Lower B	Bound		<0.01	<0.01	<0.2	<10	< 0.05	<0.01	< 0.01	< 0.02	< 0.01	<0.1	<1	< 0.05	<0.2	< 0.01
Upper Bo			0.02	0.02	0.4	20	0.10	0.02	0.02	0.04	0.02	0.2	2	0.10	0.4	0.02

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: TRANSITION METALS CORP. 9C - 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5

Page: 3 – B Total # Pages: 6 (A – D) Plus Appendix Pages Finalized Date: 19–SEP–2022 Account: TRAMET

QC CERTIFICATE OF ANALYSIS SD22236507

Analyte Ga Ge Hf In K La Li Mg Mn Mo Na Nb Ni	E-MS61 ME-MS61 P Pb ppm ppm 10 0.5
Analyte Sample Description Ga Ge Hf In K La Li Mg Mn Mo Na Nb Ni Sample Description Units LOD units LOD ppm	ppm ppm
Sample Description Units LOD ppm ppm <th></th>	
Sample Description LOD 0.05 0.05 0.1 0.005 0.01 0.5 0.2 0.01 5 0.05 0.01 0.1 0.2 OREAS-45h OREAS-45h	10 0.5
OREAS-45h OREAS-45h OREAS-45h	
OREAS-45h OREAS-45h OREAS-45h	
OREAS-45h OREAS-45h OREAS-45h	
OREAS-45h OREAS-45h	
OREAS-45h	
Upper Bound	
OxE166 OxE166	
OxE166	
Target Range – Lower Bound Upper Bound	
PK03	
PK03	
Target Range – Lower Bound	
Upper Bound	
TAZ-20	
TAZ-20	
Target Range – Lower Bound	
Upper Bound	
BLANKS	
BLANK	
Target Range – Lower Bound	
Upper Bound BLANK <0.05 <0.05 <0.01 <0.05 0.2 <0.01 <5 <0.01 <0.2	<10 <0.5
	<10 <0.5
	<10 <0.5
	<10 <0.5
	<10 <0.5
Upper Bound 0.10 0.2 0.010 0.02 1.0 0.4 0.02 10 0.10 0.02 0.4	20 1.0

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: TRANSITION METALS CORP. 9C - 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5

Page: 3 - C Total # Pages: 6 (A - D) Plus Appendix Pages Finalized Date: 19-SEP-2022 Account: TRAMET

QC CERTIFICATE OF ANALYSIS SD22236507

Sample Description	Method Analyte Units LOD	ME-MS61 Rb ppm 0.1	ME-MS61 Re ppm 0.002	ME-MS61 S % 0.01	ME-MS61 Sb ppm 0.05	ME-MS61 Sc ppm 0.1	ME-MS61 Se ppm 1	ME-MS61 Sn ppm 0.2	ME-MS61 Sr ppm 0.2	ME-MS61 Ta ppm 0.05	ME-MS61 Te ppm 0.05	ME-MS61 Th ppm 0.01	ME-MS61 Ti % 0.005	ME-MS61 TI ppm 0.02	ME-MS61 U ppm 0.1	ME-MS61 V ppm 1
OxE166 OxE166 OxE166 Target Range – Lower Upper PK03 PK03 Target Range – Lower TAZ-20 TAZ-20 Target Range – Lower	r Bound r Bound r Bound r Bound r Bound						STAN	IDARDS								
BLANK BLANK BLANK BLANK Target Range – Lower	^r Bound	<0.1 <0.1 <0.1 <0.1 <0.1 0.2	<0.002 <0.002 <0.002 <0.002 <0.002 <0.002 0.004	<0.01 <0.01 <0.01 <0.01 <0.01 0.02	<0.05 <0.05 <0.05 <0.05 <0.05 <0.05 0.10	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 0.2	<1 <1 <1 <1 <1 <1 <1 2	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	<0.05 <0.05 <0.05 <0.05 <0.05 <0.05 0.10	<0.05 <0.05 <0.05 <0.05 <0.05 <0.05 0.10	<0.01 <0.01 0.01 <0.01 <0.01 0.02	<0.005 <0.005 <0.005 <0.005 <0.005 <0.005 0.010	<0.02 <0.02 <0.02 <0.02 <0.02 <0.02 0.04	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 0.2	<1 <1 <1 <1 <1 <1 2

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: TRANSITION METALS CORP. 9C – 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5

Page: 3 - D Total # Pages: 6 (A - D) Plus Appendix Pages Finalized Date: 19-SEP-2022 Account: TRAMET

Project: Aylmer

Sample Description	Method Analyte Units LOD	ME-MS61 W ppm 0.1	ME-MS61 Y ppm 0.1	ME-MS61 Zn ppm 2	ME-MS61 Zr ppm 0.5	
OxE166	Bound Bound					STANDARDS
PK03 PK03 Target Range – Lower	Bound					
TAZ-20 Target Range – Lower	Bound Bound					BLANKS
BLANK BLANK BLANK	Bound Bound	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<2 <2 <2	<0.5 <0.5 <0.5	
BLANK Target Range – Lower Upper	Bound Bound	<0.1 <0.1 0.2	<0.1 <0.1 0.2	<2 <2 4	<0.5 <0.5 1.0	

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: TRANSITION METALS CORP. 9C - 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5

Page: 4 – A Total # Pages: 6 (A – D) Plus Appendix Pages Finalized Date: 19-SEP-2022 Account: TRAMET

Project: Aylmer

Method Analyte Sample Description LOD	Au-ICP21 Au ppm 0.001	ME-MS61 Ag ppm 0.01	ME-MS61 Al % 0.01	ME-MS61 As ppm 0.2	ME-MS61 Ba ppm 10	ME-MS61 Be ppm 0.05	ME-MS61 Bi ppm 0.01	ME-MS61 Ca % 0.01	ME-MS61 Cd ppm 0.02	ME-MS61 Ce ppm 0.01	ME-MS61 Co ppm 0.1	ME-MS61 Cr ppm 1	ME-MS61 Cs ppm 0.05	ME-MS61 Cu ppm 0.2	ME-MS61 Fe % 0.01
ORIGINAL DUP Target Range – Lower Bound Upper Bound	0.002 0.001 <0.001 0.002					DUPL	ICATES								
ORIGINAL DUP Target Range – Lower Bound Upper Bound	0.001 0.001 <0.001 0.002														
ORIGINAL DUP Target Range – Lower Bound Upper Bound	0.077 0.035 0.052 0.060														
ORIGINAL DUP Target Range – Lower Bound Upper Bound	0.001 0.001 <0.001 0.002														
ORIGINAL DUP Target Range - Lower Bound Upper Bound	<0.001 <0.001 <0.001 0.002														
ORIGINAL DUP Target Range – Lower Bound Upper Bound	<0.001 <0.001 <0.001 0.002														
X924633 DUP Target Range – Lower Bound Upper Bound		0.04 0.04 0.03 0.05	6.73 6.78 6.41 7.10	0.6 0.6 0.4 0.8	400 390 360 430	0.90 0.84 0.78 0.96	0.12 0.12 0.10 0.14	0.51 0.51 0.47 0.55	0.03 0.04 <0.02 0.04	64.1 63.1 60.4 66.8	1.7 1.6 1.5 1.8	20 18 17 21	2.08 2.05 1.91 2.22	6.4 6.5 6.0 6.9	1.11 1.08 1.03 1.16
D843019 DUP Target Range – Lower Bound Upper Bound		0.01 0.01 <0.01 0.02	5.35 5.60 5.19 5.76	2.3 2.0 1.8 2.5	70 70 50 90	0.89 0.91 0.81 1.00	0.09 0.09 0.08 0.10	2.34 2.32 2.20 2.46	<0.02 <0.02 <0.02 0.04	36.8 41.6 37.2 41.2	7.8 8.1 7.5 8.4	90 88 84 94	0.63 0.65 0.56 0.72	2.3 2.3 2.0 2.6	1.04 1.04 0.98 1.10

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: TRANSITION METALS CORP. 9C - 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5

QC CERTIFICATE OF ANALYSIS

Page: 4 – B Total # Pages: 6 (A – D) Plus Appendix Pages Finalized Date: 19-SEP-2022 Account: TRAMET

SD22236507

Sample Description	Method Analyte Units LOD	ME-MS61 Ga ppm 0.05	ME-MS61 Ge ppm 0.05	ME-MS61 Hf ppm 0.1	ME-MS61 In ppm 0.005	ME-MS61 K % 0.01	ME-MS61 La ppm 0.5	ME-MS61 Li ppm 0.2	ME-MS61 Mg % 0.01	ME-MS61 Mn ppm 5	ME-MS61 Mo ppm 0.05	ME-MS61 Na % 0.01	ME-MS61 Nb ppm 0.1	ME-MS61 Ni ppm 0.2	ME-MS61 P ppm 10	ME-MS61 Pb ppm 0.5
ORIGINAL DUP Target Range - Lower Upper							DUPL	ICATES								
ORIGINAL DUP Target Range – Lower Upper																
ORIGINAL DUP Target Range - Lower Upper																
ORIGINAL DUP Target Range – Lower Upper																
ORIGINAL DUP Target Range - Lower Upper																
ORIGINAL DUP Target Range - Lower Upper																
X924633 DUP Target Range – Lower Upper		17.30 16.95 16.20 18.05	0.07 0.12 <0.05 0.10	4.3 4.1 3.9 4.5	0.025 0.026 0.019 0.032	4.30 4.22 4.04 4.48	31.4 31.1 29.2 33.3	9.3 9.2 8.6 9.9	0.18 0.17 0.16 0.19	130 121 114 137	1.20 1.02 1.00 1.22	2.55 2.50 2.39 2.66	5.0 4.9 4.6 5.3	3.1 3.1 2.7 3.5	260 250 230 280	34.7 32.9 31.6 36.0
D843019 DUP Target Range – Lower Upper		11.75 12.25 11.35 12.65	0.12 0.12 0.06 0.18	2.1 2.2 1.9 2.4	0.011 0.015 0.007 0.019	0.70 0.71 0.66 0.75	17.3 19.6 17.0 19.9	1.4 1.4 1.1 1.7	0.97 0.99 0.92 1.04	503 505 474 534	2.25 2.13 2.03 2.35	4.19 4.20 3.98 4.41	4.8 5.0 4.6 5.2	10.2 10.7 9.7 11.2	440 440 410 470	1.8 1.8 1.2 2.4

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: TRANSITION METALS CORP. 9C - 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5

QC CERTIFICATE OF ANALYSIS

Page: 4 - C Total # Pages: 6 (A - D) Plus Appendix Pages Finalized Date: 19-SEP-2022 Account: TRAMET

SD22236507

								<u> </u>								
Sample Description	Method Analyte Units LOD	ME-MS61 Rb ppm 0.1	ME-MS61 Re ppm 0.002	ME-MS61 S % 0.01	ME-MS61 Sb ppm 0.05	ME-MS61 Sc ppm 0.1	ME-MS61 Se ppm 1	ME-MS61 Sn ppm 0.2	ME-MS61 Sr ppm 0.2	ME-MS61 Ta ppm 0.05	ME-MS61 Te ppm 0.05	ME-MS61 Th ppm 0.01	ME-MS61 Ti % 0.005	ME-MS61 Tl ppm 0.02	ME-MS61 U ppm 0.1	ME-MS61 V ppm 1
ORIGINAL DUP Target Range - Lower Upper	Bound Bound						DUPL	ICATES								
ORIGINAL DUP Target Range – Lower Upper	⁻ Bound Bound															
ORIGINAL DUP Target Range – Lower Upper																
ORIGINAL DUP Target Range - Lower Upper	Bound Bound															
ORIGINAL DUP Target Range - Lower Upper	Bound Bound															
ORIGINAL DUP Target Range - Lower Upper																
X924633 DUP Target Range - Lower Upper	Bound	154.0 152.5 145.5 161.0	<0.002 <0.002 <0.002 0.004	0.01 <0.01 <0.01 0.02	<0.05 <0.05 <0.05 0.10	3.1 3.1 2.8 3.4	<1 <1 <1 2	2.2 2.1 1.8 2.5	93.1 93.4 88.4 98.1	0.47 0.44 0.38 0.53	<0.05 <0.05 <0.05 0.10	21.5 20.1 19.75 21.9	0.069 0.066 0.059 0.076	0.89 0.86 0.79 0.96	4.5 4.3 4.1 4.7	8 8 7 9
D843019 DUP Target Range – Lower Upper	Bound Bound	17.6 21.6 18.5 20.7	<0.002 <0.002 <0.002 0.004	0.05 0.05 0.04 0.06	0.43 0.42 0.34 0.51	10.3 11.3 10.2 11.4	1 1 <1 2	0.5 0.6 0.3 0.8	62.2 65.3 60.4 67.1	0.42 0.42 0.35 0.49	<0.05 <0.05 <0.05 0.10	5.29 6.13 5.41 6.01	0.199 0.203 0.186 0.216	0.07 0.06 0.04 0.09	1.0 1.3 1.0 1.3	75 75 70 80

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: TRANSITION METALS CORP. 9C - 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5

Page: 4 - D Total # Pages: 6 (A - D) Plus Appendix Pages Finalized Date: 19-SEP-2022 Account: TRAMET

Project: Aylmer

Sample Description	Method Analyte Units LOD	ME-MS61 W ppm 0.1	ME-MS61 Y ppm 0.1	ME-MS61 Zn ppm 2	ME-MS61 Zr ppm 0.5	
ORIGINAL DUP Target Range – Lower B Upper B	Bound Jound					DUPLICATES
ORIGINAL DUP Target Range – Lower B Upper B	Bound Jound					
ORIGINAL DUP Target Range – Lower B Upper B	Sound Sound					
ORIGINAL DUP Target Range – Lower B Upper B	Sound Sound					
ORIGINAL DUP Target Range – Lower B Upper B	Bound Bound					
ORIGINAL DUP Target Range – Lower B Upper B	Sound Sound					
X924633 DUP Target Range – Lower B Upper B	Bound	0.2 0.2 <0.1 0.3	9.3 9.2 8.7 9.8	20 19 17 22	133.0 129.0 120.5 141.5	
D843019 DUP Target Range – Lower B Upper B	Bound	0.4 0.4 0.3 0.5	5.1 5.8 5.1 5.8	2 2 <2 4	79.9 82.7 74.7 87.9	

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: TRANSITION METALS CORP. 9C – 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5

Page: 5 - A Total # Pages: 6 (A - D) Plus Appendix Pages Finalized Date: 19-SEP-2022 Account: TRAMET

Project: Aylmer

Sample Description	Method Analyte Units LOD	Au-ICP21 Au ppm 0.001	ME-MS61 Ag ppm 0.01	ME-MS61 Al % 0.01	ME-MS61 As ppm 0.2	ME-MS61 Ba ppm 10	ME-MS61 Be ppm 0.05	ME-MS61 Bi ppm 0.01	ME-MS61 Ca % 0.01	ME-MS61 Cd ppm 0.02	ME-MS61 Ce ppm 0.01	ME-MS61 Co ppm 0.1	ME-MS61 Cr ppm 1	ME-MS61 Cs ppm 0.05	ME-MS61 Cu ppm 0.2	ME-MS61 Fe % 0.01
D843035 DUP Target Range – Lower Upper	per Bound 0.002															
D843055 DUP Target Range – Lower Upper	Bound Bound		<0.01 <0.01 <0.01 0.02	7.54 7.44 7.11 7.87	1.4 1.1 1.0 1.5	80 80 60 100	1.29 1.42 1.24 1.47	0.04 0.03 0.02 0.05	2.03 2.00 1.90 2.13	<0.02 <0.02 <0.02 0.04	62.2 65.2 60.5 66.9	5.9 5.3 5.2 6.0	114 115 108 121	0.41 0.42 0.34 0.49	1.2 0.9 0.8 1.3	0.68 0.68 0.64 0.72
D843071 DUP Target Range – Lower Upper	Bound Bound	<0.001 <0.001 <0.001 0.002														
ORIGINAL DUP Target Range – Lower Upper	Bound Bound	<0.001 <0.001 <0.001 0.002														
ORIGINAL DUP Target Range – Lower Upper	Bound Bound	<0.001 <0.001 <0.001 0.002														
ORIGINAL DUP Target Range - Lower Upper	Bound Bound	0.007 0.006 0.005 0.008														
ORIGINAL DUP Target Range – Lower Upper	Bound Bound	0.001 0.001 <0.001 0.002														
ORIGINAL DUP Target Range – Lower Upper	Bound Bound	<0.001 <0.001 <0.001 0.002														

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: TRANSITION METALS CORP. 9C – 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5

QC CERTIFICATE OF ANALYSIS

Page: 5 – B Total # Pages: 6 (A – D) Plus Appendix Pages Finalized Date: 19–SEP–2022 Account: TRAMET

SD22236507

Project: Aylmer

ME-MS61 Method Ga Ge Ηf In Κ La Li Mg Mn Мо Na Nb Ni Ρ Pb Analyte % % % ppm Units Sample Description 0.05 0.05 0.1 0.005 0.01 0.5 0.2 0.01 5 0.05 0.01 0.1 0.2 10 0.5 LOD DUPLICATES D843035 DUP Target Range – Lower Bound Upper Bound 0.16 < 0.005 0.82 27.2 1.5 0.91 252 2.29 5.62 7.4 11.8 690 1.4 D843055 21.1 3.1 252 7.6 690 DUP 20.8 0.17 3.3 < 0.005 0.81 28.5 1.4 0.91 2.44 5.46 11.7 1.3 Target Range – Lower Bound 19.85 0.10 2.9 < 0.005 0.76 26.0 1.2 0.85 234 2.20 5.25 7.0 11.0 650 0.8 22.0 0.23 3.5 0.010 0.87 29.7 1.7 0.97 270 2.53 5.83 8.0 12.5 730 1.9 Upper Bound D843071 DUP Target Range – Lower Bound Upper Bound ORIGINAL DUP Target Range – Lower Bound Upper Bound ORIGINAL DUP Target Range – Lower Bound Upper Bound ORIGINAL DUP Target Range - Lower Bound Upper Bound ORIGINAL DUP Target Range – Lower Bound Upper Bound ORIGINAL DUP Target Range - Lower Bound Upper Bound

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: TRANSITION METALS CORP. 9C – 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5

Page: 5 - C Total # Pages: 6 (A - D) Plus Appendix Pages Finalized Date: 19-SEP-2022 Account: TRAMET

Project: Aylmer

Sample Description	Method Analyte Units LOD	ME-MS61 Rb ppm 0.1	ME-MS61 Re ppm 0.002	ME-MS61 S % 0.01	ME-MS61 Sb ppm 0.05	ME-MS61 Sc ppm 0.1	ME-MS61 Se ppm 1	ME-MS61 Sn ppm 0.2	ME-MS61 Sr ppm 0.2	ME-MS61 Ta ppm 0.05	ME-MS61 Te ppm 0.05	ME-MS61 Th ppm 0.01	ME-MS61 Ti % 0.005	ME-MS61 Tl ppm 0.02	ME-MS61 U ppm 0.1	ME-MS61 V ppm 1
D843035 DUP Target Range – Lowe Upper	e - Lower Bound Upper Bound															
D843055 DUP Target Range – Lowe Upper	r Bound r Bound	20.4 21.7 19.9 22.2	0.003 <0.002 <0.002 0.004	0.02 0.02 <0.01 0.03	0.62 0.61 0.52 0.71	14.6 15.6 14.2 16.0	<1 <1 <1 2	1.4 1.4 1.1 1.7	79.3 78.9 74.9 83.3	0.66 0.71 0.60 0.77	<0.05 <0.05 <0.05 0.10	12.90 12.50 12.05 13.35	0.294 0.299 0.277 0.316	0.06 0.05 0.03 0.08	2.2 2.1 1.9 2.4	159 158 150 167
D843071 DUP Target Range – Lowe Upper	er Bound r Bound															
ORIGINAL DUP Target Range – Lowe Upper	er Bound r Bound															
ORIGINAL DUP Target Range – Lowe Upper	er Bound r Bound															
ORIGINAL DUP Target Range – Lowe Upper	er Bound r Bound															
ORIGINAL DUP Target Range – Lowe Upper	er Bound r Bound															
ORIGINAL DUP Target Range – Lowe Upper	r Bound r Bound															

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: TRANSITION METALS CORP. 9C – 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5

Page: 5 - D Total # Pages: 6 (A - D) Plus Appendix Pages Finalized Date: 19-SEP-2022 Account: TRAMET

Project: Aylmer

Sample Description	Method Analyte Units LOD	ME-MS61 W ppm 0.1	ME-MS61 Y ppm 0.1	ME-MS61 Zn ppm 2	ME-MS61 Zr ppm 0.5	
D843035 DUP Target Range - Lower Upper	Bound Bound					DUPLICATES
D843055 DUP Target Range – Lower Upper	Bound Bound	1.2 1.3 1.1 1.4	10.0 10.2 9.5 10.7	<2 <2 <2 4	122.5 123.0 113.0 132.5	
D843071 DUP Target Range – Lower Upper	Bound Bound					
ORIGINAL DUP Target Range – Lower Upper	Bound Bound					
ORIGINAL DUP Target Range – Lower Upper	Bound Bound					
ORIGINAL DUP Target Range – Lower Upper	Bound Bound					
ORIGINAL DUP Target Range – Lower Upper	Bound Bound					
ORIGINAL DUP Target Range - Lower Upper	Bound Bound					

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: TRANSITION METALS CORP. 9C – 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5

Page: 6 – A Total # Pages: 6 (A – D) Plus Appendix Pages Finalized Date: 19-SEP-2022 Account: TRAMET

Project: Aylmer

Sample Description	Method Analyte Units LOD	Au-ICP21 Au ppm 0.001	ME-MS61 Ag ppm 0.01	ME-MS61 Al % 0.01	ME-MS61 As ppm 0.2	ME-MS61 Ba ppm 10	ME-MS61 Be ppm 0.05	ME-MS61 Bi ppm 0.01	ME-MS61 Ca % 0.01	ME-MS61 Cd ppm 0.02	ME-MS61 Ce ppm 0.01	ME-MS61 Co ppm 0.1	ME-MS61 Cr ppm 1	ME-MS61 Cs ppm 0.05	ME-MS61 Cu ppm 0.2	ME-MS61 Fe % 0.01
ORIGINAL DUP Target Range – Lower Upper ORIGINAL		0.013	0.27 0.28 0.25 0.30	8.27 8.33 7.88 8.73	5.9 6.4 5.6 6.7	1370 1400 1270 1500	DUPL 1.67 1.62 1.51 1.78	0.16 0.16 0.14 0.18	0.76 0.76 0.71 0.81	0.29 0.30 0.26 0.33	38.2 38.8 36.6 40.4	22.8 23.6 21.9 24.5	203 206 193 216	2.95 3.05 2.80 3.20	45.3 47.3 44.5 48.1	5.48 5.52 5.22 5.79
DUP Target Range – Lower Upper	Bound Bound	0.017 0.013 0.017														
D843057 D843057 PREP DUP		<0.001 <0.001	0.14 0.05	7.39 7.43	2.4 3.2	40 50	PREP DU 1.06 1.08	0.03 0.02	S 3.66 3.63	<0.02 <0.02	7.94 8.73	3.8 4.4	107 108	0.17 0.18	0.6 0.6	1.00 1.03

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: TRANSITION METALS CORP. 9C – 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5

Page: 6 – B Total # Pages: 6 (A – D) Plus Appendix Pages Finalized Date: 19-SEP-2022 Account: TRAMET

Project: Aylmer

Sample Description	Method Analyte Units	ME-MS61 Ga ppm	ME-MS61 Ge ppm	ME-MS61 Hf ppm	ME-MS61 In ppm	ME-MS61 K %	ME-MS61 La ppm	ME-MS61 Li ppm	ME-MS61 Mg %	ME-MS61 Mn ppm	ME-MS61 Mo ppm	ME-MS61 Na %	ME–MS61 Nb ppm	ME-MS61 Ni ppm	ME-MS61 P ppm	ME-MS61 Pb ppm
	LOD	0.05	0.05	0.1	0.005	0.01	0.5	0.2	0.01	5	0.05	0.01	0.1	0.2	10	0.5
								ICATES								
ORIGINAL DUP		19.35 21.6	0.12 0.12	<0.1 <0.1	0.052 0.056	2.26 2.31	18.0 18.6	32.8 33.3	1.90 1.94	542 555	2.77 2.94	1.79 1.85	7.6 8.3	146.5 150.5	530 540	11.5 11.8
Target Range - Lower		19.40	0.06	<0.1	0.046	2.16	16.9	31.2	1.81	516	2.66	1.72	7.5	141.0	500	10.6
Upper	Bound	21.5	0.18	0.2	0.062	2.41	19.7	34.9	2.03	581	3.05	1.92	8.4	156.0	570	12.7
ORIGINAL DUP																
Target Range – Lower Upper	Bound Bound															
							PREP DL	JPLICATE	S							
D843057 D843057 PREP DUP		17.45 17.85	0.12 0.10	3.1 2.9	<0.005 0.006	0.46 0.45	3.1 3.4	0.9 0.8	1.63 1.63	357 356	1.84 1.78	5.80 5.71	7.3 7.1	14.4 15.0	710 710	0.9 0.9

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: TRANSITION METALS CORP. 9C – 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5

Page: 6 - C Total # Pages: 6 (A - D) Plus Appendix Pages Finalized Date: 19-SEP-2022 Account: TRAMET

Project: Aylmer

Sample Description	Method Analyte Units LOD	ME-MS61 Rb ppm 0.1	ME-MS61 Re ppm 0.002	ME-MS61 S % 0.01	ME-MS61 Sb ppm 0.05	ME-MS61 Sc ppm 0.1	ME-MS61 Se ppm 1	ME-MS61 Sn ppm 0.2	ME-MS61 Sr ppm 0.2	ME-MS61 Ta ppm 0.05	ME-MS61 Te ppm 0.05	ME-MS61 Th ppm 0.01	ME-MS61 Ti % 0.005	ME-MS61 Tl ppm 0.02	ME-MS61 U ppm 0.1	ME-MS61 V ppm 1
							DUPL	ICATES								
ORIGINAL DUP Target Range – Lower Upper		70.1 71.0 66.9 74.2	<0.002 <0.002 <0.002 0.004	1.24 1.28 1.19 1.33	1.16 1.23 1.06 1.33	18.3 19.1 17.7 19.7	1 2 <1 2	0.8 0.9 0.6 1.1	340 347 326 361	0.42 0.41 0.34 0.49	0.17 0.15 0.10 0.22	4.69 4.76 4.48 4.97	0.435 0.442 0.412 0.465	0.48 0.51 0.44 0.55	1.1 1.2 1.0 1.3	160 163 152 171
ORIGINAL DUP Target Range – Lower Upper	Bound Bound															
							PREP DL	JPLICATE	S							
D843057 D843057 PREP DUP		10.0 10.4	0.002 <0.002	0.03 0.04	0.56 0.56	16.7 16.3	<1 <1	1.0 1.0	97.2 95.9	0.67 0.62	<0.05 <0.05	8.25 8.48	0.299 0.291	0.04 0.02	2.2 2.2	125 122

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: TRANSITION METALS CORP. 9C – 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5

Page: 6 - D Total # Pages: 6 (A - D) Plus Appendix Pages Finalized Date: 19-SEP-2022 Account: TRAMET

Project: Aylmer

Sample Description	Method Analyte Units LOD	ME-MS61 W ppm 0.1	ME-MS61 Y ppm 0.1	ME-MS61 Zn ppm 2	ME-MS61 Zr ppm 0.5	
ORIGINAL DUP Target Range – Lower	Bound	0.6 0.6 0.5 0.7	6.9 7.6 6.8 7.7	132 136 125 143	1.4 0.9 0.6 1.7	DUPLICATES
Upper ORIGINAL DUP Target Range – Lower Upper	Bound	0.7	1.1	143	1.7	
D843057		1.8	10.9	<2	114.5	PREP DUPLICATES
D843057 PREP DUP		1.5	10.9	<2	114.0	

ALS Canad

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: TRANSITION METALS CORP. 9C - 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5

Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 19-SEP-2022 Account: TRAMET

Project: Aylmer

	CERTIFICATE COMMENTS	
Applies to Method:	ANALYTICAL COMMENTS REEs may not be totally soluble in this method. d: ME-MS61	
Applies to Method:	LABORATORY ADDRESSES Processed at ALS Sudbury located at 1351-B Kelly Lake Road, Unit #1, Sudbury, ON, Canada. CRU-31 CRU-QC LOG-21 PUL-31 PUL-QC SPL-21	LOG-23 WEI-21
Applies to Method:	Processed at ALS Vancouver located at 2103 Dollarton Hwy, North Vancouver, BC, Canada. d: Au-ICP21 ME-MS61	

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: TRANSITION METALS CORP. 9C - 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5

Page: 1 Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 15-SEP-2022 Account: TRAMET

QC CERTIFICATE SD22238064

Project: Aylmer

This report is for 68 samples of 1/2 Core submitted to our lab in Sudbury, ON, Canada on 24-AUG-2022.

The following have access to data associated with this certificate:

GREG COLLINS SARAH REESE	THOMAS HART BEN WILLIAMS	GRANT MOURRE

	SAMPLE PREPARATION	
ALS CODE	DESCRIPTION	
WEI-21	Received Sample Weight	
LOG-21	Sample logging – ClientBarCode	
LOG-23	Pulp Login – Rcvd with Barcode	
CRU-QC	Crushing QC Test	
PUL-QC	Pulverizing QC Test	
CRU-31	Fine crushing – 70% <2mm	
SPL-21	Split sample – riffle splitter	
PUL-31	Pulverize up to 250g 85% <75 um	

ANALYTICAL PROCEDURES

ALS CODE	DESCRIPTION	INSTRUMENT
Au-ICP21	Au 30g FA ICP-AES Finish	ICP-AES
ME-MS61	48 element four acid ICP-MS	

This is the Final Report and supersedes any preliminary report with this certificate number.Results apply to samples as submitted.All pages of this report have been checked and approved for release. ***** See Appendix Page for comments regarding this certificate *****

Signature: Saa Traxler, Director, North Vancouver Operations

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: TRANSITION METALS CORP. 9C - 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5

Page: 2 - A Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 15-SEP-2022 Account: TRAMET

									QC	CERTI	FICATE	OF AN/	ALYSIS	SD22	238064	ł
Sample Description	Method Analyte Units LOD	Au-ICP21 Au ppm 0.001	ME-MS61 Ag ppm 0.01	ME-MS61 Al % 0.01	ME-MS61 As ppm 0.2	ME-MS61 Ba ppm 10	ME-MS61 Be ppm 0.05	ME-MS61 Bi ppm 0.01	ME-MS61 Ca % 0.01	ME-MS61 Cd ppm 0.02	ME-MS61 Ce ppm 0.01	ME-MS61 Co ppm 0.1	ME-MS61 Cr ppm 1	ME-MS61 Cs ppm 0.05	ME-MS61 Cu ppm 0.2	ME-MS61 Fe % 0.01
							STAN	DARDS								
G919-10 Target Range - Lower Upper	Bound	7.80 7.12 8.04	69.0 65.9 60.9 74.5	4.61 4.61 4.18 5.13	583 578 522 638	140 170 310 440	1.81 1.82 1.60 2.06	5.97 6.02 5.31 6.51	1.92 1.93 1.72 2.12	21.2 20.2 18.15 22.2	47.7 47.9 42.9 52.5	758 755 686 838	57 58 49 62	6.69 7.57 6.56 8.12	8310 8240 7750 8910	4.87 4.85 4.42 5.42
KIP-19 Target Range - Lower Upper	Bound	0.926 0.853 0.965 2.47 2.28 2.58	4.00	7.07	05.0	1110	0.40	0.00	0.07	0.05	74.0	10.0	05	11 50	000	0.00
MRGeo08 Target Range – Lower Upper OREAS 681 Target Range – Lower	Bound	0.051 0.047	4.38 3.93 4.83	7.37 6.64 8.14	35.0 29.5 36.5	1110 920 1270	3.43 2.98 3.76	0.63 0.58 0.73	2.67 2.35 2.90	2.35 2.00 2.48	71.0 66.2 81.0	18.0 17.7 21.9	95 81 102	11.50 11.20 13.80	633 587 675	3.93 3.55 4.37
OREAS 906 Target Range - Lower	r Bound r Bound r Bound	0.055	0.74 0.67 0.84 0.11	7.25 6.61 8.11 7.62	23.0 20.3 25.3 5.6	2740 2300 3130 550	2.84 2.60 3.28 2.78	10.85 9.98 12.20 0.62	0.58 0.50 0.63 0.50	0.45 0.36 0.48 0.04	96.8 83.7 102.5 93.9	22.5 21.7 26.7 14.0	8 7 11 85	6.45 6.07 7.53 8.16	3050 2880 3320 113.5	5.39 4.94 6.06 4.01
OREAS 920 Target Range – Lower	r Bound Bound	0.646	0.10 0.08 0.13	7.55 6.91 8.47	5.2 4.6 6.1	540 450 640	2.61 2.54 3.22	0.68 0.61 0.77	0.49 0.44 0.56	0.05 0.04 0.12	98.2 84.6 103.5	15.9 13.9 17.3	84 75 93	8.92 7.72 9.54	110.5 104.0 120.0	3.93 3.72 4.56
PK03 Target Range – Lower Upper TAZ-20	Bound r Bound Bound	0.612 0.692 5.14 4.73 5.34 0.302														
Target Range – Lower Upper	r Bound	0.283														

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: TRANSITION METALS CORP. 9C - 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5

Page: 2 – B Total # Pages: 4 (A – D) Plus Appendix Pages Finalized Date: 15-SEP-2022 Account: TRAMET

Method Analyte Sample Description Method Manalyte Upper LOD ME-M561 ME-M561 ME-M561 hf ME-M561 hf										QC	CERTI	FICATE	OF AN	ALYSIS	SD22	238064	ŀ
EMOC-17 EMOC-17 11.10 0.17 1.8 0.910 1.63 24.2 24.8 0.95 742 1070 1.09 15.5 7610 810 7120 Target Range - Lower Bound Upper Bound 10.75 0.66 1.6 0.823 1.49 20.7 25.0 0.95 737 1070 1.08 14.9 75.0 810 7090 G(3)-10 13.25 0.30 2.2 1.015 1.85 26.4 29.7 1.08 830 1220 1.23 15.7 8330 880 8030 G(3)-10 Target Range - Lower Bound Upper Bound Upper Bound Upper Bound Upper Bound Upper Bound Upper Bound Upper Bound 17.50 -0.05 2.8 0.176 3.09 33.6 32.0 1.33 566 13.75 1.98 21.9 707 1050 1070 Target Range - Lower Bound Upper Bound 17.50 -0.05 2.8 0.175 2.79 31.1 29.5 1.17 497 13.65	/	Analyte Units	Ga ppm	Ge ppm	Hf ppm	In ppm	K %	La ppm	Li ppm	Mg %	Mn ppm	Mo ppm	Na %	Nb ppm	Ni ppm	P ppm	Pb ppm
EMCG-17 12.20 0.15 1.9 0.811 1.83 24.7 2.50 0.95 737 1070 1.08 14.9 7570 810 7090 Target Range - Lower Bound (919-10 10.75 0.06 1.6 0.823 1.49 20.7 23.9 0.86 670 997 0.99 1.27 8830 700 650 GP1-10 Target Range - Lower Bound Upper Bound 1.25 0.30 2.2 1.015 1.85 26.4 29.7 1.08 830 12.0 1.23 830 8030 GP1-14 Target Range - Lower Bound Upper Bound Upper Bound 1.75 0.80 0.155 2.79 31.1 29.5 1.17 497 13.65 1.76 19.0 622 930 971 Target Range - Lower Bound Upper Bound 11.750 <0.22								STAN	IDARDS								
PK03 Target Range - Lower Bound TAZ-20 Target Range - Lower Bound Upper Bound	EMOG-17 Target Range - Lower Bo Upper Bol G919-10 Target Range - Lower Bo Upper Bol GPP-14 Target Range - Lower Bo Upper Bol KIP-19 Target Range - Lower Bo Upper Bol OREAS 681 Target Range - Lower Bo Upper Bol OREAS 906 Target Range - Lower Bo Upper Bol OREAS 920 OREAS 920 OREAS 920 OREAS 920 Target Range - Lower Bo Upper Bol OXE166 Target Range - Lower Bo Upper Bol PK03 Target Range - Lower Bo	ound ound ound ound ound ound ound ound	12.20 10.75 13.25 13.25 13.25 13.25 17.50 21.5 26.3 25.5 31.3 19.05 20.4 18.65	0.15 0.06 0.30 0.22 <0.05 0.28 0.29 0.07 0.31 0.26 0.17 <0.05	$ \begin{array}{c} 1.9\\ 1.6\\ 2.2\\ \end{array} $ 2.9 2.8 3.6 6.3 6.3 6.2 7.8 4.4 4.6 4.0	0.891 0.823 1.015 0.176 0.155 0.201 1.290 1.100 1.360 0.095 0.081 0.070	1.63 1.49 1.85 3.09 2.79 3.43 2.79 2.55 3.13 2.77 2.77 2.59	24.2 24.7 20.7 26.4 33.6 31.1 39.1 48.1 41.5 51.9 45.0 48.4 41.0	24.8 25.0 23.9 29.7 32.0 29.5 36.5 18.3 17.2 21.4 27.3 27.2 26.0	0.95 0.86 1.08 1.33 1.17 1.45 0.27 0.24 0.31 1.35 1.32 1.23	737 670 830 566 497 619 369 328 412 599 587 535	1070 997 1220 13.75 13.65 16.75 3.60 4.51 0.39 0.40 0.34	1.08 0.99 1.23 1.23 1.98 1.76 2.18 2.39 2.17 2.67 0.63 0.63 0.63	14.9 12.7 15.7 21.9 19.0 23.4 18.9 15.9 19.7 18.4 17.2 15.6	7570 6820 8330 707 622 760 4.3 4.2 5.6 42.2 41.5 37.4	810 700 880 1050 930 1160 270 230 310 740 720 670	7090 6570 8030 1070 971 1185 34.5 32.0 40.2 23.1 24.2 20.7

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: TRANSITION METALS CORP. 9C - 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5

Page: 2 – C Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 15-SEP-2022 Account: TRAMET

Project: Aylmer

										CERTI	FICATE	OF AN	ALYSIS	SD22	238064	1
Sample Description	Method Analyte Units LOD	ME-MS61 Rb ppm 0.1	ME-MS61 Re ppm 0.002	ME-MS61 S % 0.01	ME-MS61 Sb ppm 0.05	ME-MS61 Sc ppm 0.1	ME-MS61 Se ppm 1	ME-MS61 Sn ppm 0.2	ME-MS61 Sr ppm 0.2	ME-MS61 Ta ppm 0.05	ME-MS61 Te ppm 0.05	ME-MS61 Th ppm 0.01	ME-MS61 Ti % 0.005	ME-MS61 TI ppm 0.02	ME-MS61 U ppm 0.1	ME-MS61 V ppm 1
							STAN	IDARDS								
EMOG-17 EMOG-17 Target Range - Lower Upper		112.5 106.5 98.9 121.0	0.315 0.314 0.286 0.354	3.20 3.16 2.91 3.57	788 787 643 869	7.2 8.2 7.2 9.0	7 6 4 9	2.5 2.6 2.2 3.2	202 202 184.5 226	0.87 0.93 0.78 1.08	1.40 1.32 1.10 1.46	11.45 11.50 10.35 12.65	0.316 0.316 0.294 0.370	2.05 2.20 1.89 2.61	3.1 3.4 2.8 3.7	73 73 67 84
GPP-14 Target Range - Lower Upper KIP-19 Target Range - Lower Upper	Bound Bound Bound	100 5	0.000		4.07						0.05	10.00	0.105			
MRGeo08 Target Range – Lower	Bound	196.5 173.5	0.008	0.30	4.07 3.89	11.6 11.1	2 <1	3.7 3.5	301 277	1.41 1.39	<0.05 <0.05	18.60 17.90	0.495 0.443	0.98 0.86	5.1 4.9	110 97
Upper OREAS 681 Target Range – Lower Upper	Bound	212	0.013	0.35	5.39	13.7	4	4.7	339	1.81	0.12	21.9	0.553	1.21	6.2	121
OREAS 906 Target Range – Lower	Bound	139.0 124.0	<0.002 <0.002	0.04	2.19 1.96	4.5 4.0	5 3	3.9 3.7	152.0 140.0	1.22 1.17	0.11 <0.05	14.35 13.30	0.111 0.097	0.68 0.58	4.8 4.5	5 3
Upper OREAS 920 OREAS 920 Target Range - Lower	Bound	152.0 175.5 168.5 158.5 193.5	0.002 0.002 <0.002 <0.002 0.002	0.02 0.06 0.03 0.03 <0.01 0.05	2.76 1.43 1.46 1.22 1.76	5.2 13.0 14.0 12.8 15.8	7 1 <1 <1 2	5.0 4.8 5.0 4.3 5.7	172.0 81.5 77.3 73.6 90.4	1.54 1.24 1.32 1.17 1.55	0.25 <0.05 <0.05 <0.05 0.12	16.30 17.80 18.85 17.35 21.2	0.129 0.463 0.466 0.434 0.542	0.84 0.85 0.87 0.73 1.03	5.7 3.5 3.7 3.3 4.2	8 96 95 86 108
PK03 Target Range – Lower Upper TAZ-20 Target Range – Lower	Bound Bound Bound															

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: TRANSITION METALS CORP. 9C - 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5

Page: 2 - D Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 15-SEP-2022 Account: TRAMET

Project: Aylmer

Sample Description	Method Analyte Units LOD	ME-MS61 W ppm 0.1	ME-MS61 Y ppm 0.1	ME-MS61 Zn ppm 2	ME-MS61 Zr ppm 0.5	
						STANDARDS
EMOG-17		3.7	16.6	7400	66.8	
EMOG-17		3.9	16.0	7330	62.2	
Target Range – Lower	r Bound	3.3	14.3	6800	55.6	
	Bound	4.7	17.7	8320	76.4	
G919-10						
Target Range – Lower						
Upper	Bound					
GPP-14	a 1					
Target Range – Lower	r Bound Bound					
KIP-19	Бойпа					
Target Range – Lower	r Bound					
	Bound					
MRGeo08	Doana	4.4	26.8	815	108.0	
Target Range – Lower	r Bound	4.1	23.8	722	92.2	
Upper	Bound	5.8	29.3	886	126.0	
OREAS 681						
Target Range – Lower						
	Bound	0.5	105	100	050	
OREAS 906	David	2.5 2.2	16.5 14.1	163 145	259 221	
Target Range – Lower	Bound	3.2	14.1	145	301	
OREAS 920	Bound	3.2	32.9	116	163.0	
OREAS 920		2.9	33.0	117	153.5	
Target Range – Lower	r Bound	2.5	29.8	102	128.0	
	Bound	3.7	36.6	130	174.0	
OxE166						
Target Range – Lower	r Bound					
	Bound					
РКОЗ						
Target Range – Lower						
Upper TAZ-20	Bound					
Target Range – Lower	r Bound					
	Bound					
0000						

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: TRANSITION METALS CORP. 9C - 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5

Page: 3 - A Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 15-SEP-2022 Account: TRAMET

QC CERTIFICATE OF ANALYSIS SD22238064

								L		-	-			-		
Sample Description	Method Analyte Units LOD	Au-ICP21 Au ppm 0.001	ME-MS61 Ag ppm 0.01	ME-MS61 Al % 0.01	ME-MS61 As ppm 0.2	ME-MS61 Ba ppm 10	ME-MS61 Be ppm 0.05	ME-MS61 Bi ppm 0.01	ME-MS61 Ca % 0.01	ME-MS61 Cd ppm 0.02	ME-MS61 Ce ppm 0.01	ME-MS61 Co ppm 0.1	ME-MS61 Cr ppm 1	ME-MS61 Cs ppm 0.05	ME-MS61 Cu ppm 0.2	ME-MS61 Fe % 0.01
							BL	ANKS								
BLANK BLANK Target Range – Lower Upper		0.001 0.001 <0.001 0.002														
BLANK BLANK BLANK Target Range – Lower			<0.01 <0.01 <0.01 <0.01 0.02	<0.01 <0.01 <0.01 <0.01 0.02	0.6 0.2 0.3 <0.2 0.4	<10 <10 <10 <10 20	<0.05 <0.05 <0.05 <0.05 0.10	<0.01 <0.01 <0.01 <0.01 0.02	0.01 <0.01 <0.01 <0.01 0.02	<0.02 <0.02 <0.02 <0.02 0.04	0.03 <0.01 <0.01 <0.01 0.02	<0.1 <0.1 <0.1 <0.1 0.2	<1 <1 <1 <1 2	<0.05 <0.05 <0.05 <0.05 0.10	<0.2 <0.2 <0.2 <0.2 0.2	<0.01 <0.01 <0.01 <0.01 0.02
	bound		0.02	0.02	0.1				0.02	0.01	0.01	0.2	_	0.10	0.1	0.01
ORIGINAL DUP Target Range – Lower Upper	Bound Bound		0.04 0.03 0.02 0.05	1.95 1.98 1.86 2.07	1.0 0.3 0.4 0.9	3220 3250 2980 3490	0.38 0.37 0.31 0.44	0.06 0.06 0.05 0.07	17.15 17.45 16.45 18.20	0.08 0.08 0.06 0.10	47.0 46.9 44.6 49.3	3.4 3.4 3.1 3.7	58 59 55 62	1.59 1.63 1.48 1.74	5.6 6.0 5.4 6.2	1.15 1.15 1.08 1.22
ORIGINAL DUP Target Range – Lower Upper		0.001 <0.001 <0.001 0.002														
ORIGINAL DUP Target Range – Lower Upper	Bound Bound	<0.001 <0.001 <0.001 0.002														
D843113 DUP Target Range – Lower Upper	Bound Bound	<0.001 <0.001 <0.001 0.002														
D843121 DUP Target Range – Lower Upper	⁻ Bound Bound		0.03 0.03 0.02 0.04	8.25 8.24 7.82 8.67	9.6 9.4 8.8 10.2	20 20 <10 30	1.21 1.36 1.17 1.40	0.43 0.45 0.41 0.47	2.18 2.22 2.08 2.32	<0.02 <0.02 <0.02 0.04	110.5 103.5 101.5 112.5	32.7 33.5 31.3 34.9	138 142 132 148	0.11 0.11 <0.05 0.17	5.4 5.3 5.0 5.7	1.46 1.48 1.39 1.55

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: TRANSITION METALS CORP. 9C - 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5

Page: 3 – B Total # Pages: 4 (A – D) Plus Appendix Pages Finalized Date: 15-SEP-2022 Account: TRAMET

QC CERTIFICATE OF ANALYSIS SD22238064

									5 5022250004							
Sample Description	Method Analyte Units LOD	ME-MS61 Ga ppm 0.05	ME-MS61 Ge ppm 0.05	ME-MS61 Hf ppm 0.1	ME-MS61 In ppm 0.005	ME-MS61 K % 0.01	ME-MS61 La ppm 0.5	ME-MS61 Li ppm 0.2	ME-MS61 Mg % 0.01	ME-MS61 Mn ppm 5	ME-MS61 Mo ppm 0.05	ME-MS61 Na % 0.01	ME-MS61 Nb ppm 0.1	ME-MS61 Ni ppm 0.2	ME-MS61 P ppm 10	ME-MS61 Pb ppm 0.5
							BL	ANKS								
BLANK BLANK Target Range – Lower	Bound Bound															
BLANK BLANK BLANK Target Range – Lower		0.06 0.06 0.05 <0.05 0.10	0.08 <0.05 0.06 <0.05 0.10	<0.1 <0.1 <0.1 <0.1 0.2	<0.005 <0.005 <0.005 <0.005 0.010	<0.01 <0.01 <0.01 <0.01 0.02	<0.5 <0.5 <0.5 <0.5 1.0	0.2 0.2 0.3 <0.2 0.4	<0.01 <0.01 <0.01 <0.01 0.02	<5 <5 <5 <5 10	<0.05 <0.05 <0.05 <0.05 0.10	<0.01 <0.01 <0.01 <0.01 0.02	<0.1 <0.1 <0.1 <0.1 0.2	0.5 <0.2 <0.2 <0.2 0.4	<10 <10 <10 <10 20	<0.5 <0.5 <0.5 <0.5 1.0
							DUPI	ICATES								
ORIGINAL DUP Target Range – Lower Upper	Bound Bound	3.74 3.77 3.52 3.99	0.13 0.14 0.07 0.20	0.7 0.8 0.6 0.9	0.020 0.017 0.013 0.024	0.86 0.87 0.81 0.92	22.8 22.6 21.1 24.3	16.7 16.8 15.7 17.8	4.27 4.35 4.08 4.54	711 727 678 760	0.75 0.77 0.67 0.85	0.48 0.48 0.45 0.51	2.9 2.9 2.7 3.1	8.5 8.6 7.9 9.2	1470 1490 1400 1560	8.0 8.0 7.1 8.9
ORIGINAL DUP Target Range – Lower Upper	Bound Bound															
ORIGINAL DUP Target Range – Lower Upper	Bound Bound															
D843113 DUP Target Range – Lower Upper	Bound Bound															
D843121 DUP Target Range – Lower Upper	⁻ Bound Bound	21.4 22.1 20.6 22.9	0.26 0.25 0.19 0.32	2.8 3.0 2.7 3.1	0.024 0.023 0.017 0.030	0.39 0.39 0.36 0.42	55.6 51.9 50.6 56.9	5.0 5.7 4.9 5.8	1.32 1.33 1.25 1.40	407 403 380 430	1.73 1.85 1.65 1.93	6.73 6.78 6.41 7.10	6.1 6.3 5.8 6.6	42.6 43.7 40.8 45.5	750 750 700 800	1.4 1.4 0.8 2.0

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: TRANSITION METALS CORP. 9C - 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5

Page: 3 - C Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 15-SEP-2022 Account: TRAMET

QC CERTIFICATE OF ANALYSIS SD22238064

					Qe certificate of an											
Sample Description	Method Analyte Units LOD	ME-MS61 Rb ppm 0.1	ME-MS61 Re ppm 0.002	ME-MS61 S % 0.01	ME-MS61 Sb ppm 0.05	ME-MS61 Sc ppm 0.1	ME-MS61 Se ppm 1	ME-MS61 Sn ppm 0.2	ME-MS61 Sr ppm 0.2	ME-MS61 Ta ppm 0.05	ME-MS61 Te ppm 0.05	ME-MS61 Th ppm 0.01	ME-MS61 Ti % 0.005	ME-MS61 TI ppm 0.02	ME-MS61 U ppm 0.1	ME-MS61 V ppm 1
							BL	ANKS								
BLANK BLANK Target Range – Lower																
Upper BLANK BLANK BLANK Target Range – Lower Upper	Bound	<0.1 <0.1 <0.1 <0.1 0.2	<0.002 <0.002 0.003 <0.002 0.004	<0.01 <0.01 <0.01 <0.01 0.02	<0.05 <0.05 <0.05 <0.05 0.10	<0.1 <0.1 <0.1 <0.1 0.2	<1 <1 <1 <1 2	<0.2 <0.2 <0.2 <0.2 <0.2 0.4	<0.2 <0.2 <0.2 <0.2 <0.2 0.4	<0.05 <0.05 <0.05 <0.05 0.10	<0.05 <0.05 <0.05 <0.05 0.10	<0.01 <0.01 <0.01 <0.01 0.02	<0.005 <0.005 <0.005 <0.005 0.010	<0.02 <0.02 <0.02 <0.02 0.04	<0.1 <0.1 <0.1 <0.1 0.2	<1 <1 <1 <1 2
							ופווס	ICATES								
ORIGINAL DUP Target Range – Lower Upper	Bound	20.2 20.5 19.2 21.5	0.002 <0.002 <0.002 0.004	0.11 0.11 0.09 0.13	0.32 0.31 0.24 0.39	3.8 3.9 3.6 4.1	1 <1 <1 2	0.4 0.4 <0.2 0.6	840 856 805 891	0.18 0.17 0.12 0.23	0.05 <0.05 <0.05 0.10	2.24 2.21 2.10 2.35	0.179 0.182 0.166 0.195	0.25 0.27 0.22 0.30	2.1 2.1 1.9 2.3	26 26 24 28
ORIGINAL DUP Target Range - Lower Upper	Bound Bound															
ORIGINAL DUP Target Range – Lower Upper	Bound Bound															
D843113 DUP Target Range – Lower Upper	Bound Bound															
D843121 DUP Target Range - Lower Upper	Bound Bound	6.2 5.6 5.5 6.3	<0.002 <0.002 <0.002 0.004	0.31 0.31 0.28 0.34	0.34 0.32 0.26 0.40	14.0 14.7 13.5 15.2	1 1 <1 2	1.3 1.3 1.0 1.6	60.2 62.1 57.9 64.4	0.59 0.61 0.52 0.68	0.05 <0.05 <0.05 0.10	9.60 9.87 9.24 10.25	0.295 0.300 0.278 0.317	0.03 0.03 <0.02 0.04	4.0 3.9 3.7 4.2	107 107 101 113

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: TRANSITION METALS CORP. 9C – 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5

Page: 3 - D Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 15-SEP-2022 Account: TRAMET

Project: Aylmer

Sample Description	Method Analyte Units LOD	ME-MS61 W ppm 0.1	ME-MS61 Y ppm 0.1	ME-MS61 Zn ppm 2	ME-MS61 Zr ppm 0.5	
						BLANKS
BLANK BLANK Target Range – Lower Upper	r Bound Bound					
BLANK BLANK		<0.1 <0.1	<0.1 <0.1	<2 <2	<0.5 <0.5	
BLANK		<0.1	<0.1	<2	<0.5	
Target Range – Lower Upper	r Bound Bound	<0.1 0.2	<0.1 0.2	<2 4	<0.5 1.0	
						DUPLICATES
ORIGINAL		0.3	23.5	24	30.0	DOPEICATES
DUP		0.2	23.5	25	30.4	
Target Range – Lower Upper	r Bound Bound	<0.1 0.4	22.2 24.8	21 28	27.4 33.0	
ORIGINAL DUP Target Range – Lower Upper	^r Bound Bound					
ORIGINAL DUP Target Range – Lower Upper	^r Bound Bound					
D843113 DUP Target Range – Lower Upper	r Bound Bound					
D843121		1.0	19.9	<2	109.0	
DUP Target Range – Lower	Bound	1.1 0.9	19.7 18.7	<2 <2	114.0 102.5	
Upper	Bound	1.2	20.9	4	120.5	

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: TRANSITION METALS CORP. 9C - 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5

Page: 4 – A Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 15-SEP-2022 Account: TRAMET

QC CERTIFICATE OF ANALYSIS SD22238064

Project: Aylmer

Sample Description	Method Analyte Units LOD	Au-ICP21 Au ppm 0.001	ME-MS61 Ag ppm 0.01	ME-MS61 Al % 0.01	ME-MS61 As ppm 0.2	ME-MS61 Ba ppm 10	ME-MS61 Be ppm 0.05	ME-MS61 Bi ppm 0.01	ME-MS61 Ca % 0.01	ME-MS61 Cd ppm 0.02	ME-MS61 Ce ppm 0.01	ME-MS61 Co ppm 0.1	ME-MS61 Cr ppm 1	ME-MS61 Cs ppm 0.05	ME-MS61 Cu ppm 0.2	ME-MS61 Fe % 0.01
							DUPL	ICATES								
D843133 DUP Target Range - Lower Upper		0.002 0.002 <0.001 0.003														
D843153 DUP Target Range – Lower Upper		<0.001 <0.001 <0.001 0.002														
ORIGINAL DUP Target Range – Lower Upper	Bound Bound		0.04 0.04 0.03 0.05	0.21 0.21 0.19 0.23	1.0 0.7 0.6 1.1	20 20 <10 30	0.08 0.07 <0.05 0.10	0.01 0.01 <0.01 0.02	18.50 19.65 18.10 20.0	0.09 0.08 0.06 0.11	1.99 1.68 1.73 1.94	1.5 1.5 1.3 1.7	2 3 <1 4	0.21 0.18 0.14 0.25	2.6 2.5 2.3 2.8	0.10 0.10 0.09 0.12
								JPLICATE	S							
D843141 D843141 PREP DUP		<0.001 <0.001	0.01 <0.01	5.30 5.73	1.4 1.0	80 80	0.90 0.99	0.08 0.08	6.92 5.71	<0.02 <0.02	97.9 86.5	16.0 14.4	57 57	0.14 0.16	3.0 2.0	2.01 2.00

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: TRANSITION METALS CORP. 9C - 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5

Page: 4 – B Total # Pages: 4 (A – D) Plus Appendix Pages Finalized Date: 15-SEP-2022 Account: TRAMET

QC CERTIFICATE OF ANALYSIS SD22238064

									4.			01 / 11		0011	23000	<u> </u>
Sample Description	Method Analyte Units LOD	ME-MS61 Ga ppm 0.05	ME-MS61 Ge ppm 0.05	ME-MS61 Hf ppm 0.1	ME-MS61 In ppm 0.005	ME-MS61 K % 0.01	ME-MS61 La ppm 0.5	ME-MS61 Li ppm 0.2	ME-MS61 Mg % 0.01	ME-MS61 Mn ppm 5	ME-MS61 Mo ppm 0.05	ME-MS61 Na % 0.01	ME-MS61 Nb ppm 0.1	ME-MS61 Ni ppm 0.2	ME-MS61 P ppm 10	ME-MS61 Pb ppm 0.5
D843133 DUP Target Range – Lower Upper	^r Bound Bound						DUPI	licates								
	r Bound Bound															
ORIGINAL DUP Target Range – Lower Upper	^r Bound Bound	0.52 0.57 0.47 0.62	0.05 0.16 <0.05 0.16	0.1 0.1 <0.1 0.2	0.007 0.006 <0.005 0.010	0.09 0.09 0.08 0.10	0.9 0.8 <0.5 1.0	3.0 3.1 2.7 3.4	0.08 0.08 0.07 0.09	27 24 19 32	0.22 0.22 0.16 0.28	0.02 0.03 <0.01 0.04	0.4 0.4 0.3 0.5	2.6 2.5 2.2 2.9	30 20 <10 40	8.7 7.8 7.3 9.2
							PREP DI	JPLICATE	S							
D843141 D843141 PREP DUP		12.70 14.00	0.30 0.19	2.4 2.5	0.079 0.058	0.51 0.53	45.1 41.5	5.1 5.1	4.46 3.78	695 579	1.45 1.30	3.35 3.62	2.9 3.1	41.7 44.5	390 410	0.9 0.9

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: TRANSITION METALS CORP. 9C - 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5

Page: 4 - C Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 15-SEP-2022 Account: TRAMET

QC CERTIFICATE OF ANALYSIS SD22238064

Sample Description	Method Analyte Units LOD	ME-MS61 Rb ppm 0.1	ME-MS61 Re ppm 0.002	ME-MS61 S % 0.01	ME-MS61 Sb ppm 0.05	ME-MS61 Sc ppm 0.1	ME-MS61 Se ppm 1	ME-MS61 Sn ppm 0.2	ME-MS61 Sr ppm 0.2	ME-MS61 Ta ppm 0.05	ME-MS61 Te ppm 0.05	ME-MS61 Th ppm 0.01	ME-MS61 Ti % 0.005	ME-MS61 TI ppm 0.02	ME-MS61 U ppm 0.1	ME-MS61 V ppm 1
D843133 DUP Target Range – Lower	^r Bound Bound						DUPL	ICATES								
D843153 DUP Target Range – Lower																
ORIGINAL DUP Target Range – Lower Upper	^r Bound Bound	3.7 3.5 3.3 3.9	<0.002 <0.002 <0.002 0.004	>10.0 >10.0 9.49 10.00	0.05 0.06 <0.05 0.10	0.4 0.4 0.3 0.5	1 1 <1 2	<0.2 <0.2 <0.2 0.4	713 755 697 771	<0.05 <0.05 <0.05 0.10	<0.05 <0.05 <0.05 0.10	0.29 0.24 0.24 0.29	0.012 0.011 0.006 0.017	0.06 0.07 0.04 0.09	0.2 0.2 <0.1 0.3	3 3 2 4
							PREP DI	JPLICATE	S							
D843141 D843141 PREP DUP		13.8 15.5	<0.002 0.002	0.17 0.14	0.16 0.15	21.6 17.0	1 <1	0.7 0.7	84.7 84.9	0.31 0.32	<0.05 0.06	6.36 7.67	0.108 0.114	0.04 0.05	2.8 2.8	50 53

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: TRANSITION METALS CORP. 9C - 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5

Page: 4 - D Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 15-SEP-2022 Account: TRAMET

Project: Aylmer

Sample Description	Method Analyte Units LOD	ME-MS61 W ppm 0.1	ME-MS61 Y ppm 0.1	ME-MS61 Zn ppm 2	ME-MS61 Zr ppm 0.5	
D843133 DUP Target Range – Lower Upper	Bound Bound					DUPLICATES
D843153 DUP Target Range – Lower Upper	Bound Bound					
ORIGINAL DUP Target Range – Lower Upper	Bound Bound	<0.1 <0.1 <0.1 0.2	0.6 0.6 0.5 0.7	20 19 17 22	4.1 4.2 3.3 5.0	
D843141 D843141 PREP DUP		0.5 0.5	81.0 61.5	<2 2	91.2 87.6	PREP DUPLICATES

ALS Canac

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: TRANSITION METALS CORP. 9C - 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5

Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 15-SEP-2022 Account: TRAMET

Project: Aylmer

	CERTIFICATE COMMEN	NTS	
Applies to Method:	ANALYTICA REEs may not be totally soluble in this method. ME-MS61	AL COMMENTS	
Applies to Method:	LABORATOR Processed at ALS Sudbury located at 1351-B Kelly Lake Road, Unit #1 CRU-31 CRU-QC PUL-31 PUL-QC	RY ADDRESSES 1, Sudbury, ON, Canada. LOG-21 SPL-21	LOG-23 WEI-21
Applies to Method:	Processed at ALS Vancouver located at 2103 Dollarton Hwy, North Va Au-ICP21 ME-MS61	ancouver, BC, Canada.	

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: TRANSITION METALS CORP. 9C - 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5

Page: 1 Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 26-OCT-2022 Account: TRAMET

QC CERTIFICATE SD22255045

Project: Aylmer

This report is for 2 samples of Rock submitted to our lab in Sudbury, ON, Canada on 8-SEP-2022.

The following have access to data associated with this certificate:

GREG COLLINS SARAH REESE	THOMAS HART BEN WILLIAMS	GRANT MOURRE

SAMPLE PREPARATION									
ALS CODE	DESCRIPTION								
WEI-21	Received Sample Weight								
LOG-21	Sample logging – ClientBarCode								
CRU-QC	Crushing QC Test								
PUL-QC	Pulverizing QC Test								
CRU-31	Fine crushing – 70% <2mm								
SPL-21	Split sample – riffle splitter								
PUL-31	Pulverize up to 250g 85% <75 um								

	ANALYTICAL PROCEDURI	ES
ALS CODE	DESCRIPTION	INSTRUMENT
Au-ICP21 ME-MS61	Au 30g FA ICP-AES Finish 48 element four acid ICP-MS	ICP-AES

This is the Final Report and supersedes any preliminary report with this certificate number.Results apply to samples as submitted.All pages of this report have been checked and approved for release.

Saa Traxler, Director, North Vancouver Operations

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: TRANSITION METALS CORP. 9C – 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5

Page: 2 - A Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 26-OCT-2022 Account: TRAMET

Project: Aylmer

Sample Description	Method Analyte Units LOD	Au-ICP21 Au ppm 0.001	ME-MS61 Ag ppm 0.01	ME-MS61 Al % 0.01	ME-MS61 As ppm 0.2	ME-MS61 Ba ppm 10	ME-MS61 Be ppm 0.05	ME-MS61 Bi ppm 0.01	ME-MS61 Ca % 0.01	ME-MS61 Cd ppm 0.02	ME-MS61 Ce ppm 0.01	ME-MS61 Co ppm 0.1	ME-MS61 Cr ppm 1	ME-MS61 Cs ppm 0.05	ME-MS61 Cu ppm 0.2	ME-MS61 Fe % 0.01
	LOD	0.001	0.01	0.01	0.2	10			0.01	0.02	0.01	0.1		0.05	0.2	0.01
								IDARDS								
EMOG-17			67.4	4.54	567	130	1.76	6.10	1.94	20.8	46.4	742	57	7.09	8250	4.80
Target Range - Lowe			60.9 74.5	4.18 5.13	522 638	310 440	1.60 2.06	5.31 6.51	1.72 2.12	18.15 22.2	42.9 52.5	686 838	49 62	6.56 8.12	7750 8910	4.42 5.42
G919-10	er Bound	7.89	74.0	0.10	030	440	2.00	0.01	2.12	22.2	52.5	030	02	0.12	0910	0.42
G919-10		7.85														
Target Range - Lowe		7.12														
	er Bound	8.04 0.080														
OREAS 682 OREAS 682		0.080														
Target Range – Lowe	er Bound	0.070														
	er Bound	0.081														
OREAS 920	D		0.08	7.72	5.3	550	2.66	0.65	0.52	0.06	97.1 84.6	14.6 13.9	86 75	8.45 7.72	113.0 104.0	4.06 3.72
Target Range – Lowe	er Bound er Bound		0.08 0.13	6.91 8.47	4.6 6.1	450 640	2.54 3.22	0.61 0.77	0.44 0.56	0.04 0.12	84.6 103.5	13.9	75 93	9.54	104.0	3.72 4.56
РК03	bound	5.25	0.10	0.17	0.1	010	0.22	0.77	0.00	0.12	100.0	17.0	00	0.01	120.0	1.00
РК03		5.21														
Target Range – Lowe		4.73														
Uppe TAZ-20	er Bound	5.34 0.310														
TAZ-20		0.303														
Target Range - Lowe		0.283														
Uppe	er Bound	0.321														
							BL	ANKS								
BLANK		<0.001														
BLANK		<0.001														
Target Range - Lowe		<0.001														
Uppe BLANK	er Bound	0.002	<0.01	<0.01	<0.2	<10	<0.05	<0.01	<0.01	<0.02	0.01	<0.1	<1	<0.05	<0.2	<0.01
Target Range – Lowe	er Bound		< 0.01	<0.01	<0.2	<10	< 0.05	< 0.01	< 0.01	<0.02	<0.01	<0.1	<1	< 0.05	< 0.2	< 0.01
	er Bound		0.02	0.02	0.4	20	0.10	0.02	0.02	0.04	0.02	0.2	2	0.10	0.4	0.02

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: TRANSITION METALS CORP. 9C – 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5

Page: 2 - B Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 26-OCT-2022 Account: TRAMET

QC CERTIFICATE OF ANALYSIS SD22255045

								4			••••			23301.	-
Meth Analy Sample Description LOD	/te Ga s ppm	ME-MS61 Ge ppm 0.05	ME-MS61 Hf ppm 0.1	ME-MS61 In ppm 0.005	ME-MS61 K % 0.01	ME-MS61 La ppm 0.5	ME-MS61 Li ppm 0.2	ME-MS61 Mg % 0.01	ME-MS61 Mn ppm 5	ME-MS61 Mo ppm 0.05	ME-MS61 Na % 0.01	ME-MS61 Nb ppm 0.1	ME-MS61 Ni ppm 0.2	ME-MS61 P ppm 10	ME-MS61 Pb ppm 0.5
						STAN	IDARDS								
EMOG-17 Target Range – Lower Bound Upper Bound	11.45 10.75 13.25	0.09 0.06 0.30	1.9 1.6 2.2	0.914 0.823 1.015	1.64 1.49 1.85	23.3 20.7 26.4	27.2 23.9 29.7	0.96 0.86 1.08	741 670 830	1070 997 1220	1.09 0.99 1.23	13.5 12.7 15.7	7500 6820 8330	790 700 880	7030 6570 8030
G919-10 G919-10 Target Range - Lower Bound Upper Bound OREAS 682 OREAS 682 Target Range - Lower Bound Upper Bound OREAS 920 Target Range - Lower Bound Upper Bound PK03 PK03 Target Range - Lower Bound Upper Bound TAZ-20 TAZ-20	19.45 18.65 22.9	0.13 <0.05 0.29	4.5 4.0 5.2	0.086 0.070 0.098	2.92 2.59 3.19	47.4 41.0 51.2	29.9 26.0 32.2	1.41 1.23 1.53	621 535 665	0.39 0.34 0.58	0.66 0.56 0.71	17.5 15.6 19.2	39.3 37.4 46.2	750 670 840	21.8 20.7 26.4
Target Range – Lower Bound Upper Bound															
						BL	ANKS								
BLANK BLANK Target Range – Lower Bound Upper Bound BLANK	<0.05	<0.05	<0.1	<0.005	<0.01	<0.5	<0.2	<0.01	<5	<0.05	<0.01	<0.1	<0.2	<10	<0.5
Target Range – Lower Bound	<0.05	<0.05	<0.1	< 0.005	<0.01	<0.5	<0.2	<0.01	<5	<0.05	< 0.01	<0.1	<0.2	<10	<0.5
Upper Bound	0.10	0.10	0.2	0.010	0.02	1.0	0.4	0.02	10	0.10	0.02	0.2	0.4	20	1.0

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: TRANSITION METALS CORP. 9C – 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5

Page: 2 - C Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 26-OCT-2022 Account: TRAMET

Project: Aylmer

	Method	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61
	Analyte	Rb	Re	S	Sb	Sc	Se	Sn	Sr	Та	Te	Th	Ti	TI	U	V
Sample Description	Units	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
Sample Description	LOD	0.1	0.002	0.01	0.05	0.1	1	0.2	0.2	0.05	0.05	0.01	0.005	0.02	0.1	1
							CTAN									
								IDARDS								
EMOG-17		109.5	0.321	3.17	780	7.2	7	2.5	197.5	0.85	1.38	11.10	0.312	2.23	3.5	72
Target Range – Lower		98.9 121.0	0.286 0.354	2.91 3.57	643 869	7.2 9.0	4 9	2.2 3.2	184.5 226	0.78 1.08	1.10 1.46	10.35 12.65	0.294 0.370	1.89 2.61	2.8 3.7	67 84
G919-10	Bound	121.0	0.334	5.57	009	5.0	5	5.2	220	1.00	1.40	12.05	0.370	2.01	5.7	04
G919-10																
Target Range - Lower	Bound															
	Bound															
OREAS 682																
OREAS 682 Target Range – Lower	Round															
	Bound															
OREAS 920		179.0	<0.002	0.03	1.48	13.0	<1	4.9	79.2	1.23	<0.05	19.30	0.484	0.97	3.7	97
Target Range – Lower		158.5	<0.002	<0.01	1.22	12.8	<1	4.3	73.6	1.17	<0.05	17.35	0.434	0.73	3.3	86
	Bound	193.5	0.004	0.05	1.76	15.8	2	5.7	90.4	1.55	0.12	21.2	0.542	1.03	4.2	108
PK03 PK03																
Target Range – Lower	Round															
	Bound															
TAZ-20																
TAZ-20																
Target Range – Lower																
Upper	Bound															
							BL	ANKS								
BLANK BLANK																
Target Range – Lower	Bound															
	Bound															
BLANK		<0.1	<0.002	<0.01	<0.05	<0.1	<1	<0.2	<0.2	<0.05	<0.05	<0.01	<0.005	<0.02	<0.1	<1
Target Range – Lower		<0.1	< 0.002	< 0.01	< 0.05	<0.1	<1	<0.2	<0.2	< 0.05	< 0.05	< 0.01	< 0.005	< 0.02	<0.1	<1
Upper	Bound	0.2	0.004	0.02	0.10	0.2	2	0.4	0.4	0.10	0.10	0.02	0.010	0.04	0.2	2

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: TRANSITION METALS CORP. 9C – 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5

Page: 2 - D Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 26-OCT-2022 Account: TRAMET

Project: Aylmer

Sample Description	Method Analyte Units LOD	ME-MS61 W ppm 0.1	ME-MS61 Y ppm 0.1	ME-MS61 Zn ppm 2	ME-MS61 Zr ppm 0.5	
						STANDARDS
EMOG-17		3.7	15.3	7280	64.2	
Target Range – Lower	Bound	3.3	14.3	6800	55.6	
Upper G919-10	Bound	4.7	17.7	8320	76.4	
G919-10						
Target Range – Lower	Bound Bound					
OREAS 682	bound					
OREAS 682	David					
Target Range – Lower Upper	Bound					
OREAS 920		3.1	32.6	128	158.5	
Target Range – Lower	⁻ Bound Bound	2.5 3.7	29.8 36.6	102 130	128.0 174.0	
PK03	bound					
PK03 Target Range – Lower	Bound					
Upper	Bound					
TAZ-20 TAZ-20						
Target Range – Lower	Bound					
Upper	Bound					
						BLANKS
BLANK						
BLANK						
Target Range – Lower	Bound Bound					
BLANK		<0.1	<0.1	<2	<0.5	
Target Range – Lower		<0.1 0.2	<0.1 0.2	<2 4	<0.5 1.0	
Upper	Bound	0.2	0.2	4	1.0	

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: TRANSITION METALS CORP. 9C – 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5

Page: 3 - A Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 26-OCT-2022 Account: TRAMET

Project: Aylmer

Sample Description	Method Analyte Units LOD	Au-ICP21 Au ppm 0.001	ME-MS61 Ag ppm 0.01	ME-MS61 Al % 0.01	ME-MS61 As ppm 0.2	ME-MS61 Ba ppm 10	ME-MS61 Be ppm 0.05	ME-MS61 Bi ppm 0.01	ME-MS61 Ca % 0.01	ME-MS61 Cd ppm 0.02	ME-MS61 Ce ppm 0.01	ME-MS61 Co ppm 0.1	ME-MS61 Cr ppm 1	ME-MS61 Cs ppm 0.05	ME-MS61 Cu ppm 0.2	ME-MS61 Fe % 0.01
							DUPL	ICATES								
ORIGINAL DUP Target Range – Lower Upper	Bound Bound		0.29 0.22 0.23 0.28	4.14 4.10 3.90 4.34	61.4 78.3 66.2 73.5	1310 950 1040 1220	0.47 0.47 0.40 0.54	0.65 0.65 0.61 0.69	0.88 0.90 0.84 0.94	0.33 0.36 0.31 0.38	40.0 39.8 37.9 41.9	19.6 19.4 18.4 20.6	8 7 6 9	2.44 2.54 2.32 2.66	45.6 46.5 44.2 47.9	3.11 3.09 2.94 3.27
ORIGINAL DUP Target Range – Lower Upper	[.] Bound Bound	<0.001 <0.001 <0.001 0.002														
ORIGINAL DUP Target Range – Lower Upper	[.] Bound Bound	<0.001 <0.001 <0.001 0.002														
ORIGINAL DUP Target Range – Lower Upper	⁻ Bound Bound	<0.001 <0.001 <0.001 0.002														
ORIGINAL DUP Target Range – Lower Upper	[.] Bound Bound	<0.001 <0.001 <0.001 0.002														

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: TRANSITION METALS CORP. 9C – 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5

Page: 3 - B Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 26-OCT-2022 Account: TRAMET

Project: Aylmer

Sample Description	Method Analyte Units LOD	ME-MS61 Ga ppm 0.05	ME-MS61 Ge ppm 0.05	ME-MS61 Hf ppm 0.1	ME-MS61 In ppm 0.005	ME-MS61 K % 0.01	ME-MS61 La ppm 0.5	ME-MS61 Li ppm 0.2	ME-MS61 Mg % 0.01	ME-MS61 Mn ppm 5	ME-MS61 Mo ppm 0.05	ME-MS61 Na % 0.01	ME-MS61 Nb ppm 0.1	ME-MS61 Ni ppm 0.2	ME-MS61 P ppm 10	ME-MS61 Pb ppm 0.5
							DUPL	ICATES								
ORIGINAL DUP Target Range – Lower Upper	Bound Bound	12.10 12.30 11.55 12.85	0.07 0.06 <0.05 0.10	3.5 3.8 3.4 3.9	0.008 0.009 <0.005 0.010	0.25 0.25 0.23 0.27	18.0 18.4 16.8 19.6	22.3 22.1 20.9 23.5	6.37 6.30 6.01 6.66	216 218 201 233	2.85 3.00 2.73 3.12	0.02 0.02 <0.01 0.03	9.2 9.8 8.9 10.1	1.1 0.9 0.8 1.3	40 40 30 50	18.6 18.6 17.2 20.0
ORIGINAL DUP Target Range – Lower Upper	Bound Bound															
ORIGINAL DUP Target Range – Lower Upper	Bound Bound															
ORIGINAL DUP Target Range – Lower Upper	Bound Bound															
ORIGINAL DUP Target Range – Lower Upper	Bound Bound															

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: TRANSITION METALS CORP. 9C – 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5

Page: 3 - C Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 26-OCT-2022 Account: TRAMET

Project: Aylmer

Sample Description	Method Analyte Units LOD	ME-MS61 Rb ppm 0.1	ME-MS61 Re ppm 0.002	ME-MS61 S % 0.01	ME-MS61 Sb ppm 0.05	ME-MS61 Sc ppm 0.1	ME-MS61 Se ppm 1	ME-MS61 Sn ppm 0.2	ME-MS61 Sr ppm 0.2	ME-MS61 Ta ppm 0.05	ME-MS61 Te ppm 0.05	ME-MS61 Th ppm 0.01	ME-MS61 Ti % 0.005	ME-MS61 Tl ppm 0.02	ME-MS61 U ppm 0.1	ME-MS61 V ppm 1
							DUPL	ICATES								
ORIGINAL DUP Target Range – Lower Upper	Bound Bound	14.0 14.5 13.4 15.1	<0.002 <0.002 <0.002 0.004	0.58 0.59 0.55 0.62	0.14 0.17 0.09 0.22	1.5 1.5 1.3 1.7	1 1 <1 2	0.9 0.9 0.7 1.1	33.2 34.5 32.0 35.7	0.71 0.75 0.64 0.82	0.30 0.34 0.25 0.39	15.05 15.60 14.55 16.10	0.058 0.059 0.051 0.066	0.97 0.97 0.88 1.06	4.8 4.9 4.5 5.2	3 2 <1 4
ORIGINAL DUP Target Range – Lower Upper	Bound Bound															
ORIGINAL DUP Target Range – Lower Upper																
ORIGINAL DUP Target Range – Lower Upper	Bound Bound															
ORIGINAL DUP Target Range – Lower Upper	Bound Bound															

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: TRANSITION METALS CORP. 9C - 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5

Page: 3 - D Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 26-OCT-2022 Account: TRAMET

Project: Aylmer

Sample Description	Method Analyte Units LOD	ME-MS61 W ppm 0.1	ME-MS61 Y ppm 0.1	ME-MS61 Zn ppm 2	ME-MS61 Zr ppm 0.5	
						DUPLICATES
ORIGINAL DUP Target Range – Lower Upper	r Bound [·] Bound	0.9 0.8 0.7 1.0	17.3 18.0 16.7 18.6	160 158 149 169	113.0 110.5 103.0 120.5	
ORIGINAL DUP Target Range – Lower Upper	r Bound Bound					
ORIGINAL DUP Target Range - Lower Upper	r Bound Bound					
ORIGINAL DUP Target Range – Lower Upper	r Bound Bound					
ORIGINAL DUP Target Range – Lower Upper	r Bound ⁻ Bound					

ALS 210

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: TRANSITION METALS CORP. 9C - 1351 KELLY LAKE ROAD SUDBURY ON P3E 5P5

Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 26-OCT-2022 Account: TRAMET

Project: Aylmer

	CERTIFICATE COMMENTS
Applies to Method:	ANALYTICAL COMMENTS REEs may not be totally soluble in this method. ME-MS61
Applies to Method:	LABORATORY ADDRESSESProcessed at ALS Sudbury located at 1351-B Kelly Lake Road, Unit #1, Sudbury, ON, Canada.CRU-31CRU-QCLOG-21PUL-31PUL-QCSPL-21WEI-21
Applies to Method:	Processed at ALS Vancouver located at 2103 Dollarton Hwy, North Vancouver, BC, Canada. Au–ICP21 ME–MS61

Appendix D: Expenditures & Invoices

Contents

List of Tables	1
Expenditures	2
Invoices	9

List of Tables

. 2
.4
.4
. 5
. 5
. 6
. 6
. 7
. 7
. 8
- -

Expenditures

Total Expenditure claimed within this report totals **\$270,756**. A breakdown is summarized in Table 1 below, with further details contained within Tables 2 - 10. To accompany the summarized tables are compiled list of receipts and invoices associated with the work conducted as part of the 2022 Report on Prospecting and Drilling Program on the Aylmer Property (this assessment report).

OJEP NOTES: The above-mentioned exploration program was supported, in part, by the 2022/2023 Ontario Junior Exploration Program (OJEP) funding, with the reporting period of April 1st, 2022, through to February 15th, 2023. Appendix D (below) contains notes and comments in relation to the costs and expense (Table 1) which are subject to the OJEP grant funding. Further, the reader is cautioned that the comments contained within Appendix D (found under tables 2-10) are made in relation OJEP and the Transfer Payment Platform of Ontario (TPON) cost centers, which may differ in both definition and category, as those defined and stipulated by Mining Lands (MLAS).

Work Type	Work Subtype	Subtotal	Total	Summary Table
Prospectin	g 6		\$ 2,615	
	Grass Roots Prospecting	2,615		Table 2
Physical Wo	ork		\$ -	
	Bedrock Pitting and Trenching (>1m3 and <3m3 in 200 m Radius)	-		
	Bedrock Pitting and Trenching (>3m3 in 200 m Radius)	-		
	Mechanized Stripping (<100m2 in 200 m Radius)	-		
	Mechanized Stripping (>100m2 in 200m Radius)	-		
	Manual Stripping	-		
	Manual work	-		
Sampling P	rogram		\$ -	
	Bulk Sampling	-		
	Drill Core Sampling	-		
	Non-core Drill Sampling	-		
	Overburden Heavy Mineral Processing	-		
	Metallurgical Testing	-		
	Beneficiation	-		
	Industrial Mineral Testing	-		
	Dimensional Stone Removal	-		
	Other Sampling	-		
Remote Se	nsing Imagery		\$ -	
	Imagery	-		
	LIDAR	-		
Geological	Survey Work		\$ -	
	Geological Survey	-		
Geochemic	al Survey Work		\$ -	
	Geochemical Survey	-		

Table 1: Summary of Expenditures

Ground Ge	ophysical Survey Work		\$ -	
	Borehole Geophysics	-		
	Magnetics	-		
	Electromagnetics	-		
	Gravity	-		
	Induced Polarization	-		
	Magnetotellurics	-		
	Radiometrics	-		
	Resistivity	-		
	Seismic	-		
	Self-Potential	-		
	Other Ground Geophysics	-		
Airborne G	eophysical Survey Work		\$ -	
	Airborne Magnetics	-		
	Airborne Electromagnetics	-		
	Airborne Gravity	-		
	Airborne Radiometrics	-		
	Other Airborne Geophysics	-		
	or Reprocessing of Data		\$ -	
	Data Modelling	-		
	Data Reprocessing	-		
Exploratory			\$ 220,272	
	Core Drilling	220,272		Table 3
	Non-core Drilling	-		
	r Drill Sample Submissions		\$ -	
	Drill Core Submission	-		
	Drill Sample Submission	-		
Petrograph	ic Work		\$ -	
	Microscopy	-		
	Scanning Electron Microscopy	-		
	Electron Microprobe Study	-		
	Other Petrographic Work	-		
	ntal Baseline Study		\$ -	
	Environmental Baseline Study	-		
	ion Required or Permitted Under the Act		\$ -	
	Rehabilitation			
Associated	Work types		\$ 47,869	
	Line Cutting	-		
	Assays	12,234		Table 4
	Personal Transportation	4,136		Table 5
	Contractor Mobilization/Demobilization	-		
	Supplies	1,737		Table 6
	Equipment Rental	13,262		Table 7
	Report/Map	5,000		Table 8
	Shipping of Samples	-		
	Food	5,750		Table 9
	Lodgings	5,750		Table 10
	Shipping of Supplies	-		
	Access Trail building	-		
	Industrial Mineral Marketing	-		
	Consultation Costs		\$ -	
Totals	Total E	xpenditures	\$ 270,756	

Table 2: Summary of Grass Roots Prospecting Expenditures

Description	Date (YYY	Y-MM-DD)	Invoice / Receipt Number	Cost	Hst	Total
Description	From	То	invoice / Receipt Number	COST	nst	TOtal
Hart Geoscience Inc	2022-05-01	2022-05-31	2205.1	1,015.00	131.95	1,146.95
Transition Metals (Prospecting: 4 Person days @ \$400/day per person)		2021-09-30	See Daily Log	1,600.00	-	1,600.00
			Total	\$ 2,615.00	\$ 131.95	\$ 2,746.95
			Assessment Total	\$ 2,615		

OJEP NOTES: the grass roots prospecting expenditures above (Table 2), a value of \$0 (NIL), is being claimed as part of the OJEP applicable expense as part of the 22/23 OJEP funding program.

Table 3: Summary of Core Drilling Expenditures

Description	Date (YYY	Y-MM-DD)	Invoice / Receipt Number	Cost	Hst	Total
Description	From	То	invoice / Receipt Number	Cost	nsi	Total
Jacob & Samuel Drilling Ltd.		2022-04-27	440	25,000.00	3,250.00	28,250.00
Jacob & Samuel Drilling Ltd.		2022-07-31	459	17,467.50	2,270.78	19,738.28
Jacob & Samuel Drilling Ltd.		2022-08-15	462	96,613.00	12,559.69	109,172.69
Jacob & Samuel Drilling Ltd.		2022-08-26	468	16,642.80	2,163.56	18,806.36
Hart Geoscience Inc	2022-06-01	2022-06-30	2206.1	1,160.00	150.80	1,310.80
Hart Geoscience Inc	2022-07-01	2022-06-31	2207.1	725.00	94.25	819.25
Hart Geoscience Inc	2022-08-01	2022-08-31	2208.1	435.00	56.55	491.55
Hart Geoscience Inc	2022-09-01	2022-09-30	2209.1	145.00	18.85	163.85
G.Collins Geoscience Inc		2022-08-31	335	7,500.00	975.00	8,475.00
G.Collins Geoscience Inc		2022-09-30	337	7,500.00	975.00	8,475.00
Gervais Forest Products Ltd.		2022-05-30	117242	2,684.00	348.92	3,032.92
Transition Metals (Drilling: 111 Person days @ \$400/day per	2021 05 01	2021 00 20	Can Daily Lan	44,400,00		44 400 00
person)	2021-05-01	2021-09-30	See Daily Log	44,400.00	-	44,400.00
			Total	\$220,272.30	\$22,863.40	\$ 243,135.70
			Assessment Total	\$ 220,272		

OJEP NOTES: the core drilling expenditures above (Table 3), a value of \$220,272 is being claimed as part of the OJEP applicable expense as part of the 22/23 OJEP funding program. From this value, further break down of those costs per OJEP Category are as follows:

- Category 3 Stepping, Pitting, and Trenching Expenses: Labor: \$ 8,000 (Transition Metals, representing 4 persons for 5 days, Site Prep), Contractors & Consultants: \$ 1,342 (1/2 Gervais Forest Products Ltd.)
- Category 4 Surface Drilling Expense: Labor: \$29,200 (Transition Metals, representing 4 persons for 18.5 day, at \$400/day), Contractors & Consultants: \$ 173,188 (Jacob & Samuel Drilling, Hart Geoscience, G. Collins Geoscience).
- Category 5 Rehabilitation: Labor: \$ 3,000 (Transition Metals, 3 persons for 2.5 days, site rehabilitation & cleanup), Contractors & Consultants: \$ 1,342 (1/2 Gervais Forest Products Ltd.)
- Category 6 Evaluation Activities Expense: Labor: \$ 4,200 (Transition Metals, representing 10.5 days of 1 person for evaluation activities)

Table 4: Summary of Assays Expenditures

Description	Date (YYY	Y-MM-DD)	Invoice / Receipt Number	Cost	Hst	Total
Description	From	То	invoice / Receipt Number	COSL	nst	TOLAI
ALS Canada Inc		2022-06-04	5958025	582.53	29.13	611.66
ALS Canada Inc		2022-09-04	6104529	44.39	2.22	46.61
ALS Canada Inc		2022-09-15	9090550	4,640.55	232.03	4,872.58
ALS Canada Inc		2022-09-19	6092318	5,842.72	292.14	6,134.86
ALS Canada Inc		2022-09-30	6138660	949.53	123.44	1,072.97
ALS Canada Inc		2022-10-26	6122473	174.42	8.72	183.14
		Total	\$ 12,234.14	\$ 687.68	\$ 12,921.82	
			Assessment Total	\$ 12,234		

OJEP NOTES: the assay expenditures above (Table 4), a value of \$12,234 is being claimed as part of the OJEP applicable expense as part of the 22/23 OJEP funding program. From this value, further break down of those costs per OJEP Category are as follows:

• Category 6 – Evaluation Activities Expense: **Assays: \$ 12,234** (ALS Canada Inc.)

Table 5: Summary of Personal Transportation Expenditures

Description	Date (YYY	Y-MM-DD)		Cost	List	Total
Description	From	То	Invoice / Receipt Number	Cost	Hst	TOLAI
G.Collins Geoscience Inc		2022-08-31	335	440.00	57.20	497.20
G.Collins Geoscience Inc		2022-09-30	337	176.00	22.88	198.88
Transition Metals Milage (for 1x Trucks), Total of 6,400 km @ \$0.55/km	2021-05-01	2021-09-30	See Daily Log	3,520.00	-	3,520.00
			Total	\$ 4,136.00	\$ 80.08	\$ 4,216.08
		Assessment Total	\$ 4,136			

OJEP NOTES: the personal transportation expenditures above (Table 5), a value of \$4,136 is being claimed as part of the OJEP applicable expense as part of the 22/23 OJEP funding program. From this value, further break down of those costs per OJEP Category are as follows:

- Category 3 Stepping, Pitting, and Trenching Expenses: **Transportation: \$ 880** (Transition Metals, representing 5 days for 2 truck usage, at ~ 160km/day @ \$0.55/km)
- Category 4 Surface Drilling Expense: **Transportation:** \$ **2,552** (Transition Metals, representing 22 days for 1 truck usage, at ~ 160km/day @ \$0.55/km, plus and G.Collins Geoscience)
- Category 5 Rehabilitation: **Transportation: \$ 704** (Transition Metals, representing 4 days for 2 truck usage, at ~ 160km/day @ \$0.55/km).

Table 6: Summary of Supplies Expenditures

Description	Date (YYY	Y-MM-DD)	Invoice / Receipt Number	Cost	Hst	Total
Description	From	То	invoice / Receipt Number	COST	nst	TOLAI
A & J Home Hardware		2022-07-29	4599310	6.69	0.87	7.56
Becker Shoes (PPE footware replacemenet)		2022-07-15	6147766	132.74	17.26	150.00
Exploration Services		2022-07-28	92935	176.87	22.99	199.86
Exploration Services		2022-08-23	93634	309.75	40.27	350.02
Home Depot		2022-07-13	226380952	764.15	99.34	863.49
A & J Home Hardware		2022-07-12	952615	108.87	14.15	123.02
Home Hardware		2022-07-14	132504	28.99	3.77	32.76
Home Hardware		2022-07-19	12940250	25.96	3.37	29.33
Lowe's		2022-08-24	14346645	149.00	19.37	168.37
Walmart	2022-07-2		1001270	33.92	4.41	38.33
		Total	\$ 1,736.94	\$ 225.80	\$ 1,962.74	
			Assessment Total	\$ 1,737		

OJEP NOTES: the supplies expenditures above (Table 6), a value of **\$1,737** is being claimed as part of the OJEP applicable expense as part of the 22/23 OJEP funding program. From this value, further break down of those costs per OJEP Category are as follows:

- Category 3 Stepping, Pitting, and Trenching Expenses: Equipment & Supplies: \$ 500 (a portion of the total supplies (~ 29%))
- Category 4 Surface Drilling Expense: Equipment & Supplies: \$ 737 (a portion of the total supplies (~42%))
- Category 5 Rehabilitation: Equipment & Supplies: \$ 500 (a portion of the total supplies (~ 29%))

Description	Date (YYY	Y-MM-DD)	Invoice / Receipt Number	Cost	Hst	Total
Description	From	То	invoice / Receipt Number	COSC	nst	TOLAI
Battlefield Equipment Rentals (charge)		2022-07-15	4	62.05	8.07	70.12
Spectrum Group (Truck& Handheld Radio Rentals)		2022-08-10	INV-13880-W0M5	400.00	52.00	452.00
SPC Nickel Corp		2022-08-01	Aug 2022	2,650.00	344.50	2,994.50
SPC Nickel Corp		2022-09-01	Sept 2022	2,650.00	344.50	2,994.50
Transition Metals UTV Usage Rental (30 days, 1x UTV @ \$250/day per quad)	2021-05-01	2021-09-30	See Daily Log	7,500.00	-	7,500.00
			Total	\$ 13,262.05	\$ 749.07	\$ 14,011.12
			Assessment Total	\$ 13,262		

Table 7: Summary of Equipment Rental Expenditures

OJEP NOTES: the equipment rental expenditures above (Table 7), a value of **\$13,262** is being claimed as part of the OJEP applicable expense as part of the 22/23 OJEP funding program. From this value, further break down of those costs per OJEP Category are as follows:

- Category 3 Stepping, Pitting, and Trenching Expenses: Equipment & Supplies: \$ 134 (a portion of the total rentals from Battlefield & Spectrum (~ 29%)), Transportation: \$1,250 (Transition Metals, representing 5 days of UTV usage at \$250/day).
- Category 4 Surface Drilling Expense: Equipment & Supplies: \$ 5,494 (a portion of the total rentals from Battlefield & Spectrum (~ 42%); and the core rental facility from SPC (100%);
 Transportation: \$ 5,250 (Transition Metals, representing 21 days of UTV usage at \$250/day).

 Category 5 – Rehabilitation: Equipment & Supplies: \$ 134 (a portion of the total rentals from Battlefield & Spectrum (~ 29%)), Transportation: \$1,000 (Transition Metals, representing 4 days of UTV usage at \$250/day).

Table 8: Summary of Report/Map Expenditures

Description	Date (YYYY-MM-DD)		Invoice / Receipt Number		Cost		Hst		Total
Description	From	То	invoice / Receipt Number		COSL	nst			TOLAI
Transition Metals Corp - Payroll: 10 days @ \$500/day	2022-10-31		payroll	5,000.00			-		-
			Total	\$	5,000.00	\$	-	\$	-
			Assessment Total	\$	5,000				

OJEP NOTES: the report/map expenditures above (Table 8), a value of **\$5,000** is being claimed as part of the OJEP applicable expense as part of the 22/23 OJEP funding program. From this value, further break down of those costs per OJEP Category are as follows:

• Category 6 – Evaluation Activities Expense: Labor: \$ 5,000 (Transition Metals)

Table 9: Summary of Food Expenditures

Description	Date (YYY	(-MM-DD)	Invoice / Receipt Number	Cost		Hst			Total	
Description	From	То	invoice / Receipt Number	COSL		TISC .		TOLAI		
Transition Metals (115 person days, Meals per deim of \$50/day per person)	2021-05-01 2021-09		See Daily Log	5,750.00		-		5,750.0		
			Total	\$ 5,750	.00	\$	-	\$	5,750.00	
			Assessment Total	\$ 5,2	'50					

OJEP NOTES: the food expenditures above (Table 9), a value of **\$5,750** is being claimed as part of the OJEP applicable expense as part of the 22/23 OJEP funding program. From this value, further break down of those costs per OJEP Category are as follows:

- Category 3 Stepping, Pitting, and Trenching Expenses: Meals & Accommodations: \$ 1,000 (Transition Metals, representing meals for 4 persons over 5 days at \$50/day).
- Category 4 Surface Drilling Expense: **Meals & Accommodations: \$ 4,300** (Transition Metals, representing meals for 4 persons over 21.5 days at \$50/day).
- Category 5 Rehabilitation: **Meals & Accommodations: \$ 450** (Transition Metals, representing meals for 3 persons over 3 days at \$50/day).

Table 10: Summary of Lodging Expenditures

Description	Date (YYY	Y-MM-DD)	Invoice / Receipt Number		Cost	Hst		Total	
Description	From	То			COSL			TOtal	
Transition Metals (115 person days, Lodging per deim of \$50/day per person)	2021-05-01	01 2021-09-30 See Daily Log 5,750.00			-		5,750	0.00	
			Total	\$	5,750.00	\$ -		\$ 5,750	0.00
			Assessment Total	\$	5,750				

NOTE: the lodging expenditures above (Table 10), a value of **\$5,750** is being claimed as part of the OJEP applicable expense as part of the 22/23 OJEP funding program. From this value, further break down of those costs per OJEP Category are as follows:

- Category 3 Stepping, Pitting, and Trenching Expenses: Meals & Accommodations: \$ 1,000 (Transition Metals, representing meals for 4 persons over 5 days at \$50/day).
- Category 4 Surface Drilling Expense: **Meals & Accommodations: \$ 4,300** (Transition Metals, representing meals for 4 persons over 21.5 days at \$50/day).
- Category 5 Rehabilitation: **Meals & Accommodations: \$ 450** (Transition Metals, representing meals for 3 persons over 3 days at \$50/day).

Invoices

Page :	1 of 4
--------	--------

		2022 Daily Activity Log; Summar	ry - Aylmer					
Date	Activity	Activity Description	# People	Personnel	# Vehicles	Mileage (km)*	# UTV	# Samples **
May 16 2022	Prospecting	Two (2) persons prospecting (SR + BrW), see sample location map & sample description table for details of samples recovered and distribution of prospecting activities. Inserting of Standards & Blanks (total QA/QC samples = 2), preparation of batch of samples (SD22128706), Sample Dropped off.		Sarah Reese (SR), Brian Williams (BrW)	1	160	0	7
May 16, 2022	Drill Pad Development	2 persons (BW + CH), overseeing and directing subcontractor (Gervais Forest Products Ltd) with drill pad, sump, and trail development, inclusive of rehabilitation activities to meet the requirement for rehabilitation in the Provincial Standards for Early Exploration; such as slop stabilization, re-seeding of disturbed areas, and marking of potential hazards	4	Ben Williams (BW), Carolyn Hatton (CH)	1	160	1	0
July 25, 2022	Drill MOB & Setup	2 persons (BW + CH), overseeing Drill MOB & Setup, see Daily Drilling Activity Summary for more details on activities.	2	Ben Williams (BW), Carolyn Hatton (CH)	1	160	1	0
July 26, 2022	Drill MOB & Setup	2 persons (BW + CH), overseeing Drill MOB & Setup, see Daily Drilling Activity Summary for more details on activities.	2	Ben Williams (BW), Carolyn Hatton (CH)	1	160	1	0
July 27, 2022	Drill MOB & Setup	2 persons (BW + CH), overseeing drill production activity & site inspection, see Daily Drilling Activity Summary for more details on activities.	2	Ben Williams (BW), Carolyn Hatton (CH)	1	160	1	0
July 28, 2022	Drill MOB & Setup	2 persons (BW + CH), overseeing drill production activity & site inspection, see Daily Drilling Activity Summary for more details on activities.	2	Ben Williams (BW), Carolyn Hatton (CH)	1	160	1	0
July 29, 2022	Drilling	2 persons (BW + CH), overseeing drill production activity, site inspection, and core collection, see Daily Drilling Activity Summary for more details on activities.	2	Ben Williams (BW), Carolyn Hatton (CH)	1	160	1	0
July 30, 2022	Drilling	2 persons (BW + BrW), overseeing drill production activity, site inspection, and core collection, see Daily Drilling Activity Summary for more details on activities.	2	Ben Williams (BW), Brian Williams (BrW)	1	160	1	0
July 31, 2022	Drilling	2 persons (BW + BrW), overseeing drill production activity, site inspection, and core collection, see Daily Drilling Activity Summary for more details on activities.	2	Ben Williams (BW), Brian Williams (BrW)	1	160	1	0
August 1, 2022	Drilling	2 persons (BW + BrW), overseeing drill production activity, site inspection, and core collection, see Daily Drilling Activity Summary for more details on activities.	2	Ben Williams (BW), Brian Williams (BrW)	1	160	1	0
August 2, 2022	Drilling	2 persons (CH + BrW), overseeing drill production activity, site inspection, and core collection, see Daily Drilling Activity Summary for more details on activities.	4	Carolyn Hatton (CH), Brian Williams (BrW)	1	160	1	0
	Core Logging & Teching	2 persons (BW + SR), Core logging and Core Teching (Hole AY-22-01)		Ben Williams (BW), Sarah Reese (SR)	0	0	0	0
August 3, 2022	Drilling	2 persons (BW + SR), overseeing drill production activity, site inspection, and core collection, see Daily Drilling Activity Summary for more details on activities.	4	Ben Williams (BW), Sarah Reese (SR)	1	160	1	0
	Core Logging & Teching	2 persons (CH + BrW), Core logging and Core Teching (Hole AY-22-01)		Carolyn Hatton (CH), Brian Williams (BrW)	0	0	0	0
August 4, 2022	Drilling	2 persons (BW + CH), overseeing drill production activity, site inspection, and core collection, see Daily Drilling Activity Summary for more details on activities.	4	Ben Williams (BW), Carolyn Hatton (CH)	1	160	1	0
	Core Logging & Teching	2 persons (SR + BrW), Core logging and Core Teching (Hole AY-22-01)		Sarah Reese (SR), Brian Williams (BrW)	0	0	0	0
August 5, 2022	Drilling	2 persons (CH+ SR), overseeing drill production activity, site inspection, and core collection, see Daily Drilling Activity Summary for more details on activities.	4	Carolyn Hatton (CH), Sarah Reese (SR)	1	160	1	0
	Core Logging & Teching	2 persons (BW + BrW), Core logging and Core Teching (Hole AY-22-01)		Ben Williams (BW), Brian Williams (BrW)	0	0	0	0

		2022 Daily Activity Log; Summa	ry - Aylmer					
Date	Activity	Activity Description	# People	Personnel	# Vehicles	Mileage (km)*	# UTV	# Samples **
August 6, 2022	Drilling	2 persons (CH+ SR), overseeing drill production activity, site inspection, and core collection, see Daily Drilling Activity Summary for more details on activities.	4	Carolyn Hatton (CH), Sarah Reese (SR)	1	160	1	0
	Core Logging & Teching	2 persons (BW + BrW), Core Logging, Core Teching (Hole AY-22-01)		Ben Williams (BW), Brian Williams (BrW)	0	0		0
August 7, 2022	Drilling	2 persons (SR+ BrW), overseeing drill production activity, site inspection, and core collection, see Daily Drilling Activity Summary for more details on activities.	4	Sarah Reese (SR), Brian Williams (BrW)	1	160	1	0
	Core Logging & Teching	2 persons (BW + CH), Core Logging, Core Teching (Hole AY-22-02)		Ben Williams (BW), Carolyn Hatton (CH)	0	0	1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	0
August 8, 2022	Drilling	2 persons (CH+ SR), overseeing drill production activity, site inspection, and core collection, see Daily Drilling Activity Summary for more details on activities.	4	Carolyn Hatton (CH), Sarah Reese (SR)	1	160	1	0
-	Core Logging & Teching	2 persons (BW + BrW), Core Logging, Core Teching (Hole AY-22-02)		Ben Williams (BW), Brian Williams (BrW)	0	0	0	0
August 9, 2022	Drilling	2 persons (SR+ BrW), overseeing drill production activity, site inspection, and core collection, see Daily Drilling Activity Summary for more details on activities.	4	Sarah Reese (SR), Brian Williams (BrW)	1	160	1	0
-	Core Logging & Teching	2 persons (BW + CH), Core Logging, Core Teching (Hole AY-22-02)		Ben Williams (BW), Carolyn Hatton (CH)	0	0	0	0
August 10, 2022	Drilling	2 persons (CH+ SR), overseeing drill production activity, site inspection, and core collection, see Daily Drilling Activity Summary for more details on activities.	4	Carolyn Hatton (CH), Sarah Reese (SR)	1	160	1	0
-	Core Logging & Teching	2 persons (BW + BrW), Core Logging, Core Teching (Hole AY-22-02)		Ben Williams (BW), Brian Williams (BrW)	0	0	1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	0
August 11, 2022	Drilling	2 persons (BW + CH), overseeing drill production activity, site inspection, and core collection, see Daily Drilling Activity Summary for more details on activities.	4	Ben Williams (BW), Carolyn Hatton (CH)	1	160	1	0
	Core Logging & Teching	2 persons (SR + BrW), Core Logging, Core Teching (Hole AY-22-02)		Sarah Reese (SR), Brian Williams (BrW)	0	0	0	0
August 42, 2022	Drilling	1 person (CH), overseeing drill production activity, site inspection, and core collection, see Daily Drilling Activity Summary for more details on activities.	4	Carolyn Hatton (CH)	1	160	1	0
August 12, 2022	Core Logging & Teching	3 persons (BW + SR + BrW), Core Logging, Core Teching of (Hole AY-22-02), Sampling of (Hole AY-22-01)	4	Ben Williams (BW), Sarah Reese (SR), Brian Williams (BrW)	0	0	0	0
August 13, 2022	Drilling	2 persons (BW + SR), overseeing drill production activity, site inspection, and core collection, see Daily Drilling Activity Summary for more details on activities.	4	Ben Williams (BW), Sarah Reese (SR)	1	160	1	0
	Core Logging & Teching	2 persons (CH + BrW), Core Logging, Core Teching (Hole AY-22-02)		Carolyn Hatton (CH), Brian Williams (BrW)	0	0	0	0
August 14, 2022	Drilling	2 persons (BW + SR), overseeing drill production activity, site inspection, and core collection, see Daily Drilling Activity Summary for more details on activities.	4	Ben Williams (BW), Sarah Reese (SR)	1	160	1	0
	Core Logging & Teching	2 persons (CH + BrW), Core Logging, Core Teching (Hole AY-22-02)		Carolyn Hatton (CH), Brian Williams (BrW)	0	0	0 1 0 1 1 0 1 1	0

		2022 Daily Activity Log; Summar	ry - Aylmer					
Date	Activity	Activity Description	# People	Personnel	# Vehicles	Mileage (km)*	# UTV	# Samples **
August 15, 2022	Drilling	1 person (CH), overseeing drill production activity, site inspection, and core collection, see Daily Drilling Activity Summary for more details on activities.	4	Carolyn Hatton (CH)	1	160	1	0
August 15, 2022	Core Logging & Teching	3 persons (BW + SR + BrW), Core Logging, Core Teching of (Hole AY-22-02), Sampling of (Hole AY-22-01)		Ben Williams (BW), Sarah Reese (SR), Brian Williams (BrW)	0	0	0	0
August 16, 2022	Drilling	1 person (BW), overseeing drill production activity, site inspection, and core collection, see Daily Drilling Activity Summary for more details on activities.	4	Ben Williams (BW)	1	160	1	0
August 10, 2022	Core Logging & Teching	3 persons (CH + SR + BrW), Core Logging, Core Teching of (Hole AY-22-03), Sampling of (Hole AY-22-01)		Carolyn Hatton (CH), Sarah Reese (SR), Brian Williams (BrW)	0	0	0	0
August 17, 2022	Drilling	1 person (BW), overseeing drill production activity, site inspection, and core collection, see Daily Drilling Activity Summary for more details on activities.	4	Ben Williams (BW)	1	160	1	0
	Core Logging & Teching	3 persons (CH + SR + BrW), Core Logging, Core Teching of (Hole AY-22-03), Sampling of (Hole AY-22-01 & AY-22-02)		Carolyn Hatton (CH), Sarah Reese (SR), Brian Williams (BrW)	0	0	0	0
	Drilling	1 person (BW), overseeing drill production activity, site inspection, and core collection, see Daily Drilling Activity Summary for more details on activities.	4	Ben Williams (BW)	1	160	1	0
August 18, 2022	Core Logging & Teching	3 persons (CH + SR + BrW), Core Logging, Core Teching of (Hole AY-22-03), Sampling of (Hole AY-22-02)		Carolyn Hatton (CH), Sarah Reese (SR), Brian Williams (BrW)	0	0	0	0
	Drilling	1 person (BW), overseeing drill production activity, site inspection, and core collection, see Daily Drilling Activity Summary for more details on activities.	4	Ben Williams (BW)	1	160	1	0
August 19, 2022	Core Logging & Teching	3 persons (CH + SR + BrW), Core Logging, Core Teching of (Hole AY-22-03), Sampling of (Hole AY-22-02)		Carolyn Hatton (CH), Sarah Reese (SR), Brian Williams (BrW)	0	0	0	0
August 20, 2022	Drilling	1 person (SR), overseeing drill production activity, site inspection, and core collection, see Daily Drilling Activity Summary for more details on activities.	4	Sarah Reese (SR)	1	160	1	0
August 20, 2022	Core Logging & Teching	3 persons (BW + CH + BrW), Core Logging, Core Teching of (Hole AY-22-03), Sampling of (Hole AY-22-02)	4	Ben Williams (BW), Carolyn Hatton (CH), Brian Williams (BrW)	0	0	0	0
August 21, 2022	Drilling	1 person (SR), overseeing drill production activity, site inspection, and core collection, see Daily Drilling Activity Summary for more details on activities.	4	Sarah Reese (SR)	1	160	1	0
August 21, 2022	Core Logging & Teching	3 persons (BW + CH + BrW), Core Logging, Core Teching of (Hole AY-22-03), Sampling of (Hole AY-22-02)		Ben Williams (BW), Carolyn Hatton (CH), Brian Williams (BrW)	0	0	0	0
August 22, 2022	Core Logging Review & Sample Drop Off	1 person (BW), finalizing & reviewing Core Logs, Inserting of Standards & Blanks (total QA/QC samples = 8), preparation of batch of samples (SD22236507)	1	Ben Williams (BW)	0	0	0	86
August 23, 2022	Core Logging Review	1 person (BW), finalizing & reviewing Core Logs	1	Ben Williams (BW)	0	0	0	0
August 24, 2022	Drill De-Mob, & Sample Drop Off	3 persons (BW + SR + CH), overseeing drill de-MOB, and conducting post site inspections on drill pads (x3) and pump pad (x1), see Daily Drilling Activity Summary for more details on activities. Inserting of Standards & Blanks (total QA/QC samples = 6), preparation batch of samples (SD22238064), and sample drop off.	3	Ben Williams (BW), Sarah Reese (SR), Carolyn Hatton (CH)	1	160	1	68

2022 Daily Activity Log; Summary - Aylmer								
Date	Activity	Activity Description	# People	Personnel	# Vehicles	Mileage (km)*	# UTV	# Samples **
September 7, 2022	Prospecting	Two (2) persons prospecting (TH + FD), see sample location map & sample description table for details of samples recovered and distribution of prospecting activities. Preparation batch of samples (SD22255045), and sample drop off (no QA/QC Samples)	2	Thomas Hart (TR), Fred Fed Delabbio (FD)	1	160	0	2
September 27, 2022	Drill Core Moving, Sample Storage, Site Rehabilitation	2 Persons (BW + SR), transported all core (including the remaining unsampled core, and sampled cut half-core), back to site, cross piled, and labelled on the aggregate permit property, behind gated access for safe keeping. Further Post-site inspections were carried out, facilitating rehabilitation activities to meet the requirement for rehabilitation in the Provincial Standards for Early Exploration; such as re-seeding of disturbed areas, and marking of potential hazards	2	Ben Williams (BW), Sarah Reese (SR)	2	320	0	0
September 28, 2022		2 Persons (BW + SR), transported all core (including the remaining unsampled core, and sampled cut half-core), back to site, cross piled, and labelled on the aggregate permit property, behind gated access for safe keeping. Further Post-site inspections were carried out, facilitating rehabilitation activities to meet the requirement for rehabilitation in the Provincial Standards for Early Exploration; such as re-seeding of disturbed areas, and marking of potential hazards	2	Ben Williams (BW), Sarah Reese (SR)	2	320	0	0
September 29, 2022	Drill Core Moving,	2 Persons (BW + SR), transported all core (including the remaining unsampled core, and sampled cut half-core), back to site, cross piled, and labelled on the aggregate permit property, behind gated access for safe keeping. Further Post-site inspections were carried out, facilitating rehabilitation activities to meet the requirement for rehabilitation in the Provincial Standards for Early Exploration; such as re-seeding of disturbed areas, and marking of potential hazards	2	Ben Williams (BW), Sarah Reese (SR)	2	320	0	0
September 30, 2022		2 Persons (BW + SR), transported all core (including the remaining unsampled core, and sampled cut half-core), back to site, cross piled, and labelled on the aggregate permit property, behind gated access for safe keeping. Further Post-site inspections were carried out, facilitating rehabilitation activities to meet the requirement for rehabilitation in the Provincial Standards for Early Exploration; such as re-seeding of disturbed areas, and marking of potential hazards	2	Ben Williams (BW), Sarah Reese (SR)	2	320	0	0
* Mileage Note: The ab	Rehabilitation	were carried out, facilitating rehabilitation activities to meet the requirement for rehabilitation in the Provincial Standards for Early Exploration; such as re-seeding of	to site daily. A single	Sarah Reese (SR)				0

Daily Log Program Summary				
Total # of Field Days	37	(Calendar Days)	Total # of Samples	163
Total # of Person Days	115	(Person Days)		
Total # of Days of UTV Usage	30			
Total # of Days of Truck Usage	40	(recalculated as 1-truck/day)	Total Mileage (km)	6400

Summary of Work by Activity				Summary of Samples by Activity			
Activity Type	# of Calander Days	# of Person Days	ototal	ototal	tal	Prospecting Samples	7
# of Prospecting Activity Days^	2	4			Core Samples	140	
# of Drilling & Core Logging/Teching/Sampling Activity Days^	35	111	sul	Standards & Blanks	16		
то	TAL # of Person Days	115	TOTAL # of Samples		163		
^Note on Sums: Summing of the number of working days by activity may not sum to the total number of Field Days (Calendar Days), as some activities were undertaken concurrently.							