

We are committed to providing <u>accessible customer service</u>. If you need accessible formats or communications supports, please <u>contact us</u>.

Nous tenons à améliorer <u>l'accessibilité des services à la clientèle</u>. Si vous avez besoin de formats accessibles ou d'aide à la communication, veuillez <u>nous contacter</u>. MAPPING AND PROSPECTING PROGRAM 2022

PICKLE LAKE PROPERTY

OnGold Investment Corp.

McGill Township, McGraw Lake Area and Olga Lake Area

THUNDER BAY MINING DIVISION

NTS Sheet # 042C13 & 042F04

Written by: Simon Dolega, MSc., GIT (ON) Steven Flank, MSc., P.Geo December 2, 2022

Bayside Geoscience 1179 Carrick St. Unit C Thunder Bay, ON P7B 6M3

Summary

Between June 5th and June 14th, 2022 OnGold Investment Corp. completed a reconnaissance prospecting program at their 100% owned Pickle Lake Project. The program was designed to investigate a series of discreet magnetic anomalies thought to be associated with Ni-Cu-PGE mineralized mafic-ultramafic intrusions. Similar rocks types comprise the Tyko, RJ, Smoke Lake and the recently discovered West Pickle massive sulfide zone.

Bayside Geoscience of Thunder Bay, ON was contracted to complete the program. 11 geophysical anomalies were targeted and of those, 8 were traversed. Due to sparse outcrop in the target areas only 3 of the anomalies were explained by unmineralized gabbro and diabase outcrops. There are 8 unexplained magnetic anomalies on the property that are likely caused by the presence of maficultramafic intrusions beneath cover. Best results of sampling returned 0.36% Cu and 0.07% Ni from a boulder proximal to magnetic anomaly # 2.

A second phase program consisting of a property wide airborne electromagnetic survey is recommended. This work would be followed up by further ground truthing of anomalies which if successful will lead into a maiden diamond drilling program on the project.

-			<u>-</u>		
		OT		INT A	nTC.
					nts

Summary	2
1.0 Property Description and Location	4
1.1 Location and Access	4
1.2 Physiography	4
1.3 Claim Status	5
2.0 History	8
3.0 Geology	8
3.1 Regional Geology	8
3.2 Property Geology	8
4.0 2022 Surface Prospecting Program	9
4.1 Sampling Locations and Methodology	9
4.2 Assay Methodology	11
4.3 Results	12
5.0 Conclusions and Recommendations	28
6.0 Expenditures	29
7.0 References	30
8.0 Statement of Qualifications	31
Appendix I Station Descriptions	
Appendix II Certificates of Analyses	50

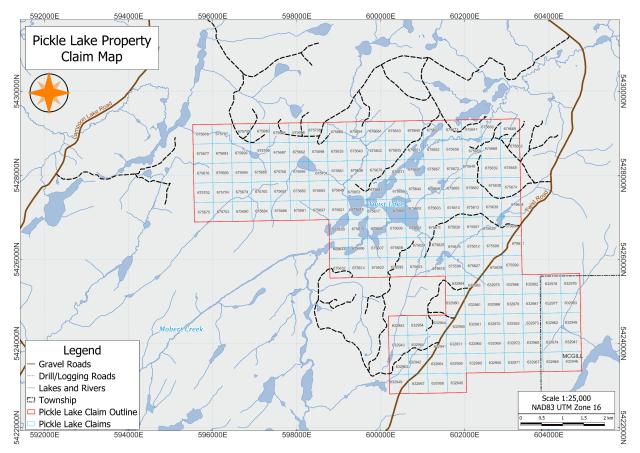
1.0 Property Description and Location

1.1 Location and Access

The Pickle Lake property is approximately 38km southeast from the town of Manitouwadge, Ontario, and approximately 66km northeast of Barrick's Hemlo Mine (Figure 1). The property is situated in the Thunder Bay Mining Division within the McGill Township, Olga Lake Area and McGraw Lake Area.

Figure 1: A road map of Ontario showing the location of the Pickle Lake Property in relation to producing mines and town centers.

From the Service Ontario building on 40 Manitou Rd Suite 101, Manitouwadge, Ontario POT 2CO, the Pickle Lake property was accessed by driving east on Manitou Road for 2.6km and turning right onto Camp Road. After approximately 4.1km on Camp Road, a right turn was made onto Twist Road. Twist Road intersects the Pickle Lake property claims at approximately 31km. Multiple logging/drill roads run through the property claims. Access to the eastern side of the property was possible via Twist Road and access to the west side of the property was possible via Lampoon Lake Road (Figure 1.2).


1.2 Physiography

The Pickle Lake property is situated in the Abitibi Upland subregion, within the James Region of the Canadian Shield (Douglas 1972; Bone, 2003). The terrain in the Manitouwadge area have broadly rolling surfaces with a wide range of elevations ranging from 482 masl west of Manitouwadge to 195

masl in the Nama Creek Valley (Hancox and Schneider, 2014). Overburden consists of mostly thin glaciolacustrine deposits and glaciofluvial deposits with small amounts of organic deposits (Hancox and Schneider, 2014). The Pickle Lake Property is situated within the Mobert Creek, Macutagon Creek and White Lake Dam-White River watersheds which are all part of the Lake Superior drainage basin. It is within the Boreal Forest region which contains plant species which include black spruce, jack pine, trembling aspen, balsam poplar, white spruce, balsam fir, white birch, white pine, and red pine (Hancox and Schnider, 2014). The Manitouwadge area based on Environment Canada's Manitouwadge and Geraldton climate stations from 1971-2000 is within the temperate and humid continental climate zone, with mild summers and cold winters (Hancox and Schneider, 2014). Temperatures range from highs of 39°C in the summers to lows of -45°C in the winters with average annual temperatures of 1°C (Hancox and Schneider, 2014). Average annual precipitation is 859mm with higher amounts of precipitation occurring between June and October (Hancox and Schneider, 2014).

1.3 Claim Status

The Pickle Lake property consist of 163 single cell mining claims spanning approximately 3,455ha (Figure 2). The claims are 100% owned by OnGold Investment Corporation (Table 1). At the date of this report, all claims are active and in good standing.

Figure 2: Magnetic geophysical map of the Pickle Lake property. 11 high priority targets from #0-#10 are denoted by red triangles.

Table 1 List of active claims 100% owned by OnGold Investment Corp. within the Pickle Lake property.

Claim	Claim Anniversary	
Number	Date	Township/Area
632946	2023-01-29	McGill
632947	2023-01-29	McGill
632948	2023-01-29	McGill
632962	2023-01-29	McGill
632965	2023-01-29	McGill
632974	2023-01-29	McGill
632977	2023-01-29	McGill
632983	2023-01-29	McGill
632967	2023-01-29	McGill, Olga Lake Area
632968	2023-01-29	McGill, Olga Lake Area
632973	2023-01-29	McGill, Olga Lake Area
632978	2023-01-29	McGill, Olga Lake Area
632979	2023-01-29	McGill, Olga Lake Area
632982	2023-01-29	McGill, Olga Lake Area
632987	2023-01-29	McGill, Olga Lake Area
675635	2023-09-11	McGraw Lake Area
675640	2023-09-11	McGraw Lake Area
675642	2023-09-11	McGraw Lake Area
675643	2023-09-11	McGraw Lake Area
675645	2023-09-11	McGraw Lake Area
675647	2023-09-11	McGraw Lake Area
675651	2023-09-11	McGraw Lake Area
675652	2023-09-11	McGraw Lake Area
675654	2023-09-11	McGraw Lake Area
675655	2023-09-11	McGraw Lake Area
675657	2023-09-11	McGraw Lake Area
675658	2023-09-11	McGraw Lake Area
675659	2023-09-11	McGraw Lake Area
675660	2023-09-11	McGraw Lake Area
675663	2023-09-11	McGraw Lake Area
675664	2023-09-11	McGraw Lake Area

Claim	im Anniversary		
Number	Date	Township/Area	
675666	2023-09-11	McGraw Lake Area	
675668	2023-09-11	McGraw Lake Area	
675669	2023-09-11	McGraw Lake Area	
675673	2023-09-11	McGraw Lake Area	
675677	2023-09-11	McGraw Lake Area	
675678	2023-09-11	McGraw Lake Area	
675680	2023-09-11	McGraw Lake Area	
675683	2023-09-11	McGraw Lake Area	
675687	2023-09-11	McGraw Lake Area	
675688	2023-09-11	McGraw Lake Area	
675692	2023-09-11	McGraw Lake Area	
675696	2023-09-11	McGraw Lake Area	
675698	2023-09-11	McGraw Lake Area	
675699	2023-09-11	McGraw Lake Area	
675705	2023-09-11	McGraw Lake Area	
675707	2023-09-11	McGraw Lake Area	
675708	2023-09-11	McGraw Lake Area	
675709	2023-09-11	McGraw Lake Area	
632941	2023-01-29	Olga Lake Area	
632942	2023-01-29	Olga Lake Area	
632943	2023-01-29	Olga Lake Area	
632944	2023-01-29	Olga Lake Area	
632945	2023-01-29	Olga Lake Area	
632949	2023-01-29	Olga Lake Area	
632950	2023-01-29	Olga Lake Area	
632951	2023-01-29	Olga Lake Area	
632952	2023-01-29	Olga Lake Area	
632953	2023-01-29	Olga Lake Area	
632954	2023-01-29	Olga Lake Area	
632955	2023-01-29	Olga Lake Area	
632956	2023-01-29	Olga Lake Area	
632957	2023-01-29	Olga Lake Area	
632958	2023-01-29	Olga Lake Area	
632959	2023-01-29	Olga Lake Area	
632960	2023-01-29	Olga Lake Area	
632961	2023-01-29	Olga Lake Area	
632963	2023-01-29	Olga Lake Area	
632964	2023-01-29	Olga Lake Area	

Claim Number	Anniversary Date	Township/Area	
632975	2023-01-29	Olga Lake Area	
632976	2023-01-29	Olga Lake Area	
632980	2023-01-29	Olga Lake Area	
632981	2023-01-29	Olga Lake Area	
632984	2023-01-29	Olga Lake Area	
632966	2023-01-29	Olga Lake Area	
632969	2023-01-29	Olga Lake Area	
632970	2023-01-29	Olga Lake Area	
632971	2023-01-29	Olga Lake Area	
632972	2023-01-29	Olga Lake Area	
632985	2023-01-29	Olga Lake Area	
632986	2023-01-29	Olga Lake Area	
632988	2023-01-29	Olga Lake Area	
675595	2023-09-11	Olga Lake Area	
675596	2023-09-11	Olga Lake Area	
675597	2023-09-11	Olga Lake Area	
675598	2023-09-11	Olga Lake Area	
675599	2023-09-11	Olga Lake Area	
675600	2023-09-11	Olga Lake Area	
675601	2023-09-11	Olga Lake Area	
675602	2023-09-11	Olga Lake Area	
675603	2023-09-11	Olga Lake Area	
675604	2023-09-11	Olga Lake Area	
675605	2023-09-11	Olga Lake Area	
675606	2023-09-11	Olga Lake Area	
675607	2023-09-11	Olga Lake Area	
675608	2023-09-11	Olga Lake Area	
675609	2023-09-11	Olga Lake Area	
675610	2023-09-11	Olga Lake Area	
675611	2023-09-11	Olga Lake Area	
675612	2023-09-11	Olga Lake Area	
675613	2023-09-11	Olga Lake Area	
675614	2023-09-11	Olga Lake Area	
675615	2023-09-11	Olga Lake Area	
675616	2023-09-11	Olga Lake Area	
675617	2023-09-11	Olga Lake Area	
675618	2023-09-11	Olga Lake Area	
675619	2023-09-11	Olga Lake Area	

Claim Number	Anniversary Date	Township/Area	
675620	2023-09-11	Olga Lake Area	
675621	2023-09-11	Olga Lake Area	
675622	2023-09-11	Olga Lake Area	
675623	2023-09-11	Olga Lake Area	
675624	2023-09-11	Olga Lake Area	
675625	2023-09-11	Olga Lake Area	
675626	2023-09-11	Olga Lake Area	
675627	2023-09-11	Olga Lake Area	
675628	2023-09-11	Olga Lake Area	
675629	2023-09-11	Olga Lake Area	
675630	2023-09-11	Olga Lake Area	
675631	2023-09-11	Olga Lake Area	
675632	2023-09-11	Olga Lake Area	
675633	2023-09-11	Olga Lake Area	
675634	2023-09-11	Olga Lake Area	
675636	2023-09-11	Olga Lake Area	
675637	2023-09-11	Olga Lake Area	
675638	2023-09-11	Olga Lake Area	
675639	2023-09-11	Olga Lake Area	
675641	2023-09-11	Olga Lake Area	
675644	2023-09-11	Olga Lake Area	
675646	2023-09-11	Olga Lake Area	
675648	2023-09-11	Olga Lake Area	
675649	2023-09-11	Olga Lake Area	
675650	2023-09-11	Olga Lake Area	
675653	2023-09-11	Olga Lake Area	
675656	2023-09-11	Olga Lake Area	
675661	2023-09-11	Olga Lake Area	
675662	2023-09-11	Olga Lake Area	
675665	2023-09-11	Olga Lake Area	
675667	2023-09-11	Olga Lake Area	
675670	2023-09-11	Olga Lake Area	
675671	2023-09-11	Olga Lake Area	
675672	2023-09-11	Olga Lake Area	
675674	2023-09-11	Olga Lake Area	
675675	2023-09-11	Olga Lake Area	
675676	2023-09-11	Olga Lake Area	
675679	2023-09-11	Olga Lake Area	

Claim Number	Anniversary Date	Township/Area	
675681	2023-09-11	Olga Lake Area	
675682	2023-09-11	Olga Lake Area	
675684	2023-09-11	Olga Lake Area	
675685	2023-09-11	Olga Lake Area	
675686	2023-09-11	Olga Lake Area	
675689	2023-09-11	Olga Lake Area	
675690	2023-09-11	Olga Lake Area	
675691	2023-09-11	Olga Lake Area	
675693	2023-09-11	Olga Lake Area	

Claim Number	Anniversary Date	Township/Area	
675694	2023-09-11	Olga Lake Area	
675695	2023-09-11	Olga Lake Area	
675697	2023-09-11	Olga Lake Area	
675700	2023-09-11	Olga Lake Area	
675701	2023-09-11	Olga Lake Area	
675702	2023-09-11	Olga Lake Area	
675703	2023-09-11	Olga Lake Area	
675704	2023-09-11	Olga Lake Area	
675706	2023-09-11	Olga Lake Area	

2.0 History

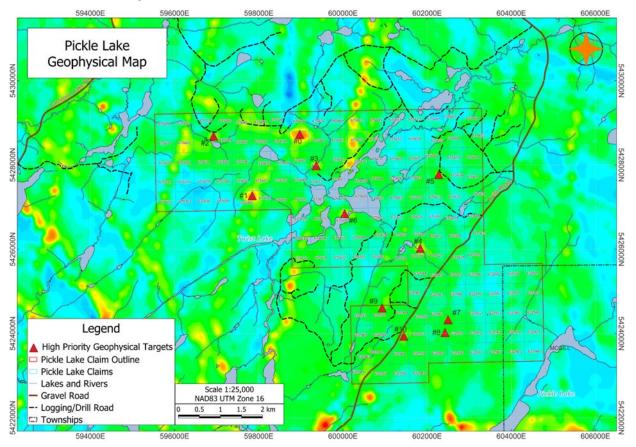
Prior to the 2022 sampling and mapping program, there is no record of previous work conducted on the property.

3.0 Geology

Since there was no record of previous work conducted on the property, a brief summary of the regional geology and local geology is provided below.

3.1 Regional Geology

The Pickle Lake property is situated within the Wawa-Abitibi Terrane within the Superior Province (Stott et al., 2010). The Wawa-Abitibi Terrane is bounded to the north by the Quetico Subprovince (Williams et al., 1991). The Wawa-Abitibi Terrane is composed of granitoid plutons with interwoven greenstone belts (Williams et al., 1991). The property is within a gneissic tonalitic suite composed of foliated to massive tonalite to granodiorite (Williams et al., 1991).


3.2 Property Geology

Historic mapping conducted by Milne (1967) indicated that most of the lithologies on the property are granite gneisses +/- biotite with rare apalitic dikes. Rare occurrences of fg-cg massive to gneissic amphibolite have also been observed near Twist Lake (Milne, 1967). Since that time, there was no documented record of geologic mapping on the property.

4.0 2022 Surface Prospecting Program

4.1 Sampling Locations and Methodology

The mapping and sampling program on the Pickle Lake property was conducted between July 5th and July 14th, 2022. The purpose of the program was to gain a further understanding of the local geology and explore the relationship, if any, between localized magnetic highs and the presence of mafic/ultramafic intrusive rocks. 11 magnetic anomaly targets were selected on the property based on magnetic geophysical maps (Figure 3). These 11 anomalies were believed to be the most prospective areas for Ni-Cu-PGE bearing sulphide mineralization hosted in mafic/ultramafic intrusions. A team consisting of Geologist-in-Training Joe Suk and field assistant Sam Ghantous from Bayside Geoscience Inc. collected samples on behalf of OnGold Investment Corp. Table 2 contains daily log summaries of the work conducted during the field season.

Figure 3: Magnetic geophysical map of the Pickle Lake property. 11 high priority targets from #0-#10 are denoted by red triangles.

Table 2: Daily Log of Activities

Date	Main Objective	Log
05-Jul-22	Investigate Magnetic Anomalies	Checked out anomaly in central east area of claim map. Found nothing but felsic whalebacks.
06-Jul-22	Investigate Magnetic Anomalies	We traversed West first to attack a singular anomaly. We found mostly felsics. One block of mafic material within a diorite. We then explored the line of anomalies with little success. The areas were lowlands with large trees and thick overburden to the North. The South had some outcrop but not much mafic material. Collected 2 samples (1101549 and 1101550).
07-Jul-22	Investigate Magnetic Anomalies	Area was very little exposure composed of mostly large trees and thick overburden. We found only 3 outcrops all day. All boulders composed of felsics. The gabbro we located had little to no structure. Collected 2 samples (1101551 and 1101552).
08-Jul-22	Investigate Magnetic Anomalies	Got out to see that large mag anomaly to the North. We didn't have much for outcrop and most of what we saw was granite-diorite in composition with minor gabbroic sections. We tried going South to the smaller mag anomaly, but it was swampy, and we could only get to the edge of it. Collected 3 samples (110553-1101555).
09-Jul-22	Prospecting and Mapping	Tons of outcrop in the area. Area composed of strongly mixed units composed of diorite – leucogabbro. Quartz veining very common. Epidote veining observed in rocks as well. Pyroxenite and gabbro outcrops discovered. Collected 3 sample (110556-1101558).
10-Jul-22	Prospecting and Mapping	Began the traverse exploring the west side and found some mixes of felsics and pyroxenites. We then headed to the North and came across a diabase dike in contact with a diorite. Traversed toward the lake, little exposure near the lake. Circled back and came across a bunch of diorites and some silicious mafics. Ended the day grabbing two samples off the road, a pyroxenite and a gabbro with a diabase dike. Collected 8 samples (1101559-1101566).
12-Jul-22	Investigate Magnetic Anomalies	The southern anomaly was discovered to being a diabase dike striking 045. It was running through diorite. There was no exposure at the Northeast anomaly. Went up the road and found diorite and a thin diabase dike striking 045. The Northwest anomaly was in a swamp. Traversed more and found no outcrop along the way.

Date	Main Objective	Log
13-Jul-22	Investigate Magnetic Anomalies	On the way there, we found very little outcrop. When we were near the centre, we came across a magnetic, fine-grained gabbro and a very fine-grained diabase intruding a granite. The strike of the dikes was about 330. This is most likely the source of the mag anomaly. On the other side of the hill, we came across a strongly sheared mafic unit, turned chlorite schist. The protolith was probably a gabbro. Other than that, we came across mostly diorites, granodiorites, and granitic boulders. Collected 2 samples (1101567 and 1101568).
14-Jul-22	Investigate Magnetic Anomalies	We traversed directly North toward a topographic high in the mag- low area. Came across very little to begin, only a couple boulders. As we ascended the hill, we came across granodiorites and diorites. At the top of the hill, we came across granodiorites and pegmatitic granites. We never found any mafics. On the Southern side of the hill there was nothing outcropping.

Traverses were planned to cover all 11 high priority targets (Figure 4). Grab samples were collected at outcrops and boulders of interest using rock hammers and collecting 1-2kg samples of material placed into labeled sample bags. Rock descriptions were recorded on QField 2.3.4 – Diversified Dugong via a Samsung Galaxy Tab A7 Lite. A Garmin GPSMAP® 66i GPS Handheld and Satellite Communicator was used for safety communication, follow tracks, and get more accurate location waypoints for the sample stations. A total of 20 samples were taken at the geophysical anomalies and of prospective lithologies within the property. No control samples were inserted for analysis.

4.2 Assay Methodology

20 samples from the Pickle Lake property along with 48 samples from another property were shipped to Activation Laboratories Ltd. in Thunder Bay, Ontario for sample preparation and analysis. Assay preparation was accomplished by crushing the rock to a 2mm particle size, mechanically splitting the sample to 250g, and then pulverizing the sample to 105μm. All samples were analyzed using IC-Exploration Fire Assay – ICPMS (Au, Pt, Pd) and UT-1M Aqua Regia ICP-MS containing 36 elements (Ag, Al, As, Au [semi-quantitative], B, Ba, Bi, Ca, Cd, Co, Cr, Cu, Fe, Ga, Hg, K, La, Mg, Mn, Mo, Na, Ni, P, Pb, S, Sb, Sc, Se, Sr, Te, Th, Ti, Tl, V, W, Zn). Appendix II contains the certificates of analyses for the samples submitted.

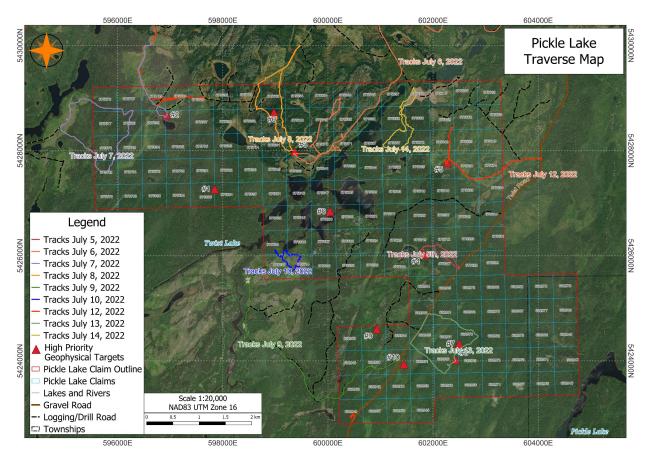


Figure 4: Satellite map of the traverses walked during the field season.

4.3 Results

4.3.1 Geologic Mapping

Most of the lithologies observed on the property were identified as felsic-intermediate intrusive rocks including diorite to granodiorite and granite (Figure 5). The diorite is white-grey, mg-cg, non foliated to strong foliated diorite with abundant cg-PEG granite dikes. Gneissic texture is often observed between darker bands of biotite and chlorite and lighter bands of feldspar and quartz. The diorite contains sections of more granite, granodiorite, gabbroic and leucogabbro compositions. Most of the granite lithologies encountered were rounded boulders. At outcrops, the granites were pink, mg-PEG, foliated and contain thin apalitic dikes.

Minor lithologies observed on the property include gabbro, leucogabbro, pyroxenite and a chlorite schist. The mafic intrusive rocks on the property are gabbro and leucogabbro in composition. They are green, fg-mg, massive equigranular to foliated, magnetic, moderately chlorite altered with rare potassic altered veins and cm-scale quartz veins. Mineralization occurs as mostly trace disseminated and vein associated chalcopyrite and trace to 1% disseminated pyrite. The pyroxenite located south of Twist Lake/Mobert Creek occurred as dark green-grey, mg, massive, moderate epidote and potassic altered, strong chlorite altered unit with up to 1% disseminated fg-mg pyrite. Pyroxenite float at geophysical anomaly 2 was strongly oxidized, 2% fg disseminated chalcopyrite and 1% fg disseminated pyrite Diabase on the property is vfg-fg, massive, magnetic with up to 1% disseminated pyrite. The chlorite

schist is a strongly foliated to sheared, fg, strongly chlorite altered, moderately epidote altered, silicified and potassic altered. Schistosity is defined my micas.

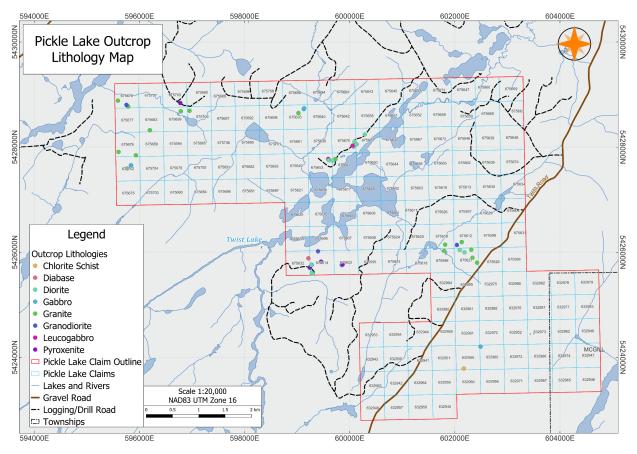


Figure 5: Outcrop locations encountered during the summer field season.

4.3.2 Geophysical Targets and Assay Results

A magnetic map of the 11 geophysical anomalies can be seen in Figure 3. Access information, notes and samples taken at the geophysical anomalies can be seen in Table 3. Unfortunately, geophysical targets 1, 6, 9 and 10 were determined to be inaccessible by foot due to the abundance of lakes surrounding the anomaly. No bedrock was found at geophysical anomalies 2, 3, 4, 5 and as such those remain unexplained. Geophysical anomaly 0 had abundant gabbro clasts within a granite-granodiorite and geophysical anomalies 7 and 8 had magnetic gabbro. 4 samples were taken at the magnetic anomalies. The rest of the samples collected were of prospective lithologies within the property.

In total, 20 samples were taken from 10 different claim blocks (Table 4). Most of the samples collected during the sampling program were gabbro, pyroxenite and diorite (Table 5). Few leucogabbro, chlorite schist, granite and granodiorite samples were also gathered (Table 5).

Geophysical Target	Access	Notes	Samples Taken
0	Accessed	Granite to granodiorite with abundant angular clasts of gabbro	1101554, 1101555
1	Not Accessed	Low lying area surrounded by creeks and lakes	
2	Accessed	Rusted pyroxenite float sample, unlikely source of magnetic anomaly	1101552
3	Accessed	Situated below a creek, no surface bedrock exposures	
4	Accessed	No outcrops present in area, surrounded by granitic boulders	
5	Accessed	Low lying area, no outcrops present, occasional granite boulders	
6	6 Not Accessed Very low lying swamp surrounded by lakes and rivers		
7	Accessed Contact between granite and magnetic gabbro		B1101567
8	Accessed	Contact between granite and magnetic gabbro	
9	Not Accessed	Unable to access geophysical anomaly	
10	Not Accessed	Unable to access geophysical anomaly	

Table 3: List of the high priority geophysical targets with accessibility, notes and samples taken.

Table 4: Claim cell information associated with the rock samples collected during the field program.

Project Area	Assay Samples Within Claim	Township/Area	Tenure Number	Anniversary Date	Claim Holder
	1101568	Olga Lake Area	632966	2023-01-29	(100) OnGold Invest Corp.
	1101567	Olga Lake Area	632969	2023-01-29	(100) OnGold Invest Corp.
	1101556-1101557; 1101560-1101561; 1101563-1101564	Olga Lake Area	675614	2023-09-11	(100) OnGold Invest Corp.
	1101565-1101566	Olga Lake Area	675622	2023-09-11	(100) OnGold Invest Corp.
Pickle Lake	1101558-1101559; 1101562	Olga Lake Area	675632	2023-09-11	(100) OnGold Invest Corp.
Area	1101553-1101555	McGraw Lake Area	675635	2023-09-11	(100) OnGold Invest Corp.
	1101549	Olga Lake Area	675653	2023-09-11	(100) OnGold Invest Corp.
	1101550	Olga Lake Area	675670	2023-09-11	(100) OnGold Invest Corp.
	1101551	Olga Lake Area	675702	2023-09-11	(100) OnGold Invest Corp.
	1101552	McGraw Lake Area	675705	2023-09-11	(100) OnGold Invest Corp.

Table 5: Sample descriptions with associated assay values.

Sample ID	Easting	Northing	Elev	Sample Type	Lithology	Notes	Pd (ppb)	Pt (ppb)	Au (ppb)	Cu (ppm)	Ni (ppm)
1101549	599595	5427752	336	Outcrop	Diorite	Mostly dioritic composition, but has some areas of gabbro. Pyroxenite seen intruding diorite in 1x1ft block. Pyroxenite is very schistose, abundant micas, non magnetic, no dpo or lpo.		1	3	41.2	34.5
1101550	600054	5428026	335	Outcrop	Leucogabbro with some dioritic and pyroxenite patches. Overall very heterogenous and mixed. Weak to no sulfides. General trend of the mafics is around 100 degrees. Felsics intruding mafics.		<1	<1	3	9.1	53
1101551	595836	5427652	341	Outcrop	Mod magnetic. 1% diss py. Structure taken along joint sets.		<1	<1	3	67	29.4
1101552	596777	5428838	342	Float	1 foot boulder found on road. Pyroxenite Chloritized and oxidized. Fg. Lots of sulfides. Sample taken.		9	43	11	3590	672
1101553	599024	5428648	347	Float	Granite	Thick overburden and little exposure area. 2 boulders, roughly 3x3x3 and rounded. Composed of granodiorite with patchy oxidation. Biotite- magnetite alteration. Sample taken of a gossanous section within the one boulder. Strong mineralization, oxidation and weathering.	10	13	7	1670	174
1101554	599125	5428725	341	Outcrop	Gabbro	Granodiorite outcrop with a gabbro cap. Possibly a layer that has been eroded elsewhere or just lenses of mafic material. Composed of 70% pyroxene. Silicious. Sample taken.	<1	<1	3	53.3	23.8
1101555	599133	5428738	340	Outcrop	Gabbro	Composition similar to 037.1x1 m window exposed. Potassic veins running through the unit. Peg granite observed 5 meters south of this.	1	2	3	26.3	34.4
1101556	599295	5425592	340	Outcrop	Diorite	Heterogenous mg-cg diorite outcrop, with some areas more granodiorite or gabbroic in composition. Fracture structure observed, with epidote and chlorite alteration within, as well as sulphides present. Hydrothermal alteration, particularly qtz, is evident. Dominant K-alteration. Banding foliation defined by mafics. 30x30m outcrop	<1	<1	3	11.9	6.3

Sample ID	Easting	Northing	Elev	Sample Type	Lithology	Notes	Pd (ppb)	Pt (ppb)	Au (ppb)	Cu (ppm)	Ni (ppm)
1101557	599278	5425610	330	Outcrop	Diorite	Gradational contact between diorite and more int-mafic unit, roughly striking 030. Diorite is similar to PL-JS- 040. Greater pyroxene abundance results in more leucogabbro-esque rock on mafic side of contact		<1	3	17.1	3.6
1101558	599241	5425699	337	Outcrop	Gabbro	fg-mg Gabbro in middle of gradational contact. Contact has S/D of (050/85). Abundant randomly oriented qtz veins, ssome of which have chalco along edges. Pyrite seen in one K-spar dyke. Gabbro at sample point is 60-70% mafics. Vesicles seen on gabbro. Potential chill margin also observed? massive, fg, adjacent to diorite. Stockwork qtz veins seen		2	3	36.1	112
1101559	599242	5425712	337	Outcrop	Pyroxenite	10x20m outcrop, dominantly cg pyroxenite. Randomly oriented qtz and f'spar veins observed. Non magnetic. Sample taken.	3	2	3	262	65
1101560	599275	5425759	332	Outcrop	Gabbro	Sheared Gabbro outcrop, with composition trending more mafic in 025 direction. Potential gradational contact striking along foliation. Ranges from diorite to nearly pyroxenite, over about 10m. Abundant qtz veins, both parallel to foliation, and at 335. Sample taken from more mafic side of outcrop, where chalcopyrite can be seen within and on edges of qtz veins. 30cm wide pegmatitic granite dyke also observed, striking 310.	7	6	3	23.9	46.8
1101561	599269	5425756	334	Outcrop	Diorite	Felsic side of previous outcrop. Sample taken more dioritic in composition. Strongly sheared. Arsenopyrite and chalcopyrite are both observed, within and along edges of qtz veins.	3	3	3	31.7	18
1101562	599213	5425884	345	Outcrop	Diabase	Grey-green diabase dyke intruding diorite. Magnetic. Massive pyrite found within, vfg-fg. Sample taken	<1	<1	3	94.2	21
1101563	599396	5426016	337	Outcrop	Granodiorite	Approximately 1x2m mafic pod within extensive granodiorite outcrop. Pyroxene and chlorite dominant within pod, though part of it resembles a quartz-flooded leucogabbro. Bands of pyroxenite exist wihin mafic pod. Trace pyrite and 1% arseno. are seen in mafics. K, chlorite, and silica alteration are all observed. Minor epidote also. Sample taken.	<1	<1	3	20.6	6.1

Sample ID	Easting	Northing	Elev	Sample Type	Lithology	Notes	Pd (ppb)	Pt (ppb)	Au (ppb)	Cu (ppm)	Ni (ppm)
1101564	599455	5425820	333	Outcrop	Pyroxenite	Mafic area on expansive int/fels. outcrop. Blebby pyrite observed, also seen fracture controlled. Epidote and K- alt both seen. Rep. sample 063 taken.	<1	<1	3	54.1	40.3
1101565	599847	5425756	337	Outcrop	Gabbro	Unstrained gabbro outcrop, with abundant chlorite resulting in green colour. Equigranular, fg-mg. Blebby pyrite observed. Diabase dyke seen 10m NW of point. Dyke surface is pitted, lighter grey colour than gabbro, fg. Sample taken from gabbro, not dyke. On SW side of the road.	3	4	3	20.9	114
1101566	599863	5425764	336	Outcrop	mg-cg pyroxenite, sampled near the base of a wall. Moderate K-alt, strong		1	1	3	43.5	48.3
1101567	602488	5424203	409	Outcrop	Gabbro	Contact between granite and gabbro intrusion. Gabbro is likley a dyke, though other side is not seen, only about 3m exposed. Gabbro is fg, magnetic, mostly pyx and plag. Trace pyrite in gabbro, sample taken from gabbro. Chill margin, about 5cm across, on contact of granite and gabbro. Diabase dyke cuts through granite, 1.5m from contact. Diabase is vfg, little to no mineralization. Granite is qtz rich, mafics within consist of hbl and pyx (no biotite). Note similar trends to dykes, though dips are opposite dxns. Ridge outcrop is perpendicular to structures' strikes	<1	<1	3	55.3	31.2
1101568	602170	5423786	416	Outcrop	Chlorite Schist	Sheared rock, with abundant chlorite and resultant mica-defined schistosity. Shear and foliation are very wavy, rarely continuous over >1m. 190 strike for foliation is an average of general trend. Indicators of sinistral sense of shear observed. Strong hydrothermal alteration observed, both silica and epidote alts. K-alteration also seen. Alteration is fracture/shear controlled. Migmatite textures observed, based on waviness between dark and light bands?	10	11	3	33.3	31.5

Sampling maps have been grouped into 4 quadrants to obtain detailed information of the assay data with respect to the property (Figure 6). The quadrants were the Northwest Quadrant, North Central Quadrant, South Central Quadrant and the Southeast Quadrant. Assay bubble maps for Pd, Pt, Au, Ni and Cu divided by each quadrant is shown in Figures 6-22. All samples collected have less than 100ppb Au, Pt and Pd. Anomalous (>0.01%) Ni values were observed in 4 samples (1101552, 1101553, 1101558, 1101555) with 1 sample returning 0.067% Ni (1101552). Anomalous (>0.01) Cu were observed in 3 samples (1101552, 1101553 and 1101559) with 2 samples greater than 0.1% Cu (up to 0.359% Cu). The highest Ni and Cu assay values are associated with boulders.

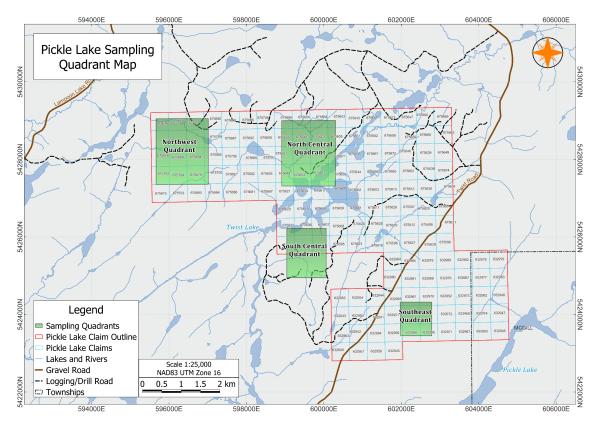


Figure 6: Pickle Lake property map divided into 4 quadrants.

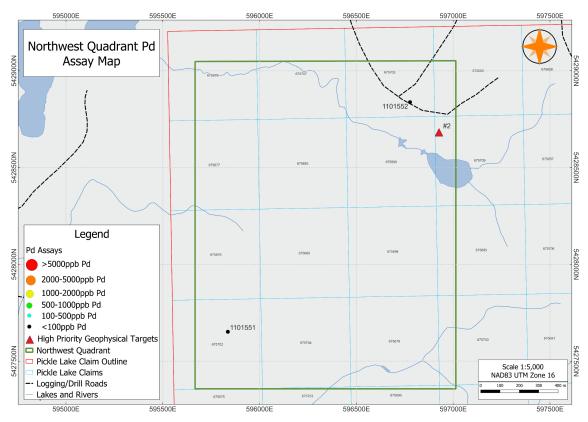


Figure 7: Distribution of Pd assays within the Northwest Quadrant of the Pickle Lake property.

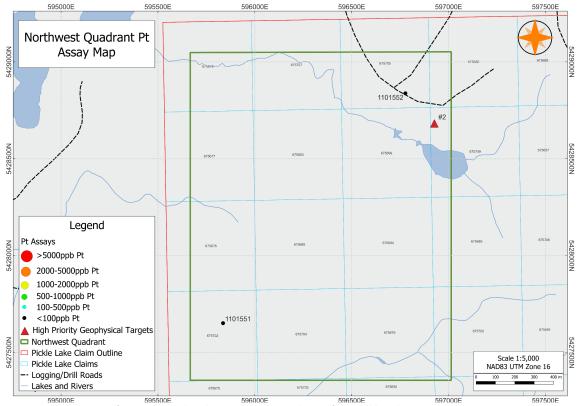


Figure 8: Distribution of Pt assays within the Northwest Quadrant of the Pickle Lake property.

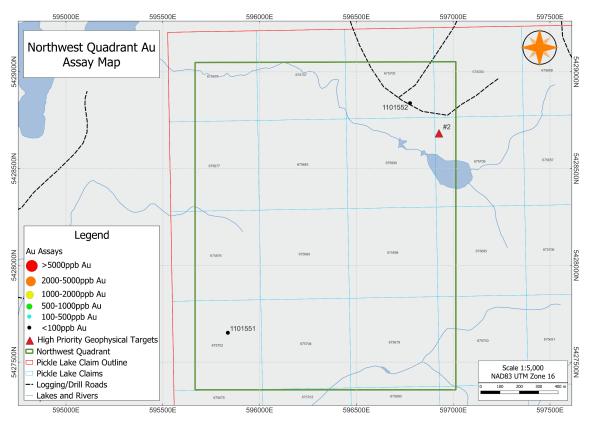


Figure 8: Distribution of Au assays within the Northwest Quadrant of the Pickle Lake property.

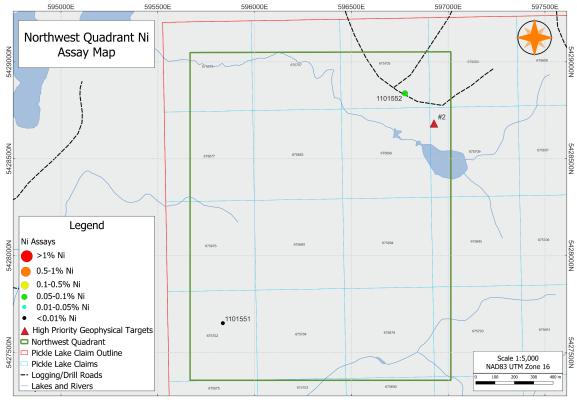


Figure 7: Distribution of Ni assays within the Northwest Quadrant of the Pickle Lake property.

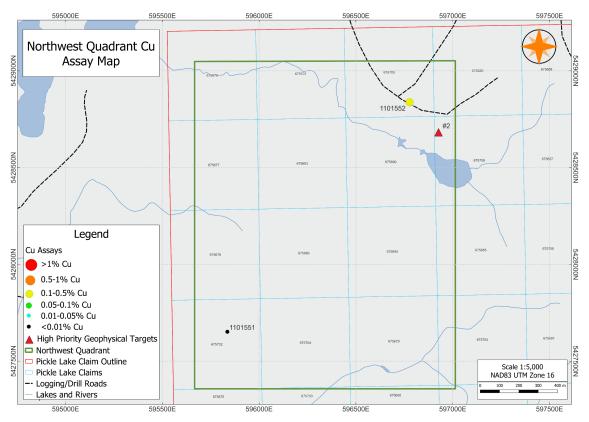


Figure 9: Distribution of Cu assays within the Northwest Quadrant of the Pickle Lake property.

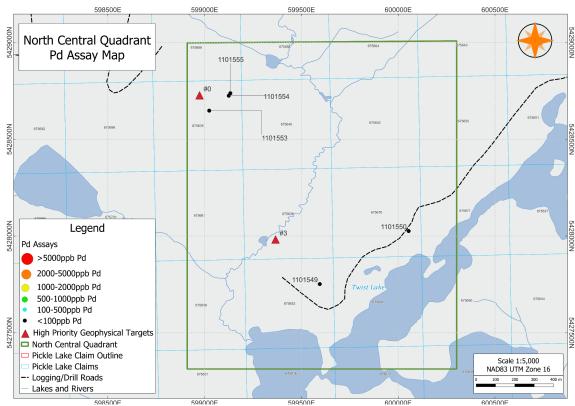


Figure 10: Distribution of Pd assays within the North Central Quadrant of the Pickle Lake property.

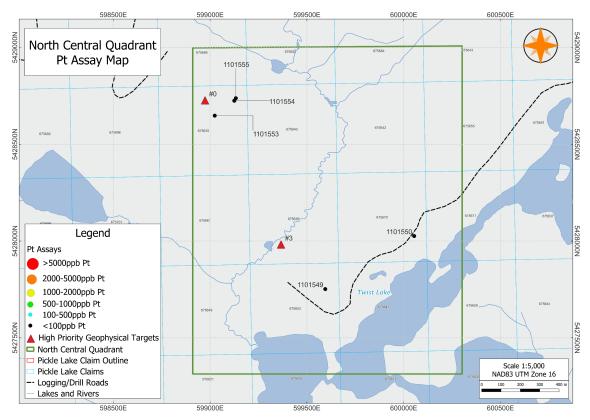


Figure 11: Distribution of Pt assays within the North Central Quadrant of the Pickle Lake property.

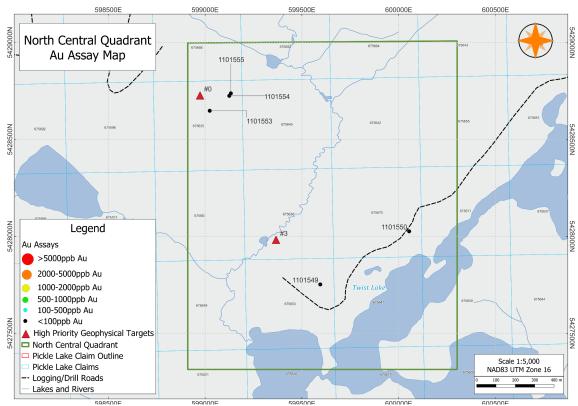


Figure 12: Distribution of Au assays within the North Central Quadrant of the Pickle Lake property.

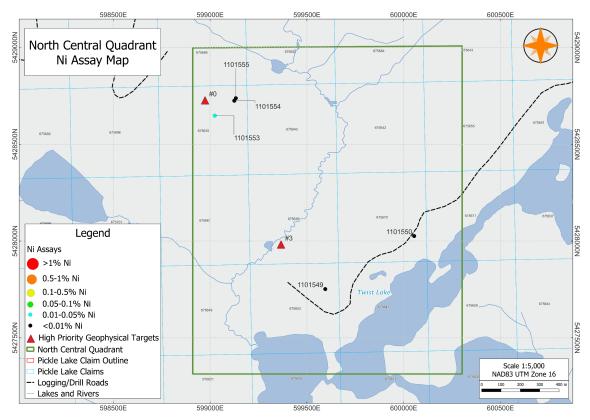
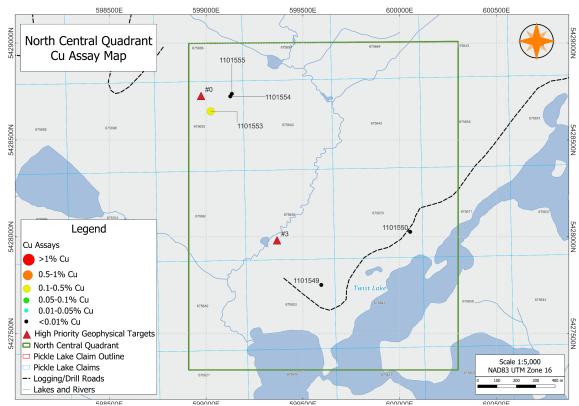



Figure 13: Distribution of Ni assays within the North Central Quadrant of the Pickle Lake property.

Figure 14: Distribution of Cu assays within the North Central Quadrant of the Pickle Lake property.

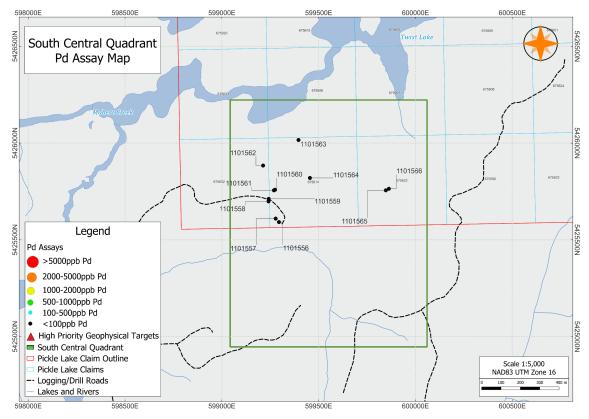


Figure 15: Distribution of Pd assays within the South Central Quadrant of the Pickle Lake property.

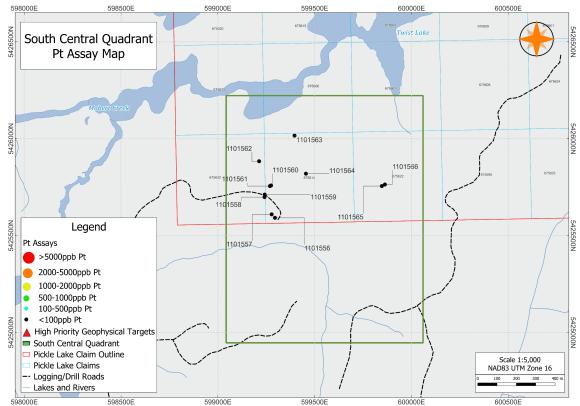


Figure 16: Distribution of Pt assays within the South Central Quadrant of the Pickle Lake property.

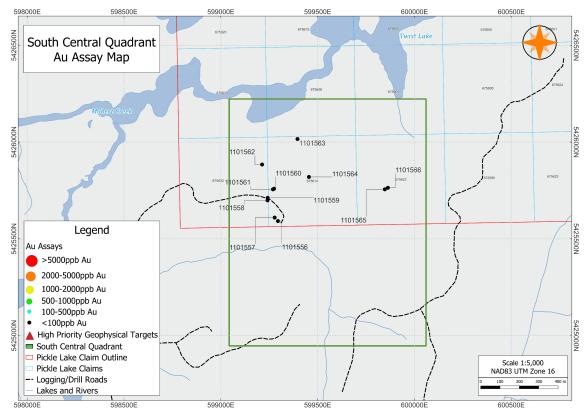
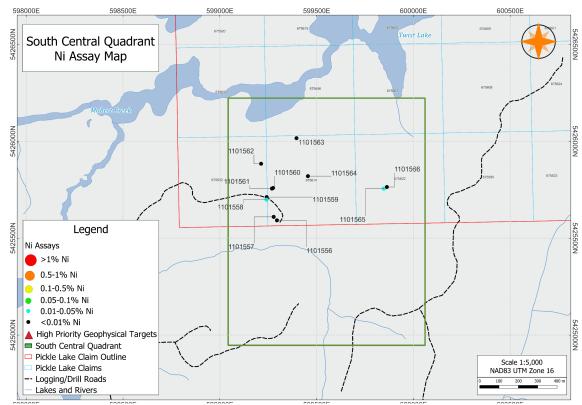



Figure 17: Distribution of Au assays within the South Central Quadrant of the Pickle Lake property.

Figure 18: Distribution of Ni assays within the South Central Quadrant of the Pickle Lake property.



Figure 19: Distribution of Cu assays within the South Central Quadrant of the Pickle Lake property.

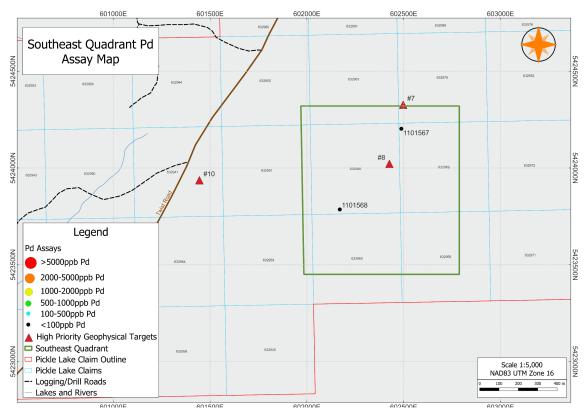


Figure 20: Distribution of Pd assays within the Southeast Quadrant of the Pickle Lake property.

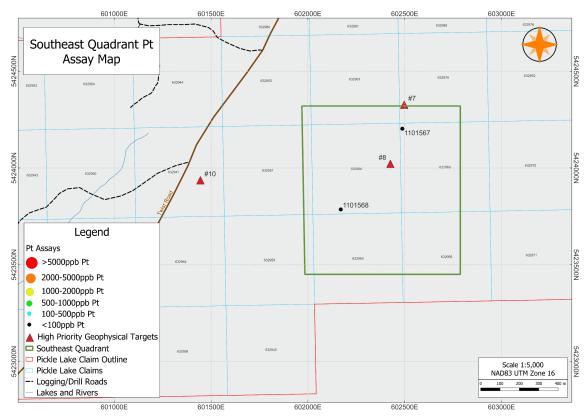


Figure 21: Distribution of Ni assays within the Southeast Quadrant of the Pickle Lake property.

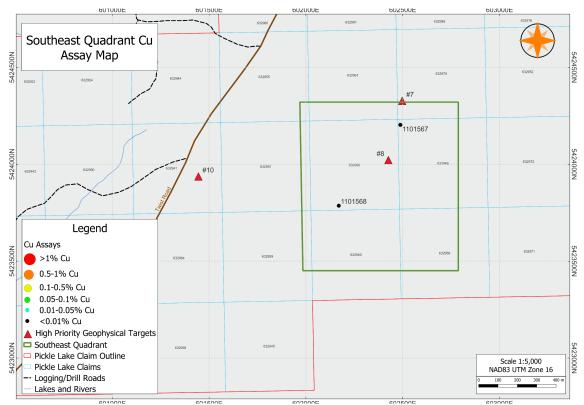


Figure 22: Distribution Cu assays within the Southeast Quadrant of the Pickle Lake property.

5.0 Conclusions and Recommendations

The reconnaissance prospecting program initiated by OnGold Resources on the Pickle Lake property was a first pass investigation of magnetic anomalies thought to be associated with outcrops of mafic intrusives. No mineralized outcrops were located during this first phase of work, however 2 samples of Ni-Cu mineralized boulders suggest the presence of mineralization in the area. PGE grades of all samples were not significant.

Geophysical targets 0, 7 and 9 were found to be underlain by gabbroic rocks which are the likely source of the magnetic anomalies. Target 0 is underlain by magnetic, gabbroic enclaves within a granodiorite intrusion. Two samples of the gabbro did not return significant results.

Targets 7 and 9 were explained by magnetic diabase dykes. These rocks are part of regional dyke swarms in the area and are not viewed as prospective for Ni-Cu-PGE mineralization.

Targets 2,3,4 and 5 were traversed but no outcrop was observed. These anomalies remain unexplained.

Targets 1,6,9 and 10 were not traversed due to access issues (rivers, lakes) and time constraints. These anomalies remain unexplained.

Recent exploration by companies exploring directly south and east of the Pickle Lake Property have discovered new Ni-Cu mineralized intrusions, most notably the West Pickle Lake Project jointly operated by Palladium One and First Class Metals where massive sulfide mineralization has been intersected in drilling that returned 10.4% Ni, 3.4% Cu over 2.3m (First Class Metals Press Release dated November 29, 2022) This discovery was made approximately 1km south of OnGold's Pickle Lake property boundary. This discovery was made after drilling VTEMmax Electromagnetic anomalies generated from an airborne survey the companies completed over the property.

Given the nature of the mineralization (massive sulfide) an airborne EM survey is a logical next step for the Pickle Lake project. Follow up work would include ground truthing any anomalies followed up by diamond drilling of prospective targets.

6.0 Expenditures

Activity		Units		Cost pe	r Unit		Total	Percentage
Assays (Prep and Analysis)	20	samples	@	\$63.51	/sample	Ш	\$1,270.21	5.02%
Project Geologist	11	days	@	\$750.00	/day	=	\$8,250.00	32.60%
Geological Technician	11	days	@	\$525.00	/day	=	\$5,775.00	22.82%
Project Management	1	flat rate	@	\$2,000.00		=	\$2,000.00	7.90%
Report Writing						=	\$2,000.00	7.90%
Truck Rental	11	days	@	\$100.00	/day	=	\$1,100.00	4.35%
UTV Rental	11	days	@	\$200.00	/day	=	\$2,200.00	8.69%
Field Equipment						=	\$104.62	0.41%
Accommodations	11	nights	@	\$109.91	/day	=	\$1,209.00	4.78%
Food (2 people)	22	days	@	\$40.00	/day	=	\$880.00	3.48%
Fuel						=	\$515.84	2.04%
Total							\$25,304.67	100.00%

Table 6.1 Total expenditures for the summer 2022 mapping and prospecting program at Pickle Lake.

Table 6.2 Expenditure per claim number.

Claim Number	Number of Samples	Cost Per Sample	Total
632966	1	\$1,265.23	\$1,265.23
632969	1	\$1,265.23	\$1,265.23
675614	6	\$1,265.23	\$7,591.40
675622	2	\$1,265.23	\$2,530.47
675632	3	\$1,265.23	\$3,795.70
675635	3	\$1,265.23	\$3,795.70
675653	1	\$1,265.23	\$1,265.23
675670	1	\$1,265.23	\$1,265.23
675702	1	\$1,265.23	\$1,265.23
675705	1	\$1,265.23	\$1,265.23
Total	20	\$12,652.34	\$25,304.67

Bone, R. M. (2003). The regional geography of Canada. Don Mills, Ont: Oxford University Press.

Douglas, R.J.W. (Scientific Editor) (1972). Geology and Economic Minerals of Canada. Geological Survey of Canada.

Hancox, J. and Schneider G. (2014). Phase 1 Desktop Assessment. Environmental Report - Township of Manitouwadge, Ontario. Report No. 12-1152-0026 (4100)(4105), APM-REP-06144-0074, 57p.

Milne, V.G. (1967). Geology of the Black River area, District of Thunder Bay; Ontario Department of Mines, Geological Branch, Open File Report 5001, 127p.

Stott, G.M., Corkery, M.T., Percival, J.A., Simard, M., and Goutier, J. (2010). A revised terrane subdivision of the Superior Province. In Summary of Field Work and OtherActivities 2010. Ontario Geological Survey, Open FileReport 6260, p. 20-1 – 20-10.

Williams, H.H., Stott, G.M., Heather, K.B., Muir, T.L., and Sage, R.P. (1991). Wawa Subprovince: introduction; in Geology of Ontario, Ontario Geological Survey, Special Volume 4, Part 1, p. 485 – 539.

First Class Metals PLC Press Release (2022). "High Grade Nickel Sulphide Assays from West Pickle Lake"

8.0 Statements of Qualifications

Statement of Qualifications

I, Simon Dolega, of the city of Thunder Bay, in the province of Ontario, hereby certify:

1) I am currently employed with the geological consulting company Bayside Geoscience Inc.

2) I am an active, registered Geologist in Training with the Professional Geologist of Ontario (Membership #10816).

3) I am a graduate of Lakehead University, Thunder Bay, Ontario with an Honours Bachelor of Science (Geology) degree in May 2014 and a Master of Science (Geology) degree in August 2018.

4) I have been employed by Bayside Geoscience Inc. since October 2018, after completion of my master's degree in August 2018.

5) I have been employed as a contract Geologist in Training with Bayside Geoscience Inc. from October

2018 to March 2021 and a Staff Project Geologist in Training with Bayside Geoscience Inc. since April 2021.

6) I have no interest, either directly or indirectly, in the subject property.

7) Permission is granted by OnGold Investment Corp. to submit this report dated December 2, 2022, for assessment purposes.

Dolega

Simon Dolega, Geologist in Training December 2, 2022 I, Steven D. Flank, of the City of Thunder Bay, in the Province of Ontario, do hereby certify that:

- 1. I am the President and Principal Geoscientist of Bayside Geoscience Inc., a geological consulting company based in Thunder Bay, Ontario.
- 2. I am a member in good standing with the Association of Professional Geoscientists of Ontario (#2695), residing at 124 Sherwood Drive, Thunder Bay, Ontario, P7B 6L1.
- 3. I attained an H.BSc. in Geology from Lakehead University in Thunder Bay, Ontario (2011) and an M.Sc. in Mineral Exploration from Laurentian University in Sudbury, Ontario (2017).
- 4. I have worked as an exploration geologist for 11 years focusing on project generation and early-stage gold projects including shear zone hosted lode gold and intrusion related disseminated gold deposits and intrusion related Ni-Cu-PGE deposits.
- 5. I personally supervised the 2022 Pickle Lake Prospecting Program as described in this report.

Dated

December 2, 2022

Thunder Bay, Ontario, Canada

Ster Elak

Steven D. Flank, M.Sc., P.Geo.

Appendix I: Station Data

Station ID	Sample ID	Easting	Northing	Elevation	Sampler	Date	Туре	Lithology	Lithology Modifier
PL-JS-012	1101549	599595	5427752	336	JS	2022-07-06	Outcrop	Diorite	
PL-JS-014	1101550	600054	5428026	335	JS	2022-07-06	Outcrop	Leucogabbro	
PL-JS-024	1101551	595836	5427652	341	JS	2022-07-07	Outcrop	Gabbro	
PL-JS-029	1101552	596777	5428838	342	JS	2022-07-07	Float	Pyroxenite	
PL-JS-033	1101553	599024	5428648	347	JS	2022-07-08	Float	Granite	
PL-JS-037	1101554	599125	5428725	341	JS	2022-07-08	Outcrop	Gabbro	
PL-JS-038	1101555	599133	5428738	340	JS	2022-07-08	Outcrop	Gabbro	
PL-JS-040	1101556	599295	5425592	340	JS	2022-07-09	Outcrop	Diorite	
PL-JS-041	1101557	599278	5425610	330	JS	2022-07-09	Outcrop	Diorite	
PL-JS-046	1101558	599241	5425699	337	JS	2022-07-09	Outcrop	Gabbro	
PL-JS-044	1101559	599242	5425712	337	JS	2022-07-09	Outcrop	Pyroxenite	
PL-JS-049	1101560	599275	5425759	332	JS	2022-07-10	Outcrop	Gabbro	
PL-JS-050	1101561	599269	5425756	334	JS	2022-07-10	Outcrop	Diorite	
PL-JS-054	1101562	599213	5425884	345	JS	2022-07-10	Outcrop	Diabase	Dyke
PL-JS-059	1101563	599396	5426016	337	JS	2022-07-10	Outcrop	Granodiorite	
PL-JS-063	1101564	599455	5425820	333	JS	2022-07-10	Outcrop	Pyroxenite	
PL-JS-065	1101565	599847	5425756	337	JS	2022-07-10	Outcrop	Gabbro	
PL-JS-066	1101566	599863	5425764	336	JS	2022-07-10	Outcrop	Pyroxenite	
PL-JS-081	1101567	602488	5424203	409	JS	2022-07-13	Outcrop	Gabbro	
PL-JS-084	1101568	602170	5423786	416	JS	2022-07-13	Outcrop	Chlorite Schist	
PL-JS-069		600453	5422945	377	JS	2022-07-12	Outcrop	Diabase	Dyke
PL-JS-070		600434	5422922	380	JS	2022-07-12	Outcrop	Diabase	Dyke
PL-JS-004		602107	5426041	364	JS	2022-07-05	Outcrop	Diorite	
PL-JS-011		599669	5427744	334	JS	2022-07-06	Outcrop	Diorite	
PL-JS-015		600076	5428005	332	JS	2022-07-06	Outcrop	Diorite	
PL-JS-016		600133	5428050	328	JS	2022-07-06	Outcrop	Diorite	
PL-JS-017		600092	5428109	330	JS	2022-07-06	Outcrop	Diorite	
PL-JS-018		600283	5428246	336	JS	2022-07-06	Outcrop	Diorite	
PL-JS-042		599325	5425562	335	JS	2022-07-09	Outcrop	Diorite	
PL-JS-043		599360	5425587	332	JS	2022-07-09	Outcrop	Diorite	
PL-JS-045		599251	5425696	336	JS	2022-07-09	Outcrop	Diorite	
PL-JS-047		599230	5425717	340	JS	2022-07-09	Outcrop	Diorite	
PL-JS-051		599277	5425777	339	JS	2022-07-10	Outcrop	Diorite	
PL-JS-052		599309	5425791	338	JS	2022-07-10	Outcrop	Diorite	
PL-JS-053		599228	5425870	344	JS	2022-07-10	Outcrop	Diorite	
PL-JS-055		599143	5425953	345	JS	2022-07-10	Outcrop	Diorite	
PL-JS-056		599249	5426037	333	JS	2022-07-10	Outcrop	Diorite	
PL-JS-057		599261	5426002	334	JS	2022-07-10	Outcrop	Diorite	
PL-JS-058		599334	5426023	332	JS	2022-07-10	Outcrop	Diorite	

Station ID	Sample ID	Easting	Northing	Elevation	Sampler	Date	Туре	Lithology	Lithology Modifier
PL-JS-061		599429	5425897	334	JS	2022-07-10	Outcrop	Diorite	
PL-JS-062		599472	5425853	333	JS	2022-07-10	Outcrop	Diorite	
PL-JS-064		599377	5425790	335	JS	2022-07-10	Outcrop	Diorite	
PL-JS-067		600490	5422963	375	JS	2022-07-12	Outcrop	Diorite	
PL-JS-068		600474	5422996	377	JS	2022-07-12	Outcrop	Diorite	
PL-JS-071		600484	5423040	382	JS	2022-07-12	Outcrop	Diorite	
PL-JS-073		602379	5428446	338	JS	2022-07-12	Outcrop	Diorite	
PL-JS-074		602738	5427459	357	JS	2022-07-12	Outcrop	Diorite	
PL-JS-075		597284	5429032	342	JS	2022-07-12	Float	Diorite	
PL-JS-078		602782	5424532	412	JS	2022-07-13	Subcrop	Diorite	
PL-JS-080		602639	5424317	420	JS	2022-07-13	Outcrop	Diorite	
PL-JS-085		602059	5423872	408	JS	2022-07-13	Outcrop	Diorite	
PL-JS-086		601457	5428657	343	JS	2022-07-14	Outcrop	Diorite	
PL-JS-094		601398	5428368	339	JS	2022-07-14	Outcrop	Diorite	
PL-JS-096		601408	5428542	343	JS	2022-07-14	Outcrop	Diorite	
PL-JS-001		602387	5425833	361	JS	2022-07-05	Float	Granite	
PL-JS-002		602338	5425885	361	JS	2022-07-05	Outcrop	Granite	
PL-JS-006		601795	5426022	353	JS	2022-07-05	Float	Granite	
PL-JS-007		601810	5426150	354	JS	2022-07-05	Float	Granite	
PL-JS-008		602123	5426195	358	JS	2022-07-05	Outcrop	Granite	
PL-JS-009		602309	5426050	356	JS	2022-07-05	Outcrop	Granite	
PL-JS-010		599727	5427772	325	JS	2022-07-06	Outcrop	Granite	
PL-JS-019		595581	5428880	322	JS	2022-07-07	Float	Granite	
PL-JS-020		595723	5428813	332	JS	2022-07-07	Float	Granite	
PL-JS-022		596202	5428310	357	SG	2022-07-07	Float	Granite	
PL-JS-023		595937	5427855	351	JS	2022-07-07	Outcrop	Granite	
PL-JS-025		595768	5427587	339	JS	2022-07-07	Subcrop	Granite	
PL-JS-026		595603	5427916	346	JS	2022-07-07	Outcrop	Granite	
PL-JS-027		596783	5428684	335	JS	2022-07-07	Float	Granite	
PL-JS-028		596945	5428700	344	JS	2022-07-07	Float	Granite	
PL-JS-032		598881	5428660	345	JS	2022-07-08	Outcrop	Granite	
PL-JS-034		599210	5428344	343	JS	2022-07-08	Float	Granite	
PL-JS-072		602241	5427755	340	JS	2022-07-12	Float	Granite	
PL-JS-089		601521	5428497	357	JS	2022-07-14	Outcrop	Granite	
PL-JS-005		602035	5426133	358	JS	2022-07-05	Outcrop	Granodiorite	
PL-JS-021		595753	5428810	340	JS	2022-07-07	Outcrop	Granodiorite	
PL-JS-030		598700	5429142	339	JS	2022-07-08	Float	Granodiorite	
PL-JS-031		598664	5429068	342	JS	2022-07-08	Float	Granodiorite	
PL-JS-035		599177	5428439	341	JS	2022-07-08	Outcrop	Granodiorite	1

Station ID	Sample ID	Easting	Northing	Elevation	Sampler	Date	Туре	Lithology	Lithology Modifier
PL-JS-036		599122	5428543	340	JS	2022-07-08	Outcrop	Granodiorite	
PL-JS-048		599321	5425675	337	JS	2022-07-09	Outcrop	Granodiorite	
PL-JS-060		599478	5425976	335	JS	2022-07-10	Outcrop	Granodiorite	
PL-JS-076		601948	5425908	364	JS	2022-07-13	Outcrop	Granodiorite	
PL-JS-077		602706	5424586	404	JS	2022-07-13	Outcrop	Granodiorite	
PL-JS-079		602818	5424432	417	JS	2022-07-13	Outcrop	Granodiorite	
PL-JS-082		602310	5423902	408	JS	2022-07-13	Outcrop	Granodiorite	
PL-JS-083		602262	5423941	404	JS	2022-07-13	Outcrop	Granodiorite	
PL-JS-087		601475	5428554	346	JS	2022-07-14	Outcrop	Granodiorite	
PL-JS-088		601501	5428489	356	JS	2022-07-14	Outcrop	Granodiorite	
PL-JS-090		601631	5428409	351	JS	2022-07-14	Outcrop	Granodiorite	
PL-JS-091		601527	5428151	343	JS	2022-07-14	Boulder	Granodiorite	
PL-JS-092		601289	5428032	333	JS	2022-07-14	Boulder	Granodiorite	
PL-JS-093		601184	5428246	333	JS	2022-07-14	Boulder	Granodiorite	
PL-JS-095		601500	5428381	354	JS	2022-07-14	Outcrop	Granodiorite	
PL-JS-013		599590	5427776	334	JS	2022-07-06	Outcrop	Leucogabbro	

Station ID	Sample ID	Str_1	Str_1_Azi	Str_1_Dip	Str_1_Gen	Str_2	Str_2_Azi	Str_2_Dip	Str_2_Gen	Str_3	Str_3_Az	Str_3_Dip	Str_3_Gen
PL-JS-012	1101549												
PL-JS-014	1101550	Vein	80										
PL-JS-024	1101551	Fracture	105										
PL-JS-029	1101552												
PL-JS-033	1101553												
PL-JS-037	1101554	Bedding	360	20		Feldspar Vein	260						
PL-JS-038	1101555												
PL-JS-040	1101556	Foliation	275			Feldspar Vein	220			Fracture	130		
PL-JS-041	1101557	Foliation	275										
PL-JS-046	1101558	Quartz Vein											
PL-JS-044	1101559	Quartz Vein											
PL-JS-049	1101560	Foliation	295			Feldspar Vein	310			Quartz Vein	335		
PL-JS-050	1101561	Foliation	295			Quartz Vein	335			Quartz Vein	295		
PL-JS-054	1101562	Vein	250	85									
PL-JS-059	1101563	Foliation	290										
PL-JS-063	1101564												
PL-JS-065	1101565	Vein	320	78									
PL-JS-066	1101566												
PL-JS-081	1101567	Contact	160	75		Feldspar Vein	330	80					
PL-JS-084	1101568	Foliation	190			Quartz Vein							
PL-JS-069		Contact	45	60									
PL-JS-070		Contact	45										
PL-JS-004													
PL-JS-011			0										
PL-JS-015													
PL-JS-016		Foliation	100			Feldspar Vein	10						

Station ID	Sample ID	Str_1	Str_1_Azi	Str_1_Dip	Str_1_Gen	Str_2	Str_2_Azi	Str_2_Dip	Str_2_Gen	Str_3	Str_3_Az	Str_3_Dip	Str_3_Gen
PL-JS-017		Foliation	295	35									
PL-JS-018		Foliation	0			Foliation	260						
PL-JS-042		Foliation	295			Shear Zone	315			Quartz Vein			
PL-JS-043													
PL-JS-045		Feldspar Vein											
PL-JS-047		Foliation	270	50		Feldspar Vein	140			Quartz Vein			
PL-JS-051													
PL-JS-052		Quartz Vein											
PL-JS-053		Foliation	290			Quartz Vein				Feldspar Vein			
PL-JS-055		Quartz Vein	130										
PL-JS-056		Foliation	270	50		Quartz Vein				Feldspar Vein			
PL-JS-057													
PL-JS-058		Foliation	290	50		Feldspar Vein							
PL-JS-061		Foliation	290		1	Feldspar Vein			2				
PL-JS-062		Foliation	280	72	1	Feldspar Vein			2	Feldspar Vein			2
PL-JS-064		Foliation	320										
PL-JS-067		S-Fold Hinge	315	0		S-Fold Hinge	135	0					
PL-JS-068		Foliation	45										
PL-JS-071		Foliation	30			Contact	30						
PL-JS-073		Foliation	320	50		Shear Zone	225	64					
PL-JS-074		Foliation	135			Quartz Vein	285						
PL-JS-075													
PL-JS-078													
PL-JS-080		Quartz Vein	180										
PL-JS-085													
PL-JS-086		Foliation	150		1	Quartz Vein	150		2	Feldspar Vein	150		2

Station ID	Sample ID	Str_1	Str_1_Azi	Str_1_Dip	Str_1_Gen	Str_2	Str_2_Azi	Str_2_Dip	Str_2_Gen	Str_3	Str_3_Az	Str_3_Dip	Str_3_Gen
PL-JS-094		Foliation	320	20		Contact	320	20		Quartz Vein			
PL-JS-096		Foliation	310			Feldspar Vein	20			Feldspar Vein	120		
PL-JS-001													
PL-JS-002													
PL-JS-006													
PL-JS-007													
PL-JS-008													
PL-JS-009													
PL-JS-010		Vein	320	90									
PL-JS-019				0									
PL-JS-020													
PL-JS-022													
PL-JS-023		Vein	255										
PL-JS-025													
PL-JS-026		Foliation	350										
PL-JS-027			0										
PL-JS-028													
PL-JS-032													
PL-JS-034													
PL-JS-072													
PL-JS-089		Vein	235										
PL-JS-005		Vein	295	70									
PL-JS-021													
PL-JS-030													
PL-JS-031													
PL-JS-035													

Station ID	Sample ID	Str_1	Str_1_Azi	Str_1_Dip	Str_1_Gen	Str_2	Str_2_Azi	Str_2_Dip	Str_2_Gen	Str_3	Str_3_Az	Str_3_Dip	Str_3_Gen
PL-JS-036													
PL-JS-048		Foliation	305										
PL-JS-060		Foliation	300										
PL-JS-076													
PL-JS-077		Vein	50	50									
PL-JS-079													
PL-JS-082		Vein											
PL-JS-083		Vein											
PL-JS-087		Foliation	140										
PL-JS-088													
PL-JS-090		Shear Zone	200	50		Foliation							
PL-JS-091		Foliation											
PL-JS-092													
PL-JS-093													
PL-JS-095		Foliation	310										
PL-JS-013		Vein	345										

Station ID	Sample ID	Alt_1	Alt_1_Inte	Alt_1_Styl	Alt_2	Alt_2_Inte	Alt_2_Styl
PL-JS-012	1101549	Potassium	Moderate	Patchy	Chlorite	Strong	Pervasive
PL-JS-014	1101550	Potassium	Strong	Patchy	Chlorite	Strong	Pervasive
PL-JS-024	1101551						
PL-JS-029	1101552	Chlorite	Strong	Pervasive			
PL-JS-033	1101553	Biotite	Moderate	Patchy	Magnetite	Weak	Patchy
PL-JS-037	1101554						
PL-JS-038	1101555						
PL-JS-040	1101556	Potassium	Strong	Pervasive	Epidote	Moderate	Fracture Controlled
PL-JS-041	1101557	Potassium	Moderate	Patchy	Biotite	Weak	Patchy
PL-JS-046	1101558	Chlorite	Moderate	Pervasive	Silica	Moderate	Pervasive
PL-JS-044	1101559	Chlorite	Strong	Pervasive			
PL-JS-049	1101560						
PL-JS-050	1101561	Biotite	Moderate	Banded	Chlorite	Weak	Patchy
PL-JS-054	1101562						
PL-JS-059	1101563	Silica	Moderate	Patchy	Potassium	moderate	Pervasive
PL-JS-063	1101564	Epidote	Weak	Veins	Potassium	Strong	Pervasive
PL-JS-065	1101565	Silica	Weak	Pervasive	Chlorite	Strong	Pervasive
PL-JS-066	1101566	Potassium	Moderate	Pervasive	Chlorite	Strong	Pervasive
PL-JS-081	1101567						
PL-JS-084	1101568	Chlorite	Strong	Banded	Epidote	Moderate	Fracture Controlled
PL-JS-069							
PL-JS-070							
PL-JS-004		Potassium	Weak	Patchy			
PL-JS-011		Potassium	Moderate	Patchy			
PL-JS-015							
PL-JS-016		Potassium	Moderate	Patchy			
PL-JS-017		Potassium					
PL-JS-018		Potassium	Weak	Patchy			
PL-JS-042		Chlorite	Strong	Banded	Magnetite	Weak	Patchy
PL-JS-043		Potassium	Moderate	Patchy	Epidote	Moderate	Fracture Controlled
PL-JS-045							
PL-JS-047							
PL-JS-051							
PL-JS-052		Potassium	Moderate	Patchy			
PL-JS-053		Biotite	Moderate	Banded	Chlorite	Weak	Patchy
PL-JS-055							
PL-JS-056		Potassium	Moderate	Patchy	Epidote	Weak	Patchy
PL-JS-057		Chlorite	Strong	Pervasive	Epidote	Moderate	Veins
PL-JS-058		Biotite	Moderate	Banded	Potassium	Moderate	Patchy

Station ID	Sample ID	Alt_1	Alt_1_Inte	Alt_1_Styl	Alt_2	Alt_2_Inte	Alt_2_Styl
PL-JS-061							
PL-JS-062		Silica	Moderate	Patchy			
PL-JS-064							
PL-JS-067		Biotite	Weak	Patchy			
PL-JS-068		Potassium	Weak	Patchy	Biotite	Moderate	Banded
PL-JS-071		Potassium	Weak	Patchy			
PL-JS-073							
PL-JS-074							
PL-JS-075							
PL-JS-078							
PL-JS-080		Silica	Moderate	Pervasive			
PL-JS-085							
PL-JS-086							
PL-JS-094		Potassium	Moderate	Patchy			
PL-JS-096							
PL-JS-001							
PL-JS-002							
PL-JS-006							
PL-JS-007							
PL-JS-008							
PL-JS-009							
PL-JS-010		Potassium	Weak	Patchy			
PL-JS-019							
PL-JS-020							
PL-JS-022							
PL-JS-023		Potassium	Moderate	Patchy			
PL-JS-025		Potassium	Moderate	Patchy			
PL-JS-026							
PL-JS-027							
PL-JS-028							
PL-JS-032							
PL-JS-034							
PL-JS-072							
PL-JS-089		Epidote	Weak	Patchy	Potassium	Strong	Pervasive
PL-JS-005		Potassium	Weak	Patchy			
PL-JS-021		Potassium	Weak	Patchy			
PL-JS-030							
PL-JS-031							
PL-JS-035							

Station ID	Sample ID	Alt_1	Alt_1_Inte	Alt_1_Styl	Alt_2	Alt_2_Inte	Alt_2_Styl
PL-JS-036							
PL-JS-048		Potassium	Strong	Patchy			
PL-JS-060		Potassium	Moderate	Patchy			
PL-JS-076		Potassium	Weak	Patchy			
PL-JS-077		Potassium	Weak	Patchy			
PL-JS-079							
PL-JS-082		Epidote	Weak	Veins			
PL-JS-083		Epidote	Weak	Veins			
PL-JS-087		Chlorite	Weak	Banded	Potassium	Weak	Patchy
PL-JS-088		Potassium	Strong	Pervasive			
PL-JS-090							
PL-JS-091							
PL-JS-092							
PL-JS-093							
PL-JS-095		Potassium	Moderate	Patchy			
PL-JS-013							

Station ID	Sample ID	Minz_1	Minz_1_Per	Minz_1_Sty	Minz_2	Minz_2_Per	Minz_2_Sty
PL-JS-012	1101549	Pyrite	1	Disseminated			
PL-JS-014	1101550						
PL-JS-024	1101551	Pyrite	1	Disseminated			
PL-JS-029	1101552	Chalcopyrite	2	Disseminated	Pyrite	1	Disseminated
PL-JS-033	1101553	Pyrite	20	Fracture Filling			
PL-JS-037	1101554						
PL-JS-038	1101555						
PL-JS-040	1101556	Pyrite	1	Vein			
PL-JS-041	1101557						
PL-JS-046	1101558	Pyrite	1	Vein	Chalcopyrite	1	Vein
PL-JS-044	1101559						
PL-JS-049	1101560	Chalcopyrite	1	Vein			
PL-JS-050	1101561	Arsenopyrite	1	Vein	Chalcopyrite	1	Vein
PL-JS-054	1101562	Pyrite	1	Massive			
PL-JS-059	1101563	Arsenopyrite	1	Disseminated	Pyrite	1	Disseminated
PL-JS-063	1101564	Pyrite	1	Disseminated			
PL-JS-065	1101565	Pyrite	1	Disseminated			
PL-JS-066	1101566						
PL-JS-081	1101567	Pyrite	1	Disseminated			
PL-JS-084	1101568						

Station ID	Sample ID	Notes
PL-JS-012	1101549	Mostly dioritic composition, but has some areas of gabbro. Pyroxenite seen intruding diorite in 1x1ft block. Pyroxenite is very schistose, abundant micas, non magnetic, no dpo or lpo.
PL-JS-014	1101550	Mainly leucogabbro with some dioritic and pyroxenite patches. Overall, very heterogenous and mixed. Weak to no sulfides. General trend of the mafics is around 100 degrees. Felsics intruding mafics.
PL-JS-024	1101551	20x10 gabbro oc. pink weathering on surface. Fg to mg typical gabbro. 30% plag. Massive without sense of strain. Mod magnetic. 1% diss py. Structure taken along joint sets.
PL-JS-029	1101552	1 foot boulder found on road. Chloritized and oxidized. Fg. Lots of sulfides. Sample taken.
PL-JS-033	1101553	Thick overburden and little exposure area. 2 boulders, roughly 3x3x3 and rounded. Composed of granodiorite with patchy oxidation. Biotite-magnetite alteration. Sample taken of a gossanous section within the one boulder. Strong mineralization, oxidation, and weathering.
PL-JS-037	1101554	Granodiorite outcrop with a gabbro cap. Possibly a layer that has been eroded elsewhere or just lenses of mafic material. Composed of 70% pyroxene. Silicious. Sample taken.
PL-JS-038	1101555	Composition similar to 037. 1x1 m window exposed. Potassic veins running through the unit. Peg granite observed 5 meters south of this.
PL-JS-040	1101556	Heterogenous mg-cg diorite outcrop, with some areas more granodiorite or gabbroic in composition. Fracture structure observed, with epidote and chlorite alteration within, as well as sulphides present. Hydrothermal alteration, particularly qtz, is evident. Dominant K-alteration. Banding foliation defined by mafics. 30x30m outcrop
PL-JS-041	1101557	Gradational contact between diorite and more int-mafic unit, roughly striking 030. Diorite is similar to PL-JS-040. Greater pyroxene abundance results in more leucogabbro-esque rock on mafic side of contact
PL-JS-046	1101558	fg-mg Gabbro in middle of gradational contact. Contact has S/D of (050/85). Abundant randomly oriented qtz veins, some of which have chalco along edges. Pyrite seen in one K-spar dyke. Gabbro at sample point is 60-70% mafics. Vesicles seen on gabbro. Potential chill margin also observed? massive, fg, adjacent to diorite. Stockwork qtz veins seen
PL-JS-044	1101559	10x20m outcrop, dominantly cg pyroxenite. Randomly oriented qtz and f'spar veins observed. Non magnetic. Sample taken.
PL-JS-049	1101560	Sheared Gabbro outcrop, with composition trending more mafic in 025 direction. Potential gradational contact striking along foliation. Ranges from diorite to pyroxenite, over about 10m. Abundant qtz veins, both parallel to foliation, and at 335. Sample taken from more mafic side of outcrop, where chalcopyrite can be seen within and on edges of qtz veins. 30cm wide pegmatitic granite dyke also observed, striking 310.
PL-JS-050	1101561	From more felsic side of previous outcrop. Sample taken more dioritic in composition. Strongly sheared. Arsenopyrite and chalcopyrite are both observed, within and along edges of qtz veins.
PL-JS-054	1101562	Grey-green diabase dyke intruding diorite. Magnetic. Massive pyrite found within, vfg-fg. Sample taken
PL-JS-059	1101563	Approximately 1x2m mafic pod within extensive granodiorite outcrop. Pyroxene and chlorite dominant within pod, though part of it resembles a quartz-flooded leucogabbro. Bands of pyroxenite exist within mafic pod. Trace pyrite and 1% arseno. are seen in mafics. K, chlorite, and silica alteration are all observed. Minor epidote also. Sample taken.
PL-JS-063	1101564	Mafic area on expansive int/fels. outcrop. Blebby pyrite observed, also seen fracture controlled. Epidote and K-alt both seen. Rep. sample 063 taken.
PL-JS-065	1101565	Unstrained gabbro outcrop, with abundant chlorite resulting in green colour. Equigranular, fg-mg. Blebby pyrite observed. Diabase dyke seen 10m NW of point. Dyke surface is pitted, lighter grey colour than gabbro, fg. Sample taken from gabbro, not dyke. On SW side of the road.

Station ID	Sample ID	Notes
PL-JS-066	1101566	mg-cg pyroxenite, sampled near the base of a wall. Moderate K-alt, strong chlorite alteration. Sample taken, though no sulphides are observed. E side of road, opposite point 065.
PL-JS-081	1101567	Contact between granite and gabbro intrusion. Gabbro is likely a dyke, though other side is not seen, only about 3m exposed. Gabbro is fg, magnetic, mostly pyx and plag. Trace pyrite in gabbro, sample taken from gabbro. Chill margin, about 5cm across, on contact of granite and gabbro. Diabase dyke cuts through granite, 1.5m from contact. Diabase is vfg, little to no mineralization. Granite is qtz rich, mafics within consist of hbl and pyx (no biotite). Note similar trends to dykes, though dips are opposite dxns. Ridge outcrop is perpendicular to structures' strikes
PL-JS-084	1101568	Sheared rock, with abundant chlorite and resultant mica-defined schistosity. Shear and foliation are very wavy, rarely continuous over >1m. 190 strike for foliation is an average of general trend. Indicators of sinistral sense of shear observed. Strong hydrothermal alteration observed, both silica and epidote alts. K-alteration also seen. Alteration is fracture/shear controlled. Migmatite textures observed, based on waviness between dark and light bands?
PL-JS-069		Vfg, massive diabase dike. Width about 1-2 m striking 45. No mins. Bordered by diorite on each side. Peters out 15 meters to the NE. Where diorite buries it. Weak - mod magnetism
PL-JS-070		Continuation of db.
PL-JS-004		Similar to previous diorite. 2x10m outcrop.
PL-JS-011		20x20 oc of diorite with weak to mod strain. Rounded. Topographically high from surrounding area.
PL-JS-015		Small diorite to granodiorite oc. 3x3. Mg to cg. Bt making up mafic material. Weakly strained.
PL-JS-016		3x15 m oc composed of diorite with granite dikes cutting through. Mg, mod fol.
PL-JS-017		White- grey oc composed of gneiss diorite. Mg. Dark grey bands composed of litho with stronger bt. Oc is 20x20. Non magnetic. No sulfides.
PL-JS-018		10x10 outcrop composed of gneissic diorite with darker bands composed of micaceous material, biotite and chlorite. Medium grained. Granite dikes intruding at random orientations.
PL-JS-042		40x40m outcrop with similar diorite to area. Gneissic banding for foliation. Chlorite-rich shear zones observed striking 310-320. Chlorite defines foliation within mafic bands. Thin, stockwork qtz veins are also present. Chlorite and shear zones may be controlling factors in compositional variability.
PL-JS-043		Gradational contact running approx. 135. Trending more mafic, into 60% mafic leucogabbro on NE side. SW side more typical diorite. No observed sulphides in gabbro
PL-JS-045		Diorite similar to those previous, some granodiorite patches also seen. Has gradational contact with pyroxenite, contact striking about 050. Abundant pegmatitic granitic dykes, randomly oriented.
PL-JS-047		10x10m diorite whaleback outcrop, seen close to pyroxenite area. Well defined foliation, though wiggly in some areas. 1ft wide pegmatitic granite dyke striking 140, with thinner offshoot dykelets in random dxn. Stockwork qtz and f'spar veining also observed.
PL-JS-051		10x10m diorite outcrop. Taken as point due to proximity to gabbro outcrop. Diorite typical to others seen in the area.
PL-JS-052		30x30m diorite outcrop. Composition varies along outcrop, randomly, on a metre scale. Ranges from granodiorite to leucogabbro, similar to other diorites in the area (station 040- 042). Qtz veins are abundant, with fairly random thickness and direction.
PL-JS-053		20x20m diorite outcrop at the top of a hill. Strongly strained, mg-cg. Foliation/banding is wavy, but generally strikes 290. Qtz and pegmatitic granite veins/dykelets are present, with random orientation.

Station ID	Sample ID	Notes
PL-JS-055		10xx10m diorite outcrop. Textbook mg diorite, little to no strain. Wiggly set of veins trends 130.
PL-JS-056		2x5m diorite outcrop. Diorite is strongly banded, mg. Band thickness varies from .5cm-10cm. Quartz veins and pegmatitic granite dykelets are present, randomly oriented.
PL-JS-057		Diorite containing approx. 1m thick block/dyke of pyroxenite. Pyxite surrounded by felsics in all directions except for NE. Stockwork qtz and f'spar veins in mafic rock. Stringer epidote veins in random directions. Chlorite is strong, makes the pyxite appear platy. Potassic alt. is also present. Mafic rock is not mineralized.
PL-JS-058		Fairly well exposed diorite in this area (50x50m), with almost all of the rock being heterogenous diorite. Some very localized areas where composition varies from leucogabbro to granite. Oxide mineralization observed in granitic areas. Swamp to E of outcrop. Biotite alteration is banded. Abundant pegmatitic granite dykes.
PL-JS-061		Patchy 50x50m outcrop, varying composition between granodiorite - diorite. Moderate-strongly sheared. Granitic pegmatite dykes cross-cut foliation. Mg-cg, varies over large area.
PL-JS-062		Similar diorite/granodiorite to previous point. Granite pegmatite dykes cross-cut gneissic banding. Potentially porphyritic section exists, with bimodal distribution of vfg, mg grains. Coarser grains are dominantly plag, chlorite. Fine veinlets of K-spar, epidote are present. Rep. sample 062 taken.
PL-JS-064		Diorite on extensive outcrop. Note that due to patchiness over large scale, as well as the randomly varying nature of rock from granodiorites to diorites, individual discrete contacts are not feasible to map for the whole outcrop.
PL-JS-067		2 meter wide ledge off the road. S fold within a diorite. Fold composed of dominantly quartz. The area around is more mafic with stronger bt alt. Picture taken.
PL-JS-068		Diorite to granodiorite. Large flat outcrop 30x30 area. Mg-cg. Mod bt alteration and k alt.
PL-JS-071		Heterogenous diorite, almost migmatitic. Contact is with diabase dyke. Outcrop is aligned 060. Pink and black on surface, composed of 2-10cm wide bands with more mafic-bt comp, crumbly.
PL-JS-073		Foliated diorite, large 20x20m outcrop. Diabase dyke running through shear, striking 225, parallel to dykes in other areas. Diabase is siliceous, vfg, moderately magnetic, sheared.
PL-JS-074		Flat 10x10 outcrop composed of diorite with several felsic veins trending similarly. No sulfides.
PL-JS-075		1x1m boulder. No exposure in area
PL-JS-078		Diorite Subcrop. Poor exposure elsewhere
PL-JS-080		mg diorite, on ridge. Qtz vein observed striking E-W, shallowly dipping. Diorite has silica alteration. Ridge strikes 045, may be related to diabase dykes with similar strike in the area.
PL-JS-085		Heterogenous diorite/granodiorite outcrop, with varying amounts of non-vein quartz. Thin qtz veins present throughout, <2cm in width.
PL-JS-086		Diorite outcrop. Equal amounts plag, qtz, biotite. Felsic minerals are cg, biotite/mafics are fg. Qtz and f'spar veins are seen running parallel to foliation, but cross-cut foliation when bent.
PL-JS-094		Heterogenous rock, with observed lens of pegmatitic granite within host diorite. Contact is vaguely aligned with diorite's foliation. Granodiorite has noticeable K-alt. Lens varies in thickness, 40cm-2m, extent is unknown, dipping below exposed rock. Abundant randomly oriented quartz veins. Heterogenous outcrop continues uphill, with other section of gran, but there appears to be no defined reasoning or structure to most granite-diorite contacts
PL-JS-096		Diorite outcrop. mg. Cross cutting granite pegmatite dykes observed, running 020 and 120.

Station ID	Sample ID	Notes
PL-JS-001		Classic granite boulder, rounded. Mg. Foliated.
PL-JS-002		Similar to 001. Small 3x3 oc. Slightly sheared.
PL-JS-006		Area has low exp. Mostly granite boulders no oc.
PL-JS-007		Boulders
PL-JS-008		Same oc
PL-JS-009		Similar to others. 20x10m outcrop.
PL-JS-010		10x10 whaleback composed of mg-cg granite. Smooth rounded surface. K-rich dike structure taken.
PL-JS-019		1x1 m rounded cg granite boulder
PL-JS-020		Subrounded granite boulders. No oc exposure in this area.
PL-JS-022		Granitic boulder. No other exposure available.
PL-JS-023		Rounded 10x10 granite oc. One feldspar dike structure taken. Pink on the surface. Mg to cg. Very little exposure in area.
PL-JS-025		Peg granite subcrop. Maybe a boulder.
PL-JS-026		Foliated granite. 10x10 outcrop covered by trees.
PL-JS-027		1 x1 m granite boulder, round. Cg.
PL-JS-028		No oc exposure. Small rounded wea
PL-JS-032		West side of the anomaly. Composed of mg-cg. 1x1 m window. Ledge striking N-S. Thick overburden on top.
PL-JS-034		Granite boulder. Lost notes.
PL-JS-072		Low lying area in cedar swamp. Occasional granite boulder. No mag target found.
PL-JS-089		Granite with dyke intruding into it. Dyke is intermediate-mafic, fg, patchy weak magnetism. Strikes 235, dips subvertical, 10-15cm wide. Pegmatitic-cg granite on either side has K and epidote alteration. Acicular amphiboles in dyke produce a foliation. Jointing is seen at 130, perpendicular to and across the dyke.
PL-JS-005		Well exposed area 50x50 composed of whalebacks of granite, diorite and everything in between. Strike taken off white qtz vein that pinches from 30 to 1p cm.
PL-JS-021		Mg-Cg granitoid oc. Rounded. 5x5 m.
PL-JS-030		Granodiorite boulder, rounded, mg-cg. Area composed of thick overburden and blowdown.
PL-JS-031		Granodiorite boulder, rounded, mg-cg. Area composed of thick overburden and blowdown.
PL-JS-035		Granodiorite outcrop, 10x10 m. Lost Notes.
PL-JS-036		Granodiorite outcrop, 10x10 m. Lost Notes.

Station ID	Sample ID	Notes
PL-JS-048		30x30m outcrop. Similar to heterogenous diorites, though this outcrop is more dominantly granodiorite. Some small leucogabbro patches exist also. Foliation inconsistent but follows a general 295-305 trend.
PL-JS-060		Granodiorite window, in low-exposure area. Granite mixed with diorite, with abundant patches of K-alt.
PL-JS-076		10x10m smooth diorite outcrop. Mafic minerals are biotite, 15% of overall composition. Weakly strained. Boulders seen on top of outcrop.
PL-JS-077		Sets of pegmatitic granite veins with S&D (050/50). Rock is mostly mg, with some cg enclaves. Heterogenous. On edge of topographic high.
PL-JS-079		Granodiorite and diorite are heterogeneous, with varying amounts of qtz and K-spar. Banded, but bands are not continuous, curving or ending abruptly.
PL-JS-082		Very large granodiorite outcrop. Mostly fg, though heterogenous in terms of grainsize. Many thin cross cutting qtz veins, randomly oriented.
PL-JS-083		Continuation and extent of granodiorite outcrop described in 083.
PL-JS-087		25m long x 1m high ridge, running 230. Granodiorite, with randomly oriented granite pegmatite veins. Chlorite and K alteration present.
PL-JS-088		mg granodiorite, 5x1m outcrop
PL-JS-090		Granodiorite with moderate-strong foliation, as well as a shear running through. Small 2x2m outcrop, foliation strike and dip could not be reliably determined
PL-JS-091		Foliation present, but structure can't be taken from boulder
PL-JS-092		Similar to other granodiorites, abundant plag, K-spar, qtz.
PL-JS-093		mg-cg. About 40% qtz. No observed alteration.
PL-JS-095		Endpoint of semi-continuous outcrop of same heterogenous rock as 094.
PL-JS-013		Same outcrop as 12. Mix of fg -mg gabbro to diorite. Gabbro is not magnetic, and grains tend to be more rounded. Structure takes from kspar rich dike. Weak to no sulfides

Appendix II: Laboratory Results

Quality Analysis ...

Innovative Technologies

Report No.:A22-10019Report Date:27-Sep-22Date Submitted:18-Jul-22Your Reference:MANITOUWADGE

Bayside Geoscience 124 Sherwood Dr. Thunder Bay ON P7B 6L1 Canada

ATTN: Steve Flank

CERTIFICATE OF ANALYSIS

68 Rock samples were submitted for analysis.

The following analytical package(s) were requested:		Testing Date:
1C-Exp	QOP PGE ICP-MS (Fire Assay-ICPMS)	2022-09-22 15:29:18
UT-1M	QOP Ultratrace-1 (Aqua Regia ICPMS)	2022-08-15 14:31:24

REPORT A22-10019

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

If value exceeds upper limit we recommend reassay by fire assay gravimetric-Code 1A3

The Au from AR-MS is for information purposes, for accurate Au fire assay 1A2 should be requested.

We recommend reanalysis by fire assay Au, Pt, Pd Code 8 if values exceed upper limit.

LabID: 266

ACTIVATION LABORATORIES LTD. Bittern Street Ancaster Ontario Canada 19G 4V5

41 Bittern Street, Ancaster, Ontario, Canada, L9G 4V5 TELEPHONE +905 648-9611 or +1.888.228.5227 FAX +1.905.648.9613 E-MAIL Ancaster@actlabs.com ACTLABS GROUP WEBSITE www.actlabs.com CERTIFIED BY:

Mark Vandergeest Quality Control Coordinator

Quality Analysis ...

Innovative Technologies

Report No.:A22-10019Report Date:27-Sep-22Date Submitted:18-Jul-22Your Reference:MANITOUWADGE

Bayside Geoscience 124 Sherwood Dr. Thunder Bay ON P7B 6L1 Canada

ATTN: Steve Flank

CERTIFICATE OF ANALYSIS

68 Rock samples were submitted for analysis.

The following analytical package(s) were requested:		Testing Date:
1A2-Tbay	QOP AA-Au (Au - Fire Assay AA)	2022-08-16 15:09:14

REPORT A22-10019

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

If value exceeds upper limit we recommend reassay by fire assay gravimetric-Code 1A3

The Au from AR-MS is for information purposes, for accurate Au fire assay 1A2 should be requested.

We recommend reanalysis by fire assay Au, Pt, Pd Code 8 if values exceed upper limit.

LabID: 673

ACTIVATION LABORATORIES LTD.

1201 Walsh Street West, Thunder Bay, Ontario, Canada, P7E 4X6 TELEPHONE +807 622-6707 or +1.888.228.5227 FAX +1.905.648.9613 E-MAIL Tbay@actlabs.com ACTLABS GROUP WEBSITE www.actlabs.com CERTIFIED BY:

log Vandee

Mark Vandergeest Quality Control Coordinator

Activation Laboratories Ltd.

Report: A22-10019

Analyte Symbol	Au	Pd	Pt	Au	Ag	AI	As	Au	В	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	Ga	Hg	к	La	Mg	Mn
Unit Symbol	ppb	ppb	ppb	ppb	ppm	%	ppm	ppb	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	%			ppm
Lower Limit	5	1	1	2	0.1	0.01	0.5	0.5	20	1	0.1	0.01	0.1	0.1	1	0.2	0.01	1	0.01	0.01	1	0.01	1
Method Code	FA-AA	FA-MS	FA-MS	FA-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS
1101501		3	5	6	< 0.1	2.87	0.6	1.2	< 20	48	< 0.1	2.09	< 0.1	15.7	16	111	3.86	8	0.01	0.15	8	0.56	294
1101502		< 1	< 1	4	< 0.1	0.79	0.6	< 0.5	< 20	27	0.4	1.95	< 0.1	21.6	157	43.2	2.53	3	< 0.01	0.18	2	2.29	409
1101503		< 1	< 1	3	< 0.1	0.50	< 0.5	< 0.5	< 20	53	< 0.1	1.15	< 0.1	25.0	129	71.8	2.19	1	< 0.01	0.12	< 1	1.85	261
1101504		< 1	< 1	3	< 0.1	1.60	< 0.5	< 0.5	< 20	73	0.2	2.42	< 0.1	36.1	209	200	3.07	4	0.04	0.35	4	2.80	329
1101505		< 1	< 1	3	< 0.1	0.75	< 0.5	< 0.5	< 20	66	< 0.1	1.63	< 0.1	24.8	136	74.7	2.49	2	0.02	0.19	2	2.25	305
1101506		< 1	< 1	3	< 0.1	0.99	< 0.5	< 0.5	< 20	42	0.3	1.78	< 0.1	21.8	153	60.9	2.11	3	0.02	0.23	2	2.30	351
1101507		1	1	4	< 0.1	1.64	< 0.5	0.6	< 20	60	< 0.1	2.93	< 0.1	25.1	130	50.9	3.55	5	< 0.01	0.27	5	2.62	436
1101508		< 1	< 1	7	< 0.1	2.63	0.6	2.8	< 20	14	< 0.1	1.97	< 0.1	26.5	65	68.4	5.43	9	< 0.01	0.20	6	1.25	741
1101509		< 1	< 1	2	< 0.1	0.88	< 0.5	< 0.5	< 20	17	0.2	1.83	< 0.1	25.3	179	69.3	2.43	3	0.01	0.08	2	2.28	349
1101510		< 1	< 1	3	< 0.1	0.73	< 0.5	< 0.5	< 20	30	< 0.1	1.68	< 0.1	20.9	126	65.6	1.99	2	< 0.01	0.09	1	1.88	295
1101511		< 1	1	4	< 0.1	0.59	< 0.5	0.7	< 20	41	< 0.1	1.53	< 0.1	39.2	201	133	3.14	2	0.05	0.15	2	2.62	398
1101512		< 1	1	3	< 0.1	0.84	0.5	< 0.5	< 20	45	0.1	1.62	< 0.1	32.9	191	108	3.22	2	0.02	0.16	2	2.33	331
1101513		< 1	< 1	3	< 0.1	1.44	< 0.5	< 0.5	< 20	70	< 0.1	2.67	0.1	26.2	136	64.1	3.03	4	0.01	0.29	4	2.84	426
1101514		< 1	< 1	3	< 0.1	0.97	< 0.5	< 0.5	< 20	116	< 0.1	1.85	< 0.1	25.7	135	85.8	2.17	2	0.02	0.35	4	2.45	348
1101515		< 1	< 1	3	< 0.1	1.03	0.6	0.5	< 20	58	< 0.1	2.12	< 0.1	29.0	149	105	2.35	3	0.01	0.34	4	2.60	394
1101516		3	3	3	< 0.1	1.73	< 0.5	0.6	< 20	45	< 0.1	1.50	< 0.1	21.9	14	148	5.29	8	< 0.01	0.20	13	0.70	352
1101517		< 1	< 1	3	< 0.1	2.60	< 0.5	< 0.5	< 20	14	< 0.1	1.22	< 0.1	21.8	26	86.0	5.21	13	0.01	0.07	14	1.89	757
1101518		< 1	< 1	3	< 0.1	2.05	< 0.5	0.6	< 20	48	< 0.1	1.80	< 0.1	27.9	24	71.5	5.96	10	< 0.01	0.12	18	1.03	386
1101519		< 1	2	3	< 0.1	2.34	0.5	1.0	< 20	15	< 0.1	3.38	< 0.1	17.0	24	36.0	2.31	6	< 0.01	0.06	2	1.22	291
1101520		< 1	< 1	3	< 0.1	1.91	< 0.5	< 0.5	< 20	36	< 0.1	1.74	< 0.1	29.5	25	71.3	6.18	11	0.05	0.13	20	1.25	623
1101521	< 5																						
1101522		< 1	< 1	4	0.1	1.46	< 0.5	1.2	< 20	34	0.5	1.23	< 0.1	15.1	17	98.4	4.56	8	0.03	0.15	7	1.55	326
1101523		< 1	< 1	4	0.1	2.03	< 0.5	1.4	< 20	19	0.2	2.33	< 0.1	50.5	16	272	5.90	9	0.02	0.16	10	2.54	528
1101524		1	1	3	< 0.1	2.21	< 0.5	< 0.5	< 20	22	< 0.1	1.82	0.6	31.4	38	54.5	6.91	13	< 0.01	0.04	18	1.88	1180
1101525		2	6	4	< 0.1	2.84	0.8	0.6	< 20	55	< 0.1	1.93	< 0.1	17.2	12	124	3.76	8	0.06	0.16	8	0.64	248
1101526		< 1	< 1	3	< 0.1	2.29	0.6	< 0.5	< 20	59	< 0.1	2.13	< 0.1	20.3	16	25.6	4.60	11	0.02	0.22	15	1.74	641
1101527		< 1	< 1	3	< 0.1	2.57	< 0.5	< 0.5	< 20	35	0.1	2.97	< 0.1	33.9	3	36.5	6.24	13	0.02	0.24	17	2.43	769
1101528		3	3	3	< 0.1	1.91	1.2	1.3	< 20	55	< 0.1	1.65	< 0.1	26.4	26	153	6.27	9	0.02	0.16	15	0.89	478
1101529		3	3	4	< 0.1	1.98	1.2	0.5	< 20	45	< 0.1	1.58	< 0.1	22.1	12	156	5.28	9	< 0.01	0.20	13	0.71	342
1101530		3	3	4	0.1	2.25	1.4	2.0	< 20	51	< 0.1	1.96	< 0.1	26.0	20	177	6.20	10	0.02	0.20	14	0.93	482
1101531		< 1	< 1	3	< 0.1	1.29	< 0.5	0.6	< 20	36	< 0.1	2.40	< 0.1	28.5	159	62.2	3.16	3	< 0.01	0.18	2	2.75	382
1101532		< 1	1	4	< 0.1	0.77	< 0.5	< 0.5	< 20	53	< 0.1	1.82	< 0.1	37.0	177	150	3.03	2	0.04	0.17	2	2.61	344
1101533		3	3	4	0.2	1.31	0.6	1.7	< 20	24	< 0.1	2.44	< 0.1	53.1	113	266	4.44	4	0.02	0.20	2	2.48	326
1101534		2	2	5	0.2	0.91	0.6	1.4	< 20	39	0.1	2.00	< 0.1	13.8	94	106	3.18	3	0.02	0.16	2	1.94	276
1101535		< 1	< 1	4	< 0.1	1.60	< 0.5	< 0.5	< 20	75	< 0.1	1.58	< 0.1	25.1	132	61.3	2.88	6	0.02	0.40	6	2.51	313
1101536		3	3	4	< 0.1	1.76	1.2	< 0.5	< 20	56	< 0.1	1.64	< 0.1	22.7	18	143	5.25	8	0.01	0.19	14	0.82	418
1101537		3	3	4	< 0.1	1.81	0.9	0.7	< 20	45	< 0.1	1.55	< 0.1	22.7	20	128	5.24	8	< 0.01	0.19	14	0.80	373
1101538		< 1	< 1	53	< 0.1	1.16	< 0.5	< 0.5	< 20	64	0.2	1.82	< 0.1	23.5	161	103	2.81	4	0.05	0.16	5	2.32	414
1101539		< 1	< 1	4	< 0.1	1.50	< 0.5	< 0.5	< 20	40	< 0.1	2.60	< 0.1	27.5	151	44.1	3.06	4	0.04	0.19	2	2.96	401
1101540		< 1	< 1	3	< 0.1	0.36	< 0.5	0.6	< 20	17	< 0.1	1.03	< 0.1	15.3	116	46.8	1.45	1	0.01	0.08	2	1.44	222
1101541		< 1	< 1	3	< 0.1	1.92	< 0.5	< 0.5	< 20	24	< 0.1	1.87	< 0.1	11.9	20	11.1	2.81	8	0.02	0.14	8	1.02	397
1101542		1	1	4	< 0.1	2.22	1.0	0.8	< 20	24	< 0.1	2.00	< 0.1	26.9	14	122	6.58	12	0.01	0.11	14	1.03	517
1101543		2	2	4	< 0.1	1.62	1.0	0.5	< 20	44	< 0.1	1.50	< 0.1	20.7	9	127	5.58	9	< 0.01	0.21	14	0.59	403
1101544		< 1	< 1	3	< 0.1	1.81	0.7	< 0.5	< 20	35	< 0.1	2.07	< 0.1	16.6	50	135	3.12	7	< 0.01	0.18	21	1.50	492
1101545		< 1		1	< 0.1	1.80	< 0.5	< 0.5	< 20	9	< 0.1	1.29	0.2	14.9	28	30.3	3.03	7	< 0.01	0.07	3	1.08	574
1101546		5	9	3	< 0.1	2.38	< 0.5	< 0. <mark>5</mark>	< 20	16	< 0.1	1.63	< 0.1	24.0	34	9.9	4.47	8	< 0.01	0.09	2	2.21	741
1101547		< 1	< 1	3	< 0.1	2.17	0.5	< 0.5	< 20	26	< 0.1	3.18	0.2	20.3	47	77.5	3.81	9	< 0.01	0.18	11	1.64	603
1101548		< 1	< 1	3	0.1	1.67	< 0.5	< 0.5	< 20	22	< 0.1	2.02	< 0.1	9.4	16	24.6	2.69	9	< 0.01	0.16	8	1.25	376
1101549		1		3		1.42		< 0.5	< 20	32	< 0.1	1.92		15.7	52	41.2	3.46	9	0.01	0.27	2	1.39	573
1101550		< 1	< 1	3		2.31	< 0.5	< 0.5	< 20	27	< 0.1	0.78		22.5	104	9.1	5.24	17	< 0.01	0.10	2	2.02	810
1101551		< 1	< 1			2.49		< 0.5	< 20	54	< 0.1	1.93		26.7	19	67.0	4.68	8	< 0.01	0.18	14	1.08	322
		1	1	l	i	i	1				1		I										

Activation Laboratories Ltd.

Report: A22-10019

Analyte Symbol	Au	Pd	Pt	Au	Ag	AI	As	Au	В	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	Ga	Hg	К	La	Mg	Mn
Unit Symbol	ppb	ppb	ppb	ppb	ppm	%	ppm	ppb	ppm	ppm	pom	%	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	%	ppm
Lower Limit	5	1	1	2	0.1	0.01	0.5	0.5	20	1	0.1	0.01	0.1	0.1	1	0.2	0.01	1	0.01	0.01	1	0.01	1
Method Code	FA-AA	FA-MS	FA-MS	FA-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS														
1101552		9	43	11	1.4	1.33	< 0.5	8.5	< 20	9	6.6	0.81	< 0.1	50.8	274	3590	5.26	3	0.05	0.02	< 1	2.27	162
1101553		10	13	7	4.5	1.07	< 0.5	4.4	< 20	20	5.3	1.47	0.2	16.7	83	1670	12.8	11	0.03	0.43	2	1.57	718
1101554		< 1	< 1	3	< 0.1	2.17	< 0.5	< 0.5	< 20	22	0.2	3.36	< 0.1	22.1	26	53.3	4.75	10	0.03	0.25	2	1.02	812
1101555		1	2	3	< 0.1	1.17	< 0.5	< 0.5	< 20	17	< 0.1	1.45	< 0.1	12.1	63	26.3	2.03	5	0.02	0.14	2	0.88	349
1101556		< 1	< 1	3	< 0.1	1.29	0.7	< 0.5	< 20	27	< 0.1	1.11	< 0.1	6.8	9	11.9	1.99	8	< 0.01	0.12	5	0.63	306
1101557		< 1	< 1	3	< 0.1	0.89	< 0.5	< 0.5	< 20	15	< 0.1	0.54	< 0.1	3.9	4	17.1	1.19	7	< 0.01	0.09	9	0.47	187
1101558		3	2	3	0.2	1.62	< 0.5	< 0.5	< 20	465	0.1	1.56	< 0.1	20.8	152	262	2.98	3	0.01	1.29	36	2.36	407
1101559		2	2	3	0.1	1.40	< 0.5	0.6	< 20	52	0.9	1.93	< 0.1	26.3	385	36.1	1.85	6	0.05	0.08	24	1.94	305
1101560		7	6	3	< 0.1	1.86	< 0.5	< 0.5	< 20	25	0.1	2.68	< 0.1	18.7	94	23.9	3.47	7	0.02	0.25	2	1.60	623
1101561		3	3	3	< 0.1	1.24	< 0.5	0.6	< 20	96	< 0.1	1.12	< 0.1	10.0	42	31.7	2.16	4	< 0.01	0.36	4	1.01	336
1101562		< 1	< 1	3	0.2	1.97	0.6	< 0.5	< 20	48	< 0.1	2.30	< 0.1	32.8	25	94.2	7.31	10	0.03	0.13	20	1.27	630
1101563		< 1	< 1	3	< 0.1	1.12	< 0.5	< 0.5	< 20	43	< 0.1	0.51	< 0.1	7.2	10	20.6	2.20	7	0.01	0.18	19	0.64	354
1101564		< 1	< 1	3	< 0.1	1.63	< 0.5	< 0.5	< 20	24	< 0.1	1.74	< 0.1	17.7	50	54.1	3.61	8	0.02	0.22	3	1.24	589
1101565		3	4	3	< 0.1	1.20	< 0.5	< 0.5	< 20	14	< 0.1	1.19	< 0.1	18.0	446	20.9	2.15	5	< 0.01	0.05	10	2.24	325
1101566		1	1	3	< 0.1	1.04	< 0.5	< 0.5	< 20	32	0.4	1.84	< 0.1	15.5	156	43.5	2.34	6	< 0.01	0.11	17	1.93	365
1101567		< 1	< 1	3	< 0.1	1.62	0.6	< 0.5	< 20	44	0.1	1.80	< 0.1	24.0	53	55.3	4.46	8	0.06	0.17	17	1.31	390
1101568		10	11	3	< 0.1	1.88	< 0.5	< 0.5	< 20	23	0.9	2.76	< 0.1	14.8	97	33.3	2.72	6	0.02	0.19	3	1.30	512

Analyte Symbol	Мо	Na	Ni	Р	Pb	S	Sb	Sc	Se	Sr	Te	Th	Ti	TI	V	W	Zn
Unit Symbol	ppm	%	ppm	%	ppm	%	ppm	ppm	ppm	ppm	pom	ppm	%	ppm	ppm	ppm	ppm
Lower Limit	0.1	0.001	0.1	0.001	0.1	1	0.1	0.1	0.5	1	0.2	0.1	0.001	0.1	2	0.1	1
Method Code	AR-MS																
1101501	0.3	0.457	23.7	0.047	3.0	< 1	< 0.1	3.8	< 0.5	56	< 0.2	1.9	0.135	< 0.1	157	< 0.1	28
1101502	0.4	0.170	27.5	0.021	4.8	< 1	< 0.1	13.4	< 0.5	22	< 0.2	0.7	0.135	< 0.1	60	< 0.1	27
1101503	< 0.1	0.100	38.3	0.003	0.6	< 1	< 0.1	7.0	< 0.5	19	< 0.2	0.3	0.047	< 0.1	28	< 0.1	16
1101504	0.2	0.318	52.0	0.011	2.4	< 1	< 0.1	18.8	< 0.5	41	< 0.2	0.6	0.238	< 0.1	115	< 0.1	21
1101505	< 0.1	0.194	37.9	0.016	0.4	< 1	< 0.1	9.2	< 0.5	47	< 0.2	0.2	0.077	< 0.1	47	< 0.1	18
1101506	0.2	0.171	32.1	0.019	1.7	< 1	< 0.1	12.1	< 0.5	27	< 0.2	0.6	0.133	0.1	64	< 0.1	20
1101507	< 0.1	0.390	37.4	0.073	1.2	< 1	< 0.1	13.6	< 0.5	58	< 0.2	0.2	0.052	< 0.1	107	< 0.1	33
1101508	0.5	0.355	61.3	0.040	0.6	< 1	< 0.1	11.1	< 0.5	60	< 0.2	0.8	0.170	< 0.1	132	0.1	48
1101509	0.1	0.161	36.6	0.016	0.8	< 1	< 0.1	11.5	< 0.5	36	< 0.2	0.2	0.095	< 0.1	59	< 0.1	20
1101510	0.1	0.198	32.6	0.015	1.2	< 1	< 0.1	9.5	< 0.5	44	< 0.2	0.2	0.064	< 0.1	40	< 0.1	16
1101511	0.1	0.181	63.5	0.024	0.4	< 1	< 0.1	9.2	< 0.5	63	< 0.2	0.3	0.050	< 0.1	51	< 0.1	20
1101512	< 0.1	0.142	49.2	0.020	0.5	< 1	< 0.1	10.0	< 0.5	37	< 0.2	0.3	0.071	0.1	53	< 0.1	22
1101513	0.3	0.286	32.1	0.031	1.9	< 1	< 0.1	17.4	< 0.5	75	< 0.2	0.5	0.226	< 0.1	100	< 0.1	26
1101514	0.1	0.184	37.9	0.020	0.8	< 1	< 0.1	11.3	< 0.5	29	< 0.2	0.6	0.111	< 0.1	51	< 0.1	20
1101515	0.1	0.238	43.4	0.011	0.8	< 1	< 0.1	11.1	< 0.5	49	< 0.2	0.6	0.087	0.1	43	< 0.1	27
1101516	0.4	0.236	20.3	0.067	4.4	< 1	< 0.1	4.5	< 0.5	33	< 0.2	3.0	0.223	< 0.1	236	< 0.1	32
1101517	0.3	0.084	30.2	0.111	1.4	< 1	< 0.1	9.0	< 0.5	57	< 0.2	1.8	0.239	< 0.1	113	< 0.1	90
1101518	0.6	0.252	22.6	0.089	2.1	< 1	< 0.1	6.3	< 0.5	43	< 0.2	2.8	0.334	< 0.1	222	< 0.1	82
1101519	< 0.1	0.175	86.8	0.025	0.4	< 1	< 0.1	6.6	< 0.5	14	< 0.2	0.2	0.087	< 0.1	57	< 0.1	11
1101520	0.6	0.208	22.5	0.085	2.8	< 1	< 0.1	7.7	< 0.5	31	< 0.2	2.4	0.450	< 0.1	209	< 0.1	62
1101521																	
1101522	0.7	0.170	18.9	0.053	3.3	< 1	< 0.1	7.8	< 0.5	38	< 0.2	1.7	0.235	< 0.1	94	< 0.1	34
1101523	0.7	0.223	15.3	0.080	2.8	2	< 0.1	11.3	< 0.5	24	< 0.2	0.8	0.140	< 0.1	135	< 0.1	52
1101524	0.6	0.110	42.1	0.100	2.4	< 1	< 0.1	10.5	< 0.5	51	< 0.2	2.4	0.515	< 0.1	183	< 0.1	426
1101525	0.4	0.477	30.0	0.048	2.9	< 1	< 0.1	3.6	< 0.5	53	< 0.2	1.9	0.190	< 0.1	171	0.4	29
1101526	0.2	0.221	8.0	0.091	7.8	< 1	< 0.1	9.7	< 0.5	42	< 0.2	2.2	0.281	< 0.1	121	< 0.1	75
1101527	0.1	0.254	7.9	0.108	1.6	< 1	< 0.1	13.2	< 0.5	47	< 0.2	1.4	0.265	< 0.1	178	< 0.1	85
1101528	0.6	0.214	22.7	0.091	5.3	< 1	< 0.1	5.9	< 0.5	35	< 0.2	3.4	0.291	< 0.1	210	< 0.1	53
1101529	0.6	0.256	20.8	0.073	4.8	<1	< 0.1	4.2	< 0.5	40	< 0.2	3.1	0.287	< 0.1	239	< 0.1	37
1101530	0.6	0.271	25.8	0.084	4.6	< 1	< 0.1	5.7	0.5	41	< 0.2	3.3	0.317	< 0.1	263	< 0.1	49
1101531	0.1	0.323	34.0	0.036	0.5	< 1	< 0.1	16.7	0.5	62	< 0.2	0.1	0.142	< 0.1	88	< 0.1	20
1101532	0.2	0.226	61.9	0.023	0.3	< 1	< 0.1	12.7	0.5	52	< 0.2	0.2	0.076	< 0.1	57	< 0.1	20
1101533	0.7	0.321	26.6	0.025	0.8	< 1	< 0.1	22.7	2.1	55	< 0.2	0.2	0.193	< 0.1	114	< 0.1	17
1101534	0.8	0.250	13.7	0.014	0.8	< 1	< 0.1	17.8	1.8	47	< 0.2	0.2	0.151	0.1	83	< 0.1	12
1101535	0.1	0.161	32.9	0.023	2.0	< 1	< 0.1	14.9	< 0.5	18	< 0.2	1.3	0.332	0.2	129	< 0.1	42
1101536	0.5	0.231	19.3	0.072	4.4	< 1	< 0.1	6.6	< 0.5	33	< 0.2	3.3	0.241	< 0.1	198	< 0.1	44
1101537	0.6	0.199	19.8	0.074	5.5	< 1	< 0.1	4.7	< 0.5	31	< 0.2	3.4	0.253	< 0.1	186	< 0.1	44
1101538	0.3	0.162	33.8	0.051	1.2	< 1	< 0.1	10.6	< 0.5	37	< 0.2	1.2	0.135	< 0.1	67	< 0.1	30
1101539	0.1	0.382	28.9	0.016	1.3	< 1	< 0.1	18.6	< 0.5	80	< 0.2	0.1	0.177	< 0.1	101	< 0.1	23
1101540	0.2	0.072	32.0	0.027	0.9	< 1	< 0.1	5.7	< 0.5	10	< 0.2	0.6	0.035	< 0.1	24	< 0.1	14
1101541	0.2	0.098	20.2	0.040	1.4	<1	< 0.1	5.9	< 0.5	22	< 0.2	1.0	0.155	< 0.1	62	< 0.1	43
1101542	0.6	0.096	21.7	0.087	5.6	< 1	< 0.1	7.0	< 0.5	19	< 0.2	2.7	0.359	< 0.1	179	< 0.1	77
1101543	0.6	0.187	15.4	0.090	5.5	< 1	< 0.1	5.1	< 0.5	29	< 0.2	2.8	0.229	< 0.1	200	< 0.1	50
1101544	0.3	0.157	17.4	0.121	1.8	<1	< 0.1	8.0	< 0.5	36	< 0.2	2.2	0.201	< 0.1	78	< 0.1	45
1101545	0.4		33.0	0.010		< 1	< 0.1	3.9	< 0.5	38	< 0.2	0.8		< 0.1	57	< 0.1	81
1101546	0.5	0.177	30.2	0.024	0.8	< 1	< 0.1	12.3	< 0.5	7	< 0.2	1.2	0.175	< 0.1	117	< 0.1	50
1101547	0.1	0.267	40.9	0.136		< 1	< 0.1	14.2	< 0.5	19	< 0.2	1.1	0.182	< 0.1	117	< 0.1	99
1101548	0.2	0.216	19.8	0.078		< 1	< 0.1	10.7	< 0.5	27	< 0.2	2.2	0.282	< 0.1	96	0.2	
1101549	0.1	0.236	34.5	0.021	1.5	< 1	< 0.1	11.8	< 0.5	30	< 0.2	0.3		< 0.1	91	< 0.1	72
1101550	0.2	0.051	53.0	0.026	1.5	< 1	< 0.1	10.0	< 0.5	52	< 0.2	0.2	0.188	< 0.1	83	0.2	182
1101551	0.6	0.366	29.4	0.087	3.4	< 1	< 0.1	4.5	< 0.5	65	< 0.2	1.8	0.218	< 0.1	164	< 0.1	85
		1	t i		i								1	i	1	1	

Analyte Symbol	Мо	Na	Ni	Ρ	Pb	S	Sb	Sc	Se	Sr	Te	Th	Ti	TI	V	W	Zn
Unit Symbol	ppm	%	ppm	%	ppm	%	ppm	ppm	ppm	ppm	pom	ppm	%	ppm	ppm	ppm	ppm
Lower Limit	0.1	0.001	0.1	0.001	0.1	1	0.1	0.1	0.5	1	0.2	0.1	0.001	0.1	2	0.1	1
Method Code	AR-MS																
1101552	2.0	0.090	672	0.016	0.3	<1	< 0.1	2.6	8.6	4	1.2	0.2	0.045	< 0.1	19	< 0.1	28
1101553	0.8	0.174	174	0.064	2.1	2	< 0.1	3.2	8.4	7	1.1	0.2	0.049	0.3	29	< 0.1	75
1101554	0.4	0.222	23.8	0.020	2.4	< 1	< 0.1	12.7	< 0.5	74	< 0.2	0.3	0.307	< 0.1	123	0.1	72
1101555	0.2	0.145	34.4	0.019	2.4	< 1	< 0.1	7.1	< 0.5	43	< 0.2	0.9	0.138	< 0.1	56	< 0.1	34
1101556	0.2	0.091	6.3	0.035	4.3	< 1	< 0.1	3.3	< 0.5	97	< 0.2	0.6	0.149	< 0.1	35	< 0.1	55
1101557	< 0.1	0.121	3.6	0.004	4.2	< 1	< 0.1	2.1	< 0.5	60	< 0.2	1.2	0.083	< 0.1	14	< 0.1	45
1101558	0.1	0.156	65.0	0.139	3.8	< 1	< 0.1	3.4	< 0.5	157	< 0.2	0.9	0.058	0.3	75	< 0.1	45
1101559	0.1	0.059	112	0.075	4.3	< 1	< 0.1	1.8	< 0.5	765	< 0.2	1.8	0.126	< 0.1	40	< 0.1	27
1101560	0.4	0.264	46.8	0.023	1.7	< 1	< 0.1	13.3	< 0.5	54	< 0.2	0.2	0.208	< 0.1	103	< 0.1	48
1101561	0.2	0.161	18.0	0.029	0.8	< 1	< 0.1	5.4	< 0.5	32	< 0.2	0.2	0.145	< 0.1	48	0.1	39
1101562	0.8	0.297	21.0	0.115	7.7	< 1	< 0.1	10.7	0.5	47	< 0.2	1.9	0.837	< 0.1	223	0.8	94
1101563	0.1	0.074	6.1	0.074	1.2	< 1	< 0.1	2.6	< 0.5	36	< 0.2	1.8	0.147	< 0.1	24	0.1	65
1101564	0.4	0.194	40.3	0.026	2.0	< 1	< 0.1	9.5	< 0.5	47	< 0.2	0.5	0.202	< 0.1	88	< 0.1	58
1101565	0.3	0.097	114	0.096	0.8	< 1	< 0.1	3.6	< 0.5	49	< 0.2	1.9	0.166	< 0.1	47	< 0.1	40
1101566	0.3	0.227	48.3	0.095	3.5	< 1	< 0.1	6.1	< 0.5	60	< 0.2	0.9	0.105	< 0.1	65	< 0.1	45
1101567	0.6	0.201	31.2	0.122	4.3	< 1	< 0.1	5.5	< 0.5	40	< 0.2	2.0	0.320	< 0.1	155	< 0.1	62
1101568	0.3	0.177	31.5	0.023	3.0	< 1	< 0.1	10.3	< 0.5	62	< 0.2	0.2	0.180	< 0.1	77	0.5	41

Analyte Symbol	Au	Pd	Pt	Au	Ag	AI	As	Au	В	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	Ga	Hg	К	La	Mg	Mn
	ppb	ppb	ppb	ppb	ppm			ppb	ppm	ppm	pom	%	ppm	ppm	ppm	ppm	%	ppm		%	ppm	%	ppm
	5	1	1		0.1			0.5	20		0.1	0.01		0.1	1	0.2	0.01	1		0.01		0.01	1
	FA-AA	FA-MS	FA-MS					AR-MS	AR-MS				-	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS		AR-MS		AR-MS	AR-MS
CDN-PGMS-27		1960	1200	4770						/													
Meas CDN-PGMS-27		2000		4800																			
Cert			1290.00																				
CDN-PGMS-30 Meas		1710	221	1900																			
CDN-PGMS-30 Cert		1660	223	1900																			
CDN-PGMS-30 Meas		1700	230	1740																			
CDN-PGMS-30 Cert		1660	223	1900																			
OREAS 263 (Aqua Regia) Meas					0.3	1.66	26.8			148	0.6	0.90	0.3	26.9	49	82.0	3.24	4	0.17	0.34		0.57	437
OREAS 263 (Aqua Regia) Cert					0.285	1.29	30.8			175	0.570	1.03	0.270	31.0	48.0	87.0	3.68	4.92	0.170	0.288		0.593	490
Oreas 623 (Aqua Regia) Meas					19.2	1.78	77.9	902			17.4	1.03	52.3	223	20	> 10000	13.0	13	0.75	0.20	17	1.13	582
Oreas 623 (Aqua Regia) Cert					20.4	1.80	76.0	797			16.9	1.09	52.0	216	19.4	17200	13.0	11.9	0.830	0.175	17.9	1.11	570
Oreas E1336 (Fire Assay) Meas	<mark>5</mark> 11																						
Oreas E1336 (Fire	510.000																						
OREAS L15 Meas	> 5000																						
OREAS L15 Cert	7180																						
1101503 Oria					< 0.1	0.52	< 0.5	0.9	< 20	53	< 0.1	1.18	< 0.1	25.6	133	72.7	2.23	1	< 0.01	0.12	< 1	1.89	266
1101503 Dup					< 0.1	0.49	< 0.5	< 0.5	< 20	53	< 0.1	1.12	< 0.1	24.4	124	71.0	2.14	1	< 0.01	0.12	< 1	1.81	256
1101511 Orig		< 1	1	3																			
1101511 Dup		1	1	4																			
1101522 Orig		< 1	< 1	4																			
1101522 Dup		< 1	< 1	3																			
1101524 Orig					< 0.1	2.24	< 0.5	< 0.5	< 20	22	< 0.1	1.83	0.5	31.8	38	55.1	7.00	13	0.02	0.04	18	1.92	1190
1101524 Dup					< 0.1	2.19	< 0.5	< 0.5	< 20	22	< 0.1	1.80	0.6	30.9	37	53.9	6.83	13	< 0.01	0.04	18	1.85	1160
1101532 Orig		< 1	1	3																			
1101532 Dup		< 1	1	4																			
1101537 Orig					< 0.1	1.83	1.0	0.8	< 20	46	< 0.1	1.56	< 0.1	22.8	20	129	5.35	8	< 0.01	0.19	14	0.82	375
1101537 Dup					< 0.1	1.80	0.9	0.7	< 20	44	< 0.1	1.53	< 0.1	22.5	20	126	5.13	8	0.02	0.18	14	0.78	370
1101544 Orig		< 1	< 1	3																			
1101544 Dup		< 1	< 1	3																			
1101548 Orig					0.1	1.70	< 0.5	< 0.5	< 20	22	< 0.1	2.07	< 0.1	9.6	17	25.1	2.73	9	< 0.01	0.17	9	1.27	388
1101548 Dup					0.1	1.64	< 0.5	< 0.5	< 20	21	< 0.1	1.98	< 0.1	9.3	16	24.0	2.66	8	0.02	0.16	8	1.22	363
1101550 Orig		< 1	< 1	3	< 0.1	2.31	< 0.5	< 0.5	< 20	27	< 0.1	0.78	< 0.1	22.5	104	9.1	5.24	17	< 0.01	0.10	2	2.02	810
1101550 Split PREP DUP		< 1	< 1	3	< 0.1	2.19	< 0.5	< 0.5	< 20	26	<mark>< 0.1</mark>	0.75	< 0.1	21.6	98	8.9	5.03	16	< 0.01	0.10	2	1.96	772
1101553 Orig		10	14	6																			
1101553 Dup		10	12	7																			
1101560 Orig					< 0.1	1.84	0.5	< 0.5	< 20	25	0.1	2.71	< 0.1	18.4	94	23.7	3.44	7	0.01	0.25	2	1.60	613
1101560 Dup					< 0.1	1.88	< 0.5	0.9	< 20	25	0.1	2.65	< 0.1	19.1	95	24.1	3.49	7	0.02	0.25	2	1.60	632
1101564 Orig		< 1	< 1	3																			
1101564 Dup		< 1	< 1	4																			
1101568 Orig		10		3		1.88	< 0.5	< 0.5	< 20	23	0.9	2.76		14.8	97	33.3	2.72	6	0.02	0.19	3	1.30	512
1101568 Split PREP DUP		11	12	3	< 0.1	1.85	< 0.5	< 0.5	< 20	24	0.9	<mark>2.68</mark>	< 0.1	14.1	94	<mark>32</mark> .1	2.65	6	0.02	0.17	3	1. <mark>2</mark> 5	498

QC

Activation Laboratories Ltd.

Report: A22-10019

Analyte Symbol	Au	Pd	Pt	Au	Ag	AI	As	Au	В	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	Ga	Hg	K	La	Mg	Mn
Unit Symbol	ppb	ppb	ppb	ppb	ppm	%	ppm	ppb	ppm	ppm	pom	%	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	%	ppm
Lower Limit	5	1	1	2	0.1	0.01	0.5	0.5	20	1	0.1	0.01	0.1	0.1	1	0.2	0.01	1	0.01	0.01	1	0.01	1
Method Code	FA-AA	FA-MS	FA-MS	FA-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS
Method Blank					< 0.1	< 0.01	< 0.5	0.7	< 20	3	< 0.1	< 0.01	< 0.1	< 0.1	1	< 0.2	< 0.01	<1	< 0.01	< 0.01	< 1	< 0.01	<1
Method Blank		< 1	<1	3																			
Method Blank		< 1	< 1	3																			
Method Blank		< 1	< 1	3																			
Method Blank		< 1	< 1	4																			

Analyte Symbol	Мо	Na	Ni	Р	Pb	S	Sb	Sc	Se	Sr	Te	Th	Ti	TI	V	W	Zn
		%	ppm	2	ppm	%	ppm	ppm	ppm	ppm	4.8	ppm	%	ppm	ppm	ppm	ppm
		0.001	0.1		0.1	1	0.1	0.1	0.5	1		0.1	0.001	0.1	2	0.1	1
Method Code	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS
CDN-PGMS-27 Meas																	
CDN-PGMS-27 Cert																	
CDN-PGMS-30 Meas																	
CDN-PGMS-30 Cert																	
CDN-PGMS-30 Meas																	
CDN-PGMS-30 Cert																	
OREAS 263 (Aqua Regia) Meas	0.5	0.079	61.1	0.040	34.7	< 1	7.0	3.2		17	< 0.2	9.1		0.5	23		117
OREAS 263 (Aqua Regia) Cert	0.570	0.0790	72.0	0.0410	34.0	0.126	7.37	3.52		16.9	0.210	10.6		0.530	22.8		127
Oreas 623 (Aqua Regia) Meas	8.4	0.078	15.0	0.043	2400	9	20.8	4.5	19.5	13	0.6	4.0		0.3	16	2.4	> 5000
Oreas 623 (Aqua Regia) Cert	8.38	0.0680	15.6	0.0400	2520	8.75	20.2	4.63	18.6	14.2	0.570	4.72		0.260	15.8	2.62	10100
Oreas E1336 (Fire Assay) Meas																	
Oreas E1336 (Fire Assay) Cert																	
OREAS L15 Meas																	
OREAS L15 Cert																	
1101503 Orig	0.1	0.103	39.0	0.003	0.6	<1	< 0.1	7.3	< 0.5	19	< 0.2	0.3	0.048	< 0.1	29	< 0.1	16
1101503 Dup	< 0.1	0.098	37.7	0.003	0.6	< 1	< 0.1	6.8	< 0.5	18	< 0.2	0.3	0.047	< 0.1	27	< 0.1	15
1101511 Orig																	
1101511 Dup																	
1101522 Orig																	
1101522 Dup																	
1101524 Orig	0.6	0.111	42.9	0.099	2.4	< 1	< 0.1	10.6	< 0.5	51	< 0.2	2.4	0.511	< 0.1	184	< 0.1	436
1101524 Dup	0.6	0.109	41.3	0.100	2.3	< 1	0.1	10.3	< 0.5	51	< 0.2	2.4	0.518	< 0.1	181	< 0.1	416
1101532 Orig																	
1101532 Dup																	
1101537 Orig	0.6	0.206	19.8	0.075	5.6	< 1	< 0.1	4.8	< 0.5	31	< 0.2	3.4	0.257	< 0.1	188	< 0.1	44
1101537 Dup	0.5	0.193	19.8	0.074	5.5	< 1	< 0.1	4.7	< 0.5	31	< 0.2	3.3	0.249	< 0.1	184	< 0.1	44
1101544 Orig				'													
1101544 Dup																	
1101548 Orig	0.2	0.221	20.0	0.079	1.6	< 1	< 0.1	11.3	< 0.5	28	< 0.2	2.2	0.302	< 0.1	99	0.2	34
1101548 Dup	0.2	0.210	19.5	0.077	1.5	< 1	< 0.1	10.1	< 0.5	27	< 0.2	2.2	0.262	< 0.1	93	0.1	33
1101550 Orig	0.2	0.051	53.0	0.026	1.5	< 1	< 0.1	10.0	< 0.5	52	< 0.2	0.2	0.188	< 0.1	83	0.2	182
1101550 Split PREP DUP	0.2	0.049	51.8	0.023	1.4	< 1	< 0.1	9.0	< 0.5	50	< 0.2	0.2	0.177	< 0.1	78	0.1	176
1101553 Orig																	
1101553 Dup																	
1101560 Orig	0.4	0.265	46.4	0.022	1.7	< 1	< 0.1	13.3	< 0.5	54	< 0.2	0.2	0.211	< 0.1	103	< 0.1	47
1101560 Dup	0.3	0.264	47.3	0.023	1.7	< 1	< 0.1	13.2	< 0.5	54	< 0.2	0.2	0.206	< 0.1	103	< 0.1	49
1101564 Orig																	
1101564 Dup																	
1101568 Orig	0.3	0.177	31.5	0.023	3.0	< 1	< 0.1	10.3	< 0.5	62	< 0.2	0.2	0.180	< 0.1	77	0.5	41
1101568 Split	0.3	0.173	30.3	0.022	3.0	<1	< 0.1	10.1	< 0.5	59	< 0.2	0.2	0.173	< 0.1	74	< 0.1	40

QC

Analyte Symbol	Mo	Na	Ni	Р	Pb	S	Sb	Sc	Se	Sr	Te	Th	Ti	TI	V	W	Zn
Unit Symbol	ppm	%	ppm	%	ppm	%	ppm	ppm	ppm	ppm	pom	ppm	%	ppm	ppm	ppm	ppm
Lower Limit	0.1	0.001	0.1	0.001	0.1	1	0.1	0.1	0.5	1	0.2	0.1	0.001	0.1	2	0.1	1
Method Code	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS
Method Blank	< 0.1	0.007	< 0.1	< 0.001	< 0.1	<1	< 0.1	0.2	0.5	<1	< 0.2	< 0.1	< 0.001	< 0.1	< 2	< 0.1	< 1
Method Blank																	
Method Blank																	
Method Blank																	
Method Blank																	