

We are committed to providing <u>accessible customer service</u>. If you need accessible formats or communications supports, please <u>contact us</u>.

Nous tenons à améliorer <u>l'accessibilité des services à la clientèle</u>. Si vous avez besoin de formats accessibles ou d'aide à la communication, veuillez <u>nous contacter</u>.

ASSESSMENT REPORT

BASED ON THE

2022 PROSPECTING & DRONE SURVEY PROGRAMS

COMPLETED ON THE

DAGNY COBALT PROJECT

FOR

EXIRO MINERALS CROP.

DAGNY LAKE AREA TOWNSHIP, ONTARIO, CANADA

RED LAKE & PATRICIA MINING DISTRICT

NTS: 52J12A, B, G, AND H LATITUDE 50° 33' 55" N LONGITUDE 91° 36' 07" W

Authored by: Paige Giddy, B.Sc., Project Geologist, Orix Geoscience Inc. November 30th, 2022

Contents

SUMN	/ARY	3
1.0	INTRODUCTION	4
2.0	PROPERTY DESCRIPTION, LOCATION AND ACCESS	4
2.1	PROPERTY LOCATION & ACCESS	4
2.2	DESCRIPTION OF CLAIMS	4
2.3	Physiography and Vegetation	4
3.0	HISTORICAL WORK	7
4.0	GEOLOGICAL SETTING	7
4.1	REGIONAL GEOLOGY	7
4.2	DEFORMATION AND STRUCTURAL GEOLOGY	8
4.3	MINERALIZATION	9
4	1.3.1 Pegmatite-Hosted Deposits	9
4	1.3.2 Iron Formation Deposits	9
4	1.3.3 Sulphide and Gold Deposits	9
4.4	PROPERTY GEOLOGY	10
4	1.4.1 Metasedimentary Rocks	10
4	1.4.2 Foliated Tonalite Suite	10
4	1.4.3 Muscovite-Bearing (Peraluminous) Granitic Rocks	11
5.0	SUMMARY OF WORK	13
5.1	PROSPECTING	13
5.2	DRONE SURVEY	15
5.3	FIELD LOG	
6.0	SAMPLE PREPARATION, ANALYSES AND SECURITY	21
6.1	SAMPLE PREPARATION	21
6.2	SAMPLE SECURITY	21
6.3	Sample Analyses	21
6.4	DATA VERIFICATION	22
6.5	SAMPLE RESULTS	22
7.0	CONCLUSIONS AND RECOMMENDATIONS	22
8.0	REFERENCES	23
9.0	STATEMENT OF QUALIFICATIONS	25

LIST OF FIGURES

Figure 1: Dagny Cobalt Project (Natural Resources Canada, 2002)	5
Figure 2: Dagny Cobalt Project Land Tenure and Provincial Grid Cell Information	6
Figure 3: Regional geology of the English River Subprovince	8
Figure 4: Property geology of the Dagny Lake Property	12
Figure 5: 2022 Prospecting map with north-west trending magnetic highs	14
Figure 6: 2022 Dagny Cobalt Project drone flight areas.	16

LIST OF TABLES

Table 1: WingtraOne Drone Hardware Specifications	
Table 2: WingtraOne Drone Operational Specifications	
Table 3: WingtraOne Drone Payload Specifications	17
Table 4: Summary of drone flight statistics for the Dagney Cobalt Project survey	
Table 5: Sample with Ag, Co, Cr, Cu and Ni assays (ppm)	22

Appendix A: Land Tenure Information Dagny Cobalt Project 2022

Appendix B: Outcrop Waypoints Dagny Cobalt Project 2022

Appendix C: Prospecting Outcrops & Traverses Area 1 to 16 2022

Appendix D: Collected Samples Dagny Cobalt Project 2022

Appendix E: Prospecting Sample Area 1 to 5 2022

Appendix F: RGB Orthomosaic

Appendix G: Digital Surface Model

Appendix H: Analytical Certificates of Analysis & QAQC

SUMMARY

The future of sustainable and clean energy production has incited a demand for critical minerals. Critical minerals, as defined by the Government of Canada, are minerals that are essential to Canada's economic security whose supply is threatened, minerals that are required to transition Canada to a low-carbon economy, or a sustainable source of minerals for Canada's partners or allies (Government of Canada, 2022). Cobalt and Copper are among the 31 minerals currently listed on Canada's list of critical minerals (Government of Canada, 2022). Efforts are being focused on understanding the potential for exploration and mining of critical minerals within Ontario. This outlook has promoted Exiro Minerals Corp. to actively pursue exploration on its Dagny Cobalt Project.

The Ontario Geological Survey completed a regional lake sediment survey program in the Dagny Cobalt Project area in 2001. The focus was to survey areas of high mineral potential and areas of unknown mineral potential to encourage exploration. This survey resulted in identifying anomalous cobalt, copper, and nickel in the Dagny Lake Area Township.

This report documents the exploration activities completed on the Dagny Cobalt Project between October 14 to October 22, 2022. The field work consisted of prospecting and flying a high-resolution drone survey within the project area. Prospecting focused on traversing, mapping undocumented exposed outcrops, and revisiting outcrops that returned anomalous cobalt and copper grade from the 2019 prospecting program. There was also a focus on determining the source for elevated anomalous elements discovered in lake sediment samples obtained during the 2001 OGS Operation Treasure Hunt as well as understanding the source rock causing high magnetic signatures represented in the Lac Seul geophysical survey.

The most prevalent lithology on the property was granite and gneiss with cm- to m-wide fine- and coarse-grained bands. The coarse-grained bands consist of quartz, feldspar, and mica while the fine-grained bands appear to be silicified with biotite as stringers and layers. Most outcrops were highly weathered and would be difficult to determine if granite or gneiss was being observed.

12 samples were collected during the program and sent for analysis. All sample locations, descriptions, and assay results are documented within this report. The drone survey was flown in 19 flights and covered 2700 hectares of the project area, producing high-resolution imagery with a pixel resolution of 2.2 cm. This imagery will be an important tool for identifying outcrops and planning future field programs.

Based on the newly collected imagery and prospecting results, continued exploration is recommended in 2023. A focus on identifying outcrops and planning efficient prospecting routes would continue to add value in determining the potential source for anomalous values found within the project area.

1.0 INTRODUCTION

During fall of 2022 a prospecting and drone survey program that was undertaken by Exrio Minerals and supported by Orix Geoscience Inc. ("Orix") on behalf of Exiro Minerals Crop ("Exiro") on the Dagny Cobalt Project located approximately 55km northeast of Sioux Lookout, Ontario.

Fieldwork was completed between October 14 to October 22, 2022. The purpose of this program was to collect property scale high-resolution imagery using a drone and prospecting to follow-up on anomalous results from the 2019 field program and historical anomalous metal values in lake sediment samples. Additionally, northwest trending magnetic anomalies have been identified throughout the property and could be indicative of potential mafic or ultramafic sources for anomalous metal values. Therefore, prospecting also focused on collecting samples and taking magnetic susceptibility readings of outcrops located along the magnetic highs.

This report documents the technical aspects of exploration completed on the Dagny Cobalt Project in 2022 as well as analytical results and future recommendations.

2.0 PROPERTY DESCRIPTION, LOCATION AND ACCESS

2.1 Property Location & Access

The Dagny Cobalt Project ("Property") is located approximately 55km northeast of the town of Sioux Lookout, Ontario (Figure 1). The property includes NTS zones 52J12A, B, G, and H within the Dagny Lake Area Township of the Red Lake and Patricia Mining District. The geographic centroid coordinate location of the project is 50°33′55″N 91°36′07″W.

The property is accessible via vehicle by travelling along Ontario Provincial Highway 516 northeast from Sioux Lookout for approximately 30km, then turning left onto Vermilion River Road and driving north for approximately 40km. At this point the southern portion of property is accessible via a series of logging roads extending north and northwest. The logging roads are old, and most are no longer drivable due to thick brush growth but do provide on-foot access into many parts of the property.

2.2 Description of Claims

The Dagny Lake property consists of a total of 135 single cell mining claims totaling 2,769 hectares (Appendix 1 and Figure 2). The 135 claims are held 50% by Exiro Minerals Crop. And 50% by EMX Properties (Canada) Inc.

2.3 Physiography and Vegetation

The Dagny Lake Property is located within Ecoregion 4S which is part of the Lake Wabigoon Ecoregion. The monthly average temperature can range from -22.7°C in January to 24.3°C in July. Annual precipitation ranges from 565mm to 724mm. The property vegetation consists mainly of jack pine, black spruce, aspen, and white birch trees. Expansive outcrop ridges dominate the south-southeast corner of the property whereas lakes, swamps, and forest cover with low outcrop exposure dominate the central and northeastern portions.

Figure 1: Dagny Cobalt Project (Natural Resources Canada, 2002).

Figure 2: Dagny Cobalt Project Land Tenure and Provincial Grid Cell Information.

3.0 HISTORICAL WORK

The first and only assessment report for the Dagny Cobalt Project was submitted in 2019 documenting a 6-day prospecting program completed by Orix. Previous geological work on the property is summarized below:

- 2001: The Ontario Geological Survey (2001) conducted a regional lake sediment survey program in the Sioux Lookout-Bamanji Lake area (*survey area includes the current Dagny Lake claim group*). The survey was part of the Operation Treasure Hunt program which covered areas of both high mineral potential and areas of unknown mineral potential in order to encourage and stimulate exploration. Operation Treasure Hunt took into consideration geological, geochemical, and geophysical components to highlight areas of interest for further investigation. The Sioux Lookout-Bamanji Lake sediment survey included collection of 1,949 samples which were analyzed for over 50 elements. Geochemical anomalies designated as #11 and #12 (page 18-19, Open File Report 6069) are located within the Dagny Lake Township, of which anomaly #11 specifically within the current property boundaries of Softrock Minerals Ltd.'s Dagny Lake Property. Anomalous elements included Ni, Cr, Co, Cu, Zn, and Ag.
- 2019: Orix Geoscience was contracted on behalf of Soft Rock Minerals to conduct a 6-day prospecting program on the Dagny Cobalt Project. A total of 17 rock samples were collected and geological features and locations were documented. Two zones of interest were identified during this program. The first zone was a sheared silicified rock with a sample yielding the best assay of the program with a result of 0.13% Cu, 0.01% Ni, and 0.01% Co. The second zone was a series of exposed flat-lying outcrops of sheared pods of gneiss. These outcrops were exposed for ~400m on and near an old logging trail.

4.0 GEOLOGICAL SETTING

4.1 Regional Geology

The regional geological descriptions in this section were summarized from Breaks (1991). The English River Subprovince in the north-western part of the Superior Province is an elongate, east-striking, highgrade, elastic metasedimentary-plutonic belt that can be traced for ~800km from the eastern shore of Lake Winnipeg to where it is unconformably overlain by Upper Ordovician sedimentary rocks of the James Bay Lowlands. The width of the English River Subprovince is quite variable ranging from 1.5 to 51.0km and averages about 30km. A pronounced narrowing is evident in the vicinity of Pashkokogan Lake which is interpreted to be related to displacement along intersecting northeast- and northwest-striking faults.

The English River Subprovince has been interpreted as an inter-arc sedimentary basin rimmed by quasicontemporaneous volcanic rocks, and in a plate tectonic context has been interpreted as an accretionary prism. Interbedded wacke, pelite, and their migmatitic derivatives compose 60% of the area of the subprovince. The maximum age of sedimentation is poorly constrained, but the youngest detrital zircon is dated 2698Ma, which bounds the youngest possible age for tonalite intrusion into the metasedimentary rocks (Figure 4).

Metavolcanic rocks comprise only about 2% of the English River Subprovince by area. The largest metavolcanic belt in the English River Subprovince occurs at Melchett Lake. This belt differs lithologically

from greenstone belts of adjacent greenstone-dominated subprovinces in that 80% of its metavolcanic rocks are felsic to intermediate in composition.

Numerous intra-belt batholiths, stocks, and allied dykes were emplaced between 2698-2560±40Ma. These plutonic rocks account for most of the remainder of the English River Subprovince and are divisible into five distinct groups based on their relative and absolute ages and are listed below in order of decreasing abundance (Breaks, 1991):

- 1. Gneissic tonalite suite (in part, as old as 3170Ma);
- 2. Tonalite-trondhjemite-granodiorite suite (2665±20 to > 3000Ma);
- 3. Peraluminous granite-granodiorite suite (2668 to 2692Ma);
- 4. Biotite granite-granodiorite suite (2560±40 to 2698Ma);
- 5. Mafic-ultramafic plutonic suite (absolute age unknown).

Figure 3: Regional geology of the English River Subprovince (Singh, 2020).

4.2 Deformation and Structural Geology

Multiple complex phases of deformation in the English River Subprovince developed during the Kenoran Orogeny (~2.7Ga) which involved three periods of folding and a protracted period of brittle-ductile phenomena involving kinking, shear zone development, fracturing, and cataclasis. The intensity of deformation diminished with time evidenced by less penetrative deformation (Breaks, 1991).

The regional deformation history is generally accepted as follows (Breaks, 1991):

D1 – Sub-horizontal to shallow, tight to isoclinal fold-thrust deformation;

- D2 Near orthogonal, northerly compression (?) (S1 North-South) producing large scale vertical to sub-vertical axial planes and associated steeply plunging fabrics;
- D3 Variable and localized effect, producing asymmetric, open to closed S-folds which plunge steeply northwest and/or dextral strike-slip shear zones.

The regional metamorphism developed in the English River Subprovince during the Kenoran Orogeny is low-pressure, high-temperature Abukuma-type and has a steep, (estimated) vertical metamorphic gradient of 35° to 50°C/km. Where uninterrupted by boundary faults, metamorphic grade increases southwards from the English River Subprovince-Uchi Subprovince boundary from low-grade up to highgrade metamorphism. Boundary fault zones typically coincide with abrupt increases in grade. The English River Subprovince has undergone significant erosion and uplift relative to the adjacent greenstone belts in the Uchi Subprovince (Breaks, 1991).

4.3 Mineralization

The mineral deposit types which occur in the English River Subprovince include: rare-element pegmatites in low- and medium-grade subprovince boundary zones; radio-element enriched pegmatites situated in medium- and high-grade areas in the western subprovince; extensive iron formation of wacke turbidite association; copper-nickel-cobalt-palladium-platinum-bearing sulphides in metaultramafic pods in the Werner Lake Fault Zone; zinc-lead-copper-silver volcanogenic massive sulphide mineralization restricted to the Melchett Lake metavolcanic-metasedimentary belt and the Separation Lake-Lac Seul area; and rare gold mineralization (Breaks, 1991).

4.3.1 Pegmatite-Hosted Deposits

A significant feature of the English River Subprovince is the linear, regional distribution of rare-element pegmatites within the low- to medium-grade metamorphic rocks along the northern and southern boundary zones. The pegmatites are genetically related to small masses (less than 10km² area) of chemically fractionated, peraluminous, S-type granites (Breaks, 1991).

Radioactive element-enriched pegmatites are mainly situated west of Longitude 93°W. Concentrations of uranium and thorium are identified in two distinct granite types: peraluminous S-type pegmatitic granites and pegmatites of the massive granodiorite-granite suite. Uranium oxide grade is subeconomic at 0.07% (Breaks, 1991).

4.3.2 Iron Formation Deposits

Banded iron formation of turbiditic association is the most extensive deposit type in the English River Subprovince (Breaks, 1991).

4.3.3 Sulphide and Gold Deposits

Showings of copper, nickel, cobalt, palladium, and platinum mineralization are confined to blocks of mafic to ultramafic plutonic rocks within the Werner Lake Fault Zone (Breaks, 1991). At the Warner Lake Deposit there are three mineralized zones: The West Cobalt Deposit, the Werner Lake Old Mine Deposit, and the Eastern Shallows Cobalt Deposit (AGP Mining Consultants Inc., 2018).

The Eastern Shallows Cobalt Deposit is characterized by nickel-platinum group elements associated with low cobalt in contrast with the Werner Lake Old Mine and West Cobalt deposits. The deposit fits into the general classification of a high-Ni-PGE, low-Cu-Co-As assemblage.

Relatively high-grade cobalt mineralization occurs in stacked lenses that occupy tensional areas intruded by gabbroic pegmatites to produce skarnoid assemblages. These tensional areas occur as sigmoidal folds in larger drag folds and in tensional fractures adjacent to major block faults. They occur in rare swarms over approximately 10km, extending from the Eastern Shallows Cobalt Deposit on the east side of Gordon Lake to the West Cobalt Deposit located 500m west of the Werner Lake Old Mine Deposit. Individual pegmatite dykelets are typically tens of centimeters wide, and rarely up to 5m wide. They are discontinuous, rootless, and display pinch-and-swell features with individual boudins approximately 25m in length. Mineralization occurs as chalcopyrite, pyrite, pyrrhotite, and cobaltite hosted by biotiteamphibole-garnet gneiss (AGP Mining Consultants Inc., 2018).

Volcanogenic massive sulphide deposits are scarce, known only within the Melchett Lake metavolcanicmetasedimentary belt and Separation Lake greenstone belt. Local fracture fillings and disseminations of sphalerite and pyrite are accompanied by galena, chalcopyrite, and rare native gold, andoccur in a 700m thick felsic pyroclastic host rock. High-grade metamorphosed massive sulphide mineralization occurs in the Moose Lake-Bury Lake area. Gold is also found within quartz veins near Saga Lake (Breaks, 1991).

4.4 Property Geology

The Dagny Cobalt Project is located within the central part of The English River Subprovince. The dominant lithologies are a foliated tonalite suite and muscovite-bearing granite adjacent to the metasedimentary rocks 1.0-2.5km NE of the property boundary (Figure 5).

4.4.1 Metasedimentary Rocks

Five lithofacies have been regionally recognized within the adjacent metasedimentary package. The two dominant lithofacies are interbeds of quartzo-feldspathic rocks, interpreted to be metamorphosed wackes, and mica-rich and/or other peraluminous minerals-rich pelitic rocks, interpreted to have a mudstone protolith. Lesser units of conglomerate, calc-silicate, and quartz-plagioclase arkose contrast with the rather uniform sedimentary association. Banded iron formation composed of wacke-magnetite turbidite association, although volumetrically minor, occur in laterally extensive units that have been traced up to 35km along strike, concentrated near the English River Subprovince-Uchi Subprovince interface. Sporadic thin, mafic-rich units are concordant with enclosing sedimentary rock. These units may represent recrystallized metamorphosed mafic sheets, distally deposited basaltic tuff, or rocks of unknown protolith that were subjected to seafloor alteration (Breaks, 1991).

4.4.2 Foliated Tonalite Suite

A foliated tonalite suite dominantly composed of gneissic tonalite and massive tonalite-trondhjemitegranodiorite represents the most abundant igneous plutonic suite in the English River Subprovince and have produced isotopic ages from 2.65 to 3.00Ga. Minor associated units include granodiorite, diorite, and quartz diorite. The tonalite-trondhjemite-granodiorite suite occurs with two subsuites: a uniform type and a complex type.

The uniform type is compositionally and structurally consistent and is relatively unmigmatized. Compositional banding is generally absent, but these rocks exhibit a weak to strong metamorphic foliation and/or mineral lineation imparted by biotite, elongated quartz, and in mafic units by alignment of hornblende. The compositionally uniform plutons are mainly stocks composed of a few internal phases. The plutons strongly deflect banding in the host metasedimentary migmatites into concordance with their external plutonic contact.

The complex type is more abundant, exhibiting a considerably greater array and wider compositional span of internal intrusive phases (up to 10). These masses are broadly conformable with structural trends within the English River Subprovince, particularly in the vicinity of the boundary to the Winnipeg River Subprovince where no deflection of the host rock planar fabric is discernible. Typically, these intrusive complexes are significantly larger than the uniform plutons. They occur isolated within the English River Subprovince or along the English River Subprovince-Winnipeg River Subprovince boundary zone.

Both types of the tonalite-trondhjemite-granodiorite contain charnockitic rocks characterized by a brown to green-brown colour with a "greasy" luster. These rocks contain disseminated orthopyroxene and are restricted to the granulite-grade zones. More conspicuous is the development of coarser-grained orthopyroxene in small patches of leucosome (Breaks, 1991).

4.4.3 Muscovite-Bearing (Peraluminous) Granitic Rocks

Originally mapped as homogeneous and inhomogeneous diatexites, these rocks compose about 10% of the English River Subprovince. They were derived by regional anatexis of elastic metasedimentary rocks under low pressure, high-grade metamorphic conditions during the Kenoran orogenic event at about 2681±20Ma. Emplacement of the extensive S-type peraluminous granite masses (~2668Ma) postdated the main regional phase of granulite-grade metamorphism. Dikes, stocks, and small batholiths of this suite, commonly rich in muscovite and black tourmaline and geochemically fractionated, are intrusive on a regional scale into low- to medium-grade metamorphosed supracrustal rocks along the subprovince boundary zones. The peraluminous granites exhibit a ubiquitous, white-weathered surface and possess a distinctive array of accessory minerals including the common presence of biotite and muscovite coupled with any or all of the following: garnet, cordierite, sillimanite, and tourmaline, and rarer occurrences of beryl, topaz, dumortierite, and andalusite. A distinctive mineralogical attribute is the complete absence of hornblende. The combination of these minerals produces high values of the aluminum saturation index relative to other granitic suites in the English River Subprovince. The peraluminous granites associated with granulite-grade zones contain only biotite whereas plutons occurring near subprovince boundary zones or those associated with northeast-striking shear systems contain muscovite as a widespread varietal mineral (Breaks, 1991).

Figure 4: Property geology of the Dagny Lake Property.

5.0 SUMMARY OF EXPLORATION

Due to increasing interest and demand around critical minerals, exploration activity in Canada has started to shift. This has incited recent exploration activities on Exiro's Dagny Cobalt Project.

The 2022 prospecting and drone survey program on the Dagny Cobalt Project was completed from October 14 to October 22, 2022, by an Orix crew consisting of Paige Giddy (Project Geologist) and Aaron Francis (GIS Specialist & UAV Lead). The crew traveled each day to and from Sioux Lookout by jeep.

A summary of the timelines for the various contractors and consultants involved in the execution of this program is provided in Table 2.

5.1 Prospecting

Prospecting consisted of traversing, mapping undocumented exposed outcrops, and revisiting outcrops that returned anomalous cobalt and copper grade from the 2019 prospecting program. At each observed outcrop a UTM coordinate was collected, along with a description of the lithology and magnetic susceptibility measurement recorded in S.I 10⁻³ (Appendix B). A map of traverses and each outcrop visited can be found in Appendix C. On outcrops where alteration and/or mineralization was observed samples were collected. There was also a focus to collect samples from outcrops that are geographically representative of magnetic anomalies to determine the composition of the rock causing this signature. A total of 12 samples were collected with corresponding lithological descriptions (Appendix D) and displayed on a map in Appendix E. Outcrop waypoints were also collected when alteration and mineralization was not present to provide a geographical location of observed outcrops on the property.

There was a focus on determining the source for elevated anomalous elements discovered in lake sediment samples obtained during the 2001 OGS Operation Treasure Hunt. A potential source for increased metals values in lakes could be related to nearby mafic or ultramafic rocks which could be causing high magnetic signatures represented in the Lac Seul geophysical survey. Therefore, an interest in traversing northwest trending magnetic anomalies present in the geophysical surveys was a priority (Figure 5). Terraquest Ltd. was contracted by the Ministry of Northern Development (MNDM) to perform a horizontal magnetic gradient and gamma-ray surveys on Lac Seul Area East in 2017 (Ontario Geological Survey, 2017), which encompasses the Dagny Cobalt Project area. This imagery was used to determine magnetic highs as a prospecting target area for potential mafic or ultramafic rocks.

Magnetic susceptibility readings were also collected at each outcrop using a handheld KT-10 Magnetic Susceptibility Meter. The KT-10 was developed as a joint venture between Terraplus Inc. and Georadis S.R.O to provide accurate and precise magnetic susceptibility measurements from outcrops, drill cores and rock samples. The KT-10 can measure uneven surfaces and is calibrated at the factory with no additional calibration needed. The sequence to take a measurement is as follows, 1. The frequency and amplitude of the oscillator is determined in free air, 2. Oscillator frequency and amplitude are then measured when the coil is placed on a rock sample or outcrop 3. Frequency and amplitude of the oscillator is then measured again, in free air, and then the results are displayed (Terraplus Inc., n.d).

Figure 5: 2022 Prospecting map with north-west trending magnetic highs.

5.2 Drone Survey

The drone survey was commissioned by Exiro to collect high resolution imagery that could aid in identifying outcrops to assist with future field work planning. The survey was completed by Aaron Francis, who holds an Advanced UVA license from Transport Canada, using the WingtraOne, a professional VTOL fixed-wing drone. The WingtraOne is used to capture spatial data and imagery using a Song RXIRII camera sensor. A summary of hardware, operational, and payload specifications can be found in tables 2 to 4.

A total of 2700 hectares was surveyed on the Dagny Cobalt Project which was broken into 19 flight blocks (Figure 6). Flight blocks 1, 2, 3, 4, 7, and 8 were flown on October 14, 2022, blocks 5, 6, 9 and 10 on October 15th, 2022, 11, 12, 13, and 14 on October 19th, 2022, 17, 18, and 19 on October 20th, 2022, and blocks 15 and 16 were flown on October 21st, 2022. All flights were completed within visual line of sight at an average line spacing of approximately 95m and height of 120 m. A summary of the survey flight statistics can be found in table 1. The survey accuracy was established by using the WingtraOne built-in GNSS antenna from Septentrio which ensures superior image geotagging. Images were then processed using PPK and a virtual base station. Data was then processed using Pix4Dmatic photogrammetry software which produced an RGB orthomosaic at 2.2 cm resolution (Appendix F), digital surface model (Appendix G), and a 3D point cloud. An effort to capture high quality data was a priority and therefore a few survey blocks were re-flown due to the initial snow cover on the property.

Figure 6: 2022 Dagny Cobalt Project drone flight areas.

Table 1: WingtraOne Drone Hardware Specifications	,
---	---

Hardware Specifications						
Hardware	Specifications					
Drone type	Tailsitter VTOL (Vertical take-off and landing)					
Max. take-off weight	4.5 kg (9.9 lb)					
Weight (empty)	3.7 kg (8.1 lb)					
Max. payload weight	800 g (1.8 lb)					
Wingspan	125 cm (4.1 ft)					
Dimensions of WingtraOne	$125 \times 68 \times 12$ cm ($4.1 \times 2.2 \times 0.4$ ft) (without middlestand)					
Dimensions of Pilot Box	57 × 37 × 20 cm, 8.6 kg (1.8 × 1.2 × 1.0 ft, 19 lb)					
Battery capacity	99 Wh (a pair of batteries required)					
Battery type	Li-ion, Smart battery technology, UN compliant					
Radio link	8 km (5 mi), bi-directional antennas for optimal range					
Onboard GPS	Double redundancy, using GPS, Glonass and ready for Galileo and Beidou					
Dimensions of travel hardcase	141 × 74 × 26 cm, 16 kg (4.6 × 2.4 × 0.9 ft, 35 lb)					

Table 2: WingtraOne Drone Operational Specifications

Wingtra Drone Operational Specifications					
Operation	Specifications				
Operational cruise speed	16 m/s (35.8 mph)				
Climb speed cruise	6.0 m/s (13.4 mph)				
Wind resistance	up to 45 km/h (12 m/s, 28 mph) in cruise, up to 30 km/h (8 m/s, 18 mph) for landing				
Maximum flight time	55 minutes				
Min. space for take-off and landing	2 m × 2 m (6.6 ft × 6.6 ft)				
Designed temperature range	-20° C to 50° C (-4° F to 122° F)				
Tested and warranted temperature range	e -10° C to 40° C (14° F to 104° F)				
Max. altitude (a.m.s.l.)	3000 m (9800 ft)				
Weather	No precipitation, resists light rain				
Ground Control Points required	No (with PPK option)				
Descent speed cruise	4.0 m/s (8.9 mph)				
Climb and descent speed hover	6.0 m/s (13.4 mph) and 1.0 m/s (2.2 mph)				
Auto-Landing accuracy	< 5 m (< 16 ft)				

Table 3: WingtraOne Drone Payload Specifications

Wingtra Drone Payload Specifications						
Payload	Specifications					
Payload flexibility	Yes, with a single USB-C connector					
Power supply	By flight batteries (12 W)					
Payload protection	Yes, fully integrated into WingtraOne and smooth vertical landing feature					

Available cameras	+ Sony RX1RII / 35 mm lens, full-frame sensor, 42 MP, RGB + Sony QX1 20mm (optional 15 mm Voigtländer lens), APS-C sensor, 20 MP, RGB + Micasense Rededge, 5.5 mm, 5 × 1.2 MP, Multi-spectral camera + FLIR Duo Pro R640, 13 mm, 0.32 MP (thermal), 12 MP (visible), Thermal camera"
-------------------	---

Table 4. Summary of drone hight statistics for the Dagney Cobalt Project survey					
Drone Flight Statistics					
Raw Data Captured	268 GB				
Total Dataset Size	1.19 TB				
Flight Height	120 m				
Pixel Resolution	2.2 cm				
Survey Accuracy	5-10 cm X,Y,Z				

Table 4: Summary of drone flight statistics for the Dagney Cobalt Project survey

5.3 Field Log

The following is a summary log of prospecting and drone surveying that was conducted each day.

Friday October 14, 2022: The weather is partly cloudy and 1°C. Aaron and I spent part of the morning prepping for our first trip to the Dagny property which is located approximately 122km Northeast of Sioux Lookout. We are planning on completing a few drone surveys and prospecting along the southern portion of the property. Upon arriving on site, we noticed partially snow-covered ground with bright yellow Tamarack trees changing colour. Good day for flying the drone so, we focused on that and completed 6 survey blocks. Rock types recorded were granite and gneiss with no magnetic signature and no visible sulfides. No samples collected.

Saturday October 15, 2022: The weather is cloudy with a temperature of $-1 - 0^{\circ}$ C. We left the Airbnb at 8:00am with the intention of prospecting the southern portion of the property. We had a very wet walk through the forest as some of the snow had melted from the trees. We walked along 2 lake shores and ran into a group of hunters whom we approached and explained that we were doing mineral exploration in the area. The vehicle accessible trails were very soft and required 4-wheel drive. We located an outcrop that was sampled during the 2019 prospecting program which returned anomalous results just off Idaho road and took a re-sample with the channel saw (B0157401). The outcrop appears to be a weathered gneiss with no visible sulfides.

Sunday October 16, 2022: The weather is cloudy and -2°C. It snowed all day with an accumulation of approximately 5cm. Started the day preparing for drone surveys, however plans have shifted due to the weather and the inability to fly the drone today. We plan to prospect in an anomalous area that was discovered during the 2019 prospecting program. We located and sampled 3 outcrops with the channel saw in the area that returned the highest grades from the 2019 prospecting program. Only small sections of outcrop were exposed some of which were very oxidized, silicified, and contained visible

sulfides (pyrite and chalcopyrite). We walked approximately 2km with the saw and fuel to access this site and sampled with the channel saw (B0157402-B0157404).

Monday October 17, 2022: The weather is cloudy with light snow and -6 to -4°C. Cooler temperatures today as we plan to prospect along magnetic highs in the southern block of the property. We also intend to investigate access to the upper portion of the property by way of an old logging trail that runs north along the west side of the property. The bush was snow covered and Aaron took the lead on navigating us along the magnetic high trend while I tested numerous outcrops for a change in magnetism. I took 3 samples (B0157405-B0157408) along the magnetic trend to help identify the composition of the rock causing the magnetic anomaly. Outcrops were recorded as granite and gneiss. Tough walking through snow and slippery outcrops.

Tuesday October 18, 2022: The weather is cloudy and -4°C. Leaving the Airbnb around 8am and we drive to Sioux Lookout to get gas. We are investigating a long magnetic high and a few anomalous samples from the 2019 prospecting program located in the central portion of the property. We walked through thick bush sinking up to the top of our boots to try and identify magnetic outcrops along the magnetic high. We found an outcrop that seemed to be very magnetic in sections and granitic in composition. We walked 5.5km roundtrip and stopped at anomalous outcrops identified during the 2019 program where we had lunch at the lake. The outcrop was very oxidized, and I tried to obtain a fresh sample however, it was difficult to get away from the oxidation. The rock appeared to be granitic or gneissic in composition with trace disseminated pyrite in some sections. I took 3 additional samples (B0157409-B0157411) in this area and the sun peaked through for a few minutes. Very tough walking today. The second portion of the day was spent walking south of the highest-grade samples taken on the property in 2019 to try and identify more outcrop with visible sulfides.

Wednesday October 19, 2022: The weather is cloudy and -3 to 0°C. Since the weather is decent today, we will be focusing on completing drone surveys on the northern portion of the property. The access trail is in good shape with minor overgrowth. Walking is relatively easy, and we hiked 11km today to complete 4 surveys. The forest is still partially snow covered. I walked along a few lake shores looking for outcrops while the surveys were in motion. There were little to no outcrop in this area. We arrived back at the Airbnb at 6:30pm. No sample collected.

Thursday October 20, 2022: The weather is sunny with partial cloud and -3°C. We are planning to access the northwest portion of the property via old logging roads. The main road heading north along the west side of the property is in very good condition, however the offshoots that head west east are quite overgrown. We will travel as far as we can and then walk from that point. We began the first drone survey at 12pm in an open boggy area with full sun. Spotted a hawk on takeoff and heard a moose call in the distance. I logged a few outcrops such as granite and gneiss with no visible sulfides. No samples collected.

Friday October 21, 2022: The weather is partly cloudy and 6°C. We left the Airbnb at 8am on route to Sioux Lookout to print a few documents. Very nice day, the weather has improved quite a bit. We are focusing on drone surveys along the middle portion of the property today and prospecting in the same area. The first outcrop we arrived at was a good spot to fly the drone. Aaron had to wait about 30 minutes for the cloud to level. I continued to explore the area and found numerous outcrops of granite or gneiss with no visible sulfides or increase in magnetism. Aaron was able to fly 2 survey blocks from this location. We left this initial location around 2pm to go back to Idaho road and re-fly a survey that

initially had quite a bit of snow cover. The wind has picked up which has increased the flying time and Aaron had to make multiple battery changes to complete the survey. We arrived back at the Airbnb just after dark. No sample collected.

Saturday October 22, 2022: The weather is cloudy and 7°C. We left the Airbnb at 8:15am. It is a very mild day. We are planning to re-survey a few blocks that initially had quite a bit of snow cover to ensure we have acceptable imagery for identifying outcrops in the future. The initial imagery was 80% snow covered. Snow has now all cleared with the mild weather. I will continue to prospect a few areas off the main road while Aaron completes the surveys. I took a sample (B01547412) of granite (?) that showed an increase in magnetism and was along one of the magnetic anomalies identified in the geophysical survey. I found a few more granitic outcrops in the area with no magnetism or visible sulfides. This was our last day in the field

6.0 SAMPLE PREPARATION, ANALYSES AND SECURITY

6.1 Sample Preparation

A total of 12 rock samples with visible sulphide mineralization or interesting features were collected from outcrops and boulders within the Dagny Cobalt Project property. Samples were collected using a hammer and geotool or channel saw which were then placed in plastic bags labelled with a unique sample number and sample tags. A sample description and site location, obtained from a handheld GPS, were noted in field books, and later entered into an Excel database. Pre-numbered sampling booklets were used, and all samples collected were placed in industry standard plastic bags with corresponding sample numbers. Sample descriptions include lithology, mineralization, and alteration that was present (Appendix D). Location maps of the collected samples are provided above (Appendix E).

6.2 Sample Security

The sample batches were transported from the field to the rental accommodations each day, where the samples were stored until the end of the program. Then the samples were transported by the field crew to the ALS Minerals facility located in Thunder Bay, Ontario. Following the preparation work, samples were then forwarded onto ALS Minerals laboratory in North Vancouver, British Columbia. The samples were submitted while demobilizing on October 24th, 2022.

6.3 Sample Analyses

The sample preparation consists of drying, as required, and crushing to 70% less than 2 mm or better using a jaw and/or roller crusher. The crushed sample was split using a riffle splitter and an approximately 1000 g split was pulverized to 85% less than 75 microns or better using a ring and puck grinding mill. The pulverized splits of the samples were transported by ALS Minerals to their facility in North Vancouver for analyses.

All samples were analyzed by fire assay, PGM-MS24, a technique that requires a 50g aliquot. Homogenized and pulverized samples are mixed with flux composed of PbO and SiO2 with variable amounts of borax, soda ash and other reagents. The flux and sample are mixed, then heated at high temperature (>1,000°C) to decompose rock lattices and allow precious metals within the sample to be collected into a lead button. The button is placed in a porous cupel and heated again in an oxidising environment to convert lead to lead oxide that is absorbed into the cupel, leaving the precious metals behind as a doré bead or prill. The gold, platinum and palladium content of the pill is then determined spectroscopically.

Samples were analyzed for multiple elements using a 4 acid near total digestion method, ME-ICP61. The sample is digested in a mixture of nitric, perchloric and hydrofluoric acids. Perchloric acid is added to assist oxidation of the sample and to reduce the possibility of mechanical loss of sample as the solution is evaporated to moist salts. Elements are determined by inductively coupled plasma – atomic emission spectroscopy (ICP-AES). This technique provided a suite of trace elements that can be utilized for pathfinder element interpretations; it also provided all base-metal elements, allowing for a full assessment of the samples' economic potential.

The analytical certificates are included in Appendix H, where the detection limits for this method can be located. A four acid digestion is able to dissolve most minerals; however, the term "near-total" is used as the sample matrix properties may dictate what elements are quantitatively extracted.

6.4 Data Verification

ALS Minerals has internal QAQC samples, and these were the only QAQC samples used (Appendix H). The nature of grab sampling and objective for the program to identify anomalous material meant that the internal laboratory QAQC material is sufficient for this program. Any anomalous values should be followed up with additional channel samples to better test the nature of the mineralization, at which point a rigorous QAQC program should be implemented.

6.5 Sample Results

Table 4 highlights assays for selected elements from the 2022 prospecting program. The best sample was B0157402 resulting in 71.9 ppm Co and 438 ppm Cu. This sample was collected as a follow-up to sample S120919 from the 2019 prospecting program. The sample was collected from a flat-lying outcrop with visible sulphides exposed along an old logging trail. Assay certificates for all samples are included in Appendix B.

Sample	Ag	Co	Cr	Cu	Ni
B0157401	0.08	18.6	128	48.8	42.3
B0157402	0.66	71.9	99	438	66.5
B0157403	0.16	17.9	106	60.6	21.4
B0157404	0.04	18.2	145	37.4	40.9
B0157405	0.03	11.7	116	20.3	39.1
B0157406	0.03	17.8	172	19.6	51.7
B0157407	0.06	18.6	144	17.9	44.2
B0157408	0.05	5.1	26	3.7	9
B0157409	0.69	37.1	160	363	63
B0157410	0.2	2.2	44	52.9	1.9
B0157411	0.14	3.2	19	62	5.3
B0157412	0.05	3.2	15	2	4.3

Table 5: Sample with Ag, Co, Cr, Cu and Ni assays (ppm)

7.0 CONCLUSIONS AND RECOMMENDATIONS

This report documents the exploration activities completed during 2022 on Exiro's Dagny Cobalt Project, which resulted in the collection of additional samples for analytical analysis and high-resolution imagery.

A total of 12 samples were taken and submitted for assay. The focus was to re-sample anomalous areas identified during the 2019 prospecting program, collect rock samples along magnetic highs detected in the Lac Seul East geophysical survey, and to try and identify a source for elevated lake sediment samples taken during the 2001 OGS Operation Treasure Hunt. The high-resolution imagery was collected during 19 flights using the WingtraOne, a professional VTOL fixed-wing drone. 2700 hectares of land was covered during the survey producing a RBG orthomosaic, digital elevation model, and a 3D point cloud.

The best sample, B0157402, was taken as a follow-up to a sample obtained during the 2019 prospecting program, confirming the presence of elevated cobalt and copper. Only a small flat-lying portion of the outcrop in which the sample was taken was exposed at the surface. However, other small flat-lying outcrops were visible along strike but were lacking silicification and mineralization as observed in sample B0157402. Stripping and exposing more of this outcrop could provide additional opportunity to collect samples and better understand the geological controls on elevated cobalt and copper values in this area.

Based on the preliminary information available exploration is recommended in 2023. As mentioned above stripping and removing ground cover near the elevated sample area is recommended to provide increased outcrop exposure for collecting additional geological information and samples. It is also recommended that the high-resolution imagery be used as an aid to identify outcrops and better plan future prospecting.

A final recommendation would be to further investigate the anomalous lake sediment samples and to complete a detailed electromagnetic geophysical survey. A property scale electromagnetic geophysical survey in addition to the high-resolution imagery could help delineate rock exposure and properties in poorly exposed areas and to help identify further targets.

- AGP Mining Consultants Inc., 2018: Amended NI43-101 Resource Estimate for Werner Lake Cobalt Project, Werner Lake, Ontario Canada.
- Breaks, F.W., 1991: English River Subprovince, Geology of Ontario, Ontario Geological Survey Special Vol. 4, p. 239-277.
- Government of Canada, (2022 09 15): Canada's Critical Minerals Strategy: Discussion Paper. <u>https://www.canada.ca/en/campaign/critical-minerals-in-canada/canada-critical-minerals-</u> <u>strategy-discussion-paper.html</u>
- Harper G., 2011: Werner Lake Mineral Belt Properties, Kenora Mining Division, Ontario, Report for Puget.

Ontario Geological Survey, 2019: Ontario Airborne Geophysical Surveys Aeromagnetic Gradiometer and Gramma-Ray Spectrometric Data Lac Seul East Area, Ontario Geological Survey Geophysical Data Set 1084.

- Ontario Geological Survey, 2001: Sioux Lookout-Bamaji Lake area lake sediment survey, Operation Treasure Hunt, Ontario Geological Survey Open File Report 6069, 115pp.
- Singh, J., 2020: Report on Prospecting of Dagny Lake Property As Completed by Softrock Minerals Ltd., Dagny Lake, Ontario Canada.
- Terraplus Inc., (n.d): KT-10 v2 User's Guide: Magnetic Susceptibility, Conductivity and Combined Magnetic Susceptibility/ Conductivity Meter, Richmond Hill, Ontario: Author.

9.0 STATEMENT OF QUALIFICATIONS

I, Paige Giddy, B.Sc., of Toronto do hereby certify that:

- 1) I am a Project Geologist for Orix Geoscience 2018 Inc., with a business address at 25 Adelaide Street East, Suite 1400, Toronto, On, M5C 3A1.
- 2) I graduated with a B.Sc. (Geology) degree in 2009 from Acadia University.
- 3) I have written this report titled '2022 Prospecting & Drone Survey' for Exiro Minerals Corp. dated November 20th, 2022.

Paige Giddy, B.Sc., Project Geologist, Orix Geoscience 2018 Inc.

Appendix A: Land Tenure Information Dagny Cobalt Project 2022

Claim Number	Tenure Type	Issue Date	Anniversary Date	Extension Date	Township	Holder
524851	SCMC	2018-06-20	2022-06-20	2023-06-20	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
524852	SCMC	2018-06-20	2022-06-20	2023-06-20	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
524853	SCMC	2018-06-20	2022-06-20	2023-06-20	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
524854	SCMC	2018-06-20	2022-06-20	2023-06-20	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
524855	SCMC	2018-06-20	2022-06-20	2023-06-20	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
524856	SCMC	2018-06-20	2022-06-20	2023-06-20	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
524857	SCMC	2018-06-20	2022-06-20	2023-06-20	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
524858	SCMC	2018-06-20	2022-06-20	2023-06-20	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
524859	SCMC	2018-06-20	2022-06-20	2023-06-20	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
524860	SCMC	2018-06-20	2022-06-20	2023-06-20	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
524861	SCMC	2018-06-20	2022-06-20	2023-06-20	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
524862	SCMC	2018-06-20	2022-06-20	2023-06-20	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
524863	SCMC	2018-06-20	2022-06-20	2023-06-20	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
524864	SCMC	2018-06-20	2022-06-20	2023-06-20	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
524865	SCMC	2018-06-20	2022-06-20	2023-06-20	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
524866	SCMC	2018-06-20	2022-06-20	2023-06-20	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
524867	SCMC	2018-06-20	2022-06-20	2023-06-20	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
524868	SCMC	2018-06-20	2022-06-20	2023-06-20	Dagny Lake Area	(50) FXIRO MINERALS CORP., (50) FMX Properties (Canada) Inc.
524869	SCMC	2018-06-20	2022-06-20	2023-06-20	Dagny Lake Area	(50) FXIRO MINERALS CORP., (50) FMX Properties (Canada) Inc.
524870	SCMC	2018-06-20	2022-06-20	2023-06-20	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (canada) Inc.
524871	SCMC	2018-06-20	2022-06-20	2023-06-20	Dagny Lake Area	(50) EXIRO MINERALS CORP. (50) EMX Properties (canada) Inc.
524872	SCMC	2018-06-20	2022-06-20	2023-06-20	Dagny Lake Area	(50) EXIRO MINERALS CORP. (50) EMX Properties (canada) Inc.
524873	SCMC	2018-06-20	2022-06-20	2023-06-20	Dagny Lake Area	(50) EXIRO MINERALS CORP. (50) EMX Properties (canada) Inc.
524874	SCMC	2018-06-20	2022-06-20	2023-06-20	Dagny Lake Area	(50) EXIRO MINERALS CORP. (50) EMX Properties (canada) Inc.
524875	SCMC	2018-06-20	2022-06-20	2023-06-20	Dagny Lake Area	(50) EXIRO MINERALS CORP. (50) EMX Properties (canada) Inc.
524876	SCMC	2018-00-20	2022-00-20	2023-00-20	Dagny Lake Area	(50) EXIRO MINERALS CORP. (50) EMX Properties (Canada) Inc.
524877	SCMC	2018-06-20	2022-06-20	2023-06-20	Dagny Lake Area	(50) EXIRO MINERALS CORP. (50) EMX Properties (canada) Inc.
524077	SCMC	2018-06-20	2022-06-20	2023-06-20	Dagny Lake Area	(50) EXIRO MINERALS CORP. (50) EMX Properties (canada) Inc.
524879	SCMC	2018-00-20	2022-00-20	2023-00-20	Dagny Lake Area	(50) EXIRO MINERALS CORP. (50) EMX Properties (Canada) Inc.
524875	SCMC	2018-00-20	2022-00-20	2023-00-20	Dagny Lake Area	(50) EXIRO MINERALS CORP. (50) EMX Properties (Canada) Inc.
524000	SCMC	2018-00-20	2022-00-20	2023-00-20	Dagny Lake Area	(50) EXINO MINERALS CORP. (50) ENX Properties (Canada) Inc.
524001	SCMC	2018-00-20	2022-00-20	2023-00-20	Dagny Lake Area	(50) EXINO MINERALS CORP. (50) EMX Properties (Canada) Inc.
524002	SCIVIC	2018-00-20	2022-00-20	2023-00-20	Dagny Lake Area	(50) EXINO MINERALS CORP. (50) ENX Properties (Canada) Inc.
524005	SCIVIC	2018-00-20	2022-06-20	2023-00-20	Dagny Lake Area	(50) EXINO MINERALS CORP., (50) ENX Properties (Canada) Inc.
524004	SCIVIC	2010-00-20	2022-06-20	2023-00-20	Dagny Lake Area	(50) EXINO MINERALS CORP., (50) ENX Properties (Canada) Inc.
524010	SCIVIC	2018-00-20	2022-06-20	2023-00-20	Dagny Lake Area	(50) EXINO MINERALS CORP., (50) ENX Properties (Canada) Inc.
524817	SCIVIC	2018-00-20	2022-06-20	2023-00-20	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) ENX Properties (Canada) Inc.
524818	SCIVIC	2018-06-20	2022-06-20	2023-06-20	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
524819	SCIVIC	2018-06-20	2022-06-20	2023-06-20	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
524820	SCIVIC	2018-06-20	2022-06-20	2023-06-20	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) inc.
524821	SCMC	2018-06-20	2022-06-20	2023-06-20	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
524822	SCMC	2018-06-20	2022-06-20	2023-06-20	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
524823	SCMC	2018-06-20	2022-06-20	2023-06-20	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
524824	SCMC	2018-06-20	2022-06-20	2023-06-20	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
524825	SCMC	2018-06-20	2022-06-20	2023-06-20	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
524826	SCMC	2018-06-20	2022-06-20	2023-06-20	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
524827	SCMC	2018-06-20	2022-06-20	2023-06-20	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
524828	SCMC	2018-06-20	2022-06-20	2023-06-20	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
524829	SCMC	2018-06-20	2022-06-20	2023-06-20	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
524830	SCMC	2018-06-20	2022-06-20	2023-06-20	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
524831	SCMC	2018-06-20	2022-06-20	2023-06-20	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.

524832	SCMC	2018-06-20	2022-06-20	2023-06-20	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
524833	SCMC	2018-06-20	2022-06-20	2023-06-20	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
524834	SCMC	2018-06-20	2022-06-20	2023-06-20	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
524835	SCMC	2018-06-20	2022-06-20	2023-06-20	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
524836	SCMC	2018-06-20	2022-06-20	2023-06-20	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
524837	SCMC	2018-06-20	2022-06-20	2023-06-20	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
524838	SCMC	2018-06-20	2022-06-20	2023-06-20	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
524839	SCMC	2018-06-20	2022-06-20	2023-06-20	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
524840	SCMC	2018-06-20	2022-06-20	2023-06-20	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
524841	SCMC	2018-06-20	2022-06-20	2023-06-20	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
524842	SCMC	2018-06-20	2022-06-20	2023-06-20	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
524843	SCMC	2018-06-20	2022-06-20	2023-06-20	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
524844	SCMC	2018-06-20	2022-06-20	2023-06-20	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
524845	SCMC	2018-06-20	2022-06-20	2023-06-20	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
524846	SCMC	2018-06-20	2022-06-20	2023-06-20	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
524847	SCMC	2018-06-20	2022-06-20	2023-06-20	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
524848	SCMC	2018-06-20	2022-06-20	2023-06-20	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
524849	SCMC	2018-06-20	2022-06-20	2023-06-20	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
524850	SCMC	2018-06-20	2022-06-20	2023-06-20	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
530427	SCMC	2018-09-01	2022-09-01	2023-09-01	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
530428	SCMC	2018-09-01	2022-09-01	2023-09-01	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
530404	SCMC	2018-09-01	2022-09-01	2023-09-01	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
530405	SCMC	2018-09-01	2022-09-01	2023-09-01	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
530406	SCMC	2018-09-01	2022-09-01	2023-09-01	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
530407	SCMC	2018-09-01	2022-09-01	2023-09-01	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
530408	SCMC	2018-09-01	2022-09-01	2023-09-01	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
530409	SCMC	2018-09-01	2022-09-01	2023-09-01	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
530410	SCMC	2018-09-01	2022-09-01	2023-09-01	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
530411	SCMC	2018-09-01	2022-09-01	2023-09-01	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
530412	SCMC	2018-09-01	2022-09-01	2023-09-01	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
530413	SCMC	2018-09-01	2022-09-01	2023-09-01	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
530414	SCMC	2018-09-01	2022-09-01	2023-09-01	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
530415	SCMC	2018-09-01	2022-09-01	2023-09-01	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
530416	SCMC	2018-09-01	2022-09-01	2023-09-01	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
530417	SCMC	2018-09-01	2022-09-01	2023-09-01	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
530418	SCMC	2018-09-01	2022-09-01	2023-09-01	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
530419	SCMC	2018-09-01	2022-09-01	2023-09-01	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
530420	SCMC	2018-09-01	2022-09-01	2023-09-01	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
530421	SCMC	2018-09-01	2022-09-01	2023-09-01	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
530422	SCMC	2018-09-01	2022-09-01	2023-09-01	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
530423	SCMC	2018-09-01	2022-09-01	2023-09-01	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
530424	SCMC	2018-09-01	2022-09-01	2023-09-01	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
530425	SCMC	2018-09-01	2022-09-01	2023-09-01	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
530426	SCMC	2018-09-01	2022-09-01	2023-09-01	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
530458	SCMC	2018-09-01	2022-09-01	2023-09-01	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
530373	SCMC	2018-09-01	2022-09-01	2023-09-01	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
530374	SCMC	2018-09-01	2022-09-01	2023-09-01	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
530375	SCMC	2018-09-01	2022-09-01	2023-09-01	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
530376	SCMC	2018-09-01	2022-09-01	2023-09-01	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
530377	SCMC	2018-09-01	2022-09-01	2023-09-01	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
530378	SCMC	2018-09-01	2022-09-01	2023-09-01	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
530380	SCMC	2018-09-01	2022-09-01	2023-09-01	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.

530381	SCMC	2018-09-01	2022-09-01	2023-09-01	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
530382	SCMC	2018-09-01	2022-09-01	2023-09-01	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
530383	SCMC	2018-09-01	2022-09-01	2023-09-01	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
530384	SCMC	2018-09-01	2022-09-01	2023-09-01	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
530385	SCMC	2018-09-01	2022-09-01	2023-09-01	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
530386	SCMC	2018-09-01	2022-09-01	2023-09-01	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
530387	SCMC	2018-09-01	2022-09-01	2023-09-01	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
530388	SCMC	2018-09-01	2022-09-01	2023-09-01	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
530389	SCMC	2018-09-01	2022-09-01	2023-09-01	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
530390	SCMC	2018-09-01	2022-09-01	2023-09-01	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
530391	SCMC	2018-09-01	2022-09-01	2023-09-01	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
530392	SCMC	2018-09-01	2022-09-01	2023-09-01	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
530393	SCMC	2018-09-01	2022-09-01	2023-09-01	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
530394	SCMC	2018-09-01	2022-09-01	2023-09-01	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
530395	SCMC	2018-09-01	2022-09-01	2023-09-01	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
530396	SCMC	2018-09-01	2022-09-01	2023-09-01	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
530397	SCMC	2018-09-01	2022-09-01	2023-09-01	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
530398	SCMC	2018-09-01	2022-09-01	2023-09-01	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
530399	SCMC	2018-09-01	2022-09-01	2023-09-01	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
530400	SCMC	2018-09-01	2022-09-01	2023-09-01	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
530401	SCMC	2018-09-01	2022-09-01	2023-09-01	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
530402	SCMC	2018-09-01	2022-09-01	2023-09-01	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
530403	SCMC	2018-09-01	2022-09-01	2023-09-01	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
530451	SCMC	2018-09-01	2022-09-01	2023-09-01	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
530453	SCMC	2018-09-01	2022-09-01	2023-09-01	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
530454	SCMC	2018-09-01	2022-09-01	2023-09-01	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
530455	SCMC	2018-09-01	2022-09-01	2023-09-01	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
530450	SCMC	2018-09-01	2022-09-01	2023-09-01	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
530456	SCMC	2018-09-01	2022-09-01	2023-09-01	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
530448	SCMC	2018-09-01	2022-09-01	2023-09-01	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
530449	SCMC	2018-09-01	2022-09-01	2023-09-01	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
530452	SCMC	2018-09-01	2022-09-01	2023-09-01	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
530457	SCMC	2018-09-01	2022-09-01	2023-09-01	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.

Appendix B: Outcrop Waypoints Dagny Cobalt Project 2022

Date	Easting	Northing	Sample ID	Magnetic Susceptibility	Ground Type	Ground Condition	Lithology	Comment
2022- 10-14	602074	5598094		0.081	Bedrock	Wet	Granite	Coarse-grained, felsic with dominantly quartz and feldspar.
2022- 10-14	601209	5599136		0.396	Bedrock	Dry	Granite or Gneiss	Weather outcrop. Coarse- grained. Might be gneissic.
2022- 10-14	599012	5599350		0.449	Bedrock	Dry	Granite or Gneiss	Weather outcrop. 90% felsic.
2022- 10-14	599136	5599741		0.13	Bedrock	Dry	Granite	Pink and very coarse-grained with quartz and plagioclase. Plagioclase laths 1-4mm.
2022- 10-15	598981	5599620		0.222	Bedrock	Wet	Granite	Partially oxidized outcrop. No visible sulfides.
2022- 10-15	600154	5599362	B0157401	0.176	Bedrock	Wet	Gneiss	Pale grey, black, and red, medium-grained, granite (?). Dominantly quartz (?) ~10% biotite and garnet.
2022- 10-16	600287	5601037	B0157402	0.455	Bedrock	Wet	Mafic (Highly silicified)	Dark grey to pale grey, strongly silicified mafic rock (?). 5% disseminated pyrite and 2-4% blebby chalcopyrite. 1 bleb of blueish-grey sulfide on fresh surface (cobaltite?). Strongly oxidized. Flat laying outcrop.
2022- 10-16	600285	5601033	B0157403	0.32	Bedrock	Wet	Silicified Granite (?)	White, black, and red, medium to coarse-grained granite. 70% quartz, 10% biotite, garnets, and trace pyrite (?). Minor oxidation.
2022- 10-16	600196	5601050	B0157404	0.201	Bedrock	Wet	Granite	Pale grey, black, and rusty medium to coarse-grained, granite. Dominantly quartz with ~10-20% biotite. Trace pyrite. Moderately oxidized.
2022- 10-16	600748	5601090		0.131	Bedrock	Wet	Granite	White, pink, black and coarse- grained. Dominantly plagioclase with approximately 20% quartz and 5% mafic mineral (biotite?).
2022- 10-16	600818	5600894		0.288	Bedrock	Wet	Gneiss	White to dark grey, fine- to coarse-grained gneissic layers cm to m-scale. Quartz, feldspar, and biotite. Az 45°.
2022- 10-17	600847	5600430		0.246	Bedrock	Wet	Granite	Very dark grey, coarse-grained and weathered.
2022- 10-17	600695	5600507		0.211	Bedrock	Wet	Granite	Very dark grey, coarse-grained and weathered.
2022- 10-17	600660	5600573	B0157405	0.134	Bedrock	Wet	Granite	White to pale-grey, black, and rusty, coarse- to very coarse- grained, granite. Dominantly feldspar with ~10% quartz and up to 20% biotite. Moderately oxidized. Magnetic high representation sample.
2022- 10-17	600972	5600332		0.508	Bedrock	Wet	Granite	Oxidized. White to pale grey with plagioclase, quartz, and biotite.

2022- 10-17	601169	5600282		0.265	Bedrock	Wet	Granite	White to pale-grey, coarse- grained with 70% plagioclase, 20% quartz, and 5% biotite.
2022- 10-17	601237	5600179	B0157406	0.239	Bedrock	Wet	Granite	Rusty to white, and black, coarse-grained, granite. Strongly oxidized. Quartz, feldspar and biotite (difficult to get a good estimation). Lake shore and magnetic high representation sample.
2022- 10-17	601524	5598548		2.92	Bedrock	Wet	Granite	Weathered, dark grey, coarse- grained, plagioclase, quartz, and biotite.
2022- 10-17	601852	5598434	B0157407	0.959	Bedrock	Dry	Gneiss (?)	Grey, black, and red, medium- grained, granite. Dominantly quartz ~90%, 5% biotite, and 5% garnet. Representation sample along magnetic high.
2022- 10-17	601812	5598351	B0157408	4.34	Bedrock	Dry	Granite	Pale grey, medium-grained, granite. Dominantly quartz with ~5% biotite. Magnetic high representation sample (magnetic signature of 4.34). Outcrop was at lake shore where sediment samples returned anomalous grade.
2022- 10-18	600223	5601844		0.251	Bedrock	Wet	Granite	Very difficult to determine rock characteristics. Snow covered and weathered.
2022- 10-18	599289	5602347		43	Bedrock	Wet	Gneiss	Pink to black, coarse-grained, likely gneissic. Felsic and mafic banding (?). Dominantly quartz (?) with feldspar. Varying degrees of magnetic susceptibility ranging from 5.34, 18.2, 25.7, 43 in one spot on outcrop. The rest of the outcrop was weakly magnetic.
2022- 10-18	599197	5602352		0.289	Bedrock	Wet	Granite	Pink to pale grey, coarse- grained, dominantly feldspar with quartz and biotite. Weathered outcrop.
2022- 10-18	599008	5602396	B0157409	3.41	Bedrock	Wet	Granite or Gneiss	Dark grey, medium-grained, granite or gneiss. Quartz, mica (?) reflective mineral. Oxidized on surface. Trace pyrite(?)
2022- 10-18	598995	5602384	B0157410	1.19	Bedrock	Wet	Granite or Gneiss	White, red (oxidized), black, medium-grained Granite or Gneiss. Quartz ~20%(?), feldspar, and ~5% biotite
2022- 10-18	598900	5602409	B0157411	0.26	Bedrock	Wet	Granite or Gneiss	Pale grey, white, medium- to coarse-grained, granite or gneiss. ~60-70% quartz, feldspar and <1% biotite. Strongly oxidized on surface.
2022- 10-18	600299	5600793		0.148	Bedrock	Wet	Granite	Weathered outcrop. Dark coloured. Feldspar, quartz, and biotite.

2022- 10-19	597823	5603155		0.431	Bedrock	Dry	Granite	Dark grey to red, coarse- grained. Dominantly feldspar with ~20% quartz and 5% biotite. Patchy oxidation. No visible sulfides.
2022- 10-19	600112	5602510		0.295	Bedrock	Dry	Gneiss	White to black, medium- to coarse-grained. Dominantly feldspar with 25-30% quartz and 1% red garnets. Felsic banding m-scale with cm-scale mafic banding. Very patchy oxidation.
2022- 10-20	595033	5606674		0.328	Bedrock	Wet	Gneiss	White to pale-grey, medium- to coarse-grained. Dominantly feldspar with 20% quartz +/- biotite. Minor oxidation.
2022- 10-20	594510	5606636		0.318	Bedrock	Dry	Granite (?)	Strongly weathered. Minor oxidation. Quartz and plagioclase (?).
2022- 10-21	596628	5603895		0.095	Bedrock	Dry	Gneiss	White, pale grey, and pink, coarse- to very coarse-grained. Dominantly feldspar, 20% quartz, and 5% biotite (?). Banded in sections.
2022- 10-21	596711	5603587		0.277	Bedrock	Dry	Granite (?)	White, pale grey, and black, coarse- to very coarse-grained, massive. Dominantly feldspar, 20% quartz, and 5% biotite.
2022- 10-22	601492	5598444	B0154412	4.09	Bedrock	Dry	Granite	White, pale grey, to black, medium-grained, granite. 60- 70% quartz, feldspar, and 5-10% biotite. Rock showed slight magnetic signature of ~4.09. This sample was taken within the magnetic high.
2022- 10-22	601157	5600615		0.319	Bedrock	Dry	Granite (?)	Dark brown, massive, and weathered. Quartz and plagioclase.
2022- 10-22	601283	5601105		0.204	Bedrock	Dry	Granite (?)	Dark brown, massive, and weathered. Quartz, plagioclase and biotite.

Appendix C: Prospecting Outcrops & Traverses Area 1 to 16 2022

599,200

0.3

602,000

Appendix D: Collected Samples Dagny Cobalt Project 2022

Date	Sample ID	Easting	Northing	Sample Type	Rock Type	Description
2022-10-15	B0157401	600154	5599362	Channel	Gneiss or Granite	Pale grey, black, and red, medium-grained, granite (?). Dominantly quartz (?) ~10% biotite and garnets.
2022-10-16	B0157402	600287	5601037	Channel	Silicified Sheared	Dark grey to pale grey, strongly silicified mafic rock (?). 5% disseminated pyrite and 2-4% blebby chalcopyrite. 1 bleb of blueish-grey sulfide on fresh surface (cobaltite?). Strongly oxidized. Flat laying outcrop.
2022-10-16	B0157403	600285	5601033	Channel	Granite	White, black, and red, medium to coarse- grained granite. 70% quartz, 10% biotite, garnets, and trace pyrite (?). Minor oxidation.
2022-10-16	B0157404	600196	5601050	Channel	Granite	Pale grey, black, and rusty medium to coarse- grained, granite. Dominantly quartz with ~10- 20% biotite. Trace pyrite. Moderately oxidized.
2022-10-17	B0157405	600660	5600573	Grab	Granite	White to pale-grey, black, and rusty, coarse- to very coarse-grained, granite. Dominantly feldspar with ~10% quartz and up to 20% biotite. Moderately oxidized. Magnetic high representation sample.
2022-10-17	B0157406	601237	5600179	Grab	Granite	Rusty to white, and black, coarse-grained, granite. Strongly oxidized. Quartz, feldspar and biotite (difficult to get a good estimation). Lake shore and magnetic high representation sample.
2022-10-17	B0157407	601852	5598434	Grab	Granite or Gneiss	Grey, black, and red, medium-grained, granite. Dominantly quartz ~90%, 5% biotite and 5% garnet. Rep sample along mag high.
2022-10-17	B0157408	601812	5598351	Grab	Granite	Pale grey, medium-grained, granite. Dominantly quartz with ~5% biotite. Magnetic high representation sample (Magnetic signature of 4.34). Outcrop was at lake shore where sediment samples returned anomalous grade.
2022-10-18	B0157409	599008	5602396	Grab	Granite or Gneiss	Dark grey, medium-grained, granite or gneiss. Quartz, mica (?) reflective mineral. Oxidized on surface. Trace pyrite(?)
2022-10-18	B0157410	598995	5602384	Grab	Granite or Gneiss	White, red (oxidized), black, medium-grained Granite or Gneiss. Quartz ~20%(?), feldspar, and ~5% biotite
2022-10-18	B0157411	598900	5602409	Grab	Granite	Pale grey, white, medium- to coarse-grained, granite or gneiss. ~60-70% quartz, feldspar and <1% biotite. Strongly oxidized on surface.
2022-10-22	B0157412	601492	5598444	Grab	Granite	White, pale grey, to black, medium-grained, granite. 60-70% quartz, feldspar, and 5-10% biotite. Rock showed slight magnetic signature of ~4.09. This sample was taken within the magnetic high.

Appendix E - Prospecting Sample Area 1 to 5 2022

N

Project

2

3

5

0.3

2022-11-09

600,000

600,400

5599200

600000

0.3

601,600

602,000

5598400

Appendix F - RGB Orthomosaic

Appendix G - Digital Surface Model

Appendix H - Analytical Certificates of Analysis & QAQC

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: EXIRO MINERALS 25 ADELAIDE STREET EAST SUITE 1400 TORONTO ON M5C 3A1

Page: 1 Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 15-NOV-2022 This copy reported on 17-NOV-2022 Account: CGAKUT

QC CERTIFICATE TB22305092

This report is for 12 samples of Rock submitted to our lab in Thunder Bay, ON,	
Canada on 24-OCT-2022.	
The following have access to data associated with this certificate:	

KYLIE COVENTRY BILL SPICER	CRAIG FITCHETT	SYDNEY RAMNATH
-------------------------------	----------------	----------------

	SAMPLE PREPARATION
ALS CODE	DESCRIPTION
WEI-21	Received Sample Weight
LOG-21	Sample logging – ClientBarCode
DRY-22	Drying – Maximum Temp 60C
CRU-31	Fine crushing – 70% <2mm
CRU-QC	Crushing QC Test
PUL-QC	Pulverizing QC Test
SPL-21	Split sample – riffle splitter
PUL-32	Pulverize 1000g to 85% < 75 um

	ANALYTICAL PROCEDUR	ES
ALS CODE	DESCRIPTION	INSTRUMENT
ME-MS61	48 element four acid ICP-MS	
Hq-MS42	Trace Hg by ICPMS	ICP-MS
PGM-MS24	Pt, Pd and Au 50g FA ICP-MS	ICP-MS

This is the Final Report and supersedes any preliminary report with this certificate number.Results apply to samples as submitted.All pages of this report have been checked and approved for release. ***** See Appendix Page for comments regarding this certificate *****

Signature: Saa Traxler, Director, North Vancouver Operations

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: EXIRO MINERALS 25 ADELAIDE STREET EAST SUITE 1400 TORONTO ON M5C 3A1

Page: 2 - A Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 15-NOV-2022 Account: CGAKUT

Sample Description	Method Analyte Units LOD	ME-MS61 Ag ppm 0.01	ME-MS61 Al % 0.01	ME-MS61 As ppm 0.2	ME-MS61 Ba ppm 10	ME-MS61 Be ppm 0.05	ME-MS61 Bi ppm 0.01	ME-MS61 Ca % 0.01	ME-MS61 Cd ppm 0.02	ME-MS61 Ce ppm 0.01	ME-MS61 Co ppm 0.1	ME-MS61 Cr ppm 1	ME-MS61 Cs ppm 0.05	ME-MS61 Cu ppm 0.2	ME-MS61 Fe % 0.01	ME-MS61 Ga ppm 0.05
							STAN	DARDS								
MRGeo08 MRGeo08 Target Range – Lower Upper	Bound	4.07 7.47 34.7 1080 3.20 0.58 2.65 2.09 73.2 21.0 95 12.80 618 3.86 17.55														
MRGeo08		4.07	7.47	34.7	1080	3.20	0.58	2.65	2.09	73.2	21.0	95	12.80	618	3.86	17.55
Target Range – Lower	Bound	3.93	6.64 8.14	29.5 36.5	920 1270	2.98	0.58	2.35	2.00	66.2 81.0	17.7	81	11.20	587 675	3.55	17.50
OREAS 624	Joanna						0.10	2.00	2.40	01.0	21.0	102	10.00	015	4.07	21.0
OREAS 624 Target Range - Lower Upper	Bound Bound															
Target Range – Lower Upper	Bound Bound															
OREAS 906		0.68	7.31	23.6	2750	2.85	11.45	0.58	0.37	96.7	25.5	9	6.30	3060	5.40	29.2
Target Range – Lower	Bound	0.67	6.61 8.11	20.3	2300	2.60	9.98	0.50	0.36	83.7	21.7	7	6.07	2880	4.94	25.5
OREAS-45h Target Range - Lower Upper	Bound Bound	0.01	0.11	20.0	5100	0.20	12.20	0.00	0.40	102.3	20.7		7.53	3320	0.06	31.3
							BL	ANKS								
BLANK BLANK Target Range – Lower	Bound															
Upper	Bound															
BLANK	Round	<0.01	<0.01	0.3	<10	<0.05	<0.01	<0.01	<0.02	0.01	<0.1	<1	< 0.05	<0.2	< 0.01	< 0.05
Upper	Bound	0.02	0.02	0.4	20	0.10	0.02	0.02	0.02	0.02	<0.1	2	<0.05	<0.2	<0.01	<0.05
BLANK Target Range – Lower Upper	Bound Bound															

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: EXIRO MINERALS 25 ADELAIDE STREET EAST SUITE 1400 TORONTO ON M5C 3A1

Page: 2 - B Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 15-NOV-2022 Account: CGAKUT

								,	QC CERTIFICATE OF ANALYSIS TB22305092							
Sample Description	Method Analyte Units LOD	ME-MS61 Ge ppm 0.05	ME-MS61 Hf ppm 0.1	Hg-MS42 Hg ppm 0.005	ME-MS61 In ppm 0.005	ME-MS61 K % 0.01	ME-MS61 La ppm 0.5	ME-MS61 Li ppm 0.2	ME-MS61 Mg % 0.01	ME-MS61 Mn ppm 5	ME-MS61 Mo ppm 0.05	ME-MS61 Na % 0.01	ME-MS61 Nb ppm 0.1	ME-MS61 Ni ppm 0.2	ME-MS61 P ppm 10	ME-MS61 Բե քpm 0.5
							STAN	IDARDS								
MRGeo08 MRGeo08 Target Range – Lower Upper MRGeo08 Target Range – Lower	Bound Bound	0.22	2.8 2.8	0.063 0.058 0.048 0.074	0.177	3.17 2.79	35.3	34.5	1.33	556	15.05	1.96	22.0	680	1020	1045
Upper OREAS 624 OREAS 624 Target Range – Lower Upper OREAS 682 Target Range – Lower Upper	Bound Bound Bound Bound Bound	0.28	3.6	1.900 1.915 1.695 2.08	0.201	3.43	39.1	36.5	1.45	497 619	16.75	2.18	23.4	760	930 1160	971 1185
OREAS 906 Target Range - Lower Upper OREAS-45h Target Range - Lower Upper	Bound Bound Bound Bound	0.25 0.07 0.31	6.4 6.2 7.8		1.270 1.100 1.360	2.85 2.55 3.13	47.6 41.5 51.9	19.8 17.2 21.4	0.28 0.24 0.31	364 328 412	3.97 3.60 4.51	2.42 2.17 2.67	19.0 15.9 19.7	7.3 4.2 5.6	270 230 310	34.1 32.0 40.2
							BL	ANKS								
BLANK BLANK Target Range – Lower BLANK Target Range – Lower Upper BLANK Target Range – Lower Upper	Bound Bound Bound Bound Bound	<0.05 <0.05 0.10	<0.1 <0.1 0.2	<0.005 <0.005 <0.005 0.010	<0.005 <0.005 0.010	<0.01 <0.01 0.02	<0.5 <0.5 1.0	0.2 <0.2 0.4	<0.01 <0.01 0.02	<5 <5 10	<0.05 <0.05 0.10	<0.01 <0.01 0.02	<0.1 <0.1 0.2	0.2 <0.2 0.4	<10 <10 20	<0.5 <0.5 1.0

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: EXIRO MINERALS 25 ADELAIDE STREET EAST SUITE 1400 TORONTO ON M5C 3A1

Page: 2 - C Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 15-NOV-2022 Account: CGAKUT

								QC CERTIFICATE OF ANALYSIS TB22305092							
Method Analyte Units LOD	ME-MS61 Rb ppm 0.1	ME-MS61 Re ppm 0.002	ME-MS61 5 % 0.01	ME-MS61 Sb ppm 0.05	ME-MS61 Sc ppm 0.1	ME-MS61 Se ppm 1	ME-MS61 Sn ppm 0.2	ME-MS61 Sr ppm 0.2	ME-MS61 Ta ppm 0.05	ME-MS61 Te ppm 0.05	ME-MS61 Th ppm 0.01	ME-MS61 Ti % 0.005	ME-MS61 Tl ppm 0.02	ME-MS61 U ppm 0.1	ME-MS61 V ppm 1
						STAN	DARDS								
Bound Bound															
	206	0.009	0.29	3.98	13.2	3	3.9	298	1.40	<0.05	19.05	0.486	0.92	5.1	107
Bound	173.5	0.004	0.27	3.89	11.1	<1	3.5	277	1.39	<0.05	17.90	0.443	0.86	4.9	97
Bound Bound Bound Bound Bound	212	0.013	0.35	5.39	13.7	4	4.7	339	1.81	0.12	21.9	0.553	1.21	6.2	121
Plane d	139.5	< 0.002	0.04	2.11	4.6	6	4.2	155.0	1.26	0.15	13.75	0.112	0.62	4.5	5
Bound	152.0	<0.002	0.02	2.76	4.0	3	3.7	140.0	1.17	<0.05	13.30	0.097	0.58	4.5	3
Bound Bound						BLA	ANKS							0.1	Ū
Bound Bound															
Round	<0.1	0.003	<0.01	< 0.05	<0.1	1	<0.2	<0.2	< 0.05	< 0.05	< 0.01	< 0.005	< 0.02	<0.1	<1
Bound	0.2	0.002	0.02	0.10	0.1	2	<0.2	<0.2	<0.05	<0.05	<0.01	<0.005	<0.02	<0.1	<1
Bound Bound								U.V	0.10	0.10	U.UE	0.010	U.U Y	0.2	6
	Method Analyte Units LOD	Method Analyte Units LODME-MS61 Rb ppm 0.1Bound Bound206Bound Bound173.5Bound Bound173.5Bound Bound139.5Bound Bound124.0Bound Bound152.0Bound Bound152.0Bound Bound0.1Bound Bound0.1Bound Bound124.0Bound Bound152.0Bound Bound0.2	Method Analyte Units LODME-MS61 Rb ppm ppm 0.1ME-MS61 Re ppm 0.002Bound Bound206 206 0.0090.009Bound Bound173.5 2120.013Bound Bound1139.5 139.5 <0.002	Method Analyte Units LOD ME-MS61 Rb ppm ME-MS61 Re ppm ME-MS61 S ppm ME-MS61 S s Bound Bound 206 0.002 0.01 206 0.009 0.29 Bound 206 0.004 0.27 Bound 212 0.013 0.35 Bound Bound 139.5 <0.002	Method Analyte Units ME-MS61 Rb ppm ME-MS61 Re ppm ME-MS61 S Sb ppm ME-MS61 S 	Method Analyte Units LOD ME-MS61 Rb ME-MS61 Re ME-MS61 S ME-MS61 Sb ME-MS61 Sc ME-MS61 Sc ME-MS61 Sc Bound Bound Bound 0.1 0.002 0.01 0.05 0.1 Bound Bound 206 0.009 0.29 3.98 13.2 Bound Bound 173.5 0.004 0.27 3.89 11.1 Bound Bound 139.5 <0.002	Method Analyze Units ME-MS61 Rb ME-MS61 Re ME-MS61 S ME-MS61 Sb ME-MS61 Sc ME-MS61 Se ME-MS61 Se <t< td=""><td>Method Analyte Units ME-M561 Rb p ME-M561 Re Re b ME-M561 Sb ME-M561 Sc ME-M561 Sc ME-M561 Se ME-M561 Sc ME-M561 Se ME-M561 Sc ME-M561 Se ME-M561 Sc ME-M561 Sc ME-M561 Se ME-M561 Sc ME-M561 Se ME-M561 Sc ME-M561 Se ME-M561 Sc ME-M561 Se ME-M561 Sc ME-M561 Se ME-M561 Sc ME-M561 Sc</td><td>Method Analyte DOD ME-MS61 Rb ME-MS61 Re ME-MS61 S ME-MS61 Sb ME-MS61 Sc ME-MS61 Se ME-MS61 Se</td><td>Method Analyte IOD ME-MS61 Re Dund ME-MS61 Re Re Dund ME-MS61 S S S S S S S S S S S S S S S S S S S</td><td>Method Analytic Utits LOD ME-MS61 Re ME-MS61 Re</td><td>Beund Bound B</td><td>Met-MGs1 Met-MGs1 Met-MGs1</td><td>Met-M3b1 PpPP Met-M351 PpPP Met-M351 PPP Met-M351 PP</td><td>Met-M361 Met-M361 Met-M361</td></t<>	Method Analyte Units ME-M561 Rb p ME-M561 Re Re b ME-M561 Sb ME-M561 Sc ME-M561 Sc ME-M561 Se ME-M561 Sc ME-M561 Se ME-M561 Sc ME-M561 Se ME-M561 Sc ME-M561 Sc ME-M561 Se ME-M561 Sc ME-M561 Se ME-M561 Sc ME-M561 Se ME-M561 Sc ME-M561 Se ME-M561 Sc ME-M561 Se ME-M561 Sc ME-M561 Sc	Method Analyte DOD ME-MS61 Rb ME-MS61 Re ME-MS61 S ME-MS61 Sb ME-MS61 Sc ME-MS61 Se ME-MS61 Se	Method Analyte IOD ME-MS61 Re Dund ME-MS61 Re Re Dund ME-MS61 S S S S S S S S S S S S S S S S S S S	Method Analytic Utits LOD ME-MS61 Re ME-MS61 Re	Beund Bound B	Met-MGs1 Met-MGs1	Met-M3b1 PpPP Met-M351 PpPP Met-M351 PPP Met-M351 PP	Met-M361 Met-M361

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: EXIRO MINERALS 25 ADELAIDE STREET EAST SUITE 1400 TORONTO ON M5C 3A1

Page: 2 - D Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 15-NOV-2022 Account: CGAKUT

Sample Description	Method Analyte Units LOD	ME-MS61 W ppm 0.1	ME-MS61 Y ppm 0.1	ME-MS61 Zn ppm 2	ME-MS61 Zr ppm 0.S	PGM-MS24 Au ppm 0.001	PGM-MS24 Pt ppm 0.0005	PGM-MS24 Pd ppm 0.001				
							STAN	DARDS				
MRGeo08 MRGeo08 Target Range – Lower Upper MRGeo08 Target Range – Lower Upper OREAS 624	Bound Bound Bound Bound	4.3 4.1 5.8	27.2 23.8 29.3	795 722 886	106.0 92.2 126.0							
OREAS 624 Target Range - Lower Upper OREAS 682 Target Range - Lower OREAS 906 Target Range - Lower Upper OREAS-45h Target Range - Lower Upper	Bound Bound Bound Bound Bound Bound Bound Bound	26 22 32	17.0 14.1 17.5	160 145 181	257 221 301	0.073 0.070 0.081 0.038 0.038 0.044	0.890 0.815 0.921 0.0827 0.0813 0.0927	0.426 0.416 0.472 0.125 0.119 0.137				
							BLA	NKS				
BLANK BLANK Target Range – Lower BLANK Target Range – Lower BLANK Target Range – Lower Upper	Bound Bound Bound Bound Bound	<0.1 <0.1 0.2	<0.1 <0.1 0.2	<2 <2 4	<0.5 <0.5 1.0	0.001 <0.001 0.002	<0.0005 <0.0005 0.0010	0.001 <0.001 0.002				

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: EXIRO MINERALS 25 ADELAIDE STREET EAST SUITE 1400 TORONTO ON M5C 3A1

Page: 3 - A Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 15-NOV-2022 Account: CGAKUT

ME-MS61 Ag ppm 0.01	ME-MS61 Al % 0.01	ME-MS61 As ppm 0.2	ME-MS61 Ba ppm 10	ME-MS61 Be ppm 0.05	ME-MS61 Bi ppm 0.01	ME-MS61 Ca % 0.01	ME-MS61 Cd ppm 0.02	ME-MS61 Ce ppm 0.01	ME-MS61 Co ppm 0.1	ME-MS61 Cr ppm 1	ME-MS61 Cs ppm 0.05	ME-MS61 Cu ppm 0.2	ME-MS61 Fe % 0.01	ME-MS61 Ga ppm 0.05
					DUPL	ICATES								
0.10 0.09 0.08 0.11	7.80 7.63 7.32 8.11	1.8 1.5 1.4 1.9	430 420 380 470	0.59 0.58 0.51 0.66	0.05 0.05 0.04 0.06	2.34 2.26 2.18 2.43	0.08 0.08 0.06 0.10	7.96 7.81 7.48 8.29	3.8 3.9 3.6 4.1	12 13 11 14	0.93 0.92 0.83 1.02	19.8 20.3 19.1 21.0	1.82 1.78 1.70 1.90	17_40 17.30 16.45 18.25
	de ME-MS61 Ag ppm 0.01 0 0 0 0 0 0.09 0.08 0.11 0 0	de ME-MS61 ME-MS61 Ag Al ppm % 0.01 0.01 0.02 7.63 0.08 7.32 0.11 8.11 0 7.63 0.08 7.32 0.11 8.11 0.11 8.11 0.11 8.11	de ME-MS61 Ag ME-MS61 Al ME-MS61 As ppm ME-MS61 As 0.01 0.01 0.2 0.01 0.01 0.2 0.01 7.80 1.8 0.09 7.63 1.5 0.08 7.32 1.4 0.11 8.11 1.9	de ME-MS61 ME-MS61 ME-MS61 ME-MS61 Ba Ag Al As Ba ppm	de ME-MS61 ME-	de ME-MS61 ME-MS61 ME-MS61 ME-MS61 ME-MS61 ME-MS61 Ba Be Bi Bi ppm quadratical set and set a	de ME-MS61 ME ME	de ME-MS61 Ag ME-MS61 Al ME-MS61 As ME-MS61 Ba ME-MS61 Be ME-MS61 Bi ME-MS61 Ca ME-MS61 Cd ME-MS61	de ME-M361 Ag ME-M361 Al ME-M361 As ME-M361 Ba ME-M361 Be ME-M361 Bl ME-M361 Ca ME-M361 Cd ME-M361 Ce ppm % ppm % ppm % 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.2 10 0.05 0.01 0.01 0.02 0.01 0.09 7.80 1.8 430 0.59 0.05 2.34 0.08 7.96 0.09 7.83 1.5 420 0.58 0.05 2.26 0.08 7.81 0.08 7.32 1.4 380 0.51 0.04 2.18 0.08 7.81 0.11 8.11 1.9 470 0.66 0.06 2.43 0.10 8.29	de angle ME-MS61 Ag ME-MS61 Al ME-MS61 As ME-MS61 Ba ME-MS61 Be ME-MS61 Bi ME-MS61 Ca ME-MS61 Cd ME-MS61 Ce ME-MS61 Ca ME-MS61 Cd ME-MS61 Ce ME-MS61 Ca ME-MS61 Cd ME-MS61 Ce ME-MS61 Ca ME-MS61 Cd ME-MS61 Ce ME-MS61 Ca ME-MS61 C	de Mary ppm ME-MSG1 Al Al Al Al Al Al Al Al Al Al Al Al Al	d M-MSG1 ppm ME-MSG1 Al A ME-MSG1 As A ME-MSG1 B ME-MSG1 B	d A ME-MSG1 A ME-MSG1 A ME-MSG1 A ME-MSG1 A ME-MSG1 B ME-MSG1 C ME-M	d ME-MS01 ME-M

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: EXIRO MINERALS 25 ADELAIDE STREET EAST SUITE 1400 TORONTO ON M5C 3A1

Page: 3 - B Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 15-NOV-2022 Account: CGAKUT

Sample Description	Method Analyte Units LOD	ME~MS61 Ge ppm 0.05	ME-MS61 Hf ppm 0.1	Hg-MS42 Hg ppm 0.005	ME-MS61 In ppm 0.005	ME-MS61 K % 0.01	ME-MS61 La ppm 0.5	ME-MS61 Li ppm 0.2	ME-MS61 Mg % 0.01	ME-MS61 Mn ppm 5	ME-MS61 Mo ppm 0.05	ME-MS61 Na % 0.01	ME-MS61 Nb ppm 0.1	ME-MS61 Ni ppm 0.2	ME-MS61 P ppm 10	ME-MS61 Pb ppm 0.5
							DUPL	ICATES								
ORIGINAL DUP Target Range - Lower Upper	r Bound Bound			0.041 0.039 0.033 0.047												
ORIGINAL DUP Target Range - Lower Upper	r Bound Bound	0.11 0.09 <0.05 0.16	1.6 1.6 1.4 1.8		0.010 0.010 <0.005 0.016	1.37 1.32 1.27 1.42	3.6 3.7 3.0 4.3	7.6 7.5 7.0 8.1	0.59 0.58 0.55 0.62	165 160 149 1 76	5.75 5.64 5.36 6.03	3.39 3.31 3.17 3.53	1.0 1.0 0.9 1.2	12.9 13.2 12.2 13.9	240 240 220 260	10.8 10.8 9.8 11.8
ORIGINAL DUP Target Range – Lower Upper	r Bound Bound			0.675 0.723 0.659 0.739												
ORIGINAL DUP Target Range - Lowe Upper	r Bound ' Bound															
ORIGINAL DUP Target Range – Lowe Upper	r Bound Bound															

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: EXIRO MINERALS 25 ADELAIDE STREET EAST SUITE 1400 TORONTO ON M5C 3A1

Page: 3 - C Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 15-NOV-2022 Account: CGAKUT

QC CERTIFICATE OF ANALYSIS TB22305092

Sample Description	Method Analyte Units LOD	ME-MS61 Rb ppm 0.1	ME~MS61 Re ppm 0.002	ME-MS61 S % 0.01	ME-MS61 Sb ppm 0.05	ME-MS61 Sc ppm 0.1	ME-MS61 Se ppm 1	ME-MS61 Sn ppm 0.2	ME-MS61 Sr ppm 0.2	ME-MS61 Ta ppm 0.05	ME-MS61 Te ppm 0.05	ME-MS61 Th ppm 0.01	ME-MS61 Ti % 0.005	ME-MS61 Tl ppm 0.02	ME-MS61 U ppm 0.1	ME-MS61 V ppm 1
ORIGINAL DUP Target Range - Lower Upper	Bound Bound						DUPL	ICATES								
ORIGINAL DUP Target Range – Lower Upper	Bound Bound	37.6 37.9 39.7	0.004 0.004	0.07 0.06 0.05 0.08	1.02 1.00 0.88 1.14	3.8 3.8 3.5 4.1	1 2 2	0.3 0.3 0.4	384 373 398	0.07 0.08 1000 010	<0.05 <0.05 10:05	0.43 0.42 0.39 0.46	0.121 0.117 0.106 0.130	0.13 0.13 0-10 0-10	0.2 0.2 30.1	26 25 23
ORIGINAL DUP Target Range – Lower Upper	Bound Bound		×													
ORIGINAL DUP Target Range – Lowe Upper	Bound Bound															
ORIGINAL DUP Target Range - Lower Upper	Bound Bound															

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: EXIRO MINERALS 25 ADELAIDE STREET EAST SUITE 1400 TORONTO ON M5C 3A1

Page: 3 - D Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 15-NOV-2022 Account: CGAKUT

QC CERTIFICATE OF ANALYSIS TB22305092

Sample Description	Method Analyte Units LOD	ME-MS61 W ppm 0.1	ME-MS61 Y ppm 0.1	ME-MS61 Zn ppm 2	ME-MS61 Zr ppm 0.5	PGM-MS24 Au ppm 0.001	PGM-MS24 Pt ppm 0.0005	PGM-MS24 Pd ppm 0.001	
ORIGINAL DUP Target Range – Lower Upper	r Bound Bound						DUPL	ICATES	
ORIGINAL DUP Target Range – Lower Upper	r Bound Bound	0.6 0.6	3.0 3.0	34 33	61.3 60.8 56.0				
ORIGINAL DUP Target Range - Lower Upper	r Bound Bound								
ORIGINAL DUP Target Range – Lowe Upper	r Bound Bound					0.007 0.006 0.005 0.008	0.0110 0.0082 0.0086 0.0106	0.015 0.014 0.013 0.016	
ORIGINAL DUP Target Range – Lowe Upper	r Bound ' Bound					0.041 0.007	0.0006 0.0006	0.001 0.001	

ALS

ALS Canada Ltd.

т

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: EXIRO MINERALS 25 ADELAIDE STREET EAST SUITE 1400 TORONTO ON M5C 3A1

Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 15-NOV-2022 Account: CGAKUT

QC CERTIFICATE OF ANALYSIS TB22305092

		CERTIFICATE COMMENTS		
Applies to Method:	REEs may not be totally soluble in thi ME–MS61	ANALYTICAL CO	MMENTS	
	Processed at ALS Thunder Bay located	LABORATORY AD d at 645 Norah Crescent, Thunder Bay	DRESSES , ON, Canada	
Applies to Method;	CRU-31 PUL-32	CRU-QC PUL-QC	DRY-22 SPL-21	LOG-21 WEI-21
Applies to Method	Processed at ALS Vancouver located a Hg–MS42	at 2103 Dollarton Hwy, North Vancouv ME-MS61	rer, BC, Canada. PGM-MS24	

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: EXIRO MINERALS 25 ADELAIDE STREET EAST SUITE 1400 TORONTO ON M5C 3A1

Page: 1 Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 15-NOV-2022 This copy reported on 17-NOV-2022 Account: CGAKUT

CERTIFICATE TB22305092

This report is for 12 samples Canada on 24-OCT-2022.	of Rock submitted to our lab in	n Thunder Bay, ON,								
The following have access to data associated with this certificate:										
KYLIE COVENTRY BILL SPICER	CRAIG FITCHETT	SYDNEY RAMNATH								

SAMPLE PREPARATION								
ALS CODE	DESCRIPTION							
WEI-21	Received Sample Weight							
LOG-21	Sample logging – ClientBarCode							
DRY-22	Drying - Maximum Temp 60C							
CRU-31	Fine crushing – 70% <2mm							
CRU-QC	Crushing QC Test							
PUL-QC	Pulverizing QC Test							
SPL-21	Split sample – riffle splitter							
PUL-32	Pulverize 1000g to 85% < 75 um							

	ANALYTICAL PROCEDUR	ES
ALS CODE	DESCRIPTION	INSTRUMENT
ME-MS61	48 element four acid ICP-MS	
Hg-MS42	Trace Hg by ICPMS	ICP-MS
PGM-MS24	Pt, Pd and Au 50g FA ICP-MS	ICP-MS

This is the Final Report and supersedes any preliminary report with this certificate number.Results apply to samples as submitted.All pages of this report have been checked and approved for release. ***** See Appendix Page for comments regarding this certificate *****

Signature: Saa Traxler, Director, North Vancouver Operations

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: EXIRO MINERALS **25 ADELAIDE STREET EAST SUITE 1400** TORONTO ON M5C 3A1

Page: 2 - A Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 15-NOV-2022 Account: CGAKUT

									(CERTIFI	CATE O	F ANAL	YSIS	TB2230	05092	
Sample Description	Method	WEI–21	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61
	Analyte	Recvd Wt.	Ag	Al	As	Ba	Be	Bi	Ca	Cd	Ce	Co	Cr	Cs	Cu	Fe
	Units	kg	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%
	LOD	0.02	0.01	0.01	0.2	10	0.05	0.01	0.01	0.02	0.01	0.1	1	0.05	0.2	0.01
B0157401		1.12	0.08	7.08	0.6	260	1.92	0.01	1.69	0.07	66.8	18.6	128	0.45	48.8	3.86
B0157402		1.35	0.66	5.79	2.5	250	1.71	0.10	4.49	0.70	29.3	71.9	99	1.03	438	11.00
B0157403		2.13	0.16	6.57	0.4	240	0.91	0.03	1.42	0.12	36.8	17.9	106	0.44	60.6	4.36
B0157404		0.70	0.04	6.82	0.9	310	1.12	0.01	1.27	0.08	36.2	18.2	145	0.85	37.4	4.64
B0157405		1.29	0.03	7.71	1.1	1290	0.46	0.01	1.16	0.06	61.6	11.7	116	0.41	20.3	3.66
B0157406		0.64	0.03	8.27	0.8	680	0.61	0.02	1.64	0.07	73.2	17.8	172	0.65	19.6	4.91
B0157407		1.08	0.06	7.54	0.7	490	1.22	<0.01	2.01	0.10	61.5	18.6	144	1.16	17.9	3.99
B0157408		1.68	0.05	7.33	0.7	650	0.66	<0.01	1.85	0.03	47.4	5.1	26	0.36	3.7	1.76
B0157409		1.46	0.69	7.78	0.5	350	0.99	0.12	1.87	0.88	73.2	37.1	160	0.48	363	6.88
B0157410		1.09	0.20	6.95	0.5	700	0.70	0.03	1.98	0.10	25.9	2.2	44	0.26	52.9	3.03
B0157411 B0157412		0.54	0.14 0.05	6.91 7.39	0.9 0.7	2110 870	0.69 0.69	0.01 <0.01	0.84 1.58	0.07 0.04	75.3 56.5	3.2 3.2	19 15	0.36 0.34	62.0 2.0	1.39 1.64

Г

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: EXIRO MINERALS 25 ADELAIDE STREET EAST SUITE 1400 TORONTO ON M5C 3A1

Page: 2 - B Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 15-NOV-2022 Account: CGAKUT

CERTIFICATE OF ANALYSIS TB22305092

Sample Description	Method Analyte Units LOD	ME-MS61 Ga ppm 0.05	ME-MS61 Ge ppm 0.05	ME-MS61 Hf ppm 0.1	Hg-MS42 Hg ppm 0.005	ME-MS61 In ppm 0.005	ME-MS61 K % 0.01	ME-MS61 La ppm 0.5	ME-MS61 Li ppm 0.2	ME-MS61 Mg % 0.01	ME-MS61 Mn ppm 5	ME~MS61 Мо ррт 0.05	ME-MS61 Na % 0.01	ME-MS61 Nb ppm 0.1	ME-MS61 Ni ppm 0.2	ME-MS61 P ppm 10
B0157401		16.25	0.19	3.0	< 0.005	0.039	1.17	35.4	15.1	1.21	481	1.44	2.26	6.6	42.3	270
B0157402		18.10	0.13	2.2	<0.005	0.082	0.09	13.6	7.8	2.36	767	7.25	0.37	6.9	66.5	230
B0157403		13.25	0.15	7.7	<0.005	0.028	0.92	20.7	14.4	0.84	836	9.97	1.95	3.2	21.4	160
B0157404		16.45	0.15	4.1	<0.005	0.022	1.49	19.4	20.5	1.43	624	2.56	1.74	11.6	40.9	170
B0157405		17,45	0.18	2.1	<0.005	0.054	3.26	31.4	16.9	1.11	560	1.16	2.13	7.8	39.1	300
B0157406		20.2	0.22	4,2	<0.005	0.047	2.23	36.9	18.3	1.60	691	1.24	2.52	11.9	51.7	280
B0157407		16.90	0.20	3.2	<0.005	0.046	1.20	31.7	6.7	1.22	669	2.12	2.36	6.2	44.2	370
B0157408		19.70	0.18	3.2	<0.005	0.027	2.07	23.5	9.1	0.56	101	0.24	2.99	4.5	9.0	290
B0157409		19.25	0.22	3.7	<0.005	0.071	1.24	37.1	17.8	1.02	228	7.10	2.35	7.2	63.0	350
B0157410		15.80	0.12	2.0	<0.005	0.040	1.35	13.2	5.1	0.28	75	3.74	2.75	4.3	1.9	240
B0157411		15.10	0.19	3.1	< 0.005	0.011	4.71	40.6	4.4	0.14	48	4.65	2.14	4.2	5.3	260
B0157412		19.60	0.18	3.6	< 0.005	0.016	2.62	28.8	14.2	0.37	115	0.90	3.00	3,5	4.3	400

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: EXIRO MINERALS 25 ADELAIDE STREET EAST **SUITE 1400** TORONTO ON M5C 3A1

Page: 2 - C Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 15-NOV-2022 Account: CGAKUT

									0	CERTIFIC	CATE O	F ANAL	YSIS	TB2230)5092	
Sample Description	Method Analyte Units LOD	ME-MS61 Pb ppm 0.S	ME-MS61 Rb ppm 0.1	ME-MS61 Re ppm 0.002	ME-MS61 S % 0.01	ME-MS61 Sb ppm 0.05	ME-MS61 Sc ppm 0.1	ME-MS61 Se ppm 1	ME-MS61 Sn ppm 0.2	ME-MS61 Sr ppm 0.2	ME-MS61 Ta ppm 0.05	ME-MS61 Te ppm 0.05	ME-MS61 Th ppm 0.01	ME-MS61 Ti % 0.005	ME-MS61 Tl ppm 0.02	ME-MS61 U ppm 0.1
B0157401		15.0	63.9	< 0.002	0.11	< 0.05	12.1	1	0.5	285	0.36	<0.05	9.72	0.295	0.36	1.6
80157402		3.4	10.8	0.004	4.26	< 0.05	19.8	5	0.6	94.6	0.43	0.34	2.39	0.259	0.04	0.8
BUI57403		14.0	41.0	<0.002	0.52	<0.05	23.5	2	0.3	250	0.13	0.12	3.18	0.130	0.21	0.9
B0157404 B0157405		26.5	117.0	<0.002	0.03	<0.05 <0.05	15.5	2	0.4	212 422	0.37	0.11 0.05	3.72 11.50	0.472 0.273	0.50 0.58	0.8 0.8
B0157406		19.2	105.5	<0.002	0.02	<0.05	19.2	1	0.2	353	0.31	0.05	13.20	0.397	0.53	0.9
B0157407		13.6	72.2	<0.002	0.05	<0.05	14.7	1	0.9	500	0.46	<0.05	11.25	0.308	0.38	2.4
B0157408		24.5	62.7	<0.002	0.02	<0.05	3.7	2	0.9	499	0.23	<0.05	10.25	0.199	0.33	0.8
B0157409		15.0	57.9	0.004	2.47	<0.05	13.9	3	0_4	302	0.43	0.43	13.10	0.295	0.39	2.2
B0157410		17.8	36.5	0.002	0.31	<0.05	5.0	2	0.3	279	0.25	0.22	3.33	0.146	0.20	0.6
B0157411		36.7	118.5	<0.002	0.38	<0.05	0.9	2	0.2	641	0.35	0.12	14.85	0.063	0.57	3.4
B0157412		27.6	72.2	<0.002	0.01	<0.05	2.6	1	0.6	525	0.20	<0.05	11.90	0.186	0.35	1.2

E

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry To: EXIRO MINERALS 25 ADELAIDE STREET EAST SUITE 1400 TORONTO ON M5C 3A1 Page: 2 - D Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 15-NOV-2022 Account: CGAKUT

CERTIFICATE OF ANALYSIS TB22305092

Sample Description	Method Analyte Units LOD	ME-MS61 V ppm ງ	ME-MS61 W ppm 0.1	ME-MS61 Y ppm 0.1	ME-MS61 Zn ppm 2	ME-MS61 Zr ppm 0.5	PGM-MS24 Au ppm 0.001	PGM-MS24 Pt ppm 0.0005	PGM-MS24 Pd ppm 0.001	
B0157401 B0157402 B0157403 B0157404 B0157405		83 74 43 116 73	<0.1 0.1 0.1 <0.1 <0.1	14.8 15.4 25.2 15.0 14.3	64 334 73 84 58	123.0 90.2 301 175.0 85.4	0.004 0.009 <0.001 0.003 0.004	0.0013 0.0016 0.0008 0.0012 0.0011	0.001 0.001 0.001 0.001 0.001	
B0157406 B0157407 B0157408 B0157409 B0157410		103 88 35 108 31	0.1 0.2 <0.1 0.4 0.2	17.7 14.7 2.9 9.4 3.5	93 67 49 223 19	163.5 135.0 131.5 146.0 76.2	<0.001 <0.001 <0.001 0.003 <0.001	0.0012 0.0013 <0.0005 0.0013 <0.0005	0.001 0.001 <0.001 0.001 <0.001	
B0157411 B0157412		7 26	0.2 <0.1	4.1 3.7	21 43	108.0 146.0	<0.001 0.007	<0.0005 <0.0005	<0.001 <0.001	

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: EXIRO MINERALS 25 ADELAIDE STREET EAST SUITE 1400 TORONTO ON M5C 3A1

Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 15-NOV-2022 Account: CGAKUT

CERTIFICATE OF ANALYSIS TB22305092

		CERTIFICATE COMMENTS		
		ANALYTICAL CO	MMENTS	
Applies to Method	REEs may not be totally soluble in this ME-MS61	s method.		
		LABORATORY AC	DRESSES	
	Processed at ALS Thunder Bay located	at 645 Norah Crescent, Thunder Bay	y, ON, Canada	
Applies to Method:	CRU-31 PUL-32	CRU-QC PUL-QC	DRY-22 SPL-21	LOG-21 WEI-21
Applies to Method®	Processed at ALS Vancouver located a	t 2103 Dollarton Hwy, North Vancouv	ver, BC, Canada.	
			FGIVI-IVI324	

Claim Number	Tenure Type	Issue Date	Anniversary Date	Extension Date	Township	Holder
524851	SCMC	2018-06-20	2022-06-20	2023-06-20	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
524852	SCMC	2018-06-20	2022-06-20	2023-06-20	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
524853	SCMC	2018-06-20	2022-06-20	2023-06-20	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
524854	SCMC	2018-06-20	2022-06-20	2023-06-20	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
524855	SCMC	2018-06-20	2022-06-20	2023-06-20	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
524856	SCMC	2018-06-20	2022-06-20	2023-06-20	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
524857	SCMC	2018-06-20	2022-06-20	2023-06-20	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
524858	SCMC	2018-06-20	2022-06-20	2023-06-20	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
524859	SCMC	2018-06-20	2022-06-20	2023-06-20	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
524860	SCMC	2018-06-20	2022-06-20	2023-06-20	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
524861	SCMC	2018-06-20	2022-06-20	2023-06-20	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
524862	SCMC	2018-06-20	2022-06-20	2023-06-20	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
524863	SCMC	2018-06-20	2022-06-20	2023-06-20	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
524864	SCMC	2018-06-20	2022-06-20	2023-06-20	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
524865	SCMC	2018-06-20	2022-06-20	2023-06-20	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
524866	SCMC	2018-06-20	2022-06-20	2023-06-20	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
524867	SCMC	2018-06-20	2022-06-20	2023-06-20	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
524868	SCMC	2018-06-20	2022-06-20	2023-06-20	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
524869	SCMC	2018-06-20	2022-06-20	2023-06-20	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
524870	SCMC	2018-06-20	2022-06-20	2023-06-20	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
524871	SCMC	2018-06-20	2022-06-20	2023-06-20	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
524872	SCMC	2018-06-20	2022-06-20	2023-06-20	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
524873	SCMC	2018-06-20	2022-06-20	2023-06-20	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
524874	SCMC	2018-06-20	2022-06-20	2023-06-20	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
524875	SCMC	2018-06-20	2022-06-20	2023-06-20	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
524876	SCMC	2018-06-20	2022-06-20	2023-06-20	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
524877	SCMC	2018-06-20	2022-06-20	2023-06-20	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
524878	SCMC	2018-06-20	2022-06-20	2023-06-20	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
524879	SCMC	2018-06-20	2022-06-20	2023-06-20	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
524880	SCMC	2018-06-20	2022-06-20	2023-06-20	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
524881	SCMC	2018-06-20	2022-06-20	2023-06-20	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
524882	SCMC	2018-06-20	2022-06-20	2023-06-20	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
524883	SCMC	2018-06-20	2022-06-20	2023-06-20	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
524884	SCMC	2018-06-20	2022-06-20	2023-06-20	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
524816	SCMC	2018-06-20	2022-06-20	2023-06-20	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
524817	SCMC	2018-06-20	2022-06-20	2023-06-20	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
524818	SCMC	2018-06-20	2022-06-20	2023-06-20	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
524819	SCMC	2018-06-20	2022-06-20	2023-06-20	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
524820	SCMC	2018-06-20	2022-06-20	2023-06-20	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
524821	SCMC	2018-06-20	2022-06-20	2023-06-20	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
524822	SCMC	2018-06-20	2022-06-20	2023-06-20	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
524823	SCMC	2018-06-20	2022-06-20	2023-06-20	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
524824	SCMC	2018-06-20	2022-06-20	2023-06-20	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
524825	SCMC	2018-06-20	2022-06-20	2023-06-20	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
524826	SCMC	2018-06-20	2022-06-20	2023-06-20	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
524827	SCMC	2018-06-20	2022-06-20	2023-06-20	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
524828	SCMC	2018-06-20	2022-06-20	2023-06-20	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
524829	SCMC	2018-06-20	2022-06-20	2023-06-20	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
524830	SCMC	2018-06-20	2022-06-20	2023-06-20	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
524831	SCMC	2018-06-20	2022-06-20	2023-06-20	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.

524832	SCMC	2018-06-20	2022-06-20	2023-06-20	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
524833	SCMC	2018-06-20	2022-06-20	2023-06-20	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
524834	SCMC	2018-06-20	2022-06-20	2023-06-20	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
524835	SCMC	2018-06-20	2022-06-20	2023-06-20	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
524836	SCMC	2018-06-20	2022-06-20	2023-06-20	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
524837	SCMC	2018-06-20	2022-06-20	2023-06-20	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
524838	SCMC	2018-06-20	2022-06-20	2023-06-20	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
524839	SCMC	2018-06-20	2022-06-20	2023-06-20	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
524840	SCMC	2018-06-20	2022-06-20	2023-06-20	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
524841	SCMC	2018-06-20	2022-06-20	2023-06-20	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
524842	SCMC	2018-06-20	2022-06-20	2023-06-20	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
524843	SCMC	2018-06-20	2022-06-20	2023-06-20	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
524844	SCMC	2018-06-20	2022-06-20	2023-06-20	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
524845	SCMC	2018-06-20	2022-06-20	2023-06-20	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
524846	SCMC	2018-06-20	2022-06-20	2023-06-20	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
524847	SCMC	2018-06-20	2022-06-20	2023-06-20	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
524848	SCMC	2018-06-20	2022-06-20	2023-06-20	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
524849	SCMC	2018-06-20	2022-06-20	2023-06-20	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
524850	SCMC	2018-06-20	2022-06-20	2023-06-20	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
530427	SCMC	2018-09-01	2022-09-01	2023-09-01	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
530428	SCMC	2018-09-01	2022-09-01	2023-09-01	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
530404	SCMC	2018-09-01	2022-09-01	2023-09-01	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
530405	SCMC	2018-09-01	2022-09-01	2023-09-01	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
530406	SCMC	2018-09-01	2022-09-01	2023-09-01	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
530407	SCMC	2018-09-01	2022-09-01	2023-09-01	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
530408	SCMC	2018-09-01	2022-09-01	2023-09-01	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
530409	SCMC	2018-09-01	2022-09-01	2023-09-01	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
530410	SCMC	2018-09-01	2022-09-01	2023-09-01	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
530411	SCMC	2018-09-01	2022-09-01	2023-09-01	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
530412	SCMC	2018-09-01	2022-09-01	2023-09-01	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
530413	SCMC	2018-09-01	2022-09-01	2023-09-01	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
530414	SCMC	2018-09-01	2022-09-01	2023-09-01	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
530415	SCMC	2018-09-01	2022-09-01	2023-09-01	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
530416	SCMC	2018-09-01	2022-09-01	2023-09-01	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
530417	SCMC	2018-09-01	2022-09-01	2023-09-01	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
530418	SCMC	2018-09-01	2022-09-01	2023-09-01	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
530419	SCMC	2018-09-01	2022-09-01	2023-09-01	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
530420	SCMC	2018-09-01	2022-09-01	2023-09-01	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
530421	SCMC	2018-09-01	2022-09-01	2023-09-01	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
530422	SCMC	2018-09-01	2022-09-01	2023-09-01	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
530423	SCMC	2018-09-01	2022-09-01	2023-09-01	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
530424	SCMC	2018-09-01	2022-09-01	2023-09-01	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
530425	SCMC	2018-09-01	2022-09-01	2023-09-01	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
530426	SCMC	2018-09-01	2022-09-01	2023-09-01	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
530458	SCMC	2018-09-01	2022-09-01	2023-09-01	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
530373	SCMC	2018-09-01	2022-09-01	2023-09-01	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
530374	SCMC	2018-09-01	2022-09-01	2023-09-01	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
530375	SCMC	2018-09-01	2022-09-01	2023-09-01	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
530376	SCMC	2018-09-01	2022-09-01	2023-09-01	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
530377	SCMC	2018-09-01	2022-09-01	2023-09-01	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
530378	SCMC	2018-09-01	2022-09-01	2023-09-01	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
530380	SCMC	2018-09-01	2022-09-01	2023-09-01	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.

530381	SCMC	2018-09-01	2022-09-01	2023-09-01	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
530382	SCMC	2018-09-01	2022-09-01	2023-09-01	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
530383	SCMC	2018-09-01	2022-09-01	2023-09-01	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
530384	SCMC	2018-09-01	2022-09-01	2023-09-01	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
530385	SCMC	2018-09-01	2022-09-01	2023-09-01	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
530386	SCMC	2018-09-01	2022-09-01	2023-09-01	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
530387	SCMC	2018-09-01	2022-09-01	2023-09-01	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
530388	SCMC	2018-09-01	2022-09-01	2023-09-01	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
530389	SCMC	2018-09-01	2022-09-01	2023-09-01	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
530390	SCMC	2018-09-01	2022-09-01	2023-09-01	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
530391	SCMC	2018-09-01	2022-09-01	2023-09-01	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
530392	SCMC	2018-09-01	2022-09-01	2023-09-01	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
530393	SCMC	2018-09-01	2022-09-01	2023-09-01	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
530394	SCMC	2018-09-01	2022-09-01	2023-09-01	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
530395	SCMC	2018-09-01	2022-09-01	2023-09-01	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
530396	SCMC	2018-09-01	2022-09-01	2023-09-01	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
530397	SCMC	2018-09-01	2022-09-01	2023-09-01	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
530398	SCMC	2018-09-01	2022-09-01	2023-09-01	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
530399	SCMC	2018-09-01	2022-09-01	2023-09-01	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
530400	SCMC	2018-09-01	2022-09-01	2023-09-01	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
530401	SCMC	2018-09-01	2022-09-01	2023-09-01	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
530402	SCMC	2018-09-01	2022-09-01	2023-09-01	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
530403	SCMC	2018-09-01	2022-09-01	2023-09-01	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
530451	SCMC	2018-09-01	2022-09-01	2023-09-01	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
530453	SCMC	2018-09-01	2022-09-01	2023-09-01	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
530454	SCMC	2018-09-01	2022-09-01	2023-09-01	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
530455	SCMC	2018-09-01	2022-09-01	2023-09-01	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
530450	SCMC	2018-09-01	2022-09-01	2023-09-01	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
530456	SCMC	2018-09-01	2022-09-01	2023-09-01	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
530448	SCMC	2018-09-01	2022-09-01	2023-09-01	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
530449	SCMC	2018-09-01	2022-09-01	2023-09-01	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
530452	SCMC	2018-09-01	2022-09-01	2023-09-01	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.
530457	SCMC	2018-09-01	2022-09-01	2023-09-01	Dagny Lake Area	(50) EXIRO MINERALS CORP., (50) EMX Properties (Canada) Inc.

Date	Easting	Northing	Sample ID	Magnetic Susceptibility	Ground Type	Ground Condition	Lithology	Comment
2022- 10-14	602074	5598094		0.081	Bedrock	Wet	Granite	Coarse-grained, felsic with dominantly quartz and feldspar.
2022- 10-14	601209	5599136		0.396	Bedrock	Dry	Granite or Gneiss	Weather outcrop. Coarse- grained. Might be gneissic.
2022- 10-14	599012	5599350		0.449	Bedrock	Dry	Granite or Gneiss	Weather outcrop. 90% felsic.
2022- 10-14	599136	5599741		0.13	Bedrock	Dry	Granite	Pink and very coarse-grained with quartz and plagioclase. Plagioclase laths 1-4mm.
2022- 10-15	598981	5599620		0.222	Bedrock	Wet	Granite	Partially oxidized outcrop. No visible sulfides.
2022- 10-15	600154	5599362	B0157401	0.176	Bedrock	Wet	Gneiss	Pale grey, black, and red, medium-grained, granite (?). Dominantly quartz (?) ~10% biotite and garnet.
2022- 10-16	600287	5601037	B0157402	0.455	Bedrock	Wet	Mafic (Highly silicified)	Dark grey to pale grey, strongly silicified mafic rock (?). 5% disseminated pyrite and 2-4% blebby chalcopyrite. 1 bleb of blueish-grey sulfide on fresh surface (cobaltite?). Strongly oxidized. Flat laying outcrop.
2022- 10-16	600285	5601033	B0157403	0.32	Bedrock	Wet	Silicified Granite (?)	White, black, and red, medium to coarse-grained granite. 70% quartz, 10% biotite, garnets, and trace pyrite (?). Minor oxidation.
2022- 10-16	600196	5601050	B0157404	0.201	Bedrock	Wet	Granite	Pale grey, black, and rusty medium to coarse-grained, granite. Dominantly quartz with ~10-20% biotite. Trace pyrite. Moderately oxidized.
2022- 10-16	600748	5601090		0.131	Bedrock	Wet	Granite	White, pink, black and coarse- grained. Dominantly plagioclase with approximately 20% quartz and 5% mafic mineral (biotite?).
2022- 10-16	600818	5600894		0.288	Bedrock	Wet	Gneiss	White to dark grey, fine- to coarse-grained gneissic layers cm to m-scale. Quartz, feldspar, and biotite. Az 45°.
2022- 10-17	600847	5600430		0.246	Bedrock	Wet	Granite	Very dark grey, coarse-grained and weathered.
2022- 10-17	600695	5600507		0.211	Bedrock	Wet	Granite	Very dark grey, coarse-grained and weathered.
2022- 10-17	600660	5600573	B0157405	0.134	Bedrock	Wet	Granite	White to pale-grey, black, and rusty, coarse- to very coarse- grained, granite. Dominantly feldspar with ~10% quartz and up to 20% biotite. Moderately oxidized. Magnetic high representation sample.
2022- 10-17	600972	5600332		0.508	Bedrock	Wet	Granite	Oxidized. White to pale grey with plagioclase, quartz, and biotite.

2022- 10-17	601169	5600282		0.265	Bedrock	Wet	Granite	White to pale-grey, coarse- grained with 70% plagioclase, 20% quartz, and 5% biotite.
2022- 10-17	601237	5600179	B0157406	0.239	Bedrock	Wet	Granite	Rusty to white, and black, coarse-grained, granite. Strongly oxidized. Quartz, feldspar and biotite (difficult to get a good estimation). Lake shore and magnetic high representation sample.
2022- 10-17	601524	5598548		2.92	Bedrock	Wet	Granite	Weathered, dark grey, coarse- grained, plagioclase, quartz, and biotite.
2022- 10-17	601852	5598434	B0157407	0.959	Bedrock	Dry	Gneiss (?)	Grey, black, and red, medium- grained, granite. Dominantly quartz ~90%, 5% biotite, and 5% garnet. Representation sample along magnetic high.
2022- 10-17	601812	5598351	B0157408	4.34	Bedrock	Dry	Granite	Pale grey, medium-grained, granite. Dominantly quartz with ~5% biotite. Magnetic high representation sample (magnetic signature of 4.34). Outcrop was at lake shore where sediment samples returned anomalous grade.
2022- 10-18	600223	5601844		0.251	Bedrock	Wet	Granite	Very difficult to determine rock characteristics. Snow covered and weathered.
2022- 10-18	599289	5602347		43	Bedrock	Wet	Gneiss	Pink to black, coarse-grained, likely gneissic. Felsic and mafic banding (?). Dominantly quartz (?) with feldspar. Varying degrees of magnetic susceptibility ranging from 5.34, 18.2, 25.7, 43 in one spot on outcrop. The rest of the outcrop was weakly magnetic.
2022- 10-18	599197	5602352		0.289	Bedrock	Wet	Granite	Pink to pale grey, coarse- grained, dominantly feldspar with quartz and biotite. Weathered outcrop.
2022- 10-18	599008	5602396	B0157409	3.41	Bedrock	Wet	Granite or Gneiss	Dark grey, medium-grained, granite or gneiss. Quartz, mica (?) reflective mineral. Oxidized on surface. Trace pyrite(?)
2022- 10-18	598995	5602384	B0157410	1.19	Bedrock	Wet	Granite or Gneiss	White, red (oxidized), black, medium-grained Granite or Gneiss. Quartz ~20%(?), feldspar, and ~5% biotite
2022- 10-18	598900	5602409	B0157411	0.26	Bedrock	Wet	Granite or Gneiss	Pale grey, white, medium- to coarse-grained, granite or gneiss. ~60-70% quartz, feldspar and <1% biotite. Strongly oxidized on surface.
2022- 10-18	600299	5600793		0.148	Bedrock	Wet	Granite	Weathered outcrop. Dark coloured. Feldspar, quartz, and biotite.

2022- 10-19	597823	5603155		0.431	Bedrock	Dry	Granite	Dark grey to red, coarse- grained. Dominantly feldspar with ~20% quartz and 5% biotite. Patchy oxidation. No visible sulfides.
2022- 10-19	600112	5602510		0.295	Bedrock	Dry	Gneiss	White to black, medium- to coarse-grained. Dominantly feldspar with 25-30% quartz and 1% red garnets. Felsic banding m-scale with cm-scale mafic banding. Very patchy oxidation.
2022- 10-20	595033	5606674		0.328	Bedrock	Wet	Gneiss	White to pale-grey, medium- to coarse-grained. Dominantly feldspar with 20% quartz +/- biotite. Minor oxidation.
2022- 10-20	594510	5606636		0.318	Bedrock	Dry	Granite (?)	Strongly weathered. Minor oxidation. Quartz and plagioclase (?).
2022- 10-21	596628	5603895		0.095	Bedrock	Dry	Gneiss	White, pale grey, and pink, coarse- to very coarse-grained. Dominantly feldspar, 20% quartz, and 5% biotite (?). Banded in sections.
2022- 10-21	596711	5603587		0.277	Bedrock	Dry	Granite (?)	White, pale grey, and black, coarse- to very coarse-grained, massive. Dominantly feldspar, 20% quartz, and 5% biotite.
2022- 10-22	601492	5598444	B0154412	4.09	Bedrock	Dry	Granite	White, pale grey, to black, medium-grained, granite. 60- 70% quartz, feldspar, and 5-10% biotite. Rock showed slight magnetic signature of ~4.09. This sample was taken within the magnetic high.
2022- 10-22	601157	5600615		0.319	Bedrock	Dry	Granite (?)	Dark brown, massive, and weathered. Quartz and plagioclase.
2022- 10-22	601283	5601105		0.204	Bedrock	Dry	Granite (?)	Dark brown, massive, and weathered. Quartz, plagioclase and biotite.

599,200

0.3

602,000

Date	Sample ID	Easting	Northing	Sample Type	Rock Type	Description
2022-10-15	B0157401	600154	5599362	Channel	Gneiss or Granite	Pale grey, black, and red, medium-grained, granite (?). Dominantly quartz (?) ~10% biotite and garnets.
2022-10-16	B0157402	600287	5601037	Channel	Silicified Sheared	Dark grey to pale grey, strongly silicified mafic rock (?). 5% disseminated pyrite and 2-4% blebby chalcopyrite. 1 bleb of blueish-grey sulfide on fresh surface (cobaltite?). Strongly oxidized. Flat laying outcrop.
2022-10-16	B0157403	600285	5601033	Channel	Granite	White, black, and red, medium to coarse- grained granite. 70% quartz, 10% biotite, garnets, and trace pyrite (?). Minor oxidation.
2022-10-16	B0157404	600196	5601050	Channel	Granite	Pale grey, black, and rusty medium to coarse- grained, granite. Dominantly quartz with ~10- 20% biotite. Trace pyrite. Moderately oxidized.
2022-10-17	B0157405	600660	5600573	Grab	Granite	White to pale-grey, black, and rusty, coarse- to very coarse-grained, granite. Dominantly feldspar with ~10% quartz and up to 20% biotite. Moderately oxidized. Magnetic high representation sample.
2022-10-17	B0157406	601237	5600179	Grab	Granite	Rusty to white, and black, coarse-grained, granite. Strongly oxidized. Quartz, feldspar and biotite (difficult to get a good estimation). Lake shore and magnetic high representation sample.
2022-10-17	B0157407	601852	5598434	Grab	Granite or Gneiss	Grey, black, and red, medium-grained, granite. Dominantly quartz ~90%, 5% biotite and 5% garnet. Rep sample along mag high.
2022-10-17	B0157408	601812	5598351	Grab	Granite	Pale grey, medium-grained, granite. Dominantly quartz with ~5% biotite. Magnetic high representation sample (Magnetic signature of 4.34). Outcrop was at lake shore where sediment samples returned anomalous grade.
2022-10-18	B0157409	599008	5602396	Grab	Granite or Gneiss	Dark grey, medium-grained, granite or gneiss. Quartz, mica (?) reflective mineral. Oxidized on surface. Trace pyrite(?)
2022-10-18	B0157410	598995	5602384	Grab	Granite or Gneiss	White, red (oxidized), black, medium-grained Granite or Gneiss. Quartz ~20%(?), feldspar, and ~5% biotite
2022-10-18	B0157411	598900	5602409	Grab	Granite	Pale grey, white, medium- to coarse-grained, granite or gneiss. ~60-70% quartz, feldspar and <1% biotite. Strongly oxidized on surface.
2022-10-22	B0157412	601492	5598444	Grab	Granite	White, pale grey, to black, medium-grained, granite. 60-70% quartz, feldspar, and 5-10% biotite. Rock showed slight magnetic signature of ~4.09. This sample was taken within the magnetic high.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: EXIRO MINERALS 25 ADELAIDE STREET EAST SUITE 1400 TORONTO ON M5C 3A1

Page: 1 Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 15-NOV-2022 This copy reported on 17-NOV-2022 Account: CGAKUT

CERTIFICATE TB22305092

This report is for 12 samples	of Rock	submitted	to our	lab in	Thunder Bay, ON	١,
Canada on 24-OCT-2022.						
					_	

The following have access to data associated with this certificate:

KYLIE COVENTRY	CRAIG FITCHETT	SYDNEY RAMNATH
BILL SPICER		

	JAMIFLL FREFARATION
ALS CODE	DESCRIPTION
WEI-21	Received Sample Weight
LOG-21	Sample logging – ClientBarCode
DRY-22	Drying – Maximum Temp 60C
CRU-31	Fine crushing – 70% <2mm
CRU-QC	Crushing QC Test
PUL-QC	Pulverizing QC Test
SPL-21	Split sample – riffle splitter
PUL-32	Pulverize 1000g to $85\% < 75$ um

CAMPLE DEEDADATION

ANALYTICAL PROCEDURES

ALS CODE	DESCRIPTION	INSTRUMENT
ME-MS61 Hg-MS42 PGM-MS24	48 element four acid ICP-MS Trace Hg by ICPMS Pt, Pd and Au 50g FA ICP-MS	ICP-MS ICP-MS

This is the Final Report and supersedes any preliminary report with this certificate number.Results apply to samples as submitted.All pages of this report have been checked and approved for release. ***** See Appendix Page for comments regarding this certificate *****

Saa Traxler, Director, North Vancouver Operations

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: EXIRO MINERALS 25 ADELAIDE STREET EAST SUITE 1400 TORONTO ON M5C 3A1

Page: 2 - A Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 15-NOV-2022 Account: CGAKUT

									CERTIFICATE OF ANALYSIS TB22305092							
Sample Description	Method	WEI-21	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61
	Analyte	Recvd Wt.	Ag	Al	As	Ba	Be	Bi	Ca	Cd	Ce	Co	Cr	Cs	Cu	Fe
	Units	kg	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%
	LOD	0.02	0.01	0.01	0.2	10	0.05	0.01	0.01	0.02	0.01	0.1	1	0.05	0.2	0.01
B0157401		1.12	0.08	7.08	0.6	260	1.92	0.01	1.69	0.07	66.8	18.6	128	0.45	48.8	3.86
B0157402		1.35	0.66	5.79	2.5	250	1 71	0.10	4 49	0.70	29.3	71.9	99	1.03	438	11.00
B0157403 B0157404		2.13 0.70	0.16 0.04	6.57 6.82	0.4	240 310	0.91 1.12	0.03 0.01	1.42 1.27	0.12 0.08	36.8 36.2	17.9 18.2	106 145	0.44	60.6 37.4	4.36 4.64
B0157405		1.29	0.03	7.71	1.1	1290	0.46	0.01	1.16	0.06	61.6	11.7	116	0.41	20.3	3.66
B0157406		0.64	0.03	8.27	0.8	680	0.61	0.02	1.64	0.07	73.2	17.8	172	0.65	19.6	4.91
B0157407		1.08	0.06	7.54	0.7	490	1.22	<0.01	2.01	0.10	61.5	18.6	144	1.16	17.9	3.99
B0157408		1.68	0.05	7.33	0.7	650	0.66	<0.01	1.85	0.03	47.4	5.1	26	0.36	3.7	1.76
B0157409		1.46	0.69	7.78	0.5	350	0.99	0.12	1.87	0.88	73.2	37.1	160	0.48	363	6.88
B0157410		1.09	0.20	6.95	0.5	700	0.70	0.03	1.98	0.10	25.9	2.2	44	0.26	52.9	3.03
B0157411		1.64	0.14	6.91	0.9	2110	0.69	0.01	0.84	0.07	75.3	3.2	19	0.36	62.0	1.39
B0157412		0.54	0.05	7.39	0.7	870	0.69	<0.01	1.58	0.04	56.5	3.2	15	0.34	2.0	1.64
2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: EXIRO MINERALS 25 ADELAIDE STREET EAST SUITE 1400 TORONTO ON M5C 3A1

Page: 2 - B Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 15-NOV-2022 Account: CGAKUT

									CERTIFICATE OF ANALYSIS TB22305092								
Sample Description	Method	ME-MS61	ME-MS61	ME-MS61	Hg-MS42	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	
	Analyte	Ga	Ge	Hf	Hg	In	K	La	Li	Mg	Mn	Mo	Na	Nb	Ni	P	
	Units	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm	
	LOD	0.05	0.05	0.1	0.005	0.005	0.01	0.5	0.2	0.01	5	0.05	0.01	0.1	0.2	10	
B0157401		16.25	0.19	3.0	<0.005	0.039	1.17	35.4	15.1	1.21	481	1.44	2.26	6.6	42.3	270	
B0157402		18.10	0.13	2.2	<0.005	0.082	0.09	13.6	7.8	2.36	767	7.25	0.37	6.9	66.5	230	
B0157403		13.25	0.15	7.7	<0.005	0.028	0.92	20.7	14.4	0.84	836	9.97	1.95	3.2	21.4	160	
B0157404		16.45	0.15	4.1	<0.005	0.022	1.49	19.4	20.5	1.43	624	2.56	1.74	11.6	40.9	170	
B0157405		17.45	0.18	2.1	<0.005	0.054	3.26	31.4	16.9	1.11	560	1.16	2.13	7.8	39.1	300	
B0157406		20.2	0.22	4.2	<0.005	0.047	2.23	36.9	18.3	1.60	691	1.24	2.52	11.9	51.7	280	
B0157407		16.90	0.20	3.2	<0.005	0.046	1.20	31.7	6.7	1.22	669	2.12	2.36	6.2	44.2	370	
B0157408		19.70	0.18	3.2	<0.005	0.027	2.07	23.5	9.1	0.56	101	0.24	2.99	4.5	9.0	290	
B0157409		19.25	0.22	3.7	<0.005	0.071	1.24	37.1	17.8	1.02	228	7.10	2.35	7.2	63.0	350	
B0157410		15.80	0.12	2.0	<0.005	0.040	1.35	13.2	5.1	0.28	75	3.74	2.75	4.3	1.9	240	
B0157411		15.10	0.19	3.1	<0.005	0.011	4.71	40.6	4.4	0.14	48	4.65	2.14	4.2	5.3	260	
B0157412		19.60	0.18	3.6	<0.005	0.016	2.62	28.8	14.2	0.37	115	0.90	3.00	3.5	4.3	400	

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: EXIRO MINERALS 25 ADELAIDE STREET EAST SUITE 1400 TORONTO ON M5C 3A1

Page: 2 - C Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 15-NOV-2022 Account: CGAKUT

									(05092						
Sample Description	Method	ME-MS61														
	Analyte	Pb	Rb	Re	S	Sb	Sc	Se	Sn	Sr	Ta	Te	Th	Ti	Tl	U
	Units	ppm	ppm	ppm	%	ppm	%	ppm	ppm							
	LOD	0.5	0.1	0.002	0.01	0.05	0.1	1	0.2	0.2	0.05	0.05	0.01	0.005	0.02	0.1
B0157401		15.0	63.9	<0.002	0.11	<0.05	12.1	1	0.5	285	0.36	<0.05	9.72	0.295	0.36	1.6
B0157402		3.4	10.8	0.004	4.26	<0.05	19.8	5	0.6	94.6	0.43	0.34	2.39	0.259	0.04	0.8
B0157403		14.6	41.6	<0.002	0.52	<0.05	23.5	2	0.3	250	0.13	0.12	3.18	0.130	0.21	0.9
B0157404		10.6	94.5	<0.002	0.03	<0.05	18.6	2	0.4	212	0.37	0.11	3.72	0.472	0.50	0.8
B0157405		26.5	117.0	<0.002	0.02	<0.05	15.5	1	0.4	422	0.25	0.05	11.50	0.273	0.58	0.8
B0157406		19.2	105.5	<0.002	0.02	<0.05	19.2	1	0.2	353	0.31	0.05	13.20	0.397	0.53	0.9
B0157407		13.6	72.2	<0.002	0.05	<0.05	14.7	1	0.9	500	0.46	<0.05	11.25	0.308	0.38	2.4
B0157408		24.5	62.7	<0.002	0.02	<0.05	3.7	2	0.9	499	0.23	<0.05	10.25	0.199	0.33	0.8
B0157409		15.0	57.9	0.004	2.47	<0.05	13.9	3	0.4	302	0.43	0.43	13.10	0.295	0.39	2.2
B0157410		17.8	36.5	0.002	0.31	<0.05	5.0	2	0.3	279	0.25	0.22	3.33	0.146	0.20	0.6
B0157411		36.7	118.5	<0.002	0.38	<0.05	0.9	2	0.2	641	0.35	0.12	14.85	0.063	0.57	3.4
B0157412		27.6	72.2	<0.002	0.01	<0.05	2.6	1	0.6	525	0.20	<0.05	11.90	0.186	0.35	1.2

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: EXIRO MINERALS 25 ADELAIDE STREET EAST SUITE 1400 TORONTO ON M5C 3A1

Page: 2 - D Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 15-NOV-2022 Account: CGAKUT

										CERTIFICATE OF ANALYSIS	TB22305092
Sample Description	Method Analyte Units LOD	ME-MS61 V ppm 1	ME-MS61 W ppm 0.1	ME-MS61 Y ppm 0.1	ME-MS61 Zn ppm 2	ME-MS61 Zr ppm 0.5	PGM-MS24 Au ppm 0.001	PGM-MS24 Pt ppm 0.0005	PGM-MS24 Pd ppm 0.001	4	
B0157401		83	<0.1	14.8	64	123.0	0.004	0.0013	0.001		
B0157402		74	0.1	15.4	334	90.2	0.009	0.0016	0.001		
B0157403		43	0.1	25.2	73	301	<0.001	0.0008	0.001		
B0157404		116	0.1	15.0	84	175.0	0.003	0.0012	0.001		
B0157405		73	<0.1	14.3	58	85.4	0.004	0.0011	0.001		
B0157406		103	0.1	17.7	93	163.5	<0.001	0.0012	0.001		
B0157407		88	0.2	14.7	67	135.0	<0.001	0.0013	0.001		
B0157408		35	<0.1	2.9	49	131.5	<0.001	<0.0005	<0.001		
B0157409		108	0.4	9.4	223	146.0	0.003	0.0013	0.001		
B0157410		31	0.2	3.5	19	76.2	<0.001	<0.0005	<0.001		
B0157411		7	0.2	4.1	21	108.0	<0.001	<0.0005	<0.001		
B0157412		26	<0.1	3.7	43	146.0	0.007	<0.0005	<0.001		

ALS

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: EXIRO MINERALS 25 ADELAIDE STREET EAST SUITE 1400 TORONTO ON M5C 3A1

Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 15-NOV-2022 Account: CGAKUT

		CERTIFICATE COMMENTS		
Applies to Method:	REEs may not be totally soluble in this ME-MS61	ANALYTICAL COM s method.	MMENTS	
Applies to Method:	Processed at ALS Thunder Bay located CRU-31 PUL-32	LABORATORY AD at 645 Norah Crescent, Thunder Bay CRU-QC PUL-QC	DRESSES , ON, Canada DRY-22 SPL-21	LOG-21 WEI-21
Applies to Method:	Processed at ALS Vancouver located a Hg-MS42	t 2103 Dollarton Hwy, North Vancouv ME-MS61	er, BC, Canada. PGM-MS24	

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: EXIRO MINERALS 25 ADELAIDE STREET EAST SUITE 1400 TORONTO ON M5C 3A1

ALS CODE

Page: 1 Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 15-NOV-2022 This copy reported on 17-NOV-2022 Account: CGAKUT

QC CERTIFICATE TB22305092

This report is for 12 sample	of Rock	submitted	to c	our lab	in	Thunder	Bay,	ON,
Canada on 24-OCT-2022.								

The following have access to data associated with this certificate:

KYLIE COVENTRY	CRAIG FITCHETT	SYDNEY RAMNATH
BILL SPICER		

ALS CODE	DESCRIPTION
WEI-21	Received Sample Weight
LOG-21	Sample logging – ClientBarCode
DRY-22	Drying – Maximum Temp 60C
CRU-31	Fine crushing – 70% <2mm
CRU-QC	Crushing QC Test
PUL-QC	Pulverizing QC Test
SPL-21	Split sample – riffle splitter
PUL-32	Pulverize 1000g to $85\% < 75$ um

SAMPLE PREPARATION

ANALYTICAL PROCEDURES DESCRIPTION INSTRUMENT

ME-MS61	48 element four acid ICP-MS	
Hg-MS42	Trace Hg by ICPMS	ICP-MS
PGM-MS24	Pt, Pd and Au 50g FA ICP-MS	ICP-MS
Hg-MS42 PGM-MS24	Trace Hg by ICPMS Pt, Pd and Au 50g FA ICP–MS	ICP-MS ICP-MS

This is the Final Report and supersedes any preliminary report with this certificate number.Results apply to samples as submitted.All pages of this report have been checked and approved for release. ***** See Appendix Page for comments regarding this certificate *****

Saa Traxler, Director, North Vancouver Operations

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: EXIRO MINERALS 25 ADELAIDE STREET EAST SUITE 1400 TORONTO ON M5C 3A1

Page: 2 - A Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 15-NOV-2022 Account: CGAKUT

									QC	C CERTI	ALYSIS	TB22305092				
Sample Description	Method Analyte Units LOD	ME-MS61 Ag ppm 0.01	ME-MS61 Al % 0.01	ME-MS61 As ppm 0.2	ME-MS61 Ba ppm 10	ME-MS61 Be ppm 0.05	ME-MS61 Bi ppm 0.01	ME-MS61 Ca % 0.01	ME-MS61 Cd ppm 0.02	ME-MS61 Ce ppm 0.01	ME-MS61 Co ppm 0.1	ME-MS61 Cr ppm 1	ME-MS61 Cs ppm 0.05	ME-MS61 Cu ppm 0.2	ME-MS61 Fe % 0.01	ME-MS61 Ga ppm 0.05
							STAN	DARDS								
MRGeo08 MRGeo08 Target Range – Lower Upper	Bound Bound															
MRGeo08		4.07	7.47	34.7	1080	3.20	0.58	2.65	2.09	73.2	21.0	95	12.80	618	3.86	17.55
Target Range – Lower	Bound	3.93	6.64	29.5	920	2.98	0.58	2.35	2.00	66.2	17.7	81	11.20	587	3.55	17.50
OREAS 624 OREAS 624 Target Range – Lower Upper OREAS 682 Target Range – Lower Upper OREAS 906	Bound Bound Bound Bound Bound	0.68	7.31	23.6	2750	2.85	11.45	0.58	0.37	96.7	25.5	9	6.30	3060	5.40	29.2 29.2
Target Range – Lower	Bound	0.67	6.61 8.11	20.3	2300	2.60	9.98	0.50	0.36	83.7	21.7	11	6.07 7.53	2880	4.94	25.5
OREAS-45h Target Range – Lower Upper	Bound Bound						BL	ANKS								
BLANK BLANK Target Range – Lower Upper	Bound Bound															
BLANK	Dound	<0.01	<0.01	0.3	<10	< 0.05	<0.01	< 0.01	< 0.02	0.01	<0.1	<1	<0.05	<0.2	<0.01	< 0.05
Upper	Bound	0.02	0.02	0.4	20	0.10	0.02	0.02	0.02	0.02	0.2	2	0.10	0.4	0.02	0.10
BLANK Target Range – Lower Upper	Bound Bound															

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: EXIRO MINERALS 25 ADELAIDE STREET EAST SUITE 1400 TORONTO ON M5C 3A1

Page: 2 - B Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 15-NOV-2022 Account: CGAKUT

Sample Description	Method Analyte Units LOD	ME-MS61 Ge ppm 0.05	ME-MS61 Hf ppm 0.1	Hg-MS42 Hg ppm 0.005	ME-MS61 In ppm 0.005	ME-MS61 K % 0.01	ME-MS61 La ppm 0.5	ME-MS61 Li ppm 0.2	ME-MS61 Mg % 0.01	ME-MS61 Mn ppm 5	ME-MS61 Mo ppm 0.05	ME-MS61 Na % 0.01	ME-MS61 Nb ppm 0.1	ME-MS61 Ni ppm 0.2	ME-MS61 P ppm 10	ME-MS61 Pb ppm 0.5
							STAN	DARDS								
MRGeo08 MRGeo08 Target Range – Lower Upper	Bound			0.063 0.058 0.048 0.074												
MRGeo08	bound	0.22	2.8		0.177	3.17	35.3	34.5	1.33	556	15.05	1.96	22.0	680	1020	1045
Target Range – Lower	Bound	< 0.05	2.8		0.155	2.79	31.1	29.5	1.17	497	13.65	1.76	19.0	622	930	971
Upper OREAS 624 OREAS 624 Target Range – Lower Upper OREAS 682 Target Range – Lower Upper	Bound Bound Bound Bound Bound	0.28	3.6	1.900 1.915 1.695 2.08	0.201	3.43	39.1	36.5	1.45	619	16.75	2.18	23.4	760	1160	1185
OREAS 906	D	0.25	6.4		1.270	2.85	47.6	19.8	0.28	364	3.97	2.42	19.0	7.3	270	34.1
Lower	Bound	0.07	7.8		1.360	2.55	41.5 51.9	21.4	0.24	412	4.51	2.17	15.9	4.2	310	40.2
OREAS-45h Target Range – Lower Upper	Bound Bound						BL	ANKS								
BLANK BLANK Target Range – Lower Upper	Bound Bound			<0.005 <0.005 <0.005 0.010												
BLANK		<0.05	<0.1		<0.005	<0.01	<0.5	0.2	<0.01	<5	<0.05	<0.01	<0.1	0.2	<10	<0.5
Target Range – Lower Upper BLANK Target Range – Lower	Bound Bound	<0.05 0.10	<0.1 0.2		<0.005 0.010	<0.01 0.02	<0.5 1.0	<0.2 0.4	<0.01 0.02	<5 10	<0.05 0.10	<0.01 0.02	<0.1 0.2	<0.2 0.4	<10 20	<0.5 1.0
Upper	Bound															

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: EXIRO MINERALS 25 ADELAIDE STREET EAST SUITE 1400 TORONTO ON M5C 3A1

Page: 2 - C Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 15-NOV-2022 Account: CGAKUT

									QC CERTIFICATE OF ANALYSIS TB22305092							2
Sample Description	Method Analyte Units LOD	ME-MS61 Rb ppm 0.1	ME-MS61 Re ppm 0.002	ME-MS61 S % 0.01	ME-MS61 Sb ppm 0.05	ME-MS61 Sc ppm 0.1	ME-MS61 Se ppm 1	ME-MS61 Sn ppm 0.2	ME-MS61 Sr ppm 0.2	ME-MS61 Ta ppm 0.05	ME-MS61 Te ppm 0.05	ME-MS61 Th ppm 0.01	ME-MS61 Ti % 0.005	ME-MS61 Tl ppm 0.02	ME-MS61 U ppm 0.1	ME-MS61 V ppm 1
							STAN	DARDS								
MRGeo08 MRGeo08 Target Range – Lower	Bound															
Upper MRGeo08	Bound	206	0.009	0.29	3.98	13.2	3	3.9	298	1.40	<0.05	19.05	0.486	0.92	5.1	107
Target Range – Lower	Bound	173.5	0.004	0.27	3.89	11.1	<1	3.5	277	1.39	< 0.05	17.90	0.443	0.86	4.9	97
Upper OREAS 624 OREAS 624 Target Range – Lower Upper OREAS 682 Target Range – Lower	Bound Bound Bound Bound	212	0.013	0.35	5.39	13.7	4	4.7	339	1.81	0.12	21.9	0.553	1.21	6.2	121
OREAS 906	bound	139.5	<0.002	0.04	2.11	4.6	6	4.2	155.0	1.26	0.15	13.75	0.112	0.62	4.5	5
Target Range – Lower	Bound	124.0	< 0.002	0.02	1.96	4.0	3	3.7	140.0	1.17	< 0.05	13.30	0.097	0.58	4.5	3
OREAS-45h Target Range – Lower Upper	Bound Bound		0.001		2.10	0.2	BL	ANKS			0.20		0.120			
BLANK BLANK Target Range – Lower Upper	Bound Bound															
BLANK		<0.1	0.003	< 0.01	< 0.05	<0.1	1	<0.2	<0.2	< 0.05	< 0.05	< 0.01	< 0.005	< 0.02	<0.1	<1
Target Range – Lower Upper	Bound Bound	<0.1	<0.002	<0.01	<0.05	<0.1	<1	<0.2	<0.2	<0.05	<0.05	<0.01	<0.005	<0.02	<0.1	<1
BLANK Target Range – Lower Upper	Bound Bound	0.2	0.007	U.UL	0.10	U.L	2	0.7	0.7	0.10	0.10	U.UL	0.010	0.01	U.L	

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: EXIRO MINERALS 25 ADELAIDE STREET EAST SUITE 1400 TORONTO ON M5C 3A1

Page: 2 - D Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 15-NOV-2022 Account: CGAKUT

Sample Description	Method Analyte Units LOD	ME-MS61 W ppm 0.1	ME-MS61 Y ppm 0.1	ME-MS61 Zn ppm 2	ME-MS61 Zr ppm 0.5	PGM-MS24 Au ppm 0.001	PGM-MS24 Pt ppm 0.0005	PGM-MS24 Pd ppm 0.001						
							STAN	DARDS						
MRGeo08 MRGeo08 Target Range – Lower Upper MRGeo08 Target Range – Lower Upper OREAS 624	Bound Bound Bound Bound	4.3 4.1 5.8	27.2 23.8 29.3	795 722 886	106.0 92.2 126.0									
OREAS 624 Target Range - Lower Upper OREAS 682 Target Range - Lower Upper OREAS 906 Target Range - Lower Upper OREAS-45h Target Range - Lower Upper	Bound Bound Bound Bound Bound Bound Bound	2.6 2.2 3.2	17.0 14.1 17.5	160 145 181	257 221 301	0.073 0.070 0.081 0.038 0.038 0.044	0.890 0.815 0.921 0.0827 0.0813 0.0927	0.426 0.416 0.472 0.125 0.119 0.137						
							BL/	ANKS						
BLANK BLANK Target Range – Lower BLANK Target Range – Lower BLANK Target Range – Lower Upper	Bound Bound Bound Bound Bound	<0.1 <0.1 0.2	<0.1 <0.1 0.2	<2 <2 4	<0.5 <0.5 1.0	0.001 <0.001 0.002	<0.0005 <0.0005 0.0010	0.001 <0.001 0.002	I					

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: EXIRO MINERALS 25 ADELAIDE STREET EAST SUITE 1400 TORONTO ON M5C 3A1

Page: 3 - A Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 15-NOV-2022 Account: CGAKUT

Sample Description	Method Analyte Units LOD	ME-MS61 Ag ppm 0.01	ME-MS61 Al % 0.01	ME-MS61 As ppm 0.2	ME-MS61 Ba ppm 10	ME-MS61 Be ppm 0.05	ME-MS61 Bi ppm 0.01	ME-MS61 Ca % 0.01	ME-MS61 Cd ppm 0.02	ME-MS61 Ce ppm 0.01	ME-MS61 Co ppm 0.1	ME-MS61 Cr ppm 1	ME-MS61 Cs ppm 0.05	ME-MS61 Cu ppm 0.2	ME-MS61 Fe % 0.01	ME-MS61 Ga ppm 0.05
ORIGINAL DUP Target Range – Lower Upper	Bound Bound						DUPL	ICATES								
ORIGINAL DUP Target Range – Lower Upper	Bound Bound	0.10 0.09 0.08 0.11	7.80 7.63 7.32 8.11	1.8 1.5 1.4 1.9	430 420 380 470	0.59 0.58 0.51 0.66	0.05 0.05 0.04 0.06	2.34 2.26 2.18 2.43	0.08 0.08 0.06 0.10	7.96 7.81 7.48 8.29	3.8 3.9 3.6 4.1	12 13 11 14	0.93 0.92 0.83 1.02	19.8 20.3 19.1 21.0	1.82 1.78 1.70 1.90	17.40 17.30 16.45 18.25
ORIGINAL DUP Target Range – Lower Upper	Bound Bound															
ORIGINAL DUP Target Range – Lower Upper	Bound Bound															
ORIGINAL DUP Target Range - Lower Upper	Bound Bound															

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: EXIRO MINERALS 25 ADELAIDE STREET EAST SUITE 1400 TORONTO ON M5C 3A1

Page: 3 - B Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 15-NOV-2022 Account: CGAKUT

Sample Descriptio	Method Analyte On Units LOD	ME-MS61 Ge ppm 0.05	ME-MS61 Hf ppm 0.1	Hg-MS42 Hg ppm 0.005	ME-MS61 In ppm 0.005	ME-MS61 K % 0.01	ME-MS61 La ppm 0.5	ME-MS61 Li ppm 0.2	ME-MS61 Mg % 0.01	ME-MS61 Mn ppm 5	ME-MS61 Mo ppm 0.05	ME-MS61 Na % 0.01	ME-MS61 Nb ppm 0.1	ME-MS61 Ni ppm 0.2	ME-MS61 P ppm 10	ME-MS61 Pb ppm 0.5
ORIGINAL DUP Target Range – Lo [.] Up	wer Bound per Bound			0.041 0.039 0.033 0.047			DUPI	LICATES								
ORIGINAL DUP Target Range – Lo Up	wer Bound per Bound	0.11 0.09 <0.05 0.16	1.6 1.6 1.4 1.8		0.010 0.010 <0.005 0.016	1.37 1.32 1.27 1.42	3.6 3.7 3.0 4.3	7.6 7.5 7.0 8.1	0.59 0.58 0.55 0.62	165 160 149 176	5.75 5.64 5.36 6.03	3.39 3.31 3.17 3.53	1.0 1.0 0.9 1.2	12.9 13.2 12.2 13.9	240 240 220 260	10.8 10.8 9.8 11.8
ORIGINAL DUP Target Range – Lo Up	wer Bound per Bound			0.675 0.723 0.659 0.739												
ORIGINAL DUP Target Range – Lo [.] Up	wer Bound per Bound															
ORIGINAL DUP Target Range – Lo Up	wer Bound per Bound															

DUP

DUP

DUP

DUP

DUP

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: EXIRO MINERALS **25 ADELAIDE STREET EAST SUITE 1400** TORONTO ON M5C 3A1

Page: 3 – C Total # Pages: 3 (A - D) **Plus Appendix Pages** Finalized Date: 15-NOV-2022 Account: CGAKUT

QC CERTIFICATE OF ANALYSIS TB22305092 ME-MS61 Method Rb Re S Sb Sc Se Sn Sr Та Te Τh Ti ΤI U V Analyte % % ppm Units Sample Description 0.1 0.002 0.01 0.05 0.1 1 0.2 0.2 0.05 0.05 0.01 0.005 0.02 0.1 LOD 1 DUPLICATES ORIGINAL Target Range – Lower Bound Upper Bound 37.6 0.004 0.07 1.02 3.8 0.3 384 0.07 < 0.05 0.43 0.121 0.13 0.2 26 ORIGINAL 1 2 0.3 373 0.2 25 37.9 0.004 0.06 1.00 3.8 0.08 < 0.05 0.42 0.117 0.13 Target Range – Lower Bound 35.8 < 0.002 0.05 0.88 3.5 <1 <0.2 359 < 0.05 < 0.05 0.39 0.108 0.10 <0.1 23 Upper Bound 39.7 0.006 0.08 1.14 4.1 2 0.4 398 0.10 0.10 0.46 0.130 0.16 0.3 28 ORIGINAL Target Range – Lower Bound Upper Bound ORIGINAL Target Range – Lower Bound Upper Bound ORIGINAL Target Range – Lower Bound Upper Bound

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: EXIRO MINERALS 25 ADELAIDE STREET EAST SUITE 1400 TORONTO ON M5C 3A1

Page: 3 - D Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 15-NOV-2022 Account: CGAKUT

Sample Description	Method Analyte Units LOD	ME-MS61 W ppm 0.1	ME-MS61 Y ppm 0.1	ME-MS61 Zn ppm 2	ME-MS61 Zr ppm 0.5	PGM-MS24 Au ppm 0.001	PGM-MS24 Pt ppm 0.0005	PGM-MS24 Pd ppm 0.001	
ORIGINAL DUP Target Range – Lower Upper	· Bound Bound						DUPL	ICATES	
ORIGINAL DUP Target Range – Lower Upper	⁻ Bound Bound	0.6 0.6 0.5 0.7	3.0 3.0 2.8 3.3	34 33 30 37	61.3 60.8 56.0 66.1				
ORIGINAL DUP Target Range – Lower Upper	⁻ Bound Bound								
ORIGINAL DUP Target Range – Lower Upper	⁻ Bound Bound					0.007 0.006 0.005 0.008	0.0110 0.0082 0.0086 0.0106	0.015 0.014 0.013 0.016	
ORIGINAL DUP Target Range – Lower Upper	Bound Bound					0.041 0.007 0.022 0.026	0.0006 0.0006 <0.0005 0.0010	0.001 0.001 <0.001 0.002	

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: EXIRO MINERALS 25 ADELAIDE STREET EAST SUITE 1400 TORONTO ON M5C 3A1

Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 15-NOV-2022 Account: CGAKUT

		CERTIFICATE COMMENTS								
		ANALYTICAL COM	MMENTS							
Applies to Method:	REEs may not be totally soluble in this ME-MS61	s method.								
		LABORATORY AD	DRESSES							
Applies to Method:	Processed at ALS Thunder Bay located CRU-31 PUL-32	l at 645 Norah Crescent, Thunder Bay CRU-QC PUL-QC	, ON, Canada DRY-22 SPL-21	LOG-21 WEI-21						
Applies to Method:	Processed at ALS Vancouver located at 2103 Dollarton Hwy, North Vancouver, BC, Canada. Hg-MS42 MF-MS61 PGM-MS24									