

We are committed to providing <u>accessible customer service</u>. If you need accessible formats or communications supports, please <u>contact us</u>.

Nous tenons à améliorer <u>l'accessibilité des services à la clientèle</u>. Si vous avez besoin de formats accessibles ou d'aide à la communication, veuillez <u>nous contacter</u>.

2021 PHASE 2 DIAMOND DRILLING PROGRAM: BELFAST-TECKMAG PROJECT

AFTON, ARMAGH, BELFAST, CLARY, CLEMENT, DELHI, JOAN, LEROCHE, MACBETH, PHYLLIS, SCHOLES, & SHEPPARD TOWNSHIPS

SUDBURY MINING DIVISION

NORTHEASTERN ONTARIO, CANADA

55 UNIVERSITY AVE. SUITE 1805 TORONTO, ONTARIO M5J 2H7

JANUARY 14TH, 2023

PREPARED BY: JOERG KLEINBOECK, P.GEO.

TABLE OF CONTENTS

EXECUTIVE SUMMARY	2
1.0 INTRODUCTION	4
2.0 PROPERTY DETAILS	4
2.1 Location and Access	4
2.2 Topography and Vegetation	5
2.3 Claims	6
3.0 HISTORY	7
3.1 Historical Mineral Exploration	7
4. GEOLOGICAL SETTING AND MINERALIZATION	12
4.1 Regional Geology	12
4.2 Property Geology	12
5.0 PHASE 1 DIAMOND DRILLING PROGRAM	14
5.1 Methods	14
6.0 CONCLUSIONS	19
7.0 RECOMMENDATIONS	19

LIST OF FIGURES

Figure 1: Location of the Belfast-TeckMag Project	5
Figure 2: Tenure map for the Belfast-TeckMag Project	6
Figure 3: Property Geology (after MRD 282).	13
Figure 4: Permitted claims (PR-21-000029)	15
Figure 5: Collar location and projected trace of drill hole BC21-01	16

LIST OF TABLES

Table 1: Drill Hole Information	. 15
Table 2: Selected results from the Phase 2 Diamond Drilling Program	. 16

LIST OF APPENDICES

Appendix I Statement of Qualifications Appendix II List of Claims Appendix III Diamond Drill Log Appendix IV Cross Section & Plan Map Appendix V Assay Certificate Appendix VI Exploration Permit

EXECUTIVE SUMMARY

The author was requested by Conquest Resources Ltd. ("Conquest") to complete a technical report for assessment purposes on their Phase 2 diamond drilling program that was completed on the Belfast-TeckMag Project ("Project" or "Property").

The Property is located within the Sudbury Mining Division, Ontario, approximately 65 km northeast of the City of Greater Sudbury. The Property is situated within Afton, Armagh, Belfast, Clement, Clary, Delhi, Le Roche, Joan, MacBeth, Phyllis, Scholes, and Sheppard Townships, Ontario. National Topographic System (NTS) map sheets 411/16L, 411/16K, 411/16J, 411/16I, 411/16F, 411/16G, 41P/01B, 41P/01A, 41P/01F, and 41P/01G covers the area of the Belfast-TeckMag Project.

The Project is comprised of 1,390 unpatented mining claims, and 5 leased mining claims totalling approximately 32,197 ha. The Property is bounded by UTM NAD83 coordinates 17N 524391E to 568012E, and 5186400N to 5211875N.

The Project is located within the Cobalt embayment at the south margin of the Superior Province of the Canadian Shield. The Property geology is dominated by Nipissing diabase that has been intruded as a sill and overlies the sedimentary rocks of the Gowganda Formation, part of the Huronian Supergroup. Both the Nipissing diabase and Huronian rocks have been block faulted along predominantly north-northwest trending faults. The Huronian sedimentary rocks unconformably overlie Archean volcanic and sedimentary rocks that are related to the Temagami greenstone belt located to the east. The Project covers a portion of the Temagami Magnetic Anomaly that is visible in regional magnetic surveys as a large approximately 60 km by 20 km buried, east-west striking, geological/geophysical feature that stretches from Lake Wanapitei to Lake Temagami. The Property also covers the past-producing Golden Rose Mine that operated intermittently from 1915 through to 1988.

From March 13th to April 8th, 2021, Conquest completed one diamond drill hole totalling 313.30 m on the Belfast-TeckMag Project. The program targeted a northeast oriented airborne electromagnetic conductor that was generated from the recently completed

VTEM Max (Versatile Time Domain Electromagnetic) survey, a heliborne electromagnetic and magnetic system developed by Geotech Ltd. The drill program was heli-supported and crews initially used snowmobiles for daily access. Drilling had to be suspended for approximately two weeks due to unseasonably warm weather which led to an early break up. The balance of the drilling had to utilize a helicopter to provide daily access and supplies for the crews to the drill site.

Although anomalous base metal mineralization was intersected, the drill hole did not explain the source of the conductor.

It is recommended that Conquest complete a ground electromagnetic (TDEM) survey over the airborne anomaly prior to further testing the anomaly with an additional drill hole.

1.0 INTRODUCTION

From March 13th to April 8th, 2021, Conquest completed one diamond drill hole totalling 313.30 m on the Belfast-TeckMag Project. The program targeted a northeast oriented airborne electromagnetic conductor that was generated from the recently completed VTEM Max (Versatile Time Domain Electromagnetic) survey, heliborne electromagnetic and magnetic system developed by Geotech Ltd. The drill program was heli-supported and crews initially used snowmobiles for daily access. Drilling had to be suspended for approximately two weeks due to unseasonably warm weather which led to an early break up. The balance of the drilling had to utilize a helicopter to provide daily access and supplies for the crews to the drill site.

Although anomalous base metal mineralization was intersected, the drill hole did not explain the source of the conductor.

2.0 PROPERTY DETAILS

2.1 Location and Access

The Property is located within the Sudbury Mining Division, Ontario, approximately 65 km northeast of the City of Greater Sudbury. The Property is situated within Afton, Armagh, Belfast, Clement, Clary, Delhi, Le Roche, Joan, MacBeth, Phyllis, Scholes, and Sheppard Townships, Ontario. National Topographic System (NTS) map sheets 41I/16L, 41I/16K, 41I/16J, 41I/16I, 41I/16F, 41I/16G, 41P/01B, 41P/01A, 41P/01F, and 41P/01G cover the area of the Belfast-TeckMag Project.

Access to the Property is obtained by travelling north of the village of River Valley, Ontario, along Provincial Highway 805. A series of logging roads and atv trails branching off of Highway 805 provide access to most parts of the Property. Access in the Skunk Lake area is provided through snowmobile trails that branch off of either Gull Lake or Lake Temagami. Drilling in this area would have to be heli-supported.

2.2 Topography and Vegetation

The local terrain is variable from swamps to steep cliffs. Typical vegetation on the Property consists of a boreal forest with a mixture of coniferous and deciduous trees, including poplar, white birch, red pine, white pine, white spruce, black spruce, balsam, cedar, and alders. The elevation of the Property ranges from approximately 285 to 400 m ASL.

Figure 1: Location of the Belfast-TeckMag Project

2.3 Claims

The Project is comprised of 1,390 unpatented mining claims, and 5 leased mining claims totalling approximately 32,197 ha. The Property is bounded by UTM NAD83 coordinates 17N 524391E to 568012E, and 5186400N to 5211875N.

Claim details are provided in Appendix II and shown in Figure 2.

The author has not sought a formal legal opinion with regard to the ownership status of the claims comprising the Property and has in all aspects of tenure relied on materials made available on the NDMNRF's website (https://www.mlas.mndm.gov.on.ca) which states that the claims are 100% owned by Conquest.

Figure 2: Tenure map for the Belfast-TeckMag Project

3.0 HISTORY

3.1 Historical Mineral Exploration

Assessment files covering the unpatented and leased mining claims were sourced online through ENDM's Assessment File Research Imaging (AFRI) database. From 1972 through to 1996, the area was removed from staking due the Temagami Land Caution. An extensive amount of past historical work has been completed on the Project, and only a summary of the most significant work has been provided below.

1897: Gold was discovered in weathered iron formation on the shoreline of Emerald Lake.

1915-1919: Golden Rose Mining Company carried out trenching, excavated a 100 ft adit, and sunk a 150 ft shaft on the current Golden Rose leases. A small amalgamation mill was built and minor (undisclosed) amounts of gold were recovered.

1927-1928: Afton Mines Ltd. completed seven diamond drill holes for a total of 2,303 ft. on the current Golden Rose leases. The adit was also extended to 250 ft, and the shaft deepened to 238 ft.

1935-1941: The Consolidated Mining and Smelting Company of Canada Limited carried out extensive surface and underground exploration and development at the Golden Rose Property. The shaft was deepened to 749 ft, and an inclined winze was sunk from the 749 ft level for length of 577 ft. A total of 15,795 ft of lateral development was completed on seven levels and 5 sub-levels. A 100 ton per day mill operated between 1937 to 1941 at a throughput of 35 and 110 tons per day. A total of 45,360 ounces of gold and 8,296 ounces of silver were recovered from 144,237 tons milled for a recovered grade of 0.31 ounces per ton.

1947-1948: Dominion Gulf Co. completed reconnaissance airborne magnetometer surveys over the area. The survey identified a large magnetic feature which was staked by the company. Further work included ground geophysical surveys, geological mapping, and diamond drilling totalling 5 holes completed on lease LEA-109632. The

drill holes did not reach the Huronian-Archean unconformity, and the cause of the magnetic anomaly was not explained.

1947: X-Ray Prospecting Syndicate completed a magnetometer survey along the southeast shoreline of Emerald Lake.

1951-1955: Abex Mines Ltd. carried out geological, magnetic, and electromagnetic surveys, and diamond drilling on the island south of the former producing Golden Rose mine. Fifteen drill holes totaling 2790.7 ft were completed testing the iron formation.

1952-1957: Geo-scientific Prospectors Ltd./Copperfields Mining Corp. Ltd. held leased mining claims at Skunk Lake. Magnetic, self-potential, resistivity, and geological surveys were completed, followed by diamond drilling consisting of 12 drill holes totaling 2025.4 m. Carbonate units and massive magnetite lenses were intersected in the drilling.

1956: Wabico Mines Ltd. optioned claims to Geo-Scientific Prospectors Ltd. who completed geological, geochemical, and electrical resistivity surveys and drilled 6 diamond drill holes totaling 2,868 ft. east of Emerald Lake. Mineralization consisted trace gold, silver, copper, nickel, and cobalt associated with Nipissing Diabase and silicified metavolcanics.

1956: Geoscientific Prospectors Ltd. completed three drill holes totaling 3,254 ft along the northwest shoreline of Emerald Lake, and one appears to have been drilled through the ice. All drill holes intersected Huronian sediments. Drill hole EM-8, located approximately 500 m north of the West Golden Rose target, was drilled at an azimuth of 180 and dip -80 degrees to a final depth of 2,519 ft. The drill logs indicate that the drill hole intersected Huronian sediments for the entire length of the hole. The drill log describes a conglomerate bed with a heavy pyritic matrix being intersected from 2,322 ft to 2,402 ft which may represent either the Mississagi or Matinenda Formations, and the underlying slate and greywacke unit may represent Archean-aged metasediments. This setting may be geologically similar to the Pardo paleoplacer showing where gold and

pyrite-bearing basal conglomerates of the Mississagi and Matinenda Formations unconformably overlie Archean metavolcanics and metasediments.

1955-1956: Noranda Mines Ltd. held claims along the western shoreline of Eaglerock Lake, and from the northern part of Eaglerock Lake, towards the west. Magnetic and electromagnetic surveys were completed, along with stripping/trenching, and diamond drilling that intersected a sulphide-rich iron formation.

1955-1957: Obabika Mines Ltd. held claims south of Allan Lake. Ground geophysics, prospecting, and diamond drilling (16 drill holes totaling 2923 ft) were completed targeting a quartz-carbonate vein hosted within Nipissing Diabase. The vein(s) contained minor amounts of chalcopyrite, however grab samples of up to 25.19% Cu have been reported.

1956: New Minda-Scotia Mines Ltd. held claims north of Redbark Lake. Ground geophysics, prospecting, geological mapping, and diamond drilling (7 drill holes totaling 3,348 ft) were completed targeting quartz veins/shear zones at the lower contact of the Nipissing Diabase/metasediments. Anomalous Au, Ag, and Cu values were reported from the drilling both in the diabase and underlying argillites.

1962: Hanna Mining Company optioned claims from Wabico Mines Ltd. and carried out geological and magnetic surveys, stripping, trenching, and chip sampling on the east side of Emerald Lake. One drill hole was drilled to a depth of 164 ft.

1982-1988: Highland Crow Resources Ltd./Emerald Lake Resources Ltd./Noramco Mining Corp. completed geological surveys, geophysical surveys, trenching, and extensive diamond drilling on the past-producing Golden Rose Property located along the east shoreline of Emerald Lake. In 1987, Noramco Mining Corp. constructed a 400 ton per day mill, completed underground development, and mining for a period of one year. A total of 6,632 ounces of gold was recovered from 93,408 tons milled, and the mine was closed in September, 1988.

9

1998-2000: Canmine Resources Corp. staked three claims along the eastside of Emerald Lake and completed geological mapping, followed by four drill holes totalling 413 m. The holes intersected disseminated sulphides in felsic volcanic rocks along with narrow sections of massive sulphides. Anomalous gold, silver, copper, zinc, and cobalt values were reported.

1999-2000: Temex Resources Ltd. completed line cutting, prospecting, bedrock/float sampling and geological mapping over the west and north of Eaglerock Lake.

2007-2008: Northern Nickel Mining acquired the Golden Rose Property and completed ground geophysical surveys as well as diamond drilling (6 drill holes totaling 1,260 m).

2009-2011: Gold Finder Explorations Ltd. optioned the Golden Rose Property from Northern Nickel Mining Ltd., and completed three phases of diamond drilling. The first drill program was extensive where >6,000m of diamond drilling was completed. The author was not involved in the first program, but had to "quick log" the core due to missing data, and subsequently, completed two additional limited drill programs on the Property.

2008: Vismand Exploration Inc. completed an airborne magnetometer survey over Afton, Scholes, Clement, Macbeth, and over parts of McCarthy, Sheppard, Clary, Armagh, and Belfast Townships. The survey identified several targets which were staked. Line cutting was completed over the targets, followed by induced polarization and magnetotullerics survey. No additional exploration work was completed and the claims were allowed to lapse in 2012.

2014-2017: Canadian Continental Exploration Corp. completed diamond drilling northwest of Emerald Lake, south of Obabika Lake, and east of Eaglerock Lake following up on several ground and airborne geophysical targets. On mining lease LEA-109632, a drill hole was completed to a depth of 2197.50m, and intersected an Offset Dyke that contained anomalous Ni and Cu values.

2018: Conquest completed limited soil geochemical surveys as well as an 179 line-km airborne (VTEM) geophysical survey covering the Golden Rose mining leases and several unpatented claims surrounding the leases.

2018-2019: 12 Exploration Inc. completed a geophysical survey on the west side of Emerald Lake over the West Golden Rose target. The program consisted of approximately 38 km of GPS-integrated ground magnetics, and 40 gravity stations. No additional work was completed.

2020-2021: Conquest completed 10 diamond drill holes totalling 4,047.4 m, and completed airborne electromagnetic (VTEM Max), magnetic, and magnetotelluric (Mobile MT) geophysical surveys, as well as ground gravity surveys over the Belfast-TeckMag Project.

4. GEOLOGICAL SETTING AND MINERALIZATION

4.1 Regional Geology

The Property is located within the southern part of the Cobalt Embayment which lies within the south margin of the Superior Structural Province of the Canadian Shield. The regional geology consists of early Precambrian metavolcanics and metasediments which correlate with the 2,737 Ma Chambers-Briggs Assemblage, part of the Temagami Greenstone Belt (Jackson & Fyon, 1991). These rocks are intruded by vertical Matachewan diabase dykes dated at 2,454 Ma. In the Property area, these older rocks are unconformably overlain by Middle Precambrian Huronian sedimentary rocks deposited between 2,220 and 2,500 Ma. Nipissing Diabase sills, relatively flat lying and dated at 2,219 Ma, intrude the Huronian and older rocks (Bennett, Dressler, & Robertson, 1991). The youngest rocks in the area are olivine diabase dykes, dated at 1,238 Ma (Osmani, 1991). The Middle and Late Precambrian rocks have been faulted and locally folded adjacent to the faults. Meyn (1977) defines four groups of block faults in the area, N20E to N40E, north-south trending, smaller N30W to N50W, and S50E to S70E. The last set of faults are orientated parallel to olivine diabase dykes and are late tensional features.

4.2 Property Geology

The Property is located within the Cobalt embayment at the south margin of the Superior Province of the Canadian Shield. The Property geology is dominated by Nipissing diabase that has been intruded as a sill and overlies the sedimentary rocks of the Gowganda Formation, part of the Huronian Supergroup. Both the Nipissing diabase and Huronian rocks have been block faulted along predominantly north-northwest trending faults. Between Emerald Lake and Eaglerock Lake, east-northeast striking and steeply dipping early Precambrian metavolcanics and metasediments are locally exposed through erosional windows in the overlying Huronian sedimentary rocks and Nipissing Diabase sills.

Figure 3: Property Geology (after MRD 282).

5.0 PHASE 1 DIAMOND DRILLING PROGRAM

5.1 Methods

From March 13th to April 8th, 2021, Conquest completed one diamond drill hole totalling 313.30 m on the Belfast-TeckMag Project. The drilling was covered under exploration permit PR-21-000029, which allows the proponent to conduct mechanized drilling (assembled weight >150 kg), and ground geophysical surveys requiring the use of a generator on mining claims 502802 through to 502821. Figure 4 shows the claims are listed on exploration permit PR-21-000029.

The program targeted a northeast oriented airborne electromagnetic conductor that was generated from the recently completed VTEM Max (Versatile Time Domain Electromagnetic) survey, a heliborne electromagnetic and magnetic system developed by Geotech Ltd. The drill program was heli-supported and crews initially used snowmobiles for daily access. Drilling had to be suspended for approximately two weeks due to unseasonably warm weather which led to an early break up. The balance of the drilling had to utilize a helicopter to provide daily access and supplies for the crews to the drill site.

Drill hole BC21-01 was collared at UTM NAD83 564148E/5197982N on mining claim 502819 and drilled to a depth of 313.30 m. The drill hole was collared in Nipissing Diabase and was intersected down to a depth of 98.58 m. From 98.58 m to 143.41 m, sedimentary rocks of the Gowganda Formation were intersected, consisting of siltstones and conglomerates. From 143.41 to 313.30 m, early Precambrian metavolcanics and metasediments along with late mafic and felsic intrusive rocks were intersected. Felsic volcanic rocks, consisting of rhyolite and tuffaceous units were intersected. Although anomalous base metal mineralization was associated with the felsic volcanic units, the source of the conductor was not explained.

Table 1 provides the diamond drill hole information, and Table 2 provides the significant intersections obtained from the program. Figure 5 displays the drill hole location and drill hole trace projected to the surface.

The collar location was surveyed by handheld GPS using a GARMIN Montana 680. Downhole surveying was completed using IMDEX Ltd.'s Reflex EZ-Trac survey instrument to measure the spatial relationships of the drill hole (www.reflexnow.com).

Figure 4: Permitted claims (PR-21-000029)

DDH	Claim Number	Easting	Northing	Elev (m)	Azimuth	Dip	Length (m)
BC21-01	502819	564148	5197982	373	135	-55	313.30

Figure 5: Collar location and projected trace of drill hole BC21-01

DDH	From (m)	To (m)	Core length (m)	Au (ppb)	Cu (ppm)	Ni (ppm)	Pb (ppm)	Zn (ppm)
BC21-01	163.50	164.85	1.35	5	412	153	3	18
BC21-01	165.95	167.25	1.30	<5	240	48	<2	27
BC21-01	168.60	169.65	1.05	<5	191	100	3	129
BC21-01	183.00	184.05	1.05	<5	108	60	1	273
BC21-01	189.00	190.00	1.00	7	296	48	4	1980
BC21-01	190.00	191.25	1.25	<5	38	19	6	428
BC21-01	229.85	230.70	0.85	<5	282	47	3	19
BC21-01	233.40	234.45	1.05	<5	147	55	4	390

Table 2: Selected results from the Phase 2 Diamond Drilling Program

All drill core (BTW in diameter) was placed in wooden core boxes by the diamond drill contractor on site. Lids were placed on the boxes and sealed with fibre-tape. The boxes remained in the possession of the diamond drill contractor until they are picked up by representatives of Conquest. Core was then delivered to the core shack located in North Bay, Ontario. Once at the core shack, diamond drill core was logged, and where marked for sampling, cut or split in half, with one half placed in a labelled sample bag, and the remaining half placed back into the core tray and stored in a secured compound. A blank and a standard were inserted in the assay sampling sequence at every 10th and 20th place respectively. Standard material was sourced from Ore Research and Exploration Pty Ltd. Blank material was sourced from Analytical Solutions Ltd. and consisted of coarse silica crushed to ¼". Diamond drill core, pulps, and rejects are securely stored at 134 Imperial Rd, North Bay, Ontario.

Samples were delivered by the author to Activation Laboratories ("Act Labs") in North Bay, Ontario. Once the samples are received and dried at the laboratory, the samples are then crushed to 80% passing 10 mesh (2 mm) and then split into 250 g sub-sample size using a Jones Riffle Splitter. These sub-samples are then pulverized (using rings and pucks to 90% passing 200 mesh (0.075 mm) and homogenized prior to analysis. Gold analysis is performed using a 30 g charge by fire assay using lead collection with a silver inquart (1A2 package). The lower detection limit is 5 ppb, and the upper detection limit is 5000 ppb. A gravimetric finish (1A3 package) is completed for any samples that return greater than 5000 ppb that includes crushing of the entire sample to -150 mesh and subsequently sieved through a 150 mesh screen. The entire +150 mesh portion is assayed, along with two duplicate cuts of the -150 mesh portion. Results are reported as a calculated weighted average of gold in the entire sample.

Results for the 38 element ICP analysis (1E3 package) includes digesting 0.5 g of the sample with aqua regia for 2 hours at 95 °C. The sample is cooled and then diluted with deionized water. The samples are then analyzed using an Agilent 700 series ICP for the 38 element suite. QC for the digestion is 15% for each batch, 2 method reagent blanks, 6 in-house controls, 8 sample duplicates and 5 certified reference materials. An additional 20% QC is performed as part of the instrumental analysis to ensure quality in the areas of

instrumental drift. If over limits for base metals are encountered, a sodium peroxide fusion, acid dissolution followed by ICP-OES is completed.

It is the author's opinion that sufficient care was applied to ensure the integrity of the samples during collection and processing, and that the chain of custody is appropriate for the level of exploration on the project. The sample preparation and analytical methods are appropriate for the mineralization, and the analytical data generated by Activation Laboratories can be considered reliable.

The drill log for drill hole BC21-01 is provided in Appendix III, a section and plan map are provided in Appendix IV, and the assay certificate is provided in Appendix V. A copy of the exploration permit is provided in Appendix VI.

6.0 CONCLUSIONS

A single drill hole (BC21-01) was designed to test an airborne electromagnetic conductor that was generated from processing the VTEM Max dataset. The drill hole was terminated at 313.30 m. Although anomalous base metal mineralization was intersected throughout the drill hole that was associated with felsic volcanic rocks, the source of the conductor was not explained.

7.0 RECOMMENDATIONS

Based on the results from the Phase 2 diamond drilling program, the following is recommended:

 It is recommended that a ground electromagnetic (TDEM) survey be completed over the airborne anomaly prior to further testing the anomaly with an additional drill hole. Drill hole BC21-01 was "dummied" after completion but found to be blocked below the casing, making a down hole geophysical survey not an option.

8.0 REFERENCES

- Ayer, J.A. and Chartrand, J.E. 2011. Geological compilation of the Abitibi greenstone belt; Ontario Geological Survey, Miscellaneous Release—Data 282.
- Bennett, G., Dressler, B.O., Robertson, J.A. 1991. The Huronian Supergroup and Associated Intrusive Rocks, in Geology of Ontario, Ontario Geological Survey, Special Volume 4, Part 1. p. 549-591.
- Chemam, M. 2019. Logistics and Interpretation Report on GPS-positioned Ground Magnetic and Gravity Surveys, Deepwater Project; prepared for 12 Exploration Inc.p. 1-14.
- Jackson, S.L., Fyon, J.A. 1991. The Western Abitibi Subprovince in Ontario, in Geology of Ontario, Ontario Geological Survey, Special Volume 4, Part 1. p. 405-482.
- Jamieson, D. 2020. NI-43-101 Technical Report on the TeckMag Project, Sudbury Mining Division, Northeastern Ontario" for Canadian Continental Exploration Corp
- Kawohl, Alexander et al. (2017). What's inside the Temagami geophysical anomaly, Sudbury District, Ontario? SGA Québec 2017 extended abstract, Vol. 4, 1543-1546.
- Meyn, H.D. 1977. Geology of Afton, Scholes, MacBeth, and Clement Townships; Ontario Geological Survey, Report 170. p. 1-77.

Ministry of Northern Development and Mines; Geology of Ontario, Assessment File Research Information (AFRI) found at www.geologyontario.mndm.gov.on.ca

Osmani, I. 1991. Proterozoic Mafic Dike Swarms in the Superior Province of Ontario, in Geology of Ontario, Ontario Geological Survey, Special Volume 4, Part 1. p. 661-681.

Percival, J.A., Easton, R.M. 2007. Geology of the Canadian Shield in Ontario: An update; Geological Survey of Canada, Open File 5511, Ontario Geological Survey, Miscellaneous Release Data 216.

Appendix I

Statement of Qualifications

Statement of Qualifications

I, Joerg Martin Kleinboeck of North Bay, Ontario, do hereby certify that:

I am a graduate of Laurentian University, Sudbury, Ontario with a B.Sc. Geology, 2000, and have been practising my profession as a geologist since.

I am a member with the Association of Professional Geoscientists of Ontario (#1411).

I have an active prospector's license for the province of Ontario (#1002600).

I am a member of the Prospectors and Developers Association of Canada.

I hold securities and a royalty on certain claims owned by Conquest Resources Ltd.

Joerg Martin Kleinboeck January 14th, 2023 North Bay, Ontario

Appendix II

Claim Details

Township / Area	Tenure ID	Tenure Type	Anniversary Date	Tenure Percentage	Work Required	Work Applied	Total Reserve
AFTON	613702	Single Cell Mining Claim	2023-10-02	100	400	438	0
AFTON	632198	Single Cell Mining Claim	2024-01-25	100	400	400	0
AFTON	632192	Single Cell Mining Claim	2024-01-25	100	400	400	0
AFTON	632187	Single Cell Mining Claim	2024-01-25	100	400	400	0
AFION	632185	Single Cell Mining Claim	2024-01-25	100	400	400	0
AFTON	632184	Single Cell Mining Claim	2024-01-25	100	400	400	84
AFTON	632143	Single Cell Mining Claim	2024-01-25	100	400	400	84
AFTON	632136	Single Cell Mining Claim	2024-01-25	100	400	400	0
AFTON	632131	Single Cell Mining Claim	2024-01-25	100	400	400	0
AFTON	632121	Single Cell Mining Claim	2024-01-25	100	400	400	0
AFTON	632120	Single Cell Mining Claim	2024-01-25	100	400	400	0
AFTON	632114	Single Cell Mining Claim	2024-01-25	100	400	400	0
AFTON	632101	Single Cell Mining Claim	2024-01-25	100	400	400	0
AFION	702849	Single Cell Mining Claim	2024-01-26	100	400	0	0
	702845	Single Cell Mining Claim	2024-01-26	100	400	0	0
AFTON	702843	Single Cell Mining Claim	2024-01-20	100	400	2000	0
AFTON	171145	Single Cell Mining Claim	2024-02-19	100	400	2000	0
AFTON	342357	Single Cell Mining Claim	2024-02-19	100	400	2000	0
AFTON	283920	Single Cell Mining Claim	2024-02-19	100	200	1000	0
AFTON	235910	Single Cell Mining Claim	2024-02-19	100	200	1000	0
AFTON	136138	Single Cell Mining Claim	2024-02-19	100	200	1000	0
AFTON	341512	Single Cell Mining Claim	2024-02-19	100	400	2000	0
AFTON	341511	Single Cell Mining Claim	2024-02-19	100	400	2000	0
AFTON	329675	Single Cell Mining Claim	2024-02-19	100	400	2000	0
AFION	329654	Single Cell Mining Claim	2024-02-19	100	400	2000	0
AFTON	329653	Single Cell Mining Claim	2024-02-19	100	400	2000	0
AFTON	281864	Single Cell Mining Claim	2024-02-19	100	400	2000	0
AFTON	234400	Single Cell Mining Claim	2024-02-19	100	400	2000	0
AFTON	234399	Single Cell Mining Claim	2024-02-19	100	400	2000	0
AFTON	215850	Single Cell Mining Claim	2024-02-19	100	400	2000	0
AFTON	118811	Single Cell Mining Claim	2024-02-19	100	400	2000	0
AFTON	118810	Single Cell Mining Claim	2024-02-19	100	400	2000	0
AFTON	118809	Single Cell Mining Claim	2024-02-19	100	400	2000	0
AFTON	103539	Single Cell Mining Claim	2024-02-19	100	400	2000	0
AFTON	103538	Single Cell Mining Claim	2024-02-19	100	400	2000	0
AFTON	293356	Single Cell Mining Claim	2024-02-19	100	400	2000	0
AFTON	256/94	Single Cell Mining Claim	2024-02-19	100	400	2000	0
AFTON	226718	Single Cell Mining Claim	2024-02-19	100	400	2000	0
AFTON	219412	Single Cell Mining Claim	2024-02-19	100	400	2000	0
AFTON	219411	Single Cell Mining Claim	2024-02-19	100	400	2000	0
AFTON	201673	Single Cell Mining Claim	2024-02-19	100	400	2000	0
AFTON	201672	Single Cell Mining Claim	2024-02-19	100	400	2000	0
AFTON	137527	Single Cell Mining Claim	2024-02-19	100	400	2000	0
AFTON	126035	Single Cell Mining Claim	2024-02-19	100	400	2000	0
AFTON	126034	Single Cell Mining Claim	2024-02-19	100	400	2000	0
AFTON	126033	Single Cell Mining Claim	2024-02-19	100	400	2000	0
AFION	315631	Single Cell Mining Claim	2024-02-19	100	400	2000	0
AFTON	291468	Single Cell Mining Claim	2024-02-19	100	400	2000	0
AFTON	192887	Single Cell Mining Claim	2024-02-19	100	400	2000	0
AFTON	181342	Single Cell Mining Claim	2024-02-19	100	400	2000	0
AFTON	128863	Single Cell Mining Claim	2024-02-19	100	400	2000	0
AFTON	342356	Single Cell Mining Claim	2024-02-19	100	400	1600	0
AFTON	310888	Single Cell Mining Claim	2024-02-19	100	400	1600	0
AFTON	236757	Single Cell Mining Claim	2024-02-19	100	400	1600	0
AFTON	235909	Single Cell Mining Claim	2024-02-19	100	400	1600	0
AFTON	235908	Single Cell Mining Claim	2024-02-19	100	400	1600	0
AFTON	188110	Single Cell Mining Claim	2024-02-19	100	400	1600	0
AFTON	142172	Single Cell Mining Claim	2024-02-19 2027-02-10	100	400	1600	0
AFTON	142171	Single Cell Mining Claim	2024-02-19	100	400	1600	0
AFTON	136137	Single Cell Mining Claim	2024-02-19	100	400	2000	0
AFTON	107709	Single Cell Mining Claim	2024-02-19	100	400	2000	0
AFTON	107708	Single Cell Mining Claim	2024-02-19	100	400	2000	0
AFTON	305419	Boundary Cell Mining Claim	2024-02-19	100	200	800	0
AFTON	237555	Single Cell Mining Claim	2024-02-19	100	200	800	0
AFTON	226120	Single Cell Mining Claim	2024-02-19	100	400	1600	0
AFTON	182141	Boundary Cell Mining Claim	2024-02-19	100	200	800	0

Township / Area	Tenure ID	Tenure Type	Anniversary Date	Tenure Percentage	Work Required	Work Applied	Total Reserve
AFTON	107985	Boundary Cell Mining Claim	2024-02-19	100	200	800	0
AFTON	306210	Single Cell Mining Claim	2024-02-19	100	200	800	0
AFTON	306209	Single Cell Mining Claim	2024-02-19	100	200	800	0
AFTON	306208	Boundary Cell Mining Claim	2024-02-19	100	200	800	0
AFTON	144198	Boundary Cell Mining Claim	2024-02-19	100	200	800	0
AFTON	126193	Single Cell Mining Claim	2024-02-19	100	400	1600	0
AFTON	501975	Single Cell Mining Claim	2024-04-10	100	400	1226	0
AFTON	501974	Single Cell Mining Claim	2024-04-10	100	400	1226	0
AFTON	501973	Single Cell Mining Claim	2024-04-10	100	400	1200	84
AFTON	501972	Single Cell Mining Claim	2024-04-10	100	400	1200	160
AFTON	501971	Single Cell Mining Claim	2024-04-10	100	400	1200	160
AFTON	501970	Single Cell Mining Claim	2024-04-10	100	400	1200	160
AFTON	501969	Single Cell Mining Claim	2024-04-10	100	400	1200	160
AFTON	501967	Single Cell Mining Claim	2024-04-10	100	400	1200	0
AFTON	501966	Single Cell Mining Claim	2024-04-10	100	400	1200	0
AFTON	501965	Single Cell Mining Claim	2024-04-10	100	400	1200	0
AFTON	501964	Single Cell Mining Claim	2024-04-10	100	400	1226	0
AFTON	501963	Single Cell Mining Claim	2024-04-10	100	400	1226	0
AFTON	501962	Single Cell Mining Claim	2024-04-10	100	400	1200	84
AFTON	501961	Single Cell Mining Claim	2024-04-10	100	400	1200	160
AFTON	501960	Single Cell Mining Claim	2024-04-10	100	400	1200	160
	501959	Single Cell Mining Claim	2024-04-10	100	400	1200	160
AFTON	501958	Single Cell Mining Claim	2024-04-10	100	400	1200	100
AFTON	501956	Single Cell Mining Claim	2024-04-10	100	400	1200	0
AFTON	501955	Single Cell Mining Claim	2024-04-10	100	400	1200	160
AFTON	501954	Single Cell Mining Claim	2024-04-10	100	400	1200	0
AFTON	501953	Single Cell Mining Claim	2024-04-10	100	400	1226	0
AFTON	501952	Single Cell Mining Claim	2024-04-10	100	400	1226	0
AFTON	501951	Single Cell Mining Claim	2024-04-10	100	400	1200	84
AFTON	501950	Single Cell Mining Claim	2024-04-10	100	400	1200	0
	501949	Single Cell Mining Claim	2024-04-10	100	400	1200	0
AFTON	501948	Single Cell Mining Claim	2024-04-10	100	400	1200	0
AFTON	501946	Single Cell Mining Claim	2024-04-10	100	400	1200	0
AFTON	501945	Single Cell Mining Claim	2024-04-10	100	400	1200	0
AFTON	501944	Single Cell Mining Claim	2024-04-10	100	400	1200	0
AFTON	501943	Single Cell Mining Claim	2024-04-10	100	400	1200	0
AFTON	501942	Single Cell Mining Claim	2024-04-10	100	400	1226	0
AFTON	501941	Single Cell Mining Claim	2024-04-10	100	400	1200	84
AFTON	501940	Single Cell Mining Claim	2024-04-10	100	400	1200	0
AFTON	501939	Single Cell Mining Claim	2024-04-10	100	400	1200	0
AFTON	501937	Single Cell Mining Claim	2024-04-10	100	400	1200	0
AFTON	501936	Single Cell Mining Claim	2024-04-10	100	400	1200	0
AFTON	501935	Single Cell Mining Claim	2024-04-10	100	400	1200	0
AFTON	501934	Single Cell Mining Claim	2024-04-10	100	400	1200	0
AFTON	501933	Single Cell Mining Claim	2024-04-10	100	400	1200	0
AFION	501932	Single Cell Mining Claim	2024-04-10	100	400	1200	0
	501931	Single Cell Mining Claim	2024-04-10	100	400	1200	0
AFTON	501929	Single Cell Mining Claim	2024-04-10	100	400 400	1200	0
AFTON	501928	Single Cell Mining Claim	2024-04-10	100	400	1200	0
AFTON	501927	Single Cell Mining Claim	2024-04-10	100	400	1200	0
AFTON	501926	Single Cell Mining Claim	2024-04-10	100	400	1200	0
AFTON	317455	Single Cell Mining Claim	2024-04-25	100	400	2000	0
AFTON	232570	Single Cell Mining Claim	2024-04-25	100	200	1032	0
AFTON	317456	Single Cell Mining Claim	2024-04-25	100	400	2000	0
AFION	300826	Single Cell Mining Claim	2024-04-25	100	400	2007	0
	300825	Single Cell Mining Claim	2024-04-25	100	400	2000	0
AFTON	299270	Single Cell Mining Claim	2024-04-25	100	200	1000	0
AFTON	224541	Single Cell Mining Claim	2024-04-25	100	400	2000	0
AFTON	184766	Single Cell Mining Claim	2024-04-25	100	200	1000	0
AFTON	165966	Single Cell Mining Claim	2024-04-25	100	400	2000	0
AFTON	165965	Single Cell Mining Claim	2024-04-25	100	400	2000	0
AFTON	148725	Single Cell Mining Claim	2024-04-25	100	400	2000	0
AFTON	148724	Single Cell Mining Claim	2024-04-25	100	400	2000	0
AFION	120777	Single Cell Mining Claim	2024-04-25	100	200	1000	0
AFION	100200	Single Cell Mining Claim	2024-04-25	100	200	1000	0

Township / Area	Tenure ID	Tenure Type	Anniversary Date	Tenure Percentage	Work Required	Work Applied	Total Reserve
AFTON	335061	Single Cell Mining Claim	2024-04-25	100	400	2000	0
AFTON	247612	Single Cell Mining Claim	2024-04-25	100	400	2000	560
AFTON	240135	Single Cell Mining Claim	2024-04-25	100	400	2000	0
AFTON	228772	Single Cell Mining Claim	2024-04-25	100	400	2000	560
AFION	228//1	Single Cell Mining Claim	2024-04-25	100	400	2000	225
AFTON	191/36	Single Cell Mining Claim	2024-04-25	100	400	2023	560
AFTON	173509	Single Cell Mining Claim	2024-04-25	100	400	2000	0
AFTON	138947	Single Cell Mining Claim	2024-04-25	100	400	2000	0
AFTON	343452	Single Cell Mining Claim	2024-04-25	100	400	2000	1139
AFTON	294843	Single Cell Mining Claim	2024-04-25	100	400	2000	560
AFTON	294819	Single Cell Mining Claim	2024-04-25	100	400	2000	560
AFTON	294818	Single Cell Mining Claim	2024-04-25	100	400	2000	0
AFTON	283818	Single Cell Mining Claim	2024-04-25	100	400	2000	207
AFION	228815	Single Cell Mining Claim	2024-04-25	100	400	2000	0
	144979	Single Cell Mining Claim	2024-04-25	100	400	2000	2299
AFTON	107365	Single Cell Mining Claim	2024-04-25	100	400	2000	2140
AFTON	304578	Single Cell Mining Claim	2024-04-25	100	400	2000	0
AFTON	291887	Single Cell Mining Claim	2024-04-25	100	400	2000	0
AFTON	283817	Single Cell Mining Claim	2024-04-25	100	400	1800	0
AFTON	217837	Single Cell Mining Claim	2024-04-25	100	400	2000	0
AFTON	181977	Single Cell Mining Claim	2024-04-25	100	400	1800	0
AFTON	105122	Single Cell Mining Claim	2024-04-25	100	400	2000	1075
AFTON	152138	Single Cell Mining Claim	2024-05-23	100	200	1000	0
AFTON	149349	Single Cell Mining Claim	2024-05-23	100	400	2000	0
AFTON	343602	Single Cell Mining Claim	2024-06-26	100	400	2000	0
AFTON	341/01	Single Cell Mining Claim	2024-06-26	100	400	2000	0
AFTON	100064	Single Cell Mining Claim	2024-06-26	100	400	2000	0
AFTON	188863	Single Cell Mining Claim	2024-06-26	100	400	2000	0
AFTON	339568	Single Cell Mining Claim	2024-06-26	100	400	2000	0
AFTON	311615	Single Cell Mining Claim	2024-06-26	100	400	1800	0
AFTON	311614	Single Cell Mining Claim	2024-06-26	100	400	2000	0
AFTON	304856	Single Cell Mining Claim	2024-06-26	100	400	1800	0
AFTON	304855	Single Cell Mining Claim	2024-06-26	100	400	2000	0
AFTON	292702	Single Cell Mining Claim	2024-06-26	100	400	2000	0
AFTON	272510	Single Cell Mining Claim	2024-06-26	100	400	2000	0
AFTON	244750	Single Cell Mining Claim	2024-06-26	100	400	2000	0
AFTON	235836	Single Cell Mining Claim	2024-06-26	100	400	2000	2357
AFTON	188862	Single Cell Mining Claim	2024-06-26	100	400	2000	0
AFTON	125375	Single Cell Mining Claim	2024-06-26	100	400	2000	0
AFTON	254645	Single Cell Mining Claim	2024-06-26	100	400	2000	0
AFTON	237387	Single Cell Mining Claim	2024-06-26	100	400	2000	0
AFTON	235838	Single Cell Mining Claim	2024-06-26	100	400	1800	0
AFTON	235837	Single Cell Mining Claim	2024-06-26	100	400	2000	0
AFTON	165977	Single Cell Mining Claim	2024-06-26	100	400	2000	0
AFTON	339557	Single Cell Mining Claim	2024-06-26	100	400	2000	0
AFTON	320144	Single Cell Mining Claim	2024-06-26	100	400	2000	0
AFION	291315	Single Cell Mining Claim	2024-06-26	100	400	2000	0
AFTON	283266	Single Cell Mining Claim	2024-06-26	100	400	2000	0
	236110	Single Cell Mining Claim	2024-00-20	100	400	2000	0
AFTON	235264	Single Cell Mining Claim	2024-00-20	100	400	2000	0
AFTON	216644	Single Cell Mining Claim	2024-06-26	100	400	2000	0
AFTON	142875	Single Cell Mining Claim	2024-06-26	100	400	2000	0
AFTON	141510	Single Cell Mining Claim	2024-06-26	100	400	2000	0
AFTON	124853	Single Cell Mining Claim	2024-06-26	100	400	2000	0
AFTON	115802	Single Cell Mining Claim	2024-09-17	100	200	1000	9873
AFTON	100514	Single Cell Mining Claim	2024-09-17	100	200	1000	0
AFTON	188467	Single Cell Mining Claim	2024-09-17	100	200	1000	111
AFION	188466	Single Cell Mining Claim	2024-09-17	100	200	1000	1592
	293429	Single Cell Mining Claim	2024-09-17	100	200	1000	1481
AFTON	141658	Single Cell Mining Claim	2024-09-17	100	200	1000	0
AFTON	107690	Single Cell Mining Claim	2024-09-17	100	200	2000	0
AFTON	252500	Single Cell Mining Claim	2024-09-17	100	200	1000	0
AFTON	200267	Single Cell Mining Claim	2024-09-17	100	400	2000	0
AFTON	180060	Single Cell Mining Claim	2024-09-17	100	200	1000	0
AFTON	165900	Single Cell Mining Claim	2024-09-19	100	200	1000	0
AFTON	132168	Single Cell Mining Claim	2024-09-19	100	400	1800	0

Township / Area	Tenure ID	Tenure Type	Anniversary Date	Tenure Percentage	Work Required	Work Applied	Total Reserve
AFTON	256138	Single Cell Mining Claim	2024-09-19	100	400	2000	0
AFTON	232575	Single Cell Mining Claim	2024-09-19	100	400	2000	0
AFTON	201523	Single Cell Mining Claim	2024-09-19	100	400	2000	0
AFTON	171146	Single Cell Mining Claim	2024-09-19	100	400	2000	160
AFTON	126610	Single Cell Mining Claim	2024-09-19	100	400	2000	160
AFTON	189518	Single Cell Mining Claim	2024-09-19	100	400	2000	100
AFTON	165927	Single Cell Mining Claim	2024-09-19	100	400	2000	160
AFTON	137437	Single Cell Mining Claim	2024-09-19	100	400	2000	0
AFTON	312168	Boundary Cell Mining Claim	2024-09-19	100	200	1000	0
AFTON	218101	Single Cell Mining Claim	2024-09-19	100	400	2000	0
AFTON	144197	Boundary Cell Mining Claim	2024-09-19	100	200	1000	0
AFION	132763	Single Cell Mining Claim	2024-09-19	100	400	2000	0
AFTON	299275	Single Cell Mining Claim	2024-09-19	100	400	2000	0
AFTON	251537	Single Cell Mining Claim	2024-09-19	100	400	2160	0
AFTON	184716	Single Cell Mining Claim	2024-09-19	100	400	2000	492
AFTON	148176	Single Cell Mining Claim	2024-09-19	100	400	2160	0
AFTON	272534	Single Cell Mining Claim	2024-09-19	100	400	2000	58
AFTON	148149	Single Cell Mining Claim	2024-09-19	100	400	2000	984
AFTON	148148	Single Cell Mining Claim	2024-09-19	100	400	2000	1567
AFTON	343451	Single Cell Mining Claim	2024-09-19	100	400	2000	26
AFION	237926	Single Cell Mining Claim	2024-09-19	100	400	1800	127994
AFTON	124536	Boundary Cell Mining Claim	2024-09-19	100	200	1000	00049
AFTON	312959	Single Cell Mining Claim	2024-09-19	100	400	2000	0
AFTON	306226	Single Cell Mining Claim	2024-09-19	100	400	2000	0
AFTON	280036	Single Cell Mining Claim	2024-09-19	100	400	2000	160
AFTON	218113	Single Cell Mining Claim	2024-09-19	100	400	2000	0
AFTON	177434	Single Cell Mining Claim	2024-09-19	100	400	2000	160
AFTON	172800	Single Cell Mining Claim	2024-09-19	100	400	2000	0
AFTON	148175	Single Cell Mining Claim	2024-09-19	100	400	2000	160
AFION	148173	Single Cell Mining Claim	2024-09-19	100	400	2000	160
AFTON	300780	Single Cell Mining Claim	2024-09-19	100	200	1000	160
AFTON	299231	Single Cell Mining Claim	2024-09-19	100	400	2000	160
AFTON	251536	Single Cell Mining Claim	2024-09-19	100	200	1000	160
AFTON	251535	Single Cell Mining Claim	2024-09-19	100	200	1000	160
AFTON	251534	Single Cell Mining Claim	2024-09-19	100	200	1000	160
AFTON	244691	Single Cell Mining Claim	2024-09-19	100	200	1000	160
AFION	232001	Single Cell Mining Claim	2024-09-19	100	200	1000	160
AFTON	177433	Single Cell Mining Claim	2024-09-19	100	200	1000	100
AFTON	148174	Single Cell Mining Claim	2024-09-19	100	400	2000	0
AFTON	132214	Single Cell Mining Claim	2024-09-19	100	400	2000	0
AFTON	106517	Single Cell Mining Claim	2024-09-19	100	400	2000	0
AFTON	338971	Single Cell Mining Claim	2024-09-19	100	200	1000	0
AFTON	299206	Single Cell Mining Claim	2024-09-19	100	200	1000	0
AFTON	244159	Single Cell Mining Claim	2024-09-19	100	400	1800	0
AFTON	223964	Single Cell Mining Claim	2024-09-19	100	400	2000	0
AFTON	223903	Single Cell Mining Claim	2024-09-19	100	200	1020	0
AFTON	177402	Single Cell Mining Claim	2024-09-19	100	400	2000	0
AFTON	339009	Single Cell Mining Claim	2024-09-19	100	400	2026	0
AFTON	312156	Single Cell Mining Claim	2024-09-19	100	200	1000	426
AFTON	292740	Single Cell Mining Claim	2024-09-19	100	400	2026	0
AFTON	284719	Single Cell Mining Claim	2024-09-19	100	400	2026	0
AFTON	280016	Single Cell Mining Claim	2024-09-19	100	400	2026	0
AFTON	226107	Single Cell Mining Claim	2024-09-19	100	400	2026	0
AFTON	226106	Single Cell Mining Claim	2024-09-19	100	400	2026	126
AFTON	218781	Single Cell Mining Claim	2024-09-19	100	200	1000	420
AFTON	201572	Single Cell Mining Claim	2024-09-19	100	400	2000	426
AFTON	201571	Single Cell Mining Claim	2024-09-19	100	400	2000	426
AFTON	184728	Single Cell Mining Claim	2024-09-19	100	400	2000	426
AFTON	182123	Single Cell Mining Claim	2024-09-19	100	400	2000	426
AFTON	177954	Single Cell Mining Claim	2024-09-19	100	400	2280	426
AFION	148187	Single Cell Mining Claim	2024-09-19	100	400	2026	0
	136917	Single Cell Mining Claim	2024-09-19	100	400	2000	426
AFTON	125412	Single Cell Mining Claim	2024-09-19	100	400	2000	420
AFTON	120715	Single Cell Mining Claim	2024-09-19	100	400	2026	0

Township / Area	Tenure ID	Tenure Type	Anniversary Date	Tenure Percentage	Work Required	Work Applied	Total Reserve
AFTON	106493	Single Cell Mining Claim	2024-09-19	100	400	2026	0
AFTON	317417	Single Cell Mining Claim	2024-09-19	100	400	2000	0
AFTON	280552	Single Cell Mining Claim	2024-09-19	100	400	2026	0
AFTON	244703	Single Cell Mining Claim	2024-09-19	100	400	2026	0
AFTON	244669	Single Cell Mining Claim	2024-09-19	100	400	2026	0
AFTON	132740	Single Cell Mining Claim	2024-09-19	100	400	2000	426
AFTON	317392	Single Cell Mining Claim	2024-09-19	100	400	2000	26
AFTON	31/391	Single Cell Mining Claim	2024-09-19	100	400	2000	26
AFTON	177/10	Single Cell Mining Claim	2024-09-19	100	400	2000	426
AFTON	132183	Single Cell Mining Claim	2024-09-19	100	400	2000	426
AFTON	294740	Single Cell Mining Claim	2024-09-19	100	400	2000	
AFTON	294739	Single Cell Mining Claim	2024-09-19	100	400	2000	0
AFTON	280590	Single Cell Mining Claim	2024-09-19	100	400	2000	0
AFTON	280589	Single Cell Mining Claim	2024-09-19	100	400	2000	0
AFTON	232574	Single Cell Mining Claim	2024-09-19	100	400	2000	0
AFTON	203560	Single Cell Mining Claim	2024-09-19	100	400	2000	0
AFTON	177991	Single Cell Mining Claim	2024-09-19	100	400	2000	0
AFTON	173493	Single Cell Mining Claim	2024-09-19	100	400	2000	0
AFTON	127381	Single Cell Mining Claim	2024-09-19	100	400	2000	0
AFTON	343686	Boundary Cell Mining Claim	2024-09-19	100	200	1000	0
AFTON	220150	Single Cell Mining Claim	2024-09-19	100	400	2000	26
AFTON	220149	Single Cell Mining Claim	2024-09-19	100	400	2000	426
AFTON	189457	Single Cell Mining Claim	2024-09-19	100	400	2000	426
AFTON	142959	Single Cell Mining Claim	2024-09-19	100	400	1800	0
AFTON	137461	Boundary Cell Mining Claim	2024-09-19	100	200	1000	0
AFTON	125471	Single Cell Mining Claim	2024-09-19	100	400	2170	0
AFTON	314835	Single Cell Mining Claim	2024-11-14	100	200	1200	0
AFTON	284103	Single Cell Mining Claim	2025-05-23	100	400	2400	0
AFTON	284102	Single Cell Mining Claim	2025-05-23	100	200	1200	0
AFTON	264024	Single Cell Mining Claim	2025-05-23	100	400	2400	0
AFTON	205483	Single Cell Mining Claim	2025-05-23	100	200	1200	0
AFTON	283267	Single Cell Mining Claim	2025-06-26	100	200	1200	0
AFTON	107561	Single Cell Mining Claim	2025-06-26	100	400	2400	0
AFTON	123995	Single Cell Mining Claim	2025-06-26	100	400	2200	0
AFTON	106580	Single Cell Mining Claim	2025-06-26	100	400	2400	0
AFTON	124852	Single Cell Mining Claim	2025-06-26	100	400	2400	0
AFTON	107560	Single Cell Mining Claim	2025-06-26	100	400	2400	0
AFTON	171484	Single Cell Mining Claim	2025-09-28	100	400	2400	0
AFTON	171483	Single Cell Mining Claim	2025-09-28	100	400	2400	0
AFTON	142153	Single Cell Mining Claim	2025-09-28	100	200	1200	0
AFTON	290041	Boundary Cell Mining Claim	2025-09-28	100	200	1200	0
AFTON	198943	Boundary Cell Mining Claim	2025-09-28	100	200	1200	0
AFTON	106117	Boundary Cell Mining Claim	2025-09-28	100	200	1200	0
AFTON	539991	Single Cell Mining Claim	2026-01-27	100	400	2000	0
	702850	Single Cell Mining Claim	2024-01-26	100	400	0	0
	702848	Single Cell Mining Claim	2024-01-26	100	400	0	0
	702840	Single Cell Mining Claim	2024-01-20	100	400	0	0
AFTON, ARMAGH, CLARY, SHEPPARD	702844	Single Cell Mining Claim	2024-01-26	100	400	0	0
AFTON, CLEMENT, MACBETH, SCHOLES	210398	Single Cell Mining Claim	2024-09-19	100	400	1800	0
AFTON,MACBETH	632141	Single Cell Mining Claim	2024-01-25	100	400	400	0
AFTON,MACBETH	632138	Single Cell Mining Claim	2024-01-25	100	400	400	0
AFTON,MACBETH	632135	Single Cell Mining Claim	2024-01-25	100	400	400	0
AFTON,MACBETH	632133	Single Cell Mining Claim	2024-01-25	100	400	400	0
AFTON,MACBETH	632129	Single Cell Mining Claim	2024-01-25	100	400	400	0
AFTON,MACBETH	632118	Single Cell Mining Claim	2024-01-25	100	400	400	0
AFTON, MACBETH	632113	Single Cell Mining Claim	2024-01-25	100	400	400	0
	338091	Single Cell Mining Claim	2024-01-25	100	400	400	0
	300759	Single Cell Mining Claim	2024-09-19	100	400	2000	0
AFTON.MACBETH	251513	Single Cell Mining Claim	2024-09-19	100	400	1800	0
AFTON,MACBETH	132184	Single Cell Mining Claim	2024-09-19	100	400	2000	0
AFTON, MACBETH	106494	Single Cell Mining Claim	2024-09-19	100	400	1800	0
AFTON, SCHOLES	124024	Boundary Cell Mining Claim	2024-02-03	100	200	632	0
AFTON,SCHOLES	254644	Single Cell Mining Claim	2024-06-26	100	400	1400	0
AFTON,SCHOLES	184786	Single Cell Mining Claim	2024-06-26	100	400	2000	0
AFTON,SCHOLES	312847	Boundary Cell Mining Claim	2024-08-19	100	200	1000	0
AFTON,SCHOLES	285404	Single Cell Mining Claim	2024-08-19	100	400	1800	0
AFTON,SCHOLES	182817	Boundary Cell Mining Claim	2024-08-19	100	200	800	426

Township / Area	Tenure ID	Tenure Type	Anniversary Date	Tenure Percentage	Work Required	Work Applied	Total Reserve
AFTON,SCHOLES	138113	Boundary Cell Mining Claim	2024-08-19	100	200	800	22
AFTON,SCHOLES	138112	Boundary Cell Mining Claim	2024-08-19	100	200	800	426
AFTON,SCHOLES	286305	Single Cell Mining Claim	2024-09-17	100	200	1000	40590
AFTON, SCHOLES	240194	Boundary Cell Mining Claim	2024-09-17	100	200	1000	0
	100550	Single Cell Mining Claim	2024-09-17	100	200	1000	0
AFTON, SCHOLES	343647	Boundary Cell Mining Claim	2024-09-19	100	200	1000	426
AFTON,SCHOLES	304893	Single Cell Mining Claim	2024-09-19	100	400	2000	426
AFTON,SCHOLES	304892	Boundary Cell Mining Claim	2024-09-19	100	200	1000	426
AFTON,SCHOLES	292741	Single Cell Mining Claim	2024-09-19	100	400	2026	9621
AFTON,SCHOLES	189422	Single Cell Mining Claim	2024-09-19	100	400	2000	426
AFTON,SCHOLES	299279	Single Cell Mining Claim	2024-09-19	100	400	2000	0
AFTON,SCHOLES	286728	Single Cell Mining Claim	2024-09-19	100	400	2000	0
	107295	Single Cell Mining Claim	2024-09-19	100	400	2000	0
	248292	Single Cell Mining Claim Boundary Cell Mining Claim	2024-09-19	100	400	2000	20
AFTON, SCHOLES	201610	Boundary Cell Mining Claim	2024-09-19	100	200	1000	
AFTON,SCHOLES	320184	Boundary Cell Mining Claim	2025-02-03	100	200	1000	0
AFTON,SCHOLES	343426	Boundary Cell Mining Claim	2025-06-26	100	200	1200	0
AFTON,SCHOLES	283793	Boundary Cell Mining Claim	2025-06-26	100	200	1200	0
AFTON,SCHOLES	187991	Boundary Cell Mining Claim	2025-06-26	100	200	1200	0
AFTON,SCHOLES	180712	Boundary Cell Mining Claim	2026-02-03	100	200	1400	0
AFTON,SHEPPARD	632203	Single Cell Mining Claim	2024-01-25	100	400	400	0
	632197	Single Cell Mining Claim	2024-01-25	100	400	400	0
	632191	Single Cell Mining Claim	2024-01-25	100	400	400	0
AFTON,SHEPPARD	632186	Single Cell Mining Claim	2024-01-25	100	400	400	0
BELFAST	613685	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613683	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613682	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613679	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613678	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613677	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613676	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613673	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613672	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613671	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613669	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613668	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613666	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613664	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613663	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613657	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELEAST	613656	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613655	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613653	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613648	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613646	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613645	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613644	Single Cell Mining Claim	2023-09-30	100	400	438	0
DELFASI RELEAST	613643	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613640	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613637	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613633	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613632	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613630	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613627	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613626	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFASI	613625	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613622	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELEAST	613619	Single Cell Mining Claim	2023-09-30	100	400	438 //20	0
BELFAST	613618	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613617	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613614	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613612	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613608	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613607	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613606	Single Cell Mining Claim	2023-09-30	100	400	438	0

Township / Area	Tenure ID	Tenure Type	Anniversary Date	Tenure Percentage	Work Required	Work Applied	Total Reserve
BELFAST	613603	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613602	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613587	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613586	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613583	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613582	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELEAST	613578	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613577	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613576	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613575	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613572	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613570	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613569	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613568	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613567	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613565	Single Cell Mining Claim	2023-09-30	100	400	430	0
BELEAST	613564	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613562	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613561	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613560	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613554	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613553	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613551	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613550	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613546	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613545	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613544	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELEAST	613540	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613539	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613538	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613535	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613533	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613532	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613530	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613528	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613522	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613520	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613518	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613517	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613511	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613510	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613508	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613506	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613505	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613502	Single Cell Mining Claim	2023-09-30	100	400	438	0
	612500	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELEAST	613499	Single Cell Mining Claim	2023-09-30	100	400	438 //20	0
BELFAST	613498	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613497	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613496	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613494	Single Cell Mining Claim	2023-09-30	100	400	438	560
BELFAST	613493	Single Cell Mining Claim	2023-09-30	100	400	438	560
BELFAST	613492	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613490	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613489	Single Cell Mining Claim	2023-09-30	100	400	438	560
	013488 612407	Single Cell Mining Claim	2023-09-30	100	400	438	560
BELEAST	613/86	Single Cell Mining Claim	2023-09-30	100	400	438 //20	0
BELFAST	613485	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613484	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613483	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613478	Single Cell Mining Claim	2023-09-30	100	400	438	560
BELFAST	613477	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613475	Single Cell Mining Claim	2023-09-30	100	400	438	560
BELFAST	613474	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613473	Single Cell Mining Claim	2023-09-30	100	400	438	560
BELFAST	613471	Single Cell Mining Claim	2023-09-30	100	400	438	560

Township / Area	Tenure ID	Tenure Type	Anniversary Date	Tenure Percentage	Work Required	Work Applied	Total Reserve
BELFAST	613470	Single Cell Mining Claim	2023-09-30	100	400	438	560
BELFAST	613469	Single Cell Mining Claim	2023-09-30	100	400	438	560
BELFAST	613468	Single Cell Mining Claim	2023-09-30	100	400	438	560
BELFAST	613467	Single Cell Mining Claim	2023-09-30	100	400	438	560
BELFAST	613466	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613465	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELEAST	613462	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613461	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613458	Single Cell Mining Claim	2023-09-30	100	400	438	560
BELFAST	613457	Single Cell Mining Claim	2023-09-30	100	400	438	560
BELFAST	613456	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613455	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613452	Single Cell Mining Claim	2023-09-30	100	400	438	560
BELFAST	613451	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613448	Single Cell Mining Claim	2023-09-30	100	400	438	560
BELFAST	613447	Single Cell Mining Claim	2023-09-30	100	400	430	560
BELEAST	613442	Single Cell Mining Claim	2023-09-30	100	400	438	560
BELFAST	613441	Single Cell Mining Claim	2023-09-30	100	400	438	560
BELFAST	613438	Single Cell Mining Claim	2023-09-30	100	400	438	560
BELFAST	613429	Single Cell Mining Claim	2023-09-30	100	400	438	560
BELFAST	613428	Single Cell Mining Claim	2023-09-30	100	400	438	560
BELFAST	613427	Single Cell Mining Claim	2023-09-30	100	400	438	560
BELFAST	613426	Single Cell Mining Claim	2023-09-30	100	400	438	560
BELFAST	613425	Single Cell Mining Claim	2023-09-30	100	400	438	560
BELFAST	613419	Single Cell Mining Claim	2023-09-30	100	400	400	560
BELFAST	613418	Single Cell Mining Claim	2023-09-30	100	400	400	560
BELFAST	613417	Single Cell Mining Claim	2023-09-30	100	400	418	560
BELFAST	613416	Single Cell Mining Claim	2023-09-30	100	400	438	560
BELFAST	613/1/	Single Cell Mining Claim	2023-09-30	100	400	430	0
BELEAST	613413	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613412	Single Cell Mining Claim	2023-09-30	100	400	438	560
BELFAST	613411	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613410	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613409	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613408	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613407	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613406	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613405	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613404	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613403	Single Cell Mining Claim	2023-09-30	100	400	438	560
BELFAST	613402	Single Cell Mining Claim	2023-09-30	100	400	430	560
BELFAST	613400	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613399	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613398	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613397	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613396	Single Cell Mining Claim	2023-09-30	100	400	438	560
BELFAST	613395	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613394	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFASI	613393	Single Cell Mining Claim	2023-09-30	100	400	438	560
BELEAST	613392	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	612200	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELEAST	613389	Single Cell Mining Claim	2023-09-30	100	400	438	560
BELFAST	613388	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613387	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613386	Single Cell Mining Claim	2023-09-30	100	400	438	560
BELFAST	613385	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613384	Single Cell Mining Claim	2023-09-30	100	400	438	560
BELFAST	613383	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613382	Single Cell Mining Claim	2023-09-30	100	400	438	560
BELFAST	613381	Single Cell Mining Claim	2023-09-30	100	400	400	560
BELFAST	613380	Single Cell Mining Claim	2023-09-30	100	400	400	560
BELEAST	0133/9 612270	Single Cell Mining Claim	2023-09-30	100	400	400	0
DELFAST RELEAST	613277	Single Cell Mining Claim	2023-09-30	100	400	400	560
BELEAST	613376	Single Cell Mining Claim	2023-09-30	100	400	400 428	560
BELFAST	613375	Single Cell Mining Claim	2023-09-30	100	400	438	560
BELFAST	613374	Single Cell Mining Claim	2023-09-30	100	400	438	0

Township / Area	Tenure ID	Tenure Type	Anniversary Date	Tenure Percentage	Work Required	Work Applied	Total Reserve
BELFAST	613373	Single Cell Mining Claim	2023-09-30	100	400	400	0
BELFAST	613372	Single Cell Mining Claim	2023-09-30	100	400	400	0
BELFAST	613371	Single Cell Mining Claim	2023-09-30	100	400	400	0
BELFAST	613370	Single Cell Mining Claim	2023-09-30	100	400	400	598
BELFAST	613369	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613367	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELEAST	613366	Single Cell Mining Claim	2023-09-30	100	400	438	560
BELFAST	613365	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613364	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613363	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613362	Single Cell Mining Claim	2023-09-30	100	400	438	560
BELFAST	613361	Single Cell Mining Claim	2023-09-30	100	400	438	560
BELFAST	613360	Single Cell Mining Claim	2023-09-30	100	400	438	560
BELFAST	613359	Single Cell Mining Claim	2023-09-30	100	400	438	560
BELFAST	613358	Single Cell Mining Claim	2023-09-30	100	400	438	560
BELFAST	613356	Single Cell Mining Claim	2023-09-30	100	400	430	0
BELEAST	613355	Single Cell Mining Claim	2023-09-30	100	400	438	560
BELFAST	613354	Single Cell Mining Claim	2023-09-30	100	400	438	560
BELFAST	613353	Single Cell Mining Claim	2023-09-30	100	400	438	560
BELFAST	613352	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613351	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613350	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613349	Single Cell Mining Claim	2023-09-30	100	400	438	560
BELFAST	613348	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613347	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613346	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613345	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELEAST	613343	Single Cell Mining Claim	2023-09-30	100	400	438	560
BELFAST	613342	Single Cell Mining Claim	2023-09-30	100	400	438	560
BELFAST	613341	Single Cell Mining Claim	2023-09-30	100	400	438	560
BELFAST	613340	Single Cell Mining Claim	2023-09-30	100	400	438	560
BELFAST	613339	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613338	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613337	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613336	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613335	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFASI	612222	Single Cell Mining Claim	2023-09-30	100	400	438	560
BELEAST	613332	Single Cell Mining Claim	2023-09-30	100	400	438	560
BELEAST	613331	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613330	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613329	Single Cell Mining Claim	2023-09-30	100	400	438	560
BELFAST	613328	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613327	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613326	Single Cell Mining Claim	2023-09-30	100	400	438	560
BELFAST	613325	Single Cell Mining Claim	2023-09-30	100	400	438	560
BELFAST	613324	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613223	Single Cell Mining Claim	2023-09-30	100	400	438	560
BELEAST	613321	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELEAST	613320	Single Cell Mining Claim	2023-09-30	100	400	438	560
BELFAST	613319	Single Cell Mining Claim	2023-09-30	100	400	438	560
BELFAST	613318	Single Cell Mining Claim	2023-09-30	100	400	438	560
BELFAST	613317	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613316	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613315	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613314	Single Cell Mining Claim	2023-09-30	100	400	438	560
BELFAST	612207	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELEAST	613306	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613299	Single Cell Mining Claim	2023-09-30	100	400	430	560
BELFAST	613298	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613297	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613293	Single Cell Mining Claim	2023-09-30	100	400	438	560
BELFAST	613291	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613290	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613288	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613283	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST	613282	Single Cell Mining Claim	2023-09-30	100	400	438	560

Township / Area	Tenure ID	Tenure Type	Anniversary Date	Tenure Percentage	Work Required	Work Applied	Total Reserve
BELFAST	613281	Single Cell Mining Claim	2023-09-30	100	400	438	560
BELFAST	631584	Single Cell Mining Claim	2024-01-20	100	400	400	0
BELFAST	631583	Single Cell Mining Claim	2024-01-20	100	400	400	0
BELFAST	510850	Single Cell Mining Claim	2024-04-10	100	400	1238	0
BELFAST	510846	Single Cell Mining Claim	2024-04-10	100	400	1238	0
BELFAST	260226	Single Cell Mining Claim	2024-04-10	100	400	2026	560
BELEAST	200220	Single Cell Mining Claim	2024-06-09	100	400	2026	560
BELFAST	158870	Single Cell Mining Claim	2024-06-09	100	400	2097	560
BELFAST	129595	Single Cell Mining Claim	2024-06-09	100	400	2026	560
BELFAST	613686	Single Cell Mining Claim	2024-09-30	100	400	800	199
BELFAST	613684	Single Cell Mining Claim	2024-09-30	100	400	800	199
BELFAST	613681	Single Cell Mining Claim	2024-09-30	100	400	800	199
BELFAST	613670	Single Cell Mining Claim	2024-09-30	100	400	800	199
BELFAST	613667	Single Cell Mining Claim	2024-09-30	100	400	800	199
BELFAST	613665	Single Cell Mining Claim	2024-09-30	100	400	800	199
BELFAST	612661	Single Cell Mining Claim	2024-09-30	100	400	800	199
BELEAST	613660	Single Cell Mining Claim	2024-09-30	100	400	800	199
BELFAST	613658	Single Cell Mining Claim	2024-09-30	100	400	800	199
BELFAST	613654	Single Cell Mining Claim	2024-09-30	100	400	800	199
BELFAST	613652	Single Cell Mining Claim	2024-09-30	100	400	800	198
BELFAST	613651	Single Cell Mining Claim	2024-09-30	100	400	800	198
BELFAST	613650	Single Cell Mining Claim	2024-09-30	100	400	800	198
BELFAST	613649	Single Cell Mining Claim	2024-09-30	100	400	800	198
BELFAST	613647	Single Cell Mining Claim	2024-09-30	100	400	800	198
BELFAST	613631	Single Cell Mining Claim	2024-09-30	100	400	800	198
BELFAST	613629	Single Cell Mining Claim	2024-09-30	100	400	800	198
BELFAST	613628	Single Cell Mining Claim	2024-09-30	100	400	800	198
BELFAST	613620	Single Cell Mining Claim	2024-09-30	100	400	800	198
BELEAST	613616	Single Cell Mining Claim	2024-09-30	100	400	800	198
BELFAST	613615	Single Cell Mining Claim	2024-09-30	100	400	800	198
BELFAST	613613	Single Cell Mining Claim	2024-09-30	100	400	800	198
BELFAST	613610	Single Cell Mining Claim	2024-09-30	100	400	800	198
BELFAST	613609	Single Cell Mining Claim	2024-09-30	100	400	800	198
BELFAST	613605	Single Cell Mining Claim	2024-09-30	100	400	800	198
BELFAST	613601	Single Cell Mining Claim	2024-09-30	100	400	800	198
BELFAST	613585	Single Cell Mining Claim	2024-09-30	100	400	800	198
BELFAST	612581	Single Cell Mining Claim	2024-09-30	100	400	800	198
BELEAST	613580	Single Cell Mining Claim	2024-09-30	100	400	800	198
BELFAST	613574	Single Cell Mining Claim	2024-09-30	100	400	800	198
BELFAST	613573	Single Cell Mining Claim	2024-09-30	100	400	800	198
BELFAST	613571	Single Cell Mining Claim	2024-09-30	100	400	800	198
BELFAST	613563	Single Cell Mining Claim	2024-09-30	100	400	800	198
BELFAST	613559	Single Cell Mining Claim	2024-09-30	100	400	800	198
BELFAST	613558	Single Cell Mining Claim	2024-09-30	100	400	800	198
BELFAST	613557	Single Cell Mining Claim	2024-09-30	100	400	800	198
BELFAST	613556	Single Cell Mining Claim	2024-09-30	100	400	800	198
BELEAST	613552	Single Cell Mining Claim	2024-09-30	100	400	800	198
BELFAST	613549	Single Cell Mining Claim	2024-09-30	100	400	800	198
BELFAST	613548	Single Cell Mining Claim	2024-09-30	100	400	800	198
BELFAST	613547	Single Cell Mining Claim	2024-09-30	100	400	800	198
BELFAST	613543	Single Cell Mining Claim	2024-09-30	100	400	800	198
BELFAST	613542	Single Cell Mining Claim	2024-09-30	100	400	800	198
BELFAST	613534	Single Cell Mining Claim	2024-09-30	100	400	800	198
BELFAST	613531	Single Cell Mining Claim	2024-09-30	100	400	800	198
BELFAST	613529	Single Cell Mining Claim	2024-09-30	100	400	800	198
BELEAST	61351/	Single Cell Mining Claim	2024-09-30	100	400	800	198
BELFAST	613513	Single Cell Mining Claim	2024-09-30	100	400	800	198
BELFAST	613512	Single Cell Mining Claim	2024-09-30	100	400	800	198
BELFAST	613507	Single Cell Mining Claim	2024-09-30	100	400	800	198
BELFAST, DELHI	613680	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST, DELHI	613675	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST, DELHI, LE ROCHE	613687	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST, JOAN	613639	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST, JOAN	613636	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST, JOAN	613523	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST, JUAN	913212	Single Cell Mining Claim	2023-09-30	100	400	438	0

Township / Area	Tenure ID	Tenure Type	Anniversary Date	Tenure Percentage	Work Required	Work Applied	Total Reserve
BELFAST, JOAN	613509	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST,JOAN	613459	Single Cell Mining Claim	2023-09-30	100	400	438	560
BELFAST, JOAN	613453	Single Cell Mining Claim	2023-09-30	100	400	438	560
BELFAST, JOAN	613443	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST, JOAN	613439	Single Cell Mining Claim	2023-09-30	100	400	438	560
BELFAST, JOAN BELEAST IOAN	510851	Single Cell Mining Claim	2023-09-30	100	400	438	560
BELEAST JOAN	510847	Single Cell Mining Claim	2024-04-10	100	400	1238	0
BELFAST, JOAN	613537	Single Cell Mining Claim	2024-09-30	100	400	800	198
BELFAST, JOAN	613536	Single Cell Mining Claim	2024-09-30	100	400	800	198
BELFAST, JOAN	613524	Single Cell Mining Claim	2024-09-30	100	400	800	198
BELFAST, JOAN, PHYLLIS, SCHOLES	510842	Single Cell Mining Claim	2024-04-10	100	400	1238	0
BELFAST,LE ROCHE	613688	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST, LE ROCHE	613623	Single Cell Mining Claim	2023-09-30	100	400	438	0
	613611	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST, LE ROCHE	613604	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELEAST SCHOLES	613309	Single Cell Mining Claim	2023-09-30	100	400	430	560
BELEAST SCHOLES	613308	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST, SCHOLES	613305	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST,SCHOLES	613304	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST,SCHOLES	613303	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST, SCHOLES	613300	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST, SCHOLES	613296	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST, SCHOLES	613294	Single Cell Mining Claim	2023-09-30	100	400	438	560
BELFAST,SCHOLES	613289	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST, SCHOLES	613287	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELFAST, SCHOLES	613286	Single Cell Mining Claim	2023-09-30	100	400	438	560
	613280 E10941	Single Cell Mining Claim	2023-09-30	100	400	438	0
BELEAST SCHOLES	599090	Single Cell Mining Claim	2024-04-10	100	400	800	/138
CLEMENT	632077	Single Cell Mining Claim	2024-01-25	100	400	400	430
CLEMENT	632076	Single Cell Mining Claim	2024-01-25	100	400	400	0
CLEMENT	632070	Single Cell Mining Claim	2024-01-25	100	400	400	0
CLEMENT	635609	Multi-cell Mining Claim	2024-02-06	100	2000	2000	0
CLEMENT	639506	Multi-cell Mining Claim	2024-02-24	100	10000	10000	0
CLEMENT,MACBETH	545805	Multi-cell Mining Claim	2024-03-13	100	5600	11200	0
CLEMENT,SCHOLES	632072	Single Cell Mining Claim	2024-01-25	100	400	400	0
CLEMENT,SCHOLES	632071	Single Cell Mining Claim	2024-01-25	100	400	400	0
CLEMENT, SCHOLES	545809	Multi-cell Mining Claim	2024-03-13	100	1600	3200	0
	545806	Multi-cell Mining Claim	2024-03-13	100	4800	9600	0
CLEMENT, SCHOLES	245794 295772	Single Cell Mining Claim	2024-03-13	100	8400	2000	0
CLEMENT SCHOLES	233442	Single Cell Mining Claim	2024-09-19	100	400	1800	0
CLEMENT.SCHOLES	145595	Single Cell Mining Claim	2024-09-19	100	400	1800	0
JOAN	613691	Single Cell Mining Claim	2023-09-30	100	400	438	0
JOAN	613690	Single Cell Mining Claim	2023-09-30	100	400	438	0
JOAN	613689	Single Cell Mining Claim	2023-09-30	100	400	438	0
JOAN	613641	Single Cell Mining Claim	2023-09-30	100	400	438	0
JOAN	613638	Single Cell Mining Claim	2023-09-30	100	400	438	0
JOAN	613635	Single Cell Mining Claim	2023-09-30	100	400	438	0
JOAN	613634	Single Cell Mining Claim	2023-09-30	100	400	438	0
	612596	Single Cell Mining Claim	2023-09-30	100	400	438	0
IOAN	613504	Single Cell Mining Claim	2023-09-30	100	400	438	0
JOAN	613495	Single Cell Mining Claim	2023-09-30	100	400	438	560
JOAN	613491	Single Cell Mining Claim	2023-09-30	100	400	438	0
JOAN	613482	Single Cell Mining Claim	2023-09-30	100	400	438	560
JOAN	613481	Single Cell Mining Claim	2023-09-30	100	400	438	560
JOAN	613480	Single Cell Mining Claim	2023-09-30	100	400	438	560
JOAN	613479	Single Cell Mining Claim	2023-09-30	100	400	438	560
JOAN	613476	Single Cell Mining Claim	2023-09-30	100	400	438	560
	613472	Single Cell Mining Claim	2023-09-30	100	400	438	560
	013463 612460	Single Cell Mining Claim	2023-09-30	100	400	438	560
	613/150	Single Cell Mining Claim	2023-09-30	100	400	438 //20	560
JOAN	613449	Single Cell Mining Claim	2023-09-30	100	400	438	00
JOAN	613446	Single Cell Mining Claim	2023-09-30	100	400	438	560
JOAN	613444	Single Cell Mining Claim	2023-09-30	100	400	438	0
JOAN	613440	Single Cell Mining Claim	2023-09-30	100	400	438	0
JOAN	613437	Single Cell Mining Claim	2023-09-30	100	400	438	0
JOAN	613436	Single Cell Mining Claim	2023-09-30	100	400	438	560
Township / Area	Tenure ID	Tenure Type	Anniversary Date	Tenure Percentage Work Required		Work Applied	Total Reserve
----------------------	-----------	--------------------------	------------------	---------------------------------	------	--------------	---------------
JOAN	613435	Single Cell Mining Claim	2023-09-30	100	400	438	560
JOAN	613434	Single Cell Mining Claim	2023-09-30	100	400	438	560
JOAN	613433	Single Cell Mining Claim	2023-09-30	100	400	438	0
JOAN	613432	Single Cell Mining Claim	2023-09-30	100	400	438	560
JOAN	613431	Single Cell Mining Claim	2023-09-30	100	400	438	560
JOAN	613430	Single Cell Mining Claim	2023-09-30	100	400	438	0
JOAN	613424	Single Cell Mining Claim	2023-09-30	100	400	438	560
JOAN	613423	Single Cell Mining Claim	2023-09-30	100	400	438	560
	613422	Single Cell Mining Claim	2023-09-30	100	400	438	0
	616663	Single Cell Mining Claim	2023-09-50	100	400	430	0
IOAN	616657	Single Cell Mining Claim	2023-10-22	100	400	438	0
JOAN	616652	Single Cell Mining Claim	2023-10-22	100	400	438	0
JOAN	616649	Single Cell Mining Claim	2023-10-22	100	400	438	0
JOAN	616648	Single Cell Mining Claim	2023-10-22	100	400	438	0
JOAN	616646	Single Cell Mining Claim	2023-10-22	100	400	438	0
JOAN	616643	Single Cell Mining Claim	2023-10-22	100	400	438	0
JOAN	616641	Single Cell Mining Claim	2023-10-22	100	400	438	0
JOAN	510855	Single Cell Mining Claim	2024-04-10	100	400	1238	0
JOAN	510854	Single Cell Mining Claim	2024-04-10	100	400	1238	0
JOAN	510853	Single Cell Mining Claim	2024-04-10	100	400	1238	0
JOAN	510852	Single Cell Mining Claim	2024-04-10	100	400	1238	0
JOAN	510849	Single Cell Mining Claim	2024-04-10	100	400	1238	0
JOAN	510848	Single Cell Mining Claim	2024-04-10	100	400	1238	0
JOAN	613600	Single Cell Mining Claim	2024-09-30	100	400	800	198
	613599	Single Cell Mining Claim	2024-09-30	100	400	800	198
	612505	Single Cell Mining Claim	2024-09-30	100	400	800	198
	613595	Single Cell Mining Claim	2024-09-30	100	400	800	198
IOAN	613593	Single Cell Mining Claim	2024-09-30	100	400	800	198
JOAN	613592	Single Cell Mining Claim	2024-09-30	100	400	800	198
JOAN	613591	Single Cell Mining Claim	2024-09-30	100	400	800	198
JOAN	613590	Single Cell Mining Claim	2024-09-30	100	400	800	198
JOAN	613589	Single Cell Mining Claim	2024-09-30	100	400	800	198
JOAN	613588	Single Cell Mining Claim	2024-09-30	100	400	800	198
JOAN	613526	Single Cell Mining Claim	2024-09-30	100	400	800	198
JOAN	613525	Single Cell Mining Claim	2024-09-30	100	400	800	198
JOAN	613521	Single Cell Mining Claim	2024-09-30	100	400	800	198
JOAN	613516	Single Cell Mining Claim	2024-09-30	100	400	800	198
JOAN	613503	Single Cell Mining Claim	2024-09-30	100	400	800	198
JOAN	613454	Single Cell Mining Claim	2024-09-30	100	400	876	560
	616672	Single Cell Mining Claim	2023-10-22	100	400	438	0
	616667	Single Cell Mining Claim	2023-10-22	100	400	438	0
	616640	Single Cell Mining Claim	2023-10-22	100	400	430	0
	510844	Single Cell Mining Claim	2023 10 22	100	400	1238	0
JOAN,PHYLLIS	510843	Single Cell Mining Claim	2024-04-10	100	400	1238	0
JOAN,PHYLLIS,SCHOLES	742054	Multi-cell Mining Claim	2024-08-10	100	1600	0	0
MACBETH	632179	Single Cell Mining Claim	2024-01-25	100	400	400	0
MACBETH	632178	Single Cell Mining Claim	2024-01-25	100	400	400	0
MACBETH	632177	Single Cell Mining Claim	2024-01-25	100	400	400	0
MACBETH	632176	Single Cell Mining Claim	2024-01-25	100	400	400	0
MACBETH	632175	Single Cell Mining Claim	2024-01-25	100	400	400	0
MACBETH	632174	Single Cell Mining Claim	2024-01-25	100	400	400	0
MACBETH	632173	Single Cell Mining Claim	2024-01-25	100	400	400	0
MACBETH	632172	Single Cell Mining Claim	2024-01-25	100	400	400	0
MACBETH	632171	Single Cell Mining Claim	2024-01-25	100	400	400	0
MACBETH	632170	Single Cell Mining Claim	2024-01-25	100	400	400	0
	632109	Single Cell Mining Claim	2024-01-25	100	400	400	0
MACBETH	632167	Single Cell Mining Claim	2024-01-25	100	400	400	0
MACBETH	632166	Single Cell Mining Claim	2024-01-25	100	400	400	0
MACBETH	632165	Single Cell Mining Claim	2024-01-25	100	400	400	0
МАСВЕТН	632164	Single Cell Mining Claim	2024-01-25	100	400	400	0
МАСВЕТН	632163	Single Cell Mining Claim	2024-01-25	100	400	400	0
MACBETH	632162	Single Cell Mining Claim	2024-01-25	100	400	400	0
MACBETH	632161	Single Cell Mining Claim	2024-01-25	100	400	400	0
MACBETH	632160	Single Cell Mining Claim	2024-01-25	100	400	400	0
MACBETH	632159	Single Cell Mining Claim	2024-01-25	100	400	400	0
MACBETH	632158	Single Cell Mining Claim	2024-01-25	100	400	400	0
MACBETH	632157	Single Cell Mining Claim	2024-01-25	100	400	400	0
MACBETH	632156	Single Cell Mining Claim	2024-01-25	100	400	400	0

Township / Area	Tenure ID	Tenure Type	Anniversary Date	Tenure Percentage	Work Required	Work Applied	Total Reserve
MACBETH	632155	Single Cell Mining Claim	2024-01-25	100	400	400	0
MACBETH	632154	Single Cell Mining Claim	2024-01-25	100	400	400	0
MACBETH	632153	Single Cell Mining Claim	2024-01-25	100	400	400	0
MACBETH	632152	Single Cell Mining Claim	2024-01-25	100	400	400	0
MACBETH	632151	Single Cell Mining Claim	2024-01-25	100	100 400		0
MACBETH	632130	Single Cell Mining Claim	2024-01-25	100	400	400	0
MACBETH	632148	Single Cell Mining Claim	2024-01-25	100	400	400	0
МАСВЕТН	632147	Single Cell Mining Claim	2024-01-25	100	400	400	0
MACBETH	632146	Single Cell Mining Claim	2024-01-25	100	400	400	0
MACBETH	632145	Single Cell Mining Claim	2024-01-25	100	400	400	0
MACBETH	632144	Single Cell Mining Claim	2024-01-25	100	400	400	0
MACBETH	632140	Single Cell Mining Claim	2024-01-25	100	400	400	0
MACBETH	632139	Single Cell Mining Claim	2024-01-25	100	400	400	0
MACBETH	632137	Single Cell Mining Claim	2024-01-25	100	400	400	0
MACBETH	632134	Single Cell Mining Claim	2024-01-25	100	400	400	0
MACBETH	632130	Single Cell Mining Claim	2024-01-25	100	400	400	0
MACBETH	632128	Single Cell Mining Claim	2024-01-25	100	400	400	0
MACBETH	632127	Single Cell Mining Claim	2024-01-25	100	400	400	0
MACBETH	632126	Single Cell Mining Claim	2024-01-25	100	400	400	0
MACBETH	632125	Single Cell Mining Claim	2024-01-25	100	400	400	0
MACBETH	632124	Single Cell Mining Claim	2024-01-25	100	400	400	0
MACBETH	632123	Single Cell Mining Claim	2024-01-25	100	400	400	0
MACBETH	632122	Single Cell Mining Claim	2024-01-25	100	400	400	0
MACBETH	632119	Single Cell Mining Claim	2024-01-25	100	400	400	0
MACBETH	632117	Single Cell Mining Claim	2024-01-25	100	400	400	0
MACBETH	632115	Single Cell Mining Claim	2024-01-25	100	400	400	0
MACBETH	632112	Single Cell Mining Claim	2024-01-25	100	400	400	0
MACBETH	632111	Single Cell Mining Claim	2024-01-25	100	400	400	0
MACBETH	632110	Single Cell Mining Claim	2024-01-25	100	400	400	0
MACBETH	632108	Single Cell Mining Claim	2024-01-25	100	400	400	0
MACBETH	632107	Single Cell Mining Claim	2024-01-25	100	400	400	0
MACBETH	632106	Single Cell Mining Claim	2024-01-25	100	400	400	0
MACBETH	632105	Single Cell Mining Claim	2024-01-25	100	400	400	0
	632104	Single Cell Mining Claim	2024-01-25	100	400	400	0
MACBETH	632103	Single Cell Mining Claim	2024-01-25	100	400	400	0
MACBETH	632100	Single Cell Mining Claim	2024-01-25	100	400	400	0
MACBETH	632099	Single Cell Mining Claim	2024-01-25	100	400	400	0
MACBETH	632098	Single Cell Mining Claim	2024-01-25	100	400	400	0
MACBETH	632097	Single Cell Mining Claim	2024-01-25	100	400	400	0
MACBETH	632096	Single Cell Mining Claim	2024-01-25	100	400	400	0
MACBETH	632095	Single Cell Mining Claim	2024-01-25	100	400	400	0
MACBETH	744176	Single Cell Mining Claim	2024-09-01	100	400	0	0
MACBETH	744175	Single Cell Mining Claim	2024-09-01	100	400	0	0
	744174	Single Cell Mining Claim	2024-09-01	100	400	0	0
MACBETH	744175	Single Cell Mining Claim	2024-09-01	100	400	0	0
MACBETH	744172	Single Cell Mining Claim	2024-09-01	100	400	0	0
PHYLLIS	616811	Single Cell Mining Claim	2023-10-22	100	400	438	0
PHYLLIS	616805	Single Cell Mining Claim	2023-10-22	100	400	438	0
PHYLLIS	616800	Single Cell Mining Claim	2023-10-22	100	400	438	0
PHYLLIS	616785	Single Cell Mining Claim	2023-10-22	100	400	438	0
PHYLLIS	616779	Single Cell Mining Claim	2023-10-22	100	400	400	599
PHYLLIS	616776	Single Cell Mining Claim	2023-10-22	100	400	400	38
PHYLLIS	616775	Single Cell Mining Claim	2023-10-22	100	400	400	599
PHYLLIS	616//4	Single Cell Mining Claim	2023-10-22	100	400	400	599
	616772	Single Cell Mining Claim	2023-10-22	100	400	400	38
PHTLLIS	616770	Single Cell Mining Claim	2023-10-22	100	400	442	561
PHYLLIS	616769	Single Cell Mining Claim	2023-10-22	100	400	438	561
PHYLLIS	616768	Single Cell Mining Claim	2023-10-22	100	400	438	561
PHYLLIS	616766	Single Cell Mining Claim	2023-10-22	100	400	438	0
PHYLLIS	616765	Single Cell Mining Claim	2023-10-22	100	400	438	0
PHYLLIS	616760	Single Cell Mining Claim	2023-10-22	100	400	438	561
PHYLLIS	616759	Single Cell Mining Claim	2023-10-22	100	400	438	0
PHYLLIS	616755	Single Cell Mining Claim	2023-10-22	100	400	438	0
PHYLLIS	616754	Single Cell Mining Claim	2023-10-22	100	400	438	0
PHYLLIS	616753	Single Cell Mining Claim	2023-10-22	100	400	438	0
PHYLLIS	616752	Single Cell Mining Claim	2023-10-22	100	400	438	0

Township / Area	Tenure ID	Tenure Type	Anniversary Date	Tenure Percentage Work Required		Work Applied	Total Reserve
PHYLLIS	616749	Single Cell Mining Claim	2023-10-22	100	400	438	0
PHYLLIS	616748	Single Cell Mining Claim	2023-10-22	100	400	438	0
PHYLLIS	616746	Single Cell Mining Claim	2023-10-22	100	400	438	561
PHYLLIS	616745	Single Cell Mining Claim	2023-10-22	100	400	438	0
PHYLLIS	616744	Single Cell Mining Claim	2023-10-22	100	400	438	0
PHYLLIS	616743	Single Cell Mining Claim	2023-10-22	100	400	438	0
	616720	Single Cell Mining Claim	2023-10-22	100	400	400	0
PHYLLIS	616737	Single Cell Mining Claim	2023-10-22	100	400	400	0
PHYLLIS	616733	Single Cell Mining Claim	2023-10-22	100	400	438	561
PHYLLIS	616732	Single Cell Mining Claim	2023-10-22	100	400	412	603
PHYLLIS	616731	Single Cell Mining Claim	2023-10-22	100	400	400	38
PHYLLIS	616730	Single Cell Mining Claim	2023-10-22	100	400	400	599
PHYLLIS	616725	Single Cell Mining Claim	2023-10-22	100	400	400	38
PHYLLIS	616724	Single Cell Mining Claim	2023-10-22	100	400	400	0
PHYLLIS	616723	Single Cell Mining Claim	2023-10-22	100	400	438	561
PHYLLIS	616718	Single Cell Mining Claim	2023-10-22	100	400	438	0
PHYLLIS	616717	Single Cell Mining Claim	2023-10-22	100	400	438	561
PHYLLIS	616716	Single Cell Mining Claim	2023-10-22	100	400	438	0
PHYLLIS	616715	Single Cell Mining Claim	2023-10-22	100	400	438	0
PHYLLIS	616/11	Single Cell Mining Claim	2023-10-22	100	400	438	0
PHYLLIS	616704	Single Cell Mining Claim	2023-10-22	100	400	438	0
	616701	Single Cell Mining Claim	2023-10-22	100	400	438	0
PHYLLIS	616700	Single Cell Mining Claim	2023-10-22	100	400	438	0
PHYLLIS	616699	Single Cell Mining Claim	2023-10-22	100	400	438	0
PHYLLIS	616698	Single Cell Mining Claim	2023-10-22	100	400	438	0
PHYLLIS	616695	Single Cell Mining Claim	2023-10-22	100	400	438	0
PHYLLIS	616694	Single Cell Mining Claim	2023-10-22	100	400	438	0
PHYLLIS	616693	Single Cell Mining Claim	2023-10-22	100	400	438	0
PHYLLIS	616692	Single Cell Mining Claim	2023-10-22	100	400	438	0
PHYLLIS	616691	Single Cell Mining Claim	2023-10-22	100	400	438	0
PHYLLIS	616690	Single Cell Mining Claim	2023-10-22	100	400	438	0
PHYLLIS	616689	Single Cell Mining Claim	2023-10-22	100	400	438	0
PHYLLIS	616688	Single Cell Mining Claim	2023-10-22	100	400	400	0
PHYLLIS	616686	Single Cell Mining Claim	2023-10-22	100	400	438	0
PHYLLIS	616685	Single Cell Mining Claim	2023-10-22	100	400	438	0
	616684	Single Cell Mining Claim	2023-10-22	100	400	438	0
	616682	Single Cell Mining Claim	2023-10-22	100	400	430	0
PHYLLIS	616680	Single Cell Mining Claim	2023-10-22	100	400	438	0
PHYLLIS	616679	Single Cell Mining Claim	2023-10-22	100	400	438	0
PHYLLIS	616678	Single Cell Mining Claim	2023-10-22	100	400	438	0
PHYLLIS	616677	Single Cell Mining Claim	2023-10-22	100	400	438	0
PHYLLIS	616676	Single Cell Mining Claim	2023-10-22	100	400	438	0
PHYLLIS	616675	Single Cell Mining Claim	2023-10-22	100	400	438	0
PHYLLIS	616674	Single Cell Mining Claim	2023-10-22	100	400	438	0
PHYLLIS	616671	Single Cell Mining Claim	2023-10-22	100	400	438	0
PHYLLIS	616670	Single Cell Mining Claim	2023-10-22	100	400	438	0
PHYLLIS	616669	Single Cell Mining Claim	2023-10-22	100	400	438	0
PHYLLIS	616668	Single Cell Mining Claim	2023-10-22	100	400	438	0
	010000	Single Cell Mining Claim	2023-10-22	100	400	438	0
	616664	Single Cell Mining Claim	2023-10-22	100	400	438	0
	616662	Single Cell Mining Claim	2023-10-22	100	400	430	0
PHYLLIS	616661	Single Cell Mining Claim	2023-10-22	100	400	438	0
PHYLLIS	616660	Single Cell Mining Claim	2023-10-22	100	400	438	0
PHYLLIS	616659	Single Cell Mining Claim	2023-10-22	100	400	438	0
PHYLLIS	616658	Single Cell Mining Claim	2023-10-22	100	400	438	0
PHYLLIS	616656	Single Cell Mining Claim	2023-10-22	100	400	438	0
PHYLLIS	616655	Single Cell Mining Claim	2023-10-22	100	400	438	0
PHYLLIS	616654	Single Cell Mining Claim	2023-10-22	100	400	438	0
PHYLLIS	616653	Single Cell Mining Claim	2023-10-22	100	400	438	0
PHYLLIS	616650	Single Cell Mining Claim	2023-10-22	100	400	438	0
PHYLLIS	616647	Single Cell Mining Claim	2023-10-22	100	400	438	0
PHYLLIS	616645	Single Cell Mining Claim	2023-10-22	100	400	438	0
	010044	Single Cell Mining Claim	2023-10-22	100	400	438	0
	616620	Single Cell Mining Claim	2023-10-22	100	400	438	0
PHYLLIS	616638	Single Cell Mining Claim	2023-10-22	100	400 400	438 428	0
PHYLLIS	510840	Single Cell Mining Claim	2024-04-10	100	400	1738	0
PHYLLIS	510839	Single Cell Mining Claim	2024-04-10	100	400	1238	0

Township / Area	Tenure ID	Tenure Type	Anniversary Date	Tenure Percentage	Work Required	Work Applied	Total Reserve
PHYLLIS	510838	Single Cell Mining Claim	2024-04-10	100	400	1238	0
PHYLLIS	510835	Single Cell Mining Claim	2024-04-10	100	400	1238	0
PHYLLIS	510834	Single Cell Mining Claim	2024-04-10	100	400	1238	0
PHYLLIS	510833	Single Cell Mining Claim	2024-04-10	100	400	1238	0
PHYLLIS	510832	Single Cell Mining Claim	2024-04-10	100	400	1238	0
	510828	Single Cell Mining Claim	2024-04-10	100	400	1238	0
PHYLLIS	510820	Single Cell Mining Claim	2024-04-10	100	400	1238	0
PHYLLIS	502821	Single Cell Mining Claim	2024-04-10	100	400	1200	998
PHYLLIS	502820	Single Cell Mining Claim	2024-04-10	100	400	1200	998
PHYLLIS	502819	Single Cell Mining Claim	2024-04-10	100	400	1200	998
PHYLLIS	502816	Single Cell Mining Claim	2024-04-10	100	400	1200	998
PHYLLIS	502815	Single Cell Mining Claim	2024-04-10	100	400	1200	960
PHYLLIS	502814	Single Cell Mining Claim	2024-04-10	100	400	1200	978
PHYLLIS	502811	Single Cell Mining Claim	2024-04-10	100	400	1200	960
	502810	Single Cell Mining Claim	2024-04-10	100	400	1200	960
	502809	Single Cell Mining Claim	2024-04-10	100	400	1200	960
PHYLLIS	502805	Single Cell Mining Claim	2024-04-10	100	400	1200	960
PHYLLIS	502804	Single Cell Mining Claim	2024-04-10	100	400	1200	960
PHYLLIS,SCHOLES	616804	Single Cell Mining Claim	2023-10-22	100	400	438	0
PHYLLIS,SCHOLES	616784	Single Cell Mining Claim	2023-10-22	100	400	438	0
PHYLLIS,SCHOLES	616778	Single Cell Mining Claim	2023-10-22	100	400	400	38
PHYLLIS,SCHOLES	616751	Single Cell Mining Claim	2023-10-22	100	400	438	0
PHYLLIS,SCHOLES	616710	Single Cell Mining Claim	2023-10-22	100	400	438	0
PHYLLIS,SCHOLES	616709	Single Cell Mining Claim	2023-10-22	100	400	400	561
PHYLLIS,SCHOLES	616697	Single Cell Mining Claim	2023-10-22	100	400	400	0
	616681	Single Cell Mining Claim	2023-10-22	100	400	438	0
	510831	Single Cell Mining Claim	2024-04-10	100	400	1238	0
PHYLLIS SCHOLES	510825	Single Cell Mining Claim	2024-04-10	100	400	1238	0
PHYLLIS.SCHOLES	510823	Single Cell Mining Claim	2024-04-10	100	400	1200	0
PHYLLIS,SCHOLES	502818	Single Cell Mining Claim	2024-04-10	100	400	1200	998
PHYLLIS, SCHOLES	502813	Single Cell Mining Claim	2024-04-10	100	400	1200	960
PHYLLIS,SCHOLES	502808	Single Cell Mining Claim	2024-04-10	100	400	1200	960
PHYLLIS,SCHOLES	502803	Single Cell Mining Claim	2024-04-10	100	400	1200	960
SCHOLES	613313	Single Cell Mining Claim	2023-09-30	100	400	438	0
SCHOLES	613312	Single Cell Mining Claim	2023-09-30	100	400	438	0
SCHOLES	613302	Single Cell Mining Claim	2023-09-30	100	400	438	0
SCHOLES	613295	Single Cell Mining Claim	2023-09-30	100	400	438	0
SCHOLES	613292	Single Cell Mining Claim	2023-09-30	100	400	438	0
SCHOLES	613285	Single Cell Mining Claim	2023-09-30	100	400	438	0
SCHOLES	613284	Single Cell Mining Claim	2023-09-30	100	400	438	0
SCHOLES	613279	Single Cell Mining Claim	2023-09-30	100	400	438	0
SCHOLES	616810	Single Cell Mining Claim	2023-10-22	100	400	438	0
SCHOLES	616809	Single Cell Mining Claim	2023-10-22	100	400	438	0
SCHOLES	616808	Single Cell Mining Claim	2023-10-22	100	400	438	0
SCHOLES	616807	Single Cell Mining Claim	2023-10-22	100	400	438	0
SCHOLES	616802	Single Cell Mining Claim	2023-10-22	100	400	438	0
SCHOLES	616802	Single Cell Mining Claim	2023-10-22	100	400	430	561
SCHOLES	616801	Single Cell Mining Claim	2023-10-22	100	400	438	0
SCHOLES	616799	Single Cell Mining Claim	2023-10-22	100	400	438	0
SCHOLES	616798	Single Cell Mining Claim	2023-10-22	100	400	438	0
SCHOLES	616797	Single Cell Mining Claim	2023-10-22	100	400	438	0
SCHOLES	616796	Single Cell Mining Claim	2023-10-22	100	400	438	0
SCHOLES	616795	Single Cell Mining Claim	2023-10-22	100	400	438	0
SCHOLES	616/94	Single Cell Mining Claim	2023-10-22	100	400	438	0
SCHOLES	616702	Single Cell Mining Claim	2023-10-22	100	400	438	0
SCHOLES	616791	Single Cell Mining Claim	2023-10-22	100	400	430	0
SCHOLES	616790	Single Cell Mining Claim	2023-10-22	100	400	438	0
SCHOLES	616789	Single Cell Mining Claim	2023-10-22	100	400	438	0
SCHOLES	616788	Single Cell Mining Claim	2023-10-22	100	400	438	0
SCHOLES	616787	Single Cell Mining Claim	2023-10-22	100	400	438	0
SCHOLES	616786	Single Cell Mining Claim	2023-10-22	100	400	438	0
SCHOLES	616783	Single Cell Mining Claim	2023-10-22	100	400	438	0
SCHOLES	616782	Single Cell Mining Claim	2023-10-22	100	400	438	0
SCHOLES	616781	Single Cell Mining Claim	2023-10-22	100	400	400	38
	616777	Single Cell Mining Claim	2023-10-22	100	400	400	599
JUIULLJ	010///	Single Cell Milling CidIII	2023-10-22	100	400	400	38

Township / Area	ip / Area Tenure ID		Anniversary Date	Tenure Percentage	Work Required	Work Applied	Total Reserve
SCHOLES	616773	Single Cell Mining Claim	2023-10-22	100	400	400	38
SCHOLES	616767	Single Cell Mining Claim	2023-10-22	100	400	438	30261
SCHOLES	616764	Single Cell Mining Claim	2023-10-22	100	400	438	0
SCHOLES	616763	Single Cell Mining Claim	2023-10-22	100	400	438	0
SCHOLES	616762	Single Cell Mining Claim	2023-10-22	100	400	438	0
SCHOLES	616761	Single Cell Mining Claim	2023-10-22	100	400	438	0
SCHOLES	616758	Single Cell Mining Claim	2023-10-22	100	400	438	0
SCHOLES	616757	Single Cell Mining Claim	2023-10-22	100	400	438	0
SCHOLES	616756	Single Cell Mining Claim	2023-10-22	100	400	438	0
SCHOLES	616/50	Single Cell Mining Claim	2023-10-22	100	400	438	0
SCHOLES	616/4/	Single Cell Mining Claim	2023-10-22	100	400	438	0
SCHOLES	616742	Single Cell Mining Claim	2023-10-22	100	400	438	0
SCHOLES	616729	Single Cell Mining Claim	2023-10-22	100	400	438	0
SCHOLES	616726	Single Cell Mining Claim	2023-10-22	100	400	438	0
SCHOLES	616735	Single Cell Mining Claim	2023-10-22	100	400	438	0
SCHOLES	616734	Single Cell Mining Claim	2023-10-22	100	400	438	561
SCHOLES	616729	Single Cell Mining Claim	2023-10-22	100	400	400	38
SCHOLES	616728	Single Cell Mining Claim	2023-10-22	100	400	400	38
SCHOLES	616727	Single Cell Mining Claim	2023-10-22	100	400	400	38
SCHOLES	616726	Single Cell Mining Claim	2023-10-22	100	400	400	38
SCHOLES	616722	Single Cell Mining Claim	2023-10-22	100	400	438	0
SCHOLES	616721	Single Cell Mining Claim	2023-10-22	100	400	438	0
SCHOLES	616720	Single Cell Mining Claim	2023-10-22	100	400	438	0
SCHOLES	616719	Single Cell Mining Claim	2023-10-22	100	400	438	0
SCHOLES	616714	Single Cell Mining Claim	2023-10-22	100	400	438	0
SCHOLES	616713	Single Cell Mining Claim	2023-10-22	100	400	438	0
SCHOLES	616712	Single Cell Mining Claim	2023-10-22	100	400	438	0
SCHOLES	616708	Single Cell Mining Claim	2023-10-22	100	400	438	0
SCHOLES	616707	Single Cell Mining Claim	2023-10-22	100	400	438	0
SCHOLES	616706	Single Cell Mining Claim	2023-10-22	100	400	438	0
SCHOLES	616705	Single Cell Mining Claim	2023-10-22	100	400	438	0
SCHOLES	616702	Single Cell Mining Claim	2023-10-22	100	400	438	0
SCHOLES	616696	Single Cell Mining Claim	2023-10-22	100	400	438	0
SCHOLES	616687	Single Cell Mining Claim	2023-10-22	100	400	438	0
SCHOLES	616673	Single Cell Mining Claim	2023-10-22	100	400	438	0
SCHOLES	623876	Single Cell Mining Claim	2023-12-11	100	400	400	0
SCHOLES	632094	Single Cell Mining Claim	2024-01-25	100	400	400	0
SCHOLES	632093	Single Cell Mining Claim	2024-01-25	100	400	400	0
SCHOLES	632092	Single Cell Mining Claim	2024-01-25	100	400	400	0
SCHOLES	632091	Single Cell Mining Claim	2024-01-25	100	400	400	0
SCHOLES	622090	Single Cell Mining Claim	2024-01-25	100	400	400	0
SCHOLES	632089	Single Cell Mining Claim	2024-01-25	100	400	400	0
SCHOLES	632087	Single Cell Mining Claim	2024-01-25	100	400	400	0
SCHOLES	632086	Single Cell Mining Claim	2024-01-25	100	400	400	0
SCHOLES	632085	Single Cell Mining Claim	2024-01-25	100	400	400	0
SCHOLES	632084	Single Cell Mining Claim	2024-01-25	100	400	400	0
SCHOLES	632083	Single Cell Mining Claim	2024-01-25	100	400	400	0
SCHOLES	632082	Single Cell Mining Claim	2024-01-25	100	400	400	0
SCHOLES	632081	Single Cell Mining Claim	2024-01-25	100	400	400	0
SCHOLES	632080	Single Cell Mining Claim	2024-01-25	100	400	400	0
SCHOLES	632079	Single Cell Mining Claim	2024-01-25	100	400	438	0
SCHOLES	632078	Single Cell Mining Claim	2024-01-25	100	400	400	0
SCHOLES	632075	Single Cell Mining Claim	2024-01-25	100	400	438	0
SCHOLES	632074	Single Cell Mining Claim	2024-01-25	100	400	400	0
SCHOLES	632073	Single Cell Mining Claim	2024-01-25	100	400	400	0
SCHOLES	632069	Single Cell Mining Claim	2024-01-25	100	400	400	0
SCHOLES	632068	Single Cell Mining Claim	2024-01-25	100	400	438	0
SCHOLES	632067	Single Cell Mining Claim	2024-01-25	100	400	400	0
SCHOLES	316028	Single Cell Mining Claim	2024-02-03	100	400	2000	426
SCHOLES	309982	Single Cell Mining Claim	2024-02-03	100	400	1800	0
SCHOLES	309981	Single Cell Mining Claim	2024-02-03	100	400	2000	426
SCHOLES	297305	Single Cell Mining Claim	2024-02-03	100	400	2000	0
SCHOLES	222610	Single Cell Mining Claim	2024-02-03	100	400	2000	426
SCHOLES	193394	Single Cell Mining Claim	2024-02-03	100	400	2000	0
SCHOLES	1/6023	Single Cell Mining Claim	2024-02-03	100	400	1680	0
SCHULES	103834	Single Cell Mining Claim	2024-02-03	100	400	2000	426
SCHULES	129891	Single Cell Mining Claim	2024-02-03	100	400	2000	426
	320185	Single Cell Mining Claim	2024-02-03	100 400		1800	0
	230134	Single Cell Mining Claim	2024-02-03	100	400	2000	426
SCHULES	235304	Single Cell Mining Claim	2024-02-03	100	400	2000	0

Township / Area	Tenure ID	Tenure Type	Anniversary Date	Tenure Percentage	Work Required	Work Applied	Total Reserve
SCHOLES	124023	Single Cell Mining Claim	2024-02-03	100	400	2000	0
SCHOLES	123515	Single Cell Mining Claim	2024-02-03	100	400	2000	426
SCHOLES	107594	Single Cell Mining Claim	2024-02-03	100	400	1800	27894
SCHOLES	222611	Single Cell Mining Claim	2024-02-23	100	400	1800	0
SCHOLES	129892	Single Cell Mining Claim	2024-02-23	100	400	2000	0
SCHOLES	339863	Single Cell Mining Claim	2024-02-23	100	400	2000	420
SCHOLES	282157	Single Cell Mining Claim	2024-02-23	100 4		2000	420
SCHOLES	252965	Single Cell Mining Claim	2024-02-23	100	400	2000	0
SCHOLES	205146	Single Cell Mining Claim	2024-02-23	100	400	1800	0
SCHOLES	149702	Single Cell Mining Claim	2024-02-23	100	400	2000	426
SCHOLES	133023	Single Cell Mining Claim	2024-02-23	100	400	2000	0
SCHOLES	345476	Single Cell Mining Claim	2024-03-24	100	400	2026	560
SCHOLES	345475	Single Cell Mining Claim	2024-03-24	100	400	1600	986
SCHOLES	345474	Single Cell Mining Claim	2024-03-24	100	400	2000	426
SCHOLES	322548	Single Cell Mining Claim	2024-03-24	100	400	2026	26996
SCHOLES	255093	Single Cell Mining Claim	2024-03-24	100	400	1600	420
SCHOLES	227224	Single Cell Mining Claim	2024-03-24	100	400	1600	986
SCHOLES	190021	Single Cell Mining Claim	2024-03-24	100	400	1600	986
SCHOLES	172670	Single Cell Mining Claim	2024-03-24	100	400	1600	426
SCHOLES	170557	Single Cell Mining Claim	2024-03-24	100	400	2026	32217
SCHOLES	126008	Single Cell Mining Claim	2024-03-24	100	400	1600	426
SCHOLES	117457	Single Cell Mining Claim	2024-03-24	100	400	1600	400
SCHOLES	105604	Single Cell Mining Claim	2024-03-24	100	400	1600	986
SCHOLES	336128	Single Cell Mining Claim	2024-03-24	100	400	1600	400
SCHOLES	324285	Single Cell Mining Claim	2024-03-24	100	400	1600	400
SCHOLES	324284	Single Cell Mining Claim	2024-03-24	100	400	1600	426
SCHOLES	324283	Single Cell Mining Claim	2024-03-24	100	400	1600	400
SCHOLES	287764	Single Cell Mining Claim	2024-03-24	100	400	1600	400
SCHOLES	220470	Single Cell Mining Claim	2024-03-24	100	400	1600	400
SCHOLES	174540	Single Cell Mining Claim	2024-03-24	100	400	1600	400
SCHOLES	174539	Single Cell Mining Claim	2024-03-24	100	400	1600	400
SCHOLES	322481	Single Cell Mining Claim	2024-03-24	100	400	1600	19818
SCHOLES	293853	Single Cell Mining Claim	2024-03-24	100	400	1600	426
SCHOLES	170474	Single Cell Mining Claim	2024-03-24	100	400	1600	470
SCHOLES	322480	Single Cell Mining Claim	2024-03-24	100	400	1600	15226
SCHOLES	293852	Single Cell Mining Claim	2024-03-24	100	400	1600	426
SCHOLES	219276	Single Cell Mining Claim	2024-03-24	100	400	1600	426
SCHOLES	219275	Single Cell Mining Claim	2024-03-24	100	400	1600	426
SCHOLES	172602	Single Cell Mining Claim	2024-03-24	100	400	1600	426
SCHOLES	1/04/5 E10927	Single Cell Mining Claim	2024-03-24	100	400	2000	23026
SCHOLES	510836	Single Cell Mining Claim	2024-04-10	100	400	1230	0
SCHOLES	510830	Single Cell Mining Claim	2024-04-10	100	400	1238	0
SCHOLES	510829	Single Cell Mining Claim	2024-04-10	100	400	1238	0
SCHOLES	510519	Single Cell Mining Claim	2024-04-10	100	400	1238	0
SCHOLES	502817	Single Cell Mining Claim	2024-04-10	100	400	1200	438
SCHOLES	502812	Single Cell Mining Claim	2024-04-10	100	400	1200	438
SCHOLES	502807	Single Cell Mining Claim	2024-04-10	100	400	1200	438
SCHOLES	502802	Single Cell Mining Claim	2024-04-10	100	400	1200	438
SCHOLES	502546	Single Cell Mining Claim	2024-04-10	100	400	1200	29865
SCHULES	502545	Single Cell Mining Claim	2024-04-10	100	400	1200	998
	502544	Single Cell Mining Claim	2024-04-10	100	400	1200	998
SCHOLES	502545	Single Cell Mining Claim	2024-04-10	100	400	1200	430
SCHOLES	502542	Single Cell Mining Claim	2024-04-10	100	400	1200	438
SCHOLES	502540	Single Cell Mining Claim	2024-04-10	100	400	1200	438
SCHOLES	502539	Single Cell Mining Claim	2024-04-10	100	400	1200	998
SCHOLES	502538	Single Cell Mining Claim	2024-04-10	100	400	1200	998
SCHOLES	502537	Single Cell Mining Claim	2024-04-10	100	400	1200	998
SCHOLES	502536	Single Cell Mining Claim	2024-04-10	100	400	1200	438
SCHOLES	502535	Single Cell Mining Claim	2024-04-10	100	400	1200	438
SCHOLES	502534	Single Cell Mining Claim	2024-04-10	100	400	1200	438
SCHOLES	502533	Single Cell Mining Claim	2024-04-10	100	400	1200	438
	502410	Single Cell Mining Claim	2024-04-10	100	400	1238	0
	502409	Single Cell Mining Claim	2024-04-10	100	400	1238	0
SCHOLES	502400	Single Cell Mining Claim	2024-04-10	100	400	1238	0
SCHOLES	502406	Single Cell Mining Claim	2024-04-10	100	.00 400 123		0
SCHOLES	502405	Single Cell Mining Claim	2024-04-10	100	400	1200	0

Township / Area	Tenure ID	Tenure Type	Anniversary Date	Tenure Percentage	Work Required	Work Applied	Total Reserve
SCHOLES	502404	Single Cell Mining Claim	2024-04-10	100	400	1200	0
SCHOLES	502403	Single Cell Mining Claim	2024-04-10	100	400	1226	0
SCHOLES	502402	Single Cell Mining Claim	2024-04-10	100	400	1226	0
SCHOLES	502401	Single Cell Mining Claim	2024-04-10	100	400	1226	0
SCHOLES	502400	Single Cell Mining Claim	2024-04-10	100	400	1226	0
SCHOLES	502399	Single Cell Mining Claim	2024-04-10	100	400	1226	0
SCHOLES	502398	Single Cell Mining Claim	2024-04-10	100	400	1220	0
SCHOLES	502397	Single Cell Mining Claim	2024-04-10	100	400	1220	0
SCHOLES	502395	Single Cell Mining Claim	2024-04-10	100	400	1225	0
SCHOLES	502394	Single Cell Mining Claim	2024-04-10	100	400	1226	0
SCHOLES	502393	Single Cell Mining Claim	2024-04-10	100	400	1226	0
SCHOLES	502191	Single Cell Mining Claim	2024-04-10	100	400	1226	0
SCHOLES	502190	Single Cell Mining Claim	2024-04-10	100	400	1226	0
SCHOLES	502189	Single Cell Mining Claim	2024-04-10	100	400	1226	0
SCHOLES	502188	Single Cell Mining Claim	2024-04-10	100	400	1226	0
SCHOLES	502187	Single Cell Mining Claim	2024-04-10	100	400	1226	0
SCHOLES	502186	Single Cell Mining Claim	2024-04-10	100	400	1226	0
SCHOLES	502185	Single Cell Mining Claim	2024-04-10	100	400	1226	0
	502184	Single Cell Mining Claim	2024-04-10	100	400	1226	0
SCHOLES	502183	Single Cell Mining Claim	2024-04-10	100	400	1220	0
SCHOLES	599091	Single Cell Mining Claim	2024-04-10	100	400	1220 RUU	283
SCHOLES	740098	Multi-cell Mining Claim	2024-07-28	100	400	000	0
SCHOLES	740096	Multi-cell Mining Claim	2024-07-28	100	2400	0	0
SCHOLES	344331	Single Cell Mining Claim	2024-08-19	100	400	1800	0
SCHOLES	311604	Single Cell Mining Claim	2024-08-19	100	400	1600	426
SCHOLES	293441	Boundary Cell Mining Claim	2024-08-19	100	200	800	22
SCHOLES	292694	Boundary Cell Mining Claim	2024-08-19	100	200	800	255
SCHOLES	285405	Single Cell Mining Claim	2024-08-19	100	400	2000	0
SCHOLES	238222	Single Cell Mining Claim	2024-08-19	100	400	1600	426
SCHOLES	238221	Single Cell Mining Claim	2024-08-19	100	400	2000	0
SCHOLES	219507	Single Cell Mining Claim	2024-08-19	100	400	2000	0
SCHOLES	202254	Single Cell Mining Claim	2024-08-19	100	400	1600	426
SCHOLES	188850	Single Cell Mining Claim	2024-08-19	100	400	1600	9085
SCHOLES	142600	Single Cell Mining Claim	2024-08-19	100	200	1800	22
SCHOLES	137605	Single Cell Mining Claim	2024-08-19	100	400	1800	0
SCHOLES	108189	Single Cell Mining Claim	2024-08-19	100	400	1600	426
SCHOLES	108188	Single Cell Mining Claim	2024-08-19	100	400	1600	8379
SCHOLES	304850	Single Cell Mining Claim	2024-08-19	100	400	1600	426
SCHOLES	292696	Single Cell Mining Claim	2024-08-19	100	400	1600	426
SCHOLES	292695	Single Cell Mining Claim	2024-08-19	100	400	1600	426
SCHOLES	284659	Boundary Cell Mining Claim	2024-08-19	100	200	800	426
SCHOLES	284658	Single Cell Mining Claim	2024-08-19	100	400	2000	426
SCHOLES	284657	Single Cell Mining Claim	2024-08-19	100	400	2000	426
SCHOLES	226054	Single Cell Mining Claim	2024-08-19	100	400	1600	426
SCHOLES	218/43	Single Cell Mining Claim	2024-08-19	100	400	1600	426
SCHOLES	188851	Single Cell Mining Claim	2024-08-19	100	400	1600	426
SCHOLES	125365	Single Cell Mining Claim	2024-08-19 2024-08-19	100	400	1000	426
SCHOLES	125364	Single Cell Mining Claim	2024-08-19	100	400	1600	426
SCHOLES	107911	Single Cell Mining Claim	2024-08-19	100	400	1600	426
SCHOLES	609965	Single Cell Mining Claim	2024-08-24	100	400	800	998
SCHOLES	609964	Single Cell Mining Claim	2024-08-24	100	400	800	438
SCHOLES	189082	Single Cell Mining Claim	2024-09-17	100	400	2000	0
SCHOLES	148871	Single Cell Mining Claim	2024-09-17	100	400	2000	0
SCHOLES	102874	Single Cell Mining Claim	2024-09-17	100	400	2000	0
SCHOLES	301472	Single Cell Mining Claim	2024-09-17	100	400	2000	0
SCHOLES	313633	Single Cell Mining Claim	2024-09-19	100	400	1426	0
SCHOLES	184785	Single Cell Mining Claim	2024-09-19	100	400	2000	426
	24/591	Single Cell Mining Claim	2024-09-19	100	400	2000	26
	127292	Single Cell Mining Claim	2024-09-19	100	400	2000	426
SCHOLES	321332	Single Cell Mining Claim	2024-09-19	100	400	2000	426
SCHOLES	319174	Single Cell Mining Claim	2024-09-19	100	400	2020	0
SCHOLES	293929	Single Cell Mining Claim	2024-09-19	100	400	2026	0
SCHOLES	293927	Single Cell Mining Claim	2024-09-19	100	400	2026	0
SCHOLES	253199	Single Cell Mining Claim	2024-09-19	100	400	1426	0
SCHOLES	205953	Single Cell Mining Claim	2024-09-19	100	400	2000	426
SCHOLES	197997	Single Cell Mining Claim	2024-09-19	100	400	2000	426
SCHOLES	187133	Single Cell Mining Claim	2024-09-19	100	400	1400	426

Township / Area	Tenure ID	Tenure Type	Anniversary Date	Tenure Percentage	Work Required	Work Applied	Total Reserve
SCHOLES	172662	Single Cell Mining Claim	2024-09-19	100	400	1600	426
SCHOLES	153889	Single Cell Mining Claim	2024-09-19	100	400	2026	0
SCHOLES	306032	Single Cell Mining Claim	2024-09-19	100	400	1426	0
SCHOLES	306031	Single Cell Mining Claim	2024-09-19	100	400	2026	0
SCHOLES	293930	Single Cell Mining Claim	2024-09-19	100	400	1426	0
SCHOLES	293928	Single Cell Mining Claim	2024-09-19	100	400	2026	0
SCHOLES	285828	Single Cell Mining Claim	2024-09-19	100	400	2026	0
SCHOLES	239411	Single Cell Mining Claim	2024-09-19	100	400	2026	0
SCHOLES	190007	Single Cell Mining Claim	2024-09-19	100	400	2000	426
SCHOLES	153891	Single Cell Mining Claim	2024-09-19	100	400	2000	426
SCHOLES	153890	Single Cell Mining Claim	2024-09-19	100	400	2026	0
SCHOLES	137980	Single Cell Mining Claim	2024-09-19	100	400	2000	426
SCHOLES	105595	Boundary Cell Mining Claim	2024-09-19	100	200	1000	0
SCHOLES	105594	Single Cell Mining Claim	2024-09-19	100	400	1600	426
SCHOLES	105593	Single Cell Mining Claim	2024-09-19	100	400	2000	426
SCHOLES	105592	Single Cell Mining Claim	2024-09-19	100	400	2000	426
SCHOLES	343661	Single Cell Mining Claim	2024-09-19	100	400	2026	0
SCHOLES	343000	Single Cell Mining Claim	2024-09-19	100	400	2026	0
SCHOLES	226123	Single Cell Mining Claim	2024-09-19	100	400	2020	0
SCHOLES	201591	Single Cell Mining Claim	2024-09-19	100	400	2020	426
SCHOLES	201590	Boundary Cell Mining Claim	2024-09-19	100	200	1000	426
SCHOLES	189436	Boundary Cell Mining Claim	2024-09-19	100	200	1000	0
SCHOLES	137438	Single Cell Mining Claim	2024-09-19	100	400	2000	426
SCHOLES	125443	Single Cell Mining Claim	2024-09-19	100	400	2026	0
SCHOLES	125442	Boundary Cell Mining Claim	2024-09-19	100	200	1000	426
SCHOLES	125441	Boundary Cell Mining Claim	2024-09-19	100	200	1000	170
SCHOLES	107989	Single Cell Mining Claim	2024-09-19	100	400	2026	0
SCHOLES	314859	Single Cell Mining Claim	2024-09-19	100	400	2026	0
SCHOLES	192149	Single Cell Mining Claim	2024-09-19	100	400	2000	426
SCHOLES	107482	Single Cell Mining Claim	2024-09-19	100	400	2000	20
SCHOLES	127697	Single Cell Mining Claim	2024-12-31	100	400	2000	420
SCHOLES	126007	Single Cell Mining Claim	2024-12-31	100	400	2000	0
SCHOLES	228479	Single Cell Mining Claim	2024-12-31	100	400	1600	400
SCHOLES	172293	Single Cell Mining Claim	2024-12-31	100	400	1626	0
SCHOLES	155644	Single Cell Mining Claim	2024-12-31	100	400	1626	0
SCHOLES	117456	Single Cell Mining Claim	2024-12-31	100	400	1600	0
SCHOLES	337554	Single Cell Mining Claim	2024-12-31	100	400	2080	426
SCHOLES	311484	Single Cell Mining Claim	2024-12-31	100	400	1600	426
SCHOLES	304210	Single Cell Mining Claim	2024-12-31	100	400	1600	426
SCHOLES	292088	Single Cell Mining Claim	2024-12-31	100	400	1600	426
SCHOLES	255498	Single Cell Mining Claim	2024-12-31	100	400	1600	426
SCHOLES	233437	Single Cell Mining Claim	2024-12-31	100	400	1600	420
SCHOLES	227223	Single Cell Mining Claim	2024-12-31	100	400	1600	426
SCHOLES	222609	Single Cell Mining Claim	2024-12-31	100	400	2000	426
SCHOLES	217424	Single Cell Mining Claim	2024-12-31	100	400	1600	426
SCHOLES	193393	Single Cell Mining Claim	2024-12-31	100	400	2026	0
SCHOLES	181444	Single Cell Mining Claim	2024-12-31	100	400	1626	0
SCHOLES	172601	Single Cell Mining Claim	2024-12-31	100	400	1600	1026
SCHOLES	142264	Single Cell Mining Claim	2024-12-31	100	400	1626	0
SCHOLES	142263	Single Cell Mining Claim	2024-12-31	100	400	1626	0
SCHOLES	136240	Single Cell Mining Claim	2024-12-31	100	400	1626	0
SCHOLES	12/732	Single Cell Mining Claim	2024-12-31	100	400	1626	0
SCHOLES	107792	Single Cell Mining Claim	2024-12-31	100	400	1626	0
SCHOLES	338555	Single Cell Mining Claim	2024-12-31	100	400	1713	426
SCHOLES	336615	Single Cell Mining Claim	2024-12-31	100	400	1600	426
SCHOLES	336614	Single Cell Mining Claim	2024-12-31	100	400	1600	426
SCHOLES	336573	Single Cell Mining Claim	2024-12-31	100	400	1600	426
SCHOLES	327896	Single Cell Mining Claim	2024-12-31	100	400	1600	426
SCHOLES	308981	Single Cell Mining Claim	2024-12-31	100	400	1600	426
SCHOLES	261949	Single Cell Mining Claim	2024-12-31	100	400	1600	426
SCHULES	261184	Single Cell Mining Claim	2024-12-31	100	400	1600	426
	201183	Single Cell Mining Claim	2024-12-31	100	400	1600	426
	2491/0 227222	Single Cell Mining Claim	2024-12-31	100	400	1600	426
SCHOLES	194489	Single Cell Mining Claim	2024-12-31	100	400	1600	420
SCHOLES	140387	Single Cell Mining Claim	2024-12-31	100	400	1626	
SCHOLES	332709	Boundary Cell Mining Claim	2024-12-31	100	200	1000	234

Township / Area	Township / Area Tenure ID Tenure Type		Anniversary Date	Tenure Percentage	Work Required	Work Applied	Total Reserve
SCHOLES	244479	Single Cell Mining Claim	2024-12-31	100	400	2000	426
SCHOLES	197301	Boundary Cell Mining Claim	2024-12-31	100	200	1000	170
SCHOLES	152654	Single Cell Mining Claim	2024-12-31	100	400	2026	0
SCHOLES	192135	Single Cell Mining Claim	2025-02-03	100	400	2000	426
SCHOLES	145583	Single Cell Mining Claim	2025-02-03	100	400	2000	426
SCHOLES	139618	Single Cell Mining Claim	2025-02-03	100	400	2000	426
SCHOLES	314844	Single Cell Mining Claim	2025-02-23	100	400	2000	426
SCHOLES	192136	Single Cell Mining Claim	2025-02-23	100	400	2000	426
SCHOLES	145584	Single Cell Mining Claim	2025-02-23	100	400	2000	426
SCHOLES	250102	Single Cell Mining Claim	2025-02-23	100	400	2000	426
SCHOLES	193392	Boundary Cell Mining Claim	2025-12-31	100	200	1026	0
SHEPPARD	632202	Single Cell Mining Claim	2024-01-25	100	400	400	0
SHEPPARD	632201	Single Cell Mining Claim	2024-01-25	100	400	400	0
SHEPPARD	632200	Single Cell Mining Claim	2024-01-25	100	400	400	0
SHEPPARD	632199	Single Cell Mining Claim	2024-01-25	100	400	400	0
SHEPPARD	632196	Single Cell Mining Claim	2024-01-25	100	400	400	0
SHEPPARD	632195	Single Cell Mining Claim	2024-01-25	100	400	400	0
SHEPPARD	632194	Single Cell Mining Claim	2024-01-25	100	400	400	0
SHEPPARD	632193	Single Cell Mining Claim	2024-01-25	100	400	400	0
SHEPPARD	632189	Single Cell Mining Claim	2024-01-25	100	400	400	0
SHEPPARD	632188	Single Cell Mining Claim	2024-01-25	100	400	400	0
SHEPPARD	632183	Single Cell Mining Claim	2024-01-25	100	400	400	0

Appendix III

Drill Log

			Conquest Resources Ltd		
Survey:	BC21-01	Claims title: Township: Range: Lot:	502819 Phyllis	Section: Level: Work place:	564148 Surface North Bay, Ontario
Author:	Nathan Lintner	Start date: End date:	3/13/2021 4/8/2021	Description date:	4/8/2021
—Collar——				Surveved	
Azimuth: Dip: Length:	135.00° -55.00° 313.30		East North Elevation	564148.0 5197982.0 373.0	
Number of sample Number of QAQC Total sampled len —Description: — Drilling performed un Core stored at 134 I	es: 34 samples: 4 ngth: 39.10 nder Exploration Permit PR-21-000 mperial Road, North Bay, Ontario.	029.			
	Core size: BTW		Cemented:	No	Stored: Yes

		Description							Assay	Sample	
			From	То	Sample	Length	Au (ppb)	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)
0.00	3.00	OB									
		Overburden									
		Casing driven to 3.00m, left in hole.									
3.00	98.58	NDIA; mg									
		Nipissing Diabase; medium grained									
		Dark grey, mg massive gabbro (NDIA). Grain size decreases from 96.2m to 98.58m									
		and becomes vfg at the lower contact. Trace fg disseminated pyrite. Fairly									
		homogeneous throughout with only very minor local variations in mineralogy.									
		Displays nice typical gabbroic texture throughout. Minor blocky sections and									
		sections of rehealed fractures. Lower contact is sharp at 47 dca with a 3mm wide									
		chill margin.									
14.6	63 15.8	7 ser									
		sericite									
		Minor bleaching associated with a small quartz carb veinlet (<1mm). Strongest at									
		the contacts with the vein and disapates out.									
19.3	30 19.6	1 ser									
		sericite									
		Weak bleaching associated with hairline fractures rehealed by quartz-carb.									
		Strongest at the core and disapates outwards.									
22.0)4 22.4	4 ser									
		sericite									
		Weak bleaching associated with a small number of tractures rehealed by									
		quartz-carb.									
29.7	2 29.7	4 ser									
		Very weak bleaching associated with hairline fractures. These are rehealed by									
		quartz carb. Strongest as a core around the fractures and disapates outwards.									
30.4	8 30.9										
		sericite									
		very weak bleaching associated with a very small number of hairline fractures.									
		I nese are renealed by quartz-carb.									
31.0	31.3	o ser									

	Description							Assay	- Sample	
		From	То	Sample	Length	Au (ppb)	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)
37.07 38.35	sericite Very weak bleaching associated with a very small number of hairline fractures. These are rehealed by quartz-carb. bc									
	broken core Heavily fractured and broken up core. Likely mechanical as there is no increase in fractures.									
40.32 41.00	ser sericite Weak bleaching associated with a very small number of hairline fractures.									
41.65 41.90	ser sericite Weak to moderate bleaching associated with a small number of mm scale veinlets. These are quartz-carb (weak reaction to acid). Ankerite? The veinlets have a light beige colouring.									
41.75 41.85	py+po03 pyrite + pyrrhotite 3% Three aggregates comprised of f-mg pyrite and pyrrhotite. The sulphides are both anhedral with pyrite dominating (2% pyrite, 1% pyrrhotite. Pyrite and pyrrhotite are mixed with both pyrite surrounding pyrrhotite and vice versa. Associated with small veining.									
51.95 56.71	ser sericite Weak packy bleaching. Associated with a slight increase in hairline fracture. These are often rehealed with quartz-carb. The alteration is strongest proximal to the contacts with the veining and also strongest in areas with higher fracture density (causes the patchy appearance).									
65.53 68.30	ser sericite Weak patchy bleaching. Associated with hairline fractures that are rehealed with quartz-carb. Strongest proximal to fractures and in areas with increased fracture density.									

		Description Assay - Sam						- Sample			
			From	То	Sample	Length	Au (ppb)	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)
68.59	68.60	ep; ep									
		epidote; epidote									
		Stong local epidote hosted in a small veinlet.									
69.08	69.41	bc									
		broken core									
		Heavily broken core. Pieces are typically 1-2cm in size.									
71.12	71.63	frc									
		fractured									
		A small interval with hairline rehealed fractures. Dominant orientation is 25 dca.									
		Fractures only make up 2-3% of the interval. These are rehealed by white									
		quartz-carb.									
98.58 1 ⁻	10.15	GWG_silt; vfg; bed									
		Siltstone 47°; very fine grained; bedded									
		A dark grey to black, vfg, moderately to strongly foliated/bedded siltstone. Bedding is									
		mm scale. Overall fairly homogeneous but local variations can be seen on a mm									
		scale between individual beds. Has one large section of breccia between									
		101.87-104.40m. Rare euhedral pyrite can be found sporadically throughout. Very									
		siliceous and hard. Has rare tonalitic pebbles sporadically throughout up to 2cm in									
		size. Has a small shear zone at 108.95 to 109.23m that is strongly sericite altered									
		and has increased pyrite concentration. A smaller shear zone is at 112.22-112.41m.									
		The lower contact is gradational over 5-10cm and is indicated by an increase in									
		grain size as well as increased frequency of pebbles/cobbles.									
98.58	99.62	frc									
		fractured									
		Moderately fractured and blocky core. Caused by conjugate chlorite slips at 24									
		and 37 dca. Pieces are on a cm scale.									
100.63	100.6	4 bx									
		brecciated 47°									
		A thin brecciated band. Angular clasts on a mm scale. Mainly matrix supported									
		and rehealed by very light beigh quartz-carb (suspect ankerite, very weak									
		reaction with acid). Contacts of the breccia are sharp at 47 dca.									
101.48	101.8	7 frc									

Description							Assay ·	- Sample	
	From	То	Sample	Length	Au (ppb)	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)
fractured 47° A weak fracture zone associated with the breccia zone below. orientation of the fractures are 47 dca. The fracture density inc towards the bottom of the interval. Fractures are hairline and re quartz-carb. 101.87 104.40 bx	The dominant reases slight ehealed by white								
brecciated 53° A section of strong brecciation. The clasts are angular and ran mm scale up to 5-7cm. Has 1-2% felsic clasts intermixed spora matrix supported but clast contact is present. Matrix comprises unit and decreases towards the margins of the interval. The ma beige to off white quartz? Does not react with acid.	ge in size from adically. Mainly s up to 20% of the atrix is a very light								
108.95 109.23 ser; Bleach sericite; Bleaching Strong sericite and bleaching seen within a shear zone. Sericit the contacts of the shear zone. The core lacks the sericite but to strongly bleached.	e is strongest near is still moderately								
108.95 109.23 shr sheared 54° A small shear zone. Sericite alteration/bleching is present throus strongest near the margins. Follows bedding direction. Increas associated with the shear.	ughout and sed pyrite is								
108.95 109.23 py03 pyrite 3% A local increase in pyrite concentration associated with an alte anhedral disseminated pyrite with irregular distribution through	red shear. Fg out.								
110.15123.79GWG_silt; bedSiltstone; beddedA dark grey, fg to f-mg pebble and cobble bearing siltstone. The msimilar to the previous unit but contains slightly coarser grains thro5-10% pebbles and cobbles ranging from 5mm up to 8cm. The maclasts are mafic with similar composition to the background matrix	natrix is very bughout. Contains ajority (85%) of the The remaining								

Description							Assay ·	- Sample	
	From	То	Sample	Length	Au (ppb)	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)
15% are felsic (tonalitic) and tend to be larger. The unit is weakly heterogeneous with variations in texture/mineralogy on a mm to cm scale. Bedding is less apparent then in the previous unit but can be clearly seen between beds with grain size variations. Rare euhedral pyrite sporadically throughout with rare fracture fill aggregates. Locally can reach 5%, notibly at 112.88m to 112.95m. A local increase in pebbles/cobbles is seen at 114.1 to 114.97m. Lower contact is gradational over 15cm and is marked by an increase in pebbles and a lightening in the colour of the matrix.									
112.22 112.41 ser sericite Moderate sercite alteration hosted along shear planes. Strongest in the core of the shear and is weaker within clasts contained within the shear.									
112.22 112.41 shr sheared 56° A small moderate shear zone. Moderate stretching can be seen in the larger clasts with only minor ovaling. Moderate to strong sericite alteration is associated with the shear zone and concentrated within the shear.									
112.79 112.98 py01 pyrite 1% Minor fracture fill pyrite. Locally can reach 10% within the fracture. Anhedral.									
117.58 138.39 Bleach Bleaching Very weak sericite (?) bleaching as 1-2mm wide reaction rims around mafic clasts. Occurs throughout the interval but at a small frequency.									
117.58 117.67 frc fractured A small blocky/fractured interval. Minor chlorite on the slips. Low number of fractures. Pieces are in the cm but less than dm scale.									
123.79 138.33 GWG_cgl Conglomerate Gowganda formation. A med to light grey, siltstone/conglomerate. The unit is matrix supported. The matrix is vfg-fg and very similar to the previous siltstone units and									

Description							Assay	- Sample	
	From	То	Sample	Length	Au (ppb)	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)
exhibits some weak bedding. The matrix comprises approximately 50% of the unit. The clasts range in size from mm up to 15cm in size. The larger clasts tend to be tonalitic and very rounded. The finer grained clasts are more mafic and angular. The mafic clasts often have a thin (1-2mm), very light grey to grey-beige reaction rim. Rare layered metasediment clasts occur sporadically and tend to be quite large (8-10cm). Trace fg anhedral pyrrhotite and pyrite can be found sporadically throughout, often associated with clasts or found within clasts. The lower contact is									
bordered by a large alteration zone after 141.55m. The lower contact is sharp.									
pyrite + pyrrhotite 5% Locally high concentration of pyrrhotite and pyrite hosted within a strongly banded metased clast. Dominantly pyrrhotite (4% po and 1% py) and surrounds small pyrite crystals. Very anhedral and irregular. Hosted along fractures within the clast.									
128.77 128.89 py+po00.5 pyrite + pyrrhotite 0.5% Very minor pyrrhotite and pyrite hosted along the margin of a mafic gabbroic clast. Vfg and anhedral. Dominated by pyrrhotite (0.4% po 0.1% py). Occurs in clusters with irregular distribution through the clast.									
130.69 130.79 shr sheared 37° A thin shear. Minor quartz-carb veining are following the shear. Associated with a minor local increase in alteration.									
131.53 131.68 py+po03 pyrite + pyrrhotite 3% Locally can reach up to 10%, Vfg to fg anhedral to wispy pyrrhotite and pyrite. Hosted within a mafic clast (wispy) and fracture fill within a tonalitic clast. Pyrrhotite dominated with 2% po and 1% py.									
138.33 143.41 GWG_silt Siltstone 63° Similar to the unit at 98.58 to 110.15m. A dark grey, vfg, weaky to moderately foliated siltstone. This unit contains high alteration throughout but increases down									

	Description	Assay - Sample								
		From	То	Sample	Length	Au (ppb)	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)
	hole towards the lower contact. The strongest alteration is associated with									
	pegmatitic veining. Highly fractured throughout with one larger rehealed fault at									
	140.21 to 140.41m. A local increase in pyrite is associated with the fault. Very hard									
	and siliceous. Becomes brecciated towards the lower contact associated with the									
	increase in alteration. The lower contact is masked slightly due to the alteration and									
	fracturing. Indicated by the sudden appearance of leucoxene and a slight texture									
	change.									
138.39 138.6	65 ser									
	sericite									
	Strong pervasive sericite alteration. Sharp contacts.									
138.95 139.3	31 bx									
	brecciated									
	Weak brecciation. The breccia is angular and jig saw fit. Very thin matrix (very									
	dark black, vfg). Both clast and matrix supported. The clasts are on a cm to dm									
	scale.									
139.31 139.3	.33 ft22									
	fault22									
	A very thin and irregular fault. Rehealed milled rock. The contacts undulate but									
400.00 440	overall orientation is 22 dca.									
139.33 140.4	21 DX									
	Drecciated									
	A larger zone of precciation associated with the small faults. The precciation is									
	block matrix. Both are bairling. Matrix is angular and its saw fit. Some avidence									
	of effect of the pieces is present									
	64 ser									
140.21 140.0	sericite									
	Weak patchy sericite alteration. The alteration is focused around fractures and									
	disapates outward									
140.21 140.0	64 ft									
	fault 22°									
	A small fault zone. Rehealed brecciation and milled rock. Both mm scale									

Description	Assay - Sample								
	From	То	Sample	Length	Au (ppb)	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)
irregular clasts and larger pieces of country rock are included. A higher degree of sericite alteration is associated with this area. Minor late stage quartz veining are hosted within the zone. A local increase of pyrrhotite is associated with this fault zone as well.									
140.21 140.41 py+po02 pyrite + pyrrhotite 2% Minor f-mg anhedral pyrrhotite with spordic distribution. Rare vfg pyrite can be seen encompased by the pyrrhotite. Assocaited with a small fault zone with strong alteration.									
140.64 142.32 frc; bx fractured 36°; brecciated Brecciated and farctured throughout this interval. Brecciation is weak and has a very thin matrix where present. Mainly clast supported. Intesnity increases down interval with the increase in alteration. Dominant fracture set is 36 dca.									
141.60 143.10 ser; hem sericite; hematite Moderate to strong wispy sericite alteration associated with fracturing. Minor hematite (?). This is a pink red and strongest around the core of the patches.									
142.32 142.53 shr; frc sheared 46°; fractured A strong shear zone at 46 dca. Nice shear frabric and deformed pegmatitic vein. Kink fold is observed in the pegmatitc vein. The shear zone is offset by later stage fracturing at 53 dca. There is offset seen in these fractures but no indicators of degree of offset. These are conjugage to the shear.									
142.53 143.41 bx brecciated Moderately to strongly brecciated interval. Intensity decreases down interval. Associated with strong alteration. Strong alteration masks some of the textures.									
143.41 151.49 GAB Gabbro Gabbro A medium grey to beige grey, mg, gabbro. The unit is massive and fairly homogenous throughout. Exhibits a nice gabbroic fabric thoughout. The plagioclase									

Description							Assay ·	- Sample	
	From	То	Sample	Length	Au (ppb)	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)
has a darker, beige colouring (weak sericite alteration?). Minor leucoxene can be seen throughout with irregular patchy distribution. Very minor thin shear zones present and rare quartz veining. Higher plagioclase content and alteration then the NDIA at the top of the hole. Lower contact is hosted within an altered zone and difficult to distinguish.									
143.78 144.29 bx									
brecciated 37°									
Weak brecciation. Rehealed by a thin, vfg black matrix. Jig saw fit with only 5%									
matrix.									
144.29 146.05 frc									
fractured									
Minor small chlorite bearing fractures occur sporadically thorughout this interval.									
Dominant orienation is 56 dca with another set at 36 dca. The 56 dca fractures									
146 05 146 37 ft									
fault 37°									
A small, weak rehealed fault. Minor milled rock in thin bands. Slight increase in alteration associated with this fault.									
146.37 150.00 frc									
fractured 56°									
Thin hairline fractures occur throughout this interval. Dominant orienation is at 56									
dca. These contain minor chlorite infill. A late stage vein offsets the main fracture									
set by 15mm at 149.2m.									
150.69 150.79 ser									
sericite									
Weak sericite hosted along the shear planes and as very thin haloes.									
151.49 158.95 FV									
A medium to light grey to beige, vtg to tg, telsic interval. Has a patchy, mottled									
appearance due to tracture controlled sericite alteration, locally can be moderate.									
vveakiy tractured/precciated throughout with local increase in fracture frequency									
associated with alteration zones. Alteration increases down noie. Very hard and				1					

Description	Assay - Sample								
	From	То	Sample	Length	Au (ppb)	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)
siliceous unit. Fairly homogenous and consistant unit outside alteration and fractures. Minor chlorite is hosted along fractures. No notible sulphides in this interval. The lower contact is gradational over 10cm.									
sericite Weak to moderate sericite alteration concentrated along fracture planes associated with a lithological contact.									
151.49 155.20 bx; frc brecciated; fractured Weakly brecciated and fractured throughout. The fractures contain minor chlorite +/- carbonate veining. These are all rehealed.									
151.49 151.50 qtz;47°;;;;; quartz 47° A thin glassy white quartz vein. Sharp parallel contacts. Rare inclusions of the host rock.									
155.20 155.85 ser; hem; chl sericite; hematite; chloritization Moderate patchy sericite alteration and minor patchy hematite (?) alteration. Both occur as overlapping haloes around fractures and leads to a patchy distribution of the alteration. Minor chlorite is hosted along fractures.	155.20 155.85	155.85 157.40	860357 860358	0.65 1.55	3 5	0.1 0.3	7 19	1	21 14
155.20 173.95 bx; frc brecciated; fractured Similar brecciation and fracturing as 151.49-155.20m but the intensity increases to moderate and fracture density increases slightly. The fractures still contain minor pyirte +/- carbonate veining. These are all rehealed.									
156.25 157.40 ser; hem; chl sericite; hematite; chloritization Moderate patchy sericite alteration and minor patchy hematite (?) alteration. Both occur as overlapping haloes around fractures and leads to a patchy distribution of the alteration. Minor chlorite is hosted along fractures.									
156.52 156.53 qtz;42°;;;;; quartz 42°									

Description							Assay ·	- Sample	
	From	То	Sample	Length	Au (ppb)	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)
A light grey to white glassy quartz vein. Sharp parallel contacts. 157.10 157.40 po00.5 pyrrhotite 0.5% Minor fg anhedral pyrrhotite can be found along chlorite bearing fractures.									
157.40 163.94 ser; chl sericite; chloritization Weak to moderate patchy sericite alteration. Focused as haloes around fractures. Some overlapping haloes lead to a patchy appearance. Minor chlorite is hosted along fractures.									
158.95 167.25 FV Felsic Volcanic A light grey to beige, f-mg, fractured/brecciated and altered interval of felsic volcanics. Very similar to 151.49-158.95m but contains patches with coarser grained quartz (potentially thin metased beds or tuffaceous beds?). Fractured and weakly brecciated throughout. Patchy sericite alteration as haloes around fractures and along fractures gives the unit a patchy/mottled appearance. The fractures also host minor chlorite with rare thin quartz veins. Patchy pyrrhotite with minor pyrite and rare chalcopyrite can be found throughout, generally associated with the highly altered and fractured zones. Patchy magnetism, locally strong and associated with pyrrhotite content. A thin intrusive band occurs at 160.24-160.32m. The lower contact is sharp.	159.80	160.70	860359	0.90	3	0.1	112	1	30
 160.10 160.60 po03; py00.1 pyrrhotite 3%; pyrite 0.1% A local abundance of pyrrhotite. Hosted along chlorite bearing fractures. Locally can reach 25% along the fractures. Rare pyrite can be found encompassed by the pyrrhotite (<0.1%). The pyrrhotite is vfg and anhedral. 									
160.21 160.32 DIA Diabase A thin intrusive (DIA?). Dark grey to black, vfg, aphenatic. Sharp but irregular boundaries. Weakly magnetic. Fairly homogeneous.									
160.60 168.80 po02; py00.1; cp00.1 pyrrhotite 2%; pyrite 0.1%; chalcopyrite 0.1%	160.70 162.00	162.00 163.50	860361 860362	1.30 1.50	3 3	0.1 0.4	169 60	4 2	25 17

Description							Assay	- Sample	
	From	То	Sample	Length	Au (ppb)	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)
Minor pyrrhotite can be found througout. Generally hosted along fractures or with thin (<1cm) haloes around chlorite bearing fractures. Fg and anhedral. Local concetrations can reach up to 15% along the fractures. Rare pyrite can be found within most of the clusters with pyrrhotite surrounding the pyrite. One crystal of cpy is found at 166.25m.									
162.85 163.20 qz+cb_vn;65°;;;;; quartz + carbonate 65° 5% quartz +/-carb veins. Very weak patchy reaction with acid. A medium grey and glassy. Potential extension fabric in the larger one.	163.50	164.85	860363	1.35	5	0.4	412	3	18
163.94 164.73 ser; hem; chl sericite; hematite; chloritization Moderate patchy sericite alteration and mionr patchy hematite (?) alteration. Both occur as overlapping haloes around fractures and leads to a patchy distribution of the alteration. Minor chlorite is hosted along fractures.									
164.73 167.25 ser; chl sericite; chloritization Weak to moderate patchy sericite alteration. Focused as haloes around fractures. Some overlapping haloes lead to a patchy appearance. Minor chlorite is hosted along fractures.	165.95	167.25	860364	1.30	3	0.1	240	1	27
167.25 173.55 FV	168.60	169.65	860365	1.05	3	0.1	191	3	129
Felsic VolcanicSimilar to 151.49-158.95m. A medium grey, vfg to fg, felsic interval. Still retains the patchy/mottled appearance due to sericite/chlorite alteration centered around the fractures/weak brecciation. Has minor irregular quartz veining between 168.8-169.8m. Has patchy amygdaloidals between 168.38-168.71m and 171.21-171.60m. Very minor pyrhotite can be found along larger fractures associated with a local increase in chlorite alteration. Contains two minor bands at 171.9-172.1m and 173.2-173.33m. These bands are similar to the unit at 173.95-175.0m. The lower contact is diffuse over 10cm.									
Very weak patchy sericite and chlorite alteration. Associated with fractures. The									

	Description	Assay - Sample						- Sample		
		From	То	Sample	Length	Au (ppb)	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)
168.80 169.60	chlorite is mainly hosted along fractures where the sercite mainly forms haloes around the fractures. chl chloritization Moderate chlorite alteration can be found in fragments proximal to the quartz									
	veining in this interval. The chlorite is consistant within the fragments. Minor chlorite can also be found along fractures.									
168.80 169.55	po03; py00.1 pyrrhotite 3%; pyrite 0.1% Slightly higher pyrrhotite concentration in this interval. Very irregular distribution and occurs in larger aggregates associated with chlorite alteration around the margins of veining. Rare vfg-fg pyrite can be found within the pyrrhotite aggregates.									
168.80 169.55	qtz;;;;;; quartz Two very irregular clusters of quartz veins. White with inclusions of chlorite rich host rock. Local increase in pyrrhotite along the margins associated with the chlorite rich clots. Very irregular and deformed contacts. Overall make up 15% of the interval.									
169.60 171.60	ser; chl sericite; chloritization Very weak patchy sericite and chlorite. Associated with the fracturing and brecciation. Sericite forms broad haloes around fractures and causes the patchy mottled appearance of the interval.									
171.05 171.30	po02; py00.1 pyrrhotite 2%; pyrite 0.1% A slight increase in pyrrhotite in this interval. Associated with a locally strong chloritic area along fractures. Rare vfg pyrite can be found within the pyrrhotite aggregates. The pyrrhotite occurs as fg irregular clots.									
171.60 173.95	ser; chl sericite; chloritization Similar to the previous intervals but becomes weak to moderate in strength.									

Description							Assay	- Sample	
	From	То	Sample	Length	Au (ppb)	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)
Patchy sericite and chlorite. Associated with the fracturing and brecciation. Sericite forms broad haloes around fractures and causes the patchy mottled appearance of the interval. 172.90 173.10 FPD Feldspar Porphyry A thin band of dark grey, f-mg, fairly massive FPD. Has coarser grained feldspars set in a finer grained matrix. Minor amounts of leucoxene can be seen throughout. Fairly homogenous.									
173.20 173.33 FPD Feldspar Porphyry A thin band of dark grey, f-mg, fairly massive QFP. Has coarser grained feldspars set in a finer grained matrix. Minor amounts of leucoxene can be seen throughout. Fairly homogenous.									
173.55 173.95 MSED_sand Metasediment - Sandstone A light grey to grey-beige, f-mg, metasediment? Has 5% mg rounded quartz throughout. Gives the unit a metased appearance (potentially tuffaceous?). Heterogeneous with variations in fabric and mineralogy. Still retains a mottled appearance. Minor coarser grained mafic clasts as well. The larger quartz and mafics have a subangular to subrounded shape. Sericite altered and fractured/brecciated. Rare pyrrhotite associated with fractures. The lower contact is irregular.									
173.95 175.00 FPD; mg Feldspar Porphyry; medium grained A dark grey, f-mg, QFP. Has coarser grained feldspars set in a finer grained matrix. Fairly homogeneous throughout. 1-2% fg leucoxene can be found throughout the unit. No significant alteration (background chlorite?). Trace fg anhedral pyrrhotite can be found sproadically throughout. The lower contact is sharp but irregular.									
175.00 184.05 FV Felsic Volcanic Returns to the unit at 162.25-173.55m. A med to light grey to beige-grey, fg felsic package. Fractured and weakly brecciated throughout. The unit has a patchy	175.00	175.95	860366	0.95	3	0.1	14	1	67

Description							Assay	- Sample	
	From	То	Sample	Length	Au (ppb)	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)
mottled texture due to weak to moderate sericite alteration associated with fracturing. Some chlorite alteration is hosted along the same fractures. Has occasional felsic fragments (notibly at 183.15). These are subrounded. Minor patchy pyrrhotite with some local concentrations up to 5%. Rare pyrite is associated with the increased pyrrhotite. The lower contact is diffuse over a few cm.									
175.00 178.19 ser; chl sericite; chloritization Weak to moderate patchy sericite alteration. Minor chlorite alteration is found along fractures. Sericite forms broad haloes around fractures. Causes the patchy apperance in the interval.									
175.00 175.48 frc; bx fractured; brecciated Weakly fractured and brecciated.									
175.48 175.60 ft fault A small but strong fault. Indicated by milled rock. Rehealed and hosts some quartz and quartz-carbonate veining									
175.48 175.60 qz+cb_vn;;;;; quartz + carbonate Hosted within the small fault zone. Has a white to light grey-white quartz core with white quartz-carbonate along the margins. Heavily deformed with irregular contacts.									
175.95 176.25 FPD Feldspar Porphyry A thin band similar to the unit at 173.95-175.0m but is finer grained. A dark grey, fg, fairly massive FPD. Has coarser grained feldspar and minor coarser grained mafic porphyroclasts set in a finer grained matrix. Has very minor leucoxene throughout. The contacts are very irregular. Lacks any obvious alteration									
176.26 184.05 po00.5; py00.1 pyrrhotite 0.5%; pyrite 0.1% Minor fg anhedral pyrrhotite occurs with very patchy irregular distribution. Locally can reach 1-2%. Higher concentrations are associated with a local increase in	178.00	179.50	860367	1.50	3	0.1	54	3	42

Description							Assay ·	- Sample	
	From	То	Sample	Length	Au (ppb)	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)
chlorite. Rare f-mg pyrite can be found in areas of high pyrrhotite concentration. A notible large bleb of pyrrhotite occurs at 183.37-183.40m where the local concentration reaches 15%. 178.19 181.42 ser; chl sericite; chloritization Moderate to strong sericite. Sericite becomes almost pervasive with minor intensity changes proximal to fractures. Minor chlorite alteration is concentrated	179.50 181.00	181.00 181.50	860368 860369	1.50 0.50	3 3	0.1 0.1	29 7	3 1	20 67
along fractures. 178.19 184.05 frc; bx fractured; brecciated Fractured and weakly brecciated throughout. Rehealed. Patchy irregular distribution of the fractures/breccia.									
181.42 184.05 ser; chl sericite; chloritization Weak patchy sericite and chlorite alteration. Associated with fracturing. Chlorite is hosted within the fractures where sericite forms broader haloes. Slight increase in chlorite alteration between 183.2-184.0m.	183.00	184.05	860371	1.05	3	0.1	108	1	273
 184.05 193.10 MSED_sand; mg Metasediment - Sandstone; medium grained A light beige-grey, f-mg, fractured and weakly brecciated metasediment? Similar to the previous interval but contains both mg felsic and mafic inclusions and lacks the fractures/brecciation. Potentially a coarser grained tuffaceous unit? Differs from the FPD above as it lacks the consistancy in the mineralogy and the nice coarser grained feldspars. Has 2-3% larger quartz inclusions sporadically throughout. Has weak almost pervasive sericite alteration. The lower contact is irregular and masked by alteration. 184.05 188.19 ser 									
sericite Weak almost pervasive sericite alteration. There are a very small number of fractures that the sericite forms slightly stronger haloes around. Overall intensity increases slightly down interval. 188.19 193.46 ser	189.00	190.00	860372	1.00	7	0.3	296	4	1980

Description	Assay - Sample								
	From	То	Sample	Length	Au (ppb)	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)
sericite									
Minor weak patchy sericite alteration. The core of the patches are centered									
around areas of fracturing. The fractures contain minor chlorite.									
188.19 210.59 frc; bx									
fractured; brecciated									
Weakly fractured with very weak patchy breccia (locally moderate over									
10-15cm).									
188.19 210.95 po01; py00.1									
pyrrhotite 1%; pyrite 0.1%									
Minor fg anhedral pyrrhotite occurs with very patchy irregular distribution. Locally									
can reach 5%. Higher concentrations are associated with a local increase in									
chlorite. Rare f-mg pyrite can be found in areas of high pyrrhotite concentration.									
Notible high concentrations occur 189.3-189.5m, 198.57-198.69, 199.4-200.10m	,								
and 202.9-203.2m.									
189.38 189.46 qtz;0°;;;;;	190.00	191.25	860373	1.25	3	0.1	38	6	428
quartz 0°									
A light grey, glassy, very irregular and deformed quartz vein. A slight increase in									
pyrrhotite is found along the margins.									
193.10 210.59 FV									
Felsic Volcanic									
Returns to the unit at 175.00-184.05m. A med to light grey to beige-grey, fg felsic									
package. Fractured and weakly brecciated throughout. The unit has a patchy									
mottled texture due to weak to moderate sericite alteration associated with									
fracturing. Some chlorite alteration is hosted along the same fractures. Has dm scal	9								
patches that contain f-mg clasts similar to the unit above. Minor patchy pyrrhotite									
with some local concentrations up to 5%. Rare pyrite is associated with the									
increased pyrrhotite. Higher concentrations of sulphides are associated with chlorite									
altered fractures. Minor patchy magnetism. Locally can be quite strong. This is									
associated with pyrrhotite mineralization. The lower contact sharp.									
193.46 198.57 ser; chl	195.00	196.00	860374	1.00	3	0.1	10	2	32
sericite; chloritization									
Similar to the previous interval but becomes moderate with wider patches. Minor									

		Description							Assay	- Sample	
			From	То	Sample	Length	Au (ppb)	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)
		chlorite can be found along fractures. Locally higher concentrations of chlorite can be associated with veining in the fractures.									
195.35	195.40	qtz;;;;;;	198.00	199.15	860375	1.15	3	0.1	12	3	27
		quartz									
		A grey, glass, irregular and deformed quartz vein.									
198.57	198.69	chl									
		chloritization									
		Strong chlorite alteration associated with a zone of fractures and veining. Patchy.									
198.69	210.59	ser; chl									
		sericite; chloritization									
		Sericite occurs as weak patches centered around fractures. Minor chlorite can be									
		found along fractures.									
201.91	201.93	qtz;56°;;;;;	204.80	206.00	860376	1.20	3	0.1	31	4	30
		quartz 56°									
		A grey, fg, glassy quartz vein. Appears to have minor extensional fabric.									
205.86	205.92	qtz;57°;;;;;	209.35	210.00	860377	0.65	3	0.1	10	1	28
		quartz 57°									
		A white quartz vein. Slightly glassy. Has some cg feldspars along the margins									
		and along fracture margins. Contacts undulate slightly.									
209.65	209.67	qtz;67°;;;;;									
		quartz 67°									
		A thin, medium grey, glassy quartz vein. Sharp contacts.									
210.59 22	28.08 DI	A									
	Di	abase 57°									
	А	dark grey to black, vfg, weakly foliated intrusive. Fairly homogeneous throughout.									
	U	oper contact is nice and sharp with a 1mm wide chill margin. Minor late stage									
	fra	actures hosting minor pyrrhotite. Rare pyrite can be found sporadically throughout.									
	Ra	are larger rounded mafic inclusions. Weakly magnetic in patches. Stronger									
	m	agnetism is associated with the fracture hosted pyrrhotite. After 227.8m rare									
	ro	unded inclusions of the host rock are present up to 2cm in diameter. The lower									
	cc	ntact is sharp but undulates, has a 2mm wide chill margin.									
212.57	229.05	ser; chl									

	Description	Assay - Sample								
		From	То	Sample	Length	Au (ppb)	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)
	sericite; chloritization The sericite has almost pervasvie coverage but variations in intensity give it a patchy apperance. Varies from weak to moderate. The strongest alteration is associated with a local increase in fracturing or breccia. Very minor chlorite alteration is hosted within the brecciated zones. Locally can be moderate but									
213.20 214.05	overall very minor. frc fractured An interval of fractured and blocky core. Related with a low angle guartz vein.									
214.05 223.20	frc; bx fractured; brecciated Weak fracturing and patchy weak breccia. Hosts minor chlorite alteration.	215.15	215.75	860378	0.60	3	0.1	46	3	27
215.40 215.60	po02; py00.1 pyrrhotite 2%; pyrite 0.1% Fg anhedral clusters of pyrrhotite with rare pyrite occur within a chlorite altered fracture set associated with a weak breccia.	220.35	221.55	860379	1.20	3	0.1	29	3	27
220.70 221.50	qtz;47°;;;;; quartz 47° An interval containing a ~10 quartz veins <5mm wide hosted within the fractures. These are grey and glassy and host higher concentrations of pyrrhotite. The average orientation is 47 dca but there is a 5-10 degree variation.									
220.75 221.75	po00.25 pyrrhotite 0.25% Minor fg anhedral pyrrhotite occurs within thin grey glassy quartz veins hosted along fractures. Locally within the veins concetrations can reach 2-3%.	222.30	223.15	860381	0.85	3	0.1	62	2	21
222.55 222.65	po03 pyrrhotite 3% Fg anhedral pyrrhotite is hosted within and along the margins of a grey glassy quartz vein hosted within a chlorite altered fracture.									
222.57 222.60	qtz;12°;;;;; quartz 12° A low angle light grey, slightly glassy quartz vein. Has elevated pyrrhotite									

Description							Assay ·	Sample	
	From	То	Sample	Length	Au (ppb)	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)
concentrations. Contacts have chlorite alteration adn bleaching (reaction rim or increased sericite?). The rims are only a few mm wide. 223.20 224.30 bc broken core Heavily broken core. Pieces are all >2cm in size. Very angular (likely more of a mechanical break then fault zone).									
224.80 225.00 bc broken core Heavily broken core, year small angular pieces with fresh breaks (mechanical?)									
225.00 230.80 frc; bx fractured; brecciated Weakly fractured and brecciated core. All rehealed. Patchy irregular distribution with local areas of stronger fracturing/brecciation. A nice set of tension gashes									
225.20 233.10 po00.5; py00.1 pyrrhotite 0.5%; pyrite 0.1% Fg anhedral pyrrhotite can be along the majority of chlorite altered fractures in this interval. Higher concentrations are often associated with fractures that host quartz veins. Rare pyrite can be found in a small number of the pyrrhotite clots, often encompassed by pyrrhotite.	225.95	227.50	860382	1.55	3	0.1	75	1	27
225.20 225.21 qtz;15°;;;;; quartz 15° A thin quartz vein that cuts foliation/bedding. Low angle. Light grey with minor feldspars along margins. No visible sulphides.									
228.08 233.90 FV									
Felsic VolcanicA light pale beige to pale green/beige, vfg-fg, weakly to moderately foliated felsicpackage. Has several intervals of fracturing and weak brecciation. Has an overallpatchy/mottled appearance due to patchy sericite alteration. Minor chlorite alterationcan be found hosted along fractures. Rare fuchsite is present confined to alteredinclusions. Locally the fuchsite can be strong. Overall alteration increases inintensity down hole. Has several 20-30cm intervals that contain fg rounded felsic									

	Description							Assay ·	- Sample	
		From	То	Sample	Length	Au (ppb)	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)
ar Tr int cc La pie	and mafic clasts (potentially interbedded metaseds? Porphyroclastic intervals?). Face fg anhedral pyrrhotite can be found distributed sporadically throughout the terval. Local increases can be seen along chlorite altered fractures with concentrations reaching 5%. Rare pyrite can be found in these pyrrhotite rich zones. Farge rubble zone between 223.2-224.3m with most of the core broken up into 1cm eces. After 233.69m several dark grey pyrrhotite rich glassy quartz veins appear.									
229.05 245.50	ser	229.85	230.70	860383	0.85	3	0.3	282	3	19
	sericite Similar alteration to the previous inteval but becomes much stronger. Moderate to strong. Still has a slight patchy apperance due to variations in intensity. Becomes stronger in the core of the interval and weaker along the margins. Minor chlorite can be found along fractures.									
230.35 230.40	qtz;;;;;; quartz A white, vfg, very irregular quartz vein. More of a bull white quartz vein then the surrounding veins. Still hosts chlorite and increased pyrrhotite along the margins and internal fractures.	230.70	232.10	860384	1.40	3	0.1	25	1	8
230.80 231.00	bc broken core Heavily fractured and broken core. All pieces are <2cm in size with fresh breaks. Likely mechanical.									
231.00 233.69	frc; bx fractured; brecciated WEakly fractured and brecciated core. Rehealed.									
231.85 233.69	qtz;;;;;; quartz 1-2% very thin (<2mm wide) quartz veins occur in this interval. Range in angle from 47 dca to 63 dca and cut foliation. Host increased pyrrhotite and chlorite alteration. A darker grey and slightly glassy.	232.10	233.40	860385	1.30	3	0.1	75	2	38
233.10 234.45	po04 pyrrhotite 4%	233.40	234.45	860386	1.05	3	0.2	147	4	390

Description							Assay	- Sample	
	From	То	Sample	Length	Au (ppb)	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)
A higher concentration of pyrrhotite is associated with an increase in veining. Fg anhedral clots that form weak webs through the fractures. Higher concentrations around the margins and internal fractures within the veins. 233.69 234.45 bx brecciated Brecciation and fracturing increases in this interval associated with an increase of veining. 233.69 234.45 qtz;;;;;; quartz A high concentration of dark grey and glassy quartz veins. Make up 70% of the interval .Have elevated pyrrhotite and chlorite alteration along the contacts and									
within internal fractures. 233.90 240.45 FV_Tuff Felsic Volcanic Tuff A light beige to light green-beige, vfg, moderately foliated and weakly banded, heavily sericite altered interval. Similar to the unit at 228.08-223.90m but becomes distinctly banded and foliated. Within local bands fairly homogeneous but overall has variations in texture leading to the banded apperance. Banding is on a mm to 1-2cm scale. Has thin bands that have slightly coarser grained deformed inclusions leading to the tuffaceous appearance. Foliation is predominatly 47-49 dca. Very minor dark grey glassy quartz veins are intermixed and often associated with a local increase in pyrrhotite. Rare euhedral pyrite occurs sporadically. Minor fuchsite can be found sporadically throughout confined to altered inclusions. Locally the fuchsite can be quite strong within the inclusions. Locally magnetic assocaited with the pyrrhotite. The lower contact is masked by alteration. 234.45 236.00 frc; fol	234.45	235.50	860387	1.05	3	0.1	35	5	54
fractured; foliated 47° Two sets of fractures occurs in this interval. One at 56 dca (discordant with bedding) and one at 47 dca (concordant with bedding). The 47 dca set of fractures offset the 56 dca set. The 56 dca set often hosts quartz veins that are offset and deformed. Foliation is at 47 dca. 234.45 235.80 po00.25									

Description							Assay	- Sample	
	From	То	Sample	Length	Au (ppb)	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)
pyrrhotite 0.25% Minor fg anhedral pyrrhotite occurs along the margins of the thin quartz veins hosted within fractures. Rare pyrite can be found sporadically within the areas with increased pyrrhotite concentrations, often encompassed by the pyrrhotite. Rare euhedral pyrite can be found within the tuffaceous unit. 235.02 235.11 qtz;;;;;; quartz A this light group closes supertz upin. Here inclusions of surrounding unit (group)	235.50	236.70	860388	1.20	3	0.1	69	6	44
 A thin light grey, glassy quartz vein. Has inclusions of surrounding unit (crack seal?). Elevated pyrrhotite and chlorite along the margins and within internal fractures. 235.80 243.15 po00.25 pyrrhotite 0.25% Minor pyrrhotite occurs throughout with a very irregular patchy distribution. Fg 									
and anhedral. Local concentrations range from nil up to 2%. Clots of pyrrhotite tend to be spacially associated with more mafic clots. 236.40 236.60 qtz;47°;;;;; quartz 47° Several thin (<2cm) wide quartz veins in this interval. Parallel and concordant to foliation. Crev and moderately glassy. Have increased sulphides clong marging.									
One clot of carbonate near the lower contact.									
 240.45 242.41 FV Felsic Volcanic Potentially a continuation of the previous unit. Similar in mineralogy but lacks the nice banded/foliation seen in the unit at 233.90-240.45m. A light beige, fg, weakly foliated felsic interval. Has a patchy mottled appearance due to the alteration. Moderate to strong sericite alteration with pervasive coverage but slight variations in intensity lead to a patchy apperance. Minor patchy pyrrhotite can be found with a patchy, irregular distribution. Pyrrhotite tends to be spacially associated with mafic clots. Weak patchy magnetism is associated with areas of heightened pyrrhotite concentrations. A thin quartz veins occurs proximal to teh upper contact. The lower contact is difficult to dicern due to alteration. 240.45 240.55 gtz:::::: 									

Description							Assay	- Sample	
	From	То	Sample	Length	Au (ppb)	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)
quartz A medium to light grey, fractured and deformed quartz vein. Lacks the increase in sulphides seen in surrounding veins. Contacts undulate and the vein is offset by fracturing. 242.41 254.55 FV_Tuff	243.00	244.20	860389	1.20	3	0.1	43	7	163
Felsic Volcanic Tuff Similar to the unit at 233.90-240.45m. A light grey/beige, vfg-fg weakly to strongly foliated felsic tuff. Has a strong banded apperance due to local variations in sericite alteration as well as a grain size variation. Foliation ranges between 42-56 dca and is predominatly 53 dca. Banding is on a cm scale. Moderate to strong sericite alteration occurs throughout affecting the finer grained sections more prevalently. Overall the alteration decreases down interval. Has high concentrations of thin quartz veins between 243.15-244.60m and 248.75-251.45m. These intervals also have slightly higher frequencies of fracturing and increases in pyrrhotite. Locally strong patches of magnetism are associated with the pyrrhotite (minor conductive pops also correlate to these). Has minor dm scale bands that contain coarser grained rounded quartz and mafic clasts (metased?). The lower contact is gradational over 10-15cm.									
243.15 244.60 po01 pyrrhotite 1% A slight increase in pyrrhotite concentration associated with increase in veining. The highest concentrations are found along the margins of quartz veins. Fg and anhedral but can form very weak webs along fractures. 243.15 244.20 qz+cb_vn;47°;;;;; quartz + carbonate 47°									
Several thin (<10cm) quartz-carbonate veins occur in this interval. Patchy weak reaction with acid. Make up 60% of the interval. Generally concordant to foliation. Light grey to white and only weakly glassy. Have several inclusions in them and fractures. Locally high concentrations of pyrrhotite are common along the margins and fractures. 244.60 247.80 po00.25 pyrrhotite 0.25%									

Description			Assay - Sample							
		From	То	Sample	Length	Au (ppb)	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)
	Minor pyrrhotite occurs with a very irregular distribution. Higher concentrations can be found along the margins of veins and hosted within fractures. Local concentrations can range from nil up to 2%. Generally fg but some mg clots occur.									
245.50 254.05 s	ser sericite Weak to moderate patchy sericite alteration. Occurs in a banded distribution with the strongest occuring in the finer grained bands and along fractures.	247.35	248.65	860391	1.30	3	0.1	25	1	12
247.80 251.45 p p i	po05 pyrrhotite 5% A high concentration of pyrrhotite occurs in this interaval associated with a large increase of veining. Generally fg but can form semi-stringers in several spots. Local blips of magnetism and conductivity can be seen using the handheld meter.									
248.00 248.37 c	qtz;30°;;;;; quartz 30° Dark grey glassy quartz veins. Only make up 30% of the interval. Have minor inclusions and locally high concetrations of sulphides along the contacts.									
248.10 251.10 f f	frc fractured Fracturing and weak breccia in this interval. Rehealed with sericite altered matrix (quartz?). Increase in veining associated with this fracturing.									
248.37 248.40 c	cb;30°;;;;; carbonate 30° A pink, mg carbonate vein. Slightly irregular contacts.	248.65	250.15	860392	1.50	7	0.1	44	1	13
248.75 251.45 c	qtz;47°;;;;; quartz 47° Several dark grey, glassy quartz veins occur in this interval. Generally concordant with foliation but slight variations in the contacts occur. Several inclusion and higher concentrations occur along the margins and along internal fractures.	250.15	251.45	860393	1.30	22	0.1	37	6	19
251.45 253.20 r	po00.25									
Description							Assay ·	- Sample		
---	--------	--------	--------	--------	----------	----------	----------	----------	----------	
	From	То	Sample	Length	Au (ppb)	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)	
pyrrhotite 0.25% Minor fg anhedral to elongate pyrrhotite occurs with irregular distribution. Found along fractures and spacially associated with mafic clots.										
252.95 253.30 bx brecciated Weak breccia. Jig saw fit. Rehealed with a dark vfg matrix. Matrix is <1mm and makes up <10% of the unit.	253.15	254.55	860394	1.40	3	0.1	89	7	95	
 253.20 254.55 po07 pyrrhotite 7% A high concentration of pyrrhotite occurs in this interval. Occurs in patchs/clusters that form blebs and semi-stringers concordant to foliation. Locally can reach 10-12% within the bands. Strong magnetism and some conductivity pops are associated with these high pyrrhotite concentrations. 254.05 257.05 ser; chl; cb sericite; chloritization; carbonate 										
Weak patchy sericite alteration confined to thin bands. Stronger patches are associated with brecciation and fractures. Weak to moderate chlorite occurs along fractures. Weak carbonate alteration forms broad haloes around fractures. 254 55 256 85 EV										
Felsic Volcanic Returns to the less foliated, non-banded felsic volcanic (similar to the unit at 240.45-242.41m). Light grey to pale beige-grey, f-mg, weakly to moderately foliated. Foliation is at 47dca with very little variation. Minor fracturing occurs assocaited with slight increase in alteration. Only very minor sericite occurs in small patches. Minor chlorite occurs along fractures. Has a weak mottled texture caused by spotty alteration. Trace pyrrhotite occurs sporadically throughout. The lower contact is difficult to dicern as the difference between the two units is only textural.										
254.55 257.73 po00.25 pyrrhotite 0.25% Minor pyrrhotite occurs along fractures concordant to foliation. These fractures often have some chlorite alteration. Fg and anhedral to blebby. 255.85 256.15 bx										

	Description							Assay ·	- Sample	
		From	То	Sample	Length	Au (ppb)	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)
	brecciated									
	Weak breccia. Rehealed with a dark vfg matrix (<1mm wide and <10% of the									
	unit). Associated with an increase in sericite alteration.									
256.85 257.73	FV_Tuff									
	Felsic Volcanic Tuff									
	Returns to a banded tuffaceous unit. A dark to medium grey, vfg-fg, moderately									
	foliated and banded unit. Banding is on a mm to cm scale. Foliation is mainly at 47									
	dca with very little deviation. Very little sericite alteration confined to a small number									
	of bands proximal to the upper contact. Rare pyrrhotite. The lower contact is sharp									
	but irregular/undulates. Has some fracturing after 257.65m with a local increase in									
	pyrrhotite.									
257.73 258.02	MD									
	Mafic Dyke									
	A black, vfg, massive dyke. Homogeneous. Non-magnetic. Minor disseminated	ad a second s								
	anhedral pyrrhotite occurs sporadically throughout. The lower contact is sharp but									
	irregular .									
258.02 260.67	FV_Tuff									
	Felsic Volcanic Tuff									
	Returns to the unit at 256.85-257.75m. A dark to medium grey, vfg-fg, moderately									
	foliated and banded unit. Banding is on a mm to cm scale. Foliation is mainly at 47									
	dca with minor fluctuations between 37 to 52 dca. Very little sericite alteration									
	confined to a small number of bands proximal to the upper contact. Trace blebby									
	pyrrhotite. Has some intermixed beds that contain f-mg alteration clots. Gives those									
	bands a mottled appearance. The lower contact is diffuse over 10cm.									
258.55 260	.67 ser; chl									
	sericite; chloritization									
	Weak patchy sericite alteration. Patches are irregular and stronger bands tend to									
	be finer grained portions. Minor chlorite occurs along some small fractures.									
260.67 265.03	MSED_sand									
	Metasediment - Sandstone									
	Medium to light grey, fg, weakly foliated metasediment? Potentially a coarser									
	grained tuff?. Foliation is predominately at 56 dca with a few degrees deviation									

Description							Assay	- Sample	
	From	То	Sample	Length	Au (ppb)	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)
locally. Has very minor intervals with bands that contain some weak sericite alteration. Has intervals that are brecciated and rehealed with a vfg black matrix. These are intermixed intervals of the surrounding tuff. Has a mottled appearance in areas of brecciation due to alteration. Trace pyrrhotite generally hosted along fractures. The lower contact is gradational over 10cm. 260.67 267.45 ser; cb; chl									
sericite; carbonate; chloritization Very weak patchy sericite. Patches tend to be 20-30 cm wide. Minor chlorite occurs along some fractures. Carbonate is associated as haloes around ractures. Notibly stronger in areas of brecciation.									
260.95 262.45 bx brecciated Weak breccia. The breccia is rehealed with a black vfg matrix. The matrix is <1mm wide and makes up 10% of the interval. The pieces are more rounded in these intervals. These intervals have a mottled appearance due to minor alteration.									
 265.03 275.20 FV_1uff Felsic Volcanic Tuff Returns to a more banded/foliated unit. Lacks a strong banded appearance but this may be due to a lack of alteration. Medium grey, vfg-fg, moderately to strongly foliated and weakly banded. This increases between 270.47 and 272.20m with an increase in chlorite and carbonate alteration. Foliation varies between 53-57 dca. Banding is defined by local variations in mineralogy and occurs on a mm to cm scale. Rare moderate chlorite alteration in a band between 267.45-267.55m. Still has minor 20-30cm bands that have coarser grained quartz and mafics (metaseds or coarser volcanics?). Trace blebby pyrrhotite typically spacially associated with mafics. The lower contact is gradational over 5cm. 267.45 267.55 chl; cb chloritization; carbonate 	c Tuff ore banded/foliated unit. Lacks a strong banded appearance but this a lack of alteration. Medium grey, vfg-fg, moderately to strongly eakly banded. This increases between 270.47 and 272.20m with an orite and carbonate alteration. Foliation varies between 53-57 dca. ined by local variations in mineralogy and occurs on a mm to cm oderate chlorite alteration in a band between 267.45-267.55m. Still 80cm bands that have coarser grained quartz and mafics (metaseds canics?). Trace blebby pyrrhotite typically spacially associated with wer contact is gradational over 5cm.								
Moderate to strong alteration confined to this thin band. A local increase in pyrrhotite occurs in the same band. Minor carbonate occurs associated with fractures or as haloes around fractures.									

Description							Assay	- Sample	
	From	То	Sample	Length	Au (ppb)	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)
267.45 267.55 po00.25									
pyrrhotite 0.25%									
Minor fg anhedral to blebby pyrrhotite occurs in a band of high chlorite alteration									
270.00 270.20 qtz;;;;;;									
quartz									
Two small quartz veins. Both are more of a bull white in colour. Very weakly									
glassy. One is at 67 dca and discordant to foliation. This one appears to have									
extensional fabric. The other is at 27 dca and more concordant to foliation.									
270.05 270.30 bx									
brecciated									
Very weak brecciation. Rehealed with dark chlorite altered matrix. The matrix is	trix is								
very thin (<1mm) and causes angular jig saw fit pieces.									
270.47 272.20 chl; cb									
chloritization; carbonate									
Moderate to strong chlorite alteration and carbonate alteration. Chlorite alteratio	ו								
has an irregular banded, patchy distribution. Strongest concentrations are									
associated with fracturing. Carbonate alteration has a more pervasive coverage									
with minor variations in intensity.									
273.40 275.20 ser									
sericite									
Weak patchy sericite alteration. Occurs as very thin (<3mm wide) around									
fractures.									
275.20 276.33 MSED_sand									
Metasediment - Sandstone									
Light grey to beige, f-cg, weakly foliated unit. Has m-cg rounded quartz and lesser									
feldspars set in a fine grained matrix. Potentially metased but also could be a									
coarser volcanic? The fresh broken ends do appear more sedimentary. The coarse									
quartz and feldspars are stretched slightly along foliation. Very siliceous and									
hard. Has a mottled appearance in patches due to patchy sericite alteration. This									
preferentially affects the matrix and accentuates the larger quartz. Mineralogy is									
slightly variable due to variations in the larger quartz and feldspars. One small bull									
white quartz vein occurs at 276.0-276.05m. No visible sulphides. The lower contact									

Description							Assay - Sample		
	From To Sample Length Au (ppb)						Cu (ppm)	Pb (ppm)	Zn (ppm)
is diffuse over few cm.									
275.20 276.33 ser									
sericite									
Weak to moderate patch ysericite. Patches are on a cm to dm scale. Sericite									
preferentially alters the matrix with the larger quartz and feldspars being									
unaltered.									
276.00 276.05 qtz;39°;;;;;									
quartz 39°									
A bull white quartz vein with sharp contacts.									
276.33 277.10 FV_Tuff									
Felsic Volcanic Tuff									
Returns to the strongly laminated and banded unit. Light grey to light beige, vfg-fg,	fg-fg,								
strongly laminated/bedded and banded. The banding is associated with patchy									
sericite alteration centered around small fractures. Very siliceous and hard. Weak	eak								
brecciation occurs proximal to the upper contact. Minor fracture hosted blebby									
pyrrhotite.									
276.50 276.95 bx									
brecciated									
A weak to moderate brecciated interval. This is rehealed by a white to beige									
sericite altered matrix. Matrix supported with angular fragments. The matrix									
makes up 30% of the interval.									
277.10 277.93 MSED_sand									
Metasediment - Sandstone									
Same as 275.2-276.33m. Light grey to beige, f-cg, weakly foliated unit. Has m-cg									
quartz and lesser feldspars set in a fine grained matrix. These are generally									
subrounded but a small portion of the quartz and feldspars are subangular.									
Potentially metased but also could be a coarser volcanic? The fresh broken ends do									
appear more sedimentary. The coarser quartz and feldspars are stretched slightly									
along foliation. Very siliceous and hard. Has minor patchy sericite alteration									
associated with tractures. Mineralogy is slightly variable due to variations in the									
larger quartz and teldspars. No visible sulphides. The lower cotact is difficult to									
dicern over 5cm.									

Description							Assay ·	- Sample	
	From To Sample Length Au (ppb) Ag (ppm) Cu (ppm)							Pb (ppm)	Zn (ppm)
277.10 277.93 ser									
sericite									
Very weak patchy sericite occuring as thin haloes around fractures.									
277.93 293.81 FV_Tuff									
Felsic Volcanic Tuff									
Same as 276.33-277.10m. Light grey to strong beige, vfg-fg, strongly laminated and									
banded unit. Banding is on a mm scale and defined by textural and slight mineralogy									
changes. Generally aphentic but has minor bands (10-15cm) of metaseds similar to									
the surrounding units sporadically throughout. A larger notible unit occurs at									
282.57-282.92m. Patchy sericite occurs sporadically throughout with the strongest									
intervals associated with fracturing. Laminations are between 42-47 dca. Minor	or and a second s								
blebby fracture hosted pyrrhotite. The lower contact is sharp but irregular.									
277.93 293.81 ser									
sericite									
Overall a weak to moderate sericite alteration. Very patchy irregular distirbution									
with local intensities within the patches reaching moderate to strong. The highest									
intensities of sericite are associated with fractures or veins hosted within									
fractures.									
280.01 280.03 po03									
pyrrhotite 3%									
F-mg blebby pyrrhotite hosted within a small vein within a fracture.									
280.15 280.35 bx									
brecciated									
A weak rehealed berccia. Thin (<2mm) dark matrix that makes up 10-15% of the									
interval.									
282.57 282.93 MSED_sand									
Metasediment - Sandstone									
Light grey, f-cg, weakly foliated unit. Has m-cg quartz and lesser feldspars set in									
a fine grained matrix. These are generally subrounded but a small portion of the									
quartz and feldspars are subangular. They range in size from 1mm up to 10mm.									
Potentially metased but also could be a coarser volcanic? The fresh broken ends									
do appear more sedimentary. The coarser quartz and feldspars are stretched									

Description Ass						Assay ·	- Sample		
	From	То	Sample	Length	Au (ppb)	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)
slightly along foliation. Very siliceous and hard. Has minor patchy sericite alteration associated with fractures. Mineralogy is slightly variable due to variations in the larger quartz and feldspars. No visible sulphides. The lower									
cotact is difficult to dicern over 5cm.									
283.12 283.15 qz+cb_vn;;;;;;									
quartz + carbonate									
A thin grey quartz vein with light pink carbonate clots in it. Cuts foliation.									
$\frac{207.29}{207.32} \frac{207.32}{42+CD} \frac{42+CD}{100} \frac{100}{100} 1$									
A thin light grey quartz vein with minor pink carbonate clots. More of a bull quartz									
vein. not glassy.									
293.81 299.33 MSED_sand									
Metasediment - Sandstone									
Grey, f-mg, weakly to moderately foliated. Has coarser grained quartz set in a finer									
grained matrix. The grain boundaries are diffuse and not well defined. Fairly									
homogeneous and lacks a banded fabric. Strongly siliceous. Has thin carbonate									
tension gashes cutting foliation at 64 dca. The unit is pervasively carbonate altered.									
Minor fractures occur parallel to foliation. Foliation occurs at 47 dca. No visible									
sulphides. The lower contact is irregular and weakly brecciated.									
293.81 299.33 cb									
Weak to moderate pervasive carbonate alteration.									
299.30 299.33 DX									
Drecciated									
unit. The breccia is rehealed									
299 33 306 25 EV Tuff									
Felsic Volcanic Tuff									
Similar to the previous tuff units (277.93-293.81m) but lacks alteration. Grev to dark									
grev, vfg-fg, strongly laminated and banded unit. Banding is on a mm scale and									
defined by slight variations in mineralogy and colour. Laminations occur at 47 dca									
with very little deviations. Contains very minor intermixed bands of coarser grained									

Description							Assay	- Sample	
	From	То	Sample	Length	Au (ppb)	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)
metaseds (?) similar to the surrounding units at 277.1-277.93m and 293.81-298.33m. Pyrrhotite occurs in a small number of fractures. Occurs as f-mg blebby to semi-stringers. Rare thin foliation parallel quartz veins occur. The lower contact is gradational over a cm or two.									
299.95 300.35 p002									
Minor f-mg blebby to semi-stringers of pyrrhotite occur in this internval hosted along fractures that are concordant to foliation.									
303.30 306.25 ser sericite Weak to moderate patchy sericite alteration occurs with an irregular distribution									
306.25 307.30 MSED sand									
 306.25 307.30 MSED_sand Metasediment - Sandstone A light grey to beige, f-cg, weakly foliated metasediment(?). 35-40% m-cg quartz and lesser feldspars are set in a finer grained matrix. There is variation in the grain size on a dm scale with alternating finer grained and coarser grained bands. They are all similar in mineralogy and texture just grain size change (bedding?). The quartz and feldspar are subangular to subrounded and slightly stretched along foliation planes. Foliation occurs at 42 dca with minimal variation. Weak sericite occurs with almost pervasive coverage but occurs as wisps along foliation planes (affecting the matrix). Very minor chlorite occurs along fracture planes. No visible sulphies. The lower contact is gradational over a cm or two. 306.25 307.30 ser sericite Weak sericite alteration. Occur as wisps in the matrix with almost pervasive coverage.									
306.35 306.50 qtz;;;;;; quartz Minor thin quartz tension gashes cutting across foliation. Several parallel gashes.									
307.30 313.30 FV_1uff									
Felsic Volcanic Tuff Light beige, to grey, to green-grey, fg, strongly laminated and moderately to strongly									

Description							Assay	- Sample	
	From	То	Sample	Length	Au (ppb)	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)
banded unit. The banding is defined by slight variations in texture, mineralogy, and accentuated by alteration. Has some large patches of strong sericite bleaching and carbonate alteration. Patchy chlorite alteration outside the sericite altered patches. Minor pyrrhotite and pyrite occur along small fractures. Fg and anhedral. Pyrrhotite is dominant. Minor patchy magnetism is associated with the sulphide clots. EOH at									
313.3 307.30 307.85 ser; chl; cb sericite; chloritization; carbonate Weak patchy sericite alteration. Minor chlorite occurs along fractures. The fractures have irregular distribution. Minor carbonate alteration occurs with this chlorite.									
307.30 313.30 po00.25; py00.1 pyrrhotite 0.25%; pyrite 0.1% Minor pyrrhotite and lesser pyrite occur sporadically throughout this interval. Occurs as fracture fill or blebs along fractures. Pyrrhotite is dominant by pyrite can be found in small clusters.									
307.85 309.20 cb; ser carbonate; sericite Moderate to strong carbonate and sericite alteration occurs with pervasive coverage. Local intensities vary slightly.									
309.20 312.30 ser; chl sericite; chloritization Weak patchy sericite alteration occurs with irregular distribution. Minor chlorite occurs along a small number of fractures.									
309.29 309.33 qtz;;;;;; quartz A thin bull white quartz vein.									
310.15 310.20 qtz;;;;;; quartz Two thin quartz veins with minor carbonate clots.									
312.30 313.30 chl; cb chloritization; carbonate									

		Assay - QAQC		
Sample number	Reference	Description	Au (ppb)	
860360	Blk		3	
860370	Oreas 223		1820	
860380	Blk		3	
860390	Oreas 255		4350	

Down hole survey Туре Depth Azimuth Dip Invalid a... Invalid dip 132.92° -53.16° No reflex 15.00 No reflex 54.00 -53.45° No 133.06° No No reflex 72.00 133.98° -53.44° No reflex 90.00 133.16° -53.40° No No 246.00 No reflex 136.60° -50.10° No

Additional Data То Magnetic Susceptibility Conductivity From 0.00 3.00 4.00 3.00 9.480 1000 4.00 5.00 11.600 1000 5.00 6.00 1000 10.100 6.00 7.00 4.410 1000 7.00 8.00 9.520 1000 8.00 9.00 8.620 1000 9.00 10.00 6.610 1000 10.00 11.00 7.690 1000 6.740 11.00 12.00 1000 12.00 9.320 13.00 1000 13.00 8.990 1000 14.00 14.00 15.00 5.780 1000 15.00 16.00 8.400 1000 16.00 17.00 9.700 1000 17.00 18.00 6.620 1000 9.350 18.00 19.00 1000 19.00 20.00 5.440 1000 20.00 5.720 1000 21.00 21.00 22.00 5.760 1000 22.00 23.00 1.090 1000 23.00 24.00 0.806 1000 24.00 25.00 4.460 1000 3.840 25.00 26.00 1000 26.00 27.00 8.270 1000 27.00 28.00 7.580 1000 28.00 29.00 0.582 1000 29.00 0.632 30.00 1000 30.00 31.00 0.580 1000 31.00 32.00 1.790 1000 32.00 33.00 0.875 1000

			Addi	tional Data	
From	То	Magnetic Susceptibility	Conductivity		
33.00	34.00	1.700	1000		
34.00	35.00	0.858	1000		
35.00	36.00	7.040	1000		
36.00	37.00	0.563	1000		
37.00	38.00	0.751	1000		
38.00	39.00	2.240	1000		
39.00	40.00	1.630	1000		
40.00	41.00	2.750	1000		
41.00	42.00	0.561	1000		
42.00	43.00	0.655	1000		
43.00	44.00	1.040	1000		
44.00	45.00	0.669	1000		
45.00	46.00	1.280	1000		
46.00	47.00	1.210	1000		
47.00	48.00	0.790	1000		
48.00	49.00	2.150	1000		
49.00	50.00	0.636	1000		
50.00	51.00	0.655	1000		
51.00	52.00	0.483	1000		
52.00	53.00	0.499	1000		
53.00	54.00	0.541	1000		
54.00	55.00	0.617	1000		
55.00	56.00	0.497	1000		
56.00	57.00	0.675	1000		
57.00	58.00	0.706	1000		
58.00	59.00	0.890	1000		
59.00	60.00	0.707	1000		
60.00	61.00	1.100	1000		
61.00	62.00	0.814	1000		
62.00	63.00	0.682	1000		
63.00	64.00	0.701	1000		

			Addit	tional Data	
From	То	Magnetic Susceptibility	Conductivity		
64.00	65.00	0.739	1000		
65.00	66.00	0.655	1000		
66.00	67.00	0.601	1000		
67.00	68.00	0.635	1000		
68.00	69.00	0.160	83		
69.00	70.00	0.252	447		
70.00	71.00	0.590	1000		
71.00	72.00	0.656	1000		
72.00	73.00	0.582	1000		
73.00	74.00	0.664	1000		
74.00	75.00	0.739	1000		
75.00	76.00	0.654	1000		
76.00	77.00	0.882	1000		
77.00	78.00	0.739	1000		
78.00	79.00	11.300	1000		
79.00	80.00	0.774	1000		
80.00	81.00	0.712	1000		
81.00	82.00	0.770	1000		
82.00	83.00	0.951	1000		
83.00	84.00	0.714	1000		
84.00	85.00	0.729	1000		
85.00	86.00	0.661	417		
86.00	87.00	0.759	1000		
87.00	88.00	0.637	1000		
88.00	89.00	0.661	1000		
89.00	90.00	0.694	1000		
90.00	91.00	0.676	1000		
91.00	92.00	0.729	1000		
92.00	93.00	0.719	1000		
93.00	94.00	0.675	1000		
94.00	95.00	0.822	1000		

Additional Data То Magnetic Susceptibility Conductivity From 95.00 96.00 0.887 1000 0.782 96.00 97.00 1000 0.727 97.00 98.00 1000 98.00 99.00 0.390 1000 99.00 100.00 0.526 1000 100.00 101.00 0.385 1000 101.00 102.00 0.442 1000 102.00 103.00 0.543 1000 103.00 104.00 0.454 1000 104.00 105.00 0.558 1000 0.551 105.00 106.00 1000 106.00 0.500 1000 107.00 107.00 0.418 108.00 1000 108.00 109.00 0.820 1000 109.00 110.00 0.477 1000 0.620 110.00 111.00 1000 111.00 112.00 0.608 1000 112.00 113.00 0.582 1000 114.00 0.502 113.00 1000 0.590 114.00 115.00 1000 116.00 115.00 0.418 1000 116.00 117.00 0.508 1000 118.00 117.00 0.527 1000 0.521 118.00 119.00 1000 119.00 120.00 0.462 1000 120.00 121.00 0.876 1000 121.00 122.00 0.604 1000 122.00 0.571 123.00 1000 123.00 124.00 0.484 1000 124.00 125.00 0.536 1000 125.00 126.00 0.460 1000

Additional Data То Magnetic Susceptibility Conductivity From 126.00 127.00 0.726 1000 0.684 127.00 128.00 1000 128.00 129.00 0.924 1000 129.00 130.00 0.910 1000 130.00 131.00 1.200 1000 131.00 132.00 1.290 1000 132.00 133.00 0.758 1000 133.00 134.00 0.756 1000 134.00 135.00 0.656 1000 135.00 136.00 1.420 1000 0.927 136.00 137.00 1000 137.00 0.699 1000 138.00 138.00 139.00 1.030 1000 139.00 140.00 0.976 1000 140.00 141.00 0.815 1000 0.156 141.00 142.00 1000 0.538 142.00 143.00 1000 143.00 144.00 0.679 1000 144.00 145.00 0.607 1000 0.888 145.00 146.00 1000 146.00 147.00 0.720 1000 147.00 148.00 0.699 1000 148.00 149.00 0.757 1000 149.00 150.00 0.593 1000 150.00 0.598 151.00 1000 151.00 152.00 0.592 1000 152.00 153.00 0.618 1000 0.893 153.00 154.00 1000 154.00 155.00 0.699 1000 155.00 156.00 0.696 1000 156.00 157.00 0.922 1000

Additional Data То Magnetic Susceptibility Conductivity From 157.00 158.00 0.237 1000 0.466 158.00 159.00 1000 159.00 0.305 1000 160.00 160.00 161.00 4.890 1000 161.00 162.00 2.690 1000 162.00 163.00 0.212 1000 163.00 164.00 22.800 400 164.00 165.00 0.166 1000 165.00 166.00 1.870 1000 167.00 166.00 4.870 268 0.746 1000 167.00 168.00 168.00 1.540 1000 169.00 169.00 170.00 0.765 1000 170.00 171.00 1.060 1000 171.00 172.00 0.397 1000 1.210 172.00 173.00 1000 174.00 0.201 173.00 1000 174.00 175.00 0.783 1000 175.00 176.00 0.701 1000 176.00 177.00 1.160 1000 177.00 178.00 1000 1.650 178.00 179.00 0.252 1000 179.00 180.00 0.201 1000 180.00 181.00 0.467 1000 181.00 3.700 182.00 1000 182.00 183.00 2.020 1000 183.00 184.00 0.361 1000 0.185 184.00 185.00 1000 185.00 0.759 186.00 1000 186.00 187.00 0.425 1000 187.00 188.00 0.206 1000

Additional Data То Magnetic Susceptibility Conductivity From 188.00 189.00 1.020 1000 0.479 189.00 1000 190.00 190.00 0.334 1000 191.00 191.00 192.00 0.403 1000 192.00 193.00 0.792 1000 193.00 194.00 2.270 1000 194.00 195.00 3.050 1000 195.00 196.00 0.185 1000 196.00 197.00 1.920 1000 197.00 198.00 0.198 1000 0.253 198.00 199.00 1000 199.00 19.500 1000 200.00 200.00 2.940 201.00 1000 201.00 202.00 0.220 1000 202.00 203.00 0.272 1000 0.233 203.00 204.00 1000 204.00 205.00 0.887 1000 205.00 206.00 0.522 1000 206.00 0.858 207.00 1000 0.250 207.00 208.00 1000 208.00 209.00 0.343 1000 209.00 210.00 0.235 1000 210.00 211.00 2.050 1000 211.00 212.00 1.760 1000 212.00 213.00 0.316 1000 213.00 214.00 0.183 1000 214.00 215.00 0.184 1000 0.338 215.00 216.00 1000 216.00 217.00 0.186 1000 217.00 218.00 0.262 1000 218.00 219.00 0.151 1000

Additional Data То Magnetic Susceptibility Conductivity From 219.00 220.00 0.158 1000 0.176 220.00 221.00 1000 0.265 221.00 222.00 1000 222.00 223.00 0.398 1000 223.00 224.00 34.200 67 224.00 225.00 15.800 1000 225.00 226.00 0.595 1000 226.00 227.00 0.802 1000 227.00 228.00 1.750 1000 228.00 229.00 0.611 991 0.329 1000 229.00 230.00 230.00 0.106 231.00 1000 231.00 232.00 0.997 1000 232.00 233.00 1.610 1000 233.00 234.00 2.800 1000 1.350 234.00 235.00 1000 235.00 236.00 3.170 1000 236.00 237.00 0.370 1000 237.00 0.240 238.00 1000 238.00 0.820 239.00 1000 239.00 240.00 0.860 1000 240.00 241.00 2.880 1000 241.00 242.00 0.550 1000 242.00 243.00 0.755 1000 243.00 244.00 0.861 1000 244.00 245.00 0.348 1000 245.00 246.00 3.250 1000 246.00 5.260 247.00 1000 2.520 247.00 248.00 1000 248.00 249.00 18.300 481 249.00 250.00 1.880 1000

Additional Data То Magnetic Susceptibility Conductivity From 250.00 251.00 5.710 61 0.274 1000 251.00 252.00 2.740 252.00 253.00 1000 253.00 254.00 15.800 132 254.00 255.00 2.200 1000 255.00 256.00 0.311 1000 256.00 257.00 5.330 1000 257.00 258.00 0.330 1000 258.00 259.00 0.138 1000 259.00 260.00 0.707 1000 260.00 261.00 0.288 1000 261.00 262.00 0.351 1000 262.00 0.237 263.00 1000 263.00 264.00 0.114 1000 264.00 265.00 0.167 1000 265.00 266.00 0.372 1000 266.00 267.00 0.820 1000 267.00 268.00 0.213 1000 268.00 0.124 269.00 1000 269.00 0.108 270.00 1000 270.00 271.00 0.155 1000 271.00 272.00 3.280 1000 272.00 273.00 0.969 1000 0.219 273.00 274.00 1000 274.00 275.00 0.733 1000 275.00 276.00 0.199 1000 276.00 277.00 0.536 1000 277.00 0.202 278.00 1000 278.00 279.00 0.271 1000 279.00 280.00 0.373 1000 280.00 281.00 1.370 1000

Additional Data То Magnetic Susceptibility Conductivity From 281.00 282.00 0.266 1000 0.710 282.00 283.00 1000 283.00 284.00 0.414 1000 284.00 285.00 0.617 1000 285.00 286.00 0.201 1000 286.00 287.00 0.218 1000 287.00 288.00 0.600 1000 288.00 289.00 1.610 1000 289.00 290.00 0.125 1000 290.00 291.00 0.047 1000 291.00 292.00 0.138 1000 292.00 0.246 1000 293.00 293.00 294.00 0.140 1000 294.00 295.00 0.114 1000 295.00 296.00 0.116 1000 296.00 297.00 0.124 1000 297.00 298.00 0.100 1000 298.00 299.00 0.144 1000 299.00 0.584 300.00 1000 0.273 300.00 301.00 1000 301.00 302.00 0.198 1000 302.00 303.00 0.075 1000 303.00 304.00 0.171 1000 304.00 305.00 0.106 1000 0.706 305.00 306.00 1000 306.00 307.00 0.105 1000 307.00 308.00 0.339 1000 308.00 0.237 309.00 1000 309.00 310.00 130.000 1000 310.00 311.00 0.306 1000 311.00 312.00 0.192 1000

			Addit	ional Data
From	То	Magnetic Susceptibility	Conductivity	
From 312.00	То 313.00	Magnetic Susceptibility 1.300	Addit Conductivity 1000	ional Data

Appendix IV

Cross Section & Plan Map

Appendix V

Assay Certificate

Quality Analysis ...

Innovative Technologies

Report No.:A21-07060Report Date:01-Jun-21Date Submitted:23-Apr-21Your Reference:Belfast Copper

Conquest Resources Ltd 55 University Ave. Suite 1805 Toronto ON M5J 2H7 Canada

ATTN: Joerg Kleinboeck

CERTIFICATE OF ANALYSIS

38 Rock samples were submitted for analysis.

The following analytical package(s) were requested:	Testing Date:	
1A2-Timmins	QOP AA-Au (Au - Fire Assay AA)	2021-05-19 13:10:19
1E3-Timmins	QOP AquaGeo (Aqua Regia ICPOES)	2021-05-31 15:54:59

REPORT A21-07060

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

If value exceeds upper limit we recommend reassay by fire assay gravimetric-Code 1A3.

Values which exceed the upper limit should be assayed for accurate numbers.

LabID: 709

ACTIVATION LABORATORIES LTD.

1752 Riverside Drive, Timmins, Ontario, Canada, P4R 1N1 TELEPHONE +705 264-0123 or +1.888.228.5227 FAX +1.905.648.9613 E-MAIL Timmins@actlabs.com ACTLABS GROUP WEBSITE www.actlabs.com CERTIFIED BY:

Emmanuel Eseme , Ph.D. Quality Control Coordinator

Results

Activation Laboratories Ltd.

Report: A21-07060

Analyte Symbol	Au	Ag	Cd	Cu	Mn	Мо	Ni	Pb	Zn	Al	As	В	Ва	Be	Bi	Ca	Co	Cr	Fe	Ga	Hg	K	La
Unit Symbol	ppb	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm							
Lower Limit	5	0.2	0.5	1	5	1	1	2	2	0.01	2	10	10	0.5	2	0.01	1	1	0.01	10	1	0.01	10
Method Code	FA-AA	AR-ICP																					
860357	< 5	< 0.2	< 0.5	7	287	2	25	< 2	21	0.74	< 2	< 10	22	< 0.5	< 2	2.55	4	37	0.99	< 10	< 1	0.06	< 10
860358	5	0.3	< 0.5	19	243	1	38	< 2	14	0.84	< 2	< 10	43	< 0.5	< 2	1.35	11	38	1.58	< 10	< 1	0.09	< 10
860359	< 5	< 0.2	< 0.5	112	619	< 1	74	< 2	30	1.95	< 2	< 10	25	< 0.5	< 2	1.06	46	34	5.37	< 10	< 1	0.04	21
860360	< 5	< 0.2	< 0.5	3	84	< 1	< 1	3	4	0.09	< 2	< 10	11	< 0.5	< 2	0.04	< 1	8	0.82	< 10	< 1	0.02	< 10
860361	< 5	< 0.2	< 0.5	169	483	1	54	4	25	1.49	< 2	< 10	33	< 0.5	< 2	0.74	37	30	4.21	< 10	< 1	0.05	< 10
860362	< 5	0.4	< 0.5	60	346	< 1	10	2	17	1.12	< 2	< 10	104	< 0.5	< 2	0.73	9	22	2.32	< 10	< 1	0.17	< 10
860363	5	0.4	< 0.5	412	339	< 1	153	3	18	1.32	< 2	< 10	17	< 0.5	< 2	1.09	80	15	6.28	< 10	< 1	0.03	< 10
860364	< 5	< 0.2	< 0.5	240	505	< 1	48	< 2	27	1.62	< 2	< 10	28	< 0.5	< 2	0.86	34	22	4.42	< 10	< 1	0.04	10
860365	< 5	< 0.2	< 0.5	191	690	< 1	100	3	129	1.93	14	< 10	52	< 0.5	< 2	1.28	33	94	4.54	< 10	< 1	0.08	< 10
860366	< 5	< 0.2	< 0.5	14	511	< 1	8	< 2	67	1.34	4	< 10	96	< 0.5	< 2	1.72	5	39	2.74	< 10	< 1	0.18	16
860367	< 5	< 0.2	< 0.5	54	350	< 1	15	3	42	1.23	6	< 10	140	< 0.5	< 2	1.33	11	14	2.09	< 10	< 1	0.23	< 10
860368	< 5	< 0.2	< 0.5	29	232	< 1	10	3	20	1.09	3	< 10	154	< 0.5	< 2	1.22	6	28	1.51	< 10	< 1	0.28	12
860369	< 5	< 0.2	< 0.5	7	467	< 1	15	< 2	67	1.38	3	< 10	82	< 0.5	< 2	0.81	6	41	2.33	< 10	< 1	0.15	10
860370	1820	0.4	< 0.5	155	701	< 1	77	8	60	3.69	12	16	20	< 0.5	< 2	2.85	30	111	5.43	< 10	< 1	0.08	< 10
860371	< 5	< 0.2	< 0.5	108	1230	< 1	60	< 2	273	3.05	< 2	< 10	42	< 0.5	< 2	1.07	23	15	6.55	< 10	< 1	0.07	13
860372	7	0.3	2.8	296	614	< 1	48	4	1980	1.87	< 2	< 10	88	< 0.5	< 2	0.69	35	36	5.33	< 10	< 1	0.17	11
860373	< 5	< 0.2	0.6	38	564	< 1	19	6	428	1.78	< 2	< 10	121	< 0.5	< 2	0.83	12	27	3.14	< 10	< 1	0.22	15
860374	< 5	< 0.2	< 0.5	10	431	< 1	9	2	32	1.32	< 2	< 10	140	< 0.5	< 2	0.72	6	24	1.93	< 10	< 1	0.25	16
860375	< 5	< 0.2	< 0.5	12	435	1	11	3	27	1.36	< 2	< 10	111	< 0.5	< 2	0.98	6	27	2.18	< 10	< 1	0.19	20
860376	< 5	< 0.2	< 0.5	31	440	< 1	26	4	30	1.43	4	< 10	82	< 0.5	< 2	1.23	9	81	2.40	< 10	< 1	0.18	10
860377	< 5	< 0.2	< 0.5	10	351	< 1	16	< 2	28	1.28	5	< 10	106	< 0.5	< 2	0.93	7	79	1.87	< 10	< 1	0.21	< 10
860378	< 5	< 0.2	< 0.5	46	377	< 1	19	3	27	1.29	6	< 10	73	< 0.5	< 2	1.79	9	85	2.25	< 10	< 1	0.16	12
860379	< 5	< 0.2	< 0.5	29	303	< 1	17	3	27	1.21	< 2	< 10	62	< 0.5	< 2	0.68	7	96	2.05	< 10	< 1	0.15	< 10
860380	< 5	< 0.2	< 0.5	2	68	< 1	< 1	< 2	4	0.07	< 2	< 10	< 10	< 0.5	< 2	0.01	< 1	7	0.62	< 10	< 1	0.01	< 10
860381	< 5	< 0.2	< 0.5	62	267	< 1	36	2	21	1.12	< 2	< 10	54	< 0.5	< 2	0.75	14	112	2.63	< 10	< 1	0.14	12
860382	< 5	< 0.2	< 0.5	75	250	< 1	24	< 2	27	1.21	< 2	< 10	61	< 0.5	< 2	1.00	16	75	2.76	< 10	< 1	0.18	13
860383	< 5	0.3	< 0.5	282	198	< 1	47	3	19	0.92	4	< 10	47	< 0.5	< 2	1.21	36	45	3.99	< 10	< 1	0.18	10
860384	< 5	< 0.2	< 0.5	25	66	< 1	12	< 2	8	0.50	8	< 10	59	< 0.5	< 2	0.64	10	26	0.87	< 10	< 1	0.21	< 10
860385	< 5	< 0.2	< 0.5	75	83	< 1	29	2	38	0.72	< 2	< 10	60	< 0.5	< 2	1.15	15	23	2.04	< 10	< 1	0.22	11
860386	< 5	0.2	0.8	147	133	< 1	55	4	390	0.94	< 2	< 10	40	< 0.5	< 2	0.88	20	15	4.08	< 10	< 1	0.17	< 10
860387	< 5	< 0.2	< 0.5	35	64	1	12	5	54	0.65	3	< 10	54	< 0.5	< 2	0.70	7	6	1.03	< 10	< 1	0.24	12
860388	< 5	< 0.2	< 0.5	69	63	1	18	6	44	0.66	8	< 10	50	< 0.5	< 2	0.83	10	6	0.90	< 10	< 1	0.23	11
860389	< 5	< 0.2	< 0.5	43	265	< 1	26	7	163	0.49	18	< 10	39	< 0.5	< 2	4.36	15	7	1.52	< 10	< 1	0.19	< 10
860390	4350	0.6	< 0.5	79	522	3	237	3	56	1.99	13	< 10	52	< 0.5	< 2	1.49	33	187	4.62	< 10	< 1	0.10	13
860391	< 5	< 0.2	< 0.5	25	475	1	8	< 2	12	1.16	4	< 10	45	< 0.5	< 2	1.89	6	6	2.46	< 10	< 1	0.17	16
860392	7	< 0.2	< 0.5	44	578	< 1	17	< 2	13	1.61	< 2	< 10	17	< 0.5	< 2	2.43	10	7	5.06	< 10	< 1	0.05	15
860393	22	< 0.2	< 0.5	37	596	< 1	20	6	19	1.82	6	< 10	22	< 0.5	< 2	1.11	11	11	4.76	< 10	< 1	0.08	19
860394	< 5	< 0.2	< 0.5	89	573	< 1	40	7	95	0.90	4	< 10	35	< 0.5	< 2	2.70	17	16	5.47	< 10	< 1	0.18	16

Results

Activation Laboratories Ltd.

Analyte Symbol	Mg	Na	Р	S	Sb	Sc	Sr	li	Th	le	11	U	V	W	Y	Zr
Unit Symbol	%	%	%	%	ppm	ppm	ppm	%	ppm							
Lower Limit	0.01	0.001	0.001	0.01	2	1	1	0.01	20	1	2	10	1	10	1	1
Method Code	AR-ICP															
860357	0.48	0.073	0.047	0.04	< 2	2	46	0.18	< 20	2	< 2	< 10	28	< 10	5	9
860358	0.43	0.056	0.035	0.17	< 2	3	39	0.17	< 20	< 1	< 2	< 10	28	< 10	8	8
860359	1.33	0.044	0.050	1.37	< 2	4	52	0.14	< 20	3	< 2	< 10	37	< 10	8	20
860360	0.03	0.014	0.003	< 0.01	< 2	< 1	2	< 0.01	< 20	< 1	< 2	< 10	3	< 10	1	4
860361	0.96	0.062	0.049	1.04	< 2	5	31	0.15	< 20	4	< 2	< 10	37	< 10	4	22
860362	0.60	0.063	0.050	0.26	< 2	2	28	0.16	< 20	3	< 2	< 10	23	< 10	6	22
860363	0.64	0.044	0.055	2.55	3	5	58	0.17	< 20	3	< 2	< 10	30	< 10	6	20
860364	0.99	0.058	0.051	1.05	< 2	4	45	0.16	< 20	3	< 2	< 10	36	< 10	5	21
860365	1.58	0.023	0.013	0.81	2	4	38	0.13	< 20	1	< 2	< 10	40	< 10	4	3
860366	1.07	0.054	0.045	0.17	< 2	2	15	0.06	< 20	< 1	< 2	< 10	21	< 10	4	15
860367	0.60	0.056	0.066	0.25	< 2	2	37	0.18	< 20	2	< 2	< 10	22	< 10	7	11
860368	0.52	0.052	0.073	0.18	< 2	3	40	0.22	< 20	3	< 2	< 10	22	< 10	6	18
860369	0.71	0.059	0.068	0.04	< 2	3	34	0.18	< 20	5	< 2	< 10	28	< 10	5	13
860370	2.10	0.058	0.032	0.25	2	6	35	0.30	< 20	3	< 2	< 10	132	< 10	10	14
860371	1.94	0.038	0.062	0.56	3	4	41	0.16	< 20	2	< 2	< 10	41	< 10	4	23
860372	1.12	0.034	0.063	1.65	< 2	3	31	0.16	< 20	< 1	< 2	< 10	30	< 10	3	25
860373	0.95	0.040	0.067	0.36	< 2	2	36	0.19	< 20	3	< 2	< 10	22	< 10	5	15
860374	0.62	0.051	0.078	0.07	< 2	2	28	0.24	< 20	3	< 2	< 10	19	< 10	5	13
860375	0.57	0.066	0.080	0.14	< 2	3	48	0.21	< 20	2	< 2	< 10	23	< 10	5	15
860376	0.74	0.048	0.062	0.23	< 2	3	44	0.18	< 20	4	< 2	< 10	25	< 10	4	16
860377	0.67	0.063	0.072	0.04	< 2	3	43	0.21	< 20	7	< 2	< 10	23	< 10	4	16
860378	0.82	0.054	0.059	0.25	< 2	3	38	0.18	< 20	1	< 2	< 10	23	< 10	5	14
860379	0.78	0.058	0.066	0.20	< 2	3	36	0.17	< 20	2	< 2	< 10	27	< 10	4	19
860380	0.01	0.012	0.002	< 0.01	< 2	< 1	2	< 0.01	< 20	1	< 2	< 10	2	< 10	< 1	3
860381	0.66	0.061	0.056	0.70	< 2	4	36	0.17	< 20	4	< 2	< 10	30	< 10	4	19
860382	0.70	0.052	0.060	0.93	< 2	4	39	0.18	< 20	4	< 2	< 10	28	< 10	5	25
860383	0.53	0.034	0.046	1.99	< 2	4	31	0.14	< 20	2	< 2	< 10	18	< 10	5	25
860384	0.09	0.052	0.051	0.31	< 2	2	17	0.16	< 20	3	< 2	< 10	10	< 10	4	21
860385	0.14	0.034	0.063	1.00	< 2	2	37	0.18	< 20	4	< 2	< 10	14	< 10	4	18
860386	0.36	0.027	0.035	2.17	< 2	4	36	0.12	< 20	3	< 2	< 10	18	< 10	3	22
860387	0.12	0.025	0.048	0.41	< 2	1	27	0.14	< 20	3	< 2	< 10	7	< 10	3	23
860388	0.09	0.034	0.037	0.39	< 2	1	31	0.16	< 20	1	< 2	< 10	7	< 10	2	20
860389	0.05	0.034	0.048	0.71	< 2	1	45	0.15	< 20	2	< 2	< 10	7	< 10	2	14
860390	2.62	0.404	0.121	0.05	4	6	107	0.25	< 20	3	2	< 10	66	< 10	9	6
860391	0.74	0.029	0.058	0.48	< 2	1	39	0.11	< 20	1	< 2	< 10	9	< 10	5	14
860392	0.64	0.020	0.041	1.23	< 2	1	54	0.07	< 20	3	< 2	< 10	12	< 10	4	10
860393	0.68	0.034	0.048	0.88	< 2	2	47	0.09	< 20	5	< 2	< 10	15	< 10	4	22
860394	0.40	0.034	0.045	2.85	2	2	32	0.13	< 20	2	< 2	< 10	15	< 10	4	28

QC

Activation Laboratories Ltd.

Report: A21-07060

Analyte Symbol	Au	Ag	Cd	Cu	Mn	Мо	Ni	Pb	Zn	Al	As	В	Ba	Be	Bi	Ca	Co	Cr	Fe	Ga	Hg	K	La
Unit Symbol	ppb	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm							
Lower Limit	5	0.2	0.5	1	5	1	1	2	2	0.01	2	10	10	0.5	2	0.01	1	1	0.01	10	1	0.01	10
Method Code	FA-AA	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP							
OREAS 922 (AQUA REGIA) Meas		0.6	< 0.5	2220	764	< 1	33	55	252	2.80	7		75	0.6	7	0.37	18	42	5.19	< 10		0.43	35
OREAS 922 (AQUA REGIA) Cert		0.851	0.28	2176	730	0.69	34.3	60	256	2.72	6.12		70	0.65	10.3	0.324	19.4	40.7	5.05	7.62		0.376	32.5
OREAS 923 (AQUA REGIA) Meas		1.6	< 0.5	4430	874	< 1	31	80	330	2.88	7		63	0.6	19	0.37	22	40	6.03	< 10		0.37	33
OREAS 923 (AQUA REGIA) Cert		1.62	0.40	4248	850	0.84	32.7	81	335	2.80	7.07		54	0.61	21.8	0.326	22.2	39.4	5.91	8.01		0.322	30.0
OREAS 923 (AQUA REGIA) Meas		1.5	< 0.5	4280	843	< 1	29	80	320	2.78	4		58	0.6	17	0.36	22	38	5.80	< 10		0.34	31
OREAS 923 (AQUA REGIA) Cert		1.62	0.40	4248	850	0.84	32.7	81	335	2.80	7.07		54	0.61	21.8	0.326	22.2	39.4	5.91	8.01		0.322	30.0
OREAS 907 (Aqua Regia) Meas		1.3	< 0.5	6590	338	5	7	36	144	1.11	36		246	1.0	14	0.28	45	8	8.33	20		0.34	38
OREAS 907 (Aqua Regia) Cert		1.30	0.540	6370	330	5.64	4.74	34.1	139	0.945	37.0		225	0.870	22.3	0.280	43.7	8.59	8.18	14.7		0.286	36.1
Oreas 621 (Aqua Regia) Meas		71.3	287	3770	540	13	25	> 5000	> 10000	1.71	78			0.5	3	1.67	29	29	3.56	< 10	4	0.35	20
Oreas 621 (Aqua Regia) Cert		68.0	278	3660	520	13.3	25.8	13600	51700	1.60	75.0			0.530	3.85	1.65	27.9	31.3	3.43	9.29	3.93	0.333	19.4
Oreas 621 (Aqua Regia) Meas		66.3	271	3530	503	12	21	> 5000	> 10000	1.59	74			0.5	2	1.57	28	28	3.29	< 10	4	0.32	19
Oreas 621 (Aqua Regia) Cert		68.0	278	3660	520	13.3	25.8	13600	51700	1.60	75.0			0.530	3.85	1.65	27.9	31.3	3.43	9.29	3.93	0.333	19.4
OREAS 130 (Aqua Regia) Meas		6.1	28.3	232	1580	7	35	1250	> 10000	1.16	206				5	1.72	25	23	7.26	< 10	< 1	0.55	25
OREAS 130 (Aqua Regia) Cert		6.27	28.8	226	1630	8.25	35.2	1300	16900	1.10	205				3.05	1.81	27.1	23.2	7.27	4.78	0.670	0.500	26.4
Oreas 237 (Fire Assay) Meas	2220																						
Oreas 237 (Fire Assay) Cert	2210																						
Oreas 237 (Fire Assay) Meas	2170																						
Oreas 237 (Fire Assay) Cert	2210																						
Oreas E1336 (Fire Assay) Meas	492																						
Oreas E1336 (Fire Assay) Cert	510																						
Oreas E1336 (Fire Assay) Meas	523																						
Oreas E1336 (Fire Assay) Cert	510																						
860359 Orig		< 0.2	< 0.5	112	620	< 1	73	< 2	30	1.95	< 2	< 10	25	< 0.5	< 2	1.06	46	34	5.39	< 10	< 1	0.04	21
860359 Dup	. F	< 0.2	< 0.5	112	619	< 1	/5	3	30	1.96	< 2	< 10	25	< 0.5	< 2	1.07	46	34	5.35	< 10	< 1	0.04	21
860366 Dup	< 5																						
860367 Orig	< 3	< 0.2	< 0.5	53	352	< 1	15	3	41	1.23	6	< 10	140	< 0.5	< 2	1.33	10	14	2 10	< 10	< 1	0.23	< 10
860367 Dup		< 0.2	< 0.5	54	348	< 1	15	3	42	1.22	6	< 10	140	< 0.5	< 2	1.32	11	14	2.09	< 10	< 1	0.23	< 10
860376 Orig	< 5																						

QC

Activation Laboratories Ltd.

Report: A21-07060

Analyte Symbol	Au	Ag	Cd	Cu	Mn	Мо	Ni	Pb	Zn	Al	As	В	Ba	Be	Bi	Ca	Co	Cr	Fe	Ga	Hg	К	La
Unit Symbol	ppb	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm							
Lower Limit	5	0.2	0.5	1	5	1	1	2	2	0.01	2	10	10	0.5	2	0.01	1	1	0.01	10	1	0.01	10
Method Code	FA-AA	AR-ICP																					
860376 Dup	< 5																						
860386 Orig	< 5																						
860386 Dup	< 5																						
Method Blank		< 0.2	< 0.5	< 1	< 5	< 1	< 1	< 2	< 2	< 0.01	< 2	< 10	< 10	< 0.5	< 2	< 0.01	< 1	< 1	< 0.01	< 10	< 1	< 0.01	< 10
Method Blank		< 0.2	< 0.5	< 1	< 5	< 1	< 1	< 2	< 2	< 0.01	< 2	< 10	< 10	< 0.5	< 2	< 0.01	< 1	< 1	< 0.01	< 10	< 1	< 0.01	< 10
Method Blank	< 5																						
Method Blank	< 5																						
Method Blank	< 5																						
Method Blank	< 5																						

QC

Activation Laboratories Ltd.

Analyte Symbol	Mg	Na	Р	S	Sb	Sc	Sr	Ti	Th	Те	TI	U	V	W	Y	Zr
Unit Symbol	%	%	%	%	ppm	ppm	ppm	%	ppm	ppm						
Lower Limit	0.01	0.001	0.001	0.01	2	1	1	0.01	20	1	2	10	1	10	1	1
Method Code	AR-ICP	AR-ICP														
OREAS 922 (AQUA REGIA) Meas	1.33	0.030	0.062	0.38	3	3	16		< 20		< 2	< 10	30	< 10	18	12
OREAS 922 (AQUA REGIA) Cert	1.33	0.021	0.063	0.386	0.57	3.15	15.0		14.5		0.14	1.98	29.4	1.12	16.0	22.3
OREAS 923 (AQUA REGIA) Meas	1.41		0.059	0.67	4	3	14		< 20		< 2	< 10	31	< 10	17	24
OREAS 923 (AQUA REGIA) Cert	1.43		0.061	0.684	0.58	3.09	13.6		14.3		0.12	1.80	30.6	1.96	14.3	22.5
OREAS 923 (AQUA REGIA) Meas	1.36		0.057	0.65	3	3	13		< 20		< 2	< 10	29	< 10	16	21
OREAS 923 (AQUA REGIA) Cert	1.43		0.061	0.684	0.58	3.09	13.6		14.3		0.12	1.80	30.6	1.96	14.3	22.5
OREAS 907 (Aqua Regia) Meas	0.23	0.120	0.026	0.07	6	2	13	0.02	< 20	< 1	< 2	< 10	6	< 10	7	49
OREAS 907 (Aqua Regia) Cert	0.221	0.0860	0.0240	0.0660	2.28	2.16	11.7	0.0170	8.04	0.230	0.120	2.15	5.12	0.980	6.52	43.7
Oreas 621 (Aqua Regia) Meas	0.45	0.188	0.034	4.82	118	2	19		< 20		< 2	< 10	11	< 10	7	68
Oreas 621 (Aqua Regia) Cert	0.436	0.160	0.0335	4.50	107	2.20	18.9		5.91		0.770	1.63	10.9	1.00	6.87	55.0
Oreas 621 (Aqua Regia) Meas	0.41	0.174	0.032	4.28	111	2	18		< 20		< 2	< 10	10	< 10	7	63
Oreas 621 (Aqua Regia) Cert	0.436	0.160	0.0335	4.50	107	2.20	18.9		5.91		0.770	1.63	10.9	1.00	6.87	55.0
OREAS 130 (Aqua Regia) Meas	0.91		0.082	6.07	7	3	22	0.03	< 20	1	< 2	< 10	32	18	12	25
OREAS 130 (Aqua Regia) Cert	0.892		0.0860	6.02	4.69	3.42	23.2	0.0270	10.3	0.170	5.92	8.36	33.1	1.40	13.0	19.0
Oreas 237 (Fire Assay) Meas																
Oreas 237 (Fire Assay) Cert																
Oreas 237 (Fire Assay) Meas																
Oreas 237 (Fire Assay) Cert																
Oreas E1336 (Fire Assay) Meas																
Oreas E1336 (Fire Assay) Cert																
Oreas E1336 (Fire Assay) Meas																
Oreas E1336 (Fire Assay) Cert			0.55													
860359 Orig	1.34	0.045	0.050	1.37	3	4	52	0.14	< 20	3	< 2	< 10	37	< 10	8	20
860359 Dup	1.32	0.044	0.050	1.37	< 2	4	53	0.15	< 20	2	< 2	< 10	37	< 10	8	20
860366 Orig																
	0.61	0.050	0.060	0.05		0	20	0.10	. 00	4		. 10		. 10	7	10
860367 Dup	0.00	0.056	0.000	0.20	< 2	2	38	0.18	< 20		< 2	< 10	22	< 10	7	12
860376 Orig	0.00	0.000	0.000	0.20	~ ~ ~	5	57	0.10	~ 20		~ ~ ~	< 10			<u> </u>	10

Activation Laboratories Ltd.

Analyte Symbol	Mg	Na	Р	S	Sb	Sc	Sr	Ti	Th	Te	TI	U	V	W	Y	Zr
Unit Symbol	%	%	%	%	ppm	ppm	ppm	%	ppm							
Lower Limit	0.01	0.001	0.001	0.01	2	1	1	0.01	20	1	2	10	1	10	1	1
Method Code	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP
860376 Dup																
860386 Orig																
860386 Dup																
Method Blank	< 0.01	0.006	< 0.001	< 0.01	< 2	< 1	< 1	< 0.01	< 20	< 1	< 2	< 10	< 1	< 10	< 1	< 1
Method Blank	< 0.01	0.006	< 0.001	< 0.01	< 2	< 1	< 1	< 0.01	< 20	< 1	< 2	< 10	< 1	< 10	< 1	< 1
Method Blank																
Method Blank																
Method Blank																
Method Blank																

Appendix VI

Exploration Permit

