

We are committed to providing <u>accessible customer service</u>. If you need accessible formats or communications supports, please <u>contact us</u>.

Nous tenons à améliorer <u>l'accessibilité des services à la clientèle</u>. Si vous avez besoin de formats accessibles ou d'aide à la communication, veuillez <u>nous contacter</u>.

ASSESSMENT REPORT

VALE CANADA LIMITED

LORNE AND NAIRN TOWNSHIP CLAIMS GEOLOGICAL MAPPING AND ASSAYING

NTS: 41-I-5; 41-I-6

MAY 2023

Jacqueline Trudel, P. Geo Vale Canada Limited May 9th, 2023

TABLE OF CONTENTS

	Page
Executive Summary	3
Introduction	3
Property	4
Location and Access	
Property Status	
Exploration History	
Regional Geology	6
Property Geology	9
Quartz-Diorite	
Metasediments	
Metagabbro	
2022 Mapping Program	9
Mineralisation	
Geochemistry	
Mapping	
Beep-mat reconnaissance	
Conclusions and Recommendations	11
References	12
List of Figures	
Figure 1: Map of the Sudbury Igneous Complex with the mapping area in the red box. Figure 2: Travel route from Vale's Copper Cliff office (A) to the work area (B). Figure 3: Vale clams within the Lorne and Nairn townships	3 4 5
Figure 4: Topographic map with the VTEM anomaly and continuation of the Worthington	1
	10
Figure 5: Plan view of the mapping area (within the red box) with outcrops mapped out by field crew and samples collected geochemistry	y the 20
List of Tables	
Table 1: Expenditures for the 2022 Mapping program	15
Table 2: 2022 Personnel Lorne-Nairn Project	17
Table 3: Abbreviations	19
Table 4: Lorne and Nairn Township Mapping: October 2022 Mapping Observations and Sample Descriptions	21
List of Appendices	
Appendix I. List of expenditures	1 /
Appendix I. List of personnel	14 1 <i>2</i>
Appendix II. List of personner Appendix III. Geological map and rock descriptions	10
Appendix III. Ocological map and lock descriptions	10
Appendix IV. Analytical results / assays	23

EXECUTIVE SUMMARY

Between October 19th - 21st 2022, geological mapping and sampling follow up program were completed on the Lorne and Nairn townships properties by two Geologists-in-training (GITs), one Project Geologist and one Field Technician for Vale Exploration Canada. A total of 3 days were spent in the field.

The objective of the Nairn township mapping was to investigate versatile time electromagnetic (VTEM) anomalies over a previously mapped quartz diorite with beep mats and mapping. The source of the VTEM anomalies was not identified in the field and a follow-up ground electromagnetic (EM) survey is recommended.

The objective of the Lorne township program was to follow up on grab samples from a metagabbro outcrop that returned anomalous precious metals during a field program completed in 2001 and to complete geologic mapping, with particular focus on locating quartz diorite outcrops.

A total of 26 samples were collected and 21 samples were sent for analysis, none of which returned anomalous nickel, copper or precious metals. Quartz diorite was not identified during this mapping program.

INTRODUCTION

The Worthington offset, a radial quartz diorite dike, extends 15 km southwest from the Sudbury Igneous Complex. The offset extends north of the Lorne township property and passes though the Nairn mapping area (figure 1).

Figure 1: Map of the Sudbury Igneous Complex with the mapping area in the red box.

PROPERTY

Location and Access

The Lorne and Nairn township properties are approximately 45 km southwest from the City of Sudbury along Highway 17 (Figure 2). The work areas are located in Lot 12 Concession 4 in Lorne township and Lot 1 Concession 4 in Nairn township. The work areas were accessed by pick-up truck and are walking distance from Highway 17.

Property Status

The Lorne and Nairn township mapping was conducted on two parcels of land, one in each township (Figure 3). Within Nairn Township, work was completed on a Vale Mining Rights Only patent (PIN 73393-0364 (LT)) on the southern side of Highway 17. Within Lorne Township work was completed on Vale's Mining Claim 254187. All surface property owners were contacted prior to commencing the program. Pin 73393-0364 was acquired by Vale (Inco) on March 3rd, 1961, and remains 100% ownership of the mining rights only parcel. Mining claim 254187, previously mining claim S1237374 was staked in June 1999 and is 100% Vale owned. Mining claim 254187 is in good standing until June 2, 2023.

Figure 2: Travel route from Vale's Copper Cliff office (A) to the work area (B).

Figure 3: Vale claims within the Lorne and Nairn townships

Exploration History

The property area has a history of exploration for Cu-Ni, Au, U, and most recently PGE mineralization. Two small historical pits are present on the property, one in barren greywacke, the other in olivine diabase. Production information for the pits is not available. The earliest known work on the property was in the 1950's, when the area was geologically mapped as part of the Inco Township Mapping program.

More recently, in 2001, 23 rock samples were collected and 1:20,000 field mapping was done on Mining Claims 533494 and 254187 (previously known as Mining Claims 1237374 and 1237375). No quartz diorite was located during the program but a PGE anomaly in metagabbro was identified, and follow-up was recommended (Makela, 2001).

In 2003, 3 days of line cutting, and a 5.3 line km magnetic survey was completed. There were no significant anomalies identified from the survey and no further work was recommended (Makela, 2003).

In 2005, further work was completed on Mining Claims 533494 and 254187 (previously known as Mining Claims 1237374 and 1237375), including field mapping and prospecting to map the extent of the Worthington Offset. In addition, 10 samples were taken for geochemical analyses and thin section work. Quartz diorite was mapped, and a surface electromagnetics (EM) survey was recommended for a future program (Makela, 2005)

In 2009, a geophysical program was conducted within Lorne township to locate historical drillholes and conduct borehole geophysics. No significant conductors were identified from the survey of BH 166010; however, borehole EM was recommended for BH166090 (Layman, 2009)

In 2016, dummy probing of located historical drillholes, borehole EM on one historical drillhole and a small surface EM survey were completed on Vale patented land within Lorne township. No follow up was recommended following the program (Forget and Dickie, 2017)

REGIONAL GEOLOGY

The Sudbury Impact Structure lies at the boundary of the Archean Superior Province with the Proterozoic Southern Province, immediately north of the Grenville Province. It formed at ~1850 Ma and consists of three members: the Whitewater Group; the Sudbury Igneous Complex (SIC) which underlies and rings the Whitewater Group (Figure 1); and an outer zone of locally brecciated country rocks (Sudbury breccia).

The Whitewater Group contained within the central depression of the Sudbury Structure consists of four conformable formations generated from impact. These are, in ascending order, the Onaping, Vermilion, Onwatin, and Chelmsford formations. The Onaping Formation consists of a succession of upward-fining breccia units. The Vermilion Formation consists of carbonate, siltstone, and chert units. The Onwatin Formation is comprised of carbonaceous mudstones and siltstones. The Chelmsford Formation is dominated by greywackes.

The Sudbury Igneous Complex (SIC) lies structurally below the Whitewater Group and consists of four main units from base to top: contact sublayer norite, felsic and mafic norite, quartz gabbro, and granophyre. Concentric and radial quartz diorite offset dykes cut the footwall rocks along fracture zones. Footwall or granite breccia occurs as irregular zones varying in thickness from 20 to 225 ft between the SIC and the footwall rocks and is composed of fragments derived from both the SIC and the footwall rocks, contained in a quartz-rich breccia matrix. The granite breccia generally strikes parallel to the basal contact of the SIC but locally, upwellings or tongues project as far as 225 ft into the overlying SIC and underlying footwall rocks. The contact sublayer norite, offset dykes and granite breccia are the main hosts for the nickel-copper-precious metal sulphide ores.

Sudbury breccia represents impact shock features that occur as irregular bodies or dykes throughout the country rocks around the Sudbury structure. It is composed of subrounded fragments, mainly derived from the adjacent host rocks, set in a dark fine-grained matrix which may be fragmental, recrystallized, igneous textured or mylonitic.

Archean gneisses, migmatites, granites and volcanic rocks (>2500 Ma) of the Superior Province lie to the west, northwest and northeast of the SIC. Supracrustal rocks of the Huronian Supergroup are exposed in the Southern Province and lie to the south of the SIC. The Supergroup includes from oldest to youngest; the Elliot Lake Group volcanic and clastic sedimentary rocks; the Hough Lake, Quirke Lake and Cobalt groups consisting of a sequence of conglomerate, mudstone, siltstone and sandstone and the Flack Lake Group consisting of mudstone, siltstone, and sandstone.

Sills and dykes of Nipissing gabbro (approximately 2215 Ma) intrude the Huronian rocks of the Southern Province, and the Superior Province rocks.

Copper, nickel, PGE-Au mineralization occurs in five principal environments:

- 1. As massive to disseminated sulphides at the base of the main mass in the sublayer; These deposits typically occur on the South Range of the Sudbury Structure. They are situated at the contact between the Sudbury Igneous Complex and footwall supracrustal rocks of the Huronian Supergroup and the Creighton and Murray granites. These deposits are generally zoned from massive ore at the footwall to disseminated sulphide ore toward the hanging wall. The massive ores rest directly on the footwall rocks and contain locally derived inclusions consisting of mafic, felsic, and subordinate metasedimentary clasts as well as ultramafic fragments whose source is unknown. The PGE content of these deposits is variable.
- 2. As fine and blebby disseminations and massive stringers within breccias beneath the sublayer; This deposit type occurs on the North and East Ranges of the Sudbury Structure (e.g., Onaping-Levack and Victor areas). These deposits are spatially related to breccia filled embayment structures on the margins of the SIC. The mineralization occurs primarily within brecciated country rocks at the basal contact of the SIC and in fractures in country rocks underlying the breccias. The breccias consist of fragments of country rock, ultramafic inclusions, and rare sublayer and mafic norite in a quartzo-feldspathic matrix. Sulphides occur as fine and blebby disseminations and massive stringers within the breccias, as stringers in footwall fractures and occasionally as disseminations within overlying sublayer norite. The PGE-Au content of these deposits is generally low.

- 3. As veins and stockwork systems in the underlying footwall country rocks; These deposits occur up to 1,600 ft into the underlying footwall and are usually linked to a contact related deposit. Footwall mineralization is often hosted in thick zones of Sudbury Breccia. This breccia is composed of fragments of country rock ranging from microscopic (matrix) to more than 35 ft in diameter that occurs as dykes and irregular masses in all footwall rocks. The deposits are comprised of veins and stockwork systems that are primarily massive chalcopyrite that vary from millimeter scale to greater than 35 ft wide. The edges of the deposits are characterized by stringers that are <3 ft that consist of massive intergrown bornite/chalcopyrite/millerite. Alteration of the host footwall rocks immediately next to the deposits includes quartz carbonate, epidote and chlorite in seams and fractures. Significant PGE-Au mineralization occurs within the main portion of the deposits, but significant concentrations occur in the peripheral sulphide stringers and within altered host rocks.</p>
- 4. Within quartz diorite offset dykes extending radically from the SIC; Deposits within "Offset Dykes" are spatially associated with inclusion rich quartz diorite and with local structural complexities of the dyke (e.g., folding, displacements etc.). Inclusion quartz diorite (IQD) is generally located within the central portion of the offset, but on occasion may occur to the dyke boundary. Up to 75% of the inclusions are derived from local sources. Inclusions vary in diameter from <1/2" to several feet and volumetrically ranges from a few percent to locally >80% of the IQD. The marginal areas of the dykes are characterized by fine-grained inclusion free quartz diorite (QD). Contacts between the QD and IQD are variable and may be diffuse to gradational in nature to extremely sharp. Mineralization consists of massive and semi-massive Cu-Ni bearing sulphides haloed by disseminated and blebby sulphides. The massive sulphide (>80 volume % sulphide) is dominantly pyrrhotite and pentlandite. The massive sulphide thins and splays into 1 inch to 3 ft thick copper-rich stringer zones within the disseminated sulphide halo. Semi-massive sulphides (50-80% volume sulphide) are also typically pyrrhotite and pentlandite rich but are spatially associated with chalcopyrite-rich patches. The PGE-Au minerals tend to occur at sulphide/silicate boundaries and are spatially associated with more Cu-rich sulphide.
- 5. Shear zones and related structural traps; These deposits occur within fault zones at the contact of the SIC and metasedimentary rock of the Stobie Formation of the Huronian Supergroup. Examples of this type of deposit include the East, Falconbridge, and Garson mines. The ore zones consist of two styles of mineralization including a contorted schist inclusion sulphide and an inclusion massive sulphide. Contorted schist inclusion sulphide is a sulphide breccia containing inclusions of norite and Huronian supracrustal rocks. The ore minerals are pyrrhotite, pentlandite and chalcopyrite. Inclusion massive sulphide contains inclusions of Huronian supracrustal rocks, quartz and jasperoid. This ore type is characterized by, silicified footwall rocks, strong deformation of the mineralization and late cross cutting quartz carbonate fractures with sphalerite, marcasite, and galena indicative of later hydrothermal activity.

PROPERTY GEOLOGY

The area mapped within Lorne and Nairn Townships consists predominantly of 2.45-2.22 Ga Huronian Supergroup metasedimentary rocks, a thick package of primarily sedimentary rocks (mudstones, carbonates, sandstones and conglomerates). These units are in intrusive contact with a metagabbro of a regionally extensive Nipissing Diabase sill. A segment of the northeast-trending Worthington Quartz Diorite Offset dyke occurs adjacent the metasediment-metagabbro contact in the south portion of the property.

Quartz diorite

The Worthington Offset, located on the southwest corner of the SIC, is a quartz diorite offset dike that hosts several known Cu-Ni sulphide orebodies (Figure 3). The offset is defined by two separate quartz diorite phases, characterized by their lithic fragments and sulphide inclusions. The first phase of quartz diorite is homogenous, generally devoid of inclusions, and mainly occurs on the margins of the dike. A secondary phase of quartz diorite, which intrudes the first phase, is an inclusion-rich quartz diorite (IQD) with inclusions of quartz diorite and footwall rocks and is generally found at the center of the dike (Hecht et al., 2008). The known Ni-Cu sulphide orebodies are predominantly hosted within the IQD.

Metasediments

The exposures examined consist primarily of interbedded siltstone, quartzite, arkose and greywacke, with subordinate argillite component of the Espanola Group within the Huronian Supergroup. Bedding ranges from thin laminations to locally very coarse beds greater than 1 m. Overall orientation is northeast striking, moderate to steeply southeast dipping. Foliation and shearing observed trends subparallel bedding and is developed in the siltstone to argillite beds. Quartz and carbonate veinlets parallel bedding are locally developed. Traces of pyrite were observed in one occurrence of sandstone.

Metagabbro

Exposures consist primarily of fine-grained to medium-grained, dark grey to greenish grey, blocky to felty textured, non-magnetic amphibolitized gabbro. Quartz-amphibole-chlorite alteration ribs are a distinctive feature. Locally coarser grained more leucocratic phases as irregular patches in fine grained massive metagabbro were observed.

2022 MAPPING PROGRAM

The mapping program was conducted within Nairn and Lorne townships from October 19th to October 21st, 2022, by two GITs (Kyle Dzuirban and Adam Tomini), one Senior Project Geologist (Linette Macinnis) and one Field Technician (Shane O'Neil) for Vale Exploration Canada. The goal of the program was to: a) follow-up on a versatile time domain electromagnetic (VTEM) anomaly identified within the potential continuation of the Worthington Offset to the southwest within the Nairn Township property (figure 4) and, b) follow up on the anomalous PGE

metagabbro grab sample collected during the 2001 mapping program at the Lorne Township property. The programs included mapping, prospecting with the use of a beep-mat and grab sample collection. A total of 23 samples were taken and 19 samples were submitted for whole rock geochemistry.

Figure 4: Topographic map with the VTEM anomaly and continuation of the Worthington offset.

Mineralisation

No mineralisation of interest was found during the mapping program. Only trace amount of pyrite occurred in the rocks.

Geochemistry

Nineteen samples (23 including two standards and two blanks) collected from the mapping program were sent to ALS Canada Limited for whole rock analysis (ME-ICP06), PGM-ICP23

(analyses for Pt, Pd and Au) and ME-ICP61 (33 element four acid ICP-AES) (Figure 5 in appendix IV).

Whole rock analysis uses a lithium borate fusion followed by an XRF and ICP-AES instrument to determine the major-rock forming elements. For these samples, ME-ICP06 is a fused bead acid digestion, followed by ICP-AES.

PGM-ICP23 is the use of fire assay and ICP-AES finish to analyze a 30 g sample of rock for Pd, Pt and Au. ME-ICP61 is the low-grade option for nickel exploration samples where a four acid digestion analyses for 33 elements at 1 ppm (ALS, 2023).

The assay certificate showing the complete results of the analyses are included below in Appendix IV.

Mapping

A total of 0.25 km² was mapped within Lorne and Nairn townships. IPad tablets with the ArcGIS Field Maps application was used for the mapping reconnaissance where all lithological mapping, grab sample descriptions, and grab sample data was collected. During the mapping program, solely outcrops of metasedimentary and metagabbroic rocks were identified. The metasedimentary rocks were characterised as a fine grained, thinly bedded, grey, sugary textured unit. The metagabbro was characterised as a medium grained, gray-green, igneous textured, hematite-stained unit with outcrops that appeared silicified.

No quartz diorite was located in the mapping area.

Beep-mat reconnaissance

Beep-mats are efficient tools that are dragged along the ground to test for magnetic susceptibility and relative electromagnetic conductivity. They are most effective where soil cover is thin or not present. Beep-maps were used within the Nairn township property in an attempt to locate and explain the VTEM anomaly. The beep-mats did not detect any conductive or magnetic material.

CONCLUSIONS AND RECCOMENDATIONS

The 2022 mapping program failed to locate quartz diorite and grab samples taken did not return anomalous Ni, Cu, or precious metals indicative of offset-style mineralization. The VTEM anomaly remains unexplained and therefore a small 600 m two-line surface EM survey is recommended over the anomaly in Nairn township in order to validate it.

REFERENCES

Forget, C. & Dickie, S. (2017). Lorne Township Property Assessment Report. Vale Exploration Canada. 29p.

Hecht, L., Wittek, A., Riller, U., Mohr, T., Schmitt, R. T., & Grieve, R. A. (2008). Differentiation and emplacement of the Worthington Offset Dike of the Sudbury impact structure, Ontario. *Meteoritics & Planetary Science*, *43*(10), 1659-1679.

Layman, M. (2009). Vale Inco Limited Geophysical survey Lorne Township NTS: 4-I-5. Vale Exploration Canada. *20p*

Makela, E.F. (2001). Inco Limited Reconnaissance Geological Mapping and assaying Lorne Township NTS:41-I-5. Inco Technical Services Limited. *24p*.

Makela, E.F. (2005). Inco Limited Reconnaissance Geological Mapping and assaying Lorne Township NTS: 4-I-5. Inco Technical Services Limited. *27p*

Makela, E.F. (2003). Inco Limited Magnetic Survey Lorne Township NTS:41-I-5. Inco Technical Services Limited. 20p.

Certificates of Author Qualifications

I, Jacqueline Trudel of 77 Brunet Street, Sudbury, Ontario, hereby certify that:

- 1. I am a 2018 graduate of Laurentian University of Sudbury with a Master of Science (2-year) degree in Geology.
- 2. I am a professional Geoscientist registered in the province of Ontario with the practising member licence #3517.
- 3. I have practised in my profession continuously since 2018.
- 4. I am currently employed as a Sr. Geologist, Project with Vale, 337 Power Street, Copper Cliff, Ontario, P0M 1N0.
- 5. The work documented in this report was conducted under my direct supervision.
- 6. I am the author of this report.

Jacquelin Trudel

Jacqueline Trudel May 9th, 2023

APPENDIX I LIST OF EXPENDITURES

Expenditure Summary for 2022

Costs are applied to the mapping program, which is the project planning and logistics labor from the geologists, geologist-in-training, and the field technicians (outlined in appendix II), the analytical work completed and the transportation rental. The total amount applied is \$8,578.18. Details for each category are provided below.

Table 1: Expenditures for the 2022 Mapping program

Item	Cost
2 x geologist-in-training and 1 x field technician	\$4,219.92
2 x project geologist	\$3,000
Assays	\$1,097.26
3 days of truck rental	\$261
Total:	\$8,578.18

APPENDIX II LIST OF PERSONNEL

Table 2: 2022 Personnel Lorne-Nairn Project

Geology Personnel	Position	Work	Activity
Jacqueline Trudel	Project geologist	October 2022 /April	Project logistics, planning and
		2023	compilation, report writing
Linette Macinnis	Project geologist	October 2022	Field work
Kyle Dzuirban	Geologist-in-training	October 2022	Field work
Adam Tomini	Geologist-in-training	October 2022	Field work
Geotechnical Personnel			
Shane O'Neil	Geological technician	October 2022	Field work

APPENDIX III GEOLOGICAL MAP AND ROCK DESCRIPTIONS

Table 3: Abbreviations

Au	Gold
Cu	Copper
EM	Electromagnetic
FLT	Fault
Ga	Billion years
GIT	Geologist-in-training
ICP-AES	Inductively coupled plasma atomic
	emission spectrometry
IQD	Inclusions quartz diorite
Ma	Million years
ME-ICP	Multi-element inductively coupled
	plasma
MTGB	Metagabbro
MTSD	Metasediment
Ni	Nickel
Pd	Palladium
PGE	Platinum group elements
PGM	Platinum group minerals
Pt	Platinum
SIC	Sudbury Igneous Complex
QD	Quartz diorite
QDIA	Quartz Diabase
VTEM	Versatile time domain
	electromagnetic
XRF	X-ray fluorescence

Figure 5: Plan view of the mapping area (within the red box) with outcrops mapped out by the field crew and samples collected geochemistry.

Table 4: Lorne and Nairn Township Mapping: October 2022 Mapping Observations and Sample Descriptions (UTM NAD 27 Zone17)

Station	RX Code	UTM E	UTM N	Rock Code	Structure	Orientation	Mineralisation	Description
LN-50	RX401212	456239	5130945	MTSD				Fine grained, grey, sugary texture
LN-51	RX401213	456210	5130923	QDIA				
LN-52	RX401214			MTSD				
LN-53	RX401215	456248	5130855	MTGB				
LN-59	RX401217	456241	5130842	MTGB				
LN-62	RX401218	456135	5130936	MTSD				Thinly bedded med grey sugary texture nvs
LN-67	RX401219			MTSD				
LN-68	RX401220	456302	5130855	MTGB				
LN-70	RX401221	456889	5131041	MTGB				
LN-70		456888	5131040	MTGB	FLT	175/80		fault zone, ~10m wide. clay gouge throughout
LN-72	RX401222			MTGB				Medium-grained, grey- green, hematite stained, sections of silicified rock along fracture plains
LN-73	RX401223			MTGB				Medium-grained, grey- green, hem stained, igneous texture

Station	RX Code	UTM E	UTM N	Rock Code	Structure	Orientation	Mineralisation	Description
LN-74	RX401224	457051	5130965	MTGB				Medium-grained, grey- green, igneous texture
LN-75	RX401225	457127	5130916	MTGB				Silicified metagabbro
LN-75		457125	5130914	MTGB	FLT	132/88		
LN-76	RX401226	457156	5130906	MTSD				Fine-grained, grey, sugary texture
LN-77	RX401227	457108	5130969	MTGB				Medium-grained, grey- green, silicified, igneous texture
LN-78	RX401228	456992	5131025	MTGB				
LN-79	RX401229	456877	5131074	MTGB/OLDI?				
		456882	5131076	FLT		180/85		1.5 m wide fault with clay gouge
LN-80	RX401230	456844	5131094	MTGB				Medium-grained, grey- green, igneous texture, hem stained feldspar
LN-74	RX401231			MTGB				Medium-grained, grey- green, igneous (from the same outcrop of the 2001 anomalous sample)

APPENDIX IV ANALYTICAL RESULTS/ASSAYS

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

ALS Canada Ltd.

To: VALE CANADA LIMITED - NORTH AMERICAN EXPLORATION Page 1 of 1 CLEAN AER PROJECT OFFICE SMELTER COMPLEX 18 RINK STREET, BUILDING 517 COPPER CLIFF ON POM 1N0

INVOICE NUMBER 6283541

B	BILLING INFORMATION		QUANTITY	ANALY CODE –	SED FOR DESCRIPTION	UNIT PRICE	TOTAL
Certificate: Sample Type: Account: Date: Project: P.O. No.: Quote: Terms: Comments: San	SD23008025 Rock ITSNAE 27-FEB-2023 R000454.03.21.01.01 1027980 Due on Receipt mple Drop off on January 10th, 2023	CI	1 21 23 23.33 2 23 23 21.92 19	BAT-01 PREP-31Y ME_ICP06 PREP-31Y LOG-23 PGM-ICP23 ME-ICP61 SPL-21X SPL-21X	Administration Fee Crush, Rotary Split, Pulverize Whole Rock Pkg – ICP-AES w/ LOI Weight Charge (kg) – Crush, Rotary Split, Pulverize Pulp Login – Rcvd with Barcode Pt, Pd, Au 30g FA ICP 33 element four acid ICP-AES Weight Charge (kg) – Addnl Crush Split w No Analysis Addnl Crush Split w No Analysis	22.54 5.11 17.00 0.55 0.43 12.60 8.20 0.31 1.33	22.54 107.31 391.00 12.83 0.86 289.80 188.60 6.80 25.27
					SUBTOTAL (CA	D) \$	1,045.01

To: VALE CANADA LIMITED - NORTH AMERICAN EXPLORATION

ATTN: JACQUELINE TRUDEL CLEAN AER PROJECT OFFICE SMELTER COMPLEX 18 RINK STREET, BUILDING 517 COPPER CLIFF ON POM 1N0 R100938885 GST \$ 52.25

TOTAL PAYABLE (CAD) \$

) **\$** 1,097.26

Payment may be made by: Cheque or Bank Transfer

 Beneficiary Name:
 ALS Canada Ltd.

 Bank:
 Royal Bank of Canada

 SWIFT:
 ROYCCAT2

 Address:
 Vancouver, BC, CAN

 Account:
 003-00010-1001098

 Please send payment info to accounting.canusa@alsglobal.com

Please Remit Payments To : ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: VALE CANADA LIMITED - NORTH AMERICAN EXPLORATION CLEAN AER PROJECT OFFICE SMELTER COMPLEX 18 RINK STREET, BUILDING 517 COPPER CLIFF ON POM 1N0

Page: 2 – A Total # Pages: 2 (A – D) Plus Appendix Pages Finalized Date: 27-FEB-2023 Account: ITSNAE

Project: R000454.03.21.01.01

									0	CERTIFIC	CATE O	F ANAL	YSIS.	SD230	08025	
Sample Description	Method Analyte Units LOD	WEI-21 Recvd Wt. kg 0.02	CRU-QC Pass2mm % 0.01	PUL-QC Pass75um % 0.01	PGM-ICP23 Au oz/ton 0.00003	PGM-ICP23 Pt oz/ton 0.0001	PGM-ICP23 Pd oz/ton 0.00003	ME-ICP06 SiO2 % 0.01	ME-ICP06 Al2O3 % 0.01	ME-ICP06 Fe2O3 % 0.01	ME-ICP06 CaO % 0.01	ME-ICP06 MgO % 0.01	ME-ICP06 Na2O % 0.01	ME-ICP06 K2O % 0.01	ME-ICP06 Cr2O3 % 0.002	ME-ICP06 TiO2 % 0.01
RX401212 RX401213 RX401214 RX401215 RX401216 RX401217 RX401217 RX401218 RX401219		0.95 0.74 0.95 0.90 0.07 1.00 1.12 1.30	76.1	88.8 91.5	0.00018 0.00006 <0.00003 0.00006 0.00499 <0.00003 <0.00003 <0.00003	0.0004 0.0005 <0.0001 0.0005 0.0047 0.0005 0.0004 0.0005	0.00012 0.00038 <0.00003 0.00032 0.00303 0.00018 0.00020 0.00012	50.0 50.1 48.1 51.3 49.3 51.5 51.9 52.2	6.08 14.25 14.85 5.47 16.20 5.36 8.98 4.89	10.90 15.25 17.05 10.35 12.35 10.40 10.95 10.55	9.72 9.56 7.83 8.37 7.84 8.71 9.00 9.02	16.95 5.66 5.07 18.65 5.05 18.90 14.40 19.40	0.53 2.45 3.30 0.67 2.29 0.44 1.30 0.47	0.55 0.80 1.50 0.17 2.74 0.14 0.45 0.23	0.320 0.020 0.009 0.349 1.610 0.359 0.233 0.233	0.36 1.06 2.88 0.30 1.18 0.30 0.47 0.30
RX401220 RX401221 RX401223 RX401223 RX401233 RX401224 RX401225 RX401225 RX401226		1.25 0.93 1.07 1.35 0.97 1.23 1.12 1.12			<0.00003 <0.00003 0.00018 <0.00003 0.00102 <0.00003 <0.00003	 0.0006 <0.0001 0.0002 0.0008 <0.0001 0.0005 <0.0001 0.0001 	0.00015 0.00020 0.00050 0.00137 <0.00003 0.00125 0.00003 <0.00003	52.8 52.1 51.9 51.7 97.8 50.0 75.1 82.2	4.92 13.80 14.15 1.10 13.35 13.35 9.19	7.89 8.96 0.56 13.30 3.74 2.06	8.76 11.95 5.99 8.75 0.03 9.45 0.36 0.15	20.0 11.25 10.75 10.55 0.05 8.01 1.52 0.73	0.37 1.44 2.70 1.48 0.19 2.02 1.82 1.23	0.35 0.44 2.52 1.42 0.20 0.66 2.81 2.81	0.396 0.113 0.077 0.079 0.010 0.040 0.015 0.013	0.30 0.38 0.33 0.32 0.03 0.83 0.46 0.27
RX401232 RX401227 RX401228 RX401229 RX401230 RX401234		0.07 1.20 1.15 2.13 1.24 0.94			0.00604 0.00006 0.00003 <0.00003 <0.00003 <0.00003 0.00005	0.0519 0.0004 0.0002 0.0002 0.0002 <0.0002 <0.0001	0.0256 0.00029 0.00044 0.00020 0.00018 <0.00003	47.5 53.8 51.8 51.5 48.7 97.5	13.65 14.95 15.35 13.95 12.70 1.17	10.65 12.75 10.30 9.00 9.80 0.69 12.20	7.57 8.31 10.25 11.85 9.18 0.05 9.97	14.45 4.78 7.42 10.70 12.25 0.07 7.47	1.39 1.73 2.05 1.53 1.50 0.23	0.60 0.97 0.50 0.35 0.76 0.19	1.480 0.009 0.031 0.120 0.144 0.011	0.44 1.04 0.61 0.42 0.35 0.03
RX401231		0.67			0.00005	0.0004	0.00044	48.2	13.55	13.20	9.97	7.47	1.58	0.64	0.017	1.03

ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: VALE CANADA LIMITED - NORTH AMERICAN EXPLORATION CLEAN AER PROJECT OFFICE SMELTER COMPLEX 18 RINK STREET, BUILDING 517 COPPER CLIFF ON POM 1N0

Page: 2 – B Total # Pages: 2 (A – D) Plus Appendix Pages Finalized Date: 27–FEB–2023 Account: ITSNAE

Project: R000454.03.21.01.01

CERTIFICATE OF ANALYSIS SD23008025

Sample Description	Method Analyte Units LOD	ME-ICP06 MnO % 0.01	ME-ICP06 P2O5 % 0.01	ME-ICP06 SrO % 0.01	ME-ICP06 BaO % 0.01	OA-GRA05 LOI % 0.01	TOT-ICP06 Total % 0.01	ME-ICP61 Ag ppm 0.5	ME-ICP61 AI % 0.01	ME-ICP61 As ppm 5	ME-ICP61 Ba ppm 10	ME-ICP61 Be ppm 0.5	ME-ICP61 Bi ppm 2	ME-ICP61 Ca % 0.01	ME-ICP61 Cd ppm 0.5	ME-ICP61 Co ppm 1
RX401212 RX401213 RX401214 RX401215 RX401216		0.18 0.21 0.21 0.19 0.17	0.03 0.15 0.61 0.02 0.42	<0.01 0.02 0.04 0.01 0.07	0.01 0.03 0.07 <0.01 0.08	2.61 1.02 0.10 3.34 1.15	98.24 100.58 101.62 99.19 100.45	<0.5 <0.5 <0.5 <0.5 0.8	3.22 7.50 7.69 2.90 8.48	చ్ చ్ 7 57	100 290 690 40 720	<0.5 0.6 1.5 <0.5 1.7	2 2 2 2 2 5	6.86 6.79 5.50 6.02 5.70	<0.5 <0.5 <0.5 <0.5 <0.5	62 52 49 67 76
RX401217 RX401218 RX401219 RX401220 RX401221		0.18 0.19 0.20 0.19 0.16	0.02 0.04 0.02 0.01 0.02	0.01 0.01 <0.01 0.01 0.02	<0.01 0.01 0.01 0.01 0.01	2.93 2.62 2.74 2.80 1.31	99.25 100.55 100.41 101.52 101.95	<0.5 <0.5 <0.5 <0.5 <0.5	2.80 4.68 2.58 2.60 7.14	ත් 6 ත් ත් ත් ත්	40 120 50 60 70	<0.5 <0.5 <0.5 <0.5 <0.5	3 2 2 <2 <2	6.16 6.24 6.28 6.12 8.24	<0.5 <0.5 <0.5 <0.5 <0.5	65 59 69 69 50
RX401222 RX401223 RX401233 RX401224 RX401225		0.14 0.15 0.01 0.19 0.03	0.03 0.02 0.01 0.06 0.05	0.01 0.03 <0.01 0.02 0.02	0.04 0.02 <0.01 0.01 0.09	3.13 2.78 0.27 1.67 1.89	99.31 100.41 100.26 99.61 101.26	<0.5 <0.5 <0.5 <0.5 <0.5	7.20 6.85 0.58 6.87 6.70	112 39 <5 9 <5	310 160 10 110 750	<0.5 <0.5 <0.5 0.5 1.4	<2 <2 <2 2 2 <2	4.15 6.08 0.03 6.41 0.26	<0.5 <0.5 <0.5 <0.5 12.4	70 56 <1 54 19
RX401226 RX401232 RX401227 RX401228 RX401229		0.02 0.16 0.18 0.16 0.15	0.03 0.11 0.10 0.05 0.03	0.01 0.04 0.02 0.03 0.02	0.07 0.02 0.02 0.01 0.01	1.27 1.36 0.93 1.61 0.85	100.05 99.42 99.59 100.17 100.48	<0.5 <0.5 <0.5 <0.5 <0.5	4.78 7.00 7.34 7.92 7.09	5 \$ 6 \$ \$	670 190 220 90 70	0.9 0.5 <0.9 <0.5 <0.5	4 <2 2 2 2	0.12 5.13 5.87 7.23 8.14	11.1 <0.5 <0.5 <0.5 <0.5	15 86 47 46 47
RX401230 RX401234 RX401231		0.16 0.01 0.18	0.06 0.01 0.06	0.02 <0.01 0.02	0.02 <0.01 0.01	3.26 0.36 3.17	98.90 100.32 99.10	<0.5 <0.5 <0.5	6.35 0.63 7.13	ත් ත් 60	140 10 110	<0.5 <0.5 <0.5	2 <2 2	6.22 0.04 6.91	<0.5 <0.5 <0.5	50 1 73

ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry To: VALE CANADA LIMITED - NORTH AMERICAN EXPLORATION CLEAN AER PROJECT OFFICE SMELTER COMPLEX 18 RINK STREET, BUILDING 517 COPPER CLIFF ON POM 1N0

Page: 2 - C Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 27-FEB-2023 Account: ITSNAE

Project: R000454.03.21.01.01

CERTIFICATE OF ANALYSIS SI	D23008	025
----------------------------	--------	-----

Sample Description	Method	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61
	Analyte	Cr	Cu	Fe	Ga	K	La	Li	Mg	Mn	Mo	Na	Ni	P	Pb	S
	Units	ppm	ppm	%	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm	%
	LOD	1	1	0.01	10	0.01	10	10	0.01	5	1	0.01	1	10	2	0.01
RX401212 RX401213 RX401214 RX401215 RX401216		1545 106 53 1680 9460	62 186 68 39 2440	7.32 10.25 11.25 7.04 8.33	10 20 30 10 20	0.46 0.67 1.23 0.14 2.34	<10 10 30 <10 30	10 10 10 10 20	10.45 3.37 2.95 11.55 2.98	1315 1555 1530 1380 1230	1 1 <1 9	0.39 1.85 2.41 0.50 1.66	361 82 60 384 2380	140 630 2560 100 1900	7 8 4 <2 20	<0.01 0.07 0.13 0.01 1.18
RX401217		1710	15	6.92	10	0.11	<10	10	11.50	1275	ব	0.32	392	80	<2	0.01
RX401218		1050	61	7.41	10	0.37	<10	20	8.62	1375	ব	0.96	282	160	<2	0.01
RX401219		1780	33	7.17	10	0.20	<10	10	11.85	1450	ব	0.35	412	80	3	<0.01
RX401220		1775	20	7.24	10	0.29	<10	10	12.25	1415	1	0.28	434	60	<2	<0.01
RX401221		494	56	6.08	10	0.37	<10	10	6.67	1160	ব	1.07	233	120	5	0.02
RX401222		352	196	5.40	10	2.06	<10	20	6.42	1055	<1	1.95	308	110	11	0.03
RX401223		344	456	6.01	10	1.16	<10	20	6.13	1110	<1	1.10	319	90	7	0.06
RX401233		56	3	0.40	<10	0.16	10	<10	0.03	42	5	0.13	4	20	<2	0.02
RX401224		195	9	8.98	20	0.53	10	20	4.62	1405	1	1.47	143	260	6	0.01
RX401225		94	34	2.50	20	2.39	30	20	0.87	253	3	1.33	38	250	65	0.13
RX401226 RX401232 RX401227 RX401228 RX401229		69 7250 54 149 516	36 409 139 101 60	1.44 7.15 8.68 7.08 6.08	10 10 20 20 10	2.38 0.48 0.78 0.41 0.30	20 10 10 10 <10	10 10 20 20 10	0.43 8.58 2.73 4.38 6.26	155 1145 1355 1225 1110	3 1 <1 <1	0.92 0.99 1.30 1.55 1.14	24 1240 71 133 221	140 480 450 250 140	55 10 14 9 5	0.10 0.20 0.07 0.03 0.02
RX401230		614	160	6.61	10	0.63	<10	40	7.08	1110	<1	1.09	253	240	5	0.03
RX401234		66	2	0.48	<10	0.16	10	<10	0.04	56	5	0.16	6	30	\$2	0.01
RX401231		91	36	9.06	20	0.53	10	20	4.36	1390	<1	1.21	121	260	5	0.02

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry To: VALE CANADA LIMITED - NORTH AMERICAN EXPLORATION CLEAN AER PROJECT OFFICE SMELTER COMPLEX 18 RINK STREET, BUILDING 517 COPPER CLIFF ON POM 1N0

Page: 2 – D Total # Pages: 2 (A – D) Plus Appendix Pages Finalized Date: 27–FEB–2023 Account: ITSNAE

Project: R000454.03.21.01.01

CERTIFICATE OF ANALYSIS SD23008025

Sample Description	Method Analyte Units LOD	ME-ICP61 Sb ppm 5	ME-ICP61 Sc ppm 1	ME-ICP61 Sr ppm 1	ME-ICP61 Th ppm 20	ME-ICP61 Ti % 0.01	ME-ICP61 TI ppm 10	ME-ICP61 U ppm 10	ME-ICP61 V ppm 1	ME-ICP61 W ppm 10	ME-ICP61 Zn ppm 2	
RX401212 RX401213 RX401214 RX401215 RX401216		÷ ÷ ÷ ÷ ÷	42 39 29 41 26	19 194 365 39 568	<20 <20 <20 <20 <20 <20	0.19 0.61 1.61 0.16 0.66	<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	240 296 239 235 327	<10 <10 <10 <10 <10	74 144 153 74 139	
RX401217 RX401218 RX401219 RX401220 RX401221		5 5 5 5 5	41 37 42 44 35	24 99 35 23 167	<20 <20 <20 <20 <20	0.15 0.21 0.17 0.17 0.21	<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	236 219 240 249 221	<10 <10 <10 <10 <10	67 72 67 75 63	
RX401222 RX401223 RX401233 RX401224 RX401225		5 5 5 5 5	33 31 <1 35 9	94 247 7 191 170	<20 <20 <20 <20 20	0.18 0.17 0.01 0.46 0.26	<10 <10 <10 <10 <10	<10 <10 <10 <10 10	195 254 3 239 68	<10 <10 <10 <10 <10	75 71 <2 92 2040	
RX401226 RX401232 RX401227 RX401228 RX401229		÷ ÷ ÷ ÷ ÷	5 20 29 30 32	78 281 184 211 149	20 <20 <20 <20 <20	0.16 0.24 0.60 0.35 0.24	<10 <10 <10 <10 <10	10 <10 <10 <10 <10	35 181 201 202 209	<10 <10 <10 <10 <10	1470 97 106 74 59	
RX401230 RX401234 RX401231		<5 <5 <5	32 1 43	171 8 223	<20 <20 <20	0.19 0.01 0.61	<10 <10 <10	<10 <10 <10	215 4 288	<10 <10 <10	76 2 90	