

We are committed to providing <u>accessible customer service</u>. If you need accessible formats or communications supports, please <u>contact us</u>.

Nous tenons à améliorer <u>l'accessibilité des services à la clientèle</u>. Si vous avez besoin de formats accessibles ou d'aide à la communication, veuillez <u>nous contacter</u>. Assessment Report On the Band Ore Project Thunder Bay Mining Division Northwestern Ontario

NTS MAP SHEET 52B09 Hagey – Conacher Township

Prepared by Tommy Clark, G.I.T. Clark Exploration Consulting Inc. March 27, 2023 941 Cobalt Crescent, Thunder Bay, ON P7B 5Z4

Table of Contents

1.0 SUMMARY	1
2.0 INTRODUCTION	2
3.0 ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE &	
PHYSIOGRAPHY	5
4.0 REGIONAL GEOLOGY	6
5.0 LOCAL AND PROPERTY GEOLOGY	9
6.0 EXPLORATION HISTORY	11
7.0 2023 PROSPECTING PROGRAM	12
8.0 SAMPLE PREPARATION, ANALYSIS AND SECURITY	18
9.0 INTERPRETATIONS AND CONCLUSIONS	19
10.0 RECOMMENDATIONS	26
11.0 REFERENCES	27
APPENDIX	30

Table of Figures

FIGURE 1: BAND ORE PROPERTY LOCATION MAP	i
FIGURE 2: BAND ORE MINING CLAIMS	4
FIGURE 3: BAND ORE PROPERTY REGIONAL GEOLOGY	8
FIGURE 4: BAND ORE PROPERTY GEOLOGY	10
FIGURE 5: BAND ORE PROSPECTING TRAILS WEST	15
FIGURE 6: BAND ORE PROSPECTING TRAILS EAST	16
FIGURE 7: BAND ORE PROSPECTING TRAILS CENTRAL	17
FIGURE 8: GRAB SAMPLE AU VALUES: WESTERN ZONE MAP	23
FIGURE 9: GRAB SAMPLE AU VALUES: EASTERN ZONE MAP	24
FIGURE 10: GRAB SAMPLE AU VALUES: CENTRAL ZONE MAP	25

Tables

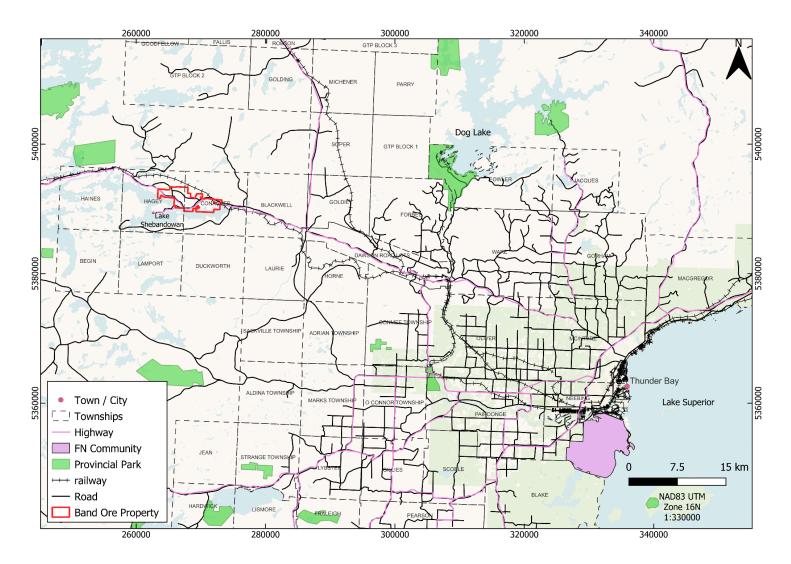
TABLE 1: CLAIM SAMPLES	14
TABLE 2: SIGNIFICANT ASSAY SAMPLES	19
TABLE 3: BAND ORE PROPERTY CLAIMS	31
TABLE 3: BAND ORE PROPERTY PATENTS	35
TABLE 4: BAND ORE PROPERTY LEASE	36

1.0 SUMMARY

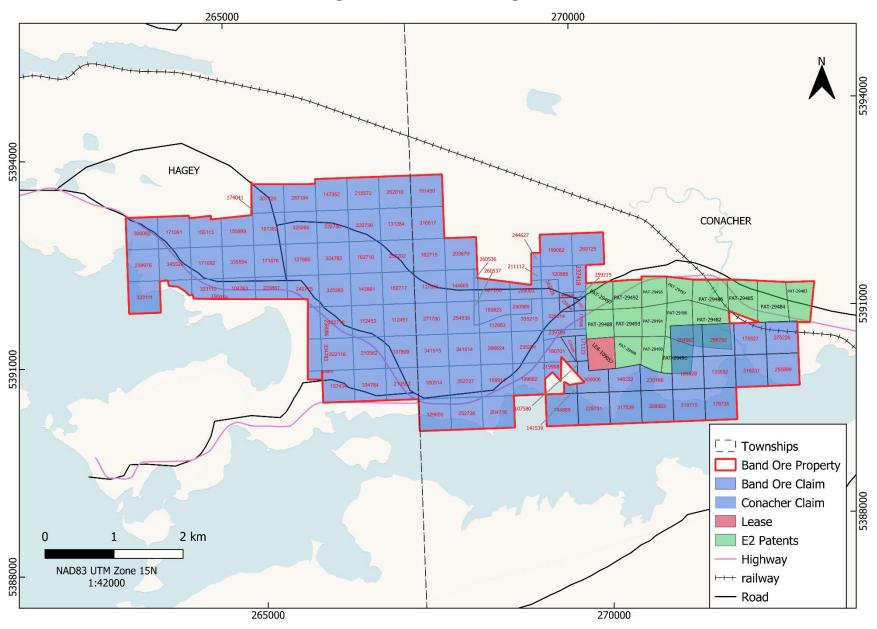
The Band Ore property is located within the Conacher and Hagey Townships within the Thunder Bay Mining District. The property is composed of 109 claims, 16 patents and 1 mining lease, with a total of 1646 hectares and a total work requirement of \$28,600 annually.

The Band Ore property is within the Shebandowan greenstone belt, located in the Wawa Subprovince. The Wawa Subprovince is composed of a granite-greenstone terrane spanning over 900 km. To the north the Wawa subprovince is in contact with the metasedimentary units of the Quetico Subprovince, and in contact with the Southern Province to the south. The Shebandowan greenstone belt is comprised of mainly mafic-felsic volcanic basalt, minor komatiite, gabbro-anorthosite intrusions, minor felsic volcanics and iron formations (Shegelski, 1980). The Band Ore property is composed of mafic metavolcanics intruded by metadiabase and porphyry dykes (Chorlton, 1987). The property is affected by northeast and southeast trending shear zones / fractures (Chorlton, 1987).

Stuart MacLean and a field partner hired through Bjorkman Prospecting Inc completed a 10 day prospecting program for E2Gold from September 21st,2022 to September 24th and September 27st to September 29th 2022 totalling 7 days in the field. A total of 72 samples were taken over the course of the 7 days, the team visited several trenches on the property along with looking for historic trails, drilling pads and drill collars. Samples were sent to Activation Laboratories in Thunder Bay, ON for fire-assay analysis. Field work was completed in NAD83 UTM zone 15N.


The prospecting crew was successful in finding several anomalous gold values within the property. Samples: B0287234, B0287221, B0287217 and W1069531 returned assay values between 5 - 23.6 grams per tonne gold.

A future sampling program is recommended within the areas surrounding these highgrade gold values; centimeter scale quartz-pyrite±chalcopyrite veins within highly sheared sericite-silica schists are the focus. A future sampling program would include both grab and channel sampling, allowing for a structured sampling program focusing on trenches GSH-11-09, GSH-11-10, GSH-11-02 and The Hag Lake Trench. If assay results returned are positive from the channel sampling, a short diamond drill program is also recommended, specificallytargeting significant structures such as shears, veins, or intrusive units. A short compilation project of historical work including sampling, drilling and exploration should be considered. This would be beneficial as it would provide supplementary background information on the surrounding areas.


2.0 INTRODUCTION

The Band Ore property is located along the north shore of Lake Shebandowan within the townships of Conacher and Hagey in the Thunder Bay Mining District. The property is located 70 km west of Thunder Bay Ontario. The Band Ore property is composed of 109 claims, 16 patents and 1 mining lease. The total work requirements for the claims is \$28,600, totaling 1,646.2 hectares.

The Band Ore property is within the Shebandowan greenstone belt, which is a part of the Wawa Subprovince. The belt is composed of dacite and rhyolite tufts overlaying mafic-felsic volcanic sequences of tholeiitic basalt with multiple mafic / gabbroic intrusions and minor felsic and iron formations. This sequence is overlain unconformably by the Shebandowan Group, a sequence of conglomerates rich with volcanic clasts and mudstone. Clasts within the conglomerate date the formation to 2764 Ma, and the Shebandowan pluton intruding the sequence dating at 2696 Ma

Figure 1: Band Ore Property Location Map

3.0 ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE & PHYSIOGRAPHY

Accessibility

The Band Ore Project is located in the Hagey and Conacher townships, Ontario, Canada, approximately 70 kilometers west of the town of Thunder Bay, ON. The major public road in the area is Highway 11, and runs along the northern edge of Lake Shebandowan.

The northeastern part of the property is crossed by Highway 11, and can be accessed from the highway by gravel roads. Shebandowan Lake occupies a large central swath through the property, thereby posing accessibility problems.

Areas in the southern part of the property can be accessed by Shebandowan Mine road and forestry roads south of Shebandowan Lake. The Shebandowan Mine road is a paved road that accesses the mine site south of Lake Shebandowan.

Local Resources

The area is well serviced by mining industries. The town of Thunder Bay, with a population of 110,000, is the closest service community. Thunder Bay has quality manpower and is a place where firms can hire reliable, qualified and experienced staff. Electric power to the property is not a problem because several power lines cut across the property. Ample water is available from rivers and Lakes. The closest airport with commercial flights is the Thunder Bay International Airport (YQT). The Canadian National Railway (CNR) mainline passes north of Lake Shebandowan.

<u>Climate</u>

As noted in Chapman and Thomas (1968), the climate of the Shebandowan Lake area is described as "modified continental". Modified continental climates are those which have a mean temperature difference of 30° Celsius or more between summer and winter. In winter, the climate is much colder with temperature varying between - 35° C and 0° C.

Physiography

The Shebandowan Gold Project area is on broad and gently rolling topography in the center and in the eastern part. The steepest landforms are present in the west part of the project. The property is located at the westernmost extremity of the Great Lakes / St. Lawrence drainage basin, whereas Lake Shebandowan waters flow north to the Hudson Bay. The Shebandowan area is drained by a number of small streams flowing into the Shebandowan Lake.

The property varies in elevation between 440 metres to 500 metres. The property has good outcrop exposure on higher ground and in lower areas sand, swamp and overburden covers the outcrops.

The tree species found in the Shebandowan Lake Planning area are predominantly those typical of a boreal environment (jack pine, black and white spruce, balsam fir,

white birch and poplar). The sites surrounding Shebandowan Lake tend to be very productive due to the soil types present, resulting in rich herb and shrub layers beneath the main canopy.

4.0 REGIONAL GEOLOGY

Regional Geology summarized from Newton & Wellstead, 2013.

The Band Ore Project is located within the central portion of the Shebandowan greenstone belt. The Shebandowan greenstone belt is part of the Wawa Subprovince.

The Wawa Subprovince

The Wawa Subprovince is a granite-greenstone terrane exposed in the region that extends 900 km westward from the Kapuskasing Structural Zone to the Vermilion district of Minnesota and varies in width from approximately 50 to 200 km. Aeromagnetic data indicate that the belt continues westward to the buried contact between the Superior Craton and the Trans-Hudson Orogen. Furthermore, lithological, structural and isotopic age similarities suggest that the Wawa and Abitibi subprovinces are parts of a once continuous belt, now interrupted by the Kapuskasing Structural Zone (Percival and Card, 1985), although Jackson and Sutcliffe (1990) have argued that the Kapuskasing Structural Zone coincides with an Archean boundary between the ensimatic Abitibi Subprovince and ensialic Wawa Subprovince. To the south, Archean rocks of the Wawa Subprovince are in unconformable, intrusive, and in tectonic contact with Paleo- and Mesoproterozoic supracrustal and intrusive rocks of the Southern Province and the Midcontinent Rift System. To the north, they are bounded by metasedimentary rocks of the Quetico Subprovince.

In the Vermilion district, Bauer (1985) and Bauer et al. (1992) correlated structures across the faulted Wawa- Quetico subprovince boundary, implying the existence of an early major recumbent fold straddling the interface. Eastward, where the contact is marked by north dipping mylonite zones, granite bodies along the interface have inclusions typical of both subprovinces implying pregranite juxtaposition of the two terranes (Percival and Stern, 1984). In the Shebandowan area, the contact is extensively faulted with north-dipping mylonite zones showing reverse displacement. The deformation that produced these structures, presumably during juxtaposition of the two subprovinces, has been dated at 2689 to 2685 Ma (Corfu and Stott, 1986). In the Geraldton-Beardmore area, Williams (1987) described the contact as a zone of highly deformed and disrupted gabbro, anorthosite, and mafic gneiss bodies enclosed in metasedimentary migmatite with mylonite zones displaying evidence of dip-slip and strike-slip movements. The previously described contact between the Wawa Subprovince and the Kapuskasing Structural Zone is a zone of lithological, structural and metamorphic transition or, where faulted, contrast. Archean rocks in northern Michigan, the Ishpeming greenstone belt, and associated plutons described by Johnsonand Bornhorst (1992), are probably a part of the Wawa Subprovince on the southern side of the Mesoproterozoic Midcontinent Rift System. This terrane is in tectonic contact with supracrustal and gneissic rocks to the south, possibly in part

representing the eastward extension of the Minnesota River Valley terrane, along the Great Lakes tectonic zone (Sims et al., 1980). This zone, which extends westward to Minnesota, is described in Michigan as a steeply south-dipping, north-verging, oblique dextral thrust (Sims and Day, 1992).

Shebandowan Greenstone Belt

The Shebandowan greenstone belt comprises two lower mafic-felsic volcanic sequences of tholeiitic basalt with minor komatiite, mafic-ultramafic and gabbroanorthosite intrusions, and andesite with minor felsic volcanic rocks and iron-formation, overlain by dacite and rhyolite tuffs and flows (Shegelski, 1980). A dacite porphyry from this sequence dated at 2732 Ma (Corfu and Stott, 1986). These sequences are unconformably overlain by the Shebandowan Group, a Timiskaming-type sequence of conglomerate rich in volcanic clasts, crossbedded arkose, mudstone with ripples and desiccation cracks, iron-formation, and porphyritic dacite, andesite, latite, and volcanic breccia with calc-alkaline differentiation trends and shoshonitic affinities. A tonalite clast from the conglomerate is 2764 Ma and a latite flow dated at 2689 Ma (Corfu and Stott, 1986). These alluvial/fluvial sediments and related sub aerial volcanic rocks were deposited in several elongate, graben-style basins.

The Sunbar-Batwing and Saganaga-Northern Lights plutonic complexes south of the Shebandowan greenstone belt consist mainly of tonalite gneiss with mafic xenoliths (Percival et al., 1985). Numerous peridotite and gabbro intrusions, some containing magmatic Cu-Ni sulphide deposits, occur within the Shebandowan greenstone belt. A foliated, syntectonic tonalite intrusion, the Shebandowan pluton, is 2696 Ma and a late-to post-tectonic intrusion, the Burchell Lake pluton, dated at 2684 Ma (Corfu and Stott, 1986). Diorite-monzonite-syenite plutons, some with shoshonitic and sanukitoid affinities, are also present (Stern et al., 1989).

The older metavolcanic rocks and metadiabases along the north part of the western Shebandowan Greenstone Belt and within a strip of greenstone north of Saganaga Lake have been thoroughly converted to middle greenschist facies assemblages, although some of the metavolcanic rocks south and east of Lower Shebandowan Lake are only partly metamorphosed (Chorlton 1987)

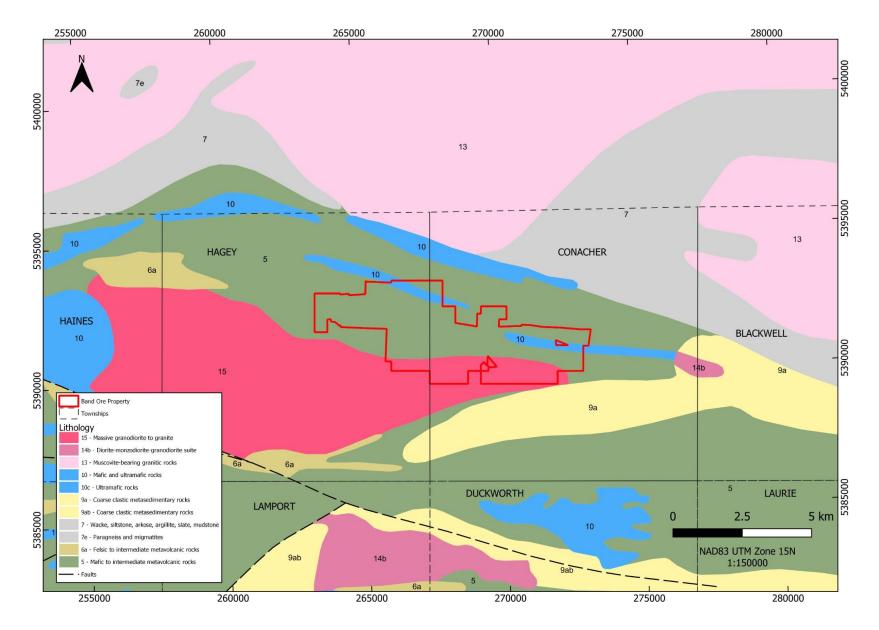
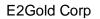


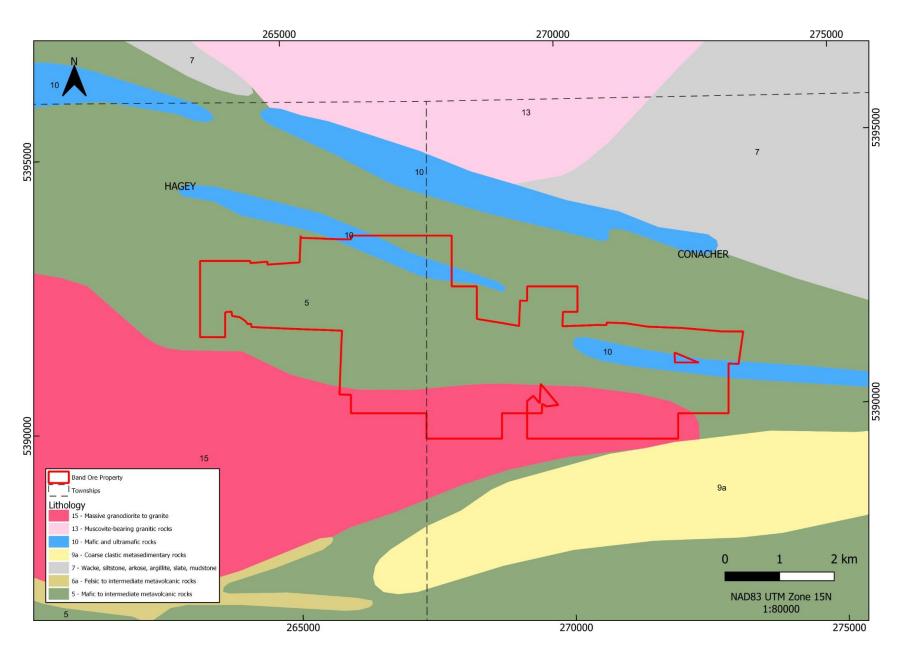
Figure 3: Band Ore Property Regional Geology

5.0 LOCAL AND PROPERTY GEOLOGY


Local and Property Geology summarized from Sears, 2009.

The Band Ore Project is underlain by an assemblage of mafic to intermediate metavolcanics and subordinate felsic metavolcanic rocks with minor interflow metasedimentary rocks and metagabbro. This assemblage is intruded by the Shebandowan Lake pluton and smaller bodies of feldspar porphyry and quartz-feldspar porphyry (fig. 5). In the Eastern part of the project, these rocks were deformed along northwesterly to easterly trending shear zones. In the western part of the project, rocks were deformed along north easterly to easterly trending shear zones. They are now carbonatized and sericitized shear zones with an initial sinistral southeast - side - up shear sense (Chorlton 1987).

Late intrusions include lamprophyre, gabbros and quartz syenite (latite). One horizon of highly deformed conglomerate with quartz, sulfides and volcanic pebbles was observed.


The north-western corner of the project is bounded by metasedimentary rocks and interlayered with metavolcanic rocks usually classified in the Quetico Subprovince.

The Pistol Lake-Mathe Lake area is underlain by an extensive zoned hydrothermal alteration zone exhibiting a strong oxide-alkali association with gold and base metal mineralization which is described by Gertzbein (1999). "The aerial extent of the alteration zone is evidenced by a high magnetic anomaly generated by the preponderance of disseminated magnetite. The size and intensity of the alteration zone is indicative of a large hydrothermal system. The central core of alteration encompasses an ovoid area of about two kilometres east-west by one kilometre north-south. The central core is characterized by chemical enrichments of K, Na, Fe and CO2 and associated Au and Cu. The porphyry units and hosting volcanic rocks display intense alteration including ankerite, sericite, albite, hematite and quartz as secondary minerals. The main porphyry and a breccia schist zone, the J.F. West Occurrence, that underlay's its south contact exhibits the most intense alteration documented to date. The outer shell of alteration encompasses an area of about five kilometres east-west by two kilometres north-south. The outer shell is characterized by chemical enrichments in Ca, Fe and depletions in Na associated with elevated Cu and Zn. It is best delineated by its high magnetic signature. Iron oxide in the form of hematite and magnetite occurs with epidote and actinolite in veins and fractures as well as disseminations within all rock units in this area." (Gertzbein and al., 1999).

Figure 4: Band Ore Property Geology

Band Ore Property

6.0 EXPLORATION HISTORY

The following section is summarized Huss, 2012.

Historical work has been completed by numerous companies and individuals since the 1940s, the size and shape of the property has changed over this time. Below is a summarization of the historical work. The Band Ore property historically has been broken into three distinct regions, the Pistol Lake Property, Conacher Property and the Band Ore Property. The Pistol Lake Property is no longer a part of the claims, as such the Conacher Property makes up the western portion of property while the Band Ore property is the eastern portion. Below is the exploration history of both portions of the Band Ore Property.

Conacher

On the Conacher property, the most systematic historical work completed was performed by Greenwich Lake Exploration, Mattagami Lake Exploration, Lincoln Resources in 1980's and a follow-up drilling program by North Coast Industries was executed towards the end of the decade. It should be specified that LOBANOR GOLD MINES LTD drilled 14 holes (totaling 3,657.6 meters) along the Conacher - Hagey township line, south of Hag Lake, in 1944.The original discovery in this part of the area came in hole #2 with intersections of:

0.099 opt Au over 4.28 meters 0.148 opt Au over 1.05 meters 0.080 opt Au over 0.34 meters

Lobanor experienced legal difficulties in the late '40's and was subsequently forced to terminate work. When the property was acquired and staked by GREENWICH LAKE EXPLORATION LTD in 1980, the original LOBANOR holes were not all found in the field, and their data was found to be incomplete and self – contradictory (Larouche 1992).

Band Ore

The main historical milestones for Band Ore's past exploration history can be summarized as follows:

• 1936-1945: Gold was first reported on the Rochon-Maney Mining Syndicate forming the Mud River Property which was transferred and optioned to several

companies that executed trenching, stripping and diamond drilling. The Main Zone was discovered in 1937

- 1946: Band Ore Mines Ltd was incorporated and drilled 68 holes (11,277 m),
- 1974: Bonnacord Exploration Limited optioned the property and conducted a feasibility study and bulk sampling (results unavailable)
- 1980: Based on the earlier 1940's Main Zone drilling, Watts Griffins and McOuat estimated a reserve of approximately 706,000 tonnes grading 6.86 g/t gold to a depth of 500 feet for the Main Zone,
- 1980-1982: Mattagami Lake Exploration drilled 36 holes (6,170 m) and executed the following surveys : IP/Res (114 km), VLF (44 km), Mag (131 km), HEM (19 km), Zone 4 was discovered in 1981, and Possible geological reserves for these three zones were calculated by Noranda to be approximately 616,000 tonnes of 4.83 g/t gold and 7.71 g/t silver,
- 1982: Noranda Exploration Co Ltd (Norex) drilled 31 holes (3,758 m), executed 18 trenches (1,463 m) and carried out humus and soil geochemistry,
- 1995: Band-Ore 1 drill hole (213 m),
- 2003-2004: Staccato 11 drill holes (1,848 m) IP/Res testing, resampling of some trenches.
- 2011: Golden Share compiled historic data, along with various tasks such as: geological mapping, prospecting program, trenching, geochemical and geophysical ground surveys and two drill phases. Over 2,613 outcrops were mapped with 2,569 grab samples and 21 channel samples (Huss, 2012).

7.0 2023 PROSPECTING PROGRAM

Stuart MacLean spent 7 days on a field program from September 21st,2022 to September 24th and September 27st to September 29th 2022. The prospecting program was conducted for E2gold within the Hagey and Conacher Townships in the Thunder Bay mining district. A total of 72 grab samples were collected from the property and sent for analysis.

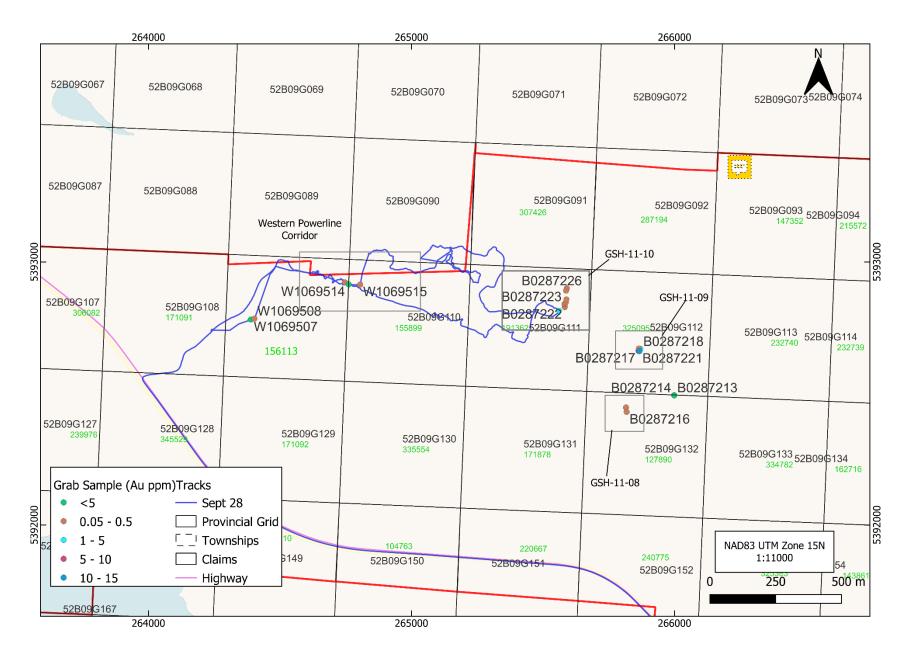
Half of a day was spent going over the Calvert zone, previously sampled high-grade float which was identified as blast rock was sampled. Samples were also collected around the surrounding trenches. A day was spent at the Fogen and Hag Lake targets, looking at historic strippings which had been previously sampled. Attempts to find parallel north-south cut lines turned out to be nothing, additional scouting of an flooded beaver dam also showed an ATV could not cross the dam. Old drilling collars and drilling pads were difficult to locate due to being over 40 years old.

A day was spent along the Western Powerline Corridor, which was a fairly rough boggy area. The crew reached trench GSH-11-8 - GSH-11-10, sampling several quartz veins

before returning for the day. A day was spent at the main zone and trench GSH-11-02, searching for historic samples and clearing debris from the historic trench. The crew also reached trench GSH-11-1 which was also sampled.

A day was spent at the Patent zone along the highway, samples were taken before finding an old historic trench. The trench was marked and sampled. The crew also visited zone four, while it didn't have much outcrop they tried to trace the continuation of the Patent zone along trend, finding old stripper areas north of the Patent zone though very overgrown. Before heading back, the crew also stopped at Carson point to take measurements and samples of some veins along the highway.

A day was spent at the Western Powerline Corridor again, to the west of the corridor was sparse outcropping. After visiting the corridor, the crew went back to trench GSH-11-12 to extend the known zone, searching for historic high-grade samples; outcropping between the trenches was not found.


A final day was spent resampling trench GSH-11-05, along with searching for and sampling a porphyry intrusion. The crew returned to Hag Lake to grab samples which hadn't been taken yet, along with finding, marking and resampling historic grab and channel samples (Table 1). The crew returned to Sapawe on September 29th, 2023.

Band Ore Property

Table 1: Claim Samples

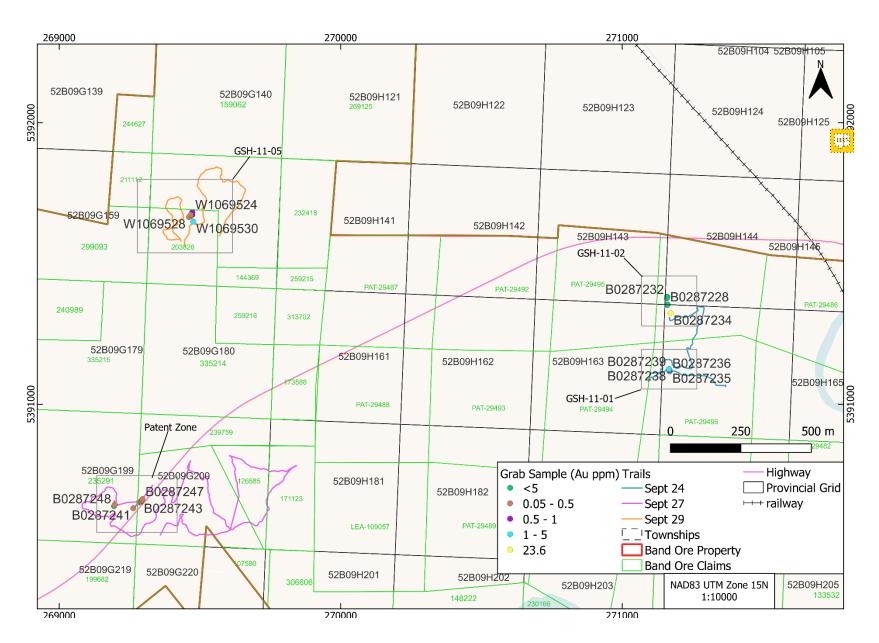

Provincial Cell ID	Claim ID	Samples #
52B09G110	155899	2
52B09G109	155113	3
52B09G111	191362	7
52B09G112	325095	5
52B09G132	127890	4
52B09G174	112452	2
52B09G175	112451	2
52B09G177	254538	6
52B09G237	252728	7
52B09G218	169914	5
52B09G199	235291	3
52B09G200	180701	7
52B09G160	203826	7
52B09H145, 52B09H165	PAT-29497	7
52B-0H163, 52B09H164, 52B09H183, 52B09H184	PAT-29496	5

Figure 5: Band Ore Prospecting Trails West

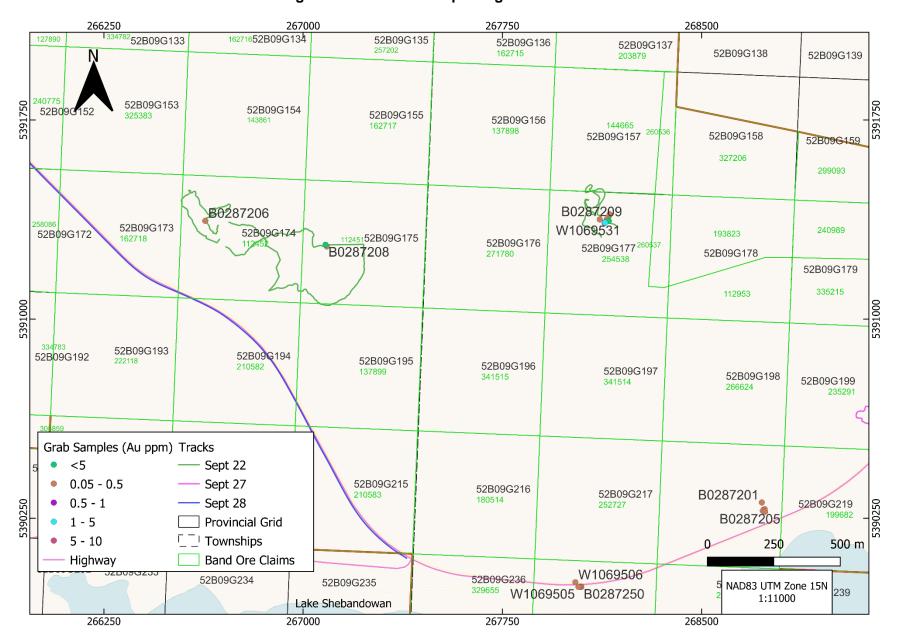

Band Ore Property

Figure 6: Band Ore Prospecting Trails East

Figure 7: Band Ore Prospecting Trails Central

Band Ore Property

8.0 SAMPLE PREPARATION, ANALYSIS AND SECURITY

The following section is summarized from Actlabs, 2023.

Grab samples were collected and placed in sample bags with appropriate sample tags and sealed. All samples were delivered to Activation Laboratories (Actlabs) in Thunder Bay, Ontario. Actlabs is independent of E2 Gold Inc. Upon arrival, samples are crushed to ~2 mm, mechanically split and pulverized to at least ~105 microns. All samples were analyzed using 1A2B-50 Fire assay, and analyzed with 1A3-50 for any values greater than 3 g/t Au.

1A2B (1A2B-50) - Fire Assay Fusion

A sample of 5 - 50 grams is used for rock pulps, the sample is mixed with borax, soda ash, silica, litharge and Ag. The mixture is placed in a fire clay crucible and preheated to 850°C, intermediate 950°C and finish 1060°C with the entire fusion process lasting 60 minutes. The crucible is removed from the furnace and the molten slag is poured from the crucible into a mould, leaving a small lead button in the bottom of the mould. The lead button is reheated to 950°C to recover the Ag and Au. The entire Ag bead is dissolved in aqua regia and the gold content is determined by Atomic Absorption ("AA").

AA is an instrumental method of determining element concentration by introducing an element in its atomic form, to a light beam of appropriate wavelength causing the atom to absorb light. The reduction in the intensity of the light beam directly correlates with the concentration of the elemental atomic species.

1A3-Au - Gravimetric Fire Assay

A sample size of 5 to 50 grams can be used but the routine size is 30g for rock pulps, soils or sediments (exploration samples). The sample is mixed with fire assay fluxes (borax, soda ash, silica, litharge), which contain no silver, and the mixture is placed in a fire clay crucible. The mixture is then preheated at 850°C, intermediate 950°C and finish 1060°C with the entire fusion process lasting 60 minutes. The crucibles are then removed from the assay furnace and the molten slag (lighter material) is carefully poured from the crucible into a mould, leaving a lead button at the base of the mould. The lead button is then placed in a preheated cupel which absorbs the lead when cupelled at 950°C to recover the Ag (doré bead) + Au.

The cupellation of the bead is controlled by the volatility of the silver. The Ag bead is weighed and Ag value calculated from the weight. Au is separated from the Ag in the doré bead by parting with nitric acid. The gold (roasting) flake remaining is weighed gravimetrically on a micro balance for Au.

9.0 INTERPRETATIONS AND CONCLUSIONS

Property Historical Working

The crew was successful in accessing and locating the historic trenches and samples on the property, some trenches were infilled with water and till but re-sampling was completed. Historic pads were difficult to find due to overgrown vegetation in the area though a few were found- historic drill holes were not found. Access to historical strippings and trenches were largely available along or near highway 11 (Trans Canada Highway) and local roads; historic cut lines were not found. Most trails were passable by truck however, an all-terrain vehicle or continuing on foot is necessary near the beaver dam due to the road partially flooding.

Overall, 72 samples were taken over the course of September 20th to September 29th, to gather information on the Band Ore property. The crew collected samples within historic trenches, resampled historically high-grade material and few newer outcroppings. The crew was successful in finding anomalous gold values within several areas in the property. Several samples such as B0287234, B0287221, B0287217 and W1069531 showing over 5 - 23.6 grams per tonne gold reflect similar numbers to historic high-grade samples in their respective areas (Table 1).

Sample Number	UTM East	UTM North	Claim ID	Target	Au g/t - Grav
B0287234	713218.5	5390705.8	PAT-29497	GSH-11-02	23.6
B0287217	707819.65	5391625.7	325095	GSH-11-09	9.26
B0287221	707823.61	5391625.13	325095	GSH-11-09	12.5
W1069531	710187.07	5390507.36	254538	Hag Lake Trench	6.75

Table 2: Significant Assay Samples

Prospecting Historic Occurrences

Culvert Zone

Located approximately 50 meters from Highway 11 is the Calvert zone, described as a shear zone with disseminated pyrite and strong sericite alteration (Huss, 2012). Historically showing 1.7 ounce per tonne of gold within a narrow highly sericitized shear zone (Huss, 2012; Larouche, 1994).The five sampled trench material returned unremarkable gold values (115 - 512 ppb Au), historical high grade sampled material was remarked to be blast rock float. The rock appeared to be sheared and silica altered, withmoderate hematite and heavy sericite alteration throughout the samples taken; pyrite mineralization was seen within the samples, between 4 - 10% disseminated throughout, minor arsenopyrite mineralization also present between 0.5 -

Fogen Occurrence

Located approximately 300 meters from Highway 11 is the Fogen occurrence, a large IP anomaly attributed to a 12 meter wide iron formation found within a historic drill hole (Larouche, 1998; Huss, 2012). The iron formation historically returned 0.01 ounce per tonne of gold over 1 meter (Huss, 2012). Resampling of the occurrence resulted in three samples being taken showing undetected to unremarkable gold values (<5 - 20 ppb), within a moderately sheared chlorite schist, showing 0.1 - 0.5 % disseminated pyrite mineralization throughout the samples. Historic cut lines and historic samples within the area were not found by the crew.

Hag Lake Occurrence

Located 350 meters from a local road and 1300 meters from Highway 11, the Hag Lake Occurrence, a host of several historic gold values from 0.05 - 0.9 ounces per tonne, hosted within zones of shearing, porphyry dykes and mafic dykes (Huss, 2012; Larouche, 1998). Crews were able to find a few historic drilling pads but no historic hole collars. Six samples were taken, resampling of historic high grade channel material returned 1 and 6.75 grams per tonne (W1069531: 6.75 g/t, W1069532: 1.6 g/t), while trench material sampled returned below detection to 20 ppb.

Sampled host rock was a weakly sheared intermediate volcanic with chlorite / epidote alteration and 1-15% disseminated pyrite throughout the samples. The two samples which were resampling of historic high grade channels were both vein samples with 5-10% disseminated pyrite, with syenite schist host.

Trench GSH-11-8

Located 500 meters from Highway 11, trench GSH-11-8 hosts a heavily sheared mafic volcanic with 1 - 15% disseminated pyrite, moderate pervasive chlorite and strong ankerite alteration. This area was sampled due to the lack of historic sampling within the area, but returned two samples of 10 & 25 ppb of gold.

Trench GSH-11-9

Located 850 m north of Highway 11 and 150 m south of a local road, Trench GSH-11-9 historically showed low grade gold numbers (Huss,2012). Gold is found within centimeter thick quartz-carbonate, within an intensely sheared unit. Veins sampled by the crew were remarked to be hosted in a heavily silicified and schistose host, all samples were along quartz veins. Every sample had 1-3% pyrite and 0.3 - 4% chalcopyrite mineralization, along with chlorite fracturing within the host rock. All four samples ran anomalous gold, between 0.4 - 12.5 grams per tonne. Samples B0287217 and B0287221 ran 9.26 and 12.5 grams per tonne respectively. Both samples were of

quartz-carbonate veins within a heavily silicified schistose host, with notable amounts of pyrite and chalcopyrite mineralization.

Trench GSH-11-10

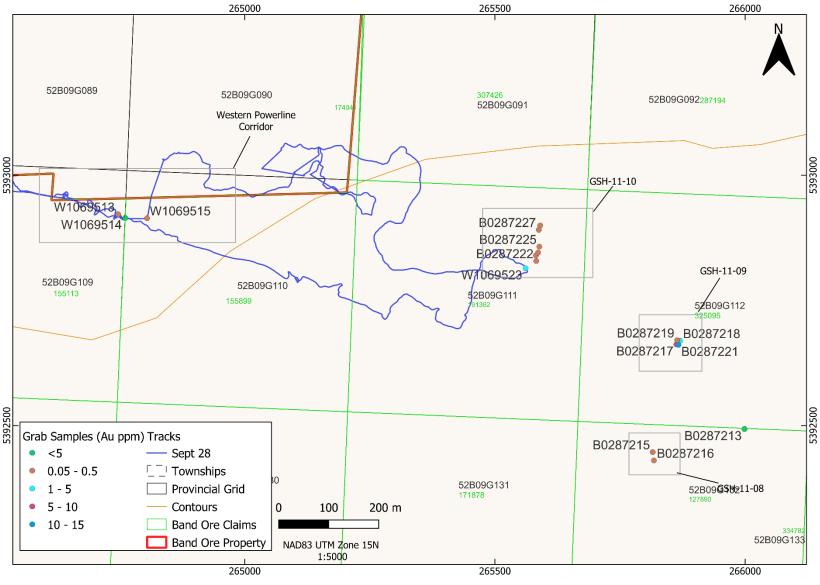
Located 1 kilometer north of Highway 11, approximately 200 meters south of a local road, Trench GSH-11-10 hosts sheared intermediate - syenite volcanics. Small quartz-carbonate veining is present within the syenite shear material, showing pyrite and chalcopyrite mineralization. Historic sampling is sparse within the area, so multiple samples of veins were taken. While sample B0287227 hosted 20+ % of blebby pyrite within a sheared mafic volcanic, all samples returned <5 - 79 ppb gold values.

Trench GSH-11-02

Located 200 meters south of Highway 11, and approximately 150 meters north of an East-West powerline corridor, Trench GSH-11-02 is found. The host rock was a strongly sheared chlorite schist with several quartz-ankerite veins spanning from 2 - 70 centimeters; mineralization within the veins consisted of 0.1 - 0.5% chalcopyrite, 0.1 - 0.3% pyrite and minor amounts of tourmaline. In total, six samples were taken within the trench and one sample was taken from a boulder. Historically, a boulder sample L124981 from this trench ran 31.7 grams per tonne (Huss, 2012). Resampling of the same boulder, sample B0287234, returned 23.6 grams per tonne. Sample B0287228 returned 2.9 grams per tonne, the remaining samples returned between <5 - 6 ppb of Au.

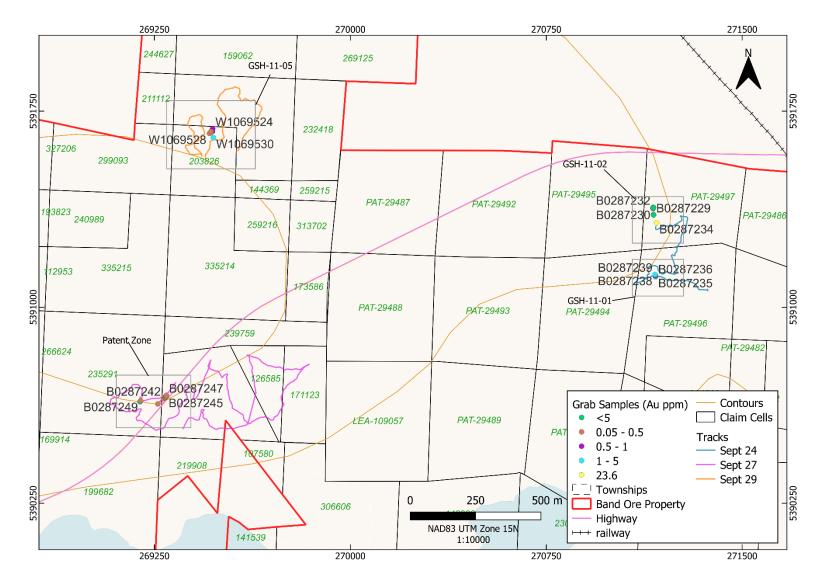
Trench GSH-11-01

Located 450 meters south of Highway 11, and approximately 100 meters south of the East-West powerline corridor, Trench GSH-11-01 is found. The host rock is a strongly sheared sericite schist hosting several 3-4 centimeter quartz veins; mineralization within the veins includes 1 - 7% pyrite, 0.1 - 0.3% malachite and 0.1% chalcopyrite. Five samples were taken here, returning 0.3 - 4.3 grams per tonne. Samples B0287235, B0287238 and B0287239 were 1g/t, 4.3 g/t and 3.9 g/t respectively. These samples were of centimeter scale quartz veins found within the sericite schist.


Patent Zone

Located along Highway 11, the Patent Zone hosts gossanous silica altered schistose rock; mineralization within the host rock is abundant from 1 - 7% disseminated within the rock and up to 20% bands of pyrite throughout the schist. Outcropping was scarce surrounding the area, with one unmarked trench found in the area. In total, nine samples were taken which returned <5 - 344 ppb of Au.

Trench GSH-11-05


Band Ore Property

Located 700 meters north of Highway 11, and 100 meters north of the East-West powerline corridor is Trench GSH-11-05. The trench has mineralized intermediate schist along the south and a mineralized sheared porphyry unit to the north. Few centimeter scale quartz-sulphide veins are present and sampled, in total seven samples were taken of both veins and host rock. Samples returned 19 - 2350 ppb, with sample W1069530 showing 2.35 grams per tonn

Figure 8: Grab Sample Au Values: Western Zone Map

March 2023

Figure 9: Grab Sample Au Values: Eastern Zone Map

Band Ore Property

E2Gold Corp

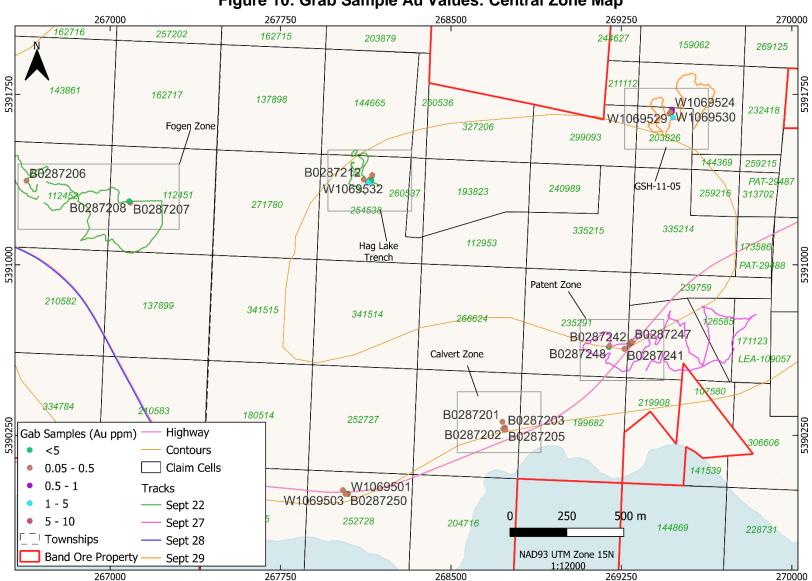


Figure 10: Grab Sample Au Values: Central Zone Map

10.0 RECOMMENDATIONS

The prospecting crew successfully sampled anomalous gold values across the property, on several historic trenches. Samples B0287234, B0287221, B0287217 and W1069531 returned over 5 - 23.6 grams per tonne gold, which reflect similarly to historic high-grade samples. High grade samples were encountered mainly within centimeter scale quartz-pyrite±chalcopyrite veins within highly sheared sericite-silica schists.

Further sampling programs should spend more time clearing historic trenches including GSH-11-09, GSH-11-10, GSH-11-01, GSH-11-02 and The Hag Lake Trench. A future channel sampling program would provide insight for specific veining within the trenches, allowing for further delineation of mineralization. As the highest gold value returned was found in float, exploration within the surrounding area for the source of the float around Trench GSH-11-02 is recommended. While other trenches on the property shouldn't be dismissed, attention should be focused on the latter mentioned trenches with attention given to other areas if budget / time constraints permit it.

It is recommended that supplementary to any future exploration programs, a compilation of historic sampling, drill programs and surveys is done on the entire Band Ore property. This would allow for more information to be available to teams while prospecting. Along with this, a hand stripping and channeling program would be beneficial if conducted on the trenches. Channel sampling allows for specific targeting of veins and allows for a structured sampling process. Length of the samples will be dictated by the size of the veins and structures present in the trenches. The extent of the program would be determined based on the size of the targets.

If the gold values found by the channel sampling are positive, a short drilling program is recommended. Specifically focusing along areas of significant structures such as shears, veins or intrusive units. The length of the holes should be determined based on the structure targeted, taking into account dip of said structures. A structured approach of 50 meter spacing perpendicular to the strike of the structure would allow for determining the width of the structure at depth and the extent of the structure. Core orientation would also be an important consideration to allow for more information on the structure at depth.

11.0 REFERENCES

- Bauer, R.L., 1985. Correlation of early recumbent and younger upright folding across the boundary between an Archean gneiss belt and greenstone terrane, northeastern Minnesota. Geology 1985;; 13 (9): 657–660. doi: https://doi.org/10.1130/0091-7613(1985)13<657:COERAY>2.0.CO;2
- Chorlton, L.B., 1987. Geological setting of gold mineralization in the western part of the Shebandowan Greenstone belt, District of Thunder Bay, northwestern Ontario. OFR5636
- Corfu, F. and Stott, G., (2011). U-Pb ages for late magmatism and regional deformation in the Shebandowan Belt, Superior Province, Canada. Canadian Journal of Earth Sciences. 23. 1075-1082. 10.1139/e86-108.
- Clayton, R.H., 1980. Report on the Shebandowan Property of Band Ore Resources Ltd., Watts, Griffis, and McQuat Ltd., Toronto, July 10, 1980.
- Clayton, R.H., 1980. Summary report on the Shebandowan Property of Band Ore Gold Mine.
- Duens, R., 1995. S-95-1. Assessment work. Ontario Geological Survey, Report 52B09NE0002.
- Gertzbein, P., D'Silva, B., and Parker, D. 1999. Linecutting, Mechanical Trenching, Geological, Geophysical and Geochemical Surveys HAINS and HAGEY TOWNSHIP PROJECT. Report 52B09NE2005
- Huss, L. 2012. Technical Report on the 2011-2012 Mapping, Prospecting and Drilling Programs, Shebandowan Gold Project. AFRI 20000013644
- Jackson, S. L. and Sutcliffe, R. H.. Central Superior Province geology: evidence for an allochthonous, ensimatic, southern Abitibi greenstone belt. Canadian Journal of Earth Sciences. 27(4): 582-589. <u>https://doi.org/10.1139/e90-054</u>
- Johnson, R.C., Bornhorst, T.J., Sims, P.K., & Carter, L.M. (1991). Archean geology of the northern block of the Ishpeming greenstone belt, Marquette County, Michigan.
- Larouche, C., and Parker, D.P., 1992. Report No.36: Diamond drilling. Assessment work. Ontario Geological Survey, Report 52B09NE1950.
- Larouche, C., 1998. Diamond drilling. Assessment work. Ontario Geological Survey, Report 52B09SE2006.
- Larouche, C., 1998. Results of trenching and mapping completed on the Hagey-Conacher Townships. Assessment work. Ontario Geological Survey, Report 52B09NE2004.
- Percival J.A., and Stern, R.A., 1984. Geological synthesis in the western Superior Province, Ontario. DOI:https://doi.org/10.4095/119690

- Mattagami Lake Exploration Ltd., 1981. Diamond drilling. Assessment work. Ontario Geological Survey, Report 52B09NE0076.
- Mattagami Lake Exploration Ltd., 1981. Diamond drilling. Assessment work. Ontario Geological Survey, Report 52B09NE0075.
- Mattagami Lake Exploration Ltd., 1981. Diamond drilling. Assessment work. Ontario Geological Survey, Report 52B09NE0039.
- Mattagami Lake Exploration Ltd., 1982. Diamond drilling. Assessment work. Ontario Geological Survey, Report 52B09NE0048.
- Mattagami Lake Exploration Ltd., 1982. Diamond drilling. Assessment work. Ontario Geological Survey, Report 52B09NE0040.
- Matagami Lake Exploration Ltd., 1982. Report of work. Assessment work. Ontario Geological Survey, Report 52B09NE5041
- Newton, B.H., Wellstead, M.P., 2013. Assessment Report on the Santa Maria Property Visit. AFRI ID: 2000008075
- Percival JA, Card KD (1985) Archean crust as revealed in the Kapuskasing uplift, Superior province, Canada.
- Precious metal analysis. Actlabs. (2023, March 1). Retrieved March 17, 2023, from https://actlabs.com/geochemistry/precious-metal-analysis/
- Sears, S.M., 2009: NI 43-101 Technical Report on the Santa Maria Property, Kenora Mining Division, Ontario, Canada for United Reef Limited.
- Shegelski, R. 1980: Archean Cratonisation, Emergence and Red Bed Development, Lake Shebandowan Area, Canada; Precambrian Research, Vol. 12, p. 331-347.
- Sims, P. & Card, K. & Morey, G. & Peterman, Zell. (1980). The Great Lakes tectonic zone A major crustal structure in central North America. Geological Society of America Bulletin -GEOL SOC AMER BULL. 91. 10.1130/0016-7606(1980)91<690:TGLTZA>2.0.CO;2.
- Stern, R.A., Hanson, G.N., Shirey, S.B., 1989. Petrogenesis of mantle-derived, LILE-enriched Archean monzodiorite and trachyandesites (sanukitoids) in southwestern SuperiorProvince. Can. J. Earth Sci. 26, 1688–1712
- Williams, H.R. 1987. Structural studies in the Wabigoon and Quetico subprovinces. Ontario Geological Survey, Open File Report 5668

12.0 CERTIFICATE AND QUALIFICATIONS

Tommy Clark 941 Cobalt Crescent Thunder Bay, Ontario Canada, P7B 5Z4 Telephone: 807-622-3284 Email: Tommy@clarkexploration.com

CERTIFICATE OF QUALIFIED PERSON

I, Tommy Clark, GIT. (#10952), do hereby certify that:

- 1. I am a consulting geologist with an office at 941 Cobalt Crescent, Thunder Bay, Ontario.
- 2. I graduated with an Honours Bachelor of Science (Geology) from Lakehead University, Thunder Bay, Ontario in 2019.
- 3. "Assessment Report" refers to the report titled "Assessment Report On the Band Ore Project, Thunder Bay Mining Division, Northwestern Ontario", dated March 27, 2023.
- 4. I am a registered Geoscientist in Training with the Professional Geoscientists of Ontario (#10952).
- 5. I have worked as a Geologist since I graduated from University.
- 6. I am the author of this report and am responsible for all sections of this Assessment Report.
- 7. As of the date of this certificate, and to the best of my knowledge, information and belief, this Assessment Report contains all scientific and technical information that is required to be disclosed to make this Assessment Report not misleading.

Dated this day of March 27, 2023

"Tommy Clark"

Tommy Clark, GIT.

APPENDIX

Appendix I – Mining Claims / Patent Claims / Lease Claims

Appendix II – Sample Descriptions & Locations

Appendix III – Assay Certificates

Appendix IV – Daily Log

Appendix I – Mining Claims / Patent Claims / Lease Claims

Table 3: Band Ore Property Claims

Tenure ID	Cell ID(s)	Tenure Type	Anniversary Date	Holder	Area (ha)	Township / Area	Work Required
220655	520000220	66146	2024-	(100) GOLDEN SHARE RESOURCES	24.22	HAGEY,	\$
329655	52B09G236	SCMC	03-17		21.32	CONACHER	200
120585	52B09G160	BCMC	2023- 03-20	(100) GOLDEN SHARE RESOURCES CORPORATION	13.23	CONACHER	\$ 400
			2023-	(100) GOLDEN SHARE RESOURCES			\$
159062	52B09G140	SCMC	03-20	CORPORATION	21.34	CONACHER	800
193823	52B09G178	всмс	2024- 03-20	(100) GOLDEN SHARE RESOURCES CORPORATION	12.35	CONACHER	\$ 200
232418	52B09H141	BCMC	2023- 03-20	(100) GOLDEN SHARE RESOURCES CORPORATION	7.13	CONACHER	\$ 400
240989	52B09G179	BCMC	2024- 03-20	(100) GOLDEN SHARE RESOURCES CORPORATION	6.60	CONACHER	\$ 200
244627	52B09G139	BCMC	2023- 03-20	(100) GOLDEN SHARE RESOURCES CORPORATION	2.72	CONACHER	\$ 400
260536	52B09G157	BCMC	2024- 03-20	(100) GOLDEN SHARE RESOURCES CORPORATION	1.97	CONACHER	\$ 200
260537	52B09G177	BCMC	2024- 03-20	(100) GOLDEN SHARE RESOURCES CORPORATION	2.43	CONACHER	\$ 200
269125	52B09H121	SCMC	2023- 03-20	(100) GOLDEN SHARE RESOURCES CORPORATION	21.34	CONACHER	\$ 400
299093	52B09G159	BCMC	2023- 03-20	(100) GOLDEN SHARE RESOURCES CORPORATION	9.94	CONACHER	\$ 400
327206	52B09G158	BCMC	2024- 03-20	(100) GOLDEN SHARE RESOURCES CORPORATION	13.55	CONACHER	\$ 200
112451	52B09G175	SCMC	2024- 03-23	(100) GOLDEN SHARE RESOURCES CORPORATION	21.35	HAGEY	\$ 400
112452	52B09G174	SCMC	2024- 03-23	(100) GOLDEN SHARE RESOURCES CORPORATION	21.35	HAGEY	\$ 400
137899	52B09G195	SCMC	2024- 03-23	(100) GOLDEN SHARE RESOURCES CORPORATION	21.35	HAGEY	\$ 200
143861	52B09G154	SCMC	2024- 03-23	(100) GOLDEN SHARE RESOURCES CORPORATION	21.34	HAGEY	\$ 400
157434	52B09G213	SCMC	2024- 03-23	(100) GOLDEN SHARE RESOURCES CORPORATION	21.35	HAGEY	\$ 200

Ì			1		1		
			2024-	(100) GOLDEN SHARE RESOURCES			\$
162717	52B09G155	SCMC	03-23	CORPORATION	21.34	HAGEY	400
462740	5350000473	66146	2024-	(100) GOLDEN SHARE RESOURCES	24.25		\$
162718	52B09G173	SCMC	03-23	CORPORATION	21.35	HAGEY	400
			2024-	(100) GOLDEN SHARE RESOURCES		HAGEY,	\$
180514	52B09G216	SCMC	03-23	CORPORATION	21.35	CONACHER	400
			2024-	(100) GOLDEN SHARE RESOURCES			\$
210582	52B09G194	SCMC	03-23	CORPORATION	21.35	HAGEY	200
			2024-	(100) GOLDEN SHARE RESOURCES			\$
210583	52B09G215	SCMC	03-23	CORPORATION	15.64	HAGEY	200
			2024-	(100) GOLDEN SHARE RESOURCES			\$
222118	52B09G193	SCMC	03-23	CORPORATION	21.35	HAGEY	400
			2024-	(100) GOLDEN SHARE RESOURCES			\$
258086	52B09G172	BCMC	03-23	CORPORATION	8.31	HAGEY	200
			2024-	(100) GOLDEN SHARE RESOURCES			\$
305859	52B09G212	BCMC	03-23	CORPORATION	2.61	HAGEY	200
			2024-	(100) GOLDEN SHARE RESOURCES			\$
325383	52B09G153	SCMC	03-23	CORPORATION	21.34	HAGEY	400
			2024-	(100) GOLDEN SHARE RESOURCES			\$
334783	52B09G192	BCMC	03-23	CORPORATION	9.16	HAGEY	200
			2024-	(100) GOLDEN SHARE RESOURCES			\$
334784	52B09G214	SCMC	03-23	CORPORATION	21.35	HAGEY	200
			2024-	(100) GOLDEN SHARE RESOURCES			\$
104763	52B09G150	BCMC	04-29	CORPORATION	14.24	HAGEY	200
			2024-	(100) GOLDEN SHARE RESOURCES			\$
127890	52B09G132	SCMC	04-29	CORPORATION	21.34	HAGEY	400
			2023-	(100) GOLDEN SHARE RESOURCES			\$
131284	52B09G115	SCMC	04-29	CORPORATION	21.34	HAGEY	800
			2023-	(100) GOLDEN SHARE RESOURCES			\$
147352	52B09G093	SCMC	04-29	CORPORATION	21.34	HAGEY	800
			2023-	(100) GOLDEN SHARE RESOURCES		HAGEY,	\$
151450	52B09G096	SCMC	04-29	CORPORATION	21.34	CONACHER	800
			2024-	(100) GOLDEN SHARE RESOURCES			\$
155899	52B09G110	BCMC	04-29	CORPORATION	19.55	HAGEY	200
			2024-	(100) GOLDEN SHARE RESOURCES		_	\$
162716	52B09G134	SCMC	04-29	CORPORATION	21.34	HAGEY	400
			2024-	(100) GOLDEN SHARE RESOURCES		_	\$
171878	52B09G131	SCMC	04-29	CORPORATION	21.34	HAGEY	400
			2023-	(100) GOLDEN SHARE RESOURCES			\$
174041	52B09G090	BCMC	04-29	CORPORATION	0.43	HAGEY	400
		_ 00	2024-	(100) GOLDEN SHARE RESOURCES	5		\$
191362	52B09G111	SCMC	04-29	CORPORATION	21.34	HAGEY	400
101002	525050111	00000	2023-	(100) GOLDEN SHARE RESOURCES	21.07		<u>+00</u> \$
215572	52B09G094	SCMC	04-29	CORPORATION	21.34	HAGEY	ې 800
210072	522050054	00000	2024-	(100) GOLDEN SHARE RESOURCES	21.37		\$
220667	52B09G151	BCMC	04-29	CORPORATION	15.05	HAGEY	ې 200
220007	525050151	DCIVIC	2023-	(100) GOLDEN SHARE RESOURCES	13.03		\$
232739	52B09G114	SCMC	04-29	CORPORATION	21.34	HAGEY	
232139	520030114	JUNIC	1		21.34	HAGLI	<u>800</u>
232740	52B09G113	SCMC	2023- 04-29	(100) GOLDEN SHARE RESOURCES CORPORATION	21.34	HAGEY	\$ 800
252740	220090113	SCIVIC	04-29	CORPORATION	21.34	HAGET	000

E2Gold Corp

1	ı ı		1		1		
240775	530000153	DCMC	2024- 04-29	(100) GOLDEN SHARE RESOURCES CORPORATION	17 70		\$ 200
240775	52B09G152	BCMC			17.73	HAGEY	
257202	52B09G135	SCMC	2024- 04-29	(100) GOLDEN SHARE RESOURCES	21.34	HAGEY	\$
257202	526090155	SCIVIC			21.54		400
262010	52B09G095	SCMC	2023- 04-29	(100) GOLDEN SHARE RESOURCES	21.34	HAGEY,	\$
202010	328090093	SCIVIC			21.34	CONACHER	800
287194	52B09G092	BCMC	2024- 04-29	(100) GOLDEN SHARE RESOURCES CORPORATION	16.03	HAGEY	\$ 200
207194	328090092	DCIVIC	2023-	(100) GOLDEN SHARE RESOURCES	10.03	HAGLI	\$
307426	52B09G091	BCMC	04-29	CORPORATION	16.83	HAGEY	ې 400
307420	526050051	DCIVIC	2023-	(100) GOLDEN SHARE RESOURCES	10.05	HAGEY,	<u>400</u> \$
316617	52B09G116	SCMC	04-29	CORPORATION	21.34	CONACHER	ې 800
510017	526050110	Jeivie	2024-	(100) GOLDEN SHARE RESOURCES	21.34	CONACHER	\$
325095	52B09G112	SCMC	04-29	CORPORATION	21.34	HAGEY	ې 400
323033	526050112	Jeivie	2024-	(100) GOLDEN SHARE RESOURCES	21.54	HAGET	\$
334782	52B09G133	SCMC	04-29	CORPORATION	21.34	HAGEY	400
334702	526050155	Jeivie	2024-	(100) GOLDEN SHARE RESOURCES	21.54	HAGET	\$
335554	52B09G130	SCMC	04-29	CORPORATION	21.34	HAGEY	ې 400
333334	528656156	Servic	2024-	(100) GOLDEN SHARE RESOURCES	21.04	TINGET	\$
112953	52B09G178	BCMC	05-19	CORPORATION	8.99	CONACHER	200
112355	5256561/6	Denie	2023-	(100) GOLDEN SHARE RESOURCES	0.55	CONTRACT	\$
173586	52B09H161	BCMC	05-19	CORPORATION	4.17	CONACHER	400
1,0000	525051101	Denie	2023-	(100) GOLDEN SHARE RESOURCES		CONTRACT	\$
203826	52B09G160	BCMC	05-19	CORPORATION	6.60	CONACHER	ې 400
200020	525050100	Beine	2023-	(100) GOLDEN SHARE RESOURCES	0.00	CONVICILLI	\$
211112	52B09G159	BCMC	05-19	CORPORATION	3.98	CONACHER	400
			2023-	(100) GOLDEN SHARE RESOURCES			\$
239759	52B09H181	BCMC	05-19	CORPORATION	1.48	CONACHER	400
			2023-	(100) GOLDEN SHARE RESOURCES			\$
335214	52B09G180	BCMC	05-19	CORPORATION	17.13	CONACHER	400
			2023-	(100) GOLDEN SHARE RESOURCES			\$
335215	52B09G179	BCMC	05-19	CORPORATION	14.75	CONACHER	400
			2024-	(100) GOLDEN SHARE RESOURCES			\$
155113	52B09G109	BCMC	06-01	CORPORATION	19.64	HAGEY	200
			2024-	(100) GOLDEN SHARE RESOURCES			\$
171091	52B09G108	SCMC	06-01	CORPORATION	19.46	HAGEY	200
			2024-	(100) GOLDEN SHARE RESOURCES			\$
171092	52B09G129	SCMC	06-01	CORPORATION	21.34	HAGEY	400
			2024-	(100) GOLDEN SHARE RESOURCES			\$
190058	52B09G148	BCMC	06-01	CORPORATION	4.64	HAGEY	200
			2024-	(100) GOLDEN SHARE RESOURCES			\$
239976	52B09G127	SCMC	06-01	CORPORATION	14.57	HAGEY	200
			2024-	(100) GOLDEN SHARE RESOURCES			\$
306082	52B09G107	SCMC	06-01	CORPORATION	4.42	HAGEY	200
			2024-	(100) GOLDEN SHARE RESOURCES			\$
323110	52B09G149	BCMC	06-01	CORPORATION	13.22	HAGEY	200
			2024-	(100) GOLDEN SHARE RESOURCES			\$
323111	52B09G147	SCMC	06-01	CORPORATION	21.34	HAGEY	200
			2024-	(100) GOLDEN SHARE RESOURCES			\$
345529	52B09G128	SCMC	06-01	CORPORATION	21.34	HAGEY	200

E2Gold Corp

1 1	I				I		
107500	5200011204	DCMC	2023-	(100) GOLDEN SHARE RESOURCES CORPORATION	0.02	CONVICUED	\$ 400
107580	52B09H201	BCMC	07-12		0.03	CONACHER	
137898	F3D00C1F6	SCMC	2024-	(100) GOLDEN SHARE RESOURCES	21 24	HAGEY,	\$
137898	52B09G156	SCMC	07-12		21.34	CONACHER	400
141520	520000220	всмс	2023-	(100) GOLDEN SHARE RESOURCES	F 76		\$
141539	52B09G220	BCIVIC	07-12	CORPORATION	5.76	CONACHER	400
144665	520000157	DCMC	2024-	(100) GOLDEN SHARE RESOURCES	10 70		\$ 200
144665	52B09G157	BCMC	07-12		18.73	CONACHER	
162715	E2R00C126	SCMC	2024-	(100) GOLDEN SHARE RESOURCES	21 24	HAGEY,	\$
162715	52B09G136	SCMC	07-12		21.34	CONACHER	400
160014	E200C219	SCMC	2024-	(100) GOLDEN SHARE RESOURCES	21 17		\$
169914	52B09G218	SCMC	07-12	CORPORATION	21.17	CONACHER	200
100701	520000200	DCMC	2023-	(100) GOLDEN SHARE RESOURCES	17.10		\$
180701	52B09G200	BCMC	07-12	CORPORATION	17.16	CONACHER	400
100000	535006340	66146	2024-	(100) GOLDEN SHARE RESOURCES	42.47		\$
199682	52B09G219	SCMC	07-12	CORPORATION	12.17	CONACHER	200
	505000407		2024-	(100) GOLDEN SHARE RESOURCES	0.00		\$
203879	52B09G137	BCMC	07-12	CORPORATION	0.26	CONACHER	200
			2024-	(100) GOLDEN SHARE RESOURCES			\$
204716	52B09G238	SCMC	07-12	CORPORATION	20.26	CONACHER	200
			2023-	(100) GOLDEN SHARE RESOURCES			\$
235291	52B09G199	SCMC	07-12	CORPORATION	13.24	CONACHER	400
			2024-	(100) GOLDEN SHARE RESOURCES			\$
252727	52B09G217	SCMC	07-12	CORPORATION	21.35	CONACHER	400
ĺ			2024-	(100) GOLDEN SHARE RESOURCES			\$
252728	52B09G237	SCMC	07-12	CORPORATION	17.30	CONACHER	200
ĺ			2024-	(100) GOLDEN SHARE RESOURCES			\$
254538	52B09G177	BCMC	07-12	CORPORATION	18.92	CONACHER	200
ĺ			2024-	(100) GOLDEN SHARE RESOURCES			\$
266624	52B09G198	SCMC	07-12	CORPORATION	20.83	CONACHER	200
ĺ			2024-	(100) GOLDEN SHARE RESOURCES		HAGEY,	\$
271780	52B09G176	SCMC	07-12	CORPORATION	21.35	CONACHER	400
ĺ			2024-	(100) GOLDEN SHARE RESOURCES			\$
341514	52B09G197	SCMC	07-12	CORPORATION	21.35	CONACHER	400
ĺ			2024-	(100) GOLDEN SHARE RESOURCES		HAGEY,	\$
341515	52B09G196	SCMC	07-12	CORPORATION	21.35	CONACHER	400
ĺ			2024-	(100) GOLDEN SHARE RESOURCES			\$
144369	52B09G160	BCMC	02-10	CORPORATION	1.51	CONACHER	200
			2024-	(100) GOLDEN SHARE RESOURCES			\$
259215	52B09H141	BCMC	02-10	CORPORATION	1.37	CONACHER	200
			2024-	(100) GOLDEN SHARE RESOURCES			\$
259216	52B09G180	BCMC	02-10	CORPORATION	4.18	CONACHER	200
			2024-	(100) GOLDEN SHARE RESOURCES			\$
313702	52B09H161	BCMC	02-10	CORPORATION	3.28	CONACHER	200
			2024-	(100) GOLDEN SHARE RESOURCES			\$
126585	52B09G200	BCMC	10-01	CORPORATION	3.94	CONACHER	200
			2024-	(100) GOLDEN SHARE RESOURCES			\$
171123	52B09H181	BCMC	10-01	CORPORATION	6.19	CONACHER	200
			2024-	(100) GOLDEN SHARE RESOURCES	ł		\$
1							

E2Gold Corp

			2024-	(100) GOLDEN SHARE RESOURCES			\$
144869	52B09G240	SCMC	11-09	CORPORATION	21.35	CONACHER	400
			2024-	(100) GOLDEN SHARE RESOURCES			\$
148222	52B09H202	SCMC	11-09	CORPORATION	16.28	CONACHER	200
			2024-	(100) GOLDEN SHARE RESOURCES			\$
175527	52B09H186	SCMC	11-09	CORPORATION	3.07	CONACHER	200
			2024-	(100) GOLDEN SHARE RESOURCES			\$
178735	52B09H225	SCMC	11-09	CORPORATION	21.35	CONACHER	200
			2024-	(100) GOLDEN SHARE RESOURCES			\$
185528	52B09H204	SCMC	11-09	CORPORATION	14.46	CONACHER	200
l			2024-	(100) GOLDEN SHARE RESOURCES			\$
204563	52B09H184	SCMC	11-09	CORPORATION	2.20	CONACHER	200
			2024-	(100) GOLDEN SHARE RESOURCES			\$
219908	52B09G220	BCMC	11-09	CORPORATION	3.10	CONACHER	200
			2024-	(100) GOLDEN SHARE RESOURCES			\$
228731	52B09H221	SCMC	11-09	CORPORATION	21.35	CONACHER	200
			2024-	(100) GOLDEN SHARE RESOURCES			\$
230166	52B09H203	SCMC	11-09	CORPORATION	13.21	CONACHER	200
			2024-	(100) GOLDEN SHARE RESOURCES			\$
255889	52B09H207	SCMC	11-09	CORPORATION	21.35	CONACHER	200
			2024-	(100) GOLDEN SHARE RESOURCES			\$
275226	52B09H187	SCMC	11-09	CORPORATION	1.55	CONACHER	200
			2024-	(100) GOLDEN SHARE RESOURCES			\$
296782	52B09H185	SCMC	11-09	CORPORATION	4.98	CONACHER	200
			2024-	(100) GOLDEN SHARE RESOURCES			\$
306606	52B09H201	BCMC	11-09	CORPORATION	16.59	CONACHER	200
			2024-	(100) GOLDEN SHARE RESOURCES			\$
309563	52B09H223	SCMC	11-09	CORPORATION	21.35	CONACHER	400
			2024-	(100) GOLDEN SHARE RESOURCES			\$
316231	52B09H206	SCMC	11-09	CORPORATION	21.35	CONACHER	200
_			2024-	(100) GOLDEN SHARE RESOURCES			\$
317539	52B09H222	SCMC	11-09	CORPORATION	21.35	CONACHER	200
			2024-	(100) GOLDEN SHARE RESOURCES			\$
318715	52B09H224	SCMC	11-09	CORPORATION	21.35	CONACHER	200

Table 3: Band Ore Property Patents

Patent ID	Туре	Disposition	Area (Ha)
PAT-29488	Patent	Mining and Surface Rights	16.45
PAT-29493	Patent	Mining and Surface Rights	16.102
PAT-29487	Patent	Mining and Surface Rights	16.746
PAT-29489	Patent	Mining and Surface Rights	15.698
PAT-29486	Patent	Mining and Surface Rights	20.113
PAT-29490	Patent	Mining and Surface Rights	14.544

Patent ID	Туре	Disposition	Area (Ha)
PAT-29492	Patent	Mining and Surface Rights	16.718
PAT-29482	Patent	Mining and Surface Rights	33.613
PAT-29497	Patent	Mining and Surface Rights	12.327
PAT-29485	Patent	Mining and Surface Rights	22.124
PAT-29495	Patent	Mining and Surface Rights	15.22
PAT-29494	Patent	Mining and Surface Rights	15.698
PAT-29491	Patent	Mining and Surface Rights	19.445
PAT-29496	Patent	Mining and Surface Rights	21.331
PAT-29484	Patent	Mining and Surface Rights	26.139
PAT-29483	Patent	Mining and Surface Rights	21.072

Table 4: Band Ore Property Lease

Lease ID	Туре	Disposition	Area (Ha)
LEA-109057	LEASE	Mining Rights only	16.988

Sample Number Mapper Date Code Lith Grainsize Colour	kture Rock_descr Mi	inz1 Minz2 Minz3	Minz1 not Minz2	oct Minz3 pct Minz4 pc	t Minz tyt1	Minz_descr Alt1 Alt2	2 A 1+2	Alt int	1 Alt_int2 Alt_int3 Structtyp	e POINT_X POINT_Y Au ppb Au Au Value (ppm)	Northing	Easting
B0287206 STU 2022/09/22 IV	- see lith point		0 0	0 0				AIL_III		-90.16752145 48.6318088 20 - 0.05	266632	5391369
B0287207 STU 2022/09/22 IV - mg green		 DV	0.5 0	0 0			-	Mod	Mod	-90.16126778 48.6311088 16 - 0.05	267089.5	5391273
		ру	0.1 0.1	0 0	-		-	IVIOU		-90.1613379 48.63116582 < 5 - <5	267089.5	5391279
		py cpy -	1 0.1	0 0	fdiss		-	- Wk	 Wk	-90.14703842 48.63242322 6 - 0.05	267084.0	5391279
		py	15 0	0 0	cdiss	euhedral	-	-		-90.14793542 48.632542322 0 - 0.05	268154.3	5391394
		py	1 0	0 0	Cuiss		-	-			268151	5391394
		ру	5 0	0 0	-		-	- Wk	 Wk	-90.14693647 48.63236682 < 5		
		ру		0 0	fdiss	- chi ep - sil -	-		SHR		268116.9 268726.9	5391374 5390309
		ру		0 0	-		-	Mod	Str - SHR		268726.9	5390309
		py	10 0 15 2	0 0	-	- chl sil	-	Mod	Wk			
		py mt -	10 0	0 0	cdiss	- sil cc		Str		-90.13837362 48.62283725 260 - 0.05 -90.13847347 48.62278095 485 - 0.05	268738.2 268730.6	5390284 5390278
		ру	15 0.5	0 0	-	- sil cc	chl	Str				
		py aspy -			-	- sil -	-	Str			268739.5	5390274
B0287213 STU 2022/09/23 LATE QV - white B0287214 STU 2022/09/23 INT SYEN for pink		opy	0.1 0		fdiss	- ank chl	KIS	Mod	Str Str -	-90.1767292 48.6416561 88 - 0.05 -90.1767317 48.6416555 < 5	265999.3	5392492
		py mt -	0.1 0.1	0 0	-		-	-			265999.1	5392492
B0287215 STU 2022/09/23 LATE - fg rusty B0287216 STU 2022/09/23 MV - fg green		py	15 0 1 0		-	- chl -	-	Str		-90.17919012 48.64117191 25 - 0.05 -90.17914851 48.64102208 10 - 0.05	265815.8 265818.2	5392446
		ру		0 0	-	fine diss and stringers cc -	-	Mod				5392429
		py cpy -	2 0.3	0 0	-	- <u>sil</u> -	-	Str		-90.17866932 48.64312294 9600 9.26 5	265863.2	5392661
B0287218 STU 2022/09/23 LATE QV - rusty B0287219 STU 2022/09/23 LATE QV - rusty		py cpy mal	1 3 1 4	1 0	-	- ank chi	-	Mod	Mod	-90.17857438 48.64318974 1450 - 1 -90.17865472 48.64319856 431 - 0.05	265870.5 265864.6	5392668 5392669
		py cpy mal		1 0	-	- ank chl	-	Mod	Mod			
B0287221 STU 2022/09/23 LATE QV - rusty B0287222 STU 2022/09/23 INT SYEN mg pink		py cpy mal	3 1 1 0		- felioo	- sil ank	-	Str	Str	-90.17861591 48.64311663 > 10000 12.5 10 -90.18255913 48.64451461 79 - 0.05	265867.1	5392660
		py			fdiss	euhedral ank -	-	Mod			265583.2	5392828
		py	0.3 0 7 0	0 0	-	- ank -	-	Mod		-90.1825767 48.644615 10 - 0.05 -90.1825205 48.6446685 18 - 0.05	265582.4 265586.7	5392839
B0287224 STU 2022/09/23 LATE - mg rusty		py			-	 	-	- Mad				5392845
B0287225 STU 2022/09/23 LATE QV		py py mal	1 3	0.2 0		- ank -	+-	Mod		-90.1824916 48.6447745 22 - 0.05	265589.4	5392856
B0287226 STU 2022/09/23 LATE		ру сру -	4 0.2	0 0	-	- chl -	-	Mod		-90.18249283 48.6451576 5 - 0.05	265591.1	5392899
B0287227 STU 2022/09/23 MV - fg rusty		ру	20 0	0 0	-	blebs and fine diss	-	-		-90.18252645 48.64507661 12 - 0.05	265588.2	5392890
B0287228 STU 2022/09/24 LATE QV - rusty		ру	0.3 0	0 0	-	- ank -	-	Mod		-90.10613388 48.63334307 2890 - 1	271161.2	5391354
B0287229 STU 2022/09/24 LATE - fg rusty		ру	0.5 0	0 0	strg		-	-		-90.10613284 48.63332453 < 5 - <5	271161.1	5391352
B0287230 STU 2022/09/24 LATE QV - rusty		cpy tour -	0.3 0.5	0 0	-	- ank -	-	Mod		-90.1061728 48.63354205 6 - 0.05	271159.2	5391376
B0287231 STU 2022/09/24 LATE QV - white		cpy py tour	0.3 0.2	0.5 0	-	- ank -	-	Mod		-90.10615187 48.63357917 6 - 0.05	271160.9	5391380
B0287232 STU 2022/09/24 LATE QV		py cpy tour	0.1 0.1	1 0	-	- ank -	-	Mod		-90.10617396 48.63358605 < 5 - <5	271159.3	5391381
B0287233 STU 2022/09/24 LATE QV - rusty		сру	0.3 0	0 0	-	- ank -	-	-		-90.10615412 48.63356372 < 5 - <5	271160.7	5391379
B0287234 STU 2022/09/24 LATE SCHT fg rusty		ру	0.2 0	0 0	-		-	-		-90.10595778 48.63305837 > 10000 23.6 23.6	271172.8	5391322
B0287235 STU 2022/09/24 LATE SCHT mg rusty		ру	7 0	0 0	-	diss and veined ser -	-	-		-90.10589987 48.63120282 1080 - 1	271168.7	5391115
B0287236 STU 2022/09/24 LATE QV fg grey		ру	2 0	0 0	-		-	-		-90.10590352 48.63123083 809 - 0.5	271168.6	5391119
B0287237 STU 2022/09/24 LATE SCHT fg rusty		py mal -	4 0.3	0 0	-	4% py in 4cm central band. less further away	-	-		<u>-90.10591011</u> 48.63126271 386 - 0.05	271168.2	5391122
B0287238 STU 2022/09/24 LATE QV		py mal cpy	3 0.1	0.1 0	-	py is diss and veined, cpy and malachite trace	-	-		-90.1059324 48.63127836 4300 4.28 1	271166.7	5391124
B0287239 STU 2022/09/24 LATE QV - rusty		ру сру -	1 0.3	0 0	-		-	-		-90.10593083 48.63128409 3970 3.31 1	271166.8	5391125
B0287241 STU 2022/09/27 VOLC - fg grey		ру	1 0	0 0	-	mm blebs and fine diss sil -	-	Mod		-90.13144659 48.62613666 8 - 0.05	269263.6	5390629
B0287242 STU 2022/09/27 VOLC SCHT fg rusty		ру	1 0	0 0	bleb	- sil -	-	Mod		-90.13116694 48.62633445 11 - 0.05	269285.1	5390650
B0287243 STU 2022/09/27 VOLC GOSS fg rusty		py	7 0	0 0	fdiss	- Sil -	-	Str		-90.13108557 48.62636085 < 5 - <5	269291.3	5390653
B0287244 STU 2022/09/27 LATE GOSS fg rusty		ру	20 0	0 0	-	- sil ank	-	Mod	Mod	-90.13107997 48.6263797 113 - 0.05	269291.8	5390655
B0287245 STU 2022/09/27 LATE GOSS fg rusty		ру	9 0	0 0	fdiss	- ank -	-	Str		-90.13104242 48.62639772 121 - 0.05	269294.6	5390657
B0287246 STU 2022/09/27 VOLC GOSS fg rusty		ру	7 0	0 0	bleb	blebs and fine diss sil ank	-	Str	Mod	-90.13102905 48.62641115 113 - 0.05	269295.6	5390659
B0287247 STU 2022/09/27 LATE GOSS fg rusty		ру ру -	0.5 0	0 0	-	- Kfs chl	-	Mod	Mod	-90.1310202 48.6264432 11 - 0.05	269296.4	5390662
B0287248 STU 2022/09/27 LATE GOSS fg rusty		ру	2 0	0 0	-		-	-		-90.1323785 48.62618078 < 5 - <5	269195.2	5390637
B0287249 STU 2022/09/27 LATE rusty		ру	20 0	0 0	-		-	-		-90.13234908 48.62622477 344 - 0.05	269197.5	5390642
		py	3 0	0 0	-	- ank -	-	Mod		-90.1476024 48.6199526 67 - 0.05	268045	5389991
W1069501 STU 2022/09/27 LATE SV fg rusty		py cpy mal	15 2	1 0	-	- ank -	-	Mod		-90.14756667 48.61995775 1410 - 1	268047.7	5389992
W1069502 STU 2022/09/27 LATE QV cg rusty		сру ру -	0.2 0.2	0 0	-	- ank -	-	Mod		-90.14756662 48.61995365 147 - 0.05	268047.6	5389991
W1069503 STU 2022/09/27 LATE SV mg rusty		cpy mal py	7 0.5	1 0	vn	- ank -	-	Mod		-90.14761775 48.61995405 352 - 0.05	268043.9	5389991
		сру	1 0	0 0	cdiss	- ank sil	_	Mod	Mod	-90.14767498 48.61994915 100 - 0.05	268039.6	5389991
		ру	2 0	0 0	cdiss	- ank sil	-	Mod	Mod	<u>-90.1477116</u> 48.61994737 50 - 0.05	268036.9	5389991
W1069506 STU 2022/09/27 LATE SV mg -		cpy mal -	3 1	0 0	vn	- ank -	-	-		-90.14788162 48.62010212 43 - 0.05	268025.1	5390009
		ру	2 0	0 0	cdiss	minz mostly in host		-		-90.19871227 48.64363855 < 5 - <5	264389.5	5392780
W1069508 STU 2022/09/28 MV SCHT fg grey		ру	3 0	0 0	cdiss		-	-		-90.19852458 48.64367628 9 - 0.05	264403.5	5392784
W1069513 STU 2022/09/28 LATE GOSS - rusty			0 0	0 0	-	5% dark mystery sulphide	-	-		-90.1939397 48.64504024 11 - 0.05	264747.5	5392921
W1069514 STU 2022/09/28 MV - fg rusty		ру	3 0	0 0	-	- chi -	-	Mod		-90.1937434 48.6449794 < 5 - <5	264761.7	5392914
W1069515 STU 2022/09/28 LATE SV fg rusty		py mt -	15 5	0 0	-	- chl -	-	Str		-90.1931538 48.64499055 126 - 0.05	264805.1	5392913
W1069523 STU 2022/09/28 INT QV mg rusty		ру	2 0	0 0	cdiss	mostly in vein but in host as we ank -	-	Wk		-90.18284297 48.64437693 1190 - 1	265561.6	5392813
W1069524 STU 2022/09/29 INT POR mg grey		cpy py mal	1 1	0.5 0	cdiss		-	-		-90.12918847 48.63567008 561 - 0.5	269473.5	5391682
W1069525 STU 2022/09/29 LATE POR mg rusty		py cpy mal	15 0.5	0.2 0	cdiss	py 1cm veun plus coarse diss	-	-		-90.1291898 48.6355794 644 - 0.5	269473	5391672
W1069526 STU 2022/09/29 LATE rusty	- rotted out rock with malachite m	mal py cpy	5 2	1 0	-		-	-		-90.12920389 48.63557867 706 - 0.5	269471.9	5391672

W1069527	S	TU 2022/0)9/29	INT	POR	mg	grey	shr	-	ру	-	-	2	0	0	0	cdiss	-	chl	 Mod	-	-	-	-90.12927793	48.63552	913 1	9 -	0.0	269466.2	5391667
W1069528	S	TU 2022/0)9/29	INT	POR	mg	grey	shr	3cm bull qv, diss py in host	ру	-	-	1	0	0	0	cdiss	-	-	 -	-	-	-	-90.129342	48.63550	142 10	00 -	0.0)5 269461.4	5391664
W1069529	S	TU 2022/0	09/29	LATE	SCHT	fg	rusty	sch	sericite schist?	ру	сру	-	4	0.1	0	0	cdiss	-	ser	 Mod	-	-	-	-90.12926562	48.63557	496 25	55 -	0.0)5 269467.4	5391672
W1069530	S	TU 2022/0)9/29	LATE	-	mg	rusty	sch	0.5cm vein of pyrite in schist	ру	-	-	4	0	0	0	-	-	-	 -	-	-	-	-90.12912813	48.63536	305 23	50 -	1	269476.5	5391648
W1069531	S	TU 2022/0)9/29	LATE	SV	-	-	-	3-4cm vein of rotted py	ру	-	-	10	0	0	0	vn	-	-	 -	-	-	-	-90.14714056	48.6322	352 65	50 6.7	75 5	268135.6	5391360
W1069532	S	TU 2022/0)9/29	LATE	SV	-	rusty	-	3-4cm vein of rotted py and rusty schist	ру	-	-	5	0	0	0	vn	-	-	 -	-	-	-	-90.1471227	48.63230	212 16	40 -	1	268137	5391362

Abbreviation	Full Name
ank	Ankerite
aspy	Arsenopyrite
bleb	Blebby
СС	Calcium Carbonate
Cg	Coarse Grained
Chl	Chlorite
CODE	Rock Code
сру	Chalcopyrite
Diss	Disseminated
EQUI	Equigranular
Fg	Fine Grained
GOSS	Gossanous
INT	Intermediate
IV	Intermediate Volcanic
kspar	Potassium Feldspar
mal	Malachite
Mg	Medium Grained
minz	Minerals
mm	Millimeter
MNZD	Monzodiorite
mod	Moderate
MV	Mafic Volcanic
POR	Porphyry
ру	Pyrite
QV	Quartz Vein
Scht	Schist
ser	Sericite
Shr	Shear
sil	Silica
Str	Strong
SYEN	Syenite
tour	Tourmaline
vn	Vein
VOLC	Volcanic
w	With
Wk	Weak

Quality Analysis ...

Innovative Technologies

Report No.:	A22-15485
Report Date:	08-Nov-22
Date Submitted:	24-Oct-22
Your Reference:	Band Ore

E2Gold Inc. 8 King Street East Suite 1700 Toronto Ontario M5C1B6

ATTN: Katarina Bjorkman

CERTIFICATE OF ANALYSIS

82 Rock samples were submitted for analysis.

The following analytical package(s) were requested:		Testing Date:
1A2B-50-Tbay	QOP AA-Au (Au - Fire Assay AA)	2022-11-02 15:11:18
1A3-50-Tbay	QOP AA-Au (Au - Fire Assay Gravimetric)	2022-11-07 13:42:45

REPORT A22-15485

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

If value exceeds upper limit we recommend reassay by fire assay gravimetric-Code 1A3

LabID: 673

ACTIVATION LABORATORIES LTD.

1201 Walsh Street West, Thunder Bay, Ontario, Canada, P7E 4X6 TELEPHONE +807 622-6707 or +1.888.228.5227 FAX +1.905.648.9613 E-MAIL Tbay@actlabs.com ACTLABS GROUP WEBSITE www.actlabs.com CERTIFIED BY:

NI/

Rob Hoffman Region Manager

Analyte Symbol	Au	Au
Unit Symbol	ppb	g/tonne
Lower Limit	5	0.02
Method Code	FA-AA	FA- GRA
B0287201	274	Gruv
B0287202	512	
B0287203	260	
B0287204	485	
B0287205	115	
B0287206	20	
B0287207	16	
B0287208	< 5	
B0287209	6	
B0287210	20	
B0287210 B0287211	< 5	
B0287211 B0287212	< 5	
B0287213	88	
B0287214	< 5	
B0287215	25	
B0287216	10	
B0287217	9600	9.26
B0287218	1450	
B0287219	431	
B0287220	< 5	
B0287221	> 10000	12.5
B0287222	79	
B0287223	10	
B0287224	18	
B0287225	22	
B0287226	5	
B0287227	12	
B0287228	2890	
B0287229	< 5	
B0287230	6	
B0287231	6	
B0287232	< 5	
B0287233	< 5	
B0287234	> 10000	23.6
B0287235	1080	
B0287236	809	
B0287237	386	
B0287238	4300	4.28
B0287239	3970	3.31
B0287240	< 5	
B0287241	8	
B0287242	11	
B0287243	< 5	
B0287244	113	
B0287245	121	
B0287246	113	
B0287247	11	
B0287248	< 5	
B0287249	344	
B0287250	67	
100201200	1 0/	1

Analyte Symbol	Au	Au
Unit Symbol	ppb	g/tonne
Lower Limit	5	0.02
Method Code	FA-AA	FA- GRA
W1069501	1410	
W1069502	147	
W1069503	352	
W1069504	100	
W1069505	50	
W1069506	43	
W1069507	< 5	
W1069508	9	
W1069509	65	
W1069510	58	
W1069511	24	
W1069512	9	
W1069513	11	
W1069514	< 5	
W1069515	126	
W1069516	7	
W1069517	74	
W1069518	< 5	
W1069519	124	
W1069520	< 5	
W1069521	131	
W1069522	< 5	
W1069523	1190	
W1069524	561	
W1069525	644	
W1069526	706	
W1069527	19	
W1069528	100	
W1069529	255	
W1069530	2350	
W1069531	6550	6.75
W1069532	1640	

Activation Laboratories Ltd.

Analyte Symbol	Au	Au
Unit Symbol	ppb	g/tonne
Lower Limit	5	0.02
Method Code	FA-AA	FA-
		GRA
Oreas E1336 (Fire Assay) Meas	508	0.52
Oreas E1336 (Fire Assay) Cert	510.000	0.510
Oreas E1336 (Fire Assay) Meas	501	
Oreas E1336 (Fire		
Assay) Cert	510.000	
Oreas E1336 (Fire Assay) Meas	498	
Oreas E1336 (Fire Assay) Cert	510.000	
OREAS 216b Meas	6660	6.67
OREAS 216b Cert	6660	6.66
OREAS L15 Meas		
OREAS L15 Cert	7180	
OREAS L15 Meas	7310	
OREAS L15 Cert	7180	
OREAS L15 Meas	7300	
OREAS L15 Cert	7180	
B0287210 Orig	22	
B0287210 Dup	17	
B0287220 Orig	< 5	
B0287220 Dup	< 5	
B0287231 Orig	7	
B0287231 Dup	6	
B0287240 Orig	< 5	
B0287240 Dup	< 5	
B0287246 Orig	117	
B0287246 Dup	108	
B0287250 Orig	67	
B0287250 Split PREP DUP	68	
W1069505 Orig	49	
W1069505 Dup	51	
W1069525 Orig	617	
W1069525 Dup	671	
W1069532 Orig	1640	
W1069532 Split PREP DUP	1700	
Method Blank	< 5	
Method Blank	< 5	
	< 5	
Method Blank Method Blank Method Blank		< 0.02

DAILY LOGS – Band Ore, Golden Share Resources Corporation, 2022

Stuart MacLean's daily log

Tuesday September 20th, 2022

I'd driven out to Whiskeyjack the night before, we got the starlink packed away, had to shuffle some ATV's around so we could get the side by side on the trailer, went over some data.

Wednesday, September 21st, 2022

Left Whiskeyjack and drove to Atikokan to pick up John, the groceries and some fuel and oil. Then we headed out to the rental cabin out on Shabandawan Lake off the 586. Got there and unloaded everything.

We decided to go out to the Calvert zone. After looking around for a bit I think the high-grade float was definitely blast rock (Figure 1). I saw a number of old flags from where folks had sampled previously and to me it looked very similar to the trenches, Sheared and silica altered. We took a few samples around the trenches then headed back to the cabin.

Figure 1: Sample of blast rock form the Calvert zone off the highway, local to area. Also sample number should be B0287205.

Thursday, September 22nd, 2022

John and I went to the Fogen target in the morning. We started off the west side of the road, looked quickly at a stripping which had been sampled years ago. There was another stripping which we didn't have any data on, so I marked it in and took a sample, little bits of chlorite schist in a intermediate volcanic host (Figure 2). We didn't see to much else for outcrop here and what we did wasn't overly exciting.

Figure 2: mineralized chlorite alt schist in intermediate volcanic

On the other side of the road there was definitely more for outcrop although most of them had already been looked at. Towards the eastern extremity of the target zone there was a little ridge running approximately northwest to southeast. There was a moderate amount of pyrite in the rock that wasn't rotten and I'm fairly certain there was some chalcopyrite as well. We scooted a little further east to gander quickly at the intermediate intrusive which 0.14 Au and the parallel lines that run north south on the satellite image. We weren't able to find the sample and the lines turned out to be nothing, at least the first two.

At lunch we headed over to the Hag Lake target. The trench there took a little bit to wrap my head around. After reading the sample descriptions I was expecting a little more oxidization than we found. The best sample was supposably at the southern end of the trench with five to ten percent pyrite, we couldn't find it unfortunately. At the north end of the trench however we found something which matched the description, Although I would er closer to ten percent (Figure 3). Wondering if the sample previous sample might have been miss plotted or buried. Anyhow east of the trench we took another sample with about five percent pyrite. It seems to be that there's little indication on the surface

of mineralization beneath. Maybe a little rust and some perforation, it also tended to be on the boarder of the schist. After that we spent a little time looking for the drill holes. The forest here was fairly open and the drilling was done in 1986 so, pads were difficult to locate. I think we found a few but weren't able to locate any holes.

Figure 3: Sample from north end of Hag Lake trench

Took a quick swing by the access to the powerline corridor from both the east and west to see what we were in for. From the east there appears to be an atv trail which continues along the powerline. From the west there was a beaver dam across that'd flooded out the road. We knew about the dam but wanted to see if a fella could take four wheels through it... probably not.

Friday, September 23rd, 2022

John and I headed to the Western Powerline Corridor. We took the pickup as far as we could then hopped in the side by side. The road was a little soggier than I was expecting, not too far into it we got good and stuck. We weren't very prepared for that sort of ordeal, so I had to hike back to the truck to grab a scissor jack and shovel. I didn't have any boards either, so a tree came down and volunteered some. Anyhow we got out of there after a little grunting and revving. The trail might be passible with a quad and only one person on it but I wouldn't risk it. We got stuck not even halfway through and it got worse after that.

After we got the side by side out and back on the trailer we hoofed it through the bog, which is about nine hundred metres along the powerline. As soon as we found ourselves on outcrop we took a couple quick samples of a quartz vein with chalcopyrite and the sheared up syenite which bordered it. Then we headed down to trench GSH-11-8, once we got there I realized we didn't have all the info on it so

we grabbed some of the more mineralized stuff then scooted (Figure 4). Most of the mineralization was where the rock was sheared, but there was some rock that had looked similar to the stuff at the Hag Lake trench that was perforated with the little quartz carb eyes so we grabbed that as well.

Figure 4: one of the knots of pyrite in GSH-11-8

At trench GSH-11-9 it looked like all the numbers were only in the quartz veins so we grabbed some samples from the veins (Figure 5) then buggered off. The veins looked really promising, lots of chalcopyrite, pyrite, malachite and ankerite alteration.

Figure 5: Ankerite altered quartz vein with chalcopyrite and pyrite from GSH-11-9

The last trench we got to was GSH-11-10. There was more quartz veins here with chalcopyrite and pyrite although they weren't very continuous, more like knots than veins (Figure 6). took the veins that we found. Some of the syenite, and a couple in the volcanics.

Figure 6: One of the quartz knots from GSH-11-10 containing chalcopyrite, pyrite and malachite.

Saturday, September 24th, 2022

John and I went to gander at the main zone and trench GSH-11-02. We turned south on swamp road, which runs parallel to swamp river, which feeds into swamp bay. Anyhow, we parked on the powerline and headed to trench two off the hop. We sample most of the veins and any notable mineralization we saw then commenced to looking for the float sample L124981, which had run pretty high. We found it in a parallel trench just southeast of trench two (Figure 7). The boulder L124981 came from was in the west bank of the trench, all the muck piles were on the opposite side. It was very angular and had a look of belonging to the general area. We dug a little into the trench, but the low points were flooded, which if the float did come from the trench, I'd guess that's where it would have come from. We looked around a bit more in the area but there was a decent layer of till, so we didn't see much outcrop. Also we reflagged the old wrap rock.

Figure 7: Float near trench GSH-11-02, found more in parallel trench but not in place

After that we went to look for some of the trenches near the main zone. The best we saw was only about thirty metres east of trench GSH-11-1. It had a three to four centimetre quartz veins with chalcopyrite, malachite and pyrite as well as some sericite schist (Figure 8) with lots of disseminated pyrite, one of the later had a centimetre vein of pyrite as well.

Figure 8: sericite schist with veined and disseminated pyrite in old trench parallel to GSH-11-01

Tuesday, September 27th, 2022

Snowed on the way to work... John and I went to look at the Patent Zone, just off the highway. We tucked the pickup away by the tower up the road then walked down. We took six samples across strike, the most pyrite we saw in a sample was between fifteen and twenty percent (Figure 9). The azimuth was consistently three hundred and fifty across the zone to within about five degrees. We walked west into the bush a little to look at the other number they had gotten and found a trench there. We marked it in and took a few more samples in the trench. We found more of the fifteen to twenty present pyrite there (Figure 10). We did a quick loop to see if there were any more outcrops or trenches and found one at staggered off the bottom of the other. It didn't have much outcrop exposed in it unfortunately.

Figure 9: Most mineralized sample taken on the roadside of the patent zone.

After we'd satisfied our curiosity, we got on the east side of the eleven and worked our way to the number four zone. Turns out the wasn't much outcrop in the area, we did a few passes with little luck. I decided to try a little further to the north to see if we could find the continuation of the patent zone along trend. It seems like folks before us had the same idea as there was an old stripping up there. It was pretty grown over and we didn't have time to uncover it all but what we did look at was a rather unexciting chlorite schist.

Figure 10: 15-20% pyrite in gossanous rock in the trench off the highway a little.

At the end of the day, we stopped by the zone right on the side of the highway, near Carson point. There were a few centimetre veins of chalcopyrite (Figure 11) which we sampled as well as some chalcopyrite disseminated throughout the rock. One of the samples had a quartz vein right on a fold, the quartz vein was ankerite altered and had some mineralization but palled compared to what was next to it. Unfortunately, I forgot to grab some measurements, the approximation is that quartz vein came out perpendicular to the highway and the schist folding to the west until roughly parallel.

Had a little bit of fun getting back onto the highway. There isn't really a good spot to park close to the zone and it's right on a corner. I decided to dump the pickup off the highway onto this little atv trail that runs right on top of the showing. Getting in was no problem so long as you don't mind a few trees tickling your truck. Getting back onto the highway was a little tricky though. I need new bushings for my transfer case linkage so to put it in four you have to crawl under the truck and tug on t-case lever. Didn't really have a mind to do that so we took a bit of a running start (after verifying there was no oncoming traffic of course), spun a little but we got back on the highway.

Figure 11: 2-3cm vein of chalcopyrite and quartz in monzodiorite.

Wednesday, September 28th, 2022

Frosty again this morning. John and I approached the Western Powerline Corridor from the west. Not far inside the property boundary we found a couple sulphide veins. We sampled a few more mineral occurrences then headed north to try and intersect the intrusive. We didn't see much for outcrop unfortunately. I think we marked one in that hadn't already been looked at.

After that loss we headed east to look at trench GSH-11-12 and try and extend the zone a little. We saw a bit more of the intrusion to the west by about eighty metres. It was all sheared up, rusty and had a little pyrite in it. We'd hoped to see some outcrop between trench twelve and ten but didn't sadly. We did find the old samples near the trench however and took a sample near them of a quartz vein with pyrite.

We started our hike out after that saw some interesting float by the powerline tower almost directly south of trench twelve, couldn't where it came from though.

Thursday, September 29th

John and I went and sampled trench GSH-11-05. Most of the numbers revolved around one mineralized band which end. Where we sample (Figure 14) it there was a one-centimetre vein of pyrite in the schist, which was also heavily mineralized. There was a little bit of chalcopyrite and malachite in the sample as well. About two meters to the east along the on the south side of the vein

there was a lot of very rotted rock with pervasive malachite. Not sure what exactly was in it aside from that, by the time we got it out it was practically sand.

Figure 14: one-centimetre vein of pyrite in schist

At the north end of the trench, we sampled a sheared porphyry with disseminated chalcopyrite and pyrite. On our way out we took one of a small one-centimetre sulphide vein which looked like it might have got missed in the channel sampling. We also looked around to the west and east but didn't see more outcrop.

Took a quick spin down to Hag Lake again to grab the samples that we'd missed. Brought a shovel and broom this time which turned out to be a big help. We found the high-grade grab wrap rock and the channels of the veins. We sampled both the veins.

Figure 15: Vein and old high-grade sample from the Hag Lake trench Packed up everything at the cabin then drove back to Sapawe.