

We are committed to providing <u>accessible customer service</u>. If you need accessible formats or communications supports, please <u>contact us</u>.

Nous tenons à améliorer <u>l'accessibilité des services à la clientèle</u>. Si vous avez besoin de formats accessibles ou d'aide à la communication, veuillez <u>nous contacter</u>.

2022 ASSESSMENT REPORT

On the

NIPISSING LORRAIN PROPERTY

South Lorrain and Lorrain Townships, Kirkland Mining Division, Ontario, Canada

Located Within: NTS Sheet 31M04I/31M03L

Centered at Approximately: Latitude 47°12′43.58″ North by Longitude 79°27′22.08″ West

> Report Prepared For: Quantum Battery Metals Corp.

> > 800-1199 West Hastings St. Vancouver, BC, Canada V6E 3T5

Report Prepared by: Longford Exploration Services Ltd.

> 1680-355 Burrard Street Vancouver, BC, Canada, V6C 2G8

Sarah Ryan, G.I.T., B.Sc. B.B.S.

EFFECTIVE DATE: June 31, 2023

Table of Contents

List of Tables	ii
List of Figures	i
1 Summary	2
1.1 Introduction	2
1.2 Property Description	2
1.3 Geology	2
1.4 Mineralization	2
1.5 Status of Exploration	3
1.6 2022 Exploration Program	3
1.7 Conclusions and Recommendations	3
2 Introduction and Terms of Reference	5
2.1 Issuer	5
2.2 Terms of Reference	5
2.3 Sources of Information	5
2.4 Abbreviations and Units of Measurement	5
3 Property Description and Location	8
3.1 Location	8
3.2 Mineral Titles	8
3.3 Property Legal Status	11
3.4 Mining Claims in Ontario	11
3.5 Permitting	11
4 Accessibility, Infrastructure and Climate,	12
4.1 Accessibility	12
4.2 Climate	13
4.3 Local Resources	13
4.4 Infrastructure	13
4.5 Topography and Vegetation	13
5 History	14
5.1 Historical Exploration	14
6 Geological Setting and Mineralization	17
6.1 Regional geology	17
6.2 Property Geology	19
6.3 Lithology, Structure and Alteration	19
6.4 Mineralization	23
7 Deposit Types	28
8 Exploration	29
8.1 2022 Exploration Program Overview	29
8.1.1 2022 Rock Sampling	29
8.1.2 Rock Sampling Results	29

	8.1.3	Soil Sampling Results	37
9	Staten	ment of Costs	68
10	Sample	le Preparation, Analysis, and Security	69
1	0.1 2	2021 Sampling Procedure	69
1	0.2 Sa	Sampling Preparation and Analysis	69
1	D.1 A	Adequacy of Procedures	69
11	Interp	pretation and Conclusions	70
12	Recom	nmendations	72
13	Refere	ences	73
14	Staten	ment of Qualification	74
APP	ENDIX /	A: 2022 Rock Sample Assay Certificates	75
APP	ENDIX E	B: 2022 Soil Sample Assay Certificates	80

List of Tables

Table 2.1 Abbreviations and Units of Measurement.	6
Table 3.1: Mineral Tenure Summary Table	10
Table 4.1 Driving Distances to the Property.	12
Table 5.1 Historical Exploration Summary	14
Table 8.1: 2022 Rock Sample Locations, Assay Results and Descriptions	30
Table 8.2: 2022 Soil Sample Locations, Assay Results and Descriptions.	38
Table 9.1: Nipissing Lorrain Property 2022 Statement of Costs.	68
Table 10.1: Analytical Methods Descriptions	69
Table 11.1: Statistical Analysis of 2022 Rock Sample Results (n=20).	71
Table 11.2: Statistical Analysis of 2022 Soil Sample Results (n=164).	71
Table 11:3 Statistical Analysis of Soil Sample Results from 2021 and 2022 (n=202)	71
Table 11.4: Threshold Values Calculated Using Nipissing Lorrain 2021/2022 Soil Samples (n=202)	71

List of Figures

Figure 3.1: Nipissing Lorrain Property Location.	8
Figure 3.2: Nipissing Lorrain Property Claims	9
Figure 4.1: Nipissing Lorrain Property Accessibility.	12
Figure 4.2: Nipissing Lorrain Characteristic Topography over the Small Claim Block.	13
Figure 5.1:Total Magnetic Field over the Nipissing Lorrain Property	15
Figure 5.2: First Vertical Derivative over the Nipissing Lorrain Property	16
Figure 6.1: Nipissing Lorrain Regional Geology	18
Figure 6.2: Simplified stratigraphic column of the Temagami region	19
Figure 6.3: Simplified Geology of the Cobalt Embayment Area	25
Figure 6.4: Nipissing Lorrain Local Property Geology	26
Figure 6.5: Nipissing Lorrain Local Property Geology Legend	27
Figure 7.1: Schematic Cross-Section of Relationship of Veins to Geological Units	28
Figure 8.1: Aerial Photo of the Nipissing Lorrain Waste Dump (2022)	29
Figure 8.2: 2022 Cobalt in Rock Results (ppm Co)	31
Figure 8.3: 2022 Silver in Rocks (ppb Ag)	32
Figure 8.4: 2022 Bismuth in Rocks (ppm Bi)	33
Figure 8.5: 2022 Copper in Rocks (ppm Cu)	34
Figure 8.6: 2022 Nickle in Rocks (ppm Ni).	35
Figure 8.7: 2022 Arsenic in Rocks (ppm As)	36
Figure 8.8: 2022 Cobalt in Soils-Map 1 (ppm Co)	56
Figure 8.9: 2022 Cobalt in Soils-Map 2 (ppm Co)	57
Figure 8.10: 2022 Silver in Soils Map 1 (ppm Ag)	58
Figure 8.11: 2022 Silver in Soils Map 2 (ppm Ag)	59
Figure 8.12: 2022 Bismuth in Soils Map 1 (ppm Bi)	60
Figure 8.13: 2022 Bismuth in Soils Map 2 (ppm Bi)	61
Figure 8.14: 2022 Copper in Soils Map 1 (ppm Cu)	62
Figure 8.15: 2022 Copper in Soils Map 2 (ppm Cu)	63
Figure 8.16: 2022 Nickle in Soils Map 1 (ppm Ni)	64
Figure 8.17: 2022 Nickle in Soils Map 2 (ppm Ni)	65
Figure 8.18: 2022 Arsenic in Soils Map 1 (ppm As).	66
Figure 8.19: 2022 Arsenic in Soils Map 2 (ppm As).	67

1 Summary

1.1 Introduction

This technical report provides the results of a prospecting and geochemical soil survey carried out over the Nipissing Lorrain Property (the Property) for Quantum Battery Metals Corp. (formerly known as Quantum Cobalt Inc.) a Canadian company involved in mineral exploration and development. The Property is located in southeastern Ontario, Canada in the Sudbury Mining Division. The purpose of this report is to fulfill the annual work requirements on the Nipissing Lorrain Property.

The Nipissing Lorrain Property is characteristic of a Five-Element Vein style of mineralization.

1.2 Property Description

The Nipissing Lorrain Property is located 26 km southeast of the town of Cobalt, near the eastern border of Ontario. Cobalt is the epicentre of past Cobalt mining in Ontario. The district is mining friendly, with a rich history of cobalt and silver production. The Property consists of 38 mineral claims located in the Timiskaming Mining Division totalling 832 hectares (ha). The claims currently show in the online registry as being owned 100% by Quantum Cobalt Inc. (now known as Quantum Battery Metals Corp.).

1.3 Geology

The Nipissing Lorrain Property area is located 26 km south of the historic Cobalt silver mines which includes historically significant Keeley-Frontier, Haileybury, and Bellellen mines. The mines are located in the eastern portion of the Cobalt Embayment and are characterized by Archean meta-volcanics and meta-sedimentary rocks which are unconformably overlain by Proterozoic rocks of the Huronian Supergroup. The Archean and Proterozoic rocks have been intruded by Nipissing Diabase sills on a regional scale, and its distribution may be structurally influenced by faults. A significant regional southeast trending fault system is located within the area and consists of the Montreal River, Cross Lake, and Timiskaming faults. This fault system is believed to be related to mineralization as most of the Ag-Co occurrences in the Cobalt Embayment are concentrated between Cross Lake and Montreal River faults.

The Property overlies the Nipissing diabase sill rocks which outcrop on the Temiskaming lakeshore. A basin-structure is formed by these intrusive rocks and exhibits an east-west trending axis. Underlying this unit is the Cobalt Group sedimentary suite of greywackes and conglomerates of Huronian age which pinch out between the overlying diabase and the underlying Keewatin lava complex. Intruding into the Keewatin lava complex are pre-Huronian age lamprophyre dykes and Algoman granites.

1.4 Mineralization

The Nipissing Lorrain Property has a similar style of mineralization to the Cobalt Silver Mines, which is related to the Nipissing Diabase intrusion and is fault controlled. The typical style of mineralization is consistent with the Five-Element (Co-Ni-As-Ag-Bi) vein assemblage. It has been suggested that the origin and mechanism driving this style of mineralization is related to one of the following: (1) metal-rich aqueous fluids originating from late stage differentiation of the diabase sills and or the parent magma at depth; (2) convectively circulating fluids mobilized from the country rocks during cooling of the diabase intrusive complex; or (3) hydrothermal fluids originating from an unidentified external source unrelated

to the diabase contact areas, simply acted as a mechanically favourable host environment during regional faulting.

Cobalt, silver and nickel mineralization occurs over a number of fracture zones and veins within the property. Mineralization is associated with calcite veins within close proximity to diabase sills which occurs as Co-Fe-Ni arsenides, argentite, niccolite and native silver. Silver grades up to 261 g/t, and Cobalt grades up to 14.75% have been reported on the Property.

Mineralization exists in a number of structural orientations throughout the Property. However, it appears to be discontinuous and of a pinch and swell nature. The biggest resource on the Property (staples vein) occurs at the intersection between two crosscutting veins.

1.5 Status of Exploration

Mining and exploration have been sporadic over the Property since 1925. The first shafts were sunk into staples vein in 1925 by Nipissing Mining Co. Ltd. Underground mining continued until 1940 with numerous shafts and 5 levels developed. Total production is reported as 2,507 kg Co, 1597 kg Ni and 10,886 kg Ag from 122 tonnes.

During the 2017 program, the focus was on historical works and their potential for further development. Historical shafts and drifts were visited, and waste dumps analyzed. Samples were taken with visible cobalt bloom in calcite veins, Ag-Co-Ni arsenites, malachite and chalcopyrite. Further rock or bulk samples would be necessary to delineate any average grades within the dump. The highest values returned among rock samples were 83,310 ppm Co, 38, 950 ppm Ni, and 27,550 ppm Cu, all collected within the smaller property area to the east of the main property. Samples returning highest values were all located within the Nipissing Lorrain Quartz Diabase intrusion; and 8 of the 15 samples collected returned values > 10,000 ppm cobalt.

During the 2021 program three previously unsampled historical shafts were located and sampled in addition to waste dumps. The area is characterized by areas of extensive overburden coverage, including abundant large boulders, however, higher elevation ground provides considerable outcrop exposure locally. A total of 19 representative rock samples were collected within the boundaries of the main Property claim block and a total of 38 soil samples were collected within the boundaries of the smaller claim block.

1.6 2022 Exploration Program

At the request of Quantum Battery Metals Corp., Longford Exploration Services Ltd. mobilized a crew of four people, consisting of Marc-Andre Pelletier, Ryan Versloot, Francis Thompson, and Avery Lessard on May 26, 2022, to complete a 5-day rock and soil sampling program on the Nipissing Lorrain Property from May 27 to June 2, 2022. In total, 20 rock samples and 164 soil samples were collected across the Property.

An assessment credit of **\$43,463.75** is to be applied to this Property for work performed in 2022.

1.7 Conclusions and Recommendations

Prospecting and soil sampling activities on the Nipissing Lorrain Property in 2022 has identified anomalous cobalt values within the smaller claim block (rock samples) of the Property. All rock samples were collected

within the waste dump pile within the smaller claim block. The best rock sample assays were found in rock Samples 2556432 and 2556438, which returned a value of 2,000 ppm Co and 1,666.8 ppm Co, respectively. The soil sampling survey returned disappointing results overall.

Rock samples collected from the waste dump within the smaller claim block returned elevated concentrations of cobalt, silver, bismuth, nickel, copper, arsenic, and gold. Cobalt values ranged between 15.40 ppm Co and 2,000 ppm Co, silver returned 48 ppb Ag to 29,654 ppb Ag, bismuth ranged between 0.05 ppm Bi and 155.08 ppm Bi, nickel returned between 21.70 ppm Ni and 3,578.50 ppm Ni, copper returned between 16.73 ppm and 861.17ppm Cu, arsenic returned between 5.20 ppm As and > 10,000 ppm As, and gold ranged between 0.02 ppb Au and 75.5 ppb Au.

With regards to the values returned from the 164 soil samples collected on the Property in 2022, cobalt values ranged between 0.4 ppm Co and 118.80 ppm Co, silver ranged between 5 ppb Ag and 466 ppb Ag, bismuth returned between 0.07 ppm Bi to 0.90 ppm Bi, copper returned between 2.35 ppm Cu and 312.85 ppm Cu, arsenic ranged between 0.5 ppm and 47 ppm As, and nickel returned between 0.9 ppm Ni and 110.30 ppm Ni. Comparing these values to the 97.5th percentile of all samples collected on the Property to date (202 soils) only one sample returned anomalous values of bismuth (Sample 3295868 returned 0.90 ppm Bi).

Based on observations made in the field along with assay results for both rock and soils during the 2021 and 2022 field programs, no significant signs of cobalt mineralization have been identified, therefore, no further work is recommended at this time.

2 Introduction and Terms of Reference

2.1 Issuer

The Issuer of this report is Quantum Battery Metals Corp. with offices located at 800-1199 West Hastings St., Vancouver, British Columbia, Canada, and trades on the Canadian Securities Exchange (CSE) under the symbol QBAT.

2.2 Terms of Reference

In March 2022 Longford Exploration Services Ltd. (Longford) was commissioned by Quantum to conduct a prospecting and soil sampling program on the Nipissing Lorrain Property in southeast Ontario, Canada to further assess the Property's prospectivity for cobalt mineralization. This Report is intended to be read in its entirety.

2.3 Sources of Information

The author has used Ontario's Ministry of Northern Development and Mines (MNDM) publicly available information resources found online at <u>http://www.mci.mndm.gov.on.ca</u> for historical property assessment reports and mineral tenure information as well as the Ontario Geological Survey's digital publication database found online at <u>http://www.geologyontario.mndm.gov.on.ca/</u> for regional geological data and mineral occurrence information. Climate information was obtained from Environment Canada, population and local information for the Project area was obtained from http://en.wikipedia.org/wiki/Temagami.

Assessment reports found in the MNDM database with information pertaining to the project can be found in Section 13: References.

2.4 Abbreviations and Units of Measurement

Metric units are used throughout this report and all dollar amounts are reported in Canadian Dollars (CAD\$) unless otherwise stated. Coordinates within this report use EPSG 26917 NAD83 UTM Zone 17N unless otherwise stated. The following is a list of abbreviations which may be used in this report:

Description	Abbreviation or Acronym
percent	%
three dimensional	3D
Ontario Mining Act	Act
silver	Ag
area of interest	AOI
gold	Au
degrees Celsius	°C
circa	ca.
Canadian dollar	CAD\$
Canadian Institute of Mining, Metallurgy and	
Petroleum	
centimetre	cm
copper	Cu
diamond drill hole	DDH
east	E
electromagnetic	EM
European Petroleum Survey Group	EPSG
degrees Fahrenheit	°F
gram	g
grams per tonne	g/t
billion years ago	Ga
Global Positioning System	GPS
greenstone-hosted quartz-carbonate	GQC
Geological Survey of Canada	GSC
gigawatt hours	GWh
hectare	ha
kilogram	kg
kilometre	km
kilometres per hour	km/hr
potassium feldspar	K-spar
kilovolt	kV
Longford Exploration Services Ltd.	Longford Exploration
metre	m
million years ago	Ма
metres above sea level	masl
Mineral Lands Administration System	MLAS
millimetre	mm
mobile metal ion	MMI
Ministry of Energy, Northern Development and Mines	MNDM
molybdenum	Мо
million ounces	Moz
megapascal	МРа
million tonnes	Mt

Table 2.1 Abbreviations and Units of Measurement.

Description	Abbreviation or Acronym
Nipissing Lorrain Property	The Property
north	Ν
not applicable	n/a
North American Datum	NAD
nickel	Ni
net smelter return	NSR
National Topographic System	NTS
Ontario Geological Survey	OGS
ounce	OZ
ounces per tonne	oz/t
platinum-group elements	PGE
Professional Geoscientist	P. Geo.
parts per billion	ppb
parts per million	ppm
quality assurance/quality control	QA/QC
qualified person	QP
QCV	Quartz Carbonate Vein
south	S
tonne	t
to be determined	TBD
Universal Transverse Mercator	UTM
very low frequency	VLF
volcanogenic massive sulphide	VMS
Versatile Time Domain Electromagnetic	VTEM
west	W
World Geodetic System	WGS
zinc	Zn

3 Property Description and Location

3.1 Location

The Nipissing Lorrain Cobalt Property (Figure 3.1) is located 26 km southeast of the town of Cobalt near the eastern border of Ontario. Cobalt is the epicentre of past Cobalt mining in Ontario. The district is mining friendly, with a rich history of cobalt and silver production.

3.2 Mineral Titles

The Property consists of 38 mineral claims (Figure 3.2) located in the Timiskaming Mining Division totalling 832 hectares (ha). The claims currently show in the online registry as being owned 100% by Quantum Battery Metals Corp. (Table 3.1).

ASSESSMENT REPORT (2022) Nipissing Lorrain Property |Ontario, Canada

Claim ID	Status	Owner	Issue Date	Anniversary Date		
102669	Active	(100) Quantum Battery Metals Corp.	2018-04-10	2024-06-28		
103123	Active	(100) Quantum Battery Metals Corp.	2018-04-10	2024-06-30		
117424	Active	(100) Quantum Battery Metals Corp.	2018-04-10	2024-06-28		
118426	Active	(100) Quantum Battery Metals Corp.	2018-04-10	2024-06-30		
118427	Active	(100) Quantum Battery Metals Corp.	2018-04-10	2024-06-30		
124498	Active	(100) Quantum Battery Metals Corp.	2018-04-10	2024-06-30		
125026	Active	(100) Quantum Battery Metals Corp.	2018-04-10	2024-06-28		
153021	Active	(100) Quantum Battery Metals Corp.	2018-04-10	2024-06-30		
153022	Active	(100) Quantum Battery Metals Corp.	2018-04-10	2024-06-28		
171566	Active	(100) Quantum Battery Metals Corp.	2018-04-10	2024-06-30		
173797	Active	(100) Quantum Battery Metals Corp.	2018-04-10	2024-06-30		
173798	Active	(100) Quantum Battery Metals Corp.	2018-04-10	2024-06-30		
189209	Active	(100) Quantum Battery Metals Corp.	2018-04-10	2024-06-28		
207039	Active	(100) Quantum Battery Metals Corp.	2018-04-10	2024-06-30		
207040	Active	(100) Quantum Battery Metals Corp.	2018-04-10	2024-06-30		
207041	Active	(100) Quantum Battery Metals Corp.	2018-04-10	2024-06-30		
207042	Active	(100) Quantum Battery Metals Corp.	2018-04-10	2024-06-30		
218345	Active	(100) Quantum Battery Metals Corp.	2018-04-10	2024-06-30		
218346	Active	(100) Quantum Battery Metals Corp.	2018-04-10	2024-06-30		
218347	Active	(100) Quantum Battery Metals Corp.	2018-04-10	2024-06-28		
219793	Active	(100) Quantum Battery Metals Corp.	2018-04-10	2024-06-30		
225758	Active	(100) Quantum Battery Metals Corp.	2018-04-10	2024-06-28		
227734	Active	(100) Quantum Battery Metals Corp.	2018-04-10	2024-06-30		
266964	Active	(100) Quantum Battery Metals Corp.	2018-04-10	2023-06-30		
286404	Active	(100) Quantum Battery Metals Corp.	2018-04-10	2024-06-28		
287036	Active	(100) Quantum Battery Metals Corp.	2018-04-10	2023-06-30		
287037	Active	(100) Quantum Battery Metals Corp.	2018-04-10	2023-06-30		
323056	Active	(100) Quantum Battery Metals Corp.	2018-04-10	2023-06-30		
335375	Active	(100) Quantum Battery Metals Corp.	2018-04-10	2023-06-30		
335376	Active	(100) Quantum Battery Metals Corp.	2018-04-10	2023-06-30		
335377	Active	(100) Quantum Battery Metals Corp.	2018-04-10	2023-06-30		
336087	Active	(100) Quantum Battery Metals Corp.	2018-04-10	2024-06-28		
344045	Active	(100) Quantum Battery Metals Corp.	2018-04-10	2023-06-30		
345337	Active	(100) Quantum Battery Metals Corp.	2018-04-10	2023-06-30		
100620	Active	(100) Quantum Battery Metals Corp.	2018-04-10	2025-06-08		
115902	Active	(100) Quantum Battery Metals Corp.	2018-04-10	2025-06-08		
172103	Active	(100) Quantum Battery Metals Corp.	2018-04-10	2025-06-08		
275424	Active	(100) Quantum Battery Metals Corp.	2018-04-10	2025-06-08		

Table 3.1: Mineral Tenure Summary Table.

3.3 Property Legal Status

The Ontario Mining Lands website (<u>https://www.mci.mndm.gov.on.ca</u>) confirms that all claims of the Property as described in Table 3.1 were in good standing at the date of this report and that no legal encumbrances were registered with the Ministry of Northern Development and Mines against the titles at that date. The author makes no assertion with regard to the legal status of the Property. The Property has not been legally surveyed to date and no requirement to do so has existed.

There are no other royalties, back-in rights, environmental liabilities, or other known risks to undertake exploration.

3.4 Mining Claims in Ontario

The holder of an Ontario Prospector's License may prospect or stake a mining claim on crown land, or private property where the crown has mineral rights that is open for staking.

Mining claims in Ontario transitioned to online staking using a map designation system in April of 2018. All active, unpatented claims were converted from their legally defined location by post location to a cellbased grid. Mining claims are now legally defined by their cell position on the MLAS Map Viewer grid coordinates. Mining claim staking and registration is now completed online using the MLAS system and paying a \$50 registration fee per cell. Up to 50 single-cell claims may be registered at one time provided that each cell claim being registered shares at least one boundary with the cell of another cell claim being registered. Multi-cell claims must be registered separately and may consist of a maximum of 25 cell units, of which each cell must share a least on cell boundary with another cell in the claim.

The government of Ontario requires expenditures of \$400 per year per cell claim and \$200 per boundary cell claim unit prior to expiry to keep the claims in good standing for the following year. The assessment report must be submitted by the expiry date using the online MLAS system.

The holder of a mining claim may obtain a mining lease for that claim though surface rights provisions under the Ontario Mining Act control the activity as work progresses. Surface rights may be sold or granted to a mining operation if they are necessary to carry out mining operations.

3.5 Permitting

The Ontario Mining Act requires an Exploration Permit or Plans for exploration on Crown Lands. The permit and plans are obtained from the MNDM. The processing periods are 50 days for a permit and 30 days for a plan while the documents are reviewed by MNDM and presented to the Aboriginal communities whose traditional lands will be impacted by the work. Quantum Battery Metals Corp. does not have any permits or applications in place at the time of writing.

4 Accessibility, Infrastructure and Climate,

4.1 Accessibility

The Property is accessible by road, 26 km from Cobalt (Figure 4.1). Starting in North Cobalt, follow Highway 567 to silver centre. After travelling 26.85 km, turn left on maiden road and continue for a further 4.35 km. The road passes through the Property with staples vein visible on the right-hand side of the road. Past production makes power and infrastructure abundant within the area.

Road distances from the Property to select cities and ports are summarized in the following Table:

Location (population)	Description	Road Distance (km)
Cobalt (pop. 1, 118)	Nearest city with services	26
Ottawa (pop. 934, 240)	Nearest international airport	546
North Bay (51, 553)	Mining service centre	182.3
Thunder Bay (pop. 110,000)	Port, mining service center	983

Table 4	I.1 Drivin	g Distances	to the	Property.
		D = 104411460		

Figure 4.1: Nipissing Lorrain Property Accessibility.

4.2 Climate

There is a local weather observation station located nearby in North Bay. The project area has a humid continental climate typical of the Canadian Shield region with cold, dry winters (34 days below -20°C, 273 cm snowfall). Summers are typically warm with highs of 35°C in July. Average annual rainfall is 775 mm with September being the wettest month and February the driest.

4.3 Local Resources

General and skilled labour is readily available in the City of North Bay (population 51,553). The city is located 182.3 km by road from the project area, and offers year-round charter service, Ontario Provincial Police detachment, ambulance, fuel, lodging, restaurants, and equipment. The closest hospital is located in Temiskaming Shores, 47.8 km north of the claims. LTE cellular service covers the majority of the Property area.

4.4 Infrastructure

The Lower Notch Generating Station is located near the project area, 9.7 km south of Silver Center, Ontario. This station operates a 274 MW capacity transmission line which carries power to eastern areas of Ontario and western areas of Quebec.

4.5 Topography and Vegetation

The Property lies approximately 200 to 400 meters above sea level (asl), with variable rocky terrain, rolling bedrock hills and locally steep ledges and cliffs that are separated by clay and glacial till filled valleys. This area is typical of boreal regions with a predominantly coniferous and mixed-wood forest. The predominant tree species include black and white spruce, jack pine, balsam fir, tamarack, eastern white cedar, poplar, white birch, and alder.

Figure 4.2: Nipissing Lorrain Characteristic Topography over the Small Claim Block.

5 History

5.1 Historical Exploration

Mining and exploration have been sporadic over the Property since 1925 (Table 5.1). The first shafts were sunk into staples vein in 1925 by Nipissing Mining Co. Ltd. Underground mining continued until 1940 with numerous shafts and 5 levels developed. Total production is reported as 2,507 kg Co, 1,597 kg Ni and 10,886 kg Ag from 122 tonnes.

From 1961 until 1967, further exploration, sampling and geophysics programs were completed (Figure 6.1). Since then, bulk sampling has been completed on the Staples vein waste pile in 1982 and 1994, which returned bulk sampling grades from 0.05oz/t to 1.25 oz/t Ag (per 20 lb sample) as noted in the Mineral Deposit Inventory for Ontario (MDI31M03NW00011). More recently, the Ontario Geological Survey flew an airborne magnetics survey over the Nipissing Lorrain Property area (Figure 5.1).

Year	Company	Summary of Notable Work Preformed			
1025 1020	Nipissing Mining	Shaft sinking and underground development, adit developed, in			
1925-1929	Co. Ltd.	production			
1935	H.G. Miller	Leased to H.G. Miller, in production			
1061 1065	Miller Lorrain	Dowataring DD underground exploration DD 2 262 ft			
1901-1905	Mines Ltd.	Dewatering, DD, underground exploration, DD-3-303 It			
1066 1067	Millerfields Silver	Dewatering, mapping, sampling, DD-7868 ft, ground geophysics			
1900-1907	Corp. Ltd.				
1092 1094	Royal Gold &	Property acquisition, bulk sampling of waste pile			
1962-1964	Silver Corporation				
1994	Cobatec Ltd.	Assessment of waste pile			
***	21111000044				

Table 5.1 Historical Exploration Summary.

*Source: MDI31M03NW00011

ASSESSMENT REPORT (2022) Nipissing Lorrain Property |Ontario, Canada

Figure 5.1:Total Magnetic Field over the Nipissing Lorrain Property (OGS 2017).

Figure 5.2: First Vertical Derivative over the Nipissing Lorrain Property (OGS 2017).

6 Geological Setting and Mineralization

6.1 Regional geology

The South Lorrain Township is located in the Archean Superior Structural Province and extends into the Southern Province. The Superior Province is the largest Archean craton within the continent of North America and consists of quartz monzonite, quartz diorite, and metamorphosed tonalite (Cookenboo et al. 2003). The last major deformational event to affect this craton occurred during the Kenoran Orogen which took place more than 2.70 Ga (Cookenboo et al. 2003). The Paleoproterozoic Southern Province is comprised of the Huronian Supergroup, located within a folded belt that has been thrust northward to rest upon the Archean craton (Cookenboo et al. 2003). There are four main groups of rocks in this area: Archean basement rocks, flat lying Cobalt Group Sedimentary rocks, diabase sheets or sills and dykes, and meta-sediments (Figure 6.1).

The Temagami area was previously covered by the Laurentide Ice-Sheet, a continental-style glacier, which advanced across the area between 80,000 and 100,000 years ago (Cookenboo et al. 2003). The dominant ice-flow direction in eastern Ontario is towards the southwest and is responsible for many of the landforms that occur in the area (Cookenboo et al. 2003).

The Archean basement rocks consist of steeply dipping (Andrews et al. 1987) faulted and folded metavolcanics and associated mafic intrusions all of which have been intruded by granitic rocks (McIlwaine 1970). Unconformably overlying the bedrock is the Cobalt Group, a sub-horizontal sedimentary group comprised of the Coleman, Firstbrook, and Lorrain formations. These sediments range from coarse to finegrained and have variable depth-to-basement (as measured form the surface), likely due to highly irregular basement topography (Andrews et al. 1987).

Intruding all older rock units are the sills and steeply dipping dykes and plugs of the Nipissing Diabase, which have an overall composition of olivine tholeiite (Andrews et al. 1987) and includes gabbros, minor ultramafic rocks, and their green schist facie equivalents (Cookenboo et al. 2003). Regionally they form a basin or dome-like structures called the South Lorrain "diabase dome". These intrusions are thought to be critical factors associated with the silver-cobalt mineralization in the area (McIlwaine 1970). The sills are horizontal to gently dipping and maintain a fairly uniform thickness of 300-335 m (Andrews et al. 1987) and <500 m wide (Cookenboo et al. 2003). Overlying this unit is a small belt of meta-sediments of unknown age, which are characterized by open folds. To the south of this belt are the paragneisses of the Grenville Province with overlying glacial deposits of variable thicknesses. (McIlwaine 1970).

6.2 Property Geology

The Nipissing Lorrain Property area is located 26 km south of the historic Cobalt silver mines which includes historically significant Keeley-Frontier, Haileybury, and Bellellen mines. The mines are located in the eastern portion of the Cobalt Embayment (Figure 6.3) and are characterized by Archean meta-volcanics and meta-sedimentary rocks which are unconformably overlain by Proterozoic rocks of the Huronian Supergroup. The Archean and Proterozoic rocks have been intruded by Nipissing Diabase sills on a regional scale, and its distribution may be structurally influenced by faults. A significant regional southeast trending fault system is located within the area and consists of the Montreal River, Cross Lake, and Timiskaming faults. This fault system is believed to be related to mineralization as most of the Ag-Co occurrences in the Cobalt Embayment are concentrated between Cross Lake and Montreal River faults (Faure et al. 2018).

The Property overlies the Nipissing diabase sill rocks which outcrop on the Temiskaming lakeshore (Figure 6.2). A basin-structure is formed by these intrusive rocks and exhibits an east-west trending axis. Underlying this unit is the Cobalt Group sedimentary suite of greywackes and conglomerates of Huronian age which pinch out between the overlying diabase and the underlying Keewatin lava complex (Woolham 1966). Intruding into the Keewatin lava complex are pre-Huronian age lamprophyre dykes and Algoman granites (Woolham 1966).

6.3 Lithology, Structure and Alteration

The lithological units of the project area as well as their respective descriptions have been summarized after McIlwaine (1970) in Figure 6.2 below.

Cobalt Group: Proterozoic Huronian Sediments (after McIlwaine 1970)

"A long period of erosion followed the igneous activity of the Archean Era. During this time the Archean topography was greatly modified resulting in a series of basins and corresponding highlands. The Huronian sediments were deposited in the basin areas with the adjacent highlands providing the detrital material.

As originally defined the Cobalt Series (Group) was made up of the Gowganda and Lorrain Formations and upper members (Collins 1917). Thomson (1957, p. 40) modified this classification by introducing the Firstbrook and Coleman Formations which together are the former Gowganda Formation (see Table 3). The present author is employing the names introduced by Thomson (1957). This threefold division was first recognized by Barlow (1899, p. 45 and p. 90 to 104) and further recognized by Miller (1910), and Todd (1925) but it was not until 1957 that a formal nomenclature was introduced (Thomson 1957).

Nearly flat-lying beds of all three formations are found extensively in South Lorrain Township. The contact with the underlying basement is unconformable."

Coleman Formation (after McIlwaine 1970)

"In the nomenclature of Thomson (1957) the Coleman Formation is the lower part of the Gowganda Formation, and is named after Coleman Township, in which the Town of Cobalt is located.

In South Lorrain Township the Coleman Formation occupies most of the eastern half of the map-area. Its estimated maximum thickness is approximately 1,000 feet. More detailed information on the thickness is supplied by diamond-drill cores and underground work; most of this data is from within the diabase dome. Unless otherwise credited all information on drilling is from the files at the Resident Geologist's office of Cobalt, now at Kirkland Lake. A drill hole on claim T34065 southwest of Maidens Lake indicated a vertical thickness of 200 feet, and four holes on T34063 and T34064, nearby, gave thicknesses ranging from 180 to 270 feet. These holes were put down by E. B. E. de Camps in 1949 and 1954. Farther to the northeast a long hole collared near the south shore of Maidens Lake (claim T44062) indicated a vertical thickness of 780 feet, and another hole on the northeast side of the lake gave only 490 feet. Another drill hole southeast of Maidens Lake went through 350 feet of Coleman Formation; the shaft to the east on claim T19297 is reported to have gone through approximately 400 feet of sedimentary rocks before reaching the basement. These and other data (the drill hole data is from assessment files and the drill holes were not found by the author) suggest an irregular basement topography, on which the Coleman Formation was deposited, with the suggestion of a local trough trending east-northeast subparallel to the flanks of the diabase "dome". The only information on thickness outside the diabase "dome" is from a drill hole (not found by author) just north of the north boundary of HR18, northwest of Maidens Lake. Here the thickness was found to be 460 feet. Drilling to the southeast of Maidens Lake by Mining Corporation of Canada (1964) Limited indicated the thickness on their property to be about 100 feet, but this did not represent total thickness. South of the diabase "dome" the author has no information from drilling but using bedding attitudes and topography the author considers that it is in this area that the Coleman Formation reaches its estimated maximum thickness of approximately 1,000 feet. Locally the contact of the Coleman Formation rocks with the Archean basement is irregular, but on a regional basis the outcrops of the formation in South Lorrain Township represent the eastern portion of a northeasterly-trending basin. This basin starts in Riddell Township, to the southwest, and continues northeast through Sunrise

Lake (Riddell Township) through South Lorrain Township to Windy Lake and continues north. The outline of this basin is evident on various maps (see Todd 1925, map; Thomson and Savage 1965). The lack of deformation in the Coleman Formation rocks, except in the vicinity of faults, would indicate that this basin

structure is owing more to basement topography than to post-depositional folding. The rocks of the Coleman Formation are a heterogeneous mixture of greywacke and quartzose siltstone, arkose, argillite, and conglomerate. The quartzose siltstone and greywacke are fine-grained greenish grey rocks consisting of sub-rounded to sub angular grains of quartz, feldspar, and rock fragments in a matrix of chlorite, mica, and silica; minor pebbles may be seen. The arkose is generally brown to pink in colour and slightly more coarse-grained than the quartzose siltstone and greywacke. Conglomerate pebbles, cobbles, and rare boulders (Photos 2 and 3) are generally pink granitic rocks with minor white granite, "greenstone", and diabase. They are generally subangular to sub-rounded and on the average range up to 6 to 8 inches in diameter.

No definite separation of the rock types was possible in mapping owing to their heterogeneous nature. At the top of the formation conglomerate dominates, as evidenced along the east shore of the Matabitchuan River, and to a lesser degree to the north. The beds are generally close to flat-lying, except in the area of faults where they dip steeply. The rocks are schistose close to the Northeast Copper Lake Fault on the north shore of Cooper Lake. Todd (1925) considered these schistose rocks to be Archean, but the author believes they are sheared rocks of the Coleman Formation. The bottom contact of the Coleman Formation is an unconformity, as shown by the nearly vertical dips of the underlying volcanic rocks and flat dips of the overlying sedimentary rocks. The granite forms the basement rock in the southeast

Previous workers have attributed a glacial origin to the Coleman Formation.

Firstbrook Formation (after McIlwaine 1970)

"The Firstbrook Formation was first described by Thomson (1957, p. 41-42) as being the upper part of the Gowganda Formation of Collins (1917). The type locality of the Firstbrook Formation is located in Firstbrook Township, 15 miles northwest of the map-area.

In South Lorrain Township the main area of exposure is a belt, roughly 1/4 to 1/2-mile-wide, striking north for almost the full length of the township, and offset by several faults. The best exposures are on the west shore of Fourbass Lake in central South Lorrain Township, and about 1/2 mile west of Highway 567 in the northern part of the township. A smaller area of outcrop is found north of the Upper Notch power station in northwest South Lorrain Township; to the south there are several out crops, in a north-south belt, that strongly resemble the Firstbrook Formation. The rocks designated Firstbrook Formation just west of Maidens Lake are considered to have been part of the main belt to the west prior to the intrusion of diabase.

The estimated thickness in the main belt varies from 500 to 700 feet, which is less than the 950 feet described by Thomson (1957, p. 41) for the type locality. The Firstbrook Formation is part of the same regional basin described in the section on the Coleman Formation.

The formation consists of laminated or varved, very fine-grained argillite, with alternating greyish red or greyish brown and greyish green layers, and quartzite. The varves are usually more easily seen on the

weathered surface of the outcrop. The argillite is composed mainly of sub-rounded quartz grains, with minor feldspar, set in a chloritic matrix with minor sericite. There are also small amounts of opaque minerals. The quartzite is grey, well bedded and harder than the argillite. It is also fine-grained.

The beds are gently dipping, for the most part, with a maximum dip of 30 degrees, and average dip of 10 to 15 degrees.

No contacts were observed with the underlying Coleman Formation but the contact with the Lorrain Formation appears gradational. Lorrain Formation rocks are more rounded in weathered outcrops than Firstbrook Formation rocks owing to the better-defined bedding in the latter.

Thomson (1966, p. 15-16) has suggested that the laminations or varves are due to seasonal deposition in a lake, possibly of glacial origin."

Lorrain Formation (after McIlwaine 1970)

"The Lorrain Formation was first named by Miller (1910, p. 75) because the type section was found in Lorrain Township. It is the youngest formation of the Cobalt Group in South Lorrain Township.

The Lorrain Formation is the most extensive rock type in the map-area; it covers almost all of the area west of the Montreal and Matabitchuan Rivers, plus several square miles east of the Montreal River in the northern part of the township. The thickness of the formation is estimated to be from O to 1,200 feet. No confirming data is available from drilling.

The main rock types are flat-lying grey feldspathic quartzite, pale green quartzite, and pink arkose. The green quartzite locally grades to white ortho-quartzite. These rocks are fine-grained with lenses of medium- to coarse-grained material, and the occasional quartz-pebble lens. Close to the contacts of diabase dikes the rocks are red owing to the oxidation of ferrous iron to ferric iron. The grains of quartz, the most abundant mineral, are generally rounded; the feldspar grains have been altered; and the matrix is fine-grained silica with minor chlorite.

Beds are massive in the Lorrain Formation and data on bedding is difficult to find. Where bedding planes are found they have a gentle dip, the maximum angle being about 25 degrees. Slickensides were found in several of the shear faces of exposures in the area west of the Montreal River, suggesting deformation by faulting.

No contacts were observed with the underlying formations, but the contacts are assumed to be gradational. A small outcrop north of the Maidens Bay Road is a coarse-grained arkose, with feldspar grains up to a quarter inch; this arkose grades imperceptibly into the underlying granite. The width of the zone of gradation cannot be determined owing to the amount of overburden.

The Lorrain Formation appears to be a shallow water deposit derived from a granitic terrain."

Nipissing Diabase (after McIlwaine 1970)

"Intrusive into all older rocks is a massive unaltered mafic rock named the Nipissing Diabase by Miller (1910).

In South Lorrain Township the diabase is considered by the writer to be all one sheet, with numerous rolls, both major and minor. Local rolls around the mines are shown in Figure 2 (Chart A, back pocket). In the eastern part of the township the diabase is in the form of a dome, with the central part removed by erosion. The axis of this dome strikes north-northeast, and it is interesting to note the sub-parallelism of this axis to the margin of the basin of deposition of the Cobalt Group sedimentary rocks. The south flank of the dome dips steeply southeast, and the northwest and wider flank dips approximately 30 degrees west. The north contact of the northwest flank dips to the south and thus forms a minor basin within the dome. In the western part of the township a diabase dike, 1/4 mile-wide, strikes northeast and widens out to almost 3 miles forming a northerly plunging basin structure. Between the dome and this basin another larger lapolith-like basin is postulated, with a possible feeder below. It is suggested that the dike is the surface expression of this feeder. This western basin is connected to the eastern dome as shown on Map-2194 (back pocket) by the continuity of the diabase 1/4 mile south of Hermit Lake.

In hand specimen the diabase is a typical grey to black, fine- to medium-grained, fresh to slightly altered rock. There are areas of coarse-grained diabase that contain minor amounts of pink feldspar. Varied texture is apparent in certain exposures; a good example is the roadside outcrop approximately I mile southeast of the Upper Notch power station. No detailed petrographic study of the diabase was undertaken. Such studies have been made in the Cobalt area by Hriskevich (1952); Satterly (1928) described the diabase in South Lorrain Township. Microscopic examination of a few thin sections shows it to be mainly a quartz diabase with lath-shaped plagioclase crystals of labradorite composition in a pyroxene groundmass. The quartz is present mainly as micrographic intergrowths with the plagioclase. Minor amounts of opaque oxides, biotite, epidote, and chlorite are also present.

Much of the data on the thickness of the sill are from the area of the main mines; other figures given are mostly inferred. Information from the mines shows the diabase to be from 900 to 1,000 feet thick, with local variations. This figure represents the complete sill where it has been protected from erosion. Areas to the east have been exposed to erosion and the thickness of the sill is less than 900 feet. A drill hole on the north peninsula in Maidens Lake penetrated 95 vertical feet of diabase before encountering the underlying Coleman Formation. Approximately 400 feet south of the north boundary of T29490, east of Maidens Lake, a thickness of 130 feet was found, and on the boundary 200 feet of diabase were intersected. Near the adit on HR63, on the shore of Lake Timiskaming, drilling indicates a thickness of 175 feet and farther to the south, 50 feet. With these data, and taking topography into consideration, a maximum thickness of nearly 500 feet is inferred. The diabase northeast of Maidens Lake is the northern flank of the South Lorrain diabase dome and is considered to be a basin in itself.

A K-Ar age determination on the diabase near Cobalt gave a result of 2,095 million years (Lowden et al. 1963, p. 92). Previous geological maps of South Lorrain Township (Knight 1922, map; Todd 1925, map) have indicated the Nipissing Diabase to be Keweenawan in age, but the diabase must now be considered as pre-Keweenawan."

6.4 Mineralization

The Nipissing Lorrain Property has a similar style of mineralization to the Cobalt Silver Mines, which is related to the Nipissing Diabase intrusion and is fault controlled. The typical style of mineralization is

consistent with the Five-Element (Co-Ni-As-Ag-Bi) vein assemblage. It has been suggested that the origin and mechanism driving this style of mineralization is related to one of the following: (1) metal-rich aqueous fluids originating from late stage differentiation of the diabase sills and or the parent magma at depth; (2) convectively circulating fluids mobilized from the country rocks during cooling of the diabase intrusive complex; or (3) hydrothermal fluids originating from an unidentified external source unrelated to the diabase contact areas simply acted as a mechanically favourable host environment during regional faulting (Andrews et al. 1986).

Cobalt, silver, and nickel mineralization occurs over a number of fracture zones and veins within the Property. Mineralization is associated with calcite veins within close proximity to diabase sills which occurs as Co-Fe-Ni arsenides, argentite, niccolite and native silver. Silver grades up to 261 g/t, and Cobalt grades up to 14.75% have been reported on the Property (Ontario: MDI31M03NW00011 & MDI31M03NW00024).

Mineralization exists in a number of structural orientations throughout the Property. However, it appears to be discontinuous and of a pinch and swell nature. The biggest resource on the Property (staples vein) occurs at the intersection between two crosscutting veins. Therefore, future exploration should focus on delineating structures and their potential as terrain traps.

Alteration associated with ore-formation is evidenced in the wall rocks of the veins where they have been altered during various ore-forming stages. The most notable alteration is hematite staining developed during the earliest stages of hydrothermal activity.

Figure 6.3: Simplified Geology of the Cobalt Embayment Area , illustrating the main zone of mineralization and mining camps (Andrew et al. 1986).

ASSESSMENT REPORT (2022) Nipissing Lorrain Property |Ontario, Canada

Figure 6.4: Nipissing Lorrain Local Property Geology (ODMNA 1970).

Figure 6.5: Nipissing Lorrain Local Property Geology Legend.

7 Deposit Types

The principal deposit type outlined to-date on the Nipissing Lorrain Property is that of a Five-Element (Co-Ni-As-Ag-Bi) Vein style of deposit. The host rocks for this style of deposit can vary wildly however, there are some characteristics common among some. In a broad sense, host rocks may be characterized as crystalline or sedimentary, usually with little or no interbedded volcanics.

There are several features of host rocks which are important in controlling localization of ore, namely: diabase sills, sulphide-rich strata in crystalline rocks, carbonaceous shales, and sulphide-rich metavolcanic rocks (Kissin 1992). Sedimentary host rocks are present at Thunder Bay and Cobalt-Gowganda district where some deposits are wholly located within the Nipissing Diabase sills which cut across Archean basement. Some are also located in the shale-rich areas of the Coleman Formation, and others within the Coleman Formation but below the Nipissing Diabase (Kissin 1992). These types of deposits generally occur continentally in areas of rifting or extension, and it is believed that they formed between the early Proterozoic to the Tertiary, as no older deposits are known (Kissin 1992). These deposits appear to have some association with mild propylitic alteration followed by phases of distinct vein assemblages which are deposited by open-space filling (Kissin 1992). This recurrent mineral sequence is visible in most deposits and is summarized as Stage 1: early barren stage, Stage 2: Uraninite stage, Stage 3: Ni-Co arsenide-silver stage, Stage 4: sulphide stage, and Stage 5: late stage. These five stages represent the complete idealized paragenesis sequence, however one or more stages may be absent in any given deposit (Kissin 1992). The genesis style of deposit is difficult to ascertain as the mechanism responsible for its origin may vary from deposit to deposit. Various theories have been proposed and include hydrothermal/magmatic model, hydrothermal/metamorphic model, syngenetic model, and the non-magmatic model. The most plausible and widely applicable model theory is the non-magmatic model whereby the driving mechanism is continental rifting, and the solution is mobilized formational waters, however, this model may not fit every deposit style (Kissin 1992).

Figure 7.1: Schematic Cross-Section of Relationship of Veins to Geological Units at Cobalt-Gowganda Districtin Ontario, Canada (Kissin 1992).

8 Exploration

8.1 2022 Exploration Program Overview

At the request of Quantum Battery Metals Corp. (formerly Quantum Cobalt), Longford Exploration Services Ltd. mobilized a crew of four people, consisting of Marc-Andre Pelletier, Ryan Versloot, Francis Thompson, and Avery Lessard on May 26, 2022, to complete a 5-day rock and soil sampling program on the Nipissing Lorrain Property from May 27 to June 2, 2022. In total, 20 rock samples and 164 soil samples were collected across the Property.

8.1.1 2022 Rock Sampling

During the 2022 program, the focus was on re-sampling the waste dump and assessing their potential for further development within the small claim block.

The area is characterized by areas of extensive overburden coverage, including abundant large boulders, however, higher elevation ground provides considerable outcrop exposure locally.

Figure 8.1: Aerial Photo of the Nipissing Lorrain Waste Dump (2022).

8.1.2 Rock Sampling Results

A total of 20 rock samples were collected within the boundaries of the main Property claim block and were submitted for analysis (Table 8.1; Figures 8.5 to 8.10) at Bureau Veritas in Vancouver, BC. Rock assay over-limits were not tested.

Assay certificates are available in **APPENDIX A**.

Sample	Easting	Northing	Lithology	Со	Ag	Bi	Ni	Cu	As
No.	NAD83 Zone 17		Litilology	(ppm)	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)
2556424	616909	5229966	Diabase	26.4	77	0.15	35	137.39	17.3
2556425	616918	5229960	Diabase	24.7	167	0.08	30.2	48.32	10.6
2556426	616933	5229961	Diabase	48.4	1,572	0.21	212.5	210.28	41.4
2556427	616941	5229972	Diabase	47.3	171	0.4	91	97.83	211
2556439	616945	5229966	Diabase	42.8	5,960	0.4	82.2	861.17	37.7
2556438	616929	5229967	Diabase	1,666.8	187	2.11	209.1	96.23	5,528.9
2556429	616921	5229973	Diabase	30.9	64	0.12	30.5	107.36	19.3
2556428	616930	5229982	Diabase	20.1	54	0.09	37.6	46.46	5.2
2556441	616943	5229988	Diabase	55.7	29 <i>,</i> 654	0.89	109.4	245.36	158.5
2556440	616949	5229983	Diabase	32.3	114	0.36	56.2	56.64	18.9
2556442	616935	5229991	Diabase	37.4	1604	0.09	36.3	311.37	39.8
2556443	616940	5229995	Diabase	211.2	526	155.08	53.9	51.91	432.6
2556435	616924	5229983	Diabase	36.8	293	0.57	78.2	87.72	35.1
2556430	616919	5229978	Diabase	20.1	79	0.05	34.4	52.98	11.1
2556432	616911	5229979	Diabase	2,000	11 <i>,</i> 976	76.84	3,578.5	133.83	10,000
2556431	616916	5229981	Diabase	15.4	48	0.07	21.7	17.55	8.8
2556436	616920	5229986	Diabase	22.2	117	0.12	24.9	172.85	14.7
2556437	616916	5229991	Diabase	46.4	591	1.07	110.7	116.54	84.9
2556433	616913	5229987	Diabase	25.8	72	0.3	33.4	16.73	24.8
2556434	616905	5229984	Diabase	60.4	134	0.42	45.8	97.93	40.3

Table 8.1: 2022 Rock Sample Locations, Assay Results and Descriptions.

ASSESSMENT REPORT (2022) Nipissing Lorrain Property |Ontario, Canada

ASSESSMENT REPORT (2022) Nipissing Lorrain Property |Ontario, Canada

Figure 8.5: 2022 Copper in Rocks (ppm Cu).

8.1.3 Soil Sampling Results

A total of 164 soil samples were collected within the boundaries of the larger claim block and were all submitted for analysis at Bureau Veritas in Vancouver, BC. Some of the soil lines were cut short on the southern end due to local swampy ground.

Results are shown below in Table 8.2 and Figures 8.8 through 8.19, while assay certificates are available in **APPENDIX B**.

Table 8.2: 2022 Soil Sample Locations,	, Assay Results and Descriptions.
--	-----------------------------------

Sample	Easting	Northing	Colour	Grain	Soil Horizon	Comments	Depth	Со	Ni	Cu	Ag
No.	NAD83	Zone 17	Coloui	Size	3011 H0112011	comments	(cm)	(ppm)	(ppm)	(ppm)	(ppm)
					(B) Horizon formed by accumulation of						
2556280	613051	5231428	Brown	Mud	material removed from Ae horizon or by	Marshy, bushy, mud	40	2.4	10.9	75.61	147
					alteration of the parent material						
					(B) Horizon formed by accumulation of						
2556281	613063	5231399	Brown	Mud	material removed from Ae horizon or by	Sandy, marshy, rocky	25	0.9	3	4.86	47
					alteration of the parent material						
					(B) Horizon formed by accumulation of						
2556282	613062	5231371	Brown	Mud	material removed from Ae horizon or by	Good, rocky, bush	25	2.2	6.8	7.02	31
					alteration of the parent material						
					(B) Horizon formed by accumulation of						
2556283	613061	5231340	Brown	Mud	material removed from Ae horizon or by	Sandy, rocky, bush	25	0.9	3.3	4.14	25
					alteration of the parent material						
					(B) Horizon formed by accumulation of						
2556284	613075	5231318	Brown	Mud	material removed from Ae horizon or by	Hillside, rocky, bush	25	1.8	6.9	12.66	48
					alteration of the parent material						
					(B) Horizon formed by accumulation of						
2556285	613058	5231282	Brown	Mud	material removed from Ae horizon or by	Sandy, bush, good sampling	25	7	22	17.52	36
					alteration of the parent material						
					(B) Horizon formed by accumulation of						
2556286	613052	5231269	Brown	Mud	material removed from Ae horizon or by	Hillside, bush, a bit rocky	25	1.7	5.7	30.07	266
					alteration of the parent material						
					(B) Horizon formed by accumulation of	Hillside, bush, good					
2556287	613061	5231236	Brown	Mud	material removed from Ae horizon or by	sampling	25	8.4	24.9	17.19	37
					alteration of the parent material	8					
					(B) Horizon formed by accumulation of	Clay, bush, could have been					
2556288	613063	5231214	Gray	Mud	material removed from Ae horizon or by	a stream	25	0.4	0.9	2.57	14
					alteration of the parent material						
					(B) Horizon formed by accumulation of	Good sampling, hillside.					
2556289	613065	5231200	Brown	Mud	material removed from Ae horizon or by	maybe a contact of a stream	25	1.1	2.7	6.86	55
					alteration of the parent material						

Sample No.	Easting Northing NAD83 Zone 17	Colour	Grain Size	Soil Horizon	Comments	Depth (cm)	Co (ppm)	Ni (ppm)	Cu (ppm)	Ag (ppm)
2556290	613064 5231160	Gray	Mud	(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent material	Rocky, hillside bush	30	0.7	2	12.29	59
2556291	613062 5231151	Brown	Mud	(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent material	Sandy, bush, good sampling	25	3.6	9.4	29.97	54
2556292	613063 5231105	Brown	Mud	(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent material	Sandy, hillside, bush	25	2.5	7.1	21.48	56
2556293	613059 5231099	Brown	Mud	(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent material	Sandy, rocky, bush, hillside	35	5.2	15.5	14.6	31
2556305	613065 5231068	Brown	Mud	(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent material	Sandy, hillside, bush, a bit rocky	35	9	22.1	25.76	5
2556306	613067 5231042	Brown	Mud	(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent material	Sandy, very rocky, hillside, clifface	35	4.7	17	22.95	16
2556307	613067 5231043	Brown	Mud	(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent material	Sandy, hillside, rocky	35	8.4	26.6	26.9	100
2556308	613065 5230991	Brown	Mud	(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent material	Sandy, hillside, rocky	20	7.6	17.7	23.55	66
2556309	613063 5230996	Brown	Mud	(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent material	Sandy, hillside, bush	20	1.5	5.1	6.93	25
2556310	613060 5230969	Brown	Mud	(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent material	Rocky, sandy, bush	25	7.5	22.2	20.35	95

Sample No.	Easting Northing NAD83 Zone 17	Colour	Grain Size	Soil Horizon	Comments	Depth (cm)	Co (ppm)	Ni (ppm)	Cu (ppm)	Ag (ppm)
2556311	613063 5230947	Brown	Mud	(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent material	Sandy, bush, rocky	30	10.1	31.6	17.2	87
2556312	613065 5230891	Brown	Mud	(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent material	Bush, marshy, good sampling	15	6	20.7	10.57	64
2556313	613051 5230890	Brown	Mud	(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent material	Sandy, marshy, bush	20	6.3	18.9	7.93	22
2556314	613064 5230849	Brown	Mud	(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent material	Clay, bush, maybe marshy	15	8.1	27.8	11.93	55
2556315	613062 5230837	Gray	Mud	(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent material	Clay, bush, marsh like	25	8.3	26.1	12.93	63
2556316	613063 5230834	Gray	Mud	(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent material	Clay, marshy, bush	35	19.4	52.7	23.11	129
2556317	612863 5231444	Orange	Mud	(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent material	Sandy silty Ok sampling Bouldery Sparse forest	30	1.4	4.7	7.38	54
2556318	612967 5231434	Black	Mud	(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent material	Marsh Poor sampling Bouldery	30	118.8	59.7	304.71	348
2556319	612961 5231418	Gray	Mud	(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent material	Sandy silty Terrible sampling Marsh Boulder field	30	34.4	22.5	63.61	56
2556320	612960 5231395	Gray	Mud	(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent material	Sandy silty Terrible sampling	30	48.6	26.1	85.77	72

Sample	Easting	Northing	Colour	Grain	Soil Horizon	Comments	Depth	Со	Ni	Cu	Ag
No.	NAD83	Zone 17	colour	Size	301110112011	connents	(cm)	(ppm)	(ppm)	(ppm)	(ppm)
						Boulder field Marsh					
2556321	612966	5231369	Orange	Mud	(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent material	Sandy silty Ok sampling Sparse forest Bouldery	30	25.8	41.5	82	50
2556322	612962	5231346	Orange	Mud	(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent material	Sandy silty Ok sampling Bouldery Sparse forest	30	2.4	7.5	7.49	34
2556323	612966	5231322	Orange	Mud	(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent material	Sandy silty Good sampling Bouldery Sparse forest	30	14.9	21.1	52.04	24
2556324	612962	5231297	Gray	Mud	(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent material	Clay Marshy Sketchy terrain Ok sampling	30	37.4	41.2	144.22	66
2556325	612961	5231265	Orange	Mud	(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent material	Sandy silty Ok sampling Bouldery Sparse forest	30	6.4	19.3	8.07	65
2556326	612958	5231248	Gray	Mud	(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent material	Ok sampling Marsh Bouldery	30	1.9	7.8	8.06	93
2556327	612962	5231219	Orange	Mud	(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent material	Sandy silty Good sampling Bouldery Sparse forest	30	8.9	33.6	10.03	84
2556328	612958	5231191	Orange	Mud	(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent material	Sandy silty Ok sampling Bouldery	30	3.6	14.1	9.64	76

Sample	Easting Northing	Colour	Grain	Soil Horizon	Comments	Depth	Со	Ni	Cu	Ag
No.	NAD83 Zone 17	Coloui	Size	30111012011	comments	(cm)	(ppm)	(ppm)	(ppm)	(ppm)
					Sparse forest					
					Near creek					
				(B) Horizon formed by accumulation of	Poor sampling					
2556329	612959 5231165	Brown	Mud	material removed from Ae horizon or by	Near creek	30	73.1	72.6	180.6	208
				alteration of the parent material	Boulder field					
				(B) Horizon formed by accumulation of	Poor sampling					
2556330	612964 5231144	Brown	Mud	material removed from Ae horizon or by	Boulder field	30	54.1	60	127.3	126
				alteration of the parent material	Near creek					
				(P) Harizon formed by accumulation of	Sandy silty					
2556221	612062 5221117	Brown	Mud	(B) Horizon formed by accumulation of	Ok sampling	20	15.6	100	12.62	112
2330331	012905 5251117	DIOWII	IVIUU	alteration of the parent material	Bouldery	50	13.0	40.5	42.05	112
				alteration of the parent material	Sparse forest					
				(B) Horizon formed by accumulation of	Terrific sampling					
2556332	612959 5231099	Orange	Mud	material removed from Ae horizon or by	Sparse forest	30	8.7	29.1	12.31	95
				alteration of the parent material	Sandy silty					
				(B) Horizon formed by accumulation of	Terrific sampling					
2556333	612958 5231075	Brown	Mud	material removed from Ae horizon or by	Near trail	30	18.3	56.1	16.59	153
				alteration of the parent material	Sandy silty					
				(B) Horizon formed by accumulation of	Terrific sampling					
2556334	612959 5231047	Brown	Mud	material removed from Ae horizon or by	Near trail	30	17	54	20.05	175
				alteration of the parent material	Sandy silty					
				(B) Horizon formed by accumulation of	Torrific compling					
2556335	612966 5231013	Brown	Mud	material removed from Ae horizon or by		30	16	52.9	20.78	65
				alteration of the parent material						
				(B) Horizon formed by accumulation of	Sandy silty					
2556336	612961 5230993	Orange	Mud	material removed from Ae horizon or by	Terrific sampling	30	11.8	42.9	19.68	70
				alteration of the parent material	Thick bush					
				(B) Horizon formed by accumulation of	Sandy silty					
2556337	612969 5230968	Orange	Mud	material removed from Ae horizon or by	Terrific sampling	30	6.2	23.6	7.32	49
				alteration of the parent material	Thick bush					

Sample	Easting	Northing	Colour	Grain	Soil Horizon	Comments	Depth	Co	Ni	Cu (mmm)	Ag
INO.	NAD83	Zone 17		Size			(cm)	(ppm)	(ppm)	(ppm)	(ppm)
2556338	612957	5230938	Gray	Mud	(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent material	Sandy silty Marsh Bog Very wet	30	10.9	30.9	47.5	31
2556339	612963	5230913	Black	Mud	(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent material	Total swamp Poor sampling Thick bush Very wet	60	11.5	39	109.36	139
2556340	612961	5230895	Gray	Mud	(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent material	Sandy silty Ok sampling Terrible terrain Absolute swamp	60	12.2	40.9	105.27	102
2556341	612958	5230869	Gray	Mud	(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent material	Ok sampling Terrible terrain Absolute swamp	60	16.5	51.2	141.7	97
2556342	612963	5230847	Gray	Mud	(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent material	Terrible sampling Absolute swamp Very wet	60	16.1	58.2	122.18	120
2557435	612861	5231133	Orange	Mud	(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent material	Sandy silty Sparse forest Near trail	30	9.2	32.5	16.21	165
2557436	612861	5231112	Orange	Mud	(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent material	Sandy silty Sparse forest Good sampling	30	4.5	14.6	7.21	64
2557437	612858	5231084	Orange	Mud	(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent material	Sandy silty Sparse forest Ok sampling	30	9	28.6	15.86	127
2557438	612861	5231066	Orange	Mud	(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent material	Sandy silty Sparse forest Ok sampling	30	7.6	28.1	14.54	141

Sample	Easting Northing	Colour	Grain	Soil Horizon	Comments	Depth	Со	Ni	Cu	Ag
No.	NAD83 Zone 17		Size			(cm)	(ppm)	(ppm)	(ppm)	(ppm)
				(B) Horizon formed by accumulation of	Sandy silty					
2557439	612858 5231041	Orange	Mud	material removed from Ae horizon or by	Ok sampling	30	5	17.7	10.89	115
				alteration of the parent material	Sparse forest					
				(B) Horizon formed by accumulation of	Terrible sampling					
2557440	612762 5231043	Black	Mud	material removed from Ae horizon or by	Huge marsh	30	10	34.1	39.89	202
				alteration of the parent material	Huge marsh					
				(B) Horizon formed by accumulation of						
2557451	612670 5231430	Brown	Mud	material removed from Ae horizon or by	Good, clay, water	30	25.5	43.4	312.85	188
				alteration of the parent material						
				(B) Horizon formed by accumulation of						
2557452	612670 5231428	Brown	Mud	material removed from Ae horizon or by	Clay, bush, river	30	17.9	40.7	272.6	151
				alteration of the parent material						
				(B) Horizon formed by accumulation of	Dried up alough use mean					
2557453	612672 5231385	Brown	Mud	material removed from Ae horizon or by	Dried up clay, bush, hear	25	12.8	30.8	49.32	192
				alteration of the parent material	river					
				(B) Horizon formed by accumulation of						
2557454	612678 5231347	Gray	Mud	material removed from Ae horizon or by	Excellent, bush	30	13.9	40.8	32.33	59
				alteration of the parent material						
				(B) Horizon formed by accumulation of						
2557455	612666 5231361	Gray	Mud	material removed from Ae horizon or by	Good, bush, a bit rocky	30	4.1	11.8	9.25	77
		_		alteration of the parent material						
				(B) Horizon formed by accumulation of						
2557456	612667 5231316	Brown	Mud	material removed from Ae horizon or by	Sandy, bush, a bit rocky	25	6.9	18.9	10.11	77
				alteration of the parent material						
				(B) Horizon formed by accumulation of						
2557457	612677 5231288	Brown	Mud	material removed from Ae horizon or by	Sandy, rocky, bush	25	7.4	24	11	71
				alteration of the parent material						
				(B) Horizon formed by accumulation of						
2557458	612677 5231269	Brown	Mud	material removed from Ae horizon or by	Sandy, rocky, bush	30	1.8	6.5	5.4	56
				alteration of the parent material						

Sample	Easting	Northing	Colour	Grain	Soil Horizon	Comments	Depth	Со	Ni	Cu	Ag
No.	NAD83	Zone 17	Conour	Size			(cm)	(ppm)	(ppm)	(ppm)	(ppm)
2557459	612659	5231253	Brown	Mud	(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent material	Very rocky, bush, average sampling, sandy	30	3.9	14	10.13	86
2557460	612652	5231221	Brown	Mud	(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent material	Sandy, rocky, bush	30	3.5	11.1	5.65	65
2557462	612666	5231164	Brown	Mud	(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent material	Very rocky, bush, sandy	30	1.5	4.4	3.89	27
2557463	612673	5231143	Brown	Mud	(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent material	Very rocky, sandy, bush	30	1.6	5	3.97	68
2557464	612675	5231124	Brown	Mud	(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent material	Sandy, hillside, bush	25	6.5	20.4	12.8	55
2557465	612761	5231062	Orange	Mud	(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent material	Sandy silty Ok sampling Sparse forest	30	15	50.6	114.88	243
2557466	612761	5231093	Brown	Mud	(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent material		30	9.4	30.4	19.33	128
2557467	612764	5231112	Brown	Mud	(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent material	Sandy silty Ok sampling Sparse forest	30	5.6	21.4	8.78	86
2557468	612768	5231143	Brown	Mud	(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent material	Sandy silty Ok sampling Sparse forest	30	10.4	38.1	14.06	119
2557469	612769	5231169	Brown	Mud	(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent material	Sandy silty Ok sampling Sparse forest	30	4.6	16.2	9.29	138

Sample	Easting Northing	Colour	Grain	Soil Horizon	Comments	Depth	Co	Ni	Cu	Ag
No.	NAD83 Zone 17		Size			(cm)	(ppm)	(ppm)	(ppm)	(ppm)
				(B) Horizon formed by accumulation of						
2557483	612771 5231371	Brown	Mud	material removed from Ae horizon or by	Rocky, bush	25	1.8	7.4	5.9	125
				alteration of the parent material						
				(B) Horizon formed by accumulation of						
2557484	612771 5231347	Brown	Mud	material removed from Ae horizon or by	Sandy, rocky, bush	30	5.1	17.9	8.08	84
				alteration of the parent material						
				(B) Horizon formed by accumulation of						
2557485	612762 5231320	Gray	Mud	material removed from Ae horizon or by	Sandy, rocky, bush	30	10.1	25.5	25.69	57
				alteration of the parent material						
				(B) Horizon formed by accumulation of						
2557486	612766 5231292	Brown	Mud	material removed from Ae horizon or by	Sandy, very rocky, bush	30	5.4	17	12.4	115
				alteration of the parent material						
				(B) Horizon formed by accumulation of						
2557487	612763 5231263	Brown	Mud	material removed from Ae horizon or by	Sandy, rocky, bush	30	6.9	26.7	18.58	135
				alteration of the parent material						
				(B) Horizon formed by accumulation of						
2557488	612767 5231252	Brown	Mud	material removed from Ae horizon or by	Sandy, rocky, bush	30	2.3	8.1	16.28	96
				alteration of the parent material						
				(B) Horizon formed by accumulation of						
2557489	612756 5231221	Gray	Mud	material removed from Ae horizon or by	Bush, rocky	30	11.1	37.6	42.67	124
				alteration of the parent material						
				(B) Horizon formed by accumulation of						
2557490	612768 5231187	Gray	Mud	material removed from Ae horizon or by	Clay, a bit rocky, marshy	35	20.8	77.9	225.25	102
		_		alteration of the parent material						
				(B) Horizon formed by accumulation of	Sandy silty					
3205995	612663 5230986	Orange	Mud	material removed from Ae horizon or by	Ok sampling	40	0	0	0	0
				alteration of the parent material	Bouldery					
				(B) Horizon formed by accumulation of						
3295811	613270 5231437	Brown	Mud	material removed from Ae horizon or by	Sandy, bush, rocky	35	10.8	34.2	20.53	53
				alteration of the parent material						

Sample No.	Easting NAD83	Northing Zone 17	Colour	Grain Size	Soil Horizon	Comments	Depth (cm)	Co (ppm)	Ni (ppm)	Cu (ppm)	Ag (ppm)
3295812	613268	5231412	Brown	Mud	(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent material	Poor sampling, rocky, bush	20	3.1	9	11.15	127
3295813	613271	5231393	Brown	Mud	(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent material	Very rocky, bush, good	25	0.6	3.5	7.6	134
3295814	613260	5231363	Brown	Mud	(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent material	Rocky, average, boulder	20	0.7	7.1	11.5	187
3295815	613168	5231420	Gray	Mud	(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent material	Poor sampling Bouldery Marshy	30	1.3	3.7	7.9	35
3295816	613170	5231388	Gray	Mud	(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent material	Poor sampling Bouldery Marshy	30	1.2	3.2	3.74	44
3295817	613169	5231364	Gray	Mud	(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent material	Poor sampling Marshy Bouldery	30	4.4	8.4	11.79	48
3295818	613162	5231345	Brown	Mud	(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent material	Sandy silty Ok sampling Marshy Bouldery	30	7.5	17.8	11.71	71
3295819	613164	5231316	Brown	Mud	(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent material	Poor sampling Marshy Bouldery Sandy silty	30	3.4	9.1	8.05	83
3295820	613161	5231294	Gray	Mud	(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent material	Ok sampling Marsh Bouldery	30	1.2	5.5	5.27	81
3295821	613165	5231264	Gray	Mud	(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent material	Ok sampling Marshy	30	2.2	6.2	5.83	91

Sample	Easting Northing	Colour	Grain	Soil Horizon	Comments	Depth	Со	Ni	Cu	Ag
No.	NAD83 Zone 17	coloui	Size		connents	(cm)	(ppm)	(ppm)	(ppm)	(ppm)
					Bouldery Sandy silty					
3295822	613164 5231236	Orange	Mud	(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent material	Sandy silty Good sampling Bog Bouldery	30	5.6	17.6	10.83	67
3295823	613161 5231220	Orange	Mud	(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent material	Sandy silty Ok sampling Bog Bouldery	30	1.3	4.1	4.62	47
3295824	613157 5231196	Orange	Mud	(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent material	Sandy silty Bouldery Ok sampling	30	3	7.8	5.56	78
3295825	613162 5231172	Orange	Mud	(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent material	Sandy silty Poor sampling Bouldery	30	7.7	25.9	17.73	122
3295826	613156 5231136	Orange	Mud	(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent material	Sandy silty Ok sampling Bouldery	30	4.3	7.8	4.93	174
3295827	613164 5231115	Orange	Mud	(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent material	Sandy silty Ok sampling Bouldery Sparse forest	30	14.9	25.9	36.21	126
3295828	613157 5231121	Orange	Mud	(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent material	Sandy silty Ok sampling Sparse forest Bouldery	30	5.8	15.8	10.94	51
3295829	613159 5231070	Gray	Mud	(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent material	Ok sampling Near cliff Sparse forest	30	0.5	1.3	2.95	20

Sample No.	Easting	Northing Zone 17	Colour	Grain Size	Soil Horizon	Comments	Depth (cm)	Co (ppm)	Ni (ppm)	Cu (ppm)	Ag (ppm)
3295830	613164	5231040	Orange	Mud	(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent material	Hillside Ok sampling Bouldery Sandy silty	30	4.4	9.7	11.63	72
3295831	613168	5231019	Orange	Mud	(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent material	Poor sampling Bouldery Sandy silty Hillside	30	10	15.7	34.66	118
3295832	613167	5230991	Orange	Mud	(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent material	Sandy silty Ok sampling Bouldery Sparse forest	30	7.1	15.9	44.08	102
3295833	613156	5230969	Orange	Mud	(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent material	Sandy silty Bouldery Sparse forest Ok sampling	30	1.4	3.1	4.11	80
3295834	613167	5230946	Orange	Mud	(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent material	Sandy silty Hillside Bouldery Ok sampling Sparse forest	30	3.7	11.7	9.58	119
3295835	613151	5230916	Gray	Mud	(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent material	Bouldery Sparse forest Poor sampling Sandy silty	30	0.8	2.3	2.35	68
3295836	613170	5230891	Gray	Mud	(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent material	Sandy silty Poor sampling Sparse forest Bouldery	30	1.6	4	7.74	81
3295837	613164	5230870	Orange	Mud	(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent material	Sandy silty Ok sampling	30	6.1	20.3	13.1	205

Sample	Easting Northing	Colour	Grain	Soil Horizon	Comments	Depth	Со	Ni	Cu	Ag
No.	NAD83 Zone 17	colour	Size	301110112011	connents	(cm)	(ppm)	(ppm)	(ppm)	(ppm)
					Sparse forest					
					Bouldery					
3295838	613161 5230843	Orange	Mud	(B) Horizon formed by accumulation of material removed from Ae horizon or by	Sandy silty Ok sampling Bouldery	30	8.3	28.9	25.55	89
				alteration of the parent material	Sparse forest					
3295839	613160 5230818	Orange	Mud	(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent material	Sandy silty Ok sampling Sparse forest Bouldery	30	4.8	15.6	9.11	85
3295840	613162 5230797	Brown	Mud	(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent material	Sandy silty Near trail Sparse forest Bouldery	30	4.3	17.2	11.07	113
3295866	613269 5231339	Brown	Mud	(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent material	Rocky, hilly, average	20	0.4	4	9.41	132
3295867	613270 5231310	Brown	Mud	(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent material	Sandy, bush, rocky	20	3.1	6.6	7.14	120
3295868	613258 5231289	Black	Mud	(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent material	Horrible, super rocky, very poor sampling	15	8.1	22	45.16	383
3295869	613266 5231273	Black	Mud	(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent material	Very poor sampling, very rocky, bush	15	2.9	17.2	38.96	332
3295870	613258 5231241	Brown	Mud	(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent material	Sandy, very rocky, bush	15	12.7	15.3	13.58	145
3295871	613264 5231216	Brown	Mud	(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent material	Excellent, rocky, bush	30	3.5	9.6	6.48	46

Sample No.	Easting Northing NAD83 Zone 17	Colour	Grain Size	Soil Horizon	Comments	Depth (cm)	Co (ppm)	Ni (ppm)	Cu (ppm)	Ag (ppm)
3295872	613257 5231199	Brown	Mud	(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent material	Good, rocky, bush	30	18.4	23.7	11.68	120
3295874	613268 5231152	Gray	Mud	(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent material	Poor sampling, very rocky, bush	20	0.6	2.2	5.15	81
3295875	613265 5231119	Brown	Mud	(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent material	Sandy, rocky, bush	25	5.5	20.4	12.42	65
3295876	613267 5231102	Brown	Mud	(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent material	Sandy, excellent, rocky, bush	25	6.5	20.1	11.54	63
3295877	613266 5231077	Brown	Mud	(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent material	Very poor sampling, rocky, bush	15	14	26.5	38.95	178
3295878	613265 5231043	Gray	Mud	(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent material	Marshy, bush, rocky	15	12.7	28.1	38.97	166
3295879	613255 5231025	Gray	Mud	(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent material	Rocky, bush, good	25	22	30.2	310.31	160
3295880	613265 5230994	Gray	Mud	(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent material	Excellent, rocky, bush	25	11.4	33.4	35.17	88
3295881	613263 5230965	Gray	Mud	(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent material	A bit sandy, bush, good	10	13.6	35.5	19.93	100
3295882	613260 5230933	Gray	Mud	(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent material	Sandy, rocky, bush	15	8.6	28.2	15.7	131

Easting	Northing	Colour	Grain Size	Soil Horizon	Comments	Depth (cm)	Co	Ni (nnm)	Cu (ppm)	Ag (ppm)
INADOS	20110 17		5120	(P) Horizon formed by accumulation of		(Cill)	(ppiii)	(ppiii)	(ppiii)	(ppin)
613260	522002/	Grav	Mud	(B) Holizon formed by accumulation of material removed from Ae borizon or by	Sandy rocky bush	15	9.2	26	21 12	86
015200	5250524	Gray	Iviuu	alteration of the parent material	Sandy, TOCKy, Bush	15	5.2	20	24.42	00
				(B) Horizon formed by accumulation of						
613255	5230894	Grav	Mud	material removed from Ae horizon or hy	Clay marshy bush	35	11	42 5	25.09	60
010200	5250051	Gruy	maa	alteration of the parent material		33		12.5	23.05	00
				(B) Horizon formed by accumulation of						
613268	5230868	Green	Mud	material removed from Ae horizon or by	Clay, swamp	35	14	41.8	21.92	63
010200	5200000	er een	inida	alteration of the parent material				1110	22.52	00
				(B) Horizon formed by accumulation of						
613261	5230843	Green	Mud	material removed from Ae horizon or by	Clav. marshy. bush	35	16	53.4	31.6	117
				alteration of the parent material						
				(B) Horizon formed by accumulation of						
613260	5230828	Gray	Mud	material removed from Ae horizon or by	Marsh ,	35	14.2	49.2	63.85	212
		-		alteration of the parent material						
				(B) Horizon formed by accumulation of						
613054	5231466	Gray	Mud	material removed from Ae horizon or by	Marshy, bush, excellent	40	17.4	47	94.39	71
				alteration of the parent material						
				(B) Horizon formed by accumulation of	Sandy silty					
613172	5231///8	Brown	Mud	material removed from Ae borizon or by	Ok sampling	25	2	7.6	10.05	10
013172	5251440	DIOWII	Ivida	alteration of the parent material	Bouldery	23	2	7.0	10.05	15
					Marshy					
				(B) Horizon formed by accumulation of	Sandy silty					
612871	5231174	Brown	Mud	material removed from Ae horizon or by	Good sampling	30	10.5	27.2	32.82	58
				alteration of the parent material	Near trail					
				(B) Horizon formed by accumulation of	Sandy silty					
612864	5231192	Orange	Mud	material removed from Ae horizon or by	Ok sampling	30	3.7	13.8	10.86	153
		C		alteration of the parent material	Bouldery					
					Near trail					
612057	E221224	Orange	N/1.1.d	(B) Horizon formed by accumulation of	Sandy silty Ok sampling	30	6.9	22.9	9.45	105
012027	5251224	Urange	wiuu	alteration of the parent material						202
	Easting NAD83 613260 613255 613268 613261 613260 613261 613260 613261 613261 613261 613261 613261 613260 613260 613260 613260 613260 613260 613260 612871 612864 612857	EastingNorthingNAD83 Zone 176132605230924613255523089461326852308686132605230843613260523082861305452314666131725231448612871523117461286452311926128575231224	Easting NAD83 Tone 17Colour6132605230924Gray6132555230894Gray6132685230868Green6132605230843Green6132605230828Gray6130545231466Gray6130725231448Brown6128715231174Brown6128645231192Orange6128575231224Orange	Easting NAD83Northing SizeColourGrain Size6132605230924GrayMud6132555230894GrayMud6132685230868GreenMud6132615230843GreenMud6132625230828GrayMud6132635231466GrayMud6131725231448BrownMud6128715231174BrownMud6128645231192OrangeMud	EastingNorthing NAD83 Zone 17ColourGrain SizeSoil Horizon6132605230924GrayMud(B) Horizon formed by accumulation of material removed from Ae horizon or by 	Easting NAD83 Zone 17ColourGrain SizeSoil HorizonComments6132605230924GrayMud(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent materialSandy, rocky, bush6132555230894GrayMud(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent materialSandy, rocky, bush6132555230894GrayMud(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent materialClay, marshy, bush6132685230868GreenMud(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent materialClay, swamp6132605230828GreenMud(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent materialClay, marshy, bush6132605230828GrayMud(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent materialMarsh , alteration of the parent material6130545231466GrayMud(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent materialMarsh , Marsh , alteration of the parent material6131725231448BrownMud(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent materialSandy silty Ok sampling6128715231174BrownMud(B) Horizon formed by accumulat	Easting NAD83 Zone 17ColourGrain SizeSoil HorizonCommentsDepth (cm)6132605230924GrayMud(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent materialSandy, rocky, bush156132555230824GrayMud(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent materialClay, marshy, bush356132655230868GreenMud(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent materialClay, marshy, bush356132615230868GreenMud(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent materialClay, marshy, bush356132615230828GreenMud(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent materialClay, marshy, bush356132645230828GrayMud(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent materialMarsh,356132755231466GrayMud(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent materialMarshy, bush, excellent406132675231488BrownMud(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent materialSandy silty Ok sampling Bouldery256132725231474 <t< td=""><td>Easting NADB3 Zone 17ColourGrain SizeSoil HorizonCommentsDepth (cm)Co (pm)6132605230924GrayMud(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent materialSandy, rocky, bush159.26132605230824GrayMud(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent materialClay, marshy, bush35116132685230868GreenMud(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent materialClay, swamp35146132615230843GreenMud(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent materialClay, swamp35166132605230828GrayMud(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent materialMarsh,3514.26132605230828GrayMud(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent materialMarsh,3514.26132715231466GrayMud(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent materialSandy silty2526132715231474BrownMud(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent materialSandy silty Marshy30</td></t<> <td>Easting NADB3 Zone 17ColourGrain Sil HorizonSoil HorizonCommentsDepth (cm)Co (ppm)Ni (ppm)6132605230924GrayMud(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent materialSandy, rocky, bush159.2266132555230894GrayMud(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent materialCo sandy, rocky, bush159.2266132685230868GreenMud(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent materialClay, marshy, bush351142.56132615230868GreenMud(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent materialClay, swamp351653.46132605230828GrayMud(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent materialMarsh,3514.249.26130545231466GrayMud(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent materialSandy silty Marsh, bush, excellent4017.4476132725231488BrownMud(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent materialSandy silty Marsh, bush, excellent4017.4476138715231474<td< td=""><td>Easting NADB3 Zone 17ColourGrain SizeSoil HorizonCommentsDepth (cm)Co (ppm)Ni (ppm)Cu (ppm)6132605230924GrayMud(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent materialSandy, rocky, bush159.22624.426132555230894GrayMud(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent materialClay, marshy, bush351142.525.096132685230868GreenMud(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent materialClay, swamp351441.821.926132615230843GreenMud(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent materialClay, swamp351653.431.66132605230828GrayMud(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent materialMarsh, bush3514.249.263.856130545231466GrayMud(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent materialMarshy, bush, excellent4017.44794.396130545231466GrayMud(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent materialSandy silty God sampling30</td></td<></td>	Easting NADB3 Zone 17ColourGrain SizeSoil HorizonCommentsDepth (cm)Co (pm)6132605230924GrayMud(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent materialSandy, rocky, bush159.26132605230824GrayMud(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent materialClay, marshy, bush35116132685230868GreenMud(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent materialClay, swamp35146132615230843GreenMud(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent materialClay, swamp35166132605230828GrayMud(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent materialMarsh,3514.26132605230828GrayMud(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent materialMarsh,3514.26132715231466GrayMud(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent materialSandy silty2526132715231474BrownMud(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent materialSandy silty Marshy30	Easting NADB3 Zone 17ColourGrain Sil HorizonSoil HorizonCommentsDepth (cm)Co (ppm)Ni (ppm)6132605230924GrayMud(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent materialSandy, rocky, bush159.2266132555230894GrayMud(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent materialCo sandy, rocky, bush159.2266132685230868GreenMud(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent materialClay, marshy, bush351142.56132615230868GreenMud(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent materialClay, swamp351653.46132605230828GrayMud(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent materialMarsh,3514.249.26130545231466GrayMud(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent materialSandy silty Marsh, bush, excellent4017.4476132725231488BrownMud(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent materialSandy silty Marsh, bush, excellent4017.4476138715231474 <td< td=""><td>Easting NADB3 Zone 17ColourGrain SizeSoil HorizonCommentsDepth (cm)Co (ppm)Ni (ppm)Cu (ppm)6132605230924GrayMud(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent materialSandy, rocky, bush159.22624.426132555230894GrayMud(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent materialClay, marshy, bush351142.525.096132685230868GreenMud(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent materialClay, swamp351441.821.926132615230843GreenMud(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent materialClay, swamp351653.431.66132605230828GrayMud(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent materialMarsh, bush3514.249.263.856130545231466GrayMud(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent materialMarshy, bush, excellent4017.44794.396130545231466GrayMud(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent materialSandy silty God sampling30</td></td<>	Easting NADB3 Zone 17ColourGrain SizeSoil HorizonCommentsDepth (cm)Co (ppm)Ni (ppm)Cu (ppm)6132605230924GrayMud(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent materialSandy, rocky, bush159.22624.426132555230894GrayMud(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent materialClay, marshy, bush351142.525.096132685230868GreenMud(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent materialClay, swamp351441.821.926132615230843GreenMud(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent materialClay, swamp351653.431.66132605230828GrayMud(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent materialMarsh, bush3514.249.263.856130545231466GrayMud(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent materialMarshy, bush, excellent4017.44794.396130545231466GrayMud(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent materialSandy silty God sampling30

Sample	Easting	Northing	Colour	Grain	Soil Horizon	Comments	Depth	Со	Ni	Cu	Ag
No.	NAD83	Zone 17	coloui	Size	301110112011	comments	(cm)	(ppm)	(ppm)	(ppm)	(ppm)
						Bouldery Sparse forest					
3295893	612862	5231241	Orange	Mud	(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent material	Sandy silty Ok sampling Bouldery Sparse forest	30	2.6	10.2	4.59	55
3295894	612863	5231272	Gray	Mud	(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent material	Ok sampling Bouldery Sparse forest	30	0.4	1.9	3.45	56
3295895	612863	5231297	Orange	Mud	(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent material	Sandy silty Ok sampling Bouldery Sparse forest	30	5.2	16.5	5.96	125
3295896	612868	5231318	Orange	Mud	(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent material	Sandy silty Ok sampling Bouldery Sparse forest	30	2.8	9.8	4.3	80
3295897	612862	5231344	Orange	Mud	(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent material	Ok sampling Sandy silty Bouldery Sparse forest	30	3.5	11.4	6.14	96
3295898	612864	5231369	Orange	Mud	(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent material	Sandy silty Ok sampling Bouldery Sparse forest	30	4.4	14.3	6.04	75
3295899	612864	5231391	Gray	Mud	(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent material	Ok sampling Bouldery Sparse forest	30	1.7	3.4	3.48	31
3295900	612862	5231418	Orange	Mud	(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent material	Sandy silty Ok sampling Bouldery Sparse forest	30	1	2.6	2.41	47

Sample	Easting	Northing	Colour	Grain Size	Soil Horizon	Comments	Depth (cm)	Co (nnm)	Ni (nnm)	Cu (nnm)	Ag (nnm)
110.	INADOS			SILC	(B) Horizon formed by accumulation of	Sandy silty	(entry	(PPIII)	(PPIII)	(PPIII)	(Ppiii)
3295984	612666	5230743	Orange	Mud	material removed from Ae horizon or hy	Poor sampling	30	1 1	37	3 53	79
	012000	52007 10	orange		alteration of the parent material	Bouldery			0.7	0.00	
						Sandy silty					
					(B) Horizon formed by accumulation of	Ok sampling					
3295985	612663	5230759	Orange	Mud	material removed from Ae horizon or by	Boulderv	30	4.5	13.3	4.27	39
			0-		alteration of the parent material	Sparse forest		_			
					•	Near creek					
					(B) Horizon formed by accumulation of	Boulder field					
3295986	612665	5230794	Gray	Mud	material removed from Ae horizon or by	Poor sampling	30	0.4	2.5	6.19	53
			-		alteration of the parent material	Near creek					
					(D) Herizen fermed hu segundetien of	Sandy silty					
2205097	612660	E 2 2 0 7 1 2	Orango	Mud	(B) Horizon formed by accumulation of	Clay	20	1 2	2.4	2 62	20
5295967	012000	5250715	Urange	IVIUU	alteration of the parent material	Sparse forest	50	1.2	5.4	5.02	50
						Ok sampling					
					(B) Horizon formed by accumulation of	Poor sampling					
3295988	612668	5230811	Gray	Mud	material removed from Ae horizon or by	Boulder field	30	0.4	1.9	3.81	29
					alteration of the parent material	Hillside					
					(B) Horizon formed by accumulation of	Sandy silty					
3295989	612661	5230842	Orange	Mud	material removed from Ae horizon or by	Ok sampling	50	8.9	20.2	7.35	14
					alteration of the parent material	Sparse forest					
					(B) Horizon formed by accumulation of	Sandy silty					
3295990	612666	5230870	Orange	Mud	material removed from Ae horizon or by	Poor sampling	20	10	23.6	17.19	40
					alteration of the parent material	Bouldery					
					(B) Horizon formed by accumulation of	Terrible sampling					
3295991	612668	5230893	Orange	Mud	material removed from Ae horizon or by	Bouldery	25	31.2	57.7	24.42	127
					alteration of the parent material	Hillside					
					(B) Horizon formed by accumulation of	Terrible sampling					
3295992	612664	5230906	Gray	Mud	material removed from Ae horizon or by	Boulder field	25	23	110.3	57.1	466
					alteration of the parent material	Marshy					

Sample	Easting	Northing	Colour	Grain	Soil Horizon	Commonts	Depth	Со	Ni	Cu	Ag
No.	NAD83	Zone 17	Coloui	Size		comments	(cm)	(ppm)	(ppm)	(ppm)	(ppm)
		5220045			(B) Horizon formed by accumulation of	Poor sampling	25		10.0	40.07	
3295993	612661	5230945	Orange	Mud	material removed from Ae horizon or by	Boulder field	25	15	42.8	18.97	97
					alteration of the parent material	Marshy					
					(B) Horizon formed by accumulation of	Poor sampling					
3295994	612667	5230960	Black	Mud	material removed from Ae horizon or by	Marshy	40	21.9	90.6	51.95	464
					alteration of the parent material	Boulder field					
				(P) Harizon formed by accumulation of	Sandy silty						
	C12CC2	5221010	Gray	Mud	material removed from Ae horizon or by	Terrible sampling	20	11.2	10.0	14.00	00
3295996	012003	2231019				Boulder field	30	11.2	18.9	14.98	99
					alteration of the parent material	Cliffside					
				lack Mud	(B) Horizon formed by accumulation of material removed from Ae horizon or by alteration of the parent material	Terrible sampling					
2205007	642662	5224040	Black			Hillside	30	10.3	20.7	26.24	100
3295997	612662	62 5231048				Boulder field			30.7		182
						Underground creeks					
						Poor sampling					
			_		(B) Horizon formed by accumulation of	Bouldery					50
3295998	612664	5231075	Brown	Mud	material removed from Ae horizon or by	Hillside	40	9.8	23.5	17.88	59
					alteration of the parent material	Underground creeks					
						Terrible sampling					
3295999 61	61965T				(B) Horizon formed by accumulation of	Boulder field					
	612665	5231090	Brown	n Mud	material removed from Ae horizon or by alteration of the parent material	Hillside	40	8.4	22.2	18.11	107
						Underground creek					

Figure 8.8: 2022 Cobalt in Soils-Map 1 (ppm Co).

Figure 8.9: 2022 Cobalt in Soils-Map 2 (ppm Co).

Figure 8.10: 2022 Silver in Soils Map 1 (ppm Ag).

Figure 8.11: 2022 Silver in Soils Map 2 (ppm Ag).

Figure 8.12: 2022 Bismuth in Soils Map 1 (ppm Bi).

Figure 8.13: 2022 Bismuth in Soils Map 2 (ppm Bi).

Figure 8.14: 2022 Copper in Soils Map 1 (ppm Cu).

Figure 8.15: 2022 Copper in Soils Map 2 (ppm Cu).

Figure 8.16: 2022 Nickle in Soils Map 1 (ppm Ni).

Figure 8.17: 2022 Nickle in Soils Map 2 (ppm Ni).

Figure 8.18: 2022 Arsenic in Soils Map 1 (ppm As).

Figure 8.19: 2022 Arsenic in Soils Map 2 (ppm As).

9 Statement of Costs

The following table describes the costs of the work program which are eligible for assessment credit. The amount being applied for is \$43,463.75.

Table 9.1:	Nipissing Lorrain Property 2022 Sta	tement o	of Costs.			
			DATE:	June 16, 2023		
	ONCEOD					
	ONGFOR	V				
E	RPLORATION SERVICES	S LID.				
SEND TO:						
Quantum Battery Metals Corp.			Longford Expl	orati	ion Services Ltd.	
400-837 West Hasting Street			1680-355 Burr	ard S -	Street	
Vancouver, BC			Vancouver, B	2		
Canada, V6C 3N6			Canada V6C 20	βC		
			//8-809-/009			
2022 Nipissing Lorrain Property	Invoice					
Personnel		Days	Rate		Line Total	
P.Geo- Marc Andre Pelletier	May 26-27, May 30 & 31, and June 1-2, 2022	5	\$ 1,150.00	\$	5,750.00	
Project Manager - R. Versloot	May 26-27, May 30 & 31, and June 1-2, 2023	5	\$ 920.00	\$	4,600.00	
Senior Field Technician-F. Thompson	May 26-27, May 30-31, and June 1-2, 2022	6	\$ 575.00	\$	3,450.00	
Field Technician-A. Lessard	May 26-27, May 30-31, and June 1-2, 2022	6	\$ 460.00	\$	2,760.00	
	Total Work Days	22	Cat. Total	\$	16,560.00	
Food and Lodging		Units	Unit Price		Line Total	
Food and Groceries	Longford per diem	22	\$ 86.25	\$	1,897.50	
Lodging	Temagami	22	\$ 138.00	\$	3,036.00	
			Cat. Total	\$	4,933.50	
Transportation		Units	Unit Price		Line Total	
Truck	Longford Rental, with recovery gear	6	\$ 172.50	\$	1,035.00	
Fuel	per km for truck	1500	\$ 0.75	\$	1,121.25	
			Cat. Total	\$	2,156.25	
Mobilization & Positioning		Units	Unit Price		Line Total	
Positioning Fee	Positioning and prep work	4	\$ 1,437.50	\$	5,750.00	
			Cat. Total	\$	5,750.00	
Equipment Rentals		Units	Unit Price		Line Total	
Misc Hand Tools	Longford rental: Hammers, picks, Mattocks, Shovels, etc	22	\$ 28.75	\$	632.50	
Electronics Kit	Radios, Sat Phones, GPS, tablets, drone	22	\$ 40.25	\$	885.50	
	laptops, RTK		Cat. Total	\$	1,518.00	
Analytical		Units	Unit Price		Line Total	
Analysis-Soil Samples	SS80, AQ250, 1 Year Storage	166	\$ 36.00	\$	5,976.00	
Analysis-Rock Samples	PRP-70-250, AQ250, 1 Year Storage	20	\$ 41.00	\$	820.00	
			Cat. Total	\$	6,796.00	
Pre and Post Fieldwork		Units	Unit Price		Line Total	
GIS/Maps, Assessment Report and Work	Filing	1	\$ 5,750.00	\$	5,750.00	
			Cat. Total	\$	5,750.00	
		Estim	ated Sub Total	\$	43,463.75	
			Sub Total	\$	43,463.75	
			GST 5%	\$	2,246.21	
			Total	\$	45,709.96	
10 Sample Preparation, Analysis, and Security

10.1 2021 Sampling Procedure

During the 2022 program a total of 20 rock samples and 164 soil samples were collected in a manner where sample integrity and provenance is maintained for future analytical procedures.

Rock samples collected were located by GPS in NAD83 UTM Zone 17N, the sample location was recorded in field notebooks, an assay sample tag book and as a waypoint on a Garmin 60CSX GPS unit. Each sample was collected into its own 18" x 12" poly bag labeled with the locale (i.e., "Nipissing Lorrain") and a unique 7-character sample ID (i.e., E5471266) assigned from a barcoded Tyvek sample book. A tear-out tag with the barcode and unique sample ID was inserted in the bag with the sample and the bag sealed with a cable tie in the field. The sample locations are marked in the field with orange flagging type and the unique sample ID number written on the tape.

A similar process was carried out for recording the soil sample data however soils were collected carefully by following strict guidelines. Grid soil sampling was carried at 25 m intervals with a 25 m line spacing. All sample locations were recorded using a hand-held GPS unit. Sample sites were marked using aluminum tags labelled with the sample number affixed to a 50 cm wooden lath that was driven into the ground. The majority of soil samples were collected from approximately 10 cm deep holes using hand-held geotools. Each soil sample was placed into individually labelled Kraft paper bags. No duplicate samples were collected during this program. Soil samples were then sent to Bureau Veritas in Vancouver, BC to be dried and screened to -200 microns. The fine fractions were then analyzed using an aqua regia digestion and using inductively coupled plasma-mass spectroscopy technique (ICP-MS).

10.2 Sampling Preparation and Analysis

The rock and soil samples collected during the 2022 prospecting and soil sampling program were submitted for analysis at Bureau Veritas Mineral Laboratories in Vancouver, BC for the following processes:

Sample Type	Procedure Code	Description
Rock	PRP70-250, AQ300, AQ370, FA430	Crush, split and pulverize 250 g rock to 200 mesh, 1:1:1 Aqua Regia digestion ICP-ES analysis; Lead Collection Fire - Assay Fusion - AAS Finish
Soil	SS80, AQ200, AQ370	1:1:1 Aqua Regia digestion ICP-MS analysis; 1:1:1 Aqua Regia digestion ICP-ES analysis

Table 10.1: Analytical Methods Descriptions.

10.1 Adequacy of Procedures

All sample collection and analysis performed by the Longford Exploration field crew are in conformance with industry best practices and are in accordance with typical CIM standards.

11 Interpretation and Conclusions

Rock sampling activities on the Nipissing Lorrain Property in 2022 identified anomalous cobalt values within the smaller claim block of the Property, which were collected from the waste dump pile. The best rock sample assays were found in rock Samples 2556432 and 2556438, which returned a value of 2,000 ppm Co and 1,666.8 ppm Co (Table 11.1), respectively. However, the soil survey returned disappointing results overall.

Rock samples collected from the waste dump returned elevated concentrations of cobalt, silver, bismuth, nickel, copper, arsenic, and gold (Table 11.1). Cobalt values ranged between 15.40 ppm Co and 2,000 ppm Co, silver returned 48 ppb Ag to 29,654 ppb Ag, bismuth ranged between 0.05 ppm Bi and 155.08 ppm Bi, nickel returned between 21.70 ppm Ni and 3,578.50 ppm Ni, copper returned between 16.73 ppm and 861.17ppm Cu, arsenic returned between 5.20 ppm As and > 10,000 ppm As, and gold ranged between 0.02 ppb Au and 75.5 ppb Au.

Background threshold values for soils were calculated using soil samples collected during the 2021 program (38 soil samples) and 2022 program (164 soils) which is still an extremely small sample size. The 97.5th percentile is a commonly used benchmark for determining potentially anomalous values within a large dataset, meaning that the top 2.5% of values within a geochemical population could be considered anomalous values. Threshold values are normally calculated using a very large set of samples; therefore, the calculated background and anomalous values in Table 11.4 are to be considered with skepticism. It is also important to consider the underlying bedrock lithology, as different rock types naturally contain varying elemental concentration.

Based on the 202 soil samples collected across the Property to date, values greater than 713.35 ppm Co, 374.25 ppb Ag, 90.28 ppm Bi, 541.78 ppm Cu, and 482.0 Ni, and 2,792.68 ppm As, would be considered anomalous values (in the 97.5th percentile; Table 11.4).

With regards to the values returned from the 164 soil samples collected on the Property in 2022 (Table 11.2), cobalt values ranged between 0.4 ppm Co and 118.80 ppm Co, silver ranged between 5 ppb Ag and 466 ppb Ag, bismuth returned between 0.07 ppm Bi to 0.90 ppm Bi, copper returned between 2.35 ppm Cu and 312.85 ppm Cu, arsenic ranged between 0.5 ppm and 47 ppm As, and nickel returned between 0.9 ppm Ni and 110.30 ppm Ni. Comparing these values to the 97.5th percentile of all samples collected on the Property to date (202 soils; Table 11.4) only one sample returned anomalous values of bismuth (Sample 3295868 returned 0.90 ppm Bi).

Based on observations made in the field along with assay results for both rock and soils during the 2021 and 2022 field programs, no significant signs of cobalt mineralization have been identified, therefore, no further work is recommended at this time.

Statistic	Co (ppm)	Ag (ppb)	Bi (ppm)	Ni (ppm)	Cu (ppm)	As (ppm)
mean	223.56	2,673.00	11.97	245.58	148.32	837.05
std dev	554.73	6,963.54	37.76	786.44	184.20	2479.70
mode	20.10	-	0.40	-	-	-
max	2,000.00	29,654.00	155.08	3,578.50	861.17	10,000.00
min	15.40	48.00	0.05	21.70	16.73	5.20
range	1,984.60	29,606.00	155.03	3,556.80	844.44	9,994.80
median	37.10	169.00	0.33	49.85	97.88	36.40

Table 11.1: Statistical Analysis of 2022 Rock Sample Results (n=20).

Table 11.2: Statistical Analysis of 2022 Soil Sample Results (n=164).

Statistic	Co (ppm)	Ag (ppb)	Bi (ppm)	Ni (ppm)	Cu (ppm)	As (ppm)
mean	9.45	98.85	0.26	31.81	22.68	3.96
std dev	12.96	73.24	0.13	54.34	18.37	5.31
mode	0.40	31.00	0.18	17.19	18.90	3.40
max	118.80	466.00	0.90	312.85	110.30	47.00
min	<dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>	<dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<>	<dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<>	<dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<>	<dl< th=""><th><dl< th=""></dl<></th></dl<>	<dl< th=""></dl<>
range	118.80	466.00	0.90	312.85	110.30	47.00
median	6.50	81.00	0.23	12.73	19.10	2.70

<DL*: Below Detection Limit

Table 3:3 Statistical Analysis of Soil Sample Results from 2021 and 2022 (n=202).

Statistic	Co (ppm)	Ag (ppb)	Bi (ppm)	Ni (ppm)	Cu (ppm)	As (ppm)
mean	77.86	81.42	9.73	51.24	176.10	369.11
std dev	712.01	75.72	102.07	152.76	2,008.63	4,606.22
mode	0.40	0.30	0.20	15.70	18.90	1.80
max	10,000.00	466.00	1,413.70	1,795.00	28,570.00	65,400.00
min	<dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>	<dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<>	<dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<>	<dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<>	<dl< th=""><th><dl< th=""></dl<></th></dl<>	<dl< th=""></dl<>
range	10,000.00	466.00	1,413.70	1,795.00	28,570.00	65,400.00
median	8.30	67.50	0.25	16.55	22.70	3.15

<DL*: Below Detection Limit

Table 11.4: Threshold Values Calculated Using Nipissing Lorrain 2021/2022 Soil Samples (n=202).

Percentiles	Co (ppm)	Ag (ppb)	Bi (ppm)	Cu (ppm)	Ni (ppm)	As (ppm)
25th percentile	3.5	31	0.19	8.84	10.55	1.95
50th percentile	8.3	68	0.25	16.59	22.9	3.2
75th percentile	14.9	117	0.38	35.8	41.5	6.2
95th percentile	120.7	210	7.55	288.66	157.1	468.81
97.5 percentile	713.35	374.25	90.280	541.775	482	2,792.67

12 Recommendations

Due to disappointing results no further work is recommended at this time. Despite somewhat elevated concentrations of the elements of interest, there have been no substantive indications of widespread, economic mineralization to warrant further work.

13 References

Andrews, A.J., Owsiacki, L., Kerrich, R., Strong, D.F., (1986), The Silver Cobalt and Gowganda, Ontario. I: Geology, Petrography, and Whole-Rock Geochemistry, Can. J. Earth Sciences 23, 1480-1506 (1986)

Casalinuovo, S., Gourley, D., Kriese, K.G., Kriese, K.H., (1998), Geochemical Survey and Assessment Work Report, Staked Mining Claim 1214461, South Lorrain Township, Larder Lake Mining Division, District of Timiskaming, Ontario, For Ministry of Northern Development and Mines, August 1998

Cookenboo, Harrison, Hickin, Adrian, Davis, Clinton, Brown, Philip, (2003) Assessment Report on Target Evaluations by Ground Geophysics, Geological, Ground-Truthing, and Prospecting in Preparation for Drill Tests, Prepared for Tres-Or Resources Ltd., August 14, 2003

Faure, Stephane, Beauvais, Marc R., Jalbert, Catherine, (2018), NI 43-101 Technical Report for the Cobalt Project, Prepared for First Cobalt, March 21, 2018

Farquhar, Emily, (2002) Airborne Magnetometer Survey, Block 25, 26, & 27, Marten River Area, Ontario, Prepared for JML Resources Ltd., May 2002

Kissin, Stephen A., (1992), Five-Element (Ni-Co-As-Ag-Bi) Veins, Geoscience Canada, vol. 19, number 3

Mineral Deposit Inventory for Ontario report MDI31M04SE00035.

McIlwaine, W.H., (1970), Geology of the South Lorrain Township, District of Timiskaming, Geological Report 83, Toronto 1970

Ontario Department of Mines and Northern Affairs, (1970), South Lorrain Township, Timiskaming District, Scale: 1: 31,680, Ontario Geological Survey, Map 2194

Ontario Geological Survey, (2017), Ontario Airborne Geophysical Surveys: Magnetic Supergrids, Geophysical Data Set 1037-Revised

Woolham, R.W., (1966), Report on the Geophysical Surveys, South Lorrain Township, Prepared for Millerfields Silver Corp. Ltd., April 27, 1966

14 Statement of Qualification

I, Sarah Ryan, of 38 Gallipoli Street, St John's, NL, Canada do hereby certify the following:

- I graduated from Memorial University of Newfoundland with a degree in Earth Sciences in 2018, and I have practiced my profession continuously since 2018.
- From 2018 to present I have been working in Canada in mineral exploration and have been actively involved in projects in BC, YK, NWT, ON, QC and NL.
- I am registered as a G.I.T with PEG-NL and I am in good standing.
- I am a Consulting Geologist and have been so since 2018.
- I am the author of the Assessment Report entitled: "2022 Assessment Report on the Nipissing Lorrain Property, Ontario, Canada", effective date June 13, 2022.

June 13, 2023

Sarah Ryan, G.I.T., B.Sc., B.B.S.

Date

The assessment work reported in the report titled, "2022 Assessment Report on the Nipissing Lorrain Property, ON, Canada", Effective Date June 13, 2023, was supervised by:

Dated this June 13th, 2023.

(Signed and Sealed) "Luke van der Meer" Luke van der Meer. P. Geo VP of Exploration for Longford Exploration Services Ltd.

APPENDIX A: 2022 Rock Sample Assay Certificates

			Client:	Longford Exploration Services Ltd. Marine Building, Unit 1680 355 Burrard St. Vancouver British Columbia V6C 2G8 Canada
BUREAU	MINERAL LABORATORIES	www.byna.com/mining-laboratory-services	Submitted By:	Ryan Versloot
VERITAS	Canada		Receiving Lab:	Canada-Timmins
Bureau Veritas	Commodities Canada Ltd.		Received:	June 08, 2022
050 Shaughn	essy St. Vancouver British Columbia	V6P 6E5 Canada	Analysis Start:	August 25, 2022
	253 3159	Vor des Ganada	Report Date:	March 30, 2023
-HONE (004)	200-0100		Page:	1 of 2

CERTIFICATE OF ANALYSIS

TIM22001601.1

CLIENT	JOB	INFO	RMA	TION
--------	-----	------	-----	------

SAMPLE PREPARATION AND ANALYTICAL PROCEDURES

Project: Shipment ID:	Nipissing Lorrain	Procedure Code	Number of Samples	Code Description	Test Wgt (g)	Report Status	Lab
P O Number		PRP70-250	20	Crush, split and pulverize 250 g rock to 200 mesh			TIM
Number of Samples:	20	SHP01	20	Per sample shipping charges for branch shipments			TIM
		AQ250	20	1:1:1 Aqua Regia digestion Ultratrace ICP-MS analysis	0.5	Completed	VAN
	-						

ADDITIONAL COMMENTS

SAMPLE DISPOSAL

 DISP-PLP
 Dispose of Pulp After 90 days

 DISP-RJT
 Dispose of Reject After 60 days

Bureau Veritas does not accept responsibility for samples left at the laboratory after 90 days without prior written instructions for sample storage or return.

Invoice To: Longford Exploration Services Ltd. Marine Building, Unit 1680 355 Burrard St. Vancouver British Columbia V6C 2G8 Canada

KERRY JAY

CC: Vedran Pobric

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only. All results are considered the confidential property of the client. Bureau Veritas assumes the liabilities for actual cost of analysis only. Results apply to samples as submitted. "" astensk indicates that an analytical result could not be provided due to bursually ingit levels of interference from other elements.

BUREAU VERITAS MINE Canac Bureau Veritas Comm	RAL LABORATOR Ja nodities Canada Lt	IES d.		www	.bvna.c	:om/mi	ning-la	borato	ry-serv	ices		Clier Projec Repor	n t: ct: rt Date:	Lor Marin 355 F Vanc Nipis Marc	ngford ne Buildir Burrard S ouver Bri sing Lorr h 30, 202	J Expl ng, Unit 1 st. itish Colu rain 23	oratio 680 Imbia V60	n Serv	vices L anada	.td.	
9050 Shaughnessy S	t Vancouver Britis	h Colum	bia V6	P 6E5 (Canada																
PHONE (604) 253-31	58											Page:		2 of 2	2				Pa	rt: 1 (of 2
CERTIFICA		JALY	SIS	;												TI	M22	001	601.	1	
	Mothod	MOUT	10050	10050	10050	10050	10050	10250	10250	10050	4.0350	10250	10050	10050	10050	4.0959	10050	10050	40050	10050	10050
	Analyte	Wat	AQ250 Mo	AQ250 Cu	AQ250 Ph	AQ250 7n	AQ250 Aa	AQ250 Ni	AQ250	AQ250 Mn	AQ250 Fo	ΑQ250 Δ s	AQ250	AQ250 Διι	AQ250 Th	AQ250 Sr	Cd	AQ250 Sh	AQ250 Bi	AQ250 V	AQ250 Ca
	Unit	ka	ppm	DDm	ppm	ppm	daa	ppm	ppm	ppm	%	ppm	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	%
	MDL	0.01	0.01	0.01	0.01	0.1	2	0.1	0.1	1	0.01	0.1	0.1	0.2	0.1	0.5	0.01	0.02	0.02	1	0.01
2556424	Drill Core	1.49	3.13	137.39	6.04	46.1	77	35.0	26.4	442	3.47	17.3	0.2	2.7	1.3	27.9	<0.01	0.11	0.15	84	1.47
2556425	Drill Core	1.82	1.20	48.32	3.18	54.5	167	30.2	24.7	483	5.28	10.6	0.6	0.4	2.6	12.6	0.04	0.54	0.08	126	1.17
2556426	Drill Core	1.44	2.21	210.28	10.79	109.6	1572	212.5	48.4	401	3.80	41.4	0.2	2.9	1.5	25.2	0.25	0.32	0.21	73	0.95
2556427	Drill Core	1.24	4.47	97.83	19.73	41.0	171	91.0	47.3	658	3.69	211.0	0.3	1.7	1.2	24.1	<0.01	0.23	0.40	76	3.58
2556428	Drill Core	1.37	0.86	46.46	3.35	26.2	54	37.6	20.1	316	3.83	5.2	1.2	0.6	4.0	20.5	<0.01	0.08	0.09	124	0.69
2556429	Drill Core	2.14	1.64	107.36	1.87	23.9	64	30.5	30.9	292	4.59	19.3	0.6	0.5	2.8	10.2	<0.01	0.11	0.12	219	0.74
2556430	Drill Core	1.07	1.04	52.98	1.89	31.4	79	34.4	20.1	392	4.75	11.1	1.2	0.7	5.4	11.0	<0.01	0.16	0.05	62	0.92
2556431	Drill Core	2.24	4.34	17.55	1.28	12.8	48	21.7	15.4	229	2.67	8.8	0.9	0.4	3.3	7.8	<0.01	0.13	0.07	99	0.73
2556432	Drill Core	2.03	14.15	133.83	18.84	51.2	11976	3578.5	>2000	695	5.85	>10000	0.1	75.5	0.4	13.8	<0.01	0.82	76.84	178	1.01
2556433	Drill Core	2.96	1.49	16.73	2.57	13.3	72	33.4	25.8	226	3.49	24.8	2.3	0.6	10.5	6.1	<0.01	0.16	0.30	68	0.47
2556434	Drill Core	1.90	3.47	97.93	3.44	32.6	134	45.8	60.4	407	3.57	40.3	0.3	0.9	0.4	25.1	0.01	0.14	0.42	113	1.67
2556435	Drill Core	1.89	0.77	87.72	3.96	42.8	293	78.2	36.8	427	4.59	35.1	0.5	1.3	2.1	9.4	<0.01	0.10	0.57	248	1.03
2556436	Drill Core	2.25	1.78	172.85	2.52	30.9	117	24.9	22.2	316	4.64	14.7	0.5	2.1	2.1	7.4	<0.01	0.07	0.12	275	0.95
2556437	Drill Core	2.45	24.87	116.54	11.45	46.6	591	110.7	46.4	696	4.36	84.9	0.5	0.9	1.8	28.9	<0.01	0.20	1.07	129	5.16
2556438	Drill Core	2.21	8.87	96.23	6.20	69.5	187	209.1	1666.8	443	4.88	5528.9	0.7	0.7	3.1	7.7	0.32	0.64	2.11	200	0.73
2556439	Drill Core	3.10	13.32	861.17	11.65	50.6	5960	82.2	42.8	470	4.12	37.7	0.2	17.1	0.9	13.8	0.02	0.50	0.40	126	0.93
2556440	Drill Core	3.45	2.12	56.64	1.39	20.3	1 14	56.2	32.3	356	3.49	18.9	0.8	0.5	2.4	17.6	<0.01	0.19	0.36	87	0.95
2556441	Drill Core	3.01	6.57	245.36	27.48	53.0	29654	109.4	55.7	997	5.04	158.5	0.3	1.2	0.8	24.0	0.09	14.51	0.89	107	2.55
2556442	Drill Core	4.05	1.95	311.37	15.44	25.0	1604	36.3	37.4	274	3.31	39.8	1.8	0.2	8.2	10.8	<0.01	0.44	0.09	76	0.60
2556443	Drill Core	2.64	2.73	51.91	4.53	33.9	526	53.9	21 1.2	820	3.83	432.6	1.1	5.5	1.5	25.3	<0.01	0.22	155.08	126	5.01

												Clier	nt:	Lor Marir 355 F Vanc	n gford ne Buildir Burrard S souver Br	d Expl ang, Unit 1 Bt. Fitish Colu	oratio 680 Imbia V60	n Ser v C 2G8 Ca	vices Lto	.
BUREAU M	INERAL LABORATOR anada	IES		www	.bvna.c	:om/mi	ning-la	borator	y-servi	ces		Projec	:t:	Nipis	sing Lorr	rain				
Bureau Veritas C	ommodities Canada I t	d										Repor	t Date:	Marc	h 30, 202	23				
		u. 1. O - I	L:- 1/01																	
PHONE (604) 253	3-3158	n Colum		- 6E2 (Janada							Page:		2 of 2	2				Part:	2 of 2
CEDTIEI			212													TU	งกวว	001	601 1	
			010	•															001.1	
	Method	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	
	Analyte	Р	La	Cr	Mg	Ba	Ti	в	AI	Na	к	w	Sc	TI	S	Hg	Se	Те	Ga	
	Unit	%	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	%	ppb	ppm	ppm	ppm	
	MDL	0.001	0.5	0.5	0.01	0.5	0.001	20	0.01	0.001	0.01	0.1	0.1	0.02	0.02	5	0.1	0.02	0.1	
2556424	Drill Core	0.036	19.6	58.3	1.58	33.6	0.176	<20	1.76	0.097	0.14	0.2	7.1	0.05	0.16	10	0.6	<0.02	6.2	
2556426	Drill Core	0.192	6.3	261.4	2.25	96	0.152	<20	2.08	0.120	0.39	0.1	43	0.07	0.03	214	0.0	<0.02	6.6	
2556427	Drill Core	0.038	19.8	166.3	2.20	4.5	0.151	<20	1 76	0.051	0.10	0.4	6.6	0.03	0.14	214	0.4	<0.02	8.1	
2556428	Drill Core	0.057	16.1	76.1	1.51	13.3	0.094	<20	1.64	0.106	0.09	<0.1	9.0	0.03	0.12	7	0.4	<0.02	9.6	
2556429	Drill Core	0.048	9.6	70.1	1.21	7.2	0.130	<20	1.36	0.100	0.07	<0.1	9.0	0.03	0.20	13	0.6	<0.02	8.5	
2556430	Drill Core	0.178	23.3	77.2	1.93	17.3	0.152	<20	1.97	0.064	0.15	<0.1	11.5	0.07	0.09	18	0.5	<0.02	14.3	
2556431	Drill Core	0.034	7.7	51.9	0.90	4.0	0.057	<20	0.99	0.101	0.04	<0.1	6.1	<0.02	0.09	14	0.4	<0.02	6.1	
2556432	Drill Core	0.030	3.7	104.2	2.10	26.5	0.083	<20	2.36	0.101	0.40	0.2	10.0	0.21	0.61	87	1.1	0.07	9.5	
2556433	Drill Core	0.046	22.9	62.1	1.34	4.9	0.061	<20	1.41	0.074	0.05	<0.1	7.9	<0.02	0.12	19	0.3	<0.02	9.5	
2556434	Drill Core	0.032	5.0	60.0	1.34	12.0	0.171	<20	1.52	0.089	0.13	2.3	7.8	0.05	0.43	134	1.0	0.03	5.6	
2556435	Drill Core	0.043	7.9	71. 4	1.65	5.6	0.182	<20	1.76	0.127	0.05	0.2	8.4	0.02	0.14	52	0.5	<0.02	8.8	
2556436	Drill Core	0.043	7.3	33.1	1.19	7.9	0.156	<20	1.30	0.098	0.09	0.2	8.2	0.03	0.12	15	0.4	<0.02	7.9	
2556437	Drill Core	0.040	13.2	195.4	2.72	4.6	0.150	<20	1.67	0.059	0.06	0.2	8.7	0.04	0.23	31	0.7	0.03	7.9	
2556438	Drill Core	0.046	14.6	152.5	2.14	5.2	0.078	<20	1.76	0.069	0.06	<0.1	7.1	0.03	0.15	32	0.5	<0.02	9.6	
2556439	Drill Core	0.032	3.3	67.3	1.44	15.4	0.174	<20	1.72	0.108	0.15	0.2	7.5	0.12	0.36	57	0.8	0.04	6.8	
2556440	Drill Core	0.034	5.0	109.9	1.55	27.5	0.150	<20	1.79	0.100	0.36	0.5	8.0	0.17	0.16	38	0.4	0.02	8.8	
2556441	Drill Core	0.061	9.8	351.1	2.89	11.7	0.120	<20	2.88	0.098	0.16	0.2	11.7	0.09	0.15	95	0.6	0.03	10.3	
2556442	Drill Core	0.047	23.4	68.9	1.26	9.6	0.103	<20	1.47	0.083	0.07	<0.1	7.6	0.03	0.10	52	0.4	<0.02	9.1	
2556443	Drill Core	0.042	8.9	33.5	2.33	4.1	0.131	<20	1.41	0.064	0.05	0.2	1 1.2	0.03	0.27	76	0.7	0.03	8.3	

B U R E A U V E R I TAS	MINERAL LABORATOR Canada	IES		www	.bvna.c	:om/mir	ning-lat	porator	y-servio	ces		Clien Project	t: :	Lon Marine 355 Bi Vanco Nipiss	gford e Building urrard St. ouver Briti	Explo 9, Unit 164 ish Colum	nbia V6C	2G8 Car	ices L [.] nada	td.	
Bureau Verita	s Commodities Canada I t	d										Report	Date:	March	30, 2023	3					
00E0 Shought	s commodites canada Et	u. h Calum			Sanada																
	252 2159	n Colum	Dia Voi	- GED C	anaua																
PHONE (604)	200-0100											Page:		1 of 1					Parl	: 10	f 2
QUALI	TY CONTROL	REP	POR	Т												TIN	/1220	0016	601. ⁻	1	
	Method	WGHT	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250
	Method Analyte	WGHT Wgt	AQ250 Mo	AQ250 Cu	AQ250 Pb	AQ250 Zn	AQ250 Ag	AQ250 Ni	AQ250 Co	AQ250 Mn	AQ250 Fe	AQ250 As	AQ250 U	AQ250 Au	AQ250 Th	AQ250 Sr	AQ250 Cd	AQ250 Sb	AQ250 Bi	AQ250 V	AQ250 Ca
	Method Analyte Unit	WGHT Wgt kg	AQ250 Mo ppm	AQ250 Cu ppm	AQ250 Pb ppm	AQ250 Zn ppm	AQ250 Ag ppb	AQ250 Ni ppm	AQ250 Co ppm	AQ250 Mn ppm	AQ250 Fe %	AQ250 As ppm	AQ250 U ppm	AQ250 Au ppb	AQ250 Th ppm	AQ250 Sr ppm	AQ250 Cd ppm	AQ250 Sb ppm	AQ250 Bi ppm	AQ250 V ppm	AQ250 Ca %
	Method Analyte Unit MDL	WGHT Wgt kg 0.01	AQ250 Mo ppm 0.01	AQ250 Cu ppm 0.01	AQ250 Pb ppm 0.01	AQ250 Zn ppm 0.1	AQ250 Ag ppb 2	AQ250 Ni ppm 0.1	AQ250 Co ppm 0.1	AQ250 Mn ppm 1	AQ250 Fe % 0.01	AQ250 As ppm 0.1	AQ250 U ppm 0.1	AQ250 Au ppb 0.2	AQ250 Th ppm 0.1	AQ250 Sr ppm 0.5	AQ250 Cd ppm 0.01	AQ250 Sb ppm 0.02	AQ250 Bi ppm 0.02	AQ250 V ppm 1	AQ250 Ca % 0.01
Reference Mat	Method Analyte Unit MDL	WGHT Wgt kg 0.01	AQ250 Mo ppm 0.01	AQ250 Cu ppm 0.01	AQ250 Pb ppm 0.01	AQ250 Zn ppm 0.1	AQ250 Ag ppb 2	AQ250 Ni ppm 0.1	AQ250 Co ppm 0.1	AQ250 Mn ppm 1	AQ250 Fe % 0.01	AQ250 As ppm 0.1	AQ250 U ppm 0.1	AQ250 Au ppb 0.2	AQ250 Th ppm 0.1	AQ250 Sr ppm 0.5	AQ250 Cd ppm 0.01	AQ250 Sb ppm 0.02	AQ250 Bi ppm 0.02	AQ250 V ppm 1	AQ250 Ca % 0.01
Reference Mat	Method Analyte Unit MDL rerials 1 Standard	WGHT Wgt kg 0.01	AQ250 Mo ppm 0.01 11.17	AQ250 Cu ppm 0.01 4487.42	AQ250 Pb ppm 0.01 180.91	AQ250 Zn ppm 0.1 1739.6	AQ250 Ag ppb 2 2705	AQ250 Ni ppm 0.1 165.6	AQ250 Co ppm 0.1 27.7	AQ250 Mn ppm 1 733	AQ250 Fe % 0.01 3.84	AQ250 As ppm 0.1 122.7	AQ250 U ppm 0.1 3.8	AQ250 Au ppb 0.2 203.8	AQ250 Th ppm 0.1 14.6	AQ250 Sr ppm 0.5 56.1	AQ250 Cd ppm 0.01 6.98	AQ250 Sb ppm 0.02 2.13	AQ250 Bi ppm 0.02 23.32	AQ250 V ppm 1 75	AQ250 Ca % 0.01
Reference Mat STD BVGE00 STD OREAS26	Method Analyte Unit MDL rerials 1 Standard 52 Standard	WGHT Wgt kg 0.01	AQ250 Mo ppm 0.01 11.17 0.65	AQ250 Cu ppm 0.01 4487.42 117.33	AQ250 Pb ppm 0.01 180.91 56.58	AQ250 Zn ppm 0.1 1739.6 162.7	AQ250 Ag ppb 2 2705 497	AQ250 Ni ppm 0.1 165.6 70.4	AQ250 Co ppm 0.1 27.7 30.8	AQ250 Mn ppm 1 733 549	AQ250 Fe % 0.01 3.84 3.38	AQ250 As ppm 0.1 122.7 39.4	AQ250 U ppm 0.1 3.8 1.2	AQ250 Au ppb 0.2 203.8 55.2	AQ250 Th ppm 0.1 14.6 9.2	AQ250 Sr ppm 0.5 56.1 36.3	AQ250 Cd ppm 0.01 6.98 0.67	AQ250 Sb ppm 0.02 2.13 1.99	AQ250 Bi ppm 0.02 23.32 0.95	AQ250 V ppm 1 75 22	AQ250 Ca % 0.01 1.35 3.06
Reference Mat STD BVGE00 STD OREAS20 STD BVGE00	Method Analyte Unit MDL rerials 1 Standard 32 Standard 1 Expected	WGHT Wgt kg 0.01	AQ250 Mo ppm 0.01 11.17 0.65 10.8	AQ250 Cu ppm 0.01 4487.42 117.33 4415	AQ250 Pb ppm 0.01 180.91 56.58 187	AQ250 Zn ppm 0.1 1739.6 162.7 1712	AQ250 Ag ppb 2 2705 497 2530	AQ250 Ni ppm 0.1 165.6 70.4	AQ250 Co ppm 0.1 27.7 30.8 25	AQ250 Mn ppm 1 733 549 706	AQ250 Fe % 0.01 3.84 3.38 3.7	AQ250 As ppm 0.1 122.7 39.4 121	AQ250 U ppm 0.1 3.8 1.2 3.67	AQ250 Au ppb 0.2 203.8 55.2 214	AQ250 Th ppm 0.1 14.6 9.2 14.4	AQ250 Sr ppm 0.5 56.1 36.3 55	AQ250 Cd ppm 0.01 6.98 0.67 6.25	AQ250 Sb ppm 0.02 2.13 1.99 2.2	AQ250 Bi ppm 0.02 23.32 0.95 24.3	AQ250 V ppm 1 75 22 73	AQ250 Ca % 0.01 1.35 3.06 1.3219
Reference Mat STD BVGE00 STD OREAS20 STD BVGE00 STD OREAS202 ED	Method Analyte Unit MDL terials 1 Standard 32 Standard 32 Standard 1 Expected epected	WGHT Wgt kg 0.01	AQ250 Mo ppm 0.01 11.17 0.65 10.8 0.68	AQ250 Cu ppm 0.01 4487.42 117.33 4415 118	AQ250 Pb ppm 0.01 180.91 56.58 187 56	AQ250 Zn ppm 0.1 1739.6 162.7 1712 154	AQ250 Ag ppb 2 2705 497 2530 450	AQ250 Ni ppm 0.1 165.6 70.4 163 62	AQ250 Co ppm 0.1 27.7 30.8 25 26.9	AQ250 Mn ppm 1 733 549 706 530	AQ250 Fe % 0.01 3.84 3.38 3.7 3.284	AQ250 As ppm 0.1 122.7 39.4 121 35.8	AQ250 U ppm 0.1 3.8 1.2 3.67 1.22	AQ250 Au ppb 0.2 203.8 55.2 214 65	AQ250 Th ppm 0.1 14.6 9.2 14.4 9.33	AQ250 Sr ppm 0.5 56.1 36.3 55 36	AQ250 Cd ppm 0.01 6.98 0.67 6.25 0.61	AQ250 Sb ppm 0.02 2.13 1.99 2.2 3.39	AQ250 Bi ppm 0.02 23.32 0.95 24.3 1.03	AQ250 V ppm 1 75 22 73 22.5	AQ250 Ca % 0.01 1.35 3.06 1.3219 2.98
Reference Mat STD BVGE00 STD OREAS24 STD BVGE00 STD OREAS262 E BLK	Method Analyte Unit MDL terials 1 Standard 32 Standard 32 Standard 1 Expected geoted Blank	WGHT Wgt kg 0.01	AQ250 Mo ppm 0.01 11.17 0.65 10.8 0.68 <0.01	AQ250 Cu ppm 0.01 4487.42 117.33 4415 118 <0.01	AQ250 Pb ppm 0.01 180.91 56.58 187 56 56 <0.01	AQ250 Zn ppm 0.1 1739.6 162.7 1712 154 <0.1	AQ250 Ag ppb 2 2705 497 2530 450 450	AQ250 Ni ppm 0.1 165.6 70.4 163 62 62 <0.1	AQ250 Co ppm 0.1 27.7 30.8 25 26.9 <0.1	AQ250 Mn ppm 1 733 549 706 530 <1	AQ250 Fe % 0.01 3.84 3.38 3.284 <0.01	AQ250 As ppm 0.1 122.7 39.4 121 35.8 0.2	AQ250 U ppm 0.1 3.8 1.2 3.67 1.22 <0.1	AQ250 Au ppb 0.2 203.8 55.2 214 65 65 <0.2	AQ250 Th ppm 0.1 14.6 9.2 14.4 9.33 <0.1	AQ250 Sr ppm 0.5 56.1 36.3 55 36 36 <0.5	AQ250 Cd ppm 0.01 6.98 0.67 6.25 0.61 <0.01	AQ250 Sb ppm 0.02 2.13 1.99 2.2 3.39 <0.02	AQ250 Bi ppm 0.02 23.32 0.95 24.3 1.03 <0.02	AQ250 V ppm 1 75 22 73 22.5 <1	AQ250 Ca % 0.01 1.35 3.06 1.3219 2.98 <0.01
Reference Mat STD BVGE00 STD OREAS24 STD BVGE00 STD OREAS262 E BLK Prep Wash	Method Analyte Unit MDL terials 1 Standard 32 Standard 1 Expected spected Blank	WGHT Wgt kg 0.01	AQ250 Mo ppm 0.01 11.17 0.65 10.8 0.68 <0.01	AQ250 Cu ppm 0.01 4487.42 117.33 4415 118 <0.01	AQ250 Pb ppm 0.01 180.91 56.58 187 56 <0.01	AQ250 Zn ppm 0.1 1739.6 162.7 1712 154 <0.1	AQ250 Ag ppb 2 2705 497 2530 450 <2	AQ250 Ni ppm 0.1 165.6 70.4 163 62 <0.1	AQ250 Co ppm 0.1 27.7 30.8 25 26.9 <0.1	AQ250 Mn ppm 1 733 549 706 530 <1	AQ250 Fe % 0.01 3.84 3.38 3.7 3.284 <0.01	AQ250 As ppm 0.1 122.7 39.4 121 35.8 0.2	AQ250 U ppm 0.1 3.8 1.2 3.67 1.22 <0.1	AQ250 Au ppb 0.2 203.8 55.2 214 65 <0.2	AQ250 Th ppm 0.1 14.6 9.2 14.4 9.33 <0.1	AQ250 Sr ppm 0.5 56.1 36.3 55 36 <0.5	AQ250 Cd ppm 0.01 6.98 0.67 6.25 0.61 <0.01	AQ250 Sb ppm 0.02 2.13 1.99 2.2 3.39 <0.02	AQ250 Bi ppm 0.02 23.32 0.95 24.3 1.03 <0.02	AQ250 V ppm 1 75 22 73 22.5 <1	AQ250 Ca % 0.01 1.35 3.06 1.3219 2.98 <0.01

													Client	:	Lon Marine 355 Bi Vanco	gford e Building urrard St. ouver Briti	Explo I, Unit 168 sh Colurr	ration 30 1bia V6C 1	Servi 2G8 Can	i ces Lt e	I.
BUREAU VERITAS	MINERAL LABOR	RATORIE	S		www.	.bvna.c	:om/mii	ning-lat	oorator	y-servi	ces		Project:		Nipiss	ing Lorrai	in				
													Report	Date:	March	30. 2023	3				
Bureau Verita	as Commodities Can	iada Ltd.														,					
9050 Shaughi	nessy St Vancouve	er British	Colum	oia V6F	9 6E5 C	Canada															
PHONE (604)) 253-3158												Page:		1 of 1					Part:	2 of 2
			RED	OR ⁻	Г												TIN	1220	016	01.1	
QUALI				<u> </u>	•																
QUALI		Method	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	
QUALI		Method Analyte	AQ250 P	AQ250 La	AQ250 Cr	AQ250 Mg	AQ250 Ba	AQ250 Ti	AQ250 B	AQ250 AI	AQ250 Na	AQ250 K	AQ250 W	AQ250 Sc	AQ250 Ti	AQ250 S	AQ250 Hg	AQ250 Se	AQ250 Te	AQ250 Ga	
QUALI		Method Analyte Unit	AQ250 P %	AQ250 La ppm	AQ250 Cr ppm	AQ250 Mg %	AQ250 Ba ppm	AQ250 Ti %	AQ250 B ppm	AQ250 Al %	AQ250 Na %	AQ250 K %	AQ250 W ppm	AQ250 Sc ppm	AQ250 Ti ppm	AQ250 S %	AQ250 Hg ppb	AQ250 Se ppm	AQ250 Te ppm	AQ250 Ga ppm	
QUALI		Method Analyte Unit MDL	AQ250 P % 0.001	AQ250 La ppm 0.5	AQ250 Cr ppm 0.5	AQ250 Mg % 0.01	AQ250 Ba ppm 0.5	AQ250 Ti % 0.001	AQ250 B ppm 20	AQ250 Al % 0.01	AQ250 Na % 0.001	AQ250 K % 0.01	AQ250 W ppm 0.1	AQ250 Sc ppm 0.1	AQ250 Tl ppm 0.02	AQ250 S % 0.02	AQ250 Hg ppb 5	AQ250 Se ppm 0.1	AQ250 Te ppm 0.02	AQ250 Ga ppm 0.1	
QUALI Reference Ma	tterials	Method Analyte Unit MDL	AQ250 P % 0.001	AQ250 La ppm 0.5	AQ250 Cr ppm 0.5	AQ250 Mg % 0.01	AQ250 Ba ppm 0.5	AQ250 Ti % 0.001	AQ250 B ppm 20	AQ250 Al % 0.01	AQ250 Na % 0.001	AQ250 K % 0.01	AQ250 W ppm 0.1	AQ250 Sc ppm 0.1	AQ250 Ti ppm 0.02	AQ250 S % 0.02	AQ250 Hg ppb 5	AQ250 Se ppm 0.1	AQ250 Te ppm 0.02	AQ250 Ga ppm 0.1	
Reference Ma STD BVGE00	tterials 01 Standa	Method Analyte Unit MDL ard	AQ250 P % 0.001 0.070	AQ250 La ppm 0.5	AQ250 Cr ppm 0.5	AQ250 Mg % 0.01	AQ250 Ba ppm 0.5 322.4	AQ250 Ti % 0.001	AQ250 B ppm 20 <20	AQ250 AI % 0.01 2.36	AQ250 Na % 0.001	AQ250 K % 0.01	AQ250 W ppm 0.1 4.5	AQ250 Sc ppm 0.1 6.3	AQ250 TI ppm 0.02	AQ250 S % 0.02 0.70	AQ250 Hg ppb 5	AQ250 Se ppm 0.1	AQ250 Te ppm 0.02 1.05	AQ250 Ga ppm 0.1 7.7	
Reference Ma STD BVGEO0 STD OREAS2	iterials 11 Stand. 262 Stand.	Method Analyte Unit MDL ard ard	AQ250 P % 0.001 0.070 0.038	AQ250 La ppm 0.5 25.1 17.0	AQ250 Cr ppm 0.5 169.1 47.1	AQ250 Mg % 0.01 1.34 1.21	AQ250 Ba ppm 0.5 322.4 245.2	AQ250 Ti % 0.001 0.249 0.003	AQ250 B ppm 20 <20 <20	AQ250 AI % 0.01 2.36 1.34	AQ250 Na % 0.001 0.200 0.200	AQ250 K % 0.01 0.90 0.32	AQ250 W ppm 0.1 4.5 <0.1	AQ250 Sc ppm 0.1 6.3 3.4	AQ250 TI ppm 0.02 0.65 0.49	AQ250 S % 0.02 0.70 0.28	AQ250 Hg ppb 5 99 177	AQ250 Se ppm 0.1 5.2 0.8	AQ250 Te ppm 0.02 1.05 0.24	AQ250 Ga ppm 0.1 7.7 4.3	
Reference Ma STD BVGE00 STD OREAS2 STD BVGE00	iterials 21 Stand: 262 Stand: 21 Expected	Method Analyte Unit MDL ard ard	AQ250 P % 0.001 0.070 0.038 0.0727	AQ250 La ppm 0.5 25.1 17.0 25.9	AQ250 Cr ppm 0.5 169.1 47.1 171	AQ250 Mg % 0.01 1.34 1.21 1.3175	AQ250 Ba ppm 0.5 322.4 245.2 340	AQ250 Ti % 0.001 0.249 0.003 0.233	AQ250 B ppm 20 <20 <20	AQ250 AI % 0.01 2.36 1.34 2.2628	AQ250 Na % 0.001 0.200 0.071 0.1924	AQ250 K % 0.01 0.90 0.32 0.8669	AQ250 W ppm 0.1 4.5 <0.1 3.5	AQ250 Sc ppm 0.1 6.3 3.4 5.97	AQ250 TI ppm 0.02 0.65 0.49 0.62	AQ250 S % 0.02 0.70 0.28 0.6655	AQ250 Hg ppb 5 99 1777 100	AQ250 Se ppm 0.1 5.2 0.8 4.84	AQ250 Te ppm 0.02 1.05 0.24 1.02	AQ250 Ga ppm 0.1 7.7 4.3 7.37	
Reference Ma STD BVGEO0 STD OREAS2 STD BVGEO0 STD OREAS262 E	tterials 21 Stand: 262 Stand: 21 Expected Expected	Method Analyte Unit MDL ard ard	AQ250 P % 0.001 0.070 0.038 0.0727 0.04	AQ250 La ppm 0.5 25.1 17.0 25.9 15.9	AQ250 Cr ppm 0.5 169.1 47.1 171 41.7	AQ250 Mg % 0.01 1.34 1.21 1.3175 1.17	AQ250 Ba ppm 0.5 322.4 245.2 340 248	AQ250 Ti % 0.001 0.249 0.003 0.233 0.233	AQ250 B ppm 20 <20 <20	AQ250 AI % 0.01 2.36 1.34 2.2628 1.3	AQ250 Na % 0.001 0.200 0.071 0.1924 0.071	AQ250 K % 0.01 0.90 0.32 0.8669 0.312	AQ250 W ppm 0.1 4.5 <0.1 3.5 0.13	AQ250 Sc ppm 0.1 6.3 3.4 5.97 3.24	AQ250 TI ppm 0.02 0.65 0.49 0.62 0.47	AQ250 S % 0.02 0.70 0.28 0.6655 0.269	AQ250 Hg ppb 5 	AQ250 Se ppm 0.1 5.2 0.8 4.84 0.4	AQ250 Te ppm 0.02 1.05 0.24 1.02 0.23	AQ250 Ga ppm 0.1 7.7 4.3 7.37 3.9	
Reference Mai STD BVGEO0 STD OREAS2 STD BVGEO0 STD OREAS262 E BLK	Iterials 01 Stand 02 Stand 01 Expected Expected Blank	Method Analyte Unit MDL ard ard	AQ250 P % 0.001 0.070 0.038 0.0727 0.04 <0.001	AQ250 La ppm 0.5 25.1 17.0 25.9 15.9 <0.5	AQ250 Cr ppm 0.5 169.1 47.1 171 41.7 <0.5	AQ250 Mg % 0.01 1.34 1.21 1.3175 1.17 <0.01	AQ250 Ba ppm 0.5 322.4 245.2 340 248 <0.5	AQ250 Ti % 0.001 0.249 0.003 0.233 0.003 <0.001	AQ250 B ppm 20 <20 <20	AQ250 AI % 0.01 2.36 1.34 2.2628 1.3 <0.01	AQ250 Na % 0.001 0.200 0.071 0.1924 0.071 <0.001	AQ250 K % 0.01 0.32 0.3669 0.312 <0.01	AQ250 W ppm 0.1 4.5 <0.1 3.5 0.13 <0.1	AQ250 Sc ppm 0.1 6.3 3.4 5.97 3.24 <0.1	AQ250 TI ppm 0.02 0.65 0.49 0.62 0.49 0.62	AQ250 S % 0.02 0.28 0.6655 0.269 <0.02	AQ250 Hg ppb 5 99 177 100 170 <5	AQ250 Se ppm 0.1 5.2 0.8 4.84 0.4 <0.1	AQ250 Te ppm 0.02 1.05 0.24 1.02 0.23 <0.02	AQ250 Ga ppm 0.1 7.7 4.3 7.37 3.9 <0.1	
Reference Ma STD BVGE00 STD OREAS2 STD BVGE00 STD OREAS262 E BLK Prep Wash	iterials 01 Stand 262 Stand 11 Expected Xipected Blank	Method Analyte Unit MDL ard ard	AQ250 P % 0.001 0.070 0.038 0.0727 0.04 <0.001	AQ250 La ppm 0.5 25.1 17.0 25.9 15.9 <0.5	AQ250 Cr ppm 0.5 169.1 47.1 171 41.7 <0.5	AQ250 Mg % 0.01 1.34 1.21 1.3175 1.17 <0.01	AQ250 Ba ppm 0.5 322.4 245.2 340 248 <0.5	AQ250 Ti % 0.001 0.249 0.003 0.233 0.003 <0.001	AQ250 B ppm 20 <20 <20	AQ250 AI % 0.01 2.36 1.34 2.2628 1.3 <0.01	AQ250 Na % 0.001 0.200 0.071 0.1924 0.071 <0.001	AQ250 K % 0.01 0.32 0.8669 0.312 <0.01	AQ250 W ppm 0.1 4.5 <0.1 3.5 0.13 <0.1	AQ250 Sc ppm 0.1 6.3 3.4 5.97 3.24 <0.1	AQ250 TI ppm 0.02 0.65 0.49 0.62 0.47 <0.02	AQ250 S % 0.02 0.70 0.28 0.6655 0.269 <0.02	AQ250 Hg ppb 5 99 1777 100 170 <5	AQ250 Se ppm 0.1 5.2 0.8 4.84 0.4 <0.1	AQ250 Te ppm 0.02 1.05 0.24 1.02 0.23 <0.02	AQ250 Ga ppm 0.1 7.7 4.3 7.37 3.9 <0.1	

APPENDIX B: 2022 Soil Sample Assay Certificates

			Client:	Longford Exploration Services Ltd. Marine Building, Unit 1680 355 Burrard St. Vancouver British Columbia V6C 2G8 Canada
BUREAU	MINERAL LABORATORIES	www.byna.com/mining-laboratory-services	Submitted By:	Ryan Versloot
VERITAS	Canada	in the transmission in the second s	Receiving Lab:	Canada-Timmins
Bureau Veritas	s Commodities Canada Ltd.		Received:	June 08, 2022
9050 Shaudhn	essy St. Vancouver British Columbia	V6P 6E5 Canada	Analysis Start:	August 24, 2022
	253-3158		Report Date:	May 15, 2023
	200-0100		Page:	1 of 4

CERTIFICATE OF ANALYSIS

TIM22001602.1

SAMPLE PREPARATION AND ANALYTICAL PROCEDURES

Project: Shipment ID:	Nipissing Lorrain	Procedure Code	Number of Samples	Code Description	Test Wgt (g)	Report Status	Lab
P.O. Number		DY060	85	Dry at 60C		Completed	TIM
Number of Samples:	85	SS80	85	Dry at 60C sieve 100g to -80 mesh		Completed	TIM
		AQ250	85	1:1:1 Aqua Regia digestion Ultratrace ICP-MS analysis	0.5	Completed	VAN
SAMPLE DISPOSAL		SHP01	85	Per sample shipping charges for branch shipments			TIM
		SVRJT	85	Save all or part of Soil Reject			TIM

DISP-PLP Dispose of Pulp After 90 days DISP-RJT Dispose of Reject After 60 days

CLIENT JOB INFORMATION

ADDITIONAL COMMENTS

Bureau Veritas does not accept responsibility for samples left at the laboratory after 90 days without prior written instructions for sample storage or return.

Invoice To:	Longford Exploration Services Ltd.
	Marine Building, Unit 1680
	355 Burrard St.
	Vancouver British Columbia V6C 2G8
	Canada

CC:

Vedran Pobric

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only. All results are considered the confidential property of the client. Bureau Veritas assumes the liabilities for actual cost of analysis only. Results apply to samples as submitted. "* asterisk indicates that an analytical result could not be provided due to unusually high levels of interference from other elements.

	MINERAL LABORATOR	RIES			_							Clier	ıt:	Loi Marii 355 I Vano	n gford ne Buildin Burrard S couver Br	d Expl ng, Unit 1 St. itish Colu	oratio 680 Imbia V64	n Serv C 2G8 Ca	vices L anada	_td.	
VERITAS	Canada	(ILO		www	bvna.	com/mi	ning-la	borator	y-servi	ces		Projec	:t:	Nipis	sing Lori	rain					
uraau Varitaa	Commodition Conodo I	ta										Repor	t Date:	May	15, 2023						
050 Shaudhne	commodities Canada L ssv. St. Vancouver Briti	tu. sh Colum	nhia V6	P 6E5 (Canada																
HONE (604) 2	53-3158	Sil Oolali		020	Janada							Page:		2 of	4				Pa	art: 1	of 2
CERTIF	ICATE OF AI	NALY	/SIS	;												TI	M22	001	602.	1	
	Method	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ25(
	Analyte	Mo	Cu	Pb	Zn	Aa	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	v	Ca	F
	Unit	ppm	ppm	ppm	ppm	ppb	ppm	ppm	ppm	%	ppm	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	%	%
	MDL	0.01	0.01	0.01	0.1	2	0.1	0.1	1	0.01	0.1	0.1	0.2	0.1	0.5	0.01	0.02	0.02	1	0.01	0.001
2556280	Soil	2.25	75.61	4.02	37.8	147	10.9	2.4	71	0.49	1.7	20.1	4.4	1.6	51.6	1.03	0.18	0.08	18	2.82	0.046
2556281	Soil	0.35	4.86	4.97	13.0	47	3.0	0.9	25	0.44	1.3	0.3	1.6	1.1	7.5	0.12	0.03	0.12	18	0.08	0.012
2556282	Soil	0.47	7.02	19.94	18.2	31	6.8	2.2	47	0.90	4.8	0.3	1.0	1.8	9.4	0.07	0.09	0.39	22	0.08	0.015
2556283	Soil	0.28	4.14	8.77	11.9	25	3.3	0.9	24	0.56	2.1	0.2	1.5	1.0	6.8	0.11	0.04	0.20	16	0.05	0.015
2556284	Soil	0.96	12.66	18.71	23.2	48	6.9	1.8	37	1.12	4.3	0.4	1.1	2.1	7.3	0.11	0.11	0.36	23	0.06	0.021
2556285	Soil	0.82	17.52	7.19	36.4	36	22.0	7.0	152	1.57	2.5	0.4	1 .4	3.4	20.4	0.16	0.04	0.15	34	0.21	0.014
2556286	Soil	2.99	30.07	9.13	29.5	266	5.7	1.7	29	1.62	4.5	0.5	1.7	3.0	5.3	0.16	0.09	0.38	35	0.05	0.043
2556287	Soil	0.68	17.19	75.42	65.0	37	24.9	8.4	74	2.53	3.4	0.7	0.5	4.7	6.7	0.21	0.08	0.16	30	0.07	0.074
2556288	Soil	0.08	2.57	6.43	5.3	14	0.9	0.4	20	0.10	0.5	0.2	0.6	2.5	3.0	0.05	0.02	0.11	4	0.02	0.005
2556289	Soil	0.37	6.86	10.25	14.4	55	2.7	1.1	26	0.95	2.5	0.6	0.9	2.2	6.3	0.13	0.04	0.23	29	0.04	0.026
2556290	Soil	0.24	12.29	11.56	10.7	59	2.0	0.7	24	0.17	1.6	0.4	2.0	0.2	4.9	0.11	0.04	0.34	7	0.04	0.024
2556291	Soil	0.49	29.97	11.64	35.8	54	9.4	3.6	59	1.89	2.7	0.4	0.5	2.8	7.3	0.13	0.05	0.20	42	0.07	0.042
2556292	Soil	0.51	21.48	8.93	23.4	56	7.1	2.5	33	1.84	4.1	0.3	1.8	2.8	7.4	0.10	0.07	0.20	49	0.07	0.031
2556293	Soil	0.59	14.60	8.46	32.8	31	15.5	5.2	48	1.81	3.1	0.4	0.7	2.7	8.6	0.13	0.06	0.18	42	0.08	0.024
2556305	Soil	0.36	25.76	9.69	14.7	5	22.1	9.0	46	1.24	3.4	0.4	0.9	2.9	6.5	0.09	0.06	0.15	24	0.07	0.023
2556306	Soil	0.36	22.95	10.38	25.2	16	17.0	4.7	52	1.26	3.4	0.3	0.5	2.0	9.4	0.17	0.06	0.16	30	0.11	0.030
2556307	Soil	0.27	26.90	7.25	41.1	100	26.6	8.4	153	1.66	2.8	0.4	0.6	2.4	12.2	0.11	0.06	0.15	31	0.14	0.048
2556308	Soil	0.29	23.55	7.50	32.4	66	17.7	7.6	182	1.30	3.0	0.3	1.0	2.2	11.0	0.17	0.06	0.16	24	0.12	0.058
2556309	Soll	0.12	6.93	6.03	7.9	25	5.1	1.5	38	0.64	2.0	0.2	0.2	2.0	6.8	0.05	0.04	0.11	16	80.0	0.028
2000310	Soll	0.26	20.35	10.20	34./	95	22.2	7.5	208	1.4/	2.4	0.4	0.8	2.5	13.0	0.15	0.04	0.21		0.18	0.033
2000011	501	0.33	10.57	10.04	31.8	6/	31.0	10.1	140	2.34	2.3	0.4	0.9	2.2	20.0	0.26	0.05	0.21	4/	0.39	0.030
200012	501	0.20	10.5/	4.70	21.9	20	20.7	0.0	207	1.24	2.0	0.3	1.0	2.2	14.9	0.13	0.00	0.19	20	0.19	0.019
200010	Soil	0.10	11.03	4.79	20.4	22	10.9	0.3	207	1.20	1.0	0.4	1.3	2.8	10.1	0.07	~0.02	0.08	2/	0.24	0.028
2556315	Soil	0.22	12.02	11.37	30.0	55	21.8	0.1	250	1.50	1.5	0.3	2.9	1.9	23.8	0.18	0.05	0.19	25	0.43	0.022
2556316	Soil	0.20	23.11	14.54	61.9	120	20.1 52.7	19.4	422	2.03	1.0	0.4	0.0	2.0	25.9	0.10	0.05	0.17	55	0.47	0.015
2556317	Soil	0.22	7 29	11 27	21.0	5/	JZ.7	13.4	442	1 1 2	2.2	0.9	0.0	1.0	55.Z	0.23	0.04	0.23	27	0.09	0.021
2556318	Soil	1 10	304 71	26.19	21.9	348	59.7	118.8	2078	1.10	5.0	7.2	1.6	1.2	20.4	0.84	0.00	0.20		0.03	0.153
2556319	Soil	0.69	63.61	9.14	35.2	56	22.5	34.4	2070	1.3	2.3	1.2	0.1	1.0	16.6	0.04	0.19	0.41	20	0.70	0.133
2556320	Soil	1 22	85.77	11 52	65.7	72	26.1	48.6	442	1.17	2.3	2.0	3.0	1.2	14.2	0.10	0.04	0.18	20	0.27	0.041
2000020	501	1 1.32	03.17	11.33	00.7	, 2	20.1	40.0	440	1.00	2.9	2.0	3.8	د.2	14.0	0.20	0.00	0.20	20	0.10	0.023

BUREAU VERLAS	MINERAL LABORATOR	IES		www	.bvna.c	:om/mii	ning-la	borator	v-servi	ces		Clien	ı t:	Lor Marin 355 E Vanc	n gford le Buildin Burrard S ouver Bri sing Lorr	I Explo 1g, Unit 10 t. itish Colu	oration ⁶⁸⁰ mbia V6C	n Ser v 2G8 Ca	vices Ltd. anada	
	Carlada						•					Repor	t Date:	Mav	15. 2023	ann				
Bureau Veritas	s Commodities Canada Lt	d.										-		,	,					
9050 Shaughn	nessy St Vancouver Britis	h Colum	nbia V6F	P 6E5 (Canada															
PHONE (604)	253-3158											Page:		2 of 4	Ļ				Part:	2 of 2
CERTIF	FICATE OF AN	JALY	′SIS													TI	M22(001	602.1	
	Method	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250		
	Analyte	La	Cr	Mg	Ba	Ti	В	AI	Na	ĸ	w	Sc	TI	S	Hg	Se	Те	Ga		
	Unit	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	%	ppb	ppm	ppm	ppm		
	MDL	0.5	0.5	0.01	0.5	0.001	20	0.01	0.001	0.01	0.1	0.1	0.02	0.02	5	0.1	0.02	0.1		
2556280	Soil	15.3	15.5	0.18	84.6	0.014	<20	0.64	0.011	0.02	0.2	2.3	0.03	0.35	227	2.6	<0.02	1.3		
2556281	Soil	7.5	7.9	0.04	24.2	0.014	<20	0.41	0.004	0.03	<0.1	0.7	0.07	<0.02	21	<0.1	<0.02	3.4		
2556282	Soil	9.1	14.2	0.10	27.1	0.041	<20	0.60	0.005	0.04	<0.1	1.1	0.07	< 0.02	29	0.5	0.05	3.9		
2556283	Soil	7.7	9.7	0.05	18.4	0.028	<20	0.42	0.003	0.03	<0.1	0.6	0.06	<0.02	19	0.1	< 0.02	3.3		
2556284	Soil	8.3	19.6	0.08	29.5	0.032	<20	0.99	0.003	0.03	<0.1	1.0	0.07	0.02	58	0.3	0.06	4.1		
2556285	Soll	10.8	46.5	0.47	60.4	0.088	<20	1.33	0.013	0.05	<0.1	3.0	0.08	<0.02	21	<0.1	0.02	4.7		
2000280	Soll	10.0	20.4	0.07	20.1	0.033	<20	1.90	0.002	0.03	<0.1	1.6	0.06	0.03	107	0.8	0.00	4.0		
2556288	Soil	10.2	25	<0.25	49.0	0.031	<20	0.14	0.004	0.04	<0.1	4.7	<0.07	<0.03	-5	<0.1	<0.03	1.7		
2556289	Soil	10.0	9.6	0.04	15.0	0.025	<20	0.14	0.003	0.01	<0.1	0.2	0.02	<0.02	43	-0.1	0.02	6.9		
2556290	Soil	8.5	47	0.03	13.6	0.018	<20	0.00	0.004	0.03	<0.1	0.3	0.07	0.03	43	<0.1	<0.00	3.6		
2556291	Soil	9.2	24.9	0.14	34.5	0.034	<20	1.47	0.004	0.04	<0.1	1.6	0.07	<0.02	51	0.4	0.03	5.7		
2556292	Soil	8.2	24.2	0.09	24.6	0.056	<20	1.35	0.005	0.02	<0.1	1.3	0.06	0.02	41	0.4	0.04	7.0		
2556293	Soil	7.6	26.9	0.16	39.8	0.050	<20	1.79	0.004	0.04	<0.1	1.9	0.08	0.02	70	0.3	0.03	5.5		
2556305	Soil	7.3	31.3	0.17	27.5	0.043	<20	1.96	0.004	0.02	<0.1	2.6	0.05	0.02	56	0.3	<0.02	3.3		
2556306	Soil	8.1	23.9	0.19	27.4	0.048	<20	1.22	0.005	0.03	<0.1	1.6	0.05	0.02	41	0.3	0.03	4.1		
2556307	Soil	8.0	41.3	0.34	50.5	0.062	<20	1.51	0.008	0.05	<0.1	2.2	0.05	<0.02	51	0.2	0.02	5.1		
2556308	Soil	7.0	31.8	0.23	49.8	0.051	<20	1.00	0.006	0.04	<0.1	1.4	0.04	< 0.02	26	0.2	0.03	3.6		
2556309	Soil	7.7	14.9	0.10	8.7	0.034	<20	0.29	0.004	0.03	<0.1	0.8	0.03	<0.02	13	<0.1	<0.02	2.0		
2556310	Soil	13.6	35.1	0.30	55.1	0.054	<20	1.28	0.007	0.06	<0.1	2.3	0.07	<0.02	37	0.3	0.03	4.8		
2556311	Soil	9.2	58.0	0.57	76.9	0.109	<20	1.72	0.014	0.08	<0.1	2.9	0.08	0.02	36	0.2	0.03	6.6		
2556312	Soil	10.2	31.2	0.26	56.5	0.048	<20	1.10	0.008	0.06	<0.1	1.9	0.07	<0.02	28	0.2	<0.02	4.2		
2556313	Soil	9.3	38.5	0.43	37.6	0.081	<20	0.94	0.013	0.06	<0.1	2.4	0.06	<0.02	12	<0.1	<0.02	3.7		
2556314	Soil	9.3	53.0	0.55	52.9	0.073	<20	1.10	0.013	0.07	<0.1	2.6	0.06	0.03	40	0.2	0.03	4.7		
2556315	Soil	13.5	46.7	0.57	54.2	0.092	<20	1.19	0.016	0.07	<0.1	2.9	0.07	< 0.02	28	0.2	0.03	4.7		
2556316	Soil	20.9	94.4	1.05	120.4	0.150	<20	2.63	0.024	0.17	<0.1	6.5	0.14	0.02	41	0.3	0.03	8.8		
2556317	Soll	9.0	76.2	0.07	22.2	0.033	<20	0.76	0.003	0.04	<0.1	0.8	0.07	<0.02	38	0.4	0.03	5.8		
2556310	Soil	10.7	35.2	0.50	100.7	0.034	<20	3.49	0.014	0.10	<0.1	3.1	0.23	0.12	189	∠.3 ∩ 2	0.03	0.0 3.6		
2556320	Soil	10.7	42.5	0.33	64.6	0.054	<20	1.19	0.008	0.05	<0.1	2.1	0.13	0.02	50	0.3	<0.03	3.0		
200020	3011	10.7	42.J	0.35	04.0	0.003	~20	1.55	0.010	0.05	∽ u. I	۲.4	0.10	0.03	05	U.Z	~0.02	4.0		

		DATOD	150										Clier	ıt:	Loi Marii 355 I Vand	n gford ne Buildir Burrard S couver Br	d Expl ng, Unit 1 St. itish Colu	oratio 680 Imbia V64	n Serv 0 2G8 Ca	vices L anada	_td.	
VERITAS (MINERAL LABO Canada	RATOR	IES		www	.bvna.c	:om/mi	ning-la	borator	y-servi	ces		Projec	t:	Nipis	sing Lorr	rain					
ureau Veritas (Commodities Ca	nada Lte	d.										Repor	t Date:	May	15, 2023						
050 Shaughne	ssy St Vancouv	er Britis	h Colum	bia V6I	P 6E5 (Canada																
10NE (004) 2:	00-0100												Page:		3 of 4	4				Pa	irt: 1	of 2
CERTIFI	ICATE OI	FAN	J ALY	′SIS													TI	M22	001	602.	1	
		Method	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ25
		Analyte	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	v	Ca	
		Unit	ppm	ppm	ppm	ppm	ppb	ppm	ppm	ppm	%	ppm	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	%	•
		MDL	0.01	0.01	0.01	0.1	2	0.1	0.1	1	0.01	0.1	0.1	0.2	0.1	0.5	0.01	0.02	0.02	1	0.01	0.0
2556321	Soil		1.04	82.00	9.37	33.5	50	41.5	25.8	92	2.55	4.9	4.6	0.9	3.1	10.7	0.15	0.05	0.19	44	0.14	0.0
:556322	Soil		0.40	7.49	8.12	15.3	34	7.5	2.4	37	1.45	2.8	0.3	<0.2	1.9	7.1	0.14	0.06	0.28	37	80.0	0.0
2556323	Soil		0.54	52.04	6.46	26.6	24	21.1	14.9	51	1.63	1.8	0.5	<0.2	2.6	7.0	0.06	0.03	0.14		0.08	0.0
2000324	Soll		0.60	144.22	8.20	51.7	66	41.2	37.4	602	2.30	1.9	6.2	1.5	3.6	32.6	0.16	0.02	0.18	44	0.59	0.0
556325	Soll		1.08	8.07	8.87	18.9	65	19.3	6.4	/6	2.17	3.3	0.5	0.5	2.2	9.5	0.08	0.06	0.20	42	0.12	0.0
2000320	Soll		0.75	10.00	10.90	10.9	93	1.0	1.9	179	0.41	4./	0.2	0.5	0.0	9.4	0.09	0.06	0.24	12	0.12	0.0
2330327	Soil		0.75	0.64	12.31	22.9	76	33.0	0.9	1/0	2.00	2.7	0.4	1.4	2.0	10.4	0.23	0.07	0.25		0.10	0.0
2556329	Soil		4 14	180.60	20.28	149.6	208	72.6	73.1	2543	4 27	2.7	5.1	1.5	3.2	36.3	0.66	0.05	0.57	20 75	0.72	0.0
2556330	Soil		7.26	127.30	20.20	95.4	126	60.0	54.1	2415	2.91	28.3	7.4	1.1	3.8	31.7	0.54	0.12	0.52	56	0.74	0.0
2556331	Soil		1 14	42.63	17.05	84.5	113	48.3	15.6	320	3 14	6.9	11	15.4	2.6	29.5	0.39	0.12	0.41	63	0.76	0.0
2556332	Soil		0.97	12.31	11.82	49.9	95	29.1	8.7	222	2.93	1.7	0.5	0.6	2.0	26.6	0.12	0.06	0.24	53	0.41	0.0
2556333	Soil		0.44	16.59	10.11	76.1	153	56.1	18.3	494	3.03	1.1	0.6	0.8	4.4	28.6	0.11	0.03	0.18	52	0.41	0.0
2556334	Soil		0.29	20.05	8.79	63.1	175	54.0	17.0	347	3.05	1.1	0.6	0.6	4.9	27.2	0.08	0.03	0.18	55	0.39	0.0
2556335	Soil		0.21	20.78	9.10	59.1	65	52.9	16.0	353	2.92	1.6	0.5	1.1	5.3	29.6	0.15	0.03	0.18	56	0.37	0.0
2556336	Soil		0.44	19.68	9.35	53.4	70	42.9	11.8	280	2.53	1.4	0.5	0.6	3.0	20.0	0.10	0.05	0.21	44	0.28	0.0
2556337	Soil		0.42	7.32	5.90	22.0	49	23.6	6.2	129	1.65	1.1	0.3	0.5	2.3	20.1	0.05	0.03	0.13	36	0.21	0.0
2556338	Soil		0.47	47.50	6.52	40.3	31	30.9	10.9	219	2.06	3.4	3.7	7.0	3.6	20.5	0.08	<0.02	0.15	37	0.41	0.0
2556339	Soil		0.19	109.36	8.46	60.2	139	39.0	11.5	248	2.06	1.5	5.9	1.9	4.6	40.0	0.25	0.04	0.18	35	1.45	0.0
2556340	Soil		0.14	105.27	9.05	68.4	102	40.9	12.2	220	2.25	1.0	4.5	2.0	5.4	33.6	0.21	0.03	0.18	44	0.89	0.0
2556341	Soil		0.11	141.70	11.09	81.9	97	51.2	16.5	273	2.74	2.0	8.6	2.8	6.2	37.5	0.20	0.04	0.22	47	0.89	0.0
2556342	Soil		0.18	122.18	13.62	88.1	120	58.2	16.1	266	3.19	2.5	14.3	3.2	6.5	52.5	0.72	0.07	0.27	58	1.19	0.0
2557435	Soil		0.54	16.21	19.99	67.4	165	32.5	9.2	373	2.38	3.2	0.4	1.8	2.3	22.9	0.27	0.11	0.32	48	0.32	0.0
2557436	Soil		0.25	7.21	13.62	28.2	64	14.6	4.5	182	1.21	2.6	0.4	1.0	1.8	14.7	0.11	0.06	0.26	27	0.17	0.0
2557437	Soil		0.40	15.86	16.66	65.0	127	28.6	9.0	301	2.38	3.3	0.5	0.6	2.6	15.3	0.20	0.09	0.34	53	0.20	0.0
2557438	Soil		0.45	14.54	14.92	49.7	141	28.1	7.6	186	2.45	2.6	0.5	0.7	2.5	19.7	0.11	0.07	0.28	56	0.24	0.0
2557439	Soil		1.21	10.89	17.40	26.8	115	17.7	5.0	99	2.96	4.0	0.4	1.0	3.2	14.7	0.20	0.13	0.40	68	0.16	0.0
2557440	Soil		0.63	39.89	19.19	80.8	202	34.1	10.0	758	1.85	4.4	10.1	1.4	0.7	33.0	0.64	0.19	0.33	32	1.28	0.0
2557451	Soil		0.57	312.85	16.48	83.8	188	43.4	25.5	778	1.64	6.8	6.7	3.5	0.9	26.1	0.50	0.11	0.31	30	0.88	0.1
2557452	Soil		0.46	272.60	10.64	60.5	151	40.7	17.9	458	1.70	5.1	6.5	3.4	0.9	23.7	0.28	0.07	0.26	30	0.72	0.0

												Clien	ıt:	Lor Marin 355 E Vanc	n gford le Buildin Burrard S ouver Bri	I Expl e ng, Unit 16 it. itish Colu	o ratio 680 mbia V60	n Serv 2G8 Cr	vices Ltd. anada	
VERITAS	MINERAL LABORATOR	IES		www	.bvna.c	om/mi	ning-la	borator	y-servi	ces		Projec	:t:	Nipis	sing Lorr	ain				
Bureau Veritas	s Commodities Canada Lt	h										Repor	t Date:	May	15, 2023					
9050 Shaughn	essy St. Vancouver Britis	h Colum	hia V6	2 6E5 ('enede															
PHONE (604)	253-3158	in Colum			anaua							Dogo		2					Dort	2 .4 2
												r age.		5014					rait.	2012
CERTIF	FICATE OF AN	JALY	/SIS													Th	M22	001	602.1	
	Method	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250		
	Analyte	La	Cr	Mg	Ва	Ti	В	AI	Na	ĸ	w	Sc	ті	S	Hg	Se	Те	Ga		
	Unit	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	%	ppb	ppm	ppm	ppm		
	MDL	0.5	0.5	0.01	0.5	0.001	20	0.01	0.001	0.01	0.1	0.1	0.02	0.02	5	0.1	0.02	0.1		
2556321	Soil	14.3	51.8	0.27	84.9	0.085	<20	3.93	0.007	0.06	<0.1	4.3	0.11	0.05	133	1.1	0.03	7.6		
2556322	Soil	6.8	24.8	0.10	14.9	0.065	<20	0.76	0.003	0.03	<0.1	1.0	0.05	<0.02	33	0.2	0.04	5.3		
2556323	Soil	7.1	32.6	0.18	46.8	0.049	<20	2.09	0.004	0.04	<0.1	1.8	0.06	0.02	54	0.3	<0.02	4.5		
2556324	Soil	37.9	77.4	0.80	124.4	0.095	<20	2.11	0.020	0.10	<0.1	6.5	0.15	0.03	88	0.4	< 0.02	6.5		
2556325	Soil	8.0	34.6	0.23	39.0	0.082	<20	1.38	0.005	0.04	<0.1	1.8	0.06	0.02	69	0.5	0.04	6.8		
2556326	Soll	7.9	13.5	0.11	27.5	0.026	<20	0.54	0.004	0.03	<0.1	1.0	0.08	0.02	46	<0.1	<0.02	3.7		
2556327	Soll	10.3	53.5	0.47	/6.9	0.074	<20	2.09	0.009	0.06	<0.1	2.6	0.08	<0.02	50	0.4	0.04	1.4		
2556520	Soil	9.4	102.0	0.19	40.0	0.000	<20	2.05	0.004	0.04	<0.1	1.2	0.07	<0.02	33	0.2	0.04	10.2		
2556330	Soil	27.0	70.1	0.01	240.3	0.086	<20	2.00	0.013	0.10	<0.1	5.0	0.27	<0.02	107	0.0	0.00	7.5		
2556331	Soil	14.0	78.4	0.75	103.9	0.134	<20	1 71	0.012	0.19	<0.1	3.7	0.25	<0.02	59	0.3	0.05	9.5		
2556332	Soil	10.4	63.6	0.62	53.4	0.147	<20	1.65	0.007	0.10	<0.1	2.8	0.08	<0.02	39	0.7	0.02	10.4		
2556333	Soil	14.2	91.6	1.00	107.2	0.172	<20	3.09	0.021	0.14	<0.1	5.6	0.00	<0.02	37	0.2	<0.02	10.2		
2556334	Soil	13.7	91.2	1.07	95.9	0.160	<20	3.14	0.022	0.14	<0.1	4.9	0.13	< 0.02	44	0.3	< 0.02	9.3		
2556335	Soil	13.9	93.6	1.06	93.4	0.162	<20	2.98	0.022	0.11	<0.1	4.9	0.12	< 0.02	36	0.2	<0.02	9.0		
2556336	Soil	11.5	69.1	0.74	75.6	0.107	<20	2.16	0.011	0.08	<0.1	3.4	0.10	< 0.02	43	0.4	<0.02	8.1		
2556337	Soil	10.2	47.5	0.45	38.4	0.086	<20	1.20	0.010	0.05	<0.1	2.4	0.07	< 0.02	21	<0.1	<0.02	6.3		
2556338	Soil	31.5	56.0	0.61	84.5	0.077	<20	1.57	0.011	0.07	<0.1	4.9	0.10	< 0.02	44	0.3	< 0.02	5.3		
2556339	Soil	50.7	66.7	0.87	145.8	0.092	<20	2.56	0.020	0.14	0.3	6.6	0.17	0.10	109	0.7	<0.02	6.9		
2556340	Soil	46.8	80.3	0.87	147.6	0.104	<20	2.56	0.016	0.14	<0.1	7.5	0.20	<0.02	149	0.5	<0.02	7.8		
2556341	Soil	50.6	96.7	0.99	171.5	0.111	<20	3.29	0.018	0.16	<0.1	8.0	0.25	<0.02	189	0.4	<0.02	10.1		
2556342	Soil	87.7	112.5	1.08	245.0	0.102	<20	4.65	0.019	0.20	<0.1	8.9	0.33	<0.02	288	1.0	<0.02	13.2		
2557435	Soil	10.4	57.4	0.55	83.4	0.108	<20	1.69	0.010	0.09	<0.1	2.6	0.09	<0.02	57	0.3	0.03	8.8		
2557436	Soil	10.9	31.0	0.27	45.4	0.073	<20	0.77	0.006	0.06	<0.1	1.7	0.06	<0.02	32	<0.1	<0.02	6.1		
2557437	Soil	8.9	58.9	0.53	73.0	0.102	<20	1.39	0.006	0.08	<0.1	3.0	0.09	<0.02	46	0.2	0.03	8.0		
2557438	Soil	10.6	61.9	0.56	59.4	0.129	<20	1.56	0.011	0.08	<0.1	2.9	0.09	<0.02	48	0.2	0.03	10.4		
2557439	Soil	9.1	50.8	0.32	33.4	0.135	<20	1.26	0.006	0.07	<0.1	1.9	0.09	<0.02	56	0.3	0.05	11.4		
2557440	Soil	41.5	52.9	0.54	117.8	0.039	<20	1.75	0.012	0.09	<0.1	2.7	0.12	0.09	114	1.2	0.08	4.4		
2557451	Soil	66.0	56.8	0.44	109.2	0.026	<20	2.24	0.009	0.09	<0.1	4.0	0.18	0.03	127	1.2	0.05	3.8		
2557452	Soil	63.7	59.8	0.50	106.4	0.031	<20	1.89	0.008	0.09	<0.1	4.0	0.17	<0.02	91	0.9	<0.02	4.2		

		150										Clier	nt:	Loi Marii 355 I Vano	n gford ne Buildir Burrard S couver Br	d Expl ng, Unit 1 St. ritish Colu	oratio 680 Imbia V60	n Serv 2 2 G8 Ca	r ices l nada	_td.	
BUREAU MI VERITAS Ca	NERAL LABORATOR	IES		www	.bvna.c	com/mi	ning-la	borator	y-serv	ices		Projec	ct:	Nipis	sing Lorr	rain					
	and de la companya de	-										Repo	rt Date:	May	15, 2023	5					
sureau Ventas Co	ommodities Canada Lt	d.																			
050 Shaughness	y St Vancouver Britis	h Colum	nbia V6	P 6E5 (Canada																
'HONE (604) 253	-3158											Page		4 of	4				Pa	art: 1	of 2
CERTIFIC		ΙΑΙ Υ	sis	;												TI	M22	0016	502	1	
	Method	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250
	Analyte	INO	Cu	PD	Zn	Ag	NI	00	Mn	Fe a/	As		Au	in	Sr	Cd	SD	Bi	V	Ca	t a
	MDI	0.01	0.01	0.01	0.1	2	0 1	0.1	ppm 1	70	0.1	ppm 0.1	0.5	ppm 0.1	0.5	0.01	0.02	0.02	ppin 1		0.00
2557453	Soil	1.03	49.32	31.27	60.6	192	30.8	12.8	509	2.71	6.3	1.2	1.7	1.7	23.3	0.67	0.16	0.40	48	0.69	0.06
2557454	Soil	0.35	32.33	10.37	55.1	59	40.8	13.9	271	2.28	2.4	0.9	0.7	2.9	21.0	0.13	0.05	0.23	43	0.36	0.05
2557455	Soil	0.38	9.25	12.40	48.5	77	11.8	4.1	353	1.44	1.8	0.4	0.3	1.2	11.4	0.21	0.08	0.23	29	0.18	0.03
2557456	Soil	0.46	10.11	10.82	43.3	77	18.9	6.9	434	1.84	2.5	0.5	0.3	1.5	11.1	0.21	0.07	0.25	32	0.18	0.03
2557457	Soil	0.30	11.00	10.67	31.4	71	24.0	7.4	293	1.38	2.1	0.7	1.5	1.8	11.7	0.12	0.06	0.20	27	0.25	0.04
2557458	Soil	0.20	5.40	9.46	31.9	56	6.5	1.8	88	0.67	1.4	0.3	0.6	1.6	8.9	0.19	0.06	0.20	16	0.12	0.01
2557459	Soil	0.51	10.13	13.23	36.7	86	14.0	3.9	98	1.95	3.2	0.4	<0.2	1.5	10.8	0.24	0.08	0.35	34	0.24	0.04
2557460	Soil	0.34	5.65	9.71	20.6	65	11.1	3.5	61	1.13	1.3	0.6	0.4	1.7	13.1	0.10	0.04	0.22	25	0.18	0.02
2557461	Soil	0.82	9.26	11.60	36.9	103	13.5	3.8	112	3.18	3.7	0.6	0.6	2.2	9.3	0.12	0.12	0.29	55	0.11	0.06
2557462	Soil	0.20	3.89	9.57	26.2	27	4.4	1.5	54	0.52	1.3	0.3	3.2	0.6	6.8	0.1 1	0.03	0.23	11	0.08	0.04
2557463	Soil	0.31	3.97	8.85	35.4	68	5.0	1.6	156	1.07	1.4	0.5	4.7	2.1	9.3	0.15	0.04	0.23	22	0.10	0.04
2557464	Soil	0.30	12.80	10.12	50.9	55	20.4	6.5	198	1.67	3.9	0.5	0.7	2.0	9.9	0.21	0.06	0.25	31	0.15	0.076
2557465	Soil	0.57	114.88	19.56	68.0	243	50.6	15.0	608	2.67	4.5	6.0	1.7	4.0	27.5	0.40	0.08	0.43	43	0.63	0.049
2557466	Soil	0.32	19.33	21.77	104.5	128	30.4	9.4	564	1.95	3.7	0.5	0.7	2.3	30.4	0.19	0.10	0.36	36	0.46	0.069
2557467	Soil	0.28	8.78	9.32	59.8	86	21.4	5.6	172	1.75	1.2	0.5	0.6	2.6	20.0	0.08	0.05	0.20	31	0.23	0.034
2557468	Soil	0.34	14.06	10.70	84.3	119	38.1	10.4	278	2.86	1.9	0.6	0.7	3.1	24.0	0.10	0.06	0.23	49	0.30	0.082
2557469	Soil	0.34	9.29	23.30	58.6	138	16.2	4.6	298	1.26	2.8	0.4	2.3	2.8	17.0	0.18	0.11	0.36	30	0.20	0.033
2557483	Soil	0.48	5.90	17.53	20.0	125	7.4	1.8	126	0.61	2.6	0.3	0.2	1.7	9.7	0.14	0.13	0.35	15	0.11	0.022
2557484	Soil	0.61	8.08	9.10	28.1	84	17.9	5.1	57	1.63	4.0	0.4	2.5	2.6	8.9	0.18	0.09	0.21	31	0.12	0.021
2557485	Soil	0.32	25.69	8.44	22.3	57	25.5	10.1	377	1.37	2.3	1.0	1.1	2.7	14.7	0.1 1	0.04	0.20	22	0.39	0.039
2557486	Soil	0.92	12.40	15.47	20.0	115	17.0	5.4	48	1.85	3.9	0.5	0.8	2.5	6.8	0.15	0.11	0.32	35	0.11	0.025
2557487	Soil	0.85	18.58	19.75	33.8	135	26.7	6.9	114	2.59	4.2	0.5	2.7	3.1	12.1	0.16	0.16	0.33	47	0.13	0.039
2557488	Soil	0.55	16.28	17.74	22.5	96	8.1	2.3	62	1.07	2.5	0.4	0.2	2.4	10.6	0.14	0.11	0.35	34	0.10	0.019
2557489	Soil	0.56	42.67	14.22	87.0	124	37.6	11.1	279	2.59	3.3	0.6	<0.2	2.2	28.1	0.50	0.07	0.27	49	0.74	0.064
2557490	Soil	0.47	225.25	14.76	78.9	102	77.9	20.8	1177	3.47	6.4	3.1	1.6	5.9	39.4	0.39	0.04	0.25	55	0.87	0.070

BUREAU VERITAS	MINERAL LABORATOR Canada	IES		www	.bvna.c	:om/mii	ning-la	borato	ry-serv	ices		Clier	n t: t:	Lor Marin 355 F Vanc Nipis	ngford ne Buildir Burrard S couver Bri sing Lorr	I Expl ng, Unit 1 it. itish Colu ain	o ratio 680 mbia V60	n Serv 0 268 Ca	vices Ltd. anada	
Bureau Veritas	Commodities Canada Lt	d.										Repor	t Date:	May	15, 2023					
9050 Shaughne	essv St Vancouver Britis	h Colum	bia V6I	P 6E5 (Canada															
PHONE (604) 2	253-3158											Page:		4 of 4	4				Part:	2 of 2
			010									÷				TU	100	004	000 1	
CERTIF	ICATE OF AN	ALY	515	•													VIZZ	001	602.1	
	Method	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250		
	Analyte	La	Cr	Mg	Ва	Ti	в	AI	Na	ĸ	w	Sc	ті	s	Hg	Se	Те	Ga		
	Unit	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	%	ppb	ppm	ppm	ppm		
	MDL	0.5	0.5	0.01	0.5	0.001	20	0.01	0.001	0.01	0.1	0.1	0.02	0.02	5	0.1	0.02	0.1		
2557453	Soil	18.9	50.5	0.37	98.6	0.073	<20	1.81	0.007	0.08	<0.1	2.6	0.13	< 0.02	72	0.8	0.05	6.7		
2557454	Soil	20.0	73.0	0.77	55.2	0.097	<20	1.83	0.012	0.07	<0.1	4.2	0.11	<0.02	46	<0.1	<0.02	5.9		
2557455	Soil	1.1	26.9	0.19	51.0	0.066	<20	0.78	0.004	0.05	<0.1	1.2	0.06	<0.02	44	<0.1	0.02	6.2		
2557455	Soli	8.1	41.3	0.29	58.6	0.069	<20	1.22	0.006	0.06	<0.1	1./	0.06	<0.02	4/	0.3	<0.02	5.3		
255/45/	Soil	11.0	41.0	0.32	40.9	0.057	<20	0.21	0.006	0.05	<0.1	1.0	0.07	<0.02	32	0.1	<0.02	3.9		
2557450	Soil	9.0	34.1	0.00	42.1	0.052	<20	0.31	0.002	0.05	<0.1	1.3	0.05	~0.02	2/	0.1	0.02	2.0		
2557460	Soil	12.4	23.4	0.20	36.7	0.000	<20	0.73	0.004	0.00	<0.1	1.3	0.05	<0.02	29	0.3	<0.04	6.3		
2557461	Soil	89	43.8	0.20	33.6	0.079	<20	1.65	0.000	0.05	<0.1	2.0	0.05	0.02	83	0.2	0.02	0.0		
2557462	Soil	7.9	11.8	0.08	27.0	0.022	<20	0.44	0.003	0.04	<0.1	0.7	0.05	<0.04	19	0.0	<0.00	3.2		
2557463	Soil	9.5	17.8	0.08	29.2	0.051	<20	0.77	0.003	0.04	<0.1	12	0.04	<0.02	33	0.3	0.02	5.8		
2557464	Soil	9.0	46.1	0.35	38.7	0.053	<20	1.07	0.005	0.05	<0.1	1.9	0.06	<0.02	24	0.3	0.03	4.7		
2557465	Soil	88.6	78.9	0.74	111.7	0.089	<20	2.44	0.014	0.14	<0.1	7.2	0.19	0.03	78	0.7	0.02	7.4		
2557466	Soil	11.4	57.8	0.55	137.2	0.100	<20	1.34	0.009	0.11	<0.1	2.8	0.10	0.02	34	0.5	< 0.02	7.7		
2557467	Soil	12.1	45.8	0.42	55.0	0.088	<20	1.58	0.010	0.06	<0.1	2.7	0.11	<0.02	50	0.3	< 0.02	7.6		
2557468	Soil	11.3	78.4	0.74	98.4	0.128	<20	2.39	0.015	0.09	<0.1	4.0	0.09	< 0.02	42	0.6	<0.02	10.2		
2557469	Soil	10.4	30.4	0.26	54.1	0.077	<20	0.79	0.006	0.06	<0.1	1.7	0.08	< 0.02	48	0.5	0.04	5.8		
2557483	Soil	9.3	10.7	0.08	44.9	0.030	<20	0.35	0.004	0.06	<0.1	0.6	0.06	< 0.02	34	0.2	0.04	3.1		
2557484	Soil	8.3	32.2	0.18	35.5	0.067	<20	1.22	0.004	0.06	<0.1	1.4	0.07	<0.02	49	0.6	0.05	5.7		
2557485	Soil	24.3	46.1	0.39	57.5	0.042	<20	0.89	0.007	0.07	<0.1	3.2	0.10	0.02	32	0.4	<0.02	2.9		
2557486	Soil	6.2	32.0	0.14	30.6	0.067	<20	1.28	0.004	0.04	<0.1	1.4	0.07	0.03	66	0.5	0.03	5.2		
2557487	Soil	9.9	51.4	0.34	63.8	0.119	<20	1.98	0.008	0.05	<0.1	2.4	0.09	0.02	81	0.8	0.04	9.4		
2557488	Soil	10.6	19.5	0.11	36.2	0.073	<20	0.51	0.003	0.04	<0.1	0.9	0.06	<0.02	23	0.3	<0.02	5.8		
2557489	Soil	10.8	62.0	0.65	101.6	0.126	<20	1.91	0.010	0.11	<0.1	3.0	0.09	0.04	50	0.6	<0.02	8.8		
2557490	Soil	46.2	114.6	1.27	167.0	0.146	<20	2.81	0.030	0.16	<0.1	9.5	0.32	0.02	50	0.7	<0.02	7.6		

												Clien	t:	Lon Marine 355 B Vance	gford Building urrard St. ouver Briti	Explo , Unit 164 sh Colum	o ration 80 nbia V6C	1 Servi 2G8 Can	ces Lt	t d.	
BUREAU VERITAS	MINERAL LABORATOR	IES		www.	bvna.c	om/mir	ning-lat	oratory	-servic	es		Project	:	Nipiss	ing Lorrai	'n					
	Commodition Conodo I A	al										Report	Date:	May 1	5, 2023						
Bureau Ventas (Commodities Canada Lt	u.	1-1-1-01																		
9050 Shaughne	ssy St. Vancouver Britis	n Colum	idia Voi	0E5 C	anada																
PHONE (004) 2:	00-0100											Page:		1 of 1					Part	: 1 of	í 2
QUALIT	Y CONTROL	REF	POR	Т												TIN	/1220	016	02.1		
	Method	A0250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250
	Analyte	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	Ag230	U 10	Au	Th	Sr	Cd	Sb	Bi	NQ230 V	Ca	АQ230 Р
	Unit	ppm	ppm	ppm	ppm	ppb	ppm	ppm	ppm	%	ppm	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	%	%
	MDL	0.01	0.01	0.01	0.1	2	0.1	0.1	1	0.01	0.1	0.1	0.2	0.1	0.5	0.01	0.02	0.02	1	0.01	0.001
Pulp Duplicates																					
2556285	Soil	0.82	17.52	7.19	36.4	36	22.0	7.0	152	1.57	2.5	0.4	1.4	3.4	20.4	0.16	0.04	0.15	34	0.21	0.014
REP 2556285	QC	0.85	18.97	7.44	38.1	40	22.4	7.6	155	1.61	2.9	0.3	1.1	3.4	20.7	0.18	0.04	0.15	33	0.21	0.015
2556338	Soil	0.47	47.50	6.52	40.3	31	30.9	10.9	219	2.06	3.4	3.7	7.0	3.6	20.5	0.08	<0.02	0.15	37	0.41	0.045
REP 2556338	QC	0.43	48.84	6.60	41.9	31	31.6	10.8	222	2.03	3.4	3.7	0.8	3.7	21.3	0.06	0.02	0.15	36	0.42	0.048
2557489	Soil	0.56	42.67	14.22	87.0	124	37.6	11.1	279	2.59	3.3	0.6	<0.2	2.2	28.1	0.50	0.07	0.27	49	0.74	0.064
REP 2557489	QC	0.58	43.62	14.74	90.6	142	40.7	11.9	287	2.66	3.6	0.6	0.5	2.4	29.4	0.50	0.08	0.27	51	0.75	0.059
Reference Materi	als																				
STD DS11	Standard	14.86	137.98	133.19	336.9	1655	72.9	13.9	988	3.03	45.4	2.5	81.5	8.4	71.7	2.48	5.90	1 1.70	48	1.02	0.072
STD DS11	Standard	14.05	155.68	145.26	367.0	1874	86.2	15.8	946	3.25	48.3	2.7	85.3	9.1	71.9	2.72	7.69	13.46	49	1.09	0.076
STD DS11	Standard	15.82	150.53	147.15	361.5	1798	84.8	14.7	1094	3.36	49.3	2.9	57.5	9.5	73.4	2.74	6.89	13.00	47	1.13	0.074
STD DS11	Standard	14.23	142.75	138.40	327.4	1623	76.0	13.5	1022	3.09	46.2	2.9	59.1	9.3	68.4	2.58	5.48	11.79	49	1.07	0.077
STD OREAS262	Standard	0.81	113.68	55.82	153.8	475	63.3	26.7	521	3.11	37.1	1.2	51.5	9.8	37.2	0.68	1.84	0.99	21	2.80	0.039
STD OREAS262	Standard	0.67	130.18	63.60	166.5	503	70.2	30.7	533	3.56	38.0	1.4	59.1	11.4	41.1	0.74	1.97	1.21	25	3.13	0.041
STD OREAS262	Standard	0.65	124.08	62.53	162.6	503	67.9	29.8	525	3.54	38.8	1.3	62.3	11.2	38.6	0.69	2.20	1.18	25	3.19	0.041
STD OREAS262	Standard	0.63	115.72	59.54	153.5	478	65.1	28.2	545	3.29	39.2	1.2	49.4	10.4	38.0	0.75	2.01	1.08	22	3.07	0.045
STD DS11 Expec	sted	13.9	149	138	345	1710	77.7	14.2	1055	3.1	42.8	2.59	79	7.65	67.3	2.37	7.2	12.2	50	1.063	0.0701
STD OREAS262 Experi	cted	0.68	118	56	154	450	62	26.9	530	3.284	35.8	1.22	65	9.33	36	0.61	3.39	1.03	22.5	2.98	0.04
BLK	Blank	<0.01	<0.01	<0.01	<0.1	<2	<0.1	<0.1	<1	<0.01	<0.1	<0.1	<0.2	<0.1	<0.5	<0.01	<0.02	<0.02	<1	<0.01	<0.001
BLK	Blank	<0.01	<0.01	<0.01	<0.1	<2	<0.1	<0.1	<1	<0.01	<0.1	<0.1	<0.2	<0.1	<0.5	<0.01	<0.02	<0.02	<1	<0.01	<0.001
BLK	Blank	<0.01	<0.01	<0.01	<0.1	<2	<0.1	<0.1	<1	<0.01	0.1	<0.1	<0.2	<0.1	<0.5	<0.01	<0.02	<0.02	<1	<0.01	<0.001
BLK	Blank	< 0.01	<0.01	<0.01	<0.1	<2	<0.1	<0.1	<1	<0.01	<0.1	<0.1	<0.2	<0.1	<0.5	<0.01	<0.02	<0.02	<1	<0.01	< 0.001

												Client	::	Long Marine 355 Bu Vanco	gford Building urrard St. uver Briti	Explo , Unit 164 sh Colurr	ration 80 nbia V6C	2G8 Can	ces Ltd	
BUREAU VERITAS	MINERAL LABORATOR Canada	IES		www.	bvna.c	om/miı	ning-lal	oorator	y-servi	ces		Project:		Nipissi	ng Lorrai	n				
Dura Varia	O a marca di li a a O a marda 1.4											Report	Date:	May 1	5, 2023					
Bureau ventas	Commodities Canada Li	u.																		
9050 Shaughne	essy St Vancouver Britis	h Colum	bia V6F	9 6E5 C	anada															
PHONE (604) 2	53-3158											Page:		1 of 1					Part:	2 of 2
QUALIT	Y CONTROL	REP	POR	Т												TIN	/1220	016	02.1	
	Method	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250		
	Analyte	La	Cr	Mg	Ba	ті	в	AI	Na	к	w	Sc	TI	s	Hg	Se	Те	Ga		
	Unit	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	%	ppb	ppm	ppm	ppm		
	MDL	0.5	0.5	0.01	0.5	0.001	20	0.01	0.001	0.01	0.1	0.1	0.02	0.02	5	0.1	0.02	0.1		
Pulp Duplicates																				
2556285	Soil	10.8	46.5	0.47	60.4	0.088	<20	1.33	0.013	0.05	<0.1	3.0	0.08	<0.02	21	<0.1	0.02	4.7		
REP 2556285	QC	10.9	46.7	0.48	65.7	0.090	<20	1.30	0.012	0.04	<0.1	3.1	0.07	<0.02	24	0.2	0.04	4.9		
2556338	Soil	31.5	56.0	0.61	84.5	0.077	<20	1.57	0.011	0.07	<0.1	4.9	0.10	<0.02	44	0.3	<0.02	5.3		
REP 2556338	QC	32.5	57.4	0.63	86.2	0.077	<20	1.64	0.015	0.07	<0.1	4.5	0.10	<0.02	47	0.2	<0.02	5.1		
2557489	Soil	10.8	62.0	0.65	101.6	0.126	<20	1.91	0.010	0.11	<0.1	3.0	0.09	0.04	50	0.6	<0.02	8.8		
REP 2557489	QC	10.9	64.7	0.66	104.3	0.132	<20	1.94	0.010	0.12	<0.1	3.1	0.10	0.04	42	0.4	0.04	9.5		
Reference Mater	ials																			
STD DS11	Standard	19.2	52.4	0.84	41 1.6	0.097	<20	1.13	0.074	0.39	2.3	3.3	4.80	0.28	278	2.1	4.50	4.7		
STD DS11	Standard	19.5	58.6	0.88	435.5	0.094	<20	1.12	0.067	0.42	2.9	3.1	5.24	0.21	283	2.0	4.70	5.1		
STD DS11	Standard	21.3	60.9	0.91	443.8	0.101	<20	1.22	0.079	0.42	2.9	3.4	5.32	0.30	273	2.5	5.01	5.1		
STD DS11	Standard	19.9	58.1	0.84	406.0	0.097	<20	1.16	0.075	0.40	2.5	3.4	4.83	0.28	280	2.1	4.42	5.2		
STD OREAS262	Standard	17.9	44.2	1.15	251.2	0.003	<20	1.16	0.065	0.29	<0.1	3.2	0.45	0.26	144	0.2	0.20	3.8		
STD OREAS262	Standard	19.1	44.8	1.28	284.7	0.003	<20	1.37	0.066	0.33	<0.1	3.7	0.51	0.21	183	0.4	0.23	4.5		
STD OREAS262	Standard	19.5	45.9	1.25	279.1	0.004	<20	1.30	0.066	0.31	0.1	3.5	0.51	0.28	177	0.3	0.26	4.2		
STD OREAS262	Standard	16.3	42.6	1.21	272.6	0.003	<20	1.21	0.070	0.30	<0.1	3.5	0.47	0.27	166	0.4	0.23	4.0		
STD DS11 Expe	cted	18.6	61.5	0.85	417	0.0976		1.129	0.0694	0.4	2.9	3.1	4.9	0.2835	260	2.2	4.56	4.7		
STD OREAS262 Expe	cted	15.9	41.7	1.17	248	0.003		1.3	0.071	0.312	0.13	3.24	0.47	0.269	170	0.4	0.23	3.9		
BLK	Blank	<0.5	<0.5	<0.01	<0.5	<0.001	<20	<0.01	<0.001	<0.01	<0.1	<0.1	<0.02	<0.02	<5	<0.1	<0.02	<0.1		
BLK	Blank	<0.5	<0.5	<0.01	<0.5	<0.001	<20	<0.01	<0.001	<0.01	<0.1	<0.1	<0.02	<0.02	8	<0.1	<0.02	<0.1		
BLK	Blank	<0.5	<0.5	<0.01	<0.5	<0.001	<20	<0.01	<0.001	<0.01	<0.1	<0.1	<0.02	<0.02	<5	<0.1	<0.02	<0.1		
BLK	Blank	<0.5	<0.5	<0.01	<0.5	< 0.001	<20	<0.01	<0.001	<0.01	<0.1	<0.1	<0.02	<0.02	<5	<0.1	<0.02	<0.1		

ASSESSMENT REPORT (2022) Nipissing Lorrain Property | Ontario, Canada

CLIENT JOB INFORMATION

www.bvna.com/mining-laboratory-services

Bureau Veritas Commodities Canada Ltd. 9050 Shaughnessy St Vancouver British Columbia V6P 6E5 Canada PHONE (604) 253-3158

CERTIFICATE OF ANALYSIS

Client:

Received:

Report Date:

Page:

SAMPLE PREPARATION AND ANALYTICAL PROCEDURES

Longford Exploration Services Ltd. Marine Building, Unit 1680

355 Burrard St. Vancouver British Columbia V6C 2G8 Canada Ryan Versloot Submitted By: Canada-Timmins Receiving Lab: June 08, 2022 August 24, 2022 Analysis Start: May 15, 2023

1 of 4

TIM22001604.1

Report

Completed

Completed

KERRY JAY

Status

Lab

TIM

TIM

TIM

VAN

TIM

Project: Shipment ID:	Nipissing Lorrain	Procedure Code	Number of Samples	Code Description	Test Wgt (g)
PO Number		DY060	81	Dry at 60C	
Number of Samples:	81	SS80	81	Dry at 60C sieve 100g to -80 mesh	
riamber of campioo.		SHP01	81	Per sample shipping charges for branch shipments	
SAMPLE DISPOS	SAL	AQ250	81	1:1:1 Aqua Regia digestion Ultratrace ICP-MS analysis	0.5
		SVRJT	81	Save all or part of Soil Reject	

DISP-RJT Dispose of Reject After 60 days

ADDITIONAL COMMENTS

Bureau Veritas does not accept responsibility for samples left at the laboratory after 90 days without prior written instructions for sample storage or return.

Dispose of Pulp After 90 days

Invoice To:	Longford Exploration Services Ltd.
	Marine Building, Unit 1680
	355 Burrard St.
	Vancouver British Columbia V6C 2G8
	Canada

CC:

DISP-PLP

Vedran Pobric

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval, preliminary reports are unsigned and should be used for reference only. All results are considered the confidential property of the client. Bureau Veritas assumes the liabilities for actual cost of analysis only. Results apply to samples as submitted. **" asterisk indicates that an analytical result could not be provided due to unusually high levels of interference from other elements.

		TORIE	9										Clier	ıt:	Lor Marin 355 F Vanc	n gford ne Buildir Burrard S couver Br	d Expl ng, Unit 1 it. itish Colu	oratio 680 Imbia V64	n Serv C 2G8 Ca	vices L mada	_td.	
VERITAS	Canada	IORIE	3		www	.bvna.c	:om/mi	ning-la	borato	y-servi	ces		Projec	t:	Nipis	sing Lorr	ain					
ureau Veritas (Commodities Canad	la Ltd.											Repor	t Date:	May	15, 2023						
050 Shaudhne	ssv St. Vancouver E	British (Colum	bia V6I	9 6E5 (Canada																
HONE (604) 2	53-3158												Page:		2 of 4	4				Pa	art: 1	of 2
													9						004	004	4	
CERTIFI		ANA	λL Υ	212															001	604.		
	Me	thod A	Q250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ25
	An	alyte	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	v	Ca	I
		Unit	ppm	ppm	ppm	ppm	ppb	ppm	ppm	ppm	%	ppm	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	%	%
2205911	Soil	MDL	0.01	20.52	7.76	20.2	52	24.2	10.9	150	0.01	1.5	0.1	0.2	0.1	12.0	0.01	0.02	0.02	<u>1</u>	0.01	0.00
3295812	Soil		0.55	11 15	30.70	24.9	127	94.2	3.1	104	0.85	4.3	0.0	2.3	4.0	0.8	0.09	0.03	0.19	23	0.13	0.02
3295813	Soil		0.46	7.60	15.34	20.7	134	3.5	0.6	41	0.12	2.0	0.5	0.6	0.3	4.4	0.37	0.08	0.22	4	0.04	0.02
3295814	Soil		0.38	11.50	22.72	31.4	187	7.1	0.7	43	0.20	7.5	0.8	1.5	0.2	3.1	0.92	0.15	0.34	5	0.04	0.05
3295815	Soil		1.56	7.90	12.42	10.2	35	3.7	1.3	24	0.28	1.5	0.5	0.3	1.2	7.5	0.08	0.05	0.27	16	0.07	0.01
3295816	Soil		0.26	3.74	5.92	11.5	44	3.2	1.2	33	0.28	1.0	0.3	0.3	1.9	5.9	0.12	0.05	0.11	9	0.05	0.00
3295817	Soil		0.75	11.79	8.12	37.8	48	8.4	4.4	152	1.84	1.6	0.6	2.9	3.4	8.4	0.10	0.05	0.19	33	0.09	0.03
3295818	Soil		0.57	11.71	16.79	35.9	71	17.8	7.5	179	1.75	8.6	0.5	0.9	2.2	7.7	0.20	0.20	0.38	31	0.08	0.05
3295819	Soil		0.43	8.05	14.10	23.7	83	9.1	3.4	143	0.91	2.8	0.3	1.4	1.8	10.2	0.12	0.09	0.25	20	0.10	0.01
3295820	Soil		0.87	5.27	14.00	12.1	81	5.5	1.2	30	0.48	1.3	0.4	8.3	2.3	9.3	0.07	0.05	0.25	12	0.07	0.00
3295821	Soil		0.37	5.83	12.12	19.3	91	6.2	2.2	61	0.75	2.6	0.3	0.5	1.5	8.3	0.04	0.05	0.24	20	0.08	0.01
3295822	Soil		0.38	10.83	12.02	39.4	67	17.6	5.6	185	1.23	4.4	0.4	1 .0	1.7	6.4	0.16	0.09	0.25	19	0.06	0.06
3295823	Soil		0.21	4.62	6.15	12.7	47	4.1	1.3	53	0.70	1.8	0.3	1.0	1.9	6.2	0.05	0.03	0.15	17	0.05	0.01
3295824	Soil		0.24	5.56	6.42	18.2	78	7.8	3.0	336	0.77	2.8	0.2	0.3	1.9	6.2	0.07	0.05	0.16	14	0.06	0.03
3295825	Soil		0.45	17.73	12.97	88.4	122	25.9	7.7	263	1.95	7.5	0.5	0.5	3.0	13.7	0.21	0.17	0.29	33	0.13	0.03
3295826	Soil		0.37	4.93	9.96	45.8	174	7.8	4.3	336	0.99	2.2	0.3	0.4	1.9	7.6	0.09	0.05	0.20	20	0.06	0.02
3295827	Soil		0.53	36.21	13.36	35.9	126	25.9	14.9	476	1.66	9.0	0.6	1.0	2.8	8.7	0.24	0.09	0.39	28	0.09	0.04
3295828	Soil		0.52	10.94	10.25	54.2	51	15.8	5.8	90	2.19	3.1	0.5	1.4	2.7	6.9	0.15	0.07	0.22	39	0.07	0.07
3295829	Soil		0.16	2.95	7.73	8.5	20	1.3	0.5	11	0.10	0.6	0.2	0.4	0.8	4.2	0.08	0.03	0.11	4	0.02	0.00
3295830	Soil		0.35	11.63	6.49	21.5	72	9.7	4.4	178	0.98	3.4	0.3	0.7	2.0	7.5	0.09	0.08	0.21	24	0.09	0.02
3295831	Soil		0.42	34.66	9.54	62.5	118	15.7	10.0	249	1.96	5.0	0.3	3.2	2.0	9.1	0.10	0.08	0.27	41	0.11	0.11
3295832	Soil		0.38	44.08	9.94	41.5	102	15.9	7.1	1/4	1.56	3.2	0.3	2.0	1.7	10.2	0.07	0.06	0.24		0.11	0.03
3295833	Soll		0.19	4.11	10.64	10.9	08	3.1	1.4	67	0.24	1.6	0.2	0.5	1.1	/.6	0.07	0.07	0.23	9	0.10	0.01
3283834	Soli		0.38	9.58	13.72	30.7	119	11.7	3.7	605	0.95	3.4	0.3	9.2	1.4	12.6	0.25	0.07	0.38		0.14	0.04
3283033	Soil		0.15	2.35	12.16	19.1	00	2.3	1.6	115	0.27	1.1	0.2	0.7	1.0	0.0	0.04	0.03	0.10		0.07	0.02
3293030	001		0.19	13.10	11 55	10.1	205	20.2	1.0	218	2 4 2	0.1	0.3	0.0	1.Z	9.0	0.12	0.00	0.20		0.10	0.01
3200007	Soil		0.00	25.55	11.55	47.9	205	20.3	0.1	448	2.43	4.9	0.4	0.7	2.0	12.0	0.14	0.10	0.27	43	0.11	0.14
3205830	Soil		0.38	20.00	10.30	15.1	85	20.9	0.3	307	1.30	2.1	0.4	0.0	2.0	11.9	0.12	0.00	0.20		0.20	0.11
2205840	Soil		0.20	3.11	0.39	40.Z	112	17.0	4.0	262	1.30	2.0	0.4	0.5	2.2	12.2	0.14	0.00	0.24	24	0.13	0.07
JZ3304U	501		0.39	11.07	9.71	∠4.0	113	17.2	4.3	203	1.21	Z.1	U.4	U./	1.5	12.2	0.07	0.06	0.19	20	0.13	U.I

	MINERAL LABORATOR	IES			_							Clien	t:	Lor Marin 355 E Vanc	n gford le Buildin Burrard S ouver Bri	I Explo ing, Unit 16 at. itish Colu	o ratio ³⁸⁰ mbia V6C	1 Ser\ 2G8 C∉	vices Ltd. anada	
VERITAS	Canada			www	.bvna.c	:om/mi	ning-la	borator	y-servi	ces		Projec	t:	Nipis	sing Lorr	ain				
Bureau Veritas	s Commodities Canada Lt	d.										кероп	Date:	May	15, 2023					
9050 Shaughr	nessy St Vancouver Britis	h Colum	nbia V6F	9 6E5 (Canada															
PHONE (604)	253-3158											Page:		2 of 4	Ļ				Part:	2 of 2
CERTIF	FICATE OF AN	JALY	′SIS													TI	M220	001	604.1	
	Method	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250		
	Analyte	La	Cr	Mg	Ва	Ti	В	AI	Na	ĸ	W	Sc	TI	S	Hg	Se	Te	Ga		
	Unit	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	%	ppb	ppm	ppm	ppm		
	MDL	0.5	0.5	0.01	0.5	0.001	20	0.01	0.001	0.01	0.1	0.1	0.02	0.02	5	0.1	0.02	0.1		
3295811	Soil	13.5	54.9	0.49	76.3	0.092	<20	2.17	0.008	0.06	<0.1	3.7	80.0	0.03	68	0.3	<0.02	6.0		
3295812	Soil	10.9	16.9	0.12	28.6	0.038	<20	0.50	0.006	0.05	<0.1	0.9	0.08	<0.02	4/	0.4	<0.02	5.2		
3295013	Soil	26.1	3.7	0.02	20.7	0.004	<20	0.20	0.002	0.05	<0.1	0.2	0.00	<0.02		0.2	<0.02	2.0		
3295815	Soil	9.0	13.1	0.02	20.5	0.003	<20	0.51	0.003	0.00	<0.1	0.2	0.07	0.03	30	<0.1	<0.02	7.2		
3295816	Soil	10.8	9.6	0.03	26.5	0.013	<20	0.25	0.004	0.05	<0.1	0.4	0.04	<0.02	11	<0.1	<0.02	2.4		
3295817	Soil	10.8	26.5	0.14	34.0	0.056	<20	1.57	0.005	0.05	<0.1	1.7	0.07	0.02	59	0.4	0.03	9.0		
3295818	Soil	8.3	31.0	0.19	37.3	0.049	<20	2.13	0.006	0.05	<0.1	1.7	0.09	0.03	92	0.9	0.08	7.3		
3295819	Soil	10.0	16.5	0.12	37.3	0.031	<20	0.65	0.005	0.05	<0.1	1.0	0.07	<0.02	36	0.2	0.04	3.8		
3295820	Soil	13.9	9.3	0.07	28.4	0.027	<20	0.51	0.004	0.04	<0.1	0.8	0.07	<0.02	27	<0.1	<0.02	3.7		
3295821	Soil	11.4	13.7	0.11	31.7	0.042	<20	0.57	0.005	0.04	<0.1	0.9	0.07	<0.02	14	0.2	<0.02	4.7		
3295822	Soil	8.8	27.9	0.19	38.5	0.025	<20	1.68	0.005	0.06	<0.1	1.2	0.07	<0.02	61	0.9	0.05	3.4		
3295823	Soil	11.3	11.6	0.06	28.4	0.024	<20	0.56	0.003	0.04	<0.1	0.8	0.08	<0.02	20	0.2	0.02	3.6		
3295824	Soil	11.9	16.4	0.11	35.9	0.018	<20	0.68	0.004	0.05	<0.1	0.9	0.07	< 0.02	25	0.2	0.02	3.4		
3295825	Soil	10.4	35.1	0.24	63.3	0.051	<20	1.92	0.007	80.0	<0.1	2.1	0.11	<0.02	73	0.7	0.06	7.8		
3295620	Soil	10.0	28.7	0.10	71.5	0.026	<20	1.50	0.004	0.04	<0.1	1.1	0.00	0.02	76	0.2	0.02	4.7		
3295828	Soil	93	38.5	0.23	52.4	0.030	<20	247	0.006	0.00	<0.1	1.9	0.10	0.02	107	0.7	0.00	7.4		
3295829	Soil	11.5	3.5	0.01	13.2	0.007	<20	0.38	0.004	0.03	<0.1	0.3	0.06	<0.02	10	<0.1	<0.02	3.8		
3295830	Soil	11.3	18.7	0.18	26.4	0.023	<20	0.71	0.005	0.05	<0.1	1.1	0.07	< 0.02	33	0.2	0.04	3.7		
3295831	Soil	7.5	23.9	0.20	32.0	0.050	<20	1.38	0.006	0.04	<0.1	1.9	0.06	<0.02	54	0.4	0.03	6.6		
3295832	Soil	9.0	36.3	0.32	26.7	0.052	<20	0.98	0.005	0.05	<0.1	1.9	80.0	<0.02	36	0.2	0.03	5.3		
3295833	Soil	9.1	7.0	0.07	18.6	0.027	<20	0.26	0.005	0.05	<0.1	0.6	0.05	<0.02	13	<0.1	<0.02	2.5		
3295834	Soil	9.3	25.5	0.19	53.2	0.056	<20	0.65	0.006	0.05	<0.1	1.4	0.07	<0.02	19	0.3	0.03	4.5		
3295835	Soil	8.1	5.9	0.04	18.2	0.020	<20	0.29	0.003	0.04	<0.1	0.5	0.06	<0.02	14	<0.1	<0.02	2.6		
3295836	Soil	9.3	9.3	0.07	20.7	0.028	<20	0.28	0.005	0.03	<0.1	0.8	0.05	<0.02	14	<0.1	<0.02	2.3		
3295837	Soil	8.4	48.3	0.29	44.0	0.084	<20	1.45	0.005	0.05	<0.1	2.3	80.0	<0.02	48	0.6	0.06	8.0		
3295838	Soil	9.0	45.0	0.39	87.7	0.071	<20	1.57	0.009	0.07	<0.1	2.7	80.0	< 0.02	55	0.4	< 0.02	6.8		
3295839	501	9.9	30.7	0.24	58.1	0.055	<20	1.01	0.006	0.05	<0.1	1.8	0.07	<0.02	32	0.2	<0.02	5.6		
ა∠95840	501	10.3	31.8	0.23	48.6	0.043	<20	0.93	0.006	0.05	<u.1< td=""><td>1.6</td><td>0.08</td><td><0.02</td><td>43</td><td>U.1</td><td><0.02</td><td>4./</td><td></td><td></td></u.1<>	1.6	0.08	<0.02	43	U.1	<0.02	4./		

	MINERAL LABORATO	RIES			hung	~ <i>m/m</i> i	ning la	horato				Clier	nt:	Lor Marin 355 F Vanc	n gfor(ne Buildin Burrard S couver Br	d Expl ng, Unit 1 St. ritish Colu	oratio 680 umbia V64	n Serv C 2G8 Ca	vices L anada	_td.	
VERITAS	Canada			www	.bvna.c	:om/mi	ning-ia	porato	ry-servi	ces		Projec	t:	Nipis	sing Lori	rain					
ureau Veritas (Commodities Canada I	.td.										Repo	t Date:	May	15, 2023						
050 Shaughne	ssy St Vancouver Brit	sh Colun	nbia V6	P 6E5 (Canada																
HONE (604) 2	53-3158											Page:		3 of 4	ŧ				Pa	irt: 1	of 2
CEDTIE			/010	`												TI	งกวา	001	604	1	
	ICATE OF A	NAL	00	•													IVIZZ		004.	I	
	Metho	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ25
	Analyt	■ Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	v	Ca	F
	Uni	t ppm	ppm	ppm	ppm	ppb	ppm	ppm	ppm	%	ppm	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	%	%
2205055	MD	- 0.01	0.01	0.01	0.1	2	0.1	0.1	1	0.01	0.1	0.1	0.2	0.1	0.5	0.01	0.02	0.02		0.01	0.00
3295860	Soll	0.29	9.41	18.78	19.5	132	4.0	0.4	222	1.13	3.5	1.0	1.6	1.0	3.4	0.04	0.11	0.29		0.03	0.03
3295007	Soil	0.33	45.16	66.28	186.1	282	22.0	8.1	233	0.24	2.0	0.4	23	1.5	45.6	2.14	0.04	0.23	4	1.08	0.03
3295869	Soil	0.71	38.96	77 13	120.7	332	17.2	29	230	0.24	2.2	0.2	0.6	0.4	40.0	2.14	0.00	0.30	4	0.65	0.12
3295870	Soil	0.56	13.58	29.73	64.1	145	15.3	12.0	613	1 23	10.6	0.2	1.5	1 1	13.9	0.29	0.00	0.59	21	0.00	0.00
3295871	Soil	0.00	6.48	7 50	42.3	46	9.6	3.5	67	0.67	3.3	0.4	0.4	0.6	10.0	0.12	<0.02	0.00	13	0.12	0.03
3295872	Soil	0.46	11.68	16.54	43.2	120	23.7	18.4	374	1 27	11 4	0.4	0.4	1.3	13.4	0.12	0.09	0.31	23	0.16	0.02
3295873	Soil	0.45	11.27	27.90	30.1	147	9.5	4.3	252	0.88	5.1	0.3	0.7	1.5	11.0	0.23	0.12	0.54	21	0.12	0.03
3295874	Soil	0.23	5.15	14.32	16.0	81	2.2	0.6	36	0.08	0.7	0.2	0.4	1.6	5.2	0.15	0.09	0.18	3	0.07	0.01
3295875	Soil	1.22	12.42	10.97	26.3	65	20.4	5.5	120	1.67	7.0	0.3	0.5	2.6	19.2	0.09	0.06	0.24	41	0.18	0.01
3295876	Soil	0.53	11.54	7.56	36.5	63	20.1	6.5	145	1.56	6.2	0.4	0.5	2.5	21.4	0.15	0.05	0.20	34	0.22	0.01
3295877	Soil	0.52	38.95	26.55	71.8	178	26.5	14.0	709	1.32	10.1	0.6	1.7	1.1	16.8	0.33	0.11	0.64	23	0.24	0.04
3295878	Soil	0.57	38.97	19.66	72.0	166	28.1	12.7	693	1.50	7.4	0.7	0.8	1.3	23.6	0.22	0.07	0.47	27	0.33	0.04
3295879	Soil	0.61	310.31	19.03	48.8	160	30.2	22.0	665	2.06	6.5	1.2	1.2	2.0	20.9	0.18	0.06	0.38	34	0.28	0.04
3295880	Soil	0.48	35.17	25.87	54.2	88	33.4	11.4	302	2.33	8.9	0.5	0.8	2.7	21.7	0.18	0.14	0.45	44	0.25	0.03
3295881	Soil	0.39	19.93	18.08	106.5	100	35.5	13.6	681	2.23	3.4	0.5	<0.2	2.3	35.6	0.26	0.10	0.32	40	0.44	0.06
3295882	Soil	0.41	15.70	17.82	94.0	131	28.2	8.6	308	2.33	3.6	0.4	1.0	3.0	29.4	0.32	0.11	0.33	41	0.34	0.06
3295883	Soil	0.38	24.42	10.62	50.2	86	26.0	9.2	267	1.72	2.9	0.4	1.0	2.3	22.2	0.30	0.06	0.26	30	0.73	0.04
3295884	Soil	0.21	25.09	6.66	42.6	60	42.5	11.0	285	2.26	3.0	0.5	1.9	4.7	30.8	0.05	0.02	0.15	40	0.59	0.04
3295885	Soil	0.52	21.92	10.34	59.7	63	41.8	14.0	237	2.67	21.3	0.9	0.9	7.1	29.6	0.1 1	0.05	0.18	44	0.57	0.03
3295886	Soil	0.89	31.60	12.64	78.7	117	53.4	16.0	246	3.38	12.1	1.8	2.2	6.6	34.8	0.22	0.03	0.21	53	0.75	0.05
3295887	Soil	0.84	63.85	15.28	95.1	212	49.2	14.2	208	2.58	47.0	4.6	2.5	2.5	34.3	0.64	0.19	0.34	41	0.84	0.09
3295888	Soil	0.30	94.39	8.38	59.8	71	47.0	17.4	276	2.46	1.1	24.1	2.7	6.2	40.4	0.13	0.04	0.17	47	0.81	0.06
3295889	Soil	1.32	10.05	8.25	22.3	19	7.6	2.0	32	1.76	4.0	0.4	0.4	2.2	6.8	0.13	0.06	0.26	51	0.06	0.01
3295890	Soil	0.30	32.82	8.07	36.5	58	27.2	10.5	365	1.59	3.1	0.5	0.7	4.0	24.3	0.15	0.04	0.18	28	2.30	0.05
3295891	Soil	0.38	10.86	19.97	35.2	153	13.8	3.7	101	1.40	3.9	0.4	0.9	2.0	13.1	0.23	0.08	0.34	29	0.14	0.06
3295892	Soil	0.31	9.45	8.91	67.5	105	22.9	6.9	202	1.76	2.3	0.4	0.9	2.3	13.9	0.17	0.07	0.19	31	0.18	0.04
3295893	Soil	0.22	4.59	9.35	30.8	55	10.2	2.6	77	0.99	1.8	0.3	0.8	2.1	11.2	0.08	0.04	0.18	20	0.12	0.03
3295894	Soil	0.19	3.45	13.47	10.3	56	1.9	0.4	19	0.22	1.2	0.2	1.7	0.6	6.3	0.10	0.07	0.21	8	0.07	0.01
3295895	Soil	0.42	5.96	7.30	29.2	125	16.5	5.2	127	1.75	1.3	0.4	2.7	2.1	8.3	0.05	0.04	0.19	31	0.10	0.05

BUREAU VERITAS	MINERAL LABORATOR	IES		www	.bvna.c	:om/mii	ning-la	borator	y-servi	ces		Clier	1 t: t:	Lor Marin 355 E Vanc Nipiss	n gford le Buildin Burrard S ouver Bri sing Lorr	I Expl e 1g, Unit 16 t. itish Colu ain	o ratio ⁵⁸⁰ mbia V6C	n Ser v 268 Ca	vices Ltd.	
Bureau Veritas	s Commodities Canada I t	h										Repor	t Date:	May	15, 2023					
9050 Shaughn	e commodited ounded Et	a. h Colum	hia V6	2 6 5 6	chene															
PHONE (604)	253-3158	ii Coluii			Janaua							Dene		2 - 5 4					Det	2 -6 2
,												Page.		3 01 4	•				Part.	2 01 2
CERTIF	FICATE OF AN	JALY	/SIS														M220	001	604.1	
	Method	AO250	AO250	AO250	AO250	AO250	AO250	AO250	AO250	A O 250	AO250	A O 250	AO250	AO250	A O 250	AO250	AO250	A-0250		
	Analyte	La	Cr	Mg	Ba	Ti	на <u>2</u> 30 В	AULIO	Na	K	W	Sc	TI	S	Hg	Se	Te	Ga		
	Unit	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	%	ppb	ppm	ppm	ppm		
	MDL	0.5	0.5	0.01	0.5	0.001	20	0.01	0.001	0.01	0.1	0.1	0.02	0.02	5	0.1	0.02	0.1		
3295866	Soil	20.7	4.5	0.01	27.2	0.005	<20	0.29	0.002	0.03	<0.1	0.2	0.06	0.03	53	0.3	<0.02	2.8		
3295867	Soil	11.6	18.7	0.11	42.3	0.034	<20	0.86	0.004	0.04	<0.1	1.2	0.07	<0.02	41	0.3	0.02	6.1		
3295868	Soil	4.0	8.2	0.12	125.7	0.006	<20	0.15	0.013	0.11	0.2	0.3	0.06	0.16	167	1.7	0.04	0.8		
3295869	Soil	7.0	7.5	0.06	153.2	0.006	<20	0.16	0.007	0.06	0.2	0.4	0.05	0.09	111	1.2	0.05	1.1		
3295870	Soil	8.5	28.7	0.28	51.4	0.038	<20	0.68	0.005	0.06	<0.1	1.3	0.09	0.02	43	0.4	0.05	4.1		
3295871	Soil	10.4	18.9	0.18	32.8	0.028	<20	0.72	0.005	0.05	<0.1	1.1	0.07	< 0.02	23	0.2	< 0.02	3.7		
3295872	Soil	9.0	31.3	0.27	61.0	0.038	<20	1.21	0.007	0.05	<0.1	1.4	0.10	<0.02	4/	0.4	0.04	4.2		
3295673	Soli	9.5	20.0	0.12	37.2	0.044	<20	0.55	0.004	0.04	<0.1	1.1	0.08	<0.02	37	0.2	10.04	4.0		
3295074	Soil	10.2	2.9	0.02	20.0	0.007	<20	1 16	0.003	0.02	<0.1	2.4	0.03	<0.02	21	<0.2	<0.02	6.1 6.0		
3295876	Soil	10.2	39.0	0.40	42 9.4	0.085	<20	1.10	0.009	0.04	<0.1	2.4	0.00	<0.02	30	-0.1	0.02	6.5		
3295877	Soil	17.6	31.9	0.32	77.8	0.044	<20	1.20	0.007	0.07	<0.1	2.7	0.07	0.02	66	0.6	0.00	4 7		
3295878	Soil	18.3	41.7	0.40	81.0	0.058	<20	1.42	0.009	0.07	<0.1	2.4	0.09	0.02	46	0.4	0.03	5.6		
3295879	Soil	28.2	49.8	0.51	81.9	0.078	<20	1.75	0.009	0.08	<0.1	3.5	0.15	0.03	66	0.6	0.02	7.0		
3295880	Soil	12.1	59.9	0.57	70.8	0.113	<20	2.02	0.012	0.07	<0.1	3.2	0.11	< 0.02	47	0.8	0.07	8.1		
3295881	Soil	13.1	61.4	0.66	99.9	0.109	<20	1.94	0.013	0.11	<0.1	3.1	0.11	0.03	56	0.6	0.03	8.2		
3295882	Soil	11.9	56.5	0.53	79.5	0.114	<20	1.87	0.012	0.10	<0.1	3.3	0.10	0.02	74	0.5	0.03	8.9		
3295883	Soil	12.6	44.4	0.55	70.0	0.072	<20	1.40	0.010	0.10	<0.1	2.5	0.09	0.03	31	0.3	<0.02	5.3		
3295884	Soil	27.2	82.0	0.87	84.5	0.109	<20	1.77	0.018	0.12	<0.1	6.0	0.13	<0.02	24	0.2	<0.02	6.0		
3295885	Soil	19.8	79.3	0.87	129.0	0.114	<20	2.63	0.009	0.15	<0.1	6.6	0.14	<0.02	37	0.4	<0.02	8.1		
3295886	Soil	29.1	94.8	1.05	179.5	0.101	<20	3.57	0.011	0.19	<0.1	7.4	0.20	0.04	70	0.5	<0.02	10.4		
3295887	Soil	52.6	83.9	0.85	171.7	0.060	<20	3.48	0.012	0.17	<0.1	6.2	0.26	0.10	134	0.7	<0.02	9.8		
3295888	Soil	44.8	89.7	0.96	153.2	0.127	<20	2.55	0.027	0.15	<0.1	8.2	0.16	0.03	105	0.4	<0.02	7.6		
3295889	Soil	8.0	23.2	0.09	19.5	0.073	<20	0.76	0.003	0.04	<0.1	0.9	0.08	<0.02	33	0.4	0.03	9.1		
3295890	Soil	20.3	47.4	1.35	42.4	0.069	<20	0.93	0.009	0.16	<0.1	3.5	0.15	< 0.02	18	<0.1	<0.02	3.3		
3295891	Soil	9.3	28.4	0.20	56.7	0.069	<20	0.77	0.005	0.06	<0.1	1.4	0.07	<0.02	34	0.5	0.03	6.1		
3295892	Soll	8.1	44./	0.39	01.9	0.042	<20	1.60	0.007	0.07	<0.1	2.3	0.07	<0.02	51	0.6	<0.02	6.5 5 C		
3295893	Soil	9.9	21.4	0.14	37.9	0.048	<20	0.03	0.005	0.03	<0.1	0.4	0.07	<0.02	∠1 10	U.2	<0.02	5.5 2.6		
3295895	Soil	0.4	30.0	0.03	47.0	0.012	<20	1.82	0.003	0.04	<0.1	1.8	0.06	<0.02	20	<0.1 0.2	<0.02	2.0 5.5		
3293093	501	1.0	30.0	U.10	4/.U	0.052	< <u>Z</u> U	1.03	0.007	0.04	∽ 0.1	1.0	0.00	~ 0.02	29	U.2	∽ 0.02	5.5		

					Clier	nt:	Lor Marin 355 F Vanc	n gforc ne Buildir Burrard S ouver Bri	I Expl a ng, Unit 1 it. itish Colu	oratio ⁶⁸⁰ mbia V60	n Serv C 2G8 Ca	r ices L nada	.td.								
BUREAU VERITAS	MINERAL LABORATOR	IES		www	.bvna.c	:om/mi	ning-la	borator	y-servi	ces		Proje	et:	Nipis	sing Lorr	ain					
Bureau Verita	e Commodities Canada I t	d										Repo	rt Date:	May	15, 2023						
0050 Obeverla		u. 1. O - I																			
9050 Shaugh	nessy St. Vancouver Britis	n Colum	DIA VOI	P 6E5 (Janada																
FHONE (004)	200-0100											Page		4 of 4	ļ				Pa	rt: 1	of 2
CERTI	FICATE OF AN	ΙΑΙ Υ	'SIS													TI	M22	0016	504	1	
OLIVII																	122	0010			
	Method	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250
	Analyte	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	v	Ca	Р
	Unit	ppm	ppm	ppm	ppm	ppb	ppm	ppm	ppm	%	ppm	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	%	%
0005000	MDL	0.01	0.01	0.01	0.1	2	0.1	0.1	1	0.01	0.1	0.1	0.2	0.1	0.5	0.01	0.02	0.02	1	0.01	0.001
3295896	Soll	0.27	4.30	10.27	19.3	80	9.8	2.8	142	1.12	1.8	0.3	3.3	1.8	8.0	0.07	0.05	0.18	25	0.09	0.030
3293097	Soil	0.39	6.04	7.88	32.0	90	14.3	3.5	212	1.20	2.0	0.4	0.7	2.2	8.2	0.10	0.06	0.23		0.10	0.051
3295899	Soil	0.41	3.48	6.34	17.0	31	14.3	4.4	119	0.58	23	0.4	0.7	2.1	7.0	0.07	0.00	0.21	12	0.09	0.000
3295900	Soil	0.10	2 4 1	4 99	11.1	47	26	1.0	28	0.39	0.8	0.0	0.0	23	6.8	0.08	0.00	0.14	10	0.05	0.020
3295984	Soil	0.44	3.53	6.69	20.3	79	3.7	1.1	37	1.83	1.6	0.4	0.9	2.6	6.5	0.07	0.02	0.19	36	0.06	0.035
3295985	Soil	0.47	4.27	7.43	52.9	39	13.3	4.5	63	1.90	1.8	0.5	0.4	2.5	8.1	0.11	0.04	0.15	33	0.09	0.045
3295986	Soil	0.26	6.19	12.26	20.6	53	2.5	0.4	27	0.24	1.1	0.2	4.7	0.2	2.8	0.34	0.05	0.18	6	0.04	0.037
3295987	Soil	0.32	3.62	7.47	15.5	30	3.4	1.2	36	1.22	2.5	0.4	1.8	2.1	5.5	0.06	0.04	0.30	25	0.04	0.040
3295988	Soil	0.17	3.81	8.60	14.7	29	1.9	0.4	18	0.28	1.0	0.2	1.9	0.1	4.1	0.16	0.03	0.18	9	0.04	0.014
3295989	Soil	0.54	7.35	4.32	12.6	14	20.2	8.9	65	1.04	1.1	0.9	4.1	2.5	9.3	0.02	<0.02	0.07	17	0.13	0.043
3295990	Soil	0.39	17.19	12.20	43.7	40	23.6	10.0	307	1.54	3.5	0.8	1.4	3.4	13.9	0.15	0.05	0.25	29	0.23	0.039
3295991	Soil	1.26	24.42	13.39	91.6	127	57.7	31.2	147	3.36	4.9	2.4	5.1	5.6	9.4	0.20	0.12	0.31	48	0.11	0.080
3295992	Soil	1.35	57.10	14.33	90.8	466	1 10 .3	23.0	3328	4.34	6.7	12.6	1.8	5.3	40.7	0.32	0.06	0.55	67	1.07	0.160
3295993	Soil	0.79	18.97	15.72	118.9	97	42.8	15.0	1320	2.68	6.2	2.5	6.9	2.5	15.7	0.37	0.05	0.41	57	0.41	0.054
3295994	Soil	1.36	51.95	13.98	94.8	464	90.6	21.9	2499	3.94	6.0	12.5	2.3	3.1	34.9	0.28	0.06	0.47	64	0.83	0.167
3295995	Soil	0.41	8.45	8.24	42.5	83	18.3	5.1	135	1.38	2.8	0.6	3.7	1.9	13.0	0.11	0.04	0.24	25	0.15	0.038
3295996	Soil	0.52	14.98	21.13	151.1	99	18.9	11.2	1475	1.69	4.9	0.7	1.1	0.8	15.1	0.44	0.08	0.36	26	0.22	0.099
3295997	Soil	0.51	26.24	14.40	90.7	182	30.7	10.3	732	2.16	4.2	7.1	1.5	1.0	22.8	0.40	0.09	0.31	35	0.76	0.089
3295998	Soil	0.25	17.88	8.73	33.0	59	23.5	9.8	444	1.54	2.3	3.9	1.1	1.9	17.4	0.14	0.03	0.19	28	0.39	0.069
3295999	Soil	0.25	18.11	11.42	66.9	107	22.2	8.4	685	1.54	3.2	1.3	1.4	1.3	19.1	0.31	0.05	0.22	26	0.59	0.048

												Clie	nt:	Loi Marii 355 I Vano	n gford ne Buildin Burrard S couver Br	l Expl ng, Unit 1 it. itish Colu	oratio 680 Imbia V6(n Serv	r ices Ltd].
BUREAU	INERAL LABORATOR	IES		VALVALVAV	hyna c		nina-la'	horator	v-servi	Ces		Projo	ot.							
VERITAS	Canada				.ovnu.e		ing ia	Jorator	y 3011	000		Popo	rt Data:	NIPIS	sing Lorr	ain				
Bureau Veritas C	ommodities Canada Lte	d.										Repo	n Date:	мау	15, 2023					
9050 Shaughnes	sy St Vancouver Britisl	h Colum	bia V6I	P 6E5 (Canada															
PHONE (604) 25	3-3158											Page	:	4 of	4				Part:	2 of 2
CEDTICI			010									9				TU	122	001	204 4	
CERTIFI		ALI	313														VIZZ		DU4. I	
	Method	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250		
	Analyte	La	Cr	Mg	Ва	Ti	в	AI	Na	к	w	Sc	ті	s	Hg	Se	Те	Ga		
	Unit	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	%	ppb	ppm	ppm	ppm		
	MDL	0.5	0.5	0.01	0.5	0.001	20	0.01	0.001	0.01	0.1	0.1	0.02	0.02	5	0.1	0.02	0.1		
3295896	Soil	8.3	18.0	0.10	28.8	0.040	<20	1.09	0.005	0.04	<0.1	1.0	0.05	<0.02	26	0.3	<0.02	5.9		
3295897	Soil	8.8	22.7	0.13	33.1	0.055	<20	0.88	0.007	0.04	<0.1	1.3	0.06	<0.02	34	0.1	<0.02	5.3		
3295898	Soil	7.5	27.7	0.15	34.7	0.063	<20	1.28	0.006	0.05	<0.1	1.4	0.06	<0.02	41	0.4	<0.02	6.1		
3295899	Soil	8.5	9.0	0.06	20.6	0.025	<20	0.47	0.004	0.04	<0.1	0.7	0.06	<0.02	18	<0.1	<0.02	3.2		
3295900	Soil	11.1	6.8	0.04	14.0	0.028	<20	0.39	0.005	0.02	<0.1	0.7	0.04	<0.02	15	<0.1	<0.02	3.7		
3295984	Soil	9.0	19.6	0.07	19.5	0.059	<20	1.21	0.005	0.03	<0.1	1.3	0.05	0.02	49	0.3	<0.02	8.3		
3295985	Soil	8.1	31.2	0.17	44.9	0.054	<20	2.09	0.008	0.03	<0.1	2.3	0.06	0.03	74	0.3	<0.02	6.6		
3295986	Soil	6.4	6.8	0.04	26.7	0.004	<20	0.41	0.004	0.06	<0.1	0.4	0.07	<0.02	29	<0.1	<0.02	3.2		
3295987	Soil	9.9	13.3	0.07	20.1	0.040	<20	0.69	0.002	0.03	<0.1	0.9	0.07	<0.02	30	0.3	<0.02	7.5		
3295988	Soil	7.1	6.6	0.03	12.5	0.014	<20	0.36	0.005	0.02	<0.1	0.4	0.04	< 0.02	13	<0.1	<0.02	3.9		
3295989	Soil	12.7	32.6	0.22	19.7	0.050	<20	2.25	0.007	0.03	<0.1	2.3	0.04	0.04	78	0.5	< 0.02	2.6		
3295990	Soil	16.3	41.8	0.36	63.2	0.050	<20	1.24	0.010	0.05	<0.1	2.9	0.12	< 0.02	31	<0.1	<0.02	3.7		
3295991	Soil	14.1	73.0	0.32	85.1	0.078	<20	5.19	0.002	0.11	<0.1	4.0	0.18	0.09	135	0.9	0.04	1.1		
3295992	Soil	58.0	142.9	1.02	4/5.5	0.059	21	6.42	0.006	0.47	<0.1	10.7	0.39	0.09	152	1.5	0.04	11.7		
3295993	Soll	19.7	74.7	0.69	102.2	0.110	<20	2.35	0.009	0.10	<0.1	5.0	0.15	0.02	46	0.4	0.08	8.7		
3295994	Soil	62.9	131.8	0.81	3/5.0	0.056	<20	5.70	0.006	0.33	<0.1	8.3	0.36	0.08	169	1.2	0.02	10.4		
3295995	Soil	10.2	30.9	0.24	83.5	0.073	<20	1.08	0.007	0.07	<0.1	1.9	0.06	<0.02	37	0.2	0.03	6.3		
3295996	Soil	11.9	32.5	0.23	104.2	0.041	<20	1.15	0.007	0.07	<0.1	1.7	0.10	0.03	54	0.3	0.05	5.4		
3295997	Soil	29.4	55.4	0.47	134.4	0.038	<20	2.14	0.010	0.12	<0.1	3.3	0.12	0.06	68	0.4	0.03	5.0		
3295998	Soil	22.0	50.7	0.47	60.1	0.051	<20	1.07	0.010	0.09	<0.1	3.6	0.09	< 0.02	38	0.2	0.03	3.4		
3295999	Soil	19.7	44.3	0.40	88.4	0.043	<20	1.38	0.010	0.09	<0.1	2.9	0.10	0.03	43	0.3	< 0.02	3.8		

												Clien	t:	Lon Marine 355 Bi Vanco	gford e Building urrard St. ouver Briti	Explo 1, Unit 16 sh Colun	o ration 80 nbia V6C	2G8 Can	i ces L t	td.	
BUREAU MINER VERITAS Canad	AL LABORATORI	IES		www.	.bvna.c	om/mir	ning-lat	oorator	y-servi	ces		Project	t:	Nipiss	ing Lorrai	in					
Dura au Marita a Camm	adition Conada I t	a										Report	Date:	May 1	5, 2023						
sureau ventas comm	odities Canada Lio	u.																			
3050 Shaughnessy St	Vancouver British	h Colum	bia V6F	P 6E5 C	anada																
PHONE (604) 253-31	38											Page:		1 of 1					Part	.: 1 of	f 2
QUALITY C	ONTROL	RFP	OR'	Т													1220	016	04 1	1	
	ONTINOL		<u> </u>	<u> </u>															· · ·		
	Method	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250
	Analyte	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	v	Ca	Р
	Unit	ppm	ppm	ppm	ppm	ppb	ppm	ppm	ppm	%	ppm	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	%	%
	MDL	0.01	0.01	0.01	0.1	2	0.1	0.1	1	0.01	0.1	0.1	0.2	0.1	0.5	0.01	0.02	0.02	1	0.01	0.001
Pulp Duplicates																					
3295870	Soil	0.56	13.58	29.73	64.1	145	15.3	12.7	613	1.23	10.6	0.3	1.5	1.1	13.9	0.29	0.14	0.59	21	0.29	0.061
REP 3295870	QC	0.59	12.92	29.28	59.7	125	15.5	12.5	642	1.25	10.6	0.3	1.1	1.2	13.5	0.27	0.13	0.57	21	0.29	0.060
3295989	Soil	0.54	7.35	4.32	12.6	14	20.2	8.9	65	1.04	1.1	0.9	4.1	2.5	9.3	0.02	<0.02	0.07	17	0.13	0.043
REP 3295989	QC	0.57	7.37	4.37	12.8	15	20.6	9.5	68	1.07	1.1	0.9	0.6	2.5	9.3	0.03	<0.02	0.07	18	0.14	0.046
Reference Materials																					
STD DS11	Standard	14.10	135.35	136.34	326.2	1907	74.6	13.1	1005	3.03	44.5	3.1	97.3	8.4	71.6	2.41	6.97	1 1 .67	48	1.04	0.077
STD DS11	Standard	13.11	141.45	131.40	351.1	1664	73.7	13.4	959	2.91	43.2	2.6	61.5	8.1	66.2	2.34	6.40	11.33	43	1.00	0.066
STD DS11	Standard	15.82	150.53	1 4 7.15	361.5	1798	84.8	14.7	1094	3.36	49.3	2.9	57.5	9.5	73. 4	2.74	6.89	13.00	47	1.13	0.074
STD OREAS262	Standard	0.56	112.37	56.51	142.7	470	60.7	26.6	532	3.18	37.8	1.2	58.9	9.8	37.6	0.69	1.92	1.02	21	2.98	0.040
STD OREAS262	Standard	0.63	110.77	54.75	146.6	442	60.8	25.3	519	3.10	35.8	1.2	52.1	9.7	35.9	0.67	1.88	0.99	19	2.83	0.036
STD OREAS262	Standard	0.65	124.08	62.53	162.6	503	67.9	29.8	525	3.54	38.8	1.3	62.3	11.2	38.6	0.69	2.20	1.18	25	3.19	0.041
STD DS11 Expected		13.9	149	138	345	1710	77.7	14.2	1055	3.1	42.8	2.59	79	7.65	67.3	2.37	7.2	12.2	50	1.063	0.0701
STD OREAS262 Expected		0.68	118	56	154	450	62	26.9	530	3.284	35.8	1.22	65	9.33	36	0.61	3.39	1.03	22.5	2.98	0.04
BLK	Blank	<0.01	<0.01	<0.01	<0.1	<2	<0.1	<0.1	<1	<0.01	0.1	<0.1	<0.2	<0.1	<0.5	<0.01	<0.02	<0.02	<1	<0.01	<0.001
BLK	Blank	<0.01	<0.01	<0.01	<0.1	<2	<0.1	<0.1	<1	<0.01	0.1	<0.1	<0.2	<0.1	<0.5	<0.01	<0.02	<0.02	<1	<0.01	<0.001
BLK	Blank	< 0.01	<0.01	<0.01	<0.1	<2	<0.1	<0.1	<1	<0.01	0.1	<0.1	<0.2	<0.1	<0.5	<0.01	<0.02	<0.02	<1	<0.01	<0.001

												Clien	t:	Lon Marin 355 B Vanco	gford e Building urrard St puver Briti	Explo g, Unit 164 ish Colum	oration 80 nbia V6C	1 Servi 2G8 Can	i ces Ltd ada	
BUREAU VERITAS	MINERAL LABORATOR	ES		www	.bvna.c	om/mii	ning-lat	orator	y-servi	ces		Project		Nipiss	ing Lorra	in				
Bureau Veritas	au Veritas Commodities Canada Ltd.														5, 2023					
9050 Shauqhn	essv St Vancouver Britisl	n Columi	bia V6F	9 6E5 C	Canada															
PHONE (604)	253-3158											Page:		1 of 1					Part:	2 of 2
												0								
QUALIT	Y CONTROL	REP	POR	Т													//220	016	504.1	
	Method	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250		
	Analyte	La	Cr	Mg	Ва	Ti	в	AI	Na	к	w	Sc	TI	S	Hg	Se	Те	Ga		
	Unit	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	%	ppb	ppm	ppm	ppm		
	MDL	0.5	0.5	0.01	0.5	0.001	20	0.01	0.001	0.01	0.1	0.1	0.02	0.02	5	0.1	0.02	0.1		
Pulp Duplicates	3																			
3295870	Soil	85	28.7	0.28	514	0.038	<20	0.68	0.005	0.06	<0.1	13	0.09	0.02	43	04	0.05	4 1		

Pulp Duplicates																		
3295870	Soil	8.5	28.7	0.28	51.4	0.038	<20	0.68	0.005	0.06	<0.1	1.3	0.09	0.02	43	0.4	0.05	4.
REP 3295870	QC	8.0	27.8	0.28	48.2	0.037	<20	0.69	0.007	0.06	<0.1	1.4	0.09	0.02	42	0.5	0.06	4.
3295989	Soil	12.7	32.6	0.22	19.7	0.050	<20	2.25	0.007	0.03	<0.1	2.3	0.04	0.04	78	0.5	<0.02	2.
REP 3295989	QC	12.3	33.4	0.23	19.8	0.053	<20	2.36	0.008	0.03	<0.1	2.7	0.05	0.04	83	0.5	<0.02	2.
Reference Materials																		
STD DS11	Standard	20.2	53.7	0.84	420.3	0.099	<20	1.15	0.075	0.40	2.6	3.3	4.94	0.28	257	2.0	4.53	4.
STD DS11	Standard	19.2	55.1	0.79	395.4	0.093	<20	1.09	0.068	0.38	2.3	3.2	4.71	0.25	261	2.1	4.36	4.
STD DS11	Standard	21.3	60.9	0.91	443.8	0.101	<20	1.22	0.079	0.42	2.9	3.4	5.32	0.30	273	2.5	5.01	5.
STD OREAS262	Standard	19.0	39.3	1.15	254.8	0.003	<20	1.21	0.069	0.31	<0.1	3.2	0.46	0.26	160	0.4	0.22	3.
STD OREAS262	Standard	19.7	39.6	1.11	244.5	0.003	<20	1.20	0.063	0.30	<0.1	3.4	0.46	0.24	156	0.5	0.18	3.
STD OREAS262	Standard	19.5	45.9	1.25	279.1	0.004	<20	1.30	0.066	0.31	0.1	3.5	0.51	0.28	177	0.3	0.26	4.
STD DS11 Expected		18.6	61.5	0.85	417	0.0976		1.129	0.0694	0.4	2.9	3.1	4.9	0.2835	260	2.2	4.56	4.
STD OREAS262 Expected		15.9	41.7	1.17	248	0.003		1.3	0.071	0.312	0.13	3.24	0.47	0.269	170	0.4	0.23	3.
BLK	Blank	<0.5	<0.5	<0.01	<0.5	<0.001	<20	<0.01	<0.001	<0.01	<0.1	<0.1	<0.02	<0.02	<5	<0.1	<0.02	<0.
BLK	Blank	<0.5	<0.5	<0.01	<0.5	<0.001	<20	<0.01	<0.001	<0.01	<0.1	<0.1	<0.02	<0.02	<5	<0.1	<0.02	<0.
BLK	Blank	<0.5	<0.5	<0.01	<0.5	<0.001	<20	<0.01	<0.001	<0.01	<0.1	<0.1	<0.02	<0.02	<5	<0.1	<0.02	<0.