

We are committed to providing <u>accessible customer service</u>. If you need accessible formats or communications supports, please <u>contact us</u>.

Nous tenons à améliorer <u>l'accessibilité des services à la clientèle</u>. Si vous avez besoin de formats accessibles ou d'aide à la communication, veuillez <u>nous contacter</u>.

EMPRESS PROJECT

ASSESSMENT REPORT

on 2019 Diamond Drill Program

Jackfish Lake Area

Terrace Bay, Ontario

July 10, 2023

Author: Kevin Kivi. P.Geo. KIVI Geoscience Inc.

Table of Contents

Figures3
Tables3
Summary4
Location and Access
Property Description6
Alto Ventures Option Agreement9
Surface Rights Owners10
Permitting10
Regional Geology11
Property Geology12
Mineralization15
Empress Area 1E16
Empress Area 2E16
Empress Area 2+50E17
Empress Area 6E17
Empress Area 8 +25 E17
Express Area 9E
Empress Area 10+75E18
Empress Area 15E18
Empress Zone west of the Empress Mine19
Creek Showing19
Zlatco Showing19
Exploration Targets
Orogenic Gold Deposits19
Adjacent Properties
Empress Gold Mine20
Ursa Major Mine21
Previous Work
Historical Work Targeting the Empress Structure23
Sanatana Regional Work Programs30
Current Exploration Work
2018 Prep-work and 2019 Core Drilling31
2023: Retrieve and Log 2019 Empress Drill Core34
Costs of 2018-2019 Work
Cost of 2023 Work and Report37

Conclusions and Recommendations	.39
References	.41
Certificate of Author	.43

Figures

Figure 1. Key Map of Empress Project relative to Terrace Bay, NW Ontario Figure 2. Mining Claims of the Fortune Project (UTM NAD83z16) Figure 3. Alto Ventures Empress Property Map showing legacy claims and Surface Rights	
Owners	9
Figure 4. Surface Rights Owners that overlap Empress Project	10
Figure 5. Regional Geology of Sanatana's former Jackfish Project (from Ronacher, 2017)	11
Figure 6. Empress Property Geology and Empress Structure (from Koziol, 2008)	14
Figure 7. Cameco Surface Stripping and Sampling Section 6E	26
Figure 8. Laminated quartz-biotite-chlorite crack and seal vein with 5% disseminated pyrite	
from EMP08-02 at 110m depth	28
Figure 9. Empress 2012 Channel Samples Area 6E	29
Figure 10. Empress Channel Samples Area 6E	30
Figure 11. Plan Map of Section 6 Drill Hole Collars and Traces	33
Figure 12. Wayne Richards and drill core from EMP19-01 and EMP19-02 loaded and strapped	d
for transport.	
Figure 13. KGI Core logging set-up in Thunder Bay	

Tables

Table 1. Mining Claims of the Fortune Project.	7
Table 2. Previous work near the Empress Project.	21
Table 3. OGS Sampling at Empress Hill (Note: UTM NAD27)	27
Table 4. Section 6 East Drill Hole Collar Data Summary	32
Table 5. Section 6 East Drill Hole Gold Mineralized Intervals	33
Table 6. Summary of Costs for the 2018 and 2019 Drill Program (from Gill, 2020)	37
Table 7. Core Retrieval, Core Logging, Drill Database, and Technical Report Costs (not	
including HST charged by KGI)	38

Summary

Sanatana's Empress Project (Property) is in Syine township in Northwestern Ontario about 250 km east of Thunder Bay and 16 km east of Terrace Bay, the closest town. Trans-Canada Highway 17 crosses the southern claims of the property. The property consists of 42 active claim cells with combined area 648 hectares. Two surface rights properties occupy the central part of the property. There is an active trapline on the property. Sanatana was granted Exploration Permit PR-17-11157 in 2018 (expired April 22, 2021) and performed field work in 2018 and 2019 while this permit was valid.

Sanatana first worked on the rugged Empress Property in fall 2018 clearing and upgrading an old access trail to Area 6E, then scouting the area for potential drill pads and access trails between them, and finally building the drill pads and access trails. This work was cut short with the onset of winter. Sanatana spent 16 days in the field in 2018 completing this work.

In 2019 Sanatana returned to the Empress property and drilled four BTW core holes for 402m targeting Empress Area 6E and utilizing trail and pads prepared a year earlier. During both field terms the company operated from Jackfish Cabins located east of Terrace Bay near the Empress Property. In 2019 Sanatana logged two of four drill holes at Jackfish Cabins and then departed. Sanatana spent 31 days in the field in 2019 to perform this work. Sanatana stored logged and unlogged drill core in a secure yard behind Jackfish Cabins on a core rack. All four drill holes were completed on mining claim 153587.

The objective of 2018 and 2019 work was to test the Empress Zone in Area 6E at depth and follow-up on significant gold assays recovered on surface by stripping and channel sampling results obtained by Cameco in 1999 and Alto Ventures in 2012. 2018 and 2019 work was performed by Troy Gill, Exploration Manager of Sanatana (until 2020) and Wayne Richards of Richard's Exploration from Terrace Bay. Work was performed for Sanatana, who rehabilitated the drill sites to industry standards on completion of the field program.

In May 2023, Kivi Geoscience Inc (KGI) completed a prospecting report for Sanatana on the Empress Property, and during research for the report found no record of Sanatana's 2018 and 2019 drill work in OAFD or ODHD databases. KGI alerted Sanatana that previous drilling was not filed as assessment and recommended that Sanatana complete core logging and related work, and file a technical report on past drilling on Empress mining claims. Work older than 24 months old would be discounted by 50% but 2023 work to retrieve core, log it and write a report would earn full assessment credit. KGI estimated this work report would provide several years of assessment credit on the Empress Property.

In 2020, Sanatana completed an expenditure report to partner Alto Venture (Gill, 2020) but failed to modify this report for assessment. This company oversight likely occurred due to loss of key personnel, followed by distraction due to the Global Pandemic.

In May 2023 Sanatana asked KIVI Geoscience Inc to retrieve Empress 2019 drill core from Terrace Bay, re-log drill core, generate x-sections, maps and a report and file this field work as assessment on mining claims of the Empress Property.

KGI retrieved drill core on June 3 and 4, 2023 (4 man-days), then logged the core at its shop in Thunder Bay, generated a drill database, sections, and plans and wrote a technical report in June and July 2023. KGI performed this work for Sanatana Resources Inc.

KGI re-logged holes EMP19-01 and EMP19-02 and observed VG (visible gold) in sawed core from hole EMP19-02. KGI recommends that gold-bearing intervals are quartered and assayed using a total metallics method. KGI also recommends re-assaying certain pulp rejects from earlier sampling of these holes.

KGI logged hole EMP19-03 and EMP19-04 (both holes previously not logged) and found the Empress Zone to be thick and present in both holes. In hole EMP19-04 a second zone located some 20m below the Empress Zone has a laminated crack and seal quartz vein that suggests good potential for additional gold mineralization. KGI recommends sawing and sampling all mineralized drill core cut by EMP19-03 and EMP19-04. Samples with crack and seal quartz veins should be assayed using a total metallics method.

Empress Zone is a ductile deformation zone that extends for 1.8 km on the Empress Property which has demonstrated good widths of gold mineralization in altered and mineralized thinly bedded siltstones, which are sometimes graphitic and strongly sheared to mylonite locally. Laminated crack and seal quartz veins are present in the Empress Zone and VG (visible gold) and sulphides (pyrite, pyrrhotite, chalcopyrite, sphalerite, and molybdenite) have been reported. Sheared, silicified and sericite altered wallrock is also mineralized with sulphides also reports gold assays locally.

KGI also recommends a desktop study with complete digitization of all historical work on the property, and then ground-checking and resampling certain gold showings along the Empress Zone, especially when bedded chert and siltstone is abundant.

The author recommends resuming correspondence with Biigtigong Nishnaabeg, Surface Rights Owners, and the trapper active on the property if Sanatana plans to apply for a new exploration permit and resume exploration on the Empress Project.

Sanatana and KGI use Universal Transverse Mercator (UTM) co-ordinates in Datum NAD83, Zone 16N. All maps and sections in this report were created using this Datum.

Location and Access

The Empress Project is in Syine Township of Thunder Bay Mining Division, Ontario.

The Empress Project is about 250 km east of Thunder Bay and 16 km east of Terrace Bay, the closest town. Trans-Canada Highway 17 crosses the southern part of the property. The area's long history of forestry, exploration and mining has left a trail network on the property that is accessible with 4WD truck or all-terrain vehicles with some brushing and clearing of fallen trees.

The trail that extends north from Highway 17 was upgraded to allow mobilization of the drill to the top of Empress Hill at Area 6E. The trail is currently flagged and used as an active trapline which will help keep the trail open for future work.

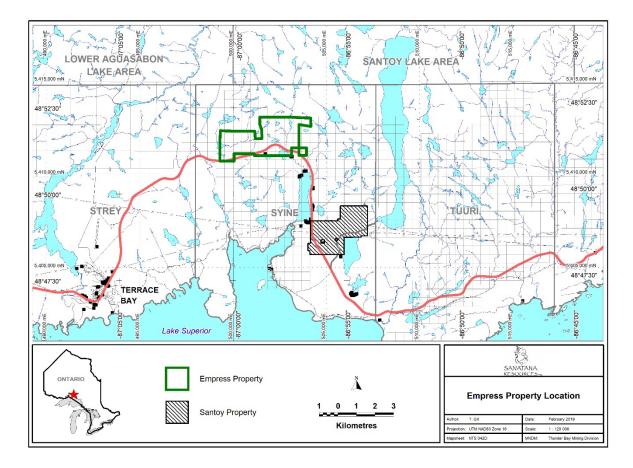


Figure 1. Key Map of Empress Project relative to Terrace Bay, NW Ontario.

Property Description

The Empress Project consists of 42 unpatented mining claims with 22 single cell mining claims and 20 boundary cell mining claims with combined area 648 hectares (Figure 2). WTB23/89 indicates two former mining cells that lapsed recently where Relief from Forfeiture has been requested by Sanatana on May 18, 2023.

Topography consists of steep hills and ridges flanked by rock cliffs and steep ravines, sometimes occupied by beaver ponds and swamps with west-east orientation. Empress Hill is a prominent feature visible from Highway 17 that rises to 410 m elevation.

Vegetation includes spruce, white birch, balsam fir, and small amounts of trembling aspen. Undergrowth is moderate to thick consisting of mountain maple and young conifers. Lowlying areas from the foot of Empress Hill towards Christie Lake were previously clear cut by logging operations and now are covered by sparse white birch, young balsam fir, and thick moose maple making prospecting of these areas difficult and unpleasant (Sampson, 1999 and Koziol, 2006).

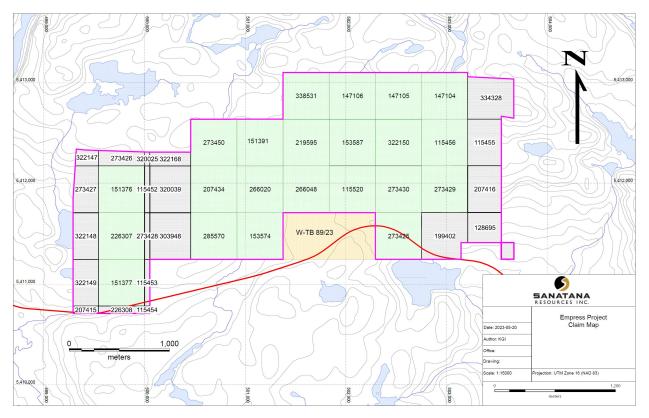


Figure 2. Mining Claims of the Fortune Project (UTM NAD83z16)

Table 1 lists 42 operational cell mining claims of the Empress Project. All mining claims are active and in good standing at the time of this report and are held 100% by Santana Resources Inc.

Township / Area	Tenure ID	Tenure Type	Tenure Status	Anniversary Date	Tenure Percentage	Work Required
SYINE	115520	Single Cell Mining Claim	Active	17-May-2023	100	400
SYINE	147106	Single Cell Mining Claim	Active	17-May-2023	100	200
SYINE	153587	Single Cell Mining Claim	Active	17-May-2023	100	400
SYINE	219595	Single Cell Mining Claim	Active	17-May-2023	100	400
SYINE	266048	Single Cell Mining Claim	Active	17-May-2023	100	200
SYINE	338531	Single Cell Mining Claim	Active	17-May-2023	100	400
SYINE	151391	Single Cell Mining Claim	Active	21-May-2023	100	400
SYINE	153574	Single Cell Mining Claim	Active	21-May-2023	100	400
SYINE	207434	Single Cell Mining Claim	Active	21-May-2023	100	400
SYINE	266020	Single Cell Mining Claim	Active	21-May-2023	100	200
SYINE	273450	Single Cell Mining Claim	Active	21-May-2023	100	400

Table 1. Mining Claims of the Fortune Project.

Township / Area	Tenure ID	Tenure Type	Tenure Status	Anniversary Date	Tenure Percentage	Work Required
SYINE	285570	Single Cell Mining Claim	Active	21-May-2023	100	385
SYINE	303948	Boundary Cell Mining Claim	Active	21-May-2023	100	200
SYINE	320039	Boundary Cell Mining Claim	Active	21-May-2023	100	200
SYINE	322168	Boundary Cell Mining Claim	Active	21-May-2023	100	200
SYINE	115452	Boundary Cell Mining Claim	Active	11-Jul-2023	100	200
SYINE	115453	Boundary Cell Mining Claim	Active	11-Jul-2023	100	200
SYINE	115454	Boundary Cell Mining Claim	Active	11-Jul-2023	100	200
SYINE	151376	Single Cell Mining Claim	Active	11-Jul-2023	100	400
SYINE	151377	Single Cell Mining Claim	Active	11-Jul-2023	100	400
SYINE	207415	Boundary Cell Mining Claim	Active	11-Jul-2023	100	200
SYINE	226307	Single Cell Mining Claim	Active	11-Jul-2023	100	400
SYINE	226308	Boundary Cell Mining Claim	Active	11-Jul-2023	100	200
SYINE	273426	Boundary Cell Mining Claim	Active	11-Jul-2023	100	200
SYINE	273427	Boundary Cell Mining Claim	Active	11-Jul-2023	100	200
SYINE	273428	Boundary Cell Mining Claim	Active	11-Jul-2023	100	200
SYINE	320025	Boundary Cell Mining Claim	Active	11-Jul-2023	100	200
SYINE	322147	Boundary Cell Mining Claim	Active	11-Jul-2023	100	200
SYINE	322148	Boundary Cell Mining Claim	Active	11-Jul-2023	100	200
SYINE	322149	Boundary Cell Mining Claim	Active	11-Jul-2023	100	200
SYINE	115455	Boundary Cell Mining Claim	Active	15-Jul-2023	100	200
SYINE	115456	Single Cell Mining Claim	Active	15-Jul-2023	100	400
SYINE	128695	Boundary Cell Mining Claim	Active	15-Jul-2023	100	200
SYINE	147104	Single Cell Mining Claim	Active	15-Jul-2023	100	200
SYINE	147105	Single Cell Mining Claim	Active	15-Jul-2023	100	166
SYINE	199402	Boundary Cell Mining Claim	Active	15-Jul-2023	100	200
SYINE	207416	Boundary Cell Mining Claim	Active	15-Jul-2023	100	200
SYINE	273425	Single Cell Mining Claim	Active	15-Jul-2023	100	400
SYINE	273429	Single Cell Mining Claim	Active	15-Jul-2023	100	400
SYINE	273430	Single Cell Mining Claim	Active	15-Jul-2023	100	400
SYINE	322150	Single Cell Mining Claim	Active	15-Jul-2023	100	400
SYINE	334328	Boundary Cell Mining Claim	Active	15-Jul-2023	100	200

On June 8, 2023, two claims under relief from forfeiture were re-instated by Order MIL 17-5 40/23 by the Minister of Mines and provided with an extended due date of September 17, 2023 to perform or apply assessment work. These two claims replace Alienation W/TB 89/23 in Figure 2.

Tenure ID	Original Due Date	Extended Due Date	Next Due Date
151374	2023-05-17	2023-09-17	2024-05-17
285551	2023-05-17	2023-09-17	2024-05-17

Alto Ventures Option Agreement

Sanatana optioned the Empress Project from Alto Ventures on February 3, 2017, and the deal was amended in June 2019. The Company paid cash of \$75,000; issued 4,200,000 common shares; issued 1,000,000 warrants to purchase common shares at a price of 0.10 for a period of three years, reimbursed exploration expenses of \$20,000, and incurred \$150,000 in exploration expenditures.

Sanatana reports that it fulfilled the terms of its option to acquire the Empress Property in its Management Discussion and Analysis for the Period Ended December 31, 2019.

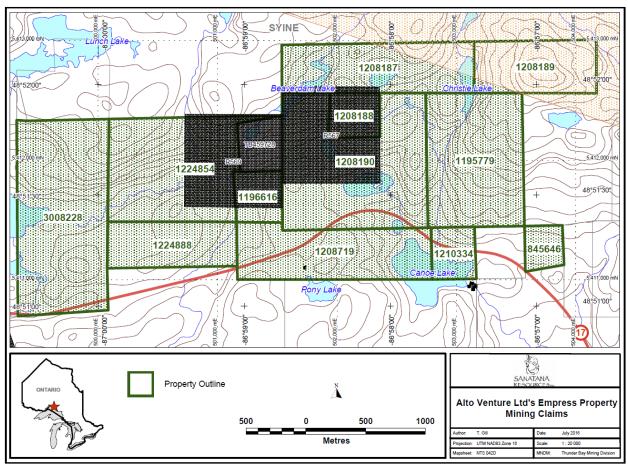


Figure 3. Alto Ventures Empress Property Map showing legacy claims and Surface Rights Owners.

The Empress Property is subject to the following royalty:

- (a) Pay a net smelter return ("NSR") royalty on metals of 1% to Alto, for which a 2% NSR royalty already exists in a previous assignment agreement and which royalty has an option to be reduced to 1% for cash payment of \$1,000,000.
- (b) Pay an additional NSR royalty to Alto of 0.33% on any new property acquired within the area of interest contemplated in the option agreement.

Surface Rights Owners

There are two Surface Rights Owners (SROs) on the Empress Project (Figure 4) known as Mining Location R 569 and R 567 each held by different owner(s). These properties occupy the central part of the Empress Project. Sanatana has notified SROs in the past.

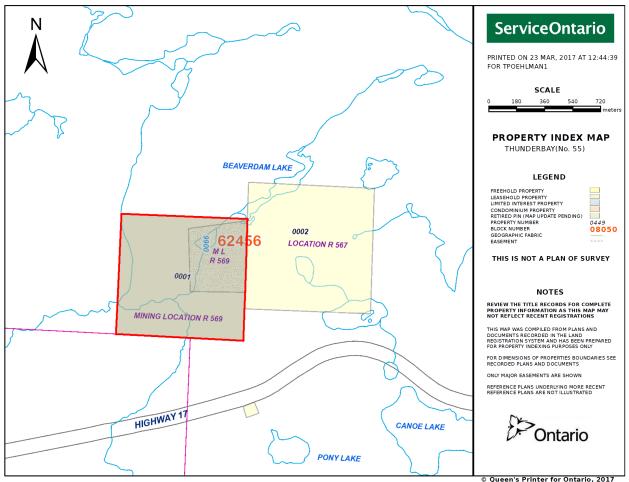


Figure 4. Surface Rights Owners that overlap Empress Project.

Permitting

Sanatana was granted Exploration Permit PR-17-11157 in 2018 and this permit expired on April 22, 2021. A delay resulted from one local First Nation community, but eventually the exploration permit was granted. Receipt of the Exploration Permit prompted Sanatana to prepare for drilling in 2018 and conduct a drill program in 2019, described herein.

Sanatana had correspondence with Biigtigong Nishnaabeg and Metis Nation prior to 2019, and talk between parties since that time is unknown. Sanatana has not applied for a new exploration permit but may do so in future.

Flagging on Beaverpond Lake trail and fresh martin boxes indicate an active trapline is present on the Empress property.

Regional Geology

Geologically, the Empress property lies within the Wawa terrane of the Superior province of the Canadian Shield, specifically the metavolcanic/metasedimentary Schreiber-Hemlo greenstone belt. The belt is known for its namesake Hemlo gold operations (Barrick Gold Corporation) and similar geological and structural targets analogous to Hemlo exist in the supracrustal greenstone rocks of the Empress Property.

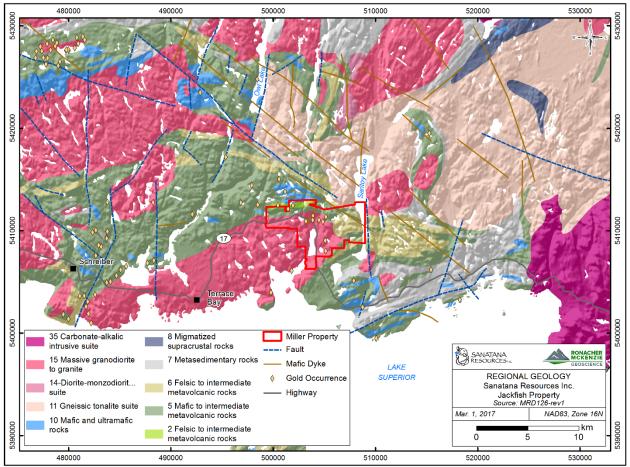


Figure 5. Regional Geology of Sanatana's former Jackfish Project (from Ronacher, 2017)

The Schreiber portion of the belt is about 70 km long and 25 km wide, and the Empress Property occupies a portion of this belt that is within the northern limb of a large, regional anticlinal fold referred to the Big Duck volcanic belt by Walker (1967) which is cored by the Crossman Lake Batholith.

Volcanic rocks of the Schreiber-Hemlo belt consist of calc-alkalic pyroclastics, breccias, tuffs, flows, porphyritic flows, schists and gneisses, iron-rich tholeiites, pillowed and massive flows, tuffs, schists and gneisses. Metasedimentary immature clastic sediments include graded turbidites, mudstone schists, paragneiss, minor conglomerates and iron formation. Numerous intermediate to felsic plutonic rocks intrude supracrustal rocks like the Terrace Bay batholith which dominates the southern part of the Empress Property. This intrusive complex, locally known as the Jackfish Lake batholith consists primarily of granite to granodiorite, and some dioritic phases.

Proterozoic rocks include diabase dikes and sills, lamprophyre, and to the east the Coldwell Complex, a large intrusion of alkalic and carbonate rocks.

Metamorphic grade of the Schreiber-Hemlo belt generally increases from lower-greenschist in the west to amphibolite-grade and upper-amphibolite facies to the east. Walker (1967) mapped an epidote-amphibolite/amphibolite isograd that extends around an eastward fold closure of a large anticline that coincides with the location of both Ursa Major and Empress historical gold deposits.

Structurally the Schreiber-Hemlo belt has undergone at least four periods of deformation. Ductile folding is prevalent in association with late, granitic intrusive rocks. Faulting is a prominent feature of the landscape, and ductile shear zones are common, sometimes hosting gold mineralization.

Property Geology

A folded and foliated sequence of metavolcanic basalts and felsic flows and tuffs intercalated with narrow cherty metasediments that trend roughly east-west and occupies the eastward fold closure of a regional anticline with a core of intermediate intrusive rocks that are north of the syn-tectonic Terrace Bay pluton, which occupies the southern half of the Empress property.

East -trending mafic to intermediate composition flows and tuffs that exhibit weak to moderate foliation which is defined by biotite and/or chlorite. South-younging pillows and related sediments have been mapped in the eastern part of the Empress Property. The dominant mineral assemblage of these rocks consists of plagioclase-quartz-biotite-chlorite. Epidote and hornblende are present, but rare and red garnet is sometimes present in mafic rocks. The alteration assemblage includes iron carbonate (ankerite) and chlorite, sometimes accompanied by pyrite that does not exceed 2% of rock volume.

Mafic to intermediate intrusive rocks include gabbro, diorite, and blue-quartz eye diorite. Composition is melanocratic, coarse-grained, massive to poorly foliated and consists of plagioclase-K-feldspar-hornblende-chlorite. Blue quartz eyes up to 3 mm occupy 2-3% of rock volume in blue-quartz diorite, and the intrusive is weakly mineralized with trace pyrite. Petrographic work suggests the blue quartz-eye diorite is a differentiate of gabbro, suggesting mafic to intermediate rock types are closely related. A narrow sliver of graphitic quartz-sericite schist that extends almost continuously for 800 m along the contact between the Empress structure and mafic volcanics to the north. This argillaceous metasediment is 2-5 m thick, rusty brown to black, strongly sheared and oxidized and consists of alternating bands of quartz to quartz-sericite, sericite-graphite +/- biotite, pyrite, and carbonate.

Other metasediments mapped on the Empress Property include juvenile chert, siltstone, and locally banded iron formation that are intercalated with massive to pillowed basaltic lava flows.

The Empress Structure is a major deformation and alteration zone with a corridor of influence 50m wide (15-25 m at its core) that can be traced across the entire property from Empress Mine to Christie Lake, some 1.8 kilometres (Figure 6). The east-trending 20-30 m thick ductile deformation zone favours cherty metasediments within basaltic massive, amygdaloidal, and pillowed lava flows.

Biotite and sericite are dominant phyllosilicates that occupy 20-30% of rock volume and define prominent foliation at 068-40 (RHR) locally. The zone is locally fine-grained, mylonitic, strongly altered with silica and sericite, and commonly cut by laminated quartz shear veins that can be overprinted with folded sigmoidal quartz-feldspar veins within the deformation zone. Quartz veins are four metre-scale locally, and the schist associated with veining contains sericite, chlorite, carbonate, and quartz.

The Empress Structure and related quartz veins are locally strongly mineralized with pyrite, chalcopyrite, galena, sphalerite, and rare VG. The quartz vein system is exposed at numerous stripped areas, with trenches 10-20 m in length that returned gold assays in Empress Area 6E area as high as 0.478 oz/t Au with an average 0.137 oz/t Au from 17 grab and chip samples (Needham, 1996).

Intermediate to felsic hypabyssal rocks include felsite dikes and feldspar porphyry, that occur as narrow, < 2 m thick dikes most common near the Empress structure. These intrusive rocks deform to mylonite in the Empress structure and are sometimes confused with leucocratic volcanic and sedimentary rocks. A lamprophyre dike is present in stripped area 1E, and lamprophyre is reported in drill logs from holes that tested the Empress Structure.

Figure 6. Empress Property Geology and Empress Structure (from Koziol, 2008).

Mineralization

The exploration target on the Empress property is Archean greenstone-hosted orogenic gold (previously referred to as lode gold or shear zone hosted gold). The Empress Structure, so named after the main trend of historical gold mineralization mined in the late 1800's at the Empress Mine is a deformation corridor up to 50 metres wide that strikes about 070° Azimuth with variable dip from -90° to -40° to the south for over 1.4 kilometres east-northeast of the old Empress mine.

Cameco Gold Inc (CGI) conducted a comprehensive exploration program exploring the Empress Structure that involved, stripping, channel sampling and re-logging and re-sampling of some 1800m of historical drill core completed by Micham Explorations (1984 and 1987). The names of various gold showing and areas of interest relate to the metric grid cut over the property. The origin of the grid (BL 0+00) is the shaft of the Empress Mine, and the grid extends at 54° Azimuth east of the origin, and 56.6° Azimuth west of the origin. The original grid was cut in 1997 for Landis Mining Corp. and McArthur Minerals Inc. in July of 1997. CGI extended this grid to the west, adding 16 lkm.

Recently GPS derived UTM co-ordinates have taken over field locating mineral showings, so for the benefit of those unfamiliar with line cutting grid co-ordinates, 10 + 75E would translate to 1075 m grid-east (at 054° Azimuth) along the baseline from the baseline origin. Wing lines cut perpendicular to the baseline at 100 m centres are measured similarly grid-north or grid south, for example, L 10 E / 5 + 75 N is a point on the wing line 575 m grid north (Azim 324°) of the baseline along line 10+00 E, which is 1000 m grid east (Azimuth 054°) of the base line origin 0+00.

Samson (1999) provides a very good, firsthand description of the Empress Structure:

"The emplacement of the Empress Structure is defined by field observations during mapping, from historical drill core, and is also interpreted by geophysical signatures such as combined VLF, ground magnetics, and IP data (from previously filed assessment work). The deformation is characterized by a moderate to strong shear zone hosted by quartz-sericite schist, interflow sediments and mafic volcanic rocks, associated with mesoscopic folds, strong alteration (mainly silicification and sericitization), quartz veining, various dykes, and sulphidization. Shearing within this deformation zone appears slightly obligue to stratigraphy in places, and strikes at approximately 070 degrees, with fabrics dipping south at highly variable angles from subvertical to less than 50 degrees. Asymmetrical to complex folds were observed, and at least some of the fold closures observed at stripped area 6+00E suggest a gently plunging component to the fold axes towards the east-northeast, at 18 to 34 degrees. The presence of boudinaged quartz veins, and dismembered to folded sedimentary beds including late intrusive rocks, are all indicative of the strong intensity and prolonged activity of the deformation event. The petrographic examination of samples collected from the Empress Structure showed no evidence of mylonitization, but intense deformation, micro-folds, and even "tectonized" fabrics have been described" (Samson, 1999).

Alto Ventures conducted structural mapping east of the old Empress Gold Mine at Section 1E found a few fold closures with reliable plunging lineation rods oriented at 105° to 115°

Azimuth and plunging 043°. At Section 2+50E structural intensity is lower than 1E where an axial fold was measured at 050° Azimuth with -43° plunge, and lineations measured at 085° Azimuth and -42° plunge. At Section 6E an axial plane of a fold was measured at 085° Azimuth and -42° plunge and lineation rods measured at 125° Azimuth and -42° plunge. At Section 15E deformation and alteration is diminished compared to areas to the west, and no significant structural measurements were obtained other than two sets of micro-quartz veins with strike 082° Azimuth and -43° dip and 200° Azimuth and -70° dip respectively (Koziol, 2006).

CGI cut several rows of semi-continuous channel samples (84 samples) that returned anomalous gold (> 5 ppb Au) over the entire 40 m stripped zone, with anomalous gold within quartz-sericite schist of the Empress Zone. Values obtained from 1999 CGI channel sampling were 2.24 g/t Au and 1.39 g/t Au over 0.45 m. CGI obtained a grab sample in Area 1E that returned 66.93 (42.43 repeat) g/t Au, and historical samples from this area returned 114 g/t Au according to assessment files.

CGI re-logged and re-sampled 12 drill holes (1800 m) from Micham (1984 and 1987) drilling and obtained anomalous gold values > 100 ppb Au in all drill holes but one. Most drill holes were shallow, sampling the Empress zone < 100m vertical depth. Observations of drill core was consistent with those at surface and intercepts suggest the Empress Zone has a shallow dip to the south.

CGI re-sampling of Hole 84-7 averaged 480 ppb Au over 41 m including 2.53 g/t Au over 7.62 m compared favourably to Micham's assay of 1.52 g/t Au over the same 7.62 m interval. Micham's drill hole 84-8 undercut this zone at 50 m vertical depth and returned a single historical assay of 44 g/t au over 0.6 m (Simunovic, 1987) that could not be re-sample by CGI as this core was missing from the core library.

Empress Area 1E

CGI stripped an area 50 m x 40 m to better expose four historical trenches dug in the 1930's. The Empress zone here is a 15m wide zone of intensely deformed and altered quartz-sericite schist bound by massive, weakly to moderately foliated mafic lava flows that are weakly carbonated. To the north is a 6m thick sequence of dark grey to black argillite schist that is locally graphitic, moderately chloritized interpreted to be former interflow sediments. The sediments grade southward to quartz-sericite \pm biotite \pm carbonate schist, 8-10 m thick that is highly sheared, deformed, silicified, and sericitized and accompanied by pervasive quartz \pm iron-carbonate stockwork veins. The rocks are weathered light grey to beige, to rusty brown, are locally strongly oxidized, and contain <1-2% pyrite up to 15% locally, and traces of chalcopyrite (Samson, 1999).

Empress Area 2E

A small 5m x 2m stripped area exposed strongly altered and deformed diorite dike that are bleached to grey-white with rusty patches and a narrow (<1m) quartz-sericite schist with irregular quartz veinlets and stringers (2-3%) with less than 1% pyrite as wispy disseminated grains. Five grab samples here returned < 20 ppb Au.

Empress Area 2+50E

CGI stripped a 3 x 25 m area and exposed an 18 m wide zone of highly sheared and rubbly sediments intermixed with narrow quartz-sericite-carbonate schist units and several bleached, light brown to beige, locally oxidized gabbro to diorite dikes that become strongly sheared, deformed and folded over a 5 m interval near the centre of the Empress Zone. Quartz veins here are bull white and unmineralized. CGI collected 27 channel samples here and three samples returned > 100 ppb Au, with the highest assay 725 ppb Au over 1.10 m from quartz-sericite schist with pervasive, narrow quartz-carbonate-hematite stringers with 2% pyrite and trace sphalerite.

Micham's drill hole 87-9 obtained 8.07 g/t Au over 0.52 m 65 m beneath the trenches and drill hole 87-10 returned 2.33 g/t Au over 0.6 m 98 m below surface, suggesting the Empress Zone may improve with depth here (Simunovic, 1987).

Empress Area 6E

In 1999 CGI stripped an area 4-15 m wide and 60 m long over >5 very old trenches where the Empress structure is >25m wide and is characterized by strong silicification and sericitization, mafic to intermediate dikes, quartz veining, strong shearing and folding with 1-5% sulphides, consistent elevated gold, and trace amounts of chalcopyrite, galena, sphalerite and rare molybdenite.

Cameco Gold Inc. completed 86 channel samples and collected 9 grab samples (1999) at Area 6E with 42 samples returning > 100 ppb Au including 17 samples > 1 g/t Au up to 15.52 g/t Au. A continuous interval could not be excavated, and the best interval returned 5.31 g/t Au over 2.80 m including 10.75 g/t Au over 0.80 m.

Alto Ventures later conducted more channel sampling that returned an interval of 16.2 m @ 1.3 g/t Au hosted by quartz-sericite schist with quartz veining and disseminated pyrite.

The gold mineralized interval is co-incident with a high chargeability and conductive IP geophysical anomaly to a 75 metres depth.

Empress Area 8 +25 E

CGI stripped an 8 x 2 m area exposing weak to moderately silicified mafic rocks that grade into strongly sheared metasediments that are weak to moderately silicified, carbonatized, chloritized with traces of hematite locally, 1-5% pyrite locally as disseminations, fine seams and stringers. Five channel samples were cut and the best gold assay obtained was 80 ppb Au over 0.8 m.

Express Area 9E

CGI stripped a 50 x 3 m area just south of the baseline exposing weak to locally strongly sheared, weakly altered mafic volcanic rocks and moderately to strongly sheared grey-green to brown argillaceous sediments with 1-3 % pyrite and trace sphalerite to the north. At the Empress Zone sediments are more quartz-rich and transition to quartz-sericite schist with narrow mafic to felsic dikes that are semi-conformable to stratigraphy. The Empress Zone is more spread out here, with local discrete zones of strong shearing with rare quartz veins. CGI cut 41 channel samples and collected 2 grab samples that commonly returned > 5 ppb Au but significant values > 100 ppb Au are isolated and scattered across a 23 m interval. One 3m zone returned assays from 190 ppb Au to 3.10 g/t Au over 0.80 m. Similar rocks 12 m south returned 2.74 g/t Au over 0.40m. A polished grab sample (#1914) from here returned 3.12 g/t Au and contains various rock fragments in a matrix of oxy-hydroxide mineralized with sphalerite, chalcopyrite, galena, magnetite, pyrite and molybdenite.

Empress Area 10+75E

CGI stripped an area 2 to 8 m wide x 40 m long about 75 m south of the baseline over a few old trenches where a quartz vein exposed in a stream bed was known to contain pyrite and trace chalcopyrite and galena. Geology is similar to Area 9E, but more intensely sheared, altered and mineralized. The central area (Empress Zone) is rubbly and oxidized with strong shearing over 18 m interpreted to be mafic to intermediate rocks altered to quartz-sericite schist that is carbonatized and accompanied by minor quartz veining and up to 5% pyrite in blebs. CGI collected 33 channel samples and 2 grab samples defining a 12 m wide section with 2-5% pyrite, pervasive quartz stringers, and minor (<40 cm) quartz veining that consistently assayed > 100 ppb Au. The best channel sample returned 0.79 g/t Au over 0.7 m.

OGS till sampling here returned outstanding results of > 1000 pristine gold grains (Morris, 2000) and CGI followed up with 6 bulk tills (10-20 kg) in a 50 m by 25 m grid up-ice of the Empress Zone, and the highest value obtained was 6 gold grains. CGI determined that the OGS till sample taken 15m down-ice from the Empress Zone, which is likely the sole source of the >1000 gold grains of the outstanding OGS sample.

Empress Area 15E

CGI stripped an area 6 m x 65 m targeting two lineaments that line up with the Empress last exposed at 11E. Pillow basalts with amygdules are moderately stretched and tops were determined to be younging south. Metasediments exposed occupy a deep topographic depression on the north side of a steep slope for about 15 m and are various shades of brown, beige and grey, fine-grained and siliceous. A couple mafic to felsic dikes are also present. CGI collected 31 channel samples and 3 grab samples (1999) that indicated no significant gold anomalies with the highest assay returning 15 ppb Au over 0.65 m.

Empress Zone west of the Empress Mine

The Empress structure was also traced for 1500 m west of the old Empress Gold Mine. The chemical sediment horizon diminishes in width and intensity, with less quartz veining to the west and is offset by a brittle N-NW trending fault at a creek then continues west towards the Zlatco Prospect that returned 300 – 1200 ppb Au from grab samples (Koziol, 2006).

Creek Showing

The creek showing that occurs near a creek that runs southward from Empress Hill at 5+85W/7+15N, consists of a highly gossanous and brecciated horizon, 1.5 m wide that is strongly silicified and carbonatized with a quartz stockwork and 2-5% pyrite, trace chalcopyrite and fine disseminated magnetite. The area was hand-stripped across 5 m and five grab samples collected returned 185 – 300 ppb Au. This zone may be co-incident with a 2 km long siliceous graphitic iron formation previously mapped by Walker (1967).

Zlatco Showing

CGI mapped some very old trenches near 12+45W/5+75N and sampled a mafic volcanic with 50% quartz stringers and 2-4% disseminated to stringer pyrite and trace chalcopyrite that returned 6.7 g/t Au, and a second sample of schistose silicified mafic rock with 1% pyrite and trace chalcopyrite returned 2.3 g/t Au. This showing may represent the Empress Zone about 900 m west of the old Empress Gold Mine.

CGI trenched the Zlatco showing in 2000 exposing massive to strongly foliated dark green mafic volcanics. The zone of shearing and quartz carbonate stringers is mineralized with trace pyrite in cubes and disseminated magnetite, confined to a narrow 2.5 m interval with sharp contacts, and the quartz-carbonate vein is 28 cm wide and contained 2 grains of chalcopyrite. CGI collected 12 channel samples and obtained a grab sample that returned 5.3 g/t Au and one channel sample that returned 244 ppb Au over 1.0 m.

Exploration Targets

Orogenic Gold Deposits

Orogenic gold deposits are the most dominant source of gold, globally. The majority of gold deposits in metamorphic terranes are located adjacent to first order, deep crustal fault zone with complex structural histories that may extend for hundreds of kilometers, with widths up to a few thousand metres. Fluid migration along such zones is driven by episodes of major pressure fluctuations during seismic events, and gold ore forms as vein fill of second or third-order shears and faults, particularly at jogs or changes in strike. Mineralization style ranges from stockworks and breccia sones in shallow-brittle regimes, through laminated crack-seal veins and sigmoidal vein arrays in brittle-ductile crusty regions, to replacement-and disseminated-type orebodies in deeper, ductile environments.

World-class orebodies are generally 2-10 km long, about 1 km wide and are mined down-dip to depths of 2-3 kilometres. Most orogenic gold deposits contain 2-5% sulphide minerals, and have gold-silver ratios from 5-10, and gold fineness >900. Arsenopyrite and pyrite are the dominant sulphide minerals, with pyrrhotite dominant in higher temperature ores. Tungsten, bismuth, and tellurium bearing mineral phases are common in sulphide-poor intrusion related gold deposits. Alteration intensity, width and assemblage varies with host rock, but carbonate, sulphides, muscovite, chlorite, K-feldspar, biotite, tourmaline, and albite are generally present.

Most deposits of this ore style are sited in ductile to brittle structures, have proximal alteration assemblages of Fe sulfide-carbonate-sericite +/- albite in rocks of appropriate composition to stabilize the assemblage and were deposited at 300° to 500° C and 1–3 Kbar, as indicated by fluid inclusions and other geothermobarometric studies. They are vertically extensive hydrothermal systems with possibility >5km of depth extent. Structural permeability preparation is also key. Deposits probably occur on splays from regional decollement thrust structures with a strike slip component, during peak metamorphism and post peak (mountain building). Syn- and post- tectonic intrusions may play a role in the plumbing and metal components, but they are not required and may be blind (buried beyond detection).

TEN COMMANDMENTS FOR OROGENIC GOLD (Prof. David Groves, CET Discovery Day Presentation)

- 1. Widespread gold anomalism
- 2. Low-strain belts and restricted high-strain shear zones
- 3. Anticlinal zones in volcano -sedimentary belts
- 4. Competency and composition contrasts
- 5. Prominent curvilinear crustal-scale shears zones
- 6. Prominent jogs of 10-15 degrees in strike variation
- 7. Corridors of oblique faults
- 8. Complex Granite contacts
- 9. More Complex Geometry at sites of gold deposits
- 10. Support Board, shareholders, management.

Adjacent Properties

Empress Gold Mine

Mining Lease ML 569 covers the old Empress Gold Mine, which is on adjacent land north of Sanatana's Empress Project.

Empress Gold Mining Company sunk various test shafts, adits and pits on a series of goldbearing veins from 1895-1899. A total of 112 ounces of gold were produced from 1100 tons of ore with an average grade of 0.1 oz/t or 3.5 g/t Au. Operations were eventually shut down in 1899 due to lack of funds (Schnieders, 1996; Puumala, 2015).

Ursa Major Mine

The Ursa Major Mine, staked in 1896 by Jackfish Bay Syndicate Mining Company Ltd., was worked in 1898 when a small workforce completed a 72 m long trench and sunk the #1 shaft to about 37 m depth. In 1901 assays from the Lizard vein (100m north of Ursa Major) reported better Au and Ag values so a second shaft was sunk here to 37 m. Work continued between the two shafts. An adit is also reported at historical mine workings.

In 1919, a prospector known as Captain Pickett returned from Ursa Major with samples of pyrrhotite-bearing gabbro that assayed high platinum, likely several ounces per ton with prior reports of 3-10 ounces Pt per ton.

Previous Work

Exploration near the Empress Property started at the end of the 19th century sparked by the discovery of the Empress Mine in 1895 (Walker, 1967) in metavolcanic rocks of the Schreiber-Hemlo Greenstone Belt just north of the Terrace Bay Batholith.

Government surveys completed in the area include geological mapping (Walker, 1967). Regional magnetic and radiometric surveys were flown by the GSC in the 1960's east of the property. In 1983 a thorough compilation of all mineral showings between Nipigon and Marathon was conducted by OGS (Schneiders, 1986). OGS also conducted Quaternary mapping and sampling, most recently in 1993 to assess diamond potential of the Trans-Superior Tectonic Zone (Morris, 1999). In 2000, OGS completed airborne magnetic and electromagnetic surveys of the Schreiber-Terrace Bay area as part of Operation Treasure Hunt (OTH Schreiber Survey Map 1104).

Relevant historical industry mining and exploration work conducted on the property, mostly sourced from assessment reports filed with the Ministry of Energy, Northern Development and Mines, is summarized in Table 2.

Year	Company	Type of Work	Results	Assessment Report #
1882	Elgin Silver	Underground mining from 2 adits	No production data	42D15SW8353
1932	Siville-Ferrier Syndicate	Stripping, sampling	Up to 10.29 g/t Au over 0.91 m	42D15SW8353
1982	Micham Explorations Inc.	Magnetic and electromagnetic (VLF) surveys	No magnetic anomalies; several weak to moderate conductors	42D14SE1074
1983	Rose Resource Corp.	Magnetic and electromagnetic (VLF) surveys	10 EM conductors and no significant magnetic anomalies	42D15SE0128
1983	Wasabi Resources	Airborne magnetic and EM (VLF) survey	Identified 6 EM conductors	42D15SW0088
1983	Wasabi Resources	Ground proofing of airborne EM conductors	All 6 conductors sulfide iron formation with no Au values	42D15SW0066
1984	John Ferguson	Magnetic and electromagnetic surveys	No significant mag; 2 weak VLF anomalies	42D15SW0121
1984	Goldhurst Resources	Magnetic and electromagnetic surveys	No significant mag; 11 very weak EM conductors	42D15SW0116

Table 2.	Previous	work ne	ar the	Empress	Project.

Year	Company	Type of Work	Results	Assessment Report #
1984	Goldhurst Resources	Drilling, 4 drill holes; total 305.1m (1001 feet)	Drill hole 84-04: 2.87 g/t Au over 2.44 m including 6.07g/t Au over 0.91m and 0.96g/t Au over 1.22m	42D15SW0118
1985	Micham Explorations Inc.	Mapping, trenching, sampling (58 rock samples)	Highest assay 13.54 g/t Au in quartz vein at N Siville showing outside of Jackfish claims	42D15SW0114
1985	Micham Explorations Inc.	Soil sampling (1521 samples)	Two anomalous areas: Empress structure W Siville showing; Mocan valley structure	42D15SW0115
1985	Micham Explorations Inc.	Diamond drilling 4 drill holes 482.9m (1584.2 ft)	Highest assays 1166 ppb Au over 1.52m; 1588 ppb Au over 1.83m, 44.23 g/t Au over 0.61 m	42D15SW0117
1986	John Ferguson	Stripping, de-watering, trenching; sampling	Highest assay 13.03 g/t Au; 4,075 g/t Ag	42D15SW0504
1986	John Ferguson	Magnetic and electromagnetic surveys	No significant results	42D15SW0111
1987	John Ferguson	Soil sampling	No significant results	42D15SW0106
1987	Forerunner Resources	Mapping, stripping, trenching, sampling	Highest assay 93.24 g/t Au; 109.03 g/t Ag; 1.2% Cu; 7.85% Pb	42D15SW0505
1987	Micham Explorations Inc.	Diamond drilling 10 drill holes 1674m	No assays recorded	42D15SW0109
1988	Beardmore Resources	Trenching, soil sampling, bedrock sampling	Highest assays: 21.05 g/t Au plus 13.3 g/t Ag and 11.45 g/t Au plus 0.2 g/t Ag	42D15SW8353
1989	J.R. Hamel	Sampling	Highest assay 93.26 g/t Au, 82.79 g/t Ag	42D15SW0110
1991	J.R. Hamel	Stripping and sampling	Highest assay 21.05 g/t Au and 26.06g/t Ag	42D15SW0102
1992	Beavercreek Exploration (J.R. Hamel)	Drilling 2 drill holes 28.04 m (92 ft)	Highest assay 12.21 g/t Au over 1.52 m	42D15SW0002
1994	Beavercreek Exploration (J.R. Hamel)	Drilling 5 drill holes 45.1 m (148 ft)	Best result: 0.51 g/t Au over 3.05 m	42D15SW0001
1995	George Daniels et al.	Stripping, trenching, sampling, line cutting, VLF survey	16.39 g/t Au on claim #1207882 Santoy Lake; 15.77 g/t Au Syine Twp. Historic claim #1224852	42D15NW0009
1996	Big Lake Geological Consulting on behalf of J. Ferguson	Mapping, sampling	Highest assays from trench 14.3 g/t Au and 16.39 g/t Au	42D15NW0038
1996	George Daniels	Prospecting, stripping, trenching	Highest assays from trench 21.94 g/t Au	42D15NW0028
1996	Rudolph Wahl et al.,	Rock sampling (100 samples); soil sampling	No significant results	42D15SW0008
1997	Landis Mining Corp.	Evaluation of previous exploration activity in the area	20 lb composite grab sample: 22.97 g/t Au over 3.05 m from Empress structure	42D15SW2002
1998	George Daniels	Sampling	Highest assays from Jon's showing 1.45 g/t Au	42D15SW2003
1999	Cameco Gold Inc.	Line cutting; mag., IP; trenching; re-logging & re- sampling	DDH 441087-9: 8.07 g/t Au; 93.8 g/t Ag over 0.52 m; DDH 44184-7: 7.09 g/t Au; 19.8 g/t Ag over 1.4 m	42D15SW2010
2000	George Daniels	Trench cleaning, minor blasting	No results	42D15SW2013
2004	Brian Fowler	Line cutting; mag; prospecting, sampling (21)	Highest assay 324 ppb Au	42D15SW2024
2005	Phoenix Matachewan Mines	Prospecting sampling (19 rock samples)	Highest assay 262 ppb Au	20000001155
2007	Wayne Richards	Prospecting, mapping, stripping, sampling (4 samples)	No Au assays; two samples >100 g/t Ag	2000003831
2007	Alto Ventures Ltd.	Mapping, prospecting and sampling (47 rock samples)	Highest assay 2,278 ppb Au	2000002005
2008	Alto Ventures Ltd.	Drilling 2 drill holes 332 m on Empress structure	0.66 g/t Au over 2.3 m	2000003772
2009	Rudolph Wahl	Prospecting, mapping, sampling (22 samples)	No significant results	12000004525

Year	Company	Type of Work	Results	Assessment Report #
2010	Galahad Metals	Soil sampling (619 samples), mapping trenching, sampling (89 samples)	26.8 g/t Au and 119 g/t Ag; 24.7 g/t Au and 40.4 g/t Ag at creek showing	2000005783
2010	Bond et al.	Prospecting, mapping, rock samples (63 samples) and lake sediment samples (7 samples)	309 and 459 ppb Au	2000006073
2010	Bond et al.	Drilling 2 holes 240 m	No significant results	2000006073
2012	Rudolph Wahl	Prospecting, mapping, sampling (30 samples)	1.9 g/t Au sample # 997103	2000007183
2012	Hamel et al.	Prospecting , mapping, sampling (11 samples), diamond drilling	No significant results	20000007081, 2.53866
2014	Alto Ventures Ltd.	Bedrock sampling (21 samples)	No significant results	2000008044
2014	Alto Ventures Ltd.	Assaying and Analyses, Geochemical, Geological Survey / Mapping, Prospecting	No significant results	2000008314
2015	Alto Ventures Ltd.	Geochemical, Prospecting, Rock Sampling, Soil/Till Sampling	Gold grains recovered in 21/23 till samples, KIMs recovered, Low Au in rock samples	20000013949
2016	Alto Ventures Ltd.	Assaying and Analyses, Geochemical, Soil/Till Sampling		20000013750
2017	Sanatana Resources Inc	Air Photo and Remote Imagery Interpretations	Digital surface model	20000017282 & 84
2017	Sanatana Resources Inc	Geoscientific Interpretation Report	Prospect on 070 Azimuth trends	20000017310
2018	Sanatana Resources Inc	Airborne Magnetics and Inversion modelling	New gold showings near contact and within the Terrace Bay batholith	20000019187 & 20000017132
2018	Oren Kravchik	Channel Sampling, Geological Survey / Mapping, Overburden Stripping, Regional or Reconnaissance Ground Exploration	Gold in boudinaged quartz veins, grab samples of 2.62 g/t Au and 7.64 g/t Au, Channel of 0.527 g/t Au over 1.2 meters	20000017109

Historical Work Targeting the Empress Structure

Micham Exploration Inc conducted line cutting, mapping, geophysics, prospecting, rock sampling, trenching and blasting, and core drilling. Micham report following the Empress Structure for 2750 m during a geological mapping and sampling campaign in 1983 noted the Empress Structure was the largest in width and extent on the property (Dadson, 1983). Micham also located and cleaned out several old trenches.

Simunovic (1985) reported soil sampling on Micham's Terrace Bay Property and noted a 2700 m long anomaly with elevated copper, zinc, and gold associated with the Empress structure and West Siville-Ferrier structure. The anomaly has a SW-NE orientation and extends from Line 64W 20S to L24E 12N. Values of 3650 ppb Au, 710 ppm Cu, and 4160 ppm Zn were obtained.

In 1985 Micham reported core drilling of their Terrace Bay property which included 4 drill holes for 483 m. The report includes claim sketches, diamond drill logs, gold assays, and

gold assays of sludge samples collected at 3m intervals. This drill program focused on terrain west of the old Empress Mine.

In 1987 Micham reported core drilling of their Terrace Bay property which included 10 drill holes for 1674 m. The report includes claim sketches, diamond drill logs but gold assays were not provided. This program focused on terrain east of the old Empress Mine. (From Lavigne, 1997)

Sampling by Terry Needham (Big Lake Geological Services) from 4 trenches 350 meters to the northeast, on (legacy) claim 1208188, where Micham has two trenches on their geological map... returned values with a weighed average of 0.10 opt Au over 10' from random chip samples of sericite schist with 5-7% disseminated pyrite and quartz stringers. A grab samples of quartz vein yielded 0.478 opt Au. The average of 17 select grab samples in this area was 0.137 opt Au.

Lavigne collected six samples in 1997 confirm Needham's assays. A 20-pound composite grab sample representing a width often feet in the fourth trench of sulphide bearing quartz vein assayed 22.97 g/t Au. This vein contained 3-5 % pyrite as blebs, and traces to 0.5 % galena as stringers and traces of chalcopyrite. In the third trench, a five-foot chip sample of sericitic, siliceous, pyritic wallrock assayed 2.37 g/t Au. The exposed, across strike width of the pyritic wallrock at this location is 30 meters.

Lavigne noted "the Empress Structure... can be traced for a minimum length of two kilometres... and is well mineralized over widths of 100 meters. The western portion of the structure is well explored but the eastern portion, whose strike length is open to the east, has seen only minimal surface exploration... The Empress Structure is a gold bearing hydrothermal system that has high discovery potential."

(from Sampson, 1999)

In 1999 Cameco Gold Inc (CGI), explored the Empress Property with objective to characterize and further assess the economic gold potential of the **Empress Structure**. Cameco recognized the Empress Structure as a significant corridor of historical economic significance related to previous mining at the Empress Gold Mine. Cameco's objectives were to determine assess gold potential of the Empress Structure and understand alteration, mineralization and controlling factors of the auriferous zone, locate the Empress Structure along strike, and define new gold mineralization targets.

CGI determined the Empress Structure as a moderately to strongly sheared and altered deformation zone, from 15-25m wide that extends for more than 1800 m. The structure follows highly altered interflow sediments that are intruded by several generations of mafic to felsic dikes. The structure is schistose and strongly altered at its core by quartz-sericite+/- biotite +/- carbonate with quartz veining. Mineralization includes up to 15% pyrite in seams and disseminations, and trace amounts of galena, sphalerite and molybdenite.

Sampling by CGI demonstrated the Empress Structure can generate sustained and significant gold values (>100 ppb Au) over widths > 15 m, and that gold assays > 1 g/t Au were obtained at several places along the structure (from L 1+ 00 E to 10 +75 E on CGI grid)

for a strike of 1400 m. CGI obtained a 54.68 g/t Au assay from quartz-sericite schist with pervasive quartz veining, pyrite and trace base metals.

CGI noted the intensity of deformation and alteration, elemental association of Ag, Cu, Pb, Zn, As, and Mo to gold, and widespread distribution of gold within various rock types including late intrusive dikes indicate there were compositionally different, long-lasting pulses of gold mineralization along the Empress Structure capable of producing significant gold ore deposits similar to those present in the Timmins and Hemlo gold camps.

Cameco completed IP and Mag geophysical surveys, 25 lkm of geological mapping and petrography of 28 rock samples. They also completed surface stripping at 8 locations (L1E, L2E, L2+50E, L6E, L8+25E, L9E, L10+75E, and L15E), detail geological mapping and channel sampling (308 channel samples). Channel sampling of the Empress Zone at Trench 6E returned 1.3 g/t Au over 16.2 m (including 5.3 g/t Au over 2.8 m).

Cameco also re-logged historical drill core (Simunovic, 1987) stored at the MNDM core library in Thunder Bay. In total, Cameco relogged 12 holes for 1800m and quartered historical split BQ core collecting 532 samples. Geologists also relocated historical collars in the field and estimate Micham's re-positioned collars at +/-15 m accuracy on their maps.

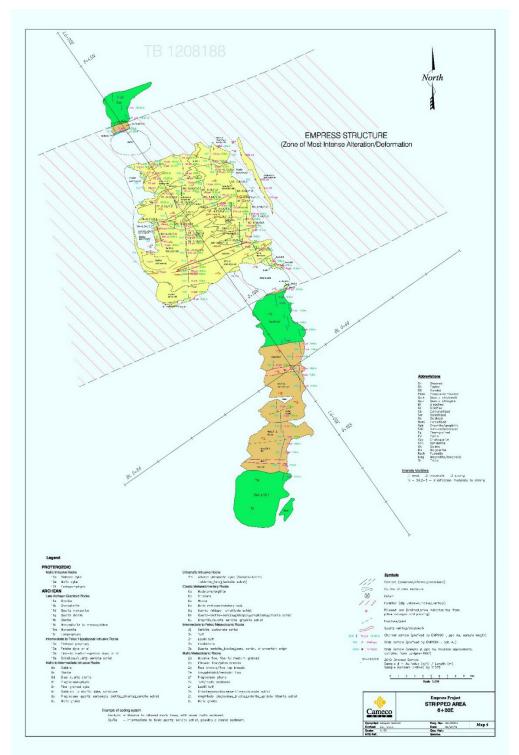


Figure 7. Cameco Surface Stripping and Sampling Section 6E.

(Morris, 2001) During a geochemical orientation survey till sample **488-TM-99 contained 1,093 pristine gold grains** and was collected up-ice from a modern alluvium sample 486-TM-99 contained 389 gold grains, returned 488 ppb Au from B-horizon soil, and 216.8 ppb Au from C-horizon soil. The two samples were collected near **Cameco's stripped area 10+75E** according to McCracken (2000).

Sample	U.T.M.		Gold Grain Types and Totals				
No.	Easting	Northing	Total	Reshaped	Modified	Pristine Gold	
466-Ma-99	501638	5411791	0	0	0	0	
483-Ma-99	502491	5412367	391	1	1	389	
490-Ma-99	500558	5411492	0	0	0	0	
492-Ma-99	500665	5411589	2	2	0	0	
471-Tm-99	501518	5411772	2	0	0	2	
476-Tm-99	501633	5411918	4	3	0	1	
481-Tm-99	502137	5412198	1	1	0	0	
488-Tm-99	502545	5412302	1096	3	0	1093	

Dr. Tom Morris (2000) collected a rock sample from Empress Hill described as siliceous sericite schist with a goethite/pyrite mineral assemblage that produced **14 modified and 237 gold grains**. 98% of the sample's mineral fraction consisted of pyrite. The location of this rock sample is unknown but presumed to also be from Cameco's stripped area 10 + 75 E.

In 2006 Alto Ventures examined key exposures of the Empress Structure east of the old Empress Gold Mine to determine if there are plunge trends that control gold mineralization within quartz veins and shear zones and to determine if prior drilling by Micham Exploration (Samson, 1999) had adequately tested mineralization. Alto also conducted prospecting and mapping west of the old Empress Gold Mine and prospected each of Cameco's historical IP anomaly trends. Koziol (2006) recommended drilling five holes for 600 m with the first hole undercutting Empress Trench 6E with another hole on either side at 25 m spacing to determine the plunge of gold mineralization, followed by 2 to 3 drill holes targeting gold mineralization at depth.

In 2008 Alto Ventures drilled two NQ core holes to test the Empress Structure at 100m centres just east of Empress Mine Patent on sections 1E and 2E (Azimuth 332.5°).

EMP08-01 cut mafic volcanic flows and fine-grained gabbro with finely-bedded clastic sediments and cherts prior to cutting the Empress structure from 104.0-124.46 m depth, described as finely-laminated cherty rocks interbedded with fine clastic metasedimentary rocks. The zone contained 5% disseminated pyrite crystals and stringers and clusters of coarse pyrite parallel to foliation, and the hole cut three main quartz veins logged at 106.45-107.35 m, 112.93-115.1 m, and 115.76-116.9 m depth that contain fine black biotite and carbonate. Mineralization of quartz veins includes pyrite, chalcopyrite, and galena that occur as clusters within fractures of the veins. Anomalous gold values were obtained from both quartz veins and wallrock and include:

- 0.49 g/t Au over 1.0 m from 106.35m
- 0.46 g/t Au over 0.95 m from 111.35m
- 0.21 g/t Au over 2.1 m from 119.5 m

Hole EMP08-02 cut mafic flows and interflow clastic sediments and fine gabbro from 18.5-108.5 m then cut the Empress structure from 108.5-113m described as an impressive light-tan coloured sericite, fuchsite, chlorite, hematite schist mineralized with 5% pyrite that contains 40% quartz veins up to 30 cm wide mineralized with clusters of pyrite, chalcopyrite, and galena. Anomalous gold values were obtained from the upper part of the structure includes 0.66 g/t Au over 2.3 m from 108.5 m depth (including 2.04 g/t Au over 0.5m from 109.8 m). A fault was logged after this intercept, and the hole ended in mafic lava flows and intercalated siltstone and argillite.

Figure 8. Laminated quartz-biotite-chlorite crack and seal vein with 5% disseminated pyrite from EMP08-02 at 110m depth.

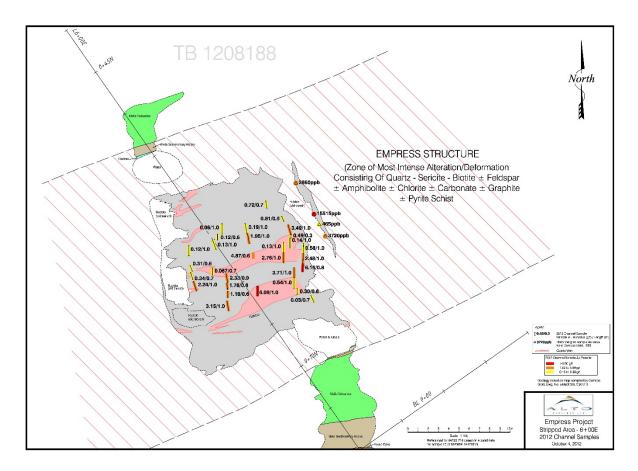


Figure 9. Empress 2012 Channel Samples Area 6E.

Figure 10. Empress Channel Samples Area 6E.

Sanatana Regional Work Programs

(From Gill, 2020)

"Regional exploration programs completed in 2017 that covered the entire Jackfish property included a Geoscientific Interpretation Report by Ronacher McKenzie Geoscience and a Stereo Satellite Surveying Project by PhotoSat Information Ltd. The main purpose of the SPOT satellite imagery acquisition and processing was to generate a high-resolution topographic base onto which field exploration data could be displayed and analyzed in three dimensions."

"The geoscientific interpretation work included re-processing of publicly available airborne geophysical data and structural interpretation of the resultant imagery coupled with review of current geological mapping and historical mineral showing data to provide a model for the types of geological settings that host gold mineralization that could be applied to other similar locations around the property. The major conclusion to this study was that many of the known gold occurrences are associated with the intersections of E-W and NE-SW trending structures. Section 6 East target (Area 6E) at Empress is an example of this style of gold occurrence."

"An unmanned aerial vehicle (UAV) based airborne magnetic geophysical surveys was undertaken over part of Jackfish property, including Empress. The purpose of the work was to delineate structures possibly hosting gold and base metal mineralization as suggested by the Geoscientific Interpretation Report. The data from the survey was used to generate the usual images of total magnetic intensity and derivatives useful for geological interpretation. The magnetic data was also inverted to produce a three-dimensional model of magnetic susceptibility. The interpretations from the UAV magnetic survey were used to plan further exploration work programs for potential gold mineralization at Jackfish."

Current Exploration Work

Preparations for drilling including prospecting and recce work, and mechanical work to upgrade the trail was completed in 2018 until winter shut work down. Drill-related work resumed in July 2019 at Empress Area 6E.

In 2019, Sanatana drilled four BTW (42 mm, 1.65") diameter core holes (for 402 m) targeting Empress Area 6E stripped outcrop at depth along one section. The objective of drilling the Empress Section 6 East target was to follow-up on significant gold assays recovered on surface by stripping and channel sampling program completed by Cameco in 1999 and Alto Ventures in 2012. All four drill holes were completed on mining claim 153587.

This work completed in 2018 and 2019 was reported to Sanatana's Joint Venture partner (Alto Ventures) in March 2020, but the JV report was not modified to file as an assessment report. Sanatana's Joint Venture work report (Gill, 2020) was relied upon to account for work completed in 2018 and 2019, and spreadsheets that accompanied this report were relied upon for 2018 and 2019 costs.

2018 Prep-work and 2019 Core Drilling

(From Gill, 2020)

"Granting of the Exploration Permit for earthmoving and drilling activities on Empress was significantly delayed throughout late 2017 and much of 2018 due to the Métis Nation of Ontario wanting face to face meetings about the application and conditions restricting field work around moose calving season written into the permit. As a result, the earthworks to improve the access trail didn't commence until late 2018 and had to be postponed because the onset of winter."

Sanatana worked from August 13 to 29, 2018 and spent **16 days** on the property, upgrading and clearing the old access trail to Empress Area 6E, then scouting the area for potential drill pads and access trails between them, and finally building the drill pads and access trails. On completion of this work all sites were prepared for drilling. Work was completed by Troy Gill, P.Geo., exploration manager of Sanatana, and Wayne Richards of Richard's Exploration. Sanatana operated from Jackfish Cabins, located near the property until departure in the fall of 2018.

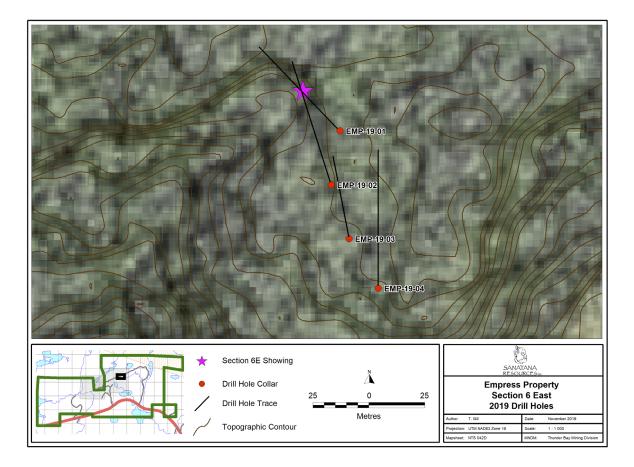
(from Gill, 2020)

"The Section 6 East ("S6E") showing provided the best opportunity for success at intersecting gold mineralization at depth along the Empress structure, based on previous

surface channel sampling results and induced polarization ("IP") geophysical data. Cameco Gold Inc. completed channel sampling at S6E in 1999 generating some significant gold results that were resampled by Alto in 2012 and confirmed a mineralized interval of 16.2 m @ 1.3 g/t Au hosted by quartz-sericite schist with quartz veining and disseminated pyrite. The gold mineralized interval was co-incident with a very high chargeability and conductive IP anomaly to a depth of 75 metres."

"A four-hole, 402-metre diamond drilling program testing the S6E target was completed in September. The Empress Structure was traversed by each drill hole stepping back south from the stripped outcrop 25 metres at a time (Table 4), although the drill collar locations had to be placed as the variable topography of the landscape would allow (Figure 11)."

Hole	UTM East (NAD83)	UTM North (NAD83)	RL (masl)	Date Started	Date Completed	Dip	Azimuth (Grid)	Depth
EMP-19-01	502104	5412374	365 m	7/9/2019	9/9/2019	-60°	310°	100.5 m
EMP-19-02	502100	5412350	363 m	10/9/2019	12/9/2019	-60°	350°	111.0 m
EMP-19-03	502108	5412326	363 m	15/9/2019	18/9/2019	-60°	350°	70.5 m
EMP-19-04	502121	5412304	363 m	20/9/2019	23/9/2019	-60°	000°	120.0 m


Table 4. Section 6 East Drill Hole Collar Data Summary.

"The Empress structure was observed as a zone of significant sericite and pyrite alteration and quartz veining within a strongly foliated interval interpreted to dip at a fairly shallow angle (~30°) to the south based on downhole intercept depths (Section of 2019 Drill Holes). Samples of nominally 1 metre length of half core were taken continuously throughout the sheared and altered interval from drill holes EMP-19-01 and EMP-19-02. Sample intervals were broken at geological contacts such that the smallest sample was 0.3 metres and the longest 1.4 metres. QA/QC samples including certified standards, blanks and duplicate samples were added to the sample stream every 10th sample in a rotating fashion to help assess the validity of the sample results from the lab. The samples were submitted to ALS, Thunder Bay and tested for gold by Fire Assay and a suite of trace elements by total digest ICP-MS methods."

"Although the alteration and amount of sulphide looked very encouraging, the assay results of samples throughout this interval from drill holes EMP-19-01 and EMP-19-02 returned very little associated gold (Table 5). None of the typical pathfinder elements such as arsenic or antimony returned consistently elevated values throughout the shear zone, which indicates that the sulphides are not related to a gold mineralizing event. The most elevated gold values were from very distinct, but narrow, banded grey and black quartz veins within the shear zone. These gold results were associated with weakly elevated bismuth and tellurium values in the samples which points to a telluride – gold mode of mobilization."

"Having received these disappointing assay results from the first two drill holes as holes EMP-19-03 and EMP-19-04 were still being drilled, the decision was made not to log or sample the final two drill holes."

Hole	From	То	Length	Au
EMP-19-01	15.2 m	16.0 m	0.8 m	0.3 g/t
EMP-19-01	19.1 m	22.0 m	2.9 m	1.7 g/t
EMP-19-01	43.0 m	45.0 m	2.0 m	0.6 g/t
EMP-19-02	37.0 m	40.0 m	3.0 m	0.6 g/t

Figure 11. Plan Map of Section 6 Drill Hole Collars and Traces.

Sanatana worked from August 18 to September 17, 2019 and spent **31 days** on the property performing field work that included mobilization of equipment, drilling four core holes for 402 m, and then demobilizing from the Empress Property. Work was completed by Troy Gill, P.Geo., exploration manager of Sanatana (until 2020), and Wayne Richards of Richard's Exploration. Sanatana operated from Jackfish Cabins, located near the property, and logged and sawed core in a building rented from Jackfish Cabins.

After the first two holes were logged, sawed and sampled, Sanatana stored all drill core on a core rack in a secure yard behind Jackfish Cabins in late September 2019. The drill core remained on the rack in a secure drill core storage yard behind Jackfish Cabins for the next 4 years.

2023: Retrieve and Log 2019 Empress Drill Core

In May 2023 KGI was asked to retrieve 2019 drill core from Terrace Bay, move it to Thunder Bay, log the core, generate a cross section, and file an assessment report on this work.

In early June 2023, KIVI Geoscience Inc visited Jackfish Cabins and met with Wayne Richards (owner of Jackfish Cabins and Richard's Exploration) to inspect the drill core. The Empress drill core was found to be in excellent condition. Since September 2019 Sanatana's Empress drill core has been stored on a core rack in a secure yard behind Jackfish Cabins east of Terrace Bay. Arrangements were made to retrieve the core.

KGI made two trips from Thunder Bay to Terrace Bay, loading about 50 boxes of Sanatana's 2019 drill core strapped securely onto pallets on a trailer, and moved core successfully to a core rack in Thunder Bay. Empress drill core was successfully relocated to a core rack at KGI's facility without incident or core loss. This work was performed by Kevin Kivi and Max Kivi on June 3 and June 4, 2023 (4 man-days).

Figure 12. Wayne Richards and drill core from EMP19-01 and EMP19-02 loaded and strapped for transport.

Figure 13. KGI Core logging set-up in Thunder Bay.

Kevin Kivi, P.Geo. conducted geological re-logging of Sanatana drill holes EMP19-01 and EMP19-02 (these were previously logged and sampled by Sanatana in 2019). Re-logging was conducted to familiarize the author with Empress Area 6E and gold bearing zones in the first two holes. KGI next completed geotechnical logging, core photography, and geological logging of holes EMP19-03 and EMP19-04.

Drill hole data collected by KGI for all four drill holes (402 m) was input to a Geotic drill database. Historical assays from 2019 were then appended, and Geotic was used to generate a drill hole X-section that shows Lithology codes (see core logs) and a histogram plot of gold assays in g/t Au.

On review of drill core, logs, previous assays, and drill cross sections, KGI learned that historical logging and sampling was complete for EMP19-01 and EMP19-02. Sanatana (STA) 2019 core logs and assay certificates are provided with this report.

Two gold-bearing zones are present in hole EMP19-01, with the best result being 1.7 g/t Au over 2.9 m from 19.1 m depth, which includes four samples that all exceed 1.3 g/t Au. Another gold-bearing interval is present from 43-35 m depth with two 1m samples returning 0.27 and 0.86 g/t Au respectively from thinly bedded siltstone with 5-20% pyrite locally.

One gold bearing zone is present in EMP19-02 from 37-40 m depth with three consecutive samples that returned between 0.33 to 1.03 g/t Au.

KGI observed VG (visible gold) at 38-41.4 m depth when re-logging hole EMP19-02 in a 25 cm thick grey laminated "crack and seal" quartz vein that is also host to coarse pyrite and trace chalcopyrite. Previous authors note that VG is uncommon at Empress and note the presence

of other base metal sulphides (chalcopyrite, sphalerite, and molybdenite) in gold-bearing veins. Chalcopyrite has been observed by KGI.

Sample VR13384B returned 0.501 g/t Au over 1.40 m in the interval where VG was observed. KGI recovered the pulp rejects for Sanatana's 2019 samples along with drill core, so there is an opportunity to check sample VR13384B again, and then quarter drill core and apply a gravimetric method which is better when free gold is present.

Work completed by Sanatana in 2019 on holes EMP19-03 and EMP19-04 was core box measurements and DYMO tags. These are the first steps in Geotech work when drill core first arrives at the core shack. The geologist would check the blocks to ensure accurate core measurement, and then rack the core for a more detailed look later.

The geologist would also quickly review mineralized zones in the drill hole to ensure the target has been hit and check the depth of the intercept. This information allows the geologist to stop the hole early and save budget for subsequent drilling. Hole EMP19-03 was stopped at 71.4 m, only 12.96m past the Empress Zone was cut, so it's clear the geologist in charge was attentive.

Hole EMP19-03 cut altered siltstones with 5% quartz stringers, and 1% pyrite and 1% pyrrhotite from 33.6-39.15 m. Later, along with lamprophyre dikes the hole cut a zone with 30% quartz stringers and lesser pyrite and pyrrhotite than earlier from 42-46 m depth. At 50.83-51.55 m depth the hole cut a dark green chlorite schist. The Empress Zone is likely present in altered and mineralized siltstones from 42-26m depth.

Hole EMP19-04 cut the Empress Zone from 65.6-80.6 m. The Empress Zone is wide and wellmineralized from 65.6-79.0 m depth and includes a 20 cm laminated crack and seal quartz vein with coarse pyrite from 78.9-79.0 m depth. Crack and seal veins are often gold bearing in Archean orogenic gold settings.

Further down EMP19-04 another biotite chlorite schist was cut from 102.14-103.84 m where 3-5% pyrite, 2% pyrrhotite, and 5-8 mm quartz-carbonate stringer are reported.

Costs of 2018-2019 Work

The expenditure for 2018 and 2019 Empress Area 6E drilling, including planning, field preparation, and management costs, is summarized in Table 6. Details of each expense item are provided in pdf file called STA Empress Expenditures and back-up copies of receipts is in a pdf file called STA Empress exp backup, each filed with this report. Since these reports are from a JV report, they also include 2017 expenses and other costs in 2018 and 2019 that are not relevant to this assessment report, and therefore only some of the categories in Table 6 have been applied, and line items from Sanatana's accounting system were used so the amount claimed does not match the totals in Table 6.

Table 6.	Summarv	of Costs for	the 2018 and	2019 Drill Program	n (from Gill, 2020).
1 4010 01	Gainnary	01 00010 101	the Lore and	Loto Dini i rogia	

Expense Item	Cos	t
Prospecting (Recce)	\$	2,861
Direct Drilling	\$	49,072
Supplies & Consumables	\$	1,504
Sample Assays	\$	10,711
Communications	\$	1,073
Airfares	\$	2,910
Rental Equipment & Storage	\$	752
Fuel	\$	1,711
Accommodation & Meals	\$	9,947
Licensing & Insurances	\$	950
Wages	\$	72,375
Sub Total	\$	153,865
Administration - Drilling (5%)	\$	2,454
Administration (10%)	\$	10,479
Total Admin	\$	12,933
Grand Total	\$	166,798

Some 2018 and 2019 costs do not qualify as assessment work but are valid JV expenditures (the source of Table 6) therefore the amount claimed for drilling uses some of highlighted items (bold italics), with wages reduced from \$72,375 to a per diem @\$475/day for 16 days (2018) and 31 days (2019). Combined 2018 and 2019 drilling costs are **\$ 111,181** for \$277/meter, all inclusive.

Cost of 2023 Work and Report

KGI made two trips to Terrace Bay to pick up the drill core. This work was completed on June 3 and June 4, 2023 by Kevin Kivi P.Geo. and Max Kivi (4 man-days). Out of pocket expenses were paid by KIVI Geoscience Inc and invoiced to Sanatana Resources Inc in one all-inclusive invoice of man days, vehicle mileage, gas, expenses, core logging, drill database and report. The vehicle mileage rate used in Table 7 is \$ 0.58 per kilometer.

KGI also logged the drill core, input data to a drill database software, created drill plans and sections and wrote a technical report.

KIVI Geoscience Inc is required to charge HST on all costs presented in Table 7.

The report was written using a laptop PC with MS Word, and maps were generated in GIS using MapInfo. Drill logging software used was Geotic Log and Geotic Section. Some figures used in this report are from prior reports by Sanatana Resources Inc.

Additional work completed by KGI on 2019 Empress drilling brings the cost of drilling to **\$126,411 or \$315/meter**, all inclusive.

Date	Worker	Description	Hours	Office	Work	Man	day	Trip	Vehicle	Km logged	Vehi	cle	Gas	F	Rent	als	Expei	nses	Comments
2023-06-03	Kevin Kivi P.Geo.	Pick up 2019 drill core				\$ 8		Tbay to Jackfish R/T	Tundra & Trailer		\$ 2	95	\$ 8	0	\$	50	\$	25	Moe and Joes - meals
	Max Kivi					\$ 2	200						\$7				Ś	47	The Voy - meals
								Tbay to Empress	Tundra &				-				•		
2023-06-04		Pick up 2019 drill core						R/T	Trailer	480	\$ 2	78	-	3	Ş	50	Ş		Staples
	Max Kivi					\$ 2	200						\$7	'9			\$	29	Tim Hortons meals
2023-06-09	Kevin Kivi P.Geo.	Report	8	\$	880												\$	20	Tim Hortons meals
2023-06-10	Kevin Kivi P.Geo.	Report	6	\$	660												\$	73	Mr Chinese meals
2023-06-11	Kevin Kivi P.Geo.	Re-log EMP19-01	8	\$	880														
2023-06-12	Kevin Kivi P.Geo.	Re-log EMP19-02	8	\$	880														
2023-06-14	Kevin Kivi P.Geo.	Log EMP19-03	2	\$	220														
2023-06-15	Kevin Kivi P.Geo.	Log EMP19-03	2	\$	220														
2023-06-20	Kevin Kivi P.Geo.	Log EMP19-03	8	\$	880														
2023-06-21	Kevin Kivi P.Geo.	Log EMP19-03	8	\$	880														
2023-06-24	Kevin Kivi P.Geo.	Report	5	\$	550														
2023-06-25	Kevin Kivi P.Geo.	Report	8	\$	880														
2023-06-26	Kevin Kivi P.Geo.	Report	3	\$	330														
2023-07-01	Kevin Kivi P.Geo.	Report	2	\$	220														
2023-07-05	Kevin Kivi P.Geo.	Geotic Drill database	8	\$	880														
2023-07-06	Kevin Kivi P.Geo.	Log EMP19-04	8	\$	880														
2023-07-07	Kevin Kivi P.Geo.	Log EMP19-04	8	\$	880														
2023-07-09	Kevin Kivi P.Geo.	Geotic and X-Sections	8	\$	880														
2023-07-10	Kevin Kivi P.Geo.	Finalize Tech Report	8	\$	880														
		Column Totals	108	\$ 11	,880	\$ 2,1	160				\$ 5	74	\$ 31	2	\$1	00	\$	204	
		Grand Total		\$ 15	5.229														

Table 7. Core Retrieval, Core Logging, Drill Database, and Technical Report Costs (not including HST charged by KGI).

Conclusions and Recommendations

Sanatana optioned the Empress Project from Alto Ventures in 2017 and completed the option to own 100% of the property by 2019. The Empress Project is subject to certain NSR Royalties described earlier in this report.

The Empress project is host to many gold showings and is adjacent to a historical past gold mine known as the Empress Gold Mine which produced 112 Troy ounces of gold with a historic grade of 0.10 ounces per ton gold. Mineralization on the adjacent mining lease does not imply similar mineralization is present on the Empress project.

Sanatana previously explored Area 6E of the Empress Structure, which trends NE from the old Empress Mine and dips -30° to the south. Sanatana drilled for holes for 402m targeting Area 6E in September 2019, which is reported to shareholders in the company's MD&A from December 2019. All four drill holes were completed on mining claim 153587.

This drilling work is 44 months old at the time of this report, so less than 60 months and still valid assessment work. The author found no record of this work in OAFD or ODHD databases, and suspects this drilling was not filed previously as assessment work by Sanatana.

KGI re-logged holes EMP19-01 and EMP19-02 and found that each hole intersected the Empress Zone at Area 6E as planned. Only holes EMP19-01 and EMP19-02 were logged and split.

The best intercept was from EMP19-01 returned 1.7 g/t Au over 2.9 m from 19.1 m depth (Gill, 2020).

KGI observed VG (visible gold) when re-logging hole EMP19-02 at 38-41.4 m depth, in a 25 cm thick grey laminated crack and seal quartz vein that also hosted coarse pyrite and trace chalcopyrite.

With VG noted, KGI recommends that gold-bearing intervals of both holes EMP19-01 and EMP19-02 should be quarter-sawed and submitted for a total metallics assay. The entire length of the zone should be combined to ensure that there is enough material for this type of gold assay. KGI also recommends re-assaying pulps from the Empress Zone in holes EMP19-01 and EMP19-02.

KGI expects the Empress Zone is also present in hole EMP19-03 within altered and mineralized siltstones from 33.6-51.55m depth. Several lamprophyre dikes cutting the lower part of this interval is a positive sign since these dikes are present in the Empress Zones of holes EMP19-01 and EMP19-02 and also reported at surface. The Empress Zone seems weaker in hole EMP19-03, but gold assays are required to verify this suspicion.

KGI also expects the Empress Zone is also present in hole EMP19-04 within a ductile deformation zone cut from 65.6-80.6 m depth with 3-10% quartz stringers and locally 1% pyrite.

A 20 cm laminated crack and seal quartz vein with coarse pyrite was also logged at 78.9m depth is a good sign.

KGI also logged biotite chlorite schist with 3-5% pyrite and 2% pyrrhotite along with a laminated crack and seal quartz vein from 102.14-103.84m depth in EMP19-04. This second zone some 20 m below the Empress Zone is like positive assays returned in hole EMP19-01 below the Empress Zone.

KGI recommends sawing and sampling all mineralized zones in hole EMP19-03 and EMP19-04. As noted earlier, laminated crack and seal style quartz veins are often gold-bearing in Archean orogenic gold settings and both potential zones cut in hole EMP19-04 host this type of quartz vein. These samples should also undergo a total metallics assay method in case VG is present within these crack and seal veins.

The author concludes that there remains good potential to discover new gold occurrences or extend those already known on the Empress Property. Sanatana previously performed structural analysis and compilation to map structures. The author recommends systematic exploration of these structures for gold.

KGI also recommends a desktop study with complete digitization of all historical work on the property, and then ground checking and resampling of certain gold showings along the Empress Zone, especially when bedded chert and siltstone is abundant.

KGI also recommends resuming correspondence with Biigtigong Nishnaabeg, Metis Nation (and other FN groups), Surface Rights Owners, and the trapper active on the property if they plan to apply for a new exploration permit and conduct more exploration on the Empress Project in future.

References

Dadson, P., 1983, Geological Report Micham Exploration Inc Terrace Bay Claims Syine and Santoy Lake Area, per: David R. Bell Geological Services Inc. AFRI# 42D15NW0027.

Gill, T., 2017, Assessment Report on a Stereo Satellite Surveying Project for the Jackfish Property.

Gill, T., 2018, Assessment Report on Airborne Magnetic Geophysical Surveying and Inversion Modelling on the Jackfish Property.

Gill, T., 2020, A Report on Exploration Work and Expenditures at Empress Property by Sanatana Resources Inc. (unpublished company report).

Goldfarb, R.J., Baker, T., Dube, B., Groves, D.I., Hart, C.R.J., Gosselin, P., 2005, Distribution, Character, and Genesis of Gold Deposits in Metamorphic Terranes, Society of Economic Geologists Inc., Economic Geology 100th Anniversary Volume, pp. 407-450.

Groves, D.I., Goldfarb, R. J., Gebre-Mariam, M., Hagemann, S. & Robert, F., 1998, Orogenic gold deposits: A proposed classification in the context of their crustal distribution and relationship to other deposit types. Ore Geology Reviews 13, pp. 1–28.

Koziol, M., 2007, Alto Ventures Ltd. 2006 Exploration Program, Empress Project, Syine Township, Northwestern Ontario, NTS 42D/15.

Koziol, M., 2008, Alto Ventures Ltd. 2008 Diamond Drilling Program, Empress Project, Syine Township, Northwestern Ontario, NTS 42D/15.

Koziol, M., 2014, Alto Ventures Ltd. 2014 Surface Bedrock and Soil Sampling Programs, Empress Project, Syine Township, Northwestern Ontario, NTS 42D/15.

Koziol, M., 2015, Empress Project 2015 Surface Till and Bedrock Sampling Programs, Syine Township, Northwestern Ontario, NTS 42D/15.

Kuzmich, B., 2011, 2011 Field Summary on the Ursa Major Property, Wawa-Abitibi Terrain, Northwestern Ontario.

Lavigne, M., 1997, Empress East Property, Recommendations for Exploration, Matawin Mineral Exploration, AFRI # 42D15SW2002.

McCracken, T., 2000, Cameco Gold Inc., 2000 Summer Exploration Program, Empress Project, Syine Township and Santoy Lake Area, Northwestern Ontario, NTS 42D/15. (Unpublished Company Report).

Morris, T.F., Sage, R.P., Crabtree, D.C. and Pitre, S.A., 2000, Kimberlite, base metal, gold and carbonatite exploration targets, derived from overburden heavy mineral data, Killala Lake Area, northwestern Ontario; Ontario Geological Survey, Open File Report 6013, 107p.

Morris, T.F., 2001, Geochemical and till pebble lithology data, surficial sediment sampling program, Schreiber--Killala Lake area, northwestern Ontario; Ontario Geological Survey, Open File Report 6056, 62p.

Needham, T., 1996, Report on the Exploration of the Ursa Major and East Empress Properties, Summer 1996. AFRI# 42D15NW0038.

Ronacher, E., Peshkepia, A., 2017, Independent Technical Report - Jackfish Property, Terrace Bay, Ontario., Ronacher McKenzie Geoscience Inc., 58 p.

Samson, J., 1999, Exploration Program Empress Project, Syine Township and Santoy Lake Area, Northwestern Ontario, NTS 42D/15, AFRI# 42D15SW2010.

Sanatana Resources Inc, 2019, Management Discussion and Analysis, December 31, 2019.

Schnieders, B.R., Smyk, M.C., Speed, A.A. and McKay, D.B., 1996, Mineral occurrences in the Nipigon-Marathon area, Volumes 1 and 2; Ontario Geological Survey, Open File Report 5951, 912p.

Simunovic, M., 1985, Geochemistry Report Terrace Bay Area, Micham Exploration Inc, per David R. Bell Geological Services Inc., AFRI# 42D15SW0115.

Simunovic, M., 1987, Diamond Drill Report, Syine Township, Micham Exploration Inc., per David R. Bell Geological Services Inc., AFRI# 42D15SW0109.

Walker, J.R., 1967, Geology of the Jackfish-Middleton Area, District of Thunder Bay; Ontario Department of Mines, Geological Report Number 50, 41p. Accompanied by Maps Numbers 2107, 2112, both at a scale of 1 inch to 1/2 mile.

Certificate of Author

Kevin Robert Kivi, P.Geo.

KIVI Geoscience Inc.

1100 Memorial Ave., Suite 363, Thunder Bay ON P7B 4A3 Mobile (807) 624-6156 Email: <u>kivigeoscience@gmail.com</u>

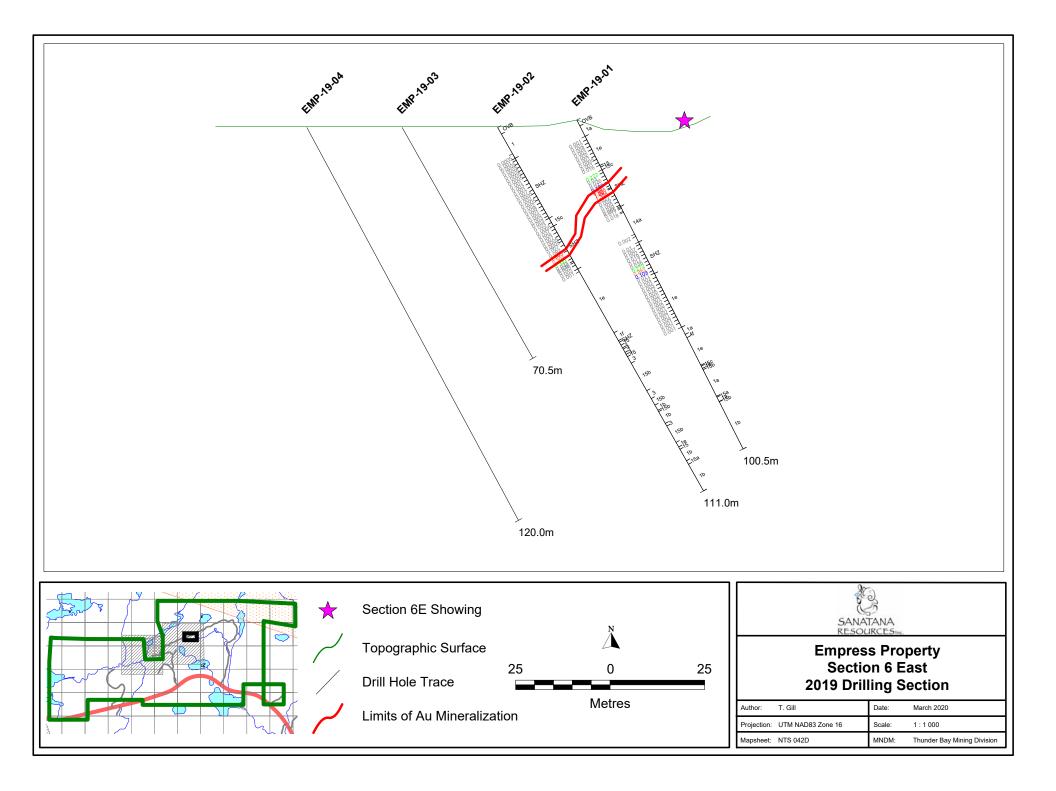
I Kevin Robert Kivi, P.Geo., am a Professional Geoscientist, employed by KIVI Geoscience Inc., of Thunder Bay, Ontario.

I am:

- a practising member of the Association of Professional Geoscientists of Ontario (PGO), Registration 0326;
- a member of the Association of Professional Engineers, Geologists and Geophysicists of the Northwest Territories (NAPEGG), Registration L821;
- A member of the Association of Professional Engineers and Geoscientists of Saskatchewan (APEGS), Registration #13687.

I graduated from Lakehead University, Thunder Bay with a Bachelor of Science Geology (4year program) in 1983, and I have practiced in my profession continuously since 1983. Since 1983 I have been involved in:

- gold exploration with Ovaltex Inc. along the Cadillac Break in Rouyn and Val D'Or, Quebec in winters of 1984, 1985 and 1986, and between 1986-1988 in NW Ontario.
- diamond exploration with BP Resources Inc Selco Division in Ontario, Quebec, Manitoba and NWT in summers of 1984, 1985 and 1988;
- gold and base metals exploration in NW Ontario with Rio Algom Exploration between 1988 and 1992.
- diamond exploration with Kennecott Canada Exploration between 1992-1994 at Lac De Gras, NWT, Diamond Laboratory Manager between 1995-2000 in Thunder Bay, Ontario, diamond exploration 2000-2004 in Wawa in Archean lamprophyric volcaniclastic rocks and Group 2 kimberlites, March-June 2004, Exploration Manager at Diavik Diamond Mines Ltd, Lac De Gras, NT.
- 2004 to present: Geological consultant specializing in diamond, gold and base metal exploration in Brazil, Finland, and Canada. Current clients include Sanatana Resources Inc., Aurion Resources Inc., VR Resources Ltd., and Orebot Inc.


KIVI Geoscience Inc. (KGI) continues to work as a geological consultant for Santana Resources Inc. in 2023. KGI reviewed the Empress Assessment Report and Maps and is responsible for their technical content.

Dated at Thunder Bay, ON, CANADA this 10th day of July 2023.

KIVI Geoscience Inc.

Per: "Kevin Kivi" (signed) Kevin R. Kivi, P.Geo., President

DRILL LOG TITLE PAGE

Hole ID	EMP-1	9-01		Project	Empress	
Section	6E		Easting	502106	Source	Planned
Site	Surface		Northing	5412374	Azimuth	310
Twp	Syine		Elevation	365	Dip	-60
	·		Grid	UTM NAD83	Length	100.50 m
Logged by	T	roy Gill			DDH Started	07-Sep-19
Geotechnici	ian T	roy Gill			DDH Finished	09-Sep-19
Geotech Ty	pe B	asic			Log Completed	14-Sep-19
Drill Contro	actor R	ichards I	Exploration		Last Updated	18-Sep-19
Core Size	B	TW				
Available .	Analyses:	FA	Yes GRA	V No MET	No <i>ICP</i> Yes	WR No

Summary

25m test of the Section 6E showing.

Sanatana Resources Inc. Drill Log Empress

Signature:

EMP-19-01

 From
 To
 Litho

 0.00
 1.80
 OVB

The drillhole was collared very close to bedrock although no core was recovered.

STRUCTURES	ALTERATION	VEINS	MINERALIZATION	SAMPLES			
From To Struct CA Strain	From To INT TC SR CH SE CB FU SI CA TO C AB EP	From To Vn% Style 1 Style 2 Type 1 Type 2 V/m CA	From To PY% Style VG Min Min% Min2 M2%	From To Sample Au g/t Type			

From	То	Litho
1.80	5.00	1a

Basalt - Dark green, massive to weakly foliated, fine grained, some blotchy lighter patches, pervassive chloritic altered. Sericitic shear vein lower contact.

	S	TRU	CTUR	ES					ALT	ERA	ATION		VEINS From To Vn% Style 1 Style 2 Type 1 Type 2 V/m V/m					MINERALIZATION A From To PY% Style VG Min Min% Min2 M2%								SAMPLES									
Fro	m	То	Struct	CA Str	rain Fre	om T	o INT	TC SH	R CH	SE	CB FU SI CA TO C AI	B EP From	ı To	Vn	% Style	e 1 Style	e 2 Typ	pe 1 Ty	pe 2 V	7/m (CA	From	То	PY%	Style	VG M	Min	Min% M	Min2 Mi	2%	From	То	Sample	Au g/t	Type
1.80) 4	1.90	FOL	35	W																														
					1.8	0 5.0	o v	,	W	W	W	1.80	5.00		5 LV	VV SH	IV	CB Q	Z-CB	16	40														
													Se	rivite	;																				
4.90) 5	5.00	CNT	30	S																														
	9	Ser-ca	r shear	vein																															

From	То	Litho
5.00	13.90	1e

Mafic Schist - Grey-brwon to grey green, variably banded to thinly foliated, chloritic with numerous thin quartz-carbonate veins running with the foliation in places. Vein at lower contact.

STRUCTURES	ALTERATION	VEINS	MINERALIZATION	SAMPLES
From To Struct CA Strain	From To INT TC SR CH SE CB FU SI CA TO C AB EP	From To Vn% Style 1 Style 2 Type 1 Type 2 V/m CA	From To PY% Style VG Min Min% Min2 M2%	From To Sample Au g/t Type
				5.00 6.00 VR13293 0.001 CORE B
	5.00 7.50 M W M	5.00 7.50 20 LWV RBV CB QZ-CB 40 60		
	Oxidised			
5.00 10.90 FOL 50 S				
				6.00 7.00 VR13294 0.002 CORE B
				7.00 8.00 VR13295 0.004 CORE B
		7.50 12.00 5 LWV CB 12 35		
	7.50 13.90 M M W			

Initials:

EMP-19	-01						Initi	als: _	
<i>From</i> 5.00	<u>То</u> 13.90	Litho 1e	(Contir	ued from previous page)					
STRU	CTURES		ALTERATION	VEINS	MINERALIZATION		SAMPL	ES	
From To	Struct CA Strain	From To IN	T TC SR CH SE CB FU SI CA TO C AB EP	From To Vn% Style 1 Style 2 Type 1 Type 2 V/m CA	From To PY% Style VG Min Min% Min2 M2%	From To		Au g/t	Type
						8.00 9.0) VR13296 B	0.003	CORE
						9.00 10.0) VR13297 B	0.002	CORE
						10.00 11.0	VR13298 B	0.001	CORE
10.90 13.90	FOL 55 VW								
						11.00 12.0	VR13299 B	0.0005	CORE
						12.00 12.0	0 VR13300 B	0.0005	BLK
						12.00 13.0	0 VR13301 B	0.001	CORE
				12.00 13.90 10 LWV RBV CB QZ-CB 40 60					
						13.00 13.8	0 VR13302 B	0.016	CORE

From	То	Litho
14.40	15.20	15c

Ultramafic Intrusive - Light green-grey to dark grey, porphyritic, fine to medium subhedral dark phenocrysts in a lighter, fine grained crystalline matrix. Upper part more of a blotchy porphyritic look. Sharp chilled lower contact.

14.40 15.20 W W 14.40 15.20 1 LWV CB 5 50	STRUCTURES		ALTERATION				VEINS			MINERALI	IZATION		SA	MPLES	
15.10 15.20 CNT 50 W Hematite reddening of	From To Struct CA Strain	From To INT TC	SR CH SE CB FU SI CA TO	C AB EP	From To	Vn% Sty	le 1 Style 2 Type 1 Ty	pe 2 V/m CA	From To	PY% Style V	VG Min Min% Min2 M2%	From	To Sa	umple Au g/t	Type
Hematite reddening of		14.40 15.20 W	W	1	14.40 15.20	1 L	WV CB	5 50							
	15.10 15.20 CNT 50 W														
	From To	Litho													

Shear Z0ne - Light grey, strongly foliated, sericite-chlorite-silica-pyrite schist with significant white grey quartz veins in the centre of the unit that also contain chlorite and pyrite. Micro folding of 70 CA schistosity and pyrite bands @ 19.4m. Green mica (Roscoite?) whisps in the foliation @ 25.9m.

	STRUCTURES	ALTERATION	VEINS	MINERALIZATION	SAMPLES
Fre	m To Struct CA Strain	From To INT TC SR CH SE CB FU SI CA TO C AB EP	From To Vn% Style 1 Style 2 Type 1 Type 2 V/m CA	From To PY% Style VG Min Min% Min2 M2%	From To Sample Au g/t Type
					15.20 16.00 VR13303 0.272 CORE
					В
			15.20 18.80 5 EGQV QZ-CA 5 45		
			Thin chlorite also in quarts veins.		

15.20

26.40

SHZ

From	То	Litho
15.20	26.40	SHZ

Shear Z0ne - Light grey, strongly foliated, sericite-chlorite-silica-pyrite schist with significant white grey quartz veins in the centre of the unit that also contain chlorite and pyrite. Micro folding of 70 CA schistosity and pyrite bands @ 19.4m. Green mica (Roscoite?) whisps in the foliation @ 25.9m.

STRUCTURES				AIT	ERATIO	V					VEIN	VS				MINERA	LIZATION			SAMPL	FS	
From To Struct CA Strain	From	To			SE CB FU		AR FP	From	To	Vn%		2 Type 1 Ty	vne 2 V/m	CA	From To		VG Min Min% Min2	M2% From			LO Au g/t	Type
From To Struct CH Struct	11011	10		SR CH	SL CD IC			11011	10	11/0	siyie I Siyie	2 1)pc 1 1)	pe 2 Vill	Ch	15.20 22.10		-	112/0 1701	10	Sample	1111 8/1	Type
															thin ban instance	ds within folia	dium crystals in ationwith a few g foliation and also z veins.					
15.20 26.40 FOL 50 VS	15.20 20	6.40	S	S M		S																
secondary pyrite banding @ 70 CA 21.7m.																						
																		16.00	17.00	VR13304 B	0.03	CORE
																		17.00	18.00	VR13305 B	0.026	CORE
																		18.00	18.80	VR13306 B	0.07	CORE
																		18.80	19.10	VR13307 B	0.186	CORE
								18.80	19.20	100		QZ		1 40								
									Also	some	chlorite a	and pyrite.										
																		19.10	20.00	VR13308 B	2.33	CORE
								19.20	20.60			VA QZ-CB		10 45						_		
												al quartz ve it other ve										
																		20.00	20.60	VR13309	1.305	CORE
																		20.60	20.60	B VR13310 B	8.77	228
								20.60	20.90	95	LWV	QZ-CH		1 40				20.60	20.90	VR13311	1.69	CORE
									Plus	pyrite.										В		
																		20.90	22.00	VR13312 B	1.355	CORE
								20.90	26.40 Simi		EGQV op of unit	QZ-CB		5 55						В		
																		22.00	23.00	VR13313	0.027	CORE
																				В		
															22.10 26.40							
															Possible	e chalcopyrite	@ 22.2m.	22.00	24.00	VR13314	0.009	CORE
																				В		
																		24.00	25.00	VR13315 B	0.005	CORE
February 20, 2020																					Page	3 of 10

EMP-19-01				Initials:	
FromTo15.2026.40	Litho SHZ (Contin	nued from previous page)			
STRUCTURES	ALTERATION	VEINS	MINERALIZATION	SAMPLES	
From To Struct CA Strain	From To INT TC SR CH SE CB FU SI CA TO C AB EP	From To Vn% Style 1 Style 2 Type 1 Type 2 V/m CA	From To PY% Style VG Min Min% Min2 M2%	From To Sample Au g/t	Type
				25.00 26.00 VR13316 0.039	CORE
				В	
				26.00 26.40 VR13317 0.065	CORE
				В	

From	То	Litho
26.40	37.30	14a

Diabase Dike - Dark grey, fine grained, massive and magnetic.. Some quartz veining with sulphides present in places and some have weak epidote alteration around them. Also some low angle hematite-carbonate veins. Veined and sheared lower contact.

	STRU	CTUR	ES					ALT	ERA1	TION						VEIN	VS				ML	NERAI	IZAT	ION			SAMPL	ES	
From	То	Struct	CA S	Strain	From	То	INT TO	C SR CH	SE CI	B FU SI	CA TO	C AB	EP From	То	Vn% Sty	yle 1 Style	2 Type 1 Type 2	2 V/m	CA	From To	PY	% Style	VG Mi	n Min% Min2 M	2% From	То	Sample	Au g/t	Type
26.40	37.30	FRC	50	VW	26.40	37.30	М	М	\ \	W			VW 26.40	37.30	3 I	LWV RB	V QZ-CB CA	- 20	0 70 26	6.40 37.30		1 DISS	- (CP 0.1					
					(Concer	ntrated a	around veir	ns and	fractures.					of very er ones.		ns and a few			Possible 28m.	chalo	copyrite i	n one v	rein @					
																									26.70	27.00	VR13318 B	0.017	CORE
																									27.90	28.20	VR13319 B	0.018	CORE
																									28.20	28.20	VR13320 B	0.012	DUP
																									34.90	35.60	VR13321 B	0.002	CORE

From	То	Litho
37.30	46.90	SHZ

Shear Zone - Light grey, strongly foliated, sericite-chlorite-biotite-silica-pyrite schist.

STRUCTURES		ALTI	ERATION		VEINS	MINERALIZATION	SAMPLES				
From To Struct CA Stru	in Fron	om To INT TC SR CH	SE CB FU SI CA TO C AB EP	From	n To Vn% Style 1 Style 2 Type 1 Type 2 V/m CA	From To PY% Style VG Min Min% Min2 M2%	From	То	Sample	Au g/t	Type
							37.30	38.00	VR13322 B	0.01	CORE
	37.3	30 44.20 S S M	W S								
37.30 46.90 FOL 35 \	S			37.30		7.30 46.90 5 VLT - PO 2					
					No major quartz veins in this unit.	Bands of fine subhedral grains in the foliation, Small intervals of pyrrhotite bands in places.					
							38.00	39.00	VR13323 B	0.007	CORE

44.20 46.90 S W M M S Biotite - M. 45.00 45.00 VR1332 44.00 VR M M S Biotite - M. 45.00 45.00 VR1332 Biotite - M. 45.00 VR1333 Biotite - M.	EMP-1 9	-01						Initia	ls:	
From To Struct CA From To Struct Au 40.00 VI VI <th></th> <th></th> <th></th> <th>(Contir</th> <th>nued from previous page)</th> <th></th> <th></th> <th></th> <th></th> <th></th>				(Contir	nued from previous page)					
44.20 46.90 S W M M S Biotite - M. 45.00 45.00 VR1332 44.00 VR132 Biotite - M. 45.00 46.00 VR133 Biotite - M. 45.00 46.00 VR133 Biotite - M. 45.00 VR133 Biotite - M. 45.00 VR133 Biotite - M. 45.00 VR133 Biotite - M. 45.00 VR133 Biotite - M. Biotite - M	STRU	CTURES		ALTERATION	VEINS	MINERALIZATION		SAMPLI	ES	
B 40.0 41.00 VR1332 40.0 41.00 VR1332 40.0 40.0 VR1332 40.0 40.0 VR1332 40.0 40.0 VR1332 40.0 40.0 VR1332 40.0 40.0 VR1332 40.0 40.0 VR133 40.0 VR13 40.0 VR13	From To	Struct CA Strain	in From To	INT TC SR CH SE CB FU SI CA TO C AB EP	From To Vn% Style 1 Style 2 Type 1 Type 2 V/m CA	From To PY% Style VG Min Min% Min2 M2%		-	Au g/t	Type
B 41.00 42.00 VP13326 42.00 43.00 VP13327 43.00 43.00 VP13328 44.00 45.00 S W M M S Biotite - M. 44.20 46.90 S W M M S Biotite - M. 44.20 46.90 S W M M S Biotite - M. 44.20 46.90 S W M M S Biotite - M. 45.00 VP1338 10 VP1388 10							39.00 40.00		0.002	CORE
B 42.00 43.00 43.00 43.00 43.00 43.00 43.00 43.00 43.00 43.00 44.00 45.0							40.00 41.00	VR13325 B	0.019	CORE
B 43.00 44.00 VR13328 44.00 S W M M S Biotite - M. 45.00 45.00 VR1330 B 0.00 B							41.00 42.00	VR13326 B	0.017	CORE
B 44.00 45.00 VR13329 0.6 44.20 46.90 S W M S Biotite - M. 45.00 45.00 VR13330 0.0 45.00 46.00 VR13330 0.1 8 0.1 10 10 10 9 0.1 10 10 10 9 0.1 10 10 10 9 0.1 10 10 10 9 0.1 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>В</td> <td>0.036</td> <td>CORE</td>								В	0.036	CORE
B 44.20 46.90 S W M M S Biotite - M. 45.00 45.00 VR13330 0.00 B 45.00 46.00 VR13331 0.1 B								В	0.272	CORE
Biotite - M. 45.00 45.00 VR13330 0.00 8 45.00 46.00 VR13331 0.1 B							44.00 45.00		0.861	CORE
45.00 45.00 VR13330 0.00 B 45.00 46.00 VR13331 0.1 B			44.20 46.90	S W M M S						
B 45.00 46.00 VR13331 0.1 B			Biotite -	М.						
В							45.00 45.00		0.0005	BLK
								В	0.109	CORE
46.00 46.80 VR13332 0.0 B							46.00 46.80		0.011	CORE

From	То	Litho
46.90	63.30	1e

February 20, 2020

Mafic Schist - Grey, fine grained to aphanitic, banded and moderately foliated schist. Mostly all moderately silicified and some pervasive carbonate alteration. Lacks the pyrite bands of the previous unit. Ptygmatic microfolding at 54.4m.

STRUCTURES	ALTERATION	VEINS	MINERALIZATION	SAMPLES
From To Struct CA Strai	From To INT TC SR CH SE CB FU SI CA TO C AB EP	From To Vn% Style 1 Style 2 Type 1 Type 2 V/m CA	From To PY% Style VG Min Min% Min2 M2%	From To Sample Au g/t Type
			46.90 50.20 1 DISS -	
46.90 63.30 FOL 60 M	46.90 63.30 M M W M	46.90 63.30 5 LWV EGQV QZ-CB QZ 25 55		
		Some sulphides in and around the veining.		
				48.00 49.00 VR13334 0.001 CORE B
				49.00 50.00 VR13335 0.005 CORE B
				50.00 51.00 VR13336 0.012 CORE B
			50.20 50.30 3 DISS - CP 1	
			50.30 60.50 1 DISS -	
				51.00 52.00 VR13337 0.005 CORE B

Page 5 of 10

EMP-19-01						Initi	als:	
FromTo46.9063.30	Litho 1e	(Conti	nued from previous page)					
STRUCTURES		ALTERATION	VEINS	MINERALIZATION		SAMPL	ES	
From To Struct CA Strain	From To INT TC SR	CH SE CB FU SI CA TO C AB EP	From To Vn% Style 1 Style 2 Type 1 Type 2 V/m CA	From To PY% Style VG Min Min% Min2 M2%	From To	Sample	Au g/t	Type
					52.00 53.00	VR13338 B	0.002	CORE
					53.00 54.00	VR13339 B	0.001	CORE
					54.00 54.00	VR13340	0.532	218
					54.00 55.00	B VR13341	0.002	CORE
						В		
					55.00 56.00	В	0.002	CORE
					56.00 57.00	VR13343 B	0.001	CORE
					57.00 58.00	VR13344 B	0.002	CORE
					58.00 59.00	ь VR13345	0.001	CORE
					59.00 60.00	B VR13346	0.004	CORE
						В		
					60.00 61.00	VR13347 B	0.001	CORE
				60.50 63.30 3 DISS - PO 1				
				Pyrhhotite in carbonate-chlorite shear veins.				
				vonis.	61.00 62.00		0.001	CORE
					62.00 63.30	B VR13349	0.001	CORE
					52.00 00.00	B	0.001	CONE

From	То	Litho
13.90	14.40	15

Lamprophyre - Black and white speckled, medium grained, crystalline mix of biotite and carbonate pheoncrysts.

STRUCTURES		1	ALTERA	TION						VE	INS				N	IINERA	LIZAT	ION				SAMP	LES	
From To Struct CA Strain	From To	INT TC SR	CH SE C	CB FU SI O	CA TO C	AB EP	From	То	Vn%	Style 1 St	tyle 2 Type 1	Type 2 V/n	n CA	From	То	PY% Style	e VG Mi	n Min% M	Min2 M2%	From	То	Sample	Au g/t	Type
	13.90 14.00	М		М																				
							13.90	14.40	1	LWV	CB		5 50											
14.00 14.10 FLT 50 S																								
Chloritic crushed zone.																								
	14.00 14.20	S	S																					
	14.20 14.40	W		W																				

Basalt - Dark green, mostly fine grained and massive with small sections of weak foliation especially around veins. Lower contact is a laminated quartz vein.

STRUCTURES	ALTERATION	VEINS	MINERALIZATION	SAMPLES
From To Struct CA Strain	From To INT TC SR CH SE CB FU SI CA TO C AB EP	From To Vn% Style 1 Style 2 Type 1 Type 2 V/m CA	From To PY% Style VG Min Min% Min2 M2%	From To Sample Au g/t Type
63.30 65.40 FOL 50 W				63.30 63.30 VR13350 0.001 DUP B
	63.30 65.50 M M W	63.30 65.50 3 LWV QZ-CB 9 40 Pyrrhotite with carbonate	63.30 65.50 1 DISS - PO 2 Pyrrhotite in carbonate veins	
65.40 65.50 CNT 45 M		,		
From To	Litho			

65.50 66.50 4f

Iron Formation - Dark green-grey, banded magnetite with carbonate and some pyrrhotite and green chert with chloritic layers. Laminated quartz veining with chlorite in the top half of the unt.

STRUCTURES	ALTERATION	VEINS	MINERALIZATION	SAMPLES
From To Struct CA Strain	From To INT TC SR CH SE CB FU SI CA TO C AB EP	From To Vn% Style 1 Style 2 Type 1 Type 2 V/m CA	From To PY% Style VG Min Min% Min2 M2%	From To Sample Au g/t Type
		65.50 66.10 30 RBV QZ 25 50		
65.50 66.50 BDG 50 M	65.50 66.50 M M W M		65.50 66.50 1 DISS - PO 5	
		66.10 66.50 2 STYV CB 15 30		

From	То	Litho
66.50	74.90	1e

Mafic Schist - Grey-green, banded \ foliated, chloritic granular to fine grained aphanitic. The intensity of the strain is already weakening towrds the bottom of the unit until it meets an ultramafic intrusion (possibly lamprophyre but more chloritic stretched phenocrysts). By 72m the chloritic bands are obvious pillow margins and the foliation caused by stretched pillows.

	STRU	CTUR	ES				4	ALTE	RATION						V	EINS						M	INER	ALIZ	ZATIO	DN				SAMP.	LES	
From	То	Struct	CA	Strain	From	То	INT TC SR	CH SI	E CB FU	SI CA TO	O C AB EP	From	То	Vn%	Style 1	Style 2 1	Type 1	Type 2 V	V/m C	CA Fr	om	То	PY% St	vle VG	G Min	Min% M	Min2 M2%	From	То	Sample	Au g/t	Type
66.50	74.80	FOL	35	М																												
					66.50	74.90	W	W		W		66.50	74.90	2	VBX	RBV	CB	QZ	12	35 66.5	0 74.	.90	1 DI	SS	- PO	1						
																						ides in a vein	the pill s.	ow ma	argins a	and						

74.80 74.90 CNT 60 M

Ultramafic Intrusive - Grey, medium grained, weakly foliated, chlorite-carbonate schist. Possibly lamprophyre. Causes induration of the host basalt at contacts and in xenoliths.

	STRU	CTUR	ES					A	ALTE	RATIC	DN							VE	EINS					MINI	ERAI	LIZA	TIO	N				SAMP	LES	
From	То	Struct	CA	Strain	From	То	INT T	°C SR	CH S	E CB I	FU SI	CA	TO C A	AB EP	From	То	Vn%	Style 1	Style 2 Type	1 Type 2	V/m CA	From	То	PY%	Style	VG	Min M	Min% Min2	M2%	From	То	Sample	Au g/t	Type
74.90	75.20	FOL	60	W	74.90	75.20	М		М	М	W			W	74.90	75.20	5	STYV	QZ-0	В	10 60													

From	То	Litho
75.20	75.90	1b

Pillow Basalt - Dark gree-grey, deformed and altered pillows with chloritic margins making a weak and erratic foliation. Carbonate breccia veins further complicate the texture of the unit. Sharp and very altered lower contact with the next lamprophyre intrusion.

STRUCTURES	ALTERATION	VEINS	MINERALIZATION	SAMPLES
From To Struct CA Strain	From To INT TC SR CH SE CB FU SI CA TO C AB EP	From To Vn% Style 1 Style 2 Type 1 Type 2 V/m CA	From To PY% Style VG Min Min% Min2 M2%	From To Sample Au g/t Type
75.20 75.80 FOL 40 M				
	75.20 75.90 M M M M M	75.20 75.90 20 VBX STYV CB CB 12 60	75.20 75.90 1 VLT - PO 1	
75.80 75.90 CNT 20 M				

From	То	Litho
75.90	76.30	15b

Lamprophyre - Grey, medium grained, well foliated chlorite (after biotite)-carbonate schist. Relic biotite phenocrysts apparent in this unit. Alteration at both contacts with the basalt and lots of veining at the lower contact.

	S	STRU	CTUR	ES					AL	TER.	ATION						V	EINS						MINE	RAL	IZATI	ION				SAMP	LES	
F	rom	То	Struct	CA	Strain	From	То	INT TC	SR CH	I SE	CB FU SI	CA TO C	C AB EF	P From	То	Vn%	Style 1	Style 2 Ty	pe 1 Type 2	? V/m	CA	From	То	PY%	Style	VG Min	Min%	Min2 M2%	From	То	Sample	Au g/t	Type
75	.90	76.20	FLT	40	S																												_
						75.90	76.30	М	Ν	Л	М		М	75.90	76.30	2	STYV		СВ		5 50												
76	.20	76.30	CNT	50																													

From	То	Litho
76.30	84.40	1a

Basalt - Dark green, fine grained, mostly massive with some small intervals of weak banding and perhaps one chloritic relic pillow margin.

STRUCTURES	ALTERATION	VEINS	MINERALIZATION	SAMPLES
From To Struct CA Strain	From To INT TC SR CH SE CB FU SI CA TO C AB EP	From To Vn% Style 1 Style 2 Type 1 Type 2 V/m CA	From To PY% Style VG Min Min% Min2 M2%	From To Sample Au g/t Type
76.30 84.30 FRC 70				

From	То	Litho
76.30	84.40	1a

Basalt - Dark green, fine grained, mostly massive with some small intervals of weak banding and perhaps one chloritic relic pillow margin.

STRU	CTURES		ALTERATION							V	EINS						N	IINER	ALIZ	ATIO	DN			SAMP	LES					
From To	Struct CA	Strain	From	То	INT TC SR	CH SE	CB FU	SI CA	TO C	C AB E	P From	ı To	Vn%	Style 1	Style 2	Type 1	Type 2	V/m (CA F	rom	То	PY% St	yle VG	Min	Min% Min2 M2%	From	То	Sample	Au g/t	Type
		7	76.30	84.40	М	Μ				W	W 76.30	0 84.40	0 5	VBX	RBV	CB	QZ-TO	12	50 76.3	30 84	4.40	2 D	SS -	PO	3					
												Py	vrrhotite	e in QZ	-TO ve	ins als	SO.													

84.30 84.40 CNT 60

From	То	Litho
84.40	84.70	15a

Lamprohyre -Brown-grey, medium grained biotite phenocrysts, weakly and erratically foliated in a crystalline carbonate matrix, sometimes equigranular. Similarly indurates the host basalt with albite alteration. Sharp lower contact.

STRUCTURES	ALTERATION	VEINS	MINERALIZATION	SAMPLES
From To Struct CA Strain	From To INT TC SR CH SE CB FU SI CA TO C AB EP	From To Vn% Style 1 Style 2 Type 1 Type 2 V/m CA	From To PY% Style VG Min Min% Min2 M2%	From To Sample Au g/t Type
84.40 84.70 CNT 60 W	84.40 84.70 W W W M	84.40 84.70 5 VBX STYV CB CB 25 35	84.40 84.70 2 DISS -	

Basalt - Dark green, fine grained, massive, pervassively chloritic basalt. This is a small part of a larger sequence of basalt flows broken up by lamprophyre dikes.

STRUCTURES	ALTERATION	VEINS	MINERALIZATION	SAMPLES
From To Struct CA Strain	From To INT TC SR CH SE CB FU SI CA TO C AB EP	From To Vn% Style 1 Style 2 Type 1 Type 2 V/m CA	From To PY% Style VG Min Min% Min2 M2%	From To Sample Au g/t Type
84.70 86.00 FRC 45 W	84.70 86.00 W W W W	84.70 86.00 5 VBX STYV CB CB 18 50	84.70 86.00 1 DISS -	

From	То	Litho
86.00	86.10	15b

Lamprophyre -Green-grey, chloritic-carbonate schist with some relic biotite phenocrysts similar to the earlier intrusions in this drill hole. Well foliated. Similar alteration of wall rock.

	STRU	UCTUR	ES					A	LTEI	RATI	ON									V	EINS	5						MIN	ERA	LIZ	ATI	ON				SAM	IPL	ES	
From	То	Struct	CA	Strain	From	То	INT TC	SR	CH SE	CB	FU S	I CA	TO	С.	AB E	P Fre	m	То	Vn%	Style 1	Style 2	Type 1	Type 2	V/m	CA	From	То	PY%	Style	e VG	Min	Min%	Min2 M2	% From	То	Sam	ple	Au g/t	Type
86.00	86.10	CNT	70	S	86.00	86.10	S		S	S					Μ	86.	8 00	6.10	1	STYV	1	CB		10	70														

Pillow Basalt - Dark green, fine grained, pervassively chloritic more obviously around pillow margins that make swirling bands at intervals throughout the core. Carbonate-quartz breccia veins, often with pyrrhotite break up the pattern. Fine disseminated pyrite throughout.

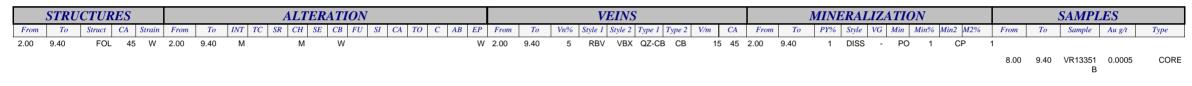
	STR	RUCT	URE	ES		ALTERATION								VE	INS							MIN	ERA	LIZA	TION	V				SAM	IPLES						
Fron	ı Ta	o Str	ruct C	CA Strain	1 From	То	INT	TC SF	R CH	SE CB	FU SI	CA TO	C AB	EP From	To	o Vn	% St	tyle 1 S	tyle 2 Ty	pe 1 Ty	pe 2 V	//m (CA	From	То	PY%	5 Style	VG	Min M	1in% Mir	n2 M2%	From	То	Samp	ple Au	v/t	Type
					86.10	94.60	М		М																												
86.10) 100.5	50	FRC	45 W										86.10	100).50	5	VBX	STYV C	Z-CB	СВ	18	30 86	6.10	100.50	2	DISS	s -	PO	1							
																								Pyri	rhotite	in qu	artz-ca	arbona	ate veir	ns.							
					94.60	94.80	S		S W	М				S																							
					94.80	100.50	D M		М	М																											

DRILL LOG TITLE PAGE

Hole ID	EMP-19-02		Project	Empress	
Section	6E	Easting	502100	Source	GPS
Site	Surface	Northing	5412350	Azimuth	350
Twp	Syine	Elevation	363	Dip	-60
	-	Grid	UTM NAD83	Length	111.00 <i>m</i>
Logged by	Troy Gi	11		DDH Started	10-Sep-19
Geotechnici	an Troy Gi	11		DDH Finished	12-Sep-19
Geotech Typ	pe Basic			Log Completed	28-Sep-19
Drill Contro	nctor Richard	's Exploration		Last Updated	28-Sep-19
Core Size	BTW				
Available 2	Analyses: F	A Yes GRA	V No MET	'No <i>ICP</i> Yes	WR No

Summary

Testing Section 6 East from 50m away.


Sanatana Resources Inc. Drill Log Empress

Signature:

EMP-19-0	02					Initials:
From	То	Litho				
0.00	2.00	OVB				
STRUC	TURES		ALTERATION	VEINS	MINERALIZATION	SAMPLES
From To S	truct CA Strain	From To	INT TC SR CH SE CB FU SI CA TO C AB EP	From To Vn% Style I Style 2 Type I Type 2 V/m CA	From To PY% Style VG Min Min% Min2 M2%	From To Sample Au g/t Type

Basalt - Dark greean, fine grained, mostly massive with small sections of foliation.

From	То	Litho
9.40	27.70	SHZ

Shear Zone - variably dark brown-green to cream coloured due to changes in alteration, intensely sheared with alternate layers of lighter sericitic silicification and darker biotite +/- chlorite giving the rock a tiger striped appearance. Sygmoidal grey quartz in places caught up in the deformation. Pyrite stringers are in the foliation too.

STRUCTURES			ALTER	ATION						VE	EINS						MINERA						SAMPL	ES	
From To Struct CA Strain	From To	INT TC	SR CH SE	CB FU	SI CA	TO C AB	EP From	To	Vn%	Style 1 S	Style 2 Ty	pe 1 Type 2	V/m	CA Fi	rom	То	PY% Style	e VG M	1in Min% M	Min2 M2%	From	То	Sample	Au g/t	Type
																					9.40	10.00	VR13352 B	0.001	CORE
	9.40 11.80	S	M S		М		w																_		
	BT = S																								
														9.40) 15	5.80	1 DIS	S -							
9.40 27.70 FOL 60 VS							9.40	27.70	2	RBV		QZ	6	70											
Tiger stripped pattern																									
																					10.00	11.00	VR13353 B	0.0005	CORE
																					11.00	12.00	VR13354 B	0.0005	CORE
	11.80 14.20	S	W		М																				
	BT = S																								
																					12.00	13.00	VR13355 B	0.0005	CORE
February 26 2020																								Daga	1 of 10

EMP-19-02									Initia	als:	
From To 9.40 27.70	Litho SHZ		(Conti	nued from previous page)							
STRUCTURES		ALTERATION		VEINS		MINERALIZATION			SAMPL	ES	
From To Struct CA Stra	in From To INT TC	SR CH SE CB FU	J SI CA TO C AB EP	From To Vn% Style 1 Style 2 Type 1 Type 2 V/m CA	From To	PY% Style VG Min Min% Min2 M2%	From 13.00	<i>To</i> 14.00	Sample VR13356	Au g/t 0.0005	<i>Type</i> CORE
									B VR13357		CORE
	14.20 18.90 S	S S	м				1.00	10100	В	0.0000	00112
	BT = W, grey qua		141								
							15.00	16.00	VR13358 B	0.001	CORE
					15.80 22.60	5 VLT -					
							16.00	17.00	VR13359 B	0.003	CORE
							17.00	17.00	VR13360 B	0.0005	BLK
							17.00	18.00	VR13361 B	0.001	CORE
							18.00	19.00	VR13362 B	0.007	CORE
	18.90 21.60 S	W	М								
	BT = S, stretched	pebbles?					19.00	20.00	VR13363	0.0005	CORE
							20.00	21.00	B VR13364	0.002	CORE
							21.00	22.00		0.0005	CORE
	21.60 27.70 S	M M	М						В		
	BT = M										
							22.00	23.00	VR13366 B	0.002	CORE
					22.60 27.70	1 DISS -	22.00	24.00	\/D12267	0.008	CORE
								24.00 25.00	VR13367 B VR13368	0.008	CORE
									В		
									VR13369 B	0.005	CORE
									VR13370 B	8.72	STD
									VR13371 B	0.003	CORE
							27.00	27.70	VR13372 B	0.003	CORE

From	То	Litho
27.70	30.10	15c

Ultramafic Intrusions - Dark grey, sequence of 6 narrow porphyritic ultramafic intrusions into the shear zone altered schists. Some with biotite and carbonate matrix can be called lamprophyre, but many are just dark minerals in a lighter aphanitic groundmass. Foliated host rock still altered with sulphides.

	S	TRU	CTUR	RES						AL	TEI	RAT	ION					١	VEII	VS							MIN	ERA	LIZ	ATIO	N			SAMPI	EES	
Fi	om	То	Struct	CA	Strain	From	ı 1	Го	INT TC	SR CH	I SE	CB	FU	SI CA TO C AB	EP From	То	Vn%	Style	1 Style	e 2 Ty	pe 1 T	ype 2	V/m	CA	From	То	PY%	Style	VG	Min 1	Min% Min2 M2%	From	То	Sample	Au g/t	Type
																																27.70	29.00	VR13373 B	0.023	CORE
27	70 3	30.10	CNT	80	w w	27.70	30	.10	Μ	V	V I	/ M		М	27.70	30.10	3	VB	X RI	BV	CB	CB	12	45	27.70	30.10	2	VLT	-							
																																29.00	30.10	VR13374 B	0.0005	CORE

From	То	Litho
30.10	43.20	SHZ

Shear Zone - Light grey, continuation of the same shear zone with more distinctive biotite-chlorite-carbonate sections and the sericitic zone carrying more sulphide especially around the larger quartz veins.

STRUCTURES	ALTERATION	VEINS	MINERALIZATION	SAMPLES
From To Struct CA Strain From To	INT TC SR CH SE CB FU SI CA TO C AB EP	From To Vn% Style 1 Style 2 Type 1 Type 2 V/m CA	From To PY% Style VG Min Min% Min2 M2%	From To Sample Au g/t Type
				30.10 31.00 VR13375 0.037 CORE
30.10 34.70	S M M W			В
	5 101 101 00			
BT = S				
		:	30.10 37.20 1 DISS -	
		30.10 40.70 2 STYV EGQV CB QZ 15 70		
30.10 43.20 FOL 65 S				
				31.00 32.00 VR13376 0.004 CORE
				B
				32.00 33.00 VR13377 0.007 CORE B
				33.00 34.00 VR13378 0.0005 CORE
				В
				34.00 34.70 VR13379 0.0005 CORE B
				34.70 34.70 VR13380 0.0005 DUP
				В
34.70 35.80	S W S S W			34.70 35.80 VR13381 0.007 CORE B
				35.80 37.00 VR13382 0.092 CORE
				В
35.80 37.60	S W M W			
BT = S				
				37.00 37.60 VR13383 1.035 CORE
			37.20 41.30 7 VLT -	В
			57.20 +1.50 7 VET -	

EMP-19-02				Initials:
	itho HZ (Continued from previous page)		
STRUCTURES	ALTERATION	VEINS	MINERALIZATION	SAMPLES
From To Struct CA Strain From	To INT TC SR CH SE CB FU SI CA TO C	AB EP From To Vn% Style 1 Style 2 Type 1 Type 2 V/m CA	From To PY% Style VG Min Min% Min2 M2%	From To Sample Au g/t Type
				37.60 39.00 VR13384 0.501 CORE B
37.60	43.20 S S S			
	Most pyritic part of shear zone.			
				39.00 40.00 VR13385 0.333 CORE B
				40.00 40.80 VR13386 0.033 CORE B
		40.70 41.20 95 LWV QZ 5 55		
				40.80 41.20 VR13387 0.036 CORE B
				41.20 42.00 VR13388 0.005 CORE B
		41.20 43.20 1 EGQV QZ 3 60		
			41.30 43.20 1 DISS -	
				42.00 43.20 VR13389 0.003 CORE B

From	То	Litho
43.20	62.70	1e

Mafic Schist - Dark green-grey, fine grained, variably moderately to well foliated schist, most likely after basalt. Some chlorite-carbonate +/- magnetite shear veins at intervals. Others with pyrite. Intensity of foliation diminishes towards the end and the rock becomes hornfelsed basalt.

STRUCTURES	ALTERATION	VEINS	MINERALIZATION	SAMPLES
From To Struct CA Strain	From To INT TC SR CH SE CB FU SI CA TO C AB EP	From To Vn% Style 1 Style 2 Type 1 Type 2 V/m CA	From To PY% Style VG Min Min% Min2 M2%	From To Sample Au g/t Type
				43.20 43.20 VR13390 0.004 BLK B
				43.20 44.00 VR13391 0.001 CORE B
		43	3.20 56.40 1 DISS -	
43.20 62.70 FOL 55 M	43.20 62.70 M M M	43.20 62.70 10 SHV STYV CB CB 18 50		
	Magnetite - W	CB-CH-MT		
		56	6.40 57.60 3 VLT -	56.40 57.60 VR13392 CORE B
		57	7.60 58.70 1 DISS -	
		58	8.70 59.30 5 VLT -	58.70 59.30 VR13393 CORE B
		59	9.30 61.60 1 DISS -	
		61	1.60 62.60 2 DISS -	61.60 62.60 VR13394 CORE B
		62	2.60 62.70 1 DISS -	

EMP-19	9-02
--------	------

					Initials:
From To 43.20 62.70	Litho 1e	(Con	tinued from previous page)		
STRUCTURES		ALTERATION	VEINS	MINERALIZATION	SAMPLES
m To Struct CA Stra	tin From To INT	TC SR CH SE CB FU SI CA TO C AB E	EP From To Vn% Style 1 Style 2 Type 1 Type 2 V/m CA	From To PY% Style VG Min Min% Min2 M2%	From To Sample Au g/t Type
From To	Litho				
62.70 65.10	1f				
		bhedral dark minerals, presumably amphibole b	ut possibly a pyroxene set in a lighter coloured finer grain	ed	
		d besoming a schist towards the lower part of the			
STRUCTURES		ALTERATION	VEINS	MINERALIZATION	SAMPLES
n <u>To</u> <u>Struct</u> <u>CA</u> <u>Stra</u> 0 65.10 FOL 45 W	tin From To INT V 62.70 65.10 M	TC SR CH SE CB FU SI CA TO C AB E	EP From To Vn% Style 1 Style 2 Type 1 Type 2 V/m CA 62.70 65.10 2 STYV VBX CB CB 30 20	From To PY% Style VG Min Min% Min2 M2%	From To Sample Au g/t Typ
65.10 65.60	SHZ				
Shear Zone - Brown, inten		, , , , , , , , , , , , , , , , , , , ,	tz veins plus disseminated pyrite. Silicified and biotite al		
Shear Zone - Brown, inten	nsley foliated with ma	ALTERATION	VEINS	MINERALIZATION	SAMPLES
Shear Zone - Brown, inten STRUCTURES m To Struct CA Strat	insley foliated with ma	, , , , , , , , , , , , , , , , , , , ,	VEINS	MINERALIZATION From To PY% Style VG Min Min% Min2 M2%	From To Sample Au g/t Typ
Shear Zone - Brown, inten STRUCTURES To Struct CA Stra	insley foliated with ma	ALTERATION TC SR CH SE CB FU SI CA TO C AB E	VEINS P From To Vn% Style 1 Style 2 Type 1 Type 2 V/m CA	MINERALIZATION From To PY% Style VG Min Min% Min2 M2%	
Shear Zone - Brown, inten STRUCTURES m To Struct CA	in From To INT S 65.10 65.60 M	ALTERATION TC SR CH SE CB FU SI CA TO C AB E	VEINS P From To Vn% Style 1 Style 2 Type 1 Type 2 V/m CA	MINERALIZATION From To PY% Style VG Min Min% Min2 M2%	From To Sample Au g/t Typ
Shear Zone - Brown, inten STRUCTURES m To Struct CA	in From To INT S 65.10 65.60 M	ALTERATION TC SR CH SE CB FU SI CA TO C AB E	VEINS P From To Vn% Style 1 Style 2 Type 1 Type 2 V/m CA	MINERALIZATION From To PY% Style VG Min Min% Min2 M2%	From To Sample Au g/t Typ
Shear Zone - Brown, inten STRUCTURES m To Struct CA Stra 0 65.60 FOL 70 S	in the set of the set	ALTERATION TC SR CH SE CB FU SI CA TO C AB E	VEINS P From To Vn% Style 1 Style 2 Type 1 Type 2 V/m CA	MINERALIZATION From To PY% Style VG Min Min% Min2 M2%	From To Sample Au g/t Typ
Shear Zone - Brown, inten STRUCTURES m To Struct CA Strat 0 65.60 FOL 70 S From To 65.60 66.50	nsley foliated with main $From$ To INT S 65.10 65.60 M BT = M Litho 15	ALTERATION TC SR CH SE CB FU SI CA TO C AB E	VEINS EP From To Vn% Style 1 Style 2 Type 1 Type 2 V/m CA 65.10 65.60 40 STYV EGQV CB QZ 100 70	MINERALIZATION From To PY% Style VG Min Min% Min2 M2%	From To Sample Au g/t Typ
Shear Zone - Brown, inten STRUCTURES m To Struct CA Strat 0 65.60 FOL 70 S From To 65.60 66.50	nsley foliated with main $From$ To INT S 65.10 65.60 M BT = M Litho 15	ALTERATION TC SR CH SE CB FU SI CA TO C AB E M W	VEINS EP From To Vn% Style 1 Style 2 Type 1 Type 2 V/m CA 65.10 65.60 40 STYV EGQV CB QZ 100 70	MINERALIZATION From To PY% Style VG Min Min% Min2 M2%	From To Sample Au g/t Typ
From To From To 65.60 FOL 70 S From To 65.60 66.50 Lamprophyre - Grey, medi STRUCTURES m To Struct CA Stra	in sley foliated with matrix $From$ To INT S = 65.10 = 65.60 M BT = M Litho 15 ium grained carbona ID = To INT	ALTERATION TC SR CH SE CB FU SI CA TO C AB E M W M W ALTERATION ALTERATION TC SR CH SE CB FU SI CA TO C AB E	VEINS IP From To Vn% Style I Style 2 Type 1 Type 2 V/m CA 65.10 65.60 40 STYV EGQV CB QZ 100 70 ite, weakly foliated. VEINS IP From To Vn% Style 1 Style 2 Type 1 Type 2 V/m CA	MINERALIZATION From To PY% Style VG Min Min% Min2 M2% 65.10 65.60 5 DISS -	From To Sample Au g/t Typ 65.10 65.60 VR13395 C B B B B B B
From To From To 65.60 FOL 70 S From To 65.60 66.50 Lamprophyre - Grey, medi STRUCTURES m To Struct CA Stra	insley foliated with matrix From To INT S 65.10 65.60 M BT = M Litho 15 ium grained carbona	ALTERATION TC SR CH SE CB FU SI CA TO C AB E M W ate dominated with chlorite presumably after bioti ALTERATION	VEINS Image: Style 1 Type 1 Type 2 V/m CA 65.10 65.60 40 STYV EGQV CB QZ 100 70 ite, weakly foliated.	MINERALIZATION From To PY% Style VG Min Min% Min2 M2% 65.10 65.60 5 DISS - MINERALIZATION	From To Sample Au g/t Typ 65.10 65.60 VR13395 C B SAMPLES

Mafic Metavolcanic - Dark green, medium to fine grained, chloritic and carbonate Itered, something between the amphibolite and a pillow basalt. Starts of sheared against the lamprophyre contact

STRUCTURES	ALTERATION	VEINS	MINERALIZATION	SAMPLES			
From To Struct CA Strain	From To INT TC SR CH SE CB FU SI CA TO C AB EP	From To Vn% Style I Style 2 Type I Type 2 V/m CA	From To PY% Style VG Min Min% Min2 M2%	From To Sample Au g/t Type			
			66.50 66.60 3 DISS -				
66.50 67.30 FOL 60 W	66.50 67.30 W W W	66.50 67.30 5 STYV CB 20 30					

Metasediments - Light grey, regular ~1cm banded, weakly silicified and chloritic with some deformation and veining with sulphides towards the end. First 10cm looks albite altered and possibly represents flow top transition to interflow sediments.

	S	TRUC	CTURE	S					ALTE	ERATI	ON					V	EINS					MIN	ERAI	LIZAT	ION			SAMP.	LES	
Fre	om	То	Struct 0	CA S	train	From	То	INT TC	SR CH	SE CB	FU SI	CA TO C AB E	P From	То	Vn%	Style 1	Style 2 Type	I Type 2 V	V/m CA	From	To To	PY%	Style	VG Mi	n Min% Min2 M2%	From	То	Sample	Au g/t	Type
																				67.30	67.60	1	DISS	-						
67.3	30 6	7.70	BDG	60	W	67.30	67.70	W	W	W	W	W	67.30	67.70	3	RBV	CE		6 50)										
																				67.60	67.70	20	DISS	-						

From	То	Litho
67.70	68.70	1

Metavolcanic - Dark grey-brown, fine grained and massive with lots of thin carbonate veining.

STRUCTURES	ALTERATION	VEINS	MINERALIZATION	SAMPLES
From To Struct CA Strain	From To INT TC SR CH SE CB FU SI CA TO C AB EP	From To Vn% Style 1 Style 2 Type 1 Type 2 V/m CA	From To PY% Style VG Min Min% Min2 M2%	From To Sample Au g/t Type
67.70 68.70 CNT 40 W	67.70 68.70 W W W	67.70 68.70 10 STYV CB 25 30		

Metasediments - grey-brown, similar banded unit.

STRUCTURES	ALTERATION	VEINS	MINERALIZATION	SAMPLES
From To Struct CA Strain	From To INT TC SR CH SE CB FU SI CA TO C AB EP	From To Vn% Style 1 Style 2 Type 1 Type 2 V/m CA	From To PY% Style VG Min Min% Min2 M2%	From To Sample Au g/t Type
68.70 69.30 BDG 65 W	68.70 69.30 W W W	68.70 69.30 10 STYV CB 40 70	68.70 69.30 1 DISS -	

From	То	Litho
69.30	70.00	15

Lamprophyre - Light grey, similar to above, perhaps more original biotite.

	STI	RUC	TUR	ES							ALT	TER	ATI	ON											V	EIN	VS							MIN	IERA	ALIZ	ZATI	ON					SA	MPL	ES	
Fron	n Te	°0	Struct	CA	Strain	From	To	IN	T TC	SR	CH	SE	CB	FU	SI	CA	ТО	С	AB	EP	From	То	V	'n%	Style 1	Style .	2 Type	1 Ty	pe 2	V/m	CA	From	То	PY%	6 Style	e VC	G Min	Min9	% Min2	M2%	From	То	S	lample	Au g/t	Type
69.30	70.0	00	CNT	70	W	69.30	70.0	0	М		W		М								69.30	70.00)	5	STYV	/	C	В		15	50															

From	То	Litho
70.00	72.00	3

Metasediments - Grey-brwon, banded to moderatley foliated with carbonate stringers and carbonate-chlorite breccia veins.

	STRU	UCTU	RES					A	ALT I	ERAT	ION										VEL	NS							MIN	ERA	LIZ	ATI	ON					SAMP.	LES	
From	То	Struct	CA	Strain	From	То	INT	TC SR	CH	SE CB	FU	SI	CA TO	0 C	AB	EP	From	То	Vn%	5 Style	e 1 Sty	ile 2 Ty	vpe 1 1	Type 2	V/m	CA	From	То	PY%	5 Style	e VG	Min	Min%	Min2 M	M2%	From	То	Sample	Au g/t	Type
70.00	72.00	FOL	. 70	W (70.00	72.00	Μ		Μ	N	1				VW		70.00	72.00	10) ST	TYV V	VBX	CB	CB	45	5 70														

From	То	Litho
72.00	80.40	15b

Foliated Lamprophyre - Brown-grey, variably weakly foliated biotite and carbonate schist. Some might prefer to simply call this a shear zone, but I chose to name it based on mineralogy. 10cm raft of metaseds at 75.5m.

	STRU	UCTUR	RES						AL	TE	RA I	TION	1										VE	INS							1	MIN	ER.	LĽ	ZAT	ION	V				5	SAMP	LES	
From	То	Struct	CA	Strain	From	То	INT	TC S	SR CH	H SE	E CB	B FU	SI	CA	TO	С	AB	EP	From	То	Vn%	6 Style	e 1 St	tyle 2	Type 1	Type 2	V/m	CA	F	rom	То	PY%	Styl	e V	G Mi	in M	in% M	Ain2 M2	% Fre	om	То	Sample	Au g/t	Type
72.00	80.40	FOL	40	М	72.00	80.40	W		1	W	V	N						7	72.00	80.40	5	ST	Y۷	RBV	CB	QZ-CI	3	10 30	72.0	00 8	0.40	1	DIS	S	-									

From	То	Litho
80.40	82.80	3

Metasediments - Dark grey, similar foliated unit between lamprophyres.

ST	RUC	CTURE	ES 🛛					AI	TER	ATION	T							VEI	VS						MI	VER	ALĽ	ZATIO	DN			SAMP	LES	
From T	То	Struct C	CA S	Strain	From	То	INT TO	C SR C	H SE	CB FU	SI CA	TO C A	AB EF	From	То	Vn%	Style	e 1 Style	e 2 Typ	e 1 Ty	pe 2 V	/m C	A Fro	m Te	o PY	% Sty	yle VO	G Min	Min% Min2 M2%	6 From	То	Sample	Au g/t	Type
																							80.40	80.60	D 5	5 DI	SS	-						
80.40 82.8	80	FOL	50	М	80.40	82.80	М		М	W			V	V 80.40	82.80	2	ST	YV R	BV (СВ	СВ	15	30											
																							80.60	81.10	D 1	I DI	SS	-						
																							81.10	81.40	0 1	0 V	LT	- PO	10					
																							81.40	82.80	D 1	I DI	SS	-						

From	То	Litho
82.80	84.80	15b

Foliated Lamprophyre - Green-grey, similar to previous.

	ST	RUC	CTUR	ES						A	LTE	RA	TIO	V											VE	INS	5							M	INER	AL	IZA1	[]	N					SAM	MPL	ES		
From	ı 1	То	Struct	CA	Strain	From	То	INT	TC	SR (CH S.	ε C	CB FU	I SI	CA	TO	С	AB	EP	From	1	То	Vn%	Styl	e I S	Style 2	Type .	Type	e 2	V/m	CA	From	То	1	PY% St	yle	VG Mi	lin M	Min% M	in2 M29	%	From	То	San	nple	Au g/t	Tyj	pe
82.8	84.8	.80	FOL	35	5 M	82.80	84.80	М			М		М					N	/	82.80) 8	4.80	1	S	TYV	cb				8	20																	

From	То	Litho
84.80	86.40	1b

Pillow Basalt - Green-grey, fine grained, weakly foliated but with relic pillow margins marked by swirling green colour variation.

STRUCTURES	5				ALTEI	RATIO	ON							VEIN	S					j	MINI	ERAL	IZAT	ION				SAMP.	LES	
From To Struct CA	Strain	From	То	INT TC S	SR CH SE	E CB	FU SI	CA TO	C AB	EP From	То	Vn%	5 Style	1 Style 2	2 Type 1	Type 2	V/m	CA	From	То	PY%	Style	VG Min	n Min%	6 Min2 M2%	6 From	То	Sample	Au g/t	Type
																		84	.80	85.90	1	DISS	-							
84.80 86.40 FOL 4	40 W	84.80	86.40	W	W	W				84.80	86.40	3	VE	STY	V QZ-CB	СВ	12	30												
																		85	.90	86.00	3	DISS	-							
																		86	.00	86.40	1	DISS	-							

From	То	Litho
86.40	86.80	15b

Foliated Lamprophyre - Green-grey, finger of same lamprophyre unit.

STRUCTURES	ALTERATION	VEINS	MINERALIZATION	SAMPLES
From To Struct CA Strain	From To INT TC SR CH SE CB FU SI CA TO C AB EP	From To Vn% Style 1 Style 2 Type 1 Type 2 V/m CA	From To PY% Style VG Min Min% Min2 M2%	From To Sample Au g/t Type
86.40 86.80 FOL 15 S	86.40 86.80 M M M	86.40 86.80 1 STYV CB 6 30		

From	То	Litho
86.80	90.40	1b

Pillow Basalt - Grey-green, similarly weakly foliated unit as previous.

STRUCTURES	ALTERATION	VEINS	MINERALIZATION	SAMPLES
From To Struct CA Strain	From To INT TC SR CH SE CB FU SI CA TO C AB EP	From To Vn% Style 1 Style 2 Type 1 Type 2 V/m CA	From To PY% Style VG Min Min% Min2 M2%	From To Sample Au g/t Type
86.80 90.40 FOL 50 W	86.80 90.40 M M W	86.80 90.40 5 RBV VBX CB QZ-CB 15 20	86.80 90.40 2 DISS -	

From	То	Litho
90.40	91.20	3

Metasediments - Brown-grey, altered and deformed up against the next lamprophyre although some banding is still there.

	ST	RUC	CTUR	ES						AL	TER	AT	ION											VE	INS							MIN	VER	RAL	IZAT	[]]	N					SAMI	PLES	
From	ı T	0	Struct	CA	Strain	From	То	INT	TC SF	R Ch	I SE	CB	FU	SI	CA	TO	С.	AB 1	EP	From	То	Vn%	6 St	vle 1 Si	tyle 2 1	Type 1	Type 2	V/m	CA	From	То	PY%	% Si	tyle	VG M	lin M	Min%	Min2	M2%	From	То	Sample	Au g/t	Type
90.40	91.2	20	BDG	40	М	90.40	91.20	W		V	V	W		W					ç	90.40	91.20	5	5 5	STYV		CB		10) 30	90.40	91.20	2	2 D	ISS	-									

From	То	Litho
91.20	96.20	15b

Foliated Lamprophyre - Grey, variably weakly foliated to some parts that are biotite porphyritic. Less altered, fresher looking.

	STRU	UCTU	RES	5					I	ALTI	ERAT	TION	I									VE	EINS							MI	NE	RAL	JZAI	TION	V			SAMP	LES	
From	t To	Struct	CA	Stra	in F	rom	То	INT	TC SR	CH	SE CB	B FU	SI	CA	TO	C A	AB EF	P From	То	Vn	1% Si	Style 1 S	Style 2	Type 1	Type 2	V/m	CA	Fron	ı To	P	Y%	Style	VG M	lin M	in% Min2 M2%	From	То	Sample	Au g/t	Type
91.20	96.20	FO	L :	30 V	V 91	.20	96.20	W			V	Ν						91.20	96.20)	7	STYV	VBX	CB	QZ-CB	1	5 70	91.20	96.20		2	DISS	-							

From	То	Litho
96.20	97.60	1e

Mafic Schist - Green-grey, fine grained, chloritic, massive to weakly foliated metavolcanic. Many thin carbonate stringers at upper contact with lamprophyre.

S'	TRUC	TURE	ES					ALTERATI	ON				VE	INS				MINE	ERALIZATION			SAMPI	LES	
From	То	Struct (CA St	rain .	From	То	INT TC	SR CH SE CB	FU SI CA TO C AB	EP From	То	Vn%	Style 1 S	tyle 2 Type 1	Type 2 V/m	CA	From To	PY%	Style VG Min Min% Min2 M2%	From	То	Sample	Au g/t	Type
																	96.20 96.50	3	DISS -					
96.20 9	7.60	CNT	80	w s	6.20	97.60	М	М	W	96.20	97.60	5	STYV	CB	:	30 50								

From	То	Litho
97.60	98.30	15

Lamprophyre - Grey, more of a carbonate dominated type.

	STRU	CTUR	ES					A	ALTEI	RATI	ON								I	VEIN	/S						MIN	ERA	LIZA	ATIO	N				S	AMP	LES	
From	То	Struct	CA	Strain	From	То	INT TO	C SR	CH SE	E CB	FU S	I CA	TO	C A	B EP	From	То	Vn%	Style	1 Style	2 Type 1	Type 2	V/m	CA	From	То	PY%	Style	VG	Min	Min% M	1in2 M2%	6 From	T	<i>`o</i>	Sample	Au g/t	Type
97.60	98.30	CNT	80) VW	97.60	98.30	М		W	S						97.60	98.30	1	STY	(V	CB		:	2 60														

Pillow Basalt - Green-grey, fine grained chloritic with swirling relic pillow margin textures attacked with carbonate veining.

	S	TRU	CTU	RES							ŀ	AL1	FER	PA 7	'10 1	V											V	EINS	S							MIN	IER	ALI	ZA1	10 1	V					SAMI	PLES		
Fr	om	То	Struct	CA	Stra	in Fr	rom	То	INT	TC	SR	CH	SE	CE	FU	SI	C	A T	0	C 4	4 <i>B</i>	EP	From	То	Vi	'n%	Style 1	Style 2	Type	1 Type	e 2 V	//m	CA	From	То	PY%	6 Sty	vle V	VG M	in M	in%	Min2 M	M2%	From	То	Sample	Au g/t	Type	
98.	30 1	01.80	CN	T 2	20 V\	N 98	.30	101.80) M			М	1	V	V								98.30	101.8	30	3	STYV		CI	3		15	40	98.30	101.80	1	DI	SS	-					·					

From	То	Litho
101.80	102.90	15a

Biotite Porphyritic Lamprophyre - Green-grey, distinctly porphyritic with more of a chloritic groundmass. Section of sulphidic country rock xenolith in the middle.

	S	TRU	CTU	RES						ALT	'ERA	TION	V							V	EIN:	S						MIN	ERA	LIZ	ATI	ON				SAMP	LES	
Fron	n	То	Struct	CA	Strain	From To INT TC SR CH SE CB FU SI CA TO C AB EH				B EP	From	То	Vn%	Style 1	Style 2	Type 1	Type 2	V/m	CA	From	То	PY%	Style	e VG	Hin	Min% Min2	12% F	rom	То	Sample	Au g/t	Type						
101.8	30 1	02.90	CNT	60	W (101.80	0 102.9	0 M		Μ		W					101.80	102.90	1	STY	V	CB		2	25	101.80	102.90	2	DIS	s -	-							

From	То	Litho
102.90	111.00	1b

Pillow Basalt - Green, fine grained, massive chloritic with relic pillow margin textures.

STRUCTURES	ALTERATION	VEINS	MINERALIZATION	SAMPLES
From To Struct CA Strain	From To INT TC SR CH SE CB FU SI CA TO C AB EP	From To Vn% Style 1 Style 2 Type 1 Type 2 V/m CA	From To PY% Style VG Min Min% Min2 M2%	From To Sample Au g/t Type
102.90 111.00 FRC 60	102.90 111.00 M M W	102.90 111.00 10 STYV RBV CB QZ-CB 20 20	102.90 111.00 1 DISS -	

Sanatana Resources Inc.

GEOLOGICAL LOG FIELDS AND	CODES DESCRIPTION

- Litho Description 1 Mafic Metavolcanic (Unsubdivided) 1a Massive basalt 1b Pillow basalt 1c Mafic Tuff 1d Amygdaloidal Basalt 1f Mafic Schist 1g Amphibolite 1h Mafic Gneiss 2 Intermediate Metavolcanic (Unsubdivided) 2a Intermediate Flow 2b Intermediate Lapilli tuff 2c Intermediate Tuff breccia 2d Volcanogenic sandstone to siltstone 2e Intermediate Crystal tuff 2g Intermediate Schist 2j Intermediate Flow breccia 3 Felsic Metavolcanic (Unsubdivided) 3a Felsic Flow 3b Felsic Lapilli tuff 3c Tuff breccia 3d Quartz porphyritic volcanic 3e Autoclastic flow breccia 3f Hydrothermal breccia, with chlorite veining
- 4a Conglomerate, boulders and cobbles 4b Pebbly sandstone, matrix supported 4c Sandstone, arkosic sandstone, arenite 4d Siltstone and mudstone 4e Schist 4f Chert 4g Iron Formation 5 Mafic Intrusive (Unsubdivided) 5a Gabbro 5b Diorite 5c Mafic Pegmatite 5g Mafic Intrusive breccia 5h Mafic Dike 6 Intermediate Intrusive (Unsubdivided) 6a Quartz diorite 6b Monzonite 6c Monzodiorite with hematite-stained feldspar 6d Syenite 6e Feldspar porphyry 6em Feldspar porphyry - mafic 6eq Quartz-Feldspar Porphyry 6f Intermediate Intrusive breccia 6g Intermediate Dike

4 Metasediment (Unsubdivided)

Description

LITHOLOGY

Litho

Litho	Description
7	Felsic Synvolcanic Intrusive (Unsubdivided)
7a	Tonalite
7b	Trondhjemite
7c	Granodiorite
7d	Chlorite bearing breccia
7e	Pegmatite dike
7f	Quartz porphyry
7g	Intrusion breccia
7h	Aplite dike
7i	Felsic Schist
8	Felsic post volcanic Intrusive (Unsubdivided)
8a	Biotite tonalite
8b	Biotite + amphibole tonalite
8c	Biotite granodiorite
8d	Biotite + amphibole granodiorite
8e	Amphibole quartz monzonite to granodiorite
8f	Quartz-potassium feldspar megacrystic granite
8g	Foliated / sheared granite
8h	Granite gneiss
8i	Xenolithic granite
8j	Granite: aplite and/or pegmatite
8k	Magnetite bearing granite

			ALTERA	TION	
Litho	Description	Min	Description	Int	Description
9	Diabase (unsubdivided)	AB	Albite	vw	Very Weak
9a	Gabbro to quartz gabbro	AK	Ankerite	w	Weak
9b	Plagioclase phyric diabase	AM	Amphibole	м	Moderate
9c	Fine grained diabase	BT	Biotite	S	Strong
9d	Medium grained diabase	CC	Calcite	VS	Very Strong
9e	Coarse grained diabase	CL	Chlorite	-	Not Recorded
9f	Xenolithic diabase	DL	Dolomite		
10	Lamprophyre (unsubdivided)	EP	Epidote		
10a	Porphyritic Lamprophyre (ferromagnesian)	FD	Feldspar		
10b	Porphyritic Lamporphyre (feldspathic)	FU	Fuchsite		
10c	Ultramafic intrusive	GP	Graphite		
OVB	overburden	GT	Garnet		
QSW	quartz stockwork	HB	Hornblende		
QVO	quartz vein	LX	Leucoxene		
SHZ	Shear zone	MT	Magnetite		
ZFZ	fault zone/gouge	MU	Muscovite		
		PL	Plagioclase		
		PX	Pyroxene		
		SR	Sericite		
		тс	Talc		
		TR	Tourmaline		

		MINERALIZATION				STRUCTURE	VEINING						
Style	Description	VG	Description	Туре	Description	Strain	n	Description	Style	Description	Туре	Description	
AN Anhedral		VG visible gold	noted (historical)	- Overburden		vw	Very Weak		EGQV Early	Grey Quartz Vein(s)	AK	Ankerite	
CG Coarse grained	d	VG1 weak (1 or 2 specks)		BDG Bedding		w	Weak		LWV Late V	Vhite Vein(s)	CA	Calcite	
DISS Disseminated		VG2 moderate (3-10 specks)		BKY Blocky		M Moderate		RBV Ribbo	ned Vein	СВ	Carbonate		
EUH Euhedral		VG3 strong (>10 specks)		BXB Breccia (brittle)		S Strong			SEV Sheet	HE	Hematite		
FG Fine grained		 not record 	ed	BXD Breccia (duct	ile)	VS	Very Strong		SEVA Sigmo	idal Extension Vein Array	QZ	Quartz	
MS Massive				CNT Contact		-	Not Recorded		SHV Shear	Vein(s)	QZ-AB	Quartz-Albite	
MG Medium grain	ed			CRN Crenulated					STYV Stylol	tic Vein	QZ-AK	Quartz-Ankerite	
SM Semi massive				FLT Fault							QZ-CA	Quartz-Calcite	
SEUH Sub-Euhedral				FOL Foliation							QZ-CB	Quartz-Carbonate	
VLT Veinlets				FRC Fracture							QZ-FU	Quartz-Fuchsite	
				G Gouge							QZ-TO	Quartz-Tourmaline	
Min Description				LIN Lineation							то	Tourmaline	
AS Arsenopyrite				MS Massive									
CP Chalcopyrite				SH Shear									
GN Galena				SSF Small Scale F	olds								

MO MolybdenitePO Pyrrhotite

3g Felsic Schist

- SP Sphalerite
- HM Hematite

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

CERTIFICATE TB19228861

Project: EMPRESS

This report is for 58 Drill Core samples submitted to our lab in Thunder Bay, ON, Canada on 12-SEP-2019.

The following have access to data associated with this certificate:

BUDDY DOYLE

TROY GILL

To: SANATANA RESOURCES INC. 908-925 WEST GEORGIA STREET VANCOUVER BC V6C 3L2

Page: 1 Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 20-SEP-2019 Account: SANATANA

SAMPLE PREPARATION									
ALS CODE	DESCRIPTION								
WEI-21	Received Sample Weight								
LOG-22	Sample login - Rcd w/o BarCode								
LOG-24 Pulp Login - Rcd w/o Barcode									
LOG-22d	Sample login - Rcd w/o BarCode dup								
SPL-21d	Split sample - duplicate								
PUL-31d	Pulverize Split - duplicate								
CRU-31	Fine crushing - 70% <2mm								
CRU-QC	Crushing QC Test								
PUL-QC	Pulverizing QC Test								
SPL-21	Split sample - riffle splitter								
PUL-31	Pulverize split to 85% <75 um								

	ANALYTICAL PROCEDU	RES
ALS CODE	DESCRIPTION	
ME-MS61	48 element four acid ICP-MS	
Hg-MS42	Trace Hg by ICPMS	ICP-MS
Au-ICP21	Au 30g FA ICP-AES Finish	ICP-AES

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Colin Ramshaw, Vancouver Laboratory Manager

***** See Appendix Page for comments regarding this certificate *****

ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: SANATANA RESOURCES INC. 908-925 WEST GEORGIA STREET VANCOUVER BC V6C 3L2

Page: 2 - A Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 20-SEP-2019 Account: SANATANA

Project: EMPRESS

CERTIFICATE OF ANALYSIS TB19228861

Sample Description	Method Analyte Units	WEI-21 Recvd Wt. kg	Au-ICP21 Au ppm	ME-MS61 Ag ppm	ME-MS61 Al %	ME-MS61 As ppm	ME-MS61 Ba ppm	ME-MS61 Be ppm	ME-MS61 Bi ppm	ME-MS61 Ca %	ME-MS61 Cd ppm	ME-MS61 Ce ppm	ME-MS61 Co ppm	ME-MS61 Cr ppm	ME-MS61 Cs ppm	ME-MS61 Cu ppm
Sample Description	LOD	0.02	0.001	0.01	0.01	0.2	10	0.05	0.01	0.01	0.02	0.01	0.1	1	0.05	0.2
VR13293B		0.85	0.001	0.06	7.64	6.6	290	0.98	0.08	4.50	0.08	28.4	37.1	127	3.36	72.5
VR13294B		2.05	0.002	0.06	8.36	6.9	490	0.68	0.05	6.19	0.11	28.2	48.3	142	3.36	76.4
VR13295B		1.96	0.004	0.06	7.96	3.0	380	0.73	0.05	5.27	0.11	31.5	37.5	67	4.40	58.4
VR13296B		1.78	0.003	0.05	7.45	1.1	290	0.93	0.05	3.87	0.07	113.5	36.6	13	3.75	70.7
VR13297B		1.84	0.002	0.06	7.58	2.2	240	0.67	0.06	4.41	0.08	32.2	40.1	13	2.22	88.7
VR13298B		1.62	0.001	0.05	7.28	1.7	260	0.70	0.03	4.64	0.09	28.3	34.6	20	1.63	49.5
VR13299B		1.68	<0.001	0.06	7.43	1.0	140	0.73	0.04	6.55	0.11	53.8	45.7	95	1.41	38.8
VR13300B		0 <u>.</u> 18	<0.001	0.01	0.28	0.9	20	0.11	<0.01	0.05	<0.02	5.99	0.7	5	0.23	1.8
VR13301B		1.76	0.001	0.05	7.35	1.0	160	0.83	0.04	5.44	0.08	30.5	35.9	14	1.94	47.8
VR13302B		1.43	0.016	0.06	7.14	43.7	280	1.22	0.06	4.33	0.11	37.2	35.2	35	3.06	60.6
VR13303B		1.25	0.272	0.27	6.30	125.0	710	3.58	0.71	2.82	0.42	75.5	31.6	74	2.94	54.1
VR13304B		1.69	0.030	0.04	5.18	11.1	380	2.29	0.14	3.09	0.08	64.7	12.0	102	2.55	25.8
VR13305B		1.56	0.026	0.11	5.32	3.2	280	1.35	0.52	2.23	0.32	59.5	20.1	70	1.52	65.5
VR13306B		1.25	0.070	0.09	4.66	1.2	270	1.32	0.43	2.50	0.14	61.0	7.1	3	1.53	22.8
VR13307B		0.65	0.186	0.24	0.65	1.1	20	0.13	0.60	0.17	<0.02	7.94	4.1	11	0.06	6.0
VR13308B		1.49	2.33	2.10	5.23	19.0	340	1.43	2.46	2.52	0.76	37.4	62.6	29	0.97	137.0
VR13309B		1.04	1.305	0.87	4.41	9.7	200	0.93	2.94	2.81	0.41	35.8	37.8	24	0.55	68.3
VR13310B		0.07	8.77	1.98	5.10	79.8	250	0.52	0.69	3.93	0.29	11.85	32.0	436	0.73	129.5
VR13311B		0.47	1.690	1.63	0.65	1.0	80	0.16	2.79	0.26	0.03	7.89	5.5	13	0.07	17.1
VR13312B		1.73	1.355	0.79	6.05	4.3	430	1.81	1.26	1.17	0.95	91.0	19.6	17	0.94	45.7
VR13313B		1.65	0.027	0.39	6.84	0.7	310	1.60	0.50	3.37	2.54	85.3	19.2	16	1.26	177.5
VR13314B		1.60	0.009	0.16	6.28	0.8	380	1.45	0.37	3.56	1.32	77.1	11.1	38	1.36	66.0
VR13315B		1.58	0.005	0.18	5.88	0.6	450	1.36	0.33	2.12	0.33	86.9	9.3	4	1.46	52.2
VR13316B		1.78	0.039	0.16	5.71	1.0	400	1.31	0.37	3.16	0.49	68.8	14.1	65	1.89	73.8
VR13317B		0.77	0.065	0.17	5.29	5.1	530	1.39	0.58	1.77	0.09	89.0	8.7	5	0.92	57.5
VR13318B		0.62	0.017	0.50	6.85	0.9	230	0.99	1.01	4.26	0.26	34.1	54.5	81	3.35	123.0
VR13319B		0.48	0.018	0.59	5.85	0.2	160	0.66	<0.01	4.78	0.19	25.5	22.3	92	0.49	182.0
VR13320B		<0.02	0.012	0.43	5.72	0.4	160	0.64	0.01	4.74	0.19	24.8	22.7	86	0.48	201
VR13321B		1.21	0.002	0.08	7.34	1.6	240	1.65	0.06	5.48	0.06	56.7	36.9	51	2.06	72.9
VR13322B		1.26	0.010	0.37	5.81	972	290	1.17	0.23	3.25	3.36	48.1	24.1	33	1.77	260
VR13323B		1.88	0.007	0.26	6.11	4.5	210	1.16	0.20	5.73	3.86	32.7	50.4	53	1.09	226
VR13324B		1.86	0.002	0.13	7.69	4.1	270	0.98	0.21	7.51	0.22	39.2	37.1	55	1.53	80.0
VR13325B		1.80	0.019	0.20	6.18	1.7	260	0.86	0.32	8.46	0.16	32.8	37.1	52	2.27	117.0
VR13326B		1.71	0.017	0.35	5.02	5.9	290	0.83	0.57	4.17	2.06	51.0	27.5	20	1.28	264
VR13327B		1.79	0.036	0.48	4.89	5.3	240	0.98	0.79	5.52	2.18	36.4	42.8	29	1.62	291
VR13328B		1.72	0.272	0.09	5.76	1.0	390	1.52	0.46	2.30	0.17	75.1	5.2	5	0.74	31.7
VR13329B		2.06	0.861	0.36	5.64	2.0	620	1.15	0.65	2.65	1.95	55.1	21.6	24	1.45	157.0
VR13330B		0.22	<0.001	0.01	0.23	0.5	20	0.09	0.02	0.03	<0.02	5.40	0.3	5	0.21	0.7
VR13331B		1.88	0.109	0.61	5.65	2.5	500	1.15	1.09	2.67	3.14	57.6	27.3	19	1.49	189.5
VR13332B		1.67	0.011	0.33	5.88	2.0	530	0.79	0.20	4.63	2.78	37.4	34.3	27	1.96	196.0

ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: SANATANA RESOURCES INC. 908-925 WEST GEORGIA STREET VANCOUVER BC V6C 3L2

Page: 2 - B Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 20-SEP-2019 Account: SANATANA

Project: EMPRESS

CERTIFICATE OF ANALYSIS TB19228861

	Method	ME-MS61	ME-MS61	ME-MS61	ME-MS61	Hg-MS42	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61
	Analyte	Fe	Ga	Ge	Hf	Hg	In	K	La	Li	Mg	Mn	Мо	Na	Nb	Ni
Sample Description	Units LOD	% 0.01	ppm 0.05	ppm 0.05	ррт 0.1	ppm 0.005	ppm 0.005	% 0.01	ppm 0.5	ppm 0.2	% 0.01	ppm 5	ppm 0.05	% 0.01	ppm 0.1	ppm 0.2
	LOD	0.01	0.05	0.03	0.1	0.003	0.003	0.01	0.5	0.2	0.01	5	0.03	0.01	0.1	0.2
VR13293B		7.12	20.3	0.10	1.7	<0.005	0.074	1.87	11.2	21.5	1.67	1100	0.58	1.18	8.9	101.0
VR13294B		6.58	22.0	0.08	1.4	<0.005	0.074	2.31	10.0	21.6	1.47	1090	0.58	1.27	9.1	125.0
VR13295B		8.61	22.1	0.09	2.0	<0.005	0.073	1.86	12.2	19.5	1.66	1280	0.55	1.38	8.5	79.4
VR13296B		9.68	22.6	0.13	3.1	<0.005	0.065	1.35	63.6	23.5	1.72	1500	0.62	1.48	10.4	45.2
VR13297B		8.26	22.7	0.07	3.1	<0.005	0.072	1.08	12.8	17.2	2.08	1330	0.48	1.35	8.0	43.5
VR13298B		8.74	21.6	0.07	2.5	<0.005	0.068	0.93	11.1	14.7	2.72	1340	0.57	1.37	7.2	43.3
VR13299B		9.67	20.8	0.10	2.3	<0.005	0.083	0.66	24.6	10.5	2.77	1510	0.60	1.44	9.2	111.5
VR13300B		0.45	0.77	<0.05	1.1	<0.005	<0.005	0.06	3.2	8.0	0.04	56	0.27	0.05	0.7	1.8
VR13301B		8.55	21.6	0.07	2.9	<0.005	0.066	0.61	12.3	18.6	2.60	1180	0.76	1.35	7.8	41.3
VR13302B		7.17	21.3	0.09	3.2	<0.005	0.062	0.85	15.7	25.5	2.39	1050	0.78	1.89	10.6	52.5
VR13303B		3.76	22.1	0.18	7.2	0.009	0.257	2.86	34.7	46.0	1.17	500	8.19	0.86	10.8	44.0
VR13304B		2.50	14.90	0.11	4.8	<0.005	0.078	1.78	28.7	11.8	1.21	575	4.39	1.59	7.0	42.3
VR13305B		2.45	16.75	0.13	5.5	<0.005	0.151	1.87	26.2	9.7	0.77	402	5.98	1.35	7.1	40.2
VR13306B		2.26	15.05	0.13	7.2	<0.005	0.123	1.93	27.3	10.8	0.73	668	17.45	0.84	8.6	7.2
VR13307B		0.58	2.63	<0.05	0.9	<0.005	0.021	0.14	3.5	0.9	0.03	52	62.7	0.34	0.9	4.3
VR13308B		6.41	24.1	0.09	3.4	<0.005	0.495	2.04	15.9	12.6	0.83	618	124.5	1.22	2.9	63.9
VR13309B		5.36	17.90	0.10	3.4	<0.005	0.309	0.85	14.9	6.6	0.75	661	176.5	2.24	4.8	45.4
VR13310B		4.19	12.60	<0.05	1.5	0.108	0.038	0.73	6.2	30.4	4.33	704	7.91	1.11	1.8	194.5
VR13311B		0.89	2.70	<0.05	0.7	<0.005	0.036	0.14	3.4	0.9	0.06	87	130.0	0.36	1.1	6.1
VR13312B		2.77	28.2	0.17	9.3	<0.005	0.267	2.88	40.2	15.9	0.46	293	45.5	0.69	15.8	24.1
VR13313B		4.12	24.2	0.16	8.9	0.021	0.318	3.56	38.0	19.3	1.23	1110	3.82	0.10	12.8	27.6
VR13314B		2.65	19.05	0.16	9.4	0.009	0.206	2.87	34.2	17.5	1.22	937	2.29	0.93	10.8	20.9
VR13315B		2.02	18.40	0.11	9.4	0.005	0.115	2.69	36.7	16.8	0.69	578	2.38	1.03	10.7	7.6
VR13316B		2.93	17.15	0.14	7.3	<0.005	0.152	2.76	30.8	14.2	1.05	777	3.04	0.45	9.1	31.9
VR13317B		2.18	18.55	0.15	7.1	<0.005	0.122	2.32	38.6	13.1	0.41	401	12.50	0.56	12.1	10.2
VR13318B		10.60	22.0	0.09	2.3	0.005	0.113	1.63	12.5	23.4	1.39	2040	3.77	1.92	9.3	104.5
VR13319B		6.00	13.90	0.07	1.5	<0.005	0.076	0.42	9.9	10.1	1.02	1140	0.78	2.49	7.0	52.6
VR13320B		5.83	13.05	0.08	1.7	<0.005	0.079	0.42	9.6	9.9	0.98	1120	0.83	2.46	6.8	51.0
VR13321B		10.50	23.1	0.13	3.7	<0.005	0.093	0.84	24.2	20.2	1.66	1510	0.86	1.75	12.0	47.7
VR13322B		5.17	21.6	0.13	4.7	0.092	0.422	2.09	20.4	15.0	0.60	710	2.99	1.41	8.8	44.5
VR13323B		7.57	22.4	0.09	2.9	0.088	0.450	1.37	13.3	12.6	1.69	1520	1.88	0.82	7.0	54.4
VR13324B		8.42	23.4	0.10	3.1	0.011	0.107	1.22	14.9	15.6	1.95	1690	0.89	1.48	10.2	41.0
VR13325B		8.04	19.50	0.11	1.8	0.008	0.146	1.26	12.6	15.4	2.18	1840	3.11	1.92	7.7	49.9
VR13326B		6.55	19.90	0.12	4.3	0.028	0.282	1.67	22.0	19.9	1.04	897	2.13	0.70	9.4	40.8
VR13327B		6.31	18.85	0.12	3.4	0.034	0.392	1.61	15.7	14.4	1.11	1210	2.14	0.81	7.8	44.0
VR13328B		2.06	18.90	0.16	6.7	<0.005	0.069	2.31	33.0	17.8	0.35	280	3.39	1.26	14.2	6.7
VR13329B		4.64	19.15	0.15	5.1	0.025	0.245	1.64	24.1	11.2	0.77	473	3.31	2.38	10.6	27.0
VR13330B		0.39	0.59	<0.05	1.0	<0.005	<0.005	0.06	2.9	7.1	0.01	54	0.12	0.04	0.7	1.1
VR13331B		5.37	20.2	0.13	4.8	0.057	0.441	2.31	26.0	17.4	0.83	565	3.07	1.45	10.0	38.7
VR13332B		6.41	20.2	0.13	2.8	0.068	0.441	2.39	15.9	16.9	1.24	906	1.49	0.86	8.4	52.0

ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: SANATANA RESOURCES INC. 908-925 WEST GEORGIA STREET VANCOUVER BC V6C 3L2

Page: 2 - C Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 20-SEP-2019 Account: SANATANA

Project: EMPRESS

CERTIFICATE OF ANALYSIS TB19228861

	Method	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61
	Analyte	Р	Pb	Rb	Re	S	Sb	Sc	Se	Sn	Sr	Та	Te	Th	Ti	ΤI
Sample Description	Units	ppm 10	ppm 0.5	ррт 0.1	ppm 0.002	% 0.01	ppm 0.05	ррт 0.1	ppm 1	ppm 0.2	ppm 0.2	ppm 0.05	ppm 0.05	ppm 0.01	% 0.005	ppm 0.02
	LOD	10	0.5	0.1	0.002	0.01	0.05	0.1	I	0.2	0.2	0.05	0.05	0.01	0.005	0.02
VR13293B		1360	3.9	61.6	<0.002	0.11	0.17	26.6	1	1.3	174.0	0.51	<0.05	1.25	0.938	0.50
VR13294B		1520	3.3	67.9	0.002	0.13	0.23	30.6	<1	0.9	220	0.53	<0.05	0.86	1.135	0.36
VR13295B		1540	3.7	63.4	<0.002	0.14	0.17	30.0	1	0.9	209	0.50	<0.05	1.48	1.215	0.30
VR13296B		1590	3.5	49.8	<0.002	0.19	0.11	29.6	1	1.0	202	0.53	<0.05	2.38	1.265	0.30
VR13297B		1490	4.0	39.4	0.004	0.28	0.15	28.0	<1	1.1	175.5	0.55	0.05	2.11	1.260	0.31
VR13298B		1480	3.0	33.9	<0.002	0.13	0.16	26.4	<1	0.9	167.5	0.49	<0.05	1.81	1.205	0.19
VR13299B		1420	3.2	24.8	0.002	0.10	0.18	32.0	<1	0.8	233	0.39	<0.05	1.77	1.095	0.15
VR13300B		40	1.6	3.2	<0.002	<0.01	0.18	0.6	<1	0.2	3.8	0.09	<0.05	1.72	0.024	0.02
VR13301B		1560	3.8	28.6	<0.002	0.11	0.19	28.8	1	0.9	175.0	0.50	<0.05	2.13	1.285	0.16
VR13302B		1380	6.1	37.3	<0.002	0 <u>.</u> 18	0.28	23.9	<1	1.0	227	0.69	<0.05	2.30	1.055	0.31
VR13303B		520	8.1	80.9	0.003	1.15	0.47	12.4	1	6.7	234	0.69	0.54	3.94	0.303	0.75
VR13304B		380	4.5	57.5	<0.002	0.24	0.11	8.6	1	2.1	182.5	0.49	<0.05	3.64	0.168	0.28
VR13305B		400	4.5	53.6	0.003	0.60	0.09	9.0	1	2.6	130.5	0.52	0.19	3.36	0.204	0.25
VR13306B		170	4.2	52.5	0.002	0.58	0.06	6.7	1	2.7	102.0	0.55	0.14	3.63	0.152	0.28
VR13307B		40	2.9	3.5	<0.002	0.36	0.06	0.9	1	0.8	12.3	0.06	0.28	0.50	0.021	0.03
VR13308B		600	13.3	53.7	0.004	5.30	0.10	11.6	6	11.0	112.5	0.20	2.98	2.05	0.204	0.35
VR13309B		380	22.2	23.5	0.007	3.98	0.06	8.1	3	6.4	166.5	0.31	1.15	1.99	0.161	0.13
VR13310B		280	39.8	33.1	0.002	0.95	0.86	20.0	2	0.5	90.7	0.12	0.44	1.83	0.226	0.25
VR13311B		50	30.3	3.7	<0.002	0.71	0.08	0.7	<1	0.7	19.1	0.07	0.78	0.39	0.015	0.04
VR13312B		290	19.8	73.2	0.002	1_89	0.13	7.2	2	7.4	88.2	1.10	0.67	4.67	0.176	0.47
VR13313B		360	9.0	91.6	0.002	1.44	0.18	9.9	1	7.1	98.4	0.83	0.34	4.48	0.234	0.71
VR13314B		270	6.9	74.5	<0.002	0.58	0.11	9.1	1	3.8	147.0	0.74	0.14	3.91	0.212	0.54
VR13315B		230	9.2	70.5	0.002	0.42	0.17	8.0	1	3.4	142.0	0.67	0.13	4.01	0.190	0.64
VR13316B		290	7.0	75.2	0.002	0.59	0.07	9.5	1	3.5	119.0	0.60	0.17	3.88	0.193	0.60
VR13317B		150	5.3	56.2	0.002	0.54	0.08	6.6	<1	4.6	75.1	0.89	0.17	4.19	0.130	0.35
VR13318B		1830	36.9	62.4	0.002	1.00	0.11	32.4	1	1.5	127.0	0.54	0.18	0.89	1.235	0.53
VR13319B		1170	3.6	13.8	<0.002	0.17	0.06	18.1	1	0.6	126.5	0.48	<0.05	0.52	0.882	0.10
VR13320B		1140	3.8	13.5	0.002	0.19	0.09	17.2	<1	0.6	121.0	0.50	<0.05	0.49	0.866	0.07
VR13321B		1870	5.1	28.4	<0.002	0.51	0.19	33.6	<1	1.4	168.0	0.63	<0.05	4.00	1.380	0.23
VR13322B		700	11.9	50.0	0.004	2.31	2.92	13.6	4	3.5	64.2	0.56	0.24	2.58	0.486	0.47
VR13323B		1090	11.9	36.3	0.006	1.88	0.29	20.7	3	4.1	126.0	0.42	0.13	1.72	0.805	0.36
VR13324B		1910	16.6	33.1	0.002	0.57	0.33	34.1	1	1.4	199.5	0.59	<0.05	1.14	1.460	0.24
VR13325B		1370	10.8	37.1	0.002	1.19	0.19	24.5	1	3.3	130.5	0.44	0.13	1.03	1.055	0.27
VR13326B		450	8.8	42.8	0.004	2.63	0.10	9.4	4	3.5	48.7	0.62	0.16	2.84	0.301	0.35
VR13327B		510	7.5	43.2	0.003	3.12	<0.05	10.7	6	3.4	94.7	0.48	0.27	2.17	0.366	0.36
VR13328B		270	4.2	50.8	<0.002	0.77	<0.05	4.8	1	2.4	85.1	0.88	0.08	3.73	0.151	0.28
VR13329B		490	5.9	40.3	0.003	2.12	<0.05	9.5	3	2.8	137.5	0.67	0.15	2.93	0.352	0.28
VR13330B		20	0.5	2.7	<0.002	<0.01	0.09	0.4	1	0.2	2.6	0.09	<0.05	1.36	0.017	0.02
VR13331B		450	8.5	53.6	0.003	2.23	<0.05	9.6	3	3.2	102.0	0.61	0.63	3.16	0.308	0.37
VR13332B		880	9.1	58.7	0.003	1.63	0.05	16.6	4	4.4	76.1	0.51	0.16	1.82	0.667	0.52

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218

www.alsglobal.com/geochemistry

To: SANATANA RESOURCES INC. 908-925 WEST GEORGIA STREET VANCOUVER BC V6C 3L2

Page: 2 - D Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 20-SEP-2019 Account: SANATANA

Project: EMPRESS

	Method	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61
l	Analyte	U	V	W	Y	Zn	Zr
Sample Description	Units	ppm	ppm	ppm	ppm	ppm	ppm
	LOD	0.1	1	0.1	0.1	2	0.5
VR13293B		0.4	205	1.3	25.7	129	68.7
VR13294B		0.3	250	0.5	24.6	113	55.6
VR13295B		0.4	278	0.7	26.7	119	73.3
VR13296B		0.6	299	0.4	28.5	113	118.5
VR13297B		0.6	297	0.4	25.4	136	121.0
VR13298B		0.5	281	0.4	23.0	131	104.0
VR13299B		0.5	262	0.4	27.8	164	85.6
VR13300B		0.4	4	0.1	2.1	3	30.0
VR13301B		0.6	304	0.5	23.5	119	108.0
VR13302B		0.8	242	1.6	21.7	124	145.0
VR13303B		1.4	80	6.2	23.8	197	236
VR13304B		1.3	44	2.4	15.0	64	151.0
VR13305B		0.9	47	5.0	15.0	135	175.5
VR13306B		1.1	22	4.0	16.9	66	263
VR13307B		0.1	12	1.0	2.2	4	33.4
VR13308B		0.5	117	5.7	10.0	144	117.0
VR13309B		0.6	65	7.5	10.9	70	117.5
VR13310B		0.5	126	14.9	10.1	83	52.6
VR13311B		0.1	10	1.0	3.1	4	22.6
VR13312B		1.1	98	4.3	20.7	181	267
VR13313B		1.1	36	2.6	21.2	1140	306
VR13314B		0.9	17	2.3	20.9	536	322
VR13315B		0.9	7	2.6	20.2	187	334
VR13316B		0.9	27	4.4	17.4	212	261
VR13317B		1.2	28	3.2	56.8	52	219
VR13318B		0.2	257	6.1	28.2	296	126.5
VR13319B		0.1	154	2.1	22.0	124	59.2
VR13320B		0.1	150	2.5	20.7	122	54.3
VR13321B		1.0	289	1.8	35.8	106	120.5
VR13322B		1.3	88	4.6	26.7	1780	170.5
VR13323B		0.5	172	0.9	23.3	1900	104.5
VR13324B		0.3	299	1.5	33.2	303	113.0
VR13325B		0.3	205	5.7	25.6	248	76.5
VR13326B		0.7	59	1.8	27.7	929	140.0
VR13327B		0.5	80	1.8	20.7	1040	115.5
VR13328B		0.9	16	3.2	30.4	94	243
VR13329B		0.7	67	10.2	26.8	814	197.5
VR13330B		0.4	3	0.1	2.0	4	28.0
VR13331B		0.8	66	5.3	25.3	1560	187.5
VR13332B		0.5	153	0.8	26.6	1540	107.0

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: SANATANA RESOURCES INC. 908-925 WEST GEORGIA STREET VANCOUVER BC V6C 3L2

Page: 3 - A Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 20-SEP-2019 Account: SANATANA

Project: EMPRESS

Sample Description	Method Analyte Units LOD	WEI-21 Recvd Wt. kg 0.02	Au-ICP21 Au ppm 0.001	ME-MS61 Ag ppm 0.01	ME-MS61 Al % 0.01	ME-MS61 As ppm 0.2	ME-MS61 Ba ppm 10	ME-MS61 Be ppm 0.05	ME-MS61 Bi ppm 0.01	ME-MS61 Ca % 0.01	ME-MS61 Cd ppm 0.02	ME-MS61 Ce ppm 0.01	ME-MS61 Co ppm 0.1	ME-MS61 Cr ppm 1	ME-MS61 Cs ppm 0.05	ME-MS61 Cu ppm 0.2
VR13333B VR13334B VR13335B VR13336B VR13336B VR13337B		2.36 1.85 1.97 1.80 1.91	0.002 0.001 0.005 0.012 0.005	0.06 0.06 0.05 0.12 0.06	6.83 6.87 6.87 6.43 7.02	<0.2 0.2 0.6 0.6 <0.2	310 390 520 450 490	0.75 0.87 1.07 1.11 1.05	0.09 0.11 0.08 0.23 0.05	7.16 7.76 5.53 5.89 4.90	0.10 0.14 0.19 0.43 0.10	31.3 33.6 44.1 47.4 47.3	40.4 42.4 31.3 23.8 27.6	24 24 109 189 254	2.29 1.96 1.21 1.27 1.51	64.8 67.7 41.4 53.8 29.9
VR13338B VR13339B VR13340B VR13341B VR13342B		2.14 2.04 0.07 1.99 2.09	0.002 0.001 0.532 0.002 0.002	0.05 0.04 0.15 0.04 0.04	7.58 7.98 7.02 7.97 8.07	0.8 0.7 5.6 0.7 0.8	380 250 150 220 190	0.72 0.62 0.31 0.52 0.54	0.14 0.11 0.05 0.10 0.11	8.24 8.38 7.07 8.72 8.24	0.08 0.09 0.12 0.08 0.10	24.9 20.4 9.47 21.0 21.5	41.9 52.6 46.8 51.8 51.4	88 96 160 97 93	1.54 1.10 0.14 1.84 1.15	67.1 83.8 156.0 98.2 102.0
VR13343B VR13344B VR13345B VR13346B VR13346B VR13347B		1.98 2.06 2.06 1.93 1.93	0.001 0.002 0.001 0.004 0.001	0.04 0.05 0.04 0.04 0.07	7.89 7.84 7.68 7.79 5.43	0.5 0.5 3.0 0.3 0.5	200 320 150 170 80	0.53 0.66 0.84 0.50 0.44	0.09 0.19 0.29 0.29 0.10	6.81 8.33 7.13 6.74 8.13	0.12 0.18 0.18 0.17 0.19	20.8 28.2 20.8 22.0 19.50	50.7 52.5 41.0 47.7 39.8	94 89 97 96 62	1.13 2.28 1.55 1.48 0.60	69.4 86.6 56.4 79.0 74.9
VR13348B VR13349B VR13350B		1.73 2.36 <0.02	0.001 0.001 0.001	0.04 0.06 0.07	8.16 8.20 8.28	0.2 0.2 0.7	200 180 180	0.69 0.43 0.49	0.15 0.09 0.09	6.63 7.39 7.12	0.16 0.14 0.14	26.3 22.6 22.7	43.6 50.7 49.9	94 112 106	1.79 1.13 1.12	69.0 133.5 129.5

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: SANATANA RESOURCES INC. 908-925 WEST GEORGIA STREET VANCOUVER BC V6C 3L2

Page: 3 - B Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 20-SEP-2019 Account: SANATANA

Project: EMPRESS

Sample Description	Method Analyte Units LOD	ME-MS61 Fe % 0.01	ME-MS61 Ga ppm 0.05	ME-MS61 Ge ppm 0.05	ME-MS61 Hf ppm 0.1	Hg-MS42 Hg ppm 0.005	ME-MS61 In ppm 0.005	ME-MS61 K % 0.01	ME-MS61 La ppm 0.5	ME-MS61 Li ppm 0.2	ME-MS61 Mg % 0.01	ME-MS61 Mn ppm 5	ME-MS61 Mo ppm 0.05	ME-MS61 Na % 0.01	ME-MS61 Nb ppm 0.1	ME-MS61 Ni ppm 0.2
VR13333B VR13334B VR13335B VR13336B VR13337B		9.14 8.38 5.94 4.30 4.02	19.40 19.60 18.90 16.60 17.15	0.12 0.14 0.12 0.09 0.10	1.9 2.1 3.2 3.2 2.7	<0.005 <0.005 0.008 <0.005 <0.005	0.103 0.095 0.076 0.106 0.030	2.29 2.37 1.47 1.09 1.16	12.6 12.9 19.3 22.7 22.6	21.4 19.4 25.3 21.9 25.8	2.38 2.05 2.44 2.73 3.46	1520 1590 1010 873 707	0.42 0.47 0.66 1.07 <0.05	0.47 0.99 2.05 2.97 3.05	8.2 8.3 6.9 3.6 1.9	76.3 75.9 75.0 78.2 121.5
VR13338B VR13339B VR13340B VR13341B VR13342B VR13343B VR13343B VR13344B VR13345B		8.06 9.13 8.11 9.46 9.86 10.30 9.37 12.05	18.70 21.0 15.15 20.2 20.2 21.0 20.8 19.20	0.07 0.09 0.05 0.09 0.10 0.09 0.10 0.09	1.5 0.7 1.6 0.9 1.7 1.0 1.4 1.0	<0.005 <0.005 0.041 <0.005 <0.005 <0.005 <0.005 <0.005	0.062 0.069 0.066 0.069 0.077 0.076 0.071 0.069	1.49 1.44 0.19 1.45 1.04 1.05 1.28 0.90	10.6 7.1 3.6 7.4 7.6 7.2 11.7 7.3	16.2 17.0 10.4 16.3 13.5 12.9 24.7 19.5	1.97 2.06 4.31 2.08 2.13 2.81 2.25 2.32	1660 1850 1380 1860 1830 1890 1750 2350	0.49 0.83 0.62 0.76 1.06 0.74 0.53 0.53	0.88 0.33 2.18 0.24 0.33 0.65 0.72 0.59	5.0 5.8 3.6 5.4 5.9 6.2 6.2 5.2	94.8 116.0 97.0 117.0 102.5 115.5 117.0 115.0
VR13346B VR13347B VR13348B VR13349B VR13350B		12.55 10.20 10.15 9.42 9.44	21.1 14.45 21.4 21.4 21.2	0.11 0.08 0.10 0.10 0.10	0.7 1.2 1.0 0.7 0.9	<0.005 <0.005 <0.005 <0.005 <0.005	0.074 0.067 0.076 0.081 0.089	0.99 0.50 1.24 0.92 0.96	7.6 6.9 10.2 8.0 8.0	14.1 11.5 15.5 14.1 14.0	2.67 2.58 2.22 2.18 2.22	2330 1900 2120 1960 1920	0.49 0.57 0.55 0.35 0.38	0.64 0.54 1.01 0.92 0.99	5.7 5.2 6.3 5.7 5.7	124.0 70.1 108.0 131.5 132.0

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: SANATANA RESOURCES INC. 908-925 WEST GEORGIA STREET VANCOUVER BC V6C 3L2

Page: 3 - C Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 20-SEP-2019 Account: SANATANA

Project: EMPRESS

Ana Un Sample Description Ana Un LC VR13333B UR VR13334B - VR13335B - VR13335B - VR13337B - VR13338B - VR13339B - VR13340B - VR13340B - VR13344B - VR13344B - VR13344B - VR13347B -	LOD	Р	E-MS61 Pb ppm 0.5 8.1 7.5 6.5 5.8 4.3 5.4 3.3 1.7 1.8 1.7 2.0 2.8 2.9	ME-MS61 Rb ppm 0.1 66.8 61.9 36.2 31.0 36.0 43.5 28.2 3.4 42.1 30.7 21.2 45.4	ME-MS61 Re ppm 0.002 <0.002 <0.002 <0.002 <0.002 <0.002 0.002 0.002 0.002 0.002 0.002 0.003 <0.002	ME-MS61 S % 0.01 0.47 0.49 0.22 0.69 0.11 0.27 0.24 0.15 0.29 0.28	ME-MS61 Sb ppm 0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 0.05	ME-MS61 Sc ppm 0.1 27.1 27.0 20.1 13.8 15.0 25.0 29.0 42.5 29.4	ME-MS61 Se ppm 1 2 1 2 1 1 1 1 1 1 1 1 1 1	ME-MS61 Sn ppm 0.2 2.7 2.3 1.9 1.3 0.6 0.6 0.7 0.7	ME-MS61 Sr ppm 0.2 118.5 163.0 246 460 358 263 126.0 118.5	ME-MS61 Ta ppm 0.05 0.47 0.49 0.41 0.26 0.13 0.29 0.31 0.23	ME-MS61 Te ppm 0.05 0.05 <0.05 <0.05 0.06 <0.05 <0.05 <0.05 0.05	ME-MS61 Th ppm 0.01 1.04 0.98 2.20 3.19 3.64 0.97 0.40 0.36	ME-MS61 Ti % 0.005 1.160 1.165 0.741 0.246 1.190 1.475 0.663	ME-MS61 TI ppm 0.02 0.62 0.47 0.22 0.17 0.20 0.22 0.20 0.02
Sample Description Un LC VR13333B VR13334B VR13335B VR13336B VR13337B VR13339B VR13339B VR13340B VR13342B VR13343B VR13344B VR13345B VR13347B	Jnits LOD	ppm 10 1500 1510 1800 780 780 1230 1330 430 1310 1390 1440 1360 1330	ppm 0.5 8.1 7.5 6.5 5.8 4.3 5.4 3.3 1.7 1.8 1.7 2.0 2.8	ppm 0.1 66.8 61.9 36.2 31.0 36.0 43.5 28.2 3.4 42.1 30.7 21.2	ppm 0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 0.002 0.002 0.002 0.002 0.002	% 0.01 0.47 0.22 0.69 0.11 0.27 0.24 0.15 0.29	ppm 0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 0.05	ppm 0.1 27.1 27.0 20.1 13.8 15.0 25.0 29.0 42.5	ppm 1 2 1 1 1 1 1 1 1 1	ppm 0.2 2.7 2.3 1.9 1.3 0.6 0.6 0.7 0.7	ppm 0.2 118.5 163.0 246 460 358 263 126.0	ppm 0.05 0.47 0.49 0.41 0.26 0.13 0.29 0.31	ppm 0.05 <0.05 <0.05 <0.05 0.06 <0.05 <0.05 <0.05	ppm 0.01 1.04 0.98 2.20 3.19 3.64 0.97 0.40	% 0.005 1.160 1.165 0.741 0.321 0.246 1.190 1.475	ppm 0.02 0.62 0.47 0.22 0.17 0.20 0.22 0.20
Sample Description LC VR13333B VR13334B VR13335B VR13335B VR13337B VR13337B VR13339B VR13340B VR13341B VR13342B VR13343B VR13344B VR13345B VR13347B		10 1500 1510 1080 780 1230 1330 430 1310 1390 1440 1360 1330	0.5 8.1 7.5 6.5 5.8 4.3 5.4 3.3 1.7 1.8 1.7 2.0 2.8	0.1 66.8 61.9 36.2 31.0 36.0 43.5 28.2 3.4 42.1 30.7 21.2	0.002 0.002 <0.002 <0.002 <0.002 <0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002	0.01 0.47 0.22 0.69 0.11 0.27 0.24 0.15 0.29	0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 0.05	0.1 27.1 27.0 20.1 13.8 15.0 25.0 29.0 42.5	1 2 1 1 1 1 1 1 1	0.2 2.7 2.3 1.9 1.3 0.6 0.6 0.7 0.7	0.2 118.5 163.0 246 460 358 263 126.0	0.05 0.47 0.49 0.41 0.26 0.13 0.29 0.31	0.05 0.05 <0.05 <0.05 0.06 <0.05 <0.05 <0.05 <0.05	0.01 1.04 0.98 2.20 3.19 3.64 0.97 0.40	0.005 1.160 1.165 0.741 0.321 0.246 1.190 1.475	0.02 0.62 0.47 0.22 0.17 0.20 0.22 0.20
VR1 3334B VR1 3335B VR1 3336B VR1 3337B VR1 3338B VR1 3339B VR1 3340B VR1 3340B VR1 3341B VR1 3342B VR1 3342B VR1 3345B VR1 3346B VR1 3347B		1510 1080 780 780 1230 1330 430 1310 1390 1440 1360 1330	7.5 6.5 5.8 4.3 5.4 3.3 1.7 1.8 1.7 2.0 2.8	61.9 36.2 31.0 36.0 43.5 28.2 3.4 42.1 30.7 21.2	<0.002 <0.002 <0.002 <0.002 0.002 0.002 0.002 0.002 0.002 0.003	0.49 0.22 0.69 0.11 0.27 0.24 0.15 0.29	<0.05 <0.05 <0.05 <0.05 <0.05 0.05 0.35 <0.05	27.0 20.1 13.8 15.0 25.0 29.0 42.5	2 1 1 1 1 1 1 1	2.3 1.9 1.3 0.6 0.6 0.7 0.7	163.0 246 460 358 263 126.0	0.49 0.41 0.26 0.13 0.29 0.31	<0.05 <0.05 0.06 <0.05 <0.05 <0.05	0.98 2.20 3.19 3.64 0.97 0.40	1.165 0.741 0.321 0.246 1.190 1.475	0.47 0.22 0.17 0.20 0.22 0.20
VR1 3335B VR1 3336B VR1 3337B VR1 3337B VR1 3339B VR1 3340B VR1 3340B VR1 3341B VR1 3342B VR1 3342B VR1 3343B VR1 3345B VR1 3346B VR1 3347B		1080 780 780 1230 1330 430 1310 1390 1440 1360 1330	6.5 5.8 4.3 5.4 3.3 1.7 1.8 1.7 2.0 2.8	36.2 31.0 36.0 43.5 28.2 3.4 42.1 30.7 21.2	<0.002 <0.002 <0.002 0.002 0.002 0.002 0.002 0.002 0.003	0.22 0.69 0.11 0.27 0.24 0.15 0.29	<0.05 <0.05 <0.05 0.05 0.05 0.35 <0.05	20.1 13.8 15.0 25.0 29.0 42.5	1 1 1 1 1 1 1	1.9 1.3 0.6 0.7 0.7	246 460 358 263 126.0	0.41 0.26 0.13 0.29 0.31	<0.05 0.06 <0.05 <0.05 <0.05	2.20 3.19 3.64 0.97 0.40	0.741 0.321 0.246 1.190 1.475	0.22 0.17 0.20 0.22 0.20
VR1 3336B VR1 3337B VR1 3337B VR1 3339B VR1 3340B VR1 3340B VR1 3341B VR1 3342B VR1 3342B VR1 3343B VR1 3345B VR1 3346B VR1 3347B		780 780 1230 1330 430 1310 1390 1440 1360 1330	5.8 4.3 5.4 3.3 1.7 1.8 1.7 2.0 2.8	31.0 36.0 43.5 28.2 3.4 42.1 30.7 21.2	<0.002 <0.002 0.002 0.002 0.002 0.002 0.003	0.69 0.11 0.27 0.24 0.15 0.29	<0.05 <0.05 <0.05 0.05 0.35 <0.05	13.8 15.0 25.0 29.0 42.5	1 1 1 1 1 1	1.3 0.6 0.7 0.7	460 358 263 126.0	0.26 0.13 0.29 0.31	0.06 <0.05 <0.05 <0.05	3.19 3.64 0.97 0.40	0.321 0.246 1.190 1.475	0.17 0.20 0.22 0.20
VR13337B VR13338B VR13339B VR13340B VR13341B VR13342B VR13342B VR13344B VR13344B VR13345B VR13346B VR13347B		780 1230 1330 430 1310 1390 1440 1360 1330	4.3 5.4 3.3 1.7 1.8 1.7 2.0 2.8	36.0 43.5 28.2 3.4 42.1 30.7 21.2	<0.002 <0.002 0.002 0.002 0.002 0.003	0.11 0.27 0.24 0.15 0.29	<0.05 <0.05 0.05 0.35 <0.05	15.0 25.0 29.0 42.5	1 1 1 1	0.6 0.6 0.7 0.7	358 263 126.0	0.13 0.29 0.31	<0.05 <0.05 <0.05	3.64 0.97 0.40	0.246 1.190 1.475	0.20 0.22 0.20
VR13338B VR13339B VR13340B VR13341B VR13342B VR13343B VR13344B VR13344B VR13345B VR13346B VR13347B		1230 1330 430 1310 1390 1440 1360 1330	5.4 3.3 1.7 1.8 1.7 2.0 2.8	43.5 28.2 3.4 42.1 30.7 21.2	<0.002 0.002 0.002 0.002 0.003	0.27 0.24 0.15 0.29	<0.05 0.05 0.35 <0.05	25.0 29.0 42.5	1 1 1	0.6 0.7 0.7	263 126.0	0.29 0.31	<0.05 <0.05	0.97 0.40	1.190 1.475	0.22 0.20
VR1 3339B VR1 3340B VR1 3341B VR1 3342B VR1 3343B VR1 3344B VR1 3345B VR1 3346B VR1 3347B		1330 430 1310 1390 1440 1360 1330	3.3 1.7 1.8 1.7 2.0 2.8	28.2 3.4 42.1 30.7 21.2	0.002 0.002 0.002 0.003	0.24 0.15 0.29	0.05 0.35 <0.05	29.0 42.5	1 1	0.7 0.7	126.0	0.31	<0.05	0.40	1.475	0.20
VR13340B VR13341B VR13342B VR13343B VR13344B VR13345B VR13346B VR13347B		430 1310 1390 1440 1360 1330	1.7 1.8 1.7 2.0 2.8	3.4 42.1 30.7 21.2	0.002 0.002 0.003	0.15 0.29	0.35 <0.05	42.5	1	0.7						
VR13341B VR13342B VR13343B VR13344B VR13345B VR13346B VR13347B		1310 1390 1440 1360 1330	1.8 1.7 2.0 2.8	42.1 30.7 21.2	0.002 0.003	0.29	<0.05				118.5	0.23	0.05	0.36	0.663	0.02
VR13342B VR13343B VR13344B VR13345B VR13346B VR13347B		1390 1440 1360 1330	1.7 2.0 2.8	30.7 21.2	0.003			29.4								
VR13343B VR13344B VR13345B VR13346B VR13347B		1440 1360 1330	2.0 2.8	21.2		0.28	<0.05			0.8	92.5	0.30	<0.05	0.41	1.430	0.19
VR1 3344B VR1 3345B VR1 3346B VR1 3347B		1360 1330	2.8		<0.002			29.0	1	0.8	103.0	0.34	<0.05	0.51	1.465	0.14
VR13345B VR13346B VR13347B		1330		45.4		0.21	<0.05	30.5	1	0.8	137.5	0.36	<0.05	0.47	1.490	0.15
VR13346B VR13347B			29	· - · ·	0.002	0.31	0.08	29.8	1	0.8	147.5	0.32	<0.05	0.55	1.400	0.21
VR13347B		1370	v	30.7	<0.002	0.37	0.06	27.2	2	0.9	115.0	0.30	0.08	0.39	1.380	0.20
			2.9	31.2	<0.002	0.35	<0.05	30.3	1	0.9	137.0	0.31	0.07	0.41	1.420	0.19
		1060	1.2	14.3	0.002	0.29	<0.05	19.6	1	1.0	106.0	0.31	0.06	0.71	0.952	0.09
VR13348B		1580	2.3	41.1	<0.002	0.16	<0.05	32.3	1	0.8	129.5	0.33	0.05	0.68	1.535	0.22
VR13349B		1410	2.9	29.4	0.002	0.50	0.05	30.3	2	0.9	137.5	0.31	0.10	0.47	1.455	0.18
VR13350B		1420	2.9	30.0	<0.002	0.49	0.05	30.5	1	0.8	136.0	0.32	0.09	0.46	1.470	0.22

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: SANATANA RESOURCES INC. 908-925 WEST GEORGIA STREET VANCOUVER BC V6C 3L2

Page: 3 - D Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 20-SEP-2019 Account: SANATANA

Project: EMPRESS

Sample Description	Method Analyte Units LOD	ME-MS61 U ppm 0.1	ME-MS61 V ppm 1	ME-MS61 W ppm 0.1	ME-MS61 Y ppm 0.1	ME-MS61 Zn ppm 2	ME-MS61 Zr ppm 0.5	
VR13333B VR13334B VR13335B VR13335B VR13336B VR13337B		0.3 0.3 0.6 0.9 1.1	268 272 178 101 101	1.1 1.4 2.2 1.7 1.0	32.4 32.3 26.1 13.6 9.0	203 202 227 196 91	89.8 73.5 130.5 127.0 109.5	
VR13338B VR13339B VR13340B VR13341B VR13342B		0.3 0.1 0.1 0.1 0.2	299 367 301 357 363	1.3 1.1 1.1 2.0 1.3	19.8 20.5 20.5 20.1 21.4	119 130 89 141 144	67.4 30.0 48.3 43.1 55.5	
VR13343B VR13344B VR13345B VR13346B VR13347B		0.1 0.2 0.4 0.1 0.2	359 333 347 354 207	1.2 2.8 1.3 1.1 0.8	21.8 22.5 18.9 20.6 18.3	157 156 288 325 164	39.8 61.6 43.2 30.0 65.3	
VR13348B VR13349B VR13350B		0.2 0.1 0.1	373 364 362	0.6 0.9 0.8	23.0 22.1 22.1	251 180 187	40.9 27.7 29.8	

To: SANATANA RESOURCES INC. 908-925 WEST GEORGIA STREET VANCOUVER BC V6C 3L2

Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 20-SEP-2019 Account: SANATANA

Project: EMPRESS

		CERTIFICATE COMMENTS		
Applies to Method:	REE's may not be totally soluble in thi ME-MS61	ANALYTICAL COI s method.	MMENTS	
Applies to Method:	Processed at ALS Thunder Bay located CRU-31 LOG-24 SPL-21	LABORATORY AD at 645 Norah Crescent, Thunder Bay CRU-QC PUL-31 SPL-21d		LOG-22d PUL-QC
Applies to Method:	Processed at ALS Vancouver located a Au-ICP21	tt 2103 Dollarton Hwy, North Vancouv Hg-MS42	ver, BC, Canada. ME-MS61	

CERTIFICATE TB19232946

Project: EMPRESS

This report is for 41 Drill Core samples submitted to our lab in Thunder Bay, ON, Canada on 17-SEP-2019.

The following have access to data associated with this certificate:

BUDDY DOYLE

TROY GILL

To: SANATANA RESOURCES INC. 908-925 WEST GEORGIA STREET VANCOUVER BC V6C 3L2

Page: 1 Total # Pages: 3 (A - C) Plus Appendix Pages Finalized Date: 6-OCT-2019 This copy reported on 8-OCT-2019 Account: SANATANA

	SAMPLE PREPARATION
ALS CODE	DESCRIPTION
WEI-21	Received Sample Weight
LOG-22	Sample login - Rcd w/o BarCode
LOG-24	Pulp Login - Rcd w/o Barcode
LOG-22d	Sample login - Rcd w/o BarCode dup
SPL-21d	Split sample - duplicate
PUL-31d	Pulverize Split - duplicate
CRU-31	Fine crushing - 70% <2mm
CRU-QC	Crushing QC Test
PUL-QC	Pulverizing QC Test
SPL-21	Split sample - riffle splitter
PUL-31	Pulverize split to 85% <75 um

	ANALYTICAL PROCEDUR	RES
ALS CODE	DESCRIPTION	INSTRUMENT
ME-ICP61	33 element four acid ICP-AES	ICP-AES
Hg-MS42	Trace Hg by ICPMS	ICP-MS
Au-ICP21	Au 30g FA ICP-AES Finish	ICP-AES

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

***** See Appendix Page for comments regarding this certificate *****

Signature: Saa Traxler, General Manager, North Vancouver

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: SANATANA RESOURCES INC. 908-925 WEST GEORGIA STREET VANCOUVER BC V6C 3L2

Page: 2 - A Total # Pages: 3 (A - C) Plus Appendix Pages Finalized Date: 6-OCT-2019 Account: SANATANA

Project: EMPRESS

	Method	WEI-21 Recvd Wt.	Au-ICP21	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61 Ba	ME-ICP61 Be	ME-ICP61 Bi	ME-ICP61	ME-ICP61 Cd	ME-ICP61 Co	ME-ICP61 Cr	ME-ICP61 Cu	ME-ICP61 Fe	ME-ICP61
	Analyte		Au	Ag	Al %	As				Ca %					Fe %	Ga
Sample Description	Units LOD	kg 0.02	ppm 0.001	ррт 0.5	0.01	ppm 5	ppm 10	ppm 0.5	ppm 2	0.01	ppm 0.5	ppm 1	ppm 1	ppm 1	0.01	ppm 10
VR13351B		2.75	<0.001	<0.5	7.55	<5	70	<0.5	<2	9.35	1.4	50	196	53	9.96	20
VR13352B		1.26	0.001	<0.5	6.83	5	260	1.1	<2	3.91	1.9	21	58	105	3.86	20
VR13353B		1.55	<0.001	<0.5	6.92	<5	470	1.7	2	1.10	<0.5	4	7	46	2.12	20
VR13354B		1.67	<0.001	<0.5	6.64	41	320	1.8	2	1.56	0.6	5	9	34	2.27	20
VR13355B		1.74	<0.001	<0.5	6.47	5	440	1.4	2	1.63	<0.5	5	7	27	2.56	20
VR13356B		1.67	< 0.001	< 0.5	6.87	<5	520	1.3	<2	1.57	1.0	9	10	42	3.30	20
VR13357B		1.56	< 0.001	< 0.5	6.84	<5	400	1.3	2 3	1.74	0.8	6	9 54	30	2.77	20
VR13358B VR13359B		1.91 1.84	0.001 0.003	<0.5 <0.5	6.44 6.37	11 20	580 350	1 <u>.</u> 6 1.7	3 2	2.56 2.47	1.5 0.7	15 5	54 9	83 36	4.04 1.89	20 20
VR13360B		0.17	< 0.003	< 0.5	0.25	20 <5	10	<0.5	2	2.47	<0.5	-5 <1	9 5	1	0.49	20 <10
													•			
VR13361B		1.85	0.001	<0.5	6.83	17	300	1.4	<2	3.32	1.4	7	11	58	3.02	20
VR13362B		1.83	0.007	< 0.5	6.74	<5	490	1.4	<2	2.35	0.6	7 6	11 7	30	3.00	20
VR13363B		1.79	<0.001 0.002	<0.5 <0.5	6.57 6.80	<5 <5	460 360	1.3 1.4	3 <2	1.33	<0.5 0.6	6 5	7 9	23 26	2.58	20
VR13364B VR13365B		1.79 1.86	<0.002	<0.5 <0.5	6.96	<5 7	410	1.4	<2 <2	1.42 1.58	0.6	5 8	9 11	20 40	2.57 3.16	20 20
						-						9	8			
VR13366B VR13367B		1.77 1.75	0.002 0.008	<0.5 <0.5	7.03 6.70	<5 <5	420 390	1.4 1.3	<2 <2	1.95 2.46	0.8 1.0	9	8	45 47	3.27 3.02	20 20
VR13368B		1.75	0.008	<0.5 <0.5	6.39	<5 5	390 330	1.3	3	2.46	<0.5	о 3	6 5	47 18	3.02 2.74	20 20
VR13369B		1.81	0.001	<0.5 <0.5	6.39	8	270	1.3	2	2.39	<0.5	5	8	37	3.77	20 20
VR13370B		0.07	8.72	2.0	5.20	73	270	0.5	2 4	2.00	0.9	32	459	132	4.37	20 10
VR13371B		1.82	0.003	<0.5	7.07	13	340	1.6	<2	1.58	0.8	7	10	69	3.72	20
VR13372B		1.02	0.003	< 0.5	6.48	13	340	1.3	<2	2.38	0.8	12	10	96	3.72	20 20
VR13373B		2.31	0.023	< 0.5	6.93	43	320	2.2	2	4.64	0.8	32	123	72	7.82	20
VR13374B		1.63	< 0.001	<0.5	3.71	5	250	3.4	<2	11.85	1.2	59	233	105	9.14	20
VR13375B		1.80	0.037	<0.5	6.21	16	340	1.4	<2	3.90	0.7	19	49	185	6.28	20
VR13376B		1.81	0.004	<0.5	7.66	6	420	1.0	<2	3.91	0.8	40	132	108	7.49	20
VR13377B		2.15	0.007	<0.5	7.34	<5	330	0.8	<2	3.98	0.8	37	56	81	9.01	20
VR13378B		1.82	<0.001	<0.5	7.00	<5	250	0.6	2	5.19	1.3	30	12	57	8.88	20
VR13379B		1.19	<0.001	<0.5	6.79	<5	370	0.6	<2	5.69	1.2	31	12	111	8.16	20
VR13380B		<0.02	<0.001	<0.5	6.74	<5	370	0.7	<2	5.64	0.8	32	12	99	8.14	20
VR13381B		2.16	0.007	<0.5	5.90	<5	350	0.8	<2	4.37	0.9	21	17	44	5.48	20
VR13382B		2.21	0.092	<0.5	6.70	<5	160	1.3	2	6.41	2.1	38	126	141	9.59	20
VR13383B		1.23	1.035	<0.5	6.58	<5	190	1.4	<2	6.12	1.3	39	98	74	8.95	20
VR13384B		2.63	0.501	0.8	5.41	9	390	1.7	<2	1.66	5.7	40	19	209	3.87	20
VR13385B		1.71	0.333	<0.5	4.71	<5	380	1.3	<2	1.77	0.6	10	14	99	2.47	20
VR13386B		1.36	0.033	<0.5	3.84	<5	200	0.8	<2	2.84	<0.5	5	19	36	1.82	10
VR13387B		0.68	0.036	<0.5	2.19	<5	110	0.5	3	1.01	<0.5	4	15	29	0.86	10
VR13388B		1.29	0.005	<0.5	3.63	<5	220	0.9	<2	1.87	<0.5	6	13	30	1.48	10
VR13389B		1.87	0.003	<0.5	4.52	5	390	1.2	2	2.65	0.7	7	10	46	2.69	10
VR13390B		0.18	0.004	<0.5	0.24	<5	20	<0.5	4	0.02	<0.5	<1	7	1	0.56	<10

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: SANATANA RESOURCES INC. 908-925 WEST GEORGIA STREET VANCOUVER BC V6C 3L2

Page: 2 - B Total # Pages: 3 (A - C) Plus Appendix Pages Finalized Date: 6-OCT-2019 Account: SANATANA

Project: EMPRESS

r																
	Method	Hg-MS42	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61
	Analyte	Hg	к	La	Mg	Mn	Мо	Na	Ni	Р	Pb	S	Sb	Sc	Sr	Th
Sample Description	Units	ppm	%	ppm	%	ppm	ppm	%	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm
Sample Description	LOD	0.005	0.01	10	0.01	5	1	0.01	1	10	2	0.01	5	1	1	20
VR13351B		<0.005	0.34	10	3.20	1710	1	1.55	222	1490	6	0.17	<5	27	313	<20
VR13352B		0.009	1.52	20	0.87	646	2	2.31	51	600	10	0.85	<5	10	218	<20
VR13353B		<0.005	2.40	30	0.43	281	2	2.81	4	130	10	0.39	<5	3	127	<20
VR13354B		0.008	2.32	20	0.58	353	2	2.19	5	240	6	0.32	<5	4	123	<20
VR13355B		<0.005	2.52	20	0.69	391	3	1.59	6	290	5	0.53	<5	5	123	<20
VR13356B		<0.005	2.70	20	0.89	538	1	1.80	12	460	9	0.75	<5	7	140	<20
VR13357B		<0.005	2.83	20	0.77	458	2	1.35	8	250	8	0.72	<5	5	126	<20
VR13358B		0.011	2.75	20	1.20	612	2	0.89	30	560	11	1.25	<5	7	232	<20
VR13359B		0.021	2.65	20	0.39	369	2	0.61	8	210	10	0.39	<5	4	83	<20
VR13360B		<0.005	0.06	<10	0.02	56	<1	0.05	1	20	<2	0.01	<5	<1	3	<20
VR13361B		0.019	3.16	20	0.62	484	2	0.14	10	280	16	0.79	<5	5	92	<20
VR13362B		<0.005	3.00	20	0.76	455	2	0.78	10	290	8	0.38	<5	5	97	<20
VR13363B		<0.005	3.04	20	0.71	392	1	1.50	6	430	10	0.39	<5	5	212	<20
VR13364B		<0.005	2.97	30	0.57	390	2	1.85	5	210	7	0.55	<5	4	239	<20
VR13365B		<0.005	3.35	20	0.65	389	2	1.29	11	320	7	0.94	<5	5	98	<20
VR13366B		<0.005	3.35	20	0.74	458	2	0.80	10	290	21	1.25	<5	5	86	<20
VR13367B		<0.005	3.37	20	0.74	523	3	0.10	10	370	18	0.60	<5	6	49	<20
VR13368B		< 0.005	2.91	20	0.69	508	2	0.25	4	140	9	0.23	<5	3	60	<20
VR13369B		< 0.005	2.80	20	0.89	471	3	0.12	8	410	7	0.52	<5	6	45	<20
VR13370B		0.143	0.77	10	4.43	696	6	1.14	204	290	43	0.94	<5	19	92	<20
VR13371B		0.012	3.17	20	0.85	462	2	0.08	10	440	18	0.67	<5	7	45	<20
VR13372B		0.010	2.67	20	0.90	439	2	0.09	14	420	14	1.04	<5	6	92	<20
VR13373B		0.005	1.76	30	3.31	920	3	0.58	122	1840	7	0.27	<5	18	203	<20
VR13374B VR13375B		0.012 <0.005	0.59 2.37	100 20	4.99 1.65	1580 691	1 1	0.13 0.81	243 52	5900 770	8 12	0 <u>.</u> 26 2.06	<5 <5	22 12	797 133	<20 <20
							•									
VR13376B		< 0.005	2.35	10	2.11	1015	2	0.79	98	1390	5	0.37	<5	25	123	<20
VR13377B		< 0.005	1.50	10	1.64	1400	1	1.23	69	1450	9 4	0.27	<5 <5	26	219	<20
VR13378B VR13379B		<0.005 <0.005	1.11 1.35	10 10	2.10 2.03	1315 1165	2 1	1.69 2.09	39 37	1460 1440	4	0 <u>.</u> 18 0.39	<5 <5	25 24	162 155	<20 <20
VR13379B VR13380B		<0.005	1.35	10	2.03	1155	1	2.09	37 38	1440	4 7	0.39	<5 <5	24 24	155	<20 <20
VR13381B VR13382B		<0.005 <0.005	1.71 1.35	20 10	1.36 2.58	1155 1120	<1 1	1.16 1.66	30 84	940 1880	4 8	0.21 0.39	<5 <5	17 31	101 238	<20 <20
VR13383B		< 0.005	1.35	10	2.38	1235	3	2.10	84 76	1930	6	1.12	<5 <5	30	257	<20 <20
VR13384B		<0.005 0.016	2.47	20	0.48	447	13	0.67	41	400	22	2.93	<5 <5	9	78	<20 <20
VR13385B		< 0.010	1.84	20	0.40	393	45	1.09	12	270	4	0.93	<5 <5	6	101	<20 <20
VR13386B		< 0.005	0.82	20	0.48	534	13	1.71	6	120	4	0.46	<5	4	95	<20
VR13386B VR13387B		< 0.005	0.82	20	0.48	534 159	13	0.99	5	70	4	0.46	<5 <5	4	95 34	<20 <20
VR13387B VR13388B		< 0.005	0.53	20	0.09	305	4	1.53	5 7	130	4	0.30	<5 <5	2 4	34 69	<20 <20
VR13389B		< 0.005	1.82	20 30	0.22	305 450	4	0.27	9	220	3	0.28	<5 <5	4	40	<20 <20
VR13390B		<0.005	0.06	<10	0.02	430 67	2 <1	0.27	9 2	220	<2	<0.01	<5	<1	40	<20 <20
•		-0.000	0.00	.10	5.02	57	*1	0.00	~	20	<u>۲</u>	-0.01	.0	• •	2	-20

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: SANATANA RESOURCES INC. 908-925 WEST GEORGIA STREET VANCOUVER BC V6C 3L2

Page: 2 - C Total # Pages: 3 (A - C) Plus Appendix Pages Finalized Date: 6-OCT-2019 Account: SANATANA

Project: EMPRESS

Sample Description	Method Analyte Units LOD	ME-ICP61 Ti % 0.01	ME-ICP61 TI ppm 10	ME-ICP61 U ppm 10	ME-ICP61 V ppm 1	ME-ICP61 W ppm 10	ME-ICP61 Zn ppm 2	
VR13351B		1.12	<10	<10	249	<10	155	
VR13352B		0.37	<10	<10	78	<10	758	
VR13353B		0.09	<10	<10	6	<10	271	
VR13354B		0.13	<10	<10	14	<10	271	
VR13355B		0.16	<10	<10	17	<10	236	
VR13356B		0.24	<10	<10	35	<10	403	
VR13357B		0.16	<10	<10	20	<10	275	
VR13358B		0.23	<10	<10	44	<10	516	
VR13359B		0.13	10	<10	17	<10	356	
VR13360B		0.02	<10	<10	3	<10	5	
VR13361B		0.19	<10	<10	26	<10	729	
VR13362B		0.20	<10	<10	27	<10	216	
VR13363B		0.18	<10	<10	19	<10	235	
VR13364B		0.13	<10	<10	13	<10	232	
VR13365B		0.19	<10	<10	30	<10	277	
VR13366B		0.16	<10	<10	22	<10	347	
/R13367B		0.20	<10	<10	23	<10	400	
VR13368B		0.10	<10	<10	7	<10	129	
VR13369B		0.21	<10	<10	21	<10	219	
VR13370B		0.22	<10	<10	126	20	81	
VR13371B		0.25	<10	<10	26	<10	308	
VR13372B		0.22	<10	<10	26	<10	407	
VR13373B		0.87	<10	<10	165	<10	145	
VR13374B		1.69	<10	<10	239	<10	105	
VR13375B		0.44	<10	<10	90	10	117	
VR13376B		0.94	10	<10	215	<10	146	
VR13377B		1.11	<10	<10	264	<10	131	
VR13378B		1.13	<10	<10	278	10	160	
VR13379B		1.13	<10	<10	255	10	217	
VR13380B		1.14	<10	<10	257	<10	215	
/R13381B		0.72	<10	<10	165	<10	119	
VR13382B		1.18	<10	<10	261	<10	250	
VR13383B		1.16	<10	<10	285	10	170	
VR13384B		0.19	<10	<10	91	<10	972	
VR13385B		0.19	<10	<10	59	10	124	
/R13386B		0.09	<10	<10	14	10	74	
/R13387B		0.05	<10	<10	20	<10	24	
/R13388B		0.09	<10	<10	19	<10	61	
VR13389B		0.15	<10	<10	25	<10	200	
VR13390B		0.02	<10	<10	3	<10	4	

To: SANATANA RESOURCES INC. 908-925 WEST GEORGIA STREET VANCOUVER BC V6C 3L2

Page: 3 - A Total # Pages: 3 (A - C) Plus Appendix Pages Finalized Date: 6-OCT-2019 Account: SANATANA

Project: EMPRESS

Sample Description	Method Analyte Units LOD	WEI-21 Recvd Wt. kg 0.02	Au-ICP21 Au ppm 0.001	ME-ICP61 Ag ppm 0.5	ME-ICP61 Al % 0.01	ME-ICP61 As ppm 5	ME-ICP61 Ba ppm 10	ME-ICP61 Be ppm 0.5	ME-ICP61 Bi ppm 2	ME-ICP61 Ca % 0.01	ME-ICP61 Cd ppm 0.5	ME-ICP61 Co ppm 1	ME-ICP61 Cr ppm 1	ME-ICP61 Cu ppm 1	ME-ICP61 Fe % 0.01	ME-ICP61 Ga ppm 10
Sample Description VR13391B	Units LOD	kg 0.02 1.58		ppm 0.5 <0.5		ppm 5 <5	ррт 10 210	ррт 0.5 1.0	2 <2							

To: SANATANA RESOURCES INC. 908-925 WEST GEORGIA STREET VANCOUVER BC V6C 3L2

Page: 3 - B Total # Pages: 3 (A - C) Plus Appendix Pages Finalized Date: 6-OCT-2019 Account: SANATANA

Project: EMPRESS

Sample Description	Method Analyte Units LOD	Hg-MS42 Hg ppm 0.005	ME-ICP61 K % 0.01	ME-ICP61 La ppm 10	ME-ICP61 Mg % 0.01	ME-ICP61 Mn ppm 5	ME-ICP61 Mo ppm 1	ME-ICP61 Na % 0.01	ME-ICP61 Ni ppm 1	ME-ICP61 P ppm 10	ME-ICP61 Pb ppm 2	ME-ICP61 S % 0.01	ME-ICP61 Sb ppm 5	ME-ICP61 Sc ppm 1	ME-ICP61 Sr ppm 1	ME-ICP61 Th ppm 20
Sample Description VR13391B	LOD			10 10						2330	7 7		5 <5			20 <20

To: SANATANA RESOURCES INC. 908-925 WEST GEORGIA STREET VANCOUVER BC V6C 3L2

Page: 3 - C Total # Pages: 3 (A - C) Plus Appendix Pages Finalized Date: 6-OCT-2019 Account: SANATANA

Project: EMPRESS

Sample Description	Method Analyte Units LOD	ME-ICP61 Ti %	ME-ICP61 TI ppm	ME-ICP61 U ppm	ME-ICP61 V ppm	ME-ICP61 W ppm	ME-ICP61 Zn ppm	
VR13391B	LOD	0.01 1.44	10 <10	10 <10	1 308	10 <10	2 129	
		1.44	10		000		120	

Т

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: SANATANA RESOURCES INC. 908-925 WEST GEORGIA STREET VANCOUVER BC V6C 3L2

Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 6-OCT-2019 Account: SANATANA

Project: EMPRESS

		CERTIFICATE CON	IMENTS	
Applies to Method:	Processed at ALS Thunder B CRU-31 LOG-24 SPL-21	LABOR Bay located at 645 Norah Crescent, CRU-QC PUL-31 SPL-21d	ATORY ADDRESSES Thunder Bay, ON, Canada LOG-22 PUL-31d WEI-21	LOG-22d PUL-QC
Applies to Method:		r located at 2103 Dollarton Hwy, No Hg-MS42		

					Sanat	ana Resource	es Inc	
Survey:	EMP19-0	s Exploratio	on	Claims title Township: Range: Lot:	:		Section: Level: Work place:	Thunder Bay
Author:	K. Kivi			Start date: End date:		19-09-07 19-09-09	Description date:	2023-06-11
Collar								
							UTM	
Dip:	-60.0	٥°				East	502106.00	
Length:	100.5					North	5412374.00	
		-				Elevation	365.00	
Assay - Average	es							
Zor	ne	From	То	Core I	Au (ppm)			
Number of sa Number of Q	AQC samples	s: 6						
Total sample Description:		2	7.30					
Core stored in T								
	Core s	size: BTW				Cemente	ed: No	Stored: Yes
								0000.07.00

		Description			Assay - Sar	nple	
			From	То	Sample	Length	Au (ppm)
0.00		ZOB Overburden Overburden					
1.80		V3B Basalt 40° Fine grained, grey green, weakly foliated basalt with weak calcite blebs and fractures, upper contact sharp at 40 dtca, schistocity at 30 dtca, about 10 dtca change in strike					
5.00	8.20	M8 Schist 40° Biotite altered shear zone	5.00 6.00	6.00 7.00	VR13293B VR13294B	1.00	0.0010 0.0020
5.00	8.20	VS;20%;;;;Po00.5 Py00.5; Stringer Zone 20% Pyrrhotite 0.5% Pyrite 0.5% 5-20% narrow white quartz carbonate veinlets, 2-10 mm thick, sparsely scattered every 2 - 10 cm, rare pyrite and pyrrhotite in patches	7.00 8.00 9.00 10.00	8.00 9.00 10.00 11.00	VR13295B VR13296B VR13297B VR13298B	1.00 1.00 1.00 1.00	0.0040 0.0030 0.0020 0.0010
			11.00 12.00 12.00 13.00	12.00 13.00 12.00 13.80	VR13299B VR13301B VR13300B VR13302B	1.00 1.00 0.00 0.80	0.0010
13.80		I3O Lamprophyre 55° Grey green to black, fine to medium grained U/M lamprophyre dike, upper and lower contacts at 55 dtca, contacts sharp, locally strongly magnetic					
15.20	26.40	M8 Schist Biotite quartz sericite schist, banded, grey-beige crown, siliceous with quartz veining locally, Schistocity 45-70 dtca	15.20 16.00 17.00	16.00 17.00 18.00	VR13303B VR13304B VR13305B	0.80 1.00 1.00	0.2720 0.0300 0.0260
18.00	22.00		18.00 18.80 19.10	18.80 19.10 20.00	VR13306B VR13307B VR13308B	0.80 0.30 0.90	0.0700 0.1860 2.3300
18.00	22.00	Crack Seal 40 cm Séricite Fractures 40° Pyrite 4%	20.00 20.60 20.60 20.90	20.60 20.90 20.60 22.00	VR13309B VR13311B VR13310B VR13312B	0.60 0.30 0.00 1.10	1.3050 1.6900 8.7700 1.3550

		Description		Assay - Sample From To Sample Length Au (pp						
			From	То	Sample	Length	Au (ppm)			
		quartz veins from 1 to 40 cm thick, randomly oriented with coarse pyrite locally 0-20%								
22.00	25.40	M8	22.00	23.00	VR13313B	1.00	0.0270			
		Schist Darker grey, more chlorite and biotite present, strongly silicified, lesser pyrite than above	23.00	24.00	VR13314B	1.00	0.0090			
		with 1% 0.5-1 mm pyrite seams subparallel to shearing along brittle fractures	24.00	25.00	VR13315B	1.00	0.0050			
			25.00	26.00	VR13316B	1.00	0.0390			
25.40	26.40	VSTK;10%;;;;Py01;	26.00	26.40	VR13317B	0.40	0.0650			
		Stockwork 10% Pyrite 1%								
00.40 50		10% grey quartz veining with 1% pyrite								
26.40 52		3B a salt								
		lasait lafic lava flow, medium grained, massive to weakly foliated, grey-green, local patches of								
		.5% fine disseminated magnetite								
26.70	27.00	M8	26.70	27.00	VR13318B	0.30	0.0170			
		Schist 70°								
07.00	~~~~	Shear zone with 1% pyrite, weakly silicified								
27.90	28.20	VM;30 cm;Cl;;;; Massive vein 30 cm Chlorite	27.90	28.20	VR13319B	0.30	0.0180			
		Folded white quartz carbonate vein, sygmoidal, glassy, minor chlorite	28.20	28.20	VR13320B		0.0120			
			34.90	35.60	VR13321B	0.70	0.0020			
37.30	38.45	S6A	37.30	38.00	VR13322B	0.70	0.0100			
		Siltstone	38.00	39.00	VR13323B	1.00	0.0070			
		Interflow sediments, cherty folded beds with brown biotitic fine grained siltstone beds, undulating, 2-4 mm seams of pyrite								
38.45	41.07	V3B	39.00	40.00	VR13324B	1.00	0.0020			
00.10	11.07	Basalt	40.00	41.00	VR13325B	1.00	0.0190			
		Amygdaloidal lava flow, 2-6 mm quartz-chlorite-pyrite filled (dark) amygdules	41.00	42.00	VR13326B	1.00	0.0170			
41.07	46.37	S6A	42.00	43.00	VR13327B	1.00	0.0360			
41.07	40.57	Siltstone								
		Interflow sediments, thinly bedded grey cherty beds and brown biotitic siltstone with	43.00	44.00	VR13328B	1.00	0.2720			
		5-20% 1 mm pyrite disseminated locally	44.00	45.00	VR13329B	1.00	0.8610			
			45.00	46.00	VR13331B	1.00	0.1090			
			45.00	45.00	VR13330B					
			46.00	46.80	VR13332B	0.80	0.0110			
			46.80	48.00	VR13333B	1.20	0.0020			
		Quereen EMD10.01					1			

Description			Assay - Sar	nple	
	From	То	Sample	Length	Au (ppm)
	48.00	49.00	VR13334B	1.00	0.0010
	49.00	50.00	VR13335B	1.00	0.0050
	50.00	51.00	VR13336B	1.00	0.0120
50.10 50.40 VM;30 cm;Cl;;;;	51.00	52.00	VR13337B	1.00	0.0050
Massive vein 30 cm Chlorite	52.00	53.00	VR13338B	1.00	0.0020
sygmoidal white quartz chlorite vein 52.01 65.56 V3B	53.00	54.00	VR13339B	1.00	0.0010
Basalt	54.00	55.00	VR13341B	1.00	0.0020
PILLOW BASALT, Brownish green biotite altered, fine grained pillow basalts, moderately	54.00	54.00	VR13340B	0.00	0.5320
foliated, at 50-60 dtca, fine grained green, chloritic pillow selvages, 5% wispy quartz	55.00	56.00	VR13342B	1.00	0.0020
carbonate stringers	56.00	57.00	VR13343B	1.00	0.0010
	57.00	58.00	VR13344B	1.00	0.0020
	58.00	59.00	VR13345B	1.00	0.0010
	59.00	60.00	VR13346B	1.00	0.0040
	60.00	61.00	VR13347B	1.00	0.0010
60.50 61.00 VM;50 cm;Cl;;;Py01;	61.00	62.00	VR13348B	1.00	0.0010
Massive vein 50 cm Chlorite Pyrite 1%	62.00	63.30	VR13349B	1.30	0.0010
Folded grey-white sygmoidal quartz vein with biotite chlorite and pyrite seams	63.30	63.30		0.00	0.0010
65.56 66.50 S9B					
BIF - Banded Iron Formation 50°					
20 cm grey bedded chert with magnetite rich bdes 25 mm thick, bedding 50 dtca, distinct 20					
cm beds with intercalated green aphanitic basalt 66.50 76.50 V3B					
Basalt					
Brownish green, biotite altered, fine grained pillow basalts with moderate to strong foliation					
at 30 dtca, pillow selvages brown, biotitic, irregular with 30% wispy quartz carbonate,					
stringers, locally amygdaloidal 76.50 99.10 V3B					
Basalt					
MASSIVE LAVA FLOWS Grey green, massive locally magnetic, monotonous mafic lava					
flows, rare amygdules and flow banding, rare 1-2 cm white quartz-chlorite veins, folded or sygmoidal, with trace pyrite					
Project: Empress					

	Description			Assay - Sar	nple	
		From	То	Sample	Length	Au (ppm)
84.34 84. 86.00 86.	Lamprophyre 65° Medium grained biotite lamprophyre, 30% white carbonate, contacts 65 dtca 20 I3O					
94.50 94.8	Lamprophyre 70° same as above 80 VM;1.5 cm;Sr;;30°;; Massive vein 1.5 cm Séricite 30°					
99.10 100.50	1.5 cm quartz carbonate vein at 30 dtca, flow top, epidote V3B					
	Basalt PILLOW BASALT, Fine grained green, massive basalt with 1-2 cm brown biotitic, pillow selvages that are randomly oriented.					

Assay - Sample То Sample number Description Au (ppm) From 5.00 6.00 0.0010 VR13293B 6.00 7.00 0.0020 VR13294B 7.00 8.00 VR13295B 0.0040 8.00 9.00 0.0030 VR13296B 9.00 10.00 0.0020 VR13297B 10.00 11.00 VR13298B 0.0010 11.00 12.00 VR13299B 12.00 13.00 VR13301B 0.0010 13.00 13.80 VR13302B 0.0160 15.20 16.00 VR13303B 0.2720 17.00 0.0300 16.00 VR13304B 17.00 18.00 VR13305B 0.0260 0.0700 18.00 18.80 VR13306B 18.80 19.10 VR13307B 0.1860 19.10 20.00 2.3300 VR13308B 20.00 20.60 1.3050 VR13309B 20.60 20.90 VR13311B 1.6900 20.90 22.00 VR13312B 1.3550 22.00 23.00 0.0270 VR13313B 23.00 24.00 0.0090 VR13314B 24.00 25.00 VR13315B 0.0050 25.00 26.00 0.0390 VR13316B 26.00 26.40 VR13317B 0.0650 26.70 27.00 0.0170 VR13318B 27.90 28.20 VR13319B 0.0180 34.90 35.60 0.0020 VR13321B 37.30 38.00 VR13322B 0.0100 38.00 39.00 VR13323B 0.0070 39.00 40.00 VR13324B 0.0020 40.00 41.00 0.0190 VR13325B VR13326B 41.00 42.00 0.0170 42.00 43.00 0.0360 VR13327B 43.00 44.00 VR13328B 0.2720 44.00 45.00 VR13329B 0.8610 45.00 46.00 VR13331B 0.1090

			Assay - Sample	
From	То	Sample number	Description	Au (ppm)
46.00	46.80	VR13332B		0.0110
46.80	48.00	VR13333B		0.0020
48.00	49.00	VR13334B		0.0010
49.00	50.00	VR13335B		0.0050
50.00	51.00	VR13336B		0.0120
51.00	52.00	VR13337B		0.0050
52.00	53.00	VR13338B		0.0020
53.00	54.00	VR13339B		0.0010
54.00	55.00	VR13341B		0.0020
55.00	56.00	VR13342B		0.0020
56.00	57.00	VR13343B		0.0010
57.00	58.00	VR13344B		0.0020
58.00	59.00	VR13345B		0.0010
59.00	60.00	VR13346B		0.0040
60.00	61.00	VR13347B		0.0010
61.00	62.00	VR13348B		0.0010
62.00	63.30	VR13349B		0.0010

					Sanat	ana Resource	es Inc	
Survey:	EMP19-0	2 s Exploratio	on	Claims title Township: Range: Lot:	:		Section: Level: Work place:	Thunder Bay
Author:	K. Kivi			Start date: End date:		19-09-10 19-09-12	Description date:	2023-06-12
Collar								
							UTM	
Dip:	-60.0	٥°				East	502100.00	
Length:	111.0					North	5412350.00	
		-				Elevation	363.00	
Assay - Average	es							
Zor	ne	From	То	Core I	Au (ppm)			
Number of sa Number of Q/ Total sampled	AQC samples	s: 4	37 4 36.00					
Description:								
Core stored in T	hunder Bay.							
	Core s	size: BTW				Cemente	ed: No	Stored: Yes
								0000 07 00

		Description			Assay - Sar	nple	
			From	То	Sample	Length	Au (ppm)
0.00	2.00	ZOB					
		Overburden					
2.00	9.40	OVB V3B	8.00	9.40	VR13351B	1.40	
2.00	9.40	Basalt	0.00	9.40		1.40	
		Fine grained grey green pillow basalts, pale green, chloritic pillow selvages, 20-40 cm apart, rare wispy white quartz-calcite veins along selvages					
9.40	16.30	S6A	9.40	10.00	VR13352B	0.60	0.0010
		Siltstone 70°	10.00	11.00	VR13353B	1.00	
		Thinly bedded and laminated juvenile bedded brown biotitic siltstone within beige sericitic	11.00	12.00	VR13354B	1.00	
		seams and narrow augen-like grey quartz veins along beds	12.00	13.00	VR13355B	1.00	
			13.00	14.00	VR13356B	1.00	
			14.00	15.00	VR13357B	1.00	
15.00) 16.00	0 VS;10%;Sr;;;;	15.00	16.00	VR13358B	1.00	0.0010
		Stringer Zone 10% Séricite increase in narrow grey quartz veins to 10% quartz veining from 15-16 m,	16.00	17.00	VR13359B	1.00	0.0030
16.30	16.90	I1F					
		Pale greenish-yellow, aphanitic siliceous, felsic dike, contacts @ 70 dtca, locally hematitic, minor brittle fault at lower contact					
16.90	29.25	S6A	17.00	18.00	VR13361B	1.00	0.0010
		Siltstone 60°	17.00	17.00	VR13360B	0.00	
		Thinly bedded siltstone, weak to moderate sericite alteration, stringer sericite coincides with 5-8 mm grey quartz stringers that parallel bedding, at 60-65 dtca, some cherty beds at 27.7	18.00	19.00	VR13362B	1.00	0.0070
		m	19.00	20.00	VR13363B	1.00	
			20.00	21.00	VR13364B	1.00	0.0020
			21.00	22.00	VR13365B	1.00	
			22.00	23.00	VR13366B	1.00	0.0020
			23.00	24.00	VR13367B	1.00	0.0080
			24.00	25.00	VR13368B	1.00	0.0010
			25.00	26.00	VR13369B	1.00	0.0050
			26.00	27.00	VR13371B	1.00	0.0030
			26.00	26.00	VR13370B		8.7200

		Description	Assay - Sample						
			From	То	Sample	Length	Au (ppm)		
			27.00	27.70	VR13372B	0.70	0.0030		
			27.70	29.00	VR13373B	1.30	0.0230		
			29.00	30.10	VR13374B	1.10			
29.25	30.05	130							
		Lamprophyre 55°							
00 0 -		Brownish grey, medium grained, biotite lamprophyre dike with contacts at 55 and 68 dtca.					0.0070		
30.05	32.60	S6A Siltstone	30.10	31.00	VR13375B	0.90	0.0370		
		Thinly bedded, green-brown, biotitic, juvenile siltstone, locally sericitic, near post	31.00	32.00	VR13376B	1.00	0.0040		
		deformational, brittle fault	32.00	33.00	VR13377B	1.00	0.0070		
32.60	37.45	V3B	33.00	34.00	VR13378B	1.00			
		Basalt	34.00	34.70	VR13379B	0.70			
		MAFIC LAVA FLOW, dark green, fine grained, biotitic mafic lava flow, 5% narrow wispy	34.70	35.80	VR13381B	1.10	0.0070		
		calcite stringers, flow banding	34.70	34.70	VR13380B	0.00			
			35.80	37.00	VR13382B	1.20	0.0920		
			37.00	37.60	VR13383B	0.60	1.0350		
37.45	43.20	M8	37.60	39.00	VR13384B	1.40	0.5010		
		Schist 55°							
		SILTSTONE AND CHERT, Thinly bedded 55-70 dtca, sericitic and silicified, siltstone and							
		grey chert with 2-3mm seams of pyrite and 20% pyrite locally, 20% quartz veining, with pyrite							
38.00) 41.40	and pyrrhotite mineralization. M8	39.00	40.00	VR13385B	1.00	0.3330		
00.00	, 11.40	Schist 60°	40.00	40.80	VR13386B	0.80	0.0330		
		EMPRESS ZONE strongly silicied siltstones with significant quartz veining including 25	40.80	41.20	VR13387B	0.00	0.0360		
		cm crack and seal vein with VG at 38.6 m	41.20	42.00	VR13388B	0.40	0.0050		
38.00) 41.40								
		Crack Seal 25 cm Fractures Gold VG Chalcopyrite 0.5% Pyrite 5% Significant quartz veining including 25 cm grey laminated crack and seal quartz vein with	42.00	43.20	VR13389B	1.20	0.0030		
		coarse pyrite, minor chalcopyrite and VG							
43.20	46.40	V3B	43.20	44.00	VR13391B	0.80	0.0010		
		Basalt	43.20	43.20	VR13390B	0.00	0.0040		
		MAFIC LAVA FLOWS and BIF, Fine grained green moderately foliated mafic lava flows							
45.95	6 46.40	S9B							

		Description			Assay - Sar	nple	
			From	То	Sample	Length	Au (ppm)
46.40 50.60		 BIF - Banded Iron Formation 70° DIRTY BIF, juvenile interflow thinkly bedded siltstone, bedding 70 dtca, strongly magnetic magnetite bed V3B Basalt PILLOW BASALT, Fine grained dark green to brown, biotitic pillow basalt, selvages are 					
50.60	70.00	randomly oriented, brown fine chloritic and biotitic, -0.5-2 cm thick V3B Basalt					
52.80	52.90	Chert 55°					
56.00	56.04	Massive vein 4 cm					
65.60	66.50	Diorite					
67.25	67.70	Siltstone 60°					
69.30	70.00	Interflow sediments, juvenile thinly bedded siltstone, bedding 60 dtca I2J Diorite 62° same as 65.6-66.6, contacts and 75 and 62 dtca					
70.00	72.00	V3B Basalt PILLOW BASALT, Dark green aphanitic, basalt, moderately foliated and strained, with green brown chlorite-biotite selvages, at 65 dtca					
72.00		I2J Diorite 50° Medium grained, weakly foliated, at 50 dtca, 1% 1-2 mm chlorite-biotite clots					
80.40		V3B Basalt PILLOW BASALT - BIF, Dark green aphanitic basalt, locally pillowed with 30 cm grey					

 81.10 81.40 S9B BIF - Banded Iron Formation 65° Dirty banded iron formation BIF bedding at 65 dtca, 10 cm zone with 10% dissemintated and stringer pyrrhotite 82.75 84.80 I2J Diorite DIORITE, Medium grained weakly foliated 50 dtca, 1% 1-2 mm chlorite-biotite clots, upper contact discordant to pillow basalts and inteflow sediments suggests that diorite is a post-volcanic intrusive rock 84.80 91.15 V3B Basalt 50° 	From	То	Sample	Length	Au (ppm)
 81.10 81.40 S9B BIF - Banded Iron Formation 65° Dirty banded iron formation BIF bedding at 65 dtca, 10 cm zone with 10% dissemintated and stringer pyrrhotite 82.75 84.80 I2J Diorite DIORITE, Medium grained weakly foliated 50 dtca, 1% 1-2 mm chlorite-biotite clots, upper contact discordant to pillow basalts and inteflow sediments suggests that diorite is a post-volcanic intrusive rock 84.80 91.15 V3B 					
 BIF - Banded Iron Formation 65° Dirty banded iron formation BIF bedding at 65 dtca, 10 cm zone with 10% dissemintated and stringer pyrrhotite 82.75 84.80 I2J Diorite DIORITE, Medium grained weakly foliated 50 dtca, 1% 1-2 mm chlorite-biotite clots, upper contact discordant to pillow basalts and inteflow sediments suggests that diorite is a post-volcanic intrusive rock 84.80 91.15 V3B 					
 Dirty banded iron formation BIF bedding at 65 dtca, 10 cm zone with 10% dissemintated and stringer pyrrhotite 82.75 84.80 I2J Diorite DIORITE, Medium grained weakly foliated 50 dtca, 1% 1-2 mm chlorite-biotite clots, upper contact discordant to pillow basalts and inteflow sediments suggests that diorite is a post-volcanic intrusive rock 84.80 91.15 V3B 					
and stringer pyrrhotite 82.75 84.80 I2J Diorite DIORITE, Medium grained weakly foliated 50 dtca, 1% 1-2 mm chlorite-biotite clots, upper contact discordant to pillow basalts and inteflow sediments suggests that diorite is a post-volcanic intrusive rock 84.80 91.15 V3B					
 82.75 84.80 I2J Diorite DIORITE, Medium grained weakly foliated 50 dtca, 1% 1-2 mm chlorite-biotite clots, upper contact discordant to pillow basalts and inteflow sediments suggests that diorite is a post-volcanic intrusive rock 84.80 91.15 V3B 					
 Diorite DioRITE, Medium grained weakly foliated 50 dtca, 1% 1-2 mm chlorite-biotite clots, upper contact discordant to pillow basalts and inteflow sediments suggests that diorite is a post-volcanic intrusive rock 84.80 91.15 V3B 					
DIORITE, Medium grained weakly foliated 50 dtca, 1% 1-2 mm chlorite-biotite clots, upper contact discordant to pillow basalts and inteflow sediments suggests that diorite is a post-volcanic intrusive rock 84.80 91.15 V3B					
contact discordant to pillow basalts and inteflow sediments suggests that diorite is a post-volcanic intrusive rock 84.80 91.15 V3B					
post-volcanic intrusive rock 84.80 91.15 V3B					
84.80 91.15 V3B					
PILLOW BASALT Dark green, aphanitic, pillow basalts, with minor interflow juvenile					
siltstone, green-brown chloritic pillow selvages randomly oriented but generally 40-50 dtca					
86.30 86.70 I2J					
Diorite 20°					
DIORITE DIKE 20 dtca contacts are irregular					
91.15 98.26 I2J					
Diorite 25°					
DIORITE Medium grained, weakly foliated, @ 45 dtca, 2% 1-2 mm chlorite-biotite clots,					
upper contact discordant at 25 dtca, lower contact 80 dtca					
97.60 98.26 I2J					
Diorite 75°					
same as 91.15					
98.26 111.00 V3B					
Basalt					
MAFIC LAVA FLOWS Dark grey green, aphanitic, massive mafic lava flows with 3-5% wispy					
white calcite-quartz stringers along fractures, rare flow tops, pillows, amygdules					
101.70 102.90 I3O					
Lamprophyre 25°					
LAMPROPHYRE DIKE Medium grained, biotite lamprophyre dike, irregular contacts at 25 dtca and 65 dtca					

Assay - Sample То Sample number Description Au (ppm) From 8.00 9.40 VR13351B 9.40 10.00 0.0010 VR13352B 10.00 11.00 VR13353B 11.00 12.00 VR13354B 12.00 13.00 VR13355B 13.00 14.00 VR13356B 14.00 15.00 VR13357B 15.00 16.00 VR13358B 0.0010 16.00 17.00 VR13359B 0.0030 17.00 18.00 VR13361B 0.0010 18.00 19.00 VR13362B 0.0070 19.00 20.00 VR13363B 20.00 21.00 VR13364B 0.0020 21.00 22.00 VR13365B 22.00 23.00 VR13366B 0.0020 23.00 24.00 0.0080 VR13367B 24.00 25.00 VR13368B 0.0010 25.00 26.00 VR13369B 0.0050 26.00 27.00 0.0030 VR13371B 27.70 27.00 0.0030 VR13372B 27.70 29.00 VR13373B 0.0230 29.00 30.10 VR13374B 30.10 31.00 VR13375B 0.0370 31.00 32.00 0.0040 VR13376B 32.00 33.00 VR13377B 0.0070 33.00 34.00 VR13378B 34.00 34.70 VR13379B 34.70 35.80 VR13381B 0.0070 35.80 37.00 VR13382B 0.0920 37.00 37.60 1.0350 VR13383B 37.60 39.00 VR13384B 0.5010 39.00 40.00 0.3330 VR13385B 40.00 40.80 VR13386B 0.0330 40.80 41.20 VR13387B 0.0360 41.20 0.0050 42.00 VR13388B

Assay - Sample From То Description Au (ppm) Sample number 42.00 43.20 VR13389B 0.0030 43.20 44.00 VR13391B 0.0010

Survey: EMP19-03 Claims title: Township: Range: Section: Level: Section: Level: Contractor: Richard's Exploration Author: K. Kivi Start date: 2019-09-15 End date: Description date: 2023-06-14 End date: Collar UTM Collar UTM Dip: -60.00* East 502108.00 North Length: 71.40 East 502108.00 Elevation Assay - Averages Image: Image: Image: Zone From To Core L Au (ppm) Mumber of samples: 0 Image: Image: Image: Number of samples: 0 Image: Image: Image: Image: Description: Image: Image: Image: Image: Image: Discription: Image: Image: Image: Image: Image: Core stored in Thunder Bay. Image: Image: Image: Image: Image:						Sanat	ana Resource	es Inc	
Author: K. Kivi Start date: 2019-09-15 Description date: 2023-06-14				าก	Township: Range:	:		Level:	Thunder Bay
Dip: -60.00° Length: 71.40 Averages Assay - Averages Number of samples: 0 Number of samples: 0 Operation: 0.000								Description date:	2023-06-14
Dip: -60.0° Length: 71.40 Assay - Averages Assay - Averages Xone From To Core I Au (ppm) Number of samples: 0 Number of samples: 0 Total sampled length: 0.00 Description: Core stored in Thunder Bay.	Collar								
Dip: -60.00° Length: 71.40 Assay - Averages Zone From To Core I Au (ppm) Image: Constraint of the samples: 0 0 0 0 Number of samples: 0 0 0 0 0 Description: Core stored in Thunder Bay. 0.00 0 0 0								UTM	
Length: 71.40 North 5412326.00 Elevation Assay - Averages Zone From To Core 1 Au (ppm) Zone From To Core 1 Au (ppm) Image: Contract	Din [.]	-60.00	٥٢				East	502108.00	
	-						North		
Zone From To Core I Au (ppm) Image: Construction of the samples: 0 Image: Construction of the sample of the sa							Elevation	363.00	
Number of samples: 0 Number of QAQC samples: 0 Total sampled length: 0.00	Assay - Average	S							
Number of QAQC samples:0Total sampled length:0.00Description:	Zor	ie	From	То	Core I	Au (ppm)			
—Description: ————————————————————————————————————	Number of Q	AQC samples	: ()					
Core stored in Thunder Bay.			(0.00					
	-								
Core size: BTW Cemented: No Stored: Yes	Core stored in 1	nunder Bay.							
		Core s	ize: BTW				Cemente	ed: No	Stored: Yes

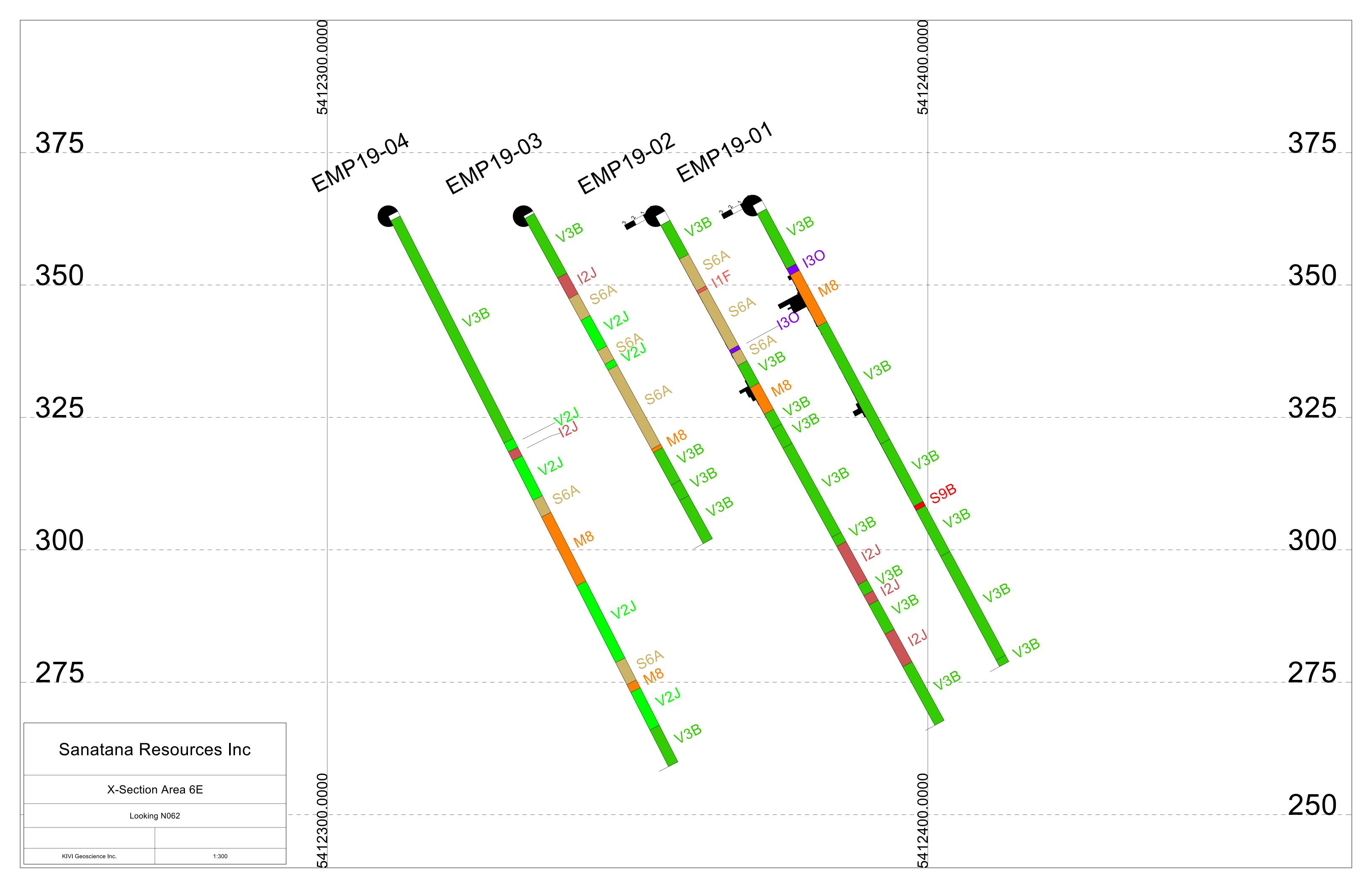
		Description			Assay - San	nple	
			From	То	Sample	Length	Au (ppm)
0.00	0.50	ZOB					
		Overburden					
		OVB					
0.50	13.50	V3B					
		Basalt					
		PILLOW BASALT Grey-green, moderately foliated pillow basalts, selvages every 10-60 cm					
13.50	18.00	I2J					
		Diorite 55°					
		INTERMEDIATE INTRUSIVE Dark grey, massive, aphanitic, intermediate intrusive, upper					
		stratigraphy assimilated and occurs as rafts or bost to minor dikes, upper contact hard to pin					
		down, lower contact sharp at 55 dtca					
18.00	22.75	S6A					
		Siltstone 55°					
		THINLY BEDDED SILTSTONES Grey to light beige, sericite altered, thinly bedded siltstone,					
		bedding 55-65 dtca					
18.00	20.00						
		Diorite					
00 75	00.40	30% aphanitic diorite, altered, silicified					
22.75	29.40	V2J					
		Andesite					
		INTERMEDIATE LAVA FLOW Pale to medium grey, blotchy, aphanitic intermediate					
		composition lava flow, flow banded, irregular contacts, rare white quartz carbonate stringers,					
29.40	32.30	rare pyrite S6A					
29.40	32.30	SoA Siltstone 55°					
		THINLY BEDDED SILTSTONE Grey to beige, thinly bedded siltstone, Bedding at 55 dtca,					
		moderately sericitic					
32.30	33.60	V2J					
02.00	00.00	Andesite					
		INTERMEDIATE LAVA FLOW Grey aphanitic, moderately foliated at 55 dtca, moderately					
		sericitic					
33.60	50.83	S6A					
	00100	Siltstone 60°					
		THINLY BEDDED SILTSTONE (EMPRESS) grey to beige, thinly bedded siltstones, bedding					
		at 60 dtca, locally silicified, 5-20% grey-white wispy quartz stringers, local sulphides, (trace					

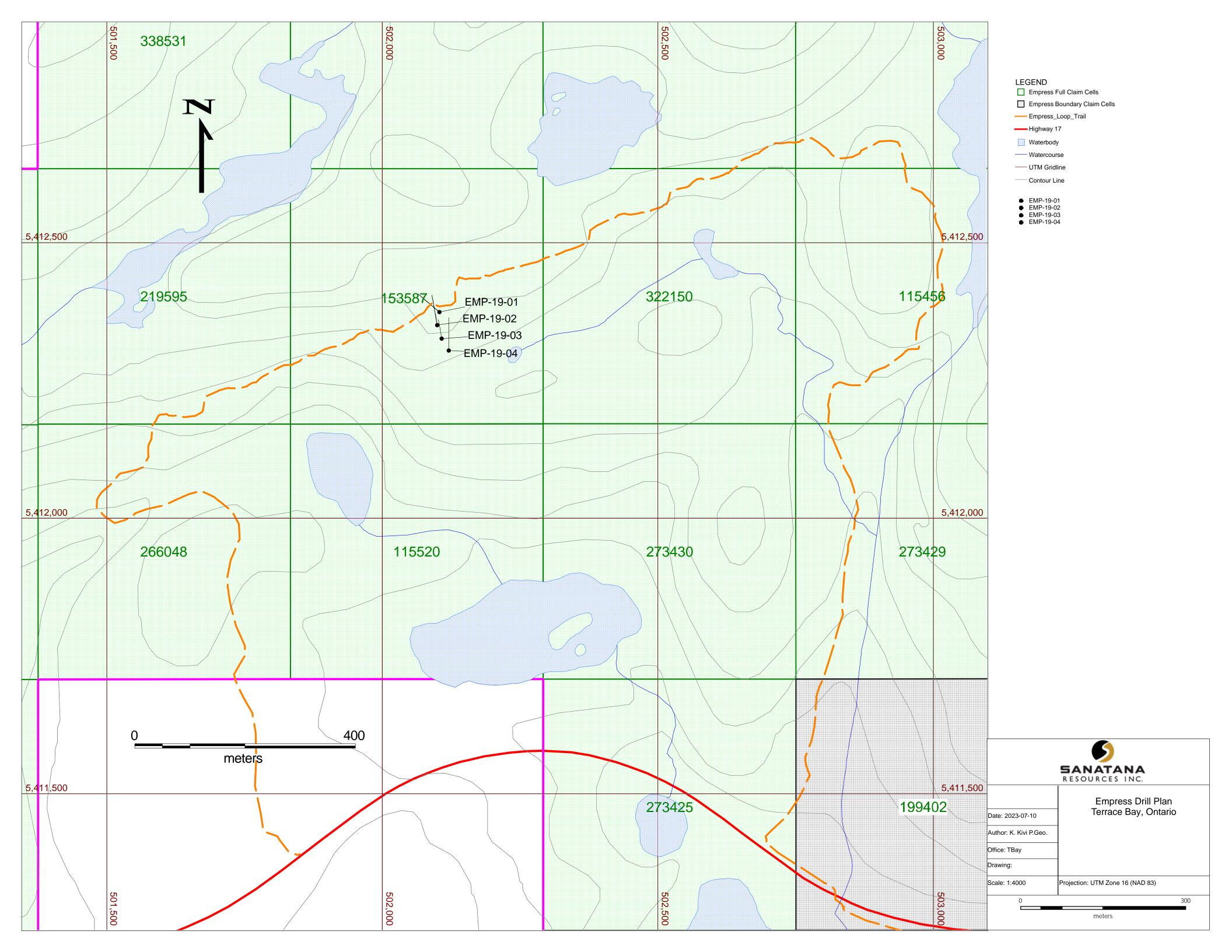
		Description			Assay - Sar	nple	
			From	То	Sample	Length	Au (ppm)
33.60	t 36.60	o 1% pyrite and pyrrhotite VS;5%;;VF;60°;Py01 Po01; Stringer Zone 5% Fractures 60° Pyrite 1% Pyrrhotite 1%					
38.50	39.15	 5% narrow 0.5-1 cm thick grey-white quartz stringers and rods, subparallel to foliation and bedding, Black graphitic seams VS;5%;Hm;VF;70°;; Stringer Zone 5% Hématite Fractures 70° 10 cm red hematitic zone, silicified with 5% grey-white quartz stringers at 70 dtca, parallel 					
39.15	42.00	to bedding and schistocity S6A; BED Siltstone 60°; Bedding Bedded siltstone (20cm) that grades into fragmental unit that is fine epiclastic debris flow,					
42.00	45.00	strongly foliated at 60 dtca VS;1%;;VF;50°;; Stringer Zone 1% Fractures 50° Moderately sericitic, thinly bedded siltsotned with 1% grey-shite 0.5 cm quartz stringers, subparallel to bedding adn foliation at 50 dtca					
45.00	46.00	VS;30%;Sr;VF;60°;Po00.5 Py00.5; Stringer Zone 30% Séricite Fractures 60° Pyrrhotite 0.5% Pyrite 0.5% 30% grey-white quartz carbonate stringers with trace pyrite and pyrrhotite, fine grained, in sericitic fractures and quartz, black graphitic bedding at 60 dtca with minor pyritic seams					
46.00	49.00	M8 Schist Pale grey to buff sericite mylonite after thinly bedded siltstones					
46.00	49.00	VS;2%;;VF;;Py00.5 Po00.5; Stringer Zone 2% Fractures Pyrite 0.5% Pyrrhotite 0.5% 1-2% narrow wispy grey white quartz stringers, rare pyrite and pyrrhotite					
49.00	50.83	I3O Lamprophyre 70° Pale grey to chloritic mylonite after thinly bedded siltstones intruded by four narrow lamprophyre dikes of 15 mm, 2 cm, 16 cm and 26 cm					
50.83 5 ²	5	//8 Schist 60° FAULT CONTACT, Dark green chlorite schist with 20% quartz carbonate veining, minor fault					

	Description			Assay - Sar	nple	
		From	То	Sample	Length	Au (ppm)
	gouge and 20% core loss					
50.83 51.5						
	Vein Breccia/ Fragments 6 cm Tension 60°					
	20% quartz carbonate breccia vein					
51.55 58.65	V3B					
	Basalt 60°					
	MAFIC LAVA FLOWS Dark green, chloritic mafic lava flows with interflow juvenile sediments					
	that are tightly folded. Schistocity locally strong at 55-70 dtca, locally magnetic with garnets					
	and 5-10% disseminated pyrite and pyrrhotite					
51.55 52.1						
	Lamprophyre 60°					
50.40 50.4	Five lamprophyre dikes as above					
52.10 53.1						
	Schist					
5040 504	Chlorite quartz schist, 1-2 mm garnets 10 VS;5%;CI Gr;VF;;Mt01 Py02 Po00.5;					
52.10 53.1	Stringer Zone 5% Chlorite Grenat Fractures Magnetite 1% Pyrite 2% Pyrrhotite					
	0.5%					
	5% grey white quartz stringers, pyrite in seams, minor pyrrhotite, 1 % disseminated					
	magnetite, 1-2 mm garnets					
54.00 58.6						
54.00 50.0	Schist					
	Schistose, chloritic, 5% disseminated calcite in patchy seams					
55.50 57.0						
00.00 07.0	Stringer Zone 20% Fractures 60°					
	20% grey white quartz stringers 40-70 dtca					
58.17 58.4						
	Glassy 28 cm Séricite Extension					
	28 cm grey quartz vein at 60 dtca, glassy sericitic					
58.65 62.00	V3B					
	Basalt 45°					
	Moderately foliated 65 dtcs, 5% strained flattened amygdules 2-8 mm filled with calcite					
62.00 71.40	V3B					
	Basalt					
	Dark grey, aphanitic, rare 1 mm calcite filled joints, weak epidote alteration					
	Dark grey, aphanitic, rare 1 mm calcite filled joints, weak epidote alteration					

			Assay - Sample		
From	То	Sample number	Description	Au (ppm)	

					Sanat	ana Resource	es Inc	
Survey:	EMP19-0	9 4 s Exploratio	מר	Claims title Township: Range: Lot:	:		Section: Level: Work place:	Thunder Bay
Author:	K. Kivi			Start date: End date:		19-09-20 19-09-23	Description date:	2023-07-06
Collar								
							UTM	
Dip:	-60.0	٥°				East	502121.00	
Length:	120.0					North	5412304.00	
		-				Elevation	363.00	
Assay - Average	es							
Zor	ne	From	То	Core I	Au (ppm)			
Number of sa Number of Q	AQC samples)					
Total sample Description:		Ĺ	0.00					
Core stored in T								
	nandor Day.							
	Core s	size: BTW				Cemente	ed: No	Stored: Yes
								0000 07 00


		Description			Assay - Sar	nple	
			From	То	Sample	Length	Au (ppm)
0.00	1.00	ZOB					
		Overburden					
		OVB					
1.00	49.50	V3B					
		Basalt 50°					
		PILLOW BASALTS - Dark grey-green, aphanitic pillow basalts with periodic chlorite-epidote					
		altered selvages @50 dtca and intercalated juvenile thinly bedded siltstones					
1.00	3.50	S6A					
		Siltstone 50°					
		Thinly bedded siltstones, bedding @ 50 dtca.					
49.50	51.40	V2J					
		Andesite 40°					
		MAFIC LAVA FLOWS; Grey to greenish brown, basaltic lava flows and minor intercalated					
		interflow sediments, moderately foliated @ 35 dtca					
51.0	4 53.02	2 I2J					
		Diorite					
		Grey, fine grained diorite with 30% 1 mm chlorite biotite clots					
51.40	53.30	12J					
		Diorite 35°					
		DIORITE DIKES Two intermediate composition diorite dikes, contacts at 30 and 15 dtca,					
		subparallel to foliation					
53.30	61.97	V2J					
		Andesite					
		Grey-brown fine grained locally strongly foliated to sheared altered mafic lava flows, locally					
		carbonate altered					
53.9	7 54.15	5 I2J					
		Diorite 40°					
		Diorite dike, contacts 43 dtca					
61.97	65.60	S6A					
		Siltstone 40°					
		Thinly bedded to laminated pale grey-brown siltstone, locally dark graphitic beds @ 40 dtca					
65.4	4 65.60						
		Diorite					
		Diorite Dike - grey medium grained 30% 1 mm biotite chlorite clots					
65.60	80.60	M8					


		Description			Assay - Sar	nple	
			From	То	Sample	Length	Au (ppm)
		ichist 50°					
		MPRESS ZONE - Sericite-biotite quartz schist, schistocity 50 dtca, locally zones ot quartz					
		tringers, subparallel to schistocity, veins are grey-white, 5-8 mm wide.					
65.60	69.40	VS;3%;;;60°;;					
		Stringer Zone 3% 60°					
67.02	67.10	3% narrow 5-8 mm grey quartz stringers @ 40-60 dtca I3O					
67.03	67.10	Lamprophyre 55°					
		Lamprophyre, contacts 55 and 35 dtca.					
69.40	69.48	I3O					
00.40	00.40	Lamprophyre 50°					
		Lamprophyre, contacts 50 dtca, carbonated					
69.48	73.30	VS;10%;;;60°;Py01;					
		Stringer Zone 10% 60° Pyrite 1%					
		5-10% narrow 5-8 mm grey quartz stringers @ 60 dtca, locally 1% pyrite in 1 mm seams					
		parallel to schistocity.					
74.70	74.73	130					
		Lamprophyre 65°					
		3 cm lamprophyre					
74.95	74.99	130					
		Lamprophyre 65°					
75.05	75.07	7 cm lamprophyre I3O					
75.05	75.07	Lamprophyre 65°					
		2 cm lamprophyre					
75.14	75.38	ISO					
/ / / /	75.50	Lamprophyre 65°					
		Lamprophyre					
75.43	75.48	130					
		Lamprophyre 65°					
		5 cm lamprophyre					
75.70	75.95	130					
		Lamprophyre 65°					
		lamprophyre					
76.11	76.19	130					

		Description			Assay - Sar	nple	
			From	То	Sample	Length	Au (ppm)
		Lamprophyre 65°					
		lamprophyre					
76.19	77.20	M8					
		Schist 65°					
		sericite schist after deformed siltstones					
77.20	78.70	VS;5%;Cl;;55°;;					
		Stringer Zone 5% Chlorite 55°					
		5% grey white quartz stringers@ 55 dtca in chlorite schist					
78.90	79.00	VCS;20 cm;;;55°;Py01;					
		Crack Seal 20 cm 55° Pyrite 1%					
		20 cm grey white quartz vein @ 55 dtca, coarse 9 mm pyrite bleb and 1% disseminated					
		pyrite					
79.00	79.60	M8					
		Schist 50°					
		Green chlorite schist, foliation 50 dtca.					
79.60	80.60	S6A					
		Siltstone					
		Thinly bedded siltstones, moderately sericite altered					
80.60 97	.33 🛛 🗸	/2J					
	A	Andesite					
	C	Dark green, aphanitic massive to weakly foliated monotonous mafic lava flows.					
85.60	86.67	VGLA;15 cm;;;45°;;					
		Glassy 15 cm 45°					
		15 cm wide white glassy quartz vein @ 45 dtca.					
97.33 10	2.14 S	36A					
	S	Siltstone 65°					
	C	Grey-brown thinly bedded siltstones, bedding at 65 dtca, 3-5% narrow fracture fill quartz					
	С	arbonate stringers					
99.60	100.50	VLZ;5%;;;45°;;					
		Veinlet Zone 5% 45°					
		5% white 4-6 mm quartz fracture fill stringers, @ 45 dtca, perpendicular to foliation					
102.14 10	3.84 N	18					
	S	Schist 60°					
	E	BIOTITE CHLORITE SCHIST - Dark brown to black biotite chlorite schist with 3-5% pyrite					
		nd 2% pyrrhotite, 5% 5-8 mm white quartz carbonate stringers at 60 dtca.					

Description			Assay - Sa	mple	
	From	То	Sample	Length	Au (ppm)
 103.33 103.84 VCS;5 cm;Cl;;60°;Py02 Po02; Crack Seal 5 cm Chlorite 60° Pyrite 2% Pyrrhotite 2% 30% grey white laminated crack and seal quartz vein with black chlorite/biotite seams, 2% pyrite, 2% pyrrhotite 103.84 112.00 V2J Andesite 55° MAFIC LAVA FLOWS - Dark grey-green fine grained massive to moderately foliated mafic lava flows. 103.84 104.40 M8 Schist 55° Chlorite schist @ 55 dtca. 112.00 120.00 V3B Basalt 65° PILLOW BASALT - Dark grey-green-brown pillow basalts with 1-2% white quartz carbonate stringers parallel to moderate foliation at 65 dtca, local pyrite blebs. 112.00 113.55 S6A Siltstone Thinly bedded juvenile siltstones, chloritic and locally sericite altered, 3-5% quartz stringers 	From	То	Sample	Length	Au (ppm)

Assay - Sample					
From	То	Sample number	Description	Au (ppm)	

