

SUMMARY OF PROGRESS AND NEW RECOMMENDATIONS,

BANNOCKBURN PROPERTY OF MONO GOLD MINES INC.,

EASTERN ONTARIO MINING DIVISION

FOR

MONO GOLD MINES INC.

BY

ROY V. BEAVON, BSc., Ph.D.

BEAVON CONSULTING LTD.

October 1985.

Ø10C

TABLE OF CONTENTS

General Synopsis

Northeast Area Discovery

Reassessment of Exploration to date

Recommendations

Budget Estimate

References

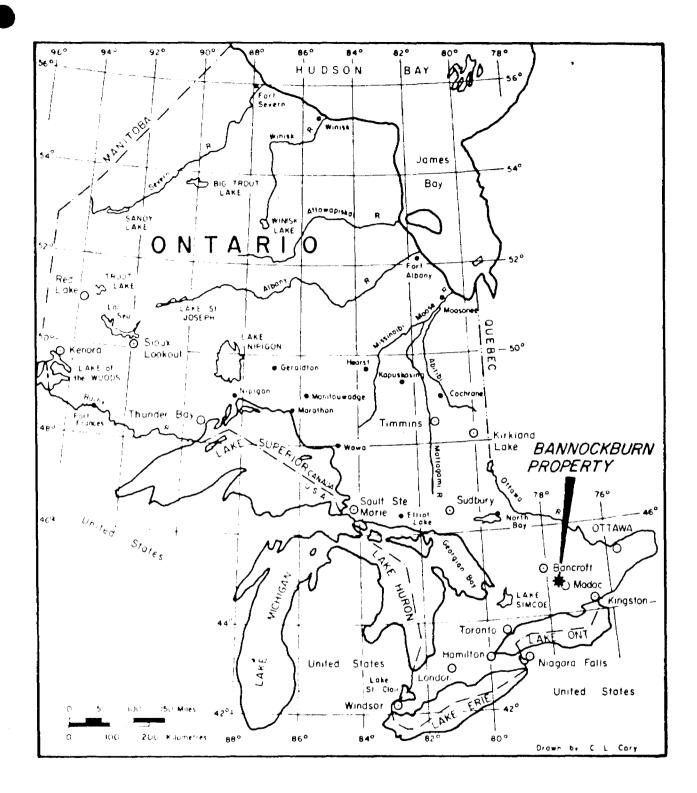
Appendix (Certificate of analysis)

Table 1: Diamond drill results and assay data

following p. 2

Illustrations:

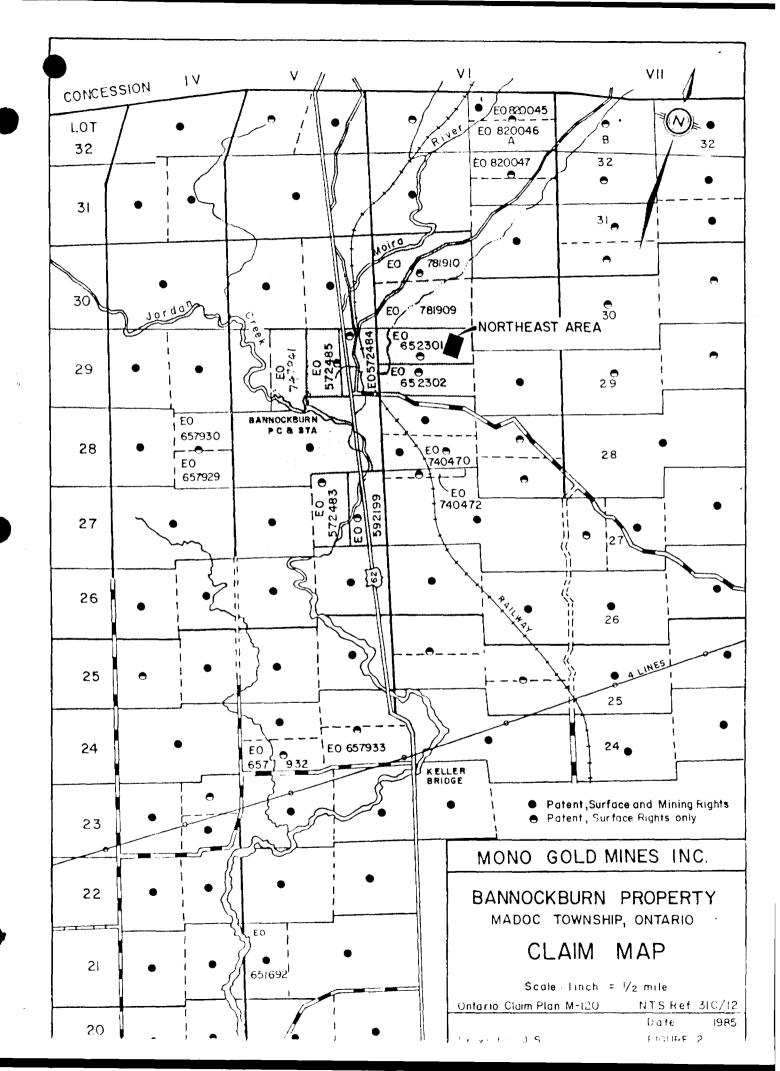
Map 1 following p. 1
Map 2, Property Map following p. 1
Map 3, Northeast Area
Drill plan and
Geology In pocket


GENERAL SYNOPSIS

The Bannockburn property of Mono Gold Mines Inc. consists of 500 acres of patented and unpatented mining rights located in Con. V and VI of Madoc Township, in the Eastern Ontario Mining Division. The property is accessible by all-weather roads and is close to abundant power, water and lumber supplies. (Map.1).

Gold was probably discovered near Bannockburn following the 1866 gold rush into Eastern Ontario. Operations commenced prior to 1894 and were resumed from 1896 to 1908, but there are no records of the volume or proceeds of production. A shaft was sunk to 70 ft. and several other prospect pits and trenches were excavated. A stamp mill was erected on the property to extract Bannockburn gold and the production from other nearby properties. There are no records of subsequent work until 1965 when the property was drilled under the supervision of A Belanger. Spectacular assays were reported but there is no way of checking the results.

Mono Gold Mines Inc acquired the old producing Bannockburn property and commenced work in 1981. A picket line grid was established, VLF-EM and magnetometer surveys and geological mapping and sampling were completed together with limited stripping and trenching. A small diamond drilling program was also completed in 1981, which served to confirm the gold bearing nature of the previously productive vein structure(s). On the strength of these results Mono acquired further property adjacent to the Bannockburn gold mine, and further work was recommended for the entire property (Map 2).


The work was not extended to the east side of Highway 62 until 1984, when following VLF-EM and magnetometer surveys and geological mapping, limited sampling of quartz veins was carried out. One sample returned 0.9 oz/t Au and subsequent trenching confirmed the presence of a gold-bearing quartz vein system in the Northeast Area of the property. In 1985 diamond drilling confirmed the presence of high grade gold values in the Northeast area, and a total of 5258! of diamond drilling was completed

MONO GOLD MINES INC. BANNOCKBURN PROPERTY

MADOC TOWNSHIP EASTERN ONTARIO MINING DIVISION

GENERAL LOCATION MAP

GENERAL SYNOPSIS CONT.

in two stages by July 1985 for a total of 20 diamond drill holes.

NORTHEAST AREA DISCOVERY

Gold mineralization in the Northeast Area of the Bannockburn property is hosted by two mineralized quartz vein zones hosted by weakly metamorphosed, folded, and faulted Precambrian volcanic and sedimentary rocks of the Grenville Supergroup. Mineralization consists of coarse native gold and tetradymite associated with minor amounts of pyrrhotite and pyrite in well defined quartz veins between 0.1 and 3.0 ft. wide.

The No.1 vein has been drilled for a strike-length of 500 ft. and returned average assays of 0.481 oz/t Au across an average true width of 5 ft. in six holes. It has only been tested to a depth of 80 ft. (vertical).

The No.2 Discovery Zone is not a simple vein like the No.1 Discovery, but it has been drilled for a strike-length of 300 ft. and to a vertical depth of 240 ft. Average assays are better than 0.3 oz/t Au. on a 5 ft. true width basis.

No tonnage estimates can be given until the remaining 6000 ft. of previously proposed drilling is completed, and all drill indicated average grades will require confirmation by underground sampling.

Table 1 is a summary of all drill-intercepts obtained to date from the Northeast Area. They should be read in conjunction with Map 3.

As a result of the new gold discovery on the Bannockburn preperty, three contiguous claims have been recently optioned by Mone.

TABLE 1: Diamond drill results and assays, Bannockburn Northeast Area Discovery

Hole #	Interval (ft)	oz/ton Au	Width (ft)
85-1	64 - 68	1.167	4.0
11	109 - 112	0.018	3.0
85-2	11.5- 17.5	0.127	6.0
85-3	47 - 50	2.139	3.0
11	72.5- 78	0.299	5.5
85-4	39 - 47.5	0.178	8.5
85-5	206.5-211	0.043	4.5
85-6	68.5 - 71	1.315	5.5
85-7	133.5-135.5	0.416	2.0
11	143.5-145.5	0.275	2.0
11	146 - 148	0.173	2.0
85-8	230 - 237	0.019	7.0
85-9	92.9-94.9	2.080	2.0
85-10	36.5-40.5	1.154	4.0
85-11	40.9-43.2	16.50	2.3
85-13	133.5-134.5	0.032	1.0
85-14	20.6-28.8	0.752	2.8
85-15	71 -74.4	0.853	3.4
If	204.9-206.9	0.073	2.0
85-16	89.8-91.8	0.184	2.0
11	201.5-205.5	3.399	4.0
и	249 - 250	1.288	1.0
11	253.3-255.3	2.129	2.0
85-17	74 - 76	1.026	2.0
II	134.9-136.9	0.649	2.0

[#] 85-12 85-18, -19, & -20 gave low Au values

^{# 85-12} was logged as containing one flake of native Au.

REASSESSMENT OF EXPLORATION TO DATE

In the light of the drill results from the Northeast Area together with detailed geological mapping completed in June 1985 (Map 3), a reassessment of the exploration of the total area of the Bannockburn property now seems to be in order. In particular a more thorough exploration should be accomplished prior to embarking on underground exploration.

The recognition of Bismuth and Tellurium in selected core samples, together with the knowledge that soil geochemistry has worked well in those well drained portions of Madoc Township underlain by basemetal prospects, indicates that the 1500m of ground between the Northeast Area and the old mine should be intensively sampled and analysed for bismuth in soils. Unlike the previously applied blanket geophysical coverage, the geochemical results will be specific for the gold mineralization. Coupled with geological mapping, which is beginning to recognize the controlling structures of the gold mineralization, soil geochemistry should enhance the chances of finding additional gold-bearing veins within the Bannockburn property. Some practical difficulties of obtaining samples in swampy areas may be overcome by using more expensive overburden drilling techniques and a contingency should be allowed for this.

RECOMMENDATIONS

- 1. Up to 6000 ft. of diamond drilling has already been recommended for the Northeast Area
- 2. A property-wide geochemical survey is recommended, which will require line cutting on recently optioned claims, detail lines between the old mine and Northeast Area, and refurbishing of grid lines completed in 1981 and 1984. Some stripping may be required to check the geochemical anomalies.
- 3. Detailed geological mapping should be done on the newly acquired property and between the two known mineralized areas.
- 4. Additional diamond drilling, contingent on the recognition of valid geochemical anomalies and favourable geological structure, is recommended as soon as the results of recommendations 1 & 2 are available.

BUDGET ESTIMATE

Phase IV Exploration of entire Bannockburn property

Line-cutting and rehabilitation 48 line km. @ \$300	14,400	14,400	
Soil Geochemical Survey 3500 samples @ \$5.00 40 mandays 2 \$200 Room & board 40 days @\$50 Contingency for overburden drill Report	17,500 8,000 2,000 15,000 2,500	45 , 000	
Geological Mapping Geologist 70 days @ \$400 Room & board 70 days @\$50 Truck Rental @ \$80/day Air fare	24,000 3,000 4,800 800	32 , 600	
		•	
Stripping & Trenching Bulldozer & op. 66 hrs. @\$55	8,000	8,000	\$100,000
Phase V Contingent Drilling			
Old mine area drilling 5,000 feet @ \$16/ft. New target drilling	80,000		
4,500 feet @ \$16/ft. Mob/Demo	73,600 6,000		
Bulldozer drill moves 126 hrs. @ \$50 hr.	6,300	165,900	
Assays, 400 samples @ \$10/s. Ceologist 60 days @ \$400/d. Room & board 60 days @ \$50/d. Truck rental @ \$80/d. Air fare Core facility construction	4,000 24,000 3,000 4,800 800 2,000		
Miscellaneous rentals, office etc.	2,200	40,800	\$206,700
Total Phase IV = \$100,000 Total Phases IV & V = \$306,700	Ω		\$306,700

Roy V. Beavon, B.Sc., Ph.D.

REFERENCES

Reports by Sawyer Consultants Inc. for Mono Gold Mines Inc. dated as follows:

Feb. 14 1983 by J.B.P. Sawyer P.Eng.

Oct. 10 1984 by G.D.House F.G.A.C.

Dec. 20 1984 by G.D. House F.G.A.C.

Mar. 14 1985 by G.D. House F.G.A.C.

Apr. 12 1985 by G.D. House F.G.A.C.

May 31 1985 by R.V. Beavon F.G.A.C.

Aug 30 1985 by R.V. Beavon F.G.A.C.

Government Reports:

Miller & Knight (1914) Ann. Rept. Ont. Bur. Mines Vol.22.

P.E. Hopkins (1922) " " Dept. " Vol.XXX.

V.B. Meen (1944) " " " Vol.51.

D.F. Hewitt (1968) Ont. Dept. Mines Geol. Rept. 73

Chemex Labs Ltd.

212 Brooksbank A North Vancouver, B (Canada V7J 24

Telephone: (604) 984 0221 *Telex:

043-5259

Analytical Chemists

Geochemists

Registered Assayers

CERTIFICATE OF ANALYSIS

TO : MUND GOLD MINES INC.

C/O SAWYER CONSULTANTS INC.

1201 - 675 W. HASTINGS ST. C/O Colonial Inn

VANCOUVER, B.C.

V68 1N2

Madoc, Untario

CERT. # : A8514039-001-

INVOICE # : 18514039 : 22-JUL-85 DATE

P.O. # : NONE

MUND N.E.

KUK 2KO. CC: R. BEAVON Тe Sample Prep description code ppm 75.00 1129 G 214

Certified by HautBichler

Chemex Labs Ltd.

RECEIVED JUL 3 1 1985 212 Brooksbank A.

> North Vancouver, B.C. Canada V7J 20

Telephone: (604) 984-022

 Telex 043-525°

Analytical Chemists • Geochemists • Registered Assayers

CERTIFICATE OF ANALYSIS

TO : MONO GOLD MINES INC.

C/O SAWYER CONSULTANTS INC.

1201 - 675 W. HASTINGS ST.

VANCOUVER. B.C.

V68 1N2

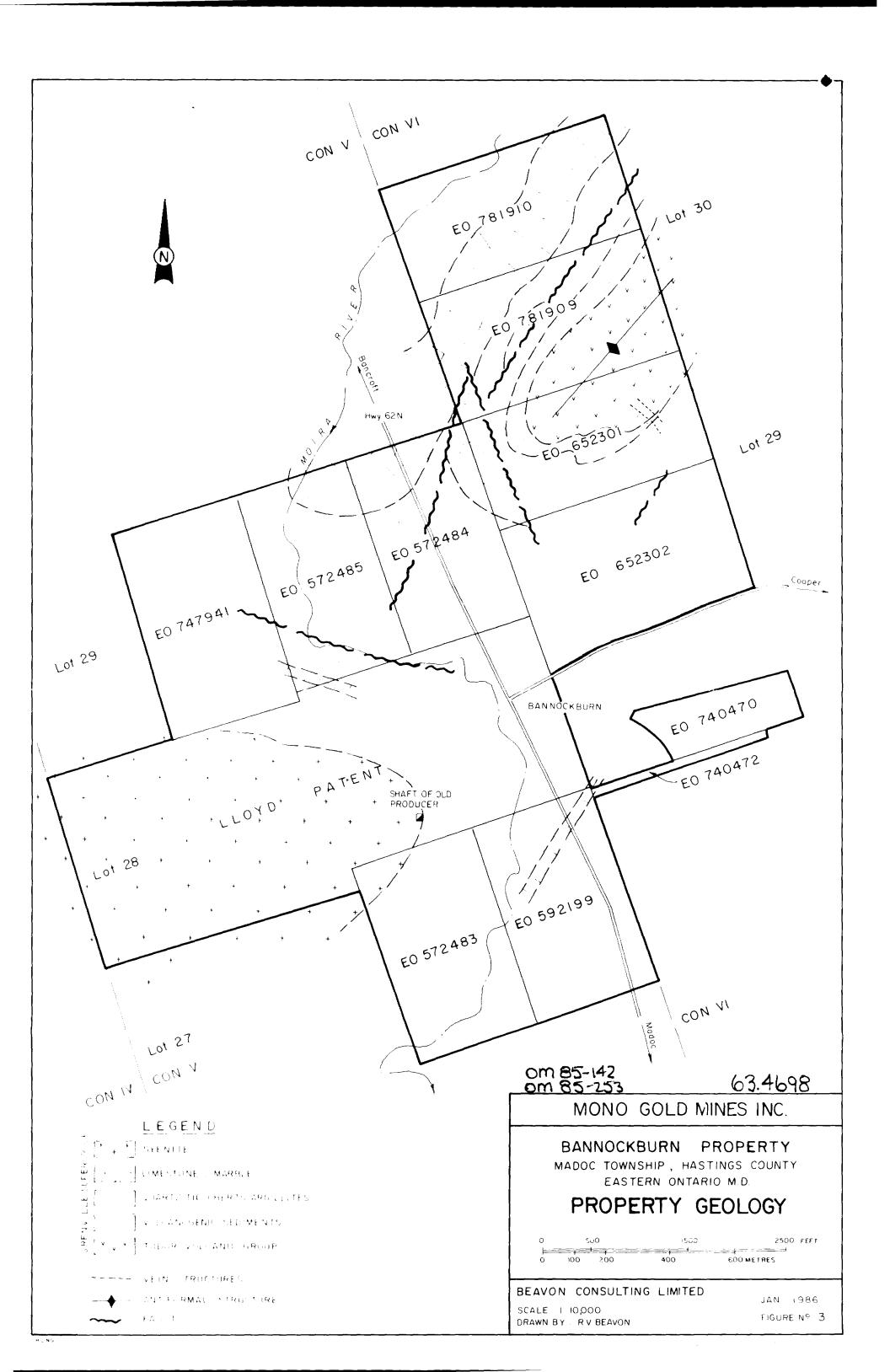
: AB514038-001 CERT. #

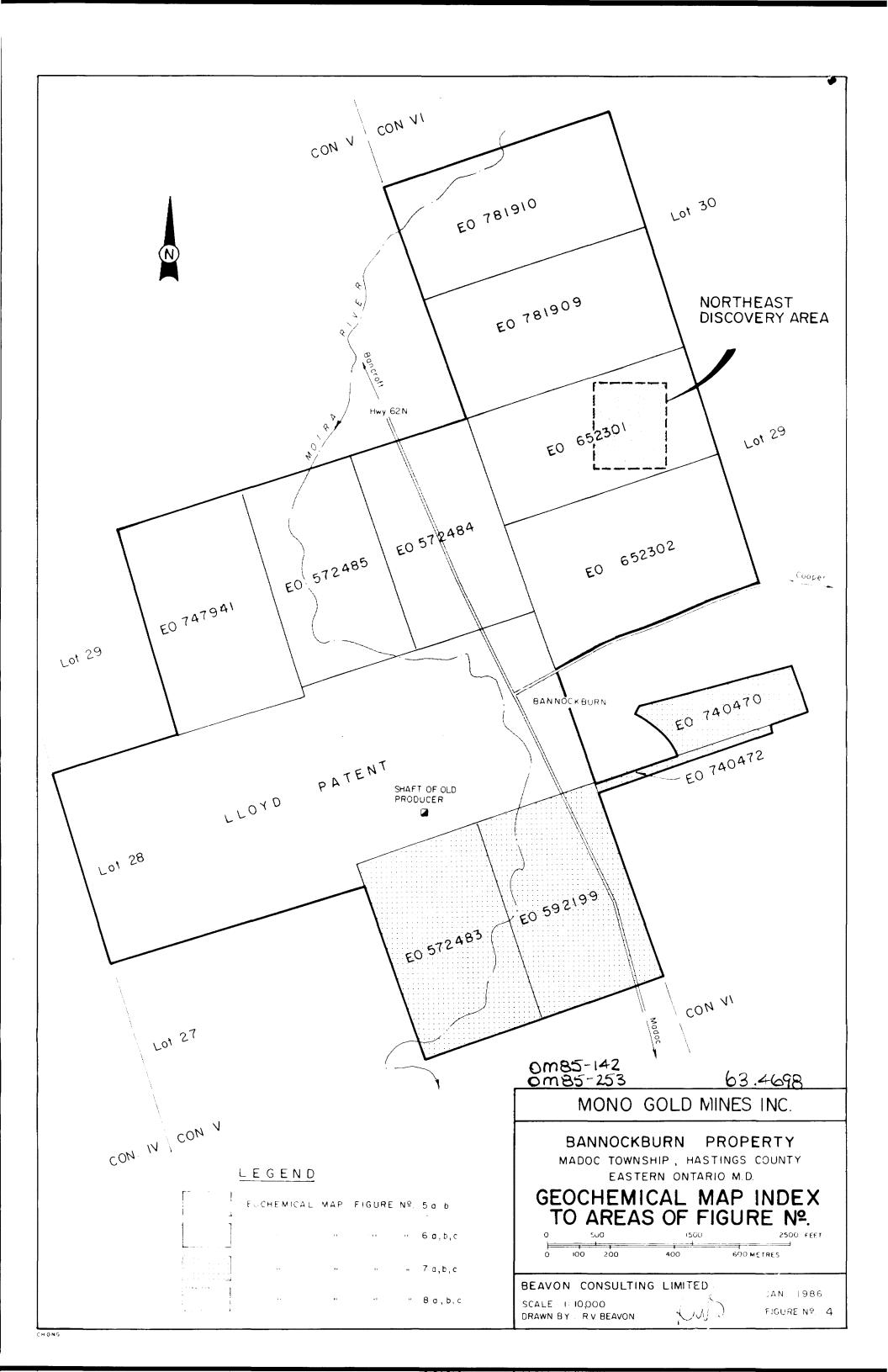
INVOICE # : 18514038 : 29-JUL-85 DATE

: NONE P.O. #

MONO N.E.

VCC: R. BEAVON		
Parameter	Sample	
Description	# 1	
Sample preparation code	214	
Aluminium (pct)	2	
Antimony (ppm)	< 100	
Arsenic (ppm)	< 100	
Barium (ppm)	70	
Beryllium (ppm)	<2	
Bismuth (ppm)	2 0 0	
Boron (ppm)	70	
Cadmium (ppm)	<20	
Calcium (pct)	2	
Chromium (ppm)	100	
Copalt (ppm)	50	
Copper (ppm)	300	•
Germanium (ppm)	<10	
Iron (pct)	20	
Lead (ppm)	10	
Magnesium (pct)	2	
Manganese (ppm)	500	
Molybdenum (ppm)	< 100	
Nickel (ppm)	100	
Niobium (ppm)	< 200	
Potassium (pct)	1	
Silicon (pct)	20	
Silver (ppm)	2	
Sodium (pct)	0.5	
Thorium (ppm)	<500	
Tin (ppm)	<10	
Titanium (ppm)	7000	
Vanadium (ppm)	100	
Zinc (ppm)	50	
Zirconium (ppm)	50	


: SEMIQUANTITATIVE SPECTROGRAPH ANALYSIS !


Sample description information Sample # 1 1129 G

Preparation code description

214 Received as pulp

Certified by ..

2 of 7

SAWYER CONSULTANTS INC.

63.4698

COPY

020

REPORT

on the

PHASE THREE DIAMOND DRILL PROGRAM

Madoc Township, Ontario

for

MONO GOLD MINES INC.

May 31, 1985

Amended August 21, 1985

31C12NE0036 63.4698 MADOC

Ø2ØC

TABLE OF CONTENTS

	Page
INTRODUCTION	2
SUMMARY	4
PROPERTY AND OWNERSHIP	6
Table 1. Property and Claim Schedule.	6
LOCATION AND ACCESS	8
GEOLOGY	9
NORTHEAST AREA - THIRD PHASE EXPLORATION - DIAMOND DRILLING PROGRAM	10
Table 2. Results of Phase Three drilling.	10
DISCUSSION OF RESULTS	12
Table 3. Preliminary estimate of strike and dip lengths of mineralized shoots.	12
Table 4. Modification of drill intercepts to 5.0 ft. true mining width.	14
CONCLUSIONS AND RECOMMENDATIONS	16
Table 5. Proposed drill program.	16
COST ESTIMATE	17
CERTIFICATE OF QUALIFICATION	18
BIBLIOGRAPHY	19
APPENDIX - Copies of Bondar-Clegg & Company Ltd. Certificates of Analysis	
DIAMOND DRILL LOGS and ASSAY SUMMARY SHEETS Bound Sep	parately
Addendum August 21, 1985	(1)

. SAWYER CONSULTANTS INC. .

Addendum

In May 1985 Sawyer Consultants Inc. prepared a Report on the Bannockburn Property, Northeast Area, Phase Three Diamond Drill Program, Madoc Township, Ontario for Mono Gold Mines Inc. The Report was dated May 31, 1985.

In August 1985 this Report, with three earlier Reports by Sawyer Consultants Inc. on the Bannockburn Property, were submitted to the Vancouver Stock Exchange by Mono Gold Mines Inc. as part of their Statement of Material Facts. The Vancouver Stock Exchange, in a letter dated August 9, 1985, listed several deficiencies in the Technical Report, some of which applied to the Report of May 31, 1985.

In order to repair the deficiencies indicated by the Vancouver Stock Exchange we have amended the Report of May 31, 1985 as follows:

- 1. We have included an inset Location Plan on Figures 4 and 9 to show the relative position of the Northeast Area to the whole property.
- 2. We have expanded the Introduction to describe the earlier work programs carried out on the property for Mono Gold Mines Inc. since 1981.
- 3. We have included in the Summary the statement that there are no production records available for the Bannockburn Gold Mine. In our earlier Report on the Bannockburn Property, Madoc Township, Ontario for Mono Gold Mines Inc. dated February 14th, 1983, we outlined the early history of the area and of the property. There are no reliable production records available for any of the several gold mines that operated in the area prior to the turn of the century.
- 4. We have included in the Summary the Statement that the vein widths vary between 0.2 feet and 3.0 feet.
- 5. We have amended the Claim Map, Figure 2, to better indicate the respective claim holdings in the area and the status of Surface and Mining Rights as of the date of the original Report, May 31, 1985.

These amendments have been made at the request of Mono Gold Mines Inc. and do not affect the Conclusions and Recommendations of the original Report dated May 31, 1985.

Respectfully submitted,

SAWYER CONSULTANTS INC.

Roy V. Beavon, B.Sc., Ph.D. F.G.A.C.

August 21, 1985

INTRODUCTION

The former Bannockburn Gold Mine is on patented ground in Lot 28, Concession V, in Madoc Township. This property, together with some adjacent lots and claims, which have similarly been patented either for surface and mining rights or surface rights only, were acquired by Mono Gold Mines Inc. in 1981 and now constitute the Bannockburn property.

Sawyer Consultants Inc. were retained to carry out preliminary examination and to outline further exploration on the property. The preliminary examination was carried out in June 1981 by J.B.P. Sawyer, P.Eng., and an initial exploration program of geophysical surveying, geological mapping and sampling was recommended.

The initial program was carried out during the period from late July to November 1981 under the supervision of J.B.P. Sawyer, P.Eng. The program consisted of establishment of a picket line grid in the area of the main showing extending to the north and south, and eastwards to the river. A geophysical survey was run over the grid, consisting of a VLF-EM and a magnetometer survey. Geological mapping and sampling, in conjunction with a limited amount of stripping and trenching using a bulldozer/backhoe, was carried out. A short diamond drilling program totalling 1725 feet in eleven holes, designed primarily to test the main known ore structure in the vicinity of the old shaft and trenches, was completed during late September and October 1981. Further work on the property was recommended in the report by Sawyer Consultants Inc. dated February 14th, 1983, however the programs were held in abeyance pending an improvement in the economic and investment climate.

In early 1984 the picket line grid was extended to cover all the claims comprising the Bannockburn property and geophysical surveys comprising VLF-EM and magnetometer surveys were run over the renovated and extended grid. The surveys outlined several new areas of interest as well as confirming the previous conductors. A geological mapping program over the extended grid was carried out during September 1984 by Gordon D. House, M.S., F.G.A.C., of Sawyer Consultants Inc. The geophysical anomalies were evaluated on the ground and some limited sampling of quartz veins located during the traverses was carried out. Several areas of interest were outlined and further work was recommended in the Summary Report by Sawyer Consultants Inc. dated October 10th, 1984.

A diamond drilling program to test the Main Vein on the Bannockburn Gold Mine to depth was recommended, as well as drill programs to test the EM conductors occurring within the syenite to the west of the mine area. The stripping and trenching program recommended in the Northeast area of the property to evaluate a quartz vein which returned an assay value of 0.966 oz./ton gold from a grab sample was carried out in late November 1984 under the direction of Gordon D. House, M.S., F.G.A.C., of Sawyer Consultants Inc. Results

SUMMARY

Madoc Township, in the Eastern Ontario Mining Division, was the site of the first discovery of lode gold in the Province of Ontario in 1866. The resulting "gold rush" resulted in the staking of several other gold properties some of which were worked over the next forty or fifty years. One of these, lying only a few miles north of the site of the original discovery, was the Bannockburn Gold Mine on Lot 28, Concession V. This property, together with adjacent ground to the north, south, and northeast, held as staked claims, was acquired by Mono Gold Mines Inc.

On the original Bannockburn gold mine fairly extensive excavation work, including the sinking of a 70 foot shaft, provided access to the ore zone which supplied mill feed to a stamp mill located on the property up to about 1905. Since that time the only other work of consequence has been a program of exploration trenching and drilling carried out in 1965-66, which was curtailed prematurely due to legal and financial difficulties. There are no production records available.

In 1981, Mono Gold Mines Inc. carried out a preliminary exploration program covering the main showing area around the old shaft and between that point, located on the contact between the intrusive Gawley Creek syenite and the metasedimentary rocks, and the Moira River. The work completed included geological mapping, electromagnetic and magnetic geophysical surveys, a limited amount of stripping and trenching, and a preliminary drill program involving 1725 feet in eleven short drill holes.

The work program confirmed the existence of the main ore zone on which the original workings were based and returned some gold assays indicating the occurrence of gold within the structure. Further work was recommended including geophysical surveying and geological mapping over the whole area of the property.

In early 1984, Mono Gold Mines Inc. extended the picket line grid to give complete coverage of the property and carried out electromagnetic and magnetic surveys over the grid. A geological mapping program was completed in September 1984, comprising limited sampling of quartz veins and ground evaluation of geophysical anomalies. Several areas of interest in the Northeast Area of the property were outlined and recommendations were made for a trenching and sampling program to further evaluate the quartz vein system discovered.

The First Phase Exploration program of stripping and trenching was completed in late November 1984, confirming the gold mineralization associated with the quartz vein systems. A diamond drilling program to test the quartz vein system to depth was recommended as the Second Phase of Exploration.

LOCATION AND ACCESS

The property is located in the northern part of Madoc Township in Hastings County in eastern Ontario. The claims surround the village of Bannockburn, which is a small unincorporated settlement located on provincial highway #62, approximately 10 miles north of the town of Madoc, and 25 miles north of Belleville on Lake Ontario. Highway #7 connects Madoc with the major centres of Peterborough to the west-southwest and with the city of Ottawa to the east. The distance from Madoc to Ottawa is approximately 130 miles.

Access to the property is by paved highway #62 to the village of Bannockburn itself. The portion of the property lying west of highway #62 is reached by a private company road onto Lot 28 which crosses the Moira River by means of a wooden bridge. Bush trails and roads which were upgraded during the 1981 exploration program provide access by truck or on foot to the area of the old Bannockburn gold mine and further west. The concession road between Concessions IV and V provides limited access to the western part of the property and could easily be upgraded to provide full access both to the western part of the property and the old mine area.

The Northeast Area of the property, lying east of highway #62, can be reached by means of the abandoned railroad grade at the old Bannockburn Station located just north of the village of Bannockburn. The area of interest on L.39N around 32+00E was opened to access by means of an older railroad grade running east from the Bannockburn Station site. This grade was cleared for 700 feet to the east and 1700 feet of bulldozer trail was constructed in November 1984 to provide access for four-wheel drive vehicles.

NORTHEAST AREA - THIRD PHASE EXPLORATION - DIAMOND DRILL PROGRAM

The May 1985 drill program commenced on May 9, 1985 and was suspended on May 15, 1985 after the completion of 1330 feet of drilling. Six BQ holes were put down to further investigate high grade gold-bearing quartz veins that had been intersected during the February 1985 drill program. This earlier drilling program consisted of eight holes drilled on azimuths of 108° at angles of -50° and -60°.

The May 1985 program of drilling commenced with two -50° holes along an azimuth of 288°. A single -50° hole was drilled on an azimuth of 108° , and the remaining two holes were drilled vertically or at -90° . The six holes drilled in May 1985 were consecutively numbered from 85-9 to 85-14 and their locations are shown together with the February holes on the diamond drill plan (Fig. 4).

The drill cores were inspected on site and then transported to the Ketcheson farm near Eldorado for logging, core splitting and sampling. After, the cores were deposited at the Tweed Core Library of the Ontario Ministry of Natural Resources. They will be held confidential for a period of six months from May 21, 1985.

The drill cores were logged and samples taken from selected intervals using a Longyear wheel type core splitter. Sample splits were carefully tagged, logged, and stored in a secure area before being shipped by bus to Bondar-Clegg & Company Ltd. in Ottawa. (Note: The first 13 samples were assayed in the Vancouver Labratory of Bondar-Clegg & Company Ltd.) The samples were fire assayed for gold and silver, with checks for native gold screened out at +150 mesh. Assay results were mailed to Mono Gold Mines Inc. and Sawyer Consultants Inc. in Vancouver, B.C., and were held in strict confidence until complete information was released to the Company.

Table 2 shows the results of the May 1985 drilling. Visible native gold was noted in four of the six drill holes completed, the assays being in good agreement with observations made when logging the cores.

Table 2. Significant assay results of the Third Phase Exploration Drilling Program, Northeast Area, Bannockburn Property.

Hole No.	Footage	Core Length (in feet)	Au oz./ton	Au oz./ton
85-9	92.9 - 93.9	1.0		4.104
85-10	36.5 - 39.5	3.0	1.50	1.297
85-10	39.5 - 40.5	1.0	0.118	0.023
85-11	40.9 - 42.2	1.3	29.23	12.30
85-11	42.2 - 43.2	1.0	0.160	0.129
85-13	133.5 - 134.5	1.0	0.032	0.123
85-14	26.0 - 27.8	1.8	1.139	0.406

Note: These assays are derived from two or more vein structures.

DISCUSSION OF RESULTS

Phase Three drill results have changed the interpretation of the direction and angle of dip of the previously drilled auriferous quartz veins in the Northeast Area of the Bannockburn property. Evidence from the surface and all drilling to date now suggests that there may be as many as four sub-parallel veins striking due north, and dipping between 38° and 55° to the east. The evidence is presented in Figures 3, 5, and 6.

A further significant result of the May 1985 drilling is the fact that the "Discovery Vein" (see Fig. 4, sample No. 15814) could not have been intersected by the February drilling as had originally been thought. Instead, the first round of drilling must have intercepted a deeper vein, equivalent to one of the "Old Timer" veins that outcrop in surface pits shown on the diamond drill plan (Fig. 4) and Section 60NE (Fig. 5).

Fig. 3 is a projection of all drill intercepts recorded to date for the Northeast Area of the Bannockburn property. This is a vertical dip section drawn perpendicular to the Discovery Vein, and shows points representing the depth versus horizontal distance of each intercept from a vertical reference line drawn from the surface outcrop of the Discovery Vein. Each intercept greater than 0.1 oz./ton Au is labelled according to its hole number, and it can be seen that most of the points fall into four main groups representing the probable dip sections of at least four sub-parallel vein structures. This multiple vein interpretation relies to some extent on an absence of faulting that might have the effect of repeating one or more veins in the projections. However, the rapid rate of drill penetration and the excellent core recovery tend to discount faulting in the area drilled to date.

Present information suggests that most of the postulated vein structures are open along strike and down dip within the 300 ft. by 200 ft. area explored to date. Some preliminary estimates of the strike lengths and dip lengths of mineralized areas, or "shoots," within the veins are given in Table 3. Initial results indicate a possible southeastward rake to the shoots.

Table 3. Preliminary estimates of strike and dip lengths of mineralized shoots.

Structure	Drill Section	Strike Length	Dip Length
Discovery Vein	20SW, 170SW	>185 ft.	> 60 fi.
Old Timer No. 1	20SW, 120NE, 60NE	>100 ft.	>200 ft.
Old Timer No. 2	00, 50SW, 120NE	>180 ft.	>160 ft.

Deeper Veins: Insufficient information.

The assays obtained from the Northeast Area of the Bannock-burn property are of spectacular grade partly because of the narrow widths of the quartz veins. Assays are expressed in ounces per ton rather than tenths of ounces. When allowance is made for a 5.0 ft. mining width, however, the grades revert to tenths of ounces with few exceptions.

Furthermore, it must be pointed out that the eight holes (85-1 to 85-8) drilled in February 1985 were drilled at an oblique angle to the dip of the vein structures, as we now know them. In order to estimate the true widths of the oblique holes, the intercept widths of the -50° holes should be reduced by 66%, and intercept widths of the -60° holes should be reduced by 50%. The resultant assay times (revised) width is then divided by 5 to dilute the grade to a true mining width. Table 4 is a first attempt to revise the widths and grades according to the formula discussed above.

Table 4. Modification of drill intercepts to a true mining width of 5.0 ft.*

Hole No.	Az imut h	Inclination	Sample No.	oz./ton Au	Core Length Ft.	Diluted Grade 5.0 Ft.
1	108°	- 50°	15888 15889	0.390 3.250	1.0) 2.0)	0.458
3	108°	-50°	15913 15914 15915	0.245 5.869 0.305	1.0) 1.0) 1.0)	0.427
3	108°	- 50°	15922	0.690	3.0	0.137
4	108°	-60°	15930	0.785	1.5	0.117
4	108°	-60°	15938	0.375	3.0	0.112
6	108°	-60°	66906 66907	0.789 4.655	2.0) 1.0)	0.623
9	288 ⁰	-50°	71306	4.104	1.0	0.697
10	288°	-50°	71332	1.297	3.0	0.660
11	Vertica	1	71342	12.30	1.3	2.296
14	Vertica	1	71367	1.139	1.8	0.290
*Azim	108° -	-60° intercept -50° intercept	widths widths	reduced by 66% reduced by 15% reduced by 30%) to make) for inte	allowance ercept angles.

CONCLUSIONS AND RECOMMENDATIONS

The Bannockburn Northeast Area has yielded numerous high-grade gold assays from core samples containing visible native gold. The cores are from a multiple vein system that is 300 feet long and extends down-dip for over 200 feet. The veins appear to be open along strike to the north and south, and also down-dip to the east.

Fire assays of February and May 1985 drilling programs have been checked and it is clear that high grade zones of gold mineralization are present. Some assay rejects have given lower, but still encouraging assays, confirming the tenor of the original assay pulps. In future it will be advisable to screen all assays for metallic gold, and to implement a formula for cutting unusually high assays.

Over half of the high grade intercepts to date are from cores oblique to the vein structures, but even after adjusting for true widths the values remain encouraging.

At the present time it should be emphasized that it is too early to predict the economic potential of the Northeast Area of the Bannockburn property. The results to date are of sufficient interest to continue and expand the Third Phase of Exploration.

While some of the proposed drilling can be done during the summer months, half the program should await freeze-up. The 8000 feet of proposed drilling is shown on the revised drill plan (Fig. 9), and consists of one -45° and one -90° hole from each set-up. This plan may have to be modified to suit the rake of the auriferous zones, but the initial plan is to drill three main fences of holes, as follows:

Table 5. Proposed Drill Program.

	1900E		2000E		2100E		2200E		
	1,00L		ZOOL		21002		22002		
-45°	160 ft.		200 ft.		300 ft	•	350 f	ι.	
-90°	250 fi.		300 ft.		400 ft	<u>.</u>	450 f	<u>t.</u>	
	410 ft.		500 ft.		700 ft	•	800 f	t .	
Set-ups	4		1		5		3		
Footage	1640	+	500	+	3500	+	2400	Ξ	>8000 ft.

The expansion of the program proposed by G.D. House in his March 14th report is considered to be justified by the multiple vein interpretation together with the gold tenor of the results to date as modified and reinterpreted in this report.

Contingent on the success of the drilling, a program of underground exploration should be embarked upon as soon as enough information is available from the proposed drill program.

CERTIFICATE OF QUALIFICATION

1, Roy V. Beavon, of Richmond, British Columbia,

DO HEREBY CERTIFY THAT

- 1. I am a Consulting Geologist, a graduate of the University of Wales, Aberystwyth, with first class B.Sc. (1957) and Ph.D. (1960) in Geology.
- 2. That I am a member of the Canadian Institute of Mining and Metallurgy, a Fellow of the Geological Association of Canada, a Fellow of the Geological Society of London, a member of the Society of Economic Geologists, and the Association of Prospectors and Developers.
- 3. That I have practised my profession as a Geologist since 1960 in the U.K., the U.S.A., and Canada.
- 4. That the information, opinions, and recommendations in this report are based on work carried out by me during the period 9th May to 17th May, 1985, and on work completed by Sawyer Consultants Inc. prior to that date.
- 5. That I have no direct or indirect interest in any of the subject properties of this report, nor in the shares or securities of Mono Gold Mines Inc., or associated companies, nor do I expect to receive such interest.

R.V. Beavon, B.Sc., Ph.D. F.G.A.C.

Dated at Vancouver, British Columbia this 31st day of May, 1985.

Sawyer, J.B.P., 1983: Report on the

Report on the Bannockburn Property, Madoc Township, Ontario for Mono Gold Mines Inc.; Sawyer Consultants Inc. private report dated

Feb. 14, 1983.

Thompson, W.H., 1984:

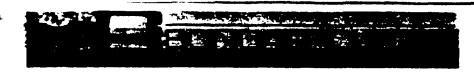
Magnetic and VLF Electromagnetic Surveys for Mono Gold Mines Inc. on the Bannockburn Property, Madoc Township; Geosearch Consultants

Ltd., Apr. 3, 1984.

RECEIVED HAY 2 8 1985

REPORT: 425-	0720			PROJECT: HONO	PAGE 1
Sample Mumber	ELEXENT UNITS	Au Det	Aa OPT		
R2 71301	(1	0.002	0.02		
R2 71302		0.002	0.04		
R2 71303		0.003	<0.02		
R2 71304		0.007	<0.02		
R2 71305		r 002	<0.03		
R					
R 2 7130€		4.104	0.19		
R2 71307		0.056	0.03		
R2 71308		0.015	0.02		
R2 71309		0.011	0.02		
R2 71310		0.003	0.07		
BO 81011		A 054	0.02		
R2 71311		0.054			
K2 71312		0.073	0.03		
R2 71313		0.019	0.02		
ı					
ı					
L					
ĺ					
L					
1					
l.					

Remistered Assager Province of British Columbi



RECEIVED MAY 3 1 1985

REPORT: 415-1101				PRBJECT: NOWN HE, MAY PAGE 1
SARPLE E	LEMENT Ag UNITS 0/1	Au 0/1	Au 0/T	
71314	0.04	(6.001		
71315	0.01	0.003		
71316	0.01	<0.001		
71317	0.01	0.004		•
71318	6.04	<0.001		
71319	0.14	(0.001		
71320	0.05	<0.001		
71321	0.01	(0.001		
71322	0.04	(0.001		
71323	0.01	<0.001		
71324	0.01	0.001		
71325	0.01	<0.001		
7132 <i>E</i>	0,01	<0.001		
71327	0.01	(0.001		
71320	0.01	<0.001		
71329	(0.01	<0.001		
71330	0.04	<0.001		
71331	0.61	<0.001		
71331	0.13	1.500		
71333	0.02	0.118		
71334	0.05	0.001	- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
71335	6.03	0.001		
7133€	0.11	0.003		
71227	79.0	0.001		
71338	¢.06	0.001		
وأذاد	0.04	0.004		1
71340	€.11	0.010		
71341	0.20	0.001		
71342	1.48		29.23	
71343	0.12	0.160		
71344	0.21	0.042		
71345	0.32	0.014		
71346	0.15	0.011		
71347	0.32	0.009		-
71348	0.21	0.007		

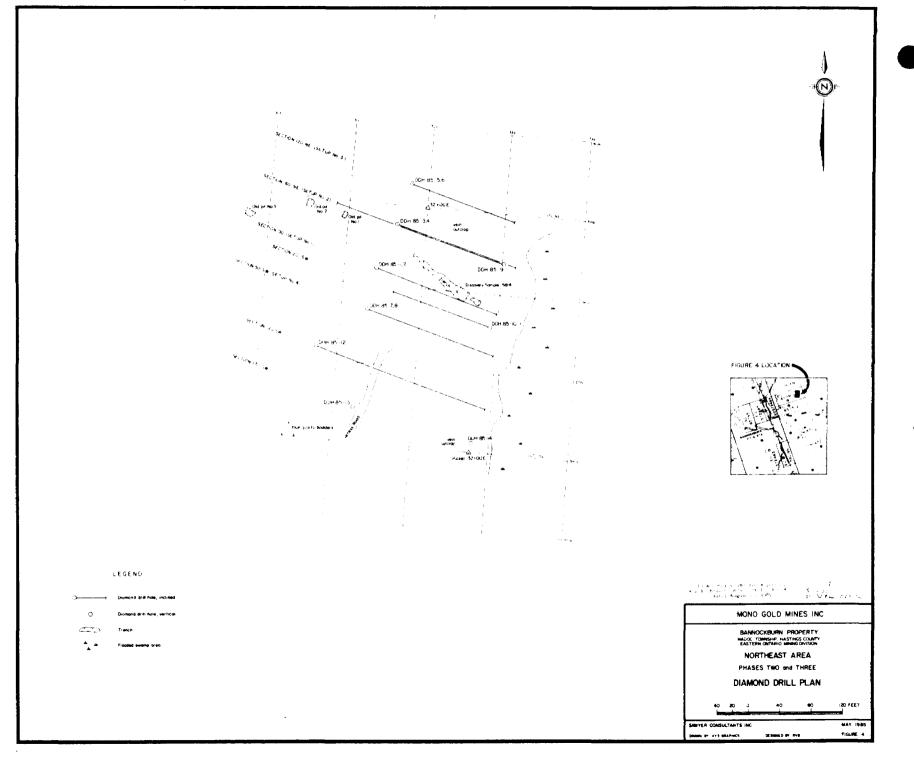
1. Parler

Chief Chemist

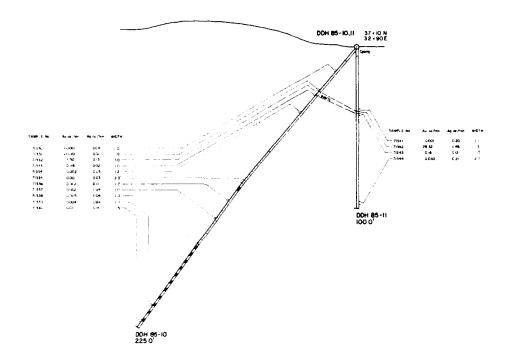
RECEIVED MAY 3 0 1985

REPORT: 415-	1144		PROJECT: NOTE PAGE 1
SAMPLE RUMBER	ELERENT AU DRITS D/T	Ag D/1	
71349	0.002	<0.01	
71350	♦.008	<0.01	
71351	300.0	0.01	
71352	0.006	0.09	
71353	<0.001	<0.01	
71354	<0.001	<0.01	
71355	0.002	0.01	
71356	0.013	0.01	
71357	0.022	0.01	
71358	9.005	(0.01	
71359	0.032	0,12	
71360	0.008	0.01	
71361	0.004	<0.01	
71362	300.0	<0.01	
71363	<0.001	¢.01	
71344	C.007	0.01	
71365	(0.001	0.01	•
71366	(0.001	<0.01	
71367	1.130	0.03	
71369	(0.00)	<0.01	
71365	0.058	0.0!	
71370	(0.001	0.01	
71371	<0.001	0.0	
71372	(0.001	<0.0:	

1. Kanler



REPORT: 515	5–1101		PROJECT:		
SAMPLE NUMBER	oz/ton Au -150	grams -150	oz/ton Au +150	grams +150	oz/ton Weighted Au Ave.
71332	1.289	196.1	1.350	27.65	1.297
33	0.020	161.6	0.066	11.00	0.023
34	0.003	191.8	LO.001	23.08	0.003
41	LO.001	70.8	LO.001	20.65	LO.001
42	0.109	177.6	126.5	18.96	12.30
43	0.083	106.8	0.341	23.50	0.129
44	0.152	192.6	0.042	25.67	0.139


REMARKS: L means less than.

Sample type is reject.

1. Raulio

Reduced from original

LEGEND

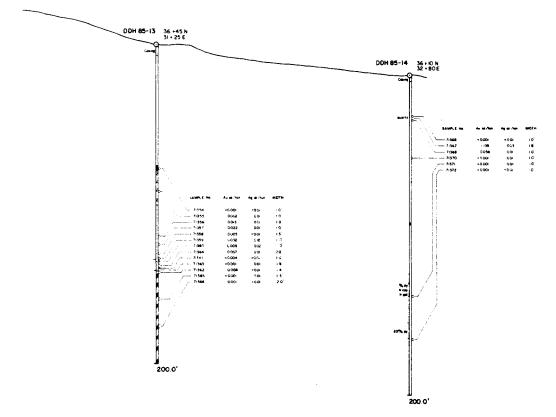
Phyllins, argibles

Mahr dike

MONO GOLD MINES INC

BANNOCKBURN PROPERTY MADOC YOMNSHIP, HASTINGS COUNTY EASTERN ONDARIG MINING DIVISION

NORTHEAST AREA


DIAMOND DRILL SECTION 20 SW DOH 85 - 10,11 GEOLOGY, SAMPLE INTERVALS AND ASSAYS

SAWYER CONSULTANTS INC

DESIMMED BY BYO

URE 4

LEGEND

Phyllinc orgililes

Limy Defile schie

Mosture anders

To accompany Report by
Hoy V. Beavan, Bow., Philos. Florido.

MONO GOLD MINES INC

BANNOCKBURN PROPERTY MADOC TOWNSHIP, HASTINGS COUNTY EASTERN ONTINIO MINING DIVISION

NORTHEAST AREA

DIAMOND DRILL SECTION 170 SW ODH 85-13,14
GEOLOGY, SAMPLE INTERVALS AND ASSAYS

20 10 0 80 40 80 FEET

MAY 7985

ORMEN OT ETS GRAPHICS DESIGNED BY PVB

PV6

FIGURE 8

Reduced from original

REPORT OF THE

BANNOCKBURN PROPERTY, NORTHEAST AREA

PROSPECT

CONTINUATION OF PHASE III DIAMOND DRILLING

77° 33' W Longitude 44° 39' N Latitude

for

MONO GOLD MINES INC.

October 1985

BEAVON CONSULTING LIMITED

TABLE OF CONTENTS

1.

Summary

2.	Introduction	3
3.	Geology, Mineralization, and Structure	4
4.	Diamond Drill Results to date	5
	Table 1. Diamond Drill Statistics	. 6
	Table 2. List of Drill Intercepts	7
5.	Preliminary drill-indicated tonnage/grade estimate	10
6.	Conclusions and Recommendations	12
7.	Certificate	13
8.	References	14
9.	Appendices:	
	Appendix 1	
	1. Assay Certificates	
	Appendix 2	
	2. Preliminary Tonnage/Grade Calculation	
	3 Diamond Drill logs and Assay Summary Sheets	Bound Separatel

Page 1

ILLUSTRATIONS

Fig. 1	Location Map		Page 2
Fig. 2	Property Map	Follows .	Page 3
Fig. 3	Diamond Drill Plan Scale 1 inch = 20 feet		In Pocket
Fig. 4	Diamond Drill Section: Scale 1 inch = 20 feet	2500 N; DDH 85-21, 85-22	In Pocket
Fig. 5	Diamond Drill Section: Scale 1 inch = 20 feet	2350 N; DDH 85-15, 85-16 85-23	In Pocket
Fig. 6	Diamond Drill Section: Scale 1 inch = 20 feet	85-11, 85-24	In Pocket
Fig. 7	Diamond Drill Section: Scale 1 inch = 20 feet	2430 N; DDH 85-17, 85-25	In Pocket
Fig. 8	Diamond Drill Section: Scale 1 inch = 20 feet	85-26, 85-27;	In Pocket
Fig. 9	Diamond Drill Section: Scale 1 inch = 20 feet	85-28, 85-29;	In Pocket
Fig. 10	Diamond Drill Section: Scale 1 inch = 20 feet	85-32;	In Pocket
Fig. 11	Diamond Drill Section: Scale 1 inch = 20 feet	85-30, 85-31	In Pocket
Fig. 12	Diamond Drill Section: Scale 1 inch = 20 feet	85-33; 85-34;	In Pocket

Appendix 2. Preliminary Drill Indicated Tonnage/Grade Calculation


- a) Longitudinal Projection Vein 'C'
- b) Longitudinal Projection Vein 'D'
- c) Longitudinal Projection Vein 'E'
- d) Longitudinal Projection Vein 'Z'

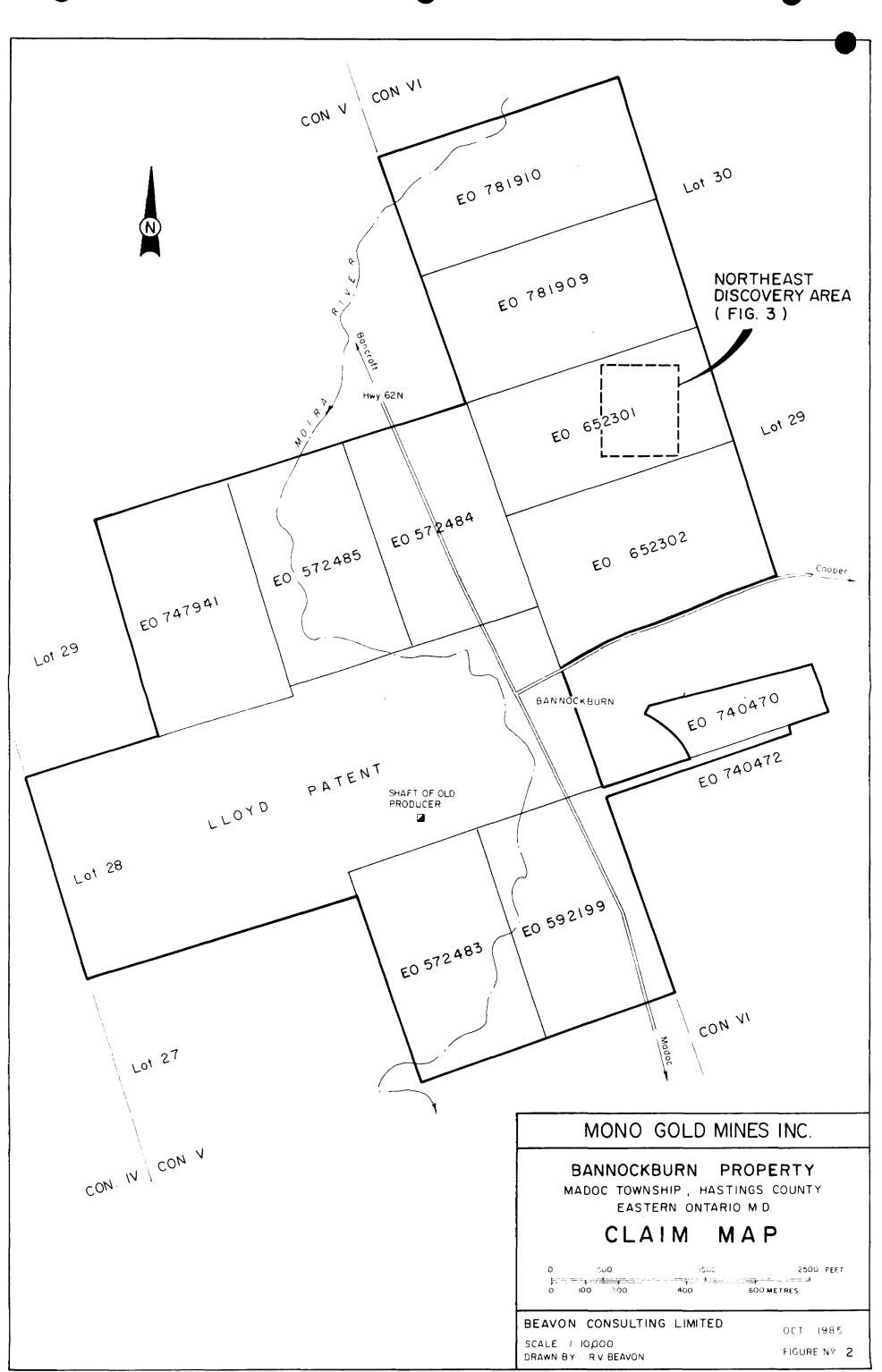
SUMMARY

A total of 9728 feet of diamond drilling has now been completed on the Northeast Area Prospect of the Bannockburn property, Madoc Township, Eastern Ontario Mining Division. The drilling has defined the northern and eastern boundaries of visible native gold mineralization which occurs in four or more quartz-vein-structures for a total vein-length of 1260 feet. The veins, which vary in width from 0.1 to 3.0 feet, strike northwest and dip northeastwards at -45 to -65 degrees. The auriferous quartz veins are related to an important transverse or east-north-east striking flexure-fault that dips northwards at approximately 60 degrees, and the best gold values have been found within 300 feet to the north and south of that structure, mostly within the northwest striking vein-structures.

Since proven reserves of vein-deposits can only be established by underground mapping and sampling, only a preliminary drill-indicated tonnage and grade estimate can be made at the present time. Accordingly 98,750 tons grading 0.340 oz. ton/ Au are based on 24 drill intercepts that have been diluted to 5.0' true widths to a vertical depth ranging from 170 to 240 feet. In addition to this the drilling results also show that high grade linear shoots may be present along the important transverse flexure-fault which could have a positive impact on reserves when the results of underground development are known.

Present plans are to complete surface exploration and drilling on the entire property as recommended in the September 5th 1985 report, prior to any decision to initiate underground exploration and development.

MONO GOLD MINES INC. BANNOCKBURN PROPERTY


MADOC TOWNSHIP EASTERN ONTARIO MINING DIVISION

GENERAL LOCATION MAP

INTRODUCTION

Diamond drilling of the Northeast Area of the Bannockburn property has been proceeding intermittently since February 1985. A total footage of 9728 feet has been completed. Approximately 1500 feet remains to be done prior to consideration of a program of underground exploration and development. The present report describes the most recent round of drilling that took place in late August and September 1985. In general the results were poorer than in the previous three rounds of drilling, but both the depth and southeastern limits of mineralization have yet to be defined.

Because of the large number of reports completed in 1985, the present report omits references to the 'Location and Access' and 'History of Previous Work' which were fully covered in the August 30th, 1985 report. A new property map (Fig. 2) is included with this report indicating the addition of claims EO 740470 and EO 74072 to the Mono Gold Mines holdings in the Bannockburn area. However the ownership of the westernmost four acres of claims EO 74072 remains to be confirmed.

HON

GEOLOGY, MINERALIZATION, AND STRUCTURE

These topics are fully covered in the August 30th report, with the exception of new rock-types encoutered in the northermost of the area, where holes 85-27 to 85-34 are drilled sub-parallel to the plunge of the Precambrian structures. Consequently each drill section tends to encounter new rock-units as the drill collars step across the regional strike to the north-west. The new rock-types are felsite, metadiabase and metagabbro.

The felsite varies from a massive, light grey, sometimes mottled, hard, fine-grained lithology to a dark weakly-chloritized glassy-textured lithology. Fragmental sections commonly display a dark glassy rhyolitic matrix. Short banded sections are also present. Either a pyroclastic or shallow fragmental intrusive origin seems likely for the felsite. Its intrusive nature may be confirmed by the fact that the felsite intercepts tend to plunge north-east, while the mafic lavas plunge south-west parallel to the general stratigraphy and structure (Fig. 8).

Auriferous quartz veins cut the felsite, but they are generally too low grade to make an economic grade of mineralization.

Metagabbro and metadiabase were seen mainly in hole 85-31 and these appear to be irregular sill-like sheets plunging with the Tudor Volcanic Group (Fig. 10). Unlike most of the felsites, the gabbros and metadiabases sometimes show evidence of foliation. No auriferous quartz veins have yet been noted in the basic intrusives.

Details of the structure of the auriferous veins are shown in Fig. 3 and discussed with the drill results. The gold bearing veins strike north-west and dip north-east at 45 to 64 degrees. They are intimately associated with a transverse flexure-fault (see August 30th report), and could be interpreted as tensional features due to the opening up 'AC' joints related to a Precambrian anticlinal structure.

Fig. 3 also shows structional contours drawn at the top of the Tudor Volcanic Group. The depth continuation of the important transverse flexure-fault is indicated by minor steps in the stratum-contours between DDH 85-25 and DDH 85-9.

Detailed statistics describing the diamond drill and assay results to date are included in tables 1 and 2 respectively. The most recent results are lower in average grade than those holes below the number of 17. The decrease in grade can be attributed to the gradual weakening of economic mineralization along strike towards the north; i.e. away from the well-mineralized area 300 feet north and south of the transverse flexure-fault described in the August 30th report.

The east-north-east striking flexure-fault was intercepted in holes 85-23 and 85-24 and a 60 degree dip towards the north-north-west in indicated for that struture.

The auriferous quartz veins are wider more numerous, and better mineralized in the vicinity of the flexure-fault, but their strike is almost normal to the strike of the latter. The veins dip towards the north-east at 45 to 64 degrees, and there is some evidence that they bend as they approach the flexure-fault (c.f. Fig. 4, 5, & 7; See also August 30th report page 15). Very little displacement occurs along the flexure-fault, a maximum of 20 feet being indicated by Fig. 5. In places the fault may be replaced by a flexure.

Four or more veins have been identified by their surface projection from drill sections (Fig. 3). They appear to be fairly consistent, but an extra vein appears in some holes which makes correlation somewhat hazardous. The veins are labelled 'A' to 'E' and 'Z' as shown on the Diamond Drill Plan (Fig. 3).

One obvious feature of the drill results is that the assay values are best near the flexure-fault and also near its down-dip extension, eg. Fig. 5. It may be concluded that the lines of intersection of the auriferous veins and the important flexure-fault are favourable areas for the development of higher-grade shoots of economic mineralization.

Only one vein has so far been recognized to the south of the flexure-fault. Accordingly some of the drilling is planned to search for the offset portions of other veins in that area. It is also hoped that the flooded area east of DDH 85-11 will freeze hard enough to allow winter drilling.

Diamond Drill Data Phase II & III

DDH	Easting	Northing	Inclination	Azimuth	Total Depth Ft.
85-1	3897	2215	- 55	112	246
2	3897	2215	- 65	112	295
3	3916	2265	- 55	112	236
4	3916	2265	- 65	112	263
	3932	2325	- 55	112	226
5 6	3932	2325	- 65	112	256
7	3890	2161	- 55	112	246
8	3890	2161	- 65	112	256
9	4055	2236	-55	292	300
10	4050	2150	- 55	292	225
11	4050	2150	-90		100
12	3827	2112	- 55	112	305
13	3860	2040	- 90		200
14	4020	2013	-90		200
15	4100	2350	-60	272	256
16	4100	2350	- 75	272	286
17	4098	2430	- 45	272	404
18	4134	2605	-90		284
19	4238	2787	- 45	272	274
20	4275	1901	- 45	272	400
21	4095	2500	-45	272	204
22	4095	2500	- 90		355
23	4247	2340	-72	272	435
24	4247	2340	- 45	225	305
25	4237	2425	- 55	272	334
26	4027	2625	- 45	235	284
.27	4027	2035	-70	235	300 才 🏄 🥍
28	4000	2700	-45	235	324
29	4000	2700	-70	235	364
30	3975	2798	- 45	235	304
31	3975	2798	- 70	235	373
32	3772	2896	-45	235	300
33	3900	2423	-45	235	288
34	3900	2423	- 70	235	300

Total Footage 9728 As at Sept. 30,1985.

<u>Drill Intercepts</u> (unweighed original fire assays)

	<u>Interval</u>	Core Length	Oz./ton Au.
DDH 1	17.6 - 19.0 19.0 - 22.0 27.0 - 28.5 32.5 - 34.5 56.5 - 57.5 64.0 - 66.0 66.0 - 68.0 98.5 -100.5 109.0 -110.5 110.5 -112.0	1.4' 3.0' 1.5' 2.0' 1.0' 2.0' 2.0' 1.5' 1.5'	0.045 0.010 0.015 0.010 0.390 3.250 0.105 0.010 0.015
DDH 2	11.5 - 16.0	4.5'	0.130
	16.0 - 17.5	1.5'	0.120
	56.0 - 57.0	1.0'	0.150
	103.0 -104.5	1.5'	0.010
	239.5 -242.5	3.0'	0.170
DDH 3	47.0 - 48.0 48.0 - 49.0 49.0 - 50.0 58.5 - 60.5 75.0 - 76.5 153.9 - 155.0 172.8 - 176.0	1.0' 1.0' 2.0' 1.5' 1.1' 3.2'	0.245 5.869 0.305 0.200 1.094 0.285 0.690
DDH 4	39.0 - 40.5 40.5 - 43.0 45.0 - 47.5 52.0 - 53.0 101.0 -103.0 124.0 -127.0 207.0 -210.0 215.5 -218.5	1.5' 2.5' 2.5' 1.0' 2.0' 3.0' 3.0'	0.785 0.015 0.116 0.019 0.355 0.375 0.041 0.021
DDH 5	195.0 -198.0	3.0'	0.066
	206.5 -208.0	1.5'	0.045
	208.0 -211.0	3.0'	0.042
DDH 6	71.0 - 73.0	2.0'	0.789
	73.0 - 74.0	1.0'	4.655
	150.0 -152.0	2.0'	0.176
DDH 7	78.0 - 80.5	2.5'	0.015
	133.5 -135.5	2.0'	0.146
	143.5 -145.5	2.0'	0.173
DDH 8	78.0 - 81.0	3.0'	0.026
	225.5 -227.0	1.5'	0.035
	230.0 -233.0	3.0'	0.010
	233.0 -235.0	2.0'	0.043

	Interval	Core Length	Oz./ton Au.
DDH 9	47.2 - 48.2 92.9 - 93.9 93.9 - 94.9 106.6 -107.5 118.6 -119.8 120.0 -121.0 148.0 -149.7	1.0' 1.0' 1.0' 1.0' 1.2' 1.0'	0.015 4.104 0.056 0.054 0.011 0.073 0.019
DDH 10	36.5 - 39.5	3.0'	1.500
	39.5 - 40.5	1.0'	0.118
	220.0 -221.5	1.5'	0.010
DDH 11	40.9 - 42.2	1.3'	29.230
	42.2 - 43.2	1.0'	0.160
	97.5 - 99.5	2.0'	0.042
DDH 12	55.5 - 57.0	1.5'	0.011
DDH 13	121.0 -122.0	1.0'	0.013
	125.0 -125.0	1.0'	0.022
	133.5 -134.5	1.0'	0.032
DDH 14	26.0 - 27.8	1.8'	1.139
	27.8 - 28.8	1.0'	0.058
DDH 15	24.5 - 25.5	1.0'	0.016
	71.0 - 72.0	1.0'	0.010
	72.0 - 73.4	1.4'	2.048
	73.4 - 74.4	1.0'	0.026
	204.9 -205.9	1.0'	0.138
DDH 16	88.8 - 89.8 89.8 - 90.8 185.0 -186.0 202.5 -204.5 204.5 -205.5 248.0 -249.0 249.0 -250.0 250.0 -251.0 252.3 -253.3 253.3 -255.3	1.0' 1.0' 2.0' 1.0' 1.0' 1.0' 1.0' 1.0' 1.7'	0.010 0.359 1.487 6.633 0.324 0.004 1.288 3.016 0.064 2.219 0.004
DDH 17	74.0 - 75.0 75.0 - 76.0 133.9 -134.9 134.9 -135.9 135.9 -136.9 150.4 -151.9 173.4 -175.5 178.0 -179.0	1.0' 1.0' 1.0' 1.0' 1.0' 1.0' 1.5' 2.1' 1.0'	2.052 0.014 0.016 1.056 0.242 0.042 0.010

DDH's 18, 19, and 20 No significant assays

	<u>Interval</u>	Core Length	Oz./ton Au.
DDH 21	103.8 -104.8	1.0'	0.088
	189.5 -191.0	2.0'	0.200
DDH 22	144.7 -145.7	1.0'	0.556
	294.8 -295.8	1.0'	0.012
DDH 23	253.0 -254.0	1.0'	0.098
DDH 24	224.7 -226.7	2.01	0.208
DDH 25	191.2 -192.2	1.0'	0.038
DDH 26	43.4 - 44.4	1.0'	0.030
	66.0 - 67.0	1.0'	1.172
	67.0 - 68.0	1.0'	0.042
	200.0 -202.0	2.0'	0.050
	202.0 -205.0	3.0'	0.018
	279.0 -280.0	1.0'	0.012
DDH 27	76.8 - 79.0	2.2'	0.042
	208.5 -209.5	1.0'	0.156
	211.0 -212.0	1.0'	0.022
	213.9 -214.9	1.0'	0.248
	255.8 -256.8	1.0'	0.731
	259.0 -260.0	1.0'	0.304
	267.1 -268.1	1.01	0.014
DDH 28	14.0 - 15.0	1.0'	0.016
	47.5 - 48.5	1.0'	0.010
	147.0 -149.0	2.0'	0.058
	251.8 -253.3	1.5'	0.338
DDH 29	No Significant	assays	
DDH 30	248.5 -249.5	1.0'	0.192
22 00	249.9 -250.9	1.0'	0.010
DDH 31	79.8 - 80.8	1.0'	0.018
DDII 31	90.7 - 91.7	1.0'	0.110
	361.0 -362.0	1.0'	0.016
DDH 32	5.5 - 6.5	1.0'	0.010
DD11 32	44.0 - 45.0	1.0'	0.030
	50.0 - 51.0	1.0'	0.028
	67.9 - 68.9	1.0'	0.012
	132.1 -140.1	1.0'	0.010
DDH 33	39.4 - 40.4	1.0'	0.014
DDH 34	41.5 - 42.5	1.0'	0.068
2211 37	100.9 -101.9	1.0'	0.024
	144.0 -145.0	1.0'	0.012
	254.0 -255.0	1.0'	0.380
	234.0 233.0	1.0	0.000

PRELIMINARY DRILL INDICATED RESERVE ESTIMATE

The diamond drilling of the Bannockburn Northeast Area Prospect has been proceeding with two objectives in mind: (1), to provide a preliminary estimate of tonnage and grade potential, and (2), to pave the way for a contingent underground program of exploration and development.

The first objective has only been partially met because of the variable assays obtained (See Table 2 and Appendix 2). To some extent the variation in assay values has been compounded by splitting the cores. Furthermore, an ideal spacing of intercepts has been difficult to attain for all the vein-structures encountered. This is partly due to the presence of flooded areas on the property, and partly to the abundance of sub-parallel vein-structures. In general, the drill information is better at shallow levels for the easternmost veins, and better at the deeper levels of the westernmost veins.

The second objective of the drill program was to outline the locations of the veins in order to plan an effective underground strategy. The objective should be reached following completion of the Phase III drilling.

A confident drill indicated tonnage requires that the vein-structures are consistent from one cross-section to the next. The veins labelled A to Z on Fig. 3 are surface projections from the drill sections, and as such they have been constructed from points drawn by the joining up of two or more drill intercepts per section. Continuity is assumed, but not guaranteed, and hence the need for underground confirmation.

All assays have been diluted to 5.0 ft. true widths, by the method and examples shown in the August 30, 1985 report. This has been done in order to simulate an economic underground mining situation. Because the average grades of Veins 'A' and 'B' are below 0.100 oz./ton Au., these structures have been ommitted from the preliminary tonnage/grade estimate.

Veins 'C', 'D', 'E', and 'Z' dip northeastwards at -45 to -64 degrees, and it is possible that the steeper parts of these structures could be mined to a 4.0 ft. width. Details of the preliminary drill-indicated tonnage/grade estimate are presented in Appendix 2. The resultant tonnage is 98750 tons grading 0.340 oz./ton Au., and the degree of confidence to be placed on this result is illustrated by reference to longitudinal

projections of each vein (Appendix 2). The average grade figure quoted above is the mean of the cut and uncut grades, where cutting to 1.0 oz./ton Au. has been done on high assays that average better than 1.0 oz/ton across a 5.0 ft. true width.

In practice only the higher grade areas of the veins would be mined, so that a lesser tonnage of higher grade could be produced, depending on the configuration of the higher grade 'shoots'.

CONCLUSION AND RECOMMENCATIONS

A preliminary drill-indicated tonnage of 98,750 short tons grading 0.340 oz./ton Au. has been estimated for the Bannockburn Northeast Area.

The drill results point out the need for an underground program of exploration and development to better define the quartz vein-structures, their continuity, and gold content. It is likely that such a program would eventually pay for itself and could be justified for that reason alone. However there is no justification for a large capital investment until such time as metallurgical testing of development muck is successfully completed.

Prior to initiation of any underground program on the Bannockburn property the following surface work should be done.

- 1) Completion of the remaining 1500 feet of Phase III diamond drilling as recommended May 30, 1985 together with a report to justify the underground program.
- 2) Surface exploration of the remainder of the Bannockburn property as recommended in the September 5th, 1985 Progress Report, including a report on the geochemical survey.
- 3) Claims EO 572484, EO 572485, EO 65202, EO 65203 should be surveyed and taken to lease as soon as possible.
- 4) Claims EO 572483 and EO 592199 require assessment work report prior to May 1986 and should also be surveyed and taken to lease.

SUBMITTED BY_

Roy V. Beavon B.Sc., Ph. D.

Beavon Consulting Limited

CERTIFICATE OF QUALIFICATION

I, Roy V. Beavon, of Richmond, British Columbia,

DO HEREBY CERTIFY THAT:

- 1. I am a Consulting Geologist, a graduate of the University College of Wales, Aberystwyth, with first class B.Sc (1957) and Ph.D. (1960) in Geology.
- 2. That I am a member of the Canadian Institute of Mining and Metallurgy, a Fellow of the Geological Association of Canada, a Fellow of the Geological Society of London, a member of the Society of Economic Geologists, and the Association of Prospectors and Developers.
- 3. That I have practised my profession continuously as a Geologist since 1960 in the U.K., the U.S.A., and Canada, and from 1969 to the present this work was in a supervisory capacity.
- 4. That the information, opinions, and recommendations in this report are based on work carried out by me between May and September 1985, on work completed by Sawyer Consultants Inc. prior to that date, and on work completed during 1966-69 for Syngenore Explorations Ltd.
- 5. That I have no direct or indirect interest in any of the subject properties of this report, nor in the shares of securities of Mono Gold Mines Inc., or associated companies, nor do I expect to receive such interest.

R.V. Beavon, B. Sc., Ph.D.

Dated at Vancouver, British Columbia this 18th day of October 1985.

REFERENCES

Reports by Sawyer Consultants Inc. for Mono Gold Mines Inc. dated as follows:

Feb. 14 1983 by J.B.P. Sawyer P. Eng.

Oct. 10 1984 by G.D. House F.G.A.C.

Dec. 20 1984 by G.D. House F.G.A.C.

Mar. 14 1985 by G.D. House F.G.A.C.

Apr. 12 1985 by G.D. House F.G.A.C.

Reports by Beavon Consulting Limited for Mono Gold Mines Inc.

May 31 1985 by R.V. Beavon P.h. D.

Aug 30 1985 by R.V. Beavon P.h. D.

Government Reports

Miller & Knight (1914) Ann Rept. Ont. Bur. Mines Vol. 22.

P.E. Hopkins (1922) " " Dept. " Vol. XXX.

V.B. Meen (1944) " " " Vol. 51.

D.F. Hewitt (1968) Ont. Dept. Mines Geol. Rept. 73

212 Brooksbank Ave. North Vancouver, B.C. V7J 2C1

Phone:

(604) 984-0221

Telex:

043-52597

Analytical Chemists •

Geochemists • Registered Assayers

CERTIFICATE OF ASSAY

TO : MONU GOLD MINES INC.

C/O BEAVON CONSULTING LTD.

8720 MILLMORE RD.

RICHMOND, B.C.

V7C 1S9

CERT. # : A8515951-001-A

INVOICE # : 18515951

DATE

: 9-SEP-85

P.O. # : NONE

cc: BEAVON CONSULTING, MADOC ONT.

Sample	Prep	Au oz/T	 		
description	code	RUSH FA			
08501 F	236	<0.002	 	 	
08502 F	236	0.088	 	 	
08503 F	236	<0.002	 	 	
08504 F	236	<0.002	 	 	·
_ 08505 F	236	<0.002	 	 	
08506 F	236	<0.002	 	 	
08507 F	236	<0.002	 	 	
08508 F	236	<0.002	 	 	
08509 F	236	800.0	 	 	~-
08510 F	236	0.200	 	 	
08511 F	236	0.012	 	 	

212 Brooksbank Ave. North Vancouver, B.C. V7J 2C1

Canada

(604) 984-0221

Phone: Telex:

043-52597

Analytical Chemists •

Geochemists •

Registered Assayers

CERTIFICATE OF ASSAY

TO : MONO GOLD MINES INC.

C/O BEAVON CONSULTING LTD.

8720 MILLMORE RD. RICHMOND. B.C.

V7C 1S9

** CERT. # : A8516064-001-A

INVOICE # : 18516064 : 10-SEP-85 DATE

P.O. # .: NONE

cc: BEAVON CONSULTING, MADOC ONTARIO

		1.07	 	 <u> </u>	
Sample	Prep	Au oz/T	 		
description	code	RUSH FA			
No 08512 F	236	0.556	 	 	
No 08513 F	236	<0.003	 	 	
No 08514 F	236	0.003	 	 	
No 08515 F	236	0.012	 	 	
▲ No 08516 F	236	<0.003	 	 	
No U8517 F	236	<0.003	 	 	
No 08518 F	236	<0.003	 	 	
No 08519 F	236	<0.003	 	 	
No 08520 F	236	<0.003	 	 	
No 08521 F	236	<0.003	 	 	
No 08522 F	236	<0.003	 	 	
No 08523 F	236	<0.003	 	 	
▲ No 08524 F	236	0.003	 	 	
No 08525 F	236	0.003	 	 	
No 08526 F	236	0.003	 	 	
No 08527 F	236	<0.003	 	 	
No 08528 F	236	0.098	 	 	
No 08529 F	236	0.005	 	 	
No 08530 F	236	<0.003	 	 	

VOI rev. 4/85

212 Brooksbank Ave. North Vancouver, B.C.

Canada

V7J 2C1 (604) 984-0221

Phone: Telex:

043-52597

Analytical Chemists •

Geochemists • Registered Assayers

CERTIFICATE OF ASSAY

TO : MONO GOLD MINES INC.

C/O BEAVON CONSULTING LTD.

8720 MILLMORE RD. RICHMOND. B.C.

V7C 1S9

**

CERT. # : A8515951-001-A

INVOICE # : 18515951 DATE : 11-SEP-85

P.O. # : NONE

BEAVON CONSULTING, MADOC ONT.

Sample	Prep	Au oz/T				
description	code	RUSH FA				
08501 F	236	<0.002		 		
08502 F	236	0.088	**	 		
08503 F	236	<0.002		 		
08504 F	236	<0.002		 		
08505 F	236	<0.002		 		
08506 F	236	<0.002		 		
08507 F	236	<0.002		 		
08508 F	236	<0.002		 	~-	
08509 F	236	0.008		 		
08510 F	236	0.200		 		
08511 F	236	0.012		 		

Geochemists

212 Brooksbank Ave. North Vancouver, B.C. V7J 2C1

Canada

Phone:

(604) 984-0221

043-52597

Telex:

CERTIFICATE OF ANALYSIS

TO : MONO GOLD MINES INC.

C/O BEAVON CONSULTING LTD.

8720 MILLMORE RD. RICHMOND. B.C.

V7C 1S9

Registered Assayers

CERT. #

: A8515951-001-A

INVOICE # : 18515951

DATE : 11-SEP-85

P.O. # .: NONE

BEAVON CONSULTING, MADDC ONT. :33

Analytical Chemists

Sample	Ргер	Вi			
description	code	ppm			
08501 F	236	0.3	 	 	
08502 F	236	4.2	 	 	
08503 F	236	0.3	 	 	
08504 F	236	0.1	 	 	
_ 08505 F	236	0.1	 '	 	
08506 F	236	0.1	 	 	
08507 F	236	0.5	 	 	
08508 F	236	0.3	 	 	-
08509 F	236	0.5	 	 	
08510 F	236	19.0	 	 	
08511 F	236	1.0	 	 	

Hout Bichler Certified by .

212 Brooksbank Ave. North Vancouver, B.C. Canada V7J 2C1

Telephone:(604) 984-0221

Telex: 043-52597

Analytical Chemists

Geochemists

Registered Assayers

CERTIFICATE OF ASSAY

TO : MOND GOLD MINES INC.

C/O BEAVON CONSULTING LTD.

8720 MILLMORE RD. RICHMOND. B.C.

V7C 1S9

**

CERT. # : A8516215-001-A

INVOICE # : 18516215

: 18516215 : 12-SEP-85

DATE P.O. #

12 30

____`

: NONE

cc:	BEAVON CONSULT	ING NOTE:	NO SAMPLE	REJECT	FOR 08502F	•	
Sample	e Prep	Au oz/T					
descri	ption code	RUSH FA					
08502F	214	0.080			-		
08510F	236	0.232	400 040				
08531F	236	<0.003					
08532F	236	<0.003					
08533F	236	<0.003					
08 53 4F	236	0.003					
08535F	236	0.003					
08536F	236	<0.003					
08537F	236	<0.003					
08538F	236	<0.003					
08539F	236	<0.003					
08540F	236	<0.003					
08541F	236	<0.003					
08542F	236	<0.003					
08543F	236	<0.003					
08544F	236	<0.003					
08545F	236	<0.003					

212 Brooksbank Ave. North Vancouver, B.C. V7J 2C1

Telephone: (604) 984-0221

Telex: 043-52597

Analytical Chemists •

Geochemists • Registered Assayers

CERTIFICATE OF ASSAY

TO : MONO GOLD MINES INC.

C/O BEAVON CONSULTING LTD.

8720 MILLMORE RD. RICHMOND, B.C.

V7C 1S9

CERT. # : A8516200-001-A

INVUICE # : 18516200

DATE : 17-SEP-85

P.O. #

MADOC

CC: BEAVON CUNSULTING, MADUC, ONT.

	CC+ DLATOIT	COMBOLIL	TOT TIMBUC				•		
	Sample	Prep	Pb	Zn	Ag oz/T	Au oz/T			
	description	code	%	3	RUSH FA	RUSH FA			
	08546 F	236				<0.003		~-	
	08547 F	236				<0.003			
	08548 F	236				0.208			
	08549 F	236				0.003			
	08550 F	236				<0.003			
	08551 F	236				<0.003			
	08552 F	236				<0.003			
	08553 F	236	0.01	0.01	0.02	<0.003			
	08554 F	236				<0.003			
1	08555 F	236				<0.003			
	08556 F	236				<0.003			
	08557 F	236	0.02	0.04	0.04	<0.003			
_	08558 F	236				<0.003			
	08559 F	236				<0.003			
	08560 F	236				<0.003			

212 Brooksbank Ave. North Vancouver, B.C. V7J 2C1

Telephone: (604) 984-0221 Telex: 043-52597

Analytical Chemists • Geochemists • Registered Assayers

CERTIFICATE OF ASSAY

TO : MONO GOLD MINES INC.

C/O BEAVON CONSULTING LTD.

8720 MILLMORE RD. RICHMOND, B.C.

V7C 1S9

**

CERT. # : A8516402-001-A

. NONE

INVOICE # : 18516402 DATE : 19-SEP-85

P.O. #

MADOC

CC: BEAVON CONSULTI	NG
---------------------	----

		CDM2 OF 1				•		
	Sample	Prep	Au oz/T	 				٦
	description	code	RUSH FA					
ľ	08561 F	236	<0.002	 				
	08562 F	236	<0.002	 				
	08563 F	236	<0.002	 				
	08564 F	236	0.038	 				
	→ 08565 F	236	0.002	 		-		
	08566 F	236	<0.002	 				
١	08567 F	236	<0.002	 				
	08568 F	236	<0.002	 				!
ŀ	08569 F	236	<0.002	 				!
l	08570 F	236	<0.002	 				
	08571 F	236	0.002	 				
	08 572 F	236	0.002	 				
-	_ 08573 F	236	<0.002	 				
١	08574 F	236	<0.002	 				
ļ	08575 F	236	0.030	 				
	08576 F	236	<0.002	 				
	08577 F	236	<0.002	 				
	08578 F	236	<0.002	 				
	08579 F	236	<0.002	 				
	08580 F	236	1.172	 				
	08581 F	236	0.042	 				
	● 08582 F	236	0.002	 	***			
	08583 F	236	<0.002	 				
	08584 F	236	<0.002	 				
	08585 F	236	0.050	 				
	08586 F	236	0.018	 			← ••	
	08587 F	236	0.004	 				
	08588 F	236	0.004	 			- -	
	08589 F	236	0.008	 				
	08590 F	236	0.012	 				

212 Brooksbank Ave. North Vancouver, B.C.

V7J 2C1

Telephone: (604) 984-0221 Telex: 043-52597

Analytical Chemists •

Geochemists • Registered Assayers

CERTIFICATE OF ANALYSIS

TO : MONO GOLD MINES INC.

C/O BEAVON CONSULTING LTD.

8720 MILLMORE RD. RICHMOND. B.C.

V7C 159

CERT. # : A8516402-001-A

INVOICE # : 18516402 DATE : 19-SEP-85

P.O. # : NONE

MADOC

CC: BEAVON	CONSULTIN					•	
Sample	Prep	8 i					
aescription	code	maa					
08561 F	236						
08562 F	236						
08563 F	236						
08564 F	236						
● 08565 F	236.			, 			
08566 F	236						
08567 F	236						
08568 F	236						
08569 F	236						
08570 F	236						
08571 F	236					= -	
08572 F	236						
08573 F	236						
08574 F	236						
08575 F	236						
08576 F	236						
08577 F	236						
08578 F	236		÷-				
08579 F	236					, 	
08580 F	236	9.7					
08581 F	236						
08582 F	236						
08583 F	236						
08584 F	236						
08585 F	236						
08586 F	236						
08587 F	236						
08588 F	236						==
08589 F	236						
08590 F	236						

Hout Buchler Certified by .

212 Brooksbank Ave. North Vancouver, B.C. Canada V7J 2C1

Telephone:(604) 984-0221

Telex: 043-52597

Analytical Chemists

Geochemists

Registered Assayers

CERTIFICATE OF ASSAY

TO : MONU GOLD MINES INC.

C/O BEAVON CONSULTING LTD.

8720 MILLMORE RD. RICHMOND, B.C.

V7C 1S9

* *

CERT. #

: A8516500-001-A

INVOICE #.: 18516500

: 18516500 : 20-SEP-85

DATE P.O. #

• 20-30

MADOC NE

CC: BEAVON CONSULTING

_	CC. DEATON	CONSOLI	1110		 	
	Sample	Prep	Au oz/T			
L	description	code	RUSH FA		 	
	No. 08606F	236	0.002		 	
ļ	No. 08607F	236	0.016		 	
	No. 08608F	236	0.010		 	
i	No. 08609F	236	<0.002		 	
١	No. 08610F	236	0.010		 	
	No. 08611F	236	0.002		 	
l	No. 08612F	236	0.002		 	
	No. 08613F	236	0.002		 	
	No. 08614F	236	0.004		 	
1	No. 08615F	236	0.002		 	
	No. 08616F	236	0.058		 	
l	No. 08617F	236	<0.002		 	
l	No. 08618F	236	<0.002		 	
	No. 08619F	236	<0.002	· 🖛 🖦	 	
I	No. 08620F	236	<0.002		 	
l	No. 08621F	236	0.002		 	
	No. 08622F	236	0.388	'	 	
	No. 08623F	236	0.008		 	
	No. 08624F	236	0.002		 	
	No. 08625F	236	0.004		 	
	No. 08626F	236	0.006		 	
	▲ No. 08627F	236	0.008		 	
- 1						

W. Son menini

212 Brooksbank Ave. North Vancouver, B.C. V7J 2C1

Telephone:(604) 984-0221

Telex: 043-52597

Analytical Chemists •

Geochemists • Registered Assayers

CERTIFICATE OF ASSAY

TO : MONO GOLD MINES INC.

C/O BEAVON CONSULTING LTD.

8720 MILLMORE RD.

RICHMOND, B.C.

V7C 1S9

CERT. # : A8516535-001-A

INVOICE #

: 18516535

DATE

: 23-SEP-85

P.O. #

· : NONE MADOC

CC: BEAVRON CONSULTING, MADUC, ONT.

Sample	Prep	Au oz/T			
description	code	RUSH FA			
NO 08628 F	236	<0.002	 	 	
NO 08629 F	236	<0.002	 	 	
NO 08630 F	236	<0.002	 	 	
NO 08631 F	236	<0.002	 	 	
_ ND 08632 F	236	<0.002	 	 	
NO 08633 F	236	<0.002	 	 	
NO 08634 F	236	<0.002	 	 	
NO 08635 F	236	<0.002	 	 	
NO 08636 F	236	<0.002	 	 	
NO 08637 F	236	0.008	 	 	
NO 08638 F	236	<0.002	 	 	
NO 08639 F	236	<0.002	 	 	
NO 08640 F	236	<0.002	 	 	
■ ND 08641 F	236	<0.002	 	 	
NO 08642 F	236	<0.002	 	 	
NO 08643 F	236	<0.002	 	 	
NO 08644 F	236	<0.002	 	 	
NO 08645 F	236	0.002	 	 	
ND 08646 F	236	<0.002	 	 	

212 Brooksbank Ave. North Vancouver, B.C.

Telephone: (604) 984-0221

Telex: 043-52597

Analytical Chemists •

Geochemists • Registered Assayers

CERTIFICATE OF ANALYSIS

TO : MONO GOLD MINES INC.

C/O BEAVON CONSULTING LTD.

8720 MILLMORE RD. RICHMOND, B.C.

V7C 159

**

CERT. #

: A8516457-001-A

INVOICE # : 18516457 : 26-SEP-85

DATE P.O. #

: NONE

MADOC

CC: BEAVRON CONSULTING, MADOC, ONTARIO

Sample	Prep	Cu	Bi		
description	code	ppm	ppm		
08591 F	236			 	
08592 F	236			 	
08593 F	236			 	
08594 F	236	1160		 	
08595 F	236			 	
08596 F	236			 	
08597 F	236			 	
08598 F	236		4.5	 	
08599 F	236			 	
08600 F	236			 	
08601 F	236			 	
08602 F	236			 	
08603 F	236		30.0	 	
08604 F	236		14.0	 	
08605 F	236			 	

certified by Hartsichler

212 Brooksbank Ave. North Vancouver, B.C. Canada V7J 2C1

Telephone:(604) 984-0221

Telex:

043-52597

Analytical Chemists

Geochemists

Registered Assayers

CERTIFICATE OF ASSAY

TO : MONO GOLD MINES INC.

C/O BEAVON CONSULTING LTD.

8720 MILLMORE RD. RICHMOND, B.C.

V7C 1S9

**

CERT. # : A8516457-001-A

INVOICE #: 18516457 DATE: 26-SEP-85

P.O. # MADUC

: NONE

CC: BEAVRON CONSULTING, MADOC, ONTARIO

Sample	Prep	Au oz/T		· · · · · · · · · · · · · · · · · · ·			
description	code	RUSH FA					
08591 F	236	<0.002					
08592 F	236	<0.002					
08593 F	236	<0.002					
08594 F	236	0.042					
● 08595 F	236	<0.002	-,-				
● 08596 F	236	<0.002					
08597 F	236	<0.002			***		
08598 F	236	0.156	~~				
08599 F	236	0.022					
08600 F	236	0.248			₩ 🖘		
08601 F	236	0.006				***	
08602 F	236	<0.002					
● 08603 F	236	0.731					
08604 F	236	0.304					
08605 F	236	0.014					

212 Brooksbank Ave. North Vancouver, B.C. Canada V7J 2C1

Telephone:(604) 984-0221

Telex:

043-52597

Analytical Chemists •

Geochemists •

Registered Assayers

CERTIFICATE OF ASSAY

TO : MONO GOLD MINES INC.

C/O BEAVON CONSULTING LTD.

8720 MILLMORE RD. RICHMOND, B.C.

V7C 1S9

CF

CERT. # : A8516698-001-A

INVOICE #: 18516698 DATE: 27-SEP-85

P.O. # :: NONE

MADOC

MAL

CC: BEAVON CONSULTING, MADOC, ONTARIO

Sample	Prep	Au FA				
description	code	oz/T				
08647	236	<0.002		 		
08648	236	<0.002		 		
08649	236	<0.002		 		
08650	236	0.002		 		
08651	236	0.002		 -		
08652	236	<0.002	÷ =	 		
08653	236	<0.002		 		
08654	236	<0.002		 		
08655	236	<0.002		 		
08656	236	<0.002		 		
08657	236	<0.002		 		
08658	236	<0.002		 	,	
08659	236	<0.002		 		
08660	236	<0.002		 		
08661	236	0.004		 		
08662	236	0.044		 		
08663	236	0.010		 		
08664	236	<0.002		 		
08696	236	0.004		 		
08697	236	0.064		 		
08698	236	3.016		 		
08699	236	0.018		 		
08700	236	0.004		 		

11) Swartes

212 Brooksbank Ave. North Vancouver, B.C. V7J 2C1

Telephone: (604) 984-0221

043-52597

Telex:

CERTIFICATE OF ASSAY

Geochemists

TO : MONO GOLD MINES INC.

C/O BEAVON CONSULTING LTD.

8720 MILLMORE RD. RICHMOND, B.C.

V7C 1S9

CERT. # : A8516770-001-A

INVOICE # : 18516770

DATE : 30-SEP-85 : NONE P.O. #

Registered Assayers

CC: BEAVON CONSULT. MADOC. ONTARIO

Analytical Chemists •

	CC. DEAVON	COMPONIA	MADULY	UNIAKIO		 	
	Sample	Prep	Au FA				
L	description	code	oz/T			 	 ,
Ì	08665 F	207	<0.002			 	 1
l	08666 F	207	<0.002			 	 ĺ
l	08667 F	207	<0.002			 	
	08668 F	207	<0.002			 	
	08669 F	207	<0.002		·	 	
	08670 F	207	<0.002			 	
	08671 F	207	<0.002			 	
	08672 F	207	0.018	~-		 	
1	08673 F	207	0.110			 	
	08674 F	207	<0.002			 	
1	08675 F	207	<0.002			 	
	08676 F	207	<0.002			 	
	08677 F	207	<0.002			 '	
1	08678 F	207	<0.002			 	
	08679 F	207	<0.002			 	
	08680 F	207	0.002			 	
	08681 F	207	<0.002			 	
	08682 F	207	<0.002	***		 	
1	08683 F	207	<0.002	~-		 	
	08684 F	207	<0.002		'	 	
	08685 F	207	<0.002			 	
	№ 28686 F	207	0.016			 	
	08687 F	207	<0.002			 	

212 Brooksbank Ave. North Vancouver, B.C.

V7J 2C1 Phone: (604) 984-0221

Telex:

043-52597

Geochemists • Registered Assayers

Analytical Chemists •

CERTIFICATE OF ASSAY

TO : MOND GOLD MINES INC.

C/O BEAVON CONSULTING LTD.

8720 MILLMORE RD. RICHMOND, B.C.

V7C 1S9

CERT. #

: A8516825-001-A

INVOICE # : 18516825 DATE 1-0CT-85

P. D. # : NONE

MADOC

	SEAVUN	CONSOLITAR	MADUL	UNIAKIU
Same	NI O	Drop	A	

Sample	Prep	Au				
description	code	oz/T_	<u> </u>			
08688	236	0.010			 	
08689	236	<0.002	'		 	
08691	236	<0.002			 	
08692	236	<0.002			 	
08693	236	0.030			 	
08694	236	0.028			 	
08695	236	800.0			 	
71401	236	0.002			 	
71402	236	0.020			 	
71403	236	0.012			 	
71404	236	0.002			 	
71405	236	0.002			 	
71406	236	0.010			 	
71407	236	<0.002			 	
71408	236	<0.002			 	
71409	236	<0.002			 	
71410	236	<0.002			 	
71411	236	0.004			 	
71412	236	<0.002			 	
71413	236	<0.002			 	
71414	236	<0.002			 	
71415	236	0.002			 	
71416	236	0.004			 	
71417	236	0.002			 ·	
71418	236	<0.002			 	
71419	236	<0.002	*** <u>-</u> -		 	

212 Brooksbank Ave. North Vancouver, B.C. V7J 2C1

Phone: (604) 984-0221

Telex:

043-52597

Analytical Chemists •

Geochemists • Registered Assayers

CERTIFICATE OF ASSAY

TO : MONO GOLD MINES INC.

C/O BEAVON CONSULTING LTD.

8720 MILLMORE RD. RICHMOND, B.C.

V7C 1S9

CERT. # : A8516969-001-A

INVOICE # : 18516969 4-0CT-85

DATE P.D. # : NONE

MADOC

Sample	Prep	Au oz/T			1. 1	
description	code	RUSH FA				
8751	236	0.014	 			
3752	236	0.008	 			
8753	236	<0.002	 			
8754	236	<0.002	 			
8755	236	<0.002	 			
8756	236	0.006	 			
8757	236	0.004	 			
8758	236	0.006	 			
8759	236	<0.002	 			
8760	236	0.002	 			
8761	236	<0.002	 			
8762	236	<0.002	 			
8763	236	<0.002	 			
8764	236	<0.002	 			
8765	236	<0.002	 			
8766	236	0.002	 			
8767	236	<0.002	 			
8768	236	<0.002	 			
8769	236	0.068	 			
8770	236	<0.002	 			
8771	236	0.002	 	***		
8772	236	0.008	 			
8773	236	0.002	 			
8774	236	0.024	 			
8775	236	<0.002	 			
8776	236	<0.002	 			
8777	236	0.002	 			
8778	236	<0.002	 			
8779	236	0.012	 			
8780	236	0.006	 			
8781	236	0.004	 			
8782	236	0.008	 			
8783	236	0.002	 			
8784	236	0.002	 			
8785	236	0.002	 			
8786	236	<0.002	 		æ ==	
8787	236	<0.002	 			
8788	236	<0.002	 /	^ 		
8789	236	<0.002	 -4 1	D		
8790	236	<0.002	 - ++DX	17	,	

212 Brooksbank Ave. North Vancouver, B.C.

Canada

V7J 2C1 (604) 984-0221

Phone: Telex:

043-52597

Analytical Chemists

Geochemists • Registered Assayers

CERTIFICATE OF ASSAY

TO : MONO GOLD MINES INC.

C/O BEAVON CONSULTING LTD.

8720 MILLMORE RD.

RICHMOND, B.C.

V7C 1S9

CERT. #

: A8516969-002-A

INVOICE # : 18516969

DATE 4-0CT-85

P.D. # : NONE

MADOC

Sample	Prep	Au oz/T			
description	code	RUSH FA			
8791	236	0.006	 	 	
8792	236	<0.002	 	 	
8793	236	<0.002	 	 	
8794	236	0.380	 	 	

212 Brooksbank Ave. North Vancouver, B.C. Canada V7J 2C1

Phone:

(604) 984-0221

Telex:

043-52597

Analytical Chemists •

Geochemists • Registered Assayers

CERTIFICATE OF ASSAY

TO : MONO GOLD MINES INC.

C/O BEAVON CONSULTING LTD.

8720 MILLMORE RD.

RICHMOND, B.C.

V7C 1S9

CERT. # : A8516960-001-A

INVOICE # 18516960 DATE 4-OCT-85

P.O. # : NONE

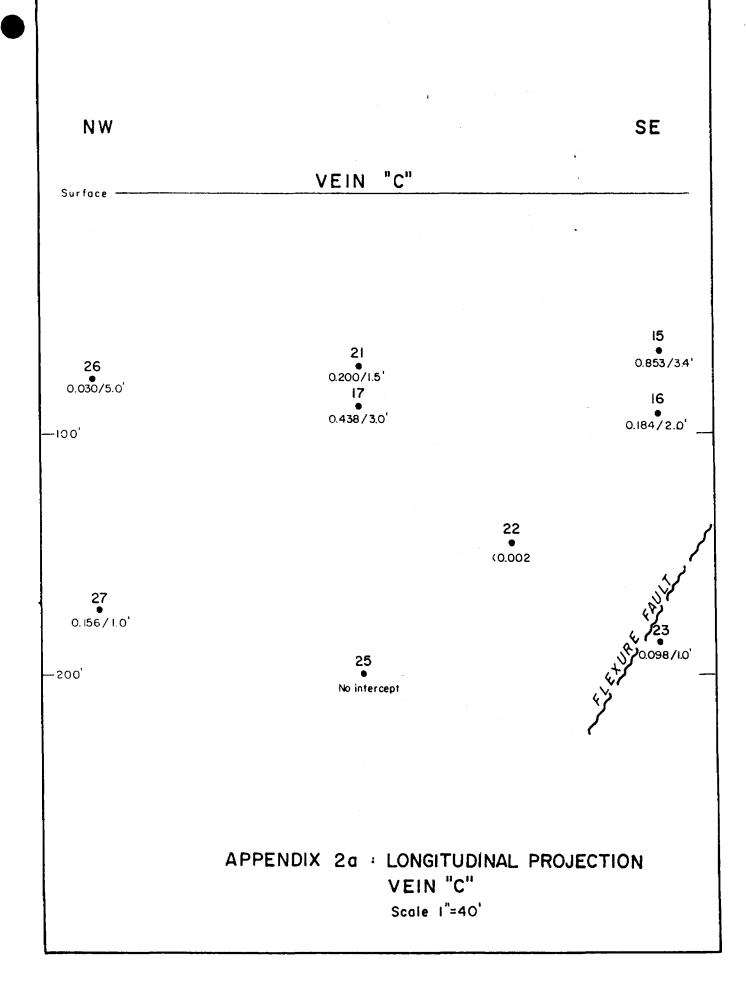
Sample	Prep	Au FA	Weight	Au FA		
description	code	oz/T	grams	mg	 	
8662 F A	207	0.044	362.6		 	
8662 F B-100	214	0.440	160.0		 	
8662 F +100	214		2.3	0.503	 	
8662 F A+B TOTAL	214	0.192			 	

Note:

8662 A+B F TOTAL is calculation of weighted average of 8662 F-A and 8662 F-B

Preliminary Drill Indicated Tonnage/Grade Calculation 1) Average Grade of Vein Structures

Vein C	
Hole #	Diluted Assay /5.0'tw
15	0.512
16 17	0.058 (diamond saw losses?)
21	0.377 0.069
22	0.002
23	0 011
25	0.008
26	0.030
27	0.029
	$1.096 \text{ A}_{V} = 0.121 \text{ oz./ton cut & uncut}$
Vein D	
6	0.108
15	0.029 (diamond saw losses?)
16	1.000 (cut grade, 2.285 oz./ton uncut)
26	0.031
28	0.101
34	0.000
	1.269 Av = 0.211 cut
	2.554 Av = 0.425 uncut
Vein E	
3	0.330
9	0.799
33	0.012
34	0.013
	1.154 Av = 0.288 oz./ton cut and uncut
Vein Z	
10	0.638
11	1.000 (cut grade, 3.999 oz./ton uncut)*
14	0.297
24	0.056
	1.991 Av = 0.497 oz./ton cut
	4.981 Av = 1.245 oz./ton uncut


^{*}Assay reject value of 12.3 oz./ton utilized instead of 29.23 oz./ton of original pulp.

2) Calculation of preliminary drill-indicated Tonnage

		Strike-length x (ft)	Dip Length	x Width (÷12)	S. Tons
Vein	С	300	300	5	37500
Vein	D	300	300	5	37500
Vein	E	200	60	5	5000
Vein	Z	200	225	5	18750
			Total sh	nort tons =	98750

3) Average preliminary drill-indicated grades

	S Tons	Oz./ton Au.
Vein C D E Z	37500 37500 5000 18000	@ 0.121 @ 0.211 (0.425 uncut) @ 0.288 @ 0.497 (1.247 uncut)
	tons 98,75	1 = 0.449 oz./ton uncut
	Average of cut and uncut gr =	0.340 oz./ton

NWSE VEIN "D" Surface 1.135 /5.5 -100 26 0.388/1.5 15 0.073/2.0 28 • 0.338/1.5 -200' 1.434/3.0 0.731/1.0¹ 0.304/1.0¹ -300'

APPENDIX 2b : LONGITUDINAL PROJECTION VEIN "D"

Scale |"= 40"

NW

SE

VEIN "E"

Surface

33 • 0.014 / 1.0' 34 • 0.068 / 1.0'

2.139/3.0°

4.104/1.0

-100'

APPENDIX 2c : LONGITUDINAL PROJECTION VEIN "E"

Scale 1" = 40'

NW

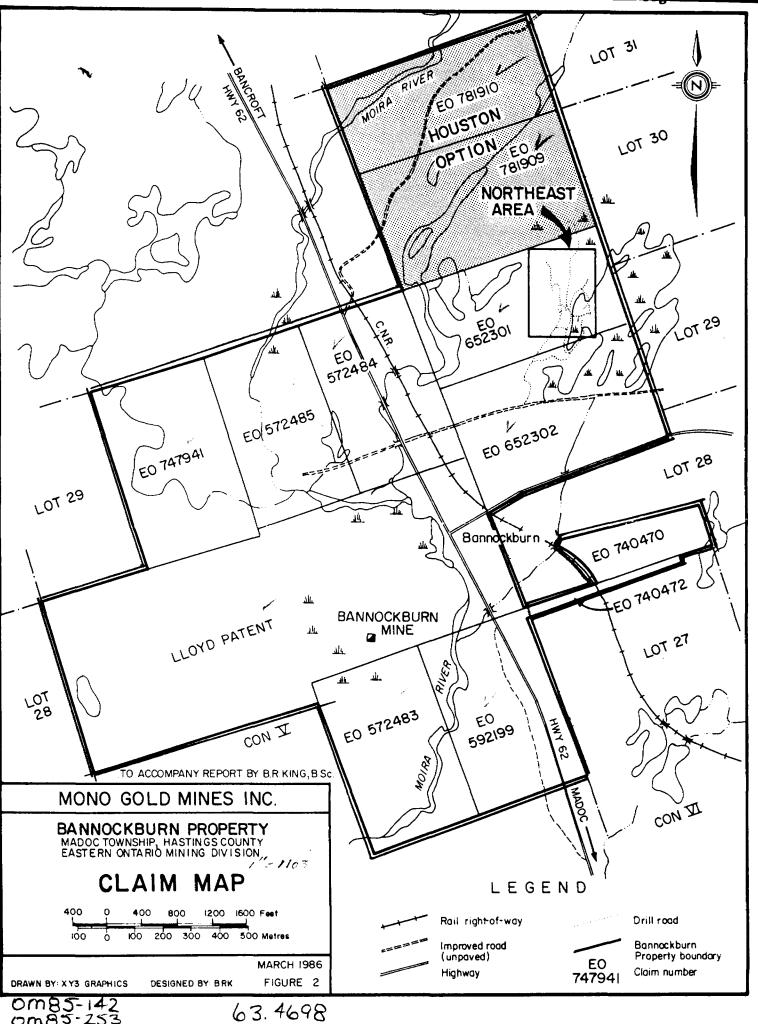
SE

VEIN "Z"

JRE FRIITS

Surface

10 1.500/3.0 [] 29.3/1.3 14 • 1.139 / 1.8


-100

24 0.203/2.0

– **2**00'

APPENDIX 2d: LONGITUDINAL PROJECTION VEIN "Z"

Scale | "= 40"

0M85-142 0m85-253

3 of 7

63.4698

REPORT ON PHASE IV EXPLORATION: GEOCHMICAL SURVEY OF THE BANNOCKBURN PROPERTY, MADOC TOWNSHIP, ONTARIO

030

FOR

MONO GOLD MINES INC.

BEAVON CONSULTING LIMITED

SUMMARY

The report describes the first soil geochemical survey to have been done on Bannockburn gold property of Mono Gold Mines Inc., in Madoc Township, Ontario. Over 3,000 -80 mesh samples were analysed for bismuth, with anomalous samples rerun for tellurium and/or gold.

Many bismuth anomalies were discovered in 1ot 28, Conc. V in thermally metamorphosed sedimentary rocks, and some of these have been recommended for diamond drilling.

The most significant anomaly found to date is on Claim EO 781909 in the west half of lot 30, Conc. VI and is underlain by metavolcanic rocks. It is recommended for Phase V diamond drilling as soon as ground conditions are favourable.

TABLE O

	PAGE NO
Summary	(i)
Introduction	1
Mineral Title Ownership	2
Table 1 Mineral Title Ownership	2a
Location and Access	2
Previous Work	3
Physiography and Vegetation	4
Geological Setting and Mineralogy	5
Linecutting	5
Soil Geochemical Survey	6
Table 2 Background and Anomalous Concentrations	7
Table 3 Samples Remaining for Au Analysis	9
Conclusions and Recommendations	10
References	12

Appendices

- 1. Certificate of Qualifications
- 2. Analytical Results
- 3. Mineralogical Description of Auriferous Quartz
- 4. Analyses of Rock Samples from Previous Programs

Illustrations

- Fig. 1 Location Map
- Fig. 2 Property Map
- Fig. 3 Property Geology (compilation)
- Fig. 4 Index to Geochemical Maps in Figs. 5-8

TABLE OF CONTENTS

Illustrations - Cont'd

- Fig. 5 Geochemical Map, Lots 28 & 29 Conc. V, & W1 Lot 29 Conc. VI
 - (a) sample location map
 - (b) bismuth in soils
- Fig. 6 Geochemical Map W_2^1 Lot 30 Conc. VI Claims EO 781909 & EO 781910
 - (a) sample location map
 - (b) bismuth in soils
 - (c) silver in soils
- Fig. 7 Geochemical Map E_2^1 Lot 27 Conc. V, W_4^1 of Lot 28 Conc. VI

(follows appendix 4)

- (a) sample location map
- (b) bismuth in soils
- Fig. 8 Geochemical Map of Detail Grid
 Claim EO 652301, Wa Lot 29 Conc. VI
 - (a) sample location map
 - (b) bismuth in soils
 - (c) tellurium in soils

/ con 11 CON 1 EO 781910 Lo1 30 EO 781909 EO 652301 Lot 29 EO 57 2484 EO 652302 EO 572485 EO 747941 Lo1 29 EO 740470 BANNOCKBURN EO 740472 LLOYD SHAFT OF OLD PRODUCER Lo1 28 EO 592199 EO 572483 / con 11 Lo1 27 MONO GOLD MINES INC. con 11/con 1 BANNOCKBURN PROPERTY MADOC TOWNSHIP, HASTINGS COUNTY EASTERN ONTARIO M.D. CLAIM MAP 2500 FEET SOO METRES BEAVON CONSULTING LIMITED OCT 1985 SCALE + 10000 DRAWN BY RY BEAVON FIGURE Nº 2

Introduction

The Phase IV Exploration consisted of the first geochemical soil survey of the entire Bannockburn Property, as recommended by Beavon Consulting Limited in October, 1985. A Phase V contingent drill program was also recommended at that time. Because of the late-season timing of the recommendation some of the preparatory linecutting and soil sampling was initiated between September 1 and September 26. On the latter date the Phase IV program was suspended until October 26 to await approval for a Flow-Through-Share' issue for Canadian Exploration Expense. The C.E.E. regulations (at that time) stipulated that the work must be completed before the end of calendar 1985, and consequently the Phase V contingent Diamond Drilling had to be accelerated while Phase VI was delayed pending approval by the authorities involved.

Although the sampling was completed on December 8, some check results were not available until early January, and some remained to be completed when the writer's involvement with the property was terminated.

Because of impending deadlines on assessment work, geochemical reports have already been completed on claims EO 781909, EO 781910, EO 747941, EO 57483, EO 592199, EO 740470 and EO 740472. In the interest of completeness the copies of the maps accompanying the assessment reports are also included with this report (See Fig. 4).

Mineral Title Ownership

Since the previous report on the Bannockburn Northeast Area

Prospect (dated October 18, 1985) the total mineral acres controlled by

Mono has increased to at least 628 acres, as indicated in the attached

Property Schedule (Table 1). To date Mono has no surface rights in Madoc

Township.

Mono Gold Mines Inc. is in the process of bringing four claims indicated on Table 1 to patent. Following the acceptance of assessment work currently being reported, other claims may qualify for patent applications.

Location and Access

The property is located in the northern part of Madoc Township in Hastings County in Eastern Ontario. The claims surround the Village of Bannockburn, which is a small unincorporated settlement located on Provincial Highway No. 62, approximately 10 miles north of the Town of Madoc, and 25 miles north of Belleville on Lake Ontario. Highway No. 7 connects Madoc with the major centres of Peterborough to the west-southwest and with the City of Ottawa to the east. The distance from Madoc to Ottawa is approximately 130 miles.

Table 1 Mineral Titles controlled by Mono Gold Mines Inc. in Madoc Township, Ontario.

Claim	Conc.	<u>Lot</u>	Approx. Acres	Recorded	Expiry
Lloyd Patent	V	28	140	-	-
EO 572483	V	WłofEż 27	50	May 14/80	1986+
EO 572484*	V	E4 29	50	May 14/80	1986
EO 572485*	V	WłofE½ 29	50	May 14/80	1986
ЕО 592199	V	E 1 27	50	Sept 20/82	1989+
EO 747941	V	EłofW½ 29	50	.´ May 16/85	1986+
EO 652301*	VI	NW 1 29	50	Feb 11/83	1988
EO 652302*	VI	SW. ₹ 29	50	Feb 11/83	1988
EO 781909	VI	SW 1/2 30	50	Feb 28/85	1986
EO 781910	VI	NW	50	Feb 28/85	1986+
EO 740470	VI	Part SW½ 28	30	July 8/85	1986+
EO 740472	VI	Part NW 27	8	July 8/85	1986+

^{*} Permission granted to survey these four claims in preparation for Patent application.

⁺ Assessment reports completed/in preparation.

Location and Access - Cont'd

Access to the property is by paved Highway No. 62 to the village of Bannockburn itself. The portion of the property lying west of Highway No. 62 is reached by a private company road on to Lot 28 which crosses the Moira River by means of a wooden bridge. Bush trails and roads which were upgraded during the 1981 exploration program provide access by truck or on foot to the area of the old Bannockburn gold mine and further west. The concession road between Concessions IV and V provides limited access to the western part of the property and could easily be upgraded to provide full access both to the western part of the property and the old mine area.

The Northeast Area of the property, lying east of Highway No. 62, can be reached by means of the abandoned railroad grade at the old Bannockburn Station located just north of the village of Bannockburn. The area of interest on Claim EO 652301 was opened to access by means of an older railroad grade running east from the Bannockburn Station site. This grade was cleared for 700 feet to the east and 1700 feet of bulldozer trail was constructed in November, 1984 to provide access for four-wheel drive vehicles.

Previous Work

The history of the Bannockburn property has been detailed in a report by Sawyer Consultants Inc. dated February 14, 1983. Exploration since 1981 has been outlined in a recent report by Beavon Consulting Limited, entitled Interim Report on Phase V Diamond Drilling dated January 29, 1986.

Since Mono Gold Mines Inc. commenced work in 1981, VLF-EM, magnetic, and geological surveys have been completed over much of the property. This work also included stripping, trenching, sampling and assaying. An early diamond drill program in 1981 failed to locate interesting gold values, but the 1984 program discovered gold in quartz vein outcrops and trenches on claim EO 652301, almost one mile to the northeast of the old mine structure. Diamond drilling in 1985 has confirmed the subsurface continuation of gold mineralization in what has been designated the Northeast Area prospect, where over 12,000 ft. of diamond drilling was completed during 1985.

No previous geochemical surveys have been done on the Bannockburn property.

Physiography and Vegetation

The property is low-lying to rolling with moderate outcrop exposure and numerous small swamps. Most of this area has thin overburden with well developed podzol soils in the well drained areas and organic soils in the poorly drained areas. The latter were not sampled.

The vegetation consists of mixed hardwoods and softwoods, including poplar, spruce, fir, hemlock, maple, oak, white ash and ironwood. Open parkland prevails in some areas of where attempts at farming have long since been abandoned.

Geological Setting and Mineralogy

The geological setting of the Bannockburn Property is known from government reports and surveys by Sawyer Consultants Inc., and Beavon Consulting Limited (see References). Fig. 3 shows the property geology based on a compilation from the referred sources. It shows that there are two known gold occurrences on the Bannockburn property, and that they occur in two different geological settings. The old Bannockburn gold mine is located near the margin of a syenite intrusion, whereas the Northeast Area Prospect occurs in greenschist facies metavolcanic and metasedimentary rocks well outside the metamorphic aureole of the syenite. The former consists of ductile shear zones with associated quartz-veins, and the latter consists of tensional quartz veins in carbonated, schistose greenstone flows.

The mineralogy of the gold bearing quartz veins is given in Appendix 3 because it has a bearing on the elements chosen for the geochemical survey. The association of gold bismuth and tellurium had been suspected from drill results and was confirmed by Lakefield Research petrographic description (Appendix 3).

Linecutting

A total of 35 line miles were cut and refurbished in five separate and to some extent overlapping grids (see Figs. 4-8). The main or West Grid was installed in 1981, extended in 1984, and additional lines added in 1985. With the exception of a metric drill-control grid (Fig. 8) in the Northeast Area prospect, all the lines were planned at 200 ft. spacings with stations at 100 ft. intervals. To the south and east of the Moira River,

2186 × 40 mm

the West Grid has a baseline oriented at astronomic azimuth 345°, whereas to the north of the river the baseline is oriented 348°.

A second grid on claims EO 781909 and EO 781910 is controlled by a baseline oriented 340° astronomic. It is tied to the third, or metric drilling grid of the Northeast Area Prospect by line 2+10 m N. of the latter grid. The baseline of the drilling grid is oriented 002° astronomic with lines at 30 m intervals and stations every 30 m.

A fourth baseline runs alongside Highway 62 immediately south of Bannockburn village on claim EO 592199, and the fifth baseline is on claim EO 472420 with a baseline oriented 070° astronomic.

Soil Geochemical Survey

A total of 3,285 samples were collected between September 3rd and 24th, and between October 26th to December 8th. Samples were taken at 50 ft. sample intervals on lines spaced at 200 ft., and at an average depth of 16 inches using a soil auger. Plastic sample bags were used to prevent loss of watery solutions from the sample.

All samples were submitted for geochemical analysis to Chemex Laboratories Ltd., for preparation in Mississauga, Ontario and analysis in North Vancouver. Sample preparation included drying, sieving to -80 mesh, and digestion of 2 gm sample in HCl and KClO₃. A TOPO-MIBK extraction was used and the sample was analysed for bismuth using Atomic Absorption and background correction: the detection limit is 0.1 ppm Bi. Silver was determined to 0.1 ppm sensitivity by nitric acid and aqua-regia digestion,

followed by atomic absorption with background correction. Tellurium was determined by MIBK extraction following HBr with Br₂ digestion, and subsequently subjected to atomic absorption analysis with a detection limit of 0.05 ppm. Gold was determined to a 5 ppb detection limit by fire assay and atomic absorption analysis. All samples were analysed for bismuth, most samples on claims EO 781909 and EO 781910 were analysed for silver. Initially, samples greater than 1 ppm Bi were checked for Te, which later was substituted by Au in +80 and -80 mesh fractions.

The results for Bi and Ag have been treated by standard statistical techniques to determine background and anomalous concentration levels, corresponding respectively with the mean + 1 standard deviation, and mean + 2 standard deviations of the sample population, as follows:

Table 2 Background and Anomalous Concentrations

	Background	Anomaly		
Bismuth	1.2 ppm	2.0 ppm		
Silver	1.0 ppm	1.7 ppm		

Inspection of Figs. 5b-8b shows that the most widespread bismuth anomalies occur in the north-central part of lot 28 Conc. V, about 600 ft. northwest of the old Bannockburn mine. They are located to the west of the West Grid on the south side of the Moira River: between Lines 12+00N and 19+00N, from 3+00W to 6+00W. This constitutes the core of the anomalous values, that spread southwestward as far as 2+00S 150+00W and perhaps as far north as line 32N 4+50E in Lot 29. The anomalies vary in intensity from 3 to

25 times background. One of the 25 x background samples yielded 140 ppb Au at 18+00N 7+50W. Stripping on line 127 4+50W revealed blue quartz veinlets similar to those in the Northeast Area Prospect.

Additional bismuth anomalies in Lot 28 Conc. V include 12+00N 0+50E on line 12N, and at 6N 0+50E, which appear to be on strike with the old mine-structure. Another anomaly on 6N 11+50E is probably due to contamination from an old mill-site. However, few bismuth anomalies could be related to the old mine structure itself, nor were any gold anomalies found along the baseline that follows that structure.

Turning to Lot 29 Conc. V, Claim EO 572484 contains an 8 x background bismuth anomaly at line 32N 4+50E that returned 140 ppb Au. A similar 8 x background anomaly at 36N 12E failed to register more than 50 ppb Au. Claim EO 652301, on lot 29 Conc VI contains the Northeast Prospect area, but only weak bismuth anomalies were found on line 39N at 26+50E to 28+50E. These are aside from similar anomalies located on the detail grid (Fig. 8b), where strong gold anomaly was located at L39N 29+50E down-slope from an old prospect pit (1300 ppb Au in +80 mesh soil fraction).

The detail grid shows occasional spot highs of bismuth and tellurium (Fig. 8a, b) but few gold checks have been made. The original Phase I rock samples were analysed for Bi and Te and were found to be anomalous (Appendix 4).

Several bismuth anomalies occur on claim EO 781909, and they include a significant 10 x background (spot) high supported by 0.75 ppm tellurium and 800 ppb gold (Fig. 6b). This latter sample is located at L2+00N Stn. 9+00E

and is supported by 450 ppb gold at 9+50W.

The remaining bismuth anomalies have yet to be checked by gold analysis (Table 3).

Table 3 Soil Samples Remaining for Au Analysis

Invoice #	Sample #
8518370	1528-1531
8518370	1696-1700
8518408	1746-1754
8518408	1836-1867
8518761	4611-4622

One of these is located at L12+00N near the baseline, in an area of low silver anomalies located 'on-strike' from the auriferous veins of the Northeast Prospect Area. This anomaly is close to the volcanic-sedimentary contact on the opposite side of the antiform that exposes metavolcanic rocks of the Tudor Volcanic Group.

Other bismuth anomalies are located at 6+00N 9+00W with 3 \times and 5 \times background anomalies nearby.

Claim EO 781910, in Lot 30 Conc. VI contains two weak bismuth anomalies that have yet to be checked for gold content. Locations are L20 + 00N 11+00E and 24N on tie line 16+25E.

The highest silver anomaly, which lies outside the southeast corner of claim EO 781909, can be explained by a showing of heavy galena in a quartz vein. Other silver anomalies are extremely weak and of no further interest.

The silver background is higher in the area of the detail grid, and this is due to the presence of the metasediments that overly the Tudor metavolcanic rocks. These metasediments commonly carry 10-15% sulphides (mainly pyrrhotite) containing low lead-zinc and silver values.

Tellurium analyses were used initially to check bismuth results, but were too far below the detection limit to be useful in selection of drill sites.

Conclusions & Recommendations

The results of Phase IV exploration, which consisted of a soil geochemical survey of the entire Bannockburn property, show that the ground conditions are favorable for this type of survey. A narrower sample interval would be more suitable for defining contourable anomalies, due partly to the limited width of the target veins, and partly to the lack of mobility of bismuth ,(this latter being advantageous in spotting drill sites).

Many soil anomalies in bismuth occur in Lot 28 Conc. V, where there are significant anomalous sites near the northern border of the Gawley Creek Syenite. It was recommended that these anomalies be tested by drilling on lines 12N and 16N, where limited stripping revealed blue quartz-veinlets and some heavy sulphide mineralization.

In lot 29 Conc. V (Claim EO 572484) a spot-high bismuth anomaly returned low gold values over metasedimentary rocks. (Location 32N 4+50E). This anomaly is considered to be a second priority diamond-drill target.

Other second priority targets may be present in the west half of · lot 30 Conc. VI, but some of these require checking for gold content prior to a drill decision. Most of these anomalies are located in metasedimentary rocks close to the metavolcanic contact, a favorable area when compared with the Northeast Area Prospect.

The first priority drill target from the results to date is on line 2N 9+00E on claim EO 781909 in the west half of lot 30 Conc. VI, and is located well within the metavolcanic rocks of the Tudor Volcanic Group.

Submitted by:

R.V. Beavon, B.Sc., Ph.D. Beavon Consulting Limited

REFERENCES

1. Reports by Sawyer Consultants Inc. for Mono Gold Mines dated:

Feb. 14, 1983 by J.B.P. Sawyer, P.Eng.

Oct. 10, 1984 by G.D. House, FGAC

Dec. 20, 1984 by G.D. House, FGAC

Mar. 14, 1985 by G.D. House, FGAC

Apr. 12, 1985 by G.D. House, FGAC

May 31, 1985 by R.V. Beavon, FGAC

Aug. 30, 1985 by R.V. Beavon, FGAC

2. Reports by Beavon Consulting Limited for Mono Gold Mines Inc.

Oct. 18, 1985 by R.V. Beavon, FGAC

Dec. 4, 1985 by K. Kryklywy, P.Eng.

Dec. 23, 1985 by RV. Beavon, FGAC.

Dec. 31, by K Kryklywy, P.Eng.

Dec. 31, by K. Kryklywy, P.Eng.

Jan. 29, 1986, by R.V. Beavon FGAC.

Additional references on regional work may be obtained from the above .

" analytical soil data may be found in the above reports
authored by K Kryklywy.

APPENDIX 1

CERTIFICATE OF QUALIFICATION

I, Roy V. Beavon, of Richmond, British Columbia, DO HEREBY CERTIFY THAT:

- 1. I am a Consulting Geologist, a graduate of the University College of Wales, Aberystwyth, with first class B.Sc. (1957) and Ph.D. (1960) in Geology.
- 2. That I am a member of the Canadian Institute of Mining and Metallurgy, a Fellow of the Geological Association of Canada, a Fellow of the Geological Society of London, a member of the Society of Economic Geologists, and the Association of Prospectors and Developers.
- 3. That I have practised my profession continuously as a Geologist since 1960 in the U.K., the U.S.A., and Canada, and from 1969 to the present this work was in a supervisory capacity.
- 4. That the information, opinions, and recommendations in this report are based on work carried out by me between May and December, 1985, on work completed by Sawyer Consultants Inc. prior to that date, and on work completed during 1966-69 for Syngenore Explorations Ltd.
- 5. That I have no direct or indirect interest in any of the subject properties of this report, nor in the shares of securities of Mono Gold Mines Inc., or associated companies, nor do I expect to receive such interest.

R.V. Beavon, B.Sc., Ph.D.

Dated at Vancouver, British Columbia this 5th day of February 1986.

212 Brooksbank Ave North Vancouver, B

V7J 20 (604) 984-022

Phone: Telex:

043-5259

Analytical Chemists

Geochemists

Registered Assayers

CERTIFICATE OF ANALYSIS

TO : MONE GOLD MINES INC.

CZD BEAVON CONSULTING ETD.

3720 MILLMORE RD.

RICHMUND. B.C.

V7C 159

** CERT. #

: A8515186-001

INVOICE # : 18515186 DATE

: 20-AUG-85

: NONE P.O. *

MONU N.E.

ATTN:	RUY	REAVON
-------	-----	--------

ATTN: RUY R	EAVON					•
Sample	Prep	υİ				
description	code	mqo				
01	214	6.2				
92	214	0.1				
03	214	0.1				
()4	214	0.1				 '
05	214	0.1				
96	214	0 • 1				
07	214	0.1				
იკ	214	0.1				
09	214	0 • 1			, - -	
10	214	0.1			·	
11	214	0.1				
12	214	0.1				
13	214	0 • 1				
1 4	214	0.1				
15	214	0.1				
16	214	0.1				
1 7	214	0.1			·	
l a	214	0.1				
19	214	0 • 1				
20	214	0.1				
21	214	0 • 1				
2 8	214	0.1				 -
23	214	0 • 1			~~	
24	214	0.1				
25	214	0 • 1				
26	214	0.1				
27	214	0 • 1				
? ઇ	214	0.1				
24	۷14	0.41	_ -			
30	214	0.1				
31	214	0 • 1				
32	214	0.1		, 		
33	214	0 • 1				
34	214	0.5				
35	214	1.5				
3ο	214	0.2	+ -			
37	214	0 • 1				
3ぉ	214	0.1				
39	214	0 • 1				
40	214	0.1				

Hart Bichler Certified by ••

212 Brooksbank Ave North Vancouver, B.(V7J 2C.

Canada

(604) 984-022

Phone:

Telex: 043-52597

Analytical Chemists

Geochemists

Registered Assavers

CERTIFICATE OF ANALYSIS

TO : MUNU GOLD MINES INC.

C/O BEAVON CONSULTING LID.

8720 MILLMORE RD. RICHMOND. 3.C.

V7C 159

** ** CERT. # : As515186-002

> INVUICE # : 18515186 DATE : 20-AUG-85

P.O. # : NUNE

MONO N.E.

ATTN: RUY BE	AVON					•
Sample	Prep	ð i				
description	code	ppm				
41	214	0.1	 			_
42	214	0.1	 			_
43	214	0.1	 			_
44	214	0.1	 			-
45	214	0.1	 			-
46	214	0.3	 			-
47	214	1.1	 			-
48	214	0.4	 			-
49	214	0.2	 			-
50	214	0.2	 			-
51	214	0.1	 			_
52	214	0.1	 		-	-
53	214	0.1	 			-
54	214	0.1	 			-
55	214	0.1	 			-
56	214	0.1	 			-
57	214	0.1	 	·		-
5 ຮ	214	0.1	 			•
59	214	0.8	 			
60	214	0.2	 			-
61	∠14	0.1	 - -			-
62	214	0.1	 ~-			
63	214	0.1	 			
64	214	0.1	 			
65	214	0.1	 			-
56	214	3.5	 			-
67	214	0.2	 			-
68	214	0.1	 -			
69	214	0.1	 			
70	214	0 • 1	 			-
71	214	0.1	 			-
72	214	0.2	 -			-
73	214	0.1	 			
74	214	0.1	 			
75	214	0.1	 	==		
76	214	1.5	 			
77	214	0.9	 			-
76	214	0.1	 			-
79	214	0.1	 			

VOI rev. 4/8

How Bichler Certified by •

212 Brooksbank Ave. North Vancouver, B.C. Canada V7J 2C1

Telephone: (604) 984-0221 Telex: 043-52597

Analytical Chemists - Geochemists - Registered Assayers

CERTIFICATE OF ANALYSIS

TO : MUNO GOLD MINES INC.

C/O BEAVON CONSULTING LTD.

8720 MILLMORE RD. RICHMOND. B.C.

V7C 1S9

**

: A8514058-001-CERT. #

INVOICE # : 18514058 : 24-JUL-85 DATE

P.O. # : NONE

MONO N.E.

		BRACEBRIDGE.	UNIARIU	<u> </u>			
Sample	Prep	Αg					
description	code	maq					
01	201	2.3					-
02	201	0.9					-
03	201	0.3			. ==	-	-
04	201	0.5					-
05	201	0 • 4					
06	201	0.5					-
07	201	0.3					• -
08	201	0.7				~-	-
09	201	0.3					_
10	201	0.4			· - -		-
11	201	0.4			***		-
12	201	0.1					-
13	201	0.3					-
14	201	0.3					_
15	201	0 • 2					_
16	201	0.6				~-	_
17	201	2.1			·		
18	201	0.5					-
19	201	0.4					-
20	201	0.7					-
21	201	0.5					-
2.2	201	0.2					-
23	201	0.3				~-	-
24	201	0.4					-
25	201	0.4		~ -			-
26	201	0.4					-
27	201	0.4					-
28	201	0.4					-
29	201	0.5					-
30	201	0.6					-
31	201	1.8			 .		-
32	201	1.0					-
33	201	0.5					
34	201	0.2					
35	201	0.3					-
36	201	0.2			***		-
37	201	0.4					-
38	201	0.3					-
39	201	0.3			-		-
40	201	0.4					_

Certified by

Registered Assayers

212 Brooksbank Ave North Vancouver, B.C. Canada V7J 2C1

Telephone: (604) 984-0221 Telex: 043-52597

CERTIFICATE OF ANALYSIS

Geochemists

TO : MONO GOLD MINES INC.

C/O BEAVON CONSULTING LTD.

Analytical Chemists

8720 MILLMORE RD. RICHMOND, 8.C.

V7C 1S9

** CERT. # : A8514058-002-

INVOICE # : 18514058 DATE : 24-JUL-85

P.O. # : NONE

MONO N.E.

Sample	Prep	Ag	<u> </u>			
description	code	ppm				
41	201	0.3				 -
42	201	0.2				 -
43	201	0.8				 -
44	201	0.5				 -
45	201	0.8				
46	201	0.6				 -
47	201	4.2				 -
48	201	0.6				 -
49	201	0.7				 -
50	201	0.5				 -
51	201	0.4				 -
52	201	0.4				 -
53	201	0.3				 -
54	201	0 • 4				 -
55	201	0.9				 -
56	201	0.4				 -
57	201	0.4			·	 -
58	201	0.5				 -
59	201	0.8				 -
60	201	2 • 4				 -
61	201	0.5				 -
62	201	0.5				 -
63	201	0.3				 -
64	201	0.3				 -
65	201	0.4				 -
66	201	0.3				 -
67	201	0.6				 -
68	201	0 • 2	= =			 -
69	201	0.5				 -
70	201	0 • 4		'		 -
71	201	0.5				 -
72	201	0.6				
73	201	0.5				 . •
74	201	0.5				 •
75	201	0.4				
76	201	0.9				
77	201	0 - 4				
78	201	0.5				

Certified by How Buchler

212 Brooksbank Ave North Vancouver, B.C.

V7J 2C1

Telephone: (604) 984-0221 Telex: 043-52597

Analytical Chemists .

Geochemists

Registered Assayers

CERTIFICATE OF ANALYSIS

TO : MONO GOLD MINES INC.

C/O BEAVON CONSULTING LTD.

8720 MILLMORE RD. RICHMOND, B.C.

V7C 1S9

*** *** CERT. # : A8516216-001-4

> INVOICE # : 18516216 : 17-SEP-85

P.O. # : NONE

Sample	Prep	Вi					
description	code	maa					
049	201	0.3					
050	201	0 • 2					
051	201	0.2					
052	201	0.3					
053	201	0.2					
054	201	0 • 1					
055	201	0 • 2					
056	201	0.1					
057	201	0.1	-				
059	201	0.1			<u>-</u> -		
059	201	0.1			gay edin		
060	201	0.1					
061	201	0.1					
062	201	0.1				***	_
063	201	0.1					_
064	201	0.2					_
065	201	0.1					
066	201	0.1					
067	201	0 • 1					
068	201	0.1					_
069	201	0.1					-
070	201	0.1					_
071	201	8 • 5					-
072	201	0.3					
073	201	0 • 2					
074	201	0.3					_
075	201	0.9					_
076	201	0.2					-
077	201	0 • 2					-
078	201	0.4				-	_
079	201	0.1					-
080	201	0.2		-			-
081	201	0.2					
082	201	0.8			-		-
083	201	0.2					
984	201	0.2					-
085	201	0.2					-
086	201	0.3					-

212 Brooksbank Ave North Vancouver, B.C. Canada V7J 2C

Telephone: (604) 984-0221

043-52597

Analytical Chemists

Geochemists Registered Assayers

CERTIFICATE OF ANALYSIS

TO : MONO GOLD MINES INC.

C/O BEAVON CONSULTING LTD.

8720 MILLMORE RD. RICHMUND. B.C.

V7C 1S9

** CERT. # : A8516216-002-

INVOICE # : 18516216 DATE : 17-SEP-85

Telex:

P.O. # : NONE

Sample	prep	Βi				
description	code	ppm				
089	201	0.1				
090	201	0.1				 -
091	201	0.1				 _
092	201	0.1				
093	201	0.1				 _
094	201	0.1				 _
095	201	0.1				 -
096	201	0.1				 -
097	201	0.1			- -	 -
098	201	0.1			·	 -
099	201	0 • 1	- -			 -
100	201	0.2				 -
101	201	0.1				 -
102	201	0.2				 -
103	201	0.5				 -
104	201	0.3				 -
105	201	0.5			·	
106	201	0.2	- -	Ann 440		 -
107	201	0.2				 -
108	201	0.4		'		 _
109	201	0.1				 -
110	201	1.1				 -
111	201	0.3				 -
112	201	0.6				 -
113	201	0.8				 -
114	201	0.3				 -
115	201	0.3				 -
116	201	0.1				 -
117	201	0.1				
118	201	0.3				 -
119	201	0.1				 -
120	201	0.1				 _
121	201	0.3				 • -
12?	201	0.1				 -
123	201	0.1		~=		 -
124	201	0.1				 -
125	201	0.2				 -
126	201	0.2				 -

212 Brooksbank Av ϵ North Vancouver, B.C. Canada V7J 2C1

Telephone: (604) 984-0221 Telex: 043-5259

Analytical Chemists

Geochemists

Registered Assayers

CERTIFICATE OF ANALYSIS

TO : MONO GOLD MINES INC.

CID BEAVON CONSULTING LTD.

8720 MILLMORE RD. RICHMOND. B.C.

V7C 159

** CERT. # : A8516216-003-

INVOICE #: 18516216 DATE: 17-SEP-85

P.O. # : NONE

Sample	Prep	Вí				
description	code	<u>mqq</u>				
129	201	0.2	 			
130	201	0 • 2	 			
131	201	0.2	 			
132	201	0 • 1	 			
133	201	0.1	 			
134	201	0 • 2	 			
135	201	0.2	 			
136	201	0.2	 			
137	201	0.2	 			
138	201	0.1	 	<u></u>		
139	201	0.4	 			
140	201	0.6	 			
141	201	0.8	 			
142	201	0.7	 			
143	201	0.2	 			
144	201	0.2	 			
145	201	0.2	 	·		
146	201	0 • 1	 			
147	201	0.1	 			
148	201	0 • 4	 			
149	201	0.1	 			
150	201	0.1	 		-	
151	201	0.1	 			
289	201	0.1	 			
290	201	0.1	 			
291	201	0.1	 			
292	201	0.5	 			
293	201	0.2	 			
294	201	0.1	 			
295	201	0.1	 			
296	201	0.1	 			
297	201	0.1	 			
298	201	0.1	 			
299	201	0.2	 			
300	201	0.1	 			-
301	201	0.1	 			_
302	201	0.1	 			
303	201	0.1	 			-
304	201	0.1	 			

Certified by How Suchler

212 Brooksbank Ave. North Vancouver, B.C. V7J 2C1

Telephone: (604) 984-0221

Telex: 043-52597

Analytical Chemists Geochemists Registered Assayers

CERTIFICATE OF ANALYSIS

TO : MONO GOLD MINES INC.

C/O BEAVON CONSULTING LTD.

201

0.2

8720 MILLMORE RD. RICHMUND, B.C.

V7C 1S9

** CERT. # : A8516216-004-7

INVUICE # : 18516216 DATE : 17-SEP-85

: NONE P.O. #

Sample	CONSULTIN Prep	Вi					
description	code	ppm					
306	201	0.1			~-		
307	201	0.2					_
308	201	0.1	- -		-		_
309	201	0.5					_
310	201	0.1					_
311	201	0.1					_
312	201	1.1					_
313	201	0.5					-
314	201	0.8					_
315	201	0.3			<u></u>		_
316	201	0.3					_
317	201	0.3					_
318	201	0.2					_
319	201	0.2					_
320	201	0 • 1					_
321	201	0.2					_
322	201	0.4			·		-
323	201	0.1					-
324	201	0.1					_
325	201	0.1					-
326	201	0 • 2					-
327	201	0.1				,	-
328	201	0 • 1					_
329	201	0.2					-
330	201	0.2					-
331	201	0.1					-
332	201	0.3					-
333	201	0.3					
334	201	0.3					-
335	201	0.3					-
336	201	0.2					
337	201	0 • 2					-
339	201	0.2					
339	201	0.2	·				-
340	201	0.1					-
341	201	0.1					-
342	201	0.2					-
343	201	0 • 2					-

Certified by

212 Brooksbank Ave North Vancouver, B.C. V7J 2C1

Telephone: (604) 984-0221 Telex: 043-52597

Geochemists Registered Assayers

Analytical Chemists

CERTIFICATE OF ANALYSIS

TO : MONO GOLD MINES INC.

C/O BEAVON CONSULTING LTD.

8720 MILLMORE RD. RICHMOND. B.C.

V7C 159

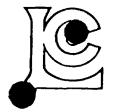
**

: A8516216-005-CERT. #

INVOICE # : 18516216 DATE

: 17-SEP-85

P.D. #


: NONE

00:	BEAVON	CONSUL	TING
	J L. P. 7 U I I		

	CC: SEAVUN	CONZOFITY	16	 		
	Sample	Prep	81			
	description	code	ppm	 		
	346	201	0.2	 		
	347	201	0.3	 		
:	348	201	2.5	 		
İ	349	201	0 • 4	 		
!	350	201	0.3	 		
	351	201	0.1	 - -		
	352	201	0 • 2	 		
	353	201	0.1	 		
,	354	201	0.4	 		
	355	201	0.2	 	ـــــــ	
i	356	201	0.1	 		
	357	201	0 • 2	 		
	358	201	0.1	 		
	359	201	0.1	 		

Certified by

North Vancouver, B C V7J 20

212 Brooksbank Av-

Telephone:(604) 984-022 Telex: 043-5256

Analytical Chemists

Geochemists

Registered Assayers

CERTIFICATE OF ANALYSIS

TO : MUND GOLD MINES INC.

CAD BEAVON CONSULTING LID.

8720 MILLMORF RD. RICHMOND, 8.C.

V7C 159

**

CERT. # : A8516204-001-

INVOICE # : 18516204 DATE : 19-SEP-85

P. O. #

MADUC

DEAULIN COMETING MADINE

	CONSULTING.		ONT.				
Sample	Prep	ช่า					
description	code	maa					
152	201	0.3					
153	201	0.3					
154	201	0.5					
155	201	0.2					
156	201	0.2					
157	201	1.0					
158	201	0.8				-	
159	201	0.7					
160	201	0 • 4					
161	201	0.2			<u> </u>		
162	201	0.2					
163	201	0.5	- -		=-		
164	201	0.2					
165	201	0.4			-	÷ =	
166	201	0.4					
167	201	2.7					
168	201	0.7		,			
169	201	0.1		`			
170	201	0.2					
171	201	0.2	***				
172	201	0.1					
173	201	0.1				-	
174	201	0.2					
175	201	0.3					
176	201	0.2					
177	201	0.2	. ==				
178	201	0.2					
170	201	0.1					
180	201	0.2					
181	201	0.1	_				
182	201	0.1					
183	201	0.2			_		
184	201	0.2		. 			
185	201 201	0 • 1 0 • 1					
186 187	201	0.1					
187 188	201	0.4			- -	-	
189	201	0.4					
190	201	0.2					
191	201	0.4					
171	201	U • **					

Hart Bichler Certified by

212 Brooksbank Av North Vancouver, B.C Canada V7J 2C

Analytical Chemists

Geochemists

Registered Assayers

Telephone:(604) 984-022

Telex: 043-5259

CERTIFICATE OF ANALYSIS

TO : MOND GOLD MINES INC.

C/O BÉAVON CONSULTING LID.

9720 MILLMORE RD. RICHMOND. B.C.

V7C 159

**

CERT. # : A8516204-002

INVOICE # : 18516204 CATE : 19-SEP-85

P.O. #

MADUC

CC: REVAUN	CONSULTING.	MADUC	UNT.
------------	-------------	-------	------

		CONSULTING.		DNT.				
	Sample	Prep	Вi					
	description	code	ppm					
	192	201	0.2					
	360	201	0.1					
	361	201	0.1					
	362	201	0.1		- <i>-</i>			'
	363	201	0.3					1-m -m
	364	201	0.1					
	365	201	0.2					
	366	201	0.3					
	357	201	0.2					
	363	201	0.1	- -		·		
	369	201	0.2					
	370	201	0.2					
	371	201	0.3					
	372	201	0.3					
	373	20i	0.2					
	374	201	0.2					
	37 5	201	0.4			•		
	376	201	0.5					
	377	201	0.3					
	378	201	0.2					
	379	201	0.2					
	380	201	0.1					
	381	201	0.1					
	382	201	0.1					
	383	201	0.1					
	384	201	0.1				- <i>-</i>	
	385	201	0.3					
	386	201	0.1					
	387	201	0.1					
	388	201	0.1					
	389	201	0.2					
	390	201	0.1				-	
	391	201	0.1					
	392	201	0.2					
	393	201	0.1					
	394	201	0.2					
	395	201	0.1					
	396	201	0.2					
_	397	201	0.1					
- (1	398	201	0.1				·	
•								

₩ W Certified by tankler

212 Brooksbank Ave North Vancouver, B.C. V7J20

Telephone: (604) 984-0221

043-5259

Analytical Chemists

Geochemists

Registered Assayers

CERTIFICATE UF ANALYSIS

TO : MUNU GOLD MINES INC.

C/D BEAVON CONSULTING LTD.

8720 MILLMORE RD.

RICHMUND. B.C.

V7C 1S9

**

CERT. # : A8516204-003-

Telex:

INVOICE # : 18516204 DATE : 19-SEP-85

P.D. #

MADOC

- CC: BEAVON CONSULTING, MADDO	IC+ UNI-
--------------------------------	----------

CC: BEAVON	CONSULTING	. DOGAM .	UNT.				
Sample	Prep	Ві					
description	code	maq					
399	201	0.1					
400	201	0.1					
401	201	0.1					 ,
402	201	0.2					
403	201	0.2					
404	201	0.2					
405	201	0 • 2			** ••		
406	201	0.1					
407	201	0.1					
408	201	0.2					
409	201	0.1					
410	201	0 • 1			~-		
_ 411	201	0 • 1					
417	201	0 • 1					
413	201	0.1					
414	201	0 • 2					
415	201	0 • 1					
416	201	0.2					
417	201	0.2					
418	201	0 • 1				. 	
419	201	0.9					
420	201	0.1					
421	201	0.2					
422	201	0.8			-		
423	201	0.4					
424	201	0.1					
425	201	0.5					
426	201	0.3					-
427	201	0.4				** =	
428	201	0.4					
429	201	0.2					
430	201	0.8					
431	201	0.1					-
432	201	0.5					
433	201	0.4	₩ 				~~
434	201	0.8					
435	201	0.5					
436	201	0 • 4					~ =
437	201	0.2					
438	201	0.2					

certified by HartRaichler

212 Brooksbank Ave North Vancouver, B.C Canada V7J 2C1

Telephone:(604) 984-022

Telex: 043-52597

Analytical Chemists

Geochemists

Registered Assayers

CERTIFICATE OF ANALYSIS

TO : MOND GOLD MINES INC.

C/O BEAVON CONSULTING LTD.

9720 MILLMORE RD. PICHMOND. B.C.

V7C 1S9

** CERT. # : A8516216-004-

INVUICE # : 18516216
DATE : 17-SEP-85

P.O. # : NONE

Sample	CONSULTIN Prep	Bi				
description	code	ppm				
306	201	0.1	 			•
307	201	0.2	 		~-	-
308	201	0.1	 			
309	201	0.5	 			-
310	201	0.1	 	~~		-
311	50 I	0.1	 			-
312	201	1 • 1	 			-
313	201	0.5	 			
314	201	0.8	 	- -		-
315	201	0.3	 			
316	201	0.3	 			-
317	201	0.3	 			•
318	201	0 • 2	 			•
319	201	0.2	 			
32 0	201	0 • 1	 			•
321	201	0.2	 			
322	201	0.4	 	·		
323	201	0.1	 			
324	201	0.1	 			
325	201	0.1	 			
326	201	0.2	 			
327	201	0.1	 			
328	201	0 • 1	 			
329	201	0.2	 			
330	201	0.2	 			
331	201	0.1	 		, 	
332	201	0.3	 			
333	201	0.3	 			
334	201	0.3	 			
335	201	0.3	 			
336	201	0.2	 			
337	201	0 • 2	 			
338	201	0.2	 			•
339	201	0.2	 	==		
340	201	0.1	 	~~		
341	201	0.1	 			
342	201	0.2	 			
343	201	0.2	 			

V

certified by tantachler

212 Brooksbank Av-North Vancouver, B.C.

Telephone: (604) 984-0221

Telex:

043-52597

Analytical Chemists Geochemists

Registered Assayers

CERTIFICATE OF ANALYSIS

TO : MONO GOLD MINES INC.

C/D BEAVON CONSULTING LTD.

R720 MILLMORE RD. RICHMOND. B.C.

V7C 1S9

: A3516216-005-CERT. #

> INVOICE # : 18516216 : 17-SEP-85 DATE

P.O. # : NONE

00:	3E	AVUN	CONSUL	TI	NG

		00.302.		 			
-	Sample	Prep	8 i				
	description	code	ppm				
	346	201	0.2	 			
	347	201	0.3	 			
	348	201	2.5	 			 .
	349	201	0 • 4	 	~-	-	'
	350	201	0.3	 			
	351	201	0.1	 ~ -			
	352	201	0.2	 			
	353	201	0 • 1	 			
	354	201	0.4	 			
	355	201	0 • 2	 	 -		
	356	201	0.1	 			
	357	201	0.2	 ·			
	358	201	0.1	 			
_	359	201	0 • 1	 			

Hart Buchler Certified by

212 Brooksbank Ave. North Vancouver, B.C Canada V7J 2C1

Telephone:(604) 984-0221

Telex: 043-52597

Analytical Chemists •

Geochemists

Registered Assayers

CERTIFICATE OF ANALYSIS

TO : MUND GOLD MINES INC.

C/O BEAVON CONSULTING LTD.

8720 MILLMORE RD. RICHMOND. B.C.

V7C 1S9

CERT • # : A8516204-006-

INVOICE # : 18516204 DATE : 19-SEP-85

P.O. #

MADOC

CC: BEAVON CONSULTING, MADUC, ONT.

	CONSULTING.		UNI.		_		•
Sample	Ргер	Bi					
description	code	maaa					
676	201	0.2					
677	201	0.5					
678	201	0.3					
679	201	0.2					
680	201	0.5					~ -
681	201	0.2					÷-
682	201	3.5					
683	201	2.5					
684	201	0.3					
685	201	0.3			. - -		
686	201	1.0					
687	201	0.6					
688	201	0.3					
689	201	0.1					
690	201	0.4					
691	201	0.2					~-
692	201	0.1					
693	201	0.2					
694	201	0.2					
695	201	0.2				- -	
696	201	0.2					
697	201	0.1	*-				
593	201	0.1					
699	201	0.1					
700	201	0.1					
701	201	0.1					
702	201	0.1					
703	201	0.1		- ~	- -		
704	201	0.2					
705	201	0.2		 .			
706	201	0.1					
707	201	0.3					
708	201	0.2			-		
709	201	1.0					
710	201	0.5 3.5					
711	201						
712	201	9.2					

Certified by Houth Suchler

212 Brooksbank Ave. North Vancouver, B.C. Canada V712C1

Canada V7J 2C1

Telephone: (604) 984-0221 Telex: 043-52597

Analytical Chemists

Geochemists

Registered Assayers

CERTIFICATE OF ANALYSIS

TO : MONU GOLD MINES INC.

C/O BEAVON CONSULTING LTD.

8720 MILLMORE RD. RICHMOND. 5.C.

V7C 159

* *

CERT. # : A8516204-004-

INVOICE #: 18516204 DATE: 19-SEP-85

P.O. #

MADOC

CC: BEAVON	CUNSULTING.	MADUC.	JNT.
------------	-------------	--------	------

		CUNSULTING.		UNT.			
	Sample	Prep	ម i		 		
	description	code	mqq				
	437	201	0.2		 		
	440	201	0.3		 		
	441	201	0.3		 		,
	442	201	0.1		 		- -
	443	201	0.2		 		
	444	201	0.1		 		
	446	201	0 • 3		 		
	447	201	0.6		 		
	448	201	0.2		 - -		~-
	449	201	0.3		 · 		
	459	201	0 • 2	~~	 		
	451	201	0.2		 		
	452	201	0.2		 		
4	453	201	0.3		 		
•	454	201	0.2		 		
	455	201	0.4 .		 		
	456	201	0 • 4	~~	 ·		***
	457	201	0.1		 		
	458	201	0.2		 		
	459	201	0.3		 	· 	
	460	201	0.2		 		
	461	201	0.2		 		
	462	201	0.2		 		
	463	201	0.2		 		
	464	201	0 • 4	- -	 		
	465	201	0.3		 		
	466	201	0.2		 		
	467	201	0.2		 		
	468	201	0.1		 =;-		
	625	201	0.1		 		
	626	201	0 • 1	- -	 ***		
	627	201	0.1		 		
	629	201	0.1	- -	 		·
	629	201	0.1	- -	 		
	630	201	0.2		 -		
	631	201	0.1		 	ugin edler	
	632	201	0.1		 		
	633	201	0.1		 		
4	634	201	0.1		 		
•	635	201	0.1		 		

Certified by

Analytical Chemists Geochemists Registered Assayers

212 Brooksbank Ave. North Vancouver, B.C. Canada V7J 2C1

Telephone: (604) 984-0221 Telex: 043-52597

CERTIFICATE OF ANALYSIS

TO : MONO GOLD MINES INC.

C/O BEAVON CONSULTING LTD.

8720 MILLMORF RU. RICHMOND. B.C.

V7C 159

**

CERT. # : A8516204-005-/

INVOICE # : 18516204 : 19-SEP-85

P.O. #

MADUC

CC:	BEAVON	CUNSULTING.	MADDC.	JNI.
-----	--------	-------------	--------	------

CC: BEAVON		IG . MADDC .	• TNL			
Sample	Prep	3 i				
description	code	maga				
636	201	0.1		 		
637	201	0.1		 		
638	201	0.1		 		
539	201	1.0		 		
640	201	0.1		 		
641	201	0.1		 		
642	201	0.2		 		
643	201	0.2		 		
644	201	0.2		 7-		
645	201	0.2		 		
645	201	0.2		 		
647	201	0.3		 		
648	201	0.1		 		
649	201	0.2		 		
650	201	0.1		 		
651	201	0.1		 		
657	201	0.2		 		
653	201	0.2		 		
654	201	0.6		 		
655	201	0 • 2		 		
656	201	0.1		 		
657	201	0.1		 		
558	201	0.2		 		
659	201	0 • 1		 		
660	201	0.1		 		
661	201	0 • 2		 		,
562	201	0.9		 		
663	201	0 • 2		 		~~
664	201	0.2		 		
665	201	0 • 1		 -		
666	201	0.1		 		
667	201	0.2		 		
668	201	0.3		 , 		
669	201	0 • 2		 		
670	201	0.2		 		
671	201	0.2		 		
67?	201	0.2		 		
673	201	0.1		 		
674	201	0.2		 		
675	201	0.1		 		

Certified by

212 Brooksbank Ave North Vancouver, B.C. Canada V7J 2C1

Telephone: (604) 984-0221

Telex: 043-52597

Analytical Chemists Geochemists Registered Assayers

CERTIFICATE UF ANALYSIS

TO : MUND GOLD MINES INC.

C/O BEAVON CONSULTING LTD.

8720 MILLMORE RD. RICHMOND. B.C.

V7C 159

CERT. # : A8516204-006-

INVOICE # : 18516204 : 19-SEP-85 DATE

P.O. #

MADUC

- CC: BEAVON CO	MSULTING.	MADUC	ONT.
-----------------	-----------	-------	------

		CUMSULTING.	MADUC	UNT.			•
	Sample	Prep	ડ i				
	description	code	ppm				
	676	201	0.2				
	677	201	0.5				
	678	201	0.3				
	679	201	0.2				 '
	680	201	0.5				
	581	201	0.2				
	682	201	3.5				
	683	201	2.5				
	684	201	0.3				
	685	201	0.3			· · · · ·	
	686	201	1.0				
	687	201	0.6				
	6 88	201	0.3				
	689	201	0.1	- -			 ***
	690	201	0.4				
	691	201	0.2				 ~
	692	201	$0 \cdot 1$			·	 400 400
	693	201	0.2				
	694	201	0 • 2				
	695	201	0.2		·		
	696	201	0 • 2				
	697	201	0.1				
	699	201	0.1				
	699	201	0.1				
	700	201	0.1				
	701	201	0.1				
:	702	201	0.1				
i	703	201	0.1				
İ	704	201	0.2				
	705	201	0.2				
	766	201	0.1				
	707	201	0.3				
	708	201	0.2				 ·
	709	201	1.0				
	710	201	0.5				
	711	201	8.5				
	712	201	0.2				

certified by Wartsichler

212 Brooksbank Ave. North Vancouver, B.C Canada V7J 2C1

Telephone: (604) 984-0221

043-52597

Analytical Chemists

Geochemists

Registered Assayers

CERTIFICATE UF ANALYSIS

TO : MONU GOLD MINES INC.

C/O BEAVON CONSULTING LTD.

8720 MILLMORE RD. RICHMOND. B.C.

V7C 1S9

**

CERT. # : A8518074-001-

Telex:

INVOICE # : 18518074
DATE : 8-NOV-85

P.O. #

MADOC

Sample	Prep	G, MADUC, Bi				
description	code	ppm				
882	201	2.9				 _
883	201	5 • 6				 _
884	201	0.3				 -
885	201	6.5				 -
886	201	9.6				 _
887	201	0.5	~~			 _
888	201	0.4				 -
889	201	0.5				 -
890	201	0.1				 _
891	201	0.4			<u></u>	
892	201	6.1				 -
893	201	0.1				 _
894	201	0.5				 -
895	201	0.1				
896	201	0.1				 -
897	201	0.1				 -
898	201	0 - 2		-	· ~-	 -
899	201	0.1				 -
900	201	0.1				 -
901	201	0.1				 -
902	201	0.1				 -
903	201	0.1			***	 -
904	201	0.1				 -
905	201	0.1				 -
906	201	0 • 1				 -
907	201	0.5				 -
908	201	0.1				 -
909	201	0.1				 -
910	201	0 • 1				 -
911	201	0.1				 -
912	201	0.1				 -
913	201	0.1			-	 -
914	201	0 • 1			~~	
915	201	0.1				 -
916	201	0.1				 -
917	201	0.6				 -
918	201	0.2				
919	201	0.1				 •
920	201	0 • 1				 -

TÂ (

Certified by Certified by

212 Brooksbank Ave North Vancouver, B.C. Canada V7J 2C1

Telephone:(604) 984-0221

Telex: 043-52597

Analytical Chemists

Geochemists

Registered Assayers

CERTIFICATE OF ANALYSIS

TO : MONU GOLD MINES INC.

C/O BEAVON CONSULTING LTD.

8720 MILLMORE RD. RICHMOND. B.C.

V7C 1S9

* CERT. # : A8518074-002-/

INVOICE # : 18518074
DATE : 8-NOV-85

P.O. #

MADDC

V7C 1S9					MADDC		
CC: BEAVON	CONSHITIN	G. MADOC.	ONT.		•		
Sample	Prep	Bi	UNI S				
description	code	ppm					
922	201	0.1					
923	201	0.2					
924	201	0.2					
925	201	1.1					'
926	201	0.1					
927	201	0.1		~-			
928	201	0.1					
929	201	0.5					
930	201	0.7			~~		
931	201	0.1			<u>-</u>		
932	201	0.1					
933	201	0.1					
934	201	0.2					
935	201	0.2					
936	201	0.2		****			
937	201	0.1					
938	201	0.1			·		
939	201	0.1					
940	201	0.1					
941	201	0.1					
942	201	0.2					
943	201	0.1		·			
944	201	0.1					
945	201	0.1					
946	201	0.1					
947	201	0.1					
948	201	0.1				~-	
949	201	0 • 2					
950	201	0.6					
951	201	0 • 2					
952	201	0.2					
953	201	0 • 1					
954	201	0.2					
1135	201	0.1					
1136	201	0.3					
1137	201	0.2					
1138	201	0.1					
1139	201	0.4	~-				
1140	201	0.1					
1141	201	0.1		~-			

Certified by Harristochler

212 Brooksbank Ave North Vancouver, B.C Canada V7J 2C1

Telephone: (604) 984-0221 Telex: 043-52597

Analytical Chemists

Geochemists

Registered Assayers

CERTIFICATE OF ANALYSIS

TO : MONO GOLD MINES INC.

C/O BEAVON CONSULTING LTD.

8720 MILLMORE RD. RICHMOND, B.C.

V7C 1S9

** CERT. # : A8518074-003-

INVOICE # : 18518074
DATE : 8-NOV-85

P.O. #

MADOC

V/C 159					MADUC		
CC: BEAVON	CONSULTIN	IG - MADUC -	ONT.				•
Sample	Prep	Вi		· · · · · · · · · · · · · · · · · · ·			
description	code	ppm					
1142	201	0.1	*-	**			
1143	201	0.7					
1144	201	2.3					
1145	201	3.4					'
1146	201	1.1					
1147	201	0.2					~~
1148	201	0.5		'			
1149	201	20.0					
1150	201	0.7					
1151	201	0.3					* ••
1152	201	0.9					
1153	201	0 • 2	•				
1154	201	0.3					
1155	201	0.3					
1156	201	0.3					
1157	201	0.1				'	
1158	201	0.1			·		
1159	201	0.2					
1160	201	0.1					***
1161	201	0.1					100 400
1162	201	0.1					
1163	201	0.1					
1164	201	0.1					
1165	201	0.1					
1166	201	0.2					40
1167	201	0.1					
1168	201	13.0			~~		
1169	201	0.2	***				
1170	201	0 • 1	-		==		
1171	201	0.2					
1172	201	0.2					
1173	201	0.2					
1174	201	0.1	-				•
1175	201	0.1					
1176	201	0.1		-	~~		
1177	201	0.1			~~		
1178	201	0.1					
1179	201	0.1					
1180	201	0-1					
1181	201	0.1					

Certified by HautBuchler

Geochemists

Analytical Chemists

Registered Assayers

212 Brooksbank Ave. North Vancouver, B.C. Canada V7J 2C1

Telephone: (604) 984-0221 043-52597

Telex:

CERTIFICATE UF ANALYSIS

TO : MONO GOLD MINES INC.

C/O BEAVON CONSULTING LTD.

8720 MILLMORE RD. RICHMOND, B.C.

V7C 1S9

* * CERT. # : A8518074-004-A

INVOICE # : 18518074 DATE 8-NOV-85

P.O. # :

MADOC

					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
CC: BEAVON	CONSULTIN	G. MADDC.	ONT.			
Sample	Prep	Bi			· · · · · · · · · · · · · · · · · · ·	 ,
description	code	ppm				
1182	201	1.0				
1183	201	0.1				
1184	201	0.1				
1185	201	0.1				
1186	201	0.2				 *
1187	201	0.1				
1188	201	0.5				
1189	201	1.8		***		
1190	201	0.2				
1191	201	0.1				
1192	201	0.1			# -	
1193	201	0.7				
1194	201	0.1				
1195	201	0.1				
1196	201	0.1				
1197	201	0.2				
1198	201	0.1				
1199	201	0.7			·	
1200	201	0.2				
1201	201	0.2				
1202	201	0.2				
1203	201	1.7				
1204	201	0.6				
1205	201	0.4				
1206	201	0.1				
1207	201	0.1				
1208	201	0.1				
1209	201	0.1	***			
1210	201	0.1				
1211	201	0 • 1				
1212	201	0.4				
1213	201	0.1				
1214	201	0.1				
1215	201	0.1				
1216	201	0.1				
1217	201	0.1				
1218	201	0.1				
1219	201	0.1				
1220	201	0.2				
1221	201	0.6				

(doc Hordler Certified by ..

212 Brooksbank Ave North Vancouver, B.C. Canada V7J 2C1

Analytical Chemists

Geochemists

Registered Assayers

Telephone: (604) 984-0221

Telex: 043-52597

CERTIFICATE OF ANALYSIS

TO : MUNU GOLD MINES INC.

C/O BEAVON CONSULTING LTD.

8720 MILLMORE RD. RICHMOND. B.C.

V7C 1S9

CERT. #

: A8518074-005-

INVOICE # : 18518074 DATE 8-NOV-85

P.O. #

MADOC

_ CC: BEAVON	CONSULTING.	MADDC.	ONT.			•
Sample	Prep	Вi				
description	code	ppm				
1222	201	0.2	***			
1223	201	0.2		~ ~		
1224	201	2.3				
1225	201	0.2				 '
1226	201	0.1				
1227	201	0.1			~-	
1228	201	0.1				
1229	201	0.1				
1230	201	0.4				
1231	201	0.1			· - -	
1232	201	0.1				
1233	201	0.4				
1234	201	0.7				
1235	201	0.6				
1236	201	0.5				
1237	201	1.0				
1238	201	0.4			· 	
1239	201	0.1				
1240	201	0.1				
1241	201	0.1				
1242	201	0.1				
1243	201	0.1				
1244	201	1.0				
1245	201	0.2				
1246	201	0.1			~-	
1247	201	0.4				
1248	201	0.3				
1249	201	1.0				
1250	201	0.5				
1251	201	2.6		'	-	
1252	201	0.3				
1253	201	0.2				
1254	201	0.1			~~	
1255	201	0.1				 ~~
1256	201	0.2				
1257	201	0.1				
1258	201	0.2				
1259	201	0.1				
1260	201	0.1				
1261	201	0.1				

Certified by

212 Brooksbank Ave North Vancouver, B.: Canada V7J 2C

Telephone:(604) 984-022

Telex:

043-5259

Analytical Chemists

Geochemists

Registered Assayers

* *

CERTIFICATE OF ANALYSIS

TO : MONO GOLD MINES INC.

C/O BEAVON CONSULTING LTD.

8720 MILLMORE RD. RICHMOND, B.C.

V7C 1S9

CERT. # : A8518074-006-

INVOICE # : 18518074 DATE : 8-NOV-85

P.O. #

MADDC

775 157					114000		
CC: BEAVON	CONSULTIN	G. MADUC.	ONT.				•
Sample	Prep	Вi					
description	code	ppm					
1262	201	0.1	**				
1263	201	0.2				-	
1264	201	0.1					
1265	201	0.1			-		
1266	201	0.5					
1267	201	0.3					
1268	201	0.1		_=			
1269	201	0.4		-			
1270	201	0.4					
1271	201	0 • 4			- -		
1272	201	0.4					
1273	201	0.5					
1274	201	0.7					
1275	201	0.1					
1276	201	0.1					
1277	201	0.1					
1278	201	0.2			·		
1279	201	0.1	-				
1280	201	0.1					
1281	201	0.1					
1282	201	0.2					
1283	201	0.1			'		
1284	201	0.1					
1285	201	0.1					
1286	201	0.1					
1287	201	0.1					
1288	201	0.2					
1289	201	0.1					
1290	201	0.1				~ ~	
1291	201	0.1					
1292	201	0 • 4					
1293	201	0.3	~ ~				
1294	201	0.2					
1295	201	0.1					
1296	201	0.1					
1297	201	0.2				~ ~	
1298	201	0 • 2					~~
1299	201	0 • 2					
1300	201	0.3					
1301	201	0.1					

Certified by Howilland

North Vancouver, B.C.

V7J 2C1

212 Brooksbank Ave

Telephone:(604) 984-0221 Telex: 043-52597

Analytical Chemists

Geochemists

Registered Assayers

CERTIFICATE UF ANALYSIS

TO : MONO GOLD MINES INC.

C/O BEAVON CONSULTING LTD.

8720 MILLMORE RD.

RICHMUND, B.C.

V7C 1S9

Po. Pox 050 MADOC, UNIT

KUT SKO

* *

CERT. # : A8518076-001-

INVOICE # : 18518076 DATE 8-NOV-85

P.O. #

MADOC

√CC:	BEAVON	CONSULTING.	MADUC.	UNT.

√cc:		CONSULTING.	MADUC.	UNT.			•
 Samp	le	Prep	Bi				
	iption	code	mqq				
1302		201	0 • 1				
1303		201	0.1				
1304		201	0.1				
1305		201	0.2				
1306		201	0.2				
1307		201	0.1				
1308		201	0.1		with Miles		
1309		201	0.2		-		
1310		201	0.1				
1311		201	0.1				
1312		201	0.1	***			
1313		201	0.1				
1314		201	0 • 2				
1315		201	0.1				
1316		201	0 • 2				
1317		201	0.2				
1318		201	0.3				
1319		201	0.1		~-		
1320		201	0.2				
1321		201	0.1				
1322		201	0 • 2				
1323		201	0.2				 ~-
1324		201	0 • 2				
1325		201	0.2				
1326		201	0.2				
1327		201	0.3				
1328		201	0.2				
1329		201	0.1				
1330		201	0.1		*** ***		
1331		201	0.1				
1332		201	0.2				
1333		201	1.0				
1334		201	0.1				
1335		201	0.1				
1336		201	0.1				
1337		201	0.5				
1338		201	0.1				
1339		201	1.0				
1340		201	0.5				
1341		201	0.1	~-			

212 Brooksbank Ave North Vancouver, B.C. Canada V7J 2C1

Telephone: (604) 984-0221

Telex: 043-52597

Analytical Chemists

Geochemists

Registered Assayers

CERTIFICATE OF ANALYSIS

TO : MONO GOLD MINES INC.

C/O BEAVON CONSULTING LTD.

8720 MILLMORE RD. RICHMOND+ B.C.

V7C 1S9

** CERT. # : A8518076-002-2

INVOICE # : 18518076 DATE 8-NOV-85

P.O. #

MADOC

CC: BEAVON Sample	Prep	G. MADUC.	0.111				
	•						
description 1342	<u>code</u> 201						
1343	201	0.1					
1344	201	0.1					_
1345	201	0.2					
1346	201	0.2					_
1347	201	0.6					_
	201	0.0					_
1348 1349	201	0.2					_
							_
1350	201	0 • 1 0 • 2			<u></u>		_
1351	201	0.2					_
1352	201	0.2		_			_
1353	201	0.2					_
1354	201 201	0.1					_
1355							_
1356	201	0.1			-		_
1357	201	0.1			·		_
1358	201	0.2					_
1359	201	0.1			~-		_
1360	201	0.1					_
1361	201	0-1					_
1362	201	0.1					
1363	201	0 - 1					_
1364	201	0.1					
1365	201	0.1					_
1366	201	0.2					
1367	201	0.2					_
1368	201	0.1					_
1369	201	0.1					
1370	201	0.1					_
1371	201	0.6					
1372	201	0.2					
1373	201	0 • 2			-		
1374	201	0.1					
1375	201	0 • 1		_			_
1376	201	0.2					_
1377	201	0.1					-
1378	201	0.3				-	-
1379	201	0.1		₩ 🖘			-
1380	201	0.2					-

Certified by .

Geochemists

Registered Assayers

212 Brooksbank Ave North Vancouver, B.C. Canada V7J 2C1

Telephone: (604) 984-022!

Telex:

043-52597

CERTIFICATE OF ANALYSIS

Analytical Chemists

TO : MONO GOLD MINES INC.

C/O BEAVON CONSULTING LTD.

8720 MILLMORE RD. RICHMOND, B.C.

V7C 1S9

CERT. # : A8518076-003-

INVOICE # : 18518076 DATE 8-NOV-85

P.O. #

MADOC

CC: BEAVON Sample	Prep	G. MADUC, Bi	UNI •				
description	code	ppm 0 3					
1382	201	0.3					_
1383	201	0.2					
1384	201	4.6			7-		
1385	201	0.2					
1386	201	0.3					-
1387	201	1.3					-
1388	201	0.2					***
1389	201	0.4		***			
1390	201	0 • 2			- -		-
1391	201	0.4					_
1392	201	0.1					-
1393	201	0.2					-
1394	201	0.1					-
1395	201	0.2					-
1396	201	0.2					-
1397	201	0.2					-
1398	201	0.1			·		-
1399	201	0.2					_
1400	201	1.0					-
1401	201	0.1					-
1402	201	0.2					-
1403	201	0.2					-
1404	201	1.2					-
1405	201	1.0					_
1406	201	2 • 4					-
1407	201	0.2					-
1408	201	0.5					-
1409	201	0.6					_
1410	201	0 • 2					-
1411	201	0.1					-
1412	201	0 • 2					-
1413	201	0.4					-
1414	201	0.6					
1415	201	0.1			-		-
1416	201	0 • 2					-
1417	201	0.2					-
1418	201	0 • 2					-
1419	201	0.1					-
1420	201	0.2					-

Certified by HartBuchler

212 Brooksbank Av-North Vancouver, B.C Canada V7J 2C1

Telephone: (604) 984-0221 Telex: 043-5259

Analytical Chemists •

Geochemists

Registered Assayers

CERTIFICATE OF ANALYSIS

TO : MOND GOLD MINES INC.

C/O BEAVON CONSULTING LTD.

8720 MILLMORE RD. RICHMOND. B.C.

V7C 159

** CERT. # : A8518076-004-

INVOICE # : 18518076 DATE : 8-NOV-85

P.O. # :

MADOC

CC: BEAVON	CONSULTIN	G. MADUC.	UNT.				•
Sample	Prep	Вi					
description	code	ppm					
1422	201	0.1					
1423	201	0.2	,				
1424	201	0.1					
1425	201	0.2					
1426	201	0.2					
1427	201	0.1					
1428	201	0.1				***	
1429	201	0.1					
1430	201	0.1					
1431	201	0.2			· <u></u>		
1432	201	0.1		~ ~			
1433	201	0.7					
1434	201	1.0					
1435	201	0.2				-	
1436	201	0.3		***			
1437	201	0.1					
1438	201	0.1			* ***		
1439	201	0.2					
1440	201	0.1					
1441	201	1.0	مي شده		-	'	
1442	201	0.1					
1443	201	0.1					
1445	201	0.1					
1446	201	0.1					
1447	201	0.2					
1448	201	0.1					
1449	201	0.2					
1450	201	0.1	·				
1451	201	0.2					
1501	201	0.2					
1502	201	0.2					
1503	201	0.2					
1504	201	0.1					
1505	201	0 • 2					
1506	201	0.2					
1507	201	0 • 1					
1508	201	0.2					
1509	201	0.1				~ ~	
1510	201	0.2					
1511	201	0.2					

V

Certified by Handsuhler

212 Brooksbank Ave North Vancouver, B.C. Canada V7J 2C1

Telephone: (604) 984-0221

Telex: 043-52597

Analytical Chemists

Geochemists Registered Assayers

CERTIFICATE UF ANALYSIS

TO : MOND GOLD MINES INC.

C/O BEAVON CONSULTING LTD.

8720 MILLMORE RD. RICHMOND, B.C.

V7C 1S9

**

: A8518076-005-A CERT. #

INVOICE # : 18518076 DATE 8-NOV-85

P.O. #

MADOC

CC: BEAVON	CONSULTING.	MADOC,	ONT.		•
Sample	Prep	8 i			
description	code	ppm			
1512	201	0.1		 	
1513	201	0.2	~-	 	
1514	201	0.2		 	

212 Brooksbank Ave. North Vancouver, B.C. V7J 2C1

Canada

Phone: (604) 984-0221

Telex: 043-52597

Analytical Chemists

Geochemists

Registered Assayers

CERTIFICATE OF ANALYSIS

TO : MONO GOLD MINES INC. C/O BEAVEN CONSULTING LTD.

8720 MILLMORE RD. RICHMOND, B.C.

V7C 1S9

Box 250

Madoc, ONT

KOK DKO

* :

CERT. # : A8517824-001-

INVOICE # : 18517824 DATE 5-NOV-85

P.O. # BANNOCK BURN

	LEC: BEAVON	CONSULTIN	G. MADUC.	ONT.				•
	Sample	Prep	Ві					
	description	code	maq					
	469	201	1.0					
	470	201	0.5					
	471	201	0.3				- -	
	472	201	0 • 4					'
	473	201	1.2					
	474	201	1.0	. - -				
	475	201	0.9					
	476	201	0.5					
	477	201	1.1					
	478	201	0.2			· - -		
	479	201	0.1					
	480	201	0.5					
	713	201	0.4					
	714	201	0.2					
	715	201	0.1					
	716	201	0.1					
	717	201	0.1			·		
	713	201	0.1		~-		***	
	719	201	0.1					
	720	201	0.1					
	721	201	1.7					
	722	201	0.3					
	723	201	0.1					
	72+	201	0.1					
	725	201	0.1					
	726	201	0.1					
	727	201	0.1					
-	728	201	0.1					
	729	201	1.3					
	730	201	0.2		'			
	731	201	0.1					
	732	201	0.1					
	733	201	0.1					
	734	201	0.2	***				
	735	201	0.2					
!	736	201	0.1	~ _				
	737	201	0.1					
	733	201	0.5					
	739	201	0.9					
	740	201	0.1					
	1,79							112

CERTIFICATE UF ANALYSIS

212 Brooksbank Ave. North Vancouver, B.C. V7J 2C1

Canada

(604) 984-0221

Phone:

Telex: 043-52597

Analytical Chemists . .

TO : MOND GOLD MINES INC. C/O BEAVON CONSULTING LTD.

8720 MILLMORE RD. RICHMOND, B.C.

V7C 1S9

**

Geochemists · Registered Assayers

: A8517824-002-CERT. #

INVOICE # : 18517824 DATE 5-NOV-85

P.O. # BANNOCK BURN

00:	BEAVÚN	CUNSULTING.	MADUC.	UNT.
-----	--------	-------------	--------	------

		CUNSULTING.	MADUC.	UNT.				•
	Sample	Prep	Вi					
	description	code	ppm					
	741	201	0.4					
	742	201	0.3				~-	
	743	201	0.1					
	744	201	0.3					'
	745	201	0.3					
	746	201	0 • 2					
	747	201	0.2					
	748	201	0.2		~-			
	749	201	0.2					
	750	201	0.2			- <u>-</u> -		
	751	201	0.3					
	752	201	0.2					
_	753	201	C • 4					
	754	201	0.5					
	755	201	0.2					
	756	201	0.7					
	757	201	0.2					
	758	201	0.3			,		
	759	201	0.2					
	760	201	0.3					
	761	201	0.3					
	762	201	0.4					
	763	201	0.2					
	764	201	0.1					
	765	201	0.3	~ -				
	766	201	0.2					
	767	201	0.1					
	768	201	0.2					
	769	201	0 • 1					
	770	201	0.2					
	771	201	0.2				-	
	772	201	0.3					
	773	201	0.1					•
	774	201	0.1					
	775	201	0.5			~ -		
	775	201	0.2				 =	
	777	201	0.4		- -			
	778	201	0.2			~~		
	779	201	0.1					
	780	201	0 • 2					

Certified by 1600 John Sichler

212 Brooksbank Ave

North Vancouver, B.C. V7J 2C1

Canada

(604) 984-0221

Phone: 043-52597 Telex:

Analytical Chemists Geochemists Registered Assayers

CERTIFICATE UF ANALYSIS

TO : MONU GOLD MINES INC.

C/D BEAVON CONSULTING LTD.

8720 MILLMORE RD. RICHMUND. B.C.

V7C 159

**

CERT. # : A8517824-003-

INVOICE # : 18517824 DATE 5-NOV-85

P.C. # BANNOCK BURN

CC. DERIGIN CONSCENTION MADSON ON	C(:	NUVABE	CONSULTING.	MADJC.	DNI
-----------------------------------	-----	--------	-------------	--------	-----

	CC: BEAVON	CONSULTING.		ONT.				•
	Sample	Prep	Вi					
	description _	code	mag					
	781	201	1 • 2					
•	782	201	5.4					
	783	201	1.6	·				
İ	784	201	0.9					'
1	785	201	0 • 4					-
i I	786	201	0.7					
į	787	201	0.8					
	783	201	3.9					
	789	201	2 • 2			→-		
	79J	201	2.0			· - -		
!	791	201	0.6				'	
1	792	201	0.4					
	793	201	0.5					
	794	201	0.2					
	795	201	2 • 3					
	796	201	0.5		'			
:	797	201	0.3			·		
	798	201	0.3					
!	799	201	0 • 4					
	800	201	0.3					
ì	801	201	0.3					
1	802	201	0.2					
	803	201	0.2					
	804	201	0.3					
1	805	201	0.2					
	806	201	0.3					
	807	201	0.2				'	
	808	201	0.1	**				
	809	201	1.0					
1	810	201	0.3					
1	811	201	0.3					
	812	201	0.3					
	813	201	0.3					
	814	201	0.3					
	815	201	0.2				 .	
	816	201	0.2					***
	817	201	0.1					
i	813	201	0.1					
	819	201	0.3					
J	82Ú	201	0.2_					
								1101 101

VOI rev. 4/8

212 Brooksbank Ave. North Vancouver, B.C.

Canada V7J 2C1

Phone: Telex:

(604) 984-0221 043-52597

Registered Assayers

CERTIFICATE OF ANALYSIS

Geochemists ·

TO : MONO GOLD MINES INC.

C/O BEAVON CONSULTING LTD.

8720 MILLMORE RD. RICHMUND. B.C.

V7C 159

: A8517824-004-

INVCICE # : 18517824 DATE 5-NCV-85

P.O. # BANNOCK BURN

	00:	BEAVON	CUNSULTING.	MADDC.	ONT.
--	-----	--------	-------------	--------	------

Analytical Chemists . .

	CC: BEAVON	*DNITIUZNUD	MADDC.	ONT.			•
	Sample	Prep	Βi				
	description	code	ppm				
	ä 2 1	201	0.1		,		
	822	201	0.2				
	823	201	0 • 3				
	824	201	0.1				 '
	825	201	0 • 1			~-	
	826	201	0.3				
	827	201	0 • 1				
	828	201	0.1				
	829	201	0 • 2				
	830	201	0.1			- <u>-</u> -	
	831	201	0 • 2				
	832	201	0.2				
	833	201	0 • 1	- -			
	834	201	0 • 1				
T	835	201	0 • 1				
	836	201	0.2				
	837	201	0 • 1			·	
	838	201	0.2				
	839	201	0.1				
	340	201	0.1				
	841	201	0.1				
	842	201	0.1				
	843	201	0.1				
	844	201	0.1				
	845	201	0 • 2				
	846	201	0 • 1				
	847	201	0.2				
	848	201	0.1				
	849	201	0.1				
	850	201	0.1				
	851	201	0.1				
	852	201	0.2				
	853	201	0.1				
	854	201	0.1				
	855	201	0.1				
	856	201	0.1				
	857	201	0 • 2				
	858	201	0 • 4				
	859	201	1.0	- -			
	860	201	1.9				

Certified by ..

VOI rev. 4/85

212 Brooksbank Ave North Vancouver, B.C. Canada V7J 2C1

Phone:

(604) 984-0221

Telex:

043-52597

Analytical Chemists •

Geochemists

Registered Assayers

CERTIFICATE OF ANALYSIS

TO : MOND GOLD MINES INC.

C/O BEAVON CONSULTING LTD.

8720 MILLMORE RD. RICHMOND, B.C.

V7C 1S9

25 25

CERT. # : A8517824-005-

INVOICE #: 18517824 DATE : 5-NOV-85

P.O. # : BANNOCK BURN

CC: BEA	VON CONSULTING.	MADDC.	•TNC				•
Samole	Prep	ાં છ					
descripti		maa					
ಕ61	201	0.2					
862	201	0.5					
863	201	0.9					
864	201	2.9					'
გ65	201	0.3					
866	201	0.3				. 	
867	201	1.9					
868	201	1.1					
869	201	0.9		~-		-	ميت جيت
870	201	2 • C			- <u>-</u> -		
871	201	0.5					
872	201	0.5					
873	201	0.1				. 	
874	201	0.1					
875	201	0.1					
876	201	0 • 1		, ,			
877	201	0.1			·		
878	201	0.1					
879	201	0.1					
880	201	0.1		~ ~ ·			
881	201	0.1					
1001	201	0 • 1					
1002	201	0.1	~-				
1003	201	0 • 1		~ ~			
1004	201	0.1					
1005	201	0 • 2					
1006	201	0.1					
1007	201	0.1					
1008	201	0 • 1			-		
1009	201	0 • 1			***		
1010	201	0.1			~		
1011	201	0 • 1					
1012	201	0.1					. ==
1013	201	0.1					
1014	201	0.1					
1015	201	0.1					
1016	201	0.1					
1017	201	0.1		·			
1018	201	0.2					
1019	201	0.1		~			

VOI rev. 4/85

Certified by

212 Brooksbank Ave North Vancouver, B.C. V7J 2C1

(604) 984-0221

Phone: Telex:

043-52597

Analytical Chemists -

Geochemists -

Registered Assayers

CERTIFICATE OF ANALYSIS

TO : MONO GOLD MINES INC.

C/O BEAVON CONSULTING LTD.

8720 MILLMORE RD. RICHMUND. B.C.

V7C 1S9

* *

: A8517824-006-

INVOICE # : 18517824 DATE 5-NCV-85

P.O. # BANNOCK BURN

CC:	NUVABB	CONSULTIN	G. MACUC.	JNT.
-----	--------	-----------	-----------	------

	CONSULTING.		JNI		· · · · · · · · · · · · · · · · · · ·	
Sample	Prep	8 i				
description	code	maga				
1020	201	0.2				
1021	201	1.0				
1022	201	0.3				
1023	201	0.2			~ ~	 '
1024	201	0.1				
1025	201	0 • 1				
1025	201	0.1				
1027	201	0.1				
1028	201	0 • 4				
1029	201	0.1				
1030	201	0.2				
1031	201	0 • 1				
1032	201	0.2				
1033	201	0.1				
1034	201	0.8				
1035	201	0.5				
1036	201	0.1	- -			
1037	201	0.1				
1038	201	1.0				
1039	201	0.1				
1040	201	0.2				
1041	201	0.2				
1042	201	0.1				
1043	201	0.1				
1044	201	0.1				
1045	201	0.1				
1046	201	0.2				
1047	201	0.1				
1043	201	0.1				
1049	201	0.1				
1050	201	0.1				
1051	201	0.1				
1052	201	0.1				
1053	201	0.2				
1054	201	0.1				
1055	201	0.1			-	
1056	201	0.1	- -			
1057	201	0.3				
1058	201	0.1				
1059	201	0.1				

VOI rev. 4/85

Hart Buller Certified by

212 Brooksbank Ave North Vancouver, B.C. Canada V7J 2C1

5-NCV-85

Phone:

(604) 984-0221

Telex:

043-52597

Analytical Chemists .

Geochemists Registered Assayers

CERTIFICATE OF ANALYSIS

TO : MONO GOLD MINES INC.

C/O BEAVEN CONSULTING LTD.

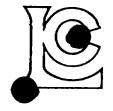
8720 MILLMORE RD. RICHMOND. B.C.

V7C 1S9

** : A8517824-007-CERT. #

INVOICE # : 18517824

DATE P.O. #


BANNOCK BURN

00:	BEAVON	CONSULTING.	MACOC.	JNT.

	CONSULTING.	MACUC,	UNI.				
Sample	Prep	βİ					
aescription	code	mqq					
 1060	201	0.2					
1061	201	0.1					
1062	201	0.4					
1063	201	0.1		·			 '
1064	201	0.1					
1065	201	0.1					
1066	201	0.2					
1067	201	0.2					
1068	201	0.1					
1069	201	0.2			· <u>-</u> -		
1070	201	0.1					
1071	201	0.1				- -	
1072	201	0.2					
1073	201	0.1					
1074	201	0.1					
1075	201	0.1					
1076	201	0 • 4			·		
1077	201	0.2					
1078	201	0.1					
1079	201	0.1					
1080	201	0.3	***				
1081	201	0.1					
1082	201	0.1					
1083	201	0.1					
1084	201	0.2					
1085	201	0.1					
1086	201	0.1					
1087	201	0.1					
1088	201	0.1					
1089	201	0.3					
1090	201	0.1				~-	
1091	201	0.1					
1092	201	0.2					
1093	201	0.2					
1094	201	0.3					
1095	201	0.1					
1090	201	0.1					
1097	201	0.2					
1093	201	0.2					
1099	201	0.1					

VOI rev. 4/81

Certified by

212 Brooksbank Ave. North Vancouver, B.C.

Canada

V7J 2C1

Phone: Telex:

(604) 984-0221 043-52597

Analytical Chemists -

Geochemists · Registered Assayers

CERTIFICATE UF ANALYSIS

TO : MONO GOLD MINES INC.

C/O BEAVON CONSULTING LTD.

8720 MILLMORE RD. RICHMOND, B.C.

V7C 1S9

* *

CERT. # : A8517824-008-

INVOICE # : 18517824 DATE 5-NCV-85

P.O. #

BANNOCK BURN

Sample Prep Bi Gescription Code Opm			CUNSULTING.		UNT.			•
1100				Ві				
1101								
1102						 		
1103						 		
1104					- , -	 		
1105						 		'
1106						 -		
1107						 		
1108						 		
1109						 		
1110						 		
1111 201 0.2						 · <u></u>		
1112 201 1.1						 		
1113 201 0.3						 		
1114 201 0.1	_					 		
1115 201 0.5						 		
1116 201 0.4						 		
1117 201 0.9						 		
1118 201 0.2						 ·		
1119 201 0.4						 		
1120 201 0.1						 		
1121 201 0.1						 		
1122						 		
1123						 		
1124 201 0.2						 	,	
1125						 		
1126						 		
1127 201 0.3 1128 201 0.1 1129 201 0.2 1130 201 0.2 1131 201 0.1 1132 201 0.2 1133 201 0.2					- -	 		
1128						 		
1129 201 0.2 1130 201 0.1 1132 201 0.1 1133 201 0.2						 		
1130 201 0.2 1131 201 0.1 1132 201 0.2	:					 		
1131 201 0.1 1132 201 0.1 1133 201 0.2						 		
1132 201 0·1	:					 		
1133 201 0.2	ļ	1131				 		
1133 201 0.2		1132	201	0 • 1		 ***		
			201	0.2		 		
			201	0.2		 		

Certified by .

212 Brooksbank Ave. North Vancouver, B.C. Canada V7J 2C1

Telephone:(604) 984-0221

Telex: 043-52597

Analytical Chemists

Geochemists

CERTIFICATE UF ANALYSIS

TO : MONO GOLD MINES INC.

C/O BEAVON CONSULTING LTD.

8720 MILLMORE RD. RICHMOND, B.C.

V7C 1S9

CERT. # : A8518477-001-

INVOICE #: 18518477
DATE : 2-DEC-85

P.O. #

MADOC

Registered Assayers

CC: BEAVON CONSULTING, MADOC, ONT.

		CONSULTING.		, UNT.				
	Sample	Prep	Ag	Bi	Тe			
	description	code	mqq	ppm .	ppm			
	1986	201	0.1	0.1				
	1987	201	0.1	0.1				
	1988	201	0.1	0.1				
	1989	201	0.1	0.1				'
	1990	201	0.1	0.1				
	1991	201	0.1	0 • 1				
	1992	201	0.1	0.1				
	1993	201	0.1	0 • 2				
	1994	201	0.1	0.1	~ ~			
	1995	201	0.2	0 • 2				
	1996	201	0.2	0.5				
	1997	201	0.5	0 • 2				
	1998	201	0.1	0 • 4				
4	1999	201	0.5	0.6		49 es		
	2000	201	0.2	0.1				
_	3801	201		0.5				
	3802	201		0.1		·		
	3803	201		0 • 1				
	3804	201		0.1				
	3805	201		0.1				
	3806	201		0.1				
	3807	201		0.1				
	3808	201		0.2				
	3809	201		0.1				
	3810	201		0.1				
	3811	201		0.1				
:	3812	201		0.1				
	3813	201		0.1				
	3814	201		0.2				
	3815	201		0.1				
	3816	201		0.1				
	3817	201		0.1				
	3818	201		0.1				·
	3819	201		0.1				
	3820	201		0.1				
	3821	201		0.1				
	3822	201		0 • 1				
	3823	201		0.1				
_	3824	201		0.1				
	3825	201		0.1				

Certified by tart Sichler

Geochemists

Registered Assayers

212 Brooksbank Ave. North Vancouver, B.C Canada V7J 2C1

Telephone: (604) 984-0221 Telex: 043-52597

CERTIFICATE OF ANALYSIS

TO : MUND GOLD MINES INC.

C/O BEAVON CONSULTING LTD.

201

201

201

201

201

201

201

201

201

201

201

Analytical Chemists

8720 MILLMORE RD.

RICHMOND. B.C.

V7C 1S9

CERT. # : A8518477-004-

INVOICE #: 18518477
DATE : 2-DEC-85

DATE : P.O. # :

MADUC

							•
CC: BEAVON	CONSULTING	MADUC.	• TNG				
Sample	Prep	Ag	Вi	Te			
description	code	mqq	pom	mag			
4017	201		0.3	<0.05			
4013	201		0.2	<0.05			
4019	201		0.4	<0.05			
4020	201		0.3	<0.05			
4021	201		0.6	<0.05			
4022	201		0.1	<0.05			
4023	201		0.5	<0.05	~		
4024	201		0.3	<0.05	+-		
4025	201		0.1	<0.05			
4026	201		0.2	<0.05			
4027	201		0.1	<0.05			
4028	201		0.2	<0.05			
4029	201		1.1	0.10			
4030	201		0.3	<0.05			
4031	201		0.3	<0.05			
4032	201		0.2	<0.05			
4033	201		0.3	<0.05			
4034	201		0.2	<0.05			
4035	201		0 • 4	<0.05			
4036	201		0.8	<0.05			
4037	201		3.1	0.20			
4038	201		8.0	<0.05	,	THE ME	
4039	201		0.2	<0.05			
4040	201		0.2	<0.05			
4041	201		0.1	<0.05	- -		
4042	201		0.2	<0.05			
4043	201		0.3	<0.05			
4044	201		0.1	<0.05			
4045	201		0 • 1	<0.05			

0.1

0.1

0.1

0.1

0.1

0.2

7.2

0.2

0.1

0.2

0.1

TÂY.

4046

4047

4048

4049

4050

4051

4052

4053

4054

4055

4056

Certified by Garden

<0.05

<0.05

<0.05

<0.05

<0.05

<0.05

<0.05

<0.05

<0.05

<0.05

<0.05

Geochemists

Registered Assayers

212 Brooksbank Ave. North Vancouver, B.C.

Telephone: (604) 984-0221 043-52597

Telex:

CERTIFICATE OF ANALYSIS

TO : MOND GOLD MINES INC.

C/O BEAVON CONSULTING LTD.

Analytical Chemists

8720 MILLMORE RD. RICHMOND, B.C.

V7C 1S9

: A8518477-005-i CERT. #

INVOICE # : 18518477 DATE 2-CEC-85

P.O. #

MADOC

	CC: BEAV	UN CONSULTING	. MADUC.	ONT.			•
	Sample	Prep	Ag	Βí	Te	 	
	description	n code	mqq	pom	maq		
-	4057	201		0.1	<0.05	 	
4	4058	201		0.1	<0.05	 	
4	4059	201		0 • 2	<0.05	 	
	40 60	201		0.2	<0.05	 	<i>'</i>
	4061	201		0.3	<0.05	 	
	4062	201		0.3	<0.05	 	

	4057	201		0.1	<0.05			
	4058	201		0.1	<0.05			
	4059	201		0 • 2	<0.05			
	4060	201		0.2	<0.05			'
	4061	201		0.3	<0.05			
	4062	201		0.3	<0.05			
	4063	201		0.1	<0.05			
	4064	201		0.2	<0.05	-		
	4065	201		0.1				
	4066	201		0.2		· <u>-</u>		
	4067	201		0.1				
	4068	201		0.1				
	4069	201		0.1				
4	4070	201		0.1			 .	
•	4071	201		0.1				
	4072	201	;	0.1				
	4073	201		0.1		·		
	4074	201		0.1				
	4075	201		0.1				
	4076	201		0.1				
	4077	201		0.1				
	4078	201		0.1				
	4079	201		0.1				
	4080	201		0.2				
	4081	201		0.1				
	4082	201		0.1		·		
	4083	201		0.1				
	4084	201		0 • 1				
	4085	201		0.1				
	4086	201		0.1				
	4087	201		0.1			'	
	4038	201		0.1				
	4089	201		0.1				
	4090	201		0.1				
	4091	201		0.1				
	4092	201		0.1				
	4093	201		0.1				
	4094	201		0.2				
_	4095	201		0.1				
	4096	201		0.1				
3								

212 Brooksbank Ave. North Vancouver, B.C. Canada V7J 2C1

Telephone: (604) 984-0221

Telex: 043-52597

Analytical Chemists

Geochemists Registered Assayers

CERTIFICATE OF ANALYSIS

TO : MONO GOLD MINES INC.

C/O BEAVON CONSULTING LTD.

8720 MILLMORE RD. RICHMOND. B.C.

V7C 1S9

CERT. # : A8518477-006-A

INVOICE # : 18518477 DATE 2-DEC-85

P.O. #

MADOC

					MADUC	
CC: BEAVON (CONSULTIN	G. MADOC.	ONT.			•
Sample	Prep	Ag	8 i	Te		
description	code	ppm	ppm	ppm		
4097	201		0.1			
4098	201		0.1			
4099	201		0.1			
4100	201		0.1			 '
4101	201		0.1			
4102	201		0.1			
4103	201		0.1			
4104	201		0.1			
4105	201		0.1			
4106	201		0.1		<u></u> -	
4107	201		0.1			
4108	201		0.1			
4109	201		0.1	nine vilja		
4110	201	-	0.1			
4111	201		0.1			
4112	201	 .	0.2			
4113	201		0.5		·	
4114	201		0.1			
4115	201		0.2			
4116	201		0.1			
4117	201		0.1			
4118	201		0.1			
4119	201		0.1			
4120	201		0.1			
4121	201		0.1			
4122	201		0.1			
4123	201		0.1			
4124	201		0.1			
4125	201		0 • 1			
41 26	201		0.2			
4127	201		1 • 1			
4128	201		0.2			
4129	201		0.1			
4130	201		0.1			
4131	201		0 • 4			
4132	201		0.2			
4133	201		0.1			
4134	201		0.1	***		
4135	201		0 • 1		= -	
4136	201		0.2		**	

Certified by .

Geochemists · Registered Assayers

212 Brooksbank Ave.

North Vancouver, B.C.

Canada V7J 2C1

Telephone: (604) 984-0221 Telex: 043-52597

CERTIFICATE UF ANALYSIS

TO : MONO GOLD MINES INC.

C/O BEAVON CONSULTING LTD.

8720 MILLMORE RD. RICHMOND, B.C.

V7C 1S9

CERT. # : A8518477-007-

INVOICE #: 18518477
DATE : 2-DEC-85

P.O. #

MADOC

	OFAMON	CONCULT	1 8 . 0	MADOC	CHIT
ししる	DEAVUN	CONSULT	11/15 9	MADUL	UNI

Analytical Chemists

CC. DEAVON	CON2 OF LIK	G F MADUC F	UN I •			
Samole	Prep	Ag	Βi	Te		
description	code	mqa	pom	ppm		
4137	201		0.2			
4138	201		0.1			
4139	201		0.1			 ,
4140	201		0.4			
4141	201		0.1			
4142	201		0.2			
4143	201		0.1			
4144	201		8.0			
4145	201		0.2			
4146	201		0.2		· <u>-</u> -	
4147	201		0.1			
4148	201		0.1			
4149	201		0.1			
4150	201		0.2			
4151	201		0.2			
4152	201		0.1			
4153	201		0.1			
4154	201		0.1			
4155	201		0.1			
4156	201		0.2			

Certified by Startler

212 Brooksbank A.; North Vancouver, B. Canada V7J.2

Telephone:(604) 984-02

elex: 043-525:

Analytical Chemists . . .

Geochemists • Registered Assayers

CERTIFICATE OF ANALYSIS

TO : MONO GOLD MINES INC.

C/O BEAVON CONSULTING LTD.

8720 MILLMORE RU. RICHMOND, B.C. CERT. # : A8518761-001

INVOICE # : 18518761 DATE : 13-DEC-85

DATE : P.O. # :

MADOC

	V79/159					MADUC		
	CC: BEAVON	Z1381010 T18	C MADO	C) ALT		•		
	Sample	Prep	Bi	Au ppb	Cu	Te		
-	<u>description</u>	code	ppm	FA+AA	mga 	ppm		
,	4445	201	0.1					
	4446 4447	201	0.1 0.1					
į	4448	201 201	0.1					
l					-			
	4449	201	0.1					
ļ	4450	201	0.1					
	4451	201	0.1					
	4452	201	0.1					
	4453	201	0.2					
1	4454	201	0.2			`		
	4455	201	0.1					
	4456	201	1.0 0.3					
	4457	201						
	4458	201	1.5					
	4459	201	0.7					
	4460	201	0.5					
	4461	201	0.6		~~			
	4462	201	0.3					
	4463	201	0.3					
	4464	201	0.2					
	4465	201	0 • 1 0 • 2					
	4466	201	0.2					
	4467	201 201	0.2					
	4468		0.1					
!	4469	201	0.1					
	4470	201	0.1					
	4471	201						
	4472	201	0.1					
ì	4473	201	0.1					
	4474	201	0.2					
1	4475	201	0.5					
	4476	201	0.2					
	4477	201	0.2					
	4478	201	0.1					
	4479	201	0.1			**-		
	4480	201	0.1					
i	4481	201	0.1					
;	4482	201	0.1					
	4493	201	0.1					
	4484	201	0.2					

certified by townsoller

Analytical Chemists • Geochemists • Registered Assayers

212 Brooksbank
North Vancouver, E
Canada V7J

Telephone: (604) 984-0. Telex: 043-52

CERTIFICATE OF ANALYSIS

TO : MOND GOLD MINES INC.

C/O BEAVON CONSULTING LTD.

8720 MILLMORE RD. RICHMOND. B.C.

V7C 1S9

CERT. # : A8518761-00.

INVDICE # : 18518761 DATE : 13-DEC-85

P.O. #

MADUC

	ALC 123					MADUC		
	CC: BEAVON	CONCILTIN	C. MADOC	• UNT -				
	Sample	Prep	Ві	Au ppb	Cu	Te		
	description	code	ppm	FA+AA	mqq	pom		
	4485	201	0.1					
	4486	201	0.1					
	4487	201	0.1					
	4488	201	0.1	-			-	
	4489	201	0.1					
	4490	201	0.1			= =		
	4491	201	0.2					
	4492	201	0.1					
	4493	201	0.1					
	4494	201	0-1				~-	
	4495	201	0.7					
	4496	201	0.6					
	4497	201	0.6					
	4498	201	0.2					
	4499	201	0-1		'			
	4500	201	0.1					
	4537	201	0.2			***		
	4538	201	0.1	** **				
	4539	201	0.3					
	4540	201	0.6					
	4541	201	0.2					
	4542	201	0.3					
	4543	201	0.1					
	4544	201	0.1					
	4545	201	0.2					
	4546	201	0.3					
	4547	201	0.1					
	4548	201	1.0			-		
	4549	201	0.2					
	4550	201	0.4			 .		
	4551	201	0.1					
	4552	201	0.2					
	4553	201	0.1					
	4554	201	0.1				,	
	4555	201	0.3					
	4556	201	0 - 2					
	4557	201	0.3					
	4558	201	0.2					
	4559	201	0.2					
	4560	201	0.1					
J								

CTA (V) Certified by Hand Buchlan

212 Brooksbank A North Vancouver, B Canada V7J 2

Telephone: (604) 984-02

043-525

Analytical Chemists • Geochemists • Registered Assayers

CERTIFICATE OF ANALYSIS

TO : MONO GOLD MINES INC.

C/O BEAVON CONSULTING LTD.

8720 MILLMORE RD. RICHMUND, B.C.

V7C 1S9

CERT. # : A8518761-003

Telex:

INVOICE # : 18518761 DATE : 13-DEC-85

P.O. #

MA DOC

A1C 123					MADUC		
CC: BEAVUN	I CUNSULTIN	IC. MADDO	` . FIMT -				
Sample	Prep	Bi	Au ppb	Cu	Te		
description	code	ppm	FA+AA	ppm	ppm		
4561	201	0.1					
4562	201	0.2					
4563	201	0.2					
4564	201	0.1					
4565	201	0.2					
4566	201	0.3					
4567	201	0.6					
4568	201	0 • 2			major street		
4569	201	0.1				-	
4570	201	0.2			,		
4571	201	0.3					
4572	201	0.2					
4573	201	0.3					
4574	201	0.3					
4575	201	0.1					
4576	201	0.1					
4577	201	0.3			. 		
4578	201	0.2					
4579	201	0.1					
4580	201	0.1					
4581	201	0.2	~-				
4582	201	0.1					
4583	201	0.1					
4584	201	0.1					
4585	201	0.1					
4586	201	0.1					
4587	201	0.1	~-				
4588	201	0.1					
4589	201	0.1					
4590	201	0.1					
4591	201	0.2					
4592	201	0 • 1				·	
4593	201	0.1					
4594	201	0.1					
4595	201	0.1					
4596	201	0.1					
4597	201	0.1					
4598	201	0.1					
4599	201	0.1					
4600	201	0.1					

Certified by ...

212 Brooksbank North Vancouver, i V7J

Telephone: (604) 984 (1) Telex:

Analytical Chemists • Geochemists • Registered Assayers

CERTIFICATE OF ANALYSIS

TO : MOND GOLD MINES INC.

C/O BEAVON CONSULTING LTD.

B720 MILLMORE RD. RICHMOND, B.C.

V7C 1S9

CERT. # : A8518761-00

INVOICE # : 18518761 DATE : 13-DEC-85

P.O. #

MADOC

cc:	BEAVON	CONSULT	ING.	MADOC,	ONT.

	CC: BEAVUN	CONSULTING.	MADO				•	
	Sample	Prep	Вi	Au ppb	Cu	Te		
	description	code	mqq	FA+AA	ppm	bbw		
	4601	201	0.5	= =				
	4602	201	0.1					
	4603	201	0.1					
1	4604	201	0.2					
	4605	201	0.1					
}	4606	201	0.1					
1	4607	201	0.1					
	4608	201	0.2					
	4609	201	0.1					
	4610	201	0.1			.*		
	4611	201	0.1					
	4612	201	0.1	=-		***		
	4613	201	0 • 2					
~	4614	201	1.0	→ -				
	4615	201	0 • 2		~~			
	4615	201	0.2	** -	an To			
	4617	201	0.2					
	4618	201	2.4					
1	4619	201	0.3					
	4620	201	0.1					
	4621	201	0.1	· 	***			
	4622	201	0.2					
	4623	201	0.1					
	4624	201	0.1					
	4625	201	0.1					
	46 26	201	0.2	***				
i	4627	201	0.1					-
	4623	201	0.1					
	4629	- · · ·	0.1			****		
	4630	201	0.1					
	4631	201	0.1					
	4632	201	0.1					
	4633	201	0.1					
•	4634	201	0.1					
	4635	201	0.1		. 			
	4636	201	0.1					
	4637	201	0.1			~-		
	4638	201	0.2					
3	4639	201	0.1					
	4640	201	0 • 2					

Certified by .

Haut Buchler

Analytical Chemists • Geochemists • Registered Assayers

212 Brooksbank A North Vancouver, 5 V7J 2:

Telephone:(604) 984-02 Telex: 043-5251

CERTIFICATE OF ANALYSIS

TO : MONO GOLD MINES INC.

C/O BEAVON CONSULTING LTD.

8720 MILLMORE RD. RICHMOND, B.C.

V7C 1S9

CERT. # : A8518761-00:

INVOICE # : 18518761 DATE : 13-DEC-85

P.O. #

MADOC

	cc:	BEAVON	CONSULTING.	MADDC,	ŭNT•
--	-----	--------	-------------	--------	------

		CONSULTING					•	
	Sample	Prep	81	Au ppb	Cu	Te		
	description	code	ppm	FA+AA	ppm	ppm		
	4641	201	0.1					
	4642	201	0.1					
	4643	201	0.1					
1	_4644	201	0.2		- -			
	4645	201	0.1					
•	4646	201	0.2	· ·				
1	4647	201	0.1			***		
	4648	201	0.2					
ļ	4649	201	0.1					
	4650	202	0.1	< 5	93	<0.05		
	4651	202	0.1	< 5	15	0.10		
ŀ	4652	202	0.1	< 5	16	<0.05		
1	4653	202	0.1	<5	23	0.05		
	4654	202	0 • 2	15	62	0.10		
	4655	202	8.0	< 5	62	0.30		
	4656	202	0.9	<10	100	0.40		
1	4057	202	1.4	<10	131	0.50		
	4658	202	2 • 4	<10	137	0.60		
	4559	202	3.7	<20	59	1.00		
	4660	202	0.4	<10	118	<0.05		
.	4661	202	0.2	15	59	0.05		
	4662	202	1.0	150	82	0.10		
•	4663	202	1.9	340	102	0.20		
	4664	202	0 • 8	70	84	0.10		
1	4665	202	1.1	270	95	0.15		
	4666	201	0 • 2					
	4667	201	0.2					
	4668	201	0.1					
	4669	201	0.2					
	4670	201	0.2		~ ~			
	4671	201	0.3					
	4672	201	0.1					
.]	4673	201	0.1				 ,	
	4674	201	0.2					
	4675	201	0.2	₩-				
i	4676	201	0 • 2					
	4677	201	0.3					
	4678	201	0.1					
	4079	201	0.2					
	4680	201	0.1					

Hawk Bichler Certified by .

212 Brooksbank Av-North Vancouver, B.

Canada V7J 2C.

Telephone: (604) 984-0221 Telex: 043-5259

Analytical Chemists • Geochemists • Registered Assayers

CERTIFICATE OF ANALYSIS

TO : MUNU GOLD MINES INC.

C/O BEAVON CONSULTING LTD.

8720 MILLMORE RD.

RICHMOND, B.C.

V7C 1S9

CERT. # : A8518761-006-

INVOICE # : 18518761 DATE : 13-DEC-85

P.O. #

MADUC

ALC 124					MADUC		
	CUNSULTIN				·		•
Sample	Prep	Вi	dag uA	Çu	Te		
description	code	ppm	FA+AA	ppm	ppm		
4681	201	0.3					
4682	201	0 • 2					
4683	201	0.1					
4684	201	0.1				~ ~	
4685	201	0.1		~-	***		
4686	201	0.1				~~	
4687	201	0.1					
4688	201	0.1					
4689	201	0.1					
4690	201	0.2			.′ 		
4691	201	0.1					
4692	201	0.1					
4693	201	0.1					
4694	201	0.1					
4υ95	201	0 • 2					
4696	201	0.1					
4697	201	0 • 2					
4698	201	0.1					
4699	201	0.1					
4700	201	0.1					
4701	201	0.1					
4702	201	0.1					
4703	201	0 • 1					
4704	201	0.1					
4705	201	0.1					
4706	201	0.2					
4707	201	0 • 1					
4708	201	0.1					
4709	201	01		·	 .		
4710	201	0.1					
4711	201	0 • 1					
4712	201	0.1					
4713	201	0 • 2					
4714	201	0.1					
4715	201	0 • 2					
4716	201	0.2					
4717	201	0.1	e-				
4718	201	0.2					
4719	201	0.2					
4720	201	0.2					

Certified by .

212 Brooksbank Ave.

North Vancouver, B.C. Canada V7J 2C1

Phone:

(604) 984-0221

Telex:

043-52597

Analytical Chemists

Geochemists

Registered Assayers

CERTIFICATE OF ANALYSIS

TO : MONO GOLD MINES INC.

C/O BEAVON CONSULTING LTD.

8720 MILLMORE RD. RICHMOND, B.C.

V7C 1S9

** CERT. # : A8518224-001-

INVOICE # : 18518224 DATE : 15-NOV-85

P.O. # : NONE

MADOC

Samole description code ppm 001 214 <0.05	CC: BEAVON	CONS., M	ADOC . ONTAI	RIO			•
001	Samole	Prep	Te				
001	description	code	maa				
047		214					
059 214 0.20	035	214	<0.05				
066 214 0.20	047		<0.05				
068	059	214	0.20				 '
069	066	214	0.20				
069	068	214	<0.05				
076 214 <a>0.05 <td>069</td> <td></td> <td><0.05</td> <td></td> <td></td> <td></td> <td> </td>	069		<0.05				
157 167 214 <0.05	071	214	<0.05				 ~-
167	076	214	<0.05			***	
682	157	214	<0.05			· <u>-</u> -	
683 686 686 687 692 214 6005 697 214 6005 698 214 6005 699 214 6005 700 214 6005 711 214 6005 711 214 6005 711 214 6005 711 214 6005 711 214 6005 711 214 6005 711 214 6005 711 214 6005 711 214 6005 711 214 6005 711 214 6005 711 214 6005 711 214 6005 711 214 6005 711 214 6005 711 711 711 711 711 711 711 711 711	167	214	<0.05				
686 689 614 6005 697 214 6005 698 214 6005 700 214 6005 711 214 6005 711 214 6005 711 214 6005 711 214 6005 711 214 6005 711 214 6005 711 214 6005 711 214 6005 711 214 6005 711 214 6005 711 214 6005 711 214 6005 711 214 6005 711 214 6005 711 214 7005 711 214 7005 711 711 711 711 711 711 711 711 711	682	214	0.35				
689	683	214	0.15				 ~~
692 214 0.05 <td< td=""><td>686</td><td>214</td><td><0.05</td><td></td><td></td><td></td><td> </td></td<>	686	214	<0.05				
697 214 0.05 <td< td=""><td>689</td><td>214</td><td><0.05</td><td></td><td></td><td>=-</td><td> </td></td<>	689	214	<0.05			=-	
698 214 0.05 <td< td=""><td>692</td><td>214</td><td><0.05</td><td></td><td></td><td></td><td> </td></td<>	692	214	<0.05				
699 214 0.05 <td< td=""><td>697</td><td>214</td><td><0.05</td><td></td><td></td><td>-</td><td> </td></td<>	697	214	<0.05			-	
700	698	214	<0.05				 45 W
711	699	214	<0.05				
110 214 <0.05	700	214	<0.05				
310 214 <0.05	711	214	<0.05		,		
311 214 <0.05	110	214	<0.05				
312 214 <0.05	310	214	<0.05				
320 214 <0.05	311	214	<0.05				
348 214 <0.05	312	214	<0.05				
469 214 <0.05		214	<0.05				
473 214 0.20 474 214 <0.05	348	214	<0.05				
474 214 <0.05 477 214 <0.05	469	214	<0.05				
477 214 <0.05	473	214	0.20				
	474	214	<0.05				
	477	214	<0.05				
721 214 0.20	721	214	0.20				
729 214 0.10	729	214	0.10				
781 214 <0.05	781	214	<0.05				
782 214 <0.05							
783 214 <0.05			<0.05				
788 214 <0.05							
789 214 <0.05							
790 214 <0.05	1						
795 214 <0.05							 - -

VOI rev. 4/8

Certified by Hartbackler

212 Brooksbank Ave. North Vancouver, B.C.

Canada V7J 2C1

Phone:

(604) 984-0221

Telex:

043-52597

Analytical Chemists

Geochemists

Registered Assayers

CERTIFICATE UF ANALYSIS

TO : MOND GOLD MINES INC.

C/O BEAVON CONSULTING LTD.

8720 MILLMORE RD.

RICHMOND, B.C.

V7C 159

**

CERT. #

: A8518224-002-/

INVOICE # : 18518224

DATE P.O. # : 15-NOV-85 : NONE

MADOC

	CC: BEAVON	CONS	MADOC . DI	NTARIO		·
	Samole	Prep	Te			
	description	code	maa			
-	809	214	<0.05		 	
:	859	214	<0.05		 	
	860	214	0.30		 	
	864	214	0.10		 	 <i>'</i>
:	867	214	<0.05		 	
	868	214	0.10		 	
	870	214	0.40		 	
1	1021	214	<0.05		 	
	1038	214	<0.05		 	
	1112	214	<0.05		 · <u>-</u> -	

Certified by .

Geochemists Registered Assayers

212 Brooksbank Ave. North Vancouver, B.C. Canada V7J 2C1

Telephone: (604) 984-0221

Telex:

043-52597

CERTIFICATE OF ANALYSIS

Analytical Chemists

TO : MUND GOLD MINES INC.

C/O BEAVON CONSULTING LTD.

8720 MILLMORE RD. RICHMOND, B.C.

V7C 1S9

CERT. # : A8518437-001-

INVOICE # : 18518437 DATE : 25-NOV-85

P.O. #

MONU NE

	THESE SAMPLES	ARE FR	OM THE FIRST	SUBMIS	SION ON A	48514058		
	Sample	Prep	Te					
	description	code	mqq					
	002	214	<0.05				_ =	
	003	214	<0.05					
	004	214	<0.05					
	005	214	<0.05					
	006	214	<0.05					
	007	214	<0.05					
	008	214	N . S . S .					
	009	214	<0.05					
	010	214	<0.05			- -		
	011	214	<0.05			·		
	012	214	<0.05					
	013	214	<0.05					
_	014	214	<0.05					
	015	214	<0.05					
	016	214	<0.05					
	017	214	<0.05			. 		
	918	214	<0.05					
	019	214	<0.05					
:	020	214	<0.05					
	921	214	<0.05					~-
	022	214	<0.05					
	023	214	<0.05					
1	024	214	<0.05					
	025	214	<0.05					
	026	214	<0.05					
1	027	214	<0.05					
;	028	214	<0.05					
	029	214	<0.05					
	030	214	<0.05					
	031	214	<0.05					
	032	214	0.20					
	033	214	<0.05					
	034	214	0.30					·
	1 36	214	<0.05					
	037	214	<0.05					
	038	214	<0.05					
	039	214	<0.05			'		
	040	214	<0.05					
	041	214	<0.05					
	042	214	<0.05					

Certified by

212 Brooksbank Ave. North Vancouver, B.C. Canada V7J 2C

Telephone: (604) 984-0221

Telex:

043-5259

Analytical Chemists

Geochemists

Registered Assayers

CERTIFICATE UF ANALYSIS

10 : MOND GOLD MINES INC.

C/O BEAVON CONSULTING LTD.

3720 MILLMORE RU. RICHMOND. B.C.

V7C 159

CERT. # : A8518437-002-

INVOICE # : 18518437 DATE : 25-NOV-85

P.O. #

MOND NE

14626 2	PARAFEEZ AKE EK	UM THE FIRS	1 203MI22IPA	UN	<u> 40014000</u>
Samule	Ргер	Te			

			DAL THE LIKE	5 1 3 U J PI 1 3	SIUN UN A	714070		
	Samule	Prep	Te					
	<u>description</u>	code	mqq					
	043	214	<0.05					
	044	214	<0.05					
	045	214	<0.05					
	046	214	<0.05					
	048	214	<0.05				,	
	049	214	<0.05					
	050	214	<0.05					
	051	214	<0.05		-			
	052	214	<0.05			7-		
	053	214	<0.05			·		
	054	214	<0.05					
	055	214	<0.05					
_	056	214	<0.05					
	057	214	<0.05					
	058	214	<0.05					
	060	214	0.30					
	061	214	<0.05					
	062	214	<0.05					
	063	214	<0.05					
	064	214	<0.05					
	065	214	<0.05					
	067	214	<0.05					
	070	214	<0.05					
	072	214	<0.05					
	073	214	<0.05					
	074	214	<0.05					
	075	214	<0.05					
	077	214	<0.05					
	078	214	<0.05					
	079	214	<0.05					
		'						

Hart Bichler Certified by

212 Brooksbank Av.
North Vancouver, B.C
Canada . V7J 2C

Telephone: (604) 984-0221 Telex: 043-5259;

Analytical Chemists

Geochemists

Registered Assayers

CERTIFICATE OF ANALYSIS

TO : MONU GOLD MINES INC.

C/O BEAVON CONSULTING LID.

8720 MILLMORE RO. RICHMUND. 8.C.

V7C 159

CERT. # : A8518438-001-

INVUICE #: 18518438
DATE: 25-NOV-85

P.O. #

MADOC

CC:BEAVUN CO	NS UL TING	.MADOC .GNT	•			•
Sample	Prep	Te				
<pre>_ description</pre>	code	maa				
071	214	U.40				
075	214	<0.05				
082	214	<0.05				 ,
112	214	<0.05				
113	214	<0.05				
114	214	<∪.05				
115	214	<0.05			·	 ·
115	214	<0.05				
117	214	<0.05			.7-	
118	214	<0.05				
119	214	<u•05< td=""><td></td><td></td><td></td><td> </td></u•05<>				
120	214	<0.05				
121	214	<0.05				 حيد هـــه
122	214	<0.05				
123	214	<0.05				
124	214	<0.05 ⋅				
125	214	<0.05				
126	214	<0.05				
127	214	<0.05				
128	214	0.20				
129	214	<0.05				
130	214	<0.05				
131	214	<0.05				
132	214	<0.05				
133	214	<0.05				
469	214	<0.05				
470	214	<0.05				
471	214	<0.05				
472	214	<0.05				
473	214	N.S.S.				
474	214	<0.05				
475	214	<0.05		, - -		
476	214	<0.05				 ·
477	214	N • S • S •				
478	214	<0.05	'			
713	214	<0.05				
714	214	<0.05				
71 5	214	<0.05			7-	
716	214	<0.05				
717	214	<0.05				

Certified by Haut Sichler

Geochemists Registered Assayers

212 Brooksbank Av ϵ North Vancouver, B.C Canada V7J 2C1

Telephone: (604) 984-0221

Telex: 043-52597

CERTIFICATE OF ANALYSIS

TO : MONO GOLD MINES INC.

C/O BEAVON CONSULTING LID.

Analytical Chemists

8720 MILLMORE RU.

RICHMOND, B.C.

V7C 1S9

CERT. # : A8518438-002-

INVUICE # : 18518438

DATE : 25-NOV-85

P.O. # :

MADUC

CC: BEAVON CO	NSULTING	. MADOC . DNT .	·			•
Sample	Prep	Te				
description	code	ppm				
713	214	<0.05				
719	214	<∪. ∪5				
720	214	<0.05				 ,
721	214	0.10				 '
722	214	<0.05				 ~-
723	214	<0.05				
724	214	<0.05				
725	214	<0.05				
7 26	214	<0.05		•	- -	 ***
727	214	<0.05	- -			
728	214	<0.05				
7 29	214	<0.05				
730	214	<0.05				
731	214	<0.05				
732	214	<0.05				
733	214	<0.05 ·				
734	214	<0.05		~		
735	214	<0.05				
736	214	<0.05				
737	214	<0.05				 ==
738	214	<0.05				
739	214	<0.05				
740	214	<0.05	;			
741	214	<0.05				
742	214	<0.05				
743	214	<0.05				
744	214	<0.05				
745	214	<0.05				 ~
746	214	<0.05				
747	214	<0.05				
748	214	<0.05				
749	214	<0.05				
7 50	214	<0.05				
751	214	<0.05				
752	214	<0.05				
753	214	<0.05				 1000 1000
754	214	<0.05				
755	214	<0.05				
7 56	214	<0.05				
757	214	<0.05				

Certified by HartBuhler

Geochemists Registered Assayers 212 Brooksbank Ave. North Vancouver, B.C. V7J 2C1

Telephone: (604) 984-0221 Telex: 043-52597

CERTIFICATE OF ANALYSIS

TO : MOND GOLD MINES INC.

C/O BEAVON CONSULTING LTD.

8720 MILLMORE RD.

RICHMOND. B.C.

V7C 1S9

CERT. #

: A8518438-003-

INVOICE # : 18518438

DATE

: 25-NCV-85

P.O. #

MADOC

CC: BEAVON COMSINITING . MADOC . ONT

Analytical Chemists

T59	CC: BEAVON CO	INSULTING		•				
758		Prep	Te					
759	description							
760								
761	759	214	<0.05					
762	760					-	·	
932 214 0.05	761							'
3863 214 <0.05	762	214	<0.05					
885	332	214	<0.05					
886	883	214	<0.05		-40			
892 214 0.05	385	214	<0.05					
892 214 0.05	886	214	0.30					
1144		214	0.05					
1145	925	214	<0.05		un 400			
1146	1144	214	<0.05	~-				
1149 214 0.40	1145	214	<0.05					
1149 214 0.40	1146	214	<0.05					
1189		214	0.40					
1203	1158	214	1.10					
1203	1189	214	<0.05			·		
1224 214 <a> 0.05 		214	<0.05					
1225 214 <0.05		214	<0.05					
1226		214	<0.05					
1228 214 0.05 		214	<0.05					·
1229 214 <0.05		214	<0.05					
1229 214 <0.05	1228	214	<0.05					
1230		214	<0.05					
1232 214 <0.05	1230	214	<0.05					
1233	1231	214	<0.05					
1234 214 <0.05	1232	214	<0.05					
1237	1233	214	<0.05	<u></u>				
1244	1234	214	<0.05	-		***		
1249 214 <0.05 1251 214 <0.05 1333 214 0.30 1384 214 <0.05 1387 214 <0.05 1400 214 <0.05 1406 214 1.00	1237	214	<0.05					
1251 214 <0.05 1333 214 0.30 1384 214 <0.05 1387 214 <0.05 1400 214 <0.05 1406 214 1.00	1244	214	<0.05				_ =	
1333 214 0.30 1339 214 <0.05 1384 214 <0.05 1387 214 <0.05 1400 214 <0.05	1249	214	<0.05					
1333 214 0.30 1339 214 <0.05 1384 214 <0.05 1387 214 <0.05 1400 214 <0.05	1251	214	<0.05					·
1339 214 <0.05 1384 214 <0.05 1387 214 <0.05 1400 214 <0.05								
1384 214 <0.05 1387 214 <0.05 1400 214 <0.05								
1387 214 <0.05 1400 214 <0.05								
1400 214 <0.05								
1406 214 1.00								
─ 1403 214 <0.05	1403	214	<0.05					

Certified by

212 Brooksbank Ave North Vancouver, B.C Canada V7J 2C1

Telephone:(604) 984-022

Telex: 043-52597

Analytical Chemists

Geochemists

Registered Assayers

CERTIFICATE OF ANALYSIS

TO : MONO GOLD MINES INC.

C/O BEAVON CONSULTING LTD.

8720 MILLMORE RD.

RICHMUND, B.C.

V7C 1S9

CERT. # : A8518438-004-

INVUICE # : 18518438 DATE : 25-NOV-85

DATE : P.O. # :

MADUC

CC:BEAVON	CONSULTING , MADOC	· UNT •

Sample	Prep	Te				
description	code	ppm	 			
1409	214	<0.05	 			
1410	214	<0.05	 ~-	~ ~		
1411	214	<0.05	 			,
1412	214	<0.05	 			
1413	214	<0.05	 			
1414	214	0.30	 			
1415	214	<0.05	 			
1416	214	<0.05	 			
1417	214	<0.05	 	, - -		
1418	214	<0.05	 			
1419	214	<0.05	 			
1420	214	<0.05	 			
_ 1421	214	<0.05	 			
1422	214	<0.05	 			
1423	214	<0.05	 			
1424	214	<0.05	 	. 		
1425	214	0.05	 			
1433	214	<0.05	 			
1434	214	<0.05	 			
1436	214	<0.05	 			
1441	214	<0.05	 		·	

Certified by Hartschler

212 Brooksbank Ave North Vancouver, B.C. Canada V7J 2C1

Phone:

(604) 984-0221

Telex: 043-52597

Analytical Chemists

Geochemists

Registered Assayers

CERTIFICATE OF ANALYSIS

TO : MOND GOLD MINES INC.

C/O BEAVON CONSULTING LID.

8720 MILLMORE RD.

RICHMOND, B.C.

V7C 1S9

CERT. # : A8518676-001-

INVOICE # : 18518676 DATE 5-DEC-35

P.O. #

MADOC

cc:	BEAVON	CONSULTING	. MADUC.	JNT.
			-	

Sample	Prep	Te	UNI •				
description	code	mag					
038	214	<0.05					
099	214	<0.05					
100	214	<0.05					
101	214	<0.05					'
102	214	<0.05					
103	214	<0.05					
104	214	<0.05					
105	214	<0.05					
106	214	<0.05					
107	214	<0.05			<u></u> _		
108	214	<0.05					
109	214	<0.05					
111	214	<0.05					
152	214	<0.05				:	
153	214	<0.05					
154	214	<0.05					
155	214	<0.05			·		
156	214	<0.05		. 			
158	214	< 0.05					
159	214	<0.05					
160	214	< 0∙05					
161	214	<0.05					
162	214	<0.05	~-				
163	214	<0.05					
164	214	<0.05					
165	214	<0.05					
166	214	<0.05	-				
168	214	<∪.05					
169	214	<0.05					
461	214	<0.05		'			
462	214	<0.05					
463	214	<0.05					
464	214	<0.05					
465	214	<0.05					
674	214	<0.05					
675	214	<0.05					
576	214	<0.05					
677	$\frac{1}{2}$ 14	<0.05					
673	214	<0.05					
672	214	<j.05< td=""><td></td><td></td><td>· </td><td></td><td></td></j.05<>			· 		

Certified by .

Geochemists

212 Brooksbank Ave. Canada

North Vancouver, B.C V7J 2C1

Phone:

(604) 984-0221

Telex:

043-52597

CERTIFICATE OF ANALYSIS

TO : MONU GOLD MINES INC.

C/3 BEAVEN CONSULTING LTD.

Analytical Chemists

8720 MILLMORE PD. RICHMUND, P.C.

V7C 159

CERT. # : A8518676-002

INVOICE # : 18518676 DATE 5-DEC-85

P.O. #

MADOC

Registered Assayers

· · · - -							
CC: BEAVON	CONSULT	NG. MADDO.	ONT.				•
Sample	Prep	Te	<u> </u>				
description	code	ppm					
680	214	<0.05					
681	214	<0.05					
634	214	<0.05					
685	214	<0.05					*
687	214	<0.05					
772	214	<u-05< td=""><td></td><td></td><td></td><td>** ***</td><td></td></u-05<>				** ***	
773	214	<0.05					
774	214	<0.05				***	
773	214	<0.05					
760	214	<0.05 <0.05			· <u>·</u>		
784	214	<0.05			~ ·-	~-	
7 85	214	<0.05					
786	214	<0.05					
787	214	0.10					
791	214	<0.05					
334	214	<0.05 <0.05					
987	214	<0.05					
3 83	214	<0.05 <0.05					
889	214	0.10	- -				
1007	214	<0.05					
	214	<0.05					
1008 1009	214	<0.05	_				
	214	<0.05			- -		
1010							
1011	214	<0.05			=-		
1014	214	<0.05			_		
1015	214	<0.05					
1016	214	<0.05					
1139	214	<0.05					
1140	214	0.10					
1141	214	0.05					
1142	214	<0.05				~ ~	
1143	214	<0.05					
1147	214	0.05					
1148	214	<0.05					
1150	214	<0.05	***				
1151	214	<0.05					
1152	214	<0.05					
1135	214	<0.05	~ **		-		
1136	214	<0.05					
1187	214	<0.05					

212 Brooksbank Ave North Vancouver, B.C. V7J 2C1

Canada

(604) 984-0221

Phone: Telex:

043-52597

Analytical Chemists

Geochemists

Registered Assayers

CERTIFICATE OF ANALYSIS

TO : MOND GOLD MINES INC.

C/O BEAVON CONSULTING LTD.

3720 MILLMORE RD.

PICHMOND, B.C.

V7C 1S9

CERT. # : A8518676-003-/

INVOICE # : 16518676 DATE 5-DEC-85

P.O. #

MADOC

cc:	BEAVON	CONSULTI	ING . MAD	JC. GNT.	
S . mo. 1	^	Dran	To		_

Sample	Prep	Te					
description	code	σρm					
1186	214	0.05					
1190	214	<0.05				-, -	
1191	214	<0.05					
1192	214	0.10					
1193	214	<0.05				~-	
1194	214	0.10					
1195	214	<0.05					
1196	214	<0.05			- -		
1197	214	<∪.05				~-	
1193	214	<0.05					
1199	214	<0.05					
1200	214	くり。 05			,		
1201	214	<0.05				- -	
1202	214	<0.05					
1204	214	<0.05			·		
1205	214	<0.05					
1529	214	0.05					
1530	214	<0.05				~-	
1544	214	<0.05					
1545	214	<0.05					
1546	214	<0.05°	- -				
1547	214	<0.05					
1548	214	<0.05					
1549	214	<0.05					
1550	214	<0.05					
1551	214	<0.05					
1552	214	<0.05					
1553	214	<0.05		'			
1562	214	<0.05					
1563	214	<0.05					
1564	214	<0.05					
1565	214	<u.05< td=""><td></td><td></td><td></td><td></td><td></td></u.05<>					
1584	214	<0.05					
1585	214	0.10					
1586	214	<j.05< td=""><td></td><td></td><td></td><td></td><td></td></j.05<>					
1587	214	0.05					
1583	214	0.10	- -				
1667	214	<3.05					
1668	214	<0.05					
1669	214	<0.05					VOI rev

212 Brooksbank Ave. North Vancouver, B.C.

Canada

V7J 2C1

Phone:

(604) 984-0221

Telex: 043-52597

Analytical Chemists •

Geochemists • Registered Assayers

CERTIFICATE OF ANALYSIS

TO : MOND GOLD MINES INC.

C/O BEAVON CONSULTING LTD.

8720 MILLMORE RD.

RICHMOND, B.C.

V7C 1S9

CERT. # : A8518676-004-A

INVOICE # : 18518676

DATE 5-DEC-85

P.O. #

- MA DOC

CC: BEAVON Sample	Prep	NG + MADOC Te	, 0.,,,		 	
description	code	ppm				
1671	214	<0.05			 	
1672	214	0.10		~~	 	_
1673	214	0.05			 	_
1674	214	0.05			 	_
1675	214	0.20			 	_
1676	214	0.15	*-		 	-
1696	214	0.10			 · —	_
1698	214	<0.05			 	-
1699	214	<0.05	A40 eap		 	_
1700	214	<0.05			 	-
1780	214	<0.05			 	-
1781	214	0.10			 	-
1858	214	<0.05			 	_
1859	214	<0.05			 	-
1860	214	0.10		<u> </u>	 	-
1861	214	0.05			 	-
1862	214	<0.05			 	-
1863	214	<0.05			 	-
1864	214	<0.05			 ·	_
1866	214	<0.05			 	-
1881	214	<0.05			 	-
1882	214	0.10			 	-
1883	214	0.10			 	-
1884	214	0.10		,	 	•
1886	214	0.10			 	-
1887	214	<0.05			 	-
1888	214	0.05			 	-

Certified by Hartsichler

212 Brooksbank Ave. North Vancouver, B.C. V7J 2C1

Canada

Phone: Telex:

(604) 984-0221 043-52597

CERTIFICATE OF ANALYSIS

Geochemists • Registered Assayers

TO : MONO GOLD MINES INC.

C/O BEAVON CONSULTING LTD.

8720 MILLMORE RD. RICHMOND, B.C.

V7C 1S9

CERT. # : A8518676-001-A

INVOICE # : 18518676 DATE

5-DEC-85

P.O. #

MADOC

_					
	descri	ption	code	ppm	
	Sampl	е	Prep	Te	
	cc:	BEAVON	CONSULTIN	G. MADOC.	ONT.

Analytical Chemists •

description	code	ppm_					
098	214	<0.05					
099	~214	<0.05					
100	214	<0.05					
101	214	<0.05					
102	214	<0.05					
103	214	<0.05					
104	214	<0.05					
105	214	<0.05	·				
106	214	<0.05					
107	214	<0.05					, ., -
108	214	<0.05					
109	214	<0.05					
111	214	<0.05			-		
152	214	<0.05					
153	214	<0.05			and the second s		
154	214	<0.05			***		
155	214	<0.05					
- 156	214	<0.05					
158	214	<0.05					
159	214	<0.05					
160	214	<0.05					
161	214	<0.05					
162	214	<0.05					
163	214	<0.05		,			
164	214	<0.05	The second secon				
165	214	<0.05					
166	214	<0.05			~-		
168	214	<0.05			₩=		
169	214	<0.05	~-				
. 461	214	<0.05					
462	214	<0.05					
463	214	<0.05					
464	214	<0.05					
465	214	<0.05	-0.00				
674	214	<0.05 .					
675	214	<0.05					
676	214	<0.05		·			
677	214	<0.05		-			
678	214	<0.05					
679	214	<0.05					

Certified by .

VOI rev. 4/85

212 Brooksbank Ave. North Vancouver, B.C. Canada V7J 2C1

Phone:

(604) 984-0221

Telex:

043-52597

Analytical Chemists •

Geochemists • Registered Assayers

CERTIFICATE OF ANALYSIS

TO : MONO GOLD MINES INC.

C/O BEAVON CONSULTING LTD.

8720 MILLMORE RD.

RICHMOND, B.C.

V76 159

CERT. # : A8518676-002-A

INVOICE # : 18518676 DATE 5-DEC-85

P.O. #

V7C 1S9			MADOC					
		NG . MADOC .	ONT.					
Sample	Prep	Тe						
description	code	pom						
680	214	<0.05						
681	~214	<0.05						
684	214	<0.05	~ ~					
685	214	<0.05						
687	214	<0.05						
772	214	<0.05						
773	214	<0.05						
774	214	<0.05			· ·			
779	214	<0.05						
780	214	<0.05	Colonia de Constantina de Colonia	The same same and the same same and the same same and the same same same and the same same same same same same same sam				
784	214	<0.05						
785	214	<0.05						
786	214	<0.05	440 min.					
787	214	0.10						
791	214	<0.05						
884	214	<0.05						
887	214	<0.05						
- 888	214	<0.05						
889	214	0.10						
1007	214	<0.05		45 44				
1008	214	<0.05			,			
1009	214	<0.05						
1010	214	<0.05						
1011	214	<0.05				100 000		
1014	214	<0.05						
1015	214	<0.05						
1016	214	<0.05						
1139	214	<0.05						
1140	214	0.10		- **		~-		
1141	214	0.05						
1142	214	<0.05						
1143	214	<0.05		***				
1147	214	0.05						
1148	214	<0.05						
1150	214	<0.05						
1151	214	<0.05						
1152	214	<0.05						
1185	214	<0.05						
1186	214	<0.05						
1187	214	<0.05						

Certified by

212 Brooksbank Ave North Vancouver, B.C. V7J 2C

Canada

Phone: (604) 984-022

Telex:

043-5259

Analytical Chemists

Geochemists • Registered Assayers

CERTIFICATE OF ANALYSIS

TO : MONG GOLD MINES INC.

C/O BEAVON CONSULTING LTD.

8720 MILLMORE RD. RICHMOND. B.C.

V7C 1S9

CERT. # : A8518676-003-

INVOICE # : 18518676 DATE 5-DEC-85 :

P.O. #

MADOC

<u> </u>	BEAVUN	CONSULT	ING.	MADDC.	ONT.

			NG. MADUC.	ONT.		····	
	Sample	Prep	Te				
	description	code	ppm				
	1188	214	0.05				
	1190	1 214	<0.05				
	1191	214	<0.05				
	1192	214	0.10				
	1193	214	<0.05				
	1194	214	0.10				
	1195	214	<0.05				
	1196	214	<0.05				
	1197	214	<0.05				
	1198	214	<0.05				
	1199	214	<0.05				
	1200	214	<0.05				
	1201	214	<0.05				
	1202	214	<0.05				
	1204	214	<0.05				
	1205	214	<0.05				
	1529	214	0.05				
	1530	214	<0.05				
	1544	214	<0.05				
	1545	214	<0.05				
	1546	214	<0.05				
	1547	214	<0.05				
	1548	214	<0.05				
	1549	214	<0.05				
	1550	214	<0.05				
	1551	214	<0.05				
	1552	214	<0.05				
	1553	214	<0.05				
	1562	214	<0.05		·	· 	
,	1563	214	<0.05			, 	
	1564	214	<0.05				
	1565	214	<0.05				
	1584	214	<0.05				
	1585	214	0-10				
	1586	214	<0.05				
	1587	214	0.05				
	1588	214	0.10				
	1667	214	<0.05				
_	1668	214	<0.05				
B	1669	214	<0.05				

Haut Bichler Certified by .

212 Brooksbank Av North Vancouver, B.c. V7J 2c

Canada

Phone:

(604) 984-022

Telex:

043-5259

Analytical Chemists •

Geochemists • Registered Assayers

CERTIFICATE OF ANALYSIS

TO : MONG GOLD MINES INC.

C/O BEAVON CONSULTING LTD.

8720 MILLMORE RD. RICHMUND. B.C.

V7C 1S9

CERT. # : A8518676-004

INVOICE # : 18518676 5-DEC-85 DATE

P.O. #

MADOC

Sample	Prep	Te					
description	code	maa					
1671	214	<0.05					
1672	7 214	0.10					
1673	214	0.05					
1674	214	0.05					
1675	214	0.20			The second second		
1676	214	0.15					
1696	214	0.10					
1698	214	<0.05			***		
1699	214	<0.05					
1700	214	<0.05					
1780	214	<0.05					
1781	214	0.10		,			
1858	214	<0.05					
1859	214	<0.05					
1860	214	0.10					
1861	214	0.05			-		
1862	214	<0.05					
1863	214	<0.05					
1864	214	<0.05					
1866	214	<0.05				, 	
1881	214	<0.05					
1882	214	0.10					
1883	214	0.10					
1884	214	0.10		, 			
1886	214	0.10			·		
1887	214	<0.05					
1388	214	0.05					

Hart Bichler Certified by

VOI rev.

212 Brooksbank Ave. North Vancouver, B.C. V7J 2C1

Telephone:(604) 984-0221

Telex: 043-52597

Analytical Chemists •

Geochemists • Registered Assayers

CERTIFICATE OF ANALYSIS

TO : MOND GOLD MINES INC.

C/O BEAVON CONSULTING LTD.

217

220

8720 MILLMORE RD.

RICHMOND, B.C.

V7C 1S9

4665 +80

CERT. # : A8518828-001-

INVOICE # : 18518828

DATE : 10-DEC-85

P.O. #

OGG AM

	CC: BEAVON	COSULTIN	NG. MADOC.	ONT.			٠.	
	Sample	Prep	Au ppb					
	description	code	FA+AA					
,	4650 +80	217	< 5			=-		
	4651 +80	~ 217	<5					
	4652 +80	217	<5					
	4653 +80	217	<5		, 			
	4654 +80	217	20					
	4655 +80	217	20					
1	4656 +80	217	< 5				·	
	4657 +80	217	10					
	4658 +80	217	5	·				
_	4659 +80	217	30					
]	4660 +80	217	25					
	4661 +80	217	15			· 		
1	4662 +80	217	175					
	4663 +80	217	1300		- -			
	4664 +80	217	95					

Certified by

212 Brooksbank Av-North Vancouver, B.C. V7J 2C

Telephone: (604) 984-022

043-5259

Analytical Chemists •

Geochemists • Registered Assayers

CERTIFICATE OF ANALYSIS

TO : MONO GOLD MINES INC.

C/O BEAVON CONSULTING LTD.

8720 MILLMORE RD. RICHMOND, B.C.

V7C 1S9

: A8518888-001 CERT. #

INVOICE # : 18518888 DATE : 16-DEC-85

P.O. #

MADOC

Sample	Prep	Te					
description	code	ppm					
3893	214	0.10					-
3895	214	0.05					-
41 27	214	0.10					_
4160	214	0.05	* ***				
4267	214	0.25					-
4268	214	0.20				-	-
4269	214	0.10					-
4271	214	0.10			'		-
4291	214	0.05					-
4297	214	0.50					-
4309	214	<0.05					-
4360	214	0.55	-				-
4381	214	0.15	- -				-
4383	214	0.05	·	, 			
4506	214	<0.05					•
4515	214	<0.05					-
4456	214	0.10					
4458	214	0.10					
4548	214	0.05					
4614	214	0.15					
4618	214	0.05					
4816	214	<0.05					-
4955	214	<0.05					
4956	214	<0.05					

Hart Bichler Certified by

212 Brooksbank Ave North Vancouver, B.C. Canada V7J 2C1

Telephone: (604) 984-0221

Telex: 043-52597

Analytical Chemists •

Geochemists • Registered Assayers

CERTIFICATE OF ANALYSIS

TO : MONO GOLD MINES INC.

C/O BEAVON CONSULTING LTD.

8720 MILLMORE RD. RICHMOND, B.C.

V7C 159

CERT. #

: A8518888-001-A

INVOICE # : 18518888

DATE

: 16-DEC-85

P.O. #

MADOC

Sample	breb	Te					
description	code	ppm					
3893	214	0.10					
3895	-214	0.05			-00 400		,==
4127	214	0.10					
4160	214	0.05					
4267	214	0.25					
4268	214	0.20					
4269	214	0.10	•				
4271	214	0.10		-			
4291	214	0.05					
4297	214	0.50				~-	
4309	214	<0.05					
4360	214	0.55					
4381	214	0.15					
4383	214	0.05		~ ~			
4506	214	<0.05					
4515	214	<0.05					
4456	214	0.10					
4458	214	0.10					
4548	214	0.05					
4614	214	0.15					
4618	214	0.05					
4816	214	<0.05					
4955	214	<0.05					
4956	214	<0.05					

Hant Buchler Certified by ..

212 Brooksbank Ave. North Vancouver, B.C. Canada V7J 2C1

Phone: (604) 984-0221

Telex:

043-52597

Analytical Chemists •

Geochemists • Registered Assayers

CERTIFICATE OF ANALYSIS

TO : MONU GOLD MINES INC.

C/C BEAVON CONSULTING LTD.

8720 MILLMORE RD.

RICHMOND, B.C.

V7C 1S9

: A8519076-001-2

INVOICE # : 18519076 DATE : 20-DEC-85

P.O. # : NONE

MADOC

ATTN: RUY BE			 			
Sample	Prep	Au ppb				
description	code	FA+AA	 			
1671	214	<5	 			
1672	1214	< 5	 	. ==		
1673	214	<10	 			
1674	214	< 5	 		'	
1675	214	<10	 			
1676	214	<5	 			
1881	214	<5	 			*
1882	214	< 5	 -		***	
1883	214	<5	 			
1884	214	450	 			
1885	214	800	 			
1886	214	<15	 			
1887	214	<10	 			
1888	214	<15	 			
1889	214	<50	 			
4027	214	< 5	 			
4028	214	<5	 			
4029	214	< 5	 			
4030	214	< 5	 			
4031	214	<5	 			
4032	214	< 5	 			
4033	214	<5	 			
4034	214	<10	 			
4035	214	<25	 			
4036	214	< 5	 			
4037	214	85	 			
4038	214	<5	 	***		
4039	214	5	 			
4043	214	5	 			
4044	214	<5	 			
4045	214	35	 			
4046	214	< 5	 			
4047	214	< 5	 			
4048	214	<5	 			
4049	214	< 5	 	·		
4050	214	<5	 			
4051	214	<15	 			
4052	214	<20	 			
4053	214	< 5	 			-
4054	214	<5	 			

Haut Bichler

Certified by

212 Brooksbank Ave. North Vancouver, B.C. V7J 2C1

Canada

(604) 984-0221

Phone: Telex:

043-52597

Analytical Chemists •

Geochemists • Registered Assayers

CERTIFICATE OF ANALYSIS

TO : MUNU GOLD MINES INC.

C/O BEAVON CONSULTING LTD.

8720 MILLMORE RD.

RICHMOND, B.C.

V7C 159

CERT. #

: A8519076-002-A

INVOICE # : 18519076 : 20-DEC-85

DATE P.O. #

: NONE

MADDC

ATTN: ROY BEAVON

Sample

Prep

Au ppb

description code 4055

214

FA+AA <15

VOI rev. 4/85

Hout Bufler

212 Brooksbank Ave. North Vancouver, B.C.

V7J 2C1 Phone: (604) 984-0221

Telex:

043-52597

Analytical Chemists • Geochemists • Registered Assayers

CERTIFICATE OF ANALYSIS

TO : MONO GOLD MINES INC.

C/O BEAVON CONSULTING LTD.

8720 MILLMORE RD. RICHMOND, B.C.

V7C 1S9

CERT. # : A8519289-001-

INVOICE # : 18519289 DATE 7-JAN-86

P.C. # : NONE

MADOC

	ATTN: ROY 8	EAVON					
	Sample	Prep	Au ppb	 			
	description	code	FA+AA				
	440	214	<10	 			
	441	214	< 5	 			
	442	214	<5	 			
	443	214	<5	 			
	444	214	<5	 			
	462	214	<25	 ==	·		
	463	214	<10	 			
- 1	464	214	<50	 			
ŀ	465	214	<50	 .			
	680	214	< < 5	 			
	681	214	< 5	 			
]	682	214	<5	 			
	683	214	<5	 			
	684	214	<25	 			,
	685	214	< 5	 			
	686	214	<25	 	-		
1	687	214	<5	 			
+	709 ·	214	15	 			
.	710	214	< 5	 			
	711	214	140	 			
	712	214	<5	 			= -
i	064	214	< 5	 			₩
]	065	214	<5	 			
1	066	214	< 5	 			
1	067	214	<5	 			
 	068	214	<5	 			
]	069	214	<5	 			
	070	214	<5	 			
	071	214	<50	 			
}	072	214	< 5	 -			
1	073	214	50	 		- -	
1	074	214	<10	 			
{	119	214	<15	 			
1	120	214	<10	 			
1	121	214	<5	 			~-
1	122	214	< 5	 			
.	1431	214	< 5	 			
	1432	214	<5	 			
	1433	214	N.S.S.	 			
	1434	214	<50	 			

Hout Buchler Certified by ...

212 Brooksbank Ave. North Vancouver, B.C.

V7J 2C1

Phone: (604) 984-0221 Telex:

043-52597

CERTIFICATE OF ANALYSIS

Analytical Chemists • Geochemists • Registered Assayers

TO : MONO GOLD MINES INC.

C/O BEAVON CONSULTING LTD.

8720 MILLMORE RD. RICHMOND, B.C.

V7C 159

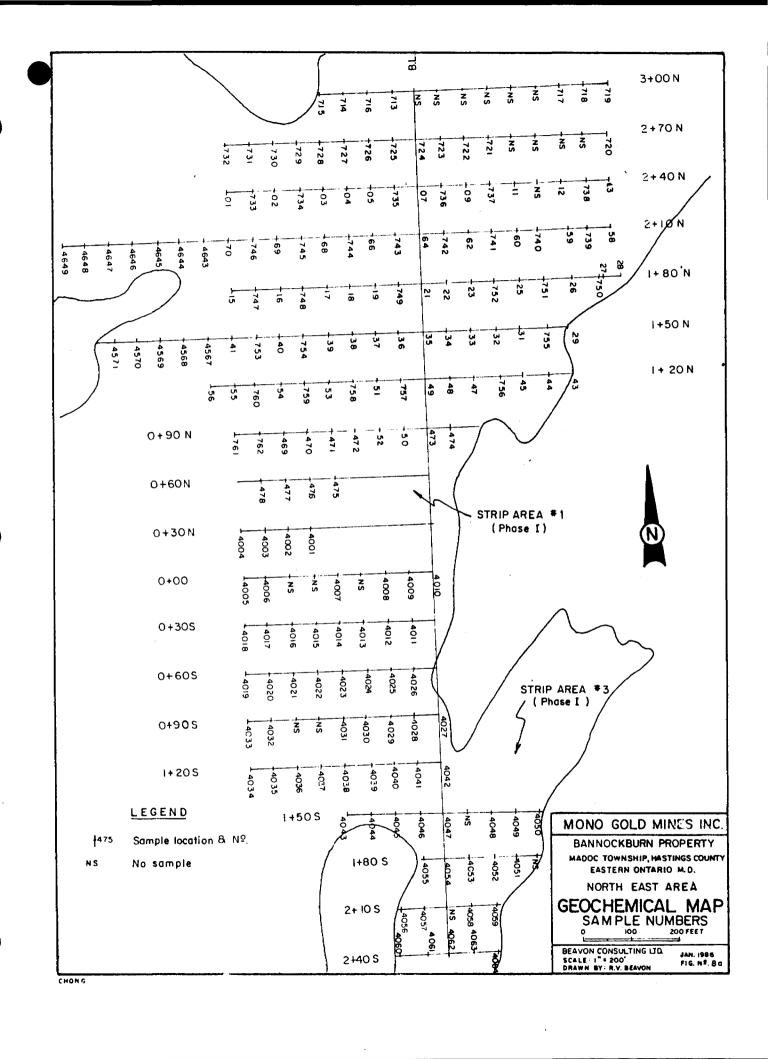
CERT. #

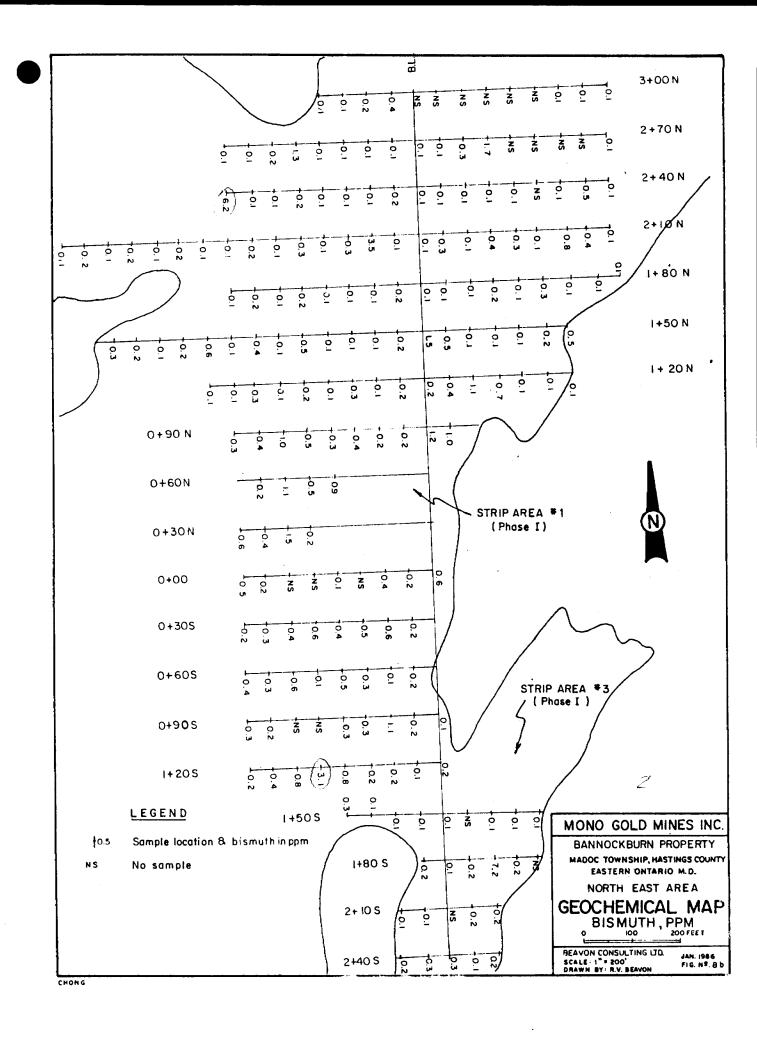
: A8519289-002-. INVOICE # : 18519289

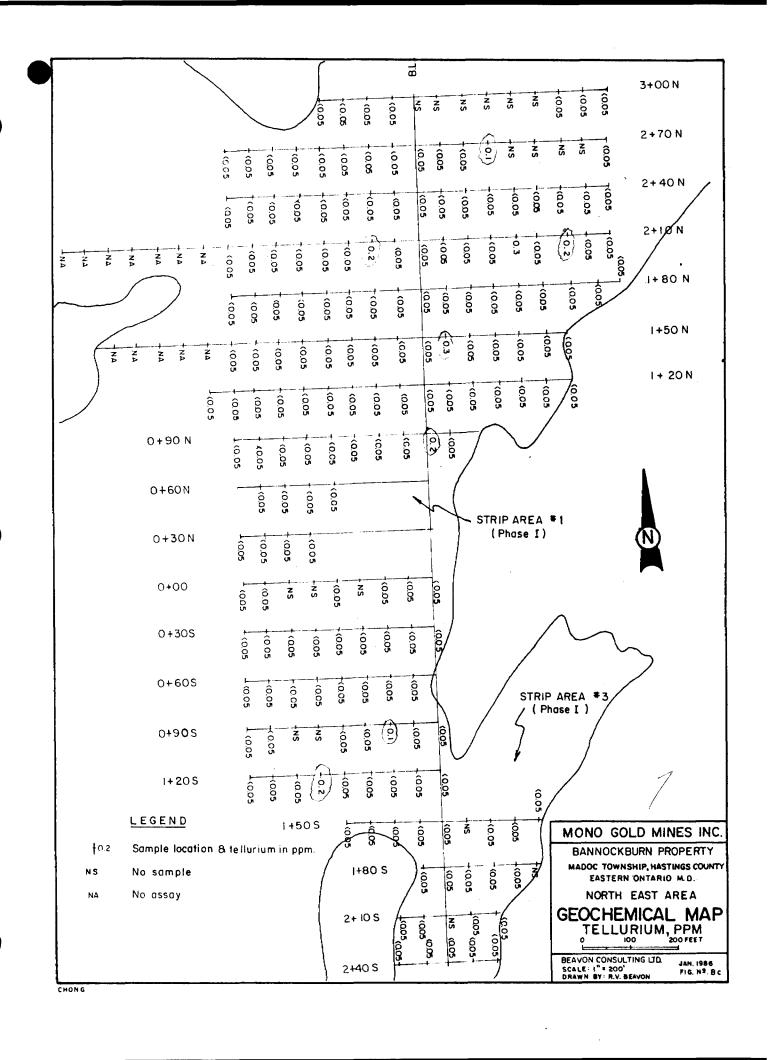
DATE

7-JAN-86

P.O. #


: NONE


MADOC


<u> </u>	IN	:	ROY	BE	AV	<u> </u>
53	mn	م ا			Pı	

Sample	Prep	dag uA	·· <u>·</u> ·····			···	
description	code	FA+AA					
1435	214	<5					
1436	~ 214	10					
1437	214	5				. .	
1438	214	10					
1439	214	< 5					
4285	214	< 5					
4286	214	<5					
4287	214	<5					
4288	214	<5					
4289	214	5	-				
4324	214	< 5			**		
4325	214	<5					
4326	214	<5					
4358	214	5					
4359	214	<5	***		-		
4360	214	< 5					
4361	214	5		, 			
+ 4362	214	<5	-	. 			
4378	214	< 5					
4379	214	< 5					
4380	214	<5			'		
4381	214	< 5					'
4382	214	<5					
4383	214	< 5					
4384	214	<5					
4509	214	<5					
4510	214	<25					-
4511	214	<10					
4512	214	140	~-				
4513	214	< 5					
4815	214	<5				- -	
4816	214	20					
4817	214	20					
4818	214	< 5					

Certified by

November 25, 1985.

Mr. R. Beavan, Colonial Inn Motel, Madoc, Ontario кок 2ко

Dear Mr. Beavan:

The sample of drill core showing visible gold which you brought in on the 15th of November has been examined in pol-thin section. unknown grey mineral visible in the sample has also been identified by x-ray powder diffraction as tellurbismuth, Bi₂Te₃. The following gives a brief description of PTS 219.

Mineral	Est. % by Vol.
Quartz	
Carbonate	2-3
Feldspar (Orthoclase)	< 1
Muscovite	< 1
Chlorite	Trace
Rutile	1
Pyrrhotite	8-10
Marcasite/Pyrite	1
Chalcopyrite	Trace
Tellurbismuth, Bi ₂ Te ₃	Trace
Native Gold	Trace

The host rock is a recrystallized quartzite which contains areas of coarse recrystallized mosaic quartz, relict bands of argillaceous quartzite, disseminated and coarse sulphides. Carbonate occurs as scattered intergranular grains and rutile is prevalent in blocky and irregular grains. The mineralization consists mainly of coarse pyrrhotite with occasional spheroidal grains of botryoidal marcasite/pyrite. Tellurbismuth and native gold normally occur together adjacent to the pyrrhotite and in some cases enclosed in it. The tellurbismuth contains exsolutions or intergrowths of a dark grey mineral which is too small for positive optical identification. Of the nearly 300 grains of native gold observed in PTS 219, most are enclosed in or attached to tellurbismuth; some (<10 %) are enclosed in pyrrhotite and the remainder (<25 %) occur in gangue. The grain size averages about 20 µm diameter with the largest grain measuring about 75 µm diameter.

> Yours sincerely LAKEFIELD RESEARCH

R. Bulan

R. Buchan, P. Eng.,

RB: tmg Head, Mineralogy. 185 CONCESSION STREET, P.O. BOX 430 LAKEFIELD, ONTARIO, CANADA KOL 2H0

REPOST: 225-3810 (COMPLETS)

CLIENT: MONG GOLD HINES LID.

PROJECT: NOME GIVEN

REFERENCE INFO:

SUBMITTED BY: R. BEVAN

DATE PRINTED: 2-DEC-85

ORPER	CL	ENENT			LOWER DETECTION LIMIT	EXTRACTION	NETHOD
1	٥,	Copper		1	אַמַק ז	MULT ACID TOT DIG	D C Places
2		last		1	5 PPK	MULT ACID TOT DIG	
4				•	O 117:	MODI NOTO TOT DIG	D101 1133m0
2	Zri	Iinc		1	1 PPM	MULT ACID TOT DIG	D.C. Plasma
Ą	V.5	Mclybdersn		1	1 PPK	MULT ACID TOT DIG	D.C. Plasma
	Co	Cotalt		1	1 PPM	MULT ACID TOT DIG	D.C. Plasma
6	<i>N</i> 1	Mickel		1	1 PPM	MULT ACID TOT DIG	D.C. Plasma
7	St	Chromium		1	1 PPM	MULT ACID TOT DIG	D.C. Plasma
3	t o	Menaenese		1	1 PPM	MULT ACID TOT DIG	D.C. Plasma
9	0d	Cadelua		1	1 PPM	MULT ACID TOT DIG	D.C. Plasma
		Silve:		1	0.5 PPM	MULT ACID TOT DIG	D.C. Plasma
11	Bı	Rismuth		. 1	2 PPH	HULT ACID TOT DIG	P.C. Plasma
12	Fe	Iron		1	0.05 PCT	MULT ACID TOT DIG	D.C. Plasma
ž =	ń	nausti t		1	1 FFM	HULT ASID TOT DIG	B.C. Plasma
] 4	÷:	Arsenic		ī	S FIM	MULI ACID TOT DIG	D.C. Plasma
	ī.e	Tellurium		l	10 PPM	MULT ACID TOT DIG	N.C. Plasma
14	b	Usanium		1	10 PPM	MULT ACID TOT DIG	D.C. Plasma
. 7	Ţ.	Iumqetan		1	10 PPM	MULT ACID TOT DIG	D.C. Plasma
18	9į,	Actimony		1	5 PPM	MULT ACID TOT DIG	D.C. Plasma
19	៊ុំភ្	Selenium		1	5 PPM	MULI ACID TOT DIG	D.C. Plasma
20	ċr _i	T17.		1	10 PPM	MULT ACID TOT DIG	D.C. Plasma
eample t	1PES		위단#필문환	SIZE F	vact ions	NUMBER SAMP	LE PREPARATIONS NUMBER
P PREPA	PED 9	មិត្តិ 	1	4 AS	REC'D	1 AS F	RECEIVED, NO SP 1

REPORT CORIES TO: C/O REVAM COMBULTIME

INVOICE TO: C/O BEVAN CONSULTING

Boother-Clegg & Company Ltd.

North Land Phone 130 P. tiberton Ave.
North Land Phone 12R5
Phone 1985-0681
Telex 1985-2667

Geochemica Lab Repor

PERCET: 200-2014 : PRO										PROJECT: NONE GIVEN			
Samput Rumeer	ON LEGIS	04 758	<u>।</u> १७	20 854	Ped Ped	Co PPH	Ni PPH	Cr PPM	Mn PPM	Cd PPH	Ag PPM	Bi PPM	
P4 15120		<u>65</u>	-,5	80	15	30	25	146	650	2	<0.5	<2	

PERMOT: 205-	2013							PRO	JECI: NOME	GIVEN	PAGE	18	
SAMPLL MUMBER	Slement Units	\	43 PP=	Te PPB	FPM U	Had M	96 888	Se PPM	Sn PPM	1.2.0	A CONTRACTOR OF THE STATE OF TH		
P4 1590		150	e Se Or	⟨i≬	<10	ΩØ	5	. (5	<19				

DCDADT - 10500	11	•

WALLEST THE C			
SAMPLE NUMBER	ELEMENT UNITS	Bi PPH	Te PľM
P4 15808 P4 15803 P4 15810 P4 15811 P4 15812		4 2 3 1	<0.2 0.2 0.4 <0.2 <0.2
P4 15813 P4 15314 P4 15815 P4 15816 P4 15817		<1 68 2 1	<0.2 11.0 1.5 <0.2 0.2
P4 15013 P4 15819 P4 15820 P4 15821		1 <1 <1 78	<0.2 <0.2 0.4 2.5

7.4	~~	
70	GE	

Te PPM				
<0.2		-		and the second of the second o
0.2				
0.4 <0.2				•
<0.2				
⟨0.2				
11.0				
1.5 <0.2				
0.2				
<0.2				
<0.2				
0.4 2.5			.*	

040

REFORT ON THE NORTHEAST AREA, BANNOCKBURN PROPERTY
MADOC TOWNSHIP, ONTARIO

FOR

MONO GOLD MINES INC.

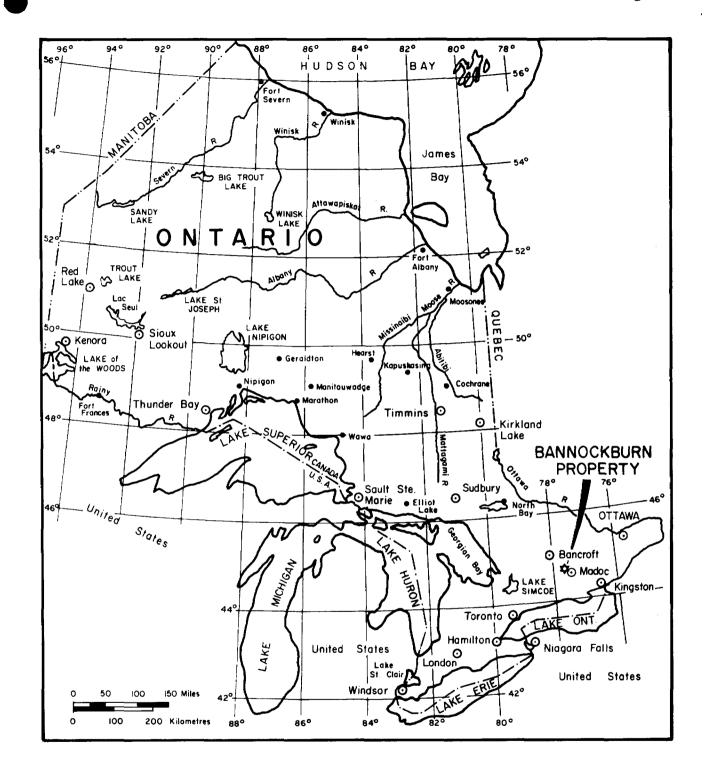
MARCH 20, 1986

Brian R. King, Geologist

Mono Gold Mines Inc., Bannockburn

TABLE OF CONTENTS:

31C12NE0036 63.4698 MADOC


040C

SUMMARY						
	WNERSHIP6					
LOCATION AND AC	CCESS6					
HISTORY AND PRE	EVIOUS WORK9					
CURRENT STUDY.						
REGIONAL GEOLOG	GY12					
Intro	oduction12					
Majoi	r Features12					
	GY14					
Intro	oduction14					
Metas	sedimentary Rocks4					
Metav	volcanic Rocks					
Intro	usive Rocks					
Struc	Structural Geology16					
	norphism17					
	hysics17					
	GY & DISCUSSION19					
PROVISIONAL RES	SERVE ESTIMATE22					
RECOMMENDATIONS	S AND CONCLUSIONS23					
CERTIFICATE						
BIBLIOGRAPHY						
Appendix I	(Proposed Budget)27					
Appendix II	(Reserve Calculations)28					
Appendix III	(Diamond Drill Data)32					
Appendix IV	(Assay Certificates)34					
Appendix V	(Assay Summary Sheets)bound separately					
Appendix VI	(Diamond Drill Logs)bound separately					
Appendix VII	(Reserve Longitudinals)pocket					
	(
LIST OF TABLES						
Table 1.	Property Disposition8					
LIST OF FIGURES						
Figure 1.	General Location4					
Figure 2.	Bannockburn Property7					
Appendix VIII						
Figure 3.	Geological and Drill Planpocket					
Appendix IX						
Figure 4.	Section "H", Cross Section on 2350pocket					
Figure 5.	Section "K". Cross Section on 2350pocket					
Figure 6.	Section "K", Cross Section on 235°pocket Section "L", Cross Section on 235°pocket Section "M", Cross Section on 235°pocket					
Figure 7.	Section "M" Cross Section on 2350pocket					
Figure 8.	Section "M", Cross Section on 235°pocket Section "Mb", Cross Section on 235°pocket Section "N", Cross Section on 235°pocket Section "P", Cross Section on 235°pocket Section "Q", Cross Section on 235°pocket Section "R", Cross Section on 235°pocket Section "T", Cross Section on 235°pocket Section "V", Cross Section on 235°pocket					
Figure 9.	Section "N". Cross Section on 2350pocket					
Figure 10.	Section "P". Cross Section on 2350nocket					
Figure 11.	Section "O". Cross Section on 2350nocket					
Figure 11.	Section "R". Cross Section on 2350nocket					
Figure 13.	Section "IT", Cross Section on 2350 nocket					
	Continuity Cross Section on 2350					
Figure 14.	section by, cross section on 255pocket					

INTRODUCTION

The Bannockburn gold property of Mono Gold Mines Inc., is located in the northern part of Madoc township, Hastings County in Eastern Ontario (Fig. 1). The Northeast Area of the property, as described in this report, is located approximately 0.6 miles north-northeast of the settlement of Bannockburn and contains a significant gold deposit, discovered in September 1984. This deposit has been partially outlined by more than 15,000 feet of diamond drilling from its discovery to February 1986.

This report describes the most recent drilling (1986) and summarizes the current interpretation of the deposit, including a provisional reserve estimate.

MONO GOLD MINES INC. BANNOCKBURN PROPERTY

MADOC TOWNSHIP
EASTERN ONTARIO MINING DIVISION

GENERAL LOCATION MAP

SUMMARY

The first discovery of gold on the Canadian Shield (and Ontario) in 1866 lead to a short lived gold rush in Madoc and surrounding townships of Eastern Ontario. Several miles north of the original discovery, the Bannockburn Gold Mine was opened circa 1894, with a number of shallow workings including a 70 foot shaft. A small mill on the site recovered small amounts of gold from an unknown tonnage.

In 1981, Mono Gold Mines Inc. carried out a preliminary exploration program covering the mine area. The work completed included geolgical mapping, geophysical surveys, a limited amount of stripping and trenching, and a preliminary diamond drilling program involving 1725 feet in eleven shallow holes.

In early 1984, Mono Gold Mines Inc. extended coverage of the property to include what is now known as the Northeast Area. A program of Geophysical surveys, Geological mapping and prospecting lead to the discovery of a significant gold deposit.

The First Phase Exploration program of stripping and trenching was completed in late 1984, with preliminary diamond drilling of eight shallow holes completed in February 1985 (Phase Two). These programs confirmed the existence of a gold bearing quartz vein system returning some spectacular assay results over narrow widths.

Continued diamond driling from May 1985 to February 1986 brought the total aggregate footage drilled at the Northeast Area to 15,920 feet. This has partially outlined a gold deposit containing an estimated 113,720 tons @ 0.242 oz. Au per ton (combined Drill Indicated and Inferred) over a five foot minimum width. Gold occurs in at least ten epigenetic quartz veins or systems and has been partially explored to an average depth of less than 350 vertical feet and along a known strike length of 900 feet. This deposit should be considered open at depth and along strike.

A program of continued diamond drilling, surface exploration (to include Geological mapping and Geophysics), and review of existing drill data is recommended. This program should complete the Geolgical sections and interpretations in preparation for future underground exploration. The total cost of this program is estimated at \$345,629 (Can).

PROPERTY AND OWNERSHIP

The Mono Gold Mines Inc. Bannockburn property consists of approximately 628 acres within Lots 27,28,29, and 30 of Concession V and VI of Madoc township in east-central Ontario. This report addresses a small portion of these holdings within lot 29-concession VI and is known as the "Northeast or Discovery Area", shown in figure 2.

The Northeast Area is within recorded claim # EO 652301 which is listed as "Patent, Surface Rights Only" on Ontario Claim Map M-120. This implies that the surface rights are privately held but mineral rights may be claimed. Through staking and ownership transfer, the mineral rights to this claim and adjacent claims has been acquired by Mono Gold Mines Inc. Table I indicates the property status of the entire Bannockburn holdings.

LOCATION AND ACCESS

The Northeast Area is easily accessible from Hwy #62 linking the villages of Madoc and Bancroft, and connecting to Hwy #7 (Trans Canada Hwy). Access is by road and rail right of way, suitable for small truck under most conditions and directly links to Hwy #62. The Mono Gold Mines Inc. properties are approximately centred at the small settlement of Bannockburn, 16 km. north of Hwy #7.

National Topographic System (NTS) map 31C/12 shows the Bannockburn area at 1:50,000 scale. Recently published maps of the Ontario Basic Mapping Program also show the Bannockburn area at a scale of 1:10000 (OBM 10 18 2950 49450). The Bannockburn property is also shown on Ontario Mineral Potential map,P 1505 at a scale of 1:250,000, Ontario Dept. of Mines map NO. 157b, and Ontario Geological Survey map 2154.

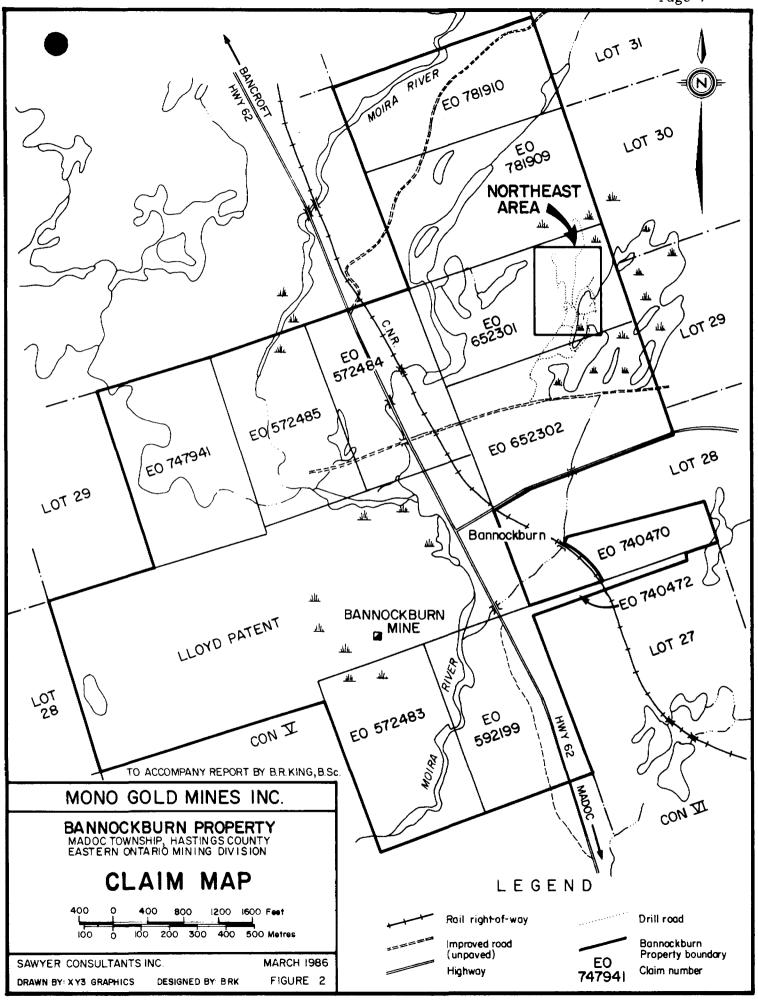


TABLE I
Froperty Disposition and Claim Schedule**

CLAIM	CONC.	LOT	ACRES	RECORDED	EXPIR.
Lloyd Patent	V	28	140	n/a	n/a
EO 572483	V	W/4ofE/2°27	50	May 14/80	1986+
572484*	V	E/4°29	50	May 14/80	1986
572485*	V	W/4ofE/2'29	50	May 14/80	1986
592199	V	E/4'27	50	Sept.20/82	1989+
747941	V	E/4ofW/2°29	50	May 16/85	1986+
652301*	VI	NW/4129	50	Feb.11/83	1988
652302 *	VI	SW/4*29	50	Feb.11/83	1988
781909	VI	SW/4°30	50	Feb.28/85	1986
781910	٧I	NW/4°30	50	Feb.28/85	1986+
740470	VI	partSW/4°28	30	July 8/85	1986+
740472	VI	partNW/4'27	8	July 8/85	1986+

^{*} permission granted for patent application survey

^{**} after Table I, Beavon, (1986)

⁺ assessment reports completed/in preparation as of January'86

HISTORY AND PREVIOUS WORK

The first discovery of gold on the Canadian Shield (and Ontario) at the Richardson farm of Eldorado in 1866, sparked a colourful yet short lived gold rush in the area. Although mining in the region was established as early as 1820 (at Marmora), it was not until the Eldorado find that extensive gold prospecting occurred in Madoc township. In the years that followed, numerous prospects were explored with several seeing limited production. However, none were commercially viable, in part due to the inferior extraction technology of the day.

At the Bannockburn Mine, four shallow shafts were sunk circa 1894 (OGS Mineral Deposits Circular #18) in addition to stripping and trenching. From one of the shafts, 17 feet of drifting was done, presumably along the "mine structure". A ten stamp mill was in operation at the site at this time. In 1897, one of the shafts was deepened to 75 feet, and another 35 foot shaft was put down.

Although records are incomplete, approximately 3.5 oz. of gold was produced from an unknown tonnage of "ore". Other accounts by local historians are somewhat more spectacular but cannot be substantiated. Today numerous pits, shafts and trenches can be seen ...attesting to turn of the century efforts.

In 1981, a program of surface exploration and diamond drilling was carried out by Sawyer Consultants Inc. of Vancouver. This program consisted of establishing a cut line grid to cover the mine area, VLF-EM and Magnetometer surveys, Geological mapping, stripping, trenching and drilling. In addition, the main shaft was partially dewatered and the "mine structure" sampled.

In early 1984, cut line grid coverage was extended to the remainder of the Bannockburn property and Geophysical survey coverage was completed. In September 1984, reconnaissance Geological mapping was completed to evaluate a number of Geophysical anomalies. This involved some sampling of sulphide rich zones and exposed quartz veins. Several areas of interest in the Northeast part of the property were outlined and recommendations were made for a trenching and sampling program to test the newly discovered gold bearing quartz veins.

By late November 1984, the first phase exploration program of trenching and stripping had confirmed the presence of significant gold mineralization within the exposed quartz veins. In February of 1985, 2027 feet of diamond drilling had been completed in eight holes (phase two). This drilling, confirmed the presence of a gold bearing vein system at shallow depths along a strike length of approximately 150 feet.

A third phase exploration program was partially completed by May

12.5

1985, but was temporarily suspended to allow for geological mapping and the establishment of a detailed drilling grid during June 1985. The third phase program resumed on June 29 and was completed by July 1985. This program outlined significant gold bearing quartz veining over a strike length of more than 500 feet. Much of this length could support a 5 foot mining width across several sub parallel veins. Third phase exploration tested the system to a vertical depth of only approximately 240 feet in 20 holes for a total drilled footage of 5258 ft.

Phase three drilling from August 29 to September 27, 1985 increased the total drilled footage to 9728 ft and formed the basis for a preliminary reserve estimation which included four or more gold bearing quartz vein structures. An inferred estimate of approximately 98,750 tons grading 0.34 oz. per ton was calculated based upon the aggregate strike length and aggregate dip length of the mineralized veins. Information upon which these early calculations were based was limited and several interpretations of the vein structure seemed probable due to difficulties in projecting narrow drill intersections.

In September 1985, a Geochemical soils survey of the entire Bannockburn property commenced. This project was completed in December 1985 the results indicating some success in identifying "indicator" or possible "pathfinder" trace elements in soils associated with known gold mineralization. Work in this respect is in progress and will be discussed under separate cover in reports dealing with specific areas of the Bannockburn property. A number of Geochemical anomalies were however identified both within the Northeast Area and elsewhere on the property. This Geochemical survey constituted phase four exploration.

From November 20 to December 8, 1985, phase five exploration was an undertaken and included an additional four diamond drill holes f(x) + 2f(x) which increased the aggregate footage drilled to 12,229 ft.

CURRENT STUDY

In January 1986, the author continued diamond drilling (phase six?) to test in detail the interpretation of vein system continuity near the original discovery area and at depth. A portion of this latter drilling was completed from a "land bridge" crossing part of a flooded area immediately east of the discovery trench.

From January 9 to February 4, 1986 a total of 3691 feet of diamond drilling was completed bringing the total aggregate footage drilled to 15,920 ft. This drilling comprised DDH 86-1 through to 86-11 plus a 200 ft. extension of DDH 85-27.

DDH's 86-1 to 8 intersected the predicted mineralized zones, confirming the grades while providing new vein geometry data. Drilling from the flooded area (86-9,10,11) intersected strong quartz veining and alteration but did not return economic assays.

With this total footage, a provisional reinterpretation and new reserve estimate was calculated to reflect a better understanding of the vein geometry. A total reserve of 113,720 tons @ 0.242 oz. per ton Au consisting of 59,820 tons @ 0.279 oz. per ton Drill Indicated and 53,900 tons @ 0.200 oz. per ton Inferred.

Although the new reserve estimate is lower in overall grade, it is considered conservative and of greater confidence as a significant tonnage is now within the Drill Indicated category. The reinterpretation has also lead to the identification of several promising new deep drilling targets which were previously unknown or not understood.

All core from the current program was logged, with mineralized and other significant intervals split. Samples for assay were sent to Chemex Ltd. of Brampton Ontario for sample preparation then forwarded to the Chemex lab in Vancouver B.C. All samples were "screened" for coarse metallic mineralization. Assay results of all current holes (86-1 to 86-11, 86-27E) are listed in Appendix V.

The current study has also involved minor suface work which has provided important elevation corrections for diamond drill hole locations. This work is at present incomplete.

REGIONAL GEOLOGY

Introduction:

Madoc township and surrounding areas are well known for their Geology, containing good exposures of Precambrian greenstones, metasediments, intrusives and unconformably overlying (relatively undisturbed) Fhanerozoic sediments. Several major structures are obvious and the area has a rich history of mineral production. The Geology of Madoc township is described by Hewitt (1968).

Major Features:

The oldest rocks in the region (other than possible basement metatexite) are mafic metavolcanics of the Tudor Formation. These rocks occupy the base of the Hermon Group consisting of supracrustal clastic to carbonate metasediments and greenstones. The bulk of the Tudor Fm. metavolcanics are apparently tholeitic basalt although some calc-alkaline/intermediate analyses have been reported.

A second sequence of metavolcanic rocks ("Madoc Volcanics") presumably overlying the Tudor Fm. is exposed in southern Madoc township. These rocks range from andesite to rhyolite and exhibit primary volcanic textures. Near Queensborough, the rhyolites and associated rocks indicate a possible volcanic centre.

Overlying, and in some cases intercalated with the volcanics are the Hermon Group metasediments. In the Madoc region, these rocks are primarily impure marbles with some semi-pelitic and psammitic schists. Other sedimentary rocks include slates, and several bands of metaconglomerate, the latter generally occurring in association with the volcano-sedimentary contact where present.

The major intrusive bodies of interest in the area are the Deloro Granite and the Gawley Creek Syenite. The Deloro Granite is a pink, medium crystalline granitic stock which occupies several square miles of southwest Madoc township and is associated with the Deloro gold occurrences in neighbouring Marmora township. The Gawley Creek Syenite body is located in the northwest quadrant of Madoc township and also extends into Marmora township. Generally, intrusive is a medium to coarse crystalline biotite/hornblende syenite and includes a variety of granitic to dioritic differentiates. Other than at Bannockburn, the Gawley Creek Syenite is not known to be associated with major economic mineralization.

At least two major folds are present in the Madoc area. These are the Queensborough and Madoc synforms. The Queensborough structure has a northwest trending axis whereas the Madoc synform has a northeasterly trace, similar to most Grenville structures. The Bannockburn area contains numerous minor structures which are

apparently related to a significiant antiformal feature which also has a northeast trend. This feature is currently being investigated and is discussed in more detail below.

Not unlike other Canadian greenstone areas, the Madoc region is crossed by numerous faults and shear zones. A general NE-SW trend for many lineaments is present, and generally parallels major lithological and structural boundaries within the Grenville.

Age determinations indicate that these rocks were last deformed approximately 1,000 million years ago during the "Grenville Orogeny". This metamorphic event has resulted in highly deformed rocks of middle greenschist to lower amphibolite facies in the Madoc township area. On a broad scale, metamorphic grade tends to increase from west to east with granitoid gneisses and "granulites" being present several townships east of Madoc.

PROPERTY GEOLOGY

Introduction:

The Northeast or Discovery Area contains essentially three principal rock types. These are the mafic to intermediate metavolcanics, semi-pelitic sulphide bearing metasediments, and minor intrusive rocks, all having their altered counterparts. Paleozoic rocks have not been mapped to date on the property and have presumably been removed by glacial erosion which has resulted in only minor surficial deposits. For the most part, bedrock is well exposed with drift thicknesses of only several feet. Overburden carrying abundant locally derived material is common, and is helpful in Geological mapping and Geochemical surveys where exposures are lacking.

Metasedimentary Rocks:

Rusty Schist;

Much of the Northeast Area consists of roughly banded, fine-medium grained, sericitic and siliceous semi-pelitic metasediments. These rocks, locally known as "Rusty Schists", are likely derivatives of the weathering of the underlying Tudor Volcanics. They have a relatively high sulphide content (primarily pyrite with minor pyrrhotite and traces of base metal sulphides) which appears syngenetic, although significant remobilization has occurred within the volcano-sedimentary contact zone. This unit may be loosely analagous to sulphide facies iron formation near the contact. The Rusty Schists are strongly deformed, often silicified and carbonatized, especially near the gold bearing zones.

Extensive deposits of Rusty Schist are found in Madoc township having similar features in conjunction with the Tudor volcanic contact.

Garnet Schist:

A discontinuous band of garnetiferous, chlorite-biotite schist is found within the volcanic-sedimentary contact zone. This unit may range up to 70 ft. in thickness but is strongly deformed and thickness probably fold controlled. In part, this unit is sericitic and may be strongly carbonatized. Greater than 40% garnet content is not uncommon. Although occurring in association with the Rusty Schists at the volcano-sedimentary contact zone, these garnet schists are not necessarily sulphide enriched, although large blebs of pyrrhotite and pyrite have been noted.

The origin of this unit is unclear. In DDH 86-5, this unit strongly resembles an altered shear zone, having mylonitic bands

and possible complexly deformed breccia fragments. In other intersections, this unit does not appear to have a structural origin, and may be a metamorphosed, altered tuff or tuffaceous sediment, possibly with a chemical sedimentary component.

Quartz-Sericite Schist;

Also along the volcano-sedimentary contact, especially in the vicinity of the "discovery trench", are the Quartz-Sericite Schists. These are apparently discontinuous lenses whose thickness are fold controlled. Unfortunately, as these rocks are at present only found at one location, little is known of their relationship to surrounding units.

Quartz-Sericite Schists are commonly associated with volcanic-sediment transitions within volcanogenic massive sulphide deposits where they are considered altered or metamorphosed exhalative cherts or rhyolites. Their presence along the main contact at the Northeast Area may in fact be of similar origin...as cherty exhalatives. Planned future work may help to solve this mystery.

Metavolcanic Rocks:

Mafic Volcanics:

The most important rock types in the "Northeast Area" are the metavolcanics of the Tudor Formation. These rocks are generally mafic to intermediate, massive greenstones. They are moderately foliated, chloritic and exhibit several alteration types.

Distinguishing between individual flow or tuffaceous units within the metavolcanics is difficult if not impossible without sophisticated techniques. There are however a number of features which may be of use in separating similar subunits. This includes the presence of cherty beds at probable flow contacts, magnetite content (magnetic susceptibility measurements useful!), presence of possible amygdaloidal flows and sharp textural changes such as increased foliation/alteration. At the present time, a stratigraphy of the volcanic subunits has not been derived, but is planned in future work.

Felsite:

Several diamond drill holes in the northern part of the area encountered siliceous, massive to foliated rock of unclear origin which has in the past been labeled "felsite" or "rhyolite intrusive". Current work indicates that these felsites may in fact be crosscutting features related to the quartz vein system and are actually silicified zones. Supporting evidence includes ghost textures continuous with adjacent mafic metavolcanics, and gradational transistions into partially altered volcanics. Both

sharp and diffuse contacts between the mafic units and the "felsites" are observed, and to date, no primary flow or intrusive textures have been noted by the author within these siliceous rocks. Future work including whole rock geochemical analyses and thin section petrography will assist these interpretations.

Intrusive Rocks

Within the Northeast Area, intrusive rocks are the least important by volume. Generally, intrusives are narrow, mafic to intermediate sills or dikes. These are often difficult to identify but are recognized by uniform composition, possible chill contacts and strong penetrative cleavage or foliation development. The mafic sills are apparently very susceptible to carbonate alteration and often stand out from wall rocks on this basis.

Compositionally, these mafic intrusives are likely dioritic, and may have originated as mafic differentiates of the Gawley Creek Syenite body immediately west of the study area (also within the Bannockburn property). Similar intrusives have been encountered in diamond drilling within and near this body.

Structural Geology:

Within the Northeast Area, folding and structural breaks are common, being primarily related to polyphase Grenville deformation.

The Northeast Area is dominated by a northeast trending antiformal structure with fold closure in the immediate gold mineralized area. The S plunging fold is well expressed along the volcano-sedimentary contact zone where ductility contrasts between the Tudor Fm. and the Rusty Schists (and associated rocks) cause pronounced quasi-flexural folding.

The presence of this fold has resulted in the development of a strong, near vertical axial planar cleavage with associated axial shearing. Numerous parasitic folds have been noted, although much of the folding is complex and polyphase. This is especially noticeable in the Rusty Schists where refolded folds are obvious throughout the entire Bannockburn property. Within the metavolcanics, folding is virtually invisible due to the lack of marker horizons. These mafic rocks have however undergone a more brittle deformation style being of lower ductility. Brecciation and minor faultng (minor displacements) are fairly common within the volcanics, and large blocks have in some cases not been strongly deformed.

Faulting in the Northeast Area is dominated by the axial planar fabric of the antiform. Although a number of faults have been encountered in diamond drilling, these have not resulted in proven structural dislocation. An inferred fault which occurs

BIBLIOGRAPHY

Barnes,	H.L.,	1979:	Geochemistry	of Hydrothermal Ore Deposits,
			2nd edition;	John Wiley & Sons; Toronto

Report on Bannockburn Property, NE Area; For Mono Gold Mines Inc.; Aug. 30, 1985

Report on Bannockburn Property, NE Area; For Mono Gold Mines Inc.; Oct. 18, 1985

Interim Report on Phase V Diamond Drilling of the Bannockburn NE Area Prospect; For Mono Gold Mines Inc.; Jan. 1986

Cherry, M.E. Andrews, A.J.

et al 1982 Gold-Selected References; Ontario Geological Survey Open File Report 5382

Hewitt, D.F., 1968: Geology of Madoc township and the north part of Huntingdon township; Ontario Department of Mines Geol Report 73.

Kingston, P.W. Papertzain, V.C. 1982:

.1982: Gold Development Fotential in Eastern Ontario; Ontario Geological Survey Open File Report 5379

Sawyer, J.B.P., 1983 Report on the Bannockburn Property for Mono Gold Mines Inc.; Sawyer Consultants Inc., Feb. 14, 1983.

Thompson, W.H., Racic, L.J., 1984:

Magnetic & VLF Electromagnetic surveys for Mono Gold Mines Inc., on the Bannockburn Property, Madoc township, Ontario; GeoSearch Consultants Ltd.

Winkler, H.G. 1979: Petrogenesis of Metamorphic Rocks; fifth edition, Springer Verlag, New York

APPENDIX I

PROPOSED BUDGET FOR NORTHEAST AREA EXPLORATION	MARCH 1986								
Diamond Drilling 15,000 ft. @ \$14.00 per foot	\$210,000								
Mob & Demob	2,000								
Bulldozer, site prep/road construction, 4 hrs x 38 set ups x \$60/hr extras (drill repositioning)	9,120 1,000								
Geological Supervision, 112 days x 2 Geologists @ \$200/day	44,800								
Surface Mapping, (included in Geol. Supervision)									
Accompdation & Food, 112 days x 2 Geologist @ \$50/day	11,200								
Transportation, 112 day program @ \$100/day	11,200								
Assaying, 750 samples @ \$11.25/sample shipping	8,438 450								
Geophysical Survey	3,500								
Engineering and Supervision	8,000								
Office Expense (includes telephone)	1,500								
Report Preparation	3,000								
Contingency (10% of above)	31,421								
Total	\$345,629								

APPENDIX II

SUMMARY OF RESERVE CALCULATIONS

The following is a summary of calculations for each of the vein systems shown on the accompanying Geological map. Not all veins or vein systems contain continuous economic mineralization but are shown as these represent potential exploration targets. All zones have a minimum five foot width.

All calculations follow the same format:

 $(5.0 \times \text{Dip length} \times 0.75 \times \text{strike factor}) / 12 = \text{tons}$

where: 5.0 is the minimum 5 foot width;

: Dip length is the measured length of the economic zone in cross section.

:0.75 is the correction for off section exaggeration due to the angle between the strike of the veins and the arbitrary reference line.

:Strike Factor is the region of influence of the Geological cross-section. Note that this is not constant as the cross sections are not evenly spaced.

:12.0 is the tonnage factor...accepted average cubic feet per ton of low sulphide content, silicate rocks.

Vein System I

Minor quartz veining only---no economic values reported

Vein System II

Drill Indicated:

Section K.... (5 \times 87 \times 0.75 \times 55) / 12 =1495

Average Sectional Grade 0.131 oz. Au per ton

Section M..... 300 50 =4688

0.112

Total Drill Indicated 6183 tons @ 0.117 oz/ton

Inferred: Total Inferred 12,650 tons @ 0.120 oz/ton

TOTAL 18,833 TONS @ 0.119 oz/ton

Vein System III

Drill Indicated:

Section L... $(5.5 \times 255 \times 0.75 \times 55) / 12 = 4823 tons$

Average Sectional Grade 0.129 oz. Au per ton

Section N... 5 135 55 =2320 0.084 Section P... 5 120 60 =2250

0.327 Section 0.... 5 135 65 =2742

0.324 Section R.... 5 95 60 =1781

3.702 (1.00 cut)

Total Drill Indicated..13,916 tons @ 0.303 oz/ton (cut)

Inferred: Total Inferred...... 4550 tons @ 0.384 oz/ton (cut)

TOTAL 18,466 TONS @ 0.323 oz/ton (cut)

Vein System IV

minor quartz veining--no economic values reported

Vein System V

Drill Indicated:

Section M.... $(5 \times 150 \times 0.75 \times 50) / 12 = 2344$ tons

Average Sectional Grade 0.434 oz. Au per ton

Section N.... 5 100 55 = 1719

0.364

Section P.... 5 160 60 ≈ 3000 0.364

Section Q.... 5 200 65 = 4063

0.324

Total Drill Indicated 11,126 tons @ 0.364 oz/ton

Inferred: Total Inferred 10,700 tons @ 0.297 oz/ton

TOTAL 21,826 tons @ 0.331 oz/ton

Drill Indica		175 v 0 75 v	75) /	12 = 3164 tons			
Dection H				0.067 oz. Au per ton			
Section K	5	100	80	= 2500 0.207			
Section N	5	100	55	= 1719 0.140			
Section P	5	360	60	= 6750 0.186			
	5	120	60	= 2250 >>> 0.975 >>> Vein VIb			
	Total	Drill Indica	ted	16,383 tons @ 0.269 oz/ton			
Inferred:	Total	Inferred		5,500 tons @ 0.193 oz/ton			
		TOTAL		21,883 TONS @ 0.250 oz/ton			
	ated: (5 x			12 = 1875 tons			
Section N			Grade	0.262 oz. Au per ton			
Section P		-	60	= 2250 0.610 (.511 cut)			
	Total	Drill Indicat	ed	4125 tons @ 0.452 oz/ton			
Inferred:	Total	Inferred		9500 tons @ 0.168 oz/ton			
		TOTAL		13,625 TONS @ 0.254 oz/ton			
Vein System	VIII						
Drill Indica Section L	(5 x	110 × 0.75 × age Sectional		12 = 1891 tons 0.076 oz. Au per ton			
	Total	Drill Indicat	ed	1891 tons @ 0.076 oz/ton			
Inferred:	Total	Inferred		1000 tons @ 0.100 oz/ton			
		TOTAL		2891 TONS @ 0.084 oz/ton			

Drill Indicated:

Section K.... (5 x 330 x 0.75 x 60) / 12 = 6188 tons

Average Sectional Grade 0.209 oz. Au per ton

Total Drill Indicated 6188 tons @ 0.209 oz/ton

Inferred: Total Inferred 10000 tons @ 0.200 oz/ton

TOTAL 16,188 TONS @ 0.203 oz/ton

APPENDIX III

DIAMOND DRILL HOLE DATA

DDH	LATITUDE	DEFARTURE	INCL.	AZM.	DEPTH
85-1	2200N	3881E	-50	112	246
2	2200N	3881E	-60	112	296
3	2260N	3918E	-50	112	236
4	2260N	3918E	-60	112	263
5	2304N	3930E	-50	112	226
6	2304N	3930E	-60	112	256
7	2150N	3845E	-50	112	246
8	2150N	3865E	<u>−,60</u>	112	256
9	2211N	4050E	-50	292	300
10	2124N	4028E	-50	292	225
11	2124N	4028E	-90	-	100
12	2104N	3800E	-50	112	305
1종	2035N	3862E	-90	_	200
14	2015N	4016E	-90	-	200
15	2324N	4100E	-60	272	256
16	2324N	4100E	-75	272	286
17	2409N	4084E	-45	272	404
18	2587N	4134E	-90	_	284
19	2785N	4258E	-45	272	274
20	1900N	4274E	-45	272	400
21	2510N	4082E	-45	272	204
22	2510N	40B2E	-90 		355
23	2305N	4246E	-72	272	435
24	2305N	4246E	-45 	225	305
25	2390N	4235E	-55	272	334
26	2600N	4046E	-45 	235	284
27	2600N	4046E	-70	235	300
	0.000	ga , ye, ye, gene yen	85-27 DEEPE		510
28	2690N	4005E	-45 	235	324
29	2690N	4005E	-70 	235	364
30	2785N	3976E	-45 	235	304
31 70	2785N	3976E	-70 - 70	235	373
32	2882N	3772E	-45 -25	235	300
33	2390N	3900E	-45 70	235 235	288
34 47	2390N	3900E	-70 -70	235	300
43 4	2692N	4162E	-70	235	593 500
46	2587N	4134E 4240E	-50 -70	235	500 1000
49 50	2530N 2305N	4246E	-70 - 4 7	125 190	408
		4006E	-47 -47	235	
86-1 2	2408N 2476N	3918E	-47 -45	235 235	164 260
3	2588N	3918E	-45	235 235	160
4	2324N	4162E	-45	235	300
5	2324N 2324N	4162E	-60	235 235	500
J	EVETH.	TiVii	50	£	500

DDH	LATITUDE	DEPARTURE	INCL.	AZM.	DEPTH
86-6	2448N	4016E	-45	235	200
7	2448N	4016E	-60	235	359
8	2474N	3993E	-45	235	234
9	2147N	4237E	-45	235	400
10	2157N	4335E	-45	235	500
11	2074N	4224E	-45	235	404

Note: 85-27 was deepened to 500 ft. Jan 14-15/86

: Collar locations subject to survey update in progress

APPENDIX IV

COPIES OF ASSAY CERTIFICATES

near the centre of the detail-cut line grid may have several feet of displacement, breaking the volcano-sedimentary contact. Preliminary hi-resolution magnetometer test work appears to have registered this fault as a near vertical, low displacement and possibly mineralized (pyrite?) zone. Planned future work will include a detailed reinterpretation of all faulting and geophysical signatures of such features. Current indications are that the faulting may predate the quartz vein systems, thus their effect on mineralized horizons may be minimal.

A "flexure" or "flexural fault" which was earlier inferred near the original discovery zone is now under review. Unfortunately, surface exposures in this vicinity do not substantiate the presence of such a zone. In fact, there does not appear to be a significant lack of quartz vein continuity or fold related cross-structures, therefore this flexure may not exist. Some shift in quartz vein strike direction in outcrop near this area may be due to either fissure vein refraction (across volcano-sedimentary contact) or due to the normal "wandering" nature of narrow quartz veins (not apparent in diamond drilling).

Metamorphism:

All of the rocks of the Northeast Area have undergone Grenville aged deformation and metamorphism to lower-medium greenschist facies. This results in chloritic greenstones in place of mafic volcanic rocks and siliceous, semi-pelitic schists in place of the original muddy, epiclastic iron rich sediments. The presence of abundant garnet in the more pelitic rocks implies the higher temperature ranges of low grade metamorphism, and this is consistant with the occurrence of minor actinolite in greenstones and development of biotite in both volcanics and sediments.

Geophysics:

In August of 1981, a VLF-EM and magnetometer survey of the Bannockburn property was carried out on approximately 6.2 miles of cut line grid with line spacing of 200 feet. VLF-EM readings were taken at 50 foot station intervals and magnetic stations were at 25 foot intervals. This survey was designed to cover the Mono Gold Mines Inc. property to identify the known mineralized structure at the Bannockburn Mine and explore for new extensions or otherwise new targets.

This survey was extended to cover part of the Northeast Area in February and March 1984 (in addition to other newly acquired claims). The new survey located numerous anomalies, including several near the currently known gold mineralization. A recent reexamination of this survey data indicates that it is of limited value in terms of the detail required for exploration of a quartz vein system deposit. This is due to the biasing of survey data with respect to the Geology of the old Bannockburn Mine. In addition, the data density is not sufficient and does not cover

the entire Northeast Area, thus detailed interpretations of the vein system and host rocks is not possible.

A two line test survey of hi-resolution magnetometer readings was conducted in February 1986. This test was to ascertain the usefulnes of this technique in identifying the presence of major contacts, faults and perhaps quartz veins or associated silicified zones. The results of this test survey were encouraging and future work is planned.

ECONOMIC GEOLOGY AND DISCUSSION

Unlike the Bannockburn Mine, the Northeast Area gold mineralization does not appear to occupy a major structural break or shear zone. Gold mineralization is limited to quartz-carbonate veins which apparently cross-cut deformed Grenville metavolcanics and metasediments.

Gold occurs as a native metal, in association with pyrite/pyrrhotite, minor base metal sulphides, and in gold-silver tellurides. Minor vein constituents include Fe-carbonates, Illmenite, and Bismuthinite. A limited number of observations suggest that the gold tenor is not proportional to sulphide content and may occur with or without carbonate in the quartz veins. Gold is however, often concentrated near the vein margins where coarse calcite is also noted. High gold value quartz veins generally contain visible native gold or strongly disseminated, tinted telluride mineralization. Several mineralized vein intersections have yielded spectacular assays in the order of > 5.00 oz. Au per ton.

The Quartz-carbonate vein system is comprised of numerous generally parallel, north-northwest striking veins which cross-cut folded Grenville supracrustal rocks. The veins are typically narrow, from three feet to several inches in true thickness. Although veins may be very narrow, significant gold mineralization will yield assays capable of supporting a diluted five foot width in continuous zones.

The veins appear to contain "ore shoots" in which grades are elevated and form potentially mineable zones. Outside the shoots, assay values of a typical mineralized vein are within the range of 0.025 to 0.050 oz. per ton. This feature, if proven to be consistant, would be of great importance in following non-ore into zones of ore grade material. The pattern of "ore shoot" development is at present unclear, but appears to rake to the north. Flanned future drilling should define these zones. Unfortunately, narrow veins and high nugget effect mineralization will require a large number of samples in order that statistically significant interpretations can be made.

The quartz vein systems of the Northeast Area consist of sheeted, chamber, and dilation veins which strike north-northwest and dip at 45-50 degrees east. Displacement along the veins has not been recognized, and is assumed insignificant. As fissure veins react differently to differing host rock types, the Northeast Area system may experience a change in morphology and trend upon crossing the volcano-sedimentary contact. Limited observations suggest that the veins within mafic metavolcanics are sharp walled, continuous and largely singular, whereas those within the Rusty Schist (etc.) may break up into sheeted or composite veins. The original shallow drilling of early 1985 intersected metasediment hosted, sheeted quartz veins of exceptionally high grade. These grades may reflect the effects of the main contact

on gold deposition. Planned deeper drilling in this area will hopefully define any changes in veining or deposition. At present, a typical description of an "ore" grade, gold bearing quartz vein cannot be made. A planned review of all core drilled to date will hopefully establish criteria for distingishing the potential ore from barren quartz zones.

Other types of quartz veins include a variety of more granular, cherty quartz segregations which largely occur along flow contacts within the mafic metavolcanics. In drill core, these appear to be completely conformable, generally regular quartz and quartz-carbonate veins that often carry sulphide mineralization. Quartz veins of this type may carry elevated gold contents although rarely "ore" grades. The cross-cutting mineralized veins may intersect such horizons and be conformably displaced for some distance in which case gold may become dispersed. In drill core, veins having both a cross-cutting and conformable nature are noted. These are interpreted as cross-cutting veins which have either intersected conformable quartz or have been chambered by diffusion along cleavage or bedding planes.

Quartz and/or carbonate stringers are a common feature within metamorphic rocks, and probably represent synmetamorphic siliceous segregations which are of little economic interest. Such stringers are however related in many cases to the regional or local alteration associated with gold deposition processes.

The Northeast Area contains quartz vein systems both within and outside of intensely altered host rocks. The alteration types include pervasive carbonatization, silicification and minor potassic alteration. In several cases, quartz veins are bordered by intense but localized carbonatization for several feet. Elsewhere, the entire drilled section exhibits varying degrees of carbonate enrichment.

Carbonatization is present throughout the entire Bannockburn property, thus it is difficult to determine if regional processes or "ore" forming processes are responsible. Many major gold producing areas contain abundant carbonatized host rocks, these being considered by many workers an effect of metamorphic events which may lead to gold deposition. These processes include hydrothermal alteration in which CO2 rich fluids carrying a variety of gold bearing complexes pass through the host rocks.

Planned whole rock geochemical sampling may define alteration types and be useful in exploring for similarily altered host rocks elsewhere on the property.

Zones earlier interpreted as "felsite" are now under review and may in fact prove to be strongly silicified metavolcanics. Evidence for this includes ghost structures which are continuous

with the enclosing volcanics, cross-cutting relationships and diffuse, gradational contacts. Recent drilling has encountered significant gold values within cross-cutting quartz veins that appear to be the culmination of such silicification. This may however be coincidental.

A recent Geochemical (soils) survey of the entire Bannockburn property has been undertaken. This has outlined a number of anomalies throughout the property including the Northeast Area. The latter however, are generally not of fine enough resolution to be of value in the drilled area. These of course do have significant value in locating new drill targets which may extend the area of known mineralization.

PROVISIONAL RESERVE ESTIMATE

As part of the review of exploration data on the Northeast Area, a provisional reserve estimate was calculated to include the recent 1986 drilling and reinterpretation of existing data. The total reserve is 113,720 tons @ 0.242 oz. per ton over a minimum five foot width. This is based upon incomplete and shallow diamond drilling to an average depth of less than 350 vertical feet. The total reserve is comprised of 59,820 tons @ 0.279 oz. per ton Drill Indicated, and 53,900 tons @ 0.200 oz. per ton Inferred.

Drill Indicated reserves are defined as identified tonnage and grade based on specific measurments, samples and projection for a reasonable distance on the basis of Geological evidence. Inferred reserves are defined as quantitative estimates based on Geological character, few if any samples or measurements, and comparison to known parts of this or similar deposit.

It should be noted that the previous reserve estimate of 98,750 tons @ 0.340 oz Au per ton should be considered 100% Inferred only.

To derive the new, provisional reserve estimate, all data was transferred to a set of Geological cross sections. These are oriented at a right angle to an arbitrary reference line which crudely parallels the vein system (in part). This transfer involved the plotting of "off section" drilling information via extrapolation and interpolation. Zones of apparently continuous economic mineralization were correlated and measured with respect to their volume (correcting for off section width exaggerations). With an assumed tonnage factor of 12 cubic feet per ton, these mineralized (and diluted) volumes were converted to tonnages having the average grade of the section for the vein in question. Normal ore reserve calulations (especially in "measured" categories) use a system of weighted averages to derive the mean grade of a zone. In the case at hand, the sample density is not sufficient to apply this method and many of the assay values belong to off section drilling.

Appendix VII includes provisional reserve longitudinals for each of the important vein systems. A summary of the calulations for each vein is also given in Appendix II.

RECOMMENDATIONS AND CONCLUSIONS

Current and ongoing review of exploration of the Northeast Area indicates that a sizeable gold deposit is present. This deposit is essentially open at depth and along strike, with current exploration having outlined 113,720 tons @ 0.242 oz. Au per ton combined Drill Indicated and Inferred tonnage. This tonnage is derived across a minimum five foot width to an average depth of less than 350 vertical feet and explored strike length of 900 feet.

Diamond drilling to date includes only 15,920 feet and is far from complete. Much of the existing drilling has been done "off section" and was based upon an incomplete understanding of the vein geometries. This is a nominal condition that often occurs in the early stages of an exploration program, especially when dealing with narrow, high grade vein deposits that have poor surface exposure.

Although drilling has been done along a strike length of approximately 900 feet, this does not imply that the potentially mineralized horizons have been adequately sampled. In fact, much of this drilling has been too shallow as evidenced by the recent 85-27 which extension of DDH encountered strong mineralization and had a positive effect on reserves. Virtually all sections require deepening and fill in drilling, especially to test the west side of the area, where similar, deeper intersections suggest new veins nearer surface. The 1986 drilling from the flooded area (beaver pond) intersected strong quartz veining, but with disappointing gold values. DDH 86-9 did however intersect a 0.076 oz Au per ton zone over 1.7 feet. This type of value is certainly anomalous. and may indicate mineralization elsewhere within this particular Unfortunately, this vein is only intersected at this one point. A similar situation exists for other vein systems elsewhere on the property, thus it is obvious that further drilling is required to properly test these zones.

Geological mapping of the Northeast Area has been conducted but has not covered areas recently cleared. This mapping has defined to some extent the nature of the major fold structure, but has not concentrated on possible faults or the tracing of mineralized quartz veins on surface. Further Geological mapping may provide better information concerning the vein geometries and their relationship to host rocks and alteration where present. Planned Geophysical work and existing Geochemical anomalies will also benefit from more detailed Geological mapping.

At present, it is not considered advisable to persue an underground exploration program until such time as the Geological cross sections are fully completed, and a better understanding of ore shoot development and vein geometry is available. A number of significant drill targets are untested and may positively change the reserves, thus altering underground planning.

It is therefore recommended that the following work progam be completed in order to prepare a reserve and Geological report suitable for an underground exploration decision.

....1) A diamond drilling program of 15,000 feet should be undertaken to fill in, deepen and otherwise complete the currrent Geological cross sections. A portion of this footage (approx. 500 ft.) should be allocated for testing a single gold-in-soil geochemical anomaly in the southern part of the Northeast Area (at 1+20South/ 0+60West).

Appendix IX contains the current Geological cross sections with proposed diamond drilling shown. This drilling should be carried out on an interactive basis such that consistantly positive or negative results will allow for reallocation of footage to other areas.

-2) A high resolution Geophysical survey should be undertaken on the detail drilling grid. Such a survey should include closely spaced magnetometer readings, susceptibility measurments, and modelling of the data with respect to known geological features to produce an integrated model of the deposit.
- ...3) Continued Geological mapping of new exposures and extended coverage should be done with emphasis on locating faults, quartz vein outcroppings, sampling (especially old pits & trenches etc.), and locating alteration trends. Geological mapping and hydraulic stripping near the original discovery area will serve to define a "flexure fault" (if present) and its effect on mineralization.
-4) A reexamination of all existing drill core (now stored and accessible) should be undertaken in order to check for zones which have not been properly sampled, to identify alteration trends, and to provide background magnetic susceptibility data. This work should be completed concurrently with core logging of the planned drilling, and facilities are available at the core storage location for this work at no charge.
-5) A small number of whole rock geochemical samples should be analysed in order to properly identify the wall rocks, and identify possible alteration trends. This should be augmented with several petrographic thin sections to aid identification of mineral assemblages present.

Appendix I contains a proposed budget for this program.

Respectfully submitted....

Brian R. King (HBSc)/

Geologist

CERTIFICATE OF QUALIFICATION

I, Brian R. King, of Bridgenorth, Ontario

DO HEREBY CERTIFY THAT

1....I am a degree holding Geologist, a graduate of Brock University, St. Catharines, Ontario, with B.Sc. Honours in Geology.

2....I have practised my profession as a Geologist since 1979 in the fields of Mineral Exploration and Mining Geology in Canada.

3.....I am a member of the Canadian Institute of Mining and Metallurgy, Association of Prospectors and Developers, and the Mineral Association of Canada.

4... That the information, opinions and recommendations in this report are based on personal observations made at the Bannockburn propety, core storage facilities (Eldorado and Tweed, Ontario), and discussions with qualified persons who are familiar with the property and its history, during the period October 1985 to March 1986.

5....That I have no direct or indirect interest in any of the subject properties of this report, nor in the shares or securities of Mono Gold Mines Inc., or associated companies, nor do I expect to receive such interest.

B. R. King, hB.Sc

Dated at Bridgenorth, Ontario, this 18th day of March, 1986.

212 Brooksbank Ave. North Vancouver, B.C.

Canada V7J 2C1

Phone: (604) 984-0221

Telex: 043-52597

Analytical Chemists •

Geochemists •

Registered Assayers

CERTIFICATE OF ASSAY

: A8610294-001-A CERT. #

INVOICE # : I8610294 : 27-JAN-86 DATE

P.O. # : NONE

MADOC

709 - 837 W. HASTINGS ST.

VANCOUVER. B.C.

TO : MOND GOLD MINES INC.

V6C 186

ATTN: D. IRWIN. CC: SAWYER CONSULTANTS

Sample	Prep	Au FA			
description	code	oz/T		 	
75001	207	0.002	 	 	
75002	207	0.012	 	 	
75003	207	<0.002	 	 	
75004	207	<0.002	 + -	 	~ ~
75005	207	<0.002	 	 	
75006	207	<0.002	 	 ~-	~
75007	207	<0.002	 	 	
75008	207	2.554	 	 	
75009	207	1.938	 	 	
75010	207	0.096	 	 	
75011	207	0.010	 	 	
75012	207	0.220	 	 	
75013	207	0.014	 	 	

RECEIVED JAN 2 7 1986

Chemex Labs Ltd.

212 Brooksbank Ave. North Vancouver, B.C. V7J 2C1

Canada

(604) 984-0221

Phone: Telex:

043-52597

Analytical Chemists •

Geochemists

Registered Assayers

CERTIFICATE OF ASSAY

TO : MONO GOLD MINES INC.

709 - 837 W. HASTINGS ST.

VANCOUVER, B.C.

V6C 1B6

CERT. # : A8610296-001-A

INVOICE # : 18610296 : 27-JAN-86 DATE

P.O. # : NONE

MADOC

ATTN: D. IRWIN, CC: SAWYER CONS.

Sample	Prep	Au oz/T			
description	code	RUSH FA		 	
75014	207	0.002		 	
75015	207	<0.002		 	
75016	207	0.002		 	
75017	207	0.004		 	
75018	207	0.082		 	
75019	207	0.014		 	
75020	207	0.002	40 44	 	

RECEIVED JAN 2 7 1986
212 Brooksbank Ave.

North Vancouver, B.C. Canada V7J 2C1

Phone:

(604) 984-0221

Telex:

043-52597

Analytical Chemists

Geochemists

Registered Assayers

CERTIFICATE OF ASSAY

TO : MONO GOLD MINES INC.

709 - 837 W. HASTINGS ST.

VANCOUVER. B.C.

V6C 1B6

CERT. # : A

: A8610297-001-A

INVOICE # : 18610297

DATE : 27-JAN-86

P.O. # : NONE

MADOC

ATTN: MR. IRWIN, EC: SAWYER CONSULTANTS

Sample description	Prep code	Au FA oz/T			
75021	207	0.016	 	 	
75022	207	<0.002	 	 	
75023	207	0.002	 	 	
75024	207	0.002	 	 	
75025	207	0.002	 	 	
75026	207	0.004	 	 	
75027	207	0.002	 	 	
75028	207	0.004	 	 	
75029	207	0.014	 	 =	
75030	207	1.638	 	 	

N. Stendmann

VOI rev. 4/85

212 Brooksbank Ave. North Vancouver, B.C. Canada V7J 2C1

Phone:

(604) 984-0221

Telex:

043-52597

Analytical Chemists

Geochemists

Registered Assayers

CERTIFICATE OF ASSAY

TO : MONO GOLD MINES INC.

709 - 837 W. HASTINGS ST.

VANCOUVER. B.C.

V6C 1B6

SAWYER CONSULTANTS 1201- 675 W. HASTINGS

VANCOUVER, BC

V6B INQ

CERT. # : A8610310-001-A

INVOICE #: 18610310 DATE : 27-JAN-86

P.G. # : !

MADOC

: NONE

ATTN: MR IRV	NIN		 		
Sample description	Prep code	Au FA oz/T			
75031	207	<0.002	 	 	
75032	207	<0.002	 	 	
75033	207	<0.002	 	 	
75034	207	<0.002	 	 	
75035	207	<0.002	 	 	
75036	207	<0.002	 	 	
75037	207	<0.002	 	 	
75038	207	<0.002	 	 	
75039	207	3.208	 	 	
75040	207	0.022	 	 	
75041	207	0.006	 	 	
75042	207	0.200	 	 	
75043	207	0.208	 	 	
75044	207	0.008	 	 	
75045	207	0.006	 	 	
75046	207	0.004	 	 	
75047	207	0.102	 	 	
75048	207	0.008	 	 	

W. San Amorini

VOI rev. 4/85

212 Brooksbank Ave. North Vancouver, B.C. Canada V7J 2C1

Telephone: (604) 984-0221 Telex: 043-52597

: A8610383-001-A

Analytical Chemists

Geochemists

Registered Assayers

CERTIFICATE OF ASSAY

TO : MONO GOLD MINES INC.

1201-675 W. HASTINGS

INVOICE # 18610383 3-FEB-86 DATE

709 - 837 W. HASTINGS ST. VANCOUVER, BE. VANCOUVER. B.C.

V6C 1B6

P.O. # : NONE

MADOC

CERT. #

	ATTN: B. IR	IIN TC:	SAWYER CONS	ULTANTS INC	•		
	Sample	Prep	AU FA			 	
	description	code	oz/T				
	75049	207	<0.002			 	
	75050	207	<0.002			 	
	75051	207	<0.002			 	
	75052	207	0.078			 	
	75053	207	0.376			 	
	75054	207	0.004			 	
	75055	207	3.716			 	
	75056	207	0.014			 	
ı	75057	207	0.094			 	
	75058	207	0.014			 	
	75059	207	0.018	~~		 	
	75060	207	<0.002			 	
Ì	75061	207	0.010			 	
	75062	207	<0.002			 	
	75063	207	0.002			 	
l	75064	207	0.056			 	
	75065	207	0.300		~~	 ~~	
,	75066	207	0.002			 	
	75067	207	0.002			 	

212 Brooksbank Ave. North Vancouver, B.C. Canada V7J 2C1

Telephone: (604) 984-0221 Telex: 043-52597

Analytical Chemists

Geochemists

Registered Assayers

CERTIFICATE OF ASSAY

Van BC

TO : MONO GOLD MINES INC.

21-675 W Hostings

CERT. # A8610457-001-A INVOICE #

DATE

18610457 : 31-JAN-86

P.O. # MADOC

NONE

709 - 837 W. HASTINGS ST. VANCOUVER. B.C.

236

V6C 186

75083

V6BINZ

CC: SAWYER CONSULTANTS ATTN: MR. IRWIN Au oz/T Sample Prep description code RUSH FA 75068 236 0.012 75069 236 0.158 0.424 75070 236 <0.002 236 75071 236 0.024 75072 75073 236 0.352 <0.002 75074 236 236 <0.002 75075 <0.002 75076 236 75077 236 <0.002 236 <0.002 75078 75079 236 0.114 0.336 236 75080 0.110 75081 236 0.040 75082 236 0.034

Chemex Labs Ltd.

212 Brooksbank Ave. North Vancouver, B.C. Canada V7J 2C1

Phone: (604) 984-0221

Telex: 043-52597

Analytical Chemists

Geochemists • Registered Assayers

CERTIFICATE OF ASSAY

TO : MONO GOLD MINES INC.

709 - 837 W. HASTINGS ST.

VANCOUVER. B.C.

V6C 186

CERT. # : A8610634-001-A

INVOICE # : 18610634 DATE : 13-FE8-86

P. 0. # : NONE

ATTN: B. IR	WIN //CC:	SAWYER	CONSULTAN	ITS INC.

ATIN: 5. IKW			CUNSULTANTS	INC.			
Sample	Prep	AU FA					_ }
description	code	oz/T					
75084	207	0.002					
75085	207	0.002					
7 5086	207	0.072					
75087	207	0.036					
75088	207	0.004					
75089	207	0.002					
75090	207	0.002					
75091	207	1.310					
7 5092	207	0.014					
75093	207	0.008					
75094	207	0.002					
75095	207	<0.002				- -	
75096	207	0.062					
75097	207	0.032					
75098	207	0.950					
75099	207	0.012				- <u>-</u> -	
75100	207	0.014					
75101	207	0.046					
75102	207	0.010					
75103	207	0.008					
75104	207	0.002					
_ 75105	207	0.002					
75106	207	0.002					
75107	207	0.002					
751 08	207	<0.002					
75109	207	<0.002					
75110	207	<0.002					
75111	207	<0.002					
75112	207	<0.002					
75113	207	<0.002					
75114	207	<0.002					
75115	207	<0.002					
75116	207	<0.002					
75117	207	<0.002					
75118	207	<0.002					
75119	207	0.076					
75120	207	<0.002					
75121	207	<0.002					
75122	207	<0.002					
75123	207	<0.002		18-1			
			11	11. 1	. ,		VOI rev. 4/85

RECEIVED FEB 1 4 1986

Chemex Labs Ltd.

212 Brooksbank Ave. North Vancouver, B.C. Canada V7J 2C1

Phone:

(604) 984-0221

Telex:

043-52597

VOI rev. 4/85

Geochemists

Registered Assayers

CERTIFICATE OF ASSAY

TO : MOND GOLD MINES INC.

709 - 837 W. HASTINGS ST.

VANCOUVER. B.C.

V6C 186

CERT. # : A8610634-002-A

INVOICE #: 18610634 DATE : 13-FEB-86

P.O. # : NONE

ATIN: B. IRWI	N C	C: SAI	MYEK	CONSUL	IANTS INC.	,
						_

Analytical Chemists

Sample	Prep	Au FA	CONSOCIANTS	11101		
description	code	oz/T				
75124	207	<0.002			 	
75125	207	<0.002			 	
75126	207	<0.002			 	
75127	207	<0.002			 	
75128	207	<0.002			 	
75129	207	<0.002			 	÷-
7 5130	207	<0.002			 	
75131	207	<0.002			 	
75132	207	0.008			 	
75133	207	<0.002			 	
75134	207	<0.002			 	
7 5135	207	0.008			 	
75136	207	<0.002			 	
75137	207	<0.002			 	
75138	207	0.004			 	
75139	207	0.012			 	
75140	207	<0.002			 	
75141	207	0.002			 	
75142	207	0.002			 	
75143	207	<0.002			 	
75144	207	<0.902			 	
75145	207	<0.002			 	
75146	207	<0.002			 	
75147	207	<0.002			 	
75148	207	<0.002			 	
75149	207	<0.002			 	
75150	207	<0.002			 	~ -
75151	207	<0.002			 	
75152	207	0.012			 	
75153	207	0.008			 	
75154	207	0.016			 	
75155	207	0.004	**		 	
75156	207	<0.002			 	
75157	207	<0.002			 	

W. Ster Amaria

RECEIVED FEB 1 8 1986

Chemex Labs Ltd.

212 Brooksbank Ave. North Vancouver, B.C. Canada V7J 2C1

Phone:

(604) 984-0221

Telex:

043-52597

Geochemists

Registered Assayers

CERTIFICATE OF ASSAY

TO : MONE GOLD MINES INC.

VANCOUVER, b.C.

SALLYOR CONSULTANTS

709 - 837 W. HASTINGS ST. 1270-601 W. HASTINGS

VANCOUV

Analytical Chemists

V6C 135

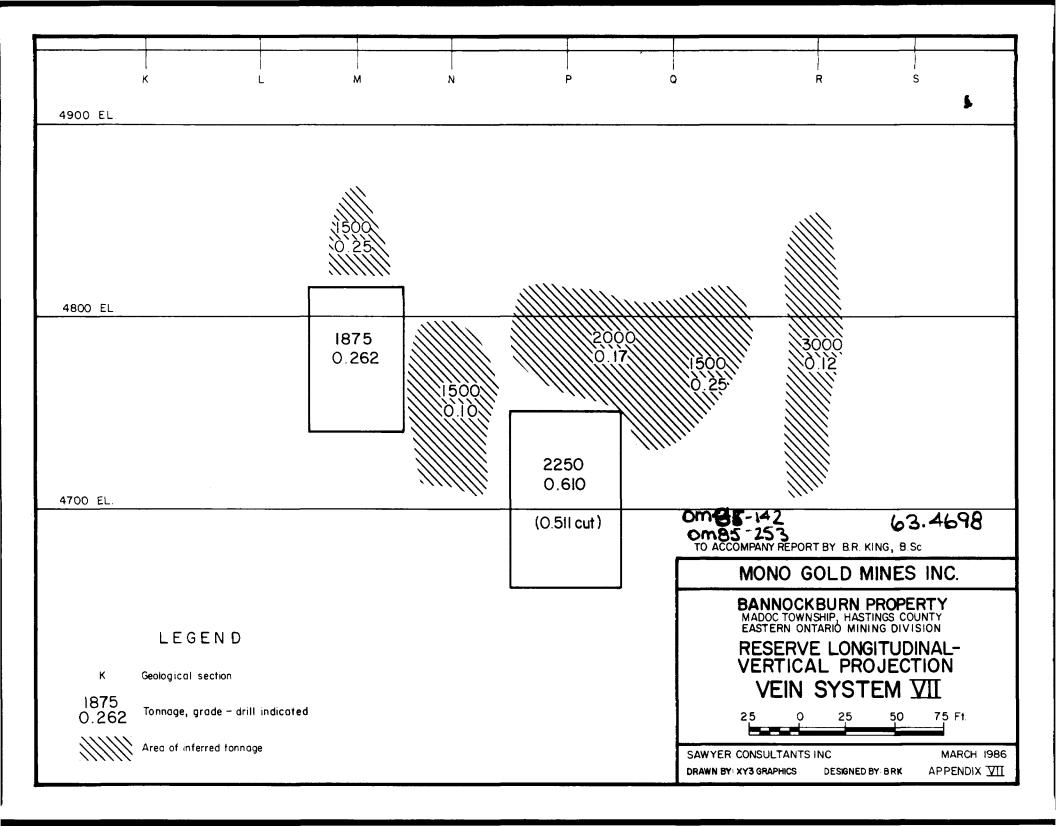
VANCOUVER, BC

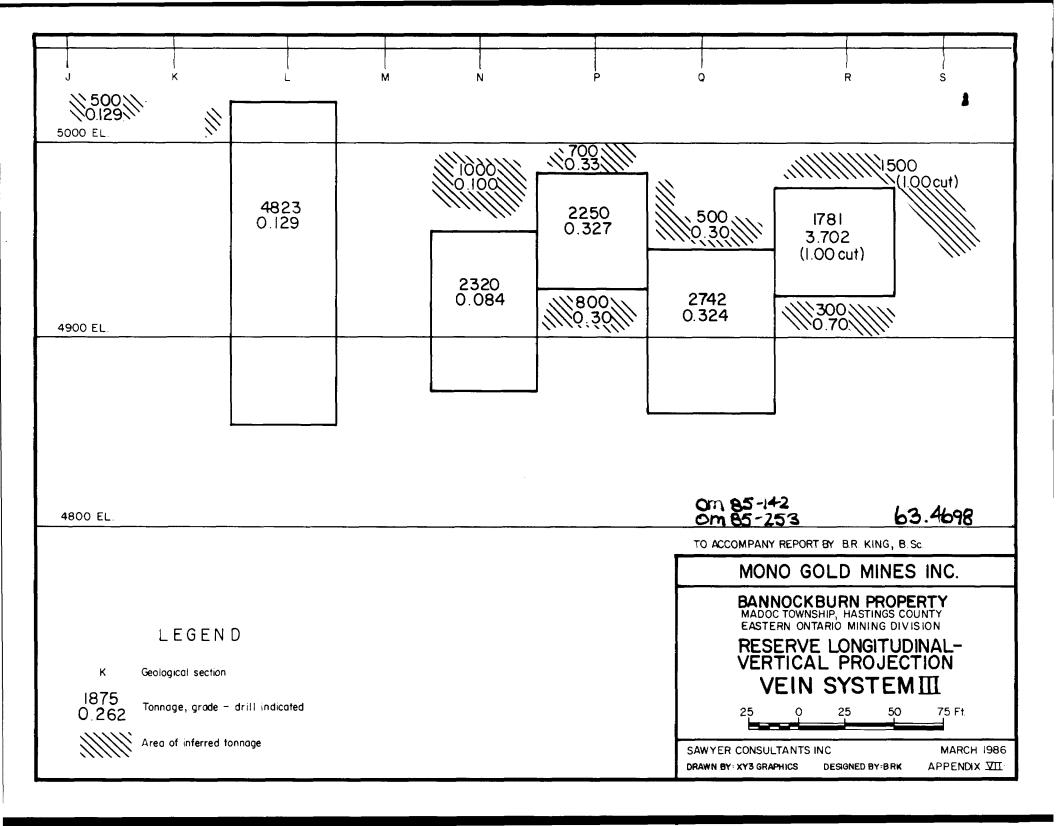
VEB 5A6

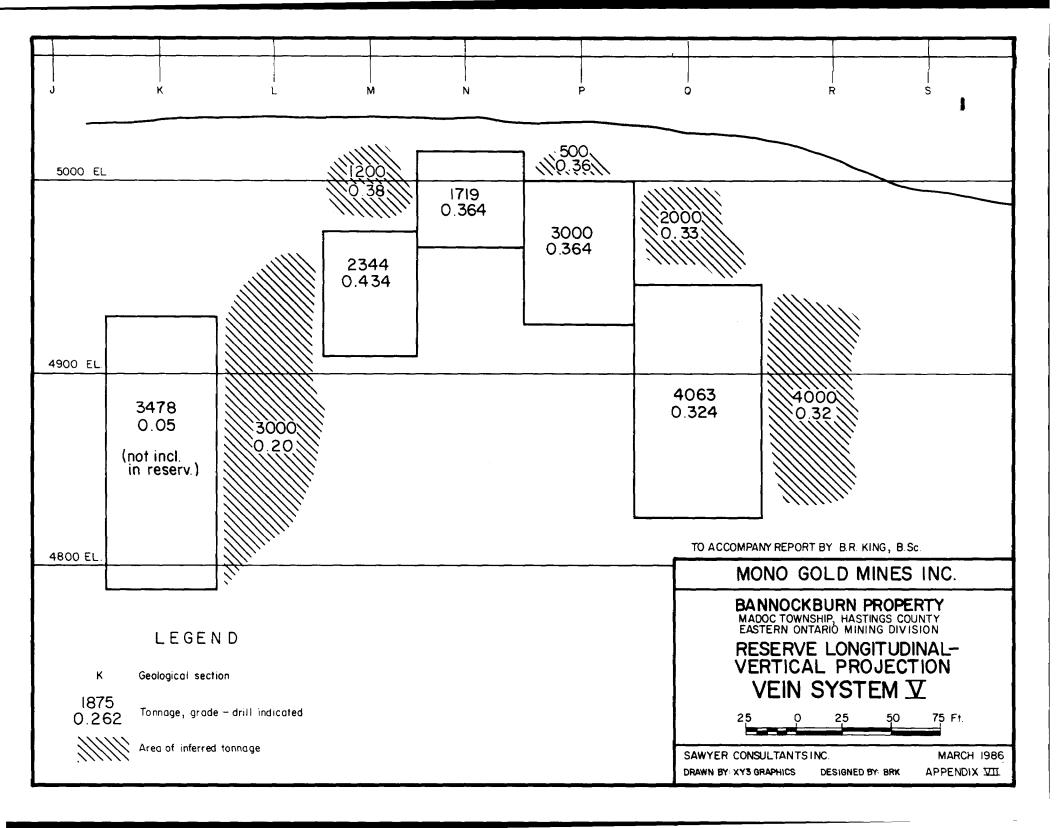
CERT. # : 48610747-001-A

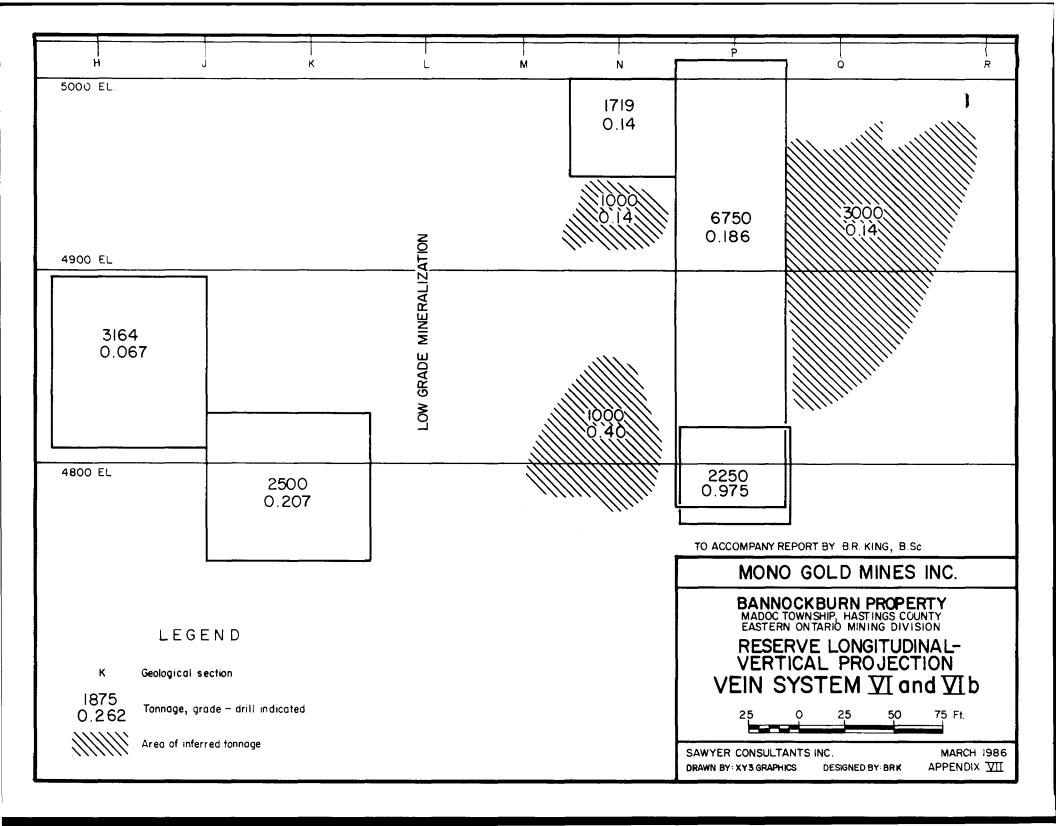
INVUICE # : 18610747

DATE : 18-FEB-86


P.O. # : NONE


ATTN: B. IRWIN. CC: SAWYER CONSULTANTS


Sample	Prep	Ay FA			
description	code	oz/T			
75129	214	0.13	 	 	
75130	214	0.01	 	 	
75131	214	0.01	 	 	
75138	214	1.24	 	 	
75150	214	0.05	 	 ~-	
75151	214	U • 45	 	 	


W. Sten Smanin


VOI rev. 4/85

050

REPORT ON THE HOUSTON OPTION DRILLING, BANNOCKBURN PROPERTY

MADOC TOWNSHIP, ONTARIO

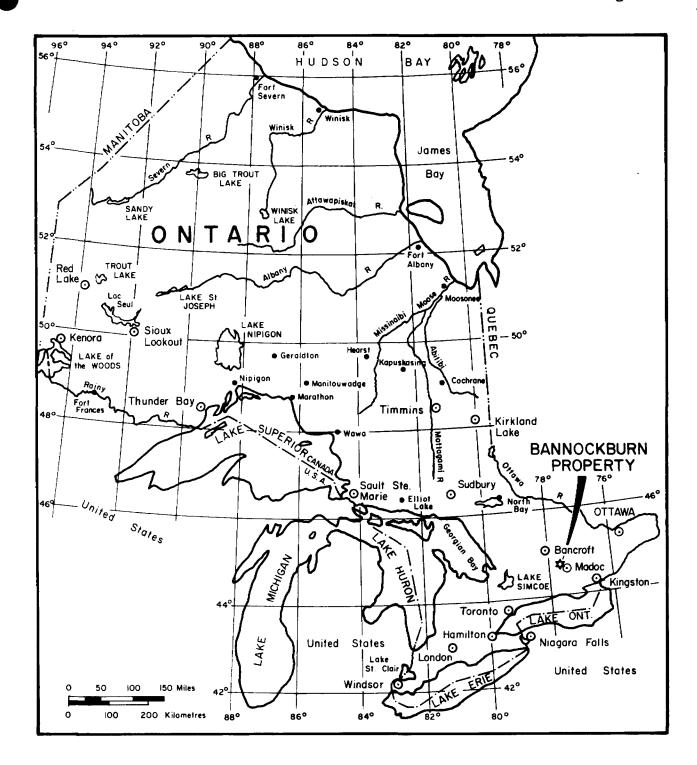
FOR

MONO GOLD MINES INC.

MARCH 20, 1986

Brian R. King, Geologist

TABLE OF CONTENTS:


050C

INTRODUCTION.	• • • • • • • • • • • • • • • • • • • •	.3				
SUMMARY		. 5				
PROPERTY AND (DWNERSHIP	. 6				
	ACCESS					
	REVIOUS WORK					
	DGY					
Intro	duction	12				
Major	Features	12				
	DGY,					
	duction					
	edimentary Rocks					
	olcanic Rocks					
	sive Rocks					
	tural Geology					
	DGY & DISCUSSION					
	NS AND CONCLUSI ONS					
	, 					
	(Froposed Budget)					
	(Diamond Drill Data)					
	(Assay Summary)					
Appendix IV	(Assay Certificates)					
Appendix V	(Diamond Drill Logs)pod					
	(Geological & Drill Plan)					
	Fig. 3poc	sket				
Appendix VII	(Geological Sections)					
, .	Fig. 4 & 5po	cket				
LIST OF FIGUR	ES					
Figure 1.	General Location	. 4				
	Bannockburn Froperty					
	Geological & Drill Planpoc					
	Geological Section 14Npoc					
	Geological Section 2Npoc					
LIST OF TABLES						
Table 1	Proporty Disposition	0				

INTRODUCTION

The Bannockburn gold property of Mono Gold Mines Inc., is located in the northern part of Madoc Township, Hastings County in Eastern Ontario (fig. 1). The Houston Option is located approximately 0.8 miles north-northeast of the settlement of Bannockburn and is the site of recent surface exploration and diamond drilling.

This report describes the preliminary diamond drilling on the Houston Option claims with respect to current exploration activities at the Bannockburn-Northeast Area (also known as the Discovery Area).

MONO GOLD MINES INC. BANNOCKBURN PROPERTY

MADOC TOWNSHIP
EASTERN ONTARIO MINING DIVISION

GENERAL LOCATION MAP

SUMMARY

The first discovery of gold on the Canadian Shield (and Ontario) in 1866 lead to a short lived gold rush in Madoc and surrounding townships of Eastern Ontario. Several miles north of the original discovery, the Bannockburn Gold Mine was opened circa 1894, with a number of shallow workings including a 70 foot shaft. A small mill on the site recovered small amounts of gold from an unknown tonnage.

In 1981, Mono Gold Mines Inc. carried out a preliminary exploration program covering the mine area. The work completed included geolgical mapping, geophysical surveys, a limited amount of stripping and trenching, and a preliminary diamond drilling program involving 1725 feet in eleven shallow holes.

In early 1984. Mono Gold Mines Inc. extended coverage of the property to include what is now known as the Northeast Area. A program of Geophysical surveys, Geological mapping and prospecting lead to the discovery of a significant gold deposit.

Diamond driling from May 1985 to February 1986 brought the total aggregate footage drilled at the Northeast Area to 15,920 feet. This has partially outlined a gold deposit containing an estimated 113,720 tons @ 0.242 oz. At per ton (combined Drill Indicated and Inferred) over a five foot minimum width. Gold occurs in at least ten epigenetic quartz veins or systems and has been partially explored to an average depth of less than 350 vertical feet and along a known strike length of 900 feet. This deposit should be considered open at depth and along strike.

In mid 1985 Mono Gold Mines Inc., exercised an option to acquire two claims immediately north of the discovery from A. D. Houston in which possible "on strike" extensions of the known mineralization might be encountered.

Following a property wide Geochemical survey, several trace element anomalies were located on the Houston Option. Subsequent diamond drilling encountered very encouraging results in a strong "gold in soil" anomaly. A number of elevated gold values including a 0.780 oz. Au per ton over 1.3 ft. were revealed from a strong shear/breccia zone within mafic metavolcanics. This style of mineralization shares common elements with the Bannockburn Mine and the Northeast Area to the south. The new discovery is essentially on strike with the Northeast Area and continuity between the two is probable.

A program of continued diamond drilling and suface exploration (to include Geophysics and Geological mapping) is recommended. The total cost of this program is estimated at \$246,765 (Can).

PROPERTY AND OWNERSHIP

The Mono Gold Mines Inc. Bannockburn property consists of approximately 628 acres within Lots 27,28,29, and 30 of Concession V and VI of Madoc township in east-central Ontario. This report addresses a portion of these holdings within lot 30-concession VI and is known as the "Houston Option", shown in figure 2.

The Houston Option is within recorded claims # ED 781909 and 781910 which is listed as "Patent, Surface Rights Only" on Ontario Claim Map M-120. This implies that the surface rights are privately held but mineral rights may be claimed. Through staking and ownership transfer, the mineral rights to this claim and adjacent claims have been acquired by Mono Gold Mines Inc. Table I indicates the property status of the entire Bannockburn holdings.

LOCATION AND ACCESS

The Houston Option is easily accessible from Hwy #62 linking the villages of Madoc and Bancroft, and connecting to Hwy #7 (Trans Canada Hwy). Access is by road and rail right of way, suitable for small truck under most conditions and directly links to Hwy #62. The northern portion of the Houston Option is accessible by drill trail from the Wolf Lake Road, which also connects to Hwy #62 just north of Bannockburn. The Mono Gold Mines Inc. properties are approximately centred at the small settlement of Bannockburn, 16 km. north of Hwy #7.

National Topographic System (NTS) map 31C/12 shows the Bannockburn area at 1:50,000 scale. Recently published maps of the Ontario Basic Mapping Program also show the Bannockburn area at a scale of 1:10000 (OBM 10 18 2950 49450). The Bannockburn property is also shown on Ontario Mineral Potential map,P 1505 at a scale of 1:250,000, Ontario Dept. of Mines map NO. 1957b, and Ontario Geological Survey map 2154.

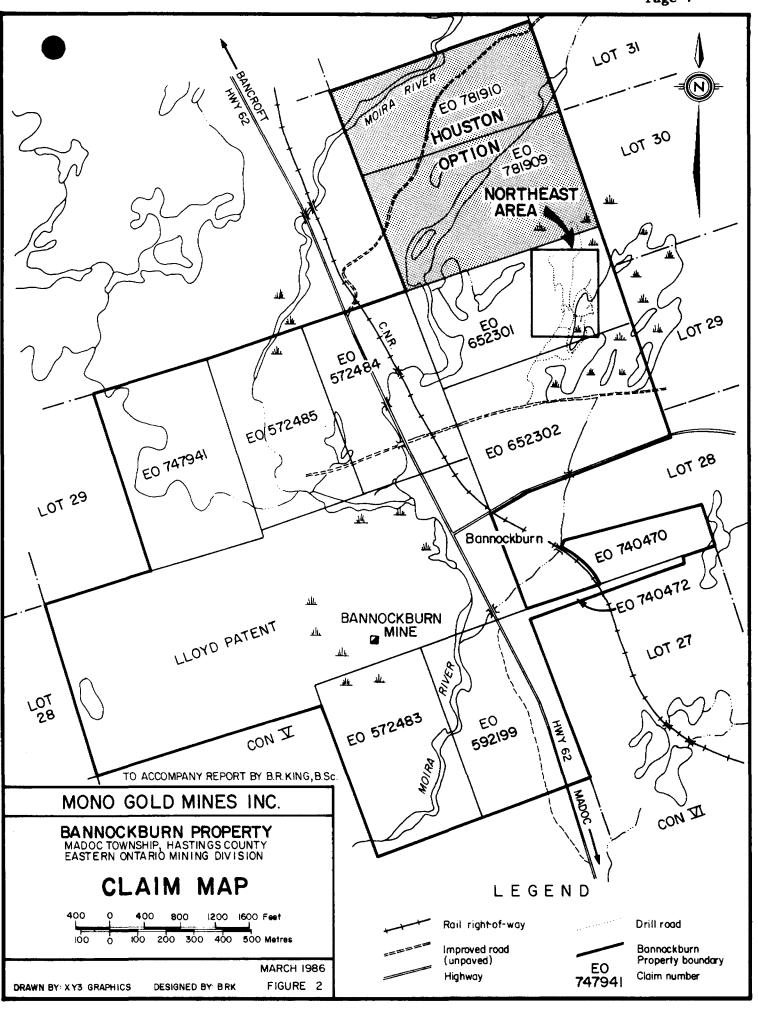


TABLE I
Froperty Disposition and Claim Schedule**

CLAIM	CONC.	LOT	ACRES	RECORDED	EXPIR.
Lloyd Patent	V	28	140	n/a	n/a
EO 572483	V	W/4ofE/2°27	50	May 14/80	1986+
572484*	V	E/4129	50	May 14/80	1986
572485*	V	W/4ofE/2°29	50	May 14/80	1986
592199	V	E/4°27	50	Sept.20/82	1989+
747941	V	E/4ofW/2°29	50	May 16/85	1986+
652301*	VΙ	NW/4129	50	Feb.11/83	1988
652 302 *	VI	SW/4129	50	Feb.11/83	1988
781909	٧I	SW/4°30	50	Feb.28/85	1986
781910	VI	NW/4°30	50	Feb.28/85	1986+
740470	VI	partSW/4°28	30	July 8/85	1986+
740472	٧I	partNW/4°27	8	July 8/85	1986+

^{*} permission granted for patent application survey

^{**} after Table I, Beavon, (1986)

⁺ assessment reports completed/in preparation as of January'86

HISTORY AND PREVIOUS WORK

The first discovery of gold on the Canadian Shield (and Ontario) at the Richardson farm of Eldorado in 1866, sparked a colourful yet short lived gold rush in the area. Although mining in the region was established as early as 1820 (at Marmora), it was not until the Eldorado find that extensive gold prospecting occurred in Madoc township. In the years that followed, numerous prospects were explored with several seeing limited production. However, none were commercially viable, in part due to the inferior extraction technology of the day.

At the Bannockburn Mine, four shallow shafts were sunk circa 1894 (OGS Mineral Deposits Circular #18) in addition to stripping and trenching. From one of the shafts, 17 feet of drifting was done, presumably along the "mine structure". A ten stamp mill was in operation at the site at this time. In 1897, one of the shafts was deepened to 75 feet, and another 35 foot shaft was put down.

Although records are incomplete, approximately 3.5 oz. of gold was produced from an unknown tonnage of "ore". Other accounts by local historians are somewhat more spectacular but cannot be substantiated. Today numerous pits, shafts and trenches can be seen ...attesting to turn of the century efforts.

In 1981, a program of surface exploration and diamond drilling was carried out by Sawyer Consultants Inc. of Vancouver. This program consisted of establishing a cut line grid to cover the mine area, VLF-EM and Magnetometer surveys, Geological mapping, stripping, trenching and drilling. In addition, the main shaft was partially dewatered and the "mine structure" sampled.

In early 1984, cut line grid coverage was extended to the remainder of the Bannockburn property and Geophysical survey coverage was completed. In September 1984, reconnaissance Geological mapping was completed to evaluate a number of Geophysical anomalies. This involved some sampling of sulphide rich zones and exposed quartz veins. Several areas of interest in the Northeast part of the property were outlined and recommendations were made for a trenching and sampling program to test the newly discovered gold bearing quartz veins.

By late November 1984, the first phase exploration program of trenching and stripping had confirmed the presence of significant gold mineralization within the exposed quartz veins. In February of 1985, 2027 feet of diamond drilling had been completed in eight holes (phase two). This drilling, confirmed the presence of a gold bearing vein system at shallow depths along a strike length of approximately 150 feet.

From May 1985 to February 1986, the aggregate total footage drilled at the Northeast Area was increased to 15,920 ft. A provisional reinterpretation and reserve estimate of 113,720 tons

@ 0.242 oz. Au per ton consisting of 59,820 tons @ 0.279 oz. @ ton Drill Indicated, and 53,900 tons @ 0.200 oz. @ ton Inferred was calculated.

In mid 1985, Mono Gold Mines Inc. exercised an option to acquire two claims immediately north of the discovery from A. D. Houston in which possible on-strike extensions of the known mineralization might be encountered.

From September to December 1985, a Geochemical (soils) survey was undertaken across the entire Bannockburn property. Semiquantitative, multi element analyses of known gold mineralization at the Northeast area revealed several "indicator" elements which could be used to locate new or continuations of gold bearing vein systems.

This survey resulted in the location of several "indicator" or "path finder" trace element anomalies on the Houston Option. As part of general exploration activities, diamond drill footage was allocated to test two of the more significant zones.

CURRENT STUDY

In conjunction with the property wide Geochemical survey, a reconnaissance , 1" to 200' scale Geological mapping program of the Houston Option was undertaken to examine the structural similarity to the Northeast or Discovery Area. It is believed that the stratigraphy of the Northeast Area is repeated through a major anitiform in the central Houston Option, and that mineralization trends may also be similar.

In late December 1985, a Geochemical anomaly in the northern Houston Option was tested by a single, shallow diamond drill hole. An earlier attempt at drilling the same anomaly had failed due to mechanical difficulties thus it was decided to relocate a second machine and drill a parallel hole.

This hole (DDH 85-52) was collared at $14+38N \times 1+84E$ appoximately 650 feet south of the Wolf Lake Road on December 18, 1985. A total of 454 feet was drilled in a -45 degree hole.

In February 1986, a second hole on another Geochemical anomaly was drilled, this one being near the southern boundary of the Houston Option, approximately 1200 feet north of the Discovery trench. Access to this site was difficult due to swamp conditions which necessitated winter drilling. A single, -45 degree hole was drilled for 344 ft., collared at $2+51N \times 10+00E$.

All core from the current program was logged, with mineralized and other significant intervals split. Samples for assay were sent to Chemex Ltd. of Brampton Ontario for sample preparation, then forwarded to the Chemex lab in Vancouver, B.C.. All samples were "screened" for coarse metallic mineralization. Assay results of all current holes are listed in Appendix III.

REGIONAL GEOLOGY

Introduction:

Madoc township and surrounding areas are well known for their Geology, containing good exposures of Precambrian greenstones, metasediments, intrusives and unconformably overlying (relatively undisturbed) Phanerozoic sediments. Several major structures are obvious and the area has a rich history of mineral production. The Geology of Madoc township is described by Hewitt (1968).

Major Features:

The oldest rocks in the region (other than possible basement metatexite) are mafic metavolcanics of the Tudor Formation. These rocks occupy the base of the Hermon Group consisting of supracrustal clastic to carbonate metasediments and greenstones. The bulk of the Tudor Fm. metavolcanics are apparently tholeitic basalt although some calc-alkaline/intermediate analyses have been reported.

A second sequence of metavolcanic rocks ("Madoc Volcanics") presumably overlying the Tudor Fm. is exposed in southern Madoc township. These rocks range from andesite to rhyolite and exhibit primary volcanic textures. Near Queensborough, the rhyolites and associated rocks indicate a possible volcanic centre.

Overlying, and in some cases intercalated with the volcanics are the Hermon Group metasediments. In the Madoc region, these rocks are primarily impure marbles with some semi-pelitic and psammitic schists. Other sedimentary rocks include slates, and several bands of metaconglomerate, the latter generally occurring in association with the volcano-sedimentary contact where present.

The major intrusive bodies of interest in the area are the Deloro Granite and the Gawley Creek Syenite. The Deloro Granite is a pink, medium crystalline granitic stock which occupies several square miles of southwest Madoc township and is associated with the Deloro gold occurrences in neighbouring Marmora township. The Gawley Creek Syenite body is located in the northwest quadrant of Madoc township and also extends into Marmora township. Generally, this intrusive medium to crystalline is a coarse biotite/hornblende syenite and includes a variety of granitic to dioritic differentiates. Other than at Bannockburn, the Gawley Creek Syenite is not known to be associated with major economic mineralization.

At least two major folds are present in the Madoc area. These are the Queensborough and Madoc synforms. The Queensborough structure has a northwest trending axis whereas the Madoc synform has a northeasterly trace, similar to most Grenville structures. The Bannockburn area contains numerous minor structures which are apparently related to a significiant antiformal feature which also has a northeast trend. This feature is currently being

investigated and is discussed in more detail below.

Not unlike other Canadian greenstone areas, the Madoc region is crossed by numerous faults and shear zones. A general NE-SW trend for many lineaments is present, and generally parallels major lithological and structural boundaries within the Grenville.

Age determinations indicate that these rocks were last deformed approximately 1,000 million years ago during the "Grenville Orogeny". This metamorphic event has resulted in highly deformed rocks of middle greenschist to lower amphibolite facies in the Madoc township area. On a broad scale, metamorphic grade tends to increase from west to east with granitoid gneisses and "granulites" being present several townships east of Madoc.

PROPERTY GEOLOGY

Introduction:

The Houston Option claims contain essentially three principal rock types. These are the mafic to intermediate metavolcanics, semi-pelitic or argillitic metasediments and minor intrusives. Paleozoic rocks have not been mapped to date in the area and have presumably been removed by glacial erosion. For the most part, bedrock is well exposed with drift thicknesses of only several feet. Overburden carrying abundant locally derived material is common, and is helpful in Geological mapping and Geochemical surveys where exposures are lacking.

Metasedimentary Rocks:

Calcareous Metasediments;

The central Houston Option area is dominated by calcareous or "limy" metasediments. These rocks are generally medium grained marbles and carbonate bearing, siliceous, semi-pelitic sediments. Similar impure "marbles" are common in the Grenville and throughout Madoc township.

Rusty Schist, Argillite and Quartzite;

Bordering the Calcareous Metasediments are the Rusty Schists and Argillites which are considered the lowermost sediments in the local stratigraphy. These rocks are common on the Bannockburn property, and consist of fine to medium grained siliceous mudstones and sulphide enriched argillites. These are thought to be derivatives of the weathering of the underlying Tudor Volcanics. The relatively high sulphide content of this unit is distinctive and may be considered loosely analagous to sulphide facies "iron formation". Sulphide content (esp. pyrite) appears to increase significantly near the volcano-sedimentary contact. Within a "transition zone" between the metasedimentary and metavolcanic rocks, a number of hybrid types exist. These include varieties of Quartz-Sericite Schist and semi-pelitic rocks which are interpreted as "Tuffs and Epiclastic Sediments".

Metavolcanic Rocks:

Mafic Volcanics;

The most important rock type in the Houston Option and adjacent parts of the Bannockburn property are metavolcanics of the Tudor Formation. These rocks are generally massive or foliated greenstones which exhibit several alteration types.

Distinguishing between individual flow or tuffaceous units within the volcanics is difficult if not impossible without sophisticated techniques. Cherty bands or segregations appear to mark flow contacts between massive and amygdaloidal flows

throughout the Bannockburn property forming poor marker horizons. Accessory and alteration minerals include magnetite, biotite and carbonates.

Intrusive Rocks:

Although of minor importance volumetrically, "felsite" intrusives occur within the metavolcanics and metasediments. These are generally narrow, segregations or pods which tend to be conformable with the enclosing rocks. The origin of this "felsite" is at present unclear, but there does appear to be a relationship or association with silicification in the Northeast Area to the south. These rocks may in fact be the culmination of pervasive silicification resulting in metasomatic emplacement of a "felsite".

Also present in the Houston Option are a number of minor mafic sills or dikes. These units are generally narrow, of limited strike length and most easily recognized by strong carbonatization and shear foliation development. Compositionally, these mafic intrusives are likely dioritic, and may have originated as mafic differentiates of the Gawley Creek Syenite body immediately southwest of the study area. Similar intrusives are encountered throughout the entire Bannockburn property.

Structural Geology:

The main structural feature of the Houston Option is a south westerly plunging antiform with axial trace crossing the southwest portion of the area. According to Kryklywy (1985), this structure is complete with dip reversal between the northern and southern limb. In addition, a second fold set with northwest trend may be superimposed. This is also common within the Bannockburn property.

ECONOMIC GEOLOGY AND DISCUSSION

At the Northeast Area, a significant gold deposit is hosted within a series of sheeted quartz veins that apparently crosscut the antiformal-folded metavolcanics and metasediments. This style of mineralization was the logical target for exploration on the Houston Option, as "on strike" quartz veining was possible, especially where stratigraphy was repeated along the northern limb of the antiform. Two Geochemical anomalies were tested by shallow diamond drilling in December 1985 and February 1986.

The first hole (DDH 85-52) intersected essentially conformable quartz-carbonate veining carrying minor pyrite/pyrrhotite and basemetal sulphides within calcareous, semi-pelitic metasediments. Unfortunately, due to the drill azimuth required to intersect the anomaly, a poor cross section of the local Geology was realized. In fact, drilling stayed within a single rock type, although minor alteration of varying degrees was encountered.

Unfortunately, the assay results were not encouraging, although slightly anomalous silver values were returned from the quartz veins, in association with In and Fb sulphides. This area, although not immediately favourable for gold may have potential for silver, in a similar environment to the Hollandia Mine, located nearby to the north.

A second drill hole (DDH 86-12) was drilled in the southernmost portion of the Houston Option in February 1986. This hole was designed to test a very strong (450 and 800 ppb Au) "gold in soil" anomaly occurring approximately 1200 feet north of the Discovery trench, and essentially on strike with the Northeast Area.

This hole intersected a strong sheared and brecciated structure crossing mafic metavolcanics. The zone contained several narrow quartz veins which appear to be conformable to the enclosing shear, and likely has a general north strike direction, similar to the vein system present in the Northeast Area to the south. A number of encouraging assays were returned for this hole, including 0.780 oz. per ton Au over a width of 1.3 ft. Other values of interest include a number of assays between 0.01 and 0.1 oz per ton, most within similar quartz veins. These results are comparable to typical results from the Northeast Area, where mineralized quartz veins return assays in this range when intersected outside of the main ore shoots.

This recent discovery appears to be related to the mineralization at the Northeast Area, although the structural style encountered may not be the same. Although difficult to determine from only a single drill hole, the structure encountered is more analagous to that found at the Bannockburn Mine, ie; quartz vein bearing-mineralized shear/breccia zones. Future work will

address the genetic or depositional model when further drilling or surface data is available. It is entirely possible that the Northeast Area and this zone are linked by this structure or are at least related to the same depositional event.

An interesting and potentially important feature of this new zone is the associated style of alteration. This includes apparently anomalous concentrations of magnetite, as well as carbonatization and minor potassic alteration. The elevated magnetite content, if persistent, will produce a strong geophysical anomaly due to the very high susceptibility contrast.

Another feature of this zone is the presence of short intersections of felsic intrusive, at present, undefined. These rocks may be related to the "felsite" previously reported from the Northeast Area, and in fact, some evidence of silicification emanating(?) from these intrusives was noted.

RECOMMENDATIONS AND CONCLUSIONS

Although results of drilling in the northern part of the Houston Option were disappointing, the second hole (86-12) encountered very significant gold mineralization within a strong breccia/ shear structure. As a number of anomalously mineralized quartz veins were intersected, the potential exists for further discoveries of this nature. Future work should concentrate on expanding this horizon along strike, especially to the south where the zone may link up with the known gold deposit at the Northeast Area. As the Geochemical anomaly above this discovery extends for a minimum of 200 ft. to the north, the zone will likely be expanded in this direction also.

It is therefore recommended that the following work program be undertaken to evaluate this new discovery on a preliminary basis:

1)..... Prior to continuation of drilling or other exploratory work, a geophysical survey of the Houston Option should be completed. The minimum coverage should include a magnetometer survey in light of the magnetite enrichment associated with recently discovered gold mineralization.

Ideally, this survey should be a continuation of Geophysical work planned for the Northeast Area, although of lower resolution due to the differing cut line grid between the two areas.

2)..... Diamond drilling of 10,000 ft. to cover the on strike extension of the new gold bearing zone between the Northeast Area to the south and the geochemical anomaly. A further 400 ft. extension north of DDH 85-12, should be drilled to give coverage at 50 ft. intervals along a 1000 ft. strike length total. Each section should contain a 200 ft. and a 300 ft. hole in order to provide sufficient data for correlation.

3).....A program of detailed Geological mapping should be undertaken which will specifically focus on the newly discovered structure and gold bearing quartz veins. This should provide detailed and useful information for sectional interpretations and follow up work. Mapping is also recommended as normal procedure to follow up presently untested Geochemical and Geophysical anomalies.

Appendix I contains a proposed budget for this program.

Respectfully submitted...

Brian R. King (hBSc)

Geolgist

BIBLIOGRAPHY

Barnes, H.L., 1979:	Geochemistry of Hydrothermal Ore Deposits,
	2nd edition; John Wiley & Sons; Toronto

Beavon, R.V	. 1985:	Report on Bannockburn Property, NE Area;
		For Mono Gold Mines Inc.; May 31, 1985

Report on Bannockburn Property, NE Area; For Mono Gold Mines Inc.; Aug. 30, 1985

Report on Bannockburn Property, NE Area; For Mono Gold Mines Inc.; Oct. 18, 1985

Interim Report on Phase V Diamond Drilling of the Bannockburn NE Area Prospect; For Mono Gold Mines Inc.; Jan. 1986

Cherry, M.E. Andrews, A.J. et al 1982

Gold-Selected References; Ontario Geological Survey Open File Report 5382

Hewitt, D.F., 1968: Geology of Madoc Township and the North Fart of Huntingdon Township; Ontario Department of Mines Geol Report 73.

Kingston, P.W. Papertzain, V.C. 1982:

Gold Development Potential in Eastern Ontario; Ontario Geological Survey Open File Report 5379

Kryklywy, K., 1985:

Assessment Report on Geochemical Surveys of Claims ED 781909 and ED 781910 on the Bannockburn Property of Mono Gold Mines Inc.

Sawyer, J.B.F., 1983

Report on the Bannockburn Froperty for Mono Gold Mines Inc.; Sawyer Consultants Inc., Feb. 14, 1983.

Thompson, W.H., Racic, L.J., 1984:

Magnetic & VLF Electromagnetic surveys for Mono Gold Mines Inc., on the Bannockburn Property, Madoc township, Ontario; GeoSearch Consultants Ltd.

Winkler, H.G. 1979:

Petrogenesis of Metamorphic Rocks; fifth edition, Springer Verlag, New York

CERTIFICATE OF QUALIFICATION

I, Brian R. King, of Bridgenorth, Ontario

DO HEREBY CERTIFY THAT

- 1....I am a degree holding Geologist, a graduate of Brock University, St. Catharines, Ontario, with B.Sc. Honours in Geology.
- 2....I have practised my profession as a Geologist since 1979 in the fields of Mineral Exploration and Mining Geology in Canada.
- 3....I am a member of the Canadian Institute of Mining and Metallurgy, Association of Frospectors and Developers, and the Mineral Association of Canada.
- 4... That the information, opinions and recommendations in this report are based on personal observations made at the Bannockburn propety, core storage facilities (Eldorado and Tweed, Ontario), and discussions with qualified persons who are familiar with the property and its history, during the period October 1985 to March 1986.
- 5.... That I have no direct or indirect interest in any of the subject properties of this report, nor in the shares or securities of Mono Gold Mines Inc., or associated companies, nor do I expect to receive such interest.

B. R. King, hB.Sc

Dated at Bridgenorth, Ontario, this 20th day of March, 1986.

APPENDIX I

PROPOSED BUDGET FOR HOUSTON OPTION EXPLORATION	MARCH 1986
Diamond Drilling 10,000 ft. @ \$14.00 per foot	\$140,000
Mob & Demob	2,000
Bulldozer, site prep/road construction, 4 hrs x 20 set ups x \$60/hr extras (drill repositioning)	4,800 500
Geological Supervision, 87 days x 2 Geologists @ \$200/day	34,800
Surface Mapping.	3,000
Accomodation % Food, 90 days x 2 Geologist @ \$50/day	9,000
Transportation, 90 day program @ \$100/day	9,000
Assaying, 600 samples @ \$11.25/sample shipping check assays etc. 25 samples	6,750 300 282
Geophysical Survey	2,700
Engineering and Supervision	7,500
Office Expense (includes telephone)	1,200
Report Preparation	2,500
Contingency (10% of above)	22,433
Total	\$246,765

APPENDIX II DIAMOND DRILL HOLE DATA

HOLE#	LATITUDE	DEFARTURE	INCL.	AZM.	LENGTH
85-52	14+38N	1+84E	-45	235	454
86-12	2+51N	10+00E	-45	239	344

APPENDIX III ASSAY SUMMARY

Assay Tag No.	D.D.H.	Footage ======	Width	Assay, gm/tonne Au. Ag.
13151 F	85-52	16.6-20.0	3.4	<0.07 1.00
52		20.0-23.0	3.0	<0.07 2.30
53		32.0-34.5	2.5	<0.07 0.50
54		90.0-93.0	3.0	<0.07
55		93.0-97.4	4.4	<0.07
56		157.7-159.7	2.0	<0.07
57		259.5-260.5	1.0	<0.07 1.70
58		382.5-383.6	1.1	<0.07 <0.3
59		388.7-392.9	4.2	<0.07 <0.3
60		397.7-3 98.7	1.0	<0.07 0.3
51		416.8-417.9	1.1	<0.07 0.5
62		417.9-422.8	4.9	<0.07 0.5
6 3		424.5-425.5	1.0	<0.07 0.3
				Au
				oz./ton ======
13164 F	86-12	15.4-16.4	1.0	<0.002
65		23.8-24.8	1.0	<0.002
56		33.8-34.5	2.7	<0.002
67 68		37.4-39.2 39.2-41.7	1.8 2.5	<0.002 <0.002
69		49.0-50.8	1.8	0.008
70		51.3-52.3	1.0	0.006
71		77.3-78.6	1.3	0.070
72		87.4-88.4	1.0	0.020
73		102.0-103.0	1.0	0.026

74	108.8-109.8	1.0	0.014	
75	139.5-140.5	1.0	<0.002	
76	140.5-141.6	1.1	<0.002	
77	145.0-146.6	1.6	<0.002	
78	152.4-153.7	1.3	0.780	
79	153.7-156.0	2.3	0.008	
80	156.0-158.1			
81	158.1-159.3			
82	160.0-162.0	2.0	0.012	
83	162.0-164.6	2.6	<0.002	
84	164.6-167.9			
85	167.9-171.5		<0.002	
86	171.5-172.5		0.034	
87				
	172.5-174.9			
88	174.9-176.6			
99	176.6-177.6	1.0	<0.002	
90	183.4-184.8	1.4	<0.002	
91	187.0-188.0	1.0	<0.002	
92	234.0-235.9	1.9	<0.002	
93	266.3-267.8	1.5	<0.002	
94	298.0-2 99. 0	1.0	0.004	

Appendix IV - Copies of Assay Certificates

Chemex Labs Ltd.

212 Brooksbank Ave. North Vancouver, B.C. V7J 2C1

Canada

(604) 984-0221

Phone: Telex:

043-52597

Analytical Chemists

Geochemists

Registered Assayers

CERTIFICATE OF ASSAY

TO : MONO GOLD MINES INC.

C/O BEAVON CONSULTING LTD.

8720 MILLMORE RD.

RICHMOND, B.C.

V7C 1S9

CERT. # : A8610014-001-A

INVOICE # : 18610014 DATE 9-JAN-86

: NONE P.O. #

MADOC

ATTN: ROY BEAVON CC: B. KING

Sample	Prep	Ag FA	Au		
description	code	g/tonne	g/tonne		
13151	207	1.0	<0.07	 	
13152	207	2.3	<0.07	 	
13153	207	0.5	<0.07	 	
13154	207		<0.07	 	
13155	207		<0.07	 	
13156	207		<0.07	 	
13157	207	1.7	<0.07	 	
13158	207	<0.3	<0.07	 	
13159	207	<0.3	<0.07	 	
13160	207	0.3	<0.07	 	
13161	207	0.5	<0.07	 	
13162	207	0.5	<0.07	 	
13163	207	<0.3	<0.07	 	

Chemex Labs Ltd.

212 Brooksbank Ave. North Vancouver, B.C. V7J 2C1

Phone:

(604) 984-0221

Telex:

043-52597

Analytical Chemists

Geochemists

CERTIFICATE OF ASSAY

D : MONO GOLD MINES INC.

VANCOUVER, B.C.

V6C 186

CERT. # : A8611092-001-A

INVUICE # 18611092

Registered Assayers

7-MAR-86

: NONE BANNOCKBURN/ MADOC

SUTTE 1270-601 W. HASTINGS P.O. # VANCOUVER, BC

Y6B 5A6.

709 - 837 W. HASTINGS ST.

/ CC: SAWYER			 		
Sample	Prep	Au FA			
description	code	oz/T			
13164	207	<0.002	 	 	
13165	207	<0.002	 	 	
13166	207	<0.002	 	 	~-
13167	207	<0.002	 	 	
13168	207	<0.002	 	 	
13169	207	0.008	 	 	
13170	207	0.006	 	 	
13171	207	0.070	 	 	
13172	207	0.020	 	 	
13173	207	0.026	 	 	
13174	207	0.014	 	 	
13175	207	<0.002	 	 	~-
13176	207	<0.002	 	 	
13177	207	<0.002	 	 	
13178	207	0.780	 	 	
13179	207	0.008	 	 	
13180	207	<0.002	 	 	
13181	207	<0.002	 	 	
13182	207	0.012	 	 	
13183	207	<0.002	 	 	
13184	207	<0.002	 	 	
13185	207	<0.002	 	 ,	
13186	207	0.034	 	 	
13187	207	<0.002	 	 	
13186	207	0.014	 	 	
_ 13189	207	<0.002	 	 	
13190	207	<0.002	 	 	
13191	207	<0.002	 	 	
13192	207	<0.002	 	 	
13193	207	<0.002	 	 	
13194	207	0.004	 	 	

COLLAR: 14 + 38 N 1 + 84 E FOOTAGE AZIMUTH DIP ELEVATION CORE SIZE BO LOGGED BY B. KING DATE LOGGED DEC. 22/86 MAP REFERENCE NO. DID -45° AZIN 235°

Diamond Drill Record

COMPANY NAME Mono Gold Mines Inc.
PROPERTY NAME Bannuckburn - Houston Option
DRILLING CONTRACTOR McKnight
ASSAYER_CHEMEX
PURPOSE OF HOLE To test geochemical anomaly
•

HOLE No 85-52	
CLAIM NAME/No. EO 781910	
COMMENCED Dec 18/85 FINISHED Dec 21/85	
FINAL DEPTH 4541	
PROJECT No.	

FROM	TO RECOV		RECOVY DESCRIPTION	SAMPLE				am/tonne ASSAYS						
		ļ			то	WIDTH	No.	Au	Ag					
0.0	5-0		Casing											ļ
5.0	97.4		SEMI ~ PELITIC METASEDIMENTS											
			-fine grained, banded/foliated, qtzfeldspathic - bio/chl schist	ļ										
			-minor calc-sil bands (carbonate-epidote)											
			-hem in vugs, on fractures & minor dissem in foliation plane											
			-varying amounts of cc + dol											
			-py, generally 3%											
			-8', foliation/banding @ 5° to core axis											
<u></u>			-16',foliation/banding shifts to 16° to come axis											
			-16.6 - 19.0, tectonic breccia, shear or fault zone	16.6	20.0	3.4	13151F	0.07	1.00	Attack to the same of the same				
			-protomylonite with dark siliceous fragments	20.0	23.0	3.0	52	0.07	2.3					
			-matrix of qtz - dol - sericite, slickensides @ 90°							<u> </u>				
			-vuggy py											
			-small seam of malachite											

DATE LOGGED	
COMPANY NAME	
PROPERTY NAME	

HOLE No. 85-52

- FROM		2500101		1	SA	MPLE		am/to	nne ASS	ne ASSAYS						
FROM	то	RECOVY	DESCRIPTION	FROM	то	WIDTH	No.	Au	Ag							
5.0	97.4		SEMI PELITIC METASEDIMENTS (cont)	<u> </u>		ļ										
			-no real qtz veining			<u> </u>		ļ								
			19.0 - 20.0, minor breccia, in pelite													
			20.0 - 22.6, altered zone, dol, sil, possible kspar, hem, tourmaline			<u> </u>										
			-single 1" (tw) qtz vein with cc, py 0 40°	<u> </u>		<u> </u>										
			-possible mafic dike/sill? immediately below qtz vein	 	ļ	-										
			-poor recovery, possible additional qtz	<u> </u>		<u> </u>		ļ								
			29', fol/banding @ 8°	<u> </u>	ļ	ļ		ļ								
			32.2 - 34.5', altered zone, dol, dhl, sericite, minor brecciation	32.0	34.5	2.5	13153	0.07	0.5							
			-strong gtz vein, gtz-dol-py vein (5")	ļ		<u> </u>							<u> </u>			
			-grey - dendritic mineral argentite? etc.		ļ	<u> </u>										
			34.5 , folding/banding @ 5°													
			39.2, small "s" style shear fold		ļ	<u> </u>										
			48° - 70.0, alternating hem, sericite - dol ± ep alteration, minor py													
			56.0' foliation/banding @ 30°	ļ												
			70.0 - 74.5, gneissic appearance, gtz segregations													
			73.0 - 85.2 - sim 48.0 - 70.0, stronger hem	<u> </u>		<u> </u>										
			82°, fol/banding 0 18° (constant)							<u> </u>						

DATE LOGGED	
COMPANY NAME	
PROPERTY NAME	

HOLE No. 85-52

		· · · · · · · · · · · · · · · · · · ·						-					
FROM	то	RECOVY	DESCRIPTION		SA	MPLE			ne AS	SAYS		 	
			(cont)	FROM	70	WIDTH	No.	Au	A g	 		 	
			85.3 - 86.6', fol/handing turns to near 90°, then becomes chaotic				<u> </u>	-			-		
			-siliceous and sericitic alteration, with brecciation/faulting					ļ					
			-sericite rimmed fragments, also with dol, cc, rusty sulphides							ļ 		 	
			-fault gouge, low density rk, porous		ļ						ļ	 	
			86.6 - 90.0°, massive mudstone/pelite, fol/banding @ 22°					<u> </u>					
			90.0 - 97.4', tectonic breccia, massive silic, sericite with dol, hem, minor	90.0	93.0	3.0	13154	9.07					
			sulphides, sim to 85.3 - 86.6	93.0	97.4	4.4	55	0.07					
97.4	164.6		SEMI PELITIC METASEDIMENTS										
			-sim to 5.0 - 97.4, but generally more coarse, more siliceous										
			-97.4 - 108.0, sericitic banding, minor py										
			-generally a nondescript rk										
			-125.6 - 126.6, minor breccia, minor silicification, minor py								ļ		
			-134.0, fol/banding @ 22°		<u></u>								
			-141.4 - 142.3', minor breccia, sim to 125.6 - 126.6									 	
			-147.0', 4" breccia, few tensional features										
			-156.0 - 164.6', silicified/altered zone, brecciation			<u> </u>							
			-chloritic/sericitic, minor cc, spks py			<u> </u>							

DATE LOGGED
COMPANY NAME
PROPERTY NAME

HOLE No. 85-52

								_	<u> </u>					
FROM	то	RECOVY	DESCRIPTION			MPLE	_	 	ne ASS	SAYS	····		,	
			(cont)	FROM	то	WIDTH	No.	Au	_Ag		<u> </u>	<u></u>		
			157.7 -159.7', very silicified, few qtz stringers	157.7	159.7	2.0	13156	0.07		ļ	<u> </u>			
<u> </u>			qtz veining is brecciated, minor chl, spks py											
164.6	454.0		SERICITIC, SEMI PELITIC METASEDIMENT											
	EOH		-sim to above units, sericitic content increasing, possibly due to proximity to											
			volcanic contact??, minor garnet									<u></u>		
			-fol/banding parallel to core											
			-minor enrichment of po 5% (sporadic)											
			-patches of carbonatization											
			-259.9', 1"(tw) qtz -cc, sp -po vein @ 58°	259.5	260.5	1.0	57	0.07						
			-302', fol/banding @ 12°											
			-280', cc dol.											
			-332.6 - 333.5, qtz - dol - po pod - (metamorphic segregation) not a vein		<u> </u>	<u> </u>								
			-357', fol/banding @ 18°		<u> </u>									
			-382.5 - 383.4', qtz -cc/dol -po vein, minor breccia chl, possible sp	382.5	383.6	1.1	58	0.07	0.3		<u> </u>			
			-irregular contacts	_	<u> </u>					ļ				
		<u> </u>	-388.9 - 392.3', sim to 382.5 - 383.4, gtz is granular, upper ctc @ 30°	388.7	392.9	4.2	59	0.07	0.3					<u> </u>
		<u></u>	-strong sp in seams, minor chl		<u> </u>			<u></u>						

PAGE 4 OF 5

DATE LOGGED
COMPANY NAME
PROPERTY NAME

HOLE No. 85-52

							***************************************		L					
FROM	то	RECOVY	DESCRIPTION		,	MPLE			onnes ^{AS}	SAYS		•		
			(cont)	FROM	10	WIDTH	No.	Au	Ag					
			397.7 - 398.7', qtz - cc/dol vein, minor po, sp, chloritic partings	397.7	398.7	1.0	13160	0.07	0.3		ļ			· · · · · · · · · · · · · · · · · · ·
			-upper ctc irreg., lower coc conformable											!
			-416.8 - 417.9 - sim to 397.7 - 398.7, ctc's irreg, @ 24°	416.8	417.9	1.1	61	0.07	0.5					
			-417.9 - 422.8 - altered sil and dol zone, conformable, minor po, tr, sp, py, cpy	417.9	422.8	4.9	62	0.07	0.5					i
			-424.5 - 425.5 - conformable qtz - dol - po vein, sim 416.8 - 417.9											
			-440.0 - EOH, very badly broken core, rk has very strong cleavage, less sericite	424.5	425.5	1.0	63	0.07	0.3					
			-448.0', probable qtz veining, core too badly broken -not economic											
164.6	454.0													
	EOH													
		1												
		1												
	L			_1		<u> </u>	<u> </u>	<u> </u>			<u> L.,</u>	L	L	

COLLAR:		HOL	LE SURVEY							
	2+51N	METHOD: h	f							
	10+00 F	FOOTAGE	AZIMUTH	DIP						
ELEVATION		344		42/2						
CORE SIZE	B0									
LOGGED BY	B. King									
DATE LOGGED	Feb 26,27, 1986									
MAP REFERENCE No										
	Dip -45°									
	Azm 239°									

COMPANY NAME Mono Gold Mines Inc
PROPERTY NAME <u>Bannockburn</u> - Houston Option DRILLING CONTRACTOR MCKnight
ASSAYER Chemex
PURPOSE OF HOLE to test significant gold-in-soil Geochemical anomaly

HOLE No. 86-12	
CLAIM NAME/No.EO 781909	
COMMENCED Feb 24, 1986	
FINISHED Feb 26, 1986	
FINAL DEPTH 344	
PROJECT No.	

FROM	то	RECOVY	DESCRIPTION		SA	MPLE		oz/ton		ASSAYS			
		ļ		FROM	TO	WIDTH	No.	Au					
0.0	4.0		Casing										
4.0	56.6		Brecciated-Altered Greenstone (Altered, Mafic Flow or Tuff; Tudor Fm)										
			-dark to pale green, f-med gr, foliated, semi-schistose rk, strongly altered, calc-sil										
	1		with ep, cc, qtz,py, po										
			-strongly brecciated, frag's up to 1%", some shear textures?										
			-15.4-16.4; espec altered zone, with elevated py, conformable	15.4	16.4	1.0	13164	40.002					
			-24.5; fol/banding @ 43°										
			-unit appears recrystallized, almost diabasic in texture										
			-23.8-24.8; sheared GS?, appears to be minor shear with ep, red ferugenous cc, poss.	23.8	24.8	1.0	13165	(0.002					
			mt, granular qtz, dissem py (5%)										
			-33.8-36.5; silicified zone, may be diffused felsite?, minor ep, minor cc, possible	33.8	36.5	2.7	13166	(0.002					
			ang frags										
			-37.4-41.7; sim 33.8-36.5, contains several conformable? qtz-cc stringers (%")	37.4	39.2	1.8	13167	(0.002					
			39.0-42.0 very sil very minor brecciation, 42-45.1, returns to breccia	39.2	41.7	2.5	13168	(0.002					

DATE LOGGED
COMPANY NAME
PROPERTY NAME

HOLE No. 86-12

	70	DECONE	DECORPTION	T	SA	MPLE		oz/ton				
FROM	то	RECOVY	DESCRIPTION	FROM	то	WIDTH	No.	Au				
			45.1-46.0; essentially un altered chloritic GS, massive									i <u> </u>
			46.0-48.3; coarse, ep altered breccia									
			48.3-49.0; shear zone, chloritic, cc, qtz, with minor py, 49-50.8, sim				•					
			-49.0-50.8; med ep breccia, cc, elevated subhedral py, generally @ 50°	49.0	50.8	1.8	13169	0.008				
			-51.5-52.3; zone of potassic alt, conformable kspar, especially lower 4", vein of									
			kspar-qtz-cc with chl slips, few spks py	51.3	52.3	1.0	13170	0.006				
			-53.0-55.0; very coarse ep breccia, 2-6"range									
	i											
56.6	87.9		Greenstone (Mafic Tuff?; Altered, Brecciated, Magnetite Bearing; Tudor Fm)									
		,	-arbitrary ctc, shift from massive volcanic to foliated GS									
			-unit is f-med gr, strongly carbonatized, dark green, also strongly brecciated with									
			calc-silicate alteration							-		
			-66.0; fol @ 65°									
			-63.5; %" conformable qtz-cc vein, chl slips on ctc's, barren									
			-66.7-67.5; coarse ep breccia									
			-69.0; 2" conformable sil/kspar zone									
			-71.9-75.3; coarse sil, ep breccia									
			-75.3-75.7; possible shear, chl schist, mod consolidated, minor cc, barren, @ 53°									

DATE LOGGED	
COMPANY NAME	
PROPERTY NAME	

HOLE No. 86-12

5BOM		0500104		1	SA	MPLE		oz/ton	ASS	AYS		=	
FROM	то	RECOVY	DESCRIPTION	FROM	то	WIDTH	No.	Au					
			75.7-76.7; sim71.9-75.3, but less intense										
			-77.7; 2" tw conformable qtz-cc vein, spks py	77.3	78.6	1.3	13171	0.070					
			-78.0-78.5; qtz-cc vein, upper ctc is conformable, lower is xcutting, both irreg and										
			diffuse										
87.9			Greenstone (Mafic Volc Flow; Tudor Fm)								:		
			-generally massive, green, chloritic rk, f gr, much lower mt than unit above, minor										
			dissem py										
			-upper ctc is conformable, sheared qtz-cc zone, appears barren, lower ctc is possibly	87.4	88.4	1.0	13172	0.020					
			xcutting @ 85°										
	_		-90.6-91.0; ep, feldspathized, recrystallized (possible kspar alteration) zone, looks										
			like a metamorphic sweatpegmatitic										
			-97.6-101.8; sim 90.6-91.0, mt content increasing with depth , rk is sim to granodior-										
			ite, but more of a felsite?										
			-102.5; conformable qtz-kspar-cc vein, 2½" tw with host rk inclusions, few spks py,	102.0	103.0	1.0	13173	0.026					
			appears to be sheared, vein may be split?										
			103.4; 4" ep alt zone with minor/brecciation										
			-109.3; 1" xcutting qtz-cc vein with strong py, str mt alt @55°	108.8	109.8	1.0	13174	0.014					

PAGE 3 OF 7

DATE LOGGED
COMPANY NAME
PROPERTY NAME

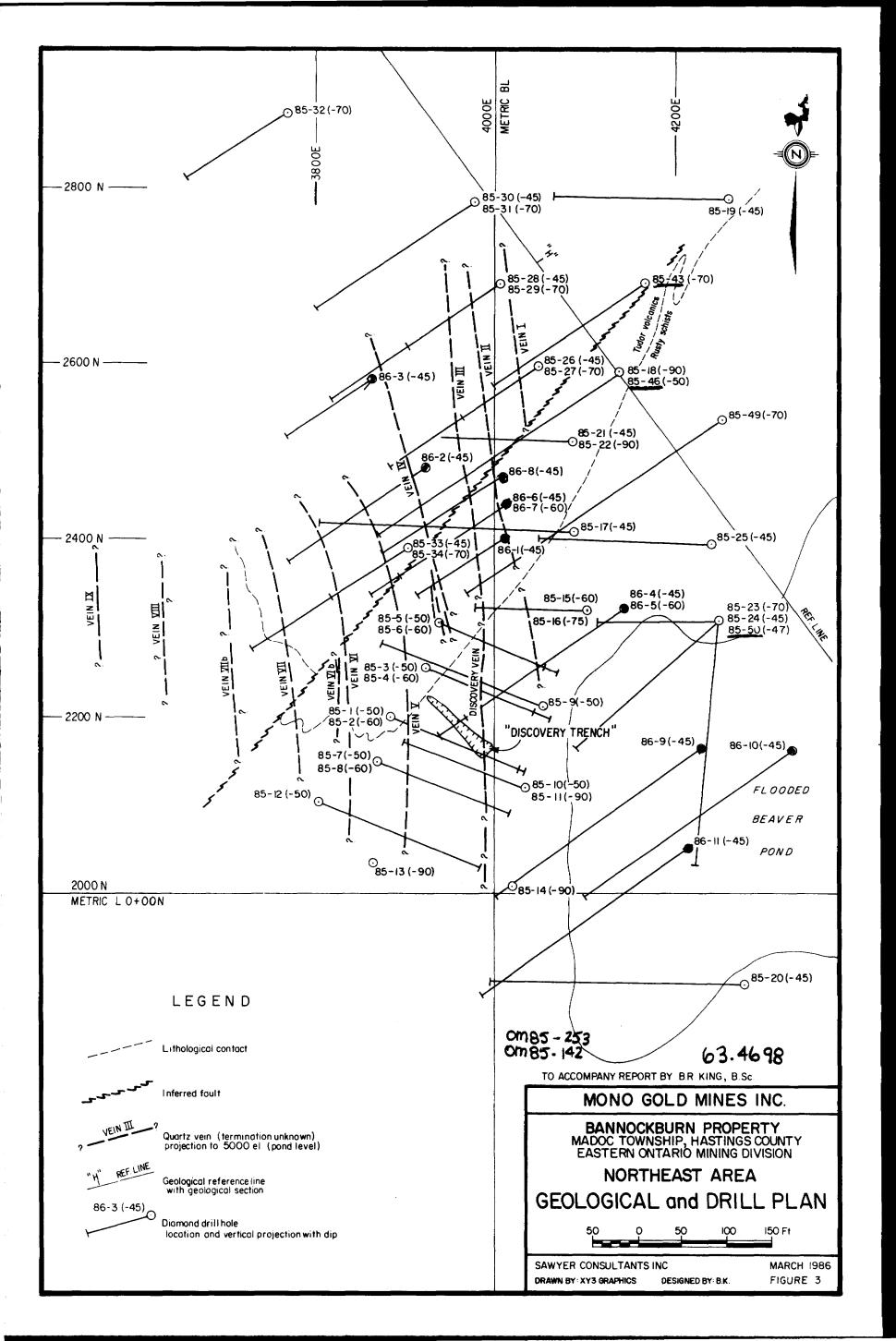
HOLE No. 86-12

FROM	TO	DECOVA	DECOUNTION		SAMPLE 0 ROM TO WIDTH No. A				ASS	AYS		 	
PHOM	то	RECOVY	DESCRIPTION	FROM	то	WIDTH	No.	Au					
			≟109.6-125.6; ep, minor breciation, carbonatization, silicified with pegmatitic										
			felsite material								! 		
			-125.9-137.7; felsitic/granodioritic zone with ep, breccia, with significant mt										
			-137.7-142.0; minor brecciation with ep and felsite, @ 140', 2" xcutting massive white	139.5	140.5	1.0	13175	(0.002					
			quartz-cc vein, with minor py, sharp and reg ctc's @ 85°										
			-141.1; 3" shear 0 52°, carbonatized, chl schist, slightly elevated py	140.5	141.6	1.1	13176	< 0.002					
			-145.0-147.0; minor brecciated, ep, carbonatized, marginally sheared, spks py,										
			elevated mt	145.0	146.6	1.6	13177	(0.002		_			
			-151.0-158.1; pervasive sil begins, related to felsite margins?, with some kspar,										
			carbonatized, dissem py										
			-strong, coarse mt 151-152.5', very little other alt										
			-152.5-153.6; xcutting, qtz-cc vein 0 80°, sharp irreg ctc's, massive white qtz with	152.4	153.7	1.3	13178	0.780					
			inclusions of host rk, vein is culmination of intense pervasive felsitic?	153.7	156.0	2.3	13179	0.00					
			alt zone	156.0	158.1	2.1	13180	(0.002					
	_		-158.2-159.3; possible shear zone, carbonatized, chloritic, mt, very minor qtz-cc										
			-bio stringers, 2, 1/2" xoutting veins which intersect cherty, blue qtz	158.1	159.3	1.2	13181	(0.002					
			÷159.5-164.5; pervasive sil (felsitic) zone, dissem po, minor py, tr cpy, mt veining:										
			162.4; %" xcutting 0 80° diffuse qtz vein	160.0	162.0	2.0	13182	0.002					

DATE LOGGED
COMPANY NAME
PROPERTY NAME

HOLE No. 86-12

	-											
FROM	то	RECOVY	DESCRIPTION	FROM	SA To	MPLE	No.	oz/ton Au	ASS	SAYS		
			163.2; 1½" xcutting vein @ 80°, sim above	162.0	164.6	2.6	13183	(0.002				
			163.6, 163.8; similar stringers within minor sheared zone						•			
			-164.5-167.9; sheared, altered mafic volcanics, carbonatized, few sil zones all	164.6	167.9	3.3	13184	(0.002				
			conformable @ 45°									
	•		-167.9-177.6; pervasive sil zone with several xcutting qtz-cc veins									
			-169.6; ½" gen conformable qtz-cc vein, spks py	167.9	171.5	3.6	13185	(0.002				_
			-172.0; 2" xcutting qtz-cc vein @ 75°, massive white-grey, po on ctc's	171.5	172.5	1.0	13186	0.034				
			-172.7; qtz-cc-tourmaline pod	172.5	174.9	2.4	13187	(0.002				
			-173.0; ½" xcutting, very diffuse qtz vein, sim 173.7	174.9	176.6	1.7	13188	0.014				
			474.5; vuggy py/po, ¼" xcutting seam of sp	176.6	177.6	1.0	13189	(0.002				
			-175.5; xcutting, po rich 1" qtz-cc vein, tr cpy, irridescent grey-blue min?									
			-177.5; xcutting, irreg, slightly diffuse qtz-cc vein, elevated po in wall									
			rks									
			-183.4-184.8; biotite altered, sheared GS with qtz-cc weining, xcutting @ 184.3', 1½"	183.4	184.8	1.4	13190	(0.002				
			-186.0-186.6; granodiorite/felsitic mat'l, ep, breccia									
			-187.2-187.8; cherty flow ctc, conformable @ 35°, carries strong py, in a 3/4" qtz-cc	187.0	188.0	1.0	13191	(0.002				
			vein with strong mt, minor po									
			-189.1-189.6; intense chloritic shear and carbonatized GS, some brecciation									


PAGE 5 OF 7

DATE LOGGED	
COMPANY NAME	
PROPERTY NAME	

HOLE No. 86-12

				-	ÇA	MPLE		T _ ''	AC	SAYS	 	
FROM	то	RECOVY	DESCRIPTION	FROM	TO	WIDTH	No.	Oz/tor Au		J		
			-191.5-197.7; felsitic/granodioritic mat'l, with ep, minor brecciation, some carbonat'r									
			minor dissem po,py									
			- 97.7-204.0; relatively unaltered massive GS, minor carbonatization, few minor								_	
			sheared zones with elevated py									
			-212.3-213.4; felsite									
			218.6 224.1; felsite									
			-225.0-228.9; sim above, 231.0-231.6 sim									
			-234.0-235.9; shear zone @ 75°, chl, bio, with xcutting qtz-cc vein (4") at 234.9	234 . C	235.9	1.9	13192	(0.002				
			239.3-244.0, 246.2-248.0; felsite								· •	
			-262.3-271.4; brecciated, ep, silicified zone (felsite) with possible, very diffuse	266.3	267.8	1.5	13193	0.002				
			cutting vein									
			-274.0-278.0; minor sil zone, ep, fracturing and minor brecciation									
		1	-278.0-282.0; sil zone with felsitic material									
			-286.2-301.8; ep, brecciated-felsite bearing mafic volcanic, 298.5; 1" xcutting qtz-cc	298.0	299.0	1.0	13194	0.004				
			vein 0 80°, with heavy po									
-			301.8-334.0; sheared carbonatized well foliated GS, shearing is conformable and not									
			related to the above xcutting and mineralized zones, but rather is regional									
			shear foliation									

								HOLE	No86-1	2			
FDOL		250010			SA	AMPLE		ASS	SAYS	 		· · · · · · · · · · · · · · · · · · ·	
FROM	то	RECOVY	DESCRIPTION	FROM	то	WIDTH	No.						
			303.0; fol/shearing @ 23°										
			-313.0-314.0; core is badly broken due to sub parallel foliation, fol has rotated										
			to near parallel										
			-339.0-341.5; conformable qtz-cc pods with few spks py, mt, non economic										
	344.0		-341.5-344.0; f gr grey, carbonatized, bio-sericitic rk, may be possible sediment, or										
	EOH		volcano-sediment transition rk, or altered zone near the transition										
			Note; Casing left in hole for future deepening										
											·		
							- H						

MONO GOLD MINES INC.

SECOND PHASE EXPLORATION PROGRAM

DIAMOND DRILLING

on the

NORTHEAST AREA

of the

BANNOCKBURN PROPERTY

Madoc Township, Ontario

Diamond Drill Logs

and

Assay Summary Sheets

DDH-85-1 to DDH-85-8 inclusive

To accompany Report by SAWYER CONSULTANTS INC.

dated March 14th, 1985

COLLAR:		E SURVEY	
38+25N	METHOD.	ACID ETC	Н
31+35E	FOOTAGE	AZIMUTH	DIP
ELEVATION	0'	105	-50
CORE SIZE BQ	246'	105	-48
LOGGED By Gordon D. House			
DATE LOGGED Feb. 11-12, 1985			
MAP REFERENCE No. 31C/12			
	ii ii		

SAWYER CONSULTANTS INC

SULTANTS INC.	

COMPANY NAME MONO GOLD MINES INC. PROPERTY NAME BANNOCKBURN - NORTHEAST AREA DRILLING CONTRACTOR McKnight Drilling Company Limited ASSAYER Bondar-Clegg & Company Ltd., Ottawa PURPOSE OF HOLE To test depth extensions of surface veins

HOLE No	DDH-85-1
CLAIM NAME:No	EO 652301
COMMENCED	Feb. 7, 1985
FINISHED	Feb. 9, 1985
FINAL DEPTH	246.01
PROJECT No	

TO	RECOVY	DESCRIPTION SAMPLE						ASSAY	S			
			FROM	то	WIDTH	No.						
4.0	0'	Overburden.										
7.0'	1.5'	Surface oxidized, broken ground, siliceous dark grey quartzite										
		foliation at 35° 40° to core axis. Quartz vein laminae parallel										
		to foliation, disseminated pyrite.										
12.5	4.51	Medium grey, bleached looking foliated quartz feldspar/sericite										
		schist, pyritic, contorted foliation, crinkle foliation at 30°										
		to core axis. Pyrrhotite from 9.0'.										·
14.0	0.51	Healed shear, quartz carbonate vein at 50° to core axis, barren,										
		pyrite and pyrrhotite on margin.				· · · · · · · · · · · · · · · · · · ·						
17.6	3.6'					· · · · · · · · · · · · · · · · · · ·				-		
	12.5	7.0' 1.5' 12.5' 4.5'	4.0' 0' Overburden. 7.0' 1.5' Surface oxidized, broken ground, siliceous dark grey quartzite foliation at 35°- 40° to core axis. Quartz vein laminae parallel to foliation, disseminated pyrite. 12.5' 4.5' Medium grey, bleached looking foliated quartz feldspar/sericite schist, pyritic, contorted foliation, crinkle foliation at 30° to core axis. Pyrrhotite from 9.0'. 14.0' 0.5' Healed shear, quartz carbonate vein at 50° to core axis, barren, pyrite and pyrrhotite on margin.	4.0' 0' Overburden. 7.0' 1.5' Surface oxidized, broken ground, siliceous dark grey quartzite foliation at 35°- 40° to core axis. Quartz vein laminae parallel to foliation, disseminated pyrite. 12.5' 4.5' Medium grey, bleached looking foliated quartz feldspar/sericite schist, pyritic, contorted foliation, crinkle foliation at 30° to core axis. Pyrrhotite from 9.0'. 14.0' 0.5' Healed shear, quartz carbonate vein at 50° to core axis, barren, pyrite and pyrrhotite on margin.	TROM TO 4.0' 0' Overburden. 7.0' 1.5' Surface oxidized, broken ground, siliceous dark grey quartzite foliation at 35°- 40° to core axis. Quartz vein laminae parallel to foliation, disseminated pyrite. 12.5' 4.5' Medium grey, bleached looking foliated quartz feldspar/sericite schist, pyritic, contorted foliation, crinkle foliation at 30° to core axis. Pyrrhotite from 9.0'. 14.0' 0.5' Healed shear, quartz carbonate vein at 50° to core axis, barren, pyrite and pyrrhotite on margin. 17.6' 3.6' Darker grey quartz-feldspar-chlorite schist, foliation;	The contract of the contract o	TROM TO WIDTH No 4.0' O' Overburden. 7.0' 1.5' Surface oxidized, broken ground, siliceous dark grey quartzite foliation at 35°-40° to core axis. Quartz vein laminae parallel to foliation, disseminated pyrite. 12.5' 4.5' Medium grey, bleached looking foliated quartz feldspar/sericite schist, pyritic, contorted foliation, crinkle foliation at 30° to core axis. Pyrrhotite from 9.0'. 14.0' 0.5' Healed shear, quartz carbonate vein at 50° to core axis, barren, pyrite and pyrrhotite on margin.	The contract of the contract o	A.O O' Overburden. 7.O 1.5' Surface oxidized, broken ground, siliceous dark grey quartzite foliation at 35°-40° to core axis. Quartz vein laminae parallel to foliation, disseminated pyrite. 12.5' 4.5' Medium grey, bleached looking foliated quartz feldspar/sericite schist, pyritic, contorted foliation, crinkle foliation at 30° to core axis. Pyrrhotite from 9.0'. 14.0' 0.5' Healed shear, quartz carbonate vein at 50° to core axis, barren, pyrite and pyrrhotite on margin.	4.0° 0° Overburden. 7.0° 1.5' Surface exidized, broken ground, siliceous dark grey quartizite foliation at 35° 40° to core axis. Quartz vein laminae parallel to foliation, disseminated pyrite. 12.5 4.5' Medium grey, bleached looking foliated quartz feldspar/sericite schist, pyritic, contorted foliation, crinkle foliation at 30° to core axis. Pyrrhotite from 9.0°. 14.0° 0.5' Healed shear, quartz carbonate vein at 50° to core axis, barren, pyrite and pyrrhotite on margin.	### DESCRIPTION FROM TO WIDTH No.	### ACOUNT TO MADTH No 4.0 0 Overburden.

DATE LOGGED Feb. 11, 1985

COMPANY NAME Mono Gold Mines Inc.

PROPERTY NAME Bannockburn - Northeast Area

EBON	70	BECOVY	DE CODIDEION.		SA	MPLE			ASS	SAYS	 		
FROM	ТО	RECOVY	DESCRIPTION	FROM	то	WIDTH	No	Au	Ag				
14.01	17.6'	(cont.)	quartz stringers randomly cross-cutting pyrite-pyrrhotite to 15%,					e z⁄t on	oz/ton				
			chalcopyrite disseminated in pyrrhotite, disseminated red-brown										
			garnets to 1-2 mm in silicified groundmass, chlorite much										
			increased, knots/blebs high relief sericite.							_			
17.6'	22.0'	3.41	1.0' LOST CORE, casing to 19.0'.										
			Quartz vein, pyrite on fractures + minor disseminated milky white										
			quartz. Contact at 17.6° at 60° to core axis, brown oxide gouge -					i.					
			LOST CORE HERE?										<u> </u>
			17.6'-18.5' - large amounts pyrite along fractures.	17.6'	19.01	1.4'	15882	0.045	LO.02				
			19.0'-21.0' - ground core, stringers pyrite on fractures.	19.0'	22.0'	3.0'	15883	0.010	LO.02				
			21.0'-22.0' - fractures + healed pyrite, blebs + masses.										
22.0'	32.5'	10.5'	Dark greenish-brown, faintly foliated quartzite, siliceous,										
			chloritic, foliation at 40°-45° to core axis. Quartz-feldspar										
			laminae to रू'' parllel to foliation, much disseminated pyrite-										
			pyrrhotite - up to 25% with very minor chalcopyrite in pyrrhotite,										
			disseminated light red-brown garnets up to 1.5 to 2 mm across										

COMPANY NAME Mono Gold Mines Inc.

PROPERTY NAME Bannockburn - Northeast Area

FROM	то	RECOVY	DESCRIPTION		SA	MPLE			ASS	AYS		
PROM	10	HECOVI	DESCRIPTION	FROM	то	WIDTH	No.	Au	Ag			
22.0'	32.51	(cont.)	throughout.					oz/tor	oz/tor			
			23.0'-24.5' - series thin quartz feldspar laminae parallel to									
			foliation, medium green foliated chlorite.									
,			27.0'-28.5' - series quartz veins, main vein 27.5'-28.0' at 40°	27.0'	28.5'	1.5'	15884	0.015	L0.02			
			to core axis, blebs pyrite associated, minor carbonate.									
			30.0'-31.0' - thin quartz feldspar laminae 2-3 mm.									
32.5	38.0'	5.51	Healed shear zone? silicified zone with quartz vein segregations									
			with carbonate, foliated dark green-brown quartzite, disseminated									
			pyrite, minor chalcopyrite, light pink-brown garnets, contorted									
			foliation.									
			32.5'-34.5' - quartz veined zone, vein crosscutting foliation at	32.51	34.51	2.0'	15885	0.010	L0.02			
			60°, smoky white quartz with pyrrhotite-chalcopyrite, garnetiferous									
			chlorite schist caught up in quartz zone, high relief carbonate									
			34.0'. Pyrite from 32.0'-34.0', pyrrhotite with chalcopyrite				,					
			from 34.0'.									
			34.5'-36.0' - dark green-brown laminated quartzite, increased								 	
			pyrrhotite and chalcopyrite foliation/laminations - talcose									

DATE LOGGED Feb. 11, 1985

COMPANY NAME Mono Gold Mines Inc.

PROPERTY NAME Bannockburn - Northeast Area

	T	1		Y				T					
FROM	то	RECOVY	DESCRIPTION			MPLE				SAYS		1	T
				FROM	то	WIDTH	No.	Au bz/ton	Ag oz/ton				
32.5'	38.0'	(cont.)	chlorite - (soapstone veins), also quartz-feldspar laminations,					,	2, 2011				
			minor crinkles.										
			36.0'-38.0' - quartz-carbonate vein zone, 36.0'-37.0' - quartz	36.01	38.01	2.0'	15886	0.005	L0.02				
			carbonate vein at 10° - 20° to core axis.										
			$37.5'-38.0'$ - quartz vein at 70° to core axis.										
38.0'	42.0'	4.0'	Foliated dark green chlorite garnet quartzite, quartz feldspars,		<u> </u>								
			minor quartz stringers parallel to foliation. Foliation at										
			30°-35° to core axis, much pyrrhotite - to 20% in part.				· · · · · · · · · · · · · · · · · · ·						
			39.0'-41.0' - quartz stringer, stronger pyrite and pyrrhotite										
			in laminations.										
			41.0'-41.5' - quartz vein 0.5' across at 20° to core axis,				··· · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·				
			healed shear.										
			41.5'-42.0' - contact, contorted chloritic biotite quartzite-										
			carbonate.										
42.0'	57.0'	15.0'	Dark brownish-green biotite quartzite, siliceous, chloritic										Ĺ
			with chlorite stringers, in fine grained quartz feldspar groundmass,						;				

DATE LOGGED Feb. 11, 1985

COMPANY NAME Mono Gold Mines Inc.

PROPERTYNAME Bannockburn - Northeast Area

FDOM	TO.	DECOVA	PECONITION		SA	MPLE	<u> </u>	Ī	ASS	AYS		
FROM	ТО	RECOVY	DESCRIPTION	FROM	то	WIDTH	No	Au	Ag			
42.0'	57.01	(cont.)	much decreased pyrrhotite content.					oz/tor	oz/ton			
			42.0'-44.0' - strongly biotitic quartzite, biotite content and									
			pyrrhotite content decreases.									
			44.0'-50.0' - fine grained chloritic biotite quartzite, foliation									
			at 30°, disseminated pyrrhotite parallel to foliation,									
			approx. 5-10% content.				 					
			50.0'-51.0' - bluish translucent quartz vein, contacts at 35°	50.01	51.0'	1.0'	15887	0.002	0.04			
			to core axis, minor disseminated pyrite.								 	
	-		51.0'-56.5' - chloritic biotite quartzite, siliceous zone with								 	
			quartz stringers around 54.0'-56.0'. 56.5'-57.0' - quartz vein									
			contacts at 50° with blebs pyrite on footwall contact.	56.5	57.5'	1.0'	15888	0.390	0.04			
			•									
57.01	68.0'	11.0'	Dark grey-green foliated quartzite, chloritic biotite quartzite,								 	
			siliceous zones with quartz veins, healed shear zone, disseminated		· · · · · · · · · · · · · · · · · · ·							
			pyrrhotite.									
			57.0'-62.0' - faintly foliated chloritic quartzite, biotite schist,									
			foliated at 20° to core axis, disseminated pyrrhotite.									
			62.0'-63.0' - healed shear, quartz filled, at 10°-20° to core axis.								i	

DATE LOGGED ___ Feb. 11, 1985

COMPANY NAME ___ Mono Gold Mines Inc.

PROPERTY NAME ___ Bannockburn - Northeast Area

				1	SA	MPLE		<u> </u>	ASSAYS							
FROM	то	RECOVY	DESCRIPTION	FROM	то	WIDTH	No.	Au	Ag							
57.0'	68.0'	(cont.)	quartz carbonate.					oz/ton	oz/ton							
			63.0'-64.0' - finely laminated dark biotite quartzite, contact at											ļ -		
			64.0' at 30° to core axis with speckled feldspar alteration.	ļ												
			64.0'-67.0' - healed shear, quartz veins with chloritic	64.0'	66.0'	2.0'	15889	3.250	0.22					ļ		
			schlieren, pyrite, pyrrhotite and chalcopyrite, disseminated	66.0	68.0'	2.0'	15889	0.105	0.06					ļ		
			pyrite.													
			67.0'-68.0' - healed shear margin, laminated/foliated at 30°													
			to core axis.											ļ <u>.</u>		
							· · · · · ·		:							
68.0'	98.5'	30.5'	Dark grey-green siliceous chloritic quartzite, foliated -											H-1-1		
			laminated with zones of quartz veining, chlorite biotite quartz													
			feldspar quartzite. Foliation at 25°-30° to core axis.	<u> </u>										ļ		
			Disseminated pyrrhotite, minor pyrite.													
			68.0'-72.0' - laminated chloritic biotite quartzite, laminated													
			to 1-2 mm at 20° to core axis.											<u> </u>		
			72.0'-85.0' - chloritic quartzite, foliated, alternating biotite				······································							 		
			laminations, chloritic bands, disseminated pyrrhotite, foliation													
			at 20° to core axis.													

SAWYER CONSULTANTS INC.	5

DATE LOGGED Feb. 11, 1985

COMPANY NAME Mono Gold Mines Inc.

PROPERTY NAME Bannockburn - Northeast Area

					SA	MPLE		Ī	ASS	SAYS	 	
FROM	ТО	RECOVY	DESCRIPTION	FROM	то	WIDTH	No.	Au	Ag			
68.0'	98.5'	(cont.)	85.0'-90.0' - increase in quartz feldspar bands parallel to					ez/ton	z/ton			
			foliation, chloritic bands, disseminated pyrrhotite.									
			90.0'-93.5' - healed fracture zone in dark brown biotite									
			quartzite, disseminated pyrrhotite, quartz stringers at varying									
			angles from $20^{\circ}-90^{\circ}$ to core axis. 93.5' – thin quartz chlorite									
			vein at 30° with pyrrhotite.									
			93.5'-98.5' - dark brown pyrrhotite rich biotite quartzite,									
			chlorite bands, foliation at 10° -15° to core axis.									
98.51	102.0'	3.5'	Healed shear/fracture with quartz veins from 98.5'-100.2'.	98.51	100.0	1.5'	15891	0.010	L0.02			
			100.2'-102.0' - foliated speckled quartzite, chlorite biotite									
			feldspar blebs, foliation at 20° to core axis.									
102.0'	20.0'	18.0'	Dark brown, medium grained, roughly foliated quartzite, quartz	109.0	110.5	1.5'	15892	0.015	L0.02		 <u> </u>	
			stringers, disseminated pyrrhotite, biotite-quartz-feldspar	110.5	112.0	1.5'	15893	0.020	0.02			
			quartzite, minor chlorite, increasing chlorite to 116.0'.									
			Silicified zones with quartz veins + pyrrhotite with chalcopyrite,									
			laminated quartzite with pyrrhotite + quartz stringers to 120.0'.									

DATE LOGGED Feb. 11, 1985

COMPANY NAME Mono Gold Mines Inc.

PROPERTY NAME Bannockburn - Northeast Area

FROM	TO	RECOVY	DECORPTION	T	SA	MPLE		ASSAYS							
FROM	TO	RECOVI	DESCRIPTION	FROM	то	WIDTH	No.	Au	Ag						
102.0	120.0	(cont.)	102.0'-106.0' - biotite quartzite, minor pyrrhotite,					0 z /to	ioz/tor						
			occasional quartz stringers parallel to foliation.												
			Foliation at 35° to core axis.												
			106.0'-108.0' - biotite quartzite, foliation at 20°, quartz												
			carbonate stringer with pyrrhotite-pyrite at 10° to core axis.												
			Pyrrhotite on planes.												
ļ			108.0' - healed shear, quartz carbonate vein/shear, chlorite,												
			pyrrhotite-pyrite-chalcopyrite.												
			109.5'-112.0' - silicified zone, healed shear? quartz veins with												
			pyrrhotite, chalcopyrite and pyrite.												
			Visible gold at 110.5'. Chlorite quartz carbonate 110.5'-111.5'												
			with quartz veins.				·								
			112.0'-113.0' - foliated biotite quartzite, chlorite, silicified.												
			113.0'-114.5' - quartz vein in silicified zone, pyrrhotite-	113.0'	114.5'	1.5'	15894	LO.002	L0.02						
			chalcopyrite-pyrite.												
			114.5' - more chloritic biotite quartzite, pyrrhotite disseminated,												
			foliation/laminations at 20° to core axis.												
			114.5'-118.5' - dark green-brown quartzite, chloritic biotite schist										i		

DATE LOGGED	Feb. 11, 1985
COMPANY NAME	Mono Gold Mines Inc.
PROPERTY NAME	Bannockburn - Northeast Area

EDOM	T0	DECC///	DESCRIPTION L		SA	MPLE			ASS	SAYS	 	
FROM	ТО	RECOVY	DESCRIPTION	FROM	то	нтаім	No	Au	Ag			
102.0'	120.0'	(cont.)	118.5'-120.0' - lighter bands/laminae, quartz-feldspar laminae,					oz/ton	oz/ton			
			biotite rich bands with chlorite, minor pyrrhotite, foliation									 ļ
			at 20° to core axis.									
120.0'	130.0'	10.0'	Silica flooded, healed shear with quartz veins and stringers,	120.0	122.0'	2.0'	15895	L0.002	LO.02			
			disseminated pyrrhotite-pyrite.				i et					
			120.0'-122.0' - quartz vein at 50° to core axis - upper contact,				· · · · · · · · · · · · · · · · · · ·					<u> </u>
			diffuse lower contact at 121.0' to quartz vein parallel foliation at					<u> </u>				
			122.0', foliation at 40° to core axis.									
			122.0'-123.5' - dark biotite rich quartzite, much disseminated									
			pyrrotite with accessory chalcopyrite.									<u></u>
			123.5'-126.0' - more chloritic biotite quartzite, series of									
			quartz veins at 30° to core axis, at 125.0' & 124.0', minor					<u> </u>				,
			pyrite, pyrrhotite commoner, chlorite bands.	ļ			······································	ļ				·
			126.0'-130.0' - chloritic foliated quartzite, quartz stringers				· · · · · · · · · · · · · · · · · · ·	ļ				 <u></u>
			at medium angles, foliation at 25° to core axis.		· · · · · · · · · · · · · · · · · · ·							
130.0'	157.0'	27.0'	Dark brown to dark green-brown foliated/laminated quartzite,									

SAWYER CONSULTANTS INC.	

DATE LOGGED Feb. 12, 1985

COMPANY NAME Mono Gold Mines Inc.

PROPERTY NAME Bannockburn - Northeast Area

EDOM	10	RECOVY	DECONOL		SA	MPLE			ASSAYS						
FROM	ТО	HECOVY	DESCRIPTION	FROM	то	WIDTH	No.	Au	Ag						
130.0'	157.0	(cont.)	lighter zones with silicification and quartz veining, quartz					oz/tor	oz/tor						
			stringer zones, carbonate stringer zones and healed shear zones,												
			disseminated pyrrhotite and accessory chalcopyrite, pyrite												
			associated with quartz veining, "foliation" generally at 25°												
			to core axis.												
			130.0'-137.0' - dark brown biotite rich foliated quartzite,												
			disseminated pyrrhotite-pyrite sub-equal amounts quartz stringers.									,		<u> </u>	
			137.0'-143.0' - dark green-brown chloritic biotite quartzite,												
			silicified quartz vein 1" at 137.0' at 45° to core axis,	<u> </u>											
			carbonate vein at 138.0' at 5° to core axis.												
			139.0'-140.5' - silicified zone, quartz veins/blebs with specks				_								
			pyrite, chalcopyrite.	<u> </u>										<u> </u>	
			143.0' - quartz vein, 1" at 50° to core axis, pyrite on fracture				_								
			faces, with chalcopyrite specks. 143.0'-147.0' - dark green-brown												
			quartzite, foliation at 30° to core axis, fine laminated biotite												
			laminae, disseminated pyrrhotite.												
			147.0'-149.0' - silicified zone, quartz "vein" at 147.8'-148.9',	147.5	148.5	1.0'	15896	L0.002	0.10						
			at 80° to core axis with much disseminated and vein pyrrhotite											l _	

SAWYER CONSULTANTS INC.	5

DATE LOGGED ____ Feb. 12, 1985

COMPANY NAME ___ Mono Gold Mines Inc.

PROPERTY NAME ___ Bannockburn - Northeast Area

	<u> </u>				SA	MPLE			ASS/	AYS		+1.—1. —	
FROM	ТО	RECOVY	DESCRIPTION	FROM	то	WIDTH	No				I		
130.0	157.0	(cont.)	with chalcopyrite.										
			149.0'-157.0' - laminated dark green-brown quartzite, laminae of										
			quartz feldspar - light coloured, crinkled foliation at 35° to										
			core axis. 154.0'-156.0' - contorted foliation with quartz										
			carbonate veining at 10° to core axis.										
157.0	166.0	9.0'	Finely laminated grey-brown quartzite, laminae/foliation at										
			30°-35°, suspect "fold" closures, lighter coloured quartz feldspar										
			segreations in layers/bands parallel to laminae/foliation,										
			disseminated pyrrhotite with chalcopyrite.										
166.0	174.0	8.0'	Dark brown laminated to finely laminated quartzite, patches										
			and blebs, veins of carbonate, alteration?, foliation at 20°										
			to core axis to 40° to core axis, disseminated pyrrhotite on										
			laminae/foliation.										
			174.0' - 1" quartz vein at 90° to core axis, pyrite on contacts.										
174.0	214.0	40.01	Healed shear zone, dark brown laminated quartzite, green-brown										

AWYER CONSULTANTS INC.	

DATE LOGGED Feb. 12, 1985

COMPANY NAME Mono Gold Mines Inc.

PROPERTY NAME Bannockburn - Northeast Area

HOLE No. _____DDH~85~1

FROM	то	RECOVY	DECODIDATION	DESCRIPTION					ASS	SAYS		
PROW		I LECOV T	DESCRIPTION		то	WIDTH	No.	Au	Ag			
174.0'	214.0	(cont.)	foliated quartzite, quartz veins, silicified zones with					oz/toi	oz/tor			
			quartz-carbonate veining, chloritic zones associated silicified	185.0'	187.5'	2.5'	15897	0.002	0.06		 	
			breccia/fracture zones, disseminated pyrrhotite with chalco-					ļ			 	
			pyrite, pyrite associated quartz veins.									
			174.0'-175.0' - quartz vein parallel foliation at 75° to core									
			axis, very minor pyrrhotite.									
			175.0'-184.0' - dark green quartzite, chloritic, biotite laminae,									
			foliation at 30° to core axis, quartz-carbonate stringers in part.									
			184.0'-187.5' - healed shear zone, quartz vein to 0.5' with									
			disseminated pyrrhotite-chalcopyrite, biotite schlieren + chlorite									
			bands/laminae, quartz-carbonate veining at 45°-50° to core axis.									
			187.5'-191.0' - fine grained, faintly foliated, foliated, massive									
			dark green quartzite, foliation at 40° to core axis, minor									
			disseminated pyrrhotite.									
			191.0'-199.0' - grey-green dark and light coloured silicified	197.01	199.0'	1.0'	15898	0.002	L0.02			
			healed shear zone with quartz veining + stringers, blebs quartz									
			+ disseminated pyrrhotite-pyrite, veining/shearing at approximately									
			20° to core axis.									

DATE LOGGED Feb. 12, 1985

COMPANY NAME Mono Gold Mines Inc.

PROPERTY NAME Bannockburn - Northeast Area

		T T		SAMPLE									
FROM	то	RECOVY	DESCRIPTION	FROM	TO SA	WIDTH	N -	ļ.,	ASSAY	S	ſ	1	
174.0'	214.0	(cont.)	199.0'-210.0' - silicified shear zone, quartz carbonate veining	PHOM	10	WIDTH	No.	Au oz/ton	Ag oz/ton				
			at 201.0'-203.0' at 20° to core axis, from 205.0'-206.0' and	201.0'	202.0'	1.0'	15889	L0.002	L0.02				
			207.0'-207.5' - veins at approximately 25° to core axis,	205.0'	207.5	2.5'	15900	L0.002	L0.02				
			quartzite with broken up laminae, brecciated laminae, contorted										_
			foliation, 210.0'-214.0' - faintly laminated dark brown										
			quartzite, slightly chloritic, biotite, disseminated pyrrhotite,										
			laminae at 25° to core axis.				,						
214.0'	224.0	10.0'	Massive, faintly laminated quartzite, medium grey-green, faint										
			foliation at 40° to core axis to 219.0', then 219.0'-224.0'										
			laminated quartzite, laminae at 20° to core axis, minor										
	,		disseminated pyrrhotite.								:		
224.0	242.0	18.0'	Medium green-brown laminated quartzite, quartz stringers at low										
			angles $15^{\circ}-25^{\circ}$ to core axis, foliation at 30° to core axis,										
			becomes more chloritic to 242.0'.										
242.0	246.0	4.0'	Dark blue-green-grey quartzite, banded/laminated at 20° to core										<u></u>

AWYER CONSULTANTS INC.	5

DATE LOGGED	Feb. 12, 1985
COMPANY NAME	Mono Gold Mines Inc.
PROPERTY NAME	Bannockburn - Northeast Area

HOLE No. DDH-85-1 SAMPLE ASSAYS FROM TO RECOVY DESCRIPTION WIDTH FROM No. 242.0 246.0 (cont.) axis, quartz vein $\frac{1}{2}$ " with pyrite at 20° /parallel/ to core axis at 245.0', "bands"/laminae chlorite/biotite - quartz feldspathic. 246.0' - End of Hole.

COLLAR:	HOL	E SURVEY	
38+25N	METHOD:	ACID ET	CH
31+35E	FOOTAGE	AZIMUTH	DIP
ELEVATION	0'	105	-60
CORE SIZE BQ	295'	105	-54°
LOGGED BY Gordon D. House	_		
DATE LOGGED Feb. 12-13, 1985			
MAP REFERENCE No. 31C/12			
			L
			ļ
			<u> </u>
	1		<u> </u>

COMPANY NAME MONO GOLD MINES INC.	
PROPERTY NAME BANNOCKBURN - NORTHEA	ST AREA
DRILLING CONTRACTOR McKnight Drilling	Company Limited
ASSAYER Bondar-Clegg & Company Ltd.	
PURPOSE OF HOLE To test depth extens	

SAWYER CONSULTANTS INC.

CLAIM NAME No	EO 652301
COMMENCED	Feb. 10, 1985
FINISHED	T 1 40 400F
FINAL DEPTH	
PROJECT No.	

FROM	то	RECOVY	DESCRIPTION	1	SAI	MPLE				ASSA	rs		
				FROM	то	WIDTH	No	Au	Ag				
٥'	4.0'	0'	Overburden.					oz/ton	oz/ton				
4.0	6.0'	1.0'	Oxidized broken ground.										ļ
6.01	10.01	/ 01					····						
0.01	10.0'	4.01	Bleached, broken, quartz with biotite schist, very pyritic, foliation at 20°.										
													-
10.0	17.5	5.01	Siliceous and quartz veined zone, 10.0'-11.5' - quartz stringers									ļ	
			parallel to foliation at 40° - displaced foliation, bluish	11.5	16.0'	4.5'	15901	0.130	0.34	2.0	' Recove	red	
			quartz veins, disseminated pyrite. 11.5'-17.0' - massive	16.0'	17.5'	1.5'	15902	0.120	0.06				<u> </u>
			quartz vein, vuggy in part, very pyritic, oxidized zones.										ļ
			Massive pyrite 11.5'-12.0', oxide at 13.0'-13.5' and at 16.0'.										
			Bottom contact at 30° to core axis.										
17.5	28.0'	10.5'	Contorted, banded, dark brown-grey quartzite, biotite rich,				······································						-

PAGE	1	ΩF	11
		·	

DATE LOGGED Feb. 13, 1985

COMPANY NAME Mono Gold Mines Inc.

PROPERTY NAME Bannockburn - Northeast Area

FROM	то	RECOVY	DECODIDATION		SA	MPLE	·	<u>_</u>	ASSAYS							
PHOIVI	10	RECOVY	DESCRIPTION	FROM	то	WIDTH	No									
17.5'	28.01	(cont.)	very pyrrhotite rich, pyrrhotite to 50%, disseminated and in													
			bands, highly magnetic, quartz veins in part, foliation at 70°													
			at 26.0' and 35° at 23.0', quartz carbonate veins, quartz													
			"boudin" at 19.5' $20.7' - 0.2'$ pyrite-carbonate vein at 75°													
			to core axis. $20.5'-21.0'$ - quartz veins at 60° and 90° to core													
			axis, 1", contorted foliation, associated quartz carbonate													
			stringers around 21.0' and 22.0'.													
			$27.0'-28.0'$ - quartz veins at 70° to core axis at $27.0'$, and													
			0.5' quartz carbonate vein at 30° to core axis, pyritic.													
28.0'	49.0'	21.0'	Dark brown pyrrhotite rich quartzite, garnetiferous schist,											4.4		
			quartz veins in silicified zones, massive dark green faintly													
			laminated quartzite.													
			28.0'-31.5' - laminated dark brown quartzite, 25%-30% pyrrhotite													
			disseminated and in bands, lamination at 45° to core axis,													
			increasing garnet content.		<u>-</u> ,											
			31.5'-36.0' - garnet rich schist, silicified, garnet-chlorite-													
			pyrrhotite schist, foliation at varying angles from 25° to 65°													

SAWYER CONSULTANTS INC.	

DATE LOGGED Feb. 13, 1985

COMPANY NAME Mono Gold Mines Inc.

PROPERTY NAME Bannockburn - Northeast Area

HOLE No. <u>DDH-85-2</u>

	<u> </u>			1	SA	MPLE		I	ASS	AYS		
FROM	ТО	RECOVY	DESCRIPTION	FROM	то	WIDTH	No.	Αu	Ag			
28.01	49.01	(cont.)	to core axis, quartz veining at 70° to core axis at 31.5', 33.0'					oz/tor	oz/tor			
			and 36.0', pyrrhotite associated or replacing garnet in part.									
			36.0'-38.0' - massive faintly foliated silicified schist/quartzite,				: ·					
			foliation at 60° to core axis, carbonate laminae at 37.0'.									
			38.0'-49.0' - massive silicified chlorite-biotite schist/quartzite,									
			foliation at 35° to core axis, laminated mixed chlorite and lesser									
			biotite in quartz-feldspar groundmass, foliation, schlieren at				· · · · · · · · · · · · · · · · · · ·					
			35° to core axis, disseminated pyrrhotite to 5%-10% throughout.									
49.0'	78.0'	29.0'	Dark greenish-brown faintly foliated to laminated, siliceous									
			schist/quartzite, chlorite-biotite schist in part, foliation									
			generally at 30° - 40° to core axis, silicified zones with quartz									
			veins, disseminated pyrrhotite, with pyrite associated quartz	50.0'	51.0'	1.0'	15903	0.002	L0.06			
			veins + silicified zones.									
			49.0'-60.0' - foliated quartzite, chlorite-biotite "quartz-sericite"									
			foliation at low angles 20°-25° to core axis.									
			Silicified zones at from 49.0'-51.0', 53.0'-54.0', 56.0'-57.0',	56.0'	57.0'	1.0'	15904	0.150	0.02			
			59.0'-60.0'. Pyrite associated quartz veins, with pyrrhotite									

DATE LOGGED Feb. 13, 1985

COMPANY NAME Mono Gold Mines Inc.

PROPERTY NAME Bannockburn - Northeast Area

HOLE No. DDH-85-2

FROM	то	RECOVY	DESCRIPTION		SA	MPLE		 ASSAYS						
1110101	, 0	TIL COVI	DESCRIPTION	FROM	то	WIDTH	No.							
49.0'	78.0'	(cont.)	and exsolved chalcopyrite, visible gold specks with pyrite at											
			56.5' - vein at 50° to core axis at 56.0'.											
			60.0'-62.0' - dark brown biotite-pyrrhotite quartzite, foliation											
			at 35° to core axis, much disseminated pyrrhotite, biotite.											
			62.0'-65.5' - foliated chloritic biotite quartzite, foliation at											
			30° to core axis, disseminated pyrrhotite and associated											
			exsolved chalcopyrite.											
			65.5'-72.5' - laminated quartzite, laminae of chlorite-biotite-											
			pyrrhotite with light grey quartz feldspar laminae associated											
			disseminated pyrite (minor), pyrrhotite + chalcopyrite laminae											
			at 35° to core axis. Quartz veins at 65.5', 67.8', 68.0', 69.0'		مرسانا الرواد والمساور									
			and 70.0' to 72.5" - quartz carbonate stringers with quartz zones.											
			72.5'-78.0' - dark brown faintly laminated quartzite, chlorite-											
			biotite-pyrrhotite laminae + disseminated laminations at											
			10°-20° to core axis, quartz carbonate stringers at low angles.											
78.0'	93.0'	15.0'	Dark brown faintly laminated quartzite, biotite rich with											
			pyrrhotite, silicified zones with quartz veins and pyrite,											

PAGE ____4 ___ OF ____11

SAWYER CONSULTANTS INC.	

DATE LOGGED Feb. 13, 1985

COMPANY NAME Mono Gold Mines Inc.

PROPERTY NAME Bannockburn - Northeast Area

HOLE No.______DDH-85-2

FROM	то	RECOVY	DESCRIPTION		SA	MPLE		ASSAYS						
		HECOVI	DESCRIPTION	FROM	то	WIDTH	No	Au	Ag					
78.01	93.0'	(cont.)	quartz carbonate stringers.					bz/ton	oz/ton					
			76.0'-82.0' - chloritic biotite quartzite, faint laminations at											
			20° to core axis, minor pyrrhotite from 78.0'-81.0', increases											<u> </u>
			to 81.0'.											
			82.0'-93.0' - slightly bleached silicified zones in dark brown											
			biotite quartzite, much increased chlorite, disseminated											
			pyrrhotite, quartz veins at 82.5' with pyrite and quartz carbonate											
			from 85.0'-87.0' - stringers, 89.0'-90.0' - quartz carbonate											
			stringers at 55° to core axis, pyrite associated.											····
93.01	99.0'	6.0'	Lighter grey-green quartzite, minor biotite in laminations, mainly											
			chlorite, very faint laminations at 30° to core axis.				<u></u>							
99.0'	106.0'	7.0'	Silicified zone, grey quartzite, bleached chlorite laminae, also	99.0'	100.01	1.0'	15905	0.002	0.02					
			biotite, fine grained, disseminated pyrrhotite.											
			99.0'-99.5' - quartz vein - crosscutting laminae, at 35° but cut	03.0'	104.5	1.5'	15906	0.010	L0.02					
			by shear/joint and offset - shear at 30° to core axis - pyrite +	04.5	06.0	1.5'	15907	0.005	LO.02					
			chalcopyrite associated shear where cuts quartz vein.											

DATE LOGGED Feb. 13, 1985

COMPANY NAME Mono Gold Mines Inc.

PROPERTY NAME Bannockburn - Northeast Area

	I			T	SA	MPLE		<u>_</u> _1	ASS	SAYS		·	
FROM	то	RECOVY	DESCRIPTION	FROM	то	WIDTH	No.						
99.0'	106.0'	(cont.)	99.5'-103.5' - chloritic quartzite, faint lamination at 45° to										
			core axis, minor biotite, pyrrhotite.										
			103.5'-105.5' - quartz vein zone, quartz flooding, pyrite on										
			fractures + disseminations, some quartz carbonate and chlorite										_
			schlieren.										
			105.5'-106.0' - laminated chlorite quartzite.										
106.0'	115.0'	9.0'	Medium green-brown quartzite, faint lamination, generally at 20°										
			to core axis, minor biotite, mostly chloritic, siliceous, quartz										
			carbonate stringers at low angles - parallel to lamination										
			with minor pyrite, disseminated pyrrhotite throughout.										
115.0'	136.0'	21.0'	Dark greenish brown quartzite, laminated, disseminated pyrrhotite										
			on laminations, lamination at 5° - 10° to core axis throughout,										
			quartz stringers at 120.0' and 121.0' to 122.0', from 133.0'-								 		
			135.0' series quartz carbonate stringers parallel to lamination,										
			minor pyrite.										

DATE LOGGED Feb. 13, 1985

COMPANY NAME Mono Gold Mines Inc.

PROPERTY NAME Bannockburn - Northeast Area

FDOM		550000			SA	MPLE	- 1 - 1 - 1 -	ASSAYS						
FROM	то	RECOVY	DESCRIPTION	FROM	то	WIDTH	No	Au	Ag				I	
136.0'	159.0'	23.01	Similar dark greenish brown, finely laminated quartzite, fair					o z /tor	oz/ton					
			amount disseminated pyrrhotite on laminations, laminations											
			generally at 20° to core axis, chlorite and thinner biotite											
			laminations, silicified zones with quartz veining, pyrrhotite								_			
			and chalcopyrite on margins with pyrite associated quartz veins.		ļ									
			136.0'-137.5' - quartz veins at 45° to core axis (top and bottom	36.0'	37.5'	1.5'	15908	0.002	0.02		_			
			contacts), finely disseminated pyrite and pyrrhotite, minor								_			
			chalcopyrite. 140.0'-141.0' - similar quartz veins at 5° to					<u> </u>						
			core axis. 148.0'-149.0' - quartz vein at 5° to core axis.											
			151.5' - quartz carbonate vein with pyrite. 157.0'-159.0' - series									:		
			quartz carbonate stringers parallel to laminations.											
							· · · · · · · · · · · · · · · · · · ·							
159.01	214.0'	55.0'	Dark brown quartzite, healed shear zone, some cut throughout					ļ					<u></u>	
			by quartz feldspar or quartz carbonate veins and laminae - parallel											
			to laminations, at 40° to core axis throughout, much disseminated											
			pyrrhotite and exsolved chalcopyrite throughout, pyrite on fractures											
			in quartz veins, chloritic in part and as laminations, mainly											· ·
			biotite rich.											

SAWYER CONSULTANTS INC.	

DATE LOGGED Feb. 13, 1985

COMPANY NAME Mono Gold Mines Inc.

PROPERTY NAME Bannockburn - Northeast Area

FROM	то	RECOVY	OVY DESCRIPTION	SAMPLE					ASSAYS						
	10			FROM	то	WIDTH	No.								
159.0'	214.0'	(cont.)	159.0'-166.0' - contorted crinkle laminations at 40° to core												
			axis, quartz veins at 160.0', 162.0' + 163.5'. 166.0'-171.0' -												
			slightly bleached, quartz stringers and veins parallel to												
			laminations at 168.0', 169.0', 171.0'-172.0'. 173.0'-186.0' - quart:	2											
			zones with bleached quartzite at 177.0', 179.0'-180.0', and											<u> </u>	
			183.0'-183.5'.												
			186.0'-196.0' - quartz veined zones at 188.0'-190.0' and 195.0'-												
			196.0'. At 189.0' - pyrite on fracture and as narrow vein at 80°												
			to core axis, in quartz vein 0.5' width at 70° to core axis.												
			196.0'-206.0' - increased quartz, quartz carbonate and quartz												
			feldspar stringers/veins parallel to lamination at 50° to core												
			axis, much increased 201.0'-202.0', massive vein pyrite at 203.0'											····	
			at 40° to core axis. 206.0'-214.0' - lighter coloured, more												
			chloritic and silicified quartzite, lamination at 40°-50° to												
			core axis, quartz vein to 0.25' at 214.0'.												
214.0'	220.01	6.0'	Coarsely laminated quartzite, laminations are veins/segregations												
			of quartz + quartz feldspar parallel to laminations at 60° to core ax	is.											

SAWYER CONSULTANTS INC.	5

DATE LOGGED Feb. 13, 1985

COMPANY NAME Mono Gold Mines Inc.

PROPERTY NAME Bannockburn - Northeast Area

FROM	то	RECOVY	OVY DESCRIPTION		SA	MPLE		T	ASSAYS					
				FROM	то	WIDTH	No.	Au	Ag					
220.01	240.0'	20.0'	Dark brown quartzite, laminated in part, laminations at high					o z /tor	o z /tor					
			angles 60°-80° to core axis, disseminated pyrrhotite throughout,											
			quartz veins at 224.0' at 70° to core axis, at 232.0' at 10°											
			to core axis.											
			238.0'-239.5' - increased brecciation, healed, with quartz											
			stringers with pyrite, pyrrhotite + chalcopyrite.		<u> </u>									
			239.5'-240.0' - quartz veins in silicified zone, large pyrite,	239.51	242.51	3.0'	15909	0.170	0.04					<u> </u>
			pyrrhotite + chalcopyrite crystals.											
							-							
240.0'24	246.0'	6.01	Large quartz vein, white quartz with disseminated pyrite,											
			pyrrhotite and pyrrhotite plus chalcopyrite on borders.											
			Upper contact at 240.6' at 80° to core axis. Lower contact at											
			242.2' at 80°-85° to core axis - crosscutting but margins are				L							ļ
			sheared schistose and parallel. 240.0'-240.5' - much pyrite,											ļ
			pyrrhotite + chalcopyrite crystals on margin. 240.6'-242.2' -											<u> </u>
			quartz vein. 242.2'-243.4' - sheared + quartz carbonate veined											
			parallel to contact. 243.0'-246.0' - biotite "schist", foliation											·
			at 30° to core axis.											

SAWYER CONSULTANTS INC.	

DATE LOGGED Feb. 13, 1985

COMPANY NAME Mono Gold Mines Inc.

PROPERTY NAME Bannockburn - Northeast Area

FROM	то	RECOVY	DECORIDATION		SA	MPLE		ASSAYS							
LHOM		necov Y	DESCRIPTION	FROM	то	WIDTH	No	Au	Ag						
246.0	257.0	11.0	Healed shear zone, light grey and dark brown quartzite,					bz/ton	oz/ton						
			contorted foliation/shear planes, quartz carbonate + quartz												
ļ	ļ		feldspar filled shear.												
			246.5'-250.0' - contorted, chloritic biotite quartzite quartz												
			carbonate/quartz feldspar filled, shear at 10° to 30° to core												
			axis.				- 								
			250.0'-254.0' - chloritic quartz carbonate "shear" planes at												
			30° to core axis, parallel "veins", very minor pyrrhotite, minor												
			pyrite.				<u> </u>								
257.0'	265.01	8.01	Dark brown, biotite "schist"/quartzite, foliation at 35° to core												
			axis, cut numerous quartz and quartz/carbonate veins parallel							1					
			to foliation, more-so to 265.0'.	-											
265.0'	267.0'	2.0'	Quartz vein, disseminated pyrite, chalcopyrite from 265.2'-266.5',	265.0'	266.5'	1.5'	15910	0.002	1.0.02						
			contacts - upper, diffuse, at approximately 30° to core axis,					1	20.02						
			lower, sharp, at 40° to core axis.												

DATE LOGGED Feb. 13, 1985

COMPANY NAME Mono Gold Mines Inc.

PROPERTY NAME Bannockburn - Northeast Area

	T	·														
FROM	то	RECOVY	DESCRIPTION	<u></u>	r	MPLE		ļ	AS	SAYS	·					
				FROM	то	WIDTH	No.									
267.0'	285.0'	22.0'	Dark brown quartzite, laminated, laminations at 35° to core axis,													
			some quartz carbonate veining parallel to lamination, much													
			decreased to minor pyrrhotite. 275.0'-276.0' - quartz carbonate													
			stringer at 5° to core axis. 280.0'-285.0' - increased				-									
			chlorite, decreased biotite becoming schistose.													
285.0'	295.0'	10.0'	Strongly laminated/foliated chlorite-biotite-schist, foliation													
			at 35° to core axis, feldspar laminae/bands/segregations, slight											- 1		
			increase in pyrrhotite on laminations.													
			295.0' - End of Hole.													

COLLAR:		E SURVEY	
38+75N	METHOD:	ACID ET	CH
31+55E	FOOTAGE	AZIMUTH	DIP
ELEVATION	0'	105	-50
CORE SIZE BQ	2361	105	-40
LOGGED By Gordon D. House			
DATE LOGGED Feb. 14-16, 1985			
MAP REFERENCE No31C/12			
			<u> </u>
			<u> </u>
			l .

SAWYER CONSULTANTS INC.

COMPANY NAME MONO GOLD MINES INC. PROPERTY NAME BANNOCKBURN - NORTHEAST AREA DRILLING CONTRACTOR McKnight Drilling Company Limited ASSAYER Bondar-Clegg & Company Ltd., Ottawa PURPOSE OF HOLE To test down dip extension of surface veins

HOLE No	DDH-85-3
CLAIM NAME/No.	EO 652301
COMMENCED	Feb. 12, 1985
FINISHED	Feb. 13, 1985
FINAL DEPTH	236.0'
PROJECT No.	

FROM	то	RECOVY	DESCRIPTION		SA	MPLE			ASSAYS		
				FROM	TO	WIDTH	No.				
0'	5.5	0'	Overburden.								<u> </u>
0'	7.0'	0.25'	Casing.						_		
7.0'	18.0'	10.0'	Dark brown and dark green-brown foliated siliceous schist,								
			biotite chlorite schist, $7.0'-9.5'$ - foliation at 70° to core								
			axis, very minor disseminated pyrrhotite, 9.5'-10.0' - silicified								
			zone, healed shear? at 25° to core axis. 10.0'-18.0' - foliated								
			schist, foliation at 20° to core axis, quartz feldspar segregations								
			parallel to foliation.								
					·						
18.0'	39.0'	21.0'	Dark brown to dark green-brown and dark green foliated schist,								ļ
			slightly silicified, disseminated pyrrhotite with exsolved chalco-								ļ
			pyrite in part especially at quartz veining or zones silicification			<u> </u>		 			
	ļ 		medium grained foliated schist, silicified zones with quartz								

DATE LOGGED Feb. 14, 1985

COMPANY NAME Mono Gold Mines Inc.

PROPERTY NAME Bannockburn - Northeast Area

FROM	то	RECOVY	DESCRIPTION		SA	MPLE		ASSAYS						
1110101	.0	I LCCV I	DESCRIPTION	FROM	то	WIDTH	No.	Au	Ag					
18.0	39.0	(cont.)	veining, very minor quartz stringer to 39.0'.					oz/tor	oz/tor					
			18.0'-18.8' - silicified altered zone, quartz vein from 18.5'-											
			18.8', disseminated pyrrhotite with chalcopyrite on edges, pyrite											
			on fractures, bleached schist hanging wall. Quartz vein at 20°											_
	· · · · · · · · · · · · · · · · · · ·		to core axis, slightly cross-cutting foliation at 20° to core											·
			axis, about 10° cross-cutting.											
			18.8'-26.0' - dark greenish-brown foliated biotite-chlorite											
			"schist," foliation at 15°-20° to core axis, very minor dissemi-											
			nated pyrrhotite.											
			26.0'-39.0' - dark green-grey foliated "schist," foliation at											
			0-5° to core axis, minor disseminated pyrrhotite.											
39.0	42.5	3.51	Silicified zone with quartz veining, healed shear zone, dark green					ļ	,					
			chlorite-biotite "schist," foliated to quartz vein, shear plug.	39.01	40.0	1.0'	15911	0.001	0.04					
			39.5'-40.8' - quartz vein, silicified shear/slip at 5° - 10° to core											
			axis, disseminated pyrite - chalcopyrite associated, pyrite-											
			pyrrhotite-chalcopyrite stringers parallel to "schist" foliation											
			from 39.0'-39.5'.											

Feb. 14, 1985 DATE LOGGED _ Mono Gold Mines Inc. COMPANY NAME _

PROPERTY NAME Bannockburn - Northeast Area

FROM	то	RECOVY	DESCRIPTION		SA	MPLE		ASSAYS					
THOW		NECOV1	DESCRIPTION	FROM	TO	WIDTH	No.	Au	Ag				
39.0'	42.5'	(cont.)	$40.8'-41.0'$ - chlorite-biotite "schist," foliation at 10° to core					oz/tor	oz/tor				
			axis.										
			41.0'-42.5' - pyritic + pyrrhotite rich stringers parallel to	41.5	42.5'	1.0'	15912	0.003	0.09				
			foliation at 30° to core axis, quartz vein at 40° - 45° cuts										
			"schists" and stringers.										
42.5'	45.5'	3.0'	Laminated banded "schist," foliation at 20° to core axis, dark								_		
			green colour, silicified, pyrite + pyrrhotite on laminae,										
			quartz-carbonate laminae.										
45.5'	47.0'	1.5'	Quartz carbonate vein in silicified zone, within laminated schist.										
			45.5'-46.0' - quartz carbonate vein, pyrite-pyrrhotite-chalcopyrite										
			forms half core so contact at 10° to 0° to 10° to core axis										
			over 0.4'.							,			
				<u> </u>			! -						
47.0'	50.0'	3.0'	Healed shear zone, silicified, quartz carbonate veined + quartz				·						
			healed breccia zone. Contact at 47.0' at 25° - at 50.0' at 40°.							_			
			Chloritic silicified "schist"horsts in zone, mineralized pyrite,	<u> </u>	L			<u> </u>					

DATE LOGGED Feb. 14, 1985

COMPANY NAME Mono Gold Mines Inc.

PROPERTY NAME Bannockburn - Northeast Area

FROM	то	RECOVY	PECODITION		SA	MPLE			ASS		
FROW	10	HECOVI	DESCRIPTION	FROM	то	нтаіw	No	Au	Ag		
47.01	50.0'	(cont.)	pyrrhotite and chalcopyrite and native gold, disseminated in					oz/ton	oz/ton		
			quartz carbonate vein and associated contacts and sulphide	47.0'	48.01	1.0'	15913	0.245	0.02		
			veins in quartz. Some gold associated chlorite stringers.	48.0'	49.01	1.0'	15914	5.869	0.28		
			Visible gold on drilled core surface, and disseminated in	49.0'	50.0'	1.0'	15915	0.305	0.05		<u> </u>
			quartz on splitting.								ļ
			47.0'-47.8' - quartz carbonate vein, at 20° to core axis,								
			pyrrhotite + chalcopyrite, pyrite + gold.								
			47.8'-48.2' - chlorite "schist," foliation parallel to vein				<u> </u>				
			at 20°, stringers sulphides, pyrrhotite + chalcopyrite, pyrite		<u> </u>						ļ
			parallel to foliation.								
			48.2'-49.2' - quartz carbonate vein, 48.2' contact at 35° to core								
			axis and 49.2' contact at 30° to core axis, disseminated + vein								<u> </u>
			pyrrhotite + chalcopyrite, pyrite, visible gold associated								ļ
			sulphides + fully disseminated in quartz, nice gold nuggeteen								
			to 1 mm, associated chlorite bleb in quartz.								
			49.2'-49.8' - silicified, bleached "schist," 49.8'-50.0' - quartz								
			carbonate vein, contacts at 40° to core axis.								

SAWYER CONSULTANTS INC.	

DATE LOGGED Feb. 14, 1985

COMPANY NAME Mono Gold Mines Inc.

PROPERTY NAME Bannockburn - Northeast Area

FROM	то	RECOVY	DESCRIPTION		SA	MPLE		ASSAYS						****
THOW	10	RECOVI	DESCRIPTION	FROM	то	WIDTH	No.	Au	Ag					
50.0'	58.5'	8.51	Strongly foliated chlorite-biotite "schist," to silicified					oz/tor	ez/tor					
			faintly foliated chlorite schist/quartzite, with quartz-feldspar											
			laminations, minor disseminated pyrrhotite, foliation at 20° to											
			core axis.											
			50.0'-54.5' - coarsely foliated chlorite-biotite schist, foliation											
	: :		at 20° to core axis, disseminated pyrrhotite.											
			54.5'-55.0' - quartz veined/silicified zone, quartz vein at 5°							_				
			to core axis, increased pyrrhotite and chalcopyrite, pyrite +											
			chalcopyrite.											
			55.0'-58.5' - faintly foliated chlorite schist, foliation at 30°											
			to core axis.											
							- 1							
58.51	60.5'	2.0'	Quartz vein, white partly translucent quartz, disseminated	58.51	60.5'	2.01	15916	0.200	0.07					-m····
			pyrite-chalcopyrite, minor pyrrhotite, no visible gold noted.											
			Contacts - upper at 40°, lower at 45°, pyrite on fractures.											
			59.0' - schist horst for 0.25' with 0.1' quartz vein parallel											
			to upper contact.											
														<u> </u>

SAWYER CONSULTANTS INC.	

DATE LOGGED Feb. 15, 1985

COMPANY NAME Mono Gold Mines Inc.

PROPERTY NAME Bannockburn - Northeast Area

FROM	+0	DECOVA	DECODIDATION	T	SA	MPLE			ASS	AYS		
FROM	ТО	RECOVY	DESCRIPTION	FROM	то	WIDTH	No.	Au	Ag			
60.5	85.0	24.5'	Medium green quartzite, silicified "schist" in part, faintly					ez/ten	oz/ton			
			foliated, silicified zones and quartz veins, minor disseminated									
			pyrrhotite, increased pyrite, pyrrhotite + chalcopyrite in									
			silicified zones and quartz veins, pyrite stringers in part.									
			Some carbonate blebs with quartz stringers, some quartz carbonate									
			veins.									
			60.5'-62.0' - silicified schist, minor pyrrhotite, foliation				·					
			parallel to quartz vein contacts at 40° to core axis.									
			62.0'-63.0' - silicified zone, quartz vein, pyrite-chalcopyrite,									
			chloritic.	62.01	63.0'	1.0'	15917	0.004	0.02			<u> </u>
			63.0'-73.0' - dark green quartzite, faintly foliated, chloritic,									
			minor biotite laminae + minor pyrrhotite disseminations, foliation									
			at 15° to core axis.									<u> </u>
			73.0'-75.0' - silicified zone, quartz veined zone, upper contact	72.5'	75.0'	2.5'	15918	0.001	0.02			
			sharp - at 55° to core axis, lower contact - diffuse at approxi-	75.0'	76.5'	1.5'	15919	1.094	0.29			
			mately 30° to core axis. Disseminated pyrite-chalcopyrite,	76.51	78.0'	1.5'	15920	0.002	0.01			
			chlorite, vein is diffuse quartz, dark bluish-green, stringers									
			pyrrhotite, pyrite, chalcopyrite and fine grained disseminated									

DATE LOGGED ____ Feb. 15, 1985

COMPANY NAME ___ Mono Gold Mines Inc.

PROPERTY NAME ___ Bannockburn - Northeast Area

5000					SA	MPLE		ASSAYS							
FROM	ТО	RECOVY	DESCRIPTION	FROM	то	WIDTH	No.								
60.51	85.0	'(cont.)	pyrrhotite-chalcopyrite-pyrite throughout, suspect tellurides +												
			fine grained visible gold. Visible gold noted at 74.0'.												
			75.0'-76.5' - silicified zone, quartzite with quartz carbonate												
			vein at 20° to core axis carrying pyrite, chalcopyrite and						<u>.</u>						
			visible gold along contacts and disseminated in silicified wall												
			rock.												
			76.5'-80.0' - dark green-brown silicified zone, quartzite,												
			faint foliation at 15° - 20° to core axis, much disseminated		·										
			pyrite-chalcopyrite, thin stringers pyrrhotite-chalcopyrite to		d				***************************************						
	· · · · · · · · · · · · · · · · · · ·		78.0', then decreasing to 80.0', blebs of carbonate alteration,												
			minor biotite laminations.						<u>.</u>						
			80.0'-85.0' - dark green-brown quartzite, faintly foliated,												
			foliation at 35° to core axis, minor disseminated pyrrhotite.												
							:								
85.0	98.0	13.0'	Dark green-brown quartzite, faint foliation, carbonate stringers												
			parallel to foliation, carbonate zones, disseminated pyrrhotite +												
			chalcopyrite in quartzite, pyrite, pyrrhotite + chalcopyrite												
			associated quartz carbonate vein, chlorite-biotite-quartzite.												

SAWYER CONSULTANTS INC.	

DATE LOGGED ____ Feb. 15, 1985

COMPANY NAME ___ Mono Gold Mines Inc.

PROPERTY NAME ___ Bannockburn - Northeast Area

FROM TO RECOV		BECOVA:	DESCRIPTION -		SA	MPLE	I		ASSAYS							
FHOIVI		HECOVY	DESCRIPTION	FROM	то	WIDTH	No.									
85.0'	98.0'	(cont.)	85.0'-86.5' - foliation at 25° to core axis, parallel quartz													
			carbonate stringers.											<u> </u>		
			85.6'-89.0' - foliation at 25° to core axis.													
			89.0'-91.5' - zone quartz carbonate veins, stringers at 25° to													
			core axis parallel to foliation, increased pyrite on fractures,					_						ļ		
			vein surfaces, also pyrrhotite with chalcopyrite.													
			91.5'-98.0' - foliation at 20° to core axis, biotite-chlorite-					_								
			quartzite, increased disseminated pyrrhotite + chalcopyrite,													
			also pyrite.													
98.01	108.0'	10.0'	Dark brown biotite chlorite quartzite, foliated/laminations,													
			quartz veined, silicified zones with increased pyrite, pyrrhotite +													
			chalcopyrite.													
			98.0'-100.0' - quartz vein system, at 20° to core axis dissemi-													
			nated and veined pyrrhotite + chalcopyrite, pyrite contorted													
			veining.													
			100.0'-105.0' - foliated at 25°-30°, increasing quartz carbonate													
			stringers parallel to foliation to 105.0'.													

DATE LOGGED Feb. 16, 1985

COMPANY NAME Mono Gold Mines Inc.

PROPERTY NAME Bannockburn - Northeast Area

FROM	то	RECOVY	ECOVY DESCRIPTION		SA	MPLE		 ASSAYS							
FHOIVI	10	hecovi	DESCRIPTION	FROM	то	WIDTH	No.								
98.01	108.0'	(cont.)	105.0'-108.0' - much increased quartz carbonate veining, parallel												
			to foliation at 20° to core axis, to quartz carbonate vein												
			from 106.0'-106.8', pyrrhotite + chalcopyrite + pyrite - chalco-												
			pyrite on margins and disseminations.										: 		
108.0'	117.0'	11.0'	Medium green silicified chlorite quartzite/"schist," disseminated												
			pyrrhotite + chalcopyrite, quartz carbonate feldspar laminae												
			parallel to foliation, increasing to 167.0', foliation at 20° to												
			core axis, some sericite.												
			115.0'-116.0' - carbonate chlorite veins with pyrite, chalco-												
			pyrite, pyrrhotite.												
117.0'	131.0'	14.0'	Light to medium green, silicified, chloritic quartzite, foliated,						.						
			minor quartz carbonate stringers parallel to foliation, quartz												
			vein zones, increased laminations to 131.0'.												
			122.5'-125.0' - series quartz veins to 1" at 80° - 90° to core												
			axis, very minor pyrite, foliation at 25°- 30° to core axis,												
			biotite laminae, some sericite with chlorite.												

SAWYER CONSULTANTS INC.	
	7

DATE LOGGED Feb. 16, 1985

COMPANY NAME Mono Gold Mines Inc.

PROPERTY NAME Bannockburn - Northeast Area

FROM	то	DECOVA	RECOUNTION		SA	MPLE			ASSAYS						
PHOM	10	RECOVY	DESCRIPTION	FROM	то	WIDTH	No.								
131.0'	36.0'	5.01	Dark brown biotite rich quartzite, segregations of quartz feld-												
			spars as blebs to 1-2 mm comprising 65% of rock, with biotite		-										
			groundmass from 132.0'-135.0' - much disseminated pyrrhotite +							<u></u>					
			chalcopyrite, pyrite plentiful on fractures, quartzose zone												
			at 131.0'-131.5' and 135.5'-136.0'.												
136.0'	151.0'	15.0'	Medium to dark green quartzite, silicified zone with quartz												
			veining, quartz carbonate veining and contarted foliation,												
			laminated in part, diffuse quartzose healed breccia zone from						· <u>· · · · · · · · · · · · · · · · · · </u>	-					
			142.0'-143.5'. Chlorite laminations with disseminated pyrrhotite,					·						- <u>-</u>	
			biotite layers, pyrite on fractures and associated quartz veins.												
			136.0'-138.0' - quartzose healed shear, quartz veins at 136.0'												
			and 138.0' at 80° to core axis.												
			138.0'-140.0' - chlorite laminations at 30° to core axis to 139.0',												
			cut by quartz carbonate vein at 20° to core axis, associated												
			pyrrhotite + chalcopyrite + pyrite, chloritic.												
			140.0'-142.0' & 143.5'-148.0' - laminated with chlorite bands 30°												
			to core axis, disseminated pyrrhotite, quartzose laminations.												

SAWYER CONSULTANTS INC.

DATE LOGGED Feb. 16, 1985

COMPANY NAME Mono Gold Mines Inc.

PROPERTY NAME Bannockburn - Northeast Area

FROM	TO.	DECOV.	ECOVY DESCRIPTION -		SA	MPLE		1	ASS	SAYS			
PHOM	ТО	HECOVY	DESCRIPTION	FROM	то	WIDTH	Na.	Au	Ag				
136.0'	151.0'	(cont.)	148.0'-151.0' - increased quartz + quartz carbonate laminations/					oz/to	oz/to)			
			veining parallel to foliation at 30° to core axis, to quartz vein										<u> </u>
			at 151.0'.										
151 01	167 01	16.0'	Dark green silicified laminated quartzite, chlorite-biotite										1
191.0	107.0	10.0	laminations, white quartz vein to 1.2', minor disseminated										
			sulphides, sulphides veins in wall rock, darker green-brown,										
			coarsely laminated biotite-chlorite-quartzite, increased										ļ
			pyrrhotite disseminations, increased quartz feldspar and quartzose										<u> </u>
			laminations to 167.0'.	ļ									
			151.0'-155.0' - series quartz veins in quartzose/silicified dark			·							
			green laminated quartzite, quartz vein at 151.0'-151.2' at 75° to										
			core axis, quartz veins at 152.1'-152.2' at 70° to core axis,				<u> </u>						
			quartz vein at 153.9' to 155.0' at 70 to core axis at 153.9'	153.9	155.0	1.1'	15921	0.285	0.06				ļ_
			and at 155.0' with carbonate and sulphides - pyrite, chalcopyrite,										
			pyrrhotite at lower contact.										
			155.0'-160.0' - medium green-brown laminated quartzite, chlorite,										
			biotite and quartzose laminations at 30° to core axis.	<u> </u>				<u> </u>				 	l

SAWYER CONSULTANTS INC.	4
-	7

Feb. 16, 1985 DATE LOGGED . Mono Gold Mines Inc. COMPANY NAME _ Bannockburn - Northeast Area PROPERTY NAME _

PROPER	PROPERTY NAME Bannockburn - Northeast Area							HOLE No. DDH-85-3							
FROM	то	RECOVY	DECORPTION		SA	AMPLE			ASS	SAYS					
FACIVI	10	hecovi	DESCRIPTION	FROM	то	WIDTH	No.								
151.0'	167.0	(cont.)	160.0'-167.0' - darker greenish-brown biotite-chlorite quartzite,												
			foliation at 30° to core axis with suggestion foliation is												
			axial plane of tight isoclinal microfolds, partially dismembered,												
			i.e. foliation is S_3 or S_4 .												
															
167.0'	196.0'	29.01	Light to medium-green quartzite, laminated chlorite, minor			ļ		<u> </u>							
			biotite rich layers, quartzose layers, silicified in part,												
			carbonate and quartz-carbonate vein, layers/bands and blebs												
			in part, quartz veins and quartzose layers in part with healed												
			silicified breccia zones.												
			167.0'-170.0' - biotite rich layers, chlorite layers, disseminated							40 100 100 100 100 100 100 100 100 100 1					
			pyrrhotite + chalcopyrite with biotite, carbonate layers +												
			stringers parallel to foliation at 20°-25° to core axis,			<u> </u>									
			thicker carbonate at 167.5' and 169.0', 169.2'-169.7' - quartz												
			vein/zone with pyrite + carbonate - at 65° to core axis.												
			170.0'-172.8' - "speckled" quartzite, light green-grey, minor												
			biotite, decreased pyrrhotite content, blebs +grains to 1 mm of												
			quartz feldspar or a very light brown-grey metamorphic mineral,											l L	

SAWYER CONSULTANTS INC.	

DATE LOGGED Feb. 16, 1985

COMPANY NAME Mono Gold Mines Inc.

PROPERTY NAME Bannockburn - Northeast Area

EROM	то	RECOVY	DECORPTION	1	SA	MPLE			ASS	SAYS	 	· · · · · · · · · · · · · · · · · · ·	
FROM	10	HECOVY	DESCRIPTION	FROM	ТО	WIDTH	No.	Au	Ag				
167.0	196.0	(cont.)	foliation at 35° to core axis.					bz/ton	oz/ton				
			172.8'-176.0' - silicified zone, diffuse quartz vein to solid										<u> </u>
			bluish coloured quartz vein, dark colouration due quartzite back-	ļ									
			ground, silica flooded, increased fine grained disseminated										
			pyrite, pyrrhotite + increased chalcopyrite associated pyrrhotite,								 		
ļ			contacts at 172.8' at 70° to core axis, at 176.0' at 40° to core	172.8	176.0'	3.2'	15922	0.690	LO.01				
			axis.										
			176.0'-189.0' - medium to dark green silicified quartzite,										
			chloritic, minor biotite, laminated, at 35° to core axis,										
			quartzose zones at 178.0'-180.0' - parallel to foliation - at										
			183.5' at 70° to core axis - at 185.0' at 70° to core axis.										
			189.0'-193.0' - "speckled" quartzite, silicified, laminated at										
			35° to core axis, quartzose zone at 190.0' and 192.5' to 193.0' -										
			healed breccia zones at about 50° to core axis.				****************						
			193.0'-196.0' - strongly laminated light grey-green quartzite,										
			healed shear? contorted quartz veins + much quartz feldspar										
			laminations to 3 mm thick, dark grey-brown silicified zone,	<u> </u>									
			quartzose zones with quartz veins and stringers, quartz carbonate										

SAWYER CONSULTANTS INC.

DATE LOGGED Feb. 16, 1985

COMPANY NAME Mono Gold Mines Inc.

PROPERTY NAME Bannockburn - Northeast Area

HOLE No. _____DDH-85-3

FROM	то	RECOVY	DESCRIPTION	T	SA	MPLE			ASSA	YS		
FHOIN		hecovi	DESCRIPTION	FROM	ТО	HTG!W	No.	Au	Ag			
196.0	206.0	(cont.)	veins with pyrrhotite + chalcopyrite, pyrite + chalcopyrite,					oz/ton	oz/ton			
			galena - chlorite knots, biotite rich schlieren zones, chloritic									
			healed shear zone.									
			196.0'-198.6' - zone of quartzose schlieren quartzite, quartz	ļ _								
			vein at 196.4'-196.8' - disseminated pyrite, pyrrhotite +	196.01	198.01	2.0'	15923	0.001	0.01			
			chalcopyrite.		ļ <u>.</u>							
			196.8'-198.6' - contorted foliation, biotite chlorite quartzite,	198.0'	200.0'	2.0'	15924	LO.001	0.04			
			disseminated pyrrhotite + chalcopyrite + pyrite.									
			198.0'-200.0' - quartz vein, both contacts at 80° to core axis,	200.0'	201.5'	1.5'	15925	L0.001	0.02			
			carbonate veins/stringers included, disseminated pyrrhotite									
			+ chalcopyrite, pyrite - bluish coloured quartz.	201.5	203.0'	1.5'	15926	LO.001	0.23			
			200.0'-201.5' - quartzite, foliated with quartz vein to 0.3',	<u> </u>								
			pyrrhotite, pyrite, chalcopyrite, minor galena.	203.0'	205.01	2.0'	15927	LO.001	0.09			
			201.5'-203.0' - major quartz-carbonate vein, upper contact at					_				<u> </u>
			35° to core axis, lower at 45° to core axis, bluish white quartz,									
			disseminated pyrite, chalcopyrite, pyrrhotite and galena.									
			203.0'-205.0' - quartzose zone, brown biotite quartzite									·
			203.8'-204.4', quartz vein to 205.0' with disseminated blebs									

SAWYER CONSULTANTS INC.	

7

DATE LOGGED Feb. 16, 1985

COMPANY NAME Mono Gold Mines Inc.

PROPERTY NAME Bannockburn - Northeast Area

FROM TO		RECOVY DESCRIPTION	DECORPTION		SA	MPLE		ASSAYS						
FNUM	10	HECOVY	DESCRIPTION	FROM	то	WIDTH	No	Au	Ag					
196.0'	206.0'	(cont.)	to 3 mm of chalcopyrite and galena plus fine grained pyrrhotite,					oz/ton	oz/ton					
			pyrite, chalcopyrite + galena.										ļ	
			205.0'-206.0' - quartzose veins to 205.5' decreasing, biotite					ļ						
			"quartzite" to 206.0".											
206.0'	215.5'	9.5'	Dark green laminated chloritic quartzite, silicified, laminations											
			at 35° to core axis to 214.0', then massive dark green quartzite,											
			very faint foliation, increased biotite + pyrrhotite stringers											
			+ disseminations, to 215.5'.									-		
215.5'	218.0'	2.51	Quartz vein, quartz carbonate vein, bluish-white colour,	215.5	218.0'	2.5'	15928	L0.001	0.02					
			disseminated, very fine grained pyrite, pyrrhotite, chalcopyrite.											
218.0'	222.0'	4.01	Dark greenish-brown biotite with quartzite, laminated - at 40°											
			to core axis with quartz carbonate layers + biotite layers.	ļ		ļ						ļ		
			221.5'-222.6' - quartzose vein, contacts at 70° upper + 35° lower -	221.5	222.6	1.1'	15929	0.002	0.01					
			to core axis, disseminated + stringers pyrrhotite, chalcopyrite,											
			pyrite and chlorite.		<u></u>	<u> </u>								

DATE LOGGED Feb. 16, 1985

COMPANY NAME Mono Gold Mines Inc.

PROPERTY NAME Bannockburn - Northeast Area

	то	RECOVY	DECORPT: CO.	1	SA	MPLE			AS	SAYS	=:	 	
FROM	10	HECOVY	DESCRIPTION	FROM	то	WIDTH	No.						
222.0	228.0	6.0'	Medium green chloritic quartzite, siliceous, quartz stringers,										
			foliation at 30° to core axis, biotite laminations quartzose		_								
	ļ		zones.				· · · · · · · · · · · · · · · · · · ·						
<u> </u>	ļ						· .	<u> </u>		ļ			
228.0	236.0	8.01	Increasingly biotitic, almost schistose quartzite, laminated					<u> </u>	<u> </u>				
			biotite layers, laminations at 30°-35° to core axis, disseminated	ļ	-			ļ					
			pyrrhotite.	<u> </u>		<u> </u>							<u></u>
			236.0' - End of Hole.										
													! !
													L

COLLAR:	HOL	E SURVEY	
38+75N	METHOD:	ACID ET	CH
31+55E	FOOTAGE	AZIMUTH	DIP
ELEVATION	0'	105	-60
CORE SIZE BQ	266	105	
LOGGED BY Gordon D. House			
DATE LOGGED Feb. 16-17, 1985 MAP REFERENCE No. 31C/12			

COMPANY NAME MONO GOLD MINES INC.

PROPERTY NAME BANNOCKBURN - NORTHEAST AREA

DRILLING CONTRACTOR McKnight Drilling Company Limited

ASSAYER Bondar-Clegg & Company Ltd., Ottawa

PURPOSE OF HOLE To test depth extension of surface vein system

SAWYER CONSULTANTS INC.

HOLE No	DDH85-4	
CLAIM NAME No _	EO 652301	
	Feb. 13, 1985	
	Core Barrel Feb. 15/85	;
FINAL DEPTH2	63.0' Core in Box.	
PROJECT No	Hole at 266.0'	

FROM	то	RECOVY	DESCRIPTION		SAMPLE					ASSAYS	-		
				FROM	то	WIDTH	No.						
0'	5.0'	0 '	Overburden.										
0'	7.0'	2.01	Casing.										
5.0'	6.0'	1.0'	Blue quartz vein, lower contact at 40° to core axis, stringer										
			pyrite, pyrrhotite + chalcopyrite parallel to contact and										
			disseminations.										
6.0'	19.0'	13.0'	Dark brown biotite quartzite, faint laminations, to dark brown-										
			green "speckled" quartzite - blebs quartz feldspars, laminated					 					
			quartzite, quartzose zones with quartz veining.										
			6.0'-12.0' - faint laminations at 5° - 10° to core axis, very					 					
			minor pyrrhotite, quartz zone at 8.0'-9.0', and 10.0'-11.0' -										
			"vein" + lamination parallel at 0-5° to core axis, increase in										
			pyrrhotite-chalcopyrite content.		·								
			12.0'-15.0' - speckled quartz feldspathic nodules to 3 mm in					ļ	<u> </u>			·	

SAWYER CONSULTANTS INC.

DATE LOGGED Feb. 16, 1985

COMPANY NAME Mono Gold Mines Inc.

PROPERTY NAME Bannockburn - Northeast Area

HOLE No. _____DDH-85-4

FROM	то	RECOVY	DECCRIPTION		SA	MPLE		 ASSAYS							
PHOM	10	NECOVY	DESCRIPTION	FROM	то	WIDTH	No								
6.01	19.0'	(cont.)	quartzite, biotite + much increased pyrrhotite-chalcopyrite												
			disseminations.												
			15.0'-19.0' - dark greenish-brown quartzite, faintly laminated												
			at 5°-10° to core axis.										<u> </u>		
19.0'	30.0'	11.0'	Medium green to dark brown faintly foliated quartzite, chloritic										_		
			with biotite laminae, foliation at 5° to core axis, decreased												
			to very minor disseminated pyrrhotite.												
			25.5'-26.0' - quartz vein, 0.1' thick at 5° to core axis,												
			chlorite, no sulphides.						· . ·						
30.0'	50.0'	20.0'	Dark brown and green silicified quartzose zone, brown biotite												
			quartzite, diffuse quartzose zones with quartz veining, quartz-			ļ									
			carbonate veining, dark green laminated "schistose" quartzite				-								
			or healed breccia zones, disseminated + vein pyrrhotite + chalco-												
			pyrite, pyrite.						· · · · · · · · · · · · · · · · · · ·						
			30.0'-31.0' - laminated quartzite, foliation at 30° to core axis,												
			much increased pyrrhotite + chalcopyrite disseminations.												

SAWYER CONSULTANTS INC.	5

DATE LOGGED Feb. 16, 1985

COMPANY NAME Mono Gold Mines Inc.

PROPERTY NAME Bannockburn - Northeast Area

HOLE No. DDH-85-4

FROM	то	RECOVY	DESCRIPTION	SAMPLE						ASSAYS						
FAOIVI	٥	RECOVI	DESCRIPTION	FROM	то	WIDTH	No	Au	Ag							
30.0	50.0	(cont.)	31.0'-32.0' - quartz vein/diffuse quartz zone, minor pyrite on					oz/ton	oz/ton							
			fractures.													
	·		32.0'-33.0' - quartzose laminated quartzite, foliation at 40° to													
			core axis, disseminated pyrrhotite + chalcopyrite.									_				
	· *·		33.0'-34.0' - healed shear, quartzose vein, minor pyrrhotite,													
			at 30° to core axis.													
			34.0'-36.0' - bluish quartz vein in quartzose silicified zone,													
			sericitic, very minor pyrrhotite.													
			36.0'-39.0' - strongly laminated/foliated chloritic "schist,"													
			foliation at 20° to core axis with sheared appearance, quartzose-					<u> </u>								
			feldspathic laminae - much increased pyrrhotite.													
			39.0'-40.5' - quartz vein, contacts at approximately 30° to core	39.0'	40.5	1.5'	15930	0.785	0.09							
	·		axis, white quartz veins + blebs pyrrhotite + chalcopyrite,				H									
			pyrite + chalcopyrite - visible gold on margins + associated													
			sulphides.													
			40.5'-43.0' - strongly foliated, silicified chloritic schist/	40.5	43.0'	2.5'	15931	0.015	0.03							
	: 		quartzite, foliation at 20° to core axis, disseminated pyrrhotite,	43.0	45.0'	2.0'	15932	0.004	0.02							
			pyrite, chalcopyrite.													

PAGE ______ OF ______

DATE LOGGED Feb. 16, 1985

COMPANY NAME Mono Gold Mines Inc.

PROPERTY NAME Bannockburn - Northeast Area

FROM	TO	DECOVA	DECODIDEION	SAMPLE				T	ASS	SAYS	· · · · · · · · · · · · · · · · · · ·		
FHOM	ТО	RECOVY	DESCRIPTION	FROM	то	WIDTH	No.	Au	Ag				
30.0'	50.0	(cont.)	43.0'-47.5' - quartz vein, quartzose zone, quartz healed shear					z/ton	z/ton				
	_		zone/breccia. 43.0' contact at 20° to core axis.	45.0'	47.5'	2.5'	15933	0.116	0.04				
			47.5 ' contact at 30° to core axis, bluish quartz with chlorite										
			+ disseminated sulphides from 43.0'-45.0' much fine grained										
			disseminated pyrite, pyrrhotite, chalcopyrite + suspect										
	ļ <u>.</u>		tellurides, from 45.0'-47.5' - whiter quartz with veins + blebs,										
			sulphides especially at 46.5'-47.0' - much pyrrhotite, pyrite,										
			chalcopyrite + visible gold.										
			47.5'-50.0' - dark brown biotite pyrrhotite (pyrrhotitic)										
	-		quartzite, much disseminated pyrrhotite + pyrite.										
50.01	52.01	2.0'	Silicified dark greenish-brown quartzite, very faint foliation										
			at 25° to core axis, much disseminated pyrrhotite at 50.0'										
			decreasing to 52.0', quartz zone/veins at 51.1'.										
				.									
52.0	53.0	1.0'	White quartz-carbonate vein, upper contact at 30° to core axis,	52.0'	53.0'	1.0'	15934	0.019	0.01				
			disseminated, fine grained sulphides, lines of sulphides on										
			fractures, cross-cutting vein.										

DATE LOGGED Feb. 16, 1985

COMPANY NAME Mono Gold Mines Inc.

PROPERTY NAME Bannockburn - Northeast Area

FROM	то	RECOVY	DESCRIPTION		SA	MPLE			ASSAYS						
THOM	10	AECOVI	DESCRIPTION	FROM	то	WIDTH	No.	Au	Ag						
53.0'	86.0'	33.0'	Dark brown quartzite, silicified, quartzose zones, faintly					oz/ton	oz/ton						
			foliated, disseminated pyrrhotite-chalcopyrite-pyrite in part,												
			quartz-carbonate sericite stringers/veins in quartzose zones.												
			53.0'-61.0' - greenish brown quartzites, increased chlorite in												
			biotite quartzite, foliation at 10° to core axis.												
			61.0'-75.0' - grey-brown silicified biotite quartzite, foliation	60.01	63.0'	3.0'	15935	0.002	0.03						
			at 10° - 15° to core axis, quartz zones from $61.0'-63.0'$ -												
			disseminated and veined pyrrhotite-chalcopyrite-pyrite, parallel												
			to foliation, 63.0'-72.0' - quartz zone with quartz carbonate												
			sericite? veinlets parallel to foliation, much decreased to												
			very minor sulphides. 72.0'-75.0' - similar quartz zone,												
			veinlets quartz carbonate-sericite parallel to foliation at												
			0-5° to core axis, minor sulphides.												
			75.0'-86.0' - dark brown biotite quartzite, slightly chloritic												
			in laminae, some disseminated pyrrhotite-chalcopyrite, foliation												
			at 10° to core axis.												
															
86.0'	07.0	21.0'	Series quartz veined zones in dark brown biotite quartzite,												

SAWYER CONSULTANTS INC.	
	7

DATE LOGGED Feb. 17, 1985

COMPANY NAME Mono Gold Mines Inc.

PROPERTY NAME Bannockburn - Northeast Area

FROM	то	RECOVY	DECODINE		SA	MPLE		T	ASSAYS							
FROM	10	PECOVY	DESCRIPTION	FROM	то	WIDTH	No.	Au	Ag							
86.0'	107.0'	(cont.)	quartz-carbonate veining with sulphides, pyrrhotite-chalcopyrite-					02/ton	oz/ton							
			pyrite as disseminations + stringers.										ļ <u>.</u>			
			$86.0'-87.5'$ - quartz carbonate vein at 15° to core axis,	86.0	89.01	3.0'	15936	0.003	LO.01							
			87.5'-90.5' - strongly silicified with quartz veining at 89.0'													
			at 15° to core axis, pyrrhotite, pyrite, chalcopyrite with													
			carbonate veins at 75° to core axis.													
			90.5'-96.5' - strongly laminated biotite quartzite, laminae at													
			20° to core axis, of segregated biotite rich, chlorite rich and													
			quartzose feldspathic layers, much disseminated pyrrhotite-				- 104									
			chalcopyrite associated.	_												
			96.5'-101.0' - less strongly laminated biotite quartzite,													
			laminations at 20° to core axis.	101.0	103.0'	2.0'	15937	0.355	0.07			-				
			101.0'-103.0' - strong quartz-carbonate vein with pyrrhotite-	<u> </u>												
			chalcopyrite-pyrite, contacts - upper at 60° to core axis,													
			lower at 35° to core axis, - from 101.0'-102.0', 102.0'-103.0' -				<u> </u>									
			quartz zone cut by carbonate-chlorite - sulphide vein at 25°													
			to core axis, 0.1' thick, visible gold, associated pyrite on													
			upper contact at 101.2', clear translucent quartz, blue tinge.					Ŀ								

DATE LOGGED Feb. 17, 1985

COMPANY NAME Mono Gold Mines Inc.

PROPERTY NAME Bannockburn - Northeast Area

EDOM	то	RECOVY	DECORIDATION		SA	MPLE		T	ASSAYS								
FROM	10	HECOVY	DESCRIPTION	FROM	то	WIDTH	No.	Au	Ag								
86.0'	07.0'	(cont.)	103.0'-107.0' - similar biotite quartzite, foliation at 20°					oz/tono	z/ton								
			to core axis, with quartz-carbonate stringers parallel to														
			foliation, quartz vein with carbonate at 20° to core axis														
			from 106.0'-107.0' - minor pyrrhotite-chalcopyrite-pyrite.														
107.0'	140.0	33.0'	Dark brown to dark green-brown quartzite, faintly laminated to														
<u></u>			strongly laminated, quartz-carbonate zones, minor to faintly														
			disseminated pyrrhotite-chalcopyrite.														
			107.0'-110.0' - strongly laminated parallel to quartz carbonate								ļ			ļ			
			vein at 106.0', biotite lamination quartzose - feldspathic														
			laminations to 1 mm, lamination at 15° to core axis.														
			110.0'-120.0' - faint laminations, blebs quartz-feldspars to 1 mm														
			aligned on laminae at 15° to core axis, minor disseminated														
			pyrrhotite.											<u> </u>			
			120.0'-124.0' - quartzose silicified zone, increases to 124.0',	124.0'	127.0'	3.0'	15938	0.375	0.07								
			increase in pyrrhotite-pyrite and foliation goes to 30° to core														
			axis at 124.0'.														
			124.0'-127.0' - quartzose zone, sulphide veins at 20° to core														

SAWYER CONSULTANTS INC.	5

DATE LOGGED Feb. 17, 1985

COMPANY NAME Mono Gold Mines Inc.

PROPERTY NAME Bannockburn - Northeast Area

FROM	T 0	RECOVY	DECODITION		SA	MPLE		<u> </u>	ASSAYS						
LHOM	ТО	HECOVY	DESCRIPTION	FROM	то	WIDTH	No.								
107.0'	140.0	'(cont.)	axis, parallel to quartz carbonate veining with sulphides		-										
****			pyrrhotite-chalcopyrite-pyrite, visible gold, fine grained, rusty												
			carbonate and chlorite disseminated.						·						
			127.0'-131.0' - decreasing quartzose/silicification, decreased												
			sulphides to none.												
			131.0'-140.0' - laminated quartzite, dark green-brown, laminations												
			at 15 ° to core axis, narrow quartz carbonate vein with sulphides												
			at 138.5', $\frac{1}{2}$ ", parallel to foliation at 15° -20° to core axis.												
140.01	171.0	31.0'	Medium green quartzite, faintly foliated, to darker green-brown												
			quartzite stringer, laminations of biotite, chlorite + quartzose												
			feldspathic layers, minor quartz carbonate veining.						· · · · · · · · · · · · · · · · · · ·						
			140.0'-150.0' - thinly laminated, medium green quartzite,				· • •								
			laminations at 20° to core axis, consist of chlorite + quartzose				*								
			feldspathic layers, minor quartz carbonate stringers parallel												
			to foliation.												
			150.0'-161.0' - lighter green colour, fainter laminations,												
			quartz carbonate veining at 156.0'-157.0' - parallel to foliation,												

SAWYER CONSULTANTS INC.	5

DATE LOGGED Feb. 17, 1985

COMPANY NAME Mono Gold Mines Inc.

PROPERTY NAME Bannockburn - Northeast Area

FROM	то	RECOVY	DESCRIPTION	SAMPLE ASSAYS								
1110101	10	MECOVI	DESCRIPTION	FROM	то	HTCIW	No.	Au	Ag			
140.01	171.0'	(cont.)	minor pyrrhotite-chalcopyrite. 159.0'-161.0' - series quartz					oz/ton	oz/ton			
			veins, ptygmatically folded parallel to foliation, minor to									
			no sulphides.	<u> </u>				ļ				
	· · · · · · · · · · · · · · · · · · ·		161.0'-171.0' - increasingly laminated, increased quartzose									
			feldspathic + quartz carbonate stringers parallel to laminations,									
			silicified, healed shear zone? increasing sulphides pyrrhotite-									
			pyrite-chalcopyrite.									
171.0'	177.0'	6.0'	Quartz carbonate vein zone, healed shear? quartz-carbonate									
			veining with stringers of amphiboles, chlorite and sulphides -		<u> </u>							
			pyrrhotite-chalcopyrite-pyrite, disseminated sulphides also,									
			fine grained in part. 171.0'-171.5' - contact at 40° to core									
			axis, silicified laminated quartzite with increased pyrrhotite-									
			chalcopyrite.	171.0	173.0'	2.01	15939	0.003	0.02			
			171.5'-172.0' - carbonate quartz vein with knots/"veins" of dark	173.0	175.0'	2.0'	15940	L0.001	0.01			
			green-black amphiboles, lath-like - hornblende? sulphides.	175.0	177.0'	2.0'	15941	0.004	LO.01			
			172.0'-173.0' - dark blue-grey quartz healed breccia.									
			173.0'-176.7' - grey-blue quartz, massive, disseminated, sulphides				!					

SAWYER CONSULTANTS INC.	

DATE LOGGED Feb. 17, 1985

COMPANY NAME Mono Gold Mines Inc.

PROPERTY NAME Bannockburn - Northeast Area

FROM	то	RECOVY	DECODIDATION		SA	MPLE			ASSAYS					
PHOM	,0	HECOVY	DESCRIPTION	FROM	то	WIDTH	No.	Au	Ag					
171.0'	177.0	(cont.)	in part, stringers of amphiboles, chlorite parallel to contact					o z /ton	oz/ton					
			at 70° to core axis.											
			176.0'-177.0' - silicified healed shear contact quartzite,											
			foliation at 60° , contact of quartz vein cuts foliation.								_			
177.0'	180.0'	3.01	Strongly laminated quartzite, silicified near contact at 177.0',											
			with minor pyrrhotite, dark grey-green colour, quartz veins parallel											
			to laminations to 180.0'.											
180.0'	194.0'	14.0'	Dark green quartzite, laminated, siliceous, quartzose feldspathic											
			+ quartz carbonate laminations, quartz vein zone at 185.0'-186.0',											
	 		187.0'-188.0'.			ļ								
			189.5'-190.5' - minor sulphides associated, all parallel to											
			laminations, laminations at 30°-35° to core axis.				,							
194.0'	196.5'	2.51	Quartz carbonate vein from 194.4'-196.3', blue coloured quartz,	194.31	196.3'	2.0'	15942	0.001	0.01					
			disseminated pyrrhotite + pyrite, pyrite on fractures.	<u></u>										
			194.0'-194.4' - strongly silicified quartzite, contact at 70°											

SAWYER CONSULTANTS INC.

DATE LOGGED Feb. 17, 1985

COMPANY NAME Mono Gold Mines Inc.

PROPERTY NAME Bannockburn - Northeast Area

HOLE No. <u>DDH-85-4</u>

FROM	то	RECOVY	DESCRIPTION	1	SA	MPLE	1-44-0-1	T	ASS	SAYS	 	
FAOIVI	10	MECOVI	DESCRIPTION	FROM	70	WIDTH	No.	Au	Ag			
194.0	196.5	(cont.	to core axis. 195.5'-196.5' - broken + healed quartz vein contact					oz/tor	ioz/ton			
			to brown biotite quartzite, contact at 40° to core axis, quartz									
			carbonate pyrite vein at 196.3'-196.5' at 35° to core axis.					ļ				
196.5	204.0	7.5	Dark brown biotite quartzite, laminated at 20°-25° to core axis,					ļ				
			increasingly silicified + with quartz feldspar laminations from					ļ				
			198.5', quartz zone at 200.0' to 200.5'.					ļ				
204.0	210.0	6.0'	Quartz carbonate veining, quartzose zone, healed shear.					ļ				
			204.0'-205.5' - blue quartz veining at 70° to core axis, with	204.0	207.0'	3.0'	15943	0.004	L0.01		 	
			0.6' vein at 204.9'-205.5' chlorite, sulphides very minor.	207.0	210.0'	3.0'	15944	0.041	0.03		 	
			205.5'-206.6' - silicified dark brown biotite quartzite,				<u>.</u>					
			contorted laminations at 80° to core axis, minor sulphides -									
			no disseminated pyrrhotite.								 	
			206.6'-208.0' - blue quartz vein with chlorite schlieren at 30°									
			to core axis, knots of biotite.									
			208.0'-210.0' - carbonate margins to white quartz veins at 40°				-1					
			to core axis, contact at 210.0' to quartzite at 70° to core axis.									

AWYER CONSULTANTS INC.	5

DATE LOGGED Feb. 17, 1985

COMPANY NAME Mono Gold Mines Inc.

PROPERTY NAME Bannockburn - Northeast Area

EDOM	TO	RECOVY	DECODITION					ASSAYS							
FROM	ТО	HECOVY	DESCRIPTION	FROM	то	WIDTH	No.	Au	Ag						
210.0	214.5	4.51	Dark green-brown laminated quartzite, laminations at 50° to					oz/ton	o z /ton						
			core axis, laminations of biotite, chlorite, quartose feldspathics												
			+ parallel quartz carbonate stringers.				ing the second s							 	
214.5	218.5	4.0'	Silicified zone, quartzose zone with quartz veins, quartz carbonate				·								
			veins, and quartz sulphide veins. 214.5'-216.5' - quartzose zone,	215.5'	218.5'	3.01	15945	0.021	0.05						
			quartz veins with dark biotite quartzite, minor disseminated												
			pyrrhotite. 216.5'-218.5' - quartz carbonate veins at 40° to				······································								
			core axis, quartz-sulphide-carbonate vein at 217.6'-218.0' -												
<u> </u>			pyrite, pyrrhotite, chalcopyrite - this vein at 40° to core axis +											 	
	ļ		cross-cuts other quartz carbonate veins parallel to foliation												
			at 30°-35°; latest quartz sulphide vein has chalcopyrite blebs											 	
			+ chalcopyrite stringers cutting two types pyrite, dull yellow -												
			marcasite? and bright yellow later pyrite, visible gold?												
210 5	12/2 01	22 51													
218.3	242.0	23.5'	Dark to medium green, laminated, foliated quartzite, minor quartose zones, strongly laminated with quartzose feldspathic												
			layers in part.												

SAWYER CONSULTANTS INC.	5

DATE OGGED Feb. 17, 1985

COMF NYNAME Mono Gold Mines Inc.

PROPERTYNAME Bannockburn - Northeast Area

EBO11	Τ.	DECOVA	DECORPTION:		SA	MPLE			ASS	SAMPLE ASSAYS				
FROM	то	RECOVY	DESCRIPTION	FROM	то	HTDIW	No.							
218.5	242.0	(cont.)	218.5'-224.0' - dark green-brown silicified biotite quartzite,											
ļ			lamination at 40° to core axis, disseminated pyrrhotite.											
			224.0'-238.0' - medium to light green quartzite, laminated, at		-									
			35°-45° to core axis, quartzose feldspathic laminations from		,									
			227.0'-230.0', 233.0'-237.0'.				<u>-</u>							
			238.0'-242.0' - darker green-brown quartzite, carbonate stringers		**									
			$+$ veinlets, foliation at 35° to core axis.											
								-						
242.0	263.0	21.0'	Medium green, faintly laminated quartzite, minor quartz carbonate						· · · · · · · · · · · · · · · · · · ·					
			+ carbonate stringers parallel to laminations, lamination at											
			40°-45° to core axis.											
			261.0'-263.0' - broken ground - LOST CORE BARREL at 266.0' -											
			BACK END BROKE.											
			End of Hole.		·									

COLLAR:	HOL	E SURVEY	
39+25N	METHOD:	ACID ET	СН
31+70E	FOOTAGE	AZIMUTH	DIP
ELEVATION	0'	105	-50
CORE SIZE BQ	2261	105	-41
LOGGED BY Gordon D. House			
DATE LOGGED Feb. 17-19, 1985			
MAP REFERENCE No 31C/12			

COMPANY NAME MONO GOLD MINES INC.

PROPERTY NAME BANNOCKBURN - NORTHEAST AREA

DRILLING CONTRACTOR McKnight Drilling Company Limited

ASSAYER Bondar-Clegg & Company Ltd., Ottawa

PURPOSE OF HOLE To test strike and depth extensions of surface veins

SAWYER CONSULTANTS INC.

DDH-85-5
EO 652301
Feb. 13, 1985
Feb. 16, 1985
226.0'

FROM	ТО	RECOVY	DESCRIPTION		SA	MPLE		ASSAYS								
				FROM	10	WIDTH	No.									
0'	5.0'	0'	Overburden, casing.													
5.0'	26.0'	21.0'	Dark grey to blue-grey, faintly foliated, siliceous quartz-													
			feldspar to quartz-sericite-chlorite quartzite, quartzose zones													
			with contorted quartz veining, quartz carbonate veining, minor to													
			very minor sulphides - minor pyrite associated quartz veins -													
			increased chlorite to 26.0', foliation at 20° to core axis.													
26.0'	48.0'	22.01	Similar quartzite, greenish colour, increasing to 30.0'-36.0',						_							
			faint foliation - at 20° to core axis, quartz veins + quartz				· · · · · · · · · · · · · · · · · · ·									
			carbonate vein zone parallel to foliation at 26.0', 35.0'-36.0',													
			43.0', and 45.0'-46.0', minor sulphides throughout, minor pyrite													
			associated quartz veins.													
48.0'	69.0'	21.0'	Similar quartzite, faintly foliated to laminated from 58.0',													

AWYER CONSULTANTS INC.	

DATE LOGGED Feb. 18, 1985

COMPANY NAME Mono Gold Mines Inc.

PROPERTY NAME Bannockburn - Northeast Area

FROM	то	RECOVY	DESCRIPTION	SAMPLE ASSAYS										
THOW	10	INECOVI I	DESCRIPTION	FROM	TO	WIDTH	No.							
48.01	69.0	(cont.)	quartzose zones, increased chlorite, biotite laminations in part.											
			foliation at 20° to core axis.									!		
			48.0'-50.0' - quartz veined + quartzose zone, minor pyrite,									:		
			healed shear, quartz veins + quartz feldspar laminations at											
			40° to core axis through zone.											
			50.0'-55.0' - medium to dark green, foliated quartzite, quartz-											
			feldspar blebs/nodules aligned parallel to foliation at 20° to											
			core axis, chloritic layers parallel to foliation.											
			55.0'-57.0' - strong quartz carbonate vein parallel to foliation											
			at 20° to core axis at 55.5' - 0.1' true thickness, minor veins											
			at 56.2' and 56.4' - all parallel to foliation.											
			59.0'-62.0' - quartz veined zone, healed shear? veins and quartz											
			feldspar laminations at 20° to core axis, chlorite bands parallel											
			to veins, minor to no sulphides.								,			
			62.0'-69.0' - finely laminated dark green quartzite, laminations											
			at 20° to core axis, consist of chlorite, biotite + quartzose											
			feldspathic layers, sulphides noted from 62.0' onwards, dissemi-											
			nated pyrrhotite along foliation, fine grained diseeminated											

DATE LOGGED Feb. 18, 1985

COMPANY NAME Mono Gold Mines Inc.

PROPERTY NAME Bannockburn - Northeast Area

FROM	70	DECOVA	PECODISTION		SA	MPLE			AS	SAYS	 	
FROM	ТО	RECOVY	DESCRIPTION	FROM	то	WIDTH	No					
48.01	69.01	(cont.)	pyrrhotite - pyrite associated quartz stringers at 63.5'-64.0' and								,	
			65.0' and 67.5'.									j
69.0'	85.0'	16.0'	Faintly foliated, medium green quartzite, quartzose zones with									
			quartz veins, carbonate stringer zones, dark green-brown laminated									
			quartzite, quartzose feldspathic and quartz carbonate laminations.									
			69.0'-76.0' - light to medium green quartzite, foliation at 20°				_					L.,
			to core axis, quartzose + quartz stringer zone at 73.0'-74.5' -									
			parallel to foliation - disseminated pyrrhotite, chalcopyrite +					·				
			pyrite, also narrow stringers to 75.5'-76.0'.									
			76.0'-79.0' - very faint foliation, medium green quartzite,									
			carbonate stringers and veins parallel to foliation at 20°									
			and larger parallel to core axis - contorted, disseminated									
	•		pyrrhotite-chalcopyrite in quartzite + associated carbonate veins		···. * · · · · · · · · · · · · · · · · ·							
			on margins.									
			79.0'-80.0' - quartzose zone, quartz vein cross-cutting foliation									
			on upper quartzite, minor pyrrhotite-chalcopyrite-pyrite.		· · · · · · · · · · · · · · · · · · ·							
			80.0'-85.0' - dark brown biotite rich quartzite, quartzose zones									

SAWYER CONSULTANTS INC.

DATE LOGGED Feb. 18, 1985

COMPANY NAME Mono Gold Mines Inc.

PROPERTY NAME Bannockburn - Northeast Area

FROM	ТО	RECOVY	DESCRIPTION	T	SA	MPLE		T	ASS	AYS				
				FROM	то	WIDTH	No.	Au	Ag					
69.01	85.0'	(cont.)	at 80.5'-81.2' and 81.7'-82.2'. 80.5'-81.2' - quartz carbonate					oz/tor	oz/tor					
			vein at 30° to core axis, cut by sulphide vein at 35° to core	80.5'	82.51	2.01	15946	0.003	0.02					
			axis - cuts across quartz carbonate vein at 30° to core axis -											
			sulphide stringer also at 81.8', at 75° to core axis,											
			81.8'-82.0' - dark brown biotite rich zone with much disseminated											
			pyrrhotite-chalcopyrite. 82.2'-85.0' - increased chlorite											
			laminations.											
85.01	100.0'	15.0'	Dark grey-green quartzite, foliated in part, quartzose zones											
			with quartz veins, quartz carbonate veins + sulphides, biotite +				1.7.1.24							
			quartzose feldspathic laminations.											
			85.0'-87.5' - green, foliated quartzite, foliation at 20° to							_				
			core axis, quartz carbonate stringers + veins at 86.0'-86.3' and											
			87.0'-87.2' - no sulphides associated.											
			87.5'-90.0' - greenish quartzite, quartz carbonate stringers											
			parallel to foliation, no sulphides associated.											
			90.0'-91.0' - speckled laminations, blebs quartzose feldspathic											
			material parallel to foliation at 20° to core axis, darker biotite											

SAWYER CONSULTANTS INC.	5

DATE LOGGED Feb. 18, 1985

COMPANY NAME Mono Gold Mines Inc.

PROPERTY NAME Bannockburn - Northeast Area

FROM	то	RECOVY	DESCRIPTION	SAMPLE				Ī	ASS	AYS		 · · · · · · · · · · · · · · · · · · ·	
				FROM	то	WIDTH	No.	Au	Ag		I		
85.0	100.0	(cont.)	rich laminations, 90.5'-91.0' - disseminated pyrrhotite.					oz/ton	oz/ton				
			91.0'-92.4' - quartz vein/quartzose zone, disseminated +	91.0'	92.5	1.5'	15947	L0.001	0.02				
			stringers sulphides pyrrhotite-chalcopyrite-pyrite, VISIBLE GOLD										
			in quartzose zone, healed breccia zone, with quartz vein										
			on footwall, upper contact at 30° to core axis - brecciated										
			zone to 91.5', lower contact at 50° to core axis - lineated										
			quartz veins + sulphides parallel to contact.										
			92.4'-98.0' - dark brown quartzite, laminated at 40° to core										
			axis, biotite + chlorite laminations, minor disseminated										
			pyrrhotite, quartzose feldspathic layers or stringers at 30° to										
			core axis.										
			98.0'-100.0' - quartzose zone, quartz carbonate stringers at										
			30° to core axis, becoming more silicified to 100.0'.										
100.0	147.0	47.0'	Dark grey-brown quartzite, faint foliation, quartzose zones with				·						
			quartz veins and quartz carbonate veins; medium green quartzite -										
			faint foliation, darker silicified quartzite with quartz veins,										
			laminated dark grey-green to green-brown quartzite with quartzose										

SAWYER CONSULTANTS INC.	5

DATE LOGGED Feb. 18, 1985

COMPANY NAME Mono Gold Mines Inc.

PROPERTY NAME Bannockburn - Northeast Area

FROM	T-0	RECOVY	COVY DECODIDATION		SA	MPLE		ASSAYS						
FROM	ТО		DESCRIPTION	FROM	то	WIDTH	No.							
100.0	147.0	(cont.)	feldspathic laminations + quartz carbonate laminations.											
			100.0'-105.0' - guartzese zone, dark blue-grey-brown quartzite,											
			foliations at 45° – 50° to core axis, much disseminated pyrrhotite-											
			chalcopyrite, contorted quartz carbonate vein at approximately											
			80° to core axis at 101.1'.											
			105.0'-114.0' - chloritic quartzite, faint foliation at 40° to											
			core axis, disseminated pyrrhotite, quartz carbonate stringer at											
			107.0', 108.5', 110.0'.											
			114.0'-117.0' - quartzose zone, medium to dark green quartzite,											
			foliated at 35° to core axis, chlorite laminations, disseminated											
	ļ		pyrrhotite, quartz veins at 50°-75° to core axis at 114.2' and											
			115.5'.											
			117.0'-127.0' - dark brown quartzite, biotite rich with											
			disseminated pyrrhotite, quartz veined from 122.5'-124.5', minor						`					
			disseminated pyrrhotite - increase in sericite? chlorite? content											
			to 127.0'.									· · · · · · · · · · · · · · · · · · ·		
			127.0'-131.0' - zone quartz/carbonate veins at 50° to core axis											
			at 127.3', 129.5', + 131.0', very minor disseminated sulphides.											

SAWYER CONSULTANTS INC.	

DATE LOGGED Feb. 18, 1985

COMPANY NAME Mono Gold Mines Inc.

PROPERTY NAME Bannockburn - Northeast Area

FROM	то	RECOVY	DESCRIPTION		SA	MPLE		ASSAYS							
I HOIVI	10	hecovi	DESCRIPTION	FROM	то	WIDTH	No.								
100.0'	147.0'	(cont.)	131.0'-138.0' - greenish brown quartzite, foliation at 35° to												
			core axis, minor quartz stringers parallel to foliation, very												
			minor disseminated pyrrhotite.										<u> </u>		
			138.0'-147.0' - laminated greenish chloritic quartzite,									-			
			"quartz sericite schist"?, very minor disseminated pyrrhotite.												
147.0'	173.0'	26.0'	Dark brown laminated quartzite to medium green chloritic												
			quartzite with quartz stringers, to medium green-brown laminated										<u> </u>		
			quartzite, minor disseminated pyrrhotite generally siliceous												
			throughout.												
			147.0'-150.0' - brown, laminated, quartz carbonate laminations,										: 		
			at 35 ^o -40 ^o to core axis.												
			150.0'-152.0' - "speckled" schist/quartzite, biotite with		!			 	ļ				ļ		
			aligned blebs quartzose-feldspathic material parallel to foliation												
			at 35° to core axis.										ļ <u>-</u> -		
			152.0'-161.0' - "banded" laminated quartzite, "bands" to 2"-3/4"										<u></u>		
			true thickness, alternating chloritic/biotite quartzite + quartz												
			carbonate rich bands, quartz carbonate stringers, laminations/										<u> </u>		

SAWYER CONSULTANTS INC.	l
	4

DATE LOGGED Feb. 18, 1985

COMPANY NAME Mono Gold Mines Inc.

PROPERTY NAME Bannockburn - Northeast Area

HOLE No. _____DDH-85-5

SDOM T	7.0	SESSIN		1	SA	MPLE		 ASSAYS						
FROM	то	RECOVY	DESCRIPTION	FROM	то	WIDTH	No.		,					
147.0'	173.0	(cont.)	banding at 30°-35° to core axis.											
			161.0'-173.0' - laminated quartzite, chlorite-quartz carbonate/											
			quartz sericite laminations with quartzose layers, all parallel	_					:				<u> </u>	
			to foliation at 45° - 50° to core axis, minor disseminated											
			pyrrhotite-pyrite.											
173.0'	181.0'	8.0'	Blue-green quartzose silicified "schist"/quartzite, quartzose											
			zones with quartz veining, dark biotite quartzite with disseminated											
			pyrrhotite.											
			173.0'-173.5' - quartz vein, contorted, disseminated pyrite,											
			pyrrhotite, minor chalcopyrite, carbonate, top contact at 80°											
			to core axis - cross-cutting foliation, lower contact at $35^{\circ}-40^{\circ}$											
			a quartz vein off breccia vein, lower contact breccia vein at											
			75° to core axis.											
			173.5'-181.0' - dark brown biotite quartzite, laminated, changing		<u> </u>									
			to medium green quartzite, chloritic - faint foliation from 175.0'.											
			Quartz vein zones at 177.6' and 179.0' at 70° to core axis,				<u> </u>							
			foliation at 40°-45° to core axis.											

SAWYER CONSULTANTS INC.	5

DATE LOGGED Feb. 18, 1985

COMPANY NAME Mono Gold Mines Inc.

PROPERTY NAME Bannockburn - Northeast Area

FROM	то	RECOVY	DESCRIPTION			ASS	ASSAYS							
r MOIVI	,0	nLCOV!	DESCRIPTION	FROM	то	WIDTH	No.	Au	Ag					
81.0'	198.0'	17.0'	Silicified quartzose zone in medium to light green-blue					oz/ton	z/ton					
			quartzite, healed shear zone?, foliated and laminated quartzites,											
			blue coloured quartz veins and quartz carbonate veins, sulphide											
			veins and disseminated sulphides, associated quartz + quartz											
·			carbonate veins.											
			181.0'-190.0' - medium blue-green quartzose zone, quartz veins at											
			181.0', 183.0', 185.7', 187.0', 187.5', 188.0', 189.3', - all											
			with minor sulphides, and generally parallel to foliation which											
1 .2			is at 50°-55° to core axis throughout, medium to dark green											
			chloritic laminated quartzite, minor disseminations pyrrhotite +											
			chalcopyrite, pyrite.											
			190.0'-198.0' - similar quartzose zone, silicified quartzite,											
			quartz veins, quartz carbonate veins, pyrite veins.											
			190.6' - pyrite vein, coarse pyrite at 70° to core axis cross-	190.01	193.0'	3.0'	15948	.0.001	0.01					
			cutting foliation. 191.8'-192.7' - quartz veins, to 1"-1.5", at											
			65° to core axis, disseminated sulphides, minor. 192.7'-195.0' -		ļ						ļ			
			similar quartzose chloritic quartzite, foliation at 40° to	195.0'	198.0'	3.01	15949	0.066	0.06					
			core axis. 195.0'-197.0' - quartzose zone, veins at 196.0' and	198.0'	200.0'	2.0'	15950	0.001	0.02					

SAWYER CONSULTANTS INC.	

DATE LOGGED ____ Feb. 19, 1985

COMPANY NAME ____ Mono Gold Mines Inc.

PROPERTY NAME ____ Bannockburn - Northeast Area

FROM	то	RECOVY	RECOVY	SAMPLE					ASS	SAYS	· · · · · · · · · · · · · · · · · · ·	 	·····
PHOM	10	HECOVY	DESCRIPTION	FROM	то	WIDTH	No.	Au	Ag				
181.0'	198.0'	(cont.)	196.9' at 30° to core axis, sulphide stringer at 196.5' at 30°					oz/tor	o z /tor				
			to core axis, cross-cuts foliation + quartz veins. 197.0'-										
			198.0' - contorted foliation, dark brown quartzite, disseminated						_				
			pyrrhotite.										
				ļ									
198.0'	204.0	6.0'	Quartz veined zone, quartzose foliated quartzite, contorted										
			quartzite/quartz veins, to quartz veins.										
			198.0'-199.5' - quartz vein, minor pyrite, pyrrhotite disseminated,										
			contacts at 75° to core axis.										
			199.5'-201.0' - dark brown quartzite, foliation at 50° to core										
			axis.										
			201.0'-204.0' - contorted quartz vein zone, quartzose quartzite										
			foliation/laminations at 60° to core axis with layers quartz		<u> </u>		-						
			vein parallel.										
				ļ	ļ								
204.01	206.5	2.5'	Quartz vein at 35° to core axis to 204.5', then laminated dark	206.51	208.0'	1.5'	66901	0.045	0.01				
			green-brown quartzite, biotite laminations, chloritic quartzose		ļ 								_
			laminations - at 45° to core axis, very minor disseminated										

SAWYER CONSULTANTS INC.	

Feb. 19, 1985 DATE LOGGED _ Mono Gold Mines Inc. COMPANY NAME _ Bannockburn - Northeast Area PROPERTY NAME

DDH-85-5 HOLE No.____

FROM TO		RECOVY	DESCRIPTION		SA	MPLE			ASS			
. 110101		1.200	DESCRIPTION	FROM	то	WIDTH	No.	Au	Ag noz/tor			
204.0	206.5	(cont.)	pyrite, pyrrhotite.					OZ/LOI	oz/tor			
206.5	218.0	11.5'	Quartzose zoned quartzite, quartz veins with carbonate, sulphides,									
			coarse laminated quartzite with minor sulphides, dark green-brown									
			laminated quartzite, increased sulphides to 218.0'.									ļ <u>-</u> .
			206.5'-207.4' - quartz carbonate vein, upper contact at 85°									
			to core axis, strong cross-cutting contact - pyrite, chalcopyrite									
			on margins, diffuse lower boundary, quartzose healed breccia zone.					<u> </u>				
		207.4'-209.7' - quartzose healed breccia zone, quartz vein	208.0	211.0	3.0'	66902	0.042	0.01				
			fragments, disseminated pyrite-chalcopyrite-pyrrhotite.									
•			209.7'-214.5' - similar diffuse quartzose zone, quartz veins/									
			stringers in silicified quartzite, healed breccia/shear zone,									
			quartz carbonate layers with pyrite-chalcopyrite-pyrrhotite									
			and chloritic biotite rich laminae - general lamination at 40°									
			to core axis.									
			214.5'-218.0' - similar quartzite, less quartz veining, reduced									
			sulphides.									

DATE LOGGED Feb. 19, 1985

COMPANY NAME Mono Gold Mines Inc.

PROPERTY NAME Bannockburn - Northeast Area

								·	<u> </u>		44	
FROM TO		RECOVY	DESCRIPTION		·	MPLE		<u> </u>	ASSA	YS	 	
	, ,		DESCRIPTION	FROM	то	WIDTH	No	Au	Ag oz/ton			
218.0'	222.0'	4.01	Quartz vein, chlorite-pyrite, pyrrhotite-chalcopyrite, quartz-	218.2'	220.21	1.0'	66903	0.002				
			carbonate, inclusions of chloritic biotite quartzite with	220.21	221.6'	1.4'	66904	0.003	LO.01			
			pyrrhotite, upper contact at 45°-50° to core axis, lower contact									
			at 85 ^o -90 ^o to core axis.									
			218.5'-218.8' and 219.3'-219.6' - biotite quartzite inclusion,									
			quartz veins are white, diffuse quartz with disseminated									
			pyrite, pyrrhotite + chalcopyrite and stringers pyrite.									
222.0'	226.0'	4.01	Dark green laminated chloritic quartzite, minor pyrrhotite,									
			healed quartz breccia veins at 224.3' and 225.0'.									
			226.0' - End of Hole.									

HOL	E SURVEY	1		
METHOD:	ACID ETCH			
FOOTAGE	AZIMUTH	DIP		
0'	105°	-60		
256'	105°	-47		
<u> </u>		 		
#		 		
 		 		
	METHOD FOOTAGE	FOOTAGE AZIMUTH		

COMPANY NAME MONO GOLD MINES INC.
PROPERTY NAME BANNOCKBURN - NORTHEAST AREA
DRILLING CONTRACTOR McKnight Drilling Company Limited
ASSAYER Bondar-Clegg & Company Ltd., Ottawa
PURPOSE OF HOLE To test strike extensions of surface vein
exposures

SAWYER CONSULTANTS INC.

FROM TO RECOVY		RECOVY	COVY DESCRIPTION		SA	MPLE		ASSAYS								
				FROM	ТО	WIDTH	No.									
0'	4.0'	01	Casing, overburden.													
4.0'	32.0'	28.01	Dark green, faintly foliated quartzite, chloritic biotite											<u></u>		
			laminations, very minor pyrrhotite, dense siliceous hard rock,													
			foliation at 20° - 25° to core axis, quartz carbonate vein zones													
			at 6.5', 8.5'-9.0', 13.0'-15.0' - quartz carbonate stringer													
			parallel to foliation with pyrite, pyrrhotite stringers +													
			disseminations - similar 17.0'-19.0' and 23.5'-24.0', 28.0'-30.0' -													
			foliation at 5° - 10° to core axis, laminae quartz carbonate and													
			schlieren, disseminated pyrrhotite-pyrite.													
	_															
32.0	38.0	6.01	Dark green-grey quartzite, quartzose layers/veins/zones parallel													
			to foliation at 20° to core axis, minor disseminated pyrite +													
			stringers associated quartz zones.													

PAGE	1	OF	11
------	---	----	----

SAWYER CONSULTANTS INC.	5
	-

DATE LOGGED Feb. 19, 1985

COMPANY NAME Mono Gold Mines Inc.

PROPERTY NAME Bannockburn - Northeast Area

FROM 38.0'	то				SA	MPLE			ASS	AYS		·	
	ТО	RECOVY	DESCRIPTION	FROM	то	WIDTH	No.		I				
38.0'	43.01	5.0'	Healed breccia zone, quartzose zone, quartz veins parallel to										
			broken foliation, lamination at 10°-15° to core axis, dark grey-										
		_	green quartzite, very minor pyrrhotite, chlorite quartzite.										
43.0'	52.0'	9.0'	Medium green, fine grained quartzite, very faint foliation at										
			5°-10° to core axis, darker biotite laminae, chloritic, dissemi-										
			nated pyrrhotite-pyrite, increasing to 52.0', minor carbonate +										
			quartz carbonate stringer.										
52.0'	58.0'	6.0'	Medium grey-green fine grained quartzite, very faint foliation										·····
			at 5° to core axis, quartzose chloritic layers and darker biotite										·
			rich layers, minor disseminated pyrrhotite.										
58.0'	68.0	10.0'	Grey-green to greenish brown quartzite, faint foliation becoming	·									
			more pronounced from 62.0' to strong at 68.0', chloritic biotite										
			quartzite with quartzose laminae, foliation at 5° - 10° to core										
			axis to 62.0', laminae at 10°-20° to 68.0', minor disseminated										
			pyrrhotite.										

DATE LOGGED Feb. 19, 1985

COMPANY NAME Mono Gold Mines Inc.

PROPERTY NAME Bannockburn - Northeast Area

EDOM	TO	RECOVY	DECORPTION		SA	MPLE		ASSAYS								
68.0° 74.0	10	hecovi	DESCRIPTION	FROM	то	WIDTH	No.	Au	Ag							
68.0'	74.0'	6.0'	Quartz veined healed shear zone, massive white to blue quartz					oz/to	noz/tor)			_			
			vein with disseminated sulphides, fine grained and as blebs,													
			pyrite, botryoidal marcasite, chalcopyrite + visible gold													
			associated.													
			68.0'-69.0' - quartz carbonate vein at 0-5° to core axis, in													
			laminated quartzite, lamination at 15° to core axis.	68.51	71.0	2.5'	66905	0.005	L0.01							
			$69.0'-71.0'$ - laminated quartzite, lamination change from $5^{\circ}-20^{\circ}$	71.0'	73.0	2.0'	66906	0.789	0.15							
			at 70.8' at contact, disseminated pyrrhotite-pyrite.	73.0'	74.0	1.0'	66907	4.655	0.32							
			71.0'-74.0' - massive quartz vein, contact at 70° to core axis,													
			white quartz to 73.0', veins/vugs filled botryoidal marcasite,													
			pyrite, chalcopyrite + visible gold. At 72.5' - narrow stringers				44									
			of silver-grey crystalline mineral, not acicular enough for													
			tetrahedrite, - arsenopyrite. 73.0'-73.5' - quartz carbonate													
			vein with blebs/veins of sulphides, botryoidal marcasite with				***									
			pyrite and chalcopyrite on growth lines, pyrite and chalcopyrite					_								
			with pyrrhotite disseminations + blebs, visible gold associated		, , , , , , , , , , , , , , , , , , , ,											
			pyrite-chalcopyrite and as separate blebs in quartz groundmass.													

SAWYER CONSULTANTS INC.

DATE LOGGED Feb. 19-20, 1985

COMPANY NAME Mono Gold Mines Inc.

PROPERTY NAME Bannockburn - Northeast Area

	то	RECOVY	DECODIDATION	1	SA	MPLE		<u></u>	ASSAYS					
	10	necovi	DESCRIPTION	FROM	то	WIDTH	No.							
74.0'	76.0'	2.0'	Sheared, healed shear, laminated quartzite, brown biotite rich											
			chloritic, quartzose layers, laminations/shear planes at 0-5°											
			to core axis.											
76.0'	108.0	32.0'	Dark grey-green to green-brown quartzite, faintly laminated/											
			foliated chloritic zones, quartzose zones, quartz-carbonate											
			veins.											
			76.0'-85.0' - green-brown quartzite, foliation at 10° - 15° to											
			core axis, quartz stringer at 82.0', quartz + carbonate layers -						· · · · · · · · · · · · · · · · · · ·					
			minor.											
			85.0'-91.0' - dark green chloritic biotite quartzite, foliation											
			at 5° - 10° to core axis, quartz carbonate shear zone at 0° -											
			1°-2° to core axis, skirts edge of core - disseminations +											
			stringers sulphides, pyrite-chalcopyrite-pyrrhotite.											
			91.0'-96.0' - dark grey-green quartzite chlorite biotite, faint											
			foliations at 25° to core axis, becoming laminated from 94.0'											
			with laminations at 30°-35° to core axis, disseminated pyrrhotite.											
			96.0'-108.0' - medium green chloritic quartzite, quartz carbonate						_					

SAWYER CONSULTANTS INC.

•	

DATE LOGGED Feb. 20, 1985

COMPANY NAME Mono Gold Mines Inc.

PROPERTY NAME Bannockburn - Northeast Area

FROM	то	RECOVY	DECODIDATION		SA	MPLE		<u> </u>	ASS	AYS	······································	 	
PHOIVE	10	HECOVI	DESCRIPTION	FROM	то	WIDTH	No.	Au	Ag				
76.0	108.0	(cont.)	stringers parallel to foliation, foliation at 15° - 20° to core					pz/ton	oz/ton				
			axis, fine grained chloritic laminations, minor disseminated										
			pyrrhotite with biotite layers.										
108.0	116.0	8.0'	Quartzose healed shear zone, quartz vein, quartz carbonate										
			veining with sulphides and minor visible gold, pyrite-pyrrhotite-									 	
			chalcopyrite-visible gold.	108.0	110.0'	2.0'	66908	0.007	L0.01				
			108.0'-109.5' - narrow ½''-1" quartz vein, healed silicified	110.0	111.5	1.5'	66909	0.001	LO.01				
			shear at 5° to core axis, sulphides on margins of chlorite-	111.5	113.0	1.5'	66910	0.001	LO.01				
			biotite schlieren.										
			109.5'-110.0' - quartzose to quartz vein, schlieren at 5° to										
			core axis, disseminated pyrite-pyrrhotite, chalcopyrite in quartz										
			+ on margins.										
			110.0'-111.5' - quartz vein, blue-green colour, disseminated										
			pyrite-pyrrhotite-visible gold-chlorite, schlieren at 65° to										
			core axis, contact at 111.5' at 40° to core axis.										
			111.5'-112.0' - contorted laminated dark green quartzite, silicified	,									
			quartz carbonate laminations, disseminated pyrrhotite, pyrite.										

SAWYER CONSULTANTS INC.	

DATE LOGGED Feb. 20, 1985

COMPANY NAME Mono Gold Mines Inc.

PROPERTY NAME Bannockburn - Northeast Area

FDOM		550000			SA	MPLE		 SSAYS	 · · · · · · · · · · · · · · · · · · ·	
FROM	то	RECOVY	DESCRIPTION	FROM	то	WIDTH	No.			
108.0'	116.0'	(cont.)	112.0'-112.7' - quartz carbonate vein with sulphides at 50° to							
			core axis.							
			112.7'-115.0' - dark green sheared looking chloritic quartzite,							
			planes at 30°-35° to core axis, minor quartz carbonate stringers		·				 	
			parallel to planes.						5	
			115.0'-116.0' - quartzose "vein" parallel to lamination at 25°							
			to core axis, decreasing to 0-5° to core axis at 116.0', very							
			minor to no sulphides noted.							
116.0'	141.0'	25.0'	Medium to dark green quartzite, chloritic, contorted quartz				·			
			carbonate veining parallel to foliation, quartzose zone with							
			cross-cutting veins, quartz carbonate veins.							
			116.0'-119.0' - chloritic quartzite, contorted laminations							
			quartz carbonate and chlorite, general foliation at 20° to							
			core axis.							
			119.0'-120.0' - ptygmatic quartz vein in chlorite "schist"/							
			quartzite, axial plane parallel to foliation at 30° to core axis.							
			120.0'-126.5' - dark green to dark green-brown quartzite,							

SAWYER CONSULTANTS INC.

لم	

DATE LOGGED	Feb. 20, 1985
COMPANY NAME	Mono Gold Mines Inc.
PROPERTY NAME	Bannockburn - Northeast Area

FROM	то	RECOVY	DESCRIPTION		SA	MPLE			ASS	SAYS			
FHOIVI	10	HECOVI	DESCRIPTION	FROM	то	WIDTH	No.	Au	Ag				
116.0'	141.0'	(cont.)	silicified quartzose zone from 124.0'-125.0' with quartz-carbonate					oz/ton	2/ton				
			veins parallel to foliation at 5° - 10° to core axis.	126.5	128.5	2.01	66911	0.003	LO.01				
			126.5'-128.5' - quartz carbonate vein, upper contact at 35° to										L
			core axis, lower at 127.0' at 10°-15° to core axis, quartzose	ļ									
			vein + healed shear to 128.5', disseminations + stringers										
			pyrrhotite-pyrite-chalcopyrite.										
			128.5'-132.5' - dark brown quartzite, lamination parallel to										
			core axis, biotite, disseminated pyrrhotite, quartz carbonate										
			stringers parallel to foliation.										
			132.5'-134.0' - quartzose zone, ptygmatic veining, minor								F	, a	
a jedenaka			sulphides.		Arail								:
			134.0 -141.0 - dark green brown quartrite, faint foliation at		kii Kananysii								16:
			1 20° Fd core exis, elver quares carbonire acringre via almor						1				
							e general						
			LE JULIA S QUEST CANADA VERTINANTE LE CONTRACTO CONTRACTO		43.0	201	66912	0.002	10.61				

SAWYER CONSULTANTS INC.

DATE LOGGED Feb. 20, 1985

COMPANY NAME Mono Gold Mines Inc.

PROPERTY NAME Bannockburn - Northeast Area

FROM	то	RECOVY	DESCRIPTION		SA	MPLE			ASS	SAYS		
FHUIVI	10	HECOVY	DESCRIPTION	FROM	то	WIDTH	No.	Au	Ag			
141.0'	157.0	(cont.)	cuts quartzite, quartzose on one side vein with disseminated					z/tono	z/ton			-
			pyrite, pyrrhotite, chalcopyrite.									·
			146.5'-148.5' - ptygmatic veining of quartz carbonate veins in									
			much contorted, foliated quartzite.									
			148.5'-152.0' - quartz carbonate-chlorite vein at 10° to core									
			axis cutting dark chloritic quartzite, disseminated sulphides,									
			blebs of pyrite in part.	150.0'	152.0'	2.01	66913	0.176	0.01			
			152.0'-157.0' - dark green laminated quartzite, laminations at							: .		
			30° to core axis, quartzose layers at 153.5', 155.0' and 156.5',									: :
:			minor sulphides.		7 Per	i					5 d	
					111					i i i i i i i i i i i i i i i i i i i		
157.0	163.0	6.01	Grey-green laminated quartaite, laminations at 30° to core axis.	200				100 mg/s				
			increasing quartz feldspar to quartz carbonate content of							A A		
			lantne (Cros (60.04)									
16540												1

SAWYER CONSULTANTS INC.

. **5**

DATE LOGGED Feb. 20, 1985

COMPANY NAME Mono Gold Mines Inc.

PROPERTY NAME Bannockburn - Northeast Area

FROM	то	RECOVY	DESCRIPTION		SA	MPLE			AS	SAYS			
	10	RECOVI	DESCRIPTION	FROM	то	WIDTH	No						
163.0	169.0	(cont.)	chlorite schlieren but minor pyrite associated quartz veins.										
169.0'	223.0'	54.01	Dark brown laminated biotite quartzite, with quartzose layers				Au						
			+ ptygmatic veining, quartzose zone with much increased quartzose										
			feldspathic layering, medium green-brown laminated quartzite,										
			chlorite biotite + quartzose feldspathic layers, minor quartz										
			veining, minor disseminated pyrite, some disseminations pyrrhotite										
			associated, biotite in laminations.										
			169.0'-186.0' - laminated quartzite, laminations at 30° - 35° ,										
			minor disseminated pyrite.										
			186.0'-196.0' - laminated quartzite, strong quartzose feldspathic		1 .				i.				ŧ
11			layers, chlorite layers, disseminations + stringers pyrrhotite-						due v				2014
			pyrite-chalcopyrite in part at 192.5', 193.0', 195.0' foliation										B
1.41			at 25 to core axis.										
	133		196.0'-208.0' - darker brown quartzite, foliation at 35°-40°				in the state	de					1
	and the second	141	to core axis, quartzose layers, sulphide wein at 198.0',									4	
			associated carbonate.						is least lines.			7	
	!		208.0'-223.0' - green quartzite, foliation at 30° to core axis,				y y			ine (Mi			

DATE LOGGED Feb. 20, 1985

COMPANY NAME Mono Gold Mines Inc.

PROPERTY NAME Bannockburn - Northeast Area

				SAMPLE			Δς:	ASSAYS							
FROM	то	RECOVY	DESCRIPTION	FROM	To	WIDTH	No.	Au	Ag		Ι	Τ .			
169.0'	223.0'	(cont.)	much disseminated pyrrhotite, minor quartz carbonate veins.						oz/to						
223.01	228.5'	5.5'	Quartzose zone, healed shear zone/breccia zone, quartz veins												
			at 85° to core axis, disseminated pyrite + chalcopyrite and												
			stringers, general foliation of quartz veining and quartzose												
			country rock is 70° to core axis, dark pyrrhotite rich biotite												
			quartzite at 224.0'-225.5'.												
			226.5'-228.5' - dark brown "quartzose" quartzite, laminations at												
			65° to core axis, increased pyrrhotite associated biotite												
			quartzite.												
228.5'	235.0'	6.51	Light grey-green quartzose zone, silicified, contact at 228.5'												
			at 20° to core axis, cross-cuts dark biotite quartzite laminations,												
			quartz vein at 229.0', chlorite-carbonate - minor sulphides.												
			231.0'-233.0' - quartz vein, upper contact at 75° to core axis,	231.0	233.0	2.0'	66914	0.002	LO.01						
			veins, stringers + blebs sulphides - pyrite-chalcopyrite-												
			pyrrhotite within quartz, disseminated chlorite and amphiboles,												
			hornblende crystals to several mm + 1 mm across.												

SAWYER CONSULTANTS INC.	5

Feb. 20, 1985 DATE LOGGED _ Mono Gold Mines Inc. COMPANY NAME _ Bannockburn - Northeast Area PROPERTY NAME

DDH-85-6 HOLE No.____

FROM	то	RECOVY	DESCRIPTION		SA	MPLE	=	ASS	SAYS	 	 	
FHOW	10	RECOVY	DESCRIPTION	FROM	TO	WIDTH	No.					
228.5'	235.0'	(cont.)	233.0'-235.0' - quartzose zone, disseminated pyrrhotite, fine									
			grained.									
							· - · · ·					
235.0'	246.01	11.0'	Dark grey-brown quartzose zone, quartzite with laminations at									
	_		45° to core axis.									
			240.0'-244.0' - chloritic quartzite, disseminated pyrrhotite,									
			laminations at 45°-50° to core axis.					_				
246.0'	256.0'	10.0'	Medium grey coloured quartzite, laminated chlorite layers +			 						
			quartzose feldspathic layers at 40°-45° to core axis, knots of					 				
			biotite and amphiboles from 250.0', quartz vein at 246.8' at				***					
			40° to core axis, 0.25' true thickness, pyrite-chalcopyrite-									
			pyrrhotite in quartz carbonate vein, parallel to foliation.									
			254.5' - quartz carbonate vein at 30° to core axis, pyrite and		,							
			minor amphiboles in vein becoming bleached grey looking, quartz									
			sericite schist?									
			256.0' - End of Hole.									

COLLAR:	HOL	E SURVEY	
37+65N	METHOD:	ACID ETC	CH
31+25E	FOOTAGE	AZIMUTH	DIP
ELEVATION	0'	105	-50°
CORE SIZE BQ	246'	105	-39°
LOGGED By Gordon D. House			
DATELOGGED Feb. 21, 1985			
MAP REFERENCE No. 31C/12			
	+		

COMPANY NAME _	
PROPERTY NAME	BANNOCKBURN - NORTHEAST AREA
PRILLING CONTRA	ACTOR McKnight Drilling Company Limited
ASSAYER Bon	dar-Clegg & Company Ltd., Ottawa
PURPOSE OF HOL	E To test strike extension of surface veins

HOLE No	EO 652301
COMMENCED	T 1 47 4005
FINISHED	Feb. 18, 1985
FINAL DEPTH	246.01
PROJECT No	

FROM	ТО	RECOVY	DESCRIPTION		SA	MPLE			ASSAYS		
				FROM	то	WIDTH	No.				
0'	8.01	0'	Overburden. O'-11.0' - Casing.			<u> </u>		 			
8.0'	11.0'	2.0'	Quartz sericite schist, pyritic, oxidized - weathered, quartz								
			vein fragments at top, foliation at 45° to core axis,								
			carbonate.								
11.0'	26.0'	15.01	Pale grey quartz-sericite schist, much disseminated pyrite,								
			pyrrhotite and chalcopyrite - to 10°-15° by volume, very						_		
			contorted foliation, S_2 foliation contorted, S_3 axial planes					 			
			are the predominant foliation/lamination in sequence.								
			11.0'-16.0' - lustrous sericite shear, foliation S_3 at 40° - 45°							·	
			to core axis, much disseminated pyrite-pyrrhotite-chalcopyrite.								
			16.0'-18.0' - darker mafic chlorite/biotite S2 laminations,								
			folded, S ₃ foliation at 45° to core axis.								
			18.0'-24.0' - series tight isoclinal folds in S ₂ planes,								

SAWYER CONSULTANTS INC.	5

DATE LOGGED Feb. 21, 1985

COMPANY NAME Mono Gold Mines Inc.

PROPERTY NAME Bannockburn - Northeast Area

FROM	то	RECOVY	DECODIDATION	T	SA	MPLE		ASSAYS								
FAOIVI	10	HECOVY	DESCRIPTION	FROM	10	WIDTH	No.									
11.0'	26.0'	(cont.)	sense of folding indicates fold axis up-hole at 18.0', while													
			19.0'-20.0' is W-folds - axial plane of synclinal fold through													
			here, with 21.0'-24.0' a Z-configuration. At 23.0' - series													
			of quartzose veins parallel to S ₂ foliation + incorporated in													
			S_3 foliation, S_3 foliation at 30° to core axis. Much dissemi-													
			nated pyrite-pyrrhotite-chalcopyrite through this section,		: : 											
			15%-20% disseminated.		<u> </u>		_									
			24.0'-26.0' - increase in mafic components in S ₂ foliation,													
			plus increased pyrrhotite-pyrite, becoming quartz-sericite-													
			chlorite-biotite schist.													
26.0'	61.0'	35.0'	Medium grey, foliated quartz sericite schist, darker laminated/													
			layers with disseminated pyrrhotite, chlorite + fine grained		· · · · · · · · · · · · · · · · · · ·											
			biotite in part, zones of much increased sulphide content -				_									
			sulphides pyrite-pyrrhotite-chalcopyrite-galena-sphalerite,													
			zone of quartz-carbonate veining and sulphide veins, foliation						d							
			represents minimum S ₂ planes - if not even S ₄ , foliation						···							
			generally at 30°-35° to core axis.													

SAWYER CONSULTANTS INC.	5

DATE LOGGED Feb. 21, 1985

COMPANY NAME Mono Gold Mines Inc.

PROPERTY NAME Bannockburn - Northeast Area

HOLE No. ______ DDH-85-7

55014		250000		T	SA	MPLE		1	ASS	SAYS			
FROM	ТО	RECOVY	DESCRIPTION	FROM	то	WIDTH	No.	Au	Ag	Cu	Pb	Zn	
26.0'	61.0'	(cont.)	26.0'-28.0' - mafic component and layers higher so dark colour,					oz/ton	oz/ton	ق/ي	%	%	
			increased pyrrhotite-chalcopyrite disseminations.										
			28.0'-31.0' - light grey quartz-sericite schist, disseminated	28.01	30.0'	2.0'	66915	0.001	0.05	0.03	0.03	0.06	
			pyrite-galena-sphalerite-chalcopyrite - margins of massive	<u> </u>			:						 ļ
			sulphide deposit, foliation at 35° to core axis.										
			31.0'-34.0' - increased mafic content in layers, sulphide vein	31.0'	34.0'	3.0'	66916	0.001	0.05	0.08	0.01	0.20	_
			at 31.5' and 32.0' and 32.5', pyrrhotite-pyrite-galena-sphalerite-										
			chalcopyrite.										
			34.0'-44.0' - quartz-sericite schist, disseminated pyrrhotite-										
			pyrite-chalcopyrite, darker layers/bands from 38.0'-41.0' with										
			quartz segregations, foliation at 70° to core axis.										
			44.0'-45.0' - quartz vein, carbonate on margins with pyrite-										
			chalcopyrite, contacts parallel to foliation at 5°-25° to core										
			axis, slight contortion.				·						
			45.0'-50.0' - darker layers of chlorite-biotite, fine grained										
			in quartz sericite schist, disseminated pyrite-pyrrhotite-chalco-										
			pyrite to 5%-10%, foliation at 45°-50° to core axis here.										
			50.0'-54.0' - quartz carbonate vein with contacts at 80° to	50.01	52.5'	2.5'	66917	0.004	LO.01				

DATE LOGGED Feb. 21, 1985

COMPANY NAME Mono Gold Mines Inc.

PROPERTY NAME Bannockburn - Northeast Area

HOLE No. ______DDH-85-7

50011		5500101			SA	MPLE		T	AS	SAYS		
FROM	то	RECOVY	DESCRIPTION	FROM	TO	WIDTH	No.					
26.0'	61.0'	(cont.)	core axis from 50.0'-50.6' - botryoidal marcasite, pyrite,									 <u> </u>
			chalcopyrite disseminations, silicified quartz sericite schist									
			to 54.0' where healed shear with quartz carbonate vein at 15°									 ·
			to core axis parallels foliation or shear planes, much dissemi-		·							
			nated pyrite-chalcopyrite-pyrrhotite in quartz vein +		·							
			footwall.									
			54.0'-61.0' - very sulphidic quartz sericite schist, veins/layers				·					
			sulphides parallel to foliation and as disseminated blebs,									
			foliation at 45° to core axis.									
61.0'	70.0'	9.01	Dark grey-brown garnetiferous laminated "schist"/quartzite,									
			much disseminated pyrrhotite, and chlorite.									
			61.0'-63.0' - laminated garnet-chlorite-pyrrhotite quartzite,				· · ·					: !
			laminations at 40° to core axis.									:
	,		63.0'-70.0' - darker more chloritic-mafic garnetiferous quartzite,									 ļ
			garnet-chlorite-pyrrhotite-quartzite, laminations - well									
			developed at 40° to core axis, pyrrhotite + garnets to 1 mm across.									
												I

SAWYER CONSULTANTS INC.	
	7

DATE LOGGED Feb. 21, 1985

COMPANY NAME Mono Gold Mines Inc.

PROPERTY NAME Bannockburn - Northeast Area

				1	SA	MPLE	······································		ASS	SAYS		- 7 = 15	
FROM	то	RECOVY	DESCRIPTION	FROM	то	WIDTH	No.	Au	Ag		I		
70.0'	78.0'	8.0'	Mixed garnet chlorite schist and chlorite sericite schist,					ez/tone	z/ton				
			quartz carbonate veining parallel to foliation at 30° - 35° to										
			core axis at 72.5' and 74.5', garnets and pyrrhotite increased										
			with darker colour/chlorite from 74.0'.	-									
78.01	90.0'	12.0'	Quartz veined, increasingly quartzose, garnet-chlorite-quartzite,		ļ	ļ							
			laminated but contorted around quartzose zones, much pyrrhotite		-								
			associated garnets + chlorite, pyrrhotite-pyrite-chalcopyrite	ļ	ļ <u>.</u>	ļ							ļ
			associated quartz-carbonate veins, veins at 78.0'-79.0',			<u> </u>							ļ-
			80.0'-80.3', 82.0', 83.5'-84.0', 89.5'-89.7'.	78.0'	80.5	2.5'	66918	0.015	0.02				
90.01	108.0'	18.0'	Siliceous dark brown to dark green quartzite, foliated + faintly										
			laminated, quartzose zones and quartz veins, dark biotite-chlorite-	90.0'	93.0'	3.0'	66919	0.005	0.02				ļ
			quartzite, much reduced to very minor disseminated pyrrhotite.					ļ					
			90.0'-91.0' - quartz - minor carbonate vein, contacts at 60° - 65°										
			to core axis, foliation in quartzite at 45°-50° to core axis,										<u> </u>
			pyrite-chalcopyrite-pyrrhotite in vein + with chlorite schlieren										-
			on vein margins.										<u> </u>

DATE LOGGED Feb. 21, 1985

COMPANY NAME Mono Gold Mines Inc.

PROPERTY NAME Bannockburn - Northeast Area

HOLE No. ____ DDH-85-7

ASSAYS

FROM	TO	RECOVY	DESCRIPTION	T	SA	MPLE		<u> </u>	ASSAYS									
FNUM	ТО	HECOVY	DESCRIPTION	FROM	то	WIDTH	No.											
90.0'	108.0'	(cont.)	91.3'-91.7' - healed quartz vein breccia zone, biotite-chlorite-															
			pyrite.															
			91.7'-95.0' - dark green-brown chlorite-biotite, laminated															
			quartz carbonate vein at $73.5'$ at 30° to core axis with pyrite,															
			laminations at 40° to core axis.															
			95.0'-97.0' - quartzose vein? at 40° to core axis, very minor															
			pyrrhotite.															
			97.0'-108.0' - similar dark brown-green quartzite, laminations															
			40°-45° to core axis, increasing amounts disseminated pyrrhotite															
			to 108.0'.															
108.0'	133.0'	25.0'	Dark brown chlorite-biotite quartzite, laminated, quartzose zones															
			and quartz veins with minor to fair amount of sulphides,				 				İ							
			disseminated pyrrhotite in quartzites.															
			108.0'-109.0', 110.5'-112.0' - quartzose zones, quartz veins															
			both contacts at 80° to core axis, minor pyrite, mainly on				·											
			fractures.															
			112.0'-122.0' - chloritic dark brown quartzite, laminations at															

DATE LOGGED Feb. 21, 1985

COMPANY NAME Mono Gold Mines Inc.

PROPERTY NAME Bannockburn - Northeast Area

	**				SA	MPLE		Ţ	ASS	SAYS		 	
FROM	ТО	RECOVY	DESCRIPTION	FROM	то	WIDTH	No.	Au	Aε				
108.0	133.0	(cont.)	50° to core axis, quartzose zones at 114.0', 119.0', very					oz/tor	oz/ton				
			minor sulphides.										
			122.0'-125.0' - quartz vein at 122.0'-123.0', quartz carbonate-	122.0	124.0	2.0'	66920	0.002	LO.01				
			chlorite veining, minor pyrite from 123.0'-124.0' - pyritic +										İ
			pyrrhotite rich stringers in quartzose/chlorite schlieren margin								_		
			to vein.								: [
			125.0'-133.0' - dark brown quartzite, chloritic bands from										
			127.0'-131.0', rest laminated biotite-chlorite + quartzose										<u> </u>
			feldspathic layers, foliation at 40° to core axis.										
133.0	144.0	11.0'	Zone of laminated dark brown quartzite, chlorite-biotite layers,										
			quartzose zones and quartzose feldspathic layers, quartz										
. <u>.</u>			carbonate and sulphide veins in part.										
			133.5'-135.5' - quartz veins, quartz carbonate veins - sulphide	133.5	135.5'	2.0'	66921	0.146	0.01				
			veins parallel to laminations at 30° to core axis, pyrite-					<u> </u>					
			pyrrhotite-chalcopyrite and visible gold at 134.1', shear?.										
			137.5'-139.0' - quartzose veined zone, very minor sulphides.										
			139.0'-144.0' - brown laminated quartzite, laminations at 60° to										

DATE LOGGED Feb. 21, 1985

COMPANY NAME Mono Gold Mines Inc.

PROPERTY NAME Bannockburn - Northeast Area

FROM	то	RECOVY	DESCRIPTION		SA	MPLE		I	ASSAYS						
PHOIVI	10	RECOVI	DESCRIPTION	FROM	то	WIDTH	No.	Au	Ag						
133.0	144.0	(cont.	core axis, quartzose feldspathic layers.					oz/tor	oz/ton						
144.0	155.0	11.0'	Quartzose zone, quartz veined, quartz carbonate veined,												
			quartzose feldspathic layers parallel to laminations in dark												
	1		brown quartzite, laminations at 40° to core axis.												
			144.0'-146.0' - healed shear zone, quartz + quartz carbonate	143.5	145.5	2.0'	66922	0.275	0.05						
			veined sulphides as blebs and disseminations, pyrite-chalco-												
			pyrite-pyrrhotite - visible gold at 144.5'.												
			146.0'-148.0' - healed shear zone, quartz carbonate vein,	146.0	148.0	2.0'	66923	0.173	0.02						
			blue quartz, much disseminated pyrite-pyrrhotite-chalcopyrite,												
			tellurides?, contacts at 146.3' and 148.0' at 35° to core axis.												
			148.0'-151.0' - dark brown quartzite, laminations at 50° to												
			core axis.												
			151.0'-154.5' - quartz veins, contacts at 75° to core axis,	151.0	154.5	3.5'	66924	0.002	LO.01						
			much disseminated pyrite-pyrrhotite-chalcopyrite, with blebs,												
			stringers of pyrite-chalcopyrite.												
			154.5'-155.0' - dark brown quartzite.												

SAWYER CONSULTANTS INC.	

DATE LOGGED Feb. 21, 1985

COMPANY NAME Mono Gold Mines Inc.

PROPERTY NAME Bannockburn - Northeast Area

HOLE No. <u>DDH-85-7</u>

FROM	то	RECOVY	DESCRIPTION		SA	MPLE			ASS	SAYS	· · · · · · · · · · · · · · · · · · ·		
111011	, 0	11200 11	DESCRIPTION	FROM	то	WIDTH	No.	Au	Ag				
155.0	170.0'	15.0'	Dark brown laminated quartzite, chlorite/biotite layers, minor					pz/ton	oz/ton				
			disseminated pyrrhotite, quartz + quartzose feldspathic										
			laminations, minor quartz carbonate stringers.										
			161.0'-164.5' - quartz veins + quartz carbonate veins, at high										
			angles, foliation at 65°-70° to core axis.										
170.0	185.0	15.0'	Quartzose zones, quartz veins in similar brown laminated quartzite,										
			minor pyrrhotite, quartzose feldspathic layers, etc., chloritic										
			layers increase in part.										
			170.0'-172.0' - quartz vein at 70° to core axis, disseminated	170.0'	172.0'	2.0'	66925	L0.001	L0.01				
			chalcopyrite, pyrite - very fine grained disseminated pyrite +										
			molybdenite?/galena? - very blue cclour - suspect McS2, - vein	<u> </u>									
			170.0'-170.7'.										
			172.0'-179.0' - similar dark brown quartzite quartzose zones,										
			quartz-carbonate veins, foliation contorted in part, generally										
			at 50 ⁰ -60 ⁰ to core axis.				-						
			179.0'-181.0' - quartz vein, quartz carbonate, pyrite + chalco-	179.6	181.0'	2.0'	66926	0.003	L0.01				
			pyrite associated fractures.										

PAGE 9 OF 12

SAWYER CONSULTANTS INC.	5

DATE LOGGED Feb. 21, 1985

COMPANY NAME Mono Gold Mines Inc.

PROPERTY NAME Bannockburn - Northeast Area

FROM	то	RECOVY	DECORPTION		SA	MPLE			ASS	SAYS		
FHOIVI	10	RECOVI	DESCRIPTION	FROM	то	WIDTH	No.	Au	Ag			
170.0'	185.0	(cont.)	181.0'-185.0' - increasingly chloritic quartzite, decreased					oz/tor	10 z /to1			
			biotite + pyrrhotite laminations at 50° to core axis.								 · · · · · · · · · · · · · · · · · · ·	
185.0'	196 0'	11.0'	Dark green-brown biotite quartzite, laminated at 40° to core									
103.0	170.0	11.0	axis, quartzose zones with quartz veins + sulphides beccming									
			more chloritic to 196.0' from 190.0'.									
			185.0'-185.5' - quartz vein at 40° to core axis, no sulphides.									
			187.0'-188.5' - quartz carbonate νεins, quartz vein with sulphides,	187.0'	188.51	1.5'	66927	.0.001	0.02			
			at $40^{\circ}-50^{\circ}$ to core axis, disseminated pyrite-chalcopyrite.									<u></u>
			188.5'-196.0' - dark brown laminated quartzite, foliation at									
			50°- 55° to core axis.									
196.0'	218.0'	22.0'	Dark green-brown quartzite, laminated, biotite/chlorite layers,									****
			quartzose feldspathic layers, disseminated pyrrhotite, associated									
			biotite layers, foliation throughout.									
			211.0'-212.0' - quartzose zone, quartz carbonate vein at 80° to						······································			
			core axis, minor pyrite-pyrrhetite at $35^{\circ}-40^{\circ}$ to core axis.									

SAWYER CONSULTANTS INC.	5

DATE LOGGED Feb. 21, 1985

COMPANY NAME Mono Gold Mines Inc.

PROPERTY NAME Bannockburn - Northeast Area

HOLE No. DDH-85-7

FROM	то	RECOVY	DESCRIPTION		SA	MPLE	11	T	ASS	SAYS	 	
THOW	'0	RECOVI	DESCRIPTION	FROM	то	WIDTH	No.	Au	Ag			
218.0'	231.0'	13.0'	Quartz vein contact to garnet-biotite-chlorite, laminated					oz/tor	cz/ton			
			quartzite, increased disseminated pyrrotite, quartz carbonate									
			veining with sulphides, to dark brown pyrrhotite-pyrite-biotite									ļ
			"schist".									
			218.0'-219.0' - quartz vein, minor pyrite, biotite - chlorite									
			schlieren paralleling at 25° tc ccre axis.									
			219.0'-222.0' - dark green-brown chlorite-biotite schist,									
			garnets + pyrrhotite-pyrite as layers to 1-2 cm thick.									
			222.0'-225.0' - chlorite-garnet-biotite schist, pyrrhotite									
			disseminations.									
			225.0'-226.5' - quartz carbonate vein at 25° to core axis,	225.01	226.5'	1.5'	66928	LO.001	L0.01			
			stringers pyrite-chalcopyrite-pyrrhotite + blebs.									
			226.5'-231.0' - pyrrhotite-chalcopyrite "layers," increased									
			sulphides, in dark biotite chlorite schist.									
231.0'	246.01	15.0'	Light medium grey quartz sericite chlorite schist, contorted ${\rm S}_2$				ļ					
			foliation with S ₃ foliation at 20°-25° to core axis, much									
			increased sulphide content with 236.0'-241.0' containing 15%-20%	236.01	238.0'	2.0'	66929	0.002	0.02			

PAGE 11 OF 12

SAMPLE

SAWYER CONSULTANTS INC.	5

DATE LOGGED	Feb. 21, 1985	
COMPANY NAME	Mono Gold Mines Inc.	
DOODEDTY MANAGE	Bannockburn - Northeast Area	

	HOLE	No	DDH-85	5-7	
	ASS	SAYS		-	
	<u> </u>				
<u> </u>					
•					

FROM	TO	RECOVY	DESCRIPTION	J			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							
				FROM	то	WIDTH	No.							<u> </u>
231.0'	246.0'	(cont.)	sulphides, similar schist to end of hole at 246.0'.											
			246.0' - End of Hole.											
														
		·								, , , , , , , , , , , , , , , , , , , ,				
					,									
										_				

COLLAR:	HOL	E SURVEY	
37+65N	METHOD:	ACID ETO	CH
31+25E	FOOTAGE	AZIMUTH	DIP
ELEVATION	0'	105	-60
CORE SIZE BQ	256'	105	-52°
LOGGED BY Gordon D. House			
DATE LOGGED Feb. 21, 1985			
MAP REFERENCE No. 31C/12			
			ļ <u>.</u>
			<u> </u>

OMPANY NAME	MONO GOLD MINES INC.	
ROPERTY NAME_	BANNOCKBURN - NORTHEAST AREA	_
RILLING CONTRAC	CTOR McKnight Drilling Company Limited	_
SSAYER Bond	ar-Clegg & Company Ltd., Ottawa	
URPOSE OF HOLE	To test strike and down-dip extensions of	
urface quartz	veins	

SAWYER CONSULTANTS INC.

HOLE No	DDH-85-8
CLAIM NAME No	EO 652301
COMMENCED	Feb. 19, 1985
FINISHED	Feb. 20. 1985
FINAL DEPTH	256.0'
PROJECT No	
PHOSECT NO	

FROM	то	RECOVY	DESCRIPTION		SA	MPLE		ASSAYS					
				FROM	то	WIDTH	No.						
0'	6.0	' 0'	Overburden, casing.								_		
6.0'	10.0	2.5'	Oxidized quartzose quartz sericite schist, rusty.										
10.0'	12.5	2.5'	Quartz vein zone, disseminated pyrrhotite, pyrite, contorted										
			quartz vein in dark grey sericite schist.		:								
12.5	25.0	12.5'	Pyritic dark grey quartz sericite schist, contorted foliation,										
			suggestions from DDH-85-7 that dominant foliation is S_3 .			,		 					
			foliation at 30°-35° to core axis, suggestion of synclinal					 					
			axis around 18.0'.										
25.0	36.0	11.0'	Dark brown biotite rich quartz sericite schist, much dissemi-	ļ									
			nated pyrrhotite-chalcopyrite associated, - biotite-pyrrhotite					 					
			schist, chloritic, foliation at 40° to core axis.					<u> </u>					

DATE LOGGED Feb. 21, 1985

COMPANY NAME Mono Gold Mines Inc.

Reprockburg Northeast Area

PROPERTY NAME Bannockburn - Northeast Area

FROM	то	RECOVY	DECCRIPTION		SA	MPLE		T	ASS	SAYS	· · · · · · · · · · · · · · · · · · ·	· · <u> </u>	
PHUM	10	HECOVY	DESCRIPTION	FROM	TO	WIDTH	No.	Au	Ag				
25.0'	36.0	(cont.)	28.0'-28.5' - white quartz vein, very minor pyrite associated,					bz/ton	oz/ton				
			contacts parallel to foliation.										<u> </u>
36.0	77.0	41.0'	Medium grey foliated/laminated quartz-sericite-chlorite schist,	38.51	40.5'	2.0'	66930	L0.001	L0.01		-		
			slightly talcose in part, quartz zones + quartz veins - with										
			disseminations + stringer sulphides, darker biotite zones,										
			increased pyrrhotite-chalcopyrite-pyrite from 50.0'-61.0'.										j
			$38.5'-40.5'$ - quartz vein in quartzose zone, contacts at $10^{\circ}-15^{\circ}$										
			to core axis, disseminations + blebs pyrite-chalcopyrite-										
			pyrrhotite, chlorite, quartz vein cross-cutting foliation.										
			40.5'-53.0' - quartz sericite schist, foliation contorted, S3				·						
			planes at 10°-20° to core axis, much disseminated pyrite-										
			pyrrhotite.									 	
			53.0'-60.0' - darker biotite layers, very chloritic-biotitic,										
			much disseminated pyrrhotite, foliation at 40° to core axis.										
			60.0'-73.0' - grey quartz sericite schist, contorted foliation,										
			generally at low angles 10°-20° to core axis, much disseminated										
			pyrite-pyrrhotite associated foliation, chloritic-sericitic +										

DATE LOGGED Feb. 21, 1985

COMPANY NAME Mono Gold Mines Inc.

PROPERTY NAME Bannockburn - Northeast Area

			_	T	SA	MPLE		T	ASS	SAYS	·		
FROM	то	RECOVY	DESCRIPTION	FROM	TO	WIDTH	No	Au	Ag				
36.0'	77.0'	(cont.)	"talcose" in part.					oz/ton	oz/ton				
			73.0'-77.0' - similar schist, contorted foliation with S_3 at 10°						_				
			to core axis, increased pyrrhotite-pyrite-chalcopyrite dissemi-										
			nations.	ļ	ļ								
						ļ <u>-</u>		<u> </u>					
77.0'	82.0	5.0'	Quartzose zone, quartz veins, quartz carbonate veins, sulphides,										
			contacts at 40° to core axis upper + 70° to core axis lower,										
			lower contact at 81.0' - involves contorted schlieren of garnet										
			with biotite schist, quartz vein zone from 78.0'-81.0'.	78.0'	81.0'	3.0'	66931	0.026	0.02				
82.0'	95.0	13.0'	Dark green-brown chloritic biotite quartzite, garnets disseminated										
			through 82.0' to 86.5' obscuring foliation, 86.5'-95.0' - strongly										
			laminated chloritic quartzite, decreased disseminated garnets,				· · · · · · · · · · · · · · · · · · ·	<u> </u>					
			strong pyrrhotite decreases also.	<u> </u>							·		
95.0	110.0	15.0	Dark brown fine grained, faintly laminated quartzite, foliation										
			at 5°-10° to core axis throughout, disseminated pyrrhotite										
			associated foliation, very biotitic.										l

DATE LOGGED Feb. 21, 1985

COMPANY NAME Mono Gold Mines Inc.

PROPERTY NAME Bannockburn - Northeast Area

50011	7.0	DECOVO			SA	MPLE		T	AS	SAYS	<u></u>		
FROM	ТО	RECOVY	DESCRIPTION	FROM	то	WIDTH	No	Au	Ag				
110.0'	113.0'	3.0'	Quartz vein, quartz carbonate vein, contacts at 15°-20° to core					oz/ton	bz/tor				
			axis, dark green-blue colour, fine grained disseminated	110.0'	113.0'	3.0'	66932	0.001	L0.01				
			pyrrhotite-pyrite-chalcopyrite, blebs pyrite-pyrrhotite.					<u> </u>					
113.0'	125.0'	12.0'	Dark greenish brown quartzite, quartzose zones, quartz veins -										
			minor carbonate, minor sulphides, lamination generally at										
			15°-20° to core axis, chloritic bands, reduced pyrrhotite										
			disseminations.										
			124.0'-125.0' - chloritic quartz vein, disseminated pyrrhotite,		ļ			<u> </u>				 	
			minor pyrite.										
125.0'	146.0'	21.0'	Greenish chloritic biotite quartzite, laminations generally										
		·	at 40° to core axis, quartzose feldspathic segregation + layers,										
			parallel to foliation, all cut by quartz carbonate veins at 45°	_									
			to core axis, cut at right angles to foliation, minor sulphides	_				ļ					
<u> </u>			disseminated, none associated quartz veining.	_									
				_									
146.0'	159.0'	19.0'	Chloritic dark green-brown quartzite, quartzose zones with]				0

DATE LOGGED Feb. 21, 1985

COMPANY NAME Mono Gold Mines Inc.

PROPERTY NAME Bannockburn - Northeast Area

FROM	то	RECOVY	DESCRIPTION	T	SA	MPLE			ASSAYS							
THOW	, ,	HECOVY	DESCRIPTION	FROM	то	WIDTH	No.	Au	Ag							
146.0'	159.0'	(cont.)	quartz veins associated sulphides, healed shear/breccia zones,					oz/ton	oz/ton							
	<u>-</u>		dark brown fine grained quartzite, minor disseminated pyrrhotite-													
			pyrite.													
			145.0'-147.0' - quartzose zone, quartz veins and chlorite													
			schlieren at 35° to core axis, quartz carbonate veins in part,													
			minor sulphides.													
			148.0'-151.0' - quartzose zone, quartz vein - sulphide veins,	148.0'	151.0'	3.0'	66933	0.001	LO.01							
			at 40° to core axis, quartz carbonate, quartz chlorite vein,													
			disseminated sulphides pyrite-chalcopyrite-pyrrhotite.													
			151.0'-159.0' - similar dark green-brown quartzite, foliation													
			at 35° to core axis, quartzose zones at 155.0'-156.5' and			į								· · · · · · · · · · · · · · · · · · ·		
			158.0'-158.5' - minor to no sulphides.					-								
159.0'	177.0'	18.0'	Dark green-brown quartzite, laminated, chloritic layers, quartz													
			carbonate veins parallel to foliation and cross-cutting foliation,													
			biotite rich zone, disseminated pyrrhotite, increased in biotite													
			zone.													
			159.0'-165.0' - grey-brown biotite quartzite, quartz vein at													

SAWYER CONSULTANTS INC.	5
	4

DATE LOGGED Feb. 21, 1985

COMPANY NAME Mono Gold Mines Inc.

PROPERTY NAME Bannockburn - Northeast Area

FROM	то	RECOVY	DESCRIPTION		SA	MPLE			ASS	AYS	S					
PROM	10	MECOVY	DESCRIPTION	FROM	то	WIDTH	No.	Au	Ag							
159.0'	177.0'	(cont.)	161.0', foliation at 30° to core axis.					oz/to	hoz/tor	1						
			165.0'-167.0' - chlorite-quartzose zone, foliation at 30° to													
			core axis.													
			167.0'-171.0' - increasing biotite content, decreasing quartzose													
			alteration.													
			171.0'-177.0' - biotite rich laminated quartzite, 25° to core	76.01	178.0'	2.0'	66934	0.003	LO.01							
			axis, increased pyrrhotite content.													
177.0'	186.0'	9.0'	Dark brown-green quartzite, foliations at 30° to core axis,													
			increased quartz + quartz carbonate veining cross-cutting													
			foliation, veins at 40°-45° to core axis, quartz carbonate													
			veins at 177.0'-178.0' and 184.0'-186.0'.	84.01	186.0'	2.0'	66935	0.001	LO.01							
186.0'	195.0'	9.01	Quartzose zone in dark biotite siliceous quartzite.													
			190.0'-193.0' - increasing quartz veins at 30° to core axis.	92.01	195.0'	3.0'	66936	0.110	L0.01							
			193.0'-195.0' - quartz vein, white quartz, disseminated pyrite													
			and chalcopyrite, blue quartz at 194.0'.	ļ												

DATE LOGGED Feb. 21, 1984

COMPANY NAME Mono Gold Mines Inc.

PROPERTY NAME Bannockburn - Northeast Area

HOLE No. DDH-85-8

EDOM	TO	DECOVA	DECODIDATION		SA	MPLE		ASS	SAYS		
FROM	ТО	RECOVY	DESCRIPTION	FROM	то	WIDTH	No.				
195.0'	223.0'	28.0'	Dark green-brown laminated quartzite, biotite layers + more				, , , , , , , , , , , , , , , , , , ,				
			chloritic layers, silicified/quartzose zones, ptygmatic quartzose								
			feldspathic + quartz veins, remobilized appearance, increasing				**************************************				
			chlorite from 190.0'-205.0'.								
			195.0'-198.0' - biotite quartzite, laminations at 35° to core								
			axis.								
			198.0'-200.0' - quartzose zone, chloritic ptygmatic veins.								
			200.0'-216.0' - brown quartzite, partly quartzose, quartzose								
			feldspathic and quartz carbonate veins and stringers, cross-								
			cutting foliation, minor sulphides to very minor sulphides.								
			216.0'-223.0' - increased quartzose feldspathic veining, parallel								
			to foliation at 35° to core axis, also increased quartz stringers,								
			minor sulphides.								
								•			
223.0'	237.0'	14.0'	Quartzose zone, quartz veined, quartz carbonate veining, healed								
			shear zone - silicified, healed breccia zone with brecciated								
			quartz vein material + sulphides, quartz vein with sulphides.								
			223.0'-225.5' - blue-grey-brown quartzose zone, laminations at 25°								

DATE LOGGED Feb. 21, 1985

COMPANY NAME Mono Gold Mines Inc.

PROPERTY NAME Bannockburn - Northeast Area

HOLE No. <u>DDH-85-8</u>

f	1	<u> </u>		T	C 4	MPLE		T	ASS.	AVC	 	_
FROM	то	RECOVY	DESCRIPTION	FROM	T TO	WIDTH	l No	Au	· · · · · · · · · · · · · · · · · · ·	AYS		
223.0	237.0	(cont.)	to core axis, disseminated pyrrhotite.	PHOM	10	WIDTA	NO.		Ag oz/ton			
			225.0'-227.0' - quartz vein, parallel to core axis, at 20° to	225.5	227.0'	1.5'	66937	0.035	LO.01			
			core axis, sulphides.									
	-		227.0'-231.0' - strongly laminated grey-brown biotite-quartz-	-								
			sericite quartzite, or chloritic? disseminated pyrrhotite on									
			laminations, laminations at 40° to core axis.									
			231.0'-237.0' - quartzose zone, healed shear breccia zone with	230.0	233.0'	3.0'	66938	0.010	LO.01			
			quartz/quartz carbonate vein, chlorite schlieren and increased	233.0	235.0	2.0'	66939	0.043	LO.01			
			disseminations and stringers sulphides, pyrite-chalcopyrite-	235.0	237.0'	2.0'	66940	0.007	LO.01			
			pyrrhotite.									
237.0	256.0	19.0'	Dark green-brown laminated quartzite, foliation at 50° throughout,									
			darker + lighter layers, more biotitic + more chloritic, minor									
			disseminated pyrrhotite.									
			239.0'-242.0' - quartz carbonate narrow veins at 60° to core									
			axis, cross-cut foliation.									
			244.0'-245.0' - quartzose zone, at 50° to core axis.									
			249.0'-251.0' - quartzose zone, healed breccia.	}								

AWYER CONSULTANTS INC.	

DATE LOGGED Feb. 21, 1985

COMPANY NAME Mono Gold Mines Inc.

PROPERTY NAME Bannockburn - Northeast Area

HOLE No. DDH-85-8

				T	C A	MPLE		<u> </u>	V C C	SAYS	 	
FROM	то	RECOVY	DESCRIPTION	FROM	то	WIDTH	No.		no:	7013		
237.0	256.0'	(cont.)	251.0'-256.0' - dark brown-green quartzite, faint foliation at									
			60° to core axis, becomes more chloritic to 256.0', minor									
			pyrrhotite.									
			256.0' - End of Hole.									
						ļ						

Project Name Bannockburn - Northeast Area

Mono Gold Mines Inc.

February

d	
)	č
7	È
•	-
;	Ξ
:	

15900	15899	15898	15897	15896	15895	15894	15892 15893	15891	15889 15890	15888	15887	15886	15885	15884	15883	15882	Assay Tag No.
																85-1	D.D.H.
205.01-207.51	201.0'-202.0'	197.0'-199.0'	185.0'-187.5'	147.5'-148.5'	120.0'-122.0'	113.0'-114.5'	110.5'-112.0'	98.5'-100.0'	64.0'-66.0' 66.0'-68.0'	56.5'-57.5'	50.0'-51.0'	36.01-38.01	32.51-34.51	27.0'-28.5'	19.0'-22.0'	17.6'-19.0'	Footage
2.51	1.0'	2.0'	2.5'	1.0'	2.0'	1.5'	1.5'	1.5	2.0'	1.0'	1.0'	2.0'	2.0'	1.5'	3.0'	1.4'	Width
							0.018 oz./ton Au 3.0'		1.6775 oz./ton Au 4.0'								
L0.002	L0.002	L0.002	L0.002	L0.002	L0.002	L0.002	0.015	0.010	[3.250	0.390	L0.002	0.005	0.010	0.015	0.010	0.045	Au oz./ton
L0.02	L0.02	L0.02	0.06	0.10	L0.02	L0.02	L0.02 0.02	L0.02	0.22	0.04	0.04	L0.02	L0.02	L0.02	L0.02	L0.02	Ag oz./ton
				<u> </u>													

Project Name Bar

Bannockburn - Northeast Area Mono Gold Mines Inc.

Month February

15910	15909	15908	15907	15906	15905	15904	15903	15902	15001	Assay Tag No.	
								03-2	۵ ج ک	D.D.H.	
265.0'-266.5'	239.5'-242.5'	136.0'-137.5'	104.5'-106.0'	103.0'-104.5'	99.01-100.01	56.0'-57.0'	50.0'-51.0'	16.0'-17.5'	11 21 15 15	Footage	Mono Gold Mines
1.51	3.0'	1.51	1.51	1.5'	1.0'	1.0'	1.0'	1.5	, ,	Width	nes inc.
								6.0'			
				-	p			<u> </u>		0	rebruary
L0.002	0.170	L0.002	0.005	0.010	L0.002	0.150	L0.002	0.120	130	Au oz./ton	
L0.02	0.04	0.02	L0.02	L0.02	0.02	0.02	10.06	0.06	2	A8 oz./ton	1985

Project Name Mono Gold Mines Inc. Bannockburn - Northeast Area

February Month

15929	15928	15927	15926	15925	15923	15922	15921	07601	15919	15918	15917	15916	15915	15914	15013	15912	15911	Assay Tag No.
																	85-3	D.D.H.
221.5'-222.6'	215.5'-218.0'	203.01-205.01	201.51-203.01	200.0'-201.5'	198.0'-198.0'	172.8'-176.0'	153.9'-155.0'	/ 0. 3'-/8.0'	75.0'-76.5'	72.5'-75.0'	62.0'-63.0'	58.51-60.51	49.0'-50.0'	48.01-49.01	/7 01 /8 01	41.5'-42.5'	39.0'-40.0'	Footage
-	2.51	2.0'	1.5'	1.5'	2.0'	ω υ 12	1.1,	. J	1.5	2.5'	1.0'	2.0'	1.0'	1.0	<u>.</u>	1.0') • •	Width
								_		0.299 oz./ton Au []	2.139 oz./ton Au [٦			
0.002	10.001	L0.001	L0.001	10.001	L0.001	0.690	0.285	0.002	1.094	0.001	0.004	0.200	0.305	5.869)) , ,	0.003	0.001	Au oz./ton
0.01	0.02	0.09	0.23	0.02	0.04	10.01	0.06	0.01	0.29	0.02	0.02	0.07	0.05	0.28	3	0.09	0.04	Ag oz./ton

Project Name Bannockburn - Northeast Area Mono Gold Mines Inc.

February Month

15945	15944	15943	15942	15941	15940	15939	15938	15937	15936	15935	15934	15933	15932	15931	15930	Assay Tag No.	
														-	85-4	D.D.H.	•
215.5'-218.5'	207.0'-210.0'	204.0'-207.0'	194.3'-196.3'	175.0'-177.0'	173.0'-175.0'	171.0'-173.0'	124.0'-127.0'	101.0'-103.0'	86.01-89.01	60.01-63.01	52.0'-53.0'	45.0'-47.5'	43.0'-45.0'	40.51-43.01	39.0'-40.5'	Footage	Mono Gold Mines
3.0'	3.0	3.0'	2.0'	2.0'	2.0'	2.0'	3.0'	2.0'	3.0'	3.0'	1.0'	2.51	2.0'	2.5	1.5"	Width	nes Inc.
														8.51	0.178 oz./ton Au [February
0.021	0.041	0.004	0.001	0.004	L0.001	0.003	0.375	0.355	0.003	0.002	0.019	0.116	0.004	0.015	0.785	Au oz./ton	
0.05	0.03	L0.01	0.01	L0.01	0.01	0.02	0.07	0.07	L0.01	0.03	0.01	0.04	0.02	0.03	0.09	Ag oz./ton	1985

Project Name Bannockburn - Northeast Area
Mono Gold Mines Inc.

Month

	66903 66904	66901 66902	15949 15950	15948	15947	15946	Assay Tag No.	
						85-5	р. р. н.	
	218.2'-220.2' 220.2'-221.6'	206.5'-208.0'	195.0'-198.0' 198.0'-200.0'	190.0'-193.0'	91.0'-92.5'	80.5'-82.5'	Footage	Mono Gold Mines
	2.0'	1.5'	3.0'	3.0'	1.5	2.0'	Width	s Inc.
		0.043 oz./ton Au [Febı
,	0.002	0.045	0.066	L0.001	L0.001	0.003	Au oz./ton	February
	0.01 L0.01	0.01	0.06	0.01	0.02	0.02	Ag oz./ton	1985
								l

Project Name Bannockburn

Mono Gold Mines Inc.

- Northeast Area

Month February

Year 1985

Assay Tag No. 66914 66912 66911 66910 66909 66908 66907 66906 66905 66913 D.D.H. 85-6 110.0'-111.5' 231.0'-233.0' 150.0'-152.0' 111.5'-113.0' 108.0'-110.0' 141.0'-143.0' 126.5'-128.5' 73.0'-74.0' 71.0'-73.0' 68.51-71.01 Footage Width 1.5 1.0' 2.01 2.01 2.0' 2.0 1.5 2.01 2.0' 2.5 1.135 oz./ton 5.5' Æ oz./ton 0.002 0.176 0.002 0.003 0.001 0.001 0.007 4.655 0.789 0.005 Ag oz./ton L0.01 L0.01 L0.01 L0.01 L0.01 LO.01 L0.01 0.15 0.32 0.01

Project Name Bannockburn - Northeast Area

Mono Gold Mines Inc.

Month February

	66929	66928	66927	66926	66925	66924	66923	66922	66921	66920	66919	66918	66917	66916	66915	Assay Tag No.	
															85-7	D.D.II.	
·	236.0'-238.0'	225.0'-226.5'	187.0'-188.5'	179.0'-181.0'	170.0'-172.0'	151.0'-154.5'	146.0'-148.0'	143.5'-145.5'	133.5'-135.5'	122.0'-124.0'	90.01-93.01	78.0'-80.5'	50.01-52.51	31.0'-34.0'	28.0'-30.0'	Footage	110110 0010
	2.0'		1.5"	2.0'	2.0'	3.51	2.0'	2.0'	2.0'	2.0'	3.0'	2.51	2.5'	3.0'	2.0'	Width	
		-												0.08	0.03	% Cu	-
														0.01	0.03	Pb %	
														0.20	0.06	Zn %	
	0.002	L0.001	L0.001	0.003	L0.001	0.002	0.173	0.275	0.146	0.002	0.005	0.015	0.004	L0.001	L0.001	Au oz./ton	
	0.02	10.01	0.02	L0.01	L0.01	L0.01	0.02	0.05	0.01	L0.01	0.02	0.02	L0.01	0.05	0.05	Ag oz./ton	
,				·												1	1

Project Name Bannockburn - Northeast Area

February Month

66938 66939 66940	66937	66936	66935	66934	66933	66932	66931	66930	Assay Tag No.	
						→		85-8	D.D.H.	
230.0'-233.0' 233.0'-235.0' 235.0'-237.0'	225.5'-227.0'	192.0'-195.0'	184.0'-186.0'	176.0'-178.0'	148.0'-151.0'	110.0'-113.0'	78.0'-81.0'	38.5'-40.5'	Footage	Mono Gold Mines
3.0' 2.0' 2.0'	1.5	3.01	2.0'	2.0'	3.0'	3.0'	3.01	2.0'	Width	es Inc.
0.019 oz./ton Au [7.0' [February
0.010 0.043 0.007	0.035	0.110	0.001	0.003	0.001	0.001	0.026	L0.001	Au oz./ton	
L0.01 L0.01	L0.01	10.01	10.01	L0.01	L0.01	L0.01	0.02	L0.01	Ag oz./ton	1985
· · · · · · · · · · · · · · · · · · ·										

MONO GOLD MINES INC.

PHASE THREE DIAMOND DRILL PROGRAM

NORTHEAST AREA

BANNOCKBURN PROPERTY

Madoc Township, Ontario

Diamond Drill Logs

and

Assay Summary Sheets

DDH 85-9 to DDH 85-14 inclusive

To accompany Report by SAWYER CONSULTANTS INC. dated May 31, 1985

COLLAR:	HOL	E SURVEY	
38+40N	METHOD:	Acid Etc	:h
33+00E	FOOTAGE	AZIMUTH	DIP
ELEVATION	0	288	-50
CORE SIZE BQ	300'	288	-48
LOGGED BY R.V. Beavon			
DATE LOGGED 10 May 1985			
MAP REFERENCE No. 31C/12			
			
	1		
	i i		

COMPANY NAME	MONO GOLD MINES INC.
PROPERTY NAME	BANNOCKBURN, NORTHEAST AREA
DRILLING CONTRAC	CTOR McKnight Drilling Company Limited
ASSAYER Bonda	r-Clegg & Company Ltd., Ottawa & Vancouver
PURPOSE OF HOLE	Test subsurface structure of quartz veins and
gold content	

SAWYER	CONSULTANTS INC.
--------	------------------

HOLE No.	85-9
	EO 652301
COMMENCED	9 May 1985
	10 May 1985
FINAL DEPTH	300'
PROJECT No	

FROM	то	RECOVY	DESCRIPTION	SAMPLE				ASSAYS						
				FROM	то	WIDTH	No.	Au	Ag					
0'	8.0		Casing.					oz/ton	oz/ton					
8.0'	42.0		Phyllitic Argillites often cherty and well laminated at high											
			angles to core axis. Banding often contorted into "Z" shaped											
			minor folds. 5-10% sulphides mainly pyrrhotite throughout.											
			Cleavage at 70° to core axis. Grades into fine grained quartzites											
			at 42.0'.											
			26.5'-26.7' - glassy quartz-carbonate with pyrite and pyrrhotite,	26.0'	27.0'	1.0'	71301	L0.002	0.02			<u> </u>		
			trace sphalerite. Appears concordant.										-	
			36.0' - minor quartz stringer.											
			36.5'-37.8' - granular quartz stringer with pyrrhotite, pyrite,	36.5	37.5'	1.0'	71302	0.002	0.04			_	ļ	
			trace galena.	<u></u>									<u> </u>	
			39.8'-41.1' - massive white to bluish-white quartz with sharp	39.41	40.41	1.0'	71303	0.003	LO.02					
			wavy contacts at 80° to core axis. Pyritic paint on joints,											
			5% pyrite, trace marcasite.							ţ				

PAGE	1	OF	
------	---	----	--

SAWYER CONSULTANTS INC.	
	4

DATE LOGGED 10 May 1985

COMPANY NAME Mono Gold Mines Inc.

PROPERTY NAME Bannockburn, Northeast Area

HOLE No. 85-9

				SAMPLE				Y	ASSAYS							
FROM	то	RECOVY	DESCRIPTION	FROM	то	WIDTH	No.	Au	ASS	DATS	1		1			
42.0	68.0		Cherty Quartzites - fine grained with disseminated blebs of 10-15%				140.		oz/ton							
			pyrrhotite + pyrite. Banded at 80° to core axis.	43.0'	44.0'	1.0'	71310	0.003	0.07							
			0.2' quartz stringer at 43.5' - fine glassy quartz.													
			0.5' granular quartz with carbonate and weak sericite at 47.6'	47.2	48.2'	1.0'	71308	0.015	0.02							
			(dolomite).										_			
68.0	205.0		Limy Biotite Schists, green, fine grained and speckled white													
			in part by calcite. Large calcitic amygdules at 84.0'. Probably													
			metavolcanic. Cleavage at 80° to core axis. Sulphide content													
			less than 5%.													
			0.7' quartz-dolomite-chlorite vein at 69.5'.	69.2	70.2'	1.0'	71304	0.002	L0.02							
			92.9'-93.2' - bull quartz with dolomite filling cleavage-like			<u> </u>										
	<u>.</u>		fractures in quartz at 25° to core axis. Quartz has sharp contacts													
			at 10-15° to core axis. Chlorite paints fractures parallel and	91.91	92.91	1.0'	71305	.0.002	L0.02							
			near contacts. Trace pyrrhotite. Limy biotite schists.	92.91	93.91	1.0'	71306	4.104	0.19							
			Visible gold noted in several grains along chloritic paint near	93.91	94.91	1.0'	71307	0.056	0.03							
	· · ·		upper contact of quartz.													
	,		106.4'-106.9' - 0.5' massive bluish quartz with dolomite													

COMPANY NAME Mono Gold Mines Inc.

PROPERTY NAME Bannockburn, Northeast Area

HOLE No. 85-9

	[T						T						
FROM	то	RECOVY	DESCRIPTION			MPLE	₇	ļ		SAYS		,	, 	
				FROM	то	WIDTH	No.	Au oz/ton	Ag					
68.0	205.0	(cont.)	and finely acicular rutile(?).	106.5	107.5	1.0'	71311	0.054	0.02		<u> </u>	<u> </u>		
			120.0'-121.0' - glassy white quartz with country rock inclusions.	118.6	119.8	1.2'	71309	0.011	0.02					
			125.0'-126.0' - glassy quartz with trace pyrite and pyrrhotite,	120.0	121.0	1.0'	71312	0.073	0.03					
			chlorite seams.											
•			148.0'-149.7' - narrow 0.2' quartz vein at 148.0' with 20%	148.0	149.7'	1.7'	71313	0.019	0.02					
			pyrrhotite from 148.2'-149.7'.											
			151.0'-152.5' - quartzite, fine grained, trace pyrrhotite,											
			infolded with schists and limy sections.						-					
			154.0'-155.0' - quartz-carbonate stringer for 0.25', no sulphides.	154.0	155.0'	1.0'	71314	0.001	0.04					
			162.0'-163.0' - quartz carbonate stringers unaffected by minor	1										
			folding. Negligible sulphide.	162.0	163.0'	1.0'	71315	0.003	0.01					
			178.0'-179.0' - 0.2' quartz vein and quartz-carbonate stringer	178.0	179.0'	1.0'	71316	0.001	0.01					
			at 20° to core axis. Quartz carbonate stringer is parallel to											
			core axis. Negligible sulphide.											
			183.0'-184.2' - marble or quartz-carbonate vein with >50% calcite.	183.0	184.2'	1.2'	71317	0.004	0.01					
			Medium grain sugary texture.											

PAGE 3 OF 5

10 May 1985 DATE LOGGED Mono Gold Mines Inc. COMPANY NAME

Bannockburn, Northeast Area PROPERTY NAME

85-9 HOLE No._

FROM	то	RECOVY	DESCRIPTION		SA	MPLE		ASSAYS				
		hecovi	DESCRIPTION	FROM	TO	WIDTH	No.	Au	Ag			
205.0	271.0'		Massive Volcanic Flow(?) with carbonate amydules. Schistosity					oz/ton	oz/ton			
			poorly developed. Occasional carbonate (calcite) stringers with									
			variable orientations. Increasingly massive from 225.0'-271.0',									
			highly mottled with weak schistosity developed in places.									
			220.0'-221.0' - 1.0' quartz stringer at 45 to core axis.	220.0	221.0'	1.0'	71318	LO.001	0.04			
			negligible sulphides, trace carbonate.									
			236.0'-237.0' - narrow 2.0' quartz-carbonate stringer	236.0'	237.0'	1.0'	71319	L0.001	0.14			
			normal to core axis, trace pyrrhotite.									
			238.0'-240.0' - two narrow 0.2' quartz-carbonate stringers,	238.5	240.0'	1.5'	71320	LO.001	0.05			
			5-10% pyrrhotite, trace pyrite, at 50° to core axis.	<u> </u>								
			250.5'-252.0' - quartz vein? Normal to core axis, in part	250.5	252.0'	1.5'	71321	0.001	0.01			
			milky quartz, in part grey cherty granular quartz. Blebs	252.0'	253.0'	1.0'	71322	0.001	0.04			
			pyrite and trace marcasite.	253.0'	254.0'	1.0'	71323	0.001	0.01			
			Silicified from 252.0'-253.0'.									
			253.0'-254.0' - massive white quartz, milky at 85° to core									
			axis, trace pyrrhotite, pyrite.									
			257.9'-259.0' - siliceous zone with up to 10% sulphides and	257.5	259.0'	1.5'	71324	0.001	0.01			
			20% calcite stringers.									

SAWYER CONSULTANTS INC.

DATE LOGGED 10 May 1985

COMPANY NAME Mono Gold Mines Inc.

PROPERTY NAME Bannockburn, Northeast Area

HOLE No. 85-9

		r T		T	CA	MPLE		T	ACC	AYS		
FROM	то	RECOVY	DESCRIPTION	FROM	TO	WIDTH	No.	Au	ASS	ATS		Γ
205.0	271.0	(cont.	270.5'-271.5' - 0.3' milky quartz with pyrrhotite and pyrite,	 	271.5	 			oz/tor			
			paint on joints.				,					
271.0	273.5		Fine Grained Foliated Mafic Dike, bounded on both sides by	272.5	273.5	1.0'	71326	LO.001	0.01			
			quartz.									
			272.5'-273.5' - massive quartz with trace pyrite, pyrrhotite.									
273.5	289.5		Massive partly phyllitic biotite schist.									
289.5	300.0		Massive Volcanic Flow, with occasional phyllitic limy schists.		l 							
			289.5'-293.0' - massive cherty quartzite, 15% pyrrhotite + pyrite.	289.5	293.0'	3.51	71327	0.001	0.01			
	:		293.0'-295.0' - as 289.5'-293.0' with 50% quartz veins.	293.0	295.0'	2.0'	71328	0.001	0.01			
			295.0'-296.0' - as 273.5'-289.5'.	295.0	296.0'	1.0'	71329	0.001	LO.01			
			296.0'-300.0' - quartz vein with schist, as 273.5'-289.5'.									
-			END OF DDH 85-9 at 300'.									
				ļ								

PAGE 5 OF 5

COLLAR:	HOL	E SURVEY	
37+10N	METHOD:	Acid Et	ch
32+90E	FOOTAGE	AZIMUTH	DIP
ELEVATION	0'	288	50
CORE SIZE BQ	225'		54
LOGGED BY R.V. Beavon			
DATE LOGGED 11 May 1985			
MAP REFERENCE No. 3 1C/12			
			ļ <u>.</u>
			┼
			†

COMPANY NAME MONO GOLD MINES INC.

PROPERTY NAME BANNOCKBURN, NORTHEAST AREA

DRILLING CONTRACTOR McKnight Drilling Company Limited

ASSAYER Bondar-Clegg & Company Ltd., Ottawa

PURPOSE OF HOLE Test subsurface structure and gold content of quartz veins

SAWYER	CONSULTANTS INC.	
--------	------------------	--

HOLE No.	85-10
CLAIM NAME/No.	EO 652301
COMMENCED	10 May 1985
FINISHED	11 May 1985
FINAL DEPTH	225'
PROJECT No.	
	<u></u>

FROM	то	RECOVY	DESCRIPTION	SAMPLE			ASSAYS						
					то	WIDTH	No.	Au	Ag				
0'	11.0'		Casing.					oz/ton	bz/ton				
11.0'	86.0'		Phyllitic Argillites, dark grey and weak to moderately well										
			banded at 30° - 40° to core axis. Occasional bleached areas										
			adjacent to quartz-carbonate stringers. Weak oxidation from 11.0'										
			to 13.0'. Mineralized throughout with 10-20% pyrrhotite, trace										
			sphalerite.										
			19.5'-20.5' - bleached zone with quartz-carbonate stringers.	19.5'	20.51	1.0'	71330	L0.001	0.04				
			35.5'-36.5' - cherty argillite.	35.51	36.51	1.0'	71331	LO.001	0.01				
			36.5'-39.5' - massive bluish to greenish tinged glassy white	36.51	39.51	3.01	71332	1.500	0.13				
			quartz with glassy texture, trace pyrite.	39.51	40.51	1.0'	71333	0.118	0.02				<u> </u>
			Visible gold at 39.0' and 36.3' with trace sphalerite/or galena,										
			trace pyrrhotite, pyrite.										<u> </u>
			39.5'-40.5' - wall rock sample of cherty argillite.										
	<u></u>		53.8'-55.0' - massive quartz with carbonate at upper contact,	53.8'	55.0'	1.2'	71334	0.002	0.05				

DATE LOGGED 11 May 1985

COMPANY NAME Mono Gold Mines Inc.

PROPERTY NAME Bannockburn, Northeast Area

HOLE No. 85-10

					SA	MPLE			ASSAYS													
FROM	то	RECOVY	DESCRIPTION	FROM	то	WIDTH	No.	Au	Ag			,										
11.0'	86.0	(cont.)	25° to core axis. Only first 0.5' is quartz, remainder consisting													oz/tor	oz/tor					
_			of sericitic argillites. Quartz has granular texture. Up to 25%					ļ														
			sulphides in sericitic section.		! !																	
								ļ														
86.0'	115.0'		Limy Biotite Schist and Occasional Garnetiferous Schist (at 87.5'-																			
			90.0'). Weakly banded with good schistosity at 65° to core axis.					ļ														
			Occasional 0.1' quartz stringers.																			
			110.2'-112.5' - massive quartz, somewhat granular, may be	10.2	112.5	2.3'	71335	0.001	0.03													
			silicified quartzite or chert, trace pyrrhotite, pyrite.																			
			Abundant calcite stringers after 110.2'.																			
115.0'	117.2'		Foliated Green Dike with chilled contact at 5°-10° to core axis.																			
			Extensive carbonate alteration.																			
117.2'	160.0		Limy Biotite Schist and Fine Grained Laminated Rocks of possible																			
			volcanic flow origin, abundant carbonate alteration at 132.0'-																			
			138.0'. Mottled texture in places at 45° to core axis.																			
			126.0'-127.0' - 0.2' quartz vein.	26.0'	27.0	1.0'	71336	0.002	0.11													

PAGE 2 OF 3

SAWYER CONSULTANTS INC.	5

DATE LOGGED 11 May 1985

COMPANY NAME Mono Gold Mines Inc.

PROPERTY NAME Bannockburn, Northeast Area

HOLE No. 85-10

	1	1		T amount			1	100400						
FROM	то	RECOVY	DESCRIPTION	SAMPLE			ASSAYS							
				FROM	то	WIDTH	No.	Au	Ag					
117.2	160.0	(cont.)	140.0'-141.0' - as 126.0'-127.0'.	140.0	141.0	1.0'	71337	oz/ton 0.002						
			159.5'-160.5' - quartz-sulphide vein with 50% pyrrhotite + pyrite.	159.5	160.5	1.0'	71338	0.005	0.06					
160.0	225.0		Massive to Weakly Banded Limy Schists becoming more massive											
			at 160.0'. Negligible mineralization except for quartz veins.											
			208.0'-209.0' - quartz vein at 45° to core axis. 0.7' of glassy	208.0	209.0	1.0'	71339	0.004	0.04					
			white quartz.											-
			220.0'-221.5' - quartz vein with heavy pyrrhotite in selvages	220.0	221.5	1.5'	71340	0.010	0.11					
			(> 40% in short sections). Contacts at 60° and 20° to core axis.											· · · · · · · · · · · · · · · · · · ·
			END OF DDH 85-10 at 225.0'.											· · · · · · · · · · · · · · · · · · ·
									·					
									<u>.</u>					

PAGE ____3 ___ OF ___3

COLLAR:	HOL		
37+10N	METHOD:	Acid Etc	h
32+9ØE	FOOTAGE	AZIMUTH	DIP
ELEVATION	0'	N/A	-90
CORE SIZE BQ			
LOGGED BY R.V. Beavon			
DATE LOGGED 13 May 1985			
MAP REFERENCE No. 31C/12			
			
			ļ

OMPANY NAME	MONO GOLD MINES INC.
ROPERTY NAME_	BANNOCKBURN, NORTHEAST AREA
RILLING CONTRAC	CTOR McKnight Drilling Company Limited
SSAYER Bonda	r-Clegg & Company Ltd., Ottawa
URPOSE OF HOLE	Structure and gold content of quartz veins

SAWYER CONSULTANT	S INC.
-------------------	--------

HOLE No.	85-11
CLAIM NAME/No.	EO 652301
COMMENCED	11 May 1985
	12 May 1985
FINAL DEPTH	

FROM	то	RECOVY	COVY DESCRIPTION	SAMPLE				ASSAYS						
	1				то	WIDTH	No.	Au	Ag					
0'	6.0'		Casing.					oz/ton	oz/tor					
6.0'	40.91		Interbedded Cherty and Sericitic Argillites, in part phyllitic.											
			Well banded at low angle to core axis. Contorted in places.											·····
			Weak oxidation at 10.0'. Finely disseminated 10% pyrrhotite											
			throughout.											
			39.8'-40.9' - silicified argillite containing heavy sulphide						+	-				
			disseminations.											
				39.8'	40.9	1.1'	71341	0.001	0:20					
40.9'	42.2'		Quartz Vein. White quartz containing visible gold with trace	40.91	42.2'	1.3'	71342	29.23	1.48					
			galena, trace pyrite, and trace pyrrhotite, usually in anastomosing	42.2'	43.21	1.0'	71343	0.160	0.12					
	<u> </u>		trails subparallel to core axis. Gangue consists of granular			<u> </u>								
			grey and glassy vein quartz with some blue-green tinges.											····

PAGE		OF	2	<u>-</u>
------	--	----	---	----------

SAWYER CONSULTANTS INC.	5

DATE LOGGED 11 May 1985

COMPANY NAME Mono Gold Mines Inc.

PROPERTY NAME Bannockburn, Northeast Area

HOLE No. 85-11

				i				T			 	
FROM	то	RECOVY	DESCRIPTION	FROM	TO	MPLE	No.	Au	ASS	SAYS	<u> </u>	
42.2'	102.0'		Cherty Argillites with intercalated Phyllitic Schist, in part	FROM	10	WIDTH	NG.	oz/to				
			sericitic. Banding and cleavage at low angle to core axis.									
			80.0'-82.0' - heavily disseminated pyrite and pyrrhotite.									ļ
			97.5'-99.5' - quartz vein mixed with country rock at low angle	97.5'	99.51	2.0'	71344	0.042	0.21			
			to core axis.									
			END OF DDH 85-11 at 102.0'.									
											·	
												: [
												_
												1
										-		
							· · · · · · · · · · · · · · · · · · ·					

PAGE 2 OF 2

COLLAR:	HOL	E SURVEY	
37+15N	METHOD:	Acid Et	ch
30+75E	FOOTAGE	AZIMUTH	DIP
ELEVATION	0'	108	50°
CORE SIZE BQ	225'		450
LOGGED BY R.V. Beavon			
DATE LOGGED 13 May 1985			
MAP REFERENCE No. 31C/12			
		I	

COMPANY NAME	MONO GOLD MINES INC.	
PROPERTY NAME	BANNOCKBURN, NORTHEAST AREA	
PRILLING CONTRAC	CTOR McKnight Drilling Company Limited	
	r-Clegg & Company Ltd., Ottawa	_
	To determine extent and gold content of	
uartz veins		

SAWYER	CONSULTAN	TS INC.
--------	-----------	---------

HOLE No.	85-12
	EO 652301
COMMENCED	12 May 1985
FINISHED	13 May 1985
FINAL DEPTH	3051
PROJECT No	
<u> </u>	

FROM	то	RECOVY	DESCRIPTION		SA	MPLE		ASSAYS							
				FROM	то	WIDTH	No.	Au	Ag						
0'	4.0'		Casing.					oz/ton	z/ton						
4.01	18.0'		Dark Grey Phyllitic Argillites, with cleavage at 10° to core axis.												
			Banding (bedding) at 45° to 10°. Oxidized from 12.0' to 14.0'.												
			Disseminated 5-10% sulphides throughout (pyrite + pyrrhotite).												
18.0'	25.0'		Sericite Schist, light grey, siliceous, with cleavage at low	<u> </u>											
			angle to core axis. Negligible mineralization.											······································	
25.0'	43.01		Dark Grey to Black Phyllitic Argillites, as 4.0'-18.0'.				:								
			Occasional sericitic sections. Heavy pyrite, pyrrhotite found												
			in disseminated blebs, especially 32.0'-36.0'.	32.0'	36.01	4.0'	71345	0.014	0.32	_					
43.0'	51.0		Phyllitic Argillites (as 18.0'-25.0') with occasional cherty												
			argillite beds at 450 to core axis. Minor folding with axial												

PAGE	1	OF	
------	---	----	--

COMPANY NAME Mono Gold Mines Inc.

PROPERTY NAME Bannockburn, Northeast Area

HOLE No. 85-12

r		,					<u> </u>	T		SAYS	· · · · · · · · · · · · · · · · · · ·	 	
FROM	то	RECOVY	DESCRIPTION		SAMPLE FROM TO WIDTH No. Au							 ,	
				FROM	то	WIDTH	No.	Au oz/ton	Ag oz/ton				
43.0	51.0	(cont.)	plane cleavage.					52,00	02, 001				
51.0	128.0		Dark Grey Phyllites and Argillites with up to 20% pyrrhotite +										
			pyrite.										
			55.5'-57.0' - semi-concordant white quartz stringers with 5%	55.5	57.0'	1.5'	71346	0.011	0.15				
			pyrite in translucent granular quartz. Includes sericitic										
			alteration envelope.										
			84.0'-85.0' - as 55.5'-57.0' with 10% pyrrhotite, trace galena.	84.0	85.0'	1.0'	71347	0.009	0.32				
			107.0'-108.5' - quartz vein with 30% pyrite + pyrrhotite.		·								
,			Rare carbonate stringers. Surrounding argillites at 45° to	107.01	108.5	1.5'	71348	0.007	0.21				
			core axis.										
			112.0'-114.0' - heavy pyrrhotite >pyrite stringer at low angle										
			to core axis.										
			119.0'-120.0' - carbonate stringers.										
128.0	131.5		Foliated, Carbonate Altered, Mafic Dike at 20° to core axis.										
			Rare garnet.										

PAGE 2 OF 4

DATE LOGGED 13 May 1985

COMPANY NAME Mono Gold Mines Inc.

PROPERTY NAME Bannockburn, Northeast Area

HOLE No. 85-12

FROM	то	DECOVA			SA	MPLE			ASS	AYS		
PHOM	10	RECOVY	DESCRIPTION	FROM	то	WIDTH	No.	Au	Ag			
131.5	302.5		Weakly Calcareous Biotite Schists, banded at 40° to core axis.					oz/to	oz/ton			
			Garnets at 142.0' and occasional marble beds (with idocrase?).									
			Some cherty beds with scattered calcite stringers. (This unit									
			is probably of volcanic origin.) Weak pyrite throughout and									
			occasional pyrrhotite stringers.									
			160.0'-161.5' - chert bed, trace pyrite and black acicular	160.0	161.5	1.5'	71349	0.002	LO.01			
			mineral.									
			255.0'-258.5' - biotite limestone.				:				<u> </u>	
			285.0'-285.4' - quartz vein with heavy pyrrhotite selvages.	284.8'	286.2'	1.4'	71350	0.008	LO.01			
			Contacts at 45° to core axis. Quartz is glassy to mortared.									
			285.4'-298.0' - brown garnetiferous biotite schist with		·							
			calcareous patches.									
			292.0'-292.5' - concordant quartz vein, trace pyrrhotite.	292.0	293.0'	1.0'	71351	0.006	0.01			
			295.0'-296.0' - quartz vein with 50% sulphides, mostly pyrite.									
			Separated from next quartz vein by limy fine grained phyllite.	295.0	296.0'	1.0'	71352	0.006	0.09			
			299.5'-301.5' - massive quartz vein with granular to glassy									
			quartz and 15% pyrrhotite, 2% dolomite.	299.9	301.5	1.6'	71353	0.001	LO.01			
			•									

SAWYER CONSULTANTS INC.	5

DATE LOGGED 13 May 1985

COMPANY NAME Mono Gold Mines Inc.

PROPERTY NAME Bannockburn, Northeast Area

HOLE No. 85-12

	Τ'			SAMPLE													
FROM	то	RECOVY	DESCRIPTION				· · · · · · · · · · · · · · · · · · ·		ASS	SAYS		<u>, </u>					
				FROM	то	WIDTH	No.	<u> </u>		<u> </u>							
302.5	305.0		Sulphide-rich Banded Phyllitic Argillites at 60° to core axis.														
			20% pyrite.						<u>.</u>								
			END OF DDH 85-12 at 305.0'.											·····			
											į						
														_			
														·			
													,				

					-					_							

		-															
														· · · · · · · · · · · · · · · · · · ·			

PAGE ____4 ___ OF ___4

COLLAR:	HOL							
36+45N	METHOD:	METHOD: Acid Etch						
31+25E	FOOTAGE	AZIMUTH	DIP					
ELEVATION	0	N/A	90					
CORE SIZE BQ								
LOGGED BY R.V. Beavon								
DATE LOGGED 15 May 1985								
MAP REFERENCE No. 31C/12								
	· ·							

COMPANY NAME _	MONO GOLD MINES INC.
PROPERTY NAME	BANNOCKBURN, NORTHEAST AREA
RILLING CONTRA	CTOR McKnight Drilling Company Limited
	ar-Clegg & Company Ltd., Ottawa
PURPOSE OF HOLE	E Locate and find gold content of quartz veins

SAWYER	CONSULTANTS INC.
--------	------------------

0 652301
0 032301
3 May 1985
4 May 1985
00'

FROM	то	RECOVY	DESCRIPTION		SA	MPLE				AS	SAYS	
				FROM	TO	WIDTH	No.	Au	Ag			
0'	7.0'		Casing.					oz/ton	z/ton			
7.0'	76.51		Mainly Cherty Argillites, Fine Grained Quartzites (meta-chert),									<u> </u>
			and Sericite Schists. All are interbedded, and well banded									
			at 30° to core axis except where contorted by minor folds									
			(isoclinal in part). Cleavage at 30° to core axis. Up to 15%									
			sulphides disseminated throughout.									
76.5'	79.71		Chilled Mafic Dike or Sill with Carbonate Alteration.									
			Quartz stringer (0.2') at 78.0', trace pyrite, trace pyrrhotite.	77.5	78.5	1.0'	71354	L0./001	LO.01			
79.71	100.51		Mainly Sericite Schists and Intercalated Argillites.									
			Weakly banded at 50° to core axis.									
			10-20% pyrrhotite blebs and stringers.									
			Quartz stringer at 92.5'.	92.0	93.0'	1.0'	71355	0.002	0.01			

	_	_	3
PAGE		OF	

SAWYER CONSULTANTS INC.

C.	

DATE LOGGED 15 May 1985

COMPANY NAME Mono Gold Mines Inc.

PROPERTY NAME Bannockburn, Northeast Area

HOLE No. 85-13

FROM	то	RECOVY	DESCRIPTION		SA	MPLE		T T	ASS	AYS		
I HOW	10	hecovi	DESCRIPTION	FROM	то	WIDTH	No.	Au	Ag			
100.5'	142.0'		Limy Biotite Schists with Contorted Chert inclusions. Well					oz/to	oz/tor			
			bedded in part with occasional sericite schists and limy beds.					<u> </u>				
			100.0'-111.0' - 5-10% pyrrhotite.				:					
			121.5'-122.0' - quartz-pyrite-pyrrhotite-chlorite veinlet with	21.0'	122.0'	1.0'	71356	0.013	0.01			
			50% pyrrhotite.									
			124.0'-136.0' - garnetiferous with heavy magnetite and pyrrhotite.									
			124.0'-125.0'->50% magnetite in banded skarn or iron formation(?).									
			125.0'-126.0' - heavy pyrrhotite selvages on 0.5' quartz vein.	25.0'	126.0'	1.0'	71357	0.022	0.01			
			130.0'-130.5' - quartz vein - granular white to glassy with heavy	30.5	132.0'	1.5'	71358	0.005	LO.01			
			pyrrhotite selvages.									
			133.5'-134.5' - quartz vein, glassy, white with colloform	133.51	134.5	1.0'	71359	0.032	0.12			
	************		marcasite. Heavy pyrite. Another type of quartz is dark grey									
			to black. Some calcite crystals.				,					
			135.5' - quartz stringer with pyrrhotite selvages.	135.0'	136.0'	1.0'	71360	0.008	0.02			:
			137.0'-137.5', 139.5'-140.2', 142.1'-143.5' - concordant quartz									
			veins with pyrrhotite, chlorite and dolomite. Remaining samples	137.5	139.51	2.0'	71364	0.007	0.01			
			are of magnetite skarn at 137.5'-139.5' and 140.5'-142.2'.	139.5'	140.51	1.0'	71361	0.004	LO.01			
				140.5	142.1'	1.6'	71363 I	0.001	0.01			

SAWYER CONSULTANTS INC.	
	4

COMPANY NAME Mono Gold Mines Inc.

PROPERTY NAME Bannockburn, Northeast Area

HOLE No. 85-13

				T	SA	MPLE		T	ASS	AYS		- 1	
FROM	то	RECOVY	DESCRIPTION	FROM	то	WIDTH	No.	 					
142.0'	200.0'		Metavolcanic Unit, fine grained mafic flow-textured massive	142.1'	143.5'	1.4'	71362	oz/tor 0.008	oz/tom L0.01				
			andesite with streaked out amygdules of biotite alteration and					ļ					
			well preserved calcite amygdules. Upper contact at 35° to core					ļ					
			axis, composed of cherty beds (0.2').								 		
			Flow contact at 160.5'.										
			159.0'-160.5' - massive quartz with contacts at a high angle to	159.0'	160.5	1.5'	71365	0.001	0.01				
			core axis. First 2.0' is composed of glassy bluish quartz	ļ									
			with pyrrhotite and dolomite; second 1.3' is a cherty flow contact.										
			176.0'-178.0' - unmineralized cherty quartz, probably a re-	176.01	178.0'	2.0'	71366	0.001	LO.01				
			crystallized flow contact.										
			194.5'-196.0' - cherty flow contact at 15° to core axis.										
			END OF DDH 85-13 at 200.0'.										
			·										······································

COLLAR:	HOL	E SURVEY	EY			
36+10N	METHOD:	Acid Etch				
32+80E	FOOTAGE	AZIMUTH	DIP			
ELEVATION	0'	N/A	-90			
CORE SIZE BO						
LOGGED BY R.V. Beavon						
DATE LOGGED 16 May 1985						
MAP REFERENCE No. 31C/12						
			┼			

COMPANY NAME MONO GOLD MINES INC.
PROPERTY NAME BANNOCKBURN, NORTHEAST AREA

DRILLING CONTRACTOR McKnight Drilling Company Limited

ASSAYER Bondar-Clegg & Company Ltd., Ottawa

PURPOSE OF HOLE Structure and gold content of quartz veins

SAWYER CONSULTANTS INC.

HOLE No	85-14
CLAIM NAME/No.	EO 652301
COMMENCED	14 May 1985
FINISHED	15 May 1985
FINAL DEPTH	200'
PROJECT No.	

FROM TO RECOV		RECOVY	COVY DESCRIPTION		SAMPLE				ASSAYS					
				FROM	то	WIDTH	No.	Au	Ag					
0' 4.0'			Casing.					oz/ton	oz/ton					
4.01	26.01		Black and Grey Cherty Argillites, often phyllitic and well											
			banded at 35° to 40° to core axis. Disseminated, 5-10% pyrrhotite and pyrite throughout.											
				25.0'	26.0'	1.0'	71368	LO.001	L0.01					
26.0' 27.5'		Quartz Vein, glassy with bluish tinge, with pearly mica plates	26.0	27.8'	1.8'	71367	1.139	0.03						
			near 27.5'. Several grains of visible gold associated with	27.8	28.81	1.0'	71369	0.058	0.01					
			acicular mineral. Trace pyrite.										·	
			•											
27.5'	93.0'		Mixed Argillites, Phyllites and Sericite Schists (as 4.0'-26.0').											
			52.0'-52.5' - granular quartz stringer with pyrite, pyrrhotite.	52.0	53.0'	1.0'	71370	L0.001	0.01					
93.01	93.51		Mafic Dike, foliated but with chill well preserved. Carbonate											
			alteration. Less than 10° from core axis.											

SAWYER CONSULTANTS INC.

DATE LOGGED 16 May 1985

COMPANY NAME Mono Gold Mines Inc.

PROPERTY NAME Bannockburn, Northeast Area

HOLE No. 85-14

FROM	TO	RECOVY	DECORPTION		SA	MPLE		I	ASS	SAYS	· · · · · · · · · · · · · · · · · · ·		
PHOM	то	HECOVY	DESCRIPTION	FROM	то	WIDTH	No.	Au	Ag				
93.5'	93.5'113.0'		Cherty Argillites bordering on fine grained quartzites - well					pz/ton	oz/ton				
			developed cleavage at low angle to core axis. Phyllitic sheen							<u> </u>			.
			throughout.					ļ					
				<u> </u>	ļ		**************************************				ļ		
113.0'	200.0		Black Argillites (as 4.0'-26.0'). Variable core angles up to										
			45° to core axis. Marcasite stringer with pyrite at 114.5', 129.0'-134.0', 155.0'-165.0'. Heavy pyrite with up to 1% chalcopyrite and trace sphalerite from 134.0'-137.0'. Heavy galena stringer						:				
			at 137.5'.										
			136.0'-141.0' - sericite schist.										
	<u> </u>		138.5'-139.0' - granular quartz in sericite.,	138.5	139.5	1.0'	71371	0.001	0.01			 	
			166.0'-167.0' - granular quartz vein with pyrrhotite and					<u> </u>					
			pyrite.		167.5'	1.0'	71372	.0.001	LO.01			 	
			167.0'-200.0' - black phyllitic argillites with moderate to heavy					 				 	
	ļ		pyrite. Variable core angles to bedding. Occasional thin folded										
			quartzite layers.	 				ļ					
			END OF DDH 85-14 at 200.0'.	<u> </u>									

PAGE 2 OF 2

Project Name

Bannockburn - Northeast Area Mono Gold Mines Inc.

Month May Page 1 of 2 Year 1985

	Assay Tag No.	D.D.H.	Footage	Width		Au oz./ton	Ag oz./ton	
	71301	85-9	26.0'-27.0'	1.0'		LO.002	0.02	
	71302		36.5'-37.5'	1.0'		0.002	0.04	
	71303		39.4'-40.4'	1.01		0.003	LO.02	
	71310		43.0'-44.0'	1.0'		0.003	0.07	
	71308		47.2'-48.2'	1.0'		0.015	0.02	
	71304		69.2'-70.2'	1.0'		LO.002	L0.02	
	71305		91.9'-92.9'	1.0'		LO.002	LO.02	
	71306		92.9'-93.9'	1.0'		4.104	0.19	
	71307		93.9'-94.9'	1.0'		0.056	0.03	
•	71311		106.5'-107.5'	1.0'		0.054	0.02	
	71309		118.6'-119.8'	1.2'		0.011	0.02	
	71312		120.0'-121.0'	1.0'		0.073	0.03	
	71313		148.0'-149.7'	1.7'		0.019	0.02	
	71314		154.0'-155.0'	1.0'		LO.001	0.04	
	71315		162.0'-163.0'	1.0'		0.003	0.01	
	71316		178.0'-179.0'	1.0'		L0.001	0.01	
	71317		183.0'-184.2'	1.2'		0.004	0.01	
	71318		220.0'-221.0'	1.0'		LO.001	0.04	
	71319		236.0'-237.0'	1.0'		LO.001	0.14	
	71320		238.5'-240.0'	1.5'		L0.001	0.05	
\	71321		250.5'-252.0'	1.5'		LO.001	0.01	
	71322		252.0'-253.0'	1.0'		LO.001	0.04	
	71323		253.0'-254.0'	1.0'		L0.001	0.01	
	71324		257.5'-259.0'	1.5'		0.001	0.01	
	Continued	.		ı	ı			I

Page 2 of 2

Month

May

Year 1985

Assay Tag No. Ag oz./ton Au D.D.H. Width Footage oz./ton LO.001 0.01 71325 85-9 270.5'-271.5' 1.0' 1.0' 272.5'-273.5' LO.001 0.01 71326 LO.001 0.01 289.5'-293.0' 71327 3.51 LO.001 0.01 71328 293.0'-295.0' 2.0' 1.0' 295.0'-296.0' LO.001 LO.01 71329

Work Reports 425-0720, 415-1101

Project Name

Bannockburn - Northeast Area

Mono Gold Mines Inc.

Project Name

Bannockburn - Northeast Area Mono Gold Mines Inc.

Month May

	 	india dara infines		T	,	· · · · · · · · · · · · · · · · · · ·		
Assay Tag No.	D.D.H.	Footage	Width	Assay Rejects Au oz./ton	Au oz./ton	Ag oz./ton		
	İ		1					
71330	85-10	19.5'-20.5'	1.0'		L0.001	0.04		
71331		35.5'-36.5'	1.0'		L0.001	0.01		
71332		36.5'-39.5'	3.01	1.297	1.500	0.13		
71333		39.5'-40.5'	1.0'	0.023	0.118	0.02		
71334		53.8'-55.0'	1.2'	0.003	0.002	0.05		
71335		110.2'-112.5'	2.3'		0.001	0.03		
71336		126.0'-127.0'	1.0'		0.002	0.11		
71337		140.0'-141.0'	1.0'		0.002	0.05		
71338		159.5'-160.5'	1.0'		0.005	0.06		
71339		208.0'-209.0'	1.0'		0.004	0.04		
71340		220.0'-221.5'	1.5'		0.010	0.11		
	:							
		-						
Ì			į					
			ł					

Project Name

Bannockburn - Northeast Area
Mono Gold Mines Inc.

Month

Year 1985

May

Assay Tag No.	р.р.н.	Footage	Width	Assay Rejects Au oz./ton	Au oz./ton	Ag oz./ton	
71341	85-11	39.8'-40.9'	1.1'	LO.001	0.001	0.20	
71342		40.9'-42.2'	1.3'	12.30	29.23	1.48	
71343		42.21-43.21	1.0'	0.129	0.160	0.12	
71344		97.5'-99.5'	2.0'	0.139	0.042	0.21	
71544		97.0799.0	2.0	0.139	0.042	0.21	
·							
					İ		
						ļ	
							İ
					ĺ		
	į						
	İ		-		[
	ļ						
		·					
			j				
İ							
	ļ					,	
]							
Ì							
j			1				
	Ì						
`							Ì
1							
						· - -	
·							
ţ							
ì	1						
4 Samples							

Project Name Bannockburn - Northeast Area

Mono Gold Mines Inc.

Month

Year

May

1985

		none dord mines			,	. , 0 5	
Assay Tag No.	D.D.H.	Footage	Width		Au oz./ton	Ag oz./ton	
71345	85–12	32.0'-36.0'	4.01		0.014	0.32	
71346		55.5'-57.0'	1.5'		0.011	0.15	
71347		84.0'-85.0'	1.0'		0.009	0.32	
71348		107.0'-108.5'	1.5'		0.007	0.21	
71349		160.0'-161.5'	1.5'		0.002	LO.01	
71350		284.8'-286.2'	1.4'		0.008	LO.01	
71351		292.0'-293.0'	1.0'		0.006	0.01	
71352		295.0'-296.0'	1.0'		0.006	0.09	
71353		299.9'-301.5'	1.6'		LO.001	LO.01	
·			1				
						,	
·							
							:
				·			
\				·			
*i.							
9 Sample	,		i	l	ł		

Project Name Banno

Bannockburn - Northeast Area

Month

Year

1985

Mono Gold Mines Inc. May

Assay Tag No.	D.D.H.	Footage	Width	Assay Rejects Au oz./ton	Au oz./ton	Ag oz./ton	
71354	85–13	77.5'-78.5'	1.0'		LO.001	LO.01	
71355		92.0'-93.0'	1.0'		0.002	0.01	,
71356		121.0'-122.0'	1.0'	0.077	0.013	0.01	
71357		125.0'-126.0'	1.0'	0.012	0.022	0.01	
71358		130.5'-132.0'	1.5'		0.005	LO.01	
71359		133.5'-134.5'	1.0'	0.123	0.032	0.12	
71360		135.0'-136.0'	1.0'		0.008	0.02	
71364		137.5'-139.5'	2.0'		0.007	0.01	
71361		139.5'-140.5'	1.0'		0.007	LO.01	
71363		140.5'-142.1'	1.6'		LO.001	0.01	
71362		142.1'-143.5'		0.029			
71302		142.1'-143.5'	1.4'	0.029	0.008	LO.01	
71365		159.0'-160.5'	1.5'		L0.001	0.01	
71366	·	176.0'-178.0'	2.0'	0.022	LO.001	LO.01	
		10.00					
							ļ
·							
	l						
13 Cample							

Project Name

Bannockburn - Northeast Area
Mono Gold Mines Inc.

Month

Year

1985

May

Assay Tag No. Assay Rejects Au oz./ton Au oz./ton Ag oz./ton D.D.H. Width Footage 25.0'-26.0' 0.008 LO.001 LO.01 71368 85-14 1.0' 0.406 1.139 0.03 26.0'-27.8' 71367 1.8' 0.001 0.058 0.01 27.81-28.81 71369 1.0' 71370 52.0'-53.0' 1.0' LO.001 0.01 1.0' LO.001 0.01 71371 138.5'-139.5' 166.5'-167.5' 1.0' LO.001 LO.01 71372

MONO GOLD MINES INC.

CONTINUATION OF THIRD PHASE EXPLORATION

NORTHEAST AREA

BANNOCKBURN PROPERTY

Madoc Township, Ontario

Diamond Drill Logs

and

Assay Summary Sheets

DDH 85-15 to DDH 85-20 inclusive

To accompany Report by SAWYER CONSULTANTS INC. dated August 30, 1985

COLLAR:	HOLE SURVEY							
23+18N	METHOD: Acid Test							
41+01E	FOOTAGE	AZIMUTH	DIP					
ELEVATION	0'	272°	-58°					
CORE SIZE BQ	256'	N/A	540					
LOGGED BY Roy V. Beavon								
DATE LOGGED July 2, 1985								
MAP REFERENCE No. 31C/12								
			<u> </u>					
			ļ					
			ļ					
			1					

COMPANY NAME _	MONO GOLD MINES INC.	_
PROPERTY NAME	BANNOCKBURN, E. ONTARIO	_
DRILLING CONTRA	ACTOR McKnight Drilling Company Limited	_
ASSAYER Cher	mex Labs Ltd., North Vancouver, B.C.	_
	E Extend previous vein zones	_
		_
		-

SAWYER CONSULTANTS INC.

85-15	
EO 652301	
June 30, 1985	
July 2, 1985	
256'	
Mono N.E.	
	E0 652301 June 30, 1985 July 2, 1985 256'

FROM	то	RECOVY	DESCRIPTION	SAMPLE ASSAYS		YS						
				FROM	то	WIDTH	No.	Αu	Ag			
0'	11.0		Casing.					oz/ton	oz/ton			
11.0	54.5		PHYLLITIC ARGILLITES.									
			Well banded light and dark grey phyllite, banded at 45°-50°t.									
			to core axis.									
			Heavy sulphides (15%-30%) throughout.									
			21.0'-22.0' - sericitic cherty argillites, 30% pyrite.	24.5'	25.5'	1.0'	1101G	0.016	0.09			
			25.5'-27.0' - quartz vein, 5% pyrite, 5% pyrrhotite, trace galena.	25.51	27.0'	1.5'	1102G	L0.003	0.09			
			27.0'-43.0' - sericitic cherty argillites with 20% pyrrhotite.	27.0'	28.0'	1.0'	1103G	L0.003	0.14			
			Includes 40.3'-40.8' quartz vein, 20% pyrrhotite, trace arseno-									
			pyrite, trace sphalerite, trace haematite.	39.31	40.3	1.0'	1104G	L0.003	0.12			
			43.0'-51.5' - dark grey argillites with graphite at 47.5'.	40.31	41.3'	1.0'	1105G	L0.003	0.12			
			Approximately 20% mixed pyrite and pyrrhotite.	41.3'	42.3	1.0'	1106G	L0.003	0.14			ļ
			51.5'-54.5' - sericitic argillites as 27.0'-43.0' with 30%									
			combines pyrrhotite and pyrite.									

PAGE	1	OF	4
------	---	----	---

DATE LOGGED July 2, 1985

COMPANY NAME Mono Gold Mines Inc.

PROPERTY NAME Bannockburn, E. Ontario

EDOM	70	DECOVA:	DECODIFICAL		SA	MPLE		1	ASS	SAYS		44	
FROM	то	RECOVY	DESCRIPTION	FROM	то	WIDTH	No.	Au	Ag				
54.5	56.3'		LIMY BIOTITE & CHLORITE SCHIST. (Metavolcanic Rocks)					oz/ton	oz/ton				
			54.5'-56.3' - coarse textured pyrrhotitic tuffite with chlorite,										
	,		20% pyrrhotite.					<u> </u>					
											<u> </u>		
56.3'	256.0'		SCHISTOSE GREENSTONE FLOWS. (Tudor Volcanic Group)					ļ					
	·		56.3'-70.4' - fine grained green basaltic flow - with scattered										
			calcitic stringers, and occasional folded quartz stringers.										
			70.4'-70.8' - interflow quartzite (meta-chert) with weak banding										
			45° to core axis.					<u> </u>					
			70.8'-72.0' - as 56.3'-70.4'.	71.0'	72.0'	1.0'	1107G	0.010	0.03				
			72.0'-73.4' - quartz vein with small country rock inclusion.	72.01	73.41	1.41	1108G	2.048	0.12	·			
			Upper contact at 50° to core axis. Lower contact at 90°-50°	73.41	74.41	1.0'	1109G	0.026	LO.01				
			to core axis. Coarse native gold at upper contact associated										
			with trace pyrrhotite. Trace fine dust of grey metallic mineral.		· · · · · · · · · · · · · · · · · · ·								
			In addition to quartz gangue there are dolomite filled vugs.										:
			73.4'-79.0' - fine grained flow, as 56.3'-70.4'. Minor quartz										
			stringers at 78.5'.								<u> </u>		ļ
			79.0'-80.0' - biotite tuffite, well banded and folded.										

DATE LOGGED July 2, 1985

COMPANY NAME Mono Gold Mines Inc.

PROPERTY NAME Bannockburn, E. Ontario

HOLE No. 85-15

EBO14	70	DECO/A	DECODIDATION		SA	MPLE			ASS	AYS	 	Pr. 101
FROM	ТО	RECOVY	DESCRIPTION	FROM	то	WIDTH	No.	Au	Ag		T	
56.3	256.0	(cont.	80.0'-92.0' - green fine grained flow as 56.3'-70.4'.					oz/tor	oz/ton			
			92.0'-93.5' - foliated carbonate rock, dike or sill at 45° to									
			core axis.									
			93.5'-109.8' - pale green flow material, andesite or basalt with									
			amygdaloidal calcite. 107.0'-107.8' banded metachert 45° to	108.8	109.8	1.0'	1110G	LO.003	0.10			
			core axis.	109.8	110.8	1.0'	1111G	LO.003	0.04			
			109.8'-110.8' - quartz vein, milky quartz, with limited dolomite	110.8	111.8	1.0'	1112G	LO.003	LO.01			
. =			vug fillings. Trace pyrite and pyrrhotite. Variable contact									
			angles.			-						
			110.8'-204.9' - monotonous green andesite with carbonate stringers									
			and occasional seams of pyrite or pyrrhotite. Amygdules with									
			calcite. Traces epidote and tourmaline at 174.0'. Most of this									
			greenstone section shows evidence of pillow lavas with calcite									
			interstices.									
			204.9'-205.25' - quartz vein at 20°-30° to core axis. One flake	203.9	204.9'	1.0'	1113G	LO.003	0.02			
			of native gold near lower contact.	204.9	205.9'	1.0'	1114G	0.138	0.03			
			205.25'-256.0' - greenstone schist, as 110.8'-204.9'.	205.9	206.9'	1.0'	1115G	0.008	0.05			
			Flow contact with cherty to limy chemical and trace argillaceous									

PAGE 3 OF 4

SAWYER CONSULTANTS INC.	5
	-

DATE LOGGED July 2, 1985

COMPANY NAME Mono Gold Mines Inc.

PROPERTY NAME Bannockburn, E. Ontario

FROM	то	RECOVY	DECORPTION		SA	MPLE		ASS	SAYS		-
FHUM	10	HECOVY	DESCRIPTION	FROM	то	WIDTH	No.				
56.3	256.0'	(cont.)	sediment at 191.5'-192.6'.								
			END OF DDH 85-15 AT 256.0'.								
<u> </u>											
											<u> </u>
											<u> </u>
·········											
							-				 ·

COLLAR:	HOLE SURVEY							
23+18N,	METHOD:	METHOD: Acid Etch						
41+01E	FOOTAGE	AZIMUTH	DIP					
ELEVATION	0'	272°	75					
CORE SIZE BQ	286'	N/A	-73°					
LOGGED BY Roy V. Beavon								
DATE LOGGED July 3, 1985								
MAP REFERENCE No. 31C/12								
			<u> </u>					
	<u> </u>							

COMPANY NAME	MONO GOLD MINES INC.
	BANNOCKBURN, E. ONTARIO
-	TOR McKnight Drilling Company Limited
ASSAYER Cheme	ex Labs Ltd., North Vancouver, B.C.
	Work out geometry and continuity of auriferous
quartz veins	

SAWYER	CONSULTANTS INC.

HOLE No.	85-16
CLAIM NAME/No.	EO 652301
COMMENCED	July 2, 1985
FINISHED	July 3, 1985
FINAL DEPTH	286'
PROJECT No.	Mono N.E.

FROM	то	RECOVY	DESCRIPTION		SAI	MPLE				ASSAYS		
				FROM	10	WIDTH	No.	Au				
01	6.0'		Casing.					oz/ton				
6.0'	68.3'		PHYLLITIC ARGILLITES with occasional sericitic phyllite sections.									
			6.0'-24.5' - mainly dark grey, fine grained argillites - well									
			banded with thin cherty and sericitic laminations. Core angle						· · · · · · · · · · · · · · · · · · ·			
			varies between 35° and 45° to core axis. Finely disseminated						•			
			pyrite (20%) and pyrrhotite (5%) throughout.								 	_
		-	24.5'-25.25' - quartzitic sericite chlorite schist or phyllite									_
			with poorly defined banding.	24.5	25.5	1.0'	1116G	0.002				_
			25.25'-26.75' - quartz vein including 0.5' of country phyllite.	25.5	26.75	1.25	1117G	0.022	· ,	 		
			Traces carbonate, pyrrhotite, pyrite. Core angle averages 45°	26.75	27.75	1.0'	1118G	L0.003				_
·		with 25.2 Tractor	to core axis. Quartz is glassy to milky, with some dark seams.									_
			26.75'-29.5' - as 24.5'-25.25'.									_
			29.5'-32.25' - as $6.0'-24.5'$ but with poor banding at 30° to									_
			core axis (may be cleavage).									

PAGE	1	OF	6
------	---	----	---

DATE LOGGED July 3, 1985

COMPANY NAME Mono Gold Mines Inc.

PROPERTY NAME Bannockburn, E. Ontario

			SAMPLE					 	ACC	SAYS	 		
FROM	то	RECOVY	DESCRIPTION	FROM	TO	WIDTH	No.		730	7413			
6.0'	68.3'	(cont.)	32.25'-33.0' - sericite schist as 24.5'-25.25'.									,	
			33.0'-34.0' - folded glassy to milky grey quartz vein. Includes										
			10% carbonate (dolomite) and 10% pyrrhotite, trace pyrite.										
			Parallels schistosity but may be boudinaged.										ļ
			34.0'-49.5' - sericite phyllites, less quarzitic than previously,										
			but otherwise similar. Heavy sulphides (>25%) throughout, say 20%										
			pyrrhotite and 5% pyrite, often occurring as blebs and weak										
			stringers. Trace galena at 37.5', sometimes with carbonate										
			segregations. Gradational contact at 49.5'.										
			49.5'-68.3' - mainly phyllitic argillite with occasional sericite										
			schist sections, essentially mixed. Up to 20% pyrrhotite throughout										
			and 5% pyrite. Schistosity at 35° to core axis.				····						
68.3	70.01		GREENSTONE SCHIST & PHYLLITE.				···						
			68.3'-70.0' - garnetiferous biotite-chlorite schist with thin										
			bands at 30° to core axis.										

DATE LOGGED _____ July 3, 1985

COMPANY NAME ____ Mono Gold Mines Inc.

PROPERTY NAME ____ Bannockburn, E. Ontario

FROM	то	RECOVY	DESCRIPTION		SA	MPLE		<u> </u>	ASSAYS							
I HOW		HECOVI	DESCRIPTION	FROM	то	WIDTH	No.	Au								
70.0	286.0		SCHISTOSE GREENSTONE FLOWS. (Tudor Volcanic Group)					oz/ton								
			70.0'-90.0' - fine grained greenstone flows, with occasional													
			flow-contact metacherts (quartzite), at 72.5', 71.5'.													
			Flattened sugary calcite segregations (inter pillow?), and													
			flattened calcitic amygdules. (0.1' quartz carbonate stringer	88.8'	89.81	1.0'	1119G	0.010								
			at 74.0'.)	89.8	90.81	1.0'	1120G	0.359								
			90.0'-90.5' - quartz vein, milky white - translucent with trace	90.8	91.8'	1.0'	1121G	LO.003								
			pyrite and trace pyrrhotite, trace native gold. Contacts at													
			45°-15° to core axis.													
			90.5'-103.2' - biotitized and chloritized flows with calcite													
			stringers and occasional narrow quartz veinlets. Schistosity													
			at 30° to core axis. Flow contact at 101.5' (cherty quartzite).													
			102.5'-103.5' - quartz vein at 45° to core axis. Good evidence	102.5	103.5'	1.0'	1122G	LO.003								
			of dilation. Negligible mineralization.													
			103.5'-115.0' - fine grained greenstone flows with occasional			·										
			quartz tourmaline veinlets, at 105.5' with arsenopyrite and													
			dolomite, at 115.5' with idiomorphic tourmaline. Tend to cut													
			schistosity obliquely at 36° to core axis.													

SAWYER CONSULTANTS INC.

DATE LOGGED July 3, 1985

COMPANY NAME Mono Gold Mines Inc.

PROPERTY NAME Bannockburn, E. Ontario

	1				SAI	MPLE		ASSAYS					
FROM	то	RECOVY	DESCRIPTION	FROM	то	WIDTH	No.	oz/ton					
70.0	286.0	(cont.)	115.0'-115.5' - quartz tourmaline (schorl?).	115.0'	116.0'	1.0'	1123G						
			115.5'-137.5' - as 103.5'-115.0'. Flow contact quartzite, well										
			banded at 119.0', 122.0'-123.0', 135.5'. Quartz tourmaline										
			veinlets at 117.5' and 137.0'. Trace tetradymite at 132.0'										
			on isolated pyrite stringer. Bedding varies from 35° to core										
			axis to parallel to core axis. Scoriaceous zone at 120.5'.										
			Quartz amygdules at 134.0' (1.5 cm long). Trace native silver?										
			at 132.0' on isolated sulphide stringer.		<u> </u>								i
			137.5'-140.4' - green sill with well preserved chill at 137.5'										
			at 50° to core axis. Carbonate (calcite) alteration throughout.		<u> </u>								
ļ			Appears to be folded with quartzitic flow contact parallel to										
			core axis at 140.0'. Lower contact cut by quartz vein at 90°										
			to core axis. Well schisted with heavy biotite.	140.01	141.0'	1.0'	1124G	0.003					
			140.4'-140.3' - quartz vein with tourmaline patch.										
			140.3'-151.0' - variegated flows and flattened hyaloclastite										ļ
			structure.										<u> </u>
			151.0'-156.0' - interflow tuffites with heavy banded sulphides										
			(pyrrhotite). Cherty groundmass in places. Otherwise a banded										

SAWYER CONSULTANTS INC.	
	-9

DATE LOGGED ______ July 3, 1985

COMPANY NAME ____ Mono Gold Mines Inc.

PROPERTY NAME Bannockburn, E. Ontario

HOLE No. 85-16

50014		2522124			SA	MPLE		T	ASS	SAYS		 ``````````
FROM	то	RECOVY	DESCRIPTION	FROM	то	WIDTH	No.	Au	Te			
70.0	286.0	(cont.)	biotite schist.					pz/ton	ppm			
			156.0'-186.4' - fine grained green flows. Cherty and calcareous									
			flow contact at 161.0'. Typical metagreenstones with calcite									
			segregations throughout. Biotite-chlorite schist lacking									
			lamination. Quartz calcite vein at 166.0'.									L
			186.4'-186.5' - quartz veinlet with native gold and tetradymite.	184.0'	185.0'	1.0'	1125G	.0.003				ļ <u>.</u>
			At 50° to core axis 10% pyrrhotite.	185.0'	186.0'	1.0'	1126G	1.487				! !
			186.5'-203.0' - limy greenstone schists as 156.0'-186.4'.	186.0'	187.0'	1.0'	1127G	0.008				
			20% pyrrhotite at 202.5' with carbonate alteration?									ļ
			203.0'-203.2' - quartz vein with coarse native gold and tetradymite.	201.5'	202.5'	1.0'	1128G	0.008				
			Auriferous zone.	202.5	204.51	2.0'	1129G	6.633	75.00			
			203.2'-204.0' - greenstone schist, trace arsenopyrite, native gold.	204.51	205.5'	1.0'	1130G	0.324				<u> </u>
			204.0'-204.1' - quartz stringer, pyrrhotite with native gold and									
			tetradymite.									·····
			204.1'-205.0' - limy tuffaceous flow contact? or carbonate altered									<u></u>
			zone.									
			205.0'-248.5' - schisted in part amygdule, in part carbonate	ļ								
			altered biotite-chlorite flows, with folded quartz segregations at									

PAGE ____5 ___ OF ___6

July 3, 1985 DATE LOGGED Mono Gold Mines Inc. COMPANY NAME. Bannockburn, E. Ontario

PROPERTY NAME

85-16 HOLE No._

EDOM	TO	DECOVA	DECODITION		SA	MPLE		<u>_</u>	ASSAYS	ASSAYS					
FROM	то	RECOVY	DESCRIPTION	FROM	то	WIDTH	No.	Au							
70.0	286.0	(cont.)	227.0', and 230.0'. Quartz carbonate stringer at 237.0'.					oz/ton							
			248.5'-250.0' - quartz-tourmaline (>1%) vein sub parallel to										 		
			core axis. Cuts pyritic quartz segregation.	249.0'	250.01	1.0'	1133G	1.288			_		<u></u>		
			250.0'-253.2' - as 205.0'-248.5' with bedding parallel to core axis.												
			253.2'-255.0' - mixed quartz - vein and schist with some carbonate,	253.3'	255.3'	2.0'	1132G	2.129							
			5% pyrrhotite.												
			255.0'-258.0' - flow contact zone with cherty quartz.												
			258.0'-286.0' - greenstone schists with biotite and chlorite, and												
			quartz-carbonate inter pillow(?) patches. Quartz vein with	270.0'	271.0'	1.0'	1131G	0.012							
			15% pyrrhotite at 270.5'.												
			END OF DDH 85-16 AT 286.0'.												
						:									
						•									

COLLAR:	HOL	E SURVEY	
24+10N	METHOD: A	cid Tes	t
40+98E	FOOTAGE	AZIMUTH	DIP
ELEVATION	0'		45°
CORE SIZE BQ	200'		40
LOGGED BY Roy V. Beavon	4001		+38°
DATE LOGGED July 5, 1985			
MAP REFERENCE No. 31C/12			
			-
			†
			1

OMPANY NAME	MONO GOLD MINES INC.	_
ROPERTY NAME_	BANNOCKBURN, E. ONTARIO	_
RILLING CONTRAC	CTOR McKnight Drilling Company Limited	_
SSAYERCheme	ex Labs Ltd North Vancouver, B.C.	_
URPOSE OF HOLE	To determine number of auriferous veins	_
		_

SAWYER CONSULTANTS INC.

HOLE No.	85–17
CLAIM NAME/No	EO 652301
COMMENCED	July 4, 1985
FINISHED	July 6. 1985
FINAL DEPTH	404'
	Mono N.E.

FROM	то	RECOVY	DESCRIPTION	SAMPLE						ASSAYS		
				FROM	то	WIDTH	No.	Au				
0'	7.5'		Cased to 8.0'.					oz/ton				
7.5'	13.0'		RUSTY PHYLLITE. Heavily oxidized pyrrhotite and pyrite.									
			Well banded argillites.									
13.0'	404.0	.	SCHISTOSE GREENSTONE FLOWS. (Tudor Volcanic Formation)									
			Oxidized calcareous green phyllite with calcitic laminations.									
			Cherty and calcitic flow contacts at 22.0'-23.5', 25.3', 30.5'.									
			Amygdaloilal fine grained flows.									:
			35.7'-37.0' - carbonate altered schisted biotitic sill.				·					
			Chill preserved at 60° to core axis.									
			37.0'-62.0' - pale green amygdaloidal flows - green schist									
			with calcite stringers. Flow contact at 46.4'-46.9'.								_	
			Abundant amygdules at 53.0'-54.0'.									
			62.0'-62.4' - quartz vein at 60°-45° to core axis. Milky	61.6'	62.6'	1.0'	1134G	0.004				

PAGE_	1	_ OF .	0
-------	---	--------	---

DATE LOGGED July 5, 1985

COMPANY NAME Mono Gold Mines Inc.

PROPERTY NAME Bannockburn, E. Ontario

500		25.00.01			SA	MPLE		<u> </u>	ASS	AYS		 	
FROM	то	RECOVY	DESCRIPTION	FROM	то	WIDTH	No.	Au			T		
13.0'	404.0	(cont.)	white with dolomite stringers.					oz/ton					
-			62.4'-64.5' - as 37.0'-62.0'.										
· · · · · · · · · · · · · · · · · · ·			64.5'-65.0' - quartz-carbonate veins at 55° to core axis.										
			Negligible mineralization.										<u> </u>
			65.0'-74.1' - as 37.0'-62.0', with partly deformed breccia at										
			65.5', and thinly laminated at 73.0'-74.0'. Numerous calcitic										
			sections throughout.	73.01	74.01	1.0'	1135G	LO.002					
			74.1'-75.0' - massive white quartz, glassy to granular in	74.01	75.01	1.0'	1136G	2.052					
			texture. (Ground core in two places.) Sharp contacts at 60°	75.01	76.0'	1.0'	1137G	0.014		···			
			to core axis. Native gold and trace tetradymite.										
			Trace pyrite on lower contact.										
			75.0'-104.5' - monotonous green schist with sparse calcite										
			stringers.										
			104.5'-108.0' - massive grey chert of interflow origin.										
			Occasional carbonate stringers. Traces coarse pyrite at 107.5'.							· · · · · · · · · · · · · · · ·			
			Weakly banded at 60° to core axis.										
			108.0'-135.1' - schistose greenstone as 75.0'-104.5'.										<u></u>
			Occasional finely amygdular sections.										

SAWYER CONSULTANTS INC.

DATE LOGGED July 5, 1985

COMPANY NAME Mono Gold Mines Inc.

PROPERTY NAME Bannockburn, E. Ontario

- FROM	T	2500101		1	SA	MPLE		<u>_</u>	ASSAYS		
FROM	то	RECOVY	DESCRIPTION	FROM	то	WIDTH	No.	Au		1	
13.0'	404.0	(cont.)	Cherty flow contact at 116.5'. Several ground core sections					oz/tor			
			at 120.0'-124.0'. Core loss less than 0.2'. Narrow quartz								
			stringers at 127.0', 127.5'. Schistosity at 80° to core axis.							 	
			135.1'-135.3' - quartz vein at 70° to core axis. Translucent								
			white quartz with tourmaline and pyrrhotite.	133.9	134.9	1.0'	1138G	0.016		ļ	
	<u> </u>		135.3'-135.7' - mixed quartz and country rock with native gold	134.9	135.9	1.0'	1139G	1.056		<u> </u>	
	<u></u>		traces (cut by quartz tourmaline vein?) associated with quartz	135.9	136.9	1.0'	1140G	0.242			
			stringer.	<u>.</u>							<u> </u>
			135.7'-150.4' - fine grained chlorite schist (flows) with		ļ						
			occasional quartz and quartz-calcite stringers. Pyrite								
			stringers at 146.5'.								ļ <u> </u>
			150.4'-151.9' - massive white translucent quartz with trace	50.4	51.9'	1.5'	1141G	0.042			
			carbonate and pyrite selvages. Contacts at 80° to core axis.								
			151.9'-157.3' - as 135.7'-150.4'. 0.2' quartz stringer at 154.7'.								
			157.3'-158.4' - massive grey chert, weakly banded at 60° to								
			core axis.								
			158.4'-173.4' - as 135.7'-150.4' with quartz chlorite veinlets								
			at 161.0', 161.5'. Cherty infolds at 167.0'-169.0'. Narrow								

SAWYER CONSULTANTS INC.

DATE LOGGED _____ July 5, 1985

COMPANY NAME ____ Mono Gold Mines Inc.

PROPERTY NAME ____ Bannockburn, E. Ontario

	1				SA	MPLE	- <u>.</u>		ASSAYS		
FROM	ТО	RECOVY	DESCRIPTION	FROM	то	WIDTH	No.	Au			
13.0'	404.0	(cont.	quartz veined with pyrite and soft fibrous tan zeolite? at 170.0'.					oz/ton			
			173.4'-175.5' - massive glassy translucent quartz at 45° to	173.4	175.5	2.1'	1142G	0.010			
			core axis. 20% pyrite and inclusions of country rock.								
			Tourmaline needles in chlorite.								
			175.5'-178.1' - massive greenstone with weak schistosity, and								
·			scattered fine sulphide disseminations. Becoming harder with								
			depth.								
			178.1'-179.0' - massive quartz at 40° to core axis. Magnetite	178.0	179.0'	1.0'	1143G	0.010			
			streak in greenstone wall at 179.1'.								
			179.0'-181.8' - as 175.5'-178.1' with occasional quartz pyrite								
			stringers.								
			181.8'-182.4' - quartz vein at 45° to core axis.	181.8	182.8	1.0'	1144G	0.008			
			182.4'-186.5' - weakly schistose to massive greenstone, probably							 	
			a coarser central flow portion. Magnetite schlieren at 182.6' -								
			(seems to form under selvage of some veins).								
			186.5'-187.2' - several quartz veinlets at 20° to core axis.								
			Magnetite selvage at 187.2' and 187.5'.								
			187.2'-188.0' - as 182.0'-186.0'.								

SAWYER CONSULTANTS INC

) .	5	

DATE LOGGED July 5, 1985

COMPANY NAME Mono Gold Mines Inc.

PROPERTY NAME Bannockburn, E. Ontario

				T	SAI	MPLE	<u> </u>	T	ASSAYS	-	
FROM	то	RECOVY	DESCRIPTION	FROM	то	WIDTH	No.	Au		<u>T</u>	
13.0'	404.0	(cont.)	188.0'-188.7' - more quartz veins at low angle to core axis.	186.5	189.0'	2.51	1145G	0.004			
			188.7'-254.0' - fine grained greenstone flows. Scoriaceous							 ļ	
			flow top at 194.5'-195.5' with calcite amygdules. Occasional								·
			pyrrhotite and some magnetite, the pyrrhotite associated with								
			carbonate veinlets. Quartz-calcite veinlet at 30° to core								
			axis at 200.0'-200.5', and 203.5'. Numerous quartz carbonate -								·
			(pyrite) stringers throughout. Some darker vs. paler green								
			sections. Disseminated pyrrhotite becoming heavier (10%) in								
			massive flows at 247.5'-254.0'. [0.5' lost core at 249.0'.]								
			Trace malachite? Possible fault at 249.0'.							.	
			254.0'-267.0' - paler green schistose calcareous greenstones,								
			mainly flows but may be some thin tuffs. Strong schistosity								
			at 254.0', gradually diminishing.								
			267.0'-274.6' - darker green, more massive flows. Heavy								
			pyrrhotite and trace pyrite at 267.0'-274.6'. Biotite prominent								·- · · · · · · · · · · · · · · · · · ·
			at 269.0'. Flow contact chert at 274.0'-274.6', weakly banded								·
			at 45° to core axis.								
			274.6'-295.0' - greenstone flow with calcite stringers and some								-

SAWYER CONSULTANTS INC.	
-------------------------	--

DATE LOGGED July 5, 1985

COMPANY NAME Mono Gold Mines Inc.

PROPERTY NAME Bannockburn, E. Ontario

FROM	то	RECOVY	DESCRIPTION		SA	MPLE	***************************************	ASSAYS						
		ILCOVY	DESCRIPTION	FROM	то	WIDTH	No.	Au						
13.0'	404.0	(cont.)	carbonate and epidote alteration, often in selvages of or within					oz/tor						
			calcitic stringers.											
			295.0'-304.0' - gradational contact at 295.0' between calcareous				•							
			flow and more massive flow with disseminated pyrrhotite in											
			amygdules. Numerous quartz calcite stringers.											
			304.0'-316.0' - pale green carbonated flows or chlorite schist.											
			Riddled with calcite stringers. Possible fault at 307.0'.	<u> </u>										
			(Water circulation lost.)											
			316.0'-316.5' - translucent white quartz vein at 60° to core	315.5	316.5	1.0'	1146G	0.004						
			axis. Trace calcite, negligible mineralization.											
			316.5'-321.5' - as 304.0'-316.0'.											
			321.5'-322.8' - massive white quartz with inclusion of country rock.	321.5	323.8'	2.3'	1147G	0.006						
			322.8'-404.0' - as 304.0'-316.0', becoming mottled from 334.0'-											
			350.5'. Possible flow contact at 350.5' masked by quartz stringer.											
			5% disseminated sulphides from 350.5'-378.5', mainly pyrrhotite,				:							
			trace pyrite. Epidote alteration at 369.0', 377.0', 388.0'.											
			END OF DDH 85-17 AT 404.0'.											

COLLAR:	HOL	E SURVEY								
25+90N	METHOD:	METHOD: Acid Etch								
41+34E	FOOTAGE	AZIMUTH	DIP							
ELEVATION	0,		-90°							
CORE SIZE BQ	250'		-85°							
LOGGED BY Roy V. Beavon										
DATE LOGGED July 7, 1985										
MAP REFERENCE No. 31C/12										
			1							

COMPANY NAME	MONO GOLD MINES INC.
PROPERTY NAME	BANNOCKBURN, E. ONTARIO
DRILLING CONTRAC	CTOR McKnight Drilling Company Limited
ASSAYER Chem	ex Labs Ltd., North Vancouver, B.C.
	Check strike continuity of auriferous veins

SAWYER CONSULTANTS INC.

85–18
EO 652301
July 6, 1985
July 7, 1985
284'
Mono N.E.

FROM	то	RECOVY	DESCRIPTION		SA	MPLE		ASSAYS								
				FROM	то	WIDTH	No.									
0,	2.61		Cased overburden.											[
2.6'	284.0		SCHISTOSE GREENSTONE FLOWS. (Tudor Volcanic Group)				-							i		
			Massive to weakly schisted greenstone flows, dark green,													
			amygdaloidal in places, and with cherty flow contacts. Minor													
			secondary quartz segregations. Flow contacts at 11.5', 22.0'-						:							
	-		23.0'(?) with irregular quartz segregation. Carbonate alteration						, <u>.</u>					<u> </u>		
			at 24.0'-26.0'. Quartz calcite veinlet at 31.7'. Cherty flow						<u> </u>							
			contact at 32.7'-33.4' at 15° to core axis. Flow contact chert											ļ		
			at 35.0' (may be repeated by folding). Coarse, slightly flattened													
			amygdaloids from 37.0'-39.0'. Amygdules mainly quartz with some											_		
			carbonate. Flow contact chert at 30° to core axis at 58.5'-59.3'.													
			59.3'-71.5' - massive amygdaloidal greenstone flow with rare													
			quartz carbonate stringer. Chilled at 59.3' and near 71.5'.		,									·		
			71.5'-72.0' - cherty flow contact?							<u> </u>						

PAGE	1	OF	5

SAWYER CONSULTANTS INC.

DATE LOGGED July 7, 1985

COMPANY NAME Mono Gold Mines Inc.

PROPERTY NAME Bannockburn, E. Ontario

F	T	<u> </u>		SAMPLE							 التحديث والمساوات		
FROM	то	RECOVY	DESCRIPTION					.	ASS	SAYS	1		
	-			FROM	- то	WIDTH	No.						
2.6	284.0	(cont.)	72.0'-76.5' - carbonate altered schistose greenstone flow.			ļ		ļ		<u> </u>			
			76.5'-77.0' - chert and limy bands constitute flow contact at										
			15° to core axis.										
		•	77.0'-82.0' - greenstone flow with quartz-carbonate stringers.										
			82.0'-84.0' - mixed chert and biotite schist constitute a flow										
			contact.										
			84.0'-91.0' - massive flow with fine amygdules and occasional										
			insignificant quartz segregations.										
			91.0' - flow contact, 0.1' of chert.										
			91.0'-93.7' - scoriaceous flow top.										
			93.7'-101.4' - carbonate altered flow or tuffaceous zone -										
			(greenstone schist). May have been hyaloclastite zone.										
			101.4'-103.0' - massive quartzitic chert. (Another flow contact.)									_	
			103.0'-107.5' - Amygdaloidal flow with flattened quartz amygdules	<u> </u>									
			up to 1.5 cm long.										
			107.5'-108.0' - mixed chert and biotite schist - flow contact.										
			(Repeats at 109.0'.)							_			
			108.0'-123.8' - massive greenstone flow with some carbonate										

SAWYER CONSULTANTS INC.	
	4

DATE LOGGED July 7, 1985

COMPANY NAME Mono Gold Mines Inc.

PROPERTY NAME Bannockburn, E. Ontario

HOLE No. 85-18

<u> </u>	SAMPLE									SAYS				
FROM	то	RECOVY	DESCRIPTION	FROM	TO	WIDTH	No.	Au	AS	DATS	T	1	1	
2.6'	284.0'	(cont.)	alteration. Good chill at 108.0'.					oz/tor						
			123.8'-124.0' - cherty flow contact.											
			124.0'-136.7' - massive greenstone flow (10.0' runs at this point)						,					
			becoming amygdaloidal and abut in carbonate alteration at 129.0'-											
			136.0'. Occasional quartz carbonate joint fillings.								ļ			
			136.7'-137.4' - mixed biotite schist and chert flow contact,			ļ								ļ.
			well banded at 15° to core axis.											
			137.4'-142.5' - as 124.0'-136.7'.											 -
			142.5'-144.5' - cherty flow contact at 0° to core axis.											
			144.5'-155.2' - weakly schisted greenstone flow with flattened							{ 				
			quartz amygdules.											ļ
			155.2'-155.0' - cherty flow contact at 70° to core axis.											
			155.0'-168.5' - weakly schisted greenstone flow. Contains quartz	<u> </u>										
			veinlets with biotite selvages at 161.0'. Some secondary biotite		 						<u> </u>			
			after hornblende? Quartz segregations at 165.0'. Flow contact	167.0'	168.0'	1.0'	1148G	0.004			ļ			
	_		chert at 168.4', cut by quartz veins (below).	168.0	169.2'	1.2'	1149G	L0.003						
 			168.5'-174.1' - quartz vein complex. 169.2'-174.1' - Discovery	169.21	171.2'	2.0'	1150G	L0.003						
			Vein(?) with 5% disseminated pyrite and trace native gold.	71.2	174.0'	2.8'	1151G	0.003						

PAGE ____3 ___ OF ___5

SAWYER CONSULTANTS INC.

DATE LOGGED July 7, 1985

COMPANY NAME Mono Gold Mines Inc.

PROPERTY NAME Bannockburn, E. Ontario

50014	T	BECOV			SA	MPLE			AS	SAYS		
FROM	то	RECOVY	DESCRIPTION	FROM	то	WIDTH	No.					
2.6'	284.0	(cont.)	60° to core axis. 169.2'-171.8' - zone of quartz and biotite									
- 44			segregations composed of 60% quartz in angular segregations, and									
			40% of biotitized country rock. Negligible mineralization.									
•			171.8'-171.9' - altered greenstone. 171.9'-174.1' - white,					ļ				
			relatively clean quartz with biotite segregations. This is								 	
			translucent quartz similar to the tourmaline bearing veins.									
			174.1'-180.5' - slightly biotitized greenstone flow with									
			boudinaged quartz-carbonate segregations. Schistosity at 20°								 	
			to core axis.									
			180.5'-181.1' - cherty flow contact cut by cherty quartz veinlet.		· · · · · · · · · · · · · · · · · · ·		.					
			181.1'-189.5' - fine grained weakly carbonated greenstone flow.									
			189.5' - possible flow contact with quartz-carbonate stringer.	·								
			189.5'-217.8' - weakly banded greenstone flow parallel to core								 	 ļ
			axis. Quartz carbonate stringers at 196.5' with trace pyrite,								 <u>.</u>	
			and 215.0'.									
			217.8'-218.1' - cherty flow contact showing folding.				· <u></u>				 	<u></u>
			218.1'-242.5' - partly amygdaloidal flow at low angle to core									
			axis. Quartz-carbonate stringer at 237.5'.									

SAWYER	CONSULTANTS	INC.

; .	5	

DATE LOGGED July 7, 1985

COMPANY NAME Mono Gold Mines Inc.

PROPERTY NAME Bannockburn, E. Ontario

	·	1			SAMPLE			<u> </u>						
FROM	то	RECOVY	DESCRIPTION	ļ			T		AS	SAYS				
				FROM	то	WIDTH	No.	Au			 			_
2.61	284.0	(cont.)	242.5'-242.8' - chert flow contact.					oz/ton		<u> </u>				<u> </u>
			242.8'-263.0' - massive greenstone flow with occasional quartz-											
ļ 			carbonate stringers, some of which are early, exhibiting augen	<u> </u>										
			or pull-apart structure. Banding parallel to core axis.											
			Carbonate alteration from 260.0'-263.0'.											
			263.0'-263.5' - cherty flow contact.						<u> </u>					
			263.5'-266.5' - massive flow with trace pyrite and occasional											
			quartz-carbonate stringers.											
			266.5'-270.8' - massive quartz vein, ranging from opaque white	265.5	266.5'	1.0'	1152G	LO.003						
			to mottled grey translucent. Contains 15%-20% pyrrhotite, and	266.5	270.8'	4.31	1153G	L0.003	·					
			and trace pyrite, trace dolomite, trace muscovite, trace biotite.	270.81	271.9'	1.1'	1154G	LO.003						
			270.8'-284.0' - massive to varibly banded greenstone with											
			light carbonate alteration.											
			END OF DDH 85-18 AT 284.0'.											
														

COLLAR:		E SURVEY	
27+87N	METHOD:	Acid Tes	t.
42+3 <u>8</u> E	FOOTAGE	AZIMUTH	DIP
ELEVATION	0'	272°	-45°
CORE SIZE BQ	2741	N/A -	4230
LOGGED BY Roy B. Beavon			
DATE LOGGED July 9, 1985			
MAP REFERENCE No. 31C/12			
			<u> </u>
			<u> </u>
	, i		

COMPANY NAME.	MONO GOLD MINES INC.	
PROPERTY NAME	BANNOCKBURN, E. ONTARIO	
DRILLING CONTRA	ACTOR McKnight Drilling Company Limited	
ASSAYER Che	mex Labs Ltd. North Vancouver. B.C.	
PURPOSE OF HOL	E Check strike extent of vein system	

SAWYER CONSULTANTS INC.

HOLE No.	85-19	
CLAIM NAME/No	EO 652301	
COMMENCED	July 7, 1985	
FINISHED	July 8, 1985	
FINAL DEPTH	274'	
PROJECT No	Mono N.E.	

FROM	то	RECOVY	RECOVY DESCRIPTION		SAMPLE				ASSAYS						
				FROM	то	WIDTH	No.								
0'	3.0'		Overburden, casing to 6.0'.												
3.01	5.0'		MASSIVE GREENSTONE FLOWS. (Tudor Volcanic Group)												
			Weakly foliated mafic flow.												
5.01	5.51		FAULT ZONE.												
			Partly weathered, rusty green phyllite with oxidized sulphides.												
5.5'	274.0'		MASSIVE GREENSTONES.												
			Massive to weakly foliated mafic flows with calcite amygdaloids												
			and occasional thin cherty flow contact sediments. Some sections												
			contain pervasive carbonate alteration. Thin calcite and quartz											· · · · · · · · · · · · · · · · · · ·	
			stringers throughout. No substantial quartz veins intercepted.												
			Negligible mineralization, trace pyrite throughout.												
			5.5'-11.0' - Greenstone flow with fine amygdules calcite. Some												

PAGE	1	OF	4
------	---	----	---

SAWYER CONSULTANTS INC.

NC.	5

DATE LOGGED July 9, 1985

COMPANY NAME Mono Gold Mines Inc.

PROPERTY NAME Bannockburn, E. Ontario

FDOM		0500104			SA	MPLE		Ī	AS	SAYS		g 	
FROM	то	RECOVY	DESCRIPTION	FROM	то	WIDTH	No.	Au		1	I	I	
5.5'	274,0'	(cont.)	cherty veinlets indicative of calcedonic silica (i.e. late					oz/ton					
			fumerolic?).					<u> </u>			<u> </u>		
			11.0'-11.4' - cherty flow contact.										
			11.4'-58.0' - greenstone flow becoming laminated due to cleavage	•						.	ļ <u>-</u>		
			at 55° to core axis between 23.0'-33.0' (no sharp contacts noted).										
<u> </u>			Carbonate (calcite) alteration is stronger over 23.0'-33.0'					ļ					
	· · · · · · · · · · · · · · · · · · ·		interval. Weathered carbonate vugs at 25.5'. 57.5'-58.0' - 10%										
			pyrite.										
			58.0'-59.0' - cherty flow contact with trace pyrite.										
			59.0'-62.3' - greenstone flows in part amygdaloidal, trace epidote										
			at 61.0'.										
			62.3'-63.5' - quartz vein at 35° to core axis. Transgresses	62.21	63.51	1.3'	1155G	-0.003					
<u>. </u>			foliation, trace pyrite, trace carbonate.										
			63.5'-83.0' - massive to schisted greenstone. Epidotitic										
			amygdules at 64.5'. Cleavage at 50° to core axis.						.				
		·	83.0'-84.1' - quartz-carbonate veining with schistose greenstone						· · · · · · · · · · · · · · · · · · ·				
			inclusions (could be an early fault sealed by quartz and carbonate).										
			Negligible mineralization.										

SAWYER CONSULTANTS INC.

DATE LOGGED July 9, 1985

COMPANY NAME Mono Gold Mines Inc.

PROPERTY NAME Bannockburn, E. Ontario

				1	SA	MPLE	1 - ,		ASS	AYS			
FROM	TO	RECOVY	DESCRIPTION	FROM	то	WIDTH	No.	Au					
5.5'	274.0	(cont.)	84.1'-89.0' - greenstone as 62.3'-63.5'.					oz/ton					
4 - 1			89.0'-99.0' - cherty to quartzitic banded flow - contact sediment										
			at 60° to core axis. Well laminated with carbonate alteration										·
			at 98.5'-99.0'.				· · · · · · · · · · · · · · · · · · ·			·			
			99.0'-99.5' - quartz-carbonate vein at 50° to core axis. Waxy	98.7'	99.71	1.0'	1156G	L0.003					
			chlorite selvage at 99.5'.										
			99.5'-117.0' - greenstone flows with occasional quartz-carbonate										
			veinlets, in part amygdular with calcite. Epidote alteration			! !							
		-	at 112.0', 115.2', and 117.0', associated with stringer or vein				·				ļ		
			selvages.										
			117.0'-117.5' - carbonate and epidote alterered flow contact										
			sediment.										
		·	117.5'-184.1' - massive fine grained greenstone with quartz										
			carbonate veinlets at 120.0'-121.0', 124.0', 136.5'.										
			Carbonate (calcite) alteration at 149.0'-151.0' - on amygdaloid										
			section. Pyrite paint on joint at 157.0'-158.0'. Possible flow										
			contact at 158.0'. Quartz carbonate veinlet at 76.5'. Possible										
			flow contact with calcedonian quartz at 181.5'.										

SAWYER CONSULTANTS INC.	

	-
7	

DATE LOGGED July 9, 1985

COMPANY NAME Mono Gold Mines Inc.

PROPERTY NAME Bannockburn, E. Ontario

FROM	то	RECOVY	DESCRIPTION		SA	MPLE		ASSAYS				 · · · · · ·
THOM	,,,	MECOVY	DESCRIPTION	FROM	то	WIDTH	No.					
5.5	274.0'	(cont.)	184.1'-185.1' - altered selvage of quartz-carbonate segregation									
			at 184.6'&7'. Selvage consists of pale green chloritization.									
			185.1'-218.6' - greenstone flows, partly schisted. Contains									
			disseminated magnetite at 196.0'-198.0'. Quartz carbonate					 -		-		
			stringer at 202.0'-204.0', with pyrrhotite selvage, and at 213.0',						<u> </u>			
			217.0', 218.0'.									
			218.6'-219.5' - cherty flow contact with biotitic sediment									
			containing 15% pyrrhotite.									
			219.5'-274.0' - carbonate alteration at 212.0' with a short pale				: :					
			greenstone alteration zone. Coarser grained greenstone at 222.0'-									<u> </u>
			226.0'. Quartz carbonate stringer at 227.0'. Variable joint -									
			stringers at 230.0'-234.0'. Quartz-carbonate stringers at 242.0',									
			246.0', and 231.0'. Foliation at 60° to core axis. Typical									
			fine grained greenstone to end of hole.					_				
			END OF DDH 85-19 AT 274.0'.									

COLLAR:	HOLE SURVEY METHOD: Acid Test						
-19+01N							
-42+75E	FOOTAGE	AZIMUTH	DIP				
ELEVATION	0'	272°	45°				
CORE SIZE BQ	364'	N/A	40°				
Roy V. Beavon			1				
DATE LOGGED July 11&12, 1985							
MAP REFERENCE No. 31C/12							
			┼				
			1				
	ļ						

OMPANY NAMÉ	MONO GOLD MINES INC.
ROPERTY NAME	BANNOCKBURN, E. ONTARIO
RILLING CONTRAC	TOR McKnight Drilling Company Limited
	ex Labs Ltd., North Vancouver, B.C.
	To look for strike and down dip extension of
Discovery #1 V	

SAWYER CONSULTANTS INC.

HOLE No.	85-20
CLAIM NAME/No.	EO 652302
COMMENCED	July 9, 1985
FINISHED	July 11, 1985
FINAL DEPTH	4001
PROJECT No.	Mono N.E.

FROM	то	RECOVY	DESCRIPTION		SAI	MPLE		ASSAYS						
				FROM	ŤO	WIDTH	No.	Au					1	
0'	9.0'		Casing.					oz/ton						
9.0	9.0 400.0		PHYLLITIC ARGILLITES.						·					
			With thin quartzite infolds - 9.0'-10.0' only.											
			10.0'-12.0' - massive quartz vein, partly oxidized, opaque	10.0	12.0	2.01	1157G	10.003						
			white quartz mottled with weakly translucent grey. Contacts	12.0	13.2	1.2'	1158G	LO.003						
· · · · · · · · · · · · · · · · · · ·			at 45° to core axis. Up to 15% scattered pyrite blebs,											
=			including colloidal marcasite, pearly muscovite seams, 2%											
			dolomite. Minor inclusions of country rock.						<u> </u>					
			12.0'-13.2' - mixed quartz and dark grey phyllitic argillites											
			with trace pyrite.											
			13.2'-35.5' - thinly banded cherty grey argillites at 65° to											
			core axis. Moderate circulation cleavage and up to 10% pyrite											
			and trace pyrrhotite throughout. Quartz veinlets with pyrite											
			at 17.5', 18.0', 23.0'. White quartz segregation at 24.1'.											

PAGE	1	OF	6
------	---	----	---

SAWYER CONSULTANTS INC.	5

DATE LOGGED July 11, 1985

COMPANY NAME Mono Gold Mines Inc.

PROPERTY NAME Bannockburn, E. Ontario

				SAMPLE		ASSAYS								
FROM	то	RECOVY	DESCRIPTION	FROM	10	WIDTH	No.	Au	7.00	1	I	<u> </u>		<u> </u>
9.0	400.0	(cont.)	Quartz veinlet at 25.0'.					oz/ton						
			35.5'-38.0' - increasing chert content mixed with thin argillites.											
			Up to 15% pyrite and marcasites in irregular stringers (re~											
<u></u>			mobilized syngenetic sulphide).											
			38.0'-44.0' - black cherty argillite with indistinct banding,											
			very hard, and much core grinding. Pyrite seams on joints.											
		<u> </u>	Quartz veinlet at 40° with 20% carbonate.											
			44.0'-62.8' - softer, cherty argillites with variable core											
			angles. Contains 15%-20% fine pyrite in blebs and disseminations.											
			Fine cubic quartz on joints. Quartz segregations with heavy											
			pyrite at 49.0'. Unmineralized white quartz segregations at 49.5'.											
			Heavy pyrite at 61.0', with evidence of folding.											
			62.8'-63.3' - concordant quartz with trace pyrrhotite.	62.8	66.8'	4.01	1159G	0.003						
			White to weakly mottled.	66.8	70.81	4.0'	1160G	0.003						
			63.3'-64.0' - as 62.8'-63.3', phyllitic argillites.	70.8	75.0'	4.21	1161G	0.003						
			64.0'-65.1' - quartz vein with trace pyrite in white quartz											
			containing grey-black streaks of country rock. Contacts are sub-											
<u> </u>			parallel to schistosity. Country rock inclusion contains pyrrhotite.											

SAWYER CONSULTANTS INC.

DATE LOGGED ____ July 11, 1985

COMPANY NAME ___ Mono Gold Mines Inc.

PROPERTY NAME ___ Bannockburn, E. Ontario

EBO44	70	DECCIA			SA	MPLE		ASSAYS						
FROM	то	RECOVY	DESCRIPTION	FROM	TO	WIDTH	No.							
9.0	400.0	(cont.)	65.1'-65.9' - as 62.8'-63.3' with 15% pyrrhotite.											
			65.9'-68.2' - mixed quartz as 64.0'-65.1' with country rock											
			as 62.8'-63.3'. Bleb of coarse grained pyrrhotite at 66.0'.											-
			Quartz is clearly infolded with phyllitic argillites, and may											
			be sub-parallel to core axis.											
			68.2'-75.0' - mainly white to slightly mottled massive quartz											
			with rare inclusions of country rock. Pearly muscovite forms											
			irregular partings and seams at 70.7' and near lower contact.											
			Latter is at 90° to core axis. Heavy pyrrhotite bleb at 73.0'		· · · · · · · · · · · · · · · · · · ·									
			with pyrite and trace chalcopyrite(?).											
			75.0'-92.2' - mainly cherty and phyllitic argillites, light to											
			dark grey in colour. Quartz with minor carbonate veinlets at 79.3',											
			82.4', 83.7', 84.5', 86.0', 90.5'. Disseminated 15% pyrrhotite/							ļ				
			pyrite throughout.						<u> </u>	ļ				
			92.2'-93.5' - folded quartz segregation, similar to one at 66.0'	-			· · · · · · · · · · · · · · · · · · ·							
			(trace pyrrhotite).											
			93.5'-94.5' - as 75.0'-92.2'.											
			94.5'-95.0' - quartz segregation with trace sphalerite, and											

S INC.	

DATE LOGGED July 11, 1985

COMPANY NAME Mono Gold Mines Inc.

PROPERTY NAME Bannockburn, E. Ontario

	T	1		SAMPLE			<u></u>	ASSAYS						
FROM	то	RECOVY	DESCRIPTION	- FROS	,	,	1	 	ASS	T	T		· · · · · · · · · · · · · · · · · · ·	
<u> </u>	 			FROM	то	WIDTH	No.	Au oz/tor		 	-			
9.0	400.0	(cont.)	10% pyrrhotite.					02/10			ļ			J
			95.0'-108.8' - cherty argillites, well banded at variable angles											
			to core axis, but mostly normal to axis. Quartz veinlet at 99.5'											
			(fracture cleavage), with carbonate and pyrrhotite at 100.0',											
			101.0', and 102.0'.											
			108.0'-110.0' - Quartz-carbonate vein with trace pyrrhotite,	108.8	110.0'	1.2'	1162G	L0.003						
			trace sphalerite, trace pyrite.											
			110.0'-127.5' - as 95.0'-108.8' but includes narrow sections of											
			fine grained sericitic quartzite. Quartz segregation at 120.0'											
			with 5% pyrrhotite. Disseminated. 10% pyrrhotite throughout											
			argillites. Quartz-carbonate-pyrrhotite veinlet at 125.0'.											
ļ			127.5'-128.0' - quartz vein at 50° to core axis. Trace carbonate,	127.0'	128.0'	1.0'	1163G	LO.003						
<u> </u>			trace pyrrhotite.											
			128.0'-163.0' - dark grey argillites with occasional dark to											
			light grey cherty laminations. Scattered pyrrhotite and pyrite,											
			up to 15% sulphides. Core angle of laminations variable.						***************************************					
			Thin green tuff horizon at 147.0' parallels core axis. Possible											
			thin sill at 155.6'; 157.5' quartz carbonate stringer with											<u></u>

SAWYER CONSULTANTS INC.

DATE LOGGED July 11, 1985

COMPANY NAME Mono Gold Mines Inc.

PROPERTY NAME Bannockburn, E. Ontario

				SAMPLE				<u></u>	ASSAYS					
FROM	то	RECOVY	DESCRIPTION					 	AS	SAYS			, , , ,	
<u> </u>	ļ	<u> </u>		FROM	то	WIDTH	No.	Au		 	-			
9.0	400.0	(cont.)	drousy cavities.					o z/ ton						
			163.0'-163.5' - quartz carbonate - pyrrhotite vein or segregation.	163.0'	164.0'	1.0'	1164G	L0.003						
	ļ		163.5'-202.5' - phyllitic to cherty argillites with 15% pyrrhotite.											
			Well laminated in part at 55° to core axis. Quartz stringers											
			at 183.5', 185.5'-118.0', 195.5'. 202.5' - fault gouge for 5 mm	ļ										
			at 60°t. to core axis with slickensides or bent cleavage.						-					
			202.5'-214.0' - as 163.0'-202.0' with folded quartzite				· · - · · · · · · · · · · · · · · · · · · ·							
			laminations.											
			214.0'-216.0' - mafic sill - foliated biotitic sill with two	<u> </u>										
			cleavages. Contacts parallel bedding in argillites, i.e. variable.											
			216.0'-251.0' - banded grey argillites at 60°t. to core axis.											
			15% pyrite throughout.	<u> </u>										
			251.0'-255.0' - argillites increasing in sericite content.											
			255.0'-311.0' - as 216.0'-251.0' with more interbanded thin											
			sericitic bands. Occasional quartz stringers at 278.0' with											
			pyrrhotite, 280.0', 284.0', and 293.0', with pyrrhotite.											
			311.0'-318.0' - sericitic phyllites, well banded, almost normal											
			to core axis. Negligible mineralization.											Ĺ

SAWYER CONSULTANTS INC.

5

DATE LOGGED ____ July 11/12, 1985

COMPANY NAME ___ Mono Gold Mines Inc.

PROPERTY NAME ___ Bannockburn, E. Ontario

														
FROM	то	RECOVY	DESCRIPTION		SA	MPLE			AS	SAYS				
		1120011	DESCRIPTION	FROM	то	WIDTH	No.	<u> </u>	<u> </u>					
9.0	400.0	(cont.)	318.0'-325.8' - well laminated dark and light grey argillites											
			with 15% pyrrhotite. Schistosity at 65° to core axis.			-		ļ <u>.</u>						
			325.8'-328.0' - sericitic tuffaceous quartzite with irregular											
			quartz stringers in places. Could be folded mirror image of	Could be folded mirror image of										
			previous sericitic section.											<u> </u>
			328.0'-341.3' - delicately laminated, folded cherty argillites											<u></u>
			with 20% pyrrhotite. Laminations up to 70° to core axis.											!
			341.3'-357.0' - creamy white sericitic tuffaceous quartzite to											
			sericitic phyllite, with rare argillite interbands. Up to 20%											
			sulphides including pyrite and pyrrhotite. Pyrrhotite stringer											
			at 357.0' (e.g. porcellanite).											
			357.0'-367.0' - mainly dark grey cherty argillites with 15%-20%											
			sulphides. Schistosity at 65° to core axis.											
			367.0'-373.4' - sericitic phyllites as 325.8'-328.0'.								ļ.			
			373.4'-387.7' - as 357.0'-367.0'.											
			387.7'-390.0' - as 367.0'-373.4'.											
			390.0'-400.0' - as 357.0'-367.0'.											
			END OF DDH 85-20 AT 400'.											

Project Name

Bannockburn - Northeast Area Mono Gold Mines Inc.

Month July **Year** 1985

					_	,	
Assay Tag No.	D.D.H.	Footage	Width		Au oz./ton	Ag oz./ton	
1101G	85-15	24.5'-25.5'	1.0'		0.016	0.09	
1102G		25.5'-27.0'	1.51		LO.003	0.09	
1103G		27.0'-28.0'	1.0'		LO.003	0.14	
1104G		39.3'-40.3'	1.0'		LO.003	0.12	
1105G		40.3'-41.3'	1.0'		L0.003	0.12	
1106G		41.3'-42.3'	1.0'		L0.003	0.14	
1107G		71.0'-72.0'	1.0'	Discovery #1 Vein	0.010	0.03	
1108G		72.0'-73.4'	1.4'] 0.853 oz./ton Au	2.048	0.12	
1109G		73.4'-74.4'	1.0']	0.026	LO.01	
1110G		108.8'-109.8'	1.0'		L0.003	0.10	
1111G		109.8'-110.8'	1.0'		LO.003	0.04	
1112G		110.8'-111.8'	1.0'		L0.003	L0.01	
44420		202 01 204 01				0.00	
1113G		203.9'-204.9'	1.0'	No. 2 Zone	LO.003	0.02	
1114G		204.9'-205.9'	1.0'	0.073 oz./ton Au 2.0'	0.138	0.03	
1115G		205.9'-206.9'	1.0'	(used diamond saw)	0.008	0.05	
			:				
					-		
	t 						:
					:		
	ļ						
i	Í 1					1	
;							
				· ·			
. /							
, i							
· ·							
, ;							

Project Name

Bannockburn - Northeast Area
Mono Gold Mines Inc.

Month July **Year** 1985

Assay Tag No.	D.D.H.	Footage	Width		Au oz./ton	Te ppm
		3				PP'''
			i			
1116G	85–16	24.5'-25.5'	1.01		0.002	
1117G		25.5'-26.75'	1.25'		0.022	
1118G	1	26.75'-27.5'	1.0'		L0.003	
				1 1 4 11 1		
1119G		88.8'-89.8'	1.0'	No. 1 Vein vg] 0.184 oz./ton Au 2.0'	0.010	
1120G		89.8'-90.8'	1.0'	vg J 2.0'	0.359 LO.003	
1121G		90.8'-91.8'	1.0'		10.003	
1122G		102.5'-103.5'	1.0'		L0.003	
1123G		115.0'-116.0'	1.0'		LO.003	
1124G		140.0'-141.0'	1.0'		LO.003	
1125G		184.0'-185.0	1.0'		LO.003	
1126G		185.0'-186.0'	1.0'	vg] No. 2 Zone	1.487	
1127G		186.0'-187.0'	1.0'	$\frac{0.747 \text{ oz./ton Au}}{2.0'}$	0.008	
1128G		201.5'-202.5'	1.0'] No. 2 Zone	0.008	
1129G		202.5'-204.5'	2.01	vg] 3.399 oz./ton Au 4.0'	6.633	75.00
1130G	:	204.5'-205.5'	1.0'] 4.0	0.324	
1133G		249.0'-250.0'	1.0'		1.288	
1132G		253.3'-255.3'	2.01		2.129	
1131G	i	270.0'-271.0'	1.0'		0.012	
	ļ					
			ĺ			
. 🔪						
,						
· .						
`.	į					
						Ì
•	•		•	'	•	ı

Bannockburn - Northeast Area Mono Gold Mines Inc. Month July Year 1985

		<u> </u>		T	,		
Assay Tag No.	D.D.H.	Footage	Width		Au oz./ton		
1134G	85–17	61.6'-62.6'	1.0'		0.004		
1135G		73.0'-74.0'	1.0'		L0.002		
1136G		74.0'-75.0'	1.01	vg] No. 1 Vein	2.052		
1137G		75.0'-76.0'	1.01] 1.033 oz./ton Au	0.014		
1138G		133.9'-134.9'	1.0'	No. 2 Zone	0.016		
1139G		134.9'-135.9'	1.0'	vg] <u>0.438 oz./ton Au</u> 3.0'	1.056		
1140G		135.9'-136.9'	1.0'] 3.0	0.242		
1141G	ļ	150.4'-151.9'	1.5'		0.042		
1142G		173.4'-175.5'	2.1'	·	0.010		
1143G		178.0'-179.0'	1.01		0.010		
1144G		181.8'-182.8'	1.0'		0.008		
1145G		186.5'-189.0'	2.5'		0.004	İ	
1146G		315.5'-316.5'	1.0'		0.004		
1147G		321.5'-323.8'	2.31		0.006		
			į				
						:	
				·			
. \							
				·			
1/ Sample			ļ			i	

Bannockburn - Northeast Area

Mono Gold Mines Inc.

Month July Year 1985

 					,		
Assay Tag No.	D.D.H.	Footage	Width		Au oz./ton		
1148G	85-18	167.0'-168.0'	1.0'		0.004		
1149G		168.0'-169.2'	1.2'		LO.003		
1150G		169.2'-171.2'	2.0'		LO.003		
1151G		171.2'-174.0'	2.8'		LO.003		
1152G		265.5'-266.5'	1.0'		LO.003		
1153G		266.5'-270.8'	4.3'		LO.003		
1154G		270.8'-270.9'	1.1'		L0.003		
•							
					! !		
						,	
				*			
				:			
					•		
							}
:							
!							
į				•			1
7 Samples		·			1	l	•
PINILE C.							

Bannockburn - Northeast Area Mono Gold Mines Inc.

Month July **Year** 1985

Assay Tag No.	D.D.H.	Footage	Width	Au oz./ton	
44550	05.10	(2.21.(2.51	1 21	10.003	
1155G	85–19	62.2'-63.5'	1.3'	L0.003	
1156G		98.7'-99.7'	1.0'	L0.003	
	:				
				:	
				ı	
			·		
2 Samples	S				

Cert. #A8514057-001-A

Bannockburn - Northeast Area

Mono Gold Mines Inc. July

Month

Year

1985

Assay Tag No.	D.D.H.	Footage	Width		Au oz./ton		
							-
1157G	85–20	10.0'-12.0'	2.0'		LO.003		
1158G		12.0'-13.2'	1.2'		LO.003		
500							
1159G 1160G		62.8'-66.8' 66.8'-70.8'	4.0' 4.0'		LO.003		
1161G		70.8'-75.0'	4.0		LO.003		
	:		7.62		10.003		
1162G		108.8'-110.0'	1.2'		LO.003		
11620		407 01 400 01					
1163G		127.0'-128.0'	1.0'		LO.003		
1164G		163.0'-164.0'	1.0'		LO.003		
				:			
				·			
		ļ					
	ļ						
						ļ	
						į	
						İ	
			!				
						1	
		l					
8 Samples							

•												
LOCATION:	MADOC	TWP. CNTARIO MONO DIAMOND	DRILL RE	CORD					HOLE	Nº: 85-2	21	
AZIMUTH:	272 ⁰	MONO DIAMOND GOLD MMES MC. MONO GOLD	D MINES IN	rc.			PROPERT	Y:	BANNOCK	BURN		
DIP:	-45 ^O	LENGTH: 204 ft.	ELEVATION	ON:			CLAIM N	12:	E065230	1		
STARTED:	29 Aug	rust 1985 CORE SIZE: BO.	DATE LO	GGED: 30	August	1985	SECTION	:	2500N			
COMPLETE	D: 30 Aug	ust 1985 DIP TESTS: $204' = 44^{\circ}$				·	LOGGED	BY:	R.V. Bea	avon	· · · · · · · · · · · · · · · · · · ·	
PURPOSE:												
FOO	TAGE		SAMPLE	FOO	TAGE		1	T	1	<u> </u>	[T
from	to	DESCRIPTION	Nō:	from	to	LENGTH	Oz/tAu	<u> </u>		<u></u>		
0	4	Casing										
				 	-	-	 	ļ	 	 		
Ą	204	TUDOR VOICANTE CROUP Greenstone schist with cleavage and bedding at	 	 		 -	 	 	<u> </u>		 	
		50 deg. to core axis. Mainly chloritic flows with		 	<u> </u>	 	<u> </u>	 	1	 	 	
		occassional narrow quartz stringers. Negligible	<u> </u>							1		
		mineralization throughout, except for contacts									İ	
		between individual lava flows.										
		Possible cherty flow contacts at 8.5 & 11.0.										<u> </u>
		Amygdular section with calcite amygdules at		ļ								↓
<u></u>	ļ	12-14.	_	<u> </u>			ļ <u>.</u>	ļ	<u> </u>		ļ	ļ
	ļ	14-24 Fine grained greenstone flow with minor		ļ			<u> </u>	ļ	<u> </u>	ļ		<u> </u>
	<u> </u>	occassional siliceous and carbonate stringers.	-	<u> </u>			ļ				ļ	
	<u> </u>	24-25.3 Amyodular section.	-	ļ			ļ	ļ		ļ	 	
 	 	25.3-39.2 Fine grained greenstone flow with some		<u> </u>							 	
	 	finely developed carbonate amyodules. Post-		-		 	 		·	 	<u> </u>	+
	 	schistosity siliceous stringer with epidote (?) at 39.			 	 	 		 	 	<u> </u>	
		39.2-39.3 Mafic dike? or sill - heavily chloritiz		 		+	 	<u> </u>	 			
	 	ed.	1	ļ		-			 		<u> </u>	
	1	39.3-40 Cherty flow contact or mottled quartzite.	†	 		+	1		 			
	1	40-41 Amygdular flow section										
		41-49 Fine grained greenstone flow, becoming	1	1								
		sparsely amygdular at 47-49. Minor carbonate										
		(calcite) stringers throughout.										
	1		1									

DIAMOND	DRILL	RE	CO	RD
---------	-------	----	----	----

HOLE NO: 85-21 PAGE NO:

2 of 3

F001	TAGE	DESCRIPTION	SAMPLE	F00	TAGE	LENGTH				
from	to	<i>DESCRIPTION</i>	Nō:	from	to	20.00	Oz/tAu			
4	204	TUDOR VOLCANIC GROUP (cont'd)		ļ	ļ					<u> </u>
					ļ				ļ	↓
		49-49.2 Cherty flow contact.		ļ		<u> </u>			-	<u> </u>
		49.2-54 Fine grained greenstone flows with traces			ļ	<u> </u>				↓_
		of chloritic amygdules. Core becoming blocky at		<u> </u>	_					↓_
		52-54. (possible fault at 54).		ļ	<u> </u>	 				↓
		54-55.5 Fine grained greenstone flow.		<u> </u>				- · · · · · · · · · · · · · · · · · · ·		↓_
		55.5-56 Pyritic quartzite or metachert on probable		<u> </u>	<u> </u>					<u> </u>
		flow contact. 10% pyrite in 2 mm cubes. Contact								<u> </u>
		at 56 is at a 60 degree angle to core axis.			<u> </u>					<u> </u>
		56-59.5 Chloritized greenstone schist with some		<u> </u>	ļ					
		rare amygdules.	ļ	1	1				<u> </u>	 _
		59.5-61.2 Pyritic quartzite as 55.5-56 tr.		<u> </u>						<u> </u>
		magnetite? Occasional infolds of greenschist.		<u> </u>						$oxed{}$
·····		61.2-90 Greenstone flow or sill: dark green fine								_
		grained flow with biotized chill zone at 61.2.		ļ					<u> </u>	_
		Possibly pillowed with good pillow rim at 70.			ļ	<u> </u>				↓_
		Minor quartz and carbonate stringers throughout esp								<u> </u>
	ļ	at 73', 79' & 83'. Amygdular section from 77.7 to								
		79 and at 83 - 83.5.				1	<u> -</u>			↓_
 		90-91.9 Well developed cherty quartzite with sharp								
		contacts at 60° to core axis.								
		91.9-104.2 Fine grained greenstone flow with							<u> </u>	
		occasional stringers and amygdular sections. Quartz					·			
	<u> </u>	stringer at 94.5, and white quartz veinlet with								1_
		fracture cleavage at 99. Stringer at 101.5.	08501F	102.8	103.8	1.0	₹0.002			
	<u> </u>	104.2-104.4 Quartz vein with traces native gold	08502F	103.8	104.8	1.0	0.088			
	ļ	and tetradymite (?). Contains 10% marcasite and	08503F	104.8	105.8	1.0	<0.002			
		traces of po and py. (Fine pyrite rims to marcasite								
		blebs)								
		104.4-120.5 Fine grained greenstone flow (as 91.9-								
		104.2) Amygdular from 108-110. Ouartz veinlets at	08504F	107.5	108.5	1.0	<0.002			
		105.8 & 108 (with chlorite blebs), 108.8 with								
		calcite & 111.4. Drusy quartz on irregular fracture								
		at 10-20 deg. to core axis at footage 112.			T				1	Π

HOLE NO: 85-21 PAGE NO:

3 of 3 FOOTAGE SAMPLE FOOTAGE LENGTH DESCRIPTION Oz/tAu to NO: to from from TUDOR VOLCANIC GROUP (cont'd) 204 121.5 1.0 0.002 120.5 120.5-121.5 As 104.4-120.5 with two narrow 08505E quartz veinlets. 121.5-124.3 As 104.4-120.5 with quartz vein 125.3 1.0 08506F 124.3 0.002 from 125 to 125.3. 124.3-154.3 Fine grained greenstone flows with occasional amygdular sections. Traces of epidote alteration at 132.5 and 135.5. Minor carbonate stringers throughout. 154.3-156.2 Banded contorted tuffaceous cherty fine grained sediment with 30% sulphides, mainly 156.2 | 1.9 pyrrhotite. Contacts at 65 deg. to core axis. 08507F 154.3 0.002 156.2-162 Fine grained greenstone flow. 162.0-163 Contact zone between flows with inter-08508F 163.0 1.0 162.0 0.002 flow sediment containing 20% po, and 0.3 ft. of quartz carbonate vein. 163-164.2 Fine grained greenstone flow 164.2-164.6 Banded quartzite or metachert, tr. 164.6-175 Fine grained greenstone flow amyodular at 167-168.5. Quartz carbonate stringer at 168.5. 175-175.5 Quartzitic chert on flow contact. Contact ground out at 175.5. 175.5-189.5 Fine grained greenstone flow. Minor carb. stringers. Traces of epidote at 183.1-183.8 189.5-191 Milky white quartz, only slightly 08509F 188.5 189.5 0.008 1.0 translucent. Trace visible native gold at upper 08510F 189.5 191.0 1 5 0.20 (rejects = 0.232) contact (enclosed in quartz). Trace pv. (paint) on [08511 192.0 1.0 191.0 0.012 ioints. Contacts at 500 and 700 to core axis 191-204 Fine grained almost massive greenstone flow with traces of pillow rims? Minor quartz-

carbonate stringers.

END OF DDH #21 at 204 feet.

				•								
LOCATION:	MADOC I	WP. ONTARIO MONO GOLD DIAMOND	DRILL RE	CORD					HOLE	. Ng:	5–22	
AZIMUTH:		II MC.					PROPER	ry: _B A	NNOCKBU	RN		
		MONO GOLD MINES	INC.								·	
DIP:	-90°	LENGTH: 355 ft.	ELEVATI	ON:			CLAIM	NE: EO	652301			
				<u>, </u>								
STARTED:	Aug. 30	/85 CORE SIZE: BO	DATE LO	GGED: Se	pt. 1/8	5	SECTION	: 25	OON			
	<u> </u>									- 1		
COMPLETE	o: Sept.	1/85 DIP TESTS: 355=88120		· · · · · · · · · · · · · · · · · · ·	· -		LOGGED	BY: R.	7 Beau	on		
									V			
PURPOSE:												
FOC	TAGE	DESCRIPTION	SAMPLE	FOO	TAGE	LENGTH						
from	to	DESCRIPTION	Nō:	from	to	LENGIA		Oz/tAu]
0	3.5	Casing										
3.5	355	TUDOR VOLCANIC GROUP										T
		Mainly greenstone flows, fine grained amygdaloi-										
		dal sections, with superimposed schistosity at										
		20 degrees to core axis.										T
		3.5-4.5 Greenstone flow with well developed										
		schistosity.										
		4.5-5.0 Cherty quartzite representing flow										
		contact zone. Banded at 60° to core axis.										
		5.0-17.5 Greenstone flow, schistose and blocky.										
		Possible fault with oxidation at 5.5 parallel to										
		schistosity. Coarse amygdules from 5.5 to 14.5.										
		0.5 ft. lost core between 10 and 15 ft.			<u> </u>							
		17.5-18.0 Quartz segregation resembling cherty										<u> </u>
		flow contact.										
		18.0-30.1 Greenstone flow with concordant								ļ		
		quartz-carbonite-chlorite stringers, sometimes		<u> </u>	<u> </u>							
		with epidote (18.5-19.0). Quartz carb stringers										<u> </u>
	<u> </u>	strong at 24.5 to 26, tending to be concordant										
		and running sub-parallel to core axis. Amygda-		<u> </u>								<u> </u>
	ļ	loidal section at 29-30.1.					<u> </u>	<u> </u>		ļ <u>.</u>		1
	ļ	30.1-30.5 Banded tuffaceous to quartzitic		-						<u> </u>		ļ
	ļ	sediment at 15-20 degrees to core axis.		ļ						<u> </u>	<u> </u>	1
		30.5-79.2 Fine grained greenstone flow with		ļ								
	_	minor calcite and quartz-carbonate stringers.		<u> </u>	ļ							1
<u> </u>	1	Coarsely amygdaloidal calcite at 39 & 43. cont's	4	1	1	1]	1		1	1	1

DIAMOND	DRILL	RE	CO	RD
---------	-------	----	----	----

HOLE NO: 85-22

PAGE Nº:

2 of 4

F001	TAGE	o Food Introdu	SAMPLE	FOO	TAGE	LENGTH	Oz/tAu		
from	10	DESCRIPTION	Nº2:	from	to	LENGIN	UZ/ LAU		
3.5	355	TUDOR VOLCANIC GROUP (cont'd)							
		30.5-79.2 - cont'd							
-		Infolded quartz-epidote stringers at 42, 65, and							
		77.9.							
		79.2-80.7 Thin flow with 15% magnetite in coarse,							
		disseminated crystals.							
		80.7-81.2 Probable flow contact tuffaceous sedi-							
		ment.							
		81.2-134.5 Coarsely amygdaloidal flow with finer			<u></u>				
		sections near contacts. Occasional minor quartz			<u> </u>				
		carbonate stringers.			_			 	
		134.5-135 Silicified cherty flow contact, weakly			<u> </u>				
		banded at 60 degrees to core axis.							
		135-144 Streaky flow grading into banded flow or		<u> </u>	ļ				
		tuff with carbonate rich layers up to 1 cm wide.			ļ				
	ļ <u>.</u>	144-145.2 A more definite flow contact tuff,			ļ	 			
		well banded at 25 degrees to core axis.							
	ļ	145.2-145.4 Pyritic quartz vein.	08512	144.7	145.7	1.0	0.556	 	
		145.4-153 Greenstone flow, amygdaloidal in part.				11			
		153-154.7 Massive quartz vein? or silicified							
	ļ	chert at 40° to core axis and concordant with			<u> </u>		_		-
		schistosity and bedding. Weakly banded suggesting		L	ļ	1			
	ļ	flow contact chert provenance. Dissemminated 10%			<u> </u>		-		
 -		py. & po.	08513	153	154.7	1.7	ر0.003		
		154.7-159 Epidotised greenstone flow (159 0.05			<u> </u>				
	<u> </u>	ft. quartz at 500 to core axis with po.) Slight			ļ				
	<u> </u>	grinding here.	·		ļ	1			↓
	 	159-163.8 Dark green greenstone flow, amygdaloida							
	 	161-162.		ļ	 	4		 	4—
	 	163.8-165.2 Folded quartz segregations with			_				
	ļ <u>.</u>	chlorite carbonate, po & py. Recurs at 167.			ļ	1			
·	 	165.2-171.4 Dark green amygdaloidal flow sub-		ļ		 -			
		parallel to core axis		İ					

DIAMOND	DRILL	RE	CO	R
---------	-------	----	----	---

HOLE	NS:		
		85-22	
PAGE	Nº:		

				,				<u> </u>	of 4
F00	TAGE	DESCRIPTION	SAMPLE	F00	TAGE	LENGTH	0- (13		
from	10	DESCRIPTION	Nō:	from	to	CENTO	Oz/tAu		
3.5	355	TUDOR VOLCANIC GROUP (cont'd)							
		171.4-171.6 Cherty flow contact with chill							
		171.6-200 Returns to Flow seen at 171.4 - 171.6.							
	"	Streaky and amygdaloidal throughout. Quartz-							
	 	carbonate segregations parallel to banding at 195,		-					
	+	198, 199, and from 202 to 209, parallel to core							
		axis. Cross cutting quartz vein at 210.4	† · · · · · · · · · · · · · · · · · · ·	 	1	1			
	- 	(negligble mineralization), and at 212 with	<u> </u>	 	 				
	 	associated drusy quartz on joint plane.		 	 				
	-		 		 				
	 	200-225 Probable mafic sill with carbonate	 	ļ	 				
		alteration (calcite). Massive green to brown with		 	 				
	 	speckled texture. Contact at 200 at 10 degrees to		<u> </u>	 				
		core axis. Cross cutting dolomite veinlet with	 		<u> </u>				
		trace po. at 209. Quartz-carbonate-chlorite		<u> </u>		 			
		stringers at 209.4							
		225-230.4 Greenstone flow with streaky texture.							
		May include flow contact at 228.4, where there							
		are quartz segregations with po & py.							
		230.4-237 Mafic sill, similar to 200-225. Contact							
		at 230.4 at 10 degrees to core axis. Contact at							
	-	237 a possible fault (water seam). Quartz-chlorite	•						
		carbonate stringer at 235. Assoc. with drusy	1		1				
		fracture paralleling core axis from 235-235.8		1					
		237-241.2 Streaky greenstone flow.		<u> </u>	1	1			
		241.2-241.8 Probable cherty flow contact with		 	1	 			1
	†	associated quartz segregation, sub-parallel to		-	 				
	<u> </u>	core axis in part.			<u> </u>				+
4	 	241.8-243 Less streaky greenstone flow, with	<u> </u>	 	 	 			+
	+	narrow quartz-carbonate-chlorite segregation at	<u> </u>	<u> </u>	 	 			+
	+				 				+
		243. Trace pyrite. 243-244 Magnetite bearing flow unit, with 10% mag.		<u> </u>	 	+			+
	- -			ļ	<u> </u>	1			
· · · · · · · · · · · · · · · · · · ·		at 100 to core axis.			ļ				
		244-253.9 Massive greenstone flow with minor qtz.		ļ	ļ				
	. 1	segregations. Streaky in part.	1	I					

.

HOLE Ng: 85-22 PAGE Ng: 4 of 4

FOOT	TAGE 1 to	DESCRIPTION	SAMPLE Nº:	FOO'	TAGE	LENGTH	Oz/tAu		
3.5	355	TUDOR VOLCANIC GROUP (cont'd)							
		253.9-254 Quartz carbonate cross cutting veinlet							
		trace po.				1			
·	<u> </u>	254-267.1 Greenstone flow with minor quartz			ļ	<u> </u>			-
		carbonate segregations. Lost 0.5 ft. core at		ļ		 		 	
	<u> </u>	257.5. Quartz-carbonate-epidote stringer parallel				1		 	
		to core axis at 265. Trace pyrite. Possible flow							
		contact with quartzitic streaks at 267.1.		<u> </u>					
	Ī	267.1-268.5 Chloritized carbonated chilled margin							
		of mafic sill. Carbonate alteration extends into							
		wall rock.							
		268.5-276 Massive greenstone flow or sill with		-					
		substantial quartz-carbonate-pyrrhotite segrega-							1
		tions at 270-271, with trace py. and po. at 272.5		<u> </u>					1
		and 274.5.	<u> </u>						1
		276-276.2 Massive quartz, in part ground out.	08514F	275.6	276.6	1.0	0.003		+-
		Contains chloritic streaks and/or rutile needles.	0031-11	273.0	270.0	12.0	0.003		+
		276.2-278.7 Chloritized chill zone of sill.				1		 	+-
		278.7-294.8 Amygdaloidal greenstone flow, trace							
		pyrite.	08414F	294.8	295.8	1.0	0.012		
		294.8-295.1 Quartz with heavy py. and p. in part							
		ground out							
		295 1-313 Carbonated greenstone flow	٠.						
		313-315 Mafic sill or flow at low angle to core		[1			1
		axis. Carbonate alteration throughout. Good				1			
		chills at 313, and 315 where flow contact chert							
		occurs.			<u> </u>			 	1
		315-345.2 Mainly massive schisted greenstone with			 	1			1
		amygdular structure and carbonate alteration			 				1
		resembling sills. Disseminated magnetite, and up			 				1
		to 10% at 330-333.							
		345.2-345.6 Cherty flow contact.			1		-		
	1	345.6-355 Greenstone flow without carbonate, 2%	1		1	1			1
	 	magnetite continues.	 	 	 	1		 	1

			•							
LOCATION:	MADOC	TWP. ONTARTO DIAMOND	DOLL DE	COBD	•			HOLE N		
	2720		OLD MINES			•	DDADERTY:		85–23	
AZIMUTH:	21.2	II II MC.	LL PHINES	TIVC.			PROPERTY:	BANNOCKBUR	Y	
DIP:	-72 ^O	LENGTH: 435 feet	ELEVATI	ON :			CLAIM NO:	E0652301		
	-/2	EEMOTH: 433 TEEL	CCLIAII		 	·	CEATH NE.	10032301		
STARTED:	Sept.	1/85 CORE SIZE: BO	DATE LO	occo: Se	- 1 /O		SECTION:	2350N		
JIANIED.		-,		se se	DE. 4/0	3		2350N		
COMPLETE	D: Sept.	3/85 DIP TESTS: 435 ft. = 52\frac{1}{2}	 ,	<u> </u>			LOGGED BY:	R.V. Beavor	1	
	DOPOV									
PURPOSE:										
FOO	TAGE	DESCRIPTION	SAMPLE	FOO	TAGE	LENGTH	Oz/ti	,,,		
from	to	DESCRIPTION	Mō:	from	to	LENGIA	02/12	su		
0	3.5	Casing								
			<u> </u>	ļ	ļ					<u> </u>
3.5	4.5	Ouartz vein with trace marcasite and pyrite	08516F	3.5	4.5	1.0	<0.00	03		<u> </u>
4.5	203.2				<u></u>					<u> </u>
	<u> </u>	Fm.)								↓
	 	Well laminated and contorted metasediments with	<u> </u>	 	<u> </u>					
	 	traces to 25% sulphides throughout. Cleavage at								
	 	25° to core axis.		 	 					
	 	45-10 Mainly cherty laminated fine grained quartzite normal to core axis.	 	 	 		<u> </u>			
	 	10-12 Mixed argillite and quartzite	 	 	 					
	 			 						
-	 	12-15 Mainly quartzite or meta-chert. Trace of carbonate segregations with pyrrhotite at 15.		 	 	 				+
		15-48.4 Mixed argillites and quartzites (meta	 	 	 					+
	 	cherts with up to 25% pyrrhotite and pyrite.	08517F	48	49	1.0	<0.0	03		+
	1	Cross cutting quartz veinlet with trace pyrrho-	003171	1 20	1-32-	1	1	<u> </u>		
		tite at 19. Disseminated sphalerite in 3 mm blebs		1	 					
		at 20.5 to 30 and 41.7-42 (concordant stringer).		1						
		Sphalerite associated with quartz stringers in								
		heavier pyrrhotite sections, and also as								
		disseminated grains eq. 43.2. Some portions of								
		this core may assay 1/8 - 1% Zn. Banding of								
ļ		argillites at 45° to core axis.								
	ļ	48.4-58.5 Mainly sericitic to massive quartzites					·			
	ļ	Contact at 48.4 marked by quartz segregation with								<u> </u>
		marcasite and pyrite. Another segregation sub-	<u> </u>	<u> </u>						
•	•	' parallel to hedding at 40 8-50 Quartz-sericite	1	1	1	1	1	i (1	L

DIAMOND	DRILL	RECORD
---------	-------	--------

HOLE Nº: 85-23

PAGE Nº: 2 of 6

								 	of 6	
FOOT	AGE 10	DESCRIPTION	SAMPLE Nº:	F00	TAGE to	LENGTH	Oz/tAu			
4.5	203.2	PHYLLITIC QUARTZITES & ARGILLITES (cont'd)								
		48.4-58.5 cont'd pyrrhotite segregation at 56 appears to be folded with the laminated quartzite. Minor folds and								
		faults parallel to axial planar schistosity at 51.5 - 53. 58.5-60.4 Mixed quartzites and argillitic quartz-								
		ites 60.4-61.2 Quartz vein with pyrite and botryoidal	08518F	59.4	60.4	1.0	0.003			
		marcasite. 61.2-72.25 Mixed quartzites and argillites. Band-	08519F 08520F	60.4 61.4	61.4 62.4	1.0	0.003			
		ed at 30-25 degrees to core axis, pyrrhotite stringer at 71.								
		72.25-72.35 Fault breccia at 45 and 60 degrees to core axis. Trace galena and 20% pyrite.								
		72.35-104 Phyllitic quartzites and cherty argillites moderately banded at 45° to core axis. Drusy fracture at 10 degrees to core axis at 80-81 Quartz segregations with trace of galena at 74.3,								
		quartz at 95.4, quartz with pyrite & pyrrhotite at 98; quartz and trace galena at 99.5.								
		104-104.7 Large quartz-carbonate-pyrrhotite- pyrite segregation	08521F	104	105	1.0	< 0.003			
		104.7-113 Phyllite quartzite and cherty argillite 113-115.4 Phyllitic quartzite with heavy sericite								L
		115.4-117 As 104.7-113. Well banded at 45° to core axis.								
		117-119.2 As 113-115.4. 119.2-124.5 Mixed fine grained quartzites and								_
		cherty argillites 124.5-127 Sericitic quartzite phyllite. Quartz segregation at 126.5.	08522F	126	127	1.0	<0.003			\vdash
· · · · · · · · · · · · · · · · · · ·		127-134.5 Mainly well banded cherty argillites at 45 to 50 degrees to core axis. Sericite								F

HOLE N2: 85-23 PAGE Nº: 3 of 6

F00	TAGE	DESCRIPTION	SAMPLE	F00	TAGE	LENGTH				
from	to	DESCRIPTION	Nō:	from	to	LENGIN	Oz/tAu			
4.5	203.2	PHYLLITIC QUARTZITES & CHERTY ARGILLITES (cont'd)								
	<u> </u>	127-134.5 - cont'd				-				
		alteration at 128.5.								
		134.5-135 Blocky core associated with earthy white								
		carbonate paint.								
		135-142 As 127-134.5 with occasional quartz-				-				
		carbonate segregations. 10% disseminated pyrrhotit	2							
		throughout. Trace galena at 137.5, pyrrhotite				 				
		stringer at 141. Becoming gradually more sericitic			ļ	 - - - - - - - - 				-
		142-163 Mainly cherty argillites and quartzites.		· · · · · · · · · · · · · · · · · · ·	ļ	 				
	ļ	Heavy pyrrhotite stringer with quartz segregation at 149-149.5 & 150. Core angle approximately 500				-				
					ļ	 	 			
·		to core axis. Heavy pyrrhotite-quartzite stringer			ļ	1			-	
-		at 162. 163-163.3 Quartz vein at 70° and 40° to core axis.	08523F	162.7	163.7	1.0	0.003			_
			U6523F	102.7	103.7	1.0	- 0.003			
	- 	Up to 5% pyrrhotite, trace pyrite. Sharp contacts.				 				
	 	163.3-171.5 Mainly quartzitic cherty argillites				 				
	 	with creamy white bands at 30 degrees to core axis, 5-10% pyrrhotite throughout. Trace galena at				-				
	 				 	 				
·	1	165.5. Graphitic slip with pyrite at 170. Heavy				 				
•	 	Pyrrhotite stringer with quartz segregation at 171. 171.5-180.5 Pyritic cherty argillite banded at								_
					 	 				
		300-350 to core axis, with 20% disseminated pyrite.				 				
		180.5-183.2 Cherty sericite quartzites and argillites, well banded, with occasional folded								
				<u> </u>	<u> </u>	++				_
	 	quartz-carbonate pyrrhotite and pyrite stringers.			 	 				
		Coarse textured metasediments at 182-183. 183.2-184 Quartz vein with heavy pyrrhotite selvage	00524E	102.2	184.2	1.0	0.003			
···	 	in part with carbonate and trace mica with trace	E, UOJZ4E	103.2	104.2	1.0	0.003			
· · · · · · · · · · · · · · · · · · ·	-				 	+				_
	+	galena.			 	+				
 		184-203.2 As 180.5-183.2 with occasional quartz- pyrrhotite segregations at 190-190.5, 191. Heavy			 	 		+		
	-			305 =	105	 				
		pyrrhotite stringer with trace galena at 196.5. Moderate pyrrhotite throughout reaching 25% at 194.	08525F	195.5	197	1.5	0.003			

DIAMOND DRILL	R	Ε	C	0	R	D
---------------	---	---	---	---	---	---

HOLE Nº: 85-23 PAGE Nº: 4 of 6

								1	4 01 6	
FOOT	TAGE	D. C. C. D. L. C.	SAMPLE	F00	TAGE	LENGTH	Oz/tAu			
from	to	DESCRIPTION	Nō:	from	to	LENGIA	02/ 414	İ		
203.2	435	TUDOR VOLCANIC GROUP								
		203.2-208 Garnetiferous greenstone with limy			ļ <u>-</u>				-	-
		sections, probably a tuffaceous member of the	<u> </u>		 	1				\top
		Tudor Volcanic Fm. Moderately banded and minor								-
		quartz segregations.								
		208-211.2 Cherty argillite with up to 50% Pyrrho-								
		tite. Well banded at 50° to core axis.								
		211.2-219 Fine grained intermixed, banded volcano-								
		sedimentary tuff. Essentially a limy chlorite	ļ							\bot
		schist.								
		219-220 Quartz-carbonate vein - cherty quartz	08526F	219	221	2.0	0.003			
		parallel to bedding of tuffs.								
		220-221.8 As 211.2-219.								
		221.8-222 Quartz veinlet with trace pyrrhotite								
		222-228 Limy chlorite schist as 211.2-219.	08527F	228	229	1.0	<0.003			
		228-229 Cherty quartz cf. flow contact material 229-229.8 As 222-228				-				-
		229.8-235 Probable mafic sill with pseudo-gneissic								
		structure at 450 to core axis. Essentially chorite								
		schist with relict chloritic amygdules and second-								
		ary disseminated calcite.								
	ļ	235-246 Limy chlorite schist of probable altered			<u> </u>					
	<u> </u>	flow origin. Moderately banded with some biotite	<u> </u>				i	i		
	<u> </u>	development. Minor quartz (carbonate) stringers.			<u> </u>					
		246-248.5 Massive cherty quartz with 5% pyrrhotite	<u></u>							
	<u> </u>	disseminations. Relict banding at 50° to core axis	<u> </u>	ļ	<u> </u>					
·	<u> </u>	248.5-253.8 Carbonate altered flows with occasional								
~		quartz carbonate-pyrrhotite stringers. Occasional			<u> </u>					
	<u> </u>	minor pyrrhotite stringers and traces pyrite.	<u> </u>							
· · · · · · · · · · · · · · · · · · ·		Essentially altered flows with carbonate. Light								
	 	green fine grained andesite (?) with occasional								
		quartz segregations, with trace chalcopyrite (?) at			1					
	<u></u>	252.8; 253.8 has 0.15 quartz veinlet.	08528F	253	254	1.0	0.098		<u> </u>	

HOLE Nº: 85-23 PAGE Nº: 5 of 6

SAMPLE FOOTAGE FOOTAGE Oz/tAu DESCRIPTION LENGTH from to NO: from 435 TUDOR VOLCANIC GROUP - cont'd 203.2 253.8-275.2 Altered greenstone flows as 248.5-253.8 Relict amygdaloidal sections at 271-275. 275.2-276.8 Quartz segregation and vein zone with 08529F 275.2 276.8 0.005 1.6 pyrrhotite and tourmaline. 276.8-290 Altered greenstone flows with occasional tournaline disseminations at 284-285.7. Carbonate alteration heavy in places. 290-297.2 Banded tuffs at 45-50° to core axis. Minor quartz segregations with indistinct contacts. Abundant carbonate alteration. 297.2-298.2 Quartz vein grading to cherty quartzite 08530F 297.2 298_2 0.003 (?) on flow contact (?). Contains some carbonate and limited traces of sulphides. 298.2-314.5 Well banded greenstone schist; probably a heavily altered flow with secondary foliation at 45° to core axis. Minor concordant cherty quartz and carbonate at 30% 314.5-314.6 Ouartz vein with fairly sharp contacts 08531F 314 315 1.0 (0.003 parallel to schistosity. Negligible mineralization 314.6-315.2 As 298.2-314.6. Possible flow contact at 315.2 (cherty band) 315.2-325.3 Less banded in part amygdaloidal flow with minor quartz and carbonate stringers - 325.3possible flow contact mixed with stringers 325.3-344.5 Fine grained greenstone flow with occasional carbonate stringers and trace disseminated pyrite. Probable cherty flow contact at 344.5. 344.5-363 Greenstone flow as 325.3-344.5 with increasing carbonate alteration as sill is approached. Minor quartz-carbonate veinlets at 334.9 and 355.3. 363-364.7 Mafic sill with heavy carbonate alteration-propylitic with trace pyrite.

n	ł	Δ	٩	â	O	A	ı	n	٦	F	2	ı	1	Ę	1	E	C	O	۱	R	1	1
v		~		n	v	8	v	u	•	т	٠,	н		Ŧ	•	ᆫ	v	v	4	, ,		J

HOLE NO: 85-23

6 of 6

F00	TAGE	DESCRIPTION	SAMPLE	FOO	TAGE	ENCT	Oz/tAu				
from	10	DESCRIPTION	Nō:	from	to	LENGIH	22/ 414				
203.2	435	TUDOR VOLCANIC GROUP - cont'd									
								 <u> </u>			
	ļ	364.7-367 Greenstone flow, fine grained light to						 	1		ļ
		medium green with carbonate alteration.			ļ	ļ			ļ	ļ	<u> </u>
		367-367.5 Massive pyritic (5%) chert. (Flow con-				<u> </u>		 		ļ	ļ
		tact)		ļ 		ļ		 			ļ
	<u> </u>	367.5-374.3 Greenstone flow, in part amygdaloidal.									<u> </u>
		Includes three quartz veinlets sub parallel to		201 2	272 2	1 7 0	0.000	 		ļ	ļ
	<u> </u>	schistosity at 35-40 degrees to core axis at 371.7,	08532F	371.3	372.3	1.0	0.003	 ļ <u>.</u>			ļ
		373, and 393.9. The two latter contain tourmaline	08533F	372.3	373.3		0.003	 			
		traces.	08534F	373.3	374.3	1.0	0.003				
		374.3-384.4 Carbonate altered greenstone flow.				 		 			
	-	Speckled texture due to disseminated rhombs of		<u> </u>	ļ			 	<u> </u>		
	<u> </u>	calcite.			<u> </u>	-		<u> </u>	<u> </u>		
	 	384.4-386.5 Possible flow contact zone in part	<u> </u>		<u> </u>	-		 	ļ		ļ
	 	cherty and with secondary quartz stringers.	<u> </u>			 		 <u> </u>			
 	 	386.5-393 Light green greenstone flow with minor	<u> </u>		ļ	ļ.		 ļ			ļ
	<u> </u>	carbonate stringers.	<u> </u>			 		 ļ		ļ	 _
		393-408.5 Darker green flow unit with good chill at 393. Cherty infolds at 395-398. Possible		<u> </u>	 	 		 ļ			
	 			ļ	<u> </u>	 		 		ļ. <u></u>	
	 	cherty flow contact at 397 with quartz carbonate			<u> </u>	 		 ļ	ļ	<u> </u>	<u> </u>
		stringers.	<u></u>		 	ļ				 -	
	<u> </u>	408.5-424 Greenstone flow with abundant cherty	<u> </u>		ļ	 		 ļ			
	- 	inclusions (folded pillow rims?) Possible flow			ļ	<u> </u>		ļ			ļ
	-	contact at 414.	08535	424	425.6	1.6	0.003	 			
	+	424-425.6 Quartz-stringer breccia zone, recemented	08535	424	425.6	1.6	0.003	 ļ <u>.</u>		ļ. <u> </u>	<u> </u>
		trace pyrite.				ļ	-				
	-	425.6-435 Foliated greenstone flow terminating in						<u> </u>			
		quartz stringer breccia at 434.5-435.	<u> </u>		ļ	 		 ļ			
	4				ļ	ļ		 		ļ	
	-	END OF DDH #23 at 435 feet.				ļ		 	<u> </u>		
					ļ	ļ					
·			 		ļ			 		<u> </u>	
	-		L			ļ		 			
	.1		l			1	1		1		L

LOCATION:	225 ⁰	IMP. ONTARIO	MONO (OND DRILL RE			•	PROPERTY	· BA	HOLE	85–2	24	
DIP:	-45 ^O		LENGTH: 305 feet	ELEVATIO	ON:			CLAIM Nº	: E0	652301			
STARTED:	Septem	ber 3, 1985	CORE SIZE: BQ	DATE LO	GGED:			SECTION:	Dr	illed "c	off-sec	ction" 2	2350N
COMPLETE	o: Septem	ber 5, 1985	DIP TESTS: 305 ft. = 42½	0				LOGGED E	Y: R.	V. Beavo	on		
PURPOSE:													
FOO'	TAGE to	C	ESCRIPTION	SAMPLE Nº:	F00 from	TAGE to	LENGTH		Oz/tAu				
0	3.5	Casing											
35	211.8		ainly cherts and cherty minated sulphides; often wit	th							· · · · · · · · · · · · · · · · · · ·		
		phyllitic lineation banded throughout.	in argillaceous bands. Wel	1									
		vein. Vugginess due	erty argillites. ized massive to vuggy quarta to weathering of sulphide										
		content.	- core often broken and	08536F	6.2	7.2	1.0		0.003				1
		oxidized.	weakly banded grey chert co	ut									
		Banding at 40-50° to	core axis. cherts with foliation at a cherts with foliation at a cocasional rusty patches	35									
		due to oxidization o averages 10% sulphid	f pyrite and pyrrhotite -										
			z vein with sharp contacts Contains 15% pyrrhotite,	2% 08537F	35	36	1.0	40	0.003				
		35.7-47.5 Argillace becoming sericitic a	ous cherts, well banded, and t 39.0 to 42.3. Minor quar	tz									
		at 39.6 and 45.6 (fo	rrhotite, pyrite & carbonate lded)	е			 						

HOLE N2: 85-24 PAGE Nº: 2 of 5

F00	TAGE	DESCRIPTION	SAMPLE	F00	TAGE	LENGTH	0- (17-		ļ
from) to	DESCRIPTION	N ē:	from	to	LENGIN	Oz/tAu		
35	211.8	"RUSTY SCHIST" Fm - cont'd							
			-						
		47.5-48.5 Milky quartz vein with sharp contacts							
		at 45° to core axis.							
		48.5-48.7 Mixed country rock and quartz veinlet	08538	47.5	48.5	1.0	0.003		
		similar to 47.5-48.5	08539F	48.5	49.5	1.0	0.003		
		48.7-50.3 Country-rock as 35.7-45.7 with quartz	08540F	49.5	_50.5	1.0	0.003		
		veinlets at 49.7 and 50.2.							
		50.3-57.5 Amgillaceous cherts with disseminated							
		sulphides, moderately well banded, (indistinct in							
		places)							
		57.5-60.5 Sericitized section of cherty argillite							
		with grey cherty quartz veins at 56.4-57, and		ļ 					
		59.6-60.5. Quartz is speckled with silicified							
		carbonate pseudomorphs. Negligible mineralization							<u> </u>
	<u> </u>	60.5-72 Folded argillaceous cherts with well							
		developed banding. 10-15% sulphides. Graphite							<u> </u>
		shear at 72 at 40 degrees to core axis, with							
·		narrow quartz-pyrite stringer.							
		72-83.5 Mainly cherty argillites with variable							
		core angles, becoming sericitic from 81-83.5.							
		Minor quartz veinlet at 81. 10% sulphides through	out.						
		83.5-95 Alternating grey cherts and cherty							
		argillites. Argillaceous sections with 10%	08541F	97.0	98.0	1.0	0.003		
		pyrrhotite. Banding at 45° to core axis.		<u></u>					<u> </u>
		95-116.5 Sericitized argillites and cherts with							1
		quartz segregations at 97.0-98.0, 102-103.5,	08542	101.2	102.5	1.3	0.003		
		Heavy Pyrrhotite at 105-108. Minor quartz veins							
		with Pyrrhotite at 114.5 - trace of sphalerite in							
-		country rock.							
		116.5-132 Well banded phyllitic argillites with	08543	114.0	114.0	1.0	0.003		
		minor chert bands with 15% pyrrhotite. Gradation-							
		al contact at 132.							
		132-147 Sericitic cherty argillites with 10-15% p	b.						
		Grey cherty quartz segregations at 140 to 142.							1

HOLE N2: 85-24 PAGE Nº: 3 of 5

F00	TAGE	DESCRIPTION	SAMPLE	FOO'	TAGE	LENGTH	Oz/tAu		
from	to	DESCRIPTION	Nō:	from	to	EC. C.	05, 03		<u> </u>
35	211.8	"RUSTY SCHIST" Fm - Cont'd							
		147-149.1 Quartz vein with indistinct contacts	08544F	147	149.1	2.1	0.003		
		Up to 30% sulphide, rare carbonate.							
		149.1-157.2 Pyrite and pyrrhotitic argellaceous							
		cherts.							
		157.2-157.4 Quartz-Pyrrhotite veinlet	08545F	156.4	157.4	1.0	0-003		<u> </u>
		157.4-184.6 Argillaceous cherts or silicified							
		argillites, moderately well banded at 35-40 degrees							
		to core axis. 10-15% sulphides throughout. 30%							
		pyrrhotite at 183-184.							
		184.6-187.4 Pyritic cherty argillites or argillace cherts. Well laminated at 40° to core axis. Dark	ous						
		cherts. Well laminated at 40° to core axis. Dark							
·		grey throughout with lighter grey to white streaks.							<u></u>
		187.4-188.1 Quartz vein with sharp contacts at	08546F	187.3	188.3	1.0	0.003		
		187.4-188.1 Ouartz vein with sharp contacts at 15° and 90° core axis. Heavy pyrite & pyrrhotite							1
		at 187.5 & 188.1 but negligible mineralization			<u> </u>				
		elsewhere. Faint banding throughout, and could be							
·		in part a silicified chert bed. Muscovite selvage							
		at 188.1.							
<u>.</u> _		188.1-191 Highly siliceous cherts, banded in part,							
- <u></u>		and containing cross cutting minor quartz strings.							
· • · · · · · · · · · · · · · · · · · ·		191-195.2 Well laminated in part graphitic							
		argillaceous cherts well up to 25% pyrite and 5-10%							
·		pyrrhotite. Well banded at 45° to core axis.							
		195.2-195.5 Silicified green dike or sill with							
T-12-11		relict chloritic amygdules. Sharp contacts at 350							
		to core axis.							
		195.5-197.5 As 191-195.2 with up to 30% pyrrhotite							
		197.5-198.5 Apparently folded quartz-pyrrhotite	08547	197.5	198.5	1.0	(0.003		
		segregation, trace pyrite.							
		198.5-211.8 Sericitic argillaceous cherts, light							
		grey to beige colour with 30% pyrrhotite. Presents							
		a coarsely mottled texture with imperfect banding							
		at 35° to core axis. Rare minor quartz segregations							

DIAM	DND	DRILL	RECO	RC
------	-----	-------	------	----

HOLE N2: 85-24
PAGE N2: 4 of 5

FOOT	AGE	A FRANCISCIAN.	SAMPLE	F00	TAGE				
from	to	DESCRIPTION	Nº:	from	to	LENGTH	Oz/tAu		
211.8	305	TUDOR VOLCANIC GROUP							
		211.8-237.5 Tudor Volcanic Fm - Banded epidote garnet - pyrrhotite skarn or iron formation. Often well banded at 45° to core axis. Up to 40%							
		Pyrrhotite in places. Quartz sulphide weinlets at 224.9 (.2 ft.) and 225.9 (.2 ft.). Disseminated magnetite at 233-234. Minor quartz stringer throughout. Variable core angles due to folding.	08548F	224.7	226.7	2.0	0.208		
		237.5-246.5 Mainly massive to banded cherts with minor quartz-carbonate stringers at 238-239, and 241.2. Heavy pyrite stringer at 245.5. Calcareous	:						
		tuffs at 246.5. 246.5-248.4 Calcareous tuffs or altered flows 248.4-249.1 Chloritic dike or sill dark green with possible garnets (1.0' of lost core at 245-249)						
		249.1-258 Similar to 246.5-248.4 but with definite greenstones intercalated with carbonate bands.							
		Occasional minor quartz-carbonate veinlets. 258-263 Sulphidic cherty argillites with 35-50% pyrrhotite throughout. Coarsely mottled banding		,					
		due in part to pyrrhotite stringers. 263-280 Schisted mafic flows with cherty infolds (pillow rims?) in part with biotite. Quartz veinle	Ł						
		at 273.5 280-282.3 Mafic flow with 2 minor quartz stringer 282.3-270.4 Well schisted greenstone flow with	08549F s08550F	273 280	274 282.3	1.0	0.003		
		minor cherty sections. 290.4-290.7 Cherty flow contact at 50 degrees to core axis. 290.7-294.5 Secondarily banded greenstone flow							
		with carbonate alteration. 294.5-294.8 Mafic sill with secondary calcite							
		stringers.				 		 	

HOLE N2: 85--24 PAGE N2: 5 of 5

										
FOOT	AGE	DESCRIPTION	SAMPLE	F00	TAGE	LENGTH	Oz/tAu		,	
from	to	DESCRIPTION	Nō:	from	10	LENGIN	0_,		1	
211.8	305	TUDOR VOLCANIC GROUP - cont'd								
222.0	- 505									
		294.8-3012 As 290.7-294.5 with occasional calcite								
		amyodules. Foliation at 45° to core axis.								
		294.8-3012 As 290.7-294.5 with occasional calcite amygdules. Foliation at 45° to core axis. 301.2-302 Quartz veinlets mixed in with flow rock	08551	301	302	1.0	40.003			
		302-305 As 290.7-294.5 Weakly banded flows.								
		302 303 12 2301, 23 10 11 11 11 11 11 11 11								
		END OF DDH #24 at 305 feet.								
				<u> </u>						<u> </u>
				<u> </u>						
					<u> </u>				+	
				 	1			· · · · · · · · · · · · · · · · · · ·	+	
				<u> </u>	<u> </u>				+	
				<u> </u>		†			 	
				 	 	-			+	
			<u> </u>	 		 			+	
				 	 				 	
	 			 	 				+	
	 				 				+	
] 	 	 	-				
	 			 	 					
	ļ		ļ	 	 					
	<u> </u>				<u> </u>					
	<u> </u>		<u> </u>	1	L	_1 1				

LOCATION:	MADOC	TWP. CNTARIO	DIAMOND I	ORILL RE	CORD		_			HOLE	ND: 8	5-25	
AZIMUTH:	272 ⁰		MONO GO	OLD MINES			-	PROPERTY	BAN	NOCKBU	RN		
OIP:	-55	LENGTH: 334		ELEVATIO)N:			CLAIM NO:	F06	52301			
,		25.00.11. 334								32301	···		
STARTED:	Sept.	7/85 CORE SIZE:	BQ	DATE LO	GGED:			SECTION:	243	0N		·····	
COMPLETED:	Sept.	8/85 DIP TESTS: 3	34 ft. = -53°					LOGGED BY	: R.V	. Beavo	on		
PURPOSE:													
FOOTA	GE	25000071011		SAMPLE	F00	TAGE		To	z/tAu				
from	to	DESCRIPTION		Nō:	from	to	LENGTH		2/ LAU				
0	1	Casing											
1	114	"RUSTY SCHIST" FM										<u> </u>	\perp
		1-4.2 Banded medium grey argillac	eous cherts at										ļ
		45° to core axis. Oxidized 10% su										ļ	
	<u> </u>	4.2-4.4 Quartz veinlet with trace	pyrrhotite &										L
		carbonate.											_
		4.4-5.8 As 1-4.2											
	· · · · · · · · · · · · · · · · · · ·	5.8-6.0 Quartz veinlet. Sharp co	ntacts at 200									<u> </u>	$oxed{oxed}$
		to core axis. Traces pyrite, pyrr		·									L
		6.0-10 Light grey cherty argillit										ļ	L
		at 40° to core axis, 15-20% sulphi	des mainly										
<u> </u>		pyrrhotite.											
		10-12 Light grey massive chert wi	th minor sericit	<u> </u>									_
		parallel to cleavage.											L
		12-40.8 Mainly cherty argillite,	dark and light	-									L
		grey laminations. Core angle is 4	0-45°. Minor			<u> </u>					<u> </u>		L
		quartz segregations or stringers a											L
		trace of pyrrhotite & carbonate),	29 (with										L
		pyrrhotite & pyrite), 31.3 (with r	wrrhotite s										L
		carbonate), 32.8 (with carbonate s											Ĺ
		35.5 (with pyrrhotite & trace of c											L
		More substantial quartz at 36.2-36	.35 and 37.5	08552F	36	38	2.0	<	0.003				L
		associated with sericitization of	country-rock.										L
		Country-rock contains between 10 a	nd 25% diss-									<u> </u>	L
1		eminated pyrrhotite and up to 5% r	unite Manie										l

at 40.8.

HOLE Nº: 85-25 PAGE Nº:

2 of 6 FOOTAGE SAMPLE FOOTAGE DESCRIPTION LENGTH Oz/tAu 10 NO: from from "RUSTY SCHIST" FM - cont.'d 114 40.8-41.8 Massive quartz with sharp to grada-1.0 tional contacts, and with traces galena and 08553F 408 41.8 0.003 sphalerite in addition to pyrrhotite in disseminated blebs. 41.8-59.2 Cherty argillites, dark grey and banded at 40 degrees to core axis. About 15% pyrrhotite throughout. Becoming graphitic at 49. 59.2-61.0 Massive to weakly banded light grey argillaceous chert. 61-64.8 As 41.8-59.2 64.8-65.0 Altered mafic sill, fine grained light green. 65.0-76.2 Dark grey cherty argillites with 10% pyrrhotite becoming pyritic at 71. All sulphides esp. pyrite well disseminated throughout core angle 45°. 76.2-76.4 Sericitic selvage to quartz vein. 08554F 76.2 76.4-77 Quartz vein with indistinct contacts. 77.2 1.0 0.003 Trace pyrrhotite, trace pyrite. 77-79.5 Massive banded light grey chert at 60 degrees to core axis. Includes quartz sweat at 08555F 79.5 with pyrrhotite 1.0 0.003 79.5-83 Dark grey cherty argillites with minor quartz and pyrrhotite stringers. 83-86.8 As 79.5-83 with core angle 450 containing 15% pyrite & 10% pyrrhotite in well banded cherty argillites. 86.8-87.0 Minor mafic sill or green dike 87.0-87.2 As 79.5-83. 872-87.4 Quartz vein with pyrrhotite & carbonate 08556F <u> 10.003</u> 1.0

HOLE NQ: 85-25 PAGE NQ: 3 of 6

						,		 OI 0
F00	TAGE	DESCRIPTION	SAMPLE	F00	TAGE	LENGTH	Oz/tAu	
from	to	D E GOWN TOOK	ND:	from	to	22.0		
1	114	"RUSTY SCHIST" FM - Cont'd				 		
		87.4-113.6 Dark grey cherty argillite with high sulphide content. Well banded at 45° to core axis.						
					<u> </u>			
		Token sample taken. Average pyrrhotite content	08557F	93	101	8.0	<0.003	
		25-35%.	<u> </u>					
		113.6-114 Sericitic chert with sulphides	ļ			-		-
114	334	TUDOR VOLCANIC CROUP						
		114-117.5 Cherty chlorite schists in part banded	<u> </u>					
		and contacted with occasional garnet. Up to 20% pyrrhotite.			1	-		
	 	117.5-118.8 Chloritized and carbonated mafic sill	 	 	 			
		at 40° to core axis.						
		118.8-124 Limy banded schists with epidote and						
	 	trace pyrrhotite. In part well bedded tuffs at 350 to core axis.	 	 	 	 		
	<u> </u>		 		-	 -		
	- 	124-134 Light green altered mafic flow with calcit	* 	 	 	 		
	_	stringers. Contains quartz vein at (131.7-132.5).	ļ	 	 			
		Cross cutting white quartz with pyrrhotite blebs	08558F	131.5	132.5	1.0	<0.003	<u> </u>
		134-136.3 Rusty Schist Fm: Cherty argillites -	<u> </u>	ļ	<u> </u>	ļ		
		dark grey with 30% pyrrhotite.	<u> </u>					<u> </u>
		136.3-137.7 Pyrrhotite bearing tuffs and/or chlorite schist	<u> </u>	 				
		137.7-138.1 Quartz-carbonate-pyrrhotite vein	08559F	137.5	138.5	1.0	<0.003	
		138.1-139.1 Contorted cherty banded tuffs and						
		chlorite schist.						
		139.1-141 Chloritic mafic sill with some calcite	08566	140	141	1.0	<0.002	
		stringers. Includes quartz vein contacts at 140.5	<u> </u>					
		(.2') - sharp at 45° to core axis						
		141-141.3 Cherty flow contact						
		141.3-143 Carbonate altered secondarily banded						
	1	flows (?).			ļ	 		
			1	I	1		il	 1

HOLE NO: 85-25 PAGE Nº:

4 of 6

F001	TAGE	o reenintion	SAMPLE	F001	TAGE	LENGTH	Oz/tAu			
from	to	DESCRIPTION	Nō:	from	to	LENGIH	Oz, Chu			İ
114	334	TUDOR VOLCANIC GROUP - Cont'd								
		<u> </u>								ļ
		143-144 Chloritic mafic sill, sharp contacts at								
		30° to core axis.		ļ					1	
		144-145.2 As 141.3-143								
		145.2-146 Cherty flow contact.		-						
	<u> </u>	146-147.5 Greenstone flow? with abundant calcite		147	148	1.0	≤0.003			
	<u></u>	stringers. Essentially chlorite schist.	08561F	149.8	150.8	1.0	-0.002		<u> </u>	<u> </u>
		147.5-147.6 Quartz vein with carbonate	08562F	152	153	1.0	0.002		1	
		147.6-150.3 As 146-147.5 - Minor quartz vein with								
	`	with carbonate and biotite at 150. Probable								
		fault at 150.3 with quartz-pyrite veinlet.								
		150.3-152.3 As 146-147.5		<u> </u>						
		152.3-164 Poorly banded greenstone flow breccia					·			
		with occasional minor cherty infolds. Occasional								
		calcite stringers.								<u> </u>
		164-166 Quartz wein with inclusion of country-								
		rock. Mottled grey and white quartz with pyrite	08563	164	166	2.0	<0.002			
		paint, trace carbonate and chlorite.								
		166-166.9 As 152.3-164				-				
		166.9-167.1 Quartz-tourmaline yein with fairly					′			
		sharp contacts normal and at 60° to core axis.								
		167.1-169. Greenstone schist flow								
		169-170.5 Banded cherty flow contact quartzite				·				
	1	with trace syngenetic pyrrhotite. Also contains								
		banded tuffite and cherts.								İ
		170.5-174 Schistose greenstone flow unit,								
		amygdaloidal in part.		1						
	1	174-174.4 Banded cherty flow contact (?)							†	<u></u>
		174.4-181.5 Partly amygdaloidal flow with								
		occasional amygdules and abundant secondary								
		banding with calcite stringers. Possible deformed								
		flow breccia at 181.0-181.5			<u></u>			1		
	<u> </u>	181.5-181.9 Flow contact cherty quartzite							1	
		TATEL TATEL TOTAL CONTRACT CON								

HOLE Nº: 85-25 PAGE Nº: 5 of 6

F00	TAGE	DESCRIPTION	SAMPLE	FOO	TAGE	LENGTH	_ /-	
from	to	DESCRIPTION	Nō:	from	to	LENGTH	Oz/tAu	
14	334	TUDOR VOLCANIC GROUP - Cont'd		_				
		181.9-189 Greenstone flow with traces of deformed						
,		flow breccia at 182-183. 189-189.1 Probable flow contact with interflow						
		chloritic sediment (?).						
		189.1-191.7 Fairly massive greenstone 191.7-191.9 Ouartz-tourmaline-carbonate vein with						
		fiarly sharp contacts, repeated at 192.	08564F	191.2	192.2	1.0	0.038	
	`	191.9-192.2 As 181.9-189 192.2-193 Mottled quartz vein or segregation	08565F	192.2	193.2	1.0	0.002	
		193-195 As 189.1-191.7 195-195.4 Flow breccia flow contact with quartz-						
		carbonate segregation 195.4-207 Amygdular greenstone schist flow unit with minor calcite stringers. Minor quartz veinlet						
		at 206. 207-207.5 Probable flow contact chert cut by minor						
	 	quartz-tourmaline stringer 207.5-213.2 Secondarily banded greenstone schist				 		_
		flow. Banding at 45° to core axis. 213.2-213.4 Banded cherty flow contact						
		213.4-215.6 As 217.5-213.4 215.6-215.7 Cross cutting quartz vein with pyrite (3%) sharp contacts.	08567F	215.3	216.3	1.0	⟨0.002	
		215.7-266 Weakly schisted light to dark green greenstone flows with occasional calcite stringers						
		and quartzitic segregations. Traces of pyrite at 227-228 and at 261-262, where it is associated with						
		epidotized calcite stringers. Possible sill or dike at 235.5. Tourmaline-quartz stringer at 249.5						
		Amygdaloidal sections in places showing well flattened amygdules.						
		266-267.2 Weakly banded cherty quartzite with 5% disseminated pyrite.	08568F	266	267.2	1.2	<0.002	

DIAMOND DRILL	R	E	C	0	R	D
---------------	---	---	---	---	---	---

HOLE N2: 85-25 PAGE N2: 6 of 6

								· · · · · · · · · · · · · · · · · · ·	L O .
F00	TAGE	DESCRIPTION	SAMPLE	F00	TAGE	LENGTH	Oz/tAu		
from	10	DESCRIPTION	Nº:	from	to	LENGIN	02, 434		
114	334	TUDOR VOLCANIC GROUP - Cont'd							
		267.2-283.8 Fairly massive chlorite-biotite							
		schist or greenstone flow with minor calcite and							
		quartz stringers. Foliated at 350 to core axis.							
7, ,		Occasional fine amygdular sections.							
		283.8-284.1 Quartz veinlet with chlorite streak	08569F	283.5	284.5	1.0	0.002		
		284.1-285 Cherty quartzite on flow contact.							
		285-289.2 Distinctive flow or sill with good							
1,11,11		chills, some of which are internal. A well							
		foliated banded greenstone with occasional cherty							·
-		inclusions.							
		289.2-289.4 Quartz veinlet with pyrrhotite. Sharp			_				
		contacts at 20° to core axis	08570F	288-9	289.9	1-0	40,002		
		289.4-304.2 A s 285-299.2 with minor quartz-							
		druse at 291, and a possible breccia xenolith at							
·		291 and 296							
		304.2-304.8 Cherty quartzite with indistinct							
		banding. Another flow contact zone.							
		304.8-310.5 Secondarily foliated amyodaloidal							
		flow and flow breccia. Minor quartz and carbonate							
		stringers.							
		310.5-311 Cherty flow contact, well banded at							
		45° to core axis.							
		311.0-313 Foliated flow breccia with large							
		fragments. Minor quartz carbonate stringers.							
		313-315 Greenstone schist flow (?)							
		315-321.5 As 313-315 with abundant quartz-	1						
		carbonate-pyrrhotite and trace sericite.	08571F	315	317	2.0	-0.002		
		321.5-324 As 313-315.							
		324-334 Massive looking greenstone schist and	08572F	321.5	324	2.5	≤0.002		
		flow. Minor quartz pyrrhotite stringer and minor		J21,0					
		quartz stringers							
		The state of the s				<u> </u>			
		END OF DDH 85-25 at 334 Feet	İ						

LOCATION:	MADOC !	IWP. ONTARIO MONO DIAMOND	DRILL RE	CORD				HOLE NO: 85-26				
AZIMUTH:	235	MOND DIAMOND MINES	DIVILL IVE			-	PROPERTY: BANT					
AZIMU (H:		MONO GOI	D MINES I	NC.		-	PROFERTI BAN	NOCKBURN				
DIP:	-45°	LENGTH: 284 ft.	ELEVATI	ON:			CLAIM NO: E0652301					
STARTED:	Sept.	9/85 CORE SIZE: BO	DATE LO	GGED:			SECTION: "OF	F SECTION" 2600N				
COMPLETE	o: Sept.	10/85 DIP TESTS: 284 ft. = $43\frac{1}{2}^{\circ}$					LOGGED BY: R.V	. Beavon				
PURPOSE:												
F00°	TAGE		SAMPLE	FOO	TAGE		Oz/tAu					
from	to	DESCRIPTION	Nō:	from	to	LENGTH	OZ/ CAU					
0	2	Casing	ļ									
2	284	TUDOR VOLCANIC GROUP		ļ		_						
			-									
		2.0-4.0 Well foliated greenstone schist caving at 4.0		 		-						
		4.0-5.5 Solid greenstone schist with flattened										
		amygdules										
		5.5-6.5 Cave with quartz fragments.										
		6.5-18.5 Schistose greenstone flow with schistos-		ļ								
	ļ	ity at 35°-40° to core axis. Blocky core at 14.5	ļ	ļ	ļ	_						
	 	Occasional minor quartz and carbonate stringers	<u> </u>		<u> </u>							
	<u> </u>	throughout. Trace pyrite at 16'.	005707	10	10	+						
		18.5-18.7 Ouartz veinlet with trace chlorite and trace carbonate. Sharp contacts parallel	08573F 08574F	18 19	19 20	1.0	<0.002 <0.002					
		schistosity.	003742	15	20	1.0	0.002					
		18.7-20.0 As 6.5-18.5		†		-						
		20.0-20.1 Quartz stringer with pyrite										
		20.1-29.0 Well schisted greenstone flow with										
		occasional minor quartz and calcite stringers.										
		29.0-29.9 Cherty grey quartzite with possible										
	ļ	limestone band at 29. Interpreted as flow contact										
	 	chert containing 10% disseminated pyrite. Sharp	ļ	1	ļ							
	 	contacts at 45° to core axis.	ļ	<u> </u>	<u> </u>							
	 	29.9-36.3 Dark green mafic flow with rare	ļ	 	<u> </u>							
		I SITUDETS AND AMINDALOIDAL COOKLONG										

36.3-36.7 Massive flow contact, cherty quartzite

HOLE Nº: 85-26 PAGE Nº: 2 of 5

F00	TAGE	DESCRIPTION	SAMPLE	F00	TAGE	LENGTH				
from	to	DESCRIPTION	Nº:	from	to	LENGIH	Oz/tAu			
2	284	TUDOR VOLCANIC GROUP - Cont'd								
		36.7-43.7 Highly carbonated greenstone schist-								
		flow. Up to 30% calcite in amygdules and hairline								ļ
		stringers. Parallel to schistosity.			ļ					
		43.7-43.9 White quartz veinlet at 650 to core		ļ				_		<u> </u>
		axis. Trace pyrrhotite & pyrite.	08575F	43.4	44.4	1.0	0.030			
		43.9-52.0 Greenstone more massive at 49.2 with								
		epidote to 50.2								<u> </u>
		52.0-52.2 White quartz veinlet at 45° to core								
		axis. Trace chlorite.	08576F	51.5	52.5	1.0	0.002			
		52.2-54.7 Massive greenstone with epidote.								
		54.7-59.0 As 36.7-43.7.		<u> </u>						
		59.0-59.1 Quartz veinlet with calcite. Sharp								
		contacts at 40-60° to core axis.	08577F	58-5	59_8	1.3	-0.002			
		59.1-59.7 Greenstone flow								
		59.7-59.8 Quartz-Tourmaline veinlet.								
		59.8-61.3 Greenstone flow with carbonate alter-								
		ation.								
		61.3-62.5 Mixed quartz-carbonate veins and country	-08578F	61	62.5	1.5	<0.002			
		rock.								
		62.5-66.5 less altered schistose greenstone flow								
		with flow contact chert at 64.0.								
		66.5-66.7 Quartz veinlet with trace pyrite and					-			
		carbonate. One speck visible native gold. Sharp	08579F	65	66	1.0	<0.002			
		contacts normal to core axis. Trace marcasite	08580F	66	67	1.0	1.172			
		66.7-74.0 Schistose greenstone flow, fine grained		67	68	1.0	0.042			
		medium green. Rare minor stringers of calcite.								
		74.0-86.2 Carbonate altered greenstone flow unit -								
		sharp contact at 74. Fine vesicles or calcite								
		rhombs throughout. Well developed schistosity at 35°-40° to core axis.								-
	 				1	++		-		
	 	86.2-86.3 Quartz veinlet with negligible minerali-			 	-			 	
	 	zation.		 	 	 			 	\vdash

HOLE N2: 85-26 PAGE N2: 3 of 5

FOOT	AGE	DESCRIPTION	SAMPLE	F00	TAGE	LENGTH		
from	to	D 200 M 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Nō:	from	to		Oz/tAu	
2	284	TUDOR VOLCANIC GROUP - Cont'd		<u> </u>				
		86.3-109.0 Apparently unbroken sequence of dark	08582F	87.7	88.7	1.0	0.002	
		green weakly carbonate-altered flows with sporadio						
		minor quartz-carbonate and calcite stringers						
		109.0-109.2 Chill zones between lavas (?),						
		occupied by quartz-carbonate stringer.						
		109.2-123.9 As 86.3-109.0. Occasional trace						
		pyrite, minor quartz stringer at 111.9.						
		123.9-124.1 As 109.0-109.2						
		124.1-134.0 Dark green schistose greenstone with						
		carbonate stringers at 126-127. Cherty flow						
		contact at 134.		ļ				
		134.0-134.4 Greenstone as 124.1-134.0.						
		134.4-136.1 Mixed massive white quartz and countr	7	<u> </u>	ļ			
		rock. Quartz contains pyrite as paint and some	08584F	134.4	136.2	1.8	40.002	
		marcasite. Contacts sharp and at variable core						
		angles.		<u> </u>				
		136.1-147.5 Schistose greenstone flow with						
		abundant calcite stringers with indistinct con-						
		tacts.			<u></u>			
		147.5-149.0 Two massive calcite veins separated	71418	147.5	149	1.5	40.002	
		by 0.6 ft. of country-rock.		<u> </u>				
		149.0-151.0 As 136.1-147.5 with carbonate altera-					· .	
		tion.						
		151.0-196.0 Hard massive dark green rhyolite flow	71419	156.7	157.7	1.0	<0.002	
		(?) lacking in schistosity. Fine grained medium						
· · · · · · · · · · · · · · · · · · ·		to dark green with occasional chloritic amyodules.						
	<u> </u>	Minor chlorite and calcite stringers, sometimes						
		with epidote. This unit is probably a silicified						
		flow. Scattered pyrite & pyrrhotic throughout,						
	ļ	and occasional minor quartz and calcite stringers.						
		0.1 quartz veinlet at 192.5.						
		196.0-200.2 Finely laminated tuffs and cherts at						
		600-450 to core axis. Like 151-196 this unit appea	rs					

DIAMOND [DRILL	RI	EC	00	R
-----------	-------	----	----	----	---

HOLE Nº: 85-26 PAGE Nº: 4 of 5

						 	- <u></u>	<u> </u>	5		
FOOT	AGE	DESCRIPTION	SAMPLE	FOO	TAGE	LENGTH	Oz/tAu				
rom	to	DESCRIPTION	Nō:	from	to	LENG! N	02/ CAU				
2	284	TUDOR VOLCANTE GROUP - Cont'd									Π
		200.2-201.9 Massive milky quartz with trace	08585F	200_0	202.0	2.0	0.050				
		chalcopyrite and pyrite. Contacts sharp and lower		202.0	205.5	3.5	0.018				
		contact has selvage of heavy tournaline. Minor			1						
	!	tourmaline within the quartz.									
		201.9-209.2 Silicified mafic flow similar to 151-									Τ
		196, but with up to 15% sulphides (py, po), the									1
		pyrite filling fractures and the pyrrhotite									1
		disseminated and occupying amygdules.									T
		209.2-209.3 Minor quartz veinlet with pyrite	08587F	209	210	1.0	0.004				1
		209.3-219.3 As 201.9-209.2 Fine grained	08645F	210.5	211.5	1.0	0.002				T
		amygdaloidal in places, minor calcite stringers,									
		but lacking in epidote.									Τ
		219.3-220.2 Banded cherty quartzite at 30% to core									
		axis.									T
		220.3-229.0 Banded fine grained laminated tuffites								-	Г
		at 35° to core axis. Similar in colour and grain									
		size to overlying flows(?)									T
		229.0-240.1 Fine grained massive greenstone flow									T
		and similar to 201.9-209.2. Flow breccia (?) at		<u> </u>							Τ
	1	229.0-232.0. Minor quartz, calcite and pyrrhotite			1					·	
		stringers.									T
		240.1-240.8 Flow contact with cherty quartzite.									\vdash
		240.8-252.7 Fine grained massive greenstone flow(?									Π
		with scattered cherty inclusions and minor stringer		1	1	1.					
		Becoming finely laminated (secondary) at 250 with									T
		increasing schistosity development. Abundant								-	1
		quartz carbonate segregations at 249-251 with sharp									
·		to indistinct contacts.	08588F	248.5	250.5	2.0	0.004				Τ
	1	252.7-266.3 Mottled biotitic schistose mafic	1 2 2 2 2 2 2 2				7.00				Г
		metavolcanics	<u> </u>		1						1
		266.3-267.0 Probable flow contact banded cherty	08589F	257	258	1.0	0.008				Г
	1	quartzite with intercalated biotite rich layers.	000001	123,	123	 ** 	0.000				T
	<u> </u>	The same of the same state of the same same same same same same same sam	<u> </u>	 	 	 		+-			\vdash

HOLE NO: 85-26

PAGE Nº: 5 of 5

FOOT		DESCRIPTION	SAMPLE	1	TAGE	LENGTH	Oz/tAu				
from	to		Nō:	from	to		UZ/ CAL				<u> </u>
2	284	TUDOR VOLCANIC GROUP - Cont'd		ļ				<u> </u>			
					ļ						1
		267.0-268.0 Contorted flow contact area (?) with									<u> </u>
		folded quartz.									<u> </u>
		268.0-284.0 Mottled biotite flows with calcitic	08590F	279.5	280.5	1.0	0.012				
		patches in part replaced by up to 40% pyrrhotite.									
-		patches in part replaced by up to 40% pyrrhotite. Quartz-carbonate stringers or possible flow contact									
		at 272. Quartz-carbonate veinlet at 280.									
		Negligible mineralization.									
		END OF DOH 85-26 at 284 feet.									
											\vdash
									· · · · · · · · · · · · · · · · · · ·		†
											1
				<u> </u>		1					\vdash
				1	<u> </u>						
									 	<u> </u>	+
					†	 		ļ			
	 				 						
				 	1						┼─
					<u> </u>	-					┼
			<u> </u>	 	 	 		 			┼
				 	<u> </u>			ļ-,			
 					ļ						
	<u> </u>			ļ	<u> </u>					<u> </u>	
	<u> </u>				ļ						
	 		<u> </u>	_	ļ						
· · · · · · · · · · · · · · · · · · ·	<u> </u>							ļ			—
											<u> </u>
	ļ										<u> </u>
·				<u> </u>							
	1										

LOCATION:		TWP. CNTARIO MON GOL	DIAMOND DRILL RE	CORD					HOLE		-27	
AZIMUTH:	235 ⁰		MONO GOLD MINES	INC.		-	PROPERT	Y: BANI	NOCKBUE	ZN		
OIP:	-70 ⁰	LENGTH: 300	ft. ELEVATION	N:	· · · · · ·		CLAIM N	2: E06!	52301			
STARTED:	Sept.	10/85 CORE SIZE: E	Q DATE LO	GGED:			SECTION:	"OFF	SECTIO	M" 2600	ON	
COMPLETED	: Sept.	12/85 DIP TESTS: 3	00 ft. = 67½°				LOGGED	BY: R.V	. Beavo	n		
PURPOSE:												
FOOT	AGE to	DESCRIPTION	SAMPLE No:	FOO'	TAGE to	LENGTH		Oz/tAu				
0	2	Casing										
2	300	TUDOR VOICANIC GROUP 2.0-13.5 Weathered carbonate-rich										
	······································	dissolution of abundant calcite. consists of well-schisted fine gra	Otherwise core									-
	-	flow. 13.5-14.2 Quartz vein with sharp to core axis. Slightly translucen	contacts at 30° 08583F	13.4	14.4	1.0		(0.002				
		rutile, and trace pyrite. 14.2-16.8 Well laminated carbonat stone flow with minor calcite stri	e-rich green- nger parallel									
		to schistosity (20° to core axis) 16.8-17.0 Quartz-carbonate chlori 17.0-21.2 As 14.2-16.8	te segregation 08591F	16.4	17.4	1.0		0.002				
		21.2-21.3 Cherty quartzite flow c 21.3-45.9 Dark green greenstone s abundant small flattened amygdules	chist with . Quartz	•								
		segregation at 24.4. Minor quartz										<u> </u>
		45.9-46.2 Quartz veinlet with sha 25-30 to core axis. Minor carbo chlorite.	nate and									
		46.2-49.0 As 21.3-45.9 without st 49.0-49.1 Cherty-quartzite flow of		45.8	46.8	1.0		0.002				<u> </u>

HOLE NO: 85**-27** ` PAGE Nº: 2 of 5

FOOT	AGE		SAMPLE	500	TAGE	T		1	1	T
from 1	10	DESCRIPTION	NO:	from	to	LENGTH	Oz/tAu	9		1
			N2"	110m	- 10	 				
2	300	TUDOR VOLCANIC GROUP - Cont'd		 	 					ļ
					├ ──	 				
		49.1-62.4 Uniform dark green schisted greenstone			<u> </u>					
		flow with minor stringers of quartz and carbonate			ļ			<u></u>		<u> </u>
		62.4-63.0 Heavy chlorite and calcite section,								
		possibly on sill or dike at 20 degrees to core								
		axis.								
		63.0-63.8 Possible flow contact zone represented								
		by greenstone chert mixture.								
-		63.8-64.0 Quartz veinlet with chlorite.	08593 _F	63.4	64.4	1.0	<0.002			
		64.0-66.7 Weakly banded greenstone flow with								
		minor quartz and calcite stringers.								
		66.7-67.4 Weakly banded cherty quartzite (flow								1
		contact).								
		67.4-76.9 Greenstone schist flows with trace of		 						+
		biotite, and abundant minor quartz and calcite	<u> </u>	 	+	 				+
					 					
_		stringers. Amygdaloidal in part.	08594F	76.8	79.0	2.2	0.042			+
		76.9-78.5 Pyrrhotite and chlorite impregnated flow with 25-30% pyrrhotite.	U0334F	70.0	19.0	2.2	0.042			
			<u> </u>	 						1
		78.5-79.0 Quartz-pyrite-pyrrhotite-tourmaline-	ļ	<u> </u>	 					
···		chalcopyrite vein.		<u> </u>	ļ					ļ
		79.0-123.3 Apparently unbroken sequence of		ļ	ļ					<u> </u>
		schistose greenstone flow, with schistosity at	<u>. ,</u>	<u> </u>						1
		30° to core axis. Possible chill zone at 92			<u> </u>					
	<u> </u>	marking flow contact? Banding due to secondary								
		carbonate segregation along schistosity.								
_		Amygdaloidal sections throughout. Only minor								
		scattered quartz-carbonate stringers. Negligible		1		1				
		mineralization.		†	†					1
123.3	154 02	RAYOLITE: Massive flow or sill lacking in		 	1					
	1-1-1-1-1	foliation. Contact moderately sharp at 123.3 at			1	1				
	 		<u> </u>		 	+				1
	 	45° to core axis. Fine grained glassy greenstone?			-	 				
	 	with abundant reticulate minor stringers of		 	 				_	+
	1	chlorite and epidote, and occasional minor quartz		ļ	 					

DIAMOND	DRILL	RE	CO	RC
---------	-------	----	----	----

HOLE NO:
85-27
PAGE NO:

3 of 5

FOOT	TAGE	DESCRIPTION	SAMPLE	F00	TAGE	LENGTH	0 (17			T
from	to	DESCRIPTION	NO:	from	to	LENGTH	Oz/tAu			
2	300	TUDOR VOLCANIC GROUP - Cont'd								
		123.3-154.3 cont'd								
		quartz at 138 & 138.5. Pyrrhotite blebs with trace	08595F	138	139	1.0	40.002			
		chalcopyrite at 152.8 & 153.5. This rock type may								
		be silicified or hornfelsed.								
		154.3-155.4 Silicified greenstone flow with	ļ		<u> </u>	1				
		amygdules (dike unlikely)		ļ	ļ	1	ļ.,			
	ļ	155.4-168.0 As 123.3-154.3 with dolomite in one								
		stringer.			ļ	 				
		168.0-174.5 Well schisted and carbonate-rich			ļ	1				
	 	greenstone flow.	<u> </u>		<u> </u>					
	<u> </u>	174.5-174.7 Quartz calcite veinlet (mainly calcite	08596F	174	175	1.0	40.002			
		174.7-179.0 As 168-174.5			<u> </u>					
		179.0-180.3 Cherty quartzite, well banded at 50°	<u> </u>	<u> </u>	<u> </u>					
		to core axis. Quartz-carbonate veinlet at 181.1.	 	<u> </u>	+					+
	1	180.3-202.0 Weakly schisted greenstone flow with		ļ	 	1				
		undeformed calcite amygdules in places. Quartz	<u> </u>		 	 -				
		carbonate veinlets at 186, 189, 190, 191.4 and			 	+				
		192.2. Agate filling (silica) at 192.4. Addition-	<u> </u>		-	-				
		al quartz carbonate veinlets and stringers with weak foliation.	 		 	1				
	<u> </u>		005077	202	203	1.0	40.002			+
	<u> </u>	202.0-204.0 Blocky core with two narrow sulphide veinlets composed of pyrite at 202.2 and 202.9.	08597F	202	203	1.0	20.002			
	 	204.0-206.1 Moderately foliated greenstone flow	 		 	1				
	 	206.1-207.8 Cherty quartzite, well banded with	<u></u>		 	1		-		+
	 	chloritic streak near 207.8. Probable flow contact		<u> </u>	 	 				
	<u> </u>			-	†	 				+
	†	207.8-209.0 Carbonate impregnated greenstone flow. 209.0-209.1 Ouartz veinlet with traces pyrrhotite.	 		 	1	 			+
	†	and one speck native gold and one speck of tetra-	08598F	208.5	209.5	1.0	0.156			+
	<u>† </u>	dymite.	00000			 				+
	T	209.1-211.5 Massive greenstone flow with minor			 	1				
		quartz-carbonate stringers.			 	1				+
······································	†	211.5-211.6 Minor quartz weinlet with sharp con-	08599	211	212	1.0	0,022			+
	†	tacts at 45° to core axis.	08599		1 /1/	 				+

DIAMOND	DRILL	RECORD
---------	-------	--------

HOLE NO:
85-27
PAGE NO:

4 of 5 FOOTAGE SAMPLE FOOTAGE Oz/tAu DESCRIPTION LENGTH NO: from from TUDOR VOLCANIC GROUP - Cont'd 2 300 211.6-213.9 As 209.1-211.5 213.9-214.3 Quartz vein with pyrrhotite (?) and associated chalcopyrite stringer in wall rock. 08600F 213.9 214.9 1.0 0.248 Includes marcasite, pyrite and tourmaline mineralization. 214.3-218.4 Massive to weakly schisted greenstone flow, trace pyrrhotite at 215.5. Possible internal contact at 217.2. 218.4-218.5 Cherty flow contact (?) 218.5-232.0 Weakly schisted greenstone flows, in part silicified? Banded from 225.4-232.0. Possible tuffs for that interval. Banding at 45° to core axis. 232.0-232.9 Amygdaloidal green dike. 232.9-246.0 Weakly banded siliceous greenstone with epidote & calcite stringers. 246.7 245.7 246.0-246.5 Quartz carbonate segregation on 08601F 1.0 0.006 probable flow contact. 246.5-250.0 Weakly schisted greenstone 08602F 249.5 250.5 1.0 40.002 250.0-250.5 Quartz wein with tourmaline selvage on included country-rock fragment. 250.5-255.2 Well schisted greenstone and foliated flow breccia. Chlorite schist throughout. 255.2-255.3 Quartz-pyrrhotite veinlet with 30% pyrrhotite and seven grains of visible native gold. Includes several grains of tetradymite. Sharp contacts at 45° to core axis. 08603F 255.8 256.8 | 1.0 0.731 255.3-259.2 Well banded (schisted?) greenstone with minor carbonate content. Chlorite schist throughout. 259.2-259.4 Quartz-pyrrhotite veinlet with traces 08604F 259.0 260.0 0.304 visible native gold. Splite core shows sheafs of soft light borwn to translucent acicular mineral (zeolite?)

HOLE N2: 85-27
PAGE N2: 5 Of 5

								5 of	5	
	AGE	DESCRIPTION	SAMPLE	1	TAGE	LENGTH	Oz/tAu			
from	to		Nō:	from	to		02/ 434			
2	300	TUDOR VOLCANIC GROUP - Cont'd					 	 		
								ļ		ļ
		259.4-267.5 Weakly amphibolitized greenstone					 	 ļ		<u> </u>
		schist.						 		
		267.5-267.7 Quartz-pyrrhotite-chlorite veinlet.	08605F	267.1	268.1	1.0	 0.014			
		Sharp contacts at 50 degrees to core axis			<u> </u>		 			<u> </u>
		267.7-300.0 Weakly carbonated greenstone. No mottled developments as seen in hole 26. Carbonate					 			
		mottled developments as seen in hole 26. Carbonate								
		veinlets at 284.2 and 284.6.					 			
		END OF DDH #85-27 at 300 Feet.								
				<u> </u>						<u> </u>
					<u> </u>					<u> </u>
										<u> </u>
		`								
					†					1
	1									
							-			
					<u> </u>		 -			<u> </u>
	 					 				
	 			 	 	 	 	 		

		· · · · · · · · · · · · · · · · · · ·							,	
LOCATION:	MADOC	TWP. CNTARIO DIAMOND	DRILL RE	CORD		_		HOLE NO	: 85–28	
AZIMUTH:	235		OLD MINES			-	PROPERTY: D7	NNOCKBURN	00 20	· · · · · · · · · · · · · · · · · · ·
		I V I MC.				•		NAME OF THE PERSON		
DIP:	-45 ⁰	LENGTH: 324 ft.	ELEVATI	ON:			CLAIM NO: EC	652301		
STARTED:	Sept.	13/85 CORE SIZE: BQ	DATE LO	GGED:			SECTION: "C	FF SECTION	" 2700N	
						····				
COMPLETED	o: Sept.	14/85 DIP TESTS: 324 ft. = -45					LOGGED BY: R.	V. Beavon		
					····			<u></u>		
PURPOSE:				<u> </u>				 		· · · · · · · · · · · · · · · · · · ·
5007	TAGE		SAMPLE	FOO	TAGE	1		1		T
from	to	DESCRIPTION	NS:	from	to	LENGTH	Oz/tAu	4		
0	2	Casing	 	†		+				+
					<u>† </u>					
2	324	TUDOR VOI CANTE GROUP								
		2.0-2.9 Poorly schisted greenstone								
		2.9-3.5 Well ribboned partly oxidized quartz vein	n]							
		at 40° to core axis. Trace pink carbonate	08606F	2.7	3.7	1.0	0.002			
		3.5-14.3 Moderately schisted amygdaloidal greenstone flow with foliation at 45° to core axis 14.3-14.4 Partly oxidized quartz veinlet at 45°		<u> </u>	 	1				<u> </u>
		greenstone flow with foliation at 45° to core axis	<u> </u>	<u> </u>	<u> </u>					
		14.3-14.4 Partly oxidized quartz veinlet at 45	08607F	14.0	15.0	1.0	0.016			
	ļ	to core axis. Carbonate leached out.	<u> </u>	<u> </u>	↓	-				
		14.4-34.0 Fairly soft greenstone schist with in-		ļ	<u> </u>					ļ
	-	creasing carbonate content. Minor folded quartz		ļ	-					
·/···	ļ <u></u> -	stringer at 27-27.5. Essentially a chlorite- carbonate schist from 27 on.		 	-					<u> </u>
	<u> </u>			<u> </u>	 	+				
<u> </u>	 	34.0-36.5 Green dike or sill, fine grained with flattened chloritic amyodules. Again well schiste			-	+		1		-
		36.5-42.3 As 14.4-34.	4.	-	 	+				
	 	42.3-42.5 Quartz-carbonate veinlet concordant		 	†	+				1
·		with schistosity.	1	 -	1	 		 		
		42.5-47.5 As 14.4-34.0								
		47.5-48.3 White quartz vein with pyrite paint					-			
		and pyritchedra on joints. Includes .3 ft. of	08608F	47.5	48.5	1.0	0.010			
		country-rock.								
	48.3-52.4 As 14.4-34.0									
		52.4-62.2 Massive well stringered fine grained								
· · · · · · · · · · · · · · · · · · ·	ļ	greenstone or chloritized felsite with minor quart	<u> </u>		ļ					ļ
	<u> </u>	carbonate, epidotized and chlorite stringers. A	1	<u> </u>		1		<u> </u>	<u> </u>	<u></u>

~~~ 413

HOLE Nº: 85-28 PAGE Nº: 2 of 5

| FOOT        | AGE      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SAMPLE  | FOO    | TAGE                                             | <u> </u>                                         |                                       | 1 |   | T                                                |
|-------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------|--------------------------------------------------|--------------------------------------------------|---------------------------------------|---|---|--------------------------------------------------|
| rom 1       | to       | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NO:     | from   | to                                               | LENGTH                                           | Oz/tAu                                |   | 1 |                                                  |
| <del></del> |          | THEORY AND CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CON | 102     | 110111 |                                                  |                                                  |                                       |   |   | ┼-                                               |
| 2           | 324      | TUDOR VOLCANIC GROUP - Cont'd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         |        | <del>                                     </del> | <del>                                     </del> |                                       |   |   | ├-                                               |
|             |          | 52.4-62.2 - cont'd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |        | <u> </u>                                         |                                                  |                                       |   |   | -                                                |
|             |          | reticulate network of minor stringers suggests and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |        |                                                  | <del>                                     </del> | · · · · · · · · · · · · · · · · · · · |   |   | -                                                |
|             |          | intrusive origin.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |        | <del> </del>                                     |                                                  |                                       |   |   | ┼                                                |
|             |          | 62.2-64.0 As 14.4-34.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |        |                                                  |                                                  |                                       |   |   | ↓_                                               |
|             |          | 64.0-65.0 Two narrow quartz stringers separated by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |        | <del> </del>                                     | <del> </del>                                     |                                       |   |   | ╁                                                |
|             |          | country-rock. Sharp contacts at 300 to core axis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 08609F  | 64.1   | 65.1                                             | 1.0                                              |                                       |   |   | <del> </del>                                     |
|             |          | 65.0-68.7 Well schisted greenstone flow with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |        | <u> </u>                                         |                                                  |                                       |   |   | ↓_                                               |
|             |          | carbonate streaks parallel to schistosity at 20°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |        |                                                  | <del>                                     </del> |                                       |   |   | ļ                                                |
|             |          | to core axis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         |        | ļ <u>.</u>                                       | <del>                                     </del> |                                       |   |   | <u> </u>                                         |
|             |          | 68.7-69.0 Quartz-tourmaline veinlet at 60-70° to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 08610F  | 68.5   | 69.5                                             | 1.0                                              | 0.010                                 |   |   |                                                  |
|             |          | core axis. Negligible mineralization.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |        | <b></b>                                          |                                                  |                                       |   |   |                                                  |
|             |          | 69.0-71.0 As 65.1-68.7 with abundant granular                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         |        | <b></b>                                          |                                                  |                                       |   |   |                                                  |
|             |          | calcite stringers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |        |                                                  |                                                  |                                       |   |   | 1_                                               |
|             | <u> </u> | 71.0-71.7 Quartz-tourmaline (?) vein parallel to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |        | <u> </u>                                         |                                                  |                                       |   |   |                                                  |
|             |          | schistosity at 20° to core axis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 08611F  | 70.7   | 71.7                                             | 1.0                                              | 0.002                                 |   |   |                                                  |
|             |          | 71.7-77.8 Amygdaloidal schisted greenstone flow.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |        | <u> </u>                                         |                                                  |                                       |   |   |                                                  |
|             |          | Minor smoky quartz strongest at 77.0 parallel to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |        |                                                  |                                                  |                                       |   |   |                                                  |
|             |          | schistosity.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |        |                                                  |                                                  |                                       |   |   |                                                  |
|             |          | 77.8-79.0 White quartz-tournaline vein with trace                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 08612F  | 77.5   | 79                                               | 1.5                                              | 0.002                                 |   |   |                                                  |
|             |          | carbonate and pyrite.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |        |                                                  |                                                  |                                       |   |   |                                                  |
|             |          | 79.0-86.8 Heavily carbonated and schisted green-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |        |                                                  |                                                  |                                       |   |   |                                                  |
|             |          | stone. Schistosity at 35° to core axis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |        |                                                  |                                                  |                                       |   |   | 1                                                |
|             |          | 86.8-87.2 Quartz-carbonate veinlet parallel to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 08613F  | 86.5   | 87.5                                             | 1.0                                              | 0.002                                 |   |   |                                                  |
|             |          | schistosity. Negligible mineralization.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |        |                                                  | <del>                                     </del> |                                       |   |   |                                                  |
|             |          | 87.2-93.9 As 79.0-86.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |        |                                                  |                                                  |                                       |   |   |                                                  |
|             |          | 93.9-96.0 Quartz veins with 0.5 ft. of country-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |        | <del>                                     </del> |                                                  |                                       |   | 1 | t                                                |
|             |          | rock. Negligible mineralization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 08614F  | 93.9   | 95                                               | 1.1                                              | 0.004                                 |   |   | <del>                                     </del> |
|             |          | 96.0-98.0 As 79.0-86.8. Minor quartz stringer at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | 95.9   | 96                                               | 1.0                                              | 0.004                                 |   |   | <del>                                     </del> |
|             | ,        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | VOO LOP | 75     | 1 30                                             | 1-1-4                                            | 0.002                                 |   |   | $\vdash$                                         |
|             |          | 97.5 parallel to schistosity.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         |        | <del> </del>                                     | <del>                                     </del> |                                       |   |   | <del>                                     </del> |
|             |          | 98.0-115.4 Intrusive greenstone? Fine grained &                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | ·····  | <del> </del>                                     | <del>                                     </del> |                                       |   |   | -                                                |
|             |          | massive with reticulate stringers of quartz,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |        | <del> </del>                                     | <del> </del>                                     |                                       |   |   | <del> </del>                                     |
|             |          | carbonate, epidote and chlorite. Contacts indistin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ct,     |        | <del> </del>                                     | ļ                                                |                                       |   |   |                                                  |
|             |          | but with possible chill at 114.9-115.4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |        | ļ                                                | <del>                                     </del> |                                       |   | _ | <del> </del>                                     |

| DIAMOND DRI | LL RECORD |
|-------------|-----------|
|-------------|-----------|

HOLE Nº: 85-28 PAGE Nº: 3 of 5

| F001 | TAGE         | - CARLETIAN                                        | SAMPLE       | F00      | TAGE         | 545                                              |                |     |                                       |                  |
|------|--------------|----------------------------------------------------|--------------|----------|--------------|--------------------------------------------------|----------------|-----|---------------------------------------|------------------|
| rom  | 10           | DESCRIPTION                                        | Nō:          | from     | to           | LENGTH                                           | Oz/tAu         |     |                                       |                  |
| 2    | 324          | TUDOR VOLCANIC GROUP - Cont'd                      |              |          |              |                                                  |                |     |                                       | L                |
|      |              | 115.4-142.4 Moderately carbonated greenstone       |              |          | <u> </u>     |                                                  |                | _   | <br>                                  |                  |
|      |              | schist (-flow) with good schistosity at 45° to     |              |          | <u> </u>     |                                                  |                |     | <br>                                  | L                |
|      |              | core axis.                                         |              |          | <u> </u>     |                                                  |                |     |                                       | <u> </u>         |
|      |              | 142.4-142.6 Cherty quartzite on flow contact.      |              |          |              |                                                  |                |     |                                       | L                |
| _    |              | 142.6-144.4 As 115.4-112.4.                        |              |          |              | <del>                                     </del> |                |     | · ·                                   | _                |
|      |              | 144.4-147.2 Weakly banded amphibolite with         |              |          | <u> </u>     |                                                  |                |     |                                       | <u> </u>         |
|      |              | decussate texture. Becoming silicified at 147-147  | .2           | <u> </u> |              |                                                  |                |     |                                       | <u> </u>         |
|      |              | 147.2-148.7 Two quartz-carbonate veins at 200 and  |              |          | <b>_</b>     |                                                  |                |     | <br>                                  | <u> </u>         |
|      |              | 80° to core axis. Traces pyrite and tourmaline     | 08616F       | 147      | 149          | 2.0                                              | 0.058          |     |                                       |                  |
|      |              | (or rutile). Includes 0.5 ft. of silicified        | <del></del>  |          | ļ            |                                                  |                |     |                                       | _                |
|      |              | country-rock.                                      |              |          |              | -                                                |                |     | <br>                                  |                  |
|      |              | 148.7-161.1 Amphibolite with moderate foliation    |              | -        | ļ            | <del>                                     </del> |                |     |                                       |                  |
|      |              | and decussate texture. Occasional cherty quartzit  | e            |          | ļ            | <del>                                     </del> |                |     | <br>                                  | $oxed{}$         |
|      | <b></b>      | inclusion at 150, and minor quartz veinlet at 153. |              |          | ļ            | 1                                                |                |     | <br>                                  | 1                |
|      |              | Silicified at 148.7. Possible chill zone at 160.5  |              | ļ        | ļ            | 1                                                |                |     | · · · · · · · · · · · · · · · · · · · | $oxed{\bot}$     |
|      | <u> </u>     | -161.1 with trace flow contact chert. Minor        |              | ļ        | <b></b>      | -                                                |                |     |                                       |                  |
|      | ļ            | quartz stringers at high angle to core axis.       | <u> </u>     | ļ        |              | <del>                                     </del> |                |     |                                       | ┞                |
|      |              | 161.1-164.0 Well schisted greenstone flow,         |              | ļ        | ļ            |                                                  |                |     | <br>                                  | ╙                |
|      | <u> </u>     | weakly banded at 50° to core axis. Carbonate       |              |          | ļ            |                                                  |                |     | <br>                                  | _                |
|      |              | hairlines.                                         | <del> </del> |          | ļ            | 1                                                |                |     | <br>                                  | $ldsymbol{oxed}$ |
|      | <b>↓</b>     | 164.0-169.5 More massive greenstone flow? with     |              |          | ļ            | 1                                                | <del> </del> - |     |                                       | ┞                |
| •    | <u> </u>     | traces of reticulate stringers.                    |              | ļ        | <b></b>      |                                                  |                |     |                                       | _                |
|      | ļ            | 169.5-190.5 As 161.1-164. Occasional minor         |              |          | ļ            |                                                  |                |     |                                       | _                |
|      | <u> </u>     | quartz-carbonate stringers. Epidote replaces       |              |          | ļ            |                                                  |                |     | <br>                                  | <u> </u>         |
|      | <del> </del> | calcite in some stringers. In part well banded     |              | ļ        | -            | 1                                                |                |     |                                       | $\vdash$         |
|      | ļ            | due to schistosity and carbonate concentration.    |              |          | ļ            |                                                  |                |     |                                       | _                |
|      | <del> </del> | 190.5-191.1 Quartz-carbonate vein, with            | 08617F       | 190.3    | 191.3        | 1.0                                              | ₹0.002         |     |                                       | _                |
|      | <del> </del> | negligible mineralization.                         |              |          | <del> </del> | -                                                |                |     |                                       | _                |
|      | <del> </del> | 191.1-203.5 As 161.1-164. Occasional minor         |              | ļ        | <u> </u>     | <b>├</b>                                         |                |     |                                       | _                |
|      | <del> </del> | granular quartz stringers.                         |              |          | ļ            |                                                  |                |     | <br>                                  | L                |
|      | <del> </del> | 203.5-204.7 Three discreet quartz veinlets with    |              |          |              | <b> </b>                                         |                |     |                                       | _                |
|      | ļ            | sharp contacts at 400 to core axis and parallel    |              |          | <u> </u>     | $\bot$                                           |                |     |                                       | _                |
|      | 1            | to schistosity                                     | 08618F       | 203.5    | 204.7        | 1.2                                              | 40.002         | - 1 |                                       |                  |

| DIAMOND DINE NEGOTIC | DIAMOND | DRILL | RECORD |
|----------------------|---------|-------|--------|
|----------------------|---------|-------|--------|

HOLE Nº: 85-28 PAGE Nº: 4 of 5

|       |       |                                                      |        |                   |       |        |         | 4 01 |  |
|-------|-------|------------------------------------------------------|--------|-------------------|-------|--------|---------|------|--|
| FOOT  | AGE   | DESCRIPTION                                          | SAMPLE | ILENGTH: 102/CAU! |       |        |         |      |  |
| from  | 10    | DESCRIPTION                                          | NO:    | from              | to    | LENGTH | 05/ 4.4 |      |  |
| 2     | 324   | TUDOR VOLCANIC GROUP-Cont'd                          |        |                   |       |        |         |      |  |
|       |       | 204.7-212.7 As 161.1-164.                            |        |                   |       |        |         |      |  |
|       |       | 212.7-213.1 Quartz veinlet with negligible           |        |                   |       |        |         |      |  |
|       |       | mineralization                                       | 08619F | 212.5             | 213.5 | 1.0    | 0.002   |      |  |
|       | VII.  | 213.1-214.0 As 161.1-164.0                           |        |                   |       |        |         |      |  |
|       |       | 214.0-219.5 Coarse-textured carbonate altered        |        |                   |       |        |         |      |  |
|       |       | greenstone schist somewhat mottled in appearance.    |        |                   |       |        |         |      |  |
|       |       | Possible carbonated sill                             | 08620F | 219               | 220   | 1.0    | 0.002   |      |  |
|       |       | 219.5-219.6 Minor quartz veinlet parallel to         |        |                   |       |        |         |      |  |
|       |       | schistosity.                                         |        |                   |       |        |         |      |  |
|       |       | 219.6-222.5 As 214.0-219.5                           |        |                   |       |        |         |      |  |
|       |       | 222.5-223.0 Quartz vein with chloritic inclusions    | 08621F | 222.3             | 223.3 | 1.0    | 0.002   |      |  |
|       |       | on joint planes.                                     |        |                   |       |        |         |      |  |
|       |       | 223.0-236.5 Fine grained massive amphibolite with    |        |                   |       |        |         |      |  |
|       |       | amygdules containing metamorphic amphiboles. Traces  |        |                   |       |        |         |      |  |
|       |       | pyrrhotite (and chalcopyrite?) throughout. Heavy     | _      |                   |       |        |         |      |  |
|       |       | pyrite at 236.5                                      |        |                   |       |        |         |      |  |
| 236.5 | 324.0 | RHYOLITE:                                            |        |                   |       |        |         |      |  |
|       |       | 236.5-265.4 Coarse textured lapilli tuff (?) with    | 08622F | 251.8             | 253.3 | 1.5    | 0.338   |      |  |
|       |       | fine grained glassy fragments (sometimes banded)     |        |                   |       |        |         |      |  |
|       |       | in a mottled matrix of coarse pyroclastic or         | 08623F | 265.3             | 266.3 | 1.0    | 0.008   |      |  |
|       |       | hyaloclastic material (?) Occasional minor quartz    |        |                   |       |        |         |      |  |
|       |       | stringers throughout.                                |        |                   |       |        |         |      |  |
|       |       | 265.4-266.2 Massive quartz with trace pyrrhotite     |        |                   |       |        |         |      |  |
|       |       | 266.2-269.4 As 236.5-265.4 - laced with occasional   |        |                   |       |        |         |      |  |
|       |       | pyrrhotite stringers.                                |        |                   |       |        |         |      |  |
|       |       | 269.4-270.1 White featureless quartz vein at 35° to  | 08624F | 269.1             | 270.1 | 1.0    | 0.002   |      |  |
|       |       | core axis.                                           |        |                   |       |        |         |      |  |
|       |       | 270.1-286.0 As 236.5-265.4 with heavy pyrite at      |        |                   |       |        |         |      |  |
|       |       | 284-287 in disseminations, some occupying amygdules. |        |                   |       |        |         |      |  |
|       |       | 286.0-290.7 Massive fine grained glassy greenstone   |        |                   |       |        |         |      |  |
|       |       | flow in part amygdaloidal. 15-20% pyrrhotite from    |        |                   |       |        |         |      |  |
|       |       | 287 to 290.                                          |        |                   |       |        |         |      |  |
|       |       | 290.7-291.1 Massive white quartz calcite vein at     | 08625F | 290.4             | 291.4 | 1.0    | 0.004   |      |  |
|       |       | 20° to core axis. Negligible mineralization.         |        |                   |       |        |         |      |  |

| DIAMOND DRI | LL RE | ECORE |
|-------------|-------|-------|
|-------------|-------|-------|

HOLE Nº:
85-28
PAGE Nº:

|             |                                       |                                                    |          |                                       |       |                                                   |         | 5 c | of 5        |          |
|-------------|---------------------------------------|----------------------------------------------------|----------|---------------------------------------|-------|---------------------------------------------------|---------|-----|-------------|----------|
| FOOTA       | GE                                    | DESCRIPTION                                        | SAMPLE   | F00'                                  | TAGE  | LENGTH                                            | Oz/tAu  |     |             |          |
| from        | to                                    | DESCRIPTION                                        | Nō:      | from                                  | to    | LENGIA                                            | OZ/ LAU |     |             |          |
| 236.5       | 324.0                                 | TUDOR VOLCANIC GROUP - Cont'd - RHYOLITE:          |          |                                       |       |                                                   |         |     |             |          |
|             |                                       | 291.1-303.0 As 286-290.7 becoming weakly schisted  |          |                                       |       |                                                   |         |     |             |          |
|             |                                       | at 300-303, 15% pyrrhotite, minor calcite in       |          |                                       |       |                                                   |         |     |             |          |
|             |                                       | reticulate stringers.                              |          |                                       |       |                                                   |         |     |             |          |
|             |                                       | 303.0-303.1 Quartz calcite veinlet                 | 08626F   | 302.5                                 | 303.5 | 1.0                                               | 0.006   |     |             |          |
|             |                                       | 303.1-304 As 286-290                               |          |                                       |       |                                                   |         |     |             |          |
|             |                                       | 304.0-305.2 Quartz carbonate stringer zone paralle | 1 08627F | 304                                   | 305.2 | 1.2                                               | 0.008   |     |             |          |
|             |                                       | to core axis.                                      |          |                                       |       |                                                   |         |     |             |          |
|             |                                       | 305.2-324 Massive fine grained glassy greenstone   |          |                                       |       |                                                   |         |     |             |          |
|             |                                       | with 10-15% pyrrhotite in scattered chlorite &     |          |                                       |       |                                                   |         |     |             |          |
|             |                                       | calcite stringers and blebs. Minor quartz stringer | s        |                                       |       |                                                   |         |     |             | T        |
|             |                                       | at 321.                                            |          | 1                                     |       |                                                   |         |     |             | T        |
|             |                                       |                                                    |          |                                       |       |                                                   |         |     |             |          |
|             |                                       | END OF DDH #85-28 at 324 Feet.                     |          |                                       |       |                                                   |         |     |             |          |
|             |                                       |                                                    |          |                                       |       |                                                   |         |     |             |          |
|             |                                       |                                                    |          |                                       |       |                                                   |         |     |             |          |
|             |                                       |                                                    |          |                                       |       |                                                   |         |     |             | T        |
|             |                                       |                                                    |          |                                       |       |                                                   |         |     |             | T        |
|             |                                       |                                                    |          |                                       |       |                                                   |         |     |             | $\top$   |
|             |                                       |                                                    |          |                                       |       | 1 1                                               |         |     |             | $\top$   |
|             |                                       |                                                    |          |                                       |       |                                                   |         |     |             | $\top$   |
|             |                                       |                                                    |          | · · · · · · · · · · · · · · · · · · · |       |                                                   |         |     |             |          |
|             |                                       |                                                    |          | -                                     |       |                                                   |         |     |             | $\top$   |
|             |                                       |                                                    |          |                                       |       |                                                   |         |     |             |          |
|             |                                       |                                                    |          |                                       | •     |                                                   |         |     |             |          |
|             |                                       |                                                    |          |                                       |       |                                                   |         |     |             |          |
|             |                                       |                                                    |          |                                       |       |                                                   |         |     |             | T        |
| `           |                                       |                                                    |          |                                       |       |                                                   |         |     |             | $\top$   |
|             | <del></del>                           |                                                    |          |                                       |       | <del>                                     </del>  |         |     |             | 1        |
|             |                                       |                                                    | <u> </u> |                                       |       | 1 1                                               |         |     |             | T        |
|             |                                       |                                                    |          |                                       |       | <del>  -                                   </del> |         |     |             | T        |
|             |                                       |                                                    |          |                                       |       | 1                                                 |         |     |             | +        |
|             |                                       |                                                    |          |                                       |       | <del>                                     </del>  |         |     | <del></del> | T        |
| <del></del> |                                       |                                                    |          |                                       |       |                                                   |         |     |             | <b>†</b> |
|             | · · · · · · · · · · · · · · · · · · · |                                                    |          |                                       |       | <del>  </del>                                     |         |     | +           | +        |

| LOCATION:<br>AZIMUTH: | MADOC<br>235 <sup>0</sup> | TWP. ONTARIO MONO GOLD DIAMOND MINES MC.                                                         | DRILL RE                    |              |              |                                                  | PROPERTY:  | HOLE NO:       | 85-29     |              |
|-----------------------|---------------------------|--------------------------------------------------------------------------------------------------|-----------------------------|--------------|--------------|--------------------------------------------------|------------|----------------|-----------|--------------|
| DIP:                  | -70°                      | LENGTH: 364 ft.                                                                                  | ELEVATION TO SERVICE STATES |              |              |                                                  | CLAIM NO:  | E0652301       |           |              |
|                       |                           | 304 20.                                                                                          |                             |              |              |                                                  |            |                |           |              |
| STARTED:              | Sept.                     | 14/85 CORE SIZE: BO                                                                              | DATE LO                     | GGED:        |              |                                                  | SECTION:   | "OFF_SECT      | ION 2700N |              |
| COMPLETE              | D: Sept.                  | 15/85 DIP TESTS: 364ft -69°                                                                      |                             |              |              |                                                  | LOGGED BY: | R.V. Beav      | on        |              |
| PURPOSE:              |                           |                                                                                                  |                             |              |              |                                                  |            |                |           |              |
| F00                   | TAGE                      |                                                                                                  | SAMPLE                      | FOO          | TAGE         | 1                                                |            |                |           | T            |
| from                  | to                        | DESCRIPTION                                                                                      | Nō:                         | from         | to           | LENGTH                                           | Oz/tA      | ա              |           |              |
| 0                     | 2                         | Casing                                                                                           |                             |              |              |                                                  |            |                |           | Ţ            |
|                       |                           |                                                                                                  |                             |              | -            |                                                  |            |                |           | +            |
| 2                     | 364                       | TUDOR VOLCANIC GROUP                                                                             |                             | <del> </del> | <del> </del> | <del></del>                                      |            |                |           | ╁            |
|                       |                           | 2.0-3.2 Massive fine grained to amygdaloidal greenstone                                          |                             |              |              | <del>                                     </del> |            |                |           | $\dagger$    |
|                       |                           | 3.2-4.0 Ribbon quartz vein at 20° to core axis                                                   | 068628F                     | 3.0          | 4.0          | 1.0                                              | 0.002      |                |           | †            |
|                       |                           | 4.0-19.0 As 2.0-3.2 with 5-10% anastamosing                                                      | 000000                      |              | 1            | 1 = -                                            | 0.002      |                |           | +            |
|                       |                           | stringers of calcite, chlorite and some epidote                                                  |                             |              |              |                                                  |            |                |           | T            |
|                       |                           | replacing calcite. Resembles metadiabase in parts                                                |                             |              |              |                                                  |            |                |           | T            |
|                       |                           | 19.0-19.1 Drusy quartz                                                                           | 08629F                      | 18.5         | 19.5         | 1.0                                              | 0.002      |                |           | I            |
|                       |                           | 19.1-29.9 As 4.0-19.0 with trace of pyrrhotite.                                                  |                             |              |              |                                                  |            |                |           |              |
|                       |                           | 29.9-35.5 Well banded and schisted greenstone                                                    |                             |              |              |                                                  |            |                |           |              |
|                       |                           | flow with secondary calcite along schistosity at                                                 |                             |              |              | _                                                |            |                |           | $\perp$      |
|                       |                           | 15° to core axis.                                                                                |                             |              |              |                                                  |            |                |           | 1            |
|                       | ļ                         | 35.5-38.0 As 4.0-19.0 but coarser grained meta-                                                  |                             |              |              | <b></b>                                          |            |                |           | 1            |
|                       | ļ                         | diabase type                                                                                     |                             |              |              | <b>-</b>                                         |            | ļ ·            |           | $\downarrow$ |
|                       | <u> </u>                  | 38.0-39.5 As 29.9-35.5.                                                                          |                             | <u> </u>     |              | <del> </del>                                     |            |                |           | +            |
|                       |                           | 39.5-46.2 As 4.0-19.0 but coarser grained meta-                                                  | ļ                           |              |              | <del> </del>                                     |            |                |           | +            |
| <u></u>               |                           | diabase type.                                                                                    | <u> </u>                    |              | ļ            |                                                  |            | ļ              |           | +            |
|                       | <del> </del>              | 46.2-46.6 Massive white quartz-tourmaline vein with sharp contacts at 60° to core axis. Trace of | 08630F                      | 46           | 47           | 1.0                                              | 0.002      |                |           | +            |
|                       | <del> </del>              | carbonate on contacts.                                                                           |                             |              | <del> </del> | <del> </del>                                     |            | -              |           | +            |
|                       | 1                         |                                                                                                  |                             | -            |              | -                                                |            | <del>  -</del> |           | +            |
|                       |                           | 46.6-48.0 Intrusive greenstone (?) as 4.0-19.0, but coarser grained.                             | <u> </u>                    |              |              | <del>                                     </del> |            | <del> </del>   |           | +            |
| <del></del>           |                           | 48.0-49.0 Probable greenstone intrusive with                                                     | <u> </u>                    |              | <del> </del> | <del>                                     </del> |            |                |           | +            |

carbonate alteration. Probable chill at 48. Well schisted throughout.

HOLE Nº: 85-29 PAGE Nº: 2 of 6

|             |              |                                                                                                                                                    |               |             |            |        |        | 1 | )T 0 |
|-------------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------|------------|--------|--------|---|------|
| FOO'        | TAGE<br>1 to | DESCRIPTION                                                                                                                                        | SAMPLE<br>Nº: | FOO<br>from | TAGE<br>to | LENGTH | Oz/tAu |   |      |
| 2           | 364          | TUDOR VOLCANIC GROUP - Cont'd                                                                                                                      |               |             |            |        |        |   |      |
|             |              | 49.0-49.1 Quartz carbonate vein(?) at 45° to core 49.1-57.3 Well schisted greenstone flow rock,                                                    |               | 48.5        | 49.5       | 1.0    | 0.002  |   |      |
|             |              | with secondary banding due to foliation. Occasion                                                                                                  |               |             |            |        |        |   |      |
|             |              | minor carbonate stringers. 57.3-64.1 Massive medium to fine grained green-                                                                         |               |             |            |        |        |   |      |
|             |              | stone intrusive with reticulate minor stringers.  64.1-68.3 Weakly carbonated carbonate flow with moderate schistosity at 45° to core axis.        |               |             |            |        |        |   |      |
| 1-1         |              | 68.3-68.9 White quartz with trace carbonate sharp contacts at 25° to core axis                                                                     | 08632F        | -68         | 69         | 1.0    | 0.002  |   |      |
|             |              | 68.9-88.5 Homogeneous schisted greenstone flow unit with schistosity at 35 to core axis. Carbon spotting and streaking throughout. Chill zone with |               |             |            |        |        |   |      |
|             |              | quartz calcite stringers at 88.5 probably marks<br>flow contact. Minor quartz-tourmaline veinlet at                                                |               |             |            |        |        |   |      |
|             |              | 78.80 - parallel to core axis. Essentially chlorite schist.                                                                                        | ·             |             |            |        |        |   |      |
| <del></del> |              | 88.5-101.6 As 68.9-88.5.                                                                                                                           |               |             |            |        |        |   |      |
|             | <u> </u>     | 101.6-104 Quartzitic banded flow contact mixed with heavy chlorite due possibly to irregular dike                                                  |               |             | <b></b>    |        |        |   |      |
|             |              | injection of chill zones. Well banded at 30° to                                                                                                    |               |             |            |        |        |   |      |
|             |              | core axis.                                                                                                                                         |               |             |            |        |        |   |      |
|             |              | 104.0-117.0 Moderately schisted greenstone flow amygdaloidal in part, with calcitic amygdules                                                      |               |             |            |        |        |   |      |
|             |              | flattened at 30° to core axis. Quartz-carbonate-<br>chlorite segregation at 109.7. Carbonate content                                               |               |             |            |        |        |   |      |
|             |              | increases from 114 to 117.                                                                                                                         |               |             |            |        |        |   |      |
|             |              | 117.0-122.7 Glassy intrusive(?) with abundant                                                                                                      | <b> </b>      |             |            |        |        |   | +    |
|             |              | minor calcite stringers. A massive harder rock than the typical flows. Contacts indistinct.                                                        |               |             |            |        |        |   |      |
|             |              | 122.7-123.4 As 104.0-117.0 but less carbonate 123.4-124.1 Cherty quartzite flow contact with                                                       |               |             |            |        |        |   |      |
|             |              | tuffaceous(?) chloritic bands at 60° to core axis                                                                                                  |               |             |            |        |        |   |      |
|             |              |                                                                                                                                                    |               | <u> </u>    | 1          | L      | 1      | i | 1    |

HOLE Nº: 85-29 PAGE Nº: 3 Of 6

|                                        |      |                                                    |        | 5005105                                          |       | 1            | <del></del>    | 3 of |  |
|----------------------------------------|------|----------------------------------------------------|--------|--------------------------------------------------|-------|--------------|----------------|------|--|
| FOOT                                   |      | DESCRIPTION                                        | SAMPLE |                                                  | TAGE  | LENGTH       | Oz/tAu         |      |  |
| om                                     | 10   |                                                    | Nō:    | from                                             | to    |              | <i>D27</i> G1G |      |  |
| 2                                      | 364_ | TUDOR VOLCANIC GROUP - Cont'd                      |        | <u> </u>                                         |       |              |                |      |  |
|                                        |      | 124.1-129.1 Massive to weakly schisted amphiboli-  |        |                                                  |       |              |                |      |  |
|                                        |      | tized flow. Contains drusy joint fracture at 126   |        |                                                  |       |              |                |      |  |
|                                        |      | with idiomorphic pyrite and sphalerite.            |        |                                                  |       |              |                |      |  |
|                                        |      | 129.1-129.5 Quartz-carbonate-chlorite veinlet,     | 08633F | 128.8                                            | 129.8 | 1.0          | 0.002          |      |  |
|                                        |      | negligible mineralization. Contacts at 40° to core |        | 1                                                |       |              | 0000           |      |  |
|                                        |      | axis.                                              |        |                                                  |       |              |                |      |  |
|                                        |      | 129.5-140.0 As 124.1-129.1.                        |        |                                                  |       |              |                |      |  |
|                                        |      | 140.0-140.5 Quartz-carbonate-chlorite vein at 35-  | 08634F | 139.8                                            | 140.8 | 1.0          | 0.002          |      |  |
|                                        |      | 40° to core axis.                                  |        |                                                  |       |              |                |      |  |
|                                        |      | 140.5-142.7 Fine grained weakly schisted green-    |        |                                                  |       |              |                |      |  |
| -                                      |      | stone flow.                                        |        |                                                  |       |              |                |      |  |
|                                        |      | 142.7-143.7 Banded cherty quartzite with possible  |        | <u> </u>                                         |       |              |                |      |  |
|                                        |      | thin sill of chlorite after glass at 142.7. Bande  |        |                                                  |       |              |                |      |  |
|                                        |      | at 35° to core axis.                               |        |                                                  | 1     |              |                |      |  |
|                                        |      | 143.7-145.5 As 140.5-142.7 with occasional calcit  | e      | 1                                                |       |              |                |      |  |
|                                        |      | stringers.                                         |        |                                                  |       |              |                |      |  |
|                                        |      | 145.5-146.7 Banded cherty quartzite at 35° to      |        |                                                  |       |              |                |      |  |
| <del></del>                            |      | core axis. (Flow contact)                          |        | 1                                                |       |              |                |      |  |
|                                        |      | 146.7-167.4 Fine grained moderately schisted       |        |                                                  |       |              |                |      |  |
| ······································ |      | glassy and weakly banded greenstone flow. Cavey    |        |                                                  |       |              |                |      |  |
|                                        |      | at 151.                                            |        |                                                  |       |              |                |      |  |
|                                        |      | 167.4-167.6 Quartz veinlet at 40° to core axis     | 08635F | 157.2                                            | 158.2 | 1.0          | 0.002          |      |  |
|                                        |      | Contains traces pyrite, chalcopyrite and chloritic |        |                                                  |       |              |                |      |  |
|                                        |      | inclusions.                                        |        |                                                  |       |              |                |      |  |
|                                        |      | 167.6-186.3 Fine grained well schisted weakly      |        |                                                  |       |              |                |      |  |
| <del></del>                            |      | banded greenstone flow; banding at 60° to core     |        |                                                  |       |              |                |      |  |
|                                        |      | axis. Possibly due to flattening of flow breccias  |        |                                                  |       |              |                |      |  |
| ·                                      |      | Intensity quartz veinlet at 167.9 at 40° to core   | 08636F | 167.5                                            | 168.5 | 1.0          | 0.002          |      |  |
|                                        |      | axis. Pyrite mineralization. Epidote replaces      |        |                                                  |       |              |                |      |  |
|                                        | ļ    | calcite stringers at 174.4, 175 etc.               |        |                                                  |       |              |                |      |  |
|                                        |      | 186.3-187.2 Quartz yein with pyrite & chlorite.    |        |                                                  |       |              |                |      |  |
|                                        | İ    | Sharp contacts at 45° to core axis                 | 08637F | 186                                              | 187   | 1.0          | 0.008          |      |  |
|                                        |      | 187.2-194.0 Fine grained light green flow with     |        |                                                  |       |              |                |      |  |
|                                        | 1    | good cleavage-banding. Possible flow contact chert |        | <del>                                     </del> | 1     | <del> </del> |                |      |  |

| DIAMOND | DRILL | RECOR |
|---------|-------|-------|
|---------|-------|-------|

HOLE Nº: 85-29

4 of 6 SAMPLE FOOTAGE FOOTAGE DESCRIPTION LENGTH Oz/tAu to Nº: from to from TUDOR VOLCANIC GROUP - Cont'd 364 194.0-194.4 Cherty quartzite banded at 450 to core axis. 194.4-194.6 Chlorite 194.6-195.5 Quartz vein interlaced with country-08638F 194.5 195.5 1.0 0.002 rock. Trace of tourmaline. 195.5-203.2 Moderately cleavage-banded greenstone flow with fairly abundant carbonate stringers. Amvodaloidal in part. 203.2-203.8 Milky quartz vein at 30° to core axis 08639F 203 204 1.0 0.002 203.8-218.4 Fine grained schisted greenstone flow with occasional cherty-like inclusions. Becoming coarsely amyodaloidal (mottled) at 207.0-210.0. Possible flow contact chert stringer at 215.5. 218.4-218.7 Quartz-(carbonate) vein at 30° to 08640F 1.0 218 219 0.002 core axis. 218.7-245.0 Fine grained greenstone schist probably a flow with scattered calcite stringers. 245.0-260.2 Mainly fine grained hard siliceous greenstone intrusive or cherty tuffs. Contains amygdules in some sections. Abundant epidote as replacements and stringers. Also chlorite and calcite stringers throughout. Water seam at 234 (possible fault). Alternating hard and soft sections (possibly flow). Inclusions, xenoliths or intercalations of flow-contact chert at 250-251. 08641F 249 0.002 250 1.0 Quartz veinlet at 249.2-249.3. 260.2-265.0 Screen of greenstone flow with cleavage at 45° to core axis. 265.0-275.2 Hard siliceous glassy intrusive(?) as 245.0-260.2. Trace pyrrhotite & pyrite at 269 ft. Cherty inclusions in places, and rare stringers. 267.5 268.5 08642F 1.0 0.002 Quartz-tournaline veinlet at 268.

HOLE NO: 85-29

|                       |            |                                                                                        | <u> </u>      |          |            | <u> </u> |        | <br>5 of 6   | 1        |
|-----------------------|------------|----------------------------------------------------------------------------------------|---------------|----------|------------|----------|--------|--------------|----------|
| F001                  | TAGE<br>to | DESCRIPTION                                                                            | SAMPLE<br>Nº: | from     | TAGE<br>to | LENGTH   | Oz/tAu |              |          |
| 2                     | 364        | TUDOR VOLCANIC GROUP - Cont'd                                                          |               | 1        |            |          |        |              |          |
| <u>-</u>              | 304        | 275.2-277.5 Silicified greenstone flow with                                            |               |          |            |          |        | <br>         | -        |
|                       |            | relict banding.                                                                        |               |          |            |          |        |              |          |
|                       |            | 277.5-277.7 Quartz-tourmaline-carbonate veinlet                                        | 08643F        | 277.3    | 278.3      | 1.0      | 0.002  |              |          |
| - 4                   |            | 277.7-282.7 As 275.2-277.5. Quartz-tourmaline                                          |               |          |            |          |        |              |          |
|                       |            | stringer at 280.                                                                       |               |          |            |          |        |              |          |
|                       |            | 282.7-286.2 Glassy hard greenstone(?) intrusive                                        | <u> </u>      |          |            |          |        | <u> </u>     |          |
|                       |            | or felsite with abundant quartz-carbonate stringer                                     | 5.            |          |            |          |        |              |          |
|                       |            | Quartz-tourmaline stringers at 284.5.                                                  |               |          |            |          |        |              |          |
|                       |            | 286.2-289.8 As 275.2-277.5 Quartz-carbonate                                            |               |          |            |          |        |              |          |
|                       |            | segregation at 288.                                                                    |               |          |            |          |        |              |          |
|                       |            | 289.8-304.1 Fine grained black, massive, glassy                                        |               |          |            |          |        | <br><u> </u> | <u> </u> |
|                       |            | intrusive or tuffs with abundant altered xenolith                                      |               | <u> </u> |            |          |        |              |          |
|                       |            | of epidotized chert. 5% pyrrhotite at 303-304 in                                       |               |          |            |          |        |              |          |
|                       |            | glassy chloritic felt. Some evidence of flow                                           |               |          |            |          |        |              |          |
|                       |            | banding around some fragments. Minor quartz                                            |               |          |            |          |        |              |          |
|                       |            | carbonate stringers throughout. Quartz-carbonate                                       |               |          |            |          |        |              |          |
|                       |            | veinlet at 300.8. Minor fault slips at 294 etc.                                        | 08644F        | 300.3    | 301.3      | 1.0      | 0.002  |              |          |
|                       | <u> </u>   | 304.1-307.0 Weakly amphibolitized chlorite schist                                      |               |          |            |          |        |              |          |
|                       |            | (probable flow) grading into well banded tuffites                                      |               |          |            |          |        |              |          |
|                       |            | at 306.5-307.0.                                                                        |               |          |            |          |        |              |          |
| حسيسالة بريسسي خاراتي |            | 307.0-312.8 Mixed fine grained glassy type with                                        |               |          |            |          |        | <br>         |          |
|                       |            | short sections of heavily epidotized material.                                         |               |          |            |          |        |              |          |
|                       | <u> </u>   | Sharp contacts suggest intrusive relationship.                                         |               |          |            |          |        |              |          |
|                       | ļ          | Abundant minor quartz-calcite stringers. Becoming banded at 312.8 at 45° to core axis. |               | ļ        | <u> </u>   |          |        |              |          |
|                       | <u> </u>   | banded at 312.8 at 45° to core axis.                                                   |               |          |            |          |        |              |          |
|                       |            | 312.8-314.2 Two quartz veinlets at 35° to core                                         |               |          |            |          |        |              |          |
|                       |            | axis, and separated by country-rock.                                                   | 08646F        | 312.8    | 314.2      | 1.4      | 0.002  |              |          |
|                       |            | 314.2-314.4 Dark glassy type.                                                          | <u> </u>      |          |            |          |        |              |          |
|                       | ļ          | 314.4-317.1 Coarse tuffite with 10% pyrite,                                            |               |          |            |          |        |              |          |
|                       | ļ <u>.</u> | sharp contact at 314.4 at 40° to core axis.                                            |               |          | <u> </u>   |          |        |              |          |
|                       | ļ <u> </u> | 317.1-320.2 Finer grained black glassy rock,                                           |               | ļ        |            |          |        |              |          |
|                       |            | scattered fine pyrite throughout.                                                      |               |          |            |          |        |              |          |
|                       | ļ <u>.</u> | 320.2-323.0 Massive black cherty felsic intrusive                                      | (?)           |          |            |          |        |              |          |
|                       |            | Moderately banded throughout. Sharp contact at                                         |               |          | 1          |          |        |              |          |

| DIAMON | D DRILL | RECOR |
|--------|---------|-------|
|--------|---------|-------|

HOLE Nº: 85~29 PAGE Nº:

|                                         |              |                                                   |              |                                                  |                                                  |             |             |             |                                                  | 6 of 6 |              |  |
|-----------------------------------------|--------------|---------------------------------------------------|--------------|--------------------------------------------------|--------------------------------------------------|-------------|-------------|-------------|--------------------------------------------------|--------|--------------|--|
|                                         | TAGE         | DESCRIPTION                                       | SAMPLE       | 1                                                | TAGE                                             | LENGTH      | Oz/tAu      |             |                                                  |        |              |  |
| from                                    | 10           |                                                   | Nō:          | from                                             | 10                                               | <del></del> |             |             |                                                  |        | ļ            |  |
| 2                                       | 364          | 323.0-328.6 Dark silicious argillaceous meta-     |              |                                                  |                                                  |             |             |             |                                                  |        | <u> </u>     |  |
|                                         |              | sediment(?) Scattered quartz carbonate stringers  |              |                                                  |                                                  |             |             |             |                                                  |        |              |  |
|                                         |              | 328.6-331.6 Coarser section - with trace pyrite   | <del>-</del> |                                                  |                                                  |             |             |             |                                                  |        |              |  |
| <del></del> .                           |              | 331.6-339.7 Fine grained massive to weakly banded |              |                                                  |                                                  |             |             |             |                                                  |        |              |  |
|                                         |              | tuffaceous cherts(?) or banded intrusive, in part |              |                                                  |                                                  |             |             |             |                                                  |        |              |  |
|                                         |              | hydrothermally altered (chloritic selvages on     |              | 1                                                |                                                  |             |             |             |                                                  |        |              |  |
|                                         |              | quartz-calcite stringers. Epidotization of chert) |              |                                                  |                                                  |             |             |             |                                                  |        |              |  |
|                                         |              | 339.7-342.0 Slightly coarser tuffs - silicified   |              |                                                  |                                                  |             |             |             |                                                  |        | <u> </u>     |  |
| _                                       |              | with 10% disseminated pyrite. Gradational contact |              |                                                  |                                                  |             |             |             |                                                  |        |              |  |
|                                         |              | at 342.                                           |              |                                                  |                                                  |             |             |             |                                                  |        |              |  |
| ***                                     |              | 342.0-364.0 Fine grained dark grey to black       |              |                                                  |                                                  |             |             |             |                                                  |        |              |  |
|                                         |              | massive cherty tuffs(?).                          |              | 1                                                |                                                  |             |             |             |                                                  |        |              |  |
|                                         |              |                                                   |              | <u> </u>                                         |                                                  |             |             |             |                                                  |        |              |  |
|                                         |              | END OF DDH #85-29 at 364 feet.                    |              |                                                  |                                                  |             |             |             |                                                  |        |              |  |
|                                         |              |                                                   |              |                                                  | ļ                                                |             |             |             |                                                  |        |              |  |
|                                         |              |                                                   |              |                                                  |                                                  |             |             |             |                                                  |        |              |  |
|                                         |              |                                                   |              |                                                  |                                                  |             |             |             |                                                  |        |              |  |
|                                         |              |                                                   |              |                                                  |                                                  |             |             |             |                                                  |        |              |  |
|                                         |              |                                                   |              |                                                  |                                                  |             |             |             |                                                  | 1      |              |  |
|                                         |              |                                                   |              |                                                  |                                                  |             |             |             |                                                  |        |              |  |
|                                         | Ţ            |                                                   |              |                                                  |                                                  |             |             |             |                                                  |        | Γ            |  |
|                                         |              |                                                   |              | 1                                                |                                                  |             |             |             |                                                  |        |              |  |
|                                         | <b>†</b>     |                                                   |              |                                                  |                                                  |             |             | <del></del> |                                                  |        | $\vdash$     |  |
| ·                                       |              |                                                   | <del></del>  |                                                  | <del> </del>                                     |             |             |             |                                                  |        | $\vdash$     |  |
| ~                                       | <del> </del> |                                                   |              | <del>                                     </del> |                                                  | <del></del> | <del></del> |             | <del> </del>                                     |        | $\vdash$     |  |
| <del>-</del>                            | <del> </del> |                                                   |              |                                                  | <del>                                     </del> |             |             |             |                                                  |        | -            |  |
|                                         | <del> </del> |                                                   | <del> </del> | <del> </del>                                     |                                                  |             |             |             |                                                  |        | -            |  |
|                                         | <del> </del> |                                                   |              | ļ                                                | <b> </b>                                         |             |             |             |                                                  |        | $\vdash$     |  |
|                                         | <b>_</b>     |                                                   |              |                                                  | ļ                                                |             |             |             |                                                  |        | <u> </u>     |  |
|                                         | <u> </u>     |                                                   |              |                                                  | <b> </b>                                         |             |             |             |                                                  |        |              |  |
|                                         | <u> </u>     |                                                   |              |                                                  | <u> </u>                                         |             |             |             | <u> </u>                                         |        |              |  |
| *************************************** |              |                                                   |              |                                                  |                                                  |             |             |             |                                                  |        |              |  |
|                                         |              |                                                   |              |                                                  |                                                  |             |             |             |                                                  |        |              |  |
|                                         |              |                                                   |              |                                                  |                                                  |             |             |             |                                                  |        |              |  |
|                                         |              |                                                   |              |                                                  | † ·····                                          |             |             |             | 1                                                |        |              |  |
|                                         | +            |                                                   | ļ            |                                                  | <del> </del> -                                   | <del></del> |             |             | <del>                                     </del> |        | <del> </del> |  |

| LOCATION:                             | MADO             | C TWP. ONTARIO    | MONO DIAM                                                      | OND DRILL RE   | CORD                                             | -            | •                                                |                       | <del></del> | HOLE NO   | *<br>85–30 |   |  |
|---------------------------------------|------------------|-------------------|----------------------------------------------------------------|----------------|--------------------------------------------------|--------------|--------------------------------------------------|-----------------------|-------------|-----------|------------|---|--|
| AZIMUTH:                              | 235 <sup>O</sup> |                   | V   GOLD                                                       | ONO GOLD MINES |                                                  |              | •                                                | PROPERTY: BANNOCKBURN |             |           |            |   |  |
| DIP:                                  | <del>-47</del> 0 |                   | LENGTH: 304 ft.                                                | ELEVATI        | DN:                                              |              |                                                  | CLAIM Nº: E0652301    |             |           |            |   |  |
|                                       |                  |                   |                                                                |                |                                                  |              |                                                  |                       |             |           |            |   |  |
| STARTED:                              | Sept.            | . 16/85           | CORE SIZE: BQ                                                  | DATE LO        | GGED:                                            |              |                                                  | SECTION:              | "OFF        | 'SECTION' | " 2800N    |   |  |
| COMPLETED                             | : Sept.          | . 18/85           | DIP TESTS: 304 ft47                                            |                |                                                  |              |                                                  | LOGGED BY             | r: R.V.     | Beavon    |            |   |  |
| PURPOSE:                              |                  |                   |                                                                |                |                                                  | <u>.</u>     |                                                  |                       |             |           |            |   |  |
| F001                                  | AGE              |                   |                                                                | SAMPLE         | FOO                                              | TAGE         |                                                  |                       |             |           |            |   |  |
| from                                  | to               |                   | DESCRIPTION                                                    | Nº:            | from                                             | to           | LENGTH                                           |                       | z/tAu       |           |            |   |  |
| 0                                     | 2                | Casing            |                                                                |                |                                                  |              |                                                  |                       |             |           |            |   |  |
|                                       |                  |                   |                                                                |                |                                                  | ļ            |                                                  |                       |             |           |            |   |  |
| 4                                     | 304              | TUDOR VOLCANIC GI | ROUP<br>elv well schisted greenstone f                         | 1              | <del>                                     </del> | <del> </del> |                                                  |                       |             |           |            |   |  |
|                                       |                  |                   | carbonate altered sections.                                    |                |                                                  |              |                                                  |                       |             |           |            |   |  |
|                                       |                  |                   | medium to fine-grained green                                   | stone          |                                                  | <u> </u>     | <del>                                     </del> |                       |             |           |            |   |  |
|                                       |                  | probably central  | part of flow. Minor quartz                                     | SCOR,          |                                                  |              |                                                  |                       |             |           |            |   |  |
|                                       |                  |                   | out. Fpidote alteration from                                   | 21             |                                                  |              |                                                  |                       |             |           |            |   |  |
|                                       | <u> </u>         | to 22, trace pyri |                                                                |                | <u> </u>                                         | <del> </del> |                                                  |                       |             |           |            |   |  |
|                                       |                  |                   | green well carbonated and cle                                  |                |                                                  | <del> </del> | ļ                                                |                       |             |           |            |   |  |
|                                       |                  | banded greenstone | e flow, well schisted throughout                               | ut,            |                                                  |              |                                                  |                       |             |           |            |   |  |
|                                       |                  | trace of pyrite.  |                                                                | -0             | 1                                                | <del> </del> | <del>                                     </del> |                       |             |           |            |   |  |
|                                       | ·                | to core axis.     | l quartzitic flow contact at 3                                 | 0-             |                                                  |              |                                                  |                       |             |           |            |   |  |
|                                       |                  | 35.9-43.5 As 33.  | 0.25.1                                                         |                |                                                  | <del> </del> | <del> </del>                                     |                       |             |           |            |   |  |
|                                       | -                |                   |                                                                |                |                                                  | <del> </del> | <del></del>                                      | <b></b>               |             |           |            |   |  |
|                                       |                  |                   | ly banded and carbonated fine<br>ne dike or sill. Good chill a | +              |                                                  | <del> </del> | <del>                                     </del> | <del> </del>          |             |           |            |   |  |
| · · · · · · · · · · · · · · · · · · · |                  | 43.5.             | a dire of Bill. coor dilli d                                   |                |                                                  |              |                                                  |                       |             |           |            |   |  |
|                                       |                  |                   | ve white quartz with trace pyr                                 | ite 08647F     | 44.4                                             | 45.4         | 1.0                                              |                       | 0.002       |           |            |   |  |
|                                       |                  |                   | stone dike or sill well chille                                 |                | 21.1                                             | 13.3         | 1                                                |                       | 0.002       |           |            |   |  |
|                                       |                  | 45.4.             |                                                                |                |                                                  |              |                                                  |                       |             |           |            |   |  |
|                                       |                  |                   | 0-35.1 with rare quartz strin                                  | gers           |                                                  |              |                                                  |                       |             |           |            |   |  |
|                                       |                  | 50.3-50.4 Cherts  | quartzite and chloritic flow                                   |                |                                                  |              |                                                  |                       |             |           |            |   |  |
|                                       |                  | contact.          |                                                                |                |                                                  |              |                                                  |                       |             |           |            |   |  |
|                                       |                  | 50.4-58.5 As 33.  | 0-35.1                                                         |                |                                                  |              |                                                  |                       |             |           |            |   |  |
|                                       | 1                | 58.5-58.6 As 50.  | 3-50. A                                                        |                |                                                  | I            |                                                  |                       |             |           | T T        | 1 |  |

58.6-65.0 As 33.0-35.1

HOLE NO: 85-30 PAGE Nº: 2 of 5

|                                       |       |                                                   | <del></del> | <del>+</del>                                     | <del> </del> |                                                  |        |  | T 2                                              |
|---------------------------------------|-------|---------------------------------------------------|-------------|--------------------------------------------------|--------------|--------------------------------------------------|--------|--|--------------------------------------------------|
| FOOT                                  | AGE   | DESCRIPTION                                       | SAMPLE      | F001                                             | TAGE         | LENGTH                                           | Oz/tAu |  |                                                  |
| from                                  | to    |                                                   | Nō:         | from                                             | to           |                                                  |        |  |                                                  |
| 4                                     | 304   | TUDOR VOLCANIC GROUP - Cont'd                     |             |                                                  |              |                                                  |        |  |                                                  |
|                                       |       | 65,0-65.8 Quartz vein with sharp contacts at      | 08648F      | 65                                               | 66           | 1.0                                              | 0.002  |  |                                                  |
|                                       |       | 45° to core axis                                  | 08649F      | 66                                               | 67.3         | 1.3                                              | 0.002  |  |                                                  |
|                                       |       | 65.8-66.1 As 33.0-35.1                            | <u> </u>    |                                                  |              |                                                  |        |  |                                                  |
|                                       |       | 66.1-66.3 Quartz carbonate vein or segregation,   |             |                                                  |              |                                                  |        |  |                                                  |
|                                       |       | trace of pyrite and chalcopyrite                  |             |                                                  |              |                                                  |        |  |                                                  |
|                                       |       | 66.3-80.3 As 33.0-35.1, carbonate alteration      |             |                                                  |              |                                                  |        |  |                                                  |
|                                       |       | heavier at 75'.                                   |             |                                                  |              |                                                  |        |  |                                                  |
|                                       |       | 80.3-81.7 Mixed quartz-carbonate veinlets and     | 08650F      | 80.3                                             | 81.7         | 1.4                                              | 0.002  |  |                                                  |
|                                       |       | country-rock.                                     |             |                                                  |              |                                                  |        |  |                                                  |
|                                       |       | 81.7-90.5 As 33.0-35.1, becoming epidotized at    |             |                                                  |              |                                                  |        |  |                                                  |
|                                       |       | 90.5.                                             |             |                                                  |              |                                                  |        |  |                                                  |
| 90.5                                  | 107.9 | RHYOLITE                                          |             | <u> </u>                                         |              |                                                  |        |  |                                                  |
|                                       |       | 90.5-97.5 Massive dark-grey to black altered      |             |                                                  |              |                                                  |        |  |                                                  |
|                                       |       | coarse textured flow or hydrothermally altered    |             |                                                  |              |                                                  |        |  |                                                  |
|                                       |       | volcanic material. Grades into fine glassy        |             |                                                  |              |                                                  |        |  |                                                  |
|                                       |       | banded material at 97.5.                          |             |                                                  |              |                                                  |        |  |                                                  |
|                                       |       | 97.5-99.0 Fine grained glassy unit with amygdules |             |                                                  |              |                                                  |        |  |                                                  |
|                                       |       | at 100' - trace magnetite. Possibly altered       |             |                                                  |              |                                                  |        |  |                                                  |
|                                       |       | hyaloclastic (mottled).                           | 08651F      | 90.0                                             | 100.0        | 1.0                                              | 0.002  |  |                                                  |
|                                       |       | 99.0-109.0 As 90.5-97.5 with abundant quartz-     |             |                                                  |              |                                                  |        |  |                                                  |
|                                       |       | calcite stringers with chlorite selvages.         |             |                                                  |              |                                                  |        |  |                                                  |
|                                       |       | Amygdules at 100'.                                |             |                                                  |              |                                                  |        |  |                                                  |
|                                       |       | 109.0-107.4 Foliated equivalent of preceding unit |             |                                                  |              |                                                  |        |  | 1 .                                              |
|                                       |       | 107.4-107.9 Quartz-tourmaline vein with apparent  | 08652F      | 107.2                                            | 108.2        | 1.0                                              | 0.002  |  |                                                  |
|                                       |       | chill at 107.4.                                   |             |                                                  | İ            |                                                  |        |  |                                                  |
| 107.9                                 | 193.8 | GREENSTONE FLOWS                                  |             |                                                  |              |                                                  |        |  |                                                  |
|                                       |       | 107.9-118.4 Foliated altered mafic(?) flow and/or |             |                                                  |              |                                                  |        |  |                                                  |
|                                       |       | hyaloclastite - foliated at 45° to core axis.     |             |                                                  |              |                                                  |        |  | 1                                                |
|                                       |       | 118.4-119.4 Massive white quartz vein at 45°      | 08653F      | 118.4                                            | 119.4        | 1.0                                              | 0.002  |  | <del>                                     </del> |
|                                       |       | to core axis, trace tourmaline.                   | 1 2 2 2 2 2 |                                                  |              |                                                  |        |  |                                                  |
| · · · · · · · · · · · · · · · · · · · |       | 119.4-122.5 Fine-grained slightly mottled massive | <u> </u>    | <del>                                     </del> |              |                                                  |        |  |                                                  |
|                                       |       | alteration flow, in part coarse texture.          |             |                                                  |              |                                                  |        |  |                                                  |
|                                       |       | 122.5-122.6 Cherty quartzite (flow contact)       | <u> </u>    |                                                  |              |                                                  |        |  |                                                  |
|                                       |       | 122.6-123.1 Blocky core - greenstone flow.        |             | <u> </u>                                         | -            | <del>                                     </del> |        |  |                                                  |
|                                       | 1     | 122.6-123.1 Blocky core - greenstone Ilow.        | <u> </u>    |                                                  | <u> </u>     |                                                  |        |  | J                                                |

HOLE N2: 85-30 PAGE N2:

3 of 5

| F001   | TAGE     | DESCRIPTION                                         | SAMPLE  | F00'        | TAGE         | LENGTH                                           | <u>.</u> |      | T            |
|--------|----------|-----------------------------------------------------|---------|-------------|--------------|--------------------------------------------------|----------|------|--------------|
| from   | to       | DESCRIPTION                                         | Nō:     | from        | to           | LENGTH                                           | Oz/tAu   |      |              |
| _107_9 | 193.8    | GREENSTONE FLOWS                                    |         |             |              |                                                  |          |      |              |
|        |          | 123.1-123.2 Quartz veinlet                          | 08654F  | 122.5       | 123.5        | 1.0                                              | 0.002    |      |              |
|        |          | 123.2-135.8 Mixed coarse and fine-textured green-   |         |             |              | <del>                                     </del> |          |      | <u> </u>     |
|        |          | stone flows with weak schistosity at 123'.          |         |             |              |                                                  |          |      |              |
|        |          | 135.8-135.9 Quartz carbonate stringer parallel to   |         |             |              |                                                  |          |      |              |
|        |          | schistosity.                                        | _08655F | 135.3       | 136.3        | 1.0                                              | 0.002    |      | <del> </del> |
|        |          | 135.9-164.0 As 123.2-135.8 with quartz carbonate    |         |             |              |                                                  |          |      |              |
|        |          | segregation at 153, 161 & 162. Weak to moderate     | 08656F  | 153.0       | 153.5        | 1.5                                              | 0.002    |      |              |
|        |          | schistosity at 45° to core axis. Essentially        |         |             |              |                                                  |          |      |              |
|        | <b>.</b> | chlorite-biotite schist. Gradational contact at     |         |             |              |                                                  |          |      |              |
|        |          | 164. Amygdules at 152.                              |         |             |              |                                                  |          |      |              |
|        |          | 164.0-181.0 Fairly uniform greenstone schist with   |         |             |              |                                                  |          | <br> |              |
|        |          | weak mottling in places.                            |         |             |              |                                                  |          | <br> |              |
|        |          | 181.0-184.0 Variegated light and dark green         |         |             |              |                                                  |          |      |              |
|        |          | greenstone - chlorite schist.                       |         |             |              |                                                  |          |      |              |
|        |          | 184.0-185.0 Felsite dike(?), sub parallel to core   |         |             |              |                                                  |          |      |              |
|        |          | axis. Sharp contact at 185.0.                       |         |             |              |                                                  |          |      |              |
|        |          | 185.0-186.0 Altered and much stringered mafic       |         |             |              |                                                  |          |      |              |
|        |          | flow(?).                                            |         |             |              |                                                  |          |      |              |
| ·      |          | 186.0-187.5 Felsite dike(?) - lower contact more    |         |             |              |                                                  |          |      |              |
|        |          | distinct than the upper.                            |         |             |              |                                                  |          |      |              |
|        |          | 187.5-189.9 Mafic greenstone flow with amygdules    |         |             |              |                                                  |          |      |              |
|        |          | at 179.5.                                           |         |             |              |                                                  |          |      | I            |
|        |          | 189.9-192.9 Felsite with pyrite paint on joints     |         |             | · .          |                                                  |          |      | Ī            |
|        |          | and trace disseminated pyrrhotite. Contact at       |         |             |              |                                                  |          |      |              |
|        |          | 192.2 at 45° to core axis.                          |         |             |              |                                                  |          |      |              |
|        |          | 192.9-193.8 Mafic flow as 187.5-189.9.              |         |             |              |                                                  |          |      |              |
| 193.8  | 236      | RHYOLITE AND GREEN DIKES:                           |         | <u> </u>    |              |                                                  |          |      |              |
|        |          | 193.8-204 Alternating green dike and felsitic       |         |             |              |                                                  |          |      |              |
|        |          | material: 193.8-197.0 Green dike(?); 197.0-197.1    | 08657F  | 196         | 197          | 1.0                                              | 0,002    |      |              |
|        |          | Felsite; 197.1-198.1 Green dike; 198.1-198.4 mafic  | VOO.77E |             |              | 1                                                | V. W.Z.  |      |              |
|        |          | flow(?); 198.4-199.7 Green dike; 199.7-199.9 Felsit | e;      | <del></del> |              |                                                  |          |      |              |
|        |          | 199.9-200.9 Green dike; 200.9-203.1 Felsite; 203.1- |         |             |              |                                                  |          |      |              |
|        | 1        | 204 Green dike.                                     |         |             |              |                                                  |          |      |              |
|        |          |                                                     |         |             | <del> </del> |                                                  |          |      |              |
| L      | 1        |                                                     |         |             | <u>L</u>     |                                                  |          |      |              |

HOLE NO: 85-30 PAGE NO: 4 of 5

| FOOT  | AGE                                          |                                                     | SAMPLE | F00      | TAGE  |        |        | · | Ĭ | 1            |
|-------|----------------------------------------------|-----------------------------------------------------|--------|----------|-------|--------|--------|---|---|--------------|
| from  | to                                           | DESCRIPTION                                         | Nō:    | from     | to    | LENGTH | Oz/tAu |   | 1 |              |
| 193.8 | 236.0                                        | RHYOLITE AND GREEN DIKES: - Cont'd                  |        |          |       |        |        |   |   |              |
|       |                                              | 204.0-208.5 Fine grained massive felsite, light     |        |          |       |        |        |   |   |              |
|       |                                              | grey with pseudo breccia fabric marked by chloritic |        |          |       |        |        |   |   |              |
|       |                                              | fractures. Quartz carbonate stringer at 205.        |        |          |       |        |        |   |   |              |
|       |                                              | 208.5-209.0 Mafic dike(?) with amygdules.           |        | <u> </u> |       |        |        |   |   |              |
|       |                                              | 209.0-209.2 Felsite(?)                              |        |          |       |        |        | - |   |              |
|       |                                              | 209.2-209.3 Green dike(?)                           |        |          |       |        |        |   |   |              |
|       |                                              | 209.3-209.9 Felsite                                 |        |          |       |        |        |   |   | I            |
|       |                                              | 209.9-210.2 Green dike                              |        |          |       |        |        |   |   | I            |
|       |                                              | 210.2-213.0 Massive light grey fine-grained felsit  | e,     |          |       |        |        |   |   |              |
|       |                                              | chlorite carbonate veinlet at 212.                  |        |          |       |        |        |   |   |              |
|       |                                              | 213.0-214.0 Amphibolitized and epidotized green     |        |          |       |        |        |   |   |              |
|       |                                              | dike. Contact at 214 with quartz stringer           | 08658F | 213.5    | 214.5 | 1.0    | 0.002  |   |   |              |
|       |                                              | 214.0-215.0 Glassy type of pyroclastic or intrusiv  | e?     |          |       |        |        |   |   |              |
|       |                                              | 215.0-216.0 Felsite extremely fine grained grey     |        |          |       |        |        |   |   |              |
|       |                                              | glassy.                                             |        |          |       |        |        |   |   |              |
|       |                                              | 216.0-217.6 Felsite including small section of      |        |          |       |        |        |   |   |              |
|       |                                              | black glassy material. Quartz carbonate stringer    | 08659F | 217      | 218   | 1.0    | 0.002  |   |   |              |
|       |                                              | at 217.6                                            |        |          |       |        |        |   |   |              |
|       |                                              | 217.6-219.0 Altered mafic flows with medium and     |        |          |       |        |        |   |   |              |
|       |                                              | fine grained texture.                               |        |          |       |        |        |   |   |              |
|       |                                              | 219.0-221.7 Fine grained black glassy in part       |        |          |       |        |        |   |   |              |
|       |                                              | fragmented unit. Moderate pyrrhotite at 218 and     |        |          |       |        |        |   |   |              |
|       |                                              | pyrite paint on joints.                             |        |          |       |        |        |   |   |              |
|       |                                              | 221.7-227.8 Coarser-grained variety of 219.0-221.7  |        |          |       |        |        |   | • | $\mathbb{L}$ |
|       |                                              | 227.8-232.0 As 219.0-221.7                          | 08660F | 232      | 234   | 1.0    | 0.002  |   |   |              |
|       |                                              | 232.0-236.0 Mainly grey glassy felsite with fine    |        |          |       |        |        |   |   |              |
|       |                                              | grained breccia texture at 235, quartz carbonate    |        |          |       |        |        |   |   |              |
|       | <u> </u>                                     | stringers.                                          |        |          |       |        |        |   |   | <u> </u>     |
| 236   | 248                                          | METADIABASE                                         |        |          |       |        |        |   |   | <u> </u>     |
|       | <u>                                     </u> | 236.0-243.5 Altered with relict ophitic texture.    |        |          |       |        |        |   |   |              |
|       | ļ                                            | Massive medium-grained intrusive with poorly        |        |          |       |        |        |   |   |              |
|       |                                              | developed chilled contacts.                         | 08661F | 243.0    | 244.0 | 1.0    | 0.004  |   |   |              |
|       |                                              | 243.5-243.6 Quartz veinlet, sharp contacts at       |        |          |       |        |        |   |   |              |
|       |                                              | 45° to core axis                                    |        |          |       |        |        |   |   |              |

| DIAMOND | DRILL | R | EC | OR |
|---------|-------|---|----|----|
|---------|-------|---|----|----|

HOLE NO: 85-30 PAGE Nº: 5 of 5

|        |          |                                                     |        |       |       |        |         | <u> </u> | 01 5 |          |
|--------|----------|-----------------------------------------------------|--------|-------|-------|--------|---------|----------|------|----------|
| FOOT   | AGE      | DESCRIPTION                                         | SAMPLE | F00   | TAGE  | LENGTH | Oz/tAu  |          |      |          |
| from   | to       | DESCRIPTION                                         | NO:    | from  | to    | LENGIN | 02/ 010 |          |      |          |
| 236.0  | 248.0    | METADIABASE - Cont'd                                |        |       |       |        |         |          |      |          |
|        |          | 243.6-248.0 Mainly as 236.0-243.5                   | 08662F | 248.5 | 249.5 | 0.5    | 0.192   |          |      | <b> </b> |
| 248.0  | 251.9    | RHYOLITE:                                           |        |       |       |        |         |          |      |          |
| 2.40.0 |          | 248.0-249.0 Dark glassy type of Rhyolite            |        |       |       |        |         |          |      |          |
|        |          | 249.0-249.1 Quartz-pyrite-chalcopyrite veinlet      | 08663F | 249.9 | 250.9 | 1.0    | 0.010   |          |      |          |
|        |          | at 20° to core axis. Heavy pyrite                   |        |       |       |        |         |          |      |          |
|        |          | 249.1-249.3 Felsite(?)                              |        |       |       |        |         |          |      |          |
|        |          | 249.3-251.9 Amphibolitized flow or green dike       |        |       |       |        |         |          |      |          |
| 251.9  | 255.0    | METADIABASE: altered and well stringered with minor |        |       |       |        |         |          |      |          |
|        |          | quartz carbonate.                                   |        |       |       |        |         |          |      |          |
| 255.0  | 304.0    | RHYOLITE:                                           |        |       |       |        |         |          |      |          |
|        |          | 255.0-262.7 Massive grey felsite with occasional    |        |       | -     |        |         |          |      |          |
|        |          | silicified sections. Minor quartz veinlets, some    | ,      |       |       |        |         |          |      |          |
|        |          | with tourmaline.                                    |        |       |       |        |         |          |      |          |
|        |          | 262.7-264.0 Metadiabase                             |        | l     |       |        |         |          |      |          |
|        |          | 264.0-265.0 Dark glassy rhyolite or tuff.           |        |       |       |        |         |          |      |          |
|        |          | 265.0-272.5 Altered mafic flows in part cleavage    | 08664F | 270   | 271   | 1.0    | 0.002   |          |      |          |
|        |          | banded, and minor quartz-carbonate stringers.       |        |       |       |        |         |          |      |          |
|        | <u> </u> | 272.5-304.0 Light and dark grey felsite or          |        |       |       |        |         |          |      |          |
|        |          | rhyolite, fine grained throughout, banded in places | •      |       |       |        |         |          |      |          |
|        |          | Scattered minor quartz-carbonate stringers.         |        |       |       |        |         |          |      |          |
|        |          | Moderate pyrite at 298-300 with blocky core and     |        |       |       |        |         |          |      |          |
|        |          | drusy development on joints at low angle to core    |        |       |       |        |         |          |      |          |
|        |          | axis. Disseminated 5% pyrrhotite throughout.        |        |       |       |        |         |          |      |          |
|        |          |                                                     |        |       |       |        |         |          |      |          |
|        |          | END OF DDH #85-30 at 304 feet.                      |        |       |       |        |         |          |      |          |
|        |          |                                                     |        |       |       |        |         |          |      |          |
|        |          |                                                     |        |       |       |        |         |          |      |          |
|        | <u> </u> | ·                                                   |        |       |       |        |         |          |      | ·        |
|        | <u> </u> |                                                     |        |       |       |        |         |          |      |          |
|        |          | •                                                   |        |       |       |        |         | -        |      |          |
|        |          |                                                     |        |       |       |        |         |          |      |          |
|        |          | ·                                                   |        |       |       |        |         |          |      |          |
|        |          |                                                     |        |       |       |        |         |          |      |          |
|        |          |                                                     |        | 1     |       |        |         |          |      |          |

|                                                  |                                       |                                       | The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon |                 |                                       |       |            | <u> </u> |                                                  |                    |             | * * . **   |              |   |
|--------------------------------------------------|---------------------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------------------------------|-------|------------|----------|--------------------------------------------------|--------------------|-------------|------------|--------------|---|
| LOCATION:                                        | MADOC                                 | TWP ONTARIO                           | STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE  | DIAMOND D       |                                       |       |            |          |                                                  |                    | HOLE        | NQ:<br>85- | ·31          |   |
| AZIMUTH:                                         | 235°                                  |                                       | V innes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MONO GOLL       | D MINES I                             | NC.   |            | -        | PROPERTY                                         | BANN               | OCKBUF      | N .        |              |   |
| DIP:                                             | -70 <sup>O</sup>                      |                                       | LENGTH: 373 ft.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | ELEVATIO                              | N:    |            |          | CLAIM NO                                         | E065               | 2301        |            |              |   |
| STARTED:                                         | Sept.                                 | 18/85                                 | CORE SIZEBQ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 | DATE LO                               | GGED: |            |          | SECTION:                                         | "OFF               | SECTI       | ON" 270    | 0-2800N      |   |
| COMPLETED:                                       | Sept.                                 | 22/85                                 | DIP TESTS:373' -6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 59 <sup>0</sup> |                                       |       |            | <u>-</u> | LOGGED B                                         | Y: R.V.            | Beavo       | na         |              |   |
| PURPOSE:                                         |                                       |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                       |       |            |          |                                                  |                    |             |            |              |   |
| FOOTA                                            | IGE<br>to                             |                                       | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 | SAMPLE<br>Nº:                         | F00   | TAGE<br>10 | LENGTH   | C                                                | z/tAu              |             |            |              |   |
| 0                                                | 1.5                                   | Casing                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                       |       |            |          |                                                  |                    |             |            |              |   |
| 1.5                                              | 373                                   | TUDOR VOLCANIC GR                     | OUP<br>partly leached out gre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | eenstone        |                                       |       |            |          |                                                  |                    |             |            |              |   |
|                                                  |                                       | flow. Gradational                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                       |       |            |          |                                                  |                    |             |            |              |   |
|                                                  |                                       |                                       | Gradational contact tringers throughout.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | at 9.0.         |                                       |       |            |          |                                                  |                    |             |            |              |   |
| ·                                                |                                       |                                       | 3.5. medium-grained mae flow. Quartz segre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 | 1<br>08665F                           | 18.5  | 19.5       | 1.0      | C                                                | .002               |             |            |              |   |
|                                                  | . •                                   |                                       | chisted and cleavage-b<br>ith carbonate stringer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |                                       |       |            | ·        |                                                  |                    |             |            |              |   |
|                                                  |                                       | 31.6-34.2 Amphib                      | olitized dike (?) with<br>le post-regional metam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | n decussate     |                                       |       |            |          |                                                  |                    |             |            |              |   |
|                                                  |                                       | pre-thermal metam                     | orphism).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 |                                       |       |            |          |                                                  |                    |             |            |              |   |
|                                                  | :                                     | 34.2-43.2 As 27.4<br>43.2-43.8 Cherty | 4-31.6<br>banded quartzite at 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 40° to core     | · · · · · · · · · · · · · · · · · · · |       |            |          |                                                  |                    | <del></del> |            |              |   |
|                                                  |                                       | axis. (marking f                      | low contact).<br>4-31.6. Foliation at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | *               | -                                     |       |            |          |                                                  |                    |             |            |              |   |
|                                                  | · · · · · · · · · · · · · · · · · · · | core axis.                            | flow contact quartzit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |                                       |       |            |          |                                                  |                    | ·           |            |              |   |
|                                                  |                                       | 56.1-62.4 As 27.                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 1             | 0066-                                 |       |            |          |                                                  |                    |             |            |              |   |
| <del>                                     </del> |                                       | DZ.4-0Z./ CHAITZ                      | -counnatine vein at 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | to core         | .08666E                               | 62    | 63         | 1.0      | <del>                                     </del> | <del>-002</del>  - |             |            | <del> </del> | - |

64.7 65.7

1.0 1.0

0.002

63.7 64.7

08667F 08668F

axis.

62.7-63.8 As 27.4-31.6

63.8-64.6 As 62.4-62.7 64.6-65.5 Mixed quartz and country-rock

HOLE NO: 85-31
PAGE NO: 2 Of 5

FOOTAGE SAMPLE FOOTAGE 0z/tAu LENGTH DESCRIPTION NO: from from to TUDOR VOLCANIC GROUP - Cont'd 373 1.5 65.5-66.2 As 27.5-31.6 66.2-66.5 Cherty quartzite flow contact. 66.5-68.9 As 27.5-31.6 68.9-69.5 Mixed quartz-carbonate, quartz-chlorite 08669F 68.8 69.5 0.002 -tourmaline veins possibly on flow contact. 69.5-71.8 As 27.5-31.6 71.8-72.1 Massive quartz-tourmaline vein 08670F 71.5 72.5 0.002 72.1-73.0 Slightly mottled modification of 27.5-31.6. 73.0-73.9 Quartz-mica vein with trace pyrite 73.9-74.5 Well banded foliated greenstone schist 08671F 73.0 74.0 0.002 dike - with poorly preserved chill zones. 74.5-80.0 Well banded carbonated greenstone flow schistosity at 45° to core axis. 80.0-80.3 White milky quartz at 100-150 to core axis. Moderate pyrite at 80.3 08672F 79.8 80.8 1.0 0.018 80.3-91.0 Well schisted amyodaloidal mafic flow with occasional quartz-calcite stringers. 10% 08673F 90.7 91.7 1.0 0.110 magnetite at 80.5. 91.0-91.3 Quartz-tourmaline vein. Sharp contacts parallel to schistosity. 91.3-95.5 As 80.3-91.0 08674F 95 1\_0 0.002 95.5-95.6 As 91.0-91.3 at  $45^{\circ}$  to core axis 95.6-102.0 Mottled remnant s of mafic flows with biotite. 102.0-104.0 Dark massive acid intrusive or flow. 104.0-110.0 Gabbroic dike or sill with fine grained upper contact. 110.0-112.6 Altered greenstone flows with relict amvodules, trace magnetite. 112.6-113.0 Massive quartz vein at 45° to core 08675F 112.3 | 113.3 | 1.0 0.002 axis 08676F 114.2 | 115.2 | 1.0 0.002 113 0-114 2 As 110 0-112.6 with trace magnetite 115.5 | 116.5 | 1.0 114.2-116.5 Mixed quartz and country-rock 08677F 0.002

HOLE N2: 85-31 PAGE N2: 3 of 5

|                                       |                                                  |                                                    |          |              |                                                  |                                                  |             |   | or 5 |              |
|---------------------------------------|--------------------------------------------------|----------------------------------------------------|----------|--------------|--------------------------------------------------|--------------------------------------------------|-------------|---|------|--------------|
| F001                                  | TAGE                                             | DESCRIPTION                                        | SAMPLE   | F001         | TAGE                                             | LENGTH                                           | Oz/tAu      |   |      |              |
| from                                  | 10                                               | DESCRIPTION                                        | Nº:      | from         | to                                               | LENGIN                                           | 02/ tAU     |   |      |              |
| 1.5                                   | 373                                              | TUDOR VOLCANIC GROUP - Cont'd                      |          |              |                                                  |                                                  |             |   |      |              |
|                                       |                                                  | 116.5-118.5 As 110.0-112.6                         | 08678F   | 118          | 119                                              | 1.0                                              | 0.002       |   |      |              |
| <del></del>                           |                                                  | 118.5-118.6 Quartz veinlet                         |          |              |                                                  |                                                  |             |   |      |              |
| <del></del>                           |                                                  | 118.6-122.5 As 110.0-112.6                         | 08679F   | 122          | 123                                              | 1.0                                              | 0.002       |   |      |              |
|                                       |                                                  | 122.5-122.7 Quartz vein at 45° to core axis        |          |              |                                                  |                                                  |             |   |      |              |
|                                       |                                                  | 122.7-129.0 Mottled greenstone flows and biotite   |          |              |                                                  |                                                  |             |   |      |              |
| - www.                                |                                                  | schist.                                            |          |              |                                                  |                                                  |             |   |      |              |
|                                       | -                                                | 129.0-130.5 Possible mafic dike.                   |          |              |                                                  |                                                  |             |   |      |              |
|                                       |                                                  | 130.5-135.8 Altered greenstones                    |          |              |                                                  |                                                  |             |   |      |              |
|                                       |                                                  | 135.8-144.5 Metadiabase with occasional greenstone |          |              |                                                  |                                                  |             |   | 1    |              |
|                                       | <b> </b>                                         | xenoliths.                                         |          |              |                                                  |                                                  |             |   |      |              |
|                                       |                                                  | 144.5-144.7 Quartz carbonate vein                  | 08680F   | 144          | 145                                              | 1.0                                              | 0.002       |   |      |              |
| <u> </u>                              |                                                  | 144.7-152.5 Coarse gabbro with occasional in-      |          |              |                                                  |                                                  |             |   |      |              |
|                                       | T                                                | clusions of altered greenstone. Foliated from      |          |              |                                                  |                                                  |             |   |      |              |
|                                       |                                                  | 149.0-150.0 and 151.5-152.5, with quartz veinlet   | 08681F   | 151.5        | 152.5                                            | 1.0                                              | 0.002       |   |      |              |
| <u></u>                               |                                                  | at 151.9.                                          |          |              |                                                  |                                                  |             |   |      |              |
|                                       | 1                                                | 152.5-153.0 Greenstone xenolith or green dike.     |          |              | Ī                                                |                                                  |             |   |      |              |
|                                       | T                                                | 153.0-157.4 Coarse gabbro with chlorite and biotit | ŧ        |              | 1                                                |                                                  |             |   |      | <del> </del> |
| <del> </del>                          |                                                  | alteration and silicified feldspars, Minor quartz  | 1        | 1            |                                                  |                                                  |             |   |      | <del></del>  |
|                                       |                                                  | carbonate veinlet.                                 | 1        | 1            |                                                  |                                                  |             |   |      | · · ·        |
| ·                                     |                                                  | 157.4-160.7 Chilled metadiabase with tourmaline    |          |              |                                                  |                                                  |             |   |      |              |
|                                       | <b>T</b>                                         | in quartz veinlet at 160.                          | 1        |              |                                                  |                                                  |             |   |      |              |
| · · · · · · · · · · · · · · · · · · · | 1                                                | 160.7-164.0 Gabbro and metadiabase - grain size    |          |              |                                                  |                                                  |             |   |      |              |
|                                       |                                                  | changes are gradational.                           |          |              |                                                  |                                                  |             |   | 1    |              |
|                                       | 1                                                | 164.0-168.0 Green dike with chilled contacts and   | <b>1</b> |              |                                                  |                                                  |             |   |      |              |
|                                       |                                                  | xenoliths of gabbro.                               |          |              |                                                  |                                                  |             |   |      |              |
|                                       |                                                  | 168.0-174.5 Green dike and gabbro alterations at   | <u> </u> | <del> </del> | <del> </del>                                     | <del>                                     </del> |             |   |      |              |
|                                       |                                                  | 35° to core axis.                                  | <b>†</b> | <b>†</b>     | <u> </u>                                         | 1 1                                              |             |   |      |              |
|                                       | † · · · · · ·                                    | 174.5-184.3 Coarsely crystalline gabbro with       | <b></b>  |              | <del>                                     </del> |                                                  |             |   |      |              |
|                                       |                                                  | occasional medium grained sections of metadiabase  | <u> </u> | 1            |                                                  | <del>                                     </del> |             |   |      |              |
|                                       |                                                  | without chilled contacts.                          |          | <b>†</b>     | <u> </u>                                         | t                                                |             |   |      |              |
|                                       | 1                                                | 184.3-189.0 Metadiabase                            | <b>†</b> | <del> </del> | <u> </u>                                         | <del>                                     </del> |             |   |      |              |
|                                       | T                                                | 189.0-196.0 Alterations of gabbro, metadiabase,    | <u> </u> | <del> </del> |                                                  | <del>                                     </del> |             |   |      |              |
|                                       | 1                                                | and foliated gabbro.                               |          |              |                                                  | <del>                                     </del> | <del></del> |   |      |              |
|                                       | <del>                                     </del> | 196.0-199.5 Green dike with chilled contacts at    | <u> </u> |              | <del>                                     </del> | <del>                                     </del> |             | · | 1    |              |
|                                       |                                                  |                                                    | <u> </u> | I            | 1                                                | <del></del>                                      |             | 1 |      |              |

HOLE N2: 85-31 PAGE N2: 4 of 5

|       |           |                                                                                                                                                             |               |       |            |        |        |     | <b>5.</b> 5 |   |
|-------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------|------------|--------|--------|-----|-------------|---|
| FOOT  | AGE<br>to | DESCRIPTION                                                                                                                                                 | SAMPLE<br>No: | F001  | TAGE<br>to | LENGTH | Oz/tAu |     |             |   |
| 1.5   | 373       | TUDOR VOLCANIC GROUP - Cont'd 199.5-217.0 Coarse altered gabbro, foliated at                                                                                |               |       | 10         |        | ·      |     |             |   |
|       |           | 205.2 with calcite stringers. Foliated from                                                                                                                 |               |       |            |        |        |     |             |   |
|       |           | 211.0 to 217.0.<br>217.0-217.5 Quartz carbonate stringer or vein                                                                                            | 08682F        | 216.5 | 217.5      | 1.0    | 0.002  |     |             |   |
|       |           | 217.5-225.6 Well foliated and chloritized gabbro. Possible felsite xenolith at 225.3.                                                                       |               |       |            |        |        |     |             |   |
| 225.6 | 373.0     | FEISITE OR RHYOLITE  225.6-230.0 Felsic flow or intrusion. Fine grained hard and massive. Light grey colour.  230.0-246.9 Felsic pyroclastic unit including |               |       |            |        |        |     |             |   |
| -     |           | weakly bedded tuffs and dark grey to black glassy dust tuffs. Disseminated 5% pyrite in some coarse                                                         | r             |       | ,          |        |        |     |             |   |
|       |           | beds. Some of dark glassy types could be dikes.  Banding about 45° to core axis. Felsite fragment at 246.0.                                                 |               |       |            |        |        |     |             |   |
|       |           | 246.9-251.3 Massive light gray fine grained felsite or rhyolite with occasional epidotized                                                                  |               |       |            |        |        |     |             |   |
|       |           | patches (possible altered fragments). 251.3-257.2 Fragmental flow or flow breccia                                                                           |               |       |            |        |        |     | 2           |   |
|       |           | 257.2-273.6 Massive light grey felsite with epidote patches and trace pyrite                                                                                | 08683F        | 269.2 | 270.2      | 1.0    | 0.002  |     |             |   |
|       |           | 273.6-277.3 Dark glassy dust tuff and occasional breccia fragments. 277.3-284.0 Massive light grey felsite as 257.2-273.6.                                  |               |       |            |        |        |     |             |   |
|       |           | 284.0-286.0 Dark glassy dust tuff(?) or flow 286.0-287.0 As 277.3-284.0.                                                                                    | 08684F        | 280.3 | 281.3      | 1.0    | 0.002  |     |             |   |
|       |           | 287.0-373.0 Massive to weakly chloritized acid volcanic breccia with felsite or porphyry frag-                                                              |               |       |            |        |        | · . |             | - |
|       |           | ments up to three feet in core-length. Matrix is dark grey glassy and apparently chilled in places                                                          |               |       |            |        |        | -   |             |   |
|       |           | against the lighter grey altered porphyry fragment the latter contain idiomorphic saussuritized feld-spars. Quartz carbonate segregations at 433.5          |               | 353   | 354        | 1.0    | 0.002  |     |             |   |

| DIAMOND DRILL RECOR | ND DRILL RECO | RI |
|---------------------|---------------|----|
|---------------------|---------------|----|

HOLE N2: 85-31 PAGE N2: 5 of 5

|       |                                                  |                                                    |                                                  |                                                  |                                                   |                                                  |                                       |             | 01.2        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------|--------------------------------------------------|----------------------------------------------------|--------------------------------------------------|--------------------------------------------------|---------------------------------------------------|--------------------------------------------------|---------------------------------------|-------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FOOT  | AGE<br>to                                        | DESCRIPTION                                        | SAMPLE<br>Nº:                                    | FOO<br>from                                      | TAGE<br>to                                        | LENGTH                                           | Oz/tAu                                |             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|       |                                                  |                                                    |                                                  |                                                  | ''-                                               |                                                  |                                       |             |             | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 225.6 | 373.0                                            |                                                    | <u> </u>                                         |                                                  | <del> </del> -                                    |                                                  | <del></del>                           |             |             | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|       |                                                  | 287.0-373.0 - Cont'd                               |                                                  |                                                  | <del> </del>                                      | + +                                              | <del></del>                           |             | <del></del> | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|       |                                                  | Fragment of flow contact cherty quartzite at 360.0 |                                                  |                                                  | <del> </del> -                                    |                                                  |                                       | <del></del> |             | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|       |                                                  | Ouartz-carbonate-chlorite-pyrite & pyrrhotite vein |                                                  | ļ                                                | <u> </u>                                          |                                                  |                                       |             | <del></del> | ┼                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|       |                                                  | at 361.2. Sulphides in wall rock also, also 366.4- |                                                  |                                                  | ļ                                                 |                                                  |                                       |             |             | ↓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|       |                                                  | 366.5 (heavily epidotized or saussuritized frag-   | 08686F                                           | 361                                              | 362                                               | 1.0                                              | 0.016                                 |             |             | ↓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|       |                                                  | ments may be derived from mafic volcanics).        |                                                  |                                                  |                                                   |                                                  |                                       |             |             | ↓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|       |                                                  | Abundant minor carbonate and occasional quartz     | 08687F                                           | 366                                              | 367                                               | 1.0                                              | 0.002                                 |             |             | $oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{ol}}}}}}}}}}}}}}}}}$ |
|       |                                                  | carbonate stringers throughout. Weakly disseminate | d                                                |                                                  |                                                   |                                                  |                                       |             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|       |                                                  | pyrite & pyrrhotite throughout.                    |                                                  |                                                  |                                                   |                                                  |                                       |             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|       |                                                  |                                                    |                                                  |                                                  |                                                   |                                                  |                                       |             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|       |                                                  |                                                    |                                                  |                                                  |                                                   |                                                  |                                       |             |             | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|       |                                                  | End of DDH #85-31 at 373 feet.                     |                                                  |                                                  |                                                   |                                                  |                                       |             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|       |                                                  |                                                    |                                                  |                                                  | 1                                                 |                                                  |                                       |             |             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|       |                                                  |                                                    |                                                  |                                                  | †                                                 | <del> </del>                                     |                                       |             |             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|       |                                                  |                                                    |                                                  | <u> </u>                                         |                                                   |                                                  |                                       |             |             | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|       |                                                  |                                                    | <b> </b>                                         | <del> </del>                                     | <del>                                      </del> |                                                  |                                       |             |             | +-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|       |                                                  |                                                    | <del> </del>                                     | <del> </del>                                     | <del> </del>                                      | <del> </del>                                     |                                       |             |             | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|       |                                                  |                                                    | <del> </del>                                     | <del>                                     </del> | <del> </del>                                      |                                                  |                                       |             |             | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|       | ļ                                                |                                                    |                                                  |                                                  | <del> </del>                                      | <del>                                     </del> |                                       |             |             | ╁                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|       |                                                  |                                                    |                                                  |                                                  | <del></del>                                       |                                                  | · · · · · · · · · · · · · · · · · · · |             |             | ╁                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|       |                                                  |                                                    | <u> </u>                                         |                                                  | 1                                                 |                                                  |                                       |             |             | ↓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|       |                                                  |                                                    |                                                  |                                                  | <u> </u>                                          |                                                  |                                       |             |             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|       |                                                  |                                                    |                                                  |                                                  |                                                   |                                                  |                                       |             |             | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|       |                                                  | ·                                                  |                                                  |                                                  |                                                   |                                                  |                                       |             |             | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|       |                                                  |                                                    |                                                  |                                                  |                                                   |                                                  |                                       |             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|       |                                                  |                                                    |                                                  |                                                  |                                                   |                                                  |                                       |             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|       |                                                  |                                                    | <del> </del>                                     |                                                  |                                                   |                                                  |                                       |             |             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|       | 1                                                |                                                    |                                                  |                                                  | <del>                                     </del>  | 1                                                |                                       |             |             | <del>                                     </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       | <u> </u>                                         |                                                    | <u> </u>                                         | <del> </del>                                     | <del> </del>                                      | <del>-  -</del>                                  | <del></del>                           |             |             | <del>  -                                    </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|       | <del> </del>                                     |                                                    | <del>                                     </del> | <del> </del>                                     | <del> </del>                                      | + - +                                            |                                       |             |             | <del> </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|       | <del>                                     </del> |                                                    | -                                                |                                                  | <del>                                     </del>  | +                                                | <del></del>                           | <del></del> |             | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|       | <del> </del>                                     |                                                    |                                                  |                                                  |                                                   |                                                  |                                       |             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|       | <u> </u>                                         |                                                    | ļ                                                |                                                  | <del>                                     </del>  | <del>                                     </del> |                                       |             |             | ₩                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|       | 1                                                |                                                    |                                                  |                                                  |                                                   |                                                  | ·                                     |             |             | <del> </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|       | ļ                                                |                                                    |                                                  |                                                  | ļ                                                 |                                                  |                                       |             |             | ↓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|       | 1                                                |                                                    | 1                                                | i                                                | 1                                                 |                                                  |                                       |             | 1           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

| LOCATION:   | MADX                    | OC TWP. ONTARIO                         | MONO DIAMOND                         |                                        | CORD  |                                                  | •                                     |             | _              | HOLE    | NQ:<br>85                               | 32                                               |          |
|-------------|-------------------------|-----------------------------------------|--------------------------------------|----------------------------------------|-------|--------------------------------------------------|---------------------------------------|-------------|----------------|---------|-----------------------------------------|--------------------------------------------------|----------|
| AZIMUTH:    | 235                     |                                         | GOLD                                 |                                        |       |                                                  |                                       | PROPERTY    | · BAN          | NOCKBUR |                                         |                                                  | -        |
|             |                         |                                         | II II INCI MONO GO                   | LD MINES :                             | INC.  |                                                  | •                                     |             |                |         |                                         |                                                  |          |
| OIP:        | <b>-45</b> <sup>0</sup> |                                         | LENGTH: 300.01                       | ELEVATION                              | ON:   |                                                  | · · · · · · · · · · · · · · · · · · · | CLAIM NE    | E06            | 52301   |                                         |                                                  |          |
|             | Cond                    | - 22/05                                 | 70                                   |                                        |       |                                                  |                                       | SECTION:    | Horn           | - CECTO | 200                                     |                                                  |          |
| STARTED:    | Sept                    | 22/85                                   | CORE SIZE: BQ                        | DATE LO                                | GGED: |                                                  |                                       | SECTION.    | "OF1           | SECTION | JN" 280                                 | 0-2900N                                          |          |
| OMPLETE     | D: Sent                 | 24/85                                   | DIP TESTS: 300.0' = 43150            |                                        |       |                                                  |                                       | LOGGED (    | Y: p 77        | BENIA   | .T                                      |                                                  |          |
|             |                         | 3, 23, 03                               | 300:0 239                            | ······································ |       |                                                  |                                       |             |                | DEGVA   |                                         |                                                  | _        |
| URPOSE:     |                         |                                         |                                      |                                        |       |                                                  |                                       |             |                |         |                                         |                                                  |          |
|             |                         |                                         |                                      |                                        |       |                                                  | <b>-</b>                              | <del></del> |                |         |                                         |                                                  |          |
|             | TAGE                    |                                         | DESCRIPTION                          | SAMPLE<br>Nº:                          |       | TAGE                                             | LENGTH                                |             | z/tAu          |         |                                         | !                                                |          |
| from        | 10                      |                                         |                                      | us.                                    | from  | to                                               |                                       |             |                |         |                                         | <del>                                     </del> | ┝        |
| 00          | 3.5                     | Casing                                  |                                      |                                        |       | <del> </del>                                     | <del></del>                           |             |                |         | ······································  |                                                  | -        |
| 3.5         | 300-0                   | TUDOR VOLCANTE G                        | POLID (3)                            |                                        |       |                                                  |                                       |             |                |         |                                         |                                                  | ┢        |
|             | 300.0                   |                                         | or rhyolite, very hard, light grey   |                                        |       | <u> </u>                                         |                                       |             |                |         | *************************************** |                                                  |          |
|             |                         | and siliceous                           |                                      |                                        |       |                                                  |                                       |             |                |         |                                         |                                                  |          |
|             |                         | 3.5-4.0 As Abov                         | e                                    |                                        |       |                                                  |                                       |             |                |         |                                         |                                                  |          |
| <del></del> | <u> </u>                |                                         | ike at 20° to core axis. Sharp       |                                        |       | <u> </u>                                         | +                                     |             | <del></del> -  |         |                                         |                                                  | L        |
|             |                         | contacts.                               |                                      |                                        |       | <del> </del>                                     |                                       |             | <del> </del> - |         |                                         |                                                  | -        |
|             |                         | 5.6-6.0 Felsite                         | vein normal to core axis. Minor      | 08688F                                 | 5.5   | 6.5                                              | 1.0                                   |             | 0.010          |         |                                         |                                                  | ┝        |
|             | <del> </del>            | † · · · · · · · · · · · · · · · · · · · | joints and fracture.                 | 00000                                  | 3.3   | 0.5                                              | 1                                     |             | 0.010          |         |                                         |                                                  | 一        |
|             |                         | 6.1-8.4 Felsite                         |                                      |                                        |       | <u> </u>                                         |                                       |             |                |         |                                         |                                                  | $\vdash$ |
|             |                         | 8.4-8.5 Jaspery                         | oxidized quartz vein at 30° to       |                                        |       |                                                  |                                       |             |                |         |                                         |                                                  | Г        |
|             | ļ                       | core axis. Leac                         | hed sideritic(?) carbonate.          |                                        |       |                                                  |                                       |             |                |         |                                         |                                                  |          |
|             | <u> </u>                |                                         | as described above.                  |                                        |       | ļ                                                | <del> </del>                          |             |                |         |                                         |                                                  | L        |
|             |                         | 8.8-9.2 Massive                         | white quartz vein at 65° to core     | 08689F                                 | 8.5   | 9.5                                              | 1.0                                   |             | 0.002          |         |                                         |                                                  | -        |
|             |                         | quartz.                                 | ite paint on irregular fractures in  |                                        |       |                                                  |                                       |             |                |         |                                         |                                                  | ┝        |
|             |                         |                                         | e weakly sericitized felsite.        |                                        |       | <del>                                     </del> | <del> </del>                          |             |                |         |                                         |                                                  | H        |
|             |                         | 10.7-11.5 Green                         | dike at 25 to core axis.             |                                        |       |                                                  | <del>1</del>                          |             |                |         |                                         |                                                  | Γ        |
|             |                         |                                         | te with minor quartz-carbonate       |                                        |       | 1                                                | 1                                     |             |                |         |                                         |                                                  |          |
|             |                         | stringers.                              |                                      |                                        |       |                                                  |                                       |             |                |         |                                         |                                                  |          |
|             |                         |                                         | z-chlorite veinlet at 75° to core    |                                        |       |                                                  |                                       |             |                |         |                                         |                                                  | L        |
|             | <del> </del>            |                                         | ock silicified with pyrite stringers |                                        |       |                                                  | <u> </u>                              |             |                |         |                                         |                                                  | Ļ        |
|             |                         | 17.8-20.7 Massi                         |                                      | 00001=                                 | 20. 3 | <del> </del>                                     | <del> </del>                          |             |                |         |                                         | <b> </b>                                         | H        |
|             |                         | <u>  20.7-20.75 Quart</u>               | z veinlet normal to core axis        | 08691F                                 | 20.1  | 21.1                                             | 1.0                                   | 1 10        | 0.002          | 1       |                                         | 1 _/                                             | Ĺ        |

20.75-42.0 Massive felsite, massive light grey

HOLE NO: 85-32 PAGE Nº: 2 of 5

| F00           | TAGE     | D.F.CODIDTION                                      | SAMPLE   | FOO       | TAGE     | LENGTH |        |      |          |
|---------------|----------|----------------------------------------------------|----------|-----------|----------|--------|--------|------|----------|
| from          | to       | DESCRIPTION                                        | Nō:      | from      | to       | LENGIA | Oz/tAu |      |          |
| 3.5           | 300      | TUDOR VOLCANIC GROUP (?) - Cont'd                  |          |           |          |        |        |      |          |
|               |          | 42.0-42.1 Green dikelet                            |          |           |          |        |        |      |          |
|               |          | 42.1-43.0 Silicified felsite, trace pyrite         |          |           |          |        |        |      |          |
|               |          | 43.0-43.1 Quartz-chlorite-carbonate veinlet at     | 08692F   | 42.5      | 43.4     | 1.0    | 0.002  |      |          |
|               |          | 60° to core axis.                                  |          |           |          |        |        |      |          |
|               |          | 43.1-43.4 As 42.1-43.0                             |          |           |          |        |        |      |          |
|               |          | 43.4-45.0 Green dike at 45° to core axis - Include | s        |           |          |        |        |      |          |
|               |          | two quartz stringers with pyrite & pyrrhotite      | 08693F   | 44        | 45       | 1.0    | 0.030  |      |          |
|               |          | 45.0-45.5 Felsite (massive) as 20.75-42.0.         |          |           |          |        |        |      |          |
|               |          | 45.5-46.5 Well schisted green dike with irregular  |          | <u>  </u> |          |        |        |      |          |
|               |          | contacts.                                          |          |           | <u> </u> |        |        |      |          |
|               |          | 46.5-47.4 Felsite                                  |          |           |          |        |        |      |          |
|               |          | 47.4-50.2 Green dike with fine to medium grain     |          | <u> </u>  |          |        |        |      |          |
|               |          | size. Well schisted throughout.                    |          |           |          |        |        |      |          |
|               |          | 50.2-50.9 Massive quartz with pyrite & pyrrhotite  | 08694F   | 50        | 51       | 1.0    | 0.028  |      | <u> </u> |
|               |          | paint on internal fractures. Trace cabonate.       |          |           |          |        |        |      | <u> </u> |
|               |          | 50.9-54.3 Felsite, massive medium grey with slight |          | <u> </u>  |          |        |        |      | <u> </u> |
|               |          | crackle joints filled with secondary silica.       |          | <u> </u>  |          |        |        |      |          |
|               | ļ        | 54.3-55.9 Quartz vein at 5 to core axis. Width     |          |           |          |        |        |      |          |
|               |          | 0.1 ft.                                            | 08695F   | 54.3      | 56       | 1.7    | 0.008  |      |          |
|               |          | 55.9-58.0 Felsite as 50.9-54.3                     | ·        |           |          |        |        |      | <u> </u> |
|               |          | 58.0-58.1 Quartz-pyrite vein at 45° to core axis   | 71401    | 57.5      | 58.5     | 1.0    | 0.002  |      | Ĺ        |
|               |          | 58.1-58.3 Felsite                                  | <u> </u> |           |          |        |        |      |          |
|               |          | 58.3-63.4 Green dike with chilled contacts at 20°  |          |           |          |        |        |      |          |
|               | <b></b>  | to 45° to core axis. Well schisted throughout      | 71403    | 69.3      | 70.3     | 1.0    | 0.020  |      | <u> </u> |
|               | _        | 63.4-68.2 Dark grey weakly crackled felsite        |          |           |          |        |        |      |          |
|               | <u> </u> | 68.2-68.5 Quartz vein with trace pyrrhotite >      |          |           |          |        |        |      | <u> </u> |
| ·             | <b></b>  | pyrite.                                            | 71402    | 67.9      | 68.9     | 1.0    | 0.012  |      |          |
|               | <u> </u> | 68.5-74.8 Green dike, moderately well schisted.    |          |           |          |        |        |      |          |
|               | <u> </u> | No chill against upper contact. Quartz at 68.5     |          | <u> </u>  |          |        |        |      |          |
|               | <u> </u> | may therefore be on a fault.                       |          |           |          | 1.     |        |      |          |
|               | <b></b>  | 74.8-79.0 Weakly chloritized felsite.              |          |           |          |        |        |      |          |
|               |          | 79.0-79.05 Quartz-carbonate-pyrrhotite-pyrite      | 71404    | 78.5      | 79.5     | 1.0    | 0.002  |      |          |
| <del></del> . |          | veinlet at 850 to core axis.                       |          |           |          |        |        | <br> |          |
|               | . 1      | 79.05-83.0 Massive grey and weakly crackled felsi  | e.       | 1         |          |        |        | 1 1  | 1        |

HOLE NO: 85-32 PAGE NO:

3 of 5

| F00         | TAGE         | DESCRIPTION                                         | SAMPLE   | F001       | TAGE     | LENGTH        | Oz/tAu | 1 | [        | 1 |
|-------------|--------------|-----------------------------------------------------|----------|------------|----------|---------------|--------|---|----------|---|
| from        | to           | DESCRIPTION                                         | No:      | from       | to       | LENGIR        |        |   |          |   |
| 3.5         | 300          | TUDOR VOLCANIC GROUP - Cont'd                       |          |            |          |               |        |   |          |   |
|             |              | 83.0-84.0 Two quartz veinlets, one normal to, and   | 71405    | 83         | 84       | 1.0           | 0.002  |   |          |   |
|             |              | one at 450 to core axis. Trace pyrite, trace        |          |            |          |               |        |   |          |   |
|             |              | carbonate.                                          |          |            |          |               |        |   |          |   |
|             |              | 84.0-87.3 As 79.05-83.0 with scattered pyrite       |          |            |          |               |        |   |          |   |
|             |              | and occasional minor quartz stringers.              |          | ļ          |          |               |        |   |          |   |
|             |              | 87.3-93.8 Green dike, moderately to well schisted.  |          |            |          |               |        |   |          |   |
|             |              | Contains occasional xenoliths of felsite.           |          |            |          |               |        |   |          |   |
|             |              | 93.8-100.6 Massive grey felsite.                    |          |            |          |               |        |   |          |   |
| ·           |              | 100.6-100.65 Minor quartz veinlet with heavy        |          |            |          |               |        |   |          |   |
|             |              | tourmaline.                                         |          | ļ <u>.</u> |          |               |        |   |          |   |
|             |              | 100.65-117.0 Massive felsite, well banded at 60°    |          |            |          | ļ             |        |   |          |   |
|             |              | to core axis at 111.0: includes short sections of   |          | <u> </u>   |          |               |        |   |          |   |
|             |              | green dike or massive rhyolite at 102.5-104, 111.2- |          |            |          |               |        |   |          |   |
|             |              | 112.5, 115.5-116.6. Could also be interpreted as    |          |            |          |               |        |   |          |   |
|             |              | autobreccia or intrusive breccia. Some fragments    |          |            |          | <u> </u>      |        |   |          |   |
|             |              | epidotized, and good chills between matrix (dark-   | <u> </u> |            |          |               |        |   |          |   |
|             |              | grey-black) and fragments of epidote on fractures   |          |            |          | <del>  </del> |        |   |          |   |
|             | <u> </u>     | at 118. Good recemented breccia textures at 125-12  | 5.       |            | <u> </u> | <u> </u>      |        |   |          |   |
| <u> </u>    |              |                                                     | <u> </u> |            |          |               |        |   |          |   |
|             |              | 117.0-133-9 Massive felsite, light grey as in       |          |            |          |               |        |   |          |   |
|             | <u> </u>     | 93.8-100.6.                                         |          |            |          |               |        |   |          |   |
|             |              | 133.9-137.0 Green dike with weak foliation and      |          |            |          |               |        |   | <u> </u> |   |
|             |              | crackle stringers of carbonate. Contacts almost     | <u> </u> |            | ļ        |               |        |   |          |   |
|             | <u> </u>     | normal to core axis.                                |          |            |          |               |        |   |          |   |
|             |              | 137.0-139.1 Well mottled massive felsite            |          |            |          | <u> </u>      |        |   |          |   |
|             |              | 139.1-140.1 Two 0.1 ft. quartz veinlets and felsit  | e 71406  | 139.1      | 140.1    | 1.0           | 0.010  |   |          |   |
|             |              | Veins are at 80° to core axis with sharp contacts.  |          |            | <u> </u> |               |        |   |          |   |
| ·           | <del></del>  | 140.1-141.0 Light grey massive felsite.             |          |            |          |               |        |   |          |   |
| · · · · ·   |              | 141.0-142.0 As 140.1-141.0 with 3 quartz stringers  | 71407    | 141        | 142.1    | 1.1           | 0.002  |   |          |   |
|             | <del> </del> | at variable degrees to core axis.                   |          |            |          | <b> </b>      |        |   |          |   |
| <del></del> |              | 142.0-142.5 Green dike at 45° to core axis.         |          |            |          |               |        |   |          |   |
| ····        | <b>↓</b>     | 142.5-158.5 Massive light grey felsite with         | 71408    | 146.5      | 147.5    |               | 0.002  |   |          |   |
|             | <u> </u>     | occasional quartz carbonate stringers containing    | 71409    | 151.7      | 152.7    | 1.0           | 0.002  |   |          |   |
|             |              | pyrrhotite and pyrite traces.                       |          |            |          | <u> </u>      |        |   |          |   |

HOLE Nº: 85-33 PAGE Nº: 4 of 5

FOOTAGE SAMPLE FOOTAGE LENGTH DESCRIPTION Oz/tAu NO: from to from to TUDOR VOLCANIC GROUP (?) - Cont'd 300 3.5 158.5-160.3 Well schisted (mafic) greenstone flow 71410 154 1.55 0.002 1.0 with flattened amyodules. Foliation at 50° to core axis. 160.3-181.1 Dark grey to black weakly chloritized felsite or rhyolite. Well crackled with quartzcarbonate stringers. Trace pyrite throughout. Occasional vaque breccia features. 181.1-183.8 Chloritized green dike or rhyolite. Somewhat mottled. 183.8-186.1 Felsite with ghostly breccia features 186.1-189.0 Green dike with perper and salt texture. Could be fine grained ophitic intrusive Up to 10% disseminated pyrite. Heavily biotitized from 187.3 to 189 with small felsite inclusion. 189.0 - Lost water return and caving = Fault? 189.0-192.0 Heavily altered biotitized rock with 20% pyrite in well formed crystals up to 2 mm. across. Could be a dike. 192.0-193.5 Green dike or massive tuff with 5-10% pyrite. Probable chill at 193.5. 193.5-197.5 Chloritized felsite with moderate cleavage up to 197. Massive from 197-197.5 - all 197.3 | 198.3 0.004 gradational features. 71411 197.5-198.2 Five quartz veinlets with as much country-rock enclosed by sharp contacts at 85° to core axis. Pyrrhotite-pyrite & chlorite mineralization. 198.2-210.0 Massive light grev weakly chloritized felsite. 201 7 202.7 210.0-213.7 Fine grained weakly foliated green dike on chloritic phase of felsite. 1.0 0.002 71412 213.7-217.5 Mottled phase of felsite - highly chloritic - psalimpsest amygdules indicate altered 211.5 | 212.5 | 1.0 0.004 71416 mafic flow.

HOLE NO: 85-32 PAGE N2: 5 of 5

| FOOT | AGE      | DESCRIPTION                                        | SAMPLE   | F00      | TAGE     | LENGTH   | Oz/tAu         |       |          |          |
|------|----------|----------------------------------------------------|----------|----------|----------|----------|----------------|-------|----------|----------|
| from | 10       | DESCRIPTION                                        | Nō:      | from     | to       | LENGIN   | <i>52)</i> Ula |       |          | <u> </u> |
| 3.5  | 300      | TUDOR VOLCANIC GROUP (?) - Cont'd                  |          |          |          |          |                |       |          |          |
|      |          | 217.5-223.5 Dark glassy chloritized felsite with   |          |          |          |          |                |       |          |          |
|      |          | 5% disseminated pyrrhotite. Scattered crackle      |          |          |          |          |                |       |          |          |
|      |          | stringers, especially in altered felsite fragments |          |          |          |          |                |       |          |          |
|      |          | seen in this section.                              |          |          |          |          |                | <br>  |          |          |
|      |          | 223.5-225.5 Foliated volcanic breccia, with        |          | <u> </u> |          |          |                |       |          | <u> </u> |
|      |          | abundant quartz carbonate stringers. Foliation     |          |          |          |          |                |       |          | <u> </u> |
|      |          | at 20° to core axis.                               |          | <u> </u> |          |          |                |       |          | ļ        |
|      |          | 225.5-242.0 Highly variable section of felsic      |          |          |          |          |                |       |          | <u> </u> |
|      |          | volcanics with evidence of large breccia frag-     | 71413    | 241.5    | 244      | 2.5      | 0.002          |       |          | <u> </u> |
|      |          | ments in a fine-grained, weakly chloritized matrix |          | 244      | 245      | 1.0      | 0.002          |       |          |          |
|      |          | which is cherty. Fragments include medium grained  |          | <u> </u> |          |          |                | <br>  |          | <u> </u> |
|      |          | massive tuffaceous rocks with 5% disseminated      |          | <b>ļ</b> |          |          |                | <br>  |          | <u> </u> |
|      |          | pyrite. Felsite and flow-contacts cherty quartz-   | L        | ļ        |          |          |                | <br>  |          |          |
|      |          | ite blocks.                                        | 71415    | 265.1    | 266.2    | 1.7      | 0.002          | <br>  |          | ļ        |
|      |          | 242.0-243.0 Quartz vein with carbonate at 5 to     |          | ļ        |          |          |                | i<br> |          |          |
|      |          | core axis.                                         |          | <u> </u> | <u> </u> | <b></b>  |                |       |          | <u> </u> |
|      |          | 243.0-244.3 As 225.5-242.0                         |          |          |          |          |                |       | <u> </u> |          |
|      |          | 244.3-244.4 Quartz vein with sharp contacts at     | <u> </u> |          |          |          |                |       |          |          |
|      |          | 85° to core axis.                                  |          | ļ        |          |          |                | <br>  |          |          |
|      |          | 244.4-261.3 As 225.5-242.0.                        |          | <u> </u> |          |          |                |       |          |          |
|      |          | 261.3-273.5 Moderately well schisted mafic green-  |          | <u> </u> |          |          |                | <br>  |          | <u> </u> |
|      |          | stone flow with relict amygdular features. Quartz  |          |          |          |          |                |       |          | <u> </u> |
|      | <u> </u> | carbonate vein with pyrrhotite & pyrite at 265.1-2 |          |          |          |          |                |       |          |          |
|      |          | 273.5-300 Felsite breccia with assorted blocks     |          |          |          | <u> </u> |                |       |          | ·        |
|      |          | of crackled felsite to amphibolite (?) and         | 71417    | 278.5    | 279.5    | 1.0      | 0.004          |       |          |          |
|      |          | including tuffaceous blocks with 5% disseminated   |          |          |          |          |                |       |          |          |
|      | ļ        | pyrite. Cleavage-banded at 293-294 and fragmental  |          | L        |          |          |                |       |          |          |
|      | ļ        | throughout.                                        |          |          |          |          |                |       |          |          |
|      |          |                                                    | <b>.</b> | <u> </u> |          | 1        |                | <br>  |          |          |
|      |          | End of DDH #85-32 at 300 feet.                     |          |          |          |          |                |       |          |          |
|      |          |                                                    |          |          |          |          |                |       |          |          |
|      |          |                                                    |          |          |          |          |                |       |          |          |
|      |          |                                                    |          |          |          |          |                |       |          |          |
| L    |          |                                                    |          |          |          |          |                |       |          |          |

|              |                                                  |                                                                                                 |                                       |                                                  |                                                  | . =                                              |              |                                                  |             |             | •                                                |
|--------------|--------------------------------------------------|-------------------------------------------------------------------------------------------------|---------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------|--------------------------------------------------|-------------|-------------|--------------------------------------------------|
| LOCATION:    | MADOC T                                          | WP ONTARIO DIAMOND                                                                              | DRILL RE                              | CORD                                             |                                                  | •                                                |              | <del>-</del>                                     | HOLE NO:    | 85–33       |                                                  |
| AZIMUTH:     | 235°                                             | - I Wind                                                                                        | OLD MINES                             |                                                  |                                                  | •                                                | PROPERT      | Y: BANN                                          | NOCKBURN    |             |                                                  |
| 010          | -45 <sup>O</sup>                                 | LENGTH: 288.0 ft.                                                                               | ELEVATION                             |                                                  | <del></del>                                      |                                                  | CLAIM I      | 10.                                              |             |             |                                                  |
| DIP:         | -45                                              | LENGTH: 288.0 ft.                                                                               | ELEANING                              | JR :                                             |                                                  |                                                  | CLAIM        | E065                                             | 52301       |             |                                                  |
| STARTED:     | Sept. 2                                          | 4/85 CORE SIZE: BO                                                                              | DATE LO                               | GGED:                                            |                                                  |                                                  | SECTION      | : "OFI                                           | F SECTION"  | 2300-2400N  | 1                                                |
| COMPLETE     | D: Sept.                                         | 26/85 DIP TESTS: 288.0'=44 <sup>O</sup>                                                         |                                       |                                                  |                                                  |                                                  | LOGGED       | BY: R.V.                                         | BEAVON      |             |                                                  |
|              |                                                  |                                                                                                 | · · · · · · · · · · · · · · · · · · · |                                                  |                                                  |                                                  |              |                                                  |             |             |                                                  |
| PURPOSE:     |                                                  |                                                                                                 |                                       |                                                  |                                                  |                                                  |              |                                                  |             |             |                                                  |
| 500          | TAGE                                             |                                                                                                 | SAMPLE                                | FOO                                              | TAGE                                             | 1                                                |              |                                                  |             |             | 1                                                |
| from         | to                                               | DESCRIPTION                                                                                     | Nō:                                   | from                                             | to                                               | LENGTH                                           |              | Oz/tAu                                           |             |             |                                                  |
| 0            | 2                                                | Casing                                                                                          |                                       |                                                  |                                                  |                                                  |              |                                                  |             |             |                                                  |
|              |                                                  |                                                                                                 |                                       |                                                  |                                                  |                                                  |              |                                                  |             |             |                                                  |
| 2            | 288                                              | TUDOR VOLCANTO GROUP                                                                            |                                       |                                                  |                                                  |                                                  |              |                                                  |             |             |                                                  |
|              |                                                  | 2.0-2.5 Greenstone, well schisted and leached                                                   |                                       |                                                  |                                                  |                                                  |              |                                                  |             |             |                                                  |
|              |                                                  | carbonate flow unit.                                                                            |                                       |                                                  | l                                                |                                                  |              |                                                  |             |             | 1                                                |
|              |                                                  | 2.5-3.0 Cherty quartzite flow contact                                                           |                                       |                                                  |                                                  |                                                  |              |                                                  |             |             |                                                  |
|              |                                                  | 3.0-25.6 Fine grained medium to light green in                                                  |                                       |                                                  |                                                  |                                                  |              |                                                  |             |             |                                                  |
|              |                                                  | part cleavage banded greenstone schist flow unit.                                               |                                       |                                                  |                                                  |                                                  |              |                                                  |             |             | T                                                |
|              |                                                  | Some banding may be due to flattening of flow-                                                  |                                       |                                                  |                                                  |                                                  |              |                                                  |             |             |                                                  |
|              |                                                  | breccia fragments. Probable flow contact with                                                   |                                       |                                                  |                                                  |                                                  |              |                                                  |             |             |                                                  |
|              |                                                  | quartz stringer at 25.6. Cleavage-banding at 25°                                                |                                       |                                                  |                                                  |                                                  |              |                                                  |             |             |                                                  |
|              |                                                  | core axis. Minor carbonate stringers throughout.                                                |                                       |                                                  | <u> </u>                                         |                                                  |              |                                                  |             |             |                                                  |
|              | 1.                                               | 25.6-39.6 Moderately cleavage banded to slightly                                                |                                       |                                                  |                                                  |                                                  |              |                                                  |             |             | 1                                                |
|              |                                                  | massive greenstone flow                                                                         | <u> </u>                              |                                                  |                                                  | 1                                                |              | 1                                                |             |             | 1                                                |
|              | <u> </u>                                         | 39.6-39.9 Flow contact quartzite (0.1 ft.) at                                                   |                                       |                                                  |                                                  |                                                  |              |                                                  |             |             | 1                                                |
|              |                                                  | 39.6. followed by greenstone flow.                                                              | 1                                     |                                                  | <del> </del>                                     | <del> </del>                                     |              | †                                                |             |             | <u> </u>                                         |
|              |                                                  | 39.9-40.0 Quartz veinlet                                                                        | 08751F                                | 39.4                                             | 40.4                                             | 1.0                                              |              | 0.014                                            |             |             |                                                  |
|              |                                                  | 40.0-45.0 Moderately cleavage-banded greenstone                                                 | 1 007.51E                             | 13.4                                             | 30.3                                             | 1.00                                             |              | V.V.4                                            |             |             | <del>                                     </del> |
| <u> </u>     |                                                  | flow unit.                                                                                      | †                                     | 1                                                | <del> </del>                                     | 1                                                |              | <del>                                     </del> |             |             | 1                                                |
|              | <del> </del>                                     |                                                                                                 |                                       | <u> </u>                                         |                                                  | <del>                                     </del> |              | <del>                                     </del> |             |             | <b>—</b>                                         |
|              | <u> </u>                                         | 45.0-45.1 Flow contact chert (quartzite) at 25° to core axis.                                   | <del> </del>                          | <u> </u>                                         |                                                  | <del>                                     </del> |              | <del> </del>                                     | <del></del> |             | +                                                |
|              | -                                                | 45.1-48.0 Alternating greenstone flow and infold-                                               | .                                     | <del> </del>                                     |                                                  | 1                                                |              | <del>                                     </del> |             |             | +                                                |
|              |                                                  | ed cherty and limy flow contact material.                                                       | <del> </del>                          | !                                                |                                                  | 1                                                | <del> </del> | <del>  -</del>                                   |             |             | +                                                |
|              |                                                  |                                                                                                 | <del> </del>                          |                                                  | <del> </del>                                     | <del> </del>                                     |              | <del>  -</del>                                   | <del></del> |             | +                                                |
|              | <del>                                     </del> | 48.0-53.0 Fine grained greenstone schist flow similar to 3.0-25.6. Gradational contact at 53.0. | <del></del>                           | <del>                                     </del> | <del>                                     </del> | <del>                                     </del> | <del> </del> | <del>  -</del>                                   |             |             | <del>+</del>                                     |
| <b> </b>     | <del>                                     </del> |                                                                                                 | <del> </del>                          | <del>                                     </del> | <del> </del>                                     | <del> </del>                                     | <del> </del> | ├──┼                                             | <del></del> |             | +                                                |
| <del> </del> | <del> </del>                                     | 53.0-64.1 Massive portion of greenstone flow,                                                   | <del> </del>                          | <del> </del>                                     | <del> </del>                                     | <del> </del>                                     | <del> </del> | ├                                                |             | <del></del> | +                                                |
| L            |                                                  | medium-grained and becoming coarser at 64.1 where                                               | 1                                     | 1                                                | <u> </u>                                         | 1                                                | <u></u>      | 1                                                | L           |             |                                                  |

HOLE N9: 85-33 PAGE N9: 2 of 5

| FOOT | AGE      |                                                                                     | SAMPLE     | F001 | AGE  |        |        |  |                                        | T |
|------|----------|-------------------------------------------------------------------------------------|------------|------|------|--------|--------|--|----------------------------------------|---|
| from | to       | DESCRIPTION                                                                         | Nō:        | from | to   | LENGTH | Oz/tAu |  |                                        |   |
| 2    | 288      | TUDOR VOICANIC GROUP - Cont'd                                                       |            |      |      |        |        |  |                                        |   |
|      |          | 53.0-64.1 - cont'd                                                                  |            |      |      |        |        |  |                                        |   |
|      |          | foliation begins again.                                                             |            |      |      |        |        |  |                                        |   |
|      |          | 64.1-70.6 Carbonate impregnated greenstone flow                                     |            |      |      |        |        |  |                                        |   |
|      |          | unit, well cleavage-banded. Carbonate patches could be deformed pillow interstices. |            |      |      |        |        |  | ······································ |   |
|      |          | 70.6-71.0 Quartzitic cherty flow contact, banded at 25° to core axis.               |            |      |      |        |        |  |                                        | - |
|      |          | 71.0-72.6 Greenstone schist flow                                                    |            |      |      |        |        |  |                                        | † |
|      |          | 72.6-72.9 Massive white quartz. Small wedge of                                      | 08752F     | 72   | 73   | 1.0    | 0.008  |  |                                        | 1 |
|      |          | quartz lost from core. Sharp contacts at 45° and                                    |            |      |      |        |        |  |                                        |   |
|      |          | 85° to core axis.                                                                   |            |      |      |        |        |  |                                        | Π |
|      |          | 72.9-74.7 Carbonate impregnated greenstone of                                       |            |      |      |        |        |  |                                        |   |
|      |          | inter pillow type.                                                                  |            |      |      |        |        |  |                                        |   |
|      | `        | 74.7-75.0 Quartzitic chert flow contact.                                            |            |      |      |        |        |  |                                        |   |
|      |          | 75.0-82.4 Moderately well-schisted greenstone                                       |            |      |      |        |        |  |                                        |   |
|      |          | flow with rare amygdules and faint cleavage banding                                 |            |      |      |        |        |  |                                        |   |
|      |          | 82.4-82.5 Ouartz impregnation of lavas                                              | 08753F     | 81.8 | 82.8 | 1.0    | 0.002  |  |                                        |   |
|      |          | 82.5-88.2 As 75.0-82.4 with slight mottling of                                      |            |      |      |        |        |  |                                        | Ī |
|      |          | flow unit.                                                                          |            |      |      | -      |        |  |                                        |   |
|      |          | 88.2-88.6 Marble on flow contact. Medium grained                                    |            |      |      |        |        |  |                                        |   |
|      |          | sugary marble, weakly banded at 25° to core axis.                                   |            |      |      |        |        |  |                                        |   |
|      |          | 88.6-100.7 Sparsely porphyritic greenstone flow,                                    |            |      |      |        |        |  |                                        |   |
|      |          | becoming weakly schisted and massive with increasing                                | <b>a</b> . |      |      |        |        |  |                                        |   |
|      |          | grain size at 91.0. Feldspar phenocrysts.                                           |            |      |      |        |        |  |                                        |   |
|      |          | 100.7-101.0 Remobilized cherty quartz flow contact                                  | •          |      |      |        |        |  |                                        |   |
|      |          | Resembles stringer.                                                                 |            |      |      |        |        |  |                                        |   |
|      |          | 101_0-106.6 Weakly schisted sparsely porphyritic                                    |            | -    |      |        |        |  |                                        |   |
|      |          | greenstone with feldspar. Flow contact chill at                                     |            |      |      |        |        |  |                                        |   |
|      |          | 106.6.                                                                              |            |      |      |        |        |  |                                        |   |
|      | <u> </u> | 106.6-129.2 Massive-medium-grained porphyritic                                      |            |      |      |        |        |  |                                        |   |
|      |          | andesite with quartz amygdules at 116. Scattered                                    |            |      |      |        |        |  |                                        |   |
|      |          | minor calcite stringers throughout. Chilled flow                                    |            |      |      |        |        |  |                                        |   |
|      | 1        | Contact at 129.2                                                                    |            |      | 1    | 1      |        |  |                                        | Γ |

HOLE NO: 85-33 PAGE Nº: 3 of 5

|                 | TAGE       | DESCRIPTION                                       | SAMPLE   | 1            | TAGE     | LENGTH   | ••.                                   | Oz/tAu   |     | i        |         |
|-----------------|------------|---------------------------------------------------|----------|--------------|----------|----------|---------------------------------------|----------|-----|----------|---------|
| from            | 10         |                                                   | Nō:      | from         | to       |          | • ,                                   | <b> </b> |     |          |         |
| 2               | 288        | TUDOR VOLCANIC GROUP - Cont'd                     |          | -            |          |          | · · · · · · · · · · · · · · · · · · · | <u> </u> |     | <u> </u> |         |
| ·····           |            | 129.2-130.8 As 106.6-129.2. Chilled flow contact  | <u> </u> | <del> </del> |          |          |                                       | <b> </b> |     |          |         |
|                 | <u> </u>   | at 130.8.                                         | <u> </u> | <del> </del> |          |          |                                       |          |     | <br>     |         |
|                 |            | 130.8-132.0 As 106.6-129.2. Chilled flow contact  |          |              | <u> </u> |          |                                       |          |     | <br>     |         |
|                 | ļ          | at 132.0                                          |          | <u> </u>     |          |          |                                       |          |     | <br>     | <u></u> |
|                 | ļ <u>.</u> | 132.0-133.5 Non-porphyritic chilled portion of    |          |              |          | <b></b>  |                                       | ļ        |     | <br>     |         |
|                 | ļ          | overlying flow(?).                                | <b></b>  |              |          |          |                                       |          |     | <br>     |         |
|                 |            | 133.5-133.6 Quartzitic chert flow contact at 25°  |          |              |          |          |                                       | ļ        |     | <br>     |         |
|                 |            | to core axis.                                     |          | ļ            | <u> </u> |          |                                       |          |     |          |         |
|                 | ļ          | 133.6-135.0 As 132.0-133.5                        |          | ļ            |          |          |                                       | <b> </b> |     | <br>     |         |
|                 |            | 135.0-135.1 As 133.5-133.6.                       |          |              |          |          |                                       |          |     |          |         |
|                 |            | 135.1-137.0 Sparsely porphyritic flow unit folia- | <u> </u> |              |          |          |                                       |          |     | <br>     |         |
|                 | <b></b>    | ted at 137.0. Sharp contact with light green flow |          | <b>i</b> ——— | ļ        |          |                                       |          |     |          |         |
|                 | <b></b>    | unit at 137.0. Quartz segregation at 135.5        | 08754F   | 135          | 136      | 1.0      |                                       | 0.002    |     |          |         |
|                 | <u> </u>   | 137.0-143.0 Light green well schisted non-porphy- | ļ        |              |          |          |                                       |          |     | <br>     |         |
|                 |            | ritic flow.                                       |          | ļ            |          |          |                                       | ļl       |     |          | <u></u> |
|                 | J          | 143.0-143.5 Massive quartz, 0.2 ft. of lost core  | 08755F   | 143          | 144      | 1.0      |                                       | 0.002    | · . | <br>     |         |
| <del></del>     | <u> </u>   | 143.5-144.2 As 137.0-143.0.                       |          | <b>_</b>     |          |          |                                       |          |     |          |         |
|                 | ļ          | 144.2-144.6 Quartzitic chert flow contact at 25°  | 08756F   | 145.7        | 146.7    | 1.0      |                                       | 0.006    |     |          |         |
|                 | ļ          | to core axis.                                     |          |              | <u> </u> | <u> </u> |                                       |          |     |          |         |
|                 | <u> </u>   | 144.6-146.7 Dark green flow or dike (sill),       |          |              |          |          |                                       |          |     |          |         |
| <del> , .</del> |            | irregular quartz segregation at 146.              |          |              | ·        |          |                                       |          |     |          |         |
|                 | <u> </u>   | 146.7-150.5 Wide unit of quartzitic banded chert  |          |              |          | <u> </u> |                                       |          |     |          |         |
|                 | <u> </u>   | with moderate pyrite at 149.5.                    |          |              | ·        | <u> </u> |                                       |          |     |          |         |
|                 |            | 150.5-160.9 Dark grey-green massive greenstone    |          |              |          |          | <u> </u>                              |          |     |          |         |
|                 |            | flow-fine grained throughout. Occasional minor    |          |              |          |          |                                       |          |     |          |         |
|                 |            | quartz-carbonate stringers.                       |          |              |          |          |                                       |          |     |          |         |
|                 |            | 160.9-167.4 Massive quartz carbonate vein at 50°  |          |              |          |          |                                       |          |     |          |         |
|                 |            | to core axis, with sharp contacts                 | 08757F   | 160.6        | 161.6    | 1.0      |                                       | 0.004    |     |          |         |
|                 |            | 161.4-175.0 As 150.5-160.9. Quartz-carbonate      |          |              |          |          |                                       |          |     |          |         |
|                 |            | segregation at 25° to come axis at 166.           |          |              |          |          |                                       |          |     |          |         |
|                 |            | 175.0-175.6 Quartz veinlet at 25° to core axis    | 08758F   | 165.4        | 166.4    | 10       |                                       | 0.006    |     |          |         |
| •               |            | 175.6-184.0 As 150.5-160.9.                       |          |              |          |          |                                       |          |     |          |         |
|                 |            | 184.0-184.5 Two quartz veinlets Dormal to core    | 08759F   | 174 4        | 175.4    | 1.0      |                                       | 0.002    |     |          |         |
|                 |            | axis with sharp contacts. Contains marcasite, pv. | 08760F   | 184          |          | 1.0      |                                       | 0.002    |     |          |         |

HOLE N2: 85-33 PAGE N2:

4 of 5 SAMPLE FOOTAGE FOOTAGE Oz/tAu DESCRIPTION LENGTH to Nº: from from 288 TUDOR VOLCANIC GROUP - Cont'd 184.5-188.8 As 150.5-160.9 with increased minor calcite and quartz stringers. 188.8-189.2 Massive white quartz with trace pyrite 08761F 188.3 | 189.3 | 1.0 0.002 189.2-189.5 Greenstone flow as 150.5-160.9 189.5-191.0 Possible foliated green dike 08762F 190.5 | 191.5 | 1.0 0.002 191.0-191.3 Irregular quartz stringers 191.3-201.0 Fairly massive fine grained greenstone flow with minor carbonate joint fillings. 201.0-204.5 Massive white quartz with occasional 3.7 08763F 201 204.7 0.002 country-rock inclusions. Traces pyrrhotite & pyrite (paint). 204.5-219.0 Massive greenstone flow with fine to 205.5 206.5 1.0 0.002 08764F medium grain size. Quartz carbonate stringers at 219 possibly along flow contact. 219.0-238.5 As 204.5-239.0 with quartz carbonate stringers at 20° to core axis at 220, 222, 223, 224 and 226. Trace pyrite and pyrrhotite throughout. 238.5-239.0 Probable sill or dike (mafic) with well developed cleavage. 239.0-239.3 Probable limestone-marble along flow contact. 239.3-242.8 Massive greenstone as 204.5-219.0. Abundant calcite filling joints at 239.0-240.0. 242.8-243.4 Quartzitic chert, banded at 200 to core axis. 08765F 243.4 244.4 0.002 243.4-243.9 Massive white quartz veinlet with sharp contacts normal to core axis. 243.9-244.5 Poorly foliated greenstone flow. 244.5-245.7 Well banded quartzitic flow-contact chert. Possible fault at 245.7 parallels foliation. 245.7-258.6 Massive to weakly schisted greenstone flow with 10-15% pyrrhotite and up to 5% pyrite in scattered blebs and stringers

HOLE NO: 85-33

|                                        |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |              |                                                  |                                                  |        | 5           | of 5        |                                                  |
|----------------------------------------|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------|--------------------------------------------------|--------------------------------------------------|--------|-------------|-------------|--------------------------------------------------|
|                                        | TAGE                                             | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SAMPLE<br>Nº:                         | 1            | TAGE                                             | LENGTH                                           | Oz/tAu |             |             |                                                  |
| from                                   | 10                                               | THE PART OF THE COURT OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE P | NZ.                                   | from         | to                                               | <del>    -</del>                                 |        |             |             |                                                  |
| 2                                      | 288                                              | TUDOR VOLCANIC GROUP - Cont'd  258.6-258.8 Carbonate and pyrite seams at 25° to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 08766F                                | 250.1        | 259.1                                            | 1.0                                              |        |             |             |                                                  |
|                                        | <del> </del>                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | 258.1        | 259.1                                            | 1.0                                              | 0.002  |             |             | +                                                |
|                                        |                                                  | core axis. Possible fault parallel to schistosity<br>258.8-259.8 Greenstone with calcite stringers as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |              |                                                  | <del> </del>                                     |        |             |             | <del> </del>                                     |
|                                        |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | <del> </del> |                                                  |                                                  |        |             |             | <del> </del>                                     |
|                                        | <del> </del>                                     | 245.7-258.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       | -            | <del> </del>                                     |                                                  |        |             |             | <del>                                     </del> |
|                                        | <u> </u>                                         | 259.8-260.1 As 244.5-245.7.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       | <del> </del> | <del> </del>                                     | <del>                                     </del> |        |             |             | <del> </del>                                     |
|                                        | <del> </del>                                     | 260.1-262.3 Mixed flow and quartzitic cherts.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       |              |                                                  |                                                  |        |             |             | <del> </del>                                     |
|                                        |                                                  | 262.3-265.0 Well banded flow contact, quartzitic cherts at 30° to core axis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |              |                                                  |                                                  |        |             |             | -                                                |
|                                        | <del>  </del>                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |              |                                                  | <del>                                     </del> |        |             |             |                                                  |
|                                        |                                                  | 265.0-276.0 Weakly schisted fine grained green-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |              |                                                  | <del>                                     </del> |        |             |             | <del> </del>                                     |
|                                        | <del> </del>                                     | stone flow with occasional carbonate inter pillow areas. Flow contact cherty quartzite at 276.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | · · · · · · · · · · · · · · · · · · · |              |                                                  |                                                  |        |             |             | <del> </del>                                     |
|                                        | <del>}</del>                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | <del> </del> |                                                  | <del>    -</del>                                 |        |             |             | <del> </del>                                     |
|                                        | <del> </del>                                     | 276.0-287.8 Massive light grey-green flow with weak traces of foliation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       |              |                                                  |                                                  |        |             |             | <del> </del>                                     |
|                                        |                                                  | 287.8-287.9 Flow contact banded quartzitic chert.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |              |                                                  |                                                  |        |             |             | -                                                |
|                                        | <del> </del>                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |              |                                                  |                                                  |        |             |             | +                                                |
|                                        |                                                  | 287.9-288.0 As 276.0-287.8.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |              |                                                  |                                                  |        |             |             | <del>                                     </del> |
|                                        |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |              |                                                  | <del>                                     </del> |        |             |             | <u> </u>                                         |
|                                        |                                                  | 7777 OT PDT #05 22 at 200 fact                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                       |              |                                                  | <del>  -</del>                                   |        |             |             |                                                  |
|                                        | <del> </del>                                     | FND OF DDH #85-33 at 288 feet.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                       | <del> </del> |                                                  | <del>  </del>                                    |        |             |             | <del>                                     </del> |
| <del></del>                            | <del>                                     </del> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                     |              | <del>                                     </del> | <del>  -</del>                                   |        |             |             | -                                                |
|                                        | <del> </del>                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |              | <del>                                     </del> | <del> </del>                                     |        |             |             | -                                                |
|                                        |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | <del> </del> | <del> </del>                                     |                                                  |        |             |             |                                                  |
| ·······                                | <del> </del>                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | <b></b>      | <u> </u>                                         | <del>                                     </del> |        | <del></del> |             | -                                                |
|                                        | -                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |              | <u> </u>                                         | <del> </del>                                     |        |             |             | <del> </del>                                     |
|                                        | <del> </del>                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |              | <del>                                     </del> | <del>                                     </del> |        |             |             | <del>                                     </del> |
|                                        |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | <del> </del> |                                                  |                                                  |        |             | <del></del> | <del> </del>                                     |
|                                        |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | <del> </del> |                                                  | <del>  </del>                                    |        |             |             | ļ                                                |
| •                                      | 1                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | <u> </u>     |                                                  | -                                                |        |             |             | -                                                |
| ······································ |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |              |                                                  | <del>                                     </del> |        |             |             |                                                  |
|                                        | <del> </del>                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | <del> </del> | <del> </del>                                     | <del>  -</del>                                   |        |             |             | <del>                                     </del> |
|                                        | <del> </del>                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |              |                                                  | -                                                |        |             |             | <del>                                     </del> |
|                                        | <del> </del>                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |              | <del> </del>                                     | <del>                                     </del> |        |             |             | <del>                                     </del> |
| <del> </del>                           | +                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |              |                                                  | <del>  -</del>                                   |        |             |             | <del>                                     </del> |
|                                        | <del>                                     </del> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |              |                                                  |                                                  |        |             | <del></del> | <del> </del>                                     |

| LOCATION:                             | MADO  | TWP ONTARIO               |                                                                   |                         |              |              | ·            |              | HOL                   | E Nº: 85-          |          |               |  |  |  |  |  |  |
|---------------------------------------|-------|---------------------------|-------------------------------------------------------------------|-------------------------|--------------|--------------|--------------|--------------|-----------------------|--------------------|----------|---------------|--|--|--|--|--|--|
|                                       |       | GOLD DIAMOND DRILL RECORD |                                                                   |                         |              |              |              |              |                       | 85-                | -34      |               |  |  |  |  |  |  |
| AZIMUTH: 235 <sup>O</sup>             |       |                           | I I MC.                                                           | I WES                   |              |              |              |              | PROPERTY: BANNOCKBURN |                    |          |               |  |  |  |  |  |  |
| DIP: -70° LENGTH:                     |       |                           | LENGTH: 300.0'                                                    | NGTH: 300.0' ELEVATION: |              |              |              |              |                       | CLAIM NO: E0652301 |          |               |  |  |  |  |  |  |
| STARTED:                              | Sept. | 26/85                     | CORE SIZE: BO                                                     | DATE LO                 | GGED:        |              |              | SECTION: "   | OFF SECT              | TONS" 23           | 2400     | N             |  |  |  |  |  |  |
| COMPLETE                              |       | 27/85                     | DIP TESTS: 300.0= -690                                            |                         |              |              |              | LOGGED BY: R |                       |                    |          |               |  |  |  |  |  |  |
| PURPOSE:                              |       |                           |                                                                   |                         |              |              |              |              |                       |                    |          |               |  |  |  |  |  |  |
| F00°                                  | TAGE  |                           |                                                                   | SAMPLE                  | FOO          | TAGE         | 1            |              | 1                     | ·                  | I        | <del></del>   |  |  |  |  |  |  |
| from                                  | to    |                           | DESCRIPTION                                                       | No:                     | from         | 10           | LENGTH       | Oz/tA        | u                     |                    |          |               |  |  |  |  |  |  |
| 0                                     | 2     | Casing                    |                                                                   |                         |              |              |              |              |                       |                    |          | $\sqsubseteq$ |  |  |  |  |  |  |
| 2                                     | 300   | TUDOR VOLCANIC GE         | OUP                                                               |                         |              |              | -            |              |                       | 1                  |          | $\vdash$      |  |  |  |  |  |  |
|                                       |       | 2.0-25.5 Dark gr          | reen moderately well schisted rith foliation at 35-40 to con      |                         |              |              |              |              |                       |                    |          |               |  |  |  |  |  |  |
|                                       |       |                           | rith foliation at 35-40 to con<br>minor quartz and calcite strip  |                         | <del> </del> | <u> </u>     | <u> </u>     |              |                       |                    |          |               |  |  |  |  |  |  |
|                                       |       |                           | te at 10.0-11.0 ft.                                               | iders.                  |              |              |              |              | <del>-  </del>        |                    |          | <del> </del>  |  |  |  |  |  |  |
|                                       |       |                           | ontact zone with calcite and                                      |                         | <u> </u>     |              |              |              |                       |                    |          | $\vdash$      |  |  |  |  |  |  |
|                                       |       | marble bands para         | llel to schistosity.                                              |                         |              |              |              |              |                       |                    |          | $\vdash$      |  |  |  |  |  |  |
|                                       |       |                           | -25.5 but lighter green colour.                                   |                         |              |              |              | ·            |                       |                    |          |               |  |  |  |  |  |  |
|                                       |       |                           | ontact zone with quartzitic che                                   | ert                     |              | <u> </u>     |              |              | <u> </u>              | <del></del>        | <u> </u> | ـــ           |  |  |  |  |  |  |
|                                       |       | bands at 35° to c         |                                                                   |                         |              | 1            | <del> </del> |              | <del>-</del>          | <del> </del>       |          | ╀             |  |  |  |  |  |  |
|                                       | 1     |                           | tone flow-moderate schistosity<br>tely well schisted greenstone i |                         | <u> </u>     | <del> </del> |              |              |                       |                    |          | ╫             |  |  |  |  |  |  |
|                                       |       |                           | vein, parallel to schistosity                                     |                         | 1            | 1            | 1            |              |                       |                    |          | t             |  |  |  |  |  |  |
|                                       |       | trace of pyrite.          |                                                                   | 08767F                  | 31-6         | 32.6         | 1.0          | 0.002        |                       |                    |          |               |  |  |  |  |  |  |
|                                       |       |                           | leavage-banded greenstone schis                                   |                         |              |              |              |              |                       |                    |          |               |  |  |  |  |  |  |
|                                       |       | with some carbona         | te bands. Drusy pyrite and qua                                    | ertz                    |              |              |              |              |                       |                    |          |               |  |  |  |  |  |  |
|                                       |       | on longitudinal f         |                                                                   |                         | <u> </u>     |              | <b>.</b>     |              |                       |                    |          | <u> </u>      |  |  |  |  |  |  |
| · · · · · · · · · · · · · · · · · · · |       | 37.0-37.7 Quartz          | vein with trace pyrite paint of                                   | on                      |              | <del> </del> |              | ļ            | <b>_</b>              |                    |          | <u> </u>      |  |  |  |  |  |  |
|                                       |       | at 35° to 40° to          | contact parallel to schistosit                                    | y 08768F                | 36.9         | 37.9         | 1.0          | 0.002        |                       |                    |          | -             |  |  |  |  |  |  |
|                                       |       |                           | leavage banded greenstone schis                                   | st                      |              |              |              |              |                       |                    |          |               |  |  |  |  |  |  |
|                                       |       | flow with abundan         | t calcite bands and some string                                   | jers.                   |              |              |              |              |                       |                    |          |               |  |  |  |  |  |  |
|                                       |       | 42.0-42.3 Well s          | chisted greenstone with quartz                                    | 08769F                  | 41.5         | 42.5         | 1.0          | 0.069        |                       |                    |          | <u> </u>      |  |  |  |  |  |  |

weinlet or remobilized meta-chert.

| DIAMOND DRILL | F | ₹ | E | C | 0 | R | D |
|---------------|---|---|---|---|---|---|---|
|---------------|---|---|---|---|---|---|---|

HOLE NO: 85-34 PAGE NO:

2 of 5

| FOOTAGE     |          |                                                    | SAMPLE | FOOTAGE  |       |        | Oz/tAu  |      |          |
|-------------|----------|----------------------------------------------------|--------|----------|-------|--------|---------|------|----------|
| from        | to       | DESCRIPTION                                        | Nō:    | from     | to    | LENGTH | UZ/ tAu |      |          |
| 2           | 300      | TUDOR VOLCANIC GROUP - Cont'd                      |        |          |       |        |         |      |          |
|             |          | 42.3-44.0 Well schisted greenstone or dike with    |        |          |       |        |         |      |          |
|             |          | carbonate stringers.                               |        |          |       |        |         |      |          |
|             |          | 44.0-67.9 Massive greenstone with suggestion of    |        |          |       |        |         |      |          |
|             |          | phenocrysts locally. Becomes weakly foliated at    |        |          |       |        |         |      |          |
|             |          | 60.0-67.9.                                         |        |          |       |        |         |      |          |
|             |          | 67.9-68.1 Quartz vein at 80° to core axis, trace   | 08770F | 67.5     | 68.5  | 1.0    | 0.002   | <br> | <u> </u> |
|             |          | tourmaline                                         |        |          |       |        |         |      |          |
|             |          | 68.1-70.2 As 44.0-67.9, definitely porphyritic at  |        | 1        |       |        |         |      |          |
|             |          | 69.0-70.0.                                         |        |          |       |        |         |      |          |
|             |          | 70.2-71.0 Quartzitic chert flow contact, banded    |        |          |       |        |         |      | <u> </u> |
|             |          | at 45° to core axis.                               |        |          |       |        |         |      | <u> </u> |
|             |          | 71.0-72.0 Greenstone with patches of carbonate     |        | <u> </u> |       |        |         |      | <u> </u> |
|             |          | 72.0-72.1 Quartz veinlet normal to core axis,      | 08771F | 71.5     | 72.5  | 1.0    | 0.002   |      | <u> </u> |
|             |          | trace pyrrhotite.                                  |        |          |       |        |         |      | ļ        |
|             |          | 72.1-83.3 Massive non-porphyritic greenstone flow  |        |          |       |        |         |      | <u> </u> |
|             |          | with occasional quartz calcite stringers at 74.5,  | 08772F | 77.5     | 78.5  | 1.0    | 0.008   |      |          |
|             |          | 78,80.1 and 81.                                    |        |          |       |        |         |      |          |
|             |          | 83.3-83.9 Quartzitic chert flow contact with       |        |          |       |        |         |      | ]        |
| -           | <u> </u> | traces of secondary quartz.                        |        |          |       |        |         |      |          |
|             |          | 83.9-88.0 As 72.1-83.3 with some cherty bands      |        |          |       |        |         |      |          |
|             |          | 88.0-88.6 Quartz vein at low angle to core axis    | 08773F | 88       | 89    | 1.0    | 0.002   |      |          |
|             |          | 88.6-96.7 Massive greenstone flow as 72.1-83.3.    |        |          |       |        |         |      |          |
|             | <u> </u> | Probable flow contact chill at 96.7 with calcite   |        |          |       |        |         |      |          |
|             |          | stringers.                                         |        |          |       |        |         |      | <u> </u> |
|             |          | 96.7-100.7 As 72.1-83.3.                           |        |          |       |        |         |      |          |
|             |          | 100.7-100.9 Quartz vein at 70° to core axis.       | 08774F | 100.9    | 101.9 | 1.0    | 0.024   |      |          |
|             |          | Traces pyrrhotite and pyrite.                      |        |          |       |        |         |      |          |
| <del></del> |          | 100.9-102.4 As 72.1-83.3 Chilled flow contact wit  | h      |          |       |        |         |      |          |
|             |          | calcite stringers at 102.                          |        |          |       |        |         |      |          |
|             |          | 102.4-109.1 As 72.1-83.3 becoming lighter green in |        |          |       |        |         |      |          |
| ·····       |          | colour towards 109.                                |        |          |       |        |         |      |          |
|             |          | 109.1-110.2 Massive quartzitic chert. Trace pyrite |        |          |       |        |         |      |          |
|             |          | at 110.2.                                          |        |          |       |        |         |      |          |
|             |          |                                                    |        |          |       |        |         |      |          |

HOLE N2: 85-34 PAGE N2: 3 of 5

| FOOTAGE |          | DECORPTION                                          | SAMPLE   | F00   | TAGE     | LENGTH | Oz/tAu  |  |        |
|---------|----------|-----------------------------------------------------|----------|-------|----------|--------|---------|--|--------|
| from    | 10       | DESCRIPTION                                         | Nº:      | from  | to       | LENGTH | 02/ CAU |  |        |
| 2       | 300      | TUDOR VOLCANIC GROUP - Cont'd                       |          |       |          |        |         |  | $\neg$ |
|         |          | 110.2-124.0 Massive to weakly foliated medium       |          |       |          |        |         |  |        |
|         |          | green flow unit with fairly abundant calcite        |          |       |          |        |         |  |        |
|         |          | stringers. Becoming well schisted at 124. Traces    |          |       |          |        |         |  |        |
|         |          | of pyrite at 110.2-112.0. Heavy calcite stringer    |          |       |          |        |         |  |        |
|         |          | at 121.0.                                           |          |       |          |        |         |  |        |
|         |          | 124.0-127.3 Quartz vein parallel to schistosity     |          | _     |          |        |         |  | $\top$ |
|         |          | at 150 to core axis. Has silicified breccia along   | 08775F   | 124   | 126      | 2.0    | 0.002   |  |        |
|         |          | contacts. Repeated at 126-127.3 after short section |          | 126   | 127.3    | 1.3    | 0.002   |  | $\top$ |
|         |          | of country-rock. Includes carbonate at 127.         |          |       |          |        |         |  |        |
|         |          | 127.3-132.9 Weakly foliated greenstone flow with    |          |       |          |        |         |  |        |
|         |          | indistinct cleavage banding. Quartz carbonate       | 08777F   | 132.2 | 133.2    | 1.0    | 0.002   |  |        |
|         |          | segregations at 132.9.                              |          |       |          | ·      |         |  |        |
|         |          | 132.9-144.2 Weakly foliated greenstone flow with    |          |       |          |        |         |  |        |
|         |          | occasional carbonate in joints. 15% pyrrhotite at   |          |       |          |        |         |  |        |
|         |          | 140-141. Weak quartz veinlet at 20° to core axis    | 08778F   | 143   | 144      | 1.0    | 0.002   |  |        |
|         |          | at 143.2 with trace pyrrhotite.                     |          |       |          |        |         |  |        |
|         |          | 144.2-144.4 Quartz vein with sharp contacts         | 08779F   | 144   | 145      | 1.0    | 0.012   |  |        |
|         |          | normal to core axis. Trace tourmaline and marcasite |          |       |          |        |         |  |        |
|         |          | and trace of pyrite.                                |          |       | <u> </u> |        |         |  |        |
|         |          | 144.4-163.7 Massive fine grained greenstone flow    |          |       |          |        |         |  |        |
|         |          | with occasional calcite in joints., trace pyrrho-   |          |       |          |        |         |  |        |
|         |          | tite at 163. Carbonate segregation at 161.7.        | <u> </u> |       | <u> </u> |        |         |  |        |
|         |          | 163.7-164.2 Quartzitic chert flow contact at 45°    |          |       |          |        |         |  |        |
|         |          | to core axis.                                       |          |       |          |        |         |  |        |
|         |          | 164.2-167.0 Massive to weakly banded greenstone     |          |       |          |        |         |  |        |
|         | <u> </u> | flow.                                               |          |       |          |        |         |  |        |
|         |          | 167.0-176.6 Fine grained greenstone flow with       |          |       | <u> </u> |        |         |  |        |
|         |          | amygdules at 172.5 Quartz-pyrrhotite stringer       | 08780F   | 169.5 |          |        | 0.006   |  |        |
|         |          | 176.6-176.8 Quartz vein on flow contact chert       | 08781F   | 176.1 | 177.1    | 1.0    | 0.004   |  | $\bot$ |
|         | <u> </u> | 176.8-180.0 As 167.0-176.6                          |          |       |          |        |         |  |        |
|         | <u> </u> | 180.0-183.1 Quartz vein sub parallel to core axis   |          |       |          |        |         |  |        |
|         |          | with 10% pyrrhotite and trace carbonate             | 08782F   | 180.0 | 183.1    | 3.1    | 0.008   |  |        |
|         | i        | 183.1-192.8 Massive fine grained greenstone flow.   |          |       |          | 1      |         |  |        |

#### DIAMOND DRILL RECORD

HOLE NO: 85-34 PAGE Nº: 4 of 5

| FUUT | TAGE | DESCRIPTION                                        | SAMPLE | FOOTAGE |       | LENGTH | Oz/tAu  | ļ |   |   |
|------|------|----------------------------------------------------|--------|---------|-------|--------|---------|---|---|---|
| from | to   |                                                    |        | from    | to    | LENGIN | OZ/ CHO |   |   | 1 |
| 2    | 300  | TUDOR VOLCANIC GROUP - Cont'd                      |        |         |       |        |         |   |   |   |
|      |      | 192.8-195.0 Quartz vein with inclusions of         | 08783F | 192.8   | 195   | 2.2    | 0.002   |   |   |   |
|      |      | country-rock, 10% pyrrhotite & pyrite. Cherty      |        |         |       |        |         |   |   |   |
|      |      | flow contact at 195.                               |        |         |       |        |         |   |   |   |
|      |      | 195.0-202.6 Banded weakly calcareous tuffs with    |        | ]       |       |        |         |   |   |   |
|      |      | bedding laminations at 45° to core axis. Occasiona | 1      |         |       |        |         |   |   |   |
|      |      | cherty bands.                                      |        |         |       |        |         |   |   |   |
|      |      | 202.6-203.0 Greenstone flow(?)                     |        |         |       |        |         |   | - |   |
|      |      | 203.0-203.4 Quartz pyrrhotite veinlet parallels    |        |         |       |        |         |   |   |   |
|      |      | core axis                                          | 08784F | 202.7   | 203.7 | 1.0    | 0.002   |   |   |   |
|      |      | 203.4-204.7 As 202.0-203.0.                        |        |         |       |        |         |   |   |   |
|      | 2 2  | 204.7-204.8 Ouartz veinlet 70° to core axis        | 08785F | 204.2   | 205.2 | 1.0    | 0.002   |   |   |   |
|      |      | 204.8-207.0 Massive light to medium fine grained   |        |         |       |        |         |   |   |   |
|      |      | greenstone flow, weakly cleavage banded.           |        |         |       | ,      |         |   |   |   |
|      |      | 207.0-207.2 Quartz vein at 80° to core axis with   |        |         |       |        |         |   |   |   |
|      |      | trace pyrite paint and pyrrhotite blebs            | 08786F | 206.5   | 207.5 | 1.0    | 0.002   |   |   |   |
|      |      | 207.2-213.0 As 204.8-207.0.                        |        |         |       |        |         |   |   |   |
|      |      | 213.0-213.1 Quartz vein at 85° to core axis        | 08787F | 212.7   | 213.7 | 1.0    | 0.002   |   |   |   |
|      |      | 213.1-221.0 Massive to weakly banded greenstone    |        |         |       |        |         |   |   |   |
|      |      | flow. Traces epidote after stringer, calcite at    |        |         |       |        |         |   |   |   |
|      |      | 220.5                                              |        |         |       |        |         |   |   |   |
|      |      | 221.0-222.1 Two quartz veins, with intervening     |        |         |       |        |         |   |   |   |
|      |      | country-rock for 0.8 ft. Trace pyrite, trace       | 08788F | 221.0   | 222.1 | 1.1    | 0.002   |   |   |   |
|      |      | marcasite.                                         |        |         |       |        |         |   |   |   |
|      |      | 222.1-231.1 As 213.1-221.0.                        |        |         |       |        |         |   |   |   |
|      |      | 231.0-231.1 Quartz veinlet                         | 08789F | 230.8   | 231.8 | 1.0    | 0.002   |   |   |   |
|      |      | 231.1-233.3 As 213.1-221.0                         |        |         |       |        |         |   |   |   |
|      |      | 233.3-233.7 Quartzitic chert flow contact banded   |        |         |       |        |         |   |   |   |
|      |      | at 45° to core axis.                               | 1      |         |       |        |         |   |   |   |
|      |      | 233.7-244.0 Massive fine grained greenstone flow,  |        |         |       |        |         |   |   |   |
|      |      | includes quartz stringer with epidote selvage at   |        |         |       |        |         |   |   | Г |
|      |      | 239. (negligible mineralization)                   |        |         |       |        |         |   |   |   |
|      |      | 244.0-245.0 Quartz-carbonate vein at 30° to core   | 09700E | 244     | 245   | 1.0    | 0.002   |   |   | Г |
|      | 1    | axis.                                              | T      | 244     | 443   | 1 + 1  |         |   |   |   |

#### DIAMOND DRILL RECORD

HOLE NE: 85-34

PAGE Nº:

| F001 | TAGE                                              | DESCRIPTION                                        | SAMPLE   | F001     | TAGE     | LENGTH   |        | } | 1            |
|------|---------------------------------------------------|----------------------------------------------------|----------|----------|----------|----------|--------|---|--------------|
| from | to                                                | DESCRIPTION                                        | Nº:      | from     | to       | LENGTH   | Oz/tAu |   |              |
| 2    | 300                                               | TUDOR VOLCANIC GROUP - Cont'd                      |          |          |          |          |        |   | 1            |
|      |                                                   | 245.0-251.2 As 233.7-244.0 with calcite joint      |          |          |          |          |        |   | 1            |
|      |                                                   | fillings.                                          |          |          |          |          |        |   |              |
|      |                                                   | 251.2-252.2 Two cherty flow contacts separated by  |          |          |          |          |        |   | T            |
|      |                                                   | the greenstone flow                                |          |          |          |          |        |   |              |
|      |                                                   | 252.2-254.3                                        |          |          |          |          |        |   |              |
|      |                                                   | 254.3-254.4 Quartz veinlet normal to core axis.    | 08794F   | 254      | 255      | 1.0      | 0.380  |   |              |
|      |                                                   | Sharp contacts.                                    |          |          |          |          |        |   |              |
|      | <u> </u>                                          | 254.4-260.0 Weakly schisted greenstone flow with   |          | <u> </u> |          |          |        |   |              |
|      | <u></u>                                           | traces of sulphides.                               |          | <u> </u> |          |          |        |   |              |
|      |                                                   | 260.0-260.7 Quartz carbonate stringer with tour-   | 08791F   | 259.7    | 260.7    | 1.0      | 0.006  |   | <u> </u>     |
|      |                                                   | maline (?).                                        |          |          |          | <u> </u> |        |   | _            |
|      |                                                   | 260.7-266.5 Massive to weakly schisted greenstone  | 08792F   | 266      | 267      | 1.0      | 0.002  |   | _            |
|      | with 5% disseminated pyrrhotite                   |                                                    |          |          |          |          |        |   |              |
|      | 266.5-266.6 Quartz veinlet with sharp contacts at |                                                    | <u> </u> |          |          |          |        | _ |              |
|      | 75° to core axis.                                 |                                                    |          |          |          |          |        |   |              |
| ·    |                                                   | 266.6-269.4 As 260.7-266.5.                        |          | <u> </u> |          |          |        |   |              |
|      |                                                   | 269.4-270.0 Two sulphide rich quartz veinlets      | 08793F   | 269.2    | 270.2    | 1.0      | 0.002  |   |              |
|      |                                                   | with sharp contacts at 75° to core axis.           |          |          |          |          |        |   |              |
|      |                                                   | 270.0-277.0 As 260.7-266.5.                        | <u></u>  | <u> </u> |          |          |        |   |              |
|      |                                                   | 277.0-278.7 Well foliated and calcite stringered   |          |          |          |          |        |   |              |
|      |                                                   | dike or flow contact or both. Quartzitic chert     |          |          |          |          |        |   |              |
|      |                                                   | at 278.7.                                          |          |          | <u> </u> |          |        |   | <u> </u>     |
|      |                                                   | 278.7-279.2 Greenstone flow as 277.0-278.7         |          |          |          |          |        |   | <br><u> </u> |
|      |                                                   | 279.2-279.3 Fault gauge and quartz pyrrhotite      |          | <u> </u> |          |          |        |   | <br><u> </u> |
|      |                                                   | mineralization, parallel to schistosity.           |          |          |          |          |        |   |              |
|      |                                                   | 279.3-279.7 Greenstone flow, moderate foliation.   |          |          |          |          |        |   |              |
|      |                                                   | 279.7-280.0 Quartzitic chert flow contact at 45°   |          |          |          |          |        |   |              |
|      |                                                   | to core axis.                                      |          |          |          |          |        |   |              |
| ···  | <u> </u>                                          | 280.0-283.0 Well stringered weakly foliated green- | <u> </u> |          | <u> </u> |          |        |   |              |
|      |                                                   | stone flow.                                        |          |          | <u> </u> |          |        |   |              |
|      | <u> </u>                                          | 283.0-283.1 As 279.7-280.0 at 40° to core axis.    |          |          |          |          |        |   |              |
|      |                                                   | 283.1-300.0 Massive to weakly schisted greenstone  |          |          |          |          |        |   |              |
|      |                                                   | flow with occasional minor quartz carbonate        |          |          |          |          |        |   |              |
|      |                                                   | segregations.                                      |          |          |          |          |        |   |              |

| Project | Name |  |
|---------|------|--|
| roject  | Name |  |

|                            |                         |                                           |                   |                 |                             | <del>,</del>  |                   |
|----------------------------|-------------------------|-------------------------------------------|-------------------|-----------------|-----------------------------|---------------|-------------------|
| Assay<br>Tag No.           | р.р.н.                  | Footage                                   | Width             |                 | Au<br>oz./ton               | Ag<br>oz./ton | Bi ppo            |
| 08501F<br>08502F<br>08503F | 85-21<br>85-21<br>85-21 | 102.8-103.8<br>103.8-104.8<br>104.8-105.8 | 1.0<br>1.0<br>1.0 | )<br>)V.G.<br>) | < 0.002<br>0.088<br>< 0.002 |               | 0.3<br>4.2<br>0.3 |
| 08504F                     | 85 <b>-21</b>           | 107.5-108.5                               | 1.0               | (               | < 0.002                     |               | 0.1               |
| 08505F                     | 85-21                   | 120.5-121.5                               | 1.0               |                 | < 0.002                     |               | 0.1               |
| 08506F                     | 85-21                   | 124.3-125.3                               | 1.0               |                 | < 0.002                     |               | 0.1               |
| 08507F                     | 85-21                   | 154.3-156.2                               | 1.9               |                 | ∠0.002                      |               | 0.5               |
| 08508F                     | 85-21                   | 162.0-163.0                               | 1.0               | İ               | < 0.002                     |               | 0.3               |
| 08509F                     | 85-21                   | 188.5-189.5                               | 1.0               | )               | 0.008                       |               | -0.5              |
| 08510F<br>08511F           | 85-21<br>85-21          | 189.5-191.0<br>191.0-192.0                | 1.5               | )V.G.           | 0.200<br>0.012              |               | 19.0<br>1.0       |
|                            |                         |                                           |                   |                 |                             |               |                   |
|                            |                         |                                           |                   |                 |                             |               |                   |
|                            |                         |                                           |                   |                 |                             |               |                   |
|                            |                         |                                           |                   |                 |                             |               |                   |
|                            |                         |                                           |                   |                 |                             |               |                   |
|                            |                         |                                           |                   |                 |                             |               |                   |
|                            |                         |                                           | }                 |                 | 1                           |               |                   |
|                            |                         |                                           |                   |                 |                             |               | !                 |
|                            |                         |                                           |                   |                 |                             |               |                   |
|                            |                         |                                           |                   |                 |                             |               |                   |
|                            |                         |                                           |                   |                 |                             |               |                   |
|                            |                         |                                           |                   |                 |                             |               |                   |
|                            |                         |                                           |                   |                 |                             |               |                   |
|                            |                         |                                           |                   |                 |                             |               |                   |
|                            |                         |                                           |                   |                 |                             |               |                   |
|                            |                         |                                           |                   |                 |                             |               |                   |
|                            |                         |                                           |                   |                 |                             |               |                   |
|                            |                         |                                           |                   |                 |                             |               |                   |
|                            |                         |                                           |                   |                 |                             |               |                   |
|                            |                         |                                           |                   |                 |                             |               |                   |
|                            |                         |                                           |                   |                 |                             |               |                   |

| Assay Tug No. D.D.II. Foctage Width                                                                  | •                | Project Name | BANNOCKBUR  | N, NORTHEAS | T AREA Mont            | h Sept.    | Year 85.      |
|------------------------------------------------------------------------------------------------------|------------------|--------------|-------------|-------------|------------------------|------------|---------------|
| 08513F 85-22 153.0-155.0 2.0 40.003 0.003 0.003 0.003 0.001 0.012 08515F 85-22 275.6-276.6 1.0 0.012 | Assay<br>Tag No. | D.D.H.       | Footage     | Width       |                        |            | Ag<br>oz./ton |
| 08513F 85-22 153.0-155.0 2.0 40.003 0.003 0.003 0.003 0.001 0.012 08515F 85-22 275.6-276.6 1.0 0.012 | 08512F           | 85-22        | 144.7-145.7 | 1.0         | 0.2 ft. Pyritic quarta | 0.556      |               |
| 08514F 85-22 275.6-276.6 1.0 0.003 0.012 85-22 294.8-295.8 1.0                                       |                  | ( 1          |             | l .         |                        | 1          |               |
| 0.012 85-22 294.8-295.8 1.0 0.012                                                                    |                  | J j          |             | 1           |                        | 0.003      |               |
|                                                                                                      |                  | i l          |             |             |                        | 0.012      |               |
|                                                                                                      | ••••             |              |             |             |                        |            |               |
|                                                                                                      |                  |              |             |             |                        |            |               |
|                                                                                                      |                  |              |             |             |                        |            |               |
|                                                                                                      |                  |              | -           |             |                        |            |               |
|                                                                                                      |                  |              |             |             |                        |            |               |
|                                                                                                      |                  |              |             |             |                        |            |               |
|                                                                                                      |                  |              |             |             |                        |            |               |
|                                                                                                      |                  |              |             |             |                        |            |               |
|                                                                                                      |                  |              |             |             |                        |            |               |
|                                                                                                      |                  |              |             |             |                        |            |               |
|                                                                                                      |                  |              |             |             |                        |            |               |
|                                                                                                      |                  |              |             |             |                        |            |               |
|                                                                                                      | •                |              |             |             |                        |            |               |
|                                                                                                      |                  |              |             |             |                        |            |               |
|                                                                                                      |                  |              |             |             |                        |            |               |
|                                                                                                      |                  |              |             |             |                        | <b>.</b> . |               |
|                                                                                                      |                  |              |             | ļ           |                        |            |               |
|                                                                                                      | •                |              |             |             |                        |            |               |
|                                                                                                      |                  |              |             |             |                        |            |               |
|                                                                                                      |                  | j            |             |             |                        |            |               |
|                                                                                                      |                  |              |             |             |                        |            |               |
|                                                                                                      |                  |              |             |             |                        |            |               |
|                                                                                                      |                  |              |             |             |                        |            |               |
|                                                                                                      |                  |              |             |             |                        |            |               |
|                                                                                                      |                  |              |             |             |                        |            |               |
|                                                                                                      |                  | }            |             |             |                        |            |               |
|                                                                                                      |                  |              |             |             |                        | Ì          |               |
|                                                                                                      |                  |              |             |             | ·                      |            |               |
|                                                                                                      |                  |              |             |             |                        |            |               |
|                                                                                                      | 16               |              |             |             |                        |            |               |
|                                                                                                      |                  |              |             |             |                        |            |               |
|                                                                                                      |                  |              |             |             |                        |            |               |
|                                                                                                      |                  |              |             |             |                        |            |               |
|                                                                                                      |                  |              |             |             |                        |            |               |
|                                                                                                      |                  |              |             |             |                        | <b>.</b>   |               |
|                                                                                                      |                  |              |             |             | :                      |            |               |
|                                                                                                      |                  |              |             |             |                        |            |               |
|                                                                                                      |                  |              |             |             |                        |            |               |
|                                                                                                      |                  |              | ,           |             |                        | )          |               |

| Assay<br>Tag No.           | D.D.H.                  | Footage                                   | Width                   |       | Au<br>oz./ton              | Ag<br>oz./ton |
|----------------------------|-------------------------|-------------------------------------------|-------------------------|-------|----------------------------|---------------|
| 08516F                     | 85-23                   | 3.5-4.5                                   | 1.0                     |       | < 0.003                    |               |
| 08517F                     | 85-23                   | 48.0-49.0                                 | 1.0                     | ,     | <sup>4</sup> 0.003         |               |
| 08518F<br>08519F<br>08520F | 85-23<br>85-23<br>85-23 | 59.4-60.4<br>60.4-61.4<br>61.4-62.4       | ) 1.0<br>) 1.0<br>) 1.0 |       | <0.003<br><0.003<br><0.003 | ·             |
| 08521F                     | 85-23                   | 104.0-105.0                               | 1.0                     |       | < 0.003                    |               |
| 08522F                     | 85-23                   | 126.0-127.0                               | 1.0                     |       | < 0.003                    |               |
| 08523F                     | 85-23                   | 162.7-163.7                               | 1.0                     |       | <0.003                     |               |
| 08524F                     | 85-23                   | 183.2-184.2                               | 1.0                     | ·     | 0.003                      |               |
| 08525F                     | 85-23                   | 195.5-197.0                               | 1.5                     | . * . | 0.003                      |               |
| 08526F                     | 85–23                   | 219.0-221.0                               | 2.0                     |       | 0.003                      |               |
| 08527F                     | 85-23                   | 228.0-229.0                               | 1.0                     |       | < 0.003                    |               |
| 08528F                     | 85–23                   | 253.0-254.0                               | 1.0                     |       | 0.098                      |               |
| 08529F                     | 85–23                   | 275.2-276.8                               | 1.6                     |       | 0.005                      |               |
| 08530F                     | 85–23                   | 297.2-298.2                               | 1.0                     |       | < 0.003                    |               |
| 08531F                     | 85–23                   | 314.0-315.0                               | 1.0                     |       | < 0.003                    |               |
| 08532F<br>08533F<br>08534F | 85-23<br>85-23<br>85-23 | 371.3-372.3<br>372.3-373.3<br>373.3-374.3 | ) 1.0<br>) 1.0<br>) 1.0 |       | <0.003<br><0.003<br>0.003  |               |
| 08535F                     | 85-23                   | 424.0-425.6                               | 1.6                     |       | 0.003                      |               |
|                            |                         |                                           |                         |       |                            |               |
|                            |                         |                                           |                         |       |                            |               |

| • |  |
|---|--|
| • |  |

|                  | •              |                            |            |     |                  |               |  |
|------------------|----------------|----------------------------|------------|-----|------------------|---------------|--|
| Assay<br>Tag No. | D.D.H.         | Footage                    | Width      |     | Au<br>oz./ton    | Ag<br>oz./ton |  |
| 005267           | 85-24          | 6.2-7.2                    | 1.0        |     | <0.003           |               |  |
| 08536F<br>08537F | 85-24          | 35.0-36.0                  | 1.0        |     | <0.003           |               |  |
| 08537F<br>08538F | 85-24          | 47.5-48.5                  | ) 1.0      |     | <0.003           |               |  |
| 08539F           | 85-24          | 48.5-49.5                  | ) 1.0      |     | < 0.003          |               |  |
| 08540F           | 85-24          | 49.5-50.5                  | ) 1.0      |     | <0.003           |               |  |
| 08541F           | 85-24          | 97.0-98.0                  | 1.0        |     | <0.003           |               |  |
| 08542F           | 85–24          | 101.2-102.5                | 1.3        | ·   | <0.003           |               |  |
| 08543F           | 85-24          | 114.0-115.0                | 1.0        |     | <0.003           |               |  |
| 085ffF           | 85-24          | 147.0-149.1                | 2.1        |     | <0.003<br><0.003 |               |  |
| 08545F           | 85-24          | 156.4-157.4                | 1.0        |     | < 0.003          |               |  |
| 08546F           | 85-24          | 187.3-188.3                | 1.0        |     | < 0.003          |               |  |
| 08547F           | 85-24          | 197.5-198.5                | 1.0        |     | 0.208            | ,             |  |
| 08548F           | 85-24          | 224.7-226.7                | 2.0<br>1.0 |     | 0.003            |               |  |
| 08549F           | 85-24<br>85-24 | 273.0-274.0<br>280.0-282.3 | 1.3        |     | <0.003           |               |  |
| 08550F<br>08551F | 85-24<br>85-24 | 301.0-302.0                | 1.0        |     | < 0.003          |               |  |
| 0655.11          | 65-24          | 301.0-302.0                | 1.0        |     |                  |               |  |
|                  |                |                            |            |     |                  | ·             |  |
|                  |                |                            |            |     | }                |               |  |
|                  | ·              |                            |            |     |                  | '             |  |
|                  |                |                            |            | ,   |                  |               |  |
|                  |                |                            |            |     |                  |               |  |
|                  |                |                            |            |     |                  |               |  |
|                  |                |                            |            |     |                  |               |  |
|                  |                |                            |            |     |                  |               |  |
|                  |                | i                          |            |     |                  |               |  |
|                  |                |                            |            |     |                  |               |  |
|                  |                |                            |            |     |                  |               |  |
|                  |                |                            |            |     |                  |               |  |
|                  |                |                            |            |     |                  |               |  |
|                  |                |                            |            |     |                  |               |  |
|                  |                |                            |            | * . | ,                |               |  |
|                  |                |                            |            |     |                  |               |  |
|                  |                |                            |            |     | ·                |               |  |
|                  |                |                            |            |     |                  |               |  |
|                  |                |                            |            |     | ·                |               |  |
|                  |                |                            |            |     |                  |               |  |
|                  |                |                            |            |     |                  |               |  |
|                  | _              |                            |            |     |                  |               |  |
|                  |                |                            |            |     |                  |               |  |
|                  |                |                            |            |     |                  |               |  |
|                  |                |                            |            |     |                  |               |  |
|                  |                |                            |            |     |                  |               |  |
|                  |                |                            |            |     |                  |               |  |
| ŀ                | ·              |                            |            |     |                  | ļ             |  |
|                  |                |                            |            |     |                  |               |  |

|                  |                |                            | <del></del>    | <u> </u> |               | <del></del>   |
|------------------|----------------|----------------------------|----------------|----------|---------------|---------------|
| Assay<br>Tag No. | D.D.H.         | Footage                    | Width          |          | Au<br>oz./ton | Ag<br>oz./ton |
|                  |                |                            |                |          |               |               |
| 08552F           | 85-25          | 36.0-38.0                  | 2.0            |          | <0.003        |               |
| 08553F           | 85–25          | 40.8-41.8                  | 1.0            |          | <0.003        | 1             |
| 08554F           | 85–25          | 76.2-77.2                  | 1.0            |          | <.0.003       |               |
| 08555F           | 85–25          | 79.0-80.0                  | 1.0            |          | <0.003        |               |
| 08556F           | 85-25          | 87.0-88.0                  | 1.0            |          | < 0.003       |               |
| 08557F           | 85–25          | 93.0-101.0                 | 9.0            |          | < 0.003       |               |
| 08558F           | 85–25          | 131.5-132.5                | 1.0            |          | < 0.003       |               |
| 08559F           | 85–25          | 137.5-138.5                | 1.0            |          | < 0.003       | 1             |
| 08566F           | 85-25          | 140.0-141.0                | 1.0            |          | < 0.002       |               |
| 08560F           | 85–25          | 147.0-148.0                | 1.0            |          | < 0.003       |               |
| 08561F           | 85–25          | 149.8-150.8                | 1.0            |          | < 0.002       | 1.            |
| 08562F           | 85-25          | 152.0-153.0                | 1.0            |          | < 0.002       |               |
| 08563F           | 85–25          | 164.0-166.0                | 2.0            |          | 0.002         |               |
| 08564F<br>08565F | 85-25<br>85-25 | 191.2-192.2<br>192.2-193.2 | ) 1.0<br>) 1.0 |          | 0.038         |               |
| 003031           | 03 23          |                            |                |          |               |               |
| 08567F           | 85-25          | 215.3-216.3                | 1.0            |          | <0.002        |               |
| 08568F           | 85-25          | 266.0-267.2                | 1.2            |          | < 0.002       |               |
| 08569F           | 85-25          | 283.5-284.5                | 1.0            |          | <0.002        |               |
| 08570F           | 85-25          | 288.9-289.9                | 1.0            |          | 40.002        |               |
| 08571F           | 85-25          | 315.0-317.0                | 2.0            |          | 0.002         |               |
| 08572F           | 85–25          | 321.5-324.0                | 2.5            |          | 0.002         |               |
|                  |                |                            |                |          |               |               |
|                  |                |                            |                |          |               |               |
|                  | ļ              |                            |                |          |               |               |
|                  |                |                            |                |          |               |               |
|                  |                |                            |                |          |               |               |
|                  |                |                            |                |          | 1             |               |
|                  |                |                            |                |          |               |               |
|                  |                |                            |                |          |               |               |
|                  |                |                            |                |          |               |               |
|                  |                |                            |                |          |               |               |
|                  |                |                            |                |          | ,             |               |
|                  |                |                            |                |          | ·.            |               |
|                  |                |                            |                |          |               |               |
|                  |                |                            |                |          |               |               |
|                  |                |                            |                |          |               |               |
|                  |                |                            |                |          |               |               |
|                  |                |                            |                |          |               |               |
| Į.               |                |                            |                |          |               |               |
|                  |                |                            |                |          |               | . ,           |
| 1                |                |                            | ,              |          |               |               |
| Į.               |                |                            |                |          |               |               |
|                  |                |                            |                |          |               |               |
| 1                | l              | I                          | 1              |          | 1             | I I           |

|                |                                                                                                                                                                |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                   | _                                     |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| D.D.H.         | Footage                                                                                                                                                        | Width             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Au<br>oz./ton                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ag oz./ton Bi                                                                                                     | ppm                                   |
| 85-26<br>85-26 | 18.0-19.0<br>19.0-20.0                                                                                                                                         | 1.0<br>1.0        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <0.002<br><0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                   |                                       |
| 1              | 43.4-44.4                                                                                                                                                      | 1.0               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 0.030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                   |                                       |
|                |                                                                                                                                                                | 1.0               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                   |                                       |
|                | 58.5-59.5                                                                                                                                                      | 1.0               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                   |                                       |
| 85-26          | 61.0-62.5                                                                                                                                                      | 1.5               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                   |                                       |
| 85–26<br>85–26 | 65.0-66.0<br>66.0-67.0                                                                                                                                         | 1.0<br>1.0<br>1.0 | )<br>) v.g.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4 0.002<br>1.172<br>0.042                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9                                                                                                                 | 9                                     |
|                |                                                                                                                                                                | 1.0               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ,                                                                                                                 |                                       |
|                |                                                                                                                                                                | 1.8               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                   |                                       |
| Į.             |                                                                                                                                                                | 1.5               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                   |                                       |
| i '            |                                                                                                                                                                | 1.0               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                   |                                       |
| 85–26          | 200.0-202.0                                                                                                                                                    | 2.0               | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                   |                                       |
| 85–26          | 202.0-205.0                                                                                                                                                    |                   | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                   |                                       |
| 85-26          |                                                                                                                                                                | 1                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                   |                                       |
| 85–26          |                                                                                                                                                                |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                   |                                       |
| 85-26          |                                                                                                                                                                |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ì                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                   |                                       |
| 85–26          |                                                                                                                                                                |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                   |                                       |
| 85–26          | 279.0-280.5                                                                                                                                                    | 1.0               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                   |                                       |
|                |                                                                                                                                                                |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                   |                                       |
|                | 85-26<br>85-26<br>85-26<br>85-26<br>85-26<br>85-26<br>85-26<br>85-26<br>85-26<br>85-26<br>85-26<br>85-26<br>85-26<br>85-26<br>85-26<br>85-26<br>85-26<br>85-26 | 85-26             | 85-26       18.0-19.0       1.0         85-26       19.0-20.0       1.0         85-26       43.4-44.4       1.0         85-26       51.5-52.5       1.0         85-26       58.5-59.5       1.0         85-26       65.0-66.0       1.0         85-26       65.0-66.0       1.0         85-26       65.0-68.0       1.0         85-26       87.7-88.7       1.0         85-26       87.7-88.7       1.0         85-26       134.4-136.2       1.8         85-26       156.7-157.7       1.0         85-26       200.0-202.0       2.0         85-26       202.0-205.0       3.0         85-26       209.0-210.0       1.0         85-26       210.5-211.5       1.0         85-26       248.5-250.5       2.0         85-26       257.0-258.0       1.0 | 85-26       18.0-19.0       1.0         85-26       19.0-20.0       1.0         85-26       43.4-44.4       1.0         85-26       51.5-52.5       1.0         85-26       58.5-59.5       1.0         85-26       61.0-62.5       1.5         85-26       65.0-66.0       1.0         85-26       66.0-67.0       1.0         85-26       67.0-68.0       1.0         85-26       87.7-88.7       1.0         85-26       134.4-136.2       1.8         85.26       147.5-149.0       1.5         85-26       200.0-202.0       2.0         85-26       202.0-205.0       3.0         85-26       209.0-210.0       1.0         85-26       210.5-211.5       1.0         85-26       248.5-250.5       2.0         85-26       257.0-258.0       1.0 | D.D.H.         Footage         Width         oz./ton           85-26         18.0-19.0         1.0         <0.002 | B.   B.   B.   B.   B.   B.   B.   B. |

| Assay<br>Tag No. | D.D.H.         | Footage                  | Width |             | Au<br>oz./ton | Ag<br>oz./ton | Bi pp |
|------------------|----------------|--------------------------|-------|-------------|---------------|---------------|-------|
|                  |                | 4 - 4                    | 3.0   |             | < 0.002       |               |       |
| 8583F            | 85-27          | 13.4-14.4                | 1.0   |             | < 0.002       |               |       |
| 8591F            | 85-27          | 16.4-17.4                | 1.0   |             | < 0.002       |               |       |
| 8592F            | 85–27          | 45.8-50.8                | 1.0   |             | < 0.002       |               |       |
| 8593F            | 85-27          | 63.4-64.4                | 1.0   | 1160 ppm Cu | 0.042         |               |       |
| 8594F            | 85–27<br>85–27 | 76.8-79.0<br>138.0-139.0 | 1.0   |             | < 0.002       |               |       |
| 8595F<br>8596F   | 85-27<br>85-27 | 174.0-175.0              | 1.0   |             | -0.002        |               |       |
| 8596F<br>8597F   | 85-27          | 202.0-203.0              | 1.0   | , .         | <0.002        |               |       |
| 8597F<br>8598F   | 85 <b>–</b> 27 | 208.5-209.5              | 1.0   | V.G.        | 0.156         |               | 4.    |
| 8599F            | 85-27          | 211.0-212.0              | 1.0   |             | 0.022         |               |       |
| 8600F            | 85-27<br>85-27 | 213.9-214.9              | 1.0   |             | 0.248         |               |       |
| 8600F            | 85 <b>–</b> 27 | 245.7-246.7              | 1.0   |             | 0.006         |               |       |
| 8602F            | 85-27          | 249.5-250.5              | 1.0   | •           | < 0.002       |               |       |
| 8603F            | 85 <b>-</b> 27 | 255.8-256.8              | 1.0   | V.G.        | 0.731         |               | 30.   |
| 8604F            | 85–27          | 259.0-260.0              | 1.0   | V.G.        | 0.304         |               | 14.   |
| 8605F            | 85–27          | 267.1-268.1              | 1.0   |             | 0.014         |               |       |
|                  |                |                          |       |             |               |               |       |
| ļ                |                |                          |       |             |               | ,             |       |
| }                |                |                          |       | •,          |               | <b>1</b>      |       |
| ,                |                |                          |       |             |               |               |       |
| •                |                |                          |       |             |               |               |       |
|                  |                |                          |       |             |               |               |       |
|                  |                |                          |       |             |               |               |       |
|                  |                |                          |       |             |               |               |       |
|                  |                |                          |       |             |               |               |       |
|                  |                |                          |       |             |               |               |       |
|                  |                |                          |       |             |               |               |       |
|                  |                |                          |       |             |               | ,             |       |
|                  |                |                          |       |             | -             |               |       |
|                  |                |                          |       |             |               |               |       |
|                  |                |                          |       |             |               |               |       |
|                  |                |                          |       | P           |               |               |       |
|                  |                |                          |       |             |               | ļ             |       |
|                  | 1              |                          |       |             |               | 1             |       |
|                  |                |                          |       |             |               |               |       |
|                  |                |                          |       |             |               |               |       |
|                  |                |                          |       |             |               | ļ             |       |
| *                |                |                          |       |             |               |               |       |
| I                |                |                          |       |             |               |               | 1     |



| D.D.H.                                  | Footage                                                              | Width                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Au<br>oz./ton                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ag<br>oz./ton                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                              |
|-----------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| 05 20                                   | 2 7_2 7                                                              | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                              |
| ĺ                                       |                                                                      | ŀ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                              |
|                                         |                                                                      | ļ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                              |
| { · · · · · · · · · · · · · · · · · · · |                                                                      | ľ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                              |
| 1                                       |                                                                      | Í                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                              |
|                                         |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                              |
|                                         |                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | l                                            |
|                                         |                                                                      | ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                              |
| i                                       |                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>)</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>.</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                              |
| 85–28                                   | 95.0-96.0                                                            | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                              |
|                                         |                                                                      | İ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                              |
|                                         |                                                                      | Ì                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                              |
| •                                       |                                                                      | }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                              |
| 1 .                                     |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                              |
| ]                                       |                                                                      | l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ł                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                              |
| ! I                                     |                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                              |
|                                         |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                              |
| 1                                       |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | l .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                              |
| 1 1                                     |                                                                      | ł                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                              |
| 1 1                                     |                                                                      | }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                              |
| 4 1                                     |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | į.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                              |
|                                         |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                              |
|                                         | 85-28<br>85-28<br>85-28<br>85-28<br>85-28<br>85-28<br>85-28<br>85-28 | 85-28       2.7-3.7         85-28       14.0-15.0         85-28       47.5-48.5         85-28       64.1-65.1         85-28       68.5-69.5         85-28       70.7-71.7         85-28       77.5-79.0         85-28       93.9-95.0         85-28       93.9-95.0         85-28       95.0-96.0         85-28       147.0-149.0         85-28       190.3-191.3         85-28       212.5-213.5         85-28       219.0-220.0         85-28       222.3-223.3         85-28       251.8-253.3         85-28       265.3-266.3         85-28       269.1-270.1         85-28       290.4-291.4         85-28       302.5-303.5 | 85-28       2.7-3.7       1.0         85-28       14.0-15.0       1.0         85-28       47.5-48.5       1.0         85-28       64.1-65.1       1.0         85-28       68.5-69.5       1.0         85-28       70.7-71.7       1.0         85-28       77.5-79.0       1.5         85-28       93.9-95.0       1.1         85-28       93.9-95.0       1.0         85-28       95.0-96.0       1.0         85-28       147.0-149.0       2.0         85-28       203.5-204.7       1.2         85-28       212.5-213.5       1.0         85-28       219.0-220.0       1.0         85-28       222.3-223.3       1.0         85-28       265.3-266.3       1.0         85-28       269.1-270.1       1.0         85-28       269.1-270.1       1.0         85-28       290.4-291.4       1.0         85-28       302.5-303.5       1.0 | 85-28       2.7-3.7       1.0         85-28       14.0-15.0       1.0         85-28       47.5-48.5       1.0         85-28       64.1-65.1       1.0         85-28       68.5-69.5       1.0         85-28       70.7-71.7       1.0         85-28       77.5-79.0       1.5         85-28       86.5-87.5       1.0         85-28       93.9-95.0       1.1         85-28       95.0-96.0       1.0         85-28       147.0-149.0       2.0         85-28       190.3-191.3       1.0         85-28       203.5-204.7       1.2         85-28       212.5-213.5       1.0         85-28       219.0-220.0       1.0         85-28       222.3-223.3       1.0         85-28       251.8-253.3       1.5         85-28       265.3-266.3       1.0         85-28       269.1-270.1       1.0         85-28       290.4-291.4       1.0         85-28       302.5-303.5       1.0 | D.D.H.         Footage         Width         oz./ton           85-28         2.7-3.7         1.0         0.002           85-28         14.0-15.0         1.0         0.016           85-28         47.5-48.5         1.0         0.010           85-28         64.1-65.1         1.0         0.002           85-28         68.5-69.5         1.0         0.010           85-28         70.7-71.7         1.0         0.002           85-28         77.5-79.0         1.5         0.002           85-28         86.5-87.5         1.0         0.002           85-28         93.9-95.0         1.1         )         0.002           85-28         95.0-96.0         1.0         )         0.002           85-28         147.0-149.0         2.0         0.058           85-28         190.3-191.3         1.0          0.002           85-28         212.5-213.5         1.0          0.002           85-28         212.5-213.5         1.0          0.002           85-28         222.3-223.3         1.0          0.002           85-28         251.8-253.3         1.5          0.3 | B.D.H.   Footage   Width   Oz./ton   Oz./ton |

| NOCKBURN, | NORTHEAST | AREA | Month SEPT. | Ye |
|-----------|-----------|------|-------------|----|
|           |           |      |             |    |

| Assay   Tag No.   D.B.   Fostage   Width   Assay   Oz./ton   Oz./ton                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                |        | · · · · · · · · · · · · · · · · · · · |       |     |           |   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------|---------------------------------------|-------|-----|-----------|---|
| 08629F       85-29       18.5-19.5       1.0       < 0.002         08630F       85-29       46.0-47.0       1.0       < 0.002         08631F       85-29       48.5-49.5       1.0       < 0.002         08632F       85-29       568.0-69.0       1.0       < 0.002         08633F       85-29       128.3-129.8       1.0       < 0.002         08634F       85-29       139.8-140.8       1.0       < 0.002         08635F       85-29       167.2-168.2       1.0       < 0.002         08636F       85-29       167.5-168.5       1.0       < 0.002         08637F       85-29       186.0-187.0       1.0       0.008         08638F       85-29       194.5-195.5       1.0       < 0.002         08639F       85-29       203.0-204.0       1.0       < 0.002         08640F       85-29       218.0-219.0       1.0       < 0.002         08641F       85-29       267.5-268.5       1.0       < 0.002         08643F       85-29       277.3-278.3       1.0       < 0.002         08644F       85-29       300.3-301.3       1.0       < 0.002 |                                                                                                                | D.D.H. | Footage                               | Width | . , |           |   |
| 08629F       85-29       18.5-19.5       1.0       < 0.002         08630F       85-29       46.0-47.0       1.0       < 0.002         08631F       85-29       48.5-49.5       1.0       < 0.002         08632F       85-29       568.0-69.0       1.0       < 0.002         08633F       85-29       128.3-129.8       1.0       < 0.002         08634F       85-29       139.8-140.8       1.0       < 0.002         08635F       85-29       167.2-168.2       1.0       < 0.002         08636F       85-29       167.5-168.5       1.0       < 0.002         08637F       85-29       186.0-187.0       1.0       0.008         08638F       85-29       194.5-195.5       1.0       < 0.002         08639F       85-29       203.0-204.0       1.0       < 0.002         08640F       85-29       218.0-219.0       1.0       < 0.002         08641F       85-29       267.5-268.5       1.0       < 0.002         08643F       85-29       277.3-278.3       1.0       < 0.002         08644F       85-29       300.3-301.3       1.0       < 0.002 |                                                                                                                | 05.00  | 2040                                  |       |     | . 0 . 002 |   |
| 08630F       85-29       46.0-47.0       1.0       <0.002         08631F       85-29       48.5-49.5       1.0       <0.002         08632F       85-29       568.0-69.0       1.0       <0.002         08633F       85-29       128.3-129.8       1.0       <0.002         08634F       85-29       139.8-140.8       1.0       <0.002         08635F       85-29       167.2-168.2       1.0       <0.002         08636F       85-29       167.5-168.5       1.0       <0.002         08637F       85-29       186.0-187.0       1.0       0.008         08638F       85-29       194.5-195.5       1.0       <0.002         08639F       85-29       203.0-204.0       1.0       <0.002         08640F       85-29       218.0-219.0       1.0       <0.002         08641F       85-29       249.0-250.0       1.0       <0.002         08642F       85-29       267.5-268.5       1.0       <0.002         08643F       85-29       277.3-278.3       1.0       <0.002         08644F       85-29       300.3-301.3       1.0       <0.002             |                                                                                                                |        | 1                                     | ł     |     |           |   |
| 08631F       85-29       48.5-49.5       1.0       <0.002         08632F       85-29       568.0-69.0       1.0       <0.002         08633F       85-29       128.3-129.8       1.0       <0.002         08634F       85-29       139.8-140.8       1.0       <0.002         08635F       85-29       167.2-168.2       1.0       <0.002         08636F       85-29       167.5-168.5       1.0       <0.002         08637F       85-29       186.0-187.0       1.0       0.008         08638F       85-29       194.5-195.5       1.0       <0.002         08639F       85-29       203.0-204.0       1.0       <0.002         08640F       85-29       218.0-219.0       1.0       <0.002         08641F       85-29       249.0-250.0       1.0       <0.002         08642F       85-29       267.5-268.5       1.0       <0.002         08643F       85-29       277.3-278.3       1.0       <0.002         08643F       85-29       300.3-301.3       1.0       <0.002                                                                               |                                                                                                                | 1      | 1                                     | ì     | ·   | }         |   |
| 08632F       85-29       568.0-69.0       1.0       < 0.002         08633F       85-29       128.3-129.8       1.0       < 0.002         08634F       85-29       139.8-140.8       1.0       < 0.002         08635F       85-29       167.2-168.2       1.0       < 0.002         08636F       85-29       167.5-168.5       1.0       < 0.002         08637F       85-29       186.0-187.0       1.0       0.008         08638F       85-29       194.5-195.5       1.0       < 0.002         08639F       85-29       203.0-204.0       1.0       < 0.002         08640F       85-29       218.0-219.0       1.0       < 0.002         08641F       85-29       249.0-250.0       1.0       < 0.002         08642F       85-29       267.5-268.5       1.0       < 0.002         08643F       85-29       277.3-278.3       1.0       < 0.002         08644F       85-29       300.3-301.3       1.0       0.002                                                                                                                                       | •                                                                                                              | i      |                                       |       |     | 1         |   |
| 08633F       85-29       128.3-129.8       1.0       <0.002         08634F       85-29       139.8-140.8       1.0       <0.002         08635F       85-29       167.2-168.2       1.0       <0.002         08636F       85-29       167.5-168.5       1.0       <0.002         08637F       85-29       186.0-187.0       1.0       0.008         08638F       85-29       194.5-195.5       1.0       <0.002         08639F       85-29       203.0-204.0       1.0       <0.002         08640F       85-29       218.0-219.0       1.0       <0.002         08641F       85-29       249.0-250.0       1.0       <0.002         08642F       85-29       267.5-268.5       1.0       <0.002         08643F       85-29       277.3-278.3       1.0       <0.002         08644F       85-29       300.3-301.3       1.0       0.002                                                                                                                                                                                                                     |                                                                                                                |        | }                                     | 1     |     | 1         |   |
| 08634F       85-29       139.8-140.8       1.0       < 0.002         08635F       85-29       167.2-168.2       1.0       < 0.002         08636F       85-29       167.5-168.5       1.0       < 0.002         08637F       85-29       186.0-187.0       1.0       0.008         08638F       85-29       194.5-195.5       1.0       < 0.002         08639F       85-29       203.0-204.0       1.0       < 0.002         08640F       85-29       218.0-219.0       1.0       < 0.002         08641F       85-29       249.0-250.0       1.0       < 0.002         08642F       85-29       267.5-268.5       1.0       < 0.002         08643F       85-29       277.3-278.3       1.0       < 0.002         08644F       85-29       300.3-301.3       1.0       0.002                                                                                                                                                                                                                                                                                |                                                                                                                | İ      | }                                     |       |     | 1         |   |
| 08635F       85-29       167.2-168.2       1.0       < 0.002         08636F       85-29       167.5-168.5       1.0       < 0.002         08637F       85-29       186.0-187.0       1.0       0.008         08638F       85-29       194.5-195.5       1.0       < 0.002         08639F       85-29       203.0-204.0       1.0       < 0.002         08640F       85-29       218.0-219.0       1.0       < 0.002         08641F       85-29       249.0-250.0       1.0       < 0.002         08642F       85-29       267.5-268.5       1.0       < 0.002         08643F       85-29       277.3-278.3       1.0       < 0.002         08644F       85-29       300.3-301.3       1.0       0.002                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                | 4      | Ì                                     |       |     | ì         |   |
| 08636F       85-29       167.5-168.5       1.0       < 0.002         08637F       85-29       186.0-187.0       1.0       0.008         08638F       85-29       194.5-195.5       1.0       < 0.002         08639F       85-29       203.0-204.0       1.0       < 0.002         08640F       85-29       218.0-219.0       1.0       < 0.002         08641F       85-29       249.0-250.0       1.0       < 0.002         08642F       85-29       267.5-268.5       1.0       < 0.002         08643F       85-29       277.3-278.3       1.0       < 0.002         08644F       85-29       300.3-301.3       1.0       0.002                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                | 1      |                                       | 1     |     | i         |   |
| 08637F       85-29       186.0-187.0       1.0       0.008         08638F       85-29       194.5-195.5       1.0       < 0.002         08639F       85-29       203.0-204.0       1.0       < 0.002         08640F       85-29       218.0-219.0       1.0       < 0.002         08641F       85-29       249.0-250.0       1.0       < 0.002         08642F       85-29       267.5-268.5       1.0       < 0.002         08643F       85-29       277.3-278.3       1.0       < 0.002         08644F       85-29       300.3-301.3       1.0       0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                |        |                                       | ŀ     | . , | }         |   |
| 08638F       85-29       194.5-195.5       1.0       < 0.002         08639F       85-29       203.0-204.0       1.0       < 0.002         08640F       85-29       218.0-219.0       1.0       < 0.002         08641F       85-29       249.0-250.0       1.0       < 0.002         08642F       85-29       267.5-268.5       1.0       < 0.002         08643F       85-29       277.3-278.3       1.0       < 0.002         08644F       85-29       300.3-301.3       1.0       0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                | ĺ      |                                       |       |     |           |   |
| 08639F       85-29       203.0-204.0       1.0       <0.002         08640F       85-29       218.0-219.0       1.0       <0.002         08641F       85-29       249.0-250.0       1.0       <0.002         08642F       85-29       267.5-268.5       1.0       <0.002         08643F       85-29       277.3-278.3       1.0       <0.002         08644F       85-29       300.3-301.3       1.0       0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                | ĺ      | i                                     |       |     | 1         |   |
| 08640F       85-29       218.0-219.0       1.0       <0.002         08641F       85-29       249.0-250.0       1.0       <0.002         08642F       85-29       267.5-268.5       1.0       <0.002         08643F       85-29       277.3-278.3       1.0       <0.002         08644F       85-29       300.3-301.3       1.0       0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |        |                                       |       |     |           |   |
| 08641F       85-29       249.0-250.0       1.0       < 0.002         08642F       85-29       267.5-268.5       1.0       < 0.002         08643F       85-29       277.3-278.3       1.0       < 0.002         08644F       85-29       300.3-301.3       1.0       0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                |        | i                                     |       | •   |           |   |
| 08642F       85-29       267.5-268.5       1.0       <0.002         08643F       85-29       277.3-278.3       1.0       <0.002         08644F       85-29       300.3-301.3       1.0       0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                |        |                                       |       |     | j         |   |
| 08643F     85-29     277.3-278.3     1.0     <0.002       08644F     85-29     300.3-301.3     1.0     0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                |        |                                       |       |     | 1         |   |
| 08644F 85-29 300.3-301.3 1.0 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                |        |                                       |       |     | ]         |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                |        |                                       |       |     |           |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                |        |                                       |       |     | <0.002    |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                |        |                                       |       |     |           |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                |        |                                       |       |     |           |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                |        |                                       |       |     |           | , |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                |        |                                       |       |     |           |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                |        |                                       |       |     | 1         |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                |        |                                       |       |     | ·         |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ર                                                                                                              |        |                                       |       |     | ·         |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                |        |                                       |       | ,   |           |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                |        |                                       |       |     |           |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                |        |                                       |       |     |           |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                |        |                                       |       |     |           |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                |        |                                       |       |     | Ì         |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                |        |                                       |       |     |           |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                |        |                                       |       |     | ) ·       |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                |        |                                       |       |     |           |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                |        |                                       |       |     |           |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                |        |                                       |       |     |           |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                |        |                                       |       |     |           |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                |        |                                       |       | ,   |           |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                |        |                                       |       |     |           |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ti de la companya de la companya de la companya de la companya de la companya de la companya de la companya de |        |                                       |       |     |           |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                |        |                                       |       |     | ļ         |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                | 1      |                                       |       |     |           |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                |        |                                       |       |     |           |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                |        |                                       |       |     |           |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                |        | 1                                     |       |     |           |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                |        |                                       |       |     |           |   |

|                  | _              |                            |       |     |               | •             |
|------------------|----------------|----------------------------|-------|-----|---------------|---------------|
| Assay<br>Tag No. | D.D.H.         | Footage                    | Width |     | Au<br>oz./ton | Ag<br>oz./ton |
| 08647F           | 85-30          | 44.4-45.4                  | 1.0   |     | 40.002        |               |
| 08648F           | 85-30          | 65.0-66.0                  | 1.0   | )   | < 0.002       |               |
| 08649F           | 85-30          | 66.0-67.3                  | 1.3   | )   | <0.002        |               |
| 08650F           | 85-30          | 81.3-81.7                  | 1.4   | · : | 0.002         |               |
| 08651F           | 85-30          | 99.0-100.0                 | 1.0   |     | <0.002        |               |
| 08652F           | 85–30          | 107.2-108.2                | 1.0   |     | < 0.002       |               |
| 08653F           | 85-30          | 118.4-119.4                | 1.0   |     | < 0.002       |               |
| 08654F           | 85-30          | 122.5-123.5                | 1.0   |     | < 0.002       |               |
| 08655F           | 85-30          | 135.3-136.3<br>152.0-153.0 | 1.0   |     | <0.002        |               |
| 08656F           | 85–30          | 196.0-197.0                | 1.0   |     | < 0.002       |               |
| 08657F           | 85-30<br>85-30 | 213.5-214.5                | 1.0   |     | < 0.002       |               |
| 08658F           | 85-30<br>85-30 | 217.0-218.0                | 1.0   |     | < 0.002       |               |
| 08659F<br>08660F | 85-30          | 232.0-234.0                | 1.0   |     | < 0.002       | ·             |
| 08661F           | 85-30<br>85-30 | 243.0-244.0                | 1.0   |     | 0.004         |               |
| 08662F           | 85–30          | 248.5-249.5                | 1.0   |     | 0.192         | ·             |
| 08663F           | 85 <b>–</b> 30 | 249.9-250.9                | 1.0   |     | 0.010         |               |
| 08664F           | 85-30          | 270.0-271.0                | 1.0   |     | <0.002        |               |
|                  |                |                            |       |     |               |               |
|                  |                |                            |       |     |               |               |
|                  |                |                            |       |     |               |               |
|                  |                |                            |       |     |               |               |
|                  |                |                            |       |     |               |               |
|                  |                |                            |       |     |               |               |
|                  |                | ·                          |       |     |               |               |
|                  |                |                            |       |     |               |               |
|                  |                |                            |       |     |               |               |
|                  |                |                            |       |     |               |               |
|                  | ,              |                            |       | ,   |               |               |
|                  |                |                            | ,     | •   |               |               |
|                  |                |                            |       |     |               |               |
|                  |                |                            | •     |     |               |               |
|                  | <br>           |                            |       |     |               |               |
|                  |                |                            |       |     |               |               |
|                  |                |                            |       |     |               |               |
|                  |                |                            | ·     |     |               |               |
|                  |                |                            |       |     |               |               |
|                  |                |                            |       |     |               | 1             |
|                  |                |                            |       | 4   |               |               |
|                  |                |                            |       |     |               |               |
|                  |                |                            |       |     |               |               |
|                  |                |                            |       |     |               |               |
|                  |                |                            |       |     |               |               |
|                  |                |                            |       |     |               |               |

| <b>A</b>         |                | ************************************** |            | <u> </u> | Γ .              | <del>                                     </del> |
|------------------|----------------|----------------------------------------|------------|----------|------------------|--------------------------------------------------|
| Assay<br>Tag No. | D.D.H.         | Footage                                | Width      |          | Au<br>oz./ton    | Ag<br>oz./ton                                    |
|                  |                |                                        |            |          | <b>.</b>         |                                                  |
| 08665F           | 85-31          | 18.5-19.5                              | 1.0        |          | <0.002           |                                                  |
| 08666F           | 85-31          | 62.0-63.0                              | 1.0        |          | <0.002           |                                                  |
| 08667F           | 85-31          | 63.7-64.7                              | 1.0        | )        | < 0.002          |                                                  |
| 08668F           | 85–31          | 64.7-65.7                              | 1.0        | )        | <0.002<br><0.002 |                                                  |
| 08669F           | 85-31          | 68.8-69.5                              | 1.3        |          | < 0.002          |                                                  |
| 08670F           | 85-31          | 71.5-72.5                              | 1.0        |          | ∠ 0.002          |                                                  |
| 08671F           | 85-31          | 73.0-74.0                              | 1.0<br>1.0 |          | 0.018            |                                                  |
| 08672F           | 85-31          | 79.8-80.8<br>90.7-91.7                 | 1.0        |          | 0.110            |                                                  |
| 08673F           | 85-31          | 95.0-96.0                              | 1.0        | ,        | < 0.002          |                                                  |
| 08674F           | 85–31          | 112.3-113.3                            | 1.0        |          | < 0.002          |                                                  |
| 08675F           | 85-31          | 114.2-115.2                            | 1.0        |          | < 0.002          |                                                  |
| 08676F           | 85-31<br>85-31 | 115.5-116.5                            | 1.0        |          | < 0.002          |                                                  |
| 08677F           | 85-31<br>85-31 | 118.0-119.0                            | 1.0        |          | <0.002           |                                                  |
| 08678F           | 85-31          | 122.0-123.0                            | 1.0        |          | < 0.002          | ·                                                |
| 08679F           | 85-31<br>85-31 | 144.0-145.0                            | 1.0        |          | 0.002            |                                                  |
| 08680F           | 85-31          | 151.5-152.5                            | 1.0        |          | <0.002           |                                                  |
| 08681F<br>08682F | 85–31          | 216.5-217.5                            | 1.0        |          | < 0.002          |                                                  |
| 08683F           | 85–31          | 269.2-270.2                            | 1.0        |          | < 0.002          |                                                  |
| 08684F           | 85-31          | 280.3-281.3                            | 1.0        |          | < 0.002          |                                                  |
| 08685F           | 85-31          | 353.0-354.0                            | 1.0        |          | ∠ 0.002          |                                                  |
| 08686F           | 85-31          | 361.0-362.0                            | 1.0        |          | 0.016            |                                                  |
| 08687F           | 85-31          | 366.0-367.0                            | 1.0        |          | < 0.002          |                                                  |
| 080871           | 05 51          | 30010 00711                            |            |          |                  |                                                  |
|                  |                |                                        |            |          |                  |                                                  |
|                  |                |                                        |            |          |                  |                                                  |
|                  |                |                                        |            |          |                  |                                                  |
|                  |                |                                        |            |          |                  |                                                  |
|                  |                |                                        |            |          |                  |                                                  |
|                  |                |                                        |            |          |                  |                                                  |
|                  |                |                                        |            |          |                  |                                                  |
|                  |                |                                        |            | ·        |                  |                                                  |
| <br> -           |                |                                        |            |          |                  |                                                  |
|                  |                |                                        |            |          |                  |                                                  |
|                  |                |                                        |            |          |                  |                                                  |
|                  |                |                                        |            |          |                  |                                                  |
|                  |                |                                        |            |          |                  |                                                  |
|                  |                |                                        |            |          |                  |                                                  |
|                  |                |                                        |            |          |                  |                                                  |
|                  | ·              |                                        |            |          |                  |                                                  |
|                  |                | ·                                      |            |          |                  |                                                  |
|                  |                |                                        | ·          |          |                  |                                                  |
|                  |                |                                        |            |          |                  |                                                  |
|                  |                |                                        | }          |          |                  |                                                  |
|                  |                |                                        | ì          | 1        |                  | 1                                                |

| 08688F<br>08689F<br>08690F<br>08691F<br>08692F<br>08693F<br>08694F<br>08695F<br>71401<br>71403<br>71402<br>71404<br>71405<br>71406<br>71406<br>71407<br>71408<br>71409<br>71410<br>71411 | 85-32<br>85-32<br>85-32<br>85-32 | 5.5-6.5<br>8.5-9.5<br>17.2-18.2 | 1.0   |     | 0.010   |          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|---------------------------------|-------|-----|---------|----------|
| 08689F<br>08690F<br>08691F<br>08692F<br>08693F<br>08694F<br>08695F<br>71401<br>71403<br>71402<br>71404<br>71405<br>71406<br>71407<br>71408<br>71409<br>71410                             | 85–32<br>85–32<br>85–32          | 8.5-9.5                         | i     |     |         |          |
| 08690F<br>08691F<br>08692F<br>08693F<br>08694F<br>08695F<br>71401<br>71403<br>71402<br>71404<br>71405<br>71406<br>71407<br>71408<br>71409<br>71410                                       | 85 <b>-</b> 32<br>85 <b>-</b> 32 |                                 | 1.0   |     | 1       | 1        |
| 08691F<br>08692F<br>08693F<br>08694F<br>08695F<br>71401<br>71403<br>71402<br>71404<br>71405<br>71406<br>71407<br>71408<br>71409<br>71410                                                 | 85-32                            | 17 2_10 2                       |       |     | <0.002  | _        |
| 08692F<br>08693F<br>08694F<br>08695F<br>71401<br>71403<br>71402<br>71404<br>71405<br>71406<br>71407<br>71408<br>71409<br>71410                                                           |                                  |                                 | 1.0   |     | Missing | Sample   |
| 08693F<br>08694F<br>08695F<br>71401<br>71403<br>71402<br>71404<br>71405<br>71406<br>71407<br>71408<br>71409<br>71410                                                                     |                                  | 20.1-21.1                       | 1.0   |     | <0.002  |          |
| 08694F<br>08695F<br>71401<br>71403<br>71402<br>71404<br>71405<br>71406<br>71407<br>71408<br>71409<br>71410                                                                               | 85–32                            | 42.5-43.5                       | 1.0   |     | < 0.002 | }        |
| 08695F<br>71401<br>71403<br>71402<br>71404<br>71405<br>71406<br>71407<br>71408<br>71409<br>71410                                                                                         | 85-32                            | 44.0-45.0                       | 1.0   |     | 0.030   |          |
| 71401<br>71403<br>71402<br>71404<br>71405<br>71406<br>71407<br>71408<br>71409<br>71410                                                                                                   | 85-32                            | 50.0-51.0                       | 1.0   |     | 0.028   |          |
| 71403<br>71402<br>71404<br>71405<br>71406<br>71407<br>71408<br>71409<br>71410                                                                                                            | 85-32                            | 54.3-56.0                       | 1.7   |     | 0.008   |          |
| 71402<br>71404<br>71405<br>71406<br>71407<br>71408<br>71409<br>71410                                                                                                                     | 85-32                            | 57.5-58.5                       | 1.0   |     | 0.002   |          |
| 71404<br>71405<br>71406<br>71407<br>71408<br>71409<br>71410                                                                                                                              | 85-32                            | 67.9-68.9                       | 1.0   |     | 0.012   | <u>.</u> |
| 71405<br>71406<br>71407<br>71408<br>71409<br>71410                                                                                                                                       | 85-32                            | 69.3-70.3                       | 1.0   |     | 0.020   |          |
| 71406<br>71407<br>71408<br>71409<br>71410                                                                                                                                                | 85-32                            | 78.5-79.5                       | 1.0   |     | 0.002   | 1        |
| 71407<br>71408<br>71409<br>71410<br>71411                                                                                                                                                | 85-32                            | 83.0-84.0                       | 1.0   | · . | 0.002   |          |
| 71408<br>71409<br>71410<br>71411                                                                                                                                                         | 85-32                            | 139.1-140.1                     | 1.0   |     | < 0.010 |          |
| 71409<br>71410<br>71411                                                                                                                                                                  | 85-32                            | 141.0-142.1                     | 1.1   |     | < 0.002 |          |
| 71410<br>71411                                                                                                                                                                           | 85-32                            | 146.5-147.5                     | 1.0   |     | < 0.002 |          |
| 71411                                                                                                                                                                                    | 85-32                            | 151.7-152.7                     | 1.0   |     | < 0.002 |          |
|                                                                                                                                                                                          | 85-32                            | 154.0-155.0                     | 1.0   |     | 0.002   |          |
| 71417                                                                                                                                                                                    | 85-32                            | 197.3-198.3                     | 1.0   |     | < 0.002 |          |
| i                                                                                                                                                                                        | 85-32                            | 201.7-202.7                     | 1.0   | ·   | 0.004   |          |
| 71416                                                                                                                                                                                    | 85-32                            | 211.5-212.5<br>241.5-244.0      | ) 2.5 |     | 0.002   |          |
| 71413                                                                                                                                                                                    | 85-32<br>85-32                   | 244.0-245.0                     | 1.0   |     | < 0.002 |          |
| 71414                                                                                                                                                                                    | 85-32<br>85-32                   | 265.1-266.2                     | 1.1   |     | 0.002   | ,        |
| i                                                                                                                                                                                        | 85 <b>-</b> 32                   | 278.5-239.5                     | 1.0   |     | 0.002   |          |
| 71417                                                                                                                                                                                    | 85-32                            | 278.5-233.5                     | 1.0   |     |         |          |
|                                                                                                                                                                                          |                                  |                                 |       | ·   |         |          |
|                                                                                                                                                                                          |                                  |                                 |       |     |         |          |
|                                                                                                                                                                                          |                                  |                                 |       |     |         |          |
|                                                                                                                                                                                          |                                  |                                 |       |     |         |          |
|                                                                                                                                                                                          |                                  |                                 |       |     |         |          |
|                                                                                                                                                                                          |                                  |                                 |       |     |         |          |
|                                                                                                                                                                                          |                                  |                                 |       |     |         |          |
|                                                                                                                                                                                          |                                  |                                 | 1     |     |         | 1        |
|                                                                                                                                                                                          |                                  |                                 |       |     |         |          |

| _ | Assay<br>Tag No.                                   | D.D.H.                           | Footage                                                  | Width                    |     | Au<br>oz./ton                    | Ag<br>oz./ton |  |
|---|----------------------------------------------------|----------------------------------|----------------------------------------------------------|--------------------------|-----|----------------------------------|---------------|--|
|   | New Assays<br>08699F<br>08698F<br>08697F<br>08696F | 85-16<br>85-16<br>85-16<br>85-16 | 248.0-249.0<br>250.0-251.0<br>252.3-253.3<br>255.3-257.0 | 1.0<br>1.0<br>1.0<br>1.7 |     | 0.004<br>3.016<br>0.064<br>0.004 |               |  |
|   | ReAssay<br>08700F                                  | 85–18                            | 168.0-169.2                                              | 1.2                      |     | 0.004                            |               |  |
|   |                                                    |                                  |                                                          |                          |     |                                  |               |  |
|   | ·<br>:                                             |                                  |                                                          |                          | . * |                                  |               |  |
|   |                                                    |                                  |                                                          |                          |     |                                  |               |  |
|   |                                                    |                                  |                                                          |                          |     |                                  |               |  |
|   |                                                    |                                  |                                                          | ·                        |     |                                  | ·             |  |
|   |                                                    |                                  |                                                          |                          |     |                                  |               |  |
|   |                                                    |                                  |                                                          |                          |     |                                  |               |  |

| Assay            | 6.5.           | 5                          |              |     | Au               | Ag      |
|------------------|----------------|----------------------------|--------------|-----|------------------|---------|
| Tag No.          | D.D.H.         | Footage                    | Width        |     | oz./ton          | oz./ton |
| 08751F           | 85–33          | 39.4-40.4                  | 1.0          |     | 0.014            |         |
| 08751F<br>08752F | 85 <b>–</b> 33 | 72.0-73.0                  | 1.0          |     | 0.008            |         |
| 08753F           | 85-33          | 81.8-82.8                  | 1.0          |     | < 0.002          |         |
| 08754F           | 85–33          | 135.0-136.0                | 1.0          |     | < 0.002          |         |
| 08755F           | 85-33          | 143.0-144.0                | 1.0          | ·   | < 0.002          |         |
| 08756F           | 85–33          | 145.7-146.7                | 1.0          |     | 0.006            |         |
| 08757F           | 85-33          | 160.6-161.6                | 1.0          |     | 0.004            |         |
| 08758F           | 85–33          | 165.4-166.4                | 1.0          |     | 0.006            |         |
| 08759F           | 85-33          | 174.4-175.4                | 1.0          |     | < 0.002<br>0.002 |         |
| 08760F           | 85-33          | 184.0-185.0                | 1.0          |     | < 0.002          |         |
| 08761F           | 85-33          | 188.3-189.3<br>190.5-191.5 | 1.0          | ·   | 0.002            |         |
| 08762F<br>08763F | 85–33<br>85–33 | 201.0-204.7                | 3.7          | •   | < 0.002          |         |
| 08764F           | 85–33          | 205.5-206.5                | 1.0          |     | < 0.002          |         |
| 08765F           | 85-33          | 243.4-244.4                | 1.0          | • . | < 0.002          |         |
| 08766F           | 85-33          | 258.1-259.1                | 1.0          |     | 0.002            |         |
|                  |                |                            | ,            |     |                  |         |
|                  |                |                            |              |     |                  |         |
|                  |                |                            |              |     |                  |         |
|                  |                |                            |              |     |                  |         |
|                  |                |                            | <u> </u><br> |     |                  |         |
|                  |                |                            |              |     |                  |         |
|                  |                |                            |              |     |                  |         |
|                  |                |                            |              |     |                  |         |
|                  |                |                            |              |     |                  |         |
|                  |                |                            |              |     |                  |         |
|                  |                |                            |              |     |                  |         |
|                  |                |                            |              |     | 1                |         |
|                  |                |                            |              |     |                  |         |
|                  |                |                            |              |     |                  |         |
|                  |                |                            |              | ,   |                  |         |
|                  |                |                            |              |     |                  |         |
|                  |                |                            | <u> </u>     |     | ļ                |         |
| ·                |                |                            | ·            |     |                  |         |
| =                |                |                            |              |     |                  |         |
|                  |                |                            |              | ,   | İ                |         |
|                  |                |                            |              |     |                  |         |
|                  |                |                            |              |     |                  |         |
|                  |                |                            |              |     |                  |         |
|                  |                |                            |              |     |                  |         |
|                  |                |                            |              |     |                  |         |
|                  |                |                            |              |     |                  |         |
|                  | •              | •                          | •            |     | •                | •       |

|                  | •              |                            |            |        |                  |               |
|------------------|----------------|----------------------------|------------|--------|------------------|---------------|
| Assay<br>Tag No. | D.D.H.         | Footage                    | Width      |        | Au<br>oz./ton    | Ag<br>oz./ton |
|                  |                |                            |            |        |                  |               |
| 08767F           | 85-34          | 31.6-32.6                  | 1.0        |        | <b>20.002</b>    |               |
| 08768F           | 85-34          | 36.9-37.9                  | 1.0        |        | <0.002           |               |
| 08769F           | 85-34          | 41.5-42.5                  | 1.0        |        | 0.068            |               |
| 08770F           | 85-34          | 67.5-68.5                  | 1.0        | ·      | < 0.002          |               |
| 08771F           | 85-34          | 71.5-72.5                  | 1.0        |        | 0.002            |               |
| 08772F           | 85-34          | 77.5-78.5                  | 1.0        | ·      | 0.008            |               |
| 08773F           | 85-34          | 88.0-89.0                  | 1.0        |        | 0.002            |               |
| 08774F           | 85-34          | 100.9-101.9                | 1.0        |        | 0.024            |               |
| 08775F<br>08776F | 85-34<br>85-34 | 124.0-126.0<br>126.0-127.3 | 2.0<br>1.3 | )      | <0.002<br><0.002 |               |
| 08777F           | 85–34          | 132.2-133.2                | 1.0        |        | 0.002            |               |
| 08778F           | 85–34          | 143.0-144.0                | 1.0        |        | < 0.002          |               |
| 08779F           | 85-34          | 144.0-145.0                | 1.0        |        | 0.012            |               |
| 08780F           | 85–34          | 169.5-170.5                | 1.0        |        | 0.006            |               |
| 08781F           | 85-34          | 176.1-177.1                | 1.0        |        | 0.004            |               |
| 08782F           | 85-34          | 180.0-183.1                | 3.1        |        | 0.008            |               |
| 08783F           | 85-34          | 192.8-195.0                | 2.2        |        | 0.002            |               |
| 08784F           | 85–34          | 202.7-203.7                | 1.0        |        | 0.002            |               |
| 08785F           | 85-34          | 204.2-205.2                | 1.0        |        | 0.002            |               |
| 08786F           | 85-34          | 206.5-207.5                | 1.0        |        | < 0.002          |               |
| 08787F           | 85-34          | 212.7-213.7                | 1.0        |        | < 0.002          |               |
| 08788F           | 85–34          | 221.0-222.1                | 1.1        |        | 0.002            |               |
| 08789F           | 85-34          | 230.8-231.8                | 1.0        |        | 0.002            |               |
| 08790F           | 85-34          | 244.0-245.0                | 1.0        |        | 0.002            |               |
| 08794F           | 85–34          | 254.0-255.0                | 1.0        |        | 0.380            |               |
| 08791F           | 85-34          | 259.7-260.7                | 1.0        |        | 0.006            |               |
| 08792F           | 85-34          | 266.0-267.0                | 1.0        |        | < 0.002          |               |
| 08793F           | 85-34          | 269.2-270.2                | 1.0        |        | <0.002           |               |
|                  |                |                            |            |        |                  |               |
|                  |                |                            |            |        |                  |               |
|                  |                |                            |            | ·      |                  |               |
|                  |                |                            |            |        |                  |               |
|                  |                |                            | 1          |        |                  |               |
|                  |                |                            |            |        |                  | , i           |
|                  |                |                            |            |        | ,                |               |
|                  |                |                            |            | •.     |                  |               |
|                  |                |                            |            | ·      |                  |               |
|                  |                | i                          |            |        |                  |               |
|                  |                |                            |            |        |                  |               |
| ·                |                |                            |            | · ·    |                  |               |
|                  |                |                            |            |        |                  |               |
|                  |                |                            |            |        |                  |               |
|                  |                |                            |            |        |                  |               |
|                  |                |                            |            |        |                  |               |
| ·                | ·              |                            | . '        | •<br>• |                  | •             |





070

BY: COURIER

October 20, 1986.

Mr. James Boyd OMEP Office Ontario Ministry of Northern Development & Mines Room 4650 Whitney Block 99 Wellesley Toronto, Ontario M7A 1W3

Dear Sir,

Re: Mono Gold Mines Inc.

Designation Numbers OM85-9-C-142 &

OM85-9-P-253

Bannockburn Property, Madoc Township,

Ontario

With respect to your request for copies of drill logs covering holes 1 to 49 you will find the same enclosed in duplicate.

Yours sincerely,

MONO COLD MINES INC.

W.S. Irwin

Secretary

c/c/ Wm. A. Luney

WSI/tno & Company

Enclosures

MONO GOLD MINES INC.

BANNOCKBURN MINE PROPERTY

Madoc Township, Ontario

DIAMOND DRILL LOGS

DDH #85-35 to DDH #85-42 inclusive

and

DDH #85-44,45,47&48

Appendix V

To accompany Report by Brian R. King, Geologist

dated March 27, 1986

| LOCATION:   | WESL         | Grid 325E 1200N         | BEAVON CON                    | DRILL RE |                                       | ED       |          |          |           | HOLE     |                                                  | -35                                              |          |
|-------------|--------------|-------------------------|-------------------------------|----------|---------------------------------------|----------|----------|----------|-----------|----------|--------------------------------------------------|--------------------------------------------------|----------|
| AZIMUTH:    | 261°         |                         | _                             |          |                                       |          |          | PROPERT  | ry:       | BAN      | NOCKBUR                                          | N                                                |          |
| DIP:        | -45°         |                         | LENGTH: 430                   | ELEVATIO | )N :                                  |          |          | CLAIM I  | /t Bi/ppm |          |                                                  |                                                  | _        |
| STARTED:    | 30 00        | et. 1985                | CORE SIZE: BQ                 | DATE LO  | GGED: Nov                             | . 1, 19  | 85       | SECTION  | •         | 120      | ON Wes                                           | t Grid                                           |          |
| COMPLETE    | D: 1 No      | ov. 1985                | DIP TESTS: 430 ft. = 421°     |          |                                       |          |          | LOGGED   | BY:       | R.V      | . Beavo                                          | n                                                |          |
| PURPOSE:    | Test         | geochemical anomaly (s  | oil)                          |          |                                       |          |          |          |           |          |                                                  |                                                  |          |
| F00<br>from | TAGE         | DE                      | CRIPTION SAMPLE FOOTAGE LES   |          | LENGTH                                |          |          |          | Bi/ppm    | <u> </u> |                                                  |                                                  |          |
| 0           | 4.5          | Casing                  |                               |          | <u> </u>                              |          |          | 1        | 22/00     |          | <del>                                     </del> | <del>                                     </del> |          |
| 4.5         | 10.3         | 7                       | H LIMY SECTIONS. Apparently   |          |                                       | <b>†</b> |          |          |           |          |                                                  |                                                  |          |
|             |              |                         | d metasediments, fine grained | 1        |                                       | <b>†</b> |          |          |           |          |                                                  | <del>                                     </del> |          |
|             |              |                         | alteration. Minor leaching    |          | · · · · · · · · · · · · · · · · · · · |          |          |          |           |          |                                                  |                                                  |          |
|             |              | of limy sections incl   | uding epidosite. Core         |          |                                       |          |          |          |           |          |                                                  |                                                  |          |
|             |              | (bedding) angle at 35   |                               |          |                                       |          |          |          |           |          |                                                  |                                                  |          |
| 10.3        | 12.1         | Highly chloritized la   | mprophyre (?) Fine grained    |          |                                       |          |          |          |           |          |                                                  |                                                  | ******** |
|             |              | and lacking foliation   | •                             |          |                                       |          |          |          |           |          |                                                  |                                                  |          |
| 12.1        | 25.5         | As 4.5-10.3 including   | quartzitic chert horizons.    |          |                                       |          |          |          |           |          |                                                  |                                                  |          |
|             |              | ' Heavy sulphides (pyri | te) at 14-15, and 24.8-25.5.  |          |                                       |          |          |          |           |          |                                                  |                                                  |          |
|             |              | Includes mottled biot   | ite spotted quartzites after  |          |                                       |          |          |          |           |          |                                                  |                                                  |          |
|             |              | cherty argillites.      |                               |          |                                       |          |          |          |           |          |                                                  |                                                  |          |
| 25.5        | 36.4         | Randed epidosites and   | fine grained biotitic         |          |                                       | !        |          |          |           |          |                                                  |                                                  |          |
|             |              | argillites. Light bu    | ff epidosites contrast with   |          |                                       |          |          |          |           |          |                                                  |                                                  |          |
|             |              | dark brown argillites   | . Traces pyrite throughout.   |          | •                                     | i.       |          | i        |           |          |                                                  |                                                  |          |
| 36.4        | 38.4         |                         | rtzite mixed with quartz      | 08801F   | 36.4                                  | 38.4     | 2.0      | <0.002   | 0.1       |          |                                                  |                                                  |          |
|             |              | vein and pyritic cher   | ty argillite.                 |          |                                       |          |          |          |           |          |                                                  |                                                  |          |
| 38.4        | 45.3         | Cherty argillites wit   | h occasional epidosite bands  |          |                                       |          | <u> </u> |          |           |          |                                                  | 1                                                |          |
|             | <u> </u>     |                         | core axis. 5% pyrite in       |          |                                       |          |          |          |           |          |                                                  |                                                  |          |
|             |              | disseminated crystals   | . Trace of foliation in some  | +        |                                       |          |          |          |           |          |                                                  |                                                  |          |
|             |              | cherty argillite beds   |                               |          |                                       |          |          |          |           |          |                                                  |                                                  |          |
| 45.3        | 46.3         | Mottled quartz-biotit   | e sill parallel to bedding of |          |                                       |          |          | <u> </u> |           |          |                                                  |                                                  |          |
| <u> </u>    | <del> </del> | metasediments. Massi    | ve and without foliation.     |          | l<br>1                                |          |          |          |           |          |                                                  |                                                  |          |
| 46.3        | 47.3         | Microsyenite: mixed a   | uartz-biotite sill and quartz |          |                                       |          |          | ·        |           |          |                                                  |                                                  |          |
|             |              |                         | Approximately 0.3 ft. quarta  |          |                                       |          |          |          |           |          |                                                  |                                                  |          |
|             |              | milky white with blui   | sh patches and carbonate.     |          |                                       |          |          |          |           |          |                                                  |                                                  |          |
| L           |              | Sharp contact at 60°    | to core axis.                 | 08802F   | 46.4                                  | 47.4     | 1.0      | 0.002    | 0.1       |          |                                                  |                                                  |          |

•

DIAMOND DRILL RECORD

HOLE NO:

85-35

PAGE NO:

|              |                                       |                                                     |               |              |            |               |                   |              |                                         | 2 of 6         |             |
|--------------|---------------------------------------|-----------------------------------------------------|---------------|--------------|------------|---------------|-------------------|--------------|-----------------------------------------|----------------|-------------|
| FOOT<br>from | AGE<br>10                             | DESCRIPTION                                         | SAMPLE<br>Ng: | F00<br>from  | TAGE<br>to | LENGTH        | Oz/t              | Bi           |                                         |                |             |
| 47.3         | 50.2                                  | QUARTZ BIOTITE SILL: As 45.3-46.3 with drusy        |               |              |            |               | - MG              | PPm          |                                         |                |             |
|              |                                       | pyrite-quartz veinlet at 48.7, coated with lime     |               | <u> </u>     |            |               |                   |              | , , , , , , , , , , , , , , , , , , , , |                |             |
|              |                                       | carbonate. Sharp contact normal to core axis at     | 08803F        | 48.2         | 49.2       | 1.0           | 0.002             | 6.1          |                                         | <u> </u>       |             |
|              |                                       | 50.2 with narrow quartz segregation.                |               |              |            |               |                   |              |                                         |                |             |
| 50.2         | 62.8                                  | Massive to well-banded cherty quartzites with       |               | -            |            |               |                   | -            |                                         |                | _           |
|              |                                       | occasional epidotized sections (fine grained        |               | ļ            |            | +             | <u> </u>          | 1            |                                         |                |             |
|              |                                       | epidosite). Banding at 45 to 60° to core axis.      | 0000/7        |              | 50.5       | +,            | 0.000             | 7 0          | <del>-</del> -                          | <u> </u>       | <del></del> |
|              |                                       | Feathery biotite quartzite after sedimentary        | 08804F        | 57.5         | 58.5       | 1.0           | 0.002             | 7.2          |                                         |                |             |
|              |                                       | amphibolite at 54 to 55. Pseudo-graphic inter-      |               | <b></b>      | ļ          | <del></del>   |                   | ļ            |                                         |                | _           |
|              |                                       | growth of quartz epidote in some of the altered     |               | <del> </del> | <b></b>    | <del> </del>  | <u> </u>          | <del> </del> |                                         |                |             |
|              |                                       | sections. Sample at 57.5-58.5 includes epidosite    |               |              | <u> </u>   |               |                   | <u> </u>     |                                         |                |             |
|              |                                       | and quartz veinlets with trace pyrite and carbonate |               | (0.0         |            | 1             | 0.000             |              |                                         |                |             |
|              |                                       | 60.3-62.1 Mixed cherty quartzite and quartz vein    | 08805F        | 60.3         | 62.1       | 1.8           | 0.002             | 0.1          |                                         |                |             |
|              |                                       | material, sharp lower contact at 50° to core axis.  |               | ļ            | ļ          | ·             | <del> </del>      |              |                                         |                |             |
| 62.8         | 65.5                                  | Quartz microsyenite dike at high angle to core axis |               | <u> </u>     |            | <del>- </del> | :<br><del> </del> | <del> </del> | ·                                       |                |             |
|              |                                       | Lacks good chill zones. Includes biotite and        |               |              |            |               | :                 |              |                                         |                |             |
|              | · · · · · · · · · · · · · · · · · · · | traces pyrite (disseminated). Lower contact         | <u> </u>      |              |            |               | ·<br>i            |              |                                         |                |             |
|              |                                       | transgresses metasedimentary banding at 60°. Peg-   |               |              |            |               |                   |              |                                         |                |             |
|              |                                       | matitic section at 63.0.                            |               |              | i          |               |                   |              |                                         |                |             |
| 65.5         | 89.4                                  | Mainly grey cherty quartzites, biotitic in part and |               |              |            |               | :                 |              |                                         |                |             |
|              |                                       | becoming finely garnetiferous at 79. Rare epidote   |               | i            |            |               |                   |              |                                         |                |             |
|              |                                       | alteration.                                         |               |              |            |               |                   |              |                                         |                |             |
| 89.4         | 89.8                                  | Massive white quartz vein with sharp contacts at    |               |              |            |               |                   |              |                                         |                |             |
|              |                                       | 65 - 70° to core axis. Trace pyrite paint and weak  |               | 1            |            |               | <del></del>       | <del></del>  |                                         |                |             |
|              |                                       | carbonate along selvages and in quartz.             | 08806F        | 89.0         | 90.0       | 1.0           | 0.002             | 0.2          |                                         |                |             |
| 89.8         | 93.6                                  | As 65.5-89.4 with abundant epidotized carbonate bed | s             | 1            |            | :             | <del> </del>      |              | · · · · · · · · · · · · · · · · · · ·   |                |             |
| 93.6         | 93.9                                  | Quartz veinlet at 50 to 45° to core axis            | 08807F        | 93.2         | 94.2       | 1.0           | 0.002             | 0.1          |                                         |                |             |
| 93.9         | 105.7                                 | As 65.5-89.4 but becoming biotitic in places, well  |               |              |            | 1             | !                 |              |                                         |                |             |
|              |                                       | banded and trace pyrite throughout.                 | <u> </u>      | <b>†</b>     |            | 1             | <del></del>       |              |                                         | <del> </del> - | 1           |
| 105.7        | 106.5                                 |                                                     |               |              |            | <u> </u>      |                   |              |                                         |                |             |
|              |                                       | inclusions of country-rock(?) Upper contact         |               | 1            |            |               | 1                 |              |                                         |                |             |
|              |                                       | transgressive.                                      |               |              |            |               | · ·               |              |                                         |                | $\top$      |
| 106.5        | 131.5                                 | As 65.5-89.4 without garnets. Well banded cherty    |               | 1            |            | 1             |                   |              |                                         |                |             |
|              |                                       | quartzites and biotite quartzites with occasional   | 08808F        | 106.5        | 107.5      | 1.0           | 0.002             | 0.2          |                                         |                |             |
|              |                                       | short epidotized carbonate sections. Banding at 50° |               |              |            |               |                   |              |                                         |                |             |

DIAMOND DRILL RECORD

HOLE NO: 85-35

PAGE Nº: 3 of 6

| F00   | TAGE  | DESCRIPTION                                         | SAMPLE                                           | F001     | TAGE                                             | LENGTH                                           | 0z/t                                             | Bi                                               |                                                  |   |       |
|-------|-------|-----------------------------------------------------|--------------------------------------------------|----------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|---|-------|
| from  | 10    | DESCRIPTION                                         | Nō:                                              | from     | to                                               | LENGIN                                           | Au                                               | ppm                                              |                                                  |   |       |
| 131.5 | 159.4 | Interhedded and partly contorted epidotized carbons | te                                               |          |                                                  |                                                  | 1<br>+                                           |                                                  | 1                                                |   |       |
|       |       | beds with cherty and biotitic quartzites (in part   |                                                  |          |                                                  | !                                                |                                                  |                                                  | ·                                                |   | <br>· |
|       |       | garnetiferous). Epidotized sections include calcite |                                                  |          |                                                  |                                                  | ·                                                | i                                                | <u> </u>                                         |   |       |
|       |       | marbles at 153, 155 and 157. Occasional pyrrhotite  |                                                  |          |                                                  |                                                  | 1                                                |                                                  |                                                  |   |       |
|       |       | blebs and paint.                                    |                                                  |          |                                                  |                                                  |                                                  |                                                  |                                                  |   |       |
| 159.4 | 162.0 | Aplitic dike or segregation mottled with biotite.   |                                                  |          |                                                  |                                                  |                                                  |                                                  |                                                  |   |       |
|       |       | Contacts normal to core axis and transgress bedding |                                                  |          |                                                  |                                                  |                                                  |                                                  |                                                  |   |       |
|       |       | of metasediments.                                   |                                                  |          |                                                  |                                                  |                                                  |                                                  |                                                  |   |       |
| 162.0 | 192.0 | As 131.5-159.4 with occasional scattered pyrrhotite |                                                  |          |                                                  |                                                  |                                                  |                                                  |                                                  |   |       |
|       |       | Rare marbles and fairly common silicified epidotize |                                                  |          |                                                  |                                                  |                                                  |                                                  |                                                  |   |       |
|       |       | sections. Banding at 40° to core axis.              |                                                  |          |                                                  |                                                  |                                                  |                                                  |                                                  |   |       |
| 192.0 | 204.0 | Weakly folded, well banded cherty and biotitic      |                                                  |          |                                                  |                                                  |                                                  |                                                  | 1                                                |   |       |
|       |       | quartzites with occasional biotite aplo-syenite     |                                                  |          |                                                  |                                                  | i                                                | :                                                |                                                  |   |       |
|       |       | sections up to 0.2 ft. wide. Core angle (bedding)   |                                                  |          |                                                  |                                                  |                                                  |                                                  |                                                  |   |       |
|       |       | sub parallel to core axis.                          |                                                  |          |                                                  |                                                  |                                                  |                                                  |                                                  |   |       |
| 204.0 | 220.2 | Well banded quartzites and semipelites with bedding |                                                  |          |                                                  | 1                                                | :                                                |                                                  |                                                  |   |       |
|       |       | at 35° to core axis.                                |                                                  |          |                                                  |                                                  | :                                                |                                                  |                                                  |   |       |
| 220.2 | 221.3 | Green dike. Well foliated biotitic green dike with  | n                                                |          |                                                  | !                                                | <u> </u>                                         |                                                  |                                                  |   |       |
|       |       | contacts normal to core axis.                       |                                                  |          |                                                  |                                                  |                                                  |                                                  |                                                  |   |       |
| 221.3 | 227.5 | Weakly garnetiferous dark grey semipelites with     |                                                  |          |                                                  | i                                                |                                                  |                                                  |                                                  |   |       |
|       |       | occasional quartzitic bands.                        |                                                  |          |                                                  | 1                                                |                                                  |                                                  |                                                  |   |       |
| 227.5 | 228.0 | Microsysenite dike with contacts normal to core     |                                                  |          |                                                  |                                                  |                                                  |                                                  |                                                  |   |       |
|       |       | axis. Composed of quartz-feldspar-biotite in-       |                                                  |          |                                                  | 1                                                | :                                                |                                                  |                                                  |   |       |
|       |       | tergrowths. Occasional planar vugs or miarolitic    |                                                  |          |                                                  |                                                  |                                                  | :                                                |                                                  |   |       |
|       |       | cavitites containing pyrite epidote(?) and a finely | 1                                                |          |                                                  | ·                                                | <del></del>                                      | <del>!</del>                                     |                                                  |   |       |
|       |       | acicular mineral. (bismuthinite?)                   |                                                  |          |                                                  | :                                                | ;                                                |                                                  |                                                  | İ |       |
| 228.0 | 230.7 | Metasediments - Biotitic fine grained quartzite and | 4                                                | <b>†</b> |                                                  |                                                  |                                                  | i                                                |                                                  |   | <br>  |
|       |       | and silicified carbonate.                           |                                                  |          |                                                  | :                                                | 1                                                | <del>+</del>                                     |                                                  |   |       |
| 230.7 | 231.7 | Sulphide Zone in Metasediments with heavy pyrite    | 1                                                |          |                                                  | 1                                                | -                                                | <u> </u>                                         | <del>                                     </del> |   |       |
|       |       | and irregular quartz veining at 231.2               | 08809F                                           | 230.7    | 231.7                                            | 1.0                                              | 0.002                                            | 70.0                                             |                                                  |   |       |
| 231.7 | 235.5 | Metasediments including coarsely biotitized         |                                                  | 1        |                                                  |                                                  | 1                                                |                                                  |                                                  |   |       |
|       |       | quartzites. Well banded and folded in open          | 1                                                |          |                                                  |                                                  |                                                  |                                                  |                                                  |   | <br>  |
|       |       | structures.                                         | <b>†</b>                                         | 1        | <del>                                     </del> | 1                                                | <del>                                     </del> | <del>                                     </del> |                                                  |   |       |
| 235.5 | 238.0 | Silicified and epidotized fine grained carbonate    | 1                                                |          |                                                  | <del>                                     </del> | †                                                |                                                  |                                                  |   |       |
|       | 1     | beds.                                               | <del>                                     </del> |          | <del>                                     </del> | 1                                                | <del> </del>                                     | <del> </del>                                     |                                                  |   |       |

#### DIAMOND DRILL RECORD

HOLE NE

85-35

PAGE NE: 4 of 6

| FOOT  | AGE   | DESCRIPTION                                         | SAMPLE | FOO      | TAGE     | LENGTH   | 0z/t  | Bi   |   |   |  |
|-------|-------|-----------------------------------------------------|--------|----------|----------|----------|-------|------|---|---|--|
| from  | to    | DESCRIPTION                                         | Nº:    | from     | to       | LENGIT   | Au    | ррш  |   |   |  |
| 238.0 | 271.5 | Fine grained cherty quartzites and biotite quartz-  |        |          |          |          |       |      |   |   |  |
|       |       | ites with occasional silicified carbonate sections  |        |          |          |          |       |      |   |   |  |
|       |       | Well banded throughout at 35° to 25° to core axis.  |        |          |          |          |       |      |   |   |  |
|       |       | Weakly disseminated pyrite throughout.              |        | <u> </u> |          |          |       |      |   |   |  |
| 271.5 | 271.6 | Quartz tourmaline veinlet at 25° to core axis       | 08816F | 271.5    | 271.6    | 0.1      | 0.002 | 9.1  |   |   |  |
|       |       | Siliceous alteration with pyrite (20%) extends for  |        |          |          |          |       |      |   |   |  |
|       |       | 1 ft. on either side of veinlet.                    |        |          |          |          | i     |      | I |   |  |
| 271.6 | 273.2 | Metasediments as 238-271.5.                         |        |          |          |          |       |      |   |   |  |
| 273.2 | 274.5 | Microdiorite dike normal to core axis               |        |          |          |          |       |      |   |   |  |
| 274.5 | 282.1 | As 238-271.5.                                       |        |          |          |          |       |      |   |   |  |
| 282.1 | 282.5 | Mixed quarts vein, tourmaline schorl and chloritize | DO010E | 201 0    | 202_0    | 10       | 0.002 | 19.0 |   |   |  |
|       |       | ed country-rock                                     | 000101 | 201.0    | 202.0    | 1.0      | 0.002 |      |   |   |  |
| 282.5 | 289.0 | Mainly dark grey metasediments with occasional      |        | <u> </u> |          |          |       |      |   |   |  |
|       |       | aplitic sweats.                                     |        |          | <u> </u> |          |       |      |   |   |  |
| 289.0 | 289.5 | Quartz-tourmaline vein at 45-55° to core axis.      | 08811F | 287.7    | 288.7    | 1.0      | 0.002 | 0.5  |   |   |  |
|       |       | Country-rock on either side well pyritized.         | 08812F | 288.7    | 289.7    | 1.0      | 0.002 | 0.2  |   |   |  |
| 289.5 | 289.9 | Metasediments with blue quartz streaks, 10% pyrite  |        |          |          | <u> </u> | 1     |      |   |   |  |
| 289.9 | 290.2 | Granitic (microgranite) dikelet. trace pyrite.      |        |          |          |          |       |      |   |   |  |
| 290.2 | 295.3 | Carbonate Metasediments, strongly silicified well   |        |          |          |          |       |      |   |   |  |
|       |       | banded, contorted, and showing evidence of inter-   |        |          |          |          | i     |      |   |   |  |
|       |       | ference folding.                                    |        |          |          | 1        | 1     |      |   |   |  |
| 295.3 | 302.5 | Metasediments fine grained well bedded argillaceous |        |          |          |          |       |      | : |   |  |
|       |       | quartzites showing alteration haloes.               |        |          |          | 1        |       |      |   |   |  |
| 302.5 | 303.5 | Microsyenite dikelet with xenolith of country-rock  |        |          |          |          | :     |      |   |   |  |
|       |       | Up to 15% disseminated pyrite. Contacts indistinct  | •      |          |          |          |       |      |   |   |  |
|       |       | Blue quartz splashes at 303.5.                      |        |          |          |          |       |      |   |   |  |
| 303.5 | 306.0 | Metasediments as 295.3-302.5.                       |        |          |          |          | :     |      |   |   |  |
| 306.0 | 307.0 | Mixed metasediments and quartz stringers            | 08813F | 306.0    | 307.3    | 1.3      | 0.002 | 1.5  |   |   |  |
| 307.0 | 307.3 | Microsyenite as irregular dikelet                   | 08814F | 307.3    | 309.3    | 2.0      | 0.002 | 0.1  | i |   |  |
| 307.3 | 309.4 | Quartz-carbonate tourmaline (epid.) schorl vein     |        |          |          |          |       |      |   |   |  |
|       |       | with very fine grained pyritic disseminations.      |        |          |          |          |       |      |   |   |  |
|       |       | Contacts 35° and normal to core axis. Up to 50%     |        |          |          |          |       |      |   |   |  |
|       |       | tourmaline.                                         |        |          |          |          |       |      |   |   |  |
| 309.4 | 310.0 | Metasediments as 295.3-302.5                        |        | T        |          |          |       | 1    |   |   |  |
|       |       |                                                     | 1      |          |          |          |       | 1    |   | 7 |  |

DIAMOND DRILL RECORD

HOLE NE: 85-35

PAGE NO:

| F00<br>from | TAGE<br>1 10 | DESCRIPTION                                          | SAMPLE<br>Nº: | FOO'         | TAGE<br>10   | LENGTH       | Oz/t<br>Au                                         | Bi<br>ppm                                        | · · · · · · · · · · · · · · · · · · · |              |   |          |
|-------------|--------------|------------------------------------------------------|---------------|--------------|--------------|--------------|----------------------------------------------------|--------------------------------------------------|---------------------------------------|--------------|---|----------|
| 310.0       | 310.9        | Mafic dike, well foliated biotitized green dike.     |               |              |              |              |                                                    |                                                  |                                       |              |   |          |
|             |              | Contacts normal and 65° to core axis.                |               |              | ļ            |              |                                                    | :                                                |                                       |              |   |          |
| 310.9       | 325.5        | Metasediments - mixed argillic quartzites and sili-  |               |              |              |              | ;<br>• • • • • • • • • • • • • • • • • • •         |                                                  | · · · · · · · · · · · · · · · · · · · |              |   |          |
|             |              | cified carbonate beds. Well banded at 40° to 80°     |               | <u> </u>     |              |              | <br><del> </del>                                   |                                                  |                                       |              |   |          |
|             |              | to come axis.                                        |               |              |              |              |                                                    |                                                  |                                       |              |   |          |
| 325.5       | 327.5        | Microsyenite - very blocky core due to vugginess     | 08815F        | 325.5        | 327.5        | 2.0          | 0.002                                              | 18.0                                             |                                       |              |   | <u> </u> |
|             |              | of microdiorite. Vugs contain drusy pyrite, quartz   | ,             |              |              |              |                                                    |                                                  |                                       |              |   |          |
|             |              | epidote (?) and black non-magnetic lustrous          |               |              |              |              | 1                                                  | i                                                |                                       |              |   |          |
|             |              | mineral (biotite?)                                   |               |              |              |              |                                                    |                                                  |                                       |              |   |          |
| 327.5       | 344.0        | Metasediments (contact altered) as 310.9-325.5 with  |               |              |              |              |                                                    |                                                  |                                       |              |   |          |
|             |              | occasional alteration haloes around veinlets.        |               |              |              |              |                                                    |                                                  |                                       |              |   |          |
| 344.0       | 349.0        | Microsyenite with miarolitic cavities. Quartz        |               |              |              |              | :                                                  |                                                  |                                       |              |   |          |
|             |              | feldspar biotite rock of medium to fine grain size.  |               |              |              |              | <del></del>                                        | ;                                                |                                       |              |   |          |
|             |              | Lacks foliation entirely (blocky core). Contacts     |               |              |              |              |                                                    |                                                  |                                       |              |   |          |
|             | <u> </u>     | apparently gradational at 344 and 349. Trace of      |               | 1            |              | !            | !                                                  |                                                  |                                       |              |   |          |
|             |              | pyrite.                                              |               |              |              |              | <del>                                       </del> |                                                  |                                       |              |   |          |
| 349.0       | 353.2        | Biotitic quartzites with occasional epidotized       |               |              |              |              | <del></del>                                        | <del>                                     </del> |                                       |              |   |          |
|             |              | carbonate lenses.                                    |               | 1            |              |              | <del> </del>                                       | <del> </del>                                     | <del></del>                           |              |   |          |
| 353.2       | 356.0        | Microsyenite with sandy texture and miarolitic       |               |              | 1            |              |                                                    | 1                                                |                                       |              |   |          |
|             |              | cavities. Blocky core throughout. 20% finely         |               |              | <b>†</b>     | 1            |                                                    | <del> </del>                                     |                                       |              |   |          |
|             | 1 .          | disseminated pyrite.                                 |               |              |              | 1            | 1                                                  | <del>†</del><br>!                                |                                       |              |   |          |
| 356.0       | 361.3        | Metasediments, highly altered in short sections,     | 08817F        | 354.0        | 356.0        | 2.0          | 0.002                                              | 37.0                                             | -                                     | <u> </u>     |   |          |
|             |              | otherwise similar to 349-353.2.                      |               |              | †            | <del></del>  | <del></del>                                        | <del>†</del>                                     | <del></del>                           | <del> </del> |   |          |
| 361.3       | 362.2        | Quartz vein at 25° to core axis. Translucent grey    |               | <u> </u>     |              | <del></del>  | <del>                                     </del>   | :                                                | !                                     | <del> </del> |   |          |
|             | 104.4        | glassy quartz with negligible mineralization.        | 08818F        | 361.0        | 362.0        | 1.0          | 0.002                                              | 0.5                                              | <u> </u>                              | !            |   |          |
| 362.2       | 363.0        | Metasediments - biotite quartzite.                   |               |              |              |              | <del>•</del>                                       | :                                                | <del> </del> -                        | !            |   |          |
| 363.0       | 364.0        | Massive microgranite with trace saussurite - lacking | <b>.</b>      |              | <del> </del> |              | :                                                  | <del></del>                                      |                                       | <del> </del> |   |          |
|             | 707.0        | cavities.                                            | <b>5</b>      | <del> </del> |              | 1            | <u> </u>                                           | <del></del>                                      | <del> </del>                          | <del> </del> | · |          |
| 364.0       | 369.5        | Metasediments - fine grained cherty argillites and   | <u> </u>      | <del> </del> | <del> </del> | <del> </del> | <u> </u>                                           | <del> </del> -                                   | <u> </u>                              | <del>;</del> |   |          |
|             |              | biotitic quartzites with traces pyrite.              |               |              |              |              |                                                    |                                                  |                                       |              |   |          |
| 369.5       | 370.0        | Irregular quartz veinlet associated with slip on     | 08819F        | 369.2        | 370.2        | 1.0          | 0.002                                              | 0.1                                              |                                       |              |   |          |
|             |              | joints at high angle to core. Trace pyrite.          |               | 1            | 1            |              |                                                    |                                                  |                                       |              |   |          |
| 370.0       | 392.0        | Metasediments - argillaceous or semipelitic          |               |              |              |              |                                                    |                                                  |                                       |              |   |          |
|             |              | quartzites with bedding parallel to core axis.       |               |              |              | 1            |                                                    |                                                  |                                       | 1            |   |          |
|             |              | Occasional aplitic sweats. Scattered 5% pyrite.      |               |              | 1            |              |                                                    |                                                  |                                       |              |   |          |

DIAMOND DRILL RECORD

HOLE NE: 85-35

PAGE NO:

|              |            |                                                                                                       |              | <del></del> |       | <del></del>  | ·                                              | ,                                                |                                        | - 0 0 |          |          |
|--------------|------------|-------------------------------------------------------------------------------------------------------|--------------|-------------|-------|--------------|------------------------------------------------|--------------------------------------------------|----------------------------------------|-------|----------|----------|
| F001<br>from | TAGE<br>10 | DESCRIPTION                                                                                           | SAMPLE<br>Nº | from        | TAGE  | LENGTH       | Oz/t<br>Au                                     | Bi<br>ppm                                        |                                        |       |          | L        |
| 392.0        | 393.0      | Quartz-tourmaline-pyrite vein and .3 ft of country-<br>rock. High specific gravity (Barite?)          | 08820F       | 392.0       | 293.0 | 1.0          | 0.002                                          | 0.5                                              |                                        |       |          |          |
| 393.0        | 404.0      | Altered metasediments mostly biotite quartzites with minor epidotized carbonate sections.             |              |             |       |              |                                                | :                                                |                                        |       |          |          |
| 404.0        | 405.0      | Heavily epidotized silicified and vuggy meta-<br>sediments. Carbonate? leached out of vugs.           |              |             |       |              |                                                |                                                  |                                        |       |          |          |
| 405.0        | 408.0      | Metasediments                                                                                         |              |             |       |              | 1                                              |                                                  |                                        |       |          | ļ        |
| 408.0        | 409.0      | Pink carbonate vein with pyritic selvage including tourmaline.                                        |              | 404.0       | 405.0 | 1.0          | 0.002                                          | 0.5                                              |                                        |       |          |          |
| 409.0        | 414.5      | Altered metasediments, as 393.0-404.0                                                                 | 08822F       | 408.0       | 409.0 | 1.0          | 0.002                                          | 1.5                                              |                                        |       |          |          |
| 414.5        | 416.5      | Mixed microgranite and metasediments, blocky core due to vugginess of microgranite.                   |              |             |       |              |                                                |                                                  | ······································ |       |          |          |
| 416.5        | 419.0      | Metasediments as 404-415.5                                                                            | 08823F       | 415.0       | 416.0 | 1.0          | 0.002                                          | 0.1                                              |                                        |       |          |          |
| 419.0        | 422.5      | Microsyenite, sandy textured, causing blocky core and poor recovery due to pyritic and epidotic areas | 08824F       | 419.0       | 423.0 | 4.0          | 0.002                                          | 0.1                                              |                                        |       |          |          |
|              |            | and vugs.                                                                                             | 08825F       | 427.0       | 429.0 | 2.0          | 0.002                                          | 0.1                                              |                                        |       |          |          |
| 422.5        | 426.0      | Mixed microsyenite and metasediments that are in-<br>timately veined and soaked with granite.         |              |             |       |              | •                                              |                                                  |                                        |       |          |          |
| 426.0        | 427.9      | Microsyenite, blocky core with weakly disseminated pyrite.                                            |              |             |       |              |                                                |                                                  |                                        |       |          |          |
| 427.9        | 428.3      | Metasediment altered as 405-414.5.                                                                    |              | 1           | 1 -   | <del> </del> |                                                | <del>                                     </del> |                                        |       |          |          |
| 428.3        | 429.0      | Microsyenite, blocky core with weakly disseminated pyrite.                                            |              |             |       | <u> </u>     |                                                |                                                  |                                        |       |          |          |
| 429.0        | 430.0      | Altered metasediments as 405-414.5 with pyrite and epidote stringers.                                 |              |             |       |              | <b>+</b> • • • • • • • • • • • • • • • • • • • |                                                  |                                        |       |          |          |
| 430.0        | 440.0      | Lost Core - Hole abandoned at 430.0 ft.                                                               |              |             |       |              | 1                                              |                                                  |                                        |       |          |          |
|              |            | END OF DDH 85-35 at 430 feet.                                                                         |              |             |       | i            |                                                |                                                  |                                        |       |          |          |
|              |            |                                                                                                       |              |             |       | 1            |                                                |                                                  |                                        |       |          |          |
|              |            |                                                                                                       | <b>1</b>     |             |       |              |                                                |                                                  |                                        |       |          |          |
|              |            |                                                                                                       |              |             |       | <del> </del> | · ·                                            |                                                  |                                        |       | <u> </u> |          |
|              |            |                                                                                                       |              |             |       |              |                                                |                                                  |                                        |       |          |          |
|              | 1          |                                                                                                       | <u> </u>     |             |       |              | 1                                              | 1                                                |                                        | l     | L        | <u> </u> |

| LOCATION:      | West Gr    | id 320E 1200N DIAMOND                                                   | NSULTING<br>DRILL RE |                                                  | EU                                               | •                                                |              |                                                  | HOLE         | Ne:<br>85                                        | -36                                              |              |
|----------------|------------|-------------------------------------------------------------------------|----------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------|--------------------------------------------------|--------------|--------------------------------------------------|--------------------------------------------------|--------------|
| AZIMUTH:       | 261°       |                                                                         |                      |                                                  |                                                  |                                                  | PROPERT      | Υ:                                               | BANNOC       | KBURN                                            |                                                  |              |
|                |            | LENGTH: AD61                                                            | ELEVATION            | DM :                                             |                                                  |                                                  | CLAIM N      |                                                  |              |                                                  |                                                  |              |
| DIP:           | -70°       | LENGTH: 406                                                             | ELEANIN              | UN :                                             |                                                  |                                                  | CLAIM N      |                                                  | Lloyd        | Patent                                           | <del></del>                                      |              |
| STARTED:       | Nov. 3/    | 85 CORE SIZE: BQ                                                        | DATE LO              | GGED: No                                         | v. 3/85                                          |                                                  | SECTION      |                                                  | 12N          |                                                  |                                                  |              |
| COMPLETE       | D: Nov.    | 5/85 DIP TESTS: 406' = -70°                                             |                      |                                                  |                                                  |                                                  | LOGGED       | BY:                                              | R.V. E       | eavon                                            |                                                  |              |
| PURPOSE:       | Check s    | ection of geochemical anomaly                                           |                      |                                                  |                                                  |                                                  |              |                                                  |              |                                                  |                                                  |              |
|                |            |                                                                         | T                    |                                                  |                                                  |                                                  |              |                                                  |              |                                                  |                                                  | ·            |
| F00<br>from    | TAGE<br>to | DESCRIPTION                                                             | SAMPLE<br>No:        | from                                             | TAGE<br>to                                       | LENGTH                                           | Oz/t<br>Au   | Bi<br>ppm                                        |              |                                                  |                                                  |              |
| 0              | 12.0       | Casing                                                                  |                      |                                                  |                                                  |                                                  |              |                                                  |              |                                                  |                                                  |              |
| 12.0           | 22.5       | Metasediments - unaltered dark grey biotitic quartzites - semi-pelitic. |                      |                                                  |                                                  |                                                  |              |                                                  |              |                                                  |                                                  | <del> </del> |
| 22.5           | 28.7       | Silicified bleached metasediments with good bandi                       | no                   |                                                  | <u> </u>                                         | 1.                                               |              |                                                  |              | <del></del>                                      |                                                  | <b>†</b>     |
|                |            | sub parallel to core axis. Weak cleavage. Red                           | 08826F               | 26.7                                             | 27.7                                             | 1.0                                              | 0.003        | 0.3                                              |              |                                                  |                                                  | Τ            |
|                |            | staining. Pyritized at 28.0 with quartz stringer                        | 08827F               | 27.7                                             | 28.7                                             |                                                  | <0.0006      | 0.5                                              |              |                                                  |                                                  |              |
|                |            | and reddish alterations (hematitic). Trace of                           | 08828F               | 28.7                                             | 29.7                                             | 1.0                                              | <0.0006      | 0.5                                              |              |                                                  |                                                  |              |
|                |            | galena.                                                                 |                      |                                                  |                                                  |                                                  |              |                                                  |              |                                                  |                                                  |              |
| 28.7           | 31.5       | Biotitic quartzites.                                                    |                      |                                                  |                                                  |                                                  |              |                                                  |              |                                                  |                                                  |              |
| 31.5           | 33.6       | Bleached metasediments (with epidote), scattered                        |                      |                                                  |                                                  |                                                  |              |                                                  | 1            |                                                  |                                                  | 1            |
|                |            | traces pyrite.                                                          |                      |                                                  |                                                  |                                                  |              |                                                  |              |                                                  |                                                  | Τ            |
| 33.6           | 36.0       | Metasediments - massive grey granular quartzite                         |                      |                                                  |                                                  |                                                  |              |                                                  |              |                                                  |                                                  | T            |
| . <del> </del> | 1          | with negligible bedding.                                                |                      | 1                                                | +                                                | <del></del>                                      |              |                                                  |              |                                                  |                                                  | $\top$       |
| 36.0           | 40.0       | Metasediments - bleached and well banded with tra                       | de                   | †                                                | †                                                |                                                  |              |                                                  |              |                                                  |                                                  | +            |
|                |            | foliation, though massive throughout.                                   | 08829F               | 39.5                                             | 40.5                                             | 1.0                                              | 0.0006       | 0.4                                              |              |                                                  |                                                  | $\top$       |
| 40.0           | 40.1       | Quartz veinlet at 35° to core axis, trace pyrite.                       |                      |                                                  |                                                  |                                                  |              | 1                                                |              | 1                                                |                                                  |              |
| 40.1           | 43.0       | Metasediments - cherty grey quartzite.                                  |                      |                                                  |                                                  |                                                  |              |                                                  |              |                                                  |                                                  | Т            |
| 43.0           | 51.0       | Metasediments bleached in part and banded sub -                         |                      |                                                  | 1                                                |                                                  | 1            |                                                  |              |                                                  |                                                  |              |
|                |            | parallel to core axis, up to 5% disseminated                            | 1                    |                                                  | <del> </del>                                     | <del>                                     </del> |              |                                                  | 1            | 1                                                |                                                  | T            |
|                |            | pyrite throughout mainly in darker bands. Trace                         |                      | <del>                                     </del> | 1                                                | <del>                                     </del> |              |                                                  |              |                                                  | 1                                                |              |
|                |            | pyrrhotite on drusy joint at 49.5.                                      | <del> </del>         | <del>                                     </del> | †                                                | <del>                                     </del> | <del> </del> | <del>                                     </del> | <del> </del> | <del>                                     </del> | †                                                | +            |
| 51.0           | 52.5       | Unbleached cherty quartzite.                                            | 1                    |                                                  | 1                                                |                                                  |              | 1                                                |              |                                                  |                                                  | T            |
| 52.5           | 53.5       | Bleached and weakly epidotized cherty quartzite                         |                      | 1                                                | 1                                                | 1                                                | 1            | <del>                                     </del> | 1            |                                                  | 1                                                | T            |
|                | 1          | banded parallel to core axis.                                           |                      | 1                                                | 1                                                |                                                  | 1.           | <del>                                     </del> | 1            | 1                                                | 1                                                | +            |
| 53.5           | 66.1       | Metasediments: grey weakly biotitic quartzites,                         | 1                    | <u>†                                      </u>   | †                                                | +                                                |              | <del>                                     </del> | 1            | 1                                                | 1                                                | 1            |
|                | 1          | with carbonate spots, weakly banded sub parallel                        | <del></del>          | <del> </del>                                     | <del>                                     </del> | <del> </del>                                     |              | <del>                                     </del> | 1            | <del>                                     </del> | <del>                                     </del> | +            |
|                |            |                                                                         |                      |                                                  |                                                  |                                                  |              |                                                  |              |                                                  |                                                  |              |

DIAMOND DRILL RECORD

HOLE N9: 85-36

PAGE NO:

|                                       |          |                                                     |        |          | ·        |          |          |      |          | 2 of 5 |   |
|---------------------------------------|----------|-----------------------------------------------------|--------|----------|----------|----------|----------|------|----------|--------|---|
| F001                                  | TAGE     | DESCRIPTION                                         | SAMPLE | FOO      | TAGE     | LENGTH   | Oz/t     | Bi   |          | Ī      |   |
| from                                  | 10       | DESCRIPTION                                         | NO:    | from     | to       | 100111   | Au       | ppm  | <u></u>  |        |   |
| 66.1                                  | 66_5     | Ouartz vein at 35° to core axis                     |        |          |          |          |          |      | T :      |        |   |
| 66.5                                  | 67.2     | Pyritized metasediment and 0.5 ft. pyritic marble   | 08830F | 65.5     | 67.2     | 1.7      | 0.0006   | 10.1 |          |        |   |
| 67.2                                  | 72.0     | Biotitic quartzite, massive and banded parallel to  |        |          |          |          | t i      |      |          |        | 1 |
|                                       |          | core axis.                                          |        |          |          |          |          |      |          |        |   |
| 72.0                                  | 73.5     | As 70.2-72.0 with two quartz veinlets, trace of     | 08831F | 72.0     | 73.5     | 1.5      | 0.0006   | 0.5  |          |        |   |
|                                       |          | pyrite.                                             |        | <u></u>  |          | <u> </u> |          |      |          |        |   |
| 73.5                                  | 81.0     | Quartzite as 70.2-72.0.                             |        | <u> </u> |          |          |          |      |          |        |   |
| 81.0                                  | 86.0     | Metasediments - extremely siliceous banded chert.   |        |          |          |          |          |      |          |        |   |
|                                       |          | Very fine grained with slight bluish tinge.         |        |          | <u> </u> | <u> </u> |          |      | <u> </u> |        |   |
| 86.0                                  | 86.1     | Quartz veinlet with pyrite in country-rock          | 08832F | 85.6     | 86.6     | 1.0      | 0.0006   | 0.4  |          |        |   |
| 86.1                                  | 90.8     | Metasediments - carbonate spotted biotite quartzite |        |          |          |          | 1        |      | ;<br>    |        |   |
| 90.8                                  | 95.8     | Felsic dike, medium to fine grained with pegmatite  |        |          |          |          |          |      |          |        |   |
| · · · · · · · · · · · · · · · · · · · |          | phase with pink feldspar and blue quartz near upper |        |          |          |          | 0.000    |      | :<br>    |        |   |
|                                       |          | contact. Contacts almost normal to core axis.       | 08833F | 90.0     | 91.0     | 1.0      | 0.0006   | 0.4  |          |        |   |
| 95.8                                  | 96.6     | Probable mafic dike (?) or sill                     |        |          |          |          |          |      |          |        |   |
| 96.6                                  | 98.0     | Metasediments - mixed bleached and grey quartzite   |        |          |          |          |          |      |          |        |   |
| 98.0                                  | 98.2     | White quartz vein at 85° to core axis.              | 08834F | 97.6     | 98.6     | 1.0      | 0.0006   | 0.6  |          |        |   |
| 98.2                                  | 116.9    | Metasediments. Alternating bleached and normal      |        |          |          | 1        |          |      |          |        |   |
|                                       |          | quartzites, banded parallel to core axis. Weak      |        |          |          |          |          | ·    |          |        |   |
|                                       |          | brecciation at 115.3. Drusy calcite at 114.         |        |          |          | <u> </u> |          |      |          |        |   |
| 116.9                                 | 117.0    | Quartz stringer with heavy pyrite                   | 08835F | 116.0    | 117.0    | 1.0      | 0.0006   | 0.3  |          |        |   |
| 117.0                                 | 119.0    | Mottled recemented breccia zone.                    |        |          |          |          |          |      |          |        |   |
| 119.0                                 | 147.0    | Metasediments well banded cherty quartzites and     |        |          |          | 1        |          |      |          |        | Ī |
|                                       |          | silicified bleached former carbonate (?) zones.     |        |          |          | -        |          | :    |          |        |   |
|                                       |          | Banding sub parallel to core axis. Quartzite        |        | 1        | <u> </u> |          |          |      |          |        |   |
|                                       |          | bluish quartz near dike contact (in country-rock)   |        |          |          |          |          |      |          |        |   |
| 147.0                                 | 148.6    | Mafic dike or sill with weak quartz stringers.      |        |          |          | !        | <u> </u> |      | \        |        |   |
|                                       |          | Contact sub parallel to core axis.                  |        |          |          | i        |          |      |          |        |   |
| 148_6                                 | 166.0    | Metasediments - alternating cherty quartzites       |        |          |          |          |          |      |          |        |   |
|                                       |          | silicified carbonates, banded at 25° to core axis.  |        |          |          |          |          |      |          |        |   |
|                                       | <u> </u> | Includes biotitic quartzites.                       |        |          |          |          |          |      |          |        |   |
| 166.0                                 | 175.9    | Metasediments, mottled with garnets in places,      |        |          |          |          |          |      |          |        |   |
|                                       |          | otherwise as 148.6-166.0.                           |        |          |          |          |          |      |          |        |   |
| 175.9                                 | 177.1    | Fine grained silicified recemented breccia with     |        |          |          |          |          |      |          |        |   |
|                                       |          | angular fragments of country-rock - secondary       |        | 1        |          |          |          |      |          | I i    |   |

DIAMOND DRILL RECORD

HOLE NO: 85-36

PAGE NO: 3 of 5

| F00   | TAGE   | DESCRIPTION                                         | SAMPLE                                           | FOO                                              | TAGE                                             | LENGTH       | 0z/t         | Bi                                    | !                                                 |                                                  |                                                  |   |
|-------|--------|-----------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------|--------------|---------------------------------------|---------------------------------------------------|--------------------------------------------------|--------------------------------------------------|---|
| from  | to     | DESCRIPTION                                         | Nō:                                              | from                                             | 10                                               | LENGIN       | Au           | ppm                                   | <u> </u>                                          | _ii                                              |                                                  |   |
| 177.1 | 215.4  | Metasediments. Garnetiferous quartzitic cherts.     | _                                                |                                                  |                                                  |              |              |                                       | 1                                                 | T                                                |                                                  |   |
|       |        | Well developed garnets at 180, trace pyrrhotite     |                                                  | <u> </u>                                         |                                                  |              |              |                                       | :<br>                                             | 1                                                | <u> </u>                                         |   |
|       |        | at 182, possible carbonated fault slip at 188.      |                                                  |                                                  |                                                  | !            |              |                                       | !<br>•                                            |                                                  | !                                                |   |
|       |        | Normal to core axis. Well banded at 25° to core     |                                                  |                                                  |                                                  |              |              |                                       |                                                   |                                                  |                                                  |   |
|       |        | axis. Silicified at 190.5-191.5. Silicification     | 08836F                                           | 189.5                                            | 190.5                                            | 1.0          | 0.0006       | 0.3                                   |                                                   |                                                  |                                                  |   |
|       |        | related to minor cross faults at right angles to    |                                                  |                                                  |                                                  |              |              |                                       |                                                   |                                                  |                                                  |   |
|       |        | bedding. Minor quartz segregation at 193. Evidence  | e                                                |                                                  |                                                  |              |              |                                       |                                                   |                                                  |                                                  |   |
|       |        | of gentle folding in core.                          |                                                  |                                                  |                                                  |              |              |                                       | !                                                 |                                                  | 1                                                |   |
| 215.4 | 215.5  | Quartz-chlorite-carbonate veinlet at 45° to core    |                                                  |                                                  |                                                  |              |              |                                       |                                                   |                                                  |                                                  |   |
|       |        | axis, trace pyrite, minor silicification.           |                                                  |                                                  |                                                  | [            |              |                                       | 1                                                 |                                                  |                                                  |   |
| 215.5 | 216.6  | Silicified metasediments with traces of tourmaline  | 08837F                                           | 215.0                                            | 216.0                                            | 1.0          | 0.0006       | 0.3                                   |                                                   | -                                                |                                                  |   |
|       |        | in minor quartz-carbonate stringer normal to core   | 08838F                                           | 216.0                                            | 217.0                                            | 1.0          | 0.0006       | 0.4                                   |                                                   |                                                  |                                                  |   |
|       |        | axis.                                               |                                                  |                                                  |                                                  |              |              |                                       | :                                                 |                                                  |                                                  |   |
| 216.6 | 216.7  | Carbonate (dolomite) veinlet at 20° to core axis.   |                                                  |                                                  |                                                  |              |              |                                       |                                                   |                                                  |                                                  |   |
|       |        | Coarsely crystalline. Trace pyrite.                 |                                                  |                                                  |                                                  | 1            |              |                                       |                                                   |                                                  |                                                  |   |
| 216.7 | 217.0  | Silicified metasediments as 215.5-216.6.            |                                                  |                                                  |                                                  |              |              |                                       | 1                                                 |                                                  |                                                  |   |
| 217.0 | 221.2  | Metasediments: well banded biotite quartzite with   |                                                  |                                                  |                                                  |              |              |                                       |                                                   | !                                                |                                                  |   |
|       |        | cherty texture. Banding at 30° to core axis.        |                                                  |                                                  |                                                  |              |              |                                       | i                                                 |                                                  |                                                  | ] |
| 221.2 | 224.2  | Silicified zone with blue quartz transgressing      |                                                  |                                                  |                                                  |              |              |                                       | :                                                 | i                                                |                                                  |   |
|       |        | epidotized metasediment laminations. Disseminated   | 08839F                                           | 221.2                                            | 224.2                                            | 3.0          | 0.0006       | 0.3                                   |                                                   |                                                  |                                                  | 1 |
|       |        | biotite, trace pyrite. Two transgressive quartz     |                                                  |                                                  |                                                  |              |              |                                       |                                                   |                                                  |                                                  |   |
|       |        | zones separated by altered country-rock.            |                                                  | 1                                                |                                                  |              |              |                                       | <del>• • • • • • • • • • • • • • • • • • • </del> | •                                                |                                                  |   |
| 224.2 | 232.2  | Metasediments: As 217.0-221.2. Bluish cherts        |                                                  | 1                                                |                                                  | 1            |              |                                       | ·                                                 | <del></del>                                      |                                                  |   |
|       |        | commencing at 227. Includes thin epidotized and     |                                                  | 1                                                | 1                                                |              |              |                                       | <del></del>                                       | :                                                | 1                                                |   |
|       |        | silicified former carbonate bands.                  |                                                  | 1                                                |                                                  | · ·          | <u> </u>     |                                       | <del></del>                                       | <del></del>                                      |                                                  | 1 |
| 232.2 | 233.0  | Silicified zone transgressing country-rock laminati | on                                               | 1                                                | 1                                                | <u> </u>     | <del>!</del> |                                       | <del>                                     </del>  |                                                  |                                                  | 1 |
| 233.0 | 234.5  | Metasediments: as 217.0-221.2.                      |                                                  | 1                                                |                                                  |              | :            |                                       | !                                                 | <del>-</del>                                     | 1                                                |   |
| 234.5 | 234.6  | Quartz-carbonate veinlet with trace tourmaline.     |                                                  | 1                                                | <b>1</b>                                         | !            | !            | <br>                                  | <del> </del>                                      |                                                  |                                                  |   |
|       | 2-7-10 | Sharp contacts at 75° to core axis.                 | <del> </del>                                     | <del> </del>                                     | <del>                                     </del> | <del> </del> |              |                                       | <del>†</del> -                                    | <del></del>                                      | <del>-</del>                                     | İ |
| 234.6 | 239.3  | Cherty and biotitic quartzitic metasediments        | 08840F                                           | 234.0                                            | 235.0                                            | 1.0          | 0.0006       | 0.5                                   | 1                                                 | 1                                                | 1                                                | 1 |
|       |        | banded sub parallel to core axis.                   | <del>                                     </del> | <del> </del>                                     | 1                                                | 1            | 1            | 0.5                                   |                                                   | 1                                                |                                                  | 1 |
| 239.3 | 239.6  | Silicified zone or vein with sharp contacts normal  |                                                  | 1                                                |                                                  | 1            | <del> </del> |                                       |                                                   | 1                                                |                                                  |   |
|       |        | to core axis. Quartz is a granular bluish colour,   | †************                                    | <del>                                     </del> | <del>                                     </del> | 1            | <b>-</b>     |                                       | <del>                                     </del>  | <del>                                     </del> | <del>                                     </del> | 1 |
|       | 1      | laced with traces of silvery muscovite.             | 08841F                                           | 239.0                                            | 240.0                                            | 1.0          | 0.0006       | 0.3                                   | <del> </del>                                      | <del>-  </del>                                   | +                                                | 1 |
| 239.6 | 247.2  | Metasediments as 217-221.2.                         | <del> </del>                                     | +                                                | +                                                | +===         | 1            | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | <del>                                     </del>  | 1                                                | +                                                | 1 |

DIAMOND DRILL RECORD

HOLE NE: 85-36

PAGE NO: 4 of 5

| FOO   | TAGE                                             | DESCRIPTION                                         | SAMPLE | FOO      | TAGE  | LENGTH       | Oz/t         | Bi  |             | ļ            |                                                  | }                                                |
|-------|--------------------------------------------------|-----------------------------------------------------|--------|----------|-------|--------------|--------------|-----|-------------|--------------|--------------------------------------------------|--------------------------------------------------|
| from  | 10                                               | DESCRIPTION                                         | Nō:    | from     | to    | LEMOIN       | Au           | ррш |             | i            |                                                  |                                                  |
| 247.2 | 259.5                                            | Partly altered metasediments with epidotized and    | 08842F | 250.0    | 252.0 | 2.0          | 0.0006       | 0.4 |             |              |                                                  |                                                  |
|       |                                                  | silicified sections. Includes quartz translucent    |        |          |       |              | 1            |     |             |              |                                                  |                                                  |
|       | <u> </u>                                         | vein at 250-251.5, trace pyrite & carbonate.        |        |          |       |              |              |     | <del></del> | <del>-</del> | !                                                | 1                                                |
| 259.5 | 261.0                                            | Fairly well mineralized metasediments with drusy    | 08843F | 259.5    | 261.0 | 1.5          | 0.0006       | 0.4 |             |              |                                                  |                                                  |
|       | <del>                                     </del> | pyrite in epidotized zones, and blue quartz vein-   |        |          | 1     | 1            |              |     |             |              | 1                                                | 1                                                |
|       |                                                  | lets.                                               |        |          |       | <del> </del> | <del> </del> |     |             | <del> </del> | <del>                                     </del> | <del>                                     </del> |
| 261.0 | 265.8                                            | Metasediments: mainly biotite quartzites with       |        |          |       | -            | !            |     |             | 1            | !                                                |                                                  |
|       |                                                  | occasional epidosites.                              |        |          |       | †            | !!           |     |             | <del> </del> |                                                  |                                                  |
| 265.8 | 266.1                                            | Pink fine grained dike, normal to core axis, and    |        |          |       |              |              |     |             |              |                                                  |                                                  |
|       |                                                  | pegmatitic at upper contact, probably an aplitic    |        |          |       |              |              |     |             |              |                                                  |                                                  |
|       |                                                  | pegmatite. Trace disseminated pyrite.               |        |          |       |              | †            |     |             |              |                                                  |                                                  |
| 266.1 | 272.0                                            | Metasediments: largely unaltered hiotitic cherty    |        |          |       |              |              |     |             |              |                                                  |                                                  |
|       |                                                  | quartzites with scattered pyrite crystals.          |        | <u> </u> |       |              | i            |     |             |              |                                                  | <u> </u>                                         |
|       |                                                  | Demonstrable minor fold hinges.                     |        |          |       |              |              |     |             | 1            |                                                  |                                                  |
| 272.0 | 274.2                                            | Epidotized zone with trace pyrite.                  |        |          |       |              |              |     |             |              |                                                  |                                                  |
| 274.2 | 285.0                                            | Metasediments as 266.1-272.0. Banding at 10° to     |        |          |       |              | i            |     |             | i            |                                                  |                                                  |
|       |                                                  | core axis.                                          |        |          |       |              |              |     |             |              |                                                  |                                                  |
| 285.0 | 286.0                                            | Epidotized former carbonate horizon with 5-10%      |        |          |       |              |              |     |             |              |                                                  |                                                  |
|       |                                                  | pyrite.                                             |        |          |       |              |              |     |             | i            |                                                  |                                                  |
| 286.0 | 289.0                                            | Metasediments: mixed biotitic cherty quartzites and |        |          |       |              |              |     |             |              |                                                  |                                                  |
|       |                                                  | epidosite. Well banded at 20° to core axis.         |        |          |       |              |              |     |             |              |                                                  |                                                  |
| 289_0 | 289.1                                            | Quartz-carbonate biotite veinlet normal to core axi | β.     |          |       |              |              |     |             |              |                                                  |                                                  |
| 289.1 | 290.4                                            | Metasediments: as 266.1-272.0.                      |        |          |       | 1            |              |     |             |              |                                                  | İ.                                               |
| 290.4 | 293.5                                            | Mafic dike, mostly biotite and other mafic minerals |        |          |       | •            |              |     |             |              |                                                  |                                                  |
|       |                                                  | with pseudo-gneissic texture. Cut by calcite strin  | gers,  |          |       |              |              |     |             | T            |                                                  |                                                  |
|       |                                                  | and are narrow quartz veinlet at 40° to core axis.  |        |          |       | 1            |              |     |             |              |                                                  |                                                  |
| 293.5 | 294.0                                            | Metasediments banded parallel to core axis. As      |        |          |       |              |              |     |             |              |                                                  |                                                  |
|       |                                                  | 266.1-272.0.                                        |        |          |       | 1            |              |     |             |              |                                                  |                                                  |
| 294.0 | 296.0                                            | Altered and pyritized zone composed of epidosite    | 08844F | 294.0    | 296.0 | 2.0          | 0_0006       | 5.8 |             |              |                                                  |                                                  |
|       | <u> </u>                                         | biotite quartzite, quartz veinlet and sulphide rich |        |          |       |              |              |     |             | <u> </u>     |                                                  |                                                  |
|       |                                                  | granular carbonate zone. All are normal to core     |        |          |       |              |              |     |             |              |                                                  |                                                  |
|       |                                                  | axis.                                               |        |          |       |              | 1 .          |     |             |              |                                                  |                                                  |
| 296.0 | 308.0                                            | Metasediments: semipelitic and quartzitic to cherty |        |          |       | 1            |              |     |             |              |                                                  |                                                  |
|       |                                                  | well banded argillites. Banded from 10 to 20 to     |        |          |       |              |              |     |             |              |                                                  |                                                  |
|       |                                                  | core axis. Occasional minor quartz carbonate string | rs     | 1        | 1     |              | 1            |     |             | 1            | 1                                                |                                                  |

DIAMOND DRILL RECORD

HOLE NS: 85-36

PAGE NE: 5 of 5

| FOO   | TAGE     | O S C C DIDTI ON                                    | SAMPLE  | FOO          | TAGE     | LENGTH      | Oz/t     | Bi    | ŧ                                     |             |   |              |
|-------|----------|-----------------------------------------------------|---------|--------------|----------|-------------|----------|-------|---------------------------------------|-------------|---|--------------|
| from  | 1 10     | DESCRIPTION                                         | Nº:     | from         | to       | LENGIN      | Au       | ррш   |                                       |             | 1 |              |
| 308.0 | 318.0    | Carbonate metasediments composed of epidosites      |         |              |          |             |          |       |                                       |             |   |              |
|       |          | granular marbles, and impure biotitic limestone.    |         |              |          |             |          |       |                                       |             |   |              |
|       |          | Banded at 25° to core axis.                         |         |              |          |             |          | :<br> | -                                     |             |   |              |
| 318.0 | 334.5    | Metasediments: fine grained grey biotitic quartzite | s,      | ļ            |          |             |          |       |                                       | <del></del> |   | <del> </del> |
|       |          | milky chlorite mottled cherts with numerous carbona | te      |              | ļ        |             |          | ·     | · · · · · · · · · · · · · · · · · · · |             |   |              |
|       |          | stringers on slips normal to bedding and core axis. |         | <del> </del> |          | <del></del> |          |       |                                       |             |   |              |
|       |          | Two quartz-carbonate veinlets near fault at 334.5.  |         | <del> </del> | <b> </b> | <b>_</b>    | ·        |       |                                       |             |   | <del></del>  |
|       |          | Fault healed by calcite stringer normal to core     |         | <b></b>      | <u> </u> | <u> </u>    | ·        |       |                                       |             |   |              |
|       |          | axis.                                               | <u></u> | <u> </u>     | <u> </u> |             |          |       | :                                     |             |   |              |
| 334.5 | 337.2    | Carbonate metasediments including epidosite, minor  |         |              |          |             |          |       |                                       |             |   | }            |
|       |          | fault at 337.2.                                     |         |              |          |             |          |       |                                       |             |   |              |
| 337.2 | 340_0    | Metasediments: dark grey biotitic quartzites.       | 08845F  | 339.4        | 340.4    | 1.0         | 0.0006   | 0.4   |                                       |             |   |              |
| 340.0 | 340.2    | Silicified transgressive zone: mottled bluish quart | z       | <u> </u>     | <u> </u> |             |          |       |                                       |             |   |              |
|       |          | with chlorite and trace pyrite.                     |         |              |          |             |          |       |                                       |             |   |              |
| 340.2 | 358.9    | Metasediments: mainly biotitic quartzites with      |         |              |          |             |          |       |                                       |             |   |              |
|       |          | occasional epidosite beds. Well banded at 30° to    | I       |              |          |             |          |       |                                       | <u> </u>    |   | l            |
|       |          | core axis.                                          |         |              |          |             |          |       |                                       |             |   |              |
| 358.9 | 366.0    | Carbonate metasediments and epidosite including     |         |              |          |             |          |       |                                       |             |   |              |
|       |          | marble and minor biotite quartzite.                 |         |              |          |             |          |       |                                       |             |   |              |
| 366.0 | 383.0    | Metasediments: biotite quartzites and fine cherty   |         |              |          |             |          |       |                                       |             |   |              |
|       |          | argillites with occasional pyritic horizons. In-    |         |              |          |             |          |       |                                       |             |   |              |
|       |          | cludes several alteration or metasomatic zones of   |         |              |          |             |          |       |                                       |             |   |              |
|       |          | blue mottled cherty quartz. Bedding sub parallel    |         |              |          | 1           |          |       | :                                     |             |   |              |
|       |          | to core axis.                                       |         |              |          |             | 1        |       |                                       |             |   |              |
| 383.0 | 386.0    | Pyritized and veined metasediments with silicified  | 08846F  | 383.0        | 385.0    | 3.0         | 0.0006   | 47.5  |                                       |             |   |              |
|       |          | areas. Quartz veins with abundant pyrite at         |         |              |          |             | <u> </u> |       |                                       |             |   |              |
|       | <u>}</u> | 383.4 and 385.6 (with tourmaline).                  |         |              |          |             | :        | İ     |                                       |             |   |              |
| 386.0 | 390.7    | Metasediments - biotitic fine grained quartzites    |         |              |          | i           | !        |       |                                       |             |   |              |
|       |          | with occasional epidosite bands.                    |         |              |          |             |          |       |                                       |             |   |              |
| 390.7 | 399.0    | Carbonate metasediments composed of fine grained    |         |              |          |             |          |       |                                       |             |   | <u> </u>     |
|       |          | banded epidosites and marble. Disseminated pyrite   |         |              |          |             | 1        |       |                                       |             |   |              |
|       |          | at upper contact and from 393-397. Bedding at 35°   |         |              |          |             |          |       |                                       |             |   |              |
|       |          | to core axis                                        | 1       |              |          |             |          |       |                                       |             |   |              |
| 399.0 | 406.0    | Metasediments: mainly biotitic quartzites with      |         |              |          |             |          |       |                                       |             |   |              |
|       |          | bluish chert laminations.                           |         | 1            | T        |             | 1        |       |                                       |             |   |              |

# BHOON BHOON BHOON METHOD: hf FOOTAGE AZIMUTH DIP ELEVATION CORE SIZE BO LOGGED BY B. KING DATE LOGGED NOV 9, 1985 MAP REFERENCE No. DIP -45° AZIM 265°

## **Diamond Drill Record**

| COMPANY NAME Mono Gold Mines Inc.                               |
|-----------------------------------------------------------------|
| PROPERTY NAME_Bannockburn, Bannockburn Mine:                    |
| DRILLING CONTRACTOR MCKnight                                    |
| ASSAYER Lakefield Research                                      |
| PURPOSE OF HOLE to test Geochemical anomaly NW of mine workings |
|                                                                 |

| HOLE No    | 85-37       |  |
|------------|-------------|--|
| CLAIM NAME | /No         |  |
| COMMENCE   | Nov 6, 1985 |  |
|            | Nov 8, 1985 |  |
|            | 449'        |  |
|            |             |  |
| -NOJECT NE |             |  |

| FROM | то   | RECOVY | DESCRIPTION                                                                          |      | SA   | MPLE  |       | oz/ton            | D.D.M.       | AS | SAYS |      |  |
|------|------|--------|--------------------------------------------------------------------------------------|------|------|-------|-------|-------------------|--------------|----|------|------|--|
|      |      |        |                                                                                      | FROM | то   | WIDTH | No.   | Au                | Te           |    |      |      |  |
| 0.0  | 5.0  |        | Casing (float and regolithic material)                                               |      |      |       |       |                   |              |    |      |      |  |
|      |      |        |                                                                                      |      |      |       |       |                   |              |    |      |      |  |
| 5.0  | 24.1 |        | Mafic Symmite (Coarse)                                                               |      |      |       |       |                   |              |    |      |      |  |
|      |      |        | -med-coarse, homogeneous, pink, kspar-biotite "mafic syenite" or syenodiorite, minor |      |      |       |       |                   |              |    |      |      |  |
|      |      |        | cc, ep, chl with dissem euhedral py, no appreciable foliation                        |      |      |       |       |                   |              |    |      |      |  |
|      |      |        | -6.0-7.0; poor recovery, fractured @ 15°, ground core, surface weathering effects    |      |      |       |       |                   |              |    |      |      |  |
|      |      |        | -12.0-14.5; altered (weathered), porous, kspar rich with blue qtz or cordierite,     | 12.0 | 14.5 | 2.5   | 8847F | <b>&lt;0.0006</b> | <b>(0.</b> 3 |    |      |      |  |
|      |      |        | rare blebs py, poss phlogopite                                                       |      |      |       |       |                   |              |    |      |      |  |
|      |      |        | -17.0-18.0; sim 12.0-14.5, 2 narrow zones 1½", coarse py, bio and chl                | 17.0 | 18.0 | 1.0   | 8848  | (0.0006           | 0.3          |    |      | <br> |  |
|      |      |        |                                                                                      |      |      |       |       |                   | ,            |    |      |      |  |
| 24.1 | 41.0 |        | Mafic Syenite (Medium)                                                               |      |      |       |       |                   |              |    |      |      |  |
|      |      |        | -sim 24.1-41.0, but has textural change                                              |      |      |       |       |                   |              |    |      | <br> |  |
|      |      |        | -27.5; hirst of foliation developing                                                 |      |      |       |       |                   |              |    |      |      |  |
|      |      |        | -25.3; carbonatized fracture 0 45°, with py                                          | 24.6 | 25.6 | 1.0   | 8849  | (0.0006           | 1.5          |    |      |      |  |
|      |      |        | -fracture/jointing 0 45°; 26.0, 29.6, 30.2, 32.5-34.0                                |      |      |       |       | İ                 |              |    |      |      |  |

| DATE LOGGED  |  |
|--------------|--|
| COMPANY MANE |  |

PROPERTY NAME \_\_\_\_\_\_

HOLE No. 85-37

| <u></u> | T    | 1      |                                                                                        | <u></u>      |      | AADI E |        |                 |                         | 0.43/0 |          |          |   |   |
|---------|------|--------|----------------------------------------------------------------------------------------|--------------|------|--------|--------|-----------------|-------------------------|--------|----------|----------|---|---|
| FROM    | то   | RECOVY | DESCRIPTION                                                                            | FROM         | T 10 | WIDTH  | No.    | oz/ton<br>Au    | oom <sup>AS</sup><br>Te | T      | <u> </u> | <u> </u> | Γ | · |
|         |      |        | 36.5-39.7; bands of coarse syenite and xcutting feldspathized zones, increased cc      | <b>36.</b> 5 | 39.7 | 3.2    | 8850   | K0.0006         |                         |        |          |          |   |   |
|         |      |        | with dissem py                                                                         |              |      |        |        |                 |                         |        |          |          |   |   |
| 41.0    | 59.0 |        | Mafic Syenite (Coarse)                                                                 |              | ļ    |        |        |                 |                         |        |          |          |   |   |
|         |      |        | -sim to 5.0-24.1                                                                       |              |      |        |        |                 |                         |        |          |          |   |   |
|         |      |        | -41.1-50.5; altered zone with elevated kspar, cc minor chl & ep, 5% py,                |              |      |        |        |                 |                         |        |          |          |   |   |
|         |      |        | 41.1-41.7; kspar band or vein                                                          | 41.1         | 43.1 | 2.0    | 8851   | <0.0006         | ⟨0.3                    |        |          |          |   |   |
|         |      |        | 43.1-44.1; intensely altered, porous, pegmatitic, lg bio ,pods cc, rusty               | 43.1         | 44.1 | 1.0    | 8852   | (0.0006         | 2.0                     |        |          |          |   |   |
|         |      |        | 48.0-48.8; 3" tw qtz-cc vein with kspar, tournmaline, @ 45°                            | 44.1         | 45.6 | 1.5    | 8853   | <b>(0.000</b> 6 | ⟨0.3                    |        |          |          |   |   |
|         |      |        | 49.9-50.5; potassic zone with 2, qtz-cc viens (blue qtz), diffuse                      |              |      |        |        |                 |                         |        |          |          |   |   |
|         |      |        |                                                                                        | 48.0         | 48.8 | 0.8    | 8854   | (0.0006         | ⟨0.3                    |        |          |          |   |   |
|         |      |        | 53.2-60.0; jointing @ 45°                                                              | 49.9         | 50.5 | 0.6    | 8855   | (0.0006         | 1.3                     |        |          | <u> </u> |   |   |
| 59.0    | 65.8 |        | Mafic Syenite (Medium)                                                                 |              |      |        |        |                 | •                       |        |          |          |   |   |
|         |      |        | -sim 24.1-41.0; textural change only                                                   |              |      |        |        |                 |                         |        |          |          |   |   |
|         |      |        | -64.0-65.8; zone of potassic alteration, includes qtz-cc vein with py, marc, blue qtz, | 64.0         | 65.8 | 1.8    | 8856   | K0.0006         | 8.4                     |        |          |          |   | _ |
|         |      |        | carbonatization, 0 45°                                                                 |              |      |        | ·<br>! | -               |                         |        |          |          |   |   |
|         |      |        |                                                                                        |              |      |        |        |                 |                         |        |          |          |   | l |

PAGE 2 OF 6

| DATE LOGGED   |  |
|---------------|--|
| COMPANY NAME  |  |
| PROPERTY NAME |  |

HOLE N**85-37** 

|      | 1     |        |                                                                                           |       | -     | 451 = | <del></del> | 1                |             | 0.01/0 |   |   |     |  |
|------|-------|--------|-------------------------------------------------------------------------------------------|-------|-------|-------|-------------|------------------|-------------|--------|---|---|-----|--|
| FROM | то    | RECOVY | DESCRIPTION                                                                               | FROM  | T to  | MPLE  | No.         | oz/ton           |             | SAYS   | T | Γ | T - |  |
| 65.8 | 161.0 |        | Mafic Syenite (Coarse)                                                                    | PROM  | "     | WIDTH | NO.         | Au               | Те          |        |   |   |     |  |
|      |       |        | -sim 5.0-24.1                                                                             |       |       |       |             |                  |             |        |   |   |     |  |
|      |       |        | -72.0-72.8; potassic zone with cc, spks py                                                | 72.0  | 72.8  | 0.8   | 8857        | <0.0006          | 1.3         |        |   |   |     |  |
|      |       |        | 86.4-87.0; sim 72.0-72.8, with 1" qtz-cc vein @ 50°, with blebby and dissem py, marc,     |       |       |       |             |                  |             |        |   |   |     |  |
|      |       |        | tourmaline                                                                                | 86.4  | 87.0  | 0.6   | 8858        | 0.0007           | 0.6         |        |   |   |     |  |
|      |       |        | -89.0-89.7; sim 86.4-87.0                                                                 |       |       |       |             |                  |             |        |   |   |     |  |
|      |       |        |                                                                                           | 89.0  | 89.7  | 0.7   | 8859        | <0.0006          | 0.8         |        |   |   |     |  |
|      |       |        | -92.4-93.3; intense tourmaline in 1" band 0 65°, with qtz -cc vein (+kspar), up to $10\%$ |       |       |       |             |                  |             |        |   |   |     |  |
|      |       |        | py, strong wall rock carbonatization                                                      | 92.4  | 93.3  | 0.8   | 8860        | (0.0006          | 2.9         |        |   |   |     |  |
|      |       |        | 100.7-101.7; series of 3, mineralized fractures, qtz-tourmaline veins with                |       |       |       |             |                  |             |        |   |   |     |  |
|      |       |        | minor kspar                                                                               | 100.7 | 101.7 | 1.0   | 8961        | (0.0006          | <b>(0.3</b> |        |   |   |     |  |
|      |       |        | -113.8-115.4; potassic altered zone, qtz-cc stringers with up to SM py, heavy biotite,    |       |       |       |             |                  | •           |        |   |   |     |  |
|      |       |        | diffuse contacts                                                                          | 113.8 | 115.4 | 1.6   | 8862        | (0.0006          | 0.3 •       |        |   |   |     |  |
|      |       |        | 115.9-116.9; qtz-cc veining with heavy py, 2" SM @ 45°                                    | 115.4 | 115.9 | 0.5   | 8863        | (0.0006          | 0.7         |        |   |   |     |  |
|      |       |        |                                                                                           | 115.9 | 116.9 | 1.0   | 8864        | (0 <b>.000</b> 6 | 0.9         |        |   |   |     |  |
|      |       |        | -119.9-120.9; carbonatized, potassic alt zone                                             |       |       |       |             |                  |             |        |   |   |     |  |
|      |       |        |                                                                                           | 119.9 | 120.9 | 1.0   | 8865        | (0 <b>.000</b> 6 | 0.4         |        |   |   |     |  |
|      |       |        |                                                                                           |       |       |       |             |                  |             |        |   |   |     |  |

PAGE \_\_3\_\_\_ OF \_\_6\_\_

| DATE LOGGED   |
|---------------|
| COMPANY NAME  |
| PROPERTY NAME |

HOLE No.25-37

|       |       |        |                                                                                        | WILL W W. |       |       |      |                  | <u></u> |                                                  |              | <br>  |  |
|-------|-------|--------|----------------------------------------------------------------------------------------|-----------|-------|-------|------|------------------|---------|--------------------------------------------------|--------------|-------|--|
| FROM  | то    | RECOVY | DESCRIPTION                                                                            |           | SA    | MPLE  |      | oz/ton           |         | SAYS                                             |              | <br>· |  |
|       |       |        |                                                                                        | FROM      | 70    | WIDTH | No.  | Au_              | Te      | <del> </del>                                     | <u> </u>     | <br>  |  |
|       |       |        | 127.2-128.7, fracture zone with qtz-cc stringers, blue qtz @ 40°                       | 127.2     | 128.7 | 1.5   | 8866 | (0 <b>.000</b> 6 | (0.3    |                                                  |              |       |  |
| <br>  |       |        |                                                                                        |           |       |       |      |                  |         |                                                  |              |       |  |
|       |       |        | 152.1-152.7; ½" cc-qtz vein,may be faulted, minor py                                   | -         |       |       |      |                  |         |                                                  |              |       |  |
|       |       |        | -154.6-155.2; fault zone, green chloritic gouge, with qtz-cc vein, minor potassic alt, | 152.1     | 152.7 | 0.6   | 8867 | ⟨0 <b>.000</b> € | 0.0     |                                                  | <del> </del> |       |  |
|       |       |        |                                                                                        |           |       |       |      |                  |         | <del>                                     </del> | <del> </del> |       |  |
|       |       |        | dissem py, @ 40°                                                                       | 152.7     | 154.6 | 1.9   | 8868 | (0.0006          |         | 1                                                |              | <br>  |  |
|       |       |        |                                                                                        | 154.6     | 155.2 | 0.6   | 8869 | K0.0006          |         |                                                  |              |       |  |
|       |       |        | -160.2-161.0; minor potassic alt zone, cc stringers, bio, tourmaline, 10% py           | 160.2     | 161.7 | 1.5   | 8870 | (0.0006          |         |                                                  |              |       |  |
|       |       |        |                                                                                        |           |       |       |      | ļ                |         |                                                  | ļ            | <br>  |  |
| 161.0 | 170.0 |        | Altered Intermediate-Mafic Dike or Sill                                                |           |       |       |      |                  |         |                                                  |              |       |  |
|       |       |        | -possibly differentiated symnodiorite, f-med xtalline, foliated, with bio,             |           |       |       |      |                  |         |                                                  |              |       |  |
|       |       |        | marginally carbonatized                                                                |           |       |       |      |                  | ٠       |                                                  |              |       |  |
|       |       |        |                                                                                        |           |       |       |      |                  |         |                                                  |              | <br>  |  |
| 170.0 | 449.0 |        | Mafic Syenite (Medium-Coarse)                                                          |           |       |       |      |                  |         |                                                  |              |       |  |
|       |       |        | -less homogeneous than above, compositionally similar, grey-pink syenite               |           |       |       |      |                  |         |                                                  |              |       |  |
|       |       |        | -172.7-173.2; 1" qtz-cc vein with py, rimmed by bio, tourmaline in a felted mass of    | 172.7     | 173.2 | 0.6   | 8871 | <b>0.000</b> 6   |         |                                                  |              |       |  |
|       |       |        | accicular xtals                                                                        |           |       |       |      |                  |         |                                                  |              |       |  |

PAGE 4 OF 6

| DATE LOGGED   |
|---------------|
| COMPANY NAME  |
| PROPERTY NAME |

HOLE No. 25-37

|      |    | 1      |                                                                                      | <del></del> |       | 400 C |      | 1               | <u> </u> | 0.040 |          |   |   |             |
|------|----|--------|--------------------------------------------------------------------------------------|-------------|-------|-------|------|-----------------|----------|-------|----------|---|---|-------------|
| FROM | то | RECOVY | DESCRIPTION                                                                          | FROM        | TO    | WIDTH | No.  | oz/ton<br>Au    | pom AS   | SAYS  | <u> </u> | Г | 1 | <del></del> |
|      |    |        | -177.0, 179.0; narrow potassic alt band with cordierite, @ 40°                       |             |       |       |      | 1~              | ,,,      |       |          |   |   |             |
|      |    |        | -183.0-184.2; potassic alt zone with minor py, bio, carbonate is unusual pumple!?    |             |       |       |      | 1               |          |       |          |   |   |             |
|      |    |        | -187.4-188.1; potassic alt zone, minor carbonatization, qtz-cc stringer, irreg       | 187.4       | 188.1 | 0.7   | 8872 | (0.0006         |          | 1     |          |   |   |             |
|      |    |        | -192.7; well defined qtz-cc vein in potassic zone, strong bio, tourmaline, minor     |             |       |       |      |                 |          |       |          |   |   |             |
|      |    |        | increase in py                                                                       |             |       |       |      |                 |          |       |          |   |   |             |
|      |    |        | -201.1-209.6; diffuse potassic zone, pegmatitic                                      |             |       |       |      |                 |          |       |          |   |   |             |
|      |    |        | -249.5-251.5; coarse potassic zone, barren                                           |             |       |       |      |                 |          |       |          |   |   |             |
|      | *  |        | -254.0-254.6; shear zone, 0 50°, strong bio partings, qtz-cc veining with minor py,  | 254.0       | 254.7 | 0.7   | 8873 | ⟨0.000€         |          |       |          |   |   |             |
|      |    |        | mine structure or related?                                                           | 254.7       | 256.3 | 1.6   | 8874 | ⟨0.000€         | -        |       |          |   |   |             |
|      |    |        | -256.0-285.3; very coarse mafic symnite                                              |             |       |       |      |                 |          |       |          |   |   |             |
|      |    |        | -260.2-261.7; potassic and chloritic alteration zone @ 45°, porous and weathered     | 260.2       | 261.7 | 1.5   | 8875 | ⟨0.000€         |          |       |          |   |   |             |
|      |    |        | appearance, minor cc, py, cordieirite                                                |             |       |       |      |                 | •        |       |          |   |   |             |
|      |    |        | - potassic alt zone, carbonatized                                                    | 265.0       | 266.0 | 1.0   | 8879 | <b>\$.000</b> 6 |          |       |          |   |   |             |
|      |    |        | -258.0-263.2; blocky core, poor recovery                                             |             |       |       |      |                 |          |       |          |   |   |             |
|      |    |        | -277.6; sheared, 0 50°, with py, cc, tourmaline, chl                                 | 277.6       | 278.6 | 1.0   | 8880 | ⟨0.000€         |          |       |          |   |   |             |
|      |    |        | -285.3-286.3; intermed dike or sill, possible xenolith?, well defined foliation, chl |             |       |       |      |                 |          |       |          |   |   |             |
|      |    |        | minor ep, cc                                                                         |             |       |       |      |                 |          |       |          |   |   |             |
|      |    |        | -298.0-299.5; potassic alt zone?, possible schlieren, qtz-kspar stringer, barren     |             |       |       |      |                 |          |       | 1        |   |   |             |

| DATE LOGGED   |  |
|---------------|--|
| COMPANY NAME  |  |
| PROPERTY NAME |  |

HOLE No.85-37

| FROM | то    | DECOVA | DECODITION                                                                              |       | SA    | MPLE  |      | oz/ton           | ppm AS | SAYS |          | <del></del> |         |
|------|-------|--------|-----------------------------------------------------------------------------------------|-------|-------|-------|------|------------------|--------|------|----------|-------------|---------|
| НОМ  | 2     | RECOVY | DESCRIPTION                                                                             | FROM  | то    | WIDTH | No.  | Au               | Te     |      |          |             |         |
|      |       |        | -316.4-317.6; potassic zone, strong qtz-tourmaline veining, banded py, cc, @ approx 45° | 316.4 | 317.6 | 1.2   | 8876 | 0.0006           |        |      |          |             |         |
|      |       |        | possible mine structure?                                                                |       |       |       |      |                  |        |      |          |             |         |
|      |       |        | -321.6-323.0; sim 316.4-317.6, shearing                                                 | 321.6 | 323.0 | 1.4   | 8877 | <b>Ø.</b> 0006   |        |      | <u> </u> |             |         |
|      |       |        | -337.8-338.4; potassic alteration zone, banded, with vuggy qtz-cc- kspar, poss          |       |       |       |      |                  |        |      |          |             |         |
|      |       |        | minor brecciation                                                                       | 337.8 | 338.4 | 0.6   | 8878 | <0 <b>.000</b> 6 |        |      |          |             |         |
|      |       |        | -345.2-345.9; potassic alteration with qtz- vein, strong tourmaline, py                 |       |       |       |      |                  |        |      |          |             |         |
|      |       |        |                                                                                         | 345.2 | 345.9 | 0.7   | 8881 | <b>(0.000</b> 6  | _      |      |          |             |         |
|      |       |        | -367.0-369.9; potassic alteration with qtz vein, sub parallel to core, minor bio,       |       |       |       |      |                  |        |      |          |             |         |
|      |       |        | spks py                                                                                 | 367.0 | 369.9 | 2.9   | 8882 | K0.0006          |        |      |          |             |         |
|      |       |        | -378.0-379.2; qtz vein with minor cc, qtz is strained, minor py                         | 378.7 | 379.2 | 0.5   | 8883 | K0.0006          | -      |      |          |             | L       |
|      |       |        | -381.0-405.9; generally more medium xtalline syenodiorite                               |       |       |       |      |                  |        |      |          |             |         |
|      |       |        | -386.9-388.0; potassic zone with qtz viening, minor cc, strong tourmaline, dissem &     | 386.9 | 388.0 | 1.1   | 8884 | ⟨0.0006          |        |      |          |             | <u></u> |
|      |       |        | blebs py                                                                                |       |       |       |      |                  | •      |      |          |             | L       |
|      |       |        | -405.0-413.4; generally more coarse syenite, very similar to above                      |       |       |       |      |                  |        |      |          |             | <u></u> |
|      |       |        | -420.0-420.8; 2, qtz-cc viens with bio @ 50°, minor py                                  | 420.0 | 420.8 | 8.0   | 8885 | <0.000s          |        |      |          |             |         |
|      |       |        | -439.0; 1' zone of potassic enrichment, pegmatitic                                      |       |       |       |      |                  |        |      |          |             |         |
|      | 449.0 |        | -fairly homogeneous to EOH                                                              |       |       |       | •    |                  |        |      |          |             |         |
| 1    | EOH   |        |                                                                                         |       |       |       |      |                  |        |      |          |             |         |

PAGE \_\_\_\_\_\_\_ OF \_\_\_\_\_\_

#### **BEAVON CONSULTING LIMITED** HOLE NO: LOCATION: West Grid 16N 2+75W DIAMOND DRILL RECORD 85-38 251 PROPERTY: AZIMUTH: BANNOCKBURN -45° LENGTH: **ELEVATION:** CLAIM NO: DIP: 200 ft. Lloyd Patent 9 Nov./85 CORE SIZE: BO DATE LOGGED: 10 Nov./85 SECTION: 12N STARTED: 200° = -43° DIP TESTS: COMPLETED: 10 Nov./85 LOGGED BY: R.V. Beavon Test geochemical soil anomaly on strike with Bannockburn shaft. PURPOSE: FOOTAGE SAMPLE FOOTAGE 0z/t Вi DESCRIPTION LENGTH NO: from from ppm 4.0 Casing 4.0 Metasediments: Light grey quartzitic cherts, cherty quartzite and argillaceous cherts. Well banded at 45° to core axis. Silicified from 7.0 to 8.0. Limy band at 27.0. Quartz-biotite-carbonate veinlet at 20.5. Negligible mineralization, but traces pyrite throughout. Sill of weakly foliated biotitized green dike, with 27.6 28.0 minor quartz stringer at lower contact. Metasediments. Well laminated grey argillaceous cherts 28.0 37.5 or cherty argillites. Moderate disseminated pyrite 08886F <0.0006 32.0 0.6 31.0 in beds from 22.5 to 27.5. Quartz stringer at 31.5, pyrite paint with manganese stain at 30.5. Blocky core with limonite and pyrolusite on joint 37.5 38.5 fractures. Hard siliceous cherty fragments. 38.5 Metasediments: Well laminated grey cherty quartzites 89.3 and cherty argillites banded sub parallel to core axis. Semipelitic argillites with garnet from 64.5 on. <0.0006 1.5 44.2 Quartz-carbonate biotite veinlet at 44.7. Limy bed 08887F 45.2 1.0 at 64.5. Pyrite paint with carbonate on joint parallel to core axis at 71.0 with blocky core. Blocky core at 73-74 with trace slickensides Biotite-spotted quartzites from 75 to 79. Pyrite-carbonate paint on joint at 82.0 at 20° to

core\_axis.

#### BEAVON CONSULTING LIMITED

DIAMOND DRILL RECORD

HOLE NO:

85-38

PAGE NO: 2 of 2

SAMPLE FOOTAGE FOOTAGE Oz/t Bi LENGTH. DESCRIPTION Nº: from 10 from to ppm 0.0006 < 0.3 89.0 90.0 89.5 Blue quartz impregnated metasediments. Negligible 08888F 1.0 89.3 mineralization. 114.8 Metasediments. Argillaceous garnetiferous cherty 89.5 quartzites. Fine grained siliceous chert at 106; limy band at 107.8. Moderately banded at 40° to core axis. 08889F 114.8 116.9 2.1 <0.0006 < 0.3 Quartz impregnated cherty quartzites with 114.8 116.9 occasional limy sections. Some bluish quartz. Negligible mineralization. Metasediments light grey siliceous cherts, finely 116.9 125.0 banded at 35° to core axis. Quartz impregnated metasediments with white mortared 125.0 129.0 < 0.0006 < 0.03 127.0 08890F 125.0 2.0 (microbrecciated and rehealed) quartz. Trace 127.0 129.0 <0.006 < 0.03 carbonate with quartz. Possible fault at 127 with 08891F drusy quartz. Trace pyrite paint at 126.5. 129.0 144.5 Metasediments. Well banded quartzitic cherts at 45° to core axis. Occasional limy bands up to 1.0 0.2 ft. wide throughout. Sparsely garnetiferous 08892F 144.5 145.5 <0.0006 0.3 Short section of quartz-impregnation with pyrite 144.5 145.5 and trace pyrrhotite, pyrite paint on joints. 145.5 166.5 Metasediments: as 129-144.5 <0.0006 0.4 08893F 167.5 1.0 166.5 Quartz impregnated section 166.5 167.5 Metasediments: as 129.0-144.5. Occasional quartz 167.5 200.0 veinlets with negligible mineralization. 192-193 Metasediment with 0.2 ft. quartz, 08894F 192.0 193.0 1.0 <0.0006 0.6

|                                      | 3        | 1     |       |     |         |     |          | 3        | 1 | •        |
|--------------------------------------|----------|-------|-------|-----|---------|-----|----------|----------|---|----------|
| trace pyrite.                        |          |       |       |     | i       |     |          |          |   |          |
| 193-194 Metasediment 0.4 ft. quartz. | 08895F   | 193.0 | 194.0 | 1.0 | <0.0006 | 0.4 |          |          |   |          |
|                                      | <u> </u> |       |       | !   |         |     | <u> </u> |          |   | <u> </u> |
| END OF DDH 85-38 at 200 feet.        | <u> </u> |       |       |     |         |     | ļ        | <u> </u> |   |          |
|                                      |          |       |       |     |         |     |          |          | 1 | 1        |
|                                      |          |       |       |     |         |     |          |          |   | 1        |
|                                      |          |       |       |     |         |     | 1        |          |   |          |
|                                      |          |       |       |     |         |     |          |          |   | T        |
|                                      |          |       |       |     |         |     |          |          |   | $\prod$  |
|                                      |          |       |       |     |         |     |          |          |   |          |
|                                      |          |       |       |     |         |     |          |          |   |          |

| COLLAR:           | HOL     | E SURVEY |     |  |  |
|-------------------|---------|----------|-----|--|--|
| 5+15W x16+00N     | METHOD: |          |     |  |  |
|                   | FOOTAGE | AZIMUTH  | DIP |  |  |
| ELEVATION         |         |          |     |  |  |
| CORE SIZE BQ      |         |          |     |  |  |
| LOGGED BY B. King |         |          |     |  |  |
| DATE LOGGED _     |         |          |     |  |  |
| MAP REFERENCE No. |         |          |     |  |  |
| Dip -90°          |         |          |     |  |  |
|                   |         |          |     |  |  |
|                   |         |          |     |  |  |
|                   | 1       |          |     |  |  |

| COMPANY NAME Mono Gold Mines Inc.           |
|---------------------------------------------|
| PROPERTY NAME Bannockburn                   |
| DRILLING CONTRACTOR McKnight                |
| ASSAYER                                     |
| PURPOSE OF HOLE to test geochemical anomaly |
|                                             |
| •                                           |

| CLAIM NAME/No.                             |  |
|--------------------------------------------|--|
|                                            |  |
| COMMENCED Nov 14, 85                       |  |
| FINISHED NOV 16, 85                        |  |
| FINISHED Nov 16, 85<br>FINAL DEPTH 300 ft. |  |
| PROJECT No.                                |  |

| FROM | то      | RECOVY  | DESCRIPTION                                                                        |          | SA   | MPLE  |          | oz/ton | ppm | ppm      | ASSAYS |      |  |
|------|---------|---------|------------------------------------------------------------------------------------|----------|------|-------|----------|--------|-----|----------|--------|------|--|
|      |         |         |                                                                                    | FROM     | то   | WIDTH | No.      | Au     | Bi  | Те       |        |      |  |
| 0.0  | 3.0     |         | Casing                                                                             |          |      |       |          |        |     |          |        |      |  |
|      |         |         |                                                                                    |          |      |       |          |        |     |          |        | <br> |  |
| 3.0  | 19.5    |         | Quartzitic Metasediments                                                           |          |      |       |          |        |     |          |        |      |  |
|      |         |         | -fine grained, grey to black, cherty, mod-poorly foliated, with poor compositional |          |      |       |          |        |     |          |        |      |  |
|      |         |         | banding, himts of chl, ep, bio rich bands                                          |          |      |       |          |        |     |          |        |      |  |
|      |         |         | -4.5 - 5.5; ground core                                                            |          |      |       |          |        |     |          |        |      |  |
|      |         |         | -7.5' \( 0.1' \) qtz-cc vein, with spks py, sharp contacts @ 50°                   |          |      |       |          |        |     | <u> </u> |        | <br> |  |
|      |         |         | -no carbonatization                                                                |          |      |       |          |        |     |          |        |      |  |
|      |         |         | -10.5'.< 0.1' gtz vein, few spks py                                                |          |      |       |          |        |     |          |        |      |  |
|      |         |         | -16.5 - ≃ 19', minor silicified zone with veining @ 20°, blue qtz, minor cc        | 16.5     | 18.0 | 1.5   | 8896 F   | 0.002  | 0.5 | ¢ 0.3    |        |      |  |
|      |         |         |                                                                                    |          |      |       | <u> </u> |        |     |          |        | <br> |  |
| 19.5 | 33.9    |         | Semi Pelitic Metasediment                                                          |          |      |       |          | ļ      |     |          |        |      |  |
|      |         |         | -sharp contact 0.15°, quartzite with increased bio, minor foliation, more          | <u> </u> |      |       |          | ļ      |     |          |        |      |  |
|      |         |         | uniform rk , few seams chl. minor dissem py.                                       |          |      |       |          |        |     |          |        | <br> |  |
|      | <u></u> | <u></u> | -221. qtz-feldspar@garnet. clusters. begin                                         |          |      |       |          |        |     |          |        |      |  |

| DATE LOGGED   |                      |
|---------------|----------------------|
| COMPANY NAME  | Mono Gold Mines Inc. |
| PROPERTY NAME |                      |

HOLE No. 85-39

|       | Τ     | T        |                                                                                     | T     | CAI   | MPLE  |        | T :      | <u> </u> | SAYS    | <br><del></del> |       |  |
|-------|-------|----------|-------------------------------------------------------------------------------------|-------|-------|-------|--------|----------|----------|---------|-----------------|-------|--|
| FROM  | то    | RECOVY   | DESCRIPTION                                                                         | FROM  | TO    | WIDTH | No.    | oz./ta   | <u> </u> | Te ppm  | <br>            | ····· |  |
| 33.9  | 126.7 |          | Quartzite Metasediments                                                             |       |       |       |        | 70       | DI DUN   | ie puii |                 |       |  |
|       | _     |          | -weak, transitional contact, unit returns to compositional banded, better foliated, |       |       |       |        | <u> </u> |          |         |                 |       |  |
|       |       | <u> </u> | med-fine gr quartzite                                                               | 34.0  | 36.0  | 2.0   | 8897 F | 0.001    | 0.3      | 0.3     |                 |       |  |
|       |       |          | -unit begins as a contorted, swirled silieeous zone with minor chl, ep, cc          |       |       |       | -      | <u> </u> |          |         | <br>            |       |  |
|       |       |          | -fol 10 - 20° to core axis                                                          |       |       |       |        | <u> </u> |          |         | <br>            |       |  |
|       |       |          | -39.0 - 43.0, very siliceous (cherty)                                               |       |       |       |        |          |          |         |                 |       |  |
|       |       |          | -43.6', 0.1' qtz-cc vein with phlogopite/musc. growth, few blebs py                 | 43.2  | 44.2  | 1.0   | 98     | 0.0006   | 0.4      | 0.3     |                 |       |  |
|       |       |          | -59.0 - 62.0', sub parallel (to core) quartz vein (0.1'), with minor cc and spks py | 59.0  | 62.5  | 3.5   | 99     | 0.0009   | 1.1      | 0.3     |                 |       |  |
|       |       |          | -62 -65', cherty, very sil rk                                                       |       |       |       |        | <u> </u> |          |         |                 |       |  |
|       |       |          | -76.7, minor qtz vein                                                               | 86.0  | 88.5  | 2.5   | 900 F  | 0.001    | 0.7      | 0.3     |                 |       |  |
|       |       |          | -84.5 - 89.0', siliceous zone with minor quartz veins @ 15°                         |       |       |       |        |          |          |         |                 |       |  |
|       |       |          | -foliation sub parallel to core to 103'                                             | 106.2 | 107.2 | 1.0   | 8901   | 0.001    | 68.0     | 0.3     |                 |       |  |
|       |       |          | -103 - 109', shift in foliation up to 35°, leading to qtz-cc vein @ 106.7           |       |       |       |        | <u> </u> |          |         |                 |       |  |
|       |       |          | -boudin?, mineralized flexure?, blebs of py                                         |       |       |       |        |          |          |         |                 |       |  |
|       |       |          |                                                                                     |       |       |       |        |          |          |         |                 |       |  |
| 126.7 | 127.7 |          | Lost core                                                                           |       |       |       |        | <u> </u> |          |         |                 |       |  |
|       |       |          |                                                                                     |       |       |       |        |          |          |         |                 |       |  |
|       |       |          |                                                                                     |       |       |       |        |          |          |         |                 |       |  |
| 126.7 | 127.7 |          | Lost core                                                                           |       |       |       |        |          |          |         |                 |       |  |

PAGE \_2\_\_\_\_ OF \_\_\_\_4\_\_

| DATE LOGGED                     |  |
|---------------------------------|--|
| COMPANY NAMEMono_Gold_Mines_Inc |  |
| PROPERTY NAME Bannockburn       |  |

HOLE No. 85-39

| FROM  | то       | RECOVY  | DESCRIPTION                                                                            | SAMPLE oz/ton |       |       | oz/ton ASSAYS |                 |          |                |  |   |  |
|-------|----------|---------|----------------------------------------------------------------------------------------|---------------|-------|-------|---------------|-----------------|----------|----------------|--|---|--|
|       |          | 1120011 | DESCRIPTION                                                                            | FROM          | то    | WIDTH | No.           | Au              | Bi pom   | Te ppm         |  |   |  |
| 127.7 | 300.0    |         | Quartzitic Metasediments                                                               |               |       | ļ     |               | ļ               | <u> </u> |                |  |   |  |
|       |          |         | -sim 33.9 - 126.7                                                                      |               |       |       |               |                 |          |                |  |   |  |
|       | <b>-</b> |         | -sporadic gamet clusters (xcutting?)                                                   |               |       |       |               |                 |          |                |  |   |  |
|       |          |         | -150.2, 0.2' altered zone, silicified, chl, ep, films of py on fracture surfaces @ 35° | 150_0         | 152.0 | 2.0   | 8902 F        | 0.0009          | 1.2      | <b>CO_3</b>    |  |   |  |
|       |          |         | =151.4, qtz vein 0.1 0 55° with sharp contacts, blebs py, minor cc foliation           |               |       | ļ     |               | <u> </u>        |          |                |  |   |  |
|       |          |         | tends to rotate from sub parallel to 40°                                               |               |       |       |               |                 |          |                |  |   |  |
|       |          |         | _152.0 _154.0', strong fracturing @ 5 - 10°, heavy py                                  |               |       |       |               |                 |          |                |  |   |  |
|       |          |         | -165.7, 40° slip or fracture, bio parallel to surface, minor silicification with ep    |               |       |       |               |                 |          |                |  |   |  |
|       |          |         | (calc - sil), fine cordierite                                                          |               |       |       |               |                 |          |                |  |   |  |
|       |          |         | -209.0 - 215, cherty bands sub parellel to core                                        |               |       |       |               |                 |          |                |  |   |  |
|       |          |         | -231.7, siliceous vein with diffuse contacts @ 50°, blue timt, spks py                 | 231.4         | 232.4 | 1.0   | 8903          | 0.0006          | 0.4      | <b>&lt;0.3</b> |  |   |  |
|       |          |         | -236 - 239, minor altered zone, ep, cc, siliceous                                      |               |       |       |               |                 |          |                |  |   |  |
|       |          |         | -235.5, quartz vein with sharp contacts, @ 40°, barren                                 |               |       |       |               |                 |          |                |  |   |  |
|       |          |         | -236.8 - 238.8, semi pelitic band with diffuse siliceous zones, minor chl              | 236.8         | 238.8 | 2.0   | 8904          | <b>(</b> 0.0006 | 0.5      | 1.0            |  | : |  |
|       |          |         | bio, $\pm$ ep, minor sulphides, (sim 150.21)                                           |               |       |       |               |                 |          |                |  |   |  |
|       |          |         | -254.0 - 256.5, semi pelitic with 5 - 10% py/po, bordering a silicified zone           |               |       |       |               |                 |          |                |  |   |  |
|       |          |         | -255.5 - 257.5, generally siliceous zone with diffuse quartz vein sub parallel to      | 255.5         | 257.5 | 2.0   | 8905          | 0.015           | 2.0      | 0.3            |  |   |  |
|       |          |         | core, blebs of py, no cc noted                                                         |               |       |       |               |                 |          |                |  |   |  |

PAGE 3 OF 4

| DATE LOGGED                        |                |
|------------------------------------|----------------|
| COMPANY NAME _Mono_Gold Mines_Inc. |                |
| PROPERTY NAME Bannockburn          | HOLE No. 85-39 |

|       |              |        |                                                                                    |       |       |       |      |          | 11022  | No          |      |                                       |         |
|-------|--------------|--------|------------------------------------------------------------------------------------|-------|-------|-------|------|----------|--------|-------------|------|---------------------------------------|---------|
| FROM  | TO           | RECOVY | DESCRIPTION                                                                        |       |       | MPLE  |      | oz/ton   |        | SAYS        |      |                                       |         |
|       |              |        |                                                                                    | FROM  | то    | WIDTH | No.  | Au       | Bi ppm | Te ppm      | <br> |                                       |         |
| 127.7 | 300.0        |        | -271.0 - 272.5 -sim 255.5 - 257.5                                                  |       |       |       |      |          |        |             |      |                                       | <b></b> |
|       | cont.<br>EOH |        | -279.5 - 281.5, shift in foliation, increased sulphides, strong quartzitic breccia | 279.5 | 281.5 | 2.0   | 8906 | 0.0006   | 0.6    | <b>ζ0.3</b> |      |                                       |         |
|       |              |        | in 2 bands @ 85°, bands are 0.4' separated by0.3' schist, blue qtz,                |       |       |       |      |          |        |             |      |                                       |         |
|       |              |        | minor cc                                                                           |       |       |       |      |          |        |             |      |                                       |         |
|       |              |        | -may be related to "mine structure" or sim feature?                                |       |       |       |      | ]        |        |             |      | · · · · · · · · · · · · · · · · · · · |         |
|       |              |        | -290.2, < 0.1' quartz vein ° 50°, no cc, minor sulphides                           |       |       |       |      |          |        |             |      |                                       |         |
|       |              |        |                                                                                    |       |       |       |      | <u> </u> |        |             |      |                                       |         |
|       |              |        |                                                                                    |       |       |       |      |          |        |             |      |                                       |         |
|       |              |        |                                                                                    |       |       |       |      |          |        |             |      |                                       |         |
|       |              |        |                                                                                    |       |       |       |      |          |        |             |      |                                       |         |
|       |              |        |                                                                                    |       |       |       |      |          |        |             |      |                                       |         |
|       |              |        |                                                                                    |       |       |       |      |          |        |             |      |                                       | [       |
|       |              |        |                                                                                    |       |       |       |      |          |        |             |      |                                       |         |
|       |              |        |                                                                                    |       |       |       |      |          |        |             |      |                                       |         |
|       |              |        |                                                                                    |       |       |       |      |          |        |             |      |                                       |         |
|       |              |        |                                                                                    |       |       |       |      |          |        |             |      |                                       |         |
|       |              |        |                                                                                    |       |       |       |      |          |        |             |      |                                       |         |
|       |              |        |                                                                                    |       |       |       |      |          |        |             |      |                                       |         |

| COLLAR:                        | HOL     | E SURVEY |      |
|--------------------------------|---------|----------|------|
| 5 + 15 W x 16 + 00 N           | METHOD: | CID      |      |
| A7M 261                        | FOOTAGE | AZIMUTH  | DIP  |
| ELEVATION                      | 260     |          | -46° |
| CORE SIZE BO LOGGED BY B. King |         |          |      |
| DATE LOGGED                    |         |          |      |
| MAP REFERENCE No.              |         | <u> </u> |      |
| Dip -45°                       |         | L        |      |
| Azm 261°                       |         |          |      |
|                                |         |          |      |
|                                |         |          |      |

| COMPANY NAME     | Mono Gold Mines Inc.        |  |
|------------------|-----------------------------|--|
| PROPERTY NAME_   | Bannockburn                 |  |
| DRILLING CONTRAC | TOR McKnight                |  |
| ASSAYER          |                             |  |
| PURPOSE OF HOLE  | To test geochemical anomaly |  |
|                  |                             |  |

| HOLE No<br>CLAIM NAME/N |         |      |  |
|-------------------------|---------|------|--|
| COMMENCED.              |         |      |  |
| FINISHED                | Nov 18, | 1985 |  |
| FINAL DEPTH _           |         |      |  |
| PROJECT No              |         |      |  |

| FROM | то   | RECOVY | DESCRIPTION                                                                          |      | SA   | MPLE  |       | oz/ton       |        |        | ASSAYS |          |  |
|------|------|--------|--------------------------------------------------------------------------------------|------|------|-------|-------|--------------|--------|--------|--------|----------|--|
|      |      |        |                                                                                      | FROM | то   | WIDTH | No.   | oz/ton<br>Au | Bi pom | Te ppm |        |          |  |
| 0.0  | 4.0  |        | Casing                                                                               |      |      |       |       |              |        |        |        |          |  |
|      |      |        |                                                                                      |      |      |       |       |              |        |        |        |          |  |
| 4.0  | 12.0 |        | Banded Quartzitic Metasediments                                                      |      | _    |       |       |              |        |        |        |          |  |
|      |      |        | -poorly banded, semi pelitic/psammitic layering, generally siliceous, minor dissem   | ·    |      |       |       |              |        |        |        |          |  |
|      |      |        | (5%) py/po - sygenetic                                                               |      |      |       |       |              |        |        |        |          |  |
|      |      |        | -37', compositional foliation @ 42°                                                  |      |      |       |       |              |        |        |        | <u>-</u> |  |
|      |      |        | -7.6', 0.1' conformable qtz vein within silicified zone, spks & films po             | 7.4  | 8.1  | 0.7   | 8907± | 0.0006       | 1.4    |        |        |          |  |
|      | -    |        | -10.2', sim 7.6'                                                                     |      |      |       |       |              |        |        |        |          |  |
| 12.0 | 55.0 |        | Siliceous, Semi Pelitic Metasediment                                                 |      |      |       |       |              |        |        |        |          |  |
|      |      |        | -arbitrary contact, general increase in pelitic mat'l, stronger foliation, more bio. |      |      |       |       |              | }<br>} |        |        |          |  |
|      |      |        | chl,po                                                                               |      |      |       |       |              |        |        |        |          |  |
|      |      |        | -22' - 32, 34.5, garnets, ep, cc (altered zones)                                     |      |      |       |       |              |        |        |        |          |  |
|      |      |        | -35.2, 0.1' qtz vein with py blebs, within siliceous, recrystallized zone, py on     | 35.2 | 36.5 | 1.3   | 8908  | 0.001        | 3.9    |        |        |          |  |
|      |      |        | fractures to 36.5                                                                    |      |      |       |       |              |        |        |        |          |  |

| DATE LOGGED  |                      |
|--------------|----------------------|
| COMPANY NAME | Mono Gold Mines Inc. |
| DOODEDTYNAME |                      |

HOLE No. 85-40

| FROM | то   | RECOVY   | DESCRIPTION                                                                            |      | SA      | MPLE     |      | oz/ton   |        |        |   |  |  |   |  |
|------|------|----------|----------------------------------------------------------------------------------------|------|---------|----------|------|----------|--------|--------|---|--|--|---|--|
|      |      |          | OLSONIF HON                                                                            | FROM | то      | WIDTH    | No.  | Au       | Bi ppm | Te ppm |   |  |  |   |  |
| 5.0  | 95.8 |          | Quartzitic Banded Metasediments                                                        |      |         |          |      |          |        |        |   |  |  | L |  |
|      |      |          | -arbitrary contact, unit returns to sim 4.0 - 12.0, crudely banded                     |      |         |          |      |          |        |        |   |  |  | L |  |
|      |      |          | semi pelitic/psammitic rk, generally cherty (silicified)                               |      | <u></u> |          |      |          |        |        |   |  |  |   |  |
|      |      |          | -58.5'. possible "Z" style parasitic fold                                              |      |         |          |      |          |        |        |   |  |  | L |  |
|      |      |          | -59.8 - 61.0, series of mineralized fractures, with chl.cc. pv. minor sericite.        | 59.8 | 61.0    | 1.2      | 8909 | 0.0006   | 0.6    |        |   |  |  | L |  |
|      |      |          | rock has bleached (altered) appearance, fractures @ 45 - 50°                           | 61.0 | 62.5    | 1.5      | 10   | 0.0006   | 0.8    |        |   |  |  | L |  |
|      |      |          | -61.0 - 62.5, silicic, cherty zone, similar bleached appearances, minor conformable py |      |         | <u> </u> |      |          |        |        |   |  |  | L |  |
|      |      |          | -63.5 - 64.5, qtz vein, spks py/po, (blue qtz), minor sericite, chl, 45°               | 63.5 | 64.5    | 1.0      | _11  | 0.0006   | 0_5    |        |   |  |  | L |  |
|      |      |          | -74.0 - 75.0, cherty zone                                                              |      |         |          |      |          |        |        |   |  |  | L |  |
|      |      |          | -77', possible fault contact, deformed zone, diffuse banding                           |      |         |          |      |          |        |        |   |  |  | L |  |
|      |      |          | -78', similar 77' less intense                                                         |      |         |          |      |          |        |        |   |  |  | L |  |
|      |      |          | -79.0 - 80.0. 2, 0.1' conformable qtz vein, minor folding to 82'                       | 70.0 | 80.0    | 1.0      | 12   | 0.0006   | 6.5    |        |   |  |  | L |  |
|      |      |          | 84.8', ground core/ fracture zone with py                                              |      |         |          |      |          |        |        |   |  |  | L |  |
|      |      |          | -85.5 - 86.0', contorted, brecoented siliceous zone, origin unknown                    |      |         |          |      | <u> </u> |        |        |   |  |  | L |  |
|      |      |          | -90.2 - 91.2, 0.2' qtz vein, spks py, bio, conformable                                 | 90.2 | 91.2    | 1.0      | 13   | 0.0006   | 0.4    |        |   |  |  | L |  |
|      |      | <u> </u> | -92.5 - 93.5. 0.1' qtz vein with granular py, po, tr, cpy                              | 92.5 | 93.5    | 1.0      | 14   | 0.004    | 0.3    |        |   |  |  | L |  |
|      |      |          |                                                                                        |      |         |          |      |          |        |        |   |  |  | L |  |
| !    |      |          |                                                                                        |      |         |          |      |          |        |        | Ì |  |  |   |  |

| ROPER        | TY NAME | EBanno | ckburn                                                                          |      |          |       |     | HOLI | No8      | 5-40 |     | <u></u> |
|--------------|---------|--------|---------------------------------------------------------------------------------|------|----------|-------|-----|------|----------|------|-----|---------|
| ROM          | то      | RECOVY | DESCRIPTION                                                                     |      | SA       | MPLE  |     | A:   | SSAYS    |      |     |         |
|              |         |        |                                                                                 | FROM | то       | WIDTH | No. |      |          |      |     |         |
| <b>95.</b> 8 | 101.2   |        | Pelitic Metasediments                                                           |      |          |       |     |      |          |      |     |         |
|              |         |        | -homogenous, grey-brown, well foliated, f-med grained rk, with sharp contacts   |      |          |       |     |      |          | ļ    |     |         |
|              |         |        | very finely dissem garnet, weak compositional banding                           |      | -        |       |     | -    |          |      |     |         |
| 101.2        | 183.0   |        | Quartzitic Banded Metasediments                                                 |      |          |       |     |      |          |      |     | ·       |
|              |         |        | -sim 55.0 - 95.8 with altermating bands of psammitic and pelitic mat'l          |      |          |       |     |      |          |      |     |         |
|              |         |        | -105.5, 109.0 - 112.0, semi pelitic bands with garmets                          |      | <u>.</u> |       |     |      |          |      |     |         |
|              |         |        | -110.0, fracture with cc and granular py @ 20°                                  |      | L        |       |     |      |          |      |     |         |
|              |         |        | -111.3, conformable qtz-cc vein, minor granular py, chl                         |      |          |       |     |      |          |      |     |         |
|              |         |        | -125', foliation @ 45°                                                          |      |          |       |     |      |          |      |     |         |
|              |         |        | -begining at 174', pervasive carbonatization (related to unit below)            |      |          |       |     |      |          |      |     |         |
| 183.0        | 259     |        | Calcareous Psammitic Metasediments                                              |      | 4        |       |     |      |          |      |     |         |
|              | EOH     |        | -contact is arbitrary, begins with band of epidotized marble, few garnetiferous |      |          |       |     |      |          |      |     |         |
|              |         |        | semi pelitic layers                                                             |      |          |       |     |      |          |      |     |         |
|              |         |        | -folding evident, banding rotates sub parallel to core, very incompetant unit   |      |          |       |     |      |          |      |     |         |
|              |         |        | -unit is either siliceous marble or carbonatized psammite?                      |      |          |       | ·   |      | <u> </u> |      |     |         |
|              |         |        |                                                                                 |      |          |       |     |      |          | 1    | 1 I |         |

PAGE 3 OF 4

| DATE LOGGED _ | Mary Cold Mines Tree             |        |
|---------------|----------------------------------|--------|
|               | Mono Gold Mines Inc. Bannockburn |        |
| PHOPERITINAME |                                  |        |
| T I           |                                  | SAMPLE |

HOLE No. 85-40

|      |    | · · · · · · · · · · · · · · · · · · · |                                                                                   | <del></del> | 744   |       |        |         | <u> </u> |       | <br> |                                       |
|------|----|---------------------------------------|-----------------------------------------------------------------------------------|-------------|-------|-------|--------|---------|----------|-------|------|---------------------------------------|
| FROM | то | RECOVY                                | DESCRIPTION                                                                       |             |       | MPLE  |        | oz/to   | 1        | SAYS  |      | <br>                                  |
|      |    |                                       |                                                                                   | FROM        | то    | WIDTH | No.    | Au      | Bi ppm   | Террп | <br> |                                       |
|      |    |                                       | -197.0', strong banding, minor brecciation, < 10% granular/dissem py on foliation |             |       |       |        |         |          |       |      | · · · · · · · · · · · · · · · · · · · |
|      |    |                                       | -204.0, banding/ comp foliation @ 40°                                             |             |       | ļ     |        |         |          |       |      | <br>                                  |
|      |    |                                       | -210 - 216, folding, banding rotates to sub parellel                              |             |       |       |        |         |          |       |      |                                       |
|      |    |                                       | -220', banding @ 50°                                                              | <u> </u>    |       |       |        |         |          |       |      |                                       |
|      |    |                                       | -222.5', strongly folded again, ferruginous calcite, ep etc. axial cleavage       |             |       |       |        |         |          |       |      |                                       |
|      |    |                                       | -228', fol/banding returns to≃50°                                                 |             |       |       |        |         |          |       |      |                                       |
|      |    |                                       | -220.1 - 221.1 . < 0.1' atz veining. minor sulphides                              | 220.1       | 221.1 | 1.0   | 8915 F | k0.0006 | 0.3      |       |      |                                       |
|      |    |                                       | -230.3 - 236.0, carbonate content drops dramatically, becomes typical quartzitic  |             | ļ     |       |        |         |          |       | <br> | <br>                                  |
|      |    |                                       | sediment                                                                          |             |       |       |        |         |          |       |      |                                       |
|      |    |                                       | _236 - 259 (EOH), carbonate (limy) bands resume                                   |             |       |       |        |         |          |       |      |                                       |
|      |    |                                       | -239' banding/foliation 50°                                                       |             |       |       |        |         |          |       | <br> | <br>                                  |
|      |    |                                       | -259', banding/foliation 45°                                                      | <u> </u>    |       |       |        |         |          |       | <br> | <br>                                  |
|      |    |                                       |                                                                                   |             |       |       |        |         |          |       |      |                                       |
|      |    |                                       |                                                                                   |             |       |       |        |         |          |       |      |                                       |
|      |    |                                       |                                                                                   |             |       |       |        |         |          |       |      |                                       |
|      |    |                                       |                                                                                   |             |       |       |        |         |          |       |      |                                       |
|      |    |                                       |                                                                                   |             |       |       |        |         |          |       |      |                                       |
|      |    |                                       |                                                                                   |             |       |       |        |         |          |       |      |                                       |

| COLLAR:       |              | HOL     | E SURVEY |      |
|---------------|--------------|---------|----------|------|
|               | 4+00N        | METHOD: | hf       |      |
|               | 3+00E        | FOOTAGE | AZIMUTH  | DIP  |
| ELEVATION     |              | 605     |          | -46° |
| CORE SIZE     | BQ           |         |          |      |
| LOGGED BY     | B. King      |         |          |      |
| DATE LOGGED   | Nov 21, 1985 |         |          |      |
| MAP REFERENCE |              |         |          |      |
|               | Dip -45°     |         |          |      |
|               | Azm 261°     |         |          |      |
|               | <u>-</u>     |         |          |      |

| COMPANY NAME Mono Gold Mines Inc.                    |
|------------------------------------------------------|
| PROPERTY NAME Bannockburn, Bannockburn Mine          |
| DRILLING CONTRACTOR MCKnight.                        |
| ASSAYER Lakefield Research                           |
| PURPOSE OF HOLE to test the "mine structure at depth |
|                                                      |
|                                                      |

| CLAIM NAME/NO.  COMMENCED NOV 18. 1985  FINISHED NOV 20, 1985 |  |
|---------------------------------------------------------------|--|
| FINISHED Nov 20, 1985                                         |  |
| for the s                                                     |  |
| FINAL DEPTH 6051 PROJECT No                                   |  |

| FROM   | то                                               | RECOVY | DESCRIPTION                                                                             |               | SA   | MPLE     |       | oz/ton  |  | ASSAYS | <br> |   |
|--------|--------------------------------------------------|--------|-----------------------------------------------------------------------------------------|---------------|------|----------|-------|---------|--|--------|------|---|
|        |                                                  |        |                                                                                         | FROM          | TO   | WIDTH    | No.   | Au      |  |        |      |   |
| 0.0    | 9.0                                              |        | Casing                                                                                  |               |      |          |       |         |  |        |      |   |
|        |                                                  |        |                                                                                         |               |      |          |       |         |  |        |      |   |
| 9.0    | 11.0                                             |        | Fault Zone                                                                              |               |      |          |       |         |  |        |      |   |
|        |                                                  |        | -complex, frag's of chl Greenstone? cemented with chert, 10.4, lost water, blocky groun | d             |      |          |       |         |  |        |      |   |
|        |                                                  |        | heavy fracturing, poor come recovery, zone is mineralized with py                       |               |      |          |       |         |  |        |      |   |
| 11.0   | 17.3                                             |        | Chloritic Metasediments                                                                 |               |      |          |       |         |  |        |      |   |
|        |                                                  |        | -crudely banded, chl,qtz,cc,biork strongly carbonatized, brecciated and mineralized     | 11.7          | 12.7 | 1.0      | 8916F | (0.0006 |  |        |      |   |
|        |                                                  |        | with hem, in veins, minor cordierite, strong dissem euhedral py                         |               |      |          |       |         |  |        |      |   |
|        |                                                  |        | -entire unit may be crush zone or fault?                                                |               |      |          |       |         |  |        |      |   |
| 17.3-3 | 8.0                                              |        | Siliceous, Epidotized Tectonic Breccia                                                  |               |      |          |       |         |  |        |      |   |
|        | <b>7</b>                                         |        | -mod well banded, pale ep-qtzitic fragments in bands, succrosic texture with condierit  | }<br><b>?</b> |      | <u> </u> |       |         |  |        | <br> |   |
|        |                                                  |        | bio                                                                                     |               |      |          |       |         |  |        |      |   |
|        | <del>                                     </del> |        | -20.0; possible "s" style parasitic folding                                             |               |      |          |       |         |  |        |      | - |

| DATE LOGGED   |
|---------------|
| COMPANY NAME  |
| PROPERTY NAME |

HOLE No.85-41

|      |       |          |                                                                                    | SAMPLE   |      |       |              |               |     |          |          |  |  |          |  |  |  |  |  |  |
|------|-------|----------|------------------------------------------------------------------------------------|----------|------|-------|--------------|---------------|-----|----------|----------|--|--|----------|--|--|--|--|--|--|
| FROM | то    | RECOVY   | DESCRIPTION                                                                        |          |      | ·     | <del> </del> | oz/ton        | ASS | AYS      |          |  |  |          |  |  |  |  |  |  |
|      |       | <u> </u> |                                                                                    | FROM     | то   | WIDTH | No.          | Au            |     |          |          |  |  |          |  |  |  |  |  |  |
|      |       |          | -31.0; fol/banding @ 45°                                                           |          |      |       |              |               |     |          |          |  |  |          |  |  |  |  |  |  |
|      |       |          | -25.2-27.2; 0.2' qtz-cc vein, plus 0.3' qtz -cc vein, both strong py, minor ep     | 25.2     | 27.2 | 2.0   | 8917         | 0.0008        |     |          |          |  |  |          |  |  |  |  |  |  |
|      |       |          | -28.5-29.5; sim 25.2-27.2; but here with probable condierite                       | 28.5     | 29.5 | 1.0   | 8918         | <0.0006       |     |          |          |  |  |          |  |  |  |  |  |  |
| 38.0 | 60.0  |          | Cherty Metasediments                                                               |          |      |       |              |               |     | <u> </u> |          |  |  |          |  |  |  |  |  |  |
|      |       |          | -upper ctc prob faulted with 1' qtz-cc stringer                                    |          |      |       |              |               |     |          |          |  |  |          |  |  |  |  |  |  |
|      |       |          | -38.3-39.3; complex swirl or fold of kspar, qtz,cc,blebs py                        | 38.3     | 39.3 | 1.0   | 8919         | <b>K0.000</b> |     |          |          |  |  |          |  |  |  |  |  |  |
|      |       |          | -unit is essentially a bland grey massive f gr bio-qtzite, with varying degrees of |          |      |       |              |               |     |          |          |  |  |          |  |  |  |  |  |  |
|      |       |          | silicification                                                                     |          |      |       |              |               |     |          |          |  |  |          |  |  |  |  |  |  |
|      |       |          |                                                                                    |          |      |       |              |               |     |          |          |  |  |          |  |  |  |  |  |  |
| 60.0 | 62.1  |          | Fault Zone                                                                         |          |      |       |              |               |     |          |          |  |  |          |  |  |  |  |  |  |
|      |       |          | -shear/fault 0 87°, ep qtzitic frags in chl matrix with stringers of cc, badly     |          |      |       |              |               |     |          | <u>.</u> |  |  |          |  |  |  |  |  |  |
|      |       |          | broken, poor recovery                                                              | <u> </u> |      |       |              |               |     | :        |          |  |  |          |  |  |  |  |  |  |
|      |       |          |                                                                                    |          |      |       |              |               |     |          |          |  |  |          |  |  |  |  |  |  |
| 62.1 | 180.0 |          | Cherty Metasediments                                                               |          |      |       |              |               |     |          |          |  |  |          |  |  |  |  |  |  |
|      |       |          | -f gr, poorly banded, silicified and carbonatized, grey-brown, pale                |          |      |       |              |               |     |          |          |  |  |          |  |  |  |  |  |  |
|      |       |          | -upper ctc has potassic alteration with minor ep, py                               |          |      | ļ     |              |               |     |          |          |  |  |          |  |  |  |  |  |  |
|      |       |          | -66.0; fol/banding @ 40°                                                           |          |      |       |              |               |     |          |          |  |  | <u> </u> |  |  |  |  |  |  |

| DATE LOGGED   |  |
|---------------|--|
| COMPANY NAME  |  |
| PROPERTY NAME |  |

HOLE No.25-41

| FROM  | то | RECOVY | DESCRIPTION                                                                         | DESCRIPTION SAMPLE    |       |       |      |                   |  | z/ton ASSAYS |  |  |  |  |  |  |  |  |
|-------|----|--------|-------------------------------------------------------------------------------------|-----------------------|-------|-------|------|-------------------|--|--------------|--|--|--|--|--|--|--|--|
| PHOM: | 10 | RECOVI | DESCRIPTION                                                                         | FROM                  | то    | HTQIW | No.  | Au                |  |              |  |  |  |  |  |  |  |  |
| _     |    |        | 68.4; qtz-cc vein @ 40°, blebs py, blue qtz or cordierite                           | 67.7                  | 69.2  | 1.5   | 8920 | K0.0006           |  |              |  |  |  |  |  |  |  |  |
|       |    |        | -75.2-76.3; altered zone, epidote, cherty-silicified, minor brecciation             |                       |       |       |      |                   |  |              |  |  |  |  |  |  |  |  |
|       |    |        | -77.0-78.0; broken ground, weathered, fault zone?                                   | <i>7</i> 5 <b>.</b> 0 | 76.5  | 1.5   | 8921 | (0.0006           |  |              |  |  |  |  |  |  |  |  |
|       |    |        | -78.79.0; qtz-cc vein @ 70°, spks py, poor recovery                                 | 76.5                  | 78.0  | 1.5   | 8922 | <b>&lt;0.0006</b> |  |              |  |  |  |  |  |  |  |  |
|       |    |        | -80.0-80.5; coarse silicified zone, diffuse and conformable, increasing potassic    | 78.0                  | 79.0  | 1.0   | 8923 | <0.0006           |  |              |  |  |  |  |  |  |  |  |
|       |    |        | alteration with depth                                                               |                       |       |       |      |                   |  |              |  |  |  |  |  |  |  |  |
|       |    |        | 85.0; fol/banding @ 50°, 2" diffuse qtz-kspar? vein @ 91.4                          | 90.9                  | 91.9  | 1.0   | 8924 | ⟨0.000€           |  |              |  |  |  |  |  |  |  |  |
|       |    |        | -94.5-97.4; siliceous zone, diffuse with minor py, cc                               |                       |       |       |      |                   |  |              |  |  |  |  |  |  |  |  |
|       |    |        | -97.6-100.2; potassic zone, with sharp ctc's, conformable @ 80°, pegmatitic with cc | 95.6                  | 97.6  | 2.0   | 8925 | <0.0006           |  |              |  |  |  |  |  |  |  |  |
|       |    |        | ру                                                                                  | 97.6                  | 100.2 | 2.6   | 8926 | <0.0006           |  |              |  |  |  |  |  |  |  |  |
|       |    |        | -110.4; jasperoid, hematite/barite atered zoen, 4"                                  |                       |       |       |      |                   |  |              |  |  |  |  |  |  |  |  |
|       |    |        | -112.0-113.4; sim 97.6-100.2                                                        | 112.0                 | 113.4 | 1.4   | 8927 | <0.0006           |  |              |  |  |  |  |  |  |  |  |
|       |    |        | 120.7-124.7; potassic zone with several qtz-cc stringers, brecciated ctc's. minor   |                       |       |       |      |                   |  |              |  |  |  |  |  |  |  |  |
|       |    |        | dissem py, spks po                                                                  | 120.7                 | 121.7 | 1.0   | 8928 | (0.0006           |  |              |  |  |  |  |  |  |  |  |
|       |    |        | 125.0-131.0; broken core, poor recovery                                             | 121.7                 | 123.6 | 1.9   | 8929 | (0.0006           |  |              |  |  |  |  |  |  |  |  |
|       |    |        | 131.5; fol/banding @ 30°                                                            |                       |       |       |      |                   |  |              |  |  |  |  |  |  |  |  |
|       |    |        | -140.0-161.0; intense red coloured alteration, (hem-skpar), including breccia,      |                       |       |       |      |                   |  |              |  |  |  |  |  |  |  |  |
|       |    |        | and syenitic rk, contact metamorphic aureol, 157.5, prob fault (minor)              |                       |       |       |      |                   |  |              |  |  |  |  |  |  |  |  |

PAGE 3 OF 7

| DATE LOGGED   |  |
|---------------|--|
| COMPANY NAME  |  |
| PROPERTY NAME |  |

HOLE No85-41

|       | <del></del> |        |                                                                                       |       |       |          |      |          |      |                                       |                                       |  |          |
|-------|-------------|--------|---------------------------------------------------------------------------------------|-------|-------|----------|------|----------|------|---------------------------------------|---------------------------------------|--|----------|
| FROM  | TO          | RECOVY | DESCRIPTION                                                                           |       |       | oz/ton   | ASS  | SAYS     | <br> | · · · · · · · · · · · · · · · · · · · |                                       |  |          |
|       |             |        |                                                                                       | FROM  | 10    | MIDIH    | No.  | Au       |      |                                       | <u> </u>                              |  | <u> </u> |
|       |             |        | 167.0; fol/banding @ 42°                                                              |       |       |          |      |          |      |                                       |                                       |  |          |
|       |             |        | -165.0-175.0; banded alteration, hem-ep-cc-py                                         | 174.8 | 175.8 | 1.0      | 8930 | K0.0006  |      |                                       |                                       |  |          |
|       |             |        | -175.0; pegmatitic, qtz-kspar-cc vein/pod, irreg breccia, possibly xcutting?          | 175.8 | 180.0 | 4.2      | 8931 | ⟨0.000€  |      |                                       |                                       |  |          |
| 180.0 | 189.0       |        | Transition Zone                                                                       |       |       |          |      |          |      |                                       |                                       |  |          |
|       |             |        | -contact zone of metased's and syenite, alternating bands of mafic syenite and banded | 180.0 | 182.5 | 2.5      | 8932 | ⟨0.000€  |      |                                       |                                       |  |          |
|       |             |        | altered cherty metasediments, frag's of metased's in syenite                          | 182.5 | 183.5 | 1.0      | 8933 | ₹0.000€  |      |                                       |                                       |  |          |
|       |             |        | -182.5-183.5; porous, vuggy syenite with py blebs, some carbonatization               | 183.5 | 184.7 | 1.2      | 8934 | <0.000E  |      |                                       |                                       |  |          |
|       |             |        |                                                                                       | 184.7 | 187.0 | 2.3      | 8935 | <0.000€  |      |                                       |                                       |  |          |
|       |             |        |                                                                                       | 187.0 | 189.0 | 2.0      | 8936 | ⟨0.000€  |      |                                       |                                       |  |          |
|       |             |        |                                                                                       | 1     |       |          |      |          |      |                                       | · · · · · · · · · · · · · · · · · · · |  |          |
| 189.0 | 237.0       |        | Medium Syenite                                                                        |       |       | <u> </u> |      |          |      |                                       | <br>                                  |  |          |
|       |             |        | -homogeneous, kspar-plag, strong cc, minor qtz                                        |       |       |          |      |          |      |                                       | <br>                                  |  |          |
|       |             |        | -201.0-204.0; partially assimilated metasediement with ep banded alteration           | 201.0 | 203.8 | 2.8      | 8937 | KO.0006  |      |                                       |                                       |  |          |
|       |             | ,      | 210.0-211.0; shear zone, strong cc, minor qtz, chl, py @ 32°                          |       |       |          |      |          |      |                                       |                                       |  |          |
|       |             |        | 220.0-226; vuggy, altered syenite, increased py, carbonatized, relic of OM?           | 210.0 | 211.2 | 1.2      | 8938 | K0.0006  |      |                                       |                                       |  |          |
|       |             |        |                                                                                       |       |       | -        |      |          |      |                                       | <br>                                  |  |          |
|       | <u> </u>    |        |                                                                                       |       |       |          |      | <u>L</u> |      |                                       |                                       |  | Ĺ        |

| DATE LOGGED   |
|---------------|
| COMPANY NAME  |
| PROPERTY NAME |

HOLE No.85-41

|       |       |        |                                                                                    | 1     | SA    | MPLE  |      | <u> </u> | ASS | AYS |   | <br> |   |
|-------|-------|--------|------------------------------------------------------------------------------------|-------|-------|-------|------|----------|-----|-----|---|------|---|
| FROM  | то    | RECOVY | DESCRIPTION                                                                        | FROM  | то    | WIDTH | No.  | 1 1      |     |     | ] |      |   |
| 237.0 | 347.6 |        | Coarse Alkali Syenite                                                              |       |       |       |      |          |     |     |   |      |   |
|       |       |        | -homogeneous, coarse pink kspar rich, bio syenite, minor qtz, dissem py            |       |       |       |      |          |     |     |   |      |   |
|       |       |        | -239.2-264.8; ep alteration, elevated py                                           |       |       |       |      |          |     |     |   |      |   |
|       |       |        | -298.0-298.7; qtz-cc-fluorite vein, mineralized late fault?                        | 297.7 | 298.8 | 1.1   | 8940 | (0.0006  |     |     |   |      |   |
|       |       |        | -304.0; qtz-cc vein, spks and blebs py, vein conformable 1½", simialr veining also |       |       |       |      |          |     |     |   |      |   |
|       |       |        | at 306.0, 1" @ 70°                                                                 | 303.5 | 304.5 | 1.0   | 8941 | K0.0006  |     | !   |   |      |   |
|       |       |        |                                                                                    | 305.0 | 306.5 | 1.0   | 8942 | (0.0006  |     |     |   |      |   |
|       |       |        | -320.8; qtz-cc vein @ 45°, minor carbonatization, minor py, alteration assocoated  |       |       |       |      |          |     |     |   |      |   |
|       | -     |        | with vein on either side in wall rocks                                             | 320.3 | 321.3 | 1.0   | 8943 | K0.0006  |     |     |   |      |   |
|       |       |        | 328.7; shear zone, protomylonitic with cc and minor py spks                        |       |       |       |      |          |     |     |   |      |   |
|       |       |        |                                                                                    | 328.1 | 329.1 | 1.0   | 8944 | (0.0006  |     |     |   |      |   |
|       |       |        | -340.0-343.0; shear zone, strong cc, py, protomylonitic/cataclastic                |       |       |       |      |          | ļ   |     |   |      |   |
|       |       |        |                                                                                    | 340.0 | 343.0 | 3.0   | 8945 | ⟨0.000€  |     |     |   |      | i |
|       |       |        |                                                                                    |       |       |       |      |          |     |     |   |      | i |
| 347.6 | 351.5 |        | Altered Mafic Dike or Sill                                                         |       |       |       |      |          |     |     |   |      |   |
|       |       |        | -partially assimilated, bio-chl rk, strong carbonatization, foliated-schistose,    |       |       |       |      |          |     |     |   |      |   |
|       |       |        | vuggy, no significant mineralization                                               |       |       |       |      |          |     |     |   |      |   |
|       |       |        |                                                                                    |       |       |       |      |          |     |     |   |      | 1 |

PAGE 5 OF 7

| DATE LOGGED    |  |
|----------------|--|
| COMPANY NAME _ |  |
| PROPERTY NAME  |  |

HOLE No.85-41

| FROM          | то    | RECOVY | DESCRIPTION                                                                           |                   | SA    | MPLE |        |         | ASSA | YS |  |  |
|---------------|-------|--------|---------------------------------------------------------------------------------------|-------------------|-------|------|--------|---------|------|----|--|--|
| FROM          | 10    | RECOVY | DESCRIPTION                                                                           | FROM TO WIDTH No. |       |      |        |         |      |    |  |  |
| 351.5         | 401.6 |        | Mafic Syenite (Coarse)                                                                | 359.0             | 360.0 | 1.0  | 8946   | (0.0006 |      |    |  |  |
|               |       |        | -homogeneous syenite or syenodiorite, strong bio, pegmatitic, kspar large blebs py    | 360.0             | 361.7 | 1.7  | 8947   | 0.0012  |      |    |  |  |
| - <del></del> |       |        | -359.0-401.6; generally severely altered zone, probable shear/breccia structure       | 361.7             | 362.9 | 1.2  | 8948   | ⟨0.000€ |      |    |  |  |
|               |       |        | with exotic mineralization, includes qtz-cc veins, qtz-kspar-cc veins                 | 362.9             | 364.4 | 1.5  | 8949   | ⟨0.0006 |      |    |  |  |
|               |       |        | with elevated sulphides in hematitic, chloritic and carbonatized rk, with             | 364.4             | 365.6 | 1.2  | 8950   | (0.0006 |      |    |  |  |
|               |       |        | relics of cherty sediments                                                            | 365.6             | 367.2 | 1.6  | 13001F | 0.0006  |      |    |  |  |
|               |       |        | -362.9-364.4; massive, qtz veins with jasper, hem barite, somewhat brecciated,        | 367.2             | 368.7 | 1.5  | 13002  | 0.0006  |      |    |  |  |
|               |       |        | sheared 0 62° (mine structure)                                                        | 368.7             | 392.0 | 2.0  | 13003  | 0.0013  |      |    |  |  |
|               |       |        | -390.2-401.6; shear/cataclastic zone, in syenite, incl strong py (10-15%), @ 50°,     | 392.0             | 393.5 | 1.5  | 13004  | 0.0017  |      |    |  |  |
|               |       |        | with potassic qtz-cc veins, blebs py, tourmaline, lower ctc silicified                | 393.5             | 395.0 | 1.5  | 13005  | 0.0012  |      |    |  |  |
|               | ,     |        | 0 45°                                                                                 | 395.5             | 396.0 | 1.0  | 13006  | 0.0009  |      |    |  |  |
|               |       |        |                                                                                       | 396.0             | 397.5 | 1.5  | 13007  | 0.0007  |      |    |  |  |
|               |       |        |                                                                                       | 397.5             | 399.0 | 1.5  | 13008  | 0.0028  |      |    |  |  |
|               |       |        |                                                                                       | 399.0             | 400.5 | 1.5  | 13009  | 0.0013  |      |    |  |  |
|               |       |        |                                                                                       | 400.5             | 401.6 | 1.1  | 13010  | (0.0006 |      |    |  |  |
|               |       |        |                                                                                       |                   |       |      |        |         |      |    |  |  |
| 401.6         | 408.1 |        | Altered Mafic Dike or Sill                                                            |                   |       |      |        |         |      |    |  |  |
|               |       |        | -dark green, schistose, greenstone-amphibolite, heavy carbonatization, marginally sil |                   |       |      |        |         |      |    |  |  |

PAGE 6 OF 7

| DATE LOGGED   |
|---------------|
| COMPANY NAME  |
| PROPERTY NAME |

HOLE No.85-41

| FROM  | то  | DECOVA | DECODIDATION                                                                                   |        | SA    | MPLE  |       | oz/ton  | ASS | SAYS   |  |             |
|-------|-----|--------|------------------------------------------------------------------------------------------------|--------|-------|-------|-------|---------|-----|--------|--|-------------|
|       |     | RECOVY | DESCRIPTION                                                                                    | FROM   | то    | WIDTH | No.   | Au      |     |        |  |             |
| 408.1 | 605 |        | Mafic Syenite                                                                                  |        |       |       |       |         |     | ;<br>; |  |             |
|       | EOH |        | -sim ti 351.0-401.6, syenodiorite, but increased biotite, probable increased H <sub>2</sub> 0? |        |       |       |       |         |     |        |  |             |
|       |     |        | -416.0-416.8; possible greenstone xenolith or very assimilated sill material                   |        |       |       |       |         |     |        |  |             |
|       |     |        | -420.0-420.5; sim above, strongly carbonatized                                                 |        |       |       |       |         |     |        |  | <del></del> |
|       |     |        | -434.7-446.0; shear or cataclastic zone, sim 390.2-401.6, cc pods, @ 47° (440'),               | 436.5  | 438.0 | 1.5   | 13011 | 0.081   |     |        |  |             |
|       |     |        | related to mine structure (parallel), includes several qtz-kspar-cc                            | 438.0  | 439.5 | 1.5   | 13012 | 0.0129  |     |        |  |             |
|       |     |        | veins with py, tourmaline, chl                                                                 | 439.5  | 440.5 | 1.0   | 13013 | 0.0008  |     |        |  |             |
|       |     |        | ·                                                                                              | 4440.5 | 441.8 | 1.3   | 13014 | 0.0054  |     |        |  |             |
|       |     |        |                                                                                                | 441.8  | 443.6 | 1.8   | 13015 | 0.0040  |     |        |  |             |
|       |     |        |                                                                                                |        |       |       |       |         |     |        |  |             |
|       |     |        | -531.9; 7" qtz-cc-kspar vein, dissem py, chl slips on both ctc's, @ 62°                        | 531.7  | 532.7 | 1.0   | 13016 | ⟨0.000€ |     |        |  |             |
|       |     |        | 569.5-570.5; 1%" qtz-cc vein with semi-massive py, very localized                              |        |       |       |       |         |     |        |  |             |
|       |     |        |                                                                                                | 569.5  | 570.5 | 1.0   | 13017 | ⟨0.000€ |     |        |  |             |
|       |     |        | -574.0-580; minor cataclastic zone, with minor bio, chl, cc, strong py                         |        |       |       |       |         |     |        |  |             |
|       |     |        | -to EOH, essentially unaltered marginally carbonatized coarse, grey-pink syenite or            |        |       |       |       |         |     |        |  |             |
|       |     |        | syenodiorite                                                                                   |        |       |       |       |         |     |        |  |             |
|       |     |        |                                                                                                |        |       |       |       |         |     |        |  |             |
|       |     |        |                                                                                                |        |       |       |       |         |     |        |  |             |

| COLLAR:                  | HOL     | E SURVEY |      |
|--------------------------|---------|----------|------|
| 4+00N                    | METHOD: | hf       |      |
| 3+00E                    | FOOTAGE | AZIMUTH  | DIP  |
| ELEVATION                | 306     |          | -79° |
| CORE SIZE BO             |         |          |      |
| LOGGED BY B. King        |         |          |      |
| DATE LOGGED NOV 23, 1985 |         |          |      |
| MAP REFERENCE No.        |         |          |      |
| Dip -80°                 |         |          | ├    |
| Azm 261°                 |         |          |      |
|                          |         |          |      |

| COMPANY NAMEMONO       | Gold Mines Inc.                              |
|------------------------|----------------------------------------------|
| PROPERTY NAME Banno    | ckburn, Bannockburn Mine                     |
| DRILLING CONTRACTOR    | McKnight                                     |
| ASSAYER Lakefield Res  | earch                                        |
| PURPOSE OF HOLE- to to | est location of Syenite/Metasediment Contact |
|                        |                                              |

| 10LE NoE             | 0-42                         |  |
|----------------------|------------------------------|--|
| CLAIM NAM            | E/No                         |  |
| COMMENCE<br>FINISHED | Nov 21, 1985<br>Nov 22, 1985 |  |
| FINAL DEPT           |                              |  |
| PROJECT N            | 0                            |  |

| FROM | то   | RECOVY | DESCRIPTION                                                                           |      | SA   | MPLE  |        | ∪z/ton | <br> | ASSAYS |  |          |
|------|------|--------|---------------------------------------------------------------------------------------|------|------|-------|--------|--------|------|--------|--|----------|
|      |      |        |                                                                                       | FROM | то   | HTOIW | No.    | Au     |      |        |  |          |
| 0.0  | 7.0  |        | Casing                                                                                |      |      |       |        |        |      |        |  |          |
|      |      |        |                                                                                       |      |      |       |        |        |      |        |  | L        |
| 7.0  | 13.2 |        | Quartzitic Metasediments                                                              |      |      |       |        |        |      |        |  | <u> </u> |
|      |      |        | -essentially f-med gr qtzite with bio-chl partings                                    |      |      |       |        |        |      |        |  |          |
|      |      |        | -sporadic subangular frags of chl-ep mat'l, structures accentuated by down-dip drill  |      |      |       |        |        |      |        |  |          |
|      |      |        | -5% dissem py, spks po, minor sil zones with ep                                       |      |      |       |        |        |      |        |  |          |
|      |      |        |                                                                                       |      |      |       |        |        |      |        |  |          |
| 13.2 | 27.0 |        | Shear?Altered Zone                                                                    |      |      |       |        |        |      |        |  |          |
|      |      |        | -complex deformation zone, pseudo fragmental texture, rounded, augen like features,   | 27.4 | 30.0 | 2.6   | 13018F | 0.0008 |      |        |  |          |
|      |      |        | strong bio, frag's rimmed by chlorite, looks partially assimilated?                   |      |      |       |        |        | ·    |        |  |          |
|      |      |        | -fol appears to swirl, contorted, generally 0 10° (21')                               |      |      |       |        |        |      |        |  |          |
|      |      |        | -23.5-25.0; poss actinolite, calc-sil zone, 10-15% py locally                         |      |      |       |        |        |      |        |  |          |
|      |      |        |                                                                                       |      |      |       |        |        |      |        |  |          |
| 27.0 | 51.0 |        | Cherty Metasediemnts                                                                  |      |      |       |        |        |      |        |  |          |
|      |      |        | -strongly silicified or cherty, diffuse and industinct banding, f-med gr, homog, grey | 1    |      |       |        |        |      |        |  |          |

| ROPERTY | NAME     |                                                                                      |              |          |       |          |         | HOLE No | 85-42 | <br><del></del> |  |
|---------|----------|--------------------------------------------------------------------------------------|--------------|----------|-------|----------|---------|---------|-------|-----------------|--|
| ROM T   | O RECOVY | DESCRIPTION                                                                          |              | SA       | MPLE  |          | oz/ton  | ASSA    | YS    | <br>            |  |
|         | 1.2007   |                                                                                      | FROM         | то       | WIDTH | No.      | Au      |         |       |                 |  |
|         |          | -minor carbonatization, few blebs cc                                                 | <u> </u>     | ļ        |       |          |         |         |       |                 |  |
|         |          | -38.5; fol/banding @ 10°                                                             |              |          |       |          |         |         |       |                 |  |
|         |          | -49.6; diffuse qtz vein or sil zone, with minor dissem py, very little cc, lower ctc | 49.3         | 50.3     | 1.0   | 13019    | (0.0006 |         |       |                 |  |
|         |          | diffuse and irregular, but difficult to determine, conformable?, 4½"                 |              |          |       |          |         |         |       |                 |  |
| 4.0 65  |          | Quartzitic Metasediments                                                             |              |          |       |          |         |         |       |                 |  |
| 1.0 65  | .0       | -sim to 7.0-13.2                                                                     | <u> </u>     |          |       |          |         |         |       |                 |  |
|         |          | -broken layering or pseudo frag's of qtz-feld-chl                                    |              |          |       |          |         |         |       |                 |  |
|         |          | -51.0-58.0; complex, deformed zone sim to 13.2-27.0 but here the underlying or host  |              |          |       |          |         |         |       |                 |  |
|         |          | unit can still be recognized                                                         |              |          |       |          |         |         |       |                 |  |
|         |          | -54.3-57.5; ep,cc,qtz, kspar, py zone, not a vein, but an advanced alteration        | 54.3         | 57.5     | 3.2   | 13020    | ⟨0.0006 |         |       |                 |  |
| 55.0 6  | 7.8      | Mafic Intrusive                                                                      |              |          |       |          |         |         |       |                 |  |
| 0.0     | 7.0      | -carbonatized, mildly foliated with cc stringers and general pervasive cc alt,       |              |          |       |          |         |         |       |                 |  |
|         |          | minor dissem py, minor po, lower ctc has cc+hem, appears sharp, but is               | <del> </del> |          |       |          |         |         |       |                 |  |
|         |          | obscured by alt                                                                      | <u> </u>     | <u> </u> |       | <u> </u> | 1       |         |       |                 |  |

87.0

Quartzitic Metasediment

| DATE LOGGED   |
|---------------|
| COMPANY NAME  |
| PROPERTY NAME |

HOLE No.95-42

|       |       |        |                                                                                        |      | <del></del> |          |       | <del></del> |     | <del></del> | <br> | <br>        |
|-------|-------|--------|----------------------------------------------------------------------------------------|------|-------------|----------|-------|-------------|-----|-------------|------|-------------|
| FROM  | то    | RECOVY | DESCRIPTION                                                                            |      | ,           | MPLE     | т —   | oz/ton      | ASS | AYS         | <br> | <br>        |
|       |       |        |                                                                                        | FROM | то          | WIDTH    | No.   | Au          |     |             |      |             |
|       |       |        | -sim to 51.0-65.0, interrupted by dike?                                                |      |             |          |       |             |     |             |      | <del></del> |
|       |       |        | -increasing hem, py, especially along fract's and fol planes, still minor cc in blebs  |      |             |          |       |             |     |             |      |             |
|       |       |        | -73.0-74.0; vuggy, strong cc with py, ep , possible fault?, not much structure         |      |             |          |       |             |     |             |      |             |
|       |       |        | -72.0; fol/banding @ 18°                                                               |      |             |          |       |             |     |             |      |             |
|       |       |        | -82.0; qtz stringer with minor cc, minor py                                            | 81.7 | 82.7        | 1.0      | 13021 | <0.0006     |     |             |      |             |
|       |       |        | 82.0-84.0; vuggy, earthy zone, poss fault gouge, intensely altered, with 3" kspar band |      |             |          |       |             |     |             |      |             |
| 87.0  | 112.6 |        | Mafic Intrusive                                                                        |      |             |          |       |             |     |             |      |             |
|       |       |        | -sim to 65.0-67.8, probable mafic sill, strong carbonatization, foliation @ 5-7° gen   |      |             |          |       |             |     |             |      |             |
|       |       |        | -99.1-101.4; pegmatitic, kspar bearing qtz-cc vein with sharp ctc's @ 84°              | 99.1 | 101.4       | 2.3      | 13022 | <0.0006     |     |             |      |             |
|       |       |        | -109.0- 112.6; generally altered with silicification, increased cc, and strong hem,    |      |             |          |       |             |     |             |      |             |
|       |       |        | chl,cc especially around fractures                                                     |      |             |          |       |             |     |             |      |             |
| 112.6 | 114.9 |        | Fault Zone                                                                             |      |             |          |       |             |     |             |      |             |
|       |       |        | - microfaulting, strong hem, kspar with ep alteration, numerous chl/bio slips          |      |             |          |       |             |     |             |      |             |
|       |       |        | generally at 55°                                                                       |      |             |          |       |             |     |             |      |             |
|       |       |        |                                                                                        |      |             | <u> </u> |       |             |     |             |      |             |
| 114.9 | 115.5 |        | Mafic Intrusive                                                                        |      |             |          |       |             |     |             |      |             |

| DATE LOGGED   |             |
|---------------|-------------|
| COMPANY NAME  | <del></del> |
| PROPERTY NAME | HOLE No.    |

| · · · · · · |       |        |                                                                                      | T     |          |               | <del></del> |              | <u> </u>     |      | <del></del> |   |  |  |  |  |  |  |  |  |  |  |  |
|-------------|-------|--------|--------------------------------------------------------------------------------------|-------|----------|---------------|-------------|--------------|--------------|------|-------------|---|--|--|--|--|--|--|--|--|--|--|--|
| FROM        | то    | RECOVY | DESCRIPTION                                                                          | FROM  | SA<br>TO | MPLE<br>WIDTH | No.         | oz/ton<br>Au | AS           | SAYS | 1           | Υ |  |  |  |  |  |  |  |  |  |  |  |
| 115.5       | 169.8 |        | Cherty Metasediments                                                                 |       |          |               |             |              |              | 1    |             |   |  |  |  |  |  |  |  |  |  |  |  |
|             |       |        | -very cherty, silicieous, banded with bio, py and fragment like pieces of qtz-feld-  | ļ     |          |               |             |              |              |      |             |   |  |  |  |  |  |  |  |  |  |  |  |
|             |       |        | chl-ep in bio rich bands                                                             |       |          |               |             |              | <del>.</del> |      |             |   |  |  |  |  |  |  |  |  |  |  |  |
|             |       |        | -123.9-124.7; kspar-qtz-vein withsharp ctc's, 1"                                     |       | -        |               |             |              |              |      |             |   |  |  |  |  |  |  |  |  |  |  |  |
|             |       |        | -125.5-127.4; metasammatic, pegmatitic veineing, biotite growth with diffuse ctc's   |       |          |               |             |              |              |      |             |   |  |  |  |  |  |  |  |  |  |  |  |
|             |       |        | -128.0; 2" qtz-cc vein @ 47°, blue qtz, dissem py                                    | 127.7 | 128.7    | 1.0           | 13023       | 0.0006       |              |      |             |   |  |  |  |  |  |  |  |  |  |  |  |
|             |       |        | -136.0; fol/banding @ 12°                                                            |       |          |               |             |              |              |      |             |   |  |  |  |  |  |  |  |  |  |  |  |
|             |       |        | -146.0; fol/banding @ 19°                                                            |       |          |               |             |              |              |      |             |   |  |  |  |  |  |  |  |  |  |  |  |
|             |       |        | -157.0; 2" tw qtz-cc vein, with sharp ctc's @ approx 35°, bio partings assoc with 2" | 156.2 | 158.0    | 1.8           | 13024       | 0.0006       | <del> </del> |      |             |   |  |  |  |  |  |  |  |  |  |  |  |
|             |       |        | py-ep zone 0 156.5                                                                   |       |          |               |             |              |              |      |             |   |  |  |  |  |  |  |  |  |  |  |  |
|             |       |        | -165.6; 3" qtz vein with minor cc, blue qtz minor py, sharp ctc's @ 35°              | 165.0 | 166.0    | 1.0           | 13025       | ⟨0.000€      |              |      |             |   |  |  |  |  |  |  |  |  |  |  |  |
| 169.8       | 176.0 |        | Altered Zone (May Include Altered Mafic Intrusive)                                   |       |          |               |             |              |              |      |             |   |  |  |  |  |  |  |  |  |  |  |  |
|             |       |        | -probable banded alteration but host rk appears to be cherty metasediment type,      | 169.8 | 171.4    | 1.6           | 13026       | ⟨0.000€      |              |      |             |   |  |  |  |  |  |  |  |  |  |  |  |
|             |       |        | increased ep, dissem py (to 10%)                                                     | 171.4 | 172.8    | 1.4           | 13027       | 0.0006       |              |      |             |   |  |  |  |  |  |  |  |  |  |  |  |
|             |       |        | -171.4-172.8; very dark, green to black, massive rk, poss very sil, ep-              | 172.8 | 176.0    | 3.2           | 13028       | (0.0006      |              |      |             |   |  |  |  |  |  |  |  |  |  |  |  |
|             |       |        | chl, kspar, cc                                                                       |       |          |               |             |              |              |      |             |   |  |  |  |  |  |  |  |  |  |  |  |
|             |       |        |                                                                                      |       |          |               |             |              |              |      |             |   |  |  |  |  |  |  |  |  |  |  |  |

| DATE LOGGED    |  |
|----------------|--|
| COMPANY NAME _ |  |
| PROPERTY NAME  |  |

HOLE No.85-42

| <b>EDOM</b> |       | 2500104 |                                                                                       |       | SA    | MPLE  |       | oz/ton            | ASS | SAYS |    | <del>/</del> |        |
|-------------|-------|---------|---------------------------------------------------------------------------------------|-------|-------|-------|-------|-------------------|-----|------|----|--------------|--------|
| FROM        | то    | RECOVY  | DESCRIPTION                                                                           | FROM  | то    | WIDTH | No.   | Au                |     |      |    |              |        |
| 176.0       | 248.9 |         | Cherty Metasediments                                                                  |       |       |       |       |                   |     |      |    |              |        |
|             |       |         | -sim to 115.5-169.8, with increased kspar throughout                                  |       |       |       |       |                   |     |      |    |              |        |
|             |       |         | -182.4; 1" granitoid vein 0 34°                                                       |       |       |       |       |                   |     |      |    |              |        |
|             |       |         | -183.0-187.6; altered zone, strong kspar, ep, chl, minor cc, enriched py (to SM)      | 184.6 | 187.6 | 3.0   | 13029 | ⟨0.0006           |     |      |    |              |        |
|             |       |         | -195.5-197.4; kspar vein, dissem py, diffuse ctc's, probable metasommatic zone,15°    |       |       |       |       |                   |     |      |    |              |        |
|             |       |         | -202.3; fol/banding @ 13°                                                             |       | _     |       |       |                   |     |      |    |              | i<br>[ |
|             |       |         | -219.5-221.0; zone of increased ep, py, sil with some kspar, minor cc and blue qtz    | 219.0 | 220.0 | 1.0   | 13030 | <b>&lt;0.0006</b> |     |      |    |              |        |
|             |       |         | or cordierite                                                                         |       |       |       |       |                   |     |      | `` |              |        |
|             |       |         | -226.5-228.5, granitoid vein, diffuse ctc's, metasommatic pegmatite                   |       |       |       |       |                   |     |      |    |              |        |
|             |       |         | -230.0; fol/bandinf @ 08°                                                             |       |       |       |       |                   |     |      |    |              |        |
|             |       |         | -increasing alteration with depth makes it difficult to identify host rk              |       |       |       |       |                   |     |      |    |              | L      |
|             |       |         | -246.0-248.0; silicified, with dissem kspar and py                                    |       |       |       |       |                   |     |      |    |              |        |
| 248.9       | 260.5 | ·       | Contact -Transition Zone                                                              |       |       |       |       |                   |     |      |    |              |        |
|             |       |         | -strong hem in plane of foliation/banding, looks like oxidized syngenetic py in the   | 248.9 | 251.7 | 2.8   | 13031 | <b>&lt;0.0006</b> |     |      |    |              |        |
|             |       |         | cherty sediment                                                                       |       | 255.8 | 4.1   | 13032 | (0.0006           |     |      |    |              |        |
|             |       |         | -quickly grades into strongly epidotized chl, cc hem zone, brown weathered appearance | 255.8 | 260.5 | 4.7   | 13033 | (0.0006           |     |      |    |              |        |
|             |       |         | -251.0-252.0, very strong pervasive hematite, coarse py                               | 260.5 | 262.0 | 1.5   | 13034 | (0.0006           |     |      |    |              |        |

PAGE 5 OF 6

|        |       |        |                                                                                    |      |    |               |     |   | HOLE | No.85-42                                |  |       |   |
|--------|-------|--------|------------------------------------------------------------------------------------|------|----|---------------|-----|---|------|-----------------------------------------|--|-------|---|
| ROM    | то    | RECOVY | DESCRIPTION                                                                        |      | SA | MPLE          |     |   | ASS  | SAYS                                    |  |       |   |
| TIOIVI | 10    | necov1 |                                                                                    | FROM | TO | WIDTH         | No. |   |      |                                         |  |       | F |
| 260.5  | 306.0 |        | Mafic Syenite/Syenodiorite                                                         |      |    |               |     |   |      |                                         |  |       |   |
|        | EOH   |        | -typical, blotches and xcutting kspar zones, in med xtalline syenodiorite, mod bio |      |    |               |     |   |      |                                         |  |       |   |
|        |       |        | growth, pink-grey                                                                  |      |    |               |     |   |      |                                         |  |       |   |
|        |       |        | -268.8; few qtz-cc-py stringers @ 60°                                              |      |    |               |     |   |      |                                         |  |       |   |
|        |       |        | -possible fault @ 275.5                                                            |      |    |               |     |   |      |                                         |  |       |   |
|        |       |        | -varying degrees of pervasive and patchy carbonatization, but appears to decrease  |      |    |               |     |   |      |                                         |  |       |   |
|        |       |        | with depth                                                                         |      |    |               |     |   |      |                                         |  |       | Ī |
|        |       |        |                                                                                    |      |    |               |     |   |      |                                         |  |       | Ī |
|        |       |        |                                                                                    |      |    |               |     |   |      |                                         |  |       | Ī |
|        | -     |        |                                                                                    |      |    |               |     |   |      |                                         |  | ····· | T |
|        |       |        |                                                                                    |      |    |               |     |   |      |                                         |  |       | T |
|        |       |        |                                                                                    |      |    |               |     |   |      |                                         |  |       | T |
|        |       |        |                                                                                    |      |    |               |     |   |      |                                         |  |       | T |
|        |       |        |                                                                                    |      |    |               |     |   |      | *************************************** |  |       | Ī |
|        |       |        |                                                                                    |      |    |               |     | - |      |                                         |  |       | Ī |
|        |       |        |                                                                                    |      |    |               |     |   |      |                                         |  |       | T |
|        |       |        |                                                                                    |      |    |               |     |   |      |                                         |  |       | T |
|        |       |        |                                                                                    |      |    | <del>11</del> |     |   |      |                                         |  |       | 1 |

| COLLAR:          |              | HOL     | E SURVEY |      |
|------------------|--------------|---------|----------|------|
|                  | 2+00N        | METHOD: | hf       |      |
|                  | 2+51E        | FOOTAGE | AZIMUTH  | DIP  |
| ELEVATION        |              | 438     |          | -45° |
| CORE SIZE        | BO           | 1       |          |      |
| LOGGED BY        | B. King      |         |          |      |
| DATE LOGGED      | Nov 25, 1985 |         |          |      |
| MAP REFERENCE No |              |         |          |      |
|                  | Dip -45°     |         |          |      |
|                  | Azm 261°     |         |          |      |
|                  |              |         |          |      |

| COMPANY NAME      | Mono Gold Mines Inc               |  |
|-------------------|-----------------------------------|--|
| PROPERTY NAME     | Bannockburn, Bannockburn Mine     |  |
| DRILLING CONTRACT | roe McKnight                      |  |
| ASSAYER Cherrex   |                                   |  |
|                   | to test "mine structure" at depth |  |
| <del></del>       |                                   |  |
|                   | •                                 |  |

| HOLE No     |                              |  |
|-------------|------------------------------|--|
| CLAIM NAME/ | ·                            |  |
| COMMENCED   | Nov 22, 1985                 |  |
| FINISHED    | Nov 22, 1985<br>Nov 24, 1985 |  |
| FINAL DEPTH |                              |  |
| PROJECT No. |                              |  |

| FROM | то    | RECOVY | DESCRIPTION                                                                          |      | SA   | MPLE  |        | oz/ton  |  | ASSAYS |  |       |
|------|-------|--------|--------------------------------------------------------------------------------------|------|------|-------|--------|---------|--|--------|--|-------|
|      |       |        |                                                                                      | FROM | то   | WIDTH | No.    | Au      |  |        |  |       |
| 0.0  | 11.0  |        | Casing                                                                               |      |      |       |        |         |  |        |  | !<br> |
|      |       |        |                                                                                      |      |      |       |        |         |  |        |  |       |
| 11.0 | 238.5 |        | Cherty Metasediments (Altered, Semi Pelitic/Psammitic Sediments)                     |      |      |       |        |         |  |        |  |       |
|      |       |        | -f-med gr, sil, grey, qtzitic rk, argillitic bands of mudstone within an altered     |      |      |       |        |         |  |        |  |       |
|      |       |        | psarmite                                                                             |      |      |       |        |         |  |        |  |       |
|      |       |        | -may have hb in more mafic layers @ 29.0'                                            |      |      |       |        |         |  |        |  |       |
|      |       |        | -15.0-17.0; intense kspar alt, not veined                                            |      |      |       |        |         |  |        |  |       |
|      |       |        | -25.0; well banded, kfeldspathized with ep, bio, hb?, hem+cc in distinct layers, py  |      |      |       |        |         |  |        |  |       |
|      |       |        | concentrated with ep rich layers, but dissem throughout                              |      |      |       |        |         |  |        |  |       |
|      |       |        | -25.0; fol/banding @28°                                                              |      |      |       |        |         |  |        |  |       |
|      |       |        | -36.5; rotten,vuggy chl, ep, cc hem rk, very strongly altered                        | 36.5 | 42.0 | 5.5   | 13035F | ₹0.0006 |  |        |  |       |
|      |       |        | -37.0-42.0; kspar-qtz-cc vein with bio, ep, py, lower ctc sharp @ 66°, vein seems to |      |      |       |        |         |  |        |  |       |
|      |       |        | have relic banding, therefore a replacement feature?,                                | 49.8 | 53.0 | 3.2   | 13036  | (0.0006 |  |        |  |       |
|      |       |        | -50.0-53.0; intensely altered zone with strong hem, ep, py, cc, chl                  |      |      |       |        |         |  |        |  |       |
|      |       |        | -55.0-56.0; banded alt as above                                                      | 57.7 | 59.0 | 1.3   | 13037  | K0.0006 |  |        |  |       |

| DATE LOGGED   |               |
|---------------|---------------|
| COMPANY NAME  |               |
| PROPERTY NAME | HOLE No.85-44 |
|               |               |

| 50011 |          |        |                                                                                        |       | SA    | MPLE  |           | oz/ton         | ASSAY | 3 |   |      |
|-------|----------|--------|----------------------------------------------------------------------------------------|-------|-------|-------|-----------|----------------|-------|---|---|------|
| FROM  | то       | RECOVY | DESCRIPTION                                                                            | FROM  | то    | WIDTH | No.       | Au             |       |   |   |      |
|       |          |        | 57.6-59.0; adv banded alt, strongly fragmented, "stockwork" of ep-py-cc veins or fract |       |       |       |           |                |       |   |   |      |
|       |          |        | fillings                                                                               |       |       |       |           |                |       |   |   |      |
|       |          |        | -60.0; fol/banding @ 42°                                                               |       |       |       |           |                |       |   |   |      |
|       |          |        | -66.5-68.0; sil, kspar zone                                                            |       |       |       |           |                |       |   |   |      |
|       | <u> </u> |        | -69.5-70.5; minor "proto" banded alteration,                                           | 72.8  | 73.8  | 1.0   | 13038     | K0.0006        |       |   |   | <br> |
|       |          |        | -73.0-73.5,80.5-83.5; adv banded alt, 82.0; xcutting kspar-qtz-cc vein with py @ 43°   |       |       |       |           |                |       |   |   |      |
|       |          |        | assoc with strong graphite                                                             | 80.5  | 83.5  | 3.0   | 13039     | ⟨0.000€        |       |   |   |      |
|       |          |        | -84.0; fol/banding @ 45°                                                               |       |       |       |           |                |       |   | _ |      |
|       |          |        | -84.0-91.0; strong banded alteration, some massive green zones, 93.0-96.0; sim         | 94.0  | 96.0  | 2.0   | 13040     | ⟨0.000€        |       |   |   |      |
|       |          |        | -97.2; 1" cc-qtz-py vein xcutting 0 48°, vein cuts adv banded alteration               | 96.0  | 97.8  | 1.8   | 13041     | K0.0006        |       |   |   |      |
|       |          |        | -from 104', alt becomes much more intense,                                             |       |       |       | , <u></u> |                |       |   |   |      |
|       |          |        | -108.0-110.0; strong adv banded alteration, with some massive alt , str py,hem         | 108.0 | 110.0 | 2.0   | 13042     | <b>K0.0006</b> |       |   |   |      |
|       |          |        | -113.0; fol/banding @ 42°                                                              |       |       |       |           |                |       |   |   |      |
|       |          |        | -128.0-130.5; intense coloured alt with increased hem, sulphides, no apprec veining    | 128.0 | 130.5 | 2.5   | 13043     | ⟨0.000€        |       |   |   |      |
|       |          |        | -136.0; 3%" cc-qtz-py vein with hem, xcutting fairly sharp ctc 0 58°                   | 135.5 | 136.7 | 1.2   | 13044     | K0.0006        |       |   |   |      |
|       |          |        | -141.5; fol/banding @ 48 (where banding still visible)                                 |       |       |       |           |                |       |   |   |      |
|       |          |        | -146.7-147.8; massive and succrosic, pale green, siliceous talc-cc alteration, impure  |       |       |       |           |                |       |   |   |      |
|       |          |        | steatite rk?, minor musc, py                                                           |       |       |       |           |                |       |   |   |      |

| DATE LOGGED   |  |
|---------------|--|
| COMPANY NAME  |  |
| PROPERTY NAME |  |

HOLE No.85-44

|       |       | T                                                |                                                                                         | 1     |              |          | <del>/</del> | T -                                              | <u> </u> |          |   |      | <br> |
|-------|-------|--------------------------------------------------|-----------------------------------------------------------------------------------------|-------|--------------|----------|--------------|--------------------------------------------------|----------|----------|---|------|------|
| FROM  | то    | RECOVY                                           | DESCRIPTION                                                                             |       | <del>,</del> | MPLE     | 1            | <b>_</b>                                         | AS       | SAYS     | · | ···- | <br> |
|       |       | <del>                                     </del> | 147.8-148.6; adv banded alt                                                             | FROM  | то           | WIDTH    | No.          | <del>                                     </del> |          | <u> </u> | _ |      |      |
|       |       |                                                  | 147.8-148.0; duy barded dit                                                             | ļ     |              | <u> </u> |              | <b></b>                                          |          | <u> </u> |   |      | <br> |
|       |       |                                                  | -148.6-151.0; sim 146.7-147.8, 153.6-158.0; sim with additional dark chl                |       |              |          |              |                                                  |          |          |   |      |      |
|       |       |                                                  | -166.0-176.0; zone of poor core recovery, vuggy, porous rk, probable fault?             |       |              |          |              |                                                  |          |          |   |      |      |
|       |       |                                                  | -178.0-180.5; adv banded alt                                                            |       |              |          |              |                                                  |          |          |   |      |      |
|       |       |                                                  | -179.5; fol/banding @ 46°                                                               |       |              |          |              |                                                  |          |          |   |      |      |
|       |       |                                                  | -180.5-181.5; essentially a microgranite, minor qtz                                     |       |              |          |              |                                                  |          |          |   |      |      |
|       |       |                                                  | -186.5-190.5; cherty, jasperoid zone, essentially banded, pale green steatite,          |       |              |          |              |                                                  |          |          |   |      |      |
|       |       |                                                  | -198.7; marginally xcutting qtz-cc vein with hem, minor py , 1½" tw                     | 198.0 | 199.0        | 1.0      | 13045        | ⟨0.000€                                          |          |          |   |      | · •• |
|       |       |                                                  | -198.0; fol/banding @ 62°                                                               |       |              |          |              |                                                  | İ        |          |   |      |      |
|       |       |                                                  | -201.5-238.5, zone of variable alteration, banaded, adv banded, massive types, includes |       |              |          |              |                                                  |          |          |   |      |      |
|       |       |                                                  | steatite @228,2', all alteration appears conformable                                    |       |              |          |              |                                                  |          |          |   |      |      |
|       |       |                                                  |                                                                                         |       |              |          |              |                                                  |          |          |   |      |      |
| 238.5 | 256.8 |                                                  | Transition Zone (Contact Zone, Transitional, Altered/HMbrids)                           |       |              |          |              |                                                  |          |          |   |      |      |
|       |       |                                                  | -essentially a kspar zone of syenitic/granitoid rks with relics of banded alt and       |       |              |          |              |                                                  |          |          |   |      |      |
|       |       |                                                  | bedding, probable dislocated blocks or xenoliths of assimilated material                |       |              |          |              |                                                  |          |          |   |      |      |
|       |       |                                                  | -irreg patches of cc+py, random                                                         |       |              |          |              |                                                  |          |          |   |      |      |
|       |       |                                                  | -same strang bio grawth, hydraus dev't                                                  |       |              |          |              |                                                  |          |          |   |      |      |
|       |       |                                                  | -255.0; broken core, poor recovery                                                      |       |              |          |              |                                                  |          |          |   |      |      |

| DATE LOGGED   |
|---------------|
| COMPANY NAME  |
| PROPERTY NAME |

HOLE No.85-44

| FROM  | то    | RECOVY | DESCRIPTION                                                                              |       | SA     | MPLE  |       | oz/ton  | ASS | SAYS |  |       |
|-------|-------|--------|------------------------------------------------------------------------------------------|-------|--------|-------|-------|---------|-----|------|--|-------|
| - TOW |       | HECOVI | DESCRIPTION                                                                              | FROM  | то     | WIDTH | No.   | Au      |     |      |  |       |
| 256.8 | 438.0 |        | Syenodiorite                                                                             |       |        |       |       |         |     |      |  |       |
|       |       |        | -coarse, dark grey to pink, kspar,bio, plag, rk, minor qtz, and in part heavily          |       |        |       |       |         |     |      |  |       |
|       |       |        | carbonatized, up to 5% dissem py                                                         |       |        |       |       |         |     |      |  |       |
|       |       |        | -267.0; vuggy, qtz-kspar-bio,ep vein,½"                                                  |       |        | :     |       |         |     |      |  |       |
|       |       |        | -294.2-302.0; alteration zone, with steatite type, some chl, patches of cc, minor ep     |       |        |       |       |         |     |      |  |       |
|       |       |        | -300.4-301.0; cc vein, 2½" tw kspar-qtz, diffuse, borders shear zone                     |       |        |       |       |         |     |      |  |       |
|       |       |        | -304.6-322.0; shear/cataclastic zone, bordered by small vuggy fluorite vein @ 85°,       | 304.0 | 305.0  | 1.0   | 13046 | <0.000€ |     |      |  |       |
|       |       |        | shear zone includes variety of qtz veins and stringers, chl schists etc,                 | 305.0 | 306.0  | 1.0   | 13047 | 0.0009  |     |      |  |       |
|       |       |        | -308.4; 2½" tw xcutting qtz-cc vien 0 62°, shearing 0 66-70°                             | 306.0 | 308.00 | 2.0   | 13048 | <0.0006 |     |      |  |       |
|       |       |        | -305.0-306.0; sericitic schist with qtz-cc-fluor vein at start of shear                  | 308.0 | 309.2  | 1.2   | 13049 | 0.0360  |     |      |  |       |
|       |       |        | -314.5-316.0; conformable qtz-cc vein, 1½" tw                                            | 309.2 | 312.0  | 2.8   | 13050 | ⟨0.000€ |     | i    |  | ļ<br> |
|       |       |        | -316.0-318.0; sheared symmite, shearing intensity decreasing with depth                  | 312.0 | 313.0  | 1.0   | 13351 | ⟨0.000€ |     |      |  |       |
|       |       |        |                                                                                          | 313.0 | 314.5  | 1.5   | 13352 | (0.0006 |     |      |  |       |
|       |       |        |                                                                                          | 314.5 | 316.0  | 1.5   | 13353 | (0.0006 |     |      |  |       |
|       |       |        |                                                                                          | 316.0 | 318.0  | 2.0   | 13354 | ⟨0.000€ |     |      |  |       |
|       |       |        | 351.0-363.0; epidotized zone, granoblastic kspar-ep ("green granite")                    |       |        |       |       |         |     |      |  |       |
|       |       |        | 364.8; diffuse, conformable? qtz-kspar-cc vein, somewhat vuggy, 1½"                      |       |        |       |       |         |     |      |  |       |
|       |       |        | 365.6; appears to be relic banding in med symnodiorite, perhaps this body is replacement | #2    |        |       |       |         |     |      |  |       |

PAGE 4 OF 5

| DATE LOGGED   |  |
|---------------|--|
| COMPANY NAME  |  |
| PROPERTY NAME |  |

HOLE No.85-44

| ROM | то    | RECOVY | DESCRIPTION                                                                           |                      | SA    | MPLE |       | oz/ton   |  |  |   |  |  |  |  |  |  |  |
|-----|-------|--------|---------------------------------------------------------------------------------------|----------------------|-------|------|-------|----------|--|--|---|--|--|--|--|--|--|--|
| HOW | -10   | hecovi | DESCRIPTION                                                                           | FROM TO WIDTH No. AL |       |      |       |          |  |  |   |  |  |  |  |  |  |  |
|     |       |        | 367.0-368.5; carbonatized symmittic rk, cc esp prevalent on fract'c, @ 50°            |                      |       |      |       |          |  |  |   |  |  |  |  |  |  |  |
|     |       |        | 370.0-370.7; possible shear zone/cataclastic zone, sim to shearing and brecciation    | 370.0                | 371.0 | 1.0  | 13355 | 0.0006   |  |  |   |  |  |  |  |  |  |  |
|     |       |        | of 304.6-322.0                                                                        |                      |       |      |       |          |  |  |   |  |  |  |  |  |  |  |
|     | _     |        | -413.6; chlorite "vein" 0 65°, start of chloritic alteration of syenite, probable     |                      |       |      |       |          |  |  |   |  |  |  |  |  |  |  |
|     |       |        | influence of minor shearing                                                           |                      |       |      |       |          |  |  |   |  |  |  |  |  |  |  |
|     |       |        | -418.5-419.2; vuggy, breccia zone of chl-cc within an apparent cataclastic or crush   | 418.5                | 419.6 | 1.6  | 13356 | <0.0006  |  |  |   |  |  |  |  |  |  |  |
|     |       |        | zone                                                                                  | 419.6                | 422.2 | 2.6  | 13357 | (0.0006  |  |  | - |  |  |  |  |  |  |  |
|     |       |        | -419.2-422.2; heavily carbonatized cataclastic zone or breccia, minor dissem py       | 422.2                | 424.4 | 2.2  | 13358 | (0.0006  |  |  |   |  |  |  |  |  |  |  |
|     |       |        | -422.2-424.4; kspar-qtz-cc vein with ep, hem, and blue tinted qtz or cordierite,      | 424.4                | 428.2 | 3.8  | 13359 | <0.0006  |  |  |   |  |  |  |  |  |  |  |
|     |       |        | zone is rather diffuse with ctc's 0 42°                                               | 428.2                | 430.3 | 2.1  | 13360 | < 0.000s |  |  |   |  |  |  |  |  |  |  |
|     |       |        | -429.3-430.3; 1" qtz-cc vein 0 60° in carbonatized, epidotized syenite                | 430.3                | 431.3 | 1.0  | 13361 | <0.0006  |  |  |   |  |  |  |  |  |  |  |
|     |       |        | -430.3-431.3; altered syenite, minor brecciation, dissempy                            | 431.3                | 432.3 | 1.0  | 13362 | 0.0006   |  |  |   |  |  |  |  |  |  |  |
|     |       |        | -431.3-432.3; 1½" qtz-cc vein @ 70°, much chl and py blebs, broken core, very diffuse |                      |       |      |       |          |  |  |   |  |  |  |  |  |  |  |
|     | 438.0 |        |                                                                                       |                      |       |      |       |          |  |  |   |  |  |  |  |  |  |  |
|     | ЕОН   |        | Note; hole terminated at 438' due to caving and mismatch of core barrel to remaining  |                      |       |      |       |          |  |  |   |  |  |  |  |  |  |  |
|     |       |        | core in hole; removing rods resulted in loss of hole                                  |                      |       |      |       |          |  |  |   |  |  |  |  |  |  |  |
|     |       |        |                                                                                       |                      |       |      |       |          |  |  |   |  |  |  |  |  |  |  |
|     |       |        |                                                                                       |                      |       |      |       |          |  |  |   |  |  |  |  |  |  |  |

PAGE 5 0F 5

| COLLAR:       |              | HOL     | E SURVEY |          |
|---------------|--------------|---------|----------|----------|
|               | 2+00N        | METHOD: | hf       |          |
|               | 2+51E        | FOOTAGE | AZIMUTH  | DIP      |
| ELEVATION     |              | 656     |          | -589     |
| CORE SIZE     | BQ           |         |          |          |
| LOGGED BY     | B. King      |         |          |          |
| DATE LOGGED   | Nov 26, 1985 |         |          | <u> </u> |
| MAP REFERÊNCE | ło           |         | <u> </u> | }        |
|               | Dip -60°     |         |          |          |
|               | .Azm 261°    |         |          |          |
|               |              | ı       |          | ı        |

| COMPANY NAME Mono Gold Mines Inc.                  |
|----------------------------------------------------|
| PROPERTY NAME Bannockburn Bannockburn Mine         |
| DRILLING CONTRACTOR McKnight.                      |
| ASSAYER Chemex                                     |
| PURPOSE OF HOLE to test. "mine structure" at depth |
|                                                    |
| ·                                                  |

| FROM | то    | RECOVY | DESCRIPTION                                                                           |      | SA   | MPLE  |        | ASSAYS |  |  |  |  |  |  |  |  |
|------|-------|--------|---------------------------------------------------------------------------------------|------|------|-------|--------|--------|--|--|--|--|--|--|--|--|
|      |       |        |                                                                                       | FROM | то   | WIDTH | No.    |        |  |  |  |  |  |  |  |  |
| 0.0  | 9.0   |        | Casing                                                                                |      |      |       |        |        |  |  |  |  |  |  |  |  |
| _    |       |        |                                                                                       |      |      |       |        |        |  |  |  |  |  |  |  |  |
| 9.0  | 267.0 |        | Cherty Metasediments (Semi Pelitic/ Psammitic Altered Sediments)                      |      |      |       |        |        |  |  |  |  |  |  |  |  |
|      |       |        | -upper 13' severely surface altered, ground core, variety of low angle fract' or      |      |      |       |        |        |  |  |  |  |  |  |  |  |
|      |       |        | faults                                                                                |      |      |       |        |        |  |  |  |  |  |  |  |  |
|      |       |        | -22.0-28.5; typical med- f gr qtzitic sediment with banded alteration                 |      |      |       |        |        |  |  |  |  |  |  |  |  |
|      |       |        | -28.5-38.0; severely altered zone with kspar-qtz-cc vein (+hem, bio, py) at 28.5 &    | 28.5 | 31.3 | 2.8   | 13363F | (0.002 |  |  |  |  |  |  |  |  |
|      |       |        | 32.4 , brecciated or xenolithic fragments with banded alteration from                 | 31.3 | 32.4 | 1.1   | 13364  | (0.002 |  |  |  |  |  |  |  |  |
|      |       |        | - 36.0-38.0, banded alteration continues to 41.8                                      | 32.4 | 36.0 | 1.6   | 13365  | (0.002 |  |  |  |  |  |  |  |  |
|      |       |        |                                                                                       | 36.0 | 38.0 | 2.0   | 13366  | ko.002 |  |  |  |  |  |  |  |  |
|      |       |        | -41.8-46.7; very weak banded alteration, minor kspar & hem on fol planes, few ep-cc   |      |      |       |        |        |  |  |  |  |  |  |  |  |
|      |       |        | bands                                                                                 |      |      |       |        |        |  |  |  |  |  |  |  |  |
|      |       |        | -46.7-75.0; banded and advanced banded alteration in cherty metasediments, 69.6-70.1; | 69.4 | 70.4 | 1.0   | 13367  | (0.002 |  |  |  |  |  |  |  |  |
|      |       |        | xcutting kspar-qtz-cc vein with bio, py, upper ctc 0 68°, assoc with                  |      |      |       |        |        |  |  |  |  |  |  |  |  |
|      |       |        | brecciation and disrtupted banding                                                    |      |      |       |        |        |  |  |  |  |  |  |  |  |

| DATE LOGGED   |
|---------------|
| COMPANY NAME  |
| PROPERTY NAME |

HOLE No85-45

| ROM   | то | RECOVY | DESCRIPTION                                                                            |              | SA    | MPLE  |       | oz/ton | ASSA | YS |  |  |
|-------|----|--------|----------------------------------------------------------------------------------------|--------------|-------|-------|-------|--------|------|----|--|--|
| NOINI |    | RECOVY | DESCRIPTION                                                                            | FROM         | то    | WIDTH | No.   | Au     |      |    |  |  |
|       |    |        | -71.0; fol/banding @ 32°                                                               |              |       |       |       |        |      |    |  |  |
|       |    |        | -75.0-76.0; ground and broken core, poor drilling practices                            |              |       |       |       |        |      |    |  |  |
|       |    |        | -80.5; xcutting cc-py vein 0 80°, 1/2"                                                 |              |       |       |       |        |      |    |  |  |
|       |    |        | -85.8-86.0; kspar-qtz-cc vein, xcutting or pod, intersects ep-py-cc band               | <b>85.</b> 5 | 86.5  | 1.0   | 13368 | ⟨0.002 |      |    |  |  |
|       |    |        | -106.5-116.6; advanced to weakly banded alteration                                     |              |       |       |       |        |      |    |  |  |
|       |    |        | -116.8-117.7; rk is totally replaced by microgranite/aplite, remaining conformable     |              |       |       |       |        |      |    |  |  |
|       |    |        | -117.7-131.5; advanced banded alteration, including strong chl, hem, cc, py, minor     |              |       |       |       |        |      |    |  |  |
|       |    |        | brecciation and up to 10% py although not mobilized type, 127.1-127.8 is               | 119.3        | 122.5 | 3.2   | 13369 | <0.002 |      |    |  |  |
|       |    |        | syenite replacement, and similar 129.1-131.5 (conformable)                             |              |       |       |       |        |      |    |  |  |
|       |    |        | -126.5; fol/banding @ 28°                                                              |              |       |       |       |        |      |    |  |  |
|       |    |        | -131.5-140.6; Shear Zone, strong "mine structure", strong kspar alteration, appears to | 130.5        | 131.5 | 1.0   | 13370 | <0.002 |      |    |  |  |
|       |    |        | be parallel to the banding of the CM, zone is irreg, but strongly                      | 131.5        | 133.5 | 2.0   | 13371 | (0.002 |      |    |  |  |
|       |    |        | carbonatized, includes brecciation, cataclasis, possible tensional                     | 133.5        | 136.4 | 2.9   | 13372 | (0.002 |      |    |  |  |
|       |    |        | fract's with cc, 135.5-136.4; 2, 3" syenitic/pegmatitic veins?, 193.3-                 | 136.4        | 139.3 | 2.9   | 13373 | (0.002 |      |    |  |  |
|       |    |        | 140.6; sim 135.5-136.4,                                                                | 139.3        | 140.6 | 1.3   | 13374 | (0.002 |      |    |  |  |
|       |    |        | -shear zone averages 62° to core axis                                                  | 140.6        | 141.6 | 1.0   | 13375 | (0.002 |      |    |  |  |
|       |    |        | -145.0; fol/banding @ 16°, banding rotated adjacent shear zone                         |              |       |       |       |        |      |    |  |  |
|       |    |        | -142.0-156.5; advanced banded alteration, incl 2" xcutting kspar-qtz-cc vein 0 152.8   | 152.4        | 153.4 | 1.0   | 13376 | (0.002 | 1    |    |  |  |

PAGE 2 OF 7

| DATE LOGGED   |
|---------------|
| COMPANY NAME  |
| PROPERTY NAME |

HOLE No25-45

|      |    | <del></del> | SAMPLE                                                                                 |       |          | oz/ton ASSAYS |       |        |     |      |          |   |  |  |
|------|----|-------------|----------------------------------------------------------------------------------------|-------|----------|---------------|-------|--------|-----|------|----------|---|--|--|
| FROM | то | RECOVY      | DESCRIPTION                                                                            | FROM  | SA<br>TO | MPLE          | 1     | oz/ton | ASS | SAYS | <u> </u> | · |  |  |
|      |    |             | -156.5-166.2; massive potassic alteration, virtually symmetric/pegmatitic replacement, | FHOM  | 10       | WIDTH         | No.   | Au     |     |      |          |   |  |  |
|      |    |             | or intrusion, minor brecciation, and minor shear (65°) @ 158.0', lower                 |       |          |               |       |        |     |      |          |   |  |  |
|      |    |             | contact sharp @ 80°                                                                    |       |          |               |       |        |     |      |          |   |  |  |
|      |    |             | -166.2-179.0; advanced banded alt, begins to look like protobreccia 170-171, strongly  |       |          |               |       |        |     |      |          |   |  |  |
|      |    |             | carbonatized with "stockwork-like" fracture filling cc, CM banding still               | 170.5 | 175.2    | 4.7           | 13377 | (0.002 |     |      |          |   |  |  |
|      |    |             | visible, strong brecciation and shearing developes with intense potassic               |       |          |               |       |        |     |      |          |   |  |  |
|      |    |             | - alteration, and pegmatitic "veining", braided fabric develops with gen               | 175.2 | 179.0    | 3.8           | 13378 | (0.002 |     |      |          |   |  |  |
|      |    |             | increase in dissem py content (up to 5%)                                               |       |          |               |       |        |     |      |          |   |  |  |
|      |    |             | -179.0-192.2; massive-green alteration, consists of essentially zones of chl rimmed    |       |          |               |       |        |     |      |          |   |  |  |
|      |    |             | withep, hem, cc crosscut by kspar stringers, with dissem hem (barite?)                 |       |          |               |       |        |     |      |          |   |  |  |
|      |    |             | throughout, some zones appear annealed, unusual alt, perhaps new facies?               |       |          |               |       |        |     |      |          |   |  |  |
|      |    |             | -188.6-189.8; chl-cc breccia zone within the massive alteration                        | 188.6 | 190.4    | 1.8           | 13379 | 0.002  |     |      |          |   |  |  |
|      |    |             | -192.2-201.0; breccia zone with chloritic frag's in qtz-ferrugenous cc cement, some    | 190.4 | 194.0    | 3.6           | 13380 | (0.002 |     |      |          |   |  |  |
|      |    |             | poor core recovery, vuggy with massive alteration with dissem py, probable             | 194.0 | 198.0    | 4.0           | 13381 | (0.002 |     |      |          |   |  |  |
|      |    |             | continuous brecciation or protobrecciation, but not distinct                           | 198.0 | 201.0    | 3.0           | 13382 | (0.002 |     |      |          |   |  |  |
|      |    |             | -201.0-206.0; annealed, granoblastic kspar-qtz rk with some chl patches, and few cc    |       |          |               |       |        |     |      |          |   |  |  |
|      |    |             | stringers                                                                              |       |          |               |       |        |     |      |          |   |  |  |
|      |    |             | 206.0-213.0; massive and very advanced alteration, but still showing CM banding        |       |          |               |       |        |     |      |          |   |  |  |

| DATE LOGGED   |
|---------------|
| COMPANY NAME  |
| PROPERTY NAME |

HOLE No.

| FROM | то       | RECOVY  | DESCRIPTION                                                                            |          | SA    | MPLE  |       | oz/ton | ASSAYS |         |  |  |  |   |  |  |
|------|----------|---------|----------------------------------------------------------------------------------------|----------|-------|-------|-------|--------|--------|---------|--|--|--|---|--|--|
|      |          | 1120011 | DESCRIPTION                                                                            | FROM     | то    | MIDTH | No.   | Au     |        |         |  |  |  |   |  |  |
|      |          |         | -212.0; fol/banding @ 32°                                                              | <u> </u> |       |       |       |        |        | <u></u> |  |  |  |   |  |  |
|      |          |         | -brecciation begins at 213.0, but not consistant, alternating with varying banded      |          |       |       |       |        |        |         |  |  |  |   |  |  |
|      |          |         | alteration                                                                             |          |       |       |       |        |        |         |  |  |  |   |  |  |
|      |          |         | -219.2; diffuse pod of kspar-qtz-ep-cc with up to 5% py                                |          |       |       |       |        |        |         |  |  |  |   |  |  |
|      |          |         | -223.5-224.3; kspar-qtz-cc zone bordering a minor breccia, no sulphides, apparent      |          |       |       |       |        |        |         |  |  |  |   |  |  |
|      |          |         | relationship between small pegmatitic or potassic zones and marginal                   |          |       |       |       |        |        |         |  |  |  |   |  |  |
|      | 1        |         | brecciation, ie; possible rotational fabric on periphery of zones?                     |          |       |       |       |        |        |         |  |  |  |   |  |  |
|      |          |         | -229.0; fol/banding 0 10°                                                              |          |       |       |       |        |        |         |  |  |  |   |  |  |
|      |          |         | -231.7-239.6; breccia/shear zone sim to 171.0-179.0, but better developed, zone @ 85°, | 230.7    | 231.7 | 1.0   | 13383 | (0.002 |        |         |  |  |  |   |  |  |
|      | <u>-</u> |         | unit is well attacked and partially assimilated, more uniform                          | 231.7    | 236.0 | 4.3   | 13384 | (0.002 |        |         |  |  |  |   |  |  |
|      |          |         |                                                                                        | 236.0    | 239.6 | 3.6   | 13385 | (0.002 |        |         |  |  |  |   |  |  |
|      |          |         |                                                                                        | 239.6    | 240.6 | 1.0   | 13386 | <0.002 |        |         |  |  |  |   |  |  |
|      |          |         | -239.6-248.0; block of cherty metasediments with adv banded alteration in varying      |          |       |       |       |        |        |         |  |  |  |   |  |  |
|      |          |         | stages of decomposition and assimilation, with qtz-kspar-cc stringers                  | 247.0    | 248.0 | 1.0   | 13387 | <0.002 |        |         |  |  |  | ` |  |  |
|      |          |         | and carbonatization, possible barite?                                                  | 248.0    | 252.7 | 4.7   | 13388 | (0.002 |        |         |  |  |  |   |  |  |
|      |          |         | - 248.0-254.7; crush/shear zone, very chloritic, black, possible tourmaline            | 252.7    | 254.3 | 1.6   | 13389 | ⟨0.002 |        |         |  |  |  |   |  |  |
|      |          |         | kspar frag's and relics, 5% py dissem                                                  | 254.3    | 256.0 | 1.7   | 13390 | 0.006  |        |         |  |  |  |   |  |  |
|      |          |         |                                                                                        | 256.0    | 262.0 | 6.0   | 13391 | 0.002  |        |         |  |  |  |   |  |  |

PAGE 4 OF 7

| DATE LOGGED     |  |
|-----------------|--|
| COMPANY NAME    |  |
| PROPERTY ALABAE |  |

HOLE N.85-45

|       | <del></del>                           | <del>,</del> |                                                                                        | <del>,</del> |       |       |       |        |        |       |   |   |
|-------|---------------------------------------|--------------|----------------------------------------------------------------------------------------|--------------|-------|-------|-------|--------|--------|-------|---|---|
| FROM  | то                                    | RECOVY       | DESCRIPTION                                                                            |              | r     | MPLE  | T .   | ļ.,    | ASSAYS | <br>7 | 1 | 1 |
|       | · · · · · · · · · · · · · · · · · · · |              | 254.7-267.0; block of massive alteration with traces of relic bedding/                 | 262.0        | то    | WIDTH | No.   |        |        |       |   |   |
|       |                                       |              |                                                                                        | 202.0        | 267.0 | 5.0   | 13392 | (0.002 |        | <br>ļ |   | ļ |
|       |                                       |              | banding, tourmaline+cc+qtz                                                             | 267.0        | 268.0 | 1.0   | 13393 | ⟨0.002 |        | -     |   |   |
| 267.0 | 656.0                                 |              | Mafic Syenite/Syenodiorite                                                             |              |       |       |       |        |        |       |   |   |
|       |                                       |              | -kspar-bio,cc rk, grey-pink, generally med xtalline with pegmatitic segregations       |              |       |       |       |        |        |       |   |   |
|       |                                       |              | -287.6; 1" qtz-cc stringer with bio, minor py @ 45°                                    |              |       |       | _     |        |        |       |   |   |
|       |                                       |              | -336.4-336.8; qtz vein with chl, minor cc, py @ 80°                                    | 336.0        | 337.0 | 1.0   | 13394 | (0.002 |        |       |   |   |
|       |                                       |              | -357.8-358.5; possible mafic dike or mafic, assimilated xenolith, includes zone of     |              |       |       |       |        |        |       |   |   |
|       |                                       |              | sil, ep, talc and carbonatized, qtz-cc stringer with py below zone, 2"                 | 358.3        | 359.3 | 1.0   | 13395 | 0.004  |        |       |   |   |
|       |                                       |              | -370.0; 4" kspar-qtz-cc-ep-vein with diffuse ctc's, non economic                       |              |       |       |       |        |        |       |   |   |
|       |                                       | ·            | -395.4-397.6; possible altered mafic dike/xenolith, sim 357.8-358.5, but without qtz   |              |       |       |       |        |        |       |   |   |
|       |                                       |              | stringer                                                                               |              |       |       |       |        |        |       |   |   |
|       |                                       |              | -423.3-447.3; Shear Zone/Cataclastic Zone                                              |              |       |       |       |        |        |       |   |   |
|       |                                       |              | -sheared syenodiorite, generally carbonatized, with tourmaline, chl, bio and qtz-kspar | 422.3        | 423.3 | 1.0   | 13396 | 0.002  |        |       |   |   |
|       |                                       |              | stringers or ribbons                                                                   | 423.3        | 426.0 | 2.7   | 13397 | 0.002  |        |       |   |   |
|       |                                       |              | -423.3; 2½" kspar-qtz-oc stringer @ 42°, with minor brecciation                        | 426.0        | 429.4 | 3.4   | 13398 | (0.002 |        |       |   |   |
|       |                                       |              | -426.0-429.4; 2" qtz-kspar vein, minor cc, dissem py, more chloritic                   | 429.4        | 431.8 | 2.4   | 13399 | (0.002 |        |       |   |   |
|       |                                       |              | -431.8-434.0; sheared syenodiorite with annealed kspar patches, cc, f gr               | 431.8        | 434.0 | 2.2   | 13400 | (0.002 |        |       |   |   |

PAGE 5 OF 7

| DATE LOGGED   |
|---------------|
| COMPANY NAME  |
| PROPERTY NAME |

HOLE No.85-45

|      | <del></del> |        |                                                                                          | SAMPLE |       |     | oz/ton | ASSA   | VS    | <del></del> | 77 |  |               |
|------|-------------|--------|------------------------------------------------------------------------------------------|--------|-------|-----|--------|--------|-------|-------------|----|--|---------------|
| FROM | то          | RECOVY | DESCRIPTION                                                                              | FROM   |       |     | No.    | Au Au  | 7,007 | 1           |    |  |               |
|      |             |        | -434.0-438.8; sheared in part, with massive alteration, sericitic, diss py               | 434.0  | 438.8 | 4.8 | 13401  | (0.002 |       |             |    |  |               |
|      |             |        | -443.8-447.3; coarse chloritic, cataclastic sheared syenite, blebs of cc                 | 438.8  | 441.5 | 2.7 | 13402  | (0.002 |       |             |    |  |               |
|      |             |        | and ferrugenous cc+hem?barite in vuggy zone (1")                                         | 441.5  | 443.8 | 2.3 | 13403  | 0.002  |       |             |    |  |               |
|      |             |        | -429.0; shearing generally averages @ 35°                                                | 443.8  | 447.3 | 3.5 | 13404  | (0.002 |       |             |    |  | <del></del> . |
|      |             |        |                                                                                          | 447.3  | 448.3 | 1.0 | 13405  | (0.002 |       |             |    |  |               |
|      |             |        | 452.8-467.2; protobreccia in syenite, minor shearing, very irreg, strong carbonatization | n      |       |     |        |        |       |             |    |  |               |
|      |             |        | annealed kspar patches, some tourmaline                                                  |        |       |     |        |        |       |             |    |  |               |
|      |             |        | -471.8-481.6; Shear/Cataclastic Zone, ksapr-qtz veining or pegmatite?, carbonatized      | 470.8  | 471.8 | 1.0 | 13406  | (0.002 |       |             |    |  |               |
|      |             |        | with cc blebs or pervasive dissem, with minor py , sericite and tourmaline               | 471.8  | 474.8 | 3.0 | 13407  | ₹0.002 |       |             |    |  |               |
|      |             |        | -474.8-476.4; syenite vein?, potassic zone, up to 5% py                                  | 474.8  | 478.7 | 3.9 | 13408  | (0.002 |       |             |    |  |               |
|      |             |        | -478.7-481.6; very strong sheared syenite with kspar-qtz-cc stringers (5")               | 478.7  | 481.6 | 2.9 | 13410  | 0.024  |       |             |    |  |               |
|      |             |        | tr cpy, ends with sericitic rk                                                           | 481.6  | 483.0 | 1.4 | 13411  | (0.002 |       |             |    |  |               |
|      |             |        |                                                                                          | 483.0  | 484.8 | 1.8 | 13412  | 0.004  |       |             |    |  |               |
|      |             |        | -483.0-484.8; protobreccia withsome qtz veining in syenite, 2" bull qtz, poor recovery   |        |       |     |        |        |       |             |    |  |               |
|      |             |        | -495.6-496.0; bull qtz?, some chl, little mineralization                                 | 495.5  | 496.5 | 1.0 | 13413  | (0.002 |       |             |    |  |               |
|      |             |        | -501.0-502.0; vuggy, altered with cc, ep, hem, minor py, broken core, poor recovery      |        |       |     |        |        |       |             |    |  |               |
|      |             |        | -520.5-521.5; minor cataclastic zone                                                     |        |       |     |        |        |       |             |    |  |               |
|      |             |        | -564.0; 3" cc-bio,qtz band or vein                                                       |        |       |     |        |        |       |             |    |  | <del></del> _ |

PAGE \_\_\_\_\_ OF \_\_\_\_ 7

| DATE LOGGED   |               |
|---------------|---------------|
| COMPANY NAME  |               |
| PROPERTY NAME | HOLE No.85-45 |

| ĭ    |       |          |                                                                                     | SAMPLE |             |     | <del>                                     </del> | ACCAVO   | ASSAYS |  |                                       |  |                |
|------|-------|----------|-------------------------------------------------------------------------------------|--------|-------------|-----|--------------------------------------------------|----------|--------|--|---------------------------------------|--|----------------|
| FROM | то    | RECOVY   | DESCRIPTION                                                                         | FROM   |             |     | oz/ton<br>Au                                     | m ACCATO |        |  | · · · · · · · · · · · · · · · · · · · |  |                |
|      |       |          | -575.2-577.0; possible mafic dike or mafic xenolith, carbonatized, chl-bio schist   |        |             |     |                                                  |          |        |  |                                       |  |                |
|      |       |          | -585.4-588.4; sim 575.2-577.0 @ 30°                                                 |        | <del></del> |     |                                                  |          |        |  |                                       |  |                |
|      |       |          | -593.2; 2" qtz vein with large subhedral py, sharp ctc's 0 67, shearing evident on  | 592.6  | 593.6       | 1.0 | 13414                                            | (0.002   |        |  |                                       |  |                |
|      |       |          | lower ctc                                                                           |        |             |     |                                                  |          |        |  |                                       |  |                |
|      |       |          | -598.8-600.8; 1.4' wein of kspar-qtz with strong bio and py, pegmatitic             | 598.8  | 600.8       | 2.0 | 13415                                            | (0.002   |        |  |                                       |  |                |
|      |       |          | 601.8-609.5; shear zone, begins with protobreccia/protomylonite, carbonatized zone, | 600.8  | 601.8       | 1.0 | 13416                                            | (0.002   |        |  |                                       |  |                |
|      |       |          | looks much like a mafic intrusive (severely altered), sheared @ 52°, 602.5-         | 601.8  | 603.9       | 2.1 | 13417                                            | 0.002    |        |  |                                       |  |                |
|      |       |          | 603.0, bull qtz, minor cc, massive tourmaline breccia with chl, bio, blebs          | 603.9  | 608.3       | 4.4 | 13418                                            | (0.002   |        |  |                                       |  |                |
|      |       |          | of py, very impressive zone of altered breccia!                                     | 608.3  | 609.5       | 1.2 | 13419                                            | (0.002   |        |  |                                       |  |                |
|      |       |          | -609.5-613.0; mafic dike, carbonatized, lower ctc @ 11°, sim 575.2-577.0            |        | ļ           |     |                                                  |          |        |  |                                       |  | , <del>-</del> |
|      |       |          | -643.0-649.5; possible, very weak shearing and protobreccia, barren                 |        |             |     |                                                  |          |        |  |                                       |  | ·*······       |
|      | 656.0 |          |                                                                                     |        |             |     |                                                  |          |        |  |                                       |  |                |
|      | EOH   | <u></u>  |                                                                                     |        |             |     |                                                  |          |        |  |                                       |  |                |
|      |       |          |                                                                                     |        |             |     |                                                  |          |        |  |                                       |  |                |
|      |       |          |                                                                                     |        |             |     |                                                  |          |        |  |                                       |  |                |
|      |       |          |                                                                                     |        |             |     |                                                  |          |        |  |                                       |  | ,              |
|      |       |          |                                                                                     |        |             |     |                                                  |          |        |  |                                       |  |                |
|      |       | <u> </u> |                                                                                     |        |             |     | •                                                |          |        |  | ,.                                    |  |                |

PAGE 7 OF 7

| COLLAR:                  | HOL     | E SURVEY     |          |
|--------------------------|---------|--------------|----------|
| 6+06N                    | METHOD: | hf           |          |
| 2+45E                    | FOOTAGE | AZIMUTH      | DIP      |
| ELEVATION                | 432     |              | 45°      |
| CORE SIZE BO             |         |              |          |
| LOGGED BY B. King        |         |              | Ι        |
| DATE LOGGED NOV 29, 1985 |         |              |          |
| MAP REFERENCE No.        |         |              | -        |
| Dip -45°                 |         | <del> </del> | <u> </u> |
| Azm 261°                 | l l     |              |          |
|                          | 1       |              |          |

| COMPANY NAME                      | Mono Gold Mines Inc               |
|-----------------------------------|-----------------------------------|
| PROPERTY NAME                     | Bannockburn, Bannockburn Mine     |
| DRILLING CONTRACTO ASSAYER CHETEX | OR McKnight                       |
| PURPOSE OF HOLE                   | to test "mine structure" at depth |
|                                   |                                   |

| HOLE No.8.5-4 | 7       |      |  |
|---------------|---------|------|--|
| CLAIM NAME/N  | D       |      |  |
| COMMENCED _   | Nov 26. | 1985 |  |
| FINISHED      | Nov 29. | 1985 |  |
| FINAL DEPTH   |         |      |  |
| PROJECT No    |         |      |  |

| FROM | то   | RECOVY | DESCRIPTION                                                                           | SAMPLE |    |          |     |       | ASSAYS | <del></del> |   |
|------|------|--------|---------------------------------------------------------------------------------------|--------|----|----------|-----|-------|--------|-------------|---|
|      |      |        |                                                                                       | FROM   | то | WIDTH    | No. |       |        |             |   |
| 0.0  | 9.0  |        | Casing                                                                                |        |    |          |     |       |        | <br>        |   |
|      |      |        |                                                                                       |        |    |          |     |       |        |             |   |
| 9.0  | 71.5 |        | Cherty (Banded) Metasediments                                                         |        |    |          |     |       |        |             |   |
|      |      |        | -9.0-30.0; surface weathering effects noted                                           |        |    |          | ·   |       |        |             |   |
|      |      |        | -25.0-27.0; tectonic breccia, matrix supported, partially sheared, no signif min      |        |    |          |     |       |        |             |   |
|      |      |        | -27.0; fol/banding @ 50°                                                              |        |    |          |     |       |        |             |   |
|      |      |        | 32.8-33.6; minor zone of ep,cc, py alteration                                         |        |    |          |     | !<br> |        |             |   |
|      |      |        | -39.0; fol/banding @ 41°, 40.5; fol/banding @ 10° and wavy                            |        |    |          |     |       | <br>   |             |   |
|      |      |        | -40.0-41.5; kspar-qtz-cc-ep vein, pegmatitic, brecciated appears conformable          |        |    |          |     |       |        | _           |   |
|      |      |        | -55.0; fol/banding @ 30°                                                              |        |    |          |     |       |        |             |   |
|      |      |        | -71.0; fol/banding @ 53°                                                              |        |    |          |     |       |        |             | - |
|      |      |        |                                                                                       |        |    | L        |     |       |        |             |   |
| 71.5 | 78.6 |        | Cherty, Semi Pelitic Metasediment                                                     |        |    | <u> </u> |     |       |        |             |   |
|      |      |        | -similar to unit above, but has strong bio partings, appears sheared, minor "z" style |        |    |          |     |       |        |             |   |
|      |      |        | folding, dissem py. cc blebs throughout                                               |        |    |          |     |       |        |             |   |

| E LOGGED<br>IPANY NAM |  | <br> |  |        |               |
|-----------------------|--|------|--|--------|---------------|
| PERTY NAI             |  |      |  |        | HOLE No 25-47 |
|                       |  |      |  | SAMPLE | ASSAYS        |

|      | <del></del> |        |                                                                                       | i        |      |       | ¥     |        |    |      |             |   |          |         |
|------|-------------|--------|---------------------------------------------------------------------------------------|----------|------|-------|-------|--------|----|------|-------------|---|----------|---------|
| FROM | то          | RECOVY | DESCRIPTION                                                                           | <u> </u> |      | MPLE  |       | ļ      | AS | SAYS | <del></del> | γ | <u> </u> |         |
| 78.6 | 274.7       |        | Cherty (Banded) Metasediments                                                         | FROM     | 10   | WIDTH | No.   |        |    |      |             |   |          |         |
| 70.0 | 2/4./       |        |                                                                                       |          |      |       |       |        |    | ļ    |             |   |          |         |
|      |             |        | -sim 9.0-71.5                                                                         |          |      |       |       |        |    |      |             |   |          |         |
|      |             |        | -83.0; fol/banding @ 43°                                                              |          |      |       |       |        |    |      |             |   |          |         |
|      |             |        | -84.7-86.0; qtz-kspar ep, cc, py vein or pod, associated with dip reversal in banding | 84.4     | 86.4 | 2.0   | 13420 | (0.002 |    |      |             |   |          |         |
|      |             |        | probable closure feature                                                              |          |      |       |       |        |    |      |             |   |          |         |
|      |             |        | -94.0; possible "s" style parasitic fold                                              |          |      |       |       |        |    |      |             |   |          | <u></u> |
|      |             |        | -110.0-116.0; intense, pervasive silicification                                       | ]        |      |       |       |        |    |      |             |   |          |         |
|      |             |        | -137.5-138.4; advanced banded alteration                                              |          |      |       |       |        |    |      |             |   |          |         |
|      |             |        | -150.0; fol/banding @ 28°                                                             |          |      |       |       |        |    |      |             |   |          |         |
|      |             |        | -169.4-171.7; kspar-qtz-very hematitic alt zone, with cc, diffuse conformable ctc's,  |          |      |       |       |        |    |      |             |   |          |         |
|      |             |        | relics of CM, non economic                                                            |          |      |       |       |        |    |      |             |   |          |         |
|      |             |        | 71.7-186.1; kspar-"microsyenite" zone, upper ctc diffuse, possible brecciation,       |          |      |       |       |        |    |      |             |   |          |         |
|      | _           |        | relic inclusions?                                                                     |          |      |       |       |        |    |      |             |   |          |         |
|      |             |        | -186.1-188.2; silicified CM                                                           |          |      |       |       |        |    |      |             |   |          |         |
|      |             |        | -203.7-205.8; advanced banded alteration                                              |          |      |       |       |        |    |      |             |   |          |         |
|      |             |        | -205.8-209.2; f gr syenitic alteration, replacement or intrusion                      |          |      |       |       |        |    |      |             |   |          |         |
|      |             |        | -212.8-215.8; sim 205.8-209.2, strong cc, minor hem                                   |          |      |       |       |        |    |      |             |   |          |         |
|      |             |        | -216.5; fol/banding @ 30°                                                             |          |      |       |       |        |    |      |             |   |          |         |

| DATE LOGGED   |
|---------------|
| COMPANY NAME  |
| PROPERTY NAME |

HOLE No.85-47

|       |       | <b>,</b> |                                                                                        |       |       |       |                                       | المستحيين |          |                |   |      |         |
|-------|-------|----------|----------------------------------------------------------------------------------------|-------|-------|-------|---------------------------------------|-----------|----------|----------------|---|------|---------|
| FROM  | то    | RECOVY   | DESCRIPTION                                                                            |       |       | MPLE  | · · · · · · · · · · · · · · · · · · · | oz/ton    | ASS      | SAYS           | · | r    |         |
| _     |       |          | OT 0 OK F. unistics of handed (and advanced) alternation since has a time              | FROM  | то    | WIDTH | No.                                   | Au        |          | <del> </del> - |   | <br> |         |
|       |       |          | -227.0-246.5; varieties of banded, (weak-advanced) alteration, minor brecciation,      |       | ļ     |       |                                       |           | <u> </u> | <u> </u>       |   |      | <u></u> |
|       |       |          | possible symm folding @ 241.5                                                          |       | ļ     |       |                                       |           |          |                |   |      |         |
|       |       |          | -246.5-247.5; diffuse, conformable qtz-cc vein with ep, few spks py, minor brecciation | 246.5 | 247.5 | 1.0   | 13421                                 | (0.002    |          |                |   |      |         |
|       |       |          | -252.0; fol/banding @ 32°                                                              |       |       |       |                                       |           |          |                |   |      |         |
|       |       |          | -262.2-264.7; very advanced banded alt, trending to massive alt, totally replacement   |       |       |       |                                       |           |          |                |   |      |         |
|       |       |          | type at end of interval                                                                |       |       |       |                                       |           |          |                |   |      |         |
|       |       |          | 264.7-268.3; very adv banded alt with some brecciation, very heavy cc                  |       |       |       |                                       |           |          |                |   |      |         |
|       |       |          | 268.3-270.3; massive alteration                                                        |       |       |       |                                       |           |          |                |   |      |         |
|       |       |          | -270.3-274.7; adv banded alteration                                                    |       |       |       |                                       |           |          |                |   |      |         |
| 274.7 | 432.0 |          | Syenite/Syenodiorite                                                                   |       |       |       | 18.                                   |           |          |                |   |      |         |
|       | EOH   |          | -med-coarse biotite syenite                                                            |       |       |       |                                       |           |          |                |   |      |         |
|       |       |          | -274.7-281.0; elevated py to 7%                                                        |       |       |       |                                       |           |          |                |   |      |         |
|       |       |          | -massive, structureless, med xtalline to 297.0, coarse to 315.0, increased mafic       |       |       |       |                                       |           |          |                |   |      |         |
|       |       |          | content to 346.5                                                                       |       |       |       |                                       |           |          |                |   |      |         |
|       |       |          | -346.5-347.8; microsyenite "vein" or replacement zone with diffuse ctc's               |       |       |       |                                       |           |          |                |   |      |         |
|       |       |          | -350.3-358.6; Shear Zone/Cataclastic Zone, 350.9, 1½" qtz-kspar,cc , conformable vein  | 350.3 | 352.3 | 2.0   | 13422                                 | 0.008     |          |                |   |      |         |
|       |       |          | 351.3; 1" qtz vein, minor cc, granular qtz                                             | 352.3 | 354.0 | 1.7   | 13423                                 | (0.002    |          |                |   |      |         |

PAGE 3 OF 4

| DATE LOGGED   |  |
|---------------|--|
| COMPANY NAME  |  |
| PROPERTY NAME |  |

HOLE No.

|      |       | <del></del> |                                                                                    |       |       |        | <del></del> |        |   |  | <br> |             |
|------|-------|-------------|------------------------------------------------------------------------------------|-------|-------|--------|-------------|--------|---|--|------|-------------|
| FROM | то    | RECOVY      | DESCRIPTION                                                                        |       |       | oz/ton | ASS         | AYS    |   |  |      |             |
|      |       |             |                                                                                    | FROM  | то    | WIDTH  | No.         | Au     |   |  | <br> |             |
|      |       |             | 352.0; sim 351.3, 352.7-353.1; qtz vein, minor cc, 353.4; 2" qtz vein,             | 354.0 | 356.5 | 2.5    | 13424       | 0.034  |   |  |      | į           |
|      |       |             | 355.0; qtz vein with cc, minor py, 355.8; 1½" qtz vein, minor cc, py,              | 356.5 | 358.6 | 2.1    | 13425       | (0.002 |   |  |      |             |
|      |       |             | veining within shear zone is sinuous, possibly folded, minor breccia, shear        |       |       |        |             |        |   |  |      |             |
|      |       |             | averages 40°                                                                       |       |       |        |             |        |   |  |      |             |
|      |       |             | -358.6-367.8; med xtalline syenite/syenodiorite                                    |       |       |        |             |        |   |  |      |             |
|      |       |             | -367.8-369.0; altered zone, consisting of 1½" qtz-vein with minor cc, bio, py, hem | 367.7 | 369.2 | 1.5    | 13426       | (0.002 | · |  |      |             |
|      |       |             | at 45°                                                                             |       |       |        |             |        |   |  |      |             |
|      |       |             | -369.0-401.0; med xtalline syenite                                                 |       |       |        |             |        |   |  |      |             |
|      | 432.0 |             | -401.0-432.0; coarse mafic syenodiorite                                            |       |       |        |             |        |   |  |      |             |
|      | EOH   |             |                                                                                    |       |       |        |             |        |   |  |      |             |
|      |       |             |                                                                                    |       |       |        |             |        |   |  |      |             |
|      |       |             |                                                                                    |       |       |        | -           |        |   |  |      |             |
|      |       |             |                                                                                    |       |       |        |             |        |   |  |      |             |
|      |       |             |                                                                                    |       |       |        |             |        |   |  |      |             |
|      |       |             |                                                                                    |       |       |        |             |        |   |  |      |             |
|      |       |             |                                                                                    |       |       |        |             |        |   |  |      |             |
|      |       |             |                                                                                    |       |       |        |             |        |   |  |      |             |
|      |       |             |                                                                                    |       |       |        |             |        |   |  |      | <del></del> |

PAGE 4 OF 4

| COLLAR:       |              | HOL     | HOLE SURVEY |              |  |  |  |  |
|---------------|--------------|---------|-------------|--------------|--|--|--|--|
|               | 6+06N        | METHOD: | hf          |              |  |  |  |  |
|               | 2+45E        | FOOTAGE | AZIMUTH     | DIP          |  |  |  |  |
| ELEVATION     |              | 556     |             | -58°         |  |  |  |  |
| CORE SIZE     | BQ           |         |             |              |  |  |  |  |
| LOGGED BY     | B. King      |         |             |              |  |  |  |  |
| DATE LOGGED   | Nov 30, 1985 |         |             |              |  |  |  |  |
| MAP REFERENCE | No           |         |             | <del> </del> |  |  |  |  |
|               | Dip -60°     |         |             | 1            |  |  |  |  |
|               | Azm 261      | T T     |             |              |  |  |  |  |
|               |              |         |             |              |  |  |  |  |

| COMPANY NAME Mono Gold Mines Inc                  |
|---------------------------------------------------|
| PROPERTY NAME Bannockburn, Bannockburn Mine       |
| DRILLING CONTRACTOR McKnight.                     |
| ASSAYER Cherrex                                   |
| PURPOSE OF HOLE To test "Mine Structure" at depth |
|                                                   |

| HOLE No. 85-48         |  |
|------------------------|--|
| CLAIM NAME/No.         |  |
| COMMENCED NOV 29. 1985 |  |
| FINISHED Nov 30, 1985  |  |
| FINAL DEPTH _ 556      |  |
| PROJECT No.            |  |

| FROM | то       | RECOVY | DESCRIPTION                                                                         |          | SA | MPLE  | <del></del> |         | <del></del> | ASSAYS | <br><u></u> |             |
|------|----------|--------|-------------------------------------------------------------------------------------|----------|----|-------|-------------|---------|-------------|--------|-------------|-------------|
|      |          |        |                                                                                     | FROM     | TO | WIDTH | No.         |         |             |        |             |             |
| 0.0  | 5.0      |        | Casing                                                                              |          |    |       |             |         |             |        |             |             |
|      |          |        |                                                                                     |          |    |       |             |         |             |        |             |             |
| 5.0  | 6.5      |        | Ground core, poor recovery                                                          |          |    |       |             |         |             |        |             |             |
| 6.5  | 187.0    |        | Cherty Banded Metasediment (Silicified, Semi Pelitic/Psammitic Sediments)           |          |    |       |             |         |             |        |             |             |
|      |          |        | -surface weathering effects to 17'                                                  |          |    |       |             |         |             |        |             |             |
|      |          |        | -vaguely banded, cherty impure qtzite or psammite, with bio/chl partings throughout |          |    |       | 38          |         |             |        |             |             |
|      |          |        | -generally f gr, comp layering is often contorted, broken, prob boudins, minor      |          |    |       |             |         |             |        |             |             |
|      |          |        | pervasive carbonatization, syngeneitic py dissem                                    |          |    |       |             |         |             |        |             |             |
|      |          |        | -27.0-29.4; fault zone, incl 4" "air pocket" as reported by drillers, zone is green |          |    |       |             |         |             |        | <br>        |             |
|      |          |        | ep, cc, chl, qtz, low density-vuggy rk, some hem, lower ctc @ 60°, possible         | <b>e</b> |    |       |             |         |             |        |             | <del></del> |
|      | <u> </u> |        | sol'n breccia                                                                       |          |    |       |             |         |             |        |             |             |
|      |          |        | -35.0; fol/banding @ 54°                                                            | <u> </u> |    | ļ     |             | <u></u> |             | <br>   |             |             |
|      |          |        | -58.7; minor conformable 1" qtz-cc stringer with minor py                           |          |    |       |             |         |             |        |             |             |
|      |          |        | -60.0; fol/banding 0 32°                                                            |          |    |       |             |         |             |        |             | <u> </u>    |

|      |        | 7 |   |
|------|--------|---|---|
| PAGE | <br>OF |   | _ |

| DATE LOGGED   |  |
|---------------|--|
| COMPANY NAME  |  |
| PROPERTY NAME |  |

HOLE No.85-48

|       |       | 1        |                                                                                       | T     |          | 4401.5 |        | <del></del> | m ASSAYS |          |          |     |             |  |  |  |
|-------|-------|----------|---------------------------------------------------------------------------------------|-------|----------|--------|--------|-------------|----------|----------|----------|-----|-------------|--|--|--|
| FROM  | то    | RECOVY   | DESCRIPTION                                                                           | FROM  | TO       | MPLE   | No.    | oz/ton      | ASSAYS   | T        | T        | F 1 |             |  |  |  |
|       |       |          | -67.5; possible "z" style parasitic folding                                           |       | 10       |        | 140.   | Au .        |          |          |          |     |             |  |  |  |
|       |       |          | -71.0-76.5; ep-cc-py alteration, precursor to banded alt type                         |       |          |        |        |             |          |          | <u> </u> |     |             |  |  |  |
|       |       |          | -97.6-99.5; xcutting? sharp contact qtz-ksar-sericite vein with bio, py, @ 90°        | 97.6  | 99.5     | 1.9    | 13427F | (0.002      |          |          |          |     |             |  |  |  |
|       |       |          | -101.0; fol/banding @ 28°                                                             |       |          |        |        |             |          |          |          |     |             |  |  |  |
|       |       |          | -110.7; 1" and ½" conformable qtz vein with minor cc, py, bio on ctc's                | 111.5 | 112.5    | 1.0    | 13428  | (0.002      |          |          |          |     |             |  |  |  |
|       |       |          | 120.5-122.7; very sil zone, incl possible qtz vein with minor cc and dissem py, poss  |       |          |        |        |             |          |          |          |     |             |  |  |  |
|       |       | <u></u>  | xcutting and very diffuse                                                             | 120.5 | 122.7    | 2.2    | 13429  | (0.002      |          |          |          |     |             |  |  |  |
|       |       |          | -147.0; fol/banding @ 35°, possible folding                                           |       |          |        |        |             |          |          |          |     |             |  |  |  |
|       |       |          | -153.5-156.6; very weak banded alt, minor ksam,ep,cc                                  |       |          |        |        |             |          |          |          |     | ·           |  |  |  |
|       |       |          | -161.0-165.3; variety of banded alt, very sil, virtually qtz veined, with ep, cc, hem | 161.0 | 165.3    | 4.3    | 13430  | (0.002      |          |          |          |     |             |  |  |  |
|       |       |          | py blebs and kspar                                                                    |       |          |        |        |             |          |          |          |     |             |  |  |  |
|       |       |          | -171.0; fol/banding @ 30°                                                             |       |          |        |        |             |          |          |          |     | ·           |  |  |  |
|       |       |          | -weakly banded alt to 176', possible folding at 181, largely unaltered to 187         |       | ļ<br>    |        |        |             |          |          |          |     |             |  |  |  |
|       |       |          |                                                                                       | ļ     | <u> </u> | ļ      |        | <u> </u>  - |          | <u> </u> |          |     |             |  |  |  |
| 187.0 | 197.6 |          | Medium Syenite (Partially Altered Syenite/Syenodiorite)                               |       |          | ļ      |        |             |          |          |          |     |             |  |  |  |
|       |       | <u> </u> | -pink, granoblastic, homogen                                                          | ļ     |          |        |        |             |          |          | <u> </u> |     |             |  |  |  |
|       |       | <u> </u> | -few ep zones, this unit may actually be metasommatic replacement body, replacing the |       |          |        |        |             |          |          |          |     | <del></del> |  |  |  |
|       |       |          | cherty metasediment in the contact zone of the syenite body                           |       |          |        |        |             |          |          |          |     |             |  |  |  |

| DATE LOGGED   |  |
|---------------|--|
| COMPANY NAME  |  |
| PROPERTY NAME |  |

HOLE No85-48

| FROM  | то    | RECOVY | DECCRIPTION                                                                            |      | SA | MPLE  |     | ASSAYS |  |  |  |  |  |
|-------|-------|--------|----------------------------------------------------------------------------------------|------|----|-------|-----|--------|--|--|--|--|--|
| FNOM  | 10    | MECOVY | DESCRIPTION                                                                            | FROM | то | WIDTH | No. |        |  |  |  |  |  |
|       |       |        | -lower contact @ 60°, moderately sharp, upper ctc is irregular with cc, py also @ 60°  |      |    |       |     |        |  |  |  |  |  |
| 197.6 | 318.7 |        | Cherty Metasediments( Silicified, Altered Pelitic/SemiPelitic and Psammitic Sediments) |      |    |       |     |        |  |  |  |  |  |
|       |       |        | -banded alteration to 201.7                                                            |      |    |       |     |        |  |  |  |  |  |
|       |       |        | -201.7-204.2; syenite (sim to 187.0-197.6)                                             |      |    |       |     |        |  |  |  |  |  |
|       |       |        | -204.2-211.1; banded alt, syenite band @ 206 (1'),microfaulting @ 75°, includes some   |      |    |       |     |        |  |  |  |  |  |
|       |       |        | shearing and poss folding, closure zone?                                               |      |    |       |     |        |  |  |  |  |  |
|       |       |        | -199.0; fol/banding @ 32°                                                              |      |    |       |     |        |  |  |  |  |  |
|       |       |        | -211.2-212.7; syenite                                                                  |      |    |       |     |        |  |  |  |  |  |
|       |       |        | -216.4-217.6; microsyenite/aplitic band                                                |      |    |       |     |        |  |  |  |  |  |
|       |       |        | -222.7-224.4; epidotized syenite with cc, trends toward massive alt                    |      |    |       |     |        |  |  |  |  |  |
|       |       |        | -224.9-226.9; banded alt                                                               |      |    |       |     |        |  |  |  |  |  |
|       |       |        | -226.9-230.0; massive alteration, replacement by kspar-symnitic mat'l                  |      |    |       |     |        |  |  |  |  |  |
|       |       |        | -230.0-234.7; advanced banded alt, minor brecciation                                   |      |    |       |     |        |  |  |  |  |  |
|       |       |        | -234.7-238.8; banded alt                                                               |      |    |       |     |        |  |  |  |  |  |
|       |       |        | -238.8-242.3; syenitic replacement, massive alteration                                 |      |    |       |     |        |  |  |  |  |  |
|       |       |        | -242.3-254.3; banded alteration, borders on advanced banded alt                        |      |    |       | •   |        |  |  |  |  |  |
|       |       |        | -246.5; fol/banding @ 34°                                                              |      |    |       |     |        |  |  |  |  |  |

PAGE \_\_\_\_3\_\_ OF \_\_\_7\_\_\_

| DATE LOGGED   |
|---------------|
| COMPANY NAME  |
| PROPERTY NAME |

HOLE No85-48

|      | ·  | 1      |                                                                                         | SAMPLE |              |       |       |                    |    | ASSAYS   |   |   |   |          |  |  |
|------|----|--------|-----------------------------------------------------------------------------------------|--------|--------------|-------|-------|--------------------|----|----------|---|---|---|----------|--|--|
| FROM | то | RECOVY | DESCRIPTION                                                                             | FROM   | TO           | WIDTH | No.   |                    | AS | SAYS     | T | 1 | I | <u> </u> |  |  |
|      |    |        | -254.3-255.4; syenite zone, microcrystalline, sim to 187.0-197.6, lower ctc conformable | -      |              | 1.1   | 13431 | ⟨0.002             |    | <b>†</b> |   |   |   |          |  |  |
|      |    |        | 255.4-259.6; bio,tourmaline, cc breccia zone, with shearing at 75°, but variable,       | 255.4  | <del> </del> | 4.2   | 13432 | <sup>7</sup> 0.002 |    |          |   |   |   |          |  |  |
|      |    |        | same microfaulting, with strongest breccia 255.4-259.0                                  | 259.6  | 261.0        | 1.4   | 13433 | (0.002             |    |          |   |   |   |          |  |  |
|      |    |        | -261.0-273.1; banded alteration                                                         |        |              |       |       |                    |    |          |   |   |   |          |  |  |
|      |    |        | -269.0; fol/banding @ 23°                                                               |        |              |       |       |                    |    |          |   |   |   |          |  |  |
|      |    |        | -273.1-276.8; m xtalline symmetric replacement-massive alteration, minor                |        |              |       |       |                    |    |          |   |   |   |          |  |  |
|      |    |        | ep, cc, conformable lower ctc                                                           |        |              |       |       |                    |    |          |   |   |   |          |  |  |
|      |    |        | -276.8-281.8; adv banded alt with hem, cc, chl, py, ep (typical)                        |        |              |       |       |                    |    |          |   |   |   |          |  |  |
|      |    |        | -281.8-289.5; med xtalline syenite (sim 187.0-197.6)                                    |        |              |       |       |                    |    |          |   |   |   |          |  |  |
|      |    |        | -289.5-305.9; very adv banded alt, bordering on massive replacement, parts alomost      |        |              |       |       |                    |    |          |   |   |   |          |  |  |
|      |    |        | totally replaced by chl-tourmaline-cc                                                   |        |              |       |       |                    |    |          |   |   |   |          |  |  |
|      |    |        | -305.0; fol/banding @ 48°                                                               |        |              |       |       |                    |    |          |   |   |   |          |  |  |
|      |    |        | -305.9-306.6; med xtalline syenite (sim 187.0-197.6)                                    |        |              |       |       |                    |    |          |   |   |   |          |  |  |
|      |    |        | -306.6-308.7; sim 289.5-305.9                                                           |        |              |       |       |                    |    |          |   |   |   |          |  |  |
|      |    |        | -308.7-310.8; med xtalline mafic syenite                                                |        |              |       |       |                    |    |          |   |   |   |          |  |  |
|      |    |        | -310.8-312.7; advanced banded alt                                                       |        |              |       |       |                    |    |          |   |   |   |          |  |  |
|      |    |        | -312.7-314.8; med xtalline syenite/syenodiorite                                         |        |              |       |       |                    |    |          |   |   |   |          |  |  |
|      |    |        | -314.8-318.7; very advanced banded to massive coloured alteration                       |        |              |       |       |                    |    |          |   |   |   |          |  |  |

| DATE LOGGED   |
|---------------|
| COMPANY NAME  |
| PROPERTY NAME |

HOLE No.85-48

| FROM  | то    | RECOVY | DECODISTION                                                                            |       | SA    | MPLE  |       |        | ASSAYS |  |  |  |  |   |  |  |
|-------|-------|--------|----------------------------------------------------------------------------------------|-------|-------|-------|-------|--------|--------|--|--|--|--|---|--|--|
| FHUM  | 10    | HECOVY | DESCRIPTION                                                                            | FROM  | то    | WIDTH | No.   |        |        |  |  |  |  |   |  |  |
|       |       |        | -315.0; fol/banding @ 18°                                                              |       |       |       |       |        |        |  |  |  |  |   |  |  |
|       |       |        |                                                                                        |       |       |       |       |        |        |  |  |  |  |   |  |  |
| 318.7 | 347.0 |        | Altered/Hybrid Syenodiorite (Transitional Rock, Contact Zone)                          |       |       |       |       |        |        |  |  |  |  |   |  |  |
|       |       |        | -321.5-326.5; coarse grey syenodiorite                                                 |       |       |       |       |        |        |  |  |  |  |   |  |  |
|       |       |        | -326.7; xenolith or relic of cherty metasediment with very adv banded alt or shear     |       |       |       |       |        |        |  |  |  |  |   |  |  |
|       |       |        | -331.3-347.0; coarse, vuggy pink syenite with cc, py, core is sandy, very poor reco'y  |       |       |       |       |        |        |  |  |  |  |   |  |  |
|       |       |        | lower 3' epidotized                                                                    |       |       |       |       |        |        |  |  |  |  |   |  |  |
|       |       |        |                                                                                        |       |       |       |       |        |        |  |  |  |  |   |  |  |
| 347.0 | 370.0 |        | Medium Syenite (Syenite and Syenodiorite)                                              |       |       |       |       |        |        |  |  |  |  |   |  |  |
|       |       |        | -Coarse, pink, slighly vuggy syenite, generally homog, bio phenocrysts?, spinifex like |       |       |       |       |        |        |  |  |  |  |   |  |  |
|       |       |        | -355.7-370.0; altered, brecciated symnodiorite, minor shearing, essentially bio, chl,  | 355.7 | 358.0 | 2.3   | 13434 | ⟨0.002 | -      |  |  |  |  |   |  |  |
|       |       |        | schist, with poss tourmaline, blebby cc, corroded frags of kspar rk, dissem            | 358.0 | 362.0 | 4.0   | 13435 | ₹0.002 |        |  |  |  |  | - |  |  |
|       |       |        | py, 366.0-370.0, largely a protobreccia, massive bio alteration with strong            | 362.0 | 366.0 | 4.0   | 13436 | ′0.002 |        |  |  |  |  |   |  |  |
|       |       |        | kspar                                                                                  | 366.0 | 367.0 | 1.0   | 13437 | 0.002  |        |  |  |  |  |   |  |  |
|       |       |        |                                                                                        |       |       |       |       |        |        |  |  |  |  |   |  |  |
| 370.0 | 381.3 |        | Coarse Syenite/Syenodiorite                                                            |       |       |       |       |        |        |  |  |  |  |   |  |  |
|       |       |        | -coarse, hydrous alkali syenite. long fibrous biotite xtals, somewhat vuggy,           |       |       |       |       |        |        |  |  |  |  |   |  |  |
|       |       |        | generally, this rock is either a massive potassic replacement feature, or              |       |       |       |       |        |        |  |  |  |  |   |  |  |

very hydrous intrusive, pegmatitic

| DATE LOGGED   |
|---------------|
| COMPANY NAME  |
| PROPERTY NAME |

HOLE No. 85-48

| FROM  | то    | RECOVY | COVY DESCRIPTION                                                                        | SAMPLE |       |       |       | oz/ton  | ASSAY | ASSAYS |  |  |  |  |  |  |
|-------|-------|--------|-----------------------------------------------------------------------------------------|--------|-------|-------|-------|---------|-------|--------|--|--|--|--|--|--|
| FHOM  | 10    | RECOVY | DESCRIPTION                                                                             | FROM   | то    | WIDTH | No.   | Au      |       |        |  |  |  |  |  |  |
| 381.3 | 511.0 |        | Medium Syenite/Syenodiorite                                                             |        |       |       |       |         |       |        |  |  |  |  |  |  |
|       |       |        | -sim 347.0-370.0, dissem py, uniform, massive rk                                        |        |       |       |       |         |       |        |  |  |  |  |  |  |
|       |       |        | -415.8-416.4; shear zone @ 85°, with qtz-cc veining (or pods)                           | 415.6  | 416.6 | 1.0   | 13438 | (0.002  |       |        |  |  |  |  |  |  |
|       |       |        | -467.0-471.0; coarse bio-syenodiorite                                                   |        |       |       |       |         |       |        |  |  |  |  |  |  |
|       | -     |        | -471.0-476.2; pink, alkali syenite, lower 1.5' is sericitized with strong kspar, ep, co | 474.9  | 476.2 | 1.3   | 13439 | 10.002  |       |        |  |  |  |  |  |  |
|       |       |        | -476.2-493.8; Shear/cataclastic zone, incl protobreccia, protoshear, sheared syenite,   | 476.2  | 480.8 | 4.6   | 13440 | ⟨0.002  |       |        |  |  |  |  |  |  |
|       |       |        | with strong carbonatization, numerous small qtz-cc stringers, pinkish qtz               | 480.8  | 483.2 | 2.4   | 13441 | 0.002   |       |        |  |  |  |  |  |  |
|       |       |        | and kspar in ribbons or stringers, qtz frag's rimmed with cc, dissem py,                | 483.2  | 484.6 | 1.4   | 13442 | / 0.002 |       |        |  |  |  |  |  |  |
|       |       |        | -489.3-492.0; strong shearing with 3, 1" qtz-cc stringers + 1, 7" vein,                 | 484.6  | 488.0 | 3.4   | 13443 | 0.004   |       |        |  |  |  |  |  |  |
|       |       |        | with tourmaline and hem, lower 6" quickly loses cataclastic texture                     | 488.0  | 489.3 | 1.3   | 13444 | (0.002  |       |        |  |  |  |  |  |  |
|       |       |        |                                                                                         | 489.3  | 492.0 | 2.7   | 13445 | 0.002   |       |        |  |  |  |  |  |  |
|       |       |        |                                                                                         | 492.0  | 493.8 | 1.8   | 13446 | (0.002  |       |        |  |  |  |  |  |  |
|       |       |        | -493.8-501.7; med xtalline syenite                                                      |        |       |       |       |         |       |        |  |  |  |  |  |  |
|       |       |        | -501.7-503.3; qtz-kspar-cc vein @ 35° with some minor shearing, conformable, includes   | 501.3  | 503.5 | 2.2   | 13447 | /0.002  |       |        |  |  |  |  |  |  |
|       |       |        | very strong local py (to SM)                                                            |        |       |       |       |         |       |        |  |  |  |  |  |  |
|       |       |        | -506.0; 3" vug filled with barite, cc, ep, py, generally bright to earthy red           |        |       |       |       |         |       |        |  |  |  |  |  |  |
|       |       |        |                                                                                         |        |       |       |       |         |       |        |  |  |  |  |  |  |
|       |       |        |                                                                                         |        |       |       |       |         |       |        |  |  |  |  |  |  |

PAGE \_\_\_\_ G\_\_ OF \_\_\_ 7\_\_

|   |       | GGED _  |        |                             |      |            |       |     |    |     |            |             |  |          |  |  |  |  |
|---|-------|---------|--------|-----------------------------|------|------------|-------|-----|----|-----|------------|-------------|--|----------|--|--|--|--|
|   |       | TY NAMI |        |                             |      |            |       |     |    | HOL | E No.85-48 |             |  |          |  |  |  |  |
| ٢ | FROM  | то      | RECOVY |                             |      | SAMPLE 0Z/ |       |     |    |     |            | /ton ASSAYS |  |          |  |  |  |  |
|   |       |         | LOOVI  | DESCRIPTION                 | FROM | то         | WIDTH | No. | Au |     |            |             |  |          |  |  |  |  |
|   | 511.0 | 556.0   |        | Coarse Syenite/Syenodiorite |      |            |       |     |    |     |            |             |  |          |  |  |  |  |
|   | 511.0 | 556.0   |        | Coarse Syenite/Syenodiorite |      |            |       |     |    |     |            |             |  | <u> </u> |  |  |  |  |

| FROM  | то    | RECOVY  | DVY DESCRIPTION                                                                    | SAMPLE |       |       | oz/ton Assats |                 |  |  |  |  |   |   |
|-------|-------|---------|------------------------------------------------------------------------------------|--------|-------|-------|---------------|-----------------|--|--|--|--|---|---|
| I HOW | 10    | INECOVI | DESCRIPTION                                                                        | FROM   | то    | WIDTH | No.           | Au              |  |  |  |  |   |   |
| 511.0 | 556.0 |         | Coarse Syenite/Syenodiorite                                                        |        |       |       |               |                 |  |  |  |  |   |   |
|       | EOH   |         | -large kspar xtals, minor protobrecciation                                         |        |       |       |               |                 |  |  |  |  |   | _ |
|       |       |         | 544.6-552.9; shear/cataclastic zone, shearing @ 44°, 3½" kspar-qtz-cc vein with py | 546.1  | 547.1 | 1.0   | 13448         | 0.004           |  |  |  |  |   |   |
|       |       |         | and cpy, conformable, 551.2; sim 1" vein, and 552.2-552.9; kspar- qtz-cc           | 547.1  | 550.6 | 3.5   | 13449         | 0.006           |  |  |  |  |   | ( |
|       |       |         | pods, non conformable veining                                                      | 550.6  | 551.6 | 1.0   | 13450         | <b>40.002</b>   |  |  |  |  | _ |   |
|       |       |         |                                                                                    | 551.6  | 552.9 | 1.3   | 13451         | ′0 <b>.</b> 002 |  |  |  |  |   |   |
|       |       |         | -                                                                                  |        |       |       |               |                 |  |  |  |  |   |   |
|       |       |         |                                                                                    |        |       |       |               |                 |  |  |  |  |   |   |
|       |       |         |                                                                                    |        |       |       |               |                 |  |  |  |  |   |   |
|       |       |         |                                                                                    |        |       |       |               |                 |  |  |  |  |   |   |
|       |       |         |                                                                                    |        |       |       |               |                 |  |  |  |  |   |   |
|       |       |         |                                                                                    |        |       |       |               |                 |  |  |  |  |   |   |
|       |       |         |                                                                                    |        |       |       |               |                 |  |  |  |  |   |   |
|       |       |         |                                                                                    |        |       |       |               |                 |  |  |  |  |   |   |
|       |       |         |                                                                                    |        |       |       |               |                 |  |  |  |  |   |   |
|       |       |         |                                                                                    |        |       |       |               |                 |  |  |  |  |   |   |
|       |       |         |                                                                                    |        |       |       |               |                 |  |  |  |  |   |   |
|       |       |         |                                                                                    |        |       |       |               |                 |  |  |  |  |   |   |

MONO GOLD MINES INC.

NORTHEAST AREA

BANNOCKBURN PROPERTY

Madoc Township, Ontario

Diamond Drill Logs

and

Assay Summary Sheets

DDH #86-1 to #86-11 inclusive

and #85-27E

To accompany Report by
Brian E. King, Geologist
dated March 20, 1986

| COLLAR:               | HOL       | HOLE SURVEY |      |  |  |  |  |  |  |  |
|-----------------------|-----------|-------------|------|--|--|--|--|--|--|--|
| 2408N                 | METHOD: h | METHOD: hf  |      |  |  |  |  |  |  |  |
| 4006E                 | FOOTAGE   | AZIMUTH     | DIP  |  |  |  |  |  |  |  |
| ELEVATION             | eoh       |             | -46° |  |  |  |  |  |  |  |
| CORE SIZEB0           |           |             |      |  |  |  |  |  |  |  |
| LOGGED BY B. King     |           |             |      |  |  |  |  |  |  |  |
| DATE LOGGED Jan 12/86 |           |             |      |  |  |  |  |  |  |  |
| MAP REFERENCE No      |           |             |      |  |  |  |  |  |  |  |
|                       |           |             |      |  |  |  |  |  |  |  |
| Dip -47°              |           |             |      |  |  |  |  |  |  |  |
| Azm 235°              |           |             |      |  |  |  |  |  |  |  |
|                       |           |             |      |  |  |  |  |  |  |  |

| COMPANY NAME Mono Gold Mines Inc.                              |
|----------------------------------------------------------------|
| PROPERTY NAME Bannockburn, NE Area                             |
| DRILLING CONTRACTOR MCKnight                                   |
| ASSAYERChemex                                                  |
| PURPOSE OF HOLE To test continuity of quartz veins "z" and "d" |
|                                                                |

| HOLE No86-1        | <del></del> |
|--------------------|-------------|
| CLAIM NAME/No.     |             |
| COMMENCED Jan 9/86 | <del></del> |
| FINISHED Jan 10/86 |             |
| FINAL DEPTH 164ft  |             |
| PROJECT No.        |             |

| FROM     | то   | RECOVY | DESCRIPTION                                                                         |      | SA   | MPLE     |        | oz/ton |  | ASSAYS |  |  |
|----------|------|--------|-------------------------------------------------------------------------------------|------|------|----------|--------|--------|--|--------|--|--|
| ļ        |      |        | ,                                                                                   | FROM | то   | WIDTH    | No.    | Au     |  |        |  |  |
| 0.0      | 7.0  |        | Casing                                                                              |      |      |          |        |        |  |        |  |  |
|          |      |        |                                                                                     |      |      |          |        |        |  |        |  |  |
| 7.0      | 17.5 |        | Quartz Sericite Schist                                                              |      |      |          |        |        |  |        |  |  |
|          |      |        | _schistose, transitional rocks, f-med gr., chloritic with py, cc; vuggy, altered py |      |      |          |        |        |  |        |  |  |
|          |      |        | remnants, handed rk, gnerally poor recovery, some silicification; 8-9'.             |      |      |          |        |        |  |        |  |  |
|          |      |        | cherty, silic, quartzitic zone with dissem po, minor cc stringers                   |      |      | <u> </u> |        |        |  |        |  |  |
| 17.5     | 53.6 |        | Greenstone (Mafic-Int Volc Flow; Tudor Fm)                                          |      |      |          |        |        |  |        |  |  |
| <u> </u> |      |        | -chloritic schist, f gr, 1mm cc filled amygdules, deformed in plane of fol.;few     |      |      |          |        |        |  |        |  |  |
|          |      |        | cherty zone, minor ep.,bio, cc stringers; appears to be intensely folded            |      |      |          |        |        |  |        |  |  |
|          |      |        | tr cpy                                                                              |      |      |          |        |        |  |        |  |  |
|          |      |        | -19.0' fol @ 32° (comp banding)                                                     |      |      |          |        |        |  |        |  |  |
|          |      |        | 21.6-23.3; white, massive qtzvein, 0 82°, minor dissem py, poss marc. grey mineral? | 20.6 | 21.6 | 1.0      | 75001E | 0.002  |  |        |  |  |
|          |      |        | 24.5-24.7; minor silicified zone with po, cpy, py, probable flow ctc                | 21.6 | 23.3 | 1.7      | 75002  | 0.012  |  |        |  |  |
|          |      |        |                                                                                     | 23.3 | 24.3 | 1.0      | 75003  | k0.002 |  |        |  |  |
|          |      |        |                                                                                     | 24.3 | 25.3 | 1.0      | 75004  | 40.002 |  |        |  |  |

|              |       |         |                                                                                       |      |          |       |             |          | HOLE | No   | 26-1 |   |                                       |  |
|--------------|-------|---------|---------------------------------------------------------------------------------------|------|----------|-------|-------------|----------|------|------|------|---|---------------------------------------|--|
| FDOW         | 70    | 2500.04 |                                                                                       | 1    | SA       | MPLE  | <del></del> | oz/tor   | ASS  | SAYS |      |   | · · · · · · · · · · · · · · · · · · · |  |
| FROM         | то    | RECOVY  | DESCRIPTION                                                                           | FROM | то       | WIDTH | No.         | Au       |      |      |      |   |                                       |  |
| 53.6         | 61.7  |         | Siliceous Breccia Zone                                                                |      |          |       |             |          |      |      |      |   |                                       |  |
|              |       |         | -possible silicified flow contact or silicified tectonic breccia, numerous chloritic  |      | <u> </u> |       |             |          |      |      |      |   |                                       |  |
|              |       |         | partings and frag's of GS, blebs of po+cpy, no preferred fabric or                    |      |          |       |             |          |      |      |      |   |                                       |  |
|              |       |         | orientation; crossed by numerous stringers of cc                                      | 53.6 | 56.3     | 2.7   | 75005       | k0.002   |      |      |      |   |                                       |  |
|              |       |         | 56.7-57.0; small qtz-cc vein, diffuse ctc's @ 85° carrying po, py, tr cpy             | 56.3 | 57.3     | 1.0   | 75006       | ۷0.002   |      |      |      |   |                                       |  |
|              |       |         |                                                                                       | 57.3 | 61.7     | 4.4   | 75007       | K0.002   |      |      |      |   |                                       |  |
| 61.7         | 82.6  |         | Greenstone (Mafic -Int. Volcanic Flow/Tuff; Tudor Fm)                                 |      |          |       |             | <u> </u> |      |      |      |   |                                       |  |
|              |       |         | -carbonatized, highly schistose, few amygdules; several conformable cc veins; 80-81,  |      |          |       |             |          |      |      |      |   |                                       |  |
|              | ļ     |         | minor sil zone                                                                        |      |          |       |             |          |      |      |      |   |                                       |  |
|              |       |         | -75'; fol/banding @ 28°                                                               |      |          |       |             |          |      |      |      |   |                                       |  |
|              |       |         |                                                                                       |      |          |       |             |          |      |      |      |   |                                       |  |
| <b>82.</b> 6 | 84.0  |         | Siliceous Breccia Zone                                                                |      |          |       |             |          |      |      |      |   |                                       |  |
|              |       |         | sim to 53.6-61.7; probable folw ctc                                                   |      |          |       |             |          |      |      |      |   |                                       |  |
|              |       |         |                                                                                       |      |          |       |             |          |      |      |      |   |                                       |  |
| 84.0         | 116.0 |         | Greenstone (Mafic-Int. Volc Flow or Tuff; Tudor Fm)                                   |      |          |       |             |          |      |      |      | _ |                                       |  |
|              |       |         | -generally schistose, but more foliated, less banding, slightly more coarse, more bio |      |          |       |             |          |      |      |      |   |                                       |  |
|              |       |         | appears recrystallized, pervasive cc and minor cc stringers; 93-94,                   |      |          |       |             |          |      |      |      |   |                                       |  |
|              |       |         | minor silic zone                                                                      |      |          |       |             |          |      |      |      |   |                                       |  |

| DATE LOGGED   |  |
|---------------|--|
| COMPANY NAME  |  |
| PROPERTY NAME |  |

HOLE No.\_\_\_\_\_\_86-1

|       |       |        |                                                                                        | SAMPLE 07/ |          |       |       |             | ASSAYS    |          |   |  |             |  |  |  |
|-------|-------|--------|----------------------------------------------------------------------------------------|------------|----------|-------|-------|-------------|-----------|----------|---|--|-------------|--|--|--|
| FROM  | то    | RECOVY | DESCRIPTION                                                                            | FROM       | то       | WIDTH | No.   | Oz/to<br>Au | m Assault | <u> </u> | T |  | <del></del> |  |  |  |
|       |       |        | -95.7-97.4; white, massive , cloudy quartz-cc vein, minor py, po, tr cpy and chl in    | 95.7       | 97.4     | 1.7   | 75008 | 2.554       |           |          |   |  |             |  |  |  |
|       |       |        | seams; VG associated with cc. po, cpy at 97.0'; vein is x cutting, with                |            |          |       |       |             |           |          |   |  |             |  |  |  |
|       |       |        | irreg ctc's (well defined) @ approx 17°?, little alt or mineralization above           |            |          | _     |       | -           |           |          |   |  |             |  |  |  |
|       |       |        | or below vein                                                                          |            |          |       |       | -           |           |          |   |  |             |  |  |  |
|       | -     |        | -102.7-103.4; pod of qtz-cc sulphides, appears to be boudin, not economic              | _          |          | ļ     |       |             |           |          |   |  |             |  |  |  |
|       |       |        | -104.7-106.3; series of 3. 3-5" qtz-cc veins with po. py. cpy. possible VG at 106.1.   | 104.6      | 106.5    | 1.9   | 75009 | 1.938       |           |          |   |  |             |  |  |  |
|       |       |        | contacts generally sharp, but irreg, very sim in appearance to 95.7-97.4.;             |            |          |       |       |             |           |          |   |  | <del></del> |  |  |  |
|       |       |        | zones are associated with minor sil plus increased sulphide content                    |            |          |       |       | 1           |           |          |   |  |             |  |  |  |
|       |       |        | -small 1"x cutting qtz-cc vein @ 109', with minor cpy, po                              | 108.6      | 109.6    | 1.0   | 75010 | 0.096       |           |          |   |  |             |  |  |  |
|       | -     |        | -112.5; 3" "" "" appears conformable, succrosic qtz., po, tr qpy                       |            |          |       |       |             |           |          |   |  | <del></del> |  |  |  |
|       |       | ŀ      | -115.5; 3" qtz-cc veins. "" "" "" "" "" "" "" "" ""                                    | 112.0      | 113.0    | 1.0   | 75011 | 0.010       |           |          |   |  |             |  |  |  |
|       |       |        |                                                                                        | 115 0      | 116.0    | 1.0   | 75012 | 0.220       |           |          |   |  |             |  |  |  |
|       |       |        |                                                                                        | 115.0      | 7,0.0    | 1,00  |       |             |           |          |   |  |             |  |  |  |
| 116.0 | 118.0 |        | Silicified/ Brecciated Greenstone                                                      | 116.0      | 118.0    | 2.0   | 75013 | 0.014       |           |          |   |  |             |  |  |  |
|       |       |        | -possible flow ctc zone; pods and blebs of irreg qtz-cc with frag's of GS; (blue qtz); |            |          |       |       |             |           |          |   |  |             |  |  |  |
|       |       |        | -po, chl. and py rim qtz frag's. tr cpy                                                |            |          | ļ     |       |             |           |          |   |  |             |  |  |  |
|       |       |        |                                                                                        |            | <u> </u> |       |       |             |           |          |   |  |             |  |  |  |

|       |       |         |                                                                                       |      |    |       |     | ! | HOLE | No   | 86-1 |  |               |          |
|-------|-------|---------|---------------------------------------------------------------------------------------|------|----|-------|-----|---|------|------|------|--|---------------|----------|
| FROM  | то    | RECOVY  | DESCRIPTION                                                                           |      | SA | MPLE  |     |   | ASS  | SAYS | -    |  | <del></del> - |          |
| , now | ,0    | RECOVI  | DESCRIPTION                                                                           | FROM | то | WIDTH | No. |   |      |      |      |  |               |          |
| 118.0 | 124.0 |         | Greenstone (Mafic-Int Volcanic Tuff; Tudor Fm)                                        |      |    |       |     |   |      |      |      |  |               |          |
|       |       |         | -generally well fol., f-med xtalline with strong biotite; pervasive carbonatization,  |      |    |       |     |   |      |      |      |  |               |          |
|       |       |         | minor dissem py, po; crossed by numerous cc stringers                                 |      |    |       |     |   |      |      |      |  |               |          |
| 124.0 | 140.5 |         | Greenstone (Mafic-Int Volcanic Flow; Tudor Fm)                                        |      |    |       |     |   |      |      |      |  |               |          |
|       |       |         | -massive, structurless flow?; poor foliation; 124-126, brecciated, cherty flow ctc;   |      |    |       |     |   |      |      |      |  |               |          |
|       |       |         | below ctc, dramatically less carbonatization; 136, 2" cc vein conformable;            |      |    |       |     |   |      |      |      |  |               | <u></u>  |
|       |       |         | 136.0-138.0, blebbly zone of up to 10% po                                             |      |    |       |     |   |      |      |      |  |               |          |
| 140.5 | 164.0 |         | Greenstone (Mafic-Int. Volcanic Flow; Tudor Fm)                                       |      |    |       |     |   |      |      |      |  |               |          |
|       | EOH   |         | -massive, but crossed by numerous qtz-cc stringers and pods, some may be deformed and |      |    |       |     |   |      |      |      |  |               |          |
|       |       |         | flattened amygdules; 140.5-142.5, chery bands, flow ctc zone                          |      |    |       |     |   |      |      |      |  |               |          |
|       |       |         | - unit is hard, massive and distinctive                                               |      |    |       |     |   |      |      |      |  |               | <u> </u> |
|       |       | <u></u> |                                                                                       |      |    |       |     |   |      |      |      |  |               |          |
|       |       |         |                                                                                       |      |    |       |     |   |      |      |      |  |               |          |
|       |       |         |                                                                                       |      |    |       |     |   |      |      |      |  | •             |          |
|       |       |         |                                                                                       |      |    |       |     |   |      |      |      |  |               |          |
|       |       |         |                                                                                       |      |    |       |     |   |      |      |      |  |               |          |

| COLLAR:                  | HOL        |         |     |  |  |  |  |  |  |
|--------------------------|------------|---------|-----|--|--|--|--|--|--|
| 2476N                    | METHOD: hf |         |     |  |  |  |  |  |  |
| 3918F                    | FOOTAGE    | AZIMUTH | DIP |  |  |  |  |  |  |
| ELEVATION                | EOH        |         | 42  |  |  |  |  |  |  |
| CORE SIZE BO             |            |         |     |  |  |  |  |  |  |
| LOGGED BY B. King        |            |         |     |  |  |  |  |  |  |
| DATE LOGGED Jan 14, 1986 |            |         |     |  |  |  |  |  |  |
| MAP REFERENCE No.        |            |         |     |  |  |  |  |  |  |
|                          |            |         |     |  |  |  |  |  |  |
| 45° dip                  |            | <u></u> |     |  |  |  |  |  |  |
| 235° Azm                 |            |         |     |  |  |  |  |  |  |
|                          |            |         |     |  |  |  |  |  |  |

| COMPANY NAME      | Mono Gold Mines Inc.                    |   |
|-------------------|-----------------------------------------|---|
| PROPERTY NAME     | Bannockburn NE Area                     | _ |
| DRILLING CONTRACT | OR _Mc Knight.                          | _ |
| PURPOSE OF HOLE _ | to test continuity of "z" and "d" veins |   |
|                   |                                         |   |

| HOLE No                     | <b>10-</b> 2 |  |
|-----------------------------|--------------|--|
| CLAIM NAME/No.<br>COMMENCED | Jan 12/86    |  |
| FINISHED                    |              |  |
| FINAL DEPTH                 |              |  |
| PROJECT No                  |              |  |

| FROM | то   | RECOVY  | DESCRIPTION                                                                            |      | SA   | MPLE     |        | oz/ton | AS | SAYS | <br> |  |
|------|------|---------|----------------------------------------------------------------------------------------|------|------|----------|--------|--------|----|------|------|--|
|      |      |         |                                                                                        | FROM | то   | WIDTH    | No.    | Au     |    |      |      |  |
| 0.0  | 6.5  |         | Casing                                                                                 |      |      |          |        |        |    |      |      |  |
|      |      |         |                                                                                        |      |      |          |        |        |    |      |      |  |
| 6.5  | 35.0 |         | Greenstone (Mafic-Intermediate Volcanic Flow; Tudor Fm)                                |      |      |          |        |        |    |      |      |  |
|      |      |         | -poorly foliated, very f gr., massive GS, chloritic, slight to moderate silicification |      |      |          |        |        |    |      |      |  |
|      |      |         | -minor alteration along fractures (includes cc, ep), occasional qtz or cc stringers    |      |      | <u> </u> |        |        |    |      |      |  |
|      |      | <u></u> | -14.0; fol/banding @ 23°                                                               |      |      |          |        |        |    |      |      |  |
|      |      |         | -29.5; 2" qtz-cc vein @ 85°, strained, grey qtz with chloritic partings upper and      | 29.2 | 30.2 | 1.0      | 75014E | 0.002  |    |      |      |  |
|      |      |         | lower contacts, minor py, po, tr cpy, zone also includes qtz-py stringer               |      |      |          |        |        |    |      |      |  |
|      |      |         | in fracture zone                                                                       |      |      |          |        |        |    |      |      |  |
|      |      |         | -33.3; 2' conformable qtz-cc vein, no sign mineralization, but with minor breccia,     | 33.0 | 34.0 | 1.0      | 75015  | 0.002  |    |      |      |  |
|      |      |         | may be flow contact etc                                                                |      |      |          |        |        |    |      |      |  |
| 35.0 | 49.0 |         | -zone of minor brecciation, microfaulting and/or possible folding, possible boudinage  |      |      |          |        |        |    |      |      |  |
|      |      |         | breccia is cemented with cc, minor bio/chl alteration                                  |      |      |          |        |        |    |      |      |  |
|      |      |         | -47.3; 3" conformable qtz-cc vein, diffuse ctc's, spks py, po on contacts              | 46.7 | 47.7 | 1.0      | 75020  | 0.002  |    |      |      |  |
| 49.0 | 58.4 | 1       | Greenstone (mafic-Int. Volcanic Flow; Tudor Fm)                                        |      |      |          |        |        |    |      |      |  |

| DATE LOGGED   |
|---------------|
| COMPANY NAME  |
| PROPERTY NAME |

HOLE No. 86-2

| EDOM | 70    | DECOVA | DECODISTION                                                                           |       | SA    | MPLE  |       | oz/t  | on AS | SAYS | -31-4 | <del> </del> |   |
|------|-------|--------|---------------------------------------------------------------------------------------|-------|-------|-------|-------|-------|-------|------|-------|--------------|---|
| FROM | 10    | RECOVY | DESCRIPTION                                                                           | FROM  | то    | WIDTH | No.   | Au    |       |      |       |              |   |
| 58.4 | 140.4 |        | Greenstone (intermedMafic Volcanic Flow; Tudor Fm)                                    |       |       |       |       |       |       |      |       |              |   |
|      |       |        | -58.4-60.4; cherty, brecciated, flow contact zone, minor sulphides, cc, lower 0.5' is |       |       |       |       |       |       |      |       |              |   |
|      |       |        | chloritic breccia                                                                     |       |       |       |       |       |       |      |       |              |   |
|      |       |        | -minor foliation, dense, massive, competent, simialr to unit above                    |       |       |       |       |       |       |      |       |              |   |
|      |       |        | -62.5; 0.5' zone of chl-cc alteration in swirls, boudinage??                          |       |       |       |       |       |       |      |       |              |   |
|      |       |        | -unit becomes increasingly carbonatized below 68', beginning after a 0.7' cc vein     |       |       |       |       |       |       |      |       |              |   |
|      |       |        | associated with a minor breccia zone, strongest pervasive cc assoc with               |       |       |       |       |       |       |      |       |              |   |
|      |       |        | strongest chl, increased grain size and increased po content, and minor ep            |       |       |       |       |       |       |      |       |              |   |
|      |       |        | 82.7; 2" qtz-cc vein with po, tr cpy, chl partings and irregular contacts which       | 82.3  | 83.3  | 1.0   | 75016 | 0.002 |       |      |       |              |   |
|      |       |        | appear to be conformable, 0 26°                                                       |       |       |       |       |       |       |      |       |              |   |
|      |       |        | 86.8-88.8; possible flow contact, minor silicification, cc, no sign mineralization    |       |       |       |       |       | ·     |      |       |              |   |
|      |       |        | -91.0-93.0; sim 86.8-88.8                                                             |       |       |       |       |       |       |      |       |              |   |
|      |       |        | -112.3; 2" xcutting qtz-cc veining 0 85°, fairly sharp contacts, chl partings, po,    | 111.8 | 112.8 | 1.0   | 75017 | 0.004 |       |      |       |              |   |
|      |       |        | tr cpy, qtz is white-cloudy, grey mineral?                                            |       |       |       |       |       |       |      |       |              | - |
|      |       |        | -120.0; 1" xcutting qtz-cc vein , significant po, tr cpy, minor py, qtz is strained,  | 119.5 | 120.5 | 1.0   | 75019 | 0.014 |       |      |       |              |   |
|      |       |        | minor carbonatization above and below the vein plus increased dissem and              |       |       |       |       |       |       |      |       |              |   |
|      |       |        | blebby po in volcanics in alteration zone; wein ctc's are poorly defined              |       |       |       |       |       |       |      |       |              |   |
|      |       |        | -124.0-140.0; silicified, massive volcanic, minor qtz-cc stringers                    |       |       |       |       |       |       |      |       |              |   |

| DATE LOGGED   |
|---------------|
| COMPANY NAME  |
| PROPERTY NAME |

HOLE No. \_\_86-2

| _     |       |        |                                                                                       | SAMPLE |             |                                                    |               | <del></del> | m ASSAYS |      |          |      |   |              |  |  |  |
|-------|-------|--------|---------------------------------------------------------------------------------------|--------|-------------|----------------------------------------------------|---------------|-------------|----------|------|----------|------|---|--------------|--|--|--|
| FROM  | то    | RECOVY | DESCRIPTION                                                                           |        | <del></del> | <del>,                                      </del> |               | oz/to       | n AS     | SAYS |          | ···· | , | <del> </del> |  |  |  |
|       |       |        |                                                                                       | FROM   | то          | WIDTH                                              | No.           | Au _        |          |      | <b>-</b> |      | - |              |  |  |  |
| 140.4 | 183.5 |        | Greenstone (Intermed-Mafic Volcanic Flow; Tudor Fm)                                   |        |             |                                                    |               |             |          |      |          |      |   |              |  |  |  |
|       |       |        | -upper 1.5' is contact zone of minor silicification, carbonatized, minor breccia with |        |             |                                                    |               |             |          |      |          |      |   |              |  |  |  |
|       |       |        | slightly coarser texture than above                                                   |        |             |                                                    |               |             |          |      |          |      |   |              |  |  |  |
|       |       |        | - generally massive but slightly coarser than above GS, but very similar, contains    |        |             |                                                    |               |             |          |      |          |      |   |              |  |  |  |
|       |       |        | zones of banded cc (flow contacts or flow segregations?), this unit slightly          |        |             |                                                    |               |             |          |      |          |      |   |              |  |  |  |
|       |       |        | more foliated .                                                                       |        |             |                                                    |               |             |          |      |          |      |   |              |  |  |  |
|       |       |        | -160.5-162.0; qtz-cc filled amygdules in flow banded zones (deformed)                 |        |             |                                                    |               |             |          |      |          |      |   |              |  |  |  |
|       |       |        | -174.0; 2" conformable qtz-cc vein, minor sulphides                                   |        |             |                                                    |               |             |          |      |          |      |   |              |  |  |  |
|       |       |        | -174.0-179.0; strongly dissem and blebby po, perhaps po filled vesicles?, also with   |        |             |                                                    |               |             |          |      |          |      |   |              |  |  |  |
|       |       |        | minor cc and sil.                                                                     |        |             |                                                    |               |             |          |      |          |      |   |              |  |  |  |
| 183.5 | 196.4 |        | Greenstone (intermediate - Mafic Volc Flow; Tudor Fm)                                 |        |             |                                                    |               |             |          |      |          |      |   |              |  |  |  |
|       |       |        | -less sil and dissmem po than above, alternating bands of vesicles (flow bands?),     |        |             |                                                    |               |             |          |      |          |      |   |              |  |  |  |
|       |       |        | unit is generally massive, structurless, sim to above                                 |        |             |                                                    |               |             |          |      |          |      |   |              |  |  |  |
| 196.4 | 260.0 |        | Greenstone (Intermed-Mafic Volcanic Flow; Tudor Fm)                                   |        |             |                                                    |               |             |          |      |          |      |   |              |  |  |  |
|       |       |        | -sim to above, but contains zones/bands of qtz filled amygdules, coarser fabric, some |        |             |                                                    |               |             |          |      |          |      |   |              |  |  |  |
|       |       |        | pervasive carbonatization (esp very strong 207-210')                                  |        |             |                                                    |               |             |          |      |          |      |   |              |  |  |  |
|       |       |        | -218.0; 1" qtz-cc vein (xcutting) @ 85°, somewhat irreg contacts, po mineralization   | 217.8  | 218.8       | 1.0                                                | <b>75</b> 018 | 0.082       |          |      |          |      |   |              |  |  |  |
|       |       |        | and a ½" vein with similar characteristics, vein related to boudinage?                |        |             |                                                    |               |             |          |      |          |      |   |              |  |  |  |

PAGE 3 OF 4

| OPER | TY NAM | E            |                                                                                      |      |    |       |         |                                               | HOLE     | No. <u>86-2</u> |  |   |              |  |
|------|--------|--------------|--------------------------------------------------------------------------------------|------|----|-------|---------|-----------------------------------------------|----------|-----------------|--|---|--------------|--|
| ROM  | то     | RECOVY       | DESCRIPTION                                                                          |      | SA | MPLE  |         | ASSAYS                                        |          |                 |  |   |              |  |
|      |        | HECOVI       | DESCRIPTION                                                                          | FROM | то | WIDTH | No.     |                                               |          |                 |  |   |              |  |
|      |        |              | -231.0-232.0; unit has strong amygdule dev't, may be good marker horizon?            |      |    |       |         |                                               |          |                 |  |   |              |  |
|      |        |              | -232.0-233.0; unit is complexly folded, can follow bands of po around closures, very |      |    |       |         |                                               |          |                 |  |   |              |  |
|      |        |              | irregular                                                                            |      |    |       |         |                                               |          |                 |  |   |              |  |
|      | 260.0  |              |                                                                                      |      |    |       |         |                                               |          |                 |  |   |              |  |
|      | EOH    |              |                                                                                      |      |    |       |         |                                               |          |                 |  |   |              |  |
|      | •      |              |                                                                                      |      |    |       |         |                                               |          |                 |  |   |              |  |
|      |        |              |                                                                                      |      |    |       |         |                                               |          |                 |  |   |              |  |
|      |        |              |                                                                                      |      |    |       |         |                                               |          |                 |  |   |              |  |
|      |        |              |                                                                                      |      |    |       |         |                                               |          |                 |  |   |              |  |
|      |        | -            |                                                                                      |      |    |       |         | <u> </u>                                      |          |                 |  |   |              |  |
|      |        |              |                                                                                      |      |    |       | <b></b> | , , <u>, , , , , , , , , , , , , , , , , </u> |          |                 |  |   |              |  |
|      |        |              |                                                                                      |      |    |       |         |                                               |          |                 |  |   |              |  |
|      |        |              |                                                                                      |      |    |       |         |                                               | <u> </u> |                 |  |   |              |  |
|      |        |              |                                                                                      |      |    |       | ····    |                                               |          |                 |  |   |              |  |
|      |        |              |                                                                                      |      |    |       |         |                                               |          |                 |  |   |              |  |
|      |        | <del> </del> |                                                                                      |      |    |       |         |                                               |          |                 |  |   | <del> </del> |  |
|      |        |              |                                                                                      |      |    |       |         |                                               |          |                 |  | ļ | ļ            |  |
|      |        | <u> </u>     |                                                                                      |      |    |       |         |                                               |          |                 |  |   | <u> </u>     |  |

PAGE 4 OF 4

| COLLAR:                  | HOL       | E SURVEY |      |
|--------------------------|-----------|----------|------|
| 2588N (1+79.3N)          | METHOD: h | £        |      |
| 3918E (0+25W)            | FOOTAGE   | AZIMUTH  | DIP  |
| ELEVATION                | EOH       |          | _43° |
| CORE SIZE BO             | 1         |          |      |
| LOGGED BY B King         |           |          |      |
| DATE LOGGED Jan 15, 1986 |           |          |      |
| MAP REFERENCE No.        |           |          |      |
|                          |           |          |      |
| <u> Dip -45°</u>         | <b></b>   |          |      |
| Azm 235°                 |           |          |      |
|                          | 1         |          |      |

| COMPANY NAME     | Mono Gold Mines Inc.                    |  |
|------------------|-----------------------------------------|--|
| PROPERTY NAME_   | Bannockburn NE Area                     |  |
| DRILLING CONTRAC | CTOR Mc Knight                          |  |
| ASSAYER Chemex   |                                         |  |
| PURPOSE OF HOLE  | to test continuity of "D" and "Z" veins |  |
|                  |                                         |  |

| HOLE No      | <u>86-3                                    </u> |  |
|--------------|-------------------------------------------------|--|
| CLAIM NAME/N | lo                                              |  |
| COMMENCED    | Jan 13, 1986                                    |  |
|              | Jan 14, 1986                                    |  |
|              | 160'                                            |  |
| PROJECT No.  |                                                 |  |

| FROM    | то   | RECOVY       | DESCRIPTION                                                                          |      | SA       | MPLE  |        | ASSAYS |  |  |  |  |  |  |  |
|---------|------|--------------|--------------------------------------------------------------------------------------|------|----------|-------|--------|--------|--|--|--|--|--|--|--|
| <u></u> |      | <del> </del> |                                                                                      | FROM | то       | WIDTH | No.    |        |  |  |  |  |  |  |  |
| 0.0     | 3.0  |              | Casing                                                                               |      | ļ        |       |        |        |  |  |  |  |  |  |  |
|         |      |              |                                                                                      |      |          |       |        |        |  |  |  |  |  |  |  |
| 3.0     | 17.8 |              | Greenstone (Mafic-Int Volcanic Flow; Tudor Fm)                                       |      |          |       |        |        |  |  |  |  |  |  |  |
|         |      |              | f. gr, well foliated , chloritic GS; few spks pu, po, crossed by sporadic qtz and cc |      |          |       |        |        |  |  |  |  |  |  |  |
|         |      |              | stringers                                                                            |      |          |       |        |        |  |  |  |  |  |  |  |
|         |      |              | -8.0-9.0 core is badly broken, rusty, fault or surface alt                           |      |          |       |        |        |  |  |  |  |  |  |  |
|         |      |              | -14.0-16.5; qtz-cc vein, solid, white with spks and seams of po, cpy, py and GS      | 14.0 | 16.5     | 2.5   | 75021E | 0.016  |  |  |  |  |  |  |  |
|         |      |              | inclusions; possible VG at lower ctc; vein appears to be xcutting @ 85°              |      |          |       |        |        |  |  |  |  |  |  |  |
| 17.8    | 40.5 |              | Greenstone (Mafic -Int Flow or Tuff?; Tudor Fm)                                      |      |          |       |        |        |  |  |  |  |  |  |  |
|         |      |              | - very well defined foliation @ 40° (31'); f- med gr, very cloritic and heavily      |      | <u> </u> |       |        |        |  |  |  |  |  |  |  |
|         | <br> |              | carbonatized with few cc stringers; minor dissem po,py; upper 4.5' is silic          |      | <u></u>  |       |        |        |  |  |  |  |  |  |  |
|         |      |              | or cherty/brecciated—possible flow contact zone                                      |      |          |       |        |        |  |  |  |  |  |  |  |
|         |      |              | -unit appears more granularthan above                                                |      |          |       |        |        |  |  |  |  |  |  |  |
|         |      |              |                                                                                      |      |          |       |        |        |  |  |  |  |  |  |  |

| DATE LOGGED   |
|---------------|
| COMPANY NAME  |
| PROPERTY NAME |

HOLE No... 86-3

| FROM  | то    | DECOVA | DECOUNTION                                                                                                                         |       | SA    | MPLE     |       | oz/ton | z/ton ASSAYS |   |  |   |  |
|-------|-------|--------|------------------------------------------------------------------------------------------------------------------------------------|-------|-------|----------|-------|--------|--------------|---|--|---|--|
| FROM  | 10    | RECOVY | DESCRIPTION                                                                                                                        | FROM  | то    | WIDTH    | No.   | Au     |              |   |  |   |  |
| 40.5  | 48.5  |        | Greenstone (Mafic-Int Volc Flow; Tudor Fm)                                                                                         |       |       |          |       |        |              |   |  |   |  |
|       |       |        | -40.5-41.4; qtz-cc vein, appears conformable, probable flow ctc, minor spks py, some                                               | 40.5  | 41.5  | 1.0      | 75025 | 0.002  |              |   |  |   |  |
|       |       |        | chloritic inclusions                                                                                                               |       |       | ļ        |       |        |              |   |  |   |  |
|       |       |        | -rk is well foliated, somewhat carbonatized, but primarily in cc stringers                                                         |       |       |          |       |        |              |   |  |   |  |
|       |       |        | -43.8; minor 3" cherty zone (flow ctc?)                                                                                            |       |       |          |       |        |              |   |  |   |  |
|       |       |        | -47.2-47.8; qtz-cc vein with spks po, py + grey mineral?; appears to be both cross-                                                | 47.1  | 48.1  | 1.0      | 75022 | 40.002 |              |   |  |   |  |
|       |       |        | cutting and conformable veining                                                                                                    |       |       |          |       |        |              |   |  |   |  |
| 48.5  | 114.0 |        | Greenstone (Mafic-Int Volc. Flow; Tudor Fm)                                                                                        |       |       |          |       |        |              |   |  |   |  |
|       |       |        | -48.5-53.7, brecciated/silicified contact zone                                                                                     |       |       |          |       |        |              |   |  |   |  |
|       |       |        | -well foliated, chloritic, with strong cc stringer dev't; minor dissem po; fol28° @ 65                                             |       |       | <b>.</b> |       |        |              |   |  | _ |  |
|       |       |        | -79.0-83.0, strong folding, appears to be complex "z" style                                                                        |       |       |          |       |        |              |   |  |   |  |
|       |       |        | -90.6-91.3; silicified zone, may be flow ctc or flow banding                                                                       |       |       |          |       |        |              |   |  |   |  |
|       |       |        | -98.6-103.0; minor brecciation, with cc on fract surfaces                                                                          |       |       | <u> </u> |       |        |              |   |  |   |  |
|       |       |        | -105.1; 3" qtz-cc vein, conformable, spks po, py,                                                                                  | 104.6 | 105.6 | 1.0      | 75023 | 0.002  |              | - |  |   |  |
| 114.0 | 127.0 |        | Consentence (Marking Late Marke Class of Trades Con)                                                                               |       |       |          | 1     |        |              |   |  |   |  |
| 114.0 | 127.0 |        | Greenstone (Mafic-Int Volc Flow; Tudor Fm) -114.0-115.3; contact zone, minor brecciation and silicification, with minor cc string. |       |       |          |       |        |              |   |  |   |  |
|       |       |        | -unit very sim 48.5-114.0                                                                                                          |       |       |          |       |        |              |   |  |   |  |

| PROPER | TY NAM | E      |                                                                                      |       |       |          |       |          | HOLE | No. 86     | -3          |      |         |
|--------|--------|--------|--------------------------------------------------------------------------------------|-------|-------|----------|-------|----------|------|------------|-------------|------|---------|
| FROM   | то     | RECOVY | DESCRIPTION                                                                          |       | SA    | MPLE     |       | I        | AS   | SAYS       | <del></del> |      |         |
| THOW   | '0     | RECOVI | DESCRIPTION                                                                          | FROM  | то    | WIDTH    | No.   | 1        |      |            |             |      |         |
| 127.0  | 160.0  |        | Greenstone (Mafic-Int Volc Flow; Tudor Fm)                                           |       |       |          |       |          |      |            |             |      |         |
|        | EOH    |        | -127-134; probable sil ctc zone, all conformable                                     |       |       |          |       |          |      |            |             |      |         |
|        |        |        | -132'; complex, carbonate filled qtz breccia (5"), no significant mineralization,    |       |       |          |       | ļ        |      |            |             |      |         |
|        |        |        | probably cc filled fault gouge poorly consolidated                                   |       |       | <u> </u> |       |          |      | ļ. <u></u> |             |      |         |
|        | ļ<br>  |        | -at 136.4, moderate silicification begins (pervasive), sil intensifies with depth,   |       |       |          |       | <u> </u> |      |            |             | <br> |         |
|        |        |        | @143.5, massive silicification with brecciation, minor conformable qtz               |       |       |          |       |          |      |            |             |      |         |
|        |        |        | veining with minor py, po                                                            |       |       |          |       |          |      |            |             |      |         |
|        |        |        | -145.5-147.3; totally silicified rk, with possible x cutting qtz vein, diffuse       | 145.5 | 147.3 | 1.8      | 75024 | 0.002    | ļ    |            |             | <br> | L       |
|        |        |        | -150.4-151.6; zone of less altered GS, silicifiied and well foliated; may be faulted |       |       |          |       |          |      |            |             |      |         |
|        |        |        | block?                                                                               |       |       |          |       |          |      |            |             |      |         |
|        | 1      |        | -151.6-160; very sil, pervasive altered rk, host rk not identifiable (felsitic?)     |       |       |          |       | <u> </u> |      |            |             |      |         |
|        |        |        | -159.5; qtz-cc vein with minor po; looks like fracture filling stringer              | 159.0 | 160.0 | 1.0      | 75026 | 0.004    |      |            |             |      | <u></u> |
|        |        |        |                                                                                      |       |       |          |       |          |      |            |             |      |         |
|        |        |        |                                                                                      |       |       |          |       |          |      | <u></u>    |             |      |         |
|        |        |        |                                                                                      |       |       |          |       |          |      |            |             |      |         |
|        |        |        |                                                                                      |       |       |          |       |          |      |            |             |      |         |
|        |        |        |                                                                                      |       |       |          |       |          |      |            |             |      |         |
|        |        |        |                                                                                      |       |       |          |       |          |      |            |             |      |         |

| COLLAR:   |              | HOL       | E SURVEY |       |  |  |  |  |
|-----------|--------------|-----------|----------|-------|--|--|--|--|
|           | 2324N        | METHOD: h | hf       |       |  |  |  |  |
|           | 4162E        | FOOTAGE   | AZIMUTH  | DIP   |  |  |  |  |
| ELEVATION | '            | 300       |          | -42½° |  |  |  |  |
| CORE SIZE | <b>DO</b>    |           |          |       |  |  |  |  |
| LOGGED BY | D 147        |           |          |       |  |  |  |  |
|           | Jan 18, 1986 |           |          |       |  |  |  |  |
|           | No           |           |          |       |  |  |  |  |
|           | Dip -45      |           |          |       |  |  |  |  |
|           | Azm 235°     |           |          |       |  |  |  |  |
|           |              |           |          |       |  |  |  |  |

| COMPANY NAME       | Mono Gold Mines Inc                              |
|--------------------|--------------------------------------------------|
| PROPERTY NAME      | Bannockburn NE Area                              |
| DRILLING CONTRACTO | 44-14-1-1-4                                      |
| ASSAYERChemex      |                                                  |
|                    | ill-in drilling, and to test down dip continuity |

| CLAIM NAME/No |                |      |  |
|---------------|----------------|------|--|
| COMMENCED     | <u>Jan 16.</u> | 1986 |  |
| FINISHED      | <u>Jan</u> 17, | 1986 |  |
| FINAL DEPTH   |                |      |  |

| FROM | то    | RECOVY | DESCRIPTION                                                                          |      | SA   | MPLE  |       | oz/ton  | ASSAYS |  |  |   |  |
|------|-------|--------|--------------------------------------------------------------------------------------|------|------|-------|-------|---------|--------|--|--|---|--|
|      |       |        |                                                                                      | FROM | то   | WIDTH | No.   | Au      |        |  |  |   |  |
| 0.0  | 6.0   |        | Casing                                                                               |      |      |       |       |         |        |  |  | ļ |  |
|      |       |        |                                                                                      |      |      |       |       |         |        |  |  |   |  |
| 6.0  | 134.2 |        | Quartzitic-Sericitic Schist (Argillitic Metasediments)                               |      |      |       |       |         |        |  |  |   |  |
|      | L     |        | -strongly schistose, fine granular, siliceous, sericitic, chloritic rk with dissem   |      |      |       |       |         |        |  |  |   |  |
|      |       |        | po, py, tr cpy (rare)                                                                |      |      |       |       |         |        |  |  |   |  |
|      |       |        | -14.0; fol/banding @ 35°                                                             |      |      |       |       |         |        |  |  |   |  |
|      |       |        | -17.0; 2" xcutting qtz-cc vein, with spks py, po, @ 58°                              | 16.5 | 17.5 | 1.0   | 75031 | < 0.002 |        |  |  |   |  |
|      |       |        | -much evidence of parasitic folding, unit is incompetant, "s" style prevalent        |      |      |       |       |         |        |  |  |   |  |
|      |       |        | -52.0-62.0; po content elevated, 5-7%                                                |      |      |       |       |         |        |  |  |   |  |
|      |       |        | -generally a mixture of fine gr qtzites and qtz-sericite schists                     |      |      |       |       |         |        |  |  |   |  |
|      |       |        | -73.2; 3" xcutting qtz-cc vein, minor py, chloritic inclusions, @ 78°, moderately    | 72.8 | 73.8 | 1.0   | 75032 | K 0.002 |        |  |  |   |  |
|      |       |        | sharp contacts-bleached,dolomitic                                                    |      |      |       |       |         |        |  |  |   |  |
|      |       |        | -76.6-78.1; qtzose zone or qv with cc/dol?, irreg zone of qtz, rk inclusions, po, py | 76.6 | 78.1 | 1.5   | 75033 | < 0.002 |        |  |  |   |  |
|      |       |        | probable conformable and xcutting components                                         |      |      |       |       |         |        |  |  |   |  |
|      |       |        | -87.0-87.5; 2 small qtz pods (%"), boudins?, conformable, non economic               |      |      |       |       |         |        |  |  |   |  |

| DATE LOGGED   |
|---------------|
| COMPANY NAME  |
| PROPERTY NAME |

HOLE No. 86-4

|         |            | 7      |                                                                                       | <del></del> | <del></del> |       | <del> </del> |        |      | -  |         | <br>        |  |
|---------|------------|--------|---------------------------------------------------------------------------------------|-------------|-------------|-------|--------------|--------|------|----|---------|-------------|--|
| FROM    | тО         | RECOVY | DESCRIPTION                                                                           |             |             | MPLE  | 1            | oz/tor | ASSA | YS | <u></u> | · · · · · · |  |
| <b></b> |            |        |                                                                                       | FROM        | то          | WIDTH | No.          | Au     |      |    |         |             |  |
|         | - · · · ·  |        | -89.1-89.8; silicified zone with apparently xcutting qtz vein structure, strong po,   | 89.0        | 90.0        | 1.0   | 75034        | K0.002 |      |    |         |             |  |
|         |            |        | cc, possibly sheared, banding is disrupted, rotated near parallel                     |             |             |       |              |        |      |    |         |             |  |
|         |            |        | 93.2, large clots of po+py, no veining                                                |             |             |       |              |        |      |    |         |             |  |
|         |            |        | -94.2-99.4; series of qtz veins, complex, with portions xcutting, numerous inclusions | 94.2        | 95.2        | 1.0   | 75035        | 40.002 |      |    |         |             |  |
|         |            |        | very strong po, py min, tr cpy, contacts sharp and irregular, qtz is white-           | 95.2        | 97.0        | 1.8   | 75036        | ۷0.002 |      |    |         |             |  |
|         |            |        | grey, strained and fratured, some dol                                                 | 97.0        | 99.0        | 2.0   | 75037        | <0.002 |      |    |         |             |  |
|         |            |        | -111.5; minor microfaulting and crenulation, parallel to veining above                | 99.0        | 100.0       | 1.0   | 75038        | <0.002 |      |    |         |             |  |
|         |            |        | -122.0-125.0; strong dissem/blebby po, minor py; sim at 130-134'                      |             |             |       |              |        |      |    |         |             |  |
|         |            |        |                                                                                       |             |             |       |              |        |      |    |         |             |  |
| 134.2   | 145.8      |        | Greenstone (Mafic-Intermed Volc Flow; Tudor Fm)                                       |             |             |       |              |        |      |    |         |             |  |
|         |            |        | -upper ctc is marginally brecciated, cherty, minor py; unit is f gr, schistose &      |             |             |       |              |        |      |    |         |             |  |
|         |            |        | well banded with sil/cc stringers, generally conformable                              |             |             |       |              |        |      |    |         |             |  |
|         |            |        | -139.0-144.0; altered zone, up to SM po, minor sil, strong carbonatization, chloritic |             |             |       |              |        |      |    |         |             |  |
| ,       |            |        | zones                                                                                 |             |             |       |              |        |      |    |         |             |  |
|         | ļ <u>-</u> |        | -144.0-145.8; 2, conformable qtz-cc veins, yellow-grey coloured, brecciated, blebby   | 143.8       | 146.0       | 2.2   | 75039        | 3.208  |      |    |         |             |  |
|         |            |        | py, po, marc, numerous rk incl, chl partings on ctc'sappears to be a                  |             |             |       |              |        |      |    |         |             |  |
|         |            |        | contact related feature!                                                              |             |             |       |              |        |      |    |         |             |  |
|         |            |        |                                                                                       |             |             |       |              |        |      |    |         |             |  |

| DATE LOGGED   |
|---------------|
| COMPANY NAME  |
| PROPERTY NAME |

HOLE No. 86-4

|       |       |        |                                                                                        |       | SA    | MPLE  |          | oz/ton | ASSAYS |  |  |   |  |          |  |
|-------|-------|--------|----------------------------------------------------------------------------------------|-------|-------|-------|----------|--------|--------|--|--|---|--|----------|--|
| FROM  | то    | RECOVY | DESCRIPTION                                                                            | FROM  | то    | WIDTH | No.      | Au     |        |  |  |   |  |          |  |
| 145.8 | 148.2 |        | Hybrid-Altered Garmet-Chlorite Schist (Transition Zone?? or Altered Hyaloclastite?)    |       |       |       |          |        |        |  |  |   |  |          |  |
|       |       |        | -highly deformed, chlorite-garmet schist, cc bands, appears sheared, numerous qtz pods |       |       |       |          |        |        |  |  | i |  |          |  |
|       |       |        | dissem and blebby po, minor py                                                         |       |       |       |          |        |        |  |  |   |  |          |  |
| 148.2 | 225.2 |        | Greenstone (Intermed-Mafic Volc Flow; Tudor Fm)                                        |       |       |       |          |        |        |  |  |   |  |          |  |
|       |       |        | -more massive, but sim to 134.2-145.8, strongly deformed, carbonatized, more int in    |       |       |       |          |        |        |  |  |   |  |          |  |
|       |       |        | composition, (possible effect of carbonatization + sil), some bio, sericite            |       |       |       |          |        |        |  |  |   |  | <u></u>  |  |
|       |       |        | -151.3-153.2; conformable qtz-cc vein, white qtz, dissem py, dusty appearance, heavy   | 151.2 | 153.3 | 2.0   | 75040    | 0.022  |        |  |  |   |  |          |  |
|       |       |        | py on lower ctc, ctc's irreg but sharp                                                 |       |       |       | <u> </u> |        |        |  |  |   |  |          |  |
|       |       |        | 173.0; 2" conformable qtz-cc vein, minor py, po, cloudy, diffuse                       | 172.5 | 173.5 | 1.0   | 75041    | 0.006  |        |  |  |   |  | <b> </b> |  |
|       |       |        | -175.0-232.0; rk is very heavily carbonatized, grey-green, sericitic                   |       |       |       |          |        |        |  |  |   |  |          |  |
|       |       |        | -185.1; 3" conformable qtz-cc vein @ 51°, may in part be xcutting, possible VG on      | 184.6 | 185.6 | 1.0   | 75042    | 0.200  |        |  |  |   |  |          |  |
|       |       |        | upper ctc, chloritic partings on both ctc's, does not look like right sort             |       |       |       |          |        |        |  |  |   |  |          |  |
|       |       |        | of vein for signif VG min?                                                             |       |       |       |          |        |        |  |  |   |  |          |  |
|       |       |        | -187.9; 3" xcutting qtz-cc vein, dissem py, minor po, minor cc, ctc's diffuse, regular | 187.3 | 188.3 | 1.0   | 75043    | 0.208  |        |  |  |   |  |          |  |
|       |       |        | and chloritic, white qtz, fractured                                                    |       |       |       |          |        |        |  |  |   |  |          |  |
|       |       |        | -188.6-189.3; several conformable qtz-cc veins or pods, minor dissem po, py, diffuse   | 188.3 | 189.3 | 1.0   | 75044    | 0.008  |        |  |  |   |  |          |  |
|       |       |        | and irregular                                                                          |       |       |       |          |        |        |  |  |   |  |          |  |

| DATE LOGGED   |
|---------------|
| COMPANY NAME  |
| PROPERTY NAME |

HOLE No. <u>86-4</u>

|       |       |        |                                                                                      | <del></del> - |       |       |       | <del>                                      </del> |       |      |          | <br>     |   |
|-------|-------|--------|--------------------------------------------------------------------------------------|---------------|-------|-------|-------|---------------------------------------------------|-------|------|----------|----------|---|
| FROM  | то    | RECOVY | DESCRIPTION                                                                          |               | ·     | MPLE  |       | oz/to                                             | n ASS | SAYS | <b>T</b> | <u> </u> |   |
|       |       |        | 192.3; 1" conformable qtz-cc vein with minor spks py, non economic                   | FROM          | то    | WIDTH | No.   | Au                                                |       |      |          |          |   |
|       |       |        | -202.0-203.0; elevated po, up to SM in 2 small bands                                 |               |       |       |       |                                                   |       |      |          |          |   |
|       |       |        | -203.5; 1" xcutting qtz-cc vein or pod with irregular contacts, spks py,po           |               |       |       |       |                                                   |       |      |          |          |   |
|       |       |        | -206.4; 3" xcutting qtz-cc vein or pod, with large cc xtals, minor dissem po         | 206.0         | 207.0 | 1.0   | 75045 | 0.006                                             |       |      |          |          |   |
|       |       |        | -219.4-220.4; xcutting qtz-cc vein or pods, irregular ctc's, in part xcutting, part  |               |       |       |       |                                                   |       |      |          |          |   |
|       |       |        | conformable, dissem py, minor po, inclusions of GS                                   | 219.4         | 220.4 | 1.0   | 75046 | 0.004                                             |       |      |          |          |   |
|       |       |        |                                                                                      |               |       |       |       |                                                   |       |      |          |          |   |
| 225.2 | 249.5 |        | Greenstone (Mafic- Intermed Tuff?; Tudor Fm)                                         |               |       |       |       |                                                   |       |      |          |          |   |
|       |       |        | -strongly foliated, increased bio, strong pervasive carbonatization, chl/bio banding |               |       |       |       |                                                   |       |      |          |          |   |
|       |       |        | -generally uniform, with minor banding, becomes very irregular with depth, returning |               |       |       |       |                                                   |       |      |          |          | _ |
|       |       |        | to a stongly foliated greenschist with depth                                         |               |       |       |       |                                                   |       |      |          |          |   |
|       |       |        | -249.2; 1½" xcutting qtz-cc vein, minor disseminations of po, cpy, tr py, irreg but  | 248.7         | 249.7 | 1.0   | 75047 | 0.102                                             |       |      |          |          |   |
|       |       |        | sharp ctc's @ 80-85°                                                                 |               |       |       |       |                                                   |       |      |          |          |   |
|       |       |        |                                                                                      |               |       |       |       |                                                   |       |      |          |          |   |
| 249.5 | 276.9 |        | Greenstone (Intermed-Mafic Volc Flow; Tudor Fm)                                      |               |       |       |       |                                                   |       |      |          |          |   |
|       |       |        | -upper ctc has 1' cherty flow top zone, dissem py,po                                 |               |       |       |       |                                                   |       |      |          |          |   |
|       |       |        | -unit is well foliated, schistose, sericitic, chloritic/bio and banded, brownish -   |               |       |       |       |                                                   |       |      |          |          |   |
|       |       |        | grey green                                                                           |               |       |       |       |                                                   |       |      |          | _        |   |

PAGE 4 OF 5

|       |       |         |                                                                                       |       |       |       |       |        | HOLE | No. 86-4 |      |   |
|-------|-------|---------|---------------------------------------------------------------------------------------|-------|-------|-------|-------|--------|------|----------|------|---|
| FROM  | то    | RECOVY  | DESCRIPTION                                                                           |       | SA    | MPLE  |       | oz/ton | AS   | SAYS     | <br> |   |
|       |       | INCOOV! |                                                                                       | FROM  | то    | WIDTH | No.   | Au     |      |          |      |   |
|       |       |         | -strong pervasive carbonatization, some qtz-cc stringer mat'l, dissem po, unit may be |       |       |       |       |        |      |          |      |   |
|       |       |         | a tuff                                                                                |       |       |       |       |        |      |          |      |   |
|       |       |         | -258.0-259.0; 2, 1" xcutting very irreg qtz-cc veins or pods + zone of SM po          | 258.0 | 259.0 | 1.0   | 75048 | 0.008  |      |          |      |   |
|       |       |         | -263.2; minor qtz-cc vein, xcutting with py, very irreg and diffuse                   |       |       |       |       |        |      |          |      |   |
| 276.9 | 286.6 |         | Greenstone (Int-Mafic Flow or Tuff; Tudor Fm)                                         |       |       |       |       |        |      |          |      | - |
|       |       |         | -upper contact is chert, flow ctc type, minor brecciation, dissem py and pervasive    |       |       |       |       |        |      |          |      |   |
|       |       |         | carbonatization, strongly foliated, chloritic, sericitic alteration                   |       |       |       |       |        |      |          |      |   |
| 286.6 | 300.0 |         | Greenstone (Mafic-Intermed Volc Flow or Tuff; Tudor Fm)                               |       |       |       |       |        |      |          |      |   |
|       | ЕОН   |         | -massive green, chloritic, uniform, lacks carbonatization, few minor cc stringers,    |       |       |       |       |        |      |          |      |   |
|       |       |         | good, massive volcanic                                                                |       |       |       |       |        |      |          |      |   |
|       |       |         |                                                                                       |       |       |       |       |        |      |          |      |   |
|       |       |         |                                                                                       |       |       |       |       |        |      |          |      |   |
|       |       |         |                                                                                       |       |       |       |       |        |      |          |      |   |
|       |       |         |                                                                                       |       |       |       |       |        |      |          |      |   |

| COLLAR:                 | HOL     | E SURVEY |              |
|-------------------------|---------|----------|--------------|
| 2324N                   | METHOD: | hf       |              |
| 4162E                   | FOOTAGE | AZIMUTH  | DIP          |
| ELEVATION               | 500     | -        | -57°         |
| CORE SIZE 80            |         |          |              |
| LOGGED BY B. King       |         |          |              |
| DATE LOGGED Jan22, 1986 |         | <u> </u> |              |
| MAP REFERENCE No.       |         |          | ļ            |
| Dip -60°                |         |          | <del> </del> |
| Azm 235°                |         |          |              |
|                         |         |          |              |

| COMPANY NAME Mono Gold Mines Inc.                                         |
|---------------------------------------------------------------------------|
| PROPERTY NAME Bannockburn NE Area                                         |
| DRILLING CONTRACTOR McKnight                                              |
| ASSAYER_ Chemex                                                           |
| PURPOSE OF HOLE _fill in and to test deep continuity of veins "d" and "z" |
|                                                                           |

|               | o         |  |
|---------------|-----------|--|
| COMMENCED _   | Jan 18/86 |  |
| FINISHED .    | Jan 20/86 |  |
| FINAL DEPTH _ |           |  |

| FROM | то    | RECOVY | DESCRIPTION                                                                          |      | SA   | MPLE  |       |         | _ | ASSAYS |  |   |
|------|-------|--------|--------------------------------------------------------------------------------------|------|------|-------|-------|---------|---|--------|--|---|
|      |       |        |                                                                                      | FROM | то   | WIDTH | No.   |         |   |        |  |   |
| 0.0  | 4.0   |        | Casing                                                                               |      |      |       |       |         |   |        |  |   |
|      |       |        |                                                                                      |      |      |       |       |         |   |        |  | _ |
| 4.0  | 130.7 |        | Siliceous Pelitic Schist (Rusty Schist)                                              |      |      |       |       |         |   |        |  |   |
|      |       |        | -generally fine gr, grey, qtzitic-sericitic, phyllite or schist, chloritic in part   |      |      |       |       |         |   |        |  |   |
|      |       |        | -variable, but averages 5-15% py, minor po                                           |      |      |       |       |         |   |        |  |   |
|      |       |        | -20-23; essentially a QSS, possible xcutting sericitic alteration? @ 75-80°          |      |      |       |       |         |   |        |  |   |
|      |       |        | -this unit is a mixture of semi pelitic mudstones, minor quartzites, pyritic schist  |      |      |       |       |         |   |        |  |   |
|      |       |        | and their altered equivalents                                                        |      |      |       |       |         |   |        |  |   |
|      |       |        | -31.0-32.0; parasitic folding, "s" style                                             |      |      |       |       |         |   |        |  |   |
|      |       |        | -19.3; ½" xcutting qtz-cc vein, few spks py, po, @ 57°                               |      |      |       |       |         |   |        |  |   |
|      |       |        | -49.6; 1" xcutting qtz-cc vein 0 68°, ctc's regular, moderately sharp, dissem po,    | 49.2 | 50.2 | 1.0   | 75049 | <0.002  |   |        |  |   |
|      |       |        | minor py                                                                             |      |      |       |       |         |   |        |  |   |
|      |       |        | -75.6; qtz-cc pod or vein, apparently conformable, irreg ctc's, 1½" tw               | 75.1 | 76.1 | 1.0   | 75050 | < 0.002 |   |        |  |   |
|      |       |        | -83.0-84.0; sil, sericitic, chloritic zone, appears to terminate a closure zone, ie. |      |      |       |       |         |   |        |  |   |
|      |       |        | as faulting or shearing, below this zone, sulphide enrichment increases              |      |      |       |       |         |   |        |  |   |

| DATE LOGGED   |
|---------------|
| COMPANY NAME  |
| PROPERTY NAME |

HOLE No. 86-5

|       |       |        |                                                                                      | T     | Ç.A   | MPLE  |       | oz/ton | n ASSAYS |   |  |   |   |   |  |  |  |
|-------|-------|--------|--------------------------------------------------------------------------------------|-------|-------|-------|-------|--------|----------|---|--|---|---|---|--|--|--|
| FROM  | то    | RECOVY | DESCRIPTION                                                                          | FROM  | TO    | WIDTH |       |        |          | J |  | T | 1 |   |  |  |  |
|       |       |        | dramatically, up to SM, style changes to a more uniform type below                   |       |       |       |       | Au     |          |   |  |   |   |   |  |  |  |
|       |       |        | -103.1-104.4; qtz vein with minor cc, appears conformable, but may have a xcutting   | 103.1 | 104.5 | 1.4   | 75051 | <0.002 |          |   |  |   |   |   |  |  |  |
|       | 1     |        | component, contacts sheared, heavy po, py, tr cpy on ctc's, qtz is grey &            |       |       |       |       |        |          |   |  |   |   |   |  |  |  |
|       |       |        | cloudy                                                                               |       |       |       |       |        |          |   |  |   | - |   |  |  |  |
|       |       |        | -121-124, 127-128; sericitic zones                                                   |       |       |       |       |        |          |   |  |   |   |   |  |  |  |
| 130.7 | 146.0 |        | Garnet Chlorite Schist (Contact-Transition Zone)                                     |       |       |       |       |        |          |   |  |   |   |   |  |  |  |
|       |       |        | -fg, strongly schistose, chl, bio, sericite, qtz, with minor sulphides               |       |       |       |       |        |          |   |  |   |   |   |  |  |  |
|       |       |        | -137.5-141.2; complex shear breccia, with irreg pods and frag's, large blebs po, py, |       |       |       |       |        |          |   |  |   |   |   |  |  |  |
|       |       |        | minor mylonitic bands                                                                |       |       |       |       |        |          |   |  |   |   |   |  |  |  |
| 146.0 | 159.4 |        | Greenstone (Int-Mafic Tuff or Flow; Tudor Fm)                                        |       |       |       |       |        |          |   |  |   |   | - |  |  |  |
|       |       |        | -strongly foliated, f-med gr, chloritic, strong carbonatization                      |       |       |       |       |        |          |   |  |   |   |   |  |  |  |
|       |       |        | -148.0; gt zone, perhaps a carry over from shear above?                              |       |       |       |       |        |          |   |  |   |   |   |  |  |  |
|       |       |        | -148.9; 1" xcutting cc-py vein, both xcutting and conformable components             | 148.5 | 149.5 | 1.0   | 75052 | 0.780  |          |   |  |   |   |   |  |  |  |
|       |       |        |                                                                                      |       |       |       |       |        |          |   |  |   |   |   |  |  |  |
| 159.4 | 178.0 |        | Greenstone (Int-Mafic Tuff or Flow; Tudor Fm)                                        |       |       |       |       |        |          |   |  |   |   |   |  |  |  |
|       |       |        | -159.4-161.2; cherty ctc zone, minor cc                                              |       |       |       |       |        |          |   |  |   |   |   |  |  |  |

PAGE 2 OF 7

| DATE LOGGED   |
|---------------|
| COMPANY NAME  |
| PROPERTY NAME |

HOLE No. 86-5

|       |       | 1            |                                                                                         |                                       |                                       |          |       | <del>1    </del> |                                       |              |          |   | <del> </del> |   |
|-------|-------|--------------|-----------------------------------------------------------------------------------------|---------------------------------------|---------------------------------------|----------|-------|------------------|---------------------------------------|--------------|----------|---|--------------|---|
| FROM  | то    | RECOVY       | · DESCRIPTION                                                                           | cno                                   | · · · · · · · · · · · · · · · · · · · | MPLE     | 1     | oz/ton           | ASS                                   | SAYS         |          | Γ | 1            |   |
|       |       |              | unit is essentially same as above                                                       | FROM                                  | то                                    | WIDTH    | No.   | Au               | •                                     |              |          |   |              |   |
|       |       | <del> </del> |                                                                                         |                                       |                                       | <u> </u> |       |                  |                                       | <del> </del> | <u> </u> |   |              | ļ |
|       |       | <del> </del> | -169.6; 1" xcutting qtz-cc vein, reg, sharp ctc's @ 62°, spks py, po                    | 169.1                                 | 170.1                                 | 1.0      | 75053 | 0.376            |                                       | <u> </u>     |          |   |              |   |
|       |       |              | -170.3; strong pervasive carbonatization begins, increased conformable cc seams etc     |                                       |                                       |          |       |                  | · · · · · · · · · · · · · · · · · · · |              |          |   |              |   |
|       |       |              | -174.0-176.0; rk appears mod sheared                                                    |                                       |                                       |          |       |                  |                                       |              |          |   |              | L |
|       |       |              | -173.4; 1" xcutting qtz-cc vein, spks py, po,minor inclusions of host rk,vein assoc     | 172.8                                 | 173.8                                 | 1.0      | 75054 | 0.004            |                                       |              |          |   |              |   |
| -     |       |              | with very strong carbonatization, minor sil                                             | · · · · · · · · · · · · · · · · · · · |                                       |          |       |                  |                                       |              |          |   |              |   |
|       |       |              |                                                                                         |                                       |                                       |          |       |                  |                                       |              | <u> </u> |   |              |   |
| 178.0 | 206.1 |              | Greenstone (Intermed-Mafic Tuff or Flow; Tudor Fm)                                      |                                       |                                       |          |       |                  |                                       |              | <u> </u> |   | ,            | ļ |
|       |       |              | -cherty flow ctc zone, gen sim to unit above, strongly carbonatized                     |                                       |                                       |          |       |                  |                                       |              |          |   |              |   |
|       |       |              | -178.7-179.3; xcutting qtz-cc vein, probable lost core within, vein @ 80°, dissem py,   | 178.6                                 | 179.6                                 | 1.0      | 75055 | 3.716            |                                       |              |          |   |              |   |
|       |       |              | minor po, coarse cc xtals, sulphide enrichment outer margins of vein, signif            |                                       |                                       |          |       |                  |                                       |              |          |   |              |   |
|       |       |              | VG along upper ctc assoc with coarse cc, py subhedrarecrystallized?                     |                                       |                                       |          |       |                  |                                       |              |          |   |              |   |
|       |       |              | -178.0-187.5; possible amygdaloidal (cc) flow,deformed                                  |                                       |                                       |          |       |                  |                                       |              |          |   |              |   |
|       |       |              | -188.0; fol @ 42°                                                                       |                                       |                                       |          |       |                  |                                       |              | <u> </u> |   |              |   |
|       |       |              |                                                                                         |                                       |                                       |          |       |                  |                                       |              |          |   |              |   |
| 206.1 | 272.0 |              | Greenstone ( Altered Tuffaceous Sediment?; Tudor Fm)                                    |                                       |                                       |          |       |                  |                                       |              |          |   |              |   |
|       |       |              | -marked increase in bio, loss of chl, cherty, sil, abundant qtz stringers, pods, frag's |                                       |                                       |          |       |                  |                                       |              |          |   |              |   |
|       |       |              | -unit is some sort of hybrid, sheared, shear ribbons of qtz???                          |                                       |                                       |          |       |                  |                                       |              |          |   |              | İ |

| DATE LOGGED   |  |
|---------------|--|
| COMPANY NAME  |  |
| PROPERTY NAME |  |

HOLE No. 86-5

|       | ,· ·· | T      |                                                                                        | T            | SAMPLE |       |       |              | SAMPLE oz/ton |     |   |   | nz/ton ASSAYS |   |  |  |  |  |  |  |  |
|-------|-------|--------|----------------------------------------------------------------------------------------|--------------|--------|-------|-------|--------------|---------------|-----|---|---|---------------|---|--|--|--|--|--|--|--|
| FROM  | то    | RECOVY | DESCRIPTION                                                                            | FROM         | TO     | WIDTH | No.   | oz/ton<br>Au | A55/          | ATS | Ţ | T |               |   |  |  |  |  |  |  |  |
|       |       |        | 206.5; 1½" xcutting qtz-cc vein, minor py, po, tension fract's in qtz                  | <del> </del> | 207.0  | 1.0   | 75056 | 0.014        |               |     |   |   |               |   |  |  |  |  |  |  |  |
|       |       | -      | -207.0-209.2; qtz- ribbons, possible shear                                             | 207.0        | 209.2  | 2.2   | 75057 | 0.094        |               |     |   |   |               |   |  |  |  |  |  |  |  |
|       |       |        | -209.2-210.7; xcutting and conformable qtz-cc vein, heavy (SM) py lower 2½", spks py   | 209.2        | 210.9  | 1.7   | 75058 | 0.014        |               |     |   |   |               |   |  |  |  |  |  |  |  |
|       |       |        | throughout, coarse cc on upper ctc                                                     | 210.9        | 214.9  | 3.2   | 75059 | 0.018        |               |     |   |   |               |   |  |  |  |  |  |  |  |
|       |       |        | -210.9-214.1; qtz ribbon schist, shear zone?                                           |              |        |       |       |              |               |     |   |   |               |   |  |  |  |  |  |  |  |
|       |       |        | -218.5; 1" tw conformable qtz-cc vein, minor cc, minor py                              | 217.8        | 218.8  | 1.0   | 75060 | (0.002       |               |     |   |   |               |   |  |  |  |  |  |  |  |
|       |       |        | -228.0; 1" conformable qtz-cc vein, minor cpy, lg blebs po, recrystallized cc on       | 227.5        | 228.5  | 1.0   | 75061 | 0.010        |               |     |   |   |               |   |  |  |  |  |  |  |  |
|       |       |        | margins of vein                                                                        |              |        |       |       |              |               |     |   |   |               |   |  |  |  |  |  |  |  |
|       |       |        | -234.6; 4" qtz-cc pod, irreg, conformable, boudin related                              |              |        |       |       |              |               |     |   |   |               |   |  |  |  |  |  |  |  |
|       |       |        | -246.3-272.0; possible lith contact, or met grade change?; unit becomes grey-green and |              |        |       |       |              |               |     |   |   |               |   |  |  |  |  |  |  |  |
|       |       |        | massive schists, bio replaces chl almost toally, rks dehydrated?, or poss              |              |        |       |       |              |               |     |   |   |               |   |  |  |  |  |  |  |  |
|       |       |        | sediment                                                                               |              |        |       |       |              |               |     |   |   |               |   |  |  |  |  |  |  |  |
| 272.0 | 275.5 |        | Greenstone (altered? Qtz-BIo Schist, Hyaloclastite?; Tudor Fm)                         |              |        |       |       |              |               |     |   |   |               |   |  |  |  |  |  |  |  |
|       |       |        | -difficult to tell if this is a volc or sediment, strongly carbonatized, abrupt change |              |        |       |       |              |               |     |   |   |               |   |  |  |  |  |  |  |  |
|       |       |        | in structural style at ctc, probable shear ctc's, carbonatization so                   |              |        |       |       |              |               |     |   |   |               |   |  |  |  |  |  |  |  |
|       |       |        | intense, cannot identify host rk                                                       |              |        |       |       |              |               |     |   |   |               |   |  |  |  |  |  |  |  |
|       |       |        |                                                                                        |              |        |       |       |              |               |     |   |   |               |   |  |  |  |  |  |  |  |
|       |       |        |                                                                                        |              |        |       |       |              |               |     |   | 1 |               | 7 |  |  |  |  |  |  |  |

PAGE 4 OF 7

| DATE LOGGED   |  |
|---------------|--|
| COMPANY NAME  |  |
| PROPERTY NAME |  |

HOLE No. <u>86-5</u>

|       |       |        |                                                                                         | 1     | SA    | MPLE  |       | oz/ton | ASSAYS |  |  |          |  |  |  |  |
|-------|-------|--------|-----------------------------------------------------------------------------------------|-------|-------|-------|-------|--------|--------|--|--|----------|--|--|--|--|
| FROM  | то    | RECOVY | DESCRIPTION                                                                             | FROM  | то    | WIDTH | No.   | Au     |        |  |  |          |  |  |  |  |
| 275.5 | 310.0 |        | Altered Greenstone (Qtz-Bio Schist, Carbonatized Tuf?; Tudor Fm)                        |       |       |       |       |        |        |  |  |          |  |  |  |  |
|       |       |        | -sim 206.1-272.0, very heavy pervasive carbonatization                                  |       |       |       |       |        |        |  |  |          |  |  |  |  |
|       |       |        | -290.0; fol @ 65°                                                                       |       |       |       |       |        |        |  |  |          |  |  |  |  |
|       |       |        | -290.0-291.4; Qtz-cc vein, generally conformable, slightly diffuse ctc's, white qtz,    | 290.0 | 291.4 | 1.4   | 75062 | <0.002 |        |  |  |          |  |  |  |  |
|       |       |        | tournmaline?,chl, spks and blebs py, massive qtz                                        |       |       |       |       |        |        |  |  |          |  |  |  |  |
|       |       |        | -305.7-310.5; especially cherty zone within generally "brecciated?" zone, po & py       | 308.8 | 309.8 | 1.0   | 75063 | 0.002  |        |  |  |          |  |  |  |  |
|       |       |        | clots and blebs, variable carbonatization, conformable zone                             |       |       |       |       |        |        |  |  |          |  |  |  |  |
|       |       |        |                                                                                         |       |       |       |       |        |        |  |  |          |  |  |  |  |
| 310.0 | 362.8 |        | Greenstone (Mafic-Int Flow; Tudor Fm)                                                   |       |       |       |       |        |        |  |  |          |  |  |  |  |
|       |       |        | -green, more massive chl/act flow rk                                                    |       |       |       |       |        |        |  |  |          |  |  |  |  |
|       |       |        | -only minor carbonatization present here, alt died out, but still some cc in stringers  |       |       |       |       |        |        |  |  |          |  |  |  |  |
|       |       |        | -335; slight increase in cc, decreases again @ 348                                      |       |       |       |       |        |        |  |  |          |  |  |  |  |
| 362.8 | 400.8 |        | Altered Greenstone (Altered Int tuff or Tuff-Sediment; Tudor Fm)                        |       |       |       |       |        |        |  |  |          |  |  |  |  |
|       |       |        | -chl-biotite transition, although some chl remains, med-fine gr, heavy carbonatization, |       |       |       |       |        |        |  |  |          |  |  |  |  |
|       |       |        | strongly fol, dissem py                                                                 |       |       |       |       |        |        |  |  |          |  |  |  |  |
|       |       |        | -383.5-385.0; cherty, sil zone, appears folded, minor shearing                          |       |       |       |       |        |        |  |  | <u>.</u> |  |  |  |  |
|       |       |        | -387.2, conformable 1" qtz-sulphide vein, very irreg                                    |       |       |       |       |        |        |  |  |          |  |  |  |  |

PAGE 5 OF 7

| DATE LOGGED   |
|---------------|
| COMPANY NAME  |
| PROPERTY NAME |

HOLE No. 86-5

| FROM   | то    | RECOVY | DESCRIPTION                                                                          |       | SA    | MPLE  |       | oz/ton | on ASSAYS                              |  |  |   |  |  |  |  |
|--------|-------|--------|--------------------------------------------------------------------------------------|-------|-------|-------|-------|--------|----------------------------------------|--|--|---|--|--|--|--|
| FHOIVE | 10    | HECOVI | DESCRIPTION                                                                          | FROM  | то    | WIDTH | No.   |        |                                        |  |  |   |  |  |  |  |
|        |       |        | 394.5-395.3; marginally xcutting, qtz-cc vein @ 66°, chl clots, lower 2" is SM py,   | 394.4 | 395.4 | 1.0   | 75064 | 0.056  |                                        |  |  |   |  |  |  |  |
|        |       |        | minor po, cpy on lower ctc, sharp ctc with chl partings                              |       |       |       |       |        |                                        |  |  |   |  |  |  |  |
|        |       |        | -approaching lower ctc, biotite content drops                                        |       |       |       |       |        |                                        |  |  |   |  |  |  |  |
| 400.8  | 433.3 |        | Greenstone (Mafic-Int Volc Flow; Tudor Fm)                                           |       |       |       |       |        |                                        |  |  |   |  |  |  |  |
|        |       |        | -massive, f gr, green, chloritic GS, very minor cc stringers, but some weak-moderate |       |       |       |       |        |                                        |  |  |   |  |  |  |  |
|        |       |        | pervasive carbonatization, dissem po, few cc filled amygdules                        |       |       |       |       |        |                                        |  |  |   |  |  |  |  |
|        |       |        | -428.5-428.8; conformable qtz-cc vein, po on contacts                                | 428.1 | 429.1 | 1.0   | 75065 | 0.300  |                                        |  |  |   |  |  |  |  |
| 433.3  | 500.0 |        | Greenstone (Mafic-Intermed Tuff or Flow; Tudor Fm)                                   |       |       |       |       |        |                                        |  |  |   |  |  |  |  |
|        | EOH   |        | -cherty, brecciated flow contact upper 2'                                            |       |       |       |       |        | · <del>·························</del> |  |  |   |  |  |  |  |
|        |       |        | -mod fol, strongly carbonatized, grey-green with elevated bio content                |       |       |       |       |        |                                        |  |  | - |  |  |  |  |
|        |       |        | -460.0; fol @ 47°                                                                    |       |       |       |       |        |                                        |  |  |   |  |  |  |  |
|        |       |        | -443.4; 2" xcutting qtz-cc vein, diffuse ctc's, clots of chl, dissem and blebs of py | 443.0 | 444.0 | 1.0   | 75066 | 0.002  |                                        |  |  |   |  |  |  |  |
|        |       |        | -447.4; 3" conformable qtz-cc vein, non economic                                     |       |       |       |       |        |                                        |  |  |   |  |  |  |  |
|        |       |        | -460.6; contact of sorts, sharp increase in bio                                      |       |       |       |       |        |                                        |  |  |   |  |  |  |  |
|        |       |        | -461.4; 2" conformable qtz-cc vein, non economic                                     |       |       |       |       |        |                                        |  |  |   |  |  |  |  |
|        |       |        | -470.8; 2" xcutting qtz vein, irreg, with sharp ctc'c, chl and host rk inclusions,   | 470.4 | 471.4 | 1.0   | 75067 | 0.002  |                                        |  |  |   |  |  |  |  |

highly strained qtz, grey-white, spks py

PAGE 6 OF 7

| COMPAN | Y NAME     | Ξ      |                                                                         |      |          |       |     | HOLE I | No. 86-5 |             |             |             |          |
|--------|------------|--------|-------------------------------------------------------------------------|------|----------|-------|-----|--------|----------|-------------|-------------|-------------|----------|
| FROM   | <b>T</b> 0 | DECOVA |                                                                         |      | SA       | MPLE  |     | ASS    | SAYS     | <del></del> | <del></del> | <del></del> |          |
| FHOM   | 10         | RECOVY |                                                                         | FROM | то       | HTOIW | No. |        |          |             |             |             |          |
|        | EOH        |        | -494.0-494.7; sil, cherty ctc zone?, with 15% dissem po, uniform to EOH |      |          |       |     |        |          |             |             |             |          |
|        |            |        |                                                                         |      |          |       |     |        |          |             |             |             | <u> </u> |
|        |            |        |                                                                         |      |          |       | ··· |        |          |             |             |             |          |
|        |            |        |                                                                         |      |          |       |     |        |          |             |             |             |          |
|        |            |        |                                                                         |      |          |       |     |        |          |             |             |             |          |
|        |            |        |                                                                         |      |          |       |     |        |          |             |             |             |          |
|        |            |        |                                                                         |      |          |       |     |        |          |             |             |             |          |
|        |            |        |                                                                         |      |          |       |     |        |          |             |             |             |          |
|        |            |        |                                                                         |      |          |       |     |        |          |             |             |             |          |
|        |            |        |                                                                         |      |          |       |     |        |          |             |             |             |          |
|        |            |        |                                                                         |      |          |       |     |        |          |             |             |             |          |
|        |            |        |                                                                         |      |          |       |     |        |          |             |             |             |          |
|        |            |        |                                                                         |      |          |       |     |        |          |             |             |             |          |
|        |            |        |                                                                         |      | <u> </u> |       |     |        |          |             |             |             |          |
|        |            |        |                                                                         |      |          |       |     |        |          |             |             |             |          |
|        |            |        |                                                                         |      |          |       |     |        |          |             |             |             |          |
|        |            |        |                                                                         |      |          |       |     |        |          |             |             |             |          |
|        |            |        |                                                                         |      |          |       |     |        |          |             |             |             |          |

PAGE 7 OF 7

| COLLAR:                  | HOLE SURVEY |         |              |  |  |  |  |  |
|--------------------------|-------------|---------|--------------|--|--|--|--|--|
| 2448N                    | METHOD:     | hf      |              |  |  |  |  |  |
| 4016E                    | FOOTAGE     | AZIMUTH | DIP          |  |  |  |  |  |
| ELEVATION                | EOH         |         | 42/2°        |  |  |  |  |  |
| CORE SIZE BO             |             |         |              |  |  |  |  |  |
| LOGGED BY B. King        |             |         |              |  |  |  |  |  |
| DATE LOGGED Jan 27, 1986 |             |         |              |  |  |  |  |  |
| MAP REFERENCE No.        |             |         | <del> </del> |  |  |  |  |  |
| Dip -45°                 |             |         |              |  |  |  |  |  |
| Azm 235°                 |             |         |              |  |  |  |  |  |
|                          | II .        |         | I            |  |  |  |  |  |

| COMPANY NAMEMono_Gold Mines_Inc                        |
|--------------------------------------------------------|
| PROPERTY NAME Bannockburn NE Area                      |
| DRILLING CONTRACTOR Mc Knight                          |
| ASSAYER Cherrex                                        |
| PURPOSE OF HOLEto_test_continuity_of "z" and "d" veins |
| •                                                      |
|                                                        |

| HOLE No. 86-6            |  |
|--------------------------|--|
| CLAIM NAME/No. Jan 20/86 |  |
| FINISHED                 |  |
| PROJECT No.              |  |

| FROM | то    | RECOVY DESCRIPTION | SAMPLE                                                                                |          |      | oz/ton ASSAYS |       |          |  |  |          |  |         |
|------|-------|--------------------|---------------------------------------------------------------------------------------|----------|------|---------------|-------|----------|--|--|----------|--|---------|
|      |       |                    |                                                                                       | FROM     | TO   | WIDTH         | No.   | Au       |  |  |          |  |         |
| 0.0  | 7.0   |                    | Casing                                                                                |          |      |               |       |          |  |  |          |  |         |
|      |       |                    |                                                                                       |          |      |               |       |          |  |  |          |  |         |
| 7.0  | 36.7  |                    | Greenstone (Mafic-Int Volc Flow; Tudor Fm)                                            |          |      |               |       |          |  |  |          |  |         |
|      |       |                    | -f. gr., chloritic, strongly carbonatized, typical GS, amygdaloidal; 23' fol @ 43°    |          |      |               |       |          |  |  |          |  |         |
|      |       |                    | -31-34; strong cc stringers and mod silicification, but can still identify amygadules |          |      |               |       |          |  |  |          |  |         |
|      |       |                    | complex, fractured                                                                    |          |      |               |       |          |  |  |          |  |         |
|      |       |                    | -34.5-35.2; apparently conformable qtz-cc vein, may have slight xcutting character,   | 34.4     | 35.4 | 1.0           | 75068 | 0.012    |  |  |          |  |         |
|      |       |                    | white massive qtz, few spks py, grey mineral?                                         |          |      |               |       | <u> </u> |  |  |          |  |         |
|      |       |                    |                                                                                       |          |      |               |       |          |  |  | <u> </u> |  | <u></u> |
| 36.7 | 116.0 |                    | Greenstone (Mafic-Int Flow or Tuff; Tudor Fm)                                         |          |      |               |       |          |  |  |          |  |         |
|      |       |                    | -sim to 7.0-36.7, but no amygdules noted; finer gr and stronger foliated than above;  |          |      |               |       |          |  |  |          |  |         |
|      |       |                    | -crossed by numerous fract's with cc or cc stringers (conformable)                    |          |      |               |       |          |  |  |          |  |         |
|      |       |                    | -59.0; 4" cc-qtz vein non economic                                                    |          |      |               |       |          |  |  |          |  | <br>    |
|      |       |                    | -64.3-68.0; numerous strong cc veins (conformable); non economic                      |          |      |               |       |          |  |  |          |  |         |
|      |       |                    | -104.0-108.0; biotite appearing; minor alteration? (associated with qtz veining?)     | <u> </u> |      |               |       |          |  |  |          |  |         |

|       |       |         |                                                                                   |       |       |       |          |          | HOLE           | No | 86-6 |   |  |  |
|-------|-------|---------|-----------------------------------------------------------------------------------|-------|-------|-------|----------|----------|----------------|----|------|---|--|--|
| ROM   | то    | RECOVY  | DESCRIPTION                                                                       |       | SA    | MPLE  |          | oz./to   | oz./ton ASSAYS |    |      |   |  |  |
|       |       | 1120011 |                                                                                   | FROM  | то    | WIDTH | No.      | Au       |                |    |      |   |  |  |
|       |       |         | -108-108.5; 2, 1" xcutting qtz-cc veins, ctc's irregular but well defined, @ 85°  | 107.6 | 108.6 | 1.0   | 75069    | 0.158    |                |    |      |   |  |  |
|       |       |         | strong po, minor py and tr cpy + few cpy blebs; clots of chlorite, looks          |       |       |       |          |          |                |    |      |   |  |  |
|       |       |         | as if vein has split, or vein has large host rk inclusion.                        |       |       |       |          |          | ·              |    |      |   |  |  |
| 116.0 | 130.6 |         | Greenstone (Mafic-Intermed Volc Flow; Tudor Fm)                                   |       |       |       | _        |          |                |    |      |   |  |  |
|       |       |         | -grey cherty horizon with minor po in contact zone                                |       |       |       |          |          |                |    |      |   |  |  |
|       |       |         | -unit is high S.G., massive, poorly foliated, few qtz/cc stringers                |       |       |       |          |          |                |    |      |   |  |  |
| 30.6  | 137.2 |         | Greenstone (Mafic-Intermed Volc Flow; Tudor Fm)                                   |       |       |       |          |          |                |    |      |   |  |  |
|       |       |         | -cherty, silicified/fracture zone upper contact                                   |       |       |       |          |          |                |    |      |   |  |  |
|       |       |         | -massive, green, poor foliation, minor qtz stringers; non descript                |       |       |       |          |          |                |    |      |   |  |  |
| 37.2  | 169.0 |         | Greenstone (Mafic-Intermediate Volc Flow; Tudor Fm)                               |       |       |       |          |          |                |    |      |   |  |  |
|       |       |         | -upper 2', sil, ep'd, brecciated and carbonatized contact zone; includes possible | 138.6 | 139.6 | 1.0   | 75070    | 0.424    |                |    |      | · |  |  |
|       |       |         | xcutting gtz vein or pods, composite of flow chert and mineralized veining.       |       |       |       | <u> </u> | <u> </u> |                |    |      |   |  |  |
|       |       |         | -qtz is white, massive, with incl of host rk, tourmaline and grey mineral?        |       |       |       |          | -        |                |    |      |   |  |  |
|       |       |         | -py blebs, ; xcirtting vein approx 3%"                                            |       |       |       |          |          |                |    |      |   |  |  |

-unit is very massive, volcanic flow, green, chloritic, f gr, typical

PAGE 2 OF 3

| OPERT | TY NAMI                                                      | E      |                                                                                         |       |       |       |       |       | HOLE N | o. <u>8</u> | 66 | <br>     |
|-------|--------------------------------------------------------------|--------|-----------------------------------------------------------------------------------------|-------|-------|-------|-------|-------|--------|-------------|----|----------|
| ROM   | то                                                           | RECOVY | DESCRIPTION                                                                             |       | SA    | MPLE  |       | oz/to | n ASSA | AYS         |    |          |
| NOW   |                                                              | HECOVY | DESCRIPTION                                                                             | FROM  | то    | WIDTH | No.   | Au    |        |             |    |          |
|       |                                                              |        | -152.0-152.4; irregular, cc-qtz vein or pod associated with strong fracturing; includes | 152.7 | 153.7 | 1.0   | 75071 | 0.002 |        |             |    | <br>     |
|       |                                                              |        | small seam of po, minor py in a probable fracture                                       |       |       |       |       |       |        |             |    |          |
| 59.0  | 200.0                                                        |        | Greenstone (Mafic - Intermediate Volcanic Flow; Tudor Fm)                               |       |       |       |       |       |        |             |    |          |
|       | EOH_                                                         |        | - upper ctc is cherty, carbonatized, minor brecciated                                   |       |       |       |       |       |        |             |    |          |
|       |                                                              |        | -unit has increased biotite content, but very sim to 137.2-169.0                        |       |       |       |       |       |        |             |    | <b>.</b> |
|       |                                                              |        | -174.5-174.9; cross cutting qtz-cc veins with heavy po, numerous host rk inclusions,    | 174.3 | 175.3 | 1.0   | 75072 | 0.024 |        |             |    |          |
|       |                                                              |        | minor py, tr cpy??                                                                      |       |       |       |       |       |        |             |    |          |
|       | · · <u>·</u> · · <del>· · · · · · · · · · · · · · · · </del> |        | -2, 1½ " veins, may be vein splitting into 2 or 3?; appears annealed                    |       |       |       |       |       |        |             |    |          |
|       |                                                              |        | -179-181; cherty, carbonatized flow contact?,conformable; interflow or flow segreg.?    |       |       |       |       |       |        |             |    |          |
|       |                                                              |        | -183.0-185.0; silic zone, minor, non economic, few cc stringers                         |       |       |       |       |       |        |             |    | <br>· /• |
|       | <u></u>                                                      |        |                                                                                         |       |       |       |       |       |        |             |    |          |
|       |                                                              |        |                                                                                         |       |       |       |       |       |        |             |    |          |
|       |                                                              |        |                                                                                         |       |       |       |       |       |        |             |    |          |
|       |                                                              |        |                                                                                         |       |       |       |       |       |        |             |    |          |
|       |                                                              |        |                                                                                         |       |       |       |       |       |        |             |    |          |

| COLLAR:       |             | HOL     | E SURVEY |              |
|---------------|-------------|---------|----------|--------------|
|               | 2448N       | METHOD: | hf       |              |
|               | 4016E       | FOOTAGE | AZIMUTH  | DIP          |
| ELEVATION     |             | 359.3   |          | -59%°        |
| CORE SIZE     | B0          |         |          |              |
| LOGGED BY     | B. King     |         |          |              |
| DATE LOGGED   | Jan 27 1986 |         |          |              |
| MAP REFERENCE | No          |         |          | <del> </del> |
|               | Dip -60°    |         |          | <del> </del> |
|               | Azm 235°    |         |          |              |
|               |             | l l     |          |              |

| COMPANY NAME Mono Gold Mines Inc  | HOLE No86-              |
|-----------------------------------|-------------------------|
| PROPERTY NAME Bannockburn NE Area | CLAIM NAME/No           |
| DRILLING CONTRACTOR McKnight      | COMMENCED               |
| ASSAYERChemex PURPOSE OF HOLE     | FINISHED<br>FINAL DEPTH |
| TOTAL COLOT FIOLE                 | PROJECT No.             |
|                                   |                         |

| CLAIM NAME/No. |             |  |
|----------------|-------------|--|
|                | Jan 22 1986 |  |
|                | Jan 23 1986 |  |
| FINAL DEPTH    | 359.3       |  |
| PROJECT No     |             |  |

| FROM | то   | RECOVY | DESCRIPTION                                                                         |      | SA   | MPLE  |       | oz/ton  | ASS | AYS | <br> |
|------|------|--------|-------------------------------------------------------------------------------------|------|------|-------|-------|---------|-----|-----|------|
|      |      |        |                                                                                     | FROM | то   | WIDTH | No.   | Au      |     |     |      |
| 0.0  | 5.3  |        | Casing                                                                              |      |      |       |       |         |     |     |      |
|      |      |        |                                                                                     |      |      |       |       |         |     | _   |      |
| 5.3  | 49.7 |        | Greenstone (Mafic-Int Volc Flow or Tuff; Tudor Fm)                                  |      |      |       |       |         |     |     |      |
|      |      |        | -f gr, green, well foliated, chloritic, strong-mod pervasive carbonatization        |      |      |       |       |         |     |     |      |
|      |      |        | -amygdaloidal to 21.8', several amyg bands below                                    |      |      |       |       |         |     |     |      |
|      |      |        | -32.0; qtz stringers, boudins, conformable, minor mineralization                    |      |      |       |       |         |     |     |      |
|      |      |        | -33.6-35.0; conformable qtz vein, bright white, massive, coarse qtz, spks py, minor | 33.5 | 35.1 | 1.6   | 75073 | 0.352   |     |     |      |
|      |      |        | cc, sharp ctc's, chl partings on ctc's, ground core @ 34'                           |      |      |       |       |         |     |     |      |
|      |      |        | -38.0-41.4; silicified zone, generally grey-brown qtz-cc veins, conformable and     | 38.0 | 39.4 | 1.4   | 75074 | <0.002  |     |     |      |
|      |      |        | xcutting veins @ 40°, strong vuggy py, numerous chl slips throughout                | 39.4 | 40.4 | 1.0   | 75075 | < 0.002 |     |     |      |
|      |      |        | plus many rk inclusions; 40.4-41.4, white bull qtz, lower ctc conformable           | 40.4 | 41.5 | 1.1   | 75076 | k 0.002 |     |     |      |
|      |      |        | but sheared, few spks py, fract's healed with cc                                    |      |      |       |       |         |     |     |      |
|      |      |        | 42.1-44.0; silicified zone, possible flow ctc                                       |      |      |       |       |         |     |     |      |
|      |      |        |                                                                                     |      |      |       |       |         |     |     |      |
| 49.7 | 73.3 |        | Greenstone (Mafic-Intermed Volc Flow or Tuff; Tudor Fm)                             |      |      |       |       |         |     |     |      |

| PAGE | 1 | OF  | <u> </u> |
|------|---|-----|----------|
|      |   | OF. | <u> </u> |

| DATE LOGGED    |  |
|----------------|--|
| COMPANY NAME . |  |
| PROPERTY NAME  |  |

HOLE No. 86-7

| EDC: | Τ.    | DECOLE |                                                                                      | 1     | SA    | MPLE  | ·     |        | ASSAYS      |  |  |  |  |  |
|------|-------|--------|--------------------------------------------------------------------------------------|-------|-------|-------|-------|--------|-------------|--|--|--|--|--|
| FROM | то    | RECOVY | DESCRIPTION                                                                          | FROM  | то    | WIDTH | No.   |        |             |  |  |  |  |  |
|      |       |        | -49.7-50.4; cherty flow ctc zone                                                     |       |       |       |       |        |             |  |  |  |  |  |
|      |       |        | -unit is finer gr than unit above, much lower carbonatization, fewer cc stringers    |       |       |       |       |        |             |  |  |  |  |  |
|      |       |        | -65.8-66.8; 2 conformable white, granular qtz veins, minor spks py;                  | 65.8  | 66.8  | 1.0   | 75077 | <0.002 |             |  |  |  |  |  |
|      |       |        | 68.0-70.0; minor sil and carbonatized zone                                           |       |       |       |       |        |             |  |  |  |  |  |
| 73.3 | 90.0  |        | Greenstone (Mafic Flow; Tudor Fm)                                                    |       |       |       |       |        |             |  |  |  |  |  |
|      |       |        | -massive, f gr, chl unit, crossed by few qtz/cc stringers, most conformable          |       |       |       |       |        |             |  |  |  |  |  |
|      |       |        | -73.3-73.7; cherty, carbonatized zone, contact zone?                                 |       |       |       |       |        |             |  |  |  |  |  |
|      |       |        | -78.4; 2½ tw zone of sil, ep, cc, spks po                                            |       |       |       |       |        |             |  |  |  |  |  |
|      |       |        | -90.0-91.0; sheared zone, some carbonatization, minor sil, possible fault?           |       |       |       |       |        |             |  |  |  |  |  |
| 90.0 | 116.0 |        | Greenstone (Mafic Tuff or Flow; Tudor Fm)                                            |       |       |       |       |        | <del></del> |  |  |  |  |  |
|      |       |        | -upper ctc is possible shear or fault, f gr, foliated, carbonatized, GS, chloritic,  |       |       |       |       |        |             |  |  |  |  |  |
|      |       |        | otherwise featureless                                                                |       |       |       |       |        |             |  |  |  |  |  |
|      |       |        | -93.0; fol @ 36°                                                                     |       |       |       |       |        |             |  |  |  |  |  |
|      |       |        | 94.1-94.9; cc-qtz vein, conformable, numerous rk inclusions                          | 94.0  | 95.0  | 1.0   | 75078 | (0.002 |             |  |  |  |  |  |
|      |       |        | 99.4; conformable cc vein, non economic                                              |       |       |       |       |        |             |  |  |  |  |  |
|      |       |        | -108.3-108.7; xcutting qtz-cc vein @ 70°, strong po,py on lower ctc, sheared margins | 108.0 | 109.0 | 1.0   | 75078 | 0.114  |             |  |  |  |  |  |

PAGE \_\_ 2 OF \_\_ 6

| DATE LOGGED   |
|---------------|
| COMPANY NAME  |
| PROPERTY NAME |

HOLE No. 86-7

| FROM  | то    | RECOVY | DESCRIPTION                                                                      |       | SA    | MPLE  |       | oz/ton | ton ASSAYS |  |  |     |  |  |  |
|-------|-------|--------|----------------------------------------------------------------------------------|-------|-------|-------|-------|--------|------------|--|--|-----|--|--|--|
| PHOM  | 10    | HECOVY | DESCRIPTION                                                                      | FROM  | то    | WIDTH | No.   | Au     |            |  |  |     |  |  |  |
|       |       |        | 112.5; 1" tw xcutting vein @ 15-20°!, coarse qtz, cc strong py, very irreg vein, | 112.2 | 113.2 | 1.0   | 75080 | 0.336  |            |  |  |     |  |  |  |
|       |       |        | appears to be a boudinage effect (choc tablet structure), with heavy py in       |       |       |       |       |        |            |  |  |     |  |  |  |
|       |       |        | pressure shadows, cc rim, recrystallized throughout, width in core is            |       |       |       |       |        |            |  |  |     |  |  |  |
|       |       |        | somewhat exaggerated                                                             |       |       |       |       |        |            |  |  |     |  |  |  |
|       |       |        | -115.5; 1" tw conformable qtz-py vein                                            |       |       |       |       |        |            |  |  |     |  |  |  |
|       |       |        |                                                                                  |       |       |       |       |        |            |  |  | . , |  |  |  |
| 116.0 | 150.0 |        | Greenstone (Mafic-Intermed flow;Tudor Fm)                                        |       |       |       |       |        |            |  |  |     |  |  |  |
|       | i     |        | -contact zone of cherty mat'l, cc                                                |       |       |       |       |        |            |  |  |     |  |  |  |
|       |       | ,      | -unit is less fol than above, weakly carbonatized, shows some bio development    |       |       |       |       |        |            |  |  |     |  |  |  |
|       |       |        | -120.3-132.0, cherty sil zone, very intense sil, some pervasive carbonatization, | 121.3 | 122.3 | 1.0   | 75081 | 0.110  |            |  |  |     |  |  |  |
|       |       |        | numerous diffuse qtz-cc stringers, possible xcutting qtz-cc veining with py      |       |       | _     |       |        |            |  |  |     |  |  |  |
|       |       |        | within, minor brecciation, good alteration zone                                  | 130.5 | 131.5 | 1.0   | 75082 | 0.040  |            |  |  |     |  |  |  |
|       |       |        | -135.7; 1" tw conformable qtz vein, py                                           |       |       |       |       |        |            |  |  |     |  |  |  |
|       |       |        | -141.6 & 142.6; 1" xcutting qtz-cc-py veins @ 80°, cc reaction reim              | 141.5 | 142.8 | 1.3   | 75083 | 0.034  |            |  |  |     |  |  |  |
|       |       |        | -unit is quite massive 132-150                                                   |       |       |       |       |        |            |  |  |     |  |  |  |
|       |       |        |                                                                                  |       |       |       |       |        |            |  |  |     |  |  |  |
| 150.0 | 231.7 |        | Greenstone (Mafic-Intermed Volc Flow or Tuff; Tudor Fm)                          |       |       |       |       |        |            |  |  |     |  |  |  |
|       |       |        | -upper ctc is altered sil, carbonatized zone, mod py, po                         |       |       |       |       |        |            |  |  |     |  |  |  |

| DATE LOGGED   |  |
|---------------|--|
| COMPANY NAME  |  |
| PROPERTY NAME |  |

HOLE No. <u>86-7</u>

| FROM  |       |        |                                                                                        | <b>T</b> | SA    | MPLE  |          | T     | ASS | SAYS |   | <br> |   |
|-------|-------|--------|----------------------------------------------------------------------------------------|----------|-------|-------|----------|-------|-----|------|---|------|---|
| FROM  | то    | RECOVY | DESCRIPTION                                                                            | FROM     | то    | HTGIW | No.      |       |     |      |   |      |   |
|       |       |        | -unit is mod foliated, fol 36° @ 156'                                                  |          |       |       |          |       |     |      |   |      |   |
|       |       |        | -moderate pervasive carbonatization, with few spks po, and few dissem po zones in      |          |       |       |          |       |     |      |   |      |   |
|       |       |        | bands                                                                                  |          |       |       |          |       |     |      |   |      |   |
|       |       |        | -172.0 & 172.7, conformable qtz-cc veins , appear barren, more like stringers          |          |       |       |          |       |     |      |   |      |   |
|       |       |        | -197.0-199.0, mod altered zone, increased bio, minor cc, all conformable               |          |       |       |          |       |     |      |   |      |   |
|       |       |        | -215.8-216.3; two, 1" xcutting qtz-cc py veins, may be one vein split or wrapped       | 215.5    | 216.5 | 1.0   | 75084    | 0.002 |     |      |   |      |   |
|       |       |        | around inclusion, heavy py, some dissem py 215.5-217.5                                 | 216.5    | 217.5 | 1.0   | 75085    | 0.002 |     |      |   |      | , |
|       |       |        | -229.0-231.0;minor conformable and xcutting qtz-py veining in zone of heavy dissem py  |          |       |       |          |       |     | ·    |   |      |   |
|       |       |        | -229,2-230.2; xcutting vein                                                            | 229.2    | 230.2 | 1.0   | 75086    | 0.072 |     |      |   |      |   |
|       |       |        | -230.2-231.2; conformable vein                                                         | 230.2    | 231.2 | 1.0   | 75087    | 0.036 |     |      |   |      |   |
| 231.7 | 310.7 |        | Greenstone (Mafic-Intermed Flow; Tudor Fm)                                             |          |       |       |          |       |     |      | ļ |      |   |
|       |       |        | -2 silicified, cherty zones form upper ctc, some cc, spks py                           |          |       |       |          |       |     |      |   |      |   |
|       |       |        | -unit is mod foliated, chloritic, GS, silicified in part, dissem py up to 3%           |          |       |       | <u> </u> |       |     |      |   |      |   |
|       |       |        | -230.4-233.2; fractures, sil, carbonatized, irregular alteration zone, minor sulphides | 231.9    | 232.9 | 1.0   | 75088    | 0.004 |     |      |   |      |   |
|       |       |        | -233.2-233.6; Fault; essentially a poorly consolidated cc-py gouge, poor recovery,     |          |       |       |          |       |     |      |   |      |   |
|       |       |        | @ approx 45°, apparently little change in lithology below fault zone                   |          |       |       |          |       |     |      |   |      |   |
|       |       |        | -245.5; 1½ tw conformable qtz/cherty zone or vein, numerous chl inclusions, minor py   |          |       |       |          |       |     |      |   |      |   |

PAGE 4 OF 6

| DATE LOGGED   |
|---------------|
| COMPANY NAME  |
| PROPERTY NAME |

HOLE No. <u>86-7</u>

| RECOVY |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|--------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        | DESCRIPTION                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MPLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | oz/ton                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ASSAYS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>-</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|        |                                                                                        | FROM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | то                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | WIDTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Au                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|        | -250.2; sim 245.5'                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|        | 262.0; pervasive carbonatization rapidly becomes more intense                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|        | 267.6; qtz-cc vein, spks py, tr cpy, generally conformable, but may have xcutting      | 267.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 268.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 75089                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|        | component, all within a sil and altered zone                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|        | -276.4-279.4; qtz-cc vein, xcutting, massive qtz, heavy py lower ctc, minor recrystal- | 276.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 277.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 75090                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|        | ization of cc, ctc's irregular, but sharp, VG 0.1' above lower ctc, few spks           | 277.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 279.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 75091                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.310                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|        | grey mineral, tourmaline?                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|        | -283.4; 1" xcutting qtz-cc stringer, very irreg, heavy py, somewhat cherty             | 282.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 283.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 75092                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|        | -286.0; 1½" xcutting @ 50°, qtz-cc vein, mod-strong py subhedra, coarse cc on ctc's,   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|        | vein opposes foliation                                                                 | 285.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 286.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 75093                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|        | -304.8-310.7; complex zone of cherty, carbonatized rk, minor breccia, fracturing,      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|        | appears sheared, contact zone?                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|        |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u>-</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| .8     | Greenstone (Mafic-Intermed Flow; Tudor Fm)                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|        | - massive chloritic GS, poorly foliated, f gr, few minor qtz stringers                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|        | -323.4-328.0; strong dissem po (7-10%)                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|        | -332.0-334.0; altered zone, carbonatized, sil, po bearing, gen conformable, some qtz   | 332.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 334.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 75094                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|        | breccia, tr cpy, very irreg                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|        | 8                                                                                      | 262.0; pervasive carbonatization rapidly becomes more intense  267.6; qtz-cc vein, spks py, tr cpy, generally conformable, but may have xcutting  component, all within a sil and altered zone  -276.4-279.4; qtz-cc vein, xcutting, massive qtz, heavy py lower ctc, minor recrystal- ization of cc, ctc's irregular, but sharp, VG 0.1' above lower ctc, few spks  grey mineral, tourmaline?  -283.4; 1" xcutting qtz-cc stringer, very irreg, heavy py, somewhat cherty  -286.0; 1½" xcutting @ 50°, qtz-cc vein, mod-strong py subhedra, coarse cc on ctc's,  vein opposes foliation  -304.8-310.7; complex zone of cherty, carbonatized rk, minor breccia, fracturing,  appears sheared, contact zone?  8 | 262.0; pervasive carbonatization rapidly becomes more intense  267.6; qtz-cc vein, spks py, tr cpy, generally conformable, but may have xcutting  267.2  component, all within a sil and altered zone  -276.4-279.4; qtz-cc vein, xcutting, massive qtz, heavy py lower ctc, minor recrystal- ization of cc, ctc's irregular, but sharp, VG 0.1' above lower ctc, few spks  grey mineral, tourmaline?  -283.4; 1" xcutting qtz-cc stringer, very irreg, heavy py, somewhat cherty  -286.0; 1%" xcutting @ 50°, qtz-cc vein, mod-strong py subhedra, coarse cc on ctc's,  vein opposes foliation  286.8  -304.8-310.7; complex zone of cherty, carbonatized rk, minor breccia, fracturing,  appears sheared, contact zone?  8 Greenstone (Mafic-Intermed Flow; Tudor Fm)  - massive chloritic GS, poorly foliated, f gr, few minor qtz stringers  -323.4-328.0; strong dissem po (7-10%)  -332.0-334.0; altered zone, carbonatized, sil, po bearing, gen conformable, some qtz | 262.0; pervasive carbonatization rapidly becomes more intense  267.6; qtz-cc vein, spks py, tr cpy, generally conformable, but may have xcutting  267.2 268.2  component, all within a sil and altered zone  -276.4-279.4; qtz-cc vein, xcutting, massive qtz, heavy py lower ctc, minor recrystal- ization of cc, ctc's irregular, but sharp, V6 0.1' above lower ctc, few spks  277.8 279.5  grey mineral, tournaline?  -283.4; 1" xcutting qtz-cc stringer, very irreg, heavy py, somewhat cherty  282.9 283.9  -296.0; 1½" xcutting @ 50°, qtz-cc vein, mod-strong py subhedra, coarse cc on ctc's,  vein opposes foliation  285.8 286.8  -304.8-310.7; complex zone of cherty, carbonatized rk, minor breccia, fracturing,  appears sheared, contact zone?  8 Greenstone (Mafic-Intermed Flow; Tudor Fm)  - massive chloritic 6S, poorly foliated, f gr, few minor qtz stringers  -323.4-328.0; strong dissem po (7-10%)  -332.0-334.0; altered zone, carbonatized, sil, po bearing, gen conformable, some qtz  332.9 334.1 | 262.0; pervasive carbonatization rapidly becomes more intense  267.6; qtz-cc vein, spks py, tr cpy, generally conformable, but may have xcutting  267.2 268.2 1.0  component, all within a sil and altered zone  -276.4-279.4; qtz-cc vein, xcutting, massive qtz, heavy py lower ctc, minor recrystal- ization of cc, ctc's irregular, but sharp, V6 0.1' above lower ctc, few spks 277.8 279.5 1.7  grey mineral, tourmaline?  -283.4; 1" xcutting qtz-cc stringer, very irreg, heavy py, somewhat cherty 282.9 283.9 1.0  -266.0; 1½" xcutting @ 50°, qtz-cc vein, mod-strong py subhedra, coarse cc on ctc's, vein opposes foliation 285.8 266.8 1.0  -304.8-310.7; complex zone of cherty, carbonatized rk, minor breccia, fracturing, appears sheared, contact zone?  8 Greenstone (Mafic-Intermed Flow; Tudor Fm)  - massive chloritic GS, poorly foliated, f gr, few minor qtz stringers  -323.4-328.0; strong dissem po (7-10%)  -332.0-334.0; altered zone, carbonatized, sil, po bearing, gen conformable, some qtz 332.9 334.1 1.2 | 262.0; pervasive carbonatization rapidly becomes more intense  267.6; qtz-cc vein, spks py, tr cpy, generally conformable, but may have xcutting  267.2 268.2 1.0 75089  component, all within a sil and altered zone  -276.4-279.4; qtz-cc vein, xcutting, massive qtz, heavy py lower ctc, minor recrystal- ization of cc, ctc's irregular, but sharp, VG 0.1' above lower ctc, few spks 277.8 279.5 1.7 75091  grey mineral, tournaline?  -283.4; 1" xcutting qtz-cc stringer, very irreg, heavy py, somewhat cherty 282.9 283.9 1.0 75092  -286.0; 1%" xcutting @ 50°, qtz-cc vein, mod-strong py subhedra, coarse cc on ctc's, vein opposes foliation 285.8 286.8 1.0 75093  -304.8-310.7; complex zone of cherty, carbonatized rk, minor breccia, fracturing, appears sheared, contact zone?  8 Greenstone (Mafic-Intermed Flow; Tudor Fm) - massive chloritic GS, poorly foliated, f gr., few minor qtz stringers -323.4-328.0; strong dissem po (7-10%) -332.0-334.0; altered zone, carbonatized, sil, po bearing, gen conformable, some qtz 332.9 334.1 1.2 75094 | 262.0; pervasive carbonatization rapidly becomes more intense  267.6; qtz-cc vein, spks py, tr cpy, generally conformable, but may have xcutting  267.2 268.2 1.0 75089 0.002  component, all within a sil and altered zone  -276.4-279.4; qtz-cc vein, xcutting, massive qtz, heavy py lower ctc, minor recrystal- 276.3 277.8 1.5 75090 0.002  ization of cc, ctc's irregular, but sharp, V6 0.1' above lower ctc, few spks 277.8 279.5 1.7 75091 1.310  grey mineral, tournaline?  -283.4; 1" xcutting qtz-cc stringer, very irreg, heavy py, somewhat cherty 282.9 283.9 1.0 75092 0.014  -286.0; 1%" xcutting @ 50°, qtz-cc vein, mod-strong py subhedra, coarse cc on ctc's, vein opposes foliation 285.8 286.8 1.0 75093 0.008  -304.8-310.7; complex zone of cherty, carbonatized rk, minor breccia, fracturing, appears sheared, contact zone?  8 Greenstone (Mafic-Intermed Flow; Tudor Fm) - massive chloritic 6S, poorly foliated, f gr, few minor qtz stringers -323.4-328.0; strong dissem po (7-10%) -332.0-334.0; altered zone, carbonatized, sil, po bearing, gen conformable, sone qtz 332.9 334.1 1.2 75094 0.002 | 262.0; pervasive carbonatization rapidly becomes more intense  267.6; qtz-cc vein, spks py, tr cpy, generally conformable, but may have xcutting  267.2 268.2 1.0 75089 0.002  component, all within a sil and altered zone  -276.4-279.4; qtz-cc vein, xcutting, massive qtz, heavy py lower ctc, minor recrystal- ization of cc, ctc's irregular, but sharp, VG 0.1' above lower ctc, few spks 277.8 279.5 1.7 75091 1.310  grey mineral, tournaline?  -283.4; 1" xcutting qtz-cc stringer, very irreg, heavy py, somewhat cherty 282.9 283.9 1.0 75092 0.014  -286.0; 1%" xcutting @ 50°, qtz-cc vein, mod-strong py subhedra, coarse cc on ctc's,  vein opposes foliation 285.8 286.8 1.0 75093 0.008  -304.8-310.7; complex zone of cherty, carbonatized rk, minor breccia, fracturing,  appears sheared, contact zone?  8 Greenstone (Mafic-Intermed Flow; Tudor Fm)  - massive chloritic GS, poorly foliated, f gr, few minor qtz stringers  -323.4-328.0; strong dissem po (7-10%)  -332.0-334.0; altered zone, carbonatized, sil, po bearing, gen conformable, some qtz 332.9 334.1 1.2 75094 0.002 | 262.0; pervasive carbonatization rapidly becomes more intense  267.6; qtz-cc vein, spks py, tr cpy, generally conformable, but may have xcutting  267.2 268.2 1.0 75089 0.002  component, all within a sil and altered zone  -276.4-279.4; qtz-cc vein, xcutting, massive qtz, heavy py lower ctc, minor recrystal- ization of cc, ctc's irregular, but sharp, V6 0.1¹ above lower ctc, few spks  277.8 1.5 75090 0.002  ization of cc, ctc's irregular, but sharp, V6 0.1¹ above lower ctc, few spks  grey mineral, tournaline?  -283.4; 1" xcutting qtz-cc stringer, very irreg, heavy py, somewhat cherty 282.9 283.9 1.0 75092 0.014  -286.0; 1½" xcutting @ 50°, qtz-cc vein, mod-strong py subhedra, coarse cc on ctc's,  vein opposes foliation 285.8 286.8 1.0 75093 0.008  -304.8-310.7; complex zone of cherty, carbonatized rk, minor breccia, fracturing,  appears sheared, contact zone?  8 Greenstone (Mafic-Intermed Flow; Tudor Fm)  - massive chloritic 6S, poorly foliated, f gr, few minor qtz stringers  -323.4-328.0; strong dissem po (7-10%)  -332.0-334.0; altered zone, carbonatized, sil, po bearing, gen conformable, some qtz 332.9 334.1 1.2 75094 0.002 | 252.0; pervasive carbonatization rapidly becomes more intense  257.6; qtz-cc vein, spks py, tr cpy, generally conformable, but may have xcutting  257.2 268.2 1.0 75089 0.002  component, all within a sil and altered zone  -276.4-279.4; qtz-cc vein, xcutting, massive qtz, heavy py lower ctc, minor recrystal- ization of cc, ctc's irregular, but sharp, V6 0.1' above lower ctc, few spks  277.8 279.5 1.7 75091 1.310  grey mineral, tournaline?  -283.4; 1" xcutting qtz-cc stringer, very irreg, heavy py, somewhat cherty 282.9 283.9 1.0 75092 0.014  -286.0; 1%" xcutting @ 50°, qtz-cc vein, mod-strong py subhedra, coarse cc on ctc's, vein opposes foliation 286.8 286.8 1.0 75093 0.008  -304.8-310.7; complex zone of cherty, carbonatized rk, minor breccia, fracturing, appears sheared, contact zone?  8 Greenstone (Mafic-Intermed Flow; Tudor Fm)  - massive chloritic 65, poorly foliated, f gr, few minor qtz stringers  -323.4-328.0; strong dissem po (7-10%)  -332.0-334.0; altered zone, carbonatized, sil, po bearing, gen conformable, some qtz 332.9 334.1 1.2 75094 0.002 | 262.0; pervasive carbonatization rapidly becomes more intense  267.6; qtz-cc vein, spks py, tr qpy, generally conformable, but may have xcutting  267.2 268.2 1.0 75089 0.002  component, all within a sil and altered zone  -276.4-279.4; qtz-cc vein, xcutting, massive qtz, heavy py lower ctc, minor recrystal- 276.3 277.8 1.5 75090 0.002  ization of cc, ctc's irregular, but sharp, V6 0.1¹ above lower ctc, few spks 277.8 279.5 1.7 75091 1.310  grey mineral, tournaline?  -283.4; 1" xcutting qtz-cc stringer, very irreg, heavy py, somewhat cherty 282.9 283.9 1.0 75092 0.014  -286.0; 1%" xcutting 0 50°, qtz-cc vein, mod-strong py subhedra, coarse cc on ctc's,  vein opposes foliation 285.8 286.8 1.0 75093 0.008  -304.8-310.7; complex zone of cherty, carbonatized rk, minor breccia, fracturing,  appears sheared, contact zone?  8 Oreenstone (Mafic-Intermed Flow; Tudor Fm)  - massive chloritic 6S, poonly foliated, f gr, few minor qtz stringers  -223.4-328.0; strong dissem po (7-10%)  -322.0-334.0; altered zone, carbonatized, sil, po bearing, gen conformable, some qtz 382.9 384.1 1.2 75094 0.002  breccia, tr cpy, very irreg |

PAGE 5 OF L

|       |       |        |                                                                                       |       |       |       |       |        | HOLE | No. <u>86-</u> 7 | ·       |      |          |
|-------|-------|--------|---------------------------------------------------------------------------------------|-------|-------|-------|-------|--------|------|------------------|---------|------|----------|
| FDOM  | 70    | DECOVA | DECCOUNTION.                                                                          | T     | SA    | MPLE  |       | oz/tor | ASS  | SAYS             |         | <br> |          |
| FROM  | то    | RECOVY | DESCRIPTION                                                                           | FROM  | то    | WIDTH | No.   | Au     |      |                  | <b></b> |      | <u> </u> |
| 339.8 | 359.3 |        | Greenstone (Mafic-Intermed Flow or Tuff; Tudor Fm)                                    |       |       |       |       |        |      |                  |         |      |          |
|       | EOH   |        | -upper ctc is conformable qtz vein, minor cc, numerous rk inclusions, white qtz,      | 339.8 | 340.1 | 1.3   | 75095 | ⟨0.002 |      |                  |         |      |          |
|       |       |        | strongly deformed                                                                     |       |       |       |       |        |      |                  |         |      |          |
|       |       |        | -generally massive, with mod foliation, mod- strong pervasive carbonatization and sil |       |       |       |       |        |      |                  |         |      |          |
|       |       |        | -345.5; 2 small qtz-py/po veins, less than ½"                                         |       | ļ     |       |       |        |      |                  |         |      |          |
|       |       |        | -353.5; 3½" xcutting qtz-cc vein 0 85°, spks py, grey min, minor rk inclusions        | 353.0 | 354.0 | 1.0   | 75096 | 0.002  |      |                  |         |      |          |
|       |       |        | -354.5; 4%" xcutting qtz-cc vein, very sim to 353.5, perhaps a split, strong sil      | 354.0 | 355.0 | 1.0   | 75097 | 0.032  |      |                  |         |      |          |
|       |       |        | between veins                                                                         |       |       |       |       |        |      |                  |         |      |          |
|       |       | ļ      |                                                                                       |       |       |       |       |        |      |                  |         |      |          |
|       |       |        |                                                                                       |       |       |       |       |        |      |                  |         |      |          |
|       |       |        |                                                                                       |       |       |       |       |        |      |                  |         |      |          |
|       |       |        |                                                                                       |       |       |       |       |        |      |                  |         |      |          |
|       |       |        |                                                                                       |       |       |       |       |        |      |                  |         |      |          |
|       |       |        |                                                                                       |       |       |       |       |        |      |                  |         |      |          |
|       |       |        | ·                                                                                     |       |       |       |       |        |      |                  |         |      |          |
|       |       |        |                                                                                       |       |       |       |       |        |      |                  |         |      |          |
|       |       |        |                                                                                       |       |       |       |       |        |      |                  |         |      |          |
|       |       |        |                                                                                       |       |       |       |       |        |      |                  |         |      |          |

PAGE \_\_\_\_\_ OF \_\_\_\_\_

| COLLAR:                  | HOL     | E SURVEY |              |
|--------------------------|---------|----------|--------------|
| 2474N                    | METHOD: | hf       |              |
| 3993E                    | FOOTAGE | AZIMUTH  | DIP          |
| ELEVATION                | 234     |          | -421/2       |
| CORE SIZE BO             |         |          |              |
| LOGGED BY B. King        |         |          |              |
| DATE LOGGED Jan 29, 1986 |         |          |              |
| MAP REFERENCE No.        |         | <u> </u> | <b> </b>     |
| Dip -45°                 |         | 1        | <del> </del> |
| Azīī 235°                |         |          |              |
| 1                        | H       | }        |              |

| COMPANY NAME Mono Gold Mines Inc                      | HOL |
|-------------------------------------------------------|-----|
| PROPERTY NAME Bannockburn NE Area                     | CLA |
| DRILLING CONTRACTOR MCKnight                          | CO  |
| ASSAYER_Chempx                                        | FIN |
| PURPOSE OF HOLE to test continuity of veins "d" & "z" | FIN |
|                                                       | PRO |
|                                                       |     |

| HOLE No    | 86-8         |  |
|------------|--------------|--|
| CLAIM NAME | No           |  |
| COMMENCE   | Jan 23, 1986 |  |
|            | Jan 24. 1986 |  |
|            | 2341         |  |
|            |              |  |

| FROM | то   | RECOVY   | DESCRIPTION                                                                           |      |          | MPLE  |       | oz/ton | AS | SSAYS |        |       |
|------|------|----------|---------------------------------------------------------------------------------------|------|----------|-------|-------|--------|----|-------|--------|-------|
|      |      |          |                                                                                       | FROM | то       | WIDTH | No.   | Au     |    |       |        |       |
| 0.0  | 5.0  |          | Casing                                                                                |      | <u> </u> |       |       |        |    |       |        |       |
|      |      |          |                                                                                       |      |          |       |       |        |    |       |        |       |
| 5.0  | 26.8 |          | Greenstone (Int -Mafic Tuff or Flow; Tudor Fm)                                        |      |          |       |       |        |    |       |        |       |
|      |      |          | -well foliated, grey-green, f gr chloritic, schist, heavy pervasive carbonatization,  |      |          |       |       |        |    |       |        |       |
|      |      |          | strong surface weathering effects, poor recovery, first12', few cc stringers          |      |          |       |       |        |    |       |        |       |
|      |      |          | -24.0-26.8; cherty, minor silicified zone, conformable                                |      |          |       |       |        |    |       |        | <br>j |
|      |      |          | -25.0; fol @ 40°                                                                      |      |          |       |       |        |    |       |        |       |
|      |      |          |                                                                                       |      |          |       |       |        |    |       |        |       |
| 26.8 | 87.5 |          | Greenstone (Mafic Flow; Tudor Fm)                                                     |      |          |       |       |        |    |       |        |       |
|      |      | <u></u>  | -massive, f gr, poorly foliated, good flow rk, very minor carbonatization             |      |          |       |       |        |    |       |        |       |
|      |      | <u> </u> | -41.0; 1" conformable? cc-qtz vein, mod py, po, tr cpy, possible VG                   | 40.6 | 41.6     | 1.0   | 75098 | 0.950  |    |       |        |       |
|      |      |          | -47.0, pervasive carbonatization begins                                               |      |          |       |       |        |    |       | ;<br>! |       |
|      |      |          | -49.0-52.5; zone of numerous qtz-cc stringers, gen conformable, few spks py, probable |      |          |       |       |        |    |       |        |       |
|      |      |          | flow contacts or flow banding                                                         |      |          |       |       |        |    |       |        |       |
|      |      |          | 57.0-59.0; cherty, sil zone with contorted fol/banding, few qtz pods, minor po        |      |          |       |       |        |    |       |        |       |

| PAGE  | 1 | OF | 4 |
|-------|---|----|---|
| · AUL |   | v  |   |

| DATE LOC |    |        |             |      |          |      |     |              |      |                  |   |  |
|----------|----|--------|-------------|------|----------|------|-----|--------------|------|------------------|---|--|
| PROPERT  |    |        |             |      |          |      |     |              | HOLE | No. <b>86-</b> 8 |   |  |
| FROM     | то | RECOVY | DESCRIPTION | FEOM | SA<br>TO | MPLE | No. | oz/ton<br>Au | AS   | SAYS             | 1 |  |

| FROM | то       | RECOVY | DESCRIPTION                                                                          |      | SA       | MPLE     |          | oz/ton | ASS | SAYS |   |      |             |
|------|----------|--------|--------------------------------------------------------------------------------------|------|----------|----------|----------|--------|-----|------|---|------|-------------|
|      |          |        |                                                                                      | FROM | то       | WIDTH    | No.      | Au     |     |      |   | <br> | <u></u>     |
|      |          |        | -60.0; small, diffuse xcutting? qtz-cc vein, vein is split or dieing out, numerous   | 59.5 | 60.5     | 1.0      | 75099    | 0.012  |     |      |   |      | <del></del> |
|      |          |        | inclusions,                                                                          |      |          |          |          |        |     |      |   |      |             |
|      |          |        | -73.3; 1" xcutting qtz-cc-py vein @ 75°, cc lines vien walls, chl slips on ctc's,    | 72.8 | 73.8     | 1.0      | 75100    | 0.014  |     |      |   |      |             |
|      |          |        | strong py, minor po                                                                  |      |          |          |          |        |     |      |   |      |             |
|      |          |        | 74.9; %" xcutting cc-py-qtz stringer                                                 |      |          |          |          |        |     |      |   |      |             |
|      |          |        |                                                                                      |      |          |          |          |        |     |      |   |      |             |
| 87.5 | 129.0    |        | Greenstone (Mafic Volc Flow; Tudor Fm)                                               |      |          |          |          |        |     |      |   |      |             |
|      |          |        | -massive, f gr, sim 26.8-87.5, chloritic, very minor carbonatization, minor sil, few |      |          |          |          |        |     |      |   |      |             |
|      |          |        | qtz stringers, upper ctc marginally cherty                                           |      |          |          |          |        |     |      |   |      |             |
|      |          |        | -98.6-99.3; two, 1" conformable qtz veins, minor ep, cc, spks py?, lower ctc is chl. |      |          |          |          |        |     |      |   |      |             |
|      |          |        | -101.5; 6" carbonatized zone                                                         |      |          |          |          |        |     |      |   |      |             |
|      |          |        | -106.0, 107.3, carbonatized zones                                                    |      |          |          |          |        |     |      |   | -    | <del></del> |
|      |          |        | -109.5-110.5; sil, carbonatized zone, non economic                                   |      |          |          |          |        |     |      |   |      |             |
|      |          |        | -116.4-118.0; sil contact zone?, elevated dissem po+py (up to 10%), conformable      |      |          |          |          |        |     |      |   |      |             |
|      |          |        | -foliation shift within this unit, possilbe ctc @ 116.2                              |      |          |          |          |        |     |      |   |      | i           |
|      |          |        | -117.0; fol @ 16°                                                                    |      |          |          |          |        |     |      |   |      |             |
|      |          |        |                                                                                      |      |          |          |          |        |     |      |   |      |             |
|      |          |        |                                                                                      |      |          |          |          |        | ;   |      |   |      | I           |
|      | <u>L</u> |        | <u> </u>                                                                             |      | <u> </u> | <u> </u> | <u> </u> |        |     | l    | L |      |             |

| DATE LOGGED   |
|---------------|
| COMPANY NAME  |
| PROPERTY NAME |

HOLE No. <u>86-8</u>

| 50014 |       | DECOVA | DECODITION                                                                           |       | SA    | MPLE  |       | oz/ton | ASS | SAYS     | <del></del> | -U |         |
|-------|-------|--------|--------------------------------------------------------------------------------------|-------|-------|-------|-------|--------|-----|----------|-------------|----|---------|
| FROM  | TO    | RECOVY | DESCRIPTION                                                                          | FROM  | то    | WIDTH | No.   | Au     |     |          |             |    |         |
| 129.0 | 186.5 |        | Greenstone (Mafic-Intermed Volc Flow; Tudor Fm)                                      |       |       |       |       |        |     |          |             |    | İ       |
|       |       |        | -129.0-132.5; amygdaloidal, deformed, with flow top material                         |       |       |       |       |        |     |          |             |    | <u></u> |
|       |       |        | -unit is f gr, massive flow rk, competant rk                                         |       |       |       |       |        |     |          |             |    |         |
|       |       |        | -137.5; very small amygdules or coarse pervasive (sperical?) carbonatization?, assoc |       |       |       |       |        |     |          |             |    | 1       |
|       |       |        | with elevated dissem po                                                              |       |       |       |       |        |     |          |             |    |         |
|       |       |        | -133.4; minor shearing, chl schist along slip plane?, silicified above vein below,   |       |       |       |       |        |     |          |             |    |         |
|       |       |        | -143.9; 1½" xcutting qtz vein, grey, cloudy, connected to a major conformable vein,  | 143.7 | 145.8 | 2.1   | 75101 | 0.046  |     |          |             |    |         |
|       |       |        | (upper ctc xcutting, lower is conform), very heavy po, up to SM, tr cpy & py,        | I     |       |       |       |        |     |          |             |    |         |
|       |       |        | major vein is 143.8-145.8, some microfaulting                                        |       |       |       |       |        |     |          |             |    |         |
|       |       |        | -146.6; 2" tw conformable massive po zone                                            | 146.1 | 147.1 | 1.0   | 75102 | 0.010  |     |          |             |    |         |
|       |       |        | -149.0-152.0; zone of cc, qtz conformable stringers                                  |       |       |       |       |        |     |          |             |    |         |
|       |       |        | -155.0; 2" conformable qtz-cc vein, grey-white recrystallized chert                  |       |       |       |       |        |     |          | -           |    |         |
|       |       |        | -159.8-160.6; carbonatized zone, generally increasing cc with depth                  |       |       |       |       |        |     |          |             |    |         |
|       |       |        | -163.0-166.7; moderately carbonatized zone                                           |       |       |       |       |        |     |          |             |    |         |
|       |       |        | -184.5; cc-qtz, conformable stringer, few spks po                                    |       |       |       |       |        |     |          |             |    |         |
| 186.5 | 234.0 |        | Greenstone (Mafic Volcanic Flow; Tudor Fm)                                           |       |       |       |       |        |     | <u> </u> |             |    |         |
| 100.5 | EOH   |        | -f gr massive, chloritic , poor foliation GS                                         |       |       |       |       |        |     |          | <br>        |    |         |

| DATE LOGGED   |
|---------------|
| COMPANY NAME  |
| PROPERTY NAME |

HOLE No. 86-8.

| FROM | то  | RECOVY | DESCRIPTION                                                                             |       | SA    | MPLE  |       | oz/ton | ASSA | AYS |  | ···· |  |
|------|-----|--------|-----------------------------------------------------------------------------------------|-------|-------|-------|-------|--------|------|-----|--|------|--|
| FRUM | 10  | HECOVY | DESCRIPTION                                                                             | FROM  | то    | WIDTH | No.   | Au     |      |     |  |      |  |
|      |     |        | -sim to unit above                                                                      |       |       |       |       |        |      |     |  |      |  |
|      |     |        | -upper ctc zone is cherty, typical, minor brecciation, minor sulphides                  |       |       |       |       |        |      |     |  |      |  |
|      |     |        | -same blebby po, up to 10%                                                              |       |       |       |       |        |      |     |  |      |  |
|      |     |        | -193.5; 8" carbonatized zone; 200.0; cluster of cc stringers;204.0-204.4, sil zone      |       |       |       |       |        |      |     |  |      |  |
|      |     |        | -205.6-206.2; qtz-cc vien, conformable, minor py on ctc's, carbonatized zone below for  | 205.5 | 206.5 | 1.0   | 75103 | 0.008  |      |     |  |      |  |
|      |     |        | 1' which includes strong dissem and blebby po                                           |       |       |       |       |        |      |     |  |      |  |
|      |     |        | -209.6; carbonatization begins, no lithological ctc, pervasive and xcutting alteration  |       |       |       |       |        |      |     |  |      |  |
|      |     |        | -212.3; two, 1" conformable qtz-cc pods or veins, poorly defined                        | 211.8 | 212.8 | 1.0   | 75104 | 0.002  |      |     |  |      |  |
|      |     |        | -214.7; 3½" conformable qtz-cc vein with minor py, po, tr cpy? on sharp ctc's, numerous |       |       |       |       |        |      |     |  |      |  |
|      |     |        | grey spks and chl inclusions                                                            | 214.3 | 215.3 | 1.0   | 75105 | 0.002  |      |     |  |      |  |
|      |     |        | -220.5; ½" conformable qtz-cc py stringer                                               |       |       |       |       |        |      |     |  |      |  |
|      |     |        | -221.1; sim 220.5                                                                       |       |       |       |       |        |      |     |  |      |  |
|      |     |        | -226.3; 3" xcutting qtz-cc vein @ 85°, strong py, irreg but well defined ctc's          | 225.7 | 226.7 | 1.0   | 75106 | 0.002  |      |     |  |      |  |
|      |     |        | -227.1; ½" conformable qtz-cc stringer, barren                                          |       |       |       |       |        |      |     |  |      |  |
|      |     |        | -unit becomes increasingly chloritic and carbonatized with depth, fracturing increases, |       |       |       |       |        |      |     |  |      |  |
|      |     |        | biotite appears                                                                         |       |       |       |       |        |      |     |  |      |  |
|      |     |        | -230.5-231.5; zone of several ½-1" conformable but irreg qtz-cc stringers, with mod     | 230.5 | 231.5 | 1.0   | 75107 | 0.002  |      |     |  |      |  |
| 234. | EOH |        | po, py, may have xcutting component                                                     |       |       |       |       | 1      |      |     |  |      |  |

PAGE 4 OF 4

| COLLAR:          | 21. T    | HOL     | E SURVEY |     |
|------------------|----------|---------|----------|-----|
|                  | 2147N    | METHOD: | hf       |     |
|                  | 4237E    | FOOTAGE | AZIMUTH  | DIP |
| ELEVATION        |          | 400     |          | 45° |
| CORE SIZE        | BQ       |         |          |     |
| LOGGED BY        | B. Kina  |         |          |     |
| DATE LOGGED      |          |         |          |     |
| MAP REFERENCE NO | )        |         |          |     |
|                  | Dip -45° |         |          |     |
|                  | Azm 235° |         |          |     |
|                  |          |         |          |     |
|                  |          |         |          |     |

| COMPANY NAMEMono_Gold_Mines_Inc                                       |
|-----------------------------------------------------------------------|
| PROPERTY NAME Bannockburn NE Area                                     |
| DRILLING CONTRACTOR MCKnight                                          |
| ASSAYER Chemex                                                        |
| PURPOSE OF HOLE Beaver POnd drilling to test at depth south extension |
|                                                                       |

| CLAIM NAME/I | No           | <del></del> |
|--------------|--------------|-------------|
| COMMENCED    | Jan 26, 1986 |             |
|              | Jan 28, 1986 |             |
| FINAL DEPTH  |              |             |

| FROM | то       | RECOVY  | DESCRIPTION                                                                           |      | SA   | MPLE  |       |        |   |  | ASSAYS |  |  |
|------|----------|---------|---------------------------------------------------------------------------------------|------|------|-------|-------|--------|---|--|--------|--|--|
|      | <u> </u> |         |                                                                                       | FROM | то   | WIDTH | No.   |        |   |  |        |  |  |
| 0.0  | 26.0     |         | Casing                                                                                |      |      |       |       |        |   |  |        |  |  |
|      |          |         |                                                                                       |      |      |       |       |        | ļ |  |        |  |  |
| 26.0 | 286.5    |         | Sericitic Metasediments ( Pelitic -Semi Pelitic Sediments)                            |      |      |       |       |        |   |  |        |  |  |
|      |          |         | f gr, strongly fol, qtz-sericite-chl schist, minor bio, phyllitic, dissem py (7%),    |      |      |       |       |        |   |  |        |  |  |
|      |          |         | minor mudstone intercalations                                                         |      |      |       |       |        |   |  |        |  |  |
|      |          |         | -39.0; banding @ 36°                                                                  |      |      |       |       |        |   |  |        |  |  |
|      |          |         | -small amt's dol rather than pervasive carbonatization                                |      |      |       |       |        |   |  |        |  |  |
|      |          |         | -61.3-61.9; qtz-dol vein, gen xcutting with a conformable component, coarse, rextal'd | 62.0 | 63.0 | 1.0   | 75108 | €0.002 |   |  |        |  |  |
|      |          |         | carbonate, mod py on fract's surfaces, may incl pink-grey k spar?                     |      |      |       |       |        |   |  |        |  |  |
|      |          |         | -69.0; "s" style parasitic folding in zone of contorted banding                       |      |      |       |       |        |   |  |        |  |  |
|      |          |         | -76.0; %" xcuttting qtz-dol vein, with dol+ser on ctc's, ocurrs with several conform  |      |      |       |       |        |   |  |        |  |  |
|      |          |         | stringers, few spks po, doesnt appear economic                                        |      |      |       |       |        |   |  |        |  |  |
|      |          | <u></u> | -76.8; conformable fault-fracture zone, loosely consolidated cc with py               |      |      |       |       |        |   |  |        |  |  |
|      |          |         | -78.6; ¼" xcutting qtz-stringer with py, ser some chl                                 |      |      |       |       |        |   |  |        |  |  |
|      |          |         | -86.5; %" xcuttingqtz-stringer with coarse ser on ctc's 0 75°                         |      |      |       |       |        |   |  |        |  |  |

| DATE LOGGED   |
|---------------|
| COMPANY NAME  |
| PROPERTY NAME |

HOLE No. 86-9

| FROM  | то | RECOVY | DESCRIPTION                                                                             |       | SA    | MPLE  |               |                   | ASS   | SAYS |   |              |
|-------|----|--------|-----------------------------------------------------------------------------------------|-------|-------|-------|---------------|-------------------|-------|------|---|--------------|
| FHOIN | 10 | RECOVY | DESCRIPTION                                                                             | FROM  | то    | WIDTH | No.           |                   |       |      |   |              |
|       |    |        | 90.3; irreg qtz segregations, pods or veins, apparently xcutting, sharp contacts,       |       |       |       | _             |                   |       |      |   |              |
|       |    |        | lined with bio, ser, py recrystallized sericite (musc)                                  |       |       |       |               |                   |       |      |   |              |
|       |    |        | -89.0; banding/fol @ 38°; 93.0; banding/fol @ 16°, with axial planar close to parallel  |       |       |       |               |                   |       |      |   |              |
|       |    |        | to core, 89-96 probable closure area                                                    |       |       |       |               |                   |       |      |   |              |
|       |    |        | -98.1-100.6; strong pervasive sil zone, closure related, 99.3-99.8 diffuse qtz vein,    | 99.1  | 100.1 | 1.0   | 75109         | <b>&lt;</b> 0.002 |       |      |   |              |
|       |    |        | mod py, musc, dol and po                                                                |       |       |       |               |                   |       |      |   | <del>-</del> |
|       |    |        | 109.0; possible "z" style parasitic folding                                             |       |       |       |               |                   |       |      |   |              |
|       | •  |        | -117.2; ½" qtz vein, xcutting, with ser, dol on ctc's with py @ 70°                     | 116.8 | 117.8 | 1.0   | 75110         | (0.002            |       |      |   |              |
|       |    |        | 133.0-135.0; increased bio, chl, blebs of py/po, qtz-dol pods, generally altered zone   |       |       |       |               |                   | ***** |      |   |              |
|       |    |        | -138.6; Fault; loosely consolidated cc, py, chl, approx 50° crossing foliation          |       |       |       |               |                   |       |      |   |              |
|       |    |        | -156.0-157.0; elevated po, py, for several inches                                       |       |       | :     |               |                   |       |      |   |              |
|       |    |        | -193.3-196.3; altered zone, strongly silicified, sericitic bio zone, qtz pods, both     | 194.1 | 195.6 | 1.5   | <i>7</i> 5111 | (0.002            |       |      | · |              |
| -     |    |        | xcutting and conformable                                                                |       |       |       |               |                   |       |      |   |              |
|       |    |        | 196.3-196.9; altered zone, xcutting qtz-dol-sericite vein @ 65-70°, with diffuse but    | 196.1 | 197.1 | 1.0   | 75112         | K0.002            |       |      |   |              |
|       |    |        | regular ctc's, strong py, recrystallized dol, minor chl                                 |       |       |       |               |                   |       |      |   |              |
|       |    |        | -200.9-201.7; altered zone, ser, ep, sil, qtz pod, few spks py                          |       |       |       |               |                   |       |      |   |              |
|       |    |        | -207.2; 3" fault with coarse breccia, strong py euhedra, cc cement, poorly consol, some | 2     |       |       |               |                   |       |      |   |              |
|       |    |        | rotation of fol near zone                                                               |       |       |       |               |                   |       |      |   | ŀ            |

| DATE LOGGED   |  |
|---------------|--|
| COMPANY NAME  |  |
| PROPERTY NAME |  |

HOLE No. 86-9

| EDOM: | T0    | DECOVE. | DECORPORTION                                                                            |       | SA    | MPLE  |               | oz/ton | ASS    | SAYS |  | <u>-</u> |  |
|-------|-------|---------|-----------------------------------------------------------------------------------------|-------|-------|-------|---------------|--------|--------|------|--|----------|--|
| FROM  | то    | RECOVY  | DESCRIPTION                                                                             | FROM  | то    | WIDTH | No.           | Au     | ****** |      |  |          |  |
|       |       |         | -210.0; 6" alt zone with boudinaged qtzvein, possible xcutting, py in pressure          |       |       |       |               |        |        |      |  |          |  |
|       |       |         | shadows, 3" alt either side of vein                                                     |       |       |       |               |        |        |      |  |          |  |
|       |       |         | -216.0-223.0; unit less foliated, more of a siliceous mudstone                          |       |       |       |               |        | :      |      |  |          |  |
|       |       |         | -219.8; qtz vein or pod, gen conformable and very irreg, strong sericite, po, strained- | 218.2 | 219.2 | 1.0   | <i>7</i> 5113 | <0.002 |        |      |  |          |  |
|       |       |         | grey qtz                                                                                |       |       |       |               |        |        |      |  |          |  |
|       |       |         | -238.9-243.0; altered zone, strong sericite, chl, ep, sil                               |       |       |       |               |        |        |      |  |          |  |
|       |       |         | -241.8, 242.3; two, 2" tw gen conformable qtz veins, poss xcutting component, strong    | 241.6 | 242.6 | 1.0   | <i>7</i> 5114 | <0.002 |        |      |  |          |  |
|       |       |         | ser, chl on ctc's, ctc's reg, mod sharp, dissem ронру 5-7%                              |       |       |       |               |        |        |      |  |          |  |
|       |       |         | -248.0; 3" xcutting qtz-ser vein, coarse qtz, ser, muscovite, same conform component,   | 247.6 | 248.6 | 1.0   | 75115         | <0.002 |        |      |  |          |  |
|       |       |         | in part, strong po (blebby), py, tr cpy, few chl rk inclusions, appears to              |       |       |       |               |        |        |      |  |          |  |
|       |       |         | be massive sheared recrystallized qtz-ser/musc (poss fusch) alt zone which              | 250.5 | 252.0 | 1.5   | <i>7</i> 5116 | (0.002 |        |      |  |          |  |
|       |       |         | continues to 255.0 , following 255', alteration continues but much less                 | 252.0 | 253.2 | 1.2   | <i>7</i> 5117 | (0.002 |        |      |  |          |  |
|       |       |         | intense, with zones of elevated sulphide, ep, sericite but lacking sil                  | 253.2 | 254.4 | 1.2   | 75118         | <0.002 |        |      |  |          |  |
| 286.5 | 303.3 |         | Transition Zone (Garmet, Sericite Schist, contact zone)                                 |       |       |       |               |        |        |      |  |          |  |
|       |       |         | -286.5-293.5; contact effects produce elevated ронру to SM, tr cpy, in sericitic        |       |       |       |               |        |        |      |  |          |  |
|       |       |         | sediments                                                                               |       |       |       |               |        |        |      |  |          |  |
|       |       |         | -pervasive carbonatization begins at 293.5, tr gt appears, minor sil , sulphide content |       |       |       |               |        |        |      |  |          |  |

PAGE 3 OF 4

| DATE LOGGED      |      | <br>        |  |
|------------------|------|-------------|--|
| COMPANY NAME _   | <br> | <br>        |  |
| PROPERTY NAME    | <br> |             |  |
| THOI EITH I WANG |      | <del></del> |  |

HOLE No. 86-9

|       |       |        |                                                                                         | Ī     | SA    | MPLE  |       | <del></del> | AS  | SAYS          | <u> </u> |   | <br> |
|-------|-------|--------|-----------------------------------------------------------------------------------------|-------|-------|-------|-------|-------------|-----|---------------|----------|---|------|
| FROM  | то    | RECOVY | DESCRIPTION                                                                             | FROM  | - то  | WIDTH | No.   | 1           |     | <del></del> _ |          |   |      |
|       |       |        | decreases; 100.4'; gt appear in quantity, up to 35%, unit becomes gt schist             |       |       |       |       |             |     |               |          |   |      |
|       |       |        | withstrong chl banding                                                                  |       |       |       |       |             |     |               |          |   |      |
| 303.0 | 375.2 |        | Greenstone (Mafic-Intermed Volc Tuff of Flow; Tudor Fm)                                 |       |       |       |       |             |     |               |          |   |      |
|       |       |        | -f gr, green chl schist with alternating bands of qtz-cc (conformable flow banding)     |       |       |       |       |             |     |               |          |   |      |
|       |       |        | and minor qtz/cc stringers                                                              |       |       |       |       |             |     |               |          |   |      |
|       |       |        | -308.0-309.0; cherty, carbonatized flow banded zone                                     |       |       |       |       |             |     |               |          |   |      |
|       |       |        | -310.0-313.5; possible intercalation of deformed mudstone or sericitic sediment, with   |       |       |       |       |             | - ' |               |          |   |      |
|       |       |        | possible small fault at 313.0, loosely consol py-cc gouge                               |       |       |       |       |             |     |               |          |   |      |
|       |       |        | -324.2; conformable qtz vein, grey-brown cherty, heavy cc+sericite on contacts          |       |       |       |       |             |     |               |          |   |      |
|       |       |        | -337.6-3:8.7; silicified zone, pervasive, xcuttingalmost total replacement, irregular,  |       |       |       |       |             |     |               |          |   |      |
|       |       |        | not a vein                                                                              |       |       |       |       |             |     |               |          |   |      |
|       |       |        | -344.1-345.6; qtz-cc vein, gen conformable with same xcutting features, esp lower ctc,  | 344.0 | 345.7 | 1.7   | 75119 | 0.076       |     |               |          |   |      |
|       |       |        | several 4" GS inclusions, mod po, minor py, tr cpy, grey-brown cherty qtz               |       |       |       |       |             |     |               |          |   |      |
|       | 400.5 |        |                                                                                         |       |       |       |       |             |     |               |          |   |      |
| 375.2 | 400.0 |        | Greenstone (Mafic-Intermed Flow; Tudor Fm)                                              |       |       |       |       |             |     |               |          |   | <br> |
|       | EOH   |        | -more massive GS, poor-mod foliation, almost no carbonatization, few cherty, cc stringe | rs    |       |       |       |             |     |               |          |   |      |
|       |       |        | esp 382.5,389-390,395-396, all non economic                                             |       |       |       |       |             |     |               |          | ' |      |

PAGE 4 OF 4

| COLLAR:                  | HOLE SURVEY |          |                                                  |  |  |  |  |  |  |
|--------------------------|-------------|----------|--------------------------------------------------|--|--|--|--|--|--|
| 2157N                    | METHOD: hf  |          |                                                  |  |  |  |  |  |  |
| 4335E                    | FOOTAGE     | AZIMUTH  | DIP                                              |  |  |  |  |  |  |
| ELEVATION                | 500         |          | -42                                              |  |  |  |  |  |  |
| CORE SIZE                |             |          |                                                  |  |  |  |  |  |  |
| LOGGED BY B. King        |             |          |                                                  |  |  |  |  |  |  |
| DATE LOGGED Jan 30, 1986 |             |          | <u> </u>                                         |  |  |  |  |  |  |
| MAP REFERENCE No.        |             |          |                                                  |  |  |  |  |  |  |
| Dip -45°                 |             |          | <del>                                     </del> |  |  |  |  |  |  |
| А <b>z</b> m 235°        |             |          |                                                  |  |  |  |  |  |  |
|                          |             | <u> </u> | l                                                |  |  |  |  |  |  |

| COMPANY NAME             | Mono Gold Mines Inc                                      |
|--------------------------|----------------------------------------------------------|
|                          | Bannockburn NF. Area                                     |
| <b>DRILLING CONTRACT</b> | OR McKnight                                              |
| ASSAYER_Chemex           |                                                          |
| PURPOSE OF HOLE _        | Beaver pond drilling to test down dip extension to south |
|                          | , , , , , , , , , , , , , , , , , , , ,                  |

| HOLE No      | .86-10  |      |  |
|--------------|---------|------|--|
| CLAIM NAME/N |         |      |  |
| COMMENCED    | Jan 28, | 1986 |  |
| FINISHED     | Jan 30. | 1986 |  |
| FINAL DEPTH  |         |      |  |
| PROJECT No.  |         |      |  |

| FROM | то   | RECOVY | DESCRIPTION                                                                         |      | SA   | MPLE  |               | oz/ton  | ASSAYS |  |  |  |  |  |
|------|------|--------|-------------------------------------------------------------------------------------|------|------|-------|---------------|---------|--------|--|--|--|--|--|
|      |      | ļ      |                                                                                     | FROM | то   | WIDTH | No.           | Au      |        |  |  |  |  |  |
| 0.0  | 26.0 |        | Casing                                                                              |      |      |       |               |         |        |  |  |  |  |  |
|      |      |        |                                                                                     |      |      |       |               |         |        |  |  |  |  |  |
| 26.0 | 68.5 |        | Sericitic Metasediments ( Argillitic, Semi Pelitic Sediments & Mudstones)           |      |      |       |               |         |        |  |  |  |  |  |
|      |      |        | -f gr, grey, strongly schistose, uniformely banded with minor dissem po, py, random |      |      |       |               |         |        |  |  |  |  |  |
|      |      |        | stringers of qtz or cc, generally poor carbonatization                              |      |      |       |               |         |        |  |  |  |  |  |
|      |      |        | -31.0; fol/banding @ 18°                                                            |      |      |       |               |         |        |  |  |  |  |  |
|      |      |        | -33.0-37.0; alt zone, 10-15% py, increased carbonatization, conformable qtz-cc vein | 33.4 | 34.7 | 1.3   | 75120E        | < 0.002 |        |  |  |  |  |  |
|      |      |        | carrying numerous rk inclusions, chl partings both ctc's, qv 4½"tw                  |      |      |       |               |         |        |  |  |  |  |  |
|      |      |        | -45.0; carbonatization above this pt appears to be dol?, below is cc                |      |      |       |               |         |        |  |  |  |  |  |
|      |      |        | -54.6-55.6; sericitic, minor chl + talc, zone within mudstone (sil) zone            |      |      |       |               |         |        |  |  |  |  |  |
|      |      |        | -66.8-68.0; qtz-cc-chl-ser vein, gen conformable with some xcutting component,      | 66.7 | 68.0 | 1.3   | <i>7</i> 5121 | <0.002  |        |  |  |  |  |  |
|      |      |        | composed of qtz pods with numerous rk inclusions, dissem py, po?, lower             |      |      |       |               |         |        |  |  |  |  |  |
|      |      |        | ctc appears to be a fault                                                           |      |      |       |               |         |        |  |  |  |  |  |
|      |      |        | -68.0-68.5; Fault; late fault, chl, loosely consolidated py-cc-chl gouge, @ approx  |      |      |       |               |         |        |  |  |  |  |  |
|      |      |        | 20°, but very irreg, zone is crushed                                                |      |      |       |               |         |        |  |  |  |  |  |

| DATE LOGGED   |
|---------------|
| COMPANY NAME  |
| PROPERTY NAME |

HOLE No. 86-10

|       |          | BECOVA |                                                                                      |      | SA       | MPLE     |       | <u> </u> | ASSAYS     |  |  |  |  |            |  |
|-------|----------|--------|--------------------------------------------------------------------------------------|------|----------|----------|-------|----------|------------|--|--|--|--|------------|--|
| FROM  | то       | RECOVY | DESCRIPTION                                                                          | FROM | то       | WIDTH    | No.   |          |            |  |  |  |  |            |  |
| 68.5  | 145.0    |        | Sericitic Metasediments (Qtz-Sericite, Semi Pelitic Banded Mudstone)                 |      |          |          |       |          |            |  |  |  |  |            |  |
|       |          |        | -very sim rk type to above fault, but more banded, less cremulated, more sil         |      | <u> </u> | <u> </u> |       |          |            |  |  |  |  |            |  |
|       |          |        | different structural style or fabric, marginally more chl                            |      | ļ        | ļ        |       |          |            |  |  |  |  |            |  |
|       |          |        | -77.0-80.0; sil, sericitic alt zone, with qtz pods and stringers, few spks py, minor |      |          |          |       |          | , <u>-</u> |  |  |  |  | ļ <u>-</u> |  |
|       |          |        | cc, non economic                                                                     |      |          |          |       |          |            |  |  |  |  |            |  |
|       |          |        | -85.2-95.3; sericitic, altered zone, increased chl, tr ep, sulphides into blebs,     |      |          |          |       |          |            |  |  |  |  |            |  |
|       |          |        | 87.2; <1" xcutting qtz-cc vein (barren)                                              |      |          |          |       |          |            |  |  |  |  |            |  |
|       | <u> </u> |        | 90.7;<1" xcutting qtz-cc vein @ 85°, diffuse, boudinageed vein, spks py              |      |          |          |       |          | ·          |  |  |  |  |            |  |
|       |          |        | 91.6; 1" xcutting, irreg, mod sharp, qtz-cc vein with blebby po, spks py,            | 91.1 | 92.1     | 1.0      | 75122 | ۷0.002   |            |  |  |  |  |            |  |
|       |          |        | cc, in sil, sericitic alt zone                                                       |      |          |          |       |          |            |  |  |  |  |            |  |
|       |          |        | 93.2; comformable fracture filled with cc, py, galena (seam)                         |      |          |          |       |          |            |  |  |  |  |            |  |
|       |          |        | 94.4; 2" xcutting qtz-cc vein @ 85°, strong py, minor po, lower ctc highly           | 94.0 | 95.0     | 1.0      | 75123 | (0.002   |            |  |  |  |  |            |  |
|       |          |        | fractured, poor recovery                                                             |      |          |          |       |          |            |  |  |  |  |            |  |
|       |          |        | -90-95; banding shifts to near 90°, axial planar cleavage near parallel              |      |          |          |       |          |            |  |  |  |  |            |  |
|       |          |        | -113.0; possible "z" style parasitic folds, 116.0'; banding @ 34°                    |      |          |          |       |          |            |  |  |  |  |            |  |
|       |          |        | -                                                                                    |      |          |          |       |          |            |  |  |  |  |            |  |
| 145.0 | 238.2    |        | Sericitic Metasediments (Siliceous Mudstone with Sericitic Banding)                  |      |          |          |       |          |            |  |  |  |  |            |  |
|       |          |        | -158.0°; banding @ 42°                                                               |      |          |          |       |          |            |  |  |  |  | <br>       |  |

| DATE LOGGED   |
|---------------|
| COMPANY NAME  |
| PROPERTY NAME |

HOLE No. 86-10

| FROM | то | RECOVY | DESCRIPTION                                                                            |       | SA    | MPLE  | <del></del> | oz/ton | ASSA | YS | ton ASSAYS |  |  |  |  |  |  |
|------|----|--------|----------------------------------------------------------------------------------------|-------|-------|-------|-------------|--------|------|----|------------|--|--|--|--|--|--|
| PHOM | 10 | HECOVY | DESCRIPTION                                                                            | FROM  | то    | WIDTH | No.         | Au     |      |    |            |  |  |  |  |  |  |
|      |    |        | -194.7; 2" conformable qtz-cc/dol vein, with minor py, non economic                    |       |       |       |             |        |      |    |            |  |  |  |  |  |  |
|      |    |        | -199.0-200.0; 3" + 1½" xcutting qtz-dol-sericite veins in highly siliceous zone, @ 75  | 199.0 | 200.0 | 1.0   | 75124       | <0.002 |      |    |            |  |  |  |  |  |  |
|      |    |        | -80°, diffuse and irregular, minor spks po,py, tr cpy                                  |       |       |       |             |        |      |    |            |  |  |  |  |  |  |
|      |    |        | -209.0-210.5; highly sil zone with minor brecciation or faulting, 1"? displacement,    |       |       |       |             |        |      | :  |            |  |  |  |  |  |  |
|      |    |        | po,py on fract surfaces                                                                |       |       |       |             |        |      |    |            |  |  |  |  |  |  |
|      |    |        | -217.5; 6" generally conformable qtz-dol vein, spks and stringers po, minor py, rk     | 216.9 | 217.9 | 1.0   | 75125       | <0.002 |      |    |            |  |  |  |  |  |  |
|      |    |        | inclusions, granular qtz                                                               |       |       |       |             |        |      |    |            |  |  |  |  |  |  |
|      |    |        | -225.0+; rk is less chloritic, becomes more siliceous, pervasive, rk is almost totally |       |       |       |             |        |      |    |            |  |  |  |  |  |  |
|      |    |        | consumed, becomes a QSS with chl seams and blebs of po, minor py, tr cpy,              |       |       |       | _           |        |      |    |            |  |  |  |  |  |  |
|      |    |        | veining appears with coarse po                                                         |       |       |       |             |        |      |    |            |  |  |  |  |  |  |
|      |    |        | -229.6-231.0; strong qtz segregations with 15 % sulphides (ронру)                      | 229.6 | 231.0 | 1.4   | 75126       | د0.002 |      |    |            |  |  |  |  |  |  |
|      |    |        | 231.0-232.1; sim above, includes one 3½" xcutting qv with strong po                    | 231.0 | 232.1 | 1.1   | 75127       | (0.002 |      |    |            |  |  |  |  |  |  |
|      |    |        | 232.1-233.6; sim above, with 4, 1-5" xcutting qtz veins, partially                     | 232.1 | 233.6 | 1.5   | 75128       | K0.002 |      |    |            |  |  |  |  |  |  |
|      |    |        | conformable at 65-70°                                                                  | 233.6 | 234.8 | 1.2   | 75129       | K0.002 |      |    |            |  |  |  |  |  |  |
|      |    |        | 233.6-234.8; strongly sil, but with 5" conformable qv with py, po, galena              |       |       |       |             |        |      |    |            |  |  |  |  |  |  |
|      |    |        | and rk inclusions                                                                      |       |       |       |             |        |      |    |            |  |  |  |  |  |  |
|      |    |        | -235.6; 2" xcutting qtz vein @ 65°, few spks py, po                                    | 235.5 | 236.9 | 1.4   | 75130       | (0.002 |      |    |            |  |  |  |  |  |  |
|      |    |        | -236.4; 4" irreg xcutting vein, spks po py, and galena                                 | 236.9 | 238.2 | 1.3   | 75131       | KO.002 |      |    |            |  |  |  |  |  |  |

PAGE 3 OF 7

| DATE LOGGED   |  |
|---------------|--|
| COMPANY NAME  |  |
| PROPERTY NAME |  |

HOLE No86-10

| 50014 | то    | RECOVY |                                                                                         |       | SA    | MPLE  |       | oz/ton        | ASSAYS |  |  |   |  |  |
|-------|-------|--------|-----------------------------------------------------------------------------------------|-------|-------|-------|-------|---------------|--------|--|--|---|--|--|
| FROM  | 10    | RECOVY | DESCRIPTION                                                                             | FROM  | то    | WIDTH | No.   | Au            |        |  |  |   |  |  |
|       |       |        | -237.2;1½" xcutting , irreg qtz vein, with mod po, py in seams                          |       |       |       |       |               |        |  |  |   |  |  |
|       |       |        | -237.8; 3½" xcutting and conformable vein, spks po, py , tr galena                      |       |       |       |       |               |        |  |  |   |  |  |
| 238.2 | 398.6 |        | Sericitic Metasediments (Quartz Sericite Schist + Mudstone Intercalations)              |       |       |       |       |               |        |  |  |   |  |  |
|       |       |        | -similar to above, but less quartz veining, pods and generally less siliceou, uniformly | ,     |       |       |       |               |        |  |  |   |  |  |
|       |       |        | banded, schistose with minor chl bands, generally dark grey, in part very               |       |       |       |       |               |        |  |  |   |  |  |
|       |       |        | similar to top of hole                                                                  |       |       |       |       |               |        |  |  |   |  |  |
|       |       |        | -253.7; irregular qtz pod or vein, 2½", prob conformable, dissem po, spks py, tr cpy    | 253.2 | 254.2 | 1.0   | 75132 | 0.008         |        |  |  |   |  |  |
|       |       |        | moderate cc, within silicified zone                                                     |       |       |       |       |               |        |  |  |   |  |  |
|       |       |        | -259.0-260.0; sil zone with qtz pods or veins, irreg, sim above, 1,1",2,2" veins, spks  | 259.0 | 260.1 | 1.1   | 75133 | <b>40.002</b> |        |  |  |   |  |  |
|       |       |        | py, po, minor cc;260.9; sim, 3"                                                         | 260.1 | 261.3 | 1.2   | 75134 | K0.002        |        |  |  | : |  |  |
|       |       |        | -271.0-271.4; conformable, white qtz vein, cherty, spks po, upper ctc conformable,      |       |       |       |       |               |        |  |  |   |  |  |
|       |       |        | lower ctc is xcutting 0 85°                                                             | 270.8 | 271.8 | 1.0   | 75135 | 0.008         |        |  |  |   |  |  |
|       |       |        | -275.0; banding @ 42°                                                                   |       |       |       |       |               |        |  |  |   |  |  |
|       | _     |        | -277.7-279.4; chl alteration zone, perhaps a chemical offshoot of fault below?          |       |       |       |       |               |        |  |  |   |  |  |
|       |       |        | -281.3; Fault; recent, very loosely consolidated chl gouge, cc cement. coarse py,       |       |       |       |       |               |        |  |  |   |  |  |
|       |       |        | looks conformable; chl alteration extends below to 283'                                 |       |       |       |       |               |        |  |  |   |  |  |
|       |       |        | -285.0; Fault; sim above, 4" zone @ 20°, irregular, no alteration associated            |       |       |       |       |               |        |  |  |   |  |  |

PAGE 4 OF 7

| DATE LOGGED   |  |
|---------------|--|
| COMPANY NAME  |  |
| PROPERTY NAME |  |

HOLE No. 86-10

| - FROM  | то      | DECOVA | DECONITION                                                                             |       | SA       | MPLE  |       | oz/ton | ASSAYS |   |  |   |
|---------|---------|--------|----------------------------------------------------------------------------------------|-------|----------|-------|-------|--------|--------|---|--|---|
| FROM    | то      | RECOVY | DESCRIPTION                                                                            | FROM  | то       | WIDTH | No.   | Au     |        |   |  |   |
|         |         |        | -288.7; 4" irregular, possibly xcutting massive qtz-cc vein, minor spks py, minor po   | 288.2 | 289.2    | 1.0   | 75136 | <0.002 |        |   |  | ĺ |
|         |         |        | more pod-like, with sharp contacts                                                     |       | <u> </u> |       |       |        |        |   |  |   |
|         |         |        | 296.0; 6" chloritic alteration zone ; 307-309' sim                                     |       |          |       |       |        |        |   |  |   |
|         | _       |        | -321.5-323.0; minor silicified zone with fracturing, minor carbonatization, spks py    |       |          |       |       |        |        |   |  |   |
|         |         |        | -319.0; banding/fol @ 50°                                                              |       |          |       |       |        |        |   |  |   |
|         | _       |        | -333.9-334.8; generally conformable qtz-cc vein, heavy po, minor py, tr cpy, chl and   | 333.9 | 335.0    | 1.1   | 75137 | <0.002 |        |   |  |   |
|         |         |        | talcose inclusions, lower ctc very irreg, may be xcutting?, upper ctc is               |       |          |       |       |        |        |   |  |   |
|         |         |        | distinct                                                                               |       |          |       |       |        |        |   |  |   |
|         |         |        | -339.2; xcutting/conformable qtz stringer, minor offsets along foliation plane, non    |       |          |       |       |        |        |   |  |   |
|         |         |        | economic                                                                               |       |          |       |       |        |        |   |  |   |
| Transit | ion Zon | ?      | -344.0-360.0; increased dissem py starts, up to 15%, minor po                          |       |          |       |       |        |        |   |  |   |
|         |         |        | 346.6-347.7; gen conformable, minor xcutting character qtz-cc vein, strong py on upper | 346.4 | 347.8    | 1.4   | 75138 | 0.004  |        |   |  |   |
|         |         |        | contact, galena, dissem galena throughout, chloritic inclusions, white-                |       |          |       |       |        |        |   |  |   |
|         |         |        | grey brown coloured qtz, sericitic                                                     |       |          |       |       |        |        |   |  |   |
|         |         |        | -365.0; complexely folded sericitic schist, sericite content increasing with depth     |       |          |       |       |        |        |   |  |   |
|         |         |        | -372-373; sil zone, qtz pods, increased ser, dissem py, tr po                          |       |          |       |       |        |        |   |  |   |
|         |         |        | -396.5-398.6; Quartz Sericite Schist; typical transition zone rk, variably altered     |       |          |       |       |        |        |   |  |   |
|         |         |        | silicification, minor carbonatization, minor chl                                       |       |          |       |       |        |        | 1 |  |   |

PAGE 5 OF 7

| DATE LOGGED   |
|---------------|
| COMPANY NAME  |
| PROPERTY NAME |
|               |

HOLE No.\_\_\_\_

|              | ,     | <del></del> |                                                                                       |       |             |       |               |        |                                       |      |   |      |         |
|--------------|-------|-------------|---------------------------------------------------------------------------------------|-------|-------------|-------|---------------|--------|---------------------------------------|------|---|------|---------|
| FROM         | то    | RECOVY      | DESCRIPTION                                                                           |       | <del></del> | MPLE  | <del>,</del>  | oz/tor | AS                                    | SAYS | , |      |         |
|              |       |             |                                                                                       | FROM  | то          | WIDTH | No.           | Au     |                                       | ļ    |   | <br> | <b></b> |
| 398.6        | 427_3 |             | Greenstone (Intermed Tuff/Altered Tuff-Sediment?; Tudor Fm)                           |       |             |       |               |        |                                       |      |   |      |         |
| <del> </del> |       |             | -conformable cherty contact zone upper 1.21, spks py, po, cc                          |       |             |       |               |        |                                       |      |   |      |         |
|              |       |             | -unit is green, f gr, well fol schist, chlorite/biotite bearing with minor sericite   |       |             |       |               |        |                                       |      |   |      |         |
| :            |       |             | strongly carbonatized (pervasive & stringers), strongly deformed, carbon't            | n     |             |       |               |        |                                       |      |   |      |         |
|              |       |             | decreases with increasing depth from the volcano-sed ctc.                             |       |             |       |               |        |                                       |      |   |      |         |
| 427.3        | 440.2 |             | Greenstone (Intermed Volc Tuff or Tuff Sed?; Tudor Fm)                                |       |             |       | •             |        |                                       |      |   |      |         |
|              |       |             | -1' of cherty mat'l on ctc, minor spks py, po, unit very sim to above, still strongly |       |             |       |               |        |                                       |      |   |      |         |
|              |       |             | carbonatized                                                                          |       |             |       |               |        |                                       |      |   |      |         |
|              |       |             | -435.1; 1" crosscutting qtz-cc vein 0 80°, diffuse but fairly reg ctc'c, chl rim on   | 434.6 | 435.6       | 1.0   | <i>7</i> 5139 | 0.012  |                                       |      |   |      |         |
|              |       |             | lower ctc, few spks py, tourmaline?                                                   |       |             |       |               |        |                                       |      |   |      |         |
|              |       |             | -455: banding/compositional foliation @ 46°                                           |       |             |       |               |        |                                       |      |   |      |         |
| 440.2        | 461.6 |             | Greenstone (Intermed Tuff or Flow?; Tudor Fm)                                         |       |             |       |               |        |                                       |      |   |      |         |
| 440.2        | 401.0 |             | -upper 4" is contact chery zone, barren granular                                      |       |             |       |               |        | · · · · · · · · · · · · · · · · · · · |      |   |      |         |
|              |       |             | -strongly foliated, sim to unit above, strongly carbonatized, more sheared, fewer qtz |       |             |       |               |        |                                       |      |   |      |         |
|              |       |             | stringers                                                                             |       |             |       |               |        |                                       |      |   |      |         |
|              |       |             |                                                                                       |       |             |       |               |        |                                       |      |   |      |         |
|              |       |             |                                                                                       |       |             |       |               |        |                                       |      |   | !    |         |

PAGE \_\_\_\_\_\_ 6 \_\_\_ 0F \_\_\_ 7

| ROPER | TY NAMI    | E      |                                                                                        |          |       |       |             |          | HOLE   | No. <u>86-1</u> 0 | <u> </u> |   | <br>_ |
|-------|------------|--------|----------------------------------------------------------------------------------------|----------|-------|-------|-------------|----------|--------|-------------------|----------|---|-------|
| 'DOM  | <b>T</b> 0 | DECOVA |                                                                                        |          | SA    | MPLE  | <del></del> | oz/ton   | ASS    | SAYS              |          |   |       |
| ROM   | то         | RECOVY | DESCRIPTION                                                                            | FROM     | то    | WIDTH | No.         | Au       |        |                   |          |   | I     |
| 61.6  | 483.6      | -      | Greenstone (Intermed Volc Tuff or Tuff-Sed; Tudor Fm)                                  |          |       |       |             |          |        |                   |          | ļ |       |
|       |            |        | - similar to above tuffaceous units, but more chl, less bio, strong pervasive alterat, |          | ļ     |       |             | <u> </u> |        |                   |          |   | 1     |
|       |            |        | perhaps just different degrees of alteration, unit is more uniform, few                | <u> </u> | ļ     |       | <b></b>     |          |        |                   |          |   |       |
|       |            |        | qtz-cc stringers                                                                       |          |       |       |             |          |        |                   |          |   |       |
|       |            |        | -473.0; 1½" xcutting qtz-cc vein @ 75-80°, few spks py, minor chl, appears barren      | 472.5    | 473.5 | 1.0   | 75140       | <0.002   | :<br>: |                   |          |   |       |
|       |            |        | -476.4; 5" irreg qtz vein, barren, generally a qtz pod, may be slightly xcutting       |          |       |       |             |          |        |                   |          |   |       |
|       |            |        | probably related to boudinage                                                          | 475.8    | 476.8 | 1.0   | 75141       | 0.002    |        |                   |          |   |       |
|       |            |        |                                                                                        |          |       |       |             |          |        |                   |          |   |       |
|       | 500.0      |        | Greenstone (Mafic-Int Volc Flow; Tudor Fm)                                             |          |       |       |             |          |        |                   |          |   |       |
|       | EOH        |        | -massive, green , chloritic rk, mod foliation, much less carbonatization, some small   |          |       |       |             |          |        |                   |          |   |       |
|       |            |        | qtz-cc stringers, no veining or signif mineralization                                  |          |       |       |             |          |        |                   |          |   |       |
|       |            |        |                                                                                        |          |       |       |             |          |        |                   |          |   |       |
|       |            |        |                                                                                        |          |       |       |             |          |        |                   |          |   |       |
|       |            |        |                                                                                        |          |       |       |             |          |        |                   |          |   |       |
|       |            |        |                                                                                        |          |       |       |             |          |        |                   |          |   |       |
|       |            |        |                                                                                        |          |       |       |             |          |        |                   |          |   |       |
|       |            |        |                                                                                        |          |       |       |             |          |        |                   |          |   | 1     |

PAGE . 7 OF 7

| COLLAR:       | ,               | HOL      | E SURVEY |          |
|---------------|-----------------|----------|----------|----------|
|               | 2074N           | METHOD:  | hf       |          |
|               | 4224E           | FOOTAGE  | AZIMUTH  | DIP      |
| ELEVATION     |                 | 404      |          | 43       |
| CORE SIZE     | BQ              |          |          |          |
| LOGGED BY     |                 |          |          |          |
| DATE LOGGED   | Feb2-3, 1986    |          |          |          |
| MAP REFERENCE | No              | <u> </u> |          |          |
|               |                 |          |          | <b> </b> |
|               | <u>Dip -45°</u> |          |          | 1        |
|               | Azm 235°        |          |          |          |
|               |                 |          |          |          |

| COMPANY NAME    | Mono Gold Mines Inc.   |                                  |  |
|-----------------|------------------------|----------------------------------|--|
| PROPERTY NAME   | Bannockburn NE Area    |                                  |  |
|                 | OR McKnight            |                                  |  |
| ASSAYER Chemex  |                        |                                  |  |
| PURPOSE OF HOLE | "Beaver Pond" drilling | to test south extension at depth |  |
|                 |                        |                                  |  |
|                 |                        |                                  |  |

| HOLE No       | 86-11    |  |
|---------------|----------|--|
| CLAIM NAME/No |          |  |
| COMMENCED     | Feb 1/86 |  |
| FINISHED      | Feb 3/86 |  |
| FINAL DEPTH _ |          |  |
|               |          |  |

| FROM     | то   | RECOVY   | DESCRIPTION                                                                        |          | SA       | MPLE  |       | oz/ton |          | ASSAYS |   |  |
|----------|------|----------|------------------------------------------------------------------------------------|----------|----------|-------|-------|--------|----------|--------|---|--|
| <u> </u> |      | <u> </u> |                                                                                    | FROM     | то       | WIDTH | No.   | Au     |          |        |   |  |
| 0.0      | 16.0 |          | Casing                                                                             |          |          |       |       |        |          |        |   |  |
|          |      |          |                                                                                    |          |          |       |       |        |          |        |   |  |
| 16.0     | 54.7 |          | Sericitic Metasediments (Pelitic-Semi Pelitic Sediments)                           |          |          |       |       |        |          |        |   |  |
|          |      |          | -f gr. strongly foliated/banded. schistose. grey-grey-brown. 5% dissem py. few py  |          |          |       |       |        | <br>     |        | - |  |
|          |      |          | po blebs, minor or no carbonatization, minor to mod silicification                 |          |          |       |       |        |          |        |   |  |
|          |      |          | -25.0; foliation @ 41 (compositional fol)                                          |          |          |       |       |        |          |        |   |  |
|          |      |          | -symm drag folding 033.5                                                           | <u> </u> | <u> </u> | ļ     |       |        |          |        |   |  |
|          |      |          | -45.8-48.0, 50.0-52.0; sericitic/chloritic alt zone                                |          |          |       |       |        |          |        |   |  |
| 54.7     | 82.5 |          | Sericitic Metasediments (Semi-Pelitic Mudstone)                                    |          |          |       |       |        |          |        |   |  |
|          |      |          | -sim above but is dark grey, finer gr, more massive appearance, cherty with blebby | <u> </u> |          |       |       |        |          |        |   |  |
|          |      |          | py/po                                                                              |          |          | ļ     |       |        |          |        |   |  |
|          |      |          | 57.2; 2" xcutting qtz cc wein 0 75-80°, sharp contacts, but irregular, massive     | 56.7     | 57.7     | 1.0   | 75142 | 0.002  | <br>     |        |   |  |
|          |      |          | white barren qtz                                                                   |          |          | ļ     |       |        | <br>     |        |   |  |
|          |      |          |                                                                                    | <u> </u> |          |       |       |        | <u> </u> |        |   |  |

| PROPER                              | RTY NAM  | E      |                                                                                        |          |          |       |         |          | HOLE N | <u> 86-11</u> |   |             |   |   |
|-------------------------------------|----------|--------|----------------------------------------------------------------------------------------|----------|----------|-------|---------|----------|--------|---------------|---|-------------|---|---|
| FROM                                | то       | DECOVA | DECODURTION                                                                            |          | SA       | MPLE  |         |          | ASS    | AYS           |   | <del></del> |   | - |
| PROM                                | 10       | RECOVY | DESCRIPTION                                                                            | FROM     | то       | WIDTH | No.     |          |        |               |   |             |   |   |
| 82.5                                | 315.6    |        | Sericitic Metasediments (Banded Semi-Pelitic/Mudstone)                                 |          |          |       |         |          |        |               |   |             |   |   |
|                                     |          |        | -unit is transitional to above, gradually becomes banded, fairly regular schist        |          |          |       |         |          |        |               |   |             |   |   |
| <u></u>                             |          |        | combining attributes of both types above.                                              | ļ        |          |       |         |          |        | <u></u>       |   |             |   |   |
|                                     |          |        | -86.0; three less than 1" conformable qtz-dol veins, few blebs py                      |          |          |       |         | <u> </u> |        |               |   |             |   |   |
|                                     |          |        | -95.0-96.5; strongly silicified zone with strong sericite alteration, no qtz vein      | <u> </u> | ļ        |       |         |          |        |               |   |             |   |   |
|                                     | ļ.<br>   |        | development, few spks py                                                               | <u> </u> |          |       |         |          |        |               |   |             |   |   |
|                                     |          |        | -102.8-106.0; sil & sericitic alt zone with xcutting quartz-cc or dol vein, py veins   | 103.1    | 104.1    | 1.0   | 75143   | <0.002   |        |               |   |             |   |   |
| ··································· |          |        | or seams, 103.7; <1" qtz-py vein                                                       | 104.1    | 105.1    | 1.0   | 75144   | k0.002   |        |               |   |             |   | _ |
|                                     |          |        | -104.4-104.8; qtz vein with spks pv, grey min + chlorite                               | 105.1    | 106.1    | 1.0   | 75145   | k0.002   |        |               |   |             |   |   |
|                                     |          |        | -105.6; very irreg, diffuse, generally conformable gtz pod with minor py               |          |          |       |         |          |        |               |   |             |   |   |
|                                     | ļ        |        | 115.0; very irreg, ptygmatic qtz stringer with py, non economic                        | ļ        | ļ        |       |         |          |        |               |   |             |   | L |
|                                     |          |        | -119.5-121.0; sericite/chlorite alt zone with heavy silicification and qtz veining.    | 119.4    | 120.9    | 1.0   | 75146   | k0.002   |        |               |   |             |   |   |
| <u> </u>                            | <u> </u> |        | includes conformable and xcutting veins, but irreg.                                    |          |          |       | <b></b> |          |        |               |   |             |   |   |
|                                     |          |        | -127.5-128.3; essentially a highly sericitized, silicified zone with gtz pods or veins | 127.4    | 128.4    | 1.0   | 75147   | k0.002   |        |               |   |             |   | _ |
|                                     |          |        | generally conformable, but may be xcutting in part, strongly dissem and blet           | 1        |          |       |         | <b></b>  |        |               |   |             |   |   |
|                                     |          |        | po (7-10%)                                                                             |          |          |       |         |          |        |               |   |             |   |   |
|                                     |          |        | -134.6-135.2; minor chloritic alt zone; 139.6-143.6; dissem py increases up to 10%     |          | <u> </u> |       |         |          |        |               |   |             |   |   |
|                                     |          |        | _151 0_152 0: loose broken fractimes come probable fault 0 15_20°                      | İ        | 1        |       | 1       |          |        |               | 1 | 1           | 1 |   |

PAGE \_\_\_\_\_ OF \_\_\_\_ 5

| DATE LOGGED   |                |
|---------------|----------------|
| COMPANY NAME  | <del></del>    |
| PROPERTY NAME | HOLE No. 86-11 |

|      |    |        |                                                                                        |       | SA    | MPLE  |       | oz/ton | ASSAYS |   | <br> |
|------|----|--------|----------------------------------------------------------------------------------------|-------|-------|-------|-------|--------|--------|---|------|
| FROM | то | RECOVY | DESCRIPTION                                                                            | FROM  | то    | WIDTH | No.   | Au Au  |        | T |      |
|      |    |        | -149.5-151.6; sheared, qtzose, silicified zone, qtz ribbons in sheared                 | 149.5 | 150.5 | 1.0   | 75148 | 40.002 |        |   |      |
|      |    |        | zone, breccia, chl & rk inclusions, with py rimming some frags                         |       |       |       |       |        |        |   |      |
|      |    |        | 159.0; generally symm parasitic folding with axial planar cleavage sub parallel to     |       |       |       |       |        |        |   |      |
|      |    |        | core; 165.0'; fault, loosely consolidated fault gouge, chl,cc, py (minor)              |       |       |       |       |        |        |   |      |
|      |    |        | -from 174.0, zones of increasing crenulation with some crenulation cleavage developing |       |       |       |       |        |        |   |      |
|      | -  |        | -223.8; 2" conformable qtz vein, associated with 1' chl, ser, sil alteration, qtz is   | 223.3 | 224.3 | 1.0   | 75149 | k0.002 |        |   |      |
|      |    |        | massive, grey with few spks py, may have small xcutting component                      |       |       |       |       |        |        |   |      |
|      |    |        | -224.5-225.3; slighly elevated py content (up to 2-3%)                                 |       |       |       |       |        |        |   |      |
|      |    |        | -254.6-256.7; sil zone with qtz-dol pods or veins, generally conformable but may have  | 254.6 | 256.7 | 2.1   | 75150 | 40.002 |        |   |      |
|      |    |        | xcutting component, spks, blebs of py, po, tr cpy tr galena                            |       |       |       |       |        |        |   |      |
|      |    |        | -258.6-260.7; sim to 254.6-256.7, but stronger galena, more cherty veining             | 258.6 | 260.7 | 2.1   | 75150 | K0.002 |        |   |      |
|      |    |        | -261.0; foliation/compositional banding @ 58°                                          |       |       |       |       |        |        |   |      |
|      |    |        | -291.4; small fault zone, most gouge mat'l washed away by drilling fluids, py film on  |       |       |       |       |        |        |   |      |
|      |    |        | fract surfaces, @25-30° with the foliation                                             |       |       |       |       |        |        |   |      |
|      |    |        | -307.8-311.6; strongly dissem po, 10-15%                                               |       |       |       |       |        |        |   |      |
|      |    |        | -311.6-315.6; chl, sericite alt zone with blebby po, lower 1' is heavily carbonatized  |       |       |       |       |        |        |   | _    |
|      |    |        |                                                                                        |       |       |       |       |        |        |   |      |
|      |    |        |                                                                                        |       |       |       |       |        |        |   |      |

| DATE LOGGED   |  |
|---------------|--|
| COMPANY NAME  |  |
| PROPERTY NAME |  |

HOLE No. 86-11

| EDO!  |       | DE0015: |                                                                                      | 1     | SA    | MPLE  |       | oz/to  | on ASSAYS |  |  |  |  |           |  |  |
|-------|-------|---------|--------------------------------------------------------------------------------------|-------|-------|-------|-------|--------|-----------|--|--|--|--|-----------|--|--|
| FROM  | то    | RECOVY  | DESCRIPTION                                                                          | FROM  | то    | WIDTH | No.   | Au     |           |  |  |  |  |           |  |  |
| 315.6 | 343.5 |         | Transition Zone (Sericitic and Garnetiferous Argillitic Metasediments)               |       |       |       |       |        |           |  |  |  |  |           |  |  |
|       |       |         | - sericitic schist, sim to above, with heavy garnet (40-80%), minor carbonatization, |       |       |       |       |        |           |  |  |  |  | <u> </u>  |  |  |
|       |       |         | and silicification, rk is strongly contorted, banded with few qtz-cc                 |       |       |       |       |        |           |  |  |  |  |           |  |  |
|       |       |         | stringers, gt content variable (metamorphosed xcutting alterations?)                 |       |       |       |       |        |           |  |  |  |  |           |  |  |
|       |       |         | -326.5-328.3; sil zone, with 6" conformable qtz-cc vein + 1½ xcutting vein, zone     | 326.7 | 328.3 | 1.6   | 75152 | 0.012  |           |  |  |  |  |           |  |  |
|       |       |         | has gt's, py, bio, po                                                                |       |       |       |       |        |           |  |  |  |  | ļ         |  |  |
|       |       |         | -332.7; 1" conformable grey chert "vein"                                             |       |       |       |       |        |           |  |  |  |  |           |  |  |
|       |       |         | -336.0; 4" conformable carbonatized chl, silic zone                                  |       |       |       |       |        |           |  |  |  |  |           |  |  |
|       |       |         | -336.9-337.5; sim 336.0, cherty alt zone with very strong carbonatization            | 337.4 | 338.4 | 1.0   | 75153 | 0.008  |           |  |  |  |  |           |  |  |
|       |       |         | -337.8; 3½" conformable/xcutting grey qtz-cc vein, strong dissem po within           | 338.4 | 339.4 | 1.0   | 75154 | 0.016  |           |  |  |  |  | <u></u>   |  |  |
|       |       |         | and on contacts                                                                      |       |       |       |       |        |           |  |  |  |  |           |  |  |
|       |       |         | -339.0; 3" conformable white, bull qtz vein, spks py, blebs po, tr cpy               |       | -     |       |       |        |           |  |  |  |  | <b> -</b> |  |  |
|       |       |         | -341.1 341.8; qtz-cc vein, fractures with rk inclusions, spks py, po,                | 340.9 | 341.9 | 1.0   | 75155 | 0.004  |           |  |  |  |  |           |  |  |
| 343.5 | 394.5 |         | Greenstone (Altered, Intermendiate Tuff?; Tudor Fm)                                  |       |       |       |       |        |           |  |  |  |  |           |  |  |
|       |       |         | - strongly foliated, chl-bio, strong carbonatization (pervasive), contact marked by  |       | ,     |       |       |        |           |  |  |  |  |           |  |  |
|       |       |         | loss of gt, increased chl, unit has numerous conformable gtz-cc stringers            |       |       |       |       |        |           |  |  |  |  |           |  |  |
|       |       |         | -347.2-348.2; 3 conformable 1" qtz-cc veins, minor po, py, tr cpy                    | 347.2 | 348.2 | 1.0   | 75156 | k0.002 |           |  |  |  |  |           |  |  |

PAGE 4 OF 5

| OPEF                         | TY NAM | E      |                                                                                      |       |       |       |          |       | HOLE        | HOLE No. 86-11 |  |  |  |  |  |
|------------------------------|--------|--------|--------------------------------------------------------------------------------------|-------|-------|-------|----------|-------|-------------|----------------|--|--|--|--|--|
| ROM                          | то     | RECOVY | DESCRIPTION                                                                          |       |       | MPLE  | <u> </u> |       | ASSAYS      |                |  |  |  |  |  |
|                              |        |        | -367.0; unit becomes more massive with depth                                         | FROM  | то    | WIDTH | No.      | Au    |             |                |  |  |  |  |  |
|                              |        |        | -386.0-386.9; white, xcutting bull qtz vein, very clean, massive, @ approx 80°, with | 385.9 | 387.0 | 1.1   | 75157    | 0.002 |             |                |  |  |  |  |  |
|                              |        |        | chloritic partings on ctc's                                                          |       |       |       | 73.37    | 0.002 |             |                |  |  |  |  |  |
| 94.5 404.0 Greenstone (mafic |        |        | Greenstone (mafic-Int Volc Flow; Tudor Fm)                                           |       |       |       |          |       |             |                |  |  |  |  |  |
|                              | EOH    |        | -unit becomes much less carbonatized, less foliated, more massive, darker and        |       |       |       |          |       |             |                |  |  |  |  |  |
|                              |        |        | generally finer gr.                                                                  |       |       |       |          |       |             |                |  |  |  |  |  |
|                              |        |        | -crossed by minor cc stringers, minor bio, py                                        |       |       |       |          |       |             |                |  |  |  |  |  |
|                              |        |        | -402.0; conformable qtz stringer, non economic                                       |       |       |       |          |       |             |                |  |  |  |  |  |
|                              |        |        |                                                                                      |       |       |       |          |       |             |                |  |  |  |  |  |
|                              |        |        |                                                                                      |       |       |       |          |       |             |                |  |  |  |  |  |
|                              |        |        |                                                                                      |       |       |       |          |       |             |                |  |  |  |  |  |
|                              |        |        |                                                                                      |       |       |       |          |       |             |                |  |  |  |  |  |
|                              |        |        |                                                                                      |       |       |       |          |       |             |                |  |  |  |  |  |
|                              |        |        |                                                                                      |       |       |       |          |       |             |                |  |  |  |  |  |
|                              |        |        |                                                                                      |       |       |       |          |       |             |                |  |  |  |  |  |
|                              |        |        |                                                                                      |       |       |       |          |       |             |                |  |  |  |  |  |
|                              |        |        |                                                                                      |       |       |       |          |       | <del></del> |                |  |  |  |  |  |

# COLLAR: 2600N 4046E ELEVATION CORE SIZE BQ LOGGED BY B. King DATE LOGARD 16, 1986 MAP REFERENCE No.

| COMPANY NAME      | Mono Gold Mines Inc.         | _ |
|-------------------|------------------------------|---|
| PROPERTY NAME     | Bannockburn NE Area          | _ |
| DRILLING CONTRACT | TOR McKnight                 | _ |
| ASSAYERC          | hemex                        |   |
| PURPOSE OF HOLE   | to deepen hole 85-27 to 500+ | _ |
|                   |                              | _ |

| HOLE No. 85 -27F      |  |
|-----------------------|--|
| CLAIM NAME/No         |  |
| FINISHED Jan 15. 1986 |  |
| FINAL DEPTH 510'      |  |
| PROJECT No.           |  |

| FROM  | то             | RECOVY | DESCRIPTION                                                           |       | SA       | MPLE  |       | oz.   | /ton |          | ASSAYS |  |   |
|-------|----------------|--------|-----------------------------------------------------------------------|-------|----------|-------|-------|-------|------|----------|--------|--|---|
|       | 300.0<br>349.8 |        |                                                                       | FROM  | то       | WIDTH | No.   | Au    |      |          | Ţ      |  |   |
| 0     | 300.0          |        | -previously drilled (1985)                                            |       |          |       |       |       |      |          |        |  |   |
| 300_0 | 349.8          |        | Greenstone (Mafic-Intermed. Volcanic Flow: Tudor Fm.)                 |       |          |       |       |       |      |          |        |  | - |
|       |                |        | _modfoliated. f. gr. chloritic                                        |       |          |       |       |       |      |          |        |  |   |
|       |                |        | -stringers of cc, qtz throughout, generally conformable               |       | <u> </u> |       |       |       |      | <u> </u> |        |  |   |
|       |                |        | -few cherty, minor brecciated zones                                   |       |          |       |       |       |      |          |        |  |   |
|       |                |        | -3-5% py, tr. po                                                      |       |          |       |       |       |      |          |        |  |   |
|       |                |        | -316.5-317.4; qtz-cc vein, conformable, 4"tw, spks py-po,sulphides or | 316.5 | 317.5    | 1.0   | 75027 | 0.002 |      |          |        |  |   |
|       |                |        | both contacts; associated with some silicification in                 |       |          |       |       |       |      |          |        |  |   |
|       |                |        | wall rocks; looks like flow contact                                   |       |          |       |       |       |      |          |        |  |   |
|       |                |        | -319.5-338.0; alternating zones of unaltered and silicified volc.     |       |          |       |       |       |      |          |        |  |   |
|       |                |        | generally sharp ctc's, but some diffuse, spks po, minor dissem.       |       |          |       |       |       |      |          |        |  |   |
|       |                |        | -338.0-343.0; increased bio, with coarsening of texture               |       |          |       |       |       |      |          |        |  |   |
|       |                |        | -345.8; 2½" conform. qtz-cc vein, spks py on ctc's                    | 345.4 | 346.4    | 1.0   | 75028 | 0.004 |      |          |        |  |   |
|       |                |        | -346.0; fol. @ 52°                                                    |       |          |       |       |       |      |          |        |  |   |
|       |                |        |                                                                       |       |          |       |       |       |      |          |        |  | _ |

|          |       |          |                                                                                       |          |       |       |                                       |        | HOLE     | No   | <u>85-27</u> | Ε           | <br>     |
|----------|-------|----------|---------------------------------------------------------------------------------------|----------|-------|-------|---------------------------------------|--------|----------|------|--------------|-------------|----------|
| FROM     | то    | RECOVY   | DESCRIPTION                                                                           |          | SA    | MPLE  | · · · · · · · · · · · · · · · · · · · | oz/ton | AS       | SAYS |              | <del></del> | <br>     |
| FMOM     | 10    | HECOVY   | DESCRIPTION                                                                           | FROM     | то    | WIDTH | No.                                   | Au     |          |      |              |             |          |
| 349.8    | 413.6 | ļ        | Greenstone (Mafic-Int. volc. Flow; Tudor Fm)                                          | <u> </u> |       | ļ     |                                       |        |          | ļ    |              | ļ           | <u> </u> |
|          |       | -        | _abrupt change to f gr., massive, non carbonatized, poorly fol, flow rk               |          |       |       |                                       |        |          | ļ    |              |             | ļ        |
|          |       |          | -352.0-359.0; minor brecciation with chloritization of fract's; unit has higher S.G.  |          |       |       |                                       |        |          |      |              |             |          |
| <u>.</u> |       |          | and dissem po (5-7%)                                                                  |          |       |       |                                       |        |          |      |              |             |          |
|          |       |          | -364.2-367.8; band of well fol GS, no major cotc's, but some brecciation and sil to   | <u> </u> |       |       |                                       |        |          |      |              |             |          |
|          |       |          | separate zones; interflow tuff band?; strong carbonatization, may be                  |          |       |       |                                       |        |          |      |              |             |          |
|          |       |          | a mafic sill                                                                          |          |       |       |                                       |        |          |      |              |             |          |
|          |       |          | -3983.8-404.0; interflow band of hybrid rk, massive and foliated types, mixed zone of |          |       |       |                                       |        |          |      |              |             |          |
|          |       |          | intrusive and massive GS?                                                             |          |       |       |                                       |        |          |      |              |             |          |
|          |       | _        | -408.2; small ep zone                                                                 |          |       |       |                                       |        | <u> </u> |      |              |             |          |
| 413.6    | 440.4 |          | Greenstone (Mafic-Intermaed, Volc Flow; Tudor Fm.)                                    |          |       |       |                                       |        |          |      |              |             |          |
|          |       |          | -mod fol. chloritic, f gr. 65                                                         |          |       |       |                                       |        |          |      |              |             |          |
|          |       |          | -highly fract., crossed by numerous qtz/cc stringers, strong pervasive carbon'n       |          |       |       |                                       |        |          |      |              |             |          |
|          |       | <u> </u> | -426.4-427.5; cross cutting, qtz-cc vein, minor spks and blebs of po.py. tr cpy.      | 426.3    | 427.6 | 1.3   | 75029                                 | 0.014  |          |      |              |             |          |
|          |       |          | white, cloudy qtz.                                                                    |          |       |       |                                       |        |          |      |              |             |          |
|          |       |          | -433.3-440.4: transitional rk, mixture of foliated and massive flow rks               |          |       |       |                                       |        |          |      |              |             |          |
|          |       |          |                                                                                       |          |       |       |                                       |        |          |      |              |             |          |
| 440_4    | 491.0 |          | Greenstone (Mafic-Intermediate, Volc. Flow: Tudor Fm.)                                |          |       |       |                                       |        |          |      |              |             |          |

|             |       |         |                                                                                       |                |       |       |       |              | HOLE     | No8                                              | 5-27E |   | <del></del> |   |
|-------------|-------|---------|---------------------------------------------------------------------------------------|----------------|-------|-------|-------|--------------|----------|--------------------------------------------------|-------|---|-------------|---|
| FROM        | то    | RECOVY  | DESCRIPTION                                                                           |                | SA    | MPLE  |       | Toz./to      | on AS    | SAYS                                             |       |   |             |   |
|             | '     | INECOVI | DESCRIPTION                                                                           | FROM           | то    | WIDTH | No.   | Au           |          |                                                  |       |   |             |   |
|             |       | ļ       | -massive, high S.G. volc flow, highly fract'd, increased po content 464-470';         |                | ļ     |       |       | <u> </u>     |          |                                                  |       |   |             | _ |
|             |       |         | 454.0 +, increasing carbonatization, pervasive, by 473, rk type is                    |                |       | ļ     |       | -            |          |                                                  |       | - |             |   |
|             |       |         | difficult to identify, becomes more silicified, and possibly                          |                |       |       |       | <del> </del> | ļ        |                                                  |       |   |             |   |
|             |       |         | feldspathized, (felsitic?)                                                            |                |       |       |       |              |          |                                                  |       |   |             |   |
|             |       |         | 475.0; 4" tw. cross cutting atz-cc vein, strong po, minor cpy, py, strong VG, vein is | 474 <u>.</u> 5 | 475.5 | 1-0   | 75030 | 1.638        |          |                                                  |       |   |             | _ |
|             |       |         | complex, seems to be combination of both x-cutting and conformable or                 |                |       |       |       |              |          | <u> </u>                                         |       |   |             |   |
|             |       |         | intersection of two separate veins, small amt core ground, very alt.                  |                |       |       |       |              |          |                                                  |       |   |             |   |
| <del></del> |       |         | lower ctc.                                                                            |                |       |       |       |              |          |                                                  |       |   |             |   |
| 491.0       | 510.0 |         | Altered Metavolcanic or Hybrid/Felsite                                                |                |       |       |       |              |          |                                                  |       |   |             |   |
|             | ЕОН   |         | appears to be an intense alteration ctc, silicification and carbonatization, and in   |                |       |       |       |              |          |                                                  |       |   |             |   |
|             |       |         | in part feldspathization (esp. 507-508)                                               |                |       |       |       |              |          |                                                  |       |   |             |   |
|             |       |         | - relics of altered but identifiable 6S esp. 498.2-500.3, no apparaent increase in    |                |       |       |       |              |          |                                                  |       |   |             |   |
|             |       |         | sulphide content                                                                      |                |       |       |       |              |          |                                                  |       |   |             |   |
|             |       |         |                                                                                       |                |       |       |       |              |          |                                                  |       |   |             |   |
|             |       |         |                                                                                       |                |       |       |       |              |          |                                                  |       |   |             |   |
|             |       |         |                                                                                       |                |       |       |       |              |          |                                                  |       |   |             |   |
|             | 1     |         |                                                                                       |                |       |       |       |              |          |                                                  |       |   |             | Γ |
| <del></del> | 1     | 1       |                                                                                       | 1              | 1     | 1     |       | 1            | <b>†</b> | <del>                                     </del> |       |   |             | Т |

Project Name

Bannockburn Property, Ontario Mono Gold Mines Inc. Month
Jan.

| Assay<br>Tag No. | D.D.H.  | Footage       | Width |                          | Au<br>oz./ton | Ag<br>oz./ton |   |
|------------------|---------|---------------|-------|--------------------------|---------------|---------------|---|
|                  |         |               |       |                          |               | -2., 501.     |   |
| 75001            | #86-1   | 20.6'-21.6'   | 1.0'  |                          | 0.002         |               |   |
| 75002            | #00-1   | 21.6'-23.3'   | 1.7'  |                          | 0.012         |               |   |
| 75003            |         | 23.3'-24.3'   | 1.0'  |                          | LO.002        |               |   |
| 75004            |         | 24.3'-25.3'   | 1.0'  |                          | L0.002        |               |   |
|                  | !!<br>! |               |       |                          |               |               |   |
| 75005            |         | 53.6'-56.3'   | 2.7'  |                          | L0.002        |               |   |
| 75006            |         | 56.3'-57.3'   | 1.0'  |                          | L0.002        |               |   |
| 75007            |         | 57.3'-61.7'   | 4.41  |                          | L0.002        |               |   |
| 75008            |         | 95.7'-97.4'   | 1.7'  |                          | 2.554         |               |   |
| 75009            |         | 104.6'-106.5' | 1.9'  |                          | 1.938         |               |   |
| 75010            |         | 108.6'-109.6' | 1.0'  |                          | 0.096         |               |   |
| 75011            |         | 112.0'-113.0' | 1.0'  |                          | 0.010         |               |   |
| 75012            |         | 115.0'-116.0' | 1.0'  | 0.083                    | 0.220         |               |   |
| 75013            |         | 116.0'-118.0' | 2.0'  | ) <u>0.083</u><br>) 3.0' | 0.014         |               |   |
|                  |         |               |       |                          |               |               |   |
|                  |         |               |       |                          |               |               |   |
|                  |         |               |       |                          |               |               |   |
|                  |         |               |       |                          |               |               |   |
|                  |         |               |       |                          |               |               |   |
|                  |         |               |       |                          |               |               |   |
|                  |         |               |       |                          |               |               |   |
|                  |         |               |       |                          |               |               |   |
|                  |         |               | ;     |                          |               |               |   |
|                  |         | İ             |       |                          |               |               |   |
|                  |         |               |       |                          |               |               |   |
|                  |         |               |       |                          |               |               |   |
| ļ                |         |               |       |                          |               |               |   |
|                  | ļ       |               |       |                          |               |               | ĺ |
|                  |         |               |       |                          |               | <u>.</u>      |   |
|                  |         |               |       |                          |               |               |   |
|                  |         |               |       |                          |               |               |   |
|                  |         |               | :     |                          |               |               |   |
| ,                |         |               |       |                          | ļ             |               |   |
|                  | }       |               | ĺ     |                          |               |               |   |
| ` .              |         |               |       |                          |               |               |   |
|                  | j       |               |       |                          |               | :             |   |
|                  |         |               |       |                          | Ì             |               |   |
| 13 Sample        | ı s     | ı             |       | ·                        | ı             | l             | • |

Project Name

Bannockburn Property, Ontario Mono Gold Mines Inc.

Month Jan.

| Assay<br>Tag No. | D.D.H. | Footage       | Width | Au<br>oz./ton | Ag<br>oz./ton |      |
|------------------|--------|---------------|-------|---------------|---------------|------|
|                  |        |               |       |               |               |      |
| 75014            | #86-2  | 29.2'-30.2'   | 1.01  | 0.002         |               |      |
| 75015            |        | 33.0'-34.0'   | 1.0'  | L0.002        |               |      |
| 75020            |        | 46.7'-47.7'   | 1.0'  | 0.002         |               |      |
| 75016            |        | 82.3'-83.3'   | 1.0'  | 0.002         |               |      |
| 75017            |        | 111.8'-112.8' | 1.0'  | 0.004         |               | Ti . |
| 75019            |        | 119.5'-120.5' | 1.0'  | 0.014         | į             |      |
| 75018            |        | 217.8'-218.8' | 1.0'  | 0.082         |               |      |
|                  |        |               |       |               |               |      |
|                  |        | ·             |       |               |               |      |
|                  |        | i             |       |               |               |      |
|                  |        |               |       |               |               |      |
|                  |        |               |       |               |               |      |
|                  |        |               |       |               |               |      |
|                  |        |               |       |               |               |      |
|                  |        |               |       |               |               |      |
|                  |        |               |       | ·<br>         |               |      |
|                  |        |               |       |               |               |      |
|                  |        |               |       |               |               |      |
|                  |        |               |       |               |               |      |
| \                |        |               | :     |               |               |      |
|                  |        |               |       |               |               |      |
| · .              |        |               |       |               |               |      |
|                  |        |               |       |               |               |      |

Project Name

Bannockburn Property, Ontario

Month

Year 1986

Mono Gold Mines Inc. Jan.

| Assay<br>Tag No. | D.D.H. | Footage       | Width | · | Au<br>oz./ton | Ag<br>oz./ton |   |
|------------------|--------|---------------|-------|---|---------------|---------------|---|
| 75021            | #86-3  | 14.0'-16.5'   | 2.5'  |   | 0.016         |               |   |
| 75025            |        | 40.5'-41.5'   | 1.0'  |   | 0.002         |               |   |
| 75022            |        | 47.1'-48.1'   | 1.0'  |   | L0.002        |               |   |
| 75023            |        | 104.6'-105.6' | 1.0'  |   | 0.002         |               |   |
| 75024            |        | 145.5'-147.3' | 1.8'  |   | 0.002         |               | _ |
| 75026            |        | 159.0'-160.0' | 1.0'  |   | 0.004         |               |   |
|                  |        |               |       |   |               |               |   |
|                  |        |               | i     |   |               |               |   |
|                  |        |               |       |   |               |               |   |
|                  |        |               |       |   |               |               |   |
|                  |        |               |       |   |               |               |   |
|                  |        | -             |       |   |               |               |   |
|                  |        |               |       |   |               |               |   |
| i                |        |               |       |   |               |               |   |
|                  |        |               |       |   | ·.            |               |   |
|                  |        |               |       |   |               |               |   |
|                  |        |               |       |   |               |               |   |
|                  |        |               |       |   |               |               |   |
|                  |        |               |       |   |               |               |   |
|                  |        |               |       |   |               |               |   |
|                  |        |               |       |   |               |               |   |
|                  |        |               |       |   |               |               |   |
| l                |        | l             | į     |   | l             |               |   |

Project Name Bannockburn Property, Ontario
Mono Gold Mines Inc.

Month
Jan.

| Assay<br>Tag No.                          |       | Footage       | Width | . •     | Au<br>oz./ton | Ag<br>oz./ton |          |
|-------------------------------------------|-------|---------------|-------|---------|---------------|---------------|----------|
|                                           |       |               |       |         |               |               |          |
| 75031                                     | #86-4 | 16.5'-17.5'   | 1.0'  |         | L0.002        |               |          |
| 75032                                     |       | 72.8'-73.8'   | 1.0'  |         | LO.002        |               |          |
| 75033                                     |       | 76.6'-78.1'   | 1.5'  |         | LO.002        |               |          |
| 75034                                     |       | 89.0'-90.0'   | 1.0'  |         | L0.002        |               |          |
| 75035                                     |       | 94.2'-95.2'   | 1.0'  |         | LO.002        |               |          |
| 75036                                     |       | 95.2'-97.0'   | 1.8'  |         | LO.002        |               |          |
| 75037                                     |       | 97.0'-99.0'   | 2.0'  |         | LO.002        |               |          |
| 75038                                     |       | 99.0'-100.0'  | 1.0'  |         | LO.002        |               |          |
| 75039                                     |       | 143.8'-146.0' | 2.2'  |         | 3.208         |               |          |
| 75040                                     |       | 151.2'-153.3' | 2.1'  |         | 0.022         |               |          |
| 75041                                     |       | 172.5'-173.5' | 1.0'  |         | 0.006         |               |          |
| 75042                                     |       | 184.6'-185.6' | 1.0'  |         | 0.200         |               |          |
| 75043                                     |       | 187.3'-188.3' | 1.0'  | ) 0.108 | 0.208         |               |          |
| 75044                                     |       | 188.3'-189.3' | 1.0'  | 0.108   | 0.008         | !             |          |
| <b>75</b> 045                             |       | 206.0'-207.0' | 1.0'  |         | .0.006        |               |          |
| 75046                                     |       | 219.4'-220.4' | 1.0'  |         | 0.004         |               |          |
| 75047                                     |       | 248.7'-249.7' | 1.0'  |         | 0.102         |               | <u> </u> |
| 75048                                     |       | 258.01-259.01 | 1.0'  |         | 0.008         |               |          |
|                                           |       |               |       |         |               |               |          |
|                                           |       |               | ;     |         |               |               |          |
|                                           |       |               |       |         |               |               |          |
|                                           |       |               |       |         |               |               |          |
| N. S. S. S. S. S. S. S. S. S. S. S. S. S. |       |               | į     |         |               |               |          |
| 18 Sam                                    | ples  |               |       |         |               |               |          |

Project Name Bannockburn Property, Ontario Mono Gold Mines Inc.

Month Jan.

| Assay<br>Tag No. | D.D.H. | Footage       | Width | ·        | Au<br>oz./ton | Ag<br>oz./ton |   |
|------------------|--------|---------------|-------|----------|---------------|---------------|---|
|                  |        |               |       |          |               |               |   |
| _                |        |               |       |          |               |               |   |
| 75049            | #86-5  | 49.2'-50.2'   | 1.0'  |          | LO.002        |               |   |
|                  |        |               |       |          |               |               |   |
| 75050            |        | 75.1'-76.1'   | 1.0'  |          | LO.002        |               |   |
|                  |        |               |       |          |               |               |   |
| 75051            |        | 103.1'-104.5' | 1.4'  |          | LO.002        |               |   |
|                  |        |               |       |          |               |               |   |
| 75052            |        | 148.5'-149.5' | 1.0'  | <u> </u> | 0.078         |               |   |
|                  | :      |               |       |          |               |               |   |
| 75053            |        | 169.1'-170.1' | 1.0'  |          | 0.376         |               |   |
|                  |        |               |       |          |               | :             |   |
| 75054            |        | 172.8'-173.8' | 1.0'  |          | 0.004         |               |   |
|                  |        |               |       |          |               |               |   |
| 75055            |        | 178.6'-179.6' | 1.0'  |          | 3.716         |               |   |
|                  |        |               |       |          |               |               |   |
| 75056            |        | 206.0'-207.0' | 1.0'  |          | 0.014         |               |   |
| 75057            |        | 207.0'-209.2' | 2.2'  |          | 0.094         |               |   |
| 75058            |        | 209.2'-210.9' | 1.7'  |          | 0.014         |               |   |
| 75059            |        | 210.9'-214.1' | 3.2'  |          | 0.018         |               |   |
|                  |        |               |       |          |               |               | ļ |
| 75060            |        | 217.8'-218.8' | 1.0'  |          | LO.002        |               |   |
|                  |        |               |       |          | 0.010         |               |   |
| 75061            |        | 227.5'-228.5' | 1.0'  |          | 0.010         | i             |   |
|                  |        |               |       |          | 10.000        |               |   |
| 75062            |        | 290.0'-291.4' | 1.4'  |          | LO.002        |               |   |
| 7.504.0          |        | 200 01 200 01 | 4 01  |          | 0.002         |               |   |
| 75063            |        | 308.8'-309.8' | 1.0'  |          | 0.002         |               |   |
| 75044            |        | 204 44 205 44 | 4 01  |          | 0.056         |               |   |
| 75064            |        | 394.4'-395.4' | 1.0'  |          | 0.030         |               |   |
| 75065            |        | 428.1'-429.1' | 1.0'  |          | 0.300         |               |   |
| 75065            |        | 420.1 -429.1  | 1.0   |          | 0.300         |               |   |
| 75066            |        | 443.0'-444.0' | 1.0'  |          | 0.002         |               |   |
| 75000            |        | 443.0 -444.0  | 1.0   |          | ·             |               |   |
| 75067            | İ      | 470.4'-471.4' | 1.0'  |          | 0.002         |               |   |
| , 300.           |        |               |       |          |               |               |   |
|                  |        |               |       |          |               |               |   |
|                  |        |               |       |          |               |               |   |
|                  |        |               |       |          |               |               |   |
| \                |        |               |       |          |               | •             |   |
|                  | ,      |               |       |          |               |               |   |
| `.               |        |               |       |          |               |               |   |
| ``               |        |               |       |          |               |               |   |
|                  |        |               |       |          |               |               | İ |
|                  | 1      |               |       |          |               |               |   |
| 40.0.1           |        |               |       | •        | -             |               |   |

Project Name Bannockburn Property, Ontario Mono Gold Mines Inc.

Month Jan.

| Assay<br>Tag No. | р.р.н.        | Footage       | Width  |   | Au<br>oz./ton | Ag<br>oz./ton |  |
|------------------|---------------|---------------|--------|---|---------------|---------------|--|
| 750(0            | <b>#0</b> ( ( | 2/ // 25 //   |        |   |               |               |  |
| 75068            | #86–6         | 34.4'-35.4'   | 1.0'   |   | 0.012         |               |  |
| 75069            |               | 107.6'-108.6' | 1.0'   |   | 0.158         |               |  |
| 75070            | 19 N          | 138.6'-139.6' | 1.0'   |   | 0.424         |               |  |
| 75071            |               | 152.7'-153.7' | 1.0'   |   | L0.002        |               |  |
| 75072            |               | 174.3'-175.3' | 1.0'   |   | 0.024         |               |  |
|                  |               |               |        |   |               |               |  |
|                  |               |               |        |   |               |               |  |
| ·                |               |               |        |   |               |               |  |
|                  |               | ·             |        |   |               |               |  |
|                  |               |               |        |   |               |               |  |
|                  |               |               |        |   |               |               |  |
|                  |               |               |        |   |               |               |  |
|                  |               |               |        |   |               |               |  |
|                  |               |               |        |   |               |               |  |
| ·                |               |               |        |   |               |               |  |
|                  |               |               |        |   |               |               |  |
|                  |               |               |        |   |               |               |  |
|                  |               |               |        |   |               |               |  |
|                  |               |               |        |   |               |               |  |
|                  |               |               |        |   |               | ,             |  |
| \                |               |               | :      |   |               |               |  |
| · .              |               |               |        |   |               |               |  |
|                  |               |               | ;<br>! |   |               |               |  |
| 5 Samples        | e             | •             | l      | ' | 1             | •             |  |

| Project Name | Bannockburn Property, | Ontario |
|--------------|-----------------------|---------|
|              | Mono Gold Mines Inc.  |         |

Month
Jan.

Year 1986

|                  |          | Mono Gold Mines | THE.  |                        | Jan.          | 1 200         |  |
|------------------|----------|-----------------|-------|------------------------|---------------|---------------|--|
| Assay<br>Tag No. | D.D.H.   | Footage         | Width |                        | Au<br>oz./ton | Ag<br>oz./ton |  |
|                  |          |                 |       |                        |               |               |  |
| 75073            | #86-7    | 33.5'-35.1'     | 1.6'  |                        | 0.352         |               |  |
|                  |          |                 |       |                        |               |               |  |
| 75074            |          | 38.0'-39.4'     | 1.4'  |                        | LO.002        |               |  |
| 75075            |          | 39.4'-40.4'     | 1.0'  |                        | L0.002        |               |  |
| 75076            |          | 40.4'-41.5'     | 1.1'  |                        | LO.002        |               |  |
| 75077            |          | 65.8'-66.8'     | 1.0'  |                        | LO.002        |               |  |
| 75078            |          | 94.01-95.01     | 1.0'  |                        | LO.002        |               |  |
| 75079            |          | 108.0'-109.0'   | 1.0'  |                        | 0.114         |               |  |
| 75080            |          | 112.2'-113.2'   | 1.0'  |                        | 0.336         |               |  |
| 75081            |          | 121.3'-122.3'   | 1.0'  |                        | 0.110         |               |  |
| 75082            |          | 130.5'-131.5'   | 1.0'  |                        | 0.040         |               |  |
| 75083            |          | 141.5'-146.8'   | 5.31  |                        | 0.034         |               |  |
| 75084            |          | 215.5'-216.5'   | 1.0'  |                        | 0.002         |               |  |
| 75085            |          | 216.5'-217.5'   | 1.0'  |                        | 0.002         |               |  |
| 75086            |          | 229.2'-230.2'   | 1.0'  |                        | 0.072         |               |  |
| 75087            |          | 230.2'-231.2'   | 1.0'  |                        | 0.036         |               |  |
|                  |          |                 |       |                        | İ             |               |  |
| 75088            |          | 231.9'-232.9'   | 1.0'  |                        | 0.004         |               |  |
| 75089            |          | 267.2'-268.2'   | 1.0'  |                        | 0.002         |               |  |
| 75090            |          | 276.3'-277.8'   | 1.5'  | ) 0.697                | 0.002         |               |  |
| 75091            |          | 277.8'-279.5'   | 1.7'  | ) <u>0.697</u><br>3.2' | 1.310         |               |  |
| 75092            |          | 282.9'-283.9'   | 1.0'  |                        | 0.014         |               |  |
| 75093            |          | 285.8'-286.5'   | 0.7'  |                        | 0.008         |               |  |
| 75094            |          | 332.9'-334.1'   | 1.2'  |                        | 0.002         |               |  |
| 75095            |          | 339.8'-341.1'   | 1.3'  | ?                      | LO.002        |               |  |
| `<br>75096       |          | 353.0'-354.0'   | 1.0'  |                        | 0.002         |               |  |
| 75097            |          | 354.0'-355.0'   | 1.0'  |                        | 0.032         |               |  |
| . 50 / /         |          | 22,73 333.0     | :     |                        |               |               |  |
| 15 Samal         | ı<br>Lac | ·               |       | ı                      | į i           | •             |  |

25 Samples

Cert. A8610457-001-A

Cert. A8610634-001-A

Project Name

Bannockburn Property, Ontario Mono Gold Mines Inc.

Month
Jan.

**Year** 1986

|                  |        |               |       | T |               |               |  |
|------------------|--------|---------------|-------|---|---------------|---------------|--|
| Assay<br>Tag No. | D.D.H. | Footage       | Width | · | Au<br>oz./ton | Ag<br>oz./ton |  |
| 75098E           | #86-8  | 40.6'-41.6'   | 1.0'  |   | 0.950         |               |  |
| 75099            |        | 59.5'-60.5'   | 1.0'  |   | 0.012         |               |  |
| 75100            |        | 72.8'-73.8'   | 1.0'  |   | 0.014         |               |  |
| 75101            |        | 143.7'-145.8' | 2.1'  |   | 0.046         |               |  |
| 75102            |        | 146.1'-147.1' | 1.0'  |   | 0.010         |               |  |
| 75103            |        | 205.5'-206.5' | 1.0'  |   | 0.008         |               |  |
| 75104            |        | 211.8'-212.8' | 1.0'  |   | 0.002         |               |  |
| 75105            |        | 214.3'-215.3' | 1.0'  |   | 0.002         |               |  |
| 75106            |        | 225.7'-226.7' | 1.0'  |   | 0.002         |               |  |
| 75107            |        | 230.5'-231.5' | 1.0'  |   | 0.002         |               |  |
|                  |        |               |       |   |               |               |  |
|                  |        |               |       |   |               |               |  |
|                  |        |               |       |   |               |               |  |
|                  |        |               |       |   |               |               |  |
| ·                |        |               |       |   |               |               |  |
|                  |        |               |       |   |               |               |  |
|                  |        |               |       |   |               |               |  |
|                  |        |               |       |   |               |               |  |
|                  |        |               | 7     |   |               |               |  |
|                  |        |               |       |   |               |               |  |
|                  |        |               |       |   | į             |               |  |
|                  |        |               |       |   |               |               |  |
| 10 51            | {      | 1             | ;     |   | ļ             | 1             |  |

Project Name Ban

Bannockburn Property, Ontario Mono Gold Mines Inc. Month
Jan.

Year 1986

| Assay<br>Tag No. | р.р.н.   | Footage       | Width |   | Au<br>oz./ton | Ag<br>oz./ton |        |
|------------------|----------|---------------|-------|---|---------------|---------------|--------|
|                  |          |               |       |   |               |               |        |
| 75108E           | #86-9    | 62.0'-63.0'   | 1.0'  |   | L0.002        |               |        |
| 75109            |          | 99.1'-100.1'  | 1.0'  |   | LO.002        |               |        |
| 75110            |          | 116.8'-117.8' | 1.0'  |   | LO.002        |               | }<br>} |
| 75111            |          | 194.1'-195.6' | 1.5'  |   | LO.002        |               |        |
| 75112            |          | 196.1'-197.1' | 1.0'  |   | LO.002        |               |        |
| 75113            |          | 218.2'-219.2' | 1.0'  |   | L0.002        |               |        |
| 75114            |          | 231.6'-232.6' | 1.0'  |   | L0.002        |               |        |
| 75115            |          | 247.6'-248.6' | 1.0'  |   | LO.002        |               |        |
| 75116            |          | 250.5'-252.0' | 1.5'  |   | L0.002        |               |        |
| 75117            |          | 252.0'-253.2' | 1.2'  |   | LO.002        | !             |        |
| 75118            |          | 253.21-254.41 | 1.2'  |   | LO.002        |               |        |
| 75119            |          | 344.0'-345.7' | 1.7'  |   | 0.076         |               |        |
|                  |          |               |       |   |               |               |        |
|                  |          |               |       |   |               |               |        |
|                  |          |               |       |   |               |               |        |
| •                |          |               |       |   |               |               |        |
|                  |          |               |       |   |               |               |        |
|                  |          |               |       |   |               |               |        |
|                  |          |               |       |   |               |               |        |
|                  |          |               | ;     |   |               |               |        |
|                  |          |               |       |   |               |               |        |
|                  |          |               |       | · |               |               |        |
|                  |          |               |       |   |               |               |        |
| 12 Samol         | <b> </b> | !             | l     | 1 | 1             |               | i      |

Project Name Bannockburn Property, Ontario

Mono Gold Mines Inc. Ja

Month
Jan.

**Year** 1986

|    |                 | Mono Gold Mines Inc. |               | Mono Gold Mines Inc. Jan |  | •             | 1900          |  |
|----|-----------------|----------------------|---------------|--------------------------|--|---------------|---------------|--|
| T. | Assay<br>ag No. | D.D.H.               | Footage       | Width                    |  | Au<br>oz./ton | Ag<br>oz./ton |  |
|    | 75120E          | #86-10               | 33.4'-34.7'   | 1.3'                     |  | L0.002        |               |  |
|    | 75121           |                      | 66.7'-68.0'   | 1.3'                     |  | L0.002        |               |  |
|    | 75122           |                      | 91.1'-92.1'   | 1.0'                     |  | L0.002        |               |  |
|    | 75123           |                      | 94.0'-95.0'   | 1.0'                     |  | L0.002        |               |  |
|    | 75124           |                      | 199.0'-200.0' | 1.0'                     |  | LO.002        |               |  |
|    | 75125           |                      | 216.9'-217.9' | 1.0'                     |  | LO.002        |               |  |
|    | 75126           |                      | 229.6'-231.0' | 1.4'                     |  | LO.002        |               |  |
|    | 75127           |                      | 231.0'-232.1' | 1.1'                     |  | L0.002        |               |  |
|    | 75128           |                      | 232.1'-233.6' | 1.5'                     |  | LO.002        |               |  |
| •  | 75129           |                      | 233.6'-234.8' | 1.2'                     |  | L0.002        | 0.13          |  |
|    | 75130           |                      | 235.5'-236.9' | 1.4'                     |  | LO.002        | 0.01          |  |
|    | 75131           |                      | 236.9'-238.2' | 1.3'                     |  | LO.002        | 0.01          |  |
|    | 75132           |                      | 253.2'-254.2' | 1.0'                     |  | 0.008         |               |  |
|    | 75400           |                      | 250 24 242 44 |                          |  | LO.002        |               |  |
|    | 75133           |                      | 259.0'-260.1' | 1.1'                     |  | LO.002        |               |  |
|    | 75134           |                      | 260.1'-261.3' | 1.2'                     |  | L0.002        |               |  |
|    | 75135           |                      | 270.8'-271.8' | 1.0'                     |  | 0.008         |               |  |
|    | 75136           |                      | 288.2'-289.2' | 1.0'                     |  | LO.002        |               |  |
|    | 75137           |                      | 333.9'-335.0' | 1.1'                     |  | LO.002        |               |  |
|    | 75138           |                      | 346.4'-347.8' | 1.4'                     |  | 0.004         | 1.24          |  |
|    | 75139           |                      | 434.6'-435.6' | 1.0'                     |  | 0.012         |               |  |
|    | 75140           |                      | 472.5'-473.5' | 1.0'                     |  | LO.002        |               |  |
|    | 75141           |                      | 475.8'-476.8' | 1.0'                     |  | 0.002         |               |  |
| ν. |                 | ,                    |               |                          |  |               |               |  |
|    |                 |                      |               |                          |  |               |               |  |
|    |                 |                      |               |                          |  |               |               |  |
|    |                 |                      |               |                          |  |               |               |  |
|    | ı               | i                    |               |                          |  | İ             |               |  |
|    |                 |                      |               |                          |  |               |               |  |

22 Samples

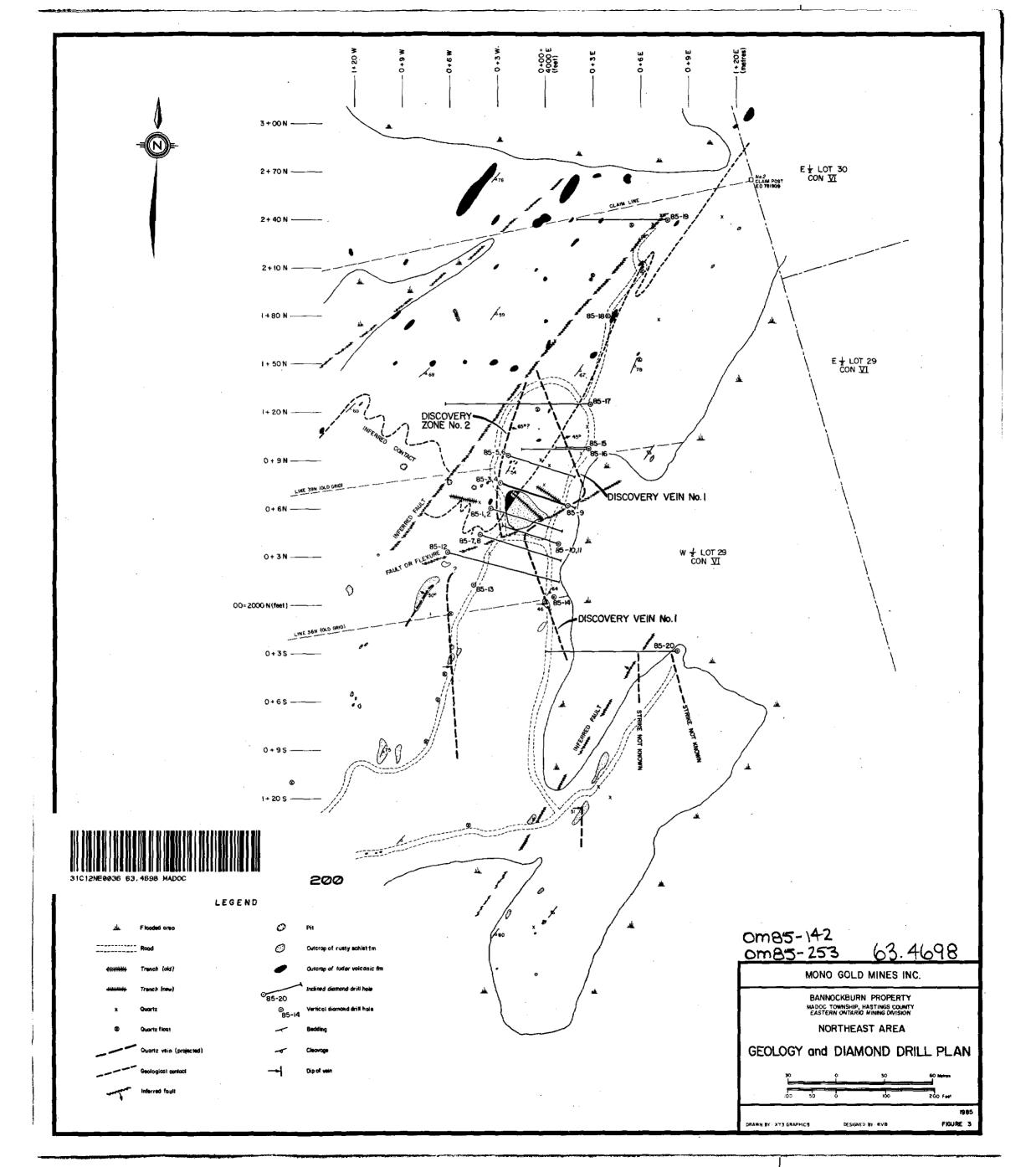
Cert. A8610634-001&2-A Cert. A8610747-001-A Project Name

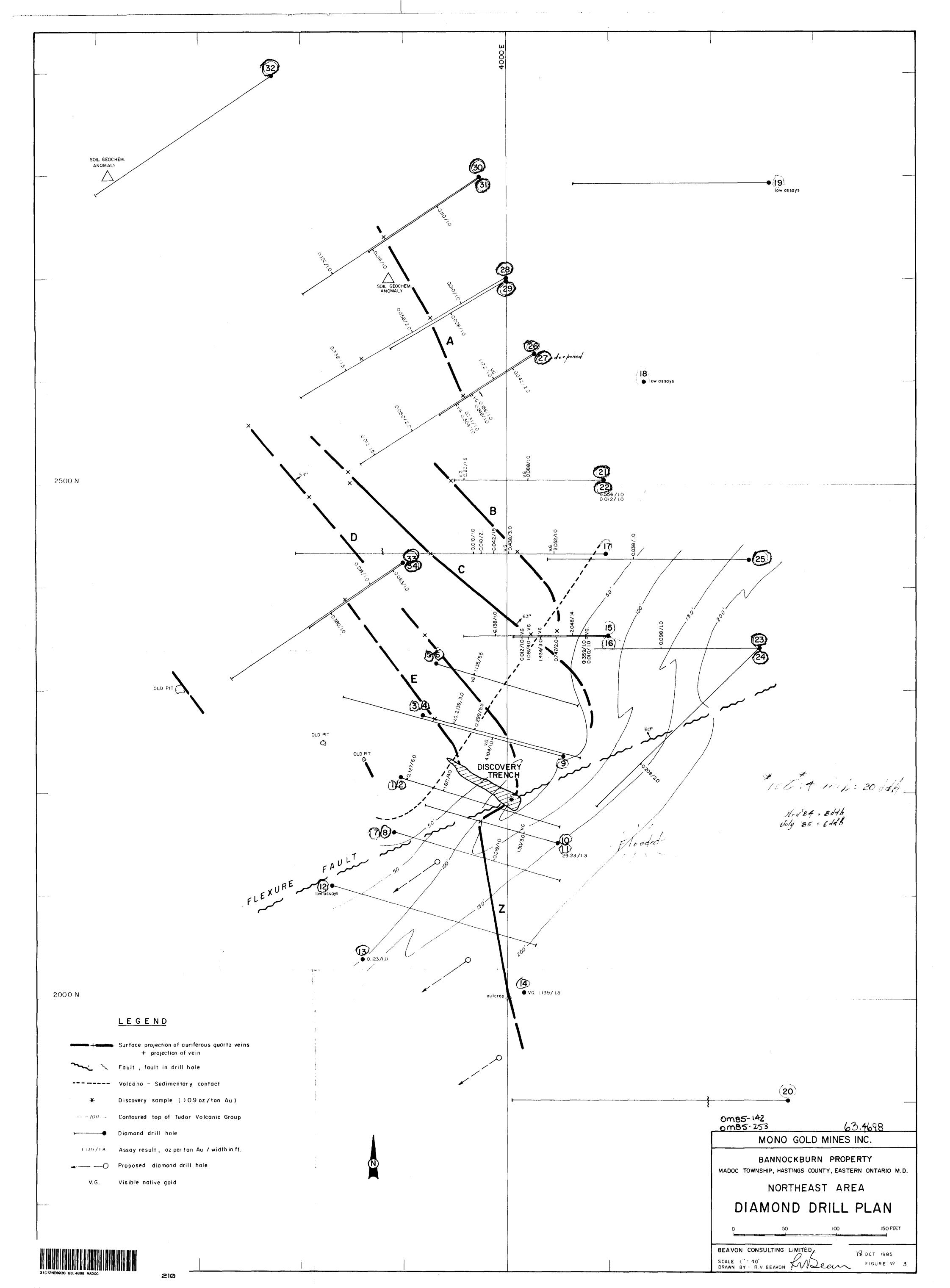
Bannockburn Property, Ontario Mono Gold Mines Inc.

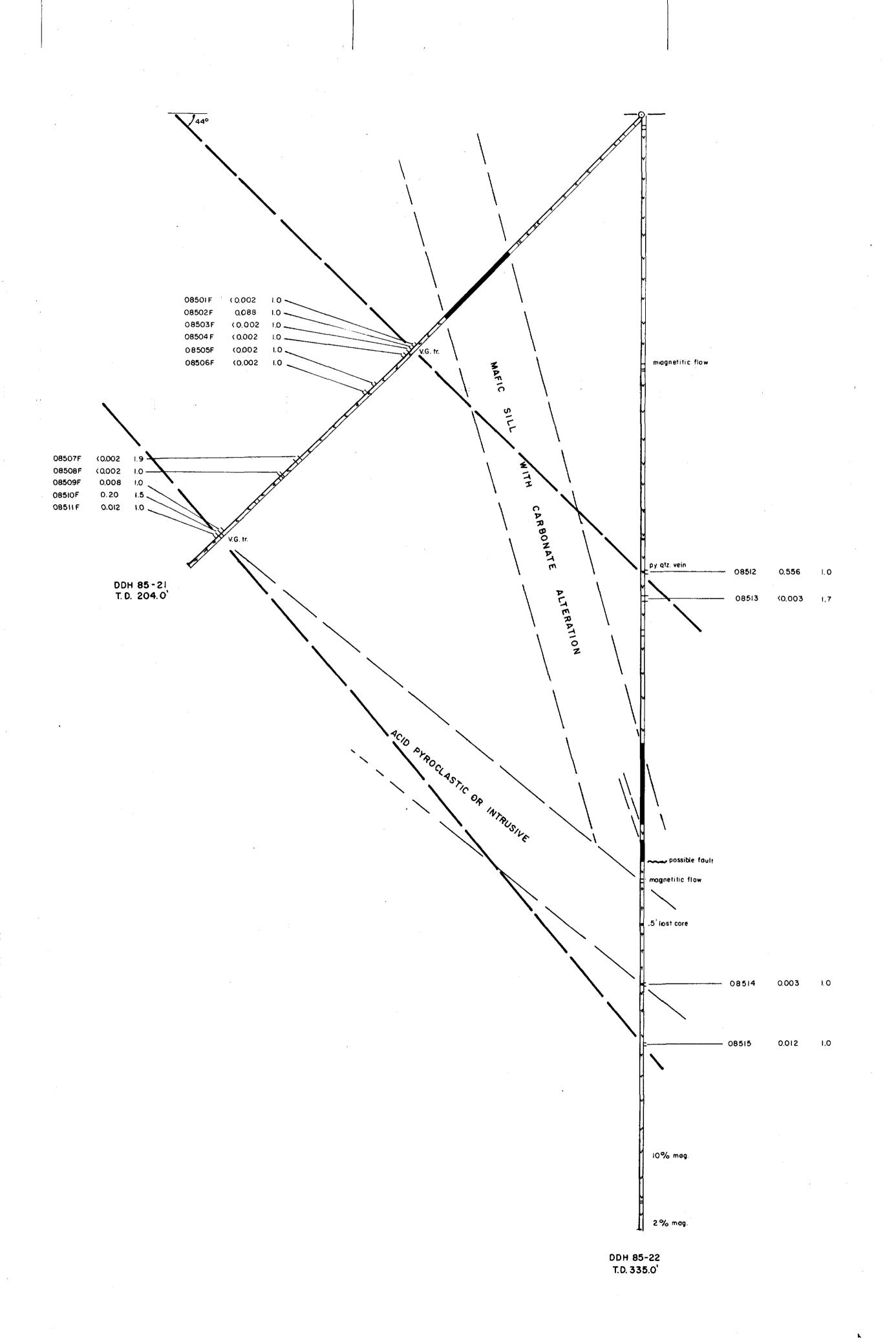
Month
Jan.

Year 1986

| Assay<br>Tag No. | р.р.н. | Footage       | Width | , | Au<br>oz./ton | Ag<br>oz./ton |  |
|------------------|--------|---------------|-------|---|---------------|---------------|--|
|                  |        |               |       |   |               |               |  |
| 75142E           | #86-11 | 56.7'-57.7'   | 1.0'  |   | 0.002         |               |  |
|                  |        |               |       |   |               |               |  |
| 75143            |        | 103.1'-104.1' | 1.0'  |   | LO.002        |               |  |
| 75144<br>75145   |        | 104.1'-105.1' | 1.0'  |   | LO.002        |               |  |
| 73143            |        | 103.1 -100.1  | 1,0   | · | 201002        |               |  |
| 75146            |        | 119.4'-120.9' | 1.5'  |   | LO.002        |               |  |
|                  |        |               |       |   |               |               |  |
| 75147            |        | 127.4'-128.4' | 1.0'  |   | LO.002        |               |  |
| 75148            |        | 149.5'-150.5' | 1.0'  |   | LO.002        |               |  |
| /3140            |        | 149.5 2150.5  | 1.0   |   | 10.002        |               |  |
| 75149            |        | 223.3'-224.3' | 1.0'  |   | LO.002        |               |  |
|                  |        |               |       |   |               |               |  |
| 75150            |        | 254.6'-256.7' | 2.1'  |   | LO.002        | 0.05          |  |
| 75151            |        | 258.6'-260.7' | 2.1'  |   | LO.002        | 0.45          |  |
| 73131            |        | 238.0 -200.7  | 2.1   |   | LO.002        | 0.45          |  |
| 75152            |        | 326.7'-328.3' | 1.6'  |   | 0.012         |               |  |
|                  |        |               |       |   |               |               |  |
| 75153            |        | 337.4'-338.4' | 1.0'  |   | 0.008         |               |  |
| 75154            |        | 338.4'-339.4' | 1.0'  |   | 0.016         |               |  |
| 75155            | -      | 340.9'-341.9' | 1.0'  |   | 0.004         |               |  |
| , 5255           |        |               | 200   |   | 0.00.         |               |  |
| 75156            |        | 347.2'-348.2' | 1.0'  |   | LO.002        |               |  |
|                  |        |               |       |   |               |               |  |
| 75157            |        | 385.9'-387.0' | 1.1'  |   | LO.002        |               |  |
|                  |        |               |       |   |               |               |  |
|                  |        |               |       |   |               |               |  |
|                  |        |               |       |   |               | į             |  |
|                  |        |               |       |   |               |               |  |
|                  |        |               |       |   |               |               |  |
| :                |        |               |       |   |               |               |  |
|                  |        |               |       |   |               |               |  |
|                  |        |               |       |   |               |               |  |
| 17               |        |               |       | · | Ì             |               |  |
|                  |        |               |       |   |               |               |  |
|                  |        |               |       |   |               |               |  |
|                  |        |               |       |   |               |               |  |
|                  |        |               |       |   |               |               |  |


16 Samples Cert. A8610634-002-A Cert. A8610747-001-A


Project Name Bannockburn Property, Ontario Mono Gold Mines Inc.


Month Jan.

Year 1986

| Accay            |                        |               |       |     | Au      | An            |        |
|------------------|------------------------|---------------|-------|-----|---------|---------------|--------|
| Assay<br>Tag No. | D.D.H.                 | Footage       | Width |     | oz./ton | Ag<br>oz./ton |        |
| 75027            | Deepening<br>of #85-27 | 316.5'-317.5' | 1.0'  |     | 0.002   |               |        |
| 75028            | , ,                    | 345.4'-346.4' | 1.0'  |     | 0.004   |               |        |
| 75029            |                        | 426.3'-427.6' | 1.3'  |     | 0.014   |               |        |
| 75030            |                        | 474.5'-475.5' | 1.0'  |     | 1.638   |               |        |
|                  |                        |               |       |     |         |               |        |
|                  |                        | :             |       |     |         |               |        |
|                  |                        |               |       |     |         |               |        |
|                  |                        |               |       |     |         |               |        |
|                  |                        |               |       |     |         |               |        |
|                  |                        |               |       |     |         |               | ;<br>; |
|                  |                        |               |       |     |         |               |        |
|                  |                        |               |       |     |         |               |        |
|                  |                        |               |       |     | :       |               |        |
|                  |                        |               |       |     |         |               |        |
|                  |                        |               |       |     |         |               | :      |
|                  |                        |               |       |     |         |               |        |
|                  |                        |               |       |     |         |               |        |
|                  |                        |               |       |     |         |               |        |
|                  |                        |               |       |     |         |               | l .    |
| \                |                        |               |       |     | :       |               |        |
|                  |                        |               |       |     |         |               |        |
| ·.               |                        |               |       |     |         |               |        |
| // Samples       |                        |               |       | l l |         |               |        |







om85-142 om85-253

63.4698

MONO GOLD MINES INC.

BANNOCKBURN PROPERTY MADOC TOWNSHIP, HASTINGS COUNTY, EASTERN ONTARIO M.D.

NORTHEAST AREA DIAMOND DRILL SECTION 2500 N DDH 85-21 & 22

60 FEET

BEAVON CONSULTING LIMITED 18 OCT. 1985

DASIS DISSE LO ASSAY Nº D7/TON A. WINTH (FT.)

+ + + + +

LEGEND

TOURMALINE

MARCASITE

SPHALERITE

MAFIC VOLCANIC TUFFS

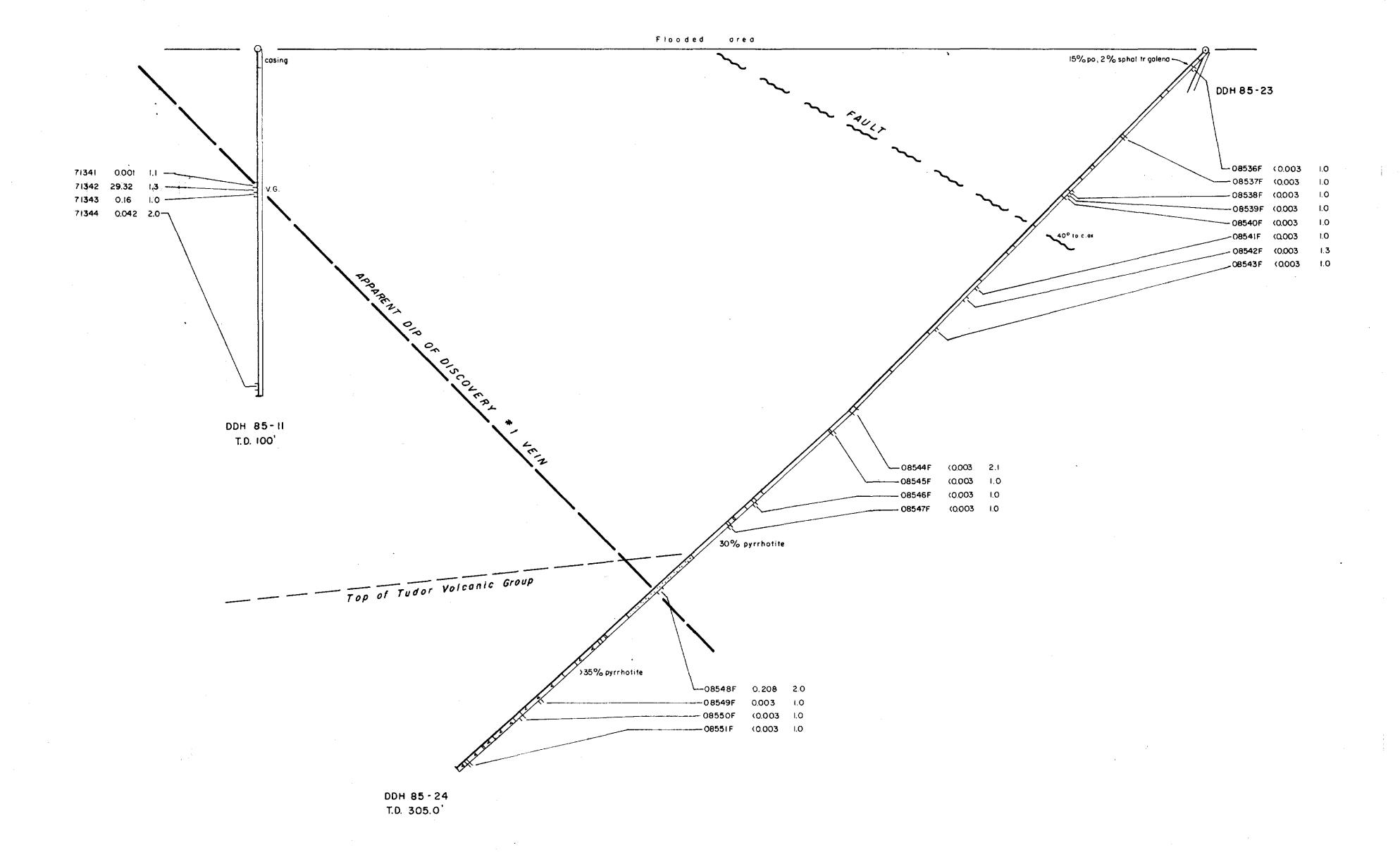
MAFIC VOLCANIC FLOWS

220

AURIFEROUS QUARTZ VEIN - V.G. = VISIBLE NATIVE GOLD

RUSTY SCHIST FM. CHERTY ARGILLITES WITH SULPHIDES

GREENSTONE SILLS, GREEN DIKES, AMPHIBOLITIZED SILLS, GABBRO, METADIABASE.


ACID VOLCANIC FLOWS, TUFFS OR INTRUSIVES

SCALE I" = 20' DRAWN BY : R.V. BEAVON

Jeene Nº. 4

Az. 272° Collar 22' S of Sect. (0.003 I.O 1101 0.016 1.0 HO2 (0.003 1.5~ 1103 (0.003 1.0 ~ 0.002 1.0 0.022 1.25 1104 (0.003 1.0 1105 (0.003 1.0 1106 (0.003 1.0 (0.003 **—** 66907 4.655 I.O py, merc q.v. DDH 85-6 (0.003 1.0 ( off section) 1107 0.010 1.0 ----(0.003 LO 1108 2.048 1.4 0.1 600,07 1109 0.026 1.0 (0.003 1.0 √ fault

40-60° to core axis \_II23 (Q003 I.O - 08521F (0.003 1.0 qtz. tourm -08522F (0.003 I.0 qtz tourm --- II24 (0,0**03** I.0 po, py, q.v. - 08523F (0.003 I.0 1113 (0.003 1.0 👡 1114 0.138 1.0 ---1115 0.008 1.0 --galena / 08524F 0.003 1.0 (0.003 1.0 - 08525F 0.003 I.5 0.008 1.0 6.633 2.0 0.324 1.0 50% po - 0**85**26F 0.003 2.0 --08527F (0.003 I.O DDH 85-15 T.D. 256.0° 0.004 i.O ---- 08528F 0.098 I.0 - 08529F 0.005 1.0 --- 08530F <0.003 I.0 DDH 85-16 T.D. 286.0 ---- 0853I F (0.003 I.0 LEGEND Om85-142 om85-253 --- 08532F 0.003 63.4698 ---08533F (0.003 RUSTY SCHIST FM. CHERTY ARGILLITES WITH SULPHIDES ~08534F 0.003 I.0 MONO GOLD MINES INC. MAFIC VOLCANIC TUFFS MAFIC VOLCANIC FLOWS BANNOCKBURN PROPERTY GREENSTONE SILLS, GREEN DIKES, AMPHIBOLITIZED SILLS, GABBRO, METADIABASE. MADOC TOWNSHIP, HASTINGS COUNTY, EASTERN ONTARIO M.D. NORTHEAST AREA + + + + + ACID VOLCANIC FLOWS, TUFFS OR INTRUSIVES DIAMOND DRILL SECTION 2350 N TOURMALINE 0,003 1,6 MARÇASITE DDH 85-15,16 & 23 DDH 85-23 T.D. 435.0 AURIFEROUS QUARTZ VEIN .- V.G. = VISIBLE NATIVE GOLD 08512. 0.556. 1.0 ASSAY Nº.. 0Z/TON Au. WIDTH (FT.) BEAVON CONSULTING LIMITED OCT. 1985 SCALE I" = 20'
DRAWN BY R.V. BEAVON R.V. Dear FIGURE Nº 5



LEGEND

RUSTY SCHIST FM. CHERTY ARGILLITES WITH SULPHIDES

MAFIC VOLCANIC TUFFS

MAFIC VOLCANIC FLOWS

GREENSTONE SILLS, GREEN DIKES, AMPHIBOLITIZED SILLS, GABBRO, METADIABASE

ACID VOLCANIC FLOWS, TUFFS OR INTRUSIVES + + + + +

TOURMALINE

MARCASITE

AURIFEROUS QUARTZ VEIN - V.G. = VISIBLE NATIVE GOLD

08512, 0.556, 1.0 ASSAY Nº., 0Z/TON Au, WIDTH (FT.)

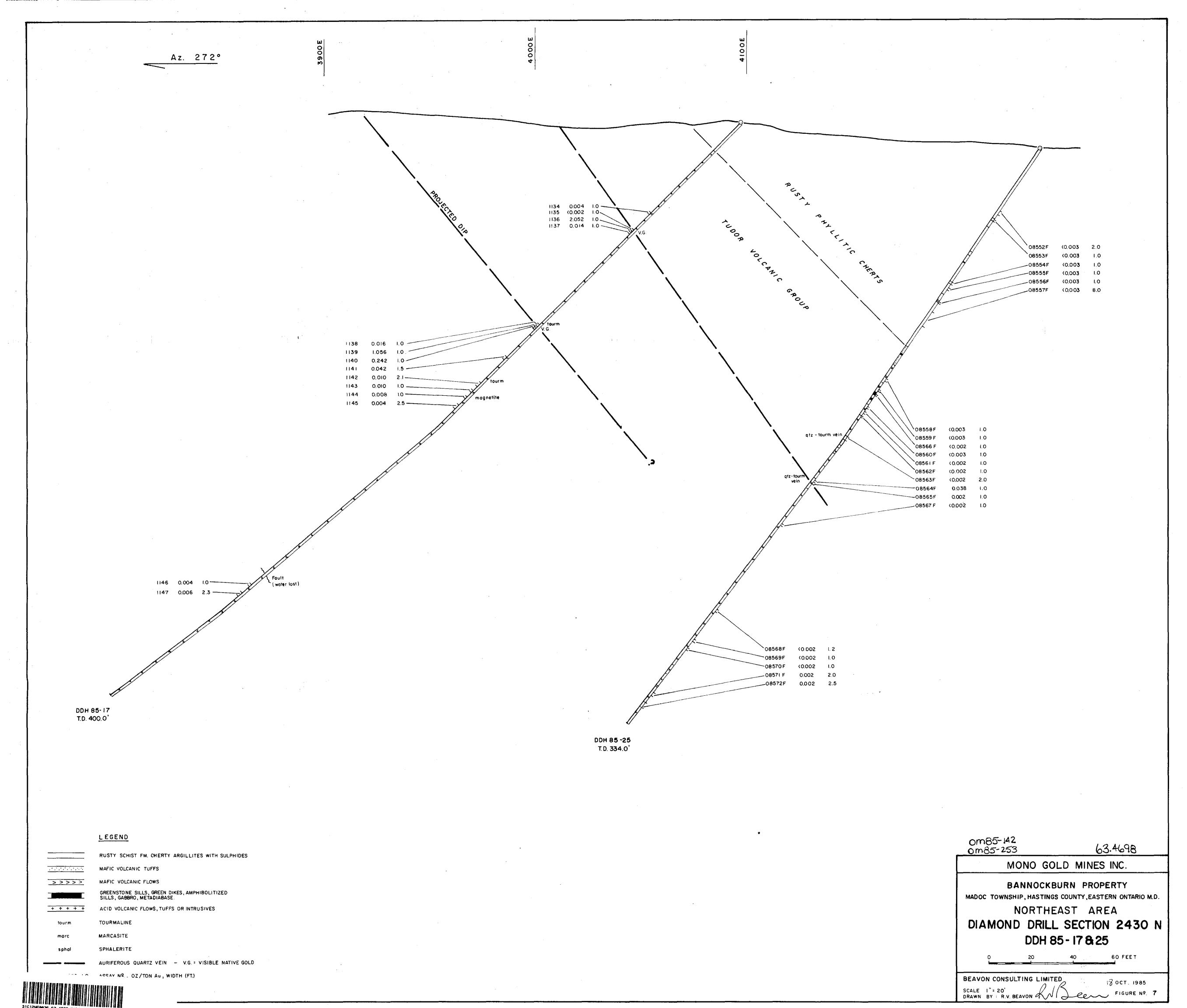
SPHALERITE

om85-142 om85-253

63.4698

60 FEET

MONO GOLD MINES INC.


BANNOCKBURN PROPERTY MADOC TOWNSHIP, HASTINGS COUNTY, EASTERN ONTARIO M.D.

NORTHEAST AREA

DIAMOND DRILL SECTION DDH 85-11 & 24

BEAVON CONSULTING LIMITED

ј§ост. 1985 SCALE I"= 20'
DRAWN BY : R.V. BEAVON KOLOWA FIGURE Nº. 6



Az. 235°

08573F (0.002 I.0 \ 08574F (0.002 1.0 (0.002 1.0 08591F -08**592F** (0.002 0.1 \$00,00 \_08593F \_08594F 0.042 2.2 0.002 1.0 -(0,002 1.8 atz,py, cpy, tourm INTRUSIVE OR EXTRUSIVE --- 08595F (0.002 1.0 ACID VOLCANIC UNIT 08587F 08588F 0.004 --- 08596F (0.002 1.0 08589F 0.008 1.0 08590 F 0.012 1.0 --DDH 85-26 T.D. 284.0 (0.002 1.0 lourm, marc 0.304 0.014 1.0 DDH 85-27

T.D. 300.0

LEGEND

RUSTY SCHIST FM. CHERTY ARGILLITES WITH SULPHIDES

MAFIC VOLCANIC TUFFS

MAFIC VOLCANIC FLOWS

GREENSTONE SILLS, GREEN DIKES, AMPHIBOLITIZED SILLS, GABBRO, METADIABASE.

ACID VOLCANIC FLOWS, TUFFS OR INTRUSIVES

>>>>

TOURMALINE

MARCASITE

AURIFEROUS QUARTZ VEIN - V.G. = VISIBLE NATIVE GOLD

08512 . 0.556 . 1.0 ASSAY Nº. , OZ/TON Au , WIDTH (FT.)

om85-142 om85-253

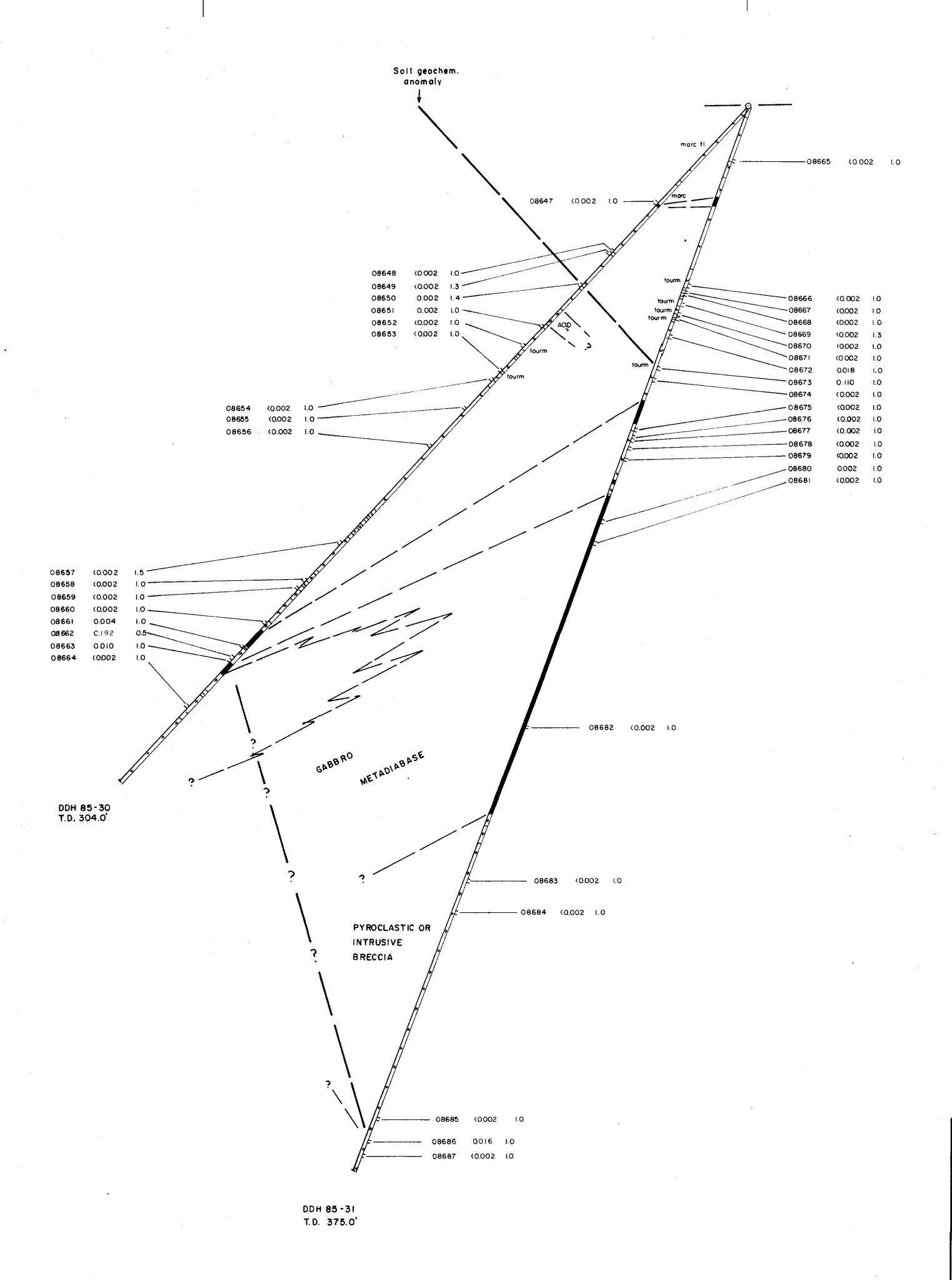
63.4698

MONO GOLD MINES INC.

BANNOCKBURN PROPERTY

MADOC TOWNSHIP, HASTINGS COUNTY, EASTERN ONTARIO M.D.

NORTHEAST AREA DIAMOND DRILL SECTION


DDH 85-26 & 27

BEAVON CONSULTING LIMITED 18 OCT. 1985

SCALE 1"= 20'
DRAWN BY R.V. BEAVON Ween FIGURE Nº. 8

Az. 235° -- 08629 (0.002 1.0 08614 0.004 1.1 (0.002 1.0 0.002 1.0 (0.002 1.0 08616 0.058 2.0 ----AMPHIBOLITIZED SILL < 0.002 (0.002 1.0-0.002 1.0 08621 08622 0.338 1.5 - 08637 0.008 1.0 08623 0.008 (0.002 1,0 (0.002 1.0 0.004 Q8625 (0.002 1.0 0.006 08627 0.008 15-20% po ACID VOLCANIC OR INTRUSIVE DDH 85-28 T.D. 324.0 ``08641 (0.002 ⟨0.002 (0.002 08646 (0.002 LEGEND 0m85-142 0m85-253 63.4698 RUSTY SCHIST FM. CHERTY ARGILLITES WITH SULPHIDES MONO GOLD MINES INC. MAFIC VOLCANIC TUFFS MAFIC VOLCANIC FLOWS BANNOCKBURN PROPERTY GREENSTONE SILLS, GREEN DIKES, AMPHIBOLITIZED SILLS, GABBRO, METADIABASE. MADOC TOWNSHIP, HASTINGS COUNTY, EASTERN ONTARIO M.D. DDH 85 - 29 T. D. 364.0 NORTHEAST AREA ACID VOLCANIC FLOWS, TUFFS OR INTRUSIVES DIAMOND DRILL SECTION TOURMALINE MARCASITE DDH 85-28 & 29 SPHALERITE AURIFEROUS QUARTZ VEIN - V.G. = VISIBLE NATIVE GOLD 00510 0 550 10 10044 NO 07 (TOW 1 1977TH (FT.) BEAVON CONSULTING LIMITED (8 OCT. 1985 SCALE I"= 20'
DRAWN BY R.V. BEAVON KN Jeen FIGURE Nº. 9

Az. 235°



LEGEND

RUSTY SCHIST FM. CHERTY ARGILLITES WITH SULPHIDES

MAFIC VOLCANIC FLOWS

MAFIC VOLCANIC TUFFS

GREENSTONE SILLS, GREEN DIKES, AMPHIBOLITIZED SILLS, GABBRO, METADIABASE.

ACID VOLCANIC FLOWS, TUFFS OR INTRUSIVES

TOURMALINE

AURIFEROUS QUARTZ VEIN - V.G. = VISIBLE NATIVE GOLD

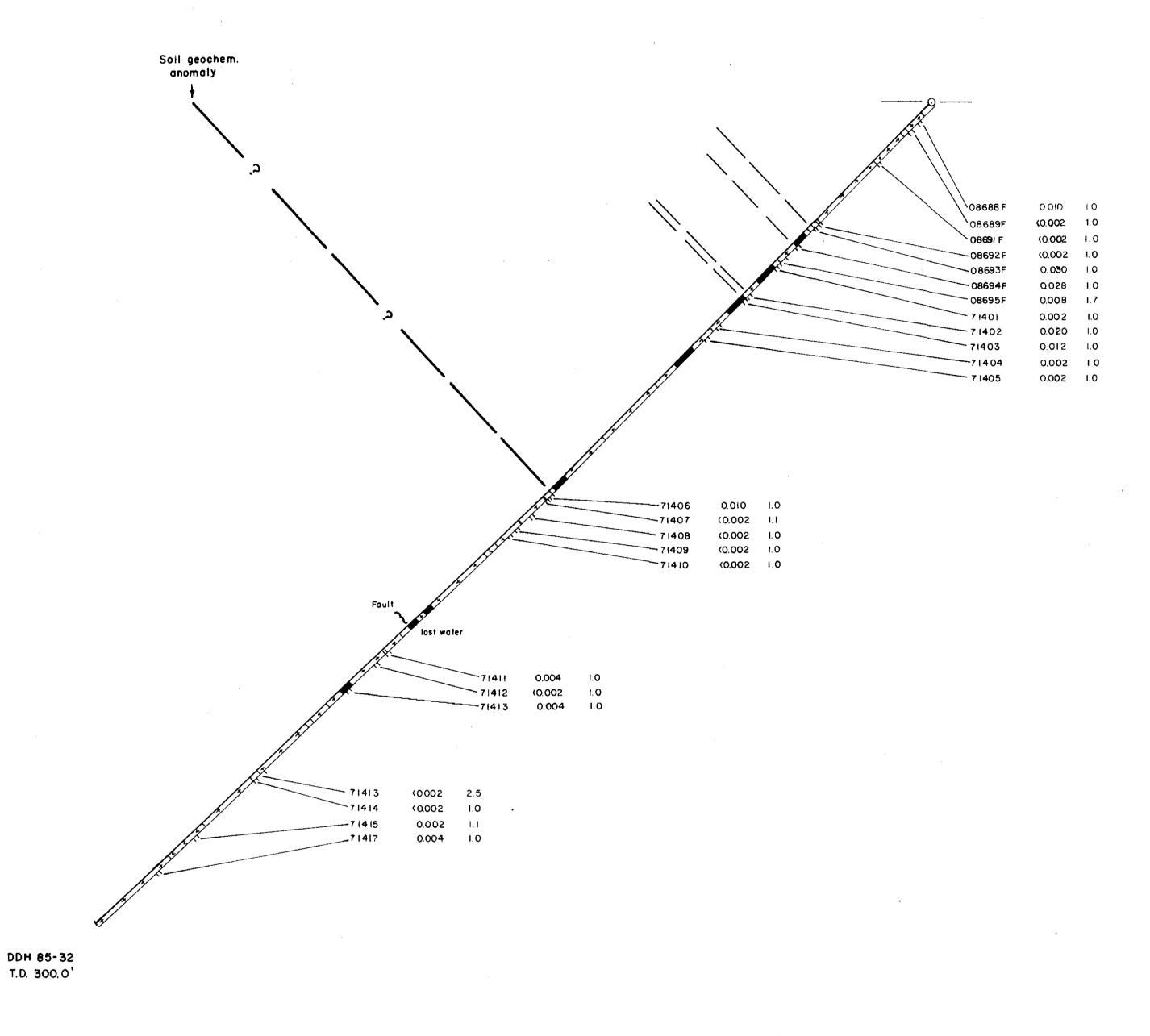
08512, 0.556, 1.0 ASSAY Nº., 0Z/TON Au, WIDTH (FT.)

MARCASITE

om85-142 om85-253

63.4698

MONO GOLD MINES INC.


BANNOCKBURN PROPERTY MADOC TOWNSHIP, HASTINGS COUNTY, EASTERN ONTARIO M.D.

> NORTHEAST AREA DIAMOND DRILL SECTION DDH 85-30&31

60 FEET

BEAVON CONSULTING LIMITED SCALE I" = 20'
DRAWN BY: R.V. BEAVON A Sear

19 OCT. 1985 FIGURE Nº. 10



LEGEND

RUSTY SCHIST FM. CHERTY ARGILLITES WITH SULPHIDES

MAFIC VOLCANIC TUFFS

MAFIC VOLCANIC FLOWS

GREENSTONE SILLS, GREEN DIKES, AMPHIBOLITIZED SILLS, GABBRO, METADIABASE.

ACID VOLCANIC FLOWS, TUFFS OR INTRUSIVES

++++ TOURMALINE

MARCASITE SPHALERITE

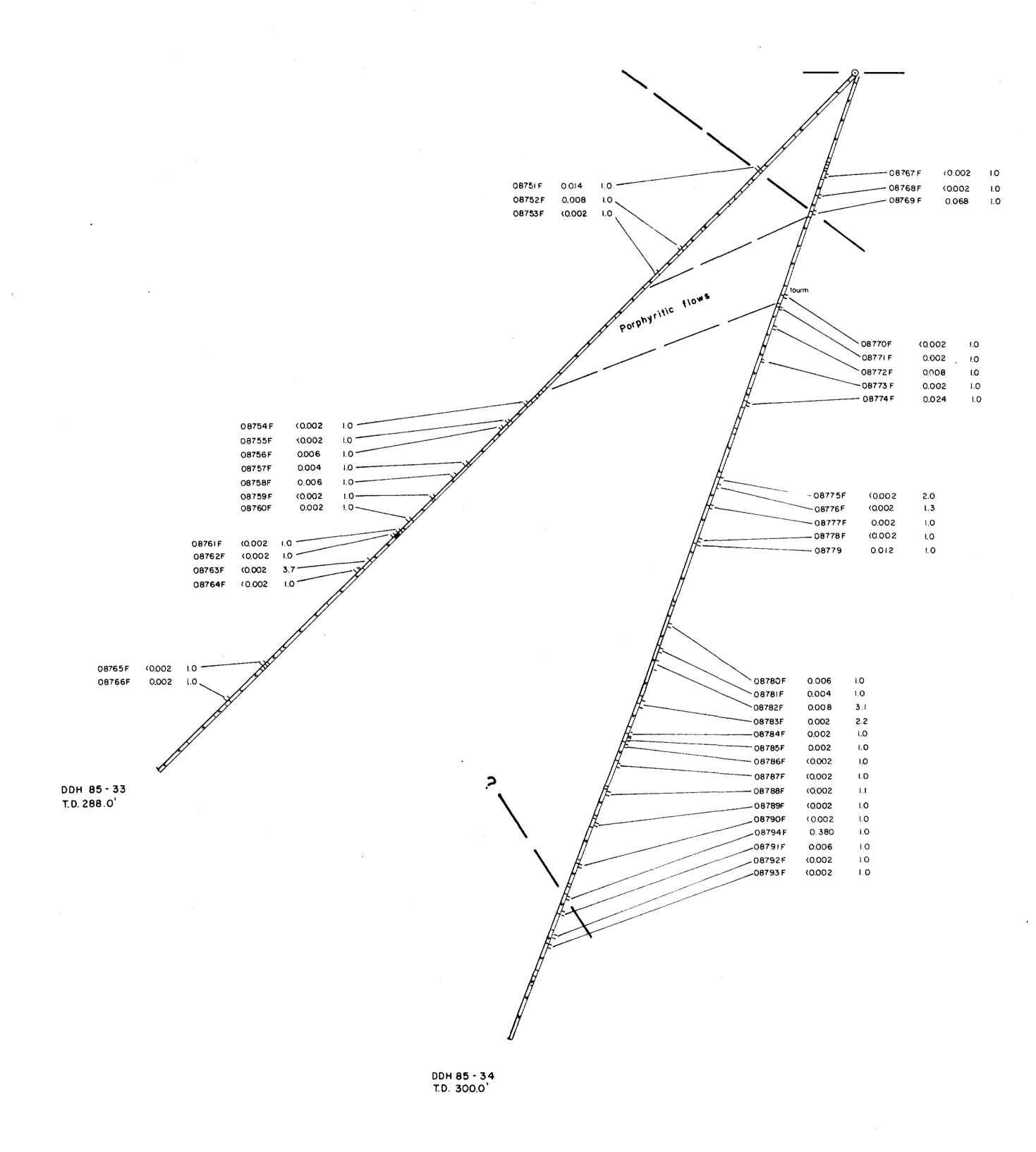
AURIFEROUS QUARTZ VEIN - V.G. = VISIBLE NATIVE GOLD

TH (FT.)

Om85-142 om85-253

63.4698

MONO GOLD MINES INC.


BANNOCKBURN PROPERTY MADOC TOWNSHIP, HASTINGS COUNTY, EASTERN ONTARIO M.D.

NORTHEAST AREA

DIAMOND DRILL SECTION DDH 85-32

BEAVON CONSULTING LIMITED

18 ост. 1985 SCALE I"= 20'
DRAWN BY : R.V. BEAVON Wile FIGURE Nº. 11



LEGEND

RUSTY SCHIST FM. CHERTY ARGILLITES WITH SULPHIDES

MAFIC VOLCANIC TUFFS

MAFIC VOLCANIC FLOWS

GREENSTONE SILLS, GREEN DIKES, AMPHIBOLITIZED SILLS, GABBRO, METADIABASE.

+ + + + + ACID VOLCANIC FLOWS, TUFFS OR INTRUSIVES

TOURMALINE tourm

marc MARCASITE SPHALERITE

AURIFEROUS QUARTZ VEIN - V.G. = VISIBLE NATIVE GOLD

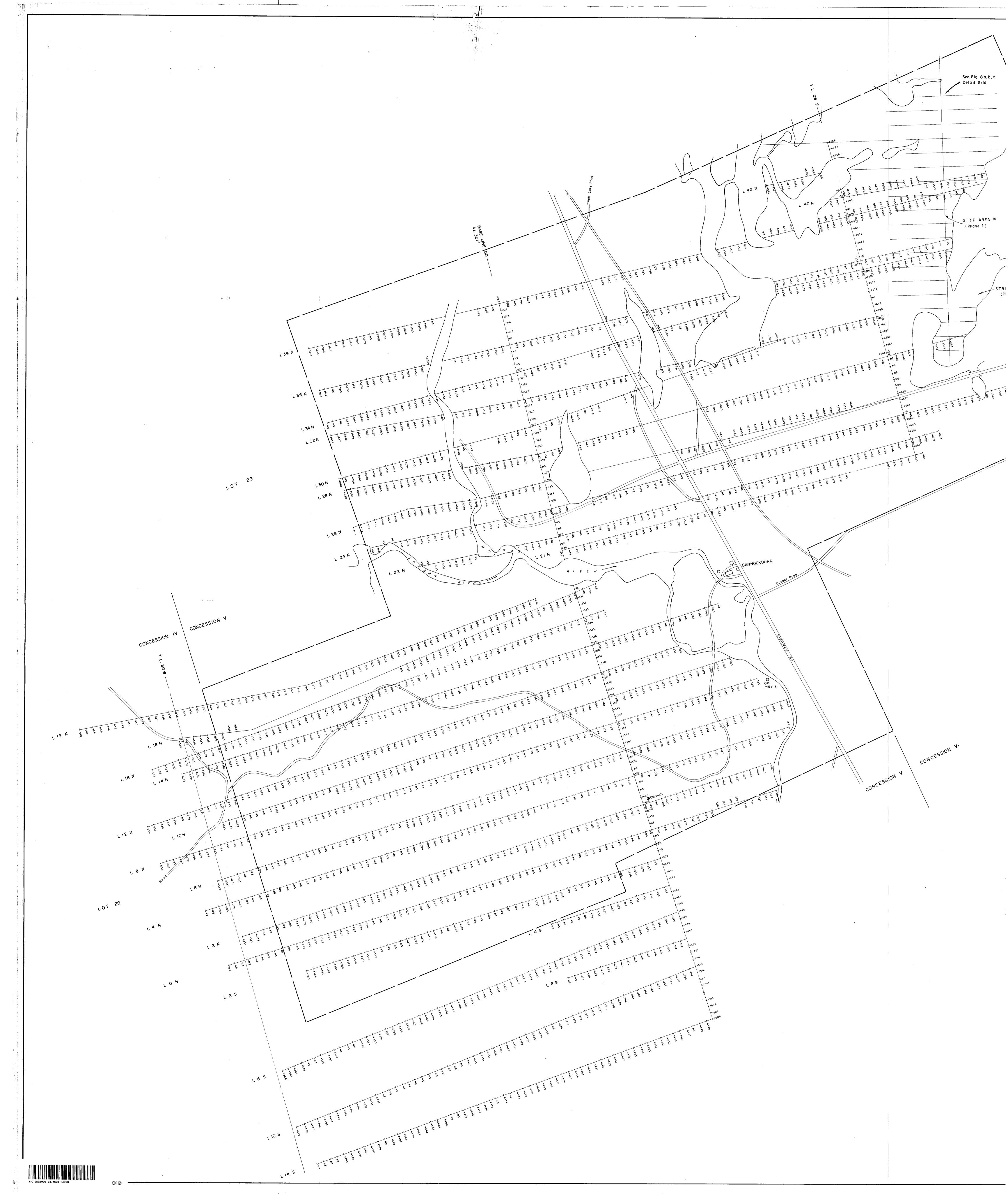
ASSAY Nº. . OZ/TON Au , WIDTH (FT.)

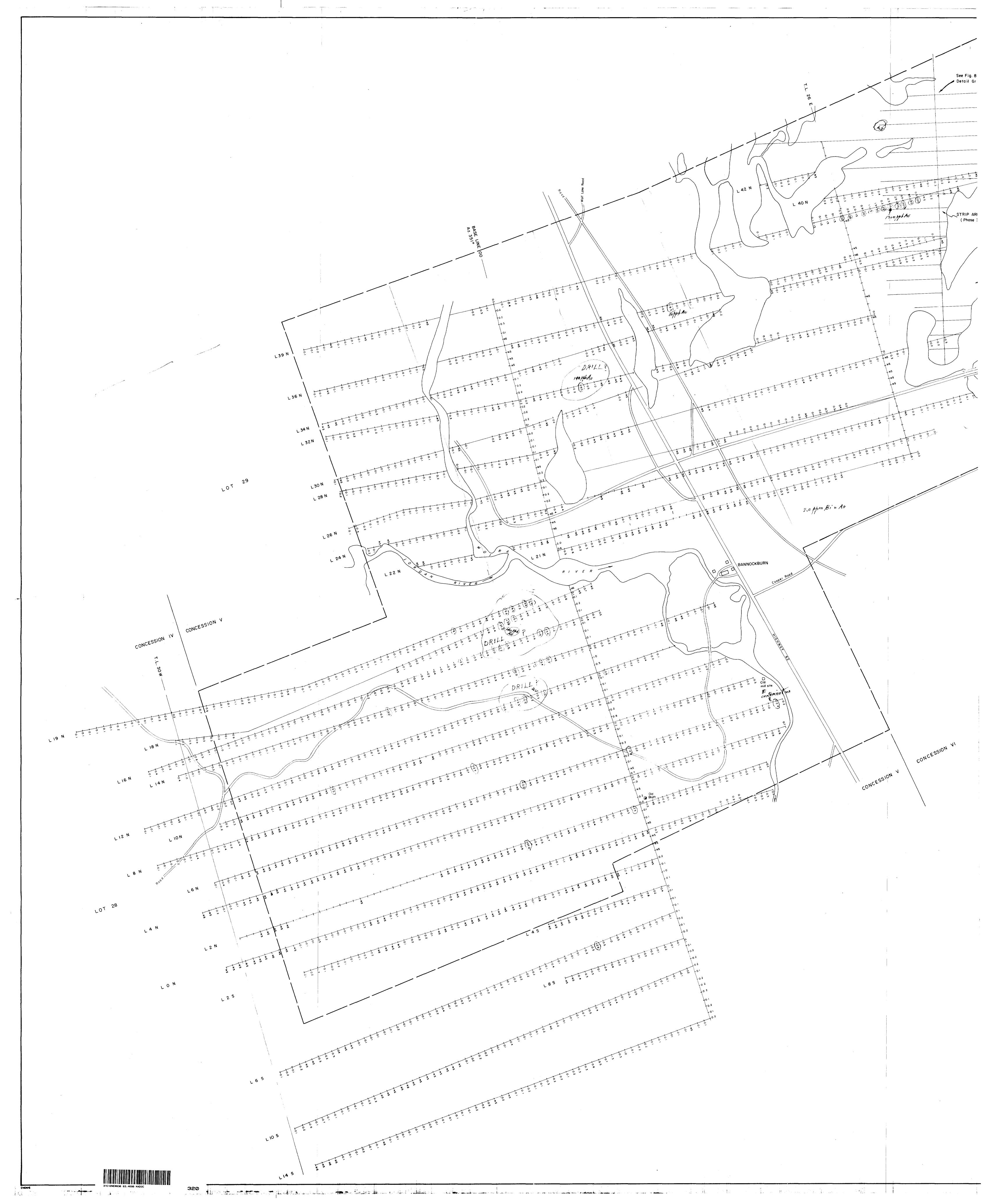
>>>>

om85-142 om85-253

63.4698

MONO GOLD MINES INC.


BANNOCKBURN PROPERTY MADOC TOWNSHIP, HASTINGS COUNTY, EASTERN ONTARIO M.D.

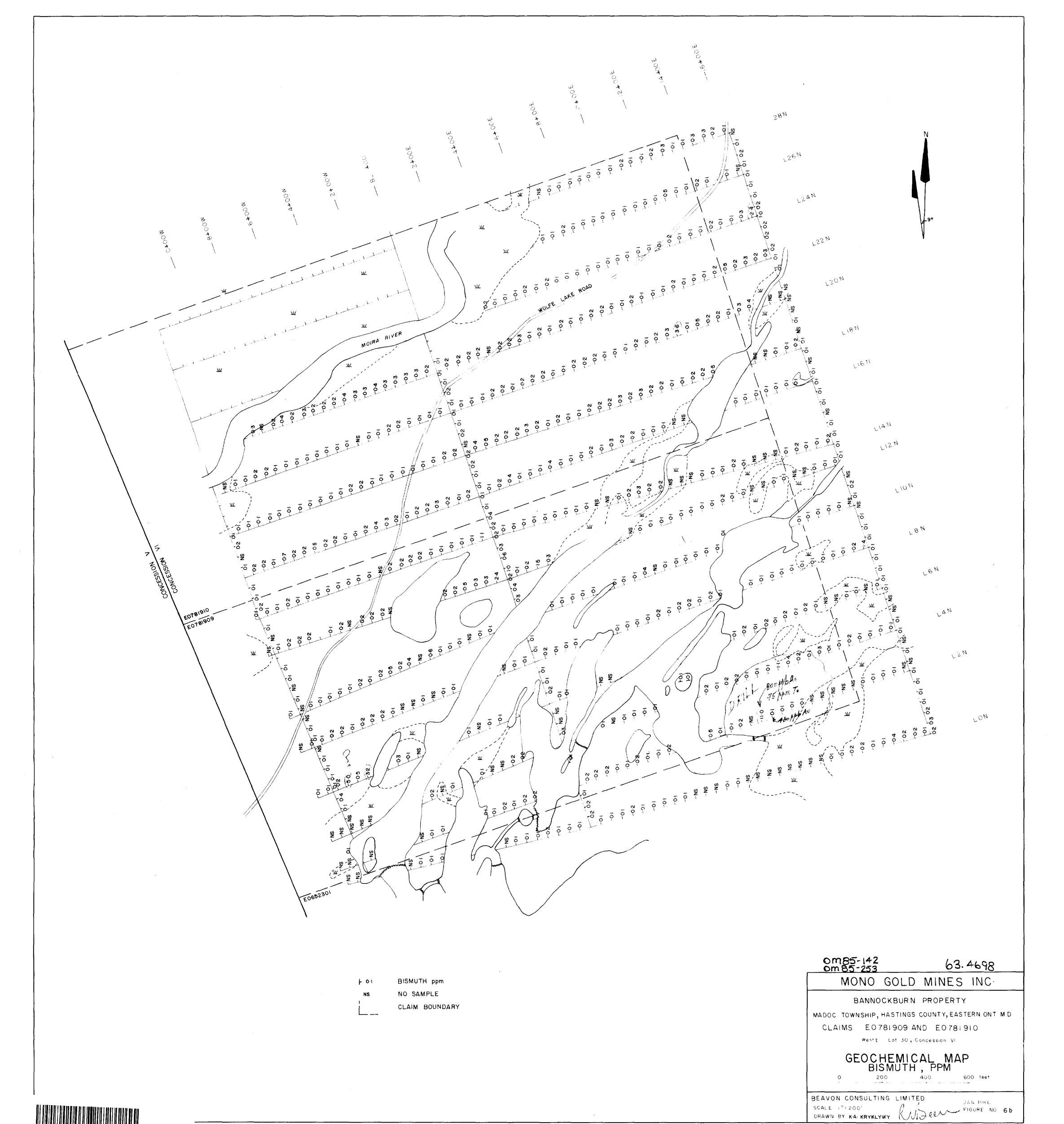

> NORTHEAST AREA DIAMOND DRILL SECTION

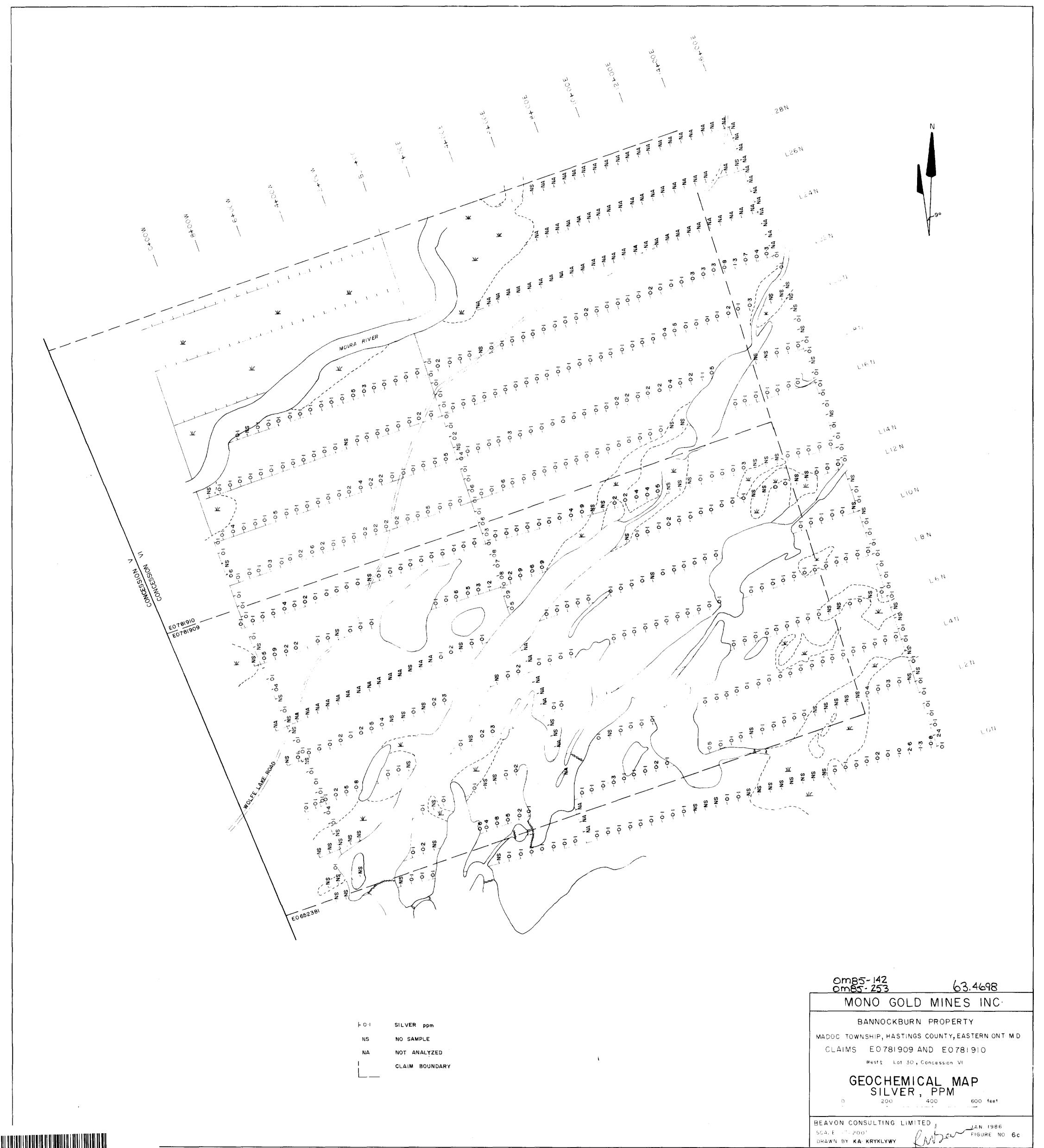
DDH 85 - 33 & 34

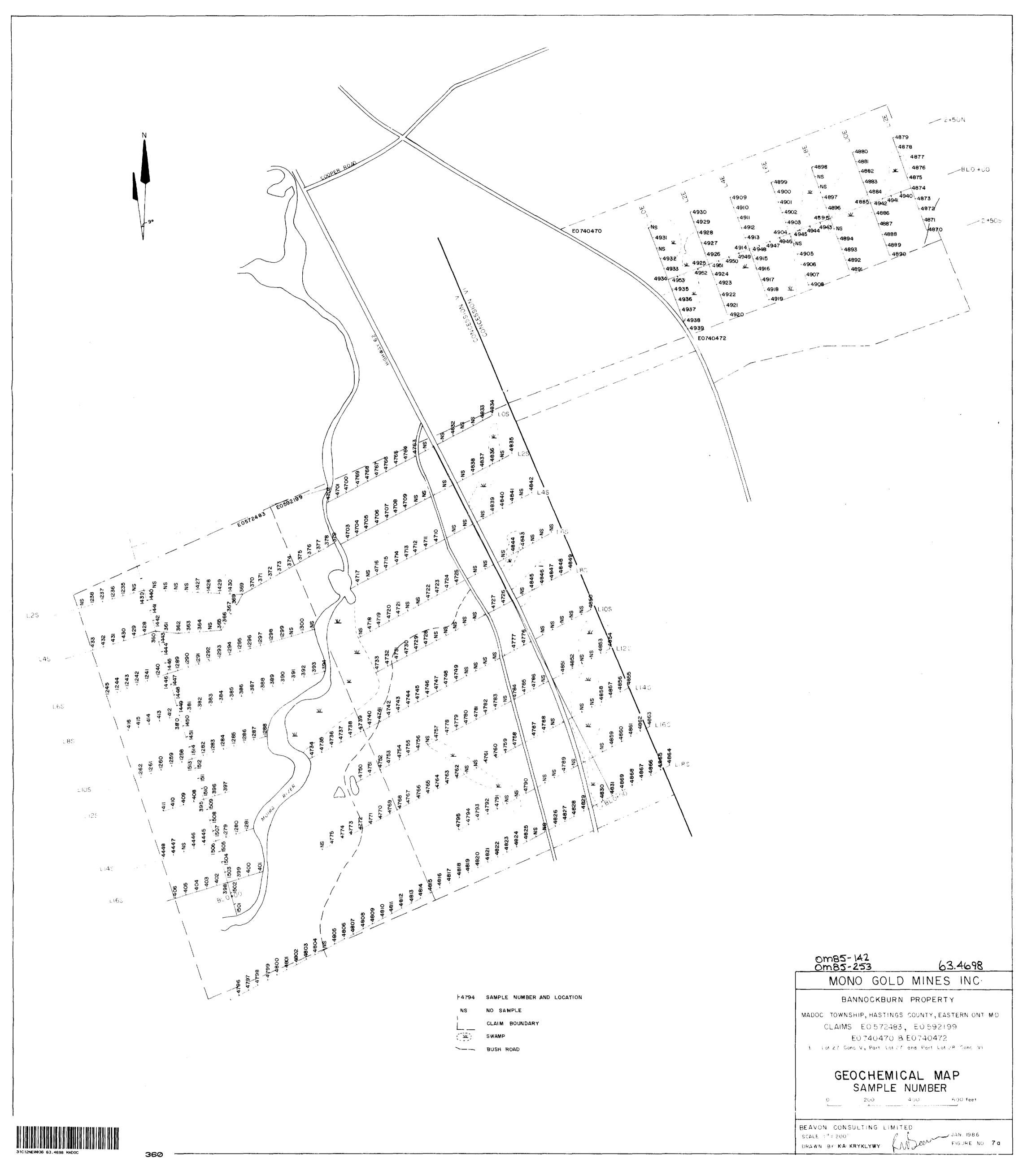
BEAVON CONSULTING LIMITED SCALE I" = 20' DRAWN BY : R.V. BEAVON

18 OCT. 1985 FIGURE Nº. 12

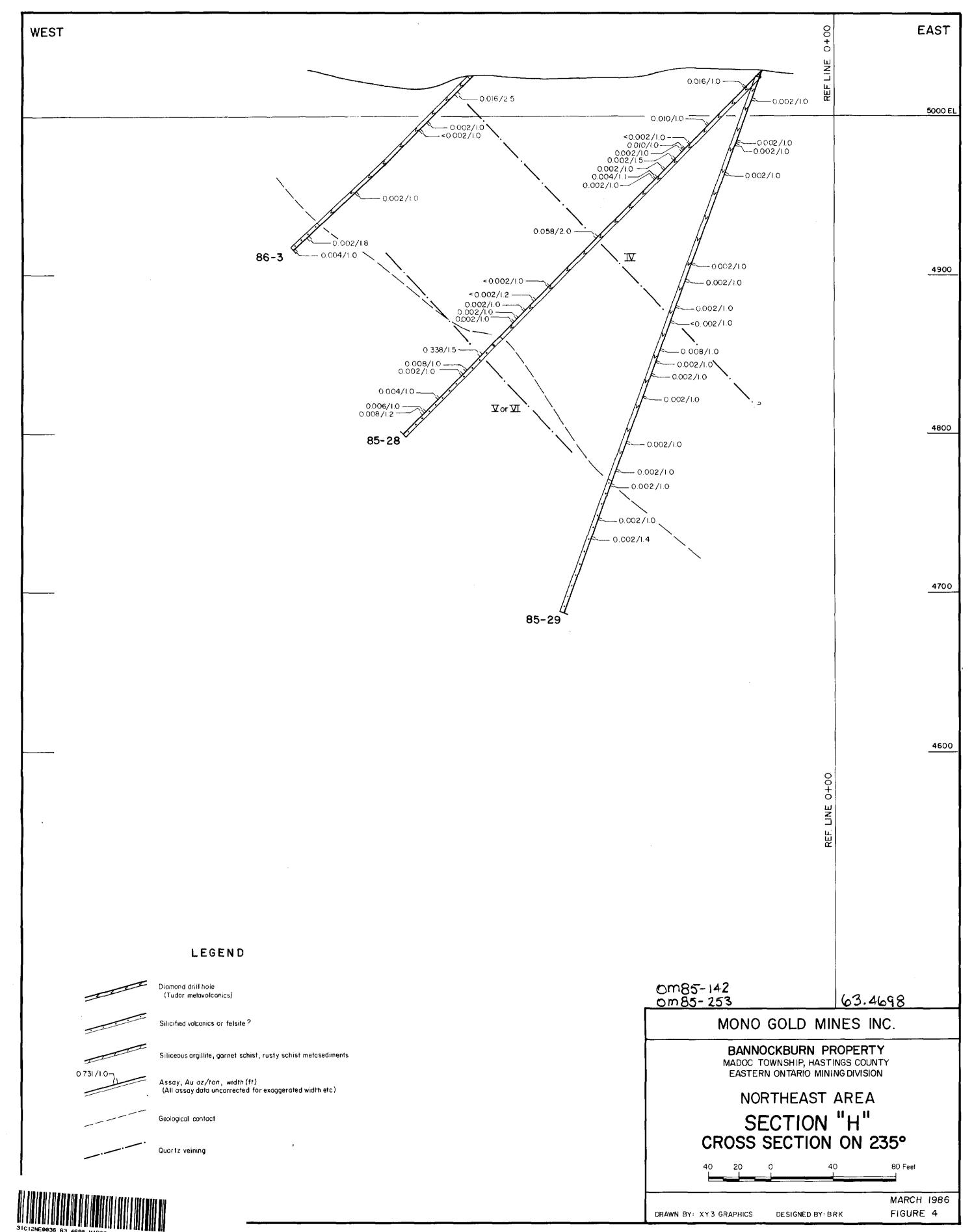


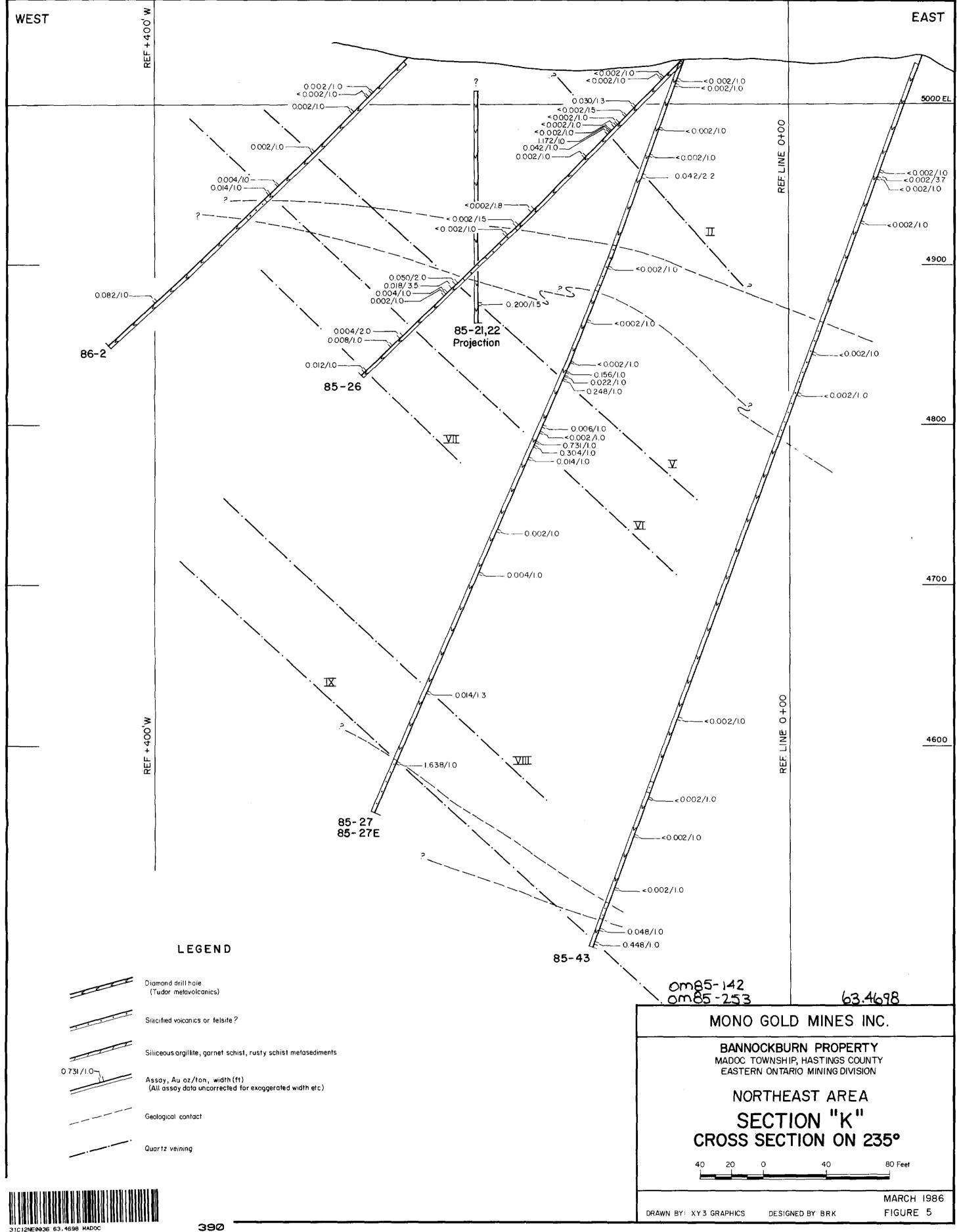


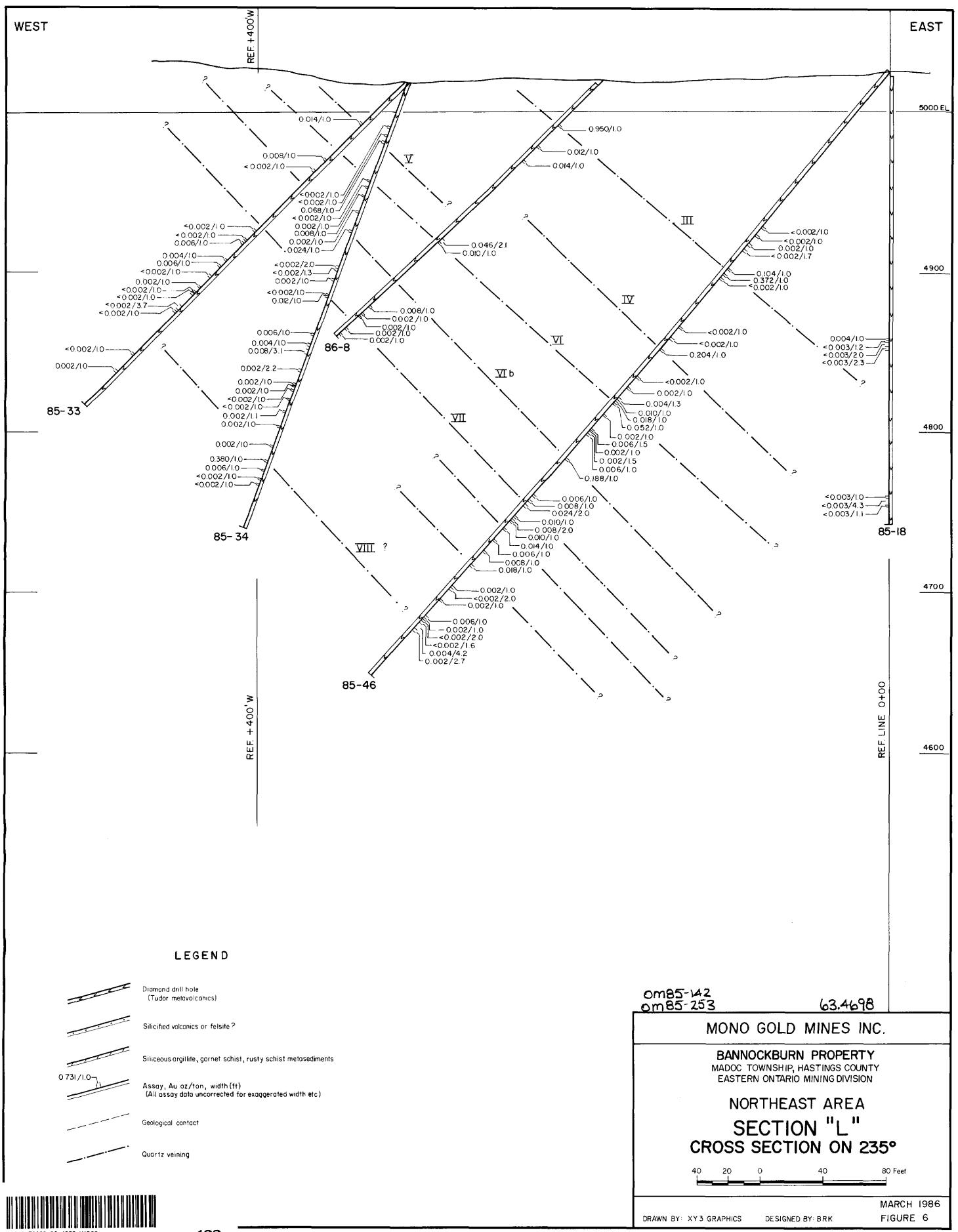


<sup>r</sup> 8 M ren E0781910 LAN rs M LON 0m85-142 0m85-253 63.4696 MONO GOLD MINES INC. BANNOCKBURN PROPERTY SAMPLE LOCATION AND NUMBER MADOC TOWNSHIP, HASTINGS COUNTY, EASTERN ONT MD NO SAMPLE CLAIMS E0781909 AND E0781910 CLAIM BOUNDARY West Lot 30, Concession VI GEOCHEMICAL MAP SAMPLE NUMBER

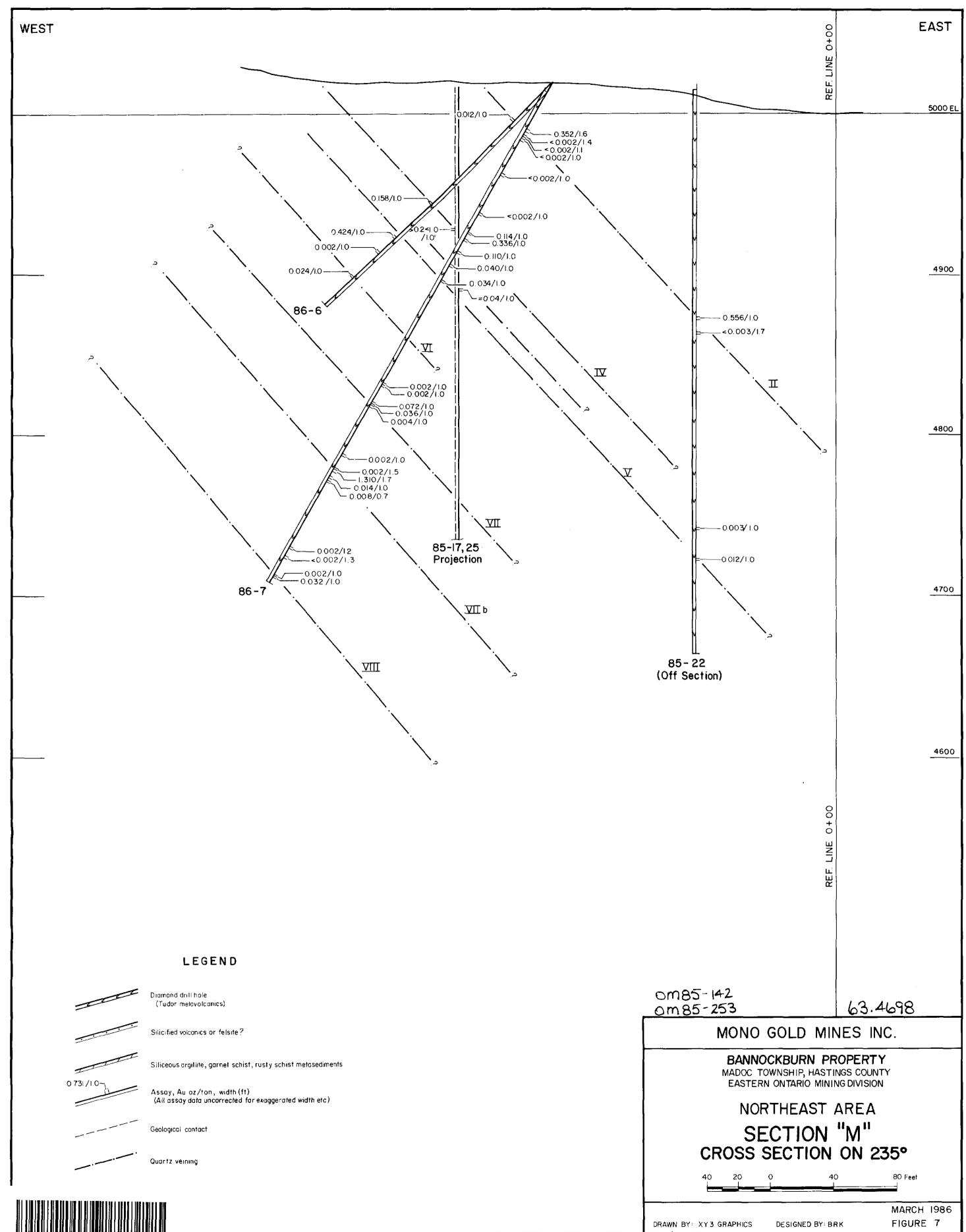

BEAVON CONSULTING LIMITED.

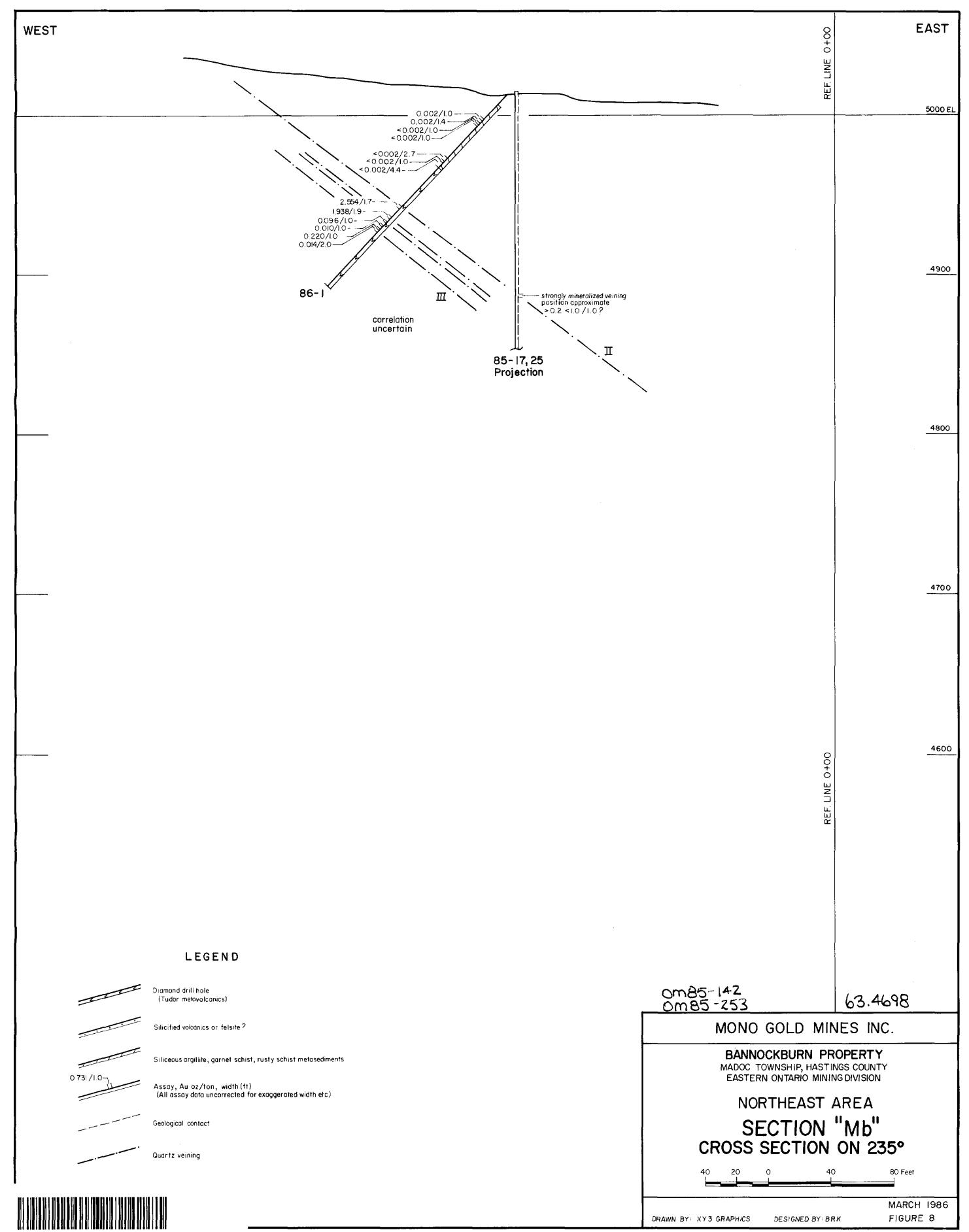
 $\mathsf{GCALE} = \{ \begin{smallmatrix} n & & i \end{smallmatrix} \cap \mathsf{G}^{\mathsf{T}} =$ 


DRAWN BY KA KRYKLYWY



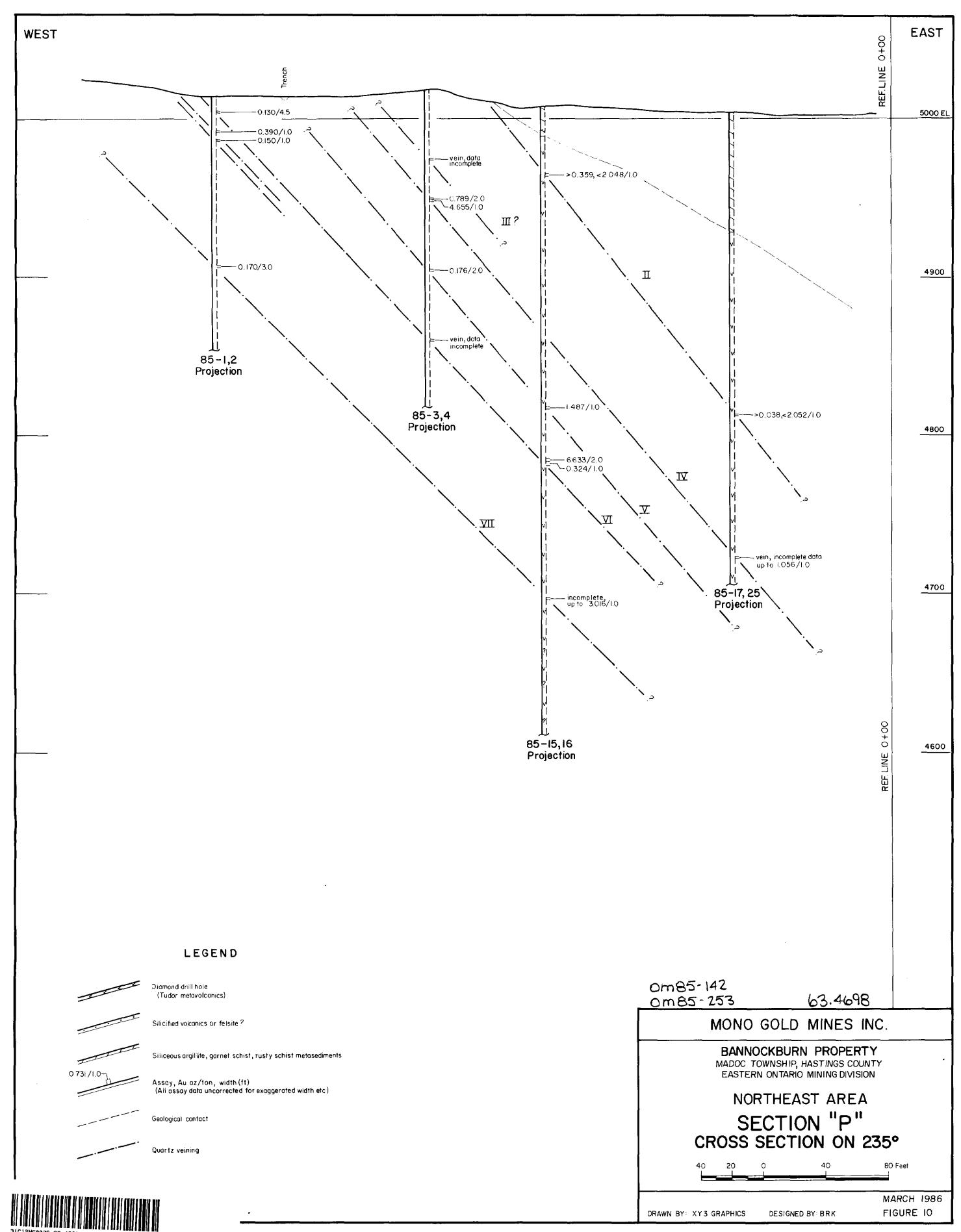



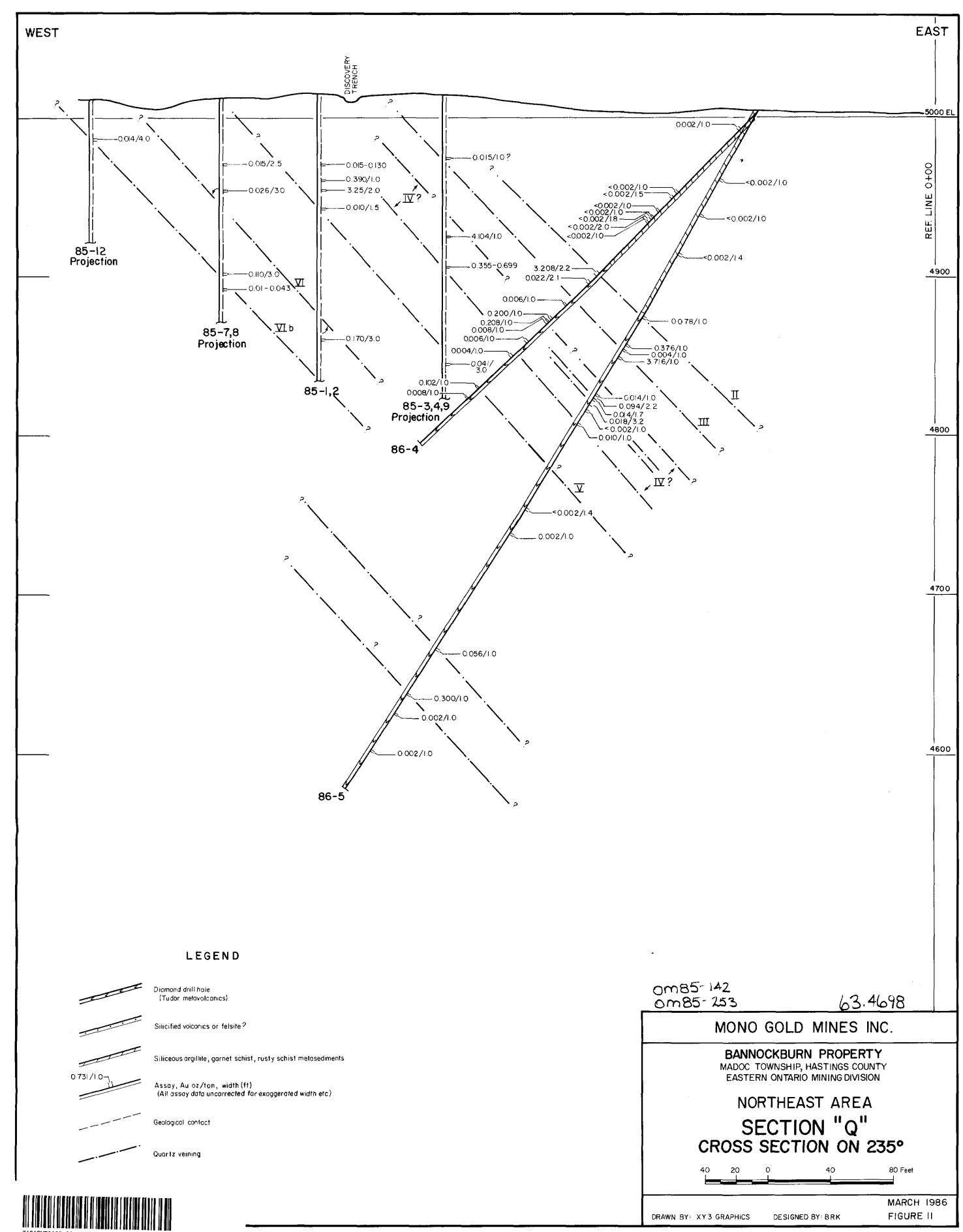



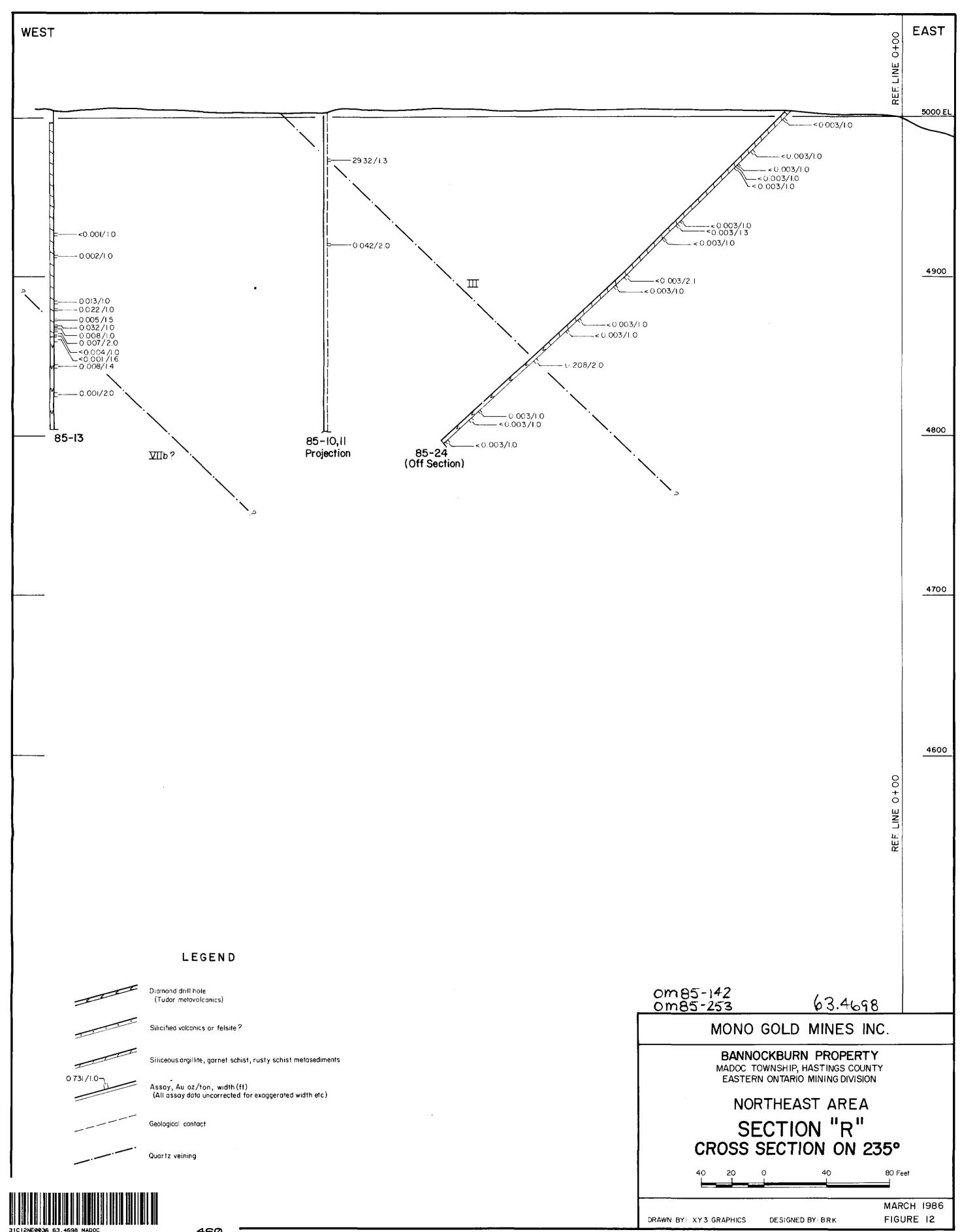



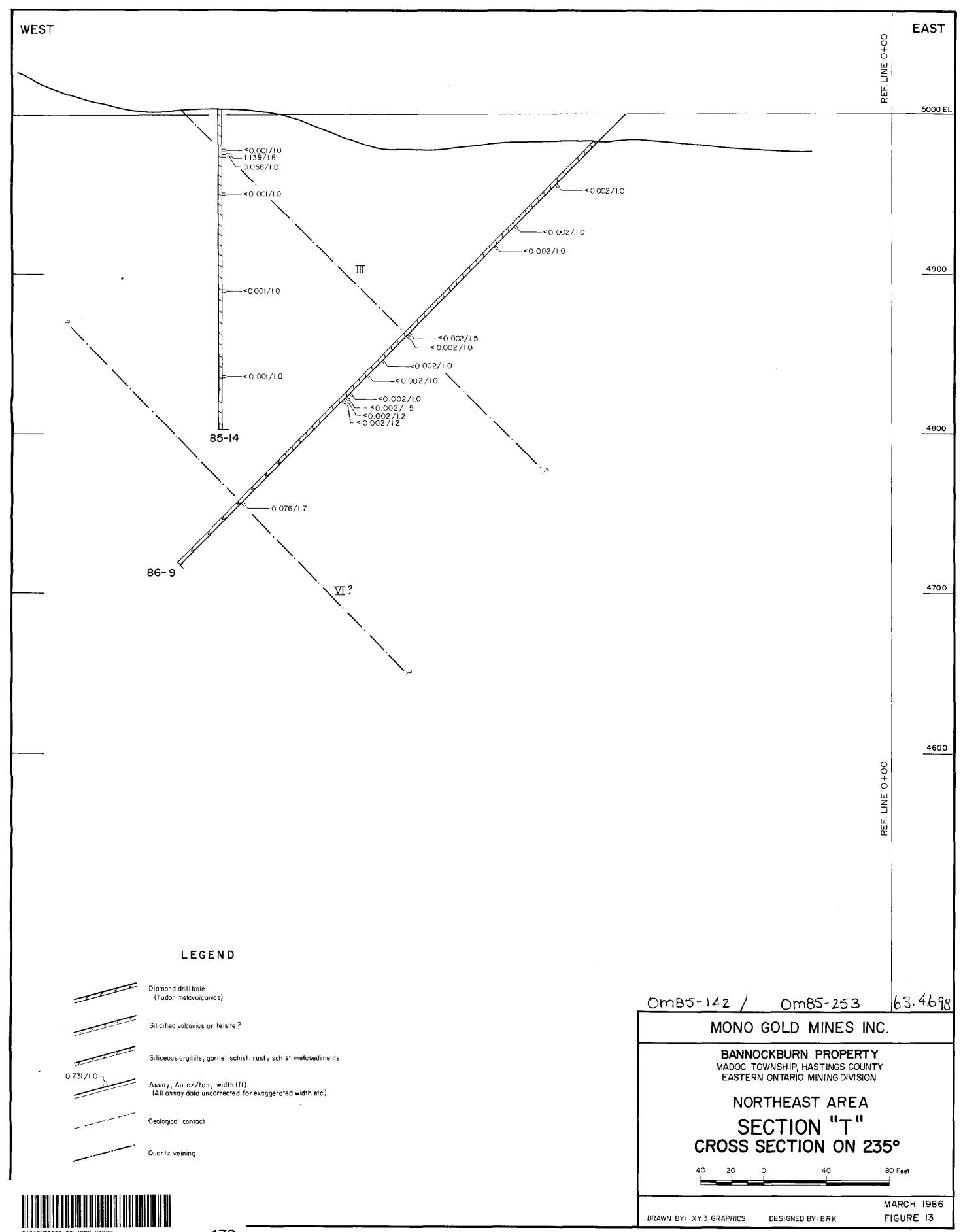


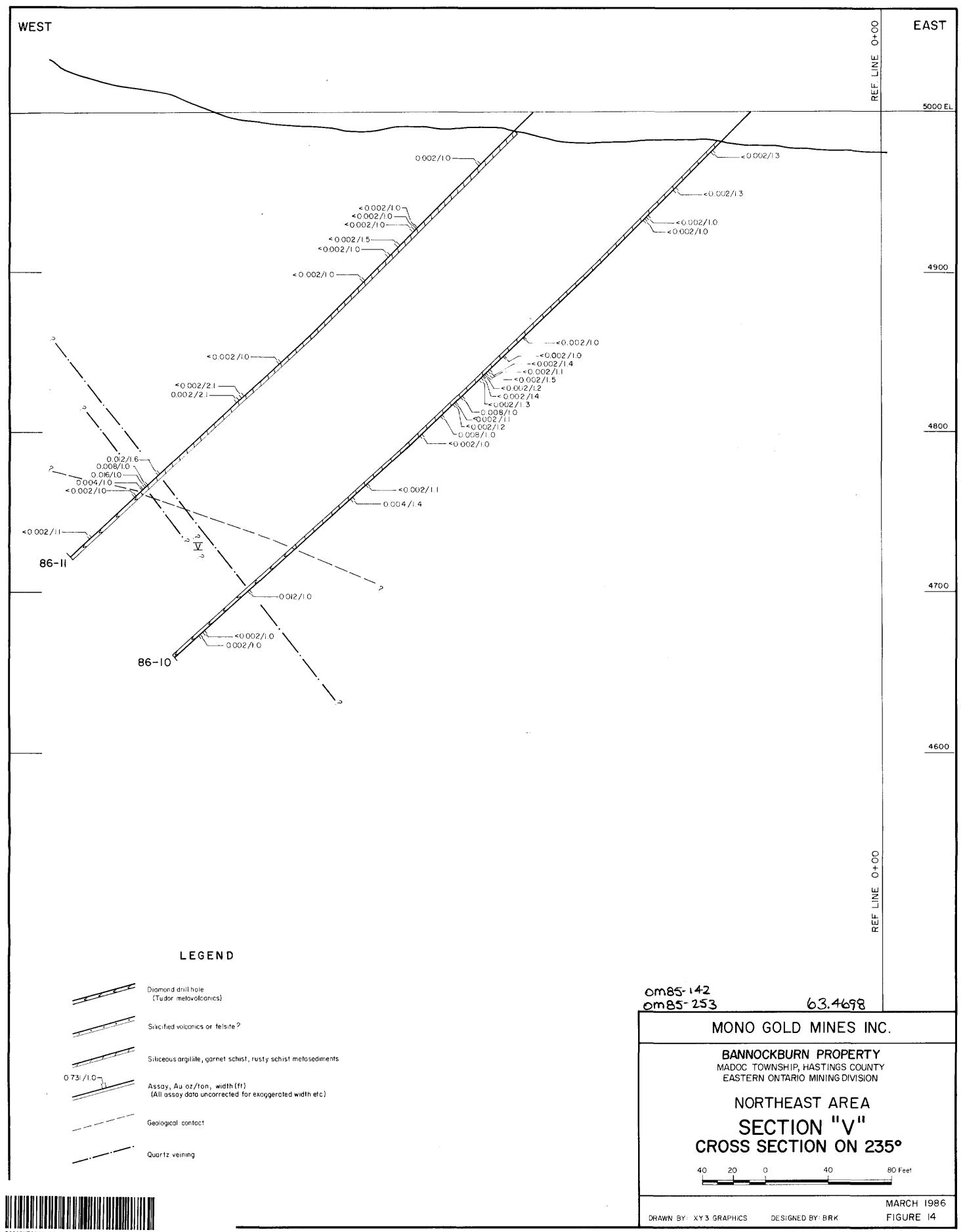


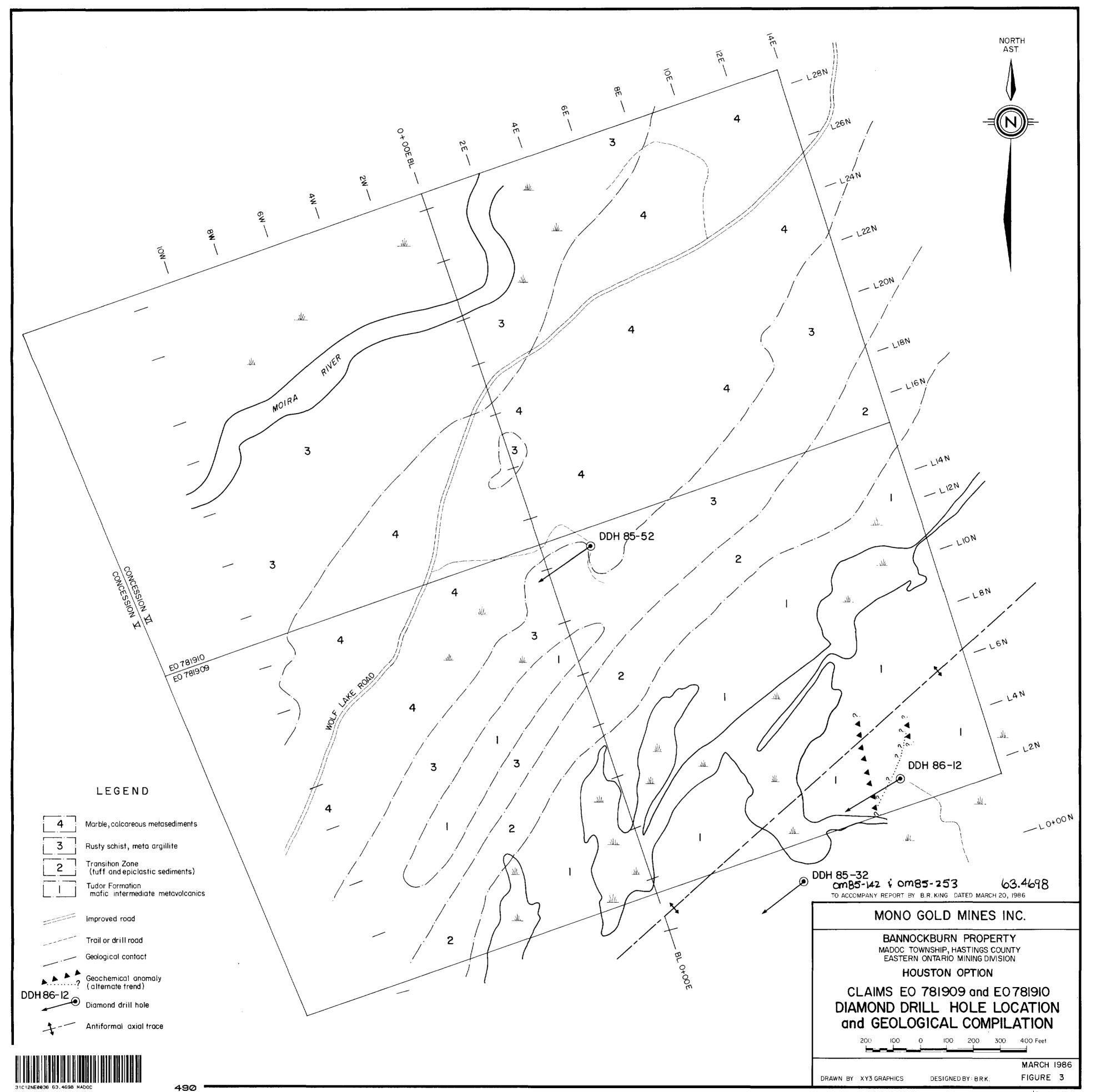


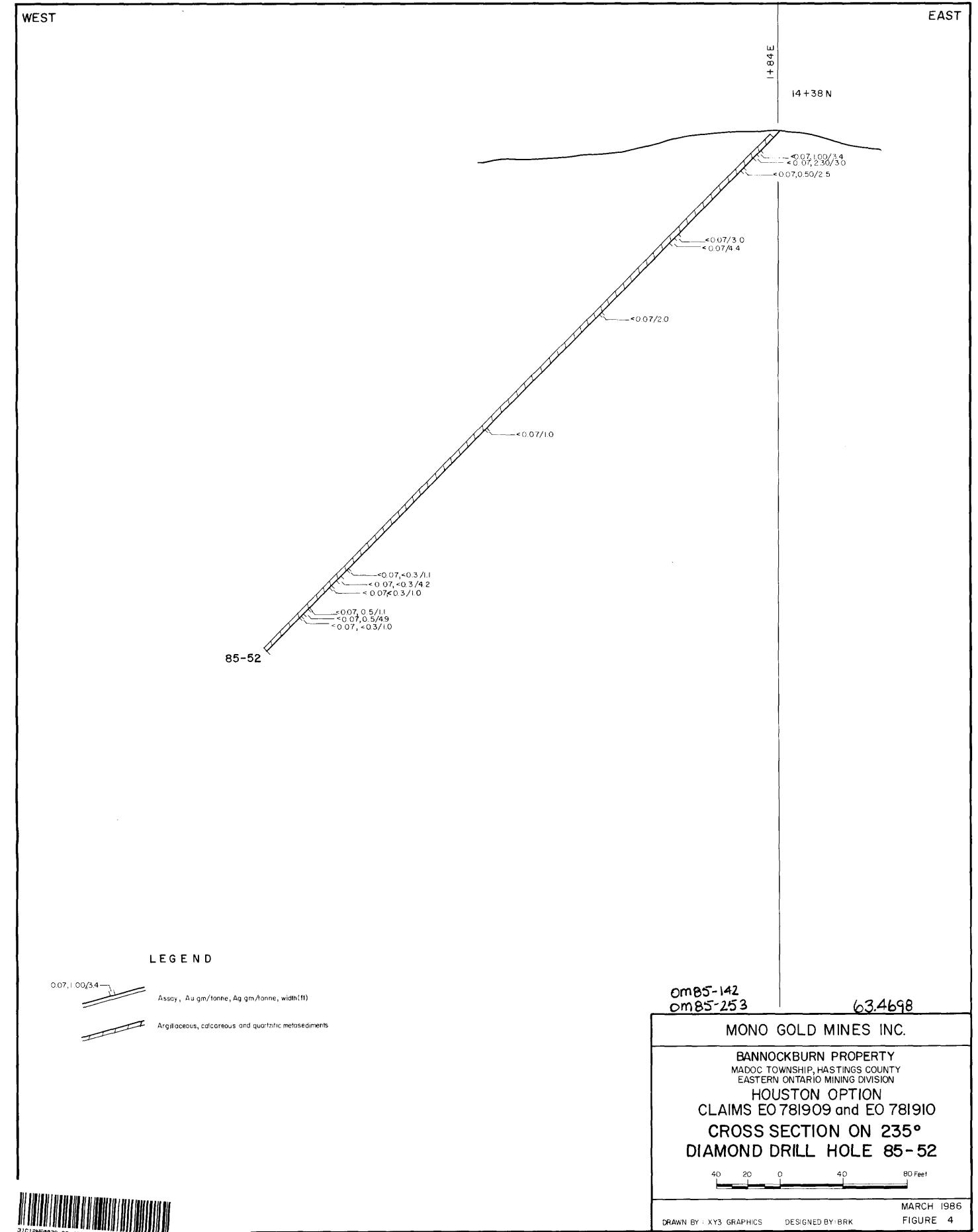














**EAST** WEST 10 + 00 E BISMUTH ▲450 ppb Au ▲800 ppb Au ----<0.002/1.0 --<0.002/1.0 <0.002/2.7 -<0.002/1.8 -<0.002/2.5 - 0.008/1.8 0.1\800.0 - 0.070/1.3 Dip of veining uncertain -0.020/1.0 - 0.026/1.0 0.014/1.0 <0.002/I.I 0.780/13/ -0.00 -0.002/1.c -0.002/2.0 -0.002/2.6 -0.002/3.3 -0.002/3.6 -0.002/3.6 -0.002/2.4 -0.002/2.4 -0.002/2.4 /Z0014/17 /4<0.002/10 <0.002/1.4 <0.002/1.0 <0.002/1.9 < 0.002/1.5 - 0.004/1.0 86-12 10 +00 E

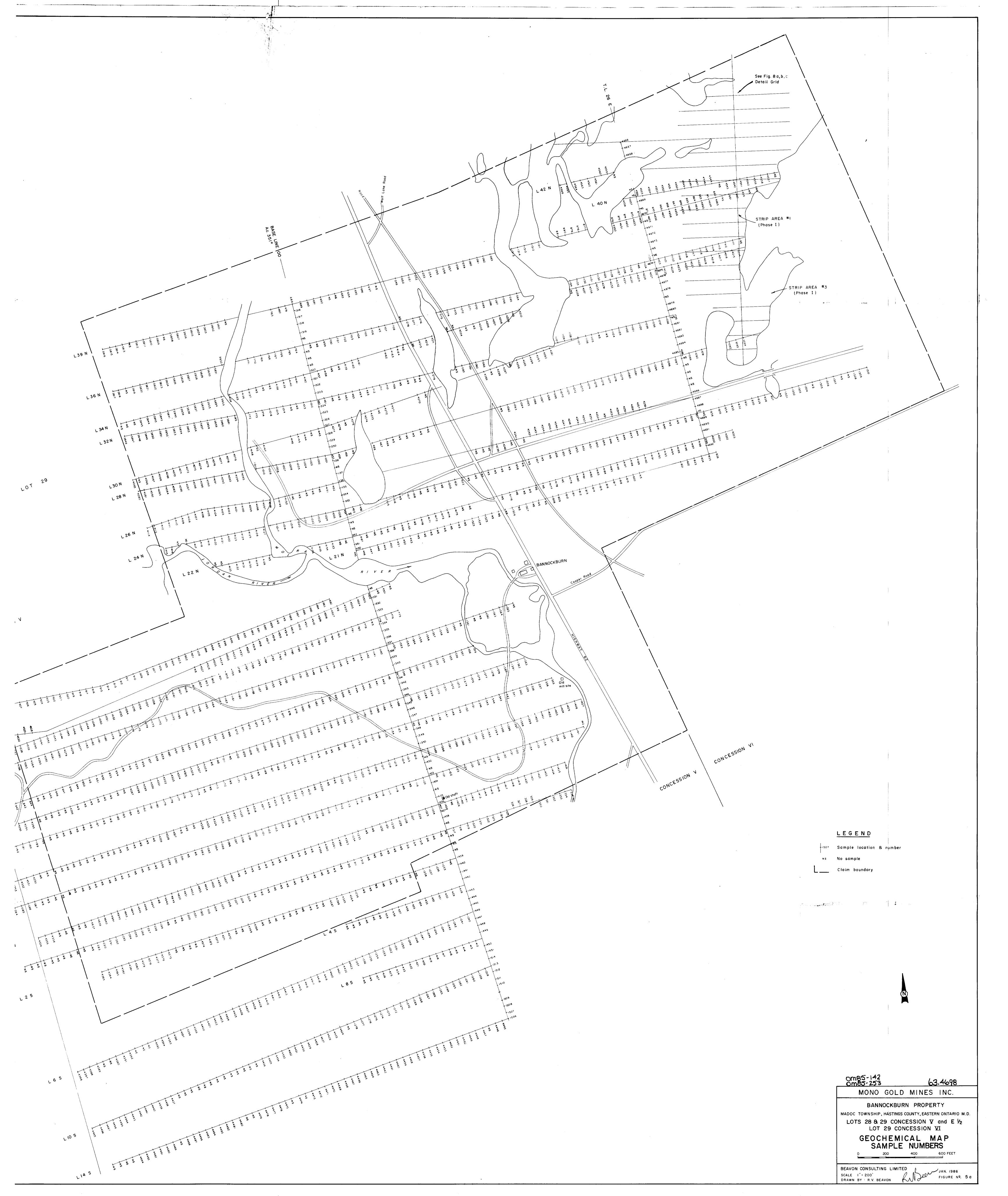
## LEGEND

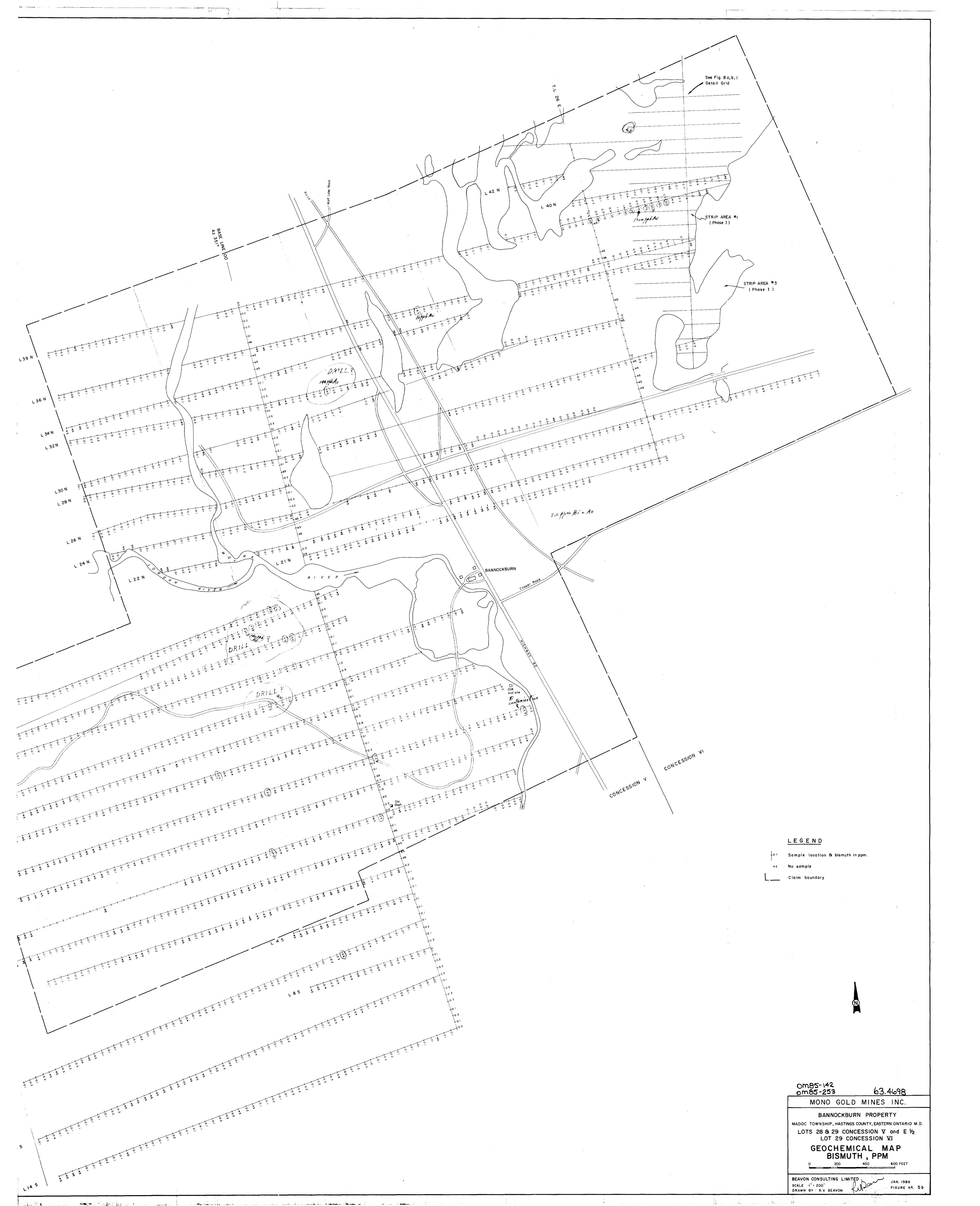
Assay, Au oz/ton, width(ft) Tudor metavolcanic (includes altered and hybrid types) Shear / breccia zones Quartz veining (mineralized) Gold-in-soil geochemical anomaly in ppb. Geochemical profile of bismuth in soils

om 85-142 om 85-253

63.4698

MONO GOLD MINES INC.


BANNOCKBURN PROPERTY
MADOC TOWNSHIP, HASTINGS COUNTY
EASTERN ONTARIO MINING DIVISION HOUSTON OPTION CLAIMS E0781909 and E0 781910


CROSS SECTION ON 239° DIAMOND DRILL HOLE 86-12

80 Feet

DRAWN BY: XY3 GRAPHICS DESIGNED BY: BRK

MARCH 1986 FIGURE 5



