

C15NW0007 2.13701 CLARENDON

010

2.13701

GEOLOGY OF THE COOK PROPERTY

LOT 23, CONCESSION IX, CLARENDON TOWNSHIP SOUTHEASTERN ONTARIO

RECEIVED

DEC 13 1990

ELIZABETH SHERLOCK

MINING LANDS SECTION

k

ROSS SHERLOCK

SEPTEMBER 10 OCTOBER, 1990

SUMMARY

A program of geological mapping was conducted at the Cook Property between September 9-14, 1990. The Cook Property is located at lot 23, concession IX, Clarendon Township, Hastings County, Southeastern Ontario. Significant gold mineralization (best assay 0.2 opt Au) was found associated with quartz veining within a series of subparallel feldspar porphyry diorite dikes.

INTRODUCTION

LOCATION

During the period between September 9-14 a program of survey control and geological mapping was conducted at the Cook Property. The Cook Property is a gold prospect in south eastern Ontario, consisting of two claims (1091955 & 1091952) located in lot 23, concession IX Clarendon Township, Hastings County. The work was conducted by Elizabeth and Ross Sherlock.

ACCESS

The property can be reached by travelling east from Fernleigh along the paved county road 506, approximately 3 km. At this point a gravel road heads south . Approximately 800 m along this road the # 1 post of claim 1091952 lies on the western side of the road.

SURVEY CONTROL

During the period September 9-10 grid lines were established over the Cook Property. The lines were marked with pin flags which were latter retrieved at the completion of the project. The survey was completed using chain and compass from fixed locations. Each line was back referenced to the previous line at both the north and south boundaries. The grid lines were run approximately north south, spaced 100 m apart with stations flagged at 25 m intervals along each line. The grid lines are numbered 1 to 12 sequentially from the western margin to the eastern margin respectively.

GEOLOGY

REGIONAL GEOLOGY

The regional geology in the Ardoch area has been well documented by Pauk, (1981) only a brief description is given here. The Cook Property lies with the Central Metasedimentary Belt of the Grenville Province. Metavolcanics and metasediments of the Grenville Supergroup are the dominate rock types in the area. The area has been folded into a series of northeast trending antiform/synforms and metamorphosed to amphibolite facies.

COOK PROPERTY

The Cook Property is underlain by dominantly calcareous, and dolomitic metasediments interlayered with mafic tuffs. During the geological mapping program the authors were able to distinguish 6 units;

(1) Dolomitic Marble Tuff (DMT) This unit consists of bedded dolomitic marble with mafic tuff. The dominate lithology is marble with the tuff forming small discontinuous lenses generally less than 5 cm thick. The marble is commonly in massive beds 5 to 20 cm thick. The marble is composed of dolomite, \pm biotite. The mafic tuff is composed of biotite, hornblende, plagioclase feldspar, carbonate, \pm muscovite.

(2) Marble Tuff (MAT) This unit consists of bedded marble with mafic tuff. The dominate lithology is the marble with the tuff forming small discontinuous lenses generally less than 2 cm thick. The marble is commonly in thin beds less than 10 cm thick and is locally strongly deformed. The marble is composed of iron carbonate, <u>+</u> biotite. The mafic tuff is composed of biotite, hornblende, plagioclase feldspar, carbonate, <u>+</u> muscovite.

 (3) Mafic Tuff (MT) This unit consists of well foliated mafic tuff. The unit is composed of biotite, hornblend, garnet, plagioclase, <u>+</u> carbonate, <u>+</u> muscovite.

(4) Amphibolite (AMP) This unit consists of a course grained amphibolite. The unit is composed of hornblende porphyoblasts, plagioclase, biotite, <u>+</u> muscovite.

(5) Marble (M) This unit consists of a relatively pure massive marble. The unit is composed of iron carbonate with minor biotite.

(6) Feldspar Porphyry (FP) This unit consists of a feldspar porphyritic diorite. Whole rock data (Appendix 2) obtained from two samples indicate that this unit is a diorite monzodiorite. The unit outcrops in only three localities, and hosts all the observed mineralization. The unit is

likely a dike swarm with three or more separate dikes striking subparallel to the local geology.

The mapping program was able to outline distinct packages of the metasediments. The dolomitic marble tuff is intercalated with the mafic tuff in the north western section of the claim (1091955). The marble tuff is intercalated with the amphibolite for the south eastern section of claim (1091955) and the bulk of claim (1091952). The south eastern section of claim (1091952) is underlain by massive marble interlayered with mafic tuff, and amphibolite.

The dolomitic to calcareous marble units are the most continuous over the claim group. The mafic tuff and amphibolite are traceable and continuous for over 400 m but tended to be lensoidal.

The feldspar porphyritic diorite outcrops in only three localities. The three outcrops form a straight line making it possible to interpret the unit as a single south east trending dike. However this interpretation would require the dike to cross cut the local geology making the intrusion a late feature. Due to the deformed and altered nature of the intrusive it is the interpretation of the authors that the intrusive was emplaced after the formation of the sedimentary units but before the regional metamorphism and tectonism. This indicates that the three outcrops are likely three separate, although related, feldspar porphyritic dikes. The dikes are subparallel to the local strata.

STRUCTURAL GEOLOGY

All the units mapped during this program have been deformed. The dominate fabric orientation is north-east dipping steeply to the north-west or south-east. This fabric is dominate in the area and is seen in all the lithologies throughout the map area and is termed S1.

A second latter fabric termed S2 is identified in the western portion of the map area. The S2 orientation is north by north-east and obviously folded the S1 fabric.

Abundant micro folds are seen in all the sedimentary units but most commonly in the marble tuff. These are small wavelength folds (<10 cm) with axis trending north-east subparallel to the S1 direction.

ECONOMIC GEOLOGY

Quartz veins were mapped and sampled from various locations throughout the property (see map for locations). With the exception of the quartz veins hosted within the feldspar porphyry, the quartz veins are barren.

Significant gold values are obtained from the feldspar porphyry (Appendix 1). The porphyry is extensively fractured and veined with shallow dipping quartz veins. The mineralization is dominantly arsenopyrite with minor pyrite, chalcopyrite and gold.

Seven of the twenty-six assays returned gold concentration greater than 1 ppm gold (Appendix 1). One sample (C-5) was from the showing at line 7 @ 00 + 40 m east. The rest of the samples with gold values greater than 1 ppm were from the test pit area at line 10 @ 120 m + 30 m east.

RECOMENDATIONS

The results of the geological mapping and assay results indicate that the target area for gold mineralization is the diorite dikes. Since a large area of the best potential mineralization lies under a farmers field the best approach would be a geophysical prospecting program to outline buried mineralization. The second phase of this project was a mag and VLF survey of the claims, the mag result showed no anomaly in the target area but the VLF indicated several strong anomalies beneath the field. To fully characterise these anomalies it is recommended that addition geophysical surveys be carried out. The best results would be obtained from EM or and IP survey.

In addition to geophysics a soil sampling program should be conducted over the farmers field. Since the gold mineralization is associated with aresenopyrite an arsenic anomaly would likely indicate buried mineralization.

REFERENCES

Pauk, L.

1987:Geology of the Ardoch Area, Frontenac County, Ontario Geological Survey Report 241, 57 p. Accompanied by map 2541, scale 1:31 680

APPENDIX 1

ASSAY RESULTS AND SAMPLE DESCRIPTION

SAMPLE	Au PPB	Ag PPM	Cu PPM	Pb PPM	Zn PPM	As PPM	Sb PPM
C-1	< 1	0.1	8.2	4	3.7	7	< 5
C-2	< 1	0.2	9.8	< 2	7.3	20	< 5
C-3	< 1	< 0.1	4.4	< 2	3.1	10	< 5
C-4	< 1	< 0.1	5.9	< 2	3.7	54	< 5
C-S	1300	0.1	36.6	3	9.4	18500	10
C-6	31	0.2	72.2	< 2	64.3	975	5
C-7	150	0.2	18.0	< 2	29.3	3170	13
C-8	54	0.3	124.0	< 2	68.2	1710	9
C-9	59	0.1	10.7	3	7.7	3070	< 5
C-10	42	0.2	40.2	< 2	52.3	5370	8
C-11	260	0.1	41.5	< 2	31.5	4340	9
C-12	6	< 0.1	6.1	< 2	16.0	1230	< 5
C-13	460	0.2	103.0	< 2	39.6	10700	11
C-14	68	0.1	26.6	< 2	3.4	5860	5
C-15	2100	< 0.1	26.8	< 2	7.1	9620	8
C-16	12	0.6	20.6	< 2	3.8	500	< 2
C-17	2	0.4	12.3	< 2	2.6	120	< 5
C-19	6700	0.3	379.0	< 2	29.5	16500	43
C-20	6500	0.3	198.0	2	27.5	63730	18
C-22	300	0.5	59.3	< 2	28.4	5860	11
C-23	2900	0.2	19.1	4	16.6	13400	16
C-24	470	0.4	74.8	< 2	33.7	7890	9
C-25	6800	0.3	95.4	13	20.0	204900	63
C-26	2600	0.3	51.8	4	18.1	11200	32
C-27	6200	0.4	358.0	10	24.1	91600	49
C-28	660	0.2	20.7	< 2	36.2	13700	15

ŧ

į

ļ

COOK PROPERTY SAMPLES

, i l

C	-	1	line 2 at 115 + 50m east quartz vein at 48 ⁰ dipping 52 ⁰ in calcareous tuff
C	-	2	line 1 at 143 bull white quartz vein with muscovite in boulder
С	-	3	line 6 at 310 quartz vein with arsenopyrite in boulder
C	-	4	line 7 at 100 bull white quartz vein in coarse-grained tuff
C	-	5	line 7 at 00 + 40m east trench approx. 10m north of line quartz vein with arsenopyrite and pyrite in feldspar porphyry
C	-	6	line 6 at 00 + 25m east boulder of silicified feldspar porphyry
С	-	7	line 7 at 00 trench quartz vein with arsenopyrite in silicified feldspar porphyry same as sample Cook #3 collected spring 1990
с	-	8	line 7 at 00 trench same as sample C - 7
С	-	9	line 7 at 00 trench quartz vein with arsenopyrite in feldspar porphyry
С	-	10	line 7 at 00 trench feldspar porphyry with arsenopyrite
С	-	11	line 7 at 00 trench silicified feldspar porphyry with arsenopyrite
C		12	line 7 at 00 trench quartz and silicified feldspar porphyry with arsenopyrite
с	-	13	line 7 at 00 + 40m east trench silicified feldspar porphyry with arsenopyrite

C - 14	line 7 at 00 + 40m east trench
	same as sample C - 5
C - 15	line 7 at 00 + 40m east trench
	quartz vein with arsenopyrite in felspar porphyry
C - 16	line 12 at 243 + 40m east trench
	quartz vein in feldspar porphyry
C -17	line 12 at 243 + 40m east trench
	quartz vein in feldspar porphyry
C - 18	line 12 at 243 + 40m east diorite
C = 19	line 10 at 120 + 30m east
• •	shaft
	feldspar porphyry with arsenopyrite in shaft
C- 20	line 10 at 120 + 30m east
	shaft faldanan nornhyny with angononyrita in chaft
	reidspar porphyry with arsenopyrite in shart
C -21	line 10 at 120+ 30m east
	feldspar porphyry from dump
0 - 00	1; no. 10, ot. 100, 4, 20m, and 1
0 - 22	shaft
	feldspar porphyry with arsenopyrite in shaft
C - 23	line 10 at 120 + 30m east shaft
	quartz vein with arsenopyrite in feldspar porphyry
	in shaft
C - 24	line 10 at 120 + 30m east shaft
	carbonate (dolomitic) vein with arsenopyrite in
	leidspar porphyry from dump
C -25	line 10 at 120 + 30m east
	quartz vein with arsenopyrite in feldspar porphyry
	in shaft
C - 26	line 10 at 120 + 30m east
	same as sample C - 25

.

.

C -27 line 10 at 120 + 30m east same as sample C - 25

C -28

line 10 at 120 + 30m east feldspar porphyry with arsenopyrite and dolomitic veins from dump

X-RAY ASSAY LABORATORIES

A DIVISION OF SGS SUPERVISION SERVICES INC. 1885 LESLIE STREET · DON MILLS, ONTARIO M3B 3J4 · CANADA TEL: (416)445-5755 TELEX: 06-986947 FAX: (416)445-4152

CERTIFICATE OF ANALYSIS

REPORT 13354

TO: ROSS SHERLOCK 17 1/2 DILL STREET KITCHENER, ONTARIO N26 1L2

CUSTOMER No. 1833

5

DATE SUBMITTED 17-Sep-90

Total Pages

REF. FILE 8414-N2

28 ROCKS

	METHOD	DETECTION LIMIT		METHOD	DETECTION LIMIT
AU PPB	FADCP	1.	SE PPM	1 CP	20.
LI PPM	ICP	1.	WRMIN PPM	WR	10.
BE PPM	ICP	0.5	SR PPM	ICP	0.1
B PPM	ICP ·	2.	Y PPM	ICP	0.1
WRMAJ %	WR	0.01	ZR PPM	ICP	0.5
SC PPM	I CP	0.1	MO PPM	ICP	1.
V PPM	ICP	. 0.5	AG PPM	ICP	0.1
CR PPM	ICP	1.	CD PPM	ICP	1.
CO PPM	1 CP	1.	SN PPM	ICP	10.
NI PPM	ICP -	1.	SB PPM	ICP	5.
CU PPM	ICP	0.5	BA PPM	ICP	1.
CU PPM	XRF	10.	W PPM	ICP	10.
ZN PPM	ICP	0.5	PB PPM	ICP	2.
ZN PPM	XRF	10.	PB PPM	XRF	10.
AS PPM	ICP	3.			

*** UNLESS INSTRUCTED OTHERWISE WE WILL DISCARD PULPS 90 DAYS *** AND REJECTS 30 DAYS FROM DATE OF THIS REPORT

DATE 05-OCT-90

CERTIFIED BY

Philip Boctor, Laboratory Manager

05-001-90

REPORT 13354

SAMPLE	AU PPB	LI PPM	BE PPM	B PPM	SC PPM	V PPM	CR PPM	CO PPM	NI PPM
C-1	<1	7	0.7	6	1.2	8.0	250	. 3	6
C-2	<1	4	<0.5	6	0.3	8.4	276	ź	10
C-3	<1	6	<0.5	6	1.4	11.9	195	2	6
C-4	<1	3	<0.5	3	0.2	5.3	205	1	6
C-5	1300	5	<0.5	19	0.2	4.6	270	60	26
C-6	31	71	1.5	4	13.0	150.	109	17	33
C-7	150	55	2.5	14	11.6	73.2	90	16	16
C-8	54	93	1.9	13	18.4	160.	167	30	67
C-9	59	11	0.6	9	2.7	22.3	226	8	12
C-10	42	67	2.2	12	17.7	149.	79	34	49
C-11	260	44	2.0	16	10.9	74.4	144	25	24
C-12	6	26	0.8	4	3.8	48.8	196	9	23
C-13	460	20	1.4	6	8.4	53.8	113	14	26
C-14	68	2	<0.5	8	<0.1	3.9	221	13	8
C-15	2100	5	<0.5	12	0.3	4.7	236	17	98
C-16	12	4	<0.5	<2	0.3	2.8	277	• 1	7
C-17	2	3	<0.5	<2	<0.1	1.2	234	<1	5
C-18	••			••	••	••	••	••	••
C-19	6700	26	1.8	26	7.7	182.	61	101	77
C-20	6500	23	2.1	12	10.6	131.	73	69	70
C-21	••					••			••
C-22	300	24	1.9	2	12.6	119.	55	19	24
C-23	2900	9	0.6	<2	4.5	35.5	214	47	31
C-24	470	28	2.1	<2	13.3	129.	57	24	35
C-25	6800	10	. 0.7	2	2.3	23.1	168	108	154
C-26	2600	5	1.0	<2	4.3	21.3	183	37	60
C-27	6200	3	0.8	<2	2.4	<0.5	185	52	107
C-28	660	48	2.1	3	16.5	181.	72	31	50

REPORT 13354

SAMPLE	CU PPM	CU PPM	ZN PPM	ZN PPM	AS PPM	SE PPM	SR PPM	Y PPM	ZR PPM
C-1	8.2		3.7	•••	7	<20	9.6	5.6	1.6
C-2	9.8	• •	7.3		20	<20	3.1	0.9	1.2
C-3	4.4	••	3.1	••	10	<20	1.1	3.2	1.1
C-4	5.9	••	3.7	••	54	<20	1.2	0.5	1.7
C-5	36.6	••	9.4	••	18500	<20	1.5	0.7	1.7
C-6	72.2	••	64.3	••	975	<20	217.	10.7	174.
C-7	18.0	••	29.3		3170	<20	398.	18.0	167.
C-8	124.		68.2		1710	<20	242.	15.8	150.
C-9	10.7		7.7		3070	<20	23.8	3.3	16.5
C-10	40.2		52.3		5370	<20	292.	15.6	163.
C-11	41.5	••	31.5	••	4340	<20	401.	11.9	178.
C-12	6.1		16.0		1230	<20	114.	6.5	88.3
C-13	103.		39.6		10700	<20	195.	9.6	62.5
C-14	26.6	••	3.4	••	5860	<20	1.7	0.1	1.0
C-15	26.8	••	7.1	••	9620	<20	1.4	0.3	1.3
C-16	20.6		3.8		500	<20	2.9	<0.1	1.6
C-17	12.3		2.6	••	120	<20	1.4	<0.1	<0.5
C-18		44		97	••				••
C-19	379.		29.5		16500	<20	176.	6.2	42.2
C-20	198.		27.5	••	63730	<20	212.	11.3	88.6
C-21		<10		66	••	•-	•-		••
C-22	59.3		28.4	••	5860	<20	262.	15.7	125.
C-23	19.1		16.6		13400	<20	75.6	5.7	37.0
C-24	74.8		33.7	••	7890	<20	265.	16.4	147.
C-25	95.4		. 20.0	••	204900	<20	34.5	2.5	22.9
C-26	51.8	••	18.1	••	11200	<20	84.6	4.5	23.8
C-27	358.	••	24.1	••	91600	<20	44.3	2.4	3.4
C-28	20.7		36.2		13700	<20	336.	17.1	141.

X-RAY ASSAY LABORATORIES 1885 Leslie Street Don Mills Ontario M3B 3J4 (416)445-5755 Fax (416)445-4152 Tix 06-986947 Member of the SGS Group (Société Générale de Surveillance)

05-0CT-90

REPORT 13354

SAMPLE	MO PPM	AG PPM	CD PPM	SN PPM	SB PPM	BA PPM	W PPM	PB PPM	PB PPM
с.1	19	0.1	 <1	<10	 <5	9	<10	4	•••
C-2	21	0.2	<1	<10	<5	3	<10	<2	••
C-3	14	<0.1	<1	<10	<5	3	<10	<2	••
C-4	17	<0.1	<1	<10	<5	2	<10	<2	
C-5	18	0.1	<1	<10	10	4	<10	3	••
C-6	3	0.2	<1	<10	5	227	<10	<2	••
C-7	3	0.2	<1	<10	13	122	<10	<2	••
C-8	3	0.3	<1	<10	9	386	<10	<2	••
C-9	15	0.1	<1	<10	<5	44	<10	3	••
C-10	2	0.2	<1	<10	8	352	<10	<2	••
C-11	4	0.1	<1	<10	9	102	<10	<2	
C-12	11	<0.1	<1	<10	<5	99	<10	<2	••
C-13	7	0.2	<1	<10 ·	11	62	<10	3	
C-14	17	0.1	<1	<10	5	2	<10	<2	••
C-15	15	<0.1	<1	<10	8	9	<10	<2	••
C-16	18	0.6	<1	<10	<5	4	<10	`<2	••
C-17	15	0.4	<1	<10	<5	2	<10	<2	••
C-18		••	••		••	••	••	••	<10
C-19	2	0.3	<1	<10	43	165	<10	<2	••
C-20	1	0.3	<1	<10	18	203	<10	2	
C-21	••			••	••	••		••	<10
C-22	1	0.5	<1	<10	11	233	<10	<2	
C-23	13	0.2	<1	<10	16	73	<10	4	••
C-24	2	0.4	<1	<10	9	324	<10	<2	
C-25	8	0.3	· <1	<10	63	52	<10	13	••
C-26	10	0.3	<1	<10	32	47	<10	4	
C-27	10	0.4	<1	<10	49	11	<10	10	
C-28	1	0.2	<1	<10	15	746	<10	<2	••

X-RAY ASSAY LABORATORIES 1885 Leslie Street Don Mills Ontario M3B 3J4 (416)445-5755 Fax (416)445-4152 TIx 06-986947 Member of the SGS Group (Société Générale de Surveillance) XRAL

PAGE	-4	of	
------	----	----	--

5

SAMPLE \ %	\$102	AL203	CAO	MGO	NA2O	K20	FE203	MNO	T102	P205	CR203	LOI	SUM
C-18	52.6	15.7	7.23	6.27	3.99	0.27	8.63	0.08	1.38	0.29	0.04	3.31	99.9
C-21	52.0	18.3	3.69	4.00	6.01	1.61	9.22		1.42	0.32	<0.01	2.77	99.6

XRF W.R.A. SUMS INCLUDE ALL ELEMENTS DETERMINED. FOR SUMMATION, ELEMENTS ARE CALCULATED AS OXIDES

XRF - WHOLE ROCK ANALYSIS

XRAL

05-OCT-90

REPORT 13354 REFERENCE FILE 8414

PAGE 5 of

5

SAMPLE \ PPM	RB	SR	Y	ZR	NB	BA
C-18	<10	268	17	196	<10	100
C-21	49	300	21	188	<10	741

X-RAY ASSAY LABORATORIES 1885 Leslie Street Don Mills Ontario M3B 3J4 (416)445-5755 Fax (416)445-4152 TIx 06-986947 Member of the SGS Group (Société Générale de Surveillance)

APPENDIX 2

WHOLE ROCK DATA

•-

	Rock	Number- C-	-18			
SO2 52.60 A1203 Na20 3.99 K20	15.70 Fe203 0.27 TiO2	8.63 FeC 1.38 P2C	0.00 05 0.29	Mg0 6. Mn0 0.	27 CaO 08	7.23
	Sum of Oxid	e Values=	96.44			
xide-Silica Ratio	08	03	cide Alumi	.na Ratios		
# 203/Si02 0.2 # 203/Si02 0.1 # 203/Si02 0.1 Fe0/Si02 0.1 Mc0/Si02 0.1 Mc0/Si02 0.1 Mc0/Si02 0.1 Mc0/Si02 0.1 Mc0/Si02 0.1 Mc0/Si02 0.0 Mc0/Si02 0.0 Mc0/Si02 0.0	985 641 000 192 375 759 051 Other	Fe2 Fe0 MgC CaC Na2 K2C Ratios	203/A1203 0/A1203 0/A1203 0/A1203 20/A1203 0/A1203	0.549 0.000 0.399 0.460 0.254 0.017	7 0 4 5 1 2	
MO/Na20 N 20/K20 Fe0* Ee0*/Mg0 N 20:K20:Si02 Na20+K20:Fe0:Mg0 A;F:M	0.0677 14.7778 7.7670 1.2388 7.0172 : 40.4558 : 23.2825 : 4	0.4749 : 0.0000 : 2.4496 :	92.5079 59.5442 34.2679			
Vole Values S1 0.8754 A1 0.1540 F+3 0.0540 F+2 0.0000 Mg 0.1556 O 0.1289 N 0.0644 K 0.0029 Ti 0.0173 F 0.0020		N AI FM C AI SJ K MC TI P	liggli Num 27. 37. 22. K 11. 156. 0. 3. 0.	4538 5713 9858 9891 0772 0426 7382 0794 3643	.	

•

Normative Minerals

QARTZ	6.4599
ORTHOCLASE	1.5958
ABITE	33.7615
AORTHITE	24.1311
DIOPSIDE	4.1659
HYPERSTHENE	13.6859
HMATITE	8.6298
IDMENITE	0.1711
SPHENE	3.1653
ATITE	0.6869
SUM= 96.4532	
W LLASTONITE(DIOPSIDE)	2.2346
ENSTATITE(DIOPSIDE)	1.9313
ENSTATITE(HYPERSTHENE)	13.6859
	Normative Ratios-CIPW
OR:AB:AN 9.80 :	2.42 : 51.19 : 36.59
OR:AB:AN 2.68 :	56.75 : 40.56
0:0R:AB 15.45 :	3.82 : 80.74
C:F:M 7.15 :	64.36 : 28.49
Normative Plagioclase=	AN 41.68
-	Petrologic Indices
· •	rectorogic indices
Alkali Index	6 34
Rolaio Index	37 08
Mific Index	57 92
A kalinity Datio	1 / 6
Project Trdey	15 20
Contidification Indon	27 02 29 02
Numetive Colon Inder	94 65
Chuckellingtion Index	20,0J 37 80
Differentiation Index	3/.07 /1 90
uniferentiation index	41.02

••••	1					
•		Rock	Number- C-21			
	02 20	52.00 A1203 18.30 Fe203 6.01 K20 1.61 Ti02	9.22 FeO 1.42 P205	0.00 Mg0 0.32 Mn0	4.00 CaO 0.09	3.69
		Sum of Oxi	de Values= 96	5.66		
	xide	e-Silica Ratios	Oxide	a Alumina Rat	ios	
	A1203, 203, 10/Si Mg0/Si C0/Si N20/Si K20/Si	/Si02 0.3519 /Si02 0.1773 i02 0.0000 i02 0.0769 i02 0.0710 Si02 0.1156 i02 0.0310	Fe203/ Fe0/A1 Mg0/A1 Ca0/A1 Na20/A K20/A1	/A1203 0 1203 0 1203 0 1203 0 1203 0 1203 0 1203 0 1203 0	.5038 .0000 .2186 .2016 .3284 .0880	
		Other	Ratios			
	K20/Na N20/H H 0* Fe0*/N N20:H N20:H N20+H ATF:M	a20 0.2679 K20 3.7329 8.2980 Mg0 2.0745 K20:Si02 10.0805 : K20:Fe0:Mg0 65.5766 : 38.2569 :	2.7004 : 87 0.0000 : 34 41.6608 : 20	7.2191 4.4234 0.0823		
	Mole	Values	Nige	;li Numbers		
	S AI Fe+3 F+2 Me Ca N K Ti	0.8654 0.1795 0.0577 0.0000 0.0992 0.0658 0.0970 0.0171 0.0178	AL FM C ALK SI K MG TI P	$\begin{array}{r} 34.6766\\ 30.5734\\ 12.7125\\ 22.0375\\ 167.2013\\ 0.1499\\ 0.6271\\ 3.4337\\ 0.4355\end{array}$	•	
	M	0.0013				

Normative Minerals **C**RUNDUM 0.7267 **C**THOCLASE 9.5158 ALBITE 50.8537 ANORTHITE 16.2171 PERSTHENE 2.9776 OLIVINE 4.8952 HEMATITE 9.2198 **I**MENITE 0.1925 RUTILE 1.3187 APATITE 0.7580 96.6750 M = **ENSTATITE(HYPERSTHENE)** 2.9776 **F**RSTERITE(OLIVINE) 4.8952 Normative Ratios-CIPW Q:OR:AB:AN 0.00 : 12.42 : 66.40 : 21.17 OM:AB:AN 12.42 : 66.40 : 21.17 0.00 : 15.76 : OR:AB d 84.24 Normative Plagioclase= AN 41.68 Petrologic Indices Alkali Index 21.13 Pelsic Index 67.37 M fic Index 69.74 ATkalinity Ratio 2.06 Basicity Index 13.07 S lidification Index 20.08 Normative Color Index 17.29 Crystallization Index 23.20 Defferentiation Index 60.37

THE SAMPLES HAVE BEEN CLASSIFIED AS FOLLOWS:

ROCK NUMBER	CLASSIFICATION
C-18	QUARTZ DIORITE/GABBRO/ANORTHOSITE

CERTIFICATE OF QUALIFICATIONS

- I, Elizabeth Jane Sherlock, hereby certify that:
- 1. I reside at 17 1/2 Dill St. Kitchener, Ontario N2G 1L2
- 2. I am a qualified geologist holding a H.B.Sc. in geology from McMaster University (1987)
- 3. I have been continuously engaged in my profession since 1985.

disabeth Sherlock

E.J. Sherlock October 22, 1990

CERTIFICATE OF QUALIFICATIONS

- I, Ross Lawrence Sherlock, hereby certify that:
- 1. I reside at 17 1/2 Dill St. Kitchener, Ontario N2G 1L2
- 2. I am a qualified geologist holding a H.B.Sc. in geology from McMaster University (1986), a M.Sc. in economic geology from Lakehead University (1989) and am presently a doctoral candidate in economic geology at the University of Waterloo.
- 3. I have been continuously engaged in my profession since 1985.

R.L. Sherlock October 22, 1990

,

020

MAGNETIC AND VLF SURVEY OF THE COOK PROPERTY

LOT 23, CONCESSION IX, CLARENDON TOWNSHIP SOUTHEASTERN ONTARIO

ELIZABETH SHERLOCK

å

ROSS SHERLOCK

SEPTEMBER 10 OCTOBER, 1990

SUMMARY

A geophysical (magnetic and VLF) survey was conducted at the Cook Property between September 18-22, 1990. The Cook Property is located at lot 23, concession IX, Clarendon Township, Hastings County, Southeastern Ontario. No significant magnetic anomaly was outlined in the course of the survey. There is five VLF anomalies identified in the north- east quadrant of the claim group. These anomalies are interpreted to be caused by a series of subparallel vein swarms, or veining hosted in a feldspar porphyry intrusive. It is recommended that further work be conducted to further define the cause of the anomaly.

Introduction

During the period between September 18 to September 21, 1990 a proton precession magnetometer and a V.L.F. survey was conducted on the Cook Property. The Cook Property is located in lot 23, concession IX, Clarendon Township, Hastings County. The purpose of the survey was to provide information about geology, covered by till and to outline potential zones of mineralization. The survey was conducted by Ross and Elizabeth Sherlock.

ACCESS

The property can be reached by travelling east from Fernleigh along the paved county road 506, approximately 3 km. At this point a gravel road heads south . Approximately 800 m along this road the # 1 post of claim 1091952 lies on the western side of the road.

Survey Procedure

The geophysical survey used 11 lines of a previously established grid. The lines trend north-south, roughly perpendicular to the strike of the local geology. The lines were 100 m apart with stations every 25 m along each line. When the operators felt that increased resolution was required, additional stations were chosen in the area of interest.

The equipment used was a Scintrex IGS-2, which is an integrated instrument allowing both magnetic and VLF data to be acquired from the same control panel. During the survey the magnetometer was carried on a eight foot staff to minimize noise. The operator faced the same direction for all VLF readings. For the entire survey a single operator was used for consistency.

A base station was established within the grid at line 5 @ 00 m. Readings were taken at the base station approximately every 60 minutes, with a maximum time interval of 90 minutes between readings. This enabled the operators to establish the diurnal variation in the ambient magnetic field during the survey.

During the survey the total magnetic field, the in-phase, and quadrature phase components of the vertical VLF magnetic field were measured. For the VLF survey the transmitter was Cutler, Main (NAA 24.0 kHz). This station was chosen because it provided a strong signal and the electromagnetic wave was oriented perpendicular to the geological strike.

For the interpretation, the magnetic data was corrected for diurnal drift using the base station readings, and the data was plotted as N-S profiles and as the total field on a base map which was then contoured. Both the in-phase and quadrature components of the VLF data was plotted as N-S profiles, as well as on a separate base map.

INTERPRETATION

MAGNETIC DATA

An area with very low magnetic field is outlined in the area of line 2 @ 100 m (Appendix 1). This occurs over the dolomitic marble and is likely due to a decrease in the tuffaceous component. This does not appear to have any economic significance.

An area with high magnetic field is outlined in the area of line 8 @ 300 m. This occurs over an area that is interpreted to be marble tuff; the high does not continue across to the adjacent lines. This is an area with no outcrop so it is not possible to assess to significance of this anomaly. But due to the discontinuous nature of this anomaly and its orientation it is not likely to be significant.

An area with high magnetic field is outlined in the area of line 10 @ 350 m. This anomaly corresponds to a mapped mafic tuff and is likely due to an increase in the magnetite content of the tuff. It does not appear to have any economic significance.

The magnetic profiles across the area of known mineralization (line 7 to 10) show no anomaly in the mineralized area. This indicates that the magnetic technique

is not a valid tool to map this type of mineralization, although it is useful in outlining the mafic tuff and associated structure.

VLF DATA

The main VLF cross over is centered on top of the swampy area occupying the center of the map. This anomaly is due to the increased conductivity of the water saturated soil and has no economic significance.

A series of five VLF cross overs are outlined in the north-east quadrant of the survey area (Appendix 2). These anomalies are subparallel to each other and to the regional strata. The largest anomaly extends from line 9 @ 65m to line 10 + 50 @ 50 m. This is a very significant anomaly since it is continuous for at lest 150 m. It is considered a real anomaly, and it is located approximately 50 m north of known gold mineralization.

To model the anomaly the tilt angle and the ellipticity for line 9 were graphed on the same profile (Appendix 2). Upon comparing this profile with a series of models in the Scintrex VLF Interpretation Manual, it matches the profile for a vein structure. It is likely that this anomaly is due to a sulphide rich vein structure. Since there is no outcrop in this area it is not possible to directly test this anomaly under the present conditions. However the geological data suggests a series of subparallel diorite dikes that host the gold mineralization occur under the VLF anomaly. It is likely that these dikes are veined and mineralized similar to the outcropping of the dike at the test pit (line 10 @ 123 + 30 m). This would give rise to the observed VLF anomalies.

RECOMMENDATIONS

The VLF survey outlined five buried anomalies that warrent further work. Since the anomalies occur under a active farmers field, the anomalies should be further tested by non-destructive means. The best method would be a follow-up geophysical survey utilizing an EM technique or an IP survey. These techniques would better define the anomaly. The north-east quadrant of the claim group is the only area that warrants further work, so a detailed survey would be possible and yield high definition pseudosections.

Another recommended survey is a follow-up soil survey over the anomaly. In the geological mapping program it was shown that the gold mineralization is associated with abundant arsenopyrite. This should lead to a large arsenic halo around any gold mineralization, making soil sampling a useful prospecting tool. A high definition soil survey combined with a follow-up geophysical EM survey should properly test the VLF anomaly.

MAGNETIC PROFILES

56600-56400-56200 |-- -100 100 200 300 400 0 DISTANCE ALONG LINE N to S (METERS)

500

٠..

COOK PROPERTY VLF DATA LINE 4

• • • •

š.,

jan territoria de la construcción d La construcción de la construcción d

. ,

COOK PROPERTY GEOPHYSICAL DATA

LINE 2

.

LINE 3

DISTANCE	GAMMA	IP	Q	DISTANCE	GAMMA	IP	Q
0	57166.4	-28	10	0	56844.6	4	12
25	56868.3	-29	11	25	56887.8	-25	7
50	56752.3	-30	10	50	56895.1	-43	5
75	57253.0	-33	9	75	56871.6	-44	7
100	56498.9	-47	13	100	56883.9	-51	1
125	56835.9	-34	9	125	56916.9	-42	6
150	56867.5	-40	7	150	56871.0	-39	7
175	56879.8	-42	11	175	56909.7	-35	8
200	56967.2	-31	10	200	56878.5	-32	8
225	56975.5	-24	11	225	56898.1	-32	9
250	56865.5	-25	11	250	56910.1	-29	7
275	56896.3	-26	11	275	56983.0	-25	8
300	56860.8	-24	8	300	56914.6	-26	7
325	56873.2	-20	8	325	56912.8	-21	5
350	56908.2	-19	7	· 350	56912.3	-19	6
375	56883.2	-18	6	375	56890.6	-18	7
400	56879.9	-15	7	400	56912.0	-12	7
425	56885.1	-8	10	425	56920.4	-12	7
450	56893.0	-3	10	450	56972.5	-9	7
475	56900.8	-8	5	475	56925.1	-4	[′] 7
500	56875.0	-3	7				

LINE 4

LINE 5

DISTANCE	GAMMA	IP	Q	DISTANCE	GAMMA	IP	Q
0	56838.4	8	7	0	57559.0	15	0
25	56813.4	14	9	25	56754.0	20	0
50	56870.8	15	8	50	56901.8	25	1
75	56901.6	-10	6	75	56781.1	35	3
100	56945.3	-41	5	100	56930.9	11	2
125	56934.0	-55	3	125	56951.5	-6	3
150	56850.5	-54	3	150	56982.3	-56	3
175	56849.6	-44	5	175	56935.3	-71	ō
200	56882.3	-39	6	200	56889.5	-53	4
225	56891.3	-43	8	225	56948.8	-46	7
250	56928.7	-32	7	250	56988.3	-42	8
275	56839.5	-26	8	275	56976.5	-40	9
300	56895.9	-25	8	300	56958.5	-32	10
325	56895.3	-22	7	325	56965.6	-25	10
350	56908.0	-21	7	350	57012.6	-18	11
375	56899.3	-18	8	375	57014.7	-20	9
400	56890.2	-13	9	400	56967.0	-14	10
425	56917.8	-13	7	425	56985.6	-26	1
450	56896.4	-10	6				-
COOK PROPERTY GEOPHYSICAL DATA

LINB 6

LINE 7

DISTANCE	GAMMA	IP	Q	DISTANCE	GAMMA	IP	Q
0	57015.1	18	-2	0	56956.9	11	-9
25	57003.4	18	-5	25	56919.6	17	-8
50	57004.5	22	-5	50	56987.2	23	-7
75	56986.5	28	-3	75	56936.6	25	-6
100	57008.8	37	-2	100	56947.7	32	-4
125	57014.2	44	ō	125	56949.5	40	-3
150	56899.0	59	Ō	150	56933.0	45	-2
175	57023.4	15	Ō	175	56900.6	62	-4
200	57027.4	-10	3	200	56935.1	46	-7
225	57104.2	-45	8	225	56976.8	25	-4
250	57026.6	-60	11	250	57069.8	0	0
275	57008.9	-82		275	57008.1	-11	ž
300	56991.5	-56	12	300	56996.5	-15	7
325	56957.7	-47	14	325	57011.5	-24	11
350	57002.0	-36	12	350	57011.7	-38	15
375	56977.1	-29	11	375	56990.9	-49	15
400	56999.7	-27		400	57011.3	-81	-2
425	56985.7	-31	3			J L	~

LINE 8

,

LINB 9

DISTANCE	GAMMA	IP	Q	DISTANCE	GAMMA	IP	Q
-25	57100.9	9	-6	-25		11	-3
0	56974.5	-7	-23	0	56931.2	-1	-13
25	56851.3	† 6	-15	25	56945.9	-5	-19
50	56984.3	14	-11	50	56900.0	-2	-20
75	57026.0	17	-10	75	56941.8	9	-17
100	57000.1	26	-7	100	56903.9	13	-16
125	57028.7	29	-10	125	56976.5	20	-16
150	57033.9	33	-10	150	56947.6	25	-14
175	56973.8	39	-8	175	56946.7	30	-13
200	57038.9	45	-8	200	56910.0	35	-13
225	57032.2	47	-13	225	56893.8	46	-14
250	57108.9	37	-16	250	56917.5	47	-12
275	57284.3	35	-19	275	56979.2	44	-22
300	57237.0	42	-19	300	56956.4	50	-26
325	57150.5	33	-16	325	56936.6	57	-24
350	57143.1	15	-11	350	56903.5	61	-25
375	57085.4	9	-4	375	56909.1	54	-26
400	57017.7	-18	3	400	56936.2	45	-25
425	56974.0	-36	8	425	56978.9	31	-18

1

. .

COOK PROPERTY GEOPHYSICAL DATA

LINE 10

LINE 11

DISTANCE	GAMMA	IP	Q	DISTANCE	GAMMA	IP	Q
0	56926.7	5	-12	-25	56897.3	14	10
25	56918.8	3	-7	0	56892.2	-6	-11
50	56939.5	0	-12	25	56873.4	-3	-8
75	56935.7	5	-15	50	56869.7	-6	-14
100	56951.3	6	-17	75	56861.8	-4	-20
125	56945.0	13	-18	100	56874.7	6	-18
150	56899.3	20	-18	125	56863.3	13	-21
175	56924.4	28	-16	150	56835.5	26	-20
200	56964.2	31	-18	175	56802.9	28	-29
225	56953.4	31	-27	200	56643.3	29	-67
250	56895.4	39	-42	225	57257.4	40	18
275	56888.2	39	-104	250	56913.8	27	19
300	57118.3	46	33	275	56901.7	43	19
325	57143.6	38	16	300	56810.6	45	6
350	56957.5	50	8	325	56792.9	61	10
375	56971.3	52	0	350	56799.8	81	13
400	56923.8	54	-5				
425	56928.3	55	-11				
450	56944.1	51	-13				
475	56912.1.	44	-12				

LINE 12

DISTANCE	GAMMA	IP	Q
50	56802.7	83	-77
75	56814.0	5	-72
100	56774.8	13	10
125	56775.5	40	-15
150	56733.5	112	-25
175	56811.4	-35	27
200	56734.0	2	15
225	56865.5	19	12
250	56773.7	32	12
275	56788.1	43	8
300	56754.2	61	10

CERTIFICATE OF QUALIFICATIONS

- I, Elizabeth Jane Sherlock, hereby certify that:
- 1. I reside at 17 1/2 Dill St. Kitchener, Ontario N2G 1L2
- 2. I am a qualified geologist holding a H.B.Sc. in geology from McMaster University (1987)
- 3. I have been continuously engaged in my profession since 1985.

A Shubek E.J. Sherlock

October 22, 1990

CERTIFICATE OF QUALIFICATIONS

- I, Ross Lawrence Sherlock, hereby certify that:
- 1. I reside at 17 1/2 Dill St. Kitchener, Ontario N2G 1L2
- 2. I am a qualified geologist holding a H.B.Sc. in geology from McMaster University (1986), a M.Sc. in economic geology from Lakehead University (1989) and am presently a doctoral candidate in economic geology at the University of Waterloo.
- 3. I have been continuously engaged in my profession since 1985.

R.L. Sherlock October 22, 1990

Ministry of RES	. GEO. TWE	ed				Tor	× ×	1. · · · ·
Northern Developm	ient	DOCL	IMENT N	0.				
Ontario		Wg	009 •	66				
	Report of Wor	k Litto	000	31C15NW	0007 2.13	3701 CLARENDON		800
Mining Act	(Geophysical, Geo	logical and	Geochemi	cal Su,.,	Mining La	silus eculus, minoral i	סוווקטופדסע	900
Type of Survey(s) M AG d	ULF GIN			Aining Division		Township or Area	A. 7	
Recorded Holder(s)	and yw	<u>logica</u>		<u> </u>			or's Licence	NO. IN-LI
ELIZABETH	SHERLE	xx				- <u> </u>	<u>507</u>	44
Address My 2 Till	Street V:	Ashri	nee f	Jut .	120.1	LOJ (5/9	e No. ア フム	15-2R/15
Survey Company	Under , D	ACIU	2-1- f				<u>(((</u>	
Same as o	bove (Goo Tachaical Basad)	<u></u>		*** <u>*</u>	<u></u>	Data of 6	V	
Some as a				•		09		23 04 90
Credits Requested per Ea	ch Claim in Columns	at right	Mining C	laims Traversed (List in n	umerical sequenc	e)	
Special Provisions	Geophysical	Days per	Brofix	Aining Claim	Profix	Mining Claim	Destin	Mining Claim
For first survey:	- Electromagnetic			Animal	I TONX		PIUIX	in an
Enter 40 days. (This includes line cutting)	*. Magnetometer		50	10 41452	·			
For each additional survey:	Other 1/1	40	20	CCN/Y_UC				· · · · · · · · · · · · · · · · · · ·
using the same grid:	Container VLT						[·
Enter 20 days (for each)	Geological	ao						
Man Dave	Geochemical	Dava			 	 	 	
mari Daya	Geophysical	Claim						
Complete reverse side and enter total(s) here	- Electromagnetic							·
	Magnetometer						(Revi	
·	- Other					CHENO LANC	C. 8. 150	
	Geological					enering raidh	in Office	06
	Geochemical							
Airborne Credits		Days per						
Note: Special provisions	Electromagnetic							·····
credits do not apply to Airborne	Magnetometer							
SUIVBYS.	Other							
Total miles flours and all		J					L	<u>ا</u> ا
Date Re	corded Holder or Agent (Signature)	}{			Total number of		2
NOU. 8, 1990 /	lipbith the	lock				by this report of	work.	
Certification Verifying Rep	on-en Work							
I nereby certify that I have a per after its completion and annexed	sonal and intimate knowled d report is true.	oge of the fact	s set torth in	inis Report of Work, hi	aving perto		essed same	ouring and/or
Name and Address of Person C	ertifying							
FELIZABETH SH		Telephor	ne No.	Date	<u> </u>	Certified	By (Signat	ure)
17/2 Dill St., Kit	chener, Ont	(519)	745-	2845 100.1	<u>B 190</u>	> Iliza	both	Strevect
For Office Lies Only					Janip	SOUTHERN ONT	RIO MINI	
I VI VIIIVE USE VIIIY	Λ					REC		
Total Days Date Recorded	Mining Re	egorde						-
Cr. Recorded	In I m	KINH	mal.			NOV	- 8 19	90
NOU. 8	S Becorded Provincial	Mahager Min	Ino Lands	4-1		AM		РМ
160			1			7181910111	12,1,2,3	415.6
Jan 2:	3/91 1200	Clas	ment	-1		\		
1362 (89708)	j DZ							

ELIZABETH JANE SHERLOCK

SUDBURY 17 1/2 Dill Street ADDRESS: MINING DIPERSONAL Height 163 cm Kitchener, Ontario RECEIVED Weight 50 kg N2G 1L2 Birth Date 12/10/64 (519) 745-2845 NOV 281990 SIN 469 651 376 9:301 A.M. P.M McMaster University 8,9,10,11,12, 1,2,3,4,5,6

EDUCATION:

I attended from September 1983 to May 1987, obtaining an H.B.Sc. in Geology. Thesis Title: Sedimentology of the Viking Formation at Crystal Field, Alberta.

WORK HISTORY

GEOLOGICAL ASSISTANT

May 14 to Aug. 31, 1990

Employer: MINISTRY OF NORTHERN DEVELOPMENT AND MINES **RESIDENT GEOLOGIST OFFICE**

Supervisor: Mr. B. Feenstra (519) 661-2773

Duties: Based out of London, I assisted the Resident and Staff Geologists with their summer projects. This included the identification of abandoned gypsum mines in the Caledonia area and their associated land use hazards. I also was involved in property visits and geological mapping throughout Southwestern Ontario.

GEOLOGICAL TECHNICIAN

Feb. 15 to April 15, 1990

Employer: UNIVERSITY OF WATERLOO Supervisor: Dr. E.C. Jowett (519) 885-1211 Duties: I was responsible for the sampling of sulphides and carbonates for isotope analysis, the preparation and polishing of thin section and rock samples, drafting and data processing.

STAFF GEOLOGIST

Nov. 1 1987 to Oct. 1, 1989

Employer: MINISTRY OF NORTHERN DEVELOPMENT AND MINES INDUSTRIAL MINERALS PROGRAM, NORTHWESTERN REGION

Supervisor: Ms. M.C. Gerow (807) 475-1331

Duties: I assisted the industrial mineral geologist with her responsibilities. Based out of Thunder Bay, we examined and evaluated the potential of industrial mineral occurrences in Northwestern Ontario. We also provided assistance to prospectors and the general public.

1.

Elizabeth Jane Sherlock

Work History Continued

RESEARCH ASSISTANT

May 1 to Sept. 1, 1987

Employer: NATIONAL RESEARCH COUNCIL OF CANADA INSTITUTE FOR RESEARCH IN CONSTRUCTION BUILDING MATERIALS

Supervisor: Dr. P. Gratten-Bellew (613) 993-0096

Duties: The project involved the preparation of zirconium oxides and the study of these oxides, and zircon samples, using x-ray diffraction methods. I also assisted with the on-going research projects dealing with aggregate and concrete.

RESEARCH ASSISTANT

May 1 to Sept. 1, 1986

Employer: McMASTER UNIVERSITY GEOLOGY DEPT.

Supervisor: Dr. R. Walker (416) 525-9140

Duties: I was employed as an assistant to Dr. Walker and his graduate students at the Core Research Centre, Calgary, Alberta. My duties included core logging, photography and associated data collection. I was also responsible for the collection of data for my own B.Sc. thesis.

JUNIOR FIELD ASSISTANT

June 1 to Sept. 1, 1985

Employer: ONTARIO GEOLOGICAL SURVEY
Supervisor: Mr. N. Trowell
Duties: We were mapping basaltic flows in the Matheson area. I was responsible
for camp maintenance as well as drafting and traversing.

WORK RELATED SKILLS

I am familiar with both Basic and Fortran computer languages along with experience in various word processing, data base, and spreadsheet software. I also have experience in drafting, regional mapping techniques, geophysical surveys, core logging and photography. I have a valid drivers licence and I can operate a standard transmission as well as most small engines. I have valid First Aid and CPR certificates as well as extensive experience in wilderness camping. I am familiar with the Ontario Mining Act and the Aggregate Resources Act and other related legislation from my own prospecting and work experience. I am a very organized and efficient worker and am willing to travel.

References, transcripts and detailed thesis description can be furnished upon request.

McMaster University OFFICIAL TRANSCRIPT

REF: 4840				
NAME: DARR	ELIZABETH JA	NE	CERTIFIED CORREC	т
DATE: 03 JUN 1987	DATE OF BIRTH:	12/10/64	JUN 04 1987	PAGE 1
PREV INST: NCRTH GRE QUALIFICATION: 837 GRADE 13 AVG: 80.3	NVILLE DH YE	AR: 1983	F. J. WALKER	ISSUED TO STUDENT
DEGREES GRANTED 05 JUN 1987 BSC/HGN	HON GECLUGY			
SCHELARSHIPS 1986 KATAPBALA BK P	R.Z			
SUMMARY CF ATTENDANC	Ē			
SCIENCE 83/84 WINTER LVL 1 SCIENCE 84/85 WINTER LVL 2 85/86 WINTER LVL 3 86/87 WINTER LVL 4	UND FULL TIME BSC/FON FULL TIME CLEAR FULL TIME CLEAR FULL TIME CLEAR	NAT SCI 1 HON GEOLOGY ADMISSICN ADMISSICN ADMISSICN		
CEURSES UNITS		FINAL DEF	IN AREA	CATEGORY MEDIAN
83/84 WINTER CHEN IAO7 7 G GECLEGY IAO6 6 G MATH IAO6 6 L MATH IGO6 6 A PHYSICS IAO7 7 W UNIVERSITY AVG: MAY CONTINUE. LEVEL I COMPLET 84/85 WINTER	ENERAL CHEMISTRY ENERAL GEGLCGY ALCULUS I PPLIED ANALYSIS AVE M.OPTICS.ELEC 8.1/32 UNITS E	RECE NOV 28	URY DIV. IVED 1990	
BIULCGY 1A06 6 A CHEM 2P04 4 P COMP SCI 1803 3 I GECLUGY 2806 6 O GECLUGY 2C06 6 E GECLUGY 2D05 5 S GECLUGY 3E02 2 F MATLS 1A03 3 I	DAPT IN BIG WORLD HYSICAL CHEMISTRY NT COMPUTING-SCI PT CRYST&INT PEIR ARTH HISTORY TRUCTURAL GEOL 1 IELD CAMP NTRO TO MATERIALS	C +A.M. B $7_18_19_110_111_12_1$ A - B + B - C G M B	1121811518 30 pm RA 30 pm RA RA RA RA RA RA RA RA RA RA RA	(C+/.411) (C+/84) (B-/95) (B /32) (B-/34) (B /24) OR LV 3 (N/A) (B-/86)
UNIVERSITY AVG: May continue in Level 2 complet	8.2/33 UNITS Programme. E	CUM AREA	AVERAGE: 9	.2/ 13.6 UNITS
85/86 WINTER GECG 2T03 3 H GECG 2W03 3 H GECLCGY 3A03 3 A GECLCGY 3C06 6 P GECLCGY 3C06 6 P GECLCGY 3C06 6 P GECLCGY 3C04 4 C GECLCGY 3L03 3 P GECLCGY 3L03 3 P MATLS 3D03 3 T	LUVL GEOMORPHLÜY YDROLOGY-CANACA PP GEOPHYSICS A ETROGRAPHY ALAEONTOLOGY RYSTAL & MINERAL LANET+LUNAR GECL HY PROCESS GECL HERMÚ-MATERIAL I	A- B+ B B- B+ B+ B+ B+ B+ C+	1 E 11 2 E 1 RA RA 1 RA 2 RA 1 R 1 R	N EVE $(8 /30)$ (8 - /40) (8 - /22) (8 - /28) (8 - /18) (8 /26) (8 + /18) (8 - /10) (8 /10)
UNIVERSITY AVG: May continue in Level complete	8.3/34 UNITS Programme.	CUM AREA	AVERAGE: 8	.7/ 28.8 UNITS
86/87 WINTER GECLCGY 3803 3 A GECLCGY 4863 3 M GECLCGY 4803 3 4 444444444444444444444444444444444	PP GEOPHYSICS E ETAMORPHIC PETRCL GNEDUS PETRGLCGY TINUED ON NEXT PAG	8- 8 8 65*******	1 E 2 RA 1 E	(B-/16) (B /18) (B /8)

McMaster University OFFICIAL TRANSCRIPT

REF: 8304840 NAME: OKR DATE: 03 JUN 1987	ELIZABETH JAN DATE OF BIRTH:	NE 12/10/64	CERTIFIED CORREC JUN 0 4 1987 F. J. WALKER	PAGE 2 ISSUED TC STUDENT
COURSES UNIT	5	FINAL DEF	TM AREA CA	TEGORY MEDIAN
86/87 WINTER GECLCGY 4E06 6 GECLCGY 4K06 6 GECLCGY 4MM3 3 GECLCGY 4M03 3 GECLCGY 4U03 3	METALL MINERAL CEP GEGLUGY THESIS SEUIMENT-CHEM PRCC SEDIMENT-PHYS PRLC GECL FCSSIL FUELS	8- 8+ , A- , A- 8+	RA RA 2 RA 1 RA 1 E	(B-/21) (A-/8) (B-/18) (C /23) (B /11)
UNIVERSITY AVO CLEAR TE GRADU GRACUATIEN AVO GRACUATION STO	5: 8.4/30 UNITS DATE. 5: 8.5/ 36.0 UNIT DING: II *****	CUM AREA PROGRAMME ST DE TRANSCRIPT	AVERAGE: 8.0 DG: 5/ 6 ********	3/ 45.6 UN113

MAGNETICS

210

2,13701

VLF

220

2.13701

LEGEND

X — X — X FEN	CE LINE
---------------	---------

- CLAIM POST
- TEST PIT
- C-# SAMPLE LOCATION
 - STRIKE AND DIP OF FOLITION
 - SWAMP
 - AREA OF OUTCROP
 - _____ STRIKE AND DIP OF QUARTZ VEIN

¥