

010

REPCRT ON

AIRBORNE GEOPHYSICAL SURVEY

IN THE

CROTCH LAKE AREA OF ONTARIO

FOR

AGNES AND JENNIE MINING CO.

BY

KENTING EARTH SCIENCES LIMITED, OTTAWA

PROJECT NO. 79097

OTTAWA, CANADA, NOVEMBER $26 \mathrm{TH}, 1979$.
D.M. DARBHA, M.Sc., GEOPHYSICIST.

REPORT ON
AIRBORNE GEOPHYSICAL SURVEY
IN THE
CROTCH LAKE AREA OF ONTARIO
FOR
AGNES AND JENNIE MINING CO.

1. INTRODUCTION

This report pertains to the combined airborne radiometric and magnetic survey carried out in the Crotch Lake area (also called Cross Lake) of Ontario for Agnes and Jennie Mining Co. The survey was conducted on November 6th, 1979 by Kenting Earth Sciences Limited geophysically equipped Britten-Norman Islander aircraft (registration C-FYZT) based at Ottawa.

A mean terrain clearance of 150 feet was malntained throughout the survey at an average aircraft speed of 110 miles per hour. Flight lines were spaced at $1 / 8$ mile intervals and oriented $N 20^{\circ} \mathrm{W}$.

The geophysical data acquired totalled approximately 90 line miles.

The following Kenting personnel were associated with this project:

N. Fjell	- Pilot
K. Hall	- Electronic Operator
H. Davidson	- Navigator
G. Weston	- Data Compller
D. Fitzsimmons -	Data Chief
D.M. Darbha	- Geophysicist

2. INSTRUMENTATION

A multi-channel differential gamma ray spectrometer (KDSS) manufactured by Kenting Earth Sciences Limited was employed for this survey. A technical description of specifications of this unit is appended to this report. A sensor array of thallium activated sodium iodide crystals was used providing a detector volume of approximately 1,500 cubic inches. All detectors were held at constant temperature throughout the survey to minimize drifting in the gain of the photo multiplier tubes.

The airborne magnetometer was a model G-803 proton precession instrument manufactured by Geometrics of California.

A Honeywell radar altimeter provided terrain clearance measurements

An AS-5 35 mm . continuous strip camera recorded the flight path.

As an aid to navigation, the aircraft was fitted with a Sperry C-ll gyro stabilized compass and a Bendix doppler navigation system.

A six channel Brush 260 unit recorded four radiometric channels, the altimeter and magnetic data in analogue form. All of the above data were recorded digitally on magnetic tape by the KDSS.

The quantities measured, format and scales used on the six channel analogue recording are as follows, with the chart oriented such that fiducial numbers increase to the left:

	Channel No.	Parameter	Scale
Top of Chart	6	Altimeter	0-1000 feet
	5	Magne tome ter	0-1000 gammas
	4	Thorium ($\mathrm{Tl}-208$) $2.42-2.82 \mathrm{Mev}$	0-200 counts/sec.
	3	$\begin{aligned} & \text { Uranium (Bi-214) } \\ & 1.66-1.86 \mathrm{Mev} \end{aligned}$	0-200 counts/sec.
	2	$\begin{aligned} & \text { Potassium }(K-40) \\ & 1.36-1.56 \mathrm{Mev} \end{aligned}$	0-400 counts/sec.
	1	Total Count 0.4-2.82 Mev	0-4000 counts/sec.

All quantities increase upwards. Any changes from the above format are indicated on the records.

Analogue recordings, digital recording and film are flagged with numbered fiducial marks every 10 seconds to facilitate correlation.

Digital sampling is at 1.0 second intervals.

3. PRESENTATION OF RESULTS

One plan map sheet at a scale of 1 inch to t-mile covers the survey area. An uncontrolled air photo mosaic provided the base for this map. The magnetic and radiometric results are each presented on separate map sheets using the same base.

The magnetic results have been manually levelled, computer processed and machine contoured using a 25 gamma contour interval where gradients permit.

The radiometric plan map is a combination of corrected total count contours and significant anomaly peak values. The anomaly peaks list the total count, potassium, uranium and thorium values beside each
anomaly. As well, the uranium to thorium ratio is indicated by the degree to which the anomaly symbol is shaded in (see map legend). The total count contour interval is 200 counts per second and the contours are computer generated.

The radiometric results have been corrected for atmospheric background, terrain clearance and Compton scattering.

Atmospheric background readings were determined by flying over a large body of water at survey altitude before and after the survey fllght. The following average backgrounds (in counts/second) were recorded and used in the computations:

Flight	Total Count	Potassium	Uranium	Thorium
1	No Survey			
2	271	28	17	6

All count rates were normalized to an altitude of 150 feet using the following formula:
$N=N_{0} e^{-\mu_{H}}$
Where N is the observed count rate
N_{0} is the normalized count rate at 150 feet
μ is the attenuation coefficient
H is the elevation difference from 150 feet
The attenuation coefficients (μ) used are as listed below:

TOTAL COUNT	-	2.0×10^{-3}
POTASSIUM	-	2.3×10^{-3}
URANIUM	-	1.7×10^{-3}
THORIUM	-	1.7×10^{-3}

The Compton scattering coefficients were determined prior to the
survey using the special pads set up for this purpose by the Geological Survey of Canada at the Ottawa International Airport. The following results were obtained:

4. GEOLOGY

The geological circular no. 12 by Ontario Department of Mines, entitled 'Geological notes for Maps Nos. 2053 and 2054 Madoc-Gananoque Area by D.F. Hewitt, $1964^{\prime \prime}$ was used as a reference in this report. The survey area lies in the north-east corner of the map 2053 (scale $1^{\prime \prime}=2$ miles). The Precambrian Plutonic rocks are predominant in the area, with Cross Lake gneiss on the west side in contact with the granitic gneiss, in the southern section. Marble and Lime Silicate rocks are reported in the central portions of the area along with the meta-volcanic rocks. Map 2053 also shows two lineaments (or faults) running approximately $E-W$ in the area.

5. DISCUSSION OF RESULTS

The main magnetic picture of the area shows low magnetic gradients, Indicative of weakly magnetic granite gneisses predominant in the area. On the west side of the area, the Cross Lake gneiss appears to be least magnetic of all lithological units. $N-E$ magnetic trend dominates the area. A N-S trend in the central section appears to be associated with the formational boundary between two types of Precambrian Plutonic rocks. The most striking magnetic feature in the northern part of the area, striking $E-W$, indicates
high intensity magnetic units. This linear magnetic feature can be Interpreted to be due to intrusives. We can also observe the reported (Map 2053) lineament (such as a fault), in NW - SE direction, intersecting the above mentioned magnetic feature.

The total count radiometric map shows specific contour trends in $N E$ to N direction conforming with the magnetic and geological (reporter) trends. In the northern corner of the survey area the total count contour trends seem to be associated with the combined structural and IIthological features.

All the high total count areas contain excellent contributions from Uranium sources. The survey was very successful in detecting a large number of top priority Uranium prospects within the area. All anomalies with high uranium count rates and/or high Uranium to Thorium ratios should be considered significant. The strongest airborne Uranium responses were observed in the marked Zones 1, 2 and 3. Zones 4 and 5 contain good uranium signatures, probably along the intrusive contact between Precambrian Plutonic and Metavolcanics. The highest total counts were recorded at the anomaly 18 A , with excellent Uranium content. The high Uranium signatures ($>80 \mathrm{cps}$) noted in the area appear similar to those observed in the Bancroft Uranium district. The anomalous zones 1, 2 and 3 appear to correlate well with the magnetic features such as appreciable changes in the magnetic gradients, representative of formational contacts and fault zones.

6. RECOMMENDATIONS AND CONCLUSIONS

Although many good uranium anomalies were detected by the airborne survey, these should be carefully analyzed to determine the significance of the prospects. A detailed ground follow up is recommended in the Zones 1 - 5 to assess and delineate the Uranium mineralisation. In areas of special interest, the magnetic data used in conjunction with the detailed geological knowledge should provide Information on the important lithological and structural associations of Uranium mineralisation.

Respectfully submitted,

OTTAWA, Canada, November 26, 1979.
D.M. Darbha, M.Sc., Geophysicist.

Type of Survey (s) Airborne Radiometric \ddagger Aeromagnetic Township or Area Palmerston - Olden Townships Claim Holder (s) Clinton Kehor Lie A A 42718 Douglas Riddell Lice\#\# A 41819 Survey Company Renting Earth Sciences Ltd, Ottawa Author of Report D. D. Darbha Address of Author 380 Hunt Club Rd, Ottawa KIG3N3 Covering Dates of Survey -Nov 6 - Nov 26
Total Miles of Line Cut NONE

SPECIAL PROVISIONS	
CREDITS REQUESTED	Geophysical
	-Electromagnetic
ENTER 40 days (includes	
line cutting) for first	-Magnetometer_-
survey.	-Radiometric
ENTER 20 days for each	-Other
additional survey using	Geological
same grid.	Geochemical

AIRBORNE CREDITS (Special provision credits do not apply to airborne surveys) Magnetometer 20 Electromagnetic $\underset{\text { (enter days per claim) }}{\text { Radiometric } 20}$

GROUND SURVEYS -- If more than one survey, specify data for each type of survey

Number of Stations \qquad Number of Readings \qquad
Station interval \qquad Line spacing

Profile scale

Contour interval

Instrument
Accuracy - Scale constant \qquad
Diurnal correction method \qquad
Base Station check-in interval (hours)
Base Station location and value \qquad

Instrument
Coil configuration \qquad
Coil separation \qquad
Accuracy \qquad
\square Shoot backIn line
\square Parallel line
Method:
Fixed transmitter
(specify V.L.F. station)
Parameters measured

Instrument
Scale constant
Corrections made \qquad

Base station value and location \qquad

Elevation accuracy

Instrument \qquad
Method \square Time Domain
Frequency Domain
Parameters - On time \qquad Frequency \qquad

- Off time Range \qquad
- Delay time \qquad
- Integration time \qquad
Power
Electrode array
Electrode spacing
Type of electrode
\qquad
\qquad
- mining claim list (continued)

Prefix	Number	Prefix	Number
EO	527211	EO	521228
EO	527212	EO	521229
EO	527213	EO	521230
EO	527978	EO	521231
EO	527979	EO	521232
EO	527980	ES	521233
EO	527981	EO	521234
EO	527982	EO	521235
EO	527983	EO	521236
EO	527984	EO	521237
EO	527164	EO	527361
EO	527165		
EO	527166		
EO	527167		
ED	527168		
CO	527169		
EO	527170		
EO	527171		
EO	527172		
ED	527173		

SELF POTENTIAL

Instrument \qquad Range \qquad
Survey Method

Corrections made \qquad

RADIOMETRIC

Instrument \qquad
Values measured \qquad
Energy windows (levels) \qquad
Height of instrument \qquad Background Count
Size of detector \qquad
Overburden \qquad
(type, depth - include outcrop map)
OTHERS (SEISMIC, DRILL WELL LOGGING ETC.)
Type of survey
Instrument \qquad
Accuracy
Parameters measured \qquad

Additional information (for understanding results)

AIRBORNE SURVEYS

Accuracy Detector Resolution: <9.5\% Systeare : > \quad (specify for each type of survey) 0.1 gamma Aircraft used_Britten-Norman Islander (registration \# $C-5, Y Z T$) Sensor altitude $150-200^{\prime}$
Navigation and flight path recovery method A5-5 confinudis strip camera Sperry C-11 gyre compass Bendix doppler nav. System
Aircraft altitude_150-200 \quad Line Spacing_ Mile Miles flown over total area $\quad 90$ Over claims only $\therefore 52$ miles

$$
5202020 \therefore 52 \div 40 \text { deep }
$$

Numbers of claims from which samples taken. \qquad \longrightarrow

Total Number of Samples_________
Type of Sample
(Nature of Material)
Average Sample Weight_
Method of Collection

Soil Horizon Sampled \qquad
Horizon Development \qquad
Sample Depth \qquad
Terrain \qquad

Drainage Development
Estimated Range of Overburden Thickness \qquad
\qquad

SAMPLE PREPARATION
(Includes drying, screening, crushing, asting)
Mesh size of fraction used for analysis \qquad
\qquad
\qquad

General

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

CROTCH LAKE AREA agnes and jennie mining co.

