

# EXPLORATION FOR ZINC AND GOLD IN SOUTH-EASTERN ONTARIO

## SHEFFIELD AND HINCHINBROOKE TOWNSHIPS ARDOCH AREA (CLARENDON TWP.) KALADAR AREA (KALADAR TWP.)

BY

DR. WINFRIED BRACK

OPAP 92 -233

JANUARY 1993

#### SUMMARY

Three different sub-projects were investigated. The program was executed as it was proposed in the OPAP grant application, with the exception that the Demars project (Marmora twp.) was replaced by the Ardoch project (Clarendon twp.). Both projects are comparable concerning the objective to find gold and zinc mineralization, however the Ardoch project ranks higher in its prospectivity. The incentive office was informed of this change by facsimile.

The first sub-project targeted zinc (sphalerite) mineralization within marble units in Sheffield and Hinchinbrooke townships. The objective was to cover large areas in order to define possible target areas for a later detailed follow up. The emphasis was to prospect for zinc mineralization. Some areas were transected with geochemical soil profiles to detect anomalous areas. The most promising area appears to be lot 8, concession 12 in Hinchinbrooke township, where a previously unmapped marble unit revealed a marble sphalerite boulder assaying 7% zinc.

The Ardoch project (Clarendon twp.) replaced the Demars project (Marmora twp.) as stated above. The project area contains well documented gold showings. In the immediate vicinity a small gold production was operating early this century. A sphalerite showing is located outside but close to the property line. The project is a joint effort between W. Brack OPAP 92-233 (covering the northern portion of the property and W.Holmstead OPAP 92-83 (covering the southern portion of the property). A detailed geochemical soil sampling survey was completed as well as detailed lithological mapping. The geochemistry is somehow ambiguous. A cluster of overlapping anomalous element concentrations within the northwestern portion of the survey area is also marked by high concentrations of manganese. The ability of manganese to accumulate (scavenge) other metals is well documented in literature. Therefore subsequent work on this anomaly has to be considered with care.

The Kaladar project was a follow up of the program in 1991 (OPAP 91-782 and OPAP 91-245). Several trenches and blast holes were completed across a quartz-sulphide vein. Although the vein shows impressive alterations, analysis of grab- and channel samples did not reveal any significant values of gold. However the trace and indicator element association in blast hole IX and X indicates hydrothermal activity. Further detailed follow-up surveys are recommended.



## TABLE OF CONTI

| SUMMARY   | ••••••••••••••••                                                                                                                                                                                                                                                                                                     | i                                      |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| TABLE OF  | CONTENTS                                                                                                                                                                                                                                                                                                             | ii                                     |
| 1.        | INTRODUCTION                                                                                                                                                                                                                                                                                                         | 1                                      |
| 2.        | PROJECT A: RECONNAISSANCE WORK IN SHEFFIELD AND<br>HINCHINBROOKE TWPS                                                                                                                                                                                                                                                | 4                                      |
|           | 2.1Sheffield township2.1.1Norway Lake (south)2.1.2Norway Lake (north)2.1.3Cranberry Lake                                                                                                                                                                                                                             | 4<br>4<br>7<br>9                       |
|           | 2.2Hinchinbrooke township2.2.1Fifth Depot Lake2.2.3Chippego Lake                                                                                                                                                                                                                                                     | 12<br>12<br>15                         |
|           | 2.3 Geochemical soil sampling survey (Norway                                                                                                                                                                                                                                                                         | 17                                     |
|           | Lake)<br>2.4 Air photo lineaments (Norway Lake)                                                                                                                                                                                                                                                                      | 19                                     |
| 3.        | PROJECT B: ARDOCH PROPERTY (CLARENDON TWP.)                                                                                                                                                                                                                                                                          |                                        |
|           | <ul> <li>3.1 Description, location and access</li> <li>3.2 Geology</li> <li>3.3 History of the property</li> <li>3.4 Exploration activities</li> <li>3.4.1 grid line survey</li> <li>3.4.2 geochemical soil sampling</li> <li>3.4.3 geological survey and prospecting</li> <li>3.4.4 air photo lineaments</li> </ul> | 22<br>24<br>26<br>26<br>26<br>29<br>30 |
| 4.        | PROJECT C: KALADAR (KALADAR TWP.)                                                                                                                                                                                                                                                                                    | 32                                     |
|           | <ul> <li>4.1 Description, location and access</li> <li>4.2 Geology</li> <li>4.3 Previous exploration activity</li> <li>4.4 Trenching</li> </ul>                                                                                                                                                                      | 32<br>32<br>32<br>34                   |
| 5.        | CONCLUSION AND RECOMMENDATION                                                                                                                                                                                                                                                                                        | 39                                     |
| REFERENCE | S                                                                                                                                                                                                                                                                                                                    | 40                                     |
| CERTIFICA | TE                                                                                                                                                                                                                                                                                                                   |                                        |

010C

## TABLE OF CONTENTS (CONT'D)

.

### LIST OF FIGURES

| Figure | 1  | General location map                |    |
|--------|----|-------------------------------------|----|
|        |    | Project areas                       | 2  |
|        |    | * * *                               |    |
|        | 2  | General location map                |    |
|        |    | Sheffield and Hinchinbrooke twps    | 3  |
|        | 3  | Traverse map: Norway Lake (south)   | 5  |
|        | 4  | Traverse map: Wheeler Lake          | 6  |
|        | 5  | Traverse map: Norway Lake (north)   | 8  |
|        | 6  | Traverse map: Cranberry Lake        | 10 |
|        | 7  | Pit and sample location scetch      |    |
|        |    | Cranberry Lake                      | 11 |
|        | 8  | Traverse map: Fifth Depot Lake      |    |
|        | 9  | Traverse map: Chippego Lake         |    |
|        |    | * * *                               |    |
|        | 10 | General location map                |    |
|        |    | Ardoch project (Clarendon twp.)     | 21 |
|        | 11 | Regional geology and claim location |    |
|        |    | Ardoch Project                      | 23 |
|        |    | * * *                               |    |
|        | 12 | General location map                |    |
|        |    | Kaladar project (Kaladar Twp.)      | 31 |
|        | 13 | Kaladar project                     |    |
|        |    | Trench locations and geology        | 33 |
|        | 14 | Kaladar project: Trench 1           | 35 |
|        | 15 | Kaladar project: Trench 2           | 36 |
|        |    |                                     |    |

## **PHOTOGRAPHS**

| Picture | 1 | Quarzt-vein in trench 1                 | 38 |
|---------|---|-----------------------------------------|----|
| Picture | 2 | Quartz-vein hand specimens with various |    |
|         |   | alterations                             | 38 |

## **APPENDICES**

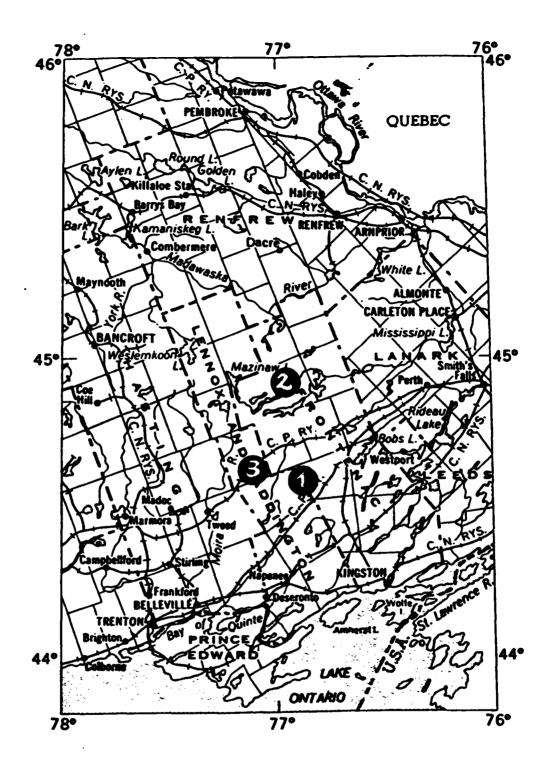
.

| (geochemistry) | ical results | Appendix 1 Analyti |
|----------------|--------------|--------------------|
| (soil samples) | description  | 2 Sample           |
| (rock samples) | description  | 3 Sample           |

## <u>MAPS</u> (IN FOLDERS)

.

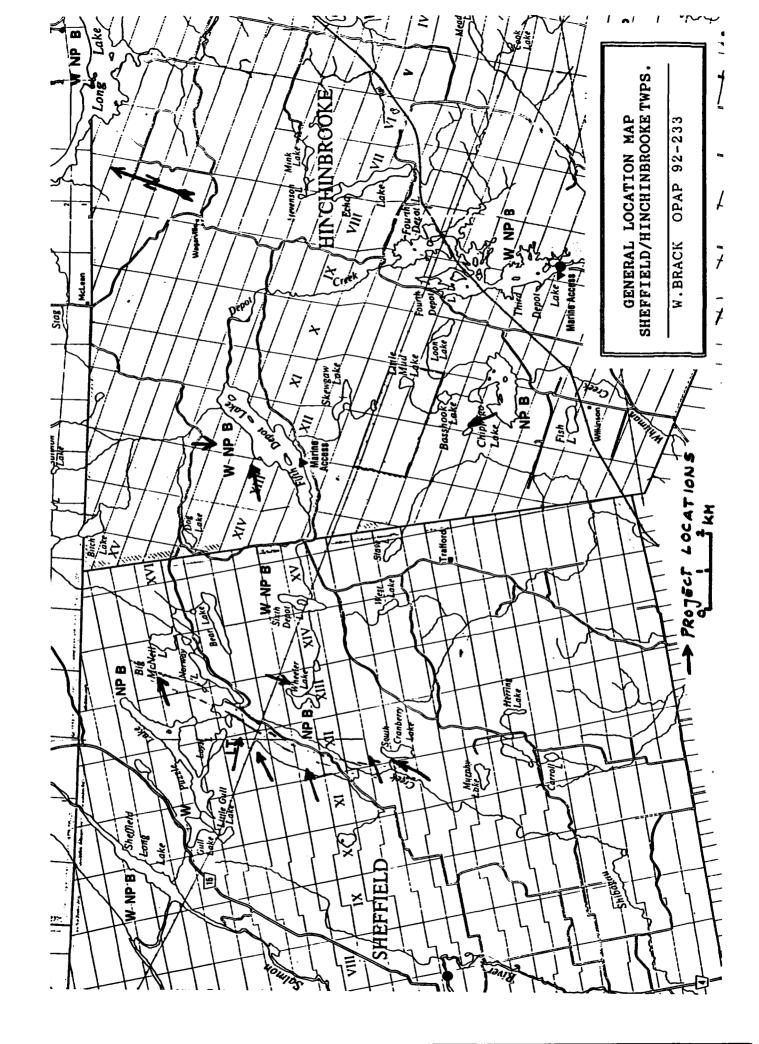
| Map | 1    | Norway Lake area (Sheffield twp.)<br>Air photo lineamentsfolder 1              |
|-----|------|--------------------------------------------------------------------------------|
|     |      | Geochemical contour maps for the Norway Lake<br>area (Sheffield twp.) folder 2 |
|     | 2.1  | Soil sample location map                                                       |
|     | 2.2  | Contour map for zinc                                                           |
|     | 2.3  | Contour map for copper                                                         |
|     |      | Contour map for lead                                                           |
|     | 2.5  | Contour map for manganese                                                      |
|     | 2.6  | Contour map for calcium                                                        |
|     | 3    | Ardoch project (Clarendon twp.)                                                |
|     |      | Air photo lineaments folder 3                                                  |
|     | 4    | Ardoch project (Clarendon twp.)                                                |
|     |      | Geology and rock sample locations folder 4                                     |
|     |      | Geochemical contour maps for the Ardoch project<br>(Clarendon twp.)folder 5    |
|     | 5.1  | Soil sample location map                                                       |
|     | 5.2  | Contour map for zinc                                                           |
|     | 5.3  | Contour map for copper                                                         |
|     | 5.4  | Contour map for lead                                                           |
|     | 5.5  | Contour map for gold                                                           |
|     | 5.6  | Contour map for arsenic                                                        |
|     |      | Contour map for mercury                                                        |
|     | 5.8  | Contour map for manganese                                                      |
|     |      | Contour map for calcium                                                        |
|     |      | Contour map for magnesium                                                      |
|     | 5.11 | Contour map for barium                                                         |


#### 1. INTRODUCTION

This report summarizes the results of the exploration efforts completed by Dr. Winfried Brack in south-eastern Ontario. These activities were supported by the Ontario Prospectors Assistance Program (OPAP) and registered under the file number: OPAP 92-233.

The objectives of the exploration activities were to locate zinc-sphalerite mineralization of economic interest hosted by marble occurrences within the Grenville rock suites of southeastern Ontario and to locate gold mineralization associated with quartz-veining along shears or other tectonical features within meta-sedimentary units or along the contacts with intrusive rocks.

The completed exploration work differs from the original program proposal (see application OPAP 92-233). The Donahu project (Marmora twp.) was replaced by the Ardoch project (Clarendon twp.). The objectives in both projects are gold and zinc mineralization, however the Ardoch project has a significant higher prospectivity. A portion of the funds allocated for the Kaladar project was used for the Ardoch project. Concerning the change of program the Incentive Office was informed by facsimile on October 5, 1992.


The Ardoch project is a joint project with W. Holmstead (OPAP 92-83). His exploration efforts were mainly directed towards the gold occurrences within the southern portion of the claim group, whereas my concerns where focused mainly on the sphalerite occurrence within the northern portion of the claim group.



## GENERAL LOCATION MAP PROJECT AREAS

- 1) SHEFFIELD/HINCHINBROOKE TWPS.
- 2) ARDOCH PROPERTY
- 3) KALADAR PROJECT

W.BRACK OPAP 92-233



-

#### 2. Project A: RECONNAISSANCE WORK IN SHEFFIELD AND HINCHINBROOKE TOWNSHIPS

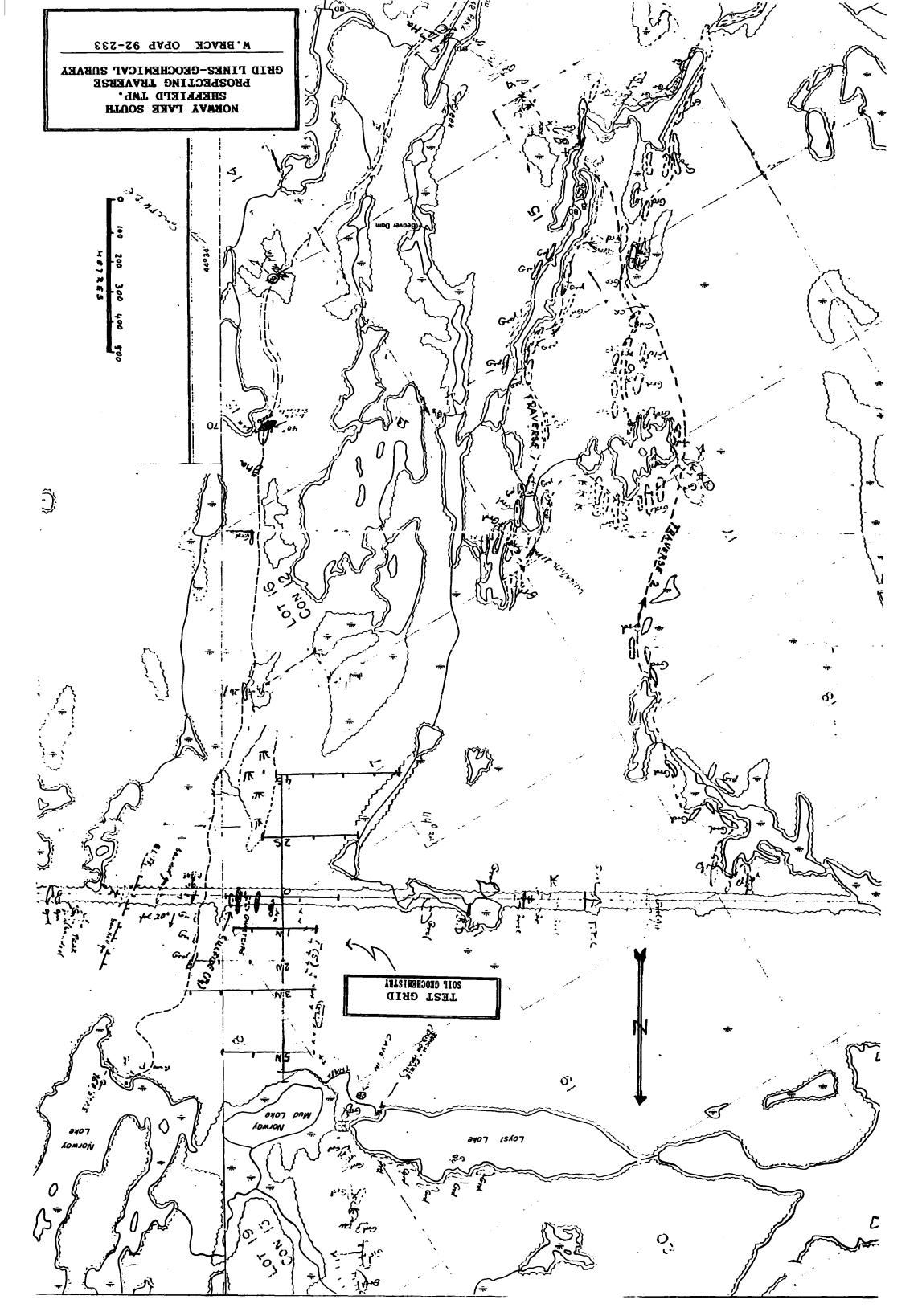
#### 2.1 Sheffield Township

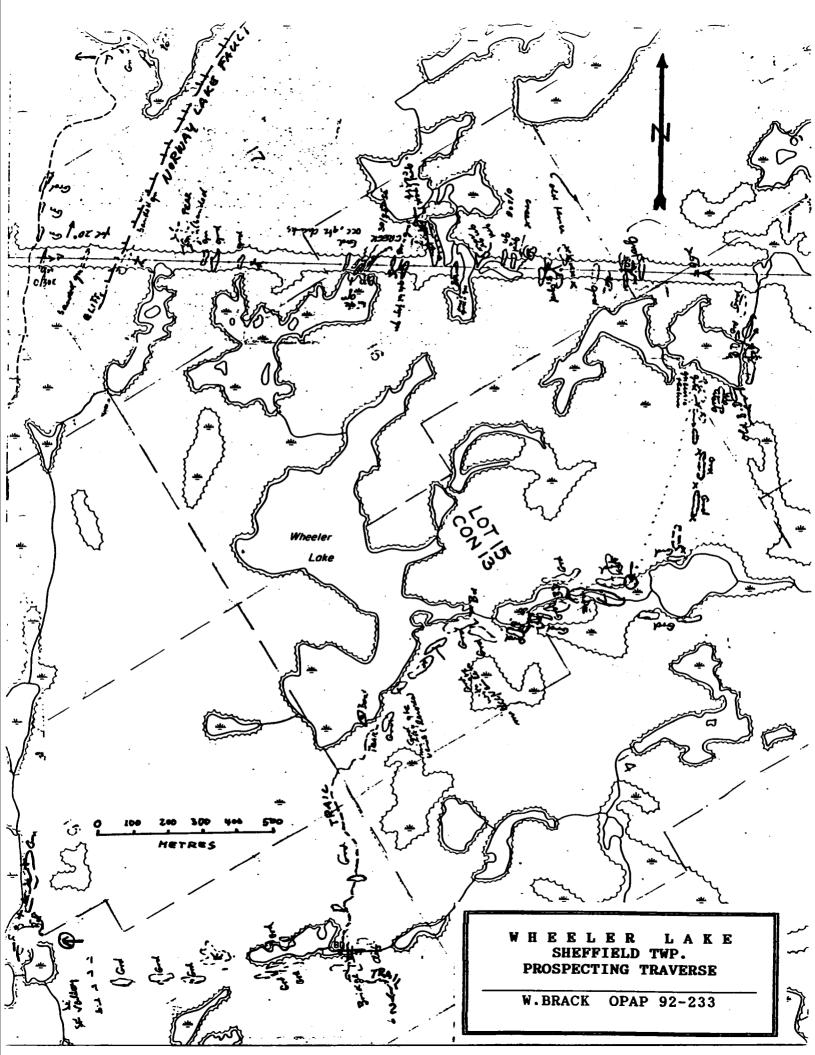
#### 2.1.1 Norway Lake (south)

Location and access:

The Norway Lake south area is located approximately 12 km north-northeast of the village of Tamworth, near Napanee in southeastern Ontario, Sheffield twp. (UTM 4940000N, 345000E). The area is accessible by an asphalt road which leads from Tamworth to Parham. Approximately 3 km east of Tamworth a well maintained gravel road leads north which turns into a dead end beyond the last farm house. This dirt road stretch (approximately 4 km) requires a four-wheel drive pick-up truck. The road ends at Norway Lake.

#### Geology:


The Norway Lake property is situated in the Central Metasedimentary Belt of the Grenville geological province. The rocks present in the investigation area include biotite-quartz paragneiss, quartz-feldspar gneiss, para- and ortho-amphibolite, calcitic marble and quartz-monzonite intrusive rocks. These units trend  $\pm$  north south and dip shallow to the east.


Work done (summary): Orientation survey for access: (16.9.92) Prospecting: 3 traverses Line preparation: 5415 metres (flagged lines) Geochemical soil sampling: 47 samples (for description see 2.3 page 17)

Orientation survey (16.9.92): An orientation survey was necessary to verify the best access to the Norway Lake area. It was discovered that in contrast to some of the existing maps, the access road to the Norway Lake does not continue. For the first ten nights a campsite was selected about 3.5 km south of Norway Lake, since the vehicle was not suitable for the rest of the trail.

Traverse 1 (17.9.92): The traverse started from the access road to Norway Lake approximately 3 km south of Norway Lake. The traverse lead to the west, southwest and northwest from the starting point (see fig. 3)

The lithologies encountered were marble (east of the beaver dam), biotite gneiss (west of the beaver dam) and monzonitic granite (for the remaining traverse). No mineralization was discovered and reference rock samples were discarded.





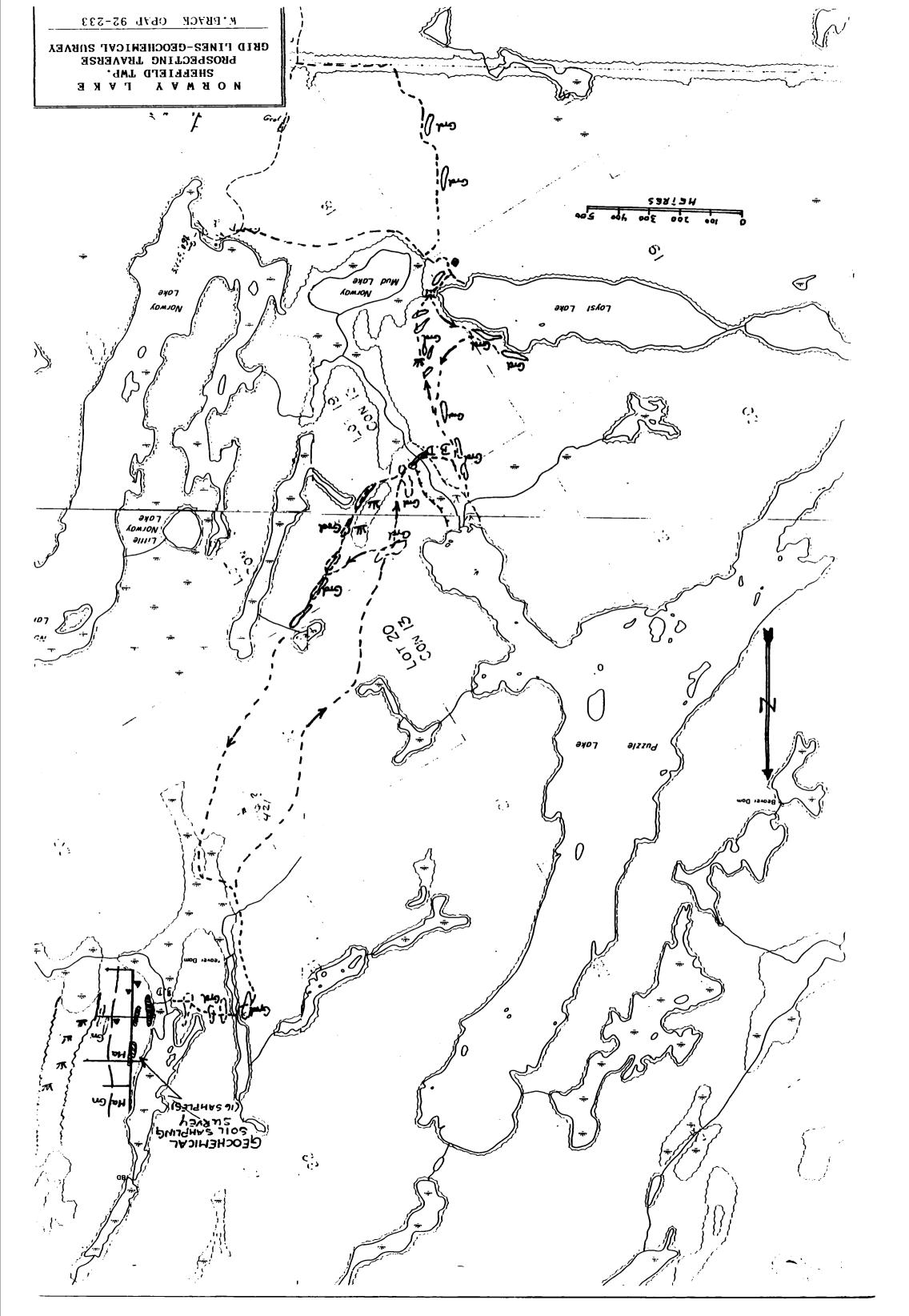
Traverse 2 (18.9.92): The traverse started at the intersection of the power line with access road to Norway Lake. The traverse lead to the west, approx. 1 km along the power line and then to the southeast were the traverse connected with traverse 1 see (fig.3).

The lithologies encountered were quartz-gneis, a 200 metre wide marble unit and monzonitic granite. Sulphide mineralization was observed within the marble unit. One rock sample was preserved for analysis.

Traverse 3 (19.9.92): The traverse started at the intersection of the power line with the access road to Norway Lake. This time the traverse was directed towards the east along the power line and then to the southwest towards Wheeler Lake and from there towards the southeast. The traverse was then reversed to Wheeler Lake and was consequently directed to the west up to the intersection with the access road.

The lithologies encountered were gneiss of various compositions and monzonite granites. A dominant fault structure was crossed (Norway Lake fault). Marble occurrences were located only within the vicinity of the access road. No samples were taken.

#### 2.1.2 Norway Lake (north)


#### Location and access:

Location and access are the same as described in 2.1.1 The northern portion of Norway Lake is best reached by boat. However extensive swamps mainly to the west make access to the area difficult. Alternatively, a small trail could be taken to Loyst Lake and from there the bush can be walked in a northerly direction. Again swamps make the area difficult to access.

Geology: The geological framework is the same as in the Norway Lake south area (see 2.1.1)

Work done (summary): Prospecting: 1 traverse Line establishment: 925 metres (flagged lines) Geochemical survey: 16 samples

Traverse 4 (20.9.92): The traverse started again at the intersection of the power line with the access road. It followed the power line to the west and then was directed to the north. Close to Norway Mud Lake the traverse crossed a small trail which was followed towards Loyst Lake where the trail ends. The traverse was continued in a north-north westerly direction to Puzzle Lake. There it was partially reversed to the point of a beaver dam. The traverse was recommenced approximately 2 km in a northerly direction. Due to numerous swamps which had to be crossed at specific points



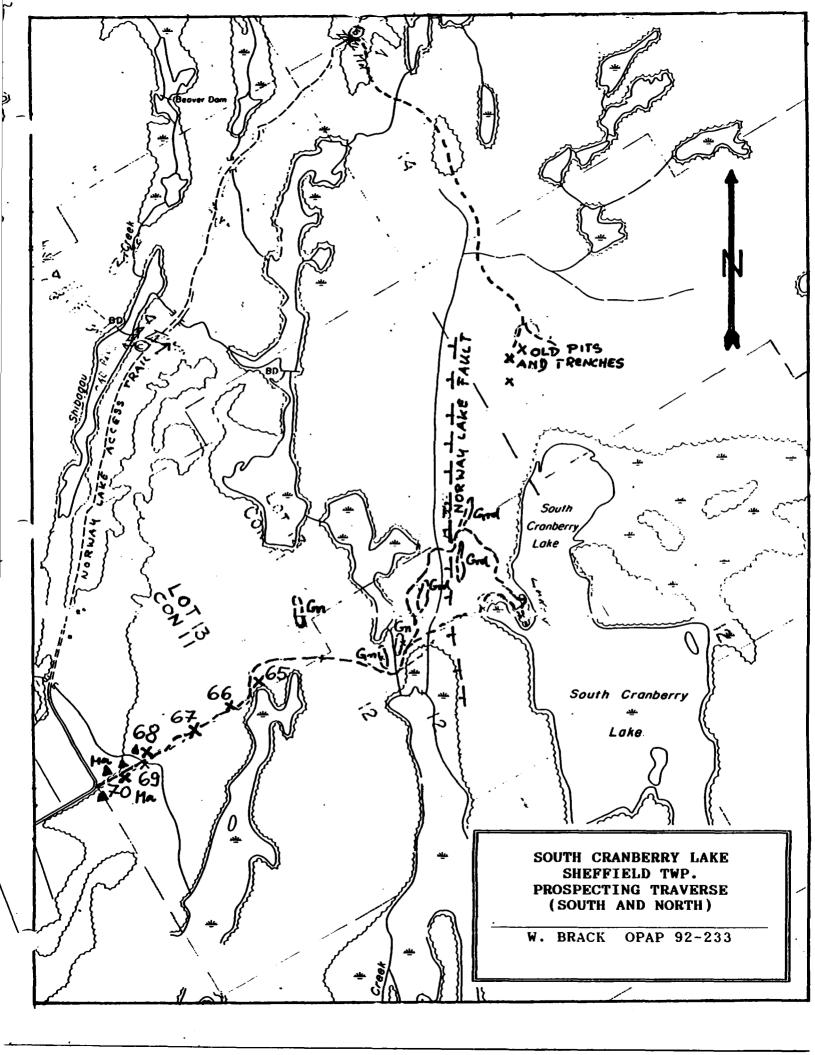
the traverse was reversed with only minor deviations.

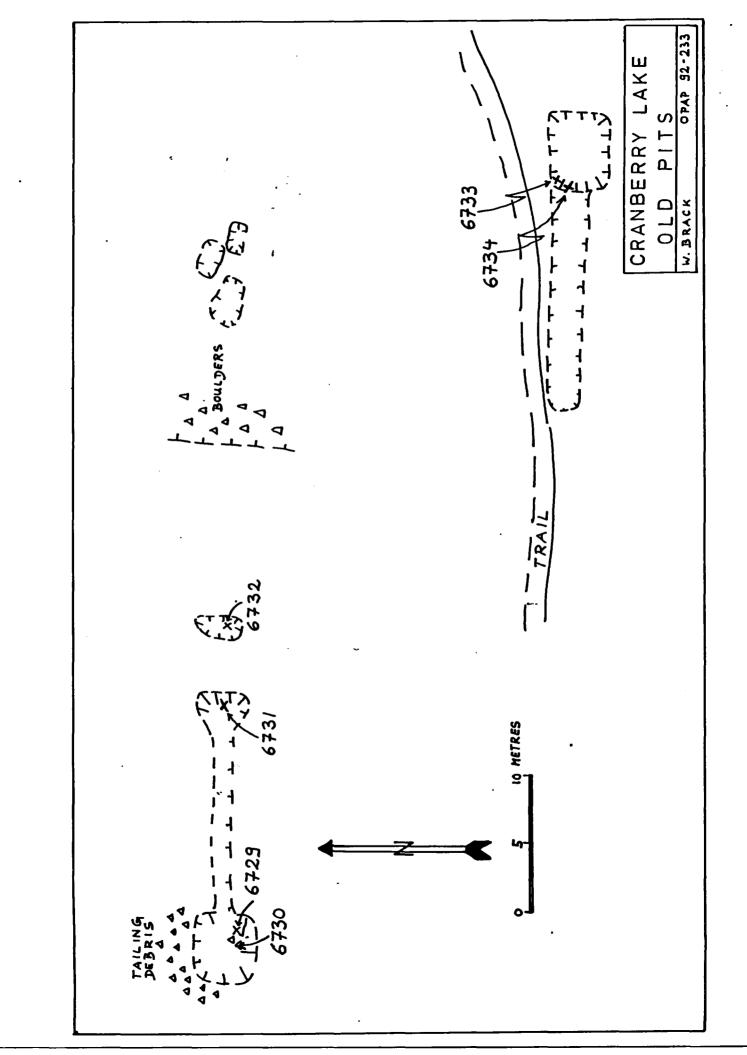
The lithologies encountered were mostly of igneous composition predominantly monzonitic-granite. However at the northern end of the traverse a narrow marble unit was located, in contact with gneissic rocks. The unit is surrounded by swamps.

Geochemical soil sampling survey (Norway Lake - north): A small grid was established over a marble occurrence northwest of Norway Lake. A total of 16 soil samples were collected. A separate statistical treatment of these samples would not be meaningful. Therefore the threshold values from the Norway Lake south-grid are applied.

There is no anomalous value for zinc. Sample NP4 is anomalous in copper (67ppm) and sample NP11 is anomalous in lead (48 ppm). Sample NP11 and sample NP16 have anomalous values in calcium (3.47% and 2.71%). At this point the anomalies do not indicate a major source of mineralization.

#### 2.1.3 Cranberry Lake


Location and access: Location and access are the same as described in 2.1.1 Norway Lake. The Norway Lake access road is the starting point for the traverses.


Geology: The geological units are the south extension of the Norway Lake Fault, granite). Norway Lake lithologies (see 2.1.1)

Work done: Prospecting: Two traverses Rock sampling: 7 rock samples Geochemistry: 6 soil samples

Traverse (north)(28.9.92): A Trail deviating from the Norway Lake access road to the east was followed. The trail leads towards the southeast and is directed towards Cranberry Lake. After approximately 1.2 km the trail splits in several subtrails. Here old and unrecorded workings were discovered, They follow the granite gneiss contact and are related to the major north to south striking Norway Lake fault. Within the main pit large specs of molybdenum and disseminated sulphide mineralization were encountered. A plan of the trenches and pits was completed and six rock samples taken for analysis (sample 6729 - 6734)

Results: Significant molybdenum concentration were analyzed from the pit samples: sample 6729 Mo (ppm) = 2664 sample 6732 Mo (ppm) = 672 sample 6734 Mo (ppm) =>10000





-

All other metals have very low concentrations (see appendix 1) These molybdenum mineralization along the contact of the granitic intrusive rocks and the meta-sedimentary units are not uncommon in this area. They present usually local features of sub-economic interest at best.

Traverse (south)(5.10.92): A second traverse towards Cranberry Lake covered lot 12 concession 11. The northern fence line was followed for approx. 400 metres. Several swamps had to be crossed before the Norway Lake fault was reached. The traverse was continued to Cranberry Lake and then reversed.

One rock sample (6763) and a profile of 6 geochemical soil samples were taken (sample 65 -70) across a marble unit. Sample 66 has an anomalous value in lead (154 ppm). Sample 68 has an anomalous chromium value (217 ppm), sample 69 has an anomalous copper value (220 ppm) and sample 70 is high in manganese (1473 ppm). The anomalies are rather inconclusive and seem to be isolated values unrelated to other elements within the same sample. The erratic behaviour of the element distribution in the area may be explained by the sample medium which was very high in organic and clay components. However a larger soil sampling survey may define areas of potential mineralization (base-metals). Therefore this area may be considered a medium priority target area for further reconnaissance work.

#### 2.2 Hinchinbrooke Township

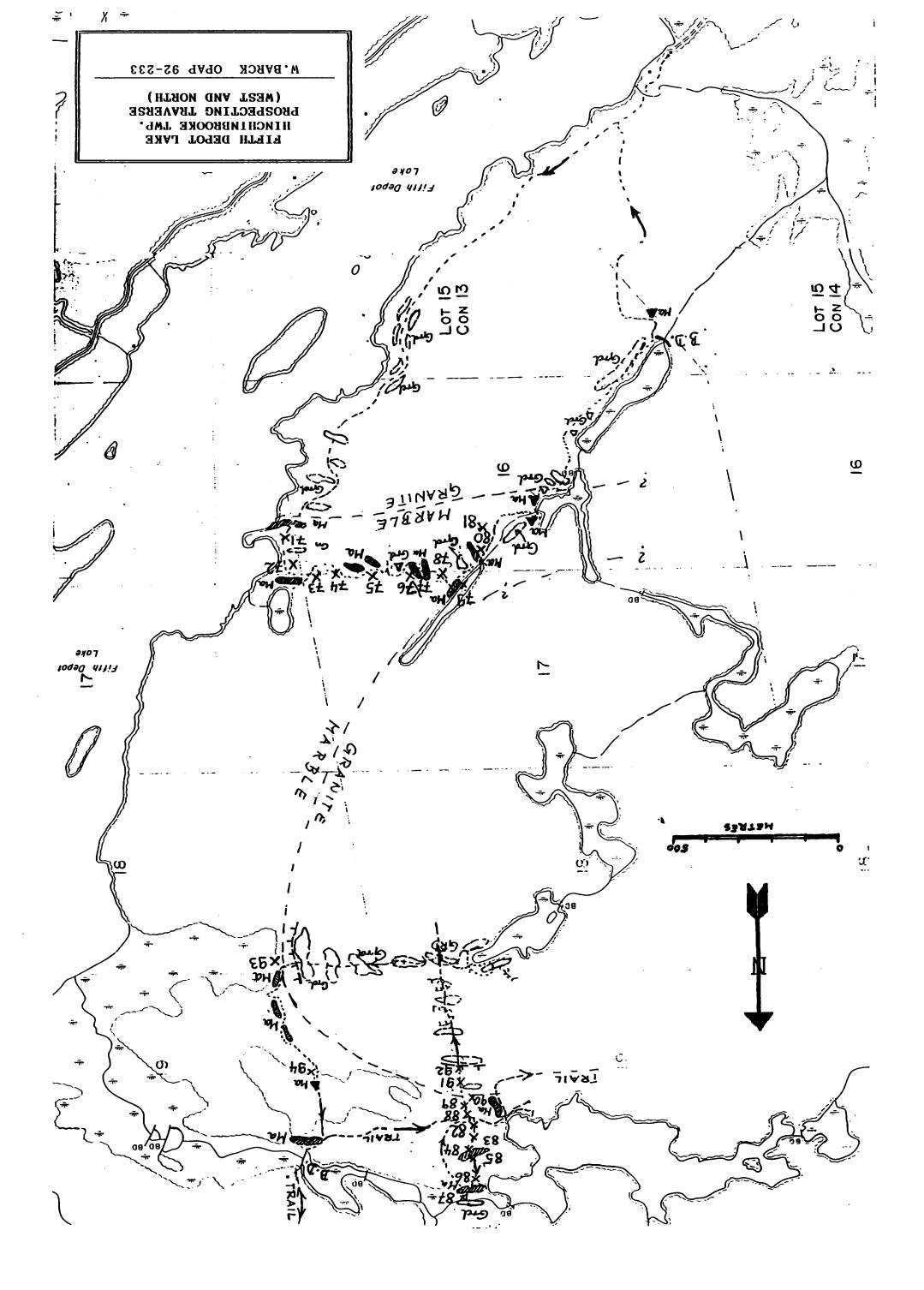
#### 2.2.1 Fifth Depot Lake

#### Location and access:

The Fifth Depot Lake is located in the north-western part of Hinchinbrooke township in the South Western Mining Division of Ontario. The NTS is 31C/10SW.The prospect may be reached from Kingston going north on highway 38 to Parham. From there a secondary, paved country road leads to the west to Tamworth. The road straddles Fifth Depot Lake about half-way between the two country towns.

#### Geology:

As described in the above sub-projects the geology is marked by intrusive rocks in contact with meta-sedimentary units. In the case of the Fifth Depot Lake area a marble unit approaches the Fifth Depot Lake from the west and reaches the shore line about in the middle section of the western shore line. This unit bends towards the north-east and north before it turns to the west. The unit is approximately 800 metres wide. The unit has the character of a large fold. Large sections of the marble unit is covered by swamp. Work done (summary): Prospecting: 2 traverses Geochemistry: two profiles with a total of 25 soil samples


The first (west) traverse (6.10.92) started at the south-west end of the Fifth Depot Lake and followed the shore line in close approximation. About 2 km to the north-east (lot 16 concession 13) a marble unit intercepts the shore line. From here a traverse was paced 270 degree west. The entire width of the marble unit was crossed (approximately 800 metres). The traverse was continued and completed to the south-west). Geochemical soil samples were taken (sample 71 - 81). The preferred location were depressions or edges of slopes. A total of 11 soil samples were collected. Lithologies encountered were granite, marble and gneiss. No mineralization of importance was encountered.

The analytical results of the geochemical soil sampling survey indicate two anomalous samples:

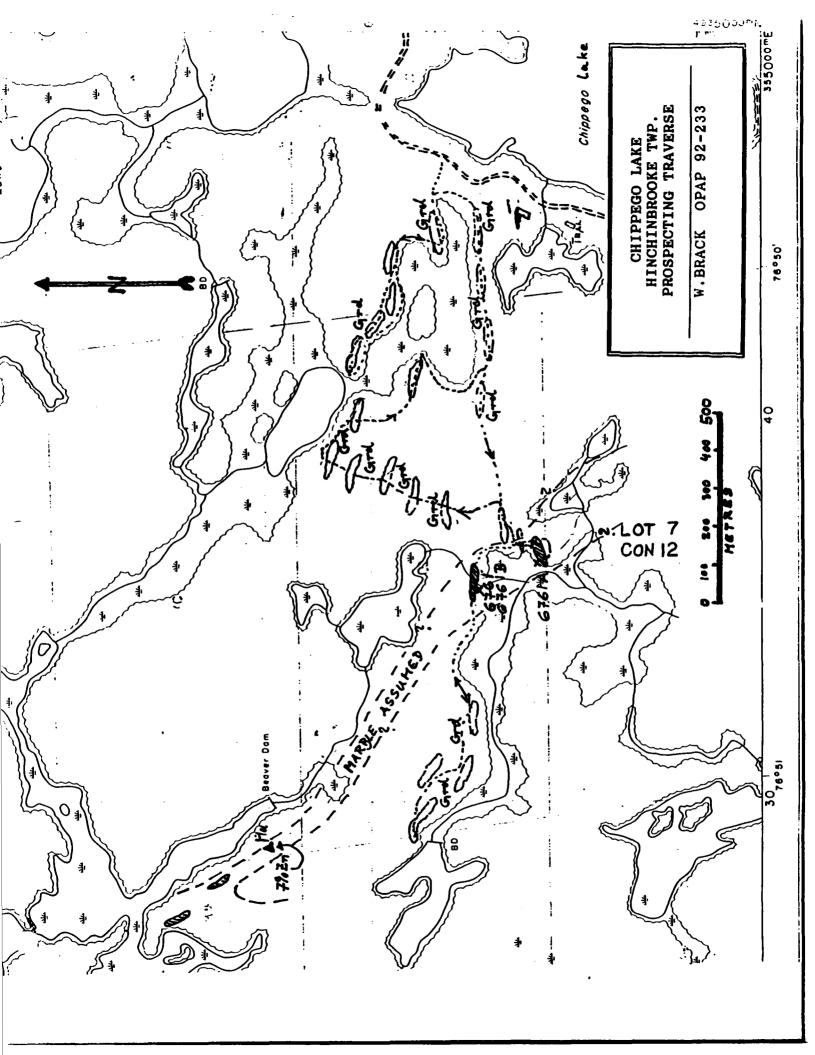
| sample | ppm Zn | ppm Mn |  |
|--------|--------|--------|--|
| 71     | 1186   | 3265   |  |
| 72     | 2314   | 2347   |  |

The limited number of samples within this area (25 samples) is not suitable for a detailed statistical evaluation. However, the two above mentioned zinc values are certainly anomalous. The scavenging ability of manganese-oxides is well documented in the geochemical literature. Therefore the zinc anomalies have to be considered cautiously because they may not necessarily reflect zinc mineralization within the vicinity of the sample locations. A detailed follow-up is recommended.

For the second (north) traverse (13.10.92) access was gained via a small country road from the north of Fifth Depot Lake, which deteriorates into a bush trail past the last farm. The traverse followed the trail, first to the south and after passing a beaver dam the trail continues to the west and south-west. A north-south profile across a marble unit was executed (250 metres to the north of the trail and 600 metres to the south of the trail. The traverse was continued to the east, to a low and swampy area which connects with the Fifth Depot Lake. The traverse was then completed to the north. Geochemical soil samples were taken (sample 82 - 94 samples). The lithologies encountered were mainly marble and granite and metasediments. to lesser extent No significant a mineralization was encountered. The geochemical results revealed only background values.



-


#### 2.2.2 Chippego Lake

Location and access: Chippego Lake is located about 5 km to the south-est from the Fifth Depot Lake. The access is via the country road from Parham which is followed to the west were 0.5 km after Wagarville the road turns further to the south. Shortly before Wilkinson a trail leads towards Chippego Lake. The geographical coordinates are shown on map fig. 9.

Geology: The geology is dominated by granitic intrusive rocks. From a previous survey (Slave Lake OPAP 90-435) their was evidence that an unrecorded marble unit might connect towards Chippego Lake.

Work done (summary): Prospecting: one traverse, 3 rock samples

The traverse (14.10.92) started from the access road at the north-west end of Chippego Lake. First it followed a swampy area to the north-west. The outlet of a lake did not allow for a westerly passage. Therefore the traverse was returned to the starting point and from there continued first to the west and then in a north-westerly direction. The traverse then was returned in approximation of the described path. The lithologies encountered were granite and a marble unit. The marble unit, which to my knowledge was not mapped previously connects to the north north-west into the Slave Lake area (OPAP 90-435). At the south-east extremity of the Slave Lake property (presently held by Willow Resources LTD., Vancouver) a sphalerite mineralized marble boulder was discovered in 1991 and analyzed to contain 7% Zn. Three marble samples were collected and one of them was analyzed (sample 6761). The analytical results were negative. The traverse map shows the assumed boundaries of the marble unit. Since sphalerite mineralization is indicated at the northern portion of the marble band a more detailed investigation of this area is recommended. The southern extension of the marble unit is presently unknown.



#### 2.3 Geochemical soil sampling survey (Norway lake)

The objective of the geochemical soil sampling survey was to discover hidden zinc mineralization within metasedimentary marble intercalations. The second objective was to cover partly an area of a previous geochemical soil sampling survey by St. Joe Canada Inc.(1985) in order to test the precision of the applied method.

Method: The selection of the sample medium is of importance for a meaningful geochemical survey. An orientation study over a known mineralization may determine the sampling technique to be applied. Preferred sample locations were depressions or at the base of slopes. The upper "B" horizon within the soil profile is considered the proper sample medium.

During the geochemical soil sample survey great attention was given to the consistency and uniformity of the sample medium. In order to control the sampling a short protocol was noted for each sample. Locations with water saturated thick organic layers were in contrast to previous surveys not disregarded for sampling.

The sample extraction was done with a narrow bladed garden spade. First the top layer (grass, mulch etc.) was turned over and then a soil profile was extracted. After determining the upper "B"-horizon approximately 150 to 200 grammes of soil was filled in a pre-labelled geochemical soil sample paper-bag. A short description of the sample was given (location, depth of composition, humidity sample, colour, and significant topographic features). Before shipping the samples for analysis they were dried for several days.

Analysis: The geochemical soil samples were analyzed by BONDAR-CLEGG & COMPANY LTD. in 5420 Canotek Road, Ottawa, Ontario K1J 9G2. The most cost effective analytical method, the 28 element IPC-atomic emission spectroscopy, was chosen. The analytical extraction method is based on the Aqua Regia Digestion. The analyzed elements and their detection limits are shown in table\* (by Bondar-Clegg 1991). The elements marked with an asterisk may be incomplete in their analysis for certain mineral forms.

**\***SEE APPENDIX 1

| Statistical data:       | Zn      | Cu    | Pb | Mn   | Ca   |
|-------------------------|---------|-------|----|------|------|
| Maximum value           | 1887    | 63    | 94 | 5449 | 1.32 |
| Minimum value           | 37      | 2     | 4  | 71   | 0.08 |
| Mean (arithmetic):      | 242(259 | )) 17 | 14 | 622  | 0.39 |
| Standard deviation:     | 370(32) | l) 14 | 14 | 959  | 0.29 |
| Threshold (2xSTD+MEAN): | 981(90  | 1) 45 | 41 | 2539 | 0.97 |

(in brackets values from the St.Joe Canada Inc. survey (1985), covering the same survey area.)

A comparison with the St. Joe Canada Inc. survey reveals an astonishing precision in the two surveys. The sample density (115 versus 47 samples, covering an equal area) was much higher with the St. Joe survey and therefore their element concentration contours are more defined. The principle difference in the surveys is the sample site selection. Whereas St.Joe Canada Inc.-worked on a systematic grid, the present survey emphasised "ideal sample locations" such as the edges of slopes or small depressions. Latter method is more cost effective since less samples have to be collected and analyzed.

Results: For the interpretation of the analytical results of the geochemical soil sampling survey in the Norway Lake area 5 elements were selected: Zinc, lead, copper, manganese and calcium. Regarding the contour maps for the individual elements it is evident that the various element anomalies (mean value + 2 x standard deviation) are point-anomalies, with the exception of manganese on line -200 (south). The overlap of the individual element anomalies is generally poor.

As for zinc there are two anomalies: sample 33 Line +500 position + 180 Zn(ppm)= 1174 sample 46 Line +200 position + 130 Zn(ppm)= 1887 Both samples had clayish soil with an organic component.

For copper there are two anomalies: sample 8 Line 00 position - 175 Cu(ppm)= 60 sample 33 Line +500 position + 180 Cu(ppm)= 63 Sample 8 was derived from the edge of a swamp and under the power line. A possible explanation for the anomaly could be reducing (Eh) conditions causing precipitation of Cu at the swamp location and / or contamination by the power line. The Cu anomaly in sample 33 overlaps with the Zn anomaly within the same sample (see above). For lead there is one anomaly: sample 24 Line -200 position - 75 Pb(ppm)= 94 The sample is rich in organic matter and it is doubtful if a proper B-horizon was developed in the soil profile at this location.

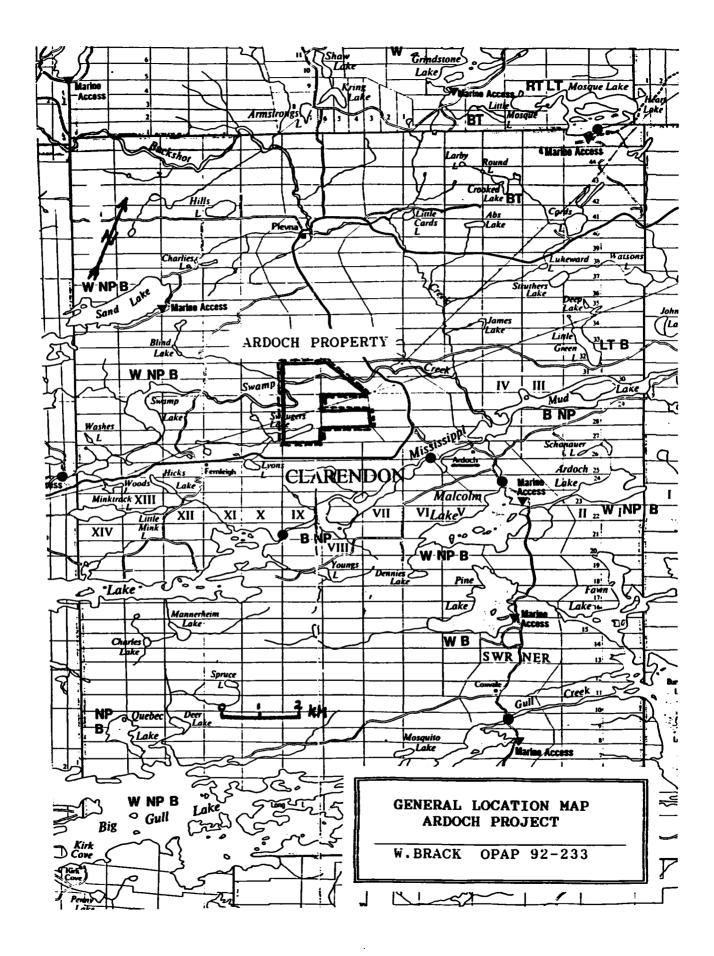
For manganese there are only two samples statistically anomalous. However several other have values close to the threshold value of 2539 ppm manganese. The two anomalous samples are: sample 33 Line +420 position + 000 Mn(ppm)= 5449 sample 22 Line -200 position + 25 Mn(ppm)= 3801 Sample 22 as well as sample 33 is composed of clay and an organic component. No overlap with other anomalous elements occurs at these sample sites.

For calcium there are 4 anomalous values (the values are in %, however on the map they are shown as Ca(%)x100: sample 33 Line +500 position + 180 Ca(%) = 1.04sample 43 Line +250 position + Ca(%) = 1.325 position + 30 sample 44 Line +225 Ca(%) = 8.60sample 8 Line 0 position - 175 Ca(%) = 1.02

Sample 33 and sample 8 have overlapping anomalous values with other elements such as Cu and Zn. Sample 43 and 44 are isolated Ca-anomalies corresponding to underlying marble.

#### 2.4 Air photo lineaments (Norway Lake)

The basis for this study are air photos at a scale of 1:10,000. The air photos used were numbered: 78-4443 187-256 to 262 78-4443 162- 4 to 6 78-4442 142-121 to 126 78-4441 141-109 to 114 78-4440 191-142 to 147 A TOPCON table stereoscope was used for the stereoscopic


viewing of the air photos. All recognized lineaments were plotted on transparent paper with the exception of areas where the density of lineaments with the same directional pattern would have distorted the importance of such lineaments. Streams and lakes were plotted for reference. In order to correct some of the distortions the reference features were matched with the same features on the Ontario Base Maps in the Scale 1:10000 and the map was then redrawn.

The above described method for the extraction of the air photo lineaments has to be considered as a quantitative approach, since distortions are unavoidable. However, the accuracy should be sufficient for a lineament interpretation and the selection of potential prospective target areas. In principle, an air photo lineament is a line which may or may not have any geological significance. The geological importance of such lineaments increases with the recognizable regional directional pattern or the length of such lineaments, especially in cases where such lineaments have significant morphological or topographical expressions.

Results: The southern portion of the observation area (south of Norway Lake shows a relative regular lineament cross pattern, with short lines. These cross patterns are typical on a regional scale for the underlying granites. However, the pattern is interrupted in the south-centre portion, with lines directed  $\pm$  north-south and a significant decrease in the lineament density. This portion is underlain by marble. The Norway Lake fault forms the eastern boundary of this metasedimentary unit. The Norway Lake fault is a landmark and forms a steep cliff, which is easily recognizable in the field as well as on air photos. Another trend in the lineaments is directed 70 to 80 degree (ENE to WSW). In the area of Wheeler Lake this trend seems to curve more to the north. Almost perpendicular to it, at 290 degree (WNW to ESE), occurs another trend, directed towards the south tip of Puzzle Lake. In the lower southwest corner of the map appears a feature consisting of a pronounced north-south line which is intersected by a east-west line (the latter being an uncommon direction in this area). The intersection is marked by a small lake which stretches in all directions of the given pattern. Just to the northeast of this feature an s-shaped lineament occurs which could reflect a fold.

The centre of the map is marked by the west-east stretching of Puzzle Lake, Loyst Lake and Norway Lake. A fault structure was described in the previous literature. Although a strong 70 degree (ENE to WSW) trend is recognized, the air photo did not reveal any single structure which would confirm the Loyst Lake fault.

North of the map centre line (Loyst Lake) the directional pattern of the air photo lineaments is changing. There is a pronounced 45 degree trend (NE to SW) and a 320 degree trend (NW to SE). Within the north central portion of the observation area strong NS directed lineaments are present. This area is underlain by marble and presents the extension of the above described metasedimentary zone in the south.

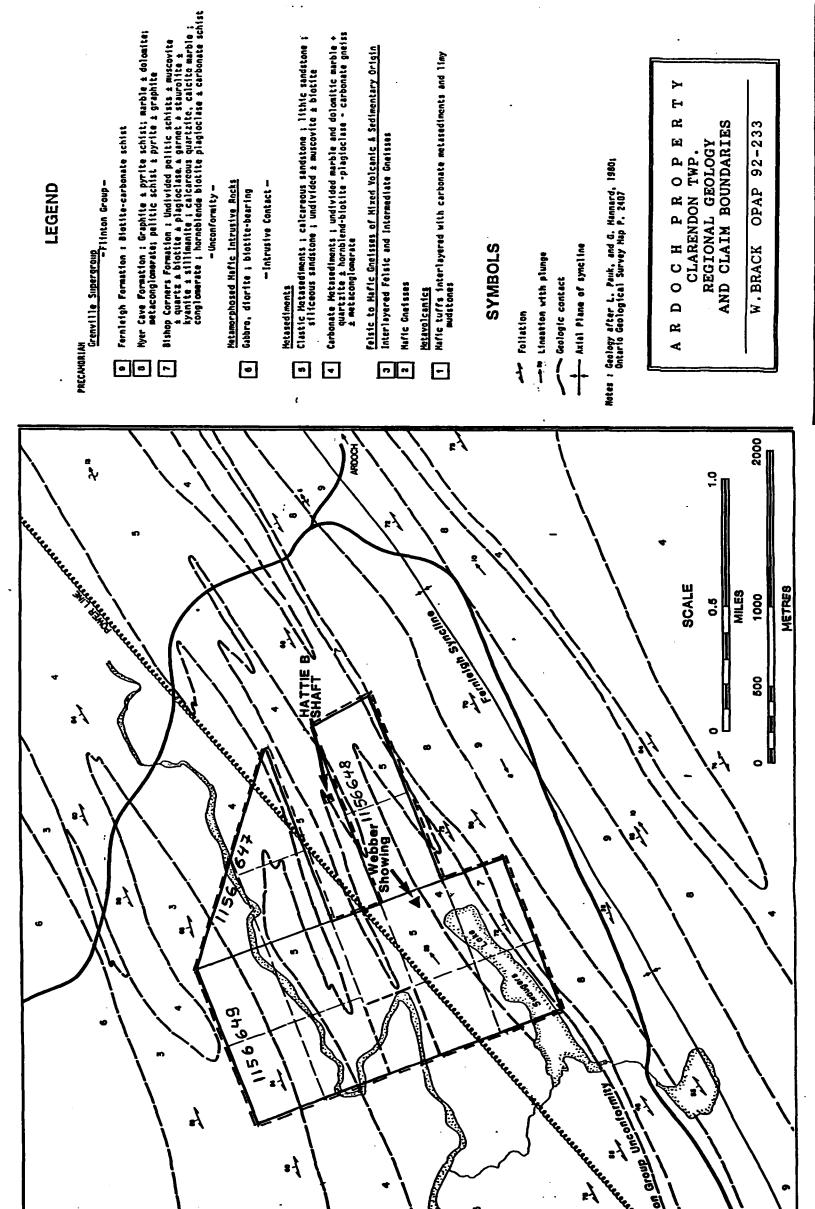


#### 3.0 PROJECT B: ARDOCH PROPERTY (CLARENDON TWP.)

#### 3.1 Description, location, access and claims

The property consists of 3 contiguous mining claims in the central parts of Clarendon Township, Frontenac County, Eastern Ontario Mining Division in NTS 13C/14, 15. The approximate geographic centre is 44 55'30" latitude and 76 58'00" longitude. The property is located approximately 2 km WNW of the village of Ardoch, which in turn is approximately 200 km north of Kingston, Ontario.

The property is easily accessible by road. From Kingston highway 38 leads to Shabot Lake. There at the intersection with highway seven after 1 km to the west, road 509 leads to the north. After 10 km road 506 leads to the northwest to Ardoch. Road 506 straddles the northwestern and southeastern portion of the property. Several small bush roads and a power line access road penetrate the property. An important power line corridor bisects the central part of the property.


The southern portion of the property consists mainly of open and mature hardwood stands with intermittent grassland, whereas the northern portion is densely wooded such as in the low lying areas around Swamp River where cedar stands are difficult to penetrate.

Three claims have been staked in Clarendon township and are held jointly by Wayne Holmstead (Kingston, Ont.), Gregg Waag (Ottawa, Ont.) and Winfried Brack (Montreal, Que.). The geographical distribution of the claims are as follows:

| Claim number: | Units: | Lot:               | Concession: |
|---------------|--------|--------------------|-------------|
| 1156 649      | 3      | 30,31              | VIII        |
| 1156 648      | 2      | 28                 | VIII        |
| 1156 649      | 10     | 27,28,<br>29,30,31 | IX          |

#### 3.2 Geology

Clarendon Township lies within the Central Metasedimentary Belt and is dominated by Grenville Supergroup rocks of late Precambrian (Helikien) age and by stratified rock assemblages postdating the Grenville Supergroup (Moore and Thompson, 1980).





The regional map originates from a report by Bowen, R.P.P.Ing. A detailed description of the property geology was given by Bowen, R.P. P.Ing. (1988), Allard, P. (1988) and Delisle, J.C. (1989). Delisle, J.C. divides the property into three structural and lithological domains:

1) The local (property-scale) Z-shaped marble fold centred in the middle part of the property with a minor Z-shape drag fold on the lower limb of a large Z-fold. An overturned anticline, the Boerth Anticline to the north part of the Z-fold and an overturned synform. The Swaugers Syncline, to the south, are stressed with D2 folding. This Z-shaped marble fold is located within the Mayo Group. The folds plunge 10 degree to the NNE and locally to the SSW.

2) The Flinton Group unconformity to the south of the property which transects the local Z-shape marble fold at an angle of 30 to 40 degree.

3) The gradational zone between the Mayo Group to the Hermon Group in the north part of the property. The structural pattern is different from the south portion of the property but is still undefined on the property scale because of the lack of outcrops. At the regional scale, it is localized on the southern limb of the Plevna Z-shape fold.

#### 3.3 History of the property

The property history was described in detail by Bowen, R.P. (1988) The following paragraph is a copy of his compilation:

The documented history of the Boerth-Hill property dates back to a 1900 reference in the Report of the Bureau of Mine which reports that two shallow shafts (Hattie B and Uncle Sam) were sunk and a 10 stamp mill erected at the Boerth Mine. The Hattie B shaft was inclined at 65° and sunk to a depth of about 37m with 16m of drifting carried out on the 23m level. The Uncle Sam shaft, located approximately 49m to the south was sunk to about 11m depth. Total production in 1900 was reported as 13 ounces gold. Work was halted in 1901 due to lack of financing.

In addition to the above, the following activities must have been carried out subsequent to the 1900 report by the Bureau of Mines:

- i) development of a 30m long adit located approximately 550m east of the Hattie B shaft area;
- ii) sinking of two shafts (approximately 12 and 7.6m deep respectively) collared between the Hattie B shaft area and the adit;
- iii) numerous trenches and open cuts in the Hattie B shaft area.

In 1950, Bruce Robson acquired the Boerth property by staking and drilled three holes totalling 167m in 1952. All three holes were drilled on the Boerth patented claim. Values up to 18.8g/t across 0.61m are reported from pyritetourmaline bearing quartz veins.

The Ontario Department of Mines mapped Clarendon Township and reported preliminary results in publication P.R. 1951-3.

Stratmat Limited drilled three drill holes totalling 166.2m east of Swaugers Lake in 1952. Assay results from the drilling are not included with the drill logs.

The Ontario Department of Mines published a one inch to one mile regional geologic map of the area, including Clarendon Township in 1956. The map forms a compilation of field work by B.L. Smith and P.A. Peach. The map shows the location of both the Boerth and Webber showings.

The 1963-64 Ganda Silver Mines Ltd. optioned the Boerth property and acquired by staking the adjoining ground. The company carried out a 47 hole, 2,150m diamond drill program in addition to surface prospecting, stripping and trenching. A.C.A. Howe in a summary report dated May 25, 1964 concluded that "numerous high grade, narrow quartz veins have been found on the property spread over a belt 2,000ft. (600m) long and about 300ft. (90m) wide." Howe recommends a program of shaft rehabilitation, drifting and cross-cutting, underground diamond drilling and bulk sampling of the Hattie B shaft. An examination of drill sections of the Ganda Silver drilling indicates that in most cases only quartz vein material was split and sampled. The gold tenor of hanging and footwall material is not known.

The regional geology of the area was compiled by B.V. Sanford and A.J. Baer at a scale of 1:1,000,000 and published as Map 1335A in 1971. The map suggests that the Clarendon area may form part of a northeast trending trough occupied by Helikian clastic and chemical sediments associated with an Helikian volcanic pile that has intruded an Aphebian or early Helikian felsic batholith.

L. Pauk and G. Mannard mapped the Ardoch area in 1980 at a scale of 1:15,840. Their findings are presented in O.G.S. Open File Report 5381.

Kenting Earth Sciences Limited carried out an airborne total field and gradient magnetic survey in the general area in 1984. The airborne data is presented as a series of 1:20,000 scale maps and confirm the northeast trending linear grain indicated by Government regional mapping.

P.S. Barron of the Ontario Geological Survey carried out a compilation of selected gold occurrences in southeastern Ontario including the Boerth and Webber showings in 1985. He concludes that "the majority of mineralized veins occur within carbonate and clastic metasediments overlying volcanic sequences and along the Flinton unconformity." A grab sample collected from the Hattie B dump returned 4.11 g/t gold with trace values in copper, silver and zinc. A

grab sample from the Webber dump assayed 14.74 g/t gold and greater than 1.0 g/t arsenic.

The Ardoch Syndicate carried out a program of ground magnetic VLFelectromagnetic and I.P. surveys over the southern and central portions of the property in 1986-87.

Aurochs Société d'Exploration Minière Inc., worked the property from 1987 to 1989. Geological mapping, I.P.-survey, VLF and Magnetic survey and limited geochemical soil sampling across I.P. anomalies were completed.

#### 3.4 Exploration activity

#### 3.4.1 Grid line survey

Originally it was planned to cut a new grid on the property. Due to an extreme heavy cedar growth, especially within the northern portion of the property line cutting would have been extremely time consuming. After establishing of a view reference lines, the old grid cuttings then were followed and the previous grid by Aurochs Société d'Exploration Minière Inc. was reestablished. In this way the utilisation of previous results was assured.

To revitalize the old grid, the pickets had to be located, marked, erected or replaced. A total of 3.6 km of reference lines and approximately 6 km of grid reestablishment was completed on the property.

#### 3.4.2 Geochemical soil survey

Objective: The objective of the geochemical soil sampling survey was to detect sphalerite (zinc) mineralization within visible or hidden marble lenses as well as other potential precious metals and/or base metal mineralization. Heavy overburden and dense vegetation result in limited geological information. Therefore a detailed geochemical soil sampling survey was warranted.

Method: The sampling technique and the analytical method was the same as previously described in paragraph 2.3 page 17.

Within the northern section of the property a total of 120 soil samples were collected. Originally a total of 99 samples were analyzed. The remaining samples were collected and analyzed later as a follow-up. The sample locations and main anomalies are presented in the compilation map. The following table gives the mean and standard deviation values for all elements of interest. The sample descriptions are provided in appendix 2 and the analytical results are given in appendix 1.

#### Statistical data:

|                        | Zn   | Cu   | Pb   | Au         | As  | Hg   |
|------------------------|------|------|------|------------|-----|------|
| Maximum value:         | 1411 | 95   | 126  | 759        | 276 | 2799 |
| Minimum value:         | 21   | 3    | 2    | 3          | 5   | 10   |
| Mean (arithmetic):     | 216  | 19   | 21   | 16         | 47  | 110  |
| Standard deviation:    | 197  | 17   | 17   | <u>~75</u> | 45  | 266  |
| Threshold(2xSTD+MEAN): | 610  | 52   | 54   | 165        | 137 | 643  |
| •                      | Mn   | Ca > | c100 | Mg x       | 100 | Ba   |
| Maximum value:         | 6192 | 1000 | )    | 855        |     | 394  |
| Minimum value:         | 14   | 18   | 3    | 7          |     | 20   |
| Mean (arithmetic):     | 1077 | 106  | 5    | 99         |     | 107  |
| Standard deviation:    | 1208 | 166  | 5    | 110        |     | 67   |
| Threshold(2xSTD+MEAN): | 3493 | 437  | 7    | 319        |     | 242  |

#### **Results:**

The statistical approach for the interpretation of the analytical values for this soil survey is at this point not satisfying as it can be demonstrated for zinc. In order to resolve the situation a meaningful test to determine the sample populations is necessary. If possible the sample populations would then be recalculated for their individual means and standard deviations. Due to the lack of sophisticated statistical software such a procedure is postponed. In the meantime the geochemical data will be interpreted based on previous results in comparable environments.

Zinc: The zinc showing is not reflected as an anomaly. Three samples were taken from the same location just a few metres below the sphalerite occurrence. The A-horizon gave a value of 326 ppm Zn, the B-horizon a value of 410 ppm Zn and the Chorizon a value of 280 ppm Zn. The B-horizon is indeed the best selection. The values obtained directly below the sphalerite occurrence as well as the surrounding values are surprisingly low. One explanation might be that Zn within a carbonatic environment is largely immobile. However this does not reflect experiences within comparable environments. On the other hand the strongest anomaly (1411 ppm Zn - sample 36) is derived from an entirely organic and wet swamp locations. Zinc does precipitate in a reducing environment. The most interesting area appears to be the southern border of the north-west portion of the grid (north of Swamp river) were consistent high zinc values were obtained:

| sample: | ppm Zn | sample: | ppm Zn |
|---------|--------|---------|--------|
| 82      | 460    | 83      | 500    |
| 67      | 757    | 90      | 334    |
| 93      | 355    | 64      | 1184   |

Sample 94 with 634 ppm Zn is not directly in line with the above mentioned samples, it should however be considered in a possible follow up. A second grouping of high zinc values occurs in the very south-eastern corner, however the sample locations are at the foot of a hill and at the edge of a swamp.

Copper: Based on statistical considerations a total of 7 samples are considered anomalous in their copper content. They do not form any particular cluster:

```
sample 53
          Line
                 00 position -175
                                     Cu(ppm) =
                                                59
          Line +500 position +180
                                                95
sample 36
                                     Cu(ppm)=
sample 61
          Line
                 00 position -175
                                     Cu(ppm)=
                                                79
                    position + 180
                                                47
sample 64
          Line +500
                                     Cu(ppm)=
sample 92
                 00 position -175
                                     Cu(ppm) =
                                                80
          Line
sample 90 Line +500
                     position + 180
                                     Cu(ppm) =
                                                47
                    position - 175
sample 75 Line
                 00
                                     Cu(ppm) =
                                                50
```

The highest value (95 ppm) was obtained from a sample rich in organic material at the wet edge of a swamp. The absolute values of the anomalous samples may be considered relatively low and most likely do not relate to any major copper mineralization. In conjunction with other elements these copper values may be helpful as tracers.

lead: a cluster of anomalous Pb values occurs in the northwestern portion of the survey area. sample 81 (61 ppm Pb) sample 82 (65 ppm Pb) sample 93 (58 ppm Pb) sample 64 (126 ppm Pb) Although the absolute numbers are not very high the lead concentrations correlate with high zinc, copper, and manganese values.

arsenic: arsenic values are rather flat over the entire survey area, with the exception of sample 64 (876 ppm As). This sample carries anomalous values for Zn, Cu

gold: as with mercury the obvious anomaly is in the very south-east corner of the map (sample 1 / 220 ppb Au and sample / 759 ppb Au). The anomaly is caused by tailings from the former Hattie B-shaft operation. The more promising anomaly is sample 90 with 246 ppb Au (see Cu and Zn-values). Although two check-up analyses failed to indicate any gold values of interest, it is evident that soil samples size of 150 to 250 grams might not be sufficient to compensate for the erratic behaviour of gold (nugget effect). Therefore sample 90 should be considered for a follow-up program. Sample 23 (47 ppb Au) may also be considered anomalous. mercury: the obvious anomaly is in the very south-east corner of the map (sample 1 / 333 ppm Hg and sample 2 with 2799 ppm Hg). This anomaly is caused by pollution through tailings originating from the Hattie B-shaft operation. Further to the west there is a high value 828 ppm Hg (sample 14) which may be related to the above described anomaly (dispersion). However this is not necessarily conclusive since mercury accumulation is common under bog conditions.

barium: the barium values are rather inconclusive and homogenous. Values which are statistically anomalous are erratic and do not relate to other anomalous elements with the exception of sample 81 (283 ppm Ba) and sample 82 (394 ppm Ba).

manganese: the highest concentration of anomalous manganese values are found in the north-western corner of the survey area (sample 81, 82, 69, 93, 64, 95 with values ranging from 3496 ppm Mn to 6192 ppm Mn). Unfortunately manganese has the ability to scavenge other metals and may produce false anomalies. Sample 24 with 4249 ppm Mn is surrounded by several high manganese concentrations just below the threshold value.

calcium and magnesium form an overlapping anomaly within the north-western survey area but slightly north of the anomalous metal concentrations. The calcium and magnesium anomalies may indicate the occurrence of dolomitic marble in this area.

The geochemical survey indicates a cluster of element concentrations within the north-western survey area (Zn, Cu, Pb, Au, As, Ba and Mn). The scavenging ability of manganese diminishes the quality of this anomaly, nevertheless a careful consideration should be given to this particular area.

#### 3.4.3 Geological survey and prospecting

The geological map by Aurochs Société d'Exploration Miniere Inc. is difficult to improve within the southern portion of the property where relative good outcrop exposure allows continuous geological observations. Within the norther portion of the property improvement could be achieved by detailed observations, which however did not change the general geological picture of the property. The geological observations are presented in the compilation map (folder 4).

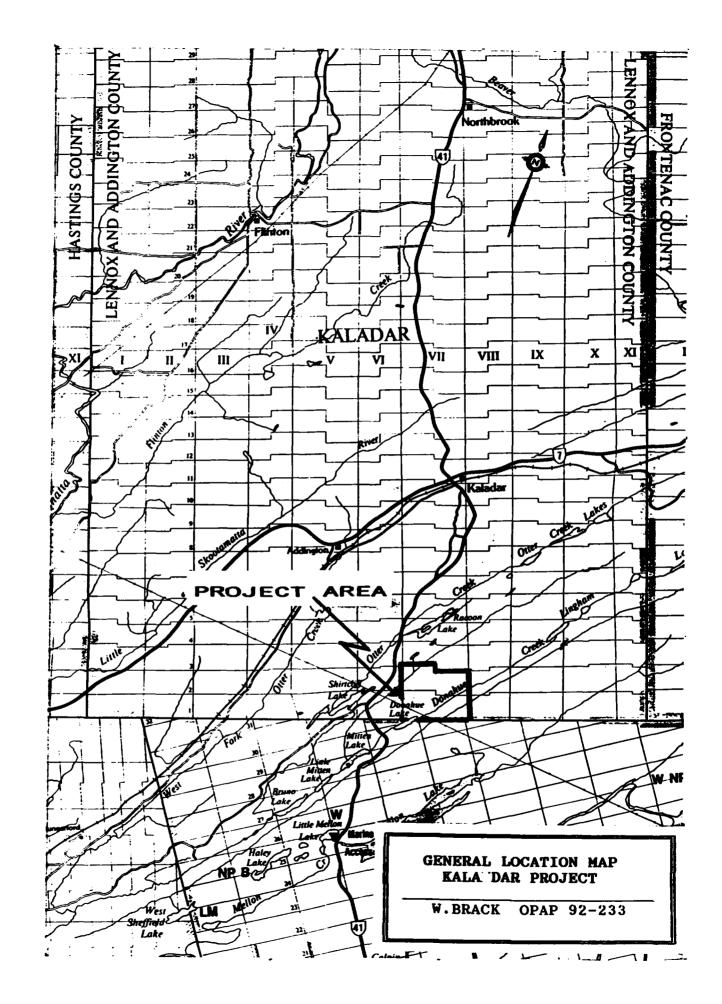
Traditional prospecting was carried out mainly to cover ground between the survey lines in areas of particular interest, such as: between line 9 and 10E (prospecting and some stripping)

between line 4, 5 and 6E (rusty quartz boulders) between line 3, 4 and 5W (rusty quartz)

The area surrounding the sphalerite showing as well as the

Webber gold showing (southern portion of the claims) were prospected. At the Webber gold showing attempts have been made to clean out portions of the trench bottom. Since no mineralization was visible in the uncovered section, further cleaning of the trench was abandoned

#### 3.4.4 Air photo lineaments


The basis for this study are air photos at a scale of 1:10,000: The air photos used were numbered: 78-4463 78- 47 to 51, 78-4464 160-193 to 198 78-4465 80- 46 to 50 A TOPCON table stereoscope was used for the stereoscopic viewing of the air photos. The method of evaluation is explained in paragraph 2.5

Results: The most prominent structural feature on this map is a synform within the north-west corner of the map. The apex of the synform is marked by two narrow and strongly curved lakes. In the literature this synform is described as the Plevna syncline. A second strongly curved feature appears in the south-west corner of the map. Since it does not form a complete synform (the northern flank is missing) it represents most likely a distant expression of the above described Plevna syncline.

The most frequent lineament strikes  $\pm$  60 to 75 degree and relates to the regional shearing pattern. Other frequent lineament directions are  $\pm$  35 degree (mainly in the northern half of the observation area) and 340 degree. The lineaments with 340 degree tend to be quite long, however they are widely spaced.

One lineament relates to the Webber gold showing (285 degree). At least two additional lineaments are comparable with the Webber structure, one to the north-east and one to the southwest. Both of them as well as the Webber structure have to be considered as highly prospective. The Webber structure relates faintly to the Z-shape bending of the Swamp River. A possible fold structure in the area is not supported by the air photo lineaments.

Two other prominent features described in the literature, namely the Fernleigh Syncline and the Flinton Group Unconformity were not identified with the air photo lineaments.



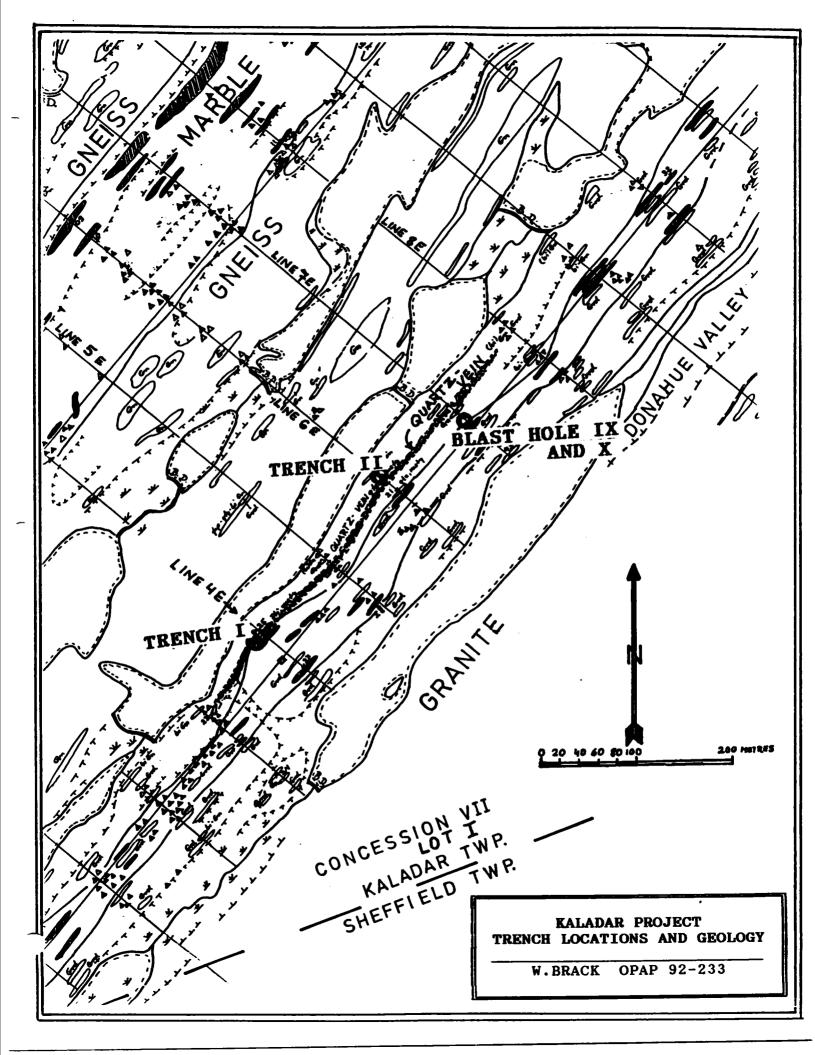
\_

#### 4.0 PROJECT C: KALADAR (KALADAR TWP.)

#### 4.1 Description, location and access

The Kaladar project is located in the most south-central portion of Kaladar Twp. within the Southeastern Mining Division of Ontario. The project covers concession VII, lot 1 and lot 2 (see map xx).

The accessibility of the investigation area is excellent. Coming from Kaladar where highway 7 is intersected by highway 41 and following highway 41 approximately 7 kilometres to the south, the property can be reached from the intersection with the Racoon Lake road or approximately 700 metres further to the south were two private trails reach the investigation area. One trail leads to the northeast and north of Donahue Lake to the central portion of the investigation area, whereas the second trail is to the south of Donahue Lake and intersects the southern portion of the investigation area.


The area is marked by elongated ridges of minor elevations intersected by narrow, shallow lakes and swamps. Most of the lakes are created by the activity of beavers. The vegetation is dominated by hard-wood such as oak, beech, maple and birch with minor stands of spruce and pine. Patches of sumach bushes and alders are common. A hydro power line intercepts the south-west corner of concession XII lot 1 of the investigation area. The investigated lots are Crown land.

#### 4.2 Geology

The investigation area is part of the Central Metasedimentary Belt, Hasting Basin as defined by Wayne-Edwards(1972), and is composed of Late Precambrian meta-volcanic and metasedimentary rocks of the Grenville Supergroup, and Late Precambrian granitic intrusive. Late tectonic pegmatite sheets and dikes cut the supracrustal rocks locally (J.M.Wolff,1982).

#### 4.3 Previous exploration activity

Very limited records do exist of previous exploration activities in the area and particularly on the target area. However, a report by J.D.McCannell for Glenshire Mines Limited (1975) describes a trench within the northwest corner of concession VII, lot 2: "Heavy sphalerite is exposed in an old trench in crystalline limestone in the northwest corner of lot 2 concession VII. A large sample of well mineralized rock from this trench returned an assay of 29.29% zinc, 0.007% lead and 0.04 ounces of silver. The sphalerite was difficult to identify as such with the result that better mineralized pieces were selected more to establish the presence of zinc mineralization than to determine the grade of the material."

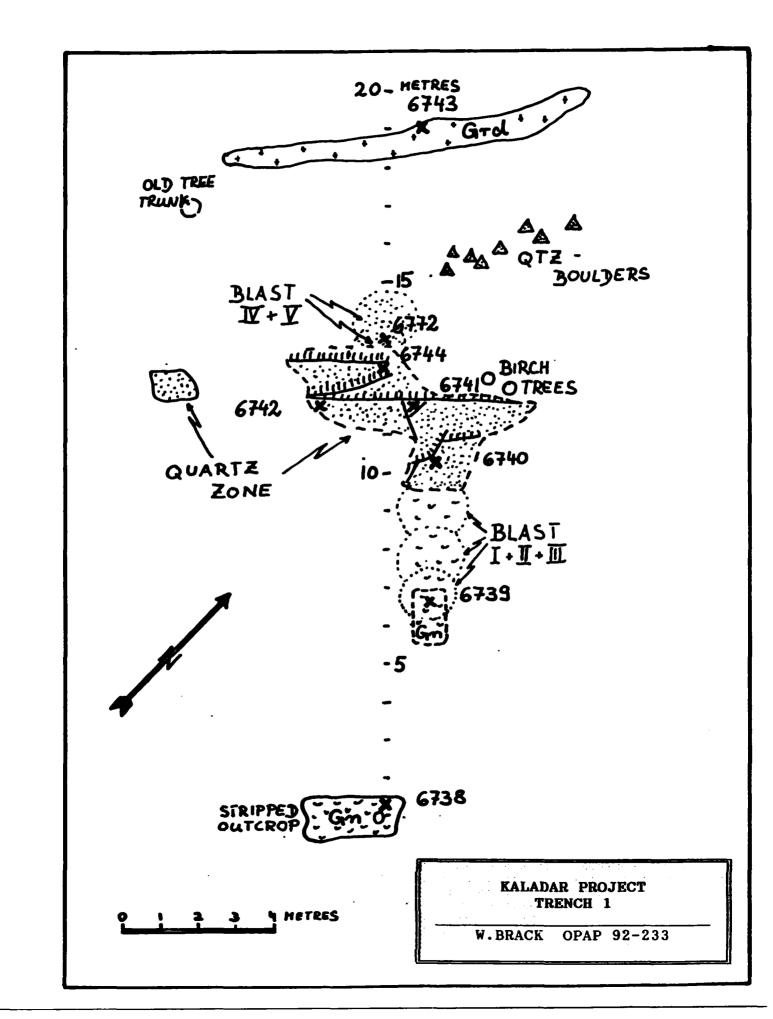


In 1991 W. Brack (OPAP 91-784) and Wayne Holmstead (OPAP 91-245) investigated the area and could not confirm the above described zinc mineralization. However they discovered an extended quartz dyke with some low grade gold values associated with geochemical soil anomalies.

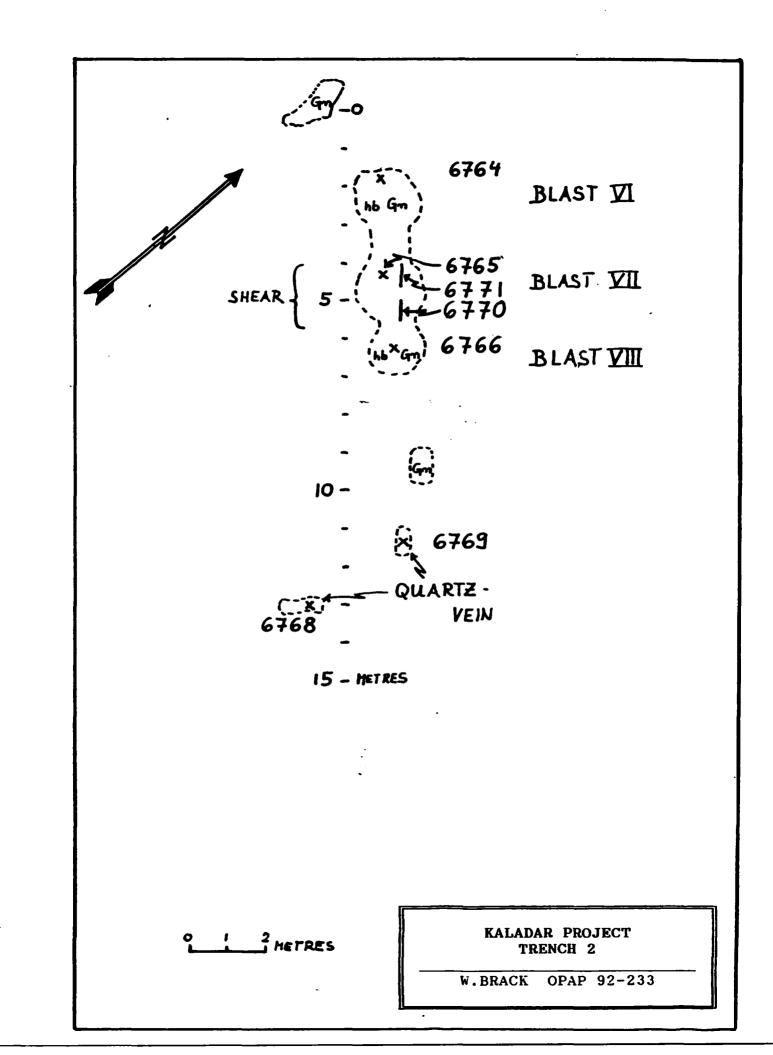
#### 4.4 Trenching

Two main trenches and several small test trenches as well as stripping of rock faces were completed across a newly discovered major quartz vein. An additional 10 blast holes were executed to extend the above mentioned trenches where heavy overburden was encountered.

#### 4.4.1 Trench 1


Trench 1 is stationed at 3+80 east, position 3+00 south. The trench is approximately 9 metres long and in the average 1 m wide. The trench is located on the north shoulder of a 100 metres wide and approximately 25 metres high ridge. The quartz vein is partially exposed as a small cliff. A total of 5 blast holes were executed after the first manual trenching in order to penetrate deep overburden cover and to obtain fresh rock samples.

As described in a previous report OPAP 91-782, the ridge consists of a sequence of several narrow bands of granitoid rocks and metasedimentary marble. The trench revealed some additional lithologies, such as grey, fine grained biotite feldspar gneiss, amphibole gneiss with narrow bands of fine grained pyrite mineralization, a several metres wide quartz zone (vein ?) which is generally vuggy (leached calcite cavities or impurities) with considerable amount of rusty red hematite and some impregnations of pyrite. The quartz vein is bordered by a massive band of granite which is then in contact with quartzitic biotite gneiss.


#### 4.4.2 Trench 2

Trench 2 is situated at line 6+00 east, position 3+00 south. The main trench is 5.50 metres long and 1,00 to 1,50 metres wide. Its location is in a flat lying densely wooded area with mature pine trees. The initial trenching was restricted to several hand dug test holes. Three blast holes north of the exposed quartz vein were executed in order to evaluate a geochemical soil anomaly ( 34 ppb Au), [see OPAP 91-245].

The lithologies exposed in trench II are comparable with the rock suites in trench I with the exception of a 2.5 metres wide shear zone composed of sandy material rich in iron oxide.



-



#### 4.4.3 Blast hole IX and X

Blast hole IX and X are situated at line 7+00 east 3+25 south. Both blasts were executed at the same spot in order to penetrate the deep overburden and to explain a geochemical anomaly (21 ppb Au), [see OPAP 91-245].

The lithology encountered was a deeply weathered metasedimentary marble with rust spots.

#### Sampling and analytical results:

A total of 16 rock samples have been collected and 14 of them have been geochemically analyzed (see appendix 3). Thinsection were completed from 3 rock samples. The samples taken were mainly grab samples (1 to 2 kg) with the exception of two channel samples across a shear zone in trench II.

The geochemical analysis confirmed previous results (OPAP 91-782) of elevated gold values within the quartz-vein. The best value obtained was 37 ppb Au (sample 6740), which can be considered marginally anomalous. Unfortunately these gold values are not supported by other trace or indicator elements. The exception is sample 6767 (blast hole IX and X). The rust doted marble is elevated in Au (32 ppb), Sb (70 ppm), Te (59 ppm), Bi (28 ppm), Hg (1164 ppm), Zn (2039 ppm), and Pb (203 ppm). Other samples with above background values are sample 6769 (trench I) with Mo (1273 ppm), Pb (130 ppm) and Cu (74 ppm), sample 6764 with Cu (153 ppm) and sample 6771 with Zn (270 ppm) and Pb (124 ppm).



0

0

0

Picture 1: Quartz-vein in trench 1



Picture 2: Quartz-vein hand specimens with various alterations

#### 5. Conclusions and Recommendations:

Within the Norway Lake area (Sheffield twp.) the results are not encouraging. An attempt could be made to further investigate the marble unit in detail. Since large portions of the unit are covered by swamp such an endeavour should take place in winter (deep overburden drilling). The geochemical anomaly at Fifth Depot Lake (Hinchinbrooke twp.) should be verified. The most promising area for the potential discovery of sphalerite mineralization appears to be the previously unrecorded marble unit at Chippego Lake (Hinchinbrooke twp.). A magnetic survey would be helpful to outline the boundaries of this meta-sedimentary intercalation. This could be followed by detailed prospecting, geochemical soil sampling, deep overburden drilling and trenching.

The Ardoch project (Clarendon twp.) requires the evaluation of several geochemical anomalies. Within the northern portion of the property the geochemical soil survey should be extended. A detailed study should answer the question which role (if any) manganese plays in accumulating other metals within this particular area.

Although the quartz vein within the Kaladar project (Kaladar twp.) did not reveal any analytical results of economic interest, it nevertheless remains an interesting exploration target. This is supported by the presence of shear zones, the impressive size of the quartz vein, the widespread but marginal elevated Au values within the quartz vein, but foremost by the anomalous element association in blast hole IX and X. Hydrothermal activity possibly related to the quartzvein injection is indicated. There is a reasonable possibility quartz-vein fills "the main structure" and that the mineralization is situated in subsidiary structures or within the perimeter of the main structure. Stockwork or ore shoot mineralization may be expected.

It is recommended to extend the trenching, especially around blast hole IX and X. A very detailed mapping (eventually 1:1000) with the emphasis on structural mapping may help to identify patterns which are potentially suited for mineralization. A detailed biogeochemical survey may pinpoint additional and covered mineralized areas. References:

Allard, P. 1988 Rapport Geologique Preliminaire de la Propriete Boerth-Hill, Canton Clarendon, Ontario. Assessment Report 2.12051 Mining Land Section, Tweed

Bowen, R.P. Report on the Boerth-Hill Property, Clarendon 1988 Township, Ontario, for Aurochs Société d'Exploration Miniere Inc., internal paper.

- Brack, W. Exploration for Zinc in South-Eastern Ontario, Slave Lake Area, Little Mud Lake Area, Kaladar Area. OPAP 91-782 report.
- Delisle, P.C. Progress Report on the Boerth-Hill Property, 1989 Clarendon Township, S.E. Ontario. Internal report for Aurochs Société d'Exploration Miniere Inc.
- Jowett, R. Report on a Soil Geochemical Survey, Puzzle 1987 Lake Property, Sheffield Township, St.Joe Canada Inc., Assessment report
- Uglow, W. L. 1916 Lead and Zinc Deposits in Ontario and Eastern Canada, OBM Annual Report Volume 25 Pt. 2.

#### CERTIFICATE OF QUALIFICATION

- I, Winfried Brack do hereby certify:
- 1. that I am a geologist and reside at 34 Birch Hill Rd., Baie d'Urfe, Quebec, H9X 3H8,
- 2. that I graduated from the University in Munich Germany) in 1972 with a degree of "Diplom Geologe" in geology (approx. equivalent to a Master of Science) and from the University of Munich (Germany) in 1977 with a degree of "Doctor rerum naturalium" in mineralogy (equivialent Ph.D.),
- 3. that I have practiced my profession continuously since 1978 and executed exploration work in Canada since 1980,
- 4. that I visited the recorded investigation areas and my report is based upon my personal observations, or otherwise listed in the references.
- 5. that I have a personal floating interest in the described property in Clarendon township.

W. Braly

Winfried Brack, Dr. Dipl.-Geologe

January 26, 1993

# APPENDIX 1

ANALYTICAL RESULTS

GEOCHEMICAL LAB REPORTS BY BONDAR & CLEGG COMPANY LTD.



REPORT: 092-42715.0 ( COMPLETE )

REFERENCE :

.....

SUBMITTED BY: W. BRACK

DATE PRINTED: 28-OCT-92

#### CLIENT: GEOBRACK INC.

PROJECT: NONE

|       |    |                | NUMBER OF | LOWER           |                   |                     |
|-------|----|----------------|-----------|-----------------|-------------------|---------------------|
| ORDER |    | ELEMENT        | ANALYSES  | DETECTION LIMIT | EXTRACTION        | METHOD              |
| 1     | Au | Gold           | 3         | 5 PPB           | FIRE ASSAY        | FIRE ASSAY @ 10 G   |
| 2     | Ti | Titanium       | 3         | 0.01 PCT        | HF-HNO3-HCLO4-HCL | INDUC. COUP. PLASHA |
| 3     | AL | Aluminum       | 3         | 0.01 PCT        | HF-HN03-HCL04-HCL | INDUC. COUP. PLASHA |
| 4     | Fe | Tot Total Iron | 3         | 0.01 PCT        | HF-HNO3-HCLO4-HCL | INDUC. COUP. PLASMA |
| 5     | Hn | Nanganese      | 3         | 50 PPN          | HF-HNO3-HCLO4-HCL | INDUC. COUP. PLASMA |
| 6     | Ng | Nagnesium      | 3         | 0.01 PCT        | HF-HNO3-HCLO4-HCL | INDUC. COUP. PLASHA |
| 7     | Ca | Calcium        | 3         | 0.01 PCT        | HF-HNO3-HCLO4-HCL | INDUC. COUP. PLASNA |
| 8     | Na | Sodium         | 3         | 0.01 PCT        | NF-HNO3-HCLO4-HCL | INDUC. COUP. PLASMA |
| 9     | K  | Potassium      | 3         | 0.01 PCT        | HF-HNO3-HCLO4-HCL | INDUC. COUP. PLASNA |
| 10    | Li | Lithium        | 3         | 2 PPN           | HF-HNO3-HCLO4-HCL | INDUC. COUP. PLASMA |
| 11    | Sc | Scandium       | 3         | <b>1 PPM</b>    | HF-HN03-HCL04-HCL | INDUC. COUP. PLASMA |
| 12    | V  | Vanadium       | 3         | 2 PPN           | HF-HN03-HCL04-HCL | INDUC. COUP. PLASHA |
| 13    | Сг | Chrome         | 3         | 2 PPH           | HF~HNO3-HCLO4-HCL | INDUC. COUP. PLASNA |
| 14    | Co | Cobelt         | 3         | 1 PPN           | HF-HMO3-HCLO4-HCL | INDUC. COUP. PLASMA |
| 15    | Ni | Nickel         | 3         | 1 PPN           | NF-HNO3-HCLO4-HCL | INDUC. COUP. PLASMA |
| 16    | Cu | Copper         | 3         | 1 PPN           | HF-HNO3-HCLO4-HCL | INDUC. COUP. PLASMA |
| 17    | Zn | Zinc           | 3         | 1 рри           | NF-HNO3-HCLO4-HCL | INDUC. COUP. PLASHA |
| 18    | Ga | Gallium        | 3         | 10 PPN          | HF-HN03-HCLO4-HCL | INDUC. COUP. PLASHA |
| 19    | Sr | Strontium      | 3         | 1 PPM           | NF-HNO3-HCLO4-HCL | INDUC. COUP. PLASMA |
| 20    | Y  | Yttrium        | 3         | 5 PPN           | HF-HM03-HCL04-HCL | INDUC. COUP. PLASMA |
| 21    | Z٢ | Zirconium      | 3         | 1 PPM           | NF-HNO3-HCLO4-HCL | INDUC. COUP. PLASMA |
| 22    | NÞ | Niobium        | 3         | 5 PPN           | HF-HNO3-HCLO4-HCL | INDUC. COUP. PLASMA |
| 23    | No | Molybdenum     | 3         | 1 PP <b>N</b>   | NF-HN03-HCL04-HCL | INDUC. COUP. PLASNA |
| 24    | Ag | Silver         | 3         | 0.2 PPM         | NF-HN03-HCL04-HCL | INDUC. COUP. PLASMA |
| 25    | Cd | Cadmium        | 3         | 0.5 PPN         | NF-HNO3-HCLO4-HCL | INDUC. COUP. PLASMA |
| 26    | Sn | Tin            | 3         | 20 PPN          | HF-HNO3-HCLO4-HCL | INDUC. COUP. PLASMA |
| 27    | Sb | Antimony       | 3         | 5 PPN           | NF-HNO3-HCLO4-HCL | INDUC. COUP. PLASMA |
| 28    | Te | Tellerium      | 3         | 25 PPN          | HF-HNQ3-HCLO4-HCL | INDUC. COUP. PLASNA |
| 29    | Ba | Barium         | 3         | 5 PPN           | NF-WN03-HCLO4-HCL | INDUC. COUP. PLASMA |
| 30    | La | Lanthanum      | 3         | 5 PPN           | HF-HNO3-HCLO4-HCL | INDUC. COUP. PLASMA |
| 31    | Ta | Tantalum       | 3         | 5 PPN           | NF-HNQ3-HCLO4-HCL | INDUC. COUP. PLASMA |
| 32    | W  | Tungsten       | 3         | 20 PPN          | HF-HNQ3-HCLO4-HCL | INDUC. COUP. PLASHA |
| 33    | РЬ | Lead           | 3         | 2 PPN           | HF-HNQ3-HCLO4-HCL | INDUC. COUP. PLASNA |
| 34    | Bi | Bismuth        | 3         | 5 PPN           | NF-HN03-HCLO4-HCL | INDUC. COUP. PLASMA |
| 35    | As | Arsenic        | 3         | 5 PPN           | HF-HNQ3-HCLO4-HCL | INDUC. COUP. PLASMA |
| 36    | Hg | Hercury        | 3         | 5 PPB           | HNO3-HCL-SNCL2    | INAUL. COUP. PLASHA |

5420 Canotek Road, Ottawa, Ontario, K1J 9G2, Canada

Tel: (613) 749-2220. Fax: (613) 749-7170



Inchcape Testing Services

| REPORT: 092 | -42633.0 ( COM | LETE ) |      |      |              |      | -    | ROJECT: N | ED: 22-0C1<br>ONE |     | PAGE 1A |       |
|-------------|----------------|--------|------|------|--------------|------|------|-----------|-------------------|-----|---------|-------|
| SAMPLE      | ELEMENT        | Au     | AL   | Fe   | Min          | Mg   | Ca   | Na        | K                 | Sc  | V       |       |
| NUMBER      | UNITS          | PPB    | PCT  | PCT  | PPN          | PCT  | PCT  | PCT       | PCT               | PPM | PPN     |       |
| NV1         |                |        | 3.40 | 6.18 | 1230         | 2.40 | 0.51 | 0.05      | 0.05              | ব   | 88      |       |
| NW2         |                |        | 1.67 | 2.82 | 291          | 0.34 | 0.13 | 0.05      | 0.03              | ও   | 46      |       |
| MAS         |                |        | 1.30 | 4.54 | 558          | 0.21 | 0.08 | 0.05      | 0.03              | ৎ   | 49      |       |
| NL/4        |                |        | 0.99 | 1.45 | 634          | 0.29 | 0.27 | 0.06      | 0.06              | ক   | 26      |       |
| WV5         |                |        | 1.29 | 2.01 | 525          | 0.30 | 0.13 | 0.05      | 0.04              | ৎ   | 30      | ••••• |
| NUG         |                |        | 0.78 | 1.42 | 391          | 0.26 | 0.33 | 0.06      | 0.05              | ৎ   | 22      | ••••• |
| NU7         |                |        | 0.85 | 1.21 | 4 <b>5</b> 8 | 0.19 | 0.17 | 0.06      | 0.06              | ৎ   | 20      |       |
| NU8         |                |        | 1.97 | 3.08 | 319          | 1.19 | 1.02 | 0.08      | 0.04              | 6   | 79      |       |
| NV9         |                |        | 1.07 | 2.50 | 827          | 0.17 | 0.21 | 0.06      | 0.03              | ব   | 34      |       |
| NV10        |                |        | 0.53 | 1.03 | 122          | 0.09 | 0.12 | 0.05      | 0.03              | ৎ   | 21      |       |
| NV11        |                |        | 0.82 | 1.26 | 78           | 0.21 | 0.23 | 0.05      | 0.03              | ও   | 22      | ••••• |
| NW12        |                |        | 1.06 | 2.38 | 251          | 0.17 | 0.16 | 0.05      | 0.03              | ব   | 36      |       |
| NV13        |                |        | 1.33 | 2.08 | 127          | 0.24 | 0.54 | 0.06      | 0.04              | ৎ   | 27      |       |
| NW14        |                |        | 1.77 | 2.57 | 333          | 0.57 | 0.23 | 0.05      | 0.04              | ব   | 35      |       |
| NV15        |                |        | 0.51 | 1.27 | 122          | 0.17 | 0.17 | 0.06      | 0.03              | ব   | 21      |       |
| NW16        |                | •••••• | 1.31 | 3_44 | 213          | 0.53 | 0.74 | 0.07      | 0.13              | ৎ   | 49      |       |
| NW17        |                |        | 1.34 | 2.67 | 744          | 0.52 | 0.20 | 0.06      | 0.04              | ও   | 37      |       |
| NW18        |                |        | 1.27 | 1.72 | 227          | 0.50 | 0.65 | 0.07      | 0.15              | ব   | 29      |       |
| NW19        |                |        | 0.95 | 1.07 | 82           | 0.24 | 0.19 | 0.06      | 0.06              | ব   | 22      |       |
| NV20        |                |        | 1.78 | 1.82 | 193          | 0.64 | 0.35 | 0.05      | 0.04              | ব   | 53      |       |
| NV21        |                |        | 1.65 | 3.91 | 424          | 0.90 | 0.83 | 0.05      | 0.02              | ব   | 43      |       |
| NW22        |                |        | 1.92 | 3.52 | 3801         | 0.39 | 0.71 | 0.06      | 0.07              | 5   | 38      |       |
| NW23        |                |        | 1.30 | 1.92 | 686          | 0.46 | 0.34 | 0.06      | 0.04              | ব   | 27      |       |
| NU24        |                |        | 1.02 | 2.39 | 370          | 0.25 | 0.11 | 0.06      | 0.07              | ও   | 29      |       |
| NH25        |                |        | 1.22 | 2.15 | 385          | 0.30 | 0.16 | 0.07      | 0.05              | ব   | 33      |       |
| NV26        |                |        | 1.56 | 2.31 | 2263         | 0.47 | 0.48 | 0.07      | 0.08              | ব   | 33      | ••••• |
| NW27        |                |        | 1.81 | 2.53 | 266          | 0.42 | 0.26 | 0.06      | 0.05              | ব   | 40      |       |
| NW28        |                |        | 1.38 | 2.26 | 276          | 0.49 | 0.28 | 0.07      | 0.06              | ও   | 35      |       |
| NW29        |                |        | 1.31 | 2.30 | 149          | 0.41 | 0.66 | 0.07      | 0.05              | ও   | 47      |       |
| NW30        |                | •••••  | 0.93 | 1.33 | 203          | 0.23 | 0.16 | 0.05      | 0.03              | ৎ   | 22      |       |
| N¥31        |                |        | 1.21 | 1.46 | 340          | 0.25 | 0.12 | 0.05      | 0.04              | ব   | 22      |       |
| NW32        |                |        | 1.57 | 2.31 | 226          | 0.94 | 0.74 | 0.06      | 0.03              | ব   | 39      |       |
| NW33        |                |        | 1.92 | 2.86 | 1174         | 1.36 | 1.04 | 0.06      | 0.04              | ব   | 42      |       |
| NU34        |                |        | 0.54 | 1.17 | 98           | 0.12 | 0.15 | 0.05      | 0.03              | ও   | 22      |       |
| NV35        |                |        | 2.17 | 3.26 | 1214         | 0.85 | 0.32 | 0.06      | 0.05              | ব   | 41      | ••••• |
| NW36        | ••••••         | •••••• | 2.07 | 4.00 | 5449         | 0.64 | 0.55 | 0.06      | 0.04              | ব   | 36      | ••••• |
| NV37        |                |        | 0.81 | 1.50 | 150          | 0.21 | 0.56 | 0.05      | 0.02              | ব   | 23      |       |
| NU38        |                |        | 1.60 | 2.79 | 639          | 0.33 | 0.21 | 0.04      | 0.05              | ব   | 41      |       |
| NW39        |                |        | 1.69 | 3.51 | 868          | 0.31 | 0.17 | 0.05      | 0.04              | 5   | 41      |       |
| NU40        |                |        | 1.54 | 2.75 | 695          | 0.55 | 0.18 | 0.05      | 0.04              | <5  | 34      |       |

Bondar-Clegg & Company Ltd.

· • •





.....

| REPORT: 092      | 2-42633.0 ( COM                         | PLETE )   |           |            |           |           |           | TE PRINTE |           |              | PAGE 1B   |        |
|------------------|-----------------------------------------|-----------|-----------|------------|-----------|-----------|-----------|-----------|-----------|--------------|-----------|--------|
| SAMPLE<br>NUMBER | ELEMENT<br>UNITS                        | Co<br>PPM | Ni<br>PPN | Cu<br>PPM  | Zn<br>PPN | As<br>PPM | Sr<br>PPN | Y<br>PPM  | No<br>PPM | Ag<br>PPM    | Cd<br>PPN |        |
|                  |                                         | ••••      |           | <b>rrn</b> |           |           |           |           |           |              | ••••      |        |
| NU1              |                                         | 29        | 34        | 17         | 298       | 24        | 10        | 14        | <1        | 0.3          | 0.2       |        |
| NW2              |                                         | 15        | 16        | 18         | 92        | 6         | 4         | 10        | 2         | 0.4          | ⊲0.2      |        |
| NW3              |                                         | 11        | 19        | 13         | 224       | 7         | 4         | 3         | 4         | 0.4          | 1.2       |        |
| NU4              |                                         | 6         | 13        | 8          | 71        | ব         | 8         | 7         | 2         | 0.2          | 0.6       |        |
| <b>NJ</b> 5      |                                         | 9         | 13        | 6          | 88        | ব         | 5         | 3         | <1        | 0.2          | ⊲0.2      |        |
| NUG              |                                         | 7         | 10        | 10         | 56        | ব         | 8         | 5         | <1        | <b>40.2</b>  | 0.7       |        |
| NW7              |                                         | 6         | 9         | 4          | 51        | ক         | 6         | 3         | 1         | ⊲0.2         | 0.4       |        |
| NW8              |                                         | 12        | 33        | 60         | 61        | ব         | 26        | 16        | 2         | 0.3          | 0.7       |        |
| NW9              | •                                       | 9         | 13        | 12         | 81        | ব         | 7         | 7         | 2         | 0.3          | ⊲0.2      |        |
| NW10             |                                         | 3         | 6         | 4          | 60        | ব         | 4         | 5         | <1        | 0.3          | 0.3       |        |
| NV11             |                                         | 7         | 22        | 12         | 70        | ব         | 6         | 10        | 4         | <b>-0.</b> 2 | 0.3       |        |
| NV12             |                                         | 7         | 10        | 6          | 62        | ব         | 7         | 5         | <1        | 0.3          | 0.4       |        |
| NV13             |                                         | 7         | 15        | 14         | 61        | ব         | 10        | 25        | 2         | 0.3          | ⊲0.2      |        |
| NU14             |                                         | 9         | 18        | 14         | 118       | ব         | 6         | 7         | <1        | 0.3          | 0.6       |        |
| NW15             |                                         | 4         | 6         | 6          | 38        | ব         | 5         | 5         | <1        | <0.2         | ⊲0.2      |        |
| NW16             |                                         | 10        | 21        | 34         | 135       | ব         | 15        | 19        | 3         | 0.3          | 1.1       |        |
| NW17             |                                         | 11        | 12        | 10         | 135       | ব         | 5         | 4         | <1        | 0.2          | 0.8       |        |
| NW18             |                                         | 6         | 14        | 12         | 78        | ব         | 13        | 8         | <1        | 0.3          | ⊲0.2      |        |
| NW19             |                                         | 6         | 19        | 17         | 135       | ও         | 7         | 8         | 2         | 0.3          | ⊲0.2      |        |
| NW20             |                                         | 12        | 29        | 39         | 579       | ব         | 21        | 7         | 1         | 0.4          | ⊲0.2      |        |
| <b>NW21</b>      |                                         | 21        | 50        | 20         | 105       | 5         | 18        | 24        | 6         | 0.3          | 0.8       |        |
| NW22             |                                         | 28        | 45        | 31         | 474       | 5         | 13        | 24        | 9         | 0.2          | 2.0       |        |
| NU23             |                                         | 8         | 15        | 11         | 136       | ব         | 6         | 7         | <1        | 0.4          | 0.4       |        |
| NU24             |                                         | 7         | 16        | 41         | 184       | 18        | 9         | 5         | 9         | 0.4          | 2.2       |        |
| NU25             |                                         | 8         | 14        | 6          | 79        | ব         | 6         | 4         | 2         | <0.2         | ⊲0.2      |        |
| NW26             | ••••••••••••••••••••••••••••••••••••••• | 12        | 15        | 11         | 105       | ব         | 12        | 9         | 2         | ⊲0.2         | 1.0       | •••••• |
| NW27             |                                         | 9         | 14        | 5          | 123       | 6         | 8         | 5         | 1         | 0.3          | 0.5       |        |
| NW28             |                                         | 11        | 16        | 15         | 364       | ব         | 9         | 6         | <1        | 0.3          | 0.5       |        |
| NW29             |                                         | 11        | 19        | 24         | 474       | ব         | 21        | 8         | 3         | 0.5          | 1.6       |        |
| NW30             |                                         | 6         | 9         | 4          | 109       | ব         | 5         | 7         | <1        | ⊲0.2         | ⊲0.2      |        |
| NL/31            |                                         | 7         | 11        | 13         | 88        | 6         | 5         | 5         | <1        | 0.4          | ⊲0.2      | •••••• |
| NW32             |                                         | 10        | 22        | 41         | 662       | ব         | 13        | 30        | 3         | 0.4          | 1.3       |        |
| NW33             |                                         | 15        | 24        | 63         | 1742      | 5         | 11        | 30        | <1        | 0.4          | 1.7       |        |
| NW34             |                                         | 3         | 5         | 2          | 163       | ব         | 6         | 4         | <1        | 0.3          | 0.4       | •      |
| NU35             |                                         | 13        | 18        | 11         | 591       | ব         | 8         | 6         | 2         | 0.2          | 0.3       |        |
| NV36             |                                         | 10        | 15        | 18         | 383       |           | 7         | 6         | 2         | <0.2         | 1.5       |        |
| NW37             |                                         | 5         | 7         | 5          | 66        | <         | 11        | 7         | 1         | 0.3          | 0.8       |        |
| NV38             |                                         | 16        | 18        | 6          | 178       | 13        | 6         | 4         | 1         | 0.3          | 0.5       |        |
| NV39             |                                         | 15        | 23        | 15         | 214       | 8         | 6         | 5         | 3         | 0.4          | 0.4       |        |
| NW40             |                                         | 9         | 15        | 10         | 154       | <5        | 6         |           | _         | <0.2         | 1.1       | •      |





| REPORT: 092   | -42633.0 ( COM | PLETE ) |     |     |     |     |     | OJECT: NO | D: 22-0CT-92<br>NE | PAGE 1C                                 |
|---------------|----------------|---------|-----|-----|-----|-----|-----|-----------|--------------------|-----------------------------------------|
| SANPLE        | ELEMENT        | Sb      | Te  | Ba  | La  | V   | Pb  | Bi        | Hg                 |                                         |
| NUMBER        | UNITS          | PPN     | PPN | PPN | PPN | PPN | PPN | PPN       | PPB                |                                         |
| NV1           |                | ব       | <10 | 87  | 17  | <20 | 11  | ব         |                    | ••••••••                                |
| NV2           |                | ব       | <10 | 38  | 14  | <20 | 8   | ব         |                    |                                         |
| NV3           |                | ব       | <10 | 58  | 7   | <20 | 17  | ব         |                    |                                         |
| NU4           |                | ব       | <10 | 64  | 9   | <20 | 6   | ব         |                    |                                         |
| NV/5          |                | ব       | <10 | 55  | 5   | <20 | 9   | ও         |                    |                                         |
| MM6           |                | ব       | <10 | 47  | . 6 | <20 | 8   | ও         |                    | ••••••••••••••••••••••••••••••••••••••• |
| NW7           |                | ও       | <10 | 48  | 5   | <20 | 6   | ব         |                    |                                         |
| NHB           |                | 6       | <10 | 146 | 17  | <20 | 7   | ব         |                    |                                         |
| NV9           |                | ব       | <10 | 43  | 9   | <20 | 11  | 4         |                    |                                         |
| <b>NV10</b>   |                | ব       | <10 | 38  | 5   | <20 | 9   | 4         |                    |                                         |
| NV11          |                | ব       | <10 | 39  | 13  | <20 | 6   | ব         |                    |                                         |
| NV12          |                | ব       | <10 | 50  | 6   | <20 | 9   | ব         |                    |                                         |
| NW13          |                | ব       | <10 | 85  | 43  | <20 | 9   | ব         |                    |                                         |
| NW14          |                | ব       | <10 | 48  | 10  | <20 | 9   | ব         |                    |                                         |
| <b>W</b> 15   |                | ব       | <10 | 23  | 4   | <20 | 4   | 4         |                    |                                         |
| NV16          |                | ও       | <10 | 134 | 23  | <20 | 7   | ৎ         |                    |                                         |
| NV17          |                | ব       | <10 | 91  | 7   | <20 | 7   | ব         |                    |                                         |
| NV18          |                | 6       | <10 | 157 | 11  | <20 | 14  | ব         |                    |                                         |
| NU19          |                | ব       | <10 | 90  | 11  | <20 | 10  | ব         |                    |                                         |
| <b>NV</b> 20  |                | ব       | <10 | 358 | 7   | <20 | 26  | ব         |                    |                                         |
| NN21          | ••••••         | ব       | <10 | 76  | 26  | <20 | 13  | ব         |                    |                                         |
| NN22          |                | ব       | <10 | 141 | 24  | <20 | 8   | ব         |                    |                                         |
| NN23          |                | ব       | <10 | 64  | 9   | <20 | 15  | ব         |                    |                                         |
| NU24          |                | ব       | <10 | 67  | 10  | <20 | 94  | ৎ         |                    |                                         |
| NW25          |                | 4       | <10 | 92  | 6   | <20 | 8   | 4         |                    |                                         |
| NW26          |                | ব       | <10 | 122 | 12  | <20 | 13  | ও         |                    |                                         |
| NV27          |                | 6       | <10 | 76  | 7   | <20 | 6   | ব         |                    |                                         |
| NV28          |                | ব       | <10 | 82  | 8   | <20 | 12  | ও         |                    |                                         |
| WJ29          |                | 5       | <10 | 143 | 10  | <20 | 8   | ব         |                    |                                         |
| NV30          |                | ব       | <10 | 50  | 8   | <20 | 5   | ব         |                    |                                         |
| <b>IN/3</b> 1 |                | ব       | <10 | 56  | 7   | <20 | 6   | ব         |                    |                                         |
| NV32          |                | 5       | <10 | 111 | 28  | <20 | 21  | ব         |                    |                                         |
| MJ33          |                | 6       | <10 | 122 | Ø   | <20 | 30  | ব         |                    |                                         |
| NW34          |                | ও       | <10 | 43  | 5   | <20 | 10  | ব         |                    |                                         |
| NV35          |                | 5       | <10 | 99  | 9   | <20 | 20  | ব         |                    |                                         |
| NW36          |                | 6       | <10 | 209 | 12  | <20 | 22  | Q         |                    |                                         |
| NW37          |                | ব       | <10 | 45  | 7   | <20 | 7   | ব         |                    |                                         |
| NW38          |                | ব       | <10 | 60  | 7   | <20 | 13  | ব         |                    |                                         |
| NW39          |                | ব       | <10 | 59  | 10  | <20 | 18  | ব         |                    |                                         |
| NW40          |                | ব       | <10 | 57  | 7   | <20 | 13  | - ব্য     |                    |                                         |



## Inchcape Testing Services

| REPORT: 092      | -42633.0 ( COM | PLETE )   |           |           |                   |           | P         | ROJECT: N | ONE      |           | PAGE 2A  |            |
|------------------|----------------|-----------|-----------|-----------|-------------------|-----------|-----------|-----------|----------|-----------|----------|------------|
| SAMPLE<br>NUMBER | ELEMENT        | Au<br>PPB | AL<br>PCT | Fe<br>PCT | <b>M</b> n<br>PPN | Ng<br>PCT | Ca<br>PCT | Na<br>PCT | K<br>PCT | Sc<br>PPM | V<br>PPN |            |
|                  |                |           |           |           |                   |           |           |           |          |           |          | ••••••     |
| NW41             |                |           | 1.79      | 3.45      | 304               | 0.90      | 0.32      | 0.05      | 0.05     | ব         | 55       |            |
| <b>NU</b> 42     |                |           | 1.44      | 2.39      | 420               | 0.78      | 0.40      | 0.06      | 0.05     | ক         | 39       |            |
| NH43             |                |           | 1.75      | 1.62      | 78                | 0.35      | 1.32      | 0.06      | 0.03     | ৎ         | 18       |            |
| NU44             |                |           | 1.17      | 2.28      | 145               | 0.43      | 0.86      | 0.07      | 0.05     | ব         | 28       |            |
| NU45             |                |           | 2.07      | 2.69      | 256               | 0.60      | 0.27      | 0.06      | 0.04     | ব         | 44       |            |
| 1146             |                |           | 1.73      | 3.63      | 445               | 0.54      | 0.30      | 0.05      | 0.04     | ব         | 42       |            |
| NU47             |                |           | 0.80      | 1.26      | 71                | 0.19      | 0.18      | 0.05      | 0.02     | ব         | 22       |            |
| NP1              |                |           | 2.20      | 3.61      | 1689              | 1.62      | 0.29      | 0.05      | 0.04     | ও         | 47       |            |
| NP2              | •              |           | 1.01      | 1.53      | 808               | 0.26      | 0.21      | 0.05      | 0.03     | ক         | 26       |            |
| NP3              |                |           | 0.74      | 2.52      | 159               | 0.11      | 0.18      | 0.05      | 0.03     | ব         | 54       |            |
| NP4              |                |           | 1.77      | 4.09      | 425               | 0.73      | 0.86      | 0.06      | 0.06     | <5        | 54       | , <b>.</b> |
| NP5              |                |           | 1.08      | 2.08      | 201               | 0.38      | 0.19      | 0.06      | 0.04     | ব         | 34       |            |
| NP6              |                |           | 1.85      | 3.11      | 1433              | 0.56      | 0.47      | 0.06      | 0.06     | ব         | 46       |            |
| NP7              |                |           | 1.24      | 2.69      | 1307              | 0.48      | 0.30      | 0.06      | 0.05     | ব         | 41       |            |
| NP8              |                |           | 2.03      | 1.80      | 125               | 0.40      | 0.14      | 0.05      | 0.04     | ব         | 31       |            |
| NP9              |                |           | 1.42      | 2.25      | 590               | 0.44      | 0.25      | 0.05      | 0.04     | ব         | 33       | •••••      |
| NP10             |                |           | 1.34      | 2.45      | 510               | 0.95      | 0.40      | 0.05      | 0.03     | ব         | 35       |            |
| NP11             |                |           | 0.64      | 1.23      | 282               | 1.00      | 3.47      | 0.05      | 0.02     | ব         | 31       |            |
| NP12             |                |           | 0.95      | 1.93      | 194               | 0.43      | 0.31      | 0.06      | 0.05     | ব         | 32       |            |
| NP13             |                |           | 0.64      | 1.05      | 375               | 0.17      | 0.15      | 0.05      | 0.03     | ব         | 20       |            |
| NP14             |                | •••••     | 1.00      | 1.53      | 389               | 0.28      | 0.22      | 0.06      | 0.05     | ব         | 26       |            |
| NP15             |                |           | 0.79      | 1.09      | 1143              | 0.21      | 0.18      | 0.06      | 0.04     | ব         | 19       |            |
| NP16             |                |           | 0.50      | 0.86      | 355               | 0.32      | 2.71      | 0.06      | 0.02     | ব         | z        |            |
| A1               |                | 220       | 0.59      | 1.15      | 72                | 0.45      | 0.18      | 0.07      | 0.36     | ব         | 12       |            |
| A2               |                | 759       | 0.91      | 1.68      | 383               | 1.08      | 5.95      | 0.06      | 0.54     | ব         | 27       |            |
| A3               |                | 12        | 0.63      | 1.36      | 133               | 0.36      | 0.46      | 0.05      | 0.04     | 4         | 28       |            |
| A4               |                | 9         | 2.03      | 3.29      | 997               | 0.75      | 0.58      | 0.06      | 0.10     | ব         | 52       |            |
| A5               |                | 10        | 1.92      | 3.15      | 1256              | 1.04      | 0.99      | 0.06      | 0.14     | ব         | 52       |            |
| <b>A</b> 6       |                | 8         | 2.22      | 5.26      | 1365              | 1.06      | 0.91      | 0.07      | 0.28     | 8         | 94       |            |
| ۸7               |                | 5         | 1.79      | 3.12      | 713               | 0.48      | 0.35      | 0.05      | 0.07     | ৎ         | 44       |            |
| <b>A8</b>        |                | 6         | 1.23      | 1.90      | 223               | 0.47      | 0.61      | 0.07      | 0.06     | ৎ         | 32       |            |
| A9               |                | 13        | 0.19      | 0.56      | 14                | 0.27      | 5.96      | 0.05      | <0.01    | ব         | 3        |            |
| A10              |                | 6         | 0.60      | 1.44      | 86                | 0.19      | 0.18      | 0.04      | 0.03     | ব         | 35       |            |
| A11              |                | 21        | 1.21      | 1.95      | 502               | 0.79      | 0.53      | 0.06      | 0.06     | ব         | 37       |            |
| A12              |                | 9         | 1.38      | 2.38      | 360               | 0.81      | 0.65      | 0.06      | 0.05     | ব         | 45       |            |
| A13              |                | 10        | 1.04      | 2.01      | 173               | 0.75      | 1.74      | 0.05      | 0.04     | 4         | 34       |            |
| A14              |                | 13        | 1.03      | 2.23      | 186               | 0.46      | 1.69      | 0.06      | 0.05     | ব         | 42       |            |
| A15              |                | 11        | 0.19      | 0.50      | 270               | 0.65      | 5.97      | 0.06      | 0.01     | ব         | 3        |            |
| A16              |                | 8         | 2.02      | 2.69      | 680               | 0.90      | 0.53      | 0.09      | 0.11     | -5        | 45       |            |
| A17              |                | 7         | 1.25      | 1.95      |                   | 0.52      | 0.46      |           | 0.05     | <5        | 33       |            |

Bondar-Clegg & Company Ltd.





| REPORT: 092  | -42633.0 ( COM | PLETE ) |     |     |               |     |           | TE PRINTE |     |      | PAGE 28        |        |
|--------------|----------------|---------|-----|-----|---------------|-----|-----------|-----------|-----|------|----------------|--------|
| SAMPLE       | ELEMENT        | Co      | Ni  | Cu  | Zn            | As  | Sr        | Y         | No  | Ag   | Cd             |        |
| NUMBER       | UNITS          | PPN     | PPM | PPN | PPN           | PPN | PPN       | PPN       | PPM | PPN  | PPN            | •••••  |
| NL41         |                | 12      | 18  | 6   | 151           | ব   | 7         | 5         | 1   | 0.3  | 0.4            |        |
| NU42         |                | 12      | 15  | 20  | 98            | 6   | 10        | 14        | 1   | 0.4  | 0.4            |        |
| NU43         |                | 7       | 20  | 19  | 47            | ব   | 23        | 25        | 1   | 0.4  | 0.4            |        |
| NLK4         |                | 8       | 17  | 19  | 100           | ব   | 13        | 25        | 1   | 0.3  | 0.9            |        |
| <b>NN</b> 45 |                | 13      | 22  | 16  | 186           | 4   | 8         | 8         | 2   | 0.2  | 0.4            |        |
| NV46         |                | 27      | 224 | 38  | 18 <u>8</u> 7 | ব   | 7         | 15        | 2   | 0.4  | 0.8            | •••••• |
| NK7          |                | 4       | 11  | 4   | 37            | ব   | 5         | 9         | <1  | 0.3  | 0.5            |        |
| NP1          |                | 15      | 19  | 16  | 195           | 12  | 7         | 5         | <1  | 0.3  | 0.3            |        |
| NP2          |                | 5       | 9   | 5   | 69            | ব   | 6         | 3         | <1  | 0.4  | 0.6            |        |
| NP3          |                | 3       | 5   | 5   | 44            | ব   | 9         | 3         | <1  | 0.3  | 0.5            | •••••• |
| NP4          |                | 28      | 24  | 67  | 121           | ব   | 12        | 29        | 1   | ≪0.2 | 0.3            | •••••  |
| NP5          |                | 6       | 10  | 6   | 86            | 5   | 5         | 4         | <1  | 0.3  | ⊲0.2           |        |
| NP6          |                | 10      | 15  | 9   | 171           | 9   | 12        | 4         | <1  | Q.3  | ⊲0.2           |        |
| NP7          |                | 15      | 16  | 9   | 161           | 9   | 8         | 3         | 1   | ⊲0.2 | 0.9            |        |
| NP8          |                | 8       | 17  | 23  | 51            | 5   | 5         | 6         | 1   | ⊲0.2 | ⊲0.2           |        |
| NP9          |                | 8       | 11  | 6   | 123           | 7   | 8         | 3         | 1   | ⊲0.2 | 0.6            | •••••  |
| NP10         |                | 12      | 11  | 13  | 103           | 8   | 7         | 4         | 2   | 0.3  | 0.9            |        |
| NP11         |                | 9       | 9   | 42  | 104           | 8   | 33        | 20        | <1  | ⊲0.2 | 1.2            |        |
| NP12         |                | 8       | 10  | 4   | 44            | ব   | 8         | 5         | <1  | 0.2  | ⊲0.2           |        |
| NP13         |                | 4       | 4   | 2   | 61            | 5   | 5         | 3         | 1   | <0.2 | <0.2           | •••••  |
| NP14         |                | 6       | 7   | 4   | 48            | 8   | 7         | 5         | 1   | ⊲0.2 | <b>&lt;0.2</b> | •••••  |
| NP15         |                | 5       | 6   | 4   | 54            | 6   | 6         | 5         | <1  | ⊲0.2 | 0.6            |        |
| NP16         |                | 4       | 8   | 33  | 134           | 8   | <b>98</b> | 15        | 3   | 0.2  | 1.8            |        |
| A1           |                | 3       | 7   | 27  | 21            | 83  | 3         | 4         | <1  | ⊲0.2 | 0.2            |        |
| <b>A2</b>    |                | 6       | 11  | 39  | 92            | 142 | 64        | 5         | <1  | 0.7  | 0.3            | •••••  |
| A3           |                | 6       | 7   | 4   | 77            | 9   | 6         | 3         | <1  | 0.3  | <0.2           |        |
| A4           |                | 14      | 20  | 23  | 326           | 23  | 12        | 7         | 2   | 0.7  | 1.3            |        |
| A5           |                | 14      | 21  | 28  | 410           | 21  | 19        | 11        | <1  | 0.8  | 0.6            |        |
| <b>A</b> 6   |                | 23      | 22  | 28  | 280           | 18  | 13        | 15        | 2   | 0.8  | 0.7            |        |
| A7           |                | 11      | 14  | 7   | 222           | 17  | 9         | 4         | <1  | 0.3  | 0.6            |        |
| <b>A8</b>    |                | 8       | 13  | 13  | 47            | 14  | 10        | 10        | <1  | 0.3  | 0.4            | •••••  |
| A9           |                | <1      | 5   | 10  | 48            | 10  | 76        | 3         | 1   | ⊲0.2 | 0.5            |        |
| A10          |                | 3       | 5   | 3   | 38            | ব   | 5         | 2         | 1   | 0.2  | ⊲0.2           |        |
| A11          |                | 10      | 12  | 6   | 112           | 9   | 9         | 6         | <1  | 0.2  | ⊲0.2           |        |
| A12          |                | 13      | 22  | 16  | 57            | 24  | 8         | 6         | <1  | 0.5  | ⊲0.2           |        |
| A13          |                | 8       | 10  | 9   | 76            | 17  | 18        | 5         | 1   | 0.3  | ⊲0.2           |        |
| A14          |                | 12      | 15  | 14  | 749           | 39  | 32        | 5         | <1  | 0.5  | 1.5            |        |
| A15          |                | <1      | 4   | 13  | 43            | ৎ   | 208       | 2         | 2   | ⊲0.2 | 1.3            |        |
| A16          |                | 11      | 20  | 8   | 111           | ৎ   | 15        | 8         | <1  | 0.3  | 0.7            |        |
| A17          |                | 10      | 13  | 3   | 52            | 15  | 9         | 8         | 1   | <0.2 | <0.2           |        |

Bondar-Clegg & Company Ltd.





| REPORT: 092      | -42633.0 ( CON   | PLETE )         |            |           |           |            |           | OJECT: NO  | D: 22-0CT-92<br>WE            | PAGE 2C                                 |
|------------------|------------------|-----------------|------------|-----------|-----------|------------|-----------|------------|-------------------------------|-----------------------------------------|
|                  | <b>P1 P1 P1</b>  | <b></b>         | •-         | <b>.</b>  | • -       | •••        |           |            |                               |                                         |
| SANPLE<br>NUMBER | ELEMENT<br>UNITS | Sb<br>PPN       | Te<br>PPN  | Ba<br>PPM | La<br>PPN | W<br>PPM   | Pb<br>PPN | Bî<br>PPM  | Hg<br>PPB                     |                                         |
|                  |                  |                 |            |           |           |            |           |            |                               |                                         |
| NU41<br>NU42     |                  | <5<br>6         | <10<br><10 | 56<br>73  | 8<br>13   | <20<br><20 | 17<br>19  | ও<br>ও     |                               |                                         |
| M43              |                  | ঁ               | <10        | 103       | 40        | <20        | 28        | ন<br>ব     |                               |                                         |
| M.44             |                  | ব               | <10        | 46        | 29        | <20        | 13        | 4          |                               |                                         |
| NV45             |                  | 6               | <10        | 49        | 12        | <20        | 28        | ব          |                               |                                         |
| NV46             | ••••••           | ব               | <10        | 62        | 16        | <20        | 16        | 4          |                               | •••••                                   |
| NU47             |                  | ন্ট<br>ব্য      | <10        | 36        | 11        | <20        | 9         | ব          |                               |                                         |
| NP1              |                  | 6               | <10        | 83        | 8         | <20        | 7         | ব          |                               |                                         |
| NP2              |                  | ব               | <10        | 56        | 5         | <20        | 5         | ব          |                               |                                         |
| NP3              |                  | ৎ               | <10        | 53        | 6         | <20        | 8         | 4          |                               | •••••••••                               |
| NP4              |                  | ব               | <10        | 204       | 31        | <20        | 11        | ح          |                               |                                         |
| NP5              |                  | ব               | <10        | 40        | 6         | <20        | 5         | ব          |                               |                                         |
| NP6              |                  | 5               | <10        | 95        | 7         | <20        | 12        | \$         |                               |                                         |
| NP7              |                  | ব               | <10        | 96        | 6         | <20        | 13        | ব          |                               |                                         |
| NP8              |                  | ব               | <10        | 47        | 10        | <20        | 7         | \$         |                               |                                         |
| NP9              |                  | 5               | <10        | 72        |           | <20        | 8         | ح.         | ••••••••••••••••••••••••••••• |                                         |
| NP10             |                  | 5               | <10        | 53        | 6         | <20        | 32        | ব          |                               |                                         |
| NP11             |                  | 6               | <10        | 82        | 16        | <20        | 48        | ব          |                               |                                         |
| NP12             |                  | ব               | <10        | 26        | 6         | <20        | 5         | ব          |                               |                                         |
| NP13             | ••••             | ব               | <10        | 28        | 5         | <20        | 11        | ৎ          |                               |                                         |
| NP14             |                  | ৎ               | <10        | 38        | 8         | <20        | 7         | ব          |                               | ••••••••••••••••••••••••••••••••••••••• |
| NP15             |                  | ব               | <10        | 44        | 6         | <20        | 6         | ব          |                               |                                         |
| NP16             |                  | ব               | <10        | 115       | 12        | <20        | 66        | ব          |                               |                                         |
| A1               |                  | ব্য<br>স        | <10        | 20        | 6         | <20        | 2         | ব          | 333                           |                                         |
| A2               |                  | 23              | <10        | 74        | 7         | <20        | 47        | <u>s</u>   | 2799                          |                                         |
| A3               |                  | ব               | <10        | 56        | 4         | <20        | 11        | ব          | 53                            |                                         |
| A4               |                  | 8               | <10        | 216       | 9         | <20        | 20        | ব          | 53                            |                                         |
| A5               |                  | 7               | <10        | 227       | 14        | <20        | 43        | ব          | 82                            |                                         |
| A6<br>A7         |                  | 10<br>-         | <10        | 220       | 15        | <20<br><20 | 14        | ব্য<br>- ব | 80                            |                                         |
| <b>N</b> I       |                  | ব               | <10        | 181       | 8         | <20        | 11        | ব          | 29                            |                                         |
| 84               |                  | ব               | <10        | 91        | 13        | <20        | 9         | ব          | 35                            |                                         |
| A9               |                  | ব               | <10        | 157       | 2         | <20        | 2         | ব          | 133                           |                                         |
| A10              |                  | ব               | <10        | 24        | 4         | <20        | 5         | ব          | 11                            |                                         |
| A11              |                  | -<br>ব্যু<br>দু | <10        | 132       | 8         | <20        | 14        | ব<br>ব     | 57                            |                                         |
| A12              |                  | 5               | <10        | 78        | 7         | <20        | 12        | 5          | 93                            |                                         |
| A13              |                  | 5               | <10        | 178       | 6         | <20        | 10        | ব          | 113                           |                                         |
| A14              |                  | ব্য<br>ব        | <10        | 48        | 7         | <20        | 45        | 4          | 828                           |                                         |
| A15              |                  | ব               | <10        | 353       | 1         | <20<br><20 | 7         | ব<br>র     | 185                           |                                         |
| A16<br>A17       |                  | া<br>জ          | <10<br><10 | 121<br>79 | 11        | <20<br><20 | 4         | <5         | 35<br>40                      |                                         |

• •



## Inchcape Testing Services

| REPORT: 092 | 2-42633.0 ( COM | PLETE )  |      |      |      |      |      | ROJECT: N | ED: 22-0C1<br>ONE |     | PAGE 3A   |       |
|-------------|-----------------|----------|------|------|------|------|------|-----------|-------------------|-----|-----------|-------|
| SAMPLE      | ELEMENT         | Au       | AL   | Fe   | Mn   | Ng   | Ca   | Ka        | K                 | Sc  | ۷         |       |
| NUMBER      | UNITS           | PPB      | PCT  | PCT  | PPN  | PCT  | PCT  | PCT       | PCT               | PPN | PPH       |       |
| A18         |                 | 7        | 0.61 | 1.91 | 196  | 0.16 | 0.40 | 0.06      | 0.03              | ব   | 33        |       |
| A19         |                 | 9        | 0.59 | 1.09 | 77   | 0.16 | 1.01 | 0.05      | 0.02              | ব   | 29        |       |
| A20         |                 | 8        | 1.88 | 3.00 | 330  | 0.38 | 0.27 | 0.05      | 0.07              | ব   | 75        |       |
| A21         |                 | 9        | 2.03 | 4.68 | 1528 | 0.26 | 0.61 | 0.05      | 0.07              | ব   | 65        |       |
| A22         |                 | 8        | 2.46 | 3.97 | 923  | 0.90 | 0.60 | 0.07      | 0.15              | 6   | 81        |       |
| A23         |                 | 42       | 2.22 | 4.17 | 2198 | 0.52 | 0.31 | 0.05      | 0.11              | 4   | 71        |       |
| A24         |                 | 6        | 1.74 | 4.12 | 4249 | 0.63 | 1.07 | 0.07      | 0.23              | 6   | 74        |       |
| A25         |                 | 6        | 1.91 | 3.03 | 731  | 0.66 | 0.49 | 0.07      | 0.11              | ব   | 57        |       |
| A26         | -               | <u>ج</u> | 2.61 | 5.09 | 767  | 0.75 | 0.41 | 0.06      | 0.11              | 5   | 92        |       |
| <b>A</b> 27 |                 | 6        | 1.81 | 4.35 | 486  | 0.34 | 0.41 | 0.05      | 0.06              | ব   | <b>68</b> |       |
| A28         |                 | 7        | 1.79 | 2.73 | 336  | 0.52 | 0.29 | 0.05      | 0.06              | 4   | 61        |       |
| A29         |                 | 9        | 2.46 | 4.75 | 188  | 0.96 | 1.21 | 0.07      | 0.03              | 9   | 105       |       |
| A30         |                 | 6        | 2.52 | 4.96 | 333  | 0.56 | 0.57 | 0.06      | 0.05              | 7   | 89        |       |
| A31         |                 | 6        | 2.23 | 4.26 | 673  | 0.62 | 0.28 | 0.05      | 0.08              | 5   | 84        |       |
| A32         |                 | 8        | 1.59 | 2.80 | 934  | 0.39 | 0.40 | 0.05      | 0.08              | ব   | 48        |       |
| A33         |                 | 5        | 2.17 | 3.96 | 390  | 0.67 | 0.33 | 0.06      | 0.07              | ব   | 78        |       |
| A34         |                 | 7        | 1.61 | 4.14 | 2497 | 0.55 | 0.34 | 0.05      | 0.08              | ব   | 68        |       |
| A35         |                 | ব        | 1.93 | 3.25 | 1678 | 1.50 | 1.07 | 0.07      | 0.12              | 4   | 57        |       |
| A36         |                 | 9        | 0.22 | 0.47 | 85   | 0.12 | 5.45 | 0.06      | 0.02              | 5   | 12        |       |
| A37         |                 | 7        | 1.54 | 2.25 | 735  | 0.42 | 0.61 | 0.05      | 0.07              | ও   | 40        |       |
| A38         |                 | 7        | 2.45 | 3.03 | 506  | 0.99 | 0.92 | 0.07      | 0.25              | 6   | 49        |       |
| A39         |                 | 7        | 2.45 | 3.62 | 637  | 0.79 | 0.66 | 0.06      | 0.16              | 7   | 60        |       |
| A40         |                 | 6        | 1.73 | 3.29 | 599  | 0.62 | 0.26 | 0.05      | 0.08              | ব   | 65        |       |
| A41         |                 | 6        | 1.75 | 2.73 | 923  | 0.46 | 0.21 | 0.05      | 0.06              | ব   | 43        |       |
| <b>A4</b> 2 |                 | 11       | 1.98 | 3.75 | 402  | 0.61 | 0.39 | 0.06      | 0.09              | ও   | 70        |       |
| A43         |                 | 7        | 2.18 | 4.76 | 285  | 1.17 | 0.73 | 0.05      | 0.09              | 11  | 115       |       |
| A44         |                 | 8        | 1.55 | 2.18 | 106  | 0.52 | 0.39 | 0.05      | 0.03              | ব   | 39        |       |
| A45         |                 | 9        | 1.56 | 2.59 | 558  | 0.59 | 0.44 | 0.06      | 0.06              | ব   | 42        |       |
| <b>A</b> 46 |                 | 21       | 1.75 | 3.41 | 1189 | 0.55 | 0.71 | 0.06      | 0.09              | ও   | 57        |       |
| <b>A47</b>  |                 | 6        | 1.88 | 3.32 | 468  | 0.86 | 0.82 | 0.06      | 0.11              | 5   | 44        |       |
|             | ••••••          | 7        | 1.78 | 4.10 | 951  | 0.92 | 0.58 | 0.04      | 0.04              | ব   | 149       |       |
| A49         |                 | 8        | 1.10 | 2.70 | 184  | 0.27 | 0.20 | 0.05      | 0.07              | ব   | 52        |       |
| A50         |                 | 8        | 2.13 | 3.49 | 488  | 1.00 | 0.53 | 0.07      | 0.10              | ব   | 54        |       |
| A51         |                 | 8        | 2.03 | 3.16 | 379  | 0.71 | 0.47 | 0.06      | 0.10              | र्ड | 49        |       |
| <b>A</b> 52 |                 | 10       | 2.31 | 4.74 | 977  | 1.39 | 0.39 | 0.05      | 0.08              | ব   | 59        |       |
| A53         |                 | 8        | 2.40 | 3.52 | 532  | 0.80 | 0.45 | 0.06      | 0.09              | ব   | 58        | ••••• |
| A54         |                 | 11       | 2.42 | 3.09 | 254  | 1.21 | 0.30 | 0.05      | 0.11              | ব   | 57        |       |

- -



Inchcape Testing Services

| REPORT: 092 | -42633.0 ( COM                          | PLETE ) |     |     |      |     |     | TE PRINTE |     | -76 | PAGE 38        |        |
|-------------|-----------------------------------------|---------|-----|-----|------|-----|-----|-----------|-----|-----|----------------|--------|
| SAMPLE      | ELEMENT                                 | Со      | Ni  | Cu  | Zn   | As  | Sr  | Y         | Жо  | Ag  | Cd             |        |
| NUMBER      | UNITS                                   | PPN     | PPN | PPN | PPN  | PPN | PPM | PPM       | PPM | PPN | PPN            | P      |
| A18         |                                         | 4       | 6   | 5   | 45   | 12  | 8   | 3         | <1  | 0.3 | <0.2           | •••••• |
| A19         |                                         | 4       | 5   | 6   | 77   | 12  | 18  | 3         | <1  | 0.8 | ⊲0.2           | •      |
| A20         |                                         | 12      | 23  | 7   | 182  | 72  | 14  | 3         | 3   | 0.3 | 0.4            | •      |
| A21         |                                         | 11      | 19  | 9   | 440  | 51  | 17  | 7         | 4   | 0.6 | 0.5            | •      |
| A22         |                                         | 18      | 26  | 27  | 151  | 34  | 17  | 12        | 2   | 0.5 | 1.0            | •      |
| A23         |                                         |         | 21  | 11  | 185  |     | 13  | 8         | <1  | 0.4 | 0.7            | •      |
| A24         |                                         | 21      | 23  | 31  | 174  | 79  | 19  | 25        | 3   | 0.6 | 1.3            | •      |
| A25         |                                         | 16      | 23  | 20  | 169  | 28  | 11  | 6         | <1  | 0.3 | 0.9            | •      |
| A26         |                                         | 20      | 23  | 15  | 213  | 87  | 12  | 8         | <1  | 0.5 | 0.8            | •      |
| A27         | ·                                       | 17      | 21  | 11  | 114  | 114 | 14  | 4         | 2   | 0.4 | 1.1            | •••••• |
| A28         |                                         | 13      | 16  | 7   | 124  | 22  | 9   | 3         | 1   | 0.3 | ⊲0.2           | •      |
| A29         |                                         | 25      | 28  | 18  | 104  | 38  | 29  | 18        | 2   | 0.6 | ⊲0.2           | •      |
| A30         |                                         | 28      | 26  | 16  | 83   | 88  | 13  | 15        | 2   | 0.9 | 0.5            | •      |
| A31         |                                         | 17      | 21  | 11  | 186  | 186 | 8   | 6         | 1   | 0.6 | 0.5            | •      |
| A32         |                                         | 10      | 16  | 7   | 126  | 31  | 12  | 4         | 1   | 0.3 | <0.2           | •      |
| A33         | •••••••                                 | 13      | 18  | 13  | 132  | 25  | 9   | 5         | 2   | 0.3 | <0.2           | •      |
| A34         |                                         | 21      | 17  | 10  | 218  | 59  | 14  | 3         | <1  | 0.6 | 0.4            | •      |
| A35         |                                         | 11      | 20  | 18  | 215  | 51  | 18  | 18        | 2   | 0.5 | 0.8            | •      |
| A36         |                                         | 2       | 17  | 95  | 1411 | 10  | 80  | 3         | 2   | 0.8 | 6.8            | •      |
| <b>A37</b>  | ••••••••••••••••••••••••••••••••••••••• | 9       | 14  | 14  | 290  | 28  | 13  | 6         | <1  | 0.5 | 0.5            | •      |
| A38         | •••••••                                 | 11      | 22  | 22  | 121  | 17  | 19  | 17        | <1  | 0.2 | 0.8            | •••••• |
| A39         |                                         | 15      | 38  | 37  | 139  | 111 | 15  | 22        | 2   | 0.4 | 0.8            | •      |
| A40         |                                         | 14      | 18  | 17  | 134  | 36  | 8   | 4         | <1  | 0.3 | 0.4            | •      |
| A61         |                                         | 10      | 21  | 7   | 162  | 26  | 8   | 4         | <1  | 0.2 | ⊲0.2           | •      |
| <b>A42</b>  |                                         | 16      | 21  | 21  | 160  | 65  | 10  | 5         | 2   | 0.6 | 0.3            | •      |
| A43         |                                         | 24      | 27  | 18  | 81   | 46  | 11  | 16        | 1   | 0.7 | 0.3            | •      |
| A44         |                                         | 13      | 74  | 10  | 106  | 25  | 9   | 9         | 2   | 0.5 | 0.4            |        |
| A45         |                                         | 11      | 19  | 9   | 101  | 40  | 10  | 10        | 1   | 0.4 | 0.4            | •      |
| A46         |                                         | 13      | 19  | 29  | 130  | 72  | 13  | 16        | <1  | 0.8 | 0.9            |        |
| <b>A</b> 47 |                                         | 11      | 20  | 18  | 203  | 40  | 15  | 12        | 1   | 0.4 | <b>&lt;0.2</b> | •      |
| A48         |                                         | 11      | 18  | 8   | 243  | 55  | 9   | 3         | 3   | 0.4 | 0.6            | •      |
| A49         |                                         | 6       | 11  | 5   | 81   | 10  | 9   | 3         | <1  | 0.3 | ≪0.2           |        |
| A50         |                                         | 15      | 23  | 18  | 104  | 28  | 14  | 11        | <1  | 0.4 | 0.2            |        |
| A51         |                                         | 12      | 23  | 14  | 203  | 29  | 36  | 5         | <1  | 0.5 | 0.5            | •      |
| <b>A52</b>  |                                         | 22      | 31  | 59  | 272  | 40  | 11  | 6         | 2   | 1.0 | 0.3            | •      |
| A53         | ••••••••••••••••••••••••••••••••••••••• | 15      | 21  | 11  | 171  | 17  | 14  | 8         | <1  | 0.4 | 0.2            | •      |
| A54         |                                         | 13      | 24  | 6   | 148  | 8   | 9   | 4         | <1  | 0.7 | <0.2           | •      |

. .





| REPORT: 092 | 2-4263 <b>3.</b> 0 ( COM | PLETE ) |     |           |     |     |     | OJECT: NO | ED: 22-OCT-92<br>NNE | PAGE 3C |
|-------------|--------------------------|---------|-----|-----------|-----|-----|-----|-----------|----------------------|---------|
| SAMPLE      | ELEMENT                  | Sb      | Te  | Ba        | La  | V   | РЬ  | Bi        | Hg                   |         |
| NUMBER      | UNITS                    | PPN     | PPN | PPN       | PPN | PPN | PPN | PPN       | PPB                  |         |
| A18         |                          | ৎ       | <10 | 27        | 5   | <20 | 10  | ও         | 40                   |         |
| A19         |                          | ব       | <10 | 48        | 4   | <20 | 8   | ব         | 97                   |         |
| A20         |                          | 6       | <10 | <b>99</b> | 6   | <20 | 17  | ব         | 36                   |         |
| A21         |                          | ব       | <10 | 84        | 9   | <20 | 29  | ব         | 69                   |         |
| A22         |                          | 6       | <10 | 118       | 14  | <20 | 14  | ব         | 84                   |         |
| A23         |                          | ব       | <10 | 87        | 10  | <20 | 16  | ও         | 90                   |         |
| A24         |                          | 6       | <10 | 106       | 24  | <20 | 18  | ব         | 371                  |         |
| A25         |                          | ব       | <10 | 71        | 7   | <20 | 11  | ব         | 40                   |         |
| A26         |                          | 7       | <10 | 70        | 8   | <20 | 19  | ব         | 44                   |         |
| A27         | •                        | 5       | <10 | 69        | 5   | <20 | 27  | ব         | 51                   |         |
| A28         |                          | 5       | <10 | 57        | 5   | <20 | 11  | ৎ         | 24                   |         |
| A29         |                          | 7       | <10 | 123       | 17  | <20 | 9   | 5         | 146                  |         |
| A30         |                          | 5       | <10 | 63        | 17  | <20 | 23  | ও         | 130                  |         |
| A31         |                          | 5       | <10 | 64        | 8   | <20 | 14  | ব         | 49                   |         |
| <b>A3</b> 2 |                          | ব       | <10 | 75        | 6   | <20 | 9   | ব         | 42                   |         |
| A33         |                          | ৎ       | <10 | 59        | 6   | <20 | 8   | ও         | 36                   |         |
| A34         |                          | ব       | <10 | 130       | 6   | <20 | 36  | ব         | 47                   |         |
| A35         |                          | 7       | <10 | 133       | 23  | <20 | 14  | ব         | 164                  |         |
| A36         |                          | 5       | <10 | 152       | 2   | <20 | 9   | ব         | 325                  |         |
| A37         |                          | ব       | <10 | 104       | 7   | <20 | 7   | \$        | 64                   |         |
| A38         |                          | 5       | <10 | 154       | 24  | <20 | 4   | ଟ         | 53                   | ••••••  |
| A39         |                          | 5       | <10 | 102       | 27  | <20 | 8   | ব         | 183                  |         |
| A40         |                          | ব       | <10 | 71        | 7   | <20 | 10  | ব         | 32                   |         |
| A41         |                          | ব       | <10 | 59        | 7   | <20 | 7   | ব         | 38                   |         |
| <b>N42</b>  |                          | 5       | <10 | 69        | 6   | <20 | 22  | ব         | 134                  |         |
| A43         |                          | 6       | <10 | 81        | 15  | <20 | 12  | ও         | 163                  |         |
| <b>A4</b> 4 |                          | ও       | <10 | 56        | 13  | <20 | 10  | ব         | 159                  |         |
| A45         |                          | ব       | <10 | 80        | 14  | <20 | 6   | ব         | 72                   |         |
| A46         |                          | ব       | <10 | Π         | 17  | <20 | 8   | ব         | 223                  |         |
| <b>N47</b>  |                          | 6       | <10 | <b>98</b> | 14  | <20 | 15  | ও         | 85                   |         |
| A48         |                          | 8       | <10 | 86        | 6   | <20 | 50  | ব         | 53                   |         |
| A49         |                          | ব       | <10 | 47        | 6   | <20 | 5   | ব         | 28                   |         |
| A50         |                          | 5       | <10 | 109       | 15  | <20 | 10  | ব         | 55                   |         |
| A51         |                          | ব       | <10 | 127       | 8   | <20 | 11  | ব         | 26                   |         |
| <b>A52</b>  |                          | 8       | <10 | 193       | 9   | <20 | 13  | ব         | 36                   |         |
| A53         |                          | 5       | <10 | 149       | 11  | <20 | 8   | ব         | 36                   |         |
| A54         |                          | ব       | <10 | 80        | 6   | <20 | 9   | ব         | 28                   |         |

.



## Inchcape Testing Services

| REPORT: 092 | -42716.0 ( COMP | LETE )       |         |        |      |        | _    | ATE PRINT<br>ROJECT: N | ED: 17-NO<br>IONE | V-92 | PAGE 1A |     |
|-------------|-----------------|--------------|---------|--------|------|--------|------|------------------------|-------------------|------|---------|-----|
| SAMPLE      | ELEMENT         | Au           | AuRew1  | AuRew2 | AL   | Fe     | Mn   | Mg                     | Ca                | Na   | K       | Sc  |
| NUMBER      | UNITS           | PPB          | PPB     | PPB    | PCT  | PCT    | PPH  | PCT                    | PCT               | PCT  | PCT     | PPN |
| 65          |                 | <5           |         |        | 1.65 | 1.58   | 261  | 0.53                   | 0.44              | 0.05 | 0.05    | <5  |
| 66          |                 | <5           |         |        | 4.44 | 3.26   | 137  | 0.80                   | 0.90              | 0.06 | 0.13    | 14  |
| 67          |                 | <5           |         |        | 3.81 | 3.25   | 199  | 1.06                   | 1.22              | 0.07 | 0.21    | Ş   |
| 68          |                 | <5           |         |        | 4.05 | 5.19   | 242  | 1.84                   | 1.25              | 0.07 | 0.25    | 12  |
| 69          |                 | <5           |         |        | 3.09 | 3.70   | 178  | 1.17                   | 1.32              | 0.08 | 0.22    | 10  |
| 70          |                 | ব            | •••••   |        | 1.51 | 2.50   | 1473 | 0.66                   | 0.65              | 0.07 | 0.07    | \$  |
| 71          |                 | <del>د</del> |         |        | 3.32 | 4.21   | 3265 | 1.29                   | 0.83              | 0.06 | 0.10    | <   |
| 72          |                 | ৎ            |         |        | 2.31 | 2.72   | 2347 | 1.30                   | 1.19              | 0.08 | 0.14    | 4   |
| 73          |                 | <5           |         |        | 0.93 | 1.57   | 120  | 0.16                   | 0.18              | 0.07 | 0.03    | 4   |
| 74          |                 | <5           |         |        | 1.55 | 2.47   | 263  | 0.56                   | 0.90              | 0.09 | 0.08    | \$  |
| 75          | •               | <5           |         | •••••• | 2.54 | 2.78   | 283  | 0.70                   | 0.25              | 0.06 | 0.06    | <   |
| 76          |                 | <5           |         |        | 2.20 | 2.31   | 392  | 0.76                   | 0.45              | 0.06 | 0.13    | <   |
| 77          |                 | <5           |         |        | 1.62 | 2.41   | 1095 | 0.44                   | 0.28              | 0.06 | 0.06    | <   |
| 78          |                 | <5           |         |        | 1.62 | 2.24   | 340  | 0.59                   | 0.33              | 0.06 | 0.05    | 4   |
| 79          |                 | ব            |         |        | 1.51 | 3.64   | 321  | 0.97                   | 1.41              | 0.10 | 0.31    | 4   |
| 80          |                 | <5           | •••••   |        | 1.14 | 2.33   | 209  | 0.43                   | 0.45              | 0.08 | 0.05    | \$  |
| 81          |                 | ব            |         |        | 1.72 | 2.52   | 166  | 0.62                   | 0.62              | 0.08 | 0.10    | <   |
| 82          |                 | <5           |         |        | 1.40 | 2.60   | 393  | 0.52                   | 0.43              | 0.08 | 0.11    | <   |
| 83          |                 | <5           |         |        | 1.28 | 2.66   | 385  | 0.30                   | 0.19              | 0.07 | 0.05    | 4   |
| 84          |                 | <5           |         |        | 1.53 | 2.88   | 338  | 0.35                   | 0.26              | 0.06 | 0.04    | 4   |
| 85          |                 | <5           | ••••••• |        | 2.65 | 3.79   | 544  | 0.83                   | 0.29              | 0.06 | 0.07    | 4   |
| 86          |                 | <5           |         |        | 1.49 | 2.98   | 247  | 0.30                   | 0.19              | 0.06 | 0.06    | ব   |
| 87          |                 | ব            |         |        | 1.41 | 2.88   | 593  | 0.35                   | 0.17              | 0.06 | 0.05    | 4   |
| 88          |                 | ৎ            |         |        | 2.34 | 3.23   | 1979 | 1.74                   | 0.54              | 0.06 | 0.16    | ব   |
| 89          |                 | <5           |         |        | 0.99 | 1.44   | 458  | 0.31                   | 0.38              | 0.07 | 0.04    | 4   |
| 90          |                 | <5           |         |        | 2.24 | 3.53   | 563  | 0.82                   | 0.64              | 0.08 | 0.07    | <5  |
| 91          |                 | <5           |         |        | 0.65 | 0.46   | 80   | 0.13                   | 0.11              | 0.06 | 0.03    | ব   |
| 92          |                 | <5           |         |        | 2.34 | 2.38   | 200  | 0.29                   | 0.15              | 0.06 | 0.05    | <5  |
| 93          |                 | <5           |         |        | 2.35 | 2.52   | 434  | 1.17                   | 0.80              | 0.07 | 0.08    | 6   |
| 94          |                 | <5           |         |        | 1.70 | 2.25   | 278  | 0.55                   | 1.39              | 0.08 | 0.09    | <5  |
| A55         |                 | <5           |         |        | 1.08 | 1.85   | 247  | 0.35                   | 0.24              | 0.06 | 0.04    | ব   |
| A56         |                 | <5           |         |        | 0.98 | 1.94   | 311  | 0.30                   | 0.25              | 0.05 | 0.06    | <   |
| A57         |                 | <5           |         |        | 1.99 | 3.53   | 1755 | 0.80                   | 1.17              | 0.06 | 0.10    | <   |
| A58         |                 | <5           |         |        | 1.41 | 2.86   | 326  | 0.38                   | 0.56              | 0.06 | 0.05    | ব   |
| <b>A</b> 59 |                 | <5           |         |        | 1.82 | 3.12   | 759  | 1.52                   | 1.35              | 0.07 | 0.10    | 6   |
| A60         |                 | ব            |         |        | 1.18 | 2.06   | 477  | 0.30                   | 0.23              | 0.05 | 0.05    | <5  |
| A61         |                 | 13           |         |        | 2.21 | 3.58   | 215  | 1.33                   | 2.30              | 0.07 | 0.07    | 8   |
| A62         |                 | ব            |         |        | 1.57 | 2.56   | 110  | 0.56                   | 0.22              | 0.06 | 0.03    | <   |
| A63         |                 | <5           |         |        | 2.73 | 5.98   | 1114 | 1.14                   | 0.31              | 0.05 | 0.10    | 6   |
| A64         |                 | 10           |         |        | 2.42 | >10.00 | 4695 | 1.02                   | 0.90              | 0.06 | 0.04    | 7   |

Bondar-Clegg & Company Ltd.

5420 Canotek Road, Ottawa, Ontario, K1J 9G2, Canada

Tel: (13) 749-2220, Fax: (613) 749-7170



.....

## Inchcape Testing Services

•••••

|                  | 2-42716.0 ( COMF                        |                  |           |           |           |           |           | NTE PRINTE<br>NOJECT: NO | D: 17-NO | /-92      | PAGE 1B      |        |
|------------------|-----------------------------------------|------------------|-----------|-----------|-----------|-----------|-----------|--------------------------|----------|-----------|--------------|--------|
| KEPUKI: U94      | -42/10.U ( LUH                          | LEIE )           |           |           |           |           | PN        |                          |          |           | PAGE ID      |        |
| SAMPLE<br>NUMBER | ELEMENT<br>UNITS                        | V<br>PP <b>H</b> | Сг<br>РРМ | Co<br>PPM | Nî<br>PPN | Cu<br>PPM | As<br>PPM | Sr<br>PPN                | Y<br>PPN | No<br>PPN | Ag<br>PPN    | P      |
|                  | ••••••••••••••••••••••••••••••••••••••• |                  |           |           |           |           |           |                          |          |           |              |        |
| 65               |                                         | 32               | 30        | 17        | 16        | 13        | ব         | 32                       | 19       | 1         | 0.5          | 7      |
| 66<br>(7         |                                         | 67               | 54        | 14        | 48        | 88        | ব         | 32                       | 79<br>70 | 3         | 0.7          | ž      |
| 67               |                                         | 71               | 54        | 14        | 36        | 68<br>70  | <u>ব</u>  | 35                       | 30       | 3         | 0.6          | 0      |
| 68<br>(0         |                                         | 84               | 217       | 24        | 83<br>75  | 39        | 14        | 36                       | 23       | 4         | 0.6          | 1      |
| 69               |                                         | 86               | 45        | 27        | 35        | 220       | 53        | 33                       | 18       | 2         | 0.2          | 2      |
| 70               |                                         | 42               | 30        | 12        | 18        | 13        | 16        | 16                       | 9        | <1        | <0.2         | C      |
| 71               |                                         | 41               | 31        | 18        | 20        | 12        | 41        | 20                       | 9        | 2         | <0.2         | i      |
| 72               |                                         | 31               | 24        | 15        | 28        | 35        | 15        | 22                       | 34       | 2         | ⊲0.2         | -      |
| 73               |                                         | 32               | 14        | 4         | 6         | 3         | ব         | 7                        | 4        | <1        | <0.2         | 0      |
| 74               |                                         | 42               | 26        | 10        | 18        | 15        | 10        | 20                       | 14       | 2         | <0.2         |        |
| 75               | ······                                  | 44               | 29        | 11        | 23        | 8         | 8         | 13                       | 5        | <1        | <0.2         | (      |
| 76               |                                         | 39               | 32        | 14        | 23        | 16        | ব         | 15                       | 7        | <1        | <0.2         | (      |
| 77               |                                         | 37               | 23        | 11        | 12        | 10        | 18        | 10                       | 5        | <1        | <0.2         | 0      |
| 78               |                                         | 40               | 21        | 10        | 14        | 5         | 25        | 10                       | 5        | 1         | <0.2         | C      |
| 79               |                                         | 47               | 10        | 9         | 8         | 14        | 6         | 16                       | 27       | <1        | <0.2         |        |
| 80               |                                         | 36               |           | 10        | 16        | 15        | 12        | 10                       | 8        | <br>2     | <0.2         | C      |
| 81               |                                         | 39               | 28        | 10        | 19        | 15        | <u>.</u>  | 19                       | 20       | -         | <0.2         | Ċ      |
| 82               |                                         | 46               | 28        | 13        | 17        | 11        | 22        | 14                       | 8        | <1        | <0.2         | ~      |
| 83               |                                         | 41               | 22        | 7         | 12        | 3         | 19        | 7                        | 5        | 1         | <0.2         | ৰ      |
| 84               |                                         | 44               | 35        | 11        | 22        | 12        | 23        | 7                        | 4        | 2         | <0.2         | C      |
| 85               |                                         | 54               | 45        | 18        | 47        | 18        | 18        | 10                       | 7        | 1         | <0.2         |        |
| 86               |                                         | 47               | 25        | 10        | 16        | 7         | 7         | 7                        | 5        | <1        | <0.2         | Ċ      |
| 87               |                                         | 47               | 30        | 11        | 16        | 6         | ব         | 5                        | 4        | 1         | <0.2         |        |
| 88               |                                         | 50               | 67        | 23        | 48        | 18        | 7         | 17                       | 11       | 2         | <0.2         | 1      |
| 89               |                                         | 27               | 19        | 8         | 22        | 17        | ব         | 15                       | 66       | 2         | <0.2         | 1      |
|                  |                                         | <br>             |           |           |           |           | ~~~       |                          |          |           |              |        |
| 90               |                                         | 52               | 39        | 22        | 33        | 25        | 29        | 12                       | 15       | <1        | <0.2         | (      |
| 91<br>92         |                                         | 14               | 10<br>25  | 1         | 4         | 3         | ব্য<br>সং | 5                        | 10       | 2         | <0.2         | <(     |
| 92<br>93         |                                         | 40<br>39         | 25<br>74  | 9<br>11   | 17        | ہ<br>11   | 28        | 6                        | 11       | 2         | <0.2<br><0.2 | (<br>( |
| 93<br>94         |                                         | 39               | 34<br>75  | 16        | 24<br>37  | 47        | 9<br>30   | 17<br>25                 | 45<br>34 | 2<br>1    | <0.2<br><0.2 | 0      |
|                  |                                         |                  | ······    |           |           |           |           |                          | <br>     | ······    |              |        |
| A55              |                                         | 48               | 18        | 8         | 10        | 5         | 14        | 8                        | 4        | <1        | ≪0.2         | 0      |
| A56              |                                         | 45<br>50         | 17        | 7         | 8         | 4         | 13        | 8                        | 3        | 1         | <b>⊲0.2</b>  | 0      |
| A57              |                                         | 50<br>57         | 31        | 16        | 26        | 32        | 61<br>(7  | 22                       | 18       | 2         | ≪0.2         | 1      |
| A58<br>A59       |                                         | 53               | 21        | 8         | 12        | 8         | 43        | 9                        | 5        | 2         | <0.2         | 1      |
| 7.J7             |                                         | 65               | 26        | 15        | 25        | 59        | 92        | 17                       | 25       | 1         | 0.2          | 1      |
| A60              |                                         | 37               | , 18      | 8         | 11        | 5         | 9         | 9                        | 3        | <1        | <0.2         | 0      |
| <b>A</b> 61      |                                         | 118              | 64        | 18        | 27        | 79        | 5         | 32                       | 19       | <1        | 0.2          | 1      |
| A62              |                                         | 63               | 25        | 11        | 13        | 5         | 79        | 6                        | 2        | 1         | <0.2         | C      |
| A63              |                                         | 122              | 32        | 24        | 21        | 37        | 78        | 8                        | 4        | 3         | 0.4          | 0      |
| A64              |                                         | 104              | 35        | 35        | 34        | 47        | 276       | 10                       | 21       | 6         | 1.0          | 4      |

Bondar-Clegg & Company Ltd.

5420 Canotek Road, Ottawa, Ontario, K1J 9G2, Canada

Tel: (613) 749-2220, Fax: (613) 749-7170



## Inchcape Testing Services

| REPORT: 092      | 2-42716.0 ( COM  | PLETE )   |           |           |           |           |          | TE PRINTE |           | V-92      | PAGE 1C   |
|------------------|------------------|-----------|-----------|-----------|-----------|-----------|----------|-----------|-----------|-----------|-----------|
| SAMPLE<br>NUMBER | ELEMENT<br>UNITS | Sn<br>PPN | SD<br>PPM | Te<br>PPN | Ba<br>PPM | La<br>PPN | V<br>PPN | Pb<br>PPN | Bi<br>PPM | Zn<br>PPN | Hg<br>PPB |
| 65               |                  | <20       | ৎ         | <10       | 83        | 13        | <20      | 18        | ব         | 49        | 36        |
| 66               |                  | <20       | 9         | <10       | 359       | 58        | <20      | 154       | ব         | 92        | 57        |
| 67               |                  | <20       | 7         | <10       | 450       | 33        | <20      | 61        | ব         | 111       | 32        |
| 68               |                  | <20       | 8         | <10       | 488       | 23        | <20      | 18        | ব         | 91        | 44        |
| 69               |                  | <20       | 6         | <10       | 452       | 17        | <20      | 15        | ৎ         | 153       | 27        |
| 70               | •••••••          | <20       | ব         | <10       | 142       | 9         | <20      | 14        | ৎ         | 101       | 42        |
| 71               |                  | <20       | 8         | <10       | 232       | 10        | <20      | 69        | ব         | 1186      | 61        |
| 72               |                  | <20       | 7         | <10       | 96        | 24        | <20      | 83        | ও         | 2314      | 69        |
| 73               |                  | <20       | ব         | <10       | Ź7        | 4         | <20      | 7         | ব         | 61        | 19        |
| 74               |                  | <20       | <5        | <10       | 72        | 11        | <20      | 21        | ব         | 233       | 38        |
| 75               | •                | <20       | 5         | <10       | 102       | 6         | <20      | 9         | ৎ         | 137       | 29        |
| 76               |                  | <20       | <5        | <10       | 125       | 9         | <20      | 10        | ৎ         | 240       | 13        |
| 77               |                  | <20       | ব         | <10       | 141       | 7         | <20      | 20        | ব         | 325       | 42        |
| 78               |                  | <20       | ৎ         | <10       | 104       | 6         | <20      | 9         | ব         | 202       | 25        |
| 79               | ••••••           | <20       | ব         | <10       | 84        | 20        | <20      | 11        | ব         | 341       | 21        |
| 80               |                  | <20       | ব         | <10       | 32        | 6         | <20      | 6         | ব         | 51        | 15        |
| 81               |                  | <20       | ৎ         | <10       | 77        | 18        | <20      | 7         | ব         | 81        | 19        |
| 82               |                  | <20       | ৎ         | <10       | 78        | 9         | <20      | 7         | ৎ         | 67        | 15        |
| 83               |                  | <20       | <5        | <10       | 47        | 5         | <20      | 10        | ৎ         | 132       | 30        |
| 84               |                  | <20       | <5        | <10       | 54        | 5         | <20      | 11        | ব         | 149       | 36        |
| 85               |                  | <20       | 6         | <10       | 125       | 8         | <20      | 11        | ব         | 289       | 40        |
| 86               |                  | <20       | <5        | <10       | 62        | 5         | <20      | 8         | ব         | 172       | 19        |
| 87               |                  | <20       | <5        | <10       | 47        | 5         | <20      | 9         | ব         | 144       | 23        |
| 88<br>80         |                  | <20       | 5         | <10       | 157       | 12        | <20      | 22        | ব         | 243       | 52        |
| 89               |                  | <20       | 5         | <10       | 113       | 26        | <20      | 10        | 4         | 347       | 29        |
| 90               |                  | <20       | 5         | <10       | Π         | 14        | <20      | 13        | ব         | 179       | 50        |
| 91               |                  | <20       | ব         | <10       | 29        | 15        | <20      | 6         | ব         | 36        | 11        |
| 92               |                  | <20       | ৎ         | <10       | 47        | 11        | <20      | 10        | ব         | 103       | 63        |
| 93               |                  | 20        | ব         | <10       | 139       | 35        | <20      | 9         | ব         | 61        | 78        |
| 94               |                  | <20       | ব         | <10       | 117       | 33        | <20      | 10        | ৎ         | 95        | 103       |
| A55              |                  | <20       | <5        | <10       | 34        | 4         | <20      | 12        | ব         | 154       | 21        |
| A56              |                  | <20       | <5        | <10       | 50        | 4         | <20      | 9         | ব         | 84        | 19        |
| A57              |                  | <20       | 6         | <10       | 106       | 14        | <20      | 30        | ব         | 184       | 126       |
| A58              |                  | <20       | <5        | <10       | 38        | 6         | <20      | 10        | ব         | 92        | 38        |
| A59              |                  | <20       | 7         | <10       | 67        | 20        | <20      | 27        | ব         | 162       | 271       |
| A60              |                  | <20       | ৎ         | <10       | 62        | 4         | <20      | 11        | ব         | 105       | 32        |
| <b>A</b> 61      |                  | <20       | 8         | <10       | 85        | 13        | <20      | 9         | ব         | 116       | 306       |
| A62              |                  | <20       | 6         | <10       | 28        | 4         | <20      | 17        | ব         | 106       | 21        |
| A63              |                  | <20       | 11        | <10       | 76        | 6         | <20      | 30        | ব         | 256       | 40        |
| A64              |                  | <20       | 14        | <10       | 140       | 17        | <20      | 126       | ৎ         | 1184      | 182       |

Bondar-Clegg & Company Ltd.

5420 Canotek Road, Ottawa, Ontario, K1J 9G2, Canada

Tel: (613) 749-2220, Fax: (613) 749-7170



## Inchcape Testing Services

| REPORT: 092 | 2-42716.0 ( COMP                        | LETE ) |        |        |      |        |      | ATE PRIN<br>ROJECT: | TED: 17-NO<br>NONE | v-92 | PAGE 2A |    |
|-------------|-----------------------------------------|--------|--------|--------|------|--------|------|---------------------|--------------------|------|---------|----|
| SAMPLE      | ELEMENT                                 | Au     | AuRew1 | AuRew2 | AL   | Fe     | Min  | Mg                  | Ca                 | Na   | K       | S  |
| NUMBER      | UNITS                                   | PPB    | PPB    | PPB    | PCT  | PCT    | PPM  | PCT                 | PCT                | PCT  | PCT     | PP |
| A65         |                                         | ৎ      |        |        | 0.77 | 2.58   | 1789 | 8.55                | >10.00             | 0.06 | 0.02    | <  |
| A66         |                                         | <5     |        |        | 2.27 | 4.08   | 265  | 1.24                | 0.54               | 0.05 | 0.07    |    |
| A67         |                                         | <5     |        |        | 3.25 | 6.49   | 1914 | 1.46                | 0.57               | 0.06 | 0.20    |    |
| A68         |                                         | <5     |        |        | 3.34 | 4.80   | 657  | 1.00                | 0.51               | 0.07 | 0.09    | •  |
| <b>A69</b>  |                                         | <5     |        |        | 3.02 | >10.00 | 6192 | 2.23                | 2.88               | 0.07 | 0.03    |    |
| A70         |                                         | <5     |        |        | 2.41 | 4.83   | 3190 | 1.26                | 1.05               | 0.07 | 0.07    | •  |
| A71         |                                         | <5     |        |        | 1.61 | 3.13   | 534  | 0.65                | 0.22               | 0.06 | 0.06    | •  |
| A72         |                                         | ব      |        |        | 2.93 | 5.80   | 3343 | 2.56                | 0.62               | 0.06 | 0.03    |    |
| A73         |                                         | <5     |        |        | 1.76 | 5.22   | 400  | 0.72                | 0.24               | 0.06 | 0.10    | •  |
| A74         |                                         | ৎ      |        |        | 1.14 | 2.98   | 1276 | 0.36                | 0.62               | 0.06 | 0.10    | •  |
| A75         | •                                       | <5     |        |        | 1.72 | 4.14   | 254  | 1.39                | 0.69               | 0.06 | 0.08    |    |
| A76         |                                         | ব      |        |        | 0.72 | 2.40   | 90   | 0.27                | 0.33               | 0.06 | 0.04    | •  |
| A77         |                                         | ব      |        |        | 1.19 | 2.75   | 197  | 0.61                | 0.22               | 0.06 | 0.05    | •  |
| A78         |                                         | <5     |        |        | 1.90 | 3.38   | 351  | 0.72                | 0.49               | 0.07 | 0.15    | •  |
| A79         |                                         | ব      |        |        | 1.11 | 2.82   | 458  | 0.57                | 0.33               | 0.06 | 0.13    | •  |
| <b>A80</b>  |                                         | ৎ      |        |        | 0.25 | 1.31   | 87   | 0.07                | 0.19               | 0.05 | 0.03    | •  |
| A81         |                                         | ৎ      |        |        | 1.54 | 4.51   | 3744 | 2.09                | 3.39               | 0.08 | 0.16    | •  |
| A82         |                                         | <5     |        |        | 1.50 | 4.47   | 5041 | 1.65                | 3.18               | 0.07 | 0.18    | •  |
| A83         |                                         | ব      |        |        | 1.41 | 3.11   | 596  | 0.56                | 0.40               | 0.06 | 0.14    | •  |
| <b>A8</b> 4 |                                         | ব      |        |        | 2.68 | 3.75   | 1911 | 1.18                | 0.43               | 0.06 | 0.09    | •  |
| A85         |                                         | <5     | •••••  |        | 2.55 | 3.22   | 624  | 1.19                | 0.51               | 0.07 | 0.07    | •  |
| A86         |                                         | <5     |        |        | 1.61 | 3.29   | 641  | 0.72                | 0.42               | 0.07 | 0.07    | •  |
| A87         |                                         | <5     |        |        | 1.37 | 3.82   | 2273 | 8.13                | >10.00             | 0.07 | 0.02    | •  |
| <b>88</b> A |                                         | <5     |        |        | 3.67 | 4.63   | 296  | 2.02                | 1.25               | 0.08 | 0.09    |    |
| <b>A89</b>  |                                         | ৎ      |        |        | 2.36 | 4.70   | 1050 | 1.06                | 0.45               | 0.06 | 0.06    |    |
| A90         |                                         | 246    | <5     | 6      | 4.58 | 6.12   | 1503 | 2.56                | 0.82               | 0.07 | 0.06    | 2  |
| A91         |                                         | <5     |        |        | 2.36 | 4.51   | 546  | 0.88                | 1.18               | 0.06 | 0.07    | •  |
| A92         |                                         | <5     |        |        | 3.29 | 4.91   | 241  | 1.65                | 1.54               | 0.06 | 0.05    | 1  |
| A93         |                                         | <5     |        |        | 2.24 | 4.96   | 3496 | 0.81                | 1.06               | 0.06 | 0.06    | •  |
| A94         |                                         | ৎ      |        |        | 1.97 | 5.39   | 1876 | 2.13                | 1.18               | 0.07 | 0.07    |    |
| A95         | ••••••••••••••••••••••••••••••••••••••• | <5     | •••••• | •••••• | 3.19 | >10.00 | 5675 | 2.04                | 0.36               | 0.06 | 0.06    |    |
| A96         |                                         | <5     |        |        | 1.84 | 3.54   | 316  | 0.61                | 0.36               | 0.06 | 0.06    | •  |
| A97         |                                         | <5     |        |        | 3.14 | 4.99   | 3048 | 1.17                | 0.88               | 0.08 | 0.30    |    |
| A98         |                                         | ৎ      |        |        | 2.74 | 4.05   | 1365 | 1.61                | 0.30               | 0.06 | 0.08    | •  |
| A99         |                                         | <5     |        |        | 3.50 | 3.77   | 1982 | 2.40                | 0.58               | 0.06 | 0.07    |    |
| A100        |                                         | <5     |        |        | 0.87 | 2.15   | 1009 | 0.53                | 1.01               | 0.06 | 0.05    | •  |
| A101        |                                         | ব      |        |        | 1.53 | 2.71   | 521  | 0.69                | 0.46               | 0.08 | 0.14    | •  |
| A102        |                                         | ৎ      |        |        | 2.17 | 3.01   | 1719 | 0.94                | 0.84               | 0.07 | 0.09    | <  |
| A103        |                                         | <5     |        |        | 2.55 | 6.29   | 1196 | 1.86                | 0.80               | 0.08 | 0.41    |    |
| A104        |                                         | <5     |        |        | 1.67 | 3.11   | 1296 | 0.69                | 0.52               | 0.07 | 0.08    | <  |

Bondar-Clegg & Company Ltd.

5420 Canotek Road, Ottawa, Ontario, K1J 9G2, Canada

Tel: 613) 749-2220, Fax: (613) 749-7170



## Inchcape Testing Services

| REPORT: 092      | 2-42716.0 ( COM  | PLETE )    |           |            |            |            |           | NTE PRINTE<br>ROJECT: NO |                |           | PAGE 2B      |       |
|------------------|------------------|------------|-----------|------------|------------|------------|-----------|--------------------------|----------------|-----------|--------------|-------|
| SAMPLE<br>NUMBER | ELEMENT<br>UNITS | V<br>PPN   | Cr<br>PPN | Co<br>PPN  | N i<br>PPN | Cu<br>PPN  | As<br>PPN | Sr<br>PPN                | Y<br>PPN       | No<br>PPN | Ag<br>PPN    |       |
|                  |                  |            |           | 40         |            |            |           | •••••                    |                |           |              |       |
| A65<br>A66       |                  | 34         | 19<br>25  | 10         | 11         | 9<br>13    | 15        | 19                       | 5<br>5         | <1<br>1   | <0.2<br><0.2 |       |
| AGG<br>AG7       |                  | 120<br>121 | 25<br>35  | 14<br>25   | 14<br>30   | 32         | 26<br>42  | 9<br>11                  | 5<br>12        | 3         | 0.2          |       |
| A68              |                  | 76         |           |            | 30<br>33   | - 32<br>10 | 42<br>40  |                          | 5              | 3<br>1    | <0.2         |       |
| A69              |                  | 62         | 49<br>50  | 20<br>50   | 55<br>65   | 37         | 131       | 10<br>17                 | 28             | 4         | 0.7          |       |
|                  |                  |            |           |            |            |            |           | ••••••                   |                |           |              |       |
| A70              |                  | 53         | 31        | 17         | 21         | 31         | 59        | 10                       | 18             | <1        | ≪0.2         |       |
| A71              |                  | 45         | 24        | 10         | 14         | 6          | 29<br>01  | 5                        | 4              | <1        | ⊲0.2<br>⊲0.2 |       |
| A72<br>A73       |                  | 107        | 23        | 23         | <u>26</u>  | 26         | 94        | 9                        | 7              | 3<br>1    | <0.2<br><0.2 |       |
| A74              |                  | 129<br>52  | 15<br>20  | 17         | 10         | 10<br>8    | 29<br>7   | 5<br>13                  | 4              | ،<br><1   | 0.3          |       |
| A/4              |                  |            | 20        | 9          | 11         | •          |           |                          | 3              | <u> </u>  | <b>U.J</b>   | ••••• |
| A75              |                  | 118        | 73        | 21         | 34         | 50         | 15        | 13                       | 27             | 2         | <0.2         |       |
| A76              |                  | 84         | 11        | 6          | 4          | 6          | ৎ         | 7                        | 3              | 1         | <0.2         |       |
| A77              |                  | 53         | 18        | 8          | 10         | 7          | 15        | 6                        | 3              | <1        | <0.2         |       |
| A78              |                  | 70         | 31        | 12         | 14         | 8          | ৎ         | 11                       | 5              | <1        | 0.2          |       |
| A79              |                  | 40         | 22        | 13         | 19         | 22         | 11        | 9                        | 10             | 7         | <0.2         | ••••• |
| <b>A8</b> 0      |                  | 27         | 10        | 2          | 6          | 3          | 5         | 5                        | 2              | 3         | ⊲0.2         | ••••• |
| A81              |                  | 59         | 34        | 16         | 27         | 38         | 118       | 30                       | 15             | 4         | 0.2          |       |
| A82              |                  | 58         | 36        | 18         | 33         | 41         | 121       | 33                       | 17             | 2         | ⊲0.2         |       |
| A83              |                  | 70         | 25        | 14         | 13         | 11         | 20        | 12                       | 3              | 2         | ⊲0.2         |       |
| <b>A8</b> 4      |                  | 67         | 35        | 15         | 21         | 9          | 23        | 11                       | 6              | <1        | <b>-0.2</b>  | ••••• |
| A85              |                  | 39         | 30        | 12         | 21         | 6          | 30        |                          | 5              | <1        | <0.2         |       |
| A86              |                  | 70         | 29        | 11         | 14         | 8          | ৎ         | 10                       | 5              | <1        | <0.2         |       |
| A87              |                  | 44         | 24        | 13         | 16         | 10         | 23        | 21                       | 16             | <1        | <0.2         |       |
| <b>A88</b>       |                  | 67         | 44        | 16         | 34         | 31         | 53        | 16                       | 18             | <1        | 0.2          |       |
| <b>A8</b> 9      |                  | 98         | 80        | 18         | 26         | 16         | 55        | 8                        | 4              | 2         | <0.2         |       |
| A90              |                  | 252        | 110       | 44         |            | 47         | 138       | 14                       | 8              | 4         | 0.4          | ••••• |
| A91              |                  | 66         | 32        | 24         | 25         | 20         | 109       | 20                       | 7              | 2         | 0.6          |       |
| A92              |                  | 106        | 56        | 28         | 39         | 80         | 137       | 21                       | 26             | 1         | 0.7          |       |
| A93              |                  | 48         | 27        | 21         | 24         | 17         | 116       | 13                       | 18             | 2         | 0.3          |       |
| A94              |                  | 59         | 25        | 16         | 22         | 21         | 58        | 9                        | 20             | <1        | <0.2         |       |
| A95              |                  | 17/        |           | 70         |            |            |           |                          | ······         |           | ·····        |       |
| A95<br>A96       |                  | 174<br>55  | 43        | 38         | 36<br>27   | 8          | 145       | 8                        | 6              | 3         | 0.9          |       |
| A97              |                  | 55<br>92   | 26<br>49  | 10<br>24   | 23<br>41   | 12<br>48   | 29<br>43  | 8<br>18                  | 5<br>27        | <1<br>2   | <0.2<br>0.4  |       |
| A98              |                  | 92<br>59   | 49<br>30  | 24<br>14   | 18         | -0         | 43<br>28  | 18<br>7                  | <b>Cí</b><br>1 | 2         | 0.4<br><0.2  |       |
| A99              |                  | 61         | 25        | 15         | 29         | 8          | 20<br>42  | 10                       | 4<br>10        | 2         | ≪0.2<br>≪0.2 |       |
|                  |                  | <b></b>    | محمط      | <i>و</i> ا | <b>۲</b>   |            | 76<br>    | <b>ب</b>                 |                | ٤         |              |       |
| A100             |                  | 46         | 25        | 8          | 13         | 11         | ব         | 16                       | 3              | 1         | 0.2          |       |
| A101             |                  | 52         | 29        | 9          | 15         | 11         | ব         | 13                       | 7              | <1        | 0.3          |       |
| A102             |                  | 43         | 29        | 11         | 18         | 12         | 11        | 17                       | 8              | 1         | 0.4          |       |
| A103             |                  | 158        | 92        | 36         | 42         | 43         | 28        | 17                       | 8              | 1         | 0.5          |       |
| A104             |                  | 50         | 29        | 12         | 14         | 7          | 14        | 14                       | 4              | 2         | 0.4          |       |

Bondar-Clegg & Company Ltd.

5420 Canotek Road, Ottawa, Ontario, K1J 9G2, Canada

Tel: (513) 749-2220, Fax: (613) 749-7170



### Geochemical Lab Report

## Inchcape Testing Services

| REPORT: 092      | -42716.0 ( COM   | PLETE )   |           |           |           |           |          | NTE PRINTE<br>ROJECT: NO |           |           | PAGE 2C   |
|------------------|------------------|-----------|-----------|-----------|-----------|-----------|----------|--------------------------|-----------|-----------|-----------|
| SAMPLE<br>NUMBER | ELEMENT<br>UNITS | Sn<br>PPN | Sb<br>PPN | Te<br>PPN | Ba<br>PPN | La<br>PPN | V<br>PPN | Pb<br>PPN                | Bi<br>PPN | Zn<br>PPN | Ng<br>PPB |
| A65              |                  | 24        | 4         | <10       | 103       | 5         | <20      | 27                       | 4         | 174       | 59        |
| A66              |                  | <20       | 9         | <10       | 59        | 4         | <20      | 16                       | ব         | 111       | 17        |
| A67              |                  | <20       | 15        | <10       | 118       | 12        | <20      | 35                       | ব         | 757       | 103       |
| A68              |                  | <20       | 10        | <10       | 92        | 8         | <20      | 18                       | ব         | 210       | 30        |
| A69              |                  | 23        | 9         | <10       | 127       | 27        | <20      | 36                       | ব         | 309       | 86        |
| ▲70              |                  | <20       | 9         | <10       | 95        | 19        | <20      | 17                       | ৎ         | 254       |           |
| A71              |                  | <20       | 7         | <10       | 47        | 5         | <20      | 13                       | ক         | 104       | 27        |
| A72              |                  | <20       | 11        | <10       | 159       | 9         | <20      | 33                       | ব         | 315       | 44        |
| A73              |                  | <20       | 8         | <10       | 114       | 5         | <20      | 10                       | ব         | 150       | 29        |
| A74              |                  | <20       | ব         | <10       | 196       | 5         | <20      | 16                       | ব         | 94        | 63        |
| A75              | •                | <20       | 8         | <10       | 78        | 34        | <20      | 7                        | 4         | 73        | 19        |
| A76              |                  | <20       | ব         | <10       | 50        | 4         | <20      | 5                        | ব         | 39        | 10        |
| A77              |                  | <20       | <5        | <10       | 51        | 4         | <20      | 13                       | ব         | 104       | 23        |
| A78              |                  | <20       | 6         | <10       | 129       | 6         | <20      | 11                       | ব         | 142       | 30        |
| A79              |                  | 35        | ব         | <10       | 55        | 10        | <20      | 11                       | ব         | 52        | 17        |
| <b>A8</b> 0      |                  | <20       | ব         | <10       | 21        | 3         | <20      | 4                        | ব         | 23        | 11        |
| A81              |                  | <20       | 11        | <10       | 283       | 13        | <20      | 61                       | ব         | 375       | 128       |
| <b>A8</b> 2      |                  | <20       | 10        | <10       | 394       | 14        | <20      | 65                       | ও         | 460       | 117       |
| A83              |                  | <20       | ব         | <10       | 82        | 5         | <20      | 13                       | ও         | 500       | 30        |
| <b>A84</b>       |                  | <20       | 9         | <10       | 140       | 7         | <20      | 15                       | ব         | 279       | 40        |
| <b>A8</b> 5      |                  | <20       | 7         | <10       | 69        | 7         | <20      | 17                       | ব         | 183       | 30        |
| <b>A8</b> 6      |                  | <20       | 6         | <10       | 97        | 6         | <20      | 11                       | ৎ         | 132       | 28        |
| A87              |                  | <20       | <5        | <10       | 134       | 21        | <20      | 16                       | <5        | 94        | 85        |
| <b>A88</b>       |                  | <20       | 9         | <10       | 114       | 17        | <20      | 20                       | ও         | 146       | 75        |
| <b>A89</b>       |                  | <20       | 10        | <10       | 81        | 6         | <20      | 29                       | ৎ         | 247       | 38        |
| A90              |                  | <20       | 13        | <10       | 100       | 6         | <20      | 34                       | ৎ         | 334       | 28        |
| A91              |                  | <20       | 9         | <10       | 76        | 8         | <20      | 34                       | ও         | 116       | 102       |
| A92              |                  | <20       | 14        | <10       | 95        | 17        | <20      | 24                       | ব         | 133       | 130       |
| A93              |                  | <20       | 11        | <10       | 93        | 14        | <20      | 58                       | ব         | 355       | 141       |
| A94              |                  | <20       | 10        | <10       | 60        | 13        | <20      | 20                       | \$        | 154       | 168       |
| A95              |                  | <20       | 11        | <10       | 113       | 11        | <20      | 37                       | ৎ         | 634       | 90        |
| A96              |                  | <20       | 5         | <10       | 76        | 6         | <20      | 10                       | ব         | 221       | 34        |
| A97              |                  | 31        | 7         | <10       | 379       | 25        | <20      | 10                       | ৎ         | 361       | 126       |
| A98              |                  | <20       | 8         | <10       | 102       | 6         | <20      | 46                       | ৎ         | 252       | 45        |
| A99              |                  | <20       | 8         | <10       | 123       | 12        | <20      | 23                       | ঙ         | 153       | 51        |
| A100             |                  | <20       | ৎ         | <10       | 180       | 4         | <20      | 18                       | ব         | 170       | 45        |
| A101             |                  | <20       | ৎ         | <10       | 180       | 7         | <20      | 10                       | ৎ         | 226       | 32        |
| A102             |                  | <20       | 7         | <10       | 205       | 10        | <20      | 24                       | ও         | 276       | 81        |
| A103             |                  | <20       | 7         | <10       | 243       | 7         | <20      | 18                       | ৎ         | 197       | 41        |
| A104             |                  | <20       | 5         | <10       | 186       | 6         | <20      | 14                       | ব         | 282       | 24        |

Bondar-Clegg & Company Ltd.

5420 Canotek Road, Ottawa, Ontario, K1J 9G2, Canada

Tel: (613) 749-2220, Fax: (613) 749-7170





|                  | 2-42716.0 ( CON  |           |               |               |           |             | Pi   | ATE PRINT<br>ROJECT: N | DNE  |           | PAGE 3A  |  |
|------------------|------------------|-----------|---------------|---------------|-----------|-------------|------|------------------------|------|-----------|----------|--|
| SAMPLE<br>NUMBER | ELEMENT<br>UNITS | Au<br>PPB | AuRew1<br>PPB | Auren2<br>PPB | AL<br>PCT | Fe<br>PCT   |      | Hg<br>PCT              |      | Na<br>PCT | K<br>PCT |  |
|                  |                  |           |               |               | 2.16      | 4.22        | 1022 | 1.21                   | 0.67 | 0.07      | 0.25     |  |
|                  |                  |           |               |               |           |             |      |                        |      |           |          |  |
|                  |                  |           |               |               |           |             |      |                        |      |           |          |  |
|                  |                  |           |               |               |           |             |      |                        |      |           |          |  |
|                  |                  |           |               |               |           |             |      |                        |      |           |          |  |
|                  |                  |           |               |               |           |             |      |                        |      |           |          |  |
|                  |                  |           |               |               |           |             |      |                        |      |           |          |  |
|                  |                  |           |               |               |           |             |      |                        |      |           |          |  |
|                  |                  |           |               |               |           |             |      |                        |      |           |          |  |
|                  |                  |           |               |               |           |             |      |                        |      |           |          |  |
|                  |                  |           |               |               |           |             |      |                        |      |           |          |  |
|                  |                  |           |               |               |           |             |      |                        |      |           |          |  |
|                  |                  |           |               |               |           |             |      |                        |      |           |          |  |
|                  |                  |           |               |               |           | ompany Ltd. |      |                        |      |           |          |  |

Tel: (613) 749-2220, Fax: (613) 749-7170



## Inchcape Testing Services

|                  | 2-42716.0 ( COM  |          |           |                         |                          |                                         | PR        | OJECT: NO | D: 17-NOV |           | PAGE 3B   |   |
|------------------|------------------|----------|-----------|-------------------------|--------------------------|-----------------------------------------|-----------|-----------|-----------|-----------|-----------|---|
| SAMPLE<br>NUMBER | ELEMENT<br>UNITS | V<br>PPN | Cr<br>PPN | Co<br>PPN               | Nî<br>PPN                | Cu<br>PPN                               | As<br>PPM | Sr<br>PPM | Y<br>PPN  | No<br>PPN | Ag<br>PPM | P |
| A105             |                  | 72       | 36        | 12                      | 24                       | 14                                      | 46        | 16        | 18        | 3         | ⊲0.2      | 1 |
|                  |                  |          |           |                         |                          |                                         |           |           |           |           |           |   |
|                  |                  |          |           |                         |                          |                                         |           |           |           |           |           |   |
|                  |                  |          |           |                         |                          |                                         |           |           |           |           |           |   |
|                  |                  |          |           |                         |                          |                                         |           |           |           |           |           |   |
|                  |                  |          |           |                         |                          |                                         |           |           |           |           |           |   |
|                  |                  |          |           |                         |                          |                                         |           |           |           |           |           |   |
|                  |                  |          |           |                         |                          |                                         |           |           |           |           |           |   |
|                  |                  |          |           |                         |                          |                                         |           |           |           |           |           |   |
|                  |                  |          |           |                         |                          |                                         |           |           |           |           |           |   |
|                  |                  |          |           |                         |                          | ••••••••••••••••••••••••••••••••••••••• |           |           |           |           |           |   |
|                  |                  |          |           |                         |                          |                                         |           |           |           |           |           |   |
|                  |                  |          |           |                         |                          |                                         |           |           |           |           |           |   |
|                  |                  |          |           |                         |                          |                                         |           |           |           |           |           |   |
|                  |                  |          | 5420 Car  | Bondar-G<br>lotek Road, | Clegg & Co<br>Ottawa, Op |                                         | G? Canadi |           |           |           |           |   |



## Inchcape Testing Services

| REPORT: 092      |                  |           |           | TE PRINTE         |             |           | PAGE 3C  |           |           |           |           |
|------------------|------------------|-----------|-----------|-------------------|-------------|-----------|----------|-----------|-----------|-----------|-----------|
| SAMPLE<br>NUMBER | ELEMENT<br>UNITS | Sn<br>PPM | Sb<br>PPN | Te<br>PP <b>N</b> | Ba<br>PPM   | La<br>PPN | V<br>PPM | РЬ<br>РРМ | Bi<br>PPM | Zn<br>PPN | Kg<br>PPB |
| A105             |                  | <20       | 6         | <10               | 237         | 15        | <20      | 14        | ব         | 110       | 60        |
|                  |                  |           |           |                   |             |           |          |           |           |           |           |
|                  |                  |           |           |                   | -           |           |          |           |           |           |           |
|                  |                  |           |           |                   |             |           |          |           |           |           |           |
|                  |                  |           |           |                   |             |           |          |           |           |           |           |
|                  |                  |           |           |                   |             |           |          |           |           |           |           |
|                  |                  |           |           |                   |             |           |          |           |           |           |           |
|                  |                  |           |           |                   |             |           |          |           |           |           |           |
|                  |                  |           |           |                   |             |           |          |           |           |           |           |
|                  |                  |           |           |                   |             |           |          |           |           |           |           |
|                  |                  |           |           |                   |             |           |          |           |           |           |           |
|                  |                  |           |           |                   |             |           |          |           |           |           |           |
|                  |                  |           |           |                   |             |           |          |           |           |           |           |
|                  |                  |           |           |                   |             |           |          |           |           |           |           |
|                  |                  |           |           |                   |             |           |          |           |           |           |           |
|                  |                  |           |           |                   | Clegg & Cou |           |          |           |           |           |           |

Tel: (613) 749-2220, Fax: (613) 749-7170



## Inchcape Testing Services

|              | <b>10001</b> 0 1 000 |            |      |      |       |      |      |      | ED: 4-DEC | -92 |           |        |
|--------------|----------------------|------------|------|------|-------|------|------|------|-----------|-----|-----------|--------|
| REPORT: 092- | 42901.0 ( COM        | •          |      |      | ····· |      |      |      |           |     | PAGE 1A   |        |
| SAMPLE       | ELEMENT              | Au         | AL   | fe   | Hin   | Ng   | Ca   | Ka   | ĸ         | Sc  | ۷         | (      |
| NUMBER       | UNITS                | <b>PP8</b> | PCT  | PCT  | PPN   | PCT  | PCT  | PCT  | PCT       | PPN | PPN       | P      |
| AR106        |                      | 7          | 1.85 | 4.16 | 957   | 0.70 | 0.89 | 0.06 | 0.10      | 5   | 59        |        |
| AR107        |                      | 9          | 1.30 | 2.41 | 217   | 0.43 | 0.43 | 0.06 | 0.07      | ব   | 42        |        |
| AR108        |                      | ব          | 1.53 | 2.96 | 266   | 0.61 | 0.57 | 0.06 | 0.08      | ব   | 43        |        |
| AR109        |                      | ব          | 1.04 | 2.30 | 1540  | 0.50 | 0.46 | 0.06 | 0.10      | ব   | 39        |        |
| AR110        |                      | 6          | 1.31 | 3.05 | 554   | 0.77 | 0.58 | 0.07 | 0.12      | 5   | 56        |        |
| AR111        |                      | ব          | 1.59 | 3.14 | 223   | 0.70 | 0.31 | 0.07 | 0.08      | ৎ   | 59        | •••••• |
| AR112        |                      | ব          | 1.65 | 3.23 | 2068  | 1.18 | 0.70 | 0.07 | 0.09      | ব   | 55        |        |
| AR113        |                      | ব          | 1.44 | 2.29 | 380   | 0.64 | 0.22 | 0.06 | 0.05      | ব   | 52        |        |
| AR114        |                      | ও          | 1.30 | 2.50 | 179   | 0.30 | 0.43 | 0.07 | 0.06      | ব   | 42        |        |
| AR115        |                      | ব          | 0,95 | 2.07 | 206   | 0.50 | 0.30 | 0.07 | 0.06      | 4   | 43        |        |
| AR116        |                      | ব          | 2.45 | 4.23 | 3053  | 0.76 | 0.95 | 0.06 | 0.24      | 6   | <b>95</b> |        |
| AR117        |                      | ব          | 2.69 | 4.44 | 1637  | 0.83 | 0.68 | 0.07 | 0.14      | 9   | 80        |        |
| AR118        |                      | 10         | 1.61 | 2.80 | 2010  | 0.64 | 1.72 | 0.07 | 0.12      | ব   | 59        |        |
| AR119        |                      | 7          | 1.77 | 7.19 | 3542  | 0.24 | 0.81 | 0.05 | 0.08      | ব   | 86        |        |
| AR120        |                      | ব          | 2.55 | 4.53 | 1228  | 1.11 | 0.53 | 0.07 | 0.39      | 7   | 134       |        |

#### Bondar-Clegg & Company Ltd. 5420 Canotek Road, Ottawa, Ontario, K1J 9G2, Canada Tal: (513) 749-2220, Fax: (513) 749-7170



## Inchcape Testing Services

|        | 42901.0 ( CON |     |     |     |     | · ···· ··· ··· ··· ··· | PR  | TE PRINTE | NE  | L-72 | PAGE 1B |         |
|--------|---------------|-----|-----|-----|-----|------------------------|-----|-----------|-----|------|---------|---------|
| SAMPLE | ELEMENT       | Co  | Ni  | Cu  | As  | Sr                     | т   | No        | Ag  | Cd   | Sn      | S       |
| NUMBER | UNITS         | PPM | PPM | PPN | PPN | PPM                    | PPN | РРМ       | PPN | PPN  | PPN     | PP      |
| AR106  |               | 19  | 23  | 32  | 78  | 15                     | 11  | 1         | 0.5 | 0.4  | <20     | 1       |
| AR107  |               | 10  | 14  | 8   | 27  | 10                     | 5   | 1         | 0.4 | ≪0.2 | <20     | 1       |
| AR108  |               | 13  | 21  | 18  | 62  | 15                     | 8   | <1        | 0.7 | ⊲0.2 | <20     | •       |
| AR109  |               | 10  | 11  | 8   | 29  | 8                      | 4   | <1        | 0.7 | 0.6  | <20     | 1       |
| AR110  |               | 14  | 15  | 28  | 27  | 13                     | 14  | <1        | 0.3 | ⊲0.2 | <20     |         |
| AR111  |               | 14  | 20  | 19  | 89  | 9                      | 6   | 3         | 0.6 | ⊲0.2 | <20     | ••••••• |
| AR112  |               | 11  | 16  | 12  | 59  | 15                     | 7   | <1        | 0.5 | 1.9  | <20     |         |
| AR113  |               | 11  | 13  | 6   | 39  | 7                      | 4   | <1        | 0.4 | ⊲0.2 | <20     |         |
| AR114  |               | 9   | 12  | 6   | 27  | 10                     | 5   | <1        | 0.4 | ⊲0.2 | <20     | 4       |
| AR115  |               | 9   | 10  | 6   | 13  | 9                      | 5   | <1        | 0.4 | ⊲0.2 | <20     |         |
| AR116  | -             | 21  | 24  | 20  | 47  | 17                     | 14  | <1        | 0.5 | 0.4  | <20     |         |
| AR117  |               | 23  | 28  | 38  | 156 | 17                     | 18  | 1         | 0.7 | 0.4  | <20     | i       |
| AR118  |               | 12  | 21  | 29  | 41  | 24                     | 11  | 2         | 0.6 | 1.4  | <20     |         |
| AR119  |               | 14  | 17  | 12  | 133 | 19                     | 12  | 4         | 0.6 | 0.2  | <20     |         |
| AR120  |               | 24  | 23  | 15  | 43  | 12                     | 12  | <1        | 0.7 | ⊲0.2 | <20     |         |

.

Bondar-Clegg & Company Ltd. 5420 Canotek Road, Ottawa, Ontario, K1J 9G2, Canada Tel: (613) 749-2220, Fax: (613) 749-7170





|        | 42901.0 ( CON |     |     |     |     |     | PR  | OJECT: NO | D: 4-DEC-92<br>WE | PAGE 1C                                 |
|--------|---------------|-----|-----|-----|-----|-----|-----|-----------|-------------------|-----------------------------------------|
| SAMPLE | ELEMENT       | Te  | Ba  | La  | V   | Pb  | Bi  | Zn        | Ng                |                                         |
| NUMBER | UNITS         | PPN | PPN | PPN | PPM | PPM | PPN | PPN       | PPB               |                                         |
| AR106  |               | <10 | 108 | 11  | <20 | 39  | ব   | 235       | 91                |                                         |
| AR107  |               | <10 | 50  | 5   | <20 | 36  | ব   | 177       | 52                |                                         |
| AR108  |               | <10 | 55  | 8   | <20 | 59  | ব   | 565       | 74                |                                         |
| AR109  |               | <10 | 64  | 5   | <20 | 32  | ৎ   | 197       | 90                |                                         |
|        |               |     |     |     |     |     |     |           | 79                |                                         |
| AR111  |               | <10 | 54  | 6   | <20 | 35  | ব   | 417       | 16                | ••••••••••••••••••••••••••••••••••••••• |
| AR112  |               | <10 | 107 | 7   | <20 | 24  | ৎ   | 411       | 52                |                                         |
| AR113  |               | <10 | 58  | 4   | <20 | 24  | ব   | 326       | 23                |                                         |
| AR114  |               | <10 | 35  | 5   | <20 | 20  | ও   | 148       | 43                |                                         |
| AR115  |               | <10 | 39  | 5   | <20 | 23  | 5   | 158       | 14                |                                         |
| AR116  | •             | <10 | 149 | 11  | <20 | 31  | ৎ   | 269       | 108               |                                         |
| AR117  |               | <10 | 117 | 17  | <20 | 46  | ব   | 424       | 249               |                                         |
| AR118  |               | <10 | 97  | 9   | <20 | 40  | ব   | 158       | 151               |                                         |
| AR119  |               | <10 | 87  | 11  | <20 | 44  | ব   | 363       | 154               |                                         |
| AR120  |               | <10 | 135 | 10  | <20 | 29  | ব   | 225       | 77                |                                         |





|                  | -42715.0 ( CON   |           |           |           |               |           |           | PR        | TE PRINTE<br>OJECT: NO | NE       | P         | AGE 1A    |          |
|------------------|------------------|-----------|-----------|-----------|---------------|-----------|-----------|-----------|------------------------|----------|-----------|-----------|----------|
| SAMPLE<br>NUMBER | ELEMENT<br>UNITS | Au<br>PPB | Ti<br>PCT | AL<br>PCT | Fe Tot<br>PCT | Nn<br>PPH | Ng<br>PCT | Ca<br>PCT | lia<br>PCT             | K<br>PCT | Li<br>PPN | Sc<br>PPM | V<br>PPN |
| 6735             |                  | ব         | 0.02      | 0.32      | 0.51          | <50       | 0.09      | 0.05      | <b>-0.</b> 01          | 0.16     | 3         | <1        | 17       |
| 6736             |                  | ৎ         | <0.01     | 0.16      | 0.78          | 58        | 0.03      | 0.02      | <0.01                  | 0.04     | ~2        | <1        | 7        |
| 6737             |                  | ব         | 0.05      | 4.08      | 1.17          | 135       | 0.12      | 0.19      | 0.76                   | 0.78     | 5         | 2         | 13       |

Bondar-Clegg & Company Ltd. 5420 Canotek Road, Ottawa, Ontario, K1J 9G2, Canada Tel: (613) 749-2220, Fax: (613) 749-7170



## Inchcape Testing Services

| R2-42715.0 ( COMPLETE )         PAGE 18           ELEMENT         Cr         Co         Ni         Cu         Zn         Ga         Sr         Y         Zr         Nb         No         Apple           320         3         10         Zo         7         c10         Z         S         S         S         3         do.           320         3         10         Zo         7         c10         Z         S         S         S         do.         do.           320         3         10         Zo         7         c10         Z         S         S         do.         do. |                |               |       | <br>     |    |   |                                         | ••••••••••••••••••••••••••••••••••••••• |        |        |          |        |                                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------------|-------|----------|----|---|-----------------------------------------|-----------------------------------------|--------|--------|----------|--------|-----------------------------------------|
| ELEMENT Cr Co Ni Cu Zn Ga Sr Y Zr Nb Mo A<br>UNITS PPN PPN PPN PPN PPN PPN PPN PPN PPN PP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | FPORT - 092    | -42715 0 ( ით | DIFTE |          |    |   |                                         |                                         |        |        |          | AGF 1R |                                         |
| UNITS PPN PPN PPN PPN PPN PPN PPN PPN PPN PP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |               |       | <br>     |    |   |                                         |                                         |        |        | •        |        |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | AMPLE<br>UNBER |               |       |          |    |   |                                         |                                         |        |        |          |        |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6735           |               | 720   | <br><br> | 20 |   | ~10                                     | ·····                                   | *      | E      | <u>~</u> | ****   | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6736           |               |       |          |    |   |                                         |                                         |        |        |          |        |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6737           |               |       |          |    | 7 | <10                                     | 56                                      | ন<br>ব |        |          |        |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |               |       | <br>     |    | • |                                         |                                         |        |        |          | •      |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |               |       | <br>     |    |   |                                         |                                         |        |        |          |        |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |               |       |          |    |   |                                         |                                         |        |        |          |        |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |               | ····· | <br>     |    |   |                                         |                                         |        |        |          |        |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |               |       |          |    |   |                                         |                                         |        |        |          |        |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |               |       | <br>     |    |   |                                         |                                         |        |        |          |        |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |               |       | <br>     |    |   |                                         |                                         |        |        |          | •••••• | ,                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |               |       |          |    |   |                                         |                                         |        |        |          |        |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |               | ••••• | <br>     |    |   |                                         |                                         |        |        |          | •••••• |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |               |       | <br>     |    |   |                                         |                                         |        |        |          |        |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |               |       |          |    |   |                                         |                                         |        |        |          |        |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |               |       |          |    |   |                                         |                                         |        |        |          |        |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |               |       | <br>     |    |   | ••••••••••••••••••••••••••••••••••••••• |                                         |        | ****** |          |        |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |               |       | <br>     |    |   |                                         |                                         |        |        |          |        |                                         |

Bondar-Clegg & Company Ltd. 5420 Canotek Road, Ottawa, Ontario, K1J 9G2, Canada Tel: (613) 749-2220, Fax: (613) 749-7170



------

## Geochemical Lab Report



| REPORT: 092-42715.0 ( COMPLETE ) |                  |           |           |           |            |           | DATE PRINTED: 28-OCT-92<br>PROJECT: NONE PAGE 10 |           |          |           |           |           | :                 |
|----------------------------------|------------------|-----------|-----------|-----------|------------|-----------|--------------------------------------------------|-----------|----------|-----------|-----------|-----------|-------------------|
| SAMPLE<br>NUMBER                 | ELEMENT<br>UNITS | Cd<br>PPN | Sn<br>PPN | Sb<br>PPN | Te<br>PPN  | Ba<br>PPN | La<br>PPN                                        | Ta<br>PPN | V<br>PPN | Pb<br>PPN | Bi<br>PPN | As<br>PPN | Hg<br>PP <b>B</b> |
|                                  |                  |           |           |           |            |           |                                                  |           |          |           |           |           |                   |
| 6736                             |                  | 0.9       | <20       | ব         | <b>~</b> 5 | 12        | ব                                                | ব         | <20      | 3         | ব         | ব         | 10                |
| 6737                             |                  | ⊲0.5      | <20       | ব         | ≪35        | 293       | 10                                               | ব         | <20      | 13        | ব         | 22        | 10                |

Bondar-Clegg & Company Ltd. 5420 Canotek Road, Ottawa, Ontario, K1J 9G2, Canada

Tel: (613) 749-2220. Fax: (613) 749-7170



## Geochemical Lab Report

## Inchcape Testing Services

|             |                                       |     |      |      |     |      | D      | ATE PRINT | ED: 27-NOV | 1-92 |         |    |
|-------------|---------------------------------------|-----|------|------|-----|------|--------|-----------|------------|------|---------|----|
| REPORT: 092 | -42900.0 ( COM                        | - • |      |      |     |      | • •    | ROJECT: N |            |      | PAGE 1A |    |
| SAMPLE      | ELEMENT                               | Au  | AL   | fe   | Min | Mg   | Ca     | Ka        | ĸ          | Sc   | ٧       | C  |
| NUMBER      | UNITS                                 | PPB | PCT  | PCT  | PPN | PCT  | PCT    | PCT       | PCT        | PPN  | PPN     | Pf |
| 6726        |                                       | 15  | 0.41 | 2.39 | 30  | 0.08 | 0.12   | 0.23      | 0.10       | 4    | 16      | 9  |
| 6729        |                                       | 9   | 6.49 | 7.80 | 481 | 3.48 | 5.49   | 0.25      | 0.26       | 5    | 54      | (  |
| 6730        |                                       | 8   | 7.10 | 3.33 | 480 | 3.76 | 5.85   | 0.50      | 0.27       | ব    | 37      |    |
| 6731        |                                       | ব   | 6.49 | 4.72 | 416 | 3.08 | 6.45   | 0.07      | 0.13       | 6    | 75      |    |
| 6732        |                                       | 27  | 7.79 | 6.56 | 674 | 3.64 | 6.26   | 0.57      | 0.16       | 8    | 92      |    |
| 6733        |                                       | ব   | 0.31 | 3.58 | 128 | 0.34 | 0.39   | 0.06      | 0.02       | ব    | 9       | 1  |
| 6734        |                                       | 25  | 2.23 | 6.32 | 324 | 2.42 | 1.29   | 0.07      | 0.25       | ব    | <1      | 1  |
| 6735        |                                       | ব   | 1.33 | 2.13 | 114 | 0.87 | 0.72   | 0.07      | 0.45       | ব    | 11      | 1  |
| 6739        |                                       | 7   | 1.84 | 6.28 | 149 | 1.50 | 0.14   | 0.14      | 0.47       | 8    | 86      | 1  |
| 6740        |                                       | 37  | 0.13 | 1.36 | 92  | 0.05 | 0.21   | 0.06      | 0.02       | 5    | 21      | 1  |
| 6741        | • • • • • • • • • • • • • • • • • • • | 6   | 0.03 | 2.07 | 67  | 0.02 | 0.09   | 0.04      | 0.02       | \$   | 7       | 2  |
| 6742        |                                       | 19  | 0.03 | 1.79 | 82  | 0.02 | 0.09   | 0.05      | 0.02       | ব    | 4       | 2  |
| 6744        |                                       | ও   | 0.02 | 1.74 | 64  | 0.01 | 0.04   | 0.05      | 0.01       | ব    | 4       | 2  |
| 6747        |                                       | 82  | 0.03 | 0.58 | 52  | 0.02 | 0.01   | 0.05      | 0.02       | ব    | 3       | 3  |
| 6748        |                                       | ব   | 0.36 | 0.48 | 469 | 7.01 | >10.00 | 0.07      | 0.36       | ব    | 16      |    |

Bondar-Clegg & Company Ltd. 5420 Canotek Road, Ottawa, Ontario, K1J 9G2, Canada Tel: (613) 749-2220. Fax: (613) 749-7170



## Inchcape Testing Services

|        |                |     |     |     |     |     | (   | DATE PRINT | ED: 27-NO | 1-92 |         |         |
|--------|----------------|-----|-----|-----|-----|-----|-----|------------|-----------|------|---------|---------|
|        | -42900.0 ( COM |     |     |     |     |     | -   | PROJECT: M |           |      | PAGE 18 |         |
| SAMPLE | ELEMENT        | Со  | Ni  | Cu  | As  | Sr  | Y   | No         | Ag        | Cď   | Sn      | •       |
| NUMBER | UNITS          | PPN | PPN | PPN | PPN | PPN | PPH | PPN        | PPN       | PPN  | PPN     | Pl      |
| 6726   |                | 6   | 29  | 34  | 4   | 12  | 7   | 10         | 0.5       | ⊲0.2 | <20     | ••••••• |
| 6729   |                | 28  | 88  | 74  | 37  | 76  | 19  | 2664       | 1.1       | 0.5  | <20     | :       |
| 6730   |                | 17  | 44  | 23  | 26  | 42  | 14  | 36         | ⊲0.2      | <0.2 | <20     |         |
| 6731   |                | 21  | 51  | 29  | 41  | 43  | 20  | 28         | 0.3       | ⊲0.2 | <20     |         |
| 6732   |                | 30  | 69  | 28  | 46  | 39  | 24  | 672        | 0.4       | ⊲0.2 | <20     |         |
| 6733   |                | 11  | 54  | 87  | ব   | 3   | 1   | 101        | 0.5       | ⊲0.2 | <20     |         |
| 6734   |                | 42  | 49  | 38  | 11  | 16  | 7   | >10000     | 2.6       | 2.0  | <20     |         |
| 6735   |                | 8   | 20  | 38  | 11  | 28  | 9   | 140        | 0.3       | ⊲0.2 | <20     |         |
| 6739   |                | 21  | 63  | 74  | 20  | 7   | 3   | 1273       | 1.3       | <0.2 | <20     |         |
| 6740   |                |     |     |     |     |     |     | 31         |           |      |         |         |
| 6741   |                | 4   | 8   | 8   | 4   | 1   | <1  | 10         | 0.4       | ⊲0.2 | <20     |         |
| 6742   |                | 4   | 7   | 9   | 192 | 1   | <1  | 6          | 1.0       | ≪0.2 | <20     |         |
| 6744   |                | 4   | 9   | 6   | 4   | 1   | <1  | 5          | 0.5       | ⊲0.2 | <20     |         |
| 6747   |                | 4   | 11  | 19  | ব   | <1  | <1  | 3          | 0.3       | ⊲0.2 | <20     |         |
| 6748   |                | 7   | 4   | 6   | 32  | 215 | 2   | 4          | ⊲0.2      | 0.9  | <20     |         |

Bondar-Clegg & Company Ltd. 5420 Canotek Road, Ottawa, Ontario, K1J 9G2, Canada

Tel: (513) 749-2220, Fax: (613) 749-7170





|        | -42900.0 ( CON | -   |     |     |     |     | DA<br>Pi | PAGE 1C |              |  |
|--------|----------------|-----|-----|-----|-----|-----|----------|---------|--------------|--|
| SAMPLE | ELEMENT        | Te  | Ba  | La  | V   | Pb  | Bi       | Zn      | Hg           |  |
| NUMBER | UNITS          | PPN | PPN | PPN | PPN | PPN | PPN      | PPN     | PPB          |  |
| 6726   |                | <10 | 28  | 4   | <20 | 17  | ও        | 6       | 4            |  |
| 6729   |                | <10 | 26  | 15  | <20 | 40  | ব        | 77      | 5            |  |
| 6730   |                | <10 | 14  | 8   | <20 | 21  | 4        | 41      | <del>ح</del> |  |
| 6731   |                | <10 | 6   | 11  | <20 | 23  | ও        | 64      | ব            |  |
| 6732   |                | <10 | 16  | 16  | <20 | 23  | ব        | 88      | 4            |  |
| 6733   |                | <10 | 3   | 2   | <20 | 19  | ব        | 21      | ব            |  |
| 6734   |                | 31  | 40  | 2   | <20 | 50  | 10       | 57      | 7            |  |
| 6735   |                | <10 | 77  | 6   | <20 | 19  | 5        | 18      | ব            |  |
| 6739   |                | <10 | 61  | 6   | <20 | 130 | ব        | 77      | 7            |  |
| 6740   |                | <10 | 7   | 1   | <20 | 17  | 4        | 25      | 9            |  |
| 6741   |                | <10 | 5   | <1  | <20 | 13  | ৎ        | 28      | 5            |  |
| 6742   |                | <10 | 10  | <1  | <20 | 25  | ব        | 108     | 7            |  |
| 6744   |                | <10 | 8   | <1  | <20 | 9   | ব        | 10      | 9            |  |
| 6747   |                | <10 | 3   | <1  | <20 | 6   | ক        | 6       | 2            |  |
| 6748   |                | <10 | 39  | 1   | <20 | 60  | ব        | 347     | 265          |  |

Bondar-Clegg & Company Ltd. 5420 Canotek Road, Ottawa, Ontario, K1J 9G2, Canada Tel: (613) 749-2220, Fax: (613) 749-7170



## Inchcape Testing Services

|        | -42997.0 ( CON |     |      |      | DATE PRINTED: 17-DEC-92<br>PROJECT: NOME PAGE 1A |        |        |      |       |     |     |     |
|--------|----------------|-----|------|------|--------------------------------------------------|--------|--------|------|-------|-----|-----|-----|
| SAMPLE | ELEMENT        | Âu  | AL   | Fe   | Hn                                               | Ng     | Ca     | Ka   | ĸ     | Şc  | v   | Cı  |
| NUMBER | UNITS          | PP8 | PCT  | РСТ  | PPN                                              | PCT    | РСТ    | PCT  | PCT   | PPN | PPN | PPI |
| 6764   |                | 11  | 0.35 | 5.47 | 89                                               | 0.16   | 0.07   | 0.04 | 0,02  | ব   | 18  | 22  |
| 6765   |                | 8   | 3.05 | 7.72 | 217                                              | 1.68   | 0.10   | 0.09 | 0.81  | 5   | 120 | 35  |
| 6766   |                | 9   | 2.80 | 3.70 | 579                                              | 0.46   | 3.51   | 0.26 | 0.53  | ব   | 24  | 7   |
| 6767   |                | 32  | 0.05 | 0.27 | 428                                              | >10.00 | >10.00 | 0.05 | <0.01 | 4   | 4   | 1   |
| 6768   |                | 10  | 0.05 | 2.11 | 47                                               | 0.03   | 0.05   | 0.04 | <0.01 | ব   | 15  | 34  |
| 6769   |                | 13  | 0.05 | 1.90 | 165                                              | 0.05   | 0.52   | 0.04 | 0.01  | \$  | 4   | 21  |
| 6770   |                | 8   | 0.05 | 2.05 | 45                                               | 0.03   | 0.05   | 0.04 | 0.01  | 4   | 15  | 35  |
| 6771   |                | 10  | 2.98 | 9.25 | 210                                              | 2.05   | 0.16   | 0.10 | 0.67  | 9   | 287 | 24  |
| 6772   |                | 23  | 0.07 | 1.73 | 165                                              | 0.02   | 0.10   | 0.04 | ⊲0.01 | ব   | 11  | 30  |
| 6773   |                | 27  | 0.66 | 1.49 | 297                                              | 0.29   | >10.00 | 0.08 | 0.29  | \$  | 7   | 6   |

Bondar-Clegg & Company Ltd. 5420 Canotek Road, Ottawa, Ontario, K1J 9G2, Canada Tel: (613) 749-2220, Fax: (613) 749-7170



## Inchcape Testing Services

|        | -42997.0 ( COM |     |     |     | DATE PRINTED: 17-DEC-92<br>PROJECT: NONE |           |     |     |      | PAGE 1B     |     |                                         |
|--------|----------------|-----|-----|-----|------------------------------------------|-----------|-----|-----|------|-------------|-----|-----------------------------------------|
|        | ELEMENT        |     |     |     |                                          |           |     |     |      |             |     |                                         |
| NUMBER | UNITS          | PPN | PPN | PPN | PPN                                      | PPN       | PPH | PPN | PPM  | PPM         | PPN | PF                                      |
| 6764   |                | 7   | 23  | 153 | 11                                       | 2         | <1  | 2   | 0.3  | 0.7         | <20 | ••••••••••••••••••••••••••••••••••••••• |
| 6765   |                | 4   | 16  | 67  | 42                                       | 11        | 7   | 16  | ⊲0.2 | ⊲0.2        | <20 | •                                       |
| 6766   |                | 22  | 25  | 68  | 38                                       | 72        | 10  | 2   | ⊲0.2 | 1.5         | <20 | •                                       |
| 6767   |                | 4   | 2   | 9   | ব                                        | <b>98</b> | 3   | <1  | 4.2  | 33.9        | <20 | 7                                       |
| 6768   |                | <1  | 8   | 15  | 12                                       | 2         | 4   | 2   | ⊲0.2 | 0.5         | <20 | •••••••                                 |
| 6769   |                | <1  | 7   | 23  | ব                                        | 5         | <1  | 2   | ⊲0.2 | 0.9         | <20 | ••••••                                  |
| 6770   |                | <1  | 8   | 13  | 6                                        | 2         | <1  | 2   | 0.3  | <b>4</b> .2 | <20 |                                         |
| 6771   |                | 6   | 26  | 78  | 51                                       | 12        | 10  | 20  | ⊲0.2 | 0.4         | <20 | •                                       |
| 6772   |                | 6   | 12  | 16  | 13                                       | 1         | 1   | 2   | 0.2  | 0.6         | <20 |                                         |
| 6773   |                | 12  | 19  | 184 | 91                                       | 96        | 4   | 26  | 41.8 | 208.2       | <20 | 9                                       |

Bondar-Clegg & Company Ltd. 5420 Canotek Road, Ottawa, Ontario, K1J 9G2, Canada Tel: (613) 749-2220, Fax: (613) 749-7170



......

## Geochemical Lab Report

## Inchcape Testing Services

|        | -42997.0 ( COM | - • |     |     |     |        | PROJECT: |        | PAGE 1C |                                         |
|--------|----------------|-----|-----|-----|-----|--------|----------|--------|---------|-----------------------------------------|
| SAMPLE | ELEMENT        | Te  | ßa  | La  | V   | РЪ     | Bí       | Zn     | lig     |                                         |
| NUMBER | UNITS          | PPN | PPN | PPN | PPN | PPN    | PPN      | PPN    | PPB     |                                         |
| 6764   |                | <10 | 11  | 3   | <20 | 50     | ব        | 23     | 17      | ••••••••••••••••••••••••••••••••••••••• |
| 6765   |                | <10 | 321 | 11  | <20 | 59     | ব        | 191    | 18      |                                         |
| 6766   |                | <10 | 73  | 9   | <20 | 41     | ব        | 105    | ব       |                                         |
| 6767   |                | 59  | 5   | <1  | <20 | 203    | 28       | 2039   | 1164    |                                         |
| 6768   |                | 17  | 3   | <1  | <20 | 48     | ব        | 6      | 5       |                                         |
| 6769   |                | <10 | 20  | <1  | <20 | 31     | ব        | 25     | 7       |                                         |
| 6770   |                | 21  | 3   | <1  | <20 | 53     | ব        | 5      | 12      |                                         |
| 6771   |                | <10 | 300 | 14  | <20 | 124    | ব        | 270    | 20      |                                         |
| 6772   |                | 12  | 9   | 1   | <20 | 46     | ব        | 35     | 20      |                                         |
| 6773   |                | <10 | 144 | 2   | <20 | >10000 | ব        | >20000 | >50000  |                                         |

Bondar-Clegg & Company Ltd. 5420 Canotek Road, Ottawa, Ontario, K1J 9G2, Canada T.1: (613) 749-2220, Fax: (613) 749-7170

# APPENDIX 2

-

-

SAMPLE DESCRIPTION

(SOIL SAMPLES)

#### DESCRIPTION OF GEOCHEMICAL SOIL SAMPLES NORWAY LAKE (SOUTH) / SHEFFIELD TOWNSHIP

W.BRACK OPAP 92-233

•

| SPL    | STATION |   | POSITION | N I | DEPT | HCOLOUR1 | COMP1 | COMP2 | HUM        |             |
|--------|---------|---|----------|-----|------|----------|-------|-------|------------|-------------|
| 1      | 1+00    | N | 0+00     |     | 30   | MED.BRW  | CLAY  | SANDY | M          |             |
| 2      | 1+00    | N | 0+50     | Е   | 25   | MED.BRW  | SANDY | CLAY  | M          |             |
| 3      | 1+00    | N | 1+00     | E   | 25   | MED.BRW  | SANDY | CLAY  | <b>D</b> . |             |
| 4      | 1+00    | N | 1+50     | Ε   | 30   | DK.BRW   | CLAY  | SANDY | M          |             |
| 5      | 1+00    | N | 0+50     | W   | 30   | MED.BRW  |       | CLAY  | D          | VALLEY      |
| 5<br>6 | 0+00    |   | 0+50     | W   | 30   |          | CLAY  | SANDY | M          |             |
| 7      | 0+00    |   | 0+85     | W   |      | MED.BRW  |       | ORG.  | M          | VALLEY      |
| 8      | 0+00    |   | 1+75     | W   |      | BLK      | ORG.  | SANDY | W          | Е.Н.        |
| 9      | 0+00    |   | 0+50     | E   |      | BRW      | SANDY | ORG   | M          | E.S         |
| 10     | 0+00    |   | 0+75     | Ē   |      | GRY _    | SANDY |       | D          |             |
| 11     | 0+00    |   | 1+15     | E   | 30   |          | CLAY  | ORG   | Ŵ          | E.S         |
| 12     | 0+00    |   | 1+50     | Ē   | 30   |          | SANDY |       | D          | E.H. + E.S. |
| 13     | 4+00    | S | 0+10     | Ē   |      | DK.GRY   | CLAY  | ORG   | W          | E.S.        |
| 14     | 4+00    | ŝ | 0+50     | W   |      | MED.BRW  |       | SAND  | M          |             |
| 15     | 4+00    | S | 1+25     | W   |      | LGT.BRW  |       | CLAY  | D          | E.H.        |
| 16     | 4+25    | ŝ | 1+75     | W   |      | BRW      | CLAY  | ORG   | M          | VALLEY      |
| 17     | 4+00    | S | 2+25     | W   | 25   |          | CLAY  | ORG   | M          | _           |
| 18     | 4+00    | S | 2+75     | W   | 40   | GRY/BLK  |       | ORG   | Μ          | DEP.        |
| 19     | 4+00    | S | 3+50     | W   | 15   | GRY      | CLAY  | ORG   | М          | DEP.        |
| 20     | 4+00    | S | 4+25     | W   |      | BLK      | CLAY  | ORG   | M          | E.S.        |
| 21     | 2+00    | S | 0+60     | Е   | 30   | BRW      | CLAY  |       | M          | E.S.        |
| 22     | 2+00    | S | 0+25     | E   | 40   | BRW      | CLAY  | ORG   | M          | DEP.        |
| 23     | 2+00    | S | 0+25     | W   | 30   |          | CLAY  | ORG   | M          | DEP.        |
| 24     | 2+00    | S | 0+75     | W   | 25   | BLK      | ORG   |       | M          |             |
| 25     | 2+00    | S | 1+25     | W   |      | BRW      | SAND  |       | D          |             |
| 26     | 2+00    | S | 1+50     | W   | 35   | BRW      | CLAY  | ORG   | M          | DEP.        |
| 27     | 2+20    | S | 2+00     | W   | 35   | BRW      | SAND  |       | D          | DEP.        |
| 28     | 2+00    | S | 2+55     | W   | 35   | LGT.BRW  | CLAY  | ORG   | M          | E.H.        |
| 29     | 2+00    | S | 3+10     | W   | 30   | BRW      | CLAY  | ORG   | W          | E.S.        |
| 30     | 5+10    | N | 0+25     | W   | 30   | LGT.BRW  |       | SAND  | D          | VALLEY      |
| 31     | 5+10    | N | 0+90     | W   |      | BRW      | CLAY  | SAND  | D          | VALLEY      |
| 32     | 5+00    | N | 2+00     | Ε   | 35   | GRY      | CLAY  | ORG   | W          | VALLEY      |
|        |         |   |          |     |      |          |       |       |            |             |

| - | 33 | 5+00 | N | ·1+80 | Е | 35 | BRW     | CLAY | ORG  | M | E.V.       |
|---|----|------|---|-------|---|----|---------|------|------|---|------------|
|   | 34 | 5+05 | Ν | 0+75  | E | 25 | BRW     | SAND | ORG  | D | DEP.       |
|   | 35 | 5+00 | N | 0+35  | Ε | 30 | BRW     | SAND | CLAY | D | CONTACT    |
|   | 36 | 4+20 | N | 0+00  |   | 50 | BRW .   | ORG  | CLAY | M | DEP.       |
|   | 37 | 3+05 | N | 2+00  | Ε | 35 | DRK.GRY | CLAY | ORG  | W | VALLEY     |
|   | 38 | 3+00 | N | 2+80  | E | 30 | MED.BRW | SAND |      | D |            |
|   | 39 | 3+00 | N | 1+45  | E | 30 | BRW     | SAND |      | D |            |
|   | 40 | 3+00 | N | 1+00  | E | 25 | BRW     | CLAY | SAND | Μ | DEP.       |
|   | 41 | 2+90 | N | 0+10  | E | 25 | BRW     | CLAY | ORG  | M | CONTACT    |
|   | 42 | 3+00 | N | 1+10  | W | 35 | DRK.BRW | CLAY | ORG  | W | E.H.+ E.S. |
|   | 43 | 2+50 | N | 0+05  | W | 30 | BLK     | ORG  |      | W | E.S.       |
|   | 44 | 2+25 | N | 0+30  | W | 30 | GRY     | CLAY |      | W | E.S.       |
|   | 45 | 1+75 | Ń | 0+75  | Е | 30 | BRW     | ORG  | CLAY | M | DEP.       |
|   | 46 | 2+00 | N | 1+30  | E | 30 | BRW     | CLAY | ORG  | M | DEP.       |
|   | 47 | 2+00 | Ν | 1+90  | Ε | 30 | GRY     | CLAY |      | W | VALLEY     |
|   |    |      |   |       |   |    |         |      |      |   |            |

~

| CRAN | BERRY LAKE |          |      |                |       |       |     |        |
|------|------------|----------|------|----------------|-------|-------|-----|--------|
| SPL  | STATION    | POSITION | DEPT | HCOLOUR1       | COMP1 | COMP2 | HUM |        |
| 65   |            |          | 35   | GRY            | CLAY  | ORG   | W   | VALLEY |
| 66   |            |          | 20   | <b>BLK/GRY</b> | CLAY  | ORG   | M   | FLAT   |
| 67   |            |          | 30   | BLK/GRY        | CLAY  | ORG   | M   | FLAT   |
| 68   |            |          | 30   | BLK            | CLAY  |       | W   | VALLEY |
| 69   |            |          | 25   | GRY            | CLAY  | ORG   | W   | VALLEY |
| 70   |            |          | 30   | BRW            | SILT  | CLAY  | D   | FLAT   |
|      |            |          |      |                |       |       |     |        |

| FIFT | H DEPOT | LAKE | (WEST)   | PR | OFIL | Ε         |       |       |     |         |
|------|---------|------|----------|----|------|-----------|-------|-------|-----|---------|
| SPL  | STATIO  | N    | POSITION | N  | DEP  | THCOLOUR1 | COMP1 | COMP2 | HUM |         |
| 71   | 0+00    |      | 0+00     |    | 25   | BRW       | ORG   | CĽAY  | M   |         |
| 72   | 0+25    | N    | 0+00     |    | 25   | BRW       | ORG   | CLAY  | Μ.  | DEP     |
| 73   | 0+25    | Ņ    | 0+42     | W  | 30   | BRW       | SILT  | ORG   | D   | DEP     |
| 74   | 0+25    | Ň    | 1+00     | W  | 35   | GRY/BLK   | CLAY  | ORG   | W   | E.SWAMP |
| 75   | 0+25    | N    | 2+00     | W  | 25   | BRW       | SILT  | CLAY  | D   | DEP     |
| 76   | 0+25    | N    | 3+00     | W  | 30   | GRY       | CLAY  |       | D   | DEP     |
| 77   | 0+25    | N    | 3+95     | W  | 30   | BRW       | SILT  | CLAY  | D   | DEP     |
| 78   | 0+25    | N    | 4+20     | W  | 30   | BRW       | SILT  | CLAY  | D   | DEP     |
| 79   | 0+25    | N    | 4+90     | W  | 30   | BRW       | SILT  |       | W   | L.S.    |
| 80   | 0+50    | S    | 4+60     | W  | 30   | BRW       | SILT  | CLAY  | D   | E.H.    |
| 81   | 0+75    | S    | 4+60     | W  | 30   | GRY       | CLAY  |       | W   | CREEK   |

•

| F  | IFTH | DEPOT   | LAKE | (NORD)   | Ρ | ROFILE | 3        |       |       |     |            |
|----|------|---------|------|----------|---|--------|----------|-------|-------|-----|------------|
| SI | PL 8 | STATION | [    | POSITION | ŧ | DEPTH  | ICOLOUR1 | COMP1 | COMP2 | HUM |            |
| 82 | 2 5  | 5+00    | W    | 0+20     | N | 30     | LGT.BRW  | CLAY  | SILT  | M   | LOW GROUND |
| 83 | 35   | 5+00    | W    | 0+50     | N | 30     | BRW      | SILT  |       | D   | SLOPE      |
| 84 | 4 5  | 5+00    | W    | 1+00     | N | 30     | BRW      | SILT  |       | D   | FLAT       |
| 85 | 5 5  | 5+00    | W    | 1+25     | N | 30     | BRW      | SILT  | CLAY  | D   | DEP        |
| 86 | 6 E  | 5+00    | W    | 2+00     | Ν | 30     | BRW      | SILT  |       | D   | SLOPE      |
| 87 | 75   | 5+00    | W    | 2+30     | N | 35     | GRY      | CLAY  | SILT  | M   | E.H.+E.S.  |
| 88 | 3 5  | 5+00    | W    | 0+00     | S | 40     | BRW      | SILT  | CLAY  | D   | E.H.       |
| 89 | 3 5  | 5+00    | W    | 0+35     | S | 30     | BRW      | SILT  | CLAY  | D   | SLOPE      |
| 90 | ) 5  | 5+00    | W    | 0+90     | S | 40     | BRW      | SILT  |       | D   | FLAT       |
| 91 | L 5  | 5+00    | W    | 1+25     | S | 35     | GRY      | CLAY  |       | W   | DEP        |
| 92 | 25   | 5+00    | W    | 1+50     | S | 35     | BRW      | SILT  | CLAY  | M   | E.H.       |
| 93 | 3 C  | )+90    | Е    | 4+75     | S | 35     | GRY      | SILT  |       | W   | E.H.+E.S.  |

#### DESCRIPTION OF GEOCHEMICAL SOIL SAMPLES ARDOCH PROJECT (CLARENDON TOWNSHIP)

•

W.BRACK OPAP 92-233

| 1  | 10.75 |        | POSITION | • | DELL | HCOLOUR1 | COMP1 | COMP2 | HUM |            |
|----|-------|--------|----------|---|------|----------|-------|-------|-----|------------|
| 1  | 13+75 | Ε      | 6+75     | N | 25   | GREY     | SILT  |       | M   | E.S.       |
| 2  | 13+25 | Е      | 6+75     | N | 30   | GREY     | SILT  |       | M · | E.S.       |
| 3  | 13+00 | E      | 7+50     | N | 35   | BRW      | SILT  | CLAY  | W   | E.H.+E.S   |
| 4  | 13+00 | E      | 8+00     | N | 20   | MED.BRW  | CLAY  | SILT  | D   | DEP        |
| 5  | 13+00 | Е      | 8+00     | N | 30   | DK.BRW   | ORG   | SILT  | D   | DEP        |
| 6  | 13+00 | E      | 8+00     | N | 45   | MED.BRW  | SILT  | CLAY  | D   | DEP        |
| 7  | 12+75 | E      | 8+75     | N | 30   | MED.BRW  | SILT  |       | D   | HILL       |
| 8  | 12+75 | Ε      | 9+75     | N | 30   | LGT.GRY  | CLAY  |       | М   | E.H.       |
| 9  | 12+00 | E      | 10+00    | N | 30   | BLK ~    | ORG   |       | W   | E.RIVER    |
| 10 | 12+00 | Ε      | 9+25     | Ν | 25   | LGT.GRY  | SILT  |       | D   | E.H.       |
| 11 | 12+00 | Ε      | 8+00     | Ν | 30   | GRY/BLK  | CLAY  | ORG   | М   | E.H.+E.S.  |
| 12 | 12+00 | E      | 6+80     | N | 30   | GRY      | CLAY  |       | W   | E.H.+E.S.  |
| 13 | 11+00 | E      | 7+00     | N | 60   | BLK      | ORG   |       | W   | E.H.+E.S.  |
| 14 | 9+50  | E      | 7+00     | N | 30   | BLK/GRY  | ORG   | CLAY  | W   | E.H.+E.S.  |
| 15 | 9+50  | Ε      | 8+30     | N | 40   | BLK      | ORG   |       | W   | E.H.+E.S.  |
| 16 | 9+50  | E      | 8+75     | Ν | 30   | BRW      | CLAY  |       | M   | FLAT       |
| 17 | 9+50  | Е      | 10+15    | N | 30   | GRY      | CLAY  |       | M   | DEP        |
| 18 | 5+10  | E      | 6+50     | N | 30   | MED.BRW  | SILT  | CLAY  | М   | E.H.+E.S.  |
| 19 | 5+00  | Е      | 7+75     | N | 35   | BLK/GRY  | ORG   | CLAY  | W   | E.H.+E.S.  |
| 20 | 5+00  | Е      | 8+05     | N | 25   | BRW      | SILT  |       | D   | HILL       |
| 21 | 5+00  | E      | 8+50     | N | 30   | BRW      | SILT  |       | D   | DEP        |
| 22 | 5+00  | E      | 8+75     | N | 30   | LGT.BRW  | CLAY  | SILT  | M   | HILL       |
| 23 | 5+00  | E      | 9+15     | N | 35   | BRW      | SILT  | CLAY  | M   | DEP        |
| 24 | 5+00  | E<br>E |          | N | 30   | MED.BRW  | SILT  |       | D   | SLOPE      |
| 25 | 5+00  |        | 9+75     |   | 30   | MED.BRW  | SILT  | CLAY  | D   | DEP        |
| 26 | 5+00  | Е      | 10+00    |   | 30   | BRW      | SILT  |       | D   | HILL       |
| 27 | 5+00  | E      | 10+25    |   | 30   | BRW      | SILT  |       | D   | HILL       |
| 28 | 5+00  | Ε      | 10+60    |   | 30   | BRW      | SILT  |       | D   | HILL       |
| 29 | 5+00  | E      |          | N | 40   | GRY      | CLAY  | ORG   | W   | E.H.+E.R.  |
| 30 | 6+00  | E      | 10+75    |   | 25   | BRW      | CLAY  | SILT  | M   | E.H.+E.R.  |
| 31 | 6+00  | Ε      | 10+25    |   | 25   | MED.BRW  | SILT  | CLAY  | D   | SLOPE      |
| 32 | 6+00  | Е      | 10+00    | N | 20   | BRW      | SILT  | CLAY  | D   | FLAT RIDGE |

| 33 | 6+00  | E | 9+30  |   | 20 | BRW            | SILT | CLAY | D  | E.H.      |
|----|-------|---|-------|---|----|----------------|------|------|----|-----------|
| 34 | 6+00  | Е | 9+00  |   | 30 | BRW            | SILT | CLAY | D  | RIDGE     |
| 35 | 6+00  | Е | 8+25  |   | 35 | BRW            | CLAY | SILT | M  | VALLEY    |
| 36 | 6+00  | E | 7+65  | Ν | 80 | BLK            | ORG  |      | W  | E.H.+E.S. |
| 37 | 7+00  | Ε | 8+50  | N | 40 | LGT.BRW        | CLAY | SILT | M  | E.H.      |
| 38 | 7+00  | Е | 8+80  | N | 30 | LGT.GRY        | CLAY |      | M  | VALLEY    |
| 39 | 7+00  | E | 9+00  | N | 35 | MED.BRW        | CLAY |      | M  | E.H.      |
| 40 | 7+00  | Е | 9+55  | Ν | 30 | MED.BRW        | SILT |      | D  | E.H.      |
| 41 | 7+00  | Ε | 9+80  | Ν | 30 | MED.BRW        | SILT |      | D. | FLAT      |
| 42 | 7+00  | Е | 10+25 | N | 25 | MED.BRW        | SILT |      | D  | SLOPE     |
| 43 | 7+00  | Ε | 10+55 |   | 40 | LGT.GRY        | CLAY |      | M  | E.H.      |
| 44 | 8+00  | Ε | 10+50 | Ν | 40 | GRY            | CLAY |      | M  | E.S.      |
| 45 | 8+00  | Ε | 10+25 | Ν | 35 | MED.BRW        | CLAY | SILT | М  | FLAT      |
| 46 | 8+00  | Ε | 10+00 | N | 40 | MED.BRW        | CLAY | SILT | D  | DEP       |
| 47 | 8+00  | Ε | 9+50  | N | 40 | LGT.GRY        | CLAY |      | М  | E.H.      |
| 48 | 8+00  | Ε | 9+25  | N | 30 | BRW _          | SILT |      | D  | FLAT      |
| 49 | 8+00  | E | 8+75  | N | 30 | BRW            | SILT | CLAY | D  | FLAT      |
| 50 | 8+00  | Ε | 8+15  | N | 30 | BRW            | CLAY |      | M  | SLOPE     |
| 51 | 13+00 | Ε | 8+25  | N | 25 | BRW            | CLAY | SILT | D  | SLOPE     |
| 52 | 13+00 | Ε | 8+50  | N | 25 | BRW            | SILT |      | D  |           |
| 53 | 13+00 | E | 9+00  | N | 25 | BRW            | CLAY | SILT | D  | RIDGE     |
| 54 | 13+00 | Ε | 7+75  | N | 25 | BRW            | CLAY | SILT | M  | FLAT      |
| 55 | 4+00  | Е | 8+00  | N | 40 | LGT.BRW        | SILT | CLAY | D  | E.H.+E.S. |
| 56 | 4+00  | Ε | 8+75  | N | 30 | LGT.BRW        | SILT |      | D  | SLOPE     |
| 57 | 4+00  | Ε | 9+10  | N | 30 | BRW            | CLAY | ORG  | M  | LOW GR    |
| 58 | 4+00  | Ε | 9+25  | Ν | 35 | MED.BRW        | CLAY | SILT | D  | E.H.      |
| 59 | 4+00  | Ε | 9+50  | N | 30 | DK.BRW         | ORG  | CLAY | M  | LOW GR    |
| 60 | 4+00  | E | 9+90  | N | 30 | MED.BRW        | SILT |      | D  | SLOPE     |
| 61 | 4+00  | Е | 10+25 | N | 50 | <b>BLK/GRY</b> | ORG  | CLAY | W  | E.H.+E.S. |
| 62 | 2+00  | W | 11+70 | N | 30 | LGT.BRW        | SILT | CLAY | М  | E.H.      |
| 63 | 2+00  | W | 12+05 | N | 30 | MED.BRW        | SILT |      | D  | SLOPE     |
| 64 | 2+00  | W | 12+25 | N | 30 | MED.BRW        | SILT |      | D  | VALLEY    |
| 65 | 2+00  | W | 12+50 | N | 40 | LGT.BRW        | SILT |      | D  | SLOPE     |
| 66 | 5+00  | W | 11+25 | N | 30 | MED.BRW        | SILT |      | D  | E.H.      |
| 67 | 5+00  | W | 11+50 | N | 30 | MED.BRW        |      | CLAY | D  | VALLEY    |
| 68 | 5+00  | W | 12+00 | N | 25 | MED.BRW        |      |      | D  | SLOPE     |
| 69 | 5+00  | W | 12+25 | N | 25 | MED.BRW        | SILT |      | D  | SLOPE     |
| 70 | 5+00  | W | 12+65 |   | 30 | BRW            | SILT | CLAY | M  | DEP       |
|    |       |   |       |   |    |                |      |      |    |           |

•

|   | _   |       |    |       |   |          |         |      |       | _ |            |
|---|-----|-------|----|-------|---|----------|---------|------|-------|---|------------|
|   | 71  | 5+00  | W  | 13+10 |   | 30       | MED.BRW |      |       | Ð | SLOPE      |
| - | 72  | 5+00  | Ψ. | 13+50 | N | 25       | BRW     | SILT |       | D | FLAT RG.   |
|   | 73  | 5+00  | W  | 13+75 | Ν | 25       | BRW     | SILT |       | D | FLAT RG    |
|   | 74  | 5+00  | W  | 14+00 | N | 25       | DK.BRW  | SILT | CLAY  | M | FLAT RG.   |
|   | 75  | 5+00  | W  | 14+30 | N | 50       | LGT.GRY | CLAY | SILT  | W | DEP        |
|   | 76  | 6+00  | W  | 14+25 |   | 30       | BRW/GRY |      | CLAY  | D | RIDGE      |
|   | 77  | 6+00  | W  | 14+05 |   | 30       | BRW     | SILT |       | D | DEP        |
|   | 78  | 6+00  | W  | 13+70 |   | 30       | BRW     | SILT |       | D | RIDGE      |
|   | 79  | 6+00  | Ŵ  | 13+25 |   | 30       | LGT.BRW |      |       | D | E.H.       |
|   | 80  | 6+00  | Ŵ  | 13+00 |   | 30       | BRW     | SILT |       | D | E.H.       |
|   | 81  | 6+00  | Ŵ  | 12+65 |   | 30       | DK.BRW  | SILT | ORG   | M | SLOPE      |
|   | 82  | 6+00  |    | 12+05 |   | 50<br>50 | DK.BRW  | SILT | CLAY  | M | DEP        |
|   |     |       | W  |       |   |          |         |      |       |   |            |
|   | 83  | 6+00  | W  | 11+65 |   | 40       | BRW     | SILT | CLAY  | M | DEP        |
|   | 84  | 4+00  | W  | 13+50 |   | 30       | BRW     | CLAY | SILT  | D | FLAT RG.   |
|   | 85  | 4+00  | W  | 13+25 |   | 30       | BRW     | SILT |       | D | E.H.       |
|   | 86  | 4+00  | W  | 13+00 |   | 20       | BRW     | SILT | CLAY  | D | FLAT RG.   |
|   | 87  | 4+00  | W  | 12+75 |   | 35       | BLK     | ORG  | CLAY  | M | DEP        |
|   | 88  | 4+00  | W  | 12+50 |   | 40       | BLK/GRY |      | CLAY  | M | FLAT RG.   |
|   | 89  | 4+00  | W  | 12+00 |   | 20       | BRW     | ORG  | SILT  | D | SLOPE      |
|   | 90  | 4+00  | W  | 11+75 | N | 30       | BRW ~   | SILT |       | D | SLOPE      |
|   | 91  | 4+00  | W  | 11+25 | Ν | 35       | BRW     | CLAY | SAND  | M | E.H.+E.S.  |
|   | 92  | 3+00  | W  | 11+45 | N | 40       | GRY     | CLAY | ORG   | W | E.H.+E.S.  |
|   | 93  | 3+00  | W  | 11+95 | Ν | 25       | BRW     | CLAY | SILT  | M |            |
|   | 94  | 3+00  | W  | 12+75 |   | 35       | LGT.BRW | CLAY | SILT  | M | DEP        |
|   | 95  | 3+00  | W  | 13+00 |   | 25       | BRW     | SILT | ORG   | D | FLAT       |
|   | 96  | 3+00  | W  | 13+40 |   | 30       | BRW     | SILT |       | D | SLOPE      |
| _ | 97  | 3+00  | Ŵ  | 13+60 |   | 30       | BRW     | SILT |       | M | DEP/VALLEY |
|   | 98  | 3+00  | W  | 14+00 |   | 30       | BRW     | SILT |       | D | E.H.       |
|   | 99  | 3+00  | W  |       | N | 30       | BRW     | SILT | ORG   | D | RIDGE      |
|   | 100 | 13+50 | Ë  | 7+75  |   | 40       | BLK/GRY |      | CLAY  | Ŵ | E.H.+E.S.  |
|   | 101 | 13+50 | Ē  |       | N | 35       | LGT.GRY |      | ODAT  | M | SINK HOLE  |
|   | 101 | 13+50 | E  |       | N | 30       | BRW     | CLAY |       | M | TRAIL      |
|   | 102 | 13+50 | E  | 8+40  |   | 30       | BRW     | SILT | CLAY  | D | DEP        |
|   | 103 | 13+50 | E  | 8+60  |   | 25       | BRW     | SILT | OLAI  | D | SLOPE      |
|   |     |       |    | 9+05  |   | 30       | LGT.BRW | CLAY |       | M | FLAT       |
|   | 105 | 13+50 | E  | 6+80  |   | 30       | BRW     | ORG  | CI AV |   |            |
|   |     | 10+00 | E  |       |   |          |         |      | CLAY  | D | SLOPE      |
|   |     | 10+25 | E  | 7+00  |   | 30       | MED.BRW |      | 0.00  | D | E.H.+E.S.  |
|   | 108 | 9+90  | E  | 7+00  | N | 30       | LGT.BRW | CLAY | ORG   | M | E.H.+E.S.  |
|   |     |       |    |       |   |          |         |      |       |   |            |
|   |     |       |    |       | _ |          |         |      |       |   |            |
|   |     | 10+25 | E  | 6+50  |   | 30       | LGT.BRW |      | ORG   | M | SLOPE      |
|   |     | 8+50  | E  | 6+25  |   | 30       | LGT.BRW |      | SILT  | M | E.H.+E.S.  |
|   |     | 6+00  | Е  | 7+65  |   | 30       | LGT.BRW |      |       | W | E.H.+E.S.  |
|   |     | 6+00  | Е  | 7+90  |   | 30       | BRW     | SILT | CLAY  | M | DEP        |
|   |     | 5+50  | Е  | 7+80  |   | 25       | MED.BRW |      | CLAY  | D | RIDGE      |
|   |     | 5+50  | Ε  | 8+25  |   | 25       | MED.BRW |      | CLAY  | D | E.H.       |
|   | 115 | 5+50  | Ε  | 7+60  | N | 30       | LGT.BRW | SILT |       | D | E.H.+E.S.  |
| _ | 116 | 5+25  | Е  | 9+15  |   | 30       | MED.BRW | CLAY | SILT  | D | DEP        |
|   |     | 4+50  | Е  | 9+00  |   | 35       | MED.BRW |      |       | M | DEP        |
|   |     | 5+00  | E  | 8+80  |   | 30       | BLK     | ORG  | CLAY  | M | DEP        |
|   |     | 5+25  | Е  | 8+50  |   | 40       | BRW     | CLAY | SILT  | M | DEP        |
|   | 120 | 4+70  | Е  | 8+30  | N | 35       | BRW     | CLAY | SILT  | M | DEP        |
|   |     |       |    |       |   |          |         | •    |       |   |            |

# APPENDIX 3

SAMPLE DESCRIPTION

(ROCK SAMPLES)

-

ROCK SAMPLE DESCRIPTION

**OPAP 92-233** W.BRACK

LOCATION PROJECT PURPOSE SAMPLE NUMBER

DESCRIPTION

NORWAY L./POWERL.300M EAST WORKINGS WORKINGS WORKINGS WORKINGS WORKINGS WORKINGS NORWAY L. / POWERL. 50M WEST L./OLD L./OLD L./OLD L./OLD L./OLD **L./OLD CRANBERRY LAKE** CHIPPEGO LAKE CRANBERRY CRANBERRY CRANBERRY CRANBERRY CRANBERRY CRANBERRY **2** 2 2 2 S 5 23 22 A S **4 4 4** 4 æ SHF SHF SHF SHF SHF SHF SHF SHF SHF HIN 6726 6729 6730 6732 6733 6734 6735 6763 6731 6761

GNEISS-QUARTZ BRECCIA, SULPHIDES, APLITIC GRANITE, SULPHIDE SPECS SULPHIDE IMPREGN. BRECCIA BRECCIA BRECCIA QUARZITIC GNEISS WITH SULPHIDS RUSTY, MILKY QUARTZ, SULPHIDES RUSTY, TECTONIZED GNEISS SULPHIDE IMPREGN. SULPHIDE IMPREGN. ALTERED GNEISS DIRTY MARBLE RUSTY RUSTY RUSTY

> = SHEFFIELD TOWNSHIP SHF

= HINCHINBROOKE TOWNSHIP NIH

ANALYSIS ۳ ۲

REFERENCE SAMPLE 11 പ്പാ

THIN SECTION 11

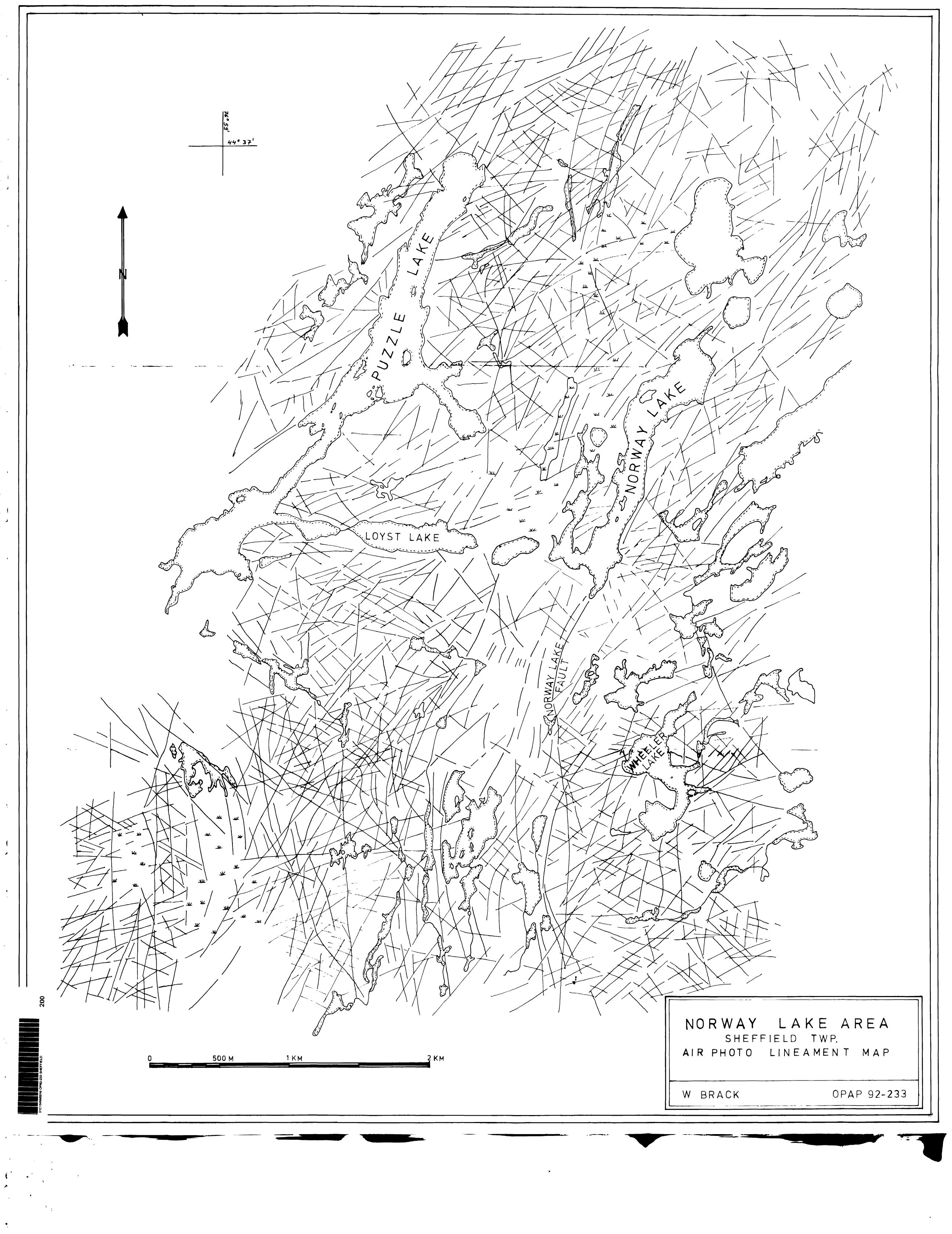
ROCK SAMPLE DESCRIPTION: ARDOCH PROJECT (CLARENDON TWP.)

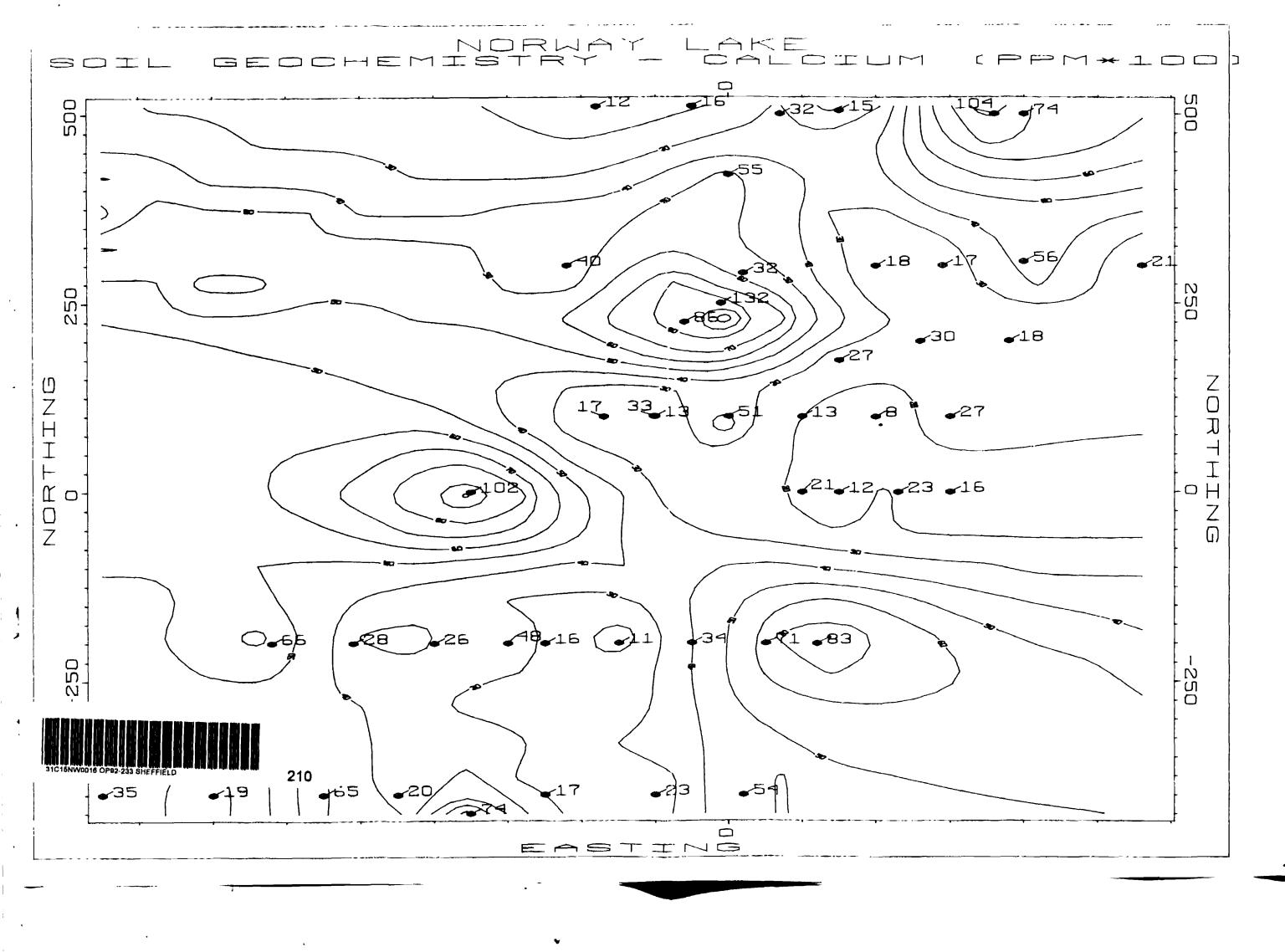
OPAP 92-233 W. BRACK

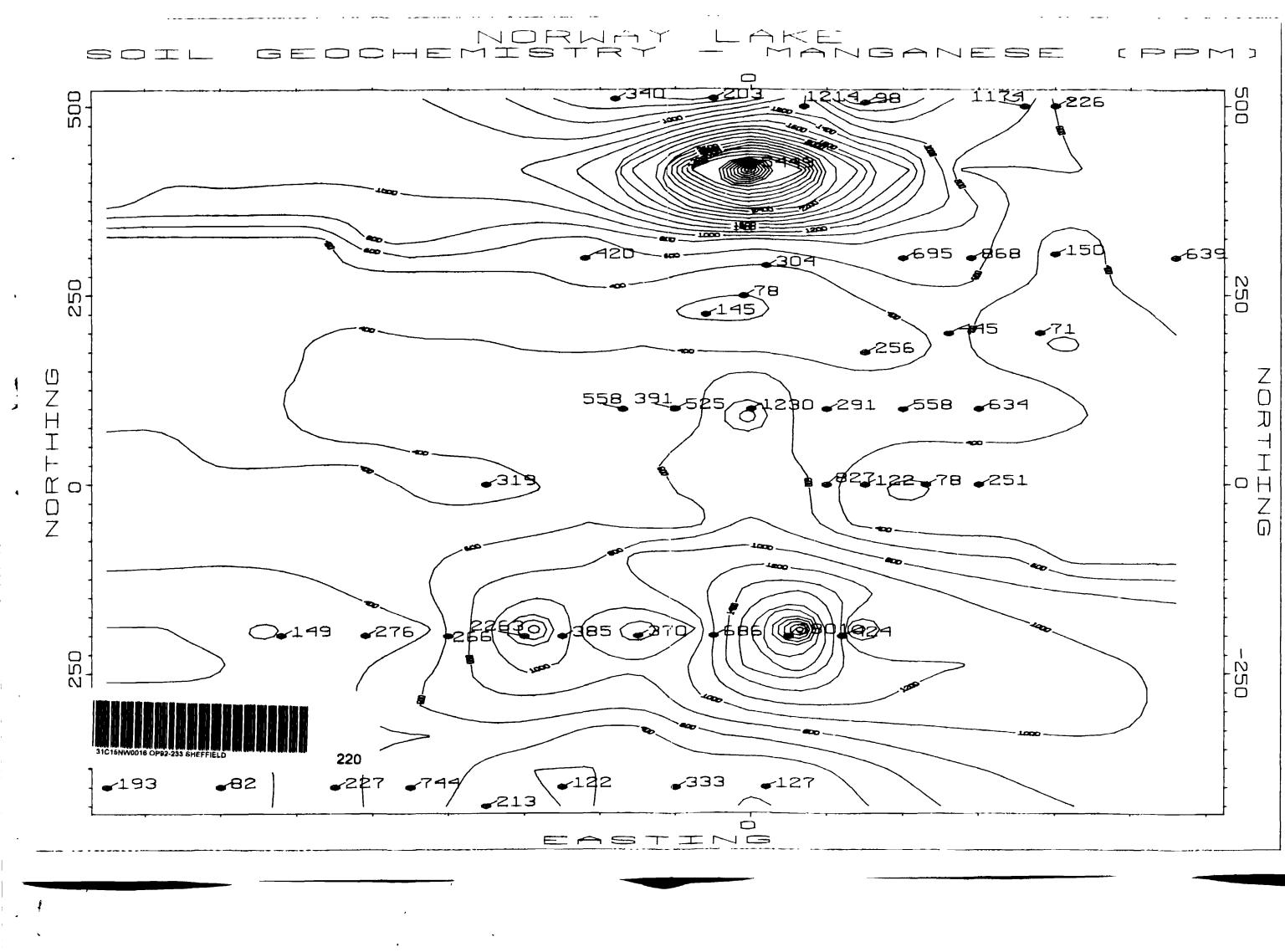
| DESCRIPTION              | QUARTZ BOULDER           | BANDED FLSP-BI GNEISS    | QUARTZ BOULDER, MILKY, HEMATITE | FIED MARBLE, RUST | MARBLE, SUGGARY TEXTURE | HB-GNEISS  | LAMINATED QUARTZITE | GRANITE WITH MALACHITE | GABBRO      | APLITIC ROCK | DIRTY RUSTY MARBLE | RUSTY QUARTZ BOULDER | BANDED GREY MARBLY, RUSTY SPECS |        | MARBLE WITH SPHALERITE |
|--------------------------|--------------------------|--------------------------|---------------------------------|-------------------|-------------------------|------------|---------------------|------------------------|-------------|--------------|--------------------|----------------------|---------------------------------|--------|------------------------|
| LOCATION                 | WEBBER SHOWING 100W 125S | WEBBER SHOWING 100W 125S | 500E/8+25N                      | 600E/8+00N        | 800E/9+60n              | 500E/9+00N | PIT ,               | PIT                    | 500W/12+00N | 425W/4+00S   | 025W/3+50N         | 400W/12+50N          | 400W/12+50N                     | ÷.,    | SPHALERITE TRENCH      |
| PURPOSE                  | R                        | <b>6</b>                 | /                               | A / R             | S                       | S          | æ                   | æ                      | S           | 8            | A                  | 8                    | R                               | S      | A / R                  |
| SAMPLE PROJECT<br>NUMBER | 6745 ARD                 | ~                        | 6747 ARD                        | ~                 | •                       | Á          | 6751 ARD            | ~1                     | 'n          | ~            | ~                  | ~                    | 0                               | ×<br>N | 6773 ARD               |

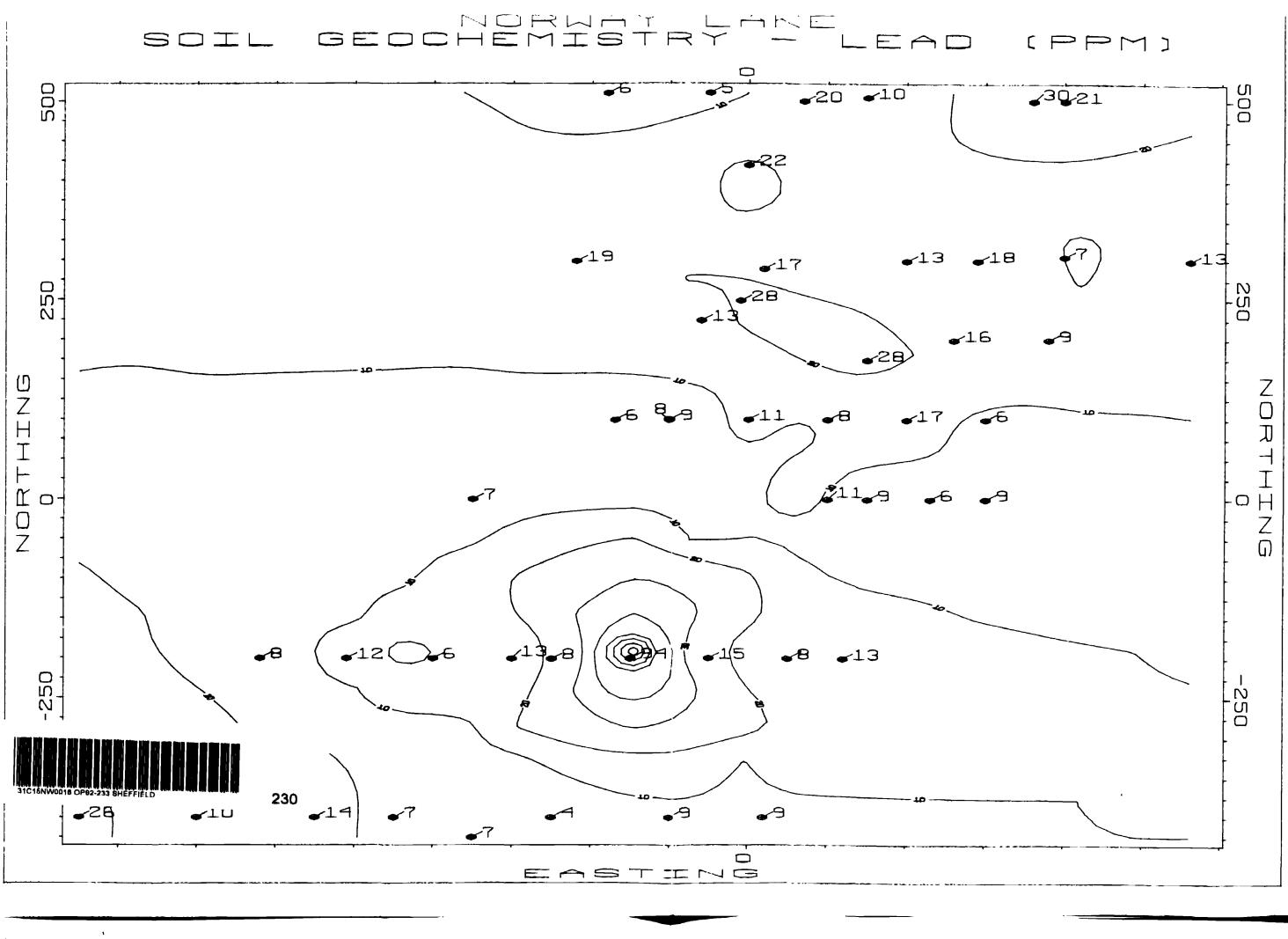
ARD = ARDOCH PROJECT A = ANALYSIS R = REFERENCE SAMPLE S = THIN SECTION ARD

4


പ്പ വ


ROCK SAMPLE DESCRIPTION: KALADAR PROJECT (KALADAR TWP.)

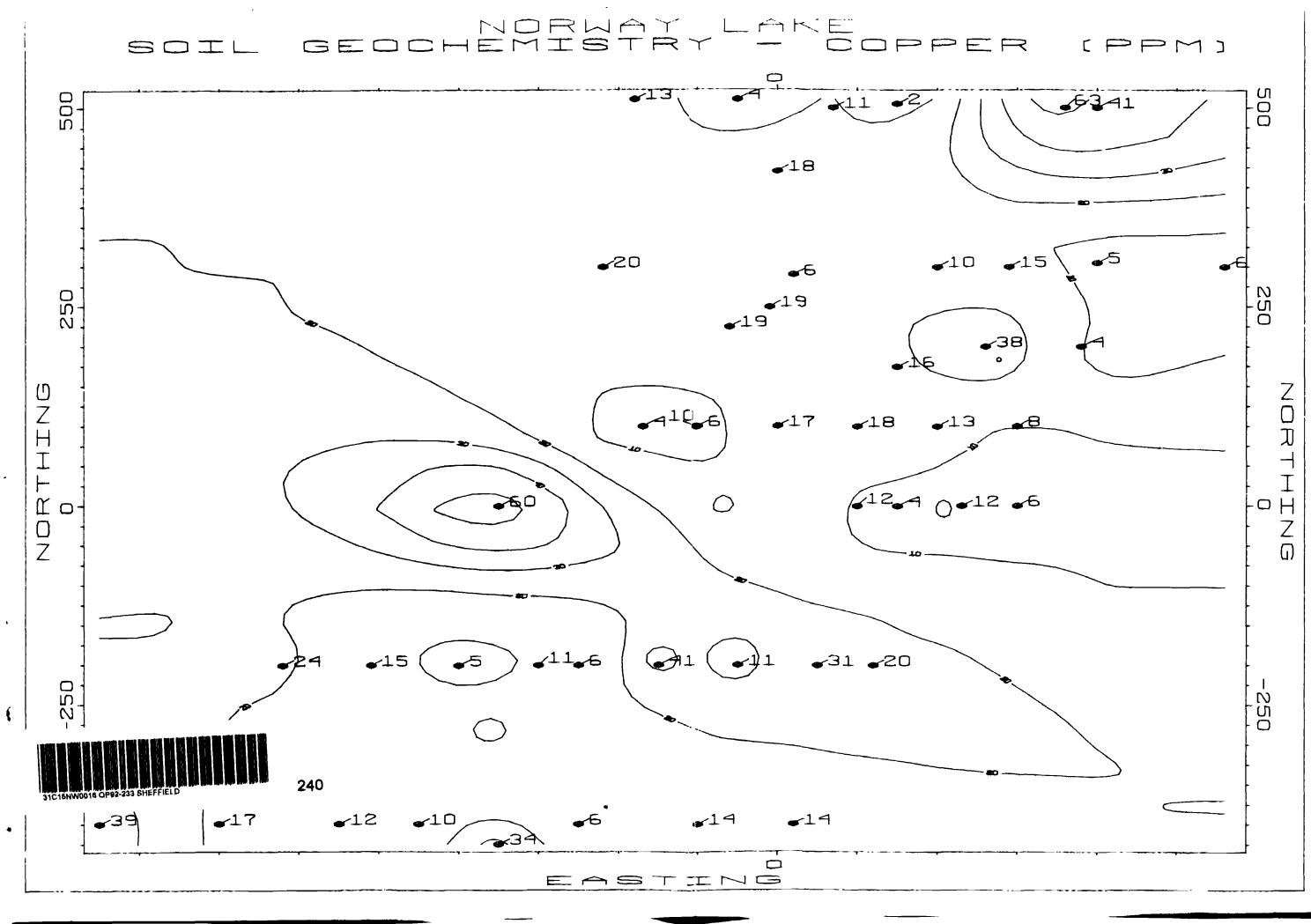

OPAP 92-233 W. BRACK

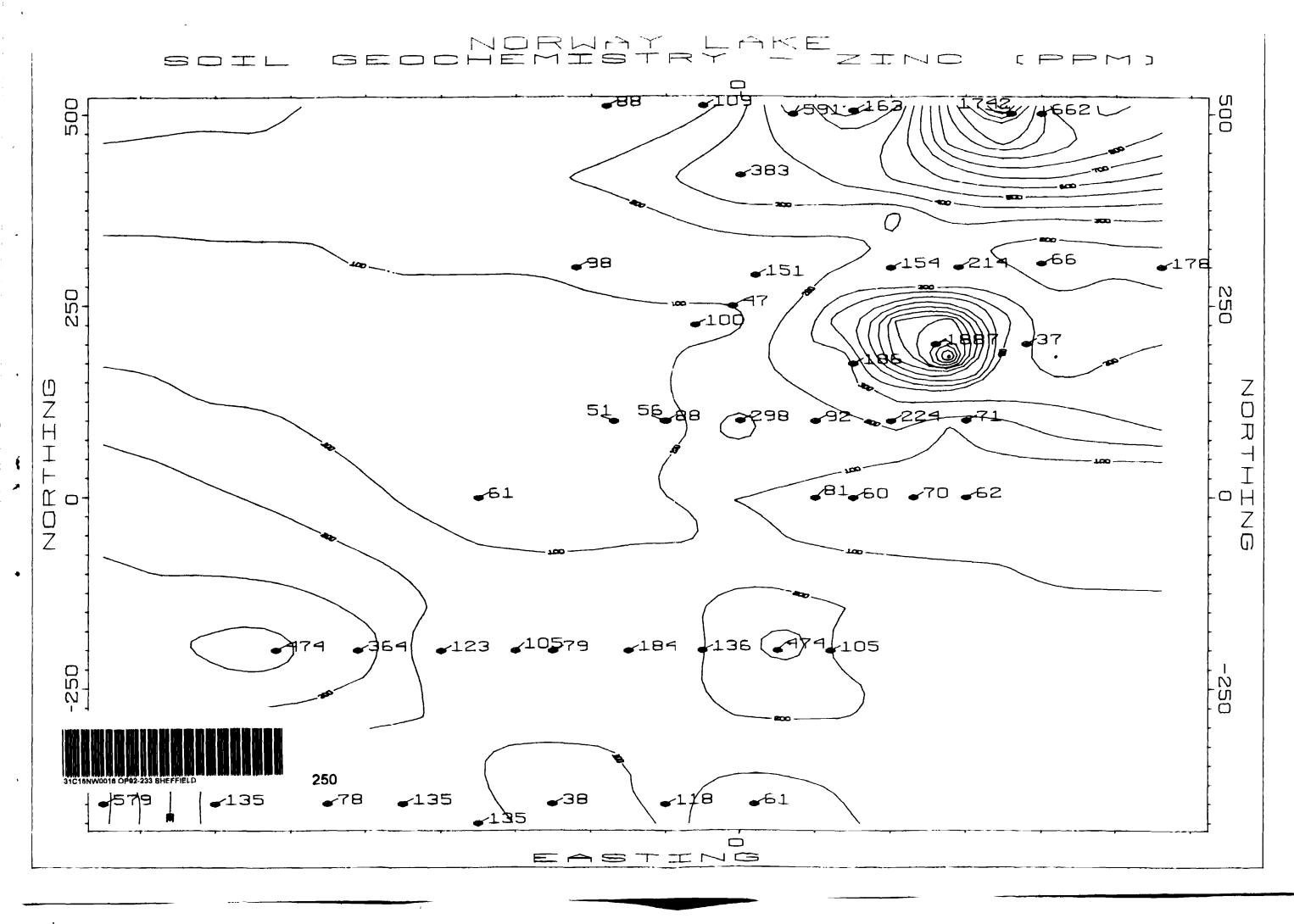

| DESCRIPTION | BLENDE GNE<br>CIOUS GNE<br>COUARTZ V<br>C QUARTZ V | SHEAR/RUSTY GRUS<br>SHEAR/RUSTY GRUS<br>QUARTZ-VEIN, COMPOSITE SAMPLE |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| LOCATION    | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                             | 600E/3+00S TRENCH II<br>600E/3+00S TRENCH II<br>400E/3+00S TRENCH I   |
| PURPOSE     | 84448444444444<br>/ /<br>8 8                                                                                                                                                     | A<br>A<br>A / R                                                       |
| 7 6-        | 6738 KAL<br>6739 KAL<br>6740 KAL<br>6741 KAL<br>6742 KAL<br>6743 KAL<br>6764 KAL<br>6765 KAL<br>6766 KAL<br>6768 KAL<br>6769 KAL                                                 | 810                                                                   |

**kal = Kaladar Project A = Analysis R = Reference Sample S = Thin Section** 



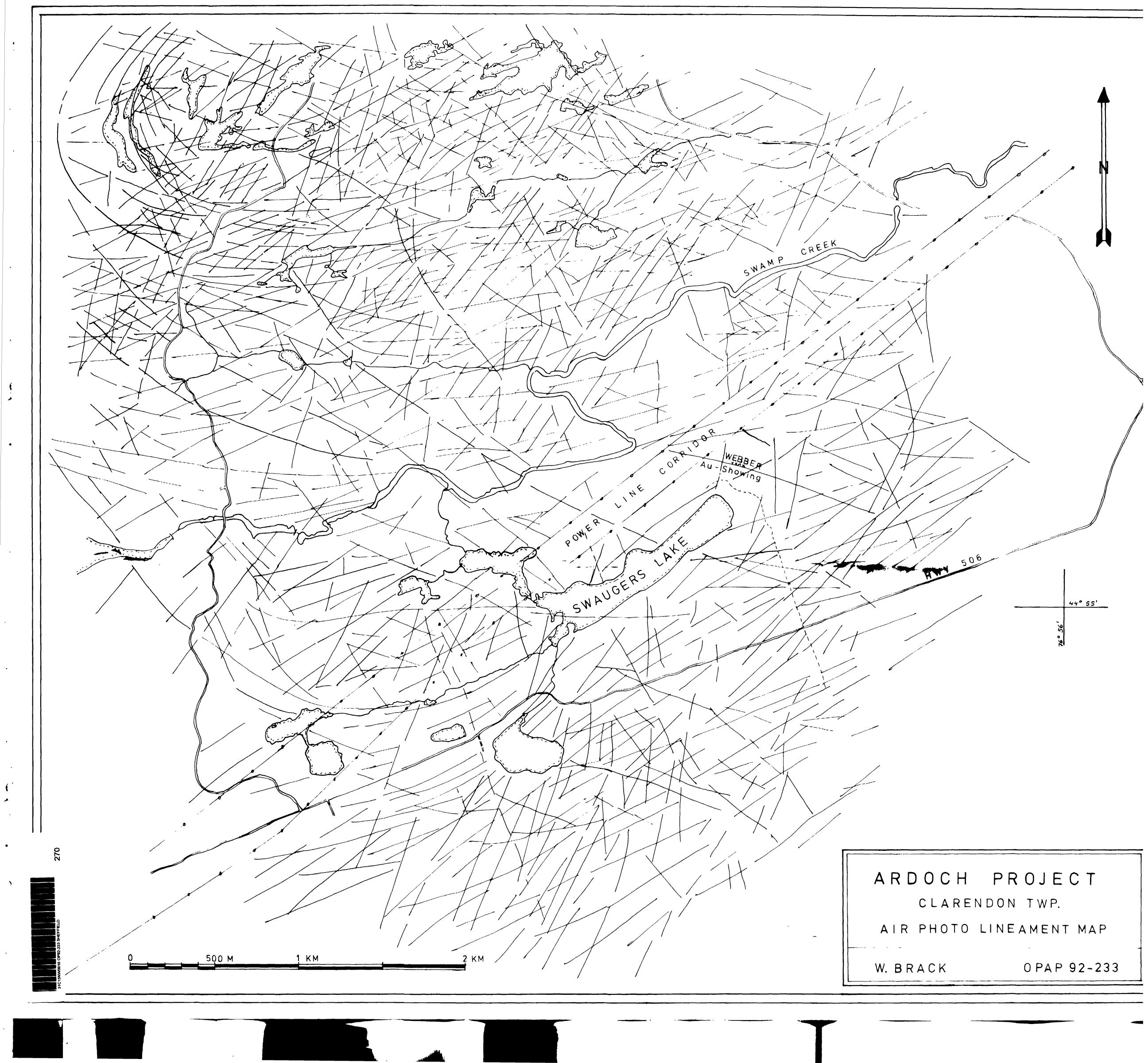


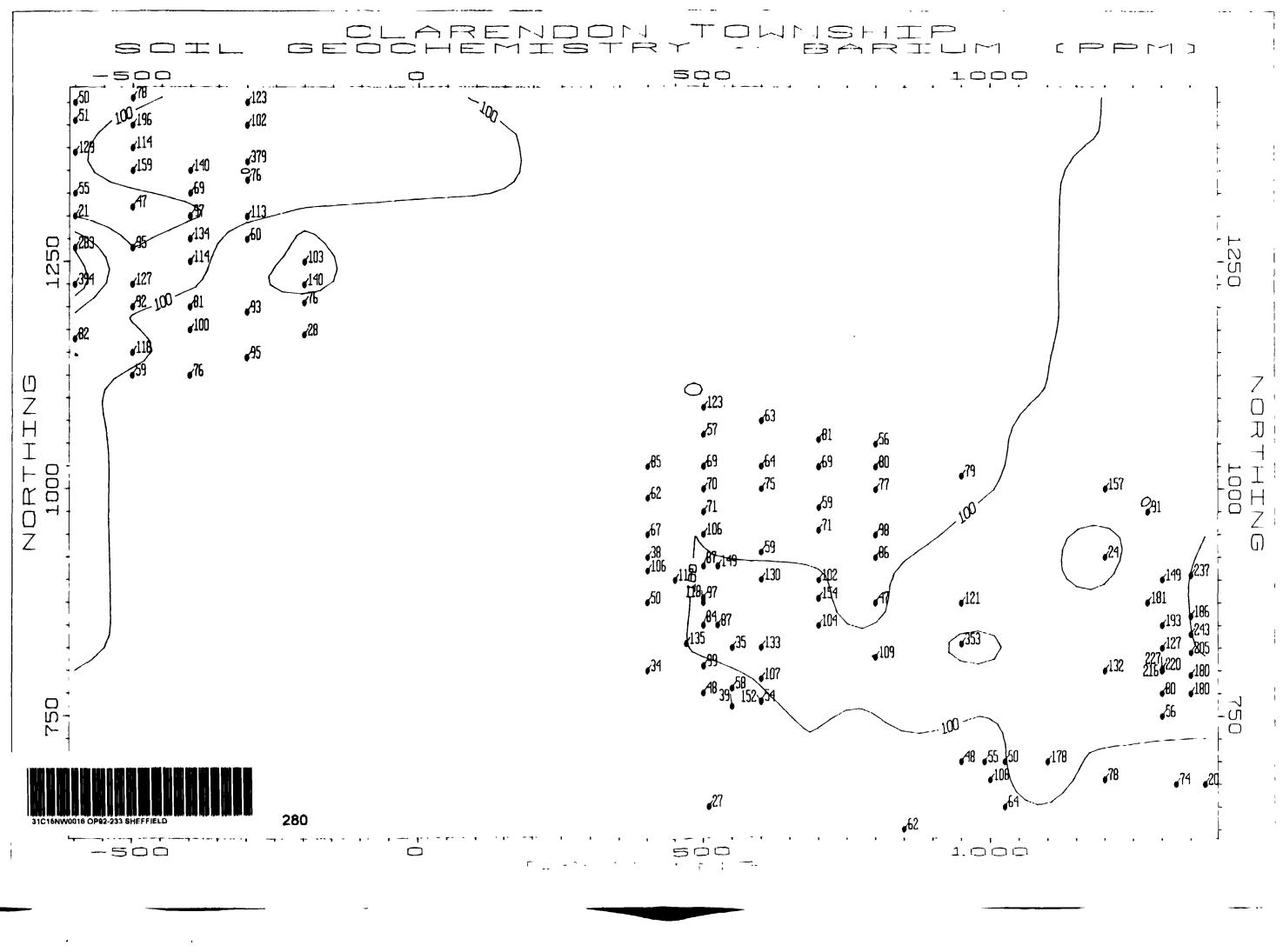


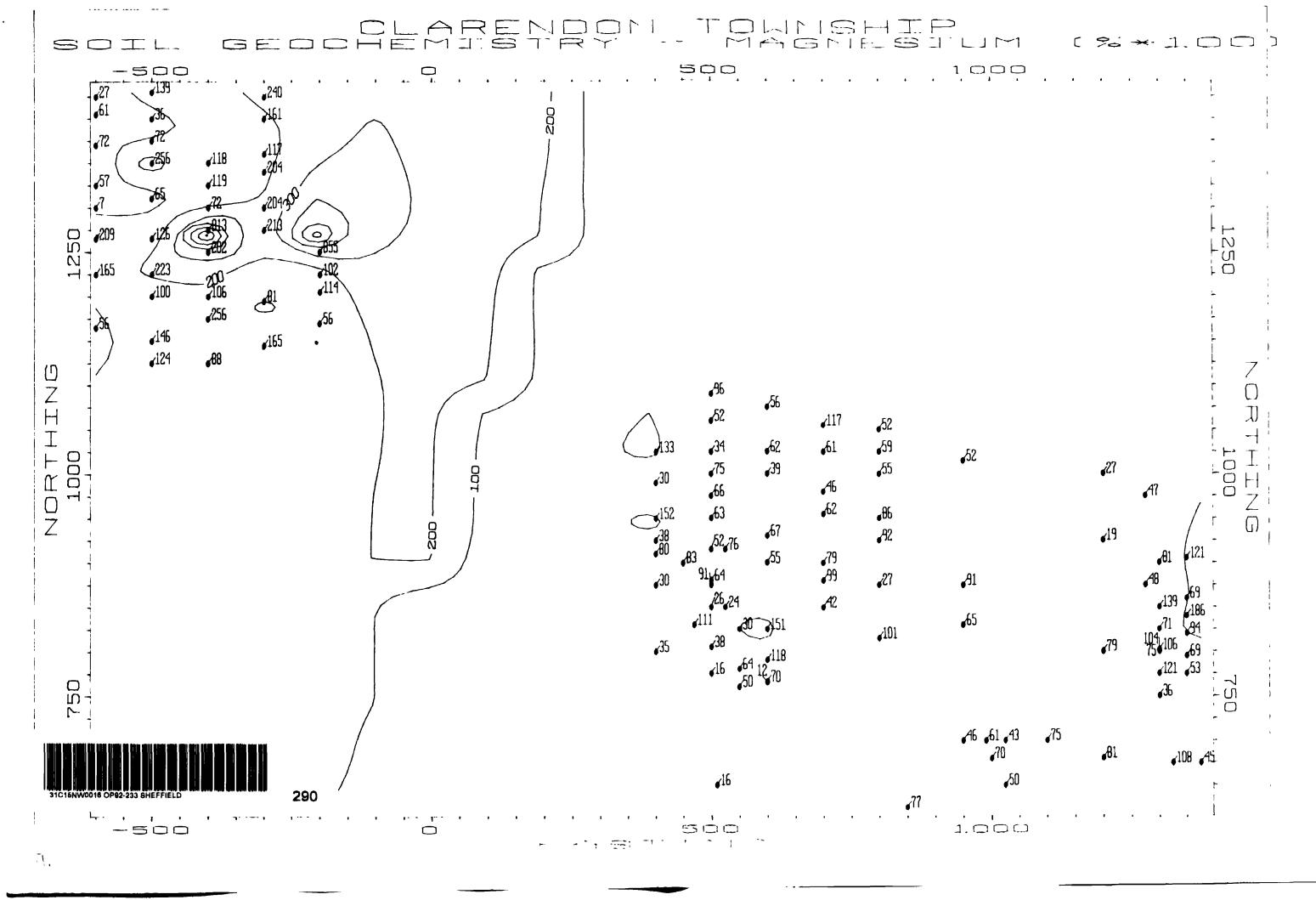




<u>،</u>

· · · · · ·

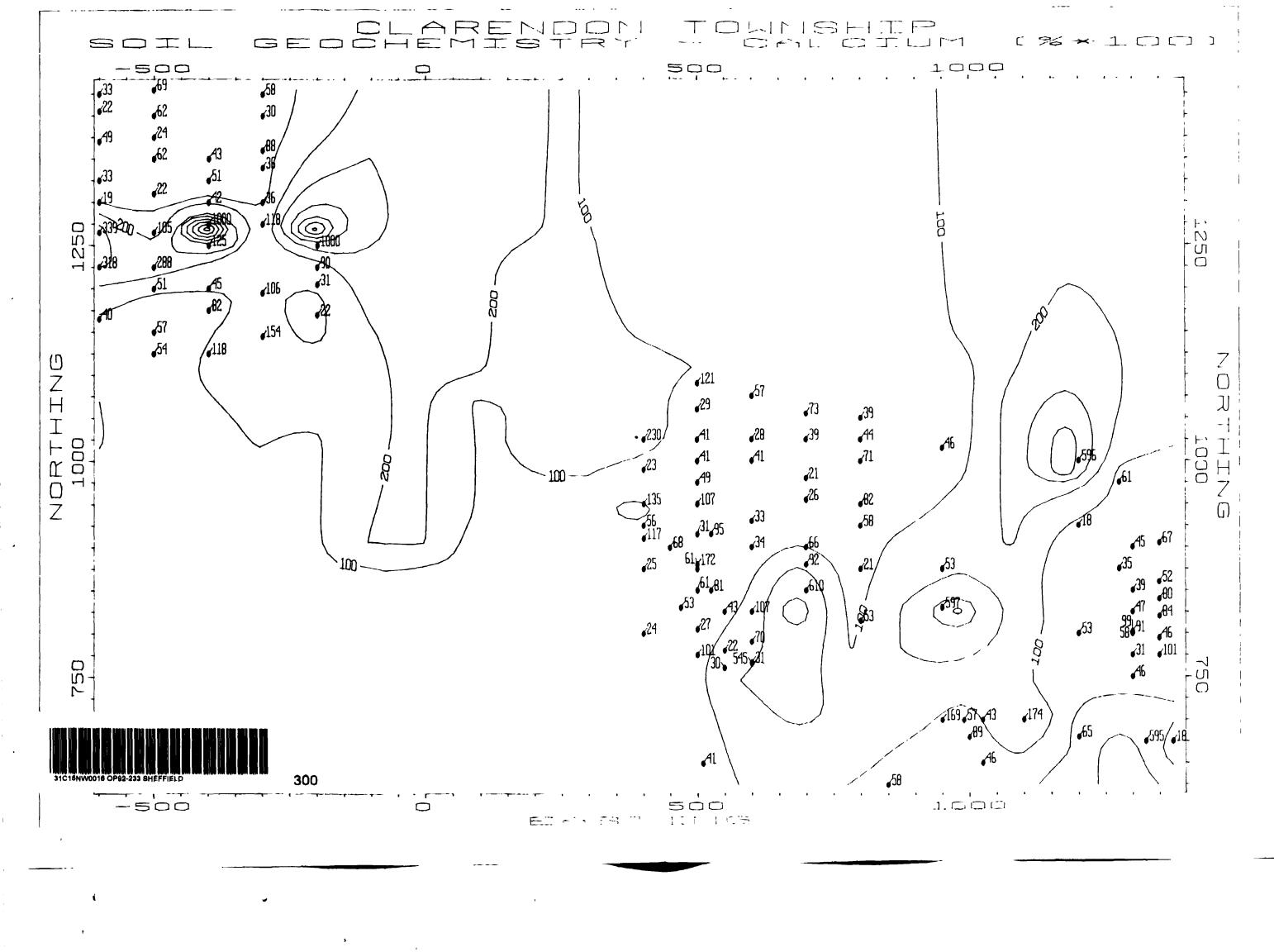

2

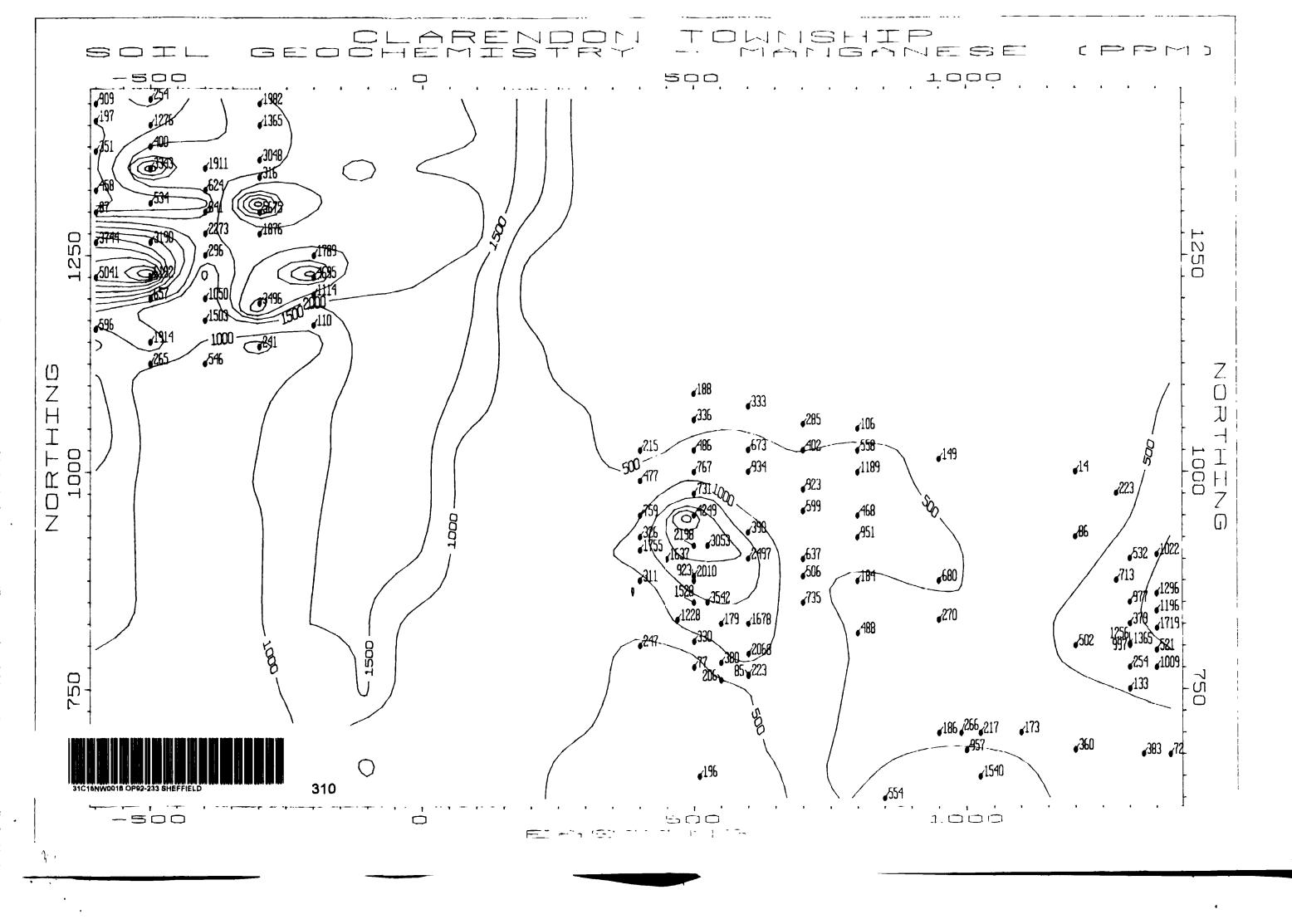


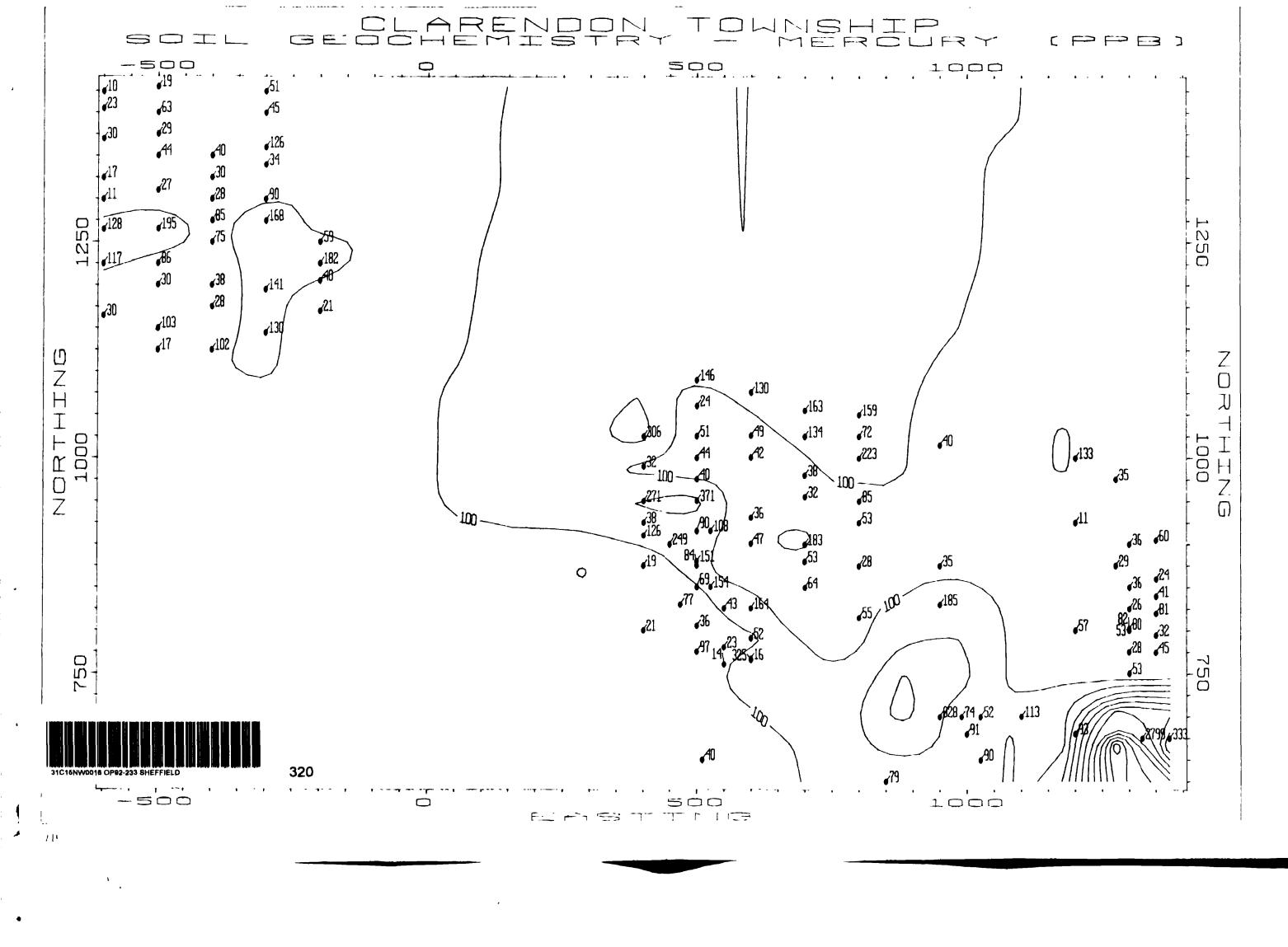



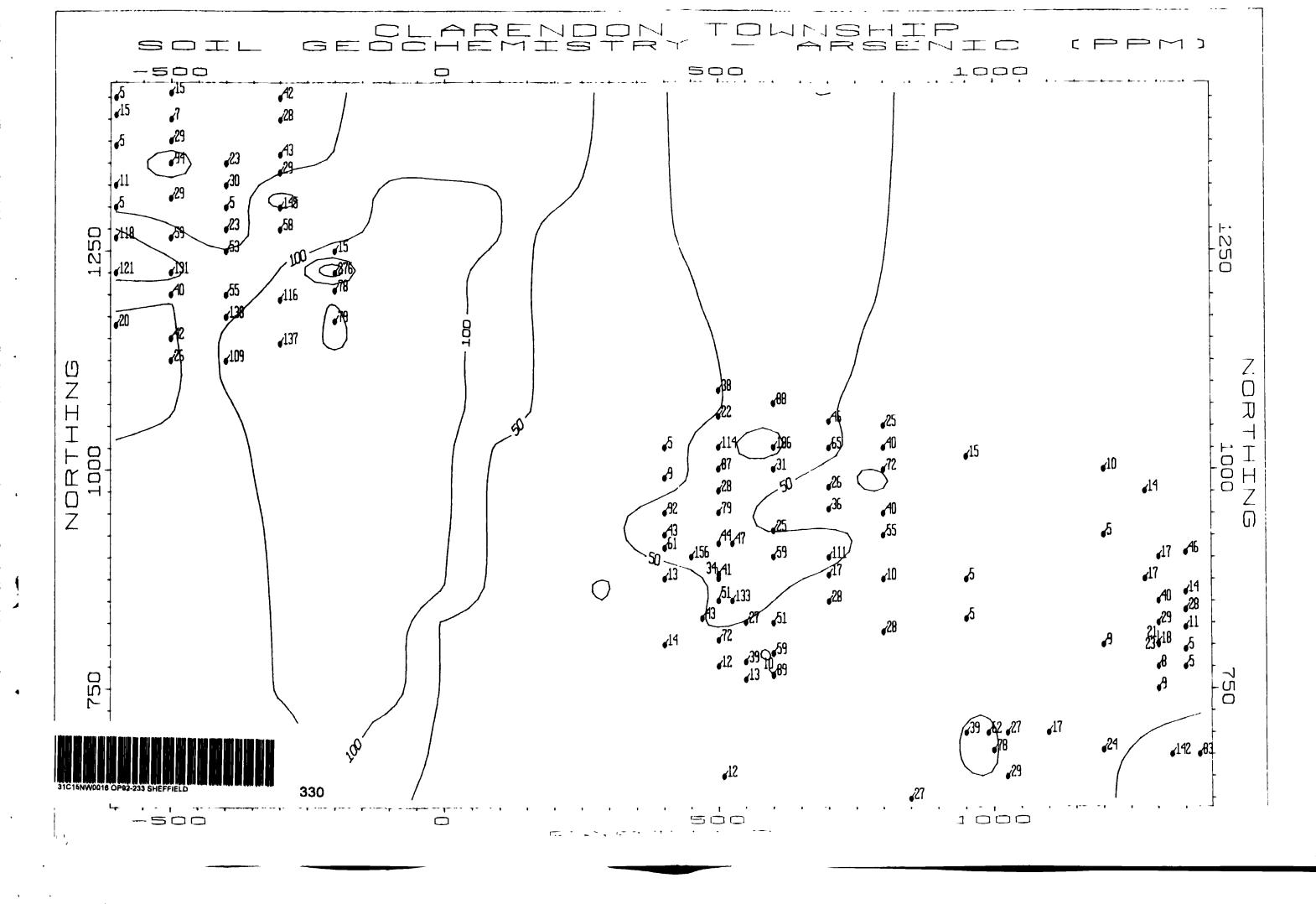


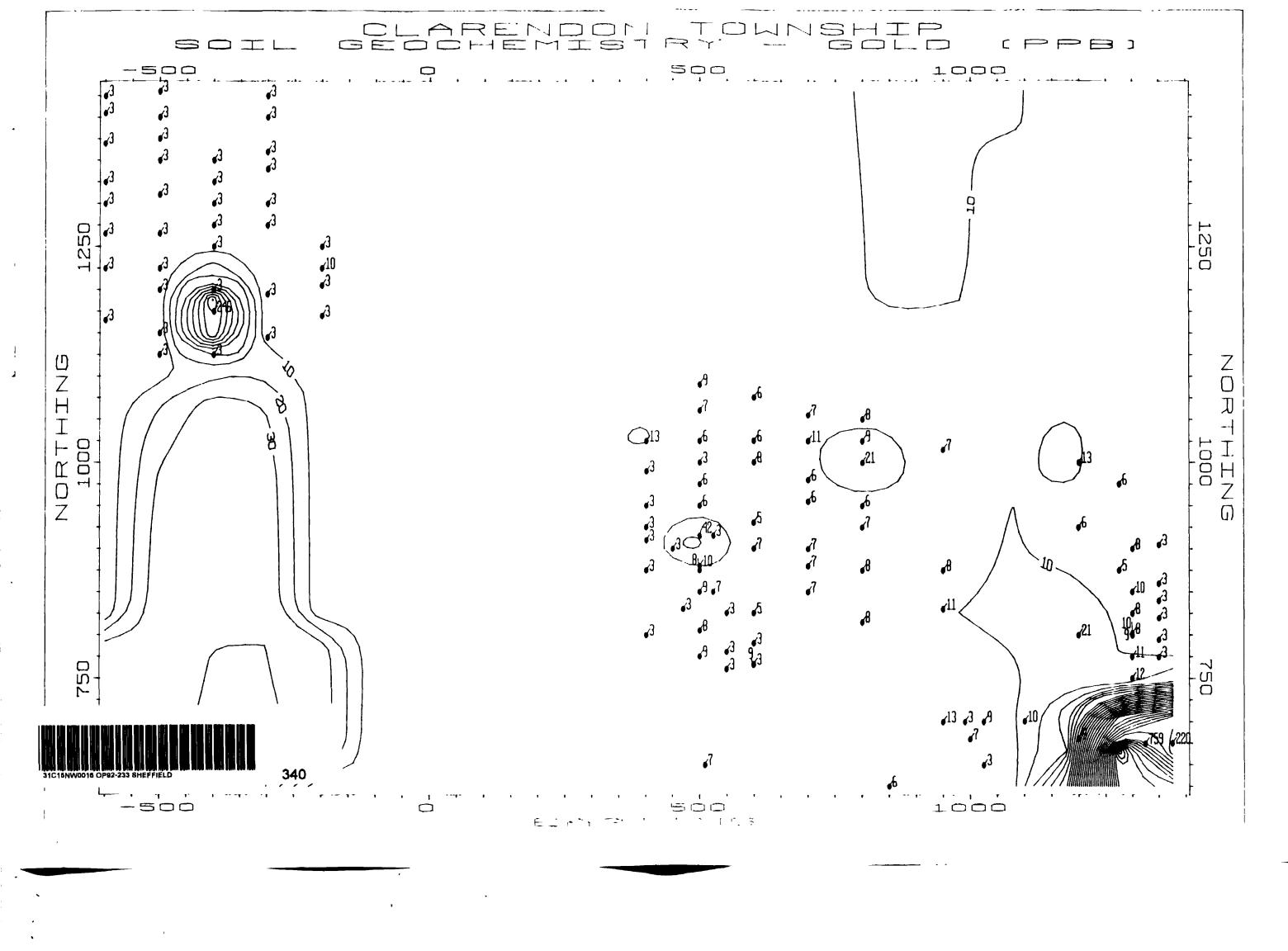

*,* .

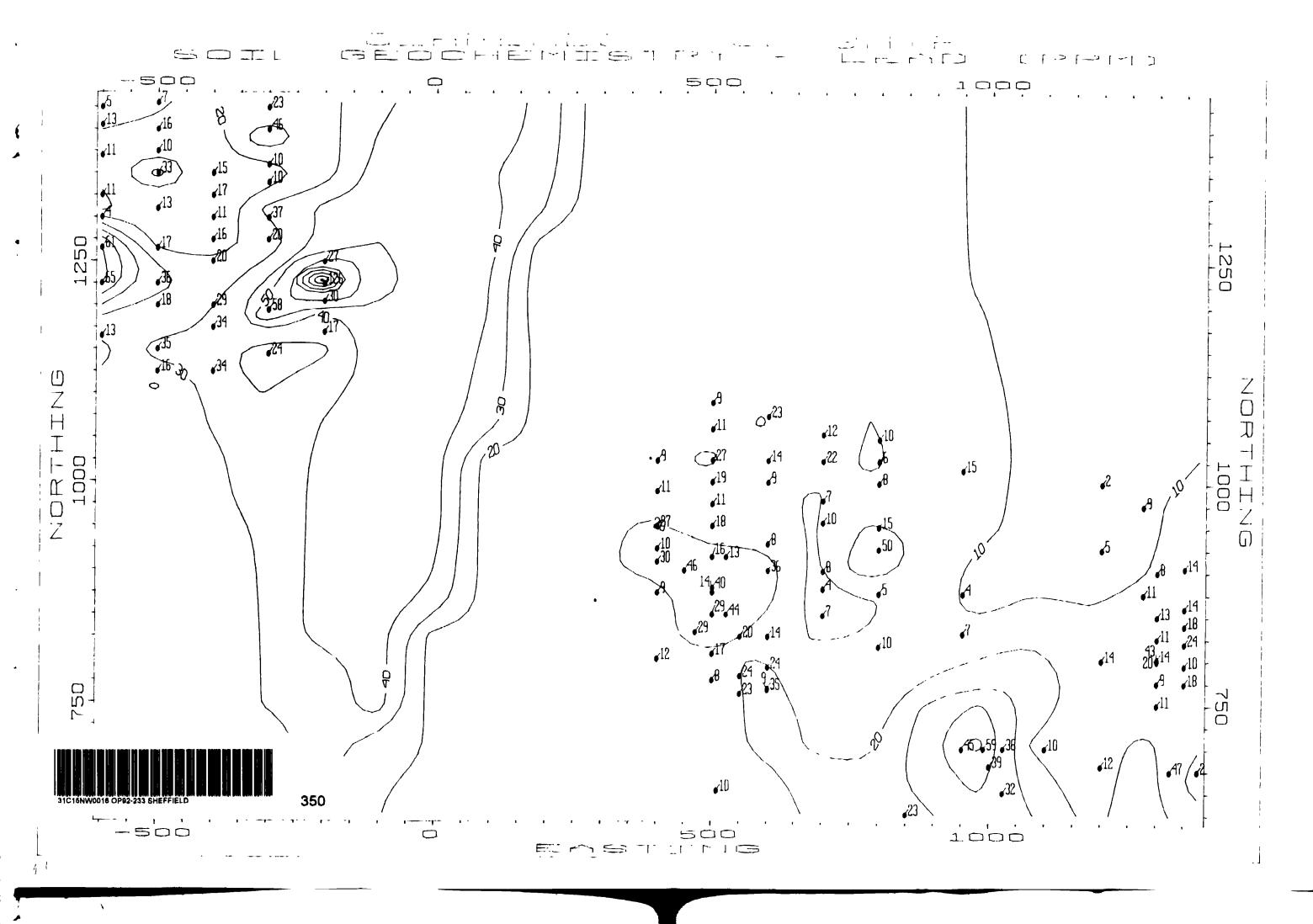


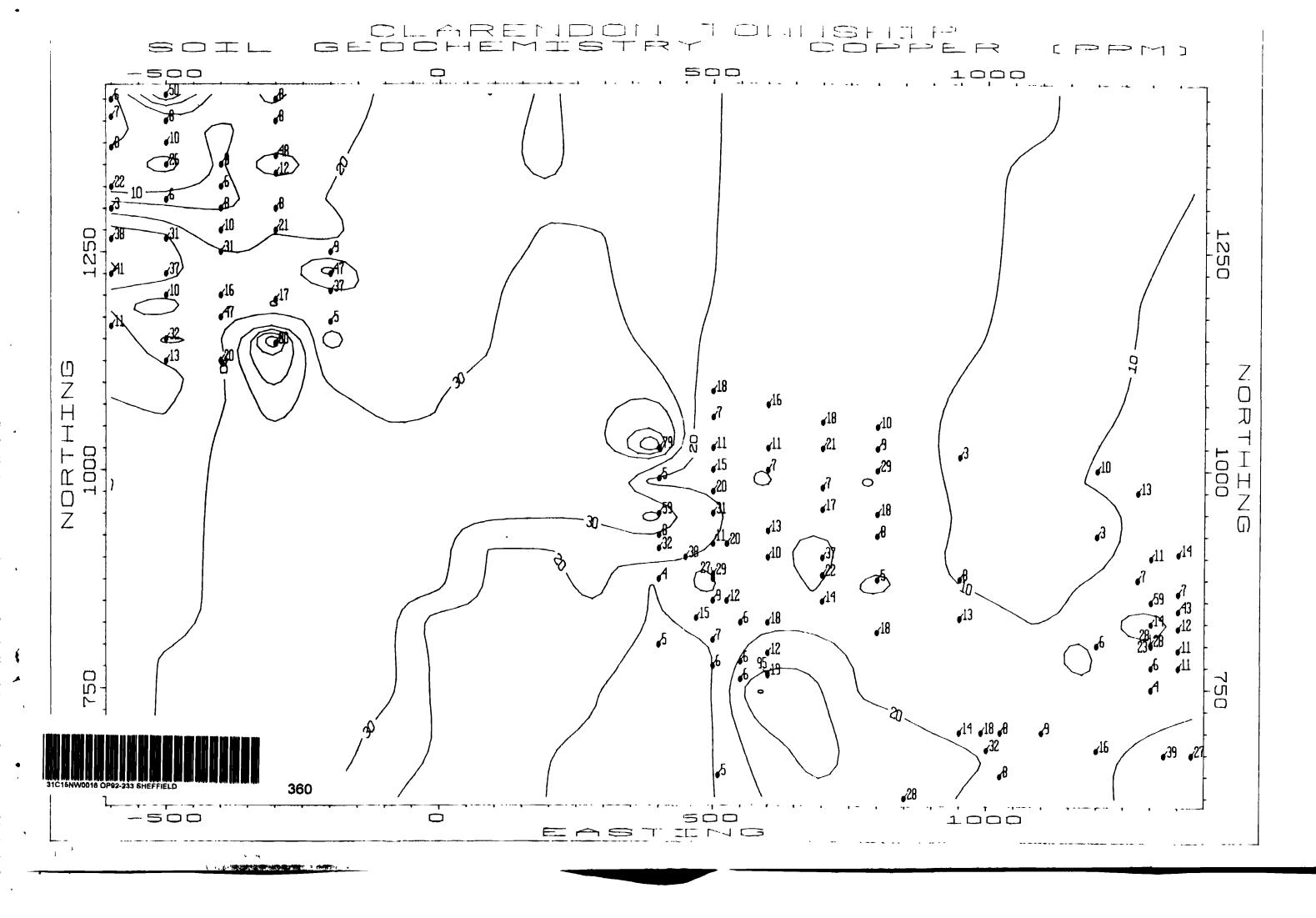





.


<u>۲</u>۰





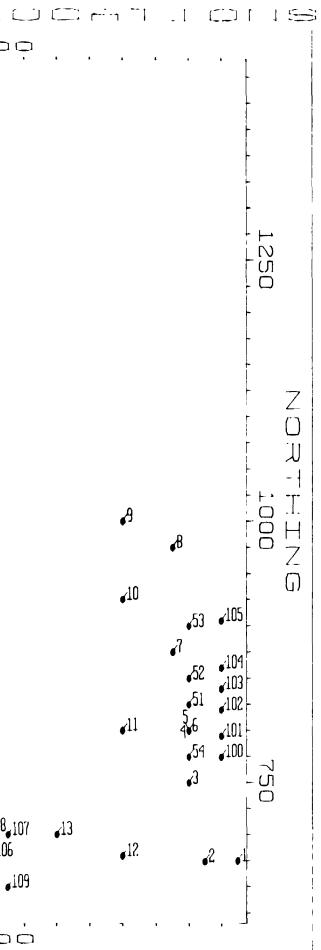


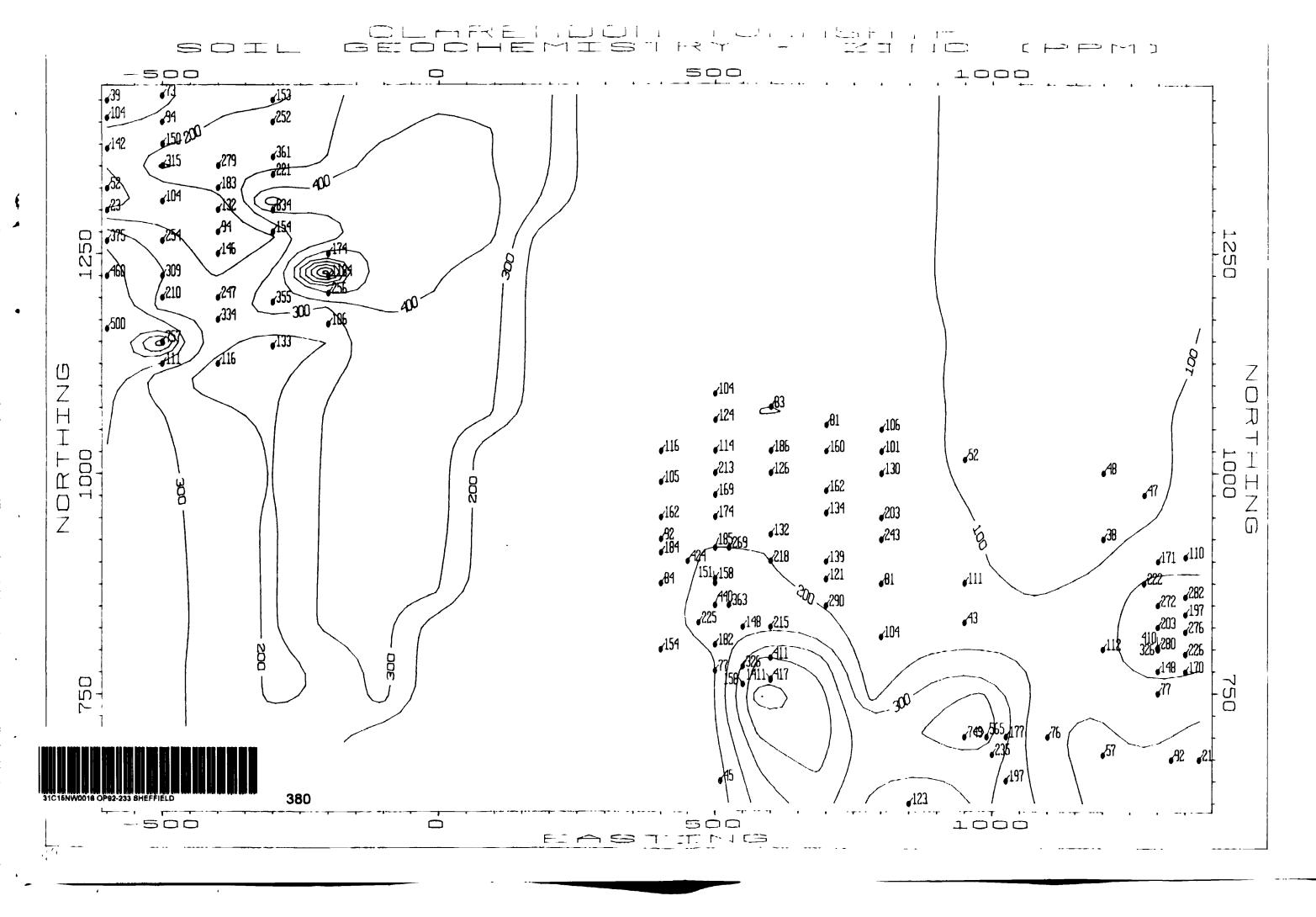




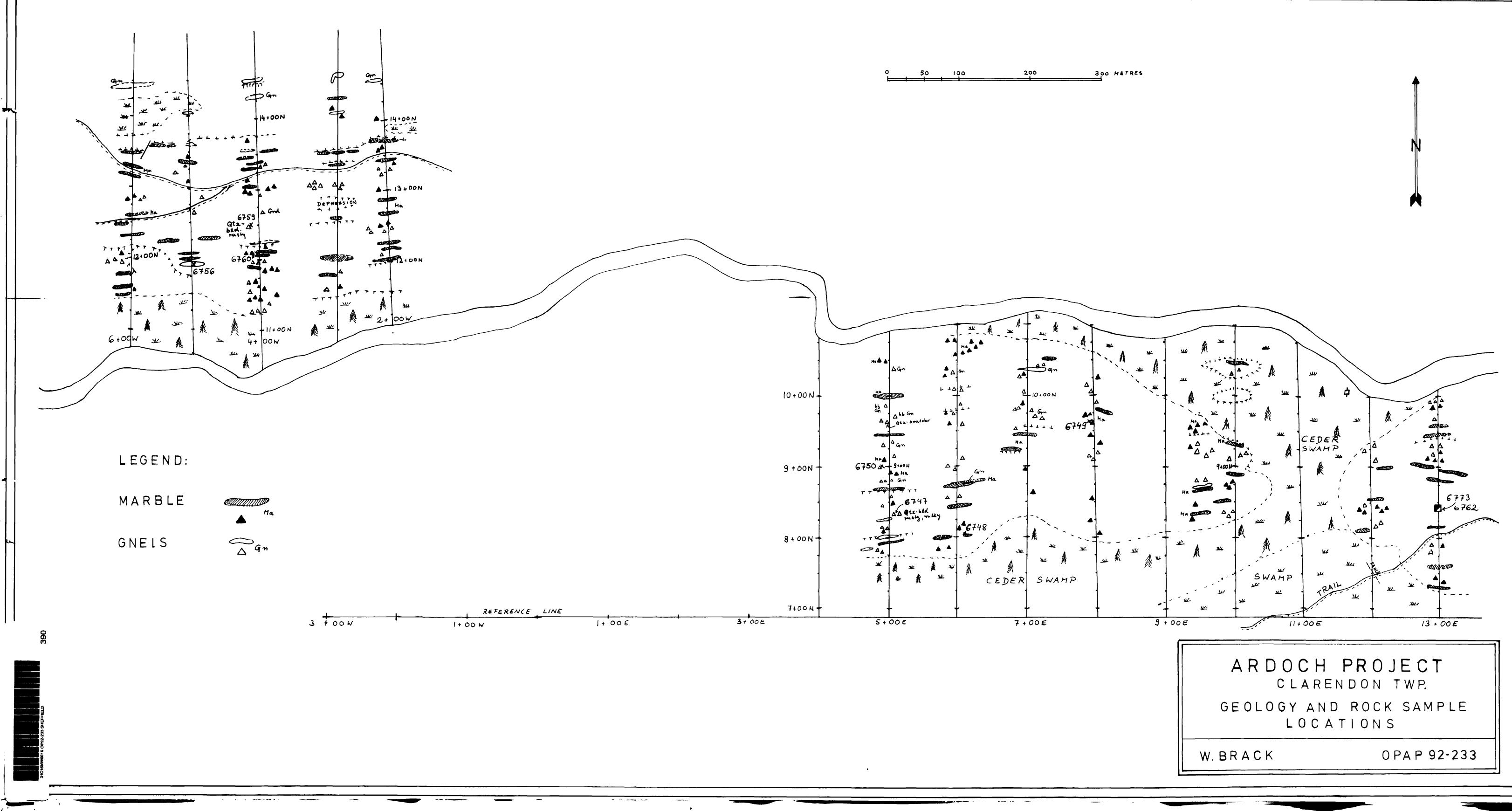

۱




|     | ,75<br>,74<br>,73<br>,72<br>,71<br>,70<br>,69<br>,68<br>,67<br>,66 | <br>.84<br>.85<br>.86<br>.87<br>.88<br>.89<br>.40<br>.40 | . 499<br>. 498<br>. 497<br>. 496<br>. 495<br>. 494<br>. 493<br>. 493<br>. 493<br>. 492 | <br>.65<br>.64<br>.63<br>.62 |  |  | •61<br>•60<br>•59<br>•58 | .29<br>.28<br>.27<br>.26<br>.25<br>.24<br>.23,116<br>.117<br>.22,118<br>.21,119 | <br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br> | <br>.43<br>.42<br>.41<br>.40<br>.39<br>.38<br>.37 | <br>. 1. C. C<br>. 17<br>. 16<br>. 15 |
|-----|--------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------|--|--|--------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------|---------------------------------------|
| 420 |                                                                    |                                                          |                                                                                        |                              |  |  |                          | 112                                                                             | ••••                                                                                                         |                                                   | ,16 ,108<br>,10                       |


٠

\*


4

.

