

Regis Resources, Inc.

A new source of vermiculite now under development by Regis Resources of Toronto, Canada. Regis Resources is a privately held company that is establishing a position in the vermiculite industry as *Vermiculite Canada*.

Mining has now started to exploit a unique vermiculite deposit near Cavendish in Southern Ontario Province. This deposit is unlike all other commercial vermiculite deposits in that it is associated with the formation of a large marble deposit and not the ultramafic igneous and metamorphic deposits.

The marble source rock of Cavendish vermiculite provides several desirable qualities. These include a low iron, light-colored product. Impurities left in Cavendish concentrates after purification are generally light-colored minerals that are removed when the vermiculite is exfoliated and processed by customers. Due to the geology of the deposit, no asbestos or other deleterious materials are found in Cavendish ore.

Potential buyers of Cavendish vermiculite have been able to evaluate 1-ton samples in full-scale exfoliation plants. Initial comments have been overwhelmingly favorable especially with regard to the bag yield, economics, and appearance of the exfoliated product.

A processing plant has been constructed that will initially produce finer sized grades of vermiculite concentrates that will meet or exceed industry specifications. Engineering and construction are in the final phases of adjusting equipment settings to optimize mill performance. Initial shipments are being scheduled for 2003.

Regis Resources, Inc. acquired the Cavendish Vermiculite Project in October 1998. The project is located in the Township of Cavendish, County of Peterborough, Providence of Ontario, Canada, about 50 kilometers North by Northwest from the city of Peterborough. Since the 1998 acquisition, Regis has maintained the original claims and leases and increased the property size to more than 4,100 hectares (10,000 acres).

Vermiculite was first discovered on the property in 1950. Subsequent exploration located the "East Deposit" in the 1970's. In 1992, further exploration located the "West Deposit" some 2,400 metres west of the East Deposit. Diamond drilling, augur drilling and backhoe trenching techniques were used to develop the deposit. Laboratory testing of samples by Lakefield Research Limited and Mandoval Technical Centre of England found that the West Zone vermiculite is a pale amber colour after exfoliation and gives above average bag yields. Their testing also confirmed that the deposit does not contain any deleterious minerals that would adversely affect sale of a commercial vermiculite concentrate

In 1999, Regis commissioned A.C.A. Howe International Limited of Toronto, Ontario to prepare a complete feasibility study of the "West Zone" vermiculite ore body. The West Zone is located within Lots 10-12, Concessions 2 and 3, Cavendish Township, Ontario, Canada and encompasses several mining claims.

Future work will include the exploration and development of additional resources, and to optimize the desirable properties of Cavendish vermiculite. During the period of mill construction and until such time as regular production begins, Vermiculite Canada will be pleased to provide evaluation samples to potential customers.

As part of the efforts to develop the Cavendish vermiculite deposit Regis has performed exploration work to further define the vermiculite deposit now permitted for mining as well as other mineral claims held in the Cavendish area. The following documentation reflects this aspect of the Cavendish project.

> James R. Hindman, Ph.D. Consultant to Regis Resources, Inc.

REGIS RESOURCES INC., 44 VICTORIA STREET •SUITE 400 • TORONTO, ON • M4W 3B8 PHONE: (416) 924-4337 • FAX: (416) 924-0517

Approximate dates and expenses

work type	James	Keith	Glen	Kirk	dates	totals
mapping	12,900.00	7,000.00	-		Sept 02-July 03	19,900.00
trenching		1,200.00		750.00	Jan 03- July 03	1,950.00
sampling	2,769.00	2,500.00	1,500.00		Jan 03- July 03	6769.00
assays	11,476.00	8,070.00	4,500.00		Feb 03- July 03	24,046.00
prospecting	3,100.00	2,500.00			Aug.02 -July 03	5,600.00
reports	1,470.00	· · · · · · · · · · · · · · · · · · ·	***	· · · · · · · · · · · · · · · · · · ·	July 03	1,470.00
totals	31,715.00	21,270.00	6.000.00	750.00		59,735.00

expenses	hrs	days	months	amount	dates	totals
excavator	66			90.00 per hr	May-July 03	5,940.00
dozer	10			50.00 per hr	June 03	500.00
propane				76.00 100 lbs	JanJuly 03	76.00
repairs		1		230.00 per day	June 03	230.00
rent			6	750 per month	Sept. 02 - July 03	3,965.00
Total	76	1	6			10,711.00

Keith Vatcher

The duties of each employee in relation to the exploration and information in the following report are as follows:

Triple A Resources Inc. (Keith Vatcher) duty is to over see the exploration and all types of field work including equipment.

James R Hindman is retained by Regis Resources Inc. as a consultant in the area of vermiculite exploration.

Glen Scott was responsible for taking samples in the trenches, air drying samples, splitting samples and operating the exfoliation equipment.

Kirk Watson cut trails and assisted in transporting samples.

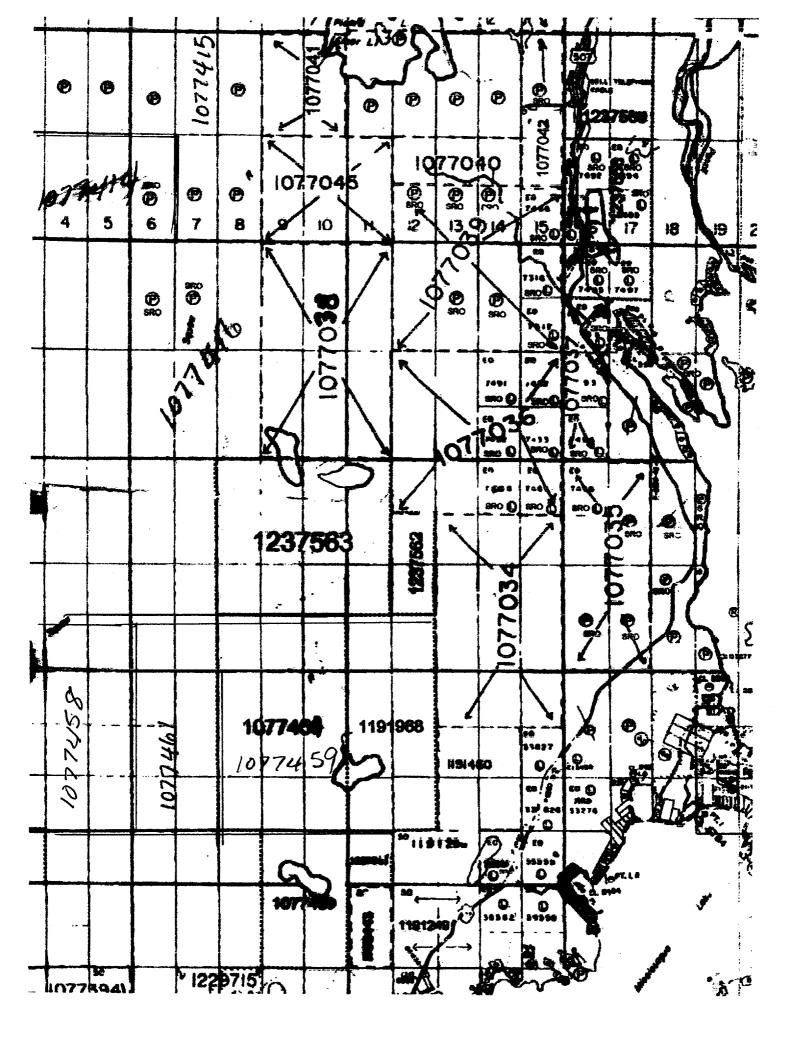
Brunelle Richard operated the excavator to build access trails and trenches.

Work was not continuous but done as weather and work situations permitted.

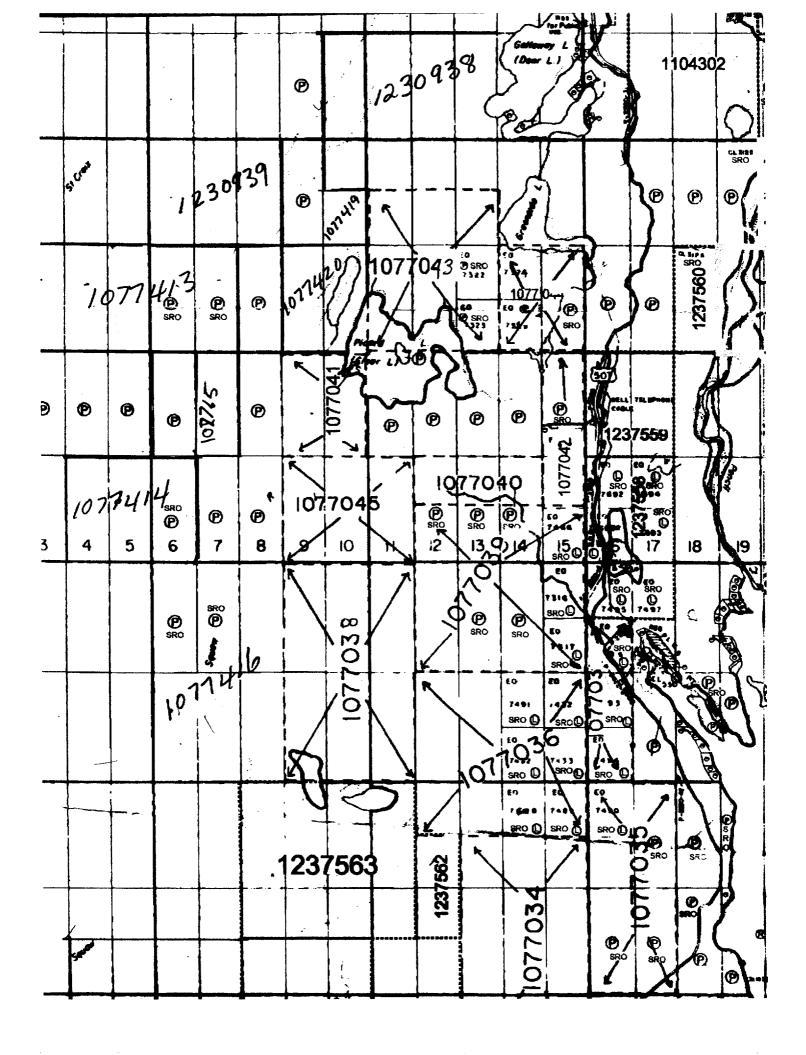
Page 2

Prospecting would include using a propane torch to heat the surface of the ground and watch for vermiculite to exfoliate.

When vermiculite exfoliates it turns white and is easy to see. The vermiculite may rise to the surface and mix with the organic's (twigs). Excessive rain may cause vermiculite to float to the surface. Uprooted trees are great places to check for vermiculite because it usually clings to the trees roots.


Vermiculite of good commercial value is usually found in material that has been highly weathered to a point where the vermiculite has been freed from the competent rock. A simple method of prospecting for vermiculite is by using a hand held auger and torch. By drilling with a hand held auger and filling it with material you heat the auger with the material still in it. If vermiculite is present it will exfoliate.

The work covered in this report was done to explore material at closer intervals and extend some areas that weren't done in the first round of trenching. Six more trenches are now being done and more reports are to follow with extra information pertaining to the quality and some probable uses for our material.


Maps were done based on G.P.S. readings to help tie other vermiculite zones to other claims. This would aid us in searching other areas faster with more accuracy. More work is planned for claims North of the Horse Shoe Property(claim #'s 1191295,1191249 and1163443). Other claims with material of interest include:

Work has been planed for a portion of those claims before this winter.

Keith Vatcher Triple A Resources Inc.

.

Assessment report for Regis Resources Inc. for the period of August 02 -July 03

Report prepared by Keith Vatcher, (Triple A Resources.)

Maps, Assays and Analysis prepared by James R.Hindman, Ph.D.

INDEX

Section 1

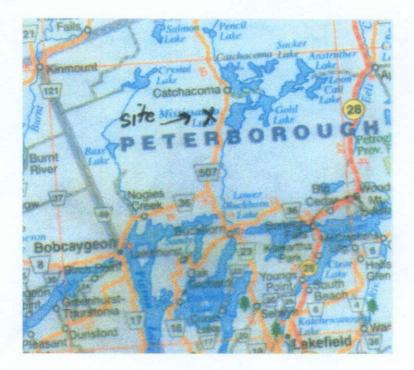
page1Location2Claims to be covered3Claims with exploration completed4-5Maps of property

Section 2 GPS Data

Section 3 Expenses

Section 4 Assays Photo's Maps of trenches

Section 5 James R. Hindman


Section 6

Payroll lay out

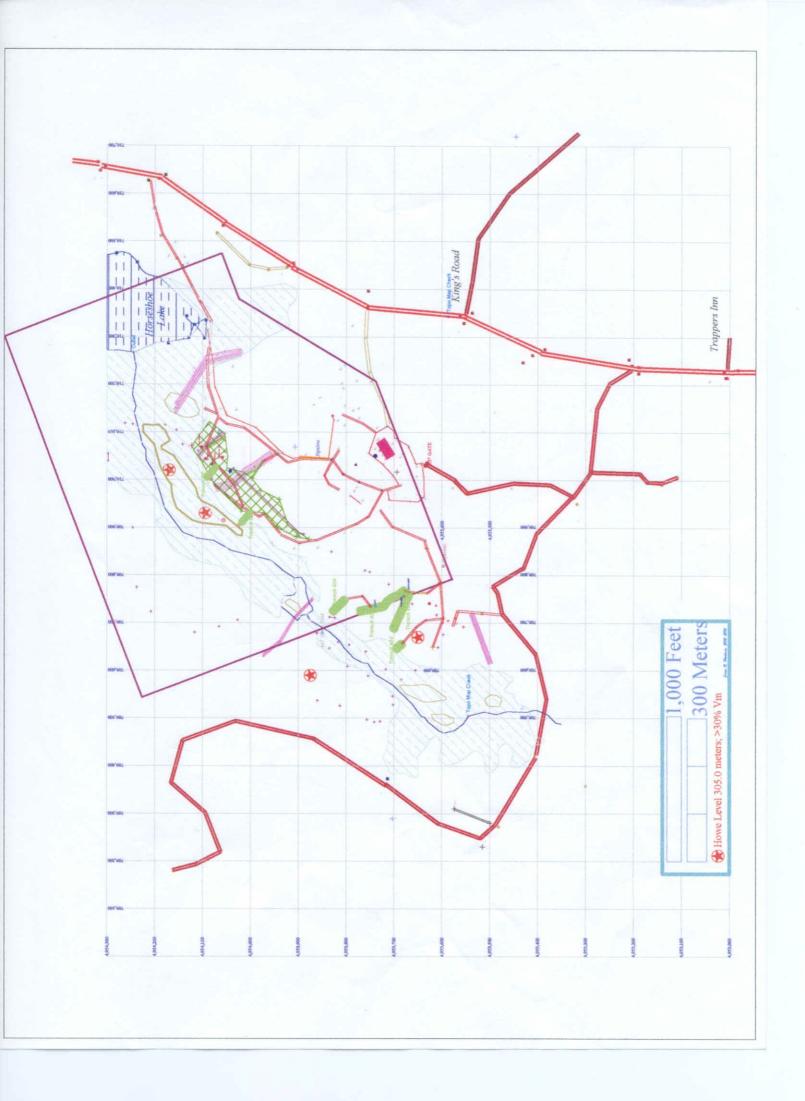
SECTION 1

Page 1

Regis Resources Inc. Vermiculite Property is located in the Cavendish Township on the 507 road 40 minutes north of Peterborough in Southern Ontario. The entrance is 11 kilometres north of the 36 road (Flynns Turn) and 200 metres north of Trappers Inn (restaurant and marina) on the west side of the 507.

The following is a work report to cover claim numbers

Claim	Due date	Units	Amount
1077414	Aug. 2/03	8	\$3200.00
1077416	Aug. 2/03	12	4800.00
1230938	Aug. 2/03	12	4800.00
1077460	Aug. 3/03	6	2400.00
1230939	Aug. 28/03	6	2400.00
1077459	Aug. 30/03	12	4800.00
1237558	Oct. 18/03	6	2400.00
1237559	Oct. 18/03	4	1600.00
1237560	Oct. 18/03	2	800.00
1237561	Oct. 28/03	1	400.00
1237562	Oct. 28/03	2	800.00
1237563	Oct. 28/03	12	4800.00
Totals		<u>83</u>	\$33,200.00


Claim # 1163443 2 Units Lot 11 Concession 2 Trenching Sampling Assays Mapping

Claim # 1191295 2 Units Lots 12-13 South half Concession 3 Trenching Sampling Assays Mapping

Claim # 1191249 4 Units Lots 12-13 Concession 2 Trenching Sampling Assays Mapping

Claim # 1237561

1 Unit Lot 11 South half Concession 3 Mapping

Section 2

GPS DATA

Pages 1-8

2	44.70592161	-78.34842910	MINESITE	710,051	4,953,703	6-Jun-01	14:55
305	44.70547318	-78.34874457	MILLGATE	710,028	4,953,653	9-Sep-02	7:13
306	44.70481335	-78.34934846	WPT 306*	709,983	4,953,578	9-Sep-02	7:19
307	44.70256474	-78.34970900	1	709,962	4,953,327	9-Sep-02	7:26
308	44.70325663	-78.35062836	С	709,887	4,953,402	9-Sep-02	7:34
309	44.70208426	-78.34743763	WPT 309*	710,144	4,953,280	9-Sep-02	7:39
310	44.70143080	-78.34607661	HWY JUNC	710,254	4,953,210	9-Sep-02	9:47
311	44.70184081	-78.34677064	WPT 311*	710,198	4,953,254	9-Sep-02	9:50
312	44.70202660	-78.34735651	TURNOUT	710,151	4,953,273	9-Sep-02	9:54
313	44.70128345	-78.34910510	OFSC	710,015	4,953,186	9-Sep-02	10:03
314	44.70221239	-78.34906004	WPT 314*	710,015	4,953,290	9-Sep-02	10:08
315	44.70371148	-78.34939353	WPT 315*	709,983	4,953,455	9-Sep-02	10:17
316	44.70454429	-78.34951071	WPT 316*	709,971	4,953,547	9-Sep-02	10:24
318	44.70602410	-78.34935748	WPT 318*	709,978	4,953,712	12-Sep-02	6:35
319	44.70610098	-78.34828489	MILLBLDG	710,052	4,953,724	12-Sep-02	7:02
320	44.70824696	-78.35064639	WPT 320*	709,867	4,953,956	12-Sep-02	7:10
321	44.70821493	-78.35071850	WPT 321*	709,862	4,953,952	12-Sep-02	7:21
322	44.70738857	-78.35081764	WPT 322*	709,857	4,953,860	12-Sep-02	7:26
323	44.70879145	-78.34995236	PIT	709,920	4,954,018	12-Sep-02	7:35
324	44.70664549	-78.35021375	WPT 324*	709,907	4,953,779	12-Sep-02	7:48
325	44.70651737	-78.34960084	PAD EDGE	709,957	4,953,766	12-Sep-02	7:56
326	44.70655580	-78.34968196	WPT 326*	709,950	4,953,770	12-Sep-02	7:58
327	44.70674158	-78.34946564	WPT 327*	709,966	4,953,792	12-Sep-02	7:58
328	44.70661346	-78.34924030	WPT 328*	709,985	4,953,778	12-Sep-02	7:59
329	44.70665830	-78.34933945	WPT 329*	709,977	4,953,783	12-Sep-02	8:00
330	44.70593442	-78.34898793	WPT 330*	710,007	4,953,703	12-Sep-02	8:01
331	44.70598567	-78.34935748	WPT 331*	709,978	4,953,708	12-Sep-02	8:02
332	44.70590880	-78.34812265	NENDMILL	710,076	4,953,703	13-Sep-02	5:06
333	44.70608176	-78.34796942	N ROAD	710,087	4,953,722	13-Sep-02	5:15
334	44.70619707	-78.34769000	WPT 334*	710,109	4,953,736	13-Sep-02	5:41
335	44.70652377	-78.34741960	WPT 335*	710,129	4,953,773	13-Sep-02	6:07
336	44.70588317	-78.34798745	ELEC	710,087	4,953,700	13-Sep-02	6:20
337	44.70628675	-78.34646419	WPT 337*	710,206	4,953,749	13-Sep-02	6:34
339	44.70929750	-78.34842910	BULK PIT	710,039	4,954,078	11-Oct-02	12:21
340	44.70915657	-78.34763592	WPT 340*	710,103	4,954,065	11-Oct-02	10:32
341	44.70900283	-78.34724835	J	710,134	4,954,049	11-Oct-02	10:42
342	44.70883629	-78.34710413	WPT 342*	710,146	4,954,030	11-Oct-02	10:42
343	44.70936796	-78.34640109	LOG RD	710,200	4,954,091	11-Oct-02	10:50
344	44.70869536	-78.34759086	WPT 344*	710,108	4,954,014	11-Oct-02	10:57
					I		

345	44.70820212	-78.34826686	WPT 345*	710,056	4,953,957	11-Oct-02	11:02
346	44.70761278	-78.34845614	WPT 346*	710,043	4,953,891	11-Oct-02	11:08
347	44.70693375	-78.34821278	WPT 347*	710,065	4,953,816	11-Oct-02	11:17
348	44.70679282	-78.34763592	В	710,011	4,953,802	11-Oct-02	11:26
352	44.71014944	-78.34092096	N ACCESS	710,631	4,954,192	14-Nov-02	6:20
353	44.70988041	-78.34262449	WPT 353*	710,497	4,954,158	14-Nov-02	6:28
354	44.70971386	-78.34302108	WPT 354*	710,466	4,954,138	14-Nov-02	6:30
355	44.70971386	-78.34457138	36C LAKE	710,343	4,954,134	14-Nov-02	6:35
356	44.70809322	-78.35039402	20021015	709,888	4,953,939	15-Oct-02	4:42
357	44.70676720	-78.34600450	25 ELEC	710,240	4,953,803	17-Oct-02	4:25
358	44.70680564	-78.34759987	TAILS560	710,114	4,953,804	17-Oct-02	5:07
360	44.71114230	-78.34054240	W BAY	710,657	4,954,304	19-Oct-02	13:56
361	44.71124479	-78.34065056	WPT 361*	710,648	4,954,315	19-Oct-02	13:59
362	44.71125760	-78.34065957	WPT 362*	710,648	4,954,316	19-Oct-02	13:59
363	44.71127681	-78.34044325	WPT 363*	710,665	4,954,319	19-Oct-02	14:06
364	44.70776652	-78.34332753	OLD N NW	710,449	4,953,921	20-Oct-02	8:23
365	44.70759356	-78.34341767	WPT 365*	710,442	4,953,902	20-Oct-02	8:28
366	44.70767043	-78.34327345	WPT 366*	710,454	4,953,911	20-Oct-02	8:28
367	44.70771527	-78.34321937	WPT 367*	710,458	4,953,916	20-Oct-02	8:37
368	44.70891315	-78.34211974	WPT 368*	710,540	4,954,052	20-Oct-02	8:45
369	44.70897081	-78.34220987	WPT 369*	710,533	4,954,058	20-Oct-02	8:49
370	44.70780495	-78.34337260	WPT 370*	710,445	4,953,925	20-Oct-02	8:55
371	44.70814446	-78.34341767	WPT 371*	710,440	4,953,963	20-Oct-02	9:02
372	44.70850319	-78.34328246	WPT 372*	710,450	4,954,003	20-Oct-02	9:10
373	44.70930390	-78.34540962	WPT 373*	710,278	4,954,087	20-Oct-02	9:11
374	44.71003414	-78.34380524	WPT 374*	710,403	4,954,172	20-Oct-02	9:19
375	44.70909251	-78.34240817	END	710,517	4,954,071	20-Oct-02	9:29
377	44.70913095	-78.35000644	WATER-1	709,915	4,954,056	21-Oct-02	5:20
378	44.70603692	-78.34715822	PT2	710,152	4,953,719	21-Oct-02	6:01
379	44.70629956	-78.34621181	PP3	710,226	4,953,751	21-Oct-02	6:11
380	44.70636362	-78.34530146	PP4	710,298	4,953,760	21-Oct-02	6:21
381	44.70629316	-78.34450828	WPT 381*	710,361	4,953,755	21-Oct-02	6:33
382	44.70627394	-78.34406663	WPT 382*	710,396	4,953,754	21-Oct-02	6:42
383	44.70660064	-78.34496797	PP END25	710,323	4,953,788	21-Oct-02	6:47
384	44.70695938	-78.34928537	END O RD	709,980	4,953,816	21-Oct-02	12:08
385	44.70713234	-78.34913214	WPT 385*	709,991	4,953,836	21-Oct-02	12:14
386	44.70722202	-78.34889780	211	710,010	4,953,846	21-Oct-02	12:28
387	44.70703625	-78.34851923	END 355	710,040	4,953,827	21-Oct-02	12:42
388	44.70916298	-78.34768099	WELL 160	710,099	4,954,065	21-Oct-02	13:02
				· · · · · · · · · · · · · · · · · · ·			

389	44.70936155	-78.34889780	WELL	710,002	4,954,084	21-Oct-02	13:15
390	44.70125141	-78.34628392	HWY 250	710,238	4,953,190	22-Oct-02	8:30
391	44.70125141	-78.34646419	250	710,224	4,953,190	22-Oct-02	8:54
392	44.70456351	-78.34477868	KINGS RD	710,346	4,953,562	24-Oct-02	9:14
393	44.70433929	-78.34472460	WPT 393*	710,351	4,953,537	24-Oct-02	9:21
394	44.70449945	-78.34499501	WPT 394*	710,329	4,953,554	24-Oct-02	9:28
395	44.70299397	-78.34574312	WPT 395*	710,275	4,953,385	24-Oct-02	9:31
396	44.70323101	-78.34589634	WPT 396*	710,262	4,953,411	24-Oct-02	9:36
397	44.70341679	-78.34607661	WPT 397*	710,247	4,953,431	24-Oct-02	9:44
398	44.69965616	-78.34646419	TRAPPERS	710,230	4,953,012	24-Oct-02	9:54
399	44.69938067	-78.34644616	WPT 399*	710,232	4,952,982	24-Oct-02	9:58
400	44.69961772	-78.34663544	WPT 400*	710,216	4,953,008	24-Oct-02	10:02
401	44.69959209	-78.34664445	WPT 401*	710,216	4,953,005	24-Oct-02	10:02
402	44.69993165	-78.34672557	204	710,208	4,953,042	24-Oct-02	10:09
403	44.70248787	-78.34986223	WPT 403*	709,950	4,953,318	27-Oct-02	8:53
404	44.70353851	-78.35156575	WPT 404*	709,812	4,953,430	27-Oct-02	9:00
405	44.70412789	-78.35201642	WPT 405*	709,774	4,953,495	27-Oct-02	9:05
406	44.70403179	-78.35218768	Т	709,761	4,953,484	27-Oct-02	9:12
407	44.70433289	-78.35268341	Y	709,720	4,953,516	27-Oct-02	9:20
408	44.70480054	-78.35262032	WPT 408*	709,724	4,953,568	27-Oct-02	9:29
409	44.70481976	-78.35292677	11	709,699	4,953,569	27-Oct-02	9:30
410	44.70488382	-78.35298987	WPT 410*	709,694	4,953,576	27-Oct-02	9:31
411	44.70453148	-78.35265637	AB	709,722	4,953,538	27-Oct-02	9:40
412	44.70421117	-78.35399937	AE	709,616	4,953,499	27-Oct-02	9:47
413	44.70396773	-78.35273749	YE	709,717	4,953,475	27-Oct-02	9:55
414	44.70337195	-78.35381910	WPT 414*	709,634	4,953,406	27-Oct-02	10:02
415	44.70317335	-78.35502689	WPT 415*	709,539	4,953,381	27-Oct-02	10:10
416	44.70342960	-78.35649607	WPT 416*	709,421	4,953,406	27-Oct-02	10:24
417	44.70250068	-78.35734333	WPT 417*	709,358	4,953,300	27-Oct-02	10:33
418	44.70414711	-78.35835282	WPT 418*	709,272	4,953,481	27-Oct-02	10:42
419	44.70449304	-78.35864125	WPT 419*	709,248	4,953,518	27-Oct-02	10:51
420	44.70573583	-78.34839305	MB5	710,055	4,953,683	29-Nov-02	12:12
421	44.70619066	-78.34800547	MB7	710,084	4,953,734	29-Nov-02	12:25
422	44.70624832	-78.34823982	MB11	710,065	4,953,740	29-Nov-02	12:38
423	44.70610738	-78.34831193	MB1	710,060	4,953,724	29-Nov-02	12:54
424	44.70547959	-78.34899694	S PAD	710,008	4,953,653	29-Nov-02	13:06
425	44.70539631	-78.34954676	WPT 425*	709,965	4,953,642	29-Nov-02	13:15
426	44.70562693	-78.34964591	WPT 426*	709,956	4,953,667	29-Nov-02	13:20
427	44.70601770	-78.34958281)	709,960	4,953,711	29-Nov-02	13:25

428 44.70115531 -78.34935748 20021101 709.995 4.953,141 2-Nov-02 8:04 429 44.70087983 -78.34942057 WPT 430* 700,007 4.953,140 2-Nov-02 8:13 431 44.70053787 -78.3498793 20021103 710,007 4.953,639 3-Nov-02 8:13 44.70533865 -78.34960084 WPT 432* 709.961 4.953,635 3-Nov-02 11:15 434 44.70637003 -78.3486452 WPT 433* 710.013 4.953,763 3-Nov-02 11:34 435 44.70653018 -78.34716723 WPT 435* 710.144 4.953,774 3-Nov-02 11:42 436 44.70653018 -78.3471619 WPT 437* 710.100 4.953,701 3-Nov-02 11:57 438 44.7065412 -78.34219882 2021106 710.368 4.954,106 6-Nov-02 11:08 44.70545123 -78.34215884 LAKE 200 710.455 4.954,207 6-Nov-02 11:08 44.700424 -78.34285884	~							
430 44.70059153 -78.34924030 WPT 430* 710,007 4.953,109 2-Nov-02 8:13 431 44.70533787 -76.34898793 20021103 710,009 4.953,638 3-Nov-02 11:05 432 44.705337867 -76.34896084 WPT 432* 709,961 4.953,638 3-Nov-02 11:24 433 44.70663003 -78.34864542 WPT 433* 710,034 4.953,786 3-Nov-02 11:34 434 44.70663008 -78.34716723 WPT 435* 710,145 4.953,706 3-Nov-02 11:50 433 44.70565018 -78.34716723 WPT 437* 710,100 4.953,701 3-Nov-02 11:50 44.7056422 -78.34781619 WPT 437* 710,100 4.954,106 6-Nov-02 11:01 44.7056422 -78.34781619 WPT 440* 710,453 4.954,112 6-Nov-02 11:01 44.7056522 -78.3428864 LAKE 150 710,455 4.954,237 6-Nov-02 11:31 44.7010424 -78.3428864 <th< td=""><td>428</td><td>44.70115531</td><td>-78.34935748</td><td>20021101</td><td>709,995</td><td>4,953,171</td><td>2-Nov-02</td><td>8:04</td></th<>	428	44.70115531	-78.34935748	20021101	709,995	4,953,171	2-Nov-02	8:04
431 44.70535787 -78.34898793 20021103 710,009 4.953,639 3-Nov-02 11:05 432 44.70533865 -78.34960084 WPT 432* 709,961 4.953,635 3-Nov-02 11:15 433 44.70637003 -78.3486452 WPT 433* 710,034 4.953,753 3-Nov-02 11:24 434 44.70653008 -78.34716723 WPT 434* 710,145 4.953,766 3-Nov-02 11:34 44.7065308 -78.34716723 WPT 435* 710,149 4.953,774 3-Nov-02 11:57 435 44.7065112 -78.34716723 WPT 437* 710,100 4.953,774 3-Nov-02 11:57 438 44.7065122 -78.3421966 20021106 710,372 4.954,106 6-Nov-02 11:01 44.7066226 -78.34285864 LAKE 200 710,453 4.954,220 6-Nov-02 11:01 44.70100424 -78.34285862 SAMPLBOX 710,468 4.954,172 6-Nov-02 11:31 444 44.7008857 -78.34286	429	44.70087983	-78.34942057	WPT 429*	709,991	4,953,141	2-Nov-02	8:10
432 44.70533865 -78.34960084 WPT 432* 709,961 4,953,635 3-Nov-02 11:15 433 44.70609457 -78.34864542 WPT 433* 710,034 4,953,722 3-Nov-02 11:24 434 44.70653003 -78.34722131 WPT 435* 710,145 4,953,786 3-Nov-02 11:34 44.70653018 -78.34716723 WPT 435* 710,149 4,953,771 3-Nov-02 11:50 44.7058958 -78.34716723 WPT 435* 710,100 4,953,701 3-Nov-02 11:50 44.70945123 -78.3421386 2021106 710,068 4,953,701 3-Nov-02 11:00 44.70966262 -78.3431832 WPT 440* 710,453 4,954,132 6-Nov-02 11:01 44.71060424 -78.3428588 LAKE 200 710,455 4,954,237 6-Nov-02 11:31 44.7108057 -78.3428582 SAMPLBOX 710,468 4,954,122 6-Nov-02 11:31 44.70724764 -78.3468427 DAM 200 710,468 4,954,031	430	44.70059153	-78.34924030	WPT 430*	710,007	4,953,109	2-Nov-02	8:13
433 44.70609457 -78.34864542 WPT 433* 710.034 4.953,722 3-Nov-02 11:24 434 44.70637003 -78.34834798 WPT 434* 710.056 4.953,753 3-Nov-02 11:34 435 44.70653018 -78.34716723 WPT 435* 710.145 4.953,776 3-Nov-02 11:42 437 44.70563018 -78.34716723 WPT 435* 710.149 4.953,770 3-Nov-02 11:57 438 44.7056112 -78.3421986 2ND BLDG 710.006 4.953,670 3-Nov-02 12:03 44.7056121 -78.34221986 2ND BLDG 710.455 4.954,132 6-Nov-02 11:08 44.7064024 -78.34228584 LAKE 200 710.455 4.954,237 6-Nov-02 11:31 44.47074764 -78.34285802 SAMPLBOX 710.458 4.954,132 6-Nov-02 11:31 44.47074764 -78.34285802 SAMPLBOX 710.458 4.954,172 6-Nov-02 8:24 44.70745864 -78.34268507 DAM 600	431	44.70535787	-78.34898793	20021103	710,009	4,953,639	3-Nov-02	11:05
434 44.70637003 -78.34834798 WPT 43* 710.056 4.953,753 3-Nov-02 11:34 435 44.70663908 -78.34722131 WPT 435* 710.145 4.953,776 3-Nov-02 11:42 436 44.7055018 -78.34716723 WPT 437* 710.100 4.953,771 3-Nov-02 11:50 437 44.7058858 -78.3472198 20021106 710.068 4.953,771 3-Nov-02 11:50 439 44.70561412 -78.3423982 END BLDG 710.068 4.953,771 3-Nov-02 11:00 441 44.70966262 -78.3421986 20021106 710.453 4.954,132 6-Nov-02 11:10 442 44.7098627 -78.34285884 LAKE 200 710.454 4.954,237 6-Nov-02 11:31 443 44.7006424 -78.34285884 LAKE 200 710.458 4.954,172 6-Nov-02 11:31 444 44.70724764 -78.34684275 DAM 600 710,172 4.953,867 7-Nov-02 8:26 <th< td=""><td>432</td><td>44.70533865</td><td>-78.34960084</td><td>WPT 432*</td><td>709,961</td><td>4,953,635</td><td>3-Nov-02</td><td>11:15</td></th<>	432	44.70533865	-78.34960084	WPT 432*	709,961	4,953,635	3-Nov-02	11:15
435 44.70663908 -78.34722131 WPT 435* 710,145 4,953,766 3-Nov-02 11:42 436 44.70653018 -78.34716723 WPT 436* 710,149 4,953,774 3-Nov-02 11:50 437 44.70588958 -78.3473982 END BLDG 710,100 4,953,771 3-Nov-02 12:03 44.70561112 -78.3423982 END BLDG 710,0168 4,953,701 3-Nov-02 12:03 44.70945123 -78.3423982 END BLDG 710,045 4,954,106 6-Nov-02 11:08 44.70960526 -78.3428584 LAKE 200 710,475 4,954,132 6-Nov-02 11:31 44.4.71060424 -78.3428584 LAKE 200 710,474 4,954,172 6-Nov-02 11:31 44.4 4.70724764 -78.34684275 DAM 600 710,172 4,953,866 7-Nov-02 8:26 44.7 4.47078264 -78.3468221 DAM 200 710,202 4,953,867 7-Nov-02 10:33 44.70752716 -78.3565612	433	44.70609457	-78.34864542	WPT 433*	710,034	4,953,722	3-Nov-02	11:24
436 44.70653018 -78.34716723 WPT 436* 710,149 4,953,774 3-Nov-02 11:50 437 44.70588958 -78.34781619 WPT 437* 710,100 4,953,771 3-Nov-02 11:57 438 44.70561412 -78.34823982 END BLDG 710,068 4,953,670 3-Nov-02 12:03 439 44.70945123 -78.3421986 20021106 710,372 4,954,106 6-Nov-02 11:00 441 44.71060424 -78.34318332 WPT 440* 710,453 4,954,132 6-Nov-02 11:31 442 44.70966262 -78.34318332 WPT 440* 710,453 4,954,237 6-Nov-02 11:31 443 44.70160424 -78.34285884 LAKE 200 710,474 4,954,280 6-Nov-02 11:33 444 4.70724764 -78.34884275 DAM 600 710,172 4,953,806 7-Nov-02 8:26 444 4.7074764 -78.3468271 DAM 200 710,202 4,953,806 7-Nov-02 8:36 <t< td=""><td>434</td><td>44.70637003</td><td>-78.34834798</td><td>WPT 434*</td><td>710,056</td><td>4,953,753</td><td>3-Nov-02</td><td>11:34</td></t<>	434	44.70637003	-78.34834798	WPT 434*	710,056	4,953,753	3-Nov-02	11:34
437 44.70588958 -78.34781619 WPT 437* 710,100 4,953,701 3-Nov-02 11:57 438 44.70561412 -78.34823982 END BLDG 710,068 4,953,670 3-Nov-02 12:03 439 44.70945123 -78.34421986 20021106 710,372 4,954,106 6-Nov-02 11:00 440 44.70966262 -78.34318332 WPT 440* 710,453 4,954,132 6-Nov-02 11:08 441 44.71060424 -78.34318332 WPT 440* 710,455 4,954,237 6-Nov-02 11:19 442 44.7098657 -78.34285884 LAKE 200 710,474 4,954,280 6-Nov-02 11:31 443 44.70724764 -78.34584275 DAM 600 710,172 4,953,806 7-Nov-02 8:26 444 44.70680564 -78.34684271 DAM 200 710,202 4,953,809 7-Nov-02 8:36 444 44.70745263 -78.3553428 ROAD 400 709,493 4,954,031 7-Nov-02 10:33 444 44.70752716 -78.3558512 WPT 450* 709,360 4,953,716 </td <td>435</td> <td>44.70663908</td> <td>-78.34722131</td> <td>WPT 435*</td> <td>710,145</td> <td>4,953,786</td> <td>3-Nov-02</td> <td>11:42</td>	435	44.70663908	-78.34722131	WPT 435*	710,145	4,953,786	3-Nov-02	11:42
438 44.70561412 -78.34823982 END BLDG 710.068 4.953,670 3-Nov-02 12:03 439 44.70945123 -78.34421986 20021106 710.372 4.954,106 6-Nov-02 11:00 440 44.70966262 -78.34318332 WPT 440* 710.453 4.954,132 6-Nov-02 11:08 441 44.71060424 -78.34318022 LAKE 150 710.455 4.954,237 6-Nov-02 11:19 442 44.71001493 -78.34285884 LAKE 200 710.474 4.954,280 6-Nov-02 11:31 443 44.7001493 -78.34285884 LAKE 200 710.468 4.954,280 6-Nov-02 11:31 444 44.70724764 -78.34684275 DAM 600 710.172 4.953,806 7-Nov-02 8:26 444 44.7078316 -78.34684221 DAM 200 710.202 4.953,806 7-Nov-02 8:36 444 44.7058316 -78.3506197 MIDCLAIM 709,457 4.953,807 7-Nov-02 10:33 <	436	44.70653018	-78.34716723	WPT 436*	710,149	4,953,774	3-Nov-02	11:50
43944.70945123.78.3442198620021106710.3724.954.1066-Nov-0211:0044044.70966262.78.34318332WPT 440*710.4534.954.1326-Nov-0211:0844144.71060424.78.34312022LAKE 150710.4554.954.2376-Nov-0211:1944244.71098857.78.34285884LAKE 200710.4744.954.2806-Nov-0211:3144344.7101493.78.34298502SAMPLBOX710.4684.954.1726-Nov-0211:4344444.70724764.78.34684275DAM 600710.1724.953.8557-Nov-028:2644644.70680564.78.34661741WPT 445*710.1924.953.8067-Nov-028:2644644.70683126.78.3466177IIDCLAIM709.6794.953.8067-Nov-0210:3344744.70745263.78.3506197MIDCLAIM709.4934.954.0317-Nov-0210:3344444.70623550.78.3534236ROAD 400709.4934.954.0317-Nov-0210:3344444.70528100.78.3558612WPT 449*709.4574.953.6077-Nov-0210:4045144.70528100.78.354236IWP 451*709.2794.953.6077-Nov-0210:4345244.7091181.78.34595042LR2 230710.2374.954.0388-Nov-027:2245344.7081063.78.34595042LR2 230710.2374.954.0548-Nov-028:2445444.7081063 <td< td=""><td>437</td><td>44.70588958</td><td>-78.34781619</td><td>WPT 437*</td><td>710,100</td><td>4,953,701</td><td>3-Nov-02</td><td>11:57</td></td<>	437	44.70588958	-78.34781619	WPT 437*	710,100	4,953,701	3-Nov-02	11:57
44044.70966262-78.34318332WPT 440*710.4534.954,1326-Nov-0211:0844144.71060424-78.34312022LAKE 150710.4554.954,2376-Nov-0211:1944244.71098857-78.34285884LAKE 200710.4744.954,2806-Nov-0211:3144344.71001493-78.34298502SAMPLBOX710.4684.954,1726-Nov-0211:4344444.70724764-78.34684275DAM 600710,1724.953,8557-Nov-028:2444544.70680564-78.34661741WPT 445*710,1924.953,8067-Nov-028:2644644.70683126-78.34648221DAM 200710,2024.953,8067-Nov-028:3644744.70745263-78.35306197MIDCLAIM709,6794.953,8617-Nov-0210:3344944.70758716-78.35585612WPT 449*709,4574.953,8697-Nov-0210:3344944.7058716-78.3520861WPT 450*709,3604.953,7167-Nov-0210:4045144.70528100-78.35520861WPT 451*709,2794.953,6077-Nov-0210:4345244.70911814-78.3449769820021108710,2174.954,0388-Nov-027:2845344.7088113-78.3455383TRNCH200710,2294.954,0188-Nov-027:8845444.70888113-78.3455383TRNCH200710,2694.954,0198-Nov-027:8845544.70870176 <td>438</td> <td>44.70561412</td> <td>-78.34823982</td> <td>END BLDG</td> <td>710,068</td> <td>4,953,670</td> <td>3-Nov-02</td> <td>12:03</td>	438	44.70561412	-78.34823982	END BLDG	710,068	4,953,670	3-Nov-02	12:03
44144.71060424-78.34312022LAKE 150710.4554.954,2376-Nov-0211:1944244.71098857-78.34285884LAKE 200710.4744.954,2806-Nov-0211:3144344.71001493-78.34298502SAMPLBOX710.4684.954,1726-Nov-0211:4344444.70724764-78.34684275DAM 600710,1724.953,8557-Nov-028:2444544.70680564-78.34661741WPT 445*710,1924.953,8067-Nov-028:2644644.70683126-78.34648221DAM 200710,2024.953,8067-Nov-028:3644744.70745263-78.3506197MIDCLAIM709,6794.953,8617-Nov-0210:3344944.70758716-78.35585612WPT 449*709,4574.953,8697-Nov-0210:3344944.70528100-78.35520861WPT 450*709,3604.953,7167-Nov-0210:4045144.70528100-78.35520861WPT 451*709,2794.953,6077-Nov-0210:4345244.7091565-78.3455482LR 300710,2894.954,0188-Nov-027:2245344.7088113-78.34595042LR 230710,2374.954,0488-Nov-027:845544.70810603-78.3455383TRNCH200710,2694.954,0198-Nov-028:2145644.708670176-78.3559042LR 230710,2694.954,0198-Nov-028:4345744.7029677-78.	439	44.70945123	-78.34421986	20021106	710,372	4,954,106	6-Nov-02	11:00
44244.71098857-78.34285884LAKE 200710,4744.954,2806-Nov-0211:3144344.71001493-78.34298502SAMPLBOX710,4684.954,1726-Nov-0211:4344444.70724764-78.34684275DAM 600710,1724.953,8557-Nov-028:2444544.70680564-78.34661741WPT 445*710,1924.953,8067-Nov-028:2644644.70683126-78.34664221DAM 200710,2024.953,8097-Nov-028:3644744.70745263-78.35306197MIDCLAIM709,6794.953,8617-Nov-029:5544844.7092846-78.35534236ROAD 400709,4934.954,0317-Nov-0210:3344944.7058716-78.35585612WPT 449*709,4574.953,8697-Nov-0210:4045144.70528100-78.35820861WPT 451*709,2794.953,6077-Nov-0210:4345244.70911814-78.3449769820021108710,2374.954,0388-Nov-027:2245344.7088113-78.34595042LR2 230710,2694.954,0198-Nov-027:5845444.7080603-78.3455383TRNCH200710,2694.954,0198-Nov-028:2145644.7081603-78.34921278(150)710,0614.953,9468-Nov-0211:4245944.70987400-78.35921811E RD 310709,1814.954,1618-Nov-0211:4245644.70966902-	440	44.70966262	-78.34318332	WPT 440*	710,453	4,954,132	6-Nov-02	11:08
44344.71001493-78.34298502SAMPLBOX710.4684.954,1726-Nov-0211:4344444.70724764-78.34684275DAM 600710,1724.953,8557-Nov-028:2444544.70680564-78.34661741WPT 445*710,1924.953,8067-Nov-028:2644644.70683126-78.34648221DAM 200710,2024.953,8097-Nov-028:3644744.70745263-78.35306197MIDCLAIM709,6794.953,8617-Nov-029:5544844.70758716-78.3553612WPT 449*709,4574.953,8697-Nov-0210:3344944.70528100-78.35585612WPT 449*709,3604.953,7167-Nov-0210:3745044.70623505-78.35714503WPT 450*709,3604.953,7167-Nov-0210:4345244.70911814-78.35820861WPT 451*709,2794.953,6077-Nov-0210:4345244.70911814-78.34595042LR2 230710,2374.954,0548-Nov-027:2245344.70870176-78.3455383TRNCH200710,2694.954,0198-Nov-028:2145644.708603-78.35921811E RD 310710,2184.954,1618-Nov-0211:4245944.7094700-78.35879448WPT 459*709,1814.954,1618-Nov-0211:4245944.70966902-78.35774893WPT 460*709,3004.954,1678-Nov-0211:4245144.702677 <t< td=""><td>441</td><td>44.71060424</td><td>-78.34312022</td><td>LAKE 150</td><td>710,455</td><td>4,954,237</td><td>6-Nov-02</td><td>11:19</td></t<>	441	44.71060424	-78.34312022	LAKE 150	710,455	4,954,237	6-Nov-02	11:19
44444.70724764-78.34684275DAM 600710,1724,953,8557-Nov-028:2444544.70680564-78.34661741WPT 445*710,1924,953,8067-Nov-028:2644644.70683126-78.34648221DAM 200710,2024,953,8097-Nov-028:3644744.70745263-78.35306197MIDCLAIM709,6794,953,8617-Nov-029:5344844.70902846-78.35534236ROAD 400709,4934,954,0317-Nov-0210:3344944.70758716-78.35585612WPT 449*709,4574,953,8697-Nov-0210:3745044.70623550-78.35714503WPT 450*709,3604,953,7167-Nov-0210:4045144.70528100-78.35820861WPT 451*709,2794,953,6077-Nov-0210:4345244.70911814-78.3449769820021108710,2374,954,0678-Nov-027:2245344.7088113-78.34595042LR2 230710,2374,954,0548-Nov-027:5845444.70870176-78.355583TRNCH200710,2694,954,0198-Nov-028:2145644.70810603-78.35921811E RD 310709,1814,954,0648-Nov-028:4345744.7029677-78.35921811E RD 310709,1814,954,0648-Nov-0211:4245944.70981400-78.35879448WPT 458*709,2184,954,0648-Nov-0211:4245944.70966902<	442	44.71098857	-78.34285884	LAKE 200	710,474	4,954,280	6-Nov-02	11:31
44544.70680564-78.34661741WPT 445*710,1924,953,8067-Nov-028:2644644.70683126-78.34648221DAM 200710,2024,953,8097-Nov-028:3644744.70745263-78.35306197MIDCLAIM709,6794,953,8617-Nov-029:5544844.70902846-78.35534236ROAD 400709,4934,954,0317-Nov-0210:3344944.70758716-78.35585612WPT 449*709,4574,953,8697-Nov-0210:3745044.70623550-78.35714503WPT 450*709,3604,953,7167-Nov-0210:4045144.70528100-78.35820861WPT 451*709,2794,953,6077-Nov-0210:4345244.70911814-78.3449769820021108710,3134,954,0678-Nov-027:2245344.70901565-78.34554482LR 300710,2694,954,0548-Nov-027:8845444.7080176-78.34555383TRNCH200710,2694,954,0198-Nov-028:2145644.70810603-78.34595042LR2 230710,2694,954,0198-Nov-028:4345744.70987400-78.35921811E RD 310709,1814,954,1618-Nov-0211:4245844.70987400-78.35879448WPT 458*709,1934,954,1618-Nov-0211:4245944.70966902-78.35774893WPT 460*709,3004,954,1678-Nov-0211:4245944.7005336 <td>443</td> <td>44.71001493</td> <td>-78.34298502</td> <td>SAMPLBOX</td> <td>710,468</td> <td>4,954,172</td> <td>6-Nov-02</td> <td>11:43</td>	443	44.71001493	-78.34298502	SAMPLBOX	710,468	4,954,172	6-Nov-02	11:43
44644.70683126-78.34648221DAM 200710,2024,953,8097-Nov-028:3644744.70745263-78.35306197MIDCLAIM709,6794,953,8617-Nov-029:5544844.70902846-78.35534236ROAD 400709,4934,954,0317-Nov-0210:3344944.70758716-78.35585612WPT 449*709,4574,953,8697-Nov-0210:3745044.70623550-78.35714503WPT 450*709,3604,953,7167-Nov-0210:4045144.70528100-78.35820861WPT 451*709,2794,953,6077-Nov-0210:4345244.70911814-78.3449769820021108710,2134,954,0678-Nov-027:2245344.7091565-78.34554482LR 300710,2694,954,0548-Nov-027:3845444.70888113-78.34595042LR2 230710,2374,954,0198-Nov-028:2145644.70810603-78.3455383TRNCH200710,2694,954,0198-Nov-028:4345744.7029677-78.35921811E RD 310709,1814,954,1618-Nov-0211:4245844.70987400-78.35879448WPT 459*709,2184,954,0648-Nov-0211:4245944.7029677-78.35691970WPT 460*709,3004,954,1678-Nov-0211:4746144.7020988-78.3569204WPT 460*709,3034,954,1678-Nov-0211:4746344.70620988 <t< td=""><td>444</td><td>44.70724764</td><td>-78.34684275</td><td>DAM 600</td><td>710,172</td><td>4,953,855</td><td>7-Nov-02</td><td>8:24</td></t<>	444	44.70724764	-78.34684275	DAM 600	710,172	4,953,855	7-Nov-02	8:24
44744.70745263-78.35306197MIDCLAIM709,6794,953,8617-Nov-029:5544844.70902846-78.35534236ROAD 400709,4934,954,0317-Nov-0210:3344944.70758716-78.35585612WPT 449*709,4574,953,8697-Nov-0210:3745044.70623550-78.35714503WPT 450*709,3604,953,7167-Nov-0210:4045144.70528100-78.35820861WPT 451*709,2794,953,6077-Nov-0210:4345244.70911814-78.3449769820021108710,3134,954,0678-Nov-027:2245344.70901565-78.34554482LR 300710,2694,954,0548-Nov-027:5845444.70870176-78.34555383TRNCH200710,2694,954,0198-Nov-028:2145644.70810603-78.34555383TRNCH200710,2694,954,0198-Nov-028:4345744.7029677-78.35921811E RD 310709,1814,954,1618-Nov-0211:4245844.70987400-78.35908291WPT 458*709,1934,954,0648-Nov-0211:4245944.70966902-78.35691970WPT 461*709,3634,954,1678-Nov-0211:4446044.7026677-78.35691970WPT 462*709,4524,954,1438-Nov-0211:5046244.71005336-78.35580204WPT 462*709,4524,953,7138-Nov-0211:5146344.70620988	445	44.70680564	-78.34661741	WPT 445*	710,192	4,953,806	7-Nov-02	8:26
44844.70902846-78.35534236ROAD 400709,4934,954,0317-Nov-0210:3344944.70758716-78.35585612WPT 449*709,4574,953,8697-Nov-0210:3745044.70623550-78.35714503WPT 450*709,3604,953,7167-Nov-0210:4045144.70528100-78.35820861WPT 451*709,2794,953,6077-Nov-0210:4345244.70911814-78.3449769820021108710,3134,954,0678-Nov-027:2245344.70901565-78.34554482LR 300710,2694,954,0548-Nov-027:3845444.7088113-78.34595042LR2 230710,2374,954,0388-Nov-027:5845544.70810603-78.34555383TRNCH200710,2694,954,0198-Nov-028:2145644.70810603-78.34821278(150)710,0614,953,9468-Nov-028:4345744.709677-78.35921811E RD 310709,1814,954,1618-Nov-0211:4245844.70987400-78.35921811E RD 310709,1814,954,0648-Nov-0211:4245944.70941280-78.35879448WPT 459*709,2184,954,0648-Nov-0211:4245944.70966902-78.35774893WPT 460*709,3004,954,1678-Nov-0211:4746144.70966902-78.35691970WPT 462*709,3734,954,1678-Nov-0211:5046244.7100536<	446	44.70683126	-78.34648221	DAM 200	710,202	4,953,809	7-Nov-02	8:36
44944.70758716-78.35585612WPT 449*709,4574,953,8697-Nov-0210:3745044.70623550-78.35714503WPT 450*709,3604,953,7167-Nov-0210:4045144.70528100-78.35820861WPT 451*709,2794,953,6077-Nov-0210:4345244.70911814-78.3449769820021108710,3134,954,0678-Nov-027:2245344.70901565-78.34554482LR 300710,2694,954,0548-Nov-027:3845444.70888113-78.34595042LR2 230710,2374,954,0388-Nov-027:5845544.70870176-78.34555383TRNCH200710,2694,954,0198-Nov-028:2145644.70810603-78.34821278(150)710,0614,953,9468-Nov-028:4345744.709677-78.35921811E RD 310709,1814,954,1618-Nov-0211:4245944.70987400-78.35908291WPT 458*709,1934,954,1618-Nov-0211:4245944.70966902-78.35774893WPT 460*709,3004,954,0958-Nov-0211:4746144.71029677-78.35691970WPT 462*709,3634,954,1678-Nov-0211:5346344.7066098-78.35580204WPT 462*709,3734,953,7138-Nov-0212:1046444.70364742-78.3558421BEAVR331709,5204,953,4338-Nov-0212:3346544.70661986<	447	44.70745263	-78.35306197	MIDCLAIM	709,679	4,953,861	7-Nov-02	9:55
45044.70623550-78.35714503WPT 450*709,3604,953,7167-Nov-0210:4045144.70528100-78.35820861WPT 451*709,2794,953,6077-Nov-0210:4345244.70911814-78.3449769820021108710,3134,954,0678-Nov-027:2245344.70901565-78.34554482LR 300710,2694,954,0548-Nov-027:3845444.70888113-78.34595042LR2 230710,2374,954,0388-Nov-027:5845544.70870176-78.34555383TRNCH200710,2694,954,0198-Nov-028:2145644.70810603-78.34821278(150)710,0614,953,9468-Nov-028:4345744.7029677-78.3590291WPT 458*709,1814,954,1618-Nov-0211:4245944.70987400-78.35879448WPT 459*709,2184,954,0648-Nov-0211:4446044.70966902-78.35774893WPT 460*709,3004,954,0558-Nov-0211:4746144.71029677-78.35691970WPT 461*709,3634,954,1678-Nov-0211:5046244.70364742-78.35580204WPT 462*709,3734,953,7138-Nov-0211:5346344.70620988-78.35698279H2O 302709,3734,953,7138-Nov-0212:1046444.70364742-78.35524321BEAVR331709,5204,953,4338-Nov-0212:3346544.70661986	448	44.70902846	-78.35534236	ROAD 400	709,493	4,954,031	7-Nov-02	10:33
45144.70528100-78.35820861WPT 451*709,2794,953,6077-Nov-0210:4345244.70911814-78.3449769820021108710,3134,954,0678-Nov-027:2245344.70901565-78.34554482LR 300710,2694,954,0548-Nov-027:3845444.70888113-78.34595042LR2 230710,2374,954,0388-Nov-027:5845544.70870176-78.34555383TRNCH200710,2694,954,0198-Nov-028:2145644.70810603-78.34821278(150)710,0614,953,9468-Nov-028:4345744.71029677-78.35921811E RD 310709,1814,954,1618-Nov-0211:4245844.70987400-78.35908291WPT 458*709,1934,954,0648-Nov-0211:4245944.70966902-78.35879448WPT 459*709,2184,954,0648-Nov-0211:4446044.70966902-78.35691970WPT 461*709,3004,954,0558-Nov-0211:4746144.71029677-78.35691970WPT 462*709,4524,954,1438-Nov-0211:5046244.71005336-78.35580204WPT 462*709,4524,953,7138-Nov-0211:5346344.70620988-78.35698279H2O 302709,3734,953,7138-Nov-0212:1046444.70364742-78.35524321BEAVR331709,5204,953,7809-Nov-0212:3346544.70661986 <td>449</td> <td>44.70758716</td> <td>-78.35585612</td> <td>WPT 449*</td> <td>709,457</td> <td>4,953,869</td> <td>7-Nov-02</td> <td>10:37</td>	449	44.70758716	-78.35585612	WPT 449*	709,457	4,953,869	7-Nov-02	10:37
45244.70911814-78.3449769820021108710,3134,954,0678-Nov-027:2245344.70901565-78.34554482LR 300710,2694,954,0548-Nov-027:3845444.70888113-78.34595042LR2 230710,2374,954,0388-Nov-027:5845544.70870176-78.34555383TRNCH200710,2694,954,0198-Nov-028:2145644.70810603-78.34821278(150)710,0614,953,9468-Nov-028:4345744.71029677-78.35921811E RD 310709,1814,954,1618-Nov-0211:3545844.70987400-78.35908291WPT 458*709,1934,954,1158-Nov-0211:4245944.70966902-78.35774893WPT 459*709,2184,954,0648-Nov-0211:4246044.70966902-78.35774893WPT 460*709,3004,954,1678-Nov-0211:4746144.71029677-78.35691970WPT 461*709,3634,954,1678-Nov-0211:5046244.7005336-78.35580204WPT 462*709,4524,954,1438-Nov-0211:5346344.70620988-78.35698279H2O 302709,3734,953,7138-Nov-0212:1046444.70364742-78.35524321BEAVR331709,5204,953,4338-Nov-0212:3346544.70661986-78.3486454220021109710,0324,953,7809-Nov-027:04	450	44.70623550	-78.35714503	WPT 450*	709,360	4,953,716	7-Nov-02	10:40
45344.70901565-78.34554482LR 300710,2694,954,0548-Nov-027:3845444.70888113-78.34595042LR2 230710,2374,954,0388-Nov-027:5845544.70870176-78.34555383TRNCH200710,2694,954,0198-Nov-028:2145644.70810603-78.34821278(150)710,0614,953,9468-Nov-028:4345744.71029677-78.35921811E RD 310709,1814,954,1618-Nov-0211:3545844.70987400-78.35908291WPT 458*709,1934,954,1618-Nov-0211:4245944.70941280-78.35879448WPT 459*709,2184,954,0648-Nov-0211:4446044.70966902-78.35774893WPT 460*709,3004,954,0558-Nov-0211:4746144.71029677-78.35691970WPT 461*709,3634,954,1678-Nov-0211:5046244.70620988-78.35580204WPT 462*709,4524,954,1438-Nov-0211:5346344.70620988-78.35698279H2O 302709,3734,953,7138-Nov-0212:3346544.70661986-78.3486454220021109710,0324,953,7809-Nov-027:04	451	44.70528100	-78.35820861	WPT 451*	709,279	4,953,607	7-Nov-02	10:43
45444.70888113-78.34595042LR2 230710,2374,954,0388-Nov-027:5845544.70870176-78.34555383TRNCH200710,2694,954,0198-Nov-028:2145644.70810603-78.34821278(150)710,0614,953,9468-Nov-028:4345744.71029677-78.35921811E RD 310709,1814,954,1618-Nov-0211:3545844.70987400-78.35908291WPT 458*709,1934,954,0648-Nov-0211:4245944.70941280-78.35879448WPT 459*709,2184,954,0648-Nov-0211:4446044.70966902-78.35774893WPT 460*709,3004,954,0958-Nov-0211:4746144.71029677-78.35691970WPT 461*709,3634,954,1678-Nov-0211:5046244.71005336-78.35580204WPT 462*709,4524,954,1438-Nov-0211:5346344.70620988-78.35698279H2O 302709,3734,953,7138-Nov-0212:3346544.70661986-78.3486454220021109710,0324,953,7809-Nov-027:04	452	44.70911814	-78.34497698	20021108	710,313	4,954,067	8-Nov-02	7:22
45544.70870176-78.34555383TRNCH200710,2694,954,0198-Nov-028:2145644.70810603-78.34821278(150)710,0614,953,9468-Nov-028:4345744.71029677-78.35921811E RD 310709,1814,954,1618-Nov-0211:3545844.70987400-78.35908291WPT 458*709,1934,954,1158-Nov-0211:4245944.70941280-78.35879448WPT 459*709,2184,954,0648-Nov-0211:4446044.70966902-78.35774893WPT 460*709,3004,954,0958-Nov-0211:4746144.71029677-78.35691970WPT 461*709,3634,954,1678-Nov-0211:5046244.71005336-78.35580204WPT 462*709,4524,954,1438-Nov-0211:5346344.70620988-78.35698279H2O 302709,3734,953,7138-Nov-0212:1046444.70364742-78.35524321BEAVR331709,5204,953,7809-Nov-027:0446544.70661986-78.3486454220021109710,0324,953,7809-Nov-027:04	453	44.70901565	-78.34554482	LR 300	710,269	4,954,054	8-Nov-02	7:38
45644.70810603-78.34821278 (150)710,0614,953,9468-Nov-028:4345744.71029677-78.35921811 E RD 310709,1814,954,1618-Nov-0211:3545844.70987400-78.35908291 WPT 458*709,1934,954,1158-Nov-0211:4245944.70941280-78.35879448 WPT 459*709,2184,954,0648-Nov-0211:4446044.70966902-78.35774893 WPT 460*709,3004,954,0958-Nov-0211:4746144.71029677-78.35691970 WPT 461*709,3634,954,1678-Nov-0211:5046244.71005336-78.35580204 WPT 462*709,4524,954,1438-Nov-0211:5346344.70620988-78.35698279 H2O 302709,3734,953,7138-Nov-0212:1046444.70364742-78.35524321 BEAVR331709,5204,953,7809-Nov-027:0446544.70661986-78.34864542 20021109710,0324,953,7809-Nov-027:04	454	44.70888113	-78.34595042	LR2 230	710,237	4,954,038	8-Nov-02	7:58
45744.71029677-78.35921811E RD 310709,1814,954,1618-Nov-0211:3545844.70987400-78.35908291WPT 458*709,1934,954,1158-Nov-0211:4245944.70941280-78.35879448WPT 459*709,2184,954,0648-Nov-0211:4446044.70966902-78.35774893WPT 460*709,3004,954,0958-Nov-0211:4746144.71029677-78.35691970WPT 461*709,3634,954,1678-Nov-0211:5046244.71005336-78.35580204WPT 462*709,4524,954,1438-Nov-0211:5346344.70620988-78.35698279H2O 302709,3734,953,7138-Nov-0212:1046444.70364742-78.35524321BEAVR331709,5204,953,7809-Nov-027:0446544.70661986-78.3486454220021109710,0324,953,7809-Nov-027:04	455	44.70870176	-78.34555383	TRNCH200	710,269	4,954,019	8-Nov-02	8:21
45844.70987400-78.35908291WPT 458*709,1934,954,1158-Nov-0211:4245944.70941280-78.35879448WPT 459*709,2184,954,0648-Nov-0211:4446044.70966902-78.35774893WPT 460*709,3004,954,0958-Nov-0211:4746144.71029677-78.35691970WPT 461*709,3634,954,1678-Nov-0211:5046244.71005336-78.35580204WPT 462*709,4524,954,1438-Nov-0211:5346344.70620988-78.35698279H2O 302709,3734,953,7138-Nov-0212:1046444.70364742-78.35524321BEAVR331709,5204,953,4338-Nov-0212:3346544.70661986-78.3486454220021109710,0324,953,7809-Nov-027:04	456	44.70810603	-78.34821278	(150)	710,061	4,953,946	8-Nov-02	8:43
45944.70941280-78.35879448WPT 459*709,2184,954,0648-Nov-0211:4446044.70966902-78.35774893WPT 460*709,3004,954,0958-Nov-0211:4746144.71029677-78.35691970WPT 461*709,3634,954,1678-Nov-0211:5046244.71005336-78.35580204WPT 462*709,4524,954,1438-Nov-0211:5346344.70620988-78.35698279H2O 302709,3734,953,7138-Nov-0212:1046444.70364742-78.35524321BEAVR331709,5204,953,4338-Nov-0212:3346544.70661986-78.3486454220021109710,0324,953,7809-Nov-027:04	457	44.71029677	-78.35921811	E RD 310	709,181	4,954,161	8-Nov-02	11:35
46044.70966902-78.35774893 WPT 460*709,3004,954,0958-Nov-0211:4746144.71029677-78.35691970 WPT 461*709,3634,954,1678-Nov-0211:5046244.71005336-78.35580204 WPT 462*709,4524,954,1438-Nov-0211:5346344.70620988-78.35698279H2O 302709,3734,953,7138-Nov-0212:1046444.70364742-78.35524321BEAVR331709,5204,953,4338-Nov-0212:3346544.70661986-78.3486454220021109710,0324,953,7809-Nov-027:04	458	44.70987400	-78.35908291	WPT 458*	709,193	4,954,115	8-Nov-02	11:42
46144.71029677-78.35691970WPT 461*709,3634,954,1678-Nov-0211:5046244.71005336-78.35580204WPT 462*709,4524,954,1438-Nov-0211:5346344.70620988-78.35698279H2O 302709,3734,953,7138-Nov-0212:1046444.70364742-78.35524321BEAVR331709,5204,953,4338-Nov-0212:3346544.70661986-78.3486454220021109710,0324,953,7809-Nov-027:04	459	44.70941280	-78.35879448	WPT 459*	709,218	4,954,064	8-Nov-02	11:44
46244.71005336-78.35580204WPT 462*709,4524,954,1438-Nov-0211:5346344.70620988-78.35698279H2O 302709,3734,953,7138-Nov-0212:1046444.70364742-78.35524321BEAVR331709,5204,953,4338-Nov-0212:3346544.70661986-78.3486454220021109710,0324,953,7809-Nov-027:04	460	44.70966902	-78.35774893	WPT 460*	709,300	4,954,095	8-Nov-02	11:47
46344.70620988-78.35698279H2O 302709,3734,953,7138-Nov-0212:1046444.70364742-78.35524321BEAVR331709,5204,953,4338-Nov-0212:3346544.70661986-78.3486454220021109710,0324,953,7809-Nov-027:04	461	44.71029677	-78.35691970	WPT 461*	709,363	4,954,167	8-Nov-02	11:50
46444.70364742-78.35524321BEAVR331709,5204,953,4338-Nov-0212:3346544.70661986-78.3486454220021109710,0324,953,7809-Nov-027:04	462	44.71005336	-78.35580204	WPT 462*	709,452	4,954,143	8-Nov-02	11:53
465 44.70661986 -78.34864542 20021109 710,032 4,953,780 9-Nov-02 7:04	463	44.70620988	-78.35698279	H2O 302	709,373	4,953,713	8-Nov-02	12:10
	464	44.70364742	-78.35524321	BEAVR331	709,520	4,953,433	8-Nov-02	12:33
466 44.70618426 -78.34987124 WPT 466* 709,936 4,953,729 9-Nov-02 7:14	465	44.70661986	-78.34864542	20021109	710,032	4,953,780	9-Nov-02	7:04
	466	44.70618426	-78.34987124	WPT 466*	709,936	4,953,729	9-Nov-02	7:14

467	44.70596004	-78.35032191	WPT 467*	709,901	4,953,703	9-Nov-02	7:20
468	44.70535787	-78.35071850	WPT 468*	709,872	4,953,635	9-Nov-02	7:25
469	44.70503116	-78.35140351	PINK	709,819	4,953,597	9-Nov-02	7:33
470	44.70872098	-78.34996137	WELL	709,920	4,954,010	9-Nov-02	7:52
471	44.70928468	-78.34906905	С	709,989	4,954,075	9-Nov-02	8:01
472	44.70891315	-78.34909609	CC 320	709,988	4,954,034	9-Nov-02	8:13
473	44.70928468	-78.34795139	B 150	710,077	4,954,078	9-Nov-02	8:21
474	44.70954732	-78.34836601	BB	710,043	4,954,106	9-Nov-02	8:26
475	44.70902205	-78.34747368	WPT 475*	710,116	4,954,050	9-Nov-02	8:32
476	44.70935515	-78.34649123	WPT 476*	710,193	4,954,090	9-Nov-02	8:38
477	44.70933593	-78.34641912	WPT 477*	710,198	4,954,088	9-Nov-02	8:42
478	44.70936155	-78.34576114	AAA	710,250	4,954,092	9-Nov-02	8:49
479	44.70852240	-78.34861838	CC C 190	710,027	4,953,992	9-Nov-02	9:06
480	44.70872098	-78.34876260	CCC	710,015	4,954,013	9-Nov-02	9:11
481	44.70818290	-78.34829390	CCCC 180	710,054	4,953,955	9-Nov-02	9:22
482	44.70755513	-78.34834798	EOD 200	710,052	4,953,885	9-Nov-02	9:31
483	44.70601770	-78.34766296	20021113	710,112	4,953,716	13-Nov-02	8:27
484	44.70880426	-78.34979012	W-3 3000	709,933	4,954,020	13-Nov-02	9:32
485	44.70137954	-78.34624786	440	710,241	4,953,204	15-Nov-02	7:55
486	44.70578067	-78.34848318	MILL3800	710,048	4,953,687	15-Nov-02	9:03
487	44.70940639	-78.34900596	WMW 540	709,993	4,954,089	20-Nov-02	8:03
488	44.70783058	-78.35081764	20021123	709,855	4,953,909	23-Nov-02	10:17
489	44.70751029	-78.35218768	175	709,748	4,953,870	23-Nov-02	10:44
490	44.70786261	-78.35266539	299	709,709	4,953,908	23-Nov-02	11:01
491	44.70813806	-78.35328731	199	709,659	4,953,937	23-Nov-02	11:11
492	44.70848397	-78.35362982	225 END	709,630	4,953,974	23-Nov-02	11:31
493	44.70606254	-78.34852825	GAS REG1	710,043	4,953,719	24-Jan-03	14:52
495	44.70957294	-78.34481474	LAKE 450	710,325	4,954,118	6-Feb-03	9:11
496	44.70938717	-78.34516626	LAKE IN	710,297	4,954,097	6-Feb-03	9:33
497	44.70915657	-78.34565298	LAKE TR	710,260	4,954,070	6-Feb-03	10:13
498	44.70935515	-78.34468855	LAKEBOAT	710,335	4,954,094	6-Feb-03	10:57
499	44.70968824	-78.34513922	LAKE SW	710,298	4,954,130	6-Feb-03	11:23
500	44.71007258	-78.34528343	LAKE W	710,286	4,954,172	6-Feb-03	11:39
501	44.70766403	-78.34839305	PIPE 00	710,048	4,953,897	6-Feb-03	12:42
502	44.70713874	-78.34846515	PIPE 500	710,044	4,953,838	7-Feb-03	15:34
503	44.70700422	-78.34746467	PIPE END	710,124	4,953,826	12-Feb-03	9:33
504	44.71027756	-78.34171414	NA 439	710,568	4,954,204	12-Feb-03	11:19
505	44.71014304	-78.34243521	NA 402	710,511	4,954,188	12-Feb-03	11:38
506	44.70986119	-78.34304812	NA 661	710,463	4,954,155	12-Feb-03	12:13
			· · · · · · · · · · · · · · · · · · ·	•			

507	44.71034161	-78.34095701 N	AHW 473	710,627	4,954,214	12-Feb-03	12:48
508	44.71002133	-78.34083083 N	AHE 365	710,639	4,954,178	12-Feb-03	13:36
509	44.70432007	-78.34393143 K	NGNW365	710,414	4,953,537	12-Feb-03	13:36
510	44.70416632	-78.34276870 12	11	710,506	4,953,523	12-Feb-03	13:39
511	44.70224442	-78.34007370 1	11 END	710,727	4,953,316	12-Feb-03	13:43
512	44.70356414	-78.34158795 11	11	710,602	4,953,459	12-Feb-03	13:46
513	44.70654940	-78.34643715 P	OND 450	710,207	4,953,778	13-Feb-03	14:47
514	44.70678642	-78.34708611 P	OND 600	710,155	4,953,803	13-Feb-03	14:59
515	44.70693375	-78.34746467 P	OND 719	710,124	4,953,818	13-Feb-03	15:13
517	44.70685048	-78.34610365 D	AM 1023	710,232	4,953,812	13-Feb-03	15:40
518	44.70736936	-78.34703203 D	AM 399	710,157	4,953,868	13-Feb-03	15:07
519	44.70780495	-78.34842910 PI	IPE 608	710,045	4,953,912	18-Feb-03	9:17
520	44.70798432	-78.34828489 PI	IPE 429	710,055	4,953,933	18-Feb-03	9:47
521	44.70847116	-78.34759086 PI	IPE-673	710,109	4,953,989	18-Feb-03	10:37
522	44.70713874	-78.34732046 C	ULV 222	710,135	4,953,841	18-Feb-03	10:58
523	44.70902846	-78.34717624 PI	IPE 405	710,139	4,954,052	18-Feb-03	13:15
524	44.70922703	-78.34648221 PI	IPE 451	710,194	4,954,075	18-Feb-03	13:36
525	44.70923344	-78.34584226 PI	IPE 292	710,244	4,954,078	18-Feb-03	13:55
526	44.70932952	-78.34495895 PI	END 520	710,314	4,954,091	18-Feb-03	14:37
527	44.70692094	-78.34733848 C	ULV 307	710,134	4,953,817	18-Feb-03	15:08
528	44.70906049	-78.34772606 B	1318	710,096	4,954,054	20-Feb-03	11:21
529	44.70941280	-78.34804153 B	1185	710,070	4,954,092	20-Feb-03	12:25
530	44.70924625	-78.34804153 B	769	710,070	4,954,074	20-Feb-03	13:13
531	44.70657502	-78.34909609 RI	D 740	709,996	4,953,774	28-Feb-03	11:24
532	44.70686329	-78.34887977 RI	D 666	710,012	4,953,807	28-Feb-03	11:36
533	44.70706187	-78.34848318 RI	DRD1049	710,043	4,953,830	28-Feb-03	11:55
534	44.70614582	-78.34934846 RI	DRD1020	709,978	4,953,726	28-Feb-03	12:14
535	44.70624832	-78.34842910 Pf	ROP 875	710,050	4,953,740	28-Feb-03	13:19
536	44.70643409	-78.35004249 RI	D 569	709,922	4,953,756	1-Mar-03	10:19
537	44.70528741	-78.34868148 G	ATE 469	710,034	4,953,632	1-Mar-03	10:31
538	44.70475570	-78.34914116 RI	D 263	709,999	4,953,572	1-Mar-03	10:36
500	44.70296835	-78.34934846 RI	D 399	709,989	4,953,373	1-Mar-03	10:47
540	44.70367304	-78.34924030 RI	D 600	709,995	4,953,451	1- Mar- 03	10:58
541	44.70577427	-78.34921326 RI	D1025	709,990	4,953,685	1-Mar-03	11:18
542	44:70688251	-78.35046612 RI	D 499	709,887	4,953,805	1-Mar-03	13:25
543	44.70742060	-78.35061034 RI	D 449	709,873	4,953,864	1-Mar-03	13:34
544	44.70772808	-78.35070047 RI	D 299	709,865	4,953,898	1-Mar-03	13:41
545	44.70802916	-78.35041204 RI	D 399	709,887	4,953,932	1- Mar- 03	13:49
546	44.70838788	-78.34986223 RI	D 520	709,929	4,953,973	1-Mar-03	13:59

GPS Data Set

gan and a second se

547	44.70872739	-78.34970900	RDW3 909	709,940	4,954,012	1-Mar-03	14:15
548	44.70918860	-78.34890681	RD 589	710,002	4,954,065	1-Mar-03	14:27
549	44.70913095	-78.34872654	GRNRK734	710,016	4,954,059	27-Mar-03	11:14
550	44.70938717	-78.34889780	WELL 454	710,002	4,954,087	27-Mar-03	11:40
551	44.70907970	-78.34818574	PROS 299	710,059	4,954,055	27-Mar-03	12:04
552	44.70861849	-78.34990729	WELL 454	709,925	4,953,999	27-Mar-03	12:42
553	44.70497991	-78.35783005	HUNT1155	709,310	4,953,574	31-Mar-03	8:41
554	44.70431367	-78.35824466	ROADX616	709,280	4,953,499	31-Mar-03	8:59
555	44.70446742	-78.35886659	END128	709,230	4,953,515	31-Mar-03	9:11
590	44.70585114	-78.34886174	BASEMLFD	710,017	4,953,694	10-May-03	12:22
591	44.70807400	-78.34950169	PIT 1200	709,959	4,953,940	13-May-03	11:34
592	44.70857365	-78.34892484	PIT- 444	710,003	4,953,997	13-May-03	11:51
593	44.70841991	-78.34925833	PIT) 119	709,977	4,953,979	13-May-03	11:58
594	44.70838148	-78.34986223	PIT 777	709,929	4,953,973	15-May-03	8:45
595	44.70813806	-78.35022276	PIT 838	709,901	4,953,945	15-May-03	9:54
596	44.70796510	-78.35035796	PIT 799	709,891	4,953,925	15-May-03	10:51
597	44.70800354	-78.35027684	WPT 597*	709,898	4,953,930	15-May-03	10:52
598	44.70779214	-78.35051119	PIT 1184	709,880	4,953,906	15-May-03	11:48
599	44.70754231	-78.35058330	PIT 1447	709,875	4,953,878	15-May-03	13:45
600	44.70899002	-78.34870852	POST1899	710,018	4,954,043	18-May-03	11:53
601	44.70941920	-78.34838403	PIT 454	710,042	4,954,092	18-May-03	12:14
604	44.70932312	-78.34850121	BULK2022	710,033	4,954,081	19-May-03	10:54
605	44.70950888	-78.34805955	FEED1097	710,068	4,954,103	19-May-03	11:39
606	44.70806759	-78.34828489	NEWRD461	710,055	4,953,942	21-May-03	12:23
610	44.70836226	-78.34847417	ACCRD482	710,039	4,953,974	10-Jun-03	8:54
611	44.70998290	-78.34704104	WHITE369	710,147	4,954,158	10-Jun-03	12:47
612	44.70792667	-78.35018671	PIT) 499	709,905	4,953,921	10-Jun-03	13:16
613	44.70847756	-78.34994335	RDDRN200	709,922	4,953,983	10-Jun-03	13:33
614	44.70902205	-78.34832995	STUMP280	710,048	4,954,048	11-Jun-03	10:18
615	44.70946404	-78.34737454	STUMP575	710,122	4,954,099	11-Jun-03	10:40
617	44.70912454	-78.34705907	EX 369	710,148	4,954,063	16-Jun-03	9:01
618	44.70942561	-78.34703203	EW 317	710,149	4,954,096	16-Jun-03	9:18
619	44.70919500	-78.34718526	EY 400	710,138	4,954,070	16-Jun-03	9:32
620	44.70621629	-78.34781619	BREAK376	710,099	4,953,738	16-Jun-03	11:01
621	44.70647893	-78.34755480	BREAK840	710,119	4,953,767	16-Jun-03	12:01
622	44.70684407	-78.34731144	BREAK811	710,137	4,953,809	16-Jun-03	12:52
623	44.70625472	-78.34715822	CRIB 877	710,151	4,953,744	16-Jun-03	13:40
624	44.70968824	-78.34800547	STUMP638	710,071	4,954,123	17-Jun-03	14:41
625	44.70912454	-78.34833897	ORE 2305	710,047	4,954,059	18-Jun-03	10:45
							·····

5

.

626	44.70944483	-78.34835699	ORE 1079	710,044	4,954,095	18-Jun-03	11:59
629	44.70527459	-78.35228682	124	709,748	4,953,621	25-Jun-03	14:56
630	44.70596645	-78.35354870	TR 2087	709,845	4,953,695	25-Jun-03	8:13
631	44.70586395	-78.35342251	TR 1064	709,656	4,953,884	25-Jun-03	9:01
632	44.70662627	-78.35252117	TR- 999	709,725	4,953,771	25-Jun-03	9:46
633	44.70625472	-78.35243104	TR-1792	709,733	4,953,730	26-Jun-03	8:03
634	44.70592801	-78.35214261	RD 143	709,757	4,953,694	26-Jun-03	8:14
635	44.70617785	-78.35239498	RD 130	709,736	4,953,721	26-Jun-03	8:24
636	44.70883629	-78.35013263	TR' 409	709,906	4,954,023	26-Jun-03	13:53
637	44.70878504	-78.34999743	TR' 299	709,917	4,954,017	26-Jun-03	14:18
638	44.70713874	-78.35251216	TR/ 2035	709,724	4,953,828	27-Jun-03	13:43
639	44.70692094	-78.35221472	TR/ 1156	709,748	4,953,804	27-Jun-03	14:52
641	44.70535147	-78.35209754	TREND881	709,763	4,953,630	30-Jun-03	9:35
642	44.70510163	-78.35182714	RD I 547	709,785	4,953,603	30-Jun-03	10:01
643	44.70506319	-78.35278256	RD J 717	709,710	4,953,597	30-Jun-03	10:28
644	44.70528100	-78.35353067	RD K 777	709,650	4,953,619	30-Jun-03	10:57
645	44.70533865	-78.35092581	RD H 414	709,856	4,953,632	30-Jun-03	1 1 :27
646	44.70656861	-78.35212458	TRX 379	709,756	4,953,766	1-Jul-03	8:49
647	44.70633159	-78.35239498	STMP3595	709,736	4,953,739	1-Jul-03	11:52
648	44.70612020	-78.35228682	SAC 494	709,745	4,953,715	1-Jul-03	12:25
649	44.70579989	-78.35200741	TR X 309	709,768	4,953,680	1-Jul-03	12:58
650	44.70539631	-78.35280960	RD 709	709,706	4,953,634	1-Jul-03	13:28
651	44.70600489	-78.35301691	TR1 403	709,688	4,953,701	1-Jul-03	14:00
652	44.70620347	-78.35166490	TR1 567	709,794	4,953,725	1-Jul-03	14:42
654	44.70570380	-78.35213360	TR1 1771	709,759	4,953,669	2-Jul-03	8:22
655	44.70548600	-78.35229584	STN 960	709,747	4,953,646	2-Jul-03	9:13
656	44.70560771	-78.35222373	TR2 372	709,752	4,953,659	2-Jul-03	9:29
657	44.70558849	-78.35207050	TR2 1100	709,764	4,953,657	2-Jul-03	10:18
658	44.70601770	-78.35219669	TR0 666	709,753	4,953,704	2-Jul-03	10:49
659	44.70634441	-78.35218768	STN 539	709,752	4,953,740	2-Jul-03	11:27
660	44.70566537	-78.35227781	WPT 660*	709,748	4,953,665	3-Jul-03	9:50
661	44.70578708	-78.35216064	TREE2711	709,756	4,953,679	3-Jul-03	11:35
662	44.70558849	-78.35299888	RD 669	709,691	4,953,654	3-Jul-03	12:23
663	44.70558849	-78.35207050	RD 2199	709,764	4,953,657	3-Jul-03	14:25
664	44.70569740	-78.35196234	STN10507	709,772	4,953,669	4-Jul-03	14:27
668	44.70497351	-78.35284565	RD 559	709,705	4,953,587	7-Jul-03	10:57
669	44.70469163	-78.35302592	RD 1199	709,692	4,953,555	7-Jul-03	11:55
670	44.70483898	-78.35277355	RD 637	709,711	4,953,572	7-Jul-03	12:23
671	44.70519772	-78.35243104	RDY 1707	709,737	4,953,612	7-Jul-03	14:04

1

SECTION 3

Page 1

Applicable wages of each employee

James R. Hindman, Ph. D.

Salary 6000.00 per month

1 week
1 day
1 week
2 months
2 months
1 week
2 weeks

Total time 5 months, 1 week, 1 day 31,715.00

Triple A Resources (Keith Vatcher)									
Salary 5000.00 per month									
Dozing	4 days								
exploration	4 months								
prospecting	2 weeks								
rehabilitation	2 days								
repairs to track on dozer	1 day								
Total time	4.3 months	21,500.00							

Page total

\$53,215.00

		Page 2
Glen Scott		-
Salary 3000.00 per month		
sampling	2 weeks	
Sample prep.	2 weeks	
assays	1 month	
total time	2 months	6000.00

Kirk WatsonSalary 3000.00 per monthPrep for trenches and trailstotal time1 week750.00

Brunelle Richard (time included in excavator)

Equipment operator and equipment 90.00 per hr.

Total digging, travel, maintenance, and backfill time. This work includes 6 trenches and several exploratory pits and trails.

Total time	66 hours at 90.00 per hour	5,940.00
Dozer time	10 hours at 50.00 per hour	500.00
Page total		\$ 13,190.00

Other expenses

Propane	76.00
Rent for cottage at Catalina Bay Resort	3,965.00
Page total	\$4,041.00

T

Page4

Totals from pages 1-4

Page 1		\$ 53,215.00
Page 2		\$ 13,190.00
Page 3		\$ 4,041.00
-	Grand total	\$ 70,446.00

Section 4

Assays

Part A Trench B extension								
Pages 1-3	B -trench extension							
Location	625n-100e							
Claim #	1191295							

Part B Trench 62	4
Pages 1-2	Trench 624
Location	225n-250w
Claim #	1163443

Part C Trench 62	25
Pages 1-1	Trench 625
Location	325n-200w
Claim #	1191249

Part D Trench 62	26
Pages 1-3	Trench 626
Location	350n-200w
Claim #	1191249

Part E Trench 627Trench 627 exploratory trench forviewing bedrock, no samples taken.Picture in section 4.Location275n-200wClaim #1163443

Section 4

Part A

Assays Pages 1-3

Expenses Page 4

Trench B extension

Line 625 m. north - 100 m. east

Claim number 1191295

Lot 13 - Southwest corner Concession3

Assay	Date	Sample	+ 3.35mm	+2.00mm	+1.00mm	+0.50mm	+0.25mm	-0.25mm	+1M Vm	+0.5M Vm	+0.25M Vm	+60M Vm
B1-38	June, 2003	Trench B Extension: #1 - 0-2.5 maters	22%	7%	11%	1 2%	20%	29%	6%	20%	42%	16.0%
B1-36	June, 2003	Trench B Extension: #2 - 2.5-5 meters	8%	4%	7%	13%	23%	23%	12%	24%	43%	18.9%
B1-40	June, 2003	Trench B Extension: #4 - 5 meter vertical	5%	3%	5%	9%	15%	13%	18%	31%	58%	15.5%
B1-41	June, 2003	Trench B Extension: #3 - 5-7.5 meters	15%	5%	7%	11%	13%	29%	21%	34%	48%	19.4%
B1-37	June, 2003	Trench B Extension: #5 - 7.5-9.1 meters	8%	3%	6%	9%	14%	59%	13%	21%	37%	20.2%
B1-35	June, 2003	Trench B Extension: #6 -9.1-12.6 meters	16%	1%	19%	34%	17%	13%	4%	7%	24%	8.4%
B1-39	June, 2003	Trench B Extension: #1 - 12.6-15 meters	9%	2%	4%	12%	30%	43%	39%	68%	76%	57.9%
B1-30	June, 2003	Trench B Extension: #14 - 15 meter vertical (bad?)	8%	2%	8%	17%	31%	34%	71%	82%	77%	68.3%
Expl	oration Trer	nch Assay Data	1	Regis Reso	urces Cave	andish Verr	niculite Pro	ject				Page 1 of 3

Азвау	Date	Sample	+3.35mm	+2.00mm	+1.00mm	+0.50mm	+ 0.25mm	-0.25mm	+1M Vm	+0.5M Vm	+0.25M Vm	+60M Vm
B1-24	June, 2003	Trench B Extension: #8 - 15-17.5 meters (bad)	9%	6%	9%	13%	21%	33%	78%	66%	73%	60.3%
B1-31	June, 2003	Trench B Extension: #15 - 17.5 meter vertical	13%	3%	7%	12%	17%	47%	22%	28%	27%	19.1%
B1-25	June, 2003	Trench B Extension: #9 - 17.5-20 meters	7%	3%	7%	14%	25%	46%	12%	24%	40%	28.2%
B1-32	June, 2003	Trench B Extension: #16 - 20 meter vertical	10%	4%	6%	13%	22%	35%	15%	34%	64%	32.2%
B1-26	June, 2003	Trench B Extension: #10 - 20-22.5 meters	2%	3%	5%	17%	35%	38%	27%	43%	56%	48.3%
B1-33	June, 2003	Trench B Extension: #17 - 22.5 meter vertical	0%	4%	9%	15%	2:2%	38%	20%	30%	40%	25.5%
B1-27	June, 2003	Trench B Extension: #11 - 22.5-25 meters	9%	5%	10%	18%	2:2%	36%	14%	26%	38%	24.8%
B1-34	June, 2003	Trench B Extension: #18 - 25 meter vertical	8%	5%	8%	18%	27%	27%	15%	31%	45%	27.6%
Exp	oration Tren	ich Assay Data		Regis Reso	urces Cavi	endish Ven	miculite Pro	oject				Page 2 of 3

Assay	Date	Sample	+3.35mm	+2.00mm	+1.00mm	+0. 5 0mm	+0.25mm	-0.25mm	+1M Vm	+0.5M Vm	+0.25M Vm	+60M Vm
B1-28	June, 2003	Trench B Extension: #12 - 25-27.5 meters	6%	4%	8%	19%	34%	28%	29%	45%	54%	43.2%
B1-16	June-03	Trench B Extension: #19 - 27.5 meters	8%	3%	6%	26%	33%	24%	48%	73%	71%	62.2%
B1-29	June, 2003	Trench B Extension: #13 - 27.5-30 meters	13%	6%	12%	21%	27%	21%	13%	30%	51%	28.5%
B1-17	June-03	Trench B Extension: #19 - 30-32.5 meters	9%	7%	15%	25%	25%	19%	7%	20%	49%	23.1%
B1-18	June, 2003	Trench B Extension: #20 - 32.5-35 meters	14%	7%	13%	19%	26%	21%	6%	17%	46%	20.9%
B 1-19	June, 2003	Trench B Extension: #21. 35-37.5 meters	11%	5%	11%	23%	29%	21%	13%	29 %	52%	29.9%
B1-20	June, 2003	Trench B Extension: #22 - 37.5-40.0 meters	4%	2%	6%	19%	32%	37%	7%	16%	41%	27.0%
B1- 21	June, 2003	Trench B Extension: #23 - 40-42.5 meters	10%	4%	8%	19%	29%	30%	6%	13%	38%	21.7%
B1-22	June, 2003	Trench B Extension: #24 - 40-42.5 meters	0%	5%	10%	20%	24%	40%	10%	13%	26%	17.6%
B1-23	June, 2003	Trench B Extension: #25 - 42.5-45 meters	9%	5%	9%	18%	26%	32%	10%	17%	36%	21.4%
Eve	location Tro	ach Access Data		Donie Don		ondish Vor	miculite Dr	niect				Doop 3 of 3

Exploration Trench Assay Data

Expenses for claim # 1191295

4

James R. Hindman	6 weeks	\$8,300.00				
Triple A Resources	9 weeks	\$9385.00				
Glen Scott	3weeks	\$ 2,000.00				
Kirk Watson	1 day	\$150.00				
Excavator	24	\$2,160.00				
Dozer	5 hrs.	\$250.00				
Rent		\$1081.00				
Total	\$23,326.00					

Section 4

Part B

Assays Pages 1-2

Expenses Page 3

Trench 624

Line 225 m. north - 250 m. west

Claim # 1163443

Lot 11 Northeast Corner Concession 2

Assay	Date	Sample	+3.3 5mm	+2.00mm	+1.00mm	+0.50mm	+0.25mm	-0.25mm	+1M Vm	+0.5M Vm	+0.25M Vm	+B OM V in	
B 1-69	June-03	Trench 624: 0 meters, marsh mush	3%	3%	6%	16%	28%	24%	51%	47%	52%	37.8%	
B1-6 1	June-03	Trench 624: 0-2.5 meters	11%	5%	9%	14%	17%	15%	30%	37%	53%	26.5 %	
B1-64	June-03	Trench 624: 0-2.5 meters	2%	3%	10%	17%	25%	39%	54%	50%	4 8%	46.2 %	
B1-59	June-03	Trench 624: 2.5-5 meters	2%	1%	6%	18%	36%	32%	48%	56%	48%	46.7%	
B1-62	June-03	Trench 624: 5-7.5 meters	5%	3%	5%	13%	23%	39%	42%	50%	4/3%	37. 6 %	
B1-63	June-03	Trench 624: 7.5-10 meters	6%	4%	9%	12%	17%	28%	16%	26%	30%	16.6%	
B1-60	June-03	Trench 624: 10-12.5 meters	14%	5%	5%	7%	10%	13%	11%	34%	4:2%	10.9%	
B1-58	June-03	Trench 624: 12.5-15 meters	15%	6%	7%	8%	9%	13%	30%	29%	24%	12.7%	
Exploration Trench Assay Data				Regis Resources Cavendish Vermiculite Project							Page 1 of 2		

Assay	Date	Sample	+3.35mm	+2.00mm	+1.00mm	+0. 50 mm	+0.25mm	-0.25mm	+1M Vm	+0.5M Vm	+0.25M Vm	+60M Vm	
B1-57	June-03	Trench 624: 15-17.5 meters	7%	4%	8%	16%	21%	21%	28%	30%	51%	26.0%	
B 1-70	June-03	Trench 624: 17.5-20 meters	5%	3%	5%	8%	16%	35%	34%	46%	45%	24.2%	
B1-67	Jun a -03	Trench 624: 20-22.5 meters	8%	5%	8%	14%	18%	24%	35%	40%	38%	24.6%	
B1-68	June-03	Trench 624: 22.5-25 meters	4%	3%	6%	10%	20%	37%	26%	33%	30%	20.0%	
B1-66	June-03	Trench 624: 25.0-27.5 meters	6%	4%	8%	14%	21%	31%	15%	26%	36%	20.4%	
B1-65	June-03	Trench 624: 27.5-29.5 meters	5%	3%	7%	14%	24%	31%	31%	38%	50%	32.2%	

-

Expenses for Claim	# 1163443	
James R. Hindman	8 weeks	\$ 11,800.00
Triple A Resources	5.5 weeks	\$ 6,346.00
Glen Scott	3weeks	\$ 2,050.00
Kirk Watson	3 days	\$ 450.00
Excavator	24 hrs	\$2,160.00
Rent		\$1441.00

Total

1

\$ 24,247.00

Photos of trench 624 (gh1) Claim # 1163443 Lot 11 Concession 2 Refer to section 1 page 4 and section 2

Pictures of heavy mineralization in trenches

Section 4

Part C

Assays Page 1

Expenses Page 2

Trench 625

Line 325 m north - 200 m. west

Claim # 1191249

Lot 12 - Northwest Corner Concession 2

+60M Vrn	25.0%	38.9%	23.4%	24.3%	35.6%	31.2%
+0.25M Vm	37%	45%	24%	45%	41%	39%
+1M Vm +0.5M Vm	35%	35%	37%	31%	38%	63%
+1M Vm	25%	28%	36%	18%	33%	19%
-0.25mm	21%	36%	33%	27%	32%	10%
+0.25mm	24%	35%	30%	22%	31%	11%
+0.50mm	18%	18%	16%	14%	21%	23%
+1.00mm	10%	80	5 %	8%	%2	12%
+2.00mm	5%	2%	2 %	4%	2%	11%
+3.35mm	5%	7%	4%	5%	7%	19%
Sample	Trench 625: 2.5-5.0 meters	Trench 625: 5.0-7.0 meters	Trench 625: 7.5-10.0 meters	Trench 625: 10.0-12.5 meters	Trench 625: 12.5-15 meters	Trench 625: 15.0-16.0 meters
Date	June-03	June-03	June-03	June-03	June-03	June-03
Assay	B 1-71	B 1-72	B1- 73	B1-74	B1-75	B1-76

Regis Resources Cavendish Vermiculite Project

Page 1 of 1

Exploration Trench Assay Data

Expenses for claim # 1191249

Jim R. Hindman	7.8 weeks	11,615.00
Triple A Resources	5 weeks	\$5769.00
Glen Scott	4weeks	\$1950.00
Kirk Watson	1 day	\$150.00
Excavator	18 hrs.	\$1,620.00
Dozer	5 hrs	\$ 250.00
Rent		\$1443.00
Propane		\$76.00
Total		\$22,873.00

Photos of Trench 625(fg 2) Claim # 1191249 Lot 12 Concession 2 Claim # 1163443 Lot 11 Concession 2 Refer to section 1 page 4 and section 2

Pictures of heavy mineralization in trenches

Sample of trenches backfilled Trench 625 (fg 2)extension Trench 625 is located on the claim lines of 1191249 and 1163443. It is also the permit line boundary. Photo was taken 200 metres south of number 1post claim # 1163443 and number 4 post claim # 1191249.

Section 4

Part D

Assays Pages 1-3

Expenses - See Section 4, Part C, Page 2

Trench 626

Line 350 m. north - 200 m. west

Claim # 1191249

Lot 12 - Northwest Corner Concession 2

Assay	Date	Sample	+3.35mm	+2.00mm	+1.00mm	+0.50mm	+0.25mm	-0.25mm	+1M Vm	+0.5M Vm	+0.25M Vm	+60M Vm
B1-91	June-03	Trench 626: 0.0-2.5 meters (mislabled as TR 627)	6%	4%	9%	14%	15%	11%	36%	40%	47%	21.1%
B1-81	June-03	Trench 626: 2.5-5.0 meters (mislabled as TR 627)	10%	7%	11%	15%	16%	13%	25%	36%	53%	26.7%
B1-79	June-03	Trench 626: 5.0-7.5 meters (mislabled as TR 627)	6%	6%	10%	12%	12%	15%	39%	28%	40%	20.4%
B1-88	June-03	Trench 626: 7.5-10.0 meters (mislabled as TR 627)	5%	4%	8%	13%	18%	30%	18%	28%	39%	21.9%
B1-85	June-03	Trench 626: 10.0-12.5 meters (mislabled as TR 627)	3%	2%	5%	11%	19%	49%	26%	41%	61%	37.1%
B1-86	June-03	Trench 626: 12.5-15.0 meters (mislabled as TR 627)	6%	5%	11%	14%	19%	28%	27%	31%	57%	31.6%
B1-77	June-03	Trench 626: 15.0-17.5 meters (mislabled as TR 627)	5%	4%	8%	13%	18%	29%	39%	41%	60%	33.4%

-

Assay	Date	Sample	+3.35mm	+2.00mm	+1.00mm	+0.50mm	+0.25mm	-0.25mm	+1M Vm	+0.5M Vm	+0.25M Vm	+60M Vm
B1-80	June-03	Trench 626: 17.5-20.0 meters (mislabled as TR 627)	12%	7%	8%	11%	13%	13%	30%	46%	61%	27.0%
B1-92	June-03	Trench 626: 20.0-22.5 meters (mislabled as TR 627)	11%	7%	9%	12%	14%	13%	27%	31%	46%	20.8%
B1-87	June-03	Trench 626: 22.5-25.0 meters (mislabled as TR 627)	6%	2%	3%	6%	14%	32%	59%	54%	38%	24.6%
B1-83	June-03	Trench 626: 25.5-27.5 meters (mislabled as TR 627)	10%	5%	7%	9%	14%	17%	31%	28%	39%	17.7%
B1-93	June-03	Trench 626: 27.5-30.0 meters (mislabled as TR 627)	9%	5%	7%	12%	17%	20%	38%	41%	48%	29.9%
B1-78	June-03	Trench 626: 30.0-32.5 meters (mislabled as TR 627)	5%	3%	8%	17%	28%	35%	55%	50%	66%	56.0%
B1-84	June-03	Trench 626: 32.5-35.0 meters (mislabled as TR 627)	2%	2%	6%	14%	23%	40%	35%	31%	47%	32.0%

Exploration Trench Assay Data

Assay	Date	Sample	+3.35mm	+2.00mm	+1.00mm	+0.50mm	+0.25mm	-0.25mm	+1M Vm	+0.5M Vm	+0.25M Vm	+60M Vm
B1-95	June-03	Trench 626: 35.0-37.5 meters (mislabled as TR 627)	7%	5%	7%	8%	11%	16%	48%	41%	49%	22.4%
B1-82	June-03	Trench 626: 37.5-40.0 meters (mislabled as TR 627)	7%	6%	11%	15%	16%	28%	51%	51%	40%	34.8%
B1-96	June-03	Trench 626: 42.5-45.0 meters (mislabled as TR 627)	8%	4%	5%	5%	6%	10%	44%	28%	36%	14.1%
B1-97	June-03	Trench 626: 45.0-47.5 meters (mislabled as TR 627)	14%	8%	11%	12%	11%	19%	49%	35%	33%	31.4%
B1-89	June-03	Trench 626: 47.5-50.0 meters (mislabled as TR 627)	16%	8%	9%	7%	6%	9%	42%	28%	34%	21.3%
B1-90	June-03	Trench 626: 50.0-52.5 meters (mislabled as TR 627)	19%	10%	14%	12%	9%	10%	54%	31%	28%	36.9%
B1-94	June-03	Trench 626: 52.5-55.0 meters (mislabled as TR 627)	5%	4%	10%	20%	26%	21%	31%	38%	60%	38.3%

Photos of trench 626 (fg1)

Claim # 1191249 Lot 12 Concession 2

Refer to section 1 page 4 and section 2 This photo illustrates how each trench was sampled. At first a trail was cut with a saw, then a excavator was used to rough in the trail. A dozer was then used to level the trail for access.

The trenches were then measured at 2.5 metre intervals. Horizontal samples were taken over the length of the trench and places where the trench was over 1 metre in depth a vertical sample was taken. Those samples were collected in bags. Some larger samples were collected pales.

After all work was finished some areas were backfilled when necessary.

Photos of Trench 626 (fg1) Claim # 1191249 Lot 12 Concession 2 Refer to section 1 page 4 and section 2

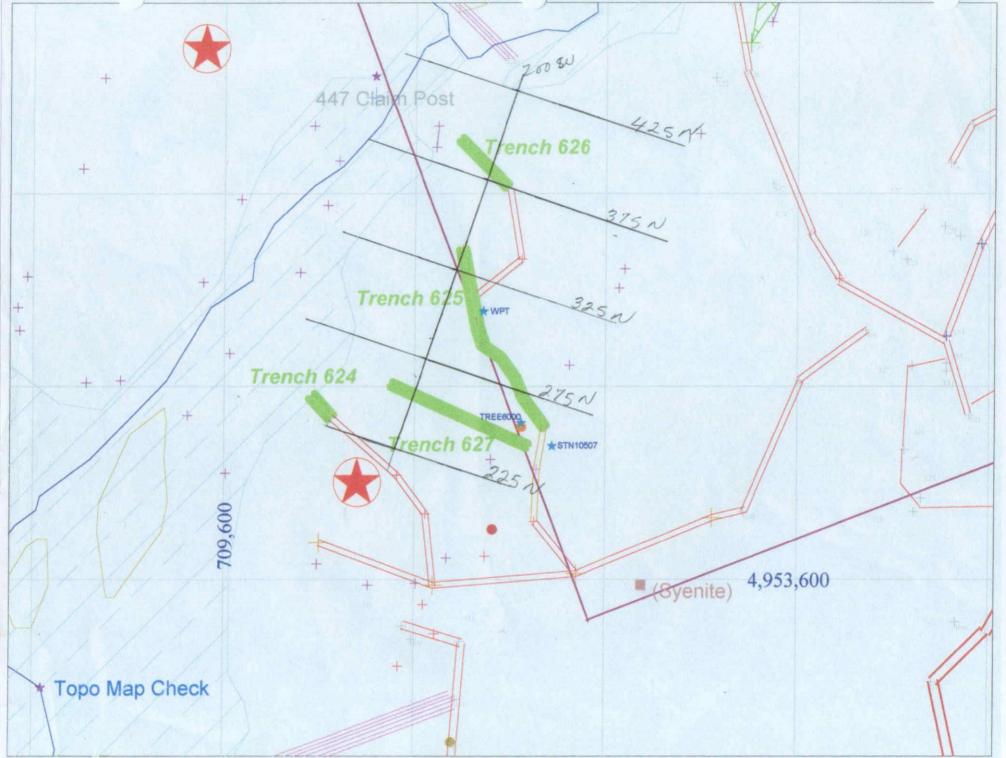
Pictures of heavy mineralization in trenches

Section 4

Part E

Expenses - Refer to Section 4, Part B, Page 3

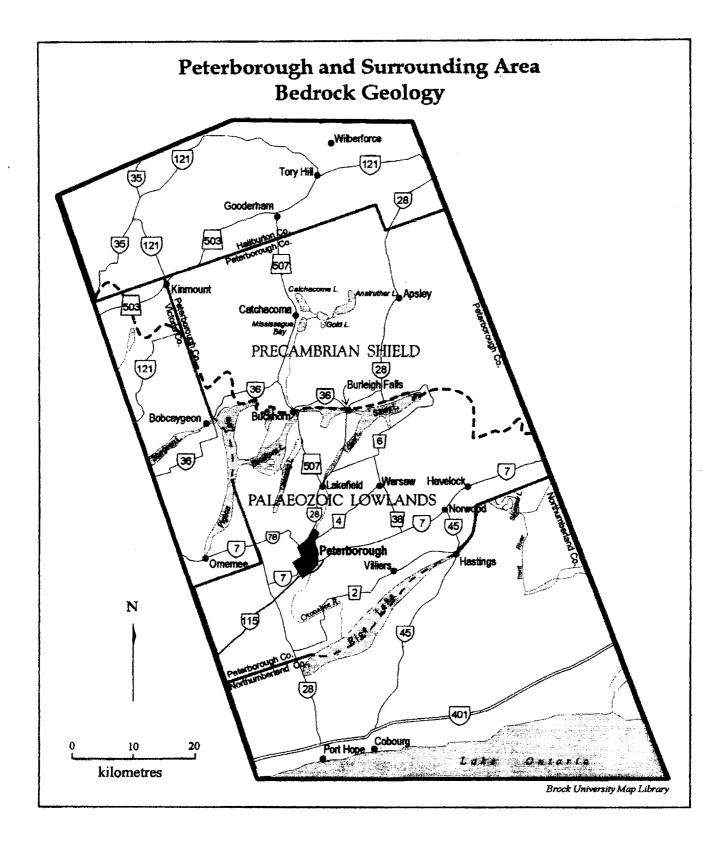
Trench 627


Line 275 m. North - 200 m. West

Lot 11 - Northeast Corner Concession 2

Claim # 1163443

Photos of Trench 627 (fg 3) Claim # 1163443 Lot 11 Concession 2 Refer to section 1 page 4 and section 2



Section 5

James R. Hindman Ph.D.

Overview of property and material

Pages 1-11

Vermiculite Canada Corporation

Regis Resources – Cavendish Operation RR1 Box 2, Buckhorn, ON K0L 1J0 • (705) 657-2022 • (705) 657-2282 fax Mill Phone (705) 657-9449

Overview of Expected Vermiculite Production from Cavendish Mine and Mill

Vermiculite ore will be processed by dry beneficiation techniques to produce a product of approximately 90% purity. The beneficiation process is relatively simple. Run of mine ore is first screened to remove oversize material (at an approximate 1cm particle size) and excess moisture from the remaining material is then removed using rotary and/or fluidized bed driers. After drying, the ore is screened into closely sized feed streams before treatment by winnowers to remove the rock impurities. Recycle of some higher grade reject streams after crushing to increase overall mill recovery is expected.

Commercial vermiculite is sold as sized concentrates and the material found in the Cavendish vermiculite deposit is expected to produce the following concentrate Product Grades: Number 3 (0.85mm x 1.7mm); Number 4 (0.425mm x 0.85mm); and Number 5 (0.425mm x 0.212mm). These Product Grade designations are standard to North America and are similar in size and usage to the Metric sized products Fine (1mm x 2mm); Superfine (0.5mm x 1mm); and Micron (0.25mm x 0.5mm).

Currently the demand for Number 3 Grade vermiculite is for cementitious coatings used to protect structural steel from fire damage in commercial properties such office buildings and shopping malls. Number 3 Grade vermiculite is also used in some horticultural products such as growth media and soil amendments.

Number 4 Grade vermiculite is used as an additive for plaster wallboard (sheetrock) to increase fire resistance and other high temperature properties. This grade of vermiculite is also used as carriers for various biological, chemical and agricultural compounds.

Due to the high aspect ratio of the flakes of Number 5 Grade vermiculite is sometimes used as a filler component in a number of commercial mixtures including plaster, plastics and paint.

Assay	Date	Sampla	+3.35mm	+2.00mm	+1.00mm	+0.50mm	+0.25mm	-0.25mm	+1M Vm	+0.5M Vm	+0.25M Vm	+60M Vm	Quality
B0-01	May-03	Silver-green ore. (Trench D area of projected pit)	20%	11%	13%	15%	26%	6%	13%	31%	72%	30.7%	8.4
80-02	May-03	Brown Ore - Pit Area - Trench BC Composite	8%	5%	8%	11%	14%	15%	11%	22%	44%	12.4%	ND
B0-03	May-03	High Grade Zone near old drainage (Trench CD comp)	60%	8%	6%	4%	7%	14%	21%	42%	69%	10.5%	8.7
B 0-04	May-03	Edge of Marsh near old drainage (W end Trench CD)	8%	5%	15%	22%	21%	28%	26%	36%	43%	30.3%	5.4
B0-05	May-03	Composite Ore Sample (Trench B)	13%	3%	10%	16%	27%	31%	18%	32%	63%	35. 3%	13.7
B 1-1	June-03	White spot ore - West end of Trench A	0%	4%	11%	24%	33%	28%	28%	39%	41%	37.8%	8.3
B 1-54	June-03	WPT 626 In Situ ore between Trench B and Trench BC	6%	4%	9%	19%	29%	27%	18%	32%	62%	37.0%	8.2
B1-5 5	June-03	WPT 625 In Situ ore - Area between Tr B Ext and Tr BC	3%	3%	7%	14%	32%	39%	14%	38%	63%	44.9%	9.3

Vermiculite Assay - Regis Resources Screen Series - 2003

"It is a capital mistake to theorize before you have all the evidence. It biases the judgment." (Sherlock Holmes)

Sample: B0-05 Composite Ore Sample (Trench B)

Date: 5/25/03

ASTM Sieve	Size (mm)	Assay Wt (gm)	Dist'n Wt (%)	<u>Weigh</u> Exfol	t After lation	Volume After Exfoliation	Rock Wit	Dist'n Vm (%)	Grade Vm (%)
Oversize	:		0%				0.0	0. 00%	0.00%
6	3.350	289.1	13%	289.0	9.1%		288.0	0.10%	0.38%
10	2.000	67.4	3%	64.2	37.65%	0.10	58.9	0.78%	12.61%
18	1.000	216.4	10%	208.1	20.96%	0.25	176.8	3.63%	18.30%
35	0.500	345.0	16%	323.6	19.18%	1.10	233.4	10.24%	32.35%
60	0.250	583.1	27%	519.8	17.15%	2.90	214.1	33.85%	63.28%
Pan	<.150	684.0	31%	575.5	19.36%	2.90	123.6	51.40%	81.93%
			wt dist'n	L.O.E.	18.18%		should be ~100%	100%	
l'otais (+0.2	Summe)	1501.0	68.7%	1404.7	529.8		971.2		35.30%
- VIALD (' V.A	Jailay						1		
bulk	sample:	2185.0	31.3%	1980.2	grams Vm 1090.2	13.7	1094.8		49.89%
bulk	sample:		ther than fe	1980.2 ed are appr	1090.2	an an an 6 - New York of the state of the second	Sector Sector		
buik	sample:	2185.0 Oversized numbers o Significant organic m	ther than fe	1980.2 eed are appr and 0.5 mm	1090.2	an an an 6 martainn an the state of the states	Sector Sector		
bulk NOTES: Significant	sample:	2185.0 Oversized numbers o Significant organic m	ther than fe naterial in 1	1980.2 ed are appr and 0.5 mm	1090.2 roximated.				

Vermiculite Assay - Regis Resources Screen Series - 2003

"It is a capital mistake to theorize before you have all the evidence. It biases the judgment." (Sherlock Holmes)

Sample: B0-04 Edge of Marsh near old drainage (W end Trench CD) Date: 5/23/03

	Size (unna)	Assay Wt (gm)	Dist'n Wt (%)		t After intion		ne After oliation	Rock Wt (gm)	Dist'n Vm (%)	Grade Vm (%)
Oversize			0%					0.0	0.00%	0.00%
6 3	3.350	201.1	8%	201.1	20.00%			201.0	0.01%	0.05%
10 2	2.000	139.7	5%	132.5	35.82%	0.25		119.6	1.87%	14.39%
18 1	1.000	382.6	15%	359.7	22.97%	0.25		282.9	9.27%	26.06%
35 (0.500	577 .9	22%	532.2	22.10%	0.40		371.1	19.24%	35.78%
60 (0.250	542.1	21%	492.5	21.31%	1.10		309.4	21.65%	42.93%
Pan <	<.150	734.5	28%	548.5	36.07%	1.00		218.9	47.96%	70.20%
			wt dist'n	L.O.E.	22.42%			should be ~100%	100%	
Tot als (+0.25	Sanan)	1843.4	71.5%	1718.0	559.4		<u></u>	1284.0		30.35%
bulk s	sample:	2577.9	28.5%		grams Vm 1075.0			1502.9		41.70%
NOTES:		Oversized numbers o					5.4			
Int	Wt	1.1	9,1%	Moisture						
	Wt y Wt	1.1 1	9,1% 90.0%							
Dŋ				O'size						
Dry Oʻs	y Wt	1	90.0%	O'size	i					
Dry Oʻs Ass	y Wt size sayWt	1 0.9 500	90.0% 10.0%	O'size Assay Oʻsize Adj	i 2 mm	Imm	0.5mm	other =		
Dry Oʻs	y Wt size sayWt Drganic:	1 0.9 500 s in	90.0% 10.0% 4500	O'size Assay O'size Adj 6-mesh		lmm gray	0.5mm black	other = other =		

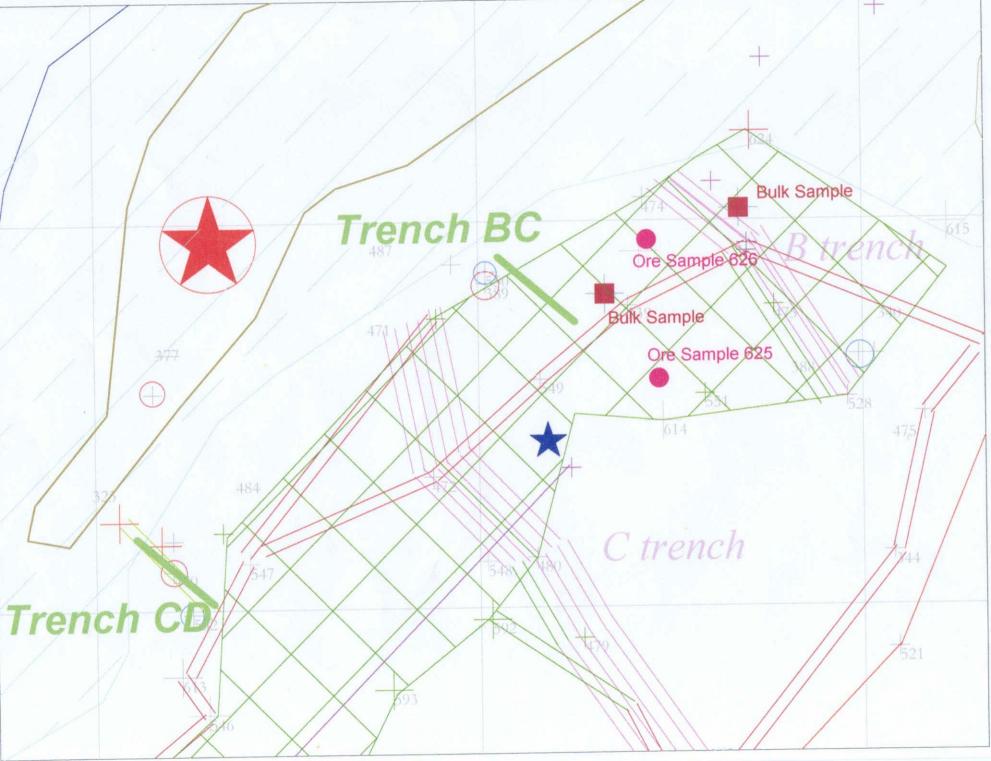
Vermiculite Assay - Regis Resources Screen Series - 2003

"It is a capital mistake to theorize before you have all the evidence. It biases the judgment." (Sherlock Holmes)

Sample: B0-03 High Grade Zone near old drainage (Trench CD comp) Date: 6/22/03

ASTM Sieve	Size (mm)	Assay Wt (gm)	Dist'n W1 (%)		ht After. Hiation	<u>Yolume</u> Exfolia		Dist'n Vm (%)	Grade Vm (%
Oversize			0%				0.0	0.00%	0.00%
6	3,350	2294.5	60%	2294.5	5 8.00%		2294.0	0.06%	0.02%
10	2.000	324.3	8%	307.8	39.57%	0.25	282.6	5.23%	12.86%
18	1.000	230.2	6%	217.0	26.83%	0.25	181.0	6.17%	21.37%
35	0 .500	170.6	4%	160.5	14.21%	0.40	99.5	8.92%	41.68%
60	0.250	262.4	7%	230.8	17.47%	1.10	81.5	22.69%	68.94%
Pan	<.150	539.4	14%	458.7	17.78%	1.00	85.4	56.94%	84.17%
			wt dist'n	L.O.E	20.80%		should be ~100%	100%	L
fot als (+0. 2	25mm)	3282.0	85.9%	3210.6	343.4		2938.6		10.46%
baik	sample:	3821.4	14.1%	3669.3	grams Vm 797.4		3024.0		20.87%
			10 A	Sec. 2		해외 문서는 유민이는 것이 같다.	8.7	and the second	
NOTES:		Oversized numbers of	other than f	eed are app	roximated.		9.		
NOTES:		Oversized numbers of	other than fo	eed are app Moisture	roximated.		9.		
NOTES: Ir D	nt Wt Dry Wt	Oversized numbers of	other than fo	eed are app Moisture	roximated.		9.		
NOTES: Ir D O	nt Wt Dry Wt Psize	Oversized numbers of 1.1	other than fo 9.1%	Moisture O'size	roximated.		6.		
NOTES: Ir D O	nt Wt Dry Wt	Oversized numbers of 1.1	9.1% 90.0%	Moisture O'size	roximated.		9.		
NOTES: Ir D O	nt Wt Dry Wt J'size LssayWt	Oversized numbers of 1.1 1 0.9 500	9.1% 90.0% 10.0%	Moisture O'size Assay	j		Smm other =		
NOTES: Ir D O A ignificant	nt Wt Dry Wt Vsize AssayWt Organics	Oversized numbers of 1.1 1 0.9 500	9.1% 90.0% 10.0% 4500	Moisture O'size Assay O'size Ad	j 2 mm	1 mm 0.			

Vermiculite Assay - Regis Resources Screen Series - 2003


"It is a capital mistake to theorize before you have all the evidence. It biases the judgment." (Sherlock Holmes)

Sample: B0-	02 Brown Or	e - Pit Area - 1	French B	C Comj	osite		Date:	5/22/03	
ASTM Siz Sieve (mi	Accev Wt	(gm) Dist'n Wt (%)		t After intion		nc After Mintion	Reck Wt	Dist'n Vm (%)	Grade Vm (%)
Oversize	1424.1	38%	1424.1	-619	ġ		1424.0	0.01%	0.00%
6 3.3	50 302.8	8%	294.7	57.45%	þ		288.7	1.95%	4.66%
10 2.0	00 189.0	5%	183.2	35.58%	5		172.7	2.2 6 %	8.62%
18 1.0	80 305.2	8%	296.3	25.43%	5		270.2	4.85%	11.47%
35 0.5	00 428.8	11%	415.5	14.019	5		333.9	13.15%	22.13%
60 0.2	50 539.8	14%	503.9	15.229	5 		303.9	32.69%	43.70%
Pan <.1	50 544.2	15%	486.3	17.799			218.8	45.09%	59.79%
		w dist'n	L.O.E.	18%	5		should be ~100%	100%	
Fotals (+0.25m)	m) 3189.7	85.4%	3117.7	396.3	5		2793.4	, , , , , , , , , , , , , , , , , , ,	12.42%
bulk san	nple: 3733.9	14.6%		grams Vm 721.1	, ,		3012.2		19.33%
NOTES:									
Int W	t 3733.7	0.0%	Moisture						
Dry V		38.1%	0'size						
O'size		61.9%	•	_					
Assay	Wt 2309.8	1424.062	O'size Ad	j					
Significant Org	anics in	o'size	6-mesh	2 mm	lmm	0 5mm	other =		
Exfoliated vern	niculite color is	white	light tan	brown	gray	black	other =		
	ins or excessive f				the second s				

Vermiculite Assay - Regis Resources Screen Series - 2003

"It is a capital mistake to theorize before you have all the evidence. It biases the judgment." (Sherlock Holmes)

Sambuc:	10-00	Silver-gr	een ore						Date:	5/17/03	}
ASTM Sieve	Size (mm)	Assay W	<u>t (gm)</u>	Dist'n Wt (%)		it After istion		me After	Rock Wt (cm)	Dist'n Vm (%)	Grade
Oversize				0%						0.00%	0.00%
6	3.350	956 .1		20%	956.1	20.00%	,		956.0	0.01%	0.01%
10	2.000	545.2		11%	528.2	30.23%	0.54		489.1	3.03%	10.299
20	1.000	620.6		13%	608.7	14.55%	0.74		538 .7	4.43%	13.19%
35	0.500	733.5		15%	710.6	10.14%	2.20		508.1	12.19%	30.729
65	0.250	1252.4		26%	1130.8	13.58%	8.01		356.4	48.46%	71.54%
150		430.5		9%	361.1	23.23%	1.64		131.7	16.16%	69.40%
Pan	<.150	304.9		6%	213.9	31.30%	0.36		14.2	15.72%	95.3 3%
				wt dist'n	L.O.E.	13.77%			should be ~100%	100%	
Fotals (+0.1	25mm)	4107.8		84.8%	3934.4	1259.4			2848.4		30.66%
Sec. 3. 18. 18.	sample :	4843.2	- Inner acre	15.2%	4509.5	rams Vm 1 848.8			2994.4		38.17%
	10	760.90	33679; • 17					8.4			
NOTES:	20	250.80 250.20	2.17	243.00	528.24	0.25	0.54	225.00	489.11		
	35		2.48	245.40	608.69	0.30	0.74	217.20	538.75		
	55 65	250.30	2.93	242.50	710.64	0.75	2.20	173.40	508.15		
	150	250.20 250.00	5.01 1.72	225.90 209.70	1130.76	1.60	8.01	71.20	356.40		
D	an	250.00	1.72	175.90	361.10 213.93	0.95 0.30	1.64 0.36	76.50	131.73		
						0.00	0.00	11.70	14.23		
ignificant	Organics	in	(o'size (5-mesh 2	mm	lmm	0.5mm	other =		
xfoliated	vermiculi	te color is					gray	black	other =		
		excessive fi			-						-

Curriculum Vitae

James R. Hindman, Ph.D.

P.O. Box 728 715 East Glendale Street Dillon, Montana 59725-0728 (406) 683-4365 voice (559) 751-2064 fax DrHindman@aol.com

Acknowledged expert in the field of vermiculite technologies. Also knowledgeable in related technologies dealing with clays, diatomaceous earth, micas, perlite, and natural zeolites. Consultant and participant in corporate research projects in vermiculite exploration, mining, beneficiation, marketing and product development.

Research Interests

Continuing research in the preparation and use of chemically modified commercial vermiculite in specialty product applications. Areas of interest include: (1) vermiculite synthesis; (2) extending the thermal stability range of vermiculite; (3) osmotic swelling of vermiculite for product beneficiation and particle delamination; (4) vermiculite dispersion, gel, and film technologies; and (5) the preparation of organo-vermiculite compounds for use in toxin removal, plastic fillers, drilling mud and lost circulation materials. Current research also includes improvements in vermiculite beneficiation techniques and the preparation of a text on the beneficiation, modification, and applications of commercial vermiculite.

Industry and Related Experience

Employed as Senior Metallurgist by W.R. Grace and Company at their Libby verniculite operation from 1978 to 1985. During this period work was performed in verniculite beneficiation that resulted in substantial increases in product quality. Research projects included processes such as electrostatic separation, froth flotation, heavy media separation, high intensity magnetics, photometric sorting, selective comminution and screening, water and air classification, and several concentration techniques using laminar flow. Work was also performed in product development for several specialized applications using commercial vermiculite.

Familiarity with most current vermiculite mining and milling technologies through onsite examinations of mining and milling operations at Elk Gulch (Montana), Enoree (South Carolina) Qiegangbulake (Xin Jiang, China) Louisa (Virginia), Mud Tank (Australia), Phalabowra (RSA), Santa Luzia (Brazil),

Served as Vice President of Research and Technology for Resource Vermiculite LLC, during the initial development of their mining and milling venture at Elk Gulch, near Dillon, Montana. Most recently served as Vice President and Chief Operations Officer, Stansbury Holding Corporation until my conditional resignation in August 2000. Founding member of Nevada Vermiculite, LLC. Currently acting as an independent consultant to the vermiculite industry and working onsite for Regis Resources Inc. at their Cavendish Vermiculite Project in Ontario, Canada.

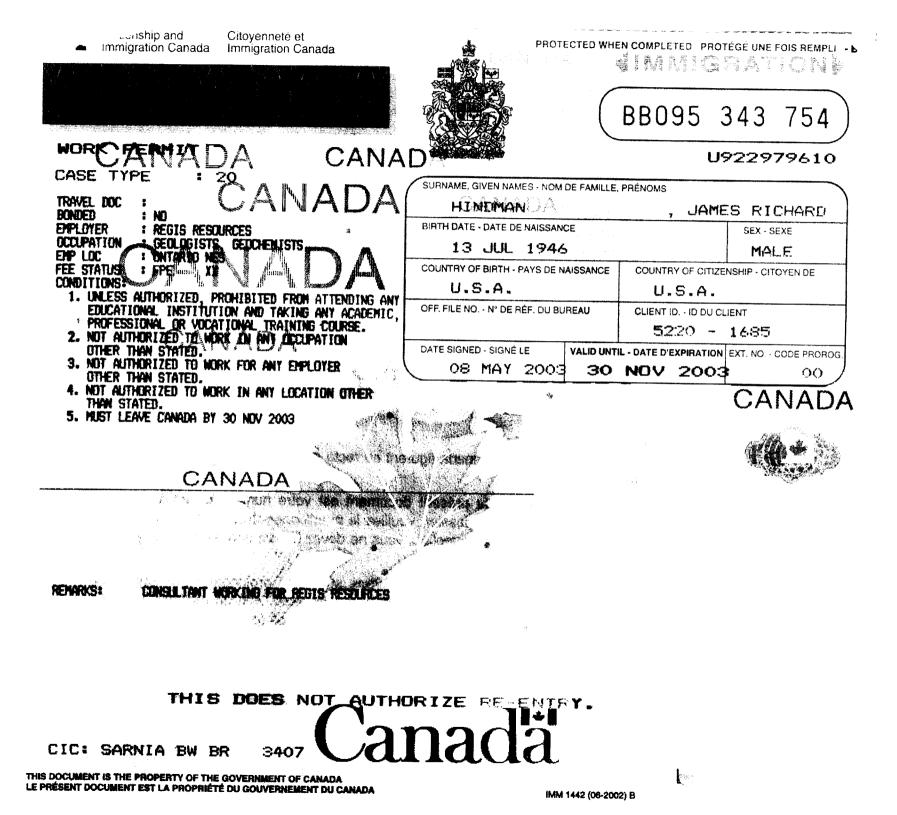
Consulting Clients – Mining and Beneficiation

Bullion Monarch Company Helix Resources N.L. (Australia) Ikerd-Bandy, Inc. Regis Resources (Canada) Stansbury Holdings Corporation UBM - União Brasileira de Mineração S.A. (Brazil) US Borax USMX, Inc.

Consulting Clients - Product Development and Process Applications

BNZ Materials
W.R. Grace & Company
Hercules Incorporated
ICI Americas, Inc.
Metex Corporation
3M - Minnesota Mining and Manufacturing Company
Unifrax Corporation (formerly Carborundum Company)

Consulting Clients – Vermiculite Trade


D'Long Development Group (Canada) F&S Alloys and Minerals Corporation KPMG Nam Fong Trading Company Southern Importers

Education and Professional Affiliations

Degrees have been earned at the University of Southern California (B.S., Geological Sciences) and the University of Utah (Ph.D., Geology). Current membership in the Clay Minerals Society, the Mineralogical Society of America, and The Vermiculite Association. Founder and Publisher of the Vermiculite Technology Newsletter. Research resources include an extensive database referencing over 7,000 patents, technical publications, and unpublished documents.

Related Publications

Hindman, James	R. (1986) Ion exchange at 40°C in vermiculite from Libby, Montana. International Mineralogical Association, 14 th General Meeting, 1986, Stanford University.
(1987)	Method of increasing the volume yield of exfoliated vermiculite. United States Statutory Invention Registration H254, April 7, 1987. Appl. No. 632,575, 19 July 1984.
(1989)	Perusing the databases for useful information relating to commercial vermiculite technology. Presented at The Vermiculite Association Annual Meeting, October 1, 1989, Chicago.
(1990)	The Vermiculite Technology Newsletter. Presented at The Vermiculite Association Annual Meeting, October 1, 1990, Windsor, England.
(1991)	Industrial Minerals 1990 [vermiculite]. Mining Engineering, 43(6), 617-8.
(1992)	Industrial Minerals 1991 [vermiculite]. Mining Engineering, 44(6), 577-8.
(1993)	Vermiculite: A review of 1992 activities. Mining Engineering, 45(7), 725.
(1994)	Vermiculite. Industrial Minerals and Rocks, 6 th Edition, pages 1103-11. Society for Mining, Metallurgy, and Exploration, Inc.
(1995)	Vermiculite. Metals & Minerals Annual Review 1995, pages 84-5. Mining Journal, London.
(1996)	Vermiculite. Metals & Minerals Annual Review 1996. Mining Journal, London.
(1997-)	Vermiculite Technologies; Vermiculite Technology Newsletter.

Section 6

Pay roll lay out and receipt

Catalina Bay Resort P.O. Box 142 Buckhorn . Ont KOL 150 705-657-1055 03 N <u>n Sh</u> D л ADRESSE ADDRESS eis Resources VENDU PAR SOLD BY C.R. C.O.D. CHARGE RECU AC MONT.REPORTE JULY 02 - JULVO3 900000 \$750m Yukon AUQ 02 - JULY 825000 03 Algonquin B 17250 CO Hydro Raid 2399 16 10 2212 17 TPS/GST NO. ENRG TAXE TAX REG. NO: 2186133 TVP/PST 16 TOTAL

_ _

Glen Duncan Scott	S.I.N.#	430 629 535	
ି ⊋ #1			

\$3000/MONTH

	TART DATE	23-Oct-02
--	-----------	-----------

2003 SALARY	GRÓSS	С.Р.Р.	E,(.	FED.TAX	PROV. TAX	EXTRA TAX DED	TOTAL DEDUCT.	NET
JAN 1 - 15	1,500.00	67.03	31.50	180.40	129.50	0.00	408.43	1,091.57
JAN 15 - 31	1,500.00	67.03	31.50	180.40	129.50		408.43	1,091.57
	3,000.00	134.06	63.00	360.80	259.00	0.00	816.86	2,183.14
FEB 1 - 15	1,350.00	59,61	28.35	150.35	107.30	0.00	345.61	1,004.39
FEB 16 - 28	1,638.47	73.89	34.41	210.50	151.75	0.00	470.55	1,167.92
FED IV-AV	2,988.47	133,50	62.76	360.85	259.05	0.00	816.16	2,172.31
MAR 1 - 15	2,053.88	94.45	43.13	301.80	220.10	0.00	659.48	1,394.40
MAR 16 - 31	1,586.54	71.32	33.32	199.20	143.40	0.00	447.24	1,139.30
	3,640.42	165.77	76.45	501.00	363.50	0.00	1,106.72	2,533.70
ARP 1 - 15	1,538.46	73.89	34.41	210.50	151.75	0.00	470.55	1,167.91
APR 16 - 30	1,569.23	70.46	32.95	195.45	140.60	0.00	439 .46	1,129.77
APR 10-30	3,207.69	144.35	67.36	405,95	292.35	0.00	910.01	2,297.68
	4 628 46	73.89	34.41	210.50	151.75	0.00	470.55	1,167.91
MAY 1 - 15	1,638.46 1,500.00	67.03	31.50	180.40	129.50	0.00	408.43	1,091.57
MAY 16 - 31	3,138.46	140.92	65.91	390.90	281.25	0.00	878.98	2,259.48
	4 600 00	87 02	31.50	180.40	129.50	0.00	408.43	1,091.57
JNE 1 - 15	1,500.00	67.03 67.03	31.50	180.40	129.50	0.00	408.43	1,091.57
JUNE 16 - 30	1,500.00 3,000.00	134.06	63.00	360.80	259.00	0.00	818.86	2,183.14
JULY 1 - 15 JULY 16 - 31								
JULT 10-31	0.00	0.00	0.00	0,00	0.00	0.00	0.00	0.00
AUG 1 - 15 AUG 16 - 31								
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
SEPT 1 - 15 SEPT 16 - 30								
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
OCT 1 - 15 OCT 16 - 31								
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
NOV 1 - 15 NOV 16 - 30								
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
DEC 1 - 15 DEC 16 - 31								
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
T4 TOTAL	18,975.04	852. 6 6	398.48	2,380.30	1,714.15	0.00	5,3 45.59	13,629.45

Glen Duncan Scott R.R. #1 KINMOUNT, ONTARIO KOM 2A0 (705) 488-2843		S.I	I.N.# 4	30 629 535	S	3000/MONTH	
		-	ART DAT	E ON DATE	23-Oct-02		
2002 SALARY	GROSS	C.P.P.	E.I.	FED.TAX	PROV. TAX	TOTAL DEDUCT.	NET
007.4 45						0.00	0.00
OCT 1 - 15 OCT 16 - 31	875.00	34.80	19,25	123.80	49.50	227.35	647.65
001 18-31	875.00	34.80	19.25	123.80	49.50	227.35	647.65
NOV 1 - 15	1.638.47	70.15	36.05	211.60	83,45	401.25	1,237.22
NOV 16 - 30	1.500.00	63.65	33.00	185.25	129.70	411.60	1,088.40
	3,138.47	133.80	69.05	396.85	213.15	812.85	2,325.62
DEC 1 - 15	1,500.00	63.65	33.00	185.25	129.70	411.60	1,088.40
DEC 16 - 31	1,107.76	45,21	24.37	115.25	77.90	262.73	845.03
	2,607.76	108.86	57.37	300.50	207.60	674.33	1,933.43
	6,621.23	277.46	145.67	821.15	470.25	1,714.53	4,906.70

4:01pm Date: Jun 30 2003 The Listing

Regis Resources Inc.

General Ledger Listing as of June 30, 2003

G/L listing for account [6191] to [6191], for department [] to [222222], [1] to [6], for fiscal period (Account). sorted by (Include) accounts with no activity. (Standard) formet. Printed in

Lest posting sequence number: 42

Acct. Dept. Pd Srce Date	Description	Reference	Debits	<u>Credits</u>	Net Change	Balance
						0.00
1 GL-GJ Jan 31 2003	WAGES - TRIPLE A RESOURCES TRIPLE A RESOURCES JAN 1-15 TRIPLE A-JAN 16-31 & EXPENSES TRIPLE A - EXPENSES	222 2 35 242	2,500.00 2,996.00 2,000.00		5,496.00	5,496.00
2 GL-GJ Feb 28 2003 2 GL-GJ Feb 28 2003	TRIPLE A RESOURCES FEB 1-15 TRIPLE A RESOURCES FEB 16-28	273 290	2,500.00 2,500.00 2,500.00		7,000.00	12,496.00
3 GL-GJ Mar 31 200	5 KEITH VATCHER MAR 1-15 + EXPEN 5 TRIPLE A RESOURCES MAR 16-31	338	2,500.00		5,000.00	17,496.00
4 GL-GJ Apr 30 200. 4 GL-GJ Apr 30 200	5 TRIPLE A RESOURCES PAY & EXPEN 3 TRIPLE A RESOURCES APR 16-30	395	2,500.00 2,500.00		5,000.00	22,496.00
5 GL-GJ May 31 200	3 TRIPLE A RESOURCES 3 TRIPLE A RESOURCES	405 4 33	2,500.00		5,000.00	27,496.00
6 GL-GJ Jun 30 200		446 467	2,500.00	0.00	5,000.00	<u> </u>
			32,496.00	U.UU ==================================		

13 transactions printed. 1 account printed.

32496 Kriple A 2003 July-Dec 2002 15000 0 47 496

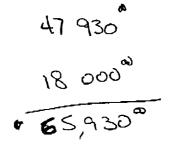
*

4:00pm Date: Jun 30 2003 con Listing

Regis Resources Inc.

General Ledger Listing as of June 30, 2003

G/L listing for account [5120] to [5120], for department [] to [zzzzzz], [1] to [6], for fiscal period (Account). sorted by (Include) accounts with no activity. (Standard) format. Printed in


42 Last posting sequence number:

<u>Acct. Dept.</u> <u>Pd Srce Date</u>	Description	Reference	Debits	Credits	Net Change	Balance
5120 12 GL-GJ May 05 2003 12 GL-GJ May 05 2003	CONSULTING FEES OPTIONS EXERCISED BY K.VATCHER Close to Retained Earnings.	Special Posting(&) YR END ADJ. 3050 Opening Balance	- Previous Yes 8,750.00	8,750.0D	0.00	0.00
2 GL-GJ Feb 28 2003 3 GL-CJ Mar 31 2003 4 GL-GJ Apr 30 2003 5 GL-GJ May 31 2003 5 GL-GJ May 31 2003	JAMES HINDMAN	BANK DRAFT 398 398 422	6,000.00 6,000.00 6,000.00 6,000.00 2,915.71 7,000.00 4,000.00		6,000.00 6,000.00 6,000.00 6,000.00	6,000.00 12,000.00 18,000.00 24,000.00
5 GL-GJ May 31 2003 6 GL-GJ Jun 30 2003	5 JAMES HINDMAN 5 JAMES HINDMAN	DRAFT DRAFT	4,000.00 6,000.00		17,915. 7 1 11,930.00	41,915.71 53,845.71
6 GL-GJ Jun 30 200	5 JAMES HAINDMAN	DRAFT	5,930.00 62,595.71	8,750.00	=	53,845.71

12 transactions printed.

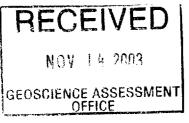
1 account printed.

James Hindman 2003 - July. Dec 2002

2.26015

Index For Additional Information On Previous Work Report

Section 1


Page 1-2	Prospecting
Page 3	Geology And Mapping
Page 4	Map with North Arrow added
Page 5	Map number P.3096 Precambriam
	Geology, Burleigh Falls Area (map
	first used for prospecting)
Page 6	First map of property Trenching

Section 2 Maps

Page 1Trenches AW to IPage 2General Geology and Vermiculite
colourPage 3New Trenches and trailsPage 4New Trenches with oldPage 5Sections of different gradesPage 6Map of property

Section 3

Information on sampling and assays

Page 1	Procedures on running through
	furnace
Page 2-9	Assay procedures
Page 10-11	Test results from over all samples
	taken from new trenches
Page 12-13	Sizing guidelines for markets

Prospecting Pages 1 - 6

Prospecting by Triple A Resources

Prospecting for us involves drilling a hole through the soil or dirt with a hand auger. In the winter when the ground is frozen we will use a tiger torch to thaw the ground. Some days we may only drill ten holes and others we may drill twenty. After the sample is retrieved it is placed in a metal tray and heated with a propane torch. All we look for is colour and gather some conclusions on the material. We spent a lot of time around the swamp during the winter. Most of the swamp has a lot of weathered or rotted trees, grass and organic material. The swamp is very deep and hard to drill due to the water and typical swamp content. We do know that the material in the swamp is of low value due to the cost of removing and milling it. In most areas of the swamp the material has been compressed to two feet and at a high percent. The vermiculite in water for long periods of time loses its ability to exfoliate. Our process of separation includes air and with the swamp material weighing simular to vermiculite it complicates the separation. With the previous work we concluded the swamp may not be feasible to mine. Samples taken from the swamp are near impossible to assay with a furnace we now use. We plan to purchase a muffle furnace November.

SECTION A

Sections along the swamp edge, east and west sides contain ore that consist of material that is lighter in colour and has a high bag yield and larger size range. The vermiculite also exfoliates faster with less heat when dried. Bag yields are 9 to 1 in and higher in the larger size ranges. The material is different than most other mines and has great potential due to its light colour and yield. The material in those areas has to be treated separately due to those characteristics and value. When separating through a side draft winnower the concentrate will have to be rescreened through a high motion screen. The middlings crushed as to only break up the calcite and clean but not damage the vermiculite. The waste may even have to make second pass through a separate circuit and reentering the mids and concentrate with the first pass material. The vermiculite also contains more moisture than other areas of the property. This also causes the vermiculite to be trapped in more dust when dried, simular to a powdery coating. All material in those areas were much higher in grade and more consistent. The marble is less altered and more weathered because of the moisture and vermiculite content.

SECTION B

Section B contains material that is more altered than Section A and darker in colour. The vermiculite has a wider colour range that varies from silver to black. The vermiculite for the most part has a bag yield that ranges from 5 to 1 up to 10 to 1. This material will have to be blended. Trench B has several heavy concentrate zones that passing through and range from six inches to two feet in width. Those zones are difficult to trace from surface but appear in most trenches or sample pits. Those zones are only assayed and not actually mapped as if we were working with lode material. We are only concerned with overall averages and not the geology of the rock. When we start the pit for mining those areas will then be followed as we need them for blending. In the Trench B area we found two narrow stringers that contained biotite. The material in the competent marble had a low yield but in the weathered soil it had a very high yield which is to be

expected.

The material in this area will not be difficult to deal with. Separation with be done with waste removed in the first pass, mids rescreened, reran and concentrate cleaned with light screening then bagged.

SECTION C

Section C contains material that is more of a tan colour and has a lower bag yield. This is a smaller area and cuts through the Trench D and C. The material is lighter in weight and we will have to work with the area in the same way as Section A. This material will be blended with Section B. The up side is that the material grades will increase greatly with vigorous screening. A lower recovery is expected in this area. Maybe only 50 percent of total vermiculite.

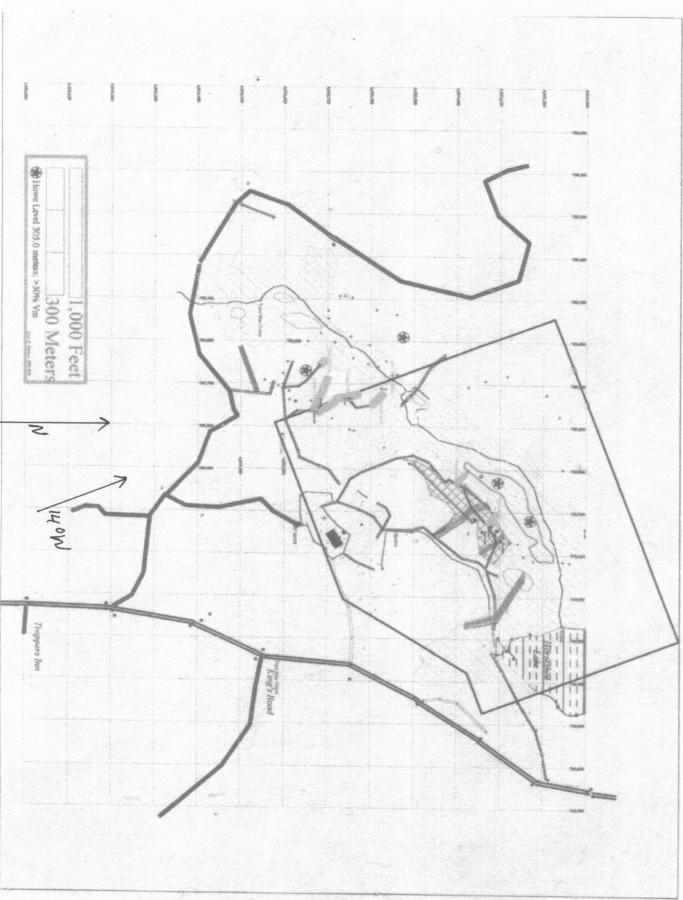
SECTION D

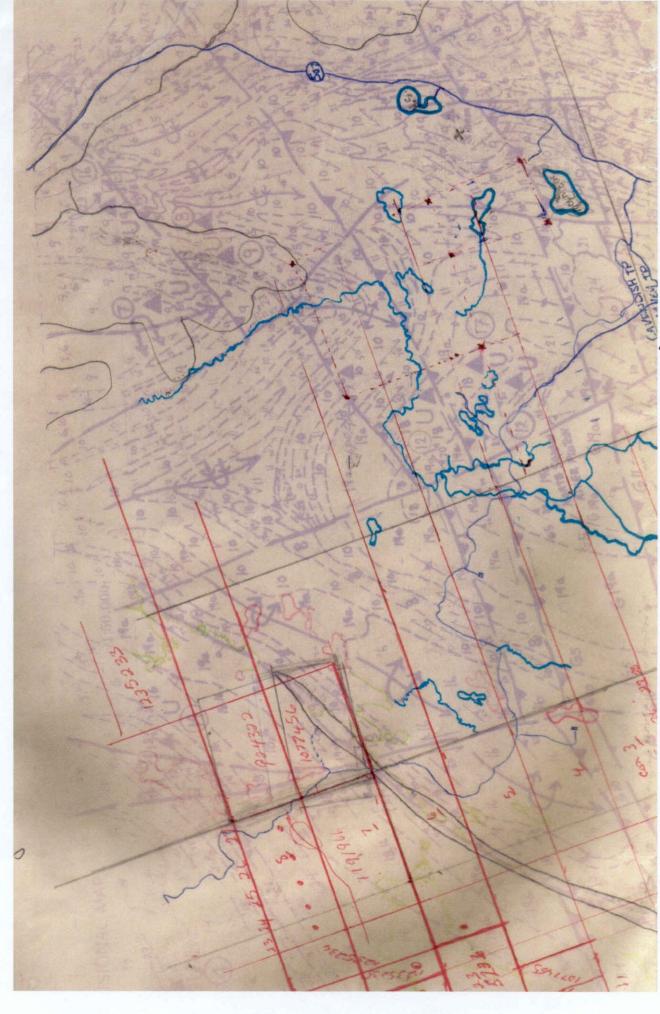
Section D area is higher and did not get the weathering as other areas. There is also a high content of Chlorite in the marble. The broken and highly fractured rock makes excellent road and berm material after the fines are screened off. This area on surface and on the swamp side is of good grade and has a good yield usually 6 to 1 and higher. The material closer to the bed rock is lower yielding 3 to 1, to 5 to 1. Most areas bedrock is 3 to 6 feet from surface. On the edges it may range 5 to 10 feet in places.

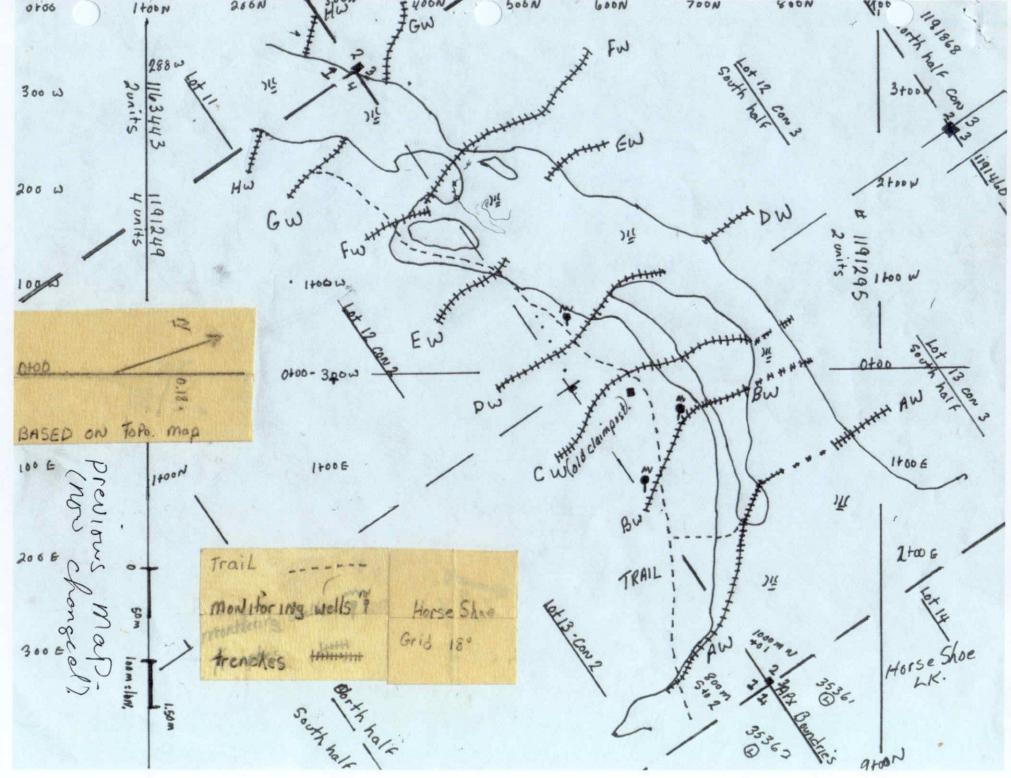
VEGETATION

We have noticed that heavy concentrated zones of vermiculite will cause tree roots to rot. The maple trees will usually will be solid when less than 12 inches in diameter, but in larger trees the centres will be hollow and tops usually broken or dead. Cedar trees will have lots heavy branches and also hollow. Very few cedars if any could be considered usable for logs. Iron wood trees were tall and solid but small which makes good firewood. Birch were few but had large hearts, simular to maple and also good firewood. Very few oak , balsam, ash, popular or bass within the zones, but plenty of each outside. The hemlock trees were plentiful and large which could make good logs. The hemlock seemed to adapt to the moisture and grow quite well in those areas. Pine trees also grew well but usually on the edges and not right in the zones and make good saw logs. When prospecting we always look for hemlock that have almost a bright orange tint when the bark has been slashed. Also there seemed to be lots of blow downs or widow makers. When trees blow down, plenty of material cling to the roots.

The swamp is completely covered in tall swamp grass. The swamp in the centre is very deep (30 feet plus) and tapers up toward the edges. The vermiculite extends out into the swamp from 5 to 15 metres along the sides.

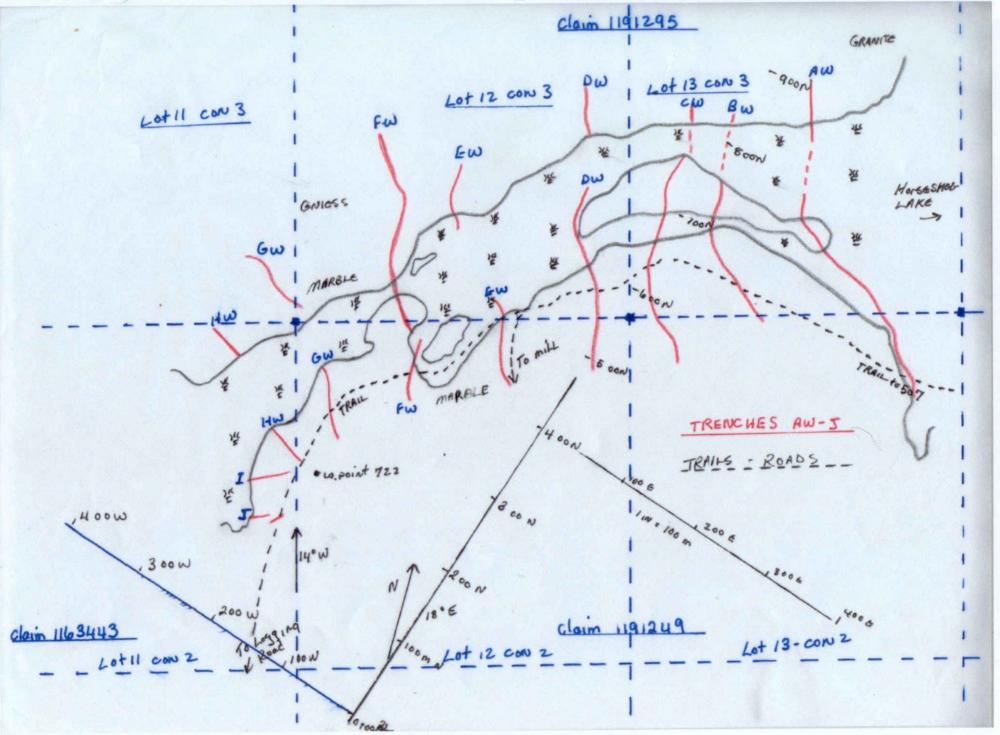

GEOLOGY

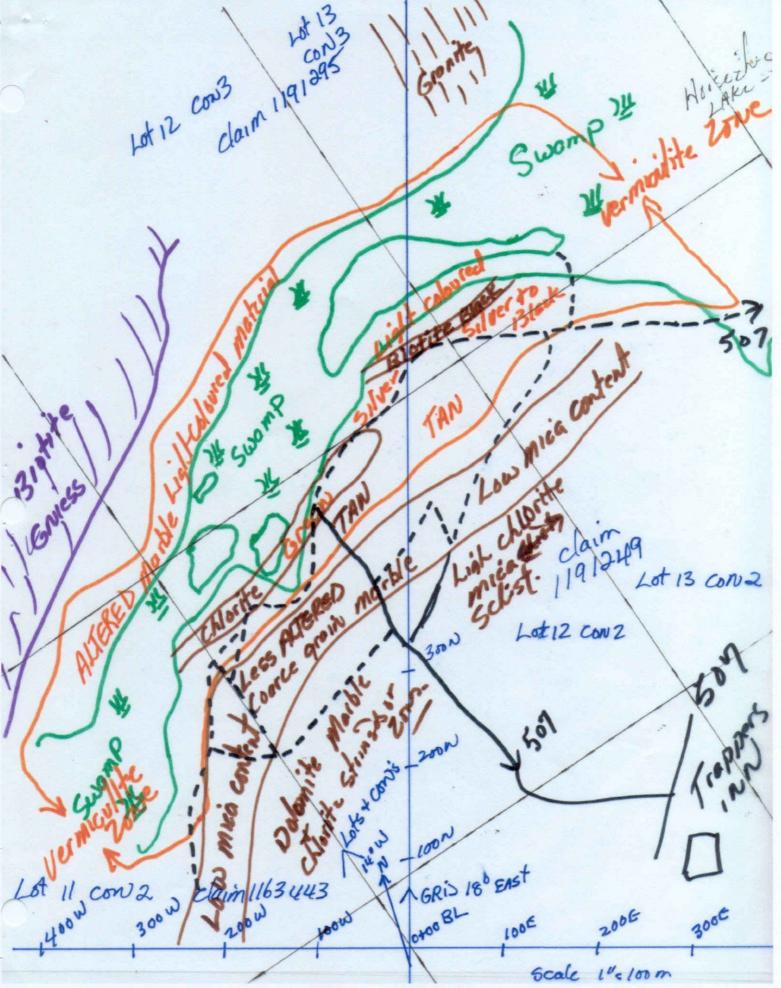

The entire area of interest is marble that has been highly weathered and contains vermiculite and some biotite. On the west side of the property there is gneiss and some granite closer to the west side of Horseshoe Lake. On the east a course grain marble with fewer impurities runs along the entire deposite. We have only been concerned with the dirt (or highly weathered rock) on top of the bedrock and not the bedrock itself. Vermiculite in rock does not exfoliate well and we have no use for it. No study of the rock has been done in detail for this project. There is very little outcrop if any other than marble. There are signs of impurities and other minerals in areas but none are consistent. The area between Trench F and Trench E contains some Chlorite in the fractures. In the pit near Trench B a little Biotite. Several large Calcite crystals were found on the east end of Trench C. Two large Diopside specimens were found 50 metres south of Trench J when a hole was dug to check for soil dept. One being three inches long and one slightly shorter. Both samples were given to the kids at the school in Buckhorn. At times when large volumes of material are screened and dried some interesting minerals are found. At this time Regis Resources is only concerned with getting the mine running and into production.


MAPPING

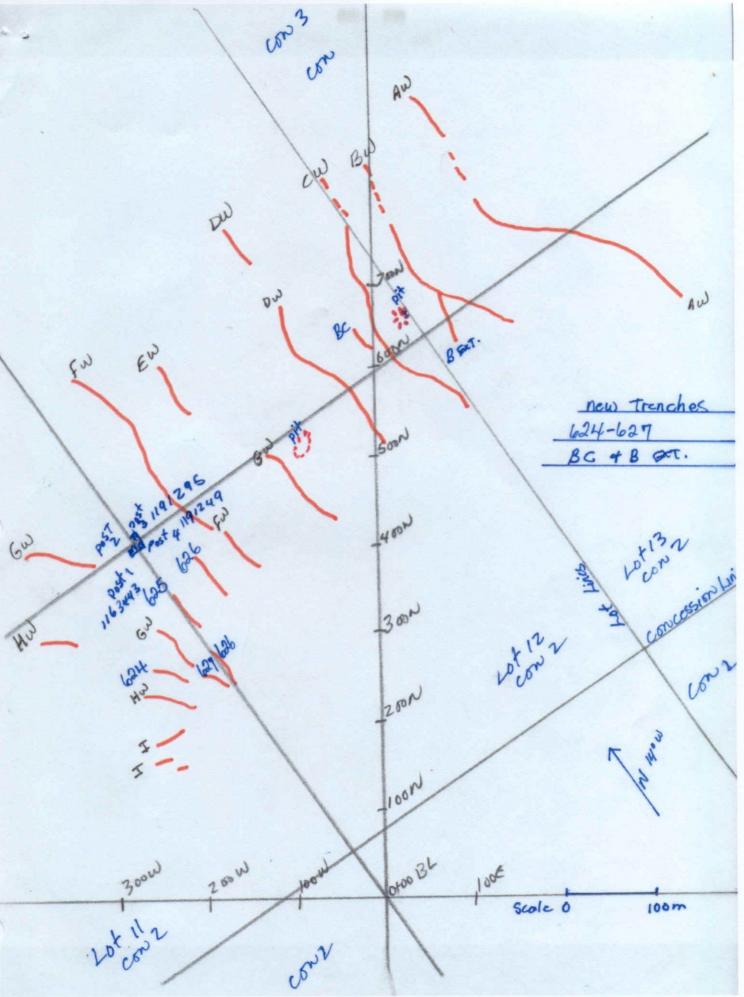
GPS. mapping was done to collect a data base of points and put them on a spread sheet. Not to locate rock types or geology. We wanted to locate road and trails around the property and compare those points to a topo map. Those points also will help us in the future with points previously taken around the property. Most of the grid placed at the start the project has been removed or disrupted. James Hindman suggested he would use a GPS. to record points and have a record for his own benefit. James Hindman was not paid to map geology, only areas he felt may be important. James Hindman took a good 30 minutes or more to record each point as a standard time allowance for accurate readings. If you calculate all way points listed (671) and multiply them by 30 minutes each, time for travel each day (1 hour plus lunch), distance between those points travelling through rough country, over swamps, through snow and weather, five days a week, time to plot them on a computer, you will have to realize this takes time and to much for one person. Each point was used to provide the map in which we submitted. Mr. Hindman is a professional and we were satisfied with the work and information he provided. A helper was need for company and to assist in locating areas of interest and in anyway possible. We do not allow employees to work alone for safety reasons. Regis Resources employees have participated in the common core training and we plan to follow their guidelines, even if it takes more employees to do a job.

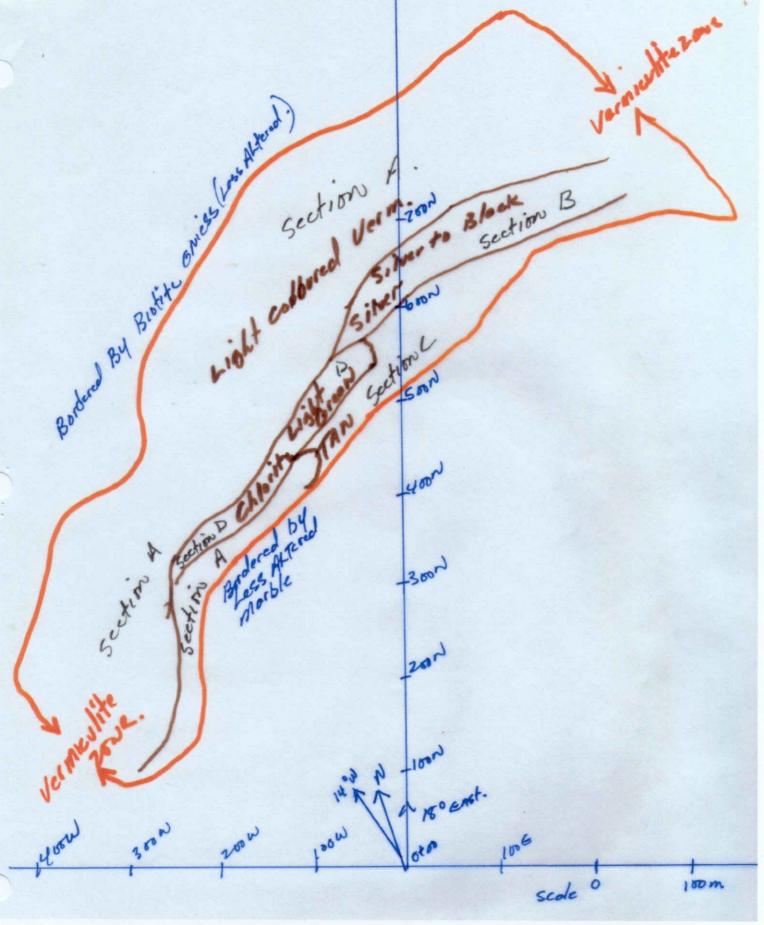
Lay out of trails, roads and trenches

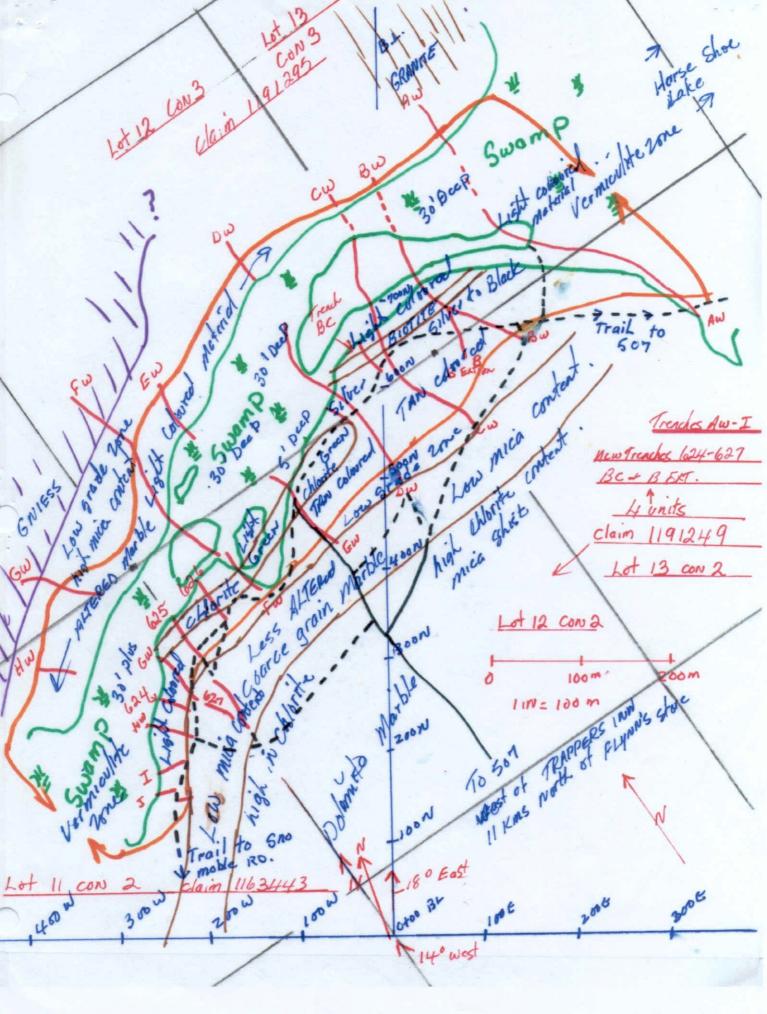

Maps


Pages 1 - 6

Maps


Pages 1 - 6


+



Horse Share Lake 财 Swemp inite Aw 1 13ur Trail to Horse Sick 30 Yroil connections ALL Trenches hear Swomp EDGe De Conor 2 1 Main Bud * 100 1. 1. 2 Kro pit NorthTo 7. Enclesham 630 mill site 125 1024452V Road. 1607 Troil To News Gote * 1 soutonis 634 Trenches 6587 200 N Torn 40°mP bout 抄 Hoon V Trail 100 W Longing Road to 500 of Phynns Turn. North inn Trappers Kmis and ion 300 2000 ive o scale

Information on sampling and assays

Pages 1 - 11

Triple A Resources method of running samples

When preparing samples, first weight them, and then dry.

Reduced to 250 grams after they have dried, for assay by riffling if possible.

When running several samples always prepare 5 to 10.

Run those samples through the furnace as a group.

After the first group has been run, do a bag yield if necessary, weigh and separate. Complete 5 to 10, before separating.

Always try to separate the highest volumes of vermiculite first due to the amount of time it takes for those to dry. By screening the vermiculite off first saves time in drying.

As soon as one is separated, place it in the dryer. Then continue separating the rest.

Continue to run more through furnace after the first group has been separated.

After the second group has been burned and separated, some of the first may be then dried. Record weights after they have cooled.

Make sure that all moisture has been removed so weights are accurate. Some samples may take several hours to dry. It is very important that you do not rush samples, all moisture must be removed before numbers are recorded.

Samples placed in the dryer after 3:00 pm will stay in over night, reduce the heat is to 90 degrees Fahrenheit or less.

Samples done in size fractions must stay together, and run within that day if possible. If

not continue the next day before starting to run other samples.

There may be several lower vermiculite concentrated samples completed before the higher samples are. Keep higher concentrates on the top shelf.

After running several samples pick 3 or 4 samples from different groups previously run and rerun those to double check yourself and the equipment.

Due to the furnace chimney being outside and exposed to the wind, windy days may effect the exfoliation. Watch the pipe and check for material escaping. If this happens stop running samples through furnace.

Vermiculite Canada Corporation

Regis Resources – Cavendish Operation RR1 Box 2, Buckhorn, ON K0L 1J0 • (705) 657-2022 • (705) 657-2282 fax Mill Phone (705) 657-9449

Quality Control Protocols and Test Procedures

Table of Contents

- 1. VERMICULITE ORE AND PRODUCT ASSAY PROCEDURE Assay Forms and Worksheets
- 2. MILL PRODUCTS SAMPLING PROCEDURE.
- 3. MILL PRODUCTS SIZE AND GRADE SPECIFICATIONS
- 4. MILL PERFORMANCE UPDRAFT WINNOWERS
- 5. MILL PERFORMANCE SIDEDRAFT WINNOWERS
- 6. SCREENING MACHINE PERFORMANCE AND CLOTH SELECTION Selecting and Sizing Process Screening Equipment – Alex C. Young Evaluating Screening Performance – A.J. De Censo

1. VERMICULITE ORE AND PRODUCT ASSAY PROCEDURE

Overview

The analysis or assay of commercial vermiculite is not as straightforward as one might assume, and the accuracy and precision can be affected by a number of variables. There are two unusual factors that affect the analysis of vermiculite found within the Cavendish deposit. The first factor is a component of organic material that appears to be extremely variable in both physical properties and distribution within the ore body¹. Organic material in vermiculite samples can be a significant source of error in the analysis. The second unusual aspect of Cavendish ore is the presence of significant amounts of calcite and other carbonate minerals. Carbonate minerals can decompose at temperatures encountered during exfoliation the weight loss as CO_2 as well as the physical weight loss from decrepitation in the assay furnace can significantly affect assay results.

In developing an assay procedure for Cavendish vermiculite samples I take the approach of having optimizing the need for accuracy and precision in conjunction with tailoring each of the three sample types to provide the most relevant information in the shortest time. It is expected that all but a few samples requiring analysis can be classified as one of the following: (1) mill products, (2) mill feed, and (3) exploration and development. Research continues to develop a chemical exfoliation process that will provide a higher degree of accuracy.

Record Keeping

It is important to analyze ore and mill samples that are representative of the material under consideration. It is generally a waste of time and resources to assay samples that have not been carefully collected and split into a manageable weight. The sole exception is in the case where one wishes to develop a set of data to determine average values and how much variation one might encounter in, say, the amount of organic material in a finished product or the average weight loss of vermiculite due to exfoliation.

All samples that are assayed in the Cavendish mill laboratory are recorded in legers or books where pages are individually numbered. Normally a sample identification tag will be furnished with a sample submitted for assay and it is important to immediately write on the tag the Assay Book number and at the same time write in the Assay Book the information written on the identification tag. The information to written on the tag (using permanent, waterproof marker) would be something like B2-33 for Book 2, Page 33, and the information entered onto that particular page in the assay book would be something like Dryer Feed, 9-1-03, 20 TPH, 10:30 AM.

General Comments on Assay Procedures Using a Furnace

Mill products, both concentrates and process streams, are assumed to be relatively dry and without oversize material or excessive fines. It was decided to develop a laboratory analytical routine for these samples first and modify the procedure as needed for mill feed and exploration samples.

A standard procedure that uses the laboratory rotary furnace has been developed that appears to provide results that are relatively accurate and reproducible. The procedure is straightforward in that the sample is dried (if necessary) and then screened into separate particle size fractions. Each fraction is then weighed, exfoliated and when cool the vermiculite is floated away in a water wash. The remaining rock is then dried and weighed to calculate the vermiculite by simple difference.

¹ The Cavendish vermiculite deposit differs in character from most vermiculite deposits in that much of the "ore" is actually soil and not *in situ* altered mica.

One essential step in this procedure is the measurement of material volumes after exfoliation so that a bulk density (cc's/gm) can be calculated. It has been observed that 6 cc's/gm appears to be a baseline value for measurable vermiculite content so values significantly above 6 indicate significant exfoliated vermiculite. Using the average value for all sizes measured in the test sample provides a single number that can be thought of as a measure of "quality".

Another quantity that is measured and reported in the vermiculite assay is "weight loss from exfoliation" or LOE (loss on exfoliation). This is the difference in weight of a sample or portion of the sample after the vermiculite has been exfoliated and the value is expressed relative to the amount of vermiculite measured. Put another way, this is the percentage of water lost by vermiculite due to exfoliation. This value is normally in the range of 12-16%.

In samples with significant organic contents the LOE can reach values of over 50% since the organic material can contain very high amounts of moisture and some of the organic portion is destroyed in the furnace. One might assume that many unrealistically high values of vermiculite grade may be due to high organic content.

A third possible source of error in the analysis of Cavendish vermiculite reflects the loss of -65 mesh (<0.25mm) material during the exfoliation process. Most of this material loss appears to be due to the strong draft of hot air lifting the exfoliated vermiculite and very fine sized particles up and out of the exhaust stack. The loss of this fine sized product can be on the order of 50% of the amount present so all of the vermiculite grades reported are for +65 mesh or plus 0.25mm vermiculite.

In summary, the traditional vermiculite assay using a furnace or rotary kiln to exfoliate the vermiculite is rapid and provides excellent size distributions and good qualitative vermiculite data. Major sources of error come from (1) carbonate minerals chemically decomposing and physically falling apart during heating, (2) high organic content that misreports as vermiculite moisture loss, and (3) loss of -65 mesh material during exfoliation.

Vermiculite Analysis Using Hydrogen Peroxide for Chemical Exfoliation

The major problems associated with the furnace assay of Cavendish vermiculite may be avoided by using hydrogen peroxide to effect a chemical exfoliation of the vermiculite. A procedure is being developed that would use a water decant to first remove as much of the organic matter as possible, followed by treatment with 35% H₂O₂ to exfoliate the vermiculite. Although the peroxide technique would avoid the issues with carbonate decomposition and the loss of fines, it would require several more steps in the analysis and would require a higher caliber of analyst.

Bag Yield Determination

A standard quality control test for vermiculite concentrates requires an exfoliated yield value or a "bag yield". This value is obtained by exfoliating a known amount of concentrate (generally 250 grams) and measuring the volume of the exfoliated material. Using correction factors based on particle size distributions an accurate measure of the exfoliated product that an exfoliation plant might expect per ton on concentrate can be calculated. The data needed to determine bag yields at Cavendish will be obtained once shipments are exfoliated and plant production numbers can be correlated with laboratory values

Spreadsheets for QC Manual.xls

2. MILL PRODUCTS SAMPLING PROCEDURE

As part of a quality control program sampling and analysis of vermiculite products obtained from the Cavendish mill should be carried out on a daily basis. In order to assure accuracy of the analytical data the sampling procedure must be carried out in a methodical and consistent manner. A common way to achieve accurate sampling is by use of automated sample splitters that move a splitter through the material stream at regular intervals. The splittings are collected in a single container, such as a 5-gallon bucket, and at the end of the production day. The bucket of splittings is then further blended and split into roughly 500 grams of sample that is an accurate representation of that day's product.

Although automated samplers can be the most efficient and reliable method for sampling production I feel that they are inappropriate for the Cavendish mill. Until such time as production rates require automated splitters I would suggest that the sampling and analysis of mill production done on each ton bag produced and that each bag be individually labeled to correspond with the analysis.

Recommended Sampling Protocol - Finished Products

- 1. Sampling of each product is accomplished by running small loaf pan or similar container through the discharge stream while the 1-ton bag is being filled from the product bin. The discharge stream is sampled 3-5 times during the filling of the bag at regular intervals of 1/5th or 1/3rd levels in the bag.
- 2. The collected sample is then run through a riffle splitter multiple times until a representative sample of approximately 1000 grams of sample is obtained.
- 3. The remaining sample is then added back into the bag. The bag is then weighed and marked with the same ID used for both bag and composite sample.
- 4. The 1000-gram sample is then re-split twice to produce (1) a 500-gram sample for bag yield determination using the rotary furnace, (2) a 250-gram sample for grade and size distribution analysis, and (3) a 250-gram retained sample to be archived in a secure location for at least 3 months.

3. MILL PRODUCTS SIZE AND GRADE SPECIFICATIONS

Unless otherwise specified, vermiculite in the Cavendish mill will be beneficiated to contain no more than 10% non-vermiculite particles and will be screened into sized products with particle size distributions corresponding to traditional North American or European specifications.

Although some customers may have specialized product specifications, the following table lists what should be achievable size distributions at an overall grade of 90% vermiculite. It is expected that these product specifications will change over time as a production history is established.

Error! Not a valid link.

MILL PERFORMANCE – UPDRAFT WINNOWERS

Updraft winnowers produce two products: concentrate and reject. Using a sample diverter similar to that shown below samples of both concentrate and reject material are periodically obtained from each updraft winnower to evaluate its performance.

	COMMERCIAL VERMICULITE ANALYSIS DATA Vermiculite Assay - Regis Resources Screen Series - 2003									
"It is	a capital	mistate to theorize b					lerlock H	olmes)		
Sample:		0		······	Date:	0				
ASTM Sieve	Size (mm)	<u>Assay Wt (gm)</u>	<u>Weight After</u> <u>Exfoliation</u>	<u>Volume After</u> <u>Exf</u> oliation	<u>Rock V</u>	Wt (gm)	Grade Vm (%)			
6	3.350	3	4	5	6		Ø	8		
10	1.700									
20	0.850									
25	0.710			I						
35	0.500									
50	0.300									
60	0.250			I	1					
100	0.150							<u> </u>		
Pan	<.150			I						
Totals		9	annan an a	1	1			1		
]				1		
NOTES:	0									
		re named either as a s ase a sample label wil			-	of test (e.g	. 2003051	9-01).		
_		recorded is generally		•	u).					
		e will be split to 250								
		shing, the sample is re								
		rding the exfoliated w								
		ample is cool the exfe					ied and we	eighed.		
		ermiculite = (initial w)			3 - 6)/(3)				

- (8) This column may or may not be used in any particular sample set.
- (9) Enter values in this row only if they are calculated from the numbers in the column above.
- Other information that should be recorded in the NOTES sections include comments on color, behavior during the assay, times and weights of timed samples, comments on mill performance during sampling, etc.

Pocket	Grams	Pounds	Grade	Wt (gm)	Vm (gm)		Grade	Vermiculite Distribution	Cummulative Distribution
4	131		9	131.0	11.8	4	9.0%	0.0%	0.0%
5		4.3	9.5	1953.9	185.6	5	9.5%	0.6%	0.6%
6		46.6	14.3	21175.0	3028.0	6	14.3%	9.7%	10.3%
7		73	24	33171.2	7961.1	7	24.0%	25.5%	35.8%
8		44	32.4	19993.6	6477.9	8	32.4%	20.7%	56.5%
9		20	49.4	9088.0	4489.5	9	49.4%	14.4%	70.9%
10		9	70.9	4089.6	2899.5	10	70.9%	9.3%	80.2%
11		5	84.5	2272.0	1919.8		84.5%	6.1%	86.3%
12		3	88.6	1363.2	1207.8		88.6%	3.9%	90.2%
13		2	91.4	908.8	830.6		91.4%	2.7%	92.9%
14		1.5	93.9	681.6	640.0		93.9%	2.0%	94.9%
15	399.8		95	399.8	379.8	15	95.0%	1.2%	96.1%
16	359.2		95.1	359.2	341.6		95.1%	1.1%	97.2%
17		2	95.5	908.8	867.9		95.5%	2.8%	100.0%
		5-5-5-		96,496	31,241				100.070
Calcu	lated Fee	d Grade:	32.38%						
			Det						
				ential Tailing	<u>js</u>		Poten	tial Concer	ntrate
			Pockets	Grade	Loss		Potent Pockets	tial Concer Grade	
			Pockets 4-11	Grade 29.4%				Grade 95.4%	Recovery
			Pockets 4-11 4-10	Grade 29.4% 28.0%	Loss		Pockets	Grade	Recovery 3.9%
			Pockets 4-11 4-10 4-9	<u>Grade</u> 29.4% 28.0% 25.9%	Loss 86.3%		Pockets 16-17	Grade 95.4% 95.3%	Recovery 3.9% 5.1%
			Pockets 4-11 4-10 4-9 4-8	Grade 29.4% 28.0% 25.9% 23.1%	Loss 86.3% 80.2%		Pockets 16-17 15-17	Grade 95.4%	Recovery 3.9% 5.1% 7.1%
			Pockets 4-11 4-10 4-9 4-8 4-7	Grade 29.4% 28.0% 25.9% 23.1% 19.8%	Loss 86.3% 80.2% 70.9%		Pockets 16-17 15-17 14-17	<u>Grade</u> 95.4% 95.3% 94.9%	Recovery 3.9% 5.1% 7.1% 9.8%
			Pockets 4-11 4-10 4-9 4-8 4-7 4-6	Grade 29.4% 28.0% 25.9% 23.1% 19.8% 13.9%	Loss 86.3% 80.2% 70.9% 56.5%		Pockets 16-17 15-17 14-17 13-17 12-17 11-17	Grade 95.4% 95.3% 94.9% 93.9%	Recovery 3.9% 5.1% 7.1%
			Pockets 4-11 4-10 4-9 4-8 4-7	Grade 29.4% 28.0% 25.9% 23.1% 19.8%	Loss 86.3% 80.2% 70.9% 56.5% 35.8%		Pockets 16-17 15-17 14-17 13-17 12-17	Grade 95.4% 95.3% 94.9% 93.9% 92.3%	Recovery 3.9% 5.1% 7.1% 9.8% 13.7%
)%		Pockets 4-11 4-10 4-9 4-8 4-7 4-6	Grade 29.4% 28.0% 25.9% 23.1% 19.8% 13.9%	Loss 86.3% 80.2% 70.9% 56.5% 35.8% 10.3%		Pockets 16-17 15-17 14-17 13-17 12-17 11-17	Grade 95.4% 95.3% 94.9% 93.9% 92.3% 89.8%	Recovery 3.9% 5.1% 7.1% 9.8% 13.7% 19.8%
90 80 70			Pockets 4-11 4-10 4-9 4-8 4-7 4-6	Grade 29.4% 28.0% 25.9% 23.1% 19.8% 13.9%	Loss 86.3% 80.2% 70.9% 56.5% 35.8% 10.3%		Pockets 16-17 15-17 14-17 13-17 12-17 11-17 10-17	Grade 95.4% 95.3% 94.9% 93.9% 92.3% 89.8% 82.7%	Recovery 3.9% 5.1% 7.1% 9.8% 13.7% 19.8% 29.1%
90 80 70 60)%		Pockets 4-11 4-10 4-9 4-8 4-7 4-6	Grade 29.4% 28.0% 25.9% 23.1% 19.8% 13.9%	Loss 86.3% 80.2% 70.9% 56.5% 35.8% 10.3%		Pockets 16-17 15-17 14-17 13-17 12-17 11-17 10-17	Grade 95.4% 95.3% 94.9% 93.9% 92.3% 89.8% 82.7%	Recovery 3.9% 5.1% 7.1% 9.8% 13.7% 19.8% 29.1%

4th Run

40%

30%

20% 10%

0% 4

De

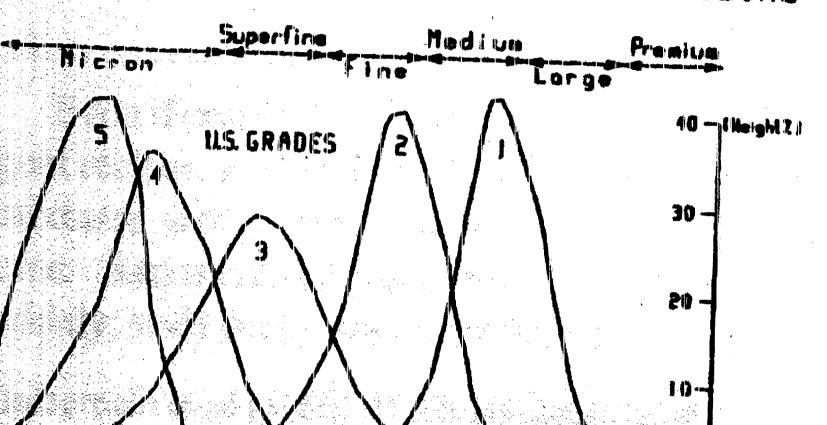
6

0, 8

2

NA 10

Distribution


Distribution

Cummulative

. . .

3	Date	Sample	Grade (%Vm)	Grade Adjusted for Organics	0.5x1mm Content (Wt%)	0.5x1mm Grade (%Vm)	L.O.E.	Q	Minus 0.25mm fines (Wt%)	Comments
1	02/09/03	Sweco feed (1-4)	59.5%		24.8%	26.1%	15.6%	5.4	0.8%	
2	03/09/03	Concentrate from SDW using UDW-1 Tails	94.8%	93.4%	37.1%	99.0%	16.8%	8.8	7.1%	
3	04/09/03	New Bag House (BH-2 Discharge)	91.6%	82.5%	2.7%	50.0%	32.1%	2.2	82.3%	All values are irrelevant except for initial size distribution and the percentage of fines.
4	08/09/03	Tails from Middlings from SDW from UD1 tails	32.3%		87.0%	47.9%	2.6%	10.8	0.2%	
5	08/09/03	Concentrate	92.8%		45.8%	98.6%	13.0%	9.9	4.5%	Assumed to be multipass SDW concentrate from UD1 Rejects
6	09/09/03	Middlings from SDW	59.4%		66.5%	73.7%	12.2%	11.4	0.1%	
7	08/09/03	Tails from SDW / UD1 tails	20.6%		93.7%	30.6%	12.1%	9.7	0.1%	This section is for comments and observations that may be needed to clarify or otherwise improve the quality of the analytical results. Some large flakes did not exfoliate
8	26/06/03	Large flake ore from June trenching location (K.V.)	28.0%	22.8%	21.9%	21.4%	24.3%	7.1	11.8%	well. Rock has brown coating on particles.
9	11/09/03	Dryer Feed (feed hopper belt)	40.2%	35.3%	17.4%	22.5%	23.7%	7.3	31.7%	
10	11/09/03	Dryer Discharge	43.6%	41.2%	18.0%	29.9%	18.7%	7. 4	35.7%	
11	11/09/03	Dryer Cyclone Discharge	87.4%	53.4%	0.1%	80.0%	81.9%	1.9	96.4%	Excessive high grade most likely due to loss of fines during exfoliation.
12	11/09/03	Hall Screen 1 - Bottom Screen Overs	43.2%		38.7%	46.0%	14.2%	7.3	4.9%	
13	11/09/03	Hall Screen 2 - Bottom Screen Overs	40.6%		36.4%	43.7%	13.7%	7.7	5.7%	
14		Side Draft Winnower Feed	14.0%	10.5%	20.3%	-38.7%	21.1%	10.3	0.4%	
15		Sweco-6 Top Screen Overs	91.7%	88.8%	1.1%	95.2%	19.7%	5.1	58.1%	
16 17		BE-2 Feed Sweco (SE) Feed	42.0% 52.4%	-7.4% 50.7%	28.6% 27.0%	45.5% 46.8%	112.9% 17.5%	10.5 8.2	8.1% 19.0%	
18		UDW-1 Flow Through	52.4% 32.0%	30.7% 30.9%	27.0% 88.4%	46.8% 44.7%	17.5% 16.0%	o.∠ 11.2	0.3%	

COMMERCIAL VERMICULITE CONCENTRATE SIZING

150 EX) 55 5 28 20 10 8 6 3

0.371 Heah Tyler 0.1

12.5 0.5 5.0 10.0 Mineler s Fignand 6-17. Particle size clistafburthonis for Libby C (Discontrandad) Commined .

Grade	Particle size distribution mm 75% retained (mm)	Loose Bulk density (kg/m3)	Lbs/ft3
Premium	-16.0 + 5.6	600-800	39.2
Large	-8.0 + 2.8	750-850	43.6
Medium	-4.0 + 1.4	880 -1000	46.7
Fine	2.0 + 0.710	890 - 1000	54.6
Superfine	-1.0 +0.355	925 - 1050	57.3
Micron	-0.710 + 0.250	925 - 1050	59.3

1

-

Work Report Summary

Transaction No:	W0390.01196	Status:	APPROVED
Recording Date:	2003-JUL-18	Work Done from:	2002-AUG-21
Approval Date:	2003-NOV-21	to:	2003-JUL-01

Client(s):

303719 REGIS RESOURCES INC.

Survey Type(s):

			ASSAY		PROSP		PTRNCH			
Wo	rk Report D	<u>etails:</u>								
Clai	im#	Perform	Perform Approve	Applied	Applied Approve	Assign	Assign Approve	Reserve	Reserve Approve	Due Date
so	1077414	\$0	\$0	\$3,200	\$3,200	\$0	0	\$0	\$0	2004-AUG-02
so	1077416	\$0	\$0	\$4,800	\$4,800	\$0	0	\$0	\$0	2004-AUG-02
so	1077459	\$0	\$0	\$4,800	\$4,800	\$0	0	\$0	\$0	2004-AUG-30
so	1077460	\$0	\$0	\$2,400	\$2,400	\$0	0	\$0	\$0	2004-AUG-03
so	1163443	\$24,247	\$24,247	\$0	\$0	\$20,000	20,000	\$4,247	\$4,247	2004-NOV-03
so	1191249	\$22,873	\$22,873	\$0	\$0	\$0	0	\$22,873	\$22,873	2005-AUG-25
SO	1191295	\$23,326	\$23,326	\$0	\$0	\$13,200	13,200	\$10,126	\$10,126	2005-NOV-18
so	1230938	\$0	\$0	\$4,800	\$4,800	\$0	0	\$0	\$0	2004-AUG-02
so	1230939	\$0	\$0	\$2,400	\$2,400	\$0	0	\$0	\$0	2004-AUG-28
so	1237558	\$0	\$0	\$2,400	\$2,400	\$0	0	\$0	\$0	2004-OCT-18
so	1237559	\$0	\$0	\$1,600	\$1,600	\$0	0	\$0	\$0	2004-OCT-18
so	1237560	\$0	\$0	\$800	\$800	\$0	0	\$0	\$0	2004-OCT-18
so	1237561	\$ 0	\$0	\$400	\$400	\$0	0	\$0	\$0	2004-OCT-28
so	1237562	\$0	\$0	\$800	\$800	\$0	0	\$0	\$0	2004-OCT-28
so	1237563	\$0	\$0	\$4,800	\$4,800	\$ 0	0	\$0	\$0	2004-OCT-28
		\$70,446	\$70,446	\$33,200	\$33,200	\$33,200	\$33,200	\$37,246	\$37,246	-

External Credits:

Reserve:

\$37,246 Reserve of Work Report#: W0390.01196

\$37,246

\$0

Total Remaining

Status of claim is based on information currently on record.

31D09NW2024 2.26015 CAVENDISH

900

Ministry of Northern Development and Mines

Date: 2003-NOV-21

Ministère du Développement du Nord et des Mines

GEOSCIENCE ASSESSMENT OFFICE 933 RAMSEY LAKE ROAD, 6th FLOOR SUDBURY, ONTARIO P3E 6B5

Tel: (888) 415-9845 Fax:(877) 670-1555

Submission Number: 2.26015 Transaction Number(s): W0390.01196

REGIS RESOURCES INC. 44 VICTORIA ST SUITE 400 TORONTO, ONTARIO M5C 1Y2 CANADA

Dear Sir or Madam

Subject: Approval of Assessment Work

We have approved your Assessment Work Submission with the above noted Transaction Number(s). The attached Work Report Summary indicates the results of the approval.

At the discretion of the Ministry, the assessment work performed on the mining lands noted in this work report may be subject to inspection and/or investigation at any time.

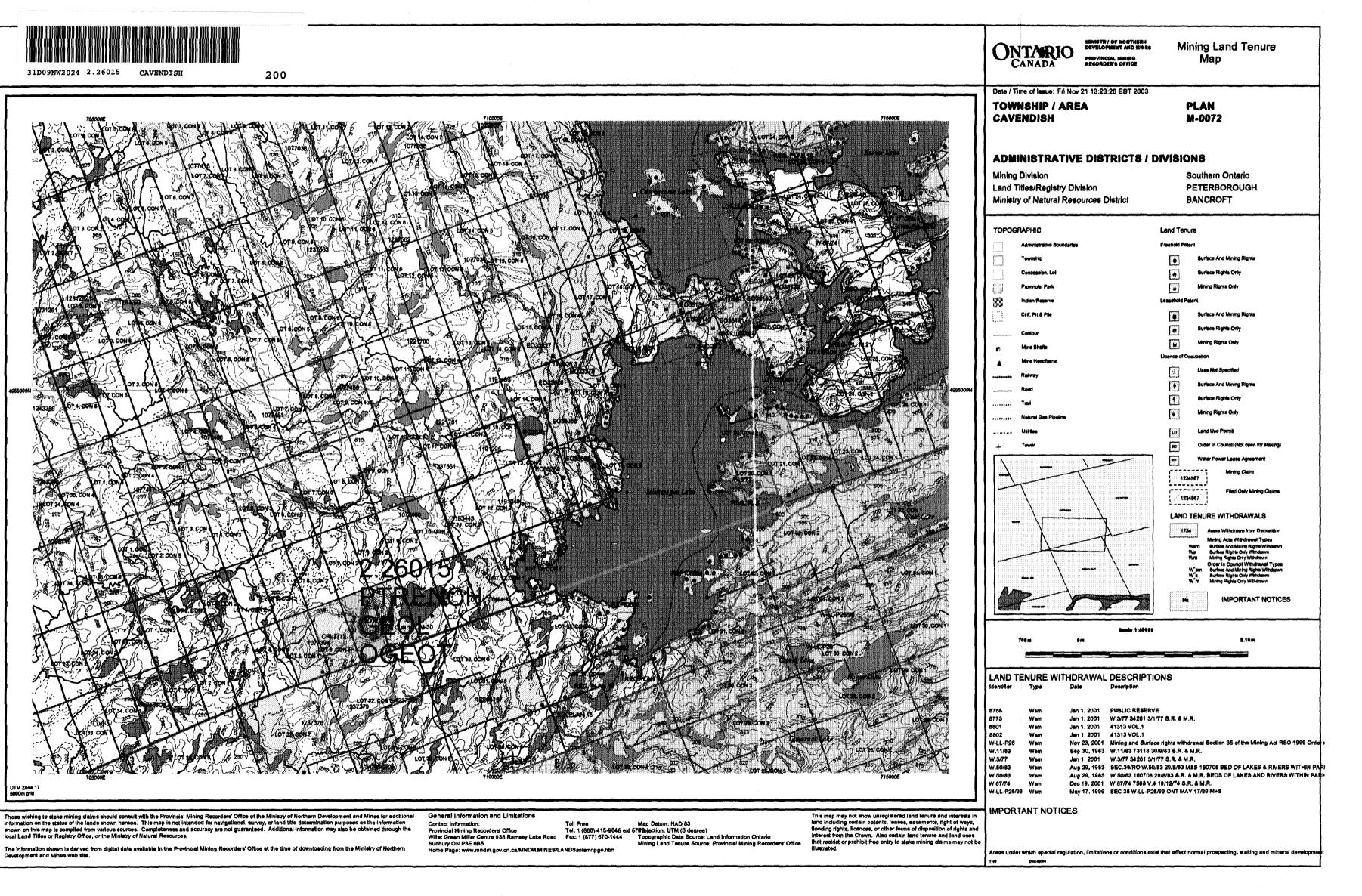
The revisions outlined in the Notice dated October 09, 2003 have been for the most part corrected. Accordingly, assessment work credit has been approved as outlined on the Declaration of Assessment Work Form that accompanied this submission.

If you have any question regarding this correspondence, please contact STEVEN BENETEAU by email at steve.beneteau@ndm.gov.on.ca or by phone at (705) 670-5855.

Yours Sincerely,

Rom C Gashingh.

Ron C. Gashinski Senior Manager, Mining Lands Section


Cc: Resident Geologist

Regis Resources Inc. (Claim Holder) Assessment File Library

Regis Resources Inc. (Assessment Office)

Keith Alwyn Vatcher (Agent)

