2.1899



010

RECEIVED

SEP 4 19/5

GEOPHYSICAL SURVEY OF TORY HILL PROSPECT

PROJECTS UNIT

MONMOUTH TOWNSHIP, EASTERN ONTARIO MINING DIVISION

| CLAIMS: | E.O. | 370249 |
|---------|------|--------|
|         |      | 370252 |
|         |      | 370253 |
|         |      | 370255 |
|         |      | 370256 |
|         |      | 370257 |
|         |      | 370258 |
|         |      | 370263 |

BY: BONNIE Y. LOWE

IMPERIAL OIL LIMITED

AUGUST, 1975

### INTRODUCTION

In June 1973, Imperial Oil Limited staked a group of eight claims in the Tory Hill area of southeastern Ontario. During June 1975, a radiometric survey was conducted on these claims. A geological survey (2.148)completed on these claims by R.T. Garvey of Imperial Oil Limited in the summer of 1973, has already been submitted as a separate report. Some trenching was also carried out in 1955 by the previous operator. The claims covered in this report are: E.O. 370249

### LOCATION AND ACCESS

This claim group constitutes the south half of lot 22, Concession IX; lots 23 and 24, Concession IX; the south half of lot 23, Concession X; and lot 24, Concession X of <u>Monmouth Township</u>, Haliburton County. Good access is provided by the Hadlington Lake Road via Highway 121 from Tory Hill, Ontario.

#### GEOPHYSICAL SURVEY

From June 10, 1975 to June 24, 1975 a radiometric survey was conducted on these claims by pace and compass traversing: chained base lines and air photos were used for control. Stations every 100 feet along the lines were flagged and marked with line number and picket number.



The results of this survey are illustrated in the scintillometer plan accompanying this report. Approximately 850 readings were taken.

## The background count for this claim group averaged 20 counts/min.

Anomously high radioactivity of 5X background and greater was found in an open pegmatite cut, and several zircon and skarn trenches. A detailed survey was conducted upon the trench showings, Readings were taken every 25 feet along lines established with 25 foot spacings. The surface radiometric readings indicate that the zones of high radioactivity are narrow.

### RECOMMENDATIONS

Further ground testing could be carried out on the zones of high radioactivity to better determine the nature and extent of the zones.

August 28, 1975

Lowe

APPENDIX

## GENERAL DESCRIPTION AND APPLICATIONS OF THE MCPHAR MODEL TV-1 GAMMA RAY SPECTROMETER

The gamma ray detecting principle lies in the sodium iodide crystal. Gamma rays entering the crystal, interact with the crystal atoms, resulting in free electrons and light emission. The optically coupled photomultiplier converts the light emission to electrical pulses. The magnitudes of the electrical pulses bear a relationship to the energy levels of the intercepted gamma rays.

Various radioactive elements have characteristic gamma energy spectrums. The nature of the spectrum for a given element can be used to advantage in identifying it in the presence of other radioactive elements. Fig. 2 shows spectral curves for the three main elements of interest in radioactive surveys; potassium, uranium and thorium.

Thorium emits gamma rays with energy levels exceeding 2.5 Mev. The highest energy radiation from potassium is about 1.6 Mev. The three vertical lines marked T1,T2 and T3 show the location of the threshold settings of the TV-1 spectrometer after the instrument has been calibrated. Threshold T3 at 2.5 Mev. allows only those electrical pulses to be registered whose amplitudes correspond to gamma rays with energy levels above 2.5 Mev. T2 similarly responds to gamma energy levels above 1.6 Mev. When both thorium and uranium are present during a measurement, then the reading at T2 contains counts resulting from both elements whereas T3 contains counts from thorium only.

( C

RTG:rn

It is possible then, to subtract the count in the T2 reading, leaving the count from uranium only. The count representing thorium in the T2 reading is a fixed multiple of the T3 reading. In the TV-1 spectrometer, this multiple is 3.5. That is, the count in T2 due to uranium is T2 - 3.5T3. A thorium calibrating source and calibration procedure, provided with the instrument, ensures that this is always the case.



File 2. 1899.



31D16NE0021 2.1899 MONMOUTH

### 900

TO BE ATTACHED AS AN APPENDIX TO TECHNICAL REPORT FACTS SHOWN HERE NEED NOT BE REPEATED IN REPORT TECHNICAL REPORT MUST CONTAIN INTERPRETATION, CONCLUSIONS ETC.

SEP 2 19/5

PECEIVED

PROJECTS UNIT

AC TO AVED OF

Ground Radiometric

Township or Area Monmouth Township Imperial Oil Limited

| Claim holder(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | List numerically                                                                                                                                                   |                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| Author of Report       Bonnie Lowe         111 St. Clair Ave. West         Address         Covering Dates of Survey       June 10 - June 24, 1975         (linecutting to office)         Total Miles of Line cut       9.7 miles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (prefix) (number)<br>E.Q                                                                                                                                           | Ч                                  |
| SPECIAL PROVISIONS<br>CREDITS REQUESTED       DAYS<br>Geophysical         ENTER 40 days (includes<br>line cutting) for first       -Electromagnetic         Ine cutting) for first       -Magnetometer         survey.       -Radiometric         ENTER 20 days for each<br>additional survey using       -Other         geological       Geochemical         AIRBORNE CREDITS       (Special provision credits do not apply to airborne surveys)         Magnetometer       Electromagnetic         Creation       Radiometric         AIRBORNE CREDITS       (Special provision credits do not apply to airborne surveys)         Magnetometer       Electromagnetic         Center days per claim)       Radiometric | E.0. $370255$<br>E.0. $3702564$<br>E.0. $3702573$<br>E.0. $3702584$<br>E.0. $3702584$<br>E.0. $370263$<br>Area of claims not<br>covered = 14<br>Well traversed/Let | If space insufficient, attach list |
| PROJECTS SECTION Res. GeolQualifications by This file Previous Surveys 2.48 Grad Surve Cone in 1973 hy Checked byCone in 1973 hy GEOLOGICAL BRANCH GEOLOGICAL BRANCH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | - Pace and compar-<br>traverse lines were<br>used No Credits<br>for line cutting.                                                                                  |                                    |
| Approved bydate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                    | l                                  |

Show instrument technical data in each space for type of survey submitted or indicate "not applicable"

## **GEOPHYSICAL TECHNICAL DATA**

# **GROUND SURVEYS**

| Number of Stations900                 |                                  | Number of Readings                     | 900                                   |
|---------------------------------------|----------------------------------|----------------------------------------|---------------------------------------|
| Station interval                      | t, 25 feet on detail             |                                        |                                       |
| Line spacing 400 fee                  | t                                |                                        |                                       |
| Profile scale or Contour intervals 5X | , 10X background                 |                                        |                                       |
|                                       | (specify for each type of survey | )                                      |                                       |
| <b>MAGNETIC</b>                       |                                  |                                        |                                       |
| Instrument                            | <u> </u>                         |                                        |                                       |
| Accuracy - Scale constant             |                                  |                                        |                                       |
| Diurnal correction method             |                                  |                                        |                                       |
| Base station location                 |                                  | ······································ |                                       |
| ELECTROMAGNETIC                       |                                  |                                        |                                       |
| Instrument                            |                                  |                                        |                                       |
| Coil configuration                    |                                  |                                        | · · · · · · · · · · · · · · · · · · · |
| Coil separation                       |                                  |                                        |                                       |
| Accuracy                              |                                  |                                        | )                                     |
| Method: 🛛 Fixed transm                | itter 🛛 Shoot ba                 | ck 🗌 In line                           | Parallel line                         |
| Frequency                             |                                  |                                        |                                       |
| Parameters measured                   | (specity V.L.F. static           | >n <i>j</i>                            |                                       |
| GRAVITY                               |                                  |                                        |                                       |
| Instrument                            |                                  |                                        |                                       |
| Scale constant                        |                                  |                                        |                                       |
| Corrections made                      |                                  |                                        |                                       |
|                                       |                                  |                                        |                                       |
| Base station value and location       |                                  |                                        |                                       |
|                                       |                                  |                                        |                                       |
| Elevation accuracy                    |                                  |                                        |                                       |
| INDUCED POLARIZATION - RESIST         | TIVITY                           |                                        |                                       |
| Instrument                            |                                  |                                        |                                       |
| Time domain                           | Freq                             | uency domain                           |                                       |
| Frequency                             | Rang                             | ge                                     |                                       |
| Power                                 |                                  |                                        |                                       |
| Electrode array                       |                                  |                                        |                                       |
| Electrode spacing                     | ······                           |                                        |                                       |
| Type of electrode                     |                                  |                                        |                                       |



## SELF POTENTIAL

| Instrument       | Range |
|------------------|-------|
| Survey Method    |       |
|                  |       |
| Corrections made |       |

# RADIOMETRIC

| MDIOMITING                    |                         |                  |                                        |
|-------------------------------|-------------------------|------------------|----------------------------------------|
| Instrument <u>McPhar Mo</u>   | del TV1 Scintillometer  |                  |                                        |
| Values measuredCounts         | per minute              |                  |                                        |
| Energy windows (levels)       | Total gamma energy      |                  |                                        |
| Height of instrument          | 3 feet                  | Background Count | 2000                                   |
| Size of detector              | 1" x 1 <sup>1</sup> 4"  | 0                |                                        |
| Overburden                    | Glacial overburden 0-10 | feet             |                                        |
|                               | (type, depth - include  | outcrop map)     |                                        |
| OTHERS (SEISMIC, DRILL        | WELL LOGGING ETC.)      |                  |                                        |
| Type of survey                | ·                       |                  |                                        |
| Instrument                    |                         | ·                |                                        |
| Accuracy                      |                         |                  |                                        |
| Parameters measured           |                         |                  |                                        |
|                               |                         |                  |                                        |
| Additional information (for u | inderstanding results)  |                  |                                        |
|                               |                         |                  |                                        |
|                               |                         |                  |                                        |
|                               |                         |                  | <u></u>                                |
| AIRBORNE SURVEYS              | ,                       |                  |                                        |
| Tupe of survey(s)             |                         |                  |                                        |
| Type of survey(s)             |                         |                  |                                        |
| Instrument(s)                 | (specify for each type  | of survey)       |                                        |
| Accuracy                      | lenecify for each type  | of survey)       | ·                                      |
| Aircraft used                 | (specity for each type) |                  |                                        |
| Sensor altitude               |                         |                  |                                        |
| Navigation and flight nath re | covery method           |                  |                                        |
| rurgation and inght path it   |                         |                  | ······································ |
| Aircraft altitude             |                         | Line Spacing     |                                        |
| Miles flown over total area   |                         | Over claims only |                                        |
|                               |                         | 000 000 y        |                                        |

## GEOCHEMICAL SURVEY - PROCEDURE RECORD

7

**.**-

<u>.</u>

| rumbers of claims from which samples taken     | a an                                                                         |
|------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| -                                              |                                                                                                                  |
|                                                |                                                                                                                  |
| Total Number of Samples                        | ANAL VTICAL METHODS                                                                                              |
| Type of Sample                                 |                                                                                                                  |
| (Nature of Material)                           | Values expressed in: per cent                                                                                    |
| Average Sample Weight                          | — p. p. b.                                                                                                       |
| Method of Collection                           | Cu. Pb. Zn. Ni. Co. Ag. Mo. As(circle)                                                                           |
|                                                |                                                                                                                  |
| Soli Horizon Sampled                           | Cutters                                                                                                          |
| Horizon Development                            | Ficiu Analysis ( lesis)                                                                                          |
| Sample Depth                                   | Extraction Method                                                                                                |
| Terrain                                        | Analytical Method                                                                                                |
|                                                | Reagents Used                                                                                                    |
| Drainage Development                           | Field Laboratory Analysis                                                                                        |
| Estimated Range of Overburden Thickness        | No. (tests                                                                                                       |
|                                                | Extraction Method                                                                                                |
|                                                | Analytical Method                                                                                                |
|                                                | Reagents Used                                                                                                    |
| SAMPLE PREPARATION                             | Commercial Laboratory                                                                                            |
| (Includes drying, screening, crushing, ashing) | Name of Laboratory                                                                                               |
| Mesh size of fraction used for analysis        |                                                                                                                  |
|                                                | Extraction Method                                                                                                |
|                                                | Analytical Method                                                                                                |
|                                                | Keagents Used                                                                                                    |
|                                                |                                                                                                                  |
| General                                        | General                                                                                                          |
|                                                |                                                                                                                  |
|                                                |                                                                                                                  |
|                                                |                                                                                                                  |
|                                                |                                                                                                                  |
|                                                |                                                                                                                  |
|                                                |                                                                                                                  |
|                                                |                                                                                                                  |
|                                                |                                                                                                                  |
| ······································         |                                                                                                                  |
|                                                | and the second |

Dudley Twp. M.84

|          | , 1                            |                                  |                          |                        | ,                  | 6                             | 7                                | <b>`8</b>                                                          | 9                                | 10                                         | 11                                                   | 12                                 | 13                                            | 14                        | 15                                | 16                | 17                             | 18                       | 19                                                              | 20                    |                                                              |
|----------|--------------------------------|----------------------------------|--------------------------|------------------------|--------------------|-------------------------------|----------------------------------|--------------------------------------------------------------------|----------------------------------|--------------------------------------------|------------------------------------------------------|------------------------------------|-----------------------------------------------|---------------------------|-----------------------------------|-------------------|--------------------------------|--------------------------|-----------------------------------------------------------------|-----------------------|--------------------------------------------------------------|
|          |                                |                                  | Dudmon<br>Lake<br>CUDMON |                        |                    |                               |                                  |                                                                    |                                  |                                            |                                                      |                                    |                                               |                           |                                   | ø                 | P                              | P                        | P                                                               | Ø                     | Ð                                                            |
|          |                                | 1                                |                          | 380 11                 |                    |                               | (P)                              | P                                                                  | P                                | P                                          | P<br>X                                               |                                    | P                                             | P                         | P                                 | ø                 | Ø                              | P                        | P                                                               | P                     | Ð                                                            |
|          | 1                              | 2                                | 3                        | @<br>4                 | 5                  |                               |                                  | P                                                                  | Ð                                | P                                          | P<br>SRO:                                            | P                                  | P                                             | P                         | P                                 | P                 | P                              | P                        | P                                                               | SRO.                  | P                                                            |
|          | P                              | P                                | P                        |                        |                    |                               | P                                | P                                                                  |                                  | P                                          | P                                                    | P                                  | æ <sub>erc</sub><br>P                         | e                         | <u> </u>                          | P<br>SRJ.         | 0                              |                          |                                                                 |                       |                                                              |
|          |                                | Glamor                           |                          | e<br>P                 | P                  | P                             |                                  |                                                                    | e                                | <b>(D</b>                                  | SRD                                                  |                                    |                                               |                           |                                   | <u>``</u> .       |                                |                          |                                                                 | 2 4 0                 | (P)<br>21                                                    |
|          | ی<br>رو برو <del>رو</del> در ا |                                  | i (P)<br>Smar I am       |                        |                    |                               |                                  | :                                                                  |                                  |                                            | s a c                                                | P                                  | (₽)<br>S ≈ C                                  | (P)                       | P                                 | Ø                 | D                              | P                        | P                                                               | P                     | e<br>c                                                       |
|          |                                | نہ <u>ت</u> ہ :<br>گ <b>م</b> ے۔ | <u> </u>                 |                        | ( <b>n</b> )       |                               |                                  | P.                                                                 | P                                | (a)                                        | P                                                    | (P)<br>                            | P                                             | شين –<br>– (۳)            | 5.90<br>P                         | Þ                 | ٢                              | P                        | SRC<br>D                                                        | Đ                     | (P)<br>SRO                                                   |
| 5        |                                | (n)                              | 369425                   | - ( <b>n</b> )         | (a.)               | (a)                           | ( <b>n</b> )                     | (n)                                                                | 60<br>146082<br>51<br>51<br>4602 | E:<br>H 6025<br>E0<br>4 603                | E:<br>4 E: 8<br>E:                                   | 60<br>6 80.6<br>80                 | Ð                                             | ۵                         |                                   | Þ                 | - ( <b>P</b> )<br>S R O        | Ó                        | P                                                               | NAT CN<br>NAT D       | e<br>e                                                       |
| vp. M. 9 |                                | 363419<br>767                    | -                        | P                      | Ð                  | P                             | E1<br>40-991<br>E1               | ES<br>401987                                                       | 401986<br>                       | 401983<br>EC<br>SRC                        | 4 65 7<br>60<br>401552<br>6 <sup>7</sup><br>5 RQ     | 4 5636<br>EC<br>40.975<br>SRO<br>+ |                                               |                           | 41. 37 1<br>41. 37 1<br>10        | The second second | Cue<br>oke                     |                          |                                                                 | 6                     |                                                              |
| n<br>V   |                                |                                  | !                        |                        | E.:.               | E :<br>©                      | 40-989<br>Ec<br>D                | 4: 1986<br>E:                                                      | 45-985                           | 40 584<br>CR<br>347405                     | 40/98                                                | 401980                             | BRO.                                          |                           | 401976                            |                   | P                              | Tory                     | Loke                                                            | SRO.                  | <b>(P)</b>                                                   |
| amorga   |                                | P                                | P                        | (P)                    | E2 ()<br>12704     | 2705<br>E.C D<br>- D<br>12795 | 12706<br>12706<br>12707<br>12707 | E 0<br>E 0<br>E 0<br>E 0<br>E 0<br>E 0<br>E 0<br>E 0<br>E 0<br>E 0 | e                                | F0<br>347399                               | Ð                                                    | P                                  | P                                             | P                         | P                                 | P<br>SRO.         | B<br>S.RO<br>S                 | P                        | P                                                               | OL<br>D<br>S.R.O.     | е.о<br>Р                                                     |
| 6        | `                              |                                  | P                        |                        | P                  | P                             | 335 25<br>51                     | 335 26<br>                                                         | 335 27<br>P<br>SRO<br>535524     | EC<br>4:6453<br><br>S.R.O.<br>EC<br>328586 | EO<br>347 398<br>SRC<br>P<br>S.R.O<br>FC<br>34 7 397 | P                                  | P<br>S.R.O.                                   | P                         |                                   | P                 | P                              | P                        | P                                                               | P                     | 4259<br>E0<br>A256<br>E0                                     |
|          | 1                              | P                                | P                        | Pe                     | 37869<br>E0        | 37865<br>Eo D -<br>S.R.O.     | Ð                                | EC<br>37856<br>DEC<br>SRO                                          | Ð                                | P                                          | P                                                    | P                                  | P                                             | EC<br>40 2 3 7 3<br>P     | E0<br>4 0 2 3 7 1<br>P            | P                 | P                              | E Q.<br>(P)<br>4958      | E 0<br>P<br>4959                                                | €0<br>(€) L.0<br>4960 | <ul> <li>E0</li> <li>E0</li> <li>L0</li> <li>8255</li> </ul> |
|          |                                | R                                |                          |                        | 37870<br>E 0       | 37666<br>E C<br>37867         | 37862<br>EC                      | 37859<br>E0                                                        | EO                               | EO 1999                                    |                                                      |                                    | SRO.                                          | SRO.<br>40 2 374<br>EO.   | SRO.<br>402372<br>E0.             |                   | 101                            | E 0<br>(P)<br>4957<br>E0 | E 0<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>() | E0<br>L 0<br>8258     | E.O.<br>E.O.<br>B260                                         |
|          |                                | P                                | P                        | P                      | 3787 EO            | E 0<br>37868                  | EO<br>37864                      | E0<br>37861                                                        | 369835                           | 369834<br>EO.<br>369836                    | P                                                    | P                                  | 402377<br>••••••••••••••••••••••••••••••••••• | 402376<br>D<br>5 R.O.     | 402 375<br>E0<br>S.R.O.<br>401993 | E the             | 0 MR0<br>4965<br>RIVE1-<br>EQ. | 0 MR0.<br>4967           |                                                                 | 0.1<br>4962           |                                                              |
|          |                                | P                                | Laronde.<br>369819<br>EO | EO<br>369820<br>E 0    | EO<br>Cr.<br>36982 | E0<br>369822                  | E0<br>369823                     | E0<br>369824                                                       | EO.<br>369825                    | 0                                          | E0<br>38962 0                                        | E0                                 | S.RO                                          | 40 2 378<br>EO.<br>401992 |                                   | EC                | 4966<br>2 E O                  | 4968<br>E0               | 4970<br>E0                                                      | 4961<br>EO.           | (L)<br>4963<br>E0<br>(L)                                     |
|          |                                | EO                               | 369826<br>E0             | 369827<br>E0.          | 369828<br>E0.      | 369829<br>E0.                 | 369830<br>EO.                    | EQ<br>369831<br>EQ.                                                | EO<br>369832<br>EO.              |                                            | EO                                                   | E0<br>389618                       |                                               | E 0.<br>389 619           | Ð                                 | EO<br>D<br>18412  | 18413<br>EO.                   | 4971<br>EO.              | 4973<br>EO.<br>WRO                                              | 9430<br>EO<br>9431    | 9432<br>,jeo.<br>D                                           |
|          |                                | 431168<br>EO                     | 431169<br>E0             | 3895 97<br>EO          | 389598<br>         | 389599<br>EO                  | 389600<br>E0                     | <b>38960</b><br>E0                                                 | 389602<br>EO                     | 389603<br>E0.                              | 389604<br>E0.                                        | ED.<br>389605<br>ED.               | E0<br>3896/5<br>SRO<br>PEO                    | 38961 6<br>               | ED<br>370592                      | E0<br>369431      | EO<br>369432,.**               | E0<br>369433             | EO.                                                             | EO.<br>369435         | 9433                                                         |
|          |                                | 431:70                           | 43:17:<br>EC             | 389606<br>EC           | 389607<br>EC       | 389508                        | 389609                           | 389610                                                             | 389611                           | 389612                                     | 389613                                               | 389614<br>EO.                      | 3702 67<br>E0                                 | 370594                    | 370773                            | 370593            |                                |                          |                                                                 | 2                     | (P)                                                          |
|          | . 1                            | P                                | 431172<br>EC             | 431173<br>E0<br>431176 | E0                 |                               |                                  | C1-                                                                |                                  | E0<br>370273                               | EQ - LH                                              | 370268<br>adlington<br>Loke        | 370265<br>E0                                  | 370595                    | ~                                 |                   | P                              | P                        | P                                                               |                       | P                                                            |
| h        |                                |                                  | P                        |                        | 6                  | Hadlington                    |                                  | EO.                                                                | E0.                              | E0.                                        | 370270<br>E0.                                        | 370269                             | 370265                                        | >                         |                                   |                   |                                |                          | 로 누구 구구 구기                                                      |                       |                                                              |
|          | ×                              |                                  |                          |                        | ÷                  |                               | EO.                              | EO,<br>370276                                                      | E0.<br>370275                    | 510272                                     |                                                      |                                    |                                               |                           | P                                 | P                 | P                              | P                        |                                                                 | -                     | P                                                            |
| Ň        | -                              | 2                                | 3                        | 4                      | 5                  | 6                             | 7                                | 8                                                                  | 9                                | 10                                         | 11                                                   | 12                                 | 17                                            |                           | P                                 | P                 | P                              | P                        | P                                                               | P                     | P                                                            |
|          |                                |                                  |                          |                        |                    |                               |                                  |                                                                    |                                  | -                                          |                                                      | 12                                 | 13                                            | 14                        | 15                                | 16                | 17                             | 18                       | 19                                                              | 20                    | 21                                                           |
| T        |                                | 2 1909                           |                          |                        |                    |                               |                                  |                                                                    |                                  |                                            |                                                      |                                    |                                               |                           |                                   |                   | Ans                            | trut                     | her                                                             | Twp                   | ). M                                                         |

200

J.P. von K.





| THE                                                                                                                                                                                            | TOV                                | VNSHI                         | P                             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-------------------------------|-------------------------------|
|                                                                                                                                                                                                | OF                                 | 2                             | . 18                          |
| MON                                                                                                                                                                                            | M                                  | Õ                             | Л                             |
| CO<br>HA                                                                                                                                                                                       | UNTY<br>LIBUI                      | OI<br>RTON                    | F                             |
| EASTE<br>MINING                                                                                                                                                                                | RN                                 | onta<br>Divis                 | rio<br>Sion                   |
| CALE: I-                                                                                                                                                                                       | INCH                               | = 40                          | СН                            |
|                                                                                                                                                                                                | LEGE                               | IND                           |                               |
| ATENTED LAND<br>ROWN LAND SA<br>EASES<br>OCATED LAND<br>ICENSE OF OC<br>MINING RIGHTS OF<br>OURFACE RIGHTS<br>ROADS<br>MPROVED ROADS<br>INGS HIGHWAYS<br>ROWER LINES<br>MARSH OR MUSK<br>MINES | LE<br>CUPATIO<br>DNLY<br>ONLY<br>S | D <b>N</b>                    |                               |
|                                                                                                                                                                                                | NOT                                | ES                            |                               |
| This Map Is<br>FOR SUR                                                                                                                                                                         | s Not<br>VEY                       | To E<br>PUF                   | Be Us                         |
| 400 <sup>1</sup> Surface rig<br>of all lakes ar                                                                                                                                                | nts reser<br>nd river              | vation al<br>rs.              | iong th                       |
| Original shoreline<br>F.R.I. shoreline<br>Patents Map shoreline                                                                                                                                | e show<br>show<br>show             | n thus:<br>n thus:<br>n thus: |                               |
| For status ot s<br>thus<br>Please contact                                                                                                                                                      | ummer<br>Ministry                  | resort                        | loc <b>at</b> ion<br>rat Reso |
| F MININ                                                                                                                                                                                        |                                    |                               | . <u></u>                     |

M. 69

Twp.

Cardiff

PLAN NO.-M.164 ONTARIO MINISTRY OF NATURAL RESOURCES





| B.L.1                                                                | CONCESSION IX, LOTS 22 (5½),23,24<br>CONCESSION X, LOTS 23 (5½),24<br>SCINTILLOMETER SURVEY W/MSPHAR TV-1 (SERIAL #<br>171-40) TOTAL RADIATION SURVEY<br>IN COUNTS PER MINUTE X100 |
|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TRENCH DETAIL<br>SCALE: 1" = 100'<br>ROAD<br>TRENCH<br>TRAVERSE LINE | - WE SWAMP, MARSH CONTOURS<br>ROAD<br>CREEK<br>CIP 5 X BACKGROUND<br>CREEK<br>TRAVERSE LINE<br>BACKGROUND 2000 CPM<br>LOT & CONC. LINE                                             |
| 31D16NE0021 2.1899 MONMOUTH 210                                      | SCALE 1"= 400 Ft.<br>FIELD PARTY : BONNIE LOWE<br>NURIE JACKSON<br>JACQUES DU MOUCHEL<br>DENIS VILLENEUVE                                                                          |

.

i.