MAKTIN SHEFSKY

46-3983316

From : KATHY'S KEYBOARD & FAX

PHONE No. : 1 785 835 5636

Sep. 04 1998 5:18PM P02

GEOLOGICAL INVESTIGATIONS

Box #122, 38 Alpino Drivo Mognistone, Ontario LOK 1N0 Bue/Fax (705) 835-5636 E mail: whitzgor@barint.on.ca

r.4. 1998

Septembe

SEP 25

GEOSCIENCE AS

Sonic Soil Bampling Inc. 568 Millway Avenue Unit 15 & 16 Concord, Ontario L4K SV2

Alt: Frederick T. Archibeld B.Sc. President

Subject: Category 12 - Quarry below water Aggregate Permit, PL 8 14 Lots 12 & 13, Concession 3, Pt N 1/2 Lots 12 & 13, Concession 2, Township of Cavendiah, County of Peterborough:

Dear Fred

Geological Investigations will prepare and submit an application for a Category 12 - Quarry below water Aggregate Permit under the Aggregate Resources Act to operate a quarry on the subject property.

The total cost to make the application will be \$10,0000 + GST and will include:

1/ Application for a Aggregate Permit under the Aggregate Resources Act (ARA) to operate a Category 12 Querry below water.

2/ Site Plans required by the ARA

3/ Natural Environment Study, Level 1

4/ Cultural Heritage Resource Study, Stage 1

5/ Hydrogeological Study, Level 1

Payment will be in 4 instalments of \$2,675.00 (GST included) the 1st due prior to commencement of the project. The 2nd and 3d payments are due 1 month and 2 months efter commencement of the project and the last payment when the application is submitted to MNR.

Any additional works required as a result of the public meetings or circulation of the applications, to Ontario Municipal Board Hearing, are not included in this agreement and will be involced as extras.

CAVENDISH

31D16SW2002 2.20489

010

It is agreed that you will have 3 wells constructed on site to determine the depth to the water table.

Please have your client (Regis Resources Inc.) sign and return the attached agreement along with the deposit as soon as possible.

If you have any questions please give me a call.

Yours 2.h

William D. Fileperaid MSc.

LEVEL TWO

NATURAL ENVIRONMENT STUDY AGGREGATE ACT SUBMISSION

PREPARED FOR:

REGIS RESOURCES INC. VERMICULITE QUARRY PROPOSAL PART OF LOTS 12 AND 13, CONCESSION II AND III CAVENDISH TOWNSHIP, PETERBOROUGH COUNTY ONTARIO

FEBRUARY 1999 SUBMISSION

PREPARED BY: SAAR ENVIRONMENTAL LIMITED

584 Skyhills Road, R.R. #1 Huntsville, Ontario P1H 2J2 Phone: 705 788 2218 Fax: 705 788 2219 email: SAAR@muskoka.com

TABLE OF CONTENTS

ABSTRACT

1.0	CHARACTER OF SITE	1
1.1	Geographical Location	1
2.0	METHODOLOGY	1-2
	RESULTS	
3.1	Vegetation Communities	4-9
4.0	IMPACT ASSESSMENT	10
4.2	Sensitivity to Development Wetland Conservation Status Vascular Plant Conservation Status Potential Impacts of Vermiculite Extraction	10
5.0	MITIGATION	15-17
5.1 5.2	Extraction Phase Post Construction Phase	18 18
6.0	SUMMARY	19

APPENDIX: WILDLIFE OBSERVATIONS PROFESSIONAL BIOLOGIST QUALIFICATIONS

CAVENDISH

31D16SW2002 2.20489

.

010C

ABSTRACT

Our firm was retained by Geological Investigations to prepare a Level I Natural Environment Study under the Aggregate Resources Act of Ontario. The study assesses whether vermiculite extraction can proceed on part of lots 12 and 13, Concession II and III within Cavendish Township, Peterborough County without significant negative impact to the natural environment.

To determine whether the proposed land use was compatible with the local environment, we conducted a field inspection on and surrounding the proposed extraction area on October the 5th, 1998, and attended the Ontario Ministry of Natural Resources Minden Area Office to review existing environmental information, meeting with the Aggregate Officer, Area Planner and pertinent fish and wildlife staff on November the 27th, 1998.

Field observations revealed that wetland and upland habitat types are supported on the land proposed for extraction. Although all representative of this ecological area, one habitat type was provided conservative mitigation through constraint. This treed bog wetland type, although small in size (less than five hectares), was recommended for conservation and 120 metre setback from extraction because it is a long term accumulation of peatland that cannot be rehabilitated as can the marsh feature. If extraction remains above ground setback distances could be tailored to the site topography and vermiculite feature provided that sound best management practices show how sediment and nutrient would not enter the treed bog. Extraction setbacks from open water were recommended at 30 metres and 50 metres from significant species habitat consistent with the Natural Heritage Training Manual Policy 2.3 of the Provincial Policy Statement.

۱

1.0 CHARACTER OF SITE

The Regis site and surrounding landscape was shaped by past glacial events leaving rock ridges and shallow soils colonized by tree species able to grow on thin glacial tills such as the mixed White Pine-Poplar-White Birch-White Oak and Red Maple Forests. Factors such as historical forest fires, traditional logging and beaver activity further influenced the quality of the vegetation and wildlife. Some remnant White Pine not logged or burned (+120 year old) exists amidst regenerating mixed younger woodlots. Beaver activity helped create some of the ponded and flooded marsh wetland habitats rich in duckweed, pondweed and colonizing wetland sedges and shrubs.

1.1 GEOGRAPHIC LOCATION

Geographically the area is west of Mississagua, Catchacoma and Horseshoe Lake (also known as Horseshoe Lake) on the northern periphery of Peterborough and Haliburton Counties. The legal description of lands proposed for resource extraction is part of Lot 12 and 13, Concession II and III, Cavendish Township, County of Peterborough, Ontario.

2.0 METHODOLOGY

SAAR Environmental Limited conducted a site inspection of the Regis parcel and surrounding wetlands on October the 5th, 1998. Our senior biologist also reviewed existing environmental information available from the Ontario Ministry of Natural Resources by attending their Minden Area Office on November the 27th, 1998.

Since the area proposed for vermiculite extraction was found to support wetland features and functions, we scoped the study to detail an assessment of the potential impact of an aggregate extraction process on the wetland ecology of the Regis parcel and interlinked wetland complexes. Our impact study must address the following questions:

- 1. Will extraction impede wildlife use of secondary corridors around the marsh?
- 2. Will excavation remove significant wetland habitat?
- 3. Will excavation alter the wetland water regime, thus impacting wetland species supported therein?
- 4. Are the marsh and treed bog wetland habitats at risk of removal considered realistic candidates for restoration to existing levels of biodiversity or ecological integrity?

2

2.0 METHODOLOGY CONTINUED

Our team surveyed the property and general area for sensitive environmental areas including potential wetlands and significant woodlands, using established provincial criteria including a review of provincial ranking for wetland complexing. Wetland habitat was delineated on site through ground truthing straight line transects and off site wetland complexes through aerial photography interpretation and road checks.

Use of wetland and upland forest cover was investigated for function as a migratory route or local wildlife corridor. This search included evaluation of large mammal activity such as White-tailed deer, moose and coyote, but also observed sign of smaller wildlife corridors which we feel are equally important in a larger ecological sense; wildlife such as ground nesting woodland ruffed grouse, avian flyway thickets of value to breeding and migrating warblers such as the Black-and-White Warbler and grassy swales of Hairgrass (*Deschampsia flexuosa*) Blue-joint reed grass (*Calamagrostis canadensis*) and bladder sedges (*Carex hystericina*, C. *Iupulina*) that function as tertiary wildlife corridors for hares, moles, voles and/or shrews.

Wetland pockets were traversed for an estimation of vegetation community content and wetland limits pertaining to the proposed area of aggregate extraction land use. As well, a landscape view was taken to determine the extent of wetland and woodland as it relates to the vermiculite extraction proposal. This part of the survey was done on foot and photographed from the concession road to adhere to trespass regulations on other private properties. It was supplemented by aerial photography interpretation.

3.0 RESULTS

HABITAT STATUS

Our field observations indicate that vermiculite extraction within the currently proposed boundaries would remove wetland and upland habitat representative of this ecological Site District. Our review of regional scope aerial photography and aerial views of the local Cavendish Township landscape indicate that existing habitat types proposed for extraction are supported in repeated vegetation patterns across this ecological area.

Our ground truthing revealed that wetland habitat on the Regis site functions with off site wetland habitat via surfacewater drainage connections, forming wetland "complexes" where energy flow of water, sediment, nutrient, plant propagules and wildlife is transferred between wetland units.

Although the wetland types found on and near the Regis site are represented well across this shield landscape, their combined complex size coupled with significant flora may be sufficient to attain the minimum 600 of 1000 point score for provincial wetland status ranks of Class 1 through 7, where Class 1 is the highest value attained. Wetlands have not been evaluated under the Northern Wetland Evaluation Manual established by the province. Note that the broader brush provincial evaluations were not designed to supply botanical or habitat detail; rather, they were created so that any relatively untrained evaluator could take the manual format and obtain a general classification of wetland value relative to other existing wetlands based on a four part scoring system of outlined biological, social, hydrological and special feature predetermined categories.

The Natural Environment Study submitted herein is an impact study that provides site specific botanical detail, and establishes the most restrictive conditions for sensitive wetland conservation available to us through both the Wetland Policy Statement and the Provincial Policy Statement on the Precambrian Shield - regardless of wetland class 1 or class 7 on the provincial rank, since this document under the Aggregate Act is asked to investigate potential impacts.

Conservation standards recommended as a result of this study thus focus on setback distances following current science, responding to site specific land use with site and landscape level answers on potential negative impacts to environmental features. It provides impact assessment and site detail not covered in the provincial wetland evaluation system. We do overlap methodologies, for instance wetland complex assessment follows the same checklist of rules measuring for wetland connection to maximal aerial extent of 750 metres as identified by Dave Euler for OMNR for generally measured distances for a host of wildlife travelling between wetland areas.

3

SAAR Environmental Limited

WETLAND FUNCTION

Terrain functions for general hydrology were observed to be moderate to high and worthy of specific mitigation to conserve them; headwater wetlands can provide for flood attenuation and moderate storm events, as well as retain moisture during drought events.

The treed bog and fen habitat types wick up moisture in their moss layers particularly when stretching toward Horseshoe Lake. In many instances no direct surfacewater drainage patterns or evidence of drainage is displayed but the gradual seepage of water may be retained below surface in the moist moss found within the treed bog.

3.1 VEGETATION COMMUNITIES

The Regis parcel supports the following vegetation community types:

- 1. Treed and Shrub Bog Wetland
- 2. Open Marsh Wetland
- 3. Mixed Upland Forest (MhBwHeCb)
- 4. Early Succession Poplar Forest Edge (AtMsHeBw)
- 5. Wet Graminoid Swales
- 6. Hemlock Treed Swamp Wetland
- 7. Open Fen Wetland-Graminoid Meadow Succession

3.2 VEGETATION DETAIL

1. TREED AND SHRUB BOG WETLAND

Our biologist spent considerable time investigating the most sensitive habitat type on the Regis parcel, the bog wetland mapped as Map Unit #1. The potential for rare species support and hydrology function was high, as well as the likelihood of off site wetland complex connections. Bog content is detailed below.

Tamarack-Eastern White Cedar-Black Spruce tree associations (*Larix laricina-Thuja occidentalis-Picea mariana*), with dominant groves of Tamarack are evident in the treed bog, with an understory in light filtered areas of Northern Wild Raisin (*Viburnum cassinoides*), Mountain Holly (*Nemopanthus mucronatus*) and prostrate shrubs including

TREED AND SHRUB BOG WETLAND CONTINUED

Leatherleaf (*Chamaedaphne calyculata*), Bog and Sheep Laurel (*Kalmia polifolia*, *K. angustifolia*) and a rich forb layer emerging from the rich Sphagnum moss carpets on the forest floor. Virginia Chain Fern (*Woodwardia virginica*) was also present, with errant specimens of the Pitcher Plant (*Sarracenia purpurea*) and abundant Sundews (*Drosera rotundifolia*) supported here.

2. OPEN MARSH WETLAND

This shallow pond recedes into back bays between ridges and forms numerous cattail swamp wetland communities at the pond and upland interface.

2B CATTAIL SWAMP

Bullhead Lily (*Nuphar variagatum*), Joe-Pye Weed (*Eupatorium maculatum*), Blue Flag (*Iris versicolor*), Plantain at waters edge were flanked by a shrub layer of Tag Alder (*Alnus rugosa*), Willow (*Salix spp.*) and Sweetgale (*Myrica gale*). This formed a structure for the rushes (*Scirpus cyperinus, S. rubrotinctus. Cladium mariscoides*). Steeplebush (*Spirea tomentosa*) and Blue-joint reed grass (*Calamagrostis canadensis*). Marsh St.John's Wort (*Triadenum fraserii*) was also present at the wet edges of these cattail and sedge swamps with fern specimens (*Dryopteris intermedia, Onoclea sensibilis*). The vegetation did not allow for navigability by ducks which had to use the central open water portion of the marsh.

3. MIXED UPLAND FOREST

Sugar Maple (*Acer saccarum*) White Birch (*Betula papyrifera*) and Eastern Hemlock (*Tsuga canadensis* (L.) Carriere) combine to provide the overstory for shorter Ironwood (*Ostrya virginiana* (Miller) K. Koch) and Maple seedlings with a small Black Cherry component. Shrub layers include Opposite-leaved Dogwood (*Cornus alternifolia* L.f.), High Bush Cranberry (*Viburnum trilobum* Marshall), Alternate-leaved Serviceberry (*Amelanchier alternifolia*) and forb clusters of Bluebead Lily (*Clintonia borealis*) and Wild Sarsaparilla (*Aralia nudicaulis*).

Introduced Helleborine orchids (*Epipactis helleborine* (L.) Crantz) and Puffball fungi under Striped Maple saplings and Eastern Hemlock (*Tsuga canadensis* (L.) Carriere) reveal Wood Sorrel (*Oxalis stricta L.*). Cucumber Root (*Medeola virginiana* L.), and fern assemblages of *Dryopteris* including *D. filix-femina*. This vegetation community differs from Map Unit #6 community due to dry soil and an absence of the club moss ground cover. Long-awned Wood Grass (*Brachyelytrum erectum*) continues to persist here as in the wetter Hemlock swamp. Hemlock bases support the fine Goldthread (*Coptis*

groenlandicus), Polygala (Polygala paucifolia), Creeping Partridge-berry (Mitchella repens), Wintergreen (Gaultheria procumbens), Bracken (Pteridium aquilinum).

4. EARLY SUCCESSION POPLAR EDGE

Sugar Maple-Eastern Hemlock-White Birch-Trembling Aspen (Acer saccarum, Tsuga canadensis (L.) Carriere, Betula papyrifera. Populus tremuloides Michx.) dominate this tree association. Hepatica continue in the forb layer with Indian Cucumber Root (Medeola virginiana L.) and Large-leaved Asters (Aster macrophyllus L.).

5. GRAMINOID SWALE

Grass and sedge lined swales often lead to remnant or active beaver activity on and off this site. The back eddie areas may form a connection with the open marsh during flood events, but open water has long been encroached by Blue-joint reed grass (Calamagrostis canadensis), Joe-Pye-Weed (*Eupatorium maculatum*) and Rattlesnake Manna Grass (*Glyceria canadensis*) at the swale edge of White Cedar (*Thuja occidentalis*) and Eastern Hemlock (*Tsuga canadensis*) (L.) Carriere). Helleborine Orchid (*Epipactis helleborine* (L.) Crantz), Blackberry (*Rubus allegheniensis* Porter), Water Horehound (*Lycopus europaeus* L.), Rough Golden-rod (*Solidago rugosa*), Cheeses (*Malva neglecta* Wallr.), Water Buttercup (*Ranunculus flabellaris*), Moist Wood Fern (*Dryopteris intermedia*, *D. marginalis*), Coltsfoot (*Tussilago farfara* L.) Nodding Beggar-ticks (*Bidens cernua*), Shining Clubmosses (*Lycopodium lucidum*), Woolgrass (*Scirpus cyperinus*) in dense clusters with duckweed (*Lemna minor*) in water puddles. Birds making use of these structural edges included woodpeckers (Downy, Hairy, Flicker), common Chickadees, American Crows and a late in season Black-and-White

Warbler in the wet edge Hemlocks.

6. HEMLOCK TREED SWAMP

Eastern Hemlock-Silver Maple (*Tsuga canadensis - Acer saccharinum*) mixed with small lronwood (*Ostrya virginiana*) formed the upper tree canopy for a mossy forest floor with errant Moist Wood Fern (*Dryopteris marginalis*), Horsetail (*Equisetum fluviatile*), Hay Scented Fern (*Dennstaedtia punctilobula* (Michx.) T. Moore), Wild Raisin (*Viburnum cassinoides*) and Silver Maple (*Acer saccharinum* L.) seedlings under the Hemlock canopy. Opposite-leaved Dogwood (*Cornus alternifolia* L.f.) sheltered Round-lobed Hepatica (*Anemone americana* (DC.) H. Hara), Club mosses (*Lycopodium clavatum*, L. *hucidum*, L.) and Long-awned Wood Grass (*Brachyelytrum erectum*).

7. OPEN FEN-GRAMINOID WETLAND SUCCESSION BY LAKE

Often a fen indicator, we collected herbarium specimens of Bog Rosemary (Andromeda glaucophylla) at Map Unit #1 Treed Bog limits and 4 metres away in the wet fengraminoid meadow succession adjacent to Horseshoe Lake. Brown mosses such as

Campylium spp. are supported here; also indicative of fen habitat. Species common to bog or fen habitat included the striking Sundew and Pitcher Plant insectivorous plant species (*Drosera rotundifolia, Sarracenia purpurea*). Buckbean was not observed although Marsh St. John's Wort (*Triadenum fraserii*) was abundant with Sweet Gale (*Myrica gale*).

8. WET SWALE ADJOINING MARSH

Seasonal inundation, dominant grasses include Blue-joint reed grass (Calamagrostis canadensis) (Phalaris arundinacea L.), Cutgrass, Rattlesnake Grass (Glyceria canadensis (Michx.) Trin.) and a few Yellow Sedge (Carex flava L.). Moist ground cover mosses (Mnium spp.) support Bitter Nightshade (Solanum dulcamara L.), Stick-tight (Bidens cernua L.), Water -horehound (Lycopus europaeus L.), Joe-pye weed (Euphatorium maculatum L. ssp. maculatum). and ferns (Dryopteris intermedia. Onoclea sensibilis).

Where the swales grade upland, tree edges of White Cedar - Eastern Hemlock (*Thuja* occidentalis- Tsuga canadensis (L.) Carriere) associations dominate on many north facing slopes. At these interfaces clubmosses appear including Shining Clubmoss (*Huperzia lucidula* (Michs.) Trevis.)

9. SHRUB SWAMP

Red Aeshnia dragonflies flit over Water Plantains (Alisma plantago-aquatica L.), Stick tight (Bidens cernua L.), Bitter Nightshade (Solanum dulcamara L.), and a shrub layer of Willow (Salix spp.) and Red-ozier Dogwood (Cornus stolonifera). Four associations were dominated by Sensitive Fern (Onoclea sensibilis L.) and Marginal Wood Fern (Dryopteris marginalis(L.) A. Gray).

10. ROAD SWALE - TREED SWAMP

Bunchberry (*Cornus canadensis L.*), Chickweed (), abundant quality specimens for Purple-flowering raspberry (*Rubus odoratus*), Goldthread (*Coptus groenlardica*) amidst dead standing Eastern Hemlock (*Tsuga canadensis* (L.) Carriere).

This wetland complex is a treed swamp of White Cedar - Ironwood - Red Maple (*Thuja occidentalis - Ostrya viriginiana* (Miller) K. Koch - Acer rubrum L.) packed with cattail borders grading to mixed Sugar Maple uplands.

The standing water wicks up sphagnum to provide moist habitat for Lesser Duckweed (*Lemna minor*), emergent wetland plants such as Pickerel weed (*Ponterderia cordata*), Water hore-hound (*Lycopus uniflorus*), Enchanter's Nightshade, Red-ozier Dogwood (*Cornus stolonifera*) and more delicate Lady Fern, False Violets (*Dalibarda repens*) and Bog Rosemary (*Ledum groenlandicum*. Diverse bryophyte and large fungi specimens were observed in this small wetland complex including *Piptoporous betulinus* on edge

White Birch (Betula papyrifera Marshall) and Ganoderma tsugae on dead standing Eastern Hemlock (Tsuga canadensis (L.) Carriere).

11. MIXED EARLY SUCCESSION WOODLOT

An internal access road bisects the previously noted roadside wetland swamp and early succession forest of Trembling Aspen - Large-toothed Aspen - White Pine - White Spruce (*Populus tremuloides* Michx. - *Populus grandidentata* Michx. - *Pinus strobus* L. - *Picea glauca* (Moench) Voss). A well worn large mammal travel corridor at swamp edge leads through the early forest and makes use of the cart trail. White-tailed deer were observed off this trail while sign of moose was recorded by our biologist in the adjacent roadside wetland.

Strong colonizers like Staghorn sumac (*Rhus typhina*), Raspberry (*Rubus*), Strawberry (*Irragaria*), Goldenthread (*Coptis groenlandica*) abound on the clear meadow uplands of the early forest edges.

12. DOGWOOD SWALE

A Woodthrush flushed from this low wetland of Opposite-leaved Dogwood shrubs (*Cornus alternifolia* L.f.) and moist Sphagnum moss ground cover. The main road into the Regis parcel bisects this wetland with two culverts providing the surfacewater connection we investigated as part of our wetland complexing exercise in the field. Surfacewater flows indicates a viable connection for the transfer of plant propagules from one wetland to another.

13. TREED SWAMP - NORTHEAST

White Cedar - Black Ash - Alder (*Thuja occidentalis* L. - *Fraxinus nigra* Marshall - Alnus) tree canopy underlaid with Sweetgale (*Myrica gale*) and Willow (*Salix spp.*) shrub wetland. Winterberry (*Ilex verticillata*) and Creeping Snowberry (*Gaultheria hispidula* (L.) Muhlenb. ex Bigelow) grade into swales. Swales provide drainage flow paths for water, nutrient and species transfer. A sampling of wetland plants within 3m² included Cucumber Root (*Medeola virginiana* L), Stick tight (*Bidens cernua* L.), Sedges (*Scripus rubrotinctus*, *S. atrovirens*) ferns including Royal Fern (*Osmunda regalis*) and Hay-Scented Fern (*Dennstaedlia punctilobula* (Michx.) T. Moore). A sampling of bog indicator plants spills into this treed and shrub swamp including Virginia Chain Fern (*Woodwardia virginica*). Labrador Tea (*Ledum groenlandicum* Oeder).

14. LAKESHORE

Open water edges of marsh habitat are surrounded by bog, fen and low shrub wetland affinity plant species supported on sphagnum hummocks such as cranberries (Vaccinium microcarpon) and insect eating bog plants known as Pitcher Plants (Sarracenia purpurea), the Round-leaved and Sundews (Drosera rotundifolia). Shrub layers of Red-osier Dogwood - Willow - Sweetgale - (Cornus stolonifera Michx. - Salix spp. Myrica gale) are interspesed with tree specimens most often Alder - Tamarack - Spruce Hemlock (Alnus - Larix - Picea - Tsuga). Rich forb layers and ericaceous plants thrive. Striking examples include Bog Rosemary (Ledum groenlandicum), Leatherleaf (Chamaedaphne calyculata (L.) Moench), and Virginia Chain-fern (Woodwardia virginica) growing alongside Duckweed (Lemna turioniflera Landolt), New York Fern (Thelypteris noveboracensis (L.) Nieuwl.), Stick tight (Bidens cernua L.), Moss (Mnium spp.), Goldthread (Coptis groenlandicus). foliose and crustose lichens on bark as well as Poison Ivy (Rhus radicans L. ssp. negunda (Greene) McNeill) clusters further inland.

15. TREED BOG INTERIOR

The White Cedar - Tamarack - Spruce Bog (*Thuja occidentalis - Larix laricina - Picea*) supports Sphagnum layers including the Brown and Red Sphagnums that in our experience do not occur in other wetland habitat types. These vast mounds of contiguous moss carpets provide excellent potential habitat for the Four-toed Salamander which congregate their eggs in these moist mosses wicking moisture from the sub-surface waters. This area supports the Long-tailed Weasel and many small mammal travel corridors, with potential for shrews, flying squirrels, owls and accipeters.

Mosses support abundant mounds of small and large Cranberry (*Vaccinium* macrocarpon, V. microcarpon). Bunchberry (Cornus canadensis), Corprinus mushroom heads amidst Bog Laurel (Kalmia polifolia Wangeth.) and Rosemary (Andromeda polifolia L. ssp. glaucophylla (Link) Hulten). Horsetail (Equisetum fluviatile) is abundant in water, with Blue-bead Lily (*Clinotonia borealis*) and prostrate Orchids including the Lady Slipper. Goldthread (Coptis groenlandicus), Wintergreen (Gaultheria procumbens). St. John's Wort (Hypericum canadense L.) and swirled patches of lichen (Reindeer Lichen -*Cladina rangiferina* (I.) Nyl.) covered Tamarack (Larix laricina). Tamarack (Larix laricina) edge the bog perimeter where active Nuthatch, Chickadee and Hairy Woodpecker bird guilds dispersed across hedgerows flanking the internal access route into the site.

The following Color Plates 1 - 4 depict various habitat types on the Regis parcel.

4.0 IMPACT ASSESSMENT

4.1 SENSITIVITY TO DEVELOPMENT

Wetland habitat is most sensitive of the habitat types on site to alteration of water table, either through drawdown or flooding and/or nutrient and sediment entry.

Loss of other vegetation types on the parcel such as mixed woodlot, deciduous forest on ridges and grassy meadow could occur and be restored with greater success than wetland hydrology. These habitats are also more frequent and common within the Site District and Site Region.

Although wetland habitat is among the Areas of Natural and Scientific Interest selected for best representation of vegetation landform features in the Site District, our evaluation of off site linkages suggests that the Horseshoe Lake wetlands function with larger wetland complexes situated south of the Regis parcel and would thereby qualify for the recommended setback from aggregate land use of 120 metres guided by the Provincial Wetland Policy Statement.

4.2 WETLAND CONSERVATION STATUS

The area proposed for development is situated west of Horseshoe Lake and the larger Mississagua and Catchacoma Lakes. It is located within ecological Site District 5E-11 in a vicinity with numerous lakes and wetlands. Our team inventoried for alvar habitat due to conservation value and our documentation of this flat limestone pavement and unique vegetation near Buckhorn in the neighboring Victoria County but found none. Alvars become more numerous in Site District 6E-9 located south of the study site...

Conservation targets set for the easterly Site District 5E-8 note that smaller landform types (Clay Plain, Ice Contact Features, Sand Plain and Organic Deposits) representation across 5E-8 was poor, corroborating the value of organic deposits. The Horseshoe Lake wetland complex provides this type of wetland continuum.

The open low shrub and surrounding treed bog falling into and adjacent to proposed resource activity support dense Sphagnum hummocks of Kalmia angustifolia, Chamaedaphne calyculata, Eriophorum spissum, Viburnum cassinoides, Vaccinium macrocarpon, Bog Rosemary (Andromeda polifolia L. ssp. glaucophylla (Link) Hulten)

Forested upland ridges of mixed forest surround the bog and marsh habitat types. The peatland continues off site and articulates as a larger wetland complex with open water features. Any wetlands outletting to larger lacustrine habitat may function to varying degrees as a headwater area providing water quality and quantity value.

4.3 VASCULAR PLANT CONSERVATION STATUS

Our vascular plant list was referenced against known status designation authorities for the Peterborough County and the general ecological Site District 5E-11 as listed below.

OMNR Vascular Plant Status (Riley, 1989)

Sagittaria graminea Michx. Gra	poth Woodsia R-1
var. cristata (Engelm.) Bogin	ass-leaved Arrowhead R-0
Panicum perlongum Nash(Dichanthelium p. (Nash) Freckm.)PanCarex haydenii DeweySeaScirpus verecundus Fern.ShyDisporum lanuginosum (Michx.) NicholsonMorus rubra L.Morus rubra L.ReaCrataegus hillii Sarg.HaPotentilla paradoxa Nutt.LoLupinus perennis L.WiLinum sulcatum RiddellFidPolygala polygama WalterMiEuonymus atropurpurea Jacq.BuLythrum alatum PurshLoPanax quinquefolius L.GiPterospora andromedea Nutt.PitCuscuta campestris YunckerDaMonarda punctata L.Ba	Rush R-1 Yellow Mandarin R-2 d Mulberry R-0 wihorn R-1 wer Great Lakes Cinquefoil R-5 Id Lupine R-2

Our search for potential habitat of the above species found no specimens on the Regis site. Habitat excellent for fern assemblages was present on and off the site, but did not support the rare status ferns listed above.

Since the status designator (Riley, 1989) grouped Peterborough with Durham and Victoria County, it was not possible to separate out which rarities were recorded in which counties, requiring upgrading with other adjacent lands status lists such as the list below.

Annotated List of Vascular Plants in Haliburton County R.O.M., Emerson W. Skelton, 1977

Lycopodium inundatum L.	Bog clubmoss	Uncommon	
Lycopodium sabinifolium Willd.	Savin-leaved clubmoss	Rare-1	
L. tristachyum Pursh	Ground cedar	Uncommon	
L. Iristachyum Fursh Isoetes macrospora Durieu Equisetum scirpoides Michaux. E. variegatum Schleicher Botrychium dissectum Sprengel var. ob Botrychium simplex E. Hitchc. Asplenium trichomanes L. Athyrium pycnocarpon (Spregel) Dryopteris fragrans (L.) Schott D. goldiana (Hook.) A. Gray D. elegans (J.Robins.) F.W. Gray D. elegans (J.Robins.) F.W. Gray D. boottii (Tuckerm.) Underw. D. triploidea Wherry Thelypteris palustris (Salisb.) Schott Woodwardia virginica (L.) Smith	Quillwort Dwarf scouring-rush Variegated horsetail	Rare-2 Uncommon Rare-2 Rare-1 Rare-1 Rare-1 Rare-1 Rare-1 Rare-1 Uncommon Uncommon Rare-2	Potential X Regis

The above noted ferns with potential throughout the Haliburton area were also searched for within the Regis parcel as it supports a number of ferns in the Dryopteris family. However, no specimens of the rare Dryopteris were located.

The Virginia chain fern was located within the treed bog sphagnum hummocks. This plant is also considered rare throughout the District of Muskoka, although our field records indicate that the status designation in Muskoka may require downgrading as we are finding this fern in many wetland and wet swale locations on the Precambrian shield habitat.

Many of these good sources of documented flora are considerably outdated now, and as such, botanists at the Ontario Ministry of Natural Resources are actively compiling a current plant status listing for Peterborough (Mr. M.Oldham, NHIC) in 1999. Our team accessed the pertinent web site for any documented floral records and rare plant status within one kilometer of the study site to supplement our wetland and upland field inventory. Our purpose in reviewing all recent data was to attempt to provide some measure of regional assessment for:

- habitat type status across the region
- plant status across the region

In the absence of wetlands that have not been inventoried using the Northern Wetland Evaluation Manual in the vicinity of Horseshoe Lake, this mode of inquiry can benefit our assessment of general abundance to tailor conservation recommendations.

Results of our inquiry show that no candidate conservation areas such as ANSIs, Provincial Parks, Provincial Wetlands or Greenlands Systems were identified on the Regis parcel, within one kilometer or indeed within Cavendish Township (OMNR Web site search, 1999).

Species occurrence data was noted within the Township, and all eleven sitings of species records were searched, to determine that no Threatened or Endangered species were recorded again on the Regis site, within a kilometer, or within the Township. All sites indicated a species of vulnerable status; refined to often indicate a regionally rare or uncommon species. Contact was then made with the OMNR Area office to obtain further detail on buffering requirements and specific locations for the two vulnerable status sitings within a kilometer of the Regis parcel.

Bog wetland habitat types were viewed using Cavendish Township aerial photography and photography specific to the Regis parcel landscape. Precambrian Shield habitat of the Peterborough-Haliburton divide supports abundant wetland habitat types, and appears to support many bog features that still require more regional evaluation and listing for future provincial wetland evaluation - a mandate outlined within the Wetland Policy administered by the Ontario Ministry of Natural Resources.

4.4 POTENTIAL IMPACTS OF VERMICULITE EXTRACTION

Where currently proposed the extraction would remove treed bog and marsh wetland habitat. It is our opinion that this would result in a long term loss of this wetland type as it can not be rehabilitated in the post quarry restoration phase to similar habitat type due to the great amount of time required for peat deposition in this type of wetland habitat.

Excavation would likely alter the local water budget and potentially impact adjacent wetland complexes. Alternate options and mitigation are reviewed for the extraction operation in the following section 5.0 Mitigation.

5.0 MITIGATION

We recommend mitigation through direct constraint and setback of sensitive natural areas including the treed bog wetland habitat and open marsh. Setback dimensions follow provincial policy statement (PPS) guidelines at 120 metres for significant wetland features and 30 metres respectively for open water features such as Horseshoe Lake.

Significant habitat or species support is provided with more detailed mitigation below.

A CONTRACTOR

ENVIRONMENTAL FEATURES	ENVIRONMENTAL FUNCTIONS
	TERRAIN FUNCTIONS.
Treed Bog Open Marsh	Groundwater recharge Floodwater attenuation and storage Headwater area for water quality 120 metre setback guided by PPS
Forest linking bog to marsh Valley system is bedrock controlled	WILDLIFE CORRIDOR
	STATUS DESIGNATION
Treed Bog	Overlap of values as noted in Feature 1: Groundwater recharge and Flood conveyance, and storage. Further, specialized habitat and significant species support (wetland review, mammal inventory SAAR, 1998)
	THREATENED OR ENDANGERED SPECIES
	te stiel to inhabit the site babitats were

No species observed on site or with potential to inhabit the site habitats were considered to be endangered or threatened requiring exceptional conservation status measures.

HERPTILES Mink Frog in Treed Bog. Status is Uncommon and local in Central Region using OMNR Distribution and Status of Herpetofauna of Central Ontario (Oldham, 1989). PPS Guidelines state that significant species habitat be setback from land uses of negative impact by 50 metres.

MAMMALS A regionally uncommon small mammal, the Least Shrew, could be supported by the bog wetland forest on the parcel recommended for constraint from resource extraction. A Long-tailed Weasel was observed within this habitat type at close range, indicating high quality habitat within the forested bog. Again, development setbacks guided by the PPS state 50 metres from the significant habitat of the given species.

In this instance, the interior forest of the bog wetland is considered the home range, and as such extraction limits are set at 50 metres from the significant mammal habitat delineated on the aerial photography provided.

TREED BOG WETLAND

SPECIALIZED HABITAT

Significant bog habitat treated with 120 metre setback dimensions for resource extraction. We recommend water quality and groundwater recharge mitigation to conserve the wetland hydrology supporting sensitive wetland features.

This wetland has not been evaluated by the agency mandated for wetland conservation; the Ontario Ministry of Natural Resources. Our team representative attended the area office in Minden, Ontario on November 27th, 1998, finding no evaluation on file, and no data on regional wetland habitat type abundance, quality or conservation status. An agency printout of evaluated wetlands was provided by the Area Planner showing no wetlands on the list from within Cavendish Township.

Accordingly, our team referred to the existing but outdated Life Science Inventory Parks Reports, local naturalist floral inventories (Skelton) and provincial wetland objectives to base our general status determination on. Following the intent of the Provincial Wetland Evaluation Manual, we found bog wetland scores for biodiversity to be low as the wetland habitat type is a contiguous unit of similar repeated species patterns. It does score well for special features due to species level findings and hydrological values, with social and biological scores respectively lower.

The bog wetland type, however, was ground truthed to have connections and landscape linkages with other potential wetland complexes off the study site. For this reason, we feel it could attain the required 600 score for a larger Provincial Wetland Complex, and respectively recommend the Provincial and Wetland Policy Statement 120 metre setback from adjacent lands use be considered.

Bos are wetlands often hundreds of years to thousands of years in the making. They are generally limited to colder climates such as the shield, are less abundant south of the shield in southern Ontario, and show characteristic peat accumulation. Slow or no drainage help to create the acidic pH regime that supports acid loving Ericacea such as Leatherleaf (*Chamaedaphne calyculata* L.Moench), Large and Small Cranberries (*Vaccinium macrocarpon* Ait. *V. oxycoccus* L.) and Wintergreen (*Gaultheria procumbens* L.).

Mitigation recommended is conservation by avoidance. This would require modification of the presently proposed areas of vermiculite extraction on the Regis parcel to comply with the 120 metre setbacks from the treed bog area.

CRITICAL FACTORS

Water regime maintenance. Acidic range of pH regime maintenance.

All other vegetation communities inventoried by our team are representative and common examples of plant communities within this portion of Peterborough County. The forest is mixed, dominated by White Cedar (*Thuja occidentalis*), Eastern Hemlock (*Tsuga canadensis* (L.) Carriere), White Pine (*Pinus strobus* L.) and subdominant American Beech (*Fagus grandifolia* Ehrh.), Sugar Maple (*Acer saccarum*), Black Cherry (*Prunus serotina* Ehrh.) specimens and a few Ironwood (*Ostrya virginiana* (Miller) K. Koch).

WOODLAND

No woodland no rare tree assemblages or significant old growth forests were observed on the site, measured against known parameters (STTU, 1997:Strobl, 1997:Sober et al., 1997). OMNR guidelines suggest using Township forest coverage values to set woodlot size for significant woodlands. In Cavendish Township,

SEASONAL WILDLIFE CONCENTRATION

Open Marsh Treed Bog and Oak Stands Treed Bog, Marsh shrub edge Waterfowl staging, nesting, stopover Winter deer yarding evidence Herptile hibernaculae

5.1 EXTRACTION PHASE

- Excavate vermiculite outside of sensitive treed bog wetland and 120 metre setback limits
- 2. Setback extraction 30 metres from open water features
- Setback extraction 50 metres from significant species habitat This is covered adequately since the flora are located within the treed bog feature already conserved by recommendation (1) above.
- 4. Restrict excavation to above water table
- 5. Restrict heavy machinery from operating at dawn or dusk wildlife sensitive times

If extraction phases propose to remain above the water table, the conservative setback distance of 120 metres from treed bog could be tailored on site provided best management practices including on site silt curtains, berms and monitoring show how no deleterious substances would enter the treed bog due to vermiculite extraction on adjacent lands.

5.2 POST EXTRACTION PHASE

- Design areas of rehabilitation so they articulate across the landscape, connecting plantings to existing wildlife corridors
- 2. Réhabilitate open marsh area to same habitat type
- 3. Keep all vermiculite water discharge activity on site to maximize infiltration of water resources back into the local shallow groundwater aquifer
- 4. Discourage any fencing of property limits, promoting instead marking the legal survey line by native shrub and tree plantings. Fence, particularly chain link, has been lethal to deer, coyotes and running dogs as they can become entangled during the jump across.

6.0 SUMMARY

We found natural areas to be relatively undisturbed on the Regis site, with few access routes bisecting the site. Extensive natural areas followed lacustrine and bedrock controlled valley systems across the landscape. High points were fringed with deciduous forest, while lake habitat was shallow and of high value for waterfowl production.

Low lying areas of contiguous wetlands represent differing wetland habitat types including Spruce-Larch treed bog, open marsh and shrub bog. The large tracts of treed wetland can function to regulate spring flood events, with organic soils potentially moderating periods of drought; peat depths in the treed bog averaged 70 centimetres.

Based on our field observations and review of environmental parameters, we concluded that significant negative impacts to the wetland habitat type (treed bog) would likely occur if the proposed vermiculite extraction took place using the existing proposed two phase areas of extraction.

Our team would recommend modifying the proposed extraction so that vermiculite is not removed from the treed bog, therefore not resulting in a net loss of this wetland habitat type. Recent discussion with the team geologist indicates that the proponents would comply with this direct and retain the treed bog feature.

Notwithstanding our above recommendations, there is potential for the Aggregate Resources Act to supersede the Wetland Policy Statement due to the unique content and location of the vermiculite aggregate. Since there is a possibility that the aggregate license application may be approved, the reality of potential impacts should be discussed.

The extraction phases proposed would clearly remove a portion of treed bog and cattail marsh. In that scenario it would not be realistic or attainable in our opinion to recommend rehabilitation of a bog wetland habitat type. This is because the peat accumulation has taken place over hundreds and/or thousands of years; periods of time not attainable through conventional wetland rehabilitation techniques spanning only decades. In a post extraction site, the remaining land would consist of an excavated area realistically suited for rehabilitation to a large contiguous open water marsh wetland feature.

Policy 2.3.1 of the Provincial Policy Statement (PPS) states that:

"Development and site alteration will not be permitted in...significant wetlands south and east of the Canadian Shied...and that... development and site alteration may be permitted in... significant wetlands in the Canadian Shield... if it has been demonstrated that there will be negative impacts on the natural features or the ecological functions for which the area is identified."

Please do not hesitate to direct the undersigned at your convenience with any questions or discussion on implementing the mitigation. We can be reached at our phone 705 788 2218, facsimile 705 788 2219 or our email address saar@muskoka.com.

Respectfully submitted,

Linda Liisa Sõber, H.B.Sc. Biologist SAAR Environmental Limited LLS:ki

SPECIES APPENDIX

MAMMALS

White-tailed Deer Moose Coyote Muskrat Long-tailed Weasel Snow-shoe Hare Beaver Red Squirrel Eastern Chipmunk Potential for Least Shrew

FALL AVIAN COMMUNITY

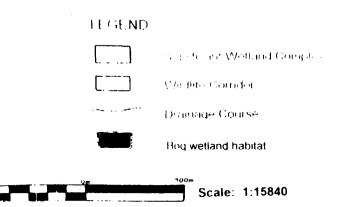
Black duck Bufflehead Common Nighthawk Broad-winged Hawk American Goldfinch Common Grackle American Crow Cedar Waxwing cluster Eastern Wood Pee Wee

HERPTILES

Painted Turtle carapace Red-backed Salamander Search for Four-toed Salamander no specimens

WETLAND COMPLEXING

Horseshoe Lake


VEGETATION COMMUNITY TYPES

- 1 TREED AND SHRUB BOG WETLAND
- 2 OPEN MARSH WETLAND
- 3 MIXED UPLAND FOREST
- 4 EARLY SUCCESSION POPLAR EDGE
- 5 GRAMINOID SWALE
- 6 HEMLOCK TREED SWAMP
- 7 OPEN FEN-GRAMINOID WETLAND SUCCESSION BY LAKE
- 8 WET SWALE ADJOINING MARSH
- 9 SHRUB SWAMP

QUARRY EXTRACTION

11111111

- 10 ROAD SWALE TREED SWAMP
- 11 MIXED EARLY SUCCESSION WOODLOT
- 12 DOGWOOD SWALE
- 13 TREED SWAMP-NORTHEAST
- 14 LAKESHORE
- 15 TREED BOG INTERIOR

TEAM ADVANTAGE

SAAR Environmental Limited is a firm of three individuals. Our goal is to remain small to ensure we are accurate in our research, competitive with each project, and able to personally represent and defend our technical research at the Ontario Municipal Board and the Provincial Court.

When you retain SAAR your project manager is also your lead biologist - eliminating administrative layers. Our fisheries and wildlife staff are positioned in Huntsville, Barrie and Newmarket to monitor your file with local commenting agencies.

CAPABILITIES

SAAR provides Provincial Agencies, Municipal and Regional Governments, Aggregate Operators, Private Developers and Resorts with a range of environmental studies including:

Natural Heritage System Management Significant Woodland Determination Lakeshore Capacity Studies Fisheries Research Experiments Wildlife Habitat Assessment Rare Species Mapping Timber Wildlife Management Level 1 and 2 Aggregate Act Studies Pit and Quarry Rehabilitation Plans

Life Science Inventory & GAP Analysis Peer Review for Municipalities Stormwater Management for Nutrients Wetland Design and Creation Wetland Environmental Impact Studies Municipal Environmental Policy Review Forest Management Plans Statistical Analysis of Field Studies Fisheries Management Plans

INFORMATION MANAGEMENT

We use Global Positioning Systems (GPS) and Geographic Information Systems (GIS) to collect, store, analyze and map field information, supplying it to clients in popular digital formats. Our mapping staff benefit from a fifteen year technical relationship with our affiliate Mr. Darko Poletto of SKE. Mr. Poletto was instrumental in establishing the ArcInfo environment that the Provincial Ministry of Natural Resources and some area municipalities now use. GIS FieldNotes software allows us to design databases, integrating environmental detail for instance with plan review functions. This assists Planning Departments in being consistent with requirements under Bill 20 Comprehensive Policy Statements.

SENIOR STAFF

NATURAL HERITAGE SYSTEM AND LONG TERM NATURAL AREAS MANAGEMENT. BIOLOGIST. L. L. SOBER, B.SC. (HONORS)

Ms. Sober brings a demonstrated field expertise of 11 years in field and research ranging from academic field posts collecting terrestrial ecology data for Ph.D. candidates in the Arctic, to aquatic ecology field study within intertidal communities near Passamaquody Bay, New Brunswick.

Government posts as a Fisheries Research Biologist and Wildlife Biologist provided early opportunities to design, conduct and statistically analyze the results of her wildlife field experiments. Studies included growth rates of native and stocked Lake Trout back-cross hybrids, population sub-sampling and distribution of fish species including the rare Aurora Trout, through to Lake Trout hooking mortality experiments and Walleye egg bioassays conducted on riverine inlets to Lake Huron.

L.L. Sober obtained Provincial Certification for a wide range of biological skills during her work with the Province (OMNR). This past grounding assists in obtaining approvals for aquatic or terrestrial ecosystem studies prepared for SAAR Environmental Limited. Government Certification is summarized below:

FISHERIES ASSESSMENT

Provincial Aquatic Lake Habitat Inventory Survey Technical Training Manual

Provincial training includes electro-shocking young of the year Walleye on Lake Huron, through to riverine and inland lake trap, seine and gill netting projects either on field crew or survey design.

WETLAND EVALUATION

Provincial Wetland Evaluation Training Manual for Northern Ontario Wetlands Provincial Upgrade to Version III, Current Manual for Southern Ontario Wetlands

Experience with classifying wetlands within the Province was of value to the Province; one contract at the Central Ontario Midhurst OMNR provided Ms. Sober with opportunity to review 155 evaluated wetlands and determine which wetland scores required upgrading from Version II to III Provincial Scoring Systems based on hydrological, biological and life science scores.

International Wetland Symposiums are attended on a routine basis for transfer of technical data. Monthly "Technical Transfer Meetings" were attended at the Maple Research Station of the OMNR.

SIGNIFICANT WOODLANDS

Significant Woodland Technical Training Manual (Strobl, 1996) Member of Provincial Pilot Project Team, Principle Author of Significant Woodland Evaluation Document for Halton and Brampton, Ontario.

Provincial skills include prism plots, basal area calculations during woodlot inventories for timber - wildlife value scoring. Wildlife values were input to a then Pilot Project for an Integrated Cruise Data Program, Bracebridge District OMNR Timber Division.

SIGNIFICANT WILDLIFE SPECIES

Author, Red-shouldered Hawk Distribution (1988-90), Bracebridge District OMNR. Critical breeding grounds were inventoried within the Five Year Timber Management Plan allocation of crown land forest cover.

As a Wildlife Biologist, coordination of volunteer census programs was mandatory, including Breeding Bird Atlas census for the Long Poiht Bird Observatory and herptile records for the Herpetofaunal Summary. Natural heritage system paradigms were still developing, so serious time and effort was placed on peer associations including the Ontario Field Botanist Workshops, Federation of Ontario Naturalist and local Muskoka Field Naturalist workshops.

LONG TERM RESOURCE MANAGEMENT PLANS

Author, Long Term Management Plan for White-tailed Deer in a Wildlife Management Unit (WMU).

Ontario Municipal Board Hearing Background Research Team Member; By-Law 87-87 Conifer Shoreland Conservation, included training on Browse Plot Study methods during data collection by Provincial Research Scientist D. Voigt, Ph.D. Information Transfer, DNR-OMNR Research Seminar, Michigan, USA.

Government training in Northern Ontario included a strong community involvement during Open Houses, Information Meetings, to oft times hostile anglers or hunters. This Provincial forum earned Ms. Sober credibility and respect - traits invaluable when called as an expert witness for Fisheries and Public Lands Act Provincial Court appearances, or during present day cross examination at the Ontario Municipal Board.

SAAR ENVIRONMENTAL LIMITED

At SAAR Environmental Limited, Ms. Sober provides environmental peer review for municipal and Provincial levels, has reviewed municipal environmental policies to ensure they reflect the intent of Environmental Background Studies. Ms. Sober is also requested to conduct workshops for municipal staff on present Plan Review requirements in the Province. A past workshop defined Environmental Impact Studies (EIS), now Impact Assessments (I-A's), available levels of study (Scoped through Comprehensive) and intended types of study areas.

WETLAND AND NATURAL AREAS DELINEATION USING INTEGRATED GIS. E.J. WILLIAMS. B.SC.

Ted Williams graduated in 1984 from the University of Toronto with an honours bachelor of science specializing in survey science and with a minor in computer science. Since that time, Mr. Williams has gained proficiency using various positioning methods, representing the acquired data both conventionally and digitally. Past projects have included photo-control surveying throughout Ontario, conventional and digital mapping of environmental features on numerous sites in central Ontario and digital collection and representation of environmentally sensitive areas using G.P.S. Mr. Williams has demonstrated experience in coordinating data gathering and producing multi-disciplinary map layers. Mr. Williams is able to tailor a cost effictive solution to the positioning/G.I.S. needs of a project.

L.L. SOBER

B. Sc., (Honours) Senior Biologist SAAR Environmental Limited

POSITIONS	
1990 - PRESENT	Shareholder and Senior Biologist, SAAR Environmental Limited
1986-1990 Biologist	Ontario Ministry of Natural Resources, Fisheries and Wildlife
	ELC Sample Plot Selection for Wetland Habitats, NE Ontario Statistical wildlife experiments (Lake Trout Mortality, Parry Sound Authored Long Term Management Plan (Deer; 1989-2001) Ecology input to Timber Management Plan and Data Program Ontario Municipal Board Technical Background team: Bracebridge Editorial Comment for Provincial Policy Background Statements (Ontario Deer Policy) CPS Significant Woodlands Pilot Projects (Maple OMNR) Version II to III upgrade (155 Midhurst OMNR Wetlands) Silvicultural prescriptions for wildlife habitat units, prism plots

EDUCATION

PROFESSIONAL AFFILIATIONS

Field Botanists of Ontario; University of Guelph Arboretum Workshops participant Federation of Ontario Naturalists Past member Environmental Round Table, Muskoka Chapter Waste Management Public Liaison Committee, District of Muskoka Rural Planning and Policy Sub-Committee, District of Muskoka

CERTIFICATION

Provincially Certified Wetland Evaluator Provincial Fur Harvest Management and Conservation Provincially Certified Aquatic Habitat Inventory Surveyor Provincial Electro-shocking Certificate

EXPERTISE

Ecosystem Management

Ms. L.L. Sober has contributed a functional framework to delineation and selection of natural heritage systems, created for a Secondary Planning exercise where she identified natural core areas, corridors and linkage nodes based on their internal and external environmental features and functions before direction within Comprehensive Policy Statements was published.

SELECTED LIST OF PUBLICATIONS

Ms. Sober has authored extensive provincial Ontario Ministry of Natural Resources internal technical reports, and environmental documents for the private sector; a complete listing being available in an appendixed form. We have selected key papers Ms. Sober authored on Vegetation Restoration, as well as contracts requiring pure life science inventories to establish her skills in the area of herptile, breeding bird and vegetation inventory required for your naturalization contract.

1995 Natural Heritage Areas Management Plan and Fisheries Resources Management Study. Lot 6, Concession IV, East Gwillimbury, York Region. Private sector management plan involved re-designing a previously submitted Draft Plan of Subdivision to comply with the intent of provincial interest for lands adjacent to the Oak Ridges Moraine Planning Area. Building envelopes were situated outside of protection and enhancement areas such as fisheries resources, wetland core areas and fragmented corridors. Coupled with a Vegetation Plan, the proposed subdivision had the potential to result in a:

- net increase in vegetation structure for the post development environment
- retention and enhancement of a fragmented east-west linkage for wildlifeuse of natural vs. structural design forms; wetland buffers adjacent to storm ponds and tile fields
- a road and drainage system that follows topography and minimized grading activity

biodiversity through retention of wetland, riparian tracts, cold and warm water streams, وروي agmented young exterior woodlot, interior mature forest and early succession meadow

rural community use while maintaining sustainable ground and surface water resources

• controls for aquatic community health via mitigation for potential entry of sediment, nutrient or increased surface waters from septic effluent, wells or increased overland storm water.

1995 Significant Woodlands within Halton Region: A Pilot Project. Halton Region, OMNR and Secondment of SAAR Biologist. This pilot project of significant woodland identification included integrating current high technology of Geographic Information System data analysis with available digital layers of forest cover and internal features (forest age, tree species composition). A team GIS member relayed discussion from our biologist on relevant natural heritage system criteria required to attribute scores for each woodland landscape unit within Halton.

1995 Determination of Significant Woodlands in the City of Brampton. Secondment onto Provincial OMNR Team. A pilot project was designed to delineate significant woodland areas for conservation and act as potential environmental background data to Brampton's Official Plan update.

Our senior biologist participated in this provincial exercise and brought criteria and methodology to the project used to evaluate woodlands at a local municipal level. Methodology and significance criteria were used to generate two categories of woodlands as defined in the Provincial Comprehensive Set of Policy Statements (CPS): Category 1 and 2 lands.

Evaluation required used of diverse environmental information to create the map layers, including:

- Forest Resource Inventory (FRI) Maps, Scaled 1:10,000 for forest cover (MNR, 1978)
- Ontario Base Maps (OBM) at 1:10,000 (MNR, 1982) updated with Brampton Air Photos (1993)
- Site District Ecological Reports (MNR, 1980's)

City of Brampton Official Plan (Brampton, 1993)

- MNR Wetland Mapping
- MNR Rare Species Mapping
- MNR Areas of Natural and Scientific Interest (ANSI) Mapping
- Subwatershed Studies including West Humber and Etobicoke Creek

The evaluation of this environmental information followed a form of reasoning known as the "Disjunctive Evaluation Model".

1996 Issue Summary Paper (ISP). Port Stanton, Stanton House Resort, Severn Township.SAAR provided as ISP under the Wetland Policy Statement process whereby we obtain clarity and written direction on key wetland issues to be addressed. This assures the client a view early on of all necessary consultant studies and associated projected costs before submitting a development proposal. Key wetland features and functions centred around maintaining the site hydrological regime. Environmental Issues included water quality parameters for adjacent fisheries functions and waterfowl stopover area. Natural Heritage values on a landscape ecology scale were also assessed, in particular, for landscape linkage. Recommendations included enhancing nature viewing opportunities and wildlife education in this resort landscape. Resultant areas for conservation follow the ranked Category 1 (e.g. Wetlands, ANSI's, significant woodlands) and 2 lands terminology guided by the current provincial environmental Comprehensive Policy Statements (CPS) and their Differing levels of expected Environmental Impact draft updates within April's Bill 20. Studies (EIS) were also recommended for Category 2 lands (land requiring an EIS for expected development.

96 Wetland Environmental Impact Study. Monck Quarry, Conn, Ontario; Wellington Sunty. Key environmental issues addressed in our survey include surface and ground water regime maintenance for continued function of an adjacent Provincially Significant Wetland (Luther Marsh). We documented existing environmental features and functions, indicated required buffers for significant flora and fauna, and wildlife corridors inventoried during a three season field inventory. Wetland boundaries on adjacent lands (120 metres from wetland) were delineated in the field to refine landscape level provincial wetland mapping. The extent and use of proposed quarry lands by wildlife were defined and include winter track surveys, spring and seep identification, summer fisheries sampling, plant vouchering and breeding bird surveys. Potential impacts were addressed through mitigation and conservation of habitat units. Mitigation for increased surface water included design of a wetland plant buffer and existing vegetated drainage swale to address potential deleterious impact of sediment and nutrient.

1995 Wetland Hydrology and Nutrient Impact Review. Horodynsky Farms, Churchill Ontario. SAAR Environmental Limited prepared an initial literature review of potential impacts related to proposed short term rotation onion cropping adjacent to a Provincially Significant Wetland (Lovers Creek). A monitoring program was recommended including surface water quality monitoring, habitat restoration and enhancement incentives.

OTHER RELEVANT ENVIRONMENTAL PROJECTS

FOR THE PURPOSE OF DEMONSTRATING BIOLOGICAL EXPERTISE. THIS INFORMATION IS PROHIBITED FROM GENERAL DISTRIBUTION OUTSIDE OF RESOURCE AGENCY AGGREGATE ACT REVIEW.

Snow Valley Secondary Plan Environmental Background Study, Springwater Township, SIMCOE COUNTY. SAAR Environmental Limited defined a Natural Heritage System for a planning area within Springwater Township based on current science, provincial policy development and a three season biological life sciences inventory. The project included data review, analysis and mapping of all wetlands, ANSIs, ESAs, wildlife habitat and woodlands from primary sources. **Reinder's** produced final maps based on our three season field inventory. **1994.**

Approximate Cost of Total Project: \$100,000.00 (\$13,500.00 SAAR)

Ecological Restoration for Midland Park Lake, Midland. SAAR Environmental Limited was part of an innovative project team including Gord Knox of *Reinders and Associates* (*Barrie*) Limited. We proposed the creation of a linear wetland to remove excess stormwater nutrients currently loading directly to Midland Park Lake with team presentations accepted by Midland Town Planning and Environmental Committees. 1994. Phased Total Project Cost to date approximates: \$30,000.00 (\$5,000 SAAR)

Ecological Restoration for Duntroon Quarry, Duntroon. SAAR inventoried existing natural heritage features on adjacent lands to best prescribe endemic species for revegetation of talus slopes and limestone cliff walls. Vegetation schedules and species were designed with maximum wildlife value for indicator species in mind. Seeley & Arnill Ltd. 1995. Ongoing. Total Project Cost: \$2400.00

Urban Wetland Impact Study, City of Barrie, SIMCOE COUNTY. SAAR Environmental Limited conducted an EIS to address the provincial wetland policy statement (Section 2, Subsection 2.2) for lands adjacent to a large urban wetland. An understanding of wetland hydrology, wetland vegetation and supporting soils was obtained by using our multidisciplinary team approach with Terraprobe Limited, Bev Agar Agrologist and Reinders & Associates Planners. 1993. Approximate Cost of Total Project: \$3500.00 SAAR

Ardagh West Secondary Planning Area Environmental Study. The Ardagh Group. SAAR Environmental Limited defined significant linkages and sensitive areas within a planning area to determine the developable nature of lands situated within and/or adjacent to Environmental Protection zones and the Allendale Lakes Bluff ANSI (Area of Natural and Scientific Interest). SAAR located over 300+ rare species along riverine tracts, providing an update to the existing ANSI inventory.

1994. Approximate Cost of Total Project: \$100,000.00 (SAAR \$7,000.00).

FURTHER DEFINITION OF ENVIRONMENTAL FEATURES AND FUNCTIONS:

Analysis and Work Plan for Provincially Significant Wetland Update. Ontario Ministry of Natural Resources Midhurst District: Wetland Review. 1993/94 Winter. L.L. Sober reviewed audited and analyzed the provincial status and mapping accuracy for of wetlands within the OMNR Midhurst administrative boundaries. Wetland data was organized, analyzed. Recommendations were provided for short and long term planning based on (1) which sensitive areas were in most need of inventory update and (2) areas under foreseeable development pressure. L.L. Sober was also short-listed as one of three ecologists in the province for an upcoming district ecologist position.

Assessment of Woodland Significance using City of Barrie Tree-Cutting By Law. 1994. SAAR Environmental provided a silvicultural inventory of lands to meet Barrie tree cutting restrictions for Reinder's & Associates (Barrie) Limited clients. We also reviewed the effectiveness of the size criteria for retention within the tree cutting by-law in light of new ecological benefits and values of woodlands.

District of Muskoka Candidate Heritage Areas Program, 1990. We conducted extensive vegetation inventories within candidate areas throughout the District of Muskoka. The candidate areas are to be included within the Official Plan for conservation.

Environmental Impact Study Within Proposed Sudbury-Toronto Transmission Reinforcement Project Preliminary Corridors. Ramara Township. 1991. Biological inventories were conducted for landowners that fell within an extensive tract of potential hydro corridor. Lands for the client group approximated 5 km² in and near Cranberry Lake rock barrens.

Fisheries Inventory Lake Couchiching. 1991. Private landowner. Provided a fisheries inventory of shore and backshore coastal habitat. Determined the potential impact of ortificial fill on portions of EP Zoned Floodplain. Recommended re-zoning after completion jimpact study.

Wetland Status Review, Class 2 Atherley Narrows Wetland, Lake Couchiching. Fern Resort, 1991. Status of the wetland and fisheries habitat was reviewed by upgrading vegetation community data for OMNR files and subsequent interpretation of Class using OMNR Wetland Evaluation Manual. We advised the client not to proceed with further action (OMB) against OMNR due to his refined wetland boundary.

Technical Review of "Provincial Wetland Environmental Impact Study Requirements". 1994. First and Second Drafts were prepared by Gartner Lee Limited and Malone Given Parsons. Technical Review prepared by SAAR for Federation of Ontario Naturalists.

Restoration Plan: Native Vegetation Community restoration for major Aggregate Extraction Firm in Central Ontario. 1995.Nottawasaga Township, Duntroon Quarry. Seeley & Arnill Ltd. This restoration plan included novel and unique transplant plans for vegetation on site, to be moved onto proposed new vegetation community areas - all during ongoing extraction of various quarry phases. Techniques recommended are unique to two known quarry locations in Ontario, and a result of in house trial and error establishment of native plants, as well as an international literature review.

Aggregate Inventory. Class B licence Renewal Application. Ramara. Private Pit Operator. 1991. Simcoe County sandy plain lowlands were inventoried for purposes of risk assessment for species located near pit operations. We ranked the ecosystem units including lichen barrens and riparian coldwater stream for representative value and ecological diversity within the ecological site region.

We ensured that current protective zoning including EP floodplain zones met size and integrity data required for the provincially and regionally rare species we located including the Red-shouldered Hawk.

Biological Life Sciences Inventory. Mud Lake Wetland Complex. 1991. Ramara. Client: OMNR. The expansive land base bordering the Mud Lake drainage basin and watershed are target areas for current and future development. As such, OMNR retained us to provide environmental mapping of sensitive area that would guide their land use recommendations for crown lands, and parkland dedication.

SAAR standard methodology included a thorough search and assessment of breeding bird habitat, mammal corridors, aquatic ecosystem health, vegetation community mapping, location of amphibian and reptile breeding habitat.

reeding Bird Heronry Inventory and Impact Study. Cranberry Lake, Ramara. Doner Jevelopments. 1993. Provided an impact study on the potential risk of impacting breeding schedules of over seventy actively nesting herons by proposed development. Recommendations for the low impact seasonal use included buffer zone of no development around the heronry, restricted use of low level aircraft and watercraft in the vicinity. The client promoted the natural heritage values of his resort and implemented maintenance by the use of restrictive covenants.

Environmental Impact Study. Lover's Creek Provincially Significant Wetland Infiltration Area. 1994. Town of Innisfil. Client: Mills Plan Consulting.

We determined existing wetland function by first (a) reviewing hydrology and soil reports, (b) delineating wetland complexes of Lover's Creek, (c) assessing existing vegetation communities for value to ground and surface water quality. We provided guidelines for sustainable development of a proposed subdivision. The proponent agreed to including realignment of proposed internal road network around sensitive features.

Environmental Constraint Mapping of Wetland Features. Town of Gravenhurst. Muskoka District. Private landowner. 1993. Catchment basins and hydrology of the site were inventoried to determine the feasibility of future proposed residential development.

EIS City of Barrie. Bear Creek Wetland Urban Interface. Client: Reinders and Associates Ltd. 1994. Scoped EIS for lands bordering a Class 2 provincially significant wetland. We determined developable areas for industrial land use within this floodplain fringe. Liaison between OMNR, NVCA, the client group and City of Barrie planners is critical to facilitating interpretation of the recent OMNR/MMA

Wetland Policy Statement (Section 2, Sub-section 2.2) administered under the Planning Act. The constant interpretation of general resource map boundaries for lot specific situations resulted in joint partnership ideas including use of GPS technology where OMNR and SAAR ecologist would refine urban wetland boundaries during joint on-site investigation in future.

Breeding Bird Survey - Canadian Forces Training Area, Meaford Federal Tank Range.

1992. Our firm was suggested for this survey and constraint mapping exercise by Mike Cadman, a federal authority on bird distribution and status.

One of the highlights of this inventory was recording the active Bald Eagle stick nest, and successfully leasing with Pud Hunter (OMNR) who assessed fledgling blood samples for health within a joint Canada-U.S. Bald Eagle monitoring program.

Breeding Bird Inventory. Lake Ontario, Westside Marsh, St. Lawrence Cement OMB

ke patent claim. Client: B.A.R. Environmental Inc. 1992. The sensitivity of the existing Marsh species to development, their abundance and status was determined. The presence or absence of rare species guided future planning recommendations at the OMB for St. Mary's Cement Company during their claim to patent lake bottom rights.

Vegetation Survey and Rare Plant Reconnaissance. Humber River. Town of Vaughan. 1993. Constellation Developments. 1993. Client: LGL Limited Environmental Research Associates. Vegetation was surveyed along a proposed channelization and re-alignment of the Humber River in the town of Vaughan. Rare plants included the sedge *Carex trichocarpa* which required information from our data base on mitigation before the development proposal could be submitted.

Snow Valley Secondary Plan Environmental Study. 1993-1944. We conducted a three season environmental inventory of the Natural Heritage System to identify developable areas from areas environmentally sensitive. We ranked all major environmental features by Development Zones of varying susceptibility to development. We identified wetlands to achieve no loss of significant wetlands due to future residential land uses; forestry identification where all significant woodlands were identified, particularly where the provided a linkage to core areas; ecological units were included in constraint mapping to show their representative value as unique Boreal or Carolinian vegetative communities.

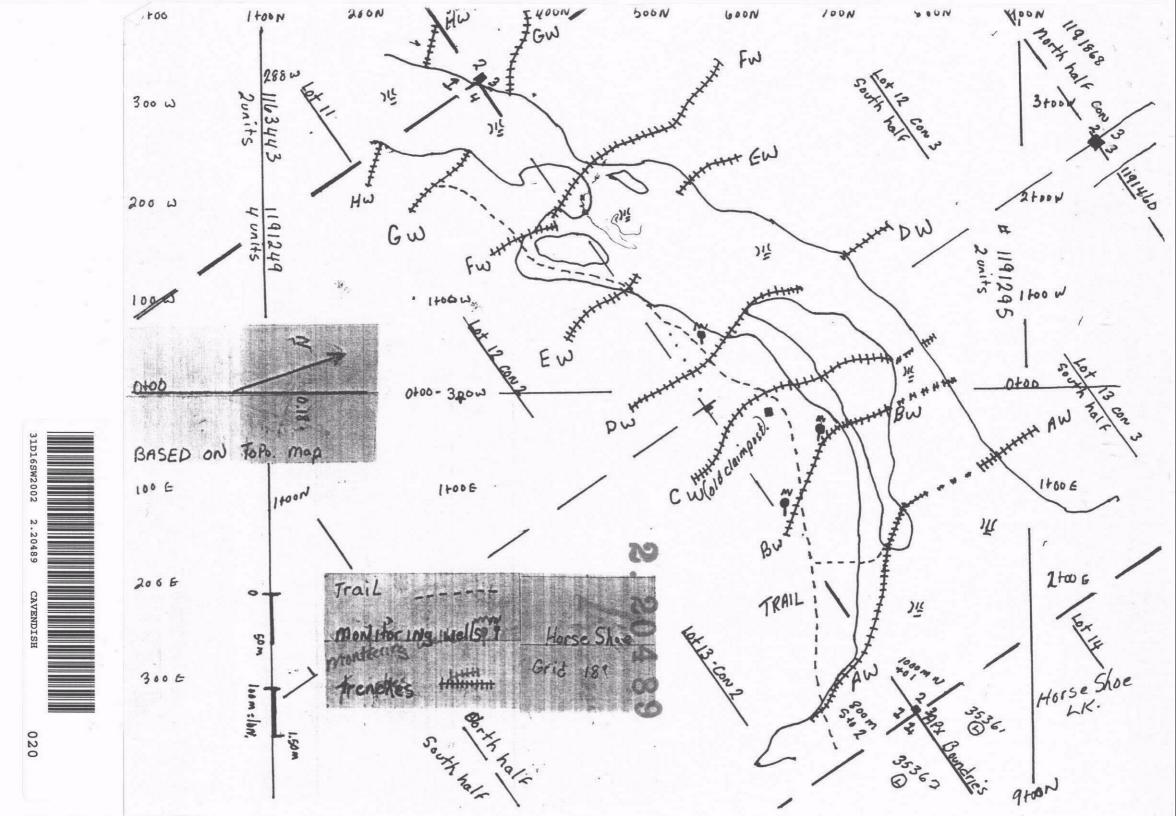
Turther, we submitted goals and objectives to maintain the current level of environmental health. These recommendations will help to guide future development by extending the study findings appropriate short and long term to planning policies for the Snow Valley Secondary Planning Area of Springwater municipality. GPS accurate land positioning was also used to delineate the Class 1 Wetland boundary.

EIS. Sparrow Lake. Severn Township. 1994. A life science inventory of terrestrial and aquatic sensitive areas was conducted during refinement of past OMNR lacustrine and palustrine wetland boundaries.

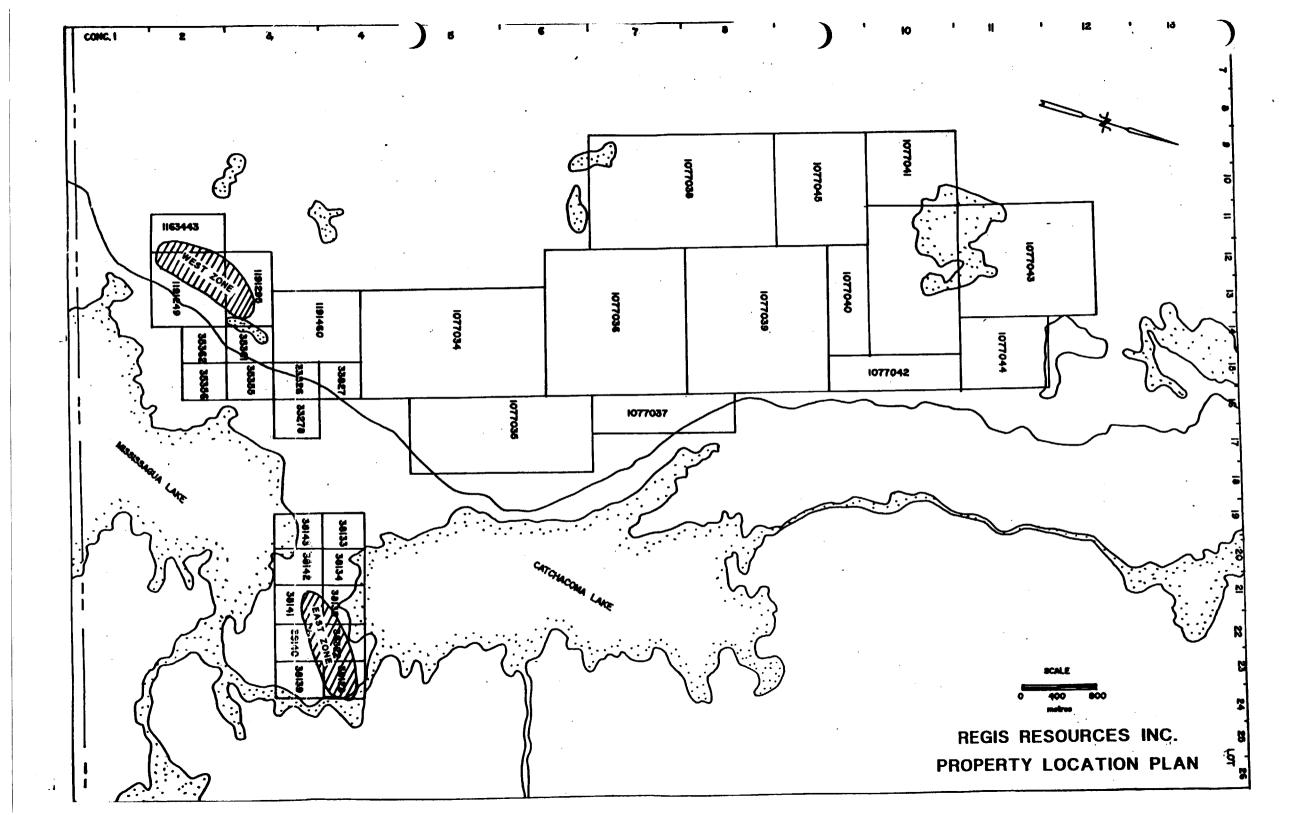
EIS. North River at Marchmont. Severn Township Subdivision Draft Plan of Approval Stage. Doner Developments. 1994. We were retained by the client to ensure that his subconsultant panel adequately addressed current and future spirit of environmental policies. We also provided a life science inventory of the subject lands to ensure no rare species buffers were required, and delineate biotic features of the site sensitive to development practices including top of slope, valley systems, drainage routes and aquatic ecosystems.

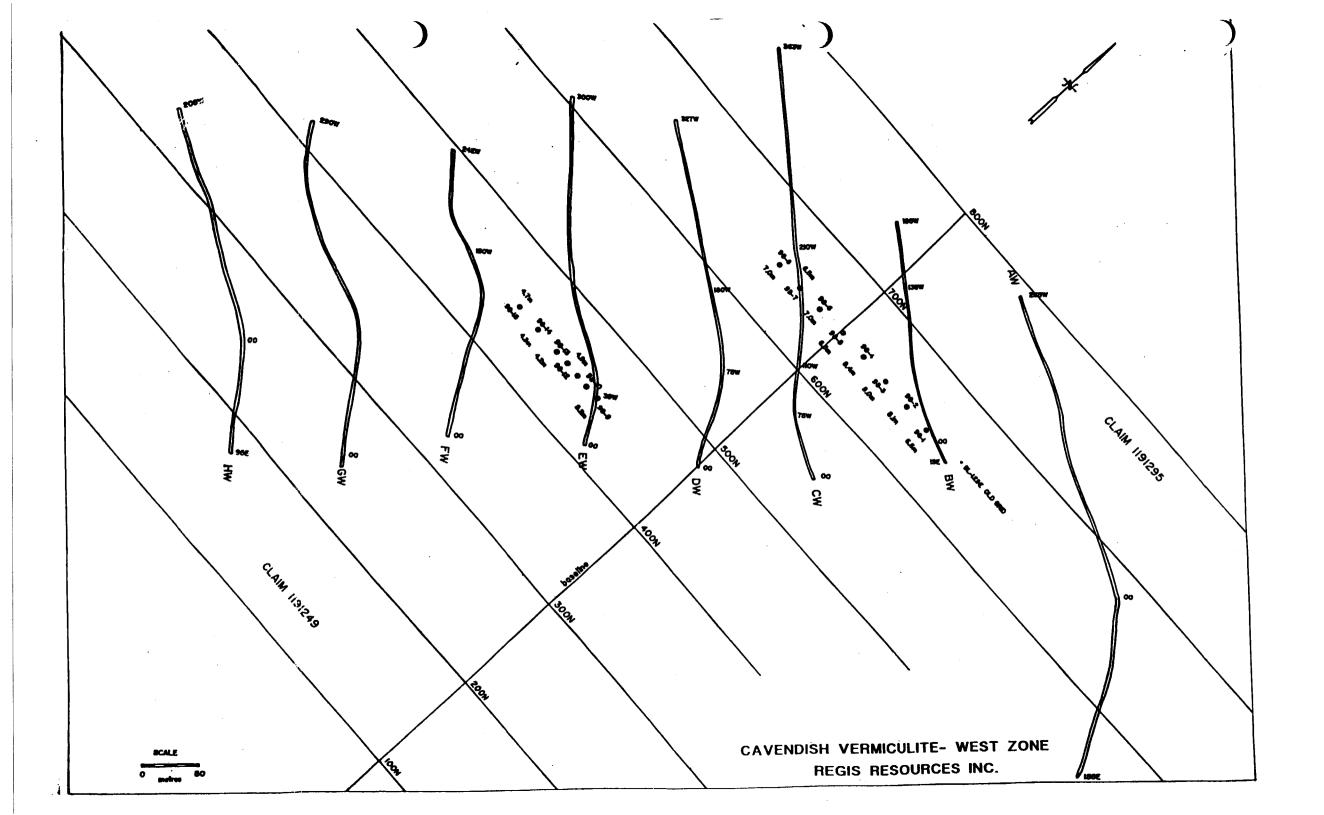
Life Science Inventory. Impact Study along Proposed Ontario Hydro Route. Cranberry

ke Retreats. 1992. A comprehensive life science inventory was undertaken for a lake and jacent lands situated in Central Ontario. Portions of the retreat were at risk of potential habitat degradation as a Hydro-electric Transmission Route was proposed to cross the proponent lands. We successfully inventoried the subject lands for sensitive features, potential ANSI and ESA lands, and conducted a rare species search of available habitat on site. Resultant documentation of rare, threatened and endangered species may have contributed to Ontario Hydro's decision not to bisect the proponent property.


Technical comment to Water quality Review: Springwater Township OMB. 1994. Wetland resources and watershed loading of nutrients. Qualified to provide "expert testimony" for clients before the Environmental Assessment Board, the Ontario Municipal Board and the Federal Environmental Assessment Review Panel.

Ecosystem Education Incentives. 1993. Deerhurst Resort, Canadian Pacific Hotels and Resorts, Huntsville, ON. Design and production of nature station interpretive plaques to educate both advanced naturalists and novices attending an internationally ranked woodland. Plaques were linked to native ecosystems highlighting the ecology of a Maple-Beech woodland, songbird spatial and temporal distribution, amphibian calls in breeding habitat and lake ecology. Nature education kits were also produced.




Landscape Ecology and habitat restoration assignment. 1994. Lake Muskoka, District of Muskoka. Private Landowner. This project for a summer resident included assessment of existing habitat, suggested native plantings, and site specific positioning of nest boxes to entice native breeding birds.

National Heritage River System Education Text Review. 1994. Provided scientific review for National Heritage science text on a Natural Heritage River System for a science textbook author. Notes provided from the National Heritage Council of Canada.

416 398 -3318 Bulk SAmple 3316 Larger: HI Smaller H4 Total Verm per. moist Verm After ex. waist # 1 200 g 5.5 9.0 171.9 188.9 17.0 2 200g 8.4 148.7 18.8 34.4 183.1 9.4 119.2 34.2 181.1 61.9 14.8 84.2 50.6 <u>H 2009 170.4</u> 86.2 9.6 27.6 Total 800 g 199.5 723.5 524.0 29.1 212.0 9.0 2 12 Run 800 9 127.6 615.6 11.9 5.9 10.4 #1 168.7 188.2 200 1.8 32.6 183-1 17.8 ¥ 2 150.5 200 35.8 95 180.9 116.1 64,8 # 3 200 \$5.1 12.3 54.2 175.4 80.3 200 44 up the exact vent. This should add percentages in our favour. Mainly in # 4 which would explain the high moisture content. clinitial weight 200 g. after e.4. 170.4. We may of lost 5-8 g to fine verin , which may add up to 2 percent. Just to be safe will stick with 27 6: This no. is a over all average of bulk somple from each trench, not one area. Bur sompling propon pave us semular numbers within the some . (For further info. come see me. I have no phone). Keit

Regis Resources Inc. Cavendish Trenching Program 1999

TRENCH (7+50N)- AW Series

AW1 AW230 AW229 AW228 AW227 AW226 AW225 AW224 AW223 AW222 AW221 AW220 AW219 AW219 AW219 AW219 AW219 AW219 AW219 AW217 AW216 AW215 AW215 AW215 AW215 AW214 AW213 AW212 AW211 AW210 AW209 AW209 AW209 AW205 AW205 AW205 AW205 AW205 AW205 AW205 AW205 AW201 AW200 AW201 AW200 AW201 AW200 AW201 AW200 AW201 AW200 AW201 AW200 AW201 AW200 AW200 AW200 AW200 AW200 AW200 AW200 AW200 AW200 AW200 AW200 AW200 AW200 AW200 AW200 AW200 AW210 AW200 AW	0 155.0E 145.0E 130.0E 110.0E 118.0E 98.0E 98.0E 90.0E 90.0E 90.0E 90.0E 55.0E 55.0E 55.0E 55.0E 30.0E 25.0E 20.0E	0.80-2.0 2.0-3.0 2.0-3.0 2.0-3.0 3.8-6.0 3.0-4.0 4.0-4.8 4.8-5.5 3.0-4.0 2.0-3.0 1.0-2.0 0.10-1.0 0.20-1.50 4.5-5.5 3.0-4.5 2.0-3.0 2.8-6.0 3.0-6.0 4.0-5.5 2.5-4.0 1.0-2.5 4.0-6.0 2.5-4.0 1.5-2.5 3.0-5.5 3.8-5.5 2.3-3.8 1.3-2.3 2.0-3.0 3.0-4.0m
AW201	5.0E	
	-	 •••
AW4	8.0W	 0.45-2.0
AW5	8.0	 2.0-3.0
AW6	8.0	 3.0-4.0m
AW7	15.0W	 0.30-1.30
AW8	15.0	 1.30-2.30

0.8m organics 2.0m organics

0.45m organics

pegmatite dyke 0.30m organics

AW9 AW10 AW11 AW12 AW13 AW14 AW15 AW16 AW16 AW17 AW150 AW18 AW19 AW20 AW149 AW149 AW148	15.0 15.0 22.0W 22.0 22.0 29.0W 29.0 29.0 32.5 34.0 34.0 34.0 35.0W		2 2.30-3.30 3.30-4.30 4.30-5.30m 0.60-1.20 1.20-2.0 2.0-2.50m 0.60-1.50 1.50-2.50 2.50-3.50 0-3.0	0.60m organics 0.60m organics 34.0W edge hill org. to 0.35
AW140 AW147 AW146 AW145 AW21 AW22 AW23	37.5 40.0 40.0 42.0 42.0 44.0		0.70-3.0 2.0-4.0 0.70-2.0 0-2.0 2.0-4.0 0-2.0	org. to 0.7 org. to 0.7 1.5m above swamp
AW24 AW25 AW26 AW27 AW28 AW29 AW30 AW30 AW31 AW32 AW33	44.0 44.0-46.5 46.5-49.0 49.0 49.0 49.0 49.0 51.5-54.0 54.0	2.50 2.50 2.50 2.50	2.0-4.0 2.0 2.0 0-2.0 2.0-4.5 4.5-7.0 2.0 2.0 0-2.0	4.0m above swamp 4.0m above swamp
AW35 AW35 AW36 AW37 AW38 AW39 AW40 AW40 AW41 AW42 AW43	54.0 54.0 54.0-56.5 56.5-59.0 59.0 59.0 59.0 59.0 59.0 61.5-64.0 61.5-64.0	2.50 2.50 2.50 2.50 2.50	2.0-3.5 3.5-7.0 2.0 2.0 0-2.0 2.0-4.0 4.0-6.5 4.0 2.0 4.0	epidote rich marble 4.0m above swamp
AW44	64.0W		0-2.0	

				3	
)	AW45	64.0		2.0-4.0	
	AW46	64.0		4.0-6.5	
	AW47	64.0-66.5	2.50	2.0	
	AW48	66.5-69.0	2.50	2.0	
	AW49	69.0	2.00	0-1.30	
	AW50	69.0W		1.30-2.50	2.0m above swamp
		72.5		0-1.0	2.0m above ending
	AW141			1.0-2.0	
	AW142	72.5		2.0-3.0	
	AW143	72.5		3.0-4.0	
	AW144	72.5		0.7-3.50	org to 0.7
	AW138	76.0		3.50-5.50	019100.7
	AW139	76.0			
	AW140	76.0		5.50-7.0	
	AW134	80.0W		0.3-1.70	1 2m org
	AW135	82.0		1.30-2.50	1.3m org.
	AW136	82.0		2.50-4.50	
	AW137	82.0		4.50-7.0+	
	AW133	93.0W		2.0-3.0	2.0m organics
	AW132	100.0W		2.10-4.0	2.10m organics
	AW131	110.0		2.20-4.0	2.2m organics
	AW130	120.0		3.0-3.50	
	AW129	120.0		2.0-3.0	2.0m.organics
	AW128	125.0-127.5	2.5	1.50	0.6m.ovbn. (H2O@1.0)
	AW127	127.5-130.0	2.5	1.50	
	AW126	130.0-132.0	2.0	1.50	
	AW125	132.0-134.0	2.0	1.50	
	AW124	134.0-136.0	2.0	1.30	edge swamp
	AW123	136.0-138.0	2.0	1.0	
	AW122	138.0-140.0	2.0	1.30	
	AW121	140.0-142.0	2.0	1.0	
	AW120	142.0-144.5	2.5	1.0	
	AW119	144.5-147.0	2.5	1.30	2.0m above swamp
	AW118	147.0-149.0	2.0	1.50	
	AW117	149.0-151.5	2.5	1.50	
	AW116	151.5-154.5	3.0	1.0	
	AW115	154.5-157.5	3.0	1.0	
	AW114	157.5-160.0	2.5	1.50	
	AW113	160.0-162.5	2.5	1.80	
	AW112	162.5-165.0	2.5	2.20	
	AW112 AW111	165.0		1.60-2.60	organics to 1.60m
	AW110	171.0	****	0.60-1.60	organics to 0.6m
1	AW110 AW109	179.0		2.0-3.0	
	AVV 105	170.0			

			Δ	
AW108	179.0	****	1.0-2.0	organics to 1.0m
AW107	187.0	* = = * * =	2.0-3.0	organics to 2.0m
AW106	105.0		2.20-3.20	organics to 2.2m
AVV 100	no sample	from 200.0-2	237.0 (peat cave	e-in, basement @ 4.0m)
AW105	242.0W		3.70-5.0	organics to 3.70m
AW104	250.0W		3.40-4.40	
AW104	250.0W		2.40-3.40	organics to 2.4m
AW102	256.0		3.60-4.50	-
AW102 AW101	256.0		2.60-3.60	
AW101 AW100	256.0		1.60-2.60	organics to 1.60m
AVVIOU	swamp edg	ge @ 264.0n	ו	-

770N-087E @ 140W 775N-115E @ 117W 770N-087E @140W	746N-180E 746N-150E 746N-120E	700N-325E@62E 650N-375E@145E
767N-150E @ 045W New grid 650N-150E @	Old Grid BL-125E	

.

.

BL@600N 650N-1218 675N-0508 725N-014	BW (L6+50N) 550N@0+7 E @ 0m E @ 70mW E <u>Coordinate(m</u>	5Etrenc 680N 700N 715N	h-650N-125 -040E -017E -016E	
BW1 BW2 BW3 BW4 BW5 BW6 BW7 BW8 BW7 BW8 BW9 BW10 BW11 BW12 BW11 BW12 BW13 BW14 BW15 BW16 BW17	0 0-2.50 W 2.50-5.0 2.50 5.0-7.50 7.50-10.0 10.0 10.0 10.0-12.5W 12.50 12.50-15.0 15.0 15.0 15.0 15.0 15.0 17.50 20.0 20.0 20.0-22.50	1.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50	0-1.20 1.0 3.70 0-1.30 1.50 1.70 0-1.70 1.70-3.40 3.40 0-2.40 0-2.40 2.40 0-1.35 1.35-2.70 2.70 0-2.15 2.70 0-3.20 3.20	coarse green flakes (HG)
BW18 BW19 BW20 BW21 BW22 BW23 BW24 BW25 BW26 BW26 BW26 BW27 BW28 BW29 BW28 BW29 BW30 BW31 BW32 BW33 BW34 BW35 BW36	20.0 22.50 22.50W 22.50-25.0 25.0 25.0-27.0 27.50W 27.50 27.5-30.0 30.0-32.5 32.50 32.50-35.0 35.0 W 35.0-37.50 37.50 37.50 37.50 37.50-40.0 40.0 W	2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50	3.10 0-1.40 1.40-2.80 2.80 1.60-3.20 3.20 3.40 0-3.60 3.70 0-3.80 3.80 0-2.0 2.0-4.0 4.0 0-1.10 1.10-2.20	0-3.10 0-1.60

		2	
BW37 BW38 BW39 BW40 BW41 BW42 BW44 BW46 BW60	40.0-42.5 42.5 42.5-45.0 45.0 45.0-47.5 47.5 50.0 52.5 52.5-55.0	2.50 2.50 2.50	2.20 0-2.30 2.30 0-0.90 1.0 0-1.0 0-1.50 0-1.60
BW61 BW62 BW63 BW48 BW49 BW50 BW51 BW52 BW53 BW53 BW55 BW55 BW55 BW56 BW57 BW58 BW59 BW64 BW65 BW66 BW67 BW68 BW69 BW104 BW70	55.0-57.5 57.5-60.0 60.0-62.5 55.0 55.0-57.5 57.5-60.0 60.0 60.0 60.0-62.5 62.5-65.0 62.5-65.0 62.5-65.0 62.5-65.0 62.5-65.0 62.5-65.0 65.0-67.5 65.0-67.5 67.5-70.0 67.5-70.0 70.0	2.50 2.50 2.50 2.50 2.50	$\begin{array}{c} 2.0\\ 0-1.20\\ 1.15\\ 0-1.10\\ 1.10\\ 0-2.0\\ 2.0-4.0\\ 4.0\\ 4.0\\ 4.10\\ 2.10-4.20\\ 0-2.10\\ 2.70-5.40\\ 0-2.70\\ 1.50\\ 3.60\\ 2.0\\ 3.60\\ 1.90-3.60\\ 1.5\\ 3.0\\ 1.60-3.20\end{array}$
BW71 BW72 BW73 BW105 BW74 BW106	70.0-72.5 72.5 72.5-75.0 72.5-75.0 75.0 75.0		1.40-3.0 1.50 3.0 1.0-1.40 1.40-3.20
BW76 BW77	75.0-77.50 77.50		0-2.0
BW78 BW80	77.5-80.0 80.0		0-1.0

		3	
BW81 BW82	80.0-82.5 82.5	-	0-1.30
BW83 BW84 BW85 BW86 BW87 BW88 BW89 BW90 BW90 BW91 BW92 BW92 BW93 BW94 BW92 BW93 BW94 BW95 BW95 BW95 BW96 BW97 BW98 BW99 BW100 BW101 BW102 BW103 BW103 BW134 BW135 BW109	82.5-85.0 85.0 85.0-87.5 87.5-90.0 90.0 90.0-92.5 92.5 92.5-95.0 95.0-97.5 97.5-100.0 100.0-102.5 102.5-105.0 102.5-105.0 105.0 105.0-110.0 110.0-112.5 112.5-117.5 115.0 117.5 120.0		0-1.0 1.50 1.50 0-1.70 2.10 0-2.60 0-2.50 0-2.50 0-2.50 0-2.50 0-2.50
BW110 BW111 BW112 BW113 BW114 BW115	135.0 137.5-140.0 140.0-142.5 142.5-145.0 145.0-147.5 145.0-147.5		1.5 3.0
BW115 BW116 BW117	147.5-150.0 150.0-152.5		1.5
BW118 BW119	150.0-152.5 152.5-155.0		3.0
BW133 BW120 BW121 BW122 BW123 BW124	155.0-157.5 157.5-160.0 160.0-162.5 160.0-162.5 162.5-165.0 165.0-167.5		1.50 3.0

BW125	167.5-170.0
BW126	170.0-172.5
BW127	172.5-175.0
BW128	175.0-177.5
BW129	177.5-180.0
BW130	180.0-182.5
BW131	182.5-185.0W
BW132	185.0-187.5W
BW133	187.5-190.0W
BW134	190.0-192.5W
BW135	192.5-195.0W

725N-015E @135W 775N-010E @ 185W

(650N@0 550N-075 605N-00 650N-015			43W 15W 0	
CW0 CW1	0-2.50 2.50-5.0	2.50 2.50		0.6mdepth 0.6m depth
CW2 CW3	5.0-7.50 7.50-10.0	2.50 2.50		0.6m depth
CW4 CW5	10.0-12.50 12.50-15.0	2.50 2.50		0.8m depth
CW6 CW7 CW8 CW9 CW10	15.0-17.5 17.50-20.0 20.0-22.5W 22.50-25.0W 25.0-27.50	2.50 2.50 2.50 2.50 2.50		1.20 m depth
CW11 V1	27.50 27.50		2.10	
CW12 CW32	27.50-30.0 30.0	2.50 2.50	2.60	
CW13 CW14 V3 CW15	30.0-32.5 32.50 3250 32.50-35.0	2.50	0-3.0 2.50	
CW15 CW16 V4	35.0 35.0		2.60 2.50	
CW17 CW18 CW19	35.0-37.50 37.50 37.50-40.0 40.0-42.50	2.50 2.50 2.50	1.40	1.40m depth
CW20 CW21 CW22 CW23 CW24	40.0-42.50 42.50-45.0 45.0-47.50 47.50-50.0 50.0-52.50	2.50 2.50 2.50 2.50		1.0m depth
CW25 CW26 CW27 CW28 CW29 CW30 CW31	52.50-55.0 52.50-55.0 55.0-57.50 57.50-60.0 60.0-62.50 62.50-65.0 66.50	2.50 2.50 2.50 2.50 2.50 2.50	1.50	1.30m.depth

•

	,				
			0.50	3	. •
	CW58	150.0-152.5	2.50	0-2.0	
	CW66	152.5 152.50-155.0	2.50	0-2.0	
	CW59	155.0-157.50	2.50		
	CW60 CW67	157.5	2.00	0-2.0	
	CW61	157.50		2.0-3.0	lense coarse gm.verm
•	CW103	165.0W		0.30-1.20	-
	CW104	165.0W	*	1.20-2.20	
	CW106	170.0W		0.20-1.0	
	CW107	170.0W		0.30-1.0	
	CW108	170.0W		1.0-3.0	
	CW100	176.0W		1.0-2.0	organics to 1.0m
	CW101	176.0W		2.0-3.50	
	CW99	185.0W		3.50-4.50 2.50-3.50	organics to 2.5m
	CW98	185.0W		1.50-3.0	organics to 2.0m
	CW97	192.5W 192.5W		0-1.50	
	CW96 CW95	192.5-195.0	2.50	1.50	
	CW95 CW94	195.0-200.0	5.0	1.30	
	CW93	200.0-202.50	2.50	1.20	
/	CW92	202.5-205.0	2.50	1.20	
	CW91	205.0-210.0	5.0	1.20	
	CW90	210.0-215.0	5.0	1.20	
	CW89	215.0-220.0	5.0	0.50	
	CW88	220.0-225.0	5.0	2.0	
	CW87	225.0-230.0	5.0 2.50	2.0 2.0	
	CW86	230.0-232.5	2.50	1.20-2.40	
	CW85 CW84	230.0 230.0		0.20-1.20	
	CW83	233.5-235.0	2.50	0-3.0	amphib.dyke
	CW82	235.0		1.50-3.0	
	CW81	235.0		0-1.50	
	CW80	235.0-240.0	5.0	2.0	
	CW79	240.0-242.5	2.50	1.50	
	CW78	242.5-237.5	5.0	2.0	
	CW77	240.0		1.20-2.20	(242-280W-swamp)
	CW76	240.0		0-1.20 0-2.20	(242-20011-3mamp)
	CW75	245.0W		1.0-2.0	edge of swamp
	CW74	247.5W 247.5W		0-1.0	
	CW73 CW72	250.0W		3.0-4.0	
	CW72 CW71	250.0W		2.0-3.0	
	011/1			,	

			2		
	CW113 CW114 CW33	67.50-75.0 67.50-75.0 75.0	7.50 7.50	1.0-2.0 2.0-3.50 3.0	1.0m.organic
	CW115 CW116	75.0-85.0 75.0-85.0	10.0 10.0	0-1.50 1.50-4.0	green verm.layers
	CW34 CW117 CW118	85.0 85.0-95.0 85.0-95.0	10.0 10.0	3.50 1.0-2.0 2.0-3.50 3.50-5.0	1.0m.organics
	CW122 CW35 CW119 CW120	85.0-95.0 95.0 95.0-105.0 95.0-102.5	10.0 10.0 7.50	3.0 1.0-2.50 2.50-5.0	1.0m. organics
	CW120 CW36 CW121 CW37	102.50 102.50-107.50 107.50-110.0		2.50 0.50-3.0	
	CW38	110.0-112.5 112.5-115.0	2.50 2.50		1.20m depth
	CW39 CW40 CW41	115.0-117.5 117.50-120.0	2.50 2.50	0.20	1.20m depth 1.30 m depth
	CW45 CW42 CW43	120.0 120.0-122.50 122.50	2.50	2.30 2.20	
	CW44 CW46 CW47	122.50-125.0 125.0-127.50 127.50-130.0	2.50 2.50 2.50		1.60m depth
	CW48 CW49 CW50	130.0-132.50 130.0-132.50 132.50-135.0	2.50		1.0m depth
	CW50 CW51 CW52	135.0 135.0-137.5	2.50		2.30m depth
	CW53 CW111 CW112	137.50-140.0 140.0 140.0	2.50	0-1.50 1.50-3.50	2.30m depth
	CW54 CW109 CW110	140.0-142.50 142.5W 142.5W		0-1.30 1.30-3.50	
	CW55 CW63 CW64	142.50-145.0 145.0 147.5 147.5-150.0	2.50 2.50	0-2.80 0-2.80	dip 70 deg.east,coar V coarse vermiculite
١	CW56 CW57 CW65	147.50-150.0 147.50-150.0 150.0		0.20-2.0	0.2m organics

CW70	260.0W		2.0-3.0	2.0m organics
01110	west side of sw	amp @	275W (280-355W-	edge swamp)
CW210	260.0-268.0W		1.0-2.0	
CW209	268.0-276.0		1.0-2.0	
CW208	276.0-282.0		1.0-1.80	
CW207	282.0-288.0		1.0-1.80	
CW206	288.0-296.0		0.40-4.0	
CW205	332.5-337.5		0.20-1.60	
CW204	337.5-342.5		0.20-1.0	
CW203	342.5-347.5		1.0-2.0	
CW202	347.5-352.5		1.0-2.0	
CW201	352.5-357.5		0.1-0.50	
CW200	357.5-362.5W		0.10-0.90	

575N-025E @ 75W

DW Series Trench (45W BL-480N @ 0m 040W-550N @ 75m 093W-600N @ 180m 650N-100W @ 145W 580N-260W @ 325W 600N-250W- yellow fiag to	480N-00 500N-012W 550N-008W 600N-093W	<u>eak)</u> 650N-110W 700N-150W 590N-260W 565N-250W
DW1 0-2.50W DW2 2.50-5.0W DW3 5.0-7.5W DW4 7.50-10.0 DW5 10.0-12.50 DW6 12.50-15.0	2.50 2.50` 2.50 2.50 2.50 2.50 2.50	BL@ 4+75N yellow flags marble lacking verm. to west 6.0m above grade dip 45 deg E
DW0 12.50 10.0 DW7 15.0-17.50 DW8 17.50-20.0 DW9 20.0-22.50 DW10 22.50-25.0	2.50 2.50 2.50 2.50	5.0m above grade
DW11 25.0-27.50 DW12 27.50-30.0 DW13 30.0-32.50 DW14 32.50-35.0	2.50 2.50 2.50 2.50 2.50 2.50	0.2-1.0 0.10-1.0 0.10-1.0 0.20-1.0 0.2-1.0
DW15 35.0-37.50 DW16 37.50-40.0 DW17 40.0-42.50 DW18 42.5-45.0 DW19 45.0-47.50	2.50 2.50 2.50 2.50 2.50	0.20-1.20 0.10-1.30 0.20-1.50 verm. start 0.20-1.0
DW20 47.50-50.0 DW21 50.0-52.50 DW23 52.5-55.0 DW24 55.0-57.50	2.50	0.20-2.60 0.20-2.60 -1.80 coarseverm. increasing to W. 0.20-2.20 verm. rich
DW25 57.50-60.0 DW26 60.0-62.50 DW27 62.50-65.0 DW28 65.0-67.50 DW29 67.50-70.0	2.50 2.50 2.50 2.50 2.50 2.50	0.20-1.60 0.20-1.70 0.20-1.80 0.20-1.80 0.20-1.40
DW30 70.0-72.50 DW31 67.50-70.0 DW32 70.0-72.50 DW33 72.50-75.0	2.50 2.50 2.50 2.50	0.20-1.40 0.20-1.40 verm.rich to west 0.20-1.40 0.20-1.50 0.20-1.50
DW34 75.0-77.50 DW35 77.50-80.0 DW36 80.0-82.50	2.50 2.50 2.50	0.20-1.30 0.20-3.0

DW37 DW38 DW39 DW40 DW41 DW42 DW43 DW43 DW44 DW45 DW45 DW46 DW46 DW46 DW48 DW47 DW49 DW50 DW51 DW51 DW52 DW53 DW53 DW54	82.50-85.0 85.0-87.50 87.5-90.0 90.0-92.5 92.5-95.0 95.0-97.5 97.50-100.0 100.0-105.0 105.0-110.0 105.0 110.0-115.0 110.0 115.0 115.0-117.5 117.50-120.0 120.0	2 2.50 2.50 2.50 2.50 2.50 2.50 5.0 5.0 5.0 5.0 5.0 5.0 5.0 2.50 5.0 2.50 5.0	0.20-3.0 0.20-3.0 0.20-2.5 0.20-2.5 0.20-2.50 0.20-2.40 0.20-2.30 amphib.dyke 0.20-3.0 amph.dyke 0.20-3.0 dip 80 deg.east 0.2-3.0 0.20-3.0 0.4-2.30 0.4-1.90 0.20-1.2.0
DW55 DW55 DW57 DW58 DW59 DW60 DW61 DW62 DW63 DW63 DW63 DW64 DW65 DW66 DW65 DW66 DW67 DW68 DW69 DW70 DW70 DW71 DW72 DW73	120.0-122.50 122.50 122.50-125.0 125.0-127.50 127.50-130.0 130.0 130.0-132.50 132.5 132.50-135.0 135.0-137.50 137.50-140.0 140.0 140.0-142.5 142.50 142.50-145.0	2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50	0.20-1.20 0.20-1.60 good verm. 0.20-1.40 0.20-1.30 0.20-2.40 0.20-2.20 marble dyke 0.2-2.0 swamp to west 0-2.0
DW74	145.0 145.0-150.0 150.0-155.0 155.0-162.50 162.50-167.50	5.0 5.0 7.5 5.0	0-1.90 1.20-2.40 edge swamp (to W) 0.30-3.80 0.50-1.0

DW63 DW64 DW65 DW66 DW67 DW69 DW70 DW72 DW72 DW73 DW74 DW75 DW68 DW71	167.50-172.50W 172.50-177.50 177.50-182.50 182.50-187.50 187.50-192.50 192.50-197.50 197.50-202.50 202.50-207.50 207.50-212.50 212.50-217.50 217.50-222.50 222.50-227.50	3 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	0.40-1.0 0.4-1.0 0.40-1.0 1.0-1.70 1.0-2.0 1.20-2.40 1.40-2.80 1.0-2.40 1.0-2.40 1.0-2.40 0.30-2.80 0.30-3.0 1.0-3.50	
@240-p DW76 DW96 DW77 DW78 DW79 DW80 DW81 DW82 DW83 DW83 DW84 DW85	beg dyke 282.50-287.50W 287.50-290.0 290.0-292.50 292.50-297.50 297.50-302.50 302.50-305.0 305.0-307.50 307.50-310.0 310.0-312.50 312.5-315.0 315.0	5.0 2.50 2.50 5.0 2.50 2.50 2.50 2.50 2.	1.0-3.50 0-2.0	0-1.0 0-1.80 0-1.0
DW86 DW87 DW88 DW89 DW90	315.0-317.50 317.50-320.0 320.0-322.50 322.50-325.0 325.0-327.50W	2.50 2.50 2.50 2.50 2.50		0-1.0 0-1.0 0-1.0 0-1.0 0.60-1.0

450 412	N-10 N-07	<u>es Trenching ((</u> 3W @ 39mW 9W @ 0mW @ 100W	<u>0W-11</u>	<u>5W main stre</u> 412N-075W 495N-175W 530N-225W	550N-245W 565N-260W 590N-260W
E E E E E E E E E E E E E E E E E E E	23456789101234567892122422 224222 224222 224222	0-2.50W 2.50-5.0 5.0-7.50 7.50-10.0 10.0-12.50 12.50-15.0 15.0-17.50 17.50-20.0 200-22.50 22.50-25.0 25.0-27.50 25.0-27.50 32.50-35.0 32.50-35.0 37.50-40.0 40.0-42.50 42.50-45.0 42.50-45.0 45.0-47.50W 47.50 47.50 50.0-52.50 52.50-55.0 55.0-57.50 57.50-60.0 60.0-62.50 65.0-67.50 65.0-67.50 65.0-67.50 75.0-80.0 202.50 202.50 202.50 205.0-207.50	W	$\begin{array}{c} 2.50\\$	0.20-1.0 0.20-1.0 0.30-1.0 0.30-1.0 0.30-1.0 0.30-1.0 0.30-1.0 0.30-1.0 0.10-1.50 0.20-2.0 0.20-2.0 0.30-1.0 0.30-1.0 0.30-1.20 0.40-1.30 0.40-1.30 0.20-1.30 0.20-1.30 0.20-1.40 0.20-2.0 0.20-1.0

		2.
EW56 EW36	207.50-210.0W 210.0-212.5W	2.50 2.50
EW57	212.50	
EW37	212.50-215.0	2.50
EW38	215.0	
EW39	215.0-217.5	2.50
EW40	217.50-220.0	2.50
EW41	220.0-222.50	2.50
EW42	222.50-225.0	2.50
EW43	225.0-227.50	2.50
EW44	227.50-230.0	2.50
EW45	230.0-232.50W	2.50 2.50
EW46	232.50-235.0	2.50 7.50
EW47	235.0-242.50	7.50
EW48	242.50-250.0 250.0-257.50	5.0
EW49	257.50-265.0	7.50
EW50 EW51	265.0-270.0	5.0
EW51 EW52	270.0-275.0	5.0
EW52 EW58	275.0-280.0	5.0
EW50 EW59	280.0-285.0	5.0
EW60	285.0-290.0	10.0
EW61	290.0-295.0	5.0
EW62	295.0-300.0W	5.0

0-1.50 0-1.80 0-2.80 0-3.30 0-1.0 0-1.0 0-1.0 0-1.0 0-1.0 0-1.0

,

2

			main strack)	•	
1	FW Irer	nch (Zone 5mE-90W r	330N-163V	N	460N-360W
	400N-17	75W @ 25mW	425N-190V		425N-220W
		7W @ 150mW	5.0	0.10-1.0	marble- barren
	FW93	10.0-15.0 E	5.0	0.10-1.0	marble - barren
	FW92	5.0-10.0E	5.0	0.20-1.40	green verm.layers
	FW91	0-5.0E	2.50	0.30-1.0	9.000.000.000
	FW1	0-2.50W	2.50	2.50	0.30-1.0
	FW2	2.50-5.0W		0-2.0	
	FW3	5.0	2.50	0.30-1.80	
	FW4	5.0-7.50	2.00	0.30-3.0	
	FW5	7.50	5.0	0.10-1.0	
	FW6	7.50-12.50 7.50-12.50	5.0	1.0-2.0	
	FW7	7.50-12.50	5.0	1.0-3.0	
	FW8	12.50-17.50	5.0	0-1.0	
	FW9	17.50-22.50	5.0	0-1.0	
	FW10	22.50	5.0	0.1-2.0	
	FW11	22.50-27.50W	5.0	0.10-1.80	
	FW12 FW13	27.50-32.50	5.0	0-2.0	
	FW13	32.50-37.50	5.0	0-2.0	
	FW14	37.50-42.50	5.0	0-2.0	
4	FW16	42.50-47.50	5.0	0-2.0	
	FW89	47.50-52.50	5.0	0.20-1.50	
	FW90	47.50-52.50	5.0	1.50-3.0	
	FW86	52.50-57.50	5.0	0-1.50	
	FW84	57.50-65.0	7.50	0.30-1.50	
	FW85	57.50-65.0	7.50	1.50-3.0	• •
	FW82	65.0-70.0 W	5.0	1.0-2.0	1.0m organics
	FW83	65.0-70.0	5.0	2.0-3.0	
	FW80	70.0-75.0	5.0	0.10-2.0	
	FW79	75.0-80.0	5.0	0.10-1.20	
	FW78	80.0-85.0	5.0	0.10-1.0	
	FW81	85.0-90.0	5.0	0.10-0.70	
	FW77	90.0-95.0	5.0	0.10-0.70)
	FW76	95.0-102.50	7.50	1.0-2.0	2.0m organics
	FW75	102.50-107.50	5.0	2.0-4.5	2.0m organics
	FW73	107.50-112.50	5.0	2.0-3.50	2.011 organios
	FW74	107.50-112.50	5.0	3.50-5.0	
	FW95	115.0	50	1 50-2 50) 1.5m organics
	FW72	112.50-117.50	5.0	1.20-2.0	
	FW71	117.50-122.50	5.0	0.50-1.30) [*]
1	FW70	122.50-127.50	5.0 5.0	0.30-1.0	-
	FW68	127.50-132.50W	5.0	0.00 1.0	

	2	
FW69 127.50-132.50 FW67 132.50-135.0 FW94 135.0	5.0 2.50	1.0-1.50 swamp 90W-140W 0.20-1.80 2.0
FW65 135.0-137.50	2.50	0.20-1.80
FW66 137.50		0.20-2.50
FW64 137.50-140.0	2.50	0.20-2.50
FW63 140.0-142.50	2.50	0.10-1.0
FW62 142.50-145.0	2.50	0.10-1.0
FW61 145.0-147.50	2.50	0.10-3.50
FW60 147.50-150.0	2.50	0.10-3.0 0.10-2.0
FW59 150.0-152.50	2.50 2.50	0.10-2.0
FW58 152.50-155.0 FW57 155.0-157.50	2.50	0.10-3.50
FW57 155.0-157.50 FW56 157.50-160.0	2.50	0.10-3.50
FW55 160.0-162.50	2.50	0.20-3.50
FW54 162.50-165.0	2.50	0.20-3.50
FW53 165.0-167.50	2.50	0.20-3.50
FW52 167.50-170.0	2.50	0.20-3.50
FW51 170.0-172.50	2.50	0.10-2.0 0.50-2.0
FW50 172.50-175.0	2.50 2.50	0.20-2.50
FW49 175.0-177.50	2.50	0.20-2.50
FW48 177.50-180.0 FW46 180.0-182.50	2.50	0.10-1.0
FW46 180.0-182.50 FW45 182.50-185.0	2.50	0.10-1.20
FW47 185.0		0.10-2.0
FW44 185.0-187.50	2.50	0.20-1.0
FW43 187.50-190.0	2.50	0.20-1.0
FW42 190.0-192.50	2.50	0.20-1.0
FW41 192.50-195.0	2.50	0.20-1.0 0-1.50
FW40 195.0-197.50	2.50	0-1.40
FW39 197.50 FW38 197.50-200.0	2.50	0-2.0
FW38 197.50-200.0 FW37 200.0-202.50	2.50	0.10-1.0
FW36 202.50-205.0	2.50	0.4-1.0
FW35 205.0-207.50	2.50	0.50-1.40
FW33 207.50-210.0	2.50	0.50-4.0
FW32 210.0-212.5	2.50	0.50-5.0
FW31 212.50-215.0	2.50	0.50-2.0 0.50-2.50
FW30 215.0-217.50	2.50	0.50-2.50
FW27 217.50	2.50	0.30-1.50
FW26 217.50-220.0	2.00	

		3		
FW25	220.0-222.50W	2.50	0.20-1.50	
FW24	222.50-225.0	2.50	0.30-4.0	
FW28	225.0		0.20-1.30	
FW23	225.0-227.50	2.50	0.20-2.0	
FW22	227.50-230.0	2.50	0.10-2.0	
FW21	230.0-232.50W	2.50	0.20-2.0	
FW20	232.50-235.0	2.50	0.3-2.0	
FW19	235.0-237.50	2.50	0.20-2.0	
FW29	237.50		0.20-1.70	
FW18	237.50-240.0	2.50	0.20-2.0	
FW17	240.0-242.50W	2.50	0.20-2.0	dip 80 deg.east

<u>GW Serie</u> 250N-210 300N-250 318N-270 350N-325 358N-358 380N-400		<u>255.0: 25-90</u>	W+ good st	<u>reak)</u>
GW101 3 GW102 3 GW103 4 GW105 4 GW105 4 GW106 4 GW107 4 GW108 4 GW109 4 GW109 4 GW109 4 GW109 4 GW109 4 GW109 4 GW109 4 GW110 5 GW111 5 GW112 5 GW123 GW124 GW125 GW126	30.0-32.50W 32.50-35.0 35.0-37.50 37.50-40.0 40.0-42.50 40.0-42.50 42.50-45.0 42.50-45.0 42.50-45.0 42.50-45.0 42.50-45.0 45.0-47.50 47.50-50.0 50.0-62.50 52.50-65.0 55.0-67.50 57.50-60.0W 60.0-62.50 62.50-65.0 65.0-67.50 67.50-70.0 70.0-72.50 72.50-75.0 75.0-77.0 770-79.0 79.0-81.0 81.0-83.0 83.0-85.0 85.0-87.0 87.0-89.0W 89.0-91.0	2.50 2.0 2	2.50 0.20-1.50 1.50-3.0 0.10-1.0 1.0-2.50 0.20-2.0 0.20-1.0 0.20-1.0 0.10-1.50 0.10-2.20 0.10-2.50 0.10-2.80 0.10-2.0 0.10-2.0 0.10-3.0 0.10-3.50 0.10-6.0 0.10-6.0 0.10-3.50 2.0 0.2.30	n. verm.stringers 0.20-1.50 amph.dyke 2.0m amph.dyke grn.vermic. 2.0m.above grade 0.10-4.0
GW128	91.0-93.0 93.0-95.0W	2.0	0-2.0 2.0	0-1.20
GW1 GW2 GW3 GW4	swamp 95W-180W 180.0-182.50W 182.50-185.0 185.0-187.50 187.50-190.0	2.50 2.50 2.50 2.50	0.30-1.50 0.20-1.30 0.20-1.30 0.20-1.0	

,				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0-225.0 5.0-230.0 0.0-235.0W 5.0-237.50 7.50-242.50 2.50-247.50 5.0-250.0 0.0-255.0 5.0-260.0 0.0-265.0 5.0-272.50 2.50-280.0 0.0-290.0W on @ 340W 3.5-180.0W 7.5-173.5W 2.5-167.5 7.5-162.5 7.5-162.5 7.5-162.5 530.0 .0-27.5 2.5-25.0W 0.0-22.5W 520.0 5.0-17.5	$\begin{array}{c} 2.50\\ 2.50\\ 2.50\\ 2.50\\ 2.50\\ 2.50\\ 2.50\\ 2.50\\ 2.50\\ 2.50\\ 2.50\\ 2.50\\ 2.50\\ 2.50\\ 2.50\\ 5.0\\ 5.0\\ 5.0\\ 5.0\\ 5.0\\ 5.0\\ 5.0\\ $	0.10-1.0 0.10-1.30 0.10-1.40 0.10-1.40 0.10-2.20 0.10-2.20 0.10-2.20 0.10-1.0 0.10-1.0 0.10-1.0 0.10-1.50 0.10-2.30 0.10-2.30 0.10-2.30 0.10-2.20 0.20-3.0 0.10-2.20 0.30-2.50 0.30-2.50 0.30-2.50 0.30-2.50 0.30-2.50 0.30-2.50 0.30-2.50 0.30-2.50 0.30-2.50 0.30-2.50 0.30-2.50 0.30-2.50 0.30-2.50 0.30-2.50 0.30-2.50 0.30-2.50 0.30-2.50 0.30-2.50 0.10-2.0 0.10-2.0 0.10-2.0 0.10-2.0 0.10-2.0 0.30-2.50 0.30-2.50 0.30-2.50 0.30-2.50 0.10-2.0 0.10-2.0 0.10-2.0 0.10-1.50 0.10-1.50 0.10-1.50 0.1.5 0-1	amphibolite to west
GW44 12	2.5-15.0 0.0-12.5W	2.50 2.50	0-2.0 0-2.0	

			3		
)	GW46	7.5-10.0W	2.50	0-2.0	
	GW54	5.0-7.5W	2.50	0-2.0	
	GW55	2.50-5.0W	2.50	0-2.0	
	GW55 GW56	0-2.50W	2.50	0-2.50	
	-		2.50	0-2.50	
	GW57	0-2.50E	2.50	0-2.50	
	GW58	2.50-5.0E		-	
	GW59	5.0-7.5E	2.50	0-2.50	
	GW60	7.5-10.0E	2.50	0-2.50	
	GW61	10.0-12.5E	2.50	0-2.50	
	GW62	12.5-15.0E	2.50	0-2.50	
	GWUZ	12.0-10.00	2.00		

•

HW Series	Trenching (250	N-300W@	7.5E. 200N-242	<u>W@96E)</u>
HW1	00	15.0	2.0-5.5	
HW2	5.0E	5.0	1.0-2.5	
HW3	5.0E	7.5	2.5-5.5	
HW4	12.5E	5.0	0-1.0	swamp to w (100m)
HW5	17.5	5.0	0-1.0	•
HW6	21.5	3.0	0-1.5	
HW7	24.5E	3.0	0-1.8	
HW8	28.0	4.0	0-3.5	
HW9	32.0	4.0	0-3.5	
HW10	36.0	4.0	0-3.0	
HW11	40.0E	4.0	0-2.0	
HW12	44.0	4.0	0-1.5	
HW13	48.0	4.0	0-1.0	
HW14	52.0	4.0	0-2.5	
HW15	56.0	4.0	0-2.2	
HW16	60.0E	4.0	0-2.2	
HW17	64.0	4.0	0-2.0	
HW18	68.0	4.0	0-3.5	
HW19	72.0	4.0	0-2.0	
HW20	76.0E	4.0	0-3.5	•
HW21	80.0E	4.0	0-4.0	
HW22	84.0	4.0	0-1.5	
HW23	88.0	4.0	0-2.0	
HW24	92.5E	5.0	0-1.5	
HW25	100E	10.0	0-1.5	
HW30	95.0W	15.0	0.3-3.0	
HW31	100.0-102.5W		0-1.2	
HW32	102.5-105.0W		0-1.0	
HW33	105.0-107.5	2.5	0-1.0	
HW34	107.5-110.0W	2.5	0-1.0	
HW35	110.0-112.5	2.5	0-0.5	
HW36	112.5-115.0W		0-0.5	
HW37	115.0-117.5	2.5	0-0.8	
HW38	117.5-120.0	2.5	0.1-1.0	
HW39	120.0-122.5	2.5	0-1.20	
HW40	122.5-125.0	2.5	0-1.3	
HW41	125.0-127.5W		0-1.7	
HW42	127.5-130.0	2.5	0-1.7	
HW43	130.0-132.5	2.5	0-1.0	
HW44	132.5-135.0W		0-1.0	
HW45	135.0-140.0	5.0	0-1.0	
HW46	140.0-142.5W	2.5	0-1.7	

HW47 HW48 HW49 HW50 HW51 HW52 HW53 HW54 HW55 HW56 HW58 HW59	142.5-145.0 145.0-152.5 155.0W 160.0 160.0W 165.0 165.0 165.0 173.0 180.0W 185.0 190.0W 195.0W	2.5 7.5 5.0 5.0 6.5 6.5 7.5 6.0 7.5 5.0 5.0	2 0.2-2.0 0-3.0 5.0 0-2.5 1.5-3.0 0.3-1.5 1.50-2.5 0.3-1.5 0.3-1.50 0-1.50 2.0-3.0 0-1.5 0-1.0 0-1.0
HW59	195.0W	5.0	0-1.0
HW60	200.0W	5.0	0-1.0
HW61	205.0W	5.0	0-1.0 C.B. 40' to West

.

•

Regis Resources Inc. Cavendish Backhoe Trenching Program <u>AW Trench</u>

Sample #	<u>Vermiculite %</u>	Description of Sample
AW1	13.0	brn marble-peg.dyke, +20% green mica*
AW2	43.6	bm marble-crse sand, +20% green mica*
AW3	54.1	beige marble-peg.dyke,fine silv.mica
AW4	17.2	brn.marble-coarse sand,+10% grn.mica*
AW5	22.6	crse marble, fine green mica
AW6	20.0	bm-sand marble with green flakes verm*
AW0 AW7	22.6	beige marble-decomp,+15% silver mica
AW8	33.0	beige marble (decomp),+20% mica
AW9	42.8	buff marble+peg.fine silver mica
AW10	45.0	buff marble.+40% fine silver mica
AW11	40.2	beige sand-decom.marble, green mica flke
AW12	37.9	bge marble-decomp, cse green mica+35%
AW13	21.5	boe, marble, cse green mica flakes
AW14	24.7	brn marble-coarse snd,+20%crs.gn.mica*
AW15	34.4	brn mrble-decomp, cse green mica +50%*
AW16	39.8	brown marble-green mica(Cse)+40%
AW17	54.2	brn.marble-decomp, cse.green mica+505
AW21	21.7	brn-beige marble-decomp +20%grn.mica
AW22	25.6	fine verm beige marble
AW26	26.5	beige marble-decomp sand, cse grn mica
AW27	30.7	decomp marble-pegmatite, fine silver mica
AW28	28.2	brown marble-crs sand, +20% silver mica
AW29	29.6	heige sand-marble, +15% silver mica
AW29A	15.3	beige marble-decomp, +-10% silver mica
AW30	35.1	beige sand-marble with peg.dyke,silv.mica
AW31	28.3	beige marble-decomp, silver mica (+20%)
AW32	19.4	beige decom.marble, finesilve mica(+20%)
AW33	29.2	bige marble-fine snd, +25% fine silv mica
AW34	26.5	beige decomp marble, silver mica
AW35	48.2	beige dcomp marble, +35% silver mica
AW36	28.8	coar sand-decomp marble,25% silver mica
AW37	33.6	buff marble(decomp), fine silvr mica
AW38	26.9	fine beige marble, 25% fine silver mica
AW39	18.1	bge marble-coarse sand, +10% grn.mica*
AW40	49.4	buff marble-peg.dyke decp, +35% silv mica
AW40A	59.7	buff marble, 50-60% silver mica flake
AW41	21.5	beige marble-decomp, +10% silver mica
AW42	16.1	beige marble-fine snd, fine mica +15%
AW43	28.1	buff marble(decomp), silver mica (fine)

		2
AW44	39.1	buff marble-decomp,fine silver mica
AW45	33.1	buff marble-peg,dyke, +30% fn silv.mica
AW46	45.9	buff marble decomp with silver mica
AW47	33.7	beige mica-fine sand ,silver mica (fine)
AW49	34.9	fine decomp marble-beige fine silver mica
AW50	35.4	buff marble-peg. +-40% silver mica
AW100	25.7	mble+org-dk.brown,cse silver mica +25%
AW101	15.1	brown marble+organic, +20% mica
AW102	6.9	fine silt,dk.brown fine silver mica
AW102	2.8	brown sand (marble (fine)
AW103	11.2	organics + silt, fine mica (silver)
AW105	20.8	brown silt with organics (fine) green mica
AW106	1.3	dark brown-mainly organics
AW107	3.0	brown silt-organics,+10% silver mica
AW108	16.7	brown marble sand,+20% green mica*
AW109	11.1	fine marble-organic, fine silver marble
AW110	6.7	beige marble,+40% green mica**
AW111	20.0+	beige marble, green mica +40%*
AW114	42.9	amphib.dyke, rusty,fine silver mica
AW115	7.9	amphib. dyke-rusty silver mica
AW116	4.1	amphibolite dyke-rusty
AW117	6.6	beige coarse sand-marble decomp
AW118	1.6	beige marble-coarse sand, little mica
AW119	1.8	beige marble-cse sand, little mica
AW120	2.7	amphib.dyke-rusty silver mica
AW121	1.6	brown marble-coarse sand-little mica
AW122	0.8	brown marble-coarse sand-little mica
AW123	3.5	brown marble-coarse sand, little mica
AW124	1.9	brown marble-coarse sand, little mica
AW125	0.7	coarsesand- marble, little mica, slight rusty
AW126	Lost	cse. sand marble
AW127	Lost	cse. sand-marble
AW128	16.4	rusty marble-coarse snd, +20% silver mic
AW129	10.0	brown marble-fine sand,fine mica
AW130	2.6	brown silt-organics, little mica
AW131	7.1	brn. silt-organic, +20% grn.mica
AW132	8.6	brn.marble+orgnic +20% grn. mica flakes
AW133	14.3	brown marble + organics, +15% grn mica*
AW135	12.3	brn marble+organic, +15% fine silv mica
AW136	39.1	bge-gritty marble-granite dyke, silver mica
AW137	51.8	buff marble-decomp, fine mica
AW138	25.6	marble-peg. +20% green mica*

		3
A1A/120	15.5	beige marble-peg., +15% silver mica*
AW139 AW140	10.7	marble-pegmatite, fine green mica
AW140 AW141	47.8	beige marble-peg.,green mica
• • • • •	13.4	beige marble-peg.+10%silver mica
AW142	23.4	brown marble, green mica +15%
AW143	27.2	brn.marble-peg.,+30% green mica*
AW144	17.3	bge marble (decomp), +30% green mica*
AW145	24.1	beige marble-peg.+15% green mica
AW146	10.6	decomp.marble-brn-beige, +35%grn.mica*
AW147 AW148	30.0	decomp marble, cse.mica flake +40%
AW148 AW149	25.4	decomp marble-peg. +10% silver mica
AW149 AW150	9.3	decomp marble-brn,+organic, +20% mica
AW150 AW200	23.2	cse.grn mica in marb,pink peg.,50%mica
AW200 AW201	44.0	cse.beige-buff, marble,+40%blk. mica
AW201 AW202	54.0	cse.orn.mica in marble
AW202	39.8	cse.green mica in marble,40-50%mica,silt
AW205	62.0	grn-silvmica buff marble, swirls, peg. seams
AW206	24.4	buff-grn.marble,+20% grn.mica
AW200	40.9	buff marble-fine sand with fine mica cont.
AW208	43.0	cse.grn.mica in marble,40-50%, pink peg.
AW209	29.8	fine sand-buff marble+peg,+25% micasily.
AW210	49.2	cse.grn.mica in beige marble,swirls
AW211	56.0	cse.grn.mica(40-60%)marble(buff),mottled
AW212	68.6	beige-grn marble,+60% grn.mica
AW213	63.6	cse.grnmica(50%)buff marble,mottled
AW214	66.1	fne.grn.mica+50%,bge.marble,mottled
AW215	19.2	cs.grn.mica(50-70%),marble,swirls,pk.peg
AW216	32.4	cse.grn.mica, marble, swirls
AW217	51.2	cse.marble-peg.,cse.grn.mica +50%
AW218	8.8	bge.marb.10-15%silv.mica.cse.sand,-10%
AW219	5.4	bge,marb,red.verm.lens10%mica,cs.sand
AW220	39.0	cse.grn.mica(40-60%),bge.marble,swirls
AW221	40.7	beige marble-cse.sand,+30% fine mica
AW222	35.9	beige marble-fine sand ,+35% grn.mica
AW223	66.7	mdcse.mica(50-70%)bge.marb,mottled
AW224	39.4	md-cse.grn.mica(50%)mottled,bge.marb
AW225	34.9	cse.grn-blk.mica, beige marble,+50%mica
AW226	28.7	beige marble-peg.,+30% grn.mica flake
AW227	3.3	cse.marble (sand), low mica (E.edge dep) cse.sand-beige marble, low silv.mica
AW228	2.1	cse.sand-marble, low mica content
AW229	4.1	cse.sand marble, buff-white, low mica cont
AW230	4.8	USE.Sanu marbie, buil millejien mes een

Regis Resources Inc. Cavendish Backhoe Trenching Program BW Trench

<u>Sample #</u>	Vermiculite %	Description of Sample
BW1	6.2	brn.marble-cse.sand, little mica(+-5%)
BW2	32.5	dk.brn.rusty marble, low mica
BW3	23.2	darkbrn.amphibolite,+-20% mica
BW4	31.0	dk.brn.amphibolite,20-25% mica content
BW5	25.2	dk.brn.amphib. +25% fine mica
BW6	62.9	dk.brown amphibolite, +-20% mica
BW7	56.9	dark brn.amphib.+-20% fine mica
BW8	39.7	dark brown amphibolite, fine grn.mica 40%
BW9	15.7	amphibolite-orange/rusty, +10%fine mica
BW10	31.9	beige-orange-amphibolite,+10%fine mica
BW11	18.0	brn-beige marble, +15% fine silve mica
BW12	9.9	beige amphibolite sand-low mica content
BW13	27.4	beige marble(fine sand), +-30% grn.flake
BW14	20.8	beige marb, med.sand, +20%fine grn.mica
BW15	23.0	Beige marble, +15% fine silver mica
BW16	19.9	beige marble, medsand, 5-10% mica
BW17	11.3	beige marble, +10% mica(fine)
BW18	40.3	beige marble(ont.),+30% fine grn.mica
BW19	30.5	beige marb (fine decomp),+30% fine mica
BW20	11.1	brn-orange amphibol, low mica (fine sand)
BW21	4.7	brown-orange amphib.low mica content
BW22	14.8	brown-orange amphib.low mica content
BW23	17.2	brown-orange-amphibolite, low mica
BW24	12.5	red-orange amphibol, fine sand, low mica
BW25	17.9	brn-orange amphibolite,+-10% mica(fine)
BW26	12.8	orange-amphibolite, fine sand, low mica
BW27	22.9	orange amphib.(fine sand), +10% mica
BW28	15.4	orange sand-amphib., low mica cont.
BW29	17.0	fine sand, amphib.low mica content
BW30	26.5	beige-orange marble, +20% grn.mica(fine)
BW31	11.7	amphibolite, contact with cse grn.flk +12%
BW32	24.8	amphibolite,+10%silver mica flk
BW33	32.2	beige marble, med.sand, +40% grn.mica
BW34	32.7	beige marble, cse.grn.flk.+50% content
BW35	29.0	beige marb, fine sand, +35% fine grn.mica
BW36	19.2	beige marble,grn.mica(cse)+30%*
BW37	17.3	beige marble, fine sand, +35% fine grn.mic
BW38	23.4	beige marble, +20% fine silver mica
BW39	28.7	beige marble-cse.grained, +20% grn.mica

			, ,
		29.2	2 beige marble, -amphib., +20% fine mica
	BW40	13.4	dk.brn.marb-rusty,cse sand, +30% grn.mic
	BW42	25.4	brn. maarble decomp, +30% mica flk
	BW44	27.8	beige marb,fine sand, +25% fine silv.mica
	BW46 BW47	31.4	beige marble-fnedecomp,+30% fn.gn.mica
		32.7	beige marb(fne decom), +30% fn.grn.mica
	BW48 BW50	40.3	beige marble-pegmte,+20% fine grn.mica
	BW50 BW53	22.8	beige marb,coar sand, +40% grn.mica cse
	BW55	31.0	beige marble, cse.sand, +40% cse grn.mica
	BW50 BW59	24.2	brn.decomp.marble +50% grn mica flk
	BW60	40.2	beige marble, fine decomp, +40% grn.mica
	BW61	43.8	beige marble-decomp, +40% grn mica flk
	BW62	40.7	fine sand-marble(bge),+30%fnegrn.flk.
	BW63	32.5	beige marble-decomp, +40% grn mica flk
	BW64	48.4	beige marb-decomp, +50% silver-grn mica
	BW65	38.5	beige marble, fine, +50% grn.mica*
	BW66	30.5	marble+peg,fine, cse grn.mic (+60%)
	BW67	47.0	beige-grn.marble-decom, +50% grn mica
	BW68	32.8	beige mrble, +60% grn.mica (cse flk)
	BW69	39.3	beige marble-decomp, +35% fine grn.mica
	BW70	60.8	brn.decomp.marble, fine grn.mica+50%
,	BW71	34.3	beige marble, +40% fine grn.mica flk
	BW72	49.0	beige marble(fine sand, +40% grn.mica
	BW73	28.3	fine decomp marble(bge), +30% grn mica
	BW74	50.8	beige decomp. mica +50% green mica flk
	BW76	27.3	beige marble, grn.mica +30% coarse flk*
	BW77	17.4	beige marble, fine sand, +40% grn mica flk
	BW78	21.0	beige marble, +30%,fine grn.flk*
	BW80	30.4	beige marble, +40% fine silver mica flk
	BW81	42.3	beige marble-med. sand,+35% silv.mica
	BW82	23.7	beige marble-decomp+25% grn.mica
	BW83	27.6	beige marble decomp, +30% silver mica
	BW84	19.7	beige marble-cse.sand, +35% fine mica flk
	BW85	21.7	beige marble, fine sand, +30% grn mica flk
	BW86	20.8	beige marb, cse.sand, +20% fine silver mica
	BW87	18.7	beige marble-cse sand, +30% mica* beige mrble-coarse sand, +25% grn.mica
	BW88	15.0	marble+pegmte, +10% fine silv.mica
	BW89	20.4	beige marble,+25% fine grn.mica
	BW90	36.6	beige marble-decomp, +40% fine gm.mica
	BW91	49.9	beige marb-decomp, +30% grn.(fine)mica
)	BW92	27.3	brown marble, coarse sand, silver mica flk
	BW93	21.1	DIOWIT INALDIE, COALGO BANG, CITTOT INICA INC

BW94 BW95 BW96 BW97 BW98 BW100 BW100 BW100 BW101 BW102 BW103 BW103 BW104 BW105 BW105 BW105 BW105 BW106 BW107 BW108 BW109 BW110 BW111 BW112 BW113 BW115 BW116	$14.7 \\17.3 \\19.9 \\12.9 \\15.0 \\16.1 \\22.3 \\8.0 \\25.1 \\18.8 \\36.0 \\51.7 \\34.6 \\22.5 \\30.1 \\23.4 \\22.5 \\10.3 \\30.1 \\23.4 \\10.3 \\6.1$	3 beige decomp marble, +20% finegrn.marbl beige marble-peg., +25% grn.mica beige marble-pegmte, +25% cse grn.mica bge marble-coare sand, +25% grn.marble beige marble-pegmatite,grn.mica flk +15% amphibpeg.,green mica flk beige marble-pegmte, +20% grn.mica dk.brnmarble,cse snd silver mica flake fine decomp.marble-brown, +30% fine mic brn marb-decomp, +25% finefinegrn.marb marble-fine sand, +35% grn.mica flk amphibrusty, +20% fine mica beige marble, +35% fine grn. mica beige marble, 30-35% mica content beige marble-fine sand, +30% grn.mica cont. marble + dk. brown organics, low mica beige marble-fine sand, +20% fine sil mica amphib.+marble,rusty,+30%fine silv.mica amphibolite, dk.brn. +15% mica amphibolite, dk.brn. +15% mica amphibolite, dk.brn. +15% mica amphibolite, dyke,orange,low mica amphibolite.rusty, fine sand, +-20% mica amphibolite.rusty, fine sand, +-20% mica
BW118	27.1 25.9	amphibdk.brown,fine sand,low mica(fine) amphibdk.brown,fine sand,low mica(fine)
BW119 BW120	32.7	dk.brn.marble, +30% fine green mica
BW123	15.4	beige marb-fine sand,+-10% fn. silv mica
BW124	23.0	brn.marble,fine sand, +20% fine silver mica
BW125	16.5	rusty amphibolite, little mica
BW126	31.6	rusty amphib.,+10% fin mica,orange-red coarse snd-mrble-little mica
BW127	2.8	cse sand-decomp marble, low silver mica
BW128	7.4 15.9	coarse sand-beige marble, low mica cont
BW129 BW130	14.8	fine sand-beige marble,+10% fine silv mica
BW130	12.1	beige marble-peg., +20% fine silv.mica
BW132	53.2	beige marble.cse.grn.mica +60%
BW133	20.4	amphibolite(dk.brn),+10%fine mica
BW134	22.7	beige marble+organics, +20% silv.mica
BW135	25.6	beige marble, decomp, +40% fine grn.mica

<u>Regis Resources Inc.</u> <u>Cavendish Backhoe Trenching Program</u> <u>CW Trench</u>			
Sample #	Vermiculite %	Description of Sample	
Sample # CW0 CW1 CW2 CW3 CW4 CW5 CW6 CW7 CW8 CW9 CW10 CW10 CW10 CW11 CW12 CW13 CW14 CW15 CW13 CW14 CW15 CW16 CW17 CW18 CW19 CW10 CW17 CW18 CW19 CW20 CW21 CW22 CW23 CW24 CW25 CW24 CW25 CW26 CW27 CW28 CW27 CW28 CW29 CW20 CW21 CW22 CW23 CW24 CW25 CW26 CW27 CW20 CW21 CW22 CW23 CW24 CW25 CW26 CW27 CW26 CW27 CW26 CW27 CW26 CW27 CW20 CW21 CW20 CW20 CW21 CW20 CW20 CW21 CW20 CW21 CW20 CW20 CW21 CW20 CW20 CW20 CW20 CW20 CW20 CW20 CW20	Vermiculite % 1.0 4.2 3.0 2.4 14.2 10.8 4.6 16.4 10.2 11.9 4.8 16.7 16.2 6.8 3.2 10.0 10.2 11.9 27.5 10.5 12.3 4.8 6.6 8.3 21.0 5.8 26.2 30.7 6.4 12.0 6.8 14.0 9.0 1.7 19.9		
CW35 CW36 CW37	22.6 23.9 55.9	beige marble, low mica beige marble, 25% mica content beige marb-50-60% cse.grn.mica,blk.dyke	

		,
		2
CW38	33.6	beige marble, 40-50% silver mica
CW39	16.0	rusty amphibolite, 30-40% dk.mica
CW40	33.1	rusty marble, cse.sand, 30-40% grn. mica
CW41	35.8	beige marble-decomp, 35-45%grn.mica
CW42	34.6	beige marble-decomp, grn.mica 40-60%
CW43	34.0	beige marble-decomp, 40-50% grn.mica
CW44	31.9	beige marble-decomp-40-50% grn.mica
CW45	33.5	beige marble, 45-50% green.mica
CW46	33.5	beige marble, 40% fine grn.mica content
CW47	35.1	beige marble-decomp. 40-60% grn.mica
CW48	21.0	bg. marble, fine sand, 20-30% fine grn.mica
CW49	29.4	beige marble, 30% silver mica (fine)
CW50	41.5	bg. marble, fine decomp. 30-40% grn.mica
CW51	32.6	beige marble,30-40% fine grn.mica
CW52	34.7	beige marble, 30-40% grn. mica
CW53	30.7	beige marble, 30-35% grn.mica
CW54	23.0	bg. marb, cse sand, cse.grn.mica 30-35%
CW55	32.6	beige marble,35-40% grn.mica
CW56	26.1	bg. marble, med.sand-rock, 35-40%mica
CW57	24.5	beige marble-cse.snd-25-30%silver sand
CW58	28.0	beige marble, cse. sand, 30-35% mica
CW59	9.2	beige marble, cse. sand, 40-50% mica
CW60	26.0	beige marble, cse. grn.mica 50-60% cont.
CW61	43.3	beige mrble, vy.cse.grn.mica-60% content
CW62		beige marble, 50-60% grn.mica flakes
CW63	26.1	beige marble, 45-55% grn.mica flakes
CW64	23.7	beige marble-pegmt, cse.green mica(45%)
CW65	30.5	beige marble, 50-55% grn.mica flakes
CW66	22.3	beige marble, 30-40% grn.mica flakes
CW67	25.3	beige marble, 40% gm.micaflakes
CW68		beige marble, 30-40% grn.mica flakes
CW69		beige marble, 30-40% grn.mica flakes
CW70	13.3	beige marble, 30-40% grn.mica flakes
CW71	25.2	beige marble, 30-40% grn.mica flakes
CW72	24.2	beig-gn.marble, 20-25% fine grn.mica
CW73	27.0	beige marble, 25-30% grn.mica flake
CW74	5.2	beige marble-dcomp-30-35% fine grn.mica beige marble-decomp-30-40% grn.mica
CW75	32.5	beige marble, 40% grn.mica(cse)
CW76	15.5	beige marble-peg., 25-35% fine grn.mica
CW77	17.8	beige marble, 40-45%grn.mica flakes
CW78	25.0	beige marble-peg., 50-60% grn.mica flake
CW79	25.5	Deige mainie-peg., 00-00 /0 grimmed maine

CW80 CW81	, 36.0 40.6	3 beige marble, 40% fine gn. mica flakes orange amphibolite, fine sand, 20-25%mic
CW82	47.5	brn.amphibolite cont.,45-50% fine blk.mica
CW83	35.7	brn.amphibolite,40-45% fine blk.mica
CW84	49.3	orge.amphib.,fine sand, 40-50% fine mica
CW85	8.9	orange amphibol., fne. sand, 20-25% mica
CW86	25.3	orange amphib,fine sand, 20-30% mica
CW87	27.6	beig-brn.marble,med.sand,40-50%grn.mic
CW88	26.5	rusty marble, 30-40%mica, (amph.contact)
CW89	9.2	rusty marble, 25-30% mica
CW90	38.4	rusty marble,20-30% fine mica rusty marble,cse.sand, 20-30% fine mica
CW91	9.4	rusty marble, cse.sand, 25-30% mica
CW92	20.8 18.4	rusty marble, cse.sand, 15-20% mica flake
CW93 CW94	16.4	rusty marble, 10-15% mica flakes
CW94 CW95	17.2	beige marble,50-60% grn.mica flakes
CW96	6.6	beige marb, fine sand, 15-25% fn silv mica
CW97	27.5	beige marble, 40-45% grn.mica flake
CW98	35.0	beige marble-decomp-25-35% grn.mica
CW99	48.0	beige marble-silt- 45% grn.mica flake
CW100	15.8	beige marble, 40-50%grn.mica flakes
CW101	22.3	beige mrble, 40-50% grn. mica flake
CW102		beige marble, 35-40% green mica flakes
CW103	14.7	beige marble-finesilt,25-30% grn.mica
CW104	41.0	beige marble-silt-40-45% grn.mica(fine)
CW105	36.7	beige marble, cse.grn.mica 30-35% cont. beige marble,35-45% green mica flake
CW106		beige marble,30-40% silver mica
CW107	30.9	beige marble, 50-60% silver mica
CW108	24.0 26.9	beige marble, grn.mica 55-65% content
CW109 CW110	26.1	beige marble, grn. mica 50-60% content
CW110	32.8	beige marble, 15-25% grn. mica
CW112	26.6	beige marble, 30-35% fine grn.mica
CW113	21.1	beige marble, 40-50% grn.mica fikes
CW114	12.3	beige marble, 40-50% grn.mica flkes
CW115	19.4	beige marble, 40-50% grn.mica flkes
CW116	12.2	beige marble, 40-50% grn.mica
CW117	30.9	beige marble, 40-50% grn.mica flkes
CW118	18.4	beige marble, 60-65% grn.mica beige marble-fine sand, 15-20% grn.mica
CW119	23.9	beige marble-fine sand, 15-20% gm.mica
CW120	21.2	beige marble-fine sand, 15-20% grn.mica
CW121	31.9	

.

		4
CW122	5.9	beige marble-silt, 15-20% fine mica
CW200	16.5	beige marble ,+-10% silver mica
CW201	11.7	beige marble with brn.org., 10% mica
CW202	44.0	beige marbwith organ., 30-40% silver mica
CW203	18.0	beige marble with org., 30-40% silver mica
CW204	10.7	beige marble-coarse sand, 10-15% sil. mica
CW205	36.6	beige marble-decom. 40-50% silvr mica
CW206	11.0	dark brn. organics, 10% fine mica
CW207	10.9	dk.brn.org.,-10% silver mica
CW208	10.1	beige marble-silt, 10-15% fine mica
CW209	5.9	beige marble, crse.snd, 10% silver mica

.

.

, <u>Regis Resources Inc.</u> <u>Cavendish Backhoe Trenching Program</u> <u>DW Trench</u> (315W-crs.mica)			
<u>Sample #</u>	Vermiculite %	Description of Sample	
Sample # DW1 DW2 DW3 DW4 DW5 DW6 DW7 DW8 DW9 DW10 DW10 DW11 DW12 DW13 DW14 DW15 DW13 DW14 DW15 DW16 DW17 DW18 DW15 DW16 DW17 DW18 DW19 DW20 DW21 DW20 DW21 DW22 DW23 DW24 DW25 DW26 DW25 DW26 DW27 DW28 DW27 DW28 DW29 DW20 DW21 DW22 DW23 DW24 DW25 DW26 DW27 DW28 DW27 DW28 DW29 DW20 DW27 DW28 DW27 DW26 DW27 DW27 DW27 DW27 DW27 DW27 DW27 DW27		Description of Sample rusty orange sand (fine, amphibolite rusty orange amphib. silty, low mica rusty amphibolite, fine sand, low mica rusty amphibolite, fine sand, low mica rusty amphib.fine grn., 30-35% mica cont rusty amphib., 20-30% mica rusty amphib., 20-30% mica rusty amphibolite - 30-40% dk.mica rusty amphibolite - 30-40% dk.mica rusty dk.bm.marble, 10% mica cse.rusty marble, 20-25% mica cse.sand-marble, 10% mica crse marble sand, -10% mica content rusty crse marble, -20% mica content rusty dk.bm.marble, low mica content rusty dk.bm.marble, low mica content rusty dk.bm.marble, 10-15% mica beige marble, cse.sand,-10% mica rusty, dk.bm.marble, 10-15% mica beige marble, dk.gm.mica 20-30% beige marble, 20-25% mica beige marble, 20-25% grn.mica beige marble, 40-50% cse.grn.mica beige marble, 40-50% cse.grn.mica beige marble, 40-50% cse.grn.mica beige marble, 40-50% cse.grn.mica beige marble, 20-20% grn.mica beige marble, 20-20% grn.mica	
DW38	33.0	beige marble-pegmte, 40% grn.mica (crse)	

DW39 DW40 DW41 DW42 DW43 DW44 DW45 DW46 DW45 DW46 DW47 DW48 DW49 DW50 DW50 DW50 DW51 DW52 DW53 DW54 DW55 DW55 DW56 DW55 DW58 DW59 DW60 DW60 DW61	21.2 20.9 23.3 17.8 20.7(14.5V) 13.5 15.7 20.9 25.6 17.1 18.9 26.2 28.3 24.6 21.4 24.8 25.0 37.1 32.3 53.9 43.5 45.3 24.2	2 beige marble, 50-60% crse.grn.mica beige marble-pegmte, grn.mica 30-40% beige marble, grn.mica(cse)30-40% beige marble(cse),40-50%rn.mica beige marble(cse),40-50%rn.mica beige marble, crse grn.mica 35-45% dk.amphib.dyke, 50-60%dk.mica dk.amphib.dyke, 50-60% dk.mica dk.amphib.dyke, 50-60% dk.mica silt-beige marble, 20-25% fine grn.mica beige marble, decomp.,20-30%silver mica beige marble, 50-60% silver mica beige marble, 50-60% crs.grn.mica beige marble, 30-40% crs.grn.mica beige marble, 50-60% crs.grn.mica beige marble, crse.green mica 70-80% beige marble, 60-70% grn.mica beige marble, 60-70% mica(crse) beige marble, crse.grn.mica
DW64 DW65	27.0 19.1	beige marble, 30-40% fine silver mica beige marble, crse sand, 30-40% mica beige marble, fine sand, 30-40% grn mica
DW66	18.5 15.6	heige marble, 25-35% crse, grn.mica
DW67 DW68	26.0	beige marble, fine grain,25-35% grn.mica
DW69	21.0	beige marble+pegmte, 15-20% gm.mica
DW70	31.8	beige marble, low mica(-10%) beige marble, 30-40% crse.grn.mica
DW71	25.2(13.3V) 23.3(17.0V)	beige mable, 30-40% grn.mica
DW72 DW73	7.7	dk brn, marble, crse grn, mica 70%
DW73	29.6(36.6V)	beige marble, 35-40% dk.brn.mica
DW75	32.5(17.9V)	beige marble, cse grn.mica,50-60%
DW76	10.7	beige marble, 20-30% grn.mica (fine) beige marble, crse mica (grn) 35-45%
DW77	7.1	organics dk hm -amphibolite- IOW MICa
DW78	19.0 22.7	red-orang amphibolite, tine sand, low mica
DW79 DW80	17.8	red-orang.amphibolite,fine,20-25%mica
		-

DW96 21.6 Deige maible, cse. sand, 10-20% Sintimod	DW81 DW82 DW83 DW84 DW85 DW86 DW87 DW88 DW89 DW90 DW91 DW96	17.1 32.4 22.7 21.4 23.5 20.0 21.1 18.8 19.0 13.7 21.6	red orange marble, 25-35% fine mica beige marble, 50-60% fine grn.mica dk. brn.marble, 30-40% grn.mica beige marble, 10-15% mica beige marble, fine sand, 20-30% mica beige marble.crse, low mica beige marble, crse, low mica beige marble, coarse sand, 20-30% mica biege marble.crse sand, 20-30% mica beige marble.crse sand, 20-30% mica beige marble.crse sand, 20-30% mica beige marble.crse sand, 20-30% mica beige marble.crse sand, 20-30% mica
		01.0	boigo marble cse sand 15-20% silv mica
bittot			beige marble, crse sand, 20-30% mica
bittot	DW90	13./	Diege marble-cise Sand, 20-50 % mica
DW91 beige marble, crse sand, 20-30% mica			biago morblo area sand 20-30% mica
DW9013.7biege marble-crse sand,20-30% micaDW91beige marble, crse sand, 20-30% micabeige marble, crse sand, 20-30% micabeige marble, crse sand, 20-30% mica		19.0	beige marble, coarse sand, 20-30% mica
DW8919.0beige marble, coarse sand, 20-30% micaDW9013.7biege marble-crse sand, 20-30% micaDW91beige marble, crse sand, 20-30% mica	DW88	18.8	beige marble, tine sand, 20-30% mica
DW8919.0beige marble, coarse sand, 20-30% micaDW9013.7biege marble-crse sand, 20-30% micaDW91beige marble, crse sand, 20-30% mica	DW87		beige maible, cise, low midd
DW8818.8beige marble, fine sand, 20-30% micaDW8919.0beige marble, coarse sand, 20-30% micaDW9013.7biege marble-crse sand, 20-30% micaDW91beige marble, crse sand, 20-30% mica			
DW8721.1beige marble, crse, low micaDW8718.8beige marble, fine sand, 20-30% micaDW8818.8beige marble, coarse sand, 20-30% micaDW8919.0beige marble, coarse sand, 20-30% micaDW9013.7biege marble-crse sand, 20-30% micaDW91beige marble, crse sand, 20-30% mica	D\\/86	20.0	beige marble-cse.sand, 15-25% mica
DW8721.1beige marble, crse, low micaDW8718.8beige marble, fine sand, 20-30% micaDW8818.8beige marble, coarse sand, 20-30% micaDW8919.0beige marble, coarse sand, 20-30% micaDW9013.7biege marble-crse sand, 20-30% micaDW91beige marble, crse sand, 20-30% mica	DW85	23.5	beige marble, tine sand, 20-30% mica
DW8620.0beige marble-cse.sand, 15-25% micaDW8721.1beige marble,crse, low micaDW8818.8beige marble, fine sand, 20-30% micaDW8919.0beige marble, coarse sand, 20-30% micaDW9013.7biege marble-crse sand, 20-30% micaDW91beige marble, crse sand, 20-30% mica	DW84		Deige marble, 10-15% mice
DW8523.5beige marble, fine sand, 20-30% micaDW8620.0beige marble-cse.sand, 15-25% micaDW8721.1beige marble, crse, low micaDW8818.8beige marble, fine sand, 20-30% micaDW8919.0beige marble, coarse sand, 20-30% micaDW9013.7biege marble-crse sand, 20-30% micaDW91beige marble, crse sand, 20-30% mica			hoigo morblo 10-15% mica
DW8421.4beige marble, 10-15% micaDW8523.5beige marble, fine sand, 20-30% micaDW8620.0beige marble-cse.sand, 15-25% micaDW8721.1beige marble, crse, low micaDW8818.8beige marble, fine sand, 20-30% micaDW8919.0beige marble, coarse sand, 20-30% micaDW9013.7biege marble-crse sand, 20-30% micaDW91beige marble, crse sand, 20-30% mica		22 7	dk brn.marble, 30-40% grn.mica
DW8322.7dk. brn.marble, 30-40% grn.micaDW8421.4beige marble, 10-15% micaDW8523.5beige marble, fine sand, 20-30% micaDW8620.0beige marble-cse.sand, 15-25% micaDW8721.1beige marble, crse, low micaDW8818.8beige marble, fine sand, 20-30% micaDW8919.0beige marble, coarse sand, 20-30% micaDW9013.7beige marble, crse sand, 20-30% micaDW91beige marble, crse sand, 20-30% mica	DW82	32.4	beige marble, 50-60% fine grn.mica
DW8322.7dk. brn.marble, 30-40% grn.micaDW8421.4beige marble, 10-15% micaDW8523.5beige marble, fine sand, 20-30% micaDW8620.0beige marble-cse.sand, 15-25% micaDW8721.1beige marble, crse, low micaDW8818.8beige marble, fine sand, 20-30% micaDW8919.0beige marble, coarse sand, 20-30% micaDW9013.7biege marble, crse sand, 20-30% micaDW91beige marble, crse sand, 20-30% mica	DW81	• • • •	Teu Orange marble, 20-00% mic mica
DW8232.4beige marble, 50-60% fine grn.micaDW8322.7dk. brn.marble, 30-40% grn.micaDW8421.4beige marble, 10-15% micaDW8523.5beige marble, fine sand, 20-30% micaDW8620.0beige marble-cse.sand, 15-25% micaDW8721.1beige marble, crse, low micaDW8818.8beige marble, fine sand, 20-30% micaDW8919.0beige marble, coarse sand, 20-30% micaDW9013.7beige marble, crse sand, 20-30% micaDW91beige marble, crse sand, 20-30% mica			rod orange marble 25-35% fine mica

<u>Regis Resources Inc.</u> <u>Cavendish Backhoe Trenching Program</u> <u>EW_Trench</u>				
<u>Sample #</u>	Vermiculite %	Description of Sample		
Sample # EW1 EW2 EW3 EW4 EW5 EW6 EW7 EW8 EW9 EW10 EW11 EW12 EW13 EW14 EW15 EW16 EW17 EW18 EW19 EW20 EW21 EW22 EW23 EW24 EW25 EW26 EW27 EW28 EW29 EW30 EW31 EW32 EW33 EW34	Vermiculite % 8.2 9.3 13.8 10.9 8.9 2.1 28.1 17.7 6.3 0.4 11.7 8.4 8.4 8.4 8.4 20 32.0 14.7 16.0 14.1 18.2 24.5 $$ 33.4 23.2 19.9 31.9 45.4 31.0 <td>Description of Sample amphibolite red-orange fine sand-10%mic amphib. fine sand, low mica rusty marble, 10-20% mica(coarse.verm) rusty marble, 10-20% mica(coarse.verm) rusty marble, 10-20% mica(coarse.verm) rusty marble-fine decomp, low mica rusty marble-fine decomp, low mica rusty marble-fine decomp, low mica rusty marble-crse sand, 10% mica rusty marble-crse sand, low mica rusty marble-rock, low mica content rusty marble-rock, low mica content rusty marble-crse sand, 10% mica rusty marble-crse sand, 20-30% mica rusty marble-crse sand, 20-30% mica rusty marble-crse sand, 20-30% mica rusty marble-crse sand, 20-30% mica rusty marble rock, low mica content rusty marble rock, low mica content rusty marble rock, low mica content rusty marble, coars sand, low mica rusty marble, coars sand, low mica red-brn.amphib10% mica red-brn.amphib10% mica amphibfine sand, low mica beige marble rock dyke, low mica beige marble rock dyke, low mica beige marble rock dyke, low mica beige marble, fine decomp, low mica beige marble, 20-30% silver mica beige marble, 20-30% silver mica beige marble, 20-30% grm.mica beige marble, 20-30% silver mica beige marble, 20-30% silver mica</td>	Description of Sample amphibolite red-orange fine sand-10%mic amphib. fine sand, low mica rusty marble, 10-20% mica(coarse.verm) rusty marble, 10-20% mica(coarse.verm) rusty marble, 10-20% mica(coarse.verm) rusty marble-fine decomp, low mica rusty marble-fine decomp, low mica rusty marble-fine decomp, low mica rusty marble-crse sand, 10% mica rusty marble-crse sand, low mica rusty marble-rock, low mica content rusty marble-rock, low mica content rusty marble-crse sand, 10% mica rusty marble-crse sand, 20-30% mica rusty marble-crse sand, 20-30% mica rusty marble-crse sand, 20-30% mica rusty marble-crse sand, 20-30% mica rusty marble rock, low mica content rusty marble rock, low mica content rusty marble rock, low mica content rusty marble, coars sand, low mica rusty marble, coars sand, low mica red-brn.amphib10% mica red-brn.amphib10% mica amphibfine sand, low mica beige marble rock dyke, low mica beige marble rock dyke, low mica beige marble rock dyke, low mica beige marble, fine decomp, low mica beige marble, 20-30% silver mica beige marble, 20-30% silver mica beige marble, 20-30% grm.mica beige marble, 20-30% silver mica beige marble, 20-30% silver mica		
EW36 EW37 EW38	23.7 21.0 17.7	beige marble,45-55% grn.mica flake beige marble-pegmte, 20-30%silver mica beige marble-pegmt,20-30% mica		

	EW39 EW40 EW41 EW42 EW43 EW44 EW45 EW46 EW47 EW48 EW53 EW54 EW55 EW56 EW55 EW56 EW57 EW58 EW59 EW60 EW60 EW61 EW62 EW63	23.2 10.8 17.9 10.9 6.7 13.9 3.6 3.3 4.2 8.1 34.2 21.1 9.9 15.7 25.8 7.0 3.0 12.8 26.4 9.7	2 rusty marble, fine sand, 35-40% mica rusty marble, cse.sand,25-30% mica orange amphibolite, fine sand, 20% mica arphibolite-beige-fine sand, low mica amphibolite-beige-fine sand, low mica amphibolite-brn.sand,low mica content amphibolite-yellow sand low mica amphibolite-yellow sand low mica amphibolite-yellow sand, low mica cont. dk.brn.org.+marble(decomp),20-25% mica beige marble, 50-60% grn.mica(fine) beige marble, 50-60% grn.mica beige marble, 20-25% silver mica beige marble, 20-25% silver mica beige marble, 45-55% ssilver mica beige marble, 25% fine silver mica beige marble, 25% fine silver mica beige marble, 35-45% mica beige marble, 35-45% mica beige marble, 35-45% mica beige marble, 40% fine grn.mica
EW64 beige marble, 50-60% grn.mica	EW63		beige marble, 40% fine grn.mica beige marble, 50-60% grn.mica

•

Regis Resources Inc.Cavendish Backhoe Trenching ProgramFW Trench/ermiculite % Description of Sample

Sample # Vermiculite % Description of Sample	
FW1 13.8 beige marble-decomp-30-40%	line mica
FW2 9.6 beige marble, fine silt, 30% silve	er mica
FW3 12.6 beige marble, 50-60% grn.mica	flake
FW4 13.0 beige marble, 40-50% mica flak	(e
EW5 25.2 beige marble-pegt., 30-40% silv	.mica
FW6 31.1 beige marble, fine sand, 25% sil	ver mica
FW7 47.5 beige marble-pegmt.,40%cse.g	Irn.mica
FW8 18.9 beige marble-pegt.,30% mica fl	ake
EW9 19.1 beige marble rock, 20% fine mi	ca
EW10 18.2 beige marble rock, 10-15% silve	er mica flk.
EW11 18.6 beige marble-decom, cse.grn.n	nica30-40%
FW12 28.5 bg. marb, fine sand-silt, 30-40%	silv mica
EW13 17.6 beige marble, 40-50% grn.mica	a flake
EW14 22.2 beige marble-decomp-40-50%	grn.mica flk
EW15 19.2 beige marble-fine sand, 25-35%	6 fine mica
FW17 15.0 beige marble, fine sand, 25% fir	ne mica
EW18 28.6 brn.marble, brown mica (+-40%	(o)
EW19 118 beige marble-cse.sand, 15-25%	fine mica
EW20 16.7 beige marble, med.sand, 15-25	5% mica
EW21 116 beige marble, med. sand, 15-25	% fine mica
FW22 13.6 beige marble, med sand, 15-25	5% fine mica
EW23 8.6 beige marble, 15-20% silver mi	ca
FW24 16.3 beige marble-pegt, 25% fine sil	lver mica
EW25 17.8 beig marble,+-40% fine silver n	nica
EW26 23.4 beige marble-cse.snd,15-25%	mica fik
EW27 17.8 beige marble, med. sand, 25-35	% grn.mica
EW28 124 beige marble-peqt.,40-50% gre	een mica
FW29 beige marble, med.sand, 20-30	1% mica
EW20 5.6 beide marble, med.sand, 10-1	5% fine mica
FW31 3.3 beige marble, cse.sand, 10-15	% mica
FW32 6.2 beige marble, cse. sand, 15-20%	% silv.mica
EW23 80 beige marble, cse.sand, 10-20	% mica
bige marble, cse, sand, +-15%	mica
EW25 5.5 beige marble-peg., 15-20% SIN	
EW26 7 / heige marble_cse.sand.20-25%	
ENVOZ 101 beige marble, cse.gm.mica (50	
EW29 73 beige marble.cse.sand, 20-25	
FW39 7.3 brn.marble, cse.grn.mica flake	(40%)

			,
			2
	FW40	13.8	beige marble,20-25% fine mica
	FW41	7.7	beige marble, cse.sand, 20-25% marble
	FW42	5.6	beige marble, med. sand, 10-15% mica
	FW43	13.4	beige marble, cse. sand 25-35% mica cont.
•	FW44	14.4	beige marble, fine sand, 10-20% mica
	FW45	16.5	beige marble, cse.sand, 30-35% silv mica
	FW46	13.6	beige marble, med.sand, 15-20% fine mica
	FW47	12.2	beige marble, fine sand, 15-25% mica
	FW48	15.2	beige marble, fine sand, 20-25% fine mica
	FW49	20.6	beige-brn.marble, 20-25% mica
	FW50	10.7	beige marble, fine sand, 20-30% fine mica
	FW50 FW51	24.3	brn.marble,fine sand, 25-30% mica
	FW51	17.5	rusty marble, med. sand, 25-30% mica
	FW52	9.0	rusty marble, fine sand, 20-25% fine mica
	FW53	13.4	rusty marble, fine sand, +-20% fine mica
	FW55	10.4	rusty marble, fine sand,25-30% fine mica
	FW56	12.3	rusty marble fine sand, 30-40% mica
	FW57	11.4	rusty marble, 30-35% mica content
	FW58	11.9	rusty marble, 30-35% mica flake
	FW59	12.5	brown.marble, 30% mica flake
,	FW60	10.2	brown marble, 30% mica flake
	FW61	14.7	beige marble, fine sand, 25-30% silv. mica
	FW62	5.7	rusty marble, cse.sand, 10% mica
	FW63	11.1	amphibolite dyke,rusty, low mica
	FW64	18.8	rusty marble, 20-30% mica flake
	FW65	11.3	beige sand deomp, 20-25% fine mca
	FW66	8.6	oran.amphibolite, fine sand, 20-30%mica
	FW67	20.8	amph+marble, 40% mica content
	FW68	11.4	amph+marble, 40% mica content
	FW69	1.8	amph+marble, 40% mica content
	FW70	1.9	amphibolite, fne sand, 20-25% fine mica
	FW71	4.4	dk.brn.organics-marble with mica (-10%)
	FW72	21.0	dk.brn.organics-marble with mica (-10%)
	FW73	21.0	dk.brn.organics-marble with mica (-10%)
	FW74		dk.brn.organics-marble with mica (-10%)
	FW75	22.9	dk.brn.organics-marble with mica (-10%)
	FW76	15.4	black dyke(amphib), 70-80% mica
	FW77	21.4	beige marble-fine sand, 30-40% silv. mica
	FW78	6.5	amphibolite, fine sand, 20% mica content
	FW79	2.4	beige marble, med.sand, 10-20% fine mica
	FW80	19.5	amphib.+marble, 10-15% mica
	FW81	4.4	amphibolite-marble, +-10% mica content

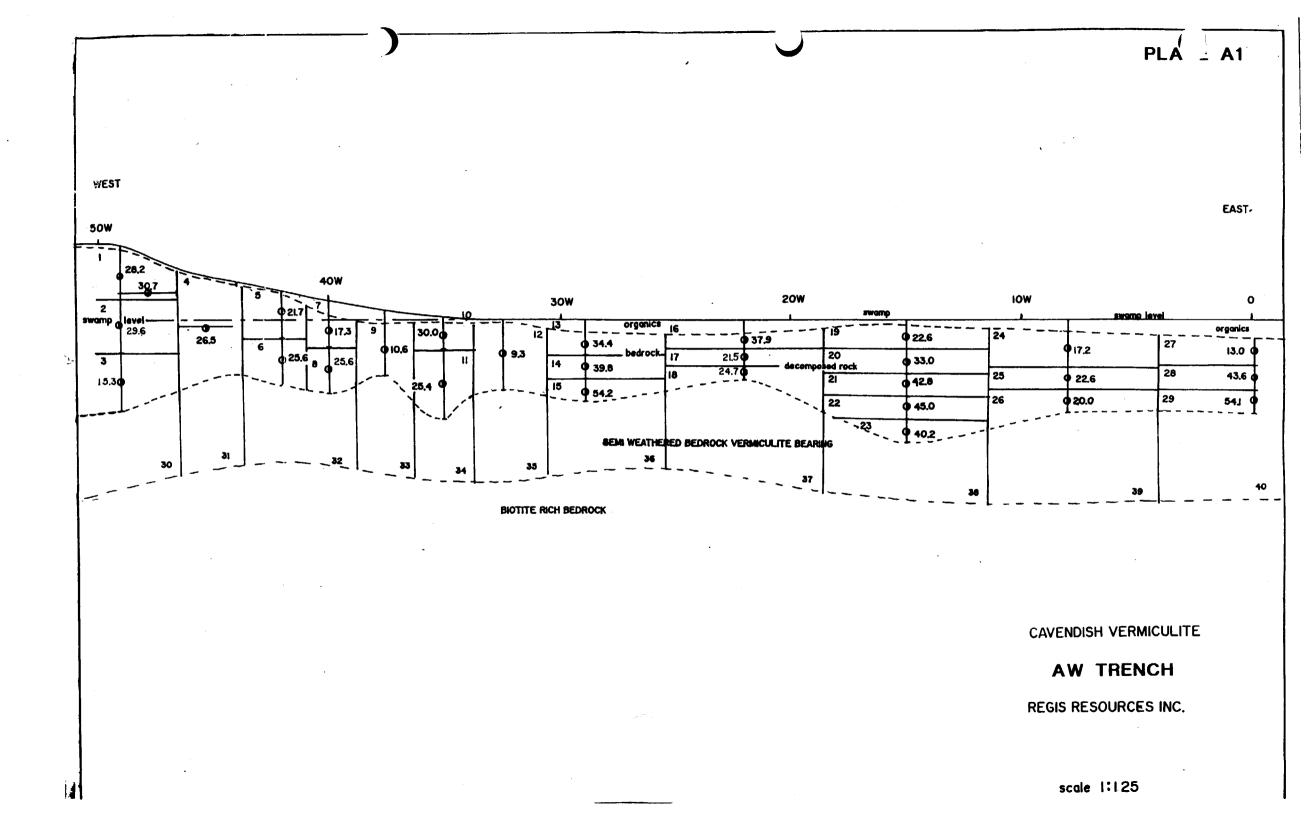
		, ,
		3
FW82	21.5	amphib.+marble,+-10%mica
FW83	17.3	black amphibolite 50-60% blk.mica
FW84	24.5	blk.amphibolite, 50-60%blk.mica
FW85	15.5	grn.marble-silt, 20-30% fine mica
FW86	17.8	marble-peg., 30-40% grn.mica cse. flake
FW87	17.8	marble-peg., 30-40% grn.mica cse. flake
FW88	31.0	beige marble, 30-40% grn.mica flake
FW89	11.9	beige marble, 30-40% grn.mica flake
••••	16.4	beige marble, 30-40% grn.mica flake
FW90	• • •	rusty amphibolite, fine sand, 15-20%mica
FW91	10.2	dishim morpho ructure 10% mica
FW93	5.4	dk.brn.marble,rusty, +-10%mica
FW94	12.0	orge.amphibolite, 10-15% mica
FW95	21.0	black dyke(amphib), 70-80% mica

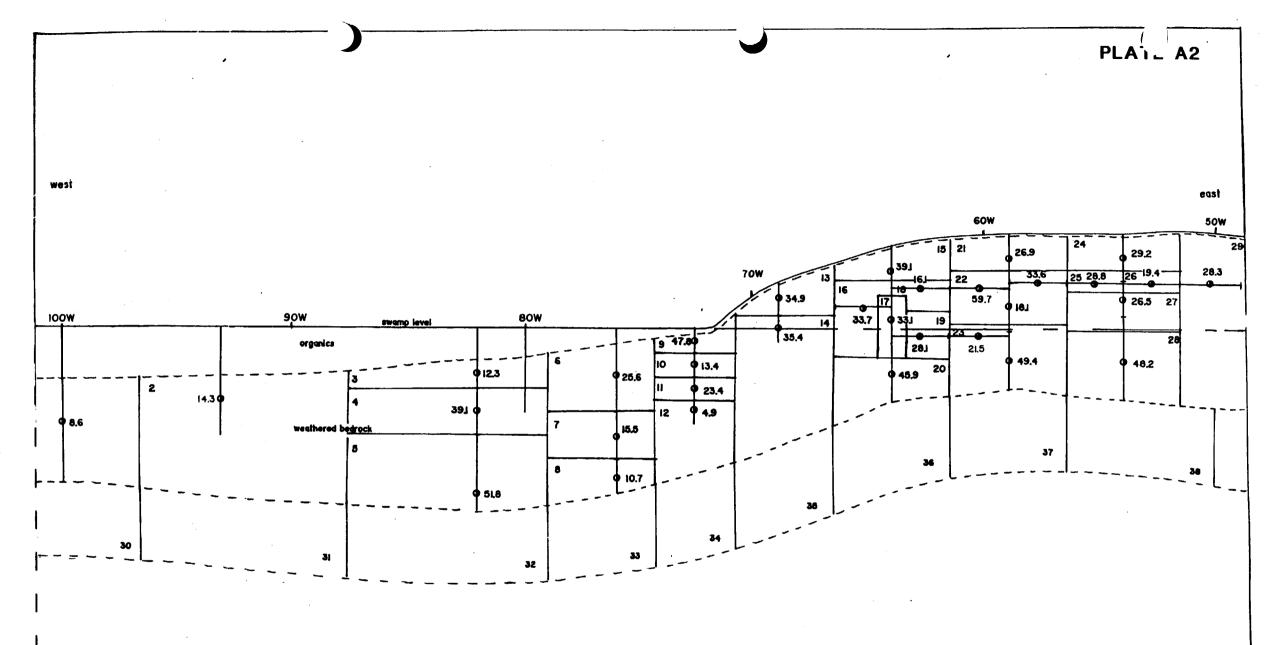
.

Regis Resources Inc.Cavendish Backhoe Trenching ProgramGW TrenchGW Trench/ermiculite % Description of Sample

<u>Sample #</u>	Vermiculite %	Description of Sample
GW1	12.2	beige marble,med.sand, 10-20%fine mica
GW2	29.5	orange amphibolite-marble, 40-50% mica
GW3	19.8	rusty marble, 30-40% mica content
GW4	9.0	rusty marble, 20-30% fine mica
GW5	8.6	brn.marble, fine sand, 20-25% fine mica
GW6	7.8	beige marble, fine sand, 20-30% mica
GW7	20.1	beige marble, fine sand, 20-30% mica
GW8	14.1	beige marble, 30-35% fine green.mica
GW9	10.5	brown marble, 20-30% fine mica content
GW10	23.1	brown.marble,fine sand, 15-20%fine mica
GW11	5.8	beige marble, fine sand, 25-30% fine mica
GW12	10.8	brown marble, fine sand, +-30% mica cont.
GW13	14.0	brn.marble, fine snd, 30-40% fine mica
GW14	25.9	brn.marble,fine sand, 35-40% fine mica
GW15	5.9	brn.mrble, 25-30% fine mica flake
GW16	23.2	brn.marble,fine sand 30-40% mica flake
GW17	10.1	beige marble, fine sand, 15-25% fine mica
GW18	50.0	beige marble, fine sand, 50-60% grn.mica
GW19	13.2	beige marble,35-45% mica content
GW20	15.5	beige marble, 30-35% fine grn.mica flake
GW21	17.0	beige marble, 30-35% fine grn.mica flake
GW22	50.4	beige marble, 30-35% fine grn.mica flake
GW23	64.7	beige marble, 30-35% fine grn.mica flake
GW24	37.1	black amphibolite, 60-70%blk.mica
GW25	53.0	black amphibolite, 60-70%blk.mica
GW26	29.9	black amphibolite, 50% fine blk.mica
GW27	29.8	black.amphibolite, 50-60%blk.mica
GW28	8.8	amphibolite-silt, low mica content
GW29	7.5	amphibolite-silt, low mica content
GW30	20.3	beige marble, grn. mica to 20%
GW31	62.0	beige marble with grn. mica to 60% cont
GW32	4.8	amphibolite
GW33	9.4	beige marble-decomp, +-30% grn.mica flk
GW34	9.6	amphibolite
GW35	1.3	amphibolite
GW36	15.3	beige marble
GW37	21.0	beige marble
GW38	17.7	beige marble

		,	2
	GW39	14.7	beige marble
	GW40	11.6	beige marble
	GW41	17.9	beige marble
	GW42	10.9	beige marble
	GW43	6.7	beige marble
	GW44	13.9	beige marble
	GW45	6.0	beige marble
	GW46	8.4	beige marble
	GW54	10.9	beige marble
	GW55	13.3	beige marble
	GW56	15.7	beige marble
	GW57	25.8	beige marble
	GW58	7.0	beige marble
	GW59	9.9	beige marble
	GW60	12.8	beige marble
	GW61	10.9	beige marble
	GW62	9.7	beige marble
	GW100	4.3	brn.marble, cse.sand, 10-15% mica
	GW101	6.9	brn.amphibolit, fine grain.rock,low mica
	GW102	3.5	brn.amphibolite, low mica cont., fine sand
I.	GW103	24.5	beige-rusty marble, fine snd, 20-30% mica
	GW104	28.6	bg marble.decomp, 50-60%cse.greenmica
	GW105	4.3	beige marble, fin sand, 15-20% silv.mica
	GW106	6.3	beige marb, fine sand +-10% fine grn.mica
	GW107	10.2	bg. marb, decomp., 20-30% fine silver mica
	GW108	14.3	beige marble, 50-60% grn.mica flake
	GW109	29.9	beige marble, 50-60% silver mica
	GW110	14.0	beige marble, cse.grn.mica(+-60% flake)
	GW111	16.1	brn.marble,fine sand,cse.grn.mica(50%)
	GW112	20.7	brn.marble,fine sand,cse.grn.mica(50%)
	GW113	14.7	brn.marble, +-50% fine mica
	GW114	10.3	beige-ornge.marbl, fine sand,40-50%mica
	GW115	15.0	bg. marb-decomp.,40-50% cse.silver mica
	GW116	12.7	bg. marb-decomp.,40-45% cse.silver mica
	GW117	23.0	bg. marb-decomp.,45-50% cse.silver mica
	GW118	4.2	beige marble-decomp, 50-55% fine mica
	GW119	41.8	beige marb, decomp, 50-60% cse.grn.mica
	GW120	17.1	beige marble-peg., 50-55% grn.mica flake
	GW121	26.4	buff marble-peg, 30-40% fine mica flake
	GW122	32.0	buff marble, 25-30% fine silver mica
	GW123	19.3	buff marble, fine sand, 15-20%silver mica beige marble,silt-sand, 20-25%silv.mica
	GW124	10.6	Deige marble, sill-sailu, 20-25 /85ily.mica

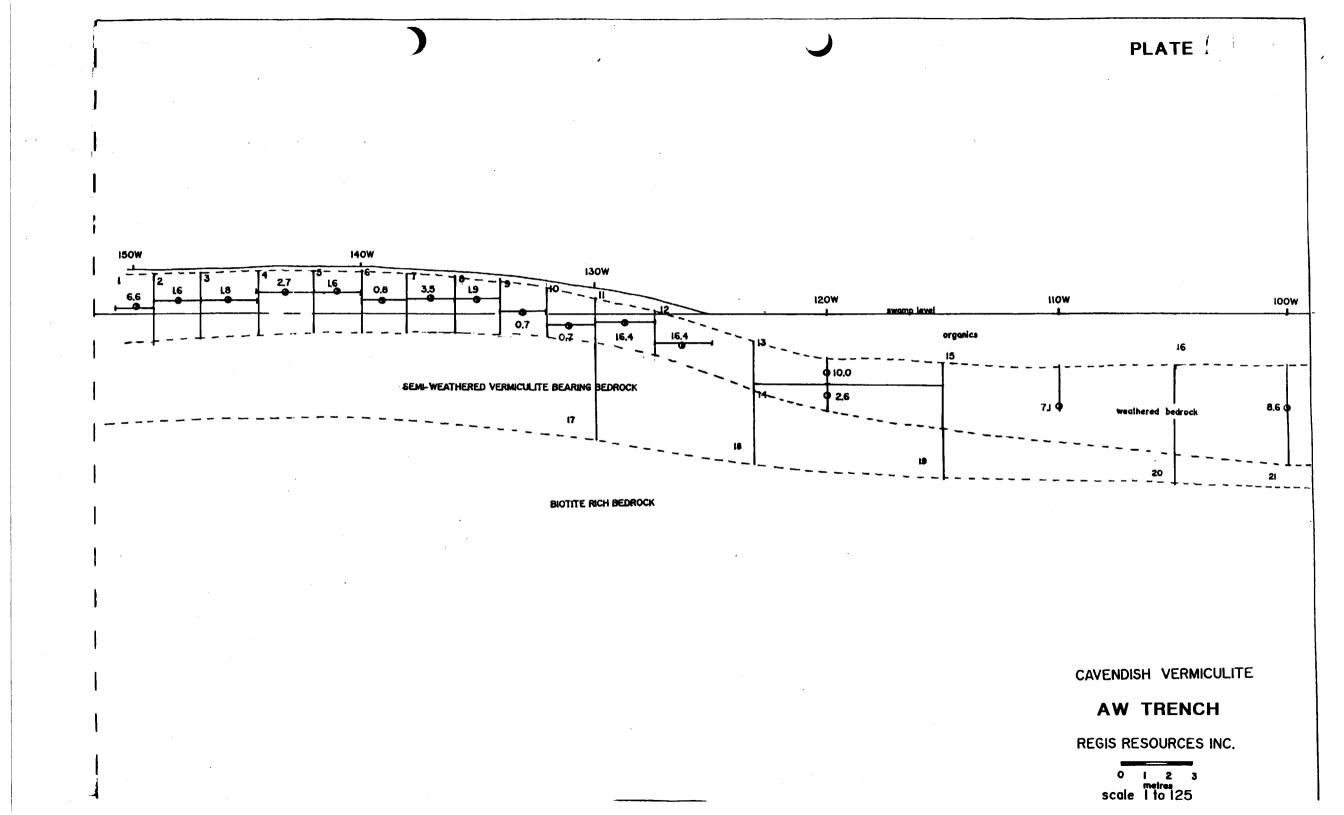

GW125 GW126 GW127 GW128 GW129	19.0 52.5 30.5 20.3 8.9	buff mrble-20-30% fine grn.mica buff marble-peg, 40-50% grn.mica flake beige marble, +-40% green mica flake beige marble, +-40% green mica flake amphibolite-marble, 20-30% fine mica,
GW129	0.9	

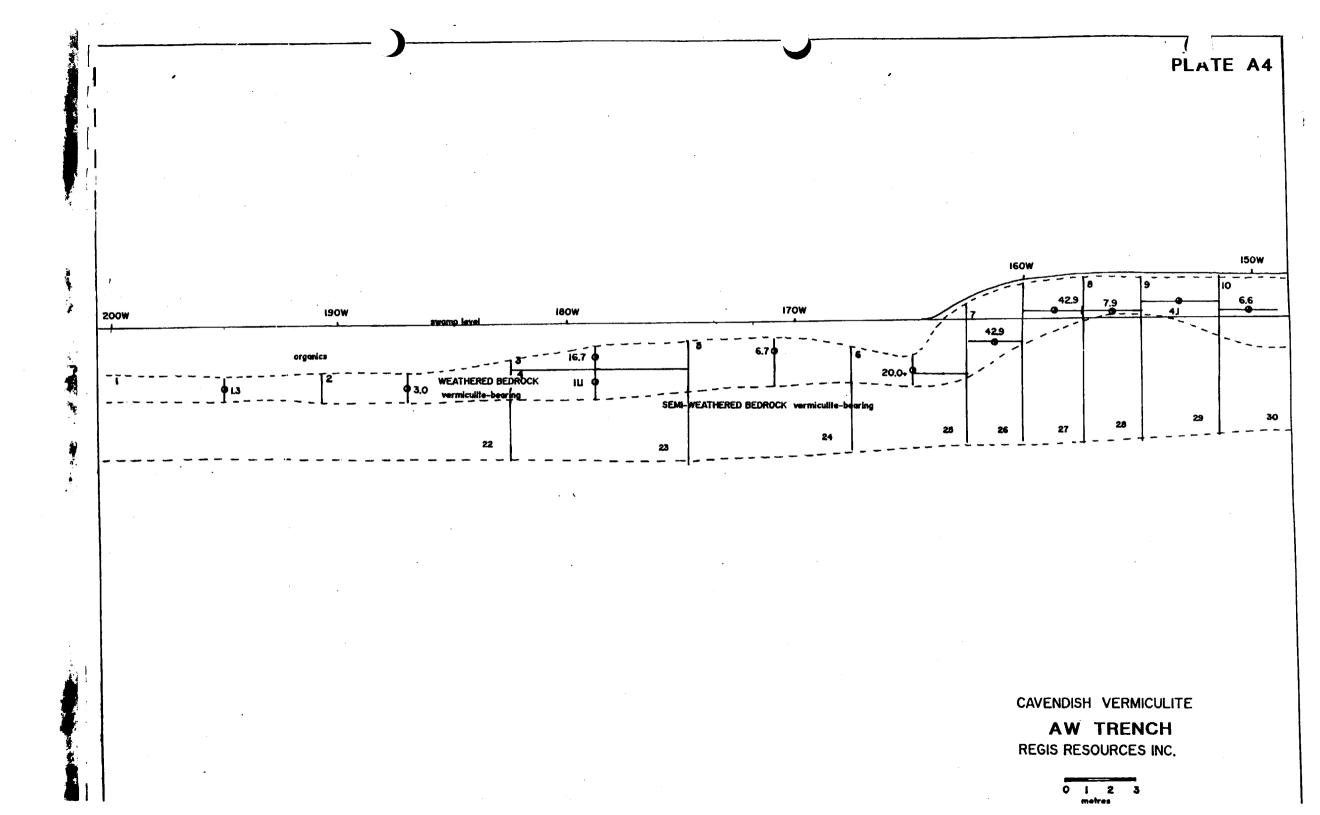

•

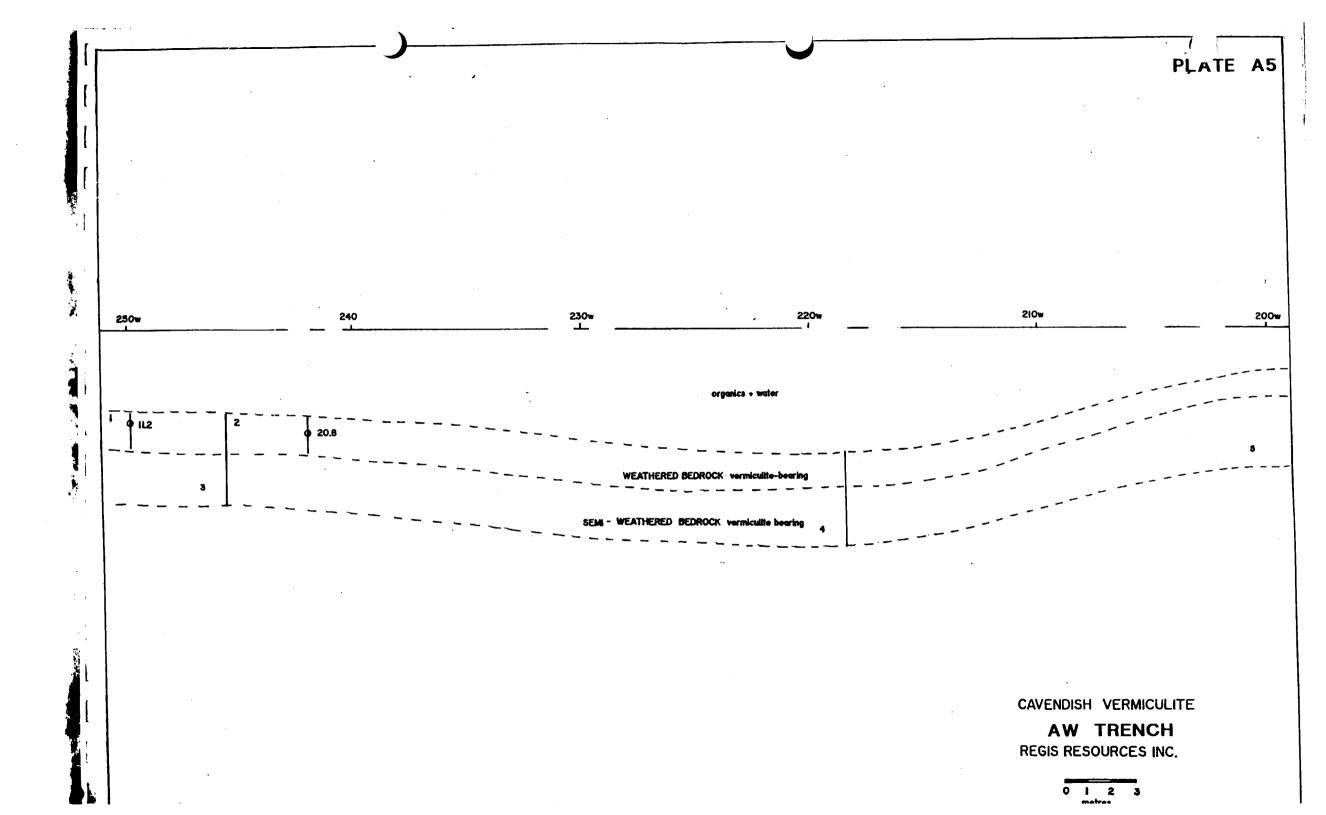
Regis Resources Inc. Cavendish Backhoe Trenching Program <u>HW Trench</u>

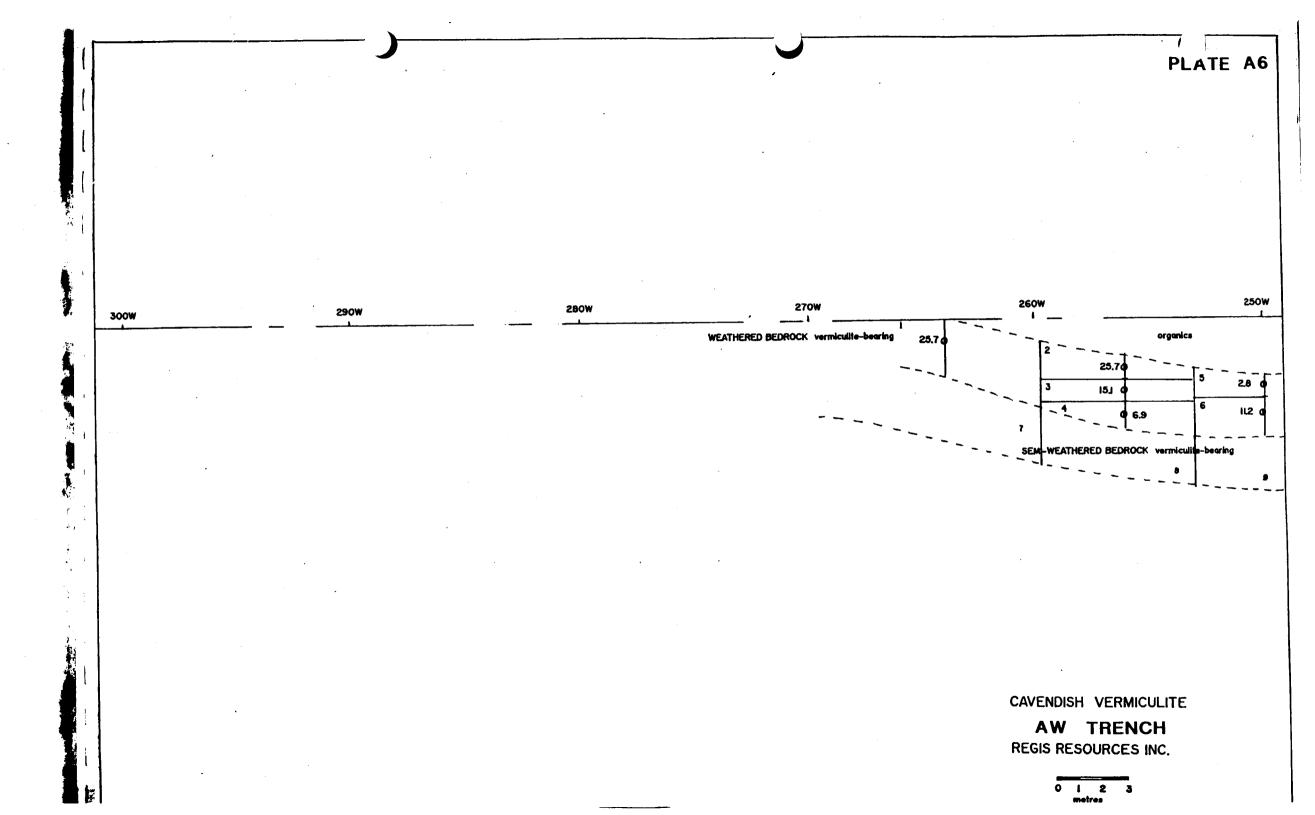
Sample #	Vermiculite %	<u>HW Trench</u> Description of Sample
•		
HW1	39.5	cse.grn.mica(30-50%) in marble-swirls
HW2	44.0	beige marble, cse.grn.mica40-50%
HW3	34.2	buff marble, fine sand L250N-300W
HW4	31.3	beige marble, +30% fine green mica cont
HW5	31.6	beige marble, cse. sand, fine silvmica, -30%
HW6	28.9	beige marble, +25% green mica flake
HW7	38.0	beige marble, fine sand, +30% gm.mica
HW8	28.6	beige marble, fine sand
HW9	42.4	beige marble, peg.seams, +40% gm.mica
HW10	33.3	beige marble, fine sand, +30% gm.mica
HW11	41.9	beige marble, fine sand
HW12	32.0	Fault @46m-change dip
HW13	37.6	beige marble, fine silt-sand,+25%cont.
HW14	44.6	beige marble, fine sand, +40% silv.mica
HW15	33.4	beige marble with 30-40% gm.mica flake
HW16	23.8	amphibolite -pegmarble, fine sand
HW17	7.8	amphibolite with beige mica, fine sand
HW18	22.7	beige marble, fine sand +20% mica(green)
HW19	15.1	beige marble, fine sand, -20% mica cont
HW20	33.5	beige marble med. sand
HW21	27.4	beige marble, +25% fine silver mica
HW22	24.8	beige marble,grn.mica 20-30% mica
HW23	24.4	beige marble, low mica
HW24	23.9	beige marble, very fine mica content
HW25	28.1	beige marble, low mica(L200N-242W
HW30	36.6	brn.marble.cse.grn mica+40% blk.flake
HW31	11.4	beige marble3, fine sand, low mica cont.
HW32	18.9	beige marble, cse. sand, -20% mica cont
HW33	23. 9	beige marble, cse. sand/frag.+15%mica
HW34	26.7	beige marble, fine sand 15-20% mica
HW35	30.3	beige marble, fine sand, +25% mica
HW36	35.0	beige marble fine sand-silt,+30% mica
HW37	36.7	red-orange sand-amphibolite-marble
HW38	21.8	beige marble, fine sand +20% silv.mica
HW39	28.3	beige marble fine sand
HW40	40.8	beige marble with pink peg., fine mica cont
HW41	41.1	beige marble, fine sand,+20% mica
HW42	19.5	beige marble, fine sand, , fine silv.flake
		v

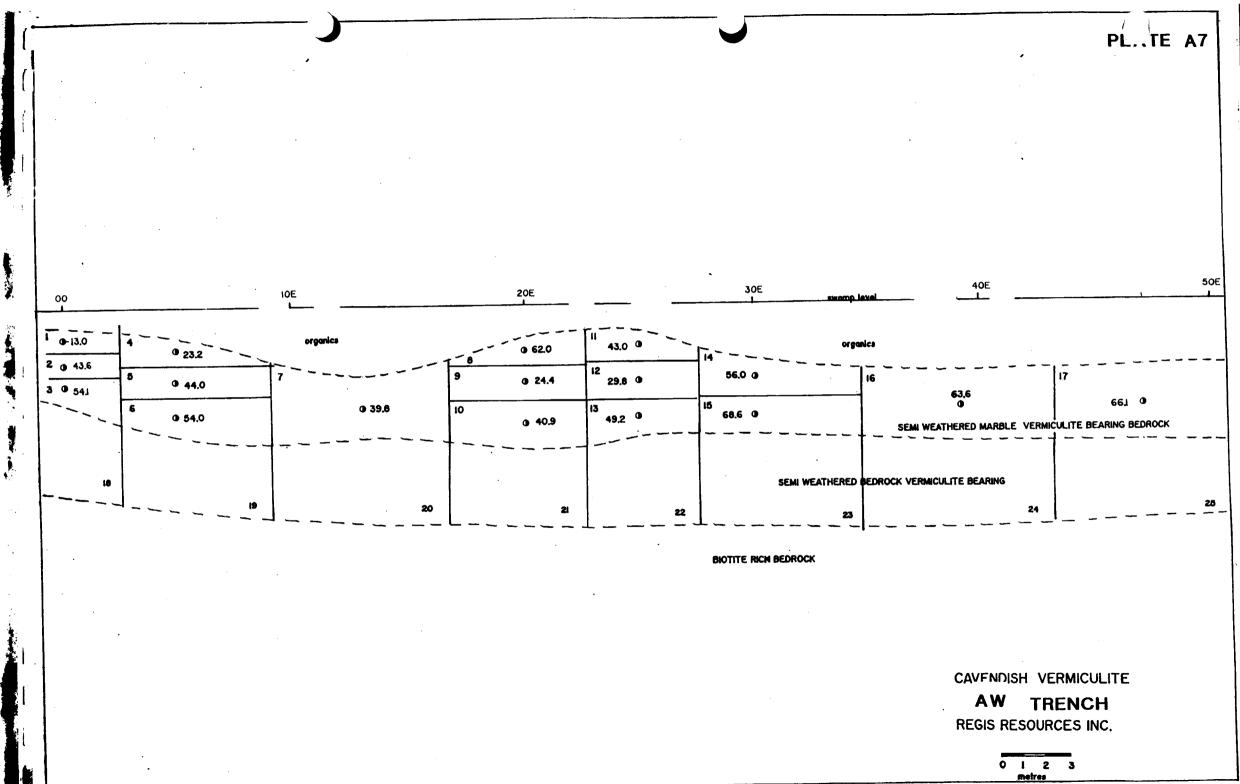
•		9
HW43	25.7	beige marble,fine sand,+25% mica
HW44	16.1	beige marble, fine sand, amphibolitic
HW45	14.8	grn-bge marble, fine sand, 20-30% mica (gn
HW46	30.4	beige marble, +30% fine grn.mica
HW47	30.7	beige marble, fine sand, +25% fine mica
HW48	21.5	beige marble, fine sand, -20% mica
HW49	31.0	beige marble, fine sand
HW50	7.9	dk.brn.marble, -10% blk. mica
HW51	9.0	amphibolite with low mica content
HW52	17.4	amphibolitic with +15% fine mica
HW53	10.0	amphibolitic+marble, fine sand with fn. mic
HW54	2.9	amphibolite +marble,beige colour silt
HW54	5.4	amphibolite,orange-yellow, fine sand
••••=	5.9	amphibolite, fine sand, beige colour
HW56		grnred amphib.gneiss, fine sand
HW57	2.1	amphibolite gneiss, buff-orange colour
HW58	9.9	amphibolite gneiss, buil-brange colour
HW59	9.5	amphibolite gneiss, fine sand, beige col.
HW60	4.3	amphibolite gneiss, beige colour, fine sand
HW61	10.0	amphibolite gneiss west bound.40'W

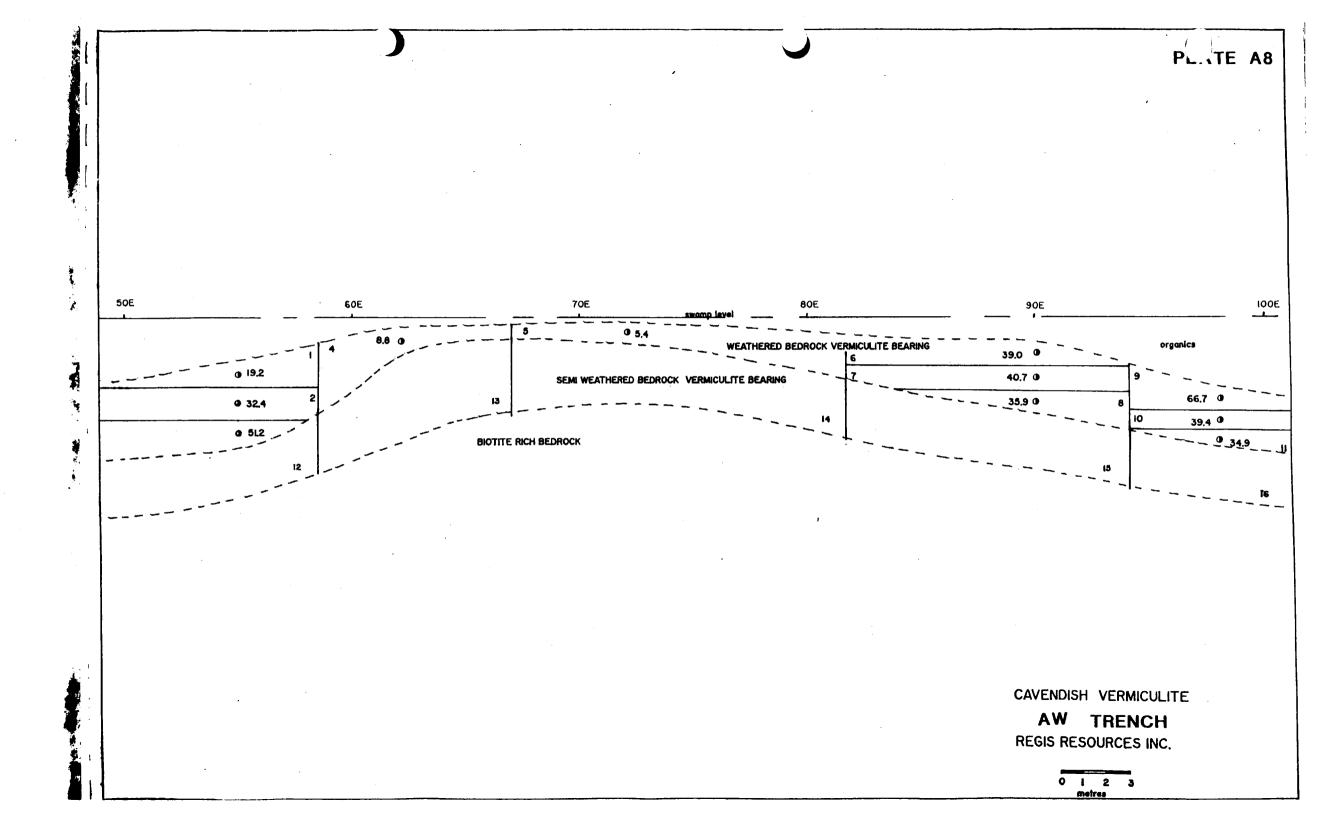

CAVENDISH VERMICULITE

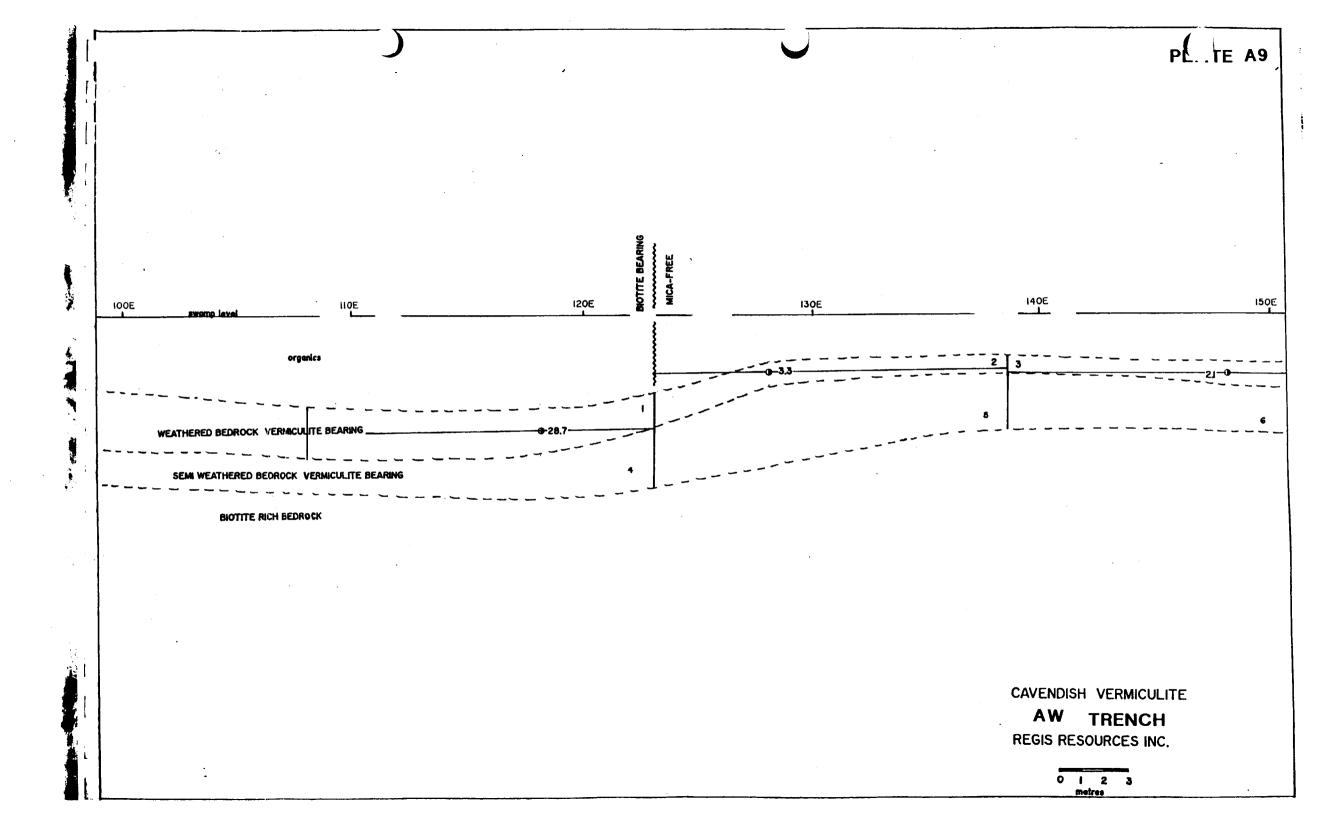

AW TRENCH

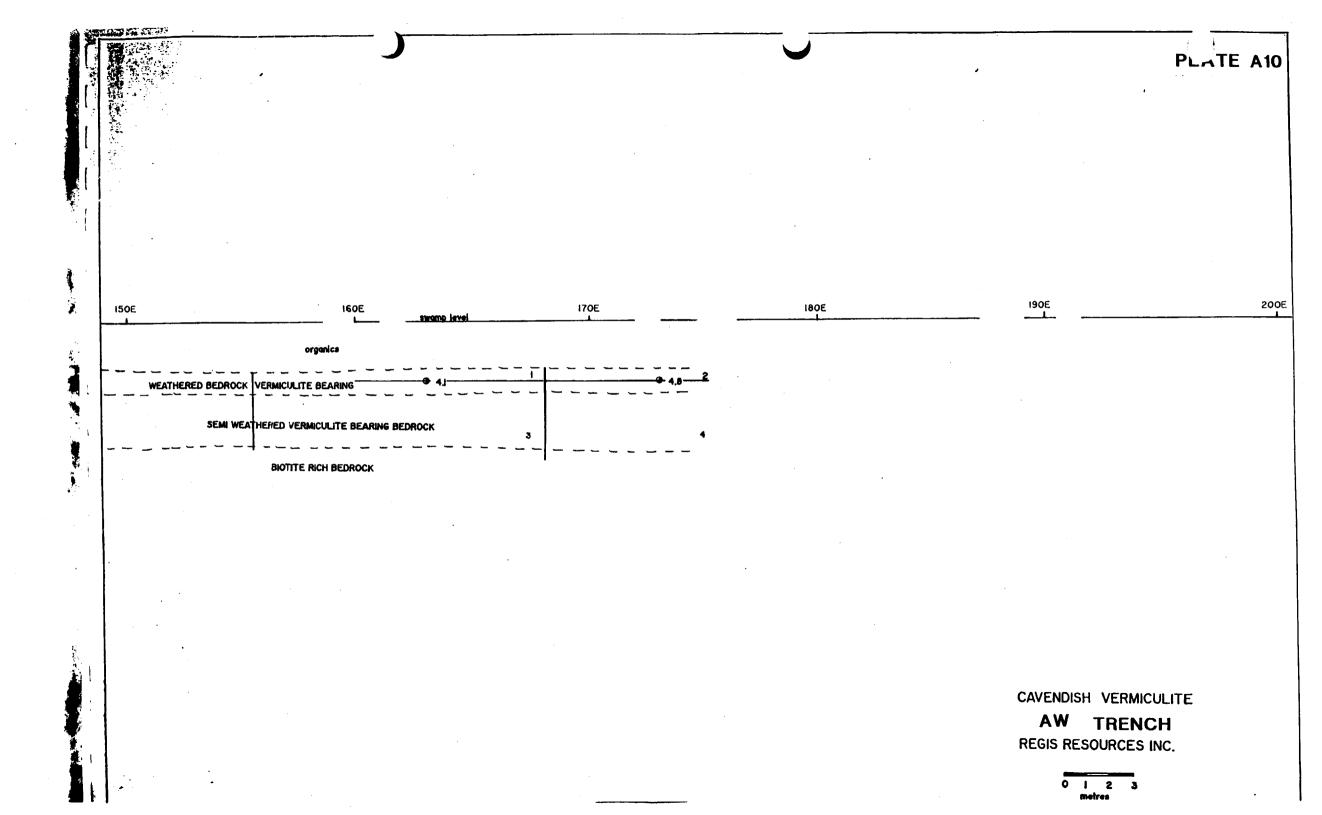

REGIS RESOURCES INC.

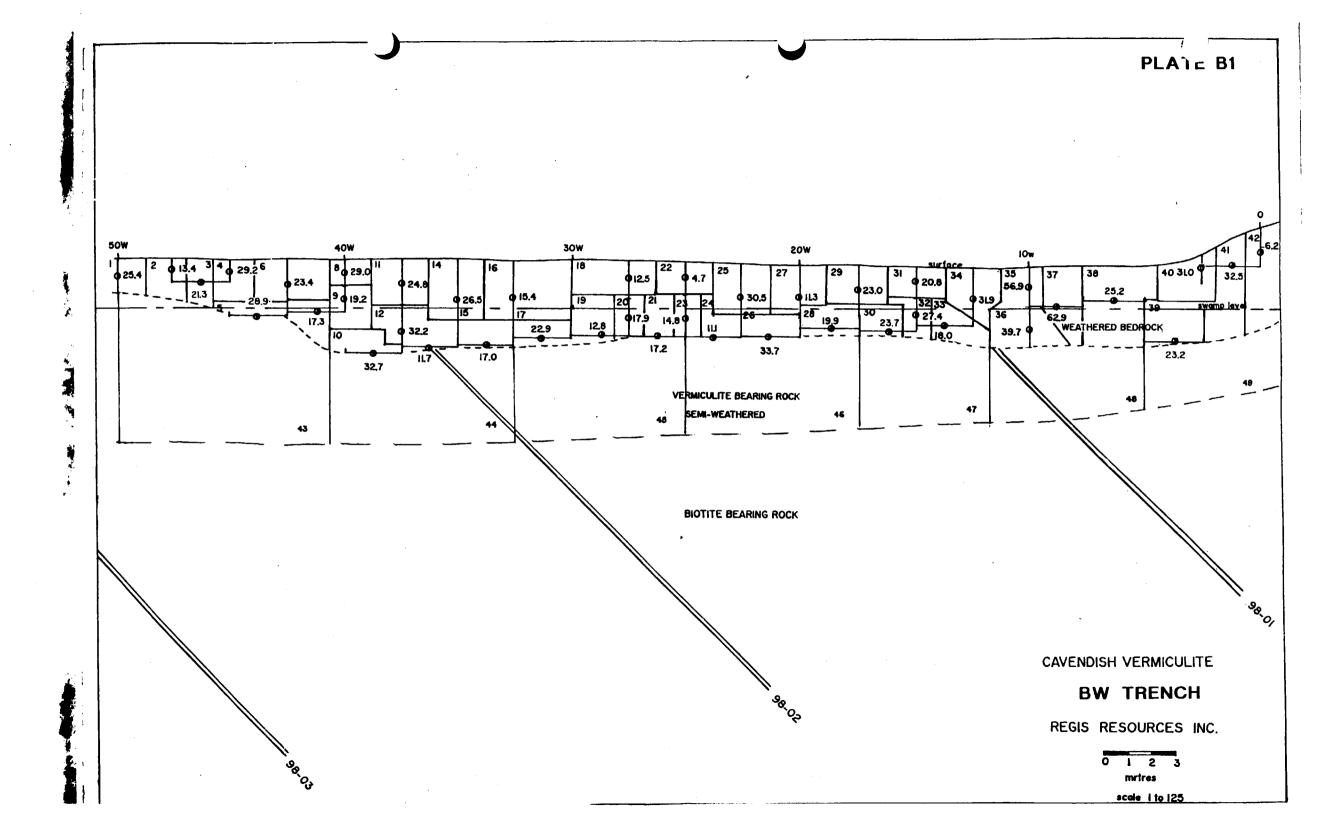

0 i 2 3 metres

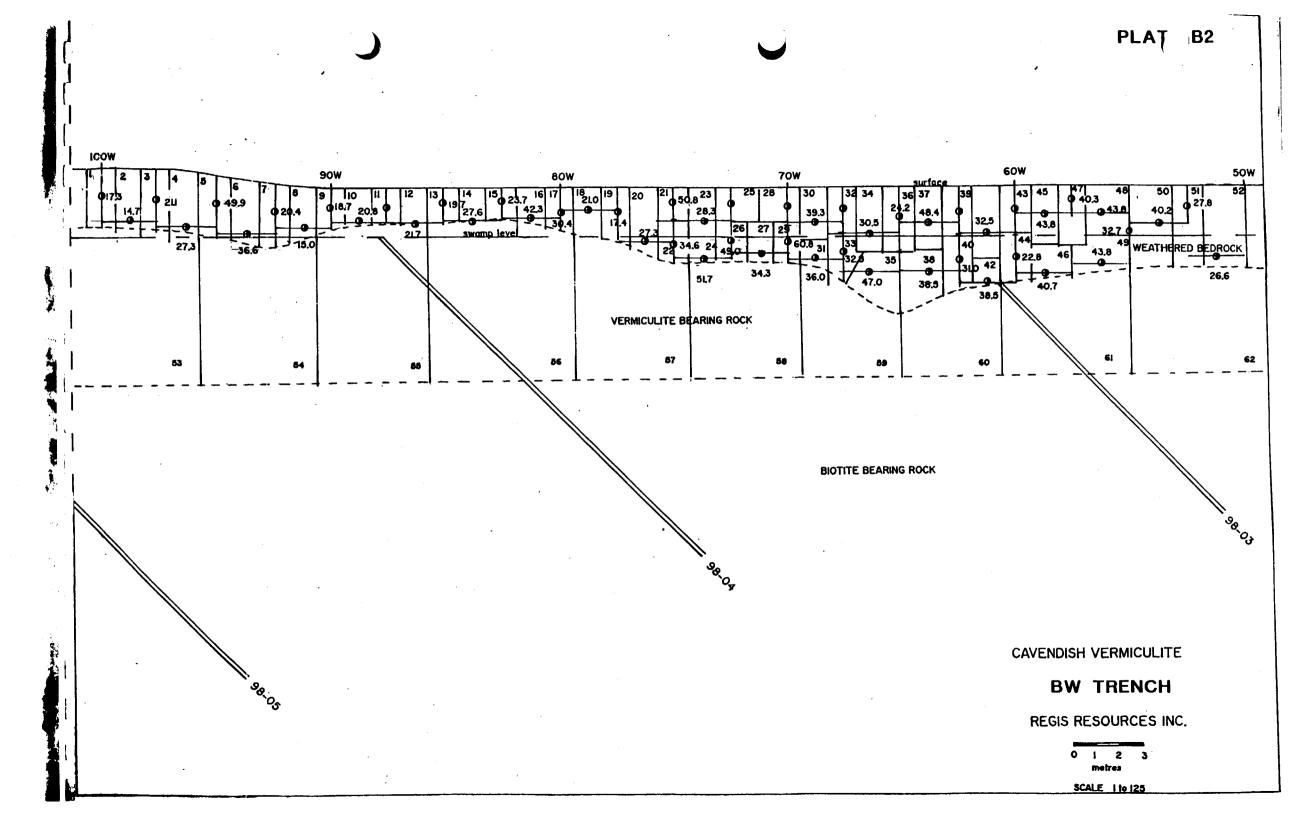

scale 1:125

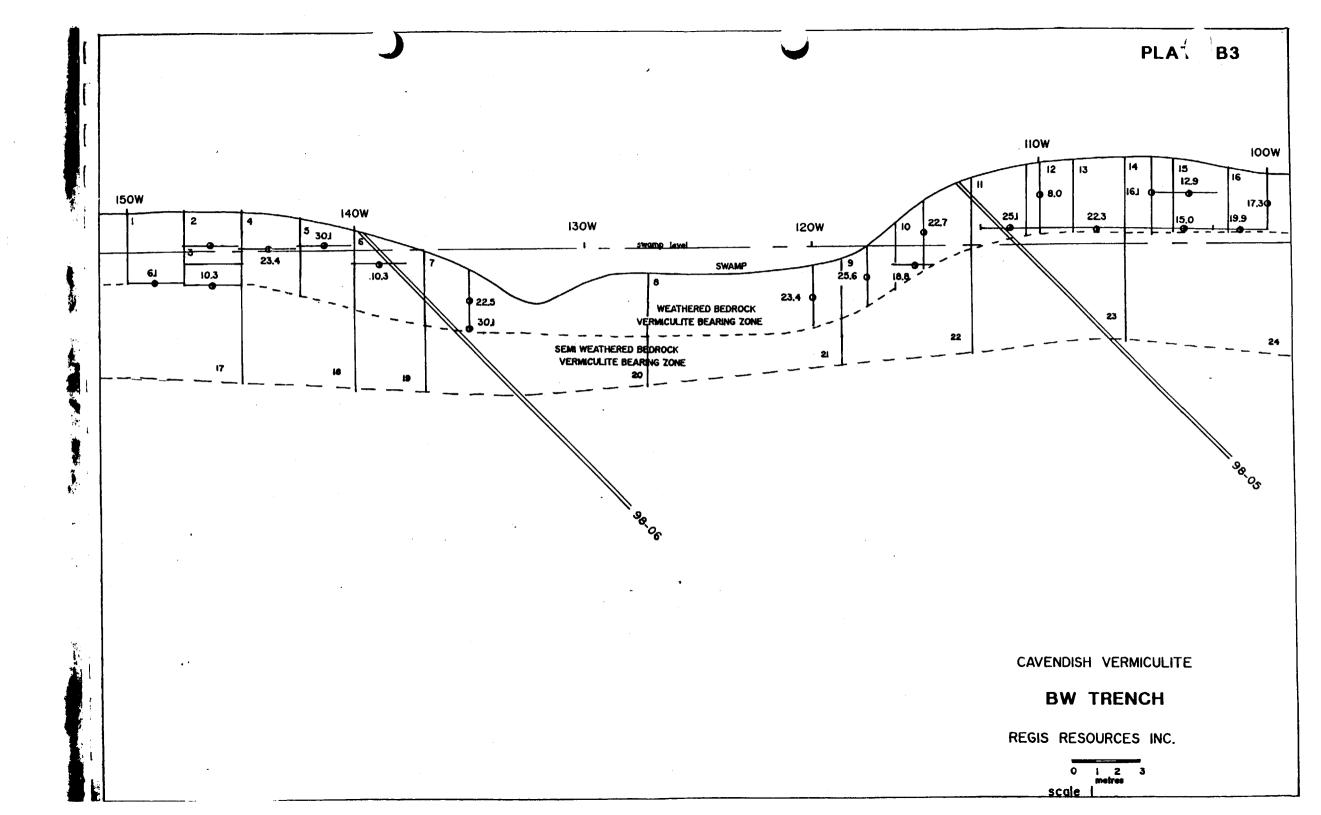


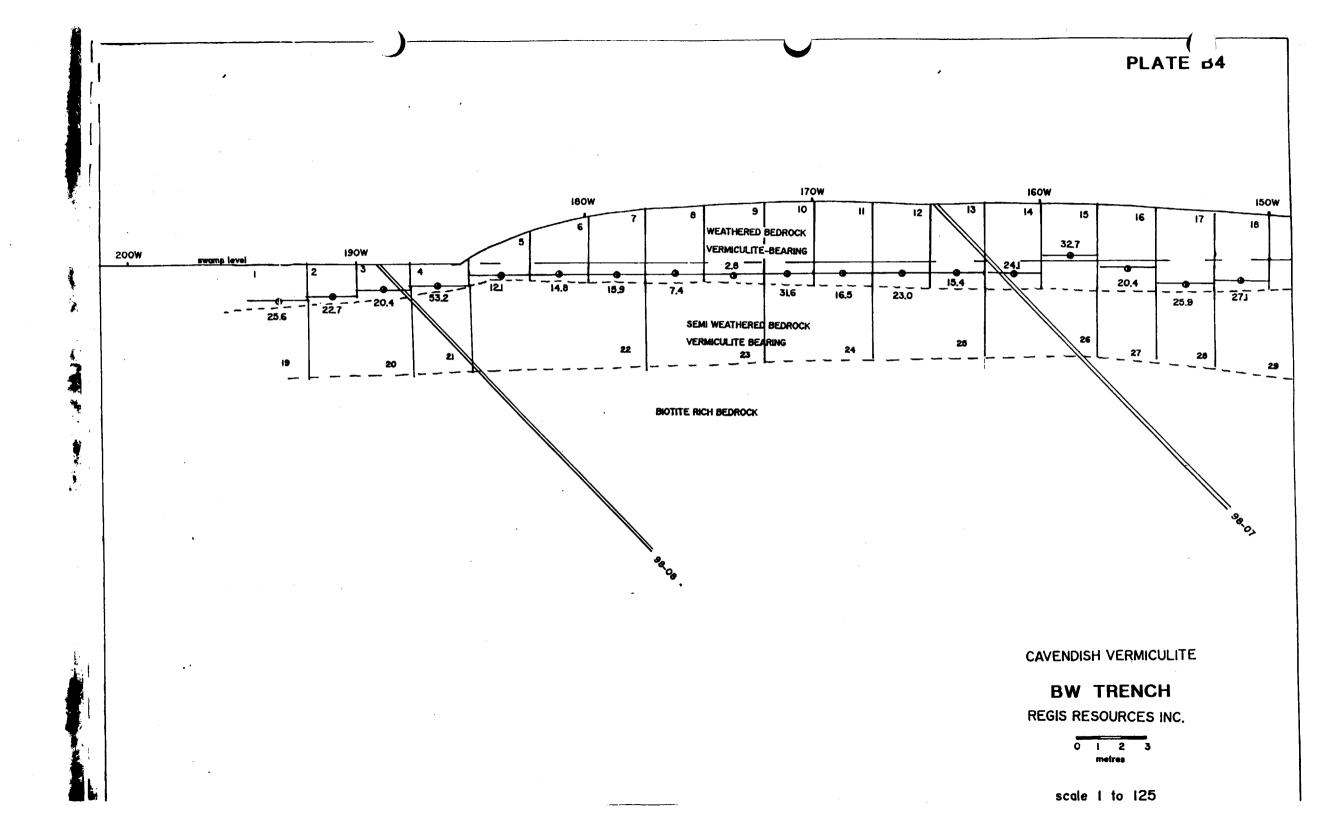


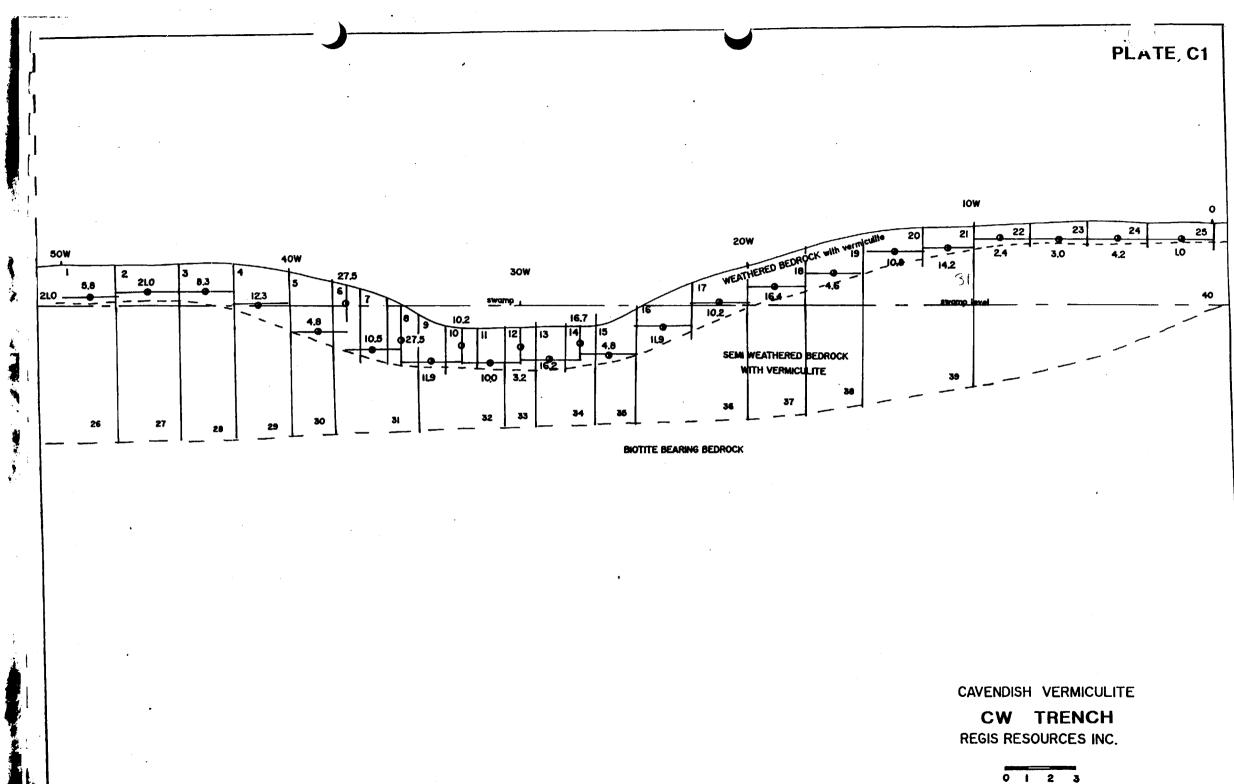


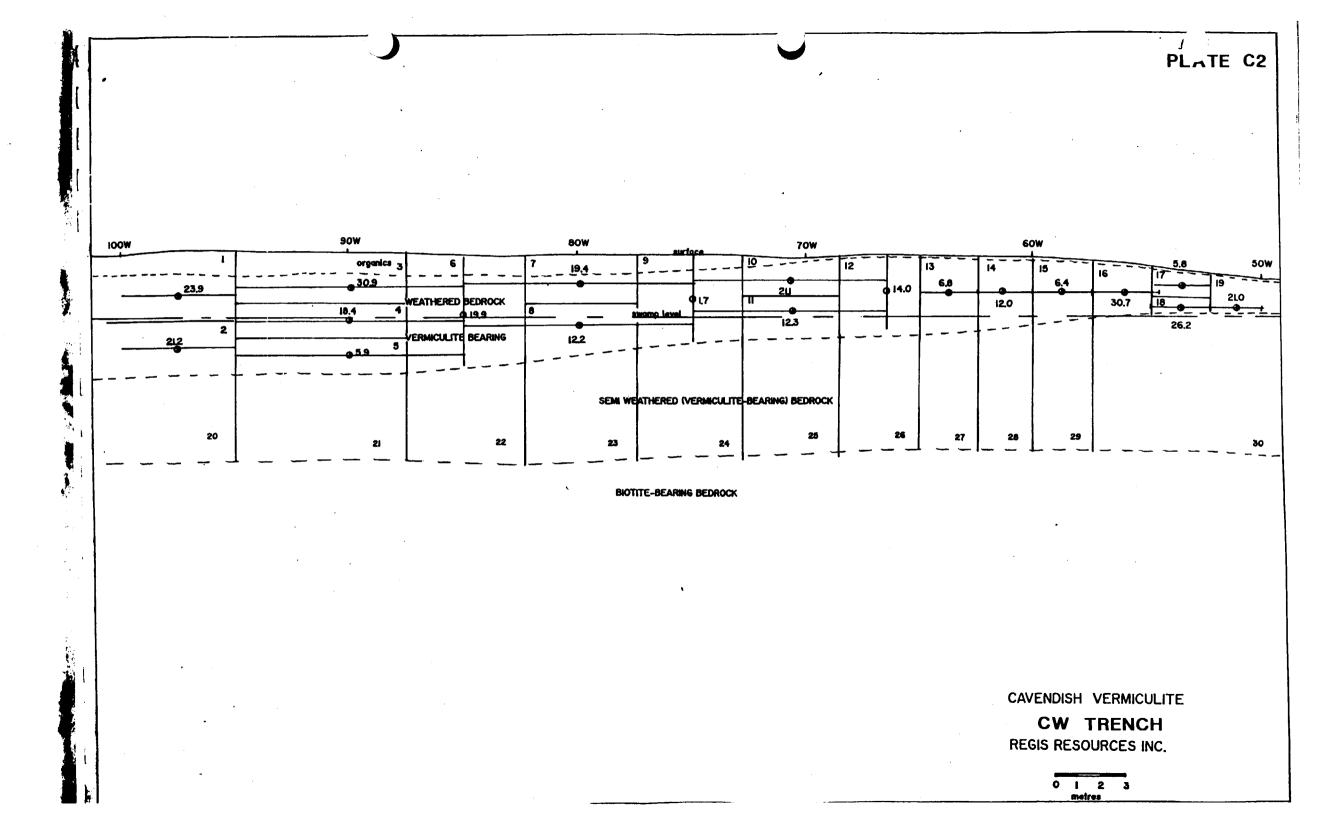


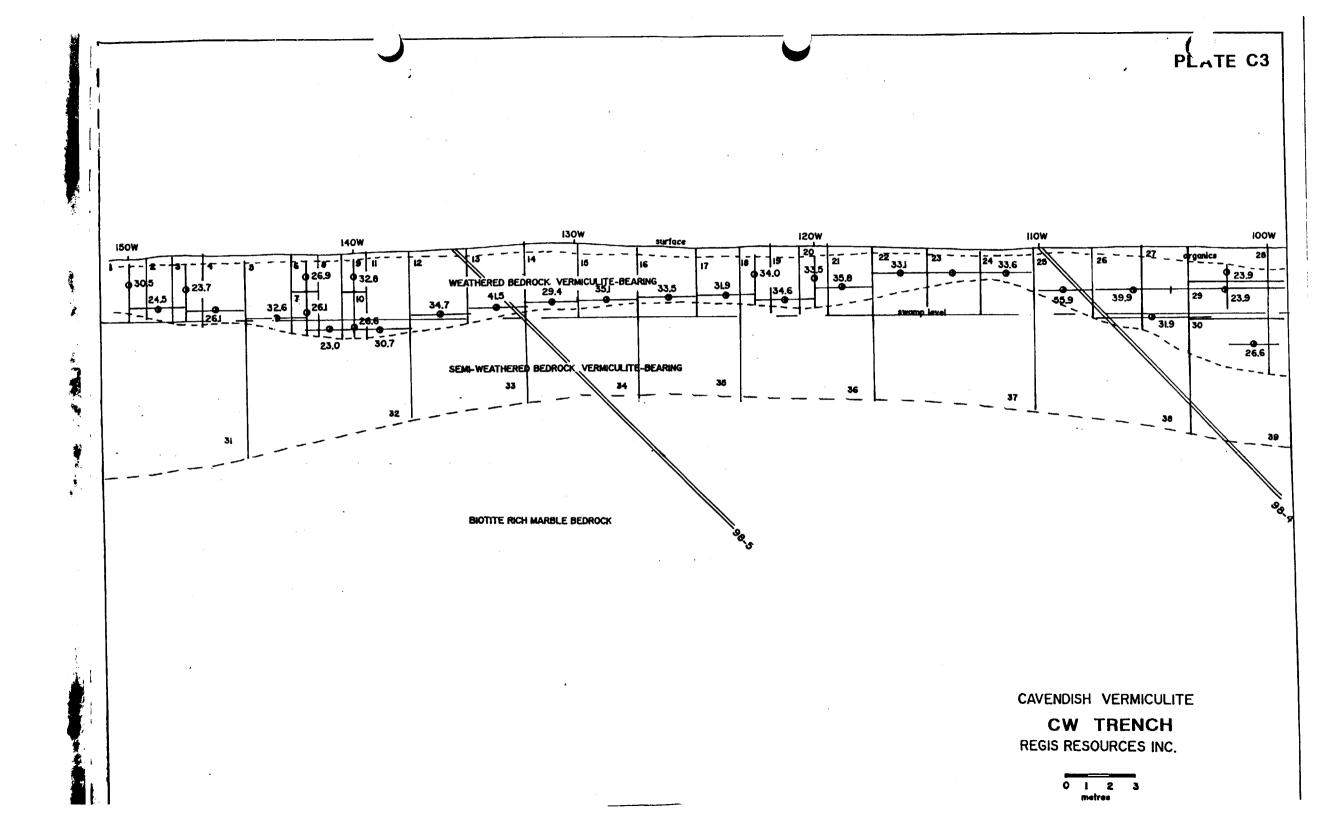




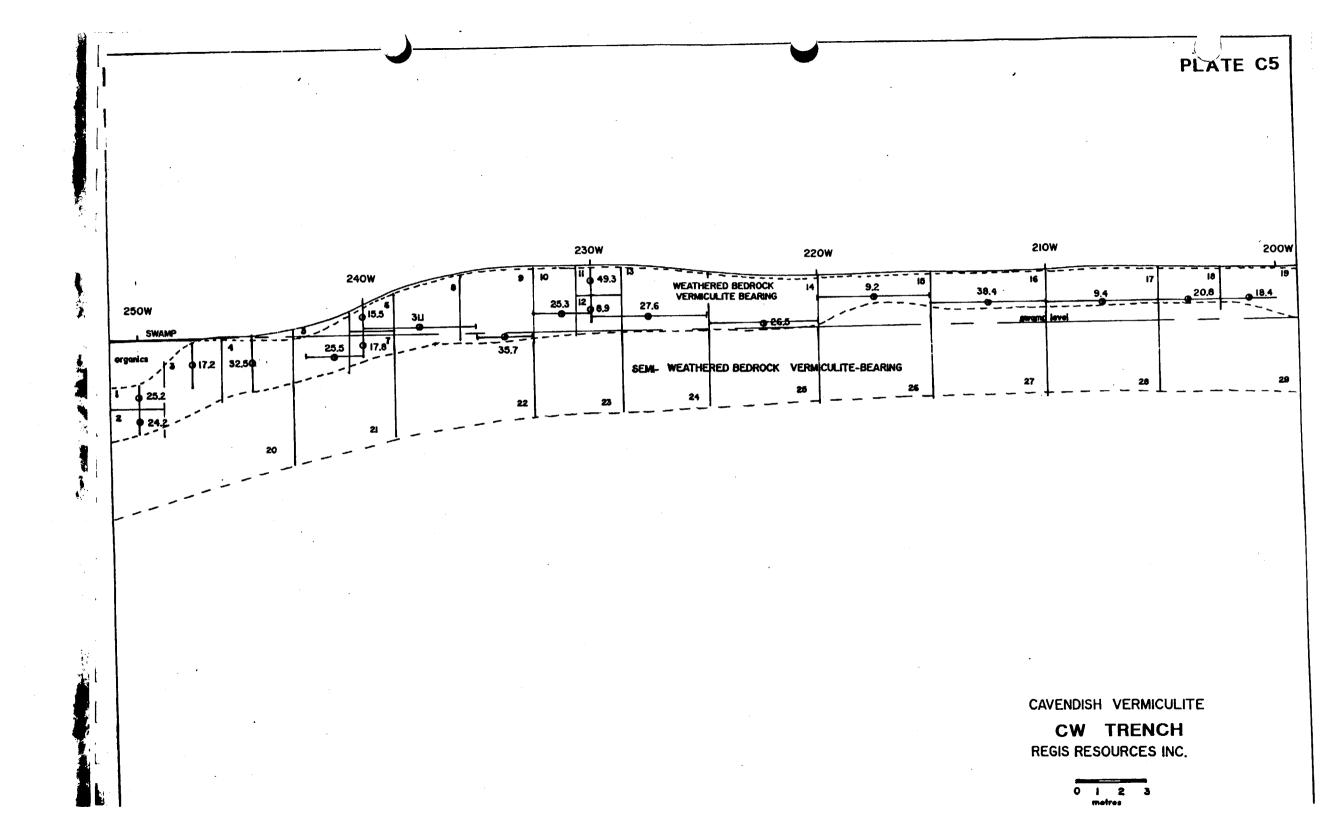


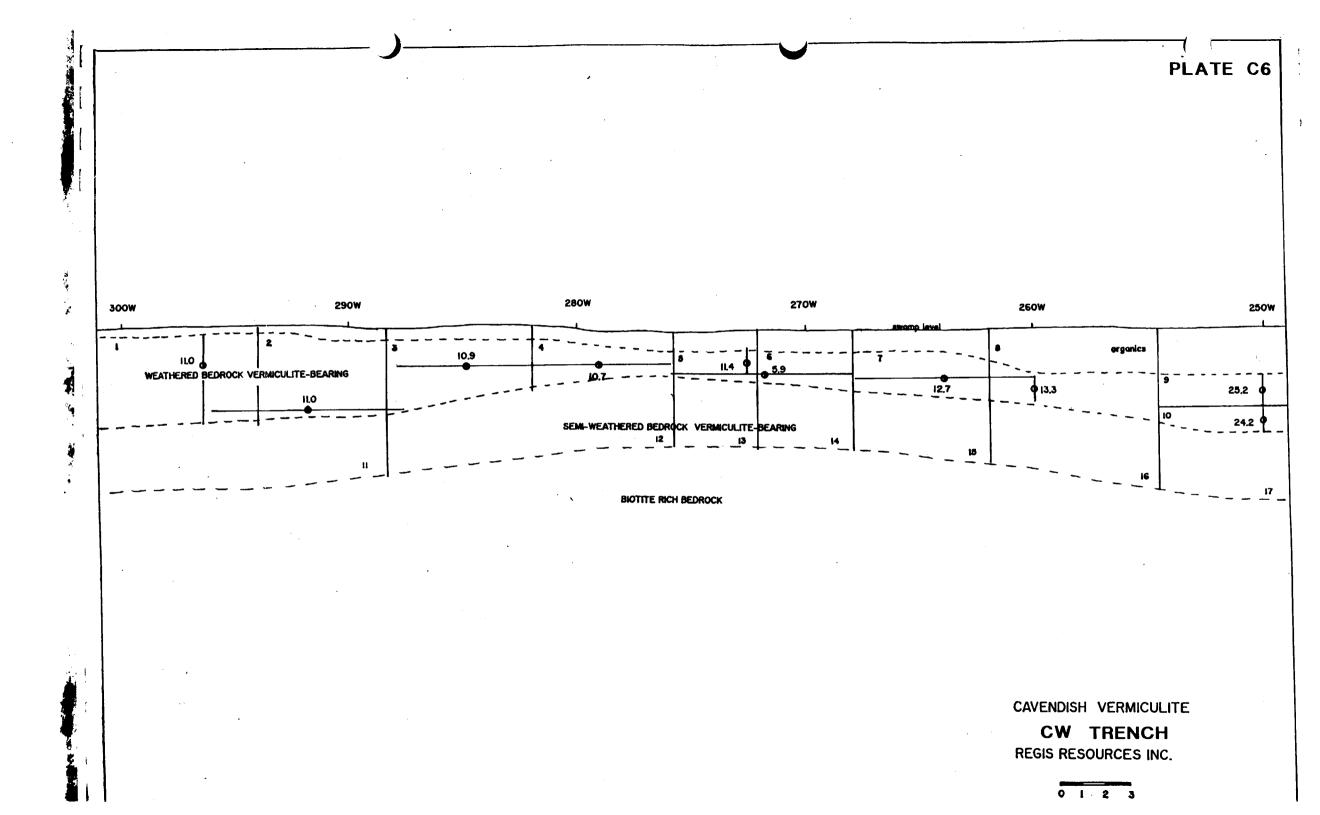


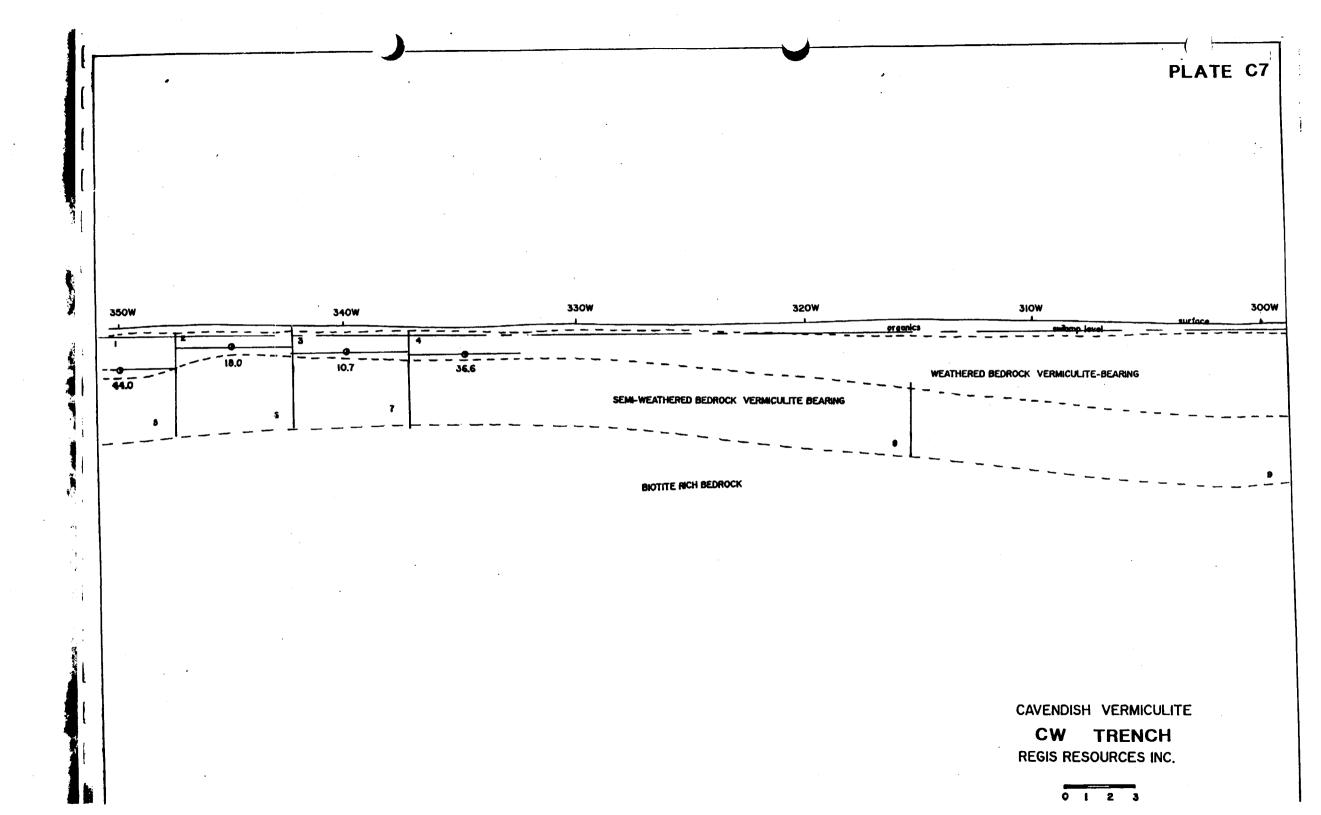


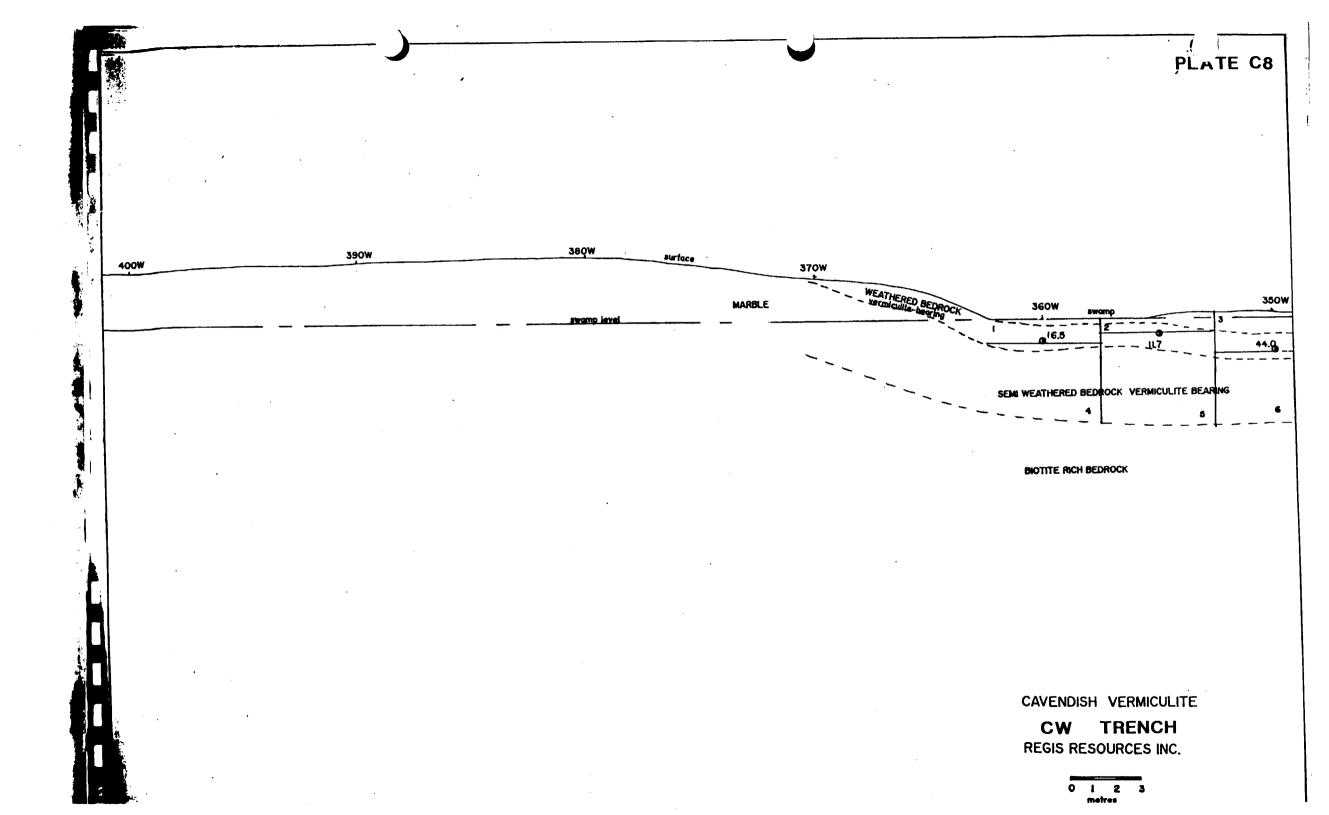


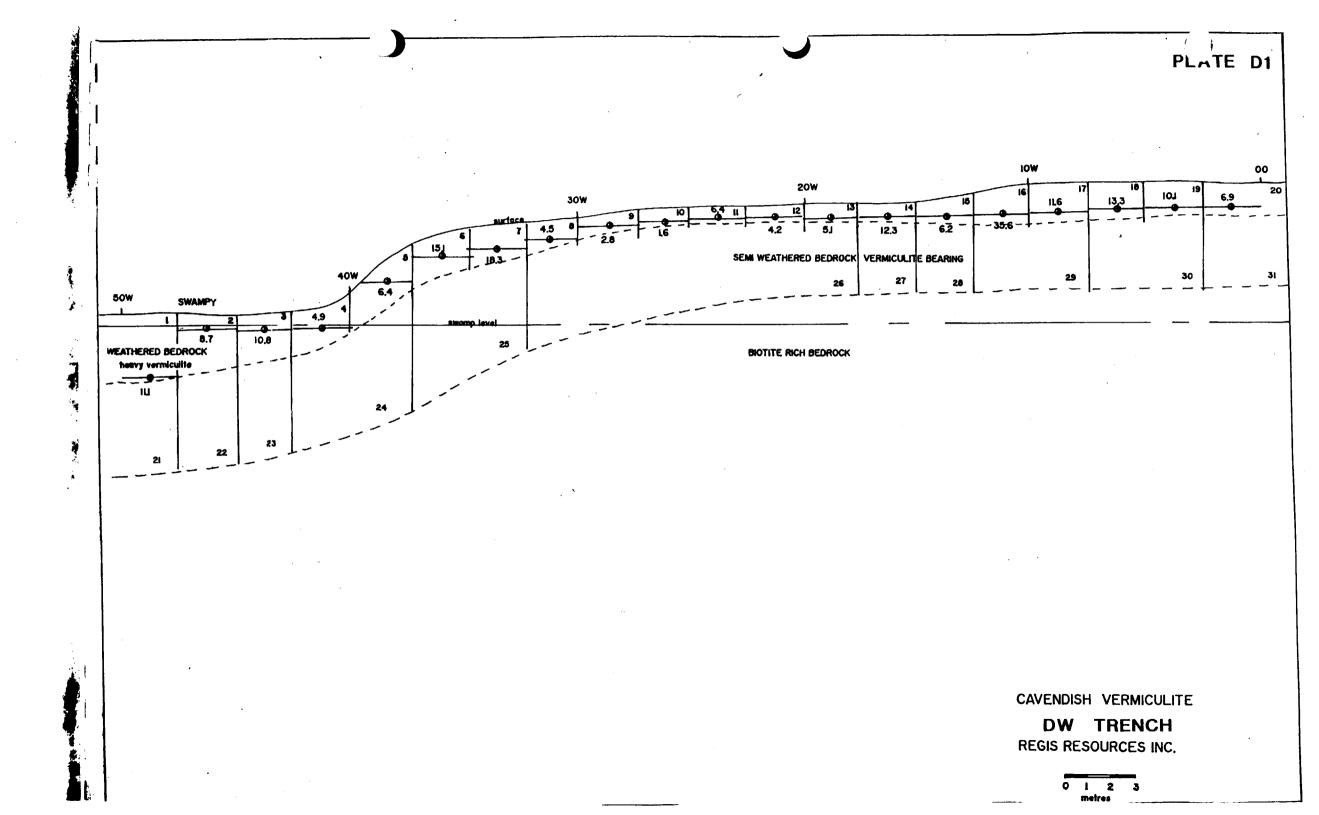


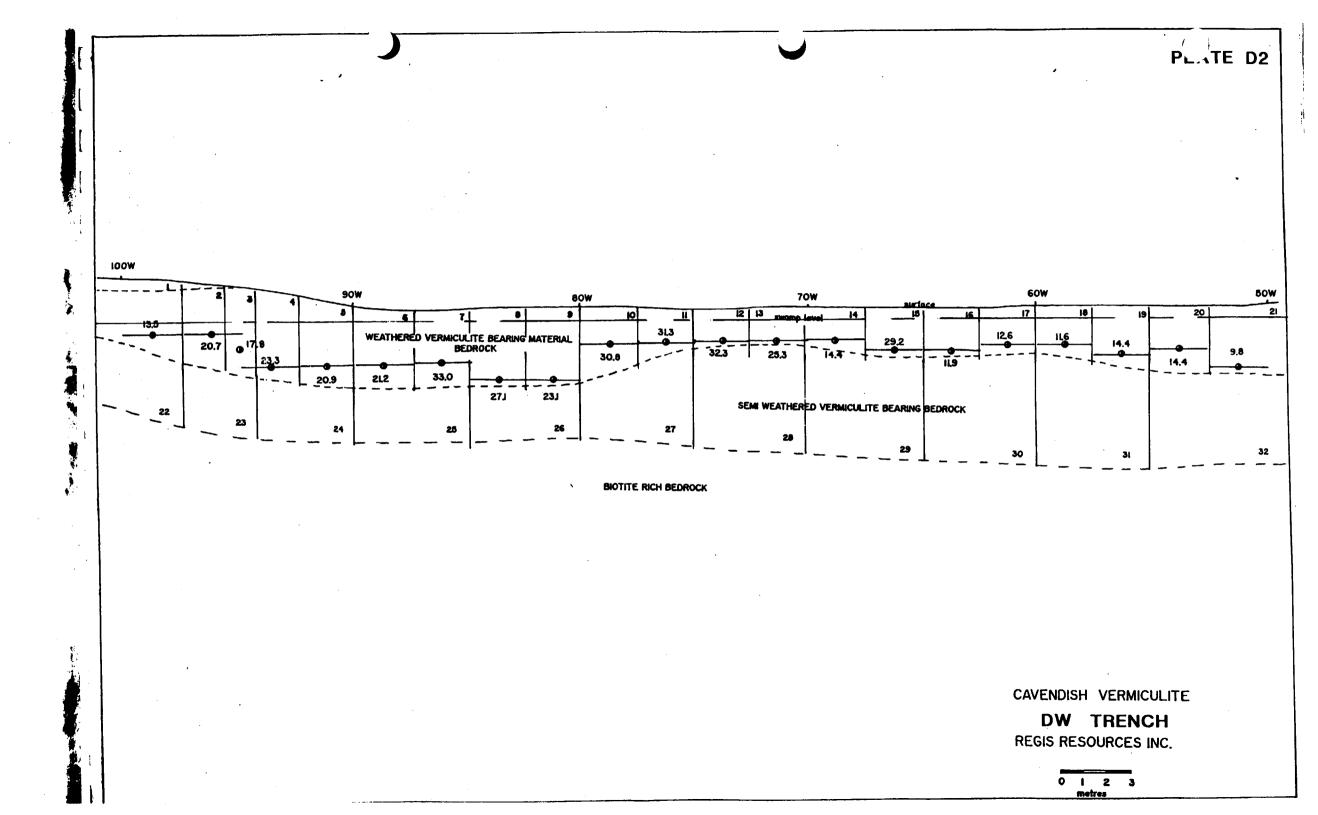


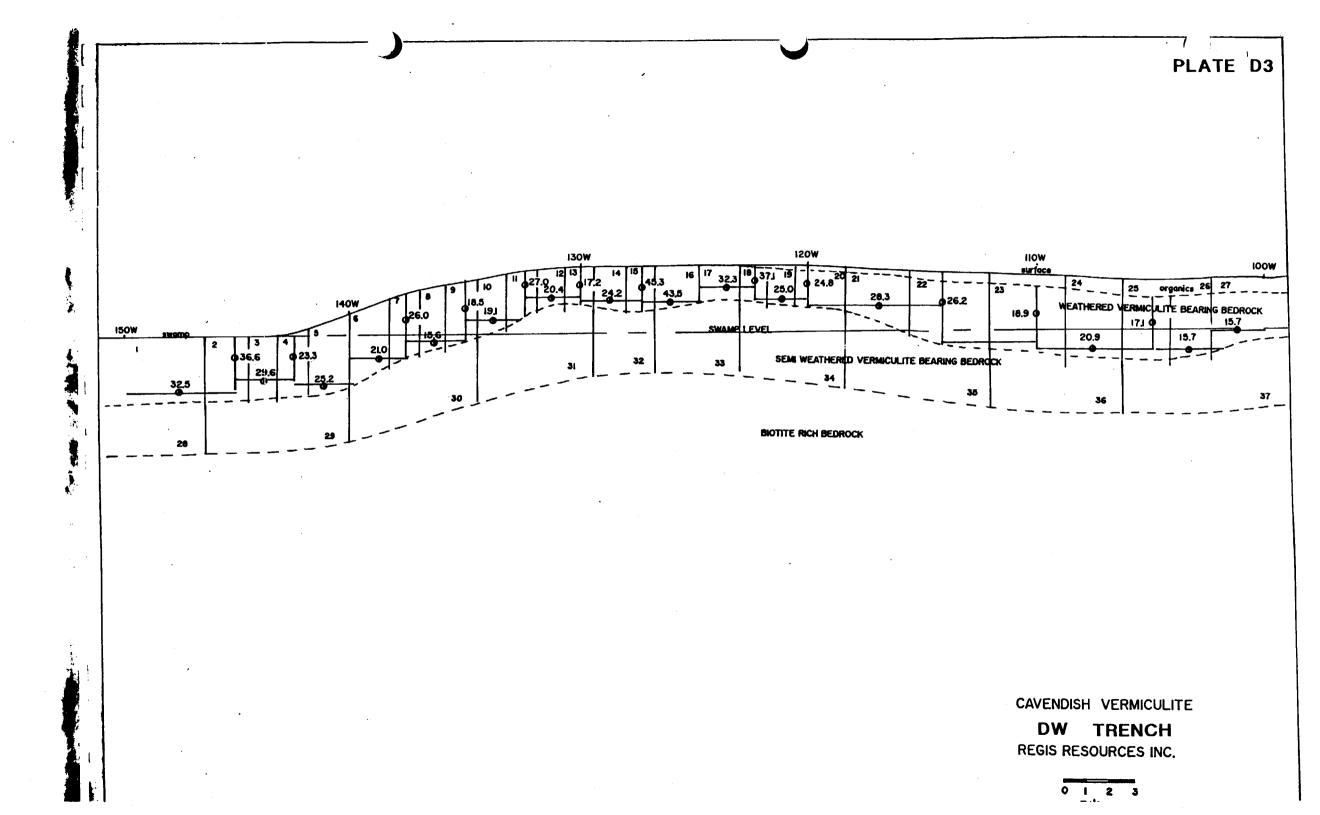

metres

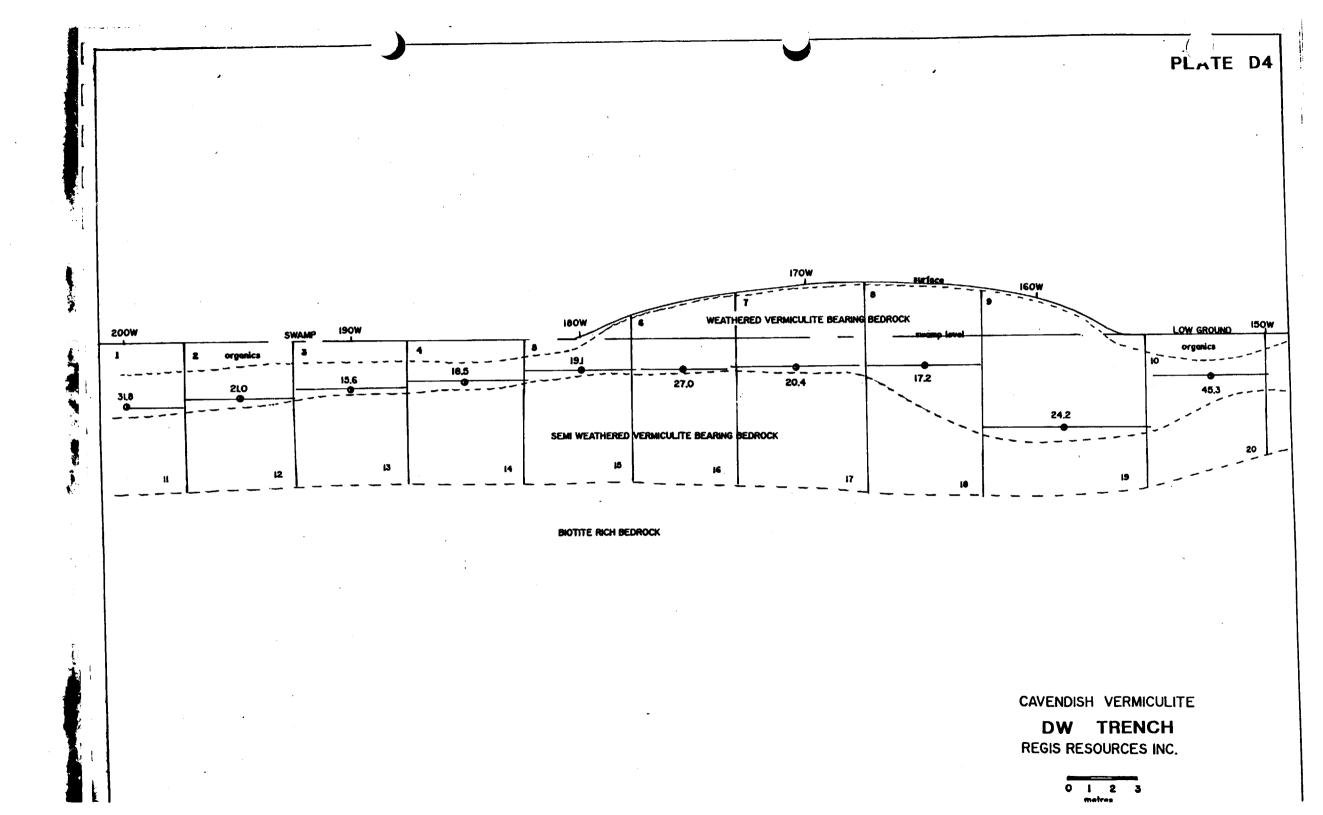


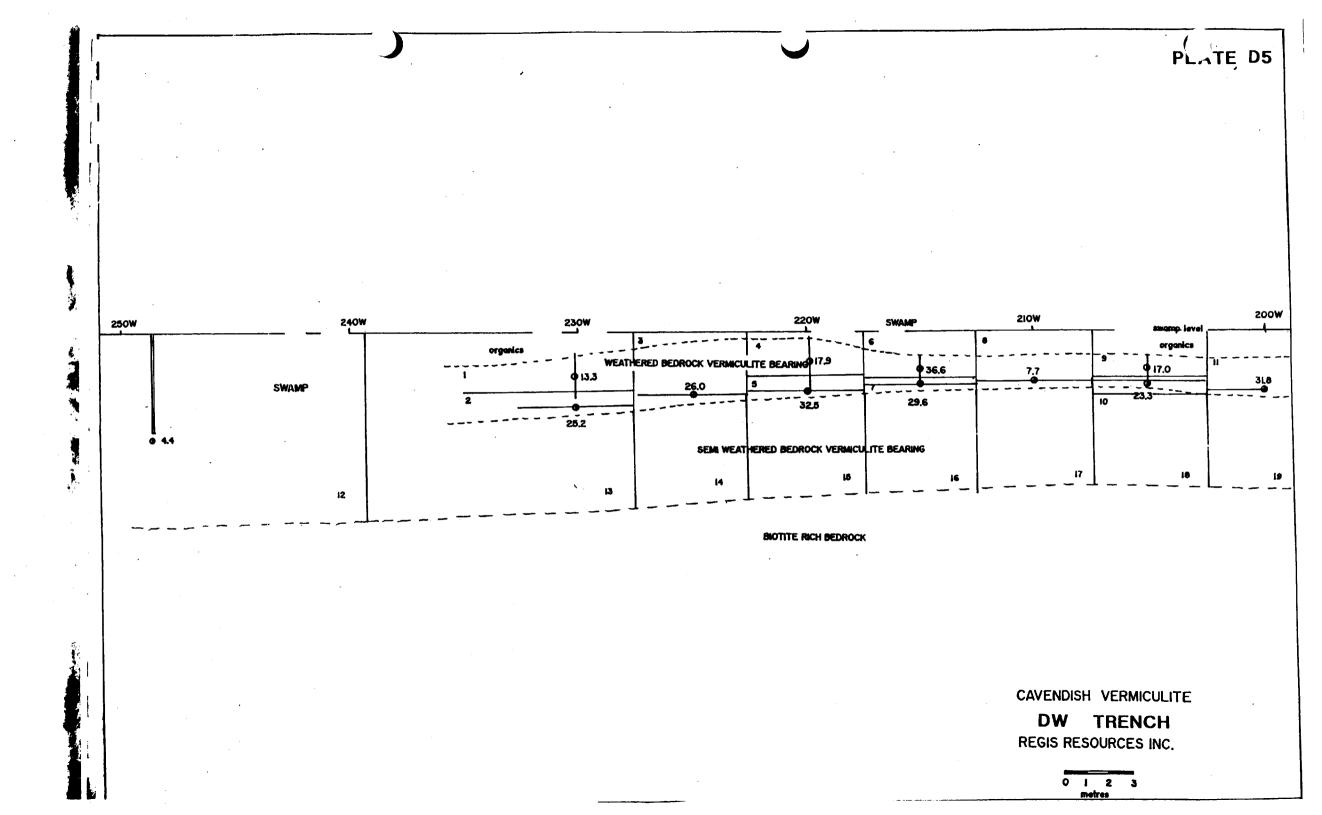


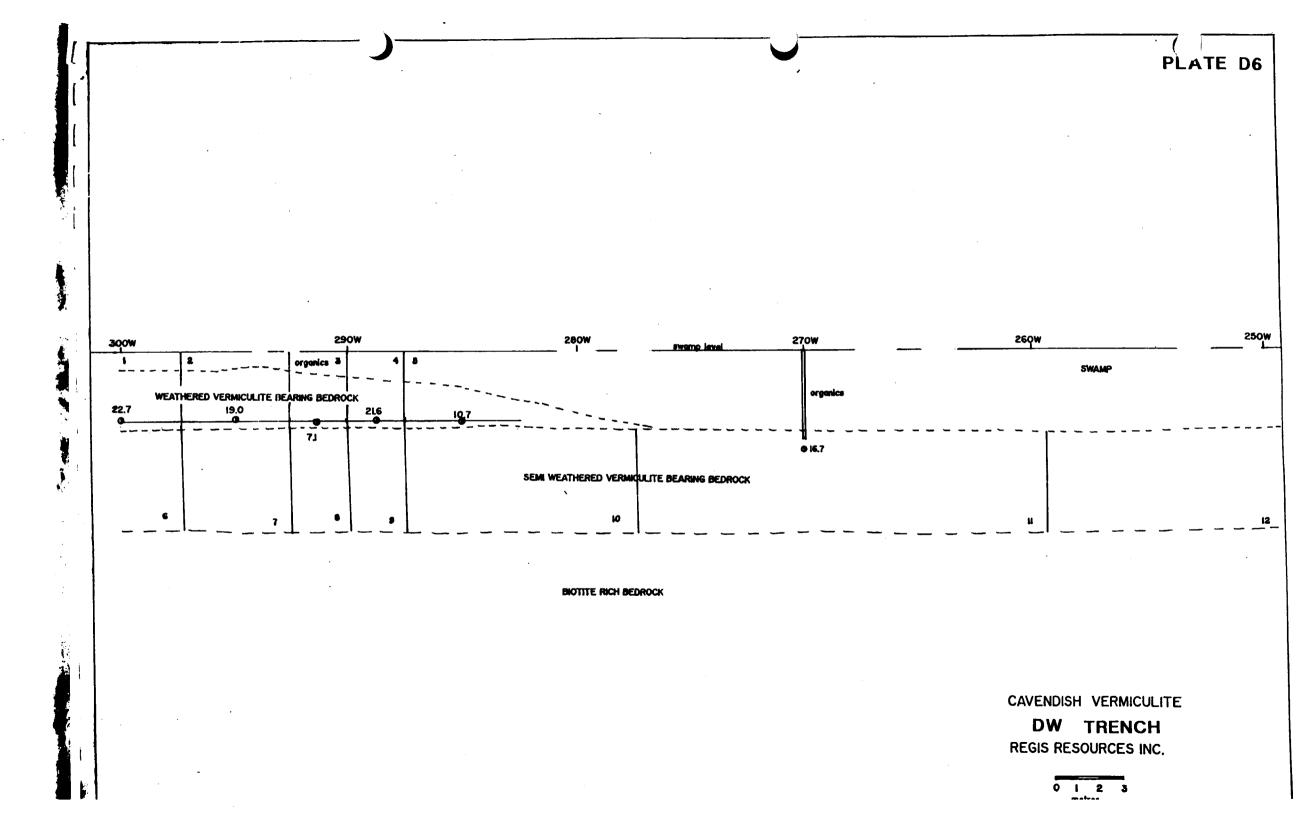


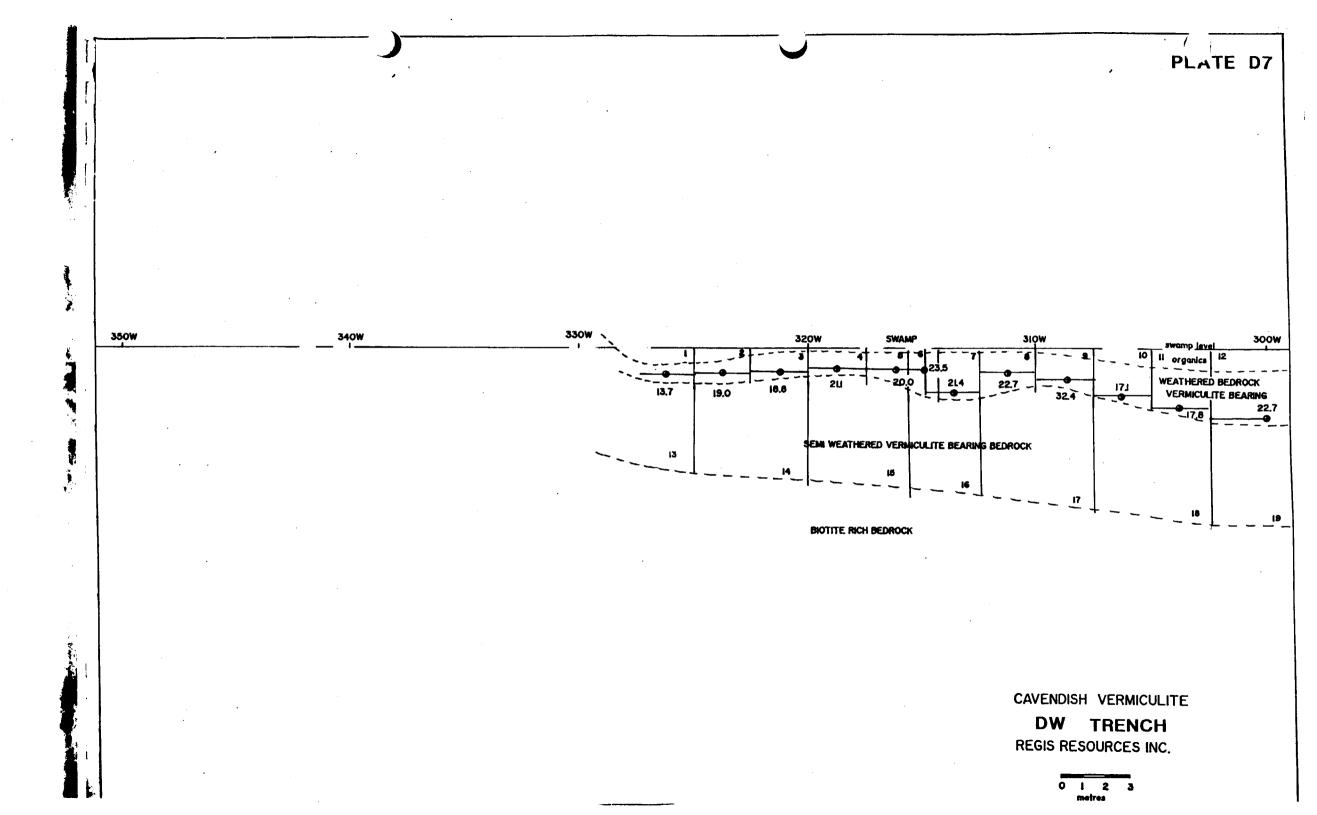


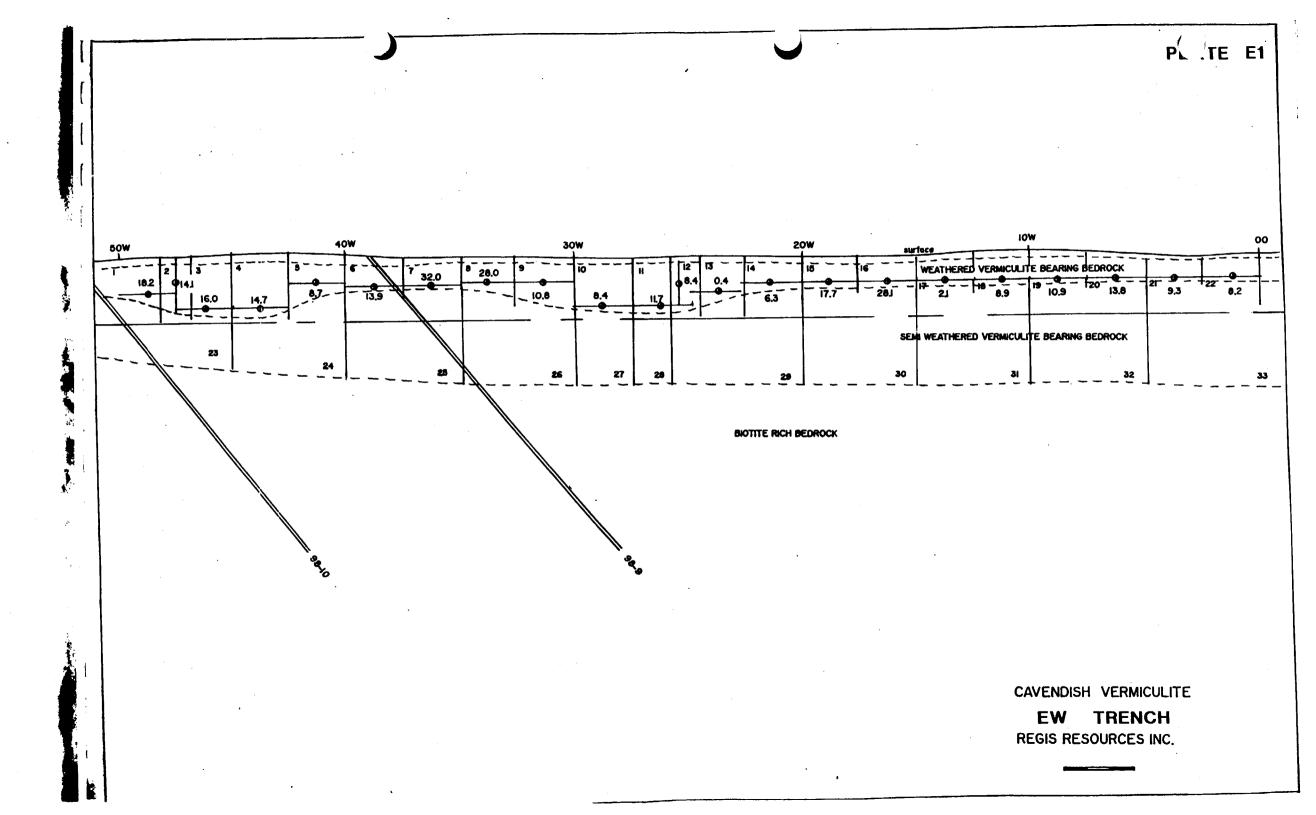


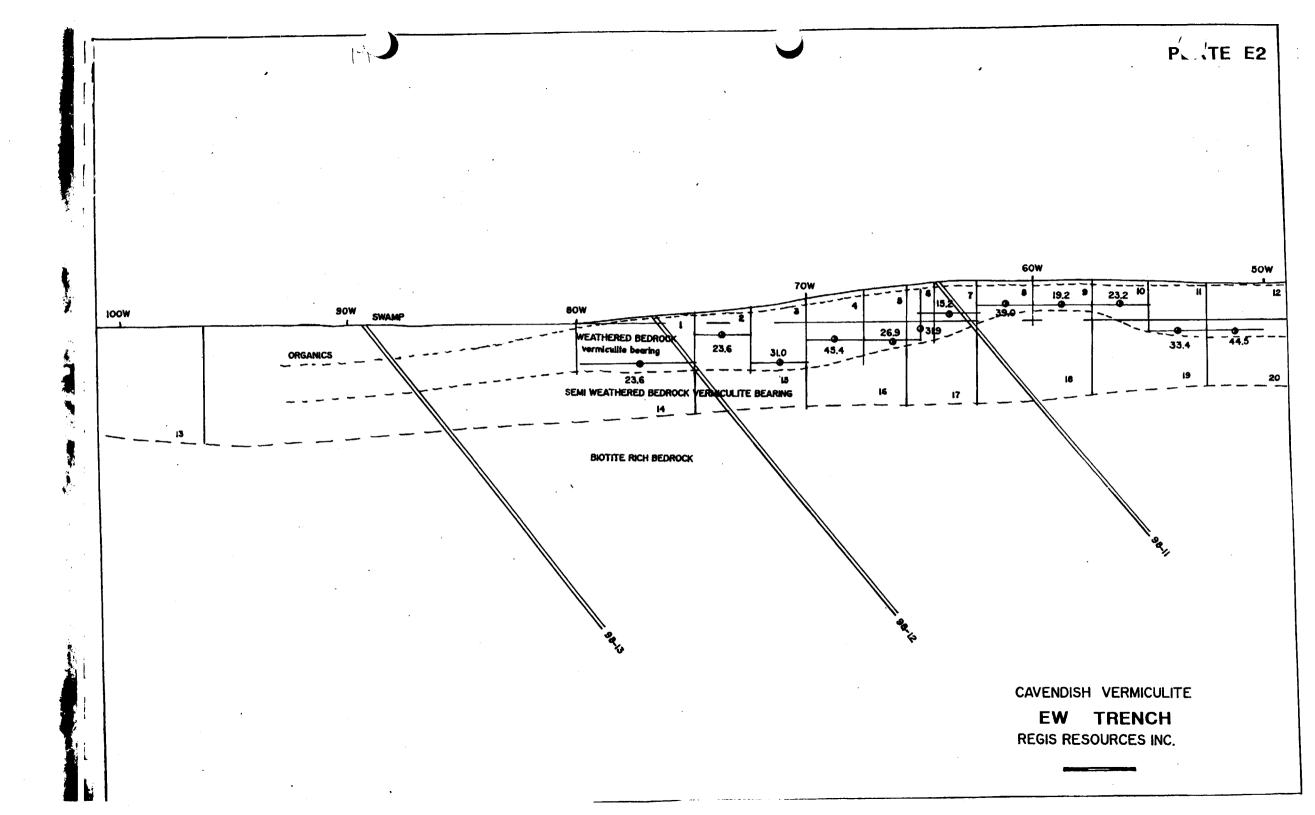


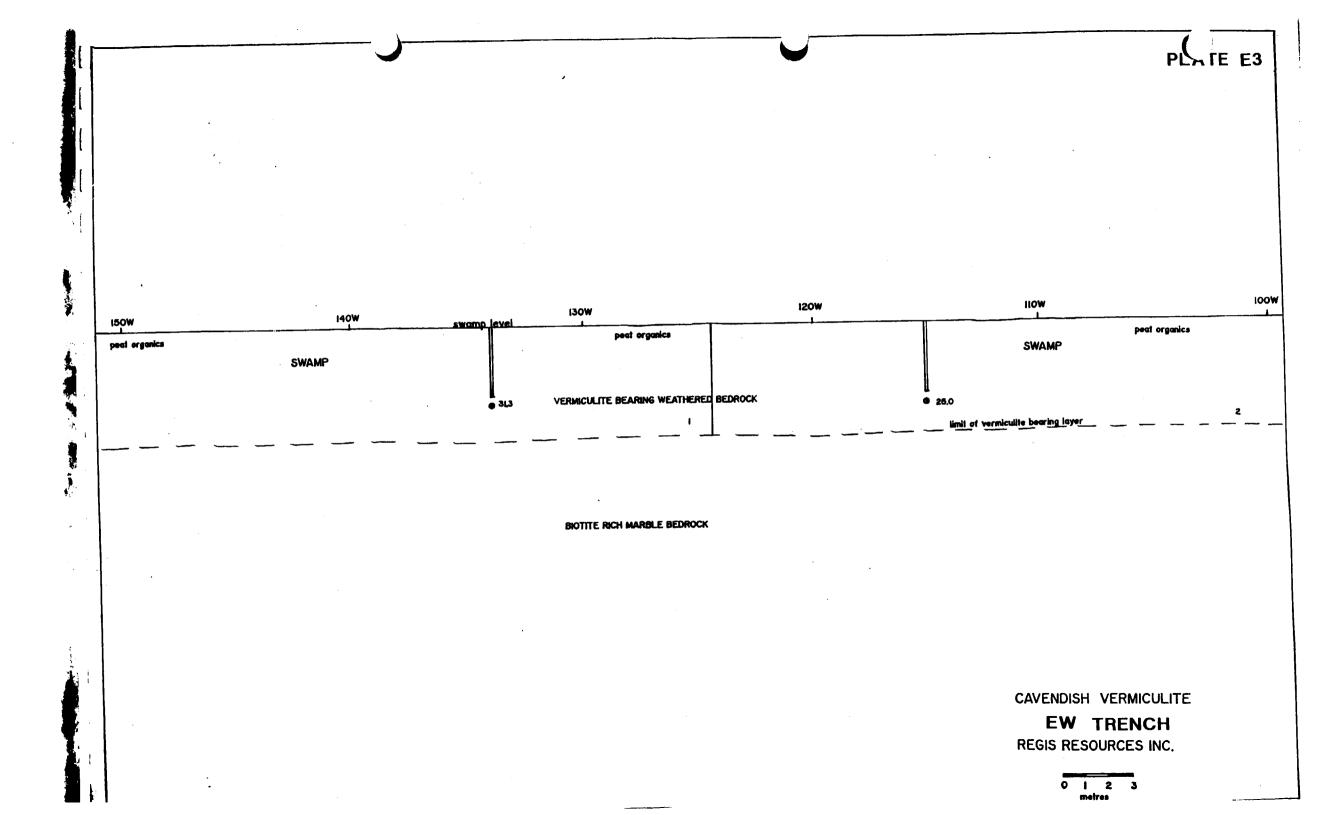


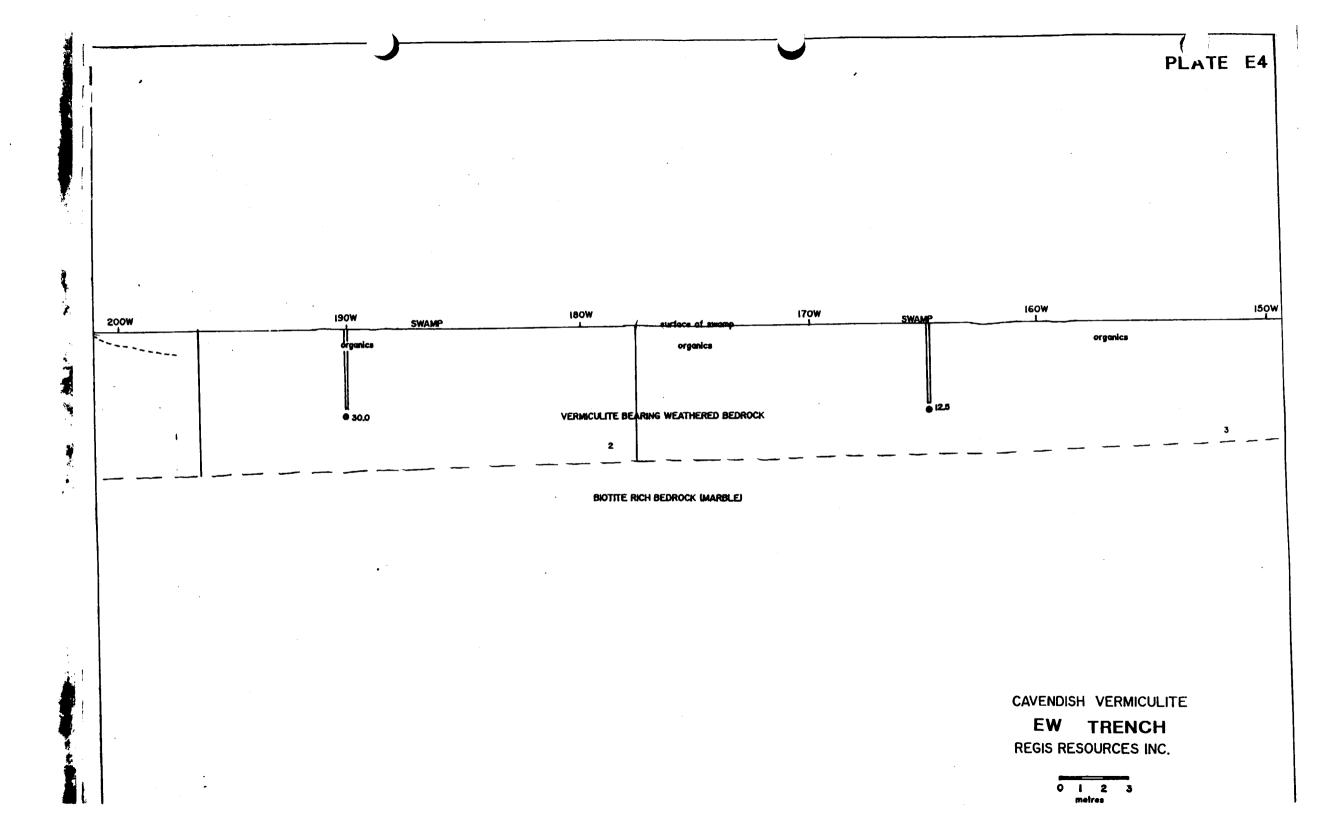




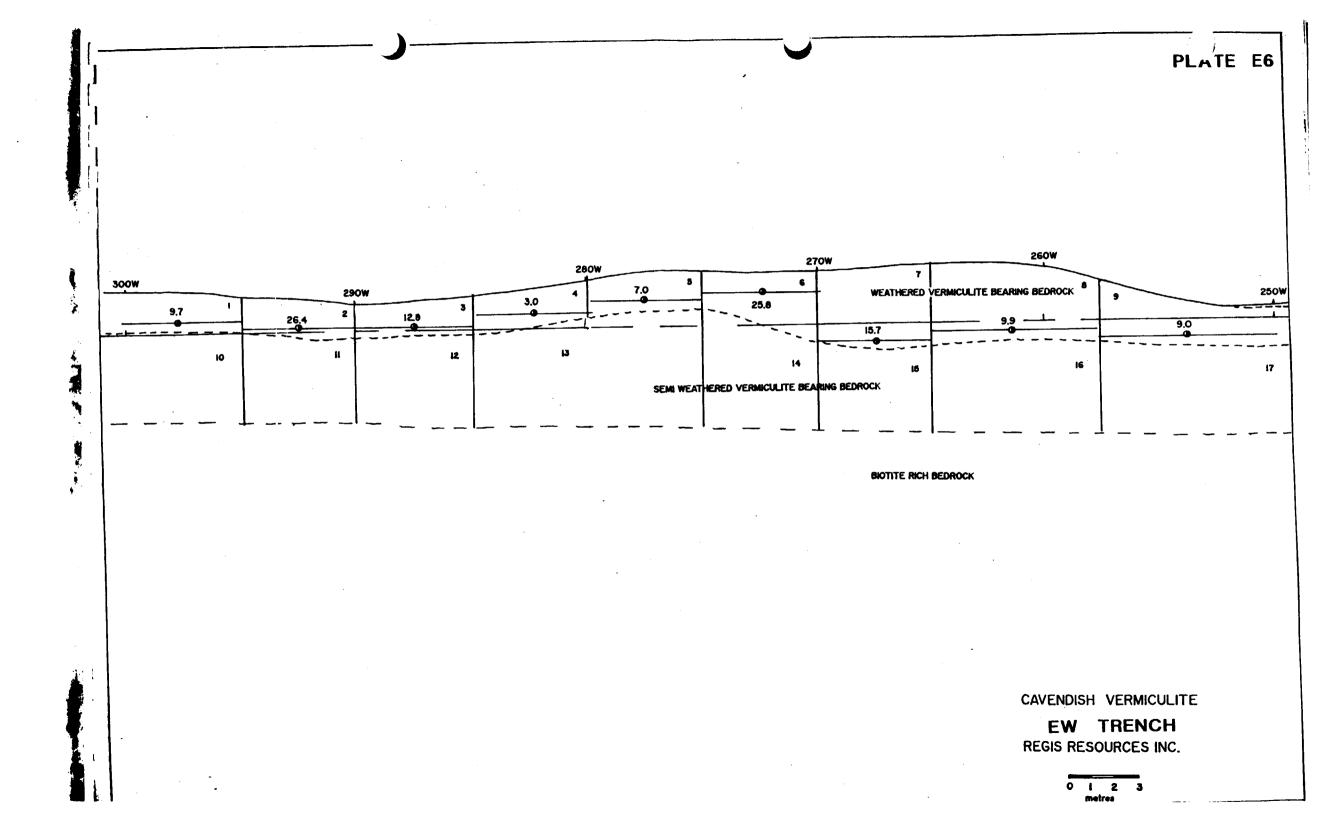


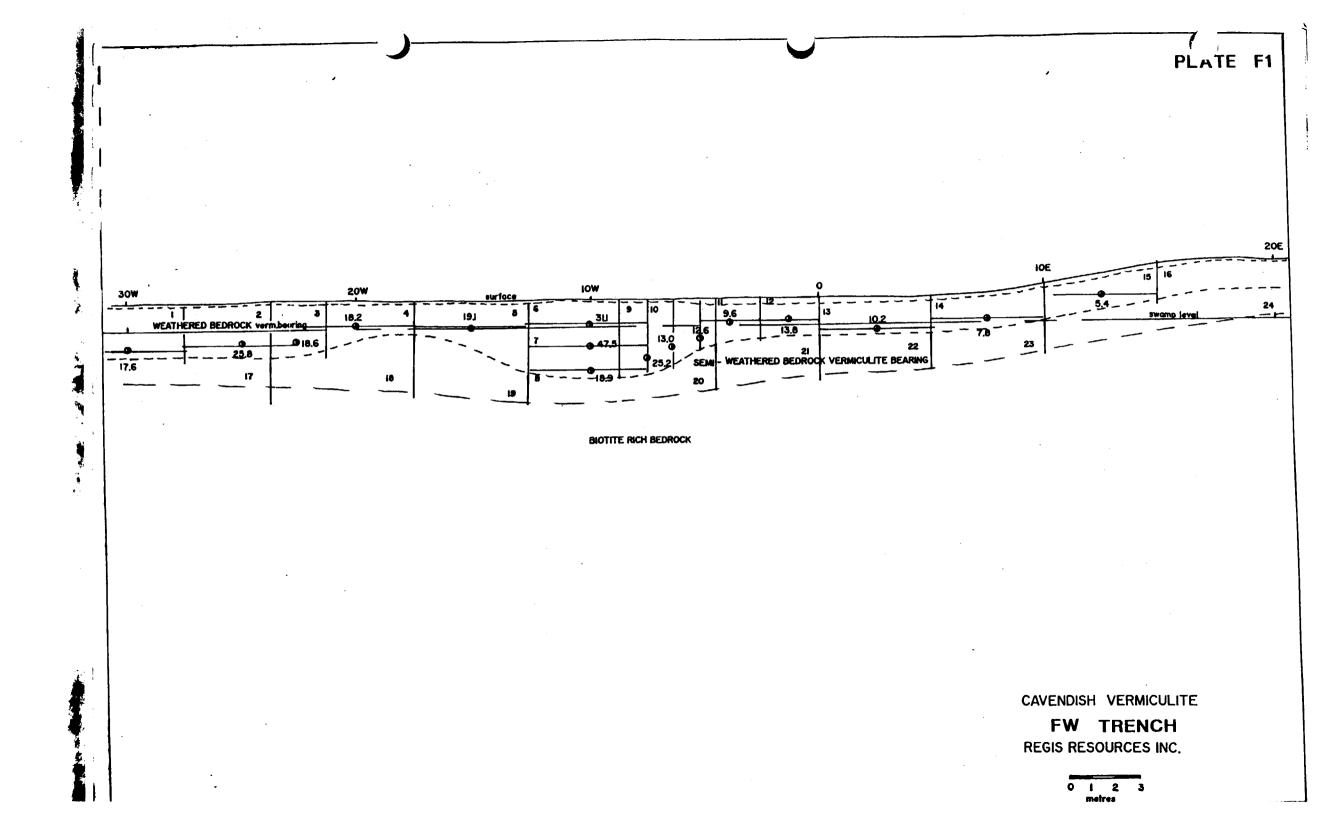


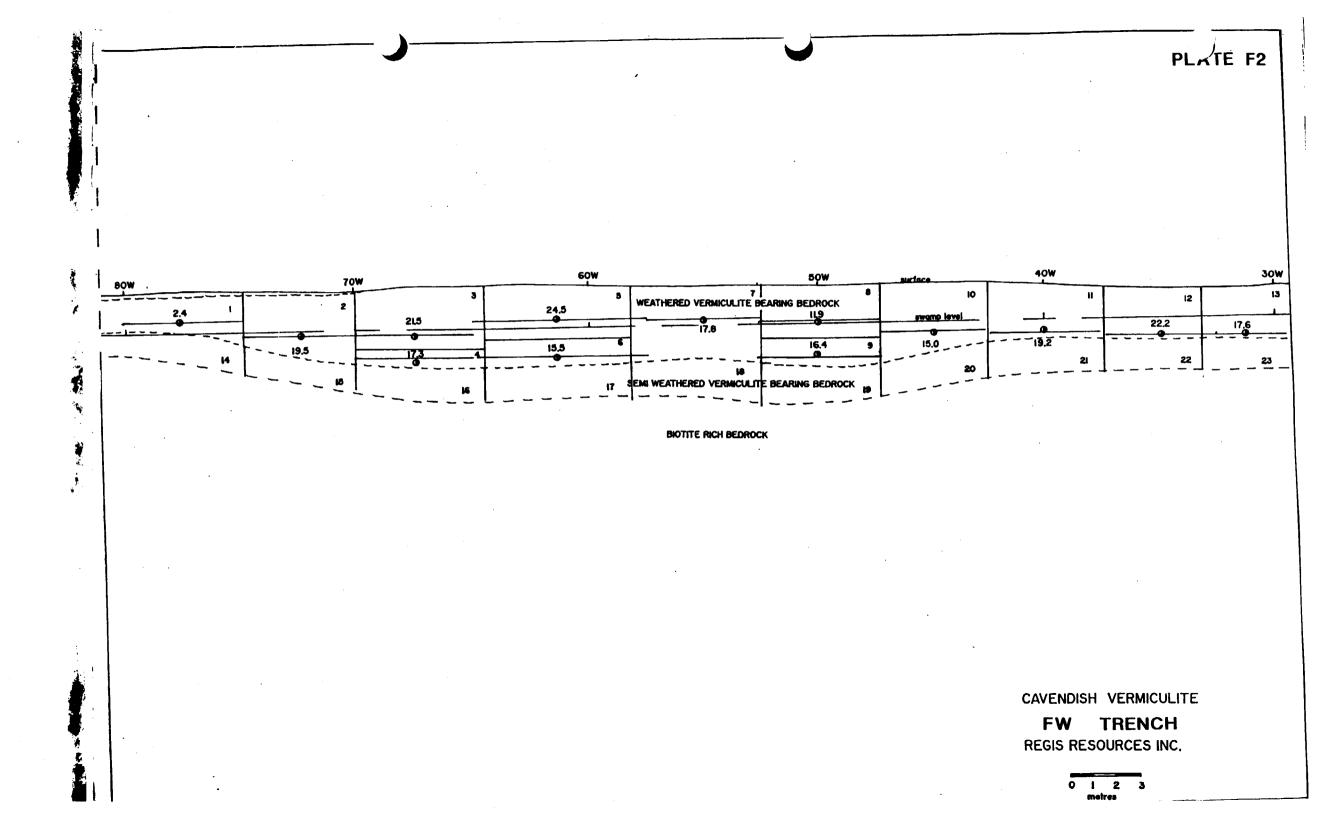


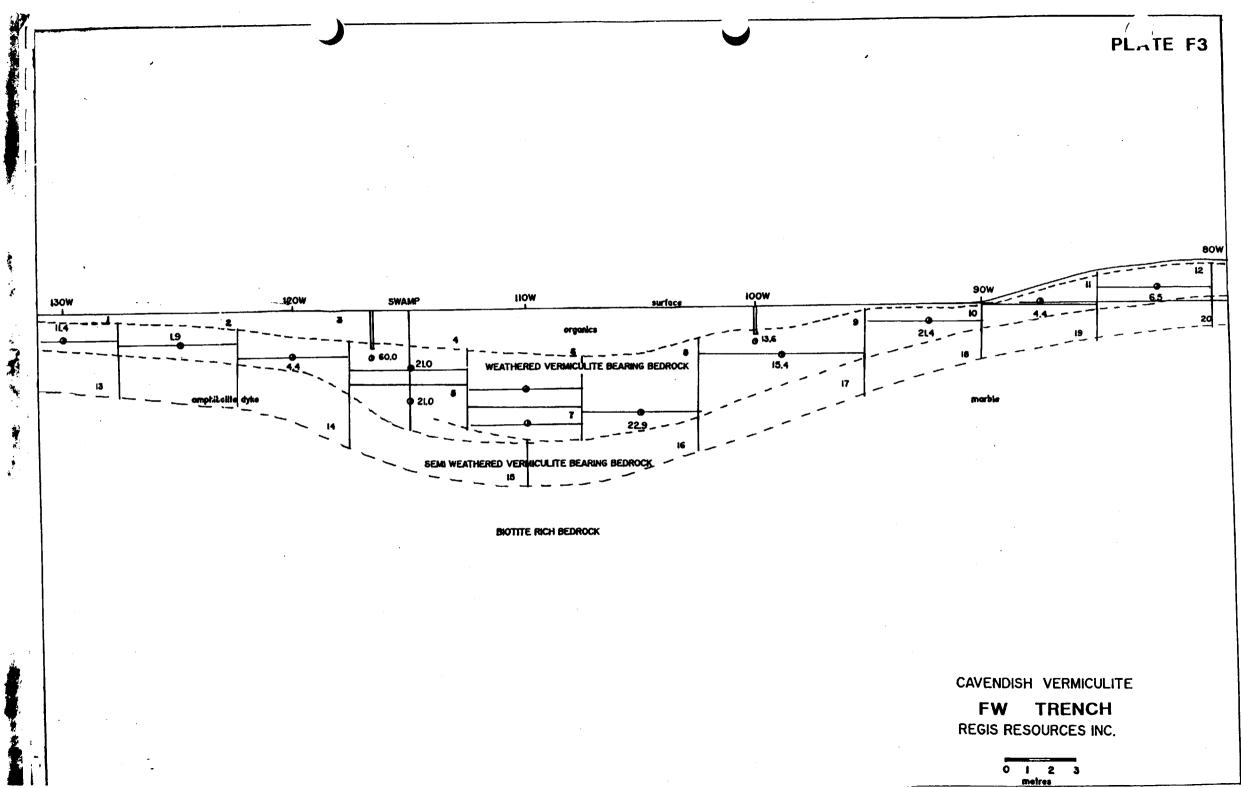


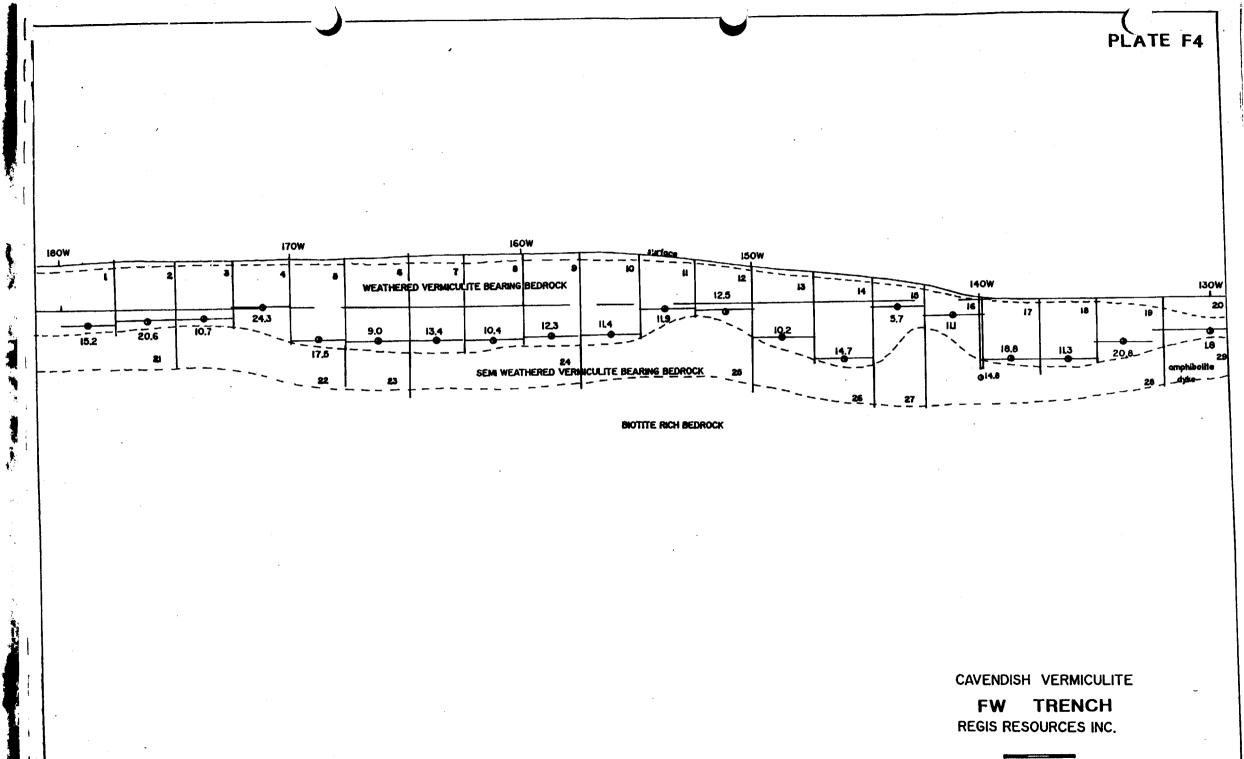


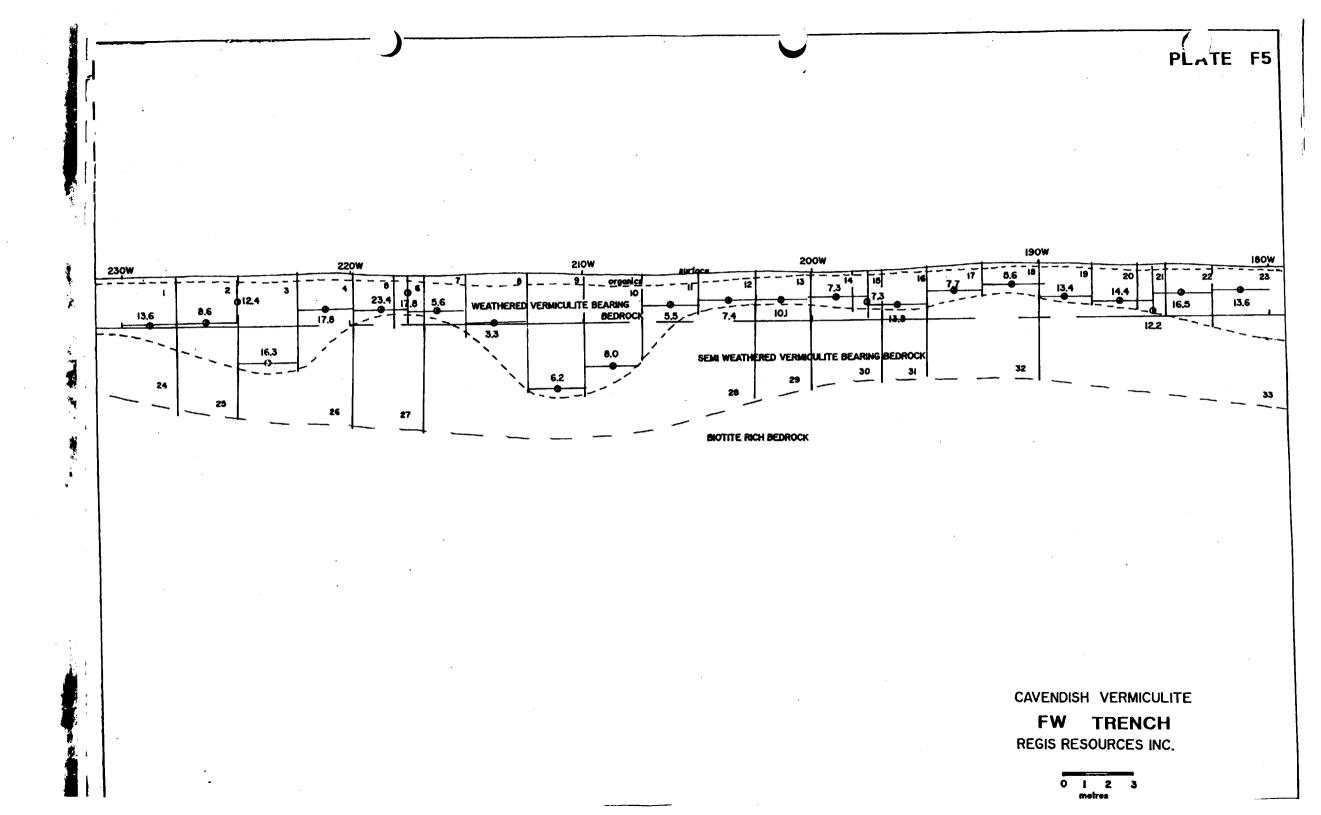


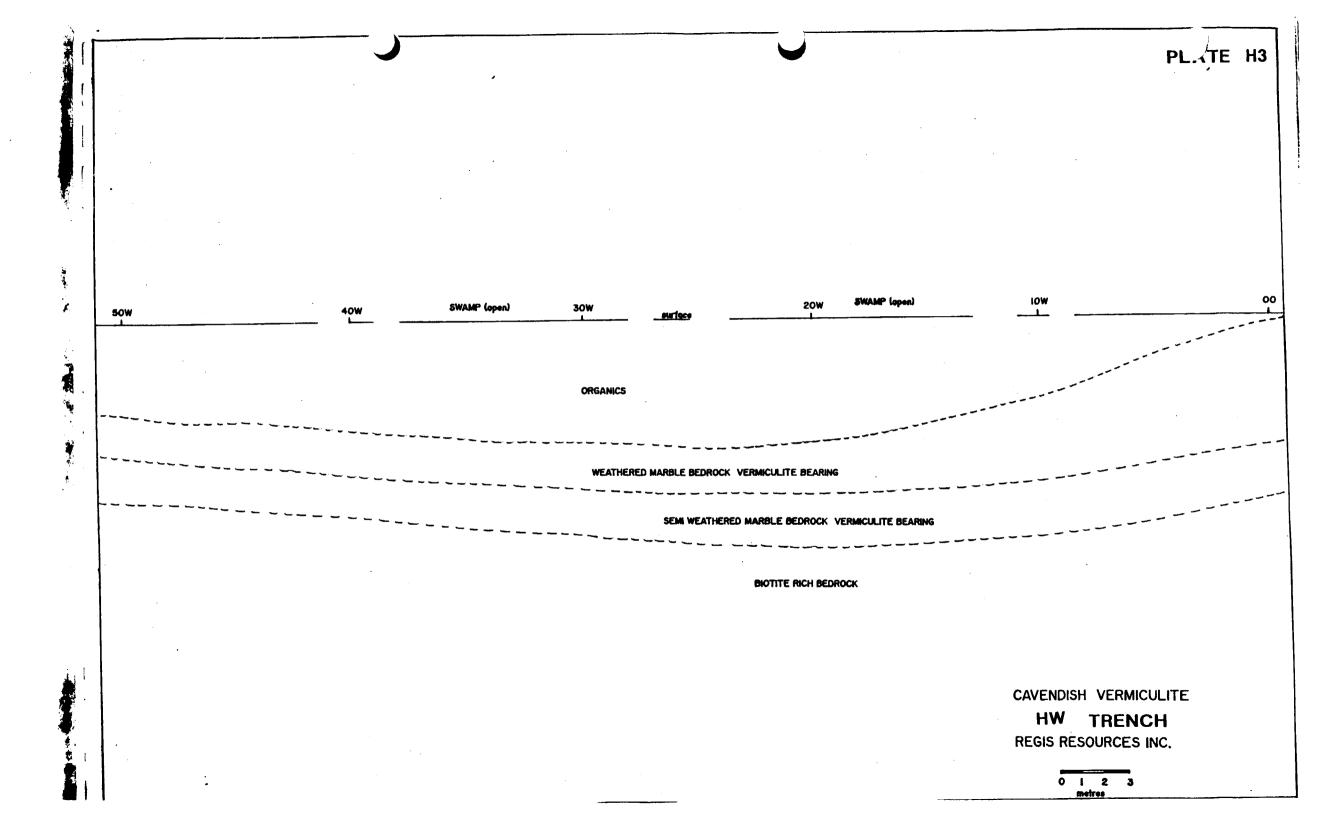


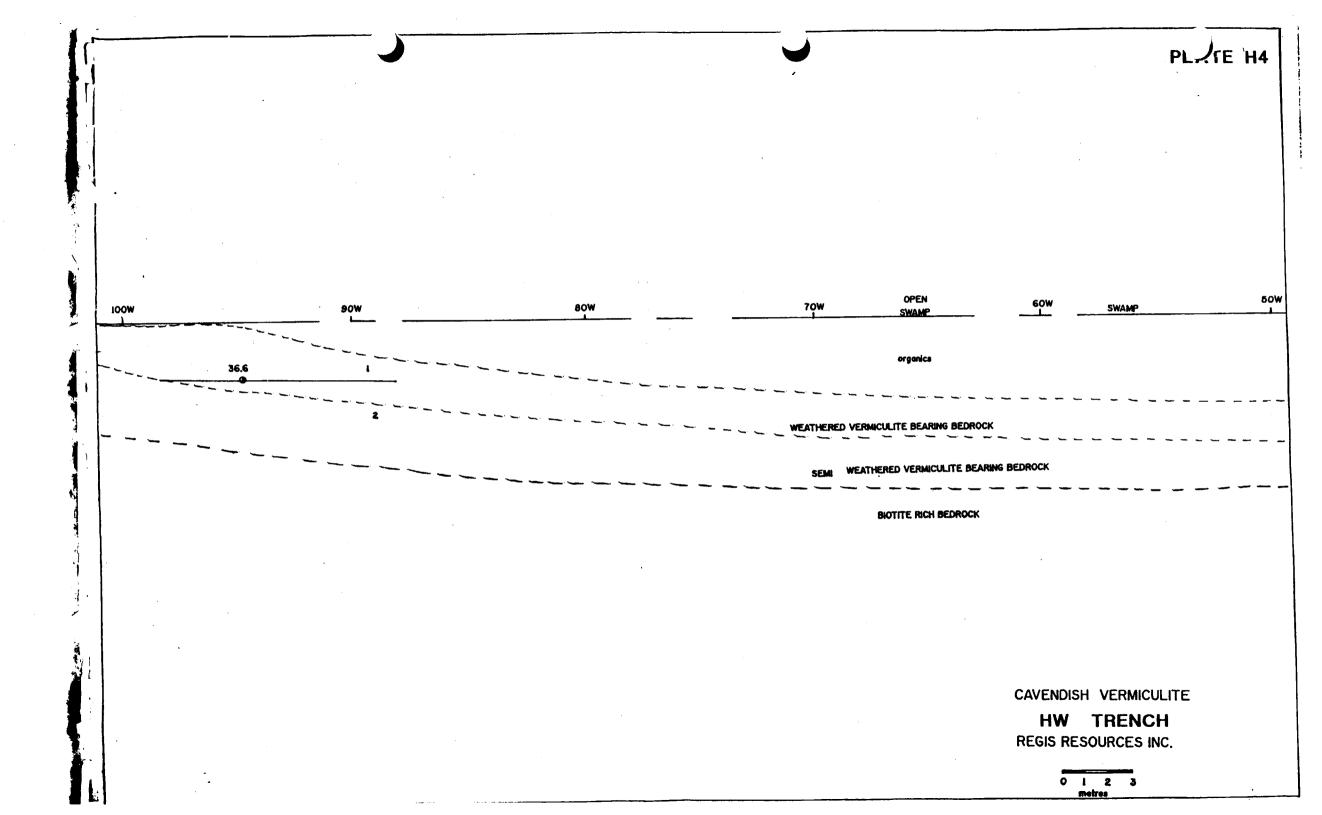


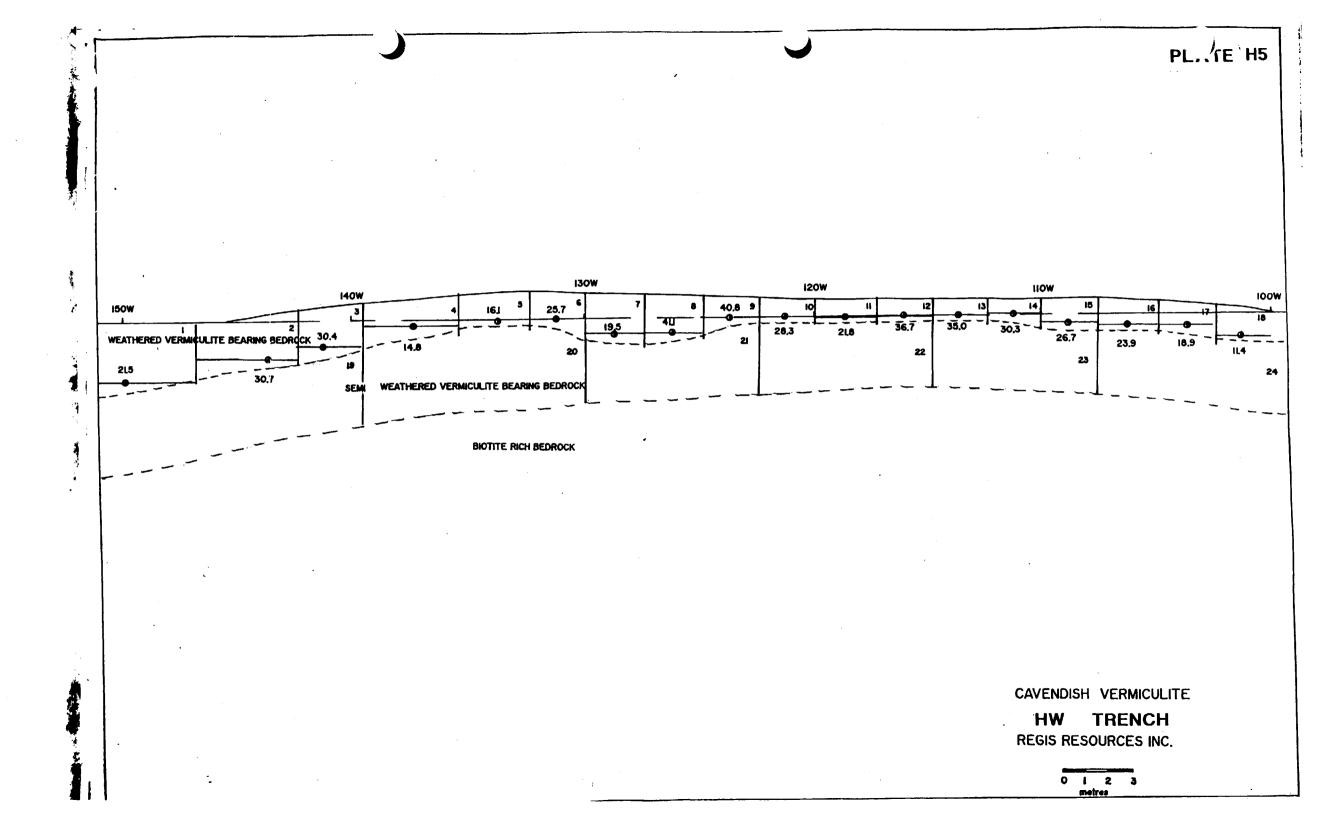


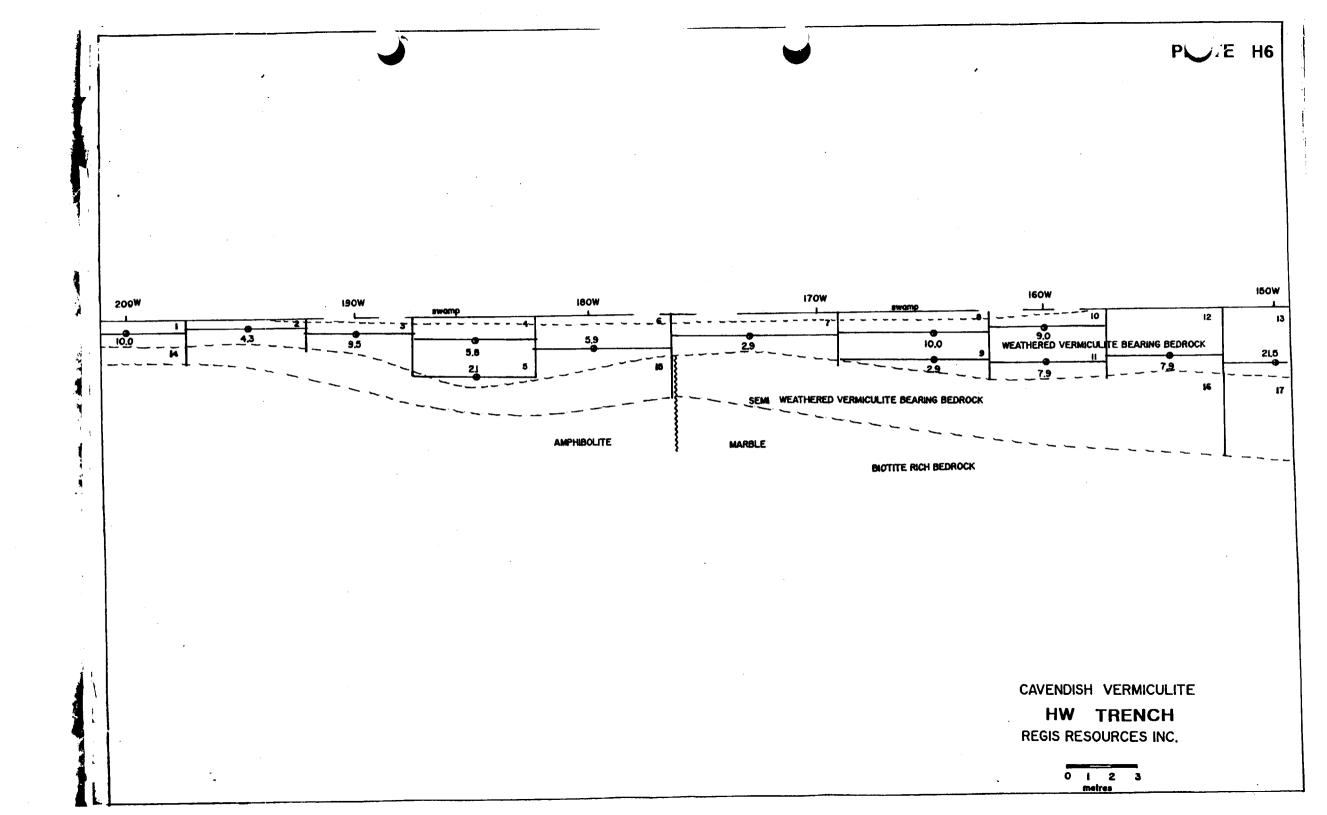


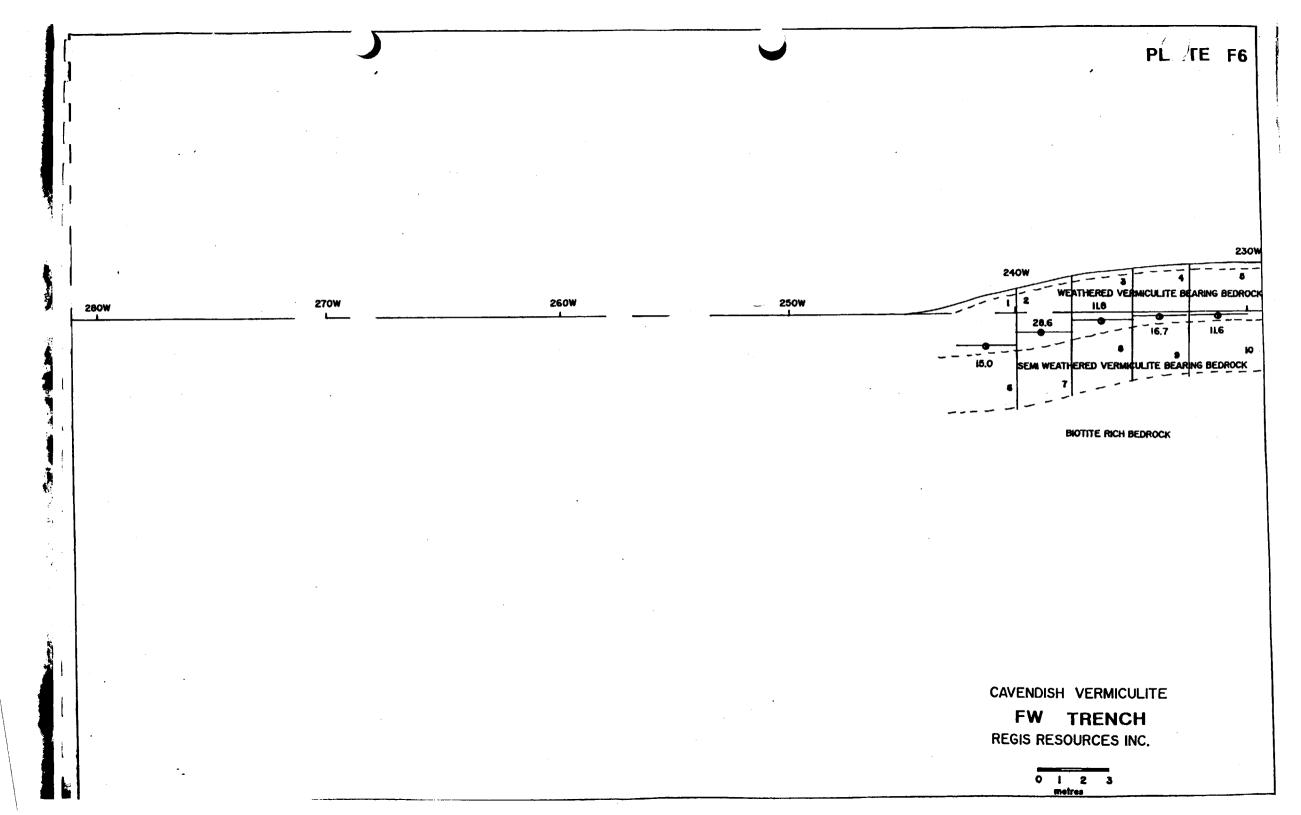


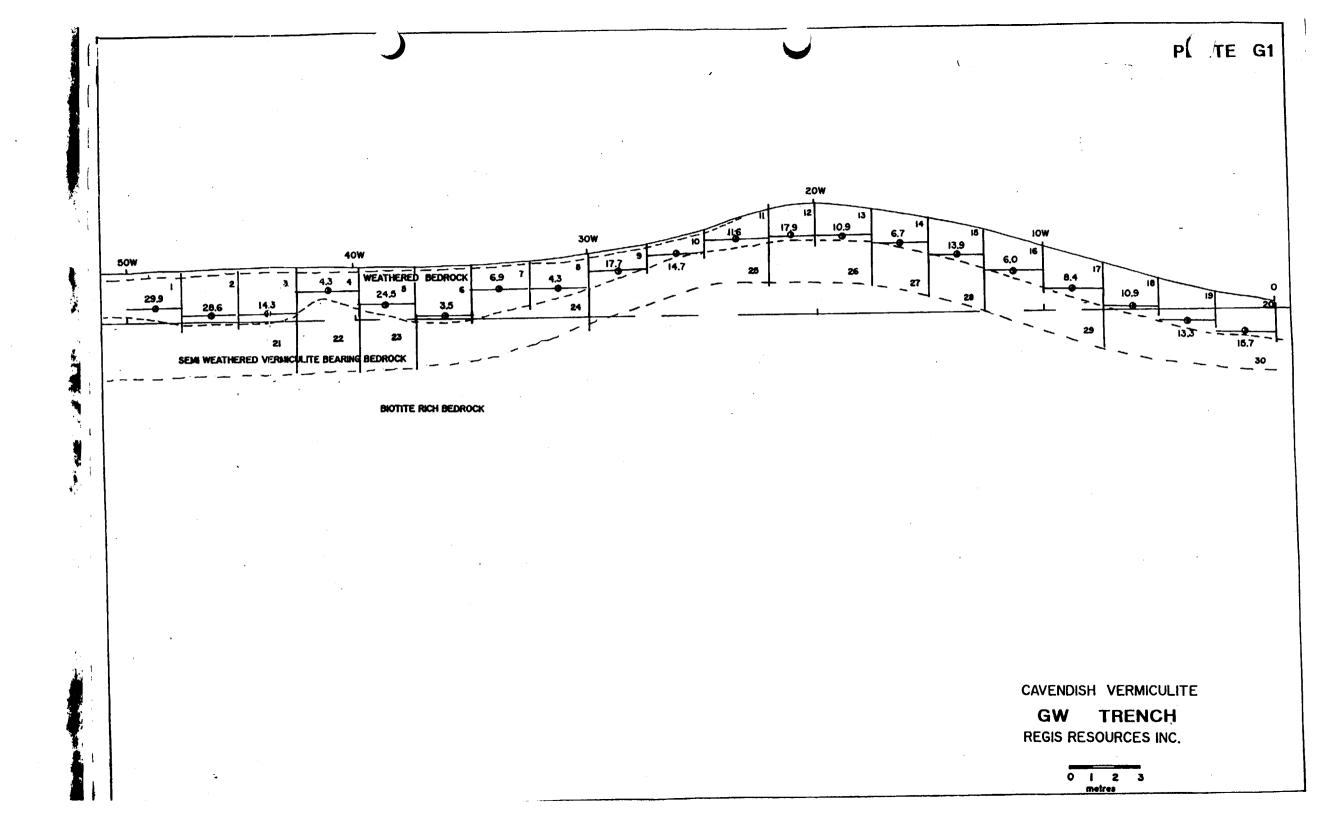


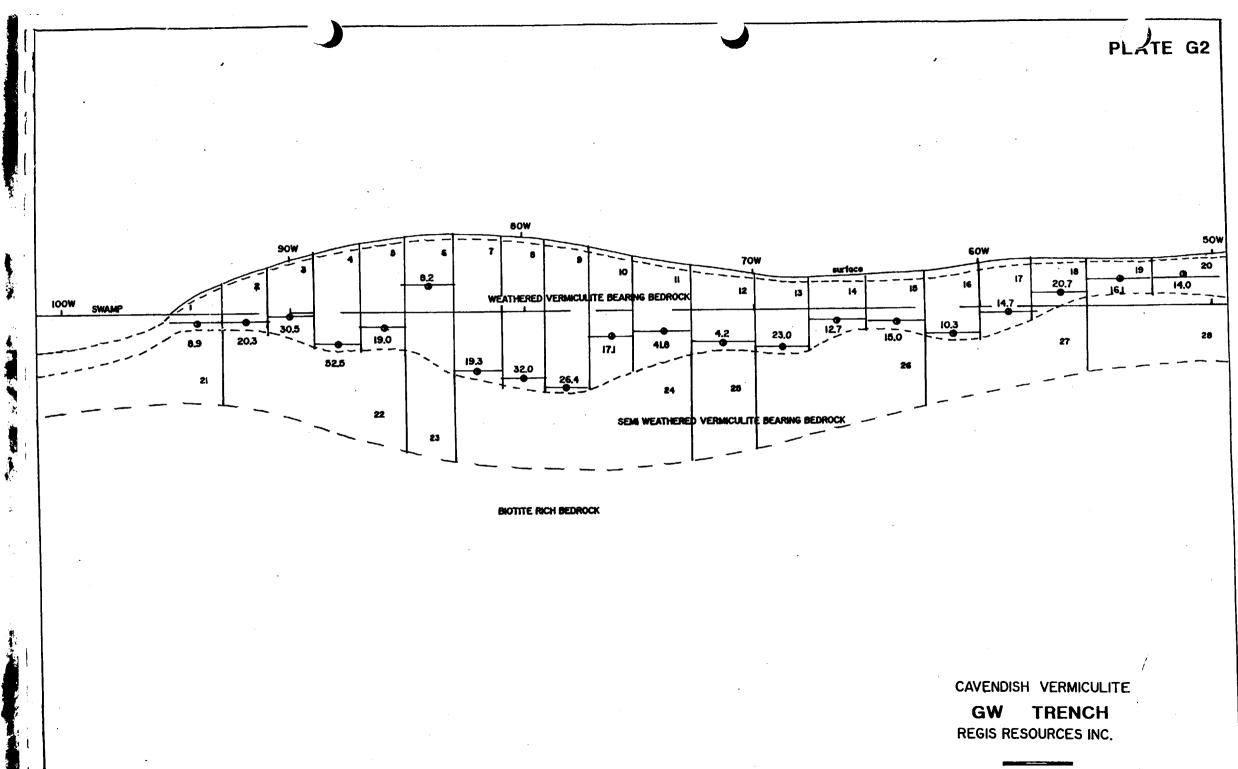


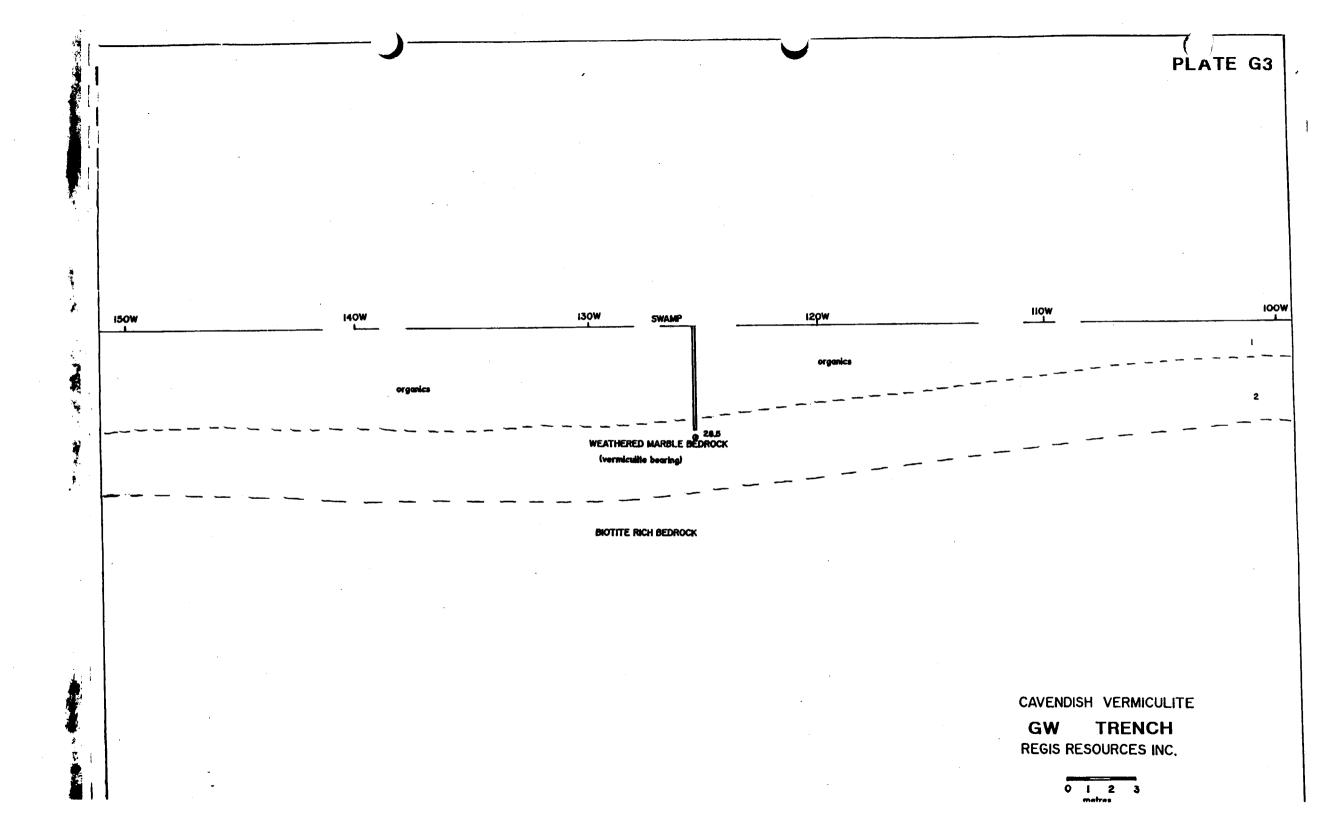


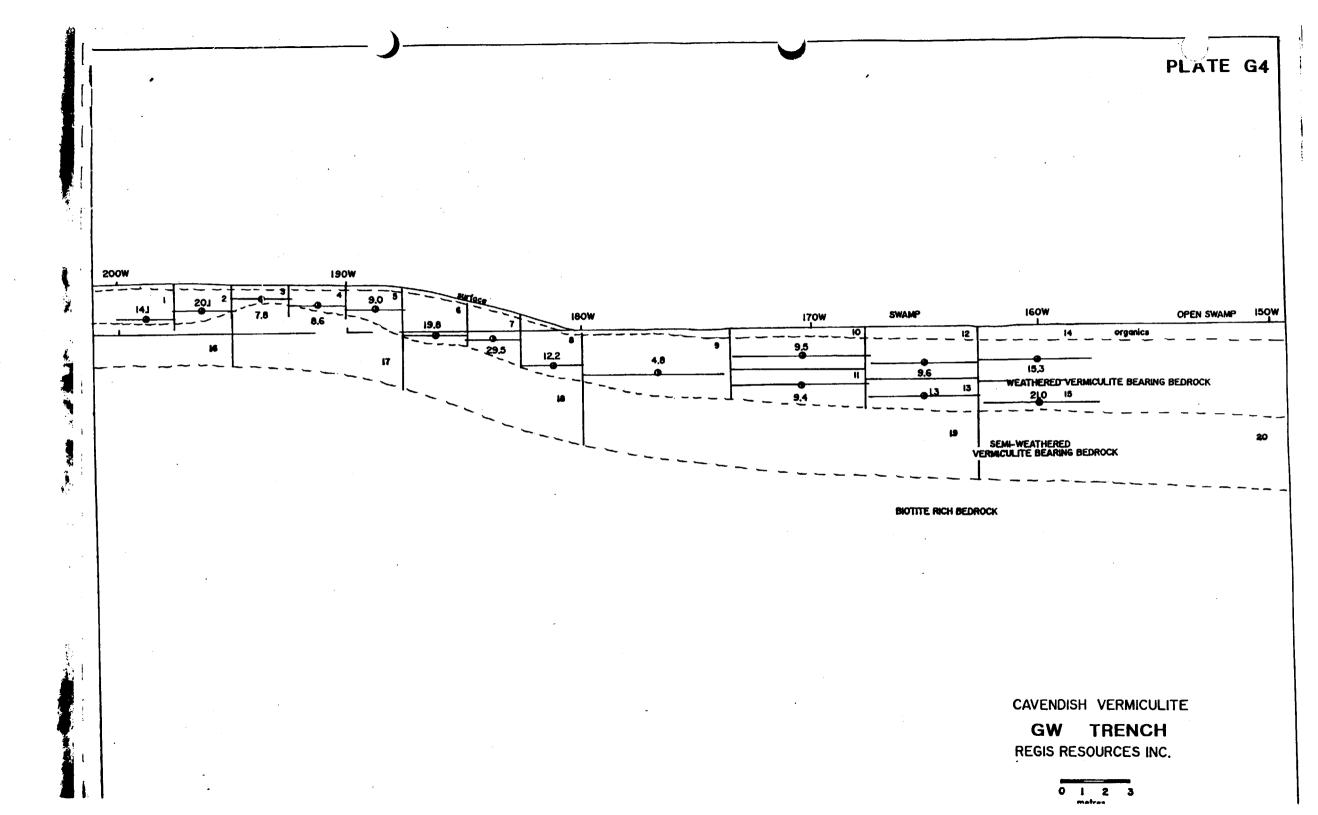

0 1 2 3

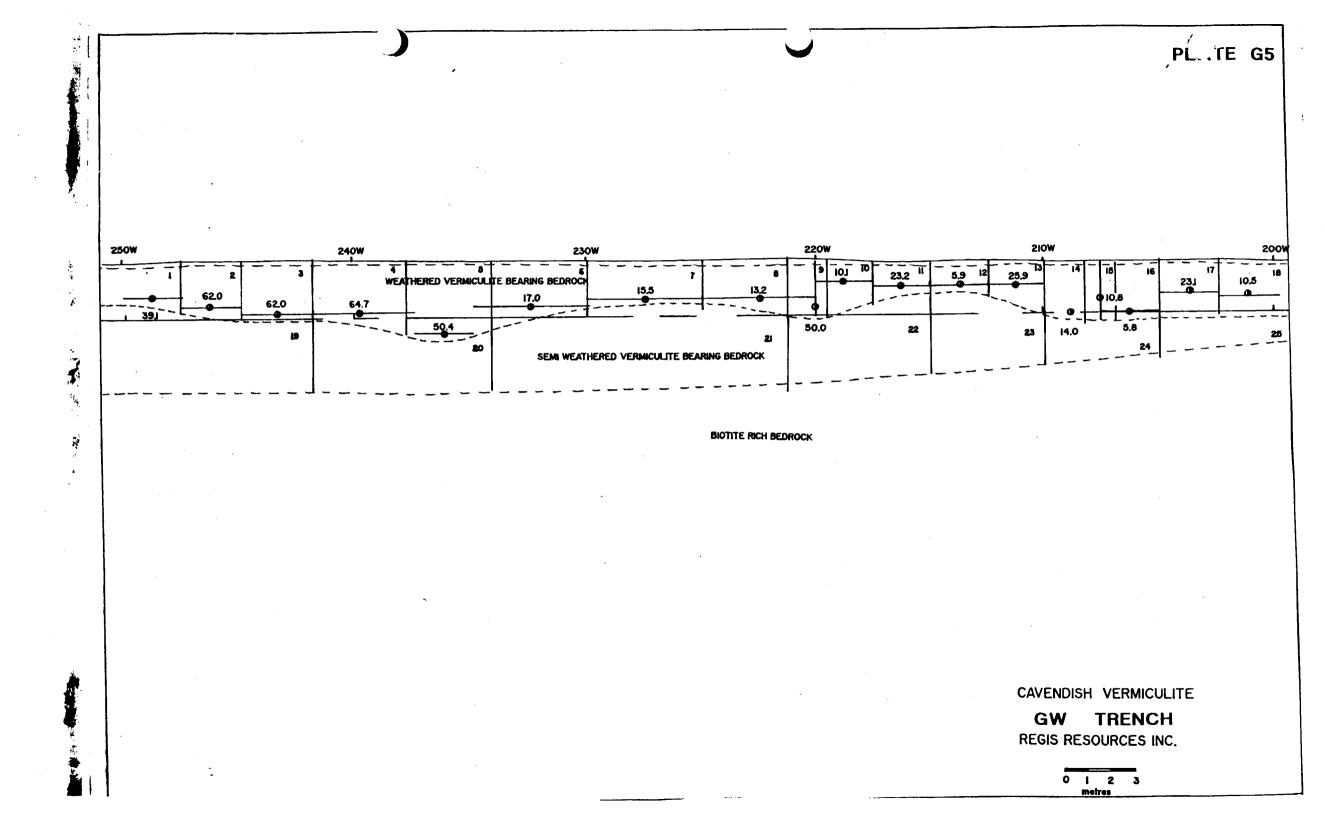


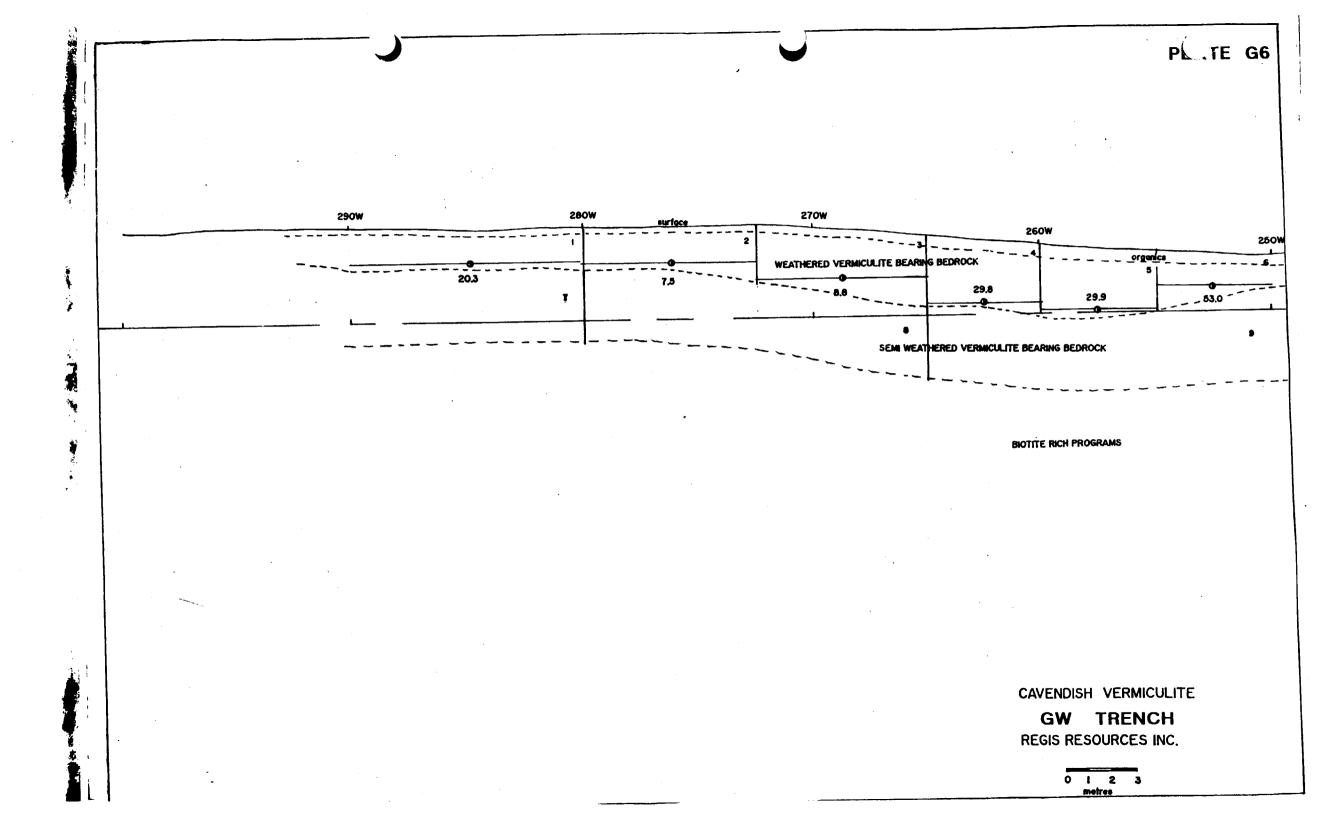


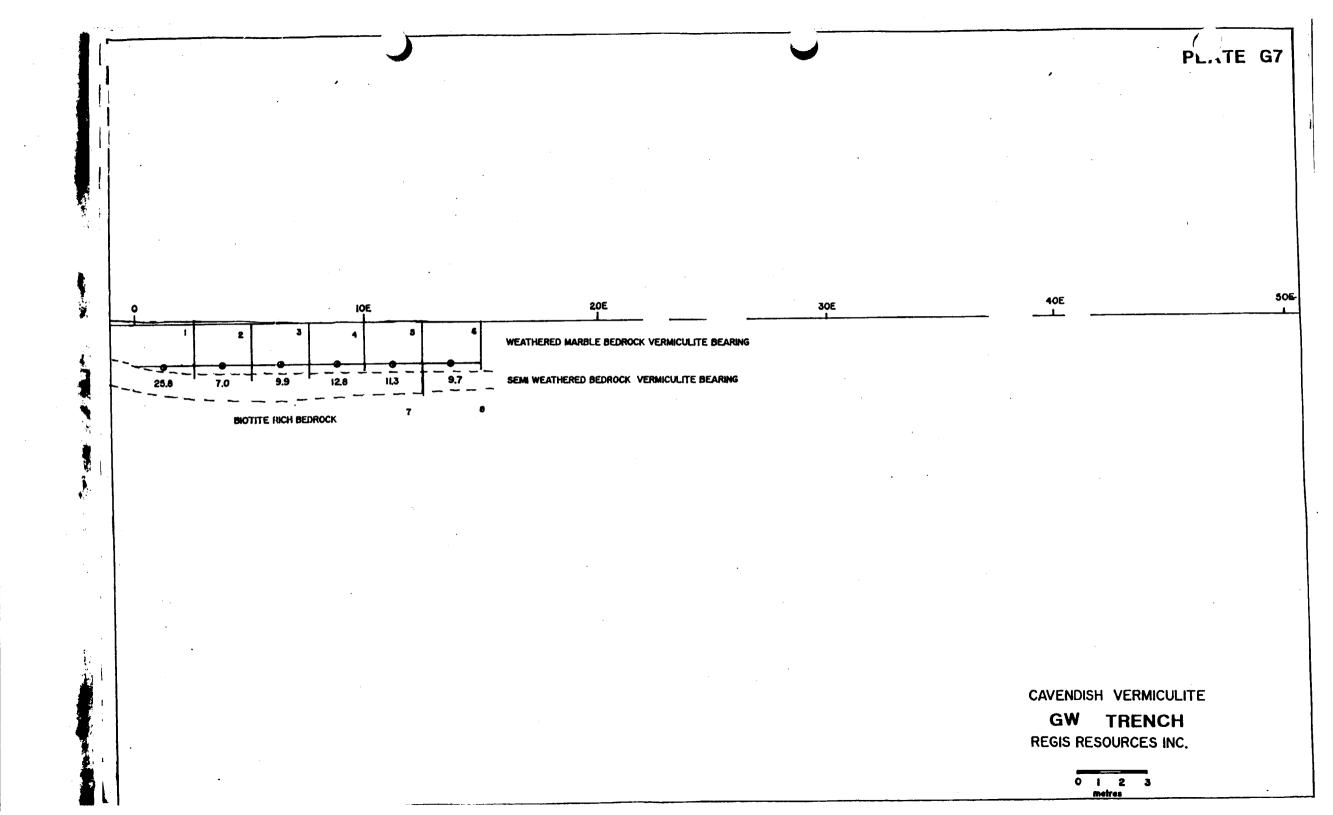


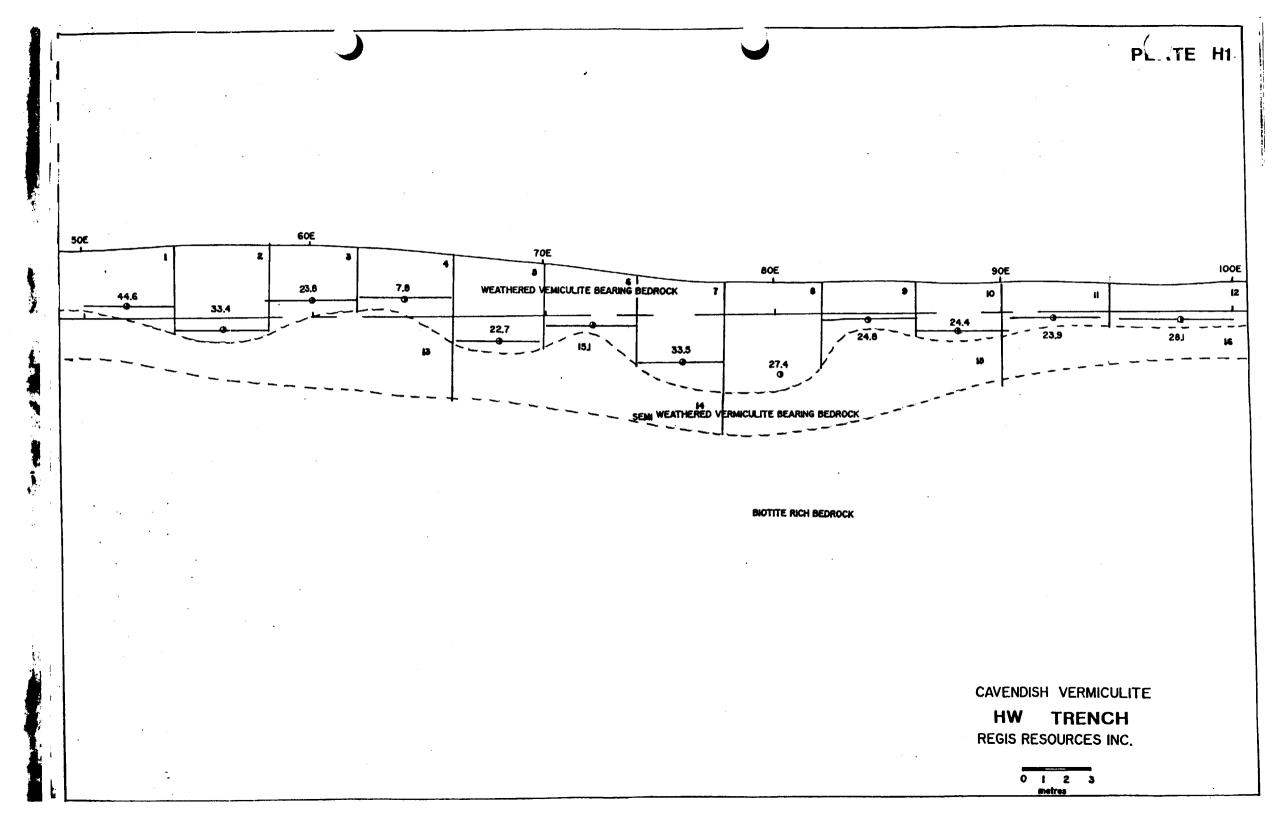


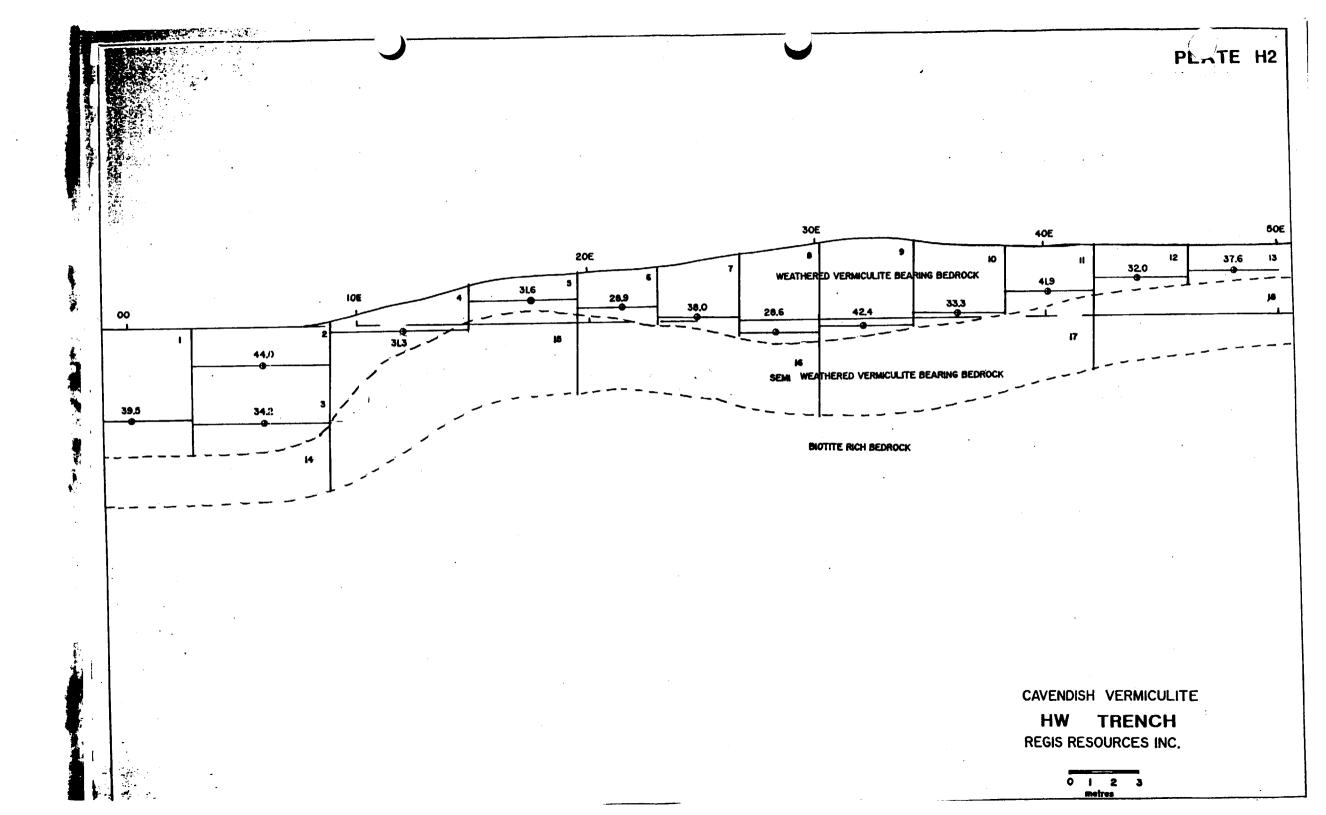







0 I 2 3 metres





2.20489

31D16SW2002

CAVENDISH

Π	RECE	VE	סן	
	SEP 2	SOLAN ASSESS	MENT	

		1		1	GEOSCIENCE	
Sample#	Initial	Total Exfoliated	Vermiculite	Waste	Moisture	Vermiculite %
DW 1	512.5	403.6	28.0	365.3	23.2	6.9
DW 2	401.2	317.2	33.6	283.6	20.9	10.6
DW 3	531.5	376.7	50.2	322.9		13.3
DW 4	508.1	369.2	42.9	325.0		11.6
DW 6	309.4	230.3	14.4	215.9		6.2
DW 7	254.6	182.4	22.5	159.9		12.3
DW 8	434.3	362.4	18.7	343.7		5.1
DW 9	433.0	371.3	15.5	355.8		4.2
DW 10	479.7	436.9	27.8	409.1	8.9	6.4
DW 11	479.8	404.2	6.5	397.7		1.6
DW 12	814.7	755.0	21.4	733.6		2.8
DW 13	716.8	712.4	32.2	680.2		4.5
DW 15	409.3	325.2	53.2	272.0	20.5	15.1
DW 16	782.5	679.7	43.9	635.8		6.4
DW 17	554.8	503.9	24.9	479.0		4.9
DW 18						
DW 19	627.4	536.1	46.7	497.0		8.7
DW 20	569.4	511.6	56.5	454.8		11.1
DW 21						
DW 22	520.1	407.6	29.8	376.7		7.3
DW 25	344.0	310.4	35.9	247.5	9.8	11.6
DW 26	508.3	422.1	53.0	362.5		12.6
DW 28	420.3	379.6	110.8	265.8		29.2
DW 29	483.5	397.3	78.4	316.3		19.7
DW 30	752.6	669.6	169.2	499.5	11.1	25.3

DW 32	697.6	540.0	113.0	426.6		20.9
DW 41	497.9	409.9	95.4	310.4		23.3
DW 42						
DW 44	420.7	3690.5	48.6	315.3		13.5
DW 45	378.6	360.3	56.6	303.7	4.8	15.7
DW 46	588.6	535.6	111.9	419.2		20.9
DW 47	268.4	224.3	58.0	166.6		25.6
DW 48	716.1	614.8	105.3	509.5		17.1
DW 60	398.3	343.5	60.2	283.2		17.5
DW 61	222.9	157.5	78.6	78.9	29.3	49.9
DW 62	598.5	488.7	94.6	391.8		19.4
DW 63	531.3	460.6	59.7	400.9	13.3	12.7
DW 64	515.2	487.5	15.6	469.0		3.2
DW 65	630.0	605.4	19.6	585.8	3.9	3.2
DW 67	481.4	417.6	9.6	403.0		2.3
DW 68	362.1	308.1	31.5	274.6		10.2
DW 69	357.5	325.9	18.5	307.4	8.8	5.7
DW 70	17.3	4.4	1.4	3.0	74.5	31.8
DW 73	461.1	394.7	52.7	342.0	13.5	13.3
DW 78	297.0	242.6	33.6	209.0	18.3	13.8
DW 79	157.1	140.2	26.6	113.6	107.1	19.0
DW 80	572.5	518.3	92.4	422.1		17.8
DW 83	463.8	441.7	100.3	341.4	4.8	22.7
DW 84	556.7	523.8	112.3	411.5	5.9	21.4
DW 87	400.7	377.9	79.6	298.3	5.6	21.1

Trench E - W

Sample #	Initial	Total Exfoliated	Vermiculite	Waste	Moisture	Vermiculite %
EW 1	625.1	501.9	41.1	460.8	19.7	8.2
EW 2	348.5	301.9	112.3	189.6	13.4	37.2
EW 3	929.7	805.9	111.1	694.8	13.3	13.8
EW4	962.4	851.6	93.2	754.7	11.9	10.9
EW 5	614.8	553.6	45.9	504.1	6.4	8.9
EW 6	636.1	546.3	9.7	455.6	28.6	2.1
EW 7	548.0	431.2	121.0	310.2	21.3	28.1
EW 8	548.1	385.7	68.1	317.6	29.6	17.7
EW 9	660.2	625.0	39.2	585.8	5.3	6.3
EW 10	758.9	718.5	2.6	715.9	5.3	0.4
EW 11	200.0	175.6	20.5	155.1	12.2	11.7
EW 12	292.1	262.9	22.2	240.7	14.6	8.4
EW13	539.4	487.2	25.2	462.1	9.6	5.2
EW 14	382.1	329.0	35.5	298.5	14.9	10.8
EW 15	378.7	334.2	93.7	240.5	11.5	28.0
EW 16	77.6	67.9	21.7	46.2	12.5	32.0
EW 17	259.0	218.6	30.3	188.3	15.6	13.9
EW 18	334.7	310.1	27.0	285.6	6.6	8.7
EW 19	277.1	245.0	36.1	210.3	11.1	14.7
EW 20	254.6	221.6	35.5	183.9	13.8	16.0
EW 21	453.1	408.0	57.7	350.3	9.6	14.1
EW 22	218.9	188.6	34.3	154.3	13.8	18.2
EW 23	555.7	488.1	217.4	270.7	12.2	44.5
EW 24						
EW 25	464.7	398.5	133.0	265.5	14.2	33.4

·		······				·
EW 26						
EW 27						
EW 28	130.1	102.0	39.8	62.2	21.6	39.0
EW 29	388.6	268.2	40.8	227.4	30.9	15.2
EW 30	508.5	457.6	123.3	335.2	9.8	26.9
EW 31						
EW 32	468.9	366.6	166.4	200.2	21.8	45.4
EW 33	478.0	404.0	125.3	278.4	15.5	31.0
EW 34	339.8	222.4	52.4	170.5	34.4	23.6
EW 35						
EW 36	602.7	508.0	120.6	395.1	14.4	23.7
EW 37	761.3	643.1	134.9	509.5	15.3	21.0
EW 38	753.4	682.3	120.7	561.4	9.5	17.7
EW 39	482.7	433.6	100.6	330.4	10.7	23.2
EW 40	546.6	482.7	52.2	429.8	11.8	10.8
EW 41	634.7	471.7	84.6	384.2	26.1	17.9
EW 42	677.9	592.1	64.7	519.0	13.9	10.9
EW 43	634.9	607.8	40.8	560.8	5.3	6.7
EW 44	609.8	533.9	66.4	487.5	9.2	12.0
EW 45	545.0	503.5	18.3	476.4	9.2	3.6
EW 46	612.0	548.4	18.0	530.4	10.3	3.3
EW 47	319.4	280.9	11.9	236.9	13.6	4.2
EW 48	368.0	286.3	23.3	255.8	24.1	8.1
EW 49						
EW 50						
EW 51						
EW 52						
EW 53						

EW 54	446.4	390.0	82.4	306.1	13.0	21.1	
EW 55	489.2	409.3	44.9	360.1	17.2	10.7	
EW 56	478.0	420.4	66.1	353.7	12.1	15.7	
EW 57	961.3	854.9	220.5	631.3	14.9	25.0	
EW 58	425.6	404.3	28.2	369.2	6.6	7.0	
EW 59	867.4	789.7	23.9	759.8	19.7	3.0	
EW 60	596.3	501.8	64.0	427.9	17.5	12.7	
EW 61	316.4	279.7	73.8	207.0	32.1	26.4	
EW 62	656.8	515.2	50.1	461.9	9.5	9.7	

Sample #	Initial	Total Exfoliated	Vermiculite	Waste	Moisture	Vermiculite %
FW 1	389.5	330.8	45.7	281.7	15.9	13.8
FW 2	378.0	373.2	36.0	336.9	1.3	9.6
FW 3	499.8	423.5	53.3	367.6	15.8	12.5
FW 4	427.2	379.7	49.3	317.8	14.0	13.0
FW 5	596.1	498.5	125.7	378.9	15.3	25.2
FW 6	800.2	660.2	205.1	454.4	17.5	31.1
FW 7	315.1	247.5	117.6	129.9	21.4	47.5
FW 8	457.1	378.4	70.6	307.3	17.3	18.6
FW 9	233.4	200.7	38.3	162.4	14.0	19.1
FW 10						
FW 11						
FW 12	604.1	506.0	144.1	363.0	16.0	28.5
FW 13	674.2	600.0	105.8	489.6	11.7	17.6
FW 14	411.4	361.9	80.4	281.5	12.0	22.2
FW 15	550.9	482.1	92.6	389.5	16.7	19.2
FW 16						
FW 17	474.0	456.8	68.3	384.6	4.4	14.9
FW 18	524.0	481.9	137.9	342.5	8.3	28.6
FW 19	672.0	627.4	74.3	562.8	5.2	11.8
FW 20	255.1	226.0	37.8	183.6	13.2	16.7
FW 21	692.7	645.6	75.1	593.0	3.5	11.6
FW 22	506.7	458.4	62.1	398.4	9.11	13.5
FW 23	678.4	625.0	53.6	566.1	8.6	8.6
FW 24	559.4	492.4	80.4	416.8	11.1	16.3
FW 25	540.8	470.9	117.2	353.3	13.0	24.9
FW 26	623.8	511.1	119.6	394.6	17.6	23.4

r	1	1	1	r	1	r
FW 27	603.4	534.6	95.3	438.4	11.5	17.8
FW 28	500.0	408.1	50.6	356.6	18.6	12.4
FW 29						
FW 30	572.1	532.7	29.7	501.9	7.1	5.6
FW 31	611.0	557.9	18.5	539.5	8.7	3.3
FW 32	759.4	707.1	43.9	660.5	7.2	6.2
FW 33	849.3	791.5	63.4	734.8	6.0	8.0
FW 34						
FW 35	481.0	431.9	23.7	405.4	10.8	5.5
FW 36	572.0	529.2	39.4	489.5	7.5	7.4
FW 37	559.7	535.5	54.0	480.8	4.4	10.1
FW 38	586.1	553.0	40.3	511.3	5.9	7.3
FW 39	647.0	609.4	44.44	566.9	5.5	7.3
FW 40	595.1	530.1	73.2	453.3	11.5	13.8
FW 41	752.0	699.3	53.5	644.7	7.1	7.6
FW 42	562.0	480.6	26.8	432.0	18.4	5.6
FW 43	246.3	224.8	30.2	192.9	9.4	13.4
FW 44	610.4	540.3	77.6	463.5	11.3	14.4
FW 45	594.6	523.0	86.1	438.0	11.8	16.5
FW 46	473.8	385.9	52.6	329.3	19.4	13.6
FW 47	722.8	618.8	72.5	546.8	14.3	11.7
FW 48	361.0	317.1	48.1	357.4	12.3	15.2
FW 49	407.9	335.7	69.1	289.4	12.1	20.6
FW 50	517.7	485.9	52.0	437.8	14.3	10.7
FW 51	473.3	404.0	98.2	305.3	14.7	24.3
FW 52	656.3	571.4	100.1	470.4	13.0	17.5
FW 53	257.1	247.4	22.2	222.3	4.9	9.0
FW 54	354.2	328.7	43.9	284.2	7.3	13.4

-						
FW 55	403.2	356.9	37.2	316.2	12.3	10.4
FW 56	392.3	329.7	40.4	290.4	15.7	12.3
FW 57						
FW 58						
FW 59						
FW 60	488.8	454.5	46.5	402.4	8.1	10.2
FW 61	541.4	469.8	68.8	399.8	13.4	14.6
FW 62	446.6	418.3	23.8	391.1	7.1	5.7
FW 63	520.4	470.9	52.4	414.3	10.3	11.1
FW 64	522.4	496.8	93.5	403.9	4.5	18.8
FW 65	587.2	489.0	55.4	430.4	17.3	11.3
FW 66	515.4	459.8	39.4	415.4	11.7	8.6
FW 67	433.8	401.9	83.5	314.5	8.2	20.8
FW 68						
FW 69	829.0	743.9	13.4	718.4	11.7	1.8
FW 70	311.6	296.1	5.6	284.2	7.0	1.9
FW 71	645.9	559.3	24.4	530.3	14.1	4.4
FW 72						
FW 73						
FW 74						
FW 75	461.1	372.9	85.4	281.6	20.4	22.9
FW 76	353.8	300.1	46.2	252.7	15.5	15.4
FW 77	612.9	544.6	116.5	426.6	13.4	21.4
FW 78	500.0	445.5	29.1	416.8	10.9	6.5
FW 79	322.2	291.3	7.1	277.9	11.5	2.4
FW 80	602.4	505.5	98.7	410.1	15.5	19.5
FW 81	442.6	344.6	15.3	330.4	21.9	4.4
FW 82	688.1	576.6	123.9	449.5	16.7	21.5

FW 83	485.0	341.8	59.3	205.0	45.5	16.5
FW 84	311.7	213.7	52.3	155.8	33.2	24.5
FW 85	542.0	448.9	69.7	372.2	18.5	15.5
FW 86	658.7	627.2	152.9	374.0	20.0	24.4
F W 87	402.8	355.7	63.2	289.6	12.4	17.8
FW 88	398.7	327.3	101.6	224.6	18.2	31.0
FW 89	377.9	336.7	40.1	289.9	12.7	11.9
FW 90	623.8	520.0	85.2	431.8	17.1	16.4
FW 91	498.0	426.7	43.5	383.0	14.3	10.2
FW 92						
FW 93	460.7	394.0	21.1	385.2	11.5	5.4
FW 94	746.7	648.3	77.6	568.9	13.4	12.0
FW 95	360.7	310.9	65.3	245.6	13.8	21.0
						I

G.W Sample #	Initial	Total Exfoliated	Vermiculite	Waste	Moisture	Vermiculite %
G.W.1	618.7	554.6	67.9	466.3	13.6	12.2
G.W.2	595.6	464.9	137.0	323.9	22.6	29.4
G.W.3	680.0	636.0	125.7	487.8	9.8	19.8
G.W.4	648.0	562.9	50.6	510.4	13.4	9.0
G.W.5	456.0	420.8	36.5	383.7	7.8	8.6
G.W.6	434.0	367.9	28.9	337.2	15.6	7.8
G.W.7.	670.0	558.8	112.2	444.9	16.9	20.1
G.W.8	691.7	619.0	87.3	531.7	10.5	14.1
G.W.9	620.0	525.4	55.1	469.0	15.5	10.5
G.W.10	517.3	450.2	103.0	347.2	12.8	23.1
G.W.11	313.9	278.9	16.1	262.7	11.2	5.8
G.W.12	655.0	476.3	51.6	423.9	27.4	10.8
G.W.13	591.7	480.6	67.5	413.1	18.8	14.0
G.W.14	451.7	361.5	96.7	270.7	18.7	25.9
G.W.15	482.0	317.5	24.0	293.5	34.1	7.5
G.W.16	415.0	361.1	83.7	285.4	11.1	23.2
G.W.17	660.0	619.6	62.5	559.8	5.7	10.1
G.W.18	518.5	440.5	120.3	318.5	15.4	27.3
G.W.19	367.5	322.9	42.7	276.2	13.1	13.2
G.W.20	646.0	593.1	91.9	495.6	9.1	15.5
G.W.21	603.3	549.8	93.4	458.0	8.6	37.1
G.W.22	462.9	395.3	199.1	200.7	13.6	50.4
G.W.23	401.0	321.5	208.0	121.5	17.8	64.7
G.W.24	477.2	413.6	153.6	253.9	14.6	37.1
G.W.25	475.0	390.2	206.8	188.9	16.7	53.0
G.W.26			1	Ī		29.9

Sample#	Initial	Total Exfoliated	Vermiculite	Waste	Moisture	Vermiculite %
G.W. 100	575.7	525.1	22.7	496.9	9.7	4.3
G.W. 101	696.0	617.7	42.9	571.4	11.7	6.9
G.W. 102	496.0	453.5	16.0	432.6	9.5	3.5
G.W. 103	709.0	628.1	153.8	464.1	12.8	24.5
G.W. 104	581.0	499.0	142.9	352.1	14.8	28.9
G.W. 105	602.4	530.2	22.8	497.8	13.6	4.3
G.W. 106	424.6	381.8	24.0	353.3	11.1	6.3
G.W. 107	339.6	296.2	30.3	259.8	14.6	10.2
G.W. 108	674.0	612.1	87.7	520.9	9.7	14:3
G.W. 109	300.0	251.8	75.4	175.0	16.5	29.9
G.W. 110	219.6	189.7	26.6	161.2	14.5	14.0
G.W. 111	407.0	35434	57.2	298.8	12.5	16.1
G.W. 112	311.0	282.3	58.4	223.5	4.4	20.7
G.W. 113	660.5	597.9	87.9	505.0	10.2	14.7
G.W. 114	587.6	554.6	57.0	492.5	6.5	10.3
G.W. 115	450.9	397.2	59.7	336.7	12.1	15.0
G.W.116						
G.W.117					Ī	

G.W. 126	416.0	355.3	186.4	160.8	16.5	52.5
G.W. 127	449.8	347.8	106.0	240.9	22.9	30.5
G.W. 128	598.4	539.5	107.7	428.6	10.0	20.3
G.W. 129	664.2	610.5	54.5	554.0		8.9

Sample #	Initial	Total Exfoliated	Vermiculite	Waste	Moisture	Vermiculite %
H.W. 1	401.0	326.3	128.8	197.5	18.6	39.5
H.W. 2	412.4	348.3	153.4	197.9	15.5	44.0
H.W. 3	636.5	509.5	174.3	335.2	19.9	34.2
H.W. 4	238.7	193.0	60.4	132.6	19.9	31.3
H.W. 5	311.1	229.1	72.4	156.7	26.3	31.6
H.W.6	401.7	330.5	82.2	248.3	17.7	28.9
H.W. 7	544.0	434.2	164.9	269.3	20.2	38.0
H.W.8	430.0	357.3	102.3	255.0	16.9	28.6
H.W. 9	530.7	435.1	184.5	250.6	17.6	42.4
H.W. 10	456.6	400.8	133.4	267.4	13.9	33.3
H.W. 11	531.1	448.6	187.8	260.8	15.5	41.9
H.W.12	580.4	485.1	155.2	329.9	16.4	32.0
H.W.13	549.4	450.3	169.5	280.8	18.0	37.6
H.W.14	393.6	328.8	146.8	182.0	16.5	44.6
H.W. 15	456.2	387.1	126.2	260.9	16.8	33.4
H.W.16	420.6	365.6	86.9	278.7	11.8	23.8
H.W. 17	502.1	438.2	34.4	403.8	12.7	7.8
H.W. 18	501.6	458.6	104.2	354.4	8.6	22.7
H.W. 19	492.1	457.5	69.2	388.3	7.1	15.1
H.W.20	551.7	493.7	165.5	328.2	11.8	33.5
H.W.21	334.8	295.7	80.9	214.8	11.7	27.4
H.W.23						24.4
H.W.24	339.8	294.5	70.3	224.2	13.3	23.9
H.W.25	544.3	464.2	130.4	333.8	14.7	28.1

		·····				
H.W.30	375.5					36.6
H.W.31	589.0	499.7	57.2	442.5	15.2	11.4
H.W.32	562.4	520.2	98.1	422.1		18.9
H.W.33	416.5	359.8	86.0	273.8		23.9
H.W.34	429.8					26.7
H.W35	398.3	340.8	103.3	237.5		30.3
H.W.36	500.7					35.0
H.W.37	444.9					36.7
H.W.38	559.4	459.5	100.0	359.5	17.8	21.8
H.W.39	507.4	444.5	126.0	318.5		28.3
H.W.40	465.5					40.8
H.W.41	283.8					41.1
H.W.42	391.8	348.6	67.9	280.7	11.0	19.5
H.W.43	539.2	447.7	115.2	332.5	16.7	25.7
H.W.44	519.1	476.1	76.8	397.3	8.7	16.1
H.W.45	432.1	390.6	58.0	332.6	9.6	14.8
H.W.46	531.5					30.4
H.W.47	262.2	214.8	65.9	148.9	10.0	30.7
H.W.48	453.7					21.5
H.W.49	442.7					31.0
H.W.50	564.9	446.2	35.4	410.8	21.0	7.9
H.W.51						9.0
H.W.52	454.6	372.7	64.8	307.9		17.4
H.W.53	372.2	339.6	34.0	305.6	8.7	10.0
H.W.54	575.5	471.9	13.8	458.1	18.0	2.9
H.W.55	617.8					5.4

401.6	363.4	21.3	342.1	9.5	5.9
305.7	285.3	6.1	279.2	6.7	2.1
416.6	330.7	32.6	298.1		9.9
464.0	399.4	38.1	361.3	13.9	9.5
467.3	399.7	17.4	382.3	14.5	4.3
341.7	322.3	32.2	290.1	· · · · · · · · · · · · · · · · · · ·	10.0
	· · · · · · · · · · · · · · · · · · ·				····
_			<u> </u>		
	416.6 464.0 467.3	416.6 330.7 464.0 399.4 467.3 399.7	416.6 330.7 32.6 464.0 399.4 38.1 467.3 399.7 17.4	416.6 330.7 32.6 298.1 464.0 399.4 38.1 361.3 467.3 399.7 17.4 382.3	416.6 330.7 32.6 298.1 464.0 399.4 38.1 361.3 13.9 467.3 399.7 17.4 382.3 14.5

31D16SW2002 2.20489

CAVENDISH

040

The Analysis of Vermiculite

in samples from Cavendish Township

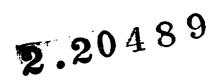
submitted by

Regis Resources Inc.

Progress Report No. 1

Project No.: LR5424

NOTE:


This report refers to the samples as received.

The practice of this Company in issuing reports of this nature is to require the recipient not to publish the report or any part thereof without the written consent of Lakefield Research Limited.

LAKEFIELD RESEARCH LIMITED

Postal Bag 4300 185 Concession Street Lakefield, Ontario, K0L 2H0 Tel: (705) 652-2000 Fax: (705) 652-6365

February 17, 1999

Table of Contents

Introduction	3
Summary	4
1. Sample Preparation	4
2. Sample Treatment and Evaluation	4
3. Results	5
Details of Tests	11

31D16SW2002 2.20489

CAVENDISH

040C

Introduction

This report describes the analysis of the vermiculite content of trench samples supplied by Regis Resources Inc. of Cavendish Township deposit, Ontario. Samples, each weighing approximately 2 kg, were prepared by air drying, screening, crushing and sampling to obtain a charge weighing approximately 500 g. This charge was then heat treated to exfoliate the vermiculite in equipment supplied by the client. After the heat treatment the vermiculite was separated from the waste material by agitation in a water medium. The waste settled to the bottom of the container whilst the vermiculite was decanted off with the water.

Mr. Martin Shefsky of Regis Resources Inc., or his representatives, Mr. Keith Vatcher and Mr. Garion Forbes were present for the duration of the testwork.

Lakefield Research Limited

A.C.T. Bigg, P.Eng. Senior Engineer

K.J. S.Litt.

K.W. Sarbutt Manager - Mineral processing

Experimental testwork by: D. Imeson, D. Northrop Report preparation by: S. McKenzie

Summary

4

1. Sample Preparation

Six series of samples were hand delivered to Lakefield Research between January 18 and February 1, 1999. The samples had been collected from various trenches cut in the Cavendish Township deposit. Selected samples were partially air dried, screened, and the oversize crushed to sub-screen size. The AW-series samples and some of the BW-series samples were screened and crushed to 3/8". The screen size was then changed to a nominal 8 mesh for most of the remainder of the BW-series samples and some of the CW-series samples. 'Nominal' in this sense refers to the open size setting of the Badger jaw crusher, allowing the coarser, flaky vermiculite to drop through the crusher. For the remainder of the samples a 4 mesh screen was used. After crushing, the crushed material was recombined with the fine material, blended, and then riffled to obtain a sample close to 500 g weight for feeding to the exfoliator.

A noted few of the CW-series, DW-series, and FW-series samples were screened at 4 mesh, the minus 4 mesh was split to give the sample for the exfoliation, and then the plus 4 mesh was combined with the reject minus 4 mesh. Since no weight split between the plus and minus 4 mesh fractions was noted, these samples should be used with caution in any pit tonnage calculations. For this reason they have been tabulated separately in the summary tables.

2. Sample Treatment and Evaluation

The prepared samples were fed into the exfoliator and captured at the discharge end by an air classifier. The exfoliator consisted of a rotating tube about 10 feet long with a propane torch at the feed end. The tube had a slight slope towards the discharge end. The feed was introduced by means of a vibratory feeder. Early tests were used to develop a suitable feed rate, burner setting, and air extraction arrangement. The discharge from each test was collected in a bucket, and then water added. The bucket was then agitated to allow the lighter vermiculite to separate from the heavier waste material, and the light material then poured off onto a filter. This process was repeated several times until the float material

was completely removed. The sinks were also filtered, both fractions were dried, and weighed. In some early tests on the AW-series only the vermiculite that floated to the top of the water was removed in the separation. This was later changed to include the vermiculite that sank but remained in a fluid state above the sinks when pouring off the water. All of the early samples that showed vermiculite in the 'sink' fraction were retreated by water separation.

3. Results

Series	No. of Samples	Average % Moisture*	Average % Vermiculite
AW	91	9.7	20.9
BW	108	7.4	25.7
CW	54	10.0	29.2
DW	46	7.9	24.1
EW	3	7.4	25.0
FW	1	13.0	18.2
Weighted Average	303	8.6	24.6
CW +4 Mesh Rejected	8	14.7	27.3
DW +4 Mesh Rejected	10	19.6	21.4
FW +4 Mesh Rejected	1	22.1	18.6
Weighted Average	19	17.7	23.7

Table 1: Overall Summary of Results

* Moisture after air drying

The vermiculite content is determined as a percentage of the combined weight of the sink and float products after exfoliation. As such it does not take into account any organic material that may have been present in the feed and burnt off in the exfoliator. On the other hand the moisture content is determined from the difference in weight between the air-dried feed and the combined exfoliator products and therefore will include the weight of any organic material in the feed.

	T	1
	Dry Feed	
Sample	% Vermiculite	
Aw 1	2.5	ļ
Aw 2	43.6	l*
Aw 3	54.1	*
Aw 4	6.8	
Aw 5	22.6	*
Aw 6	14.7	*
Aw 7	22.6	
Aw 8	33.0]*
Aw 9	42.8	I*
Aw 10	45.0	*
Aw 11	40.2]*
Aw 12	37.9	*
Aw 13	3.9	
Aw 14	5.7	
Aw 15	34.4	*
Aw 16	39.8	*
Aw 17	54.2	*
Aw 21	21.7	
Aw 22	25.6	*
Aw 26	26.5]*
Aw 27	30.7]*
Aw 28	28,2	ŀ
Aw 29	29.6	*
Aw 29A	15.3	*
Aw 30	35.1	*
Aw 31	28.3	*
Aw 32	19.4	
Aw 33	29.2	,
Aw 34	26.5	
Aw 35	48.2	
Aw 36	28.8	
Aw 37	33.6	,

	Dry Feed	1
Sample	% Vermiculite	1
Aw 38	26.9	*
Aw 39	18.1	*
Aw 40	7.2	1
Aw 40A	59.7	*
Aw 42	16.1	1
Aw 43	28.1	1
Aw 44	39.1	*
Aw 45	33,1	*
Aw 46	45.9	
Aw 47	33.7	*
Aw 49	34.9	
Aw 50	35.4	*
Aw 100	25.7	
Aw 101	15.1	
Aw 102	6.9	
Aw 103	2.8	
Aw 104	11.2	
<u>Aw 105</u>	20.8	
Aw 106	1.3	
<u>Aw 107</u>	3.0	
<u>Aw 108</u>	16.7	*
<u>Aw 109</u>	11.1	
Aw 110	5.1	
Aw 111	20.0	*
<u>Aw 114</u>	42.9	*
<u>Aw 115</u>	7.9	
Aw 116	4.1	
Aw 117	6.6	1
<u>Aw 118</u>	1.6	1
Aw 119	1.8	
Aw 120	2.7	
Aw 121	1.6	

	Dry Feed	
Sample	% Vermiculite	
Aw 122	0.8	
Aw 123	3.5	
Aw 124	1.9	
Aw 125	0.7	
Aw 128	1.1	
Aw 128	16.4	
Aw 129	10.0	
Aw 130	2.6]
Aw 131	7.1	
Aw 132	8.6	Į
Aw 133	6.0	
Aw 135	12.3	
Aw 136	39.1	*
Aw 137	51.8	*
Aw 138	8.4	ļ
Aw 139	15.5	*
Aw 140	10.7	ĺ
Aw 141	47.8	*
Aw 142	13.4	
Aw 143	23.4	*
Aw 144	4.9	
Aw 145	17.3	
Aw 146	6.4	
Aw 147	10.6	
Aw 148	30.0	*
Aw 149	25.4	*
Aw 150	9.3	
AVERAGE:	20.9	
COUNT:	91	41
* Sample ref	loated	

Table 2: AW-Series - Summary of Results

Sample	Dry Feed	1
Cumpio	% Vermiculite	
Bw 1	6.2	1
Bw 2	5.9	*
Bw 5	25.2	1
Bw 6	62.9	*
Bw 7	56.9	*
Bw 8	39.7]
Bw 9	15.7	*
Bw 10_	31.9	*
Bw 11	18.0	
Bw 13	27.4	
Bw 14	20.8	*
Bw 15	23.0	*
Bw 16	19.9	1
Bw 17	11.3	*
Bw 18	33.7	
Bw 19	30,5	
Bw 20	11.1	*
Bw 21	4.7	*
Bw 22	14.8	*
Bw 23	17.2	
Bw 24	12.5	_*
Bw 25	17.9	
<u>Bw 26</u>	12.8	*
Bw 27	22.9	*
Bw 28	15.4	*
Bw 29	17.0	*
Bw 30	26.5	*
Bw 31	11.7	4*
Bw 32	24.8	*
Bw 33	32.2	
<u>Bw 34</u>	32.7	
Bw 35	29.0	_*
Bw 36	19,2	4
Bw 37	17.3	_*
Bw 38	23.4	
Bw 39	28.7	4
Bw 40	29.2	

Table 3: BW-Series - Summary of Results

Sample	Dry Feed]
Campo	% Vermiculite	
Bw 42	13.4	*
Bw 44	25.4	
Bw 46	27.8	
Bw 47	31.4	
Bw 48	32.7	*
Bw 50	40.3	*
Bw 50A	22.8	*
Bw 53	21.1	*
Bw 56	31.0	
Bw 59	24.2	*
Bw 60	40.2	1
Bw 61	43.8	
Bw 62	40.7	*
Bw 63	32.5	*
Bw 64	48.4	*
Bw 65	33.5	
Bw 66	30.5	*
Bw 67	47.0	
Bw 68	32.8	_*
Bw 69	39.3	*
Bw 70	60.8	
<u>Bw 71</u>	34.3	_ *
Bw 72	49.0	*
Bw 73	28.3	*
Bw 74	50.8	
Bw 76	17.4	_ *
Bw 76	24.8	4
Bw 78	21.0	
Bw 80	30.4	4
Bw 82	23.7	
Bw 83	27.6	
Bw 84	19.7	_ *
Bw 85	21.7	-
Bw 86	20.8	
Bw 87	18.7	
Bw 88	15.0	ļ
Bw 89	20.4	ŀ

Sample	Dry Feed	1
Sample	% Vermiculite	1
Bw 90	36.6	•
Bw 91	49.9	1
Bw 92	27.3	1*
Bw 93	21.1	1
Bw 94	14.7	1
Bw 95	17.3	
Bw 96	19.9]*
Bw 97	12.9]*
Bw 98	15.0	
Bw 99	16.1]*
Bw 100	22.3	
Bw 101	8.0	
Bw 102	25.1	
Bw 103	18.8	
Bw 104	36.0	
Bw 105	51.7	*
<u>Bw 106</u>	34.6	1
<u>Bw 110</u>	22.5	
<u>Bw 112</u>	30.1	
Bw 113	23.4	_ *
Bw 115	10.3	_ *
Bw 116	6.1	4
Bw 118	27.1	4
Bw 120	32.7	
Bw 123	15.4	- *
Bw 123A	25.9	
Bw 124	23.0	1
Bw 126	31.6	4
Bw 128	7.4	4
Bw 130	14.8	-
Bw 131	12.1	4
Bw 133	20.4	4
Bw 134	22.7	4
Bw 135	25.6	_]:
Average	25.7	
COUNT:	108	

* Crushed to minus 3/8". Remainder crushed to 8 mesh.

Sample	Dry Feed
	% Vermiculite
Cw 12	16.2
Cw 18	27.5
Cw 20	12.3
Cw 24	20.1
Cw 26	26.2
Cw 37	30.7
Cw 40	33.1
Cw 41	35.8
Cw 41	48.1
Cw 42	34.6
Cw 43	34.0
Cw 44	31.9
Cw 45	33.5
Cw 46	33.5
Cw 47	35.1
Cw 49	29.4
Cw 50	41.5
Cw 51	32.6
Cw 52	34.7
Cw 54	23.0

Sample	Dry Feed	
-	% Vermiculite	
Cw 55	32.6	
Cw 56	26.1	
Cw 57	24.5	
Cw 58	28.0	
Cw 60	26.0	
Cw 61	43.3	
Cw 64	23.7	
Cw 65	30.5	*
Cw 65	23.7	*
Cw 66	22.3	
Cw 67	25.3	
Cw 72	24.2	
Cw 76	15.5	
Cw 77	17.8	
Cw 78	25.0	
Cw 79	25.5	
Cw 80	31.1	*
Cw 81	40.6	
Cw 82	47.5	
Cw 83	35.7	

Sample	Dry Feed
	% Vermiculite
Cw 84	49.3
Cw 87	27.6
Cw 90	26.6
Cw 94	16.0
Cw 97	27.5
Cw 99	48.0
Cw 101	27.4
Cw 103	14.7
Cw 104	41.0
Cw 108	24.0
Cw 109	26.9
Cw 110	26.1
Cw 112	26.6
Cw 208V	10.1
AVERAGE:	29.2
COUNT:	54
* 0 1 1	0

* Crushed to 8 mesh. Remainder crushed to 4 mesh

Table 5: CW-Series - Summary of Results - Plus 4 Mesh Rejected

Sample	Dry Feed	
	% Vermiculite	
Cw 37	55.9	
Cw 38	33.6	
Cw 73	17.2	
Cw 95	17.2	
Cw 100	15.8	

Sample	Dry Feed	
	% Vermiculite	
Cw 105	36.7	
Cw 107	30.9	
Cw 204V	10.7	
AVERAGE:	27.3	
COUNT:	8	

	_		
F	ee	d	

9

Table 6: DW-Series - Summary of Results

	Dry Feed
Cla	
Sample	% Vermiculite
Dw 5	35.6
Dw 14	18.3
Dw 23	14.4
Dw 24	14.4
Dw 31	14.4
Dw 33_	32.3
Dw 34	31.3
Dw 35	30.8
Dw 36	23.1
Dw 43	20.7
Dw 43	14.5
Dw 49V	18.9
Dw 50	26.2
Dw 51	28.3
Dw 52	24.6
Dw 53	21.4

	Dry Feed
Sample	% Vermiculite
Dw 54	24.8
Dw 55	25.0
Dw 56	37.1
Dw 57	32.3
Dw 58	53.9
Dw 59	43.5
Dw 60	45.3
Dw 61	24.2
Dw 62	17.2
Dw 63	20.4
Dw 64	27.0
Dw 65	19.1
<u>Dw 66</u>	18.5
Dw 67	15.6
Dw 68	26.0
Dw 69	21.0

Drv Feed
% Vermiculite
25.2
23.3
17.0
7.7
29.6
32.5
7.1
17.1
32.4
23.5
20.0
18.8
19.0
13.7
24.1
46

Table 7: DW-Series - Summary of Results - Plus 4 Mesh Rejected

	Drv Feed
Sample	% Vermiculite
Dw 27V	11.9
Dw 37	27.1
Dw 38	33.0
Dw 39	21.2
Dw 40	20.9
Dw 71V	13.3

	Drv Feed	
Sample	% Vermiculite	
Dw 74V	36.6	
Dw 75V	17.9	
Dw 76V	10.7	
Dw 96	21.6	
AVERAGE:	21.4	
COUNT:	10	

Table 8: EW-Series - Summary of Results

	Dry Feed
Sample	% Vermiculite
Ew 26	23.2
Ew 27	19.9
Ew 31V	31.9
AVERAGE:	25.0
COUNT:	3

	Dry Feed]
Sample	% Vermiculite	
Fw 10	18.2	}
Fw 11V	18.6	*
AVERAGE:	18.4	-
COUNT:	2	

Table 9: FW-Series - Summary of Results

* +4mesh rejected

	Weights (g)		Wet Feed	Dry Feed	
Sample	Initial	Float	Sink	% Moisture	% Vermiculite
Aw 128	649.5	91.3	466.5	14.1	16.4
Aw 129	715.7	70.3	633.5	1.7	10.0
Aw 130	549.3	13.5	506.5	5.3	2.6
Aw 131	966.9	54.7	710.5	20.9	7.1
Aw 132	610.4	47.4	506.0	9.3	8.6
Aw 133	822.0	45.6	713.2	7.7	6.0
Aw 135	933.0	103.7	738.7	9.7	12.3
Aw 136	791.5	271.1	422.9	12.3	39.1
Aw 137	813.3	383.3	356.8	9.0	51.8
Aw 138	915.9	72.9	794.7	5.3	8.4
Aw 139	803.9	120.2	653.2	3.8	15.5
Aw 140	930.4	95.0	791.3	4.7	10.7
Aw 141	905.1	278.5	304.4	35.6	47.8
Aw 142	562.7	70.7	457.7	6.1	13.4
Aw 143	852.7	189.9	621.3	4.9	23.4
Aw 144	689.0	30.7	590.9	9.8	4.9
Aw 145	898.4	148.4	711.3	4.3	17.3
Aw 146	643.1	39.6	575.9	4.3	6.4
Aw 147	685.9	70.5	591.5	3.5	10.6
Aw 148	630.0	166.9	388.8	11.8	30.0
Aw 149	927.7	205.9	604.8	12.6	25.4
Aw 150	788.5	65.6	639.7	10.6	9.3
VERAGE:			<u> </u>	9.7	20.9
OUNT:					91

* Sample refloated

LR: 5424 - BW SERIES Summary Table

	Weights (g)			Wet Feed	Dry Feed
Sample	Initial	Float	Sink	% Moisture	% Vermiculite
Bw 1	439.1	20.8	316.0	23.3	6.2
Bw 2	520.8	25.5	404.6	17.4	5.9
Bw 5	448.5	109.6	325.3	3.0	25.2
Bw 6	418.3	261.6	154.5	0.5	62.9
Bw 7	548.5	277.7	210.4	11.0	56.9
Bw 8	430.0	170.1	258.2	0.4	39.7
Bw 9	550.9	84.6	455.0	2.1	15.7
Bw 10	490.5	161.4	345.3	-3.3	31.9
Bw 11	422.3	69.1	314.0	9.3	18.0
Bw 13	511.0	132.5	351.3	5.3	27.4
Bw 14	464.8	78.3	298.1	19.0	20.8
Bw 15	443.8	82.9	278.1	18.7	23.0
Bw 16	513.0	80.1	322.9	21.4	19.9
Bw 17	731.6	74.4	583.3	10.1	11.3
Bw 18	493.2	156.8	308.1	5.7	33.7
Bw 19	394.9	111.5	253.7	7.5	30.5
Bw 20	472.6	47.9	384.4	8.5	11.1
Bw 21	762.0	34.5	697.3	4.0	4.7
Bw 22	457.0	55.8	322.5	17.2	14.8
Bw 23	479.3	66.3	319.7	19.5	17.2
Bw 24	406.9	51.6	362.3	-1.7	12.5
Bw 25	480.6	83.4	382.5	3.1	17.9
Bw 26	494.6	58.4	397.5	7.8	12.8
Bw 27	433.8	103.4	348.6	-4.2	22.9
Bw 28	468.9	63.8	350.9	11.6	15.4
Bw 29	446.0	75.0	367.1	0.9	17.0
Bw 30	453.8	112.7	312.3	6.3	26.5
Bw 31	554.0	64.8	488.6	0.1	11.7
Bw 32	803.0	158.7	480.7	20.4	24.8
Bw 33	389.0	115.7	243.9	7.6	32.2
Bw 34	449.7	155.3	319.5	-5.6	32.7
Bw 35	501.9	146.2	357.5	-0.4	29.0
Bw 36	499.2	84.8	357.8	11.3	19.2
Bw 37	846.9	132.6	631.8	9.7	17.3
Bw 38	484.8	98.8	323.0	13.0	23.4
Bw 39	515.4	117.1	290.3	21.0	28.7
Bw 40	508.0	119.6	290.6	19.3	29.2
Bw 42	498.1	69.7	450.4	-4.4	13.4
Bw 44	419.8	112.0	328.6	-5.0	25.4

Shaded area are samples that were crushed to -3/8" rather than the revised -8 mesh.

		Weights (g)		Wet Feed	Dry Feed
Sample	Initial	Float	Sink	% Moisture	% Vermiculite
Bw 46	484.6	121.6	316.0	9.7	27.8
Bw 47	557.6	189.1	412.4	-7.9	31.4
Bw 48	438.0	145.1	298.4	-1.3	32.7
Bw 50	439.6	174.0	257.6	1.8	40.3
Bw 50A	534.1	106.6	360.3	12.6	22.8
Bw 53	979.7	195.0	727.7	5.8	21.1
Bw 56	507.3	135.6	302.0	13.7	31.0
Bw 59	994.7	216.6	678.7	10.0	24.2
Bw 60	435.2	178.2	265.2	-1.9	40.2
Bw 61	437.4	184.0	235.8	4.0	43.8
Bw 62	394.6	142.9	208.2	11.0	40.7
Bw 63	567.1	165.9	345.3	9.9	32.5
Bw 64	581.0	248.0	264.5	11.8	48.4
Bw 65	515.9	187.3	372.0	-8.4	33.5
Bw 66	879.1	242.9	554.4	9.3	30.5
Bw 67	472.6	196.9	222.3	11.3	47.0
Bw 68	452.3	148.6	304.2	-0.1	32.8
Bw 69	524.3	187.2	289.6	9.1	39.3
Bw 70	514.1	397.1	255.5	-26.9	60.8
Bw 71	499.9	150.6	288.9	12.1	34.3
Bw 72	452.7	200.8	208.8	9.5	49.0
Bw 73	512.1	131.9	334.0	9.0	28.3
Bw 74	504.8	226.7	219.4	11.6	50.8
Bw 76	827.9	134.0	634.1	7.2	17.4
Bw 76	505.6	134.0	406.8	-7.0	24.8
Bw 78	518.2	126.7	475.6	-16.2	21.0
Bw 80	464.5	124.8	285.2	11.7	30.4
Bw 82	436.8	121.7	391.1	-17.4	23.7
Bw 83	511.4	135.0	353.6	4.5	27.6
Bw 84	437.5	84.6	345.7	1.6	19.7
Bw 85	571.2	111.9	402.6	9.9	21.7
Bw 86	506.4	107.0	406.7	-1.4	20.8
Bw 87	422.8	63.1	273.8	20.3	18.7
Bw 88	567.3	77.9	440.1	8.7	15.0
Bw 89	445.2	86.3	337.2	4.9	20.4
Bw 90	435.0	158.7	274.6	0.4	36.6
Bw 91	302.6	133.0	133.7	11.9	49.9
Bw 92	817.6	195.6	521.8	12.3	27.3
Bw 93	416.2	67.0	250.4	23.7	21.1
Bw 94	513.5	70.3	406.7	7.1	14.7
Bw 95	384.0	73.2	349.8	-10.2	17.3
Bw 96	472.4	81.3	327.5	13.5	19.9
Bw 97	616.0	72.2	485.9	9.4	12.9
Bw 98	485.3	75.2	427.6	-3.0	15.0
Bw 99	477.4	72.6	377.8	5.7	10.1

:

,

	Weights (g)			Wet Feed	Dry Feed
Sample	Initial	Float	Sink	% Moisture	% Vermiculite
Bw 100	371.8	71.4	249.1	13.8	22.3
Bw 101	442.8	23.9	276.6	32.1	8.0
Bw 102	496.0	102.4	305.7	17.7	25.1
Bw 103	493.1	85.5	369.1	7.8	18.8
Bw 104	416.2	170.1	302.3	-13.5	36.0
Bw 105	649.9	280.3	261.5	16.6	51.7
Bw 106	471.1	140.9	266.3	13.6	34.6
Bw 110	421.6	77.4	266.0	18.5	22.5
Bw 112	471.3	132.0	307.1	6.8	30.1
Bw 113	514.2	111.1	364.5	7.5	23.4
Bw 115	794.2	79.2	689.9	3.2	10.3
Bw 116	518.0	28.8	444.1	8.7	6.1
Bw 118	504.3	127.4	342.4	6.8	27.1
Bw 120	472.5	144.1	296.9	6.7	32.7
Bw 123	516.3	60.9	334.1	23.5	15.4
Bw 123A	478.4	96.2	274.7	22.5	25.9
Bw 124	452.9	90.0	301.4	13.6	23.0
Bw 126	454.0	129.6	280.5	9.7	31.6
Bw 128	492.9	32.6	405.0	11.2	7.4
Bw 130	482.8	55.7	320.0	22.2	14.8
Bw 131	427.6	35.4	257.5	31.5	12.1
Bw 133	416.6	86.6	338.7	-2.1	20.4
Bw 134	589.9	144.3	492.1	-7.9	22.7
Bw 135	478.4	114.8	333.6	6.3	25.6
Average COUNT:		108	108	7.4	25.7

1. No. 1

2

1

į ţ

		Weights (g)		Wet Feed	Dry Feed
Sample	Initial	Float	Sink	% Moisture	% Vermiculite
Cw 12	565.1	82.4	425.9	10.1	16.2
Cw 18	489.0	126.0	332.0	6.3	27.5
Cw 20	458.8	44.6	319.4	20.7	12.3
Cw 24	395.1	42.5	169.3	46.4	20.1
Cw 26	490.1	124.9	352.1	2.7	26.2
Cw 37	441.6	140.9	318.4	-4.0	30.7
Cw 37	525.8	264.7	208.7	10.0	55.9
Cw 38	481.6	146.7	290.2	9.3	33.6
Cw 40	427.8	164.0	331.8	-15.9	33.1
Cw 41	441.9	131.7	236.6	16.7	35.8
Cw 41	516.2	198.5	213.9	20.1	48.1
Cw 42	479.0	144.9	273.3	12.7	34.6
Cw 43	422.1	128.2	248.9	10.7	34.0
Cw 44	333.4	123.8	263.7	-16.2	31.9
Cw 45	438.7	131.6	261.0	10.5	33.5
Cw 46	503.9	156.4	310.8	7.3	33.5
Cw 47	433.7	159.4	294.5	-4.7	35.1
Cw 49	489.5	92.1	220.9	36.1	29.4
Cw 50	490.1	175.1	246.9	13.9	41.5
Cw 51	536.4	170.3	352.6	2.5	32.6
Cw 52	448.4	120.5	226.7	22.6	34.7
Cw 54	472.2	100.0	333.9	8.1	23.0
Cw 55	445.0	147.2	303.8	-1.3	32.6
Cw 56	575.7	144.7	409.7	3.7	26.1
Cw 57	545.1	107.9	333.1	19.1	24.5
Cw 58	445.8	124.1	319.8	0.4	28.0
Cw 60	556.8	124.4	353.4	14.2	26.0
Cw 61	499.8	210.0	274.6	3.0	43.3
Cw 64	559.1	125.6	404.6	5.2	23.7
Cw 65	470.0	116.5	265.5	18.7	30.5
Cw 65	574.5	115.6	372.7	15.0	23.7
Cw 66	535.6	117.3	408.3	1.9	22.3
Cw 67	572.9	139.6	411.4	3.8	25.3
Cw 72	571.0	100.9	316.9	26.8	24.2
Cw 73	439.9	59.4	285.0	21.7	17.2

LR: 5424 - CW SERIES Summary Table

		Weights (g)		Wet Feed	Dry Feed
Sample	Initial	Float	Sink	% Moisture	% Vermiculite
Cw 76	434.9	67.3	367.4	0.0	15.5
Cw 77	507.1	84.7	392.0	6.0	17.8
Cw 78	555.3	130.6	391.4	6.0	25.0
Cw 79	483.1	99.3	289.8	19.5	25.5
Cw 80	427.3	127.5	282.6	4.0	31.1
Cw 81	485.0	170.3	249.0	13.5	40.6
Cw 82	442.9	238.9	264.1	-13.6	47.5
Cw 83	555.3	187.9	337.7	5.3	35.7
Cw 84	430.4	222.6	229.2	-5.0	49.3
Cw 87	455.8	98.0	256.5	22.2	27.6
Cw 90	460.5	99.6	274.3	18.8	26.6
Cw 94	503.3	65.8	346.3	18.1	16.0
Cw 95	613.8	88.1	423.6	16.6	17.2
Cw 97	462.4	122.3	322.3	3.8	27.5
Cw 99	527.9	246.2	266.2	2.9	48.0
Cw 100	476.0	65.7	349.8	12.7	15.8
Cw 101	488.1	93.7	248.7	29.9	27.4
Cw 103	453.2	63.1	367.2	5.1	14.7
Cw 104	534.2	175.0	252.3	20.0	41.0
Cw 105	532.8	161.4	278.2	17.5	36.7
Cw 107	545.4	161.1	360.9	4.3	30.9
Cw 108	515.1	110.2	349.0	10.9	24.0
Cw 109	578.7	130.1	353.7	16.4	26.9
Cw 110	440.6	98.1	277.4	14.8	26.1
Cw 112	503.4	104.8	289.4	21.7	26.6
Cw 204V	603.1	48.0	402.3	25.3	10.7
Cw 208V	495.5	49.5	440.2	1.2	10.1
VERAGE				10.6	28.9

COUNT:

62

* Crushed to 8 mesh. Remainder crushed to 4 mesh

62

** The following applies to these samples:

1. Entire sample screened on 4 mesh to remove plus 4 mesh material

2. Minus 4 mesh material riffled to approximately 500g for processing

3. Minus 4 mesh reject AND plus 4 mesh combined and bagged

LR: 5424 - DW SERIES Summary Table

		Weights (g)		Wet Feed	Dry Feed
Sample	Initial	Float	Sink	% Moisture	% Vermiculite
Dw 5	594.9	151.3	273.9	28.5	35.6
Dw 14	395.4	62.7	280.6	13.2	18.3
Dw 23	506.9	72.3	428.7	1.2	14.4
Dw 24	533.7	75.0	447.1	2.2	14.4
Dw 27V	583.2	58.3	432.4	15.9	11.9 *
Dw 31	438.5	71.6	426.7	-13.6	14.4
Dw 33	502.2	151.2	316.6	6.8	32.3
Dw 34	453.9	125.2	275.2	11.8	31.3
Dw 35	489.7	147.5	331.2	2.2	30.8
Dw 36	418.0	79.3	264.2	17.8	23.1
Dw 37	446.1	109.5	294.0	9.5	27.1 *
Dw 38	512.4	140.4	285.1	17.0	33.0 *
Dw 39	652.4	117.1	435.3	15.3	21.2 *
Dw 40	576.4	108.0	409.3	10.3	20.9 *
Dw 43	537.6	120.0	459.0	-7.7	20.7
Dw 43	470.3	65.4	386.7	3.9	14.5
Dw 49V	476.4	77.1	331.1	14.3	18.9
Dw 50	495.4	117.4	329.9	9.7	26.2
Dw 51	419.4	107.1	271.7	9.7	28.3
Dw 52	519.2	122.1	374.7	4.3	24.6
Dw 53	473.7	94.1	345.5	7.2	21.4
Dw 54	517.2	112.1	339.7	12.6	24.8
Dw 55	598.6	124.7	374.3	16.6	25.0
Dw 56	456.7	148.0	251.0	12.6	37.1
Dw 57	523.7	154.9	324.8	8.4	32.3
Dw 58	508.3	250.1	214.3	8.6	53.9
Dw 59	462.6	189.8	246.6	5.7	43.5
Dw 60	461.1	186.0	224.4	11.0	45.3
Dw 61	453.4	122.0	382.1	-11.2	24.2
Dw 62	543.5	86.8	418.9	7.0	17.2
Dw 63	485.9	109.6	428.2	-10.7	20.4
Dw 64	442.8	111.6	302.0	6.6	27.0
Dw 65	505.0	99.3	421.5	-3.1	19.1
Dw 66	573.8	100.1	440.1	5.9	18.5
Dw 67	544.0	62.0	336.4	26.8	15.6

Dw 68	592.5	143.4	407.2	7.1	26.0	
Dw 69	550.0	109.4	411.4	5.3	21.0	
Dw 71	490.8	75.5	224.5	38.9	25.2	
Dw 71V	515.7	53.5	349.8	21.8	13.3	**
Dw 72	597.8	126.4	415.2	9.4	23.3	
Dw 72V	432.3	68.1	333.6	7.1	17.0	
Dw 73	484.0	43.9	523.1	-17.1	7.7	
Dw 74	445.1	127.3	302.6	3.4	29.6	
Dw 74V	666.4	162.7	281.8	33.3	36.6	**
Dw 75	517.8	151.2	314.4	10.1	32.5	
Dw 75V	630.7	69.0	316.2	38.9	17.9	**
Dw 76V	443.2	40.4	338.5	14.5	10.7	**
Dw 77V	505.0	37.7	493.1	-5.1	7.1	
Dw 81	525.1	94.9	461.4	-5.9	17.1	
Dw 82	580.0	152.9	319.6	18.5	32.4	
Dw 85V	516.1	95.6	311.4	21.1	23.5	
Dw 86	563.8	102.3	409.1	9.3	20.0	
Dw 88	503.1	63.3	274.1	32.9	18.8	
Dw 89	437.5	81.4	346.4	2.2	19.0	
Dw 90	588.3	67.6	427.5	15.8	13.7	
Dw 96	397.3	69.1	250.5	19.6	21.6	**
AVERAGE				10.0	23.6	
COUNT:		56	56			

** The following applies to these samples:

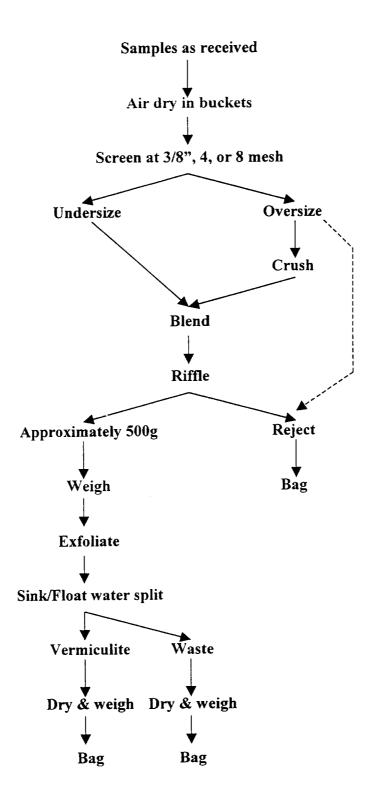
- 1. Entire sample screened on 4 mesh to remove plus 4 mesh material
- 2. Minus 4 mesh material riffled to approximately 500g for processing
- 3. Minus 4 mesh reject AND plus 4 mesh combined and bagged

LR: 5424 - EW SERIES Summary Table

	······································	Weights (g)		Wet Feed	Dry Feed	
Sample	Initial	Float	Sink	% Moisture	% Vermiculite	
Ew 26	459.3	107.2	355.2	-0.7	23.2	
Ew 27	443.1	83.2	335.8	5.4	19.9	
Ew 31V	506.8	133.7	285.3	17.3	31.9	
AVERAGE				7.4	25.0	
COUNT:		3	3			

LR: 5424 - FW SERIES Summary Table

		Weights (g)		Wet Feed	Dry Feed]
Sample	Initial Float S		Sink	% Moisture	% Vermiculite	1
Fw 10	495.9	78.5	353.0	13.0	18.2	1
Fw 11V			388.4	22.1	18.6]**
AVERAGE				17.5	18.4	•
COUNT:		2	2			


** The following applies to these samples:

- 1. Entire sample screened on 4 mesh to remove plus 4 mesh material
- 2. Minus 4 mesh material riffled to approximately 500g for processing
- 3. Minus 4 mesh reject AND plus 4 mesh combined and bagged

Details of Tests

ł

FLOWSHEET

Note: The occasional negative moisture contents in the following tables can be attributed to either a hold-up of coarse material from the previous sample in the rotary section of the exfoliator or material in the air classifier

	Dry Feed	Wet Feed	g)	Weights (
;	% Vermiculite	% Moisture	Sink	Float	Initial	Sample
	2.5	13.7	821.8	21.5	977.5	Aw 1
	43.6	-31.0	460.3	355.7	622.7	Aw 2
	54.1	14.7	202.3	238.7	517.2	Aw 3
٦	6.8	3.2	819.2	60.1	908.4	Aw 4
	22.6	12.0	564.9	165.2	829.3	Aw 5
	14.7	9.1	428.2	73.7	552.3	Aw 6
	22.6	14.0	602.1	176.2	905.1	Aw 7
	33.0	9.6	355.2	175.0	586.5	Aw 8
	42.8	14.3	353.7	264.7	721.9	Aw 9
	45.0	8.2	494.7	404.4	979.7	Aw 10
	40.2	10.9	286.3	192.7	537.4	Aw 11
	37.9	10.2	296.0	180.8	531.1	Aw 12
	3.9	11.8	679.1	27.3	801.0	Aw 13
	5.7	5.3	463.5	28.1	519.3	Aw 14
	34.4	5.9	378.4	198.2	612.7	Aw 15
	39.8	16.8	309.1	204.0	616.8	Aw 16
	54.2	18.7	336.7	398.0	903.5	Aw 17
	21.7	4.7	654.7	181.8	877.8	Aw 21
	25.6	5.4	465.8	160.6	662.1	Aw 22
	26.5	4.6	422.0	152.3	601.8	Aw 26
	30.7	23.4	478.4	212.0	901.5	Aw 27
	28.2	4.4	450.5	176.8	656.2	Aw 28
	29.6	8.5	387.2	163.0	601.3	Aw 29
٦	15.3	25.6	351.4	63.6	558.1	Aw 29A
	35.1	11.0	301.4	163.3	522.1	Aw 30
	28.3	?	536.3	211.8	?	Aw 31
	19.4	6.9	336.0	81.1	447.8	Aw 32
	29.2	5.4	593.3	245.1	885.8	Aw 33
	26.5	6.9	494.7	178.4	723.0	Aw 34
	48.2	8.5	366.3	340.3	772.6	Aw 35
	28.8	5.7	530.0	214.3	789.3	Aw 36

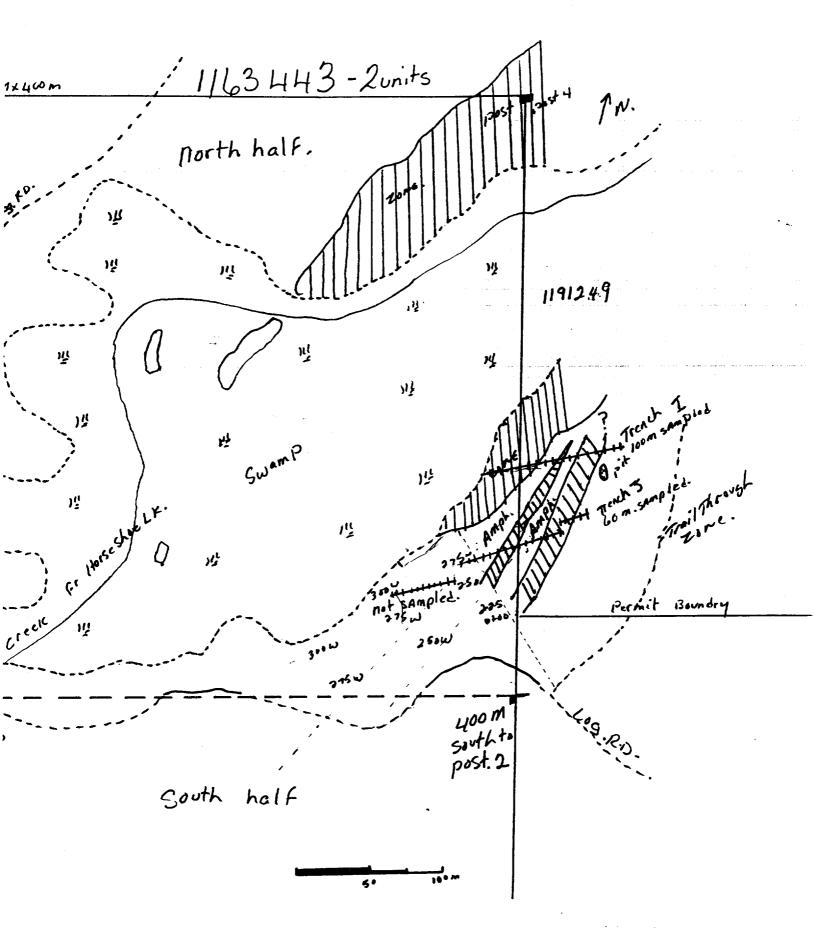
LR: 5424 - AW SERIES Summary Table

		Weights (g)	Wet Feed	Dry Feed
Sample	Initial	Float	Sink	% Moisture	% Vermiculite
Aw 37	645.6	198.5	391.7	8.6	33.6
Aw 38	570.6	138.9	376.5	9.7	26.9
Aw 39	799.3	139.2	628.0	4.0	18.1
Aw 40	508.5	30.6	395.0	16.3	7.2
Aw 40A	747.0	410.1	276.3	8.1	59.7
Aw 42	855.6	129.3	675.0	6.0	16.1
Aw 43	888.8	227.1	581.2	9.1	28.1
Aw 44	995.4	331.6	516.8	14.8	39.1
Aw 45	579.4	173.1	349.5	9.8	33.1
Aw 46	1007.2	403.6	476.6	12.6	45.9
Aw 47	680.1	144.2	283.9	37.1	33.7
Aw 49	602.5	185.8	347.0	11.6	34.9
Aw 50	930.2	252.5	461.1	23.3	35.4
Aw 100	689.2	109.2	315.4	38.4	25.7
Aw 101	688.7	99.7	559.7	4.3	15.1
Aw 102	883.8	58.3	786.7	4.4	6.9
Aw 103	860.4	23.5	805.6	3.6	2.8
Aw 104	858.7	90.4	714.7	6.2	11.2
Aw 105	775.7	103.0	391.2	36.3	20.8
Aw 106	890.4	10.6	811.4	7.7	1.3
Aw 107	670.2	17.7	570.5	12.2	3.0
Aw 108	751.8	108.0	539.3	13.9	16.7
Aw 109	789.7	84.3	678.2	3.4	11.1
Aw 110	587.1	28.3	521.8	6.3	5.1
Aw 111	?	103.3	414.4	?	20.0
Aw 114	494.0	168.8	224.7	20.3	42.9
Aw 115	792.3	53.5	620.1	15.0	7.9
Aw 116	607.3	23.8	550.5	5.4	4.1
Aw 117	844.2	53.1	751.0	4.8	6.6
Aw 118	545.6	8.4	521.9	2.8	1.6
Aw 119	747.6	12.9	716.5	2.4	1.8
Aw 120	648.3	16.2	591.8	6.2	2.7
Aw 121	877.3	13.1	830.8	3.8	1.6
Aw 122	909.1	7.1	861.4	4.5	0.8
Aw 123	747.3	24.5	679.6	5.8	3.5
Aw 124	667.2	12.3	637.2	2.7	1.9
Aw 125	625.2	4.1	604.3	2.7	0.7
Aw 128	525.3	5.6	509.6	1.9	1.1

ľ

•

CLAIM NUMBER 1163443 UNITS 2 LOT 11 CONCESSION 2 **CAVENDISH TOWNSHIP** SOUTHERN ONTARIO


CAVENDISH

31D16SW2002 2.20489

050

Two trenches were trenched on this claim starting of March 28,2000. Trench I and trench J. Those trenches were a extension of the trenches on the claim 1191249 where the bulk of our work has been done. The trenches are located in the north half of the claim near the east claim line, with 66 samples taken for assay and 100 lbs. taken for density test.

Second copy of Assays in BookLet

Istel Ittel Ittel Grows Indition Indition Indition 1 135301 315.1 2460 69.1 21.9 238.5 2 135302 493.7 422.0 71.7 14.5 358.0 3 135302 220.6 202.9 17.7 8.0 200.9 4 135304 375.3 334.7 40.6 10.8 314.1 5 135305 641.8 568.0 73.8 11.4 379.9	5 7.5 3.0 64.0 15.1 2.0 0.9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5 7.5 3.0 64.0 15.1 2.0 0.9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.0 0.9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.0 0.9
4 135304 375.3 334.7 40.6 10.8 314.1 5 135305 641.8 568.0 73.8 11.4 379.9	
5 135305 641.8 568.0 73.8 11.4 379.9	20.6 6.1
	1881 33.1
6 135306 525.8 398.0 127.8 24.3 396.	2 15.8 3.9
1 135307 225.1 1755 49.6 22.0 175.5	0 0
8 135308 399.6 335.6 64.0 16.0 328.	
9 135309 560.7 489.5 71.2 12.6 478.1	14.4 2.3
10 135310 504.1 441.4 62.7 12.4 375.3	
11 135311 406.9 367.9 39.0 9.5 311.9	56.0 15.2
12 135312 1,59.8 412.6 47.2 10.2 359.9	1 52.7 12.7
13 135313 657.1 542.6 114.5 17.4 478.9	7 63.7 11.7
14 135314 471.1 376.2 94.9 20.1 298.1	78.1 20.7
5 135315 475.9 381.7 94.2 19.7 268.0	
16 135316 530.3 428.6 100.7 18.9 299.0	0 1306 30.4
17 135317 572.9 457.3 115.6 20.1 521.0	
18 135318 538.7 407.1 131.1 24.3 343.	2 13.9 3.4
19 135319 456.6 334.2 122.4 26.8 264.	
20 135320 5137 392.2 121.5 23.6 365.	5 26.7 6.8
21 135321 1736 370.4 103.2 21.7 338.	7 31.7 8.5
22 135322 5330 410.9 122.1 22.9 364.	
23 135323 663.6 527.1 136.5 20.5 452.	4 74.7 14.1
24 135324 449.8 400.9 48.9 18.8 350.	
25 135325 626.3 567.9 58.4 9.3 528.	
26 135326 927.8 808.3 119.5 12.8 769.	
27 135327 7294 650.8 78.6 10.7 515.	
28 135328 68.5 591.9 89.6 13.1 481.1	110.8 18.7
29 135329 601.5 512.2 89.3 14.8 415. 20 135330 529.4 471.2 58.2 10.9 420.	2 97.0 18.9 7 505 10.7
A stand of the second of the s	/ _ /
33 135333 651.1 528.9 122.2 18.7 503.	5 25.4 4.8

TRENCH I

		Total Sample	Totel EXF	Groms	B. Maisture	woste	Verm	8 Vern
34	135334	521.1	457.6	63.5	12.1	439.5	18.1	3.9
35		619.7	538.5	81.2	13.1	460.8	77.7	14.4
36		985.3	862.6	122.7	12.4	687.7	174.9	20.2
31	135337	677.1	576.4	180.7	14.8	405.1	171.3	29.7
39	135338	837.0	733.3	103.7	12.3	605.4	127.9	17.4
29	135339	692.3	613.6	78.7	11.3	471.3	142.3	23.1
40	135340	629.6	551.4	78.2	12.4	481.5	69.9	12.6
41	135342	4915	435.8	55.7	11.3	387.8	48.0	11.0
42	135343	610.6	537.8	72.8	11.9	521.2	16.6	3.0
	-							

VERT. SAmples

		Istal Sample	Total 12xF.	Grans Moisfure	Musture	worde	Verm	8. Jerm
ĪV	135341	294.1	268.4	26.3	8.9	255.2	13.2	4.9
27		4338	414.6	19.2	4.4	392.4	22.2	5.3
2V 3V		5580	416.4	141.6	25.3	386.3	30.1	7.2
41		4640	378.6	85.4	18.4	308.8	69.8	18.4
5V		593.7	529.3	64.4	10.8	516.0	13.3	2.5

Bulk Test trench A.

	T				1		l	
. <u></u>	wet 478 LBS 79.6LBS	DRY	water	8 water	wet	Dey	Loss	8 1055
A	1178 LBS	386 LBS	92LBS	19.2	30 gal.	285 cpl	1.5 gal	5.0
A	78.6185	64.3185	15.3485	19.2	5gal.	285 cpl		
					J			
	1		1	1		1	1	1

Horse-Shoe Trench.J

		•			· · · ·	.		
		Total Sample	Total EXF.	Groms	8 moisture	weste	Verm.	9 verm
1	135348	494.5	4475	41	9.5	418.5	29.0	6.4
2	135349	683.2	604.7	78.5	11.4	553.3	51.4	8.5
	135350	499.1	393.3	105.8	21.1	393.3	0	0
4	135351	486.3	351.2	135.1	27.7	351.2	ð	D
	135352	452.5	354.0	98.5	21.7	343.7	10.3	2.9
6	135353	192.0	144.5	47.5	24.7	142.4	2.1	1.4
1	135354	515.7	428.2	875	16.9	299.5	128.7	30.3
8	135355	363.4	321.4	42.0	11.5	236.0	85.4	26.5
9	135356	730.9	606.4	124.5	17.0	398.6	2078	34.2
	135357	581.0	476.1	104.9	18.0	331.3	144.8	30.4
11	135358	581.3	468.0	113.3	19.4	320.4	147.6	31.5
	135359	560.3	465.3	95.0	16.9	288.7	176.6	37.9
	135368	8405	726.6	1/3.9	13.5	638.1	88.5	12.1
14	135361	864.0	733.5	130.5	15.1	735.5	0	0
15	135362	793.2	639.8	153.4	19.3	6309	8.9	1.3
16	135363	736.5	578.9 -	157.6	21.3	578.9	0	0
17	135364	469.8	412.6	52.7	12.1	369.0	43.6	10.5
18	135365	6834	581.9	1845	14.8	537.3	H+++++++++++++++++++++++++++++++++++++	7.6
19	135366	492.4	443.3	49.1	9,9	426.0	17.3	3.9
		• · · · · · · · · · · · · · · · · · · ·		•		·		·
18	Recheck.	683.4	581.9	101.5	14.8	537.3	44.6	7.6
						_		
							•	
.		•				<u></u>		
			<u></u>			,		

2.20489

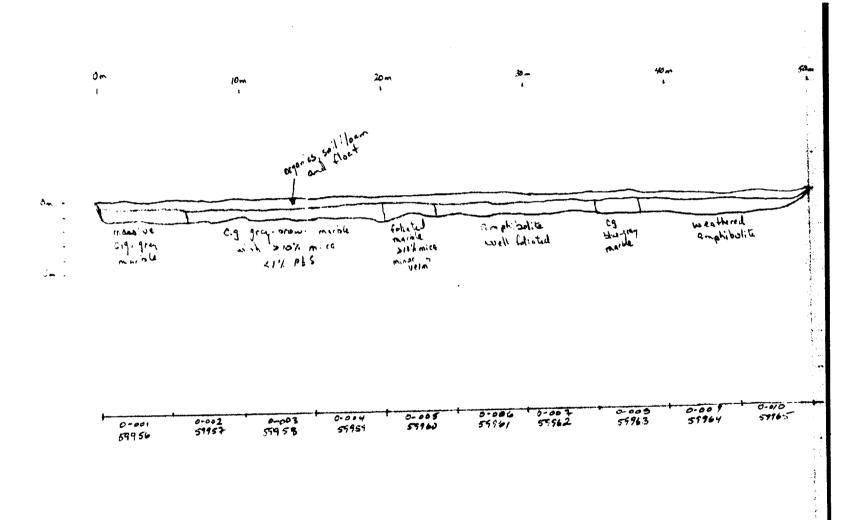
31D16SW2002

060

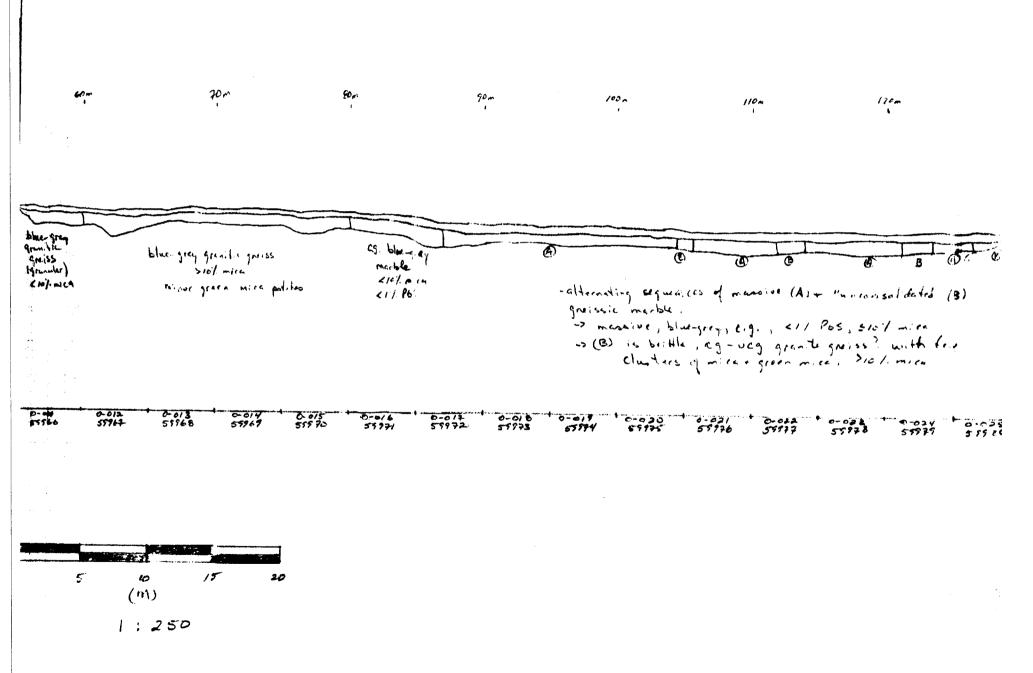
CAVENDISH

MAPS by

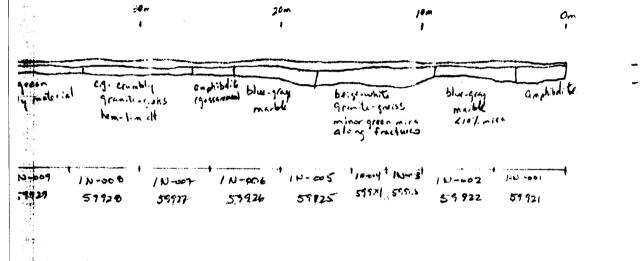
DAN LEROUX


TRENCHES REGIS RESOURCES INC.

NORTH ZONE. 0,1N,1S,AND 2S ZONE 2. 200,335,AND 400 HORSE SHOE. I AND J


2.20489

REGIS RESS	meces Inc
NORTH	ZONE
TRENCH	+ 0
MAPED BY : D.LEDONE	DATE: MARCH 200
MANN BY D. LE BOM	SCALE: 1:250
CLAIM No:	MAG DECL : IY W
TRENCH ALEMLITH:	FIGURE



TRENCH O

TRENCHO

1

15 2pm

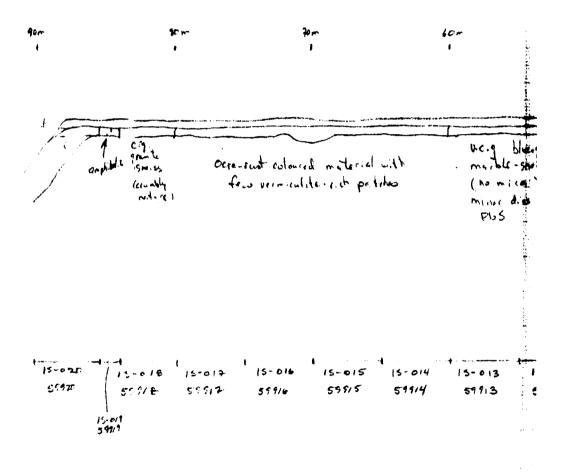
REGIS PESOURCES JNC. NORTH ZONE TRENCH 1-N MAPPED BY : D. LEROUX DATE DEALLAN BY : D. LERONK SALS: 11250 CLAIN No MAG DECL : 14° W TRENCH AZI MUTH . FIGUDE

alm

TRENCH I-N

LOOKING

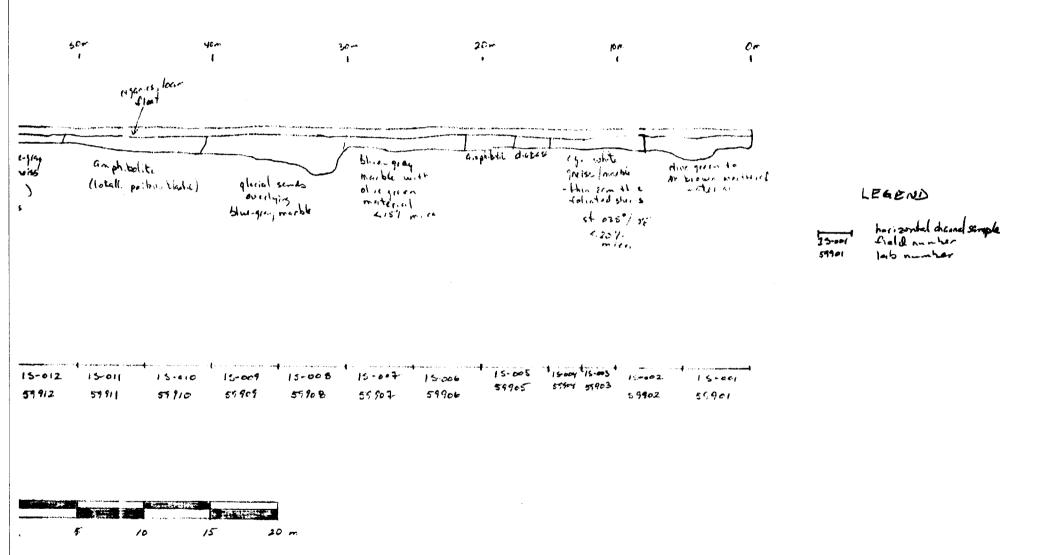
\sim									
0		ur cray urble 10/in	- haari	Cg. gri (ei	nite-scrips amidy)		Mile april 35	stissaren sen ey material	Cigi cru Granit hem-li
11.3	· 8 33	1N-017 59937	1N-016 59930	1 N -0 15 59935	<i>J.N.</i> -014 1N-013 59934 59933	/N-1+2 MOVI 59932 59131	IN- 210 59 930	59929 1N-209	1 N-20 B 57928


LEGEND

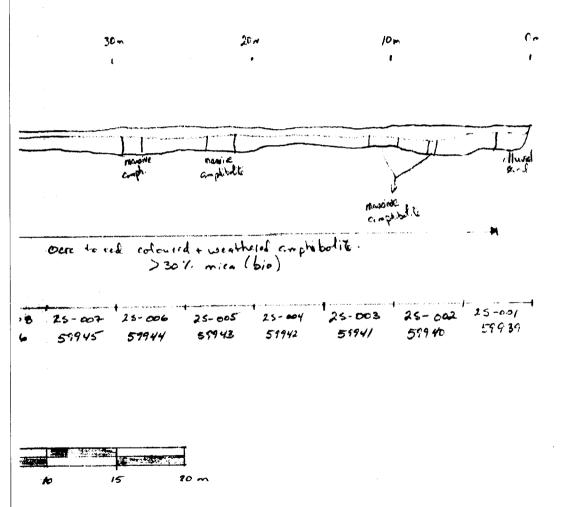
11-017 horizontel channel sample 51937 leb number

0	5	10	15	1

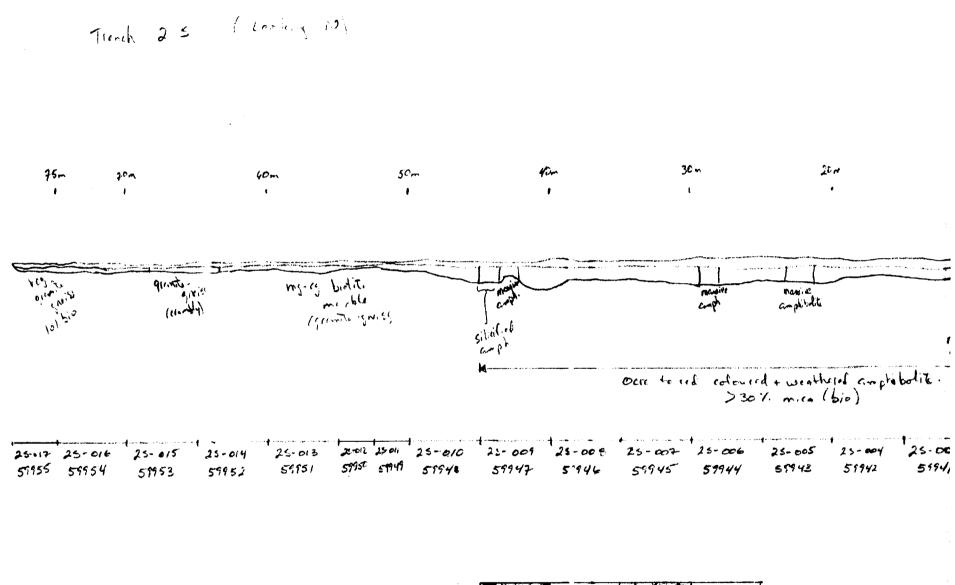
TRENCH 1-N

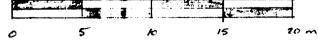

TRENCH 1 South

REATS REG	arees	INC
North Teench		
MAPPED BY: D. LEROM	DATE :	
DRAWN BY: D. LE Zonx		1:250
	MAG DECL	jų• w
TRENCH ARTMUTH:	FLAUDE	


.

TRENCH 1-S


1:250


TREACH 1-S

REGIS RE	Sources	INC
	ZONE	
TRENCH		
MAPPED BY: D.LEROW	DALE :	
DRAW BY: P. LEZON	SLALE	1:250
CLATEN No:	mAG PECL .	14°W
TEENCH AZEMUTIK	FIGURE	

TRENCH 2-S

TRENCH 2-5

MAPS by

DAN LEROUX

TRENCHES REGIS RESOURCES INC.

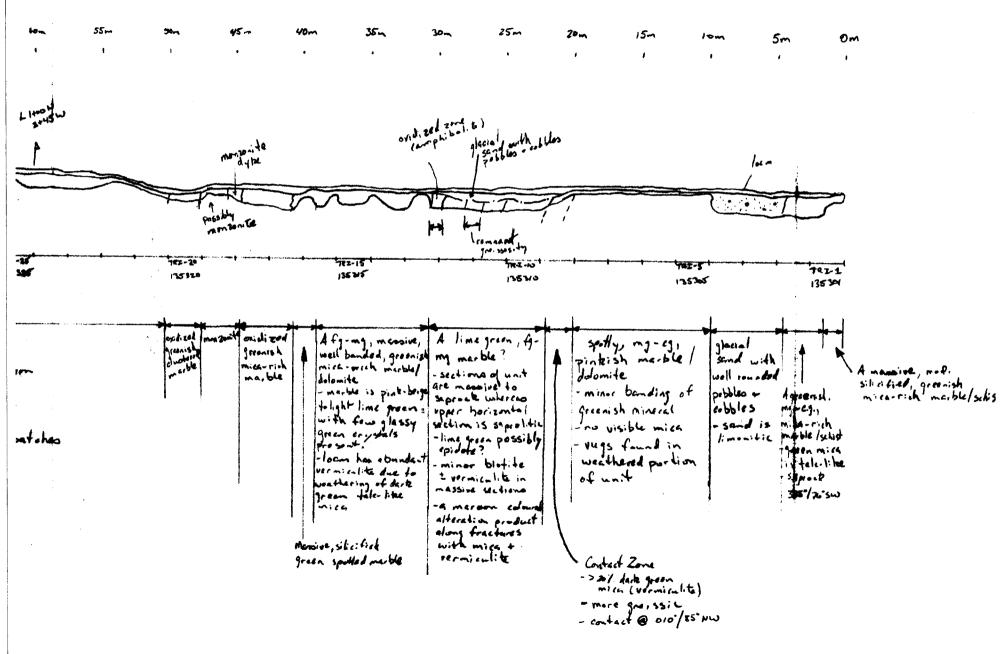
NORTH ZONE. 0,1N,1S,AND 2S ZONE 2. 200,335,AND 400 HORSE SHOE. I AND J

====marble

LEGEND

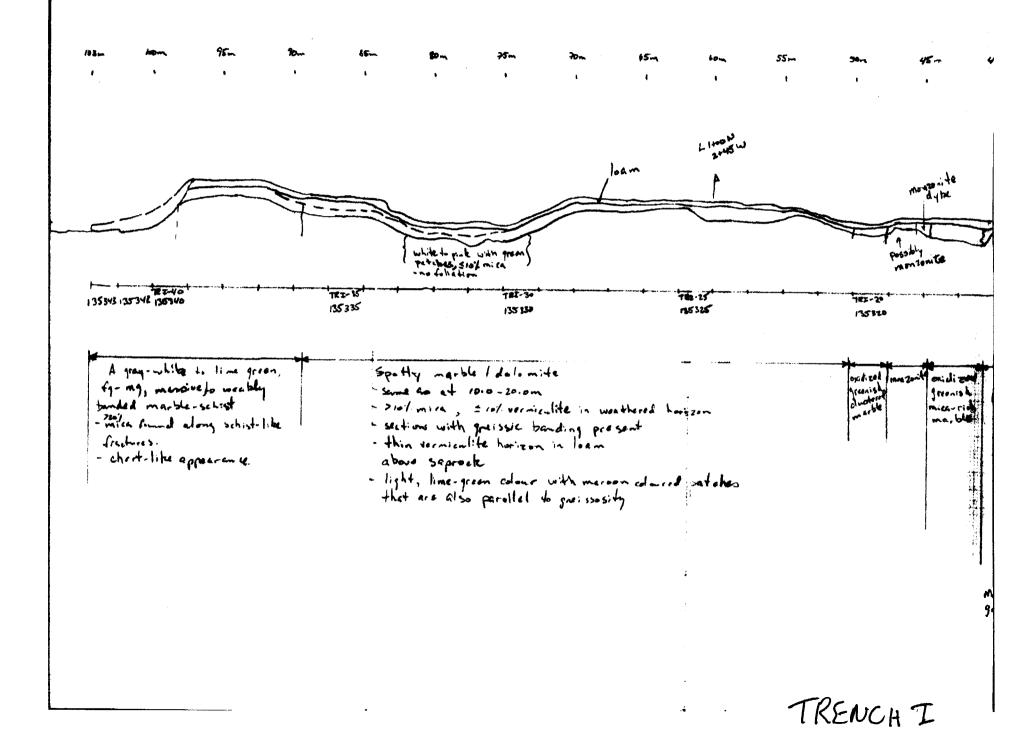
limit of weathering profile

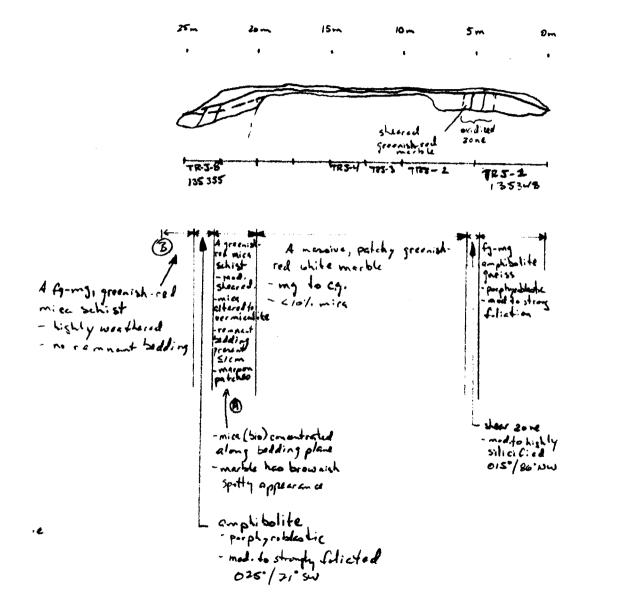
TR3-5	horizontal channel sample field number
135305	leb number


REGIS RESO	OURCES INC.
HORSESHOE	6220
TRENCH	±
MAPPED BY: D. LEROUX	DATE: MARCH 29,2000
DRAWN BY: D. LEROUK	SCALE: 1:250
CLAIM No:	MAG DECL: 14°W
TRENCH AZIMUTH:	FIGURE

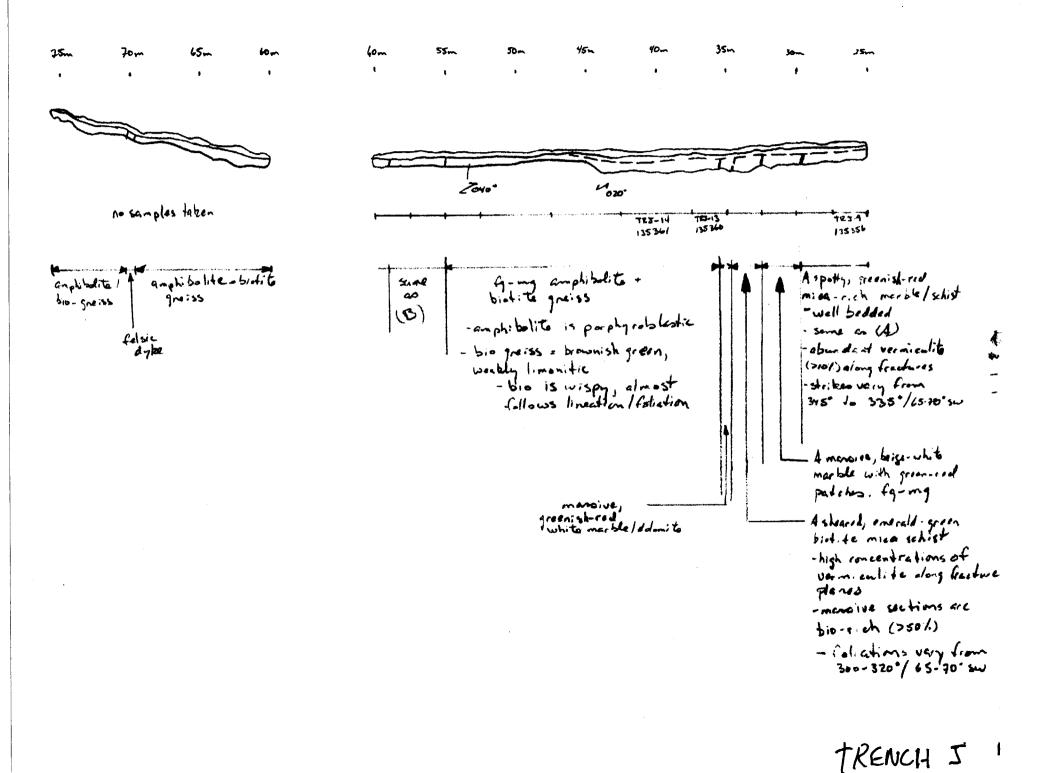
علد

Swamp


TRENCH I


Looking 315°

TRENCH I


Looking 3150

REGIS RE	FSOURCES INC
HORSE SHO	e grid
TRENC	4 5
MAPPED BY : D. LEZON	DATE: MAR 29, 2000
DEALON BY: D. LEEDING	
CLAIM No :	MAG DELL: 14-W
TRENCH ATTMUTH:	FIGURE

TRENCH J

13A	2-3	+ 2.5 5-0+0	0	0-4-3	
B	3	1+12.55-0+0	D	3	
C	3-4	1+12.55-070	10.2	15	×
13 D	3	1+005-0+0	11.3		N
14	2-3	1+255-0+0	26.0		2.20489
15	2-3	1+37.55-0+0	15.3	-	
16A	0-1	1+505-0+0	8.2	15	
163	2	14505-070	12.0		CAVENDI SH
17	2-3	1+62.55-070	8.1		
-18	0-2	1+755-070	0t	0-1	070
19	6+2	1187.55-070	do .3	4	0
20A	2'	2+005 - 070	0	4	
B	2-3	2+005- 670	Ot Of	0-4	
C	3	2+005-2+0	@ 28.4	14	00400
C 	3-4	2tons-oto	@J8.4 3.8	8 .	20489
C D E		2+005-070 2+005 0+0		2 .	20489
C D €		2tons-oto		8 .	20489
C D E		2+005-070 2+005 0+0		8 .	20489
		2+005-070 2+005 0+0		2 .	20489
		2+005-070 2+005 0+0		8 .	20489
		2+005-070 2+005 0+0		8 .	20489
		2+005-070 2+005 0+0		8.	20489
		2+005-070 2+005 0+0		8.	20489
		2+005-070 2+005 0+0		% .	20489
		2+005-070 2+005 0+0		8.	20489
		2+005-070 2+005 0+0		8.	20489
		2+005-070 2+005 0+0		%	20489
		2+005-070 2+005 0+0		%	20489

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	clam #'s	1077036	111	1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	# Depth Location	Nerm	- Dec	GG-4 former à	2 800
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5 2' 0+0-0+0	8.3	* -	V	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0 8.9			-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		X			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			1		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		ا سس			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			•		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				•	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			1 - 16	•	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					<u></u>
D 3-4 0+315-0+0 5.6 E 4 0+315-0+0 7.4	C 3 0+3,5-0t		·		
E 4 0+3,50+0 7.4		I			
·6 2' 0+37.5 × 0+0 0		0 0	1 (· ·	
7A 2 07425-070 0 0-1			0-1		
73 3-4 6+475-070 Ot 0-1-16			0-1-16		
8 2' 07505-070 0 0-3			0-3		
9 2' 17+565-070 0+ 4-16			4-16		
10 2-3 0+62.5.570 4.2					
11A 2 01755-070 Ot 4-16-	114 2 01755-	oto Ot	4-16-		
B 2-3 0+75 5-070 25.0		70 25.0			
C 3-40+755-0+0 4.3 15		5+0 4.3	15		
D 4 0+7550+0 5.5 15		+8 5.5	15		
E 456+755-640 6.3		+0 6.3			
124 2 0+87.55-070 8.3					
1213 3 0+925-0+0					
	~~ - - +-				

0+0 - 0+12,5E 0+4 2 30A 0 015 5-15-12 2-3 0+0 - 0+12.5 E B 4.6 C 34 0to - ot 12.5E 2.5 070 - OT 12.5 F D 4 4-5 0to - 0t 12.5 E ·H.0 E 12.7 f 010 - 01 12.5E 5 31A 2 OOto. - 0725E 0 - 10-1 - 49 F. 15 _3 0+ 010 - A 25E 31B 31,9 10- 0t 37.5E 32A 7.5 15 37.5E 2-3 Oto - Ot B 15 3 6.2 ٠H 0to - ot 37.5E \mathcal{C} 16.5 33 2-010 - 07 50E 0 + 4 2 0+0-0+62.5E 34A 0 - 07625E 0 B 0+0 4____ 3 35 0+0 - 0+75E 2 Ο 2-4 6to - 6t87.5E 36 A 2-3 070 - B787.5E 0 0-4 B 3 2-4 Bto -0787.5E О 0-5 4 610 - 6487.5E 0 0-4 heavy mich 070 - 1600 37A 0 2 O+ 1 heavy mich 3 D Oto 1100 E 38 5-3 010 - 1+125E Ð 3_____ 010 - 1725E 0 22 _ 39 5.0 010 - 11375 E 0+1 40 0+1 070 - 1450E 0 2 HLA 3.4 0+1 070- 1+50E HIB Ot

;				
/4				
LI3A	2	070-2+12.5W	13.4	
-7-11	2-3		13.8	
C	3	070-0712.5W	31.3	
ЦЦ	2	070-0725 W	140	
HSA	0-1	0+0-0+37.5W	0+	1 16
B	2	0+0-0+37.5W		113-16
C	3	0+0-0+37.5W	0+	1 12-16
HOA	0-1	oto - otsow	0+	4-16
B	1	070-0750W	15.6	
C	3-4		10.8	
Ď	4	Oto-otsow	6.6	15
E	4-5		8.9	
<u> </u>	5	070-0750W	4.6	
<u>н7</u>	2-3		0	
<u></u>	2-3		0	12 -
B	3-4	670-6775W	0	12-15
<u> </u>	<u>+ 4</u>	$\frac{670-67756}{120-67756}$		12
		670-0775W) 0	
<u>_497</u> 12	12	1870-0787.5W		
$-\frac{D}{C}$	214	1 870-0 +87.54	10	0-1-13-15
ENA	+ 2.7	070 - 1100 W	0	0-4
<u>50 A</u>	12	OFO-ItODW	·Ot	-10 - 24
	H	670-1700W	-91	
	++			
]

58E 040 - 1+ 125W 55 A 2 1712,5W 170 ß 3 56 A 0 6+0-1+25W 0-3 H25W O B 670 -12 0 H25W 3-4 C 140-0 25 W D 070 2 \mathcal{O} 25W 5 6+0 01 4 H 37.5W 57 A いそび 1-4 0+ B 37.5W 3-4 C 1+37.5W 0+0 4 D 4 1+37.SW δ Gto--5 E H 37.5W 4 6+0 4 5 1+37.5W DY 070 23 1+500 58 A 670 \mathcal{C}_{\perp} 4 B 1+ 50 W D 010-1+ 50W \mathbf{O} 45 OtD-C 1+ SOW 670- \mathcal{D} 59 A 1+102.5W 0+0-1+62.50 B 660 -3-4 1+62.5W C 010- \mathcal{O} 0 D 4 1+62.5W 6+0-EF 45 070-1+62.5W Bto-1+62.5W 5 0 0-4 0+0-1+62.5W G 5+

			L			
1						
1.00	0-2	0+00 - 1+75W	17.6			
60A B	2	0+00-1+75W	20.8			
	2	0700-1+87.5W				
61A B	3	0+00-1+87.5W	0	4		
	$\frac{2}{2}$	0700 1101 See	Oź	24		
62	↓	0700-2+12.5W		7		
634	B 2' 3'	6700-2+12.5W				
B	$\frac{3}{2}$	0100 2 tas W	3.1	•		
64 A B	3	0700 0 10300 0700- 2+25W	8.0			
		0700-2+37.5W				
65 A	2	0706 - 2+37.5W				
<u>B</u>	3	212000	18.6		······································	
	34	0700 2151.50 0700 - 2750W		· · · · · · · · · · · · · · · · · · ·		
66 A		OTO - FIGUE	0			
5		1 1 1 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1				
B	3	0700-2750W				
67A	2	0100-2+625W) 7.5	/2	Rusta rallon x	
67A B	2 3	0700-2+625W 0700-2+62.54) 7.5) ()+	12	Rusty callour	
67A B 68A	2320	0700-2+625W 0700-2+62:54 0700-2+75W) 7.5) ()+ 0+		Rusty callow +	
67A B	2320	0700-2+625W 0700-2+62.54) 7.5) ()+		Rusty Callov +	
67A B 68A	2320	0700-2+625W 0700-2+62:54 0700-2+75W) 7.5) 0+ 0		Rusty callow +	
67A B 68A	2320	0700-2+625W 0700-2+62:54 0700-2+75W) 7.5) 0+ 0		Rusty callow +	
67A B 68A	2320	0700-2+625W 0700-2+62:54 0700-2+75W) 7.5) 0+ 0		Rusty callow +	
67A B 68A	2320	0700-2+625W 0700-2+62:54 0700-2+75W) 7.5) 0+ 0		Rivsty callow +	
67A B 68A	2320	0700-2+625W 0700-2+62:54 0700-2+75W) 7.5) 0+ 0		Rusty callour	
67A B 68A	2320	0700-2+625W 0700-2+62:54 0700-2+75W) 7.5) 0+ 0		Rusty callour	
67A B 68A	2320	0700-2+625W 0700-2+62:54 0700-2+75W) 7.5) 0+ 0		Rusty Callow +	
67A B 68A	2320	0700-2+625W 0700-2+62:54 0700-2+75W) 7.5) 0+ 0		Rusty Callow +	
67A B 68A	2320	0700-2+625W 0700-2+62:54 0700-2+75W) 7.5) 0+ 0		Rusty Cállour	
67A B 68A	2320	0700-2+625W 0700-2+62:54 0700-2+75W) 7.5) 0+ 0		Rivsty Callour	

.

		1	
1			
70A 2	0+255-0+12.5W	015	
R 2-3		11.4	
<u>C</u> 3	0+255-0+12.5W	5.5'	
D 3-4	01255-0712.50	6.4	
E 4	0+255-0+12.5W	6.1	
F 4-5	0+255-0+125W	8.4	
71A 2	07255-0725W	244	
· B 2-3	0+255-07250	5,2	
<u> </u>	6+255-0+25W	6.7	
D 3-4		7.3	
E 4	07255-0725W	8.3	
F 4-5	67255-6725W 67255-0725W	5.7	
		0	0-4
72 A 3	0+255-0+37.5W	30.2	
<u>B</u> 3-4 C 4	07855 0737.5W	11.1	
C 4 D 4-		8.4	
73A 2	07255-0750W	ot	1-16
B2-		O+	0-1
03	07255-0750W	0	4
74# 2	0+255-0762.5W	0	3'
15A 2	17255-0+75W	0	14
R 3-	4 0+255-0+75W		
7612	0+255-0187.54		1 - 12
77A 2	072551700 W	14.2	
· B 3		26.5	2
18A 2	0+255-1+1254		0-4
19A 2	0+255-1+25W	0	
-		I	I

		1	4	
1				
100	3	0+255- 1+25W	0	0-4
1713	2		0	0-4
	3-4		0	0-4-3
\mathcal{D}	4	6+255-1+25W		1 - 3
80 A	2	04255-1+37.5W	0	1-3
B	3-4	07255-1737.5W	0	
81 A	2	07255-1750W		
B	3-4	6+255-1+50W	0	3
82	3-4	2+255-1+62.5W	0	4
83A	3'	6+255-1+75 W	0+1	
B	3-4		Ot,	4-15
SILA	2	07055-1787.5W	0	0-1
TB	3	0+255-1+87.5W		
	3-4	157255-1187.5W		
$-\underline{c}$	16	12555-1+87.5W	0	
	1-4	0+255-1+87.54	0+	- 4
$-\underline{c}$	5	0+255-1+87.5W)
85A		07255-2700 W		
<u>108</u>	-+	67255-2700W	0	. 4
B	27	67255-2+125W	0	4
26	2 2	0705 5 0 110 000 0705 5-2705 W	0	0-4
814	2	17255-2725W	0	0-4
<u></u>			0	0-4
<u> </u>	3-4	4 67255-2725W 67255-2725W	<u> </u>	
-L	44	0F255-210000		
/				
مقدر به محمد الرابيسي				
	1]	1	

۰.

....

oton 5233450058 OtZON 14.8 OH17.5 1).D 45.7 05 At15 9.0 10712.5 209 204 58,1-39.0 . 70 Ot10 0+7.5 o check Stringers & Bet Kock 0+5 10.6 1773.5 59 000 Accurate Overate 10,4 0+20N-0+38E pit. Ditte Zoney 35.2 nogrid 0+25N-0+35E 14.6 Ð 99A 0-2 0+06N-0+00 99B 2 0+06N-0+00 19C 2-3 0+06N-0+00 220 25.1 23.2

		1	1	,			
1		· 1					
	2	0+12-5N-0+00		<u> </u>		<u></u>	
_100A B		0+12-510-0+00	0+3	12			
101 A		07250 -0700	0+	174 -	15	\	
B		0+2511-0+00					
	2	0+251-0700	0+5	12			
	3-24	OFOSN-OFON					
Ē	14	6+2510-5700	5.3				
F	15	0+2510-0+00	5.7				<u> </u>
102	h-1	0+25N-0+12.5E	0+5	15			
103 4	2-2	0+25N-0725E	0+2	0			······································
B	2	OtOSN-OTOSE	0	1+4			
$-\frac{\nu}{c}$	3-4	OTOSN- OTOSE	0	4'			
D	14	0725N-0725E	0	24			
F	4-5	072510-07255		/			
F	5	0+25N-0+25E	D	24			
104A	0-1	0+25N =37.5 E	7.8	/			
<u>- 12 17 1</u> 3	1	0+25N-0+37.5E	6.1				
C	1-2	Dt 25N-0737.5E	10.3	· · · · · · · · · · · · · · · · · · ·			
D	2-3	0725N-0737.5E	12.6			:	
F	:3	0725N-0737.5F	29.6				
105	1-2	OTASN-OTSDE	0+	0 -	-	<u>b</u>	
106 0	1-2	OtaSN-Ot62.5E	240)			
B	2-3	6+25N-0762.5F		<u> </u>			
C	3	0+25W-6762.5E	1				· · · · · · · · · · · · · · · · · · ·
D	3-4	0725N-0762.5E	6.8				
107	2	0+25N-0775E				<u> </u>	and a set of a sequence of the last of the last of
108		0+25N-0787.5E		i			
1094	10-1	0725N 0+92E	10+		11. and 11. and 11. and 11. and 11. and 11.		
	ł	1	I				

•		-		
]	1	-	
MD	2-3	0+25N-0+92E		
IOAB	00	010510 01902		
110 A	8"outerop	0+25-1+00E	0	
111	1-2'	0+25 N-1+12.5E		
112A		0725N - 1725E	0	1-3
	2-3	0+25N-1+25E	0+	1-3
n3	1-2	0+25N-1+37.5E	0	1
114A	3	0+25N-1+50E	0	1.
B	4	0+25N-1+50E	0	1
INSA	2-3	0+1255-0+1256		(0+255)
B	and the second s	01255-0+125E		(0+255)
ر ک	and the second design of the s	0#255-0112.5E	1	(07255)
-116	2'	0+255-01-000.5		(0+06.5E) 15
NTA.	2	0+255-0+25E	0	(0+25E) 1
β	3	0+255-0+25E	0	3
<u> </u>	4	07255-0725E	0	1
118A	2	0+255-0+37.5E	0+	1-4
B		0+255-0+37.5E	2	3
119	2	07255-0750E	12.5	
120		0+255-0+625E	0	1-3-12
121A		0+255-07 75E	0	1-3
	2-3	01255-0175E	0	1- <u>3</u> 0
1224		0+255-0+87.5E	$\frac{0}{0}$	3
B		0+255-0+87.5E 07255-0487.5E	0	(1+00E) 1
123A		67255 0T07.5L 61255-1112.5E	· + · · · ·	
	42	072551412.56	·	and the second
	33	1072551125E	0+	
War	'a	00000 11000		
]	1	ļ	1

4 0+255-1+25E 0 125 D1 4 3 0+255-1+25E 125B 0 0+255-1+25E ð Ц Ċ 3-4 1-3 07255-1737.5E Ò 2 126 0+5 12 0+255- 1+50E 127 1 2 D 128A 0+255- 1+62.5E ł 2-3 1+255- 1+62.5E B ð -4 15+255-1462.5E ð 1 3 C 0 0+255-1+62.5E Ь 1 -5 6+255-1+62.5E 0 EF '0+ 0+255-1+62.5E I 1 Ditem 117355-1475E 129 0 3-12 ð 0#255-11-87.5E :130 i-3 07255-270E ð 131 Ö 130F? = YtOON- 6toor 132A 2-3 B 34 \mathcal{C} 4 . 1400N-0+12-5E 1334 1-2 <u>134</u>4' <u>3</u> 2-3 0 HOON-OTSE 2 3 C D 3.4 4/2 135A 1700N-0137.5E 1400N - 6+37.5E

<u></u>
and the second
-
na a - a an an star ta an an an an an an an an an

~ 80	
ን	

لر ا			1	
	0			7
150A	2		0#2	
	2-3	0+25N- 0+12.5W	0+1	0 - 1 - 3
6	3	0+25N-0+12.5W	13.7	
D		0+25N-0+12.5W	17.7	
151	2	0725N-0125W	0	<u>1−3</u>
152	2	0725N-0137.5W	0+	0 - 3
153A		OtaSN OFSOW	0	
B	3	OFOSN- OFSOW	0	1-3 12
С	3-4	ADSN OTSOW	0+	3+12
154A	2	0725N-01625W	0	3-4
B	3	0725N- 0+62.5W	01	
Ċ	3-4	0725N- 0762.5W	0	5 - 12
155A	2	0725N-0+75W	0	1-3
B		OF25N-OF75W	0	4-5
Č		4 +25N-0+75W	0	5
156 A	2	17725N-8787.5W	0	1-3
B	1-3	3 0725N-0187.5W	0+	
C	3-4	+0+25N-0+87.5W	5	4 + 16
D	4	0725N-0187.5W	5	17
E		5 0+25N-0+87.5W	3	4+16
F	5	8+25N-0+87.5W	13.9	1 4- 17
6	5+		.3	4-17
HR7	2	0+25N-1+00 W	0	3-12
157	82-3		0	1
1581		0+25N-1412.5W	0	
B			0	12-3
C			3	3 24-12
				`
			1	

0+25N - 1+25W 3 159A 0 0 0+25N-1+25W 2-3 B 3 OFASN-1425W 0 3 3 0+25N-1+25W D 3-4 b 2 0+25N-1+25W ð E 4 0 0+25N-1+25W 4-5 1+37.5) 3 0+25N-1+282 0 2 160A 025N-1+37.5L D 3 3 B Ć 3-40+25N - 1+37.5W С \bigcirc 0725N - 1+ 37.5W 4 Ď 3 Ð 5 +25N-1+ 37.5W E G 0+25N 1+ 37.5W ·P 5+ 0 0725N-1450W HOLA 2 0 0725N - 1750W ß 3 4-16 0+3 3-4 0725N-1750 W C 0+3 0+25N-1+50 W D 4 0+25N-1+62.5W 162A 12' Ò_ 0+25N-1+625W 3____ Ð ß **B**3 1-3 0725N-1775W D 2 163A 0 0+25N-1+75W .3 B 1-3 6+25N-1+75W \mathcal{O} 3-4 , C 17 045 11 -16 -INS W 0+250-4 D15 45 0 +25Nº 1+75W 071 ·E 3 0+25N-1+75W D F 5 5+ 6+25N-1+75 W 20.6 G 1 to 3 0725N- 1787.5W 0 16HA 2 0+25N-1187.5W 0 Û 2-3 B 3 0+25N-1+8.7.5W 25.9 Ģ

l r	1 1
164D 3-40+25N-1+87.5W	11.2
E 4. 0725N - 1+87.5W	9.4
F 4-5 0+25N - 1+ 87.5W	21.5
G 5 0+25N-1+ 87.52	17.0
165	
1667 2 07505 -01/2.5E	· Ə+
- B 2-3 0+505-0+12:5E	0
C 3 0+505 - 0+12-5E	0
D 3-4 07505-0712.5E	0 3
E 4-5 0+505- 6H2.5 E	18.7
F 5 0+505-0+12.5t	13.2
G+G+5+01505-0H2.5E	424 18.2
Gt 5+6 07505-0+125E	417.49
167 3 0+50 \$ 5-0+6E	0 1
168 3 0+505 - Ot RE	0 3
169. 3 0+455-0+18E	7.1
170, A 3' 0+405-0+18E	0+5 1
171A 2'0+505-0+25E	
B 2-3' 0+ 505-0+25E	Ot
C 300 07 505-0725E	045 12
D 3-4 0+505-0+25E5	8.0
171E # 0+505-0+25E	1.9
172A 2 0+505-0+37.5E	9.5
B2-3 07505-0737.5E	273 15
C 3 0+505-0+37.5E	453
D 3-4 0+505-0+37.5E	15.3
	i

•

٠,

380						
175C	2-41	0+50 5-0+75E	40.6			
173A	2'	0+505-0+50E	0			
174A		2+505-0+62.5E	0			
17413.		0+505-0+62.5E	ot		(
1.75 A	2	0+505-0+75E	0	_4		
1.76B	3	01505-0175E	28.8 40-6			
-176A	2	0+505+0+75E	0	0		
• 13	3-4	0+505-0+75E	0			
С	460	0+505-0+87.5E	0			
. D	5	0+505-0+87.5E	Ũ			<u> </u>
E	5r	0+505-0+87.5E				
177	2-3	0+505-1+00E	0			
178	2-3	07505-1+1250	0:+3		craonics.	
179 -	2-3	0+505-1+25E	0			
180A	2-3	0+505-1+37.56				
B		0+505-1+37.5E	1			
C		0+505 - 1+37.5E	0			
18	2-3	0+50 5-1+50E	0			
182	2	01505-11625E	0			
183A	2	0+505-0+75E	6+			·
B	3	0+505-1+75E	l ot	+		
<u> </u>	3-4		0			
184	2'	01505-1187.5E	0			
185	2'	01505-2100 E 01505-2112.5 E	2+6	1	(019.)	
186	12-	01 50 5 0110.0 2			- (11-)	<u>-</u>
. and the second sec						
میں ایک						
- transmist to provide the second						
• •	L					

uss	-1		
1000 01 240	05-0+12.56	0	
190A 0-1 2to		0	
<u> </u>		0	
D 2-3			Gran.
	BS-0+25E	0	
<u>B</u> 2-3		0	
$\cdot C = 3$		0	
· D 3-4		0	
E 4 F 4-5		0	
192 A 2 2+0	105-0+37.5E	0	
$\frac{142}{3}$ $\frac{1}{2}$ -3		0	
C 3-4		0	
· D 4		0	
E 5	AC-2LEARF	0	(0+50 E) 1
	005-0+ 50.9 E 005-0+50E	012 046	(OTSUL)
$\frac{B}{2} \frac{3}{2} \frac{2tc}{2}$	005-0+62.5E		2
194 2 240 195A 2 240	005-0+75E	0	2
1954 Z arts		0	
C 3.4		0	
	005-0187.5E	0	
13 3		0	
<u> </u>		0	
- 1J 4 E 4-5		Ofa	2
	toos-1+00E		
C3			
		1	1

-

1	1	1	i	
198 A	2-3	2+005-1+00E	0	
199 A	2	2 too 5-1+12.5E	0	
R	3	2+00 5-1+12.5E	D	
200	3	2+005-1725e	•0	
201A	1-2	200 5 × 0+125W	0	l
3	3	21005 × 0+12.5W	0	
·C	3-4	2+005 + 0+12.5W	0	
• D_	4	2+005+0+12.5W	D	
·202A	2-3	2+05+0+25W	0+	
B	3	2+005+0+25W	0	mica
203	2	2+005 + 0+ 37.5W	0	
204	2-3	2+005+0+50W	0+2	-
205 A	2-3	2505 + 0162.5W	045	1
13	3	2+00 5 + 0+62.5W	21.8	
C	3.4	2+00 St0+62.5W	9.7	
206 A	2	2+005+0+75W	30.5	
B	3	2+005+0+75W	43.1	
207A		2+00 5-0+87.5h		
<u> </u>	3 3	2+005-0+87.5W	12.2	
С	3-4	and the second	Of t	2 12
208 A	2-3	27005-1700W	0	
13	3	2+005-1+00W	Ot)	15
C	3.4		OFI	
D	4	2+0,5-1+00W	OP5	17
E	4-5	2+005-1+00W	26.6	
209 A		24005 -1412.54		
- 13		2+005-1+12,5h		
\mathcal{C}	3.4	2+105-1+12.5W	8.9	
	/]	.1 .	1

.1	· 1		1	ſ
		2+00 S+ 1+25W	0	
210		2700 5- 1+37.50	 ک	15
211A B	3	2+00 5-1+37.5 L		
	┟────┼			15
0	4			15
	4-5		075	15 (Several)
212A		2+00 5-1+50W	015	
3		2+005-1+50W		12
6	3.4		Ota.	10
<u> </u>	+	2+005-1450W	043) 0	15
213	2'	2+005-1462.54		
214A	3	2+005-1+75W	0	15
13	3.4		0+5	12
C		2-to05-1+75W		organ is-
215A		2405-1487.54) 0	oran
B	4-5			
2+6	4'	2+005-2+00W		
·				
	l		j	1

220 A	21	1:4005-0+12.56	ot31	1-3
B	3		0	3
C	4		0	3
D	4-5		0	
E	5		0+3	5
221 A	2	14005-0725E	0+3	12
·B	3		0+2	12
·C	4		0+3	12
222 A	2:	14005-0+37.5E	5.8	
223	3	17005-0750E	0	
22:4A	2-3	14015-0+25W	Ũ	
·B	3.4	14005-0425W	0+3	3
225	2-3	1+005- 10750W	17.0	
22% A	2-3	14005- 8+75W	44.7	
B	3		367	36.2
C	3-4		4	
· D_	4		45,5	
·E	4-5		205	
.F	5		47.2	
221	2	HODS- HODW	0+)
<i>~~</i>				
				••••
				•
· · · · ·			: ••• -	

			· · · · · · · · · · · · · · · · · · ·	
228	2	17005-1725W	0+14	12.
22.9A	3	1+005-1+501	<u> </u>	
- 13	4		0	
<u>p</u> .	4-5		0+1	12.
220	2-3	H+005-1+75W	Ő	12
230.	3	1+005-2750W	0	Deg 3
231A	4	1100 - 210-10	0	13
	3	1+005-2+75W	17.0.	
232		·11005-3+00W	Ot	12
233	3	1+005-3t25W	0	12
234A		17005 3103.	045	12
B	3			
6	4		13.7	
<u>Cl</u>	4-		12.7	
235	3	17005-37501		
236	<u>3</u> 3	1+005-3+750		3-12
237	3	1+005-14000	W 0+4	5-1-
	-			
-240 A	3-	1 1+505-0412!	£ 6.5	
13	3	175x5 - 0+125	SE 19.8	
7111 A		14505-0425	EO	3
B			C	3
i C			0	3
·D			0	3
·			0	3
E				
	- 1			

i

	r 1 1	UCAC-ALAEN	0t2 1	$(1 - 1)^2$
241F	5+	14505-01256		
242 A	2	1+505-0+37.5E	0	2
<u> </u>	3	1101	otle	3
243	3	14505 - 0450E	0+3	0
244	2	14505-2+62.5E	0	3
245	3	1+5×5-0+75E	0+	
ZyGA	2	1+305-0+12.5W	11.2	
'B	3	14505-0+125W	8.5	2
247A	2	1+505-0+25W	075	3
· 13	3	1+505-0+25W	0	3
C	3-4	14505-0425W	0	
$\overline{\mathcal{O}}$	4	17505-0725W	0+1	3
E	• 5	1+505-0+25W	0+1	
248A	1	17505-0750W	0	3
-B	2	14505-0+50W	0	1-3
249A	2	1+505-0+62.5W	0	1 - 3
B	3	1+505-0762.5W	0	1-3
250A	2	17505 - 0775W	C	i - 24
IS IS	3	1 +555 - 0775W	0	
251A	2	1+505-0+87.5W	0	MICA
3	3	1+505-0187.50	8.4	
252A	2	1+505-1+37.5W	0	
B	3	1+505-1+37.5h	0	1
C	3-4	1+505-1+37.54	1 / 7	
D	4	1+505-1-37.54	0	1-12
F	5	1+505-1+375W	0	
253	1	1+505-1+50W	4.1	
254A	2	1+505-1+62-56	1071	
00771	T			

254B	3	1505 - 1762.5W 0+1 3-1
2	3-4	14505-147850 0 12
255A	2	1+505 - 1+75W 0+5 1
13	3	1+505-1+75W 0+5 1-12
ć	3-4	1+505-1+75W 7.8.
256A	2	17505-2762.5W 0 .1-
B	2-3	1+505-2+625W0 1
257A	2	14505-2+75W 0 3
B	3	1+505-2+75W Ot
C	4	17505 2+75W U 1-3
D	4-5	LICOC DTOGAL A
E	5	17505-2+75W U 1-3 17505-2+75W U 1-3 17505-2+87.5W 0 3-4
258 A	2	17505 7787.5W 0 3-4
B	3	1+505-2+87500 3
С	3-4	1+505-2+87.500+ 15
D	4	1+505-2+87.5203
E	5	1+505-2+87.5W 0 3
259A	2 3	1+505-3+000 27.4
B	3	1+505-3+00~ 0 3-8
C	3-4	1+5x5 = 3+00 40.0
260A	2	11505-3-12.510 0 01
B	3	11505-31125W 0 0-1
2	3.4	1+505-3+12.5W 0 0-1-12
261A	2	1+505 -3+25W 0+2 15-1
B		1+505-3+25W 0 0-1
262A	2	1+505-3137.5W 0+ 1
B	3	1-505-3-137.5W 0 1
26 JA	1'	1+505-3+3750W 0 1

3 17505-3750WO 3 263 B -342 1+555-3+62,5WO 3 264 A 4 1+505 -3+62,5W R 4 0 2104 12-12 1+505 - 3+625W 4-5 0 2:64 - 3+62.5W 5 0 A 1750 364 ..5 3 3+75W Ð 345 A B 5 4 3+750 0 1+5 0 -4 5 -5 1+50 3+15W ·/ 7-3-12 1+505-3+75W ·D Û 266A 4 1+50 5-3187.5W0 3-12

211	3-4	0+50N) - 0+ 25E	15.4	
2724	2	0+50N-0+37.5E	0	0
B	3	0+50N-0+37.5E	O	<u> </u>
273	3	O+50N-0+50E	20.8	
274 A	3	0+50N-0+625E	6	3
<u>.</u>	4	0+50N-0+62.5E	0	3
6	4-5	0+50N-0+62.5E		4 73-13
D	5	0+50 N-0+62.5E		(11.2)
275	3		0	0-3-4
2760	3	0+50N-0+87-5E	0	1-0
13	4	0+50N-0+87.5E	0	13
C	4-5	0+50N-0+87.5E	0	
2.77	3	OtSON-ITOE	0	1-0
2.78	t'	0+50N-1+125E	0	6 Acrop. 1
2.79	2'	OFSON-1725E	0	1
280	1'	0750N-1+37.5E	0	1
281	21	0450N-1+80E	0	
		ofsing 1755. Swong		
	·		ļ	
				· · · · · · · · · · · · · · · · · · ·
angeleten om anderen ochsen på en genereten og state tellemendet i det an andere			•	
			: 	

BOCAL	0-1	0+50N-0+125,W	40.0		
B	3-3		27.8		
301A	2-3	0150N-0125W	0	3-5	
B	3		0	0-3	
	3-4		07	15-3-5	
302	2-3	0+50N-0+37.5W	0	1	
303	3'	OtSON-OtSOW	O^+	15	
302A	2	0750N-0+62.5W	0	3	
<u> </u>	2-3		0+1	3	
Ĉ	3-4		046	15-1	
D	11		0+5	1	
305A	2-3	0+50N-0+75W	0	1	
13	3.4		0	.3-4	
306A	2	0+50N-0+87.5W	0	.1	hillside .
R	3		O_{+}	3	
	3-4		0	3-5	
	4		0	0-1	
307	2-3	OtSON-HOOW	0	1	
	Э	0+50N-1+125W	0+2	15-4	
R	4		OF2		
· Ć	4-5		21.8	17	
ZAGA	81	14581 - 1425W	0	3-5	
B	013	8750N-1725W	0	3-4	
310	2-3	M50N-1737.52	0+	0-1	
3/1	ŝ	0+50N-1450W	0	3-5-12	
3/2	3-4	0752N-1+625W	ot 6	3	
3,13	3	0750 m'-1+752	Bisi	13	
311	3	575m-1787.5W	0	4	
. 				ļ	

`

•

315A B	13 3-4	OFSON	- atuah	0 0	3 3-4 3 (659) SAmple
<u> </u>	4-5			0	3 (659.) SAmple
			· · · · · · · · · · · · · · · · · · ·		
		1			

31D165W2002 2.20489

CAVENDISH 080

 CLAIM
 1077036
 FINANCIAL

 UNITS
 12

 LOTS
 12 to 15

 NORTH HALF OF CONCESSION 6

 LOTS
 12 to 15

 ALL OF CONCESSION 7

 CAVENDISH

 SOUTHERN ONTARIO

 WORK TYPE.

 TRENCHING, AUGURING, GRID, PITS AND PROSPECTING.

Work on this claim started in the summer of 1999 in the southwest area of the claim and near the west claim line .In the first of June a outcrop and was discovered on the snow mobile trail at the number 2 claim post of 1077038 which is 500 meters north of post 3 of claim 1077036. On June 7th maps of that area was picked up and some work was done. Flagging tape was used to mark the zone as we sampled.On June 10 a 4x4 rubber tire hole was brought in to dig 4 short trenches in the hillside.Our main concern at this point was to determine if it would be worth bring a larger excavator in. To bring a machine in it would have to be travelled in over two plus kms, and would take several hours. We did take some samples in the trenches to get a idea of what was there .At the time the trenches were put in there was no grid.Based on the grid put in later the trenches are approximately. located at

- B 9+00S-7+00W
- A 20 METERS SOUTH OF B
- D 5+50S-9+00W
- C 20 METERS SOUTH OF D

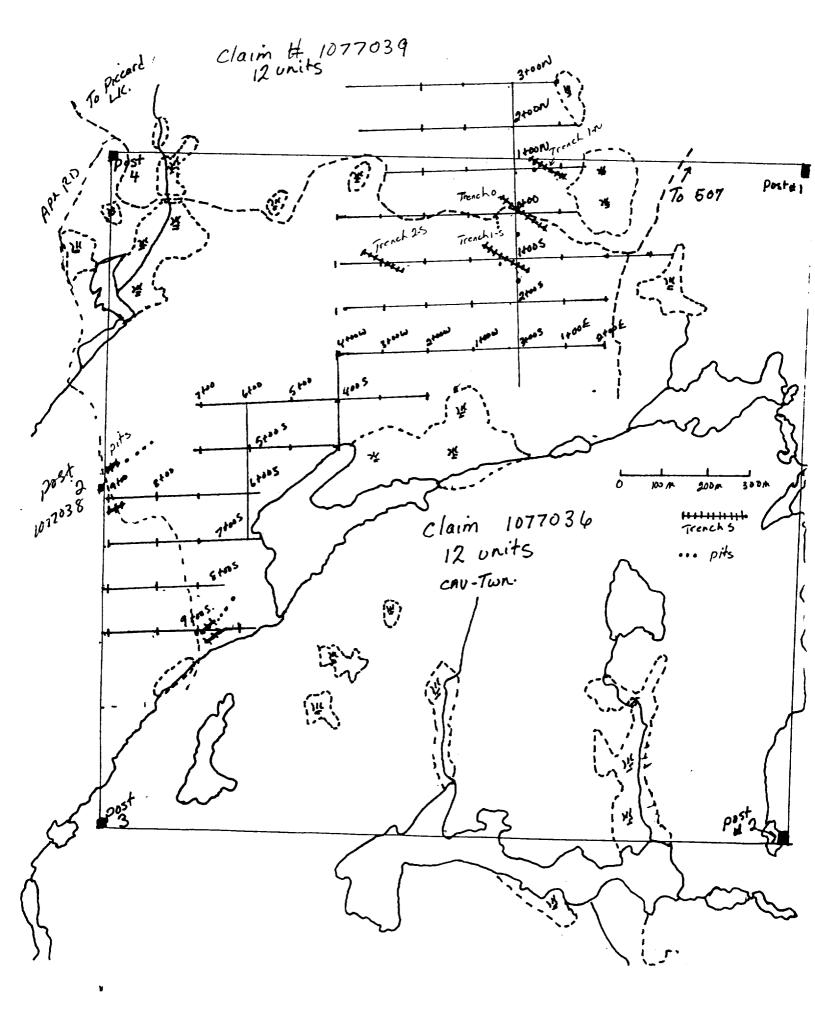
Trenches were labelled after the grid was put in the north area.Of the 30 plus samples taken from the four trenches most had some verm. in them . Trench B had some good averages near the bedrock which was a form of mica schist similar to some of the schist found at the horse shoe property. Between the layers of rock there were averages of 30 percent. This does not mean the zone will be 30.

Four pits were also dug on the top of the hills to extend trenches B and D. On the top of the hill there was a layer of soil containing biotite maybe from weathered biotite or granite gneiss that was placed there and not part of the zone in B. Trench D was a different zone that consist of gneiss maybe similar to the covering on trench B,not enough work was done to determine the exact geology. No real averages were done we plan on doing more work there later ,and heading north.

In the area of 4+00s-4+00w to 7+00w and 5+00s-4+00w to 6+00w approximately. 26 samples were taken, from 6+00s-6+00w to 8+00w and 7+00s 6+00w to 8+00w 45 and then down to 9+00s from 5+50w to 7+00w 25 to 30 were taken. All those samples were taken by using a GPS to have a general idea of the direction and area of travel. Later the north grid was extended to tie in the area of the zone. The grid wasn't put in the north until October. The grid then ran from 1+00n down to 3+00s. A line then was ran from 3+00s -4+00w to 5+00s to tie in the swamp and the zones worked on. Those samples were done by sampling with a auger and placing the sample in aluminium trays. Several samples were taken and left to dry for a while in the trays. Later in the evening we would go back and test them for verm. .We were not as much concerned about percentages as we were where the zone ran . Most of the samples tested had verm. in them. Sometimes you may hit float in the hole and not get into the verm., using a auger .Also most of the holes were shadow from 1 foot to 3 which is not good for verm. tonnage .Some of the areas near the swamp around 5+00s -4+00w heading 260 degrees southwest in which we were following the zone, that four holes with better averages. Most of this area is higher and dryer which don't allow for much weathering or erosion. The area between 3+00s -1+00w to 7+00w and south for approximately,50 meters, is low and wet and the verm. did not exfoliate well.

During the month of November the grid was sampled and a samples were taken back for assaying. Also 3000 pounds of samples were taken from several pits in the area to experiment with. At this time we were also experimenting with separating and screening. Grid samples are included but information on the equipment won't be released.

Also in the grid area 4 trenches were dug.


TRENCH 2 SOUTH. Started at 1+15s- 2+60w and ran 290 degrees to 0+75s-3+25w This zone was in an amphibolite. To the west of it we got into gneiss. which didn't run. To the east of this trench was a low wet area approximately. 50 meters wide. TRENCH 1 SOUTH started at 1+25s-0+00e it also ran 290 degrees west to 0+80s-0+75w. This trench started on the top of the hill down to the low wet area. The rock type is marble with narrow stringers of different rock types.

TRENCH 0 started at 0+25s-0+55e and went to 0+25n-0+75w this trench was very similar to 1 south.

TRENCH 1 NORTH started at 0+95n-1+00e to 1+00n -0+50e

All those trenches started at the granite to the east which ran with the verm. zone from north to south. More detailed geology will be done later when more work is done in the area. Trenches on this claim ,1077035 and 1191249 were all assayed and results calculated alike. The trenching started on 15th of march. All trenches were sampled length ways from east to west. CLAIM NUMBER 1077039 UNITS 12 LOTS 12 TO 15 CONCESSION 8 LOTS 12 TO 15 SOUTH HALF CONCESSION 9 CAVENDISH TOWNSHIP SOUTHERN ONTARIO WORK TYPE, GRID, PROSPECTING, AUGER HOLES

Work performed on this claim was done by extending work on the zone in claim 1077036. The zone catches the south east corner of lot 13 con.8 runs through lot 14, and the north west corner of lot 15. The grid was extended to 3+00n but only minor drilling was done due to the lack of time we had before the trenching was to start. Also the frost in the area slowed the work down. The zone was traced to the the gate in the road at the top of lot 15 concession 8.

Dates 2000 I-N, 0, 1-5, 2-5, claim 1077036 TRENCHES KRH - How Clark TRENCHES Horse shoe property I+J CAVENDISH 090 31D16SW2002 2.20489

-		Г	· · · · · · · · · · · · · · · · · · ·	······································				
		-	CINCI	~		11 2.		
		<u> </u>	ENCH	0	No.	rth Zoi	pe	
	wet	Dry	water	water %	02 wet	DRY	02 Loss	9. Lose
123	886.9	175.3	111.6	12.5	30	24.2	5.8	19.3
3	9 6 7.1 941.4	870.3 851.8	96.8 89.6	10.0 9.5)	26 25	4.0 5.0	13.3
45	1045.3	950.6	94.7	9.0	\mathbf{N}	24.5	5.5	18.3
6	937.4	796.9	140.5	14.9		23.5	6.5	21.6
67	956.4	858.7	97.7	10.2	· · · · · · · · · · · · · · · · · · ·	24	6	20.0
8	1023.1	985.2	37.9	3.7		26.5	3.5	11.6
9	951.3	862.9	88.4	9.2	A	24	6	20.0
10	914.0	822.2 967.4	91.8 59.7	10.0 5.8		26 26.5	3.5	13.3
12	955.6	887.	67.9	7.1		26	1	13.3
12314	1006.7	977.2	29.5	2.9	30	27	43	10.0
14	401.5	390.0	11.5	2.8				
	282.1	273.9	8.2	29				
16	326.6	287.3	39.3	12.0	7 .	n/ ·	1,	
17	952.5 891.0	854.9 775.5	97.6 115.5	10.2	30	26	4	13.3
19	908.9	788.0	120.9	13.3	30	24	6	20.0
20		713.4	160.3	18.3	30	24	6	20.0
21	358.0	295:5	62.5	17.4				-
22		774.9	130.1	14.3	30	24	6	20.0
23		728.2	142.2	16.3 10.5	30	23.5	6.5	21.6
	517.9 984.4	463.1 896.8	54.8 87.6	8.8				5/
	70407	0100	0.0					
	# -2=	3 : 1 = 4						
	water driect «	is the comple st was a 2	difference	in the	met s	mple we	ight and	air
	Bulk te	t was a	one with	a 3002	container	(not a	ccurate)	
		2	3	-4]	2	3	4
	1	1	1	I	1	1	ł	

	TOTAL	SAMPIC	f	<u> </u>	1		Grams of	[
		under 1:70	After GXF	over 1.70	After EXF.	Total GRAF	moishe	8 moisture	
1	448.4	263.3	217.9	185.1	161.1	379.0	69.4	15.4	
23	775.3	522.2	439.1	253.1	233.3	672.4	102.9	13.2	
3	870.3	522.5	429.9	347.8	329.0	758.9	111.4	12.8	
4	851.8	669.3	554.0	182.5	166.5	720.5	131.3	15.4	
5	95016	700.2	570.6	250.4	221.3	791.9	158.7	16.6	
6	796.9	656.8	531.3	140.1	125.1	656.4	140.5	17.6	
1	388.3	388.3	307.1			307.1	81.2	20.9	
8	1447.8	985.2	909.7	462.6	427.7	1337.4	110.4	7.6	
9	862.9	724.2	561.7	138.7	128.4	690.1	172.8	20.0	
10	250.9	250.9	243.2		· · · · · · · · · · · · · · · · · · ·	243.2	7.7	3.0	
11	967.4	595.7	525.9	371.7	349.1	875.0	92.4	9.5	
12	887.4	598.8	484.7	288.9	265.4	750.1	137.3	15.4	
13	977.2	574.6	496.7	402.6	388.2	885.1	92.1	9.4	
14	390.0	243.6	209.9	146.4	141.1	351.0	39.0	10.0	
15	273.9	187.8	158.6	86.1	79.0	237.6	36.3	13.2	
16	287.3	287.3	188.1			186.1	107.2	37.3	
17	854.9	650.2	4798	204.7	188.4	658.2	196.7	230	
18	775.5	647.7	413.4	127.8	116.0	529.2/	246.1	31.7	
19	375.6	375.6	246.3			246.3	129.3	34.4	
20	505.1	423.5	385.3	81.6	72.1	475.4	47.7	9.4	
21	6325	632.5	582.5			582.5	50.0	7.9	
22	3648	364.8	278.5			278.5	86.3	23.6	
23	368.1	368.1	251.6			251.6	116.5	31.6	
24	463.1	368.3	2709	94.8	83.2	354.1	109.0	23.5	
25	896.8	601.4	478,8	295.4	272.3	751.1	145.7	16.2	
Ł	$ \begin{array}{c} $								
	1	2	3	4	5	le .	η	8	

					·	····		
	waste	Verm	total	% under	woste	lierm	total	ob over
1	184.6	28.5	213.1	13.3	155.7	3.2	158.9	2.0
2	331.3	99.4	430.7	23.0	198.9	33.3	232.2	14.3
3	354.5	59.4	413.9	14.3	321.6	3.4	325.0	1.0
4	509.8	35.0	544.8	6.4	162.3	2.6	164.9	1.5
5	470.4	100.7	571.1	17.6	160.8	57.3	218.1	26.2
6	451.8	52.1	503.9	10.3	122.4	0.2	122.6	0.1
7	287.0	11.9	298.9	3.9				~
8	876.1	32.0	908.1	3.5	421.7	4.4	426.1	1.0
9	487.8	73.0	560.8	13.0	121.5	4.5	126.0	3.5
10	223.7	12.8	236.5	5.4				
11	478.1	48.2	526.3	9.1	344.5	4.5	349.0	0.2
12	400.3	103.8	504.1	20.5	257.3	4.1	261.4	1.5
13	394.4	126.4	500.8	21.2				-
14	181.8	28.6	210.4	13.5	133,5	2.9	136.4	2.1
15	126.2	57.3	183.5	31.2	75.3	2.6	77.9	3.3
16	160.8	6.4	167.2	3.8				
17	414.2	40.1	454.3	8.8	133.7	43.5	177.2	24.5
18	356.0	55.4	411.4	13.4	· · · · · · · · · · · · · · · · · · ·			
19	227.0	8.3	236.3	3.5				
20	320.8	40.3	361.1	11.1	67.1	3.0	70.1	4.2
21	522.8	59.0	581.8	10.1	183.4	24.4	207.8	11.7
22	239.1	27.9	267.0	10.4				-
	222.3	13.0	235.3	5.5				
- /	256.1	7.5	263.6	2.8		0.5		0.6
25	455.5	6.0	46.5	1.3	268.9	1.8	270.7	0.6
						· · · · · · · · · · · · · · · · · · ·		
	\$1+2	. 2		SAMO	es wer	e hothe	n alan	n, in
	42-3				sizes a			
	A X . .		,,	when 1	reced.	Lorace	call no	ticale
				will not	Exfoilate	· (if w	erm. conta	ncel inside
			•					
	1	2	3	4		2	3	4

moisture Guern wate. total water BulkLass lier m 372.0 340.3 15.4 85 31.7 123 19.3 530.2 132.7 662.9 20.0 12.5 13.2 8.4 62.8 738.9 12.8 13.3 676.1 10.0 37.6 709.7 5.2 4 5 9.5 15.4 672.1 16.6 789.2 9.0 158.0 20.0 16.6 18.3 631.2 626.5 8.3 3.9 52.3 21.6 14.9 17.6 6 574.2 7 298.9 11.9 20.9 287.0 10.2 20.0 3.7 1334.2 2.7 7.6 Ъ 1297.8 36.4 11.6 686.8 9.2 20.0 11.2 20.0 77.5 9 609.3 10.0 13.3 12.8 236.5 5.4 3.0 223.7 10 875.3 9.5 52.7 6.0 5.8 11.6 822.6 11 765.5 14.0 107.9 657.6 15.4 13.3 7.1 12 500.8 394.4 21.2 2.0 106.4 9.4 18.3 13 315.3 31.5 346.8 9.0 2.8 14 10.0 201.5 22.9 59.9 2.9 13.2 15 261.4 1608 3.8 12.0 6.4 167.2 16 -547.9 10.2 631.5 13.2 23.0 13.3 11 83.6 12.9 411.4 13.4 356.0 18 -55.4 34.4 19 3.5 8.3 235.3 13.3 20.0 227.0 431.2 10.0 287.9 18.3 9.4 43.3 20.0 20 789.6 83.4 706.2 10.5 7.9 21 1 14.3 20.0 239.1 267.0 23.6 10.4 27.9 22 21.6 5.5 13.0 16.3 222.3 235.3 31.6 23. 23.5 337.4 2.3 345.4 10.5 24 5.0 17244 732.2 25 7.8 1.0 8.8 16.2 waste = ABOUE and BELOW 1.70 and Verm : ABOUE and Below 1.70 weights from both ports of each sample were ambined for final aucroge.

			Trenc	h 1-N	Nor	th Zone		
	wet	Dry	Grams of Water	water of	ozwet	DZ DRY	02 6355	8 635
1	804.0	680.4	123.6	15.3	30	24	6	20.0
2	981.4	919.3	62.1	6.3		26	Ц	13.3
3	1074.5	1043.3	31.2	2.9		27.3	2.7	9.0
4	1150.1	1104.3	45.8	3.9	\mathbf{V}	27	3	10.0
5	1002.2	906:3	95.9	9.5	¥	26	4	13.3
6	897.8	785.5	112.3	12.5		25.5	4.5	15.8
7	1091.8	984.0	107.8	9.8	30	26	4	13.3
8	0 0	405.3	<u> </u>	. 7	2 Л			
9	855.7	740.0	115.2	13.4	30	24	6	20.0
10	959.7	882.0	77.7	8.0	30	26	E	11 6
11	984.8	847.6	137.2	13.9 3.0	, , ,	25	5 2.9	16.6
13	1052.3	1019.8	32.5 67.8	6.3	· · · · · · · · · · ·	27.1	5	16.6
13	1075.2			13.7	30	25 25.5	4.5	15.0
14 15	1024.6	884.4 896.0	1400			<u> </u>	-4-2	
16	835.6	611.5	244.1	#2b.8	30	24	6	20.0
17	0	444.3	· • • • • • • • • • • • • • • • • • • •					
18	833.6	682.1	151.5	18.1	30	24	6	20.0
0		-						
		·			•	×		An sha
		•						
		<u></u>			•			
ng								
		· •	,		<u>,</u>			
	, an er i anter ander bester bester ander bester ander bester ander bester ander bester ander ander ander ander	•	<u> </u>					-
M				an i manan ana misina in ing marina na manan				
								······································
								• •••••••
								- 10 F 100 F 100

<u></u>	1	4	1	·····	······		*	
	Total Sample	under 1.70	After EXF	Duer 1.70	After 1.70	Total Exf	Groms Maistur	8 Moisture
1	680.4	534.2	436.5	146.2	197.7	634·Z	46-2	6.7
Э	919.3	770.2,	688.2	149.1	135.8	824.0	95.3	10.0
3	1043.3	989.3	931.2	54.0	51.4	982.6	60.7	5.8
Ū.	1104.3	1001.4	904.9	102.9	92.4	997.3	107.0	9.6
5	906.3	693.3	560.1	213.0	188.8	748.9	157.4	17.3
6	7855	610.4	469.7	175.1	155.1	624.8	160.7	20.4
7	444.3	299.5	240.1	144.8	146.7	386.8	57.5	12.9
8	405.3	4053	295.7	-	-	· ·	109.6	22.0
9	362.3	362.3	270.1		•••	-	92.2	23.4
10	898.9	658.2	480.1	213.7	206.8	686.9	21.2.0	23.5
<u>11</u>	824.6	824.6	668.5		-		156.1	18.9
12	1600.8	836.9	766.9	163.9	172.4	939.3	61.5	6.2
13	999.2	919.2	796.0	80.0	870	883.0	116.2	11.6
14	884.4	675.6	485.9	208.8	177.1	663.0	221.4	25.0
15	896.0	505.0	413.4	391;0	364.0	777.4	118.6	13.2
16		545.8	275.5	65.7	57.3	332.8	278.7	45.5
17_	4443	444.3	280.3			-	164.0	36.9
18	682.1	622.3	520.1	59.8	54.3	574.4	107.0	15.7
· · · · · · · · · · · · · · · · · · ·							····	
				· · · · · · · · · · · · · · · · · · ·				
=					<u></u>	• ••••• ·•••••• · · · · · · · · · · · ·	<u></u>	
		4						
		•						
		•						
		••••••••••••••••••••••••••••••••••••••						

	t					· · · · · · · · · · · · · · · · · · ·		
	waste	Verm	tital	Bunder	woste	HBEM	total	8 over
-1	376.1	49.3	425.4	11.5	130.4	4.3	134.7	3,1
2	634.8	45.4	680.2	6.6	133.3	2.5	135.8	1.8
3	892.8	38.4	931.2	4.1	50.9	0.5	51.4	0.9
ų.	856.6	48.3	904.9	5.3	90.6	1.8	92.4	1.9
5	505.1	52.0	557.1	9.3	183.7	5.1	188.8	2.7
6	413.9	35.2	449.1	7.8	152.8	2.3	155,1	1.4
7	198.7	39.8	238.5	16.6	117.2	29.5	146.1	20.0
8	262.6	19.5	282.1	6.9		-	ſ	-
9	255.9	14.2	270.1	5.2	-	-	~	
10	447.9	32.2	480.1	6.7	190.9	15.9	206-8	.7.6
11	562.2	70.6	632.8	11.1			_	-
12	723.5	434	766.9	5.6	150.1	22.3	172.4	129
13	737.7	58.3	796.0	7.3	69.2	17.8	87.0	20.4
14	4180	67.9	485.9	13.9	173.5	3.6	177.1	2.0
19	373.3	40.1	413.4		355.5	8-5	364.0	2.3
7 16	237.7	37.8	275.5		54.3	3.0	57.3	5.2
	241.9	30.3	272.2	· • · · · · · · · · · · · · · · · · · ·		1	r	-
18	474.5	42.6	517.1	8.Z	•		-	-
0	1 -7 - 7 - 0	1		0-				
				· <u>· · ·</u> · · · · · · · · · · · · · · ·				
			an na Maria an an Angala (Angala (Angal					
		·		and a set of the set o				
			· · · · · · · · · · · · · · · · · · ·	,				
an de languageste source								
	an ang canada a fi i canadana a dalama							
		al an		- · · · · · · · · · · · · · · · · · · ·				
	ang ta mandata – ar anga nga tang a tang		,	a analysis and an electron is a set of the s				······
<u>.</u> .			у муниципальных стала жал менила.					
	, <u> </u>	······································						

	total inche	llerm	tital SAmple	lucan	woter	Maisture	Bulk Loss	
1234567891011213145161718	591.5	Uerr 53.6 47.9 389 50.1 57.1 37.5 69.3 19.5 14.2 18.1 70.6 65.7 76.1 71.5 48.6 40.8 30.3 42.6	titol SAmple 560,1 816.0 982.6 997.3 745.9 604.2 385.2 282.1 270.1 686.9 623.8 909.3 883.0 663.0 777.4 332.8 272.1 517.1	6.2 17.9 6.9 5.2 7.0 11.1 7.2 8.6 10.7 6.2 12.2	Woter 15.3 6.3 2.9 3.9 9.5 12.5 9.8 - 13.4 8.0 13.4 8.0 13.9 3.6 6.3 13.7 - 268 - 18.1	Maisture 6.7 10.0 5.8 9.6 17.3 20.4 12.9 27.0 25.4 23.5 18.9 6.2 11.6 25.6 13.2 13.2 13.5 36.9 15.1	Bulk 1058 JO.D 13.3 9.0 10.0 13.3 15.0 13.0 20.0 	

1-South north Zone Trench 02 wet Let Water DRY unter 3 9 Loss 02 1055 OZDry 1 78.7 10.3 699.3 758.0 2 941.6 843.9 3 26 962.0 118.0 30 13.3 12.2 4 45 615.7 6 16.0 1 358.1 57.4 300.7 8 565.9 9 24.5 30 5.5 183 152.9 882.3 14.7 1035.2 10 708.8 11 12 417.3 271.1 13 746.9 890.4 143.5 30 24.0 6 20.0 16.1 14 15 60.0 11.8 507.8 447.8 16 15.6 25.3 923.3 127.3 30 4.7 1050.6 12.1 17 1047.8 1002.1 45.7 18 4.3 19 15.3 958.0 849.2 30 108.8 11.3 25.4 20 4.6

<u></u>	1	<u> </u>	†	r	r		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·					
	Yotal, Sample	under 1.70	AFter CXF	DUCX 1.70	AFter Fat	totol Ex F	Grom Moistun	9 miltir					
1	608.0	608.0	444.1	_	-	444.1	163.9	26.9					
2	915.7	350.0	257.5	565.7	505.5	763.0	152.7	16.6					
3	454.2	454.2	424.3			424.3	29.9	6.5					
Ų	1342.7	498.8	421.2	843.9	806.8	1228.0	114.7	8.5					
5.	310.7	310.7	232.3	_		232.5	78.4	25.2					
10	615.7	615.7	456.7			456.7	159.0	25.8					
7	300.7	300.7	231.5			231.5	69.Z	23.0					
8	378.9	378.9	285.0	· · · · · · · · · · · · · · · · · · ·		285.0	93.9	24.7					
9	565.9	565.9	317.4			317.4	248.5	UB9					
10	882.3	882.3	632.2			632.2	250.1	28.3					
11	352.0	352.0	266.8		• •	266.8	85.2	24.1					
12	417.3	417.3	320.2		-	320.2	97.1	23.Z					
13	271.1	27/.	1843			184.3	86.8	32.0					
14	385.4	385.4	297.2			297.2	88.2	22.8					
15	436.4	436.4	338.0	262		338.0	98.4	22.5					
16	447.8	238.8	192.4	209.0	185.6	378.0	69.8	15.5					
17	1498.3	1180.4	1067.0	317.9	270.6	1337.6	160.7	1017					
18	1002.1	882.7	802.9	119.4	111.1	914.0	88.1	8.7					
19 20	849.2	640.3	492.2	208.9	178.1	670.3	178,9	21.0					
	· · · · · · · · · · · · · · · · · · ·	•											
		•											
								· · · · · · · · · · · · · · · · · · ·					
. – .		-			· ···			• . •• •• •• ••					
		· · · · · · · · · · · · · · · · · · ·											
1,000 					n of any of non-sector can be sugged as a sec								
		•••••••••											
							All Mar						

hotal waste total 9 becm a)oste 9 Decm Verm Herm 5.8 418.0 26,1 4441 24.9 4.9 505.5 480.6 26.1 257.5 10.1 2345678 231.11 9.8 U1.9 4743 382.4 88.8 369.3 51.9 421.2 718.0 806.8 12.3]].D 232.3 223.0 9.3 11.0 3.5 16.2 456.7 4405 237.5 231.5 0 Ó 285.0 285.0 D 0 Ĝ 310.3 317.4 7.1 2.2 10 13.0 632.2 589.2 68 266.8 255.0 11.8 4.4 11 149 320.2 4.6 12 305.3 184.3 8.9 175.4 13 4.8 10,6 297.2 3.5 2866 14 338.0 298.9 39.1 11.5 15 35.) 169.0 185.6 192.4 12.1 12013 65.3 23.4 16 222.4 20.6 17.8 979.7 87.3 10670 48.2 8.1 17 0.9 0.8 26.9 3:3 111.1 776.0 8029 110.2 18 0 0 19 175.3 15 456.2 36.0 128.1 17.8. 19 Rock - no soil SAMPle

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						· · · · · · · · · · · · · · · · · · ·	f		ŀ
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Total Lixeste	Verm	10to SAMALE	& verm	water	Maisture	Bilk Loss	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	T • • • •							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2		51.0	763.0	6.6	10:3	16.6		· · · · ·
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	382.4	41.9	424.3	9.8		6.5		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	1087.3	140.7	1	11.4	12.2	8.5	13.3	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	2230	9.3	232.3	4.0		25.2		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6	440.5	16.2	456.7	35		25.8		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	7		0	231.5	0	16.0	23.0		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8		0	285.0	D		24.7		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			7.1	317.21	2.2		43.9		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		589.2	43.0	· · ·	1	14.7	28.3	18.3	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	· · · · · · · · · ·	255.0	11.8						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		and the second sec	14.9	320.2			23.Z		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			1	184.3	48		32.0		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	_	286.6		297.2	3.5	16.1	22.8	20.0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			39.1		11.5		22.5		
18 886.2 27.8 9140 3.0 413 8.7 19	16	289.3	88.7		23.4	11.8	15.5		
18 886.2 27.8 9140 3.0 413 8.7 19				1337.6	10.1	12.1	10.7	15.6	
19		886.Z	27.8	9140	3.0	4.3	8.7		
		631.5	38.8	670.3	5.7	11:3	21.0	15.3	
	·•		• · · · · · · · · · · · · · · · · · · ·				·····		
				•					
			1 •						
									
			•						
									·····
			•						
							· · · · · · · · · · · · · · · · · · ·		
						· · · · · · · · · · · · · · · · · · ·			

			tre	meh	2-South	North	Zone	
	wet	DRY	Grams Woker	Woker &	OZW	OZORY		9 Loss
123	1051.1	876.7	174.4	16.5	3012	24.7	5.3	17.6
4 5	66017	534.6	126.1	19.0	30	24.1	5.9	19.6
; 1	68312	594.1	89.1	13.0	30	25.7	4.3	14.3
8	10650	819.3	245.7	23.0	30	24.0	6.0	20.0
9 10 11 12	1088.3 946.6	1018.9 708.7	69.4 137.9	6.3 16.2	30 30	26.0 25.0	4.0 5.0	13.3 16.6
13 14 15 16	7789 526.7	652.7 418.4 413.8	176.Z 108.3	16.2 20.5	30	24,0	6.0	20-0
17 18		9		16.3 16.3	30 30		5-2 5-2	17-3 17-3
	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·						
	·····							

					1	·	I	
•	Total Sample	under 1.70	after Ext.	Overil-70	After Exf	Total GXF	G. Moisture	2 Moreston
1	416.2	416.2	358.0			358.0	58.2	13.9
2	810.3	560.3	507.8	250.0	223.7	731.5	78.8	9.7
3	908.4	550.7	498.1	357.7	313.8	811.9	96.6	10.6
43	534.6	534.6	4788			478.8	55.8	10.4
5	330.8	330.8	277.7		• · · ·	277.7	53.1	16.0
6	319.5	319.5	270.3			270.3	49.2	15.3
•/	829.6	829.6	707.6		5061	767.6	1-22.0	14.7
8	809.0	399.0	333.0	410.0	328.6	661.6	147.9	18.2
9	550.7	550.7	497.7	· · · · · · · · · · · · · · · · · · ·	a a a companya a companya	497.7	530	9.6
10	1088,3	1088.3	946.3			946.3	142.0	13.0
11	564.1	564.1	447.7			447.7	116.4	20.6
12	305.8	305.8	132.6			132.6	173.Z	56.6
15	6900	690.0	438.1		· · · · · · · · · · · · · · · · · · ·	483,1	206.9	29.9
14	652.7	652.7	536.4			5364	116.3	17.8
5	418.4	418.4	311.2			311.2	107.Z	25.6
16	4098	409.8	312.4			312.4	97.4	23.7
-17	526.5	526.5	394.8			3984.8	131.7	25.0
18		· · · · · · · · ·			· · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
				<u></u>				
		-						
					<u></u>			
					······································			
		 						
		•						n

·····

,	Waste	Verm	total	Under 1.70 8 Verm	woste	Verm	total	Quer 170 & Urem
	321.6	36.4	358.0	10.1	WU alt			0
7 1	427.3	80.5	507.8	15.8	182.2	41.5	223.7	18.7
			488.1	5.4	288.2	33.6	313.8	10.7
	471.7	27.1	478.8		100.2)(50	1011
	423.6	55.2		11.5				
a para na ma	263.1	14.6	277.7	5.2	·			
	228.3	42.0	270.3	15.5				
	575.3	132.3	707.6	18.6	2107	16 7	328.6	21
ð -	306.7	26.3	333.0	7.8	318.3	10.3	3000	3.1
	492.5		497.7	1.0		· · · · · · · · · · · · · · · · · · ·		
	926.2	20.1	946.3	2.1				
	421.2	26.5	447.7	5.9				
1.	122.6	10.0	1326	7.5				
···· ··· ··· · ···	451.1	32.0	483.1	6.6				
	473.0	63.4	536.4	11.8	· · · · · · · · · · · · · · · · · · ·			
	280.8	30.4	311.2	9.7				
- A Common and	293.0	19.4	312.4	ſ	······································	· · · · · · · · · · · · · · · · · · ·		
17	366.5	28.3	394.8	1 7.1		<u> </u>		l
	a names and areas and an and an address	•						
		· · · · · · · · · · · · · · · · · · ·						
			an					
			a a manu and all that is service of the States					
		· · · · · · · · · · · · · · · · · · ·						
		·						
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		·						
	and generation of the second state of the seco							
		an angen i an an anna an san an an an a' a' san anna						
	an a subsection of the subsect	n 1998						
a constant from the fi								agen

	10ta							
			Total	a	77	- 1	011.0	
-	waste	Verm	SAMPL	Evern	E water	Moisture	Bill Loss	
1	321.6	36.4	358.0	10.1		0-		
23	1,09.5	122.0	731.5	16.6	16.5	9.7	17.6	
3	751.9	60.7	812.6	7.4		16.6		
4	423.6	55.2	478.8	11.5	19.0	10:4	19.6	i
5	263.1	14.6	277.7	5.2		16.0	· ····································	
0	228.3	42.0	270.3	15.5	13.0	15.3	14.3	
7	575.3	132.3	767.5	18.6		14.7		-
8	625.0	36.6	661.6	5.5	23.0	18.2	20.0	· · · · · · · ·
9	492.5	5.2	497.7	1.0		9.6		
ID	962.2	20.0	982.3	2.0	6.3	13.0	13.3	
11	421.2	26.5	447.7	5.9	16.2	20.6	16.6	
12	122.6	10.0	132.6	7.5	and the second	56.6		
13	451.1	32.0	483.1	6.6		29.9		
14	473.0	63.4	536.4	11.8		17.8		
15	280.8	30.4	311.2	9.7	20.5	25.6	20.0	
16	293.0	19.4	312.4	6.2		23.7		
17	3665	28.3	394.8	7.1		25.0		
с с		\$	1 -			• -		•
		•••••••••••••••••••••••••••••••••••••••						
		······································						
		· · · · · · · · · · · · · · · · · · ·						· <u></u> · · · · · · · · · · · · · · · ·
	an a san an a							
	-	·						
	the same a communication of the submatrice. As							
						·····		
<u>.</u> .								· · · · · ·
		-						

			Horse -	shoe	Irench ?	I		
,		Totol Sampo.	PAd Elf.	Grows	Envisione	worke	vern	7 UCom
J	135301	315.1	2460	69.1	21.9	238.5	7.5	3.0
2	135302	493.7	422.0	71.7	14.5	358.0	64.0	15.1
3	135302	220.6	202.9	17.7	8.0	200.9	2.0	0.9
4 5	135304	375.3	334.7	40.6	10.8	314.1	20.6	6.1
5	135305	641.8	568.0	73.8	11.4	379.9	1881	33.1
6	135306	525.8	398.0	127.8	24.3	396.2	15.8	3.9
1	135307	225.1	1155	49.6	22.0	175.5	0	0
8	135308	399.6	335.6	64.0	16.0	328.6	7.0	2.0
9	135309	560.7	489.5	71.2	12.6	478.1	14.4	2.3
0	135310	504.1	441.4	62.7	12.4	375,3	66.1	14.9
2	135311	406.9	367.9	39.0	9.5	3/1.9	56.0	15.2
12	135312	459.8	412.6	47.2	10.2	359.9	52.7	12.7
13	135313	657.1	542.6	114.5	17.4	478.9	63.7	11.7
14	135314	471.1	376.2	94.9	20.1	298.1	78.1	20.7
5	135315	475.9	381.7	94.2	19.7	268.0	113.7	29.7
16	135316	530.3	428.6	100.7	18.9	299.0	1306	30.4
7	135317	572.9	457.3	115.6	20.1	327.8	1295	28.3
18	135318	538.2	407.1	131.1	24.3	393.2	13.9	3.4
19	135319	456.6	334.2	122.4	26.8	264.2	70.0	20.9
•	135320	5137	392.2	121.5	23.6	365.5	26.7	6.8
21	135321	4736	370.4	103.2	21.7	338.7	31.7	8.5
72	135322	5330	410.9	122.1	22.9	364.3	46.6	11.3
73	135323	663.6	527.1	136.5	20.5	452.4	74.7	141
74	135324	44.8	400.9	48.9	10.8	350.9	50.0	12.4
25	135325	626.3	567.9	58.4	9.3	528.3	39.6	6.9
6	135326	927.8	808.3	119.5	12.8	769.3	39.0	4.8
27	135327	1294	650.8	78.6	10.7	515.1	135.7	20.8
8	135328	681.5	591.9	89.6	13.1	481.1	110.8	18.7
9	135324	601.5	512.2	89.3	14.8	415.2	97.0	18.9
30	1	529.4	471.2	58.2	10.9	420.7	505	10.7
51	135331	644.6	540.1	1045	16.2	519.3	20.8	3.8
52	135332	651.7	556.4	95.3	14.6	548.0	8.4	15
33	135333	651.1	528.9	122.2	18.7	503.5	25.4	4.8

				-	TRENCH	I		
		Total Sample	Totel EXF	Groms morsture	B. Maisture	woste	Verm	8 Verm
34	135334	521.1	457.6	63.5	12.1	439.5	18.1	3.9
	135335	619.7	538.5	81.2	13.1	460.8	77.7	14.4
36	135336	985.3	862.6	122.7	12.4	687.7	174.9	20.2
37	135337	677.1	576.4	188.7	14.8	405.1	171.3	29.7
-	135338	837.0	733.3	103.7	12.3	605.4	127.9	17.4
39	135339	692.3	613.0	78.7	11.3	471.3	142.3	23.1
10	135340	629.6	551.4	78.2	12.4	481.5	69.9	12.6
	135342	a series and a series of the s	435.8	55.7	11.3	387.8	48.0	11.0
42	135343	610.6	537.8	72.8	11.9	521.2	16.6	3.0
			·····					
			VERT.	SAmples			••••••••••••••••••••••••••••••••••••••	
		Total	Total	Grows	87			9
		Sample	626.	maisture	Mugure	work	Verm	Overm
11/	135341	294.7	268.4	26.3	8.9	255.2	13.2	4.9
21		4338	414.6	19.2	4.4	392.4	22.2	5.3
3V.		5580	416.4	141.6	25.3	386.3	30.1	7.2
4V		464.0	378.6	85.4	18.4	308.8	69.8	18.4
5V		593.7	529.3	64.4	10.8	516.0	13.3	2.5
· · ·		· · · · · · · · · · · · · · · · · · ·	Bul⊀ 1	iest 11	rench A.			
	wet	DRY	woter	8 woter	wet	Dey	Loss	8 1055
A	418 LBS		92 LBS	19.2	30 gal.	285 cpl		5.0
A			15.3485		Sgal.	<u> </u>	,	
					J			
			1 · · · · · · · · · · · · · · · · · · ·				1	
· _							1977 - S.	M (Manager Managers and States)
	l.	I	1	I	1			Į

Horse-Shoe Trench.J

		•	Hors	e - she	n chư			•
-		Total Sample	Total EXF.	Groms	8 moisture	weste	lier.	7 verm
1	135348	494.5	447.5	47	9.5	418.5	29.0	6.4
2	135349	683.2	604.7	78.5	11.4	553.3	51.4	8.5
3	135350	499.1	393.3	105.8	21.1	393.3	0	0
4	135351	486.3	351.2	135.1	27.7	351.2	D	D
т 5	135352	452.5	354.0	98.5	21.7	343.7	10.3	2.9
6	135353	192.0	144.5	47.5	24.7	142.4	2.1	1.4
1	135354	515.7	428.2	875	16.9	2.99.5	128.7	30.3
8	135355	363.4	321.4	42.0	11.5	236.0	85.4	26.5
9	135356	730.9	606.4	124.5	17.0	398.6	2078	34.2
10	135357	581.0	476.1	104.9	18.0	331.3	144.8	30.4
	135358	581.3	468.0	113.3	19.4	320.4	147.6	31.5
12	135359	560.3	465.3	95.0	16.9	288.7	/ /	37.9
13	135368	8405	726.6	1/3.9	13.5	638.1	88.5	12.1
14	135361	864.0	733.5	130.5	15.1	735.5	0	0
15	135362	793.2	639.8	153.4	19.3	6309	8.9	1.3
16	135363	736.5	578.9 -	157.6	21.3	578.9	0	0
	135364	469.8	412.6	52.7	12.1	369.0	43.6	10.5
18	135365	6834	584.9	1845	14.8	537.3	1++++++++++++++++++++++++++++++++++++++	7.6#
19	135366	492.4	443.3	49.1	9,9	426.0	17.3	3.9
•		• /		• 	·			
18	Recheck.	683.4	581.9	101.5	14.8	537.3	44.6	7.6
		+		•	• · · · · · · · · · · · · · · · · · · ·			
		· ·						
a. 198		•					•	
		• • • • • • • • • • • • • • • • • • • •				·····		
					·····			
	a .a .a.,	<u> </u>						
		•			<u></u>			
					an ang ang ang ang ang ang ang ang ang a		999 - 1999 - 1999 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	
		•						
						······································		<u></u>

totol Ave (APX.) 12:2 Trench #'s **D** 4.8 1-North 1-south 2-south 10.8 water 12.0 16.3 16.6 15.1 16.3 16.5 17.3 Bulk Loss 21.5 19.4 19.2 17.5 Moisture After 18.4 EdF. 8.7 8.4 7.1 9.6 8.3 verm Ave. Total from each trench (6st)

Regis Resources Inc.

Cavendish Vermiculite Properties By Keith Vatcher

21,20459

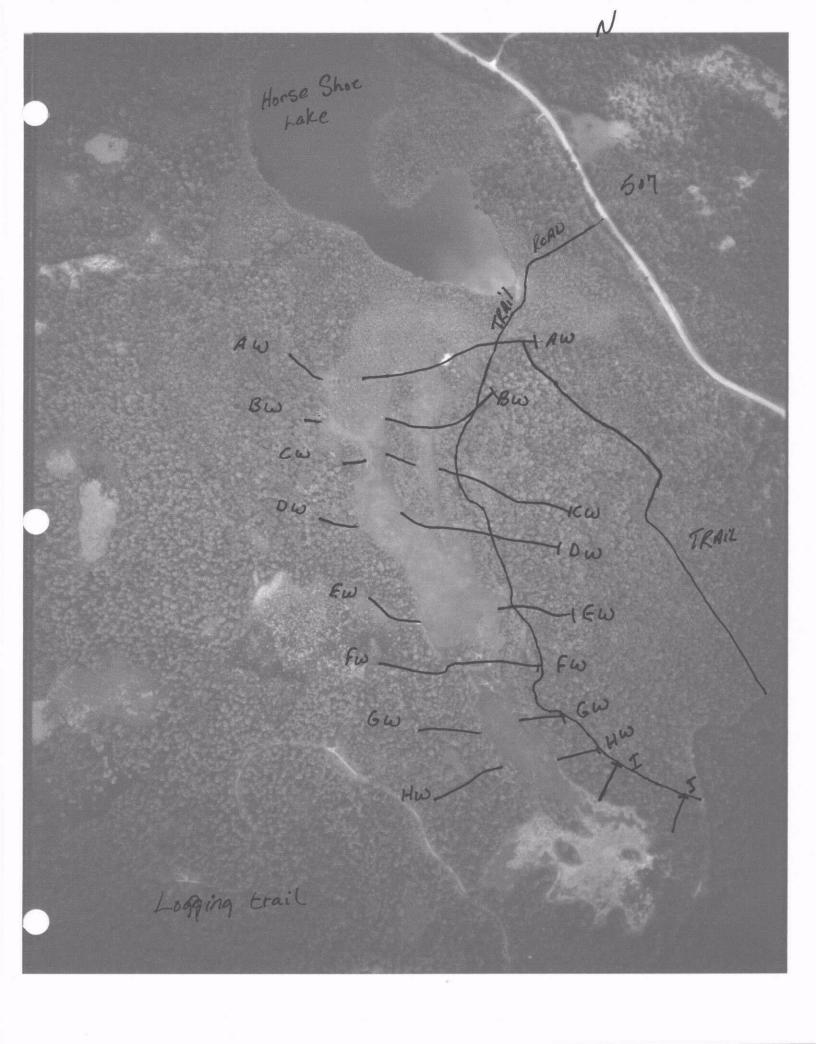
Index

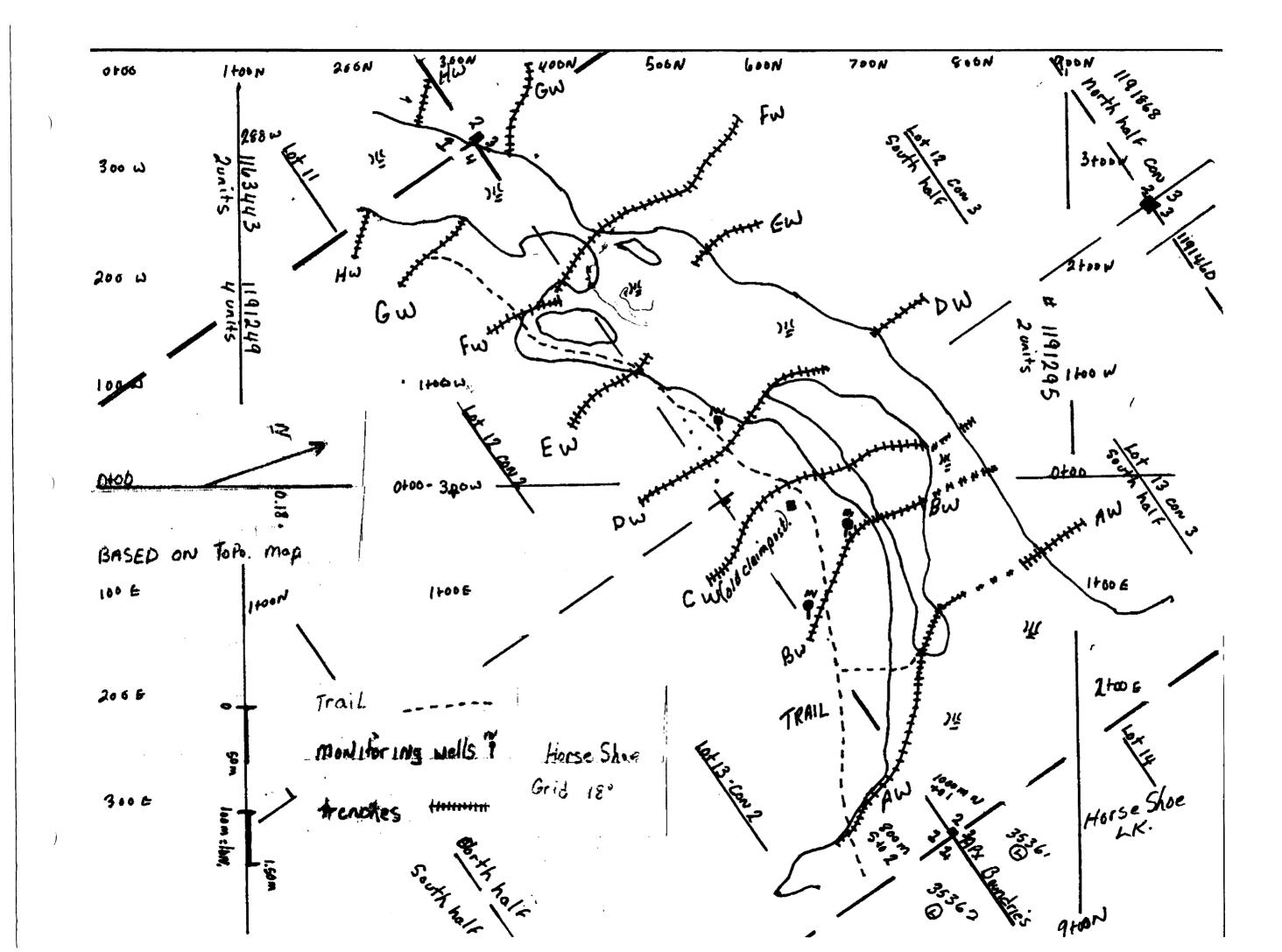
Page

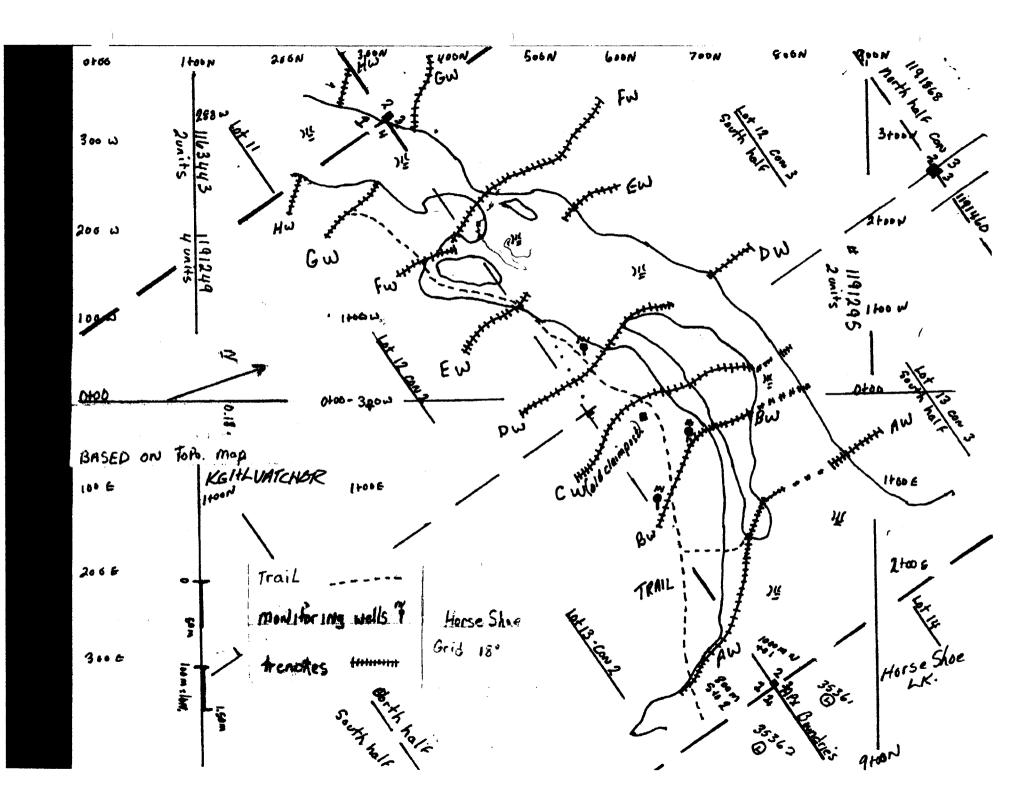
1to3	prospecting 1077041
4 to7	bulk sample [horse shoe]
8,9	trenching [horse shoe]
10 to 14	trenching [north zone]
15 to 21	trenching [zone 2]
22 to 25	trenching [horse shoe]

31D16SW2002 2.20489

CAVENDISH 100C


2 24 24 6 11 11


Bulk sample report


Claim #s 1191249 and 1191259

Horse shoe Lake property

KEITH VATCHER REGIS RESOURCES INC.

CLAIM #'S 1191249 AND 1191295 Cavendish, southern Ontario.

Work on the bulk sample started on April 14. Tools, a shovel, nylon bags. A 6x6 polaris atv. Six screens. Tarps. Dust mask

The bulk sample started on April 14.and was completed on May 5. The work was not continuous. Due to the drying time and the weather. We could'nt work on sample on wet days. Eight trenches were sampled by walking each trench starting east at the start and working to the west. Samples were shoveled into bags with no complicated method. Every 2 steps a shovel full was collected. Trenches A,B,C,D,E,F,G,and H.

All samples were carried out by the atv. along the trail to the Horseshoe Lake road located to the northeast of the claim that branches off the hiway 507. Claim # 1191249.

The samples were than spread out on tarps inside a tent made out of 2 by 4 and tarps with the ends open so the air could pass through to remove the moisture.

After the samples were dried they were screened into seven sizes.

Screen size	Size over	% shipped	Total weight	Weight shipped	%Verm.
over	2mm.	0	112 lbs.	0	-n/a
2mm.	18 micro	1/4	240 lbs	60 lbs	-n/a
18 micro	24 micro	1/2	100 Ibs	50 lbs	9.0
24 micro	40 micro	1/2	236 lbs	118 lbs	18.8
40 micro	60 micro	1/2	426 lbs	209 lbs	34.2
60 micro	65 micro	1/2	168 lbs	84 lbs	50.6
65 micro	under	1/4	260 lbs	65 lbs	-n/a

The screens used were made up of 2 by 4's and 2 by 3 screens. A frame was then made to hold the screens and a set of ropes was then used to shake the screens. Then weight shipped is the amount that was placed into barrows and shiped to Allen Blake [Technical Consulting] Ltd. in England. A note was sent along with the sample simular to this report with our findings. Later we talked with Mr. Blake on the telephone to get his response. He was impressed with our material and stated that he was interested in working with us. We did't get any paper work from him we only wanted his view on our material. Mr. Blake got the same averages that we did. He did not charge for his work but would like to be involved.

Sonic Soil located in Concord Ontario sent the sample.

Kutte Volt

BULK SAMPLE[BLAKE]Two samples taken from each screen size from different bags .LARGER #1SMALLER #4FIRST RUN

Screen #	Total sample	After exf.	Waste	Verm.	Moisture	% verm.
1	200 g.	188.9	171.9	17.0	5.5	9.0
2	200 g.	183.1	148.7	34.4	8.4	18.8
3	200 g.	181.1	119.2	61.9	9.4	34.2
4	200 g.	170.4	84.2	86.2	14.8	50.6
Total	800 g.	723.5	524.0	199.5	9.6	27.6
		SECON	D RUN			
1	200 g.	188.2	168.7	11.9	5.9	10.4
2	200 g.	183.1	150.5	32.6	7.8	17.8
3	200 g.	180.9	116.1	64.8	9.5	35.8
4	200 g.	175.4	80.3	95.1	12.3	54.2
0	2					
Total	800 g.	727.6	515.6	212.0	9.0	29.1

Some of the dust and fine verm. can be lost in the chimney of the exfolatior which can change the percentages when dealing with small samples . Several samples have to be redone just to double check. The chimney on the exfolator reacts to the wind in the same way as it would on a wood stove. The more wind the more vacumn up the pipe and small particals of verm . will get drawn up.. Larger samples do not lose as much . We usually avoid running samples on windy days. We have made changes that have helped catch the fines but when dealing with tenths of a gram and several hundred gram samples the averages does not change much if any at all. We usually try to run 300 g. or more up to as much as 1200 g.

Kutt With

Trenching

Claim #1191249,1191259 and 1163443

Horse shoe Lake property

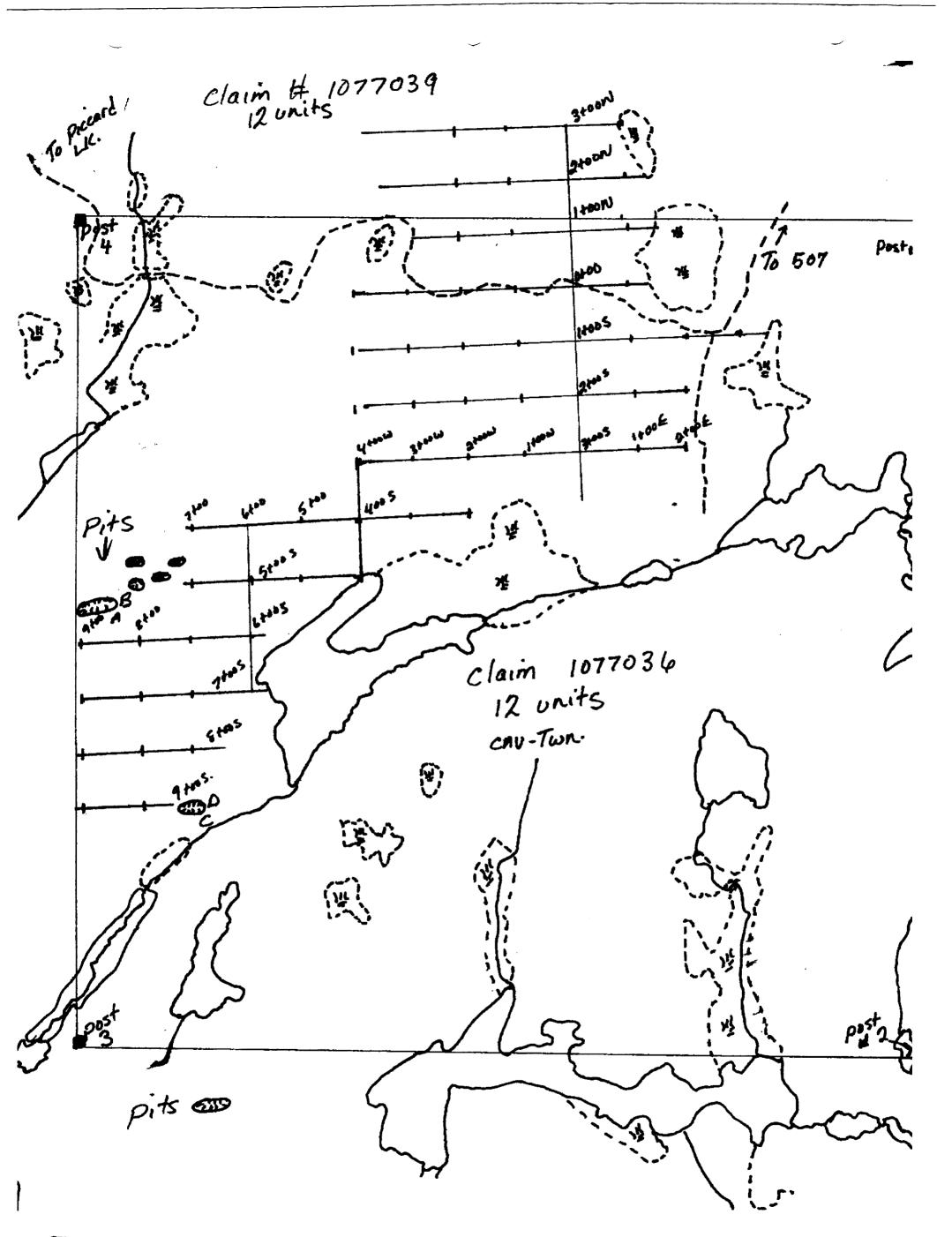
KEITH VATCHER REGIS RESOURCES INC. Trenching on the claims 1191295,1191249 and 1163443 was done with two excavators. A 320 cat opperated by Dale Methot from Thunder Bay who dug trenches A to H. from January to April 99. Then trenches I and J were dug with a JSW. opperated by Larry Oliver from Buckhorn on March 28/2000. The trenches were all sampled from east to west along the walls near the bottom of the trenches. Any areas where the trenches were 2 metres or more in depth vertical samples were also taken. All samples were then dried in metal plates. After the samples were dried they were riffled into two sections, one used for assay and one was replaced into the oringal sample bag for storage. All samples were then ran into the exfolator. The samples were then seperated with water, floating the verm. off in a screen covered with paper towel so water could pass through without lossing the verm. The waste was put in a separate tray. Both parts were then dried and weighed. Vermiculite percentages were then calculated by dividing the weight of the vermiculite into the weight of the vermiculite plus waste. All samples were ran through the exfolator owned by Regis Resources Inc. and opperated by Keith Vatcher. Some samples were ran into Lakefield at the lab. under the supervision of Tony Big. Those samples were from A to G. All other samples were ran by Keith at a cottage set up as a lab in buckhorn during and for a short time after the trenching was completed.

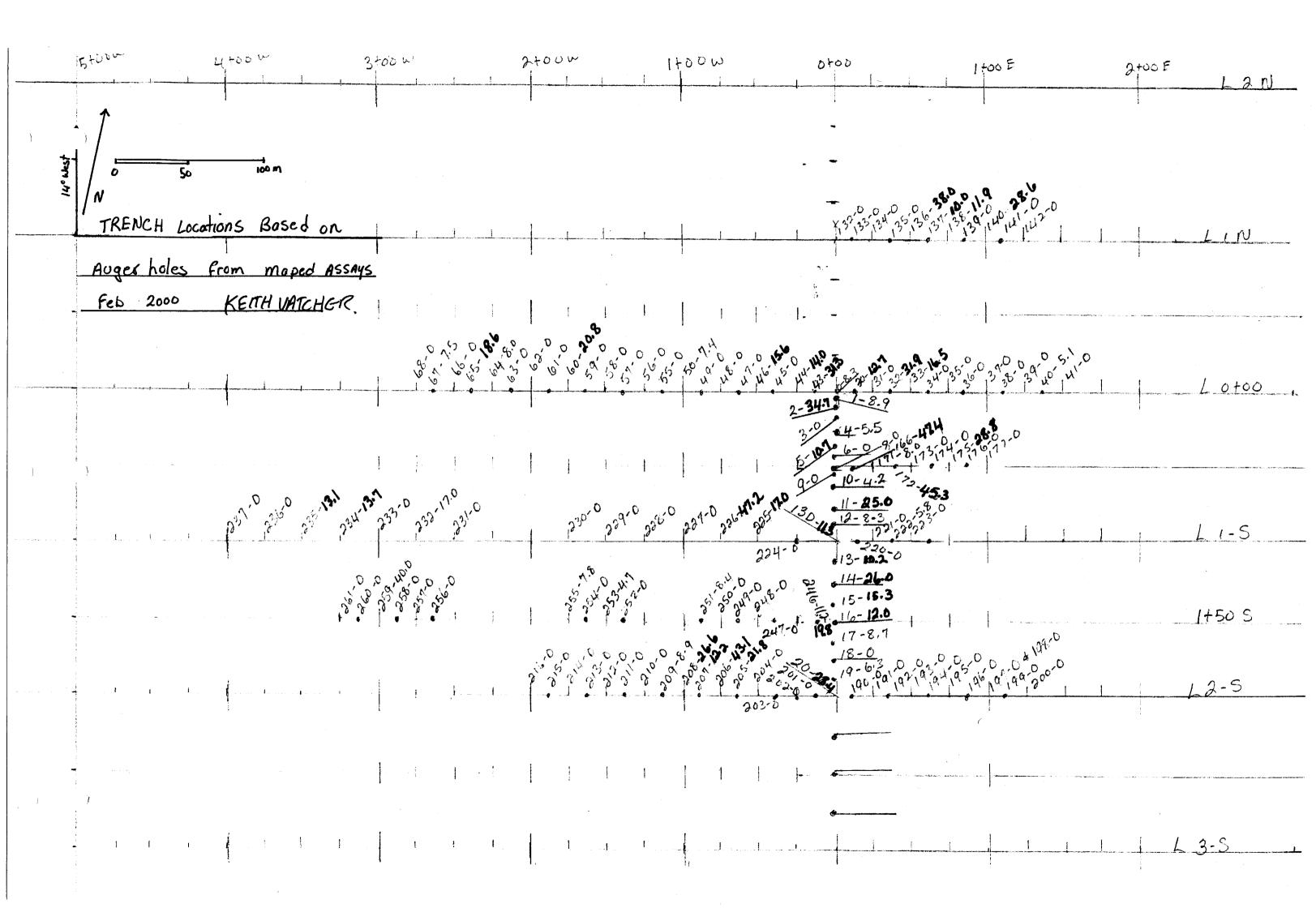
Claim # 1191295Lots 12 and 13 south half of concession 31191249All of lots 12 and 13 concession 21163443All of lot 11 concession 2

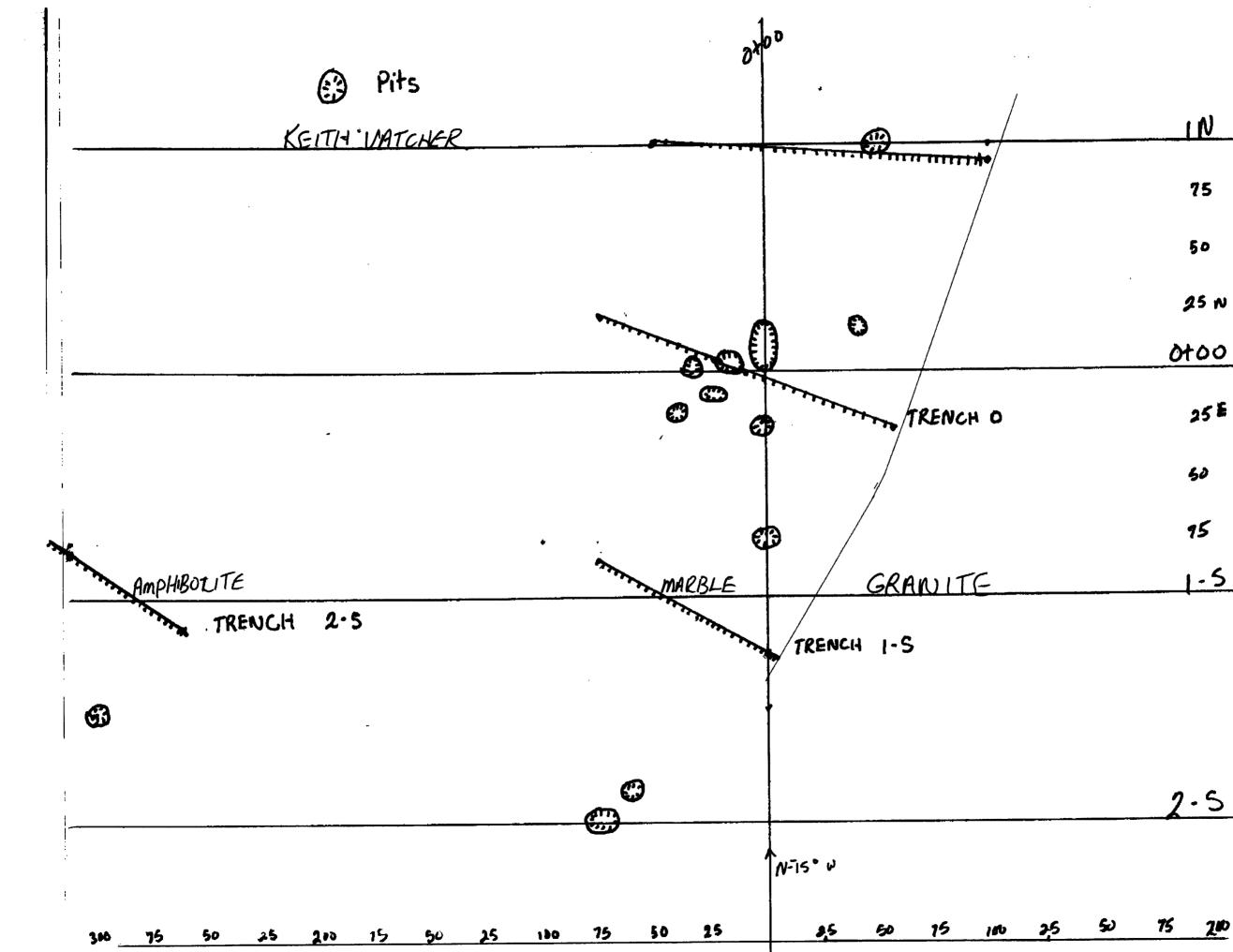
Kuth Volt

Trench Samples Trenches in the North zone

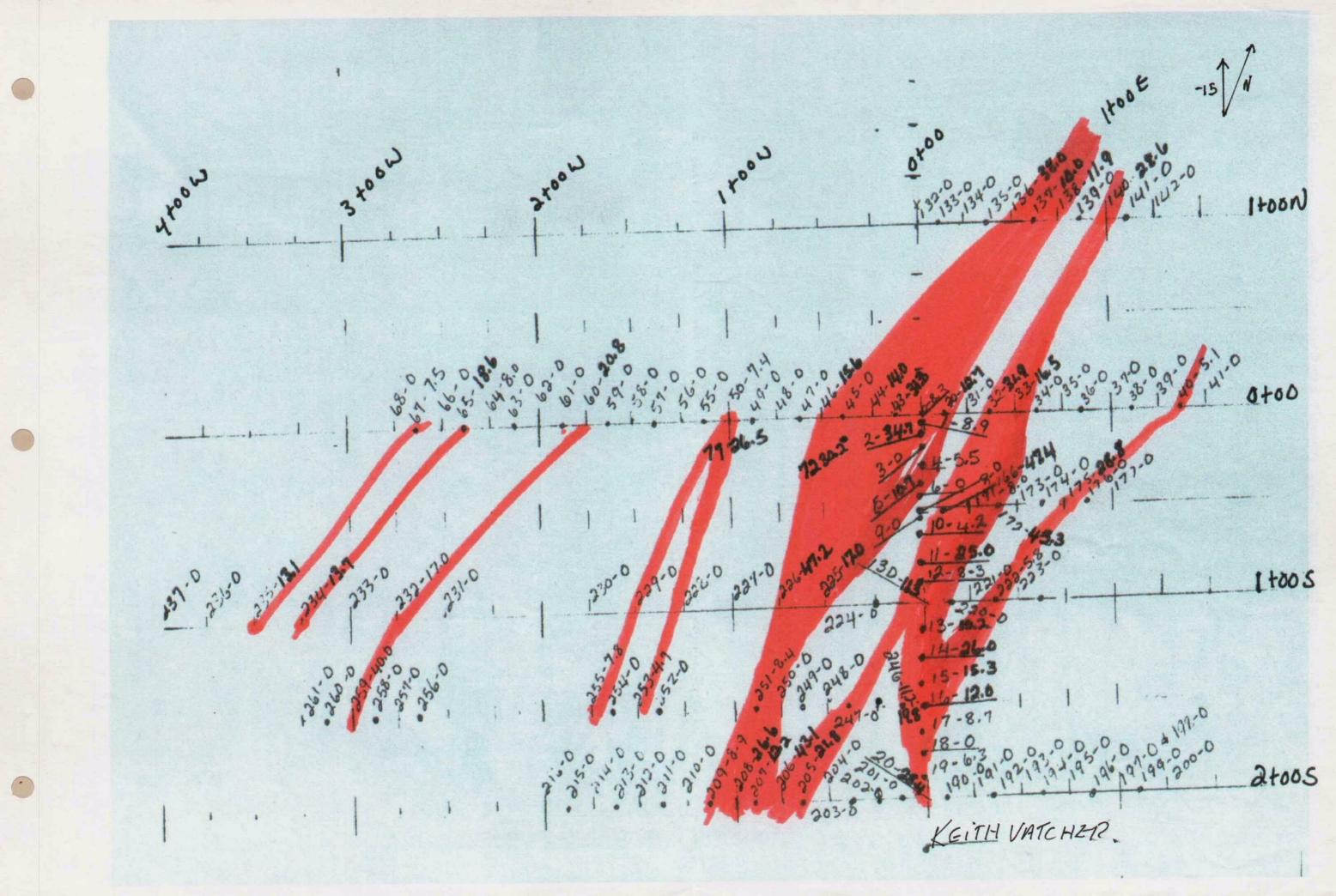
Claim # 1077039 Lots 12,13,14 and 15 South half of concession 9 All of lots 12,13,14 and 15 concession 8


Claim # 1077036 All of Lots 12,13,14 and 15 of concession 7 Lots 12,13,14 and 15 North half of concession 6


Work on those claims were performed with a JSW excavator owned and operated by Larry Oliver of Buckhorn Samples were taken by Keith Vatcher


Dan Leroux mapped and witnessed the project Kirk Watson cleared trails and gathered samples Total of 4 trenches were dug.

0, 1 north, 1 south, and 2 south.


N 1 ./ Morth 26Ne PicARD LA APX Trenches Read. 75 707 Grid arcs, 7 5 prospected , AREG , Zone Road. 2010 1800 m 1 pits.

IN	•
75	
50	
25 N	
0100	-
25 E	
50	
95	
1-5	-

Trench 0

1[59956] $0 - 5 m.$ 8.5 gray marble $2[59957]$ $5 - 10 m.$ 20.0 gray marble $3[59958]$ $10 - 15 m.$ 8.4 gray-brown marble $4[59959]$ $15 - 20 m.$ 5.2 gray-brown marble $5[59960]$ $20 - 25 m.$ 20.0 foliated marble $6[59961]$ $25 - 30 m.$ 8.3 amphibolite well foliated $6[59962]$ $30 - 35 m.$ 3.9 amphibolite , well foliated $8[59963]$ $35 - 40 m.$ 2.7 blue-gray marble $9[59964]$ $40 - 45 m.$ 11.2 weathered amphibolite $9[59965]$ $45 - 50 m.$ 5.4 light marble $11[59966]$ $55 - 60 m.$ 6.0 light marble, narrow veins of high percent vermiculite $12[59967]$ $60 - 65 m.$ 14.0 light marble, narrow veins of high percent vermiculite $13[59968]$ $65 - 70 m.$ 21.2 light marble, narrow veins of high percent vermiculite $14[59969]$ $70 - 75 m.$ 9.0 light marble, narrow veins of high percent vermiculite
3[59958] 10-15m. 8.4 gray-brown marble 4[59959] 15-20m. 5.2 gray-brown marble 5[59960] 20-25m. 20.0 foliated marble 6[59961] 25-30m. 8.3 amphibolite well foliated 7[59962] 30-35m. 3.9 amphibolite , well foliated 8[59963] 35-40m. 2.7 blue-gray marble 9[59964] 40-45m. 11.2 weathered amphibolite 10[59965] 45-50m. 5.4 light marble 11[59966] 55-60m. 6.0 light marble, narrow veins of high percent vermiculite 12[59967] 60-65 m. 14.0 light marble, narrow veins of high percent vermiculite 13[59968] 65-70m. 21.2 light marble, narrow veins of high percent vermiculite 14[59969] 70-75m. 9.0 light marble, narrow veins of high percent vermiculite
3[59958] 10-15m. 8.4 gray-brown marble 4[59959] 15-20m. 5.2 gray-brown marble 5[59960] 20-25m. 20.0 foliated marble 6[59961] 25-30m. 8.3 amphibolite well foliated 7[59962] 30-35m. 3.9 amphibolite , well foliated 8[59963] 35-40m. 2.7 blue-gray marble 9[59964] 40-45m. 11.2 weathered amphibolite 10[59965] 45-50m. 5.4 light marble 11[59966] 55-60m. 6.0 light marble, narrow veins of high percent vermiculite 12[59967] 60-65 m. 14.0 light marble, narrow veins of high percent vermiculite 13[59968] 65-70m. 21.2 light marble, narrow veins of high percent vermiculite 14[59969] 70-75m. 9.0 light marble, narrow veins of high percent vermiculite
4[59959] 15-20m. 5.2 gray-brown marble 5[59960] 20-25m. 20.0 foliated marble 6[59961] 25-30m. 8.3 amphibolite well foliated 7[59962] 30-35m. 3.9 amphibolite , well foliated 8[59963] 35-40m. 2.7 blue-gray marble 9[59964] 40-45m. 11.2 weathered amphibolite 10[59965] 45-50m. 5.4 light marble 11[59966] 55-60m. 6.0 light marble, narrow veins of high percent vermiculite 12[59967] 60-65 m. 14.0 light marble, narrow veins of high percent vermiculite 13[59968] 65-70m. 21.2 light marble, narrow veins of high percent vermiculite 14[59969] 70-75m. 9.0 light marble, narrow veins of high percent vermiculite
5[59960]20-25m.20.0foliated marble6[59961]25-30m.8.3amphibolite well foliated7[59962]30-35m.3.9amphibolite , well foliated8[59963]35-40m.2.7blue-gray marble9[59964]40-45m.11.2weathered amphibolite10[59965]45-50m.5.4light marble11[59966]55-60m.6.0light marble, narrow veins of high percent vermiculite12[59967]60-65 m.14.0light marble, narrow veins of high percent vermiculite13[59968]65-70m.21.2light marble, narrow veins of high percent vermiculite14[59969]70-75m.9.0light marble, narrow veins of high percent vermiculite
7[59962]30-35m.3.9amphibolite , well foliated8[59963]35-40m.2.7blue-gray marble9[59964]40-45m.11.2weathered amphibolite10[59965]45-50m.5.4light marble11[59966]55-60m.6.0light marble, narrow veins of high percent vermiculite12[59967]60-65 m.14.0light marble, narrow veins of high percent vermiculite13[59968]65-70m.21.2light marble, narrow veins of high percent vermiculite14[59969]70-75m.9.0light marble, narrow veins of high percent vermiculite
8[59963] 35-40m. 2.7 blue-gray marble 9[59964] 40-45m. 11.2 weathered amphibolite 10[59965] 45-50m. 5.4 light marble 11[59966] 55-60m. 6.0 light marble, narrow veins of high percent vermiculite 12[59967] 60-65 m. 14.0 light marble, narrow veins of high percent vermiculite 13[59968] 65-70m. 21.2 light marble, narrow veins of high percent vermiculite 14[59969] 70-75m. 9.0 light marble, narrow veins of high percent vermiculite
9[59964]40-45m.11.2weathered amphibolite10[59965]45-50m.5.4light marble11[59966]55-60m.6.0light marble, narrow veins of high percent vermiculite12[59967]60-65 m.14.0light marble, narrow veins of high percent vermiculite13[59968]65-70m.21.2light marble, narrow veins of high percent vermiculite14[59969]70-75m.9.0light marble, narrow veins of high percent vermiculite
10[59965]45-50m.5.4light marble11[59966]55-60m.6.0light marble, narrow veins of high percent vermiculite12[59967]60-65 m.14.0light marble, narrow veins of high percent vermiculite13[59968]65-70m.21.2light marble, narrow veins of high percent vermiculite14[59969]70-75m.9.0light marble, narrow veins of high percent vermiculite
11[59966]55-60m.6.0light marble, narrow veins of high percent vermiculite12[59967]60-65 m.14.0light marble, narrow veins of high percent vermiculite13[59968]65-70m.21.2light marble, narrow veins of high percent vermiculite14[59969]70-75m.9.0light marble, narrow veins of high percent vermiculite
12[59967]60-65 m.14.0of high percent vermiculite13[59968]65-70m.21.2light marble, narrow veins of high percent vermiculite14[59969]70-75m.9.0light marble, narrow veins of high percent vermiculite
12[59967]60-65 m.14.0light marble, narrow veins of high percent vermiculite13[59968]65-70m.21.2light marble, narrow veins of high percent vermiculite14[59969]70-75m.9.0light marble, narrow veins of high percent vermiculite
13[59968]65-70m.21.2of high percent vermiculite light marble, narrow veins of high percent vermiculite14[59969]70-75m.9.0light marble, narrow veins of high percent vermiculite
13[59968]65-70m.21.2light marble, narrow veins of high percent vermiculite14[59969]70-75m.9.0light marble, narrow veins of high percent vermiculite
14[59969]70-75m.9.0of high percent vermiculite14[59969]70-75m.9.0light marble, narrow veins of high percent vermiculite
14[59969]70-75m.9.0light marble, narrow veins of high percent vermiculite
of high percent vermiculite
15[59970] 75-80m. 22.9 light marble, narrow veins
of high percent vermiculite
16[59971] 80-85m. 3.8 blue gray marble
17[59972] 85-90m. 13.2 gray marble
18[59973] 90-95m. 13.4 light gray marble
19[59974] 95-100m. 3.5 light gray marble
20[59975] 100-105m. 10.0 light gray marble
21[59976] 105-110m. 10.5 light gray marble
22[59977] 110-115m. 10.4 light gray marble
23[59978] 115-120m. 5.5 light marble ,coarse grain
24[59979] 120-125m. 2.3 light marble, coarse grain
very brittle
25[59980] 125-130m. 1.0 light marble, coarse grain
very brittle

.

Trench 1 north

Sample#	Location	Vermiculite	Rock type
1[59921]	0-5m.	9.5	Amphibolite
2[59922]	5-10m.	5.8	Blue-gray marble
3[59923]	10-12.5m.	3.9	Granite-gneiss
4[59924]	12.5-15m.	5.0	Granite-gneiss
5[59925]	15-20m.	7.6	Blue-gray marble
6[59926]	20-25m.	6.2	Amphibolite
7[59927]	25-30m.	17.9	Granite-gneiss
8[59928]	30-35m.	6.9	Granite-gneiss
9[59929]	35-40m.	5.2	Sandy material
10[59930]	40-45m.	7.0	Gneiss
11[59931]	45-50m.	11.1	Light marble
12[59932]	50-55m.	7.2	Light marble course grain , brittle
13[59933]	50-52.5m.	8.6	Light marble course grain, brittle
14[59934]	52.5-55m.	10.7	Light marble coarse grain, very brittle
15[59935]	55-60m.	6.2	Light marble coarse grain, very brittle
16[59936]	60-65m.	12.2	Light marble coarse grain, brittle
17[59937]	65-70m.	11.1	Blue-gray marble
18[59938]	70-75m.	8.2	Blue-gray marble

Trench 1 south

Location	Vermiculite	Rock type
0-5m.	5.8	Amphibolite
5-10m.	6.6	Marble
10-12.5m.	9.8	Marble
12.5-15m.	11.4	Marble, gneiss
15 - 20m.	4.0	Amphibolite ,narrow zone of diabase
20-25m	35	Blue gray marble
		Sandy material
	-	Sandy material
		Sandy material, and
<i>55</i> -+011.	<i>L.</i> . <i>L.</i>	Amphibolite
40-45m	68	Amphibolite
		Amphibolite
		Blue-gray marble
		Blue gray marble
		Light gray marble
		Marble, narrow veins
0 <i>5</i> 70m.	11.5	of high percent verm.
70-75m.	23.4	Marble, narrow veins of high percent verm.
75-80m.	10.1	Marble
		Marble, coarse brittle
		No sample, rock
87.5-90m.	5.7	Amphibolite
	0-5m. 5-10m. 10-12.5m. 12.5-15m. 15-20m. 20-25m. 25-30m. 30-35m. 30-35m. 35-40m. 40-45m. 45-50m. 50-55m. 55-60m. 60-65m. 65-70m. 70-75m. 75-80m. 80-85m. 85-87.5m.	0-5m. 5.8 $5-10m.$ 6.6 $10-12.5m.$ 9.8 $12.5-15m.$ 11.4 $15-20m.$ 4.0 $20-25m.$ 3.5 $25-30m.$ 0 $30-35m.$ 0 $30-35m.$ 0 $35-40m.$ 2.2 $40-45m.$ 6.8 $45-50m.$ 4.4 $50-55m.$ 4.6 $55-60m.$ 4.8 $60-65m.$ 3.5 $65-70m.$ 11.5 $70-75m.$ 23.4 $75-80m.$ 10.1 $80-85m.$ 3.0 $85-87.5m.$ 0

Trench 2 south

Sample	Location	Vermiculite	Rock type
1[59939]	0-5m.	10.1	Amphibolite
2[59940]	5-10m.	16.6	Amphibolite
3[59941]	10-15m.	7.4	Amphibolite
4[59942]	15-20m.	11.5	Amphibolite
5[59943]	20-25m.	5.2	Amphibolite
6[59944]	25-30m.	15.5	Amphibolite
7[59945]	30-35m.	18.6	Amphibolite
8[59946]	35-40m.	5.5	Amphibolite
9[59947]	40-45m.	1.0	Amphibolite
10[59948]	45-50m.	2.0	Biotite gneiss
11[59950]	50-55m.	5.9	Biotite gneiss
12[59951]	55-60m.	7.5	Biotite gneiss
13[59952]	60-65m.	6.6	Biotite gneiss
14[59953]	65-70m.	11.8	Biotite gneiss
15[59954]	70-75m.	9.7	Biotite gneiss
16[59955]	75-80m.	6.2	Biotite gneiss
17[59956]	80-85m.	7.1	Biotite gneiss

Horse shoe Lake property Trenches

Trenches I and J

Work on those claims were performed with JSW. excavator owned and operated by Larry Oliver of Buckhorn Samples were taken by Keith Vatcher Dan Leroux mapped and witnessed the project Kirk Watson cleared trails and gathered samples

TRENCH I

Sample #	Location	Vermiculite	Rock type
1[135301]	0-2.5m.	3.0	Marble schist
2[135302]	2.5-5m.	15.1	Marble schist
3[135303]	5-7.5m.	0.9	Glacial sand
4[135304]	7.5-10m.	6.1	Marble under sand
5[135305]	10-12.5m.	33.1	Pinkish marble
6[135306]	12.5-15m.	3.9	Pinkish marble
7[135307]	15-17.5m.	0	Pinkish marble
8[135308]	17.5-20m.	2.0	Pinkish marble
9[135309]	20-22.5m.	2.3	Pinkish marble
10[135310]	22.5-25m.	14.9	Greenish marble
11[135311]	25-27.5m.	15.2	Greenish marble
12[135312]	27.5-30m.	12.7	Greenish marble
13[135313]	30-32.5m.	11.7	Greenish marble
14[135314]	32.5-35m.	20.7	Greenish marble
15[135315]	35-37.5m.	29.7	Greenish marble
16[135316]	37.5-40m.	30.4	Greenish marble
17[135317]	40-42.5m.	28.3	Greenish marble
18[135318]	42.5-45m.	3.4	Monzonite
19[135319]	45-47.5m.	20.9	Greenish marble
20[135320]	47.5-50m.	6.8	Greenish marble
21[135321]	50-52.5m.	8.5	Dolomite marble
22[135322]	52.5-55m.	11.3	Dolomite marble
23[135323]	55-57.5m.	14.1	Dolomite marble
24[135324]	57.5 - 60m.	12.4	Dolomite marble
25[135325]	60-62.5m.	6.9	Dolomite marble
26[135326]	62.5-65m.	4.8	Dolomite marble
27[135327]	65-67.5m.	20.8	Dolomite marble
28[135328]	67.5-70m.	18.7	Dolomite marble
29[135329]	70-72.5m.	18.9	Dolomite marble
30[135330]	72.5 - 75m.	10.7	Dolomite marble
31[135331]	75-77.5m.	3.8	Dolomite marble
32[135332]	77.5 - 80m.	1.5	Dolomite marble
33[135333]	80-82.5m.	4.8	Dolomite marble
34[135334]	82.5-85m.	3.9	Dolomite marble

35[135335]	85-87.5m.	14.4	Dolomite marble
36[135336]	87.5-90m.	20.2	Dolomite marble
37[135337]	90-92.5m.	29.7	Light marble schist
38[135338]	92.5-95m.	17.4	Light marble schist
39[135339]	95-97.5m.	23.1	Light marble schist
40[135340]	97.5-100m.	12.6	Light marble schist
41[135341]	100-102.5M.	11.0	Light marble schist
42[135342]	102.5 - 105M.	3.0	Light marble schist

Trench J

Sample#	Location	Vermiculite	Rock type
1[135348]	0-5m.	6.4	Light marble
2[135349]	5-10m.	8.5	Light marble
3[135350]	10-12.5m.	0	Dyke
4[135351]	12.5-15m	0	Dyke
5[135352]	15-17.5m.	2.9	Light marble
6[135353]	17.5-20m.	1.4	Light marble
7[135354]	20-22.5m	30.3	Marble schist
8[135355]	22.5 - 25m.	26.5	Marble schist
9[135356]	25-27.5m	34.2	Marble schist
10[135357]	27.5-30m.	30.4	Marble schist
11[135358]	30-32.5m.	31.5	Marble schist
12[135359]	32.5 - 35m.	37.9	Marble schist
13[135360]	35-37.5m.	12.2	Marble
14[135361]	37.5-42.5m.	0	Sandy material
15[135362]	42.5-47.5m.	1.3	Sandy material
16[135363]	47.5-52.5m.	0	Sandy material
17[135364]	52.5-55m.	10.5	Marble
18[135365]	55-57.5m.	7.6	Marble
19[135366]	57-60m.	3.9	Marble

EXAMPLE OF TIME INVOLVED IN SAMPLING PROCEDURES

When using a hand auger we usually take 100 samples per. day.[8a.m.-3p.m.]. All samples are labeled at the location where they are collected. A starting point is based on pervious exploration in the area. Then using a tape we walk in a line sampling at what intervals we choose usually 12.5 m. east-west and 50 m. north- south. Flagging tape is used to mark the location. The locations are marked on the bags and the flagging tape. eg. 1+00n-1+00e. All samples are left at the area where they taken until the line is completed or leaving time. When the samples are brought back to camp they are put into plates to dry and after the line has been completed a number is given to the samples eg. 1-a or 1-041. The samples are usually rifilled into two sections one for assay and one for storage. The drying time depends on the size of the sample. Usually if the samples are put into plates they will dry overnight in the drier, which can hold 150 samples. Swamp samples and samples over 400g. take extra time apx. 16 to24 hours. When 30 samples are dry we start exfoliating. A sample weighing 400g, take usually 8 to 20 minutes depending on the amount of vermiculite in them. If the average appears to be low the feed can be speed up, if it is high it is slowed down. If a sample has no vermiculite in them it will take only seconds to run. After the sample has been ran they are put into a bucket and filled with water. The vermiculite is than floated off into a screen that has been covered with a paper towel. This process usually takes the amount of time it takes to run a sample. The more vermiculite, the more time. It is important to run samples that will allow us to get a system in place that will allow us to run and separate at the same time. After the sample has been separated with water it is then put into a oven that runs at very high temperatures to dry. This oven can dry 30 samples in 4 hours. The samples are removed as soon as they are dry so as they are not over dried. If a sample is over dried they can get powdery and brittle making them hard to screen if they needed to be screened at all. When running samples we can complete 50 to 100 each day and test as many with one person. We test our own samples so it is hard to put a price on each sample. We have assayed and tested well over 5000 samples we only keep track of numbered samples. We can test any sample anywhere with a torch and get a reasonable accurate average that will tell us if the area is worth sampling.

Time 8am. to 3pm collect samples 50 to 100 samples 4pm to 6pm place out to dry 7 to 11 run and separate 20 to 40 samples 11pm to 12am refill ovens 20.00 prophane, 100 to 250 samples 1 days labor [200 per day] 50 to 100 samples A usual day when running samples

KEITH VATCHER

Trench samples are assayed in the same way as auger samples, except trench samples are usually larger. Trench samples are taken along the wall running the length of the trench. In places where the trench is more than 1.5 m extra samples are taken. [vertical]. The trenches are sampled as the excavator digs, we usually stay back 25m. for a safe distance. All the trench is sampled, bags are labeled and left in the location until the excavator has completed the trench then the bags are moved in a safe place so the excavator can fill the trench back in. A atv. is then used to pick up the samples, each weighing apx. 1500g. plus. The trenches in the north zones were apx. 100m. and took apx. 5 hours of digging and some time to make trails to the area. Labor rate for the excavator was \$90 dollars per hour. The trenches 200,335 and 400 were dug by Larry Oliver with a J.S.W. excavator at \$90 per hour and took 18.5 hours. A total of 275m. were dug putting the cost at apx. \$6.05 dollars per meter. The cost of each sample was apx. \$2.00 to \$5.00. to run at our lab., and at the Lakefield lab. the cost was between \$15 and \$30. The price can vary a large amount depending on the amount of vermiculite in each sample.

Heith Joken

Lovenia Ohven NO ENRO TAXE SUM - Regis Resume NOU PAR C.R 6.0 D NECU AC MONT REPOR Xcaua ÷ 0 720 12

Lovenia OLven 6598853 MIE 27 24 - 60 NOM Regis Resource 'e SOLD BY C.N. C.O.D NECU AC HONT REPORT ACCT nie Xcau 290 Z 945 1 10 SIGNATI IN 11 🕒 emica-21

E such as Lovenia OC. 6578853 0 13 Xcave Tor H 0.0.A TOPSE HONAT CHANGE Move ecource T Mara i Shoc oa NICU AC 5 2000 ACCT 0

1

<u>Regis Resources Inc.</u> <u>Resource Estimate- Plans & Sections</u> <u>Cavendish Vermiculite Deposit- West Zone</u>

by:

Frederick T. Archibald, B.Sc.Geologist April 5, 1999 Mining Act, Subsection 66(2) and 66(3), PLS.O. 1999

tch imaging ement /

I MAN IN MANY THE AND	respond with the mining land holder. Questions about this collection and Floor, 933 Rameey Lake Road, Sudbury, Ontario, P3E 685.
31D16SW2002 2.20489 CAVENDISH 900	
instructions: For work performed on Crown Lands before recording a cla	aim, use form 0240.
 Please type or print in ink. 	
	9 90 / 00
1. Recorded holder(s) (Attach a list if necessary)	2.20489
REGIS RESOURCES INC.	Client Number 303719
60 BLOOR ST. WEST	Telephone Number 416-250-0744
SUITE 400, TORONTO; ONT. MUM	1-38 B 416-250-7547
Name MALW-36	Client Number
Address	Telephone Number
	Fax Number
2. Type of work performed: Check (1) and report on only ONE of the formed	
Geotechnical: prospecting, surveys, assays and work under section 18 (regs)	ng stripping, Rehabilitation associated assays
Work Type	Office Use
)	Commodity I
Pospecting Trenching Lines Assaying	Total \$ Value of 130693
Deles Work From 111 00 all To 1 Dla	2000 NTS Reference

Please remember to: - obtain a work permit from the Ministry of Natural Resources as required;

- provide proper notice to surface rights holders before starting work;

- complete and attach a Statement of Costs, form 0212;

TOWNSHID AVON CAUENDISH

- provide a map showing contiguous mining lands that are linked for assigning work;

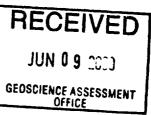
Southern Ontario

- include two copies of your technical report.

Mor

72

Remon or companies who prepared the technical report (Attach a list if necessary)


lame	Telephone Number
Adrees	Fax Number
lame	Telephone Number
derees	Fax Number
lame	Telephone Number
\ddress	Fax Number

: Certification by Recorded Holder or Agent KEITH VATCHER

Global Positioning System Data (If analiable)

, do hereby certify that I have personal knowledge of the facts set forth in nis Declaration of Assessment Work having caused the work to be performed or witnessed the same during or after its ompletion and, to the best of my knowledge, the annexed report is true.

ignature of Recorded Wolder or Agent Keith Uatching		Date June 1/2000
BEAVER LK. RD. RR#1 Buckharn, ont. KOL-150	Telephone Number 7379	Fax Number
.41 [03/97]	· · · ·	
	BECI	

of the Mining Act, this Ad U

Mining Division

District

Resident Geologia

joint

Y 00

nt

tand where work was performed, at the time work was performed. A map showing the contiguous link must accompany this

	· Amen	dment.	wa	90.00054		
work i minin colum	g Claim Number. Or If was done on other eligible g land, show in this n the location number ited on the claim map	Number of Claim Units. For other mining land, Bet hectares.	Value of work performed on this claim or other mining land.	Value of work applied to this claim.	Value of work assigned to other mining claims	Bank, Value of work to be detributed at a future date
•9	TB 7827	18 he	\$26,825	N/A	\$24,000	\$2,825
•9	1234587	12	0	\$24,000	0	0
•9	1234568	2	\$ 8,892	\$ 4,000	22791200	\$4,892 KV
1	1077036	12	68,086.96	9.600.00	444.00	34693.53
2	1163443	2	9.008,62	800.00	8208.62	134693.53
3	1191249	4	27.342.14		27342.14	
4	1191295	2	26,255.81	-	26,255.81	
5	1077034	12	-	9,600.00	-	
6	1077037	3	-	2,400.00	,	
7	1077038	12	-	9,600.00	-	
•	1077039	12	-	9.600.00	J	
9	1077040	3	-	2,400.00	-2, 2	0100
10	1077042	3	-	2,400.00	-	V 1 30
11	1077043	9	1	7.200.00	-	
1.2	1077044	4	1	3,200.00	-	
t:	1077045	6	-	4,800.00		
14	1077 \$460	6	1	4,800.00	~	
15	1077459	12	-	9.6000	-	KU
	Column Totals		130 693 53		910000.00	3.469353
I	KEITH UNTCH	HER		ereby certify that t	he above work credit	3,4693,53 s are eligible under

subsection 7 (1) of the Assessment Work Regulation 6/96 for assignment to contiguous claims or for application to the claim where the work was done.

June 19 200 Signature of Apcorded Holder or Agent Authorized in Writing Bune 2000 Keits Vatcher

6. Instructions for cutting back credits that are not approved.

Some of the credits claimed in this declaration may be cut back. Please check (\checkmark) in the boxes below to show how you wish to prioritize the deletion of credits:

- 1. Credits are to be cut back from the Bank first, followed by option 2 or 3 or 4 as indicated.
- □ 2. Credits are to be cut back starting with the claims listed last, working backwards; or
- 3. Credits are to be cut back equally over all claims listed in this declaration; or
- 4. Credits are to be cut back as prioritized on the attached appendix or as follows (describe):

Note: If you have not indicated how your credits are to be deleted, credits will be cut back from the Bank first, followed by option number 2 if necessary.

For Office Use Only Received Starp		Deemed Approved Date	Date Notification Sent
	De	Date Approved	Total Value of Credit Approved
241 (2347)	RECEIVED	Approved for Recording by Mining	g Recorder (Signature)
	JUN 27 Pm		
	GEOSCIENCE ASSESSMENT		RECEIVED
			1 1
			JUN 0 9 2000 ·
			GEOSCIENCE ASSESSMENT

terms where work was performed, at the time work was performed. A map showing the contiguous link must accompany this form.

		enamera		W0040.000	054	
work : minin colum	g Claim Number, Or II was done on other aligible g land, show in this in the location number ited or the claim map	Number of Claim Units. For other mining land, list hectares	Value of work performed on the claim or other mining land	Value of work applied to the claim.	Value of work assigned to other mining claims.	Bank. Velue of work to be distributed at a future date
•0	TB 7827	16 he	\$26,825	N/A	\$24,000	\$2,825
•0	1234587	12	0	\$24,000	0	0
•9	1234568	2	\$ 8,892	\$ 4,000	0	\$4,892
1	1077461	8	-	6.400.00		· ·
2	1077458	8	-	6,400.00		
3	1077417	9	-	7.20000	-	
4		_				
5					· · · · · · · · · · · · · · · · · · ·	
•						
7						
•						
•					0 00	20
10					2.201	00
,11						
12			·			
13						
14						1
15		187				100-
	Column Totals		130693.53	96000.00	96,000.00	3 119362
I	KEITH UATCH	HER.			he above work credit	2 47693.53 sare eligible under

subsection 7 (1) of the Assessment Work Regulation 6/96 for assignment to contiguous claims or for application to the claim where the work was done.

			1. H. John
Signature a seconder Holder or Ageny Authorized in Writing	Date ()		- Roman
Signature of Jacorgan Holder or Apergluthorized in Writing	une	1/2000	Aug 19 Ross
			- gui - i p
		/	

6. Instructions for cutting back credits that are not approved.

Some of the credits claimed in this declaration may be cut back. Please check (\checkmark) in the boxes below to show how you wish to prioritize the deletion of credits:

- I. Credits are to be cut back from the Bank first, followed by option 2 or 3 or 4 as indicated.
- □ 2. Credits are to be cut back starting with the claims listed last, working backwards; or
- **3.** Credits are to be cut back equally over all claims listed in this declaration; or
- 4. Credits are to be cut back as prioritized on the attached appendix or as follows (describe):

Note: If you have not indicated how your credits are to be deleted, credits will be cut back from the Bank first, followed by option number 2 if necessary.

setved Starp	Deemed Approved Date	Date Notification Sent
RECEIVED	Date Approved	Total Value of Credit Approved
3:10pm JU: 27 2000	Approved for Recording by Mining	Recorder (Signature)
GEOSCIENCE ASSESSMENT OFFICE		RECEIVED
		JUN 0 9 2000
	G	EOSCIENCE ASSESSMENT

IVI Assessment Credit

Personal information collected on this form is obtained under the authority of subsection 6(1) of the Assessment Work Regulation 6/96. Under section , of the Mining Act, the information is a public record. This information will be used to review the assessment work and correspond with the mining land holder. Questions about this collection should be directed to the Chief Mining Recorder, Ministry of Northern Development and Mines, 6th Floor, 933 Ramsey Lake Road, Sudbury, Ontario, P3E 685.

1077	0310 - 12	units		
Work Type	Units of Worl Depending on the type of work, of hours/days worked, metres of metres of grid line, number of s	list the number	Cost Per Unit of work	Total Cost
ACA Howe . INt. LTD.	Confirming Work while	trenchina		3975.80
Excavating	3 trenches.			2385.00
Backhok	4 Short Frencher.			
Labor.	42			500.00
				42,502.00
•			2.2	0489
Associated Costs (a.g. sup	plies, mobilization and demob			
Bike		pro	phane	225.00
	1			154.91
·Servace	cha + Office			555.06
Telephone T	Hydro.			1,240.39
Supplies				3,456.68
Gas				878.52
	ansportation Costs fruck			200.00
Bike Rent				750.00
	ental (somic)			2,776.73
Fo	od and Lodging Costs Fed	ex -		406.39
	<u>Rent.</u>			
Me	cals			7,364.50 716.00
	Το	tal Value of A	ssessment Work	68081.91
	unts: s of performance is claimed at 1 pars and up to five years after p k. If this situation applies to you		*** ***** ****************************	
TOTAL VALUE OF ASSES		< 0.50 =		ue of worked claimed.
adread in tauncarion and of	not eligible for credit. equired to verify expenditures c correction/clarification. If verific t of the assessment work submit	ation and/or co		Jak I
Certification verifying costs	- 11C-0		nounts shown are a	
(please print full name reasonably be determined and	d the costs were incurred while	conducting as	sassment work on th	a lande indicated en
he accompanying Declaration	n of Work form as Explo	sofion	Monoser	is rands indicated on
to make this certification.	RECEIVED	, ⊐≣arut di arera A010	hand the second such sidewing an	Angriky)

JUN 0 9 2000 GEOSCIENCE ASSESSMENT OFFICE

A	
Signature / Date	
Keith loth	
i i i i i i i i i i i i i i i i i i i	

0212 (02/96)

Nontrein Development and Mines

(V) Untario

for Assessment Credit

-----W0090.00054

Personal Information collected on this form is obtained under the authority of subsection 6(1) of the Assessment Work Regulation 696. Under section 8 of the Mining Act, the information is a public record. This information will be used to review the assessment work and correspond with the mining land holder. Questions about this collection should be directed to the Chief Mining Recorder, Ministry of Northern Development and Mines, 6th Floor, 933 Ramsey Lake Road, Sudbury, Ontario, P3E 685.

Claim# 1	191295 - 2UN	its	1
Work Type	Units of Work Depending on the type of work, list the number of hours/days worked, metres of dritting, kilo- metres of grid line, number of samples, etc.	Cost Per Unit	Total Cost
seach ina	8 trenches 2 chains		20,000.00
sau ine	,		
Bulk Testing	5000 lbs		· · · · · · · · · · · · · · · · · · ·
	15-8N (900m)	2 20	1 00
	3E-4 W (APX GOOD)		
	paapril- July Labor	20:000.00	1
5	0.0	200 per day	
ssociated Costs (e.g. supp	lies, mobilization and demobilization).		
Suga	hies + Food.		1,255.81
(o crobane	bas, oil, towels etc.)		
(<i>µ</i> , <i>µ</i>	, 02,	•	
Tr	ansportation Costs		
			·
		1	
F	ood and Lodging Costs		
Cattage	Pental	500 per Wee	k. 5.000.00
	· · · · · · · · · · · · · · · · · · ·		
	Total Valu	e of Assessment Wor	x 26255.81
		•)
Calculations of Filing Disc			
a it work is filed after two	ars of performance is claimed at 100% of years and up to five years after performa ork. If this situation applies to your claims	nca, il can uniy un ula	
TOTAL VALUE OF ASS			\$ value of worked claime
convest for verification and	s not eligible for credit. a required to verify expenditures claimed /or correction/clarification. If verification a art of the assessment work submitted.	in this statement of co ind/or correction/clarific	sts within 45 days of a ation is not made, the
Certification verifying con		at the amounts shown	are as accurate as may
	and the costs were incurred while condu	•	
the accompanying Declar	ation of Work form as	tion Monag	i am authori
to make this certification.		or state company position with d	gning authority)
IO Make Inis Certification.			
	JUN 0 9 2000 Signah	1 ye ill	Date Anna 113 m
0212 (02/04)	GEOSCIENCE ASSESSMENT OFFICE	wy volte	gune y alo

Northern Development and Mines

I Untario

Statement of Costs for Assessment Credit

Personal information collected on this form is obtained under the authority of subsection 6(1) of the Assessment Work Regulation 6/96. Under section 8 of the Mining Act, the information is a public record. This information will be used to review the assessment work and correspond with the mining land holder. Questions about this collection should be directed to the Chief Mining Recorder, Ministry of Northern Development and Mines, 6th Floor, 933 Ramsey Lake Road, Sudbury, Ontario, P3E 685.

Work Type	H 1163443 - 20 Units of Work Depending on the type of work, list the numb of hours/days worked, metres of drilling, kike metres of grid line, number of samples, stc.	or Cost Per Unit	Total Cost
RENCHENG	Apx 200 m	·	1.710.00
SAmpling	3 Days at 200 perc	on	600.0
ISSAUING	20 Days at 200 perd		4,000,00
rospecting As	sistent \$160.00, at 16 @ 10hi	kD	1.560 m
	12005 of 200 peri	Day	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
		q	
		2.2	0489
Associated Costs (e.g	. supplies, mobilization and demobilization).	
	prophane		22.00
·	Fuel		36.50
	other		156.12
•	<u>x ()</u>		
	Transportation Costs		
			26 0 20
	Truck		200.00
	6aS Food and Lodging Costs		124:00
			1 - 0
	Rent		600.00
	Total Val	ue of Assessment Work	9.008.6
			J .
2. If work is filed afte Value of Assessme TOTAL VALUE OF Note: - Work older than 5 y	g Discounts: wo years of performance is claimed at 100% of r two years and up to five years after perform ent Work. If this situation applies to your claim ASSESSMENT WORK × 0.50 rears is not eligible for credit.	ance, it can only be claim ns, use the calculation being) = Total \$ 1	ed at 50% of the Tot. ow: value of worked claim
 Work filed within h If work is filed aftered value of Assessment TOTAL VALUE OF Note: Work older than 5 y A recorded holder management for verification 	g Discounts: wo years of performance is claimed at 100% of r two years and up to five years after perform ent Work. If this situation applies to your claim	ance, it can only be claim is, use the calculation below = Total \$ to in this statement of costs	ed at 50% of the Tot ow: value of worked claim s within 45 days of a
1. Work filed within the 2. If work is filed after Value of Assessme TOTAL VALUE OF Note: - Work older than 5 y - A recorded holder m request for verification Minister may reject a Certification verifyin 1,	g Discounts: wo years of performance is claimed at 100% of r two years and up to five years after perform ent Work. If this situation applies to your claim ASSESSMENT WORK × 0.50 rears is not eligible for credit. may be required to verify expenditures claimed a and/or correction/clarification. If verification ill or part of the assessment work submitted. mg costs: MACHACK, do hereby certify, the	ance, it can only be claim is, use the calculation below) = Total \$ d in this statement of cost: and/or correction/clarificat hat the amounts shown are	ed at 50% of the Tot ow: value of worked claim s within 45 days of a ion is not made, the e as accurate as ma
1. Work filed within the 2. If work is filed after Value of Assessme TOTAL VALUE OF Note: - Work older than 5 y - A recorded holder in request for verification Minister may reject a Certification verifyin 1, <u>KEMTH</u> (clease of reasonably be determined	g Discounts: wo years of performance is claimed at 100% of r two years and up to five years after perform ent Work. If this situation applies to your claim = ASSESSMENT WORK × 0.50 rears is not eligible for credit. may be required to verify expenditures claimed in and/or correction/clarification. If verification and/or correction/clarification. If verification and or part of the assessment work submitted. mined and the costs were incurred while cond	ance, it can only be claim is, use the calculation below) = Total \$ d in this statement of cost: and/or correction/clarificat hat the amounts shown are	ed at 50% of the Tot ow: value of worked claim s within 45 days of a ion is not made, the e as accurate as ma n the lands indicated
 Work filed within the secompanying D Work is filed after value of Assessme TOTAL VALUE OF Note: Work older than 5 y A recorded holder in request for verification Minister may reject a 	y Discounts: wo years of performance is claimed at 100% of r two years and up to five years after perform ent Work. If this situation applies to your claim = ASSESSMENT WORK × 0.50 rears is not eligible for credit. may be required to verify expenditures claimed a and/or correction/clarification. If verification and/or correction/clarification. If verification and or part of the assessment work submitted. mined and the costs were incurred while cond Declaration of Work form as $\sum_{(recorded holder, spin)} \frac{1}{recorded holder, spin)}$	ance, it can only be claim is, use the calculation below) = Total \$ d in this statement of cost: and/or correction/clarificat hat the amounts shown are	ed at 50% of the Tot ow: value of worked claim s within 45 days of a ion is not made, the e as accurate as ma n the lands indicated
 Work filed within the value of Assessme TOTAL VALUE OF Note: Work older than 5 y A recorded holder in request for verification Minister may reject a Certification verifying 1, <u>KEMTH</u> (please for reasonably be determined by the accompanying D 	Discounts: wo years of performance is claimed at 100% of r two years and up to five years after perform ent Work. If this situation applies to your claim ASSESSMENT WORK × 0.50 rears is not eligible for credit. may be required to verify expenditures claimed and/or correction/clarification. If verification ill or part of the assessment work submitted. Ing costs: MACHOR, , do hereby certify, the mined and the costs were incurred while cond	ance, it can only be claim is, use the calculation below i = Total \$ d in this statement of costs and/or correction/clarificat hat the amounts shown are fucting assessment work of Manace	ed at 50% of the Tot ow: value of worked claim s within 45 days of a ion is not made, the e as accurate as may n the lands indicated
 Work filed within the secompanying D Work is filed after value of Assessme TOTAL VALUE OF Note: Work older than 5 y A recorded holder in request for verification Minister may reject a 	y Discounts: wo years of performance is claimed at 100% of r two years and up to five years after perform ent Work. If this situation applies to your claim = ASSESSMENT WORK × 0.50 rears is not eligible for credit. may be required to verify expenditures claimed a and/or correction/clarification. If verification and/or correction/clarification. If verification and or part of the assessment work submitted. mined and the costs were incurred while cond Declaration of Work form as $\sum_{(recorded holder, spin)} \frac{1}{recorded holder, spin)}$	ance, it can only be claim is, use the calculation below) = Total \$ i in this statement of costs and/or correction/clarificat hat the amounts shown are fucting assessment work of MCACC	ed at 50% of the Tot ow: value of worked claim s within 45 days of a ion is not made, the e as accurate as main n the lands indicated

Nonteen Development

for Assessment Credit

Personal information collected on this form is obtained under the authority of subsection 6(1) of the Assessment Work Regulation 6/96. Under section 8 of the Mining Act, the information is a public record. This information will be used to review the assessment work and correspond with the mining land holder. Questions about this collection should be directed to the Chief Mining Recorder, Ministry of Northern Development and Mines, 6th Floor, 933 Ramsey Lake Road, Sudbury, Ontario, P3E 685.

Work Type	Units of Work Depending on the type of work, list the number	Cost Per Unit	Total Cost
	of hours/days worked, metres of drilling, kilo- metres of grid line, number of samples, etc.	of work	Total Cost
ASSAY - SAMPLES	leon plus SAmples		13,636.62
maps (walker)			119.84
site inspection		··	439.66
ACA, Howe int.			11,711.03
		2.20	488
Associated Costs (e.g. supplier	s, mobilization and demobilization).	· · · · · · · · · · · · · · · · · · ·	
			00111
130110	sAmple Shipping	······································	926.66
GAS+ P	1		121.85
<u>S-xpene</u>	225		386.48
Trans	portation Costs		
Food	and Lodging Costs		
	Total Value of	Assessment Work	27,342.14
Calculations of Filing Discount	18:		
2. If work is filed after two years	f performance is claimed at 100% of the s and up to five years after performance, f this situation applies to your claims, us	, it can only be claime	d at 50% of the Total
TOTAL VALUE OF ASSESSI	MENT WORK × 0.50 =	Total \$ vi	alue of worked claimed
request for verification and/or co	eligible for credit. uired to verify expenditures claimed in the prrection/clarification. If verification and/c f the assessment work submitted.	nis statement of costs or correction/clarificatio	within 45 days of a on is not made, the
Certification verifying costs:			
• • • • • • •	ر , do hereby certify, that the	e amounts shown are	as accurate as may
reasonably be determined and	the costs were incurred while conducting	assessment work on	the lands indicated on
the accompanying Declaration	of Work form as Exploration RECEIVED	Manager	- I am authorize
to make this certification.	RECEIVED	e company positish with signing	authority)

RECEIVED		
JUN 0 9 2000		
GEOSCIENCE ASSESSMENT	Keith Votcher	June 1/2000
		0 /

0212 (02/94)

Ministry of Northern Development and Mines Ministère du Développement du Nord et des Mines

October 27, 2000

REGIS RESOURCES INC. 60 BLOOR ST. W. SUITE 400 TORONTO, ONTARIO M4W-3B8 😵 Ontario

Geoscience Assessment Office 933 Ramsey Lake Road 6th Floor Sudbury, Ontario P3E 6B5

Telephone: (888) 415-9845 Fax: (877) 670-1555

Visit our website at: www.gov.on.ca/MNDM/MINES/LANDS/mlsmnpge.htm

Dear Sir or Madam:

Submission Number: 2.20489

Status W0090.00054 Approval After Notice

Subject: Transaction Number(s):

We have reviewed your Assessment Work submission with the above noted Transaction Number(s). The

attached summary page(s) indicate the results of the review. WE RECOMMEND YOU READ THIS SUMMARY FOR THE DETAILS PERTAINING TO YOUR ASSESSMENT WORK.

If the status for a transaction is a 45 Day Notice, the summary will outline the reasons for the notice, and any steps you can take to remedy deficiencies. The 90-day deemed approval provision, subsection 6(7) of the Assessment Work Regulation, will no longer be in effect for assessment work which has received a 45 Day Notice. Allowable changes to your credit distribution can be made by contacting the Geoscience Assessment Office within this 45 Day period, otherwise assessment credit will be cut back and distributed as outlined in Section #6 of the Declaration of Assessment work form.

Please note any revisions must be submitted in DUPLICATE to the Geoscience Assessment Office, by the response date on the summary.

If you have any questions regarding this correspondence, please contact BRUCE GATES by e-mail at bruce.gates@ndm.gov.on.ca or by telephone at (705) 670-5856.

Yours sincerely,

teven B. Beneter

ORIGINAL SIGNED BY Steve B. Beneteau Acting Supervisor, Geoscience Assessment Office Mining Lands Section

Correspondence ID: 15386 Copy for: Assessment Library

Work Report Assessment Results

Date Correspond	pondence Sent: October 27, 2000		Assessor: BRUCE GATES	
Transaction Number	First Claim Number	Township(s) / Area(s)	Status	Approval Date
V0090.00054	1077036	CAVENDISH	Approval After Notice	October 21, 2000

17 Assays ASSAY 10 Physical PSTRIP

The revisions outlined in the Notice dated September 6, 2000 have been corrected.

~ ~ ~ ~ ~ ~

NOTE: We have allowed analyses costs, as reported, for samples with %vermiculite and without the detailed calculations and weights. All future submissions will require these detailed calculations to receive any assessment credit.

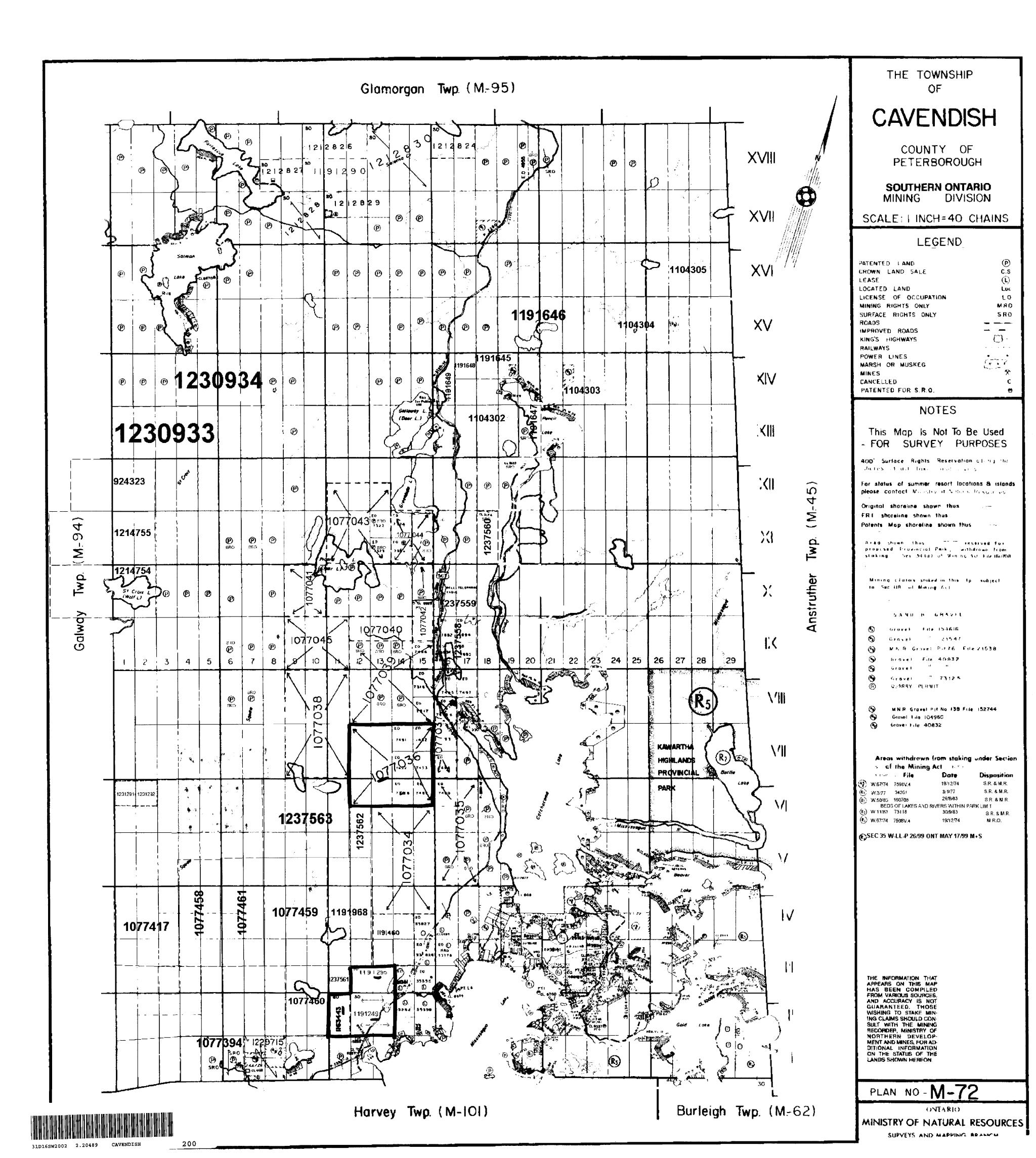
On claim 1191249: the work by ACA Howe - Feasibility Study - is not a type of work eligible under the assessment work regulation - (ore reserve calculations, feasibility studies, compilation reports are not eligible) - \$11,711 has been removed from this submission and the additional cost submitted by fax on Oct 02, \$36,037 is also not eligible; the reports will be returned; the cost of shipping the bulk sample to Blake, \$927, has not been allowed as no results were supplied for any testing by Blake.

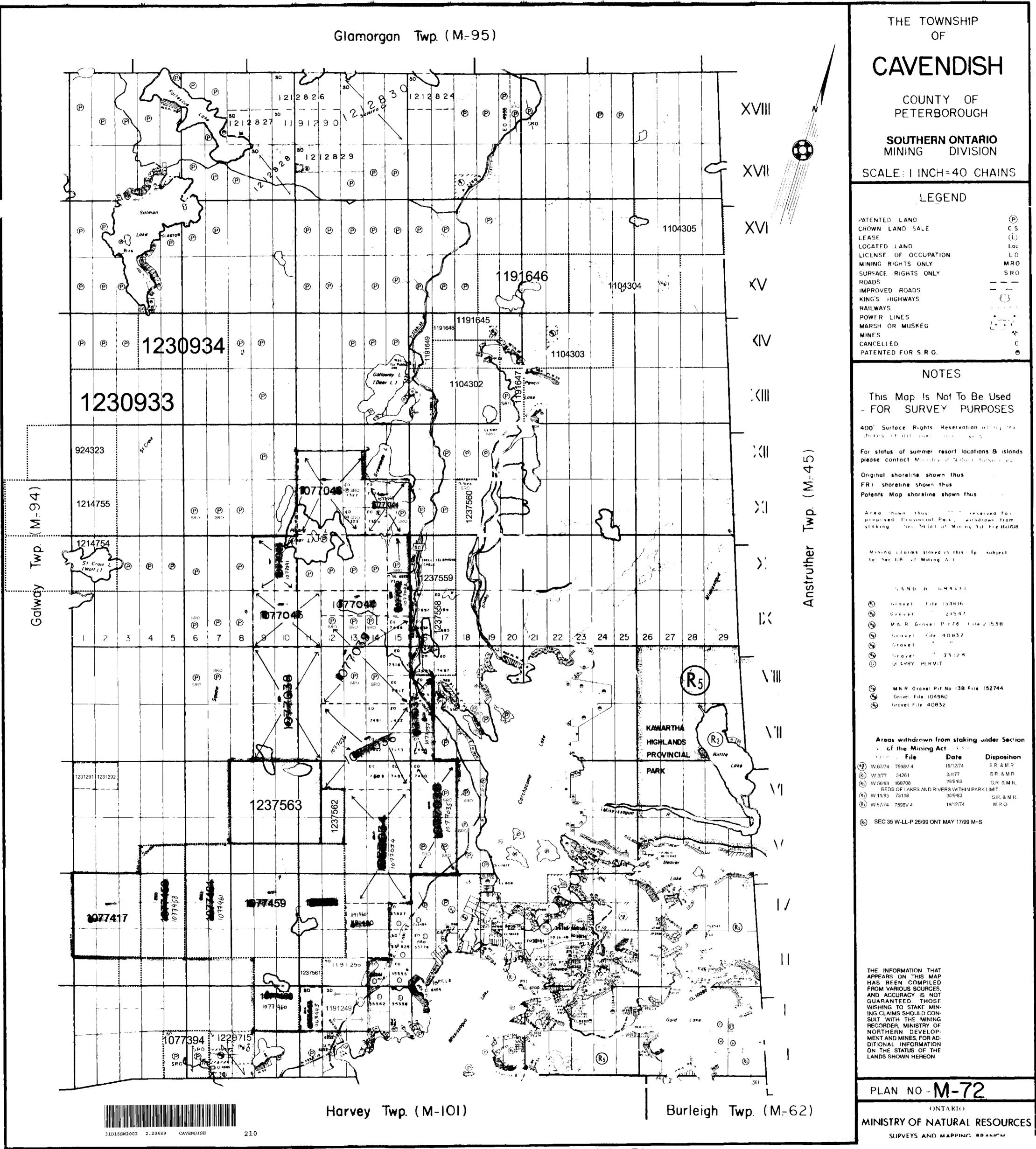
The assessment credit is being reduced by \$12,638.00. The TOTAL VALUE of assessment credit that will be allowed, based on the information provided in this submission, is \$118,055.00

Correspondence to:	Recorded Holder(s) and/or Agent(s):
Resident Geologist	Keith Vatcher
Tweed, ON	BUCKHORN, ONTARIO
Assessment Files Library	REGIS RESOURCES INC.
Sudbury, ON	
Suddury, ON	TORONTO, ONTARIO

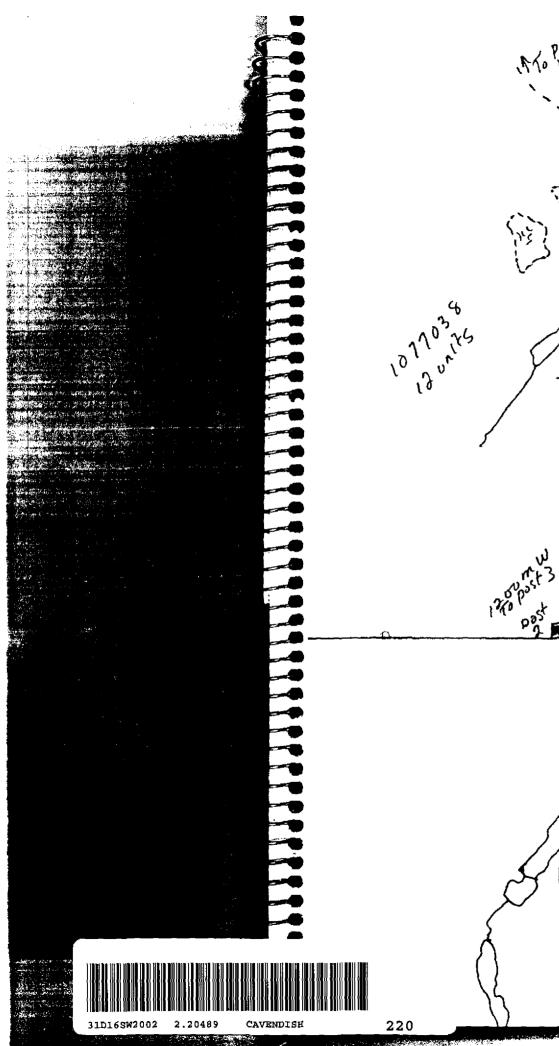
Distribution of Assessment Work Credit

The following credit distribution reflects the value of assessment work performed on the mining land(s).

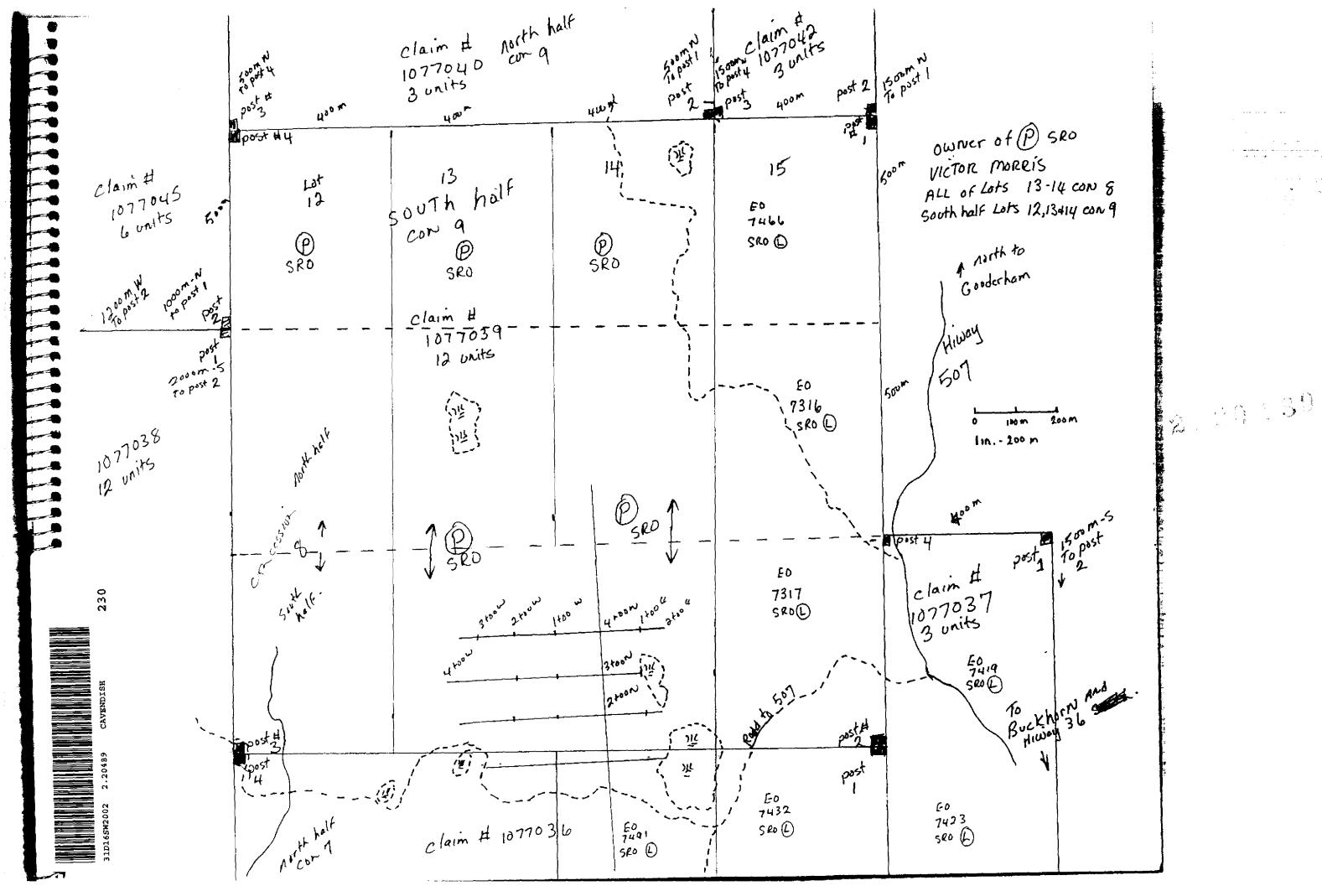

Date: October 27, 2000

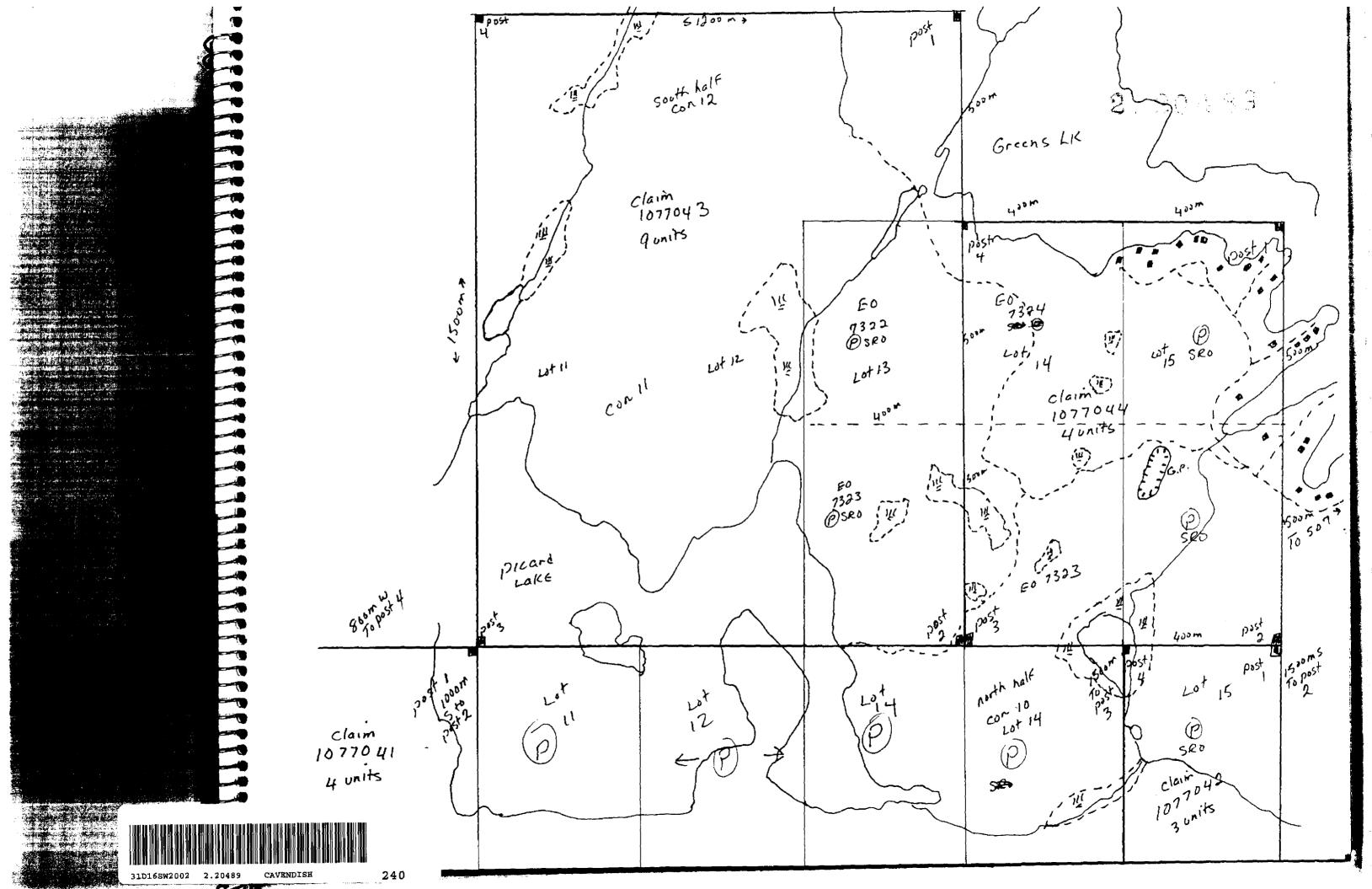

Submission Number: 2.20489

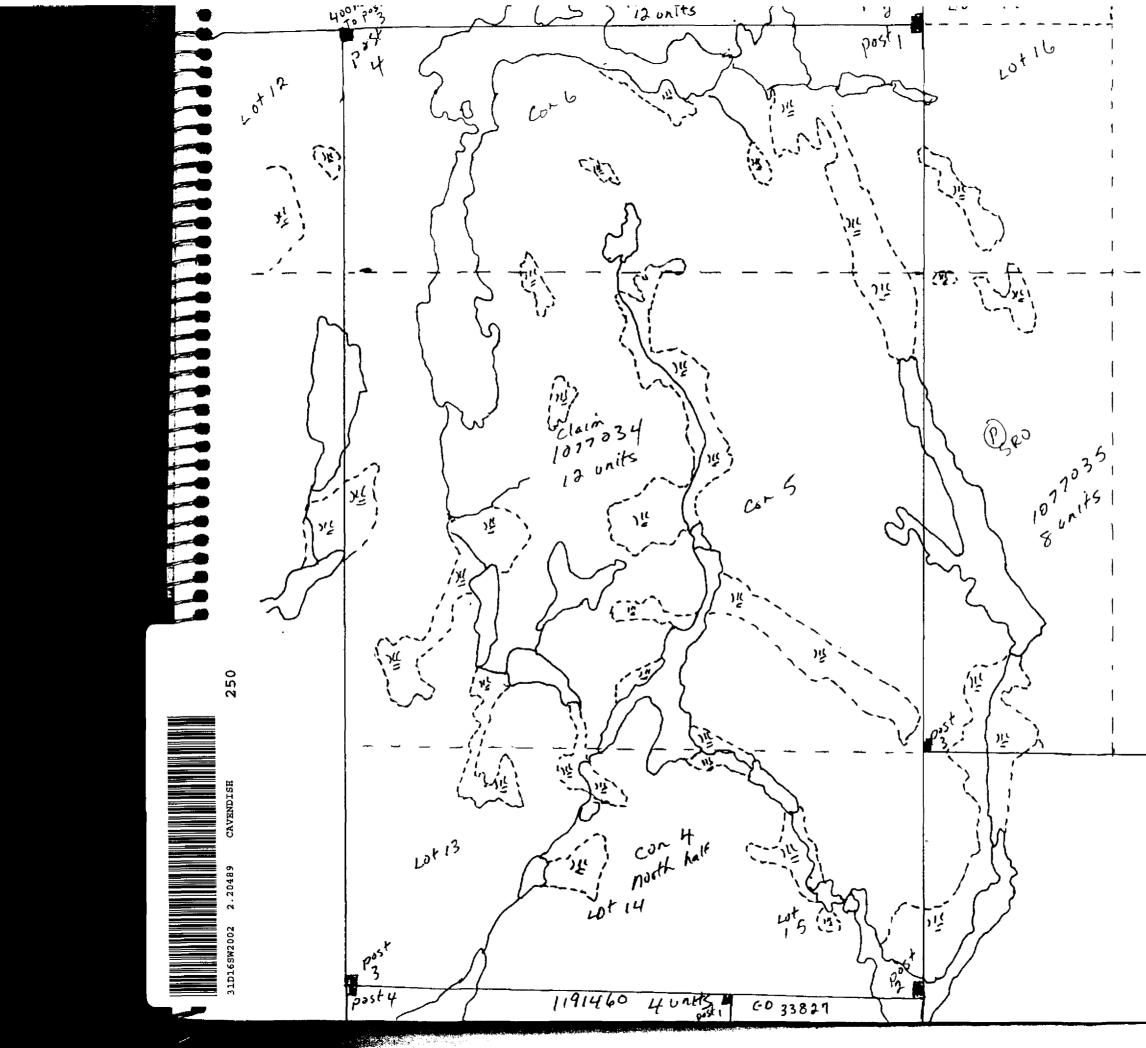
Transaction Number: W0090.00054


Claim Number	Value	Of Work Performed
1191249		14,704.00
1077036		68,087.00
1163443		9,008.00
1191295		26,256.00
	Total: \$	118,055.00


Page: 1






Shoreline shown thus Ints Map shoreline shown th ea chowic thus uposed Provincins Pork, w iking Sec 34 (d) of Minnie ining cloims sloked is this Sec UB of Mining A-1 Sec UB of Mining A-1 Gravel File 154616 Gravel File 154616 Gravel File 40832 J Gravel Tile 40832 MN R Gravel Pit No 138 P Gravel File 104960 Gravel File 40832	Tp subject
ea Showie thus uposed Provincial Park, w tking Sec 34 (d) of Minne Sec 118 of Mining A-1 Sec 118 of Mining A-1	Tp subject
ea Showie thus uposed Provincial Park, w tking Sec 34 (d) of Minne Sec 118 of Mining A-1 Sec 118 of Mining A-1	Tp subject
 aposed Provincios Park, withing Sec. 34 (d) of Mining ining clotms staked in this Sec. US of Mining A-1 Sec. US of Mining A-1 Sec. US of Mining A-1 Gravet File 154616 Gravet File 40832 Gravet File 40832 Gravet 73125 Gravet 73125 Gravet PtRMIT MN R Gravet Pit No 138 F Gravet File 104960 	ithdrown from ; Aut Fre 160708 Tp subject
Sec IIB of Mining A.I SAND & GRAVEU Gravel File 154616 MNR Gravel P 176 F Gravel Sie 40832 Gravel 73125 UPARRY PERMIT MNR Gravel Pit No 138 F Gravel File 104960	ile 21538
) Gravel File 154616 Gravel 1 21547 MNR Gravel P176 F Gravel 1 1 40832 Gravel 1 73125 ULARRY PERMIT MNR Gravel Pit No 138 F Gravel File 104960	
 Grovet ¹¹ 21547 MNR Grovet P176 F Grovet ¹¹ ¹¹ Grovet ¹¹<!--</td--><td></td>	
) Grovel "21547) MNR Grovel P176 F) Grovel "" Grovel "73125) QUARRY PERMIT MNR Grovel Pit No 138 F) Grovel File 104960	
MNR Grovel Pit76 F Grovel File 40832 Grovel "" Grovel "73125 ULARRY PERMIT MNR Grovel Pit No 138 F Grovel File 104960	
Grovel File 40832 Grovel "73125 Gravet 73125 Gravet PERMIT MNR Gravel Pit No 138 F Gravet File 104960	
Grovel "73125 Grovel 73125 ULARRY PERMIT MNR Grovel Pit No 138 F Grovel File 104960	116 152744
Gravet "73125 OUTARRY PERMIT MNR Gravet Pit No 138 F Gravet File 104960	ille 152744
) MNR Gravel Pit No 138 F) Gravel File 104960	116 152744
) MNR Gravel Pit No 138 F) Gravel File 104960	ille 152744
Gravel File 104960	116 152744
Areas withdrawn from staking of the Mining Act (1985)	ng under section
Arte Date	Disposition
/.67/74 7598∨ 4 19/12/74	SR & M.R
V.3/77 34261 3/1/77	S.R. & M.R.
V.50/83 160708 29/8/83	S.R. & M.R.
BEDS OF LAKES AND RIVERS WITHIN V.11/83 73118 30/9/83	S.R. & M.R.
/.67/74 7598V 4 19/12/74	
SEC 35 W-LL-P 26/99 ONT MAY 17/99	M+S

6 constil @ 520 Occo c0^r5 Past

.

A PARAMETER STATE