REPORT ON GROUND RADIOMETRY, GEOLOGY AND MAGNETIC RESPONSE ON 44 CLAIMS

projecis unit

Introduction
This is a report on 44 mining claims in Conger Township, Parry Sound Mining District, Ontario, held by Nickel Rim Mines Limited as a uranium prospect. The main report is based on the following sources of information:

1. Radiometric survey and geological observations by the author.
2. Magnetic survey by Paul Martin.

Property, Location and Access
The 44 claims have been divided into 4 blocks whose location is plotted on Figure 1 and Figure 2. The general location of these claims is about 20 miles south of Parry Sound (NTS 31E/H). Block A is assessible by a road to Joselin Lake, leading $2 \frac{1}{2}$ miles west of Highway 69. Blocks B, C, D are accessible by a road to Healy Lake which starts 1 mile north of MacTier, off of Highway 612. Block C lies north and south of this road and Block B is accessible via a forest access leading $2 \frac{1}{2}$ miles north of the Healy Lake Road. Block D is accessible by the road leading south of Healy Lake road to Kapikog Lake. All 44 Claims have been covered by a 400 ft . grid system with pickets every 100 feet.

History of the Area

The Parry Sound area was actively prospected for gold and copper around the turn of the century, in the non-granitic areas north of Conger Township. Several small pegmatite pits were worked north of Block A in Conger Township in the 1920's. The occurrence of uraninite, calciomarkasite and thucolite, associated with mica in pegmatites was described by Ellsworth in 1932. (See Hewitt, ODM Report 52, 1967). To date, no significant mines have been developed in the area.

In 1970, Richore Gold Mines (now defunct) held 100 claims in Conger Township, as a uranium prospect. A total count airborne radiometric survey was done along with some ground follow-up. However, the final conclusions of their work were not seen by the author.

General Geology

The general geology of the Parry Sound area is described by Hewitt in ODM Geological Report 52. The accompanying map 2118 describes the rock underlain by the Nickel Rim claims as granitic in composition, with a predominance of banded hornblende migmatite which has been granitized.

Research by Bennet, James, Schwerdtner and Waddington (presented at the 1975 G.A.C. Annual Meeting) suggests that some of the granitic rocks are sedimentary in origin and include metagreywacke and sedimentary gneisses in the vicinity of Blocks B, C, D. In the vicinity of Block A, a large body of granite-syenite was delineated. Their structural interpretation suggests that the claims lie on or just west of the north trending limb of the Captain Allan Synform, which dips to the south (see figure 1).

Previous Work by Nickel Rim Mines Limited
In June 1975, Mid-North Engineering Services Limited did an airborne radiometric survey to cover 464 claims held in Conger and Freeman Township to the south. This survey was interpreted in a report by H. Grant Harper, P.Eng., Consulting Engineer. Ground follow-up, including radiometric prospecting, by M. Hall and the author, was done in July and August 1976. Pits blasted along Healy Lake road by P. Perch and others were also examined and described. The 400 foot grid on 44 claims was done in October 1976.

Present Surveys

A magnetometer survey by Paul Martin using a Scintrex M.F.l fluxgate magnetometer was done on 44 claims.

The radiometric survey was done by the author using a McPhar TV-5 integral spectrometer. Total count readings were done on the 3 second ratemeter count. The crystal was held at hip level and anomalous radioactivity between stations was noted. Anomalous radioactivity was checked on $T_{2}(>1.63 \mathrm{MeV})$ and $T_{3}(>2.5 \mathrm{Me} V)$ on the rock surface when exposed. ${ }^{2}$ Locations where the source of anomalous radioactivity was not apparent are designated as strip targets. The location of outcrops and geological observations were done simultaneously with the radiometric survey.

Discussion of Results
Block A
The predominant features of this block is several large outcrops of medium grained pink syenite. The syenite has probably intruded the country rock, mainly a granitized hornblende gneiss.

The radioactivity is characteristically higher on the syenite, usually about 3 to 4 times background. At least one small uranium anomaly occurs at a pit site at 38E, OON.

This might be remnant country rock, as the rock here is richer in quartz and biolite than the normally quartz and mafic poor syenite body. A sample was taken for assay. The magnetic response is generally quite uniform and tells nothing about the structure.

Block B
The geology is mainly granite gneiss with scattered pegmatite patches. There is one significant radioactive anomaly in the southwest corner which should be stripped and sampled.

Block C

The geology of this large block is very complex and exposure in the eastern half is poor. The general radioactivity of the southwestern position is lower, partly because of the deeper overburden, but also perhaps because a different instrument, which read slightly lower, was used here.

The high anomalies along Healy Lake road are associated with a hornblende biotite gneiss which has coarse felsic inclusions and sometimes ptygmatic folding - stripping targets are indicated. Pegmatites usually occur in patches too small to be mapped.

The magnetic response is generally low except for a small arcuate belt about 1,000 feet long just north of the Healy Lake road showings. Here the magnetic response is up to 4 times the normal response. The origin of this anomaly is not known.

Block D

The general geology is granite and granite gneiss tending towards a syenite composition. The block is about 70\% outcrop and is generally elevated about 150 feet above Kapikog Lake to the west. The regional strike is about 090. There is no indication of uranium on this block.

Conclusions

1.

Further work should be concentrated on Block C where strip targets have been indicated. Sampling of the highest anomalies should be done by trenching or possibly x-ray drilling.
2. On Block B, a small anomaly in the southwest corner should be stripped.
3. Further work on Block A should be concentrated on the contact of the syenite with the country rock. As this contact is poorly exposed, radon in soils and waters might be a useful indicator.
4. Block D shows no potential for more detailed work.

TO BE ATTACHED AS AN APPENDIX TO TECHNICAL REPORT FACTS SHOWN HERE NEED NOT BE REPEATED IN REPORT TECHNICAL REPORT MUST CONTAIN INTERPRETATION, CONCLUSIONS ETC.
Type of survey Maynetre + Radiometric Township. or Area CoNGER Towns AP

CLaim holders) MID. NORTH ENGINEERING SERVICES LEMIIG SUTTE 1402, 390 BAY ST TORONTO Author of Report GLENN HARDER BSC GEOLOGIST

Total Miles of Line cut_ 56.31 miles.

AIRBORNE CREDITS (Special provision credits do not apply to airborne surveys)
Magnetometer \qquad Electromagnetic \qquad Radiometric (enter days per claim)
 DATE: 21 Dec 1926 signature: \qquad Author of Report

Checked by

\qquad date \qquad

GEOLOGICAL BRANCH

\qquad

Approved by \qquad date \qquad

GEOLOGICAL BRANCH \qquad
\qquad
Approved by \qquad date

MINING CLAIMS TRAVERSED List numerically
(prefix)
(number)

AS PER ATTACHED KIST

NOTE:

RADIOMETRIC CREDITS
REDUCED TO EQUAL
BO DAYS GEOPHYSICAL. ON RECORD EXCEPT.. CLAIMED 402877

BLOCK C

E.O. 426374 426375 426378 426379 V 426380 V 426381 426418 426419 426420 . 402819 402820 402821 402822 402877

20 DAYS
389396 389397 389398 389399 389400 389401 389558 389559
373999 V
374002

BLOCK A

E.O. 411962

411964
411965
411966
411967
411968
411969
411970
411971
426459
426460
437546
437547
437550
437551
15.8 DAYS CREDIT RECORDED

BLOCK D

$$
\text { E.O. } \begin{array}{r}
460923 \\
460924 \\
460925 \\
460926
\end{array}
$$

BLOCK B

E.O. 426389

GEOPHYSICAL TECHNICAL DATA

GROUND SURVEYS
Number of Stations \qquad 100 FEET
Station interval _100 FEET
Line spacing 400 FEET
Profile scale or Contour intervals $\quad N / A$ (specify for each type of survey)

MAGNETS

Instrument:

SCINTREX MAI FLUXGATE MAGNETOMETER

Accuracy - Scale constant $\quad \pm 10$ GAMMAS Base station location INDIEATEQ IN MAPS

ELECTROMAGNETIC

Instrument
Coil configuration
Coil separation
Accuracy
Method: $\quad \square$ Fixed transmitter
Frequency
Parameters measured
GRAVITY

Instrument
Scale constant
Corrections made \qquad

Base station value and location
Elevation accuracy-
INDUCID POLARIZATION RESISIDVIIX
Instrument.

Power

Electrode array
Electrode spacing
Type of electrode

SELF POTENTIAL

\qquad
Survey Method

Corrections made \qquad

RADIOMETRIC

Instrument

MC PHAR TV 5 SEINTILLOMETER

Values measured GENERAL SVRVEY - BROAD SEAN $>0.2 \mathrm{MEV}$
Energy windows (levels) SPECIALLDCATIONS - T $T_{2}>1.63 \mathrm{MEN}$ Y $T_{3}>2.5 \mathrm{MEN}$ at GROND LEVEL Height of instrument_ HIP LEVEL_ Background Count 800 cpm
Size of detector _13/4" $12^{\prime \prime}$ SODIUM IODIDE CRYSTAL
Overburden VARIES FROM MASSIVE ROCK AUTCROP TO SEVERAL FEET
OTHERS (SEISMIC, DRILL WELL LOGGING ETC.)
Type of survey \qquad
Instrument \qquad
Accuracy \qquad
Parameters'measured \qquad
Additional information (for understanding results)___

AIRBORNE SURVEYS

Type of survey (s)
Instrument (s) \qquad
Accuracy
(specify for each type of survey)
(specify for each type of survey)
Aircraft used \qquad
Sensor altitude \qquad
Navigation and flight path recovery method \qquad

Aircraft altitude Line Spacing
Miles flown over total area \qquad Over claims only

NICKEL RIM MINES LTD. CONGER TOWNSHIP ONT.

INDEX MAP

