

2.2060 1 31E13SE2003 2.20601 LOUNT A.M. 9:35 A.M. 9:35

MAGNETAWAN PROJECT

Results of the 1999 Exploration Program for Ni-Cu-Co Sulphide Deposits on Mining Claim SO 1077361 in Lount Township, Ontario

N.T.S. 31-E/13

Carried Out Under the Ontario Prospectors Assistance Program OPAP File Number OP99-051

> By G. Vandevalk January 2000

31E13SE2003 2.20601 LOUNT

TABLE OF CONTENTS

PAGE

1	Summary
2	Location and Access
2	Regional Geology
3	Previous Work and Local Mineral Occurrences
4	Results and Highlights of the 1998 Program
4	- 1998 Prospecting
4	- 1998 Soil Geochemical Survey
6	The Initial 1999 Program
6	- Line Cutting
6	- Magnetometer Survey
7	- VLF-EM Survey
7	- MaxMin II HLEM Survey
8	Follow-up Geophysical Surveys
8	Soil Profile and Bedrock Sampling in Overburden Pits
10	Follow-up Prospecting
10	Discussion of Results
11	Conclusion and Recommendations
12	References

TABLES

AFTER PAGE

6	Table 1 – Summary of Line Cutting and Geophysical Surveys
8	Table 2 - Summary of Soil Profile Sampling and Geochemical Results

FIGURES

AFTER PAGE		Scale
2	Figure 1 – Property Location	1:250,000
2	Figure 2 – Property Location and Access	1:20,000
2	Figure 3 – Regional Geology	1:1,000,000
4	Figure 4 – 1998 Highlights & Proposed 1999 Program	1:5,000
8	Figure 5 – Follow-up Magnetometer Survey – Area A	1:1,000
8	Figure 6 – Follow-up Magnetometer Survey – Area C	1:1,000
8	Figure 7 – Follow-up VLF-EM and	
	Magnetic Interpretation – Area A	1:1,000
8	Figure 8 – Follow-up VLF-EM and	
	Magnetic Interpretation – Area C	1:1,000
8	Figure 9 – Soil Pit #1	1:10
9	Figures 10 to 13 – Soil Pits #2 to #5	1:10
11	Figure 14 – Mn vs. Ni in Pit Soils	
11	Figure 15 – Fe vs. Ni in Pit Soils	
11	Figure 16 – (Mn + Fe) vs. Ni in Pit Soils	
11	Figure 17 – Ni vs. (Cu + Co + Cr) in Pit Soils	
11	Figure 18 – Mg vs. Ni in Pit Soils	
		Continued

010C

...continued

MAPS (in back pocket)

		Scale
Map 1	Initial Magnetometer Survey – Total Field Values	1:2,500
Map 2	Initial Magnetometer Survey – Contours of Total Field	1:2,500
Map 3	Initial VLF-EM Survey and Magnetic Interpretation	1:2,500
Map 4	MaxMin II HLEM Survey – Bedrock Conductivity Interpretation	1:2,500

APPENDICES

- Appendix I Field Data and Plotted Profiles for Initial and Follow-up VLF-EM Surveys
- Appendix II Field Data and Plotted Profiles for MaxMin II HLEM Survey
- Appendix III Analytical Results and Certificates of Analysis for All Soil and Rock Samples Collected During the 1999 Program
- Appendix IV Identification of Author, Claim Holder and Field Assistant

Results of the 1999 Exploration Program for Ni-Cu-Co Sulphide Deposits on Mining Claim SO 1077361 in Lount Township, Ontario N.T.S. 31-E/13 Carried Out Under the Ontario Prospectors Assistance Program OPAP File Number OP99-051

SUMMARY

During the summer of 1997, the writer and his two brothers (Brothers Minerals and Exploration, B-MAX), conducted a program of stream sediment sampling and prospecting to follow-up on Geological Survey of Canada Ni-Cu-Co lake sediment geochemical anomalies north of the Town of Magnetawan. An area in Lount Township, mapped by the OGS as being underlain by metagabbroic rocks, drained into Lake Of Many Islands to the south and Spring Lake to the north. Both lakes contained anomalous levels of nickel and cobalt in sediments. Sediment samples, collected from streams that drained this area, contained anomalous levels of nickel, cobalt and chromium. Prospecting in this area confirmed the presence of mafic and ultramafic rocks including metagabbro and pyroxenite, both with disseminated sulphides. B-MAX believed these results indicated that the area had potential to host economic concentrations of magmatic sulphides and that follow up exploration was warranted to further investigate this potential. In November 1997, H. Vandevalk staked a 12-unit claim block (SO1077361).

In 1998 the writer was awarded an OPAP grant of \$10,000 (OP99-011) to carry out a program of soil geochemical sampling, prospecting and ground magnetic surveys, directed toward the discovery of nickel-copper-cobalt, magmatic sulphide deposits on the property. The Summer 1998 program was successful in identifying several areas with highly anomalous Ni, Cr, Co, Fe and Mg in soil, associated with strong ground magnetic anomalies. Follow-up prospecting in this area confirmed the presence of olivine bearing metagabbroic and ultramafic rocks with disseminated sulphides. The area covered by the Summer 1998 surveys probably contains the source(s) of the GSC Nickel anomaly in Spring Lake sediments.

In 1999 the writer was awarded an OPAP grant of \$15,000 (OP99-051) to carry out a program of line cutting, VLF-EM, MaxMin II HLEM and detailed magnetometer surveys over a continuous area covering the strongest and largest soil geochemical anomalies. The MaxMin II survey was successful in identifying an area of anomalous bedrock conductivity, which will require further follow-up work. Several VLF-EM conductors with good magnetic and soil geochemical correlation were selected as target sites for hand excavated overburden pits. Analyses of soil samples from two pits, which did not reach bedrock, yielded up to 0.25% Ni, 937 ppm Cr, 470 ppm Cu, 121 ppm Co and traces of PGE's. Another pit, which reached bedrock, exposed a fault in a strongly weathered ultramafic rock (pyroxenite). Grab samples of medium to coarse grained pyroxenite from the new showing contained coarsely disseminated py, po and cpy, and returned analyses of up to 260 ppm Ni, 776 ppm Cu, 115 ppm Cr, 68 ppm Co and traces of PGE's.

LOCATION AND ACCESS

The Property lies approximately 14 kilometres north of the town of Magnetawan, (Figure 1). Figure 2 shows the location of Mining Claim SO1077361 which lies on the north $\frac{1}{2}$ of Concession 5, Concession 6 & the south $\frac{1}{2}$ of Concession 7 – Lots 27, 28 & 29, as shown on the Lount Township Claim Map number M.184. Lount Township is in the Parry Sound District of the Sudbury Mining Division. The property lies within the N.T.S. 31 E/13 division (Golden Valley Sheet), and its southwest corner occurs at approximately 45° 47' 05" north latitude and 79° 41' 03" west longitude. The U.T.M. coordinates of this corner are 602,295mE and 5,070,750mN.

The property can be accessed by travelling approximately 8.5 kilometres north on the Nipissing Road off of Highway 124 (at its junction with Highway 510), to the Youthdale Camp Road, which branches to the west (Figure 1). By heading west along the Youthdale Camp Road for approximately 4 kilometres, a gate, which marks the beginning of the Youthdale private lands, will be encountered (Figure 2). The author requested and was granted permission from the owner, to travel a further 0.7km beyond the gate to a trail which heads north to the property. This trail can be traveled by highway vehicle for only a short distance, to a clearing and sandpit just off the Youthdale property. An ATV was used to travel the remainder of the trails to the property and work area. A public boat launch ramp provides access to Spring Lake, from which the northern portion of the property can be accessed if desired.

REGIONAL GEOLOGY

The property lies within the Parry Sound Mafic Domain (PSMD) of the Central Gneiss Belt (CGB) in the Grenville Geologic Province (Figure 3). Easton (1992) described the geology of the Grenville Province and the CGB, including the PSMD.

Areas to the west and southwest of the property were covered by recent, 1 inch = $\frac{1}{4}$ mile scale OGS mapping (Bright E.G., 1987 and McRoberts, T., & Tremblay, M.L., 1988). Lount Township was mapped by J. Satterly in 1953 (Map No. 1955-4) primarily to investigate magnetite and garnet occurrences that were found along the Rosseau to Nipissing pioneer road, and to assess the iron potential of the area. Although the lithological classifications are not as detailed as the recent OGS mapping to the west, Satterly's map provides the only detailed coverage in Lount Township and it locates several metagabbro bodies, Cu-Ni occurrences and old workings on occurrences.

Figure 1 PROPERTY LOCATION Scale - 1:250,000

PREVIOUS WORK and LOCAL MINERAL OCCURRENCES

References to the mineral occurrences in the vicinity of the properties are found in MNDM assessment files and in Satterly, 1955 (with Map No. 1955-4). An examination of government assessment records was carried out using the ERLIS facilities at the OGS's public information office located in the MacDonald Block, Queens Park, Toronto. This examination was sufficient to ascertain that only a very minimal amount of exploration has been conducted in the project area, most of which was not recently done. Apart from the work carried out by B-MAX, there is no public record of any work having ever been carried out on or immediately adjacent to Claim Block SO 1077361.

An airborne magnetometer survey was flown in the 1950's by an iron ore company, along the Rosseau-Nipissing road allowance in Lount Township, presumably to follow-up on the iron potential discussed by Satterly, 1955. Some drilling was done on magnetite occurrences as a follow-up to that survey. Other unrecorded work in the form of pit or shaft blasting and some drilling are indicated in Satterly's report and shown on Map 1955-4. Satterly believed that the majority of old pits were blasted in error on a locally abundant massive red garnet rock, which was mistaken for magnetite.

Ground geophysics, geochemical surveys, geological surveys, and some diamond drilling were reported for several lots (claims) in southwestern Lount Township, covering the documented Cu-Ni occurrences and limestone prospects. All of the drilling reported in the area encountered varying concentrations of sulphide mineralization (in some cases massive, over narrow intervals) including py, po, cpy and, in some cases, pentlandite, in a variety of rock types including gabbro. The local occurrences described by Satterly are uneconomic, but are of interest in that they indicate that sulphides, sometimes containing nickel and copper, occur in, or in proximity to gabbroic rocks, locally in the project area. Satterly stated that the Cu-Ni occurrences fall into two groups; (1) as disseminations within mafic gneisses, and (2) as a garnet skarn at the contact between limestone and mafic gneisses.

The S.½ of Lot 27, Conc. III, Lount Township is the location of several pits blasted into a nickel and copper showing consisting of massive to semi-massive po and py. Occurring in amphibolite at the edge of a hybrid granite gneiss unit, its location is shown on Satterly's map (1955-4) by only a pit symbol. Subsequently, in 1992, P. McLean (OPAP File # OP92-245) carried out geological and geophysical work on this showing, which he interpreted to be a nickeliferous, peridotite "plug". McLean observed pentlandite in the showing and obtained a grab sample that assayed 0.12% Ni. He concluded that the showing was small and of "academic interest only". In April 1998, this showing was staked (SO 1077362) by William Vandevalk (Figure 2) after a visit in March during which 5 rock samples that yielded analyses of up to 0.21% Ni and 0.10% Cu, were obtained from the rubble dump.

RESULTS and HIGHLIGHTS of the 1998 PROGRAM

Two deposit models are considered as possible targets for exploration over mining claim 1077361:

1. Mafic (metagabbro or mafic gneiss) hosted Ni, Cu, Co magmatic sulphides

2. Ultramafic hosted Ni, Cu, Co (Cr, Pt, Pd) magmatic sulphides

Both types could possibly have been intruded as dykes, either crosscutting or parallel to stratigraphy, or intruded as larger bodies or masses.

1998 PROSPECTING

A new showing (Treefrog) of very gossanous, magnetite bearing, fine to medium-grained metagabbro with disseminated sulphides was discovered in 1998 (Figure 4). A very strong, but very localized magnetic anomaly associated with the **Treefrog Showing**, may be part of a longer trend. Elevated background Fe and possibly anomalous Cu in soils surround the Treefrog Showing. Only modest values of Cu (up to 403 ppm) and no significant Ni, Cr or Co were returned in analyses of rock samples from this showing. The Treefrog showing appears to have limited size and economic potential.

In other areas, prospecting confirmed the presence of medium to coarse-grained metagabbroic rocks with minor disseminated sulphides. Black, pyroxene and olivine bearing, medium to very coarse-grained ultramafic rocks were also found to occur commonly in the area. The ultramafic rocks (pyroxenite) are variably magnetic owing to the presence of magnetite that is sometimes interspersed throughout, or occurs as small seams within the rock. The magnetometer survey probably maps the ultramafic horizons fairly accurately.

1998 SOIL GEOCHEMISTRY

Area A

Area A (Figure 4) represents the most intriguing soil geochemical anomaly encountered during the Summer 1998 exploration program. The Ni, Cr, Co, Mg & Fe anomaly is pronounced by a very large and continuous, anomalous core that extends across 175 metres at its widest point along Line-3N, and along more than 300 metres of strike length. The highest Ni value of the soil geochemical survey was returned from sample number SO98-485 (959 ppm), located within the anomalous core. An anomalous trend adjacent to, and northeast of the core anomaly, may represent a possible down-drainage geochemical plume, and further extends the overall dimensions of the anomalous area dramatically. The anomalous core lies within a NNW oriented geochemical trend that is roughly parallel to a topographic linear feature indicated by the drainage pattern. This feature may be interpreted as a possible fault or shear zone. The core of the anomaly also trends along a magnetic "trough" adjacent to the northern flank of the eastern lobe of a very high magnitude and extensive magnetic anomaly. Rock sample MA 98-R-016, which returned an analysis of 93 ppm Ni, was taken from an outcrop of rusty, medium-grained metagabbro, occurring in the vicinity of this anomaly.

Problematic for the interpretation of the significance of the Area A anomaly is the fact that it occurs partly in glacial till which incorporates rounded cobbles and boulders. Prior to the 1999 program, three possible interpretations were considered for the existence of the anomaly:

- 1. The anomaly may be a false anomaly resulting from Mn/Fe scavenging of background base metal values from the underlying mafic rocks. The porous till cover would allow for the free movement of groundwater through it, where an active geochemical system may be in place.
- 2. The anomaly may have a genuine Ni and Cr (+Co) mineralized bedrock source that may also have high Fe and Mn. Depending on the thickness of the till cover, the same rationale for the geochemical mechanism as in the first interpretation, would apply in this case.
- 3. The source of the anomaly may be a dispersion train of mineralized boulders from an up ice, mineralized bedrock source. Glacial transport direction in Lount Twp. Is generally from north to south (Satterly, 1955). The area immediately "up ice", to the north of the soil geochemical anomaly has thin soil cover over scattered exposures of bedrock, and has a sizeable, moderately strong magnetic signature. Despite the presence of rounded boulders within the till, which suggests a longer distance of till transport, the shape and strongly defined nature of the anomaly would suggest a nearby source under this interpretation for the existence of the anomaly.

The 1999 exploration program has indicated that it may be reasonable to rule out "Interpretation 3" as an explanation for the presence of the Area A anomaly. The reasoning for this will be explained in the discussion of the results of the 1999 program.

Area B

Area B (Figure 4) was chosen for follow-up sampling based on initially encouraging soil geochemical results and their direct correlation with a strong, linear, 300 metre long magnetic anomaly. The results of follow-up soil sampling and prospecting in this area were only modest. Rock sample MA 98-R-015 returned an analysis of 257 ppm Cr and rock sample MA 98-R-009 returned 171 ppm Cu.

Area C

The Area C soil geochemical anomaly (Figure 4) is marked by several anomalous and highly anomalous Ni, Cr & Co trends which are enveloped by a broad area of elevated background values. The soil at the southern edge of the area forms a relatively thin cover over widespread outcroppings of metagabbroic rocks, and gradually thickens down-slope to Spring Lake. The source of the anomalous values in soil appears to be the topographically high area with thin soil cover, between Lines 6N and 7N, from 400mE to 700mE. The anomalous trends may define down-slope "metal rich" plumes that might be sourced by buried mineralization near the top of the slope. Mn and Fe concentrations in soil are not high in Area C, giving validity to the genuineness of the anomalies. There is considerable fluctuation in magnetic relief in this area suggesting a complex bedrock makeup. Limited prospecting in this area failed to encounter any visually obvious bedrock source for the Ni, Cr & Co soil geochemical anomalies.

THE INITIAL 1999 PROGRAM

The writer was awarded an OPAP grant of \$15,000 (OP99-051) to carry out a program of line cutting, VLF-EM, MaxMin II HLEM and detailed magnetometer surveys over a continuous area covering the strongest and largest soil geochemical anomalies encountered in the 1998 Program (Figure 4). Based on Satterly's Lount Township bedrock geology interpretation (O.G.S. Map No. 1955-4) and on the apparent orientation of the Area A soil geochemical anomaly, a grid line direction of 069° azimuth was determined to be perpendicular to the strike of the local lithologies. The results of the 1999 geophysical surveys have indicated that this assumption may be incorrect. This will be discussed in the VLF-EM Survey section of this report.

LINE CUTTING

The first day of the 1999 program was spent clearing numerous deadfalls from the property access roads and trails. The "Area A" 1999 cut survey grid was tied into the existing 1998 flagged grid at Line 6+00N (old Line 5A-N) and Station 6+25mE (Map 1). A baseline was established by proceeding from this point on a compass heading of 339° azimuth. Distances were measured using a "hip-chain" (string) distance meter. The baseline was named BL 6+50mE and flagged with fluorescent orange flagging tape and 25 metre stations were marked with blue flagging tape. Gridlines, spaced 50 metres apart, were established by compass at 069° azimuth, east of the baseline and marked in the same manner as the baseline with 25 metre station intervals. All 1998 flagged lines were incorporated into the new grid but in several cases, re-naming was required to maintain a more or less uniform line separation. All existing 50 metre station numbers on the 1998 lines were incorporated into the new grid and new 25 metre stations were established. The flagged lines were cleared of small trees and underbrush to facilitate the operation of geophysical equipment. Three "Area C" reconnaissance EM lines, L 7+00N, L 6A-N and L 6+00N (west of the baseline) were established along existing 1998 flagged lines and cleared (Map 3). A total of 5.95 line kilometres of cut grid lines were established as control for the geophysical surveys (Table 1).

INITIAL MAGNETOMETER SURVEY

Using a GeoMetrics G 816 Proton Magnetometer, readings of total magnetic field were taken and manually recorded in a field notebook. Base values for the survey were established along the base line at its intersections with each grid line by surveying it twice, correcting each reading for the diurnal magnetic drift, then averaging the corrected readings at each station. The resulting base values were subsequently used to correct the readings over the remainder of the grid for diurnal magnetic drift. Readings were taken at each 25-metre station along the cut grid lines. A total of 4.02 line kilometres of magnetometer survey were carried out over the Area A survey grid (Table 1).

A base value of 55,000 nT was subtracted from each corrected value to simplify the plotting of the values. The corrected values of total magnetic field for each station are shown on Map 1, plotted to a scale of 1:2,500. Map 2 shows the contoured values of the total magnetic field for the Area A survey grid.

TABLE ONE - SUMMARY OF LINE CUTTING AND
GEOPHYSICAL SURVEYS (LINE KMS)

INITIAL	LINE CUTTING	FLAGGED GRIDS	MAGNETOMETER SURVEY	VLF-EM SURVEY	MAX-MIN SURVEY
BASELINE	0.7		0.7		<u></u>
AREA "A"	3.65		3.32	3.32	3.65
AREA "C"	1.6			1.53	1.6
NORTH-SOUTH TRAIL		0.8			0.8
SUB-TOTAL	5.95	0.8	4.02	4.85	6.05
FOLLOW-UP					
AREA "A"		1.35	1.35	1.35	
AREA "C"		1.23	1.23	1.23	
SUB-TOTAL		2.58	2.58	2.58	

	TOTAL	5.95	3.38	6.6	7.43	6.05
--	-------	------	------	-----	------	------

INITIAL VLF-EM SURVEY

It was assumed that the 069° azimuth orientation of the cut survey grid lines would be suitable for a good coupling of the VLF signal from the transmitter in Annapolis, Maryland (NSS), with the **Geonics EM-16 VLF-EM** receiver. Upon commencement of the VLF-EM surveys it was discovered that the EM-16 receiver was unable to pick up the 21.4 kHz NSS frequency when facing the 160° azimuth direction toward Annapolis. It was subsequently learned that the Annapolis VLF transmitter had been permanently shut down and the 21.4 kHz frequency assigned to Hawaii.

The VLF-EM Survey was continued along the east-west grid lines, utilizing the 24.0 kHz frequency from Cutler, Maine (NAA), and the 24.8 kHz frequency from Seattle, Washington (NLK). Coupling with the NAA signal was obtained by facing 092° azimuth and the NAA readings were taken facing 002° azimuth. Coupling with the NLK signal was obtained by facing 294° azimuth and the NLK readings were taken facing 204° azimuth. In-phase and quadrature determinations were made for both frequencies at each 25-metre station along each cut line and manually recorded in a field notebook. An initial total of **4.85 line kilometres of VLF-EM survey** were completed over both the Area A and Area C grids (Table 1).

The field data was manually plotted as east-west profiles (facing north) as it was originally obtained, and re-plotted as north-south profiles (facing west) along extrapolated north-south lines. Both sets of profiles were used to interpret VLF-EM conductors but, predictably, the north-south profiles were of far greater value in this exercise. The field data and plotted profiles are provided in this report in Appendix I. The interpreted Initial VLF-EM Survey conductors are shown on Map 3.

MAX MIN II HLEM SURVEY

The Apex MaxMin II EM system was configured in the cable-linked, "Min" (minimum) coupled mode (horizontal transmitter coil plane and vertical receiver coil plane), with the transmitter always to the west of the receiver (for the east-west lines). A 25 metre coil separation between the transmitter and the receiver was chosen to detect near surface, shallowly buried conductive lithologies that could be practically investigated by hand dug overburden pits. 222, 444, 888, 1777 and 3555 Hz frequency readings were taken at every 25-metre station along the east-west cut lines and manually recorded in a field notebook. Using the same configuration for the instrument, but with the transmitter to the north of the receiver, additional readings (spaced 25 metres apart) were taken along an 800 metre trail which transects the Area A grid in an approximate north-south direction. A total of 6.05 line kilometres of MaxMin II HLEM Survey were carried out over both the Area A and Area C grids including the "north-south" trail line (Table 1).

The field data was manually plotted as east-west profiles (facing north) for each surveyed line and as a north-south profile (facing west) for the trail line. The profiles were used to interpret bedrock conductors and relative bedrock conductivity. The field data and plotted profiles are provided in this report in Appendix II. The interpreted HLEM conductors and relative bedrock conductivity are shown on Map 4.

FOLLOW-UP GEOPHYSICAL SURVEYS

Upon the completion of the initial geophysical surveys it became apparent that two areas, one within the Area A grid and the other within the Area C grid, would require additional follow-up Magnetometer and VLF-EM surveys on north-south lines. The outlines of these areas are shown on Map 3. An additional 2.58 line kilometres of flagged grid was established for the follow-up work. Correspondingly, an additional 2.58 line kilometres of Follow-up Magnetometer Survey and 2.58 line kilometres of Follow-up VLF-EM Survey were completed, bringing the 1999 totals of Magnetometer and VLF-EM Surveys to 6.60 line kilometres and 7.43 line kilometres respectively (Table 1).

The results of the Follow-up Magnetometer Surveys are shown in Figure 5 for Area A and Figure 6 for Area C. The field data and plotted profiles for the Follow-up VLF-EM Surveys are provided in this report in Appendix I. The interpreted Follow-up VLF-EM Survey conductors are shown in Figure 7 for Area A and in Figure 8 for Area C.

SOIL PROFILE and BEDROCK SAMPLING in OVERBURDEN PITS

Figure 7 shows the locations of 5, hand dug overburden pits, which were targeted to attempt to explain VLF-EM or MaxMin conductors, associated with either magnetic or soil geochemical anomalies. The primary objective for the pit excavations was to reach bedrock. Soil profile sampling and determination of the overburden type was also carried out in each pit to enable a better understanding of the nature of the Area A soil geochemical anomaly.

A total of 23 soil samples and 10 bedrock samples were collected during the initial and followup overburden pitting exercises. All rock and soil samples were delivered to XRAL Laboratories in Toronto. The soil samples were sieved to -80 mesh and analyzed, using the ICP scan method, for 31 elements, including Ni, Cu, Co, Cr, Mg, Mn and Fe. In addition, fire assays were performed on each sample to test for the presence of PGE's. Table 2 is a summary, by soil sample number, of the analytical results for nickel, copper, cobalt, chromium and PGE's. **Results for all A Horizon soil samples were removed from the data set shown in Table 2**. Rock samples were prepared by XRAL and analyzed for Au and PGE's by FA30/1 method and for 31 trace elements by ICP70 method. Complete analytical results and certificates of analysis for all soil and rock samples collected during the 1999 program are provided in Appendix III.

With the exception of Pit 5, pit locations are reported in reference to the Area A follow-up grid.

Pit 1 (Line 8+00E, 4+25N) was targeted to test an interpreted VLF-EM conductor, associated with a strong magnetic high. The location was just up-slope (north) of the highly anomalous "core" of the Area A soil geochem anomaly. The pit was excavated through till with rounded boulders up to 30 cm in diameter. Bedrock, consisting of fine to medium grained **pyroxenite with disseminated py, cpy and po**, was encountered at about 0.45 metre depth (Figure 9). The cause of the VLF-EM conductor was a 0.5 metre wide fault gouge with strongly weathered (rusty) and brecciated surfaces. The breccia was comprised of clasts of pyroxenite within a very coarse grained, sulphide and magnetite bearing, friable matrix. Angular boulders locally derived from the fault surfaces filled the fault gouge.

🗕 100nT

1:1,000

00E L 5+00N 5+00N		
4+00N 4+00N	<u>Symbols</u> 1999 1999 1999 surve atv tr	cut survey grid line tion approximate) flagged follow—up y grid line rail
50N		
5,000nT ometer	MINING CLAIL Lount Town Area A Foll MAGNET SUR By: G. Vandevalk OPAP File Number: OP99-051	a so 1077361 ship, Ontario ow—up Grid OMETER VEY Date: January 2000 Figure: 5

Sample #	Location	Mn	Fe	Mg	Pt	Pd	Pt + Pc	Cr	Со	Ni	Cu	.01Mn + 10Fe	Cr+Co+Cu
Analysis Unit	Pit #	ppm	%	%	ppb	ppb	ppb	ppm	ppm	ppm	ppm		
S99-002	2	984	3.86	1.54	0	3	3	209	41	655	137.0	48.44	387.0
S99-003	2	958	3.85	2.05	13	4	17	277	45	770	165.0	48.08	487.0
S99-004	2	949	5.36	4.20	13	5	18	292	63	1020	281.0	63.09	636.0
S99-005	2	1800	5.49	4.29	0	5	5	328	59	1080	288.0	72.90	675.0
S99-006	2	1680	5.92	6.66	17	7	24	373	89	1460	470.0	76.00	932.0
S99-007	2	1950	5.69	4.30	14	5	19	324	53	1070	302.0	76.40	679.0
S99-008	2	458	2.32	1.94	0	3	3	131	22	464	125.0	27.78	278.0
S99-010	1	2080	5.24	1.72	12	3	15	260	52	445	60.1	73.20	372.1
S99-011	1	1950	5.84	2.26	13	2	15	277	74	644	65.1	77.90	416.1
S99-012	1	3070	6.87	1.99	11	8	19	251	60	597	86.5	99.40	397.5
S99-013	1	2100	6.08	1.97	21	7	28	225	56	545	68.5	81.80	349.5
S99-014	3	980	5.41	6.67	17	8	25	399	68	1420	257.0	63.90	724.0
S99-015	3	1390	5.88	12.20	12	5	17	937	121	2500	369.0	72.70	1427.0
S99-016	3	1670	5.84	7.64	19	6	25	385	107	1770	239.0	75.10	731.0
S99-017	3	1220	5.37	7.07	0	4	4	383	75	1510	184.0	65.90	642.0
S99-018	3	1720	6.29	5.95	10	4	14	377	86	1240	125.0	80.10	588.0
S99-020	4	293	3.96	1.04	18	4	22	117	23	281	48.1	42.53	188.1
S99-026	1	6050	12.40	0.93	24	3	27	204	79	518	82.1	184.50	365.1

Table 2 - Summary of Soil Profile Sampling and Geochemical Results

FIGURE 9

The locations of 3 bedrock samples and 5 soil samples, collected from Pit 1 during the initial pit excavation, are shown in Figure 9. After receiving encouraging assays in the bedrock samples taken from Pit 1, a follow-up trip was made during which the pit was enlarged to expose more bedrock. An additional 5 rock samples and 1 soil sample were collected from the expanded pit. The best results from rock samples include 260 ppm Ni, 776 ppm Cu, 115 ppm Cr, 68 ppm Co and traces of PGE's.

Pit 2 (Line 8+00E, 4+00N) was targeted to test an area at the apex of the highly anomalous "core" of the Area A soil geochem anomaly, between 2 interpreted VLF-EM conductors. This location yielded a soil sample with the highest nickel value (959 ppm) in the 1998 soil geochemical survey. The pit, which did not reach bedrock, was excavated through till with rounded boulders up to 30 cm in diameter (Figure 10). A depth of 1.2 metres was attained before inflows of water prevented deeper overburden penetration. Eight soil samples were collected which returned analyses that indicated greater concentrations of base metals with increasing depth. A maximum value of 1,460 ppm Ni was obtained from a sample taken from 0.8 metre depth.

Pit 3 (Line 8+50E, 3+75N) was targeted to test 2 coincident VLF-EM conductors associated with a very strong magnetic anomaly to the east. This location, at the downslope "tail" of the highly anomalous "core" of the Area A soil geochem anomaly, yielded a soil sample with the second highest nickel value (890 ppm) in the 1998 soil geochemical survey. The pit, which did not reach bedrock, was excavated through till containing small (10 cm diameter maximum) rounded cobbles (Figure 11). A depth of 1.35 metres was attained before inflows of water prevented deeper overburden penetration. Six soil samples were collected which returned analyses that indicated greater concentrations of base metals with increasing depth (Figure 11). Base metal values of up to 0.25% Ni, 937 ppm Cr, 470 ppm Cu, 121 ppm Co and traces of PGE's were obtained from a sample taken at 1.1 metre depth. The geophysical anomaly remains unexplained.

Pit 4 (Line 7+50 E, 4+35N) was targeted to test 2 coincident VLF-EM conductors associated with a very steep magnetic gradient between a magnetic high to the north and a magnetic low to the south. This location was west along the interpreted strike of the Pit 1 VLF-EM conductor. The pit was abandoned at 0.4 metre depth when very large rounded boulders were encountered (Figure 12). Two soil samples were taken from the pit. The geophysical anomaly remains unexplained.

Pit 5 (east-west cut grid, Line 4+50N, 7+25E) was targeted to test a conductive MaxMin response coincident with a magnetic high. A thin cover of A horizon soil was removed to expose a limestone tectonic breccia bedrock unit (Figure 13). Satterly (1955) mapped this unit throughout Lount Township. The limestone matrix of this unit encompassed clasts of mafic gneiss. Samples that were cut from the exposure (1 of the matrix and another of a clast) did not yield any significant results upon analysis. The MaxMin anomaly remains unexplained with the exposure of this non-conductive rock unit. One A-horizon soil sample was taken from the covering soil.

With the exception of Pit 1, all pits were rehabilitated and back-filled to original grade.

LIMESTONE MATRIX - ROCK SAMPLE # R99-07 DEPTH cm SOIL SAMPLE S99-022 A- HORIZON ø - 10 cm 54 Test BEDROCK - LIMESTONE TECTONIC BRECCIA CLASTS OF MAFIC GNEISSES -ROCK SAMPLE # R99-06

SOIL PIT # 5 FIGURE 13

FOLLOW-UP PROSPECTING

The location of the **Treefrog Showing**, discovered in 1998 (see "1998 Prospecting", page 4, this report) is shown on Figures 4 and 8. It was re-visited and stripped of overburden in several locations. At two of these locations, about 2 metres apart, rotten rock was broken away from the face to a depth of about 15 cm. After reaching somewhat fresher rock, a rock saw was used to cut away 2 samples (R99-01 & 02). Analytical results, shown in Appendix III, were not improved upon over the 1998 results.

The southern part of the Area A Grid covered a portion of an extremely high amplitude magnetic anomaly, first encountered in the 1998 Magnetometer Survey. The 1999 VLF-EM Survey was successful in delineating 2 coincident conductors associated with this magnetic anomaly (Map 3). While the MaxMin II EM survey did not define any conductors in this area, it did indicate an overall increase in relative bedrock conductivity (Map 4). A covering of glacial till, which contained numerous large boulders, hampered follow-up prospecting in this area. A few outcrops of olivine bearing metagabbro, rusty-weathering pyroxenite and mafic gneiss were encountered and **2 rock samples** (R99-08 & 09) were taken (Map 3). Analysis of these 2 samples failed to return encouraging results (Appendix III).

DISCUSSION OF RESULTS

Geophysics

As discussed in the VLF-EM section of this report, it now appears that the geophysical survey grid lines should have been oriented in a north-south direction. The data obtained from the Initial VLF-EM and Magnetometer Surveys on the east-west grid lines was readily usable in defining areas for follow-up geophysics on a re-oriented grid (Map 3). The follow-up VLF-EM and Magnetometer Surveys were very successful in defining targets for overburden pit excavation (Figure 7). The MaxMin II EM Survey was not successful in defining any very strong or definitive conductors and this survey may have achieved better results had it been conducted on a re-oriented grid. The MaxMin Survey did however, indicate an area of potentially higher conductivity, just off of the existing grid, to the south of Line 6+00N and to the west of the western extents of Lines 4+50N (Map 4).

Overburden Pits and Soil Geochemistry

The overburden pits were excavated through till. As mentioned at the end of the 1998 Highlights section of this report, a dispersion train of mineralized boulders may probably be ruled out as a possible cause of the Area A soil geochem anomaly. The main reason is that no mineralized boulders were encountered during excavation of the soil pits. Secondly, base metal geochemical values increased with depth in the pits, suggesting an upward migration of metals through the soil from their source(s). Large volumes of ground water move easily downslope through the very porous till, as evidenced by the rapid inflows into the excavated pits. This condition is favourable for the existence of an active geochemical system within the overburden. The main source of the Area A anomaly may be widespread low grade bedrock mineralization of the type encountered in Pit 1. Nonetheless, the very high grades encountered in the soils of Pit 3 (up to 0.25% Ni),

associated with a very strong magnetic high and VLF-EM conductors, are highly significant and may indicate the presence of a much higher grade source.

Several important assumptions can be made by comparing the metals contained in soil samples from the pits. Levels of manganese and iron occur in relatively high concentrations in the Area A anomaly, raising the concern of a false anomaly caused by Mn-Fe scavenging of base metals. While it could be anticipated that high iron levels in the soil are a possible indicator of a favourable environment, given the deposit models, the concern should be addressed. Figures 14, 15 and 16 compare Mn vs. Ni, Fe vs. Ni and (Mn + Fe) vs. Ni respectively. These comparisons do not support the existence of a direct correlation between high levels of nickel and high concentrations and manganese and iron. Base metal scavenging may not be a significant factor in the cause of the existence of the Area A anomaly.

Figure 17, which compares Ni with (Cu + Co + Cr), shows a good correlation, suggesting that these metals occur together in the source of the soil geochem anomaly. Figure 18 shows a very strong correlation of nickel with magnesium, suggesting that an ultramafic intrusion(s) may be a possible bedrock source of the Area A soil geochem anomaly.

CONCLUSION AND RECOMMENDATIONS

The results of the 1999 program have enhanced the potential for the existence of a significant Ni, Cu, Co and Cr deposit as the possible source of the Area A soil geochem anomaly. The discovery of mineralized fault and breccia in pyroxenite in Pit 1 is a positive indication that the Area A soil geochem anomaly has a mineralized bedrock source. Encountering extremely high nickel values in the soil from Pit 3 is encouraging.

The area of potentially higher conductivity indicated by the MaxMin Survey, just west of the northern part of Grid A, and to the south of Line 6+00N (Map 4), should be investigated further to better define the bedrock conductivity. This area is at a topographically higher elevation than the Area A soil geochem anomaly, which is down slope in porous till. This area may represent a possible source of the groundwater flow through the Area A soil geochem anomaly.

A new grid with north-south lines, spaced 50 metres apart, should be cut between 3+50mE and 10+00mE, from line 6A-N, south to line 3+00 N. An Induced Polarization (IP) survey should be conducted on the new grid to look for areas with bedrock concentrations of disseminated, net textured and massive sulphides on which to target mechanized trenching and/or diamond drilling. A more sophisticated Magnetometer Survey conducted over the new grid would be beneficial to the interpretation of the IP results.

Respectfully Submitted

G. Vandevalk January, 2000

Figure 14 Mn vs Ni in Soils

Figure 15 Fe vs Ni in Soils

Figure 16 (0.01xMn + 10xFe) vs Ni in Soils

Figure 17 Ni vs (Cu+Co+Cr) in Soils

Figure 18

References

Bright, E.G., 1990.

Precambrian Geology, Whitestone Lake Area; Ontario Geological Survey, Report 274, 67p.

Davidson, A., 1986.

New Interpretations in the Southwestern Grenville Province; in, The Grenville Province, Edited by J.M. Moore, A. Davidson and A.J. Baer, Geological Association of Canada Special Paper 31, p.61-74.

Davidson, A., Morgan, W.C., 1980

Preliminary notes on the geology east of Georgian Bay, Grenville Structural Province, Ontario; in, Current Research, Part A, Geological Survey of Canada, Paper 81-1A, p.291-298.

Easton, R.M., 1986.

Geochronology of the Grenville Province; in, The Grenville Province, Edited by J.M. Moore, A. Davidson and A.J. Baer, Geological Association of Canada Special Paper 31, p.127-173.

Easton, R.M., 1992.

The Grenville Province and the Proterozoic history of central and southern Ontario, in, Geology of Ontario, Ontario Geological Survey, Special Volume 4, Part 2, p.714-904.

Garland, M.I., 1990

Mineral Potential of the Mafic to Ultramafic Rocks in the Muskoka – Parry Sound Areas of the Central Gneiss Belt of the Grenville Province, Ontario, in, Summary of Field Work and Other Activities 1990, Ontario Geological Survey, Miscellaneous Paper 151, p.133, 134.

Hewitt, D.F., 1967.

Geology and Mineral Deposits of the Parry Sound – Huntsville area; Ontario Department of Mines, Geological Report 52, 65p.

Hornbrook, E.H., Friske, P.W., 1989.

National Geochemical Reconnaissance, Lake Sediment and Water Geochemical Data., Ontario, Open File-1956., NGR 119-1989., NTS 031E, 031K, 031L. Geological Survey of Canada.

Levinson, A.A., 1974.

Introduction to Exploration Geochemistry; Applied Publishing.

McLean, P.C., 1992.

Lount Township Exploration Programme OPAP File No. OP92-245.

McRoberts, G., Tremblay, M.L., 1988

Precambrian Geology of the Ferrie River Area, District of Parry Sound; Ontario Geological Survey, Map P.3123, Geological Series-Preliminary Map, scale 1:15,840, Geology 1987.

Perreault, S., et al, September 1996.

PRO 97-03, The Cu-Ni-Co potential of the Sept-Iles region: the lac Volant showing, (PRO 97-03 is a translation of PRO 96-06)

Ryan, B., et al, March 1995.

Ni-Cu Sulphide Mineralization in Labrador: The Voisey's Bay Discovery and its Exploration Implications, in, Current Research (1995) Newfoundland Department of Natural Resources, Geological Survey, Report 95-1, p.177-204.

Sangster, A.L., Gauthier, M., and Gower, C.F., 1992.

Metallogeny of structural zones, Grenville Province, northeastern North America. Precambrian Research, vol. 58, p.401-426.

References (continued)

Satterly, J., 1955.

Ontario Department of Mines Report, Vol. LXIV, part 6, 1955, including Map No. 1955-4.

Vandevalk, G., 1998.

Final Report on the 1998 Exploration Program for Ni-Cu-Co Sulphide Deposits on Mining Claim 1077361 in Lount Township, Ontario, OPAP File No. OP98-011.

Wodicka, N., Parrish, R.R., and Jamieson, R.A., 1996.

The Parry Sound Domain: a far travelled allochthon? New evidence from U-Pb Zircon geochronology, in, Canadian Journal of Earth Sciences, Volume 33, No.7 (July), p.1087-1104.

Appendix I

Field Data and Plotted Profiles for Initial and Follow-up VLF-EM Surveys

		F.E	mt	urner								-													Nicelanda,	i a
	est y	199					\square		TT	TT	Ť		Ť	Í Í		$\frac{1}{1}$								Ì	TT	
	1									$\uparrow \uparrow$									\dagger						\dagger	
1		CUTL	ER NAA	SCATT	E NLK		4	a	ea	d	4		· c	Re	en			eie		m				, l	打	
LINE	STATION	IP	QUAD	IP	QUAD			2			2		A	i				L		0		9:	15	A		
· O+SON	6+75E	+1	+22	-16	-12				•		8								Υ							
·	G+SOE	+5	+ 14	-10	·····5		0	Ja	1. Co			ŀ	L			F		8	ŀ						\prod	
	6+75E	+3	+13	-16	-/										4											
	7100E	+3	+ 4	-11	<u> </u>				/	Per	C	Ĺ	_		9	2°	1	12		ŀ						
	7+25E	+8	+4	-14	-2				ŀ	ļ										-						
	7+50E	+8	+3	-18	0			K		k	a	Z		-	2	8	10	1	'Z	_						
	TTSE	+4	-4	-7	+/	5																				Ļ
1+00N	8+00E	+3	<u> </u>	-2	+3												1									
<u> </u>	7+75E	+1	-+1	-6	+/	투민			,			۱. ۱.														ĺ.
	7+50E	-2	<u>+y</u>	-6	<u> </u>																					
	THISE	8	+4	0	<u>+/</u>	F																				
·	7+00E	-16	42	+4	+3	宇												Ц								Ĺ
	6+75E	-14	0	75	+ 4									<u> </u>												
	1750E	-18	-/6	+14	+10																					
	6125E	-25	- 4	+7	+7	T								<u> </u> ,												
1+50N	6+25E	-23	0	+5	+2	T						,														L
	61508	-19	12	+1	+3																					L
	61758	-16	+2	+4	-/	T																			\square	L
	TTUDE	-16	+2	+3	+3	T																				L
	7-95E	-10	12	12	+3	Ŧ																			\square	4
	<u>4500</u>		+ 5	->	+1	T															Ш					
	7+756	+4	+(-5	43																					

Lept 4	199	N	AA	NO	4K	- Ze	l. +4/9	79	N	AA	N	UK .
LINE	STN	IP	QUAD	10	QUAD		ZINE	STN	18	QUND	IP	1 DUAD
L1450N	8+00E	+1	-1	- 9	0		3-50 N	6-505	-4	13	14/1	0
2000 N	8100E	- 8	+7	-/	~/			6+755	. 3	+ 4	-2	+5
	Trise	-14_	+5	12	-1			Troot	-4	+ B	-4	12
	7+50E	-12	49	- 2	• 2			7+25E	-2	+5	-7	173
	74050	-15	110	0	0			7+505	-/	-77	- 7	4
	TODE	-12	+11	- 3	-6			オマンモ	12	+8	-12	
	GATTE	-11	+/1		- 2	223		STODE	1 11	47	-10	0
	6-50E	-/3	+7	+3	· Z.			81256	12	+6	-10	+2
	6-755	-14	+6	• 5	0			8+505	D	+5	- 7	+3
2+SON	6-250	-11	+4	2 Y	0			8+25G	a	+4	-9	+/
	6+50E	-12	+4	12	-2			9,00E	+2	74	-1/2	78
<u> </u>	6-75E	-12	•7	-/	- /	4	LATOON	9-1508	+3	72	-//	1-5
<u> </u>	7+00E	-16	+ 6	+ 1	0	¢,		91255	-2	0	- 8	+9
	7+25E	-18	+5	+3	12	\$		900E	+4	- 6	-/8	12
	7-50E	-5	+7	+1	-2	4		8+75E	1. 7 .	+3	19	44
	7+75E	-1/	+9	-/-	-2			8+50E	+2	12	-8	+6
	8+005	- 9	+ /.0	- 3	- 4		· + + + + + + + + + + + + + + + + + +	87258	-3	a	- 4	1 75
3trox	8-00E	-9	+8	-7	+/			SPOLE	-3	+1	-3	78
	7+75E	-4	19	-8	+1	E .		77756	-1.	12	[] - <u>/</u>]	+4
	715DE	-10	+7	-3	+-1	PT		THDE	-1	+2	-11	+M
	7+25E	-10	+5	-3	+/			Trest	1 +1	φ.	- 3	75
	TRUE	-11	+5	-1	-1	4		THUDE	1-3	71	-2	+4
	6-7SEV	o) -9	+5	+)	+2			GTRE	1-5	F1	HYIT	72
	6+SDE	-10	+ 4	+2	0			(brist E	1-3		-41	48
	67256	-10	12	,)	44			67285	1 - 2	+3	-3	-4
	ĺ						· ·	l	t			
									. •			۱ ر
	20.579.545 A.S.	1						a far a statistic and a statistic at		ļ		
						Normal Association		••••				

-							Joy \$19	35	10	AA	/	UKR														
		V LF.	ÉM	SURVE	1		LINE	STN	19	2000	(<u>IP</u>	QUA														
· · · ·	<u> 5EPTEI</u>	NBER	5/9	9			STOON	91255	+7	-7	- 8	-17														
		CUTLER	NAA	SEATTLE	NLK			900	-12	-/>	4-4	1+12														
LINE	STN	IP	QUAD	IP	QUAD			8,75	- 13	1/-	+/	A14														
Y+SON	6+25E	+3	+3	-4	+/			8+50	-17	-//		+14														
	6+50E	-3	0	- 2	+8			8125E	-14	-/8		716														
	6775E	-3	0	-/	+6			8+00E	-13	-10	+3	+14														
	7+00E	-5	-/	+1	+6			71750	-14	-8	12	+14														
	7+25E	-7	-2	+/	+6			1150E	-1/2	- 8	14	-11														
	7.50E	- 8	-6	+4	+10			71255	-13	-7	-44															
	7+755	-14	-7	15	112			Droog	-9	- 5	+3	4/0														
	8700E	-12	-8 -	+6	40			6+755	-9	- /	12	1 7/2														
	8+25E	-//	- 6	+3	+/	ų tai		6+505	- 2	-5	+3	-11														
	8750E	-9	-5	-3	+8			67258	-10	-6	- 5	V/R														
	8-75E	-/3	-8	+2	+12																					
	9100E	-6	- 3	-8	-19		STSON	642 JE	-9	-6	76	714														
	9125E	+/	0	-12	+7			Groet	-8	-6	43	1 7/3														
	9+500	-5	- 4	~8	78			6 75E	- 9	-9	+4	7/5														
	1175E	-3	-3	-9	+9			7+104	-8	- 21	11 + 2															
	10,00E	-5	-6	-4	+73			7.30-	-7	-7	44	4/5														
								7176	1-9	-8		1/ 1/2														
STOON	10+505	-4	-8	-4	412			7+055	14	9		-														
	10+25	-1	-6	-7	+12			8 tool	-8	-9	-2	- 18														
	IDTUDE	-7	-8	- 3	+12		┝┼┼┼┼	8 r2K	18	1 4 4		+/4														
	91756	-6	-8	-3	-1/14		┝┿┿┽┊┊	8.04				++														
	9-505	-7	-8	-6	<u> </u>		┝┾┼┼┼┾╴	8+254		- 8	-/B															
								4	<u> </u>	┟╴┵╶╵╴		1														
left \$19	8	N,	<i>A A</i>	N	K	ß																				Nine a
-----------	---------	-----------	------------	-----	--------------	-----------	------------------	---------------------	------------	---	-------------	---------------------	---------------------	-----------	---------	---------------------	---------------------	---	------------	------------	------------	---------------------	-----	---------------------	--------------------	----------
Fine	10.	<u>IP</u>	QUAD	14	QUAD							·····						•								<u> </u>
SISON	9+00E	-2	~ 8	- 9	+10						<u>.</u>										Ш				\square	
	9-250	- 5	-11	-6	+16				\square						\perp											
	9150E	-6	-12	- 8	+16																					
	9.755	-7	-12	-7	+14																					
	10+00 E	-3	-11	-/0	+14																					
	107255	-3	-12	-11	+16																					
·																										
GtOON.	10-500	-5	-17	-10	+20		$\left[\right]$																	Π	T	
<u> </u>	10+25E	-8	-/8	-7	+/9	P																		IT		
	10-115	-6	-16	-5	722	ų.			TI	Π			\prod			Π					ŀ	Π	T			
	9+75E	-4	-13	-10	+18			\prod	ŢŢ			\prod	Π			Π			Π	1	\prod	Π				
	9+50E	-2	-12	- 8	+/]	¢.		\square				\square					\prod	1	\prod	T	Π	\prod	T	Ħ		
	9+25E	-3	-12	-8	718	\$	T		\dagger						1-			1		1		$\uparrow \uparrow$	T	Ħ		
	9+000	+/	-8	- 9	+14							$\uparrow\uparrow$			-1-	$\uparrow\uparrow$				+-				$\uparrow \uparrow$		
	8+75E	+7	-5	-18	+8							$\uparrow\uparrow$			1					1			1	$\uparrow \uparrow$	$\uparrow\uparrow$	Γ
	8+506	+4	-6	-13	+11			$\uparrow \uparrow$	+			$\uparrow\uparrow$	$\uparrow \uparrow$		1	$\uparrow\uparrow$	$\uparrow \uparrow$	1		\uparrow	┢┼	\uparrow	+	$\uparrow \uparrow$	+	F
	8+25E	0	-8	-10	+14	4			\dagger			+-+-				╞┼╋	\uparrow						1	$\uparrow \uparrow$	+	F
	8+00E	-2	-8	-7	+/4				+				╋╋		-†-				\uparrow	+		$\uparrow \uparrow$	-+-	$\uparrow \uparrow$	╉┦	F
	PATSE	-4	-9	-1	+15		$ \uparrow$		\dagger			$\uparrow \uparrow$	╋╼╂		+	╆╍╂╴	┼┤		\dagger	\uparrow	┝╼┾╸	+		$\uparrow \uparrow$	+	F
	TISTE	- 3	-9	-4	+13	4		$\uparrow\uparrow$	\ddagger				\dagger		-	╆╆			┼┤		┢╴┟╴	$\uparrow \uparrow$		╋	+	F
	7+255	-6	-9	-2	+15			\ddagger					┼┼				+		\uparrow	-†	\square	$\uparrow \uparrow$	+	\ddagger	++	F
	THORE	-8	-9	+2	+/3			$\uparrow \uparrow$			<u>⊢</u> †,	$\frac{1}{1}$	+	\dagger	+	$\uparrow \uparrow$	\dagger		\dagger	\uparrow	<u>t</u> .	$\uparrow \uparrow$	+-	$\uparrow \uparrow$	┼┽	
	6+75E	-9	-9	+1	+12			╆╋	╈	+		╋╂╴	$\uparrow \uparrow$			┼┼	+		\uparrow	+-	<u>t</u> t		+	$\uparrow \uparrow$	+	
	6-508	-6	-7	-1	+/2	4	H	\ddagger	• † • †	Ť		╁╂	┼┼	┼┤		┼┼	+		\dagger	+-	Ħ	++	-+-	$\uparrow \uparrow$	┼┤	h
	GALSE	-6	-6	-1	411	E .		Ħ	┼┼	+	+	$\frac{1}{1}$	$\uparrow \uparrow$	+	+	++	+	-	\dagger	+	\square	++		\dagger	╋┥	
					/ \ <u>-</u>		L	4	1			1.1_	1	1		┶┼	11		1_1	<u>_</u>	L	ل_ل		ЦL	11	Ĺ
						I	•																			

						• ¥	Sept 6/99		N	A	N	K
		VLF-E	m s	JRUEY		L ay	LINE	STN	IP	QUAD	IP	OUND
	SE	PTEMP	ER . 6	199	9	ينتع	GAN	3+75E	-11	-10	· +10	+16
								CHOOE (-9	-/0	0	+12
		CUTLE	R NAA	5 EA77	LE NLK			4+255)	-5		+1	+16
INE	STN	IP	QUAD	IP	OU AD			4+200	-5	-8	+3	1 -12
OF OON	Grooe	-3	-4	- /	+/2			4+DFE	-3	- 4	-/	+11
	5+75E	+7	r4	-15	1			5+00E	-3	- 9	- 5	+9
	5+50E	+3	0	-8	+4			5+256	-1	-6	-7	+-B
	5+25E	-/	- 2	– "S	+8			SIJOE	0	- 5 -	-6.	46
	5+00E	-3	-6	- 5	+9			STOSE	-3	-7	-6	110
	4+75E	- 4	-4	- 6	+7			GAUE	- 2	-7	0	715
•	4+SOE	-1	-2	-3	+5			67256	9 -	-11	+4	+17
	4+25E	-1	- 2	-4	+8	ŧ		GISDE	-5	-/ >	O.	414
	4+00E	- 2	- 3	-3	+8			6+75E	-6	-11	+1	+ 20
	3175E	-4	-4	-2	+12	4		700	-3	-/0	-4	416
	3+50E	-3	-4	+/	+9			7425E	-2	-10	-2	+14
								7-508	+2	-6	-8	-13
GAN	1+50E	-4	- 5	-)	+10	P		7-758	+4	-7	-1/	4/2
	1+75E	- 3	- 6	-2	+9			8,00€	77	-6	-12	1/2
	2+00E	-4	-7	- 3 -	+/0			8-25E	+8	-5	-/6	+12
	2+25E	- 9	- 6	- 3	+ /0			8+50=	T11	-6	+17	+10
	2+500	-4	-4	- 4.	+ 8			8-75+	+10	-7	-16	+11
	2+758	-1	-4	- 4				9+00	-3	-11	-12	+15
	3+000	-1	-4	-9	+5			9+286	+2	-13	-9	+17
	3+25E	-1	-2	-12	+6	\$		9+500	+/	-13	-1/	+19
	3+50E	-5	-6	-1	+10	¢		9-75E	+3	-14	-10	+ 19
						¢	└─┴─┴─┴─┴	1/0+008	+3	-14	-12	+ 20

S D L L D A A

Sept 6.		NA	A	NO	K	¥							• دف نصف					and the second s	
Fine	lta	JP	QUAD	IP	QUAD.		7 . 6	· · ·		QA.A	N.	````							ة 1
7+00N	7+50E	+8	- 16	-19	+16												•		
	7+25E	+7	-12	-15	+17			-											
	7+00É	+8	-12	-12	120														
	6+75E	+4	-12	-/ 5	+15														
	6+508	+2	-13	-7	r16														
	6+25E	72	-12	-7	+14														
	Grove	73	-10	-7	+15										IT				
·	5+758	+2	-8	9	+1.4	4													
	STSDE	+/	-8	-6	HS								、					\square	\square
	57298	- 2	-11	- 4	+/8						1							\square	\square
	STODE	- 3	-10	-/	+14										TT.				\square
	4+75E	-3	-8	- 4	+14	E													\square
	4+506	-1	-8	0	+14														
	4+25E	+4	-6	-7	+7														\Box
	4+00E	- /	-7	- 7	+14	甲													\square
	3+75E	-6	-11	-6	112										T		T		
	3+50E	-5	-/0	-7	+11	申												Π	
	3+25E	-3	-10	-7	+14														\square
1	31008	-1	-6	- (4	+11														Π
J															$\uparrow \uparrow$			\prod	\Box
· · · · · · · · · · · · · · · · · · ·																		\square	П
																		\square	Π
															•				\square
						\$													Ţ.
	·					4													\prod
	T					*	└──┹┯╾┖┯╸┖ ┯┯┙	└ . ┟╸.┟╺━┝ _╍	الما لي		+			┈┈┻╌╌┻╴		!		<u> </u>	
										. 1 1 . 1					<u>_1_1</u>		11	1	

NO	VLF -	EM.	SURVE	-YA	<u>EA '</u> A''	Follow	-UP			
Date.,	, , , C. F.I	<i>4</i> .3	. Page	•••••	• • • • • • • •	Date	Pa	ge	· · · · · · · · · · · · · ·	
LINE	STN	IP	QUAD	IF F	QUAD	Comm	HENTS			
8+40E	4+00N	- 3	-2	~ Y	+2_	RIGHT AT	THE EX	rstruc	STM.	
	3+75N	+2	0	- 3	+1			++++++	┿┥┥┾┥┥	
	3+50N	+1	6	7	-2	13 M N	OF C-	+50N	<mark>┤│╎</mark> ││	
					· · ·	8 m E	07 870	10 E	┽┽┽┼┼┦	
	4+25N	-5	-5	<u></u>	72	<mark>┥┥<mark>┙</mark>┥┥┥┥┥┥</mark>		┿┿╋┿	┼┼┽┽┤	
	4+50N	-13	- 8	+//	+10	8 4 5		<u>'5</u> W	┿┽┽┼┼┼	
	4+75N	-//	-10	+12	+10	┼┼┼┽┽┽┼┾╞┼┿		-++++++	┽┾┽┽┼┼	
	STOON	- 9	-10	+7	+12	M M S	0 4 5+	001	╺╈╍┿╾┽╴┼╍┾╍╅	
					· · · · ·	7 miter E	7+75	€	+++++	
	~						┼┼┽┽	╺┽┼╀┽┿╂		-
It2SE	Ston	- 7	-//	+13	<u>-/y</u>	Right on	C 7400	N	╅╋┽┥	
••	11. 7.5	<u> </u>		+17		43 6 4	- CATT - 57		┼┼┽┤┾┼	
	9+ 15N	<u>- 7</u>	-6	-13						
	47500	-/	-6	~ / / ~	+7	Kapet at	C 77ppm	444	36	
	YFLSN		- 2	-5	+2	7			+	
	9700 N	/				1 mills 10			╺╋┼┼┼┥┥	
	2.754	-4	-4	-2	+4				++++++	
	7+ JN	<u> </u>	- 3	- 6	+1					
				- 0			0 8+0			
	1					+++++++++++++++++++++++++++++++++++++++		┺┼┼┼┼	+++++++++++++++++++++++++++++++++++++++	
				h			╺┼┽┼┼┼┽╋┽┼┤	╶┼┊┼┊┼┼	++++	
	-	<u> </u>								
			·	<u></u>	· · · ·			╶╌╹╌╺┖╶┛╾┚┶╌┖╸┸╴	<u></u>	
A sim at since white			- Allia da Malanza da Anglanda		ا ۲۰۰۰ ۲۰۰۰	S. Sameradanticas many a rego	- Course - CL and a low - Mark South - Marked St.		in addited in succession of the second	

		•				
NO	VLF-E	m la	, .	AR	EA "A	- FOLLOW-UP
Date.	Legt .	25/99	Page		· · · · · · · · · · ·	Date
, 		NAA	NAA	NLK	NICK	
UNE	STN	10	QUAD	<u>IP</u>	QUAD	Comments
8+50.G	3+50N	+6	FL	-7	-2.	Right on Brstan 25 metrics 4. of
			<u> </u>			
	3+75N	+2	-3	- 6	<u> </u>	
	400 N	-2	-5	73	-5	1 meter S 1 K 4+00 N
		;	<u>.</u>		· · ·	
	4+25N	+6	0	-9	0	
	4+50N	+1	- 4	-2	74	19 miles 5 g 4 4+50N
						12 11 5 27 8+506
	4+75N	-6	- 8	+6	+9	
	STOON	-6	-12	+3	+12	N mater S - C 4 5 room
		· · · · · · · · · · · · · · · · · · ·	ļ		<u> </u>	- makes E D P+25E
					+	
8+75E	StorN	-3	-12	+3	+14.	Kind pri K Stod N. 25 meter E & lack
	4+75N	+2	-6	+/	+8	12 maters A to 4 4 sold I
						2 meter 4 of 9+30E
	4+50	+2	- 4	-4	+ 4	
<u> </u>	4+25	+8	-3	-4	+2	14 M W J & Vrpan
						4 m E 7 9-00E
	4+00	+11	+3	-10	~/	
· · ·	3-75N	+5	- 3	0	+4	
	3+50 N	+5	-/	-8	-1	& meter N & K B-sent
						10 meters E 58 9006
		<u> </u>				

in the second second

	· · · · ·	•				
NO	VLF-C Sept.	EM 24/98	ARE . Page	A. `A.	" - For	LOW-UP NO
LINE	STN.	NAA IP	NAA QUAO	NCK	NCK QUAD	Camment TS
9+00E	3+50 M 3+25 N	+4	+2	- <u>8</u> - Y	<u>-1</u> : +2	
f	YMON	-2	-6	- /	76	10 meter 5 p 4 400 m
	4125N	13	-2	-4	+4	10 mts to 1 1 1 25E
	Yrson	+ 8	-3	-4	+4	18 Mg 5 W 47 50 W
	4+75N	+7	- 2	- 7	r5	
ł	5+00N	+6	-8	+6	-11	B AT KANK of Stroom
·				0		
<u>7+75</u>	5+00 N 4+75N	-7 -7	-70 -8	+8 +6	+10	23 meters N D 4450
	YASAN	- 8 e	7	-7		S meters an of proste
·	4+25N	-3	-3	,2	, 4	
	4+00 N	0	-2	~3	+/	2 p kg by p 7+ 75
F	3+75	0	*1	-/	+1	
	3+5IN	+6	+4	- (9	-3	2 M C A DIZSTC
	1	l	<u> </u>	<u> </u>		

_*-	LINE	STN	NAA	NAA	NUK	NLK		TT	TZ	.0	m		·		T			TT		Π	Π		TT	;
	TAUE	3+50N	+3	+3	-5	- 4	Z		Le	te		2	0	1	27	15	bh			7	+ •	a	Ŧ	,
- بیر ا		3+75N	+1	+]	-2	-1				T		Ī	9	Τ						Π			\square	<u> </u>
ſ		YFOON	+2	-1	- 2.	0	9		4	5	-1		4	4	00	N		17		50	E			
+ '-		4+25N	+1	-1	-3	+1		\prod		T	10			\prod		1.					\prod		Π	,
-		4+50N	-7	-6	+ 5.	+6	10		. Co		\$.		4	4	. 50	N		7	- 50	DE			Π	
ĺ		4+75N	-9	-6	+6	+9																		
Ī		5+00N	-6	-9.	+8	+10.	1.	1					0	e	th		1	ł	. 5	**	0	2		
Ţ			· · · · · · · · · · · · · · · · · · ·				7	4	h	l			4	Y		e	2		21	25	- 5-			
ľ							1									6	1							
	7+25E	STOON	- 8	-10	15	<i>+</i> 9	2	7	m		u	Le P	∕		1		a.	1		10	t	n		
		4+75N	- 6	-6	+5	1.7									1					Ш				
		4+50N	- 2	- 4	+ 4	+5	b	-		4	4	+ -	0	1										
							1/2	/	M	\square	¢1		4		24	00				\prod			_	
		4+25N	0	0	0	+1			Ш				11							Ш	\perp	Щ	\square	
		4+00N	-/	-2	0	+2		\downarrow			_					<u> </u>		$\left \right $		\downarrow	-		┵┤	
	. <u> </u>	3+75N	+4	-2	-4	0	<u> </u>					\downarrow	$\downarrow\downarrow$		_			$ \downarrow \downarrow$		┢┥				
l_		3+ 50N	+3	+2	- 4		//	/↓	z e	te	₄↓	W			3	- 5	þ	4		<u> </u>	\perp	\square		
							<u> </u>	┥┤	44		┥┼	E	ļŀ	7	2	+0	1	2	-	\square	+	$\left \right $	+	
 -	·	·			• •		+++	\downarrow		·	++	\downarrow	++	1		- -		-+		\downarrow	+			
							+++	+	-	+		++	\downarrow					+		\downarrow		\downarrow	\downarrow	\$
ŀ						+		+	_				\downarrow		<u> </u>				+	$\downarrow \downarrow$	┿	$\downarrow \downarrow$	-+	Î
11														•										

	LINE	STN	NAA T.P.	NAA	NIK	NUR	TTT			00,	n	d l	175	$\overline{\mathbf{A}}$				TT	T
	THORE	3+50N	- 2	- 2	- 1	0	TH	15	YOA	RS	PR	cu	00	5	۵,	210			
	· · ·						m	A.A.C	P	く	30.	2	6	77	łε		75		
	<u> </u>						TH	15	52	4710	~								
		3+75N	+1	+1	-3	-1												<u> </u>	<u> </u>
	<u> </u>	4+10 N	-2	-2	+1	-3	11	h	1cm	5	-01		44	100	<u> </u>				ļ
						1		me	ten	E	1	1	4+	75	<u>E</u>			\downarrow	
	<u></u>	4+25N	+2	-3	-2	12								+				-+	
	· ·	4+50N	+2	-/	- 7	+2	8	m	ten	5	4	<u> </u>		1-5	d A				.
00081 10	· · · · · · · · · · · · · · · · · · ·					<u> </u>	19		4	N			6 +	<u>7</u>	E				<u> </u>
5 5	<u>. </u>	4+75N	_/	-2	-2	-2	╎╎┼┤					┝┼┤	++		╇╉		╞╌┼╌┽		<u> </u>
	· · · · · · · · · · · · · · · · · · ·	5+00 N	-6	~7	2 ت	+6	13	4	ette	6 S	-	7	2	47	001	¥ -	$\left \right $		_
							9	44	(† -	8	64	50	e †		_	+ + -	\square	++	+
							+++		$\left \right $	┨-┨-┨	$\left \right $		-+-+	++	++	$\left \cdot \right $	$\left \right $	++	<u> </u>
	·						┽┽┼┙		╋┽╋	$\left\{ \cdot \right\} \cdot \left\{ \cdot \right\}$	$\left\{ \right\}$	┼┼┤	-++	┥┤	++	┥┤	╎╎╎	++-	+
	<u>.</u>			<u></u>			┥┥┥		+++			┼╌┼╴┤						++	+
μ.	··			<u> </u>				+	┼┼┼	$\left\{ + \right\}$		$\left \right $	++		++		┝┝┥	-++-	+
	·						+++	-+	+			$\left \cdot \right $		++-	++				+
	<u></u>		······································						+++		+			-++		++-	┝╌┝╴┝	++	+
	··							++	┼┼┼	$\left\{ \left\{ \cdot \right\} \right\}$	+++	++		++	++-	++	┥┥┥	++	+
	·		·	<u> </u>			+++-		┽┽┾	+++	+++			++		+	$\left \right $		+
	··				<u>+</u>		┽┼┼╸		┼┼┼	$\left\{ \left\{ \right\} \right\}$	+++	+	-	+	++		$\left \right $	++	+
	~		·	↓			┥┥┥		+++	┼╌┼╌	+++	┥┥┥			++		$\left \cdot \right $		-

1.00

 $\{ j_i, j_j\}$

Date.	SEPT 2	6./. 9.9	Page	•••••	• • • • • • • •	Date	э		•••	• • • •	• • • •	•••	. P	age	••••	•••	•••		• • • •	••
LINE	STN	NAA I.P.	NAA QUAD	NLR J.P.	NLK				Ċo	m	MG	17	-5				\square			
8+00E	OON	+1	-12	- 2	+12															\square
<u></u>	25N	+4	-/0	-5	+11															$ \downarrow \downarrow$
<u> </u>	SON	+4	-10	- 8	-10	4/		nel	in .	2			4		1					\vdash
<u></u>	75 N	+6	-11	-11	+//		8	~		M		2	81	-00	Ē					Ц
	1 MON	+7	-10	-13	114														\square	$\mid \downarrow$
	1+25N	17	-14	-11	+18								$\downarrow\downarrow$							\vdash
<u></u>	1+SON	7/0	-17	-13	+20				\downarrow		$\downarrow\downarrow$						ŀ		\square	\square
	1+75 N	+13	-15	-/9	716	┍┵┼┾╴					11		╧╋	\downarrow			\square	\square	Ц	\square
·			<u></u>						<u> </u> -				$\downarrow\downarrow$				\square			
£7+501	1+75N	+16	-12	-14	+18	28		ne	6	Q	2	79	14	12		4		4-4-	\square	
						4	810	dE		14	· 25	M	44				\square			Ц
. <u> </u>	1+50N	+12	-16	-//	+20	╞╋╋								$\downarrow \downarrow$			╄╋	\square		\square
-i	1+25N	+9	-14	-8	+17								$\downarrow\downarrow$				┢┼	\square	<u> -</u>	Ц
	1400 N	+11	-/0	-12	+12	┝╋╋							┿	_			\downarrow	\downarrow		
. <u> </u>	75N	+11	-11	-/0	+10	44	me	12-	4		1	4	A	N			\downarrow	\downarrow	↓	
····						6	m	ete	<u>s l</u>	4	1		7+7	2-6	<u>=</u>		$\downarrow \downarrow$	\downarrow	\square	Ц
	SUN	<u>r3</u>	-9	-8	+11	┝╇╋							\downarrow		_		ЦĻ	$\downarrow \downarrow$	↓	\square
	25N	<u> 73</u>	-10	-4	FIL	2	n	201	4-	N	1	2	7	R	2	ەر	1	11	\square	
<u> </u>	OON	-1	-16	-4	+11	3	n	1		4	13	4	6	400	N	7	<u>* 57</u>	<u>\$</u>	\downarrow	\square
<u></u>		*.a							\downarrow		1						$\downarrow\downarrow$	_		\square
<u></u>	l					┢╋╋			\square								$\downarrow\downarrow$	\downarrow	┢┥	\square
						┢┿┿┿			44				+	_			$\downarrow\downarrow$	\downarrow	\downarrow	\square

NO Date.	VLF.E Sept	M 5 26/99	URVEY	ARE	A "C "	NO	
LINE	STN	1. P.	QUAD	Dik I.P.	Nek	Cammente	-
<u>C 7+25E</u>	OON	-1.	-12	0,	+13	25 miles in along thing	
- 2.2	25N	-2	-12	-2	+12	16 mater 5 or 7 275 M	
1.01	NO	+2	-10.	- 5	r12	17 meter S D G AN	
		<u></u>	·			y metery E 7+ 50 ct	
+ + + + + +	TSN	+8	-6	-10	+8		
- + H Z	1+20.N	+11	-11	- 11	+12		
Jen	1+25N	+14	-14	- 9	+16		
	1+50N	+12	-/3	-12	+18		
	1+75N	SAM	5 AS	C7+	50	1-75W Enclar up at same any	
				······			a ka sa
C7100E	1+75N	+8	-15	-15	+15	etated at 7M Trade ga dere	
						Klassing tege	
<u></u>	1+SON	+5	-14	-10	+17		
	1+25N	+2	-14	-6	+/8		
	1400N	+4	-15	- 5	+14	2 meters u of the 2 som	
	-75N	-/	-11	-2	+14	8 meters NA 6 AN	
					-	2 meters a er Troot	ľ
	SON	-2	-14	Ð	112		A. C. L.
	25N	-3	-12	0	+12		
	DON	-4	-12	+2	412	8 meters at of EGrean Grant	aca(-
							and the second
ù							
e	an a successive special states	na 2015 ann an Stàitean an Stàitean an Stàitean An Stài	Sala ing Panghapanganan nga Kabupatèn Kabupatèn nga	elipsent all successive to a similar given a metane			

NO	LF-E. Sept 2	M SU 6/99	. Page	<u> </u>	. ``C ´´	NO Date.	· · · · · ·			ł 	••••	P	age.	 	••••		••••	•••
		N.A.A.		NLK				·									\square	\prod
LINE	STN	T.P.	QUAD	T.P.	QUAD			Co	11	n =	1	≵⊦				╞╺┝		
6+506	DON	-4	-8	+/	+10	1.13	and	e.	-							⊢⊢		
	-25N		-12		· ·	K	6+	-010	6	*	75	E / A	2 cm	1	6-	250	5	\square
	25N	- 5	-12	+2	112													
	SON	-6	-10	+3	712	18	n	ete		\$		2	64	N	ŀ			
	750		<u>.</u>					//		E			975	$\mathfrak{o}\epsilon$				
	75N	-6	-12	+2	T14						a							
	(+00N	-3	-12	0	+15													
	1+25N	+/	-13	-4	+16													
	1+50N	+4	-13	-6	+16		,											
	1+75N	+8	-14	- 7	+15	2	m	the,		E.	r		5	N			\square	
						2	m			بالم الم		2	. 6	150	20			
												1				\square		
5+00E	1+ 75N	-/	-12	- 3	414	60		DN		100	E				Π			
	1+50 N	-3	-//	-3	+13						Ī				\square			
	1+25N	+/	-8	-5	+11													
	1400 N	-1	-8	-6	+10.										\square			
	75N	-1	-6	-4	210	И		6 a		N	A	6	m	1	\square	\square		
	······································			· · · · · · · · · · · · · · · · · · ·	A	2	A	an		5	1	5	+0	DE		\prod		
	SON	0	- 6	- 4	+0		T				7			T			\prod	
	25N	+1	-5	- 5	+5		-	$\left \right ^{++-}$							$\uparrow\uparrow$		\square	
	DON	+/	-3	-4	+7	15	m			1	6	\mathbf{h}	++		++-	$\uparrow\uparrow$		
		ł				311	n			5	4	27	-1-		11	\uparrow		

	5	105-E1 SEPT	n Su 26/99	RUEY . Page	AREA	.''C.″	NO Date	· · ·				••••		 . P			•••	•••	•••	••••	•••
•			N	A A	N	¢/c			8	20/	22	1E,	NT.	5						T	Τ
LIA	IE	STN	T.P.	QUAD	I.P.	QUAD													Ш	\square	
4+	50E	DON	+2	-5	-4	74	a	X	6	M	4	72	.5	E	-	on	-	4	-4	~e	\perp
·					•		F	1e	5	-		in a									\downarrow
		25N	+3	-/	- 6	+4			1	1		1								$\downarrow \downarrow$	╇
•		SUN	-5	-7	0	+8							\downarrow	\downarrow	+		++	\downarrow		$\downarrow\downarrow$	\downarrow
·		75N	-3	- 3	<u> 71</u>	+11	3		4	44	\$	-1		61	91	4	++	++		$\downarrow\downarrow$	+
·							8		11		₹Į-	-1	4	ĮΨ,	150	ŶŦ	-	++	+	44	+
		1+00 N	-2	-9	- 3	<u> +10</u>					┢┝	0	-++	+	++	+				++	+
·		1+25N	-2	-9	- 2	+13			$\left \right $		+			++				┿	-+-+	++	_
.• -		1150N	-3	-10	-3	+12								++	┼┼	+		++	+	++	+
		N2 5 T	-/	- / 0	- 6	12			╞┼┼	++	┿╋		+	++	┿┼			┽┽		-++	+
·							┼┼┼	$\left \cdot \right $		++-	++			++	╌┼╌┼╴		+	++			+
			······································				┼┼┼	╏╌┠╌	┞╌┥	+	++			┽╀	╶┨╶╄╴	┽╉	++		++	-+-+	+
							┼┼┼	$\left \right $	┼┼┤	-+	┼┼		_+-+	┈┼┼	╋	┽┼	+	++	+	++	+
·							┼┼┼				┼┼			++	++	++		++	-+-+	++	+
						<u>+</u>	┼┼┼				++	++		++	╋		++	++		++	+
·						i	+++	++	┼┼┤	++	┼┾╸		$\left \right $	++	++	++	┼┼	+	+	++	+
÷							╈╋	+	┼┼┤	┼┼	┼┼		┝╍┼╴┨	╉╋	┽┼	++	+	╈		╶┼-╀	╉
·						<u> </u>		╞┼╴	╋╋	++	++		┝┼┤	┽┽	+	┽┼		+	+	┽╉	-+
.·				 		+	┼┼┼	┼┼╸	++	╈				┽┼		-+-+	┼╋	++	+	++	+
		· · · ·		<u> </u>		+	┼┾┾			+	┼┼	<u>†</u> - <u>†</u>		++		+	+	++	╉	-++	+
·						+	┼┼┼			-+-+-		\square		+		++	++	++		++	+
·				<u> </u>	l	L			┶┶┶┙				L_I				L				

3.2.2.3

-151-

Appendix II

Field Data and Plotted Profiles for MaxMin II HLEM Survey

SEPT	11/99 /	MAX-MIL	N II S	URVEY							
LINE	STATIO	IP.2	22 QUAD	IP: 44	BUAD	BE	88 MM	17	77 OUAD	35	SS MAD
OFSON	6+506	-8.75	+2.5	-9.	t3.7 c		+4/25	1444		1-10T	
	6+75E	-7.75	+2.5	- 8	+1.20			77.23		-9	44.75
	7+00E	- 8	+2.5	- 7.75	13.75		77925	- 3	1 9 7 3		
	7+25E	-6.5	+2.5	-6	12.75		7725	10003	7 5. 73		
	7+50:E	-5.5	+2.5	-5.75	+7.75	5125		-6.20		-67/3	
	71750	-6.25	+2.5	-6.5	+ 3.75			70.43	42.2-	-6-6-3	
					12.70	-0.3	+ + 4 + 4 +			-3.73	
1+00 N	8+00E	-4	+2.5	-3.75	+2.25	2 2 4					
	7+75E	-4.5	+ 2.5	-2.25	+2.75	- 3745	77.43	- 7.65			
	7HSOE	-7.5	+2.5	- 7:2.5	+2 = 1		7975	- 7.25	73.0		
	7125E	-7	+2.5	-6.25	+3.25			-1 0-	- 7.23	- 2	
	7+00E	-6.25	+2.5	-4	+ 3.75		7.20	-0.13			
	6-75E	+.25	+2:25	+.7.5	+ 7 2 6	-5.25	F9-25	r 6.43	F 4425	-6.8	
	6-50	-6.75	+2.5	5.75	7 3.73		+4125	7 . 6		F .65	79.25
				-2.75	7.75		+4.55				AY 3
ItSON.	GISDE	-9.5	+2.25	-9.5	47.75						
	6+75E	-8	+2.5	- 7.75	+2.75	-8.63	79-25	- 7.5		- 7.7 5	F7 65
	Troop	-10.5	12.5	-10	+2.9/		79.25				
	7+25E	-7.5	+2-5	- 7.5	+1.70			- /0. (3		-11/3 D	
	THEOE	-7.5	+7.5	-7.25	+ 7.25		-7-45		+ 2.75		PP.73
	7+15E	-9.25	+2.5	-85	+175		7 1.63	- 1. 43			
	8+0UE	-6.25	12.75	-6			7793		77.0		
								- 6-3 7	-9.69		F 4.73
						┝┾┼┼┝┿	╇╄┾┾╀┼	┤╎┼┼┼	╁┾┾┼┼		┼┼┼┼┿┽┥
						$\left + + + + + + + + + + + + + + + + + + +$	╅┽┦┞┾┽	┼┼┾┾┼	╏╏╎		$\left\{ \begin{array}{c} \\ \end{array} \right\}$
									┟╍┖┙		
											ŕ
				4.5							

·

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Sept 11	199	2	22	44	Ý		888	1777	' 3	555
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	LINE	STN	IP	QUAD	I.P	QUAD		IP QUAD	IP. G	WAD IP	QUAD
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2+00N	8700E	-5	+2.5	-4.5	+3.75		- 4 + 4.25	-5 +	4 -5	+ 4.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		7175	-1.5	+2.5	-1.75	13.75		-1 +4.25	-1.5 +	5 -1	+ 2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		7+50	_4.5	+2-5	- 4.5	+3.75		-3:25 +4.25	-4.5 +4	1 25 -5	+ 4.75
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		7125	-3	+2.5	-2.5	+3.75		-2 14.25	-3 +7	1.75 -2.5	r 4.25
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		7-00	- 3	12.75	-2.75	+3.75		-2.25 +4.25	-3 17	775 -3.5	+5
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		6-75	-0.75	r2:5	-0.75	-3.75		-0.5 +7.25	-1.25 7	5 -125	- +4.5
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		6-50	- 4.5	+2.5	-4.35	13.75		-375 44.25	- 4.75 +	4 -5	14.25
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2+50N	GrSDE	- 7.75	+2.25	-7.5	+3.75		-7 +4.25	-8 73	3-75 - 4	13
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		6.756	-7:	+2.5	-6.75	+ 3.75		- 5.75 + 4-25	-7.25 +	375 -7.5	r y-75
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		7me	-5.25	+2.5	-4.75	+3.75		-3.75 +4.25	-5. +	4 - 2.5	125
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		7+25E	-5-25	+2-5	-5.25	+3-75	*	-5 +4.25	- 6-25 -	4 -6.5	+475
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		7150E	-7:	+2.5.	-6-75	+3.75	6	-6.5. + 4:25.	-7-25 1	3.75 . / .	+3
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	· · · · · · · · · · · · · · · · · · ·	7+75E	-8.5	-2.5	-8.5	-3.75		-7-25 +44 25	-875 -	8-75 -9.75	44.5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		8+ oue	-6	12.5	-5:75	+ 3-75		-4-25 44-25	-5	125 -5	15
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	SE	E NOTE /					-				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3rOON	8+0 E	-4	+2.25	- 3.75	+ 3.75	单	-3 14.25	- 4.25 -	Y.25 - Y 5	+ 1.5
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		7+75E 7+56	-5	F2.25	- 4.5	+3.75	E	-3.75 14.25	- 5. 1	45-25	+ 4.25
$\frac{7r256}{7n0e} - \frac{9.5}{7.5} + \frac{72.5}{7.5} - \frac{9}{7.5} + \frac{73.75}{7.5} + \frac{73.5}{7.5} + \frac{72.5}{7.5} + 72.$		7+50E	-5.25	+2.5	- 4-75	+375	単	-4-25 + 4.25	-555 +	4-25 -6	A7-75
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		7+25E	-4.5	+2.5	- 4	+3.75	种	-3.5 + 4.25	-4.25 4	425 2-5	72.75
NOTES STATIONS MARKED 7+50E 8+00 # 7+75 REALMBERED 1N FUELD NOTES BUT NOT ON STATION F 8+00 # 7+75 REALMBERED 1N FUELD ARE ON OFFSET ORTION OF MARKERS IW FIELD 8+00 # 7+75 REALMBERED 1N FUELD 6+15E H125 +275 H15 J3.75 H15 J3.75 H2 H125 H.75 H5.25 H6.5 H2 6+50E -5 12.5 -4.5 +3.75 H25 -4.25 H25 -5.5 H2.5 -4.15		TNOE	-3:5	+2-5	- 3-50	+3-25		-2-5 - 74.25	+ 2.25 +	Y.5 - 2	12.5
NOTES BUT NOT ON STATION MARKERS IW FIELD BY DOE TO THOOE ARE ON OFFSET PORTION OF 4442 4425 475 4525 40.5 42 6+75E +125 +275 +1.5 -3.75 42 4425 +1.75 +5.25 40.5 42 6+75E -1.5 +2.5 -4.5 +3.75 -4.25 +4.25 -5.5 +4.25 +4.25	Notel	: TWO	STATIO	NS MAK	(EP 7+	SOE.		8+00 8 7+7	5 REAU	MBERED	N TULD
$\frac{ARE ON OFFSET BORTION OF}{6+75E + 1.25 + 2.75 + 1.5 - 1.3.75}$ $\frac{42}{-4.25 + 4.25}$ $\frac{42}{-4.25 + 4.25}$ $\frac{42}{-4.25}$		NOTES	BUT	NOT	ON .	TATION		MARKERS IV	V FIELD.	81005 #	0 7+00E
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		ARE	N OFF	SET	BRTION	OF	*	LINE BOD	N		
6+50E -15 +2.5 -4.5 +3.75 -4.25 +4.25 -5.5 +4.25 -6 +4.5		6+75E	+1.25	+ 2.75	+1.5	13.75	+	12 44 25	+.75 +	5 25 #0.5	+2
		6+50E	-,5	+2.5	-4.5	+3.75	-	-425 +425	-5.5 1	14.25 -6	+ 4.5
							-				•

Sept 11	199	Z	22	4	¥ Y	Y	8	88	17	77	3	555
LINE	S.TN	IP.	QUAD	18.0	QUID		: P	QUAD	syp:	QUAD	18	QU
3150N	6-756	-9.25	+2.25	- 9.5	+3:75		-9	+4-25	-10	+3.25	5.5	+3.5
	7+00E	-6.25	+2.5	-6	+ 3.75		-5.5	+ 7 25	-6.75	+4.	-3-75	+3
	7+258	-8.0	+2.5	-8	+ 3.75		7.25	+4-25	-825	+3.75	-9.25	14.5
	7+50E	-6.5	+75	-6.75	+3.75		1.25	14.25	-7	+3-75	-4	+ 3
	71755	-8	+2.5	-7.75	+3.75		7.25	+ 4.25	- 8-25	+3.75	-1.5	13
	81008	-6	+2.23	-6	+ 3.75		5-25	-4.25	-6.25	24	-7	14.75
	8+258	-7.15	+2.5	-7.5	+3.25		7	+ 7.25	- 8	+375	-125	13
<u> </u>	87.50	-5-5	+2.75	- 5.25	+3.25		7.25	+425	-6	+425	- 3.25	12.75
	8+75	- 9.	+2-75	-8.5	+3.25		7-5	74.25	-9	+ 3-75	-5	13
	9 ME	-6.25	r2.5	-6.25	-3.25		5.2.5	+4.25	6.75	7 4.	- 7	+7.7-
SE	PT 1	2/98	MAX-	MIN	SURVEY							
		22	.2	<u> </u>	(888		77		555
LINE	STN.	18	QUAD	19	QUAD		IP	QUAD	10	QUAD	IR	QUA
4+00N	9+50E	- 6	+2.5	-5.25	+ 3.75		-5	+4.25	-625	+4.25	- 6.5	15
	9+25E	-5	+2.5	-5	+3.75		4.25	+4:25	-5.25	74-25	-3.0	\$ 2.7
	9+00E	-6.25	+2.5	-6	+3.75		-5.5	-425	-6.75	+4	- 3 75	+3
	8+75E	-6-75	+2.25	-6	+3.75		.5.25	+4.25	-6.5	-4	-3.75	
	8+50E	-3.75	+2.5	-3	+3-75	$\mathbf{T} \mid$	- 2.5	+Y.25	- 3.5	144.75	- 2.25	127
	8+25E	-4.25	+2.5	-4	+ 3.75		-35	-1.25	- 7.75	1425	- 57.	+5
	8+00E	-5	+2.25	-3.5	+ 3.75		- 2.75	-725	- 7.75	+ 4.2	- 4	<u> * * * </u>
	7+75	-4.25	+2.5	-3.75	13.75		<u> </u>].	+ 7 2 1	- 1/	17.05	-14	r 7 2.
	7450	-6	+2.5	-6	13.75		- 7 25	1-4-25	- 51.	125	45.25	175
	1+25	- 5.25	+2.5	-5	13.75		-4 25	- 425	-6	<u>+++</u>	-6.25	15

legt 1	199	2	22	. 4	44		88	78	17	77	35.	55
LINE	STN.	JP.	QUAD	IP	QUAD		IP.	QUAD	IP	QUID	IP	OUI
YFOIN	7-00E	-6.25	+2.5	- 6	+ 3.75		-5.	+4.25	-625	-24.0	- 7	15
	6+75E	- 4	+2.5	-4.25	+3.75		- 4	+4.25	-5.	+425	-5.25	15
	6+50E	-2.75	+2.5	-2.25	+3.75		-2.25	+ 1.25	-3.5	74.75	- 2	+2.7
4+50N	6+50E	-7.5	+2.75	-2	3.75		-6.5	+ 4.25	-7.75	13.75	- 425	+3
	61758	-7	2.25	-7	+3-75		-6-25	+425	-7.	73.75	-3.75	13
	7r00E	-12.25	+2.5	-11.75	+ 3.75		-11	+4.25	-12.5	12.75	-6-75	+3.
	71256	-14.5	+2.5	-13.5	+3.75		-12.75	+ 425	-14	12.05	-16	14.7
	750	-5.75	1225	- 5.75	13.75		-525	+ 425	-6.5	-3-75	- 3.5	T 2.
	7+75	-5.75	12.5	- 5.5	+3-75		-5-25	+ 4.25	-6	+	- 175	r 2 ?
·	8100 E	-6.5	12.5	-6	+3.75		-55	+ 4.25	-6.5	+V	- 7.75	73
	8+25E	-6.25	12.25	-6	+3.75	F	-525	+425	- 7		-25	r5
	8+506	-6.75	+2.5	-6.75	+3.75		-6	+4-25	-7	-4	- 8	
	8175	-6.5	72.5	-6.75	r3-75		-6.	4425	-725	+4	-775	+5
	9+00	-6-5	12.5	.6.75	+3.75		-6	+4.25	-7.	-4	- 8	
	9-25	-6-5	+2.5	-6.25	- 3.75		-5.5	+425	-6-75	+4.0	- 325	42.
	9+50	-9	72-5	-8.75	+ 3.75		-8-25	+425	- 9.25	+ Y .	-5	73.
	9775	-8:	+2.75	-8	-375		-7.5	+425	-8 5	+375	-9.25	-5
	10-00	-7	72.5	-6-75	+4.75	T	-625	1425	-7.5	13-75	- 425	73
						1						
TOON	10+505	-5-	+2.5	- 4.75	13.75		-4-25:-	1425	-5.25	r4.25	13	12.7
	10 +25	- 3	+2.25	-275	+ 3.75		-30	14.25	\$.5	+ 4.75	-225	+27
	10-10	-6.75	12.5	-6.25	- 3.75		-5-75	+4-25	-7	+ 4	-84.	* *
	9+75	<u>`Y</u>	+2.5	- 4	+3.75		135	+ 4.25	-4.5	• y x	-2 5	+ 2 · 7
	9+50	-3.75	+2:5	-3.5	+3.75		-3	+ 4.25	-4	+4.5	- 2.1	4.2.7

ex n/s	9	27	22	4	44	T	888	17	77	35	55
lun	la.	IP.	RURO	10	QUAD		IP OUND	IP	QUAD	11	QUA
STON	9125E	- 3	+2.5	-2.25	+3.75		-2.25 +4.25	- 3.5	14.75	-2	12.75
	9+00E	-6	+25	-5.75	+3-75		-5 +4.25	-65	14	-375	13-01
	8-75	-5	+2.5	-5	+3.75		-4.5 +425	-5.75	1425	-65	-5
	8+50	-5.5	+2.5	-5	+3.75		-4.25 +4.25	4	e 4	4,-305	
	8125	-3	+ 2.5	-2.5	+3.75		-7:25 + 4 25	- 325	14.75	- 2	+ 2.75
	81005	-2.75	+2.5	-2.75	+3.75		-225 . 14 25	- 325	+ 475	- 2 -	7275
	7+75E	- 2	r2.5	-2	+3.75		-1.75 + 1.25	. 2.75	1 7 75	-1.5	12.5
~	7+50	- 4.5	+2.5	-3.15	+3.75		-35 +425	.45	,4.5	- 2-5	-275
	7+256	-6	+2.5	- 6	+ 375		-5 + 425	- 6 25	74	-3.5	72.75
	THONE	-2.25	r 2.5	-2.5	+ 375	I	-2 + 7.24	- 3	+4.75	- 1.75	- 2.7
	6+750	-5.5	+2.5	·55	+ 3.75		-7.75 +725	-625	• 7	-7	45
	4-506	-8-75	72.5	- 8.5	+ 3.75	1	-7.5 +725	- 2.	175	-5	225
0									┍╍┨╼┠╴┨╴┨	┽┽┽┽┼	
Stat	ori S	150N	6+50E	<u>, or</u>	only				┝┥┥┥	┽┼┼┼┼┤	┿╇┽┥
15 1	eters.	from 22	breve o	line 40	7		888	117	77	35	555
ins	the."	IP	and	P'	QUAD		ZA 9/10		Parto		8111
+50N	6+50E	- /.5	+ 2.5	-/.5	+375	T	-14.25 4425	-15.75		- 18	-+5
	4+138	-//	+1.25	-//	+375		-10.25 + 4.25	+ 12:25	23	-/4-0	+45
	7.255	-70	+2.5	-15	+3.75		-875 49.25	7025	7525	-/2	
	7:505	- /.5	+75	- 1.25	+3.700					-7	
	JUSE	-475	17.74	- 3.15	+7.70			- e. xe		-17-	
	8+015	-1.75	+	- <u>7.13</u>	1313		+ 75 + 4 2 C		1528	7K	775
OFECM	8+255	-8	17.75	- 7.70	<u>-7./5</u> +3.7(43
<u> </u>	8+50E	-5.75	+2.25	-5.76	+3.75			-6.25		-7	45
		- 10		12					┟╶ ╵╵╵ └╶└╼┶		

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1/ />	555
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	OUNS IP	QUA
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	+ 4.0 - 4.25	13
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	+3.75 -4.25	13
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1325 -65	132
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	73.75 - 3.75	+3.
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	+ 4 - 5	45
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3 75 - 4 75	772-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-1/ -7.25	175
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	┫┫┙	$\downarrow \downarrow \downarrow \downarrow \downarrow$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		┶┾┿┼
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	77 35	<u>tstst</u>
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	and IP	- par
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	+1.25 -10	442
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	+ 4.25 - 5.5	<u> +\$</u>
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	+ 4 - 7	44
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	+ 7 - 6.25	+325
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	+45 -30	42 75
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	+3 -5.75	52 4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	+3.75 -5.25	432
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	14 - 45	- 3.2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	+ 425 - 35	43
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	13-1-65	<u>+3;</u>
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	+ 2 5 - 7.75	+378
6+75E -25 +25 -1 +375 - 0 +425 -1	-35 -5 -	+ 3 2
	+5 -•5	1225
$\frac{7}{100} - 6.25 + 2.5 + 7.25 + 3.75 = -6.75 + 7.25 - 7.25 + 3.75$	<u> + Y + > > \$</u>	-5

Jey Y13		27	22	4	84		ŧ	88	17	77	3.	555
fine	la	IP	QUM	10	OUND		IP.	OUND	1P.	QUAO	IP	OUA
6+00 N	7+25e	-4	+2.75	-3.75	+3.75		-3	1425	-4	14.5	-725	12.7.
	7+50.	-4	+2.75	-375	+3.75		-375	+425	- 475	+ 4.25	-2.75	-+2-7:
	7+758	- 5.75	+ 2.75	-6.25	+775		-5-5	+ 4 25	-625	140	- 675	+4.7
······	8+10E	7	1275	-6	+3.75		-55	- 425	-6.75	14.0	-75	+5
	8125E	-4.25	12.5	- 4.25	+ 3.75		- 375	14.25	- 475	145	-5	15.
	8+5DE	- 6	12.5	-5.5	+ 3.75		-4.75	+ 4.25	-6	+ 4	-3.25	+ 275
	8-75	-6.25	+2.5	-6	+375		-6	1/24	-675	14	- 3.5	13
	9400	-10.5	+2.5	-10	+3.75		-925	+4.25	-10.5	+325	-5.05	- 32
	9-250	-825	+2.25	• 8	+3.75		-725	1 4 25	-8	+ 375	- 4 25	+3
	9+50	-7	+2.75	-6.25	+3.75		-577	+ 4.25	-65	14 25	- 375	1-1-
	9-75E	-5	+2.75	.6	. 4		-5.25	+4.25	- 6.25	1725	-65	+5
	10TODE	-6.5	+2.5	-675	+ 3.75	4	-5.75	+ 4 25	- 4.25	.4	-475	1 1
	10+255	-675	+2.5	-7	+375		- 6-5	+ 7.25	-775	14	-8	+5
GAN	10+00E	- 2	+2.5	-1.75	+3.75		-/151	1425	- 2.25	1 5	-2.5	15
	9+755	-6-	+ 2.75	-5.75	+ 3.75		-525	1425	- 4 75	1425	- 3 75	
	9-SDE	-3.75	+2.5	-55	+ 3.75		- 5.75	4425	-7	1,4	- 2 95	k l
	9+25E	-6	+2.5	- 5	+3.75		- 4	+425	-5	+4.5	-5.25	12+
<u> </u>	9100E	-4.5	+2.5	- 4.5	+3.75		- 4	+ 4 28	-5	4425	-3	12:25
	8-75€	- 3-25	+2-5	-35	+3.75		-2.75	+4.25	425	175	-4.25	1 + 5
	8+50E	. 4.5	12.5	-7.75	+3.75		- 4.	1425	-5	1425	-525	15.
	8+25E	-5	+2.5	- 4.5	+3.75	-	- 4 5	1425	-55	14.25	-6	+5
	8100E	-5	+2.5	-4-75	+3.75		-4.25	+ +4.2.5 .	-5.5.	7725	-6	44.75
	7+75	- 5.25	+2.5	-5-25	+3.75	•	-4-75	+ 1.25	- 6	-14	-6.15	+5
	7450	-4.25	+2.5	-4	+3.19	-	- 3-25	+4.25	-5	+4.25	-25	+275
		_				-	L <u>(</u> L	▲ ▲ Ľ . ↓ · ↓↓			┵╌┵╌┵╌┵╌	<u>_↓_↓</u> _ь <u>↓</u> _
c						审						

est 13		27	2	4	44		8	88	17	77	35	35
ine	le.	11	QUM	IP	QUID		J.C.	DUAD	IP.	QUID	IP	QUA
6AN	7+2SE	- 4.75	+2-75	-4	+3.75		-3.5	+4.25	-15	+4.5	-25	+2.5
	7+60 E	-5.5	+2.5	- 5	+3.75		-5	+ 4-25	-6	+4	- 3. 25	r-3
	6,75 6	- 4.5	12.5	- 4.5	+3.75		-4	7 4 25	-5	14.25	-2.75	+ 2.75
	6+50	-7	+2.5	-7	+3.75		-6	+4	7.5	- 4	- 8	125
	6-75	- 6	+2.5	-5.5	+ 3.75		- 5	+ 4.25	- 6 - 2 5-	14:25	-35	+3
	6+00:	-5.5	+2.5	-6.5	+ 3.75		-5.75	725	-7	14	- 3.75	+3
	5175	-5	+2.5	-4.75	+3.75		-1 .	+ 4 25	-5	1425	-5	15
	5150	- 3.75	+ 2.5	-7.75	+375		-3 .	4425	- 4.75	14.5	-25	+275
	5125	- 2	+2.5	- 2	+ 3.75		-1.5	24 25	-2.25	15	-125	+2.5
	5+00.	-525	+2-5	-5-25	+ 3.75		-5	+4 25	- 6	44	-7.25	12.7
	4+75	-6.5	+2.5	-6	+3.75		-55;	4425	-7	+%	- 3 75	1.3
	4+50 E	-7	+2:5	-7	13.75		-625	+425	- 7.25	-11 .	- y	1.3
	4+25E	-4.75	+2.75	-4.5	+3.75		-3-75	1725	-5	+125	2.75	12 7
	Y-00	-525	+2.5	-6.5	1375		-1.	+4.25	7	44.25	- 375	-3
	31756	-2.75	+25	-3	+3.75		-25	+425	-3.25	145	- 2	+ 2.5
	3150	-4	+2.5	-3.75	+3.75		-35	1425	-4.25	1425	-2.25	12.5
	3+25E	-5.25	+2.5	-5	13.75		- 4-25	+4.25	- 6.25	.4	-3	+3
	3+00E	-6.25	12.25	-625	+3.75		-525	17.25	-6.25	+ 4 /	-3	12.7
	2-1758	-4.5	+2.5	-4	+3.75		-375	+4.25	-4.5	+45	-2.5	1-2.7
	2+50 6	-7	+2.5	-65	+3-75		-6-	+4.25	-7.25	-4	-3.5	+3
	21258	-64-	+2.5	-6 .	+3.75		-525	+425	-6.25	+ 7 2 5	-3.5	43
	2+008	- 8	+2.25	-8:25	+3.75		~725	. 1425	-85	125	-45	13
	1+758	-9	+ 2.5	-8.75	+375		-8.25	+ 4 2 5	-725	 	-5.	+3
-											<u> </u>	
							-					
						I	•					

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Section		22	2	ч	14		8	88	17	77	3	555
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Line	Sa.	18	QUAD	<u> </u>	QUMD		-IP	QUAP	IR.	QUAD	4	UB
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	TrOON	37255	-10	+.2	-11	+Y		-10	+4	-11	43	-6	+3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		3+50E	- 8	+2.5	- 8	+ 4		- 7.5-	+4	-9	+4	- 5	+ 3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		3+75E	-6	+2.5	-6	+ Y		-5	+4	-6.5	44	+4	+3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		4-00E	-8	+2.5	-7.5	-4		- 7	+4	-8	+4	-5	+3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		4+25E	-6	+2.5	-6	+ 4		-6	14	-7	14	-4	+ 3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	- <u></u>	4+502	-//	9Z	-10	+4		-10	44	-11	+3	-6	43
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		4+75E	-11	+2-5	-11	+ 4		-10	-4	-12	43	-14	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		5-00	-9	+2.5	-9	+4		-8	+4	-9	+35	-10	+ 5 - 1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		5725	-7	+2.5	- 8	+ 4		-7-5-	14	-9	+35	- 5	+3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	·	5150.5	-5	+2.5	-5	+ 3.5		-4		-5	44	-6	+5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<u>. </u>	5175E	-9	+25	- 9	+ 4		-8		-9	135	.5	132
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		6+00E	-8	+ 2.6	- 8	44		-7	+Y	-8	•7	- 57	• + 3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		6TZSE	-10	+2.5	-10	14		-9	14	-10	+35	- 5 5	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		6+50	-6.5	+ 2.5	-65	+4		-6	44	-7	44	-4	13
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		6-75	- 8	+2	-7	+4		-65	1Y	-8	- 375	-8	F3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		7+00 E	-6	+2.5	-5	+4		-5	×Y	-6	44	-17	45
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		7125E	-75	+2.5	-7.5	+4		-6	445	-7.5	+ 4	-4	+3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		7,500	- 9	12.5	-9	14		-8	+4.5	- 9	+ 2.75	-/0	-5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	MAX-M	N SURU	EY A	ONG	TRAIL	. STARI	10	<i>A</i> 7 "	X" IN	Arc	71440	╺╇┼┼┼┤	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	TR	255	- 4.5	+2-5	- 4	+3.75		-3.5	+4	-5	+ 4.25	- 5 .	+5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		0:	- 4.5	+2.5	- 4.5	+3.75		-4	14.5	-5	+4.5	-6	
$\frac{50N}{75N} - \frac{6}{5} + \frac{2}{5} + \frac{5}{5} - \frac{5}{5} + \frac{3}{5} + \frac{3}{5} + \frac{5}{5} + \frac{5}{75} + $		25N	-5.5	+2.5	-4.75	+3.75		- 4.25	- 4 5 -	-525	# 4.25	-6.5	+5
$\frac{75N}{100} - 5 + 2.5 - 5 + 2.5 + 3.75 + 47.25 + 5 + 47 - 5.25 + 7.75 + 47.7$		SON	-6	+2.5	-6.25	+3:25		-575	· + Y.25	-65	144	1-75	
$\frac{100 \text{ N} -5.25 +2.5 -5.25 +3.75}{6} = \frac{14775}{7} = \frac$	·····	75N	-5	+2.5	-5	+3.75	T	- 4	+4.25	-5-5	┼┽┦ ┾┼┤	- 5-75	+4.75
		100 N	-5.25	+2.5	-5.25	+3.75		4975	+4.25		++++	-6.5	+475
				,									
							T						

•
Sex 13		27	22	49	14		888	/7	77	<i>3</i> 5	\$55
LINE	STN.	IP_	QUAD	IP	QUAD		IP QUAD	IP	ano	IP_	QUAD
TR	125 N	-6.25	+2.5	- 6	r3.75		-5.25 +4.25	-7	+4	- 3.75	73
	150N	-3.75	+2.5	- 4.75	+375		-4 +425	-5	1425	-525	4.75
	175N	-3.75	+2.5	-35	+375		-3 + 4.52	- 7	+ 4.25	- 45	-475
	200 N	-7	+2.5	-675	+375		-675 +4.25	- 6.75	14	. 425	43
	225N	-7	+2.5	-7	+3-5		-6.25 +4.25	-7.25	-3.75	-8	15
	ZSON	-5.25	+ 2.5	-5.25	+3.75		-1.5 1.725	-5-5	+ 425	- 5.25	+ 475
	275N	-6.25	+2.5	-5.5	+3.75		-5 -14	-6	. 1	-7	
	300 N	-6.5	+25	-6.25	+375		-575 - 425	- >	14	- 7.5	1475
	325N	-625	+25	-5.75	+375		-4.75 +4.25	-4	14.25	-7	+5
>	350N	+6.25	12.5	+7	+ 3.75		+ 6.75 + 4.25	+6	1625	+325	+1.65
>	375N	+25	+2.5	+2-75	+3.75		+3.6 +4.25	+ 2 25	+5.5	+1	12
>	YNN	0	125	0	+3.75	4	4.25 4425		75	5	12.25
	425N	+]	+2.5	+ /	+ 3.75		+ 175 + 425	+.5	15.25	7.75	+ 5
	YSOW	-5.5	12.5	-5.75	+375		-5 +425	-6.25	+4	-35	1275
r 							3555				
							10 QUAD	,			
TR	505	-8.75	+2.5	. 8.25	+4.25		-10. +4.20	-			
	755	- 6	+2.5	-5	+425	草	-5.25 - 4.5				
	1005	-6.5	+2.5	-5.5	+ 4.25		+7 + 4.5				
	1255	-6.5	+2.5	-6.25	14.25		+7.75 + 4.5				
	1505	-7.5	+2.5	-6	+4		+7 +4.17				
	1755	-8	+2.5	- 7.25	+4.25		-8.75 +4.5				
	2005	-5.75	+2.5	-5.25	+4.25		-6.25 +4.5				
	2355	-8	+2.5	-7.75	+ 4.25	벽	-95 -442	-			
	2505	-9.5	+2.5	- 8.75	+4.25		-1025 +4.25				

j.	6.413		27	22	74	4			3	55	5					****	0154 D				-		
T	LINE	STN	18	QUAD	IP	DUAD			P	-	QU	AD											
	TR	2755	-9.5	+2.5	-8.5	14.25		+1	0		44	75											
		3005	-10	+25	- 8.75	+ 4.25		-10	.25		+ 4.	25											
		3255	- 9.5	+2.5	-8	+425	P	-10			+4	.5											
		3505	-9.75	+2.5	-9	+425		-11			-17	1. <											
		775 5	-9	+2.5	-8.25	+4.21		-/0	,		14	75											
							C)																
									T														
		<u> </u>																					
					1				-+-†														
		•••• •••• ••••		1																\prod			
	·						PH																
				<u>+</u>		<u> </u>										$\uparrow\uparrow$		1					
																					\top		
				+		<u> </u>							-++					1					
						<u> </u>												+	<u>+-</u> +-			+	
				1											-+-+								
		· · · · · · · · · · · · · · · · · · ·						L								╼┶╾╌┵			<u>. </u> _	- 4 - 1			
2																							
(7 4											•												4

10-00 E Saundrature 222 Hz (IN PHASE Ta Rx 25m 444 Hz . . . 888 Hz 1777 42. 3555 Hz. MAX MINII EM LINE GOON

Appendix III

Analytical Results and Certificates of Analysis for All Soil and Rock Samples Collected During the 1999 Program

1885 Leslie Street Don Mills, Ontario Canada M3B 3J4 Telephone (416) 445-5755 Fax (416) 445-4152

CERTIFICATE OF ANALYSIS

Work Order: 057211

To: **B-MAX Ltd.** Gord Vandevalk Attn: **Brothers Minerals and Exploration** R.R.#3 Milton HALTON HILLS **ONTARIO, CANADA L9T 2X7**

Copy 1 to :

Copy 2 to

P.O. No.	:	
Project No.	:	JOB# MA99
No. of Samples	:	32 SOIL AND ROCKS
Date Submitted	:	12/10/99
Report Comprises	:	Cover Sheet plus
•		Pages 1 to 6

:

Distribution of unused material: Discarded After 90 Days Unless Instructed!!! Pulps: Discarded After 90 Days Unless Instructed!!! **Rejects:**

Certified By

:

Dr. Hugh de Souza, General Manager XRAL Laboratories

ISO 9002 REGISTERED

Report Footer:

L.N.R. = Listed not received

= Not applicable

I.S. = Insufficient Sample = No result

*INF = Composition of this sample makes detection impossible by this method M after a result denotes ppb to ppm conversion, % denotes ppm to % conversion

SGS Member of the SGS Group (Société Générale de Surveillance)

n.a.

Date 27/10/99 :

Work Order:	057211	Da	ate: 2'	7/10/99		FIN	AL					F	Page 1 of	6		
Element. Method.	Au FA301	Pt FA301	Pd FA301	Be ICP70	Na ICP70	Mg ICP70	Al ICP70	P ICP70	K ICP70	Ca ICP70	Sc ICP70	Ti ICP70	V ICP70	Cr ICP70	Mn ICP70	Fe ICP70
Det.Lim. Units.	l ppb	10 ppb	I ppb	0.5 ppm	0.01 %	0.01 %	0.01 %	0.01 %	0.01 %	0.01 %	0.5 ppm	0.01 %	2 ppm	1 ppm	2 ppm	0.01 %
B00- 01	4	< 10	5	< 0.5	0.03	0.08	0.17	0.11	< 0.01	0.68	< 0.5	0.02	13	51	149	2.66
R99-02	10	< 10	6	< 0.5	0.04	0.03	0.43	0.16	< 0.01	1.11	< 0.5	0.13	27	55	267	3 67
R99-03	ŝ	< 10	, , , , , , , , , , , , , , , , , , ,	0.7	0.51	0.12	2.46	0.10	0.07	2.52	< 0.5	0.06	11	69	117	1.22
R09-04	10	14	3	< 0.5	0.33	0.11	1.66	0.09	0.05	1.80	< 0.5	0.08	13	65	92	3.72
R99-05	4	11	<1	0.6	0.52	0.18	2.17	0.20	0.11	2.86	0.7	0.07	14	65	128	0.96
R99-06	8	<10	1	<0.5	0.26	0.15	1.15	0.12	0.05	1.54	0.5	0.11	10	69	71	0.44
R99-07	5	12	1	< 0.5	0.06	0.16	0.19	0.04	0.01	21.0	0.7	0.05	4	22	215	0.51
S99-001	5	<10	5	< 0.5	0.02	0.86	1.85	0.09	0.07	0.49	14.2	0.05	63	178	5110	3.76
S99-002	6	<10	3	< 0.5	0.02	1.54	1.87	0.06	0.06	0.47	11.0	0.08	61	209	984	3.86
S99-003	5	13	4	<0.5	0.02	2.05	1.64	0.07	0.07	0.49	11.4	0.09	56	277	958	3.85
S99-004	8	13	5	<0.5	0.02	4.20	1.86	0.14	0.09	0.83	15.1	0.13	74	292	949	5.36
S99-005	11	<10	5	<0.5	0.02	4.29	1.88	0.08	0.13	0.69	19.7	0.12	80	328	1800	5.49
S99-006	12	17	7	<0.5	0.03	6.66	2.00	0.13	0.11	0.87	24.2	0.08	76	373	1680	5.92
S99-007	3	14	5	<0.5	0.03	4.30	1.82	0.14	0.12	0.85	22.5	0.08	88	324	1950	5.69
S99-008	11	<10	3	<0.5	0.02	1.94	0.77	0.08	0.05	0.40	8.7	0.04	27	131	458	2.32
S99-009	13	31	9	<0.5	0.02	0.82	1.48	0.09	0.12	1.12	5.0	0.05	53	118	5710	3.33
S99-010	14	12	3	<0.5	0.02	1.72	1.92	0.08	0.19	0.72	5.5	0.10	80	260	2080	5.24
S99-011	5	13	2	<0.5	0.02	2.26	1.84	0.09	0.15	0.71	6.7	0.08	75	277	1950	5.84
S99-012	10	11	8	<0.5	0.05	1.99	2.17	0.13	0.16	0.85	10.3	0.06	86	251	3070	6.87
S99-013	9	21	7	<0.5	0.06	1.97	1.95	0.11	0.10	0.81	6.7	0.06	78	225	2100	6.08
S99-014	11	17	8	<0.5	0.02	6.67	1.12	0.07	0.06	0.29	16.8	0.04	56	399	980	5.41
S99-015	9	12	5	<0.5	0.02	12.2	1.74	0.05	0.07	0.22	11.6	0.05	62	937	1390	5.88
S99-016	8	19	6	<0.5	0.02	7.64	1.25	0.12	0.10	0.42	9.8	0.06	64	385	1670	5.84
S99-017	6	<10	4	<0.5	0.04	7.07	1.86	0.11	0.08	0.50	9.3	0.08	74	383	1220	5.37
S99-018	6	10	4	<0.5	0.02	5.95	2.00	0.11	0.15	0.45	8.6	0.09	89	377	1720	6.29
S99-019	6	20	3	<0.5	0.02	1.27	0.99	0.05	0.11	0.32	2.6	0.08	66	160	1350	3.99
S99-020	4	18	4	<0.5	0.02	1.04	2.26	0.06	0.04	0.22	1.9	0.10	61	117	293	3.96
S99-021	4	17	3	<0.5	0.01	0.10	0.35	0.03	0.06	0.20	0.6	0.07	44	25	141	1.28
S99-022	2	<10	2	0.8	0.03	0.24	4.29	0.21	0.02	0.92	3.7	0.08	46	35	2400	3.70
S99-023	11	17	14	<0.5	0.03	1.18	2.02	0.28	1.50	0.36	8.0	0.23	226	102	191	12.5

.

SGS Member of the SGS Group (Société Générale de Surveillance)

Work Order:	057211 Date: 27/10/99 FINAL							Page 2 of 6										
Element. Method. Det.Lim. Units.	Au FA301 1 ppb	Pt FA301 10 ppb	Pd FA301 1 ppb	Be ICP70 0.5 ppm	Na ICP70 0.01 %	Mg ICP70 0.01 %	Al ICP70 0.01 %	P ICP70 0.01 %	K ICP70 0.01 %	Ca ICP70 0.01 %	Sc ICP70 0.5 ppm	Ti ICP70 0.01 %	V ICP70 2 ppm	Cr ICP70 1 ppm	Mn ICP70 2 ppm	Fe ICP70 0.01 %		
S99-024	10	<10	1	<0.5	0.02	0.38	1.75	0.14	0.03	0.27	1.9	0.10	53	22	234	5.01		
S99-025	10	12	20	< 0.5	0.02	1.29	1.72	0.10	0.17	0.33	2.0	0.12	52	39	326	4.32		
*Dup R99-01	4	<10	3	<0.5	0.03	0.08	0.17	0.11	< 0.01	0.67	< 0.5	0.02	13	50	149	2.67		
*Dup \$99-006	14	17	6	< 0.5	0.03	6.71	2.00	0.13	0.11	0.85	23.7	0.08	75	361	1640	5.79		
*Dup \$99-018	5	11	3	< 0.5	0.02	5.75	2.00	0.11	0.15	0.45	8.7	0.09	90	366	1740	6.27		

Work Order:	r: 057211 Date: 27/10/99 FINAL							Page 3 of 6								
Element.	Co	Ni	Cu	Zn	As	Sr	Y	Zr	Мо	Ag	Cd	Sn	Sb	Ba	La	w
Method.	ICP70	ICP70	ICP70	ICP70	ICP70	ICP70	ICP70	ICP70	ICP70	ICP70	ICP70	ICP70	ICP70	ICP70	ICP70	ICP70
Det.Lim.	1	1	0.5	0.5	3	0.5	0.5	0.5	1	0.2	1	10	5	1	0.5	10
Units.	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ррт	ppm	ppm
R99-01	9	3	54.7	10.2	<3	25.2	2.6	3.9	<1	<0.2	<1	<10	<5	9	6.5	<10
R99-02	44	15	321	7.3	<3	45.8	10.7	10.0	<1	< 0.2	<1	<10	<5	4	14.2	<10
R99-03	4	30	14.2	13.6	<3	368	3.5	6.0	1	< 0.2	<1	<10	<5	43	4.3	<10
R99-04	68	260	565	11.5	<3	247	5.0	10.1	<1	< 0.2	<1	<10	<5	21	7.2	<10
R99-05	4	13	17.8	11.8	<3	302	4.9	7.5	<1	<0.2	<1	<10	<5	39	6.7	<10
R99-06	3	15	17.1	7.3	<3	192	3.8	15.5	<1	<0.2	<1	< 10	<5	27	3.9	<10
R99-07	2	13	16.9	4.1	<3	1510	13.3	9.9	<1	< 0.2	<1	<10	<5	26	7.0	<10
S99-001	38	683	114	293	<3	36.6	119	2.5	1	< 0.2	1	<10	<5	246	75.1	<10
S99-002	41	655	137	207	<3	35.6	115	4.1	<1	< 0.2	<1	<10	<5	97	91.8	<10
\$99-003	45	770	165	191	<3	36.0	122	2.8	<1	<0.2	<1	<10	<5	85	93.7	<10
S99-004	63	1020	281	217	<3	51.7	75.0	6.6	<1	< 0.2	<1	< 10	<5	113	75.5	< 10
S99-005	59	1080	288	222	<3	45.4	80.9	7.5	<1	0.4	<1	<10	<5	126	93.2	<10
S99-006	89	1460	470	298	<3	60.7	100	6.8	<1	< 0.2	<1	<10	<5	117	92.4	<10
S99-007	53	1070	302	210	<3	57.3	100	7.0	<1	0.2	<1	<10	<5	132	102	<10
S99-008	22	464	125	88.2	<3	23.5	45.1	2.9	<1	0.2	<1	<10	<5	42	42.9	< 10
S99-009	33	386	53.0	260	<3	88.1	8.1	2.1	<1	< 0.2	2	<10	< 5	280	13.3	<10
S99-010	52	445	60.1	254	<3	49.7	5.4	4.2	<1	< 0.2	<1	<10	<5	171	10.7	<10
S99-011	74	644	65.1	307	<3	49.0	9.0	3.6	<1	0.3	<1	<10	<5	186	19.1	<10
S99-012	60	597	86.5	262	<3	78.3	14.8	5.0	<1	< 0.2	<1	<10	<5	196	26.5	<10
S99-013	56	545	68.5	233	<3	84.8	12.9	3.8	<1	<0.2	<1	<10	<5	155	24.0	<10
S99-014	68	1420	257	190	<3	18.5	33.5	3.8	<1	< 0.2	<1	<10	<5	76	49.8	<10
S99-015	121	2500	369	204	<3	15.1	21.0	4.4	<1	0.3	<1	<10	<5	87	35.9	<10
S99-016	107	1770	239	197	<3	27.7	22.0	4.2	<1	0.2	<1	<10	<5	106	39.9	<10
S99-017	75	1510	184	182	<3	30.5	19.9	3.3	<1	< 0.2	<1	<10	<5	91	36.8	<10
S99-018	86	1240	125	245	<3	27.7	20.0	3.7	<1	<0.2	<1	< 10	<5	112	30.9	<10
S99-019	49	423	30.5	160	<3	26.0	3.3	2.8	<1	<0.2	<1	< 10	<5	91	9.0	< 10
S99-020	23	281	48.1	189	<3	16.3	5.2	2.7	1	0.4	<1	<10	<5	66	8.8	< 10
S99-021	5	29	8.7	41.9	<3	18.2	1.3	1.2	<1	0.3	<1	<10	<5	75	5.7	< 10
S99-022	18	51	33.4	125	<3	82.0	35.9	7.9	1	< 0.2	<1	< 10	<5	120	34.3	< 10
S99-023	3	4	346	89.0	<3	55.6	3.3	7.2	38	1.2	1	<10	<5	542	15.4	<10

.

WSGS Member of the SGS Group (Société Générale de Surveillance)

Work Order:	057211	Da	ate: 2	7/10/99	FINAL					Page 4 of 6								
Element.	Co	Ni	Cu	Zn	As	Sr	Y	Zr	Мо	Ag	Cd	Sn	Sb	Ba	La	w		
Method.	ICP70	ICP70	ICP70	ICP70	ICP70	ICP70	ICP70	ICP70	ICP70	ICP70	ICP70	ICP70	ICP70	ICP70	ICP70	ICP70		
Det.Lim.	1	1	0.5	0.5	3	0.5	0.5	0.5	1	0.2	1	10	5	1	0.5	10		
Units.	ppm	ppm	ppm	ppm	ppm	ррт	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
S99-024	17	33	123	378	<3	7.4	7.3	4.2	8	0.2	<1	< 10	<5	26	8.9	<10		
S99-025	21	37	131	499	<3	8.0	6.7	2.3	5	<0.2	<1	<10	<5	28	14.0	<10		
*Dup R99-01	8	2	55.6	10.0	<3	25.6	2.6	2.8	<1	< 0.2	<1	<10	<5	9	6.0	< 10		
*Dup \$99-006	86	1410	464	291	<3	60.2	97.1	7.3	<1	< 0.2	<1	<10	<5	116	91.6	<10		
*Dup \$99-018	86	1230	125	240	<3	27.7	20.6	3.8	<1	0.3	<1	<10	<5	112	31.3	<10		

4

Work Order:	057211	Date:	27/10/99	FINAL
Element.	Pb	Bi		
Method.	ICP70	ICP70		
Det.Lim.	2	5		
Units.	ppm	ppm		
R99-01	<2	<5		
R99-02	2	<5		
R99-03	<2	<5		
R99-04	<2	<5		
R99-05	<2	<5		
R99-06	<2	<5		
R99-07	<2	<5		
S99-001	17	<5		
S99-002	14	<5		
S99-003	10	<5		
S99-004	16	<5		
S99-005	17	<5		
\$99-006	21	<5		
S99-007	17	<5		
S99-008	6	<5		
S99-009	55	<5		
S99-010	19	<5		
S99-011	27	<5		
S99-012	31	<5		
S99-013	26	<5		
S99-014	13	<5		
S99-015	17	<5		
S99-016	21	<5		
S99-017	19	<5		
S99-018	24	<5		
S99- 019	20	<5		
S99-020	9	<5		
S99-021	12	<5		
S99-022	11	<5		
\$99-023	247	<5		
599-023	247	< >		

Page 5 of 6

Ċ,

¢

WESGES Member of the SGS Group (Société Générale de Surveillance)

Work Order:	057211

Date: 27/10/99

FINAL

Page 6 of 6

2

Element.	Pb	Bi
Method.	ICP70	ICP70
Det.Lim.	2	5
Units.	ppm	ppm
S99-024	181	<5
S99-025	113	<5
*Dup R99-01	<2	<5
*Dup \$99-006	20	<5
*Dup \$99-018	23	<5

1885 Leslie Street Don Mills, Ontario Canada M3B 3J4 Telephone (416) 445-5755 Fax (416) 445-4152

CERTIFICATE OF ANALYSIS

Work Order: 057419

To: B-MAX Ltd. Attn: Gord Vandevalk Brothers Minerals and Exploration R.R.#3 Milton HALTON HILLS ONTARIO, CANADA L9T 2X7

Copy 1 to :

Copy 2 to

P.O. No.	:	
Project No.	:	MA99
No. of Samples	:	8 ROCK & SOIL
Date Submitted	:	26/10/99
Report Comprises	:	Cover Sheet plus
		Pages 1 to 3

:

Distribution of unused material:

Pulps:Pulps dumped after 90 days of reporting.Rejects:Rejects dumped after 30 days of reporting.

Certified By

:

I.S.

--

Dr. Hugh de Souza, General Manager XRAL Laboratories

ISO 9002 REGISTERED

Report Footer:

- = Listed not received
 - = Not applicable

= Insufficient Sample = No result

*INF = Composition of this sample makes detection impossible by this method *M* after a result denotes ppb to ppm conversion, % denotes ppm to % conversion

SGS Member of the SGS Group (Société Générale de Surveillance)

L.N.R.

n.a.

Date 04/11/99 :

Work Order:	057419	Da	ate: 0	te: 04/11/99 FINAL						Page 1 of 3							
Element.	Au	Pt	Pd	Be	Na	Mg	Al	P	к	Ca	Sc	Tì	v	Cr	Mn	Fe	
Method.	FA301	FA301	FA301	ICP70	ICP70	ICP70	ICP70	ICP70	ICP70	ICP70	ICP70	ICP70	ICP70	ICP70	ICP70	ICP70	
Det.Lim.	1	10	1	0.5	0.01	0.01	0.01	0.01	0.01	0.01	0.5	0.01	2	1	2	0.01	
Units.	ppb	ppb	ppb	ppm	%	%	%	%	%	%	ppm	%	ppm	ppm	ppm	%	
R99-08	2	<10	<1	<0.5	0.12	0.10	1.23	0.02	0.02	4.43	0.6	0.06	35	115	709	3.45	
R99-09	8	15	<1	<0.5	0.28	0.31	1.66	0.13	0.08	1.76	1.1	0.13	15	76	48	0.68	
R99-10	4	10	<1	0.7	0.44	0.11	2.14	0.14	0.05	2.85	<0.5	0.07	9	73	104	2.08	
R99-11	2	20	<1	<0.5	0.27	0.07	1.36	0.07	0.03	1.82	<0.5	0.01	8	57	117	2.49	
R99-12	4	18	<1	0.7	0.50	0.07	2.69	0.07	0.06	2.62	<0.5	0.03	8	59	87	3.48	
R99-13	3	10	<1	0.5	0.24	0.08	1.32	0.08	0.02	1.97	<0.5	0.01	10	52	100	5.36	
S99-026	<1	24	3	1.6	0.16	0.93	2.66	0.24	0.08	1.55	11.0	0.03	149	204	6050	12.4	
R99-14	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	
*Dup R99-08	<1	<10	<1	< 0.5	0.12	0.10	1.19	0.02	0.02	4.31	0.5	0.06	34	115	691	3.37	

.

Work Order:	057419	Da	ate: 0	4/11/99		FIN	AL					1	Page 2 of	3		
Element.	Co	Ni	Cu	Zn	As	Sr	Y	Zr	Mo	Ag	Cd	Sn	Sb	Ba	La	w
Method.	ICP70	ICP70	ICP70	ICP70	ICP/0	ICP70	ICP70	ICP70	ICP70							
Det.Lim.	1	1	0.5	0.5	3	0.5	0.5	0.5	1	0.2	1	10	5	1	0.5	10
Units.	ррт	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ррш	ppm
R99-08	2	6	1.3	8.1	<3	16.7	50.9	21.2	2	<0.2	<1	< 10	<5	6	2.3	<10
R99-09	6	18	15.8	12.0	<3	291	4.6	13.0	<1	< 0.2	<1	<10	<5	27	3.1	<10
R99-10	35	155	226	9.0	<3	292	3.0	9.4	2	<0.2	<1	< 10	<5	23	2.3	<10
R99-11	24	87	245	8.1	<3	194	1.4	3.4	<1	0.2	<1	< 10	<5	25	1.9	<10
R99-12	48	188	486	9.5	<3	321	1.2	4.9	1	0.4	<1	< 10	<5	39	1.0	< 10
R99-13	62	213	776	8.9	<3	159	1.2	3.7	<1	<0.2	<1	< 10	<5	15	1.3	<10
S99-026	79	518	82.1	195	<3	223	44.2	5.3	<1	0.4	4	< 10	<5	307	88.9	<10
R99-14	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.
*Dup R99-08	2	5	1.6	8.1	<3	16.7	49.5	21.1	2	< 0.2	<1	<10	<5	6	2.3	< 10

.

Work Order:	057419	Date:	04/11/99	FINAL
Element.	Pb	Bi		
Method.	ICP70	ICP70		
Det.Lim.	2	5		
Units.	ррт	ppm		
R99-08	2	<5		
R99-09	<2	<5		
R99-10	<2	<5		
R99-11	<2	<5		
R99-12	<2	<5		
R99-13	2	<5		
S99-026	73	<5		
R99-14	L.N.R.	L.N.R.		
*Dup R99-08	<2	<5		

Page 3 of 3

1 .

\$

1885 Leslie Street Don Mills, Ontario Canada M3B 3J4 Telephone (416) 445-5755 Fax (416) 445-4152

CERTIFICATE OF ANALYSIS

Work Order: 057590

To: **B-MAX Ltd.** Gord Vandevalk Attn: **Brothers Minerals and Exploration** R.R.#3 Milton HALTON HILLS ONTARIO, CANADA L9T 2X7

Copy 1 to

Copy 2 to

P.O. No.	:		
Project No.	:		
No. of Samples	:	1 Rock	
Date Submitted	:	28/10/99	
Report Comprises	:	Cover Sheet plus	
		Pages 1 to	3

:

:

Distribution of unused material: Discarded After 90 Days Unless Instructed!!! Discarded After 90 Days Unless Instructed!!! Pulps: **Rejects:**

Certified By

Date

:

12/11/99

Dr. Hugh de Souza, General Manager XRAL Laboratories

ISO 9002 REGISTERED

Report Footer:

- = Listed not received = Not applicable

= Insufficient Sample 1.S. = No result

*INF = Composition of this sample makes detection impossible by this method M after a result denotes ppb to ppm conversion, % denotes ppm to % conversion

:

SGS Member of the SGS Group (Société Générale de Surveillance)

L.N.R.

n.a.

Work Order:	057590	Da	ate: 1	2/11/99		FIN	AL					P	Page 1 of	3		
Element.	Au	Pt	Pd	Be	Na	Mg	Al	Р	К	Ca	Sc	Ti	v	Cr	Mn	Fe
Method.	FA301	FA301	FA301	ICP70	ICP70	ICP70	ICP70	ICP70	ICP70	ICP70	ICP70	ICP70	ICP70	ICP70	ICP70	ICP70
Det.Lim.	1	10	1	0.5	0.01	0.01	0.01	0.01	0.01	0.01	0.5	0.01	2	1	2	0.01
Units.	ppb	ppb	ppb	ppm	%	%	%	%	%	%	ppm	%	ppm	ррт	ppm	%
R99-14	10	< 10	<1	<0.5	0.27	0.07	1.39	0.07	0.03	1.79	< 0.5	0.01	11	79	110	3.70
*Dup R99-14	8	<10	<1	< 0.5	0.27	0.07	1.40	0.07	0.03	1.79	< 0.5	0.01	11	80	112	3.75

Work Order:	057590	Da	ite: 1 2	2/11/99		FIN	AL					I	Page 2 of	3		
Element.	Co	Ni	Cu	Zn	As	Sr	Y	Zr	Мо	Ag	Cd	Sn	Sb	Ba	La	w
Method.	ICP70	ICP70	ICP70	ICP70	ICP70	ICP70	ICP70	ICP70	ICP70	ICP70	ICP70	ICP70	ICP70	ICP70	ICP70	ICP70
Det.Lim.	1	1	0.5	0.5	3	0.5	0.5	0.5	1	0.2	1	10	5	1	0.5	10
Units.	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
R99-14	54	195	720	8.8	<3	195	1.3	3.7	<1	0.5	<1	<10	<5	24	< 0.5	< 10
*Dup R99-14	57	198	732	8.9	<3	195	1.3	3.6	<1	0.3	<1	< 10	<5	24	< 0.5	<10

,

11 100

FINAL

Page 3 of 3

Element.	Pb	Bi	
Method.	ICP70	ICP70	
Det.Lim.	2	5	
Units.	ppm	ppm	
R99-14	3	<5	
*Dup R99-14	4	<5	

Appendix IV

Identification of Author, Claim Holder and Field Assistant

Identification of Author And Claim Holders

All fieldwork submitted under this assessment application was carried out by the Author of this report, the Claim Holder of Mining Claims SO 1077361 and a field assistant. All three are Licensed Ontario Prospectors and, for the purpose of this report, are collectively referred to as B-MAX (Brothers Minerals and Exploration). The Author presently holds no direct or indirect interest in the mining claim, which is the subject of this report.

Author:	Gordon J. Vandevalk
Prospecting License:	A52179
Client Number:	303366
Address:	R.R.#3 Milton, Halton Hills, Ontario, L9T 2X7
Occupation:	Mineral Exploration Draftsman
Claim Holder (SO 1077361):	Henry Vandevalk
Prospecting License:	A52183
Client Number:	303369
Address:	1978 Balsam Avenue, Mississauga, Ontario, L5J 1L2
Occupation:	Water Treatment Plant Operator
Field Assistant:	William J. Vandevalk
Prospecting License:	A52184
Client Number:	303370
Address:	1880 Carrera Court, Mississauga, Ontario, L5J 4R5
Occupation:	Trucking Company Dispatch Manager

Ontario Northern Develop and Mines	Performed on Mining	Land	Transaction Number (office use) $WOU90.00076$
	Mining Act, Subsection 65(2) and 6	18(3), R.S.O. 1990	Assessment Files Research Imaging
35E2003 2.20601 LOUNT	ority of subsections ed to review the asso ining Recorder, Mi 900	65(2) and 66(3) of the essment work and co inistry of Northern D	e Mining Act. Under section 8 of the rrespond with the mining land holder bevelopment and Mines, 6th Floor
Instructions: - For work performed - Please type or print	on Crown Lands before recording in ink.	a claim, use form	n 0240.
1. Recorded holder(s) (Attach a	list if necessary)	~ • •	
Name HENRY VANDEVALK	LIC. NO. A52183	Client Number	0 3 3 6 9
1970 BASAM AUG.	MISSISSAUCA	(905) 82 Fax Number	3 - 4319
ONTARIO LSJ. 122	-	(905) 82	3-1597
Address	PROVINCIAL RECORDING OFFICE - SUDBURY	Client Number	
	RECEIVED		
	SEP 2 7 2000	Fax Number	
2. Type of work performed: Cher Geotechnical: prospecting, surv	A.M. 7235 F.M. 7 8 9 0 1 2 1 2 3 4 5 6 ck (\checkmark) and report on only ONE of the set	the following grou	ups for this declaration.
Work Type			Office Use
ESTABLISH CRIP, MAGNE WIE-EM SURVEY MAX-MU	TOMETER SURVEY.	Commodity	
PITS, SOIL SAMPLING, PREPARATION	PROSPECTING, REPORT	Total \$ Value of Work Claimed	22,012
Dates Work Performed From 2 7 9 Day Month Yes	9 To 16 01 2005 Tr Day Month Year	NTS Reference	
Giobal Positioning System Data (if available)	COUNT	Mining Division	SouthERN ONT
	M or G-Plan Number M / 8 4	Resident Geolog District	gist Sudbury
		Resources as re	auired:

3. Person or companies who prepared the technical report (Attach a list if necessary)

Name GORDON VANO	EVALK	Telephone Number (905) 878-0018
Address Address MILTON	HALTON HILLS ONT. L	97 2×7 (905) - 8 23 - 1 517
Name	BECEIVED	Telephone Number
Addrees		Fax Number
Name	SEP 27 200	Telephone Number
Address	OFFICE	Fax Number

4. Certification by Recorded Holder or Agent

I, <u>HEMAY</u> <u>UANDEVACK</u>, do hereby certify that I have personal knowledge of the facts set (Print Name) forth in this Declaration of Assessment Work having caused the work to be performed or witnessed the same during

forth in this Declaration of Assessment Work having caused the work to be performed or witnessed the same during or after its completion and, to the best of my knowledge, the annexed report is true.

Signature of Recorded Holder or Agent		Date
Ally and		SEPT 10/2000
Agent's Addiess	Telephone Number	Fax Number

5. Work to be recorded and distributed. Work can only be assigned to claims that are contiguous (adjoining) to the mining land where work was performed, at the time work was performed. A map showing the contiguous line 4.3 must accompany this form.

Mining Claim Number. Or if work was done on other eligible mining land, show in this column the location number indicated on the claim map.		Number of Claim Units. For other mining land, list hectares.	Value of work performed on this claim or other mining land.	Value of work applied to this claim.	Value of work assigned to other mining claims.	Bank. Value of wor to be distributed at a future date.		
eg	TB 7827	16 ha	\$26, 825	N/A	\$24,000	\$2,825		
eg	1234567	[*] 12	0	\$24,000	0	0		
eg	1234568	2	\$ 8, 892	\$ 4,000	0	\$4,892		
1	1077361	12	\$ 22,072	\$4,800	ð	\$ 17,272		
2								
3								
4						5		
5				2.	2060	1 - '-		
6								
7						<u>,</u>		
- 8								
9								
10						<u></u>		
11						· · · · · · · · · · · · · · · · · · ·		
12								
13								
14								
15								
	•	Column Totals			Ţ			

1. HENRY V	ANDEUALK	_ , do hereby	certify that the	e above work	credits are	eligible u	nder
()	Print Full Name)						
subsection 7 (1) of the	Assessment Work Regulation	on 6/96 for as	signment to co	ntiguous clain	ns or for ap	plication t	0

the claim where the work was done.

Signature of Record	led Holder or Agent Authorized in Writing	Date
(Deus	James	SEPT 10/2000
90 0		/

6. Instructions for cutting back credits that are not approved. A second state of the second se

Some of the credits claimed in this declaration may be cut back. Please check (~) in the boxes below to show how you wish to prioritize the deletion of credits:

1. Credits are to be cut back from the Bank first, followed by option 2 or 3 or 4 as indicated.

2. Credits are to be cut back starting with the claims listed last, working backwards; or

3. Credits are to be cut back equally over all claims listed in this declaration; or

4. Credits are to be cut back as prioritized on the attached appendix or as follows (describe):

Note: If you have not indicated how your credits are to be deleted, credits will be cut back from the Bank first, followed by option number 2 if necessary.

For Office Use Only	DECEIVED			
Received Stamp	HEGEIVED	Deemed Approved Date	Date Notification Sent	
	SEP Z	Date Approved	Total Value of Credit Approved	
	GEOSCIENCE ASSESSMENT			
	OFFICE	Approved for Recording by Mining Recorder (Signature)		
0241 (02/96)				

Sta	tem	en	to	EC	0.5	ts.			
for	AR	OVI	8m	ēn	t í			NG	
	R	F	~~ ~	[.	ж.н 1		E	'n	

Transaction Number (office use)

100090 00076

Personal information collected on this form is obtained under the authority of subsection 6 (1) of the Assessment Work Regulation 6/96. Under section 8 of the Mining Act, this information is a public record. This information will be used to review the assessment work and correspond with the mining land holder. Questions about this collection should be directed to a Provincial Mining Recorder, Ministry of Northern Development and Wines, 3rt Floor, 933 Ramsey Lake Road, Sudbury, Ontario, P3E 685.

	A.M. 97 35 P. 7 8 11211 2131415		001
Work Type	Work Type Depending on the type of work, list the number of hours/day worked, metres of drilling, kilometres of grik line, number of samples, etc.		Total Cost
Establish grid	9.33 km 19 man/days	\$200/man/day	\$3,800
Magnetometer Survey	6.6 km 3 man/days	\$200/man/day	\$ 600
VLF-EM Survey	7.34 km 10 man/days	\$200/man/day	\$2,000
Max-Min Survey	6.05 km 9 man/days	\$200/man/day	\$1,800
Prospecting	23 soil, 10 bedrock 1 man/day	\$200/man/day	\$ 200
Plotting Results	6 man/days	\$200/man/day	\$1,200
Hand Digging Pitts Final Report Prep	8 man/days 8 man/days	\$200/man/day \$200/man/day	\$1,600 \$1,600
Associated Costs (e.g. s	upplies, mobilization and demobilization).		
Equipment - flagging tape, batteries, etc.	· · · · · · · · · · · · · · · · · · ·		\$119.70
ATC rental (18 days)	n na sana sana sa	\$150/day	\$2,700
Instruments, chain saw, and quick cut sa rental	W		\$931.97
Analysis Costs			\$706.08
Final Report - paper, photocopying, etc.		\$482.90	
. Tr	ransportation Costs		
6,940 km		\$0.30/km	\$2,082
Foo	d and Lodging Costs		
50 man/nights		\$45/man/night	\$2,250
			\$22,072,65

Total Value of Assessment Work

Calculations of Filing Discounts:

ntario

1. Work filed within two years of performance is claimed at 100% of the above Total Value of Assessment Work.

2. If work is filed after two years and up to five years after performance, it can only be claimed at 50% of the Total Value of Assessment Work. If this situation applies to your claims, use the calculation below:

TOTAL VALUE OF ASSESSMENT WORK	x 0.50 =	Total \$ value of worked claimed.

Note:

- Work older than 5 years is not eligible for credit.
- A recorded holder may be required to verify expenditures claimed in this statement of costs within 45 days of a
 request for verification and/or correction/clarification. If verification and/or correction/clarification is not made, the
 Minister may reject all or part of the assessment work submitted.

Certification verifying costs: , do hereby certify, that the amounts shown are as accurate as may reasonably rint full name) be determined and the costs were incurred while conducting assessment work on the lands indicated on the accompanying KECONDED HOLDER Declaration of Work form as I am authorized to make this certification. d holder, agent, or state company position with signing authority) ED Signature Date SEPT 10/200 u 2 0212 (03/97) 27 GEOSCIENCE ASSESSMENT OFFICE

Ministry of Northern Development and Mines

January 12, 2001

HENRY VANDEVALK 1978 BALSAM AVE. MISSISSAUGA, ONTARIO L5J-1L2

Subject: Transaction Number(s):

Ministère du Développement du Nord et des Mines

Geoscience Assessment Office 933 Ramsey Lake Road 6th Floor Sudbury, Ontario P3E 6B5

Telephone: (888) 415-9845 Fax: (877) 670-1555

Dear Sir or Madam:

Submission Number: 2.20601

Status
W0090.00076 Approval After Notice

We have reviewed your Assessment Work submission with the above noted Transaction Number(s). The attached summary page(s) indicate the results of the review. WE RECOMMEND YOU READ THIS SUMMARY FOR THE DETAILS PERTAINING TO YOUR ASSESSMENT WORK.

If the status for a transaction is a 45 Day Notice, the summary will outline the reasons for the notice, and any steps you can take to remedy deficiencies. The 90-day deemed approval provision, subsection 6(7) of the Assessment Work Regulation, will no longer be in effect for assessment work which has received a 45 Day Notice. Allowable changes to your credit distribution can be made by contacting the Geoscience Assessment Office within this 45 Day period, otherwise assessment credit will be cut back and distributed as outlined in Section #6 of the Declaration of Assessment work form.

Please note any revisions must be submitted in DUPLICATE to the Geoscience Assessment Office, by the response date on the summary.

If you have any questions regarding this correspondence, please contact JIM MCAULEY by e-mail at james.mcauley@ndm.gov.on.ca or by telephone at (705) 670-5858.

Yours sincerely,

huille Jerome

ORIGINAL SIGNED BY Lucille Jerome Acting Supervisor, Geoscience Assessment Office Mining Lands Section

Correspondence ID: 15602 Copy for: Assessment Library
Work Report Assessment Results

Submission Number: 2.20601

Date Correspondence Sent: January 12, 2001			Assessor: JIM MCAULEY		
Transaction Number	First Claim Number	Township(s) / Area(s)	Status	Approval Date	
W0090.00076	1077361	LOUNT	Approval After Notice	January 08, 2001	
Section: 14 Geophysical MA 14 Geophysical VLI 14 Geophysical EM 9 Prospecting PRO 13 Geochemical GO	G = SP CHEM				

The 45 days outlined in the Notice dated November 24, 2000 have passed.

Assessment work credit has been approved as outlined on the attached Distribution of Assessment Work Credit sheet.

The assessment credit is being reduced by \$2,438. The TOTAL VALUE of assessment credit that will be allowed, based on the information provided in this submission, is \$19,635.

At the discretion of the Ministry, the assessment work performed on the mining lands noted in this work report may be subject to inspection and/or investigation at any time.

Correspondence to: Resident Geologist Sudbury, ON

Assessment Files Library Sudbury, ON **Recorded Holder(s) and/or Agent(s):** HENRY VANDEVALK MISSISSAUGA, ONTARIO

Distribution of Assessment Work Credit

The following credit distribution reflects the value of assessment work performed on the mining land(s).

Date: January 12, 2001

Submission Number: 2.20601

Transaction Number: W0090.00076				
Claim Number	Value	Of Work Performed		
1077361		19,635.00		
	 Total: \$	19,635.00		

210

31E13SE2003 2.20601 LOUNT

230

31E13SE2003 2.20601 LOUNT

240