> FINAL SUFITISEION
> TECHNICAL FEPPORT OPAP FILE MO. OPG3-054
> b:
> Dre Lloyd G. D. Thompeon, P.Eng. (Applicant)
> November 16: 1993

I. PROJECT LOCATION

The key location of the project area is shown in figure 1 which is a portion of NTS mar ${ }^{\prime}$ et Jif/Z Clyde Forks. The area is at Latitude 45 deg. 03 min . sv. sec. and Longitude 76 deg. 50 min. ii sec. . The project exploration area is within the North half of Lots 15 and 16 , Concession 3 , South Canonto Township, Frontenac County, Ontario as shomn in Figure 2 which is part of the North and South Canonto claim map. The location of the project magnetometer survey grid end diamond drilling work area relative to the claim boundaries, Summit Lake; access road and other topographic features is shown in Figure 3 in more detail.

II. ACCESS

From Kaladar on Highway 7, tals Hizhoiay 41 north and Highway 506 east to Ompah. Continue east from Ompah about 1 mi . (1 km.) and take Canonto Road north about 2 mi . $(3.2 \mathrm{km}$.$) to a road over$ the dam between Palmerston and. Canonto Lakes. Take this gravel road north over the dam and follow it about 1.4 mi . (2.4 km.) to a junction at an open area where a bush road turns off to the left (west). Follow this bush road about 1.7 mi . (2.7 km.) around Marl and Summit Lakes to the project site at the north end of Summit Lake. The road over the dam and bush road itraill to the project site are shown on NTS map sheet 31F/Z.

III. GEQLOGY

The project area is on a bedrock knoll that rises about 50 feet to the northeast from the eccess road around Sumit Lake. Bedrock in the area is mapped locally as amphibolite schist and is nearly vertically dipping at 37 degrees to the northwest. The schist is banded and varies from dark grey and black amphibolite to hornbiende and chlorite phases. The bedrock formation includes bands of white, grey and buff marbleg siliceous white and grey marble and bands of dissemineted and massive magnetite. The magnetite is considsred to be a contact metasomatic deposit associated with a mass of fine-grained diorite which intrudes the area immediately to the west to form hills over 100 feet high. The magnetite deposit outerops in onl\% a very narrow vein on the surface with most of the deposit lying beneath the bedrock surface. Mineralization in the megnetite and more altered parts of the amphibolite schist includes white calcite crystals, garnet, chalcopyrite and pyrrhotite.

Figure 1. Key Topographic Hap Showing Location Of Project Area.

31 F/2

CLYDE FO
ontario

Scale 1:50000 É
Milles 1
Metres 1000

Figure 2. Location Of Project Area On North And South Canonto Claim Map.

Figure 3. Detailed Location liap of Magnetic Survey Grid. Map Base Is Land Survey ione By M. J. KcAlpine, O.L.S. . Feb. 21, 1964.

A. GENERAL

As mentioned in the proposal, considerably more work effort and expenses were necessary to satisfactorily complete the proposed exploration project than were covered by the proposal budget. This extra work was done at the applicant's own time and expense. For example, to resolve the high magnetic intensity of the anomaly associated with the megnetite deposits almost twice as many magnetometer stations and readings were required (at 25° intervals instead of 50'). Also, the applicant was more involved with the diamond drilling results and core analysis which increased the work and report preparation workload. The applicant also provided all breakfasts, nearly all bush lunches and many of the evening meals for himself and helpers in order to keep the meal cost within budget.
B. CHANGES TO PROPOSED PROJECT

In general, the work project fallowed the phases outlined in the proposely namely:

1. Magnetometer Survey
2. Diamond Drilling Progrem
3. Drill Core Analysis
4. Report Preparation

However, much preliminary work by the applicant was required before the magnetometer survey work and diamond diriling could be started. Also, due to the poor quality of the core samples of magnetite a full analysis of the core was not deemed necessary by the proposed contractor. Only a Specific Gravity analysis of the core was necessary. This was done by the applicant in his own laboratory facilities.

Each work phase was completed essentially as proposed. Each is discussed in detail in the following sections.
C. MAGNETOMETER SURVEY

1. Purpose

Since the magnetic anomaly was so intense (oft-
scale positive and negative for needle-type and flux-gate magnetometers), a detailed quantitative magnetic survey for interpretation purposes was not feasible. The main purpose of the magnetic survey was, therefore, to determine the actual extent of the anomaly zone and to provide a grid for locating diamond drill holes.

To accommodate the extienely high magnetic anomaly a relatively insensitive Sharpe $D-1$-li dipping needle magnetometer owned by the applicant was used for the survey. This instrument measures the vertical component of the magnetic field. This instrument was calibrated at the Maynetic Divisiong Enery, Mines and Resources in ottawe. The scale factor varies from about 43 gaman per scale division for mid-range deflections to about 80 gamma per scale division for large and small range deflections. In view of the fact that many readings gave very large or very small deflections (in fact off-scale), the overall measurement accuracy was considered to be about 100 gamma.

3. Preliminary Work

Field work on the megnetcmeter survey was done from June 11, 1973 to July 7,1903 . Nefore establishing the actual survey grid, considerable preliminary work by the applicant was required. The magnetic ancmaly zone was first relocated and the general strike of the narrow and intermittent outcrops of magnetite was marked with flagging. The 1 imits of the anomaly zone were rsughly established to give a survey area 800 feet long parallel to the strilie of the zone and 200 feet wide across the zone. To locate the survey grid relative to the claim boundaries, the adjacent cleim lines had to be relocated, cleared, marked and chained. In addition, a line was cut and chained from the westerly grid 1 imit to the access road and Summit Lake. This work required 0.18 mi . $(0.29 \mathrm{~km} .1 \mathrm{gf}$ line cutting and chaining.

4. Survey Plan and Method

A detailed plan of the magnetometer survey area showing the grid iines, magnetometer treverse lines, magnetometer stations and numbers, claim lines, diamord drill hole lacations and other pertinent information is shorm in Figure 4. The survey baseline was selected to be along the strike of the magnetite outcrops with a true bearing of $N 48$ deg. 30 min . E. The survey grid reference point ($00+00$) was talen to be at a topographic high 13 feet west from the Lot 15 - le claim line. This conveniently placed the lOOW traverse line at a point of highest magnetic anomaly (off-scalel. The baseline was cleared by ine cutting to distances 500 feet west and zoo feet east of the reference point and wes chained and piclieted at 50 foot intervals. Traverse lines were established at right angles to the baseline, at 50 foot intervals, cleares by ine cutting and picketed at 50 foot intervals from $50=$ ts 150 N on the grid. The lines parallel to the baseline at Eor, ErN, loN and 150 N were also cleared by line cutting and the checked by chaining (ses Fi弓ure 4 fy 3 rir direction code). This
 chaining and picketing.

For cen．nicnea，the n－jirlometer base station was located on the site ar：－2：S iod ar－firit，in Figure 3.
 lines going from south to north on ifi first line（Soow），north to south on the second lins（qFow），：c．Due to the high， rapidly changing magnetic intensity nez：the baseline， magnetometer readings ：－rse talien $2 t z=$ fort intervals instead of theplanned 50 foot intervals）in ciser ta allow better contouring of the magretic aromely．ThF：э intermediate statians were chained and markef．This $3 a v=? r$ zings per traverse line
 was a consideratle ineres．ee in rorl effort and cost．A total distance of $0.64 \mathrm{mi} .(1.01 \mathrm{~km}$ ）alorg f！：traverse lines was surveyed．

5．Survey R三sults
a．Datョ Kejuction，！ヒrifuring and Profiling
Reduction of tho megretometer data，plotting of an anomaly contour map ard profiles aisd interpretation of the results was done primerily from Inone 3 to July 13 by the applicant．The magnetonster readinj＝uspo reduced to magnetic values in gaman using e relibration sturve provided by the Magnetic Division，Energy，Mires est rasources in ottawa．Since many readings were off－scale both pesitive and negative；a maximum value of 49,000 gamma and a minimum of $-10,000$ gamma were assumed for contouring purposes．A computer program was used for drawing a variable density anomaly contrur map as well as prafiles across the ancmaly zane．re use this computer programs the magnetic values hed to be adjustef ts zero as a minimum and quoted to a tenth of a gamma．Thus the original magnetic values were increased by 10,000 gamma and $f i \% i d e d$ by 10 so that 211 values were between 0.0 erd 59,000 jerme．The adjusted majnetic values for all statignj are given irt Tatls 1 （4 sheets）．The variable density anomely contour msp is shown in figure 5 ． Profiles along pertinent traverse li：as are shown in figures 6 and 7.
b．Interpretation
The variable d＝n＝ity contour map and
associated profiles shois that the megretite zone straddles the baseline and is very nerrow．It is not $=$ ontinuous over the length of the survey area as originell；expected．The main anomaly area indicates a magnetite drposit about 20 feet wide and about 250 feet long．If it extend：to a depth of 100 feet and is of good grades it would crily contain ronit 40,000 tons of magnetite at a twothirds recausry raise．The high magnetic intensity is evidently ceueed by a in zh fhermo－remnant magnetization of the dspesit．Intife＊stotion of the magnetic data by magnetic modelling is not forsoitie land was not expected from this survey）．Th Explareitinr．riffesaluation of the deposit must be done by dizmone！di illing blifei．i＝the main work effort of this freject．

Table 1. Magnetic Values For All Stations Adjusted For Computer Program.

List of data in b: tomtesti. fi, dria file.

GR10 LINE	LN	DAY	HH	MM	$\Xi 5$	STA	\because	Y	MAG
500W	100	188	0:	0:	0	1	0.0	0.0	1566.0
	100	188	0:	0:	0	2	0.0	0.0	1756.0
	100	188	0:	0:	0	3	0.0	0.0	1802.5
	100	188	-0:	0:	0	4	0.c	0.0	1821.5
	100	188	0:	0:	0	5	0.0	0.0	1821.5
	100	188	0:	0:	0	6	0.0	0.0	1910.5
	100	188	0:	0:	0	7	0.0	\bigcirc	1810.5
	100	138	0:	0:	0	E	9.0	0.0	1810.5
	100	188	0:	0:	0	9	0.0	0.0	1321.5
450 W	150	188	0:	0:	0	10	0.0	0.0	1789.0
	150	183	0:	$0:$	0	11	0.0	0.0	1739.0
	150	188	0:	0:	0	12	0.0	O.0	1789.0
	150	188	0:	0:	0	13	0.0	O.O	1780.5
	150	188	0:	0:	0	14	0.0	0.0	1775.0
	150	188	0:	0:	0	15	0.0	0.0	1810.5
	150	188	0:	0:	0	$1{ }^{1}$	0.0	0.0	1921.5
	150	188	0:	0:	0	17	0.0	0.0	1302.5
	150	186	$0:$	$0:$	0	18	0.0	0.0	1767.0
$400 W$	200	188	0:	0:	0	19	0.0	0.0	1680.0
	200	188	0:	0:	0	20	0.0	0.0	1693.5
	200	188	$0:$	$0:$	0	21	0.0	$\mathrm{Cl}, 0$	1718.0
	200	188	0:	0:	0	22	0.0	0.0	1612.0
	200	188	$0:$	$0:$	0	23	0.0	0.0	1693.5
	200	188	0:	0:	0	24	0.0	0.0	1761.5
	200	188	0:	$0:$	0	25	0.0	0.0	1775.0
	200	188	O:	$0:$	0	26	0.0	0.0	1780.5
	200	188	0:	0:	0	27	0.0	0.0	1789.0
$350 W$	250	188	0:	0:	0	28	0.0	0.0	1761.5
	250	188	$0:$	O:	0	29	0.0	0.0	1756.0
	250	188	0:	0:	0	30	0.0	0.0	1729.0
	250	189	$0:$	0:	0	31	0.0	0.0	1734.5
	250	188	0:	O:	0	32	0.0	0.0	1699.0
	250	188	$0:$	O:	0	33	0.0	0.0	1748.0
	250	188	$0:$	0:	0	34	0.0	0.0	5900.0
	250	188	O:	0:	0	35	0.0	0.0	1784.5
	250	188	0:	O:	0	36	0.0	0.0	1780.5
$300 W$	300	188	0:	0:	0	37	0.0	0.0	1639.0
	300	188	0:	0:	0	38	0.0	0.0	1794.0
	300	188	0:	0:	0	39	0.0	0.0	2931.0
	300	188	0:	0:	0	40	0.0	0.0	2564.0
	300	183	0:	$0:$	0	11	0.0	0.0	1316.0
---	300	188	0:	0:	0	42	c. 0	0.0	1718.0
	300	188	O:	0:	0	43	O. 0	c.o	1748.0
	300	183	0:	0:	0	44	0.0	3.0	1761.5
	300	183	ロ:	0 :	$?$	55	\bigcirc	$\cdots .0$	1756.0

Note: For Actual Nagnetic Values In Gamma, Subtract 1,000 Fron The Listed Values And Flultiply By 10.

Table 1．Continued．

250 W	350	188	0：	$0:$	0	16	0.0	0.0	1789.0
	350	188	$0:$	O：	0	17	c．o	0.0	1748.0
	350	188	$0:$	$0:$	0	43	0.0	0.0	1761.5
	350	188	$0:$	0：	0	47	0.0	0.0	1710.0
	350	188	$0:$	0 ：	0	50	0.0	0.0	1653.0
	350	188	$0:$	0 ：	0	51	a．o	0.0	1582.0
	350	188	0：	$0:$	0	52	0.0	0.0	4636.5
	350	188	$0:$	；0：	0	5	0.0	0.0	1310.5
	350	188	0 ：	0：	0	54	0.0	0.0	1612.0
200W	400	188	$0:$	0：	0	55	0.0	0.0	1761.5
	400	$188{ }^{\circ}$	$0:$	0：	0	56	0.0	0.0	1748.0
	400	188	$0:$	$0:$	0	57	0.0	C．	5700.0
	400	188	$0:$	0：	－	50	0.0	O．＇9	5200．0
	400	188	0 ：	0：	0	\because	0.0	い．	2373．5
	400	188	0：	O：	0	60	0.0	0.0	1752.0
	400	188.	$0:$	0：	0	61	0.0	\because	：248．5
	400	188	$0:$	0：	0	$\dot{\sim}$	0.0	$r \cdot 0$	1730.5
	400	188	0：	0：	0	\therefore	0.0	\because	1－94．0
150W	450	188	$0:$	$0:$	0	44	0.9	0.0	1057.0
	450	188	0 ：	$0:$	0	¢5	0.9	0.0	1031.0
	450	188	$0:$	0：	0	66	0.0	0.0	1765.5
	450	188	$0:$	0：	0	67	0.0	0.0	2115.0
	450	188	$0:$	0：	0	¢́3	0.0	0.0	2－455．0
	450	188	0：	0：	0	67	0.0	O．0	こ380．0
	450	188	0：	0：	0	70	0.0	0.0	5000
	450	188	0：	0：	0	71	0.0	0.0	0.0
	450	188	0 ：	0：	0	72	0.0	0.0	1.157 .0
100W	500	188	0：	0：	0	73	0.0	0.0	1772.5
	500	188	0：	0：	0	74	0.0	0.0	1027.0
	500	188	$0:$	0：	0	－3	0.0	0.0	5000
	500	188	0：	0 ：	0	76	0.0	0.0	1364.5
	500	188	0 ：	0：	0	77	0.0	0.0	2－54．0
	500	188	0 ：	0：	0	73	0.0	0.0	：158．5
	500	188	0 ：	0：	o	7	0.0	\cdots	1074.0
	500	188	0：	$0:$	0	09	0.0	O．\square^{\prime}	1592.0
	500	188	$0:$	$0:$	0	31	0.0	$\bigcirc \cdot 0$	1873.0
50W	550	188	0：	0 ：	0	e2	0.0	$\bigcirc .0$	1365.0
	550	188	0 ：	0：	－	8 O	0.0	$\therefore 0$	1714.0
	550	188	$0:$	0 ：	0	84	0.0	0.0	17＞4．0
	550	188	$0:$	0：	0	5	0.0	0.0	2115.0
	550	188	$0:$	0 ：	－	Stsserser	0.0	$\because \cdot 0$	2－io． 0
	550	188	$0:$	$0:$	0	\cdots	0.0	$\because 0$	こ－03．0
	550	188	$0:$	$0:$	0	23	0.0	\because	－900．0
	550	188	$0:$	$0:$	0	67	0.9	\cdots	$こ こ 60.0$
	550	188	0 0：	O：	\because	？	$\bigcirc \cdot$	$r \cdot n$	1073．0

Table 2. Continued.

Sheet 3 of 4

Table 1. Continued.

250 E	850	188	0:	0 0:	-	136	0.0	0	18.43 .5
	850	188	0:	$0:$	0	137	0.0	0.0	1870.5
	650	188	$0:$	0:	0	139	0.0	0.0	1829.5
	850	188	0:	0:	0	137	0.0	0.0	181.5
	850	188	0:	$0:$	0	190	0.0	0.0	0.0
	850	188	0 :	0:	0	141	0.0	0.0	3788.0
	850	188	0:	0:	0	142	0.0	0.0	2490.5
	850	188	0:	$0:$	0	143	0.0	0.0	2012.0
	850	188	0:	0 :	0	174	0.0	0.0	1397.5
	900	188	0:	$0:$	0	145	0.0	0.0	1970.5
3001	900	188	0:	0:	0	146	0.0	0.0	1718.0
	900	188	0:	0:	0	147	0.0	0.0	1103.5
	9.00	188	0:	$0:$	0	1.48	0.0	0.0	0.0
	900	188	O:	0 :	0	149	0.0	0.0	7024.5
	900	188	0:	0:	0	150	0.0	0.0	3551.5
	900	188	0:	$0:$	0	151	0.0	0.0	2237.5
	900	188	0 :	$0:$	0	152	0.0	0.0	1979.0
	$\begin{aligned} & 900 \\ & \text { Base } \end{aligned}$	$\begin{aligned} & 188 \\ & 188 \end{aligned}$	O:	$0:$	0	153	0.0	0.0	1384.0

Figure 5. Variable Density Megnetic Anomaly Contour Map.
Note: Vertical And Horizontal Scales Are Not Equal And Are Arbitrary.
dATA FILE b:tomterti.rev.
LINE NUMBER 350 reversed.
(250W)

DATA FiLE b:torterti.rev.
LINE NUMBER 4OO reversed. (200w)

0:0:0 $063 \quad 1794.0$

DATA FILE b: tointesti. rev.
LINE MUMBER 450 reversed.
$(150 \mathrm{~W})$

Figure 6. Magnètic Profiles Along Traverse Lines 250W, 200W And 150W Across The Magnetic Anomaly Facing West.

DATA FILE b: tontestl.rev -
LINE NUMBER 500 reversed.
(100W)
Tine Sta Mag

DATA FILE b:tantestl-rev -
LINE NUMBER 550 reversed.
(50W)

DATA FILE b: tomtestl.rev. LINE NUMBER 900 reversed.
(300E)

Figure 7. Magnetic Profiles Along Traverse Lines 100w, 50W And 300E Across The Magnetic Anomaly Facing West.

1. Qbiective

The objectige of the dia:nend driliing work was to canfirm and evaluate the magnetite frposit identified by the magnetic anomaly contcur map of Figurs si. Since the magnetic data were not suitable ta permit a quantitative interpretation of the magnetite deposit, further r rilor rition of the deposit by diamond drilling ivas thie cbvious and lejical answer.

Considerzhle prelimin. ; :iprk by the applicant was
 from July 9 to July le. \bar{y}, consideribg the magnetic anomaly contour map and the roser-verticel ilip $=$: the magnetite depositg it was concluded that the best it: $: \cdots: \cdots:$ isur could be obtained by drilling 45 degree hel $=$ te inter \#r. ilir magnetite deposit at

 degrees to the south. Th三se holes ifould intersect the magnetite
 Similarly, it was also flenned, if ti:s end footage permitted, to drill similar holes along the zook trevorse line. The diamond drilling plan for these holes is she:sin infigure 8 which was prepared for the use of the diamond $\underset{\text { friller. The locations of }}{ }$ the 4 holes actually drilled are singit if Figures 4 and 5 .

Prior ta the arriyel af the drill crew, the position of the 3 drill l:oles along tho 100 O line were chained and staked. Similary, J holes elory the zoow line were located and staked. Brush and tress isere rle.s.ed along the 100W and zoow lines wide enough for the drill riy ts piss. Alsog brush and trees were cleared for ejo' througl. tlif Jurvey area from the site access road to the drili site to me!!- an jecess trail 15' uide for the drill rig to ces! the drill =it=. This drilling access trail is shown on Figur $=$? and 1 .

The access road to こu:irit and Wolf Lakes and the project site was bedly in need of rep-irf to allow the passege of the large flatbed trucl: cerirying fl: frill rig fprovided for in the project budgetl. Tlio contresto: hired to do the road repair was Francis L. Manion l.td., Ardoch, Oi,tario. A small grader was used to efficiently repeir all the rocli, washed-out and waterfilled sections of the road to fors e smooth gravel road. The work was completed in 10 hours at a to* (including G.S.T.): AE a result, the dilling rig was transported to the project site with no trouble.

FIGURE 8.
DIAMOND DRILLING PLAN
CROSS SECTION ALONG 100 W LINE (LOOKING UPHILL)

(2) IF DEPOSIT PETERS OUT WITH 3 HOLES, THEN MOVE TO LOO LINE AND REPEAT AS ABOVE.
(1) IF DEPOSIT WIDENS OR CONTINUES WITH GOOD SHOWINGS, A $4^{\text {TH }}$ HOLE ON LINE NOW MAY BE DONE.

3．Diamond Drilling bort：

The diamond driliinz ：s－sene from July 22 to July 28 by George Downing Estatr Driliisj！i！．Calumet，Quebec．A Longyear wire－line cors jrill mar＂r－：：ith BQ bits giving 1 3／8＊ core．

Prior to the start of tise actual driliing works the company president $1: 3 \mathrm{~s}$ talien to the frilling site to familiarize him with the route to the site，survey grid areag drill hole locations asd the requitनt irilling programe The
 variety of delays．incluting bad tlirlityy＝torms，actual drilling did not start until moon st Jul $\because \because \because$ Nil holes were drilled at
 amphitolite schist bedrcol：．Dil Hi ：srs rampleted at 5i＂ $\mathbf{o n}^{\circ}$ on July 2S．DDH 月2 was staited and crouletrd on July 27 to a depth
 July 28．DDH \＃4 was elra frilled $t ? r ?$ nn July 28．This was the last day．the drill \quad ase availetie $t=$＇he project so the drilling program was trimineted．Tlis totel footage drilled for the 4 holes was 320° 6＂．The coritres＇si Jave a reduced price of $\$ 12.50$ per foot（instepi ef the col：t＂－tef $\$ 15.00$ per foot）for a total cost of $\$ 4,286.3^{\circ}$ ！includinge．厄．T．1．

4．Drilling Pesults

Drill core logging wrs dens by the applicant who was at the drilling site every day zocept Sunday July 25 to monitor the drilling and log the cory．The drill core．logs for
 respectively．A vertical cross－ssction cf holes \＃l，\＃2 and \＃3 along the loow traverse line is showrin figure 9．The sections of core with disseminatsd magnetite（lov 子rade）and massive magnetite（high grade）pre shown elryig or＝h hole and give the
 similar vertical crose－roetion rf hols Hil elong the 200W traverse line is shown in Figure 19.

The drill core 1 口马s confirmed the nearly vertical dip（87 degrees NW）of the bedrocl end surgnetite deposit．The logs show that the host bedrock ecusifited of banded dark grey to black amphibolite schist with horntlende end chlorite phases． Included were bands of white，$\exists r e y$ and buff marble，siliceaus white and grey marble and a banded drfosit of disseminated and massive magnetite．In the magnetits ind more altered sections of the bedrack core were sfionings of white calcite crystals，garnet， chalcopyrite and pyrrhotite．In farlicular，the magnetite core contained numerous stringers of mhite celcite crystals which destroyed the massive character of ti，megnetite．

Table 2.

DIAMOND DRILL HOLE NO. 1

North Half Lot 15, Concession 3 South Canonto Township, Frontenac County

North Half Lat 15, Concession 3 South Canonto Township, Frontenac County	
Drilling Contract	George Downing Estate Driliing Limited 91 Main St. Calumet, Quebec JOV 1 BO
Dates: Start Ju	y 27, 1993; Finish July 27, 1993
Hole Location:	ON on 1006 traverse line of survey grid
Size of Core: B	bit mith $13 / 8^{\circ}$ cors
Dip of Hole: 45	degrees to South along loow line of survey grid
Dip Test Results:	None
Final Hole Depth:	93°
$0^{\prime}-23^{\circ}$	Banded amphibolite schist
23*-24*	Grey siliceous marble
24*-27*	Amphibolite schist with bands of grey silicequs marbie
27\%-31*	Grey/white marble
31\% - 40\%	Banded amphibolite schist
40' - 43	White marble
43' - 45*	White/grey siliceaus marble
45' - 47'	Amphibolite schist
47' - 48*	Banded disseminated magnetite in amphibolite
48* - 53*	Banded grey silicequs marble
53* - 59\%	Disseminated magnetite bands in amphibolite
59\% - 63* 6°	Massive banded magnetite with white calcite stringers
63* 6"-70*	Banded amphibolite/chlorite/hornblende schist with minor disseminated magnetitegpink caleite and garnet
70\% - 74*	Massive magnetite with white calcite and chlorite stringers
74* - 78*	Massive magnetite with calcite stringers, minor amphibolite with chiorite
78' - 79\%	Amphibolite schist with grey silicious marble
$79^{\circ}-80^{\circ}$	Banded disseminated magnetite in amphibolite with calcite
$80^{\circ}-82^{\circ}$	Amphibolite schist with grey siliceous marble
82* - 83*	Banded disseminated magnetite in amphibolite with chlorite
83* - 93'	Black amphibolite schist banded with chlorite and white marble

North Half Lot 15, Concession 3 South Canonto Township, Frontenac County	
Drilifing Contractor: George Downing Estate Driming Limited	
Dates: Start July 27, 1993; Finish July 28, 1993	
Hole Location: $75 N$ on loow traverse line of survey grid	
Size of Core: Be bit with 1 3/8" core	
Dip of Hole: 45 degrees to South along loow line of survey grid	
Dip Test Results:	None
Final Hole Depth:	123*
0^{\prime} - 40'	Black amphibolite schist with grey siliceous marble bands and pink calcite
40' - 42'	Whitefgrey banded marble
42' - 62*	Black amphibolite schist with bands of grey marble and grey siliceous marble
62' - 64'	Whitefgrey marble
64' - 73 ${ }^{\circ}$	Amphibolite with marble stringers \& garnet
73' - 79*	White/grey marble with chlorite and garnet
790 - 80'	Disseminated magnetite in amphibolite schist
$80^{\circ}-81^{\circ}$	Grey siliceous marble
81' - 83'	Amphibolite with chlorite
83' ${ }^{\circ}$ 85	Coarse grained amphibolite with silica and white marble bands, chlorite, hornblende and pyrrhotite
85' - 87'	Disseminated magnetite in amphibolite schist
87' - 89' $\mathbf{6 "}^{\prime \prime}$	Banded and mottied amphibolite/chlorite schist with pyrrhotite
89* 6"-101*	Massive magnetite mith stringers of white calcite and chlorite schist
101\% - 107\%	Banded amphibolite schist with chlorite and bands of pink and grey marble
107* - 109* $\mathbf{6 "}^{\prime \prime}$	Massive magnetite in amphibolitefchlorite schist with white calcite stringers
109* $6^{\prime \prime}$ - 1110 6° (Massive magnetite in emphibolite schist	
111" $6^{\circ}-$ 114\% $^{\circ} \quad \begin{aligned} & \text { Amphibolite schist mith bands of white and } \\ & \text { pink marble and chlorite }\end{aligned}$	
114' - 1160 $\quad \begin{aligned} & \text { Disseminated magnetite in banded chlorite } \\ & \text { schist and grey marble }\end{aligned}$	
$116^{\circ}-120^{\circ}$	Amphibolite schiEt mottled and banded with chlorite and grey martle
120' ${ }^{\circ}$ 123	Hornblende phase of amphibolite schist

North half Lat 15, Cancession 3 South Canonto Township, Frontenac County

```91 Main st. Calumet; Queber JOV IBO```	
Dates: Start July	28, 1993; Finish July 28, 1993
Hole Location: 25	$5 N$ on zoow traverse line of survey grid
Size of Core: Br	bit with $3 / 8^{\circ}$ core
Dip of Hole: 45	degrees to South elcng 200w line of survey grid
Dip Test Results:	None
Final Hole Depth:	$53^{\prime}$
$0^{=}-5$	Amphibclite schist with white calcite stringers
5' - 6'	Grey siliceous marble
$6^{\circ}-13^{\circ}$	Hornblende phase of amphibolite schist with calcite and quartz particles
$13^{\circ}-19^{\circ}$	Amphibolite schist with stringers of calcite and grey siliceous marble
19\%-23*	Massive magnetite with white calcite stringers, pink marble and chlorite
23*-24*	Grey siliceous marble
24* - 26*	White/grey marble
26 ${ }^{\circ}{ }^{\circ}$ 28	Amphibolite schist
28* - 29 ${ }^{\circ}$	Grey silicequs marble
29\% - 30\%	White marble
30\% - 30\% 6\%	Disseminated magnetite in white marble
30* 6*-33*	Amphibolite schist bended and mottled with hornblende, calcite and grey siliceaus marble
33\%-34*	Banded grey siliceaus marble
34' - 44*	Massive magnetite mith white calcite stringers and bands of amphibolite/hornblendefchlorite schist
44\%-46\%	Hornblende schist
46\% - 49	Amphibolite schist
49\% - 53'	Grey silicequs marble with quartz stringers



Figure 9. Diamond Drill Hole Vertical Section Along Traverse Line 100W Looking East.


Figure 10. Diamond Drill Hole Vertical Section Along Traverse Line 200W Looking East.

The vertical crass-section of drill holes along the loow traverse iine in Figure 9 shows the outine of the nearly vertical dipping 187 degrees) banded magnetite formation. It pinches out at the surface but widens with depth. At the surface, only about $5^{\circ}$ of massive majrietite is observed. At about $20^{\circ}$ depth, the horizontal width of the deposit is about $20^{\circ}$ but only $12^{\circ}$ contain magnetite and only $71 / 2^{\circ}$ contain massive magnetite. At about 45' depth, the horizontal width is about 25* but only 11" contain magnetite of which g' contain massive magnetite. At about $70^{\circ}$ depth, the horizontal deposit width is about 26" of which 15' contain magnetite with il' containing massive magnetite. This indicates that the width of massive magnetite increases with depth.

The vertical section of hole 44 along the 200W traverse line also shows more horizontal width of massive magnetite and less disseminated magnetite. At a depth of about 23*, the magnetite horizontal width is about $18^{3}$ of which $10^{\prime \prime}$ is massive magnetite and less the $1 / Z^{\prime}$ is disseminated magnetite.

In conclusiong the magnetite formation would allow mining a $20^{\circ}$ width (the minimum width for mining an open cut with machines) especially since mining from west to east is uphili. However, only about half of the material mined would be massive magnetite. Since the magnetite is laced with stringers of white calcite crystals, it is of poor quality and unsuitablefor heavy aggregate applications.

## 5. Drilling Recommendations

No further drilling of this magnetite zone is needed or recommended. On completion of the project: the drill core will be stored at the•MNDM Core Library, Tweedg Ontario.
E. DRILL CORE ANALYSIS

1. Work Done

Since the magnetite tas considered unsuitable for heavy aggregate applications, complete testing and analysis of core samples by IMD Laboratories Ltd., Barrie; Ontaria, as proposed, was not deemed necessary. However, it was essential to determine the Specific Gravity of the magnetite core samples to establish the quality of the magnetite deposit.

The Specific Gravity analysis of the magnetite core for each drill hole was done by the applicant from August 18 to August 26 in the applicant's own laboratory facilities. An Ohaus Triple Beam Balance with maximum direct load of 610 grams was used to measure the Specific Gravity of the core samples. The balance sensitivity was 0.01 grems. Measurements were made to 0.1 grams which gave 4 significant figures in the measured weights. This ensured a three-figure accuracy in the Specific Gravity determinations.

The drill core was $13 / 8^{\circ}$ in diameter. To keep. individual pieces of core less than 610 grams, the core was broken into pieces $6^{\circ}$ long or less. This size of core was also necessary for splitting the core with the core splitter at the MNDM Core Library, Tweed, Ontario. Out of the total length of core cutting the magnetite formation (which included sections with no magnetite), only the short sections containing massive (higher quality) magnetite were taken as samples. DDH Al had 3 separate samples.; DDH t2 had 2 samples. DDH \#3 had 3 samples and DDH W4 had 2 samples. In all, Specific Gravity measurements were made on 126 pieces of core. To obtain the best average Specific Gravity for the core tested for each loole, the Specific Gravity for each piece of core mes weighted according to its length (i.e. S.G. of piece $x$ length in inches). The weighted average for the total length of core tested for each hole was then determined by dividing the sum of the weighted values for all pieces by the total length of all pieces.

## 2. Analysis Results

Information on the samples analyzed and the results of the Specific Gravity measurements are presented in Table 6. It is noted from Table 6 that the average Specific Gravity of the magnetite deposit is less than 4.0. This is due to the presence of so much white calcite in the magnetite. This confirms that the magnetite deposit is too low in Specific Gravity and quality to be used for heavy aggregate purposes.

## V. FINAL RESULTS

The exploration project consisting primarily of a magnetic survey and diamond drilling program was satisfactorily completed. Although the magnetite deposit proved to be smaller and of lower quality than hoped fors the project was worth while to finally know after so many years the cause of the extremely high magnetic anomaly at the project site.

The magnetometer survey results indicated that the magnetite deposit was not continuous over the length of the survey area as expected. Only one relatively small part of the anomaly about 250' long was of interest. Diamond driliing confirmed that this zone was a narrow (about 20' wide), banded, nearly vertically dipping ( 87 degrees NW) magnetite formation of which about $10^{\prime}$ was massive magnetite. The extremely high magnetic intensity and polarity over this narrow deposit was obviousiy the result of thermo-remnant magnetization when the deposit was formed. Small pieces of the magnetite have sufficiently strong North and South poles to attract small grains of maэnetite or iron. The magnetite could properly be called Lodestone.
$\because \quad$ -
TABLE 6. CORE ANALYSIS PESULTS. EPECIFIC GRAVITY MEASUREMENTS OF MAGNETITE SECTIONS OF DRILL CORE.

$\begin{aligned} & \text { DDH } \\ & \text { MO. } \end{aligned}$	$\begin{gathered} \text { SAMPLE } \\ \text { NO. } \end{gathered}$	POSITION	IN HOLE	NO.   PIECES	TOTAL   LENGTH	WEIGHTED AVERAGE S. G.
1	1	30* $6^{\circ \prime}$ -	$34^{\circ} 0^{\prime \prime}$	10	41*	3.96
1	2	37\%. 6" -	39' $6^{\prime \prime}$	3	$14^{\circ}$	3.92
1	3	43* $\mathbf{4}^{\circ}$ -	45* ${ }^{\prime \prime}$	5	22*	3.81
2	1	70, $0^{\circ}$ -	71. 10"	6	22*	4.02
2	2	59* $0^{\circ}$ -	63* 6"	12	54*	4.09
3	1	89* 6" -	$101^{\circ} 0^{\circ}$	35	$135^{\circ}$	3.91
3	2	107* $0^{\circ}$	$111^{\circ} 0^{\prime \prime}$	11	44*	3.70
3	3	114* $0^{\prime \prime}$ -	$115^{\circ} 0^{\prime \prime}$	3	12*	3.89
4	1	$19^{\circ} 0^{\circ}-$	23***	10	$33^{\circ}$	3.80
4	2	34* 0* -	44* ${ }^{\circ}$	31	119.5"	3.77
TOTAL NO. MEASUREMENTS 126 WEIGHTED AVERAGE EFECIFIC GRAVITY						3.89

The drill core of the magnetite was laced with stringers of white calcite crystals which made the magnetite of low quality. The average Specific Gravity of the majnetite determined by the core analysis was just less than 4.0. This confirmed the law quality of the magnetite and its unsuitability for coarse heavy aggregate $\{4.4$ and $h i g h e r$ is required).

The magnetite deposit may have potential for a fine magnetite product with a Specific Gravity of 4.4 or higher if it is crushed and ground to the size of the calcite crystals fabout 30 mesh) and magnetically separated.

No new claims were stalced and no option agreement will result from the work completed. An additional magnetic anomaly detected just at the east end of the survey area could be of interest for further exploration.

## VI. FINAL RECOMMENDATIONS

No further exploration work on the project survey grid area is needed or recommended. However, the additional magnetic anomaly detected just at the east end of the survey grid about 50" north of the baseline is worth exploring further since it indicates another magnetite deposit. The survey area could easily be extended eastward now that a good baseline and grid have been established. Hopefully, this magnetite deposit will not contain calcite stringers and will be of sufficiently high grade and Specifit Gravity to be used for heavy aggregate. A small, high quality magnetite deposit is still urgently needed to meet current markets for high Specific Gravity heavy aggregate for nuclear shielding purposes. The applicant plans to apply for an OPAP grant for 1994-95 to be able to do a magnetic survey and diamond drilling on this new magnetic anomaly zone.

