

31F045W9460 63.3373 DUNGANNON

010

see drill #18 DUNGANNON

FINAL REPORT

• 56

EAGLE NEST MINES LTD. OPTION

31F4W

EXPLORATION ASSISTANCE AGREEMENT CONTRACT EO-2

DUNGANNON AND FARADAY TOWNSHIPS

D. J. Freckelton, P. Eng. Canadian Nickel Co. Ltd. Copper Cliff, Ontario January 28, 1976. TABLE OF

31F045W9460 63.3373 DUNGANNON

Ø10C

APPENDIX: List of Standard Abbreviations used in drill logs. Drill Hole Logs and Sections

Figures

Figure 1 Location Map 1" = 1/2 Mile

<u>Maps</u>

Sheets	l to 6	Geology	l" = 100 feet	Map Pocket
Sheets	8 to 15			
Sheets	lto 6	Radiometric Survey	1" = 100 feet	Map Pocket
Sheets	8 to 15			
Sheets	lto 6	Magnetometer Survey	1" = 100 feet	Map Pocket
Sheets	8 to 15			

SUMMARY

The Eagle Nest Mines Ltd. property is located in the Hastings Highlands Gneiss Complex which is composed of highly metamorphosed Grenville metasediments which have been intruded and replaced by granitic and syenitic rocks.

Uranium mineralization is found in three main environments:

- 1) Pegmatite deposits
- 2) Metasomatic deposits in marble
- 3) Hydrothermal vein deposits in pyroxenite (biotite calcite apatite) veins.

Seven main radiometric zones were detected from scintillometer and geological surveys.

Zone I

A narrow zone, 1900 feet long by 75 feet wide, which was tested by 5 diamond drill holes during 1956 by Eagle Nest Mines. The zone is underlain in part by a pegmatite dike which dips steeply to the south and attains a maximum thickness of two feet. The best assays obtained from uranothorite mineralization in the dike were 0.01% U308/0.35% ThO₂ and 0.02% U₃08/0.22% ThO₂.

Most of the anomaly appears to have been caused by the mass effects of steep outcroppings of pink leucogranite and not from uranium mineralization.

This zone was not drilled in 1975.

Zone II

This is a small radioactive zone 100 feet long by 20 feet wide which is underlain by marble. A surface sample of marble assayed 0.03% U308. The anomaly lies near the marble-paragneiss contact which strikes for over 2,000 feet and is largely covered by overburden.

The anomalous zone was tested by borehole 51522 which intersected 0.081% U308 over 0.8 feet, 0.183% U308 over 0.3 feet, and 0.128% U308 over 0.4 feet. The radioactive zones were confined to the upper 16 feet.

Zone III & IV

Zone III and IV can be treated as a single zone of interest.

Summary (Cont'd)

Zone III is a radiometric zone 100 feet long by 50 feet wide which is underlain by hybrid symite rocks and is located near the symite-granite contact. Uranium mineralization is found in a pegmatite dike and in pyroxenite veins. Assays of 0.09% U308/0.23\% ThO2, and 0.02% U308/0.02% ThO2 were obtained from the pegmatite. Pyroxenite veins showed less than 0.01% U308.

Zone IV is a roughly triangular shaped area 50-200 feet long by 10-200 feet wide. It is underlain by granite near the syenite-granite contact. Radioactive minerals occur mostly in pyroxenite veins with 0.01% U308 and 0.01% ThO₂ being the best assay obtained.

Both zone III and zone IV appear to be associated with the contacts of a hybrid syenite body. The contacts of the syenite were not determined accurately due to the poor outcrop exposure. The two zones were crosssectioned with boreholes 51523, 51524, and 51527 to test zone III and the intervening area between zones III and IV. The best assays obtained from the drill core were 0.03% U₃08 over 0.6 feet, 0.047% U₃08 over 0.8 feet, and 0.041% U₃08 over 0.6 feet from boreholes 51523, 24 and 27 respectively.

Zone V

Zone V is a 200 foot long by 100 feet wide radiometric anomaly which is underlain by granite and paragneiss rocks. The uranium mineralization occurs in cross-cutting pyroxenite (calcite-apatite) veins up to a foot wide. The best assay result obtained from surface sampling was 1.35% U₃08 and 6.62% ThO₂. The showing was tested by borehole 51526 which intersected 0.014% U₃08 over 0.8 feet and 0.021% U₃08 over 0.7 feet, in a pyroxenite vein and a lense of vuggy sulphides respectively. Numerous stringers of secondary pyrite were encountered in this hole and were analysed for copper, nickel and gold. The best assays obtained for copper, nickel and gold were 0.326%, 0.063% and 0.002 oz/ton respectively.

Zone VI

Zone VI consists of three separate radiometric anomalies which together occupy an area 400 feet long by 50-300 feet wide. The zone is underlain by leucogranite with scattered occurrences of uranium in pegmatite and pyroxenite veins. Surface sampling of a small pegmatite dike produced assays of 0.02%U308 and 0.06% ThO₂ but the main target was the broad anomalous zone covered by overburden. The zone was cross-sectioned by boreholes 51528 and 51529. Diamond drill core assays showed maximum results of 0.013% U308 over 2 feet and 0.065% U308 over 5 feet in boreholes 51528 and 51529 respectively.

Summary (Cont'd)

Zone VII

Zone VII consists of three separate radiometric zones which together occupy an area 700 feet long by 50 to 100 feet wide. Surface sampling produced assays from 0.01% to 0.05% U308 in uranothorite or thorianite mineralization in pegmatite dikes. The anomaly was tested by borehole 51525. Assay results from the drill core were less than 0.002% U308.

CONCLUSIONS

Most of the assays from drill core obtained from the six radioactive anomalies tested were less than 0.005% U₃O₈, and only narrow intersections of better grade material were obtained by the drilling. It is therefore concluded that no economically exploitable deposit exists on the Eagle Nest Mines Ltd. property.

RECOMMENDATIONS

It is recommended that the option be dropped and that no further work be undertaken.

INTRODUCTION

In April 1975, an option agreement was signed between the Canadian Nickel Company Limited and Eagle Nest Mines Ltd., on their uranium property near Bancroft, Ontario. The property includes 10 patented lots, parts of 6 patented lots and 6 staked claims in Dungannon Township, and 2 patented lots in Faraday Township.

Field work began on May 19, 1975 with the establishment of 42.2 miles of grid for control. Cross lines 100 feet apart were cut over areas of known radioactive occurrences and 400 feet apart over the remainder of the property. Ground surveys consisting of geological mapping, scintillometer and magnetometer surveys were completed using the grid system for control. Seven radioactive zones of interest outlined by the ground surveys were tested by nine short diamond drill holes totalling 1515 feet.

LOCATION AND ACCESS

The property is located one mile north-east of the village of Bancroft and is readily accessible by numerous secondary roads.

PROPERTY DESCRIPTION

The "Eagle Nest" property is comprised of 12 patented lots, parts of 6 patented lots, and 6 unpatented claims in Dungannon and Faraday Townships. (See fig. 1). The mining rights for these patented and unpatented claims are owned by Eagle Nest Mines Ltd., excepting lot 30, concession 15, Dungannon Township which is owned by the Township of Dungannon. Field operations during the months of May, to October, 1975 covered the following claims:

Patented Claims: Faraday Twp. Lots 69, 70

Dungannon Twp: Lots 66, 69, 70, 71, 72, 73, 74; Lots 28, 29, 30 Concession XV; N 1/2 Lot 27, Concession XV; N 1/2 Lot 27, Concession XV; S 1/2 Lots 26, 27, 28, 29, 30, Concession XVI.

Unpatented Claims: Dungannon Twp.; E0414113, 14, 15, 16, 17 and 18.

PREVIOUS WORK

Government

The property was included in the O.D.M. 1'' = 1/2 mi. mapping programs in Dungannon and Faraday Townships in 1955 and 1956 respectively. J. Satterly visited the property briefly in 1957 and found the occurrences to be small and widely spaced with a high thorium/uranium ratio (15:1). An airborne radiometric response was delineated on the property by the G.S.C. in 1969.

Private

The property was located in 1956 by Arthur H. Shore the discoverer of the Faraday Uranium Mine. Eagle Nest Mines Ltd., was incorporated in 1956 and large amounts of stripping, rock trenching and 17 diamond drill holes were completed during 1956-57. Six radioactive zones in the north and south sections were discovered. The South section consists of the Mountain, Pinnacle and Weimer zones and the North section consists of the Mica, Gossan and Field zones.

During May, 1958, the property was re-evaluated by D. M. Mackeracher who found the Pinnacle Area of most interest and recommended further work. The Pinnacle area was also visited briefly in 1958 by consultants J. J. Harris, P.Eng. and A. E. Tyson P.Eng. both of Toronto. They collected samples which averaged 2.37% U308 and 2.5% U308 respectively from the Pinnacle area and both recommended further work.

Previous Work (Cont'd)

D. M. Mackeracher re-visited the property in 1967 and under his recommendation more blasting, sampling and the preparation of a rough scintillometer map was undertaken. In 1968, Watts Exploration Services undertook a magnetometer survey over the unpatented ground, presumably for assessment purposes. This survey was not complete. C. F. Ennis reevaluated the south section in 1970 and completed a scintillometer survey over the Mountain, Pinnacle and Weimer Zones. He reported that the scintillometer results were probably dampened by the effects of a one foot snow cover at the time of survey.

GEOLOGY

General Geology

The Eagle Nest property is located in the Hastings Highlands Gneiss Complex (D. F. Hewitt, 1956) which is composed of highly metamorphosed Grenville metasediments which have been intruded and replaced by granitic and syenitic rocks.

The geology is shown on the accompanying geology plans at a scale of l'' = 100 feet. Picket lines used for the geophysical surveys were used for mapping control.

Granitic Rocks

Pegmatite

This is a typical coarse grained, pink pegmatite with accessory magnetite, biotite, hornblende, pyroxene and pyrite.

Radioactive pegmatites differ from non-radioactive pegmatites in that they are distinctively blood red in colour, contain coarse inclusions of magnetite and pyroxene, and often have a sheared appearance.

Granite Gneiss

This is a medium grained pink granite gneiss which strikes from 20 to 70 degrees east of north, and shows an average dip of about 30 degrees to the south. Mineralogically it is composed of quartz and silicic feldspars with accessory biotite and magnetite. The foliation is predominantly caused from the orientation of quartz lenticles. Occasional conformable relicts and inclusions were found but overall the rock is fairly uniform in composition.

Geology (Cont'd)

Granite

The granite unit is a fine to medium grained pink leucogranite that is massive to very weakly foliated. It forms a conformable band about 70 feet thick that dips to the south at 10 to 30 degrees. It is composed mainly of silicic feldspars, granular quartz and minor magnetite up to 10 percent. Accessory biotite and occasional specks of pyrite are also found. Relict bands and inclusions of sedimentary rock (including Lit par Lit gneiss) are common near the upper and lower contacts of the unit.

Syenitic Rocks

Syenite

The syenite group includes all plutonic rocks consisting primarily of feldspar, which are of intrusive or metasomatic origin. Two main types of syenite were distinguished on the Eagle Nest property: a leucocratic syenite and a hybrid syenite.

<u>The leucocratic syenite</u> is fine to medium grained, pink in colour and is non foliated. It is devoid of mafic minerals except accessory magnetite, and rarely biotite. Locally it grades to a monzonitic composition.

<u>Hybrid syenite</u> is a medium grained, yellow brown, massive rock with up to 30 percent biotite or pyroxene.

Metasediments

Marble

The marble unit is a medium to coarse grained, white to blue grey crystalline limestone or dolomite. It is friable on the weathered surface and contains accessory phlogopite, graphite, apatite and diopside. Near its contacts, the marble unit contains salmon pink calcite.

This unit was found to be radioactive in a boulder located on line 15E at 8+20N.

Paragneiss

The most common paragneiss found on the grid area is composed primarily of biotite quartz and plagioclase. It is a medium grained, equigranular rock with a pronounced banded or bedded texture. Magnetite, and sometimes garnet, is present as accessories. This unit is often found with conformable or irregular granitic injections and is sometimes present in its granitized or syenitized equivalents.

- 7 -

Geology (Cont'd)

Paragneisses (Cont'd)

Amphibole - (biotite) - plagioclase gneisses are the second most common paragneiss found on the property. These are medium grained, equigranular rocks with moderate to strong foliation.

Structure

The rocks show a basic east-west (grid) to northeast (grid) strike. Dips average about 20 degrees to the south. There are no very obvious faults or folds, except a possible fault, between 24+50E/10N and 20+50E/0. Field evidence for this is (1) change in direction of the strike of foliation from grid north-east to the west of line 23E, to a more northerly direction to the east of line 23E; (2) an apparent displacement of the granite - paragneiss contact.

GEOPHYSICS

Spectrometer Survey

An integral count scintillometer survey was completed over the grid using a McPhar TV-3 spectrometer. Readings were taken at ten foot intervals on lines one hundred feet apart and at twenty foot intervals on lines four hundred feet apart. The sensor was held at waist level for all observations.

The contoured data is shown on the accompanying Radiometric Survey plans on a scale of 1" = 100 feet. For simplicity in plotting, the field data was divided by 1000. The reduced readings (in c.p.m.) were contoured using a semi-logarithmic contour interval. The contour lines are shown as follows: 100,000 cpm - heavy solid, 25,000 cpm - heavy broken, and 10,000, 15,000 and 50,000 cpm as a thin solid line. Due to the sporadic and patchy nature of the radioactive occurrence, line to line contouring is questionable, especially between lines spaced four hundred feet apart.

Numerous radioactive highs were detected on the grid area but after ground checking, only seven were considered to be important. These seven anomalous zones have been numbered randomly and not according to importance. The plans on which they may be found are as follows:

Geophysics (Cont'd)

Spectrometer Survey (Cont'd)

Zone	Sheet
I II	1 & 2 4
III	4
IV	5
V	4
VI	5 & 9
VII	4 & 10

Each of the above radioactive zones are discussed under Mineralization and Economic Potential.

Magnetometer Survey

A magnetometer survey was completed over the grid area as an aid to geological mapping to detect possible faults or cross-cutting magnetite rich pegmatites.

Readings were taken at twenty foot intervals using a Sharpe MF-2 fluxgate magnetometer. The contoured data is shown on the accompanying Magnetic Survey plans on a scale of 1" = 100 feet. For simplicity in plotting, the last digit of each station's magnetic value has been omitted. Contour intervals are as follows: 200 gammas - light solid line, 1,000 gammas heavy solid line, and 5,000 gammas - heavy broken line.

The contoured magnetic data shows a basic east-west (grid) trend and is marked by numerous highs and lows which are caused by a variable magnetite content in the mainly granitic rocks.

A slight break in the magnetic contours on Sheet 4 between 24+50E/10N and 20+50E/0N appears to confirm the mapping indications of a fault in this area.

DIAMOND DRILLING

Nine short holes totalling 1515 feet were drilled by Canico Winkie crews during October 1975. The borehole locations, and statistics are summarized in table 1. It should be noted that borehole 51530 was drilled for assessment credits.

TABLE 1

<u>B.H.#</u>	Location	Azimuth	Dip	<u>Overburden</u>	Depth	
51522	8N/15+10E	296°	- 55°	2.5	102	
51523	0+70N/19+70E	296°	-45°	5.0	182	
51524	0+30S/20+70E	296°	-45°	5.0	205	
51525	10+40N/37+00E	298°	-45°	16.0	203	
51526	1+20N/31+00E	298°	-45°	2.0	192	
51527	1+258/21+60E	296°	-45°	2.0	201	
51528	4+10S/38+50E	310°	-45°	6.1	158	
51529	5+308/39+20E	310°	-45°	2.7	171	
51530	13+908/56+90E	345°	-80°	0.0	101	
	Total 9	Holes			1515 feet	J

Diamond Drilling (Cont'd)

All of the core was cut in half with a diamond saw. One half of the core was analysed for U308 with a maximum sample length of 10 feet used. The remaining half of the core is in storage at Copper Cliff. In borehole 51526 where pyrite was encountered, additional analyses of copper, nickel and gold were completed over selected sections of core.

The borehole logs, sections, and a list of common abbreviations used are appended. The assay results are discussed under "Mineralization and Economic Potential".

MINERALIZATION AND ECONOMIC POTENTIAL

Uranium mineralization occurs in the following three environments on the Eagle Nest property:

- 1) Pegmatite deposits
- 2) Metasomatic deposits in marble
- 3) Hydrothermal Vein deposits in pyroxenite (biotite calcite apatite) veins.

The radioactive occurrences are too numerous to mention individually, therefore only the major radiometric zones numbered from I to VII on the radiometric plans will be discussed. Assay results from surface grab samples are plotted on the Geology plans.

Zone I

This is a narrow radiometric zone 1900 feet long with an average width of 75 feet which strikes between 6W/1S and 13E/3S. It corresponds to the "Mountain Zone" which was tested by 5 diamond drill holes during 1956 by Eagle Nest Mines. It is underlain, in part, by a pegmatite dike which out-crops in trenches at 4+50W/1S, and between 3+80E/2+20S and 5E/2+30S.

The pegmatite is blood red in colour, has a sheared appearance and contains coarse inclusions of magnetite and some pyroxene. It appears to dip steeply to the south. The width is variable over short distances, attaining a maximum thickness of two feet. Uranothorite is the major uranium mineral with the best assays obtained from surface sampling being 0.01% U308/0.35% ThO2, and 0.02% U308/0.22% ThO2.

Mineralization & Economic Potential (Cont'd)

Zone I (Cont'd)

As noted previously the pegmatite outcrops in only two locations. The remainder of the radioactive anomaly delineated by zone I appears to have been caused by the mass effect of potassium radiation emminating from steep outcroppings of pink leucogranite and not from uranium mineralization. The area between 5+50E and 12+50E, is covered by water. Zone I, is therefore, of very limited tonnage potential and since the uranium mineralization sampled contains only sub-economic amounts of uranium, this zone was not drilled.

Zone II

This is a small radioactive zone 100 feet long by 20 feet wide. It is underlain by marble but it is near the marble-migmatite and paragneiss contact. Encouragement was given by one sample of marble which contained 0.03% U308. The marble-paragneiss contact strikes for over 2,000 feet and is mostly covered by overburden. The showing was tested with borehole 51522. (See table 2).

Uranium mineralization grading 0.081%, 0.183% and 0.128% U308 was detected over core lengths of 0.8, 0.3 and 0.4 feet respectively. The radioactive zones were all confined to the upper 15.6 feet.

Even though ore grades were obtained, they are over narrow widths and contained in too limited an area to have any tonnage potential.

Zone III and Zone IV

Zones III and IV can be treated as a single zone of interest. They are a part of the "Pinnacle Zone" worked during 1956 by Eagle Nest Mines.

Zone III is a 100 foot by 50 foot radiometric anomaly, which is underlain by hybrid synite rocks and is located near the synite - granite contact. Unfortunately old blasting has contaminated the area with radioactive fly rock. Radioactive minerals occur in pyroxenite - (calcite - apatite - biotite) veins and a pegmatite dike. The pyroxene veins vary from 3 to 12 inches in thickness, and the longest vein outcrops discontinuously over 30 feet. The pegmatite dike is blood red in colour, with coarse pyroxene inclusions. It outcrops over 22 feet but its true thickness could not be determined. Assays of 0.09% U308/0.23% ThO2 and 0.02% U308/0.02% ThO2 were obtained from the pegmatite. Assays from the pyroxenite veins showed less than 0.01% U308.

Mineralization & Economic Potential (Cont'd)

Zone III & IV (Cont'd)

Zone IV is a roughly triangular shaped area 50-200 feet long by 10-200 feet wide. It is underlain by granite with the radioactive minerals occurring mainly in pyroxenite veins. The best assay obtained from surface sampling was 0.01% U₃08 and 0.01% ThO₂. The radioactivity in zone IV is also hard to interpret because of the presence of fly rock contamination from blasting.

As noted, zones III and IV seem to be associated with the contacts of a syenite body which only outcrops sporadically between the two zones. It was decided to test the possibility of a large tonnage, low grade deposit in the area between the two zones by boreholes 51523, 51524 and 51527. The assay results are tabulated in table 2.

The best assays obtained from the diamond drill core were 0.03% U₃08 over 0.6 feet, 0.047% U₃08 over 0.8 feet, and 0.041% U₃08 over 0.6 feet, from boreholes 51523, 51524 and 51527 respectively. The radioactivity is over very narrow widths which do not offer large tonnage capabilities.

Zone V

Zone V is a 200 foot by 100 foot radiometric anomaly which is also part of the "Pinnacle Zone" worked by Eagle Nest Mines. It is underlain by granite and paragneiss rocks. The most important part of the showing was underlain by paragneiss with the uranium mineralization occurring in crosscutting pyroxenite (calcite - apatite) veins up to a foot wide. The best assay obtained in surface sampling was 1.35% U308 and 6.62% ThO₂ in uranothorite mineralization in a pyroxene - calcite - apatite vein. Interpretation of this showing is also hampered by rubble and fly rock contamination.

The showing was tested by borehole 51526 to a depth of 192 feet. Uranium assays of 0.014% U308 over 0.8 feet and 0.021% U308 over 0.7 feet were obtained from the core in a pyroxenite vein and a lense of vuggy sulphides respectively. Numerous stringers of secondary pyrite were encountered in the core and these were analysed for copper, nickel, gold. The best assays obtained for copper, nickel and gold were 0.326%, 0.063% and 0.002 oz/ton respectively.

The assays do not indicate any potential for a viable uranium deposit.

Zone VI

Zone VI is made up of three separate radioactive anomalies which together occupy an area 400 feet long by 50-300 feet wide which corresponds to the "Weimer Zone" worked by Eagle Nest Mines during 1956. It is underlain by

Mineralization & Economic Potential (Cont'd)

Zone VI (Cont'd)

leucogranite with scattered occurrences of uranium mineralization in pegmatite and pyroxenite veins. Surface sampling of a small pegmatite dike produced assays of only 0.02% U₃08 and 0.06% ThO₂ but it was felt that since most of the anomalous zone was covered by areas of overburden, it should be cross-sectioned by two diamond drill holes to test the overall potential of the underlying rocks. The anomaly was tested by boreholes 51528 and 51529.

Assay results from the diamond drill core (see table 2) showed maximum results of 0.013% U₃08 over 2 feet, and 0.065% U₃08 over 5 feet in boreholes 51528 and 51529 respectively. The overall U₃08 background was very low with only 3 samples from B.H. 51528 and 2 samples from B.H. 51529 showing assays over 0.005% U₃08.

Zone VII

Zone VII consists of 3 separate radiometric anomalies which are discontinuous over a total area 700 feet long by 50 to 100 feet wide. The zone corresponds to the "Mica Zone" which was tested by three holes by Eagle Nest Mines during 1956. Assays from surface sampling varied from 0.01% to 0.05% U₃₀₈ from uranothorite or thorianite mineralization in pegmatites. Most of the area was covered with overburden and the known showings were contaminated with fly rock and rubble, so it was decided to drill the zone. Borehole 51525 was completed and did not intersect values greater than 0.002% U₃₀₈.

D. Freckelton/nk January 28, 1976.

	DIAMOND	DRILL C	ORE ASSAY	SUMMARY	> (0.005%	^U 308	
Borehole	From	To	Length	%U ₃ 08		Cu	Ni	Au
51522	7.5 12.1 12.4 15.2	8.3 12.4 15.2 15.6	0.8 0.3 2.8 0.4	0.081 0.183 0.009 0.128			_	
51523	62.0 78.3 83.6	63.9 78.9 84.3	1.9 0.6 0.7	0.006 0.033 0.014				
51524	9.6 13.4 14.1 14.9 15.7 18.1 190.6	10.0 14.1 14.9 15.7 18.1 18.7 195.6	0.4 0.7 0.8 0.8 2.4 0.6 5.0	0.024 0.04 0.005 0.047 0.005 0.005 0.009				
51525	All assay	ys <0.0	02% U308					
51526	28.3 41.7 117.9	29.1 42.7 118.6	0.8 1.0 0.7	0.014 0.006 0.021		.042 N/A .082	.018 N/A .063	Nil N/A .002
51527	10.0 20.9 33.6 42.1 50.7 65.5 71.1 129.2 151.1	10.7 21.5 35.1 43.1 51.7 67.7 73.3 131.1 156.9	0.7 0.6 1.5 1.2 1.0 2.2 2.2 1.9 5.8	0.014 0.041 0.006 0.005 0.065 0.005 0.005 0.009 0.017 0.006				
51528	28.8 81.1 105.0	30.0 84.3 107.0	1.2 3.2 2.0	0.007 0.005 0.013				
51529	87.9 158.9	88.2 163.9	0.3 5.0	0.006 0.065				

TABLE 2

51530 No assays over 0.001

ABBREVIATIONS FOR USE

IN LOGGING BORE HOLES

ABUNDANT	ABNT
ACCESSORY	ASSR
ACID DYKE	ACDK
ACICULAR	ACLR
ACIDIC	AC
ACID HORNFELS	ACHF
ACTINOLITE	ACT
ACTINOLITIC	ACTC
AGGLOMERATE	AGLM
ALBITIZATION	ALBZ
ALASKITE	ALSK
ALTERATION	ALTN
ALTERED	ALTD
ALTERNATING	ALR
AMORPHOUS	AMRP
AMOUNT	AMT
AMPHIBOLE	AMPB
AMPHIBOLITE	AMPH
AMPHIBOLITIC	AMPC
AMYGDALOIDAL	AMYG
AMYGDULE	AMGD
ANDESITE	ANDS
ANGULAR	AGLR
ANHEDRAL	ADRL
ANORTHOSITE	AN
ANORTHOSITIC	ANIC
ANORTHOPHYLLITE	ANPL
APHANITIC	APNC
APLITE	APL
APLITIC	APLC
APPEARANCE	APRC
APPROXIMATE	APRX
ARGILLACEOUS	AGLC
ARKOSE	ARK
ARSENIDE	ARSD
ASBESTOS	AB
ATTITUDE	ATID
ATTENUATED	ATND
AUGEN	AGN

BAND	BND
BANDED	BNDD
BANDS	BNDS
BARREN	BRN
BASAL	BSL
BASALT	BSLT
BASIC DYKE	BCDK
BASIC HORNFELS	BAHF
BEARING	BRG
BECOMING	BCMG
BED	BD
BEDDING	BDG
BIOTITE	BIOT
BLACK	BK
BLEBS	BLBS
BLEBY	BLBY
BLOCKY	BCKY
BLOTCHY GABBRO	BGAB
BORNITE	BN
BOULDER	BLDR
BOULDERS	BLDS
BREAK	BRK
BRECCIA	BX
BRECCIATED	BXTD
BRECCIA MATRIX	BXMX
BRECCIA SULPHIDE	BXSU
BRITTLE	BRTL
BROWN	BRWN

CALCAREOUS	CLCR
CALCIC	CLC
CALCITE	CALC
CARBONATE	CARB
CARBONATED	CRBD
CARBONATE ROCK	CBRK
CARBONATITE	CBNT
CASING	CAS
CAVITIES	CVTS
CEMENTED	CMTD
CHALCOPYRITE	СР
CHERT	CHRT
CHERTY	CHTY
CHICKEN - TRACK	CKTK
CHILLED	CHLD

,

CHLORITE	CHL
CHLORITIC	CHLC
CLASTS	CLTS
CLEAVAGE	CLVG
CLUSTER	CLSR
COARSE GRAINED	CG
COARSER	CRSR
COMPLEX	CPLX
COMPOSED	CMPD
COMPOSITION	CPSN
CONCENTRATION	CCTN
CONCHOIDAL	CNDL
CONCORDANT	CCRD
CONCRETION	CRTN
CONDUCTOR	CDCR
CONDUCTIVE	CDCV
CONFORMABLE	CFMB
CONGLOMERATE	CONG
CONSTITUENT	CONS
CONTACT	CT
LOWER CONTACT	LCT
UPPER CONTACT	UCT
CONTENT	CNTN
CONTORTED	CNRD
CORE	CORE
CRUSHED CORE	CC
BROKEN CORE	BC
GROUND CORE	GC
LOST CORE	LC
CORONA	CRN
COUNTRY ROCK	CTRK
CRINKLES	CNKS
CROSS BEDS	XBDS
CROSS BEDED	XBDD
CROSS BEDDING	XBDG
CROSS CUTTING	XCTG
CROSSFIBER	CSFB
CRYSTAL	XTL
CRYSTALS	XTLS
CRYSTALLINE	XLLS
LIMESTONE	
CUBANITE	CUB

DACITE	DCT
DARK	DK
DECREASE	DCRS
DECREASING	DCRG
DEGREE	DEG
DENSE	DS
DEPOSITION	DPSN
DEPOSITIONAL	DPSL
DEVELOP	DVLP
DEVELOPED	DVPD
DIABASE	DIA
DIABASIC	DIAC
DIORITE	DIO
DISPLACEMENT	DPCM
DISSEMINATED	DISS
DISSOLUTION	DSLT
DISTINCT	DSNC
DISTINCTLY	DSCL
DOLOMITE	DLMT
DOWNWARDS	BRDS
DOWN HOLE	DH
DRILLED.	DRLD
DUNITE	DNT

ELONGATED	ELGD
ENRICHED	ERCD
EPIDOTE	EPID
EPIDOTIZED	EPDZ
EQUIGRANULAR	EQGR
ESTIMATE	EST
ESTIMATED	ESTD
ESTIMATION	ESTN
EXTREMELY	EXML
EUHEDRAL - SEE	
UHEDRAL	
EXPLANATION	EXPL
EXTENSIVE	EXSV

FABRIC	FBRC
FAINT	FNT
FAULT	FLT
FAULTED	FLTD
FELDSPAR	FSP
FELDSPATHIC	FSPC
FELDSPAR	FDPR
PORPHYRY	
FELSIC	FLSC
FELSITE	FELS
FIBROUS	FBRS
FILLING	FLLG
FINE	FN
FINE GRAINED	FG
FLECKS	FLCK
FOLIATED	FOTD
FOLIATION	FOTN
FOLLOWING	FLNG
FOOTWALL	FW
FOOT OF HOLE	FOH
FRACTURE	FRCT
FRACTURED	FRCD
FRACTURES	FRCS
FRAGMENT	FRGM
FRAGMENTAL	FRML
FRAGMENTS	FGMS
FREQUENT	FRQN
FRIABLE	FRBL

,

GRANITE	GR
GRANITE BRECCIA	GR BX
GRANITE GNEISS	GRGN
GRANITIC	GRNC
GRANITIZED	GRZD
GRANITIZATION	GRZN
GRANODIORITE	GRDR
GRANOPHYRE	GRP
GRANOPHYRIC	GRPR
GRANULAR	GRLR
GRANULITE	GRNL
GRAPHIC	GPHC
GRAPHITE	GRPT
GRAPHITIC	GRPC
GRAVEL	GRVL
GREEN	GRN
GREENSTONE	GS
GREY	GY
GREYWACKE	GWKE

HABIT	HBT
HALOS	HLOS
HANGINGWALL	HW
HEMATITE	HEM
HETEROGENEOUS	HNGS
HIGHLY	HLY
HOMOGENEOUS	HMGS
HORNBLENDE	HBL
HORNBLENDITE	HBLT
HORNFELS	HRFL
HOST ROCK	HSRK
HYPIDIOMORPAIC	HPMC

GABBRO	GAB
GABBROIC	GBIC
GALENA	GAL
GARNET	GAR
GARNETIFEROUS	GRFR
GERSDORFFITE	GERS
GLASSY	GLSY
GNEISS	GN
ORTHOGNEISS	ORGN
PARAGNEISS	PRGN
GNEISSIC	GNSC
GRADATIONAL	GRNLX
GRADING	GRDG
GRAIN	G
GRAINS	GRNS

IMPURE	IMP
IMPURITIES	IMPR
INCLUSION	INCL
INCLUSIONS	INCS
INCREASED	ICRD
INCREASING	ICRG
INDISTINCT	IDSC
INTENSE	INTS
INTERCALATED	IRTD
INTERGRANULAR	IRGL
INTERGROWN	IRGR
INTERGROWTH	IRGH
INTERMEDIATE	IRMD
INTERSTITIAL	INSU
SULPHIDE	
INTRUSIVE	INTR
IRREGULAR	IREG
IRON FORMATION	IF

LIGHT	\mathbf{LT}
LIGHTER	LGTR
LOCALLY	LOCL
LOWER	LOWR
LUNATE	LNT
LUSTER	LSTR

MAFIC	MFC
MAFICS	MFCS
MAGNETIC	MTC
MAGNETITE	MT
MARBLE	MRBL
MARGINAL	MGNL
MASSIVE	MASS
MASSIVE SULPHIDE	MASU
MATERIAL	MTRL
MATRIX	MTX
MEDIUM	MED
MEDIUM GRAINED	MG
MELANOCRATIC	MLNC
METACRYST	MTCR
METADIABASE	MTDB
METADIORITE	MTDR
METAGABBRO	MTGB
METAMORPHIC	MTMC
METAMORPHOSED	MMPD
METASEDIMENT	MTSD
MICACEOUS	MICS
MIGMATITE	MGMT
MIGMATITIC	MGMC
MILLERITE	MLT
MINERAL	MIN
MINERALIZED	М
MINERALIZED STRONGLY	MS
MINERALIZED WEAKLY	MW
MINERALIZED VERY	MVW
WEAKLY	
MINERALIZED VERY VERY	ζ
WEAKLY	MVVW
MINOR	MNOR
MODERATE	MOD
MODERATELY	MODY
MONZONITE	MONZ
MOTTLED	MTLD
MUSKEG	MSKG

MYL

MYLONITE

JOINT	JT
JOINTED	JTD
JOINTING	JTG
JOINTS	JTS

LAMELLAR	LMLR
LAMINATED	LMND
LAMINATION	LMNN
LAMPROPHYRE	LAMP
LAPPILLI_TUFF	LPTF
LEFT	\mathbf{LFT}
LENS	LNS
LENSES	LNSS
LEUCOCRATIC	LCRT
LIMONITE	LIM
LIMESTONE	LS
LINEAMENT	LNMT
LINEATED	LNTD
LINEATION	LNTN

MYLONITIC	MYLC	PINK	РК
MYLONITIZED	MYLD	PLAGIOCLASE	PLAG
NEMATOBLASTIC	NMBC	POLYMICTIC	PLMC
NICCOLITE	NC	POROUS	POR
NODULES	NDLS	PORPHYROBLAST	PRBT
NUMEROUS	NMRS	PROPHYROBLASTIC	PPBC
NUMBERS	NMBS	PORPHYRITIC	PRPC
		PORPHYRY	PRPH
		POSSIBLE	PSBL
		POSSIBLY	PSBLY
		PREDOMINANT	PRDM
		PREDOMINANTLY	PRDL
		PRESENT	PRSN
OCCASIONAL	occ	PRIMARY	PRM
OFFSET	OFST	PROGRESSIVE	PRGS
OLIVINE	OLVN	PTYGMATIC	PGMC
OLIVINE DIABASE	OD	PTYGMATICALLY	PGMY
OPHITIC	OPTC	PYRITE	PY
ORBICULAR	OBCL	PYRITIC	PYC
ORE BODY	OBDY	PYROCLASTIC	PCLC
OUTCROP	oc	PYROXENE	PRXN
OVERBURDEN	OB	PYROXENITE	PXT
OXIDIZATION	OXDN	PYRRHOTITE	PO.
OXIDIZED	OXDD		
			· .
PANDIOMORPHIC	PNMC	OUARTZ	OTZ
PARALLEL	PLL	QUARTZITE	OTE
PART	PRT	QUARTZ DIABASE	ODIA
PARTING	PRNG	QUARTZ DIORITE	OD
PARTLY	PTLY		-
PEBBLE	PBL		
PEBBLES	PBLS		
PEGMATITE	PEG		
PEGMATITIC	PGTC		
PENTLANDITE	PN		
PERCENT	PCNT		
PERCRYSTALLINE	PRCL		
PERIDOTITE	PRDT		

PERMAFROST

PHENOCRYSTS

PHILOGOPITE

PHYLLITE

PICROLITE

PERPENDICULAR

PRMF

PPDC

PHCR

PHLG

PLLT

PCLT

RADIOACTIVE	RDCV
NONRADIOACTIVE	NDCV
RADIOMETRIC	RDMC
RAGGED	RGD
RECRYSTALLIZED	RCZD
RELATIVELY	RLVL
RELICT	RLCT
REMNANT	RMNT
REMNANTS	RMNS
RHYODACITE	RDCT
RHYOLITE	RHY
RIGHT	RT
ROCK	RK
ROCKS	RX
ROSETTE	RST
ROUND	RND
ROUNDED	RNDD
RUDACEOUS	RDCS
RUSTY	TSTY

SALIC	SLC
SANDSTONE	SS
SATURATED	SATD
SAUSSURITIZED	SRZD
SCATTERED	SCTD
SCHIST	SCH
SCHISTED	SCHD
SCHISTING	SCHG
SCHISTS	SCHS
SCHISTOSE	SCSS
SCHISTOSITY	SCSY
SEDIMENT	SED
SEDIMENTARY	SDMR
SEDIMENTS	SEDS
SECTION	SCTN
SEGMENT	SGMT
SEGMENTED	SGMD
SEGMENTS	SGMS
SEGREGATED	SGGD
SEGREGATION	SGN
SEGREGATIONS	SGNS
SERICITE	SRCT

SERICIPIC	SPCC
CEDDENTINE	SACC
CEDDENTNITE	CDDW
CED DENUINITZED	CDDD
SERVENIINIZED	SRPD
DEDIDORIME	CDDD
PERIDOTITE	SPPD
SEVERAL	SVRL
SHALE	SHL
SHARDS	SRDS
SHEAR	SHR
SHEARED	SHRD
SHEARING	SHRG
SILICEOUS	SLCS
SILICIFIED	SLFD
SILTSTONE	SLTS
SILLIMANITE	SLMN
SKARN	SKN
SKELETAL	SKLL
SLATE	SLT
SLICKENSIDED	SCKD
SLIKESIDES	SCKS
SLIGHT	SLI
SLIGHTLY	SLLY
SLIPS	SLPS
SLUDGE	SLDG
SMALL	SML
SLUMPING	SMPG
SOLUTION	SLTN
SPECKS	SPK
SPECKS	SPKS
SPHALERITE	SPH
STAINING	SNNG
STEATITE	STTT
STEATIZED	STZD
STREAK	STK
STREAKS	STKS
STRINGER	STR
STRINGERS	STRS
STRONG	STRG
STRONGLY	STGL
STRUCTURE	STRT
SUBHEDRAL	SBRL
SULPHIDE	SULP
SURROUND	SRND
SURROUNDED	SRDD
SURROUNDING	SRDG
SYENITE	SYNT
AUGITE SYENITE	ASYN
NEPHELINE SVENTTE	NSVN

and the second	
YEXTURE	TXTR
THROUGHOUT	TRGT
TRACE	TR
TRACHYTE	TRCT
TRANSITION	TRNS
TREMOLITE	TREM
TREMOLITIC	TRMC
TOURMALINE	TMLN
TOURQUOIS	TRQS
TUFFACEOUS	TFCS
TUFFITE	TUFI
UHEDRAL	UDRL
ULTRABASIC	UB
ULTRAMAFIC	UM
UNDULATING	UDLG
UPWARDS	UPRD
UPHOLE	UH

VEINLETS	VNLS
VEINING	VNNG ·
VERY COARSE	
GRAINED	VCG
VESICULAR	VSC
VIOLARITE	VT
VITREOUS	VTRS
VOLCANIC	VOLC

WEAK	WK
WEAKLY	WKLY
WHITE	WHT

YELLOW

YLW

200

•

900 E		
	·	
	•	
300C		
·		
	,	
00E		
DOE		
	,	
O E		
		,

ŧ

31F045W9460 63.3373 DUNGANNON

31F045W9460 63.3373 DUNGANNON

.

.

	DUNGANNON	W9460 63.3373
	0(
•		
		·

	 	9000 E
		3 0003
		2200 E

-	_	_	
=		_	
	_	-	
		_	i –
_			
	_		-
- 2	_		ō
	<u> </u>		Ę
-			4
		_	હે
			Ę
			ద
_			_
		ويزكنها	5
			÷.
	_	_	e a
_			m.
-	_		ώ.
	_		~
_		_	ŏ.
-	_		4
	_		8
			5
			Z.
-	_	_	ш
=	==		
			m –

			10000 E
	1		
			3000E
1			
			· · · · · · · · · · · · · · · · · · ·
			30006

			2900 E
			UNGANNO!
	 		9 9 9 9 9 9 9 9 8
			31F045

ΙΟΟΟΟΕ	3000E
	x5b (5b (5c) (5c) (5c) (5c) (5c)

DUNGANNON	31F045#9460 63.3373
*	
N X NN	
×	• •
~y	
Č j j j č	

		10000 E
	1	
		9000E
		3000 E
1		
	•	•

· · · ·

3 IF 045W9460 63. 3373 DUNGANNO

,

SOOE
I2OOE
1000E
200 E
•

		oc	
			3373 DUN
			45w9460 5
		•	

		Total cou Comtour 100,000 10,000 10,000 10,000 Instrume	
•			Now
			9460 63.3373 DUNGA
	·	·	

ŝ 9.6 S.B ų G ų, Ľ. Ņ ហ្

o o o o o c o o o 2.5 ŝ Ξ 2 •

L EGEND 0,000;15,000;50, Relative low: Borehole: ⁵¹⁵²⁷ Instrument: McPhor⁻ 100,000 C.P.M. line 25,000 C.P.M. line Total 1000E

00

. _ .

.

•

300 E

10044

31F945%9466 63.3373 DUNGAWON

2000 E a de la la cara cara de la dela de la cara d ं हे रे.जिंध के इस से सि सी<mark>क आ</mark>ग के से तर के के से सि के मि के से के के के के के के के से से के से से से सी सी मि मि के के से से से सी सी मि के के से सी सी सी से की से की सी सी सी स 4200 E <u>-01 29</u> 4000E

2000 S	4 5 0 2 2 2 0	4 000 N	N N N N N N N N N N N N N N N N N N N
			L EGEND Total count reading in C.P.M./1000: &r Comour Interval : semi-logarithmic 100,000 C.P.M. line 10,000; 15,000; 50,000 line: Relative Iow: Relative Iow: Borehole: 0:50 Instrument: McPhor TV3-B Spectrometer
			10000 E
			30096
			3000€

	₹ ± ₹ ₹ ₹ ₹ ₹ ± ₹ ± ¥ ¥ ¥ ¥ ¥ ¥		2
		2009E	Z
	· · · · · · · · · · · · · · · · · · ·		
·			

		1000
•		OOE
	9	
		3000
	CON	
	- ng e e n n g y g , n Y , y , n g e e e e	<u>, </u>

-200 N	Z 		1:000 E
			LEGEND Total count reading in C.P.M./1000: &7 Contour interval : semi-logarithmic Contour interval : semi-logarithmic Do,000 C.P.M. line 25,000 C.P.M. line 25,000 50,000 line: 10,000; 15,000; 50,000 line: Relative iow: Relative iow: Borehole: 0 Borehole: 0 Instrument: McPhor TV3-B Spectrometer
		· · · · · · · · · · · · · · · · · · ·	3.0000
			300G6
			3 DOOG

	S500 W
	M 000E
•	
· · · · · · · · · · · · · · · · · · ·	
	W OOSE

31F04SW9460 63.3373 DUNGANNON

		00	
-		900 E	6)
		000E)]
		, 200E	
		S000E	2

	LEGEND Mognetic readiapingarmos/10:trs Combor interval: 200 garma (ine: 0 and 5000 garma (ine: 1000 garma (ine: 0 and 5000 garma (ine: 1000

	STER OWN SEL
	M 3005E
Line of the second seco	
	200 200 200 200 200 200 200 200 200 200
	3000E
	012 180 181 011 011 011 011 011 011
	413
	1000
	I 200E

2 5 5 1 2 5		
E0 41413		LEGEND Magnetic reading in gammas/10:175 Contour interval: 200 gammas 0 and 5000 gamma line: 10000gamma line: 10000gamma line: 10000E: 1000
		JOOE
		IOOOE
		200 E

				-	230
				00	MGANNON
		[45#946@ 63 . 3373 D
					ε.

S 500 S	The second and the se	70007
		LEGEND Magnetic reading in gammas/10175 Contour interval: 200 gammas 0 and 5000 gamma line: 1000 gamma line: 1000 gamma line: 200 gamma line: 200 gamma line: Relative low: Borehole: 0 Instrument: Sharpe MF-2 Fluxgate
		6900 E
		e000 E
		2200 E

9 (3) 9 (3)	18. 19.		30	رد ا. ۲۵۱۰	55	221 221	۲. ۱۹۱	211 211		ST. ST.		251 251 (4)		24	Ser Lor	24 25	121 2E1	11 E	oči.	511	94 94 23	LEI-	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		141 141	15.	132				201 251 251	25	1 12	Sol OF	202 Sec. 15	21	to to the second
1 1 1 1		2 6 0		.130			SEI SEI	1440 1472 1320 165	111 241 111		162 172	171. SBI. 181. STI.	001 001 001 001 001			145 (E1)	281 161 161	88 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	of t	281 781 181	081- Sal	SS EF	251 251 141 142	100 (182 142 / -) 165	160 152	<u>541</u> <u>541</u> <u>541</u> <u>541</u>			150 166 186	12) 58 (14) (14)	551 051 1 <u>51</u> 051		24) 25) 21) 21)	140- 112	140 142 142	2E1: L21'	
	<u> 6</u>	T 3(<u>רס.</u> רס.	-			- <u>j</u>	3 3 3	<u>s</u>	2 S				182 190	0072 517	291	12 22			201). 151.		Sai of	1 28		21	152	2 2	165	14	0 0 0 0	Sal		1 598	Sol	011 Str	22,	
sti	- 32 - 32	22	051 Lai Zzi	92, 221	ц. в.	21 101	88 88 (95	e (ya	2L-		150		1	N et	521 521	1982	12)	16.	0181	122	512 212	III III			1.1	181	žį (2			ġ ș	Ser C	50 10 10 10 10	<u>8</u> 8	N gi	22	8 F	
	561			121 · SII					001 251 251		255 255 255			27. 24. 24.	att Est.	. 16.0 	-130 -132 -132 -132	Still Still Still Still Still Still	22			91 (59)	230 215			(d) (d) (d) (d) (d) (d) (d) (d) (d) (d)	S I S A				- 10 - 10 - 10 - 10 - 10		22 50 01				Lai A Car
I III	s se	125	N S S S S S S S S S S S S S S S S S S S	tav t	201	* ⁵⁰		061	8. 		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		S S S	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8			10 0 0 10			1.12 1.12					39	2011	89 89	3 8		or ZF			r. of			51	50 00 00 00 00 00 00 00 00 00 00 00 00 0
	A F		80 1 11 1 11 1 11	\$	ā ā	- F		11	in the second se	Szi Szi	A Man	14	8 8 9	Sol.	211.	011. 2017	off. off.		× (9		(001- 001-	an Sti			SS1	241	g 9	is is	20	96	241 242	2011	•••	<u>8</u> 8	Sales in the second sec	58	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
		<u> </u>	5 4 68	6	بة ق	6 ¥ 5		2 8		₹ 3 { 6 d	12 2	5 66	Se e		27 (S	Js F	51.			8 F	to r	j r	So ta	ي کر ا	2 8/	96	SE		\$ %		F &	8 8 8	68	23 53	e e e	ş (601 N 3

31F045W9460 63.3373 DUNGANNON

31F045W9460 63.3373 DUNGANNON

	Particular and the second seco	LEGEND Magnetic reading in gammas/1011rs Contour intervall: 200 gamma line: Contogramma line: 1000gamma line: 1000gamma line: 200 gamma line: 200 line: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <td< th=""><th>63. 3373 JF 4W 7/75 MAG. EAGLE NEST DETAIL SHEET 13</th></td<>	63. 3373 JF 4W 7/75 MAG. EAGLE NEST DETAIL SHEET 13
		10€0F	

		10000 E	
	•		
	· ·	9200 E	-
		9000E	

Z500 N	LEGEND Magnetic reading in gammas/10175 Magnetic reading in gammas/10175 Contour interval : 200 gammas 0 and 5000 gammas 0 and 5000 gamma ine: 1000 gamma line: 200 gamma line: 200 gamma line: Relative low: Relative low: Borehole: 25 Instrument: Sharpe MF-2 Fluxgate	2000
		IOGODE

3000 3000 1000			
			10000 E
3005			
3000 3000			
3005			
DOOE			9500E
3000d			
9006			
3000e			
9000E			
DOODE			
DODE			
			3000E
ONTRO		ONTRO	

		10000 E
		9500E
		•
		9000 E
0 2 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	-8 4 6 8 5 8 8	

