
_		H.L.	S .	_	a a sub distance a sub distant (sub sub sub sub sub sub sub sub sub sub		i			-	^	- `		~~
(\mathcal{R})	Ministry of Northern De	evelopme	ent		DOCUMENT	No.						11 B.I		
Ontario	and Mines				W9190	• 0 1]							
ontano			Repor	t of W	ork	•								
	Mining /	Act			Subsection 77	7(19)) 2	• 31	L01NE0001 2.	14028 1	ARIA				900
	Nork Performe					- 1	ning Divisio		1	nship or				7
		METI	ALLU	egica	L TESTING			N ONTACK	o mi					Co.
Recorded		~~ d<	7 141	20157	RIGS LTO		Klass	en ,81-0799			Prospector's	7866	NO.	 V
Address					ASTING.S	·	009-5				Telephone N	I O.		1
	VAN	cour	er,	BC	VGE 2K	3	· · · · · · · · · · · · · · · · · · ·	17124.11	Dee		604-1	-81-0	799	
Work Pe	formed By	LAKE Com	F/elo	RESE	ARCH, ORT BOALING SER	ECH IN	LTO.	ATTONAC,	BAC	on, l	$\infty A COS$	son fr	ASSA.	10.
Name an		Author (of	Submission	DI De	n. BLAIS			and and endowed to the Property of the State of			Date When	Work was	Perform	ed
		, r	PINJEWO	00 P	AK DL	RAY	0117	ARIO F	218 8	8112	From: 12	89	22 /	0 90
L					Mining Claim	No. of Days		No. of Days			Day Mo.	Mining Clai		No of Days
Indicate	ork was perfo no. of days p	performed	d on each d	alm(s): claim	608347		anig clain		1			winning char		10 0 000
Mining Clai	* REC	EIV		No of Day		No. of Days N	lining Claim	No. of Days	Mining C	Claim	No of Days	Mining Clai	m	No ol Days
		0	o Classici	No. of Da	ys Mining Claim	No of Days N	liaina Claim	No. of Days	Musing (lam	No. of Days	Maina Cla		No. of Dout
Mining Clai	¯ FEB°	5 199	31		ys Mining Caain	NO OF DAYS N	uning Claim			Jam	NO. OF Days	mining Clair	m	No of Days
Instruc	tions				Calculation of Ex	penditure Da	ys Credits	l		otal	Total Num	ber of Min	ung Claim	is Covered
	MALEICALITA				Total Expendi					Credits	by this He	port of Wo	ork	
claim i (below)	n the exper	nditure	days credi	it column	\$ 200	903.3	· +	- 15 =	13,3	393		18	Y	
P		in nun	nerical se		If space is insu	ifficient, at			require					
Prefix	Mining Claim Numb	er	Expend. Days Cr.	N Prefix	Aining Claim Number	Days Cr.	Prefix	Mining Claim Number		Expend. Days Cr.	M Prefix	ining Claim Num		Expend. Days Cr.
30	9987	54	60	50	998763	60	50	10845	70	60	1:000	K ASS	CIN	CI 51
<u>, 59</u>		. 1	60	50	998942	60		10845		60			-	IEN L
	9987	1			170742	60	l				EC	6083		000
	9987		60					10845		60	333	7 - 108	0=2	351
	9987	57	60					10845	73	60			d	aup
	9987	58	60					10845	:74	60			lo	lance
	9987	159	60					10845	575	60				
	9987		60					10845	76	60				
50	9987		60		- (4)44 ABID (53 (618 - 445 G	1 OSIGAL	So	10815	77	60				
·····				t	Total Number of Da		ture	110093			f Days to be	Claimed	at a Futur	
Total Nu	mber of Days I		J	1		0	1.1.1.5	1 1	Totart	uniber o	1 Days to be	Claimed E		e Date
0	13,393		atoreat 1	Cop Not	e No. 2 on rever	بالأعاد فسيستسب	ļ <u></u>	*	1					ſ
I hereby	certify that, al	t the time	the work w	as periormi	ed, the clams covere	ed in this rep	ort Date	+		Reco	rded Hojder	or Agen	(Signatu	ire)
	were recorded i urrent recorde		ent recordec	holder's na	ime or held under a po	eneficial inter		8. 8, 199	•/		m	Bla	us'	/
F	ition Verifyi				مان مان می از با این از این می از این می 			ļ						
I hereby during ar	certify that I had one of the termination of terminati	ave a per completion	sonal and in and the ar	ntimate kno nnexed rep	wledge of the facts s ort is true.	set forth in th	ne Report c	of Work annexed	l hereto,	having p	erformed the	work or w	vitnessed	same
						RK DE	2							
R.	m. BL	AIS		P.O.	EWOOD PA BOX 23	7		Data			A	1017		1
	TH BAY,					140.	1	Date FBS. 8,	1991		Certified By	(Signatur	V_{-}	•
YUR		-NI		011	103 4			Received Stamp		A supported to be	HERN ONTAI		G DIVISI	T
For Of	fice Use	Only		Λ			1			1 20011		EIVE		
\sim					BaseArt			-			n.::	1	-	
Total Da Cr. Reco	beb'	ecorded	11-	MININ	g Recorder						FEN	1 1 19	91	
	FE	Bh	1/91		man	e-sly		\mathcal{I}		1		1 1 12		.
108	Date Ap	pproved a	is Recorded	Provir	ncial Manager, Minin	g Lands		-		AM 7	8,9,0,11	12.1.2.5	₽¥ 8.4.5.6	
1	$\int C_{\alpha}$	1 11	141	R	2 (6 h. 0-	$\langle \cdot \rangle$				1_0	01010101	1-1:14.11	<u>a aton</u>	•
C. T. Fritmer	1 >57	- 4	77	flice	a comp	ر ' 	L				5			

Roch Coost Inductios Dd Suite 1575 200 Granville St Vancouver BC Canada V6C 1S4

1e½ 604/681.0799 Fax: 604/681.2741 #700 - 1177 W. HASTINGS ST. VANCOUVER, B.C._V6E 2K3

RECEIVED

100 合名 (March 28, 1991

Mining Land Section Mineral Developement Program MNDM 159 Cedar St., 4th Floor Sudbury, Ont., P3E 6A5

MINING LANDS SECTION

Re: Report of Work(Doc W190.09) claims S0998754 et al.

Dear Sirs,

Enclosed are a Report of Work dated February 14, 1991 and the accompanying Technical Reports, invoices and cancelled checks for Metallurgical Testing performed on samples from the Bisset Creek Project in the Southern Ontario Mining Division.

Reports included are:

Metallurgical Testing of Bisset Creek Graphite Final Report(Complete) July 1990 By: Bacon Donaldson and Associates Ltd. Metallurgical Testing of Bisset Creek Graphite Final Report(Summary) July 1990 By: Bacon Donaldson and Associates Ltd.

Metallurgical Investigation and Plant Flowsheet Development for the Bisset Creek Flake Graphite Ore June 1990 Cominco Engineering Services Ltd.

Metallurgical Report on the Variability Test Results of the Bisset Creek Flake Graphite Ore. September 1990 Cominco Engineering Services Ltd.

Please advise us if any additional information is required.

APR 0 % 1991

Yours sincerel For the Alacan

MINING LANDS SECTION

Hardy Forzley

Ministry of Northern Development and Mines

Ministère du Développement du Nord et des Mines

August 8,1991

Mr Rob Klassen North Coast Industries Ltd. 700-1177 West Hastings Vancouver, B.C. V6E 2K3 Mining Lands Section 159 Cedar Street, 4th Floor Sudbury, Ontario P3E 6A5

Telephone: (705) 670-7264 Fax: (705) 670-7262

Report of work # W9190.09

Dear Sir:

RE: Expenditures submitted on Mining Claims SO 998754 et al. in the Township of Maria.

As per our telephone conversation of August 7th 1991, I have encountered a problem regarding the total of \$ 200903.30 you are claiming.

When expenditures are submitted we require proof of payment which in this case involves the submission of **invoices** and **cancelled** cheques.

I have been able to verify payment of \$ 108454.32 (7230 days), but am unable to verify the remainder as I cannot match up all the submitted invoices and cancelled cheques.

I have enclosed two lists and photocopies of those invoices and cheques that cannot be matched up. Could you please try to match these up, (or submit further ones if required), and return this information to this office no later than 30 days from the date of this letter.

When returning this information please quote file # 2.14028

If you require further information please contact Clive Stephenson at (705) 670-7254.

Yours truly C.D. Slephenson

OC Ron C. Gashinski Provincial Manager, Mining Lands Mines and Minerals Division

CDS/cs Encl:

cc: Mining Recorder Southern Ontario R.M. Blais North Bay, Ontario 1. Co. C Not state and •6uite 1575 -----•900 Granville St Mancouver BC "Canada V6C 1S4

1el: 604/681.0799 Fax: 604/681.2741

700 - 1177 West Hastings Vancouver, B.C. VIE 2K3

5 September 1991

Clive Stephenson Ministry of Northern Development and Mines Mining Land Section 159 Cedar Street, 4th Floor Sudbury, Ontario P3E 6A5

Submission of Invoices and Cancelled Cheques File 2,14028

Dear Sir:

RE:

As per your letter dated August 8, 1991, please find enclosed a complete resubmission of invoices and cancelled cheques for the Bissett Creek project. Our accounting staff have documented the cross matching and adjustment of various accounts to clearly illustrate the balance of accounts.

We apologize for any inconvenience caused by our initial submission.

If you require further information please contact Rob Klassen or Laurie Forzley at (604) 681-0799.

Yours sincerely Rob Klassen

North Coast Industries

RECEIVED

SEP 1 0 1991

MINING LANDS OLUTION

2.14028 part 2

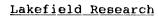
INVOICES without matched cancelled Cheques

INVOICE FROM	INVOICE AND INVO	BILLING PERIOD ICE #	DATE	AMOUNT
Cominco Eng.	Feb, 90	02-CECV011	Mar 08, 90	\$ 3965.12
Cominco Eng.	Mar, 90	03-CECV011	Apr 09, 90	\$ 6526.22
Cominco Eng.	Apr, 90	04-CECV011	May 08, 90	\$ 6169.72
Cominco Eng.	May, 90	05-CECV011	Jun 08, 90	\$ 3658.92
Cominco Eng.	Jun, 90	06-CECV011	Jul 10, 90	\$ 12542.43
Cominco Eng.	Jul, 90	07-CECV011	Aug 10, 90	\$ 7968.99
Cominco Eng.	Aug, 90	08-CECV011	Sep 11, 90	\$ 2588.13
Ortech Int.		14357	Feb 15, 90	\$ 10824.60
			TOTAL	\$ 54244.13

note: The total amount for the Ortech invoice (# 14357) is \$ 20324.60 of which a cancelled cheque for \$ 9500.00 (advance payment) has been submitted. This leaves a balance of \$ 10824.60 which still requires proof of payment.

CHEQUES without matched Invoices

PAYEE	DATE OF CH	Q CHEQUE #	AMOUNT
Bacon Donaldson & Assoc.	Dec 20, 89	1057	\$ 496.57
Cominco Engineering	Feb 16, 90	1134	\$ 1559.75
Cominco Engineering	Mar 31, 90	0019	\$ 3897.12
Cominco Engineering	Jul 06, 90	0043	\$ 10000.00
Cominco Engineering	Aug 03, 90	1295	\$ 6354.86
Cominco Engineering	Sep 01, 90	1318	\$ 8000.00
Ortech 1nt.	May 08, 90	0032	\$ 7763.65
Ortech Int.	Jul 06, 90	0045	\$ 5000.00
Ortech 1nt.	Mar 25, 90	0024	\$ 2820.35
		TOI	AL \$ 45892.30


NORTH COAST INDUSTRIES LTD. 700 - 1177 West Hastings Street Vancouver, B.C. **V6E 2K3**

RECONCILIATION OF REPORT OF WORK

Bacon Donaldson & Associates Ltd.

Invoice # 849 <i>8</i> 4 Invoice # 8495		\$ 18,899.80 <u>10,348.61</u> 29,248.41	CK # 027√	\$ 29,248.41
Invoice	145,864.89*	<u>102,000.00</u> <u>\$ 131,248.48</u>	CK # 1268 CK # 1288 CK # 1317 CK # 084	30,000.00 20,000.00 10,000.00 <u>42,000.00</u> <u>102,000.00</u> <u>\$ 131,248.48</u>
<u>Cominco Engineering Ser</u>	vices Ltd.		,	/
Invoice # 01-CEC V011	/	\$ 9,705.91	СК # 016	\$ 9,705.91
Invoice # 02-CEC V011	3,965.12+	3,897.12	CK # 019	3,897.12
Invoice # 04-CEC V011 Invoice # 03-CEC V011 Invoice # 05-CEC V011		6,169.72 6,526.22 <u>3,658.92</u> 16,354.86	CK # 043 CK # 1295	10,000.00 6,354.00 16,354.86
Invoice # 06-CEC V011 Invoice # 07-CEC V011	12,542.43 7,968.99 2,588.13 23,099.55°	20,500.00	СК # 1318 СК # 132	8,000.00 12,500.00 20,500.00
		<u>\$ 50,457.89</u>		<u>\$ 50,457.89</u>
Ortech International				
Invoice # 14976		\$ 2,820.35	CK # 024	\$ 2,820.35
Invoice # 14357 Invoice # 16329 (credit)	20,324.60 (3,060.95) 17,263.65	CK # 003 CK # 032	9,500.00 <u>7,763.65</u> 17,263.65
Invoice # 17111		5,000.00	СК # 045	5,000.00
		<u>\$ 25,084.00</u>		<u>\$ 25,084.00</u>

* This invoice was subsequently settled for \$102,000.00
+ The invoice was adjusted by \$68.00 to reflect an outstanding credit.
o This account was subsequently settled for \$20,500.00.

Invoice # 03235 Invoice # 03278	\$ 252.00 <u>168.00</u> 420.00	СК # 009	\$ 420.00
Invoice # 03707	1,950.00	СК # 031	1,950.00
Invoice # 04067 Invoice # 04080	329.50 44.00 373.50 \$ 2,743.50	CK # 1320	<u> </u>
TOTAL EXPENDITURES	<u>\$_209,533.80</u>		<u>\$ 209,533.80</u>

INVOICE

BACON, DONALDSON & ASSOCIATES LTD.

12271 Horseshoe Way, Richmond, B.C. V7A 4Z1 • Phone: 277-2322 • Fax: 274-7235

)

In Account With	MORTHOORDT THUODINED						Invoice No. 8494				
	1270 - 601 W. Hastings St. Vancouver, B.C.							File No	o. M90-0	88	
	V6B 5A6							Purchase Order No.			
	Attention: Laurie Forzley					Date 1990 March 13		••• •••••			
	Re:	Batch	Laboratory	Testwork on	Biss	ett	Project	to Feb	ruary 28	, 1990.	
		PROFES	SSIONAL SER	VICES							
		r	lechnicians	126.0 hrs	.@\$	50.	\$6	,300.00	0		
				27.0 hrs	. @ \$	30.	•	810.00	C		
				1.0 hrs	。@\$	60.	•	60.00	0		

	2.0 hrs. @ \$ 57.	114.00
Engineers	119.0 hrs. @ \$ 75.	8,925.00
	3.5 hrs. @ \$100.	350.00
Secretarial	2.1 hrs. @ \$ 30.	63.00
Assays - BDA	22@\$20.	440.00
- Chem	nex	1,107.45
EXPENSES		
Vancouver Pet	672.75	
Fax charges		57.60
TOTAL		\$ 18,899.80

This is a professional invoice and is due when presented 1.5% per month charged on invoices over 30 days. (18% per annum)

INVOICE

BACON, DONALDSON & ASSOCIATES LTD.

12271 Horseshoe Way, Richmond, B.C. V7A 4Z1 • Phone: 277-2322 • Fax: 274-7235

In Account With	NORTHCOAST INDUSTRIES 1270 - 601 W. Hastings St. Vancouver, B.C. V6B 5A6 Attention: Laurie Forzley Date 1990 March 13	
	Re: Pilot-Scale Testing of Bissett Graphite Project to February 28, 1990.	
	PROFESSIONAL SERVICES 1. Circuit Set-Up Technicians 50.0 hrs. @ \$ 50. \$ 2,500.00 Engineers 38.0 hrs. @ \$ 65. 2,470.00	
	Consumables 1,178.61 2. Receipt & Crushing of Ore	
	11.5 hrs. @ \$ 30. 345.00 3.0 hrs. @ \$ 65. 195.00 20.0 hrs. @ \$ 50. 1,000.00	
	3. Preliminary Test Runs	
	34.5 hrs. @ \$ 30. 1,035.00 25.0 hrs. @ \$ 65. 1,625.00	
	TOTAL \$ 10,348.61	

This is a professional invoice and is due when presented. 1.5% per month charged on invoices over 30 days. (18% per annum)

NORTHCOAST INDI"TRIES LTD. 0027 1270 - 601 WEST HA NGS STREET VANCOUVER, B.C. V6B 5A6 3/ 1990 \$ 29248.41 grountes PAY TO BOOCO Ausa 100 DOLLARS BANK OF MONTREAL NORTHCOAST GRANVILLE & PENDER STREET BRANCH 500 - 520 GRANVILLE STREET VANCOUVER, B.C. V6C 1W7 PËR 1.0 # 8494,8495 PER FOR #000027# #08120#001ite 1243-347# 100029248431 JATES LTD. 04000 \circ ω PARANTCO HISURG APR **C**1 ANY 90 03 ANK OF MONTREAL ANCOUVER REGIONAL DATA CENTRE 4 AP 90 03 G ROYAL BANKO N £ 01800-003 BRITISH COLUMBIA PC 氟氟 美纪 连轴 网络蓝 复杂的复数医气管

North Coast Industries Ltd. Dite 1575 2000 canville St Vancouver BC

Tel: 604/681.0799 Fax: 604/681.2741

#700 - 1177 W. HASTINGS ST. VANCOUVER, B.C. V6E 2K3

February 28, 1991

Bacon Donaldson & Associates Ltd. 12271 Horseshoe Way Richmond, B.C. V7A 421 <u>Attn:</u> Lee Schneider, Controller

Dear Sir:

Re: Settlement of our account

As per your letter dated February 21, 1991, enclosed please find our cheque in the amount of \$42,000.00 representing full settlement of the North Coast Industries Ltd.'s account with Bacon Donaldson & Associates Ltd.

We trust this is satisfactory.

Yours very truly,

NORTH COAST INDUSTRIES LTD.

Harold H.G. Porzley Vice President

/rr

NCT:BaconPay

12271 HORSESHOE WAY RICHMOND, B.C. CANADA V7A 4Z1 TELEPHONE: (604) 277-2322 FACSIMILE : (604) 274-7235

February 21, 1991

File Number: M90-088

NORTHCOAST INDUSTRIES 1270 - 601 West Hastings Street Vancouver, B.C. V6B 5A6

Attention: Ron Thiessen

Dear Sir,

Re: Settlement of Your Account

This will confirm your recent discussions with Messrs. Gord Bacon and Morris Beattie regarding your overdue account with Bacon, Donaldson and Associates Ltd. Upon receipt of the agreed upon final settlement amount of \$42,000 we will issue a credit note for the balance then owing.

Yours truly, BACON DONALDSON & ASSOCIATES LTD.

Lee Schneider, Controller SLS/jlb

1

.

BREAKDOWN OF INVOICE #1071 BISSETT CREEK PROJECT NORTH COAST INDUSTRIES

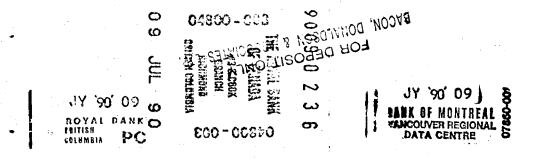
A. Preliminary testwork and pilot paint operation.

PERSON	HOURS	RATE	TOTAL
Brent Peacock	22	50	\$ 1,100
Bruce Smith	189	50	9,450
	13	57	741
Ted Joyce	284	50	14,200
Clint Rule	7.5	50	375
Diane Baker	33	60	1,980
Ed Henrioulle	521	75	39,075
Gus Chow	8	50	400
Ed Klassen	26.8	75	2,010
Jack Richards	355.7	30	10,671
	107.2	37	3,966.40
Jasman Yee	301	65	19,565
Keith Davidson	181	50	9,050
	12	57	684
Martin Schuchow	62.5	50	3,125
	4	57	228
Morris Beattie	48.5	100	4,850
Peter Tse	335	50	16,750
	26	57	1,482
Richard Steel	13.5	50	675
Ron Williams	1.5	60	90
Shawna Martin	169.5	50	8,475
	4.5	57	256.50
Trish Hosepdales	49	60	2,940
Vince Brusnyk	191.5	30	5,745
	4	37	148
Gord Bacon	2	100	200.00

Sub TOTAL \$ 158,231.90

.

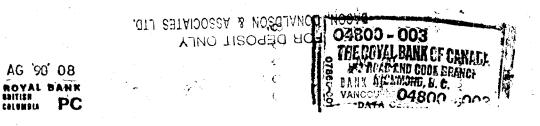
•.


Assay and Fax Charges Outside Analysis and Direct Expenses	5,588.42 <u>15,544.69</u> Sub TOTAL \$ 179,365.01	
Less Previous Invoices	- 29,248.41	\checkmark
Less write down for pilot plant set-up at BDA's expense	<u>- \$ 36,258.45</u> Sub TOTAL \$ 113,858.15	

• 4.

B. Variability Testwork and Final Reporting

PERSON	HOURS	RATE	TOTAL
Bruce Smith	31	50	1.550
Clint Rule	3	50 50	1,550 150
Ed Henrioulle	170.9	50 75	12,817.50
Grant Morgan	3	60	12,817.50
Jack Richman	25.6	30	768
Jasman Yee	15	65	975
Keith Davidson	3	50	150
Morris Beattie	2.5	100	250
Peter Tse	80	50	4,000
Ron Williams	1	57	57
	2	60	120
Shawna Martin	17	50	850
Vince Brusnyk	27.5	30	825
Secretarial	52.1	30	\$ 1,563
		Sub	TOTAL \$ 24,255.50
Assay and Fax charges Outside analyses and direct ex	kpenses		\$ 3,837.50 <u>\$ 3,913.74</u>
		Sub	TOTAL \$ 32,006.74
Total this Invoice Less Advances	\$ 145,864.89 - \$ 60,000.00	~	
BALANCE DUE	<u>\$ 85,864.89</u>		


NORTH COAST INTUSTRIES LTD. 1268 PRICE WATERH SE CENTRE #1270 - 601 WEST HASTINGS STREET VANCOUVER, B.C. V6B 5A6 ć 6 1990 30,000.02 PAY TO _____ 207 15 24 thi /100 DOLLARS $\overline{\mathcal{T}}_{i_2}$ NORTH COAST INDUSTRIES LTD. BANK OF MONTREAL . 15 GRANVILLE & PENDER STREET BRANCH 500 - 520 GRANVILLE STREET ≥ 0 VANCOUVER/B.C. V6C 1W7 2.11 Ò FOR YO PER urle M90-086 108150-0011 1534...105... "B35400" "ODO 3000000"

· 【 1 4 3 2 2 2 2 2 2 2 2

和品名言語言語語語

a, NORTH COAST "DUSTRIES LTD. 1288 PRICE WATE: JUSE CENTRE #1270 - 601 WEST HASTINGS STREET VANCOUVER, E.C. V6B 5A6 90 19. 00 20,000. No sou atis PAY TO THE ORDER OF (T) nd dol 20 \sim / 100 DOLLARS BANK OF MONTREAL GRANVILLE & PENDER STREET BRANCH NORTH COAST INDUSTRIES LTD. - . 500 - 520 GRANVILLE STREET VANCOUVER, B.C. V6C 1W7 PER FOR Jagm a 0 M90-088 #001288# 1:08120=0011 1534...105... ",0005000Q00",

和文学家家庭 刘之民。

使复杂联络医医联合

NORTH COAST I USTRIES LTD. 1317 PRICE WATERHOUSE CENTRE #1270 - 601 WEST HASTINGS STREET VANCOUVER, B.C. V6B 5A6 90 00 PAY TO______ 20 10 000 riation 7100 DOLLARS BANK OF MONTREAL NORTH COAST INDUSTRIES LTD. GRANVILLE & PENDER STREET BRANCH 500 - 520 GRANVILLE'STREET * VANCOUVER, B.C. VOC 1W7 5 Bissett l rich FOR U PER M90-058 - Advance #001317# 1:08120.0011 1239.020 "000100000"

BACON, DURALESON & MOSSIA, DU MODAB FOR DEPOSIT ONLY 04808 - 003 £1 THE DOVAL BANK OF CANALY 11.9 6.11 ٢-*SE BOO DO DO BRANGE ANK OF MUNI BEEL VANCOUVER REGISTAL BOS SE '90' 05 0 C. ş ROYAL BANK BRITISH COLUMBIA PC ÷. 1033. ISIONAL

新学会成为出版和社。

NE 1.55 50 日代44

.,

.0084 NORTH COA INDUSTRIES LTD. 700 - 1177 WEJT HASTINGS STREET VANCOUVER, BC V6E 2K3 PHONE 681-0799 628 _19<u>9</u>1 Baron Donaldson & associates, 42,00 00 PAY TO THE ORDER OF Dan 5100 DOLLARS ou 0 NORTH COAST INDUSTRIES LTD. on account RE: _ Bank of Montreal VANCOUVER MAIN OFFICE FIRST BANK TOWER, 595 BURBARD ST. PER PER VANCOUVER, B.C. V7X 1L7 #107 #booba4# ::00040-001:: 1251-893# "00004-20000" 1

EB , 51, 58 CLA STANOORA & NOSOLANOO, NOSAB 0 N. E. M. ċ. ROYA 148 -ARTTINE COLUMITA 2., \sim PC 1 ŝ 200 - Outin

Ċ

loiso4 Naa

N

ELINEISI

DATA CENTRE

91 28

91'28 MONTREAL 3 En regional 6 Centre

FB

. •

Cominco Engineering Services Ltd.

100 - 1200 West 73rd Ave., Vancouver, B.C., Canada V6P 6G5 / Tel. (604) 264-5500 / Telex 04-55357 / Fax (604) 264-5555

.

١.

February 20, 1990

North Coast Industries Ltd. 1270 - 601 W. Hastings Street Vancouver, B.C. V6B 5A6

Attention: Mr. Dave Copeland

Dear Sir:

Re: Bisset Creek Metallurgical Testwork

Please find attached our January 1990 invoice with respect to the above mentioned project:

January Invoice #01-CECV011

\$9,705.91

Should you have any questions, please call.

Regards,

G.R. Albright Revenue and Project Accounting Manager

GRA/jmh Attach.

FI.01

SK 475

Cominco Engineering Services Ltd.	
Invoice No. 01-CECV011 Date	90-02-09
1270 - GOT WEST HASTINGS STREET	unting Inquiries _{e -} (604) 264-5525
Nam Phor	nical Inquiries = _ VCR : HM_BOLU = _ (604)_264-5596 = -
ATTENTION: DAVE COPELAND Refe	rence No.
JANUARY, 1990 EXPENDITURES AS ATTACHED	
CEC.V01.1 - BISSET CREEK METALLURGICAL TESTWORK	
PROFESSIONAL ENGINEERING SERVICES (SEE ATTACHMENT 1)	\$8,002.50
REIMBURSABLES (SEE ATTACHMENT 2)	\$1,703.41
TOTAL THIS INVOICE	\$9,705.91

Net 30 Days

Interest Charged at 11/2% Per Month on Overdue Accounts

NORTHCOAST INDUSTRIES LTD. 0016 1270 - 601 WEST HASTING RI VANCOUVER, B.C. V6B 5A6 REET 90 10 91 M-705 PAY TO_____ 111 62.2. A.Y. 4 D.1 a 7100 DOLLARS BANK OF MONTREAL NORTHCOAS BLES TD GRANVILLE & PENDER STREET BRANCH 500 - 520 GRANVILLE STREET VANCOUVER, B.C. V6C 1W7 \mathbb{C}^{1} PER 0-10 FORCEC NÖ PER : X - 5 1243#347# 100009705914 SI. ς. ESTHON PONIES . ८२ ८२ MAR 13 90 0/200-يىت بىر OWINEA ANCOUVER REGIONAL \sim 960 ò E. 黑色 美名法名名法法 ~

Name	MAT	T Bo)L!			-						
4				Disburser	nents — se	e instructi	ons on rev			form		
Date	Locatior)		Daily General Expense	Hotel Accom- modation		Description of item			Sundry	Enter- tainme	
6JAN 90	TORON	170		59.65	ß	1314.						
7 0	· ···				256.03	K						
						(
		· · · · · · · · · · · · · · · · · · ·		and the second state of th							_	
		• • • • • • • • • • • • • • • • • • •										
			- -	ana ang danga, pangangkan gan ang dan dina ang a							+	
										· · · · · · · · · · · · · · · · · · ·	1	
				. And and maximum dependences on an analysis with the								
							Brought f				+	
	Sub-tota	ls		\$ 59.65	\$256.03	\$ 1314.00				\$	\$	
Advar	nces fron	n CESL		Employee	Expenses	Reported		T	Recap	, ,		
Cash			[eral Expen		59.		Ttl. Exp	. \$Cdn. (2)	1629	6
Transport	ation	1314	00	and and the second second second second second second second	ommodati	on	256		Less:	vances (1)	1314	-
Other				Transport Sundry	ation		1314	00		e owing:	315	
Sub -total		1314		Entertain					— to m	e 124	315	6
Less: Unu fare (attac		SEE REFU SLIP FOR		Total Exp Exchange			1629	68		o CESL e attached)		╞
tickets)	• •	BUS. CLA	155		ense \$Cdn	. (2)	1629	68	Tonoque			+-
Net advan	ces (1)	1314	00									
Distrib		Expense		Amoun	ι Pu	rpose of Tr	rip or Expe	ndit	ure ·			
	Code	the other and the second state of the second				SUPE	RVISIO.	N	OFL	4-B TE	\$75	
/	1.01	1.02	50	1629	00	4700	-1-711		11-11	THECO	11571-	7-
						<u>a i v k</u>	<u>1667</u>		117	INCOL		l
***						D.CO	PERAN	12	•			
Total Exp	<u>ense \$Cc</u>	dn.						, ,	10			
				Debit	Credit		1	d p	15	, lu	18JAN	1
For Office					68				1-6			
		OSCA		1/021	45 ····	29 18	Certified of my gx	as/a bens	i true ac ses	counting	Date	~
	0202			1 1	1 10	(7) (2)	1 1 T	1	\sim			1

- 0	C€	รเ	: 2	0

PAGE 153

JOB TOTALS

COMINCO ENGINEERING SERVICES LTD.

90-02-02

8,002.50

1

JS644		CU	HULATIVE TIME D	ISTRIBUTI	ON FOR JAN	, ENDING 9	0/01/31		ATTACHMENT 1
CECV01-1	BISSET C	K HETALLURGICAL	TESTWORK		P.O. NO:				
CHARGE CODE	HAN NO,	NAME	REG HRS	DVT HRS	TOTAL HRS	CHARGE RATE	CHARGE Amount	OVERTIME PREMIUN	TOTAL AMOUNT
	E SERVICES 800278 DJ	WILLIAMS	5.0		5.0	27.50	137.50		137.50
		IVITY TOTALS	5.0		5.0		137.50		137.50
	L ENGINEER 800303 HM		117.0	13.0	130.0	60.50	7,865.00		7,865,00
	ACI	IVITY TOTALS	117.0	13.0	130.0		7,865.00		7,865.00
	CHARGE	CODE TOTALS	122.0	13.0	135.0		8,002.50		8,002.50

13.0

135.0

•

8,002.50

122.0

COMINCO	ENGINEERING	SERVICES	L1D
---------	-------------	----------	-----

.

C. V011	BISSET CK METALLURGICAL	TESTWORK	90-02-08
	REIMBURSABLES		ATTACHMENT 2

708

			SUPPLIER	
в	CODE	SUPPLIER NAME	INVOICE NUMBER	AMOUNT
				pa and man any any dir was not den by the ter be-
111	0200	BOLU, H.M. C/O #400	E/A 900118B	1629,68
	0200	DWARF COURIER LTD.	C141231	7.25
	0200	REPRO CHGES - JAN/90	J/E 00024	0.90
	0200	TEL CHGES - JAN/90	J/E 00026	17.26
	0200	TEL CHGES ~ JAN/90	J/E 00028	48.32
·				
			JOB TOTAL	\$1703.41

Simpson Ra. Richmond, B.C. V6X 282 Dispaton: 276-1935 Admin: 278-6044

01003

	INV	DICE NO.
1		41231
1	INVOICE DATE	ACCOUNTING
	12/31/89	C14

10:

COMINCO ENGINEERING 100-1200 WEST 73RD., VANCOUVER, B.C. V6P 6G5

Small in Name - BIG IN RELIABILITY!

TERMS: NET 15 DAYS - 2% CHARGED ON ALL OVERDUE ACCOUNTS.

TRANSACTION	INVOICE NO.	DESCRIPTION		AMOUNT	BALANCE
11/30/89 12/31/89 12/31/89	C141130 C141231	INTEBEST 141 WAYBIL //O		675.45 13.32 700.65	675.45 688.77 1,389.42
AGE	CURRENT	30 DAYS	60 DAY	S 90 DAYS	TOTAL
AMOUNT	713.97	675.45	0.00	0.00	1,389.42

	ORI	GI	VAL	INI	/010	E
	GOODS SEA		PRICE	TAX	ES EXT	ENSION
	G.L	JO	B #	PCIS	S AN	IOUNT
	1150	LU	3 in	\$13"	1 8	1.50
461	1111	Had		080	0 1	1 10
	101	*	s CAP	420	11 1000	0.45
	101	707	31	0400		n 50
	1150	71	51	#125	1-3	6 75
	NEG	71		-31277	1	7.00
	1101	<u> </u>		1.2.2.11	3	125
•	1101	<u></u>		000 <u>6</u> 000 000 000	10-4-	<u>8.35</u> 1.25
		2.	UQ.			2 -1 -2
-	1101	<u>, 10</u>	•	<u>- 4269</u> - 12 V N	the second	5 35

	OR	IGIN	JAL	11	VVO	ICI]	
CHECKS	1 1.01 '84-01		K8:88 MISO		XIW		-0 -52		
. `	150	. 2038	L .	દ	いろう	<u>ц</u> .	50	· .	
	01 1101 1105 1107 1107 1107 1107 1101 1101	N590 R380 R380 PUG S421 S421 S421 T971		0 R 02 03 03	x10 220 20 50 50 60 60 60 60	5 5 6 6 6 6 6 3 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	. 1) . 3)		
	1103	. FOUR		SE	80		10 110	SILSA	к с г
	1103	035) K52	 -4-	55	327		15	bhinn	
•••••	1150	T15			1737 0530		1.0V 5 .C	,	

236146 WAYBILL NO. Dispatch: 278-1935 dwar COURIER Admin: 8-8044 SMALL IN NAME MONTH DAY YEAR (Division of RICHMOND dwarf COURIER LTD.) **BIG IN RELIABILITY** 20 12 χ FROM PREPAID TYTO COLLECT ADVANCE MR. DAVID COPERAND. CEC ENGINEERING LTD SUITE 1270-601 WEST MOTORS COMINCO ENGINEERING ADVANCE 100-1200 WEST 73RD. WAITING VANCOUVER, B.C. VCR V6P_6G5____C14 WEIGHT TEL THIRD PARTY CHARGE Z нот X \square RUSH REG. DELIVERY N/D ECONO RETURN Ē CONTRACT RETURN INSTRUCTIONS NO. OF PIECES WEIGHT OTHER LBS. 01.10200 TMA TOTAL KGS. RE: RETURN RECEIVED IN APPARENT GOOD ORDER. (PLS. PRINT) TIME DRIVE DRIVER DRIVER SHIPPER RECEIVED IN APPARENT GOOD ORDER. TIME A.M. A.M. AM. 2 <u>Z</u>q 1 P.M IMPORIALT: MAXIMUM LIABILITY OF CARRIER IS \$4.41 PER KG. OR \$50.00 PER SHIPMENT. ALL CLAIMS MUST BE SUBMITTED WITHIN 30 DAYS OF SHIPMENT. PLEASE REFER TO TERMS AND CONDITIONS ON REVERSE SIDE. CASH 🗋 CHEQUE **OFFICE COPY**

COMINCO ENGINEERING SERVICES LTD. REPRODUCTION USAGE CHARGES JANUARY 1990

 	Har Har Har has been been	

USFR ID.	JOB NUMBER	COPIES MADE	RATE	AMOUNT CHARGED
8011	V011 BISSET CREEK METALLURGICAL	REVIEW		
	1ST FLOOR - CANON NP-7550 1ST FLOOR - MITA DC-3132 3RD FLOOR - CANON NP-8570 3RD FLOOR - XEROX 1045 4TH FLOOR - CANON 6650	0 0 3 0 3	0.15 0.15 0.15 0.15 0.15	\$0.00 0.00 0.45 0.00 0.45
	TOTAL CHARGES	 6 =======		\$0.90

oday's date: 90/02/02 00:18			COMINCO EN Genes	SINEERING IS Telepho	Page 13 Period starting 89/12/29			
VC)†		1	ACCOUNT CI	DDE DETAIL REPORT	ending 90/02/01		
Date	lime	Ext.	Irunk	Type	Number Dialed	Loc	Duration	Cost
90/01/12	11:59	5596	1002003	C002	1-416-822-4111	ON	0:24:37	17.26
Totals	1 calls	5					0:24:37	17.26

yes/01.1

GENESIS Telephone Management System

icount code:

Period starting 89/12/29 ending 90/02/01

,

ACCOUNT CODE DETAIL REPORT

Date	Time	Ext.	Trunk	Туре	Number Dialed	Loc	Duration	Cost
90/01/18	13:34	5596	1002005	C002	1-416-822-4111	DN	0:01:47	1.38
90/01/19	08:16	5596	T002001	C002	1-416-822-4111	ON	0:14:31	10.35
90/01/19	12:55	5596	T002008	C002	1-416-964-0411	DN	0:01:13	1.38
90/01/24	11:09	5596	1002006	C002	1-416-822-4111	ON	0:01:53	1.38
90/01/24	13:36	5596	T002004	C002	1-416-822-4111	DN	0:23:31	16.57
90/01/25	14:08	5596	1002002	C002	1-416-822-4111	ON	0:24:43	17.26
Totals	6 calls	5					1:07:38	48.32

.

Cominco Engineering Services Ltd.

100 - 1200 West 73rd Ave., Vancouver, B.C., Canada V6P 6G5 / Tel. (604) 264-5500 / Telex 04-55357 / Fax (604) 264-5555

March 29, 1990

North Coast Industries Ltd. 1270 - 601 West Hastings Street Vancouver, B.C. V6B 5A6

Attention: Mr. Dave Copeland

Dear Sir:

Re: Bisset Creek Metallurgical Testwork

Please find attached our February 1990 invoice with respect to the above mentioned project:

February Invoice #02-CECV011

<u>\$3,965.12</u>

Should you have any questions, please call.

Regards,

G.R. Albright Revenue and Project Accounting Manager

GRA/mlw

Attach.

Ltr.Mar.29

Cominco Engineering Services Ltd.	
Invoice No. 02-CECV011	Date 90-03-08
$\lambda(\alpha, r_{1}, r_{2}) = c_{1} + c_{2} + c_{3} +$	Accounting inquiries
NORTH COAST INDUSTRIES LTD. 1270 - 601 WEST HASTINGS STREET VANCOUVER, B.C.	Phone - (604) 264-5525
VGB 546	Technical Inquiries
	Name - VCR:HM_BOLU Phone - (604) 264-5596
ATTENTION: DAVE COPELAND	Reference No.
FEBRUARY, 1990 EXPENDITURES AS ATTACHED	
CEC.V01.1 - BISSET CREEK METALLURGICAL TE	STWORK
PROFESSIONAL ENGINEERING SERVICES (SEE ATTACHMENT 1)	\$3,660.25
REIMBURSABLES (SEE ATTACHMENT 2)	\$304.87
	INVOICE \$3,965.12

PAGE	1	58
------	---	----

COMINCO ENGINEERING SERVICES LTD.

JS644		CUMUI	ATIVE TIME D	ISTRIBUTI	ATTACHMENT 1				
CECV01-1	BISSET CK	METALLURGICAL TI	STWORK		P.O. NO:				
CHARGE CODE	MAN ND.	NAME	REG HRS	OVT Hrs	TOTAL Hrs	CHARGE RATE	CHARGE AMOUNT	OVERTIME PREMIUM	TOTAL AMOUNT
METAL V0110100	L'L ENGINEERS 800303 HH		48.5	12.0	60.5	60.50	3,660.25		3,660.25
	ACTI	IVITY TOTALS	48.5	12.0	60.5		3,660.25		3,660.25
	CHARGE	CODE TOTALS	48.5	12.0	60.5		3,660.25		3,660.25
		JOB TOTALS	48.5	12.0	60.5		3,660.25		3,660.25

· ,

JJ708	COMINCO	ENGINEERING	SERVICES	LTD

PAGE: 1

.

CEC.V011	BISSET CK METALLURGICAL TESTWORK	
	REIMBURSABLES	ATTACHM

		90-03-08
IME NT	2	

.

JOB	CODE	SUPPLIER NAME	SUPPLIER INVOICE NUMBER	AMOUNT
V011	0200	BOLU, H.M. C/O #400	E/A 900219A	257.23
	0200	REPRO CHGES - JAN/90	J/E 00027	33.00
	0200	1EL CHGES - FEB/90	J/E 00054	14.64
			JOB TOTAL	\$304.87

02.007 **Expense Account**

Do not use pencil.

	. Matl	Bol	u	, da			-			Do	o not us	e pencil.			
· ·				Disburser	nents	— se	ee instructi					form			
Date Location			Daily General Expense	Hote Acco moda	om-	Trans- porta- tion	Other expenses Description of item				Sundry	Enter- tainment			
28 Jan 90	Ver an	iport		19.55	ß		2								
1 Feb '90	Mare,	W. germ	any		14	0.09	3(190	DMXO	.73	35	= C\$1	40.09)			
1Feb. 190	Dussel	derf, "	0		ļ,		66.15	R->/ 90	DA	ИХ	(0.735	= c \$ 66	.15)		
1 Feb. '90	Londo	m JUK		7.44	<u> </u>	£ 3,	72×2.0	= C¢;	7.4	4)		<u> </u>			
1Feb '90	Ver	Hirport	<u>i</u>		`	4	days of	Airpor	1 11	an	king.	24.00			

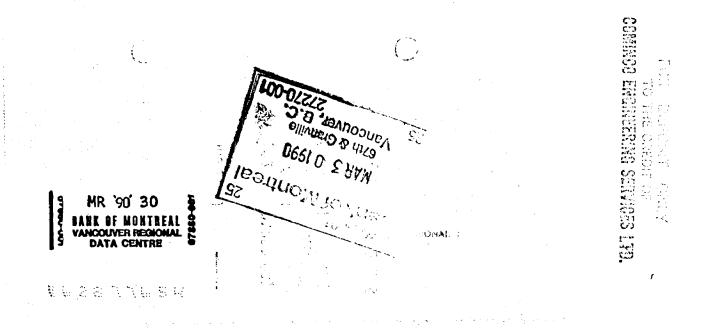
·															
• <u></u>															
N															
**************************************							· ·								
••••••••••••••••••••••••••••••••••••••															
					1		 							- 	
											······				
*													1		
·····															
.					ļ			Brough			ird				
·····	Cub date			\$26.99	011.0	<u></u>	\$ 66.15	from re	vers	se		\$ 94.00	\$	·	
	Sub-tota										\$ 24.00	1.0	Υ		
	nces fror	n CESL	· · · · · ·	Employee Expenses Reported						Recap					
Cash			1	Daily Gen				26		19		. \$Cdn. (2)	257	23	
Transport	ation		+	Hotel Acc		odati	on				Less:	vances (1)			
Other		F		Sundry	anon			2		20		e owing:	257	23	
Sub-total			1	Entertainment			······			the second s	ie 2/21	257			
Less: Unu				Total Expenses				25	7 2	23		o CESL			
fare (attac	ch			Exchange				(inclu			(cheque	e attached)			
tickets)				Total Exp	ense	\$Cdn	. (2)	25	7:	23	~~				
Net advar		1	1		T	,		l]				_l	
Distri	bution of Code	Expense	:	Amoun	1	PL		Trip or Expenditure							
				0.0.00				mpa		y-		theclie		Cor	
	1.1 0.	200		257	23	+	1 ee ting		_		71.	with 1	CHDO	40	
	·····.		····				EKOP	Je pro	2	e_	414-0-5	-Ves.			
															
Total Exp	ense \$C	dn.													
									1	1	Y D	^		. 10	
For Offic	e Use On	(VII)		Debit		Credi	<u>t</u>	54	24	27	AS.	olu.	16 Fe	6. '	
1101	VOIL.	0200		257	23			Certified as a true accountin				counting	Date		
·····								of my expenses				しょ	•		
_1103.	0202	-				23	57 23,	A	<u> </u>	$\overline{7}$					
-											distribu	ution Auc	lited by		
		I Second Revel Construction (1997)]	L		l	and pa	yme	ent				CESL 30	

COMINCO ENGINEERING SERVICES LTD. REFRODUCTION USAGE CHARGES FEBRUARY 1990

USER ID.	JOB NUMBER	COPIES MADE	RATE	AMOUNT CHARGED
8011	V011 BISSET CREEK METALLURGICAL	REVIEW		
	IST FLOOR - CANON NP-7550 IST FLOOR - MITA DC-3132 3RD FLOOR - CANON NP-8570 3RD FLOOR - XEROX 1045 4TH FLOOR - CANON 6650	0 0 138 0 82	0.15 0.15 0.15 0.15 0.15 0.15	
	TOTAL CHARGES	220		\$33.00

GENESIS Telephone Management System

ccount code: <u>Wal</u>i


Period starting 90/02/02 ending 90/02/27

Page 126

ACCOUNT CODE DETAIL REPORT

Date	Time	Ext.	Trunk	Туре	Number Dialed	Loc	Duration	Cost
90/02/07	07:58	5596	T002007	C002	1-416-822-4111	DN	0:01:25	0.55
90/02/07	08:17	5596	1002002	C002	1-416-781-5890	DN	0:00:43	0.69
90/02/16	15:26	5596	1002007	C002	1-403-246-2411	AB	0:01:49	1.31
90/02/19	08:54	5596	1002003	C002	1-416-292-8822	ON	0:13:21	9.66
90/02/23	12:05	5596	T002001	CD02	1-509-922-8787	WA	0:03:01	2.43
Totals	5 call	5					0:20:19	14.64

0019 NORTHCOAST INDUSTRIES LTD. 1270 - 601 WEST HASTING RI VANCOUVER, B.C. V6B 5A6 REET and 31 19 90 3897,12 PAY TO______ 10 \$ aur 100 DOLLARS NORTHCOAST INDUSTRIES LTD BANK OF MONTREAL GRANVILLE & PENDER STREET BRANCH 500 - 520 GRANVILLE STREET VANCOUVER, B.C. V6C 1W7 PER 02-(EC.VO) PER FOR. #000019# #08120#001# 1243-347# F0000389712,

()

6

Ċ

Ċ

(

(Å.

()

Ċ

C

C

Ĉ

(

(

Ć

(

Ć

(

۲,

309

.

Cominco Engineering Services Ltd.

(

Invoice No. 04-CECV011

NORTH COAST INDUSTRIES LTD. 1270 - 601 WEST HASTINGS STREET VANCOUVER, B.C. V6B 5A6

Date 90-05-08

Accounting Inquiries

Phone _ (604) 264-5525

Technical Inquiries

Name - VCR:HM BOLU Phone - (604) 264-5596

ATTENTION: DAVE COPELAND

Reference No.

CEC.V01.1 - BISSET CREEK METALLURGICAL TESTWORK

denn finn ben ben ben inte inde der den den min mil mit ben ben ben bie der bie ging ber bie mit bie ber ber ber ber bie bie den eine bie ben ber

PROFESSIONAL ENGINEERING SERVICES (SEE ATTACHMENT 1) REIMBURSABLES (SEE ATTACHMENT 2)

APRIL, 1990 EXPENDITURES AS ATTACHED

TOTAL THIS INVOICE

\$5,682.75

\$486.97

\$6,169.72

Remit To - Suite 100 - 1200 West 73rd Avenue Vancouver, B.C. V6P 6G5 Net 30 Days

Interest Charged at 11/2 % Per Month on Overdue Accounts.

PAGE 188

1

COMINCO ENGINEERING SERVICES LTD.

.

•

JS644

CUMULATIVE TIME DISTRIBUTION FOR APR , ENDING 90/04/30

ATTACHMENT 1

CECV01-1	BISSET C	K METALLURGICAL T	ESTWORK		P.O. NO:				
CHARGE CODE	MAN NO.	NAME	REG HRS	OVT HRS	TOTAL Hrs	CHARGE RATE	CHARGE AMOUNT	OVERTIME PREMIUM	TOTAL AMOUNT
HININ	1G		,						
V0110100	800386 F	FABIAN	4.0		4.0	41.00	164.00		164.00
	ACT	IVITY TOTALS	4.0		4.0		164.00		164.00
PROJ	OFFICE SERV	ICES							
V0110100	800188 SE	WOODHOUSE	4.0		4.0	27.50	110.00		110.00
	ACT	IVITY TOTALS	4.0		4.0		110.00		110.00
NECH	GENERAL								
	800346 AL	WATSON	-9.0		-9.0	41.00	-369.00		-369.00
	ACT	IVITY TOTALS	-9.0		-9.0		-369.00		-369.00
METAI	'L ENGINEER								
	800303 HM		93.5	2.0	95.5	60.50	5,777.75		5,777.75
					A				
	ACT	IVITY TOTALS	93.5	2.0	95.5		5,777.75		5,777.75
	CHARGE	CODE TOTALS	92.5	2.0	94.5		5,682.75		5,682.75
		JOB TOTALS	92.5	2.0	94.5		5,682.75		5,682.75

JJ708	COMINCO	ENGINEERING	SERVICES LTC)
00.00	00		0	

<u>،</u>

·

CEC.V	011	BISSET CK METALLURGICAL T REIMBURSABLES		90-05-08 CHMENT 2
JOB	CODE	SUPPLIER NAME	SUPPLIER INVOICE NUMBER	AMOUNT
V011	0200 0200 0200 0200 0200 0200 0200 020	BOLU-CREDIT DWARF COURIER JAN/90 DWARF COURIER JAN/90 VAN, PETROGRAPHICS VCR COMP USAGE ~ APRIL 90 VCR REPRO CHARGES ~ APR/90 VCR TEL CHGES ~ APRIL/90	3185 J/E 00026 J/E 00026 8870 J/E 00128 J/E 00029 J/E 00116	-76.42 19.00 7.25 362.00 167.58 4.80 2.76
			JOB TOTAL	\$486.97

TRAVE Trave Total Ave. Site 36 Arport Square, 1200 W, 73 d Ave. Vancouver, BC. Canada VCP G3 OffAce Use DOCUMENT MANEERS U ANCONT Tax CESL 100-1200 West 73rd Ave. 04 0 0 5 0 33 988 CREDIT 76 42 1 IOD-1200 West 73rd Ave. 04 0 0 5 0 1 0 1		1 OF 2 SM 3 ACCOUNT INIT YEAR MO DAY INVOICE
AROUNT IN USE COMMENT WARENE UP ANOUNT IN A MEETER UP ANOUNT AND A MEETER UP AN AND A MEETER UP AN A MEETER UP AN AND A MEETER UP AN A MEETER UP AN AND A MEETER UP AN ANOTHER UP AN A MEETER UP AN ANTAL A MEETER UP AN A MEETER UP AN	Hagen's	0 8 0 2 5 4 5 3 9 0 0 3 2 8 3 1 8 5
Marchard Wirk 235 CESL 100-1200 West 73rd Ave Vancouver CESL 100-1200 West 73rd Ave Vancouver CESL 100-1200 West 73rd Ave Vancouver CESL 100-1200 West 73rd Ave 04005 Vancouver CESL 100-1200 West 73rd Ave 04005 Vancouver OPE CHE USE 00000 WEST 0010 OPE CHEVE 00100 WEST 0010 OPE CHEVE 00100 WEST 0010 0010 CERED 100000 WEST 0010 1000 WEST 0010 10000 WEST 0	IRAVEL 1000W 70.4A	
CESL 100-1200 West 73rd Ave Vancouver Unit invoice-to credit.our_invoice. no. 1961 Mr Matt Bolu Credit invoice-to credit.our_invoice. no. 1961 Mr Matt Bolu Credit amount \$76.42 Credit \$77.42 Credit \$77.42	Vancouver, B.C., Canada V6P 6J3	OFFICE USE DOCUMENT NUMBERS U AMOUNT TAX
ERVENTION DETAILS Credit invoice-to credit our invoice no. 1961 Mr Matt Bolu Credit amount \$76.42 Credit amount \$76.42 Credit amount \$76.42 MENT IS DUE ERVENTION INTEREST PER ANNUM. INTEREST PER ANNUM. INTEREST PER ANNUM. ISUSSINGS - CLOSS ; CUC MULTING	100-1200 West 73rd Ave 04000	00 33 988 CREDIT 76 42
ENVIRONDELALS Credit invoice to credit our invoice no. 1961. Mr Matt Bolu Credit amount \$76.42 Credit amount \$76.42 MeNT is DUE PAY DATE: DOGS 988 AMOUNT DUE PAY DATE: PAY DATE: DOGS 988 AMOUNT DUE PAY DATE: DOGS 988 AMOUNT DUE PAY DATE: PAY DATE: DOGS 988 AMOUNT DUE PAY DATE: PAY DATE: PAY DATE: DOGS 988 AMOUNT DUE PAY DATE: PAY DATE:		TODOGOSTATIVICE PRICE TAXES DITENSION
Credit involce-to credit our involce 134 1 JOEANUS JUNT: 150011 no. 1961 Mr Matt Bolu Credit amount \$76.42 MENT IS DUE ERDUE ACCOUNTS SUBJECT TO INTEREST PER ANNUM. 15005000000 JUNE 1000000000000000000000000000000000000	ERVATION DETAILS	
Mr Matt Bolu Mr Matt Bolu Credit amount \$76.42 AFPROVAL: IPOR PAY DATE: PAY DATE:		
Credit amount \$76.42 APPROVAL: Muth PAY DATE: PAY DA		14 14 14 14 14 14 14 14 14 14 14 14 14 1
APPROVAL: 1805 PAY DATE: PAY DATE: 0035 988 AMOUNT DUE PAY DATE: 0035 988 AMOUNT DUE PAY DATE: 0035 988 AMOUNT DUE PAY DATE: 0035 988 AMOUNT DUE PAY DATE: 0035 988 AMOUNT DUE 1005 CLOSS, and 4005 C		10 0000 40.
MENT IS DUE	Credit amount \$76.42	APPROVAL: PROF
ACCOUNTS SUBJECT TO INTEREST PER ANNUM.	MENT IS DUE	
10/03/14 Auturn cult - full fare of \$1314.00 Auction could to full fare of \$1314.00 Auction could to flease look into this and let we know and let we know and let we know and let we know Alint matt ball approx will Also I count 131hrs for my time. Char allance of alm instead of 117 hrs for my time.	ERDUE ACCOUNTS SUBJECT TO 6 INTEREST PER ANNUM.	
10/03/14 Auturn cult - full fare of \$1314.00 Auction could to full fare of \$1314.00 Auction could to flease look into this and let we know and let we know and let we know and let we know Alint matt ball approx will Also I count 131hrs for my time. Char allance of alm instead of 117 hrs for my time.		Susiness class, and
10/03/14 Auturn cult - full fare of \$1314.00 Auction could to full fare of \$1314.00 Auction could to flease look into this and let we know and let we know and let we know and let we know Alint matt ball approx and farmer. Moth Cultic from Happins auti- Clar allance of alm instead of 117 hrs for my time.	· · · · · · · · · · · · · · · · · · ·	This should be
Will from Happas will also I count 13/hrs for my time.	p90/03/14	deducted from the
Will from Happas will also I count 13/hrs for my time.	Natura fall-	full fare of 11514.00
dibit Matt Balli apage Thomas. Whatt. dibit Matt Balli apage Also I count 131 hrs for In 90 Cridit grown Happan will assterd of 117 hrs for my time. Clar allance of dibit	Will Al-	Please look into this
alland Mall Ball age of themand. Moth Child grown Happan will Also I count 131 hrs for Jan 90 Child grown Happan will instead of 117 hrs for my time.	North PANA ala Y	and let me know.
Culler allance of dent instead of 117 hrs for my time.	dilnt Mutt Bold afraf	Thomas Wlott.
Mart murar or re-	PHILIT CHIMAN WILL	Also I count 13/hrs for Jan 90
	clus alvance al dint	usstead of 11-1 hrs for my time.
'		
	'AB	

CESL .	TYPE
Cominco Engineering Services Ltd.	P-SERV A-ADMIN
JOURNAL VOUCHER	D-OVY L-SALE
MONTH OF: - 1990 HOMIL 9.00,13:30 DALND, R.F. 10,00,13:30 DALND, R.F. 10,00,13:30	D-DAY K-EXP F-FIX J-NON REIMB C-CASH
CHARGE NAME CHARGE TO AMOUNT	
LEDGEA SUB / INVOICE T	DESCRIPTION
5175 K888 1150 L033 8137 K 1111 500 1111111	WARE CONFILER JANAO
51.75 N67. F	
V [1.101 N884. EX10 K [ferrer to the second of the se
5401 BUO BUO LINE 500 LINE	that a start of the start of th
$ \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	afree here have a far a second
$\frac{11018349}{1181899} + \frac{1500}{1181899} + \frac{1500}{1181899} + \frac{1101}{1181899} + \frac{100}{1181899} + \frac{100}{118189} + \frac{100}{11818} + \frac{100}{11818$	
[10] 19.01. 0200 K [1.1.1.700.11.1.1.700.11.1.1.1.700.11.1.1.1.	
$ = \frac{1}{2} \left[\frac{1}{2} \frac{1}{2$	a company and a company of the second of the
$\left \frac{1}{10} \right \frac{100}{100} \frac{100}{100} $	La de la calendaria de la contra de la contr
	hard a look and a look a look at the look
	<u>kkkkkkkkkkkkk_</u>
EXPLANATION TO allerate Jan 90 Dunef Conjer unubils	
to appropriate jote:	APPRUVED
	F

•

1.

N (A) We at

· ·

dwarf COURIER

2895 Simpson Rd. Richmond, B.C. V6X 2R2 Dispatch: 278-1935 Admin: 278-8044

6

(Division of RICHMOND dwarf COURIER LTD.)

Small in Name - BIG IN RELIABILITY!

TO:

1

COMINCO ENGINEERING 100-1200 WEST 73RD., VANCOUVER, B.C. V6P 6G5

PAID MARCH: 71 CHARGED TO

Second Retaining PLINV	DICEND							
C140228								
INVOICE DATE	IN ACCOUNT NO SHA							
02/28/90	C14							

TERMS: NET 15 DAYS - 2% CHARGED ON ALL OVERDUE ACCOUNTS.

TRANSACTION	. INVOICE NO.	DE	SCRIPTION		AMC	DUNT	HE BALANCE AND
01/31/90	C14013			4		994.00	
02/28/90	C14022	119	WAYBII	LS	K.	764.10	1,758.10
		-			```		
				-			•
		1			-		
AGE	CURREN	r 30	DAYS	60 D7	AYS 9	0 DAYS	TOTAL
AMOUNT	1,758.10	0	.00	0.0	0	0.00	1,758.10

90

	•				U		-MON		in: 278			SMAL	L IN NAME		
. F	(Divis	sion of R	пснмо	ND dwai			01	A	10		10		BIG IN RE	LIABILITY	/
ROM:			ידממר		PREPAID	XXXIO:	o Ma		200		I	COLLECT [ADVANCE CHARGE		
<u>COM</u> 100-	-1200	NGINE WEST				-118	45	3 1	EWI	IRK	A.A.	E	ADVANCE AMOUNT		
_VAN(COUVER					Ś	ORRI	=/1	\$.0	0			WAITING TIME		
<u>V6P</u>	6G5			¢						<u>F</u> 81	-991	<i>41</i>	WEIGHT		
HIRD PARTY	CHARGE			- <u></u>	<u></u>	нот		5	TEL.	<u>, , , ,</u>		 רח	- CHARGE		
									USH		REG.		DELIVERY CHARGE		
STRUCTIONS	\$					N/UE		н 	ETURN				RETURN CHARGE		
						•					NO. OF PIECES	WEIGHT	OTHER		
1/-	/·x	,- i										LBS.	TOTAL	10	00
VU/	1/20	WILL	INM	AE IDRIVE	B BECEIVEL		NT GOOD C	ADFR		BIVER	ETURN BE	KGS.		TIME	DRIVER
L		2)	0 P/U	P RECEIVE	NT) A	z //.		AM. 112	DEL	OOD ORDE	EIVED IN AF	NT)	А.М.	DEL.
1/40	chall	ø-DK	194	10		U yr	1 arti		139-1	01				P.M.	
HIN SOU	AYS OF SHIP						100 PER SH FIONS ON F			AIMS M	UST BE SI	UBMITTED	_		-
						OFFI	CE COP	Y					CASH 🗌	CHEQUE	
								المديد متركز ال		••••••••••••••••••••••••••••••••••••••					
	•									•					
				•						•		•.			
	• • •										یک دیار در این کار		•		
				•	· ·								-		
									•						
												•			
					$\frac{1}{2}$ $+$ $\frac{1}{2}$							÷			
										•. •					
											· ·				•
											•				•
	. •														
													• .		•
•						• •				•		•			
										•			· · ·		· ·
		•			ي. ال						•		na series La constante de la constante de		
			• •												· · · ·
	Serena -	Turk	•	• • *							•	•			
	្នុះ រុះទាំង			•						• .	•				• • •
1.8			i L	·	•	¥.	•	· · ·	•				•		
											• •				
						• •	•								
								• •	•				. ,		
								•							
					•				•						
															F.
			E.		- -	•									
14				a start		•		معمدر معام ایک	1.4	· ·			· · · · ·		
1 10															
Υ,ř						. · · · ·			÷., `						

			dwarf	COURIER	LTD.)	MONT		26	9		` S		N NAME BIG IN R	ELIABIL	TY	-	
MINCO	ENGINEER	ING	P	REPAID X	TO:	RTHC	OAS	-7	Tous	TRIE	COLLECT		ADVANCE CHARGE				
00-120	0 WEST 73 ER, B.C.				50	ITE.	27		olk				ADVANCE AMOUNT WAITING TIME				
GP 6G5		14			V H	NÇQÇ	NE7	4.2	<u> </u>								
RD PARTY CHAR	GE			anto definito antique y secondar a stillar		 רח	;	TEL	X			~ ►	WEIGHT				
					N/D EC		्री Ri SBI	ush Eturn		REG.	TRACT		DELIVERY CHARGE RETURN				
TAUCTIONS					1					NO. OF PIECES	WEIG		OTHER				
VQ		······································					• •			1	LBS.			4		1.	
//0///	YML	TIME	DRIVER				05077	1IME 0	YEWFELE		KGS.		TOTAL		725		•
ろう	_ /	1 1		RECEIVED I	n creaced	t good of		11:2-2	13 13	etuan reg ood orde	A. (PLS.	PRINT)		A.M. P.M.	DRIVER DEL.		•
	X IIIIAII LIDGHATTPOF	9:.72			OB \$50.00	en alteration	1 3451			IST BUS	JBMITT	FD		1 .m.		<u>}</u>	
HIN 30 DAYS	OF SHIPMENT. PLE	ASE REFEF	r to te	RMS AND	CONDITIC		EVERSE	SIDE.					cash []	CHEQ			
.					مم د و منه مرد										····· ····.	1.	••
	•								•			•			•		• • •
	•	•	•						•		•						
									•								
. •				. · ·		••		- •	.*		•						
•	•										•	•					
	, . ·		:	њ <u>,</u> 1		.					•	v					
	• .								*	•					•		
						•				•			•		•		
					•					· .			•				
		,					•					• •	н. - С.		•	•	
				•				••••	••• 5								
											· · · · ·		•	-		• •	
		•								.'		÷	•				
										-	•	•					
	•	•								••••	144 - • 1			· .	• :		•
			•									•		,			
						S.			Si Dit				-	a per El C	de Cale	Kalan	
										Anna A		N TRA					2. (E)=*
									K								

l

ļ

2	- AN		•	•
		$\overline{\mathbf{D}}$		-
) (

FOR

1	$\mathcal{D}_{i} = (1, \dots, n)$	(Pr
VANCOUVEN 8080 6/over Rd	Petrographics	Ltd

-9007 NASH STREET - P.O. BOX 39 -- FORT LANGLEY, B.C. VOX 1J0 Telephone (604) 888-1323

INVOICE

8870

Customer	Order	No.	<u></u>

Customer Charge Code

÷.,

Ordered By: Matt Bolu

Cominco Engineering Services Ltd

400- 1200 West 73rd

Vancouver, B.C.

QUANTITY	DESCRIPTION								ST
	THIN SECTIONS		į.						
	POLISHED THIN	SECTIONS							
4	POLISHED ORE	MOUNTS	0 \$18	ea.			Ş	72.	00
	GROUND & LAB	ELLED THIN S	SECTION RE.	IECT SLICES	5				
	POLISHED MINE	RAL GRAIN N	IOUNTS	2					
	MINERAL GRAI	N THIN SECTI	ONS						
·	MINERAL GRAI	N POLISHED T	HIN SECTIO	NS		<u> </u>			
	THIN SECTION	K-SPAR STAIN	S			0	4	00	5
	ROCK K-SPAR S	TAINS		t. A traces					
	CERAMIC PULV	ERIZER PLAT	ES LAPPED		-				
		1	- OR	IGINAL	-INIVC	NCF]	
10/12	COUNTING	· · · · · · · · · · · · · · · · · · ·	GOODS/SE	RVICE PRIC		EXTENSI			
lase 1	NAPPAR		HECEIV	ED K					
·	COUNTING Macess 300	REPORT	3	W U	- XD	B		290	00
011.0	300		G.L.	JOB #	PCIS	AMOUN	7 T		
		Z	1101	VOI	0200		0		``
					_		\square		
1XK	0								
The	Nolu SHIPPING								
Nott	PPF, WAL. TOTAL							\$362.	.00
int	HACK		PAY DATE		Shipping	Date	Me	rch	1990
				Via					

age No. 34 5/04/90	COMPLER USAGE	CO ENGINEERING LTD E INVOICE (SUMMARY	(CRM)	ANCOUVER PRIL 1990
<u>DB No. 11</u>	USER	TOTAL TIME	RATE/HR.	<u>CHARGES</u>
ACHINE No. 8056	APPLICATIONS ENG. HMB800303	STATION 24:23	5.00	\$ 121.91
OTAL MACHINE 8056	5	24:23		\$ 121.91
OTALS FOR PROJECT	r V011	24:23		\$ 121.91

.

. Nilens ~

·.

age No. 1 5/04/90	· · · · /	ENGINEERING LTD. NVOICE (SUMMARY	(FORM)	VANCOUVER APRIL 1990
<u>OB No. 1</u>	USER	TOTAL TIME	RATE/HR.	CHARGES
ACHINE No. 8018	FULL TIME CAD STATIO FF800386	N 4:34	10.00	\$ 45.67
OTAL MACHINE 8018	,	4:34		\$ 45.67
OTALS FOR PROJECT	8011	4:34		\$ 45.67

١.

COMINCO ENGINEERING SERVICES LTD. REPRODUCTION USAGE CHARGES APRIL 1990 -----

• .

USER ID.	JOB NUMBER	COPIES MADE	RATE	AMOUNT CHARGED
8011	V011 BISSET CREEK METALLURGICAL	REVIEW		
	1ST FLOOR - CANON NP-7550 1ST FLOOR - MITA DC-313Z 3RD FLOOR - CANON NP-8570 3RD FLOOR - XEROX 1045 4TH FLOOR - CANON 6650	0 0 0 0 3 2	0.15 0.15 0.15 0.15 0.15 0.15	
	TOTAL CHARGES	32		\$4.80 =========

-day's	date:	90/05/04	07:10	. •	1 1		SERVICES LTD. (Vancouver) one Management System	C		Page 119
count	code:	V011			,	ACCOUNT C	DDE DETAIL REPORT		Period	starting 90/04/07 ending 90/05/03
	Date		Time	Ext.	Trunk	ìype	Number Dialed	Loc	Duration	Cost
	90/04/:	24	08:45	5596	1002005	CD02	1-705-652-3341	DN	0:03:29	2.76
	Totals		l calls						0:03:29	2.76

 Cominco Engineering Services Ltd. 		
Invoice No. 03-CECV011	Date	90-04-09
NORTH COAST INDUSTRIES LTD. 1270 - 601 WEST HASTINGS STREET VANCOUVER, B.C.	Accounting Ind Phone -	ଏଝଂALBRIGHT (604) 264-5525
• V6B 5A6		uiries VCR:HM BOLU (604) 264-5596
ATTENTION: DAVE COPELAND	Reference No.	PO #
MARCH, 1990 EXPENDITURES AS ATTACHED		
CEC.VO1.1 - BISSET CREEK METALLURGICAL TESTW	ORK	
PROFESSIONAL ENGINEERING SERVICES: (SEE ATTACHMENT 1)	\$	6,503.75
REIMBURSABLES: (SEE ATTACHMENT 2)		22.47
TOTAL THIS INVOICE	\$	6,526.22

••

Remit To — Suite 100 · 1200 West 73rd Avenue Vancouver, B.C. V6P 6G5

0

Net 30 Days

Interest Charged at 11/2 % Per Month on Overdue Accounts.

		• •	•	•	
	•	•			
- , .					

						RING SERV				90-04-05
JS644 CECV01-1	BISSET	CREEK ME	CUMU	LATIVE TIME DI TESTWORK		N FOR MAR	, ENDING 9	0/03/31		ATTACHMENT 1
CHARGE CODE	MAN No.	NA	INE	REG HRS	OVT Hrs	TOTAL Hrs	CHARGE Rate	CHARGE Amount	OVERTIME PREMIUM	TOTAL Amount
METAL	'L ENGIN	EERS								
V0110100	800303	HM BOLU		105.5	2.0	107.5	60.50	6,503.75	0.00	6,503.75
		ACTIVITY	TOTALS	105.5	2.0	107.5		6,503.75		6,503.75
	CHA	RGE CODE	TOTALS	105.5	2.0	107.5		6,503.75		6,503.75
		JOB	TOTALS	105.5	2.0	107.5		6,503.75		6,503.75

j JJ708		COMINCO ENGINEERING	SERVICES LTD	PAGE: 1
CEC.V	011	BISSET CK METALLURG REIMBURSAE		90-04-09 ACHMENT 2
JOB	CODE	SUPPLIER NAME	SUPPLIER INVOICE NUMBER	AMOUNT
V011	0200 0200	REPRO CHIGES - MARCH/90 VCR COMP CHIGES-MARCH/90	J/E 00021 J/E 00128	1.80 20.67
			JOB TOTAL	\$22.47

٠

•

COMINCO ENGINEERING SERVICES LTD. REPRODUCTION USAGE CHARGES MARCH 1990

USER ID.	JOB NUMBER	COPIES MADE	RATE	AMOUNT CHARGED
8011	V011 BISSET CREEK METALLURGICAL	REVIEW		
	1ST FLOOR - CANON NP-7550 1ST FLOOR - MITA DC-313Z 3RD FLOOR - CANON NP-8570 3RD FLOOR - XEROX 1045 4TH FLOOR - CANON 6650	0 0 0 12	0.15 0.15 0.15 0.15 0.15	\$0.00 0.00 0.00 0.00 1.80
	TOTAL CHARGES	12		\$1.80

-	· · ·				
Page No. 31 04/02/90	COMINC COMPUTER USAGE	CO ENGINEERING LTD E INVOICE (SUMMARY		VAN MAR	COUVER CH 1990
JOB No. V011	USER	TOTAL TIME	RATE/HR.	CI	HARGES
MACHINE No. 8056	APPLICATIONS ENG. HMB800303	STATION 4:08	5.00	\$	20.67
TOTAL MACHINE 8056	5	4:08		\$	20.67
TOTALS FOR PROJECT	r V 011	4:08		\$	20.67

CLER
Cominco Engineering Services Ltd.

Invoice No. 05-CECV011

.

NORTH COAST INDUSTRIES LTD. 1270 - 601 WEST HASTINGS STREET VANCOUVER, B.C. V6B 546

Date 90-06-08 Accounting Inquiries Phone - (604) 264-5525 Technical Inquiries Name - VCR : HM BOLU Phone - (604) 264-5596

ATTENTION: DAVE COPELAND

• • • •

002

309

Reference No.

MAY, 1990 EXPENDITURES AS ATTACHED	
CEC.V01.1 - BISSET CREEK METALLURGICAL TESTWORK	
PROFESSIONAL ENGINEERING SERVICES (SEE ATTACHMENT 1)	\$3,404.75
REIMBURSABLES (SEE ATTACHMENT 2)	\$254.17
TOTAL THIS INVOICE	\$3,658.92

PAGE 190

COMINCO ENGINEERING SERVICES LTD.

.

JS644

CUMULATIVE TIME DISTRIBUTION FOR MAY , ENDING 90/05/31

ATTACHMENT 1

CECV01-1	BISSET CK META	LLURGICAL TEST	WORK		P.O. NO:				
CHARGE CODE	MAN No. NA	ME	REG HRS	OVT HRS	TOTAL Hrs	CHARGE RATE	CHARGE AMOUNT	OVERTIME PREMIUM	TOTAL AMOUNT
MININ :	G 800386 F FABIA	N ≺?	10.0	· · · · · · · · · · · · · · · · · · ·	10.0	41.00	410.00		410.00
	ΑΓΙΛΙΤΟΑ	TOTALS	10.0		10.0		410.00		410.00
METAL V0110100	'L ENGINEERS 800303 HM BOLU		39.5	10.0	49.5	60.50	2,994.75		2,994.75
	ΥΤΙΛΙΙ ΣΑ	TOTALS	39.5	10.0	49.5		2,994.75		2,994.75
	CHARGE CODE	TOTALS	49,5	10.0	59.5		3,404.75		3,404.75
	JOB	TOTALS	49.5	10.0	59.5		3,404.75		3,404.75

COMINCO ENGINEERING SERVICES LTD

ATTACHMENT 2

90-06-07

;

.~

•

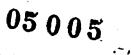
CEC.V011 BISSET CK METALLURGICAL TESTWORK REIMBURSABLES

			SUPPL1ER	
JOB	CODE	SUPPLIER NAME	INVOICE NUMBER	AMOUNT

V011	0200	BOLU, H.M. C/O #400	E/A 900521	102.15
	0200	LAKEFIELD RESEARCH	C 03722	61.50
	0200	VCR COMP USAGE - MAY/90	J/E 00203	43.26
	0200	VCR PHOTOCOPY CHARGES - MAY/90	J/E 00129	13.65
	0200	VCR TEL CHGES - MAY/9D	J/E 00209	33.61
			JOB TOTAL	\$254.17
				=================

JJ708

										050 ACCOUI		
Name	MATT	T BOL	-U						5 not us	e penen.		
			Disbu	rseme	ents — se	e instructi				form		
	1		Daily	ŀ	lotel	Trans-	Other exp	ense	es		r	
Date	Location	1	Gener Exper	al A	Accom- nodation	porta- tion	Descriptic of item	n		Sundry	Enter- tainme	nt
22/02/90	VANCO	UVER					PARKING			R 10.00		
1/05/90	/				· · · · · · · · · · · · · · · · · · ·		FILM			R 3.70	ļ	
3/05/90 AN-MAY	10. 7		- 22 4	Riali		En R MI	FILM PI	COL	ESING	R 10.45		
mid- with			TO BD,A 12KM E			10 \$ 0.2	S/KM	2/17		07 PLANT \$78.00	125	IIN
	~				2014	C				70.00		
								-				
	· · · · · · · · · · · · · · · · · · ·											
	, ,											
) 				·	<u>}</u>	
.												
	·										ļ	
							Brought fo		ard		 	
	Sub-tota	le	\$	\$		\$	from reve	rse		\$ 102.15	\$	
A										······	<u> </u>	<u></u>
	nces from					Reported			Reca			
Cash					ral Expen				Less:). \$Cdn. (2)	102	15
Transport Other	ation		Trans		mmodati	<u>, ou</u>				vances (1)		<u> </u>
Otter			Sundr		.1011		102	15		e owing:	102	17
Sub -total		/	Enter		ent					ne 524	102	is
Less: Unu			Total		and the second se					o CESL		
fare (attac			Excha	inge F	Rate				(chequ	e attached)		
tickets)			Total	Exper	nse \$Cdn	. (2)	102	15				ļ
<u>Net advar</u>	ices (1)		<u> </u>							l		<u> </u>
Distril		Expense	· Am	ount	Pu	rpose of T	rip or Expe	ndit	ure ·			
	Code				ľ	ARIOUS		R	EXPE	TVSES IN	VELIR	RE
V. (0110	1200	10	21		URING	THE (21	RSE	OF THE MAY 90.	PROJ	60
	·					ERIOD	UP TO	21	2414	MAY TO.		
		a a biligina ying ya aying ya ayaa ya ƙafa ayaa ayaa ya										
Total Exp	0.020 \$000											
- Utal EXP					L			$\overline{\boldsymbol{\nabla}}$	0		21	
	····		Debit		Credi		A	\bigwedge	$\tilde{O} \sim \tilde{O}$		24 Ma	"ч
For Offic	e Use On	iy						·				1
11011	1011	0200		219	<u>5</u>		Certified of my exp	as a	true ac	counting	Date	
1103	0203	h.			10	215			. 65	~	mall.	
			1			1 1		· \		Sim	5524	
······································							COM-		\sim		-2010 t	
							Approved and payrr				ited by	


..

-

INVOICE

<u>}</u>Η

Telex No. 06 962842 Fax No. (705) 652-6365

0

No.: C 03722

DATE April 25, 1990

SENT TO: Mr. Matt Bolu

Cominco Engineering Services Ltd Suite 100-1200 West 73rd Avenue Vancouver, BC V6P 6G5

P.O. Box 430, 185 Concession St., Lakefield, Ontario KOL 2HO

DIVISION OF FALCONBRIDGE LIMITED

Phone: (705) 652-3341

Our Certificate Of Analysis Number(s): 57 Our Reference Number: 9034117 Number of Samples: RE: Bissett (
Analytical Cost Qty. Symbol	Element Unit Price	Assay Cost
3 C(g) % 2-C	arb(Graphitic) \$18.00	\$54.00
	ORIGINAL INVOID	E
	GOODSISERVICE PRICE TAXES E	XTENSION
Please process V.01.1-0206		
V.01.1-020A	GL JOE PCIS F	MOUNT
ABolu. 02/05/90)1101 VOII 0200	61,50
Additional Costs.		\$54.00
Sample Preparation:	PAPPROVAL.	
Pulverizing: \$7.50	PAY DATE	
Long Dist.Phone : Telex : Facsimile :	% Discount Net Cost	\$0.00 \$54.00 \$54.00
Courier/Spec.Del.: Freight:	Extras	\$7.50 \$61.50
Custom/Broker:		
Storage:	Less	Advance Payment:
hrs:@:		
Extras \$7.50	Invoice Amoun	t \$61.50

PLEASE PAY BY INVOICE --- Terms: Net 30 days. 2% service charge per month on overdue accounts

	· · ·				
Page No. 27 05/31/90	COMINC COMPUTER USAGE			VANCOUVE MAY	R 1990
JOB No. VO11	USER	TOTAL TIME	RATE/HR.	CHARGE	S
MACHINE No. 8056	APPLICATIONS ENG. HMB800303	STATION 8:39	5.00	\$ 43.2	6
TOTAL MACHINE 805	6	8:39		\$ 43.2	6
TOTALS FOR PROJEC	T V011	8:39		\$ 43.2	<u>6</u>

est a contra

COMINCO ENGINEERING SERVICES LTD. PHOTOCOPY USAGE CHARGES MAY 1990

USER ID.	JOB NUMBER	COPIES MADE	RATE	AMOUNT CHARGED
8011	V011 BISSET CREEK METALLURGICAL	REVIEW		
	1ST FLOOR - CANON NP-7550 1ST FLOOR - CANON NP-6650 3RD FLOOR - CANON NP-8570 3RD FLOOR - XEROX 1045 4TH FLOOR - CANON 6650 4TH FLOOR - MITA DC-313Z TOTAL CHARGES	0 2 39 0 50 0 	0.15 0.15 0.15 0.15 0.15 0.15	\$0.00 0.30 5.85 0.00 7.50 0.00 \$13.65

••

Today's date > 90/06/06 08:33

.

• • •

•

GENESIS Telephone Management System

Account code: V

Period starting 90/05/04 ending 90/06/04

ACCOUNT CODE DETAIL REPORT _____

Date	Time	Ext.	Trunk	Туре	Number Dialed	loc	Duration	Cost
90/05/14	11:10	5596	1002007	C002	1-705-652-3341	DN	0:01:35	1.38
90/05/22	15:57	5555	T002006	C002	1-303-987-8907	00	0:04:43	3.57
90/05/23	15:19	5596	T002009	COco	1-303-986-6950	CO	0:14:15	10.71
90/06/04	09:03	5596	T002003	CO 02	1-705-652-3341	DN	0:00:57	0.69
90/06/04	10:13	5596	1002009	COco	1-705-652-3341	DN	0:04:23	3.45
30/06/04	11:51	5596	T002009	COco	1-705-652-3341	ON	0:18:13	13.12
90/06/04	17:00	5555	T002007	C002	1-705-652-6365	DN	0:00:51	0.69
Totals	7 call	5					0:45:03	33.61

NORTH COAST "DUSTRIES LTD. PRICE WATEL JUSE CENTRE #1270 - 601 WEST HASTINGS STREET VANCOUVER, B.C. V6B 5A6 1295 19 90 3 354.86 PAY TO____ 8 100 DOLLARS BANK OF MONTREAL GRANVILLE & PENDER STREET BRANCH NORTH COAST INDUSTRIES LTD. ; į. 500 - 520 GRANVILLE STREET VANCOUVER, B.C. V6C 1W7 14 (a MÜ PER 6 FOR 1239....1028 **#001295** 108120-0011 100006354861

COMMC SACIA

in or son

""Ontro:

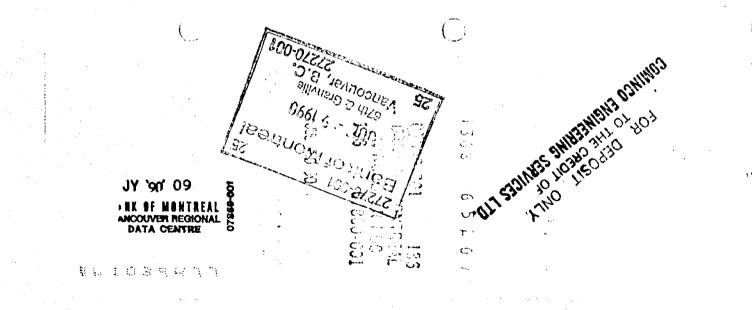
7-1990

70.001

Granville

0,00

Ouver.


;

٠,

AG '90' 07 ğ -098/0-**BF MONTREAL** A N K ANCOUVER REGIONAL DATA CENTRE

重新主动转出飞船飞

0043 NORTHCOAST INDUSTRIES LTD. 1270 - 601 WEST HASTIN TREET VANCOUVER, B.C. V6B 5A6 19 90 6 10,000. PAY TO. in en THE ORDER OF ۶. dollar 100 DOLLARS BANK OF MONTREAL GRANVILLE & PENDER STREET BRANCH 500 - 520 GRANVILLE STREET NORTHCOAST INDUSTRIES LTD. VANCOUVER, B.C., V6C 1W7 PER PER ar FOR 108150-0011 1243++347# **#000043**# 1000100000

Cominco Engineering Services Ltd.	
Invoice No. $06-CECV011$	Date 90-07-10
አደም ምናም የደረገ ሥራም አራም ምር ጉጉ አርዋና የድም ምርጉ የደርጉ የድም ምርጉ የደርጉ የድም እ	Accounting Inquiries
NORTH COAST INDUSTRIES LTD. 1270 - 601 West Hastings street Mancouver, b.c.	Phone - (604) $264 - 5525$
VANUUUVER, B.U. Võb 5aa	Technical Inquiries
	Name - VCR:HM_BOLU Phone - (604) 264-5596
ATTENTION: DAVE COPELAND	Reference No.
JUNE, 1990 EXPENDITURES AS ATTACHED CEC.V01.1 - BISSET CREEK METALLURGICAL TEST	WORK
PROFESSIONAL ENGINEERING SERVICES (SEE ATTACHMENT 1)	\$11,542.75
REIMBURSABLES (SEE ATTACHMENT 2)	\$999.68
TOTAL THIS INV	

÷

PAGE 191

COMINCO ENGINEERING SERVICES LTD.

90-07-04

•

~

15644		CUMULATIVE TIME D	ISTRIBUTIO	ON FOR JUN	, ENDING 9	0/06/31		ΑΤΤΑCΗΜΕΝΤ 1
CECV01-1	BISSET CK METALLURGI	CAL TESTWORK		P.O. NO:				
CHARGE CODE	MAN NO. NAME	REG HRS	OVT HRS	TOTAL HRS	CHARGE RATE	CHARGE	OVERTIME PREMIUM	TOTAL AMOUNT
MINING								
0110100	800386 F FABIAN	2.0		2.0	41.00	82.00		82.00
	ΑCIIVITY TOTALS	2.0		2.0		82.00		82.00
ENGINE	ERING QUALITY							
0110100	800229 RJ TUCKER	7.0	2.0	9.0	70.00	630.00		630.00
	ACTIVITY TOTALS	7.0	2.0	9.0		630.00		630.00
MECH G	ENERAL							
0110100	800066 TH 11TER	26.0	2.0	28.0	60.50	1,694.00		1,694.00
	ACTIVITY TOTALS	26.0	2.0	28.0		1,694.00		1,694.00
PIPING								
0110100	800088 SE SCHROEDER	17.0		17,0	41.00	697.00		697.00
	ACTIVITY TOTALS	17.0		17.0		697.00		697.00
METAL'	L ENGINEERS							
0110100	800303 HM BOLU	115.5 🗲	24.0	139.5	60.50	8,439.75		8,439.75
	ACTIVITY TOTALS	115.5	24.0	139.5		8,439,75		8,439.75
	CHARGE CODE TOTALS	167.5	28.0	195.5		11,542.75		11,542.75
	JOB TOTALS	167.5	28.0	195.5		11,542.75		11,542.75

.

PAGE: 1

.

.

COMINCO ENGINEERING SERVICES LTD

JJ708 CEC.V011

BISSET CK METALLURGICAL TESTWORK REIMBURSABLES 90-07-10

ATTACHMENT 2

J08	CODE	SUPPLIER NAME	SUPPLIER INVOICE NUMBER	AMOUNT
			there branchershandstreet	
V011	0200	LAKEFIELD RESEARCH	C 03877	326.00
	0200	VCR COMP USAGE - JUNE/90	J/E 00145	551.23
	0200	VCR PHOTOCOPY - JUNE/90	J/E 00090	24.30
	0200	VCR TEL CHGES - JUNE/90	J/E 00186	98.15
			JOB TOTAL	\$999.68

1	7	05	-65	52	63	65		
JI	711/	63	' 90	15:	47	LAKEF	IELD	RESEARCH705-652-6365

INVOICE

P.O. Box 430, 185 Concession St., Lakefield, Onterio KOL 2HO Phone: (705) 652-3341 Telex No. 06 962842 Fax No. (705) 652-6365 No.: C 03877

06 01 0

P.5/5

DATE June 8, 1998

SENT TO: Mr. Matt Bolu

Cominco Engineering Services Ltd. Suite 100-1200 West 73rd Avenue Vancouver, BC V6P 6G5

Ana	11/12/2011 1.051			
1	Iytical Cost Qty. Symbol	Element Unit Price	Assay Cost	
		-Carb. graphitic \$18.00	\$215.00	
O A	HAMAL INVOICE	Yanhours \$55.09	\$110.00	
FOCOS S TECE TECE C L		Pana process		
1101	VOII 0300 326.00	lease process 1.01.1.0300		
VORG	AL Additional Cosis	APRICE	\$326.00	
	Sample Proparation: Polverizing:	8 Jun 90	4020.00	
2	Long Dist.Phone ; Telex :		\$0.00	
ł	Facsimile:	% Discount	\$326.00	\$326.0
	Courier/Spec.Del.:	Net Cost		OZOT D
	Freight:	Extras		\$326.01
			1 · · ·	
	Custom/Broker: Storage:	Less	ndvance Payment:	

PLEASE PAY BY INVOICE -- Terms: Net 30 days, 2% service charge per month on overdue accounts

,	· · · ·	
Page No. 1 <u>COMINC</u> 07/04/90 <u>COMPUTER USAGE</u>		VANCOUVER JUNE 1990
JOB NO. 8021 101		
	TOTAL TIME RATE/HR.	CHARGES
MACHINE No. 8018 FULL TIME CAD STAT		A A A A A A
FF800386	10:09 10.00	\$ 101.51
TOTAL MACHINE 8018	10:09	\$ 101.51
TOTALS FOR PROJECT 8021	10:09	\$ 101.51
VON		

.

,

Páge No. 33 07/04/90		NGINEERING LTD VOICE (SUMMARY		VANCOUVER JUNE 1990
JOB NO. VOII	ISER	TOTAL TIME	RATE/HR.	CHARGES
	FULL TIME CAD STATION RBW800159	2:58	14.00	\$ 41.53
TOTAL MACHINE 8004		2:58		\$ 41.53
	FULL TIME CAD STATION SES800088	13:39	14.00	\$ 191.08
TOTAL MACHINE 8044		13:39		\$ 191.08
	APPLICATIONS ENG. STA IMB800303	TION 43:25	5.00	\$ 217.11
TOTAL MACHINE 8056		43:25		\$ 217.11
TOTALS FOR PROJECT	V011	60:02		\$ 449.72

.

,

COMINCO	ENGINE	ERING	SERVICES	LTD.
PHOT	FOCOPA	USAGE	CHARGES	
	JUN	IE 1990)	

USER ID.	JOB NUMBER	COPIES MADE	RATE	AMOUNT CHARGED
8011	V011 BISSET CREEK METALLURGICAL	REVIEW		
	1ST FLOOR - CANON NP-7550 1ST FLOOR - CANON NP-6650 3RD FLOOR - CANON NP-8570 3RD FLOOR - XEROX 1045 4TH FLOOR - CANON 6650 4TH FLOOR - MITA DC-313Z TOTAL CHARGES	0 3 46 59 54 0 162	0.15 0.15 0.15 0.15 0.15 0.15	\$0.00 0.45 6.90 8.85 8.10 0.00 \$24.30

.

COMINCO ENGINEERING SERVICES LTD. PHOTOCOPY USAGE CHARGES JUNE 1990

.

.

1

0.15	\$0.00
0.15	\$0.00
0.15 0.15 0.15 0.15 0.15	0.45 6.90 8.85 8.10 0.00 \$24.30
	0.15

Account code: V011

Period starting 90/07/01 ending 90/07/08

ACCOUNT CODE DETAIL REPORT

HCCOON I	CODE	DETUTE	NEFUNI

Date	Time	Ext.	Trunk	Туре	Number Dialed	Loc	Duration	Cost
90/06/06	11:31	5596	T002006	C002	1-705-652-3113	ON	0:13:13	9.66
70/06/11	11:57	5576	T002003	C002	1-414-769-4300	WI	0:04:41	3.69
90/06/11	12:32	5555	T002004	C002	1-414-747-0338	WI	0:02:11	2.21
90/06/18	10:23	5596	T002004	C002	1-819-597-2911	PQ	0:00:39	0.69
90/06/18	10:24	5596	T002004	C002	1-819-597-2911	PQ	0:01:45	1.38
90/06/18	12:08	5596	T002001	C002	1-819-597-2911	PQ	0:04:07	3.45
90/06/18	13:48	5596	T002008	C002	1-819-597-2911	PQ	0:01:33	1.38
90/06/19	08:15	5596	T002009	COco	1-705-682-0649	ON	0:02:13	2.07
90/06/19	08:19	5596	T002001	C002	1-819-597-2911	PQ	0:04:45	3.45
90/06/19	08:28	5596	T002004	C002	1-416-335-4555	ON	0:02:57	2.07
90/06/19	15:12	5596	T002004	C002	1-705-675-1123	ON	0:02:41	2.07
90/06/19	16:01	5596	1002007	C002	1-705-675-1123	ON	0:00:45	0.69
90/06/25	09:56	5596	T002002	C002	1-865-2271	8C	0:04:23	2.05
90/06/25	13:17	5596	T002007	C002	1-865-2271	BC	0:00:21	0.60
90/06/25	13:20	5596	T002002	C002	1-306-931-0801	SK	0:11:07	8.28
90/06/25	14:40	5596	T002009	COco	1-216-676-2212	OH	0:00:51	0.74
90/06/26	08:28	5596	T002008	C002	1-216-676-2400	OH	0:15:13	11.79
90/06/27	08:40	5596	T002008	C002	1-216-676-2400	OH	0:18:05	14.00
90/06/27	12:56	5596	T002007	C002	1-306-931-0801	SK	0:22:23	15.88
90/06/27	13:20	5596	1002002	C002	1-865-2271	BC	0:01:31	0.96
90/06/28	11:29	5596	T002009	COco	1-306-931-0801	SK	0:00:59	0.69
90/06/28	12:50	5596	T002004	C002	1-306-931-0801	SK	0:14:57	10.35
Totalo	22 22	10					2+11+20	00 15

Totals

22 calls

2:11:20 98.15

Cominco Engineering Services Ltd.		
Invoice No. 07-CECV011	Date 90-08-	10
NORTH COAST INDUSTRIES LTD. 1270 - 601 WEST HASTINGS STREET VANCOUVER, B.C. V6B 5A6	Accounting Inquiries GR ALB Phone – (604) Technical Inquiries Name – VCR:HM Phone – (604)	264-5525 Bolu
ATTENTION: MR. DAVE COPELAND	Reference No.	
JULY, 1990 EXPENDITURES AS ATTACHED CEC.V01.1 - BISSET CREEK METALLURGICAL TESTWORK		
PROFESSIONAL ENGINEERING SERVICES: (SEE ATTACHMENT 1)	\$ 7,426.00	
REIMBURSABLES: (SEE ATTACHMENT 2)	542.99	
TOTAL THIS INVOICE	\$ 7,968.99 =======	

ſ

309

PAGE 161

COMINCO ENGINEERING SERVICES LTD.

90-08-03

J\$644

CUMULATIVE TIME DISTRIBUTION FOR JUL , ENDING 90/07/31

ATTACHMENT 1

CV01-1	BISSET	CK METALLURGICAL TE	ESTWORK		P.O. NO:				
	MAN NO.	NAME	REG HRS	OVT HRS	TOTAL HRS	CHARGE RATE	CHARGE AMOUNT	OVERTIME PREMIUM	TOTAL AMOUNT
MINING									
		FABIAN	14.0		14.0	41.00	574.00		574.00
	AC	TIVITY TOTALS	14.0		14.0		574.00		574.00
	FFICE SER								
		WOODHOUSE WILLIAMS	20.5 4.0	6.5	27.D 4.0	27.50 27.50	742.50 110.00		742.50
110100 8	800278 DJ	WILLIAMS	4.0		4.0	27.50	110.00		110.00
	AC	TIVITY TOTALS	24.5	6.5	31.0		852.50		852,50
MECH GE	ENERAL								
	800096 WJ	ROSS	1.0		1.0	47.00	47.00		47.00
	AC	TIVITY TOTALS	1.0		1.0		47.00		47.00
PIPING									
10100 8	800088 SE	SCHROEDER	5.0		5.0	41.00	205.00		205.00
	AC	TIVITY TOTALS	5.0		5.0		205.00		205.00
METAL'I	L ENGINEE	RS							
10100 E	800303 HM	BOLU	95.0		95.0	60.50	5,747.50		5,747.50
	AC	TIVITY TOTALS	95.0		95.0		5,747.50		5,747.50
	CHARG	E CODE TOTALS	139.5	6.5	146.0		7,426.00		7,426.00
		JOB TOTALS	139.5	6.5	146.0		7,426.00		7,426.00

.

PAGE: 1

JJ708

COMINCO ENGINEERING SERVICES LTD

90-08-10

CEC.V011

BISSET CREEK METALLURGICAL TESTWORK REIMBURSABLES

ATTACHMENT 2

			SUPPLIER	
JOB	CODE	SUPPLIER NAME	INVOICE NUMBER	AMOUNT
V011	0200	DWARF COURIER LTD.	J/E 00061	\$10.00
	0200	VANCOUVER COMPUTER CHARGES - JULY/90	J/E 00111	386.69
	0200	VANCOUVER PHOTOCOPY CHARGES - JULY/90	J/E 00041	139.05
	0200	DWARF COURIER LTD.	C140630	7.25
			JOB TOTAL	\$542.99 =======

· ·· · · · ·					·			-
4 1		Dwarf	Courier	break	tawn -	April S	p	
GL	Sub	PCIS						
1103	Ø389			35.25	1. Nou	akowsk	i Cour	ipr
103	ØITT		· · · · · · · ·	10.00	-	Han Co	i	
1102	Ø287	· · · ·		33.00		nel Cou		
1150	CAPI	,		100.75	EIS98			
1150	Facz	8E8Ø		5.00		500	╡ 	
8401	H95Ø	υсυφ		3.75				
1150	K525	8327	• • •	32.00		•		
1150	LØ3Z	8137		102.75				
7401	MISØ	0, 0 ,		20.00			-	
5175	N884			50.00		-		
	P669	R500		57.50		1 • •		
5401	RIID			23.25				
5401	R380			5.00		;	i	
1101	R849	R500		3.75				
1101	R991	A700		13.00				
1150	TISI	8137		195.75		а 1		
1101	7021	0200		7.50		1		
150	T171	8131		5.00				i
1101	TTOF	A700		20.25			· · ·	•
1101	TBIE	0000		5.00				
1101	VØH	0200		10.00				
5401	V150			4.50		1	:	
1101	V441	RSOD		10.00				
5113				10.00				:
1101	V591	VSIØ		20.75				
5401	VGIØ	- 7		7.55	:	•		
5401	V770			5.00			-	
[10]	TTØF	A7¢Ø		10.00			•	
;	1 P	• •	1			ł		3
						: 		-
				i		- 		

1.130- H K

Small in Name - BIG IN RELIABILITY!

2895 Simpson Rd. Richmond, B.C. V6X 2R2 Dispatch: 278-1935 Admin: 278-8044

ł.

ACCOUNT NO.

C14

06 008

INVOICE DATE

04/30/90

INVOICE NO.

C140430

2895 Simpson Rd. Richmond, B.C. V6X 2R2

REMITTANCE STUB

AMOUNT REMITTED __

INVOICE NO.						
C140430						
INVOICE DATE	ACCOUNT NO.					
04/30/90	C14					

COMINCO ENGINEERING 100-1200 WEST 73RD., VANCOUVER, B.C. V6P 6G5

TO:

TERMS: NET 15 DAYS - 2% CHARGED ON ALL OVERDUE ACCOUNTS.

	'S · 2% CHARGED	ON ALL OVERDUE ACCOUNTS.			PLEASE CHECK INDI	VIDUAL INVOICES PAID.
TRANSACTION DATE	INVOICE NO.	DESCRIPTION	AMOUNT	BALANCE	INVOICE NO.	AMOUNT DUE
03/31/90 04/30/90	C140331 C14042	15 DAYE	1.063.85	1,063.85	C140331 C140430	1,063.85 1,088.60
	1 Dr	DIS AMOUNT 9	1 Donle Donle			
1199	CURRENT		YS 90 DAYS	TOTAL	BALANCE DUE	TOTAL
MOUNT DATE	17	1,063.85 0.0	0 0.00	2,152.45	\Diamond \Diamond	2,152.45

dwarf COURIE	ER		patch: 27 Admin: 27			WAYBILL NO.	338	3043)
(Division of RICHMOND dwarf COURIER	LTD.)	MONTH 04	DAY	9	D	SMALI	IN NAME BIG IN RE	LIABILITY	(
	TO:	1 51		· · · · ·	1		ADVANCE CHARGE		
COMINCO ENGINEERING 100-1200 WEST 73RD.,	Su	<u>C ENI</u> TE/27	CINBER	141.	HART	TNESS	ADVANCE		
VANCOUVER, B.C.	VC	R		<u> </u>			WAITING		
V6P 6G5 C14	AT	T: DA	VEC 6	PEL	tyg.	12			
THIRD PARTY CHARGE			TEL.	684	630	8	WEIGHT CHARGE		
	нот		RUSH		REG.		DELIVERY CHARGE		
	N/D ECO		RETURN				RETURN		
INSTRUCTIONS					NO. OF PIECES	WEIGHT	OTHER		
			<u> </u>		1	LBS.	With The said		
RE: OUIMB.					/	KGS.	TOTAL.	P 10	00
SHIPPER: TIME DRIVER RECEIVED IN PIU IPLS PRINTI M MULLARE PARTY			TIME Z	DRIVER RE DEL GC 34	TURN REC OD ORDE	Eived in App R. (PLS. Prin	ARENT T)	TIME A.M. P.M.	DRIVER DEL
IMPOSENT SHEET HABILITY OF CARRIER IS \$4.41 PER KG. WITHIN 30 DAYS OF SHIPMENT PLEASE REFER TO TERMS AND 11:55414	CONDITIC		RSE SIDE.	AIMS MU	ST BE SI	JBMITTED	CASH 🗌	CHEQUE	

Page No. 27 07/30/90	COMINCO COMPUTER USAGE I	ENGINEERING LTD NVOICE (SUMMARY		VANCOUVER JULY 1990
JOB No. V011	SER	TOTAL TIME	RATE/HR.	CHARGES
	FULL TIME CAD STATIO F800386	N 14:00	14.00	\$ 196.00
TOTAL MACHINE 8018		14:00		\$ 196.00
	FULL TIME CAD STATIO ES800088	N 5:13	14.00	\$ 73.04
TOTAL MACHINE 8044		5:13		\$ 73.04
	FULL TIME CAD STATIO JR800096	N 2:06	14.00	\$ 29.40
TOTAL MACHINE 8051		2:06		\$ 29.40
	APPLICATIONS ENG. ST. MB800303	ATION 17:39	5.00	\$ 88.25
TOTAL MACHINE 8056		17:39		\$ 88.25
TOTALS FOR PROJECT	VOll	38 :58		\$ 386.69

.

COMINCO ENGINEERING SERVICES LTD. PHOTOCOPY USAGE CHARGES JULY 1990

USER ID.	JOB NUMBER	COPIES MADE	RATE	AMOUNT CHARGED
8011	V011 BISSET CREEK METALLURGICAL	REVIEW		
	1ST FLOOR - CANON NP-7550 1ST FLOOR - CANON NP-6650 3RD FLOOR - CANON NP-8570 3RD FLOOR - XEROX 1045 4TH FLOOR - CANON 6650 4TH FLOOR - MITA DC-313Z	0 0 769 0 158 0	0.15 0.15 0.15 0.15 0.15 0.15	\$0.00 0.00 115.35 0.00 23.70 0.00
	TOTAL CHARGES	927 ======		\$139.05

warf Courier JUNE 'Q 5113 216,63 150 E159 7500 へに 2 1 6 + 5. 32 . 11. Я 4.03 2014 14.02 110 6 C 23.491 0.05 3 · : : : : : : R5007 . 3 15. 25. 813 3. 8137 7 . たン ́с 17:1 5 .7. 7 . 10.0 V810 0. 8. 14.73 9 • 2 5 3 • 7 3 3 - 73 12.5 (\mathbf{J}) - 027 753-72 3 Gord Douglas -961 JIE T Suite 600 . . 101 Æ. 3);

0130-H.P

Small in Name - BIG IN RELIABILITY!

'O:

COMINCO ENGINEERING 100-1200 WEST 73RD., VANCOUVER, B.C. V6P 6G5

ERMS: NET 15 DAYS - 2% CHARGED ON ALL OVERDUE ACCOUNTS.

150-2981 Simpson Rd. Richmond, B.C. V6X 2R2 Dispatch: 278-1935 Admin: 278-8044

ACCOUNT NO.

C14

INVOICE NO.

C140630

INVOICE DATE

06/30/90

150 - 2981 Simpson Rd. Richmond, B.C. V6X 2R2

REMILTANCE STUB

AMOUNT REMITTED .

INVOI	CE NO.					
c140630						
INVOICE DATE	ACCOUNT NO.					
06/30/90	C14					

	0 - 2 / OHANGED					PLEASE CHECK IN	DIVIDUAL INVOICES PA	٩ID
RANSACTION	INVOICE NO.	DESCRIPTIO	N	AMOUNT	BALANCE	INVOICE NO.	AMOUNT DUE	ļ
6/30/90	C140630	138 WAYBI	LLS	783.73	783.73	C140630	783.73	
AGE	CURRENT	30 DAYS	60 DAYS	90 DAYS	TOTAL	BALANCE CHUE	TOTAL	
AMOUNT	783.73	0.00	0.00	0.00	783.73		783.73	1

		• •		-				
ER					WAYBILL NO.	287	' 904	
R LTD.)	MONTH.	DAY 27	YE Q(AR C	SMALI		LIABILITY	Ŷ
10	th C	aast	Inc	•		ADVANCE CHARGE		
Suit	re 12-	10			(td.	AMOUNT		
600	5 We			<u> 25 S</u>	<u> </u>	WAITING TIME		
~ / /	A T	• •	<u>.C.</u>	J				
1 16	USAL	TEL.				CHARGE		
нот		RUSH	X	REG.		DELIVERY		
N/D ECO	NO 🗌	RETURN		CONT		RETURN		
				NO. OF	WEIGHT			
				/ LOLO	LBS.	OTHER		
				2	KGS.	TOTAL		35
APPAPENT	GOOD ORDER	TIME	DRIVER RE DEL GO	TURN REC IOD ORDE	EIVED IN APP R. (PLS. PRIN	ARENT T)	TIME A.M. P.M.	DRIVER DEL
CONDITION	IS ON REVE	RSE SIDE.		ST BE SU	IBMITTED	сазн 🗌	CHEQUE	
		A MONTH 1 LTD.) TO MONTH OG TO MONTH OG TO NO SUITE 2 GO VO SUITE 2 GO VO SUITE 2 GO VO SUITE 2 GO VO SO CO CO CO CO CO CO CO CO CO C	Admin: 27 Admin: 27 ALTD.) MONTH. DAY DG 27 TO MONTH. DAY DG 27 TO MONTH. DAY DAY DG 27 TO MONTH. DAY DAY DAY DAY DAY DAY DAY DAY	Admin: 278-8044 Admin:	N/D ECONO CROERE TIME DRIVEN RETURN REC. N/D ECONO CROERE TIME DRIVEN RETURN REC. CONDITIONS ON REVERSE SIDE.	Admin: 278-8044 Admin: 278-8044 Admin: 278-8044 Admin: 278-8044 Admin: 278-8044 SMALL SMALL COLLECT COLLECT COL	ER Admin: 278-8044 NO. 287 Admin: 278-8044 SMALL IN NAME BIG IN RE BIG IN RE ADVANCE AMOUNT GOOD West Hastings St. 100 West Hastings St. ADVANCE AMOUNT WEIGHT CHARGE 101 RUSH REG. N/D ECONO RETURN CONTRACT N/D ECONO RETURN CONTRACT N/D ECONO RETURN CONTRACT NAPPAMENT BOOD ORDER TIME DR S50 00 PER SHIPMENT. ALL CLAIMS MUST BE SUBMITTED ON S50 00 PER SHIPMENT. ALL CLAIMS MUST BE SUBMITTED	Italiciti. 276-1935 NO. 287904 Admin: 278-8044 SMALL IN NAME BIG IN RELIABILIT SMALL IN NAME BIG IN RELIABILIT Ital. MONTH. DAY YEAR Ob 27 90 SMALL IN NAME BIG IN RELIABILIT Ital. MONTH. DAY YEAR Ital. MONTH. DAY YEAR Ital. MONTH. DAY YEAR Ital. MALL IN NAME BIG IN RELIABILIT ADVANCE CHARGE Suite 270 Advance Advance Suite 270 Advance Advance Suite 270 Advance Advance Suite 270 Advance Advance Suite 270 Advance Voite 780 Tell No. OC Return Contract No Devendent TIME Devendent No Devendent Time Devendent No Devendent Time

100 - 1200 West 73rd Ave., Vancouver, B.C., Canada V6P 6G5 / Tel. (604) 264-5500 / Telex 04-55357 / Fax (604) 264-5555

ų,

September 17, 1990

North Coast Industries Ltd. 1270 - 601 West Hastings Street Vancouver, B.C. V6B 5A6

Attention: Dave Copeland

Dear Sir:

Re: Bisset Creek Metallurgical Testwork

Please find enclosed our August, 1990 invoice with respect to the above mentioned project:

August Invoice #08-CECV011 \$ 2,588.13

Should you have any questions, please call.

Regards,

G.R. Albright Revenue and Project Accounting Manager

GRA/cjb

Encl.

Cominco Engineering Services Ltd.

Invoice No. 08-CECV011	Date 90-09-11
NORTH COAST INDUSTRIES LITR	Accounting Inquiries
NORTH COAST INDUSTRIES LTD. 1270 - 601 WEST HASTINGS STREET	Phone - (604) 264-5525
VANCOUVER, B.C. V6b 5A6	Technical Inquiries
	Name - VCR:HM BOLU Phone - (604) 264-5596
ATTENTION: DAVE COPELAND	Reference No.
AUGUST, 1990 EXPENDITURES AS ATTACHED	
CEC.V01.1 - BISSET CREEK METALLURGICAL TESTWO	RK
PROFESSIONAL ENGINEERING SERVICES (SEE ATTACHMENT 1)	\$2,450.25
REIMBURSABLES (SEE ATTACHMENT 2)	\$137.88
TOTAL THIS INVOID	CE \$2,588.13

ij

Remit To — Suite 100 · 1200 West 73rd Avenue Vancouver, B.C. V6P 6G5

Net 30 Days

Interest Charged at 11/2 % Per Month on Overdue Accounts.

COMINCO ENGINEERING SERVICES LTD.

90-09-05

-23

ATTACHMENT 1

JS644

CUMULATIVE TIME DISTRIBUTION FOR AUG , ENDING 90/08/31

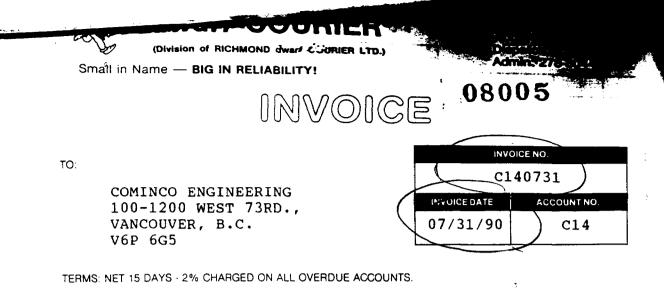
CECV01-1	BISSET CK ME	TALLURGICA	L TESTWORK		P.O. NO:				
CHARGE CODE	MAN NO .	NAME	REG HRS	OVT HRS	TOTAL HRS	CHARGE RATE	CHARGE	OVERTIME PREMIUM	TOTAL AMOUNT
METAL V0110100	'L ENGINEERS BOD303 HM BOL	.U	40.5		40.5	60.50	2,450.25		2,450.25
	ACTIVII	Y TOTALS	40.5		40.5		2,450.25		2,450.25
	CHARGE COL	DE TOTALS	40.5		40.5		2,450.25		2,450.25
	JU	B TOTALS	40.5		40.5		2,450.25		2,450.25

COMINCO ENGINEERING SERVICES LTD

PAGE:

1

CEC.VO11


JJ708

BISSET CK METALLURGICAL TESTWORK REIMBURSABLES

90-09-11 ATTACHMENT 2

JOB	CODE	SUPPLIER NAME	SUPPLIER INVOICE NUMBER	AMOUNT
		JUFFLICK NAME		AMOUNT
V011	0200 0200 0200	DWARF COURIER LTD. VCR COMP CHGES JULY/90 VCR PHOTOCOPY - AUG/90	C140731 J/E 00027 J/E 00077	20.00 116.08 1.80
			JOB TOTAL	\$137.88

File Note By Date e No. rsons Present bject Dwarf Cources - July 1990 190.70 5113 (E1598300) 59.45 1150 CAPI 0000 52.50 (EIG88240) 1150 02.00 CAP 1 199.50 8327 1150 KS-2 3.75 1150 L032 8131 1150 4.50 US61 0200 3.75 1103 0393 (Douglas 3.25 (NovaKowski 1103 0389 5.00 (Douglas_ 0393 1103 6.50 Hand 6287 1103 1103 0545 7.00 0184 Williams μ 1103 10.00 3.75 Vg21 1106 0900 5401 W380 10.00 1101 VOII 0200 20.00 5401 5.00 MISØ 7.50 1150 8131 LØ32 8137 1150 TITI 10.75 5401 3.05 1480 4961 15.50 JJJE RSOO P669 5.00 101 5.00 5401 R380 5401 21.95 RIIO 4.50 R\$49 101 RSCO 8137 3.05 TISI 1150 8131 (17)11.00 1150

TRANSACTION AMOUNT **JALANCE** DESCRIPTION INVOICE NO. INVOIDE C140731 ORIGINA 125 07/31/90 672.35 EXTENSION TAXES PRICE GOODS/SERVICE RECEIVED Ņ AMOUNT PČIS JOB # Ġ.L 1990 10 AUG Ahil 5 APPROVAL 30 DAYS 60 DAYS CURRENT 90. DAYS OTAL AGE 672.35 0.00 0.00 672.3 0.00 AMOUNT

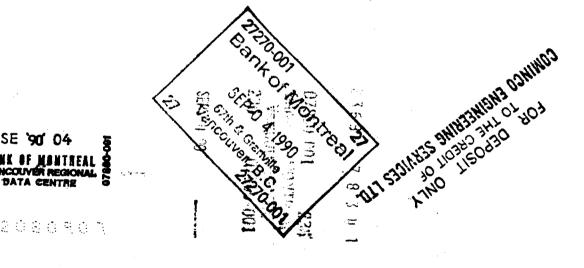
	TER	Admin: 278						
(Division of RICHMOND dwarf COL	1.00	MONTH & HA DAY AN	90		Same		DADON	
PREP/	AID TO:	0			DULECT []	ADVANCE		
COMINCO ENGINEERING	NORTH	Coast In	dust	les	LTd.	ADVANCE		
100-1200 WEST 73RD.,	<u>270-</u>	-601 W.	HAS	TIN	os_	AMOUNT WAITING TIME		<u> </u>
VANCOUVER, B.C.	VANC	OUVER_	PC	•		TIME		
V6P 6G5 C14		 TEL.				WEIGHT		
HIRD PARTY CHARGE	нот	RUSH		REG.		DELIVERY	}	
	N/D ECONO			CONT		CHARGE	 	
				NO. OF	WEIGHT	CHARGE		<u> </u>
ISTRUCTIONS.				PIECES		OTHER		
1-Envelope				ł	LBS.	TOTAL		
SOLATION VALL	0700			1	KGS.	TOTAL	10	
HIPPER	EIVED IN APPARENT GO	DOD ORDER. TIME		jan rec D orde	EIVED IN APP A. (PLS. PRIN	ARENT	TIME A.M. P.M.	DRIV
IPORTANT, MAXIMUM LIABILITY OF CARRIER IS \$4.41 P		UN HEVENDE DIDE.					CHEQU	
THIN 30 DAYS OF SHIPMENT PLEASE REFER TO TERM	OFFIC	E COPY				Cash []		
THIN 30 DAYS OF SHIPMENT PLEASE REFER TO TERM dwarf COU (Division of RICHMOND dwarf CO	RIER	Dispatch: 27 Admin: 27			WAYBILL NO.	28	793'	1
THIN 30 DAYS OF SHIPMENT PLEASE REFER TO TERM dwarf COU (Division of RICHMOND dwarf CO	RIER	Dispatch: 27 Admin: 27	8-8044	$\overline{2}$	NO.	28 L IN NAME BIG IN F	793	1
THIN 30 DAYS OF SHIPMENT PLEASE REFER TO TERM dwarf COU (Division of RICHMOND dwarf CO		Dispatch: 27 Admin: 27 MONTH DAY	8-8044	21		28 LIN NAME BIG IN F	793	1
THIN 30 DAYS OF SHIPMENT PLEASE REFER TO TERM dwarf COU (Division of Richmond dwarf CO ROM: COMINCO ENGINEERING 100–1200 WEST 73RD.,		Dispatch: 27 Admin: 27 MONTH DAY	78-8044	21		28 L IN NAME BIG IN F ADVANCE ADVANCE ADVANCE	793	1
ITHIN 30 DAYS OF SHIPMENT PLEASE REFER TO TERM dwarf COU (Division of RICHMOND dwarf CO ROM: COMINCO ENGINEERING 100–1200 WEST 73RD., VANCOUVER, B.C.		Dispatch: 27 Admin: 27 MONTH DAY	78-8044	21		28 L IN NAME BIG IN F ADVANCE ADVANCE	793	1
ITHIN 30 DAYS OF SHIPMENT PLEASE REFER TO TERM dwarf COU (Division of Richmond dwarf CO ROM. PREI <u>COMINCO ENGINEERING</u> 100–1200 WEST 73RD.,		Dispatch: 27 Admin: 27 MONTH DAY	78-8044	21		28 L IN NAME BIG IN F ADVANCE CHARGE ADVANCE ADVANCE ADVANCE AMOUNT WAITING	793	1
ITHIN 30 DAYS OF SHIPMENT PLEASE REFER TO TERM (Division of RICHMOND dwarf CC ROM: PREF COMINCO ENGINEERING 100–1200 WEST 73RD., VANCOUVER, B.C. V6P 6G5 C14	PAID TO: NOR SU/7 VAN	Dispatch: 27 Admin: 27 MONTH DAY OT OT TE CAST WEST HAT LOOUETC TEL	78-8044	21		28 LIN NAME BIG IN F ADVANCE CHARGE ADVANCE ADVANCE CHARGE	793	1
ITHIN 30 DAYS OF SHIPMENT PLEASE REFER TO TERM (Division of RICHMOND dwarf CC ROM: PREF COMINCO ENGINEERING 100–1200 WEST 73RD., VANCOUVER, B.C. V6P 6G5 C14		Dispatch: 27 Admin: 27 MONTH DAY	78-8044	21		28 L IN NAME BIG IN F ADVANCE CHARGE ADVANCE AMOUNT WAITING TIME WEIGHT	793	1
ITHIN 30 DAYS OF SHIPMENT PLEASE REFER TO TERM (Division of RICHMOND dwarf CC ROM: PREF COMINCO ENGINEERING 100–1200 WEST 73RD., VANCOUVER, B.C. V6P 6G5 C14	PAID TO: NOR SU/7 VAN	Dispatch: 27 Admin: 27 MONTH DAY 07 09 TF CAST E 1270 WEST HIM WEST HIM WEST HIM WEST HIM WEST HIM WEST HIM WEST HIM WEST HIM WEST HIM	78-8044	2 STR G-S REG		28 L IN NAME BIG IN F ADVANCE CHARGE ADVANCE CHARGE MOUNT WAITING TIME WEIGHT CHARGE DELIVERY CLIVERY CHARGE RETURN	793	1
ITHIN 30 DAYS OF SHIPMENT PLEASE REFER TO TERM dwarf COU (Division of RICHMOND dwarf CO ROM: COMINCO ENGINEERING 100–1200 WEST 73RD., VANCOUVER, B.C.	PAID IT PAID I	Dispatch: 27 Admin: 27 MONTH DAY 07 09 TF CAST E 1270 WEST HIM WEST HIM WEST HIM WEST HIM WEST HIM WEST HIM WEST HIM WEST HIM WEST HIM	78-8044 YEA TNOU STTN -	2 STR G-S REG		28 L IN NAME BIG IN F ADVANCE CHARGE ADVANCE AMOUNT WAITING TIME UNEIGHT CHARGE RETURN CHARGE	793	1
ITHIN 30 DAYS OF SHIPMENT PLEASE REFER TO TERM (Division of RICHMOND dwarf CC ROM: COMINCO ENGINEERING 100-1200 WEST 73RD., VANCOUVER, B.C. VGP 6G5 C14	PAID IT PAID I	Dispatch: 27 Admin: 27 MONTH DAY 07 09 TF CAST E 1270 WEST HIM WEST HIM WEST HIM WEST HIM WEST HIM WEST HIM WEST HIM WEST HIM WEST HIM	78-8044 YEA TNOU STTN -	2 STAT G-S REG CON NO. OF		28 L IN NAME BIG IN F ADVANCE CHARGE ADVANCE CHARGE MOUNT WAITING TIME WEIGHT CHARGE DELIVERY CLIVERY CHARGE RETURN	793	1
ITHIN 30 DAYS OF SHIPMENT PLEASE REFER TO TERM (Division of RICHMOND dwarf CC ROM: COMINCO ENGINEERING 100-1200 WEST 73RD., VANCOUVER, B.C. VGP 6G5 C14	PAID IT PAID I	Dispatch: 27 Admin: 27 MONTH DAY 07 09 TF CAST E 1270 WEST HIM WEST HIM WEST HIM WEST HIM WEST HIM WEST HIM WEST HIM WEST HIM WEST HIM	78-8044 YEA TNOU STTN -	2 STAT G-S REG CON NO. OF		28 L IN NAME BIG IN F ADVANCE CHARGE ADVANCE AMOUNT WAITING TIME UNEIGHT CHARGE RETURN CHARGE	793	1
ITHIN 30 DAYS OF SHIPMENT PLEASE REFER TO TERM (Division of RICHMOND dwarf CC ROM: PREA COMINCO ENGINEERING 100-1200 WEST 73RD., VANCOUVER, B.C. VGP 6G5 C14 HIRD PARTY CHARGE		Dispatch: 27 Admin: 27 MONTH DAY D7 D9 TF CAST LOCUETC TEL RUSH D RETURN	78-8044	REG. CON NO OF PIECES	NO. SMAL	28 L IN NAME BIG IN F ADVANCE CHARGE ADVANCE CHARGE MOUNT WAITING TIME DELIVERY CHARGE RETURN CHARGE OTHER TOTAL		
ITHIN 30 DAYS OF SHIPMENT PLEASE REFER TO TERM (Division of RICHMOND dwarf CC ROM: PREA COMINCO ENGINEERING 100-1200 WEST 73RD., VANCOUVER, B.C. VGP 6G5 C14 HIRD PARTY CHARGE	PAID IT: PAID I	Dispatch: 27 Admin: 27 MONTH DAY D7 D9 TF CAST LOCUETC TEL RUSH D RETURN	78-8044	REG. CON NO OF PIECES		28 L IN NAME BIG IN F ADVANCE CHARGE ADVANCE CHARGE MOUNT WAITING TIME DELIVERY CHARGE RETURN CHARGE OTHER TOTAL		
ITHIN 30 DAYS OF SHIPMENT PLEASE REFER TO TERM (Division of RICHMOND dwarf CC ROM: PREA COMINCO ENGINEERING 100-1200 WEST 73RD., VANCOUVER, B.C. V6P 6G5 C14 HIRD PARTY CHARGE	PAID IN APPARENT GO	Dispatch: 27 Admin: 27 MONTH DAY OT OT TH CAST HIST HIT COUST TEL RUSH DO RETURN CODORDER TIME A445 ER SHIPMENT ALL CL	V8-8044	REG CON NO OF PIECES		28 L IN NAME BIG IN F ADVANCE CHARGE ADVANCE CHARGE MOUNT WAITING TIME DELIVERY CHARGE RETURN CHARGE OTHER TOTAL		

		the second s			
the surface of the su	COMPUTER USAGE 1	ENGINEERING LTD	FORM)	VANCOUV	ER 1990
ACHINE No. 8059	USER	TOTAL TIME	RATE/HR.	CHARG:	
	SECRETARIAL STATION SEW800188	0:22	5.00	\$ 1.4	83
TAL MACHINE 8059 CHINE No. 8065		0:22		\$	33
	SEW800188	22:51	5.00	\$ 114.2	25
TAL MACHINE 8065		22:51		\$ 114.2	25
TALS FOR PROJECT	VOIP	23:13		\$ 116.0	8

COMINCO ENGINEERING SERVICES LTD. PHOTOCOPY USAGE CHARGES AUGUST 1990

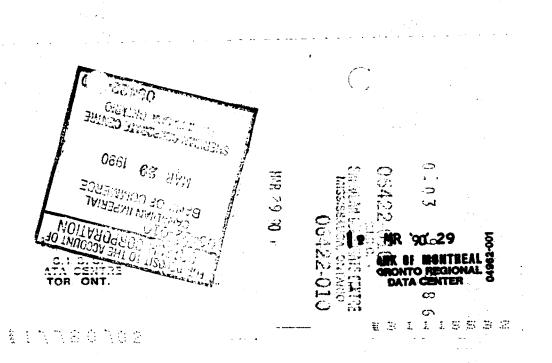
10000

4 **4 5** .--


USER ID.	JOB NUMBER	COPIES MADE	RATE	AMOUNT CHARGED
8011	V011 BISSET CREEK METALLURGICAL	REVIEW		
	1ST FLOOR - CANON NP-7550 1ST FLOOR - CANON NP-6650 3RD FLOOR - CANON NP-8570 3RD FLOOR - XEROX 1045 4TH FLOOR - CANON 6650 4TH FLOOR - MITA DC-313Z	0 0 0 12 0	0.15 0.15 0.15 0.15 0.15 0.15	\$0.00 0.00 0.00 0.00 1.80 0.00
	TOTAL CHARGES	12		\$1.80

.....

NORTH COAST I' JSTRIES LTD. 1318 PRICE WATERHOUSE CENTRE <u>19 90</u> #1270 - 601 WEST HASTINGS STREET VANCOUVER, B.C. V6B 5A6 800.00 PAY TO_____ ns 100 DOLLARS NORTH COAST INDUSTRIES LTD. BANK OF MONTREAL i. GRANVILLE & PENDER STREET BRANCH 21 500 - 520 GRANVILLE STREET ĽЭ VANCOUVER, B.C., V6C,1W7 23 5 100-9-0 PER FOR "000080000" 1239++102# #001318# 108120-0011


11202030303

SE 90 04

0132 NC TH COAST INDUSTRIES LTD. .JO - 1177 WEST HASTINGS STREET VANCOUVER, BC V6E 2K3 PHONE 681-0799 19_91 6 500 .00 Continco Engineering Services L 12 PAY TO THE ORDER OF and 2100 DOLLARS AIL NORTH COAST INDUSTRIES LTD. unce of account 100 RE: 1 P6R **Bank of Montreal** VANCOUVER MAIN OFFICE FIRST BANK TOWER, 595 BURRARD ST. VANCOUVER, B.C. V7X 1L7 PER #000132# #00040+001# 1251+893# 100012500004 ** Dicor & iannosuer ÷. 1561 5 1 JAW Benkor Montreal IN 12 OI 07-803 સ્ટ 130 100-022. 070 MY '91' 13 ▲教 - ない ひゅうナッチット *ANCOUNCE 2----C:O 19 DATA CENTINE c C. teze z solje Ú Ď.

	C'harren e				nang-1, -, 1, -, 1, -, 1, -, 1, -, 1, -,
				INV	OICE
	ORTECH		1	Nº 1	4976
	2395 Speakman Drive Mississauga, Ontario L5K 183 (416) 822-411 Telefax (416) 823-1446				
	and the second second second				
ISSUED TO	North Coast Indus 200 Granville St. Suite 1575 Vancouver, B.C.		DATE	March 15, 19	990
	Attn: David J. C.	opeland			
				ABLE UPON RECEII	
YOUR ORDER NU	MBER Signed Proposal	OUR REPORT NUMBER P-6226 CI	DEPARTMEN	41–11318	
		L	· · · · ·		
	Bench and Pilot P	lant testing of Bissett Cr	reek Deposít		\$2,820.35
					and a second
			5. 		
الي الواليسين والايد ما والايدي	• 	میں ہوتے ہیں المریک کے مرکز الم	n n ar anasar		a an
		a to will cause	the at	por vegecosi	: tot
		ind to uccessing	YVT	-45	-
	· · · · ·	This is a cop Invoice which Forwardied durie	y of the Has been Ctily to yo		
		accounts pay	able dept	0	
		ASE PAY FROM THIS INVOICE - NO ST		.	
	COPUS. WHITE & BLU	E: Customer GREEN & CANARY: Acc (A Division of ORTECH Corporation)	ounting PINK&GC DN)	DLD: Department	

NORTHCOAST INDUSTRING LTD. 0024 25 19 90 \$ 7870.32 PAY TO_____ ~ 37100 DOLLARS (ur BANK OF MONTREAL NORTHCOAST INDUSTRIES LTD. GRANVILLE & PENDER STREET BRANCH 500 - 520 GRANVILLE STREET · • • • VANCOUVER, B.C. V6C 1W7 PER 14976 PER 'n FOR. 1:08120-0011 1243-347# #000024#* <u>, 2 E OS BS 0000 -</u>

		O	R	7	Έ	C] ·	-	
ł	NE	R N	A	τı	0	Ν	А	L	
		Missi (416)	5 Spea ssauga 1822- ax (41a	, Onti 4111	ario l {800	.5K I)) 26	183 8-53	90	

North Coast Industries Ltd.

Attn: David J. Copeland

200 Granville st.

Suite 1575 Vancouver, B.C.

ISSUED TO

INVOICE

-

Nº 14357

DATE February 15, 1990

TERMS: PAYABLE UPON RECEIPT 1-1/2% PER MONTH ON PAST DUE ACCOUNTS

YOUR ORDE	RNUMBER	OUR REPORT NUMBER	DEPARTMENT	
	Signed Proposal	P-6226 CT	41-11318	
·	Bench and Pilot Pla	int testing of Bissett Cree	sk deposit ore	
	Advance payment	9,500.00		
	inv. 14357	<u>20,324.60</u>		\$ 20,3 24.60
	Amount due	10,824.60		\$20,3 84.69
	A E	rlere Ext 213	.	
		This is a copy o invoice which ha forwarded directl accounts paymen	y tro wondr	
		PLEASE PAY FROM THIS INVOICE - NO S	STATEMENT SENT	
	COPIES WHITE &	BLUE Customer GREEN & CANARY A (A Division of ORTECH Corpor	-	

. •

~

INTER	DRTECH NATIONAL 395 Speakman Drive 1163 822-1446 elefax (416) 823-1446		ואז № [16	voice 3329
ISSUED TO	North Coast Indus 601 West Hasting Suite 1270 Vancouver, B.C. B6B 5A6		DATE April 24, 1990	
			TERMS: PAYABLE UPON RECEI	
YOUR ORDER NUMBE	R	OUR REPORT NUMBER	DEPARTMENT 41-11318	
		CREDIT NOTE		
	To adjust invoic	e #14357 dated February 15	, 1990	(\$3,060.95) CREDIT
	Invoice 14357 Cr. note Balance owing	10,824.60 <u>3,060.95</u> 7,763.65		

PLEASE PAY FROM THIS INVOICE - NO STATEMENT SENT

NORTHCOAST INDUSTIES LTD. 0003 1270 - 601 WEST HASTI. S STREET VANCOUVER, B.C. V6B 5A6 29 9500.00 PAY TO_ THE ORDER OF Ó 100 DOLLARS BANK OF MONTREAL NORTHCOAST INDUSTRIES LTD. GRANVILLE & PENDER STREET BRANCH 12. 500 - 520 GRANVILLE STREET VANCOUVER, B.C. V6C 1W7 PER PER FOR_ 77 1:08120-0011 1243-347# #000003# ·OOOO950000· مرتجد بسرامها سيرسان $\sim \sim q^{N_{\rm e}}$ · . . 06455-010 CHEMARIO 'AGUASSISSIM ARTINES HERBORHOD HAGIREHS Э 2 063 **8 834** .> \sim 3 F3 00 07 FB. 90 02 C:MA: TE OSMIDE 5 17 **U**.1 nù 122230031 El Moldon - U

NORTHCOAST INL STRIES LTD. J 0032 1270 - 601 WEST HASTINGS STREET VANCOUVER, B.C. V6B 5A6 8 1990 \$ 763.65 PAY TO____C 65 Jur thou 227 100 DOLLARS NORTHCOAST INDUSTRIES LTD. BANK OF MONTREAL GRANVILLE & PENDER STREET BRANCH 500 - 520 GRANVILLE STREET 11 VANCOUVER, B.C. V6C 1W7 PER e produktion (* 1997) National (* 1997) 12.1 यसम्बद्ध विश्वित्यक #16329 PER FOR Éch. #000032# #08120#001I 1243#347# <u>, 000077636</u>5, #Y '90']) C. D. C. DATA CENTRE TOR. ONT. :11 31 P1962-001 HANTREAL TO A ONAL DATA CE 111-1

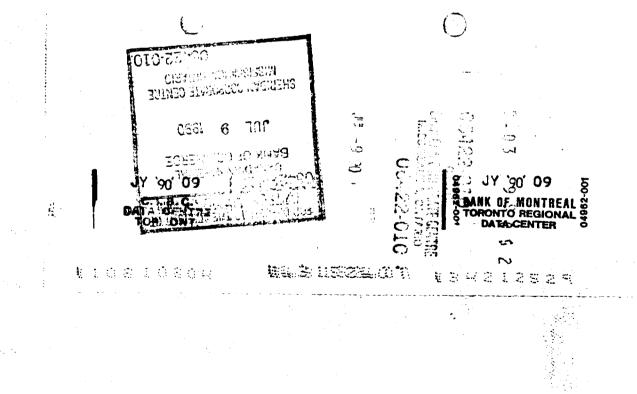
¥2333311103

#31033880

INVOICE

DATE June 21, 1990

ISSUED TO North Coast Industries Ltd. 1270-601 West Hastings Street Vancouver, B.C. V6B 5A6


> Attn: Mr. H. Forzley President

> > TERMS: PAYABLE UPON RECEIPT 1-1/2% PER MONTH ON PAST DUE ACCOUNTS

YOUR ORDER NUMBER	OUR REPORT NUMBER	DEPARTMENT	
		41–23011	
		· · · · · · · · · · · · · · · · · · ·	
_			
For services re	endered re:		
Testing Bi	sset Creek Graphite for Exfol	iation \$5,000.00	\$5,000.00
	-		
	PLEASE PAY FROM THIS INVOICE NO S	TATEMENT SENT	
COPIES: WHIT	E & BLUE: Customer - GREEN & CANARY: A		
COPIES: WHIT	(A Division of ORTECH Corpora	ation)	

.

NORTHCOAST INDUSTP''S LTD. 1270 - 601 WEST HASTIN, TREET VANCOUVER, B.C. V6B 5A6 0045 ~ 6 1990 <u>5000.00</u> PAY TO_____ 00 DOLLARS BANK OF MONTREAL NORTHCOAST INDUSTRIES LTD. GRANVILLE & PENDER STREET BRANCH 500 - 520 GRANVILLE STREET VANCOUVER, B.C. V6C 1W7 PER ۱ PER FOR. #000045# 408120#0014 1243-347# **+'000050000**+'

A DIVISION OF FALCONBRIDGE LIMITED Box 430, 185 Concession St., Lakefield, Ontario KOL 2HO one: (705) 652-3341 Telex No. 06 962842 Fax No. (705) 652-6365

1201-601 West Hastings St., Price Waterhouse

North Coast Industries Ltd.

Vancouver, B. C., V6B 5A6

FIELD RESEAR

No.: C 03235

DATE January 11, 1990

SENT TO: Mr. D. Coupland

0

5235 Our Certificate Of Analysis Number(s): 9033488 Our Reference Number: Number of Samples: RE: 9 Samples for Carbon total and graphitic **Analytical Cost** Symbol Element Unit Price Assay Cost Qty. 9 C(T) % 1-Carbon Total \$10.00 \$90.00 9 C(G) % 1-Carb. Graphitic \$18.00 \$162.00 \$252.00 Additional Costs. Sample Preparation: **Pulverizing**: Long Dist.Phone : \$0.00 Telex: % Discount Facsimile: \$252.00 \$252.00 Net Cost Courier/Spec.Del.: \$252.00 Extras Freight: Custom/Broker: Less Advance Payment: Storage: hrs: 🖲 • Extras \$252.00 Invoice Amount

INVOICE

PLEASE PAY BY INVOICE - Terms: Net 30 days. 2% service charge per month on overdue accounts

A DIVISION OF FALCONBRIDGE LIMITED P.O. Box 430, 185 Concession St., Lakefield, Ontario KOL 2HO Phone: (705) 652-3341 Telex No. 06 962842 Fax No. (705) 652-6365

No.: **C** 03278

DATE January 24, 1990

SENT TO: Mr. D. Coupland

North Coast Industries Ltd. 1201-601 West Hastings St., Price Waterhouse Vancouver, B. C., V6B 5A6

FIFI N RESE*L*

umber of Sa	ampico.					
nalytical C						
	Qty.	Symbol	Element	Unit Price	Assay Cost	
	6	C(T) %		\$10.00	\$60.00	
	6	C(g) %	1-Carb(Graphitic)	\$18.00	\$108.00	
					1	
Addi	itional Cos	ts.			\$168.00	
r	itional Cos Preparati				\$168.00	
r		ion :			\$168.00	
Sample	e Preparati Pulverizi ng Dist.Pho	ion : ing : one :				
Sample	e Preparati Pulverizi ng Dist.Pho Tel	ion : ing : one : lex :		% Discount	\$0.00	
Sample	e Preparati Pulverizi ng Dist.Pho Tel Facsim	ion : ing : one : lex : ile :		% Discount Net Cost		\$168.9
Sample	e Preparati Pulverizi ng Dist.Pho Tel Facsim ier/Spec.D	ion : ing : one : lex : ile : el. :		Net Cost	\$0.00	-
Sample Lon Couri	e Preparati Pulverizi ng Dist.Pho Tel Facsim ier/Spec.D Freig	ion : ing : one : lex : ile : el. : jht :		Net Cost Extras	\$0.00 \$168.00	\$168.0 \$168.0
Sample Lon Couri	e Preparati Pulverizi ng Dist.Pho Tel Facsim ier/Spec.D Freig stom/Brok	ion : ing : one : lex : ile : el. : ght : cer :		Net Cost Extras	\$0.00	-
Sample Lon Couri Cu	e Preparati Pulverizi ng Dist.Pho Tel Facsim ier/Spec.D Freig	ion : ing : one : lex : ile : el. : ght : cer :		Net Cost Extras	\$0.00 \$168.00	-

1-6-6

INVOICE

PLEASE PAY BY INVOICE - Terms: Net 30 days. 2% service charge per month on overdue accounts

A DIVISION OF FALCONBRIDGE LIMITED P.O. Box 430, 185 Concession St., Lakefield, Ontario KOL 2HO Phone: (705) 652-3341 Telex No. 06 962842 Fax No. (705) 652-6365

No.: C 03707

DATE April 23, 1990

SENT TO: Mr. D. Coupland

Т

North Coast Industries Ltd. Suite 1270-601 West Hastings St., Vancouver, B. C., V6B 5A6

Number of Samples:	RE: Biss	ett Creek Project			
Analytical Cost Qty.	Symbol	Element	Unit Price	Assay Cost	
130	C(g) %	1-Graphitic Cark		\$1560.00	
	۲	1			
		57			
	Bitte	The .			
	. A.I				
	Fer	h Di	7		
	Ferre	ok Ye	2		
	J. en	M The . oh De	2		
Additional Cost		oh Ye	2	\$1560.00	
Additional Cost	5. IN :			\$1560.00	
Additional Cost	5. in: ig: \$39	9.00 130 x 3.00 pul		\$1560.00	
Additional Cost Sample Preparatio Pulverizin Long Dist.Phor Tele	5. in: ig: \$39 ie: ix:			\$0.00	
Additional Cost Sample Preparatio Pulverizin Long Dist.Phor Tele Facsimi	5. in: ig: \$39 ie: ix: le:		verizing		\$1560.0 0
Additional Cost Sample Preparatio Pulverizin Long Dist.Phor Tele	5. ng: \$39 ne: x: le: 1.:		verizing % Discount	\$0.00	\$1560.00 \$1950.00
Additional Cost Sample Preparatio Pulverizin Long Dist.Phor Tele Facsimi Courier/Spec.De Freig Custom/Broke	5. in: ig: \$39 ie: ie: il: il: it: it:		verizing % Discount Net Cost Extras	\$0.00 \$1560.00 \$390.00	\$1950.00
Additional Cost Sample Preparatio Pulverizin Long Dist.Phor Tele Facsimi Courier/Spec.De Freig Custom/Broke Storag	5. in: ig: \$39 ie: ie: il: il: it: it:		verizing % Discount Net Cost Extras	\$0.00 \$1560.00	\$1950.00
Additional Cost Sample Preparatio Pulverizin Long Dist.Phor Tele Facsimi Courier/Spec.De Freig Custom/Broke	5. in: ig: \$39 ie: ie: il: il: it: it:		verizing % Discount Net Cost Extras	\$0.00 \$1560.00 \$390.00	\$1950.00

INVOICE

PLEASE PAY BY INVOICE --- Terms: Net 30 days. 2% service charge per month on overdue accounts

P.O. Box 430, 185 Concession St., Lakefield, Ontario KOL 2HO

Phone: (705) 652-3341

North Coast Industries Ltd.

Suite 1575, 200 Granville Street Vancouver, B. C., V6C 184

Telex No. 06 962842 Fax No. (705) 652-6365

INVOICE

No.: C 04067

DATE

August 8, 1990

SENT TO:

Our Certificate Of Analysis Number(s): 10436 Our Reference Number: 9034788 Number of Samples: 16 samples for Graphitic Carbon Analytical Cost Qty. Symbol Element Unit Price Assay Cost 9034788 1-Carb (graphitic) C(g) % 16 12.00 \$192.00 \$192.00 Additional Costs. \$137.50 2.5 hrs. sample prep Sample Preparation : **Pulverizing**: Long Dist.Phone: \$0.00 Telex: % Discount Facsimile: \$192.00 \$192.00 Net Cost Courier/Spec.Del.: \$137.50 \$329.50 Freight: Extras Custom/Broker: Less Advanced Payment Storage: hrs: il \$137.50 Extras \$329.50 Invoice Amount

PLEASE PAY BY INVOICE — Terms: Net 30 days. 2% service charge per month on overdue accounts

INVOICE A DIVISION OF FALCONBRIDGE LIMITED P.O. Box 430, 185 Concession St., Lakefield, Ontario KOL 2HO

.

Telex No. 06 962842 Fax No. (705) 652-6365

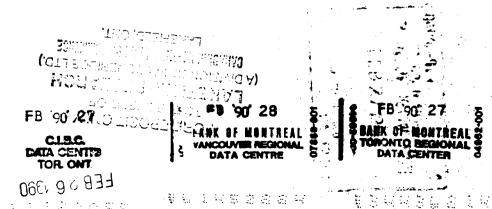
.

No.: C 04080

DATE

August 15, 1990

SENT TO:


R. M. Blais & Associates P.O. Box 237 North Bay, Ontario P1B 8H2

Phone: (705) 652-3341

	2	·					
nalytical Cost Qty.	S	ymbol	Ele	ement L	Jnit Price	Assay Cost	
9034840	2 Cg		1-Carb	(graphitic)	18.00	\$36.00	
Additional	Costs.					\$36.00	
Sample Prepa			\$8.00 2 x	: 4.00 sample pr	rep.	\$36.00	
Sample Prepa	erizing: L.Phone :		\$8.00 2 x	: 4.00 sample pr	_		
Sample Prepa Pulvo Long Dist	erizing:		\$8.00 2 x	: 4.00 sample pr	r ∙p % Discount Net Cost	\$0.00	\$36.00
Sample Prepa Pulvo Long Dist	aration: erizing: .Phone: Telex: csimile:		\$8.00 2 x	: 4.00 sample pr	% Discount Net Cost	\$ 0.00 \$ 36.00	-
Sample Prepa Pulvo Long Dist Fao Courier/Spo I	aration: erizing: t.Phone: Telex: csimile: ec.Del.; Freight:		\$8.00 2 x	: 4.00 sample pr	% Discount	\$0.00	\$36.00 \$44.00
Sample Prepa Pulvo Long Dist Fac Courier/Spo I Custom/	aration: erizing: LPhone: Telex: esimile: ec.Del.: Freight: Broker:		\$8.00 2 x		% Discount Net Cost Extras	\$0.00 \$36.00 \$8.00	-
Sample Prepa Pulvo Long Dist Fac Courier/Spo I Custom/	aration: erizing: t.Phone: Telex: csimile: ec.Del.; Freight:		\$8.00 2 x		% Discount Net Cost	\$0.00 \$36.00 \$8.00	-

PLEASE PAY BY INVOICE --- Terms: Net 30 days. 2% service charge per month on overdue accounts

V 0009 NORTHCOAST INDUS IES LTD. 1270 - 601 WEST HASTINGS STREET VANCOUVER, B.C. V6B 5A6 19 9 D 420,00 PAY TO_____ 100 DOLLARS BANK OF MONTREAL NORTH COAST INDUSTRIES LTD. GRANVILLE & PENDER STREET BRANCH 500 - 520 GRANVILLE STREET VANCOUVER, B.C. V6C 1W7 PER FOR 63278 03235 PER #000009# #08120#001# 12430347# 100000420001

1 1 1 1 2 C C C S S

0031 NORTHCOAST IN **STRIES LTD.** 1270 - 601 WEST HASTINGS STREET VANCOUVER, B.C. V6B 5A6 22, 90 1950.00 PAY TO_____ 100 DOLLARS BANK OF MONTREAL NOR I TD GRANVILLE & PENDER STREET BRANCH 500 - 520 GRANVILLE STREET ۵ VANCOUVER, B.C. V6C 1W7 PER PER FOR #000031# #08120#001# 1243+34347# 100001950001 OLU CTOTO TYYT VIDA) 066131 YAM 1.11.14 383 10,00 Q (40.45 ('C.:-: rus ₇ 0281.01 101-1 FOR DEPOSIT ONLY ATA CENTRE IONAL S TO REG DATA CENTER 教堂教育会会会的问题 建筑主要等级客户要

NORTH COAST ' USTRIES LTD. 1320 PRICE WATERHOUSE CENTRE #1270 - 601 WEST HASTINGS STREET VANCOUVER, B.C. V6B 5A6 90 73.50 PAY TO_____ Ŷ the 7100 DOLLARS NORTH COAST INDUSTRIES LTD. BANK OF MONTREAL GRANVILLE & PENDER STREET BRANCH XI 💥 🖳 ļ 123-01-524 500 - 520 GRANVILLE STREET ۰., 16162 ANS CA VANCOUVER, B.C. V6C 1W7 -0408051 C04067 PER FOR 1:08120-0011 1534** 10.5** #001320# r'0000037350r' ELD, CNT. ALCONGRUCIE LTD.) CICIVIQ A) HOBYERS SEST SE '90' 11 0 م. م 11 HOLIDE OF CLBC YINO'TIR DATA CENTRE TOR. ONT. 复立气度感应应之气 电电子光电电路电子 34002243

rable 3

Graphite percentages per Size Fraction (Summary of Table 2)

		Siz	e frac	tions	(mm)				
	<0.07	<0.12	<0.2	<0.3	<0.5	<0.7	<1.0	<1.3	>1.3
#2	0.22	2.5	5.5	11.2	27.2	26.3	16.9	10.2	-
#1Com	0.39	2.9	6.8	16.6	22.5	20.3	12.7	14.5	3.3
#2Com	0.19	1.4	3.2	8.6	17.3	26.7	21.1	13.2	8.3
# 8	0.05	0.8	2.9	9.1	18.4	24.8	18.2	18.1	7.7

Note: total for each sample is between 99.95 and 100.05%

Conclusions:

1. A reasonable correlation exists between assay values of graphite and the total volume of graphite in each sample. However, because of the lack of control on the traverse density, such values are semi-quantitative.

2. The samples with a higher graphite content have a moderately coarser grain size. This is particularly evident in the grains above 1.3 mm in size, which are more abundant in the higher-grade samples, and in grains below 0.5 mm in size, which are moderately to strongly more abundant in the lower grade samples.

3. The lower-grade samples have a modal flake length of $\emptyset.5 \text{ mm}$ ($\emptyset.3-\theta.5 \text{ mm}$ and $\emptyset.5-\theta.7 \text{ mm}$ values are about the same), whereas the higher-grade samples have a modal flake length of $\emptyset.5-\theta.7 \text{ mm}$. Thus the main difference between the high and low grade samples is the greater abundance of coarse flakes in the high-grade samples, which have a strong influence on the total volume percentages.

4. Because of the varying orientation of flakes with respect to the section, it is difficult to determine whether the width of the flakes is an important feature geologically, or whether much of the variation in width depends on orientation of flakes with respect to the plane of the section.

John G Vanges

John G. Payne 604-986-2928

APPENDIX III Bench-Scale Flotation

1

Test No: M90-088 F7

Date: Jan 29/90

.. -

Purpose: Initial flotation test. Copy procedure from previous Investigation. 1)increase percent solids of rougher flotation to 40%. 2)include 48 and 100 mesh screening of graphite conc. 3)include gravity concentration of +48 # graphite conc.

(Composite 1)

STAGE	TIME	IA I	DDITIONS
	(Minutes)	g/tonne	REAGENT
Grind: 2 x 2 kg charge	4.5		1/2 regular rod charge
(Target: 95-98% -800 microns)			50-60% solids
	_		pH= 7.6
Condition	5		40% solids
(Using DENVER Sub-A machine)		150	EKOF 452 G
Rougher	10		
i ioognei	.0		
Condition	2	15	EKOF 452 G
Scavenger	4		
(to barren tail)			pH= 8.2
	l		
		•	
1st Cleaner	9.5		
Condition	1	15	EKOF 452 G
1st Cleaner Scavenger	0.5		·
131 Oleaner Ocaveriger	0.5		
	}		
2nd Cleaner	8.5		
Condition	1	15	EKOF 452 G
		1	
2nd Cleaner Scavenger	0.5	1	
		ļ	
			1
	I	<u>!</u>	<u> </u>

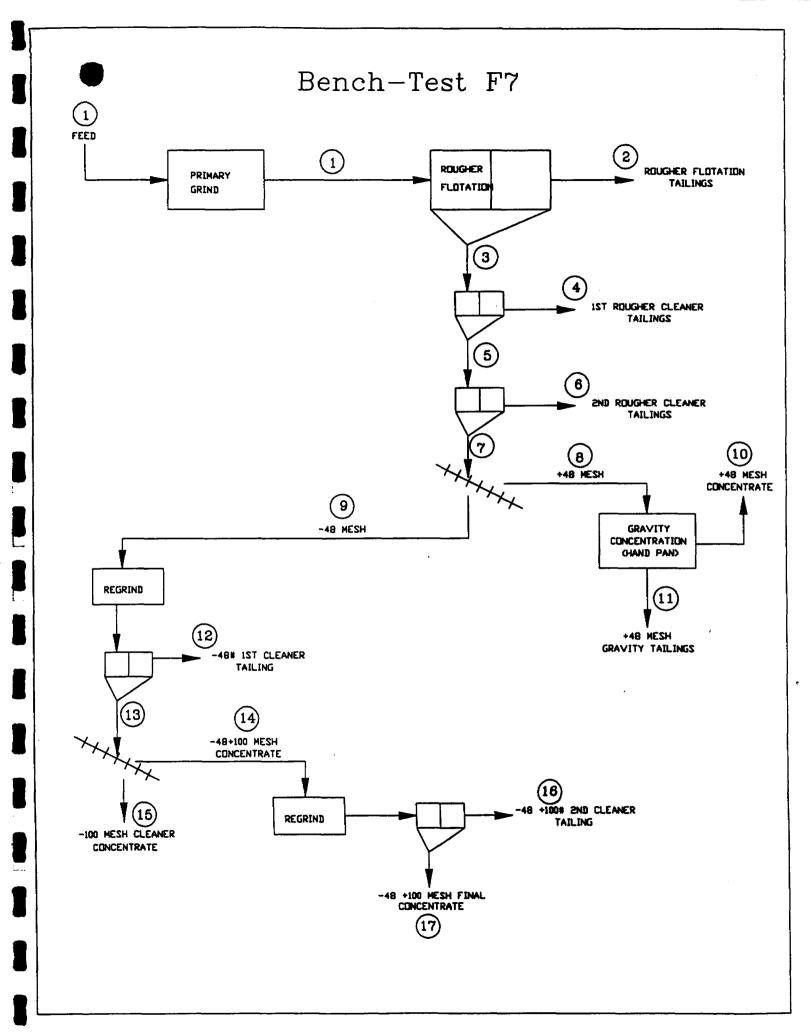
Test No: M90-088 F7

•

.

Ľ

T.


L

Date: Jan 29/90

Purpose: Initial flotation test. Copy procedure from previous investigation. 1)Increase percent solids of rougher flotation to 40%. 2)Include 48 and 100 mesh screening of graphite conc. 3)Include gravity concentration of +48 # graphite conc.

(Composite 1)

STAGE	TIME	A	DDITIONS
	(Minutes)	g/tonne	REAGENT
Screening: Wet Screen Graphite 2nd Cleaner C	oncentrate at	48 mesh	
Gravity Concentration:			
Hand Panning			+ 48 mesh graphite conc
Cleaning Flotation (Cont'd): Regrind (25 - 30% solids)	30 sec		- 48 mesh grahite conc
(Ceramic mill & media)			
3rd Cleaner	5		
Condition	1	15	EKOF 452 G
3rd Cleaner Scavenger	2		
Screening:			
Wet Screen Graphite 3rd Cleaner C	oncentrate at	100 mesn	
Cleaning Flotation (Cont'd):			- 48 + 100 mesh grahite conc
Regrind (25 - 30% solids) (Ceramic mill & media)	30 sec		(ie. Screened 3rd cleaner conc)
4th Cleaner	. 5		
Condition	1	15	EKOF 452 G
4th Cleaner Scavenger	2		

<u>_____</u>

1	WE IGHT	WEIGHT		ASSAYS	1		X DIST	
PRODUCT	GMS	X	C		1	C		
1		ł	x		ł			
10)+48# Gravity Conc	34.3	0.78	88.60			30.33		
(11)+48# Gravity Tails	55.4	1.27	54.41		1	30.08		
8)+48# 2ND RO CL CONC	89.7	2.05	67.48		1	60.41		
17)-48+100# Final Conc	28.4	0.65	67.36		1	19.08		
(16)-48+100# 2nd CI Talls	1.9	0.04	2.96		ł	0.06		
14)-48+100# 1ST CL CONC	30.3	0.69 ¦	63.29		!	19.13		
(15)-100# C1 Conc	18.4	0.42	73.33		1	13.48		
13)-48# 1ST CL CONC	48.7	1.11	67.09		ł	32.61		
12)-48# 1st CI Tails	4.9	0.11	1.88		-	0.09		
9)-48# 2ND RO CL CONC		1.23	61.13		ł	32.71		
7)2ND ROUGHER CL CONC		3.28	65.10		1	93.12		
6)2nd Rougher CI Tails	13.9	0.32	2.14		1	0.30		
5)1st rougher cl conc		3.60	59.54		1	93.41		
4)1st Rougher CI Talls	56.6	1.30	1.38		1	0.78		
; 3) TOTAL ROUGHER CONC	213.8	4.89	44.14		ł	94.19		
2)Final Rougher Talls	4155.8	95.11	0.14		1	5.81		
1)CALCULATED FEED	4369.6	100.0	2.29		!	100.00		
ASSAY HEAD			2.45					

.

	WEIGHT	WEIGHT		ASSAYS	ł		UNITS	
PRODUCT	GMS	X	C		ł	C		
1		ł	x		1			
10)+48# Gravity Conc	34.3	0.78 ¦	88.60			69.54		
(11)+48# Gravity Talls	55.4	1.27	54.41		1	58.98		
8)+48# 2ND RO CL CONC	89.7	2.05	67. 4 8		ł	138.52		
17)-48+100# Final Conc	28.4	0.65	67.36		1	43.75		
(16)-48+100# 2nd CI Tails	: 1.9	0.04	2.96		1	0.13		
14)-48+100# 1ST CL CONC	30.3	0.69	63.29		1	43.88		
15)-100# C1 Conc	18.4	0.42	73.33		1	30.91		
13)-48# 1ST CL CONC	48.7	1.11	67.09		1	74.79		
12)-48# 1st CI Talls	4.9	0.11	1.88		1	0.21		
9)-48# 2ND RO CL CONC	53.6	1.23	61.13		l	75.0		
7)2ND ROUGHER CL CONC	143.3	3.28 ¦	65.10		ł	213.5		
: 6)2nd Rougher Ci Talis	13.9	0.32 ¦	2.14		1	0.68		
5)1ST ROUGHER CL CONC	157.2	3.60	59. 54		ł	214.20		
(4)1st Rougher CI Talls	56.6	1.30	1.38		ł	1.79		
3)TOTAL ROUGHER CONC	213.8	4.89 ¦	44.14		ł	215.99		
2)Final Rougher Tails	4155.8	95.11	0.14		1	13.31		
1)CALCULATED FEED	4369.6	100.0 ;	2.29		;	229.30		·
ASSAY HEAD		 t	2.45					

.

SIZE DISTRIBUTION

١

-

.

ľ

1

SAMPLE NO. M90-088 F7 HEAD

Size Fraction (mesh)	Individual Percentage Retained %	Cumulative Percentage Passing %
+ 20	1.21	98.79
20 + 28	4.42	94.37
28 + 48	32.76	61.60
48 + 65	16.43	45.17
65 + 100	13.63	31.54
100 + 150	9.80	21.74
150 + 200	7.37	14.37
200 + 325	5.92	8.45
325 + 400	0.59	7.86 ,
400	7.86	

SIZE DISTRIBUTION

SAMPLE NO. M90-088 F7 - R0 TLS

Size Fraction (mesh)	Individual Percentage Retained %	Cumulative Percentage Passing %
+ 28	3.34	96.66
- 28 + 48	32.83	63.83
- 48 + 100	29.23	34.60
- 100 + 200	17.04	17.56
- 200	17.56	

	WE IGHT	WE IGHT ;		ASSAYS	ł	X DIST	
PRODUCT	GMS	X	C		1	C	
		}	x		1		
+28 mesh	4.68	3.39 ;	0.41			10.14	
+48 mesh	45.89	33.25	0.17		1	41.21	
+100 mesh	40.85	5 29.60	0.08		l	17.26	
+200 mesh	23.81	17.25	0.02		1	2.52	
-200 mesh	22.78	3 16.51	0.24		ł	28.88	
		{			1		
		1			1		
		1			1		
		1			ł		
		1			1		
		1			1		
		I			ł		
CALC HEAD	138.01	100.0	0.14	•	 !	100.00	

,

,

٠

÷

Į

	WE IGHT	WE IGHT		ASSAYS	:		UNITS	
PRODUCT	GMS	x	(C		ł	C		
			x		1			
+28 mesh	4.68	3.39	0.41			1.39	- <u></u>	
+48 me sh	45.89	33.25	0.17		1	5.65		
+100 mesh	40.85	29.60	0.08		ł	2.37		
+200 mesh	23.81	17.25	0.02		1	0.35		
-200 mesh		16.51			Í.	3.96		
			1		1			
			-		Í			
					Í			
			[ĺ			
			1		Í			
					ļ			
CALC HEAD	138.01	100.0	0.14		ł	13.72		

-

.

.

.

•

TEST NUMBER: M90-088 F7-Ro Talls

I

.

Test No: M90-088 F7

Date: Feb 13/90

Purpose: Scavenger flotation on coarse fraction (+48 mesh) of F7 Rougher Tailings: -to determine if scavenging is worthwhile

(COMPOSITE 1)

STAGE	TIME	A	DDITIONS
	(Minutes)	lb/ton	REAGENT
48 Mesh Screening:			F7 Rougher Tails
Regrind: Regrind	3		+48 mesh fraction Rod Mill (1/2 rod charge)
Flotation:			
Condition	5	150	EKOF 452 G pH=7.1
Rougher	4		
Condition	2	15	EKOF 452 G
Scavenger	1		pH=7.2
		•	
			· ·

PRODUCT	WE I GHT GMS	WE IGHT X		C X	ASSAYS		С	X DIST	
Scavenger Conc	11.3	0.63	!	8.21			30.62		
Scavenger Tall	871.5	48.69	1	0.16		ł	46.02		
+48 MESH ROUGHER TAIL	882.8	49.32	1	0.26		ł	76.65		
-48 mesh Rougher Tall	907.0	50.68	1	0.08		1	23.35		
			 			1			
			ł			1			
			1						
i						ļ			
i I			i i						
i 1			i !			i			
·									
CALC ROUGHER TAIL	1789.8	100.0	ł	0.17			100.00		
ASSAY ROUGHER TAIL			1	0.16					

.

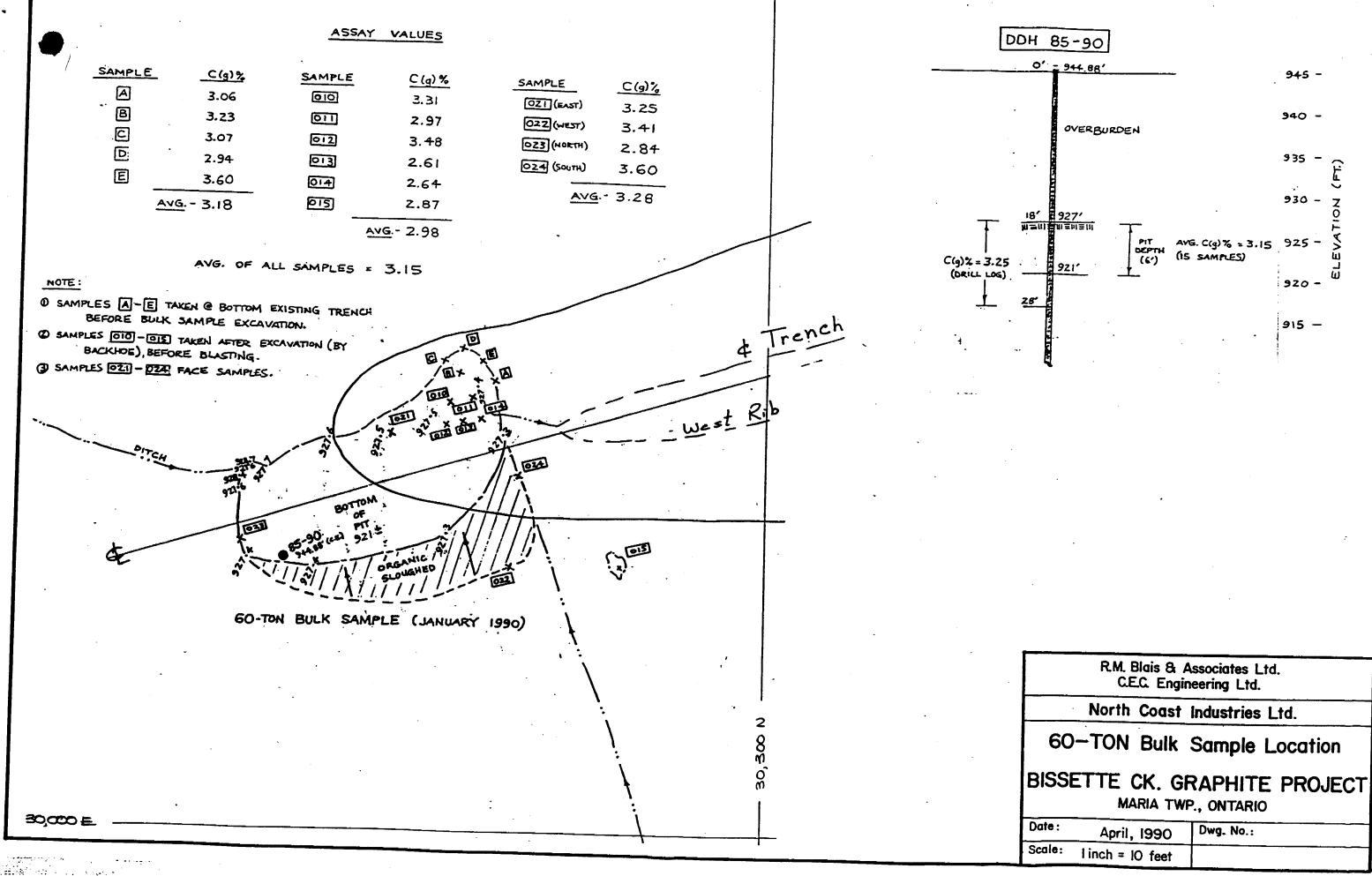
1

.

,

-

-


PRODUCT	WEIGHT WEIGHT GMS X	ASSAYS C X	UNITS C	
Scavenger Conc	11.3 0.63	8.21	5.184	
	871.5 48.69	0.16	7.791	
+48 MESH ROUGHER TAIL		0.26	12.974	
-48 mesh Rougher Tall		0.08	3.953	
•	ĺ		1	
] 8	l		ł	
1	ł		1	
	1		ł	
	ł		i	
CALC ROUGHER TAIL	1 789.8 100.0 ¦	0.17	16.927	بدولة كالمتبادية بعاليدين
ASSAY ROUGHER TAIL	•••••••••••••••••••••••••••••••••••••••	0.16		و و و بر زمان می و گ ش

--

÷

.

Π

SIZE DISTRIBUTION

SAMPLE NO. M90-088 F7 +48 Final Tails (Scavenger Head)

Size Fraction (mesh)	Individual Percentage Retained %	Cumulative Percentage Passing %
+ 28	0.60	99.40
- 28 + 48	35.11	64.29
- 48 + 65	30.15	34.14
- 65 + 100	13.71	20.43
- 100 + 150	7.40	13.03
- 150 + 200	4.42	8.61
- 200 + 325	3.51	5.10
- 325 + 400	0.28	4.82
- 400	4.82	

E

L

L,

Ground 3 min at 60 solids

Test No: M90-088 F8

Date: Feb 9/90

Purpose: As F7: 1)increase size of test to 24 kg feed. 2)Screen 2nd cleaner conc into: 28, 48, 100, 200 mesh.

3)Assay and hold 2nd cleaner conc size fractions.

STAGE	TIME	A	DDITIONS
	(Minutes)	g/tonne	REAGENT
Grind: 24 kg charge (Target: 95-98% -800 microns)	2.5		1/2 regular rod charge Large batch rod mill 50-60% solids
Flotation: (float in 2 x 12 kg stages) Condition (Using 1 cubic foot machine)	5	150	pH= 7.3 40% solids EKOF 452 G
Rougher	7.5		
Condition	2	15	EKOF 452 G
Scavenger (to barren tail)	2		рН= 7.5
1st Ro Cleaner	10		
Condition	1	15	EKOF 452 G
1st Ro Cleaner Scavenger	0.5		
2nd Ro Cleaner	12		· · · · · · · · · · · · · · · · · · ·
Condition	1	15	EKOF 452 G
2nd Ro Cleaner Scavenger	0.5		
Screening: 1. Perform screen analysis on 2nd (save all screen fractions and u 2. Screen 2nd rougher cleaner con	se for further to	estwork)	

(COMPOSITE 2)

Test No: M90-088 F8

t - ·

L

Ľ

Date: Feb 9/90

.

Gravity/Regrind/Screening Study: 1)Investigate optimum regrind procedure for +48 mesh gravity tailings

STAGE	TIME	ADD	ITIONS
	(Minutes)	g/tonne	REAGENT
Gravity Concentration: Hand Panning			+ 48 mesh graphite conc
Screening: 1. Perform screen analysis on + (save all screen fractions and			
Long Regrind: Regrind	5		1/2 of +48 mesh gravity tails full ceramic charge
Screen at 48 mesh			regrind discharge
Short Regrind: Regrind	2.5		1/2 of +48 mesh gravity tails 1/2 ceramic charge
Screen at 48 mesh		· ·	regrind discharge

Test No: M90-088 F8 R/C - 1

:

Date: Feb 15/90

Regrind/Cleaning Study: Investigate optimum regrind/cleaning procedure for -48 mesh Rougher 2nd Cleaner Conc

Test R/C-1: Short Regrind

STAGE	TIME	ADDITIONS				
	(Minutes)	g/tonne	REAGENT			
Short Regrind:			-48 mesh 2nd Ro Ci Conc			
Regrind	2		1/2 ceramic charge			
•			25-30% solids			
			pH= 5.7			
Screening:						
Perform screen analysis on regrind						
(Save all screen fractions and	use for cleanii	ng flotation)				
Cleaning Flotation:						
-48 # Cleaner 1	5					
Condition	1	15	EKOF 452 G			
Cleaner Scavenger	0.5					
-48 # Cleaner 2	7					
Condition	1	- 15	EKOF 452 G			
Cleaner Scavenger	0.5					
Screening:						
Wet Screen Graphite -48 # 2nd Cle	aner Concenti	rate at 100 me	i ish			
(Save -100 # portion for future t						
	1					

Test No: M90-088 F8 R/C - 2

Date: Feb 15/90

Regrind/Cleaning Study: Investigate optimum regrind/cleaning procedure for -48 mesh Rougher 2nd Cleaner Conc

Test R/C-2: Intermediate Regrind

STAGE	TIME	ADDITIONS				
	(Minutes)	g/tonne	REAGENT			
Medium Regrind:			-48 mesh 2nd Ro Cl Conc			
Regrind	5		1/2 ceramic charge			
			25-30% solids			
			pH= 5.7			
Screening:						
Perform screen analysis on reg						
(Save all screen fractions	and use for cleanin	ig notation)				
Cleaning Flotation:						
-48 # Cleaner 1	5					
Condition	1	15	EKOF 452 G			
Cleaner Scavenger	3					
-48 # Cleaner 2	4.5					
Condition	1	· 15	EKOF 452 G			
Cleaner Scavenger	1.5					
Screening:						
Wet Screen Graphite -48 # 2nd	l Cleaner Concentr	i i ate at 100 mes	h			
(Save -100 # portion for futu						
(
<u></u>			··········			
			•			
		1				

Test No: M90-088 F8 R/C - 3

1

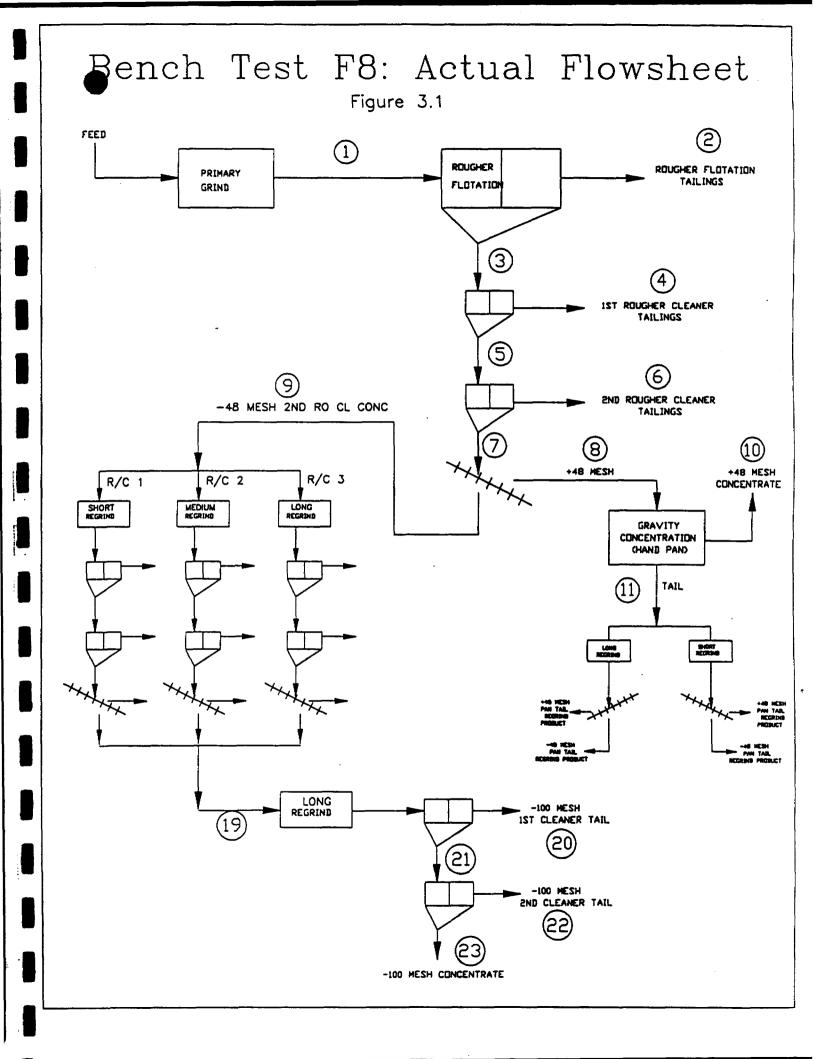
ŀ

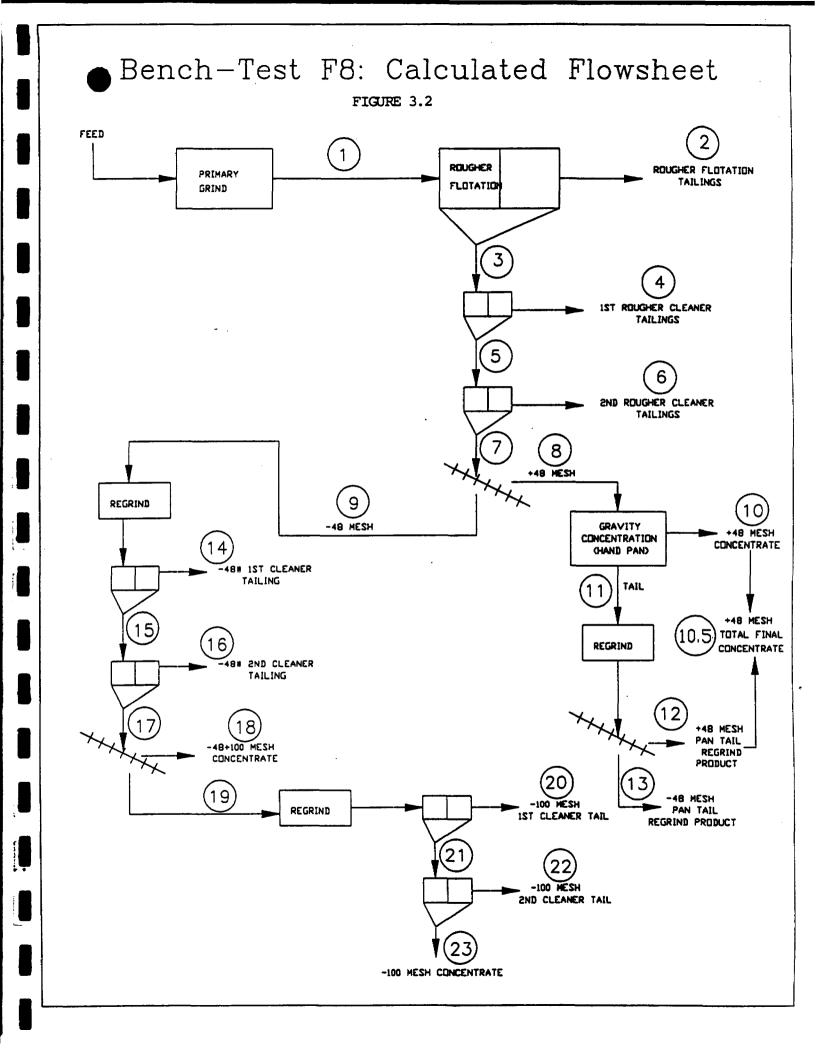
Date: Feb 15/90

Regrind/Cleaning Study: Investigate optimum regrind/cleaning procedure for -48 mesh Rougher 2nd Cleaner Conc

Test R/C-3: Long Regrind (extra ceramic charge)

STAGE	TIME	ADDITIONS				
	(Minutes)	g/tonne	REAGENT			
Long Regrind:			-48 mesh 2nd Ro Cl Conc			
Regrind	5		full ceramic charge 25-30% solids			
			pH= 5.6			
Screening:			p			
Perform screen analysis on regrind	product					
(Save all screen fractions and		ng flotation)				
Cleaning Fiotation:						
-48 # Cleaner 1	4.5					
Condition	1	15	EKOF 452 G			
Cleaner Scavenger	3					
-48 # Cleaner 2	4					
Condition	1	-15	EKOF 452 G			
Cleaner Scavenger	1					
Screening:						
Wet Screen Graphite -48 # 2nd Cle	aner Concenti	ate at 100 me	sh			
(Save -100 # portion for future te						
<u>و الم</u>						
			·			
].					
			1			
<u> </u>	<u> </u>	<u> </u>				


Test No: M90-088 F8


Date: Feb 15/90

-100 Mesh Flotation:

1)Utillize most rigorous regrind (full ceramic charge, 5 minutes) 2)Standard 2-stage cleaning flotation

STAGE	TIME		ADDITIONS		
	(Minutes)	g/tonne	REAGENT		
Combine -100# 2nd Cleaner Concs	 from R/C-1, F	VC-2, R/C-3			
Screening:					
1. Perform screen analysis on -100 (save all screen fractions and us			VC-2, R/C-3		
Long Regrind:			Total -100# product		
Regrind	5		full ceramic charge		
Screening:					
1. Perform screen analysis at 400 m (save all screen fractions and us			product		
Cleaning Flotation:			regrind product		
-100# Cleaner 1	5		- .		
Condition	1	· 15	EKOF 452 G		
Cleaner Scavenger	0.5				
-100# Cleaner 2	7				
Condition	1	15	EKOF 452 G		
Cleaner Scavenger	0.5				
	1				

TEST NUMBER: 1	190-088	30-088 F8 (Calculated Balance)					
	WEIGHT	WE IGHT		ASSAYS	1	X DIST	
PRODUCT	GMS	X	C X		C C		
23)-100# Final Conc	84.1	0.36	92.65		9.04		
22)-100# 2nd CI Tail		0.01	•		0.07		
21)-100# 1ST CL CONC		0.37			9.12		
20)-100# 1st CI Tall		0.02	•		0.09		
19) TOTAL -100#		0.38	-		9.21		
8)Total -48+100# Final Conc	1 68.5	0.72	90.97		17.79		
7)TOTAL -48# 2ND CL CONC	257.8	1.11	90.24		27.00		
16)Total -48# 2nd Cl Tall	5.9	0.03	10.88		0.07		
15)TOTAL -48# 1ST CL CONC	174.4	0.75	88.26		17.87		
14)Total -48# 1st CI Tail	19.1	0.08	4.02		0.09		
9)TOTAL -48# (2nd Ro C1 Conc)	282.8	1.22	82.76		27.17		
12)Total +48# Pan Tail Regrind Product	399.9	1.72	88.67		i 41.16		
13)Total -48# Pan Tail Regrind Product	33.6	0.14	34.75		1.36		
11)TOTAL +48# PAN TAIL	433.5	1.86	84.49		42.51		
10)+48# Pan Conc	223.3	0.96	96.34		24.97		
D.5)TOTAL +48 MESH FINAL CONC	623.2	2.68	91.42		66.13		
8)TOTAL +48# (2nd Ro CI Conc)	656.8	3 2.82	88.52		67.48		
7)TOTAL 2ND ROUGHER CLEANER CONC	939.6	3 4.04	86.78		94.65		
6)2nd Rougher Cleaner Tall	39.7	0.17	4.47		0.21		
5)1ST ROUGHER CLEANER CONC	979.3	3 4.21	83.45		94.85		
4)1st Rougher Cleaner Tail	160.1	I 0.69	1.43		¦ 0.27		
3) ROUGHER CONC	1139.4	4.90	71.92		95.12		
2)Rougher Tall	22129. 1	95.10	0.19		4.88		
			i 		i 		
1)CALC FEED	22260	5 100.0	¦ 3.70		100.00		

	WEIGHT			_	ASSAYS		_	UNITS
PRODUCT	GMS	X		C X			C	
	84 .1	0.36	; 92	.65		 !	33.49	
22)-100# 2nd C1 Tall	1.6	0.01	38	.40		Í	0.26	
21)-100# 1ST CL CONC	85.7	0.37	1 91	.64		Ì	33.75	
20)-100# 1st CI Tall	3.6	0.02	22	.30		l	0.35	
19) TOTAL -100#	89.3	0.38	88	.84			34.10	
8)Total -48+100# Final Conc		0.72	•	.97		í	65.88	
7)TOTAL -48# 2ND CL CONC		1.11	•	.24		1	99.98	
16)Total -48# 2nd Cl Tall	5.9	0.03	10	.88		1	0.28	
15)TOTAL -48# 1ST CL CONC	174.4	0.75	88 }	.26		:	66.16	
14)Total -48# 1st Cl Tall	19.1	0.08	1 4	.02		ł	0.33	
9)TOTAL -48# (2nd Ro Ci Conc)	282.8	1.22	82	.78			100.58	
12)Total +48# Pan Tall Regrind Product		1.72	•	.67		ł	152.39	
13)Total -48# Pan Tail Regrind Product		0.14	•	.75		1	5.02	
11)TOTAL +48# PAN TAIL	433.5	1.86	84	.49		1	157.41	
10)+48# Pan Conc	223.3	0.96	96	6.34		ł	92.45	
0.5)TOTAL +48 MESH FINAL CONC	623.2	2.68	! 9 1	.42		ł	244.84	
8)TOTAL +48# (2nd Ro CI Conc)		2.82	•	3.52		•	249.86	
7)TOTAL 2ND ROUGHER CLEANER CONC		4.04	•	6.78		1	350.44	
6)2nd Rougher Cleaner Tail		0.17	•	1.47		1	0.76	
5)1ST ROUGHER CLEANER CONC		4.21	•	8.45		1	351.20	
4)1st Rougher Cleaner Tall		0.69	•	.43		1	0.98	
3)ROUGHER CONC		4.90	•	.92		ł	352.19	
2)Rougher Tall	22129.1	95.10	().19		1	18.07	
			ł			ł		
I)CALC FEED	23268.5			3.70		• ••••••	370.25	

Ţ

ł	TEST NUMBER	: M90-088	Test F8	(+48 # Pan Ta	allis Long Regrind)				
 	PRODUCT	ne ight GMS	WEIGHT: %	C X	ASSAYS		C X	X DIST	
	+48 mesh 48 mesh		0 88.66 0 11.34 				95.85 4.15		
CALC	HEAD	67.90	0 100.0	83.71	· · · · · · · · · · · · · · · · · · ·		100.00		**********
ASSA	Y HEAD		 	84.49		 !			*********

.

.

v

.

TEST NUMBER	: M90-088 Test F8	(+48# Pan Tails LONG REGRIND)		
PRODUCT	WEIGHT WEIGHT! GMS X	ASSAYS C X	UNITS C 	
+48 mesh -48 mesh	60.20 88.66 7.70 11.34		8023.71 347.01	
CALC HEAD	67.90 100.0 ¦	83.71	¦ 8370.72	
LASSAY HEAD		84.49	······································	

.

.

4

,

٠

PRODUCT	WEIGHT WEIGHT; GMS X ;	ASSAYS C	I X DIST	
THODOUT		x		
		A7 10		·
+48 mesh	64.40 95.55	87.10	97.65	
-48 ae sh	3.00 4.45	44.90	2.35	
	ł			
	;			
	1			
	1			
CALC HEAD	87.40 100.0 ¦	85.22	i 100.00	
ASSAY HEAD		84.49	•	

•

.

,

.

٠

:	WE IGHT 1	WEIGHT	ASSAYS	I UNITS	
PRODUCT	GMS	X	C	C	
1		1 X	1		
; +48 mesh	64.40	95.55 ¦	87.10	; 8322.31	
-48 n esh	3.00	4.45	44.90	199.85	
1		ł		ł	
1		-		ł	
1		ł		1	
1		-		1	
1		1		3	
8		1		1	
CALC HEAD	67.40	100.0 ;	85.22	; 8522.17	
ASSAY HEAD		·	84.49	······································	

•

÷

.

		WE IGHT	WEIG	HT !		ASSAYS	!		I DIST
	PRODUCT	GMS	X	1	C		ì	C	
				1	X		i	-	
+100*	2nd Cl Conc	30.3	63.1	8	87.34			67.29	
-100#	2nd Ci Conc	14.4	30.0	3	87.25		ł	31.95	
TOTAL	2ND CL CONC	44.7	93.2	0	87.31		t	99.23	
2nd Cl	Talls	1.5	3.1	3	11.80		1	0.45	
ist a	. CONC	46.2	96.3	3	84.86		1	99.68	
1st C	Tails	1.8	3.6	7	7.05		1	0.32	
				-			1		
				ł			1		
				ł			ł		
				Ì			Ì		
				Í			i		
				i					

٠

.

おおおいし

l

+100# :	PRODUCT 2nd C1 Conc 2nd C1 Conc		WE IGHT X 63.18	C X	ASSAYS	C	UNITS	
+100# :	2nd Cl Conc	30.3		*		1 C 1		
-100# 2			63 18 1	¥		ŧ		
-100# 3			63 18 1					
	2nd Cl Conc		w.10	87.34		5517.62		
TOTAL		14.4	30.03 {	87.25		2619.68		
	2ND CL CONC	44.7	93.20 ;	87.31		8137.30		
2nd Ci	Talls	1.5	3.13	11.80		36.91		
IST CL	CONC	46.2	96.33	84.86		8174.21		
1st Cl	Tails	1.8	3.67	7.05		25.87		
			1			ł		
			Ì					
			ļ			1		
			Ì			ł		
			1			1		
			1			1		
CALC H				82.00		8200.08		

•

.

.

	WEIGHT WEIGHT;	ASSAYS	L X DIST	
PRODUCT	GMS X	C	C	
	ł	X	ł	
100# 2nd Cl Conc	29.2 59.82 ;	91.40	68 .11	
100# 2nd Cl Conc	15.4 31.57	87.25	33.30	
DTAL 2ND CL CONC	44.6 91.40	89.97	99.42	
nd CI Tails	0.8 1.64	10.60	0.21	
st CL CONC	45.4 93.03	88.57	99.63	
st CI Tails	3.4 6.97	4.45	0.37	
	1		1	
	1		1	
	ł		1 1	
			1	
			1	
	1		+	

÷

,

•

!	TEST NUMBER:	M90-088 F	R/C2	(5 min regrin	d, half charge)			
 P	RODUCT	WE IGHT GMS	WEIGHT	C X	ASSAYS	 C 	UNITS	
	nd CI Conc		59.82	-		5467.90		•
	nd C1 Conc		31.57			2754.60		
-	ND CL CONC		91.40			8222.50		
2nd C1		0.8	1.64	10,60		17.37		
1ST CL	CONC	45.4	93.03	88.57		8239.87		
1st CI	Talis	3.4	6.97	4.45		31.00		
ł			-			ł		
ł			1					
1			1					
}			ł			1		
t			ł					
1			ł			1		
1						1		_
CALC HE	AD	48.8	100.0	82.71		8270.87		

•

1	WE IGHT W	EIGHT		ASSAYS	1		X DIST	
PRODUCT	GMS	X	C		l	C		
		1	X		}			
+100# 2nd CI Conc	27.1 5	5.31	94.70			63.89		
-100# 2nd C1 Conc	16.4 3	3.47	87.25		ł	35.62		
TOTAL 2ND CL CONC	43.5 8	8.78	91.89		ł	99.51		
2nd CI Tails	0.8	1.63	9.67		ł	0.19		
IST CL CONC	44.3 9	0.41	90.40		1	99.70		
1st CI Talls	4.7	9.59	2.54		. 1	0.30		
1		1						
1		ł			ł			
ł		ł			ť			
		1			1			
1					1			
- 					Ì			
t								

-

•

.

,

٠

•

	WE IGHT	WEIGHT		ASSAYS	!	UNITS	
PRODUCT	GMS	X	C		i c		
			X		ł		
+100# 2nd CI Conc	27.1	55.31	94.70		5237.21		
-100# 2nd C1 Conc	16.4	33.47	87.25		2920.20		
TOTAL 2ND CL CONC	43.5	88.78	91.89		8157.42		
2nd CI Talis	0.8	1.63	9.67		15.79		
1ST CL CONC	44.3	90.41	90.40		8173.21		
1st Ci Talis	4.7	9.59	2.54		24.36		
			1		ł		
			1		1		
			1		ł		
			1		ł		
i			1		ł		
			1		1		
l			4		i i		

,

....

-

.

,

•

SAMPLE NO. M90-088 F8 HEAD (Average of 2)

Ground 2.5 mins. at 65% solids

Size Fraction (mesh)	Individual Percentage Retained %	Cumulative Percentage Passing %
+ 28	11.14 //./6	88.86
28 + 48	37.40 48.54	51.46
48 + 65	16.03 64.57	35.42
65 + 100	11.24 75.81	24.18
100 + 150	7.97 83-78	16.21
150 + 200	5.30 87.02	10.91
200	10.91 /00-30	

SAMPLE NO: M90-088 F8A Rougher Tails

Į

,

FLOW SHEET STREAM # 2

	raction esh)	individual Percentage Retained	Cumulative Percentage Passing
	+ 28	2.02	97.98
- 28	+ 48	37.00	60.98
- 48	+100	31.67	29.31
-100	+200	17.03	12.28
-200		12.28	

. •

PRODUCT	WEIGHT WEIGHT GMS X	C X	ASSAYS		X DIST C	
 +28	2.1 2.02	0.191	· · · · · · · · · · · · · · · · · · ·		2.04	
-28+48	38.0 37.00	0.155			30.53	
-48+100	32.5 31.67	0.058			9.78	
-100+200	17.5 17.03	0.144		i	12.98	
-200	12.6 12.28	0.685			44.67	
ł	1			1		
1	1			1		
1				1		
1	1			1		
1				1		
				1		
1	1			1		
CALC HEAD	102.6 100.0 ¦	0.188			100.00	
ASSAY HEAD				!		

.

PRODUCT	WEIGHT WEIGHT¦ GMS X ;	C X	ASSAYS		C	UNITS	
+28	2.1 2.02	0.191	· · · · · · · · · · · · · · · · · · ·		0.385		
-28+48	38.0 37.00	0.155		1	5.753		
-48+100	32.5 31.67	0.058		1	1.843		
-100+200	17.5 17.03	0.144		ł	2.446		
-200	12.6 12.28	0.685		!	8.417		
	ł						
	ł			1			
	1			1			
	1			1			
				1			
	1			1			
	1			1			
· · · · · · · · · · · · · · · · · · ·							
CALC HEAD	102.6 100.0	0.188		ł	18.84		

.

· ·

SAMPLE NO. M90-088 F8 2nd Cl. Conc.

FLOWSHEET STREAM # 7

Size Fraction	Individual Percentage Retained %	Cumulative Percentage Passing %
+ 28	9.48	90.52
- 28 + 48	48.22	42.3
- 48 + 65	19.60	22.70
- 65 + 100	9.14	13.56
- 100 + 150	4.71	8.85
- 150 + 200	2.65	6.20
- 200	6.20	

.

.

SAMPLE NO. M90-088 F8: -48 Mesh 2nd Cl Conc.

Regrind Feed (Calculated Size Distribution)

FLOWSHEET STREAM	<u>+</u> 9
Individual Percentage Retained %	Cumulative Percentage Passing %
46.3	53.7
21.6	32.1
11.1	21.0
6.3	14.7
14.7	
	Individual Percentage Retained % 46.3 21.6 11.1 6.3

SAMPLE NO. M90-088 F8: -R/C 1 Regrind Product Reground 2 mins at 50% solids with 1/2 ceramic charge

Size Fraction (mesh)	Individual Percentage Retained %	Cumulative Percentage Passing %
+ 65	3.71	96.29
65 + 100	51.00	45.29
100 + 150	15.22	30.07
150 + 200	8.79	21.28
200	21.28	

.

SAMPLE NO. M90-088 F8 - R/C 2 Regrind Product

Size Fraction (mesh)	Individual Percentage Retained %	Cumulative Percentage Passing %
+ 65	21.53	78.47
65 + 100	29.75	48.72
100 + 150	15.82	32.90
150 + 200	9.84	23.06
200	23.06	

Reground 5 mins at 50% solids with 1/2 ceramic charge

.

SAMPLE NO. M90-088 F8 - R/C 3 Regrind Product

Size Fraction (mesh)	Individual Percentage Retained %	Cumulative Percentage Passing %
+ 65	20.89	79.11
65 + 100	27.52	51.59
100 + 150	15.03	36.56
150 + 200	10.00	26.56
200	26.56	

,

Reground 5 mins at 50% solids with full ceramic charge

-

1

1

SAMPLE NO. M90-088 F8 +48 Pan Tails

Flowsheet Stream #11

Size Fraction (mesh)	Individual Percentage Retained %	Cumulative Percentage Passing %
+ 28	7.53	92.47
28 + 48	77.65	14.82
48 + 65	14.12	0.70
65 + 100	0.65	0.05
+ 150	0.05	

.

-1

1

SAMPLE NO. M90-088 F8 -100 Mesh Regrind Feed

	FLOWSHEET STREAM # 19	<u> </u>
Size Fraction (mesh)	Individual Percentage Retained %	Cumulative Percentage Passing %
+ 65		
- 65 + 100		
- 100 + 150	14.72	85.28
- 150 + 200	22.42	62.86
- 200 + 325	22.61	40.25
- 325 + 400	3.96	36.29
- 400	36.29	

٠

,

SAMPLE NO. M90-088 F8 -100 Regrind Discharge

Ground 5 min at 70% solids

Size Fraction	Individual Percentage	Cumulative Percentage	
(mesh)	Retained %	Passing %	
+ 400	60.38	39.62	
400	39.62		

.

TESTWORK PROCEDURE

Test No: M90-088 F9

1

Date: Feb 26/90

Purpose: As F8: 1)Switch reagent from EKOF 452 G to VARSOL/MIBC 2)Rougher float only (stop after 2nd ro cleaner)

STAGE	TIME	IA	DDITIONS
	(Minutes)	g/tonne	REAGENT
Grind: 2kg charge (Target: 95-98% -800 microns)	2.5		1/2 regular rod charge 50-60% solids
Flotation:			
Condition	3	50	32 % solids pH= 8.0 VARSOL
Rougher	9		MIBC
Condition	2	10	VARSOL
Scavenger (to barren tail)	7		MIBC pH= 7.8
1st Cleaner	10		MIBC
Condition	1	10	VARSOL
1st Cleaner Scavenger	1		MIBC
2nd Cleaner	7		MIBC
Condition	1	10	VARSOL .
2nd Cleaner Scavenger	1		MIBC

}	WE IGHT	WEIGHT		ASSAYS	1	X DIST	
PRODUCT	GMS	X	C		-	C ·	
		1	X		ł		
2nd Cleaner Conc	74.9	3.83	89.90	· · · · · · · · · · · · · · · · · · ·		93.04	
2nd Cleaner Tails	0.3	0.02	6.23		ł	0.03	
1ST CLEANER CONC	75.2	3.84	89.57		ł	93.07	
1st Cleaner Talls	13.7	0.70	1.15		ł	0.22	
TOTAL RO CONC	88.9	4.54	75.94		ł	93.29	
Final Talls	1868.5	95.46	0.26		ł	8.71	
1		1			ł		
1		1			ļ		
}		-			1		
•					1		
•		-			ł		
1		1					
CALC HEAD	1957 4	100.0	3.70	,	 !	100.00	

,

.

ę

PRODUCT	WE IGHT GMS	WEIGHT X	C X	ASSAYS		UNITS C	
2nd Cleaner Conc	74.9	3.83	89.90			344.00	
2nd Cleaner Talls		0.02	6.23		l	0.10	
IST CLEANER CONC		3.84	89.57		Ì	344.10	
1st Cleaner Talls	13.7	0.70	1.15		ł	0.80	
TOTAL RO CONC	88.9	4.54	75.94			344.90	
Final Talls	1868.5	95.46	0.26			24.82	
ł		1			ł		
5		1			1		
1		ł			ł		
		ł					
i							
CALC HEAD	1957.4	100.0	3.70			369.72	

•

.

.

.

1

1 march 1

SAMPLE NO. M90-088 F9 HEAD

Ground 2.5 min at 60 solids

Size Fraction (mesh)	Percentage	
+ 28	15.15	84.85
28 + 48	30.52	54.33
48 + 65	13.53	40.80
65 + 100	10.55	30.25
100 + 150	8.67	21.58
150 + 200	6.32	1 5.26
200 + 325	6.07	9.19
325 + 400	0.53	8.66
- 400	8.66	

SAMPLE NO: M90-088 F9 Rougher Talls

Size Fraction (mesh)		individual Percentage Retained	Cumulative Percentage Passing
	+ 28	17.9	82.1
- 28	+ 48	35.6	46.5
- 48	+100	22.2	24.3
-100	+200	12.9	11.4
-200		11.4	

1	•		NEIGH	T I	ASSAYS	l	_	I DIST	
1	PRODUCT	GMS	X	ļ	C Y	i i	C Y		
+ 					•	•			
ł	+28 mesh	17.90	17.90	ł	0.08	ł	5.50		
ł	+48 mesh	35.60	35.60	1	0.19	1	25.97		
1	+100 mesh	22.20	22.20	1	0.17	1	14.49		
1	+200 mesh	12.90	12.90	ł	0.95	1	47.05		
1	-200 mesh	11.40	11.40	ł	0.16	1	7.00		
				1		ł			
1				1		ł			
1				1		ţ			
1				1		1			
ł						1			
1				1		1			
1				ł		ł			
1041	C HEAD	100.00	100.0		0.26		100.00		

1

.

e.

	PRODUCT	WE IGHT GMS	WEIGHT: X	C X	ASSAYS	 	C	UNITS	
	+28 mesh	17.90	17.90	0.08		<u> </u>	1.43		
Ì	+48 mesh	35.60	35.60	0.19		ł	6.76		
-	+100 mesh	22.20	22.20	0.17		i	3.77		
ł	+200 mesh	12.90	12.90	0.95		l	12.26		
1	-200 mesh	11.40) 11.40 ;	0.16		. 1	1.82		
ł						ł			
1			:			1			
1			-			1			
ł			1			- 1			
1			ł			· · · ·			
1									
1						ł			

,

. .

TESTWORK PROCEDURE

Test No: M90-088 F10-A

t.

1......

Į

Date: 5-Apr-90

Purpose: To investigate the low recovery of Pilot Plant #4A Rougher Flotation Circuit

STAGE	TIME	A	DDITIONS
	(Minutes)	g/t	REAGENT
Grind (#4A Rougher Flotation Feed)	0		
Rougher Flotation:			35% solids
Rougher Flotation 1	1.5		
Condition	1	11	EKOF 452G
Rougher Flotation 2	2		
Condition	1	18	EKOF 452G
Rougher Flotation 3	3		
Condition	1	18	EKOF 452G
Rougher Flotation 4	3		
Condition	1	18	EKOF 452G
Rougher Flotation 5	2.5		
Condition	1	101	EKOF 452G
Rougher Flotation 6	9.5		
Condition	1	126	EKOF 452G
Rougher Flotation 7	1.5		
Cleaner Flotation:			
Condition	1	83	EKOF 452 G
Cleaner Flotation 1	18.5		
Condition	1	36	EKOF 452 G
Cleaner Flotation 2	12		

PRODUCT	WEIGHT WEIGHT¦G kg % ¦	raphitic ASSAYS Carbon X	Graphitic % DIST Carbon %	
Cleaner Conc Cleaner Talls ROUGHER CONC Rougher Talls	6.6 0.63 ; 16.5 1.57 ; 23.1 2.19 ; 1030.0 97.81 ;	61.48 3.82 20.29 0.32	50.82 7.89 58.72 41.28	
CALC FEED (Stream 6)	1053.1 100.0 ;	0.76	¦ 100.00	
ASSAY FEED (Stream 8)		1.21	ł	

.

TEST NUMBER:	M90-088	F10-A:	Bench-scale	test on Run #4 Flotn Feed			
 Product 	WE IGHT kg		Graphitic Carbon	ASSAYS	¦Graphitic ¦Carbon ¦	UNITS	
Cleaner Conc	6.6	0.63	61.48		38.531		
Cleaner Tails	16.5	1.57	3.82		5.985		
ROUGHER CONC	23.1	2.19	20.29		44.516		
Rougher Tails	1030.0	97.81	0.32		31.298		
1		1	1				
		1					
i					i		
i 1		i	i		i		
İ			•		i		
CALC FEED (Stream 6)	1053.1	100.0	0.76		75.814		
ASSAY FEED (Stream 6))		1.21		 		

ł

.

SAMPLE NO: M90-088 F10 Head (F10-A)

	raction esh)	individual Percentage Retained	Cumulative Percentage Passing
	+ 28	4.45	95.55
- 28	+ 48	35.49	60.06
- 48	+100	26.32	33.73
-100	+200	16.25	17.49
-200		17.49	

Į

TESTWORK PROCEDURE

Test No: M90-088 F10-B

-

Date: 2-Apr-90

Purpose: Scavenging of Pilot Plant Run #4A Rougher Flotation Tails. 1)NO regrind

STAGE	TIME	A	DDITIONS
	(Minutes)	g/t	REAGENT
Grind (Rougher Flotation Tails)	0		
Scavenger Flotation 1	2	32	EKOF 452G
Scavenger Flotation 2	2	48	EKOF 452G
· · · · · · · · · · · · · · · · · · ·	}		
			L

PRODUCT		Graphitic Carbon	ASSAYS	Graphitic % Di Carbon %	ST
Scavenger Conc Scavenger Tails	5.6 0.99 558.4 99.01			10.09 89.91	
CALC FEED (Stream 8)	564.0 100.0	; 0.18		; 100.0	****************
ASSAY FEED (Stream 8)		0.22			

.

•

مد نظر معد المحمد بين كن معانية كن ومريز التي مع د بيهم مع مريز بين ني م		
1.777 15.841	5.6 0.99 1.79 558.4 99.01 0.16	•
17.6	 564.0 100.0 0.18	CALC FEED (Stream 8) 56
17.6 17.6	 564.0 100.0 0.18 0.22	 CALC FEED (Stream 8) 56 ASSAY FEED (Stream 8)

.

TESTWORK PROCEDURE

Test No: M90-088 F10-C

Į

Date: 2-Apr-90

Purpose: Scavenging of Pilot Plant Run #4A Rougher Flotation Tails. 1)Include short regrind

STAGE	TIME	A	DDITIONS	
	(Minutes)	g/t	REAGENT	
Grind (Rougher Flotation Tails)	2			
Scavenger Flotation 1	2	32	EKOF 452G	
Scavenger Flotation 2	2	48	EKOF 452G	
<u> </u>				
		l	L	

PRODUCT	WEIGHT WEIGHT¦Graphitic kg % ¦Carbon ¦%	ASSAYS	Graphitic X DIST Carbon X	
Scavenger Conc Scavenger Tails	7.7 1.40 5.12 542.3 98.60 0.11		39.79 60.21	
CALC FEED (Stream 8)	550.0 100.0 0.18		100.0	
ASSAY FEED (Stream 8)				

PRODUCT	WEIGHT WEIGHT¦Graphilic kg % ¦Carbon ¦ %	ASSAYS	Graphitic UNITS Carbon 	
Scavenger Conc Scavenger Talis	7.7 1.40 5.12 542.3 98.60 0.11		7.188	
CALC FEED (Stream 8)	550.0 100.0 0.18		18.0	

APPENDIX IV Pilot Plant Testwork

1

PILOT RUN #1

PILOT RUN #1

DATE: March 9, 1990

DURATION: 4 hours

THROUGHPUT: 1150 kg

ASSAY HEAD: 3.55 %C(g)

REAGENT COSUMPTION: 110 g/tonne EKOF 452 G REAGENT ADDITION: Rod Mill Discharge

FLOWSHEET MODIFICATIONS:

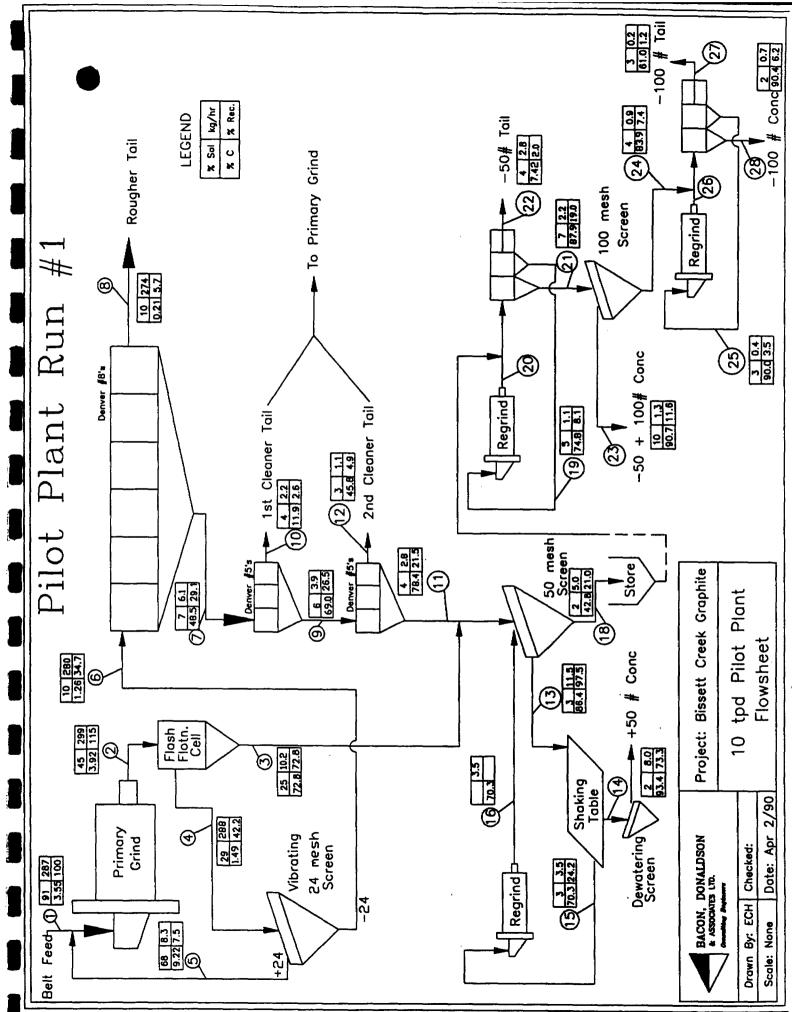
البنيج ومشتر وجد وتنتز وجو وتنا والا والتا ا

 1) Initial Production Pilot Run
 2) Used 24* screen for primary screen (20* unavailable)
 3) Total Primary Will Rod Charge = 2000 ibs
 4)
 5)
 6)
 7)

RESULTS:

Final_Concentrates:	WT %	% C(g)	% REC'Y	· X DIST
+50# Concentrate	2.79	93.40	73.34	80.48
-50+100# Concentrate	0.45	90.70	11.57	12.70
-100# Concentrate	0.24	90.40	6.21	6.82
Combined Concentrates	3.48	92.84	91.12	100.00

Flowshee Stream No	t Product	WE IGHT Kg/hr	WEIGHT	ASSAYS, Assayed	XC(g) 	UNITS OF C(g) Calc	DISTRIBUTION 2C(g) Caic
Primary	Circuit:						
1	Beit Feed	287.00	100.00	3.550	3.550	355.000	100.
2	Rod MIII Discharge	298.60	104.04	4.210	3.925	408.340	115.
3	Unit Cell Conc	10.19	3.55	73.500	72.800	258.478	72.
1 4	Unit Cell Tail		100.49	2.100	1.491	149.862	42.
5	20# Screen 0/S	8.30	2.89	9.220	9.220	26.664 ;	7.
6	20# Screen U/S	280.11	97.60	1.180	1.262	123.198 }	34.
17	Rougher Flot Conc	8.11	2.13	50.400	48.451	103.149 ;	29.
8	Rougher Flot Tail	274.00	95.47	0.210	0.210	20.049	5.
9	1st Ro Cinr Conc	3.91	1.36	60.500	69.017 ;	94.027	26.
10	1st Ro Cinr Tail	2.20	0.77	11.900	11.900	9.122	2.
11	2nd Ro Cinr Conc	2.80	0.98	77.400	78.366	76.473	21.
12	2nd Ro Cinr Tail	1.10	0.38	45.800	45.800	17.554	4.
13	50# Screen 0/S (Table Feed)	11.50	4.01	83.500	88.370 ;	346.080 }	97.
14	+50# Table Conc	8.00	2.79	93.400	93.400	260.348	73.
15	+50# Table Tall	3.50	1.22	70.300	70.300	85.732	24.
16	Regrind Discharge		1		İ	İ	
17	50w Screen Feed	12.99	4.53		74.000	334.951	94.
18 18	50# Screen U/S	4.99	1.74	42.800	42.800	74.603	21.
; -50 West	Circuit:		1				
19	2nd Cl (Scav) Conc	1.10	0.38	74.800	74.800	28.669 ¦	8.
20	Regrind Discharge		ł	1		:	
21	1st CI Conc	2.20	0.77	92.800	87.905	67.383	18.
22	2nd Ci (Scav) Tall	2.79	0.97	7.880	7.425	7.220 ;	2.
23	-50 +100# Final Conc	1.30	0.45	90.700	90.700	41.084	11.
-100 Mes	sh Circuit:				•	l l	
24	100 Mesh Screen U/S	0.90			83.867	26.300	7.
25	2nd CI (Scav) Conc	0.40	0.14	90.000	90.000	12.544	3.
26	Regrind Discharge				1	1	
27	2nd Cl (Scav) Tail	0.20	0.07	61.000	61.000	4.251	1.
28	-100e Final Conc	0.70	0.24	90.400	90.400	22.049	. 6.


Notes:

1)Product #5 is calculated using pilot plant flowrate measurement

2)Beit Feed (#1), 50# Screen Feed (#17), +50# Table Conc (#14), Rougher Flot Tall (#8),

-50# Screen U/S (#18), -50+100# Conc (#23), -100# Conc (#28) are all taken as gospel.

CONCENTRATES :	WT X	% C(g)	X REC'Y	X DIST
+50# Concentrate	2.79	93.40	73.34	80.48
-50+100# Concentrate	0.45	90.70	11.57	12.70
-100# Concentrate	0.24	90.40	6.21	6.82
Combined Concentrates	3.48	92.84	91.12	100.00

Project No.: M90-088 Project Name: Bissett Creek Graphite

Date: <u>9-Mar-90</u> Operator Name: Jack R.

,

RUN # 1-A

	Feed	Belt	Feed Water	Discharge	Reagent	Pump
	Rate	Cut	Addition	%	Feed	Box
Time	(lb/hr)	(g)	(l/min)	Solids	(ml/min)	Level
11:45	1312	3309	4	46	9.04	~1/4
12:00	1153	2909	4	50	9.08	mt
12:15	946	2385	4	55	9.1	mt
12:35	827	2086	4	47	13.15	mt
1:00	680	1715	4	35	13.25	mt
1:45	697	1758	2.76	40	13.3	mt
2:30	722	1822	-	35	13.03	mt
3:20	430	1086	4	50	12.98	mt
			<u> </u>			
			l			

Sampling:

Time	Beit Feed	Primary Mill Discharge	Vibrating Screen O/S	Thickener Feed	Thickener O/F	Tailings Conditioner O/F
11:45			~ /		×	/
12:35			~	-	X	
1:00			~	-	X	~
1:45				~	X	~
2:30			/	· ·	X	
3:20		/	~		X	
,						
				:		

Comments:

Time	Comments	
1	1:30 Start up.	<u></u>
1	2:55 Drive motor bearings noisy - #3 C.V.	
	2:00 Ball mill reducer bearings warm - all others cool	
	2:30 Cut ball mill feed water to zero	
	3:30 Shut down.	

Project No.: <u>M90-088</u> Project Name: Bissett Creek Graphite Date: March 9/90 Operator Name: Ed H. & Peter T.

RUN # 1-A

Rougher Flotation:

	Feed		F	otation	Cell Le	vel		Froth Description					
	%	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Cell
Time	Solids	1	2	3	4	5	6	1	2	3	4	5	6
1:00	15	G	G	U	U	U	U	G/H	G/H	G/H	M/L	M/L	M/L
1:45	14	G	G	U	U	U	U	G/H	G/H	M/L	M/L	M/L	M/L
2:30	5	G	G	U	U	U	U	G/H	G/H	M/L	M/L	M/L	M/L
3:15	6	G	G	U	U	U	U	G/H	G/H	M/L	M/L	M/L	M/L

LEGEND

- Cell Level:
 - I: H = High G = Good
 - U = Unsteady

L = Low

Froth Description:

G/ = Strong Froth M/ = Medium Froth P/ = Poor Froth

/H = High grade /M = Medium grade /L = Low grade

Cleaner Flotation:	1st Cleaner Bank							2nd Cleaner Bank					
	Flotatio	on Cell	Level	Froth	Froth Description			Flotation Cell Level			Froth Description		
	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Cell	
Time	1	2	3	1	2	3	1	2	3	1	2	3	
1:00	H	Н	Н	G/L	G/L	M/L	G	G	G	M/L	P/L	P/L	
1:45	G	G	G	G/M	G/M	G/M	L	L	G	G/M	P/L	M/M	
2:30	Н	L	G	G/L	G/H	G/M	G	Н	G	G/H	P/M	M/M	
3:15	G	L	G	G/M	G/M	G/M	G	L	G	G/H	M/H	M/L	
							<u> </u>						

Comments:

Time Comments 1:00 Cleaners working poorly - no solids 1:00 Unit cell working well 1:00 Spot reagent addition to rougher feed pump 1:30 Unit cell conc line plugged - 15 minutes downtime 2:00 Main reagent feed line broke - 15 minutes down			
1:00 Unit cell working well 1:00 Spot reagent addition to rougher feed pump 1:30 Unit cell conc line plugged - 15 minutes downtime	Time	Comments	
1:00 Spot reagent addition to rougher feed pump 1:30 Unit cell conc line plugged - 15 minutes downtime	1:00	Cleaners working poorty - no solids	
1:30 Unit cell conc line plugged - 15 minutes downtime	1:00	Unit cell working well	
	1:00	Spot reagent addition to rougher feed pump	
2:00 Main reagent feed line broke - 15 minutes down	1:30	Unit cell conc line plugged - 15 minutes downtime	
	2:00	Main reagent feed line broke - 15 minutes down	

Project No.: M90-088 Project Name: Bissett Creek Graphite

Ē

Date: March 9/90 Operator Name: Ed H. & Peter T.

RUN # 1-AA & 1-AB

	Cut				Time			
Sample	Time	1:00	1:45	2:00	3:15			
3. Unit Cell Concentrate	30 s	~	/	~				
4. Unit Cell Tailing	5 s	~	7/	~	~			
8. Rougher Flotation Feed	5 s	/	~	~	~		·	
9. Rougher Flotation Conc	30 s	~	~	~	~			
10. Rougher Flotation Tailing	-	~	~	~	~			
11. 1st Ro Cleaner Conc	-	~	~	/	~			
12. 1st Ro Cleaner Tail	20 s	~	~	~	~			
13. 2nd Ro Cleaner Conc	•	~	~	/	~			
14. 2nd Ro Cleaner Tail	20 s	~	~	~	~			
15. 50 Thesh Screen Food	+	\rightarrow		7		\sim		

Comments:

Time	Comments
2:30	Comments Change sampling buckets (ie. Run #1-AB)
	· · · · · · · · · · · · · · · · · · ·
	·

FLOTATION OPERATION SHEET

Project No.: M90-088 Project Name: Bissett Creek Graphite Date: March 13/90 Operator Name: Ed H. & Peter T.

RUN # 1-B

Rougher Flotation:

_	Feed		F	lotation	Cell Le	vel		Froth Description				_	
	%	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Cell
Time	Solids	1	2	3	4	5	6	1	2	3	4	5	6
	·	┠───		ļ	 								
												·	
	+												
	1	<u> </u>			ţ								
												:	

LEGEND

- Cell Level:
- H = High
 - G = Good
 - U = Unsteady

L = Low

Froth Description:

G/ = Strong Froth M/ = Medium Froth P/ = Poor Froth

/H = High grade /M = Medium grade /L = Low grade

Cleaner Flotation:		1st C	leaner	Bank				2nd (Cleaner	Bank		
	Flotatio	on Cell	Level	Froth	Descri	otion	Flotatio	on Cell	Level	Froth	Descri	otion
	Cell	Cell	Ceil	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Cell
Time	1	2	3	1	2	3	1	2	3	1	2	3
1:10	G	G	G	G/H	G/H	G/H						
1:25	G	G	G	G/H	G/M	G/M						
1:45	G	G	G	G/H	G/H	G/H						
2:10	G	G	G	G/H	G/H	G/H						
2:45	G	G	G	G/H	G/H	G/M						
3:05	G	G	G	G/H	G/H	G/M						
3:20	G	G	G	G/H	G/H	G/M				·		

Comments:

Time	Comments
2:03	Problem with air pump on feed
2:15	Switched -100 mesh tank
2:25	Additional 10 kg media to regrind
2:37	Feed pump down (~2 minutes)
2:50	Lightnin mixer no longer mixing feed tank. Change impeller
3:15	2nd lightnin mixer no longer mixing feed tank

Project No.: <u>M90-088</u> Project Name: <u>Bissett Creek Graphite</u> Date: March 13/90 Operator Name: Ed H. & Peter T.

RUN # 1-BA & 1-BB

	Cut				Time			•
Sample	Time	1:25	1:45	2:10	2:45	3:05	3:20	
-50 mesh Feed	20 s	~	~	/	~	/	~	
Regrind Discharge	60 s	~	~	~	-	-	~	
-100 mesh Product	60 s		-	1	~	-	/	
1st Cleaner Conc	60 s	~	~	~	-	-	~	
+100 mesh Conc	3 min	~	~	-	~	-	~	
2nd Cleaner Conc	60 s	~	~	1	~	-	-	
2nd Cleaner Tail	15 s	1	~	~	~	~	~	

Comments:

1

Time	Comments
2:45	Switch sample buckets (ie. Run #1-BB)
	·

FLOTATION OPERATION SHEET

Project No.: <u>M90-088</u> Project Name: <u>Bissett Creek Graphite</u> Date: March 13/90 Operator Name: Ed H. & Peter T.

RUN # 1-C

Rougher Flotation:

	Feed		F	otation	Cell Le	vel				Froth D)escript	ion	
	%	Cell	Cell	Cell	Cell	Cell	Cell	Celi	Cell	Cell	Cell	Cell	Cell
Time	Solids	1	2	3	4	5	6	1	2	3	4	5	6
		1											
	<u> </u>	l											

LEGEND

- Cell Level:
 - H = High G = Good

L = Low

U = Unsteady

Froth Description:

G/ = Strong Froth M/ = Medium Froth P/ = Poor Froth

/H = High grade /M = Medium grade /L = Low grade

Cleaner Flotation:		1st C	leaner	Bank				2nd (Cleaner	Bank		
	Flotatio	on Cell	Level	Froth	Descri	otion	Flotatio	on Cell	Level	Froth	Descrip	otion
	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Cell
Time	1	2	3	1	2	3	1	2	3	1	2	3
4:20	G	G	G	G/H	G/H	G/H				ŧ		
4:25	G	G	L	G/H	G/M	G/H						
4:30	G	G	G	G/H	G/H	G/H						
4:45	G	G	L	G/H	G/M	G/H						
4:55	G	G	L	G/H	G/H	G/H						
			<u> </u>									├──
	·							<u> </u>				┢───
				1								
				†			1					

Comments:

	·	
Time	Comments	
4:20	Start up	
4:30	1st feed tank empty. Switch to 2nd feed tank	
4:57	2nd feed tank empty	

Project No.: M90-088 Project Name: Bissett Creek Graphite

Date: March 13/90 Operator Name: Ed H. & Peter T.

RUN # 1-C

	Cut				Time		
Sample	Time	4:30	4:47	4:52			
-100 mesh Feed	20 s	~		/			
Regrind Discharge	30 s	~	~	~		 	
1st Cleaner Conc	60 s	1	~	/		 	
2nd Cleaner Conc	30 s	17	~	/			
2nd Cleaner Tail	20 s	/	~	/			

Comments:

L

E

_

Time	Comments

Size Fraction (mesh)	Individual Percentage Retained %	Cumulative Percentage Passing %		
+ 1"	11.4	88.6		
- 1" + 3/4"	24.1	64.5		
· 3/4" + 1/2"	13.6	50.9		
- 1/2" + 3/8"	16.4	34.5		
3/8" + 3 mesh	6.3	28.2		
- 3 + 4 mesh	3.9	24.3		
4 + 6	2.7	21.6		
6 + 8	2.1	19.5		
- 8 + 10	1.0	18.5		
- 10 + 14	2.4	16.1		
- 14 + 20	1.8	14.3		
- 20 + 28	1.0	13.3		
- 28 + 35	2.7	10.6		
- 35 + 48	1.9	8.7		
- 48 + 65	2.0	6.7		
- 65 + 100	1.7	5.0		
- 100 + 150	1.4	3.6		
- 150 + 200	1.1	2.5		
- 200	2.5			

SAMPLE NO. M90-088: Pilot Plant Run #1-A (March 9, 1990) Belt Feed (0-2 hours)

, · ·

SAMPLE NO: M90-088 Pilot Plant Run #1-AA

March 9, 1990

Individual Cumulative Size Fraction Percentage Percentage Retained Passing + 28 3.07 96.93 - 28 44.59 52.34 + 48 - 48 +100 29.24 23.10 -100 +200 12.57 10.53 . -200 10.53

Unit Cell Concentrate (0-2 hours)

SAMPLE NO: M90-088 Pilot Plant Run #1-AA

March 9, 1990

Size F	raction	individual Percentage Retained	Cumulative Percentage Passing
	+ 28	1.26	98.74
- 28	+ 48	46.70	52.04
- 48	+100	46.23	5.81
-100	+200	4.40	1.41
-200		1.41	

Table Tails (0-2 hours)

SAMPLE NO:M90-088 Pilot Plant Run #1-AA

March 9, 1990

	raction lesh)	individual Percentage Retained	Cumulative Percentage Passing
	+ 28	0.00	100.00
- 28	+ 48	14.03	85.97
- 48	+100	33.78	52.19
-100	+200	25.83	26.35
-200		26.35	

.

Flotation Rougher Tails

SAMPLE NO: M90-088 Pliot Plant Run #1-AA

i,-

March 9, 1990

Size Fraction		Individual Percentage Retained	Cumulative Percentage Passing
	+ 28	0.26	99.74
- 28	+ 48	33.44	66.30
- 48	+100	42.89	23.41
-100	+200	13.86	9.55
-200		9.55	

Regrind Discharge (0-2 hours)

۰.

. . . .

SAMPLE NO. M90-088: Pilot Plant Run #1-A (March 9, 1990)

Size Fraction (mesh)	Individual Percentage Retained %	Cumulative Percentage Passing %
+ 20		
20 + 28	0.1	99.9
28 + 48	19.3	80.6
48 + 100	34.0	46.6
100 + 200	22.0	24.6
200	24.6	

Thickener Feed (0-2 hours)

SAMPLE NO. M90-088: Pilot Plant Run #1-A (March 9, 1990)

Size Fraction (mesh)	Individual Percentage Retained %	Cumulative Percentage Passing %
+ 20	1.2	98.8
20 + 28	1.3	97.5
28 + 48	24.5	73.0
48 + 100	31.8	41.2
100 + 200	20.2	21.0
200	21.0	

Rod Mill Discharge (0-2 hours)

1.111

SAMPLE NO. M90-088 Run #1 - AB

Rod Mill Discharge

Size Fraction (mesh)	Individual Percentage Retained %	Cumulative Percentage Passing %
+ 65	54.3	45.7
65 + 100	12.0	33.7
100 + 150	8.9	24.8
150 + 200	6.7	18.1
· 200	18.1	

.

SAMPLE NO. M90-088 Run #1 - BA

Size Fraction (mesh)	Individual Percentage Retained %	Cumulative Percentage Passing %
+ 65	7.4	92.6
65 + 100	27.9	64.7
100 + 150	26.7	38.0
150 + 200	16.5	21.5
· 200	21.5	

.

1st Cl Conc.

-

1

Ľ

SAMPLE NO. M90-088 Run #1 - BA

2nd Cl Conc.

Size Fraction (mesh)	Individual Percentage Retained %	Cumulative Percentage Passing %
+ 65	7.7	92.3
- 65 + 100	29.7	62.6
- 100 + 150	25.9	36.7
- 150 + 200	14.4	22.3
- 200	22.3	

SAMPLE NO. M90-088 Run #1 - BA

Regrind Discharge

Size Fraction (mesh)	Individual Percentage Retained %	Cumulative Percentage Passing %
+ 65	15.2	84.8
- 65 + 100	17.7	67.1
- 100 + 150	20.3	46.8
- 150 + 200	17.4	29.4
- 200	29.4	

П

SAMPLE NO. M90-088 Run #1 - C

Regrind Discharge

Size Fraction (mesh)	Individual Percentage Retained %	Cumulative Percentage Passing %
+ 65	5.1	94.9
65 + 100	14.8	80.1
100 + 150	24.7	55.4
150 + 200	23.3	32.1
200 + 325	20.6	11.5
325	11.5	

SAMPLE NO. M90-088 Run #1 - C

2nd Cl Conc.

Size Fraction (mesh)	Individual Percentage Retained %	Cumulative Percentage Passing %
+ 65	1.6	98.4
65 + 100	4.9	93.5
100 + 150	24.9	68.6
150 + 200	27.8	40.8
200 + 325	25.2	15.6
325	15.5	

.

4

1.1.1

1

SAMPLE NO. M90-088 Run #1 - C

1st Cl Conc.

Size Fraction (mesh)	Individual Percentage Retained %	Cumulative Percentage Passing %
+ 65	1.6	98.4
- 65 + 100	5.5	92.9
- 100 + 150	30.0	62.9
- 150 + 200	29.5	33.4
- 200 + 325	21.6	11.8
- 325	11.8	

.

PILOT RUN #2

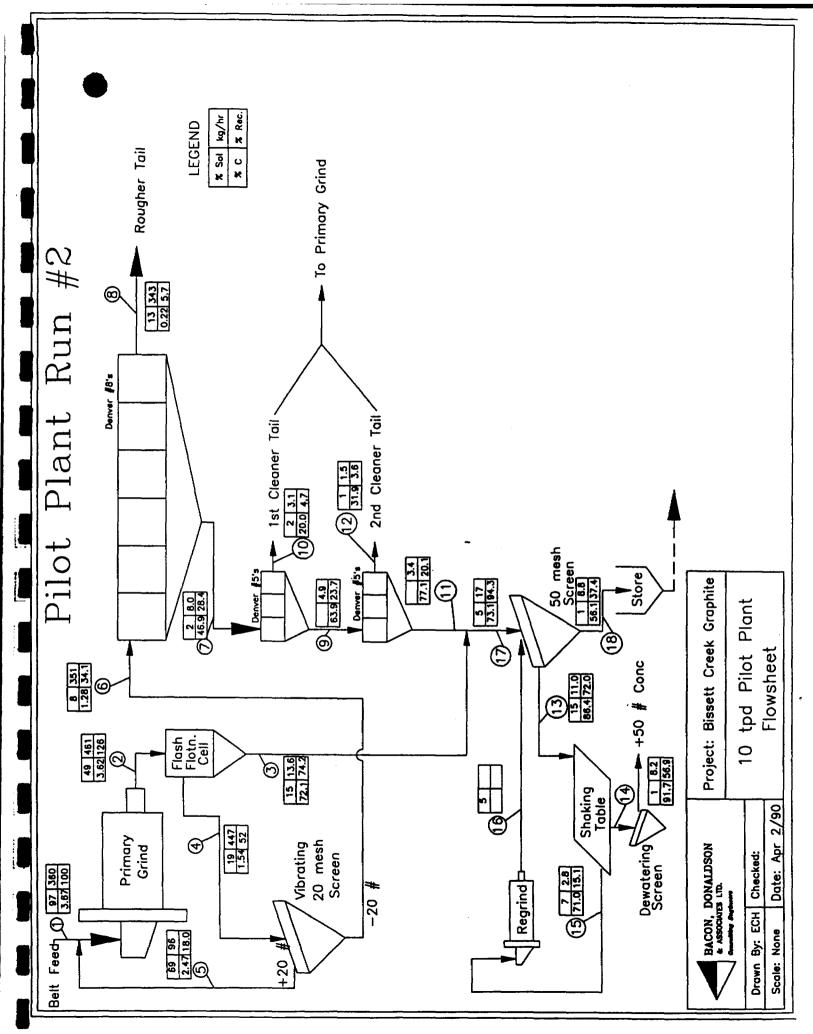
ويحمدهم DATE: March 15, 1990 DURATION: 6 hours ASSAY HEAD: 3.67 %C(g) THROUGHPUT: 2160 kg REAGENT COSUMPTION: 150 g/tonne EKOF 452 G REAGENT ADDITION: Rod Mill Discharge, Rougher Flotation Cell #1 FLOWSHEET MODIFICATIONS: 1)Removed 512 lbs rods from Primary Rod Mill (approx 1500 ibs remaining) 2) Install 20# Sweco (Primary) screen 3)Reagent addition point added to 1st Rougher Celi 4)Removed Thickener from circuit and replaced with a 900 litre surge tank (between 20# U/S and rougher flotation)

- 5)
- 6)
- 7)

RESULTS:

Final Concentrates:	WT %	X C(g)	X REC'Y	X DIST
+50# Concentrate	2.28	91.70	56.91	60.36
-50 Product	2.46	56.10	37.38	39.64
Combined Concentrates	4.73	73.23	94.29	100.00

PILOT RUN #2


Flowshee Stream	et PRODUCT	WE IGHT Kg/hr	NE IGHT X	: assays, 	₩C(g) ;	UNITS OF C(g)	DISTRIBUTION 2C(g)
No				Assayed	Calc	Calc	Calc
Primary	Circuit:			 			
1	Beit Feed	360.00	100.00	3.670	3.670	367.000	100.1
2	Rod Mill Discharge	460.60	127.94	3.270	3.622	463.381	126.3
3	Unit Cell Conc	13.60	3.78	67.300	72.100	272.378	74.
4	Unit Cell Tall	447.00	124.17	1.300	1.538	191.003	52.
5	20# Screen 0/S	96.00	26:87	2.470	2.470 ;	65.867	17.
6	20s Screen U/S	351.00	97.50	1.940	1.283	125.138	34.
7	Rougher Flot Conc	8.00	2.22	38.600	46.879	104.175	28.
8	Rougher Flot Tail	343.00	95.28	0.220	0.220	20.961	5.
9	1st Ro Cinr Conc	4.90	1.36	59.200	63.884 ;	86.953	23.
10	1st Ro Cinr Tail	3.10	0.86	29.400	20.000 ;	17.222	4.
11	2nd Ro Cinr Conc	3.44	0.96	68.200	77.052	73.661	20.
12	2nd Ro Cinr Tail	1.50	0.42	31.900	31.900	13.292	3.
13	50# Screen 0/S (Table Feed)	11.00	3.06	81.100	86.431	264.094	71.
14	+50m Table Conc	8.20	2.28	91.700	91.700	208.872	56.
15	+50e Table Tall	2.80	0.78	74.000	71.000	55.222	15.
16	Regrind Discharge			1	1	}	
17	50# Screen Feed	17.04	4.73	73.100	73.100	346.039	94.
18	50# Screen U/S	8.84	2.46	56.100	56.100	137.167	37.
ł				1	1		

Notes:

1)Product #5 is calculated using pilot plant flowrate measurement

2)Beit Feed (#1), 50# Screen Feed (#17), +50# Table Conc (#14), Rougher Flot Tail (#8), -50# Screen U/S (#18) are all taken as gospel.

CONCENTRATES:	WT X	¥ C(g)	X REC'Y	X DIST
+50# Concentrate	2.28	91.70	56.91	60.36
-50# Product	2.46	58.10	37.38	39.64
Combined Concentrates	4.73	73.23	94.29	100.00

يوالاستغيرة تتتقده والسب

......

GRINDING OPERATION SHEET

Project No.: M90-088 Project Name: Bissett Creek Graphite

ſ

I

Date: March 15, 1990 Operator Name: Jack R.

RUN # 2-A

	Feed	Belt	Feed Water	Discharge	Reagent	Pump
	Rate	Cut	Addition	%	Feed	Box
Time	(lb/hr)	(g)	(Vmin)	Solids	(ml/min)	Level
2:20	528	1331	-	35	13.01	mt
2:40			-	42		
3:00	1455	1694	-	55	18.65	mt
3:20	910	1434	-	62	18.79	mt
3:45	912	1438	-			
4:10	722	1138	•	48	18.74	mt
5:05	697	1098	-	47	13.57	mt
	<u> </u>					
			[
				l		
			<u> </u>			
	 		ļ		 	
	1		<u>l</u>	L		

Sampling:

Time	Belt Feed	Primary Mill Discharge	Vibrating Screen O/S	Thiskener Feed	Thickener O/F	Tailings Conditioner O/F
2:20	-	-				
2:30					— 7	
2:45		~	~			1
3:00			/			
3:20		~	~			
4:10		-	1			
5:10						

Comments:

Time	Comments	
11:45	Start up	
12:30	Shut down. Many materials handling problems.	
2:00	Start up with new configuration.	
2:30	Belt speed raised from 10% to 15%	
3:20	Belt speed reduced to 12.5%	
6:00	Shut down.	

Project No.: M90-088 Project Name: Bissett Creek Graphite

Date: March 15/90 Operator Name: Ed H. & Peter T.

RUN # 2-A

Rougher Flotation:

	Feed		F	otation	Cell Le	vel				Froth [Descript	ion	
	%	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Cell
Time	Solids	1	2	3	4	5	6	1	2	3	4	5	6
11:55		Н	Н	L	L	L	L	M/L	M/L	•	-	-	-
0.00											01		
3:00		G	G	G	G	G	G	G/H	M/H	M/H	G/L	G/L	G/L
4:50		G	G	L	L	L		G/H	G/H	G/H	G/H	G/H	flat
5:30		G	G	G	G	L	L	G/H	G/H	G/H	G/H	G/H	flat

LEGEND

- Cell Level:
- H = High G = Good

L = Low

U = Unsteady

Froth Description:

G/ = Strong Froth M/ = Medium Froth P/ = Poor Froth

/H = High grade /M = Medium grade /L = Low grade

Cleaner Flotation:	1st Cleaner Bank						2nd Cleaner Bank					
	Flotatio	on Cell	Level	Froth	Descri	otion	Flotatic	on Celli	Level	Froth	Descri	otion
	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Cell
Time	1	2	3	1	2	3	1	2	3	1	2	3
11:55	G	Н	Н	G/H	G/H	G/H	G	L	L	G/H	•	-
3:00	L	L		G/H	G/H	G/H	L	L	L	G/H	M/H	M/H
4:50	G	L	G	G/H	G/M	G/L	G	L	G	G/H	M/M	M/M
5:30	G	L	G	G/H	G/M	G/M	G	L	G	G/H	M/M	M/L
			<u> </u>					<u> </u>				
			<u> </u>				+	<u> </u>				

Comments:

Time	Comments
11:43	Start up
12:00	Table feed starts
12:30	Shut down
2:00	Start up again
3:00	Going well so far
4:50	Dirty rougher froth. No reagent to rougher flotn.

Project No.: M90-088 Project Name: Bissett Creek Graphite

Date: March 15/90 Operator Name: Ed H. & Peter T.

.

RUN # 2-A

	Cut			_	Time		
Sample	Time	4:50	5:30				
Unit Cell Concentrate	30 s	/	/				
Unit Cell Tailing	5 s	/	/				
Rougher Flotation Feed	5 s	~	~				
Rougher Flotation Conc	30 s		~				
Rougher Flotation Tail	-	~	~				
1st Ro Cleaner Conc	-		~				
1st Ro Cleaner Tail	30 s	~	/				
2nd Ro Cleaner Conc	-	1	~				
2nd Ro Cleaner Tail	30 s	~	~			1	1
50 mesh Screen Feed	30 s	~	~			1	1

Comments:

-

E.

Time		Comments
12:15	20# O/S line pl	ugged
12:25	line replaced	
12:35	Shut down:	1. Add surge tank between 20# u/s & Ro Flotn
		2. Switch rougher cells back to sub-A's
		3. Switch rougher feed pump to large air pump
		4. Lunch
2:00	Start up with ne	ew configuration
5:50	Shut down:	1. 50# u/s storage capacity full
		2. Rougher cells sanded out

SAMPLE NO:M90-088 Pilot Plant Run #2-A

March 15, 1990

Beit Feed

Size Fr	action	Individual Percentage Retained	Cumulative Percentage Passing
	+1"	20.31	79.69
-1"	+3/4"	15.02	64.68
-3/4"	+1/2"	23.83	40.84
-1/2"	+3/8"	7.15	33.70
-3/8"	+ 10	14.07	19.63
- 10	+ 28	5.37	14.26
- 28	+ 48	5.20	9.06
- 48	+100	3.91	5.15
-100	+200	2.54	2.62
-200		2.62	

.

SAMPLE NO:M90-088 Pilot Plant Run #2-AA

-

March 15, 1990

Individual Cumulative Size Fraction Percentage Percentage (mesh) Retained Passing + 28 0.55 99.45 - 28 + 48 20.02 79.43 - 48 +100 31.45 47.97 -100 +200 24.37 23.60 -200 23.60

•

Flotation Rougher Tails

SAMPLE NO: M90-088 Pilot Plant Run #2-AA

f

I

March 15, 1990

Unit Cell Concentrate

	raction esh)	Individual Percentage Retained	Cumulative Percentage Passing
	+ 28	3.14	96.86
- 28	+ 48	48.16	48.70
- 48	+100	28.60	20.10
-100	+200	11.21	8.88
-200		8.88	

SAMPLE NO: M90-088 Pilot Plant Run #2-AA

March 15, 1990

Rougher Flotation Feed

	raction esh)	Individuai Percentage Retained	Cumulative Percentage Passing
	+ 28	2.00	98.00
- 28	+ 48	24.45 26.4	5 73.54
- 48	+100	29.00	44.55
-100	+200	20.98	23.57
-200		23.57	

SAMPLE NO:M90-088 Pilot Plant Run #2-AA

March 15, 1990

Rod Mill Discharge

. •

	raction esh)	individual Percentage Retained	Cumulative Percentage Passing
	+ 28	15.00	85.00
- 28	+ 48	30.46	54.54
- 48	+100	25.37	29.17
-100	+200	15.38	13.80
-200		13.80	

-

-

i

SAMPLE NO. M90-088 Pilot Plant Run #2 - A (March 15, 1990)

Size Fraction (mesh)	Individual Percentage Retained %	Cumulative Percentage Passing %
+ 20	1.0	99.0
- 20 + 28	6.3	92.7
- 28 + 48	58.6	34.1
- 48 + 65	27.1	7.0
- 65 + 100	4.7	2.3
- 100 + 150	1.4	0.9
- 150 + 200	0.6	0.3
- 200 + 325	0.2	0.1
- 325	0.1	
	* · · · · · · · · · · · · · · · · · · ·	

Tables Tailings (Regrind Feed)

-

·

.

SAMPLE NO. M90-088 Pilot Plant Run #2 - A

Size Fraction (mesh)	Individual Percentage Retained %	Cumulative Percentage Passing %		
+ 20	0.2	99.8		
- 20 + 28	2.4	97.4		
- 28 + 48	47.9	49.5		
- 48 + 65	31.9	17.6		
- 65 + 100	9.7	7.9		
- 100 + 150	4.4	3.5		
- 150 + 200	2.0	1.5		
- 200 + 325	1.0	0.5		
- 325	0.5			

e

Regrind Discharge

PILOT RUN #3

ļ

:

1..

-

1

ż.

PILOT RUN #3 DATE: March 21, 1990 DURATION: 6 hours ASSAY HEAD: 3.53 %C(g) THROUGHPUT: 1750 kg REAGENT COSUMPTION: 120 g/tonne EKOF 452 G REAGENT ADDITION: Rod MILL Discharge, Ro Flot Cell #1 FLOWSHEET MODIFICATIONS: 1)Removed 512 lbs rods from Primary Rod Mill (approx 1000 lbs remaining) 2) 3) 4) 5) 6)

7)

د و و و ن نه و و

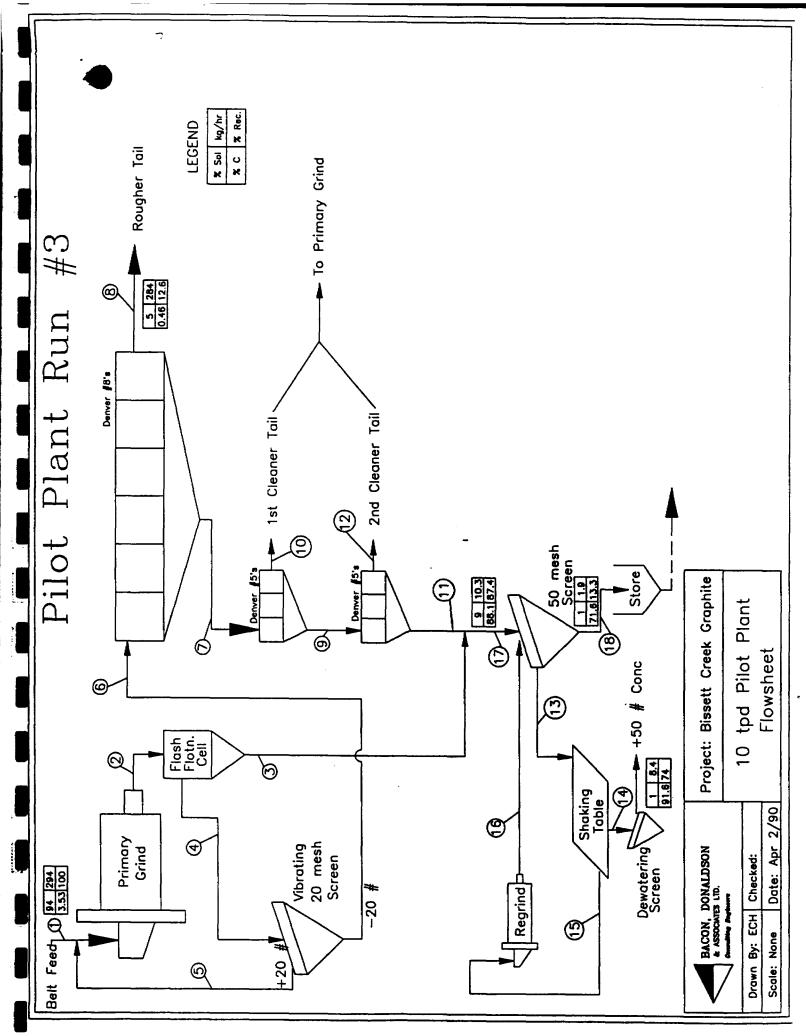
RESULTS:

WT 🐒	% C(g)	X REC'Y	· X DIST
2.86	91.60	74.14	84.82
0.65	71.60	13.27	15.18
3.50	87.92	87.41	100.00
	2.86 0.65	2.86 91.60 0.65 71.60	2.86 91.60 74.14 0.65 71.60 13.27

TEST NUMBER: Pilot Plant Run #3

- 1

۰.	Flowsheet Stream	t Product	WE IGHT Kg/hr	WE IGHT X	assays,	XC(g)	UNITS OF C(g) 	DISTRIBUTION XC(g)
ł	No				Assayed	Calc	Calc ¦	Calc
 ;F	Primary (Circuit:			- <u></u>	 	***************************************	
ŧ	1	Belt Feed	294.00	100.00	3.530	3.530	353.000	100.00
ł	2	Rod Mill Discharge				1	ł	
ł	3	Unit Cell Conc			l r	ł	1	
ł	4	Unit Celi Tall				1	ł	
ł	5	20w Screen 0/S				1	ł	
ł	6	20# Screen U/S				ł	ł	
ļ	7	Rougher Flot Conc				:	1	
ł	8	Rougher Flot Tail	284.00	96.60	0.460	0.460	44.435 ;	12.59
1	9	1st Ro Cinr Conc			}	ł	1	
ł	10	1st Ro Cinr Tall				l	1	
ł	11	2nd Ro Cinr Conc				ł	1	
ł	12	2nd Ro Cinr Tail				ł	1	
ł	13	50# Screen 0/S (Table Feed)				ł	1	
l	14	+50# Table Conc	8.40	2.86	91.600	91.600	261.714	74.14
ł	15	+50# Table Tail				ł	:	
ł	16	Regrind Discharge					1	
ł	17	50# Screen Feed	10.30	3.50	88.100	88.100	308.565	87.41
ł	18	50# Screen U/S	1.90	0.65	71.600	71.600	46.850	13.27
1					1	ł	ł	
-		CALC BELT FEED	294.30	100.0		3.530	353.000 ¦	100.00


Notes:

ł

1)Product #5 is calculated using pliot plant flowrate measurement

2)Beit Feed (#1), 50# Screen Feed (#17), +50# Table Conc (#14), Rougher Flot Tall (#8), -50# Screen U/S (#18) are all taken as gospel.

CONCENTRATES :	NT X	X C(g)	X REC'Y	X DIST
+50e Concentrate	2.86	91.60	74.14	84.82
-50# Product	0.65	71 <i>.</i> 80	13.27	15.18
Combined Concentrates	3.50	87.92	87.41	100.00

GRINDING OPERATION SHEET

Project No.: M90-088 Project Name: Bissett Creek Graphite

Date: March 21,1990 _____ Operator Name: Jack R.

RUN # 3-A

	Feed	Belt	Feed Water	Discharge	Reagent	Pump
	Rate	Cut	Addition	%	Feed	Box
Time	(lb/hr)	(g)	(l/min)	Solids	(mi/min)	Level
9:45	1013	2615	•			
10:00	697	1800	•			
10:20	1192	3079	•			
10:40	1018	2630	•	61	14.16	up & down
12:20	707	1827	•			
1:00	813	2100	-			
1:30	771	1992	-			
2:00	752	1943	-	50		mt
2:45	668	1725	-	35		mt
3:30	640	1653	-	34		mt

Sampling:

ľ

Time	Beit Feed	Primary Mill Discharge	Vibrating Screen O/S	Thickener Føed	Thickener . 0/F	Tailings Conditioner
2:00		~	~		5	5
2:45		~				
3:30	1		/	17	5	5
				$ \zeta $		
						2

Comments:

Time	Comments
9:30	Start up
3:30	Shut down. Many materials handling problems.

Project No.: <u>M90-088</u> Project Name: <u>Bissett Creek Graphite</u>

Date: March 21/90 Operator Name: Ed H. & Peter T.

RUN # 3-A

Rougher Flotation:

	Feed		F	lotation	Cell Le	vel			_	Froth I	Descript	tion	
	%	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Cell
Time	Solids	1	2	3	4	5	6	1	2	3	4	5	6
2:30	12	G	G	G	G	G	G	G/H	G/M	G/M	G/M	M/M	M/L
3:15	12	G	G	G	G	G	G	G/H	G/M	G/M	G/M	M/M	M/L
			ļ										
<u> </u>					[ļ	I		L	[[
			L	1						L	<u> </u>		L
			[L		L	I	L			L		L
							1						

LEGEND

Cell Level: H = High G = Good U = Unsteady L = Low Froth Description:

G/ = Strong Froth M/ = Medium Froth P/ = Poor Froth

/H = High grade /M = Medium grade /L = Low grade

Cleaner Flotation:	1st Cleaner Bank						2nd Cleaner Bank					
	Flotation Cell Level		Froth Description			Flotation Cell Level			Froth Description			
	Cell	Cell	Cell	Ceil	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Cell
Time	1	2	3	1	2	3	1	2	3	1	2	3
2:40	G	G	G	G/H	G/H	L/M	G	L	M	G/H	M/M	M/M
3:25	G	G	G	G/H	G/H	L/M	G	L	M	G/H	M/M	M/M
			L		· ·		I		L	L	L	
				ļ		ļ	Ļ	ļ	ļ	ļ	L	Ļ
		[L	ļ	[<u> </u>		[[I
					ļ		L			·	ļ	Ļ
		[[[[ļ		[ļ		
		1			ļ	ļ				1		Ļ
1		i	1	1	í	i i	1	í	1	1	Í	1

Comments:

Oothintentor	
Time	Comments

Project No.: M90-088 Project Name: Bissett Creek Graphite Date: March 21/90 Operator Name: Ed H. & Peter T.

÷

RUN # 3-A

	Cut			Time	 •	
Sample	Time	2:30	3:15			
Unit Cell Concentrate	30 s	/	/			
Unit Cell Tailing	5 s	1				1
Rougher Flotation Feed	5 s	/	~			1
Rougher Flotation Conc	30 s	/	/			
Rougher Flotation Tail	-	~	/			
1st Ro Cleaner Conc	-	/				
1st Ro Cleaner Tail	30 s		/			1
2nd Ro Cleaner Conc	-		~			
2nd Ro Cleaner Tail	30 s	-	~			1
50 mesh Screen Feed	30 s	~				

Comments:

Time	Comments
· · · · · · · · · · · · · · · · · · ·	

SAMPLE NO. Pilot Run #3 - A

Belt Feed

Size Fraction (mesh)	Individual Percentage Retained %	Cumulative Percentage Passing %	
+ 1"	13.5	86.5	
1" + 3/4"	20.5	66.0	
3/4" + 1/2"	17.2	48.8	
1/2" + 3/8"	7.0	41.8	
3/8" + 10#	18.7	23.1	
10# + 28#	5.7	17.4	
28# + 48#	6.4	11.0	
48# + 100#	4.5	6.5	
100# + 200#	3.2	3.3	
200#	3.3		

SAMPLE NO. M90-088 Run #3 - A

Rougher Flotation Feed

Size Fraction (mesh)	Individual Percentage Retained %	Cumulative Percentage Passing %
+ 28	7.7	92.3
- 28 + 48	28.6	63.7
- 48 + 100	29.4	34.3
- 100 + 200	18.5	15.8
- 200	15.8	

SAMPLE NO. M90-088 Pilot Plant Run #3 - A

Size Fraction (mesh)	Individual Percentage Retained %	Cumulative Percentage Passing %
+ 28	21.9	78.1
- 28 + 48	29.2	48.9
- 48 + 100	22.8	26.1
- 100 + 200	12.4	13.7
- 200	13.7	

Rod Mill Discharge

Size Fraction (mesh)			
	+ 28	0.45	99.55
- 28	+ 48	4.18	95.36
- 48	+100	22.86	72.51
-100	+200	35.18	37.32
-200		37.32	

SAMPLE NO: M90-088 Pliot Plant Run #3A Rougher Flotation Tails

PILOT RUN #4

e.

.

Size Fraction (mesh)		Individuai Percentage Retained	Cumulative Percentage Passing
	+ 28	0.45	99.55
- 28	+ 48	4.18	95.36
- 48	+100	22.86	72.51
-100	+200	35.18	37.32
-200		37.32	

SAMPLE NO: M90-088 Pilot Plant Run #3A Rougher Flotation Tails

PILOT RUN #4

٠

PILOT RUN #4

DATE: March 29, 1990

ᆂᆕᆆᇭᆦᆕᆆᇃᅶᅕᆕᆕᆕᆃᆃᆃᇽᇹᆮᇽᇹᆮᆮᆊᇄᇹᇹᆄᆂᅀᅓᅕᇹᆦᆋᅊᅊᆤᅋᅶᆂᆤᅊᅝᅶᆂᆤᅊᅝᅘᆥ

DURATION: 3 hours

THROUGHPUT: 820 kg

ASSAY HEAD: 3.51 %C(g)

.

• • • • • • • • • • • • • •

٠

REAGENT COSUMPTION: 200 g/tonne EKOF 452 G (Rougher) REAGENT ADDITION: Rod Mill Discharge, Ro Cell #1, Ro Cell #4

۲۹۴۳۶ <u>۲۹۶۶ کا ۵۶۶۶ مورو می محمد با ۲</u>۳۶۶ مورو با ۲۹۶۶ مورو کا ۲۹۶ مورو ا

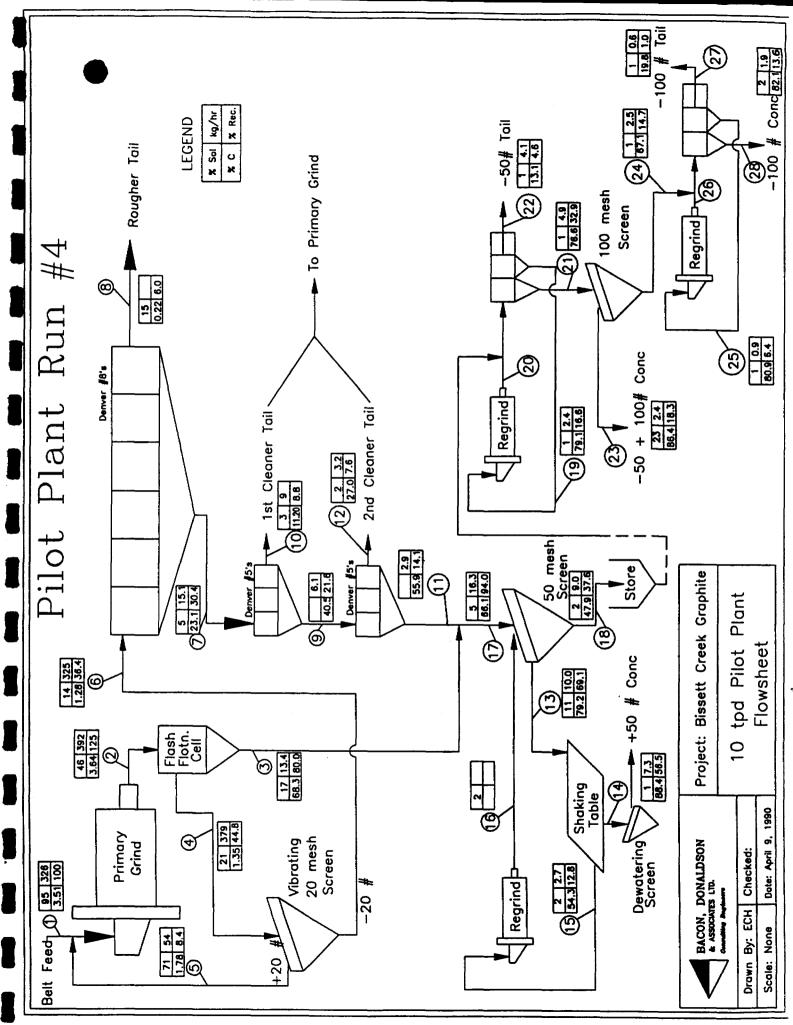
FLOWSHEET MODIFICATIONS:

1)Relocated unit cell to concrete floor level

- 2) Install recycle loops to stabilize feed to unit cell and rougher flotation
- 3)Modified Denver #8 sub-A cells to a "semi-DR", cell to cell type design
- 4) Install a sand relief dart value at the end of rougher bank of cells
- 5)Added reagent addition point to Rougher cell #4
- 6)Reduced speed of rougher froth paddles by 20%
- 7)

RESULTS:

Final Concentrates:	<u>WT %</u>	X C(g)	% REC'Y	X DIST
+50# Concentrate	2.24	88.40	56.47	63.90
-50+100# Concentrate	0.74	86.40	18.27	20.68
-100# Concentrate	0.58	82.10	13.63	15.42
Combined Concentrates	3.57	86.95	88.38	100.00


Flowshee			WEIGHT	ASSAYS,	XC(g)	UNITS OF C(g)	DISTRIBUTION
Stream	PRODUCT	Kg/hr	% ;		ł		2C(g)
No				Assayed	Calc	Calc	Calc
Primary (Circuit:				:		
1	Belt Feed	326.00	100.00	3.510	3.510	351.000	100.0
2	Rod Will Discharge	392.200	120.31	3.790	3.640	437.908	124.1
3	Unit Cell Conc	13.40	4.11	60.400	68.300 ;	280.742	79.
4	Unit Cell Tall	378.80	118.20	1.480	1.353	157.168 }	44.1
5	20# Screen 0/S	54.00	16.56	1.780	1.780	29.485 }	8.4
6	20s Screen U/S	324.80	99.63	1.210	1.282	127.681	36.3
7	Rougher Flot Conc	15.10	4.63	29.700	23.053	106.781 ;	30.4
8	Rougher Flot Tail	309.70	95.00	0.220	0.220	20.900 }	5.
9	1st Ro Cinr Conc	6.10	1.87	28.700	40.542	75.861	21.0
10	1st Ro Cinr Tail	9.00	2.76	11.200	11.200	30.920 }	8.
11	2nd Ro Cinr Conc	2.88	0.88	35.000	55.865	49.358	14.
12	2nd Ro Cinr Tail	3.20	0.98	27.000	27.000	26.503	7.
13	50# Screen 0/S (Table Feed)	10.01	3.07	84.600	79.202	243.194 ;	69.:
14	+50# Table Conc	7.31	2.24	88.400	88.400 }	198.222	56.
15	+50w Table Tall	2.70	0.83	54.300	54.300 ;	44.972	12.
16	Regrind Discharge		1		1	1	
17	50# Screen Feed	16.28	4.99	66.100	66.100	330.100	94.
18	50# Screen U/S	8.97	2.75	47.900	47.900	131.878	37.
i 1-50 Mesh	Circuit:		i		i	i	
19	2nd Cl (Scav) Conc	2.40	0.74	79.100	79.100	58.233	16.
20	Regrind Discharge				Í	Í	
21	1st Cl Conc	4.92	1.51	80,100	78.617	115.631	32.
22	2nd Cl (Scav) Tall	4.05	1.24	13.200	13.077	•	4.
23	-50 +100# Final Conc	2.42	0.74	86.400	86.400	64.137	18.
i -100 Mes	h Circuit:				i		
24	100 Wesh Screen U/S	2.50	0.77	67.200	67.148	51.494	14.
25	2nd Cl (Scav) Conc	0.90	0.28	80.900	80.900	22.334	6.
26	Regrind Discharge						
27	2nd Cl (Scav) Tall	0.60	0.18	16.400	19.800	3.844	1.
28	-100# Final Conc	1.90	0.58	82.100	82.100	47.850	· 13.
	CALC BELT FEED	325.98	100.0		3.510	351.000	100.

Notes:

1)Product #5 is calculated using pliot plant flowrate measurement

2)Beit Feed (#1), 50# Screen Feed (#17), +50# Table Conc (#14), Rougher Flot Tall (#8), -50# Screen U/S (#18), -50+100# Conc (#23), -100# Conc (#28) are all taken as gospel.

CONCENTRATES :	WT X	X C(g)	X REC'Y	X DIST
+50e Concentrate	2.24	88.40	56.47	63.90
-50+100# Concentrate	0.74	86.40	18.27	20.68
-100# Concentrate	0.58	82.10	13.63	15.42
Combined Concentrates	3.57	86.95	88.38	100.00

.

GRINDING OPERATION SHEET

Project No.: M90-088 Project Name: Bissett Creek Graphite

Date: March 28,1990

.

Operator Name: Jack R.

RUN # 4-A

	Feed	Belt	Feed Water	Discharge	Reagent	Pump
	Rate	Cut	Addition	%	Feed	Box
Time	(lb/hr)	(g)	(Vmin)	Solids	(mi/min)	Level
2:40	832	2148	-	44	13.28	mt
3:00	948	2448	-	46	13.25	mt
3:30	967	2497	-	44	13.25	mt
4:00	735	1897	-	32	13.24	mt
4:20	993	2565	-			
4:30	1142	2949	•	26	13.23	mt

Sampling:

Time	Belt Feed	Primary Mill Discharge	Vibrating Screen O/S
3:00			/
3:30			~
4:00			/
4:30			
		<u> </u>	

Comments:

Time	Comments
1:30	Start up
4:00	Feed becoming coarser & slightly drier - raised gate on F.O.B.
4:40	Shut down
_	

FLOTATION OPERATION SHEET

Project No.: <u>M90-088</u> Project Name: <u>Bissett Creek Graphite</u> Date: March 28/90 Operator Name: Ed H. & Peter T.

RUN # 4-A

Rougher Flotation:

	Feed	Feed			Cell Le	vel			-	Froth [Descript	ion	
	%	Ceil	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Cell
Time	Solids	1	2	3	4	5	6	1	2	3	4	5	6
3:10		G	G	G	G	<u> L </u>	U	G/H	M/L	M/L	P/L	P/L	M/L
3:30	20	G	G	G	L	L	U	G/H	M/L	M/L	P/L	M/L	M/L
4:00	18	G	G	G	L	L	U	G/H	M/L	M/L	P/L	M/L	M/L
4:30	14	G	G	G	L	U	U	G/H	M/L	M/L	P/L	M/L	M/L

LEGEND

- Cell Level:
 - H = High
 - G = Good
 - U = Unsteady

L = Low

Froth Description:

G/ = Strong Froth M/ = Medium Froth P/ = Poor Froth

/H = High grade /M = Medium grade /L = Low grade

Cleaner Flotation:		1st Cleaner Bank					2nd Cleaner Bank						
	Flotatio	on Cell	Level	Froth	Froth Description			Flotation Cell Level			Froth Description		
	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Cell	
Time	1	2	3	1	2	3	1	2	3	1	2	3	
2:30	Н	G	L	G/L	G/L	G/L	G	L	L	G/L	P/L	P/L	
3:00	G	G	G	G/M	G/L	G/L	Н	L	G	G/L	P/L	G/L	
3:30	Н	Н	Н	G/M	G/M	G/M	Н	L	G	G/M	P/M	G/M	
4:00	G	G	G	G/M	G/M	G/M	G	L	G	G/M	P/M	G/M	
4:30	Н	G	G	G/M	G/M	G/M	Н	L	G	G/M	P/M	G/M	
								<u> </u>					

Comments:

Time	Comments
2:30	Unit cell appears to be recovering almost all graphite
3:10	Tailings box sanded out
3:20	Increase rougher feed flow rate
3:20-3:40	Cleaner paddles broken and being fixed

Project No.: M90-088 Project Name: Bissett Creek Graphite Date: March 28/90 Operator Name: Ed H. & Peter T.

RUN # 4-A

	Cut				Time		
Sample	Time	3:00	3:30	4:00	4:30		
Unit Cell Concentrate	30 s	/	/	/			
Unit Cell Tailing	5 s	1/	/	1	/		
Rougher Flotation Feed	•	~		~			
Rougher Flotation Conc	10 s	/	~	~			
Rougher Flotation Tail	-	~	~	~	~		
1st Ro Cleaner Conc	•		~	~	~		
1st Ro Cleaner Tail	20 s	17	~	~	~		
2nd Ro Cleaner Conc	•	~	/	~	~		
2nd Ro Cleaner Tail	30 s	~	~	/	-		1
50 mesh Screen Feed	15 s	~	~	~	/		1

Comments:

Time	Comments	
		, <u>, , , , , , , , , , , , , , , , , , </u>
		<u> </u>

FLOTATION OPERATION SHEET

Project No.: <u>M90-088</u> Project Name: <u>Bissett Creek Graphite</u> Date: April 2/90 Operator Name: Ed H. & Bruce S.

RUN # 4-B

Rougher Flotation:

	Feed		F		Cell Le	vel		Froth Description					
	%	Cell	Cell	Cell	Cell	Cell	Ceil	Cell	Cell	Cell	Cell	Cell	Cell
Time	Solids	1	2	3	4	5	6	1	2	3	4	5	6
												-	
			ļ –	1									
		i											

LEGEND

F

- Cell Level:
- i: H = High G = Good
 - U = Unsteady

L = Low

Froth Description:

G/ = Strong Froth M/ = Medium Froth P/ = Poor Froth

/H = High grade /M = Medium grade /L = Low grade

Cleaner Flotation:		1st Cleaner Bank				2nd Cleaner Bank							
	Flotatio	on Cell	Level	Froth	Froth Description			Flotation Cell Level			Froth Description		
	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Cett	Cell	Cell	Cell	
Time	1	2	3	1	2	3	1	2	3	1	2	3	
9:10	G	G	G	G/H	G/H	G/H							
9:25	G	G	L	G/H	G/M	G/M							
9:45	G	G	L	G/H	G/H	G/H							
10:05	G	G	L	G/H	G/H	G/H							
10:25	G	G	G	G/H	G/H	G/H							
		[<u> </u>			1	Ŀ			
							<u> </u>						

Comments:

Time	Comments
9:05	Start up
9:10	Start collecting scav tails in settling tub
9:25	settling tub full
9:35	Start collecting 2nd tub of scav tails
10:00	2nd settling tub full
10:35	Shut down. Feed tank empty

Project No.: M90-088 Project Name: Bissett Creek Graphite Date: April 2/90 Operator Name: Ed H. & Bruce S.

RUN # 4-B

	Cut		•		Time		
Sample	Time	9:11	9:25	9:45	10:05		
-50 mesh Feed	20 s	~	~	-	/		-
Regrind Discharge	20 s	~	~	~	/		
-100 mesh Product	20 s	-	~	-	~		
1st Cleaner Conc	20 s	~	~	/	~		-
+100 mesh Conc	-	-	-	-	-		
2nd Cleaner Conc	20 s	1	~	~	~		
2nd Cleaner Tail	20 s	~	~	~	~		

Comments:

i.

Time	Comments	
· · ·		
		·

FLOTATION OPERATION SHEET

Project No.: <u>M90-088</u> Project Name: <u>Bissett Creek Graphite</u> Date: April 2/90 Operator Name: Ed H. & Bruce S.

RUN # 4-C

Rougher Flotation:

	Feed		Flotation Cell Level				Froth Description						
	%	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Cell
Time	Solids	1	2	3	4	5	6	1	2	3	4	5	6
<u> </u>													
	-			l		-						 	
		1											

LEGEND

- Cell Level: H = High
 - G = Good
 - U = Unsteady

L = Low

Froth Description:

G/ = Strong Froth M/ = Medium Froth P/ = Poor Froth /H = High grade /M = Medium grade /L = Low grade

Cleaner Flotation:		1st C	Cleaner	Bank				2nd (Cleaner	Bank		
	Flotatio	on Cell	Level	Froth	Descri	otion	Flotatio	on Cell	Level	Froth	Descri	ption
	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Cell
Time	1	2	3	1	2	3	1	2	3	1	2	3
12:50	G	G	G	G/H	G/H	G/H						
12:58	G	G	G	G/H	G/M	G/H				-		
1:05	G	G	G	G/H	G/H	G/H				[
1:14	G	G	G	G/H	G/H	G/H						
				ļ		[<u> </u>					ļ
			Ļ		ļ	I			ļ	<u> </u>	<u> </u>	<u> </u>
		ļ	ļ	<u> </u>	!						<u> </u>	
		ļ	ļ				ļ	<u> </u>	ļ	<u> </u>	1	<u> </u>
		<u> </u>					<u> </u>	1	<u> </u>	ļ		
				1				1				

Comments:

Time	Comments
12:42	Start up
12:45	Start collecting scav tail in tub #1
1:00	Tub #1 full. Start tub #2
1;17	Feed gone
1:20	Shut down

FLOTATION SAMPLING SHEET

Project No.: <u>M90-088</u> Project Name: <u>Bissett Creek Graphite</u> Date: April 2/90 Operator Name: Ed H. & Bruce S.

RUN # 4-C

	Cut				Time			
Sample	Time	12:47	12:55	1:03	1:11	_		
-100 mesh Feed	20 s	~	/	/	/			
Regrind Discharge	20 s	~	/	/	~			
1st Cleaner Conc	-	-	-	•	•			
2nd Cleaner Conc	20 s	~	/	~	-		<u> </u>	
2nd Cleaner Tail	20 s	~	/	1	~			
							1	

Comments:

Time	Comments	

SAMPLE NO. Pilot Run #4 - A

Belt Feed

Size Fraction (mesh)	Individual Percentage Retained %	Cumulative Percentage Passing %
+ 1"	11.2	88.8
1" + 3/4"	21.6	67.2
3/4" + 1/2"	24.6	42.6
1/2" + 3/8"	7.4	35.2
3/8" + 10#	14.3	20.9
10# + 28#	5.4	15.5
28# + 48#	5.6	9.9
48# + 100#	4.1	5.8
100# + 200#	2.8	3.0
200#	3.0	

SAMPLE NO. M90-088 Pilot Run #4 - A

Rod Mill Discharge

Size Fraction (mesh)	Individual Percentage Retained %	Cumulative Percentage Passing %
+ 28	9.6	90.4
- 28 + 48	30.0	60.4
- 48 + 100	25.4	35.0
- 100 + 200	18.7	16.3
- 200	16.3	

Size Fraction (mesh)		individual Percentage Retained	Cumulative Percentage Passing	
	+ 28	7.47	92.53	
- 28	+ 48	35.29	57.25	
- 48	+100	25.44	31.80	
-100	+200	13.80	18.00	
-200		18.00		

SAMPLE NO: M90-088 Run #4A Unit Ceil Concentrate

Į

ł._

ļ

Į

SAMPLE NO. M90-088 Pilot Run #4 - A

Rougher Flotation Feed

Individual Percentage Retained %	Cumulative Percentage Passing %
5.5	94.5
40.1	54.4
22.4	32.0
14.8	17.2
17.2	
	Percentage Retained % 5.5 40.1 22.4 14.8

SAMPLE NO. M90-088 Pilot Run #4 - A

Rougher Flotation Tailings

Size Fraction (mesh)	Individual Percentage Retained %	Cumulative Percentage Passing %
+ 28	3.7	96.3
- 28 + 48	28.1	68.2
- 48 + 100	21.9	46.3
- 100 + 200	23.4	22.9
- 200	22.9	

SAMPLE NO:M90-088 Pilot Plant Run #4A Rougher Talls

Size Fraction (mesh)			
	+ 28	4.32	95.68
- 28	+ 48	26.82	68.86
- 48	+100	22.82	46.05
-100	+200	20.38	25.66
-200		25.66	

SAMPLE NO: M90-088 Run #48

Size Fraction (mesh)			
	+ 28	0.00	100.00
- 28	+ 48	9.28	90.72
- 48	+100	42.32	48.41
-100	+200	28.70	19.71
-200		19.71	

.

•

.

1st Cleaner Concentrate

SAMPLE NO: M90-088 Run #4C 1st Cleaner Concentrate (-100 mesh Final Concentrate)

Size Fraction (mesh)		Individual Percentage Retained	Cumulative Percentage Passing
	+ 28	0.50	99.50
- 28	+ 48	4.64	94.86
- 48	+100	19.49	75.37
-100	+200	40.65	34.71
-200		34.71	

SAMPLE NO: M90-088 Run #48

Size Fraction (mesh)		Individual Percentage Retained	Cumulative Percentage Passing
_	+ 28	0.00	100.00
- 28	+ 48	18.20	81.80
· 48	+100	39.12	42.68
-100	+200	22.59	20.08
-200		20.08	

2nd Cleaner Concentrate

Size Fraction (mesh)			
	+ 28	2.95	97.05
- 28	+ 48	12.45	84.60
- 48	+100	28.41	56.19
-100	+200	22.75	33.44
-200		33.44	

.

٠

SAMPLE NO: M90-088 Run #4B Regrind Discharge

Γ.

L

.

SAMPLE NO: M90-088 Run #4C

Ι.

2nd Cleaner Concentrate

Size Fraction (mesh)		individual Percentage Retained	Cumulative Percentage Passing
	+ 28	0.00	100.00
- 28	+ 48	8.08	91.92
- 48	+100	24.94	66.98
-100	+200	31.35	35.63
-200		35.63	

Size Fraction (mesh)				
	+ 28	0.76	99.24	
- 28	+ 48	7.72	91.52	
- 48	+100	38.14	53.38	
-100	+200	26.57	26.81	
-200		26.81		

.

SAMPLE NO: M90-088 Run #4C Regrind Discharge

A commence

SAMPLE NO. M90-088 Pilot Run #4 - A

Table Tailings (Regrind Feed)

Size Fraction (mesh)	Individual Percentage Retained %	Cumulative Percentage Passing %			
+ 28	1.1	98.9			
- 28 + 48	49.0	49.9			
- 48 + 100	39.9	10.0			
- 100 + 200	7.5	2.5			
- 200	2.5				

Þ

SAMPLE NO. M90-088 Pilot Run #4 - A

Regrind Discharge

Size Fraction (mesh)	Individual Percentage Retained %	Cumulative Percentage Passing %			
+ 28	0.4	99.6			
- 28 + 48	34.1	65.5			
- 48 + 100	29.8	35.7			
- 100 + 200	19.2	16.5			
- 200	16.5				

PILOT RUN #5

-----DATE: April 25, 1990 DURATION: 6.5 hours ASSAY HEAD: 3.40 %C(g) THROUGHPUT: 2000 kg REAGENT COSUMPTION: 230 g/tonne EKOF 452 G (Rougher) 20 g/tonne EKOF 452 G (Undersize) REAGENT ADDITION: RM Discharge, Ro Cell #1, Ro Cell #4 (Rougher) 1st CI Feed, Regrind Feed (Undersize) وجوه وجود وجوا في في في الم الترك ال FLOWSHEET MODIFICATIONS: 1)Removed 2x2 Allis Chaimers pump and used 1 1/2" vertical pump for rod mill discharge 2)Added agitator to tailings disharge box of rougher cells 3)Thickened feed prior to -48# circuit (approx 12% solids) 4) increased flotation capacity from 3 to 7 cells for the -48# circuit 5)Tabled -48+100# concentrate 6)Tabled -100# concentrate 7)Added reagent addition to -48# and -100# circuits

PILOT RUN #5

RESULTS:

Final Concentrates:	WT %	% C(g)	X REC'Y	X DIST
+50# Concentrate	2.43	94.30	67.36	72.97
-50+100# Concentrate	0.45	94.20	12.33	13.36
-100# Concentrate	0.53	81.50	12.62	13.68
Combined Concentrates	3.40	92.30	92.31	100.00

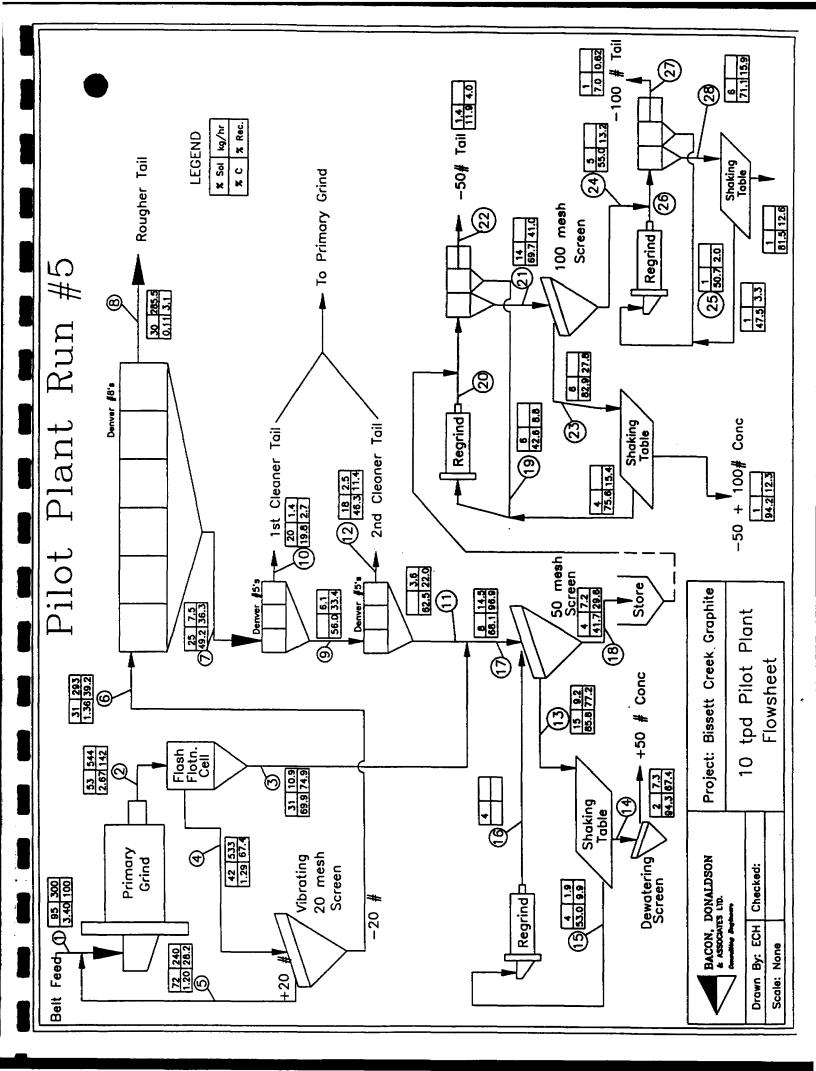
Flowshee	t	WE IGHT	NE IGHT	ASSAYS,	XC(g) ¦	UNITS OF C(g)	1	DISTRIBUTION	1
Stream	PRODUCT	Kg/hr	X	L R		-	1	90(g)	Ì
No				Assayed	Calc ;	Calc	i 	Calc	i
Pr Imary	Circuit:				ł		ł		ł
1	Belt Feed		100.00		3.400	340.000	•	100.00	•
2	Rod MIII Discharge		181.30	•	2.669 ;	483.823	•	142.30	
3	Unit Cell Conc	10.92		•	69.940	254.582	•	74.88	
4	Unit Cell Tall		177.86	• • • • •	1.290		•	67.42	
5	20+ Screen 0/S		80.00	•	1.200		-	28.24	
6	20e Screen U/S		97.66	-	1.364		-	39.19	
7	Rougher Flot Conc	7.48		-	49.241		-	36.11	
8	Rougher Flot Tail	285.50		•	0.110		-	3.08	
9	1st Ro Cinr Conc	6.08		•	58.020		•	33.39	
10	1st Ro Cinr Tail	1.40		•	19.800		-	2.72	
11	2nd Ro Cinr Conc	3.60		•	62.514		•	22.04	
12	2nd Ro Cinr Tail	2.50		•	46.300			11.35	
13	50# Screen 0/S (Table Feed)	9.19		•	85.758		•	77.23	
14	+50# Table Conc	7.29		•	94.300		-	67.36	
15	+50# Table Tail	1.90	0.63	52.500	53.000	33.567		9.87	, ,
16	Regrind Discharge								
17	50# Screen Feed	14.52		-	68.100		•	96.92	
18	50# Screen U/S	7.23	2.41	41.700	41.700	100.508		29.56	i
-50 Mest	Circuit:			1	•				
19	2nd Ci (Scav) Conc	2.10	0.70	42.600	42.600	29.820		8.77	1
20	Regrind Discharge			}			1		
21	1st C1 Conc	5.87	1.96	69.900	89.700	139.29		40.97	1
22	2nd Ci (Scav) Tall	3.45	5 1.15	4.490.	11.872	13.636	3	4.01	l
23	-50 +100# 1st Cl Conc (Table Feed)	3.42	2 1.14	88.000	82.871	94.335	5	27.75	i
23A	-50 +100# Final Conc (Table Conc)	1.34	0.45	94.200	94.200	41.919)	12.33	3
238	-50 +100# Table Tall	2.08	0.69	75.600	75.600	52.418	81	15.42	2
-100 Mes	sh Circuit:			1			ł		
24	100 Wesh Screen U/S	2.45	5 0.82	54.600	55.045	44.953		13.22	2
25	2nd Cl (Scav) Conc	0.40		-	50.700		-	1.99	
26	Regrind Discharge								
27	2nd CI (Scav) Tail	0.87	0.29	7.000	7.000	2.030		.60)
28	-100# 1st CI Conc (Table Feed)	2.28			71.061			15.88	
28A	-100# Final Conc (Table Conc)	1.58			81.500			12.62	
288	-100# Table Tail	0.70			47.500	-	-	3.26	
) and a

Notes:

L

.

T


Į

Ē

1)Product #5 is calculated using pilot plant flowrate measurement 2)Belt Feed (#1), 50% Screen Feed (#17), +50% Table Conc (#14), Rougher Flot Tail (#8), -50% Screen U/S (#18), -50+100% Conc (#23), -100% Conc (#28) are all taken as gospel.

CONCENTRATES:	WT X	% C(g)	X REC'Y	🕱 DIST
+50# Concentrate	2.43	94.30	67.36	72.97
-50+100# Final Concentrate	0.45	94.20	12.33	13.36
-100# Final Concentrate	0.53	81.50	12.62	13.68
Combined Concentrates	3.40	92.30	92.31	100.00

12.67

GRINDING OPERATION SHEET

Project No.: <u>M90-088</u> Project Name: <u>Bissett Creek Graphite</u> Date: April 25/90_____ Operator Name: Jack R.

.

RUN # 5-A

	Feed	Beit	Feed Water	Discharge	Reagent	Pump
	Rate	Cut	Addition	%	Feed	Box
Time	(lb/hr)	(g)	(Vmin)	Solids	(ml/min)	Level
2:00	1078	2176	-	47	20.11	1/2
2:50	850	1716	-	50		
3:50	779	1572	-	55	20.11	1/4
5:10	827	1669	-	52	20.11	1/4
5:30	724	1461	-	53	20.11	1/4
5:50	917	1851	•	56	20.15	1/4

Sampling:

.

		Primary	Vibrating	Unit
	Belt	Mill	Screen	Cell
Time	Feed	Discharge	O/S	Feed
5:10				43%
5:30				46%
5:50				45%

Comments:

Time	Comments

-

FLOTATION OPERATION SHEET

Project No.: M90-088 Project Name: Bissett Creek Graphite Date: April 25/90 Operator Name: Ed H. & Peter T.

RUN # 5-A

Rougher Flotation:

	Feed		Flotation Cell Level					Froth Description					
	%	Cell	Ceil	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Cell
Time	Solids	1	2	_3	4	5	6	1	2	3	4	5	6
4:00	24	G	G	G	G	L	U	G/H	M/L	M/L	P/L	P/L	M/L
4:30	30	G	G	G	L	L	U	G/H	M/L	M/L	P/L	M/L	M/L
5:00	33	U_	U	U	U	U	U	G/H	M/L	M/L	P/L	M/L	M/L
5:20	31	G	G	G	G	U	U	G/H	M/L	M/L	P/L	M/L	M/L
5:50	28	G	G	G	G	G	G	G/H	M/L	M/L	P/L	M/L	M/L
		1							[]				
		1		1		1				[[

LEGEND

- Cell Level:
 - l: H = High
 - G = Good
 - U = Unsteady

L = Low

Froth Description:

G/ = Strong Froth M/ = Medium Froth P/ = Poor Froth

/H = High grade /M = Medium grade /L = Low grade

Cleaner Flotation:		1st C	leaner	Bank				2nd (Cleaner	Bank		
	Flotatio	on Cell	Level	Froth	Descri	otion	Flotatio	n Cell	Level	Froth	Descri	otion
	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Cell
Time	1	2	3	1	2	3	1	2	3	1	2	3
4:00	G	G	G	G/M	G/M	G/M	Н	G	Н	G/M	G/M	G/M
4:30	G	н	G	G/H	G/M	G/M	G	G	G	G/H	G/M	G/M
5:00	G	Ĺ	G	G/H	G/M	G/M	G	L	L	G/M	P/M	G/M
5:25	G	L	G	G/H	G/M	G/M	G	L	G	G/M	P/M	G/M
5:50	G	L	L	G/H	G/M	G/M	Н	L	G	G/M	P/M	G/M
		 		ļ	 		 	 		 	ļ	
			1	1	1	l I	1	1	1		1	

Comments:

Time	Comments
1:30	Running well 2 hours now, looks good, call Matt.
2:05	Matt arrives.
5:00	Begin sampling.
6:00	Shut down.

FLOTATION SAMPLING SHEET

Project No.: <u>M90-088</u> Project Name: <u>Bissett Creek Graphite</u> Date: April 25/90 Operator Name: Ed H. & Peter T.

RUN # 5-A

	Cut				Time	-	_	
Sample	Time	5:00	5:25	5:50				
Unit Cell Concentrate	30 s	//	/	/				
Unit Cell Tailing	10 s	/	/	/				
Rougher Flotation Feed	- 1	~	1	~			1	[
Rougher Flotation Conc	10 s	/	\	~	-			
Rougher Flotation Tail	75		/	~				
1st Ro Cleaner Conc	•		~ /	/				
1st Ro Cleaner Tail	20 s	/		~				
2nd Ro Cleaner Conc		~	/	-				
2nd Ro Cleaner Tail	20 s	17	~	~				
50 mesh Screen Feed	15 8		~	~		1		

Comments:

Π

Time	Comments	
11:30	Start up (pre-production): completelt new unit cell configuration.	
1:00	Increase all reagent flowrates by 50%.	
2:10	Matt & MJVB are adjusting rougher cells - unsteady.	
		·

FLOTATION OPERATION SHEET

Project No.: M90-088 Project Name: Bissett Creek Graphite Date: Jun 5/90 Operator Name: Jasman & Bruce S.

RUN # 5-B

Rougher Flotation:

	Feed		F	otation	Cell Le	vel			_	Froth [Descript	ion	
	%	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Cell
Time	Solids	1	2	3	4	_ 5	6	1	2	3	4	5	6
					l								
									<u> </u>				
			L						ļ	ļ	L		
								ļ			l		L
								<u> </u>				L	
												L	L
L	<u> </u>									L	l		

LEGEND

ſ

- Cell Level: H = High G = Good
 - U = Unsteady

L = Low

Froth Description:

G/ = Strong Froth M/ = Medium Froth P/ = Poor Froth /H = High grade /M = Medium grade /L = Low grade

aner Flota	tion:												
	Feed		Flot	tation C	ell Leve	əl			Fr	oth Des	scription)	
	%	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Cel
Time	Solids	1	2	3	4	5	6	1	2	3	4	5	6
10:45	16	G	G	G	ML	L	VL	G/H	G/H	M/M	M/M	P/L	P/L
12:46		G	G	G	ML.	L	٧L	G/H	G/H	M/M	M/M	P/L	P/L
1:00	_	G	G	G	M	ML	Ĺ	G/H	G/H	M/M	M/M	P/L	_P/L
												<u> </u>	
												· · ·	
<u> </u>	-												
		 	 	 	 		 _	ļ		ļ	ļ	ļ	
		ļ	<u> </u>	ļ		 				ļ	ļ	<u> </u>	
										1		1	1

Comments:

Time	Comments
9:45	Start up (Pre-production):
	1. First 2 cells pulling high grade. Switch launders to reflect this.
	2. Reagent feeding at 1/2 strength
	3. Dewatering screen switched to 200 mesh
	4. Adjusted stroke on shaking table

Project No.: M90-088 Project Name: Bissett Creek Graphite Date: Jun 5/90 Operator Name: Jasman & Bruce S.

RUN # 5-B

	Cut	Time
Sample	Time	12:25 12:55 1:25 1:55 2:25
-50 mesh Feed	30 s	30 s 2 min 30 s 2 min 30 s
Regrind Feed	30 s	
Regrind Discharge	30 s	
-100 mesh Product	30 s	
1st Cleaner Conc	30 s	
Table Feed	30 s	
Table Conc	Total	
Table Tail	30 s	
2nd Cleaner Conc	30 s	
2nd Cleaner Tail	30 s	
Table Conc (+100 mesh)	30 s	

Comments:

L

Time	Comments	
10:45	Not enough feed for the table	_
11:00	Start tabling	-
11:45	Start reagent feed to cleaner cell #4 (3 ml/min)	
12:20	Start sampling	
12:40	Densities: 1)Feed = 20%, 2)Tails = 14%, 3)Regrind Disch = 5%	_
1:10	Reagent switched from cell #4 to cell #3	
1:15	Reagent reduced to 2 ml/min	
2:10	Densities: 1)Feed = 14%, 2)Tails = 8%, 3)Regrind Disch = 5%	
2:10	Reagent: 1)Regrind: = 5ml/min, 2)cell #3 = 2 ml/min	
2:30	Shut down	

FLOTATION OPERATION SHEET

Project No.: M90-088 Project Name: Bissett Creek Graphite

Date: Jun 5/90 Operator Name: Jasman & Bruce S.

RUN # 5-C

Rougher Flotation:

1

Ι.

1

L.

	Feed		F	otation	Cell Le	vel				Froth [Descript	ion	
	%	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Cell
Time	Solids	1	2	3	4	5	6	1	2	3	4	5	6
										 			ļ
										 			
										 			
		<u> </u>											

LEGEND

- Cell Level: H = High
 - G = Good
 - U = Unsteady
 - L = Low

Froth Description:

G/ = Strong Froth M/ = Medium Froth P/ = Poor Froth /H = High grade /M = Medium grade /L = Low grade

Cleaner Flota	tion:												
	Feed		Flo	tation C	ell Leve	əl			Fr	oth Des	cription)	
	%	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Cell
Time	Solids	1	2	3	4	5	6	1	2	3	4	5	6
2:30	4	G	G	G	ML	L	VL	G/H	G/H	M/M	M/M	P/L	P/L
3:30		G	G	G	ML	L	VL	G/H	G/H	M/M	M/M	P/L	P/L
4:30		G	G	G	M	ML	L	G/H	G/H	M/M	M/M	P/L	P/L
<u></u>													
	+		┣										
			<u> </u>			<u> </u>		<u> </u>	L				
								1		1			

Comments:

Time	Comments
2:30	Begin -100 mesh feed
	reagents off
	table conc to blue tank
3:00	Reagent: 1)cell #3 = 2 ml/min
3:10	Band (approx 3 cm wide) observed during tabling of -100 mesh conc

FLOTATION SAMPLING SHEET

Project No.: M90-088 Project Name: Bissett Creek Graphite

Date: Jun 5/90 Operator Name: Jasman & Bruce S.

ę

RUN # 5-C

	Cut	Time
Sample	Time	12:25 12:55 1:25 1:55 2:25
-100 mesh Feed	30 s	30 s 2 min 30 s 2 min 30 s
Regrind Discharge	30 s	
1st Cleaner Conc	30 s	
Table Feed	30 s	
Table Conc	Total	
Table Tail	30 s	
2nd Cleaner Conc	30 s	
2nd Cleaner Tail	30 s	1111

Comments:

. 1

Time	Comments
3:30	Started sampling
4:00	Densities: 1)Feed = 4%, 2)2nd Cleaner Tails = 1%
4:00	Reagent: 1)cell #3 = 2 ml/min
4:55	Shut down

ļ

1

SAMPLE NO.M90-088 Pilot Run #5-A

Beit Feed

Size Fraction (mesh)	Individual Percentage Retained %	Cumulative Percentage Passing %
+ 1"	5.1	94.9
1" + 3/4"	17.2	77.7
3/4" + 1/2"	22.3	55.4
1/2" + 3/8"	8.2	47.2
3/8" + 10#	17.8	29.4
10# + 28#	8.2	21.2
28# + 48#	6.3	14.9
48# + 100#	5.9	9.0
100# + 200#	3.9	5.1
· 200#	5.1	

- - -

.....

Į

SAMPLE NO. M90-088 Pilot Run #5-A

20 Mesh Screen Oversize

Size Fraction (mesh)	Individual Percentage Retained %	Cumulative Percentage Passing %
+ 28	70.8	29.2
- 28 + 48	20.6	8.6
- 48 + 100	5.5	3.1
100 + 200	1.5	1.6
- 200	1.6	

ber an an an

SAMPLE NO. M90-088 Pilot Run #5-A

Size Fraction (mesh)	Individual Percentage Retained %	Cumulative Percentage Passing %
+ 28	40.6	59.4
- 28 + 48	27.0	32.4
- 48 + 100	16.2	16.2
- 100 + 200	8.0	8.2
- 200	8.2	

.

Rod Mill Discharge

1

.

.

SAMPLE NO. M90-088 Pilot Run #5-A

Unit Cell Concentrate

Individual Percentage Retained %	Cumulative Percentage Passing %
9.3	90.7
33.5	57.2
29.1	28.1
13.1	15.0
15.0	
	Percentage Retained % 9.3 33.5 29.1 13.1

SAMPLE NO. M90-088 Pilot Run #5-A

Unit Cell Tails

Size Fraction (mesh)	Individual Percentage Retained %	Cumulative Percentage Passing %
+ 28	38.7	61.3
28 + 48	26.8	34.5
48 + 100	17.4	17.1
100 + 200	9.1	8.0
200	8.0	

ł

ſ.

, 1

SAMPLE NO. M90-088 Pilot Run #5-A

Rougher Flotation Feed

Size Fraction (mesh)	Individual Percentage Retained %	Cumulative Percentage Passing %
+ 28	7.5	92.5
28 + 48	32.3	60.2
48 + 100	29.3	30.9
100 + 200	17.1	13.8
200	13.8	

SAMPLE NO. M90-088 Pilot Run #5-A

Size Fraction Individual Cumulative Percentage Percentage (mesh) Retained Passing % % 8.3 91.7 + 28 32.0 - 28 + 48 59.7 - 48 + 100 28.4 31.3 16.7 · - 100 + 200 14.6 - 200 14.6

Rougher Flotation Tail

.

SAMPLE NO. M90-088 Pilot Run #5-A

Table Tails

Size Fraction (mesh)	Individual Percentage Retained %	Cumulative Percentage Passing %
+ 28	12.1	87.9
28 + 48	49.1	38.8
48 + 100	34.2	4.6
100 + 200	4.1	0.5
200	0.5	

SAMPLE NO. M90-088 Pilot Run #5-A

	Fraction (mesh)	Individual Percentage Retained %	Cumulative Percentage Passing %
	+ 28	1.3	98.7
- 28	+ 48	32.2	66.5
- 48	+ 100	29.9	36.6
- 100	+ 200	18.9	17.7
- 200		17.7	

Regrind Discharge

·._

<u>د ب</u>

1

1

SAMPLE NO. M90-088 Pilot Run#5-B

1st Cleaner Concentrate

Size Fraction (mesh)	Individual Percentage Retained %	Cumulative Percentage Passing %
- 28 + 48	3.0	97.0
- 48 + 100	42.4	54.6
- 100 + 200	24.3	30.3
- 200	30.3	

.

. .

SAMPLE NO. M90-088 Pilot Run #5-B

Regrind Feed

Size Fraction (mesh)	Individual Percentage Retained %	Cumulative Percentage Passing %
28 + 48	7.9	92.1
48 + 100	44.1	48.0
100 + 200	14.5	33.5
200	33.5	

÷

1

N

.

SAMPLE NO. M90-088 Pilot Run #5-B

Regrind Discharge

Size Fraction (mesh)	Individual Percentage Retained %	Cumulative Percentage Passing %		
+ 28	0.2	99.8		
28 + 48	9.5	90.3		
48 + 100	29.7	60.6		
100 + 200	13.6	47.0		
200	47.0			

-

ł.,

SAMPLE NO. M90-088 Pilot Run #5-C

1st Cleaner Concentrate

Size Fraction (mesh)	Individual Percentage Retained %	Cumulative Percentage Passing %
+ 28	0.8	99.2
28 + 48	4.7	94.5
48 + 100	13.5	81.0
100 + 200	40.3	40.7
200	40.7	

-1

.]

ĺ

•----

ŧ

SAMPLE NO. M90-088 Pilot Run #5-C

2nd Cleaner Concentrate

Size Fraction (mesh)	Individual Percentage Retained %	Cumulative Percentage Passing %
+ 28	0.9	99.1
- 28 + 48	22.6	76.5
- 48 + 100	14.8	61.7
- 100 + 200	19.8	41.9
- 200	41.9	

SAMPLE NO. M90-088 Pilot Run #5-C

Regrind Discharge

Size Fraction (mesh)	Individual Percentage Retained %	Cumulative Percentage Passing %
+ 28	0.6	99.4
28 + 48	9.5	89.9
48 + 100	22.3	67.6
100 + 200	36.7	30.9
200	30.9	

SIZE FRACTION	WE IGHT GMS	WE IGHT X	GRAPHITIC C	ASSAYS		X DIST	
			X	······································	•		
+56.3 microns		13.55	73.020		l	12.09	
-56.3 +38.8 microns	8.8	12.55	88.130		1	13.52	
-38.8 +25.9 microns	10.8	15.40	89.155		-	16.78	
-25.9 +20.1 microns	9.7	13.83	88.215		1	14.91	
-20.1 +14.7 microns	7.3	8 10.41	86.715		ł	11.03	
-14.7 microns*	24.0	34.26	75.635 			31.66	
' *calculated from ass	ay head				1 		
•			1		-		
			1		1		
1			1		1		
!					I		
CALC HEAD	70.1	100.0	81.825		!	100.00	

÷

.

•

PILOT RUN #6A

:..

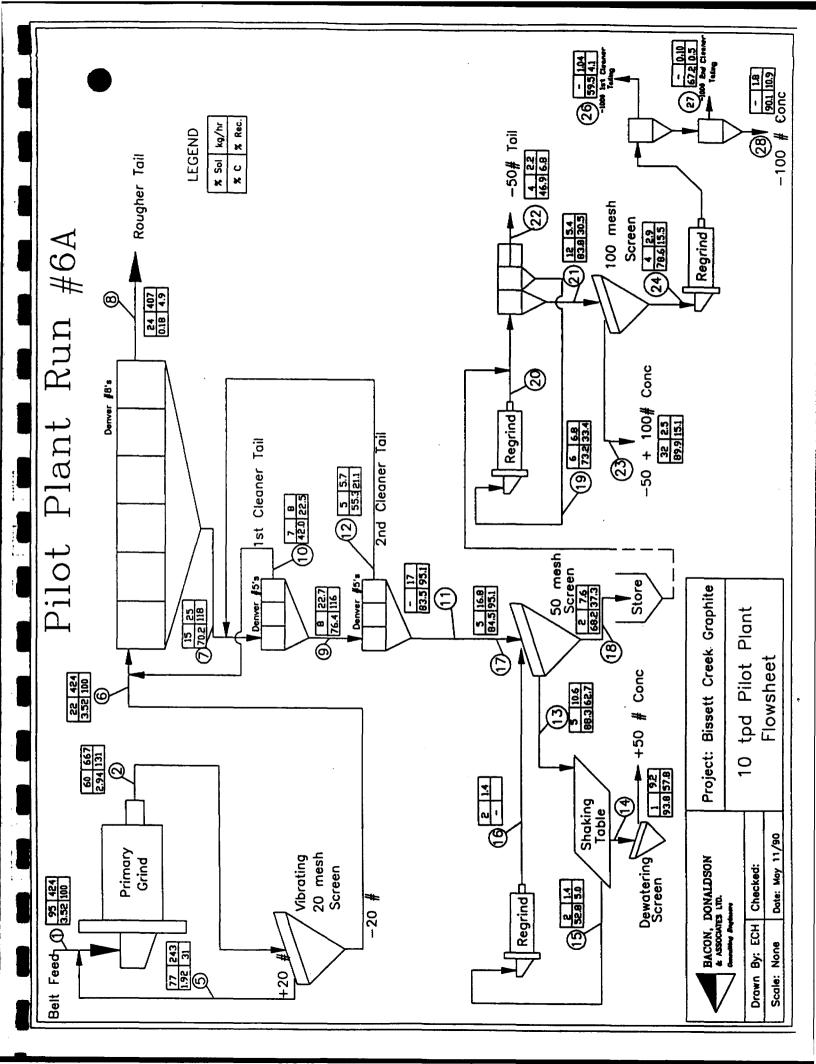
PILOT RUN #6A

د د **د د د د** د د DATE: May 1, 1990 ASSAY HEAD: 3.52 %C(g) DURATION: 7 hours THROUGHPUT: 3000 kg REAGENT COSUMPTION: 230 g/tonne EKOF 452 G (Rougher) 20 g/tonne EKOF 452 G (Undersize) REAGENT ADDITION: RM Discharge, Ro Cell #1, Ro Cell #4 (Rougher) 1st Cle Feed, Regrind Feed (Undersize) FLOWSHEET MODIFICATIONS: 1)Recirculate 1st cleaner tails to rougher feed 1)Recirculate 2nd cleaner tails to 1st CI Feed 3)Removed unit cell from circuit 4)-100w circuit simulated on bench-scale 5) 6) 7)

RESULTS:

Final Concentrates:	WT 🛠	% C(g)	X REC'Y	X DIST
+50# Concentrate	2.17	93.75	57.79	69.02
-50+100# Concentrate	0.59	89.88	15.06	17.98
-100# Concentrate	0.43	90.14	10.89	13.00
Combined Concentrates	3.18	92.55	83.73	100.00

Stream PRODUCT Kg/hr X Assayed Cale XC(g) No Assayed Cale	Flowsheet	r	WEIGHT		201224	20(a) I	UNITS OF C(g)	DISTRIBUTION
No Assayed Calc Calc Calc Calc Primary Circuit: 1 Belt Fed 424.00 100.00 3.520 3.520 352.000 100.1 2 Rod Mill Discharge 667.000 157.31 2.550 2.937 462.038 131. 5 20s Screen U/S 243.00 57.31 1.920 110.038 331. 6 20s Screen U/S 244.00 100.01 3.710 3.520 352.000 100.0 6A Rougher Flot Feed 432.00 101.89 4.233 431.245 122. 7 Rougher Flot Conc 25.00 5.90 73.340 70.209 448.309 138. 8 Rougher Flot Tail 407.00 5.99 0.180 17.278 4. 9 1st Ro Cinr Tail 8.00 1.89 42.000 42.000 79.245 22. 11 2nd Ro Cinr Tail 5.70 1.34 55.300 74.342 21. 13 50s Screen 0/S (Table Feed) 10.60		-			, noonio,			
1 Beit Feed 424.00 100.00 3.520 3.520 352.000 100.1 2 Rod Mill Discharge 687.000 157.31 2.580 2.937 462.038 131. 5 20% Screen U/S 243.00 57.31 1.920 1.920 1.920 100.038 31. 6 20% Screen U/S 244.00 100.00 3.710 3.520 352.000 100.1 6A Rougher Flot Feed 432.00 101.89 4.233 431.245 122. 7 Rougher Flot Conc 25.00 5.90 73.340 70.209 413.967 117. 7A 1st Ro Cinr Feed 30.70 7.24 67.441 488.309 138. 8 Rougher Flot Tail 407.00 85.99 0.180 0.180 17.278 4. 10 1st Ro Cinr Conc 17.00 4.01 78.600 83.484 334.722 95. 12 2nd Ro Cinr Tail 5.70 1.34 55.300 57.300 74.342 21. 13 50e Screen GVS (Table Feed) 10.60 2.50 86.300 83.484 334.722 </th <th></th> <th>1100001</th> <th>ngy th</th> <th>•</th> <th>Assayed</th> <th>Calc</th> <th>Calc</th> <th></th>		1100001	ngy th	•	Assayed	Calc	Calc	
1 Beit Feed 424.00 100.00 3.520 3.520 352.000 100.1 2 Rod Mill Discharge 667.000 157.31 2.560 2.937 462.038 131. 5 20e Screen U/S 243.00 57.31 1.920 1.920 1.920 100.038 31. 6 20e Screen U/S 243.00 57.31 1.920 1.920 1.920 100.1 6A Rougher Flot Feed 432.00 100.00 3.710 3.520 352.000 100.1 6A Rougher Flot Conc 25.00 5.90 73.340 70.209 413.967 117. 7A 1st Ro Clnr Feed 30.70 7.24 67.441 488.309 138. 8 Rougher Flot Tail 407.00 85.99 0.180 0.180 17.278 4. 9 1st Ro Clnr Tail 8.00 1.89 42.000 42.000 79.245 22. 11 2nd Ro Clnr Tail 5.70 1.34 55.300 57.300 74.342 21. 13 50e Screen GVS (Table Feed) 10.60 2.50 56.300	Ort Incented	^]						
2 Rod MIII Discharge 667.000 157.31 2.560 2.937 462.038 131. 5 20% Screen U/S 243.00 57.31 1.920 1.920 110.038 31. 6 20% Screen U/S 424.00 100.00 3.710 3.520 352.000 100. 6 Rougher Flot Feed 432.00 101.89 4.233 431.245 122. 7 Rougher Flot Conc 25.00 5.90 73.340 70.209 413.967 117. 7 A tar Ro Cinr Feed 30.70 7.24 67.441 488.309 138. 8 Rougher Flot Tall 407.00 95.99 0.180 17.278 4. 9 1st Ro Cinr Conc 22.70 55.73.350 78.407 409.064 118. 10 1st Ro Cinr Conc 17.00 4.01 78.600 83.484 334.722 95. 11 2nd Ro Cinr Tail 5.70 1.34 55.300 57.300 74.342 21. 13 50% Screen Foed 16.80 3.96 84.500 83.342 220.854			424 00	100.00	3 520	i 3 520 1	i 352.000.1	100.0
5 20e Screen U/S 243.00 57.31 1.920 1.920 110.038 31.1 6 20e Screen U/S 424.00 100.00 3.710 3.520 352.000 100.0 6A Rougher Flot Feed 432.00 101.89 4.233 431.245 122. 7 Rougher Flot Conc 25.00 5.90 73.340 70.209 413.967 117. 7A 1st Ro Clnr Feed 30.70 7.24 67.441 488.309 138. 8 Rougher Flot Tall 407.00 95.99 0.180 0.180 17.278 4. 9 1st Ro Clnr Tall 8.00 1.89 42.000 83.444 334.722 95. 10 1st Ro Clnr Tall 5.00 5.300 55.300 74.342 21. 13 50e Screen 0/S (Table Feed) 10.60 2.50 86.300 88.342 220.854 62. 14 +50e Table Tall 1.40 0.33 52.800 53.800 17.434 4. 18 Regrind Discharge 7.60 1.79 68.200 68	-				•		• • • •	
6 20e Screen U/S 424.00 100.00 3.710 3.520 352.000 100. 6A Rougher Flot Feed 432.00 101.89 4.233 431.245 122. 7 Rougher Flot Conc 25.00 5.90 73.340 70.209 413.967 117. 7A 1st Ro Cinr Feed 30.70 7.24 67.441 488.309 138. 8 Rougher Flot Tali 407.00 95.99 0.180 0.180 17.778 4. 9 1st Ro Cinr Conc 22.70 5.35 73.350 76.407 409.064 116. 10 1st Ro Cinr Tali 8.00 1.89 42.000 42.000 79.245 22. 11 2nd Ro Cinr Tali 5.70 1.34 55.300 83.484 334.722 95. 12 2nd Ro Cinr Tali 5.70 1.34 55.300 88.342 220.854 62. 13 50e Screen O/S (Table Feed) 10.60 2.50 86.300 83.422 220.854 62. 14 +50e Table Tali 1.40 0.33 52.800 52.800 </td <td>-</td> <td></td> <td></td> <td></td> <td>•</td> <td>•</td> <td></td> <td></td>	-				•	•		
6A Rougher Flot Feed 432.00 101.89 4.233 431.245 122. 7 Rougher Flot Conc 25.00 5.90 73.340 70.209 413.967 117. 7A 1st Ro Clnr Feed 30.70 7.24 67.441 488.309 138. 8 Rougher Flot Tail 407.00 95.99 0.180 0.180 17.278 4. 9 1st Ro Clnr Conc 22.70 5.35 73.350 78.407 409.064 116. 10 1st Ro Clnr Conc 27.70 5.35 73.350 78.407 409.064 116. 10 1st Ro Clnr Tail 8.00 1.89 42.000 42.000 79.245 22. 11 2nd Ro Clnr Tail 5.70 1.34 55.300 83.484 334.722 95. 12 2nd Ro Clnr Tail 5.70 1.34 55.300 83.750 33.750 203.420 57. 13 50e Screen O/S (Table Feed) 10.60 2.50 85.300 83.451 220.854 62. 14 +50e Table Tail 1.40 0.33							•	
7 Rougher Flot Conc 25.00 5.90 73.340 70.209 413.967 117. 7A 1st Ro Cinr Feed 30.70 7.24 67.441 488.309 138. 8 Rougher Flot Tall 407.00 95.99 0.180 0.180 17.278 4. 9 1st Ro Cinr Conc 22.70 5.35 73.350 76.407 409.084 116. 10 1st Ro Cinr Conc 22.70 5.35 73.350 76.407 409.084 118. 10 1st Ro Cinr Conc 17.00 4.01 78.600 83.484 334.722 95. 12 2nd Ro Cinr Tail 5.70 1.34 55.300 55.300 74.342 21. 13 50e Screen O/S (Table Feed) 10.60 2.50 86.300 83.422 220.854 62. 14 +50e Table Tail 1.40 0.33 52.800 52.800 17.434 4. 18 Regrind Discharge 7.60 1.79 68.200 68.200 334.722 95. 19 2nd Ci (Soav) Conc 6.80 <td< td=""><td></td><td></td><td></td><td></td><td>•</td><td>•</td><td>•</td><td></td></td<>					•	•	•	
7A 1st Ro Cinr Feed 30.70 7.24 87.441 488.309 138. 8 Rougher Flot Tail 407.00 95.99 0.180 0.180 17.278 4. 9 1st Ro Cinr Conc 22.70 5.35 73.350 78.407 409.084 116. 10 1st Ro Cinr Tail 8.00 1.89 42.000 79.245 22. 11 2nd Ro Cinr Tail 5.70 1.34 55.300 57.300 74.342 21. 13 50e Screen 0/S (Table Feed) 10.60 2.50 88.300 88.342 220.854 62. 14 +50e Table Conc 9.20 2.17 93.750 93.750 203.420 57. 15 +50e Table Tail 1.40 0.33 52.800 52.800 17.434 4. 16 Regrind Discharge		-			•	•	•	
8 Rougher Flot Tail 407.00 95.99 0.180 0.180 17.278 4. 9 1st Ro Cinr Conc 22.70 5.35 73.350 78.407 409.064 116. 10 1st Ro Cinr Tail 8.00 1.89 42.000 42.000 79.245 22. 11 2nd Ro Cinr Conc 17.00 4.01 78.600 83.484 334.722 95. 12 2nd Ro Cinr Tail 5.70 1.34 55.300 74.342 21. 13 50# Screen 0/S (Table Feed) 10.60 2.50 86.300 83.342 220.854 62. 14 +50# Table Conc 9.20 2.17 93.750 93.750 203.420 57. 15 +50# Table Tail 1.40 0.33 52.800 84.500 334.722 95. 18 Regrind Discharge 16.80 3.98 84.500 84.500 334.722 95. 18 50# Screen Feed 16.80 3.98 84.500 84.500 334.722 95. 18 50# Screen U/S 6.80 1.60 <td></td> <td>•</td> <td></td> <td></td> <td>•</td> <td>-</td> <td></td> <td></td>		•			•	-		
9 1st Ro Cinr Conc 22.70 5.35 73.350 78.407 409.064 118. 10 1st Ro Cinr Tail 8.00 1.89 42.000 42.000 79.245 22. 11 2nd Ro Cinr Conc 17.00 4.01 78.600 83.484 334.722 95. 12 2nd Ro Cinr Tail 5.70 1.34 55.300 55.300 74.342 21. 13 50e Screen 0/S (Table Feed) 10.60 2.50 88.300 88.342 220.854 62. 14 +50e Table Conc 9.20 2.17 93.750 93.750 203.420 57. 15 +50e Table Tail 1.40 0.33 52.800 34.500 334.722 95. 16 Regrind Discharge				-	•	•	•	
10 ist Ro Cinr Tail 8.00 1.89 42.000 42.000 79.245 22. 11 2nd Ro Cinr Conc 17.00 4.01 78.600 83.484 334.722 95. 12 2nd Ro Cinr Tail 5.70 1.34 55.300 55.300 74.342 21. 13 50e Screen 0/S (Table Feed) 10.60 2.50 86.300 88.342 220.854 62. 14 +50e Table Conc 9.20 2.17 93.750 93.750 203.420 57. 15 +50e Table Tail 1.40 0.33 52.800 52.800 17.434 4. 16 Regrind Discharge 16.80 3.98 84.500 84.500 334.722 95. 13 50e Screen U/S 7.60 1.79 68.200 68.200 131.302 37. -50 Mesh Circuit:						•	•	
11 2nd Ro Cinr Conc 17.00 4.01 78.600 83.484 334.722 95. 12 2nd Ro Cinr Tail 5.70 1.34 55.300 55.300 74.342 21. 13 50e Screen 0/S (Table Feed) 10.60 2.50 86.300 88.342 220.854 62. 14 +50e Table Conc 9.20 2.17 93.750 93.750 203.420 57. 15 +50e Table Conc 9.20 2.17 93.750 93.750 203.420 57. 15 +50e Table Tail 1.40 0.33 52.800 52.800 17.434 4. 16 Regrind Discharge	-				-			
12 2nd Ro Cinr Tail 5.70 1.34 55.300 55.300 74.342 21. 13 50e Screen 0/S (Table Feed) 10.60 2.50 86.300 88.342 220.854 62. 14 +50e Table Conc 9.20 2.17 93.750 93.750 203.420 57. 15 +50e Table Tail 1.40 0.33 52.800 52.800 17.434 4. 16 Regrind Discharge 16.80 3.96 84.500 84.500 334.722 95. 18 50e Screen Feed 16.80 3.96 84.500 68.200 131.302 37. -50 Mesh Circuit: - - - - - - 33.762 107.468 30. 20 Regrind Discharge - - - - - - - 33.762 107.468 30. 21 1st Ci Conc 5.44 1.28 86.300 83.762 107.468 30. 22 2nd Ci (Scav) Tail 2.16 0.51 10.200 46.882 23.833 6.					•	•	•	
13 50e Screen 0/S (Table Feed) 10.60 2.50 86.300 88.342 220.854 62. 14 +50e Table Conc 9.20 2.17 93.750 93.750 203.420 57. 15 +50e Table Tall 1.40 0.33 52.800 52.800 17.434 4. 16 Regrind Discharge 1 1.40 0.33 52.800 68.200 334.722 95. 17 50e Screen Feed 16.80 3.96 84.500 84.500 334.722 95. 18 50e Screen U/S 7.60 1.79 68.200 68.200 131.302 37. -50 Mesh Circuit: - - - - - - - 33.762 107.468 30. 20 Regrind Discharge - - - - - - - - - - - - - 33.762 107.468 30. 21 1st Ci Conc 5.44 1.28 86.300 83.762 107.468 30. - 2350 +100e Final Conc					•			
14 +50e Table Conc 9.20 2.17 93.750 93.750 203.420 57. 15 +50e Table Tall 1.40 0.33 52.800 52.800 17.434 4. 16 Regrind Discharge 16.80 3.98 84.500 84.500 334.722 95. 17 50e Screen Feed 16.80 3.98 84.500 68.200 131.302 37. 18 50e Screen U/S 7.60 1.79 68.200 68.200 131.302 37. -50 Mesh Circuit:					•	•	•	
15 +50e Table Tall 1.40 0.33 52.800 52.800 17.434 4. 16 Regrind Discharge 16.80 3.98 84.500 84.500 334.722 95. 17 50e Screen Feed 16.80 3.98 84.500 84.500 334.722 95. 18 50e Screen U/S 7.60 1.79 68.200 68.200 131.302 37. -50 Mesh Circuit: - - - 6.80 1.60 73.200 73.200 117.484 33. 20 Regrind Discharge - - - - - - - - 33. - - - - - 33. - - - - - - 33. -					•		•	
16 Regrind Discharge 17 50e Screen Feed 16.80 3.96 84.500 84.500 334.722 95. 18 50e Screen U/S 7.60 1.79 68.200 68.200 131.302 37. -50 Mesh Circuit: - - - - - - 334.722 95. 19 2nd Ci (Scav) Conc 6.80 1.60 73.200 73.200 117.396 33. 20 Regrind Discharge - - - - - - - 33.762 107.468 30. 21 1st Ci Conc 5.44 1.28 86.300 83.762 107.468 30. 22 2nd Ci (Scav) Tali 2.16 0.51 10.200 46.882 23.833 6. 23 -50 +100e Final Conc 2.50 0.59 89.880 89.880 52.995 15. -100 Mesh Circuit: - - - - - - - 24 100 Mesh Screen U/S 2.94 0.69 78.560 78.560 54.473 1							•	
17 50# Screen Feed 16.80 3.98 84.500 84.500 334.722 95. 18 50# Screen U/S 7.60 1.79 68.200 68.200 131.302 37. -50 Mesh Circuit: 7.60 1.79 68.200 73.200 73.200 117.396 33. 20 Regrind Discharge 7.44 1.28 86.300 83.762 107.468 30. 21 1st Cl Conc 5.44 1.28 86.300 83.762 107.468 30. 22 2nd Cl (Scav) Tall 2.16 0.51 10.200 46.882 23.833 6. 23 -50 +100# Final Conc 2.50 0.59 89.880 89.880 52.995 15. -100 Mesh Circuit: - - - - - - - - - - - 54.473 15. 15. -100 Mesh Circuit: - - - - - - - - - - - - - - - - - - -			1.40	0.00	1 02.000	- uc.uou 1	17.707 [7.4
18 50# Screen U/S 7.60 1.79 68.200 68.200 131.302 37. -50 Mesh Circuit: 19 2nd Ci (Scav) Conc 6.80 1.60 73.200 73.200 117.396 33. 20 Regrind Discharge 21 1st Ci Conc 5.44 1.28 86.300 83.762 107.468 30. 22 2nd Ci (Scav) Tall 2.16 0.51 10.200 48.882 23.833 6. 23 -50 +100# Final Conc 2.50 0.59 89.880 89.880 52.995 15. -100 Mesh Circuit: 24 100 Mesh Screen U/S 2.94 0.69 78.560 78.560 54.473 15. 26 1st Ci Tall 1.04 0.24 37.440 59.528 14.555 4. 27 2nd Ci Tall 0.10 0.02 67.200 67.200 1.596 0.		• •	16.80	3.08	1 84 500	R4 500	334 792	95 f
-50 Mesh Circuit: 19 2nd Cl (Scav) Conc 6.80 1.60 73.200 73.200 117.396 33. 20 Regrind Discharge 21 1st Cl Conc 5.44 1.28 86.300 83.762 107.468 30. 22 2nd Cl (Scav) Tall 2.16 0.51 10.200 46.882 23.833 6. 23 -50 +100e Final Conc 2.50 0.59 89.880 89.880 52.995 15. -100 Mesh Circuit: 24 100 Mesh Screen U/S 2.94 0.69 78.560 78.560 54.473 15. 26 1st Cl Tall 1.04 0.24 37.440 59.528 14.555 4. 27 2nd Cl Tall 0.10 0.02 67.200 67.200 1.596 0.					•		•	37.3
19 2nd Cl (Scav) Conc 6.80 1.60 73.200 73.200 117.396 33. 20 Regrind Discharge 5.44 1.28 86.300 83.762 107.468 30. 21 1st Cl Conc 5.44 1.28 86.300 83.762 107.468 30. 22 2nd Cl (Scav) Tall 2.16 0.51 10.200 46.882 23.833 6. 23 -50 +100# Final Conc 2.50 0.59 89.880 89.880 52.995 15. -100 Mesh Circuit: - - - - - - 15. 24 100 Mesh Screen U/S 2.94 0.69 78.560 78.560 54.473 15. 26 1st Cl Tall 1.04 0.24 37.440 59.528 14.555 4. 27 2nd Cl Tall 0.10 0.02 67.200 67.200 1.596 0.								••••
20 Regrind Discharge 1 21 1st Cl Conc 5.44 1.28 86.300 83.762 107.468 30. 22 2nd Cl (Scav) Tail 2.16 0.51 10.200 46.882 23.833 6. 23 -50 +100w Final Conc 2.50 0.59 89.880 89.880 52.995 15. -100 Mesh Circuit: -100 Mesh Screen U/S 2.94 0.69 78.560 78.580 54.473 15. 24 100 Mesh Screen U/S 2.94 0.69 78.560 78.580 54.473 15. 26 1st Cl Tail 1.04 0.24 37.440 59.528 14.555 4. 27 2nd Cl Tail 0.10 0.02 67.200 67.200 1.596 0.	-50 Mesh	Circuit:						
21 1st Ci Conc 5.44 1.28 86.300 83.762 107.468 30. 22 2nd Ci (Scav) Tali 2.16 0.51 10.200 46.882 23.833 6. 23 -50 +100w Final Conc 2.50 0.59 89.880 89.880 52.995 15. -100 Mesh Circuit: -100 Mesh Screen U/S 2.94 0.69 78.560 78.560 54.473 15. 24 100 Mesh Screen U/S 2.94 0.69 78.560 78.560 54.473 15. 26 1st Ci Tali 1.04 0.24 37.440 59.528 14.555 4. 27 2nd Ci Tali 0.10 0.02 67.200 67.200 1.596 0.	19	2nd Cl (Scav) Conc	6.80	1.60	73.200	73.200	117.396	33.3
22 2nd Ci (Scav) Tall 2.16 0.51 10.200 46.882 23.833 6. 23 -50 +100m Final Conc 2.50 0.59 89.880 89.880 52.995 15. -100 Mesh Circuit: 24 100 Mesh Screen U/S 2.94 0.69 78.560 78.580 54.473 15. 26 1st Ci Tail 1.04 0.24 37.440 59.528 14.555 4. 27 2nd Ci Tail 0.10 0.02 67.200 67.200 1.596 0.					1	1		
23 -50 +100w Final Conc 2.50 0.59 89.880 89.880 52.995 15. -100 Mesh Circuit: -100 Mesh Screen U/S 2.94 0.69 78.560 78.560 54.473 15. 26 1st Ci Tail 1.04 0.24 37.440 59.528 14.555 4. 27 2nd Ci Tail 0.10 0.02 67.200 67.200 1.596 0.	21	1st Cl Conc	5.44	1.28	86.300	83.762	107.468	30.5
-100 Mesh Circuit: 24 100 Mesh Screen U/S 2.94 0.69 78.560 78.560 54.473 15. 26 1st Ci Tail 1.04 0.24 37.440 59.528 14.555 4. 27 2nd Ci Tail 0.10 0.02 67.200 67.200 1.596 0.	22	2nd Ci (Scav) Tall	2.16	0.51	10.200	46.882	23.833	6.1
24 100 Mesh Screen U/S 2.94 0.69 78.560 78.560 54.473 15. 26 1st Ci Tail 1.04 0.24 37.440 59.528 14.555 4. 27 2nd Ci Tail 0.10 0.02 67.200 67.200 1.596 0.	23	-50 +100e Final Conc	2.50	0.59	89.880	89.880	52.995	15.0
24 100 Mesh Screen U/S 2.94 0.69 78.560 78.560 54.473 15. 26 1st Ci Tail 1.04 0.24 37.440 59.528 14.555 4. 27 2nd Ci Tail 0.10 0.02 67.200 67.200 1.596 0.	-100 Mes	h Circuit:			i 1	1		
26 1st Ci Tail 1.04 0.24 37.440 59.528 14.555 4. 27 2nd Ci Tail 0.10 0.02 87.200 87.200 1.596 0.			2.94	0.69	. 78.560	78.580	54.473 !	15.4
27 2nd Ci Tail 0.10 0.02 87.200 87.200 1.598 0.								4.1
					-			0.4
	28	-100# Final Conc	1.80		•	90.140	-	10.1


Notes:

....

1)Product #5 is calculated using pilot plant flowrate measurement

2)Beit Feed (#1), 50# Screen Feed (#17), +50# Table Conc (#14), Rougher Fiot Tail (#8), -50# Screen U/S (#18), -50+100# Conc (#23), -100# Conc (28) are all taken as gospel.

CONCENTRATES:	WT X	¥ C(g)	X REC'Y	X DIST
+50# Concentrate	2.17	93.75	57.79	69.02
-50+100# Concentrate	0.59	89.88	15.06	17.98
-100# Concentrate	0.43	90.14	10.89	13.00
Combined Concentrates	3.18	92.55	83.73	100.00

TESTWORK PROCEDURE

Test No: M90-088 6-C-AA

1....

Date: May 16/90

Purpose: Small bench-scale flotation of sample of -100# product from Pilot Run #6-B-AA

STAGE	TIME	A	DDITIONS
	(Minutes)	g/tonne	REAGENT
Regrind	5		Full Media Charge
-100# Cleaner 1	7		
Condition	1	15	EKOF 452 G
Cleaner Scav	3		
-100# Cleaner 2	7		
Condition	1	15	EKOF 452 G
Cleaner Scav	2		
	<u> </u>		

· .

PRODUCT	WEIGHT WEIGHT; ASSAYS GMS % Graphitic C ; %	Graphitic C	
CI conc	28.6 50.75 \$ 90.14	4574.864	
2nd CI Talls	1.6 2.83 ¦ 67.20	190.455	
1st CL Conc	30.2 53.59 { 88.93	(4765.320	
1st CI Tails	26.2 46.41 37.44	1737.694	
		ł	
		ł	
	1	ł	
	1		
•			
	1		
- 	l		
		······································	
TOTAL -100# CONC	56.4 100.0 65.03	(6503.013	

.

.

,

2

.

1.

1...

PRODUCT	WEIGHT WEIGHT¦ GMS %/ Gr 	ASSAYS raphitic C X	l X DIST Graphitic C 	
CI conc	28.6 50.75	90.14	¦ 70.35	
2nd CI Tails	1.6 2.83 ¦	67.20	ł 2.93	
1st CL CONC	30.2 53.59	88.93	73.28	
1st CI Talls	26.2 46.41	37.44	26.72	
	1		ł	
			8	
	1			
i	1			
i 1			i	
t 	i		i	
TOTAL -1000 CONC	56.4 100.0	65.03	100.00	
		7 <i>8.</i> 6		

78.6

(___

GRINDING OPERATION SHEET

Project No.: M90-088 Project Name: Bissett Creek Graphite Date: May 1/90 Operator Name: Jack R.

RUN # 6-AA

	Feed	Beit	Feed Water	Discharge	Reagent	Pump
	Rate	Cut	Addition	%	Feed	Box
Time	(lb/hr)	(g)	(l/min)	Solids	(mi/min)	Level
10:00	685	1383	4.2	55	20	m.t
10:20	888	1792	4.2	61	20	m.t
10:35	570	1150	-			m.t
10:50	729	1470	-			
11:10	1039	2097	-		20	
11:35	889	1793	-			m.t
2:30	1045	2109	-	60		
2:45	917	1851	-	54		
3:15	911	1838	-	55	20	
4:00	902	1820	4.5	52		
4:15	1030	2079	4.5	62	20	m.t
4:30	1034	2087	-	57	20	m.t
4:45	872	1759	-	55	20	m.t
5:00	1013	2044	•	57 ·	20	m.t

Sampling:

Time	Belt Feed	Primary Mill Discharge	Vibrating Screen O/S	Unit Cell Feed
4:00			ζ	46%
4:15				42%
4:30				
4:45				37%
5:00				41%
	<u> </u>			

Comments:

Time	Comments

925 ~ 515

Project No.: M90-088 Project Name: Bissett Creek Graphite

Date: May 1/90 Operator Name: Ed H. & Peter T.

RUN # 6-AA

Rougher Flotation:

	Feed		F	otation	Cell Le	vei		Froth Description					
	%	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Cell
Time	Solids	1	2	3	4	5	6	1	2	3	4	5	6
10:15		U	U	U	U	U	ປ	G/H	G/H	G/H	G/MH	M/M	M/M
10:50	27	U	U	U	U	U	U	G/H	G/H	G/H	G/MH	M/M	M/M
11:20		U	U	U	U	U	U	G/H	G/H	G/H	G/MH	M/M	M/M
11:50	28	G	G	G	G	G	G	G/H	G/H	M/M	M/L	M/L	M/L
12:00	24	G	G	G	G	G	G	G/H	G/MH	G/M	M/L	M/L	M/L
12:20	19	G	G	G	G	G	G	G/H	G/H	G/MH	M/L	M/L	M/L
3:20	25	G	G	G	G	G	G	G/H	G/MH	G/M	M/M	M/L	M/L
3:45	25	G	G	G	G	G	G	G/H	G/MH	G/M	M/M	M/L.	M/L
4:15	20	G	G	G	G	G	G	G/H	G/MH	G/MH	M/M	M/L	M/L
4:35	23	G	G	G	G	G	G	G/H	G/MH	G/MH	M/M	M/L	M/L
5:00	23	G	G	G	G	G	G	G/H	G/MH	G/MH	M/M	ML	M/L

LEGEND

1...

Cell Level: H = HighG = Good

Froth Description:

G/ = Strong Froth M/ = Medium Froth P/ = Poor Froth

/H = High grade /M = Medium grade /L = Low grade

U = Unsteady
L = Low

Cleaner Flotation:	1st Cleaner Bank							2nd Cleaner Bank					
	Flotatio	Flotation Cell Level			Froth Description			Flotation Cell Level			Froth Description		
	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Cell	
Time	1	2	3	1	2	3	1	2	3	1	2	3	
10:10	U	U	U	G/H	G/H	G/M	U	U	U	G/H	G/M	G/M	
10:50	U	U	U	G/H	G/H	G/M		U	U	G/H	G/H	G/M	
11:20	G	G	G	M/H	G/H	G/H	G	G	G	G/VH	G/H	G/H	
11:50	G	G	G	G/H	G/H	G/M	G	G	G	G/H	G/H	G/M	
12:20	G	G	G	G/H	G/H	G/M	G	G	G	G/VH	G/H	G/M	
3:20	G	G	L	G/H	G/H	G/H	G	G	G	G/VH	G/H	G/H	
3:45	G	G	G	G/H	G/H	G/MH	G	G	G	G/VH	G/H	G/M	
4:15	G	G	G	G/H	G/MH	G/M	G	G	G	G/VH	G/H	G/M	
4:30	G	G	G	G/H	G/H	G/MH	G	G	G	G/VH	G/H	G/M	
5:00	G	G	G	G/H	G/H	G/MH	G	G	G	G/VH	GAH	G/M	

į.

1____

FLOTATION SAMPLING SHEET

Project No.: M90-088 Project Name: Bissett Creek Graphite Date: May 1/90 Operator Name: Ed H. & Peter T.

.

RUN # 6-AA

	Cut					Time				
Sample	Time	12:10	12:25		3:50	4:15	4:30	4:42	5:00	
Rougher Flotation Feed			X		/	7		X	~	
Rougher Flotation Conc		120 s	X		55 8	25 s	30 s	X	30 s	
Rougher Flotation Tail	30 s	1	/				~	X		
1st Ro Cleaner Conc		~	~	•	10 8	10 s	10 s	10 s	10 s	
1st Ro Cleaner Tail	30 s		20 s		30 s		~	~		
2nd Ro Cleaner Conc	-		~		~	~	~	~	/	
2nd Ro Cleaner Tail	30 s	1	~		20 s	20 s	20 s	20 s	20 s	
50 mesh Screen Feed	30 s	1	X		~	~	~	X		

Comments:

Time	Comments
9:35	Start up (pre-production): Unit cell removed from circuit
10:10	Roughers unsteady - problems with level control
10:45	Comparatively little material reporting to shaking table - because of no unit cell?
11:45	Roughers and cleaners settling down
11:48	Mechanical problem with 20# sweco. Very noisy. Call electrician.
12:10	Start sampling
12:13	20# Sweco died. Shut down grinding circuit.
12:30	Rougher surge tank empty. Stop sampling. Shut down remaining circuit.
2:12	20# Sweco fixed (loose motor mounts). Start up mill
	Allow rougher surge tank to fill
2:54	Start up flotation circuit
3:00	Shaking table: Still comparatively little feed, less coarse wood contamination
3:50	Begin sampling
4:30	Everything running very well
5:00	Sample run #6-AA complete

FLOTATION OPERATION SHEET

Project No.: <u>M90-088</u> Project Name: <u>Bissett Creek Graphite</u> Date: May 16/90 Operator Name: Ed H. & Bruce S.

RUN # 6-B-AA

Rougher Flotation:

	Feed		F	otation	Cell Le	vel		Froth Description Cell Cell Cell Cell Cell Cell					
	%	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Cell
Time	Solids	1	2	3	4	5	6	1	2	3	4	5	6
		ļ											
				L	L								
	1												

LEGEND

- Cell Level:
 - : H = High
 - G = Good
 - U = Unsteady

L = Low

Froth Description:

G' = Strong Froth M/ = Medium Froth P/ = Poor Froth /H = High grade /M = Medium grade /L = Low grade

eaner Flota	tion:												
	Feed		Flo	tation C	ell Leve	əl			Fr	oth Des	scription	1	_
	%	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Ce
Time	Solids	1	2	3	4	5	6	1	2	3	4	5	6
12:00	5	G	G	G	ML	L	VL.	G/H	G/H	G/MH	M/M	M/M	P/L
12:30		G	G	G	ML	L	VL	G/H	G/H	G/MH	M/M	M/M	P/L
12:45		G	G	G	M	ML	L	G/H	G/H	G/MH	G/MH	M/M	P/L
12:57		G	G	G	М	ML	L	G/H	G/H	G/MH	G/MH	M/M	P/L
1:03		G	G	G	M	ML	L	G/H	G/H	G/MH	G/MH	M/M	P/L
	<u> </u>												
				ļ	ļ	_		ļ			·		ļ
		<u> </u>	ļ	L	ļ			L	L	ļ			
				ļ	ļ		ļ	ļ	<u> </u>	ļ			<u> </u>
						ļ							1

Comments:

11:00 Start	up (Pre-production):			
	1. First 2 cells pulling high grade. Switch launders to reflect this.			
	2. Add extra 3 cells of scavenger flotation.			
	3. Remove 14 kg of regrind media (8 kg remaining)			
	4. Quickie siza analysis on -50# feed: 33% +100# and 67% -100#			

SAMPLE NO. M90-088 Pilet Run #6-AA

Rougher Flotation Feed

Size Fraction (mesh)	Individual Percentage Retained %	
	<u>, , , , , , , , , , , , , , , , , , , </u>	
+ 28	6.1	. 939
- 28 + 48	28.0	6.7
- 48 + 100	28.2	
- 100 + 200	19.4	
- 200	18.3	

. . . .

SAMPLE NO. M90-088 Plice Run 16-44

	Rougher Flotatio	
Size Fraction (mesh)	Individua Percentag Retained %	
+ 28	7.8	
- 28 + 48	31.3	
- 48 + 100	27.4	
- 100 + 200	16.2	
- 200	17.3	

.

SAMPLE NO. M90-088 PER 1

	Table Tails	
Size Fraction (mesh)	Individual Percentag Retained %	8
+ 28	3.7	
- 28 + 48	53.7	
- 48 + 100	32.2	
- 100 + 200	7.7	
- 200	2.7	

Ŀ.

SAMPLE NO. M90-088 Pilot Run #6-AA

1

ſ

. .

ŧ٠

Regrind Discharge

		the second second second second second second second second second second second second second second second s	
	· · · · · · · · · · · · · · · · · · ·		
Size Fraction	Individual		
	Percentage		
(mesh)	Retained		
	%		
+ 28	0.3		그 97
28 + 48	20.4	اليود سيكرد الله . جود الميكرين الله .	
48 + 100	21.3	An organ a frequencia. The construction of the	
100 + 200	25.5		
200 +	32.5		
		۱۹۹۵ کالاست. ۱۹۹۵ کال ۱۹۹۵ کالاست. ۱۹۹۵ کالاست کال سیار ۱۹۹۵ کالاست.	
	•		
		1	
		· · · · · · · · · · · · · · · · · · ·	

SAMPLE NO. M90-088 Pilot Run #6-AA

Size Fraction (mesh)	Individual Percentage Retained %	Cumulative Percentage Passing %	
+ 28	38.1	61.9	
28 + 48	22.2	39.7	
48 + 100	17.4	22.3	
100 + 200	11.4	10.9	
200	10.9		

L.

İ.,

Rod Mill Discharge

The statement of

ί...

SAMPLE NO. M90-088 Pilot Run #6-AA

20 Mesh Screen Oversize

Size Fraction (mesh)	Individual Percentage Retained %	Cumulative Percentage Passing %
+ 10	19.2	80.8
- 10 + 20	49.4	31.4
- 20 + 28	21.3	10.1
- 28 + 48	8.2	1.9
- 48 + 100	1.0	0.9
- 100 + 200	0.2	0.7
- 200	0.7	

.

.

SAMPLE NO. M90-088 Pilot Run #6-B-AA

1st Cleaner Concentrate

Size Fraction (mesh)	Individual Percentage Retained %	Cumulative Percentage Passing %
+ 28	0.1	99.9
28 + 48	4.1	95.8
48 + 100	43.1	52.7
100 + 200	26.9	25.8
200	25.8	

SAMPLE NO. M90-088 Pilot Run #6-B-AA

2nd Cleaner (Scavenger) Concentrate

Size Fraction (mesh)	Individual Percentage Retained %	Cumulative Percentage Passing %
+ 28	0.2	99.8
28 + 48	7.8	92.0
48 + 100	40.4	51.6
100 + 200	21.0	30.6
200	30.6	

SAMPLE NO. M90-088 Pilot Run #6-B-AA

Regrind Discharge

Size Fraction (mesh)	Individual Percentage Retained %	Cumulative Percentage Passing %
+ 28	0.2	99.8
28 + 48	8.3	91.5
48 + 100	37.2	54.3
100 + 200	25.6	28.7
200	28.7	

PILOT RUN #6B

•

PILOT RUN #6B

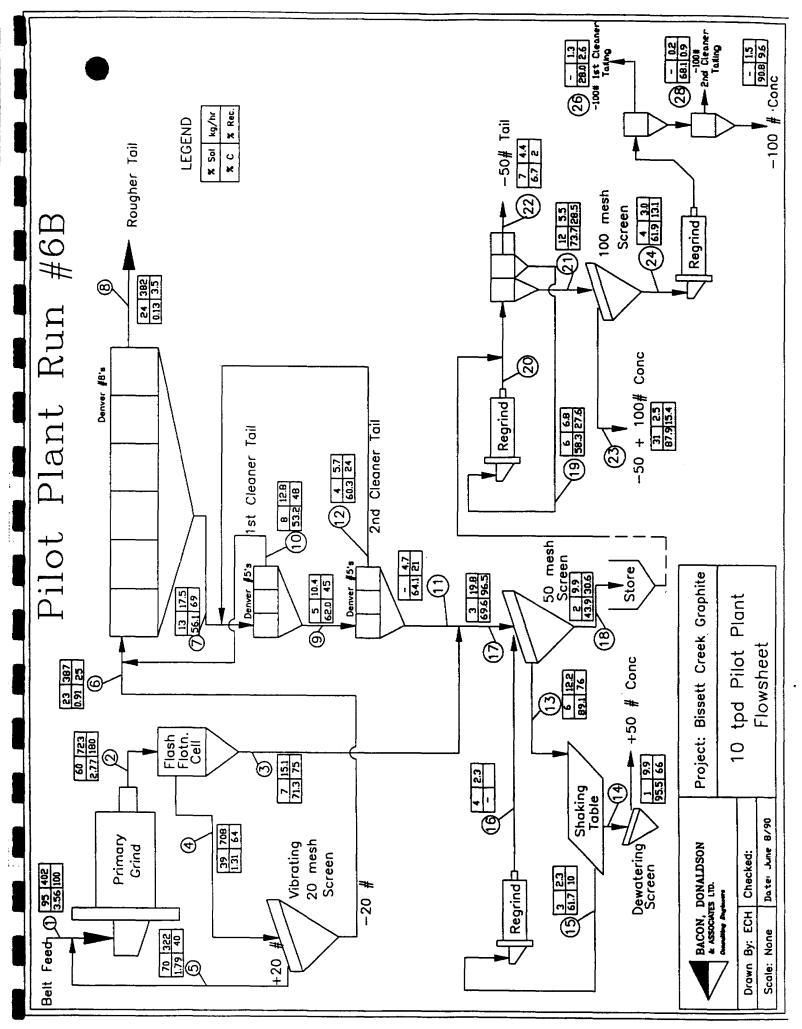
DATE: May 1, 1990 DURATION: 4.5 hours ASSAY HEAD: 3.56 %C(g) THROUGHPUT: 1800 kg REAGENT COSUMPTION: 230 g/tonne EKOF 452 G (Rougher) 20 g/tonne EKOF 452 G (Undersize) REAGENT ADDITION: RM Discharge, Ro Cell #1, Ro cell 34 (Rougher) 1st CI Feed, Regrind Feed (undersize) هو هو عن الله الله الله الله عنه عن الله الله الله الله الله الله الله FLOWSHEET MODIFICATIONS: 1)Recirculate 1st cleaner tails to rougher feed 1)Recirculate 2nd cleaner tails to 1st CI Feed 3)Unit cell returned to circuit (relocated above 20 mesh screen) 4)-100w circuit simulated on bench-scale 5) . 6) 7)

RESULTS:

Final Concentrates:	WT X	X C(g)	X REC'Y	X DIST
+50# Concentrate	2.46	95.50	65.96	72.62
-50+100# Concentrate	0.62	87.90	15.36	16.90
-100# Concentrate	0.37	90.80	9.52	10.48
Combined Concentrates	3.45	93.62	90.84	100.00

.

Flowshee Stream	PRODUCT	WE IGHT Kg/hr	WEIGHT X	assays,	XC(g) 	UNITS OF C(g)	DISTRIBUTION %C(g)
No				Assayed	Calc	Calc ¦	Caic
Primary	Circuit:					<u></u>	
1	Belt Feed	402.00	100.00	3.560	3.560	356.000	100.0
2	Rod WIII Discharge	724.000	180.10	2.160	2.773	499.378	140.2
3	Unit Cell Conc	15.10	3.76	71.300	71.300	267.818	75.2
4	Unit Cell Tall	708.90	176.34	1.070	1.313	231.560	65.0
5	20# Screen 0/S	322.00	80.10	1.790	1.790	143.378	40.2
6	20# Screen U/S	386.90	96.24	0.910	0.916	88.182	24.7
6A	Rougher Flot Feed		99.43		2.591	257.575	72.3
7	Rougher Flot Conc	17.70			55.694	245.221	68.
78	1st Ro Cinr Feed	23.40	-		56.816	330.721	92.9
8	Rougher Flot Tail	382.00			0.130	12.353	3.4
9	1st Ro Cinr Conc	10.60	-		61.183	161.328	45.3
10	1st Ro Cinr Tall	12.80			53.200	•	47.
11	2nd Ro Cinr Conc	4.75	-		64.194		21.
12	2nd Ro Cinr Tail	5.70	-		60.300	•	24.
13	50# Screen 0/S (Table Feed)	12.19	-		89.120	•	75.
14	+50# Table Conc	9.89			95.500	•	65.
15	+50# Table Tall	2.30			61.700	•	9.
16	Regrind Discharge						
17	50w Screen Feed	19.85	4.94	69.600	69.600	343.647	96.
18	50w Screen U/S	9.96		-	43.900	•	30.
i -50 Mesi	h Circuit:		1				
19	2nd Cl (Scav) Conc	6.80	1.69	58.300	58.300	98.617	27.
20	Regrind Discharge			1	1		
21	1st CI Conc	5.44	1.35	73.700	75.537	102.22	28.
22	2nd Cl (Scav) Tall	4.52	1.13	6.700	5.863	6.60	1.
23	-50 +100# Final Conc	2.50	0.62	87.900	87.900	54.664	15.
i -100 Me	sh Circuit:			i 			
24	100 Wesh Screen U/S	2.94	0.73	61.900	65.024	47.555	13.
26	ist CI Tail	1.26		33.900	33.900		2.
27	2nd CI Tali	0.18			68.100		· 0.
28	-100# Final Conc	1.50		90.800	90.800		9.
 !	CALC BELT FEED	401 85	100.0		3.560	356.000	100.


Notes:

1)Product #5 is calculated using pilot plant flowrate measurement

2)Belt Feed (#1), 50# Screen Feed (#17), +50# Table Conc (#14), Rougher Flot Tall (#8),

-50# Screen U/S (#18), -50+100# Conc (#23), -100# Conc (#28) are all taken as gospel.

CONCENTRATES :	WT X	X C(g)	X REC'Y	X DIST
+50# Concentrate	2.46	95.50	65.96	72.62
-50+100# Concentrate	0.62	87.90	15.36	18.90
-100# Concentrate	0.37	90.80	9.52	10.48
Combined Concentrates	3.45	93.62	90.84	100.00

.

TESTWORK PROCEDURE

Test No: M90-088 6-C-AB

Date: May 16/90

Purpose: Small bench-scale flotation of sample of -100# product from Pilot Run #6-B-AB

STAGE	TIME	A	DDITIONS
	(Minutes)	g/tonne	REAGENT
Regrind	5		Full Media Charge
-100# Cleaner 1	7		
Condition	1	15	EKOF 452 G
Cleaner Scav	3		
-100# Cleaner 2	7		
Condition	1	15	EKOF 452 G
Cleaner Scav	2		
			· ·
· · · · · · · · · · · · · · · · · · ·	<u> </u>	<u> </u>	

	WEIGHT WEIGH	r; Ass	AYS	X DIST
PRODUCT	GMS X	Graphitic C	Graphitic C	
		i	i	
2nd C1 Conc	525.9 69.86	84.14	90.91	
2nd CI Talls	33.8 4.49	29.85	¦ 2.07	
1st CL Conc	559.7 74.35	80.86	¦ 92.98	
Scav Conc	36.0 4.78	58.46	4.32	
1st CI Tails	157.1 20.87	8.35	2.70	
		1	ł	
		1	4	
		1	1	
		{	l	
		1	ł	
		1	ł	

÷

-

PRODUCT	WEIGHT WEIGHT GMS %	¦ Graphitic C 	ASSAYS Grapi	UNITS hitic C
2nd CI Conc	525.9 69.86	1 84.14	5877	.952
2nd CI Talls	33.8 4.49		134	
1ST CL CONC	559.7 74.35	80.86	6011	.976
Scav Conc	36.0 4.78	-	279	
1st CI Tails	157.1 20.87	8.35	174	.254
		1		
		1	1	
		1		
		8		
		1	1	
		1		
}		1		
TOTAL -100# CONC	752.8 100.0	64.66	6465	

٠

.

I

TESTWORK PROCEDURE

Test No: M90-088

÷

Date: 25-May-90

Purpose: Cleaner Flotation on Run 6AB -100# materials.

STAGE	TIME		DDITIONS
	(Minutes)	g/t	REAGENT
Grind	5		
Cleaner Flotation			
1st Cleaner Float	18		
Condition	1	15	EKOF
Scavenger Float 1	2		
Condition	1	30	EKOF
Scavenger Float 2	3		
Condition	1	60	EKOF
Scavenger Float 3	3		
Condition	1	60	EKOF
Scavenger Float 4	3		
2nd Cleaner Float	26		
Condition	1	15	EKOF
Scavenger Float 1	2		
Condition	1	60	EKOF
Scavenger Float 2	3		

		X	Graphitic C 	
Ciconc 2nd CiTalis IST CL CONC Ist CiTalis	33.8 50.15 4.0 5.93 37.8 56.08 29.6 43.92	90.79 68.09 88.39 33.93	70.62 6.27 76.89 23.11	
TOTAL -100# CONC	67.4 100.0 ;	64.47	100.00	

,

TOTAL -100# CONC	67.4 100.0 64.47	¦6446.947	
1			
	1		
1			
\$ \$ 1			
1	1		
IST CL CONC Ist CI Tails	37.8 56.08 ¦ 88.39 29.6 43.92 ¦ 33.93	1489.881	
2nd CI Talls	4.0 5.93 ¦ 68.09	¦ 404.095 4957.065	
CI conc	33.8 50.15 ¦ 90.79	¦4552.970	
PRODUCT 	GMS X Graphitic C ; X	Graphitic C 	
ł	WEIGHT WEIGHT ASSAYS	l UNITS	

.

.

.

Project No.: M90-088 Project Name: Bissett Creek Graphite Date: May 1/90 Operator Name: Jack R.

RUN #6-AB

	Feed	Belt	Feed Water	Discharge	Reagent	Pump
	Rate	Cut	Addition	%	Feed	Box
Time	(lb/hr)	(g)	(l/min)	Solids	(ml/min)	Level
7:30 PM	900	1817	4	57	20.8	m.t
7:45	949	1915	4	55	20.8	m.t
8:00	826	1666	4	57	20.8	m.t
8:15	940	1896	4	53	20.8	m.t
8:30	1025	2069	4	57	20.7	m.t
8:45	1010	2038	4	56	20.7	m.t
9:00	863	1741	4	53	20.7	m.t
9:15	944	1905	4	55	20.7	m.t
9:30	943	1902	4	56	20.7	m.t

Sampling:

.

		Primary	Vibrating	Unit
	Belt	Mill	Screen	Cell
Time	Feed	Discharge	O/S	Feed
7:30	レ			40%
7:45				39%
8:00				
8:15				37%
8:30				
8:45				
9:00	-		/	38%
9:15			- /,	40%
9:30				37%

Comments:

Time	Comments	

FLOTATION OPERATION SHEET

Project No.: M90-088 Project Name: Bissett Creek Graphite Date: May 1/90 Operator Name: Ed H. & Peter T.

RUN # 6-AB

Rougher Flotation:

	Feed		FI	otation	Cell Le	vel		I		Froth D)escript	ion	
	%	Cell	Cell	Cell	Cell	Cell	Ceil	Cell	Cell	Cell	Cell	Cell	Cell
Time	Solids	1	2	3	4	5	6	1	2	3	4	5	6
6:30 PM	-	G	G	G	G	G	G	G/H	G/H	M/MH	M/M	M/L	M/L
7:00 PM		G	G	G	G	G	G	G/H	G/MH	M/M	M/M	M/L	M/L.
7:30	32	G	G	G	G	G	G	G/MH	G/M	G/M	M/L	M/L.	M/L
8:30	22	G	G	G	G	G	G	G/M	G/M	M/ML	M/L	M/L	M/L
8:45	24	G	G	G	G	G	G	G/MH	M/M	M/ML	M/L	M/L	M/L
9:00	23	G	G	G	G	G	G	G/MH	G/M	M/ML	M/L	M/L	M/L.
9:20	22	G	G	G	G	G	G	G/MH	G/MH	M/M	M/L	M/L	M/L

LEGEND

L.,

Cell Level:

el: H = High G = Good

U = Unsteady

L = Low

Froth Description:

G/ = Strong Froth M/ = Medium Froth P/ = Poor Froth /H = High grade /M = Medium grade /L = Low grade

Cleaner Flotation:	1st Cleaner Bank						2nd Cleaner Bank						
	Flotation Cell Level			Froth	Froth Description			Flotation Cell Level			Froth Description		
	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Cell	
Time	1	2	3	1	2	3	1	2	3	1	2	3	
6:30	G	G	G	G/MH	G/MH	G/MH	G	G	G	G/MH	G/M	G/M	
7:00	G	G	G	G/M	G/M	G/M	G	G	G	G/H	G/M	G/M	
7:30	G	G	G	G/M	G/M	G/M	G	G	G	G/MH	G/M	G/M	
8:30	G	G	G	G/M	G/M	G/M	G	G	G	G/MH	G/M	G/M	
8:45	G	G	G	G/M	G/M	G/M	G	G	G	G/MH	G/M	G/ML	
9:00	G	G	G	G/M	G/M	G/M	G	G	G	G/MH	G/M	G/ML	
9:20	G	G	G	G/M	G/M	G/M	G	G	G	G/MH	G/M	G/ML	
									}			┢────	
				 					<u> </u>			t	
		<u> </u>	1	1			1			1		<u> </u>	

FLOTATION SAMPLING SHEET

Project No.: M90-088 Project Name: Bissett Creek Graphite

Date: May 1/90 Operator Name: Ed H. & Peter T.

RUN # 6-AB

	Cut					Time				
Sample	Time	7:30	8:30	8:45	9:00	9:15	9:30		1	
Unit Cell Concentrate	20 s	~	/	~	~	~	/			
Unit Cell Tailing	10 s	~	~	~	~	~	/			
Rougher Flotation Feed	•	~		~	~	/	\checkmark			
Rougher Flotation Conc	-	/			~	~	1			
Rougher Flotation Tail	30 s	60 s	30 s	~		/	7			
1st Ro Cleaner Conc	20 s	/	~		~	~				
1st Ro Cleaner Tail	30 s	/	/	~	~	./	/			
2nd Ro Cleaner Conc	-		~	/	/	1	1			
2nd Ro Cleaner Tail	20 s	~	/		1	1				
50 mesh Screen Feed	30 s		/	/		/		[

Comments:

ł

Comments
Unit cell back into circuit (no down time)
Allow circuit to come to steady state
Rod mill discharge pump down - shut down grinding circuit
- replace recycle valve
- continue running remaining circuit
Rougher flotation surge tank almost empty
Pump fixed - restart grinding circuit
Shaking table feed interupted - stirring motor down
Rougher tailings line plugged - circuit upset
- Sampling suspended while circuit settles down
50 # U/S tank #1 full. Some spillage while switching tanks
Plant running very well
Sample run #6-AB complete

Project No.: <u>M90-088</u> Project Name: <u>Bissett Creek Graphite</u> Date: May 16/90 Operator Name: Ed H. & Bruce S.

RUN # 6-B-AB

Rougher Flotation:

	Feed		Flotation Cell Level			Froth Description							
	%	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Cell
Time	Solids	1	2	3	4	5	6	1	2	3	4	5	6
	-						<u> </u>						
		1			1								

LEGEND

l

- Cell Level: H
- /el: H = High G = Good
- Froth Description:

G/ = Strong Froth M/ = Medium Froth P/ = Poor Froth /H = High grade /M = Medium grade /L = Low grade

- U = Unsteady
- L = Low

tion:												
Feed	Flotation Cell Level				Froth Description							
%	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Cell
Solids	1	2	3	4	5	6	1	2	3	4	5	6
11	G	G	G	ML	L	٧L	G/MH	G/MH	G/M	M/ML	P/L	P/L
	G	G	G	ML	L	٧L	G/MH	G/MH	G/M	M/ML	P/L	P/L
	G	G	G	M	ML	L	G/MH	G/MH	G/M	M/ML	P/L	P/L
	G	G	G	M	ML	L	G/MH	G/MH	G/M	M/ML	P/L	P/L
	G	G	G	M	ML	L	G/MH	G/MH	G/M	M/ML	P/L	P/L
							 					
												
				1								
-	<u> </u>	<u> </u>		 								
	Feed % Solids	Feed % Cell Solids 1 11 G G G G	FeedFlot%CellCellSolids1211GGGGGGGGGGG	FeedFlotation C%CellCellSolids1211GGGGGGGGGGGGGG	FeedFlotation Cell Level%CellCellCellSolids123411GGGMLGGGMGGGM	FeedFlotation Cell Level%CellCellCellCellSolids1234511GGGMLLGGGMMLLGGGMMLLGGGMML	FeedFlotation Cell Level%CellCellCellCellCellCellSolids12345611GGGMLLVLGGGMLLVLGGGMMLLGGGMMLL	FeedFlotation Cell Level%CellCellCellCellCellSolids123456111GGGMLLVLG/MHGGGMLVLG/MHGGGMMLLG/MHGGGMMLLG/MHGGGMMLLG/MH	FeedFlotation Cell LevelFr%CellCellCellCellCellCellSolids1234561211GGGMLLVLG/MHG/MHGGGMLLVLG/MHG/MHGGGMMLLG/MHG/MHGGGMMLLG/MHGGGMMLLG/MHGGGMMLLG/MH	FeedFlotation Cell LevelFroth Des%CellC	FeedFlotation Cell LevelFroth Description%CellCellCellCellCellCellCellSolids123456123411GGGMLLVLG/MHG/MHG/MM/MLGGGMLLVLG/MHG/MHG/MM/MLGGGMMLLG/MHG/MHG/MM/MLGGGMMLLG/MHG/MHG/MM/MLGGGMMLLG/MHG/MHG/MM/ML	FeedFlotation Cell LevelFroth Description%Cell </td

Comments:

Time	Comments
1:17	6-AB -50# feed tank hooked up
1:21	Begin feeding. Switch all appropriate tanks and buckets.
	Allow circuit to reach steady state with new feed.
	Note: use same cct configuration as run 6-B-AA

Project No.: <u>M90-088</u> Project Name: <u>Bissett Creek Graphite</u> Date: May 16/90 Operator Name: Ed H. & Bruce S.

RUN # 6-B-AB

	Cut			-	Time			
Sample	Time	1:40	1:44	1:53	1:59	2:05		
-50 mesh Feed	30 s	30 s	2 min	30 s	2 min	30 s		
Regrind Discharge	30 s		~	1		~		1
-100 mesh Product	30 s	17	1	~	/	~	1	
1st Cleaner Conc	30 s	1	1	/	/	~		
+100 mesh Conc	Total	~	1	~	~	~	1	
2nd Cleaner Conc	30 s	17	1	/	-	~		1
2nd Cleaner Tail	30 s	1	/	1	-	~		

Comments:

τ.

Time	Comments
1:35	All froth looks lower grade than previous run
1:40	Coarse graphite flakes observed in tails (vaning plaque)
1:45	Experiment with small extra additions of EKOF
	-seems to help
1:51	Feed tank no longer mixing
2:10	Feed tank empty
L	

4

1

SAMPLE NO. M90-088 Pilot Run #6-AB

Belt Feed

Size Fraction (mesh)			Percentage			
	+	1"	12.4	87.6		
1"	+	3/4"	21.6	66.0		
3/4"	+	1/2"	30.4	35.6		
/2"	+	3/8"	9.2	26.4		
3/8"	+	10	14.6	11.8		
10	+	28	3.3	8.5		
28	+	48	2.4	6.1		
48	+	100	2.2	3.9		
100	+	200	1.6	2.3		
200			2.3			

SAMPLE NO. M90-088 Pilot Run #6-AB

Size Fraction (mesh)	Individual Percentage Retained %	Cumulative Percentage Passing %		
+ 28	7.8	92.2		
28 + 48	30.9	61.3		
48 + 100	27.9	33.4		
100 + 200	17.4	16.0		
200	16.0			

1_ .

Rougher Flotation Feed

.

SAMPLE NO. M90-088 Pilot Run #6-AB

Size Fraction (mesh)	Individual Percentage Retained %	Cumulative Percentage Passing %
+ 28	8.0	92.0
28 + 48	30.9	61.1
48 + 100	29.0	32.1
100 + 200	16.9	15.2
200	15.2	

.

Rougher Flotation Tail

-

-7

-

SAMPLE NO. M90-088 Pilot Run #6-AB

Unit Cell Concentrate

Size Fraction (mesh)	Individual Percentage Retained %	Cumulative Percentage Passing %
+ 28	4.3	95.7
28 + 48	34.5	61.2
48 + 100	31.8	29.4
100 + 200	13.6	15.8
200	15.8	

.

-

SAMPLE NO. M90-088 Pilot Run # 6-AB

Size Fraction (mesh)	Individual Percentage Retained %	Cumulative Percentage Passing %
+ 28	7.5	92.5
28 + 48	57.2	35.3
48 + 100	29.9	5.4
100 + 200	4.2	1.2
200	1.2	

SAMPLE NO. M90-088 Pilot Run # 6-AB

Regrind Discharge

Size Fraction (mesh)	Individual Percentage Retained %	Cumulative Percentage Passing %
+ 28	0.5	99.5
28 + 48	26.3	73.2
48 + 100	26.0	47.2
100 + 200	26.1	21.1
200	21.1	

SAMPLE NO. M90-088 Pilot Run #6-AB

Unit Cell Tailings

Size Fraction (mesh)	Individual Percentage Retained %	Cumulative Percentage Passing %
+ 28	47.4	52.6
28 + 48	21.3	31.3
48 + 100	13.9	17.4
100 + 200	7.8	9.6
200	9.6	

1

SAMPLE NO. M90-088 Pilot Run #6-AB

Rod Mill Discharge

Size Fraction (mesh)	Individual Percentage Retained %	Cumulative Percentage Passing %
+ 28	46.6	53.4
28 + 48	21.6	31.8
48 + 100	14.4	17.4
100 + 200	8.3	9.1
· 200	9.1	

SAMPLE NO. M90-088 Pilot Run #6-AB

20 Mesh Screen Oversize

.

Size Fraction (mesh)	Individual Percentage Retained %	Cumulative Percentage Passing %
+ 10	10.1	89.9
- 10 + 20	41.6	48.3
- 20 + 28	24.4	23.9
- 28 + 48	16.6	7.3
- 48 + 100	4.8	2.5
- 100 + 200	1.3	1.2
- 200	1.2	

SAMPLE NO. M90-088 Pilot Run# 6-B-AB

1st Cleaner Concentrate

Size Fraction (mesh)	Individual Percentage Retained %	Cumulative Percentage Passing %
+ 28		
28 + 48	5.5	94.5
48 + 100	40.9	53.6
100 + 200	27.1	26.5
200	26.5	

SAMPLE NO. M90-088 Pilot Run #6-B-AB

2nd Cleaner (Scavenger) Concentrate

Size Fraction (mesh)	Individual Percentage Retained %	Cumulative Percentage Passing %
+ 28	0.7	99.3
28 + 48	6.5	92.8
48 + 100	29.4	63.4
100 + 200	16.2	47.2
200	47.2	

i

L ---

SAMPLE NO. M90-088 Pilot Run #6-B-AB

Regrind Discharge

Size Fraction (mesh)	Individual Percentage Retained %	Cumulative Percentage Passing %
+ 28	0.1	99.9
28 + 48	3.8	96.1
48 + 100	34.8	61.3
100 + 200	18.4	42.9
200	42.9	

ŧ

PILOT RUN #6C

1

i

ويوونها كمن فوقة وموجوع وينه بنين وحمو ومروع وموجو بين بن مرجو وين وجو وين وينه وجوج ويند بين وجو بي DATE: May 1, 1990 ASSAY HEAD: 3.44 %C(g) DURATION: 4.0 hours THROUGHPUT: 1000 kg REAGENT COSUMPTION: 150 g/tonne VARSOL, 30 g/tonne MIBC REAGENT ADDITION: RM Discharge, switched to RM Feed, Ro Cell #1, Ro Cell #4 FLOWSHEET MODIFICATIONS: 1)Recirculate 1st cleaner tails to rougher feed 1)Recirculate 2nd cleaner tails to 1st CI Feed 3)Unit cell removed from circuit 4)Did not run -50# or -100# circuits 5) Changed main reagent addition point from Rod Mill discharge to Rod Mill Feed

> 6)Switched reagent from EKOF 452 G to a VARSOL/MIBC combination (similar addition rates)

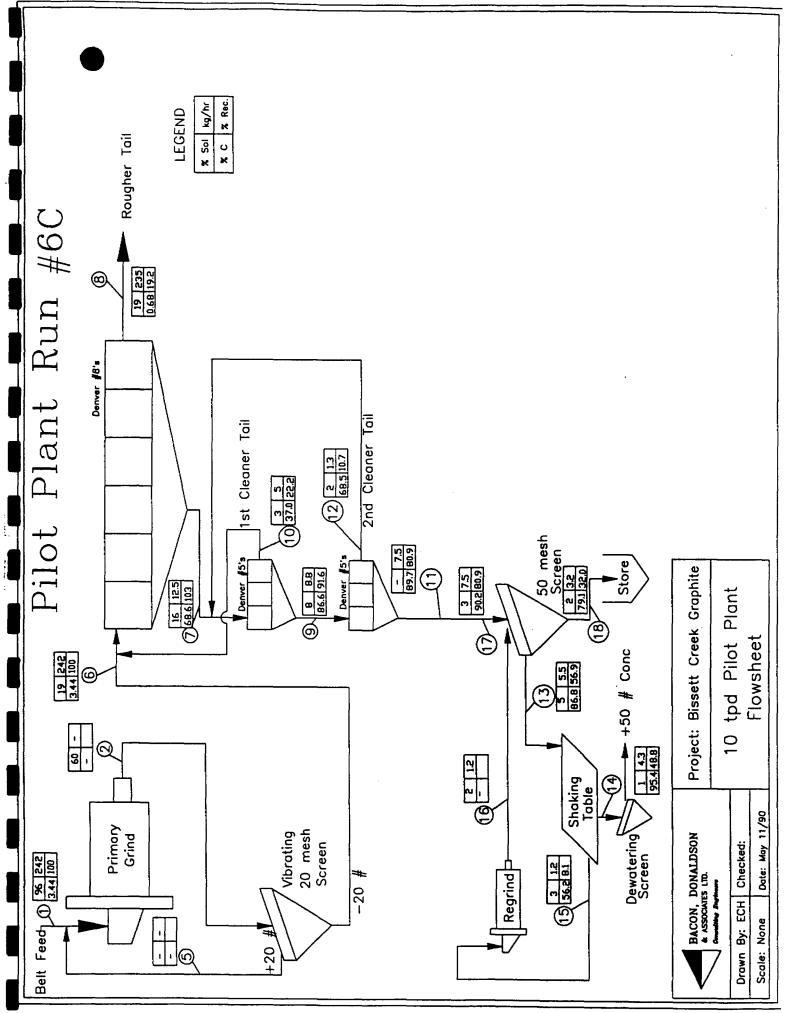
7)

بحجاجه ففقا ومحجو وحجوا فجج حجا فكالا الا

 RESULTS:
 WT % % C(g)
 % REC'Y
 % DIST

 +50# Concentrate
 1.76
 95.40
 48.82
 100.00

 Combined Concentrates
 1.76
 95.40
 48.82
 100.00


PILOT RUN #6C

Flowshee		WE IGHT	WE IGHT	ASSAYS,	XC(g)	UNITS OF C(g)	DISTRIBUTION
Stream	PRODUCT	Kg/hr	x		!	l	% C(g)
No				Assayed	Calc	Calc	Calc
Primary	Circuit:						
1	Beit Feed	242.00	100.00	3.440	3.440	344.000 ¦	100.
2	Rod Mill Discharge			{		ł	
5	20# Screen 0/S			ł		1	
6	20# Screen U/S	242.00	100.00	3.500	3.440	344.000	100.
6A	Rougher Flot Feed	247.00	102.07	1	4.119	420.446	122.
7	Rougher Flot Conc	12.50	5.17	83.600	68.642	354.554	103.
1 7A	1st Ro Cinr Feed	13.80	5.70	1	68.632	391.373	113.
: 8	Rougher Flot Tail	234.50	96.90	0.680	0.680	65.893	19.
9	1st Ro Cinr Conc	8.80	3.64	86.500	86.605	314.926	91.
10	1st Ro Cinr Tail	5.00	2.07	37.000	37.000	76.446 }	22.
11	2nd Ro Cinr Conc	7.50	3.10	89.900	89.736	278.107	80.
12	2nd Ro Cinr Tail	1.30	0.54	68.540	68.540	36.819	10.
13	50# Screen 0/S (Table Feed)	5.46	2.26	92.800	86.774	195.779	56.
14	+50# Table Conc	4.26	1.76	95.400	95.400	167.936	48.
15	+50# Table Tall	1.20	0.50	56.150	56.150	27.843	8.
16	Regrind Discharge			1	-		
17	50# Screen Feed	7.46	3.08	90.200	90.200	278.107	80.
18	50# Screen U/S	3.20	1.32	79.070	79.070	110.172	32.
i -50 Mest	n Circuit:			i 1			
i -100 Mex	sh Circuit:			i 	i		
1				1	ł	l I	
 !	CALC BELT FEED		100.0	1	3.440	344.000	

Notes:

1)Product #5 is calculated using pilot plant flowrate measurement 2)Beit Feed (#1), 50# Screen Feed (#17), +50# Table Conc (#14), Rougher Flot Tall (#8), -50# Screen U/S (#18) are all taken as gospel.

CONCENTRATES :	WT X	X C(g)	X REC'Y	X DIST
+50# Concentrate	1.76	95.40	48.82	100.00
-50+100# Concentrate				
-100# Concentrate				
Combined Concentrates	1.76	95.40	48.82	100.00

فاردان الأنصب معتدي المحد

GRINDING OPERATION SHEET

Project No.: M90-088 Project Name: Bissett Creek Graphite Date: May 1/90 Operator Name: Jack R.

RUN # 6-AC

	Feed	Belt	Feed Water	Discharge	Reagent	Pump
	Rate	Cut	Addition	%	Feed	Box
Time	(lb/hr)	(g)	(Vmin)	Solids	(ml/min)	Level
11:30 PM	754	1521	4	55	20.8	m.t
12:00	834	1682	4	59	25.4	m.t
1:15	922	1860	3.51	60	15.1	m.t

Sampling:

Ľ.

6

1

Time	Belt Feed	Primary Mill Discharge	Vibrating Screen O/S	Unit Cell Feed

Comments:

Time	Comments
	No sampling of grinding circuit - pumps & lines sanded, mill discharge
	% solids too high, trommel screen plugged.

FLOTATION OPERATION SHEET

Project No.: M90-088 Project Name: Bissett Creek Graphite

Date: May 1/90 Operator Name: Ed H. & Peter T.

RUN # 6-AC

Rougher Flotation:

	Feed		F	otation	Cell Le	vel				Froth [)escript	ion	
	%	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Cell
Time	Solids	1	2	3	4	5	6	1	2	3	4	5	6
11:00 PM		G	G	G	G	G	G	M/MH	M/M	M/L	M/L	M/L	M/L
12:00 AM		G	G	G	G	G	G	M/MH	M/M	M/L	M/L	M/L	M/L
1:00 AM		U	U	U	U	U	U	M/M	M/M	M/L	M/L	M/L	M/L
1:30	17	U	U	U	U	U	U	M/M	M/M	M/L	M/L	M/L	M/L.
1:40	23	G	G	G	G	G	G	M/M	M/M	M/L	M/L	M/L	M/L
1:50	12	G	G	G	G	G	G	M/M	M/M	M/L	M/L	M/L	M/L
								ļ					
·		┨────											
				L									I

LEGEND

Cell Level:

el: H = High G = Good

U = Unsteady

L = Low

Froth Description:

G/ = Strong Froth M/ = Medium Froth P/ = Poor Froth /H = High grade /M = Medium grade /L = Low grade

Cleaner Flotation:		1st C	leaner	Bank			[2nd (Cleaner	Bank				
	Flotatio	Flotation Cell Level				Froth Description			Flotation Cell Level			Froth Description		
	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Cell		
Time	1	2	3	1	2	3	1	2	3	1	2	3		
11:00	G	G	G	G/MH	G/MH	G/MH	G	G	G	G/H	G/MH	G/M		
12:00	G	G	G	G/MH	G/MH	G/MH	G	G	G	G/H	G/MH	G/M		
1:00	U	U	U	G/MH	G/MH	G/MH	U	U	U	G/H	G/MH	G/M		
1:30	G	G	L	G/MH	G/MH	G/MH	L	G	L	G/H	G/MH	G/MH		
			 	1			 		<u> </u>					
			ļ	ļ	ļ	 	ļ	ļ		ļ	ļ			
		 	1	1		<u> </u>	<u> </u>	 	<u> </u>	 	ļ			
]	1		<u> </u>		L		

Project No.: M90-088 Project Name: Bissett Creek Graphite Date: May 1/90 Operator Name: Ed H. & Peter T.

RUN # 6-AC

	Cut				Time		
Sample	Time	1:30	1:40	1:50			
Rougher Flotation Feed	-	~	/	/			
Rougher Flotation Conc	-		~	1			
Rougher Flotation Tail	30 s		/	~			
1st Ro Cleaner Conc	10 s	1	7	1			
1st Ro Cleaner Tail	20 s		~	~			
2nd Ro Cleaner Conc		~	/	1			
2nd Ro Cleaner Tail	20 s		~	7		1	<u> </u>
50 mesh Screen Feed	30 s	-	~	1		 1	

Comments:

Time	Comments
9:40 PM	Switch reagents to Varsol/MIBC (no down time)
	Allow circuit to come to steady state
10:30	Unit cell appears to be much less efficient (froth looks thin & barren)
	- rougher flotation too
11:05	Problems with rougher tailings discharge - circuit upset
11:20	Large graphite flakes visible in rougher tails - reagent not working?
11:35	First reagent addition point switched to mill feed
12:10 AM	Continuous problems with grinding circuit: - sanding
	- trommel screen clogged
1:15 AM	Remove unit cell from circuit
1:30	Begin sampling
1:35	Rod mill discharge pump down - shut down grinding circuit
	- continue running remaining circuit
	- continue sampling
1:55	Rougher surge tank empty - shut down plant
1:55	Rougher surge tank empty - shut down plant

SAMPLE NO. M90-088 Pilot Run #6-AC

Belt Feed

	Fraction mesh)	Individual Percentage Retained %	Cumulative Percentage Passing %
	+ 1"	6.4	93.6
- 1"	+ 3\4"	19.4	74.2
-3/4"	+ 1/2"	22.5	51.7
-1/2"	+ 3/8"	8.1	43.6
-3/8"	+ 10	17.2	26.4
- 10	+ 28	6.8	19.6
- 28	+ 48	5.6	14.0
- 48	+ 100	5.4	8.6
-100	+ 200	3.7	4.9
-200		4.9	

.

SAMPLE NO. M90-088 Pilot Run # 6-AC

Size Fraction (mesh)	Individual Percentage Retained %	Cumulative Percentage Passing %		
+ 28	3.3	96.7		
- 28 + 48	24.5	72.2		
- 48 + 100	31.8	40.4		
- 100 + 200	22.0	18.4		
- 200 +	18.4			

Rougher Flotation Feed

SAMPLE NO. M90-088 Pilot Run #6-AC

Rougher Flotation Tail

Size Fraction (mesh)	Individual Percentage Retained %	Cumulative Percentage Passing %
+ 28	7.3	92.7
28 + 48	27.7	65.0
48 + 100	28.3	36.7
100 + 200	19.9	16.8
- 200	16.8	

;

I

с.,

Π.

E

Ĺ.

SAMPLE NO. M90-088 Pilot Run #6-AC

Regrind Discharge

Size Fraction (mesh)	Individual Percentage Retained %	Cumulative Percentage Passing %
+ 28	1.5	98.5
28 + 48	43.2	55.3
48 + 100	24.3	31.0
100 + 200	22.5	8.5
· 200	8.5	

APPENDIX V

ł

Graphitic Carbon Assay Study Bissett Creek Graphite

GRAPHITIC CARBON ASSAY STUDY

1.0 PURPOSE

- 1. To gather information and data about the various methods for graphitic carbon assaying:
 - Double loss on ignition (Double L.O.I.)
 - Acid leach loss on ignition (Acid Leach L.O.I.)
 - Leco
- 2. To assess the repeatability and accuracy of each assay method.
- 3. To determine the optimum assay method(s) for our various purposes.

2.0 INTRODUCTION

These are two main categories of carbon assays: Leco assays, and loss on ignition (L.O.I.) assays. During bench-scale testwork, it was noted that the Leco assays did not correspond well with the L.O.I. assays. The L.O.I. assays were consistently higher than the Lecos, and on low grade sample, this difference was often as great as an order of magnitude. Obviously, flotation results were significantly affected by the choice of assays used. These observations led to a general awareness of our dependence on accurate assays, and ultimately led to this whole assay study.

It is important to note that, from the beginning of this project, it was understood that the L.O.I. methods of assaying were the industry standard for <u>high grade</u> samples. It was not the intention of this study to dispute this fact, but rather to make sure that each product was assayed by the most "appropriate method".

2.1 Carbon Assay Methods

There are several recognized methods of assaying for graphitic carbon. The methods investigated in this study are:

1. Double Loss On Ignition (Double L.O.I.)

This method involves two stages of heating (loss on ignition), both in an oxygen environment. The first stage heats the sample to 400°C for several hours. The weight lost during heating is called "% volatiles". The second stage heats the sample to 900°C for about 8 hours. The weight loss during this stage is the "% carbon", with the remaining solids being "% ash".

2. Acid Leach Loss On Ignition (Acid Leach L.O.I.)

This method involves pre-leaching the sample with strong nitric acid. The weight loss from acid leaching is determined, then the sample is heated in a furnace to 900°C in an oxygen environment. The weight remaining after this <u>single</u> loss on ignition is referred to as "% ash". The loss of weight during the furnace step is assumed to be graphitic carbon. 3. <u>LECO</u>

This method involves burning the assay sample in an oxygen filled atmosphere where all the carbon is oxidized into CO_2 . The emitted CO_2 absorbs infrared energy (produced by the assay instrument) at a precise wavelength within the infrared spectrum. This absorbtion is measured by the instrument and the concentration of CO_2 is calculated as changes in energy at the detector. The assay instrument used for this method is called a Leco Carbon Analyzer, and the instrument measures the <u>total</u> amount of <u>carbon</u> contained in the sample.

There are several sub-categories of the Leco assay, with the differences depending on the pre-treatment steps <u>before</u> the actual Leco assay for % C:

3a. <u>Standard Total Organic Carbon Leco (T.O.C. Leco)</u>

- Involves leaching sample with dilute HCl to detect carbon content of sample which is due to presence of carbonate minerals.

- This carbonate carbon is then deducted from the total carbon detected by Leco.

3b. Nitric Leco

- Involves leaching sample with stronger (~25%) HNO₃ to detect carbon content due to carbonate minerals, and to dissolve sulphide minerals which tend to interfere with the subsequent Leco assay.

- To some extent, the nitric acid will also dissolve some organic carbon (plant matter, wood).

3c. Nitric Leach + L.O.I. + Leco (L.O.I. Leco)

- Involves first leaching the sample with HNO_3 , then heating the insoluble residue to 470°C in an O_2 atmosphere to drive off organic carbon. This is essentially a loss on ignition step.

- The remaining ash from the L.O.I. step is then assayed by Leco for graphitic carbon.

2.2 Assay Sample Preparation

<u>All</u> samples that are to be assayed for graphitic carbon are first riffled down to approximately 10 grams, then this cut is pulverized in a ring and puck pulverized to 100% minus 200 mesh. The pulverized cut is then submitted for assay.

3.0 ASSAY STUDY PROCEDURE

There are four parts to this assay study:

- 1. Triplicate assays of various samples.
- 2. Microscopic (Volumetric) assay of tailings.
- 3. Wood contamination.
- 4. Detailed summary of methods.

3.1 Part One: Triplicate Assays of Various Samples

Method

Γ.

It was decided to thoroughly investigate the various assay methods. This would involve triplicate assays of each method on both low grade and high grade samples. The triplicate assay would allow an assessment of the repeatability of each assay method, while the study as a whole would provide a large data base from which to select the best assay method for our purposes.

It should be noted that at this point of the assay investigation, the only Leco assay method we were utilizing was the T.O.C. Leco. The other Leco assay methods did not come under investigation until much later when it was realized that contamination of samples with wood was affecting assay results.

The triplicate assays were divided into 3 phases:

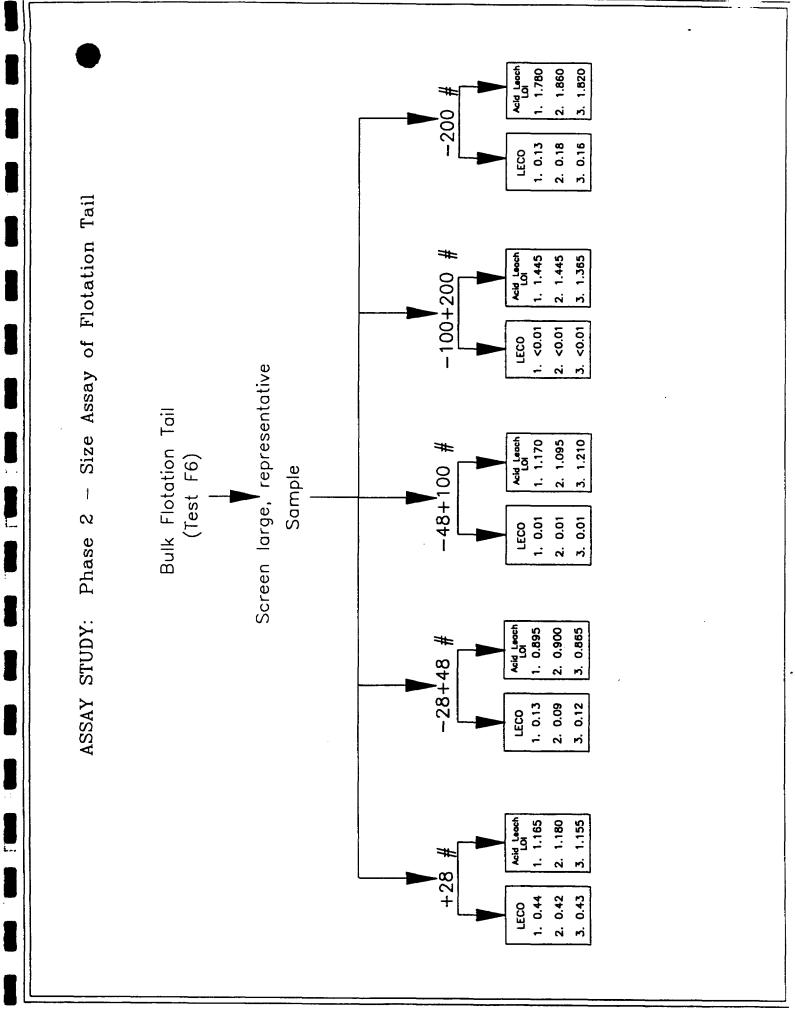
Phase 1: Direct assay of low grade flotation tails

- Using 3 assay methods
 - T.O.C. Leco, Double L.O.I., Acid Leach L.O.I.
 - Each in triplicate

Phase 2: Size assay of flotation tails

- Screen flotation tailings into size fractions
- Assay fractions with 2 methods only
 - T.O.C. Leco and Acid leach L.O.I.
 - Each in triplicate
- Phase 3: Direct Assay of flotation concentrate (high grade) - Using 2 methods only
 - Double L.O.I. and Acid leach L.O.I.
 - Each in triplicate


Through previous assay analyses it had already been indicated that the Double L.O.I. method gave erroneous results on extremely low grade samples, while the Leco method was suspect on high grade samples. For this reason, Phase 2 and Phase 3 did not each test all 3 assay methods.


Results

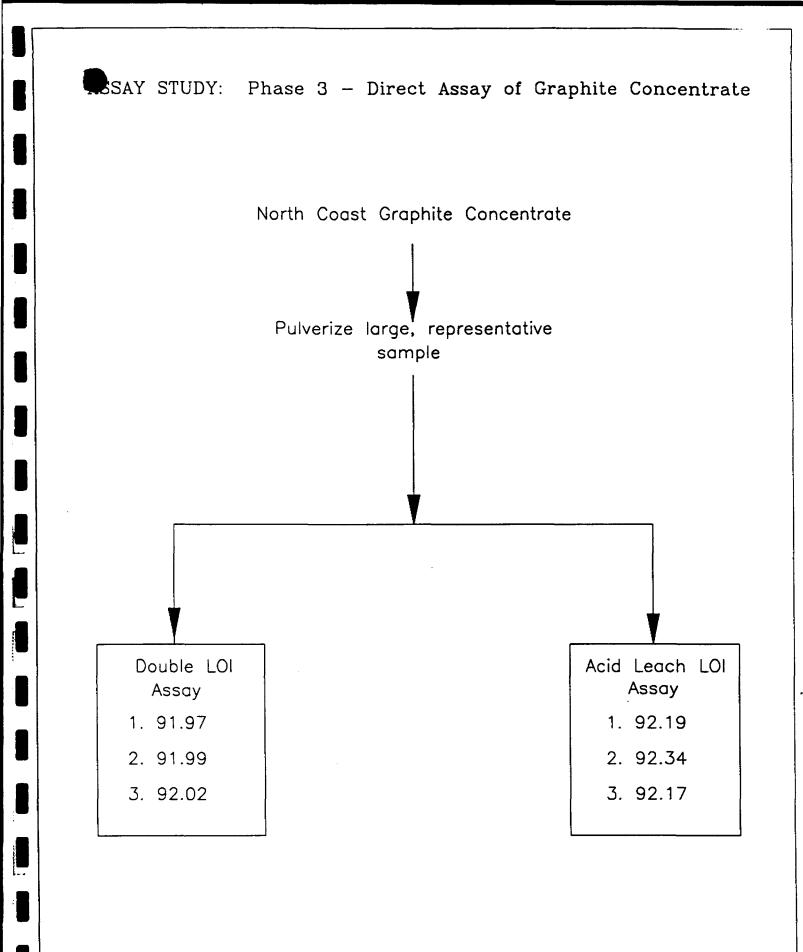
The results of the three phases of this triplicate analysis are presented in the next 5 pages. The results clearly demonstrate the following points:

- 1. Good repeatability within each assay method.
- 2. Good correlation between Double L.O.I. and Acid Leach L.O.I. assay methods.
- 3. <u>Significantly</u> lower results (orders of magnitude) obtained with Leco assays.

Another point that is not so obvious is suggested by the Phase 2 section (the assay results of the size fractions). The Leco results follow a pattern of higher results for the larger screen fractions, almost zero results for the intermediate screen fractions, and higher results again for the undersize. The Acid Leach L.O.I. results do not follow this pattern, in fact, they do not display any particular pattern at all. Our understanding of the flotation of the Bissett Creek ore suggests that the pattern of assays displayed by the Leco results is correct; the highest flotation recoveries occur in the intermediate size fractions.

ļ		WE IGHT	WEIGH	T!	GRAPHIT	IC CARBON BY ACID LE	VCH I 0 I I		X DIST	
 PR(DUCT	GMS	X	-	1 OF 3	2 OF 3	-	1 OF 3 X	2 OF 3	3 OF 3 X
+2	3 mesh	215.58	23.78		1.16	1.18	1.16	22.64	23.00	22.57
+4	3 aaesh	224.80			0.90	0.90	0.87		18.29	17.62
+10) mesh	219.83	3 24.25	1	1.17	1.10	1.21	23.22	21.76	24.11
+20) mesh	119.89	13.22	1	1.45	1.45	1.37	15.64	15.66	14.83
-20) mesh	126.57	7 13.96	1	1.78	1.86	1.82	20.34	21.28	20.88
:				ł						
				÷			i			
i 1				1 1			i			
1				1			1			
ι !				i i						
1				ł						
CALC HEA	 D	906.67	7 100.0) !	1.22	1.22	1.22	100.00	100.00	100.00

•


.

1		WEIGHT	WEIGHT		GRAPHITIC CARBON BY LECO	1		X DIST	
Ì	PRODUCT	GMS	X	1 OF 3		30F3	1 OF 3	2 OF 3	3 OF 3
				X	x	X I	x	x	x
 	+28 mesh	215.58	23.78	0.4	4 0. 42	0.43	66.23	66.46	65.00
	+48 mesh	224.80	-		3 0.09	0.12	20.41	14.85	18.92
	+100 mesh	219.83				0.01	1.54	1.61	1.54
•	+200 mesh	119.89	-	0.0	0.00	0.00	0.33	0.35	0.34
 	-200 mesh	126.57	13.96 	0.1	3 0.18	0.16	11.49	16.72	14.20
			1			·			
ļ			}			ł			
¦ 		· · _ · _ · _ · _ · _ · · · · · · ·							
CALC	HEAD	906.67	100.0 ¦	0.1	6 0.15	0.16 ¦	100.00	100.00	100.0
	Y HEAD BY LECO	- <u> </u>	 !	0.1	2	 !			

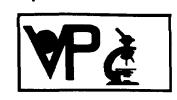
ł

ę

.

3.2 Part Two: Microscopic (Volumetric) Assay of Flotation Tailings

Method


The <u>indication</u> to this point was that the Leco results were more accurate than the L.O.I. methods for low grade samples. Before basing an entire feasibility study on this belief, this assumption needed to be tested with an unbiased "assay" method. Since we were trying to distinguish between an order of magnitude difference in assay values, this seemed a reasonable goal.

A sample of the same flotation tailings as used in Phase 1 and Phase 2 was screened into size fractions and submitted to Vancouver Petrographics Ltd. for a "visual volumetric assay".

We outlined our assay difficulties to Vancouver Petrographics personnel and suggested they use their mineralogical expertise to do a "graphite grain count" and then convert their visual observations to a "volumetric assay". It was felt that this volumetric assay would indicate the more accurate assay method for low grade samples (to our order of magnitude level of certainty).

<u>Results</u>

Vancouver Petrographics complete report is presented in the following 4 pages. We have also converted their volumetric assay values to calculated weight percentages and from these figures calculated the graphitic carbon assay of the sample. The calculated value from the "volumetric" assay (0.085 % graphitic carbon) supports the value obtained using the Leco method of assaying (0.11% graphitic carbon).

Vancouver Petrographics Ltd.

JAMES VINNELL, Manager JOHN G. PAYNE, Ph.D. Geologist CRAIG LEITCH, Ph.D. Geologist JEFF HARRIS, Ph.D. Geologist KEN E. NORTHCOTE, Ph.D. Geologist P.O. BOX 39 8080 GLOVER ROAD, FORT LANGLEY, B.C. V0X 1J0 PHONE (604) 888-1323 FAX. (604) 888-3842

Report for: Ed Henrioulle, Bacon, Donaldson & Associates, 12271 Horseshoe Way, RICHMOND, B.C., V7A 421

Invoice 8823 February 1989

F6 Sample: M90-088 M6-Ro Tails

P.O.: 32717

Purpose:

To analyze nine size fractions of tailings for graphite content, and to compare the results with those of the Leco method (average Ø.11%) and the Double L.O.I. method (average 1.1%).

Method:

Polished thin sections were made for the following size fractions:

+28, +35, +48, +65, +100, +150, +200, +325, -325.

Traverses were made across the sample to cover 90-95% of the total area of the section; for coarser samples these were made using a 4X objective lens (field of view = 30 sq.mm), and for finer samples with a 10X objective lens (field of view = 9.1 sq.mm).

In the coarsest sample, individual particles were counted and their average size noted. In finer samples, the density of particles was measured at several points in the section, and the average particle size were measured. These results were used to calculate the total area of particles along the traverse lines.

The size and shape of graphite grains and aggregates was recorded in five size categories and in two shape categories. Size fractions are as follows:

Ø.03-0.05 mm, Ø.05-0.1 mm, Ø.1-0.2 mm, Ø.2-0.3 mm, Ø.3-0.4 mm

The two shape categories are as follows:

- 1) flakes (average length to width ration 3/1 to 5/1),
- 2) equant patches (average length to width ratio 1/1 to 2/1).

The nature of intergrowths of graphite with other minerals was divided into three categories as follows:

1) free graphite grains (F)*

- 2) graphite grains or aggregates on surface of particles (S)*
- 3) graphite grains or aggregates included in particles. (I)*
- * these letters to designate classes in Table 2

Average areas were calculated for the two shapes of flakes in each size fraction. These were multiplied by the number of occurrences of graphite in each category. Addition of these values yielded the volume content of graphite in each fraction.

In Table 1 is shown the average area of grains in each size and shape fraction. In Table 2 is shown the total area occupied by graphite in each category (calculated by multiplying the number of occurrences by the average area of a single occurrence).

Area of Grains of Different Sizes and Shapes (sq.mm) Table 1.

shape	length of fl	ake or ave	rage dimens	ion of equa	ant patch (mm	<u>a)</u>
	Ø.Ø3-Ø.Ø5 A	Ø.05-0.1 B		Ø.2-Ø.3 D	0.3-0.4 E *	
flake	0.0005	0.002	0.005	0.010	0.020	
equant patch	0.0015	0.005	0.020	0.060	0.120	

these letters are used for size categories in Table 2

Table 2.	Distribution	of	Graphite

Shape		flake			I	patch		
Size	A B	СD	E	A	В	с	D	E
+28 S I	Ø.Ø16	0.005 0.050 0.040 0.030			Ø.Ø15 -	ø.ø8ø -	Ø.Ø6Ø -	-
+35 S I		0.010 0.020 0.035 0.050		- -	Ø.ØØ5 -	Ø.Ø2Ø Ø.Ø2Ø		120
+48 S I		0.005 0.020 0.020 -	-	-	-	0.020	Ø.Ø6Ø -	-
+65 S I		- <u>-</u> - Ø.010	Ø.Ø4Ø -	-	- Ø.Ø05	0.020 0.020	- -	-
+100 S I	 - Ø.ØØ2	- 0.010 	I - -					
+150 F S I	0.006 - 0.002		-	- -	- 0.010	-	- -	-
+200 F S	 - 0.004	 Ø.005 -	-	-	- Ø.ØØ5	Ø.Ø2Ø -	-	-
+325	no graphi	te grains se	en				x	
-325 F	0.002 0.004		-	-	-	-	-	-

Size	Average	Ar	<pre>% Graphite</pre>		
Fract.	Particle Size	Total	Graphite	•	
+28	0.80	249	0.376	0.151	
+35	Ø.36	175	Ø.492	0.281	
+48	0.16	187	0.137	0.073	
+65	0.09	193	0.095	0.049	
+100	0.04	224	0.012	0.005	
+150	0.02	156	0.023	0.015	
+200	0.007	60	0.034	0.057	
+325	0.0035	109	0.000	0.000	
-325	0.0008	29	0.006	0.021	

Table 3.Per Cent Graphite by Area in Size Fractions
(all sizes in sq.mm)

Note: Some of these values are not the same as the preliminary values I quoted to you by telephone on February 10th. Some of these preliminary values have been adjusted after further examination of the sections.

Conclusions:

1. Most of the graphite is in the coarsest two fractions. The abundance of graphite decreases erratically towards the finer fractions, with an unusual peak in the -200 fraction. Note that this is the smallest sample (area of particles on section), and because of this, the graphite percentage may be of lower precision than for the other samples.

2. Graphite is about equally divided between slender flakes and equant clusters of grains (flakes and/or equant grains).

3. Graphite occurs in about equal abundances on surfaces of particles and as inclusions in particles of silicates. Only locally in the finer fractions does it occur as free grains.

4. Results agree well with the Leco method of analysis.

∫John G. ₽⁄ayne, 986-2928

TES	61 P	UM	BEX					etrograhics Volumetric Size Assay) Flotation tailings			
	P	RO	DUC1	•	WE IGHT GMS	WE IGHT X		Calculated Weight Percent Graphitic Carbon %		X DISTRIBUTION Graphitic Carbon X	
		+	28	nesh	11.7	20.55	;	0.127		30.57	
- 2	8	+	35	mesh	10.1	17.72	ł	0.236	1	48.99	
- 3	5	ŧ	48	mesh	6.3	11.09	ł	0.061	1	7.93	
- 4	8	+ '	65	mesh	6.1	10.69	ł	0.041	1	5.13	
- 6	5	÷	100	mesh	5.1	8.89	ł	0.004	ł	0.42	
- 1	00	÷	150	mesh	4.1	7.19	ł	0.013	ł	1.09	
- 1	50	ŧ	200	ttes h	3.2	5.61	1	0.048	1	3.15	
- 2	200	ŧ	325	nesh	3.1	5.38	ł	0.000	ł	0.00	
- 3	325				7.3	12.88	ł	0.018	1	2.72	
:							ł				
1							ł		ł		
ł							ł		ł		
CAL	<u>с</u>	IF A	 D		56.9	100.0	!	0.085	 !	100.00	

e,

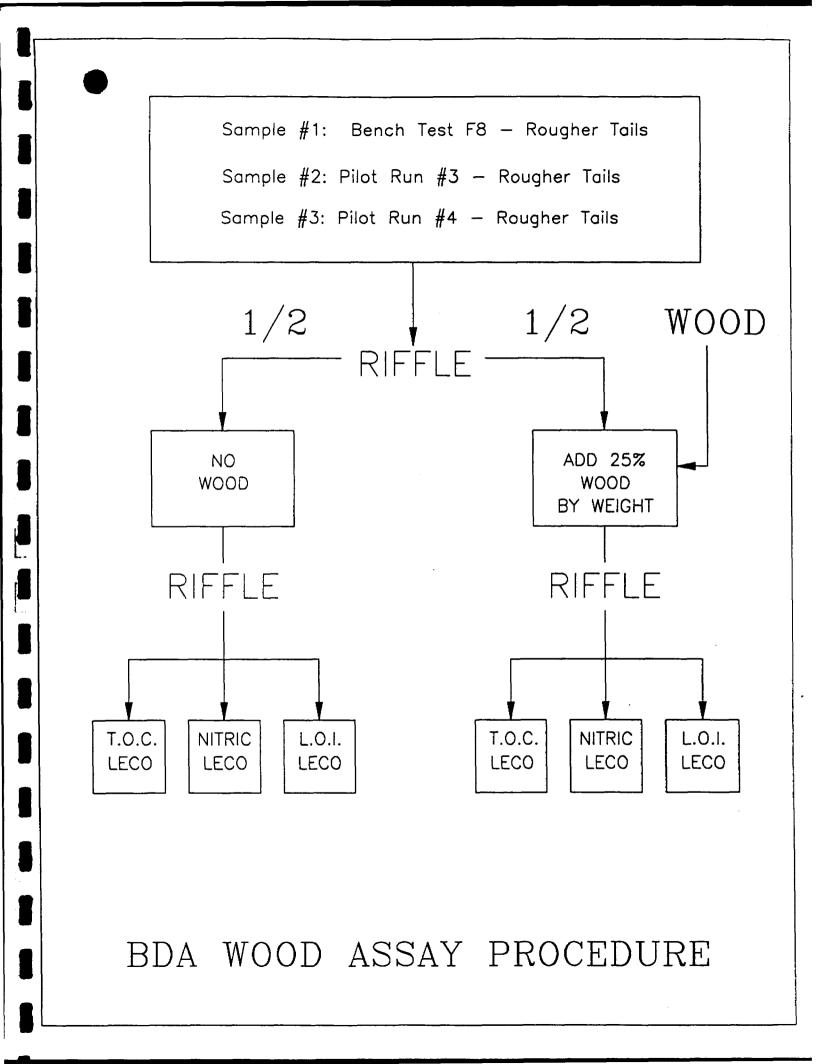
.

1

1

3.3 Wood Contamination Study

Γ.


Later in the investigation of the Bissett Creek graphite ore (during pilot plant testwork), discrepancies were experienced with the graphitic carbon assays of low grade samples; results were significantly higher than expected.

After much investigation, the cause of the problem was isolated, and it was found to be organic carbon (tramp wood and plant matter). It now remained to be seen if an assay method could be developed that would account for the organic carbon contamination.

Interestingly, the problem was outlined to both Chemex Laboratories Ltd. and Bacon Donaldson and Associates' own assay department, and both parties independently came up with a similar solution: include a low temperature loss on ignition step prior to the normal Leco assay for % total carbon. The L.O.I step would volatilize the organic carbon without affecting the graphitic carbon. As a further measure, Chemex included a Nitric Acid pre-leach in their procedure to account for carbonate carbon. The "new" assay method was therefore "nitric acid leach, followed by a 2-3 hour loss on ignition at 470°C, followed by Leco assay for total carbon". The total carbon detected by the Leco assay was assumed to be graphitic carbon.

This new assay method needed to be proven. To do it is, B.D.A. prepared several low grade sample from the pilot plant and "doctored" half of each with a known amount of wood (25% by weight). The samples (doctored and undoctored) were then assayed by the three methods of Leco assay: 1) T.O.C. Leco, 2) Nitric leco, 3) L.O.I. Leco. A flowsheet depicting this doctoring / assaying procedure is presented on the following page. The detailed procedures for the three assay methods are presented in section 3.4 of this study.

The results of the B.D.A. wood assay study are presented in the following table.

Sample Description		Graphit	ic Carbon Assa	ys
• •		T.O.C.	Nitric	L.O.I.
		LECO	LECO	LECO
F8 - Rougher Tails	- No Wood	0.19	0.14	0.18
	- Yes Wood	10.60	7.03	0.09
Run #3 - Rougher Tails	- No Wood	0.44	0.25	0.18
	- Yes Wood	11.60	2.81	0.15
Run #4 - Rougher Tails	- No Wood	0.59	0.25	0.21
	- Yes Wood	11.70	2.83	0.14
"Pure" Wood		49.8	10.04	0.33

B.D.A. Wood Assay Study

It can be seen from the results that:

Ε.

Γ

- 1. The T.O.C. Leco method reports <u>all</u> the organic (wood) carbon as graphitic carbon.
- 2. The Nitric Leco method reports <u>some</u> of the organic carbon as graphitic carbon.
- 3. The L.O.I. Leco method reports <u>none</u> of the organic carbon as graphitic carbon.

A similar study was subsequently conducted by Lakefield Research at their laboratories in Lakefield, Ontario. A copy of their complete report is presented in the following 3 pages. The results of the Lakefield Wood assay study support the results of B.D.A.'s wood assay study.

PHONE (705) 652-3341 TELEX NO. 06962842 FACSIMILE NO. (705) 652-6365

June 8, 1990

Mr. Matt Bolu Cominco Engineering Services Ltd. Suite 100–1200 West 73rd Avenue Vancouver, BC V6P 6G5

Dear Matt:

Re: Bissett Creek(graphitic carbon)

In response to your request to determine the effect of tramp wood, in test products, on the analysis of C(g), several tests were conducted. The testwork included the following variables:

- 1) Effect of roasting graphitic carbon at 400°C for 3 hours
- 2) Effect of roasting wood at 400°C for 3 hours
- 3) Effect of leaching with HNO3
- 4) Effect of leaching with HNO3 plus roasting at 400°C

Procedure:

- Test 1 A 1% graphitic carbon standard was placed in a muffle at 400°C for 3 hours. The standard was removed, cooled and assayed by Leco for carbon.
- Test 2 1% graphitic carbon standard was leached with HNO_3 , dried and assayed by Leco for carbon, according to our standard C(g) procedure.
- Test 3 A 25% weight equivalent of wood was treated under the same conditions as Test 1.
- Test 4 To the 1.0% C(g) standard, a 25% weight equivalent of wood was added. The mixture was leached with HNO₃(standard procedure), followed by roasting at 400°C for 3 hours.
- Test 5 As for Test 4 except roasting step left out.

Procedures - continued...

1.

Results are tabled below:

Test No.	Procedure	Feed	%C(g) Recovered	%C(g) Added
1A	Roast 400°C	1% C(g) Standard	1.01	1.00
1B	Roast 400°C	1% C(g) Standard	1.01	1.00
1C	Roast 400°C	1% C(G) Standard	1.01	1.00
2A	HNO3 Leach	1% C(g) Standard	0.98	1.00
2B	HNO3 Leach	1% C(g) Standard	0.99	1.00
2C	HNO3 Leach	1% C(g) Standard	1.02	1.00
3A	Roast 400°C	Wood	0.15	*25.0
3B	Roast 400°C	Wood	0.15	*25.0
4A 4B	HNO3 Leach and Roast HNO3 Leach and Roast	1% C(g) Std + 25% Wood 1% C(g) Std _ 25% wood	1.02 1.02	**26.0 **26.0
5A	HNO3 Leach	1% C(g) Std + 25% Wood	11.1	**26.0
5B	HNO3 Leach	1% C(g) Std + 25% Wood	10.3	**26.0

* 25% = Wood added at 25% of sample weight

** 26% = 1% C(g) standard plus Wood at 25% sample weight

The above results indicate, that in order to eliminate the adverse effect of wood on your C(g) assays, the samples require roasting at 400°C plus the HNO₃ leach.

- 2 -

Matt, I suspect this type of investigation could justify a lot more work, and if you have any questions, or require more work, please do not hesitate to contact me at any time.

Best regards.

Yours sincerely, LAKEFIELD RESEARCH

A. E. Carr, Manager - Assay Services

AEC/dje

.

1

i...

M. Bolu Cominco/297 - 3 -

3.4 Part Four: Detailed Summary of Assay Methods

This final part of the assay study involved summarizing and contrasting the details (both procedural methods and accuracy/efficiency considerations) for each assay method. The results of this summary are presented over the next 6 pages.

1. Double L.O.I.

Procedure

- Sample weighed into tared porcelain crucible.
- Dried at 106°C (90 min). Put into desiccator, cooled and weighed
 to obtain % of moisture.
- The same dried sample is put into furnace at 400°C with permanent access to fresh air for 2 1/2 hours. It is removed, put into desiccator, cooled and weighed to obtain % volatiles.
- The same sample is returned to the furnace and the temperature raised to 900°C with permanent access to fresh air. The sample is left in the furnace overnight (>8 hours). It is put into a desiccator, cooled and weighed to obtain % ash.

From these tests, fixed carbon or graphitic carbon is determined.

e.g. 100 - (% ash + % volatiles) = % C

Comments

- 1. From an analytical viewpoint, this method is good in that there is very little source of error due to sample treatment and manipulation.
- 2. The problem or largest source of error lies in the fact that it is

assumed that the weight loss from furnacing at 900°C (>400°C) is from the oxidation or ashing of graphitic carbon only. This weight loss <u>could</u> be attributed to loss from : water of crystallization, breaking down (oxidation of sulphides), reduction of SO₄ from heat and C, and loss of CO₂ from carbonates.

<u>Summary</u>

Γ

- 1. We have found that this method is more accurate is measuring high concentrations of graphitic carbon where there is much less chance of minerals occurring with the above interferences.
- 2. Unless the samples to be tested by the above method have been analyzed and found to be free from the above interferences the method will be unreliable (especially low grade samples).
- 2. Acid Leach L.O.I.

Procedure

- 2 g sample weighed into porcelain (or Pt) crucible and dried at 106°C for 90 minutes.
- Put into desiccator, cool and weigh to obtain % moisture.
- Transfer to 250 ml beaker and add 100 ml 20% HNO, and boil for 1 hour.
- Cool and filter through tared (or untared) gooch grucible and wash thoroughly with distilled H_2O . Care must be taken to transfer all sliming graphite from beaker to gooch.
- Dry, put into desiccator, cool and weigh.
- Transfer to prepared porcelain or platinum crucible and place in furnace (care must be taken in transferring all sample to crucible).
- Raise temperature to 900°C with permanent access to fresh air.
- Remove from furnace, cool in desiccator and weigh ash.

This loss in weight is assumed to be due to oxidation of graphitic carbon and is reported as such.

Comments

- 1. From an analytical viewpoint this method is cumbersome in that the sample must be treated and transferred many times and is therefore subject to error by loss of sample.
- The leaching step affected the low grade samples in particular by making them gelatinous and extremely difficult to filter (took 2 -3 days to filter 21 samples).

Summary

- 1. Although this method partially eliminates the interferences from sulphides and carbonates it is still subject to error from sulphates and water of crystallization.
- 2. The method is too time consuming and cumbersome.

3. <u>Leco Method</u>

General Leco Procedure:

- Small sample (about 0.2 grams) is placed in special crucible and heated in an O_2 current.
- The CO_2 expelled from sample during heating is measured by the assay instrument (CO_2 absorbs infrared energy at a precise wavelength).
- <u>Total</u> carbon content of sample is determined.
- The assay instrument used for this procedure is called a Leco Carbon Analyzer.

Comments

- Quick, easy and accurate from the stand point of laboratory procedure.
- The very small size of the sample makes representativeness a factor in assay reliability.
- This method does not accurately determine carbon content of samples which are greater than 30% carbon.
- There are several sub-categories of this assay method, with the differences depending on the particular pre-treatment step <u>prior</u> to the actual Leco assay:

3a. Total Organic Carbon Leco (T.O.C. Leco)

Procedure

- Another portion of the sample is taken for determination of carbonate carbon.
- Sample is placed in closed system with traps for removing gasses that interfere.
- Hydrochloric Acid (5 10%) is added to the system, and CO₂ is expelled, absorbed and measured.
- This carbon amount is <u>deducted</u> from the total carbon value obtained by Leco to produce a value reported as graphitic carbon on T.O.C.

Comments

- This method does not account for organic (but non-graphitic) carbon such as wood or plant matter.

3b. <u>Nitric Leco</u>

Procedure

Sample is pre-leached with strong (~25%) HNO₃ to detect carbon content due to carbonate minerals, and to dissolve sulphide minerals which may interfere with subsequent Leco assays.

Comments

- To some extent, the nitric acid will also dissolve some organic carbon (plant matter, wood).

3c. <u>Nitric Leach + L.O.I. + Leco (L.O.I. Leco)</u>

Procedure

- Sample is preleached with HNO₃ to evolve CO₂ attributable to carbonate minerals.
- Leach residue is heated to 470°C in an O₂ atmosphere for 2 hours. This Loss on Ignition step "burns off" any organic carbon.
- The <u>ash</u> from the L.O.I. step is assayed by Leco for <u>total</u> carbon which is interpreted to be % graphitic carbon.

<u>Comments</u>

- Because of the extra step (L.O.I.), this assay method is more complicated and costly then the other Leco methods.

Leco Summary

C

E

.

ŧ.

- 1. We have found that, in general, the acid-wash Leco method is an accurate method of measuring low concentrations of graphitic carbon.
- 2. When wood contamination is present, the L.O.I. Leco method is used because of its greater accuracy.
- 3. When no wood contamination is present, the T.O.C. Leco method is used because of its less costly and complicated procedure.

4.0 SUMMARY AND CONCLUSION

This assay study has gathered a large data base of information on the various methods of assaying for graphitic carbon. Other than the increased familiarity and confidence with each method derived from this detailed investigation, the main conclusions are:

- 1. Leco assays are more accurate than L.O.I. assays for low grade samples.
- 2. While their accuracy is not <u>proven</u> by this study, L.O.I. methods are the industry standard for high grade samples.
- 3. All assay methods give good repeatability.
- 4. The Double L.O.I. method is less difficult and contains less sources of potential error than the Acid leach L.O.I. method.
- 5. When low grade samples are contaminated by organic carbon (plant matter, wood), then the L.O.I. Leco gives the most accurate assay for graphitic carbon.

APPENDIX VI

Vancouver Petrographics Report on +50 Mesh Concentrate Impurities

٠

1 15-APR-90 1-9014338				J				
Page Number : Total Pages : Invoice Date: Invoice No. : P.O. Number :	38		117_117_ 1390 1-1_1	3				
&₽≦ <u>≦a</u>	A9014338	TOTAL \$		Ý				
		Ti02 \$						
ES LTD.,	ANALYSIS	si02 \$	53.92	CERTIFICATION :				
BACON, DONALDSON & ASSOCIATES LTD., 12271 HORSESHOE WAY RICHMOND, BC V7A 421 ± : M90-088 hents: ATTN: RON WILLIAMS	OF AN	P205 \$	0.23	CER				
BACON, DONALDSON & ASSC 12271 HORSESHOE WAY RICHMOND, BC V7A 4Z1 ☆ : M90-088 nents: ATTN: RON WILLIAMS	CERTIFICATE	Na20 \$	2 09					
CON, DONA 71 HORSES HMOND, B 421 ATTN: 5: ATTN:	CERTIF	MnO 8	0.26					
To: BACO 12271 RICHA V7A 4; Project : Comments:		Mg0 8	7.18					
		K20 8	Э. Та С					
Ltd.		Fe203 \$	12.40					
Registered As couver 201						CaO 8	2.21	
Chemex Labs Lt Analytical Chemists • Geochemists • Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221		Bà() ફ	0 .0					
Chemists * Ge Shemists * Ge (sbank Ave. tumbia, Car tumbia, Car 504-964-023		A1203 \$	14.96					
Analysical (Analysical C British Co PHONE: (PREP CODE	5 200					
()		SAMPLE DESCRIPTION	3AA TABLECONCASH					

Vancouver Petrographics Ltd.

JAMES VINNELL, Manager JOHN G. PAYNE, Ph.D. Geologist CRAIG LEITCH, Ph.D. Geologist JEFF HARRIS, Ph.D. Geologist KEN E. NORTHCOTE, Ph.D. Geologist P.O. BOX 39 8080 GLOVER ROAD, FORT LANGLEY, B.C. V0X 1J0 PHONE (604) 888-1323 FAX, (604) 888-3642

> Invoice June 1990

Report for: Ed Henrioulle, Bacon, Donaldson & Associates, 12271 Horseshoe Way, RICHMOND, B.C., V7A 421

> and: Matt Bolu, Cominco Engineering Services Ltd., 100 - 1200 West 73rd Street, VANCOUVER, B.C., V6P 6G5

Sample: M90-088 +50 mesh graphite concentrate, 95% purity

Problem: to identify, determine approximate abundances, and photograph
the impurities in the sample

Summary:

The sample was studied as grains on a glass plate under transmitted and reflected light.

The impurities in the sample are fragments of two main types, wood and biotite, in about equal abundances. The density difference (biotite >> wood) is offset by the volume difference (wood > biotite, because biotite fragments are very thin flakes and wood particles are more three-dimensional). Thus, the weight percentages of the two major impurity phases are about equal.

Minor fragment types (less than 5% of the fragments) include muscovite, filter paper(?), and an unknown, probably manufactured type.

Many tabular fragments of wood and lesser elongate fragments of wood are stuck moderately firmly to graphite flakes. This may be part of the reason why they were not separated during processing. Biotite flakes commonly are attached electrostatically to graphite flakes of similar size.

Description of fragments:

Wood fragments are of two main shapes with gradations between them. Many are elongate fibrous fragments averaging 0.7-1.5 mm in length, with a few up to 3.5 mm long. Color ranges from light brown and greyish brown to semiopaque. They show an elongate, cellular structure. Some are warped slightly and a few are bent sharply. Some are stuck moderately firmly to graphite flakes. Other tabular wood fragments averaging 0.4-0.8 mm in size show a similar elongate cellular structure. A few fragments show cross sections of the cells. Some tabular fragments are warped moderately. Most are stuck moderately firmly to graphite flakes. Tabular fragments commonly have ragged ends. A few fragments have an unusual cellular structure, which may represent a different type of wood (one has a texture resembling cactus wood).

Biotite forms equant flakes averaging 0.4-0.8 mm across. The color ranges from light to medium/dark brown to slightly reddish brown. Commonly flakes are locked electrostatically to graphite flakes of similar size.

Several flakes averaging Ø.1-Ø.5 mm in size are of colorless muscovite to pale brown phlogopite.

One paper? fragment contains a dense core Ø.2 mm across of white material with a high internal reflection. A few wispy, colorless, fibrous strands up to Ø.3 mm long extend outward from the core. This may be a fragment of the filter.

A few flakes of an unknown material are isotropic and medium brown in color. These have a mottled texture. When touched with a needle one broke along the fracture shown in the photograph. It has an unusual rippled texture and contains spots of highly reflective material. They do not cling to graphite flakes. These may represent a manufactured product.

A very few string-like fibers are up to a few mm long. These may be of something like cotton.

One equant tabular particle $\emptyset.2 \text{ mm}$ across may be of plastic. It is colorless and isotropic.

Ilmo Payre

Jóhn G. Payne 604-986-2928

Numbers refer to number on negative and on back of print. All photos were taken with transmitted and reflected light except where noted.

Number Description Ø Wood fragment locked between three graphite fragments. Length of photo: Length of photo: 1.52 mm. Fragment of filter) (?) Ø.4 mm across with graphite flakes 1 and one biotite flake. Length of photo: 1.52 mm. 2 Red-brown biotite flake with graphite flakes. Length of photo 1.52 mm. 3 Wood fragment locked on graphite flake. Length of photo Ø.6 mm. Biotite flake beneath graphite flake, electrostatically held 4 together. Length of photo 1.52 mm. 5 Wood fragment and biotite flake with graphite flakes. Small fibrous fragment in corner. Length of photo 1.52 mm. Tabular wood fragment with graphite flakes. 6 Length of photo 0.6 mm. 7 Tabular wood(?) fragment locked between two graphite flakes. The texture of this fragment resembles that of cactus wood. Length of photo 1.52 mm Elongate fibrous wood fragment, bent, stuck to large graphite 8 Smaller equant wood fragment. flake. Length of photo Ø.61 mm. Tabular fragment of unknown material showing rippled surface 9

- and fracture produced by pin, and graphite flake. Length of photo 0.6 mm.
- 10 Elongate fibrous wood fragment, free of graphite. Length of photo 1.52 mm.
- 11 Biotite flake and two fibrous wood fragments with graphite flakes. Length of photo 1.52 mm.
- 12 Tabular wood fragment, warped moderately, with graphite flakes. Length of photo Ø.6 mm.
- 13 Biotite flake and equant wood fragment with graphite flakes. Transmitted light only. Length of photo 1.52 mm/

APPENDIX VII

Air Classification Study

<u>M90-088</u>

AIR WINNOW TEST ON A SAMPLE OF GRAPHITE TABLE CONCENTRATE SAMPLE

PROCEDURE

An Air Winnow was used to determine if the separation of wood matter from a graphitic concentrate by a current of air was feasible. In the test, a graphite concentrate sample was winnowed into five fractions. Quantitative measurements other than the weight of fraction, were not taken. Qualitative measurements such as visual and microscopic observations to determine if wood matter was present in the fractions were pursued to give a rough estimate of separation efficiency. This preliminary report summarizes the qualitative results found in the test.

METHOD

On June 20. 1990, a bulk sample of 4A Graphite concentrate was selected as feed for the Air Winnow test. A small sub sample was cut out from the bulk sample. A quick visual inspection of the sub sample was carried out to verify that the sample did contain wood particles, was dry to touch, and that the sample did not contain lumps that could plug up the Air Winnow feed hopper. At first, a few scoops of the sample was fed slowly into the hopper to check the degree of separation in all five of the collection vessels. This process of trial and error was repeated until a reasonable separation was found. Then the remainder of the sample was winnowed. The winnow fractions were collected in small pans, weighed, and then taken to Microscopy room for qualitative observations, as seen through a ten power objective lens.

DATA

	Fraction	Sample Weight (g)	Comments
_	1	47.6	Coarsest particle size of wood matter, silica, and graphite.
	2	146.2	Coarse particle size, wood matter, silica, and graphite.
	3	148.0	Similar to fraction 1 and 2.
	4	68.5	Some finer particles of wood matter present.
	5	217.0	Finest particle size and highest concentration of wood.

SUMMARY

One Air Winnow test on a sample of 4A graphite table concentrate was completed. Wood particles were observed in all five winnow fractions. The greatest concentration of wood particles, of finer size, were observed in the fifth fraction. Coarser wood particles were seen in first three fractions. The test did not adequately separate wood matter from the graphite concentrate sample to warrant further tests.

APPENDIX VIII

Qualitative Settling Testwork

e

Ľ

Ē

.

ļ

Presson No: M90-088 (Settling Test) Date: June 11, 1990

L

Test product: -100 mesh graphite Flocculant type: Percol 351 Settling vessel: 500 ml graduated cylinder

Test	¦% solids _!	Reagent Dosage	Observations
S1	2		
 S2	2	0.01	
\$3	2	0.005	
S4	2	0.001	
S5	4	0.01	
S6	4	0.10	-formed large floc -started to settle at 2 minutes -no interface formed -clear at 36 minutes with few fines and large floc suspend in solution -45% of graphite floated on top

31101NE0001 2.14025 MARIA

020

METALLURGICAL INVESTIGATION AND PLANT FLOWSHEET DEVELOPMENT FOR THE BISSETT CREEK FLAKE GRAPHITE ORE

Prepared for NORTH COAST INDUSTRIES LTD.

JUNE 1990

Prepared by: Cominco Engineering Services Ltd. Date: July 6, 1990

t.

Ĩ

31201NE0001 2.14028 P

020C

TABLE OF CONTENTS

1.0	INTI	RODUCTION	1
2.0	SUM	MARY	2
	2.1	Bench Scale Tests	2
	2.2	Pilot Plant Tests	2 3 5
	2.3	Plant Flowsheet Development	5
3.0	DISC	CUSSION OF METALLURGICAL TEST RESULTS	7
	3.1	Introduction	7
	3.2	Sample Source	7 7 8
	3.3		7
	3.4		
	3.5	Pilot Plant Tests Results	11
		3.5.1 Introduction	11
		3.5.2 Pilot Plant Flowsheet Description	11
		3.5.3 Test Runs	13
4.0	OTH	IER RELATED TESTS AND ANALYSIS	19
	4.1	Ore Grade, Flake Size Distribution and Recovery Relationship	19
	4.2	▲	19
	4.3		19
	4.4	Whole Rock Analysis	20
5.0	PLA	NT FLOWSHEET DEVELOPMENT	21
	5.1	Description of Plant Flowsheet	21
		5.1.1 Crushing Plant	21
		5.1.2 Grinding and Flotation	22
		5.1.3 +48 Mesh Circuit	22
		5.1.4 -48 +100 Mesh Circuit	23
		5.1.5 -100 Mesh Circuit	23
		5.1.6 Dewatering and Drying	23
		5.1.7 Blending and Packaging	23
	5.2	Ore Characterization	24
	5.3	Plant Production Criteria	25
	5.4	Process Criteria	25
		5.4.1 Crushing and Fine Ore Storage	25
		5.4.2 Grinding and Flash Flotation	26
		5.4.3 Rougher-Cleaner Flotation	26
		5.4.4 +48 Mesh Circuit	27
		5.4.5 -48 +100 Mesh Circuit	27
		5.4.6 -100 Mesh Circuit	27
		5.4.7 Concentrate Dewatering	28
		-	

6.0 ASSAY PROCEDURES

34

TABLE OF CONTENTS (cont'd)

Appendix A

- "Summary Report of Laboratory Tests on Bissett Creek Graphite Ore" Cominco Engineering Services Ltd. April 27, 1990
- 2) BDA Bench Test F8 Flowsheet Details
- 3) BDA Bench Test F8 Procedure Details

Appendix B

- 1) Mineralogical Report on Samples 44395, 44396 by Vancouver Petrographics Ltd, January, 1990
- 2) 60 Ton Bulk Sample Report, R.M. Blais & Associates Ltd.

Appendix C

- 1) Identification of Concentrate Impurities, Vancouver Petrographics, June, 1990
- 2) Material Safety Data Sheet for Ekof-452G Collector/Frother
- 3) Whole Rock Analysis, Chemex Labs, March, 1990

Appendix D

- 1) Report on Grain Count Analysis for Assay Comparison, Vancouver Petrographics Ltd., February, 1990
- 2) Double L.O.I. Assay Procedure by KHD, Humboldt-Wedag, Bissett Creek Feasibility Study, 1989
- 3) Graphite Determination by HNO₃-LOI-LECO Procedure, Chemex Labs Ltd.
- 4) Total Organic Carbon Determination Procedure, Chemex Labs Ltd.
- 5) Effect of Tramp Wood in Test Products, Lakefield Research, June 8, 1990

Metallurgical Investigation and Plant Flowsheet Development for SSETT CREEK FLAKE GRAPHITE ORE

1.0 INTRODUCTION

This report summarizes and evaluates the results of laboratory bench scale and pilot plant testwork of the Bissett Creek flake graphite ore samples from Maria Township in Ontario.Further, the report deals with the development of a production plant flowsheet on the basis of the test results.

The study was carried out for North Coast Industries Ltd. (North Coast), the project owners.

The testwork was conducted at Ortech International (Ortech) and Bacon Donaldson and Associates (BDA) testing laboratories during January-June, 1990. Detailed test results and other specific information of the ore samples are documented in a report titled "Metallurgical Testing Of Bissett Creek Graphite Final Report" by Bacon Donaldson and Associates in July 1990.

Test samples for this test program were provided by North Coast Industries Ltd. as representative of the Bissett Creek ore.

The purpose of the testwork was to confirm and/or improve the metallurgy developed in an earlier study, followed by the demonstration of the flowsheet in a continuous pilot plant operation. Further, the results of pilot plant tests were used to form the basis of a production scale plant flowsheet development.

Metallurgical targets set for the testwork were as follows:

- a. Overall concentrate grade of approximately 92-95% C(g).
- b Overall graphite recovery to concentrates of 93-95% C(g).
- c. A high proportion of flakes in the +48 mesh size fraction, ie..50% by weight or greater.

Metallurgical development and the direction of testwork was provided by Cominco Engineering Services Ltd. (CESL).

2.0 SUMMARY

Results of metallurgical testwork conducted on the drill core and bulk samples of Bissett Creek graphite ore demonstrate that the material is highly amenable to upgrading by conventional processing methods. Bench scale and continuous pilot plant tests recovered flake graphite concentrates containing 91-96% C(g) at 92-94% recoveries. The distribution to the +48 mesh flake concentrate was, on average, 65-67% of total graphitic carbon content of the feed, or 72.5% of the total recovered to concentrates.

The general processing philosophy applied for the recovery of high grade and coarse flake graphite concentrates from Bissett Creek ore samples is as follows:

A coarse primary grind combined with flotation of the mill discharge followed by rougher flotation to produce a low weight, high recovery graphite concentrate. The combined concentrates are then upgraded by flotation, regrinding and gravity separation into three sizes in three stages.

The proposed production scale plant flowsheet consists of two stage crushing of the ore to -1" followed by a single stage rod milling. The primary grind is 20 mesh and the only flotation reagent (collector/frother) used is EKOF-452 G at 250 g/t of mill feed. Three sizes of final flake graphite concentrates are recovered by conventional flotation, screening and gravity methods and equipment before going for dewatering and drying. Dried products are then blended and packaged into bags to meet various market requirements.

2.1 BENCH SCALE TESTS

Initial bench testwork was centered on grinding and flotation characteristics of the ore samples. Other parameters tested included pulp density, reagents and regrind requirements. Later a gravity step introduced for the upgrading of +48 mesh fraction of flotation concentrates gave improved results.

Test F8 was a bulk bench test using a 24 Kg sample and employing all the processing steps of the bench scale flowsheet. In this test, a bench scale flowsheet was finalized using the optimized process conditions, and following the achievement of the targeted results a decision was made to proceed to continuous pilot plant testing of the bulk ore.

Results of Test F8 using the optimized conditions are presented in Figure 2.1 on the following page:

FIGURE 2.1

BENCH-TEST F8 METALLURGICAL BALANCE (using best of regrind tests)

	WEIGHT %	ASSAY % C(g)	DISTR. %
Feed:	3.65	100.00	100.00
Concentrates:			
+48# Cleaner Concentrate -48#+100# Cleaner Concentrate -100# Cleaner Concentrate	2.62 0.67 0.38	92.53 94.70 92.65	66.3 17.4 9.6
TOTAL	3.67	92.94	93.3
Tailings:			
Rougher Flotation Tailings Combined Cleaner Tailings	95.10 1.23	0.16 7.55	4.2 2.5
TOTAL	96.33	0.25	6.7

2.2 PILOT PLANT TESTS

The optimized process flowsheet of Test F8 was scaled up and used as the basis for the pilot plant flowsheet which essentially remained intact throughout the pilot study with minor modifications to reagents and the upgrading of -48 mesh circuit products . A significant addition to the pilot circuit configuration was the inclusion of a unit cell within the grinding circuit.

A total of 30 tonnes of ore was processed at a rate of approx 360 Kg/h in a number of pilot runs. Evaluation of results of each run led to circuit configuration improvements before proceeding with the next run.

Pilot Run #5 and #6B are considered to be the most successful of the tests, both from the operating and metallurgical points of view, and the summary of results are presented in Figure 2.2 on the following page:

FIGURE 2.2

PILOT PLANT RUNS #5 and #6B METALLURGICAL BALANCE

	PILOT RUN #5			PILOT RUN #6B		
	Wt %	%C(g)	Distr. %	Wt %	%C(g)	Distr. %
Belt Feed:	100.00	3.40	100.00	100.00	3.56	100.00
Bulk Concentrates:		·				
Unit Cell Concentrate Rougher Cleaner Concentrate	3.64 1.20	69.95 62. 5 0	74.9 22.1	3.76 1.17	71.30 64.14	75.4 21.1
TOTAL	4.84	68.10	97.0	4.94	69.60	96.5
Final Concentrates:						
+48# Concentrate -48# +100 Concentrate -100# Concentrate	2.43 0.46 0.52	94.30 94.20 81. 8 0		2.46 0.62 0.38	95.54 87.90 90.79	65.9 15.4 9.6
TOTAL	3.40	92.39	92.5	3.46	93.64	91.0
Tailings:						
Rougher Tailings -48# Circuit Tailings -100# Circuit Tailings	95.16 1.14 0.30	0.11 11.53 7.00	3.1 3.9 0.6	95.06 1.10 0.34	0.13 6.70 32.83	3.5 2.1 3.5
TOTAL	96.60	0.27	7.6	96.54	0.33	9.1

The flowsheet configurations of Pilot Runs #5 and #6B are provided in Figures 3.4 and 3.6 in section 3.5.3 respectively, along with the complete metallurgical balances. Results of Pilot Runs #5 and #6B demonstrate the following:

- a. The process flowsheet chosen, a combination of flotation, screening and gravity separation is a viable metallurgical route for the recovery of flake graphite from the Bissett Creek ore samples.
- b. The ore tested is highly amenable to concentration by conventional processing methods and equipment producing high grade graphite concentrates containing 91-96% C(g) with 91-92.5% recoveries.
- c. 66-67% of graphite flakes in the feed can be concentrated into +48 mesh size fraction.

The unit cell proved to be an important unit operation of the pilot flowsheet for the maximization of the recovery of graphite to the +48% product.

2.3 PLANT FLOWSHEET DEVELOPMENT

d.

Following the successful completion of the pilot plant test program at BDA a production scale plant process flowsheet was developed for the treatment of the Bissett Creek ore using the process parameters established during testing. Metallurgical results of Pilot Runs #5 and #6B were used as the basis for the development of the final plant flowsheet and the plant metallurgical balance.

The plant process definition is as follows:

The run of mine ore will be crushed in two stages and further communition will take place in a rod mill to achieve graphite flake liberation. A flash cell will be included in the grinding circuit. Ground ore will go to rougher and cleaner flotation and the resultant concentrate will join flash cell concentrate for screening at 48 mesh. The +48 mesh product will be gravity upgraded on a shaking table producing the final +48 mesh concentrate while the -48 mesh screen undersize will be floated and screened at 100 mesh. Similarly, the +100 mesh product will be upgraded on a shaking table which will produce a final -48+100 mesh concentrate. The -100 mesh undersize is subjected to further cleaning by flotation to produce a final -100 mesh concentrate. Gravity tailings will be polished in a single regrind pebble mill, and flotation cleaner tailings recirculated back to the primary rod mill. Final concentrates will be dewatered through a centrifuge prior to drying ,blending and packaging.

Summary of the predicted plant metallurgical balance is given in Figure 2.3 on the following page:

FIGURE 2.3

PREDICTED PLANT METALLURGICAL BALANCE

	WEIGHT %	ASSAY %C(g)	DISTR. %
Mill Feed:	100.00	3.40	100.00
Final Concentrates:			
+48# Table Concentrate +100# Table Concentrate -100# Cleaner Concentrate	2.43 0.46 0.57	94.30 94.20 85.00	67.36 12.67 14.36
TOTAL	3.46	92.74	94.39
Tailings:			
Rougher Flotation Tailings -100# Cleaner Tailings	96.14 0.40	0.11 21.50	3.08 2.53
TOTAL	96.54	0.20	5.61

Some of the more important plant operating parameters are as follows:

Rod Mill Feed: Grinding Circuit Product: Flotation Reagents: Flotation pH: Flash Flotation Time: Rougher Flotation Time: Other Reagents: 1"

-20 mesh (P80:0.450mm) EKOF-452G @ 250 g/t of mill feed Natural pH, 7-7.5 3 minutes 20 minutes Flocculant @ 25 g/t of concentrate

3.0 DISCUSSION OF METALLURGICAL TEST RESULTS

3.1 Introduction

The first phase of the bench scale testwork conducted at Ortech was general amenability testing and it dealt with liberation, grinding and flotation characteristics of the ore samples. Although a formal report from the testing laboratory was not available on this testwork at time of writing, the metallurgical results are available in a report by CESL titled "Summary Report Of Laboratory Tests On Bissett Creek Graphite Ore" dated April 27,1990. (See Appendix A)

Following the first phase, the test program was moved to BDA in Vancouver, B.C., mainly for logistics and laboratory scheduling reasons.

The second phase of the testwork at BDA consisted of a series of grinding, flotation, screening and gravity tests for the development of a bench scale flowsheet which led to the continuous pilot plant testing of the bulk ore in phase three.

Total of 30 tonnes of ore was processed through the pilot plant in a number of pilot runs. Results of each run was evaluated and the necessary modifications and improvements were made before proceeding with the next run.

3.2 Sample Source

Samples used for the benches and pilot testing were supplied by North Coast Industries Ltd. The two batches of samples were identified to be "60 ton bulk sample" for pilot testing and "200 lb. mini bulk", a representative of the 60 ton bulk sample for bench scale testing. A 60 ton bulk sample report detailing sample location and assays by R.M. Blais and Associated Ltd. is provided in Appendix B.

3.3 Ore Mineralogy

Mineralogical examination of the ore samples conducted by Vancouver Petrographics Ltd. indicated the following: "Samples 44395 and 44396 are graphitic quartzo-feldspathic schists, dominated by quartz, plagioclase, and microcline, with minor biotite, pyrrhotite, and graphite. Graphite forms slender flakes which generally are not intergrown with other minerals. Graphite generally forms slender planar flakes averaging 0.3-1.5mm long and 0.03-0.07mm wide. These commonly occur adjacent to flakes of biotite of similar size or are associated with patches of pyrrhotite. Such grains would be separated readily from biotite and pyrrhotite by crushing". Further details of the findings can be found in a report by Vancouver Petrographics Ltd. in Appendix B.

3.4 Bench Scale Test Results

Details of bench scale test results documented in a report by CESL is included in Appendix A.

Test F8 was a series of tests and it finalized the bench scale flowsheet development. In this test a large bulk sample was used in order to produce larger quantity of product samples allowing parallel metallurgical investigations on the intermediate products.

The ore was ground to 51% -48 mesh in a batch rod mill followed by a rougher and cleaner flotation. The cleaner concentrate with a recovery of only 4% by weight of the feed was screened on a 48 mesh screen. +48 mesh product was subjected to staged gravity and regrind parallel tests resulting in a high grade final +48 mesh concentrate and a low grade gravity tailing product.

The -48 mesh product was also subjected to a staged regrind and flotation parallel tests followed by screening of the concentrates on a 100 mesh screen producing a high grade final +100 mesh concentrate.

The -100 mesh product was reground using the optimum conditions established above and was floated producing the -100 mesh final concentrate.

Regrind test results indicated that in order to achieve a clean and high grade graphite concentrate the flake surfaces had to be polished and, this tended to make the fine gangue particles hydrophobic due to the smearing of the graphite on the surfaces. Therefore, screening of the products subsequent to regrind and flotation gave immediate results in terms of upgrading by the physical elimination of the fines.

Results of Test F8 was considered to be successful and a decision was made to proceed with the continuous pilot plant testing of the ore using that flowsheet and test parameters.

3.4 Bench Scale Test Results

Details of bench scale test results documented in a report by CESL is included in Appendix A.

Test F8 was a series of tests and it finalized the bench scale flowsheet development. In this test a large bulk sample was used in order to produce larger quantity of product samples allowing parallel metallurgical investigations on the intermediate products.

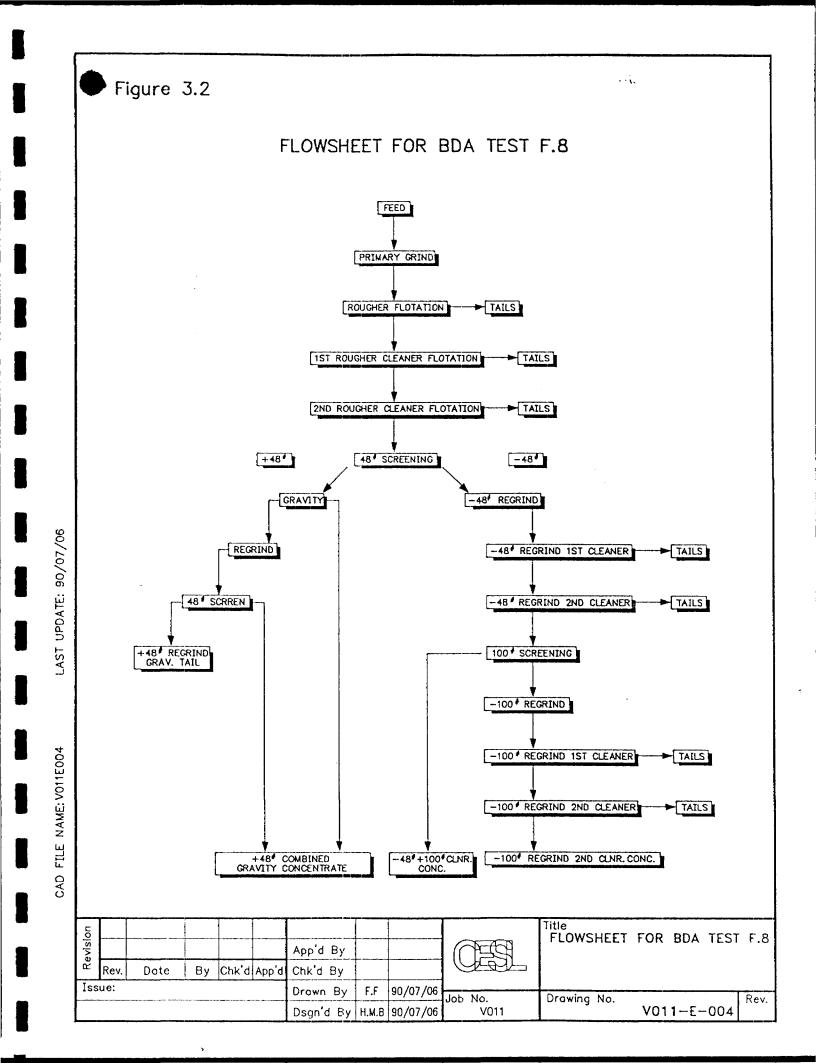
The ore was ground to 51% -48 mesh in a batch rod mill followed by a rougher and cleaner flotation. The cleaner concentrate with a recovery of only 4% by weight of the feed was screened on a 48 mesh screen. +48 mesh product was subjected to staged gravity and regrind parallel tests resulting in a high grade final +48 mesh concentrate and a low grade gravity tailing product.

The -48 mesh product was also subjected to a staged regrind and flotation parallel tests followed by screening of the concentrates on a 100 mesh screen producing a high grade final +100 mesh concentrate.

The -100 mesh product was reground using the optimum conditions established above and was floated producing the -100 mesh final concentrate.

Regrind test results indicated that in order to achieve a clean and high grade graphite concentrate the flake surfaces had to be polished and, this tended to make the fine gangue particles hydrophobic due to the smearing of the graphite on the surfaces. Therefore, screening of the products subsequent to regrind and flotation gave immediate results in terms of upgrading by the physical elimination of the fines.

Results of Test F8 was considered to be successful and a decision was made to proceed with the continuous pilot plant testing of the ore using that flowsheet and test parameters.


'etallurgical results of the Test F8 using the best of the parallel regrind investigations, the test flowsheet are presented in Figures 3.1 and 3.2 on the following pages. 'led test procedures by BDA are included in Appendix A.

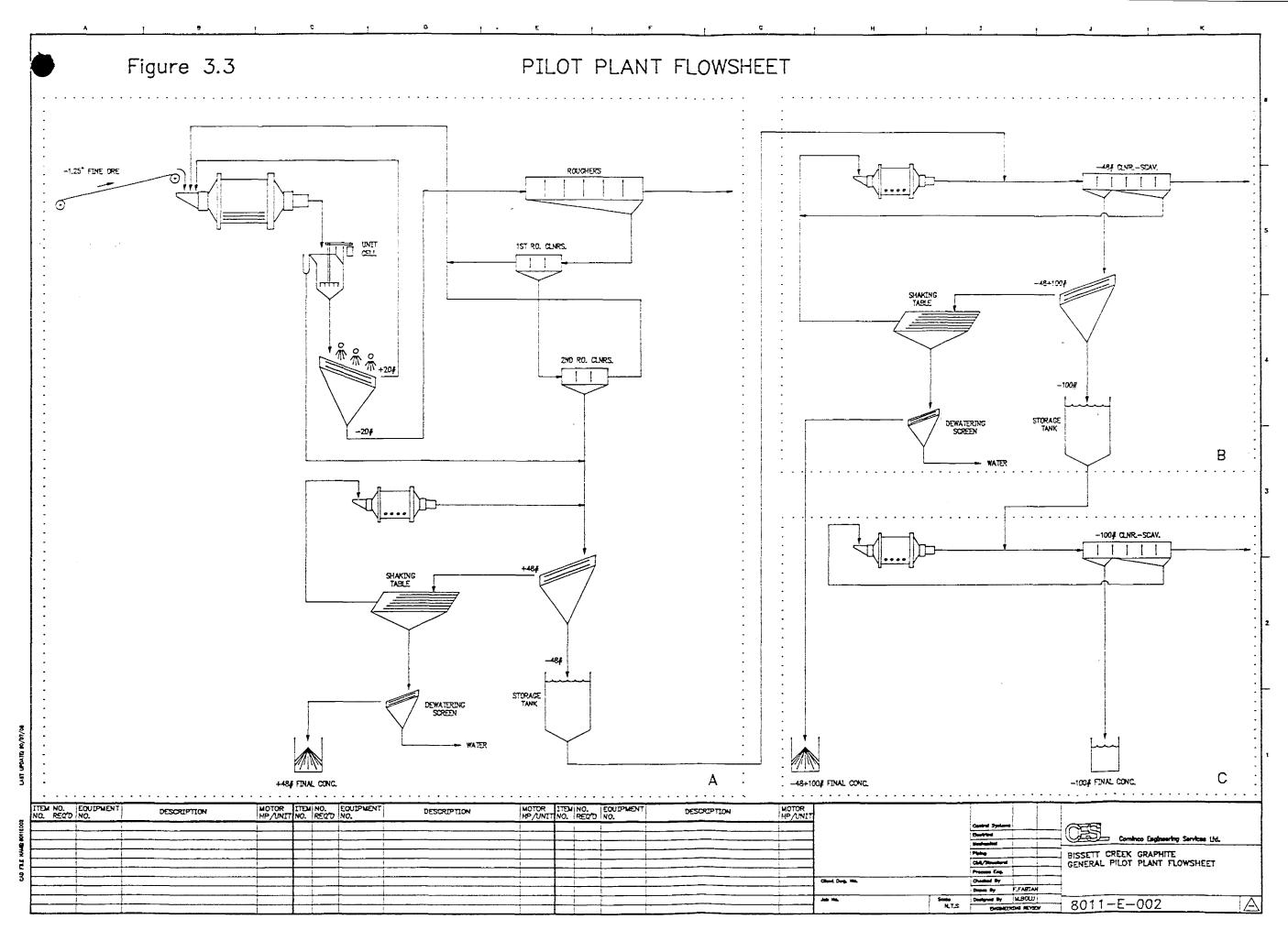
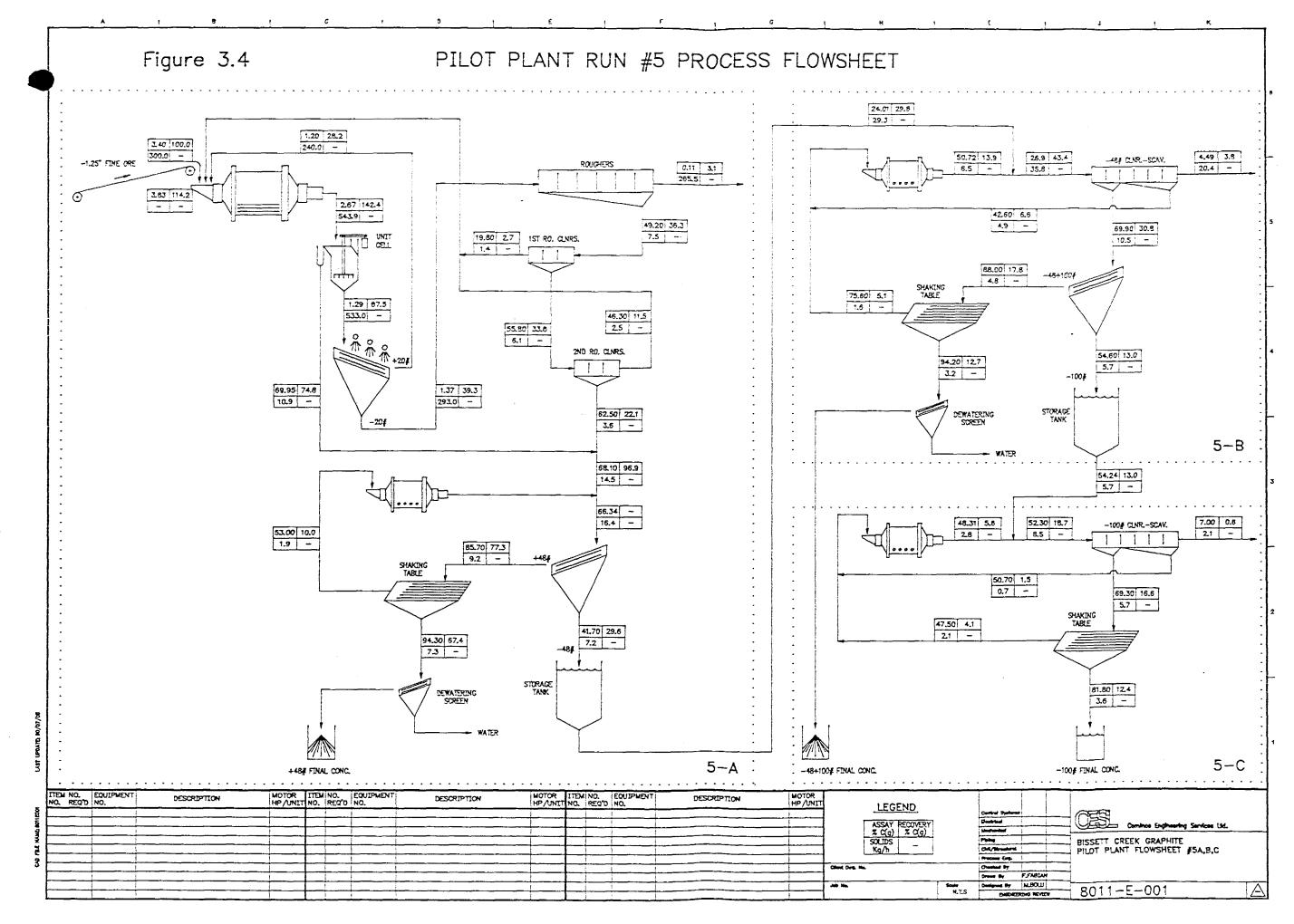

÷

FIGURE 3.1 BDA BENCH TEST F8 BISSETI CREEK GRAPHITE METALLURGICAL RESULTS Using Best Of Regrind Results

Products		-	ht	Assay	Dist'n.
		9	×	% C(g)	×
Head (Calc) Ro. Flot'n. Tails Ro. Flot'n. Conc.		23268.5 22129.1 1139.4		3.65 0.16 71.50	100.0 4.2 95.8
1st Ro. Clnr Tails 1st Ro. Clnr Conc. 2nd Ro. Clnr Tails 2nd Ro. Clnr Conc		160.1 979.3 39.7 939.6	4.21	82.96	95.6 0.2
+ 48# 2nd Ro.Clnr Conc + 48# Gravity Conc + 48# Regrind Gravity Conc + 48# Regrind Gravity Tail		656.8 224.4 384.5 47.9	0.96	96.34 90.30	25.4
- 48# 2nd Ro.Clnr Conc - 48# Regrind 1st Clnr Tails - 48# Regrind 1st Clnr Conc - 48# Regrind 2nd Clnr Tails - 48# Regrind 2nd Clnr Conc		282.8 27.1 255.7 4.6 251.1	0.12 1.10 0.02	90.70 9.67	0.1 27.3
- 48# +100# Clnr Conc - 100# Screen U'size		156.4 94.7	0.67	94.70 88.04	17.4
 100# Regrind 1st Clnr Tail 100# Regrind 1st Clnr Conc 100# Regrind 2nd Clnr Tail 100# Regrind 2nd Clnr Conc 		4.9 89.8 1.7 88.1	0.39	22.30 91.62 38.40 92.65	
Combined Products:	Concs WtX				
Concentrates: + 48# Gravity Conc + 48# Regrind Gravity Conc	26.29 45.05		0.96 1.65		25.4 40.8
Total + 48# Clnr Conc - 48# +100# Clnr Conc - 100# Regrind 2nd Clnr Conc	71.35 18.33 10.32		2.62 0.67 0.38	92.53 94.70 92.65	66.3 17.4 9.6
Total Concentrates	100.00		3.67		93.3
Tailings: Total Clnr Tails Ro. Flot'n. Tails			1.23 95.10	7.55 0.16	2.5 4.2
Total Tails			96.33	0.25	6.7
Notes: Feed sample is Comp 2	Y = 1.8#				


Primary grind is 51.0 % - 48# Reagent used is EKOF 452G @ 200 g/t

.

F

3.5 Pilot Plant Test Results

3.5.1 Introduction

30 tonnes of Bissett Creek ore was tested in a number of pilot runs in a continuous pilot plant configured at the facilities of BDA. Pilot plant flowsheet was developed using Test F8 bench scale flowsheet mentioned above with an important addition of a unit flotation cell within the grinding circuit. The purpose of the unit cell was to scalp off the coarse liberated graphite flakes from the rod mill discharge preventing further grinding of the +20 mesh product. The unit cell floated approx 75% of the graphite and is considered to be a significant component of the flowsheet.

3.5.2 Description of Pilot Plant Flowsheet

The pilot plant flowsheet, which did not change significantly between runs, is depicted in figure 3.3 on the following page. The -6" bulk ore was reduced to -1.25" in a jaw crusher followed by rod mill grinding in closed circuit with a unit cell and 20 mesh screen.

The finished product (-20 mesh) from the grinding circuit was subjected to flotation to produce a rougher concentrate and a rougher tailing. The rougher tailing contained the bulk of the material and was the major waste stream discharged from the circuit. The rougher concentrate was subjected to two stages of cleaning and the cleaned concentrate was combined with the unit cell concentrate. The cleaner tailing was returned to the rod mill for further grinding.

The combined unit cell and cleaner concentrates were screened at 48 mesh. Plus 48 mesh material was upgraded on a shaking table to produce a final +48 mesh concentrate and a table tails. The table tailing was subjected to pebble milling in closed circuit with the 48 mesh screen.

Due to the low flow rates, the -48 mesh screen undersize was stored in a stock tank and processed separately, subsequent to the primary circuit run. The secondary run involved two stage cleaner flotation of the -48 mesh material and screening of the concentrate at 100 mesh. The \pm 100 mesh material was either accepted as a final \pm 100 mesh concentrate or subjected to tabling for further upgrading followed by pebble mill regrinding of the table tails in closed circuit with the 100 mesh screen.

The -100 mesh material from the screen was again stored to provide sufficient volume and processed in two stages of cleaner flotation to produce a -100 mesh flotation concentrate which was either accepted as final product, or tabled. The cleaner flotation tailing was considered a discardable product.

3.5.3 Test Runs

Pilot runs #1 to #4 used the flowsheet described above with the exclusion of -48 mesh products tabling, however the mechanical configuration of the circuit evolved considerably, particularly in the materials handling area. The main metallurgical improvement from run #1 to #4 was coarsening of the primary grind to the targeted levels which were established in bench scale tests as 98% -20 mesh.

Pilot runs #5 and #6B were the most successful runs, both from the operating and the metallurgical points of view. The metallurgical results achieved were comparable to those of Test F8 bench scale. Pilot runs #5 and #6B both used essentially similar circuits except in run #5 tabling was introduced for +100 mesh screen oversize and the -100 mesh flotation concentrate. The +100 mesh product responded very well to gravity upgrading by producing a concentrate which assayed 94.2% C(g). However, the same cannot be said for the -100 mesh product tabling which produced a concentrate grade of 81.8% C(g). This is believed to be due to the slimy nature of table feed.

In pilot run #6A the unit cell was eliminated from the circuit, and the resulting +48 mesh concentrate recovery and the overall recovery deteriorated from 67.4% and 92.5% in pilot run #5 to 57.8% and 72.9% respectively. This reduction demonstrated the significance of the unit cell for the recovery of large flakes from the Bissett Creek ore. Therefore, in the production plant flowsheet described in Section 5.1 a flash flotation cell is proposed due to its better design for handling coarse feed as is the case with Bissett Creek rod mill discharge, instead of a conventional unit cell.

Pilot run #6C was operated using exactly the same flowsheet as #6A, with a reagent switch from EKOF 452 G to Varsol/MIBC combination. The +48 mesh concentrate recovery further deteriorated to 48.8% contradicting the results of bench test F9 which indicated comparable metallurgy with Varsol/MIBC.

Flowsheets and the attendant metallurgical balance calculations for pilot run #5 is presented in Figures 3.4, 3.5 and 3.5A, and pilot run #6B is presented in Figures 3.6 and 3.7 respectively on the following pages.

Details of all the pilot runs are documented in a report by BDA titled "Metallurgical Testing of Bissett Creek Graphite, Final Report", July, 1990.

CESL/BISCRK/PP5RA-PR/hnb

.

• •

		510 0					
		NORTH COAST	RE: 3.5/				
			CREEK GRAI				
P	ILOT PL	ANT RUNS # 5			CAL BALANC	E	
•		Adjusted for				•	
PRODUCTS	1	WEIG		ASSAY,			Y % C(g)
PRODUCTS	¥ 01 			Assayed			Overail
	•••••						
PP #5-A, GRINDING AND +48# CIRCUIT	ļ						
BELT FEED	1	300.00	100.00	3.40	3.40		100.00
BELT FEED + RO CLNR TAILS							
ROD MILL DISCH., UNIT CELL FEED	-			2.67	2.67		142.38
UNIT CELL CONC	3	10.92	3.64	58.90	69.95	52.57	74.85
UNIT CELL CONC UNIT CELL TAIL ,20# SCR FEED	4	533.00	177.67	0.84	1.29		67.53
20# SCREEN O'SIZE	5	240.00	80.00	1.15	1.20		28.17
20# SCREEN U'SIZE	6	293.00		1.37	1.37	58.28	
RO FLOT'N CONC	7	7.52			49.20		
RO FLOT'N TAIL	8		95.16		0.11		
1st RO CLNR CONC	9		2.05	55.80			
1st RO CLNR TAIL	10	1.38	0.46	19.80			2.68
2nd RO CLNR CONC	11				62.50		
2nd RO CLNR TAIL	12				46.30		11.53
	13	9.20	3.07 2.43	85.70	85.70		77.32
+48# TABLE CONC +48# TABLE TAIL ,REGRIND FEED	14	1.02	2.43 0.64		94.30	61.12	67.36
					53.00		9.96
+48# REGRIND DISCH U CELL CONC + 2nd RO CLNR CONC 48# SCR FEED (COMB'D)	17 1	1/ 52	6 8/	68 10	68.10		96.92
48# SCR FEED (COMBIN)	174	14.52	5 48	00.10	66.34		106.88
48# SCREEN U'SIZE	18	7.23	2 / 1	41.70			29.56
	} ۱۰ 		2.41 	41.70	41.70		
PP #5-B, -48# CIRCUIT:	1						
-48# CCT FEED	18	7.23	2.41	28.40	41.70		29.56
-48# SCAV CONC	19				42.60		8.78
	20				50.72		13.86
-48# CLNR FEED	20A	10.02	3.34		44.21		43.42
-48# CLNR CONC ,100# SCR FEED	21	4.51	1.50	69.90	69.65	70.92	30.80
-48# SCAV TAIL	22		1.14	4.49	11.53		3.85
100# SCR O'SIZE ,TABLE FEED		2.06			88.00		17.76
+100# TABLE TAIL	231	0.69	0.23	75.60	75.60		5.09
+100# TABLE CONC	230	1.37	0.46	94.20	94.20	71.36	12.67
		2.45					13.04
•••••				*******			••••••
PP #5-C, -100# CIRCUIT	1						
		2.45					
-100# SCAV CONC	25	0.30				8.02	1.50
-100# REGRIND DISCH	26	1.19			48.31		5.63
-100# CLNR FEED	26A	3.64		48.70			18.67
-100# SCAV TAIL	27						0.62
-100# CLNR CONC ,TABLE FEED -100# TABLE TAIL		2.44	0.81	69.30	69.30	88.60	16.55
-100# TABLE CONC	281 28C	•	0.50	47.50 81.80	81 80	75 02	4.13 12.42
TOTAL CONCENTRATES:		1					
	14	7.29	2.43	94.30	94.30		67.36
+100# TABLE CONC	230	1.37	0.46	94.20	94.20		12.67
-100# TABLE CONC							12.42
TOTAL:					92.39		92.45
•••••		•					
TOTAL TAILINGS:		1					
RO FLOT'N TAIL	8	285.48	95.16	0.11	0.11		3.08
-48# SCAV TAIL	22	3.41	1.14	4.49	11.53		3.85
-100# SCAV TAIL	27	0.90	0.30	7.00	7.00		0.62
TOTAL:		289.79	96.60		0.27		7.55

.

CESL/BISCRK/PP5R-PR/hmb

Figure : 3.5 NORTH COAST INDUSTRIES LTD. BISSETT CREEK GRAPHITE PILOT PLANT RUNS # 5-A,B,C METALLURGICAL BALANCE

	PRODUCTS	ID #	WEIG	HT	ASSAY, X	(g)	RECOVER	(% C(g)
		l	Kg/hr	x	Assayed	Calc'd		Overall
	GRINDING AND +48# CIRCUIT:			2222224222				
•	BELT FEED	1	300.00	100.00	3.40	3.40		100.00
	BELT FEED + RO CLNR TAILS	14 1		101.31		3.83		114.21
	ROD MILL DISCH., UNIT CELL FEED	2	543.92	181.31	2.67	2.67		142.38
	UNIT CELL CONC	3 1	10.92	3.64	58.90		52.57	74.85
	UNIT CELL TAIL ,20# SCR FEED	4	10.92 533.00	177.67	0.84	1.29		67.53
	20# SCREEN O'SIZE	5	240.00 293.00 7.52 285.48	80.00	1.15 1.37	1.20		28.17
	20# SCREEN U'SIZE	6	293.00	97.67	1.37	1.37	58.28	39.35
	RO FLOT'N CONC	7	7.52	2.51	49.20	49.20	92.18	36.28
	RO FLOT'N TAIL	8 1	285.48	95.16	0.11	0.11	7.82	3.08
	1st RO CLNR CONC	8	6.14	2.05	55.80	55.80	92.62	33.60
	1st RO CLNR TAIL	10	1.38	0.46	19.80	19.80		2.68
	2nd RO CLNR CONC	11	1.38 3.60	0.46 1.20	62.50	62.50	65.68	22.07
	2nd RO CLNR TAIL	12. į	2.54	0.85	46.30	46.30		11.53
	48# SCR O'SIZE, TABLE FEED	13	2.54 9.20	5.07	85.70	85.70		77.32
	+48# TABLE CONC	14	7.29	2.43	94.30	94.30	87.12	67.36
	+48# TABLE TAIL ,REGRIND FEED	15	7.29	0.64	53.00	53.00		9.96
	+48# REGRIND DISCH	16						
	U CELL CONC + 2nd RO CLNR CONC	17	14.52	4.84	68.10	68.10		96.92
	48# SCR FEED (COMB'D)	17A	16.43	5.48		66.34		
	48# SCREEN U'SIZE	18	7.23	2.41	41.70	41.70		29.56
	-48# CIRCUIT:	1						
	-48# CCT FEED	18	29,28	100.00	28.40	24.01		29.56
	-48# SCAV CONC	19			42.60			8.78
	-48# REGRIND DISCH	20	6.50	22.20		50.72		13.86
	-48# CLNR FEED	20A	35.78	122.20		28.87		43.42
	-48# CLNR CONC ,100# SCR FEED	21	10.48	35.79	69,90	69.90	70.92	
	-48# SCAV TAIL	22		69.68		4.49		3.85
	100# SCR O'SIZE , TABLE FEED	23	4.80	16.39	88.00		57.67	
	+100# TABLE TAIL	231	1.60	16.39 5.46	88.00 75.60	75.60		5.09
	+100# TABLE CONC	230	3.20	10.93	94.20 54.60	94.20	71.36	12.67
	100# SCR U'SIZE	24	5.68	19.39	54.60	54.60	42.33	13.04
PP #5-C.	-100# CIRCUIT:							
	-100# CCT FEED	24	5.70	100.00	49.10	54.24		13.04
	-100# SCAV CONC	25		12.28	50.70	50.70		1.50
	-100# REGRIND DISCH	26		48.50		48.31		5.63
	-100# CLNR FEED	26A		148.50	48.70	52 30		18.67
	-100# SCAV TAIL	27		36.84	7.00	7.00		0.62
	-100# CLNR CONC ,TABLE FEED	28		99.37	69.30	69.30	88.66	
	-100# TABLE TAIL	281	2.06	99.37 36.21	47.50	47.50		4.13
	-100# TABLE CONC	280	3 60	63.16	81.80	81.80	75.02	
	TOOR THDEE CONC	cou	5.00	03.10	01.00	01.00	10.02	12.42

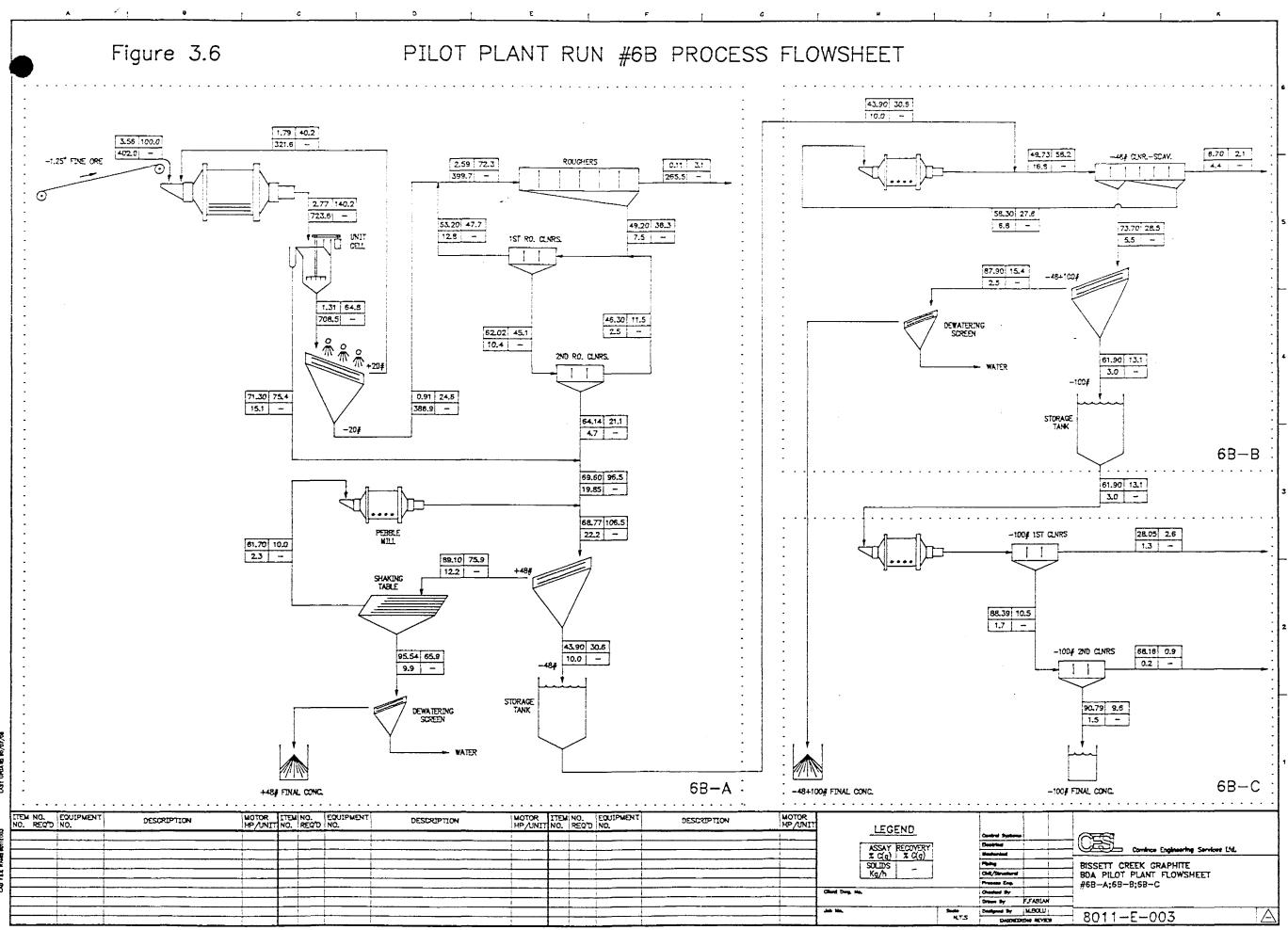
-

Ĩ

I

1

Ľ


F

.

.

Figure : 3.7 NORTH COAST INDUSTRIES LTD. BISSETT CREEK GRAPHITE PILOT PLANT RUNS # 6B-A,B,C METALLURGICAL BALANCE

DDODUCT C		10 Å	WEIG	HT	ASSAY,	% C(g)	RECOVE	RY % C(g)
PRODUCTS			Kg/hr	*	Assayed	Calc'd	Unit	Overall
PP #6B-A, GRINDING /								
BELT FEED		1	402.00	100.00	3.56	3,56		100.00
	ISCH., UNIT CELL FEED	2	723.60	180.00	3.56 2.16	2.77		140.22
UNIT CELL (CONC	3	15.13	3.76	71.30	71.30	53.77	75.40
	TAIL ,20# SCR FEED	4	15.13 708.47	176.24	71.30 1.07	1.31	46.23	
20# SCREEN		5	321.60	80.00	1.79	1.79	62.05	40.22
20# SCREEN		6	386.87	96.24	1.79 0.91	0.91	37.95	24.60
RO FLOT'N	FEED	6A	399.71	99.43		2.59		72.34
RO FLOT'N (CONC	7	17.56	4.37	65.60	56.14	95.20	68.87
RO FLOT'N	TAIL	8	382.15	95.06	0.13	0.13		3.47
1st RO CLN	R FEED	7A	23.25	5.78		57.15		92.82
1st RO CLN	R CONC	9	10.40	2.59	57.55	62.02	48.57	45.08
1st RO CLN	R TAIL	10	12.84	3.19	53.20	53.20		47.74
2nd RO CLN	R CONC	11	4.71	1.17	58.32	64.14	46.86	21.13
2nd RO CLN	R TAIL	12	5.69	1.42	60.26	60.26		23.96
48# SCR 0'	SIZE, TABLE FEED	13	12.20	3.03	89.10	89.10		75.95
+48# TABLE	CONC	14	9.88	2.46	95.54	95.54	86.82	65.94
+48# TABLE	R TAIL SIZE,TABLE FEED CONC TAIL ,REGRIND FEED	15	2.32	0.58	61.70	61.70		10.01
+48# REGRI	ND DISCH	16						
U CELL CON	C + 2nd RO CLNR CONC	17	19.85	4.94	69.60	69.60		96.53
48# SCR FE		17A	22.17	5.51		68.77		106.54
48# SCREEN	U'SIZE	18	9.97	2.48	43.90	43.90		30.58
-48# REGRI -48# CLNR	CONC ,REGRIND FEED ND DISCH FEED CONC, 100# SCR FEED TAIL 'SIZE , -48+100# CONC 'SIZE	20 20A 21 22 23	5.54 4.43 2.51	4.17 1.38 1.10 0.62		49.73 73.70 6.70 87.90		27.60 58.19 28.51
PP #68-C, -100# CIR	CUIT:							
-100# CCT	FEED	24	3.02	0.75	61.90	61.90		13.08
-100# REGR		25						
-100# 1st		26	1.33	0.33	33.93	28.05		2.60
-100# 1st		27	1.70	0.42	88.39	88.39		10.48
-100# 2nd	CL TAIL	28	0.18	0.04	68.09	68,16		0.86
-100# 2nd	CL CONC (-100# CONC)	29	1.52	0.38	90.79	90.79	91.82	9.62
TOTAL CONCENTRATES:								
+48# TABLE		14	9.88	2.46	95.54	95.54		65.94
-48+100# C		23	2.51	0.62	87.90	87.90		15.43
-100# CONC		29	1.52	0.38	90.79	90.79		9.62
TOTAL:	•	,£7	13.91	3.46	,,	93.64		90.99
TOTAL TAILINGS:								
RO FLOT'N	TAIL	8	382.15	95.06	0.13	0.13		3.47
-48# SCAV	TAIL	22	4.43	1.10	6.70	6.70		2.08
-100# 1st		26	1.33	0.33	33.93	28.05		2.60
-100# 2nd		28	0.18	0.04	68.09	68.16		0.86
TOTAL:	-		388.09	96.54		0.33		9.01

4.0 OTHER RELATED TESTS AND ANALYSIS

In the following paragraphs, summary results of analyses performed on ore and concentrate samples by various laboratories are documented. Reports of analysis for the respective studies are provided in Appendix C.

4.1 Ore Grade, Flake Size Distribution and Recovery Relationship

Semi-quantitative modal analysis were done on polished thin sections of chip samples of varying grades in an attempt to find a correlation between ore grade and graphite flake size distribution if one existed.

Also, variability tests are presently being conducted on varying feed grades to determine the metallurgical response of various ore samples to the flowsheet developed. These tests will help to understand if there is a relationship between feed grade, concentrate recoveries and flake size distribution.

Results of these tests and analysis will be made available in a follow-up report when the tests are finalized.

4.2 Microscopic Examination of Concentrate Samples

A sample of +48 mesh table concentrate (95.5% C(g)) from Pilot run #6B was submitted to Vancouver Petrographics Ltd. for mineralogical identification and determination of approximate abundances of impurities. The main impurities were identified to be fragments of wood and biotite, in about equal abundance by weight. Minor fragments included muscovite and other unidentified foreign material of less than 5% by weight of the fragments. The report on this study is provided in Appendix C.

4.3 **Concentrate Impurity Tests**

Subsequent to the findings of the above mentioned study the following tests were performed at BDA in an attempt to remove the major impurities from the concentrates.

a. Wood Elimination

Concentrate samples were dried in an oven at 400°C for 45 minutes to eliminate wood by way of Loss on Ignition. Dried samples showed total elimination of wood from the sample without any ash residue. There was no observable visible effect to graphite flakes when examined under a binocular microscope with 40X magnification. Total weight loss (LOI) was 0.4%. Further tests should be carried out at lower temperatures for shorter periods, ie. 300° - 350°C for 10-20 minutes, to determine if a production plant dryer would also eliminate wood in concentrates just as effectively.

b. Biotite Leaching

Hand picked biotite particles were leached in weak H_2SO_4 on a hot plate for 2 hours. The residue was examined under a binocular microscope and it was found that the biotite flakes were completely leached of their metallic content. The dark brown appearance of the flakes was replaced with a colourless transparent silica flake of the same size.

4.4 Whole Rock Analysis

Whole rock analysis were done on Composite 1 and Composite 2 ore samples and the results are presented in Figure 4.3 below.

FIGURE 4.3

WHOLE ROCK ANALYSIS OF ORE SAMPLES

	COMPOSITE 1	COMPOSITE 2
SiO ₂	69.51%	76.86%
Al ₂ O ₃	11.07%	8.60%
Fe ₂ O ₃	4.31%	3.28%
MgO	2.50%	1.05%
CaO	3.21%	2.05%
Na ₂ O	1.80%	2.13%
K ₂ O	2.65%	1.28%
TiO ₂	0.47%	0.32%
P ₂ O ₅	0.25%	0.34%
MnO	0.10%	0.05%
BaO	0.09%	0.08%
LOI	4.51%	4.67%
TOTAL	100.45%	100.70%

The certificate of analysis is provided in Appendix C.

1.142

5.0 PLANT FLOWSHEET DEVELOPMENT

Subsequent to the successful completion of the pilot plant test program, a production scale plant process flowsheet was developed for the treatment of the Bissett Creek ore.

The flowsheet developed for this study consisted of crushing and grinding of the run of mine ore, followed by grinding, concentrating, and product drying, blending and packaging. It is strictly based on the metallurgical results of the test samples indicated to be representative of the Bissett Creek graphite ore.

The estimate of mass and metallurgical balances are based on an annual treatment of 700,000 tonnes of ore with a 3.40% C(g) average graphitic carbon grade. Process data is based on a mill feed rate of 86 tonne/hr. Estimated annual graphite production is as follows:

	Tonnes/yr	Grade % C(g)
+48 Mesh Concentrates	17,000	94.3
-48+100 Mesh Concentrates	3,200	94.2
-100 Mesh Concentrates	4,020	_85.0
TOTAL	24,220	92.74

Tailings disposal was not included in the scope of this study. The various aspects of the plant flowsheet and unit operations are as follows:

5.1 Description Of Plant Flowsheet

The process flowsheets described below are outlined in CESL drawings V011-A-001, 002, and 003 titled "North Coast Industries Ltd. Bissett Creek Graphite Process Flowsheets", and are included at the end of this section. Attendant process mass and metallurgical balances are also included in Figures 5.1 and 5.2 respectively.

5.1.1 Crushing Plant

Run of mine ore is delivered to a dump hopper (101) equipped with a grizzly. The hopper discharge is fed to a jaw crusher (103) set at 5" discharge by a vibrating grizzly feeder (102) with a 5" opening. The grizzly feeder undersize and the jaw discharge join together on a conveyor belt (104) and are transferred to screen feed conveyor (105). A tramp iron magnet (106) is located at the discharge of this conveyor belt for the protection of subsequent equipment. A double deck vibrating screen with a 1" bottom deck removes the -1" ore and it is conveyed to the fine ore stockpile via a conveyor belt (109). The +1" product of the double deck screen is gravity fed to an impact crusher (108) which will be set to produce a product 85% passing 1". Impact crusher discharge joins the jaw crusher discharge on conveyor belt (104) for screening on the closed circuit

double deck screen. The ore retrieval from the fine ore stockpile will be done by vibrating feeders (110) and a conveyor belt (111) located in a tunnel underneath the fine ore stockpile.

5.1.2 Grinding and Flotation

Fine ore is fed to a rod mill by a belt conveyor (111) after being weighed on a belt scale (201). A rod mill feed sampler (202) is also provided at the belt discharge. The ground ore is pumped to a flash flotation cell (205) using a centrifugal slurry pump (204). Concentrate is gravity fed to a concentrate surge tank (403), and the tailing discharges onto a vibrating screen (206) in closed circuit with the rod mill. The screen has a 20 mesh opening, and the oversize goes to rod mill for further grinding while the -20 mesh product proceeds to a bank of rougher flotation cells (301). Ekof-452G graphite collector/frother is added at the rod mill feed chute, and at the rougher flotation feed box.

Rougher flotation tailings are sent to final mill tails pump (303) for disposal to tailings pond after passing through a final tails sampler (302). Rougher concentrate is pumped to a bank of cleaner flotation cells (401) for two stage upgrading. Cleaner tails from this circuit are circulated back to the primary rod mill with a centrifugal slurry pump (402) for further liberation. The cleaner concentrate joins the flash concentrate in the concentrate surge tank (403) before being fed to a vibrating screen (501) with a 48 mesh opening. The surge tank will absorb the feed fluctuations to the subsequent gravity and flotation circuits for maximum stability.

5.1.3 +48 Mesh Circuit

The 48 mesh screen oversize is gravity fed to a deck of shaking tables (502) for the production of +48 mesh final graphite concentrate which then leaves the circuit via a vertical slurry pump (503) for dewatering. Table tails are dewatered on a vibrating screen (901) for density control and then are fed to a regrind pebble mill (902) for the polishing of graphite flake surfaces. The degree of regrinding ,found to be critical in achieving the upgrading required, will be controlled by adjustment of the mill density, which is made possible by the dewatering screen. The table regrind circuit will ensure that a high quality +48 mesh product is produced from this circuit by allowing a tight grade control on table and further control on surface cleaning/polishing in regrind mill through density and mill charge. The circuit will also absorb and smooth out any concentrate grade fluctuations from the rougher cleaner flotation circuit by observing the heavy mineral (gangue) band on the table. Pebble mill discharge is circulated by a centrifugal pump (903) back to the concentrate surge tank for further processing.

5.1.4 -48+100 Mesh Circuit

The 48 mesh screen undersize is gravity fed to a bank of flotation cells (601) for two stage cleaning. The cleaner tails are pumped (602) to primary rod mill for further grinding, and the concentrate is pumped, using a vertical slurry pump (603), to a vibrating screen (701) with a 100 mesh opening. In a similar manner as with the 48 mesh circuit, 100 mesh screen oversize is gravity fed to a shaking table (702) for the production of \pm 100 mesh final graphite concentrate which also leaves the circuit via a vertical slurry pump (703) for dewatering. Table tails are sent to the regrind pebble mill for further polishing of the flake surfaces.

5.1.5 -100 Mesh Circuit

The 100 mesh screen undersize is gravity fed to a bank of flotation cells (801) for two stage cleaning. The cleaner tails are sent to final mill tails pump (303) for disposal, and the cleaner concentrate leaves the circuit as -100 mesh final graphite concentrate for dewatering.

5.1.6 Dewatering & Drying

The gravity products, namely +48 mesh and +100 mesh final graphite concentrates are combined and dewatered on a high frequency vibrating screen (1001) to remove excess water and then sent to a centrifuge surge tank (1003). The -100 mesh final graphite concentrate is thickened in a rake thickener (1002) before being pumped to the same surge tank. The flocculant is added to the thickener feed at the feed pump box.

Thickened concentrates are pumped at a steady rate using a vertical slurry pump (1004) to a solid bowl centrifuge (1005) to further remove excess water from the solids. Centrifuge tests have not been conducted on samples, however, less than 15 % cake moisture from the centrifuge would be a reasonable expectation. The centrate is sent to settling pond to be reclaimed, and the cake is fed to a rotary dryer (1102) using a screw feeder (1101). The dryer includes an exhaust dust cyclone (1103) and a dust collector (1104), the solids from which are screw fed, along with the dryer discharge, to product bins (1203) via pneumatic conveyers (1201). A concentrate sampler is provided at the feed stream of product bins for metallurgical and quality control.

5.1.7 Blending & Packaging

The concentrate from the product bins is screw (1204) fed to a double deck vibrating sizing screen (1206) producing three size fractions of required specifications. The three screen fractions are each fed by pneumatic conveying (1201) to four product bins (1208). From each of these bins the product is discharged through a weigh feeding system to allow the blending of the various screen fractions at any combination at a controlled rate to meet market requirements. The blended product is then pneumatically conveyed either

to a storage bin (1211) for recycling or, to a receiving bin (1212) which feeds a bagging bin (1213). The product is packed into specified bags by a bagger (1214). Product bags are sealed and flattened through a bag handling system (1218) prior to palletizing (1219). Dust control is provided by a dust collector (1205).

5.2 Ore Characterization

Physical characteristics:

Specific Gravity:

Free from clay, granular with some slabby pieces. Gneissic appearance with visible flakes of graphite.

2.64

1.4 tonnes/m³

3.40% C(g)

Bulk Density of 1 1/4" Crushed Ore:

Moisture:

4.0% (assumed for mass balances)

Ore Composition:

WHOLE ROCK ANALYSIS (Pilot Bulk Ore Sample)				
SiO ₂	76.86%			
Fe ₂ O ₃	8.60%			
MgO	1.05%			
CaO	2.05%			
Na ₂ O	2.13%			
K ₂ O	1.28%			
TiO ₂	0.32%			
P ₂ O ₅	0.34%			
MnO	0.05%			
BaO	0.03%			
LOI	4.67%			

Page 24

1. 1.

5.3 Plant Production Criteria

Annual Ore Tonnage:	700,000 t/yr (771,775 stpy)
Operating days per year:	365
Plant Availability:	93%
Ore Feed Rate:	2,062 t/d or 86 t/h design;
	1,918 t/d or 80 t/h average

Predicted Concentrate grades and recoveries:

	Grade %C(g)	Recovery %	Dist'n %
+48 Mesh Concentrates	94.3	67.36	71.36
-48+100 Mesh Concentrates	94.2	12.67	13.42
-100 Mesh Concentrates	85.0	14.36	15.22
TOTAL	92.74	94.39	100.00

Predicted Production:

	Tonnes/yr	% Wt
+48 Mesh Concentrates	17,000	70.19
-48+100 Mesh Concentrates	3,200	13.21
-100 Mesh Concentrates	4,020	_16.60
TOTAL	24,220	100.00

5.4 Process Criteria

5.4.1 Crushing and Fine Ore Storage

Expected design basis is as follows:

Operating Schedule: Crusher Availability:	2x8hr shifts/day, 7 days/week 70%	
Crushing Plant Feed rate:	Design for 1,000,000 tonnes/yr at:	245 t/h design, 171 t/h average
Primary Crusher:	Jaw Crusher	
Secondary Crusher:	Impact Crusher	
Ore Sizes:		
Jaw Feed:	will depend on mining method	
Jaw Discharge:	-5"	
Impact Discharge:	-1"	

	Screen Opening: Fine Ore Storage:	3" top deck, 1" bottom deck Stockpile on pad with a conveyor tunnel, 2500 tonnes live storage capacity
	Angle of Repose of 1 1/4" crushed ore:	37°
5.4.2	Grinding and Flash Flotation	
	Ore Sizes:	
	Mill Feed:	-1"
	F80:	5/8"
	Closed circuit Screen U/S:	98% -20 mesh
	P80:	35 mesh
	Rod Mill Discharge:	75% solids
	Circulating Load	200%
	Work Index:	11.0 (average of 3 calculated Wi values from pilot runs #1, #2 and #6B. However, a standard bond test should be done before sizing equipment).
	Flash Flotation:	
	Density:	53% solids
	Pulp pH:	Natural pH (7.3)
	Time:	1.5 minute flotation time
	Screen opening:	20 mesh
	Reagent addition:	Ekof-452G* @ 150 g/t, at rod mill feed

5.4.3 Rougher - Cleaner Flotation

¥

Rougher Pulp Density:	40% solids
Flotation Time:	21 minutes for rougher
	4 minutes for 1st cleaners
	8 minutes for 2nd cleaners
Flotation pH:	Natural pH
Reagent Addition:	Ekof-452G at 100 g/t to rougher feed
2nd Cleaner Concentrate:	·
Specific Gravity:	2.24
Grade:	61.8% C(g)

Ekof-452G, a higher aliphatic alcohols with pine oil, is available by Harcros Chemical group at a price of \$2.20 per Kg FOB Toronto. A material safety data sheet on the reagent is included in Appendix C.

5.4.4 +48 Mesh Circuit

Screen Opening:	48 mesh
Table Feed Density:	25% solids
Table Concentrate Grade:	94.3% C(g)
Production:	2.09 t/h
Specific Gravity:	2.10
Bulk Density	0.59 t/m ³
Regrind Dewatering Screen:	150 mesh opening
Regrind Pebble Mill Discharge	
Density:	25% solids
Regrind Pebble Mill Charge:	Ceramic or Pebble

5.4.5 -48 +100 Mesh Circuit

Flotation Pulp Density: Flotation Pulp pH: Flotation Time:

Screen Opening: Table Feed Density: Table Concentrate: Specific Gravity: Bulk Density: Grade: Production: 21% solids
Natural pH
4 minutes 1st Cleaners
8 minutes 2nd Cleaners
100 Mesh
25% solids

2.10 0.510 t/m³ 94.2% C(g) 0.39 t/h

5.4.6 -100 Mesh Circuit

Flotation Density: Pulp pH: Time:

Concentrate: Specific Gravity: Bulk Density: Grade: Production: 13% solidsNatural pH4 minutes 1st cleaners8 minutes 2nd cleaners

2.17 0.320 g/ml 85.00% C(g), predicted 0.49 t/h

5.4.7 Concentrate Dewatering

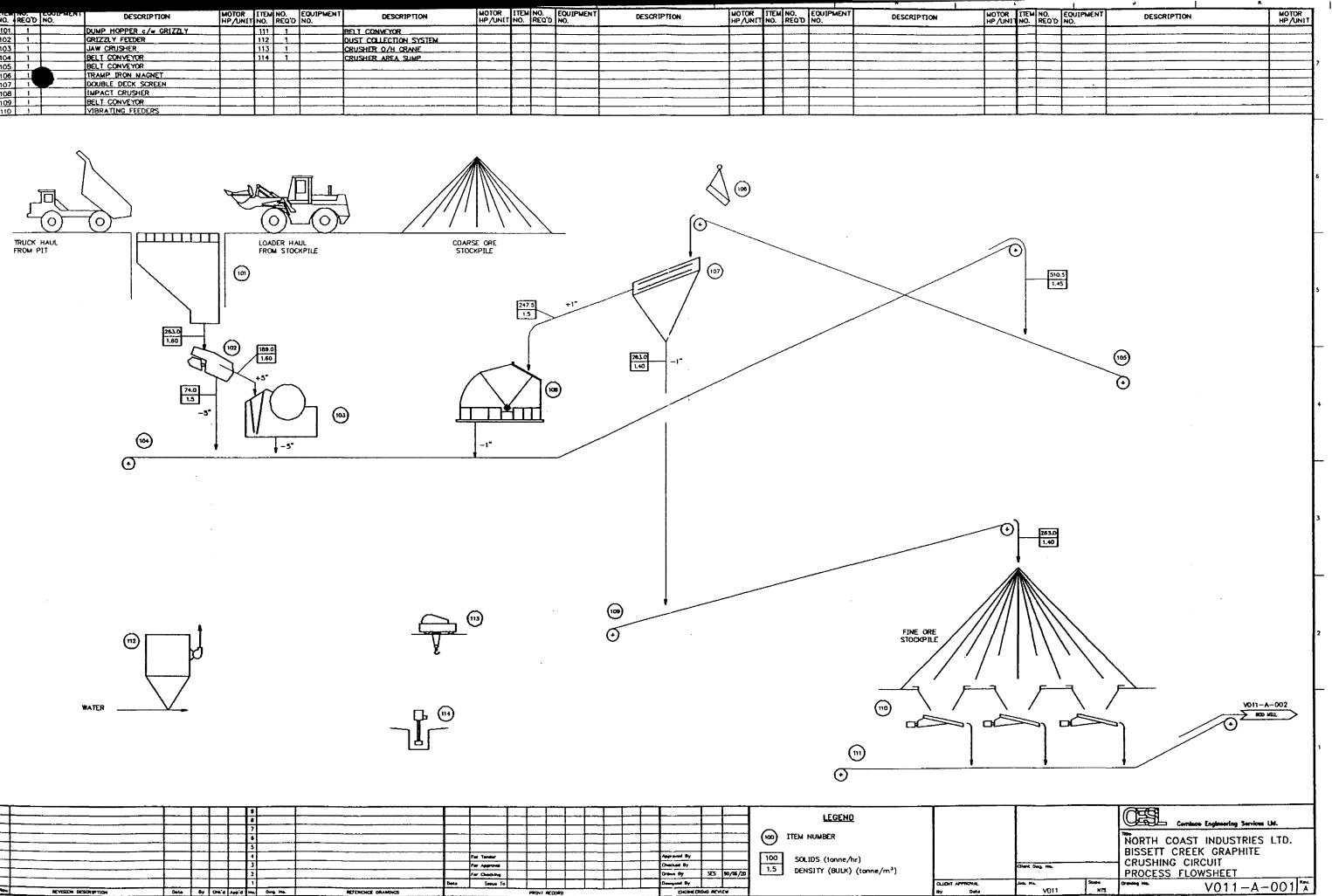
Dewatering Screen Opening:	150 mesh
Dewatering Screen o/size density:	50% solids
Thickener Feed Density:	10.8% solids
Thickener Underflow Density:	30% solids (estimated)
Flocculant Addition:	25 g/t of concentrate
Centrifuge Feed Density:	45% solids
Centrifuge Cake Density:	15% solids (estimated)
Dryer Discharge Moisture:	0.2% water

,

.

FIGURE 5.1 NOTH COAST INDUSTRIES LTD BISSETT CREEK GRAPHITE 700,000 t/y plant MASS BALANCE

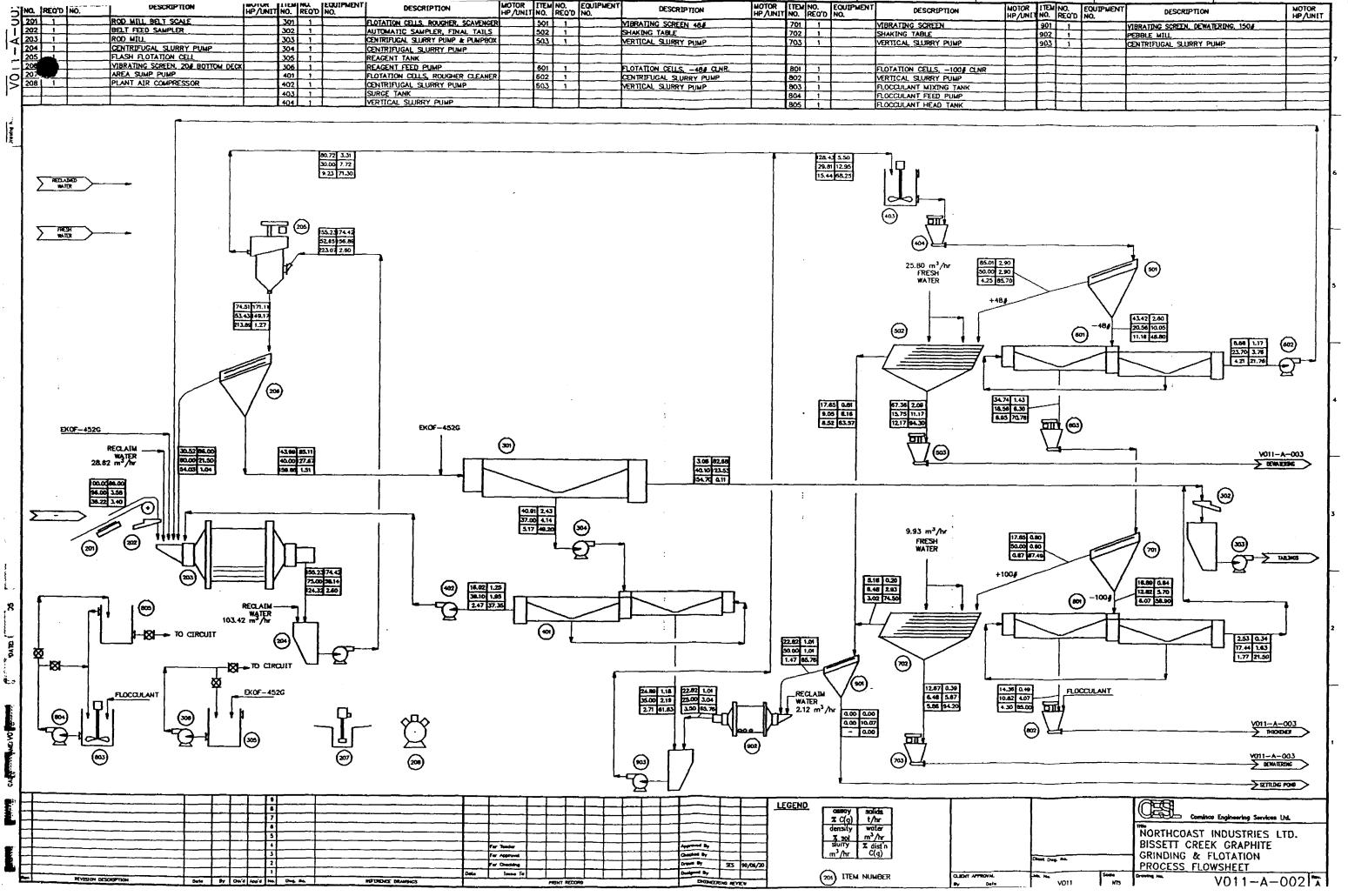
tonne/h	% Wt 100.00 101.36 102.82 202.82	% Dens	\$.G.	m3∕h	S.G.	
tonne/h	X Wt 100.00 101.36 102.82 202.82	% Dens	\$.G.	m3∕h		
	100.00 101.36 102.82 202.82					
86.00 87.17 88.42 174.42 174.42 174.42 174.42 3.31	100.00 101.36 102.82 202.82	96.00%	2.64	3.28	2.47	30.22
87.17 88.42 174.42 174.42 174.42 174.42 3.31	101.30	92.25%	2.04		3 7/	10 12
88.42 174.42 174.42 174.42 174.42 3.31	202.82			7.34	2.34	40.42
174.42 174.42 174.42 3.31	202.82	90.49%	2.64	9.29	2.28	42.84
174.42		84.99%	2.64	30.79	2.12	96.98
3.31						
/ 3. 31	202.82	52.65%	2.64	156.89 7.72 149.17	1.49	223.07
		30.00%	2.20	1.12	1.20	9.23
171.11			2.64	149.17 21.50	1.50	213.89
86.00		80.00%	2.64	21.50	1.99	54.03
86.00 85.11	98.97	40.00%	2.64	127.67		159.86
85.11		40.00%		127.67	1.33	159.86
82.68			2.65	123.53	1.33	154.70
1				4.14	1.27	5.17
2.43	2.83	37.00%	2.35	4.14	1.27	5.17
2 3.43	3.99	37.07%	2.35		1.27	7.28
1.25	1.46	39.10%	2.45	1.95	1.30	2.47
2.17	2.53	36.00%	2.28	3.86	1.25	4.82
2.17	2.53	36.00%	2.28	3.86	1.25	4.82
1.00	1.16	37.26%	2.34	1.68	1.27	2.10
5 1.18	1.37	35.00%	2.24	2.19	1.24	2.71
6.40			2.21	9.91	1.21	11.94
5 50	6.40		2.21	12.95	1.20	15.44
2' 40	3 03		2 35	10.05	1 13	11.16
	3.05		2.55	2 00	1 37	4.25
2.70	3.31		2.15	2.70 P 70		10.05
2.90	3.3/		2.15	0.70		
	0.94	9.03A	2.24	0.10	1.05	8.52
2.09	2.43	12.75%	2.10	11.17	1.09	12.17
2.60	3.03	20.56%	2.35	10.05	1.13	11.16
3.33	3.87	20.83%	2.35	12.65	1.14	14.07
5 1.17	1.36	23.70%	2.55	3.76	1.17	4.21
2.16	2.51	19.56%	2.22	8.89	1.12	9.87
2.16				8.89		9.87
0.73			2.25	2.60		2.92
5 1.43	1.67	18.56%	2.20	6.30	1.11	6.95
	1.67	18 567	2 20	6 30	1 11	6.95
0.8/						6.07
						0.87
0.00			2.15			2.07
0.20	0.24	0.48%	2.18	2.93	1.04	3.02
1	0.40	0.48%	2.10	5.0/	1.04	5.86
0.84			2.25	5.70		
2 1.01	1.18	13.28%	2.25	6.62	1.08	7.07
3 0.34		17.44%	2.55	1.63	1.12	1.77
0.67	0.78	11.82%	2.19	4.99	1.07	5.29
5 0.67	0.78	11.82%	2.19	4.99	1.07	5.29
	0.20	16.01%	2.24	0.92	1.10	0.99
		10.82%	2.17	4.07	1.06	4.30
1 1.01	1.18	8.39%	2.23	11.08	1.05	11.54
z 0.00		50.00%	2 27	4 04	1 70	1.47
		25 004	2.23	1.01		
						3.50
· · · · · · · · · · · · · · · · · · ·						
< m	2 /7	15 75*	2 10	14 47	1 00	12 47
2.09	2.43	12.124	2.10	11.1/ E /7	4 0/	12.11
0.39	0.46	0.48%	2.10	.2.0/	1.04	2.86
o 0.49	0.57	10.82%	2.1/	4.U/ 20.01	1.00	4.30 22.33
1 2.98	5.46	12.40%	2.10	20.91		
1		10 400	3 /E	177 57	1 77	15/ 70
2 8Z.68	90.14	40.10%	2.03	(23.55	1.33	154.70
s 0.34	0.40	17.44%	2.55	1.63	1.12	1.77
83.02	96.54	39.88%	2.65	123.16	1.55	
123 1234978 C123458 1234578 TCCCCC TCCCCCCC TCCCCC SAN	1 85.11 2 82.68 3 2.43 1 2.43 2 3.43 1 2.43 3 1.25 2 3.43 3 1.25 4 2.17 5 2.17 7 1.00 6 1.18 0 4.49 1 5.50 2 2.60 3 2.90 4 2.90 5 0.81 6 2.09 1 2.60 3 1.17 5 2.16 7 0.73 6 1.43 1 1.43 2 0.84 3 0.60 5 0.20 6 0.39 1 0.84 2 0.39 1 0.60 5 0.20 6 2.09	1 85.11 98.97 2 82.68 96.14 3 2.43 2.83 1 2.43 2.83 1 2.43 2.83 2 3.43 3.99 3 1.25 1.46 4 2.17 2.53 5 2.17 2.53 7 1.00 1.16 6 1.18 1.37 0 4.49 5.22 1 5.50 6.40 2 2.60 3.03 3 2.90 3.37 5 0.81 0.94 6 2.09 2.43 1 2.60 3.03 2 3.33 3.87 3 1.17 1.36 4 2.16 2.51 5 2.16 2.51 7 0.73 0.85 6 1.43 1.67 1 1.43 1.67 2 0.84 0.98 3 0.60	1 85.11 98.97 40.00x 2 82.68 96.14 40.10x 3 2.43 2.83 37.00x 1 2.43 2.83 37.00x 2 3.43 3.99 37.07x 3 1.25 1.46 39.10x 4 2.17 2.53 36.00x 5 2.17 2.53 36.00x 6 1.18 1.37 35.00x 0 4.49 5.22 31.17x 1 5.50 6.40 29.81x 2 2.60 3.03 20.56x 3 2.90 3.37 50.00x 4 2.90 3.37 25.00x 5 0.81 0.94 9.05x 4 2.60 3.03 20.56x 3 1.17 1.36 23.70x 4 2.60 3.03 20.56x 2 3.33 3.87 20.83x 3 1.17 1.36 23.70x 4 2.16 2.51	1 85.11 98.97 40.00x 2.64 2 82.68 96.14 40.10x 2.65 3 2.43 2.83 37.00x 2.35 1 2.43 2.83 37.00x 2.35 3 1.25 1.46 39.10x 2.45 4 2.17 2.53 36.00x 2.28 5 2.17 2.53 36.00x 2.28 6 1.18 1.37 35.00x 2.24 0 4.49 5.22 31.17x 2.21 2.60 3.03 20.56x 2.35 3 2.90 3.37 50.00x 2.15 4 2.90 3.37 25.00x 2.15 5 0.81 0.94 9.05x 2.24 6 2.09 2.43 15.75x 2.10 1 2.60 3.03 20.56x 2.35 3 1.17 1.36 25.70x 2.55 2.16 2.51 19.56x 2.22 7 0.73 0.	1 85.11 98.97 40.00x 2.64 127.67 2 82.68 96.14 40.10x 2.65 123.53 3 2.43 2.83 37.00x 2.35 4.14 1 2.43 2.83 37.00x 2.35 4.14 2 3.43 3.99 37.00x 2.35 5.82 3 1.25 1.46 39.10x 2.45 1.95 4 2.17 2.53 36.00x 2.28 3.86 5 2.17 2.53 36.00x 2.24 2.19 0 4.49 5.22 31.17x 2.21 9.91 1 5.50 6.40 29.81x 2.21 12.95 2 2.60 3.03 20.56x 2.35 10.05 3 2.90 3.37 50.00x 2.15 8.70 5 0.81 0.94 9.05x 2.24 8.16 6 2.09 2.43 15.75x 2.10 11.17 1 2.60 3.03 20.56x	1 85.11 98.97 40.00X 2.64 127.67 1.33 2 82.68 96.14 40.10X 2.65 123.53 1.33 3 2.43 2.83 37.00X 2.35 4.14 1.27 1 2.43 2.83 37.00X 2.35 4.14 1.27 2 3.43 3.99 37.07X 2.35 5.82 1.27 3 1.25 1.46 39.10X 2.45 1.95 1.30 4 2.17 2.53 36.00X 2.28 3.86 1.25 5 2.17 2.53 36.00X 2.28 3.86 1.27 6 1.18 1.37 35.00X 2.24 2.19 1.24 0 4.49 5.22 31.17X 2.21 2.95 1.205 1 5.50 6.40 29.81X 2.21 12.95 1.205 2.60 3.03 20.56X 2.35 10.05 1.13 3 2.90 3.37 25.00X 2.15 8.70 1.17


• .

-

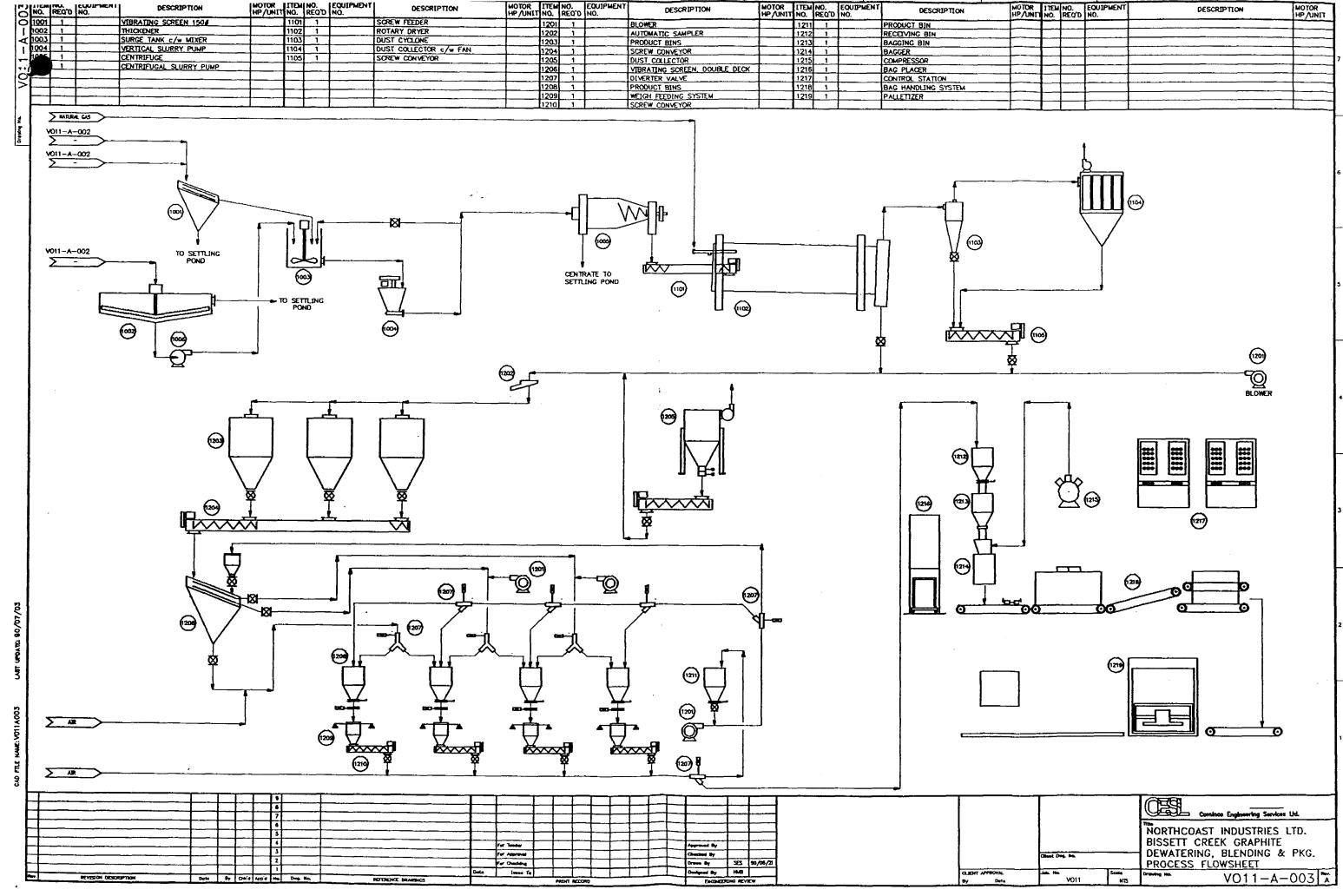
FIGURE 5.2 NORTH COAST INDUSTRIES LTD BISSETT CREEK GRAPHITE 700,000 t/yr PLANT METALLURGICAL BALANCE

		SOL	IDS	ASSAY	RECOVERY
PRODUCTS BELT FEED BELT FEED+603 BELT FEED+603+403 BELT FEED+603+403+209 ROD MILL DISCH, 204 UNIT CELL FEED UNIT CELL TAIL, 20# SCR FEED +20# SCR 0'SIZE -20# SCR U'SIZE RO FLOTN FEED RO FLOTN FEED RO FLOTN TAIL RO FLOTN CONC RO CLNR CCT FEED, 303	1D #	tonne/h	% Wt	% C(g)	% C(g)
BELT FEED	201	86.00	100.00	3.40	100.00
BELT FEED+603	202	87.17	101.36	3.65	108.68
BELT FEED+603+403	203	88.42	102.82	4.12	124.70
BELT FEED+603+403+209	204	174.42	202.82	2.60	155.23
ROD MILL DISCH, 204	205	174.42	202.82	2.60	155.23
UNIT CELL FEED	206	174.42	202.82	2.60	155.25
UNIT CELL CONC	207	5.51	5.85	/1.50	5U.72
UNIT LELL TAIL, 20# SUR FEED	208	1/1.11	190.97	1.27	74.21
-20# SCR U'SIZE	210	85.11	98.97	1.51	43.99
RO FLOTH FEED	301	85.11	98.97	1.51	43.99
RO FLOTN TAIL	302	82.68	96.14	0.11	3.08
RO FLOIN CONC RO CLNR CCT FEED, 303 1st RO CLNR FEED 401+406 1st RO CLNR TAIL 1st RO CLNR CONC 2nd RO CLNR FEED, 404 2nd RO CLNR TAIL 2nd RO CLNR CONC	202	2.43	2.05	47.20	40.71
RO CLNR CCT FEED, 303	401	2.43	2.83	49.20	40.91
1st RO CLNR FEED 401+406	402	3.43	3.99	49.05	57.50
IST RU CLNR TAIL	403	1.25	1.40	37.33	10.02
and RO CLUR CURC	404	2.17	2.33	55.00	41.40
2nd DO CLUR FEED, 404	405	2.17	2.33	55.00 /9.49	41.40
2nd RU LENR TAIL	407	1.00	1.10	40.00	7/ 80
ZINI RU LENK LUNL	400	1.10	1.57	01.00	24.07
U C C + Z R CL C ; 207+406	500	4.49	5.22	68.82	105.61
48# SCR FEED ; 500+904	501	5.50	6.40	68.25	128.43
-48# SCR U'SIZE	502	2.60	3.03	48.80	43.42
+48# SCR O'SIZE	503	2.90	3.37	85.70	85.01
+48# TABLE FEED, 504	504	2.90	3.37	85.70	85.01
+48# TABLE TAIL	505	0.81	0.94	63.57	17.65
U C C + 2 R CL C ; 207+406 48# SCR FEED ; 500+904 -48# SCR U'SIZE +48# SCR O'SIZE +48# TABLE FEED, 504 +48# TABLE TAIL +48# TABLE CONC	506	2.09	5.22 6.40 3.03 3.37 3.37 0.94 2.43	94.30	67.36
-48# CLNR CCT FEED, 502	601	2.60	3.03	48.80	43.42
-48# 1st CLNR FEED	602	3.33	3.87	51.21	58.31
-48# 1st CLNR TAIL	603	1.17	1.36	21.76	8.68
-48# 1st CLNR CONC	604	2.16	2.51	67.10	49.62
-48# 2nd CLNR FEED, 604	605	2.16	2.51	67.10	49.62
-48# 2nd CLNR TAIL	607 (0.73	0.85	59.84	14.89
-48# CLNR CCT FEED, 502 -48# 1st CLNR FEED -48# 1st CLNR TAIL -48# 1st CLNR CONC -48# 2nd CLNR FEED, 604 -48# 2nd CLNR TAIL -48# 2nd CLNR CONC	606	1.43	3.03 3.87 1.36 2.51 2.51 0.85 1.67		
100# SCR FEED, 607	701	1.43	1.67	70.78	34.74
-100# SCR U'SIZE	702	0.84	0.98	58.90	16.89
+100# SCR O'SIZE	703	0.60	0.69	87.49	17.85
+100# TABLE FEED	704	0.60	0.69	87.49	17.85
+100# TABLE TAIL	705	0.20	0.24	74.50	5.18
100# SCR FEED, 607 -100# SCR U'SIZE +100# SCR O'SIZE +100# TABLE FEED +100# TABLE TAIL +100# TABLE CONC	1	0.39	1.67 0.98 0.69 0.69 0.24 0.24	94.20	12.67
-100# CLNR CCT FEED, 702	801	0.84	0.98	58.90	16.89
- IOOW ISC GLAR FEED	002 1	1.01	1.10	27.11	20.71
-100# 1st CLNR TAIL	803	0.34	0.40	21.50	2.53
-100# 1st CLNR CONC	804	0.67	0.78	79.50	18.17
-100# 2nd CLNR FEED, 804	805	0.67	0.78	79.50	
-100# 2nd CLNR TAIL	807	0.17	0.20	63.94	
-100# 2nd CLNR CONC	806	0.49	0.57	85.00	14.36
TABLE TAILS, 505+705	901	1.01	1.18	65.76	
T TAILS DEW SCR U'FLOW	902	0.00	0.00	0.00	0.00
REGRIND MILL FEED	903	1.01		65.76	
REGRIND MILL DISCH	904	1.01	1.18	65.76	22.82
TOTAL CONCENTRATES :	· 1		••••••		
+48# TABLE CONC	506	2.09	2.43	94.30	67.36
+100# TABLE CONC	706	0.39			12.67
-100# 2nd CLNR CONC	806	0.49	0.46 0.57	85.00	14.36
TOTAL :		2.98	3.46		
TOTAL TAILINGS :	1		<u></u>	× 44	7
RO FLOTN TAIL -100# 1st Clnr Tail	302	82.68	96.14	0.11 21.50	3.08
	803	0.34	0.40	0.20	2.53 5.61
TOTAL :		83.02	96.54	v.20	J.01

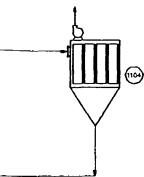

													-								•
- ÷.	D	O. RE	ΟD	NO.	DESCRIPTION	MOTOR HP/UNIT	ITEM NO.	NO. REQ'D	EQUIPMENT NO.	DESCRIPTION	MOTOR HP/UNIT	ITEM NO.	NO. REQ'D	EQUIPMENT NO.	DESCRIPTION	MOTOR HP/UNIT	ITEN NO.	REQ'D	EQUIPMENT	DESCRIPTION	MOTOR HP/UNIT
•	\mathbf{D}	01	1		DUMP HOPPER c/w GRIZZLY		. 111	1		BELT CONVEYOR											
	1 10	02	1		GRIZZLY FEEDER		112	1		OUST COLLECTION SYSTEM								1			
	∢[1(1		JAW CRUSHER		113	1		CRUSHER O/H CRANE											
	1 10	04	1		BELT CONVEYOR		114	1		CRUSHER AREA SUMP											
		05	1		BELT CONVEYOR		ł											1			
	-110	06	1		TRAMP IRON MAGNET		L											1			
-	01		1		DOUBLE DECK SCREEN																
		08	1		IMPACT CRUSHER																
		09	1		BELT CONVEYOR	1	1										1				
	1	10	1		VIBRATING FEEDERS																

E	Dete	By	 	2	Dung Ha	ASTENCICE DRAMOKS	Dete	Far Checking Insue To		PRINT RED			 	Drawn By Descipted By ENGINE DR	90/06/20		Dete
				3				For Approval						Checked By			
	 		 				{ }	For Tender		┟╍╍┟╌		┟╍╌┟╌	 	Approved By		100 SOLIDS (toppe/br)	
	 		 	Í							-					TTEM NUMBER	
	 			-								\square				LEGENO	
									I		1						

the logent


-		REO'D NO.	DESCRIPTION	HP/UNIT	NO.	REOD	EQUIPMENT NO.	DESCRIPTION	MOTOR HP/UNIT			EQUIPMENT	DESCRIPTION	MOTOR HP/UNIT	ITEM NO.	NO. REQ'D	EQUIPMENT	DESCRIPTION	MO
	5 201	_ 1	ROD MILL BELT SCALE		301			FLOTATION CELLS, ROUGHER, SCAVENCER		501	1		MIBRATING SCREEN 484		701	1		VIBRATING SCREEN	-+4
1	202	1	BELT FEED SAMPLER		302	1		AUTOMATIC SAMPLER, FINAL TAILS		502	1		SHAKING TABLE	†	702	1		SHAKING TABLE	
	A 203	_1	ROD MILL		303	1		CENTRIFUGAL SLURRY PUMP & PUMPBOX		503	1		VERTICAL SLURRY PUMP	t	703		and the second s	VERTICAL SLURRY PUMP	
	204		CENTRIFUGAL SLURRY PUMP		304	1		CENTRIFUGAL SLURRY PUMP					The second second second second second second second second second second second second second second second se	_				VISITIONE SECTION	
-	205		FLASH FLOTATION CELL		305	1		REAGENT TANK						t			†		
	205		VIBRATING SCREEN, 204 BOTTOM DECK	KI	306	_1		REAGENT FEED PUMP		601	1		FLOTATION CELLS484 CLNR.		801	1	1	FLOTATION CELLS, -100 CLNR	
	207		AREA SUMP PUMP		401	1		FLOTATION CELLS, ROUGHER CLEANER		502	1		CENTRIFUGAL SLURRY PUMP		802			VERTICAL SLURRY PUMP	-+
	> 208	1	PLANT AIR COMPRESSOR		402	1		CENTRIFUGAL SLURRY PUMP		603	1		VERTICAL SLURRY PUMP		803		and the second state of th	FLOCCULANT MIXING TANK	-+
I I.					403	1		SURGE TANK							804	1		FLOCCULANT FEED PUMP	
•					404	1		VERTICAL SLURRY PUMP							805	1	the second second second second second second second second second second second second second second second se	FLOCCULANT HEAD TANK	-+

SAME:


ģ

ļ

- ----

MOTOR HP/UNIT	ITEM NO.	NO. REO'D	EQUIPMENT NO.	DESCRIPTION	MOTOR HP/UNIT	
	—					1
 <u>├</u> ───						ł
						1
						1
 <u> </u>				······································		ł
 			i			ł
						1
				<u> </u>		

6.0 ASSAY METHODS

Three graphitic carbon assay methods were used throughout the metallurgical investigation of Bissett Creek graphite. Each method is found to have a specific use depending on the contents of the associated gangue material, such as carbonates, volatiles and organic matter.

Following is a brief description of the three carbon assay methods as they were used for Bissett Creek test samples.

- a. Mid High Grade Samples; >15% C(g): The method is a Double Loss On Ignition procedure conducted at two temperature levels of 470° C and 900° C on dried samples. The procedure details were supplied by KHD Humboldt Wedag, and is the industry standard for graphitic carbon concentrates. Complete procedure is included in Appendix D.
- b. Low Grade Samples; <15% C(g): The method used is a Total Organic Carbon (TOC) method which uses total carbon determination by a Leco induction furnace, and carbonate carbon determination by an HCl leach/Gasometer procedure. The difference, reported as % TOC, is considered to be a reliable graphitic carbon result when there is no organic carbon present in the sample such as wood, plants, bones etc., other than graphite carbon. The accuracy of this procedure was verified in a study conducted by Vancouver Petrographics Ltd. by physical counting of graphite flakes subsequently converted to volume and mass. The report on this analysis, and the TOC assay procedure by Chemex Labs Ltd. are included in Appendix D.

The TOC procedure, also loosely termed as Acid Leach/Leco method, is similar in nature to the Nitric Leach/Leco procedure used by some laboratories such as Lakefield Research and that the acid used is HNO_3 instead of the HCl mentioned above.

During pilot runs the presence of wood was observed in some of the samples. A study undertaken revealed that wood will add to graphitic carbon content of the sample when assayed by the TOC method. This increase can especially be pronounced when assaying very low grade samples (0.1 - 0.2% C(g)) such as tailings products. Wood found in pilot plant test samples contain approximately 50% organic (cellulose) carbon, and a 0.2% actual wood content in samples will increase the total organic carbon assay by 0.1 percentage points, ie., from 0.15% true graphite carbon to 0.25% TOC. Therefore a new procedure, simply a deviation of the TOC method, was developed for samples suspected to contain cellulose matter. The new procedure was named HNO₃/LOI/Leco method (an abbreviation of the steps used).

In this method the dry sample is "roasted" in an oven @ 400° C for Loss On Ignition following a HNO₃ acid leach and the weight loss is recorded. Later the

sample is combusted in a Leco induction furnace for total carbon and the difference in weight losses is reported as % graphitic carbon. Details of this procedure by Chemex Labs are included in Appendix D along with a report by Lakefield Research on "The effect of tramp wood in test products".

_

[

Ľ

1

SUMMARY REPORT OF LABORATORY TESTS

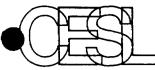
ON

BISSETT CREEK GRAPHITE ORE

CESL, APRIL 27, 1990

SUMMARY REPORT OF LABORATORY TESTS

ON BISSETT CREEK GRAPHITE ORE


PREPARED FOR:

NORTH COAST INDUSTRIES LTD.

 BY:
 H.M. Bolu

 DATE:
 April 27, 1990

 REF:
 012

Cominco Engineering Services Ltd.

100 - 1200 West 73rd Ave., Vancouver, B.C., Canada V6P 6G5 / Tel. (604) 264-5500 / Telex 04-55357 / Fax (604) 264-5555

April 27, 1990

CEC Engineering Ltd. Suite 1270 -601 West Hastings Street Vancouver, B.C. V6B 5A6

Attention: Mr. D.J. Copeland

Re: Summary of Laboratory Tests on Bissett Creek Ore

Dear Mr. Copeland::

Attached please find a brief summary report of laboratory tests on Bissett Creek ore samples as you requested. The report covers the tests performed both at Ortech International and Bacon, Donaldson, and Associates just prior to the start of the pilot plant test program.

Yours truly,

Balu.

H. Matt Bolu Senior Metallurgist

HMB:sew

LABORATORY TEST ON BISSETT CREEK GRAPHITE ORE ril 27, 1990

.....

T

i

Ø30C

TABLE OF CONTENTS

1.	INTRODUCTION	1
2.	SUMMARY	1
3.	DISCUSSION OF TEST RESULTS	4
4.	ASSAY METHODS	6
5.	CONCLUSIONS	6
	APPENDIX A	7

1.0 INTRODUCTION

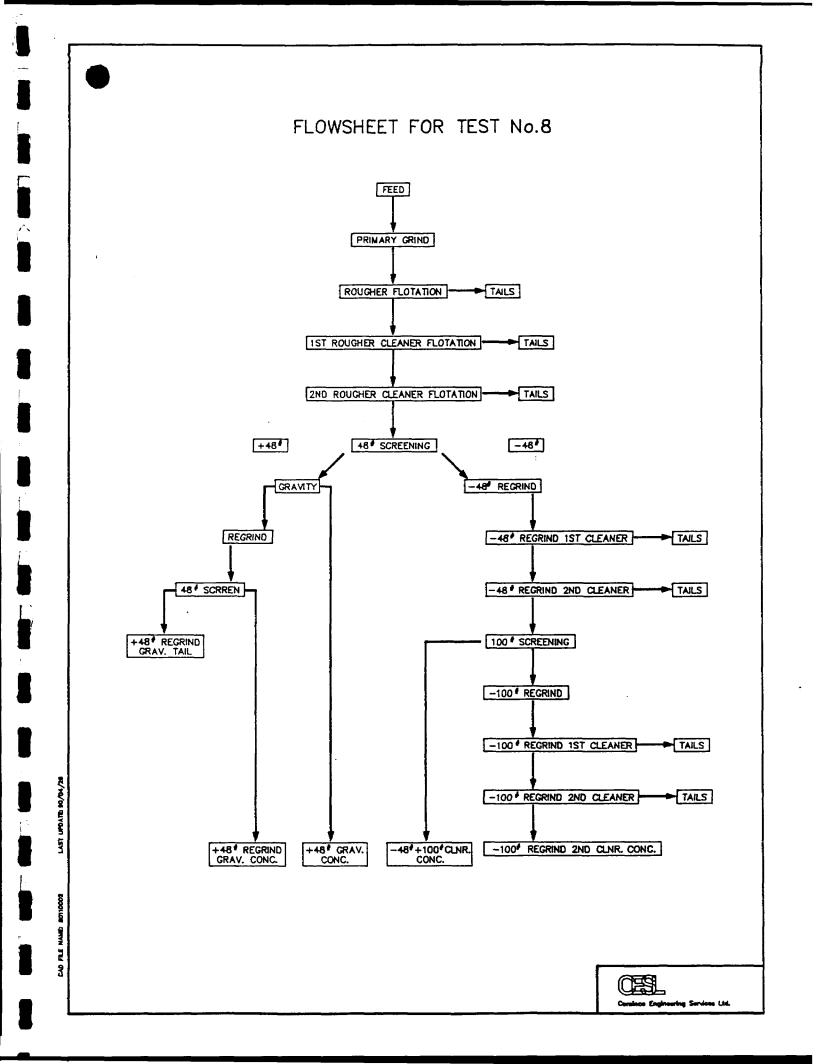
This report summarizes the results of laboratory testwork on Bissett Creek flake graphite ore. The testwork was conducted at Ortech International (Ortech) and Bacon, Donaldson and Associates (B.,D. & A.) testing laboratories during January - March, 1990 on behalf of North Coast Industries Ltd. (N.C.I.).

The purpose of the testwork was to confirm and improve the flowsheet developed in an earlier study and, to form the basis of small scale pilot plant testing of the ore for the confirmation of the flowsheet in a continuous environment.

Samples used for the tests were provided by Mr. D. Copeland of C.E.C. Engineering. After compositing, two test materials were designated as Composite 1 and Composite 2, assaying approximately 2.3% C(g) and 3.7% C(g) respectively.

Following the first four bench tests at Ortech in Toronto, the test program was moved to B., D. & A. in Vancouver, mainly for logistics and laboratory scheduling reasons.

2.0 SUMMARY


The test program was directed towards the development of a flotation - gravity procedure that would produce a flake graphite concentrate of approximately 92-95% C(g) with a high proportion of the flakes in the +48# size fraction, i.e. >50% by weight. Targeted concentrate recoveries were 93-95% as indicated as achievable in an earlier study.

In Test No. 8, average concentrate grade of 92.94% C(g) was achieved at an overall recovery of 93.3% using the flowsheet shown below which formed the basis of the pilot plant circuit configuration currently being tested at the facilities of B.D. & A. A summary of the results for Test No. 8 is presented below.

....

ľ

	Wt %	C(g) %	DISTRIBUTION %
CONCENTRATES			
+48# Clnr. Conc.	2.62	92.53	66.3
-48# +100 Clnr. Conc.	0.67	94.70	17.4
-100# Clnr. Conc.	0.38	92.65	9.6
Total Conc.:	3.67	92.94	93.3
TAILINGS	·		
Total Clnr. Tailings	1.23	7.55	2.5
Ro. Flotation Tailings	95-10	0.16	4.2
Total Tailings	96.33	0.25	6.7
FEED (CALCULATED)	100.00	3.65	100.0

3.0 DISCUSSION OF TEST RESULTS

ł

First two tests, No. 1 and No. 2 at Ortech were general amenability tests using a primary grind of 98.3% -48# and 84.0% -48# respectively on Composite 2 material. Rougher flotation was carried out and the concentrate was cleaned twice prior to screening of the second cleaner concentrate at 48#. The -48# fraction was reground and cleaned twice and the cleaner concentrate was screened at 100# producing the -48# + 100# cleaner concentrate. The -100# fraction was subjected to a similar regrind/cleaning step as above, producing the -100# cleaner. Other parameters were essentially the same. concentrate. Although the concentrate grades of No. 1 test were exceptionally high at 97.2 - 98.2% C(g), the overall recovery was low at 79.7%. (Refer to table for Test No. 1). In Test No. 2, the overall concentrate recovery was increased to 86.5% using a coarser primary grind, however this was achieved at a reduced concentrate grade which averaged 91.46% C(g). Also, the +48# concentrate recovery was up to 53.4% from 40.7% in Test No. 1.

At this point, it was apparent that major carbon losses were occurring in the rougher flotation tailings possibly due to fine primary grind and therefore the following general approach was adopted for the remainder of the testwork:

"A coarse primary grind followed by rougher-scavenger flotation to produce a concentrate of approximately 60% C(g) at a high bulk recovery of +95%. At this stage the scavenger tails, constituting 94-95% by weight of the feed can be discarded leaving a much smaller rougher concentrate weight for further processing. Upgrading would then be carried out in a sequential regrinding-cleaning-screening manner in order to preserve the flake size."

On the basis of the above, the primary grind was further coarsened in Tests No. 3 and No. 4, to 68.5% -48# and 51.6% -48# respectively, resulting in an increased overall recovery of approximately 90% for both. In both tests, -48# cleaner concentrate grades range from 90.8 % to 94.3% C(g), however, +48# cleaner concentrate grade was low at 71.6% C(g) and 79.2% C(g) in Tests No. 3 and No. 4 respectively. (Refer to tables for Tests No. 3 and No. 4).

In the next test, B. D. & A. No. 7, a gravity separation stage was introduced for the upgrading of the +48# Cleaner. concentrate following the project move from Toronto to Vancouver. (B. D. & A Tests No. 1-6 were for a study of flotation kinetics on Bissett Creek ore and the results were reported separately by B.D. & A. in December, 1989).

B. D. & A. Test No. 7 was done on the Composite 1 sample pending the shipment of the Composite 2 from Ortech. The objective of the test was to establish some reference points regarding optimum conditions for the gravity separation and concentrate regrinding prior to a bulk bench test.

П

In Test No. 7, following the rougher and cleaner flotation steps, the +48# screen oversize was gravity upgraded using a vanning plaque. The -48# fraction was reground very lightly under controlled conditions and cleaned twice before screening over a 100# screen. The test was ended at this stage due to insufficient sample size for further testing. Concentrate grades at 88.6% C(g) and 67.1% C(g) were lower than expected, and as a result, the following procedural variations were adopted for the next test:

- a) A large bulk sample would be used in order to provide sufficient concentrate products for regrind/cleaning studies.
- b) Gravity separation tailings would be reground lightly to further clean flake surfaces before screening.
- c) Regrind studies would be done on the cleaner concentrates with varying mill charges and grinding times for optimum grind conditions.

Test No. 8 was a bulk test using approximately 24 Kg of the Composite 2 sample. The ore was ground to 51.0% -48# in a batch rod mill under controlled conditions followed by rougher flotation in a 1 cu. ft. pilot size Denver Sub-A flotation cell. The only flotation reagent used was EKOF-452G at a total dosage of approximately 200g/tonne.

Rougher concentrate was cleaned twice before screening on a 48# sieve. The +48# fraction was gravity upgraded using a vanning plaque and the concentrate assayed 96.34% C(g), (A shaking table could not be used due to an insufficient sample size). Two portions of the gravity tailings samples were subjected to a regrind study designated as short and long, to determine the optimum grind/concentrate grade relationship. Long regrind produced a +48# Regrind Gravity Concentrate assaying 90.3% C(g) in comparison to 87.1% C(g) for the short regrind. (Refer to table for laboratory test No. 8B).

Three portions of the -48# second rougher cleaner concentrate was also subjected to a regrind study designated as long, medium and short regrinds. In each case, the ground product was cleaned twice and the resulting -48# cleaner concentrate was screened at 100#. The -48# +100# cleaner concentrates assayed 94.7% C(g), 91.4% C(g) and 87.3% for long, medium and short regrinds respectively. (Refer to table for laboratory test No. 8C).

The -100# product was reground using the above mentioned long regrind conditions and was cleaned in two stages. The resulting -100# cleaner concentrate assayed 92.65% C(g).

In Test No. 9 a Varsol/MIBC reagent combination was tried instead of EKOF-452G using only the rougher cleaner flotation steps. Other test parameters were the same as test No. 8. Second cleaner concentrate grade was 89.9% C(g) at 98.65% recovery, confirming the metallurgical results of the previous test.

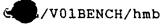
At this point is was felt that there was enough data to proceed with continuous pilot plant testing of the Composite 2 ore sample.

4.0 ASSAY METHODS

Assay methods used throughout this test program are as follows:

- a) All concentrate products expected to be approximately 15% C(g) or greater were assayed using a Double Loss on Ignition method as provided by KHD Humboldt Wedag.
- b) All tailing products of Ortech tests were assayed using an Acid Leach/Loss on Ignition method by Assayers Ontario Laboratories.
- c) All tailing products of B. D. & A. tests were assayed using an Acid Leach/Leco method by Chemex Laboratories.

5.0 CONCLUSIONS

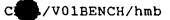

- 1. Bissett Creek Graphite Ore Composite 2 sample is amenable to processing by conventional grinding and flotation methods for the production of high grade flake graphite concentrates at reasonably high recoveries.
- 2. A coarse primary grind at approximately 98% -20# and sequential grinding-flotation-screening, combined with a gravity step for the +48# concentrate proved to be an essential route to follow in order to achieve high concentrate grades while maintaining a high distribution of graphite to the coarser products.
- 3. Total cleaner tails in test No. 8 contained 2.5% of the graphite in the feed. In a continuous process some of the graphite in these tails would be recovered by recirculating, however, this will have to be tested in pilot plant tests.
- 4. There is not enough significant difference in metallurgical performance favouring any of the two reagents used in the tests, however, Varsol/MIBC was used at approximately 40% the dosage rate of EKOF-452G.

---.

D

1

1


(

Products		Weight		Assay	Dist'n
	-		*		*
Head (Calc)			100.00		
Ro'. Flot'n. Tails		1336.0	94.38	0.61	13.8
Ro. Flot'n. Conc.		79.6	5.62	63.87	\$ 85.2
Ro. Clnr. Tails		18.6	1.31	2.22	0.7
Ro. Clnr. Conc.		61.0	4.31	82.66	* 85.5
+ 48# Clnr. Conc.		24.5	1.73	97.90	40.7
- 48# Screen U'size		36.5	2.58	72.44	* 44.8
- 48# Regrind-Clnr Tails		7.5	0.53	13.40	1.7
- 48# Regrind-Clnr Conc.		29.0	0.53 2.05	87.70	* 43.1
- 48# +100# Clnr. Conc.		16.1	1.14	98.20	26.8
- 100# Screen U'size		12.9	0.91	74.60	* 16.3
- 100# Regrind-Clnr Tails		5.5	0.39	44.20	4.1
- 100# Clnr. Conc.		7.4	0.52	97.20	12.2
Combined Products	Weight %			Assay	Dist'n
Concentrates	Of Concs.			% C(g)	*
+ 48# Clnr. Conc.	51.04			97.90	
- 48# +100# Clnr. Conc.	33.54			98.20	
- 100# Clnr. Conc.	15.42			97.20	
Total Concs.	100.00		3.39		79.7
Tails				,	
Ro.Clnr Tails			1.31	2.22	0.7
- 48# Regrind Clnr Tails			0.53	2.22 13.40 44.20	1.7
- 100# Regrind Clnr Tails				44.20	
Total Clnr Tails			2.23		6.53
Ro. Flot'n. Tails			94.38	0.61	
Total Tails			96.61	0.88	20.3
Notes : Feed sample is Comp 2			•		

ORTECH INT. LAB TEST No 1 BISSETT CREEK GRAPHITE METALLURGICAL RESULTS

Main test variable : Primary grind is 98.3% - 48# Reagents used are Varsol @ 50 g/t, and MIBC as required.

26-Apr-90

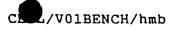
.

-

F

Products		Weight			
		g	*	% C(g)	
Head (Calc) Ro: Flot'n. Tails Ro. Flot'n. Conc.		1412.4 1336.4 76.0	100.00 94.62 5.38	3.79 * 0.34 64.54 *	100.0 8.5 91.5
Ro. Clnr. Tails Ro. Clnr. Conc.		13.0 63.0	0.92 4.46	1.41 77.57 *	0.3 91.2
+ 48# Clnr. Conc. - 48# Screen U'size				89.10 65.59 *	
- 48# Regrind-Clnr Tails - 48# Regrind-Clnr Conc.	÷	8.5 22.4	0.60 1.59	8.86 87.11 *	1.4 36.4
- 48# +100# Clnr. Conc. - 100# Screen U'size	ř	13.4 9.0	0.95 0.64	95.00 75.37 *	23.8
- 100# Regrind-Clnr Tails - 100# Clnr. Conc.		3.8 5.2	0.27 0.37	45.90 96.90	3.3
Combined Products	Weight %				
Concentrates	Of Concs.			% C(g)	
- 48# +100# Clnr. Conc. - 100# Clnr. Conc.	10.26		0.95 0.37	89.10 95.00 96.90	23.8
Fotal Concs.	100.00			91.46	
Tails			:		
Ro.Clnr Tails - 48# Regrind Clnr Tails - 100# Regrind Clnr Tails			0.60	1.41 8.86 45.90	1.
Fotal Clnr Tails	•		1.79	10.60	5.0
Ro. Flot'n. Tails			94.62	0.34	8.
	-		96.41	0.53	13.

ORTECH INT. LAB TEST NO 2 BISSETT CREEK GRAPHITE METALLURGICAL RESULTS

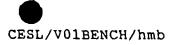

26-Apr-90

CESL/V01BENCH/hmb

Products		Weight		Assay	Dist'n.
	-	g		% C(g)	*
Head (Calc)		1415.0	100.00	3.70 *	100.0
Ro. Flot'n. Tails		1304.0	92.16	0.22	5.5
Ro: Flot'n. Conc.		111.0	7.84	44.53 *	94.5
Ro. Clnr. Tails		27.0	1.91	0.70 58.62 *	0.4
Ro. Clnr. Conc.		84.0	5.94	58.62 *	94.2
+ 48# Clnr. Conc.				71.60	
- 48# Screen U'size		39.0	2.76	43.64	32.5
- 48# Regrind-Clnr Tails		17.7	1.25	1.66	0.6
- 48# Regrind-Clnr Conc.		21.3	1.51	78.52 *	32.0
- 48# +100# Clnr. Conc.		12.3	0.87	90.90	21.4
- 100# Screen U'size		9.0	0.64	61.60 '	10.6
- 100# Regrind-Clnr Tails		4.5	0.32	30.90	2.7
- 100# Clnr. Conc.		4.5	0.32	92.30	7.9
Combined Products	Weight %		-	Assay	Dist'n.
Concentrates	Of Concs.			% C(g)	 %
+ 48# Clnr. Conc.	72.82			71.60	
- 48# +100# Clnr. Conc.	19.90			90.90	
- 100# Clnr. Conc.	7.28			92.30	
Total Concs.	100.00		4.37		90.9
Tails					
Ro.Clnr Tails			1.91	0.70	0.4
- 48# Regrind Clnr Tails			1.25	1.66 30.90	0.6
- 100# Regrind Clnr Tails					
Total Clnr Tails				3.81	•
Ro. Flot'n. Tails				0.22	5.5
Total Tails			95.63	0.35	9.1
Notes : Feed sample is Comp 2 All assays marked with an "* Main test variable : Primary					

ORTECH INT. LAB TEST No 3 BISSETT CREEK GRAPHITE METALLURGICAL RESULTS

Main test variable : Primary grind is 68.5 % - 48# Reagents used are Varsol @ 50 g/t, and MIBC as required.


£

i_

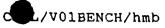
	-	Dist'n
	% C(g)	* *
	3.69 *	
94.10	0.26	6.6
5.90	58.40 *	93.4
1.09	2.17	0.6
4.80	71.18 *	92.7
2.86 1.94	79.20	61.4 31.3
1.94	59.38 *	31.3
0.65	6.63 85.76 *	1.2
1.30	85.76 *	30.1
	94.30	
0.49	71.86 🕈	° 9.6
0.21	46.60	2.7
0.28	90.80	6.9
	Assay	
	% C(g)	
	79.20	
0.80	94.30	20.5
0.28	90.80	6.9
	83.10	
1.09	2.17	0.6
0.65	6.63	1.2
0.21	46.60	2.7
1.95	8.46	4.48
94.10	0.26	6.6
96.06	0.43	11.1
	94.10	94.10 0.26 96.06 0.43

ORTECH INT. LAB TEST NO 4 BISSETT CREEK GRAPHITE METALLURGICAL RESULTS

Reagents used are Varsol @ 50 g/t, and MIBC as required.

F

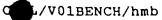
26-Apr-90


Products	Weigl	Weight		
	g	*	% C(g)	*
Head (Calc)	4369.6	100.00	2.29	100.0
Ro. Flot'n. Tails	4155.8	95.11	0.14	5.8
Ro. Flot'n. Conc.	213.8	4.89	44.14	94.2
1st Ro. Clnr Tails	56.6	1.30	1.38	0.8
1st Ro. Clnr Conc.	157.2	3.60	59.54	93.4
2nd Ro. Clnr Tails	13.9	0.32	2.14	0.3
2nd Ro. Clnr Conc	143.3	3.28	65.10 *	93.1
+ 48# 2nd Ro.Clnr Conc	89.7	2.05	67.48	60.4
+ 48# Gravity Tails	55.4	1.27	54.41	30.1
+ 48# Gravity Conc	34.3	0.78	88.60	30.3
- 48# 2nd Ro.Clnr Conc	53,6	1.23	61.12	\$ 32.7
- 48# Regrind-Clnr Tails	4.9	0.11	1.88	0.1
- 48# Regrind-Clnr Conc	48.7	1.11	67.08	\$ 32.6
- 48# +100# Clnr Conc	30.3	0.69	63.29	19.1
- 100# Screen U'size	18.4	0.42	73.33	13.5

	в.,	D.&	ASSOC	. LAB	TEST	No	7
BISSETT	CREEK	GRAE	HITE	METALI	URGI	CAL	RESULTS

	Weight	Assay	Dist'n.
Tails	\$	% C(g)	* *
lst Ro. Clnr Tails 2nd Ro. Clnr Tails - 48# Regrind-Clnr Tails	1.30 0.32 0.11	1.38 2.14 1.88	0.8 0.3 0.1
Total Clnr Tails	1.73	1.55	1.17
Ro. Flot'n. Tails	95.11	0.14	5.8
Total Tails	96.83	0.17	7.0

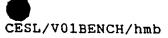
Notes : Feed sample is Comp 1 All assays marked with an "*" are calculated assays. Primary grind is 61.6 % - 48# Reagent used is EKOF 452G @ 200 g/t


.

ŗ-.

B.,D.& ASSOC. LAB TEST NO 8 BISSETT CREEK GRAPHITE METALLURGICAL RESULTS USING BEST OF REGRIND TESTS

Products		Weigl	nt	Assay	Dist'n.	
		g	* *	% C(g)		
Head (Calc)	<u>.</u>	23268.5	100.00	3.65 *	100.0	
Ro'. Flot'n. Tails		22129.1	95.10	0.16	4.2	
Ro. Flot'n. Conc.		1139.4	4.90	71.50 *	95.8	
lst Ro. Clnr Tails				1.43		
lst Ro. Clnr Conc.		979.3	4.21	82.96 *	95.6	
2nd Ro. Clnr Tails		39.7	0.17	4.47	0.2	
2nd Ro. Clnr Conc		939.6	4.04	4.47 86.28 *	95.4	
+ 48# 2nd Ro.Clnr Conc		656.8	2.82	88.01 * 96.34 90.30 30.60	68.0	
+ 48# Gravity Conc		224.4	0.96	96.34	25.4	
+ 48# Regrind Gravity Conc		384.5	1.65	90.30	40.8	
+ 48# Regrind Gravity Tail		47.9	0.21	30.60	1.7	
- 48# 2nd Ro.Clnr Conc		282.8	1.22	82.25 *	27.4	
- 48# Regrind 1st Clnr Tails		27.1	0.12	2.54	0.1	
- 48# Regrind 1st Clnr Conc		255.7	1.10	90.70 *	27.3	
- 48# Regrind 2nd Clnr Tails		4.6	0.02	9.67 92.19 *	0.1	
- 48# Regrind 2nd Clnr Conc		251.1	1.08	92.19 *	27.2	
- 48# +100# Clnr Conc		156.4	0.67	94.70	17.4	
- 100# Screen U'size		94.7	0.41	94.70 88.04 *	9.8	
- 100# Regrind 1st Clnr Tail		4.9	0.02	22.30	0.1	
- 100# Regrind 1st Clnr Conc		89.8	0.39	91.62 *	9.7	
- 100# Regrind 2nd Clnr Tail		1.7	0.01	38.40	0.1	
- 100# Regrind 2nd Clnr Conc		88.1	0.38	92.65	9.6	
Combined Products:	Concs Wt%					
Concentrates:						
+ 48# Gravity Conc + 48# Regrind Gravity Conc	26.29			96.34		
+ 48# Regrind Gravity Conc	45.05		1.65	90.30	40.8	
	71.35		2.62	92.53	66.3	
- 48# +100# Clnr Conc	18.33		0.67	94.70 92.65	17.4	
- 100# Regrind 2nd Clnr Conc				92.65		
Total Concentrates	100.00		3.67	92.94	93.3	
Tailings:						
Total Clnr Tails				7.55		
Ro. Flot'n. Tails			95.10	0.16	4.2	
Total Tails			96.33	0.25	6.7	
Notes: Feed sample is Comp 2 Primary grind is 51.0 Reagent used is EKOF 4 All assays marked with	52G @ 200 g	y/t calculat	ed assays			



•**

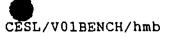
Products		Weig	ht	Assay	Dist'n.	
		g	 %	% C(g)	 &	
Head (Calc) Ro. Flot'n. Tails Ro. Flot'n. Conc.		23,266.7 22,129.1 1,137.6	100.00 95.11 4.89	3.67 * 0.16 71.88 *	100.0 4.2 95.8	
lst Ro. Clnr Tails 1st Ro. Clnr Conc. 2nd Ro. Clnr Tails 2nd Ro. Clnr Conc		160.1 977.5	0.69 4.20	1.43 83.42 * 4.47 86.76 *	0.3 95.6	
+ 48# 2nd Ro.Clnr Conc + 48# Gravity Conc + 48# Regrind Gravity Conc + 48# Regrind Gravity Tail		657.0 223.3	2.82 0.96 1.72	88.50 * 96.34 88.67	68.2 25.2 41.6	
 48# 2nd Ro.Clnr Conc 48# Regrind 1st Clnr Tails 48# Regrind 1st Clnr Conc 48# Regrind 2nd Clnr Tails 48# Regrind 2nd Clnr Conc 			0.08 1.12 0.03	4.02 88.44 * 10.88	0.1 27.1 0.1	
- 48# +100# Clnr Conc - 100# Screen U'size		166.5 89.3	0.72 0.38	90.97 88.84 *	17.8 9.3	
- 100# Regrind 1st Clnr Tail - 100# Regrind 1st Clnr Conc - 100# Regrind 2nd Clnr Tail - 100# Regrind 2nd Clnr Conc		3.6 85.7 1.6 84.1	0.02 0.37 0.01 0.36	22.30 91.64 * 38.40 92.65	0.1 9.2 0.1 9.1	
Combined Products:	Concs Wt	6				
Concentrates: + 48# Gravity Conc + 48# Regrind Gravity Conc	25.56 45.77		0.96 1.72	96.34 88.67	25.2 41.6	
Total + 48# Clnr Conc - 48# +100# Clnr Conc - 100# Regrind 2nd Clnr Conc	71.32 19.05 9.62		2.68 0.72 0.36	91.42 90.97 92.65	17.8	
Total Concentrates	100.00		3.76	91.45	93.7	
Tailings: Total Clnr Tails Ro. Flot'n. Tails				7.06 0.16		
Total Tails			96.24	0.24	6.3	
Notes: Feed sample is Comp 2 Primary grind is 51.0 Reagent used is EKOF 4 All assays marked with	52G @ 200 ·	g/t e calculat	ed assays:			

B.,D.& ASSOC. LAB TEST NO 8 BISSETT CREEK GRAPHITE METALLURGICAL RESULTS USING AVERAGE OF REGRIND TESTS

26-Apr-90

1

÷

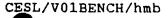

	B., D.& ASSOC. LAB TEST NO 8B	
BISSETT	CREEK GRAPHITE METALLURGICAL RESULT	S
FOR	+ 48# REGRIND/CLEANER FLOTN STUDY	

Products	Weight		Assay	Dist'n.	
	 g	*	% C(g)	*	
LONG REGRIND:					
+ 48# 2nd Ro.Clnr Conc + 48# Gravity Conc + 48# Gravity Tail		100.00 34.16 65.84	96.30		
+ 48# Regrind Screen O'size + 48# Regrind Screen U'size	60.2 7.7	58.37 7.47		60.0 2.6	
SHORT REGRIND:					
+ 48# 2nd Ro.Clnr Conc + 48# Gravity Conc + 48# Gravity Tail		100.00 34.16 65.84	96.30		
+ 48# Regrind Screen O'size + 48# Regrind Screen U'size	64.4 3.0	62.91 2.93		61.6 1.5	

Notes:

Relative differences in regrind conditions are as follows: Long regrind : 5 minutes using full regular mill charge Short regrind : 2 minutes using 1/2 of regular mill charge

26-Apr-90

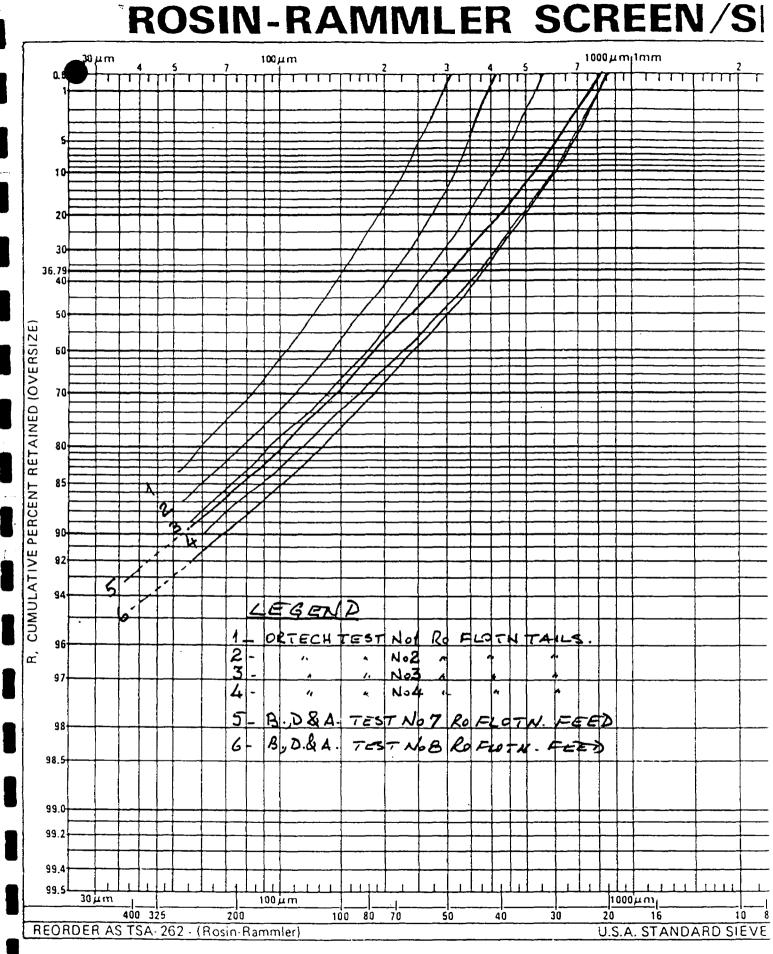


T

	BISSETT C	REEK	GRAPH		LLURGICAL ER FLOTN		
Products				-	ht	Assay	Dist'n.
LONG REGRIND:			-	g	*	% C(g)	
 48# 2nd Ro.Clnr Con- 48# Regrind 1st Cln 48# Regrind 1st Cln 48# Regrind 2nd Cln 48# Regrind 2nd Cln 48# Regrind 2nd Cln 	r Tails r Conc r Tails			49.0 4.7 44.3 0.8 43.5	9.59	82.26 2.54 90.72 9.67 92.21	0.3
- 48# +100# Clnr Conc - 100# Screen U'size				27.1 16.4	55.31 33.47	94.70 88.09	63.7 35.8
MEDIUM REGRIND:							
 48# 2nd Ro.Clnr Con 48# Regrind 1st Cln 48# Regrind 1st Cln 48# Regrind 2nd Cln 48# Regrind 2nd Cln 48# Regrind 2nd Cln 48# +100# Clnr Conc 100# Screen U'size 	r Tails r Conc r Tails r Conc			0.8 44.3	7.01 92.99 1.65 91.34 60.21	4.45 88.13 10.60 89.53 91.40	0.4 99.6 0.2 99.4 66.9
SHORT REGRIND:							
 48# 2nd Ro.Clnr Con 48# Regrind 1st Cln 48# Regrind 1st Cln 48# Regrind 2nd Cln 48# Regrind 2nd Cln 	r Tails r Conc r Tails			48.0 1.8 46.2 1.5 44.7	3.75 96.25 3.13		0.3 99.7 0.4
- 48# +100# Clnr Conc - 100# Screen U'size				30.3 14.4	63.13 30.00	87.30 88.40	

B., D.& ASSOC. LAB TEST No 8C

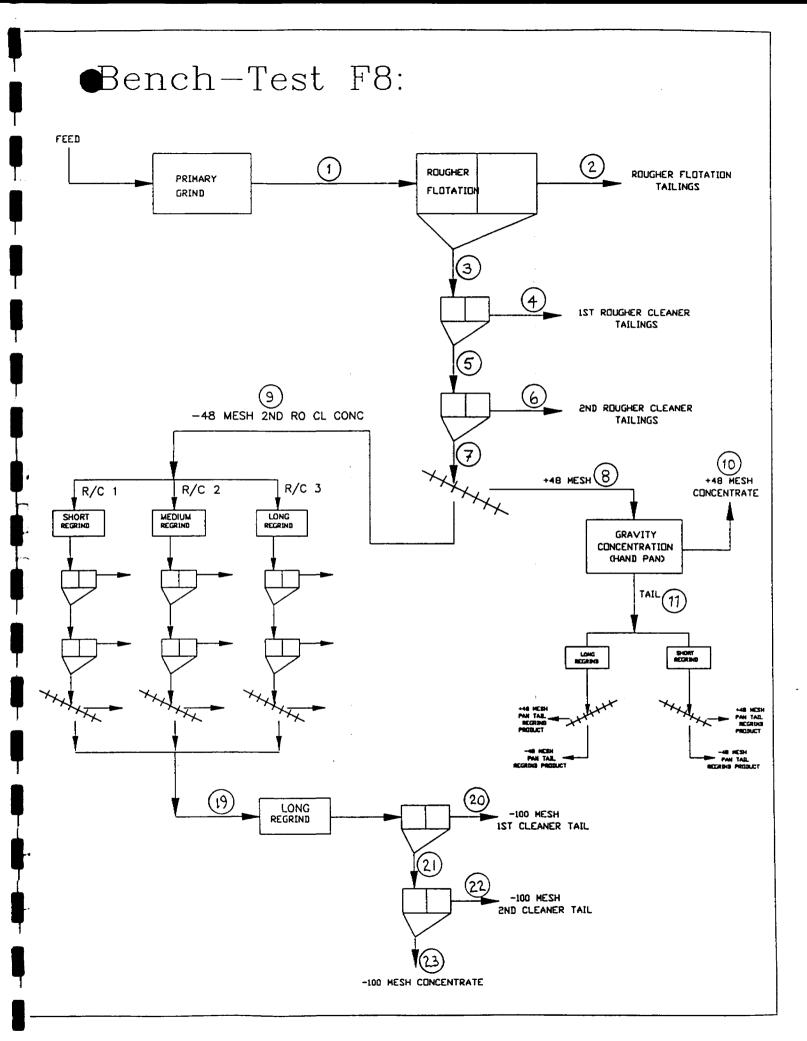
Notes: Relative differences in regrind conditions are as follows: Long regrind : 5 minutes using full regular mill charge Medium regrind : 5 minutes using 1/2 of regular mill charge Short regrind : 2 minutes using 1/2 of regular mill charge



B.,D.& ASSOC. LAB TEST No 9 BISSETT CREEK GRAPHITE METALLURGICAL RESULTS

Products	Weigl	ht	Assay	Dist'n.
	g	8	% C(g)	*
Head (Calc)	1,957.4	100.00	3.49	1.1
Ro. Flot'n. Tails	1,868.5	95.46	0.04	
Ro'. Flot'n. Conc.	88.9	4.54	75.94	
1st Ro. Clnr Tails	13.7	0.70	1.15	0.2
1st Ro. Clnr Conc.	75.2	3.84	89.57	* 98.7
2nd Ro. Clnr Tails	0.3	0.02	6.23	0.0
2nd Ro. Clnr Conc	74.9	3.83	89.90	98.6

Notes: Switched reagent to VARSOL/MIBC, added 80 g/t Rougher and Ro Clnr flotation only to observe conc grade/recovery trends All other parameters (ie.,grind, density, etc.)are the same as test No 8



 $R=100e^{-\left(\frac{x}{x}\right)^{n}}$ Log Log R=-n log x + K Where X = Particle Size

x, Absolute (at 36. n, Distributic (slope ł

BDA BENCH - TEST F8 TESTWORK FLOWSHEET DETAILS

. '

-

BDA BENCH - TEST F8

TESTWORK PROCEDURE DETAIL

Test No: M90-088 F8

L

Date: Feb 9/90

Purpose: As F7: 1)Increase size of test to 24 kg feed. 2)Screen 2nd cleaner conc into: 28, 48, 100, 200 mesh. 3)Assay and hold 2nd cleaner conc size fractions.

(COMPOSITE 2)

STAGE	TIME	ADDITIONS		
	(Minutes)	g/tonne	REAGENT	
Grind: 24 kg charge (Target: 95-98% -800 microns)	2.5		1/2 regular rod charge Large batch rod mill 50-60% solids	
Flotation: (float in 2 x 12 kg stages) Condition (Using 1 cubic foot machine)	5	150	pH= 7.3 40% solids EKOF 452 G	
Rougher	7.5		:	
Condition	2	15	EKOF 452 G	
Scavenger (to barren tail)	2		- pH= 7.5	
1st Ro Cleaner	10			
Condition	1	15	·· EKOF 452 G	
1st Ro Cleaner Scavenger	0.5			
2nd Ro Cleaner	12		· :	
Condition	1	15	EKOF 452 G	
2nd Ro Cleaner Scavenger	0.5			
Screening: 1. Perform screen analysis on 2nd r (save all screen fractions and us 2. Screen 2nd rougher cleaner cond	e for further te	estwork)		

Test No: M90-088 F8

Ē

Date: Feb 9/90

Gravity/Regrind/Screening Study:

1)Investigate optimum regrind procedure for +48 mesh gravity tailings

STAGE	TIME	AD	DITIONS
	(Minutes)	g/tonne	REAGENT
Gravity Concentration: Hand Panning			+ 48 mesh graphite conc
Screening:			
1. Perform screen analysis on (save all screen fractions a			
Long Regrind:			1/2 of +48 mesh gravity tails
Regrind	5		full ceramic charge
Screen at 48 mesh			regrind discharge
Short Regrind:			1/2 of +48 mesh gravity tails
Regrind	2.5		1/2 ceramic charge
Screen at 48 mesh			regrind discharge
			,

Test No: <u>M90-088</u> F8 R/C - 1

F

Date: Feb 15/90

Regrind/Cleaning Study: Investigate optimum regrind/cleaning procedure for -48 mesh Rougher 2nd Cleaner Conc

Test R/C-1: Short Regrind

STAGE	TIME	A	DDITIONS
	(Minutes)	g/tonne	REAGENT
Short Regrind:			-48 mesh 2nd Ro Cl Conc
Regrind	2		1/2 ceramic charge
			25-30% solids
			pH= 5.7
Screening:			
Perform screen analysis on regrin			
(Save all screen fractions and	d use for cleanii I	ng flotation) I	· ·
Cleaning Flotation:			. i
-48 # Cleaner 1	5	1	
Condition	1	15	EKOF 452 G
Cleaner Scavenger	0.5		
-48 # Cleaner 2	7		
Condition	1	15	EKOF 452 G
Cleaner Scavenger	0.5		
Screening:			
Wet Screen Graphite -48 # 2nd C		rate at 100 me	sh
(Save -100 # portion for future	testwork)		

Test No: <u>M90-088 F8</u> R/C - 2

- -

: •

Date: Feb 15/90

 Regrind/Cleaning Study:
 Investigate optimum regrind/cleaning procedure for

 -48 mesh Rougher 2nd Cleaner Conc

Test R/C-2: Intermediate Regrind

STAGE	TIME	TIME ADDITIONS	
	(Minutes)	g/tonne	REAGENT
Medium Regrind:			-48 mesh 2nd Ro Cl Conc
Regrind	5		1/2 ceramic charge
			25-30% solids
			pH= 5.7
Screening:			
Perform screen analysis on regrine			
(Save all screen fractions and	t use for cleanii I	ng flotation) I	
Cleaning Flotation:	i		
-48 # Cleaner 1	5		
Condition	1	15	EKOF 452 G
Cleaner Scavenger	3		
-48 # Cleaner 2	4.5		
Condition	1	15	EKOF 452 G
Cleaner Scavenger	1.5		
Screening:			
Wet Screen Graphite -48 # 2nd Cl	eaner Concenti	, rate at 100 me	esh
(Save -100 # portion for future			
			·
	1		

Test No: <u>M90-088 F8</u> R/C - 3

Date: Feb 15/90

Regrind/Cleaning Study: Investigate optimum regrind/cleaning procedure for -48 mesh Rougher 2nd Cleaner Conc

Test R/C-3: Long Regrind (extra ceramic charge)

STAGE	TIME	ADDITIONS	
	(Minutes)	g/tonne	REAGENT
Long Regrind: Regrind	5		-48 mesh 2nd Ro Cl Conc full ceramic charge 25-30% solids pH= 5.6
Screening:			pri= 5.8
Perform screen analysis on regrind	ı product		
(Save all screen fractions and		ng flotation)	
Cleaning Flotation:			
-48 # Cleaner 1	4.5		
Condition	1	15	EKOF 452 G
Cleaner Scavenger	3		
-48 # Cleaner 2	4		
Condition	1	15	EKOF 452 G
Cleaner Scavenger	1		
Screening:	1 		
Wet Screen Graphite -48 # 2nd Clea	l aner Concentr	l ate at 100 me	l ish
(Save -100 # portion for future te			
	· · · · · · · · · · · · · · · · · · ·		
			· · ·
		!	
		1	

Test No: M90-088 F8

Date: Feb 15/90

-100 Mesh Flotation:

1)Utillize most rigorous regrind (full ceramic charge, 5 minutes) 2)Standard 2-stage cleaning flotation

STAGE	TIME	A	DDITIONS
	(Minutes)	g/tonne	REAGENT
Combine -100# 2nd Cleaner Concs	from R/C-1, R	/C-2, R/C-3	
Screening:			
1. Perform screen analysis on -100 (save all screen fractions and us			VC-2, R/C-3
(Save all Screen nactions and US			
Long Regrind:			Total -100# product
Regrind	5		full ceramic charge
Screening:			
1. Perform screen analysis at 400 m	, nesh on -100 n	nesh regrind p	product
(save all screen fractions and us	e for further te	stwork)	
Cleaning Flotation:			regrind product
-100# Cleaner 1	5		
Condition	1	15	EKOF 452 G
Cleaner Scavenger	0.5		
-100# Cleaner 2	7		
Condition	1	15	EKOF 452 G
Cleaner Scavenger	0.5		
			· · ·
		1	

F

í -

MINERALOGICAL ANALYSIS OF SAMPLES

44395 AND 44396

VANCOUVER PETROGRAPHICS

Vancouver Petrographics Ltd.

JAMES VINNELL, Manager JOHN G. PAYNE, Ph.D. Geologist CRAIG LEITCH, Ph.D. Geologist JEFF HARRIS, Ph.D. Geologist KEN E. NORTHCOTE, Ph.D. Geologist P.O. BOX 39 8080 GLOVER ROAD, FORT LANGLEY, B.C. V0X 1,J0 PHONE (604) 888-1323 FAX. (604) 888-3642

Report for: Dave Copeland, C.E.C. Engineering Ltd., 1270 - 601 West Hastings Street VANCOUVER, B.C.

Invoice 8779 January 1990

Project: Bissett Creek Graphite (Phone 684-6328) Samples: 44395, 44396

Summary:

Sample 44395 is a graphitic quartzo-feldspathic schist dominated by quartz, plagioclase, and microcline, with minor biotite, tremolite/actinolite, pyrrhotite, and graphite, and accessory sphene. Graphite forms slender flakes which generally are not intergrown with other minerals. Foliation is defined by orientation of slender graphite flakes, and less commonly by orientation of biotite.

Sample 44396 is a graphitic quartzo-feldspathic schist, which is similar to Sample 44395, but contains more biotite and less sphene, and lacks tremolite/actinolite. Foliation is defined by parallel orientation of biotite and graphite flakes and by lenses rich in microcline.

Graphite generally forms slender, planar flakes averaging $\emptyset.3-1.5 \text{ mm}$ long and $\emptyset.03-0.07 \text{ mm}$ wide. These commonly occur adjacent to flakes of biotite of similar size or are associated with patches of pyrrhotite. Such grains would be separated readily from biotite and pyrrhotite by crushing. Much less commonly, books of a few flakes are contorted or warped, and minor quartz or less commonly biotite occurs between the individual flakes.

Photographs were taken to illustrate typical textures of graphite.

øohn G. Payńe 604-986-2928

Sample 44396

Graphitic Quartzo-feldspathic Schist with Biotite and Pyrrhotite

The sample is similar to 44395, but contains more biotite and Ti-oxide, and less sphene, and lacks tremolite/actinolite. Foliation is defined by parallel orientation of biotite and graphite flakes and by lenses rich in microcline.

quartz	30-35%	chalcopyrite	minor
plagioclase	30-35	hornblende(?)	minor
microcline	15-17	chlorite	trace
biotite	10-12	zircon	trace
pyrrhotite	3-4		•
graphite	3-4		
apatite	0.4		
sphene	Ø.2		
Ti-oxide	0.1		

Quartz forms anhedral grains averaging Ø.3-1 mm in size. Plagioclase forms anhedral, equant grains averaging Ø.5-1 mm in size, with a few up to 2 mm across. Alteration is very slight to extremely fine grained sericite.

Microcline forms anhedral grains averaging Ø.3-1 mm in size. In a few lenses it is concentrated with less quartz and plagioclase; in these, microcline grains are up to a few mm across.

Biotite forms subhedral flakes averaging Ø.3-1 mm long. It is concentrated moderately in a few lenses up to 1 mm wide parallel to foliation of subparallel flakes. Pleochroism is from pale straw to light/medium orangish to reddish brown.

Pyrrhotite forms anhedral grains averaging Ø.1-Ø.5 mm in size, with a few up to 1 mm across. Many patches are associated with biotite and/or graphite flakes.

Graphite forms slender flakes averaging $\emptyset.5-1.5$ mm long and $\emptyset.03-0.05$ mm wide. Many flakes are planar, and a small percentage are moderately warped. Most flakes are associated with biotite as parallel flakes and some flakes are associated with pyrrhotite. A few books are warped slightly to moderately, and contain minor, very fine grained quartz between individual flakes.

Accessory minerals commonly are associated with clusters of one or more of biotite, pyrrhotite, and graphite.

Apatite forms disseminated, anhedral to subhedral grains averaging 0.1-0.25 mm in size, with a few up to 0.3 mm long, and one equant grain 0.5 mm across.

Sphene forms anhedral grains averaging 0.05-0.15 mm in size, with a few up to 0.4 mm across. In some biotite-rich patches, sphene forms slender, wedge-shaped interstitial grains between biotite flakes. Locally it forms thin rims on pyrrhotite grains.

Ti-oxide forms a few anhedral grains averaging 0.2-0.4 mm in size. It has a deep purplish grey color in transmitted light and a light bluish grey color in reflected light. Some Ti-oxide grains are rimmed by sphene.

Hornblende(?) forms a few anhedral grains up to 0.7 mm in size. It is altered completely to an aggregate of cryptocrystalline, light brown chlorite(?).

Chalcopyrite forms anhedral grains averaging 0.05-0.1 mm in size associated with pyrrhotite, and mainly along borders of pyrrhotite patches.

Zircon forms a few anhedral grains up to 0.05 mm in size.

Pyrrhotite forms anhedral to subhedral, equant grains, and elongate lenses averaging Ø.5-1 mm in size. Associated with some pyrrhotite patches are irregular patches of bright orange-brown limonite.

Sphene forms anhedral to subhedral grains averaging 0.1-0.3 mm in size, with a few up to 0.9 mm long. They are associated mainly with actinolite and biotite.

Apatite forms subhedral, stubby prismatic grains averaging $\emptyset.05-0.07$ mm in length, and a few clusters of elongate prismatic grains up to $\emptyset.3$ mm long associated with graphite. A few equant grains are up to $\emptyset.3$ mm in cross section. One subhedral prismatic grain $\emptyset.4$ mm long is associated with pyrrhotite and biotite.

Clinozoisite forms clusters up to Ø.4 mm in size of extremely fine to very fine grained aggregates. It is concentrated strongly in one band parallel to foliation in which it forms very fine grained aggregates intergrown coarsely with tremolite/actinolite and pyrrhotite.

Chlorite forms a few flakes up to 0.2 mm in size associated with pyrrhotite or tremolite/actinolite. Some of it is secondary after biotite.

Zircon forms a few equant, anhedral grains averaging 0.02-0.03 mm in size, mainly enclosed in biotite, and commonly having dark pleochroic halos. A few subhedral, prismatic grains are up to 0.15 mm long.

Chalcopyrite forms a few anhedral, equant grains averaging 0.02-0.05 mm in size associated with pyrrhotite.

Sample 44395

Graphitic Quartzo-feldspathic Schist with Biotite, Tremolite/Actinolite, and Pyrrhotite

The rock is a moderately foliated schist dominated by quartz, plagioclase, and microcline, with minor biotite, tremolite/actinolite, pyrrhotite, and graphite, and accessory sphene. Graphite forms slender flakes which generally are not intergrown with other minerals. Foliation is defined by orientation of slender graphite flakes, and less commonly by orientation of biotite.

quartz	30-35%
plagioclase	25-3Ø
microcline	15-17
biotite	6-8
<pre>tremolite/actinolite</pre>	5-7
pyrrhotite	4-5
graphite	3-4
sphene	Ø.8
apatite	0.3
clinozoisite	Ø.2
chlorite	0.1
epidote	minor
zircon	trace

Quartz forms anhedral grains averaging Ø.3-0.5 mm in size; and is concentrated in lenses and patches parallel to foliation in which grains are up to 2.5 mm long.

Plagioclase forms anhedral grains averaging \emptyset .7-1.2 mm in size, with a few up to 2.5 mm across. Alteration is slight to extremely fine grained flakes of sericite, and less commonly to very fine grained aggregates of epidote. AS few grains adjacent to microcline grains contain minor myrmekitic quartz in elongate lenses.

Microcline forms anhedral grains averaging Ø.5-1.5 mm in size. It is concentrated strongly in a few bands parallel to foliation.

Biotite is concentrated in certain layers, commonly with quartz and microcline. It forms stubby to slender flakes averaging $\emptyset.3-\emptyset.8$ mm in length, with a few up to 1.5 mm long. Pleochroism is from nearly colorless to light orangish brown. Flakes commonly are concentrated in clusters and some are associated with graphite.

Tremolite/actinolite forms subhedral to anhedral, equant to prismatic grains averaging 0.5-1 mm in size. They commonly are concentrated in clusters of a few to several grains, associated with which commonly are flakes of graphite and grains of sphene. Pleochroism is weak and the color is pale green. Some grains are altered in irregular patches to cryptocrystalline aggregates of light to medium green chlorite/amphibole, commonly stained orangish brown by limonite.

Graphite forms slender flakes averaging 0.5-1.5 mm long and 0.03-0.07 mm wide. A few flakes average 0.3-0.5 mm long and 0.02-0.03 mm wide. It commonly is concentrated moderately in clusters of flakes which are associated with patches of pyrrhotite and/or flakes of biotite. A few clusters of smaller graphite flakes are bent moderately; intergrown with some of these clusters are lenses of very fine grained quartz. A few other bent clusters are associated with clusters of tremolite/actinolite. A few clusters of graphite flakes are intergrown with pyrrhotite. Note: Photo numbers refer to numbers on negative film and on backs of prints. Photos were taken in combined reflected and transmitted light unless indicated otherwise.

Photo Sample Description

- Ø 44395-A graphite flakes and pyrrhotite in feldspar-quartz-biotite. reflected light. Length of Photo (LOP): 1.52 mm (100X)
- 1 44395-A graphite flakes (some contorted) and pyrrhotite in feldspar-quartz. reflected light. LOP: 3.04 mm (50X)
- 2 44395-A graphite flakes, pyrrhotite in feldspar-quartzbiotite; LOP: 3.04 mm (50X)
- 3 44395-B similar to Photo 2; LOP: 3.04 mm (50X)
- 4 44395-B similar to Photo 2; LOP: 3.04 mm (50X)
- 5 44395-B same as Photo 4; LOP: 1.52 mm (100x)
- 6 44396-A graphite, pyrrhotite, Ti-oxide (bluish grey) in feldspar-quartz-biotite; LOP: 1.52 mm (100X)
- 7 44396-A pyrrhotite and minor chalcopyrite in feldspar-quartz-biotite-(sphene); LOP: Ø.61 mm (250 X)
- 8 44396-A graphite with biotite and sphene in feldspar-quartz; transmitted light only; LOP 0.61 mm (250X)
- 9 44396-A graphite flakes (some contorted) with plagioclase and biotite; transmitted light only; LOP: Ø.61 mm (250X)
- 10 44396-A graphite flakes, pyrrhotite (with minor chalcopyrite), Ti-oxide rimmed by sphene in feldspar-quartz-biotite; LOP: 1.52 mm (100x)
- 11 44396-A clusters of graphite flakes, minor pyrrhotite in feldspar-quartz-biotite; LOP: 1.52 mm (100X)

12 44395-B graphite with sphene and tremolite-actinolite in quartz-feldspar-biotite; transmitted light only; LOP: 0.61 mm (250X)

13 44395-B graphite flakes in biotite; equant pyrrhotite in feldspar-quartz; tiny zircon with dark, pleochroic halo in biotite; transmitted light only; LOP: 0.61 mm (250X) ------

F

60 TON BULK SAMPLE REPORT

R.M. BLAIS AND ASSOCIATES

60 TON BULK SAMPLE REPORT

.

٠. -

BISSETT CREEK GRAPHITE PROJECT

MARIA TOWNSHIP, ONTARIO

for

NORTH COAST INDUSTRIES LTD.

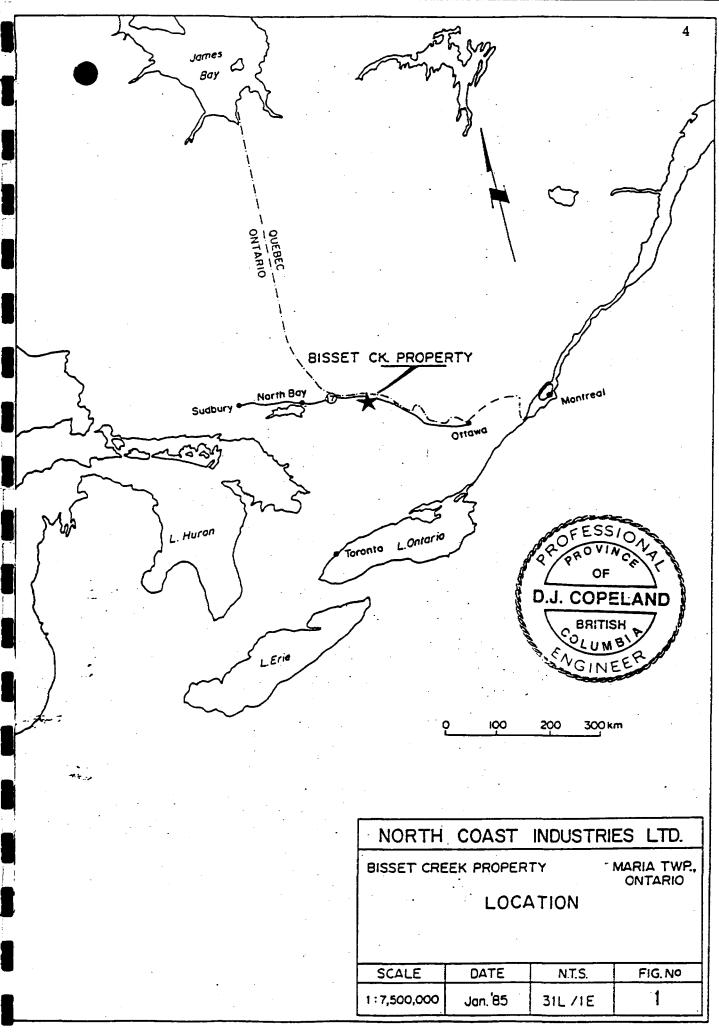
ъу

R.M. BLAIS & ASSOCIATES LTD.

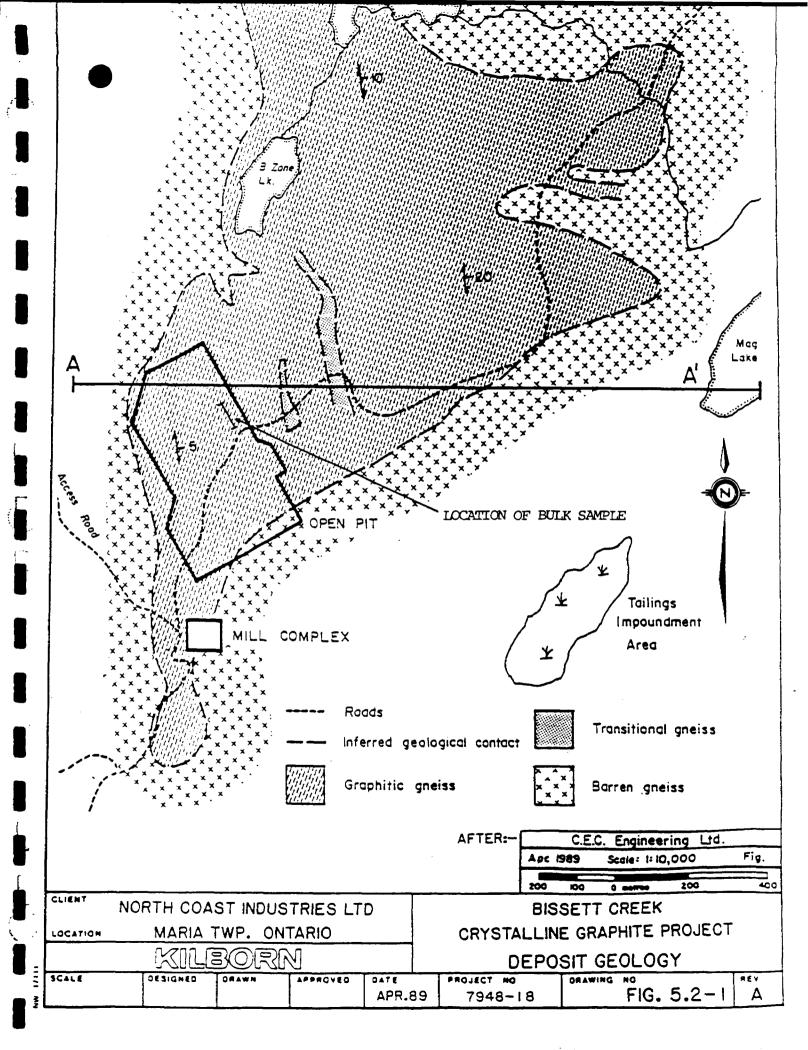
REPORT

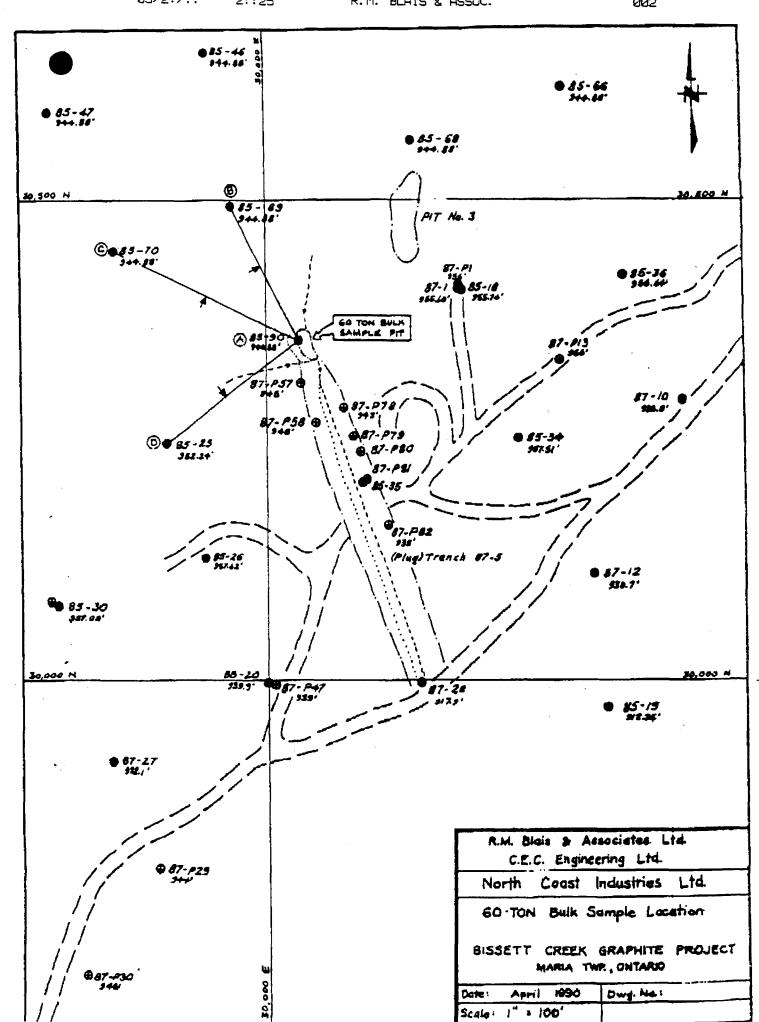
60 TON BULK SAMPLE

<u>Bissett Creek Graphite Project</u> <u>Maria Township - Renfrew County</u> <u>Province of Ontario</u>


The following report summarizes the Sampling Program carried out by R.M. Blais and Associates Ltd. for North Coast Industries Ltd. during the period from December 27th, 1989 to January 10th, 1990. This program is referred to as 60 Ton Bulk Sample.

Sample area of 60 Ton Bulk Sample is located at North end of PLUG TRENCH in vicinity of Diamond Drill Hole 85-90. Plug Trench Area is located on unpatented mining claim E.O.608347. This open cut plug trench is located on the eastern side of the proposed open pit and was selected because of the density of drill holes in the area and the ability to achieve a reasonable depth of cut into the ore zone.


The bulk sample pit area was surveyed and tied into the existing mine co-ordinate grid system. Elevations were taken to establish vertical control related to existing topographic features, diamond drill and percussion holes. At this time, the first sampling was completed. Sample series A-E were taken at the bottom of the existing cut.


The excavating program was carried out during December 27, 1989 to January 10, 1990. With the pit laid out and overburden excavated, an area of approximately 14 feet by 20 feet by 5 feet deep was drilled and blasted. This yielded approximately 122 short tons of ore that was excavated with a John Deere 892 Hydraulic backhoe equipped with a 1-1/2 cu. yd. bucket. Ore muck was loaded into four tandem trucks and transported to Birch's Road yard in North Bay and dumped. It is estimated that 80 to 90 short tons were dumped at the North Bay yard. Sample series 010 to 015 were taken after blasting and excavation on the new pit floor and samples 021 to 024 were taken as face samples around the perimeter of the new pit.

Run of mine ore was loaded into three tandem trucks on January 8th, 1990 and sent to a crushing operation in the Huntsville area. Three truck loads were crushed to 4 1/2" minus material. Trucks #1 and #2, carrying crushed material, continued on to pilot plant facilities at Ortech International in Mississauga, Ontario for mill testing.

Truck #3 returned to North Bay with crushed material and dumped load at the Birch's Road yard. The crushed material from Truck and the remaining run of mine ore is now stored at Bakk Transport yard in North Bay.

The material at Ortech was then placed in 45 gal. drums for ease handling. Of this material, some 20 tonnes was shipped to Ba Donaldson on February 4, 1990. On March 26, 1990, a further tonnes were shipped from Birch's Road yard.

Summary of samples and assay results are outlined on Summary As Sheet - 60 ton Bulk Sample - January 1990 attached to this repo

The following is a list of equipment and work crew members used the sampling program.

EQUIPMENT

John Deere 892 - 1 1/2 cu. yd. Hydraulic Backhoe 185 CFM Diesel Compressor (2 Jack Hammers, Oilers, Hose, etc.) Blasting Supplies 1989 4x4 3/4 ton GMC Truck 4 Tandem Trucks

WORK CREW

R.M. Blais	Supervisor
B. Belanger	Driller
A. Waldriff	Driller
R. Scanlon	Blaster
D. Priolo	Backhoe Operator

PLANS

1. Property plan showing location performed work

2. Location Plan showing Sampling Pit Location

3. Summary Assay Sheets

4. Certificate of Analysis

- 5. X-Sections (2 Pages)
- 6. Detail Plan (Scale 1" = 10') showing Sample and As Locations and other details

Report Date: February 1990

MMARY ASSAY SHEET - 60 TON BULK SAMPLE JANUARY 1990				
	North Co Lab	oast	Lakefield LECO	
Sample	L.O.I.	C(T)%	C(g)%	
A	3.82	3.52	3.06	Grab Sample Top End Plug Trench at Swamp
В	3.67	3.36	3.23	Grab Sample Top End Plug Trench at Swamp
С	3.91	3.52	3.07	Grab Sample Top End Plug Trench at Swamp
D	3.70	3.26	2.94	Grab Sample Top End Plug Trench at Swamp
E	4.26	3.85	3.60	Grab Sample Top End Plug Trench at Swamp
010 011 012 013 014	3.72 3.56 3.91 3.46 3.12	3.58 3.39 3.71 3.17 2.84	3.48	See Attached Sketch
015	3.70	3.25	2.87	See Attached Sketch
018	3.27	3.29	2.97	Truck #1 ROM from 60 Ton Bulk Sample (RMB Yard)
019	3.39	3.22	3.04	Truck #2 ROM from 60 Ton Bulk Sample (RMB Yard)
020	3.85	3.78	3.62	Truck #3 ROM from 60 Ton Bulk Sample (RMB Yard)
021	3.49	3.49	3.25	East Face-Jan 1990 Trench
022	3.60	3.58	3.41	West Face-Jan 1990 Trench
023	3.36	3.16	2.84	North Face-Jan 1990 Trench
024	3.77	3.74	3.60	South Face-Jan 1990 Trench
025	3.47	3.37	3.18	200 lb. Mini Bulk Shipped by Purolator to ORTECH
028	3.51	3.75	3.51	Truck #4 ROM from 60 Ton Bulk Sample (RMB Yard)
029	3.68	3.61	3.54	Truck #1 Crushed - 4-1/2" Hauled to ORTECH (in bldg)
030	3.61	3.48	3.31	Truck #2 Crushed - $4-1/2$ " Hauled to ORTECH (outside)
031		3.40	3.16	Truck #3 Crushed - 4-1/2" Hauled Back to RMB Yard

Ē

Average of 23 samples - 3.18

C(T)% Carbon (Total) C(g)% Carbon (Graphitic)

P.O. Box 430, 185 Concession St., LAKEFIELD, ON KOL 2H0 Phone: (705) 652-3341, Facsimile: (705) 652-6365, Telex: 0696-2842

CERTIFICATE OF ANALYSIS

North Coast Indust 1201 — 601 West Ha Price Waterhouse (Mr. Dave Copeland	astings Centre, Vancouve	r, BC V6B 5AG	Date: Sample Received: No. of Samples: Our Reference No.: Your P.O. No.:	December 22, 1989 November 20, 1989 11 8933421
Samples submitted to us show resul	ts as follows:			
Sample	C(T) 7	C(g) %		
Dec. 13/89				
A	3.52	3.06		
В	3.36	3.23		
C	3.52	3.07		
D	3.26	2.94		
E	3.85	3.60		
-				
Dec. 18/89				
010	3.58	3.31		
011	3.39	2.97		
012	3.71	3.48		
015	3.17	2.61		
014	2.84	2.64		
015	3.25	2.87		
Totals:	11	11		
,				

R. M. Blais Additional Copies to Signed: Alexan

A. E. Carr, Manager - Assay Services

NOTE: Rejects will be discarded after 6 months Please, inquire about our long-term storage facilities No.: 5166

AKEFIELD RESEARCH

No.: 5235

P.O. Box 430, 185 Cancession SL, LAKEFIELD, ON KOL 2HO Phone: (705) 652-3341, Facsimile: (705) 662-6365 , Telex: 0696-2842

CERTIFICATE OF ANALYSIS

Vancouver B C V6B 5A6	Date: Sample Received: No. of Samples: Our Reference No.:	
Mr. Dave Coupland	Your P.O. No.:	

Samples submitted to us show results as follows:

ſ

		1
3.29	2.97	۲ ۱
3.22	3.04	
3.78	3.62	**
3.49	3.25	
3.58	3.41	
3.16	2.84	
3.74	3.60	
3.37	3.18	•
3.75	3.51	
9	9	
	3.22 3.78 3.49 3.58 3.16 3.74 3.37 3.75	3.22 3.04 3.78 3.62 3.49 3.25 3.58 3.41 3.16 2.84 3.74 3.60 3.37 3.18 3.75 3.51

D RESEARCH A DIVISION OF FALCONBRIDGE LIMITED

P.O. Box 430, 185 Concession St., LAKEFIELD, ON KOL 2H0 Phone: (705) 652-3341, Facsimile: (705) 652-6365, Telex: 0696-2842

CERTIFICATE OF ANALYSIS

North Coast Industries Ltd. 1201–601 West Hastings St., Price Waterhouse Centre Vancouver, B. C., V6B 5A6		9
Mr Dave Coupland	Your P.O. No.:	9033468

Mr. Dave Coupland

Samples submitted to us show results as follows:

·	Sample	C(T) %	C(G) 7	
	242			t
	018	3.29	2.97	
	Ū19	3.22	3.04	
	020	3.78	3.62	
	021	3.49	3.25	,
	022	3.58	3.41	
	023	3.16	2.34	
:	024	3.74	3.60	:
	025	3.37	3.18	
	026 (028)	3.75	3.51	
	Totals:	9	9	

Signed: ,

idditional Copies to Mr. W. Morrat

NOTE: Rejects will be discarded after 6 months Please, inquire about our long-term storage facilities No.: 5235 KEFIELD RESEARCH

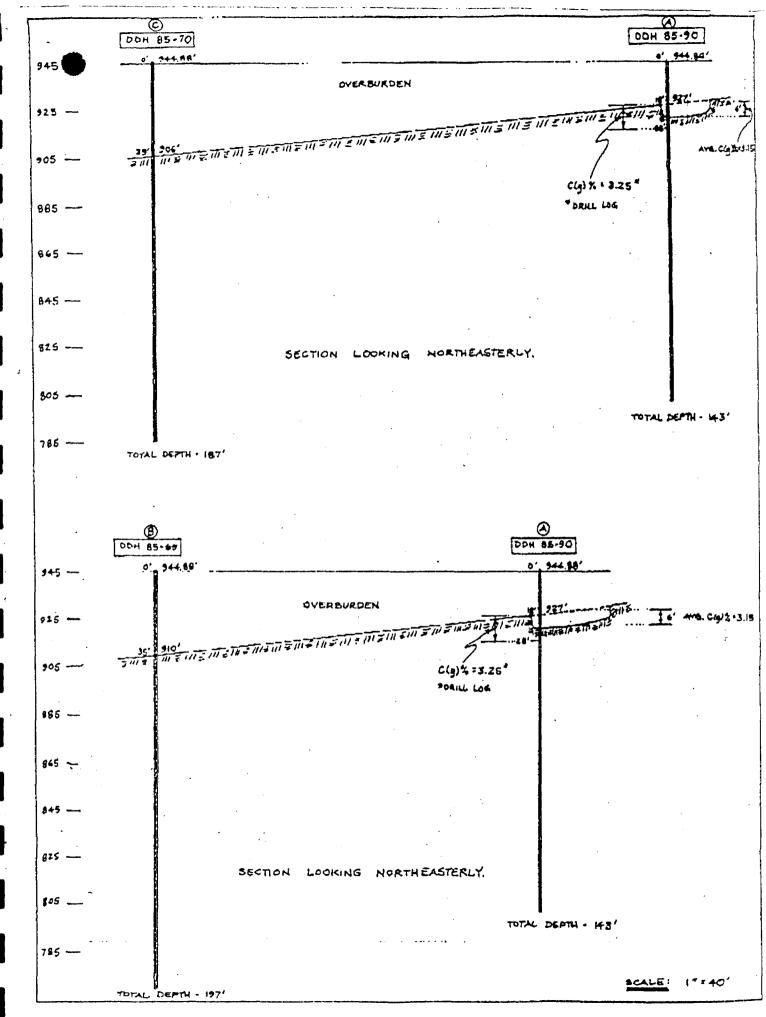
P.O. Box 430, 185 Concession St., LAKEFIELD, ON KOL 2H0 Phone: (705) 652-3341, Facsimile: (705) 652-6365, Telex: 0698-2842

CERTIFICATE OF ANALYSIS

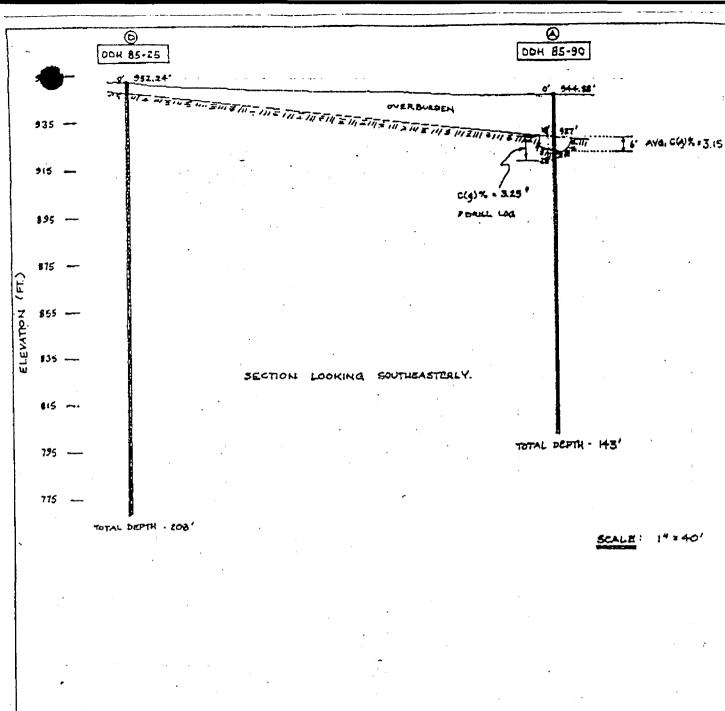
North Coast Indus 1201-601 West Has Vancouver, B. C., Mr. Dave Couplan Samples submitted to us show res	stings St., Price N V6B 5A6 d	Waterhouse Centre	Date: Sample Received: No. of Samples: Our Reference No.: Your P.O. No.:	January 24, 1990 January 18, 1990 6 9033551
Sample	C(T) 72	C(2) %		;
029	3.61	3.54		
030	3.48	3.31		į
031	3.40	3.16		
032	2.04	1.83	LK SAMPLE	
033	2.04	1.92 (1
034	2.32	2.15	,	
Totals:	6	6		

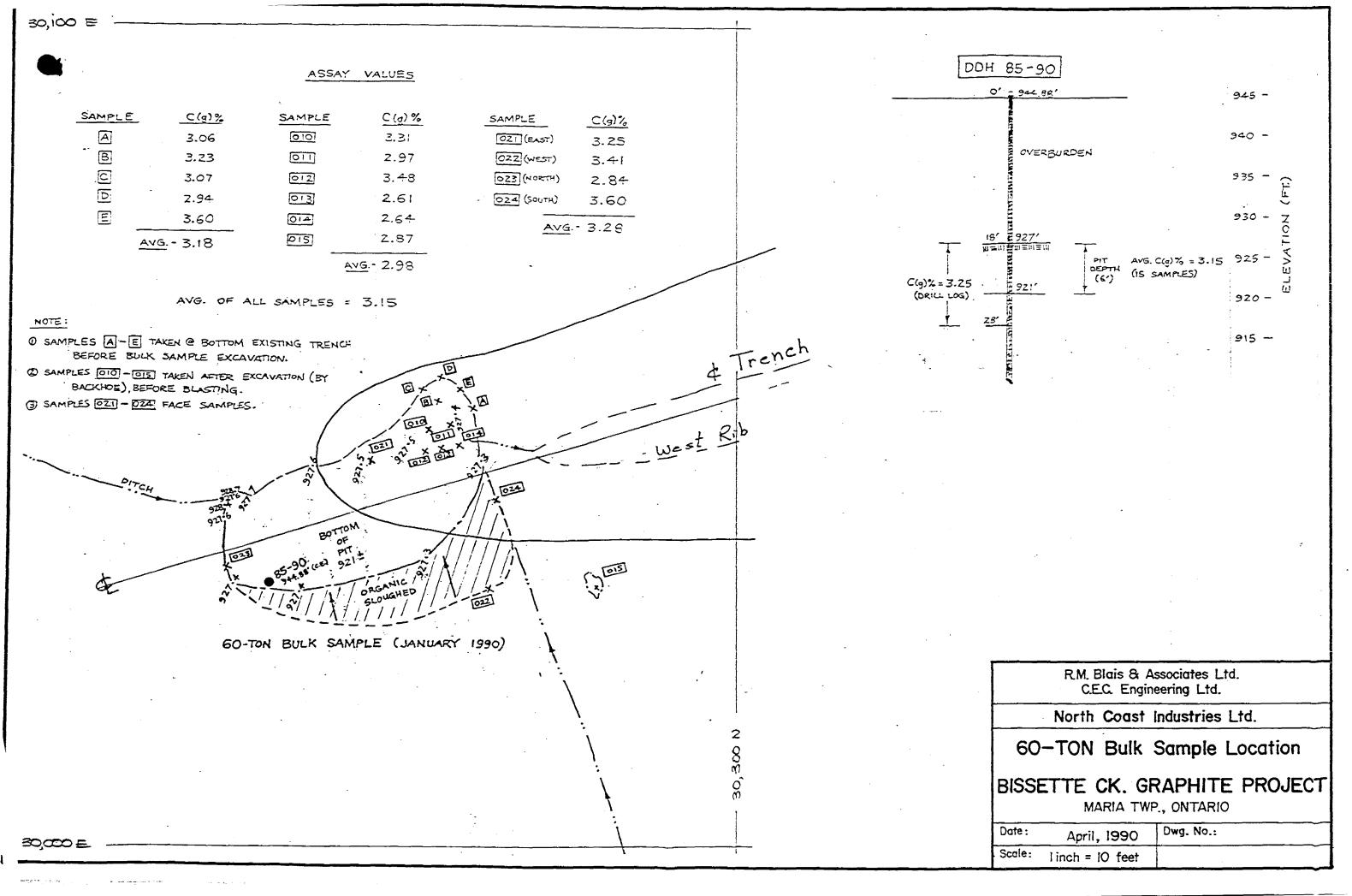
Additional Copies to Mr. W. Moffat

1


\$_1

NOTE: Rejects will be discarded after 6 months Please, inquire about our long-term storage facilities


Signed:/


A. E. Carr, Manager - Assay Services

No.: 5308

._

Î

n

CONCENTRATE IMPURITY ANALYSIS

VANCOUVER PETROGRAPHICS LTD.

.

Vancouver Petrographics Ltd.

JAMES VINNELL, Manager JOHN G. PAYNE, Ph.D. Geologist CRAIG LEITCH, Ph.D. Geologist JEFF HARRIS, Ph.D. Geologist KEN E. NORTHCOTE, Ph.D. Geologist P.O. BOX 39 8080 GLOVER ROAD, FORT LANGLEY, B.C. V0X 1J0 PHONE (604) 888-1323 FAX. (604) 888-3642

Report for: Ed Henrioulle, Bacon, Donaldson & Associates, 12271 Horseshoe Way, RICHMOND, B.C., V7A 421

Sample: M90-088 MG-Ro Tails

P.O.: 32717

Purpose:

To analyze nine size fractions of tailings for graphite content, and to compare the results with those of the Leco method (average Ø.11%) and the Double L.O.I. method (average 1.1%).

Method:

Polished thin sections were made for the following size fractions:

+28, +35, +48, +65, +100, +150, +200, +325, -325.

Traverses were made across the sample to cover 90-95% of the total area of the section; for coarser samples these were made using a 4x objective lens (field of view = 30 sq.mm), and for finer samples with a 10x objective lens (field of view = 9.1 sq.mm).

In the coarsest sample, individual particles were counted and their average size noted. In finer samples, the density of particles was measured at several points in the section, and the average particle size were measured. These results were used to calculate the total area of particles along the traverse lines.

The size and shape of graphite grains and aggregates was recorded in five size categories and in two shape categories. Size fractions are as follows:

0.03-0.05 mm, 0.05-0.1 mm, 0.1-0.2 mm, 0.2-0.3 mm, 0.3-0.4 mm

The two shape categories are as follows:

flakes (average length to width ration 3/1 to 5/1),
 equant patches (average length to width ratio 1/1 to 2/1).

Invoice 8823 February 1990 Other tabular wood fragments averaging 0.4-0.8 mm in size show a similar elongate cellular structure. A few fragments show cross sections of the cells. Some tabular fragments are warped moderately. Most are stuck moderately firmly to graphite flakes. Tabular fragments commonly have ragged ends. A few fragments have an unusual cellular structure, which may represent a different type of wood (one has a texture resembling cactus wood).

Biotite forms equant flakes averaging $\emptyset.4-\emptyset.8$ mm across. The color ranges from light to medium/dark brown to slightly reddish brown. Commonly flakes are locked electrostatically to graphite flakes of similar size.

Several flakes averaging Ø.1-Ø.5 mm in size are of colorless muscovite to pale brown phlogopite.

.

One paper? fragment contains a dense core Ø.2 mm across of white material with a high internal reflection. A few wispy, colorless, fibrous strands up to Ø.3 mm long extend outward from the core. This may be a fragment of the filter.

A few flakes of an unknown material are isotropic and medium brown in color. These have a mottled texture. When touched with a needle one broke along the fracture shown in the photograph. It has an unusual rippled texture and contains spots of highly reflective material. They do not cling to graphite flakes. These may represent a manufactured product.

A very few string-like fibers are up to a few mm long. These may be of something like cotton.

One equant tabular particle $\emptyset.2 \text{ mm}$ across may be of plastic. It is colorless and isotropic.

John G Varjos

John G. Payne 604-986-2928

Numbers refer to number on negative and on back of print. All photos were taken with transmitted and reflected light except where noted.

Number Description

- Ø Wood fragment locked between three graphite fragments. Length of photo: Length of photo: 1.52 mm.
- 1 Fragment of filter)(?) Ø.4 mm across with graphite flakes and one biotite flake. Length of photo: 1.52 mm.
- 2 Red-brown biotite flake with graphite flakes. Length of photo 1.52 mm.
- 3 Wood fragment locked on graphite flake. Length of photo Ø.6 mm.
- 4 Biotite flake beneath graphite flake, electrostatically held together. Length of photo 1.52 mm.
- 5 Wood fragment and biotite flake with graphite flakes. Small fibrous fragment in corner. Length of photo 1.52 mm.
- 6 Tabular wood fragment with graphite flakes. Length of photo Ø.6 mm.
- 7 Tabular wood(?) fragment locked between two graphite flakes. The texture of this fragment resembles that of cactus wood. Length of photo 1.52 mm
- 8 Elongate fibrous wood fragment, bent, stuck to large graphite flake. Smaller equant wood fragment. Length of photo Ø.61 mm.
- 9 Tabular fragment of unknown material showing rippled surface and fracture produced by pin, and graphite flake. Length of photo 0.6 mm.
- 10 Elongate fibrous wood fragment, free of graphite. Length of photo 1.52 mm.
- 11 Biotite flake and two fibrous wood fragments with graphite flakes. Length of photo 1.52 mm.
- 12 Tabular wood fragment, warped moderately, with graphite flakes. Length of photo Ø.6 mm.
- 13 Biotite flake and equant wood fragment with graphite flakes. Transmitted light only. Length of photo 1.52 mm/

-

Γ

1

MATERIAL SAFETY DATA SHEET

FOR

Ekof-452G COLLECTOR/FROTHER

Ekof Erz-und Kohlaflotation Gmbh

rafety data sheet

HER OF THE POINT POINT

5

(according to DIN 52'900, 10/1988)

Manufacturer: ENOF Ers- und Kohlmflotation GmbH

Brand name i EKOFOL 452 d

1.1 Chemical characterization: Formulation of higher aliphatic alcohols with non-ionic tensides and pine oils

1.2 State: liquid

1.3 Colour: yellow brown

1.4 Scent: higher aliphatic alcohol

2. Physical and sefety-related data

2.1 Change of states boiling at abt. 160 * C (1.s. 320 * F)

2.2 Density: (at 20 °C) abt. 0,86 g/cm *

2.3 Vapor pressurat (20 ° C) < 1 abor

3.5 Solubility in water: insoluble

2.7 Fish point: > 60 $^{\circ}$ C (140 $^{\circ}$ $\frac{1}{2}$)

2.8 Ignition temperature: 270 °C (518 °F)

2.9 Explosion range: lower: 1.1 gas vol. 4) in air upper: 7.7 gas vol. 4)in air 3. Protesting Measures, Storage and Hendling

1.1 Personal Protection Equipment

Hand protection: plastic or rubber gloves Eye protection : safety goggles

3.2 Disposal: combustion

4. Imergency Measure - Accidents and Firse

- 4.1 Extinguishing Agents suitable: foam, Co g, dry fire fighting powder
- 4.2 First Aid: After swallowing larger amounts, initiate vomitting In case of contact with skin, plean with soap and water If product splashed into eyes, immediately rinse eyes with plenty of water for several minutes
- 5. Toxicologic Characterization: Aquite oral toxicity (1050 = letal desage 50 %) with rate: abt. 8 g/kg weight of body slightly irritating for skin irritating for mucous membranes

5. Ecologic Effects slightly toxic for fish Biodegradable > 20 %

7. Further References No dangerous product in the sense of the relevant safety rules of the European Community. -

WHOLE ROCK ANALYSIS

:

CHEMEX LABS LTD.

11 17			1					<u> </u>			
09-MAR-90 1-9012177	4										
Page Number: 1 Total Pages: 1 Invoice Date: 05 Invoice No. 15 P.O. Number: 3	7	TOTAL 8	100.45 100.70								
	A9012177	LOI &	4.51 4.67			-					
		Ba0 8	0.0 0.08								
гр.	ANALYSIS	MnO &	0.10 0.05	₹; 20				<u></u>			
E	OF AN/	P205 8	0.25 0.34								
BAUUN, DONALUSON & ASSOCIATES LTD. 12271 HORSESHOE WAY RICHMOND, BC V7A 4Z1 *: M90-088 hents: ATTN: HENRIOULLE	a	TiO2 8	0.47				, 				
BAUUN, DONALUSON & F 12271 HORSESHOE WAY RICHMOND, BC V7A 421 * : M90-088 hents: ATTN: HENRIOULI	CERTIFICATE	¥20	2.65			e t					
12271 BACUN 12271 BACUN 12271 BACUN 72271 BACUN		Na20 1	1.80 2.13						••••••••••••••••••••••••••••••••••••••		
		e cao	3.21 2.05						:	·	
		Mg0	2.50		4 <u>-</u>						
Chemex Labs Lt Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221		Fe203 N	4.31 3.28								
Chemex Labs Chemex Labs Analytical Chemists ' Geochemists ' Register 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221		A1203 F	11.07 8.60						:		
The market of the sector of th		Si02 #	69.51 76.86								
Analytical Ch British Cold PHONE: 6		PREP CODE	225 200 225 200								
			N N		<u> </u>						
(\mathbf{O})		SAMPLE DESCRIPTION	HEAD COMP. 1 HEAD COMP. 2								

CERTIFICATION:_

-

REPORT ON GRAIN COUNT ANALYSIS FOR ASSAY COMPARISON

ŧ.

÷

VANCOUVER PETROGRAPHICS

Vancouver Petrographics Ltd.

JAMES VINNELL, Manager JOHN G. PAYNE, Ph.U. Geologist CRAIG LEITCH, Ph.D. Geologist JEFF HARRIS, Ph.D. Geologist KEN E. NORTHCOTE, Ph.D. Geologist

P.O. BOX 39 8080 GLOVER ROAD, FORT LANGLEY, B.C. VOX 1J0 PHONE (604) 888-1323 FAX. (804) 888-3842

Report for: Bd Henrioulle, Bacon, Donaldson & Associates, 12271 Horseshoe Way, RICHMOND, B.C., V7A 421

Invoice 8823 February 1989 90

F6 Sample: M98-088 M6-Ro Tails

P.O.: 32717

Purpose:

To analyze nine size fractions of tailings for graphite content, and to compare the results with those of the Leco method (average \emptyset .11%) and the Double L.O.I. method (average 1.1%).

Method:

Polished thin sections were made for the following size fractions:

+28, +35, +48, +65, +100, +150, +200, +325, -325.

Traverses were made across the sample to cover 90-95 of the total area of the section; for coarser samples these were made using a 4X objective lens (field of view = 30 sq.mm), and for finer samples with a 10X objective lens (field of view = 9.1 sq.mm).

In the coarsest sample, individual particles were counted and their average size noted. In finer samples, the density of particles was measured at several points in the section, and the average particle size were measured. These results were used to calculate the total area of particles along the traverse lines.

The size and shape of graphite grains and aggregates was recorded in five size categories and in two shape categories. Size fractions are as follows:

0.03-0.05 mm, 0.05-0.1 mm, 0.1-0.2 mm, 0.2-0.3 mm, 0.3-0.4 mm The two shape categories are as follows:

1) flakes (average length to width ration 3/1 to 5/1),

2) equant patches (average length to width ratio 1/1 to 2/1).

FROM

2.13.1998 10:14

P. 3

2.

The nature of intergrowths of graphite with other minerals was divided into three categories as follows:

- 1) free graphite grains (F)*
- 2) graphite grains or aggregates on surface of particles (S)*
- 3) graphite grains or aggregates included in particles. (I)*
- * these letters to designate classes in Table 2

Average areas were calculated for the two shapes of flakes in each size fraction. These were multiplied by the number of occurrences of graphite in each category. Addition of these values yielded the volume content of graphite in each fraction.

In Table 1 is shown the average area of grains in each size and shape fraction. In Table 2 is shown the total area occupied by graphite in each category (calculated by multiplying the number of occurrences by the average area of a single occurrence).

Table 1. Area of Grains of Different Sizes and Shapes (sq.mm)

shape	length of fl	ake or ave	age dimens	ion of equa	ant patch (mm	<u>)</u>
	Ø.03-0.05 A	0.05-0.1 B	Ø.1-Ø.2 C	Ø.2-Ø.3 D	0.3-0.4 E *	
flake	0.0005	Ø.ØØ2	0.005	0.010	0.020	
equant patch	0,0015	0.005	0.020	0.060	0.120	

* these letters are used for size categories in Table 2

FROM

2.13.1990 10:15

P. 4

з.

Table 2.	Distribution	of	Graphite
----------	--------------	----	----------

Shap	e.			flake	•				patch		
Size		A	В	с	D	E	A	В	с	-	_
+28	C							<u>B</u>		D	E
+20	S I	-	ø.016	0.005 0.040	Ø.Ø50 Ø.Ø30	0.040 0.040	-	Ø.Ø15 -	Ø.080 -	Ø.Ø6Ø -	-
+35	S I	-	0.002 0.010	0.010 0.035	0.020 0.050	0.040 0.040	-	Ø.005 -	0.020 0.020	- Ø. Ø.12Ø	12Ø -
+4.8	s I	-	Ø.006 Ø.006	Ø.ØØ5 Ø.Ø2Ø	0.020	-	- -	-	Ø.020 -	ø.ø6ø -	-
+65	S I		- -	-	- Ø.Ø1Ø	0.040 -	-	- 0.005	Ø.029 Ø.020	-	-
+100	S I	-	- Ø.ØØ2	-	0.010	-					
+150	F S I		- Ø.ØØ6 Ø.ØØ2	Ø.ØØ5 - -	-	-	-	- Ø.Ø1Ø		-	-
+200	F S	-	0.004	0.005		2	- -	ø.øø5	Ø.Ø2Ø -	-	-
+325		no (graphit	e grai	ns see	'n					
-325	F	0.002	0.004	~	-	_	-	-	_	_	_

FROM

, ¹.

C

1

FROM

<u>Table 3</u> .	Per Cent	Graphite by A (all sizes in	rea in Size F sq.mm)	ractions
Size	Average	Ar	ea	% Graphite
Fract.	Particle Size	Total	Graphite	•
+28	0.80	249	0.376	0.151
+35	Ø.36	175	Ø.492	Ø.281
+48	Ø.16	187	Ø.137	0.073
+65	0.09	193	0.095	0.049
+100	0.04	224	0,012	0.005
+150	0.02	156	0.023	0.015
+200	0.007	60	0.034	0.057
+325	0.0035	109	0.000	0.000
-325	0.0008	29	9.006	0.021

Note: Some of these values are not the same as the preliminary values I quoted to you by telephone on February 10th. Some of these preliminary values have been adjusted after further examination of the sections.

Conclusions:

1. Most of the graphite is in the coarsest two fractions. The abundance of graphite decreases erratically towards the finer fractions, with an unusual peak in the -200 fraction. Note that this is the smallest sample (area of particles on section), and because of this, the graphite percentage may be of lower precision than for the other samples.

2. Graphite is about equally divided between slender flakes and equant clusters of grains (flakes and/or equant grains).

3. Graphite occurs in about equal abundances on surfaces of particles and as inclusions in particles of silicates. Only locally in the finer fractions does it occur as free grains.

4. Results agree well with the Leco method of analysis.

John G. Payne, 986-2928

P. 5

• ,1	FROM	2.13.1990 10:12	P. 1
			
<u> </u>			
ł			
		BACON, DONALDSON & ASSOCIATES LTD.	
		12271 Horseshoe Way	
		Richmond, B.C. V7A 4Z1	
		TELECOPIERCOVERSHEET	
		() management	
l		Message No. 4955	
1		Page 1 d 5	
		Page 1 d 5	
]		File No. M90 - 088	
	-	Attention MATT BOLU	
Į			,
		Company CE.S.L.	
		Fax No. 264 - 5555	
	Ma	<i>++</i> ^{<i>i</i>}	
		Enclosing a copy of Nancouver Petrographic's report	
1			
		Report is very thorough and should answer all your	
		questions if not, let me know and still give them a a	all.
		Ed	
			{
	Note		
	· · · · · · · · · · · · · · · · · · ·	failed your yesterday,	
	L	N	
		From ED HENRIGULE	
		If you do not receive all the pages, or if they are not legible, please call:	
		• • • • • • • • • • • • • • • • • • •	
		Telephone (604) 277-2322	
1		Telefax (604) 274-7235	
ł			
1		Date Feb. 13190 Operator LOUVEL	
4			

.

Γ

1--

ľ

DOUBLE LOI ASSAY PROCEDURE

KHD - HUMBOLDT WEDAG

ł

,

L.O.I Analytical Procedure

1. <u>Moisture content analysis:</u>

1 g of sample (ground to minus 70 um if tailings or head \bigwedge_{KHO} sample, but kept at original size if product or middlings) is exactly weighted to \pm 0.0001 g in a porcelain bowl. This sample is dried in a dryer at 106°C \pm 2°C until constant weight is obtained (duration approx. 90 minutes). After the sample has cooled down to room temperature in a desiccator the bowl is weighed again.

Determination of moisture:

<u>difference in weight</u> x 100 = % moisture original weight

Page 2

2. <u>Ash analysis</u>

1 g of sample (ground to minus 70 um if tailings or head sample, but kept at original size if product or middlings) is exactly weighted to \pm 0.0001 g in a porcelain bowl that has been heated to 1000°C prior to analysis. This sample is then pretreated in a de-asher at 600 - 700°C for approx. one hour. Afterwards the sample is burnt in a muffle furnace (wide body) at 875°C - 900°C under addition of oxygen (about 100 litres/hour) for 4 to 5 hours (depending on hardness of graphite). After this treatment the sample is cooled down in \bigwedge_{KHD} a desiccator and weighed again.

Determination of ash:

A (without water	r) = <u>a - 100</u>	x <u>100</u>	(%)
	b	100 - W	(wet)
a = weight of a	sh in analytic	cal wet sample	e in grams

b = weight of analytical wet sample in grams
w(wet) = water content of wet sample in mass %

Page 3

KHD

3. Volatiles analysis:

1 g of sample (ground to minus 70 um if tailings or head sample, but kept at original size if product or middlings) is exactly weighted to \pm 0.0001 g in a procelain bowl that has been heated to 1000°C prior to analysis. The sample is treated in a muffle furnace at 375°C to 400°C with permanent access to fresh air (oxygen loaded but not pure oxygen) until constant weight has been gained (\pm 2 hours).

Determination of volatiles (v):

 $v = \underline{a-b} \times 100 - W$ (wet)

a

a = weight of wet sample in grams

b = weight of remaining coke of wet sample

in grams

w(wet) = water content of wet sample in mass %

4. <u>C fix (graphitic carbon) determination</u>:

100 - (% of ash + % volatiles) = % C fix

HNO₃-LOI-LECO ASSAY PROCEDURE

CHEMEX LABS LTD.

:

,

TOTAL ORGANIC CARBON (TOC) ASSAY PROCEDURE

1

۰,

CHEMEX LABS LTD.

- -

ð

Chemex Labs Ltd.

212 Brooksbank Avenue N. Vancouver B.C. V7J 2C1

tsiephone: 804-984-0221

tax: 004-064-0218

Fax Cover Sheet

Company Name:	Bacon Donaldson
Contact Name:	Matt Boley
Fax Number:	264 5555

Sender:	
Description:	
Number of pages (including this page) : \mathcal{T}	······································
Date Sent: Man 21/90	

If there are any problems with this transmission, please call our office immediately at (604) 984-0221

Chentex charges clients \$0.50 per page of analytical results faxed within North America and \$2.00 per page faxed outside North America (billed monthly).

CODE 367% CARBON

A 0.2 gram sample is combusted in an induction furnace. Total carbon is measured by an infrared detector and reported to 0.01% C.

CODE 368% CARBON DIOXIDE

A 0.2 - 0.5 gram sample is decomposed in hydrochloric acid. The evolved carbon dioxide is carried, in oxygen gas, through water and sulphur scrabbers. The total gas volume (carbon dioxide and oxygen) is measured in a gasometer buret. The carbon dioxide is then dissolved in potassium hydroxide solution and the oxygen returned to the buret. The difference in volume is calibrated as % carbon dioxide in the sample (corrected for temperature and pressure).

THE EFFECT OF TRAMP WOOD IN TEST SAMPLES

LAKEFIELD RESEARCH

.

.

June 8, 1990

Mr. Matt Bolu Cominco Engineering Services Ltd. Suite 100–1200 West 73rd Avenue Vancouver, BC V6P 6G5

Dear Matt:

Re: Bissett Creek(graphitic carbon)

In response to your request to determine the effect of tramp wood, in test products, on the analysis of C(g), several tests were conducted. The testwork included the following variables:

- 1) Effect of roasting graphitic carbon at 400°C for 3 hours
- 2) Effect of roasting wood at 400°C for 3 hours
- 3) Effect of leaching with HNO₃
- 4) Effect of leaching with HNO₃ plus roasting at 400°C

Procedure:

- Test 1 A 1% graphitic carbon standard was placed in a muffle at 400°C for 3 hours. The standard was removed, cooled and assayed by Leco for carbon.
- Test 2 1% graphitic carbon standard was leached with HNO_3 , dried and assayed by Leco for carbon, according to our standard C(g) procedure.
- Test 3 A 25% weight equivalent of wood was treated under the same conditions as Test 1.
- Test 4 To the 1.0% C(g) standard, a 25% weight equivalent of wood was added. The mixture was leached with HNO3(standard procedure), followed by roasting at 400°C for 3 hours.

Test 5 - As for Test 4 except roasting step left out.

Procedures - continued...

,

1

1

Ľ

Results are tabled below:

Test No.	Procedure	Feed	%C(g) Recovered	%C(g) Added
1A	Roast 400°C	1% C(g) Standard	1.01	1.00
1B	Roast 400°C	1% C(g) Standard	1.01	1.00
1C	Roast 400°C	1% C(G) Standard	1.01	1.00
2A	HNO3 Leach	1% C(g) Standard	0.98	1.00
2B	HNO3 Leach	1% C(g) Standard	0.99	1.00
2C	HNO3 Leach	1% C(g) Standard	1.02	1.00
3A	Roast 400°C	Wood	0.15	*25.0
3B	Roast 400°C	Wood	0.15	*25.0
4A 4B	HNO3 Leach and Roast HNO3 Leach and Roast	1% C(g) Std + 25% Wood 1% C(g) Std _ 25% wood	1.02 1.02	**26.0 **26.0
5A	HNO3 Leach	1% C(g) Std + 25% Wood	11.1	**26.0
5B	HNO3 Leach	1% C(g) Std + 25% Wood	10.3	**26.0
	1	· · · · · · · · · · · · · · · · · · ·	T	1

* 25% = Wood added at 25% of sample weight

** 26% = 1% C(g) standard plus Wood at 25% sample weight

The above results indicate, that in order to eliminate the adverse effect of wood on your C(g) assays, the samples require roasting at 400°C plus the HNO₃ leach.

- 2 -

Matt, I suspect this type of investigation could justify a lot more work, and if you have any questions, or require more work, please do not hesitate to contact me at any time.

Best regards.

Yours sincerely, LAKEFIELD RESEARCH

A. E. Carr, Manager – Assay Services

AEC/dje

M. Bolu Cominco/297

040

METALLURGICAL REPORT ON THE VARIABILITY TEST RESULTS OF THE BISSETT CREEK FLAKE GRAPHITE ORE

đ

Prepared for: NORTH COAST INDUSTRIES LTD. Vancouver, B.C.

SEPTEMBER 1990

Prepared by: Cominco Engineering Services Ltd.

1.0 INTRODUCTION

This report deals with the results of bench-scale variability testwork performed on varying grades of the Bissett Creek flake graphite ore samples from Maria Township in Ontario. The testwork was conducted at the testing facilities of Bacon, Donaldson and Associates Ltd. during July - September 1990 on behalf of North Coast Industries Ltd.

The purpose of the testwork was to assess the metallurgical response of various grade ore samples to the flowsheet developed from the previous testwork. A report ,issued by CESL in June 1990 documented and discussed the results of the previous bench-scale and pilot plant testwork which led to the development of a production plant flowsheet.

The variability testing utilized the basic steps of the previously developed Test (F8) flowsheet comprising conventional flotation and gravity techniques. Minor modifications to the basic flowsheet were made in order to simulate the continuity of a plant flowsheet and to maximize concentrate grade and recoveries.

Detailed test results and other specific information with regard to methods and procedures, are documented in a report issued by Bacon, Donaldson and Associates Ltd.

Test samples for the variability testing were provided by North Coast Industries Ltd. as representative of the Bissett Creek ore with graphitic carbon contents ranging from 1.35% C(g) to 3.28% C(g) covering a wide grade spectrum of the ore body.

Metallurgical direction of testwork was provided by Cominco Engineering Services Ltd.

2.0 SUMMARY

Results of the variability testwork conducted on seven drill core samples of Bissett Creek graphite ore demonstrate that the material is highly amenable to upgrading utilizing the conventional flotation and gravity techniques as developed in the previous bench-scale (Test F8) and pilot plant testwork.

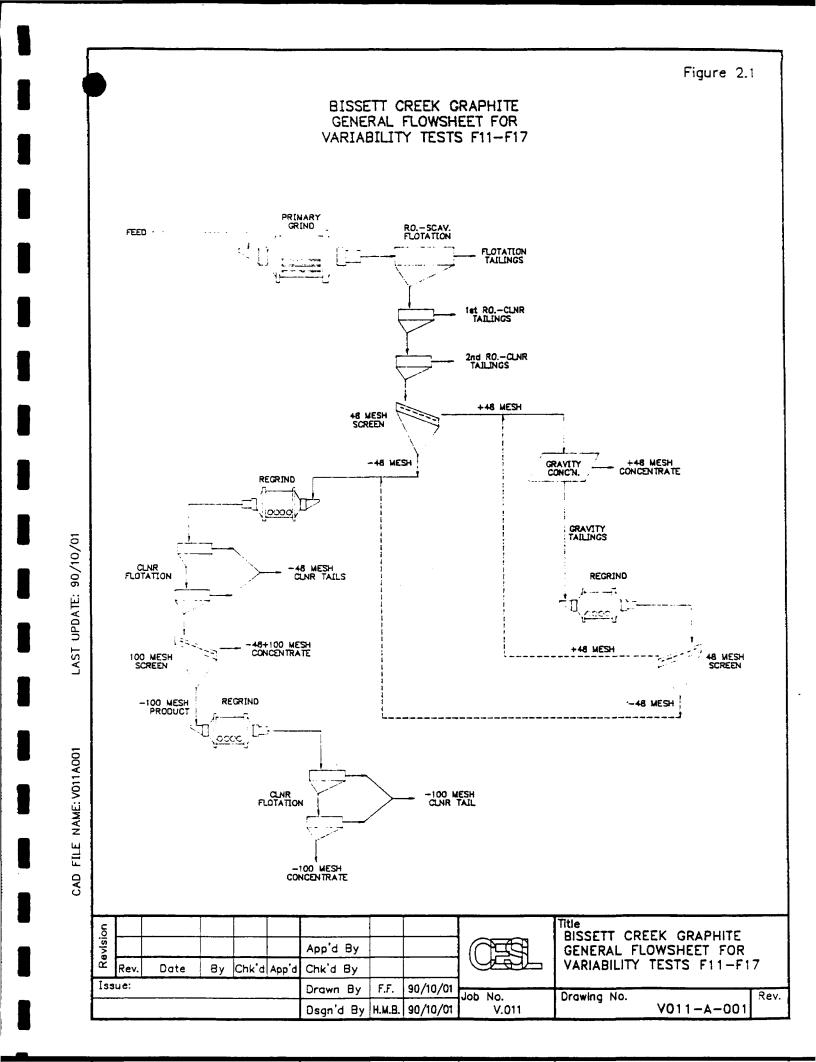
The variability tests produced flake graphite concentrates assaying 87 - 95% C(g) with 91 - 95% recoveries. The distribution to the +48 mesh flake concentrate was, on average, 52.36% of total graphitic carbon content of the feed and it ranged from a low of 47.3% to a high of 65.32%.

Samples used for this test program covered a wide spectrum of graphitic carbon values in the feed ranging from 1.35% to 3.28%. Summary of concentrate grade and recoveries along with their attendant head grades are presented in Table 2.1 below.

Metallurgical results of the variability tests do not demonstrate any meaningful correlation between head grades and overall recoveries or +48 mesh concentrate distributions. Overall concentrate recoveries at mid - low nineties do not appear to be sensitive to changing head grades. The difference in recoveries for the whole range of grades tested is probably within the margin of test error and too small to draw any relationships.

However, the distribution of +48 mesh concentrates fluctuated significantly for the samples tested in that; the lowest head grade sample (F11) achieved the highest distribution at 65.3% while the highest head grade sample (F16) produced a +48 mesh concentrate with 48.3% distribution. There is no satisfactory metallurgical explanation offered for this and further mineralogical examination of the ore samples is recommended.

The description of the "generic" flowsheet applied to all seven samples is as follows:


A coarse primary grind followed by rougher, scavenger and cleaner flotation to produce a low weight and high recovery graphite concentrate. The cleaner concentrate is screened on a 48 mesh screen with the oversize being subjected to a sequential gravity - regrind closed circuit upgrading thereby producing a final +48 mesh concentrate. The combined -48 mesh products are then combined and cleaned twice by flotation before screening on a 100 mesh screen. +100 mesh screen oversize forms the final -48+100 mesh concentrate and the -100 mesh product is cleaned twice more to produce a final -100 mesh concentrate. A light regrind is applied prior to both, -48 mesh and -100 mesh cleaner flotation steps to clean the surfaces of the flakes from physical attachments of gangue.

The general flowsheet described above is shown in Figure 2.1 and presented below. Throughout the test program no attempt was made to optimize or significantly change the flowsheet outside the general boundaries mentioned above.

The only reagent used throughout the test program was EKOF 452G at approximately 150 - 200 g/t addition rates. Pulp pH was neutral at 7.6 - 7.8. Targeted primary grind was 96 -98% passing 20 mesh.

Table 2.1 BISSETT CREEK GRAPHITE VARIABILITY TESTS F11 - F17 SUMMARY OF RESULTS

	C(g) 35	40# 0	%C(g)	%
F11 1.	35	40# 0000		
F11 1.	35	40# 0		
		+48# Conc	93.34	65.32
		-48 + 100# Conc	90.30	15.45
		-100# Clnr Conc	79.19	12.25
		Total Conc:	90.7 0	93.01
F12 2.	47	+48# Conc	89.03	56.84
		-48 + 100# Conc	84.30	20.75
		-100# Cinr Conc	84.15	16.43
		Total Conc:	87.07	94.02
F13 2.	.86	+48# Conc	91.73	52.36
		-48 + 100# Conc	89.10	26.40
		-100# Clnr Conc	88.31	14.86
		Total Conc:	90.42	93.62
F14 2.	.71	+48# Conc	92.16	50.78
		-48 + 100# Conc	93.30	23.40
		-100# Clnr Conc	90.05	19.54
		Total Conc:	91.99	93.72
F15 2	2.4	+48# CONC	94.51	47.30
		-48+100# CONC	95.28	32.37
		-100# CONC	94.23	11.99
		Total Conc:	94.74	91.66
F16 3.	.28	+48# CONC	92.89	48.33
		-48+100# CONC	93.30	33.31
		-100# CONC	91.83	13.34
		Total Conc:	92.88	94.98
F17 2.	.67	+48# CONC	92.28	49.43
		-48+100# CONC	94.29	31.18
		-100# CONC	92.61	14.26
		Total Conc:	92.98	94.87
]		

3.0 DISCUSSION

The seven variability tests were conducted in two groups with the first four tests F11 - F14, utilizing approximately 7 kg test charges. This proved to be an insufficient sample weight especially towards the end of each test flowsheet when there was only a few grams of material to work with. Therefore the second group of three tests, F15 - F17 were conducted with approximately 12 kg test charges.

All test samples were subjected to the same basic procedure and test conditions as follows:

- 1. Primary Grind :
 - 96 -98% passing 20 mesh
- 2. Rougher Scavenger Flotation:
 - natural pH
 - 35% solids pulp density
 - 165 g/t collector/frother (EKOF 452G)
 - float to barren tail
- 3. Rougher Cleaner Flotation:
 - up to 30 g/t additional collector/frother
 - selective flotation almost to barren tail
- 4. Screen "2nd Ro Clnr Conc" at 48 mesh
- 5. +48 mesh Fraction Upgrading:
 - Gravity concentration to produce final +48 mesh concentrates
 - Gravity tails are further upgraded by a combination of regrind/rescreen/gravity as would be done in a continuous operation.
- 6. -48 mesh Fraction Upgrading:
 - A sequential regrind/cleaner flotation/screening (100 mesh) to produce final -48+100 mesh concentrates.
 - up to 15 g/t additional collector/frother

- 7. -100 mesh Fraction Upgrading:
 - A sequential regrind/cleaner flotation procedure similar to above to produce final -100 mesh concentrates.
 - up to 15 g/t additional collector/frother

Detailed test procedures and flowsheets for individual tests are included in Appendix A.

Primary grinds for tests F11 to F14 were too coarse (75 - 93% passing 20 mesh) resulting in lower than expected rougher concentrate recoveries with the exception of F11 which produced a rougher concentrate assaying 56.1% at 94.23% recovery. Further regrind was therefore necessitated on rougher tails for F12, F13 and F14 prior to scavenger flotation. Additional scavenger cleaner concentrate recoveries were 2.76%, 5.52% and 1.24% respectively. The test charges for F15, F16 and F17 were stage ground until the desired grind was achieved therefore scavenger flotation was performed immediately preceding rougher flotation. Average size distribution of primary grinds (rougher or scavenger as the case may be) are as follows:

SIZE FRACTION	MESH	% RETAINED INDIV. CUM.	
	+20	2.0	2.0
-20	+48	36.3	38.3
-48	+100	28.1	66.4
-100	+200	16.8	83.2
-200		16.8	100.0

PRIMARY GRIND AVERAGE SIZE DISTRIBUTION FOR TESTS F11 - F17

Final grind size distribution analysis for individual tests are included in Appendix B.

+48 mesh Circuit upgrading was conducted in one to three stages, each time utilizing the generic gravity/regrind/screen sequential processing approach which was developed in Test F8. This was done in order to achieve high quality +48 mesh concentrates and to simulate the process continuity of plant flowsheet. +48 mesh concentrates produced in each stage was kept separately

Page 6

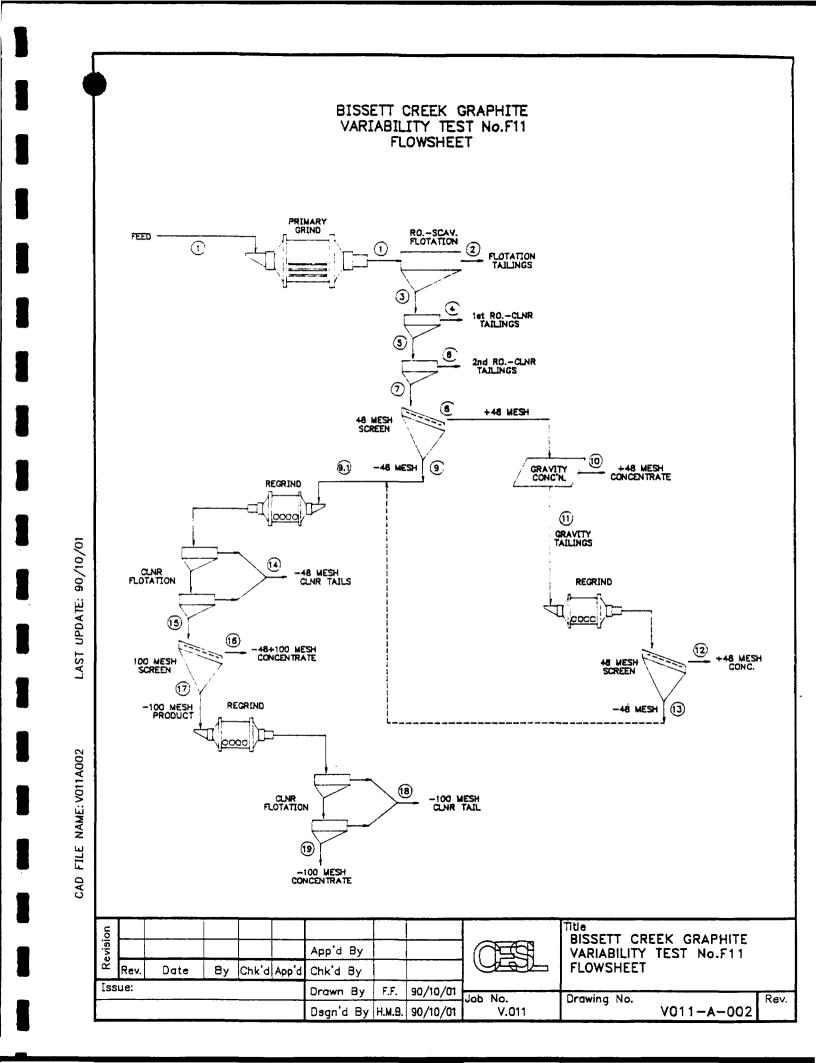
and the screen undersize products were combined for -48 mesh upgrading by flotation.

Gravity upgrading was performed using a vanning plaque due to very small quantity samples instead of preferred shaking table. A superpanner was considered, however it was not used due to its almost perfect separation which could not be duplicated with shaking tables.

All seven samples were subjected to identical treatment for the -48 circuit upgrading. Combined -48 mesh products were lightly ground in a ceramic mill with ceramic ball charge prior to two stages of cleaner flotation and 100 mesh screening. -48 + 100 mesh concentrate varied in grade from 84% C(g) to 94% C(g) at 15 - 33% distribution. -100 mesh screen undersize was again lightly ground in a ceramic mill before cleaner flotation which produced final -100 mesh concentrate.

PRODUCTS	GRADE % C(g)	RECOVERY %	DIST'N. %
+48 mesh concentrate	92.3	52.9	56.4
-48 +100 mesh concentrate	91.4	26.1	27.9
-100 mesh concentrate	88.6	14.7	15.7
TOTAL:	91.5	93.7	100.0

4.0 ASSAY METHODS


Assay methods used throughout this test program are as follows:

- a. Mid High Grade Samples; >15% C(g) : The method used is a Double Loss On Ignition procedure conducted at two temperature levels of 470°C and 900°C on dried samples. The procedure details were supplied by KHD Humboldt Wedag, and is the industry standard for graphitic carbon concentrates. All high grade samples were assayed in house at Bacon, Donaldson Associates Ltd. using this procedure.
- b. Low grade samples; <15% C(g): The procedure used is a deviation of the Total Organic Carbon (TOC) method and is named HNO3/LOI/Leco procedure. In this method the dry sample is roasted in an oven at 400°C for Loss On Ignition following a HNO3 acid leach and the weight loss is recorded. Later the sample is combusted in a Leco induction furnace for total carbon and the difference in weight losses is reported as % graphitic carbon. Low grade samples throughout this testwork were assayed by Chemex Labs in Vancouver using this procedure.

WETALLURGICAL REPORT ON THE VARIABILITY TEST RESULTS OF THE BISSETT CREEK FLAKE GRAPHITE ORE PREPARED FOR NORTH COAST INDUSTRIES LTD.

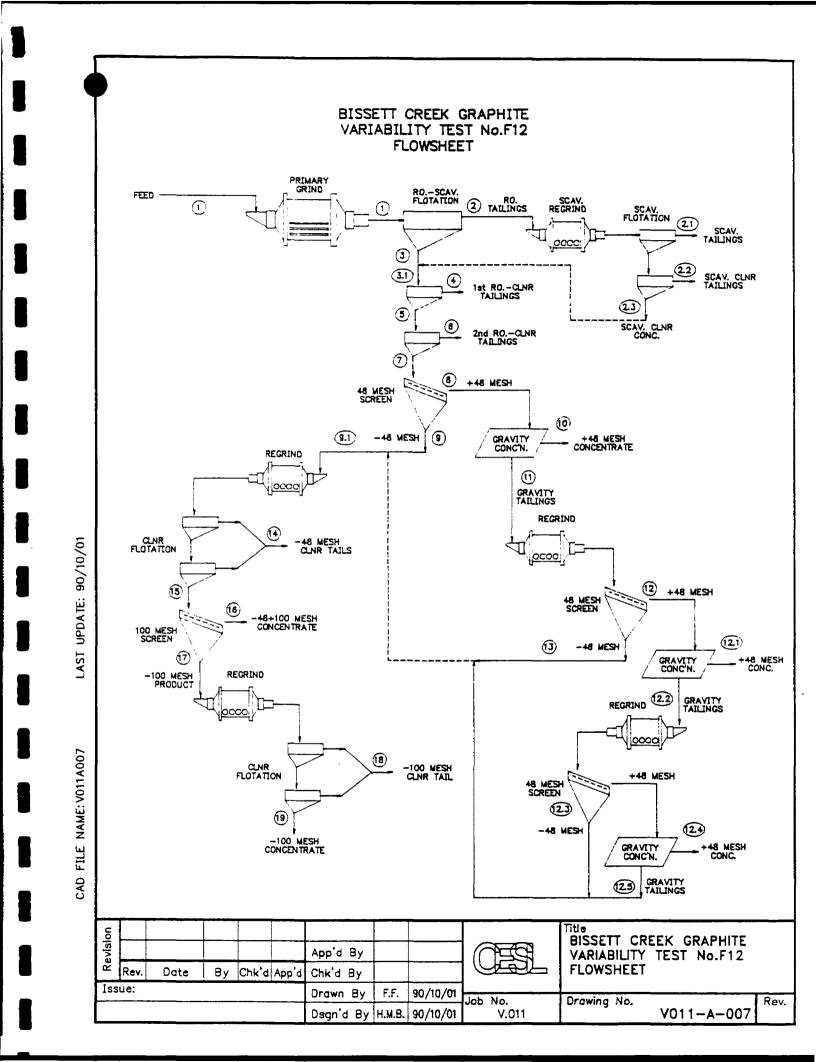
5.0 CONCLUSIONS

- 1. Seven Bissett Creek graphite ore samples tested for variability in this investigation are highly amenable to upgrading by the conventional flotation and gravity techniques utilized in the previously developed Test (F8) and pilot plant flowsheets.
- 2. The overall recoveries and concentrate grades achieved in these tests compare favourably with those of the Test (F8) and pilot plant runs. A metallurgically meaningful correlation does not seem to exists between head grade versus overall recovery or the +48 mesh concentrate recovery.
- 3. The distribution of +48 mesh flake concentrate at 52.36% on average is comparatively lower than achieved previously. The reasons for this is not fully understood and further mineralogical examination of the samples is recommended.
- 4. Following aspects of the flowsheet utilized makes the process simple and worth mentioning:
 - a. Processing techniques used are all conventional methods of crushing, grinding, froth flotation and gravity separation.
 - b. For flotation, a single and readily available collector/frother reagent is used and pH regulation is not required.
 - c. Coarse primary grind required at 98% passing 20 mesh to preserve coarse flake size and quality is also a cost advantage in a production plant.

NORTH COAST INDUSTRIES LTD. BISSETT CREEK GRAPHITE VARIABILITY TEST No F11 METALLURGICAL BALANCE

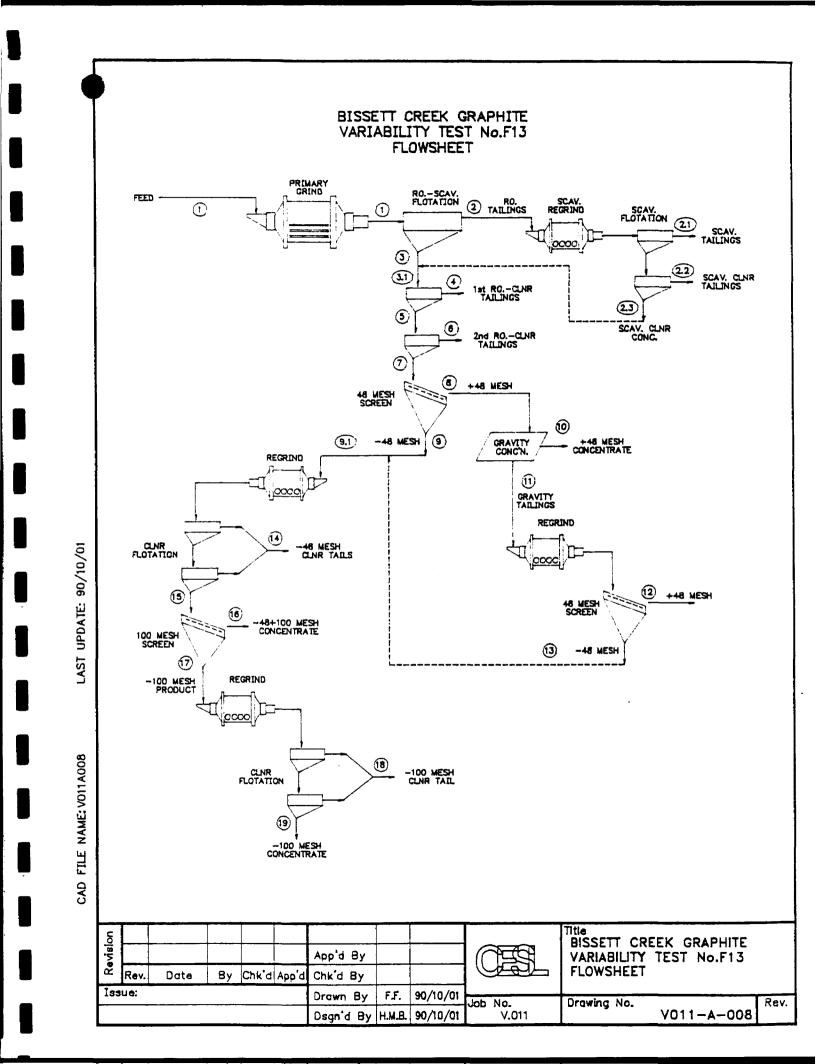
		WEIGH	TS	ASSAY	RECOVERY
	PRODUCTS	g	%	%C(g)	%
1)	Feed	7,383.7	100.00	1.35	100.00
2)	Ro Tail	7,215.6	97.72	0.08	5.77
3)	Ro Conc	168.1	2.28	56.07	94.23
4)	1st Ro Clnr Tail	39.0	0.53	1.16	0.45
5)	1st Ro Cinr Conc	129.1	1.75	72.66	93.78
6)	2nd Ro Clnr Tail	10.5	0.14	0.92	0.10
	2nd Ro Cinr Conc	118.6	1.61	79.01	93.68
7)	2nd Ho Cini Conc	110.0	1.01	79.01	93.00
8)	+48# 2nd Ro Clnr Conc	77.4	1.05	87.66	67.83
9)	-48# 2nd Ro Clnr Conc	41.2	0.56	62.76	25.85
	+48# Circuit:	<u> </u>			
10)	1st Pass Grav Conc	19.1	0.26	95.20	18.18
11)	1st Pass Grav Tail	58.3	0.79	85.19	49.65
12)	1st P G Tail Scr O/S	50.9	0.69	92.64	47.14
13)	1st P G Tail Scr U/S	7.4	0.10	33.92	2.51
10+12)	Comb'd +48# Grav Conc	70.0	0.95	93.34	65.32
	-48# Circuit:				
9.1)	Comb'd -48# Cct Feed Products (9+13)	48.6	0.66	58.37	28.36
14)	-48# CInr Tail	14.6	0.20	2.81	0.41
15)	-48# Cinr Conc	34.0	0.46	82.32	27.95
16)	-48 + 100# Conc	17.1	0.23	90.30	
1 71	-100# Product	16.9	0.23	74.22	12.50
17)	-100# Clnr Tail		0.23	18.70	
18)		1.4			
19)	-100# Clnr Conc	15.5	0.21	79.19	12.25

Ref:F11PRN

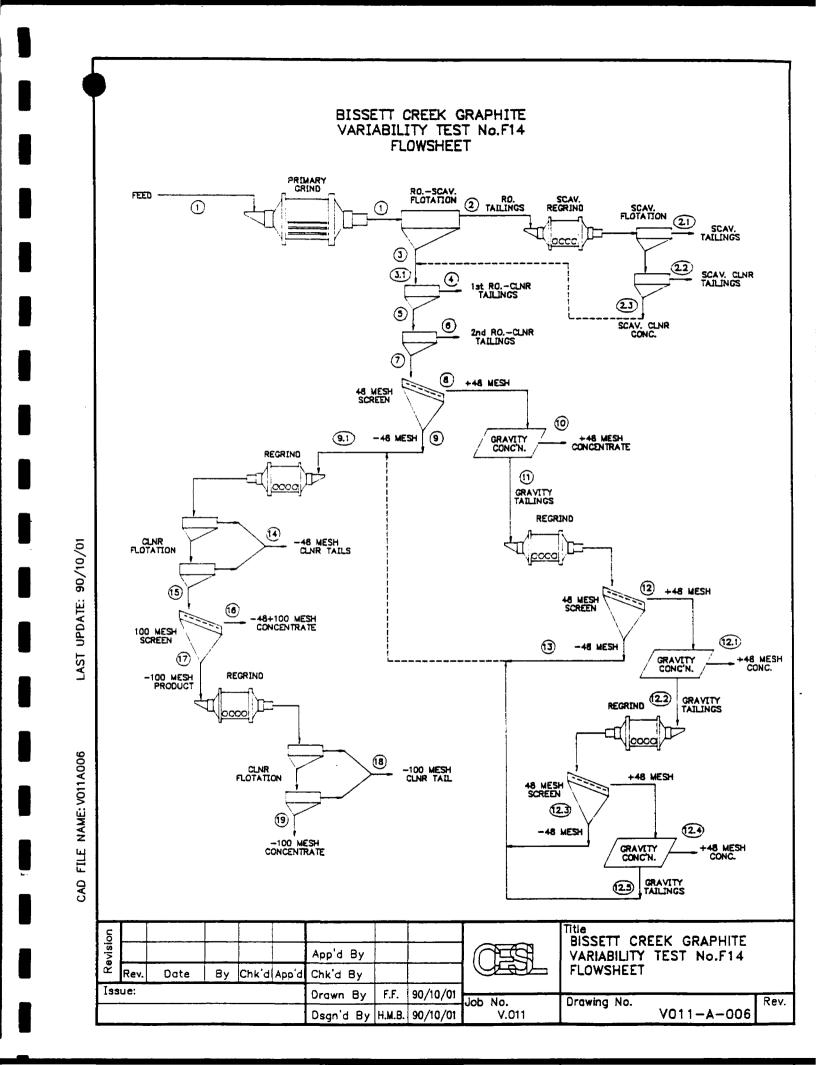

CESL\BISCRK\hmb

NORTH COAST INDUSTRIES LTD. BISSETT CREEK GRAPHITE VARIABILITY TESTS PRIMARY GRIND SIZE DISTRIBUTION ANALYSIS

		F11	F12	2	F13	3		F14		F15		F16	F17	21
Size Fraction	% Retained	ained	% Retained	ined	% Retained	nined	% Retained	ained						
mesh	Indiv.	Indiv. Cum.	Indiv.	Indiv. Cum.	Indiv. Cum.	Cum.	Indiv.	Indiv. Cum.	Indiv.	Indiv. Cum.	Indiv.	Indiv. Cum.	Indiv.	Indiv. Cum.
+ 20	9.6	9.6	0.3	0.3	0.4	0.4	0.7	0.7	1.1	1.1	0.4	0.4	1.5	1.5
- 20 + 48	45.2	54.8	35.3	35.6	32.0	32.4	33.8	34.5	35.9	37.0	35.3	35.7	36.4	37.9
- 48 +100	21.5	76.3	28.9	64.5	24.7	57.1	29.8	64.3	29.5	66.5	32.2	67.9	30.3	68.2
-100 +200	11.8	88.1	17.5	82.0	19.5	76.6	18.3	82.6	16.9	83.4	17.3	85.2	16.5	84.7
-200	11.9	11.9 100.0	18.0	100.0	23.4	23.4 100.0	17.4	17.4 100.0	16.6	16.6 100.0	14.9	14.9 100.1	15.3	15.3 100.0

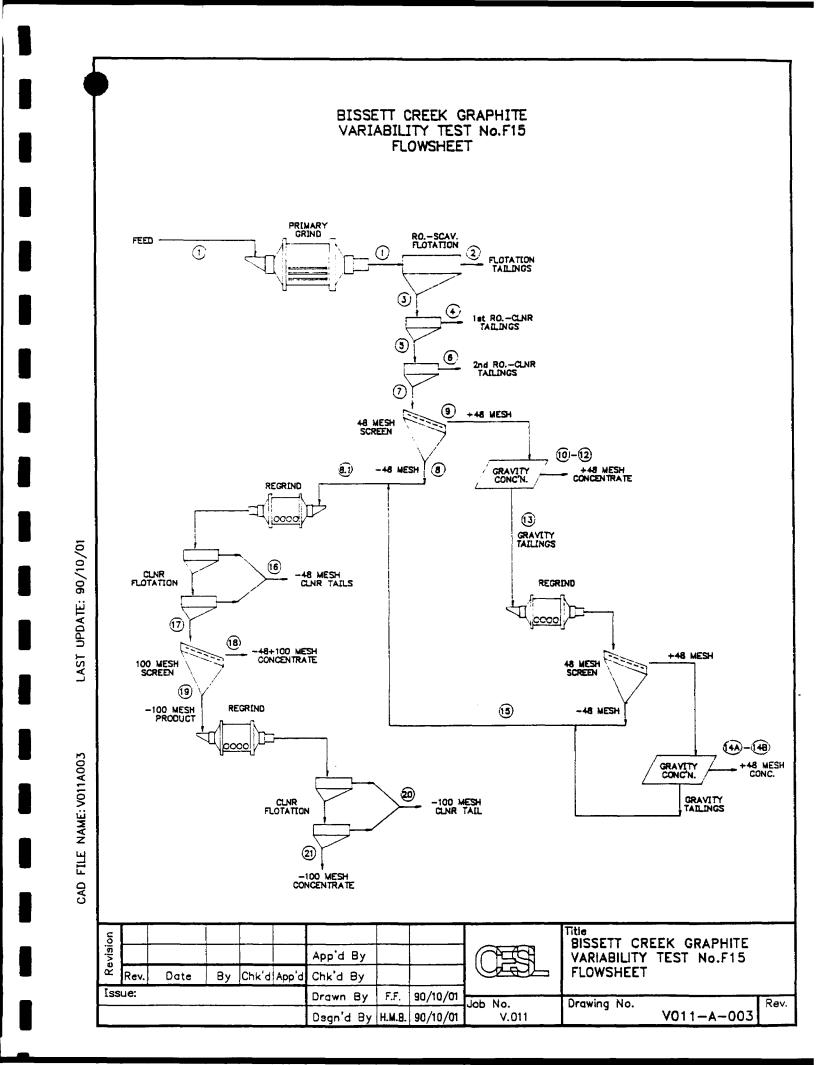

N	pe	Cum.	2.0	38.3	66.4	83.2	0.0
AVERAGE SIZE DISTRIBUTION FOR TESTS F11 - F17	% Retained	Indiv. O	2.0	36.3 3	28.1 6	16.8 8	16.8 100.0
AVERAGE SIZE DISTRIB FOR TESTS F11 - F17	Size Fraction	mesh	+ 20	- 20 + 48	- 48 +100	-100 +200	-200

Ref:scrnprn


		WEIGH	TS	ASSAY	RECOVERY
	PRODUCTS	g	%	%C(g)	%
1)	Feed	7,160.1	100.00	2.47	100.00
2)	Ro Tail	6,847.3	95.63	0.19	7.36
3)	Ro Conc	312.8	4.37	52.32	92.64
2.1)	Scav. Tail	6,753.8	94.33	0.11	4.25
2.2)	Scav CInr Tail	60.6	0.85	1.05	0.36
2.3)	Scav Cinr Conc	32.9	0.46	14.80	2.76
3.1)	Ro + Scav Conc	345.7	4.83	48.75	95.39
4)	1st Ro Clnr Tail	80.1	1.12	0.66	0.30
5)	1st Ro Clnr Conc	265.6	3.71	63.26	95.09
6)	2nd Ro Cinr Tail	16.5	0.23	1.31	0.12
7)	2nd Ro Clnr Conc	249.1	3.48	67.36	94.97
8)	+48# 2nd Ro Cinr Conc	1 77.2	2.47	68.75	68.95
9)	-48# 2nd Ro Cinr Conc	71.9	1.00	63.94	26.02
	+48# Circuit:	_			
10)	1st Pass Grav Conc	27.9	0.39	91.40	14.46
11)	1st Pass Grav Tail	149.2	2.08	64.51	54.49
12)	1st P G Tail Scr O/S	106.5	1.49	79.41	47.85
13)	1st P G Tail Scr U/S	42.8	0.60	27.42	6.64
12.1)	2nd Pass Grav Conc 1–7	62.5	0.87	87.96	31.10
12.2)	2nd Pass Grav Tail	44.0	0.61	67.27	16.75
12.3)	2nd P G Tail Scr U/S	9.2	0.13	39.94	2.09
12.4)	3rd Pass Grav Conc	22.4	0.31	89.06	11.28
12.5)	3rd Pass Grav Tail	12.4	0.17	48.26	3.38
	Comb'd +48# Grav Conc	112.8	1.58	89.03	56.84
	(10+12.1+12.4) Comb'd +48# Grav Tail	64.4	0.90	33.22	12.11
	(13+12.3+12.5)				
	-48# Circuit:				
9.1)	Comb'd -48# Cct Feed (9+13+12.3+12.5)	136.3	1.90	49.43	38.13
14)	-48# Clnr Tail	56.1	0.78	2.01	0.64
15)	-48# Cinr Conc	80.2	1.12	82.56	
16)	-48 + 100# Conc	43.5	0.61	84.30	
17)	-100# Product	36.7	0.51	80.50	
18)	-100# Cinr Tail	2.3	0.03	24.58	
19)	-100# Cinr Conc	34.5	0.48	84.15	

NORTH COAST INDUSTRIES LTD. BISSETT CREEK GRAPHITE VARIABILITY TEST No F12 METALLURGICAL BALANCE

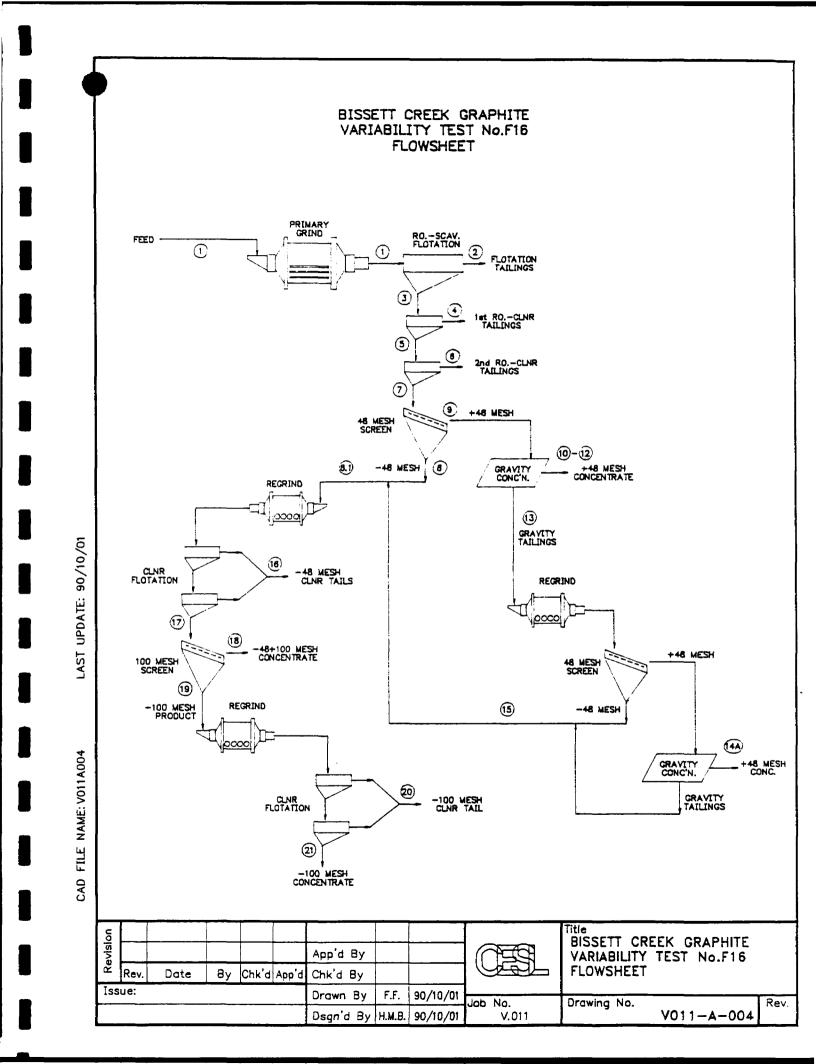
		WEIGH	TS	ASSAY	RECOVERY
	PRODUCTS	g	%	%C(g)	%
1)	Feed	7,174.0	100.00	2.86	100.00
2)	Ro Tail	6,853.8	95.54	0.31	10.35
3)	Ro Conc	320.2	4.46	57.49	89.65
2.1)	Scav. Tail	6,710.1	93.53	0.14	4.46
2.2)	Scav Clnr Tail	94.6	1.32	0.80	0.37
2.3)	Scav Cinr Conc	49.1	0.68	23.10	5.52
3.1)	Ro + Scav Conc	369.3	5.15	52.92	95.18
4)	1st Ro CInr Tail	101.4	1.41	0.81	0.40
5)	1st Ro Clnr Conc	267.9	3.73	72.63	94.78
6)	2nd Ro Clnr Tail	19.2	0.27	1.60	0.15
7)	2nd Ro Cinr Conc	248.7	3.47	78.11	94.63
8)	+48# 2nd Ro Clnr Conc	141.8	1.98	81.54	
9)	-48# 2nd Ro Clnr Conc	106.9	1.49	73.56	38.31
	+48# Circuit:	_			
10)	1st Pass Grav Conc	30.7	0.43	94.90	14.18
11)	1st Pass Grav Tail	111.1	1.55	77.85	42.14
12)	1st P G Tail Scr O/S	86.5	1.21	90.60	38.18
13)	1st P G Tail Scr U/S	24.6	0.34	33.03	3.96
10+12)	Comb'd +48# Grav Conc	117.2	1.63	91.73	52.36
•	-48# Circuit:				
9.1)	Comb'd -48# Cct Feed (9+13)	131.55	1.83	65.98	42.27
14)	-48# CInr Tail	34.0	0.47	3.62	0.60
15)	-48# Clnr Conc	97.6	1.36	87.69	41.67
16)	-48 + 100# Conc	60.8	0.85	89.10	26.40
		<u> </u>		~~ ~~	40.07
17)	-100# Product	36.7	0.51	85.35	15.27
18)	-100# Clnr Tail	2.2	0.03	38.64	0.41
19)	-100# Cinr Conc	34.6	0.48	88.31	14.86


NORTH COAST INDUSTRIES LTD. BISSETT CREEK GRAPHITE VARIABILITY TEST No F13 METALLURGICAL BALANCE

		WEIGH	TS	ASSAY	RECOVERY
	PRODUCTS	g	%	%C(g)	%
1)	Feed	7,208.1	100.00	2.71	100.00
2)	Ro Tail	6,912.7	95.90	0.16	5.67
3)	Ro Conc	295.4	4.10	62.27	94.33
2.1)	Scav. Tail	6,864.3	95.23	0.12	4.20
2.2)	Scav Clnr Tail	32.0	0.44	1.36	0.22
2.3)	Scav Clnr Conc	16.4	0.23	14.80	1.24
3.1)	Ro + Scav Conc	311.8	4.33	59.77	95.57
4)	1st Ro Clnr Tail	64.2	0.89	1.70	0.56
5)	1st Ro Clnr Conc	247.6	3.44	74.82	95.01
6)	2nd Ro Clnr Tail	10.4	0.14	3.69	0.20
7)	2nd Ro Cinr Conc	237.2	3.29	77.95	94.82
8)	+48# 2nd Ro CInr Conc	141.9	1.97		55.91
9)	-48# 2nd Ro Cinr Conc	95.3	1.32	79.65	38.91
	+48# Circuit:	_			
10)	1st Pass Grav Conc	25.4	0.35	94.00	12.26
11)	1st Pass Grav Tail	116.5	1.62	73.06	43.65
12)	1st P G Tail Scr O/S	94.6	1.31	84.32	40.91
13)	1st P G Tail Scr U/S	21.9	0.30	24.43	2.74
12.1)	2nd Pass Grav Conc 1–7	57.0	0.79	93.16	27.24
12.2)	2nd Pass Grav Tail	37.6	0.52	70.91	13.67
12.3)	2nd P G Tail Scr U/S	5.0	0.07	12.97	0.33
12.4)	3rd Pass Grav Conc	25.0	0.35	88.00	11.28
12.5)	3rd Pass Grav Tail	7.6	0.11	52.56	2.05
	Comb'd +48# Grav Conc	107.4	1.49	92.16	50.78
	(10+12.1+12.4)	04 5	0.48	29.00	5.13
	Comb'd +48# Grav Tail (13+12.3+12.5)	34.5	0.40	29.00	5.15
	-48# Circuit:				
		-	1 00	66 10	44.04
9.1)	Comb'd -48# Cct Feed (9+13+12.3+12.5)	129.7	1.80	66.19	44.04
14)	-48# CInr Tail	36.9	0.51	4.03	0.76
15)	-48# Clnr Conc	92.9	1.29	90.86	43.28
16)	-48 + 100# Conc	48.9	0.68	93.30	
17)	-100# Product	44.0	0.61	88.15	
18)	-100# CInr Tail	1.7	0.02	39.71	0.34
19)	-100# Cinr Conc	42.3	0.59	90.05	19.54

NORTH COAST INDUSTRIES LTD. BISSETT CREEK GRAPHITE VARIABILITY TEST No F14 METALLURGICAL BALANCE

Ref:F14PRN

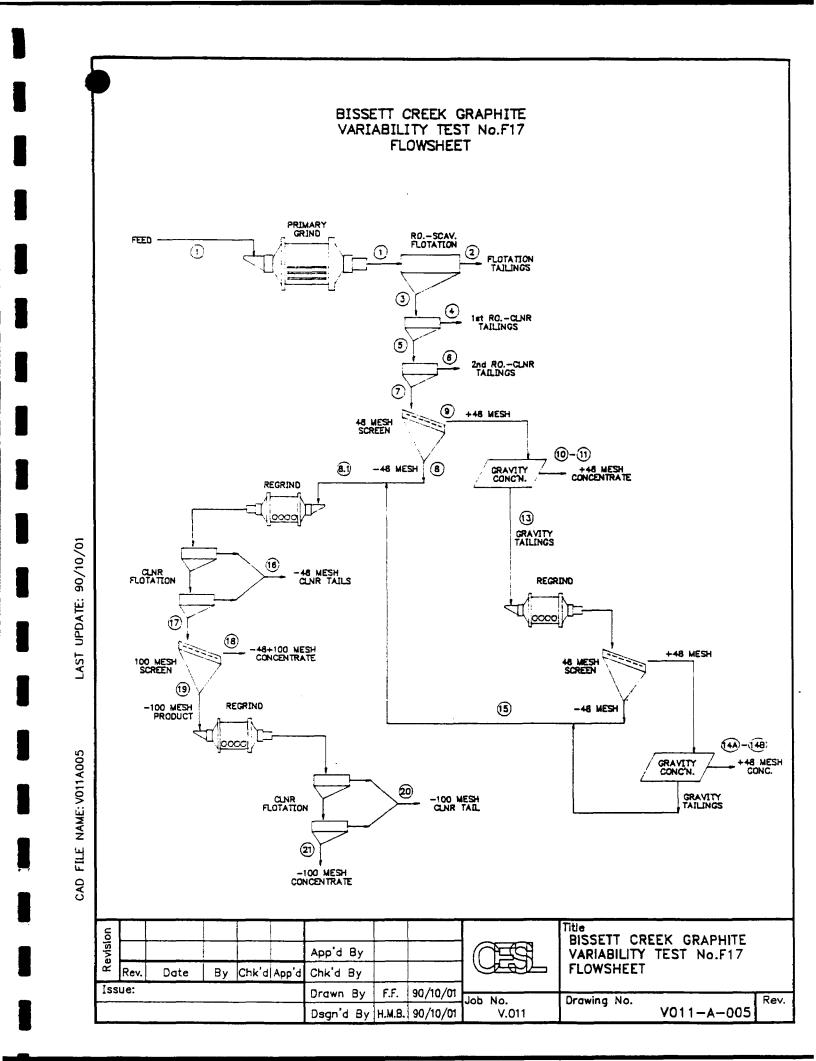


cesl\biscrk\HMB

NORTH COAST INDUSTRIES LTD. BISSETT CREEK GRAPHITE VARIABILITY TEST No F15 METALLURGICAL BALANCE

		WEIGHT	S	ASSAY	RECOVERY
	PRODUCTS	g	%	%C(g)	%
1)	Feed	11,798.4	100.00	2.40	100.00
2)	Ro – Scav Tail	11,395.3	96.58	0.18	7.23
3)	Ro-Scav Conc	403.1	3.42	65.30	92.77
4)	1st Ro Clnr Tail	82.0	0.70	0.95	0.27
5)	1st Ro Clnr Conc	321.1	2.72	81.73	92.50
6)	2nd Ro Cinr Tail	14.2	0.12	4.65	0.23
7)	2nd Ro Cinr Conc	306.9	2.60	85.30	92.26
8)	-48# 2nd Ro Clnr Conc	153.3	1.30	82.06	44.34
9)	+48# 2nd Ro Clnr Conc	153.6	1.30	87.42	47.33
9)	" " " (Caic'd)	153.6	1.30	88.52	47.92
	+48# Circuit:	100.0	1.00	00.02	
10-12)	1st Pass Grav Conc	131.4	1.11	94.67	43.85
13)	1st Pass Grav Tail	22.2	0.19	52.13	4.08
14A)	2nd Pass Grav Conc	5.2	0.04	93.64	1.72
14B)	3rd Pass Grav Conc	5.4	0.05	91.32	1.74
15)	Comb'd +48# Grav Tails (13	11.6	0.10	15.27	0.62
			1 00	04 51	47 20
	Comb'd +48# Grav Conc	142.0	1.20	94.51	47.30
	(10–12 + 14A + 14B)				
	-48# Circuit:				
8.1)	Comb'd -48# Feed	164.9	1.40	77.36	44.96
,	(8+15)				
16.	-48# Clnr Tails	18.6	0.16	8.32	0.55
17.	-48# Clnr Conc	146.3	1.24	86.14	44.42
18.	-48+100# Conc	96.4	0.82	95.28	32.37
-					
19.	-100# Product	49.9	0.42	68.49	12.05
20.	-100# Cinr Tails	13.81	0.12	1.22	0.06
21.	-100# Conc	36.1	0.31	94.23	11.99

Ref:F15PRN



CESL\BISCRK\hmb

NORTH COAST INDUSTRIES LTD. BISSETT CREEK GRAPHITE VARIABILITY TEST No F16 METALLURGICAL BALANCE

		WEIGHT	S	ASSAY	RECOVERY
	PRODUCTS	g	%	%C(g)	%
1)	Feed	11,551.9	100.00	3.28	100.00
2)	Ro – Scav Tail	11,053.0	95.68	0.13	3.79
3)	Ro-Scav Conc	498.9	4.32	73.16	96.21
4)	1st Ro Clnr Tail	66.7	0.58	1.11	0.20
5)	1st Ro Clnr Conc	432.2	3.74	84.28	96.02
6)	2nd Ro Clnr Tail	13.5	0.12	4.67	0.17
7)	2nd Ro Cinr Conc	418.7	3.62	86.85	95.85
8)	-48# 2nd Ro Cinr Conc	204.4	1.77	86.29	46.49
9)	+48# 2nd Ro Cinr Conc	214. 3	1.86	88.77	50.14
9)	" " " (Calc'd)	214.3	1.86	87.38	49.36
	+48# Circuit:	_			
10-12)	1st Pass Grav Conc	190.3	1.65	92.86	46.58
13)	1st Pass Grav Tail	24.0	0.21	43.99	2.78
14A)	2nd Pass Grav Conc	7.1	0.06	93.64	1.75
15)	Comb'd +48# Grav Tails	16.9	0.15	23.13	1.03
	Comb'd +48# Grav Conc (10-12 + 14A)	197.4	1.71	92.89	48.33
	-48# Circuit:				
8.1)	Comb'd –48# Feed (8+15)	221.3	1.92	81.47	47.52
16.	-48# Clnr Tails	22.5	0.19	12.90	0.77
17.	-48# Cinr Conc	198.8	1.72	89.24	46.76
18.	-48+100# Conc	135.5	1.17	93.30	33.31
19.	-100# Product	63.3	0.55	80.54	13.44
20.	-100# CInr Tails	8.22	0.07	4.86	0.11
21.	–100# Conc	55.1	0.48	91.83	13.34

REF:F16PRN

CESL\BISCRK\hmb

NORTH COAST INDUSTRIES LTD. BISSETT CREEK GRAPHITE VARIABILITY TEST No F17 METALLURGICAL BALANCE

	·····	WEIGHT	S	ASSAY	RECOVERY
	PRODUCTS	g	~ %	%C(g)	%
		······································			
1)	Feed	11,891.9	100.00	2.67	100.00
2)	Ro – Scav Tail	11,432.0	96.13	0.10	3.60
3)	Ro–Scav Conc	459.9	3.87	66.52	96.40
4)	1st Ro CInr Tail	85.4	0.72	1.04	0.28
5)	1st Ro Clnr Conc	374.5	3.15	81.45	96.12
6)	2nd Ro CInr Tail	16.6	0.14	5.74	0.30
7)	2nd Ro Cinr Conc	357.9	3.01	84.96	95.82
8)	-48# 2nd Ro Clnr Conc	173.9	1.46	83.54	45.78
9)	+48# 2nd Ro Cinr Conc	184.0	1.55	86.85	50.36
9)	" " " (Calc'd)	184.0	1.55	86.30	50.04
	+48# Circuit:				
10 11	1st Pass Grav Conc	146.8	1 00	92.68	42.88
10-11)	1st Pass Grav Conc		1.23 0.31	92.00 61.10	7.16
13)		37.2 18.0	0.31	91.21	5.17
14A)	2nd Pass Grav Conc				· · · · · · · · · · · · · · · · · · ·
14B)	3rd Pass Grav Conc	5.2	0.04	84.46	1.38 0.60
15)	Comb'd +48# Grav Tails	14.0	0.12	13.70	0.60
	Comb'd +48# Grav Conc	170.0	1.43	92.28	49.43
	(10–11 + 14A + 14B)	170.0		¥2.20	40.10
	-48# Circuit:				
8.1)	Comb'd -48# Feed	187.9	1.58	78.34	46.38
	(8+15)				
16.	-48# Clnr Tails	29.5	0.25	9.55	0.89
17.	-48# Cinr Conc	158.4	1.33	91.13	45.50
18.	-48+100# Conc	104.9	0.88	94.29	31.18
19.	-100# Product	53.5	0.45	84.95	14.32
20.	-100# CInr Tails	4.64	0.04	4.20	0.06
21.	-100# Conc	48.9	0.41	92.61	14.26

Ref:F17PRN

TEST F11 PROCEDURES

~

Test No: M90-088 F11

Date: 5-Jun-90

Purpose: Variability Testing: 1) Duplicate F8 procedure

Composite : Sample # 4

STAGE	TIME	AC	DITIONS	
	(Minutes)	g/tonne	REAGENT	
Grind (Target: 95-98% -800 microns)	3		1/2 regular rod charg 50-60% solids	e
Flotation: Condition	5	150	40% solids EKOF 452 G	pH= 8.2
Rougher	4			
Condition	2	15	EKOF 452 G	
Scavenger (to barren tail)	2			pH= 8.6
1st Ro Cleaner	5			
Condition	5	15	EKOF 452 G	
1st Ro Cleaner Scavenger	2			
2nd Ro Cleaner	6			
Condition	3	3	EKOF 452 G	
2nd Ro Cleaner Scavenger	0.5			
Screening: Screen 2nd rougher cleaner concen	trate into +48	mesh and -48	s mesh	•
Gravity Concentration: Hand Panning			+48 mesh graphite o	conc

Test No: M90-088 F11

Date: 5-Jun-90

Purpose: Variability Testing:

Regrind / cleaning procedure for -48 mesh Rougher 2nd Cleaner Conc

STAGE	TIME	A	DDITIONS
	(Minutes)	g/tonne	REAGENT
Regrind (25 - 30% solids) (Ceramic mill & Full ceramic media)	5 charge)		30 grams of -48 mesh Ro 2nd Cl Conc
Cleaning Flotation: -48# Cleaner 1 Condition	6 1	15	EKOF 452 G
Cleaner Scavenger	2		
-48# Cleaner 2 Condition	6	15	EKOF 452 G
Cleaner Scavenger	2	10	
Screening: Wet Screen Graphite -48# 2nd Clea	aner Concentra	ate at 100 me	sh

Test No: M90-088 F11

Date: 20-Jun-90

Purpose : Variability Testing: -100 Mesh Flotation 1)Utillize most rigorous regrind (full ceramic charge, 3 minutes) 2)Standard 2-stage cleaning flotation

ST	AGE	TIME	A	DDITIONS
		(Minutes)	g/tonne	REAGENT
Regrind		3		full ceramic charge
Cleaning	Flotation:			regrind product
-100# Clea		6		
Condition		1	15	EKOF 452 G
Cleaner Se	cavenger	3		
-100# Clea	aner 2	4		
Condition		1	15	EKOF 452 G
Cleaner S	cavenger	3		
		-		
			ļ	

TEST F12 PROCEDURES

Test No: M90-088 F12

Date: 5-Jun-90

Purpose: Variability Testing: 1) Duplicate F8 procedure

Composite : Sample # 6

STAGE	TIME	AC	DITIONS	·
	(Minutes)	g/tonne	REAGENT	
Grind	3		1/2 regular rod charg	e
(Target: 95-98% -800 microns)			50-60% solids	
Flotation:				
Condition	5		40% solids	oH= 6.4
Condition	J	150	EKOF 452 G	5/1- 0.4
Rougher	6			
C				
Condition	2	15	EKOF 452 G	
Scavenger	4			
(to barren tail)	1			pH= 6.6
1st Ro Cleaner	C			
Ist Ro Cleaner	6			
Condition	1	2	EKOF 452 G	
		-		
1st Ro Cleaner Scavenger	1			
2nd Ro Cleaner	5			
Condition	1	2	EKOF 452 G	
and Re Clapper Serverses				
2nd Ro Cleaner Scavenger				
······			······	
Screening:				
Screen 2nd rougher cleaner concer	ntrate into +48	mesh and -48	mesh	
Gravity Concentration:				
Hand Panning		ļ	+48 mesh graphite o	onc
	1		1	

Test No: M90-088 F12

Date: 5-Jun-90

.

Purpose: Variability Testing:

Regrind / cleaning procedure for -48 mesh Rougher 2nd Cleaner Conc

STAGE	TIME	ADDITIONS	
	(Minutes)	g/tonne	REAGENT
Regrind	5		30 grams of -48 mesh
(25 - 30% solids)	_		Ro 2nd Cl Conc
(Ceramic mill & Full ceramic media	a charge)		
Cleaning Flotation:			
-48# Cleaner 1	8		
Condition	1	15	EKOF 452 G
Cleaner Scavenger	3		
-48# Cleaner 2	7		
Condition	1	15	EKOF 452 G
Cleaner Scavenger	2.5		
Screening:			
Wet Screen Graphite -48# 2nd Cl	eaner Concentra	ate at 100 mes	sh

Test No: M90-088 F12

Date: 20-Jun-90

Purpose : Variability Testing: -100 Mesh Flotation 1)Utillize most rigorous regrind (full ceramic charge, 3 minutes) 2)Standard 2-stage cleaning flotation

STAGE	TIME	A	DDITIONS
	(Minutes)	g/tonne	REAGENT
Regrind	3		full ceramic charge
Cleaning Flotation:			regrind product
-100# Cleaner 1	3		
Condition	1	15	EKOF 452 G
Cleaner Scavenger	4		· · · · · · · · · · · · · · · · · · ·
-100# Cleaner 2	3		
Condition		15	EKOF 452 G
Cleaner Scavenger	2		
	-		
			<u> </u>
		I	

TEST F13 PROCEDURES

,

Test No: M90-088 F13

1

Date: 5-Jun-90

Purpose: Variability Testing: 1) Duplicate F8 procedure

Composite : Sample # 11

STAGE	TIME	AC	DITIONS
	(Minutes)	g/tonne	REAGENT
Grind	4		1/2 regular rod charge
(Target: 95-98% -800 microns)			50-60% solids
Flotation:			
Condition	5		40% solids pH= 7.6
		150	EKOF 452 G
Rougher	6		
Condition	2	15	EKOF 452 G
Scavenger	3		
(to barren tail)			pH= 7.8
1st Ro Cleaner	6		
Condition		2	EKOF 452 G
Condition	1	2	EROF 452 G
1st Ro Cleaner Scavenger	0.5		
2nd Ro Cleaner	5		
Condition	1	2	EKOF 452 G
Condition		2	
2nd Ro Cleaner Scavenger	. 0.5		
Screening:			
Screen 2nd rougher cleaner conce	entrate into +48	mesh and -48	ı 3 mesh
Gravity Concentration:			
Hand Panning	1	1	+48 mesh graphite conc

Test No: M90-088 F13

Date: 5-Jun-90

-

Purpose: Variability Testing:

Regrind / cleaning procedure for -48 mesh Rougher 2nd Cleaner Conc

STAGE	TIME	ADDITIONS	
	(Minutes)	g/tonne	REAGENT
Regrind	5		30 grams of -48 mesh
(25 - 30% solids)			Ro 2nd Cl Conc
(Ceramic mill & Full ceramic medi	a charge)		
Cleaning Flotation:			
-48# Cleaner 1	6		
Condition	1	15	EKOF 452 G
Cleaner Scavenger	2		
-48# Cleaner 2	6		
Condition	1	15	EKOF 452 G
Cleaner Scavenger	1.5		
Screening:			
Wet Screen Graphite -48# 2nd Cl	eaner Concentra	ate at 100 mesh	1
Wet Screen Graphite -48# 2nd Cl	eaner Concentra	ate at 100 mesr	1

Test No: M90-088 F13

Date: 20-Jun-90

Purpose : Variability Testing: -100 Mesh Flotation 1)Utillize most rigorous regrind (full ceramic charge, 3 minutes) 2)Standard 2-stage cleaning flotation

STAGE	TIME	ADDITIONS	
	(Minutes)	g/tonne	REAGENT
Regrind	3		full ceramic charge
Cleaning Flotation:			regrind product
100# Cleaner 1	3		
Condition	1	15	EKOF 452 G
Cleaner Scavenger	3		
100# Cleaner 2	3		
Condition	1	15	EKOF 452 G
Cleaner Scavenger	3		

TEST 14 PROCEDURES

.

1

Test No: M90-088 F14

Date: 5-Jun-90

Purpose: Variability Testing: 1) Duplicate F8 procedure

Composite : Sample # 15

STAGE	TIME	AD	DITIONS	
	(Minutes)	g/tonne	REAGENT	
Grind	4		1/2 regular rod charg	le
(Target: 95-98% -800 microns)			50-60% solids	
Flotation:				
Condition	5	150	40% solids EKOF 452 G	pH= 6.4
Rougher	5	:		
Condition	2	15	EKOF 452 G	
Scavenger	1			
(to barren tail)				pH= 6.8
1st Ro Cleaner	5			
Condition	1	2	EKOF 452 G	
1st Ro Cleaner Scavenger	0.5			
2nd Ro Cleaner	4			
Condition	1	2	EKOF 452 G	
2nd Ro Cleaner Scavenger	0.5			
Screening: Screen 2nd rougher cleaner concen	trate into +48	mesh and -48	mesh	•
Gravity Concentration: Hand Panning			+48 mesh graphite	conc

Test No: M90-088 F14

Date: 5-Jun-90

Purpose: Variability Testing:

Regrind / cleaning procedure for -48 mesh Rougher 2nd Cleaner Conc

STAGE	TIME	AD	DITIONS
	(Minutes)	g/tonne	REAGENT
Regrind	5		30 grams of -48 mesh
(25 - 30% solids)	-		Ro 2nd CI Conc
(Ceramic mill & Full ceramic media	charge)		
Cleaning Flotation:			
-48# Cleaner 1	6		
Condition	1	15	EKOF 452 G
Cleaner Scavenger	2		
-48# Cleaner 2	6		
Condition	1	15	EKOF 452 G
Cleaner Scavenger	2		
Screening:			
Wet Screen Graphite -48# 2nd Clea	ner Concentra	ate at 100 mest	1
		1	
	1		

Test No: M90-088 F14

Date: 20-Jun-90

Purpose : Variability Testing: -100 Mesh Flotation

1)Utillize most rigorous regrind (full ceramic charge, 3 minutes) 2)Standard 2-stage cleaning flotation

STAGE	TIME	A	DDITIONS
	(Minutes)	g/tonne	REAGENT
Regrind	3		full ceramic charge
Cleaning Flotation:			regrind product
-100# Cleaner 1	3		
Condition	1	15	EKOF 452 G
Cleaner Scavenger	3		
-100# Cleaner 2	3		
Condition	1	15	EKOF 452 G
Cleaner Scavenger	2		

TEST 15 PROCEDURES

÷

.

Test No: M90-088 F15

Date: 10-Aug-90

Purpose: Variability Testing 1) Duplicate F8 procedure

Composite: Bucket #1

STAGE			DITIONS	
	(Minutes)	g/tonne	REAGENT	
Grind 6 x 2 kg charge (Target: 95 to 100% -20 mesh)	4		1/2 regular rod charge 50 to 60% solids	
Flotation (single 12 kg rougher)				
Condition (~35% solids)	5	150	pH=8.1 EKDF 452 G	
Rougher	8			
Condition	2	15	EKDF 452 G	
Scavenger (to barren)	3.5		pH=8.2	
1st Ro Cleaner	8			
Condition	1	15	EKDF 452 G	
1st Ro Cleaner Scavenger	0		(no froth)	
2nd Ro Cleaner	7			
Condition	1	15	EKDF 452 G	
2nd Ro Cleaner Scavenger	0		(no froth)	
Screening:				
Screen 2nd rougher cleaner conc in	 to +48 mesh 	and -48 mesh		
Gravity Concentration:				
			+48 mesh graphite conc	

Test No: M90-088 F15-Cleaner

I

Date: 29-Aug-90

Purpose: Upgrading +48 mesh pan tails and -48 mesh 2nd Rougher Cleaner concentrate to +90% grade

STAGE	TIME			
	(Minutes)	g/tonne	REAGENT	
-48 Mesh Upgrading				
Regrind	7		Full charge	
(+48 mesh pan tails pan tails + -4	· · · ·	her cleaner c		
1st Cleaner Flotation:				
Condition	1	10	EKOF 452G	
Cleaner Float	7			
Condition	1	10	EKOF 452G	
Cleaner Float	3			
Condition	1	10	EKOF 452G	
Cleaner Float	2			
Condition	1	10	EKOF 452G	
Cleaner Float	1			
2nd Cleaner Flotation:				
Cleaner Float	5			
Condition	1	10	EKOF 452G	
Cleaner Float	3			
Condition	1	10	EKOF 452G	
Cleaner Float	2.5			
Condition	1	10	EKOF 452G	
Cleaner Float	2.5			
Condition	1	10	EKOF 452G	
Cleaner Float	1			
Screening:				
Wet screen graphite -48 mesh 2		 at 100 mesh		
wet screen graphite -40 mesh 2				

Test No: <u>M90-088 F15-Cleaner (-100#)</u>

Date: 29-Aug-90

Purpose: Upgrading -100 mesh 2nd Cleaner concentrate to +90% grade

linutes) 5 4 1 4 1 3 1	g/tonne 10 10	REAGENT Full charge EKOF 452G EKOF 452G
4 1 4 1 3	10	EKOF 452G
4 1 4 1 3	10	EKOF 452G
1 4 1 3	10	
1 4 1 3	10	
4 1 3	10	
3		EKOF 452G
1		
2.5	10	EKOF 452G
1 1	10	EKOF 452G
5		
1 3	10	EKOF 452G
1 2	10	EKOF 452G
1 1	10	EKOF 452G
	1 3 1 2 1	1 10 3 10 2 10 1 10

TEST 16 PROCEDURES

.

Test No: M90-088 F16

I

Date: 13-Aug-90

Purpose: Variability Testing 1) Duplicate F8 procedure

Composite: Bucket #3

STAGE	TIME	A	DITIONS	
	(Minutes)	g/tonne	REAGENT	
Grind 6 x 2 kg charge	4		1/2 regular rod charge	
(Target: 95 to 100% -20 mesh)			50 to 60% solids	
Flotation				
(single 12 kg rougher)				
- - - - - - - - - -			pH=8.3	
Condition (~35% solids)	5	150	EKDF 452 G	
Rougher	7			
Condition	2	15	EKDF 452 G	
Scavenger (to barren)	3			
			pH=8.3	
	<u> </u>	 		
1st Ro Cleaner	7			
	,			
Condition	1	15	EKDF 452 G	
1st Ro Cleaner Scavenger	0		(no froth)	
ist no cleaner Scavenger				
2nd Ro Cleaner	9			
Condition	1	15	EKDF 452 G	
Condition	↓ ↓	15		
2nd Ro Cleaner Scavenger	0		(no froth)	
Screening:				
Screen 2nd rougher cleaner conc i	I nto +48 mesh	and -48 mesh		
Gravity Concentration:				
Hand Panning			48 mesh graphite conc	
Hand Panning				

Test No: M90-088 F16-Cleaner

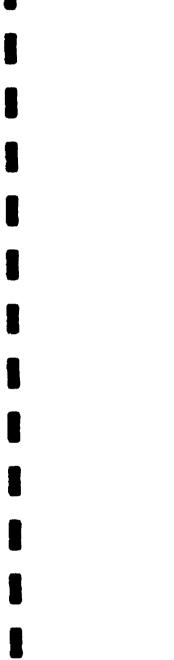
I

I

Date: 29-Aug-90

Purpose: Upgrading +48 mesh pan tails and -48 mesh 2nd Rougher Cleaner concentrate to +90% grade

STAGE	TIME	والمسادد ساعت في بخرج في الشريف التاريخ	ADDITIONS	
	(Minutes)	g/tonne	REAGENT	
-48 Mesh Upgrading				
Regrind	7		Full charge	
(+48 mesh pan tails + -48 mesh 2nd	rougher clear	ner conc)	·	
1st Cleaner Flotation:				
Condition	1	10	EKOF 452G	
Cleaner Float	5			
Condition	1	10	EKOF 452G	
Cleaner Float	3			
Condition	1	10	EKOF 452G	
Cleaner Float	2.5			
Condition	1	10	EKOF 452G	
Cleaner Float	1			
2nd Cleaner Flotation:				
Cleaner Float	9			
Condition	1	10	EKOF 452G	
Cleaner Float	2			
Condition	1	10	EKOF 452G	
Cleaner Float	1.5			
Condition	1	10	EKOF 452G	
Cleaner Float	1			
Screening:				
Wet screen graphite -48 mesh 2nd	desper cope :	1 at 100 mech		
wet screen graphite -40 mesh 2nd				


Test No: <u>M90-088 F16-Cleaner (-100#)</u>

Date: 29-Aug-90

Purpose: Upgrading -100 mesh 2nd Cleaner concentrate to +90% grade

STAGE	TIME	A	DDITIONS
	(Minutes)	g/tonne	REAGENT
-100 Mesh Upgrading			
Regrind	5		Full charge
(-100 mesh 2nd cleaner conc)			
1st Cleaner Flotation:			
Cleaner Float	4		
Condition	1	10	EKOF 452G
Cleaner Float	4		
Condition	1	10	EKOF 452G
Cleaner Float	2		
Condition	1	10	EKOF 452G
Cleaner Float	1		
2nd Cleaner Flotation:			
Cleaner Float	5		
Condition	1	10	EKOF 452G
Cleaner Float	2		
Condition	1	10	EKOF 452G
Cleaner Float	2.5		
Condition	· 1	10	EKOF 452G
Cleaner Float	1		

Test No: M90-088 F17

Date: 13-Aug-90

Purpose: Variability Testing 1) Duplicate F8 procedure

Composite: Bucket #4

STAGE	TIME	AC	DITIONS
	(Minutes)	g/tonne	REAGENT
Grind 6 x 2 kg charge (Target: 95 to 100% -20 mesh)	4		1/2 regular rod charge 50 to 60% solids
Flotation (single 12 kg rougher)			pH=8.6
Condition (~35% solids)	5	150	µ∩=0.8 EKDF 452 G
Rougher	8		
Condition	2	15	EKDF 452 G
Scavenger (to barren)	5		pH=8.9
1st Ro Cleaner	9		
Condition	1	2	EKDF 452 G
1st Ro Cleaner Scavenger	5		
2nd Ro Cleaner	7		
Condition	1	2	EKDF 452 G
2nd Ro Cleaner Scavenger	3		
Screening:			
Screen 2nd rougher cleaner conc ir	l nto +48 mesh	l and -48 mesh	
Gravity Concentration:			
			+48 mesh graphite conc

Test No: M90-088 F17-Cleaner

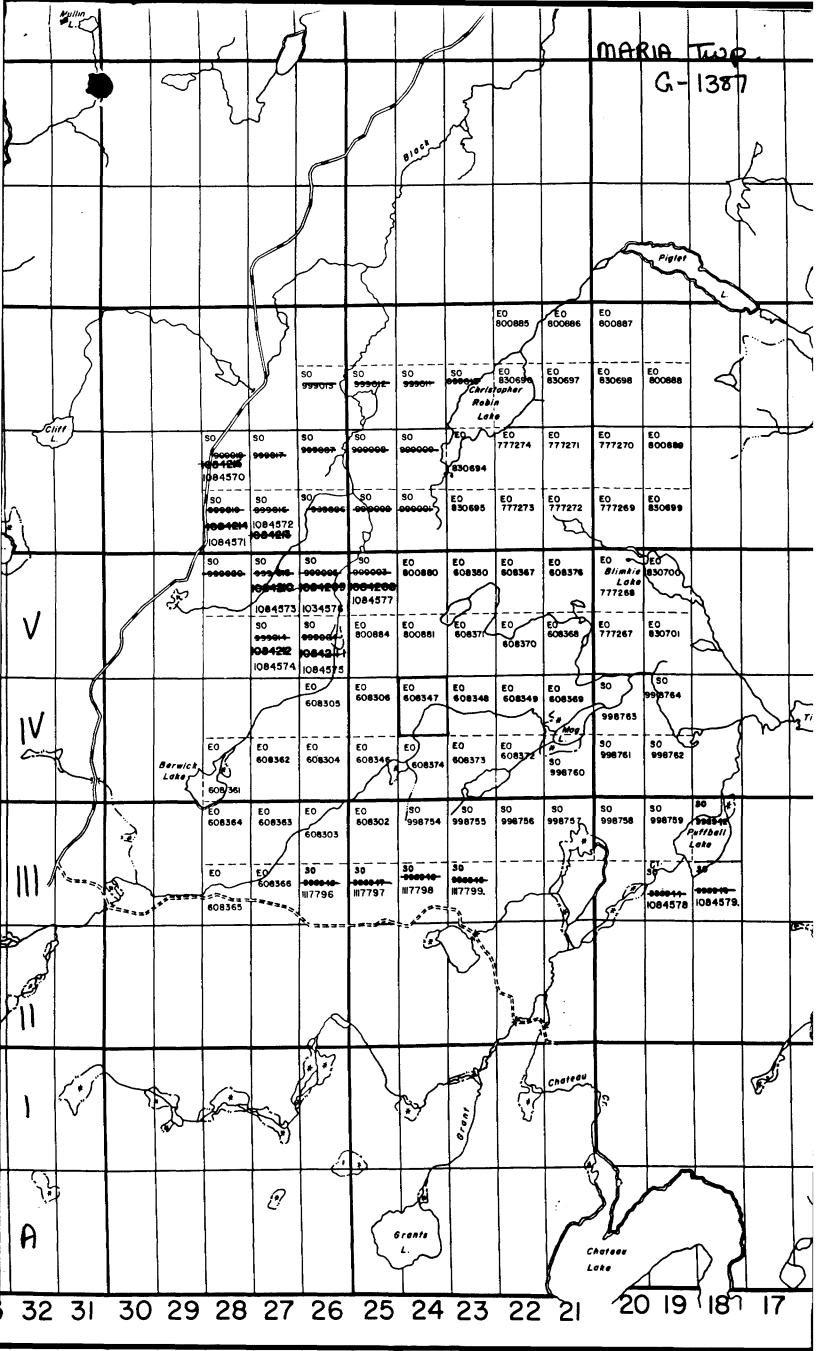
Date: 30-Aug-90

-

Purpose: Upgrading +48 mesh pan tails and -48 mesh 2nd Rougher Cleaner concentrate to +90% grade

STAGE	TIME	A[DDITIONS	
	(Minutes)	g/tonne	REAGENT	
-48 Mesh Upgrading	•			
Regrind	7		Full charge	
(+48 mesh pan tails pan tails + -4		l gher cleaner c		
1st Cleaner Flotation:				
Condition	1	10	EKOF 452G	
Cleaner Float	6			
Condition	1	10	EKOF 452G	
Cleaner Float	4			
Condition	1	10	EKOF 452G	
Cleaner Float	3			
Condition	1	10	EKOF 452G	
Cleaner Float	1			
2nd Cleaner Flotation:		•		
Cleaner Float	5			
Condition	1	10	EKOF 452G	
Cleaner Float	5			
Condition	1	10	EKOF 452G	
Cleaner Float	2			
Condition	1	10	EKOF 452G	
Cleaner Float	2			
Screening:				
-	, <u>}</u>			
Wet screen graphite -48 mesh 2	nd cleaner conc	at 100 mesh.		

TESTWORK PROCEDURE


Test No: <u>M90-088 F17-Cleaner (-10</u>0#)

Date: 29-Aug-90

Purpose: Upgrading -100 mesh 2nd Cleaner concentrate to +90% grade

STAGE	TIME		DDITIONS
	(Minutes)	g/tonne	REAGENT
-100 Mesh Upgrading			
Regrind	5		Full charge
(-100 mesh 2nd cleaner conc)			
1st Cleaner Flotation:			
Cleaner Float	6		
Condition	1	10	EKOF 452G
Cleaner Float	5		
Condition	1	10	EKOF 452G
Cleaner Float	5		
Condition	1	10	EKOF 452G
Cleaner Float	1		
2nd Cleaner Flotation:			
Cleaner Float	5		
Condition	1	10	EKOF 452G
Cleaner Float	4		
Condition	1	10	EKOF 452G
Cleaner Float	2		
Condition	· 1	10	EKOF 452G
Cleaner Float	1		

-	H.L	S .				7			^	•	- >	~~~
(\mathfrak{A})	Ministry of Northern Develop	ment		DOCUMENT	No.	1 11						
U	and Mines			W9190	.07							
Ontario		-				-						
			rt of W		2	811 311	LINE 0001 2.	14028 MAR	 			900
	Mining Act	(Expe	naitures,	Subsection 77								900
	Work Performed					ining Divisio		Townsh	F		_	
	SSAYS, ME	TALLU	REICA	R TESTING			N ONTACK	ma			RENFR	
Recorde					-	, Klass			マ '	•	s Licence No.	· /
	OUTH COM				-	604-6	81-0799				4866	
Address				HASTINGS	2					Telephone I	100. 1681-07	700 /
Work Pe	rformed By	VER	PAC	VGE 2K	D ECN IN	STERNA	TIONAL,	BACO		04-4	SALL A	77
	Con	1 MCO	Ente / N	EGUNG SEL	VICES	L70.	,	-700	~,0	00400	SON FAS	
Name an	nd Address of Author								1	Date When	Work was P	Performed
		VINON	000 Ø	AKK DL						From:	To	2 10 90
L		P.o . Bo	× 237	NORTH	BAY	,0071	ARID P	218 814	2	Day Mo		ay Mo. Yr.
	vork was performed			Mining Claim	No. of Days	Mining Claim	No. of Days	Mining Clain	n	No. of Days	Mining Claim	No. of Days
	no. of days perform		claim.	608347	3,393							
Mining Cla	m HECEN	hi a Carh	No. of Da	ys Mining Claim	to. of Days I	Mining Claim	No. of Days	Mining Clain	n	No. of Days	Mining Claim	No. of Days
										L		
Mining Cla	FEB251	Claim	No. of Da	ys Mining Claim	to. of Days	Mining Claim	No. of Days	Mining Clain	n	No. of Days	Mining Claim	No. of Days
Instruc		ec dis/Nib ia/A	atat claim	Calculation of Exp		ays Credits		Total	dita	Total Nur by this Re	nber of Mining eport of Work	g Claims Covered
	Schole Enter Hum			Total Expendit		20		Days Cree		-,	·	
(below)	in the expenditure).	days crea	fit column	\$ 200,	903.3	÷	15 =	13,39	5		18	<u> </u>
Mining	Claims (List in nu	imerical s	equence)	. If space is insul	ficient, a	ttach sch	edules with	required	inforr	nation		
	Mining Claim	Expend.		lining Claim	Expend.		Aining Claim		pend.		lining Claim	Expend.
Prefix	Number	Days Cr.	Prefix	Number	Days Cr.	Prefix	Number	Day	ys Cr.	Prefix	Numbe	er Days Cr.
50	998754	60	50	998763	60	50	108457	70 G	0	WOR	K ASSIG	WHENT
	998755	60	30	998942	60		10845	71 1	0			
├ ───		60		110146	00					EC	6083	
	998756	60	ļ				10845	72 6	0	333	7-1080	= 2 257
	998757	60					10845	73 6	0			davo
											·	
	998758	60			<u> </u>		10845	14 6	0			tolance
	998759	60					10845	75 6	0			
		60			1			~ /	0			
 	998760	_ <u>+</u>	<u> </u>	ONTARIO GEO GIS - ASSES	-		10845	0 0				
50	998761	60		GIS - ASCE	LOGICA	STIEVE	+0845	77 6	0			
Total Nu	mber of Days Perform	ned		GIS - ASSE Total Number of Day	s Claimed	FILES		Total Num	ber of	Days to be	Claimed at a	a Future Date
			1	SELOE			1 /					
L	13,393			~	- 133	1	1	L				
	ation of Beneficia					nort Date	I		Bee		F AF A	Signature)
of work	certify that, at the tir were recorded in the ci current recorded hold	ne me work v urrent recorde	d holder is na	eu, me cauns covere ame or heig goder a pe	neticial inter	port Date	8,199	, I	necol	tied Holde	n D	
	tion Verifying Re			TEVE	<u>IVE</u>			-		XA J	1 Al al	a
r						and and				-		
	certify that I have a p nd/or after its complet				et forth in t	ne Heport of	work annexed	nereto, hav	ing pe	rformed the	e work or with	nessed same
-					ek De	2.			<u>.</u>			
R.	nd Address of Person m・BLAバ	5	P.0.	BOX 237	,	-						イ
, · · ·				Telephone	No.	0	ate		C	ertified By	(Signature)	1
NOR	TH BAY, ON	<u>T. P</u> IB	8HZ	705-4	<u>74 - 4</u>	110 1	BB. 8 ,	1991		TV	MBR	us 1
							eceived Stamp	1	ОПТН	ERN ONTA	RIO MICING	DIVISION
For Of	fice <u>Use Onl</u>	v	1	_				ľ			EIVED	
										ri <u>s</u> u		
Total Da Cr. Reco		ı	Mint	g Flecorder	Τ.			1				
0. 1000		4/91		MULLAND	_lu)	1		FEB	1 1 1991	
Inco				<u></u>								FM
108	Date Approved	as Recorde	d Provir	ncial Manager, Mining	Lands				AM 77 S	2.0.10 11.	12,1,2,3,4	
ſ	16.1.	der	19	1 Cohon				1_	110	<u>1910111</u>	1-1 - 1- 11/1	
	1 28 14	7 71	la	2 COMM							<u>}</u>	
-												

North Coast Industries Ltd. Suite 1575 200 Granville St Vancouver BC Canada V6C 154

Tel: 604/681.0799 Fax: 604/681.2741 #700 - 1177 W. HASTINGS ST. VANCOUVER, B.C.__V6E 2K3

RECEIVED

Mining Land Section Mineral Developement Program MNDM 159 Cedar St., 4th Floor Sudbury, Ont., P3E 6A5 MB 62 March 28, 1991

MINING LANDS SECTION

Re: Report of Work(Doc W190.09) claims SO998754 et al.

Dear Sirs,

Enclosed are a Report of Work dated February 14, 1991 and the accompanying Technical Reports, invoices and cancelled checks for Metallurgical Testing performed on samples from the Bisset Creek Project in the Southern Ontario Mining Division.

Reports included are:

<u>Meta</u>	llurgic	<u>cal Testir</u>	<u>nq of</u>	<u>Bisset Creek Graphite</u>
<u>Fina</u>	l Repor	t(Complet	ce)	
July	1990			
By:	Bacon	Donaldsor	n and	Associates Ltd.
				<u>Bisset Creek Graphite</u>
		<u>cal Testir</u> ct(Summary		<u>Bisset Creek Graphite</u>
<u>Fina</u>				<u>Bisset Creek Graphite</u>

<u>Metallurgical Investigation and Plant Flowsheet</u> <u>Developement for the Bisset Creek Flake Graphite Ore</u> June 1990 Cominco Engineering Services Ltd.

Metallurgical Report on the Variability Test Results of the Bisset Creek Flake Graphite Ore. September 1990 Cominco Engineering Services Ltd.

Please advise us if any additional information is required. RECEIVED

APR 0 2 1991

Fun

Yours sincerel Tracen

MINING LANDS SECTION

Hardy Forzley

Ministry of Northern Development and Mines

Ministère du Développement du Nord et des Mines Mining Lands Section 159 Cedar Street, 4th Floor Sudbury, Ontario P3E 6A5

Telephone: (705) 670-7264 Fax: (705) 670-7262

Report of work # W9190.09

August 8,1991

Mr Rob Klassen North Coast Industries Ltd. 700-1177 West Hastings Vancouver, B.C. V6E 2K3

Dear Sir:

RE: Expenditures submitted on Mining Claims SO 998754 et al. in the Township of Maria.

_____*

As per our telephone conversation of August 7th 1991, I have encountered a problem regarding the total of \$ 200903.30 you are claiming.

When expenditures are submitted we require proof of payment which in this case involves the submission of invoices and cancelled cheques.

I have been able to verify payment of \$ 108454.32 (7230 days), but am unable to verify the remainder as I cannot match up all the submitted invoices and cancelled cheques.

I have enclosed two lists and photocopies of those invoices and cheques that cannot be matched up. Could you please try to match these up, (or submit further ones if required), and return this information to this office no later than 30 days from the date of this letter.

When returning this information please quote file # 2.14028

If you require further information please contact Clive Stephenson at (705) 670-7254.

Yours truly Stephens

OC Ron C. Gashinski Provincial Manager, Mining Lands Mines and Minerals Division

CDS/cs Encl:

cc: Mining Recorder Southern Ontario R.M. Blais North Bay, Ontario North Coast Industries Ltd ire 1575 ----- 8 Oranville Si mannese BC---- Tel: 604/681.0799 Fax: 604/681.2741

700 - 1177 West Hastings Vancouver, B.C. VGE 2K3

5 September 1991

Clive Stephenson Ministry of Northern Development and Mines Mining Land Section 159 Cedar Street, 4th Floor Sudbury, Ontario P3E 6A5

RE: Submission of Invoices and Cancelled Cheques File

Dear Sir:

As per your letter dated August 8, 1991, please find enclosed a complete resubmission of invoices and cancelled cheques for the Bissett Creek project. Our accounting staff have documented the cross matching and adjustment of various accounts to clearly illustrate the balance of accounts.

We apologize for any inconvenience caused by our initial submission.

If you require further information please contact Rob Klassen or Laurie Forzley at (604) 681-0799.

Yours sincerely Rob Klassen North Coast Industries

RECEIVED

2,14028

SEP 1 0 1991

MINING LANDS SLUTION

2.14028 part 2

INVOICES without matched cancelled Cheques

INVOICE FROM	INVOICE AND INVO	BILLING PERIOD ICE #	DATE	AMOUNT
Cominco Eng.	Feb, 90	02-CECV011	Mar 08, 90	\$ 3965.12
Cominco Eng.	Mar, 90	03-CECV011	Apr 09, 90	\$ 6526.22
Cominco Eng.	Apr, 90	04-CECV011	May 08, 90	\$ 6169.72
Cominco Eng.	May, 90	05-CECV011	Jun 08, 90	\$ 3658.92
Cominco Eng.	Jun, 90	06-CECV011	Jul 10, 90	\$ 12542.43
Cominco Eng.	Jul, 90	07-CECV011	Aug 10, 90	\$ 7968.99
Cominco Eng.	Aug, 90	08-CECV011	Sep 11, 90	\$ 2588.13
Ortech Int.		14357	Feb 15, 90	\$ 10824.60
			TOTAL	\$ 54244.13

note: The total amount for the Ortech invoice (# 14357) is \$ 20324.60 of which a cancelled cheque for \$ 9500.00 (advance payment) has been submitted. This leaves a balance of \$ 10824.60 which still requires proof of payment.

CHEQUES without matched Invoices

PAYEE	DATE OF	СНО	CHEQUE	#	AMOUNT
Bacon Donaldson & Assoc.	Dec 20,	89	1057		\$ 496.57
Cominco Engineering	Feb 16,	90	1134		\$ 1559.75
Cominco Engineering	Mar 31,	90	0019		\$ 3897.12
Cominco Engineering	Jul 06,	90	0043		\$ 10000.00
Cominco Engineering	Aug 03,	90	1295		\$ 6354.86
Cominco Engineering	Sep 01,	90	1318		\$ 8000.00
Ortech Int.	May 08,	90	0032		\$ 7763.65
Ortech Int.	Jul 06,	90	0045		\$ 5000.00
Ortech Int.	Mar 25,	90	0024		\$ 2820.35
				TOTAL	\$ 45892.30

NORTH COAST INDUSTRIES LTD. 700 - 1177 West Hastings Street Vancouver, B.C. V6E 2K3

RECONCILIATION OF REPORT OF WORK

Bacon Donaldson & Associates Ltd.

Invoice # 849 54 Invoice # 8495		\$	18,899.80 <u>10,348.61</u> 29,248.41	СК	#	027	\$	29,248.41
Invoice :	145,864.89*		102,000.00	CK	; ; ; ;	1268 1288 1317 084		30,000.00 20,000.00 10,000.00 42,000.00 102,000.00
	\langle	S	131,248.48				<u>\$</u>	131,248.48
Cominco Engineering Serv:	<u>ices Ltd.</u>			,				/
Invoice # 01-CEC V011		\$	9,705.91	СК	#	016	\$	9,705.91
Invoice # 02-CEC V011	3,965.12+		3,897.12	CK	ŧ	019		3,897.12
Invoice # 04-CEC V011 Invoice # 03-CEC V011 Invoice # 05-CEC V011		_	6,169.72 6,526.22 <u>3,658.92</u> 16,354.86			043 1295		10,000.00 <u>6,354.00</u> 16,354.86
Invoice # 06-CEC V011 Invoice # 07-CEC V011 	12,542.43 7,968.99 <u>2,588.13</u> 23,099.55°	_	20,500.00		-	1318 132	_	8,000.00 12,500.00 20,500.00
		<u>\$</u>	50,457.89				<u>s</u>	50,457.89
Ortech International								
Invoice # 14976		\$	2,820.35	СК	ŧ	024	\$	2,820.35
Invoice # 14357 Invoice # 16329 (credit)		_	20,324.60 (3,060.95) 17,263.65	CK CK		003 032		9,500.00 <u>7,763.65</u> 17,263.65
Invoice # 17111			5,000.00	CK	#	045		5,000.00
		<u>s</u>	25,084.00				<u>\$</u>	25,084.00

* This invoice was subsequently settled for \$102,000.00
+ The invoice was adjusted by \$68.00 to reflect an outstanding credit.
o This account was subsequently settled for \$20,500.00.

Lakefield Research

Invoice # 03235 Invoice # 03278	\$ 252.00 <u>168.00</u> 420.00	СК # 009	\$ 420.00
Invoice # 03707	1,950.00	СК # 031	1,950.00
Invoice # 04067 Invoice # 04080	329.50 <u>44.00</u> <u>373.50</u> <u>\$ 2,743.50</u>	CK # 1320	<u> </u>
TOTAL EXPENDITURES	<u>\$ 209,533.80</u>		<u>\$ 209,533.80</u>

INÝOICE

BACON. DONALDSON & ASSOCIATES LTD.

12271 Horseshoe Way, Richmond, B.C. V7A 4Z1 • Phone: 277-2322 • Fax: 274-7235

In Account With NORTHCOAST INDUSTRIES 1270 - 601 W. Hastings St. Vancouver, B.C.

V6B 5A6

Invoice No. 8494

File No. M90-088

Purchase Order No.

Attention: Laurie Forzley

Date 1990 March 13

Re: Batch Laboratory Testwork on Bissett Project to February 28, 1990.

PROFESSIONAL SERVI	CES	
Technicians	126.0 hrs. @ \$ 50.	\$ 6,300.00
	27.0 hrs. @ \$ 30.	810.00
	1.0 hrs. @ \$ 60.	60.00
	2.0 hrs. @ \$ 57.	114.00
Engineers	119.0 hrs. @ \$ 75.	8,925.00
	3.5 hrs. @ \$100.	350.00
Secretarial	2.1 hrs. @ \$ 30.	63.00
Assays - BDA	22@\$20.	440.00
- Chem	ex	1,107.45
EXPENSES		
Vancouver Pet	rographics	672.75
Fax charges		57.60
TOTAL		\$ 18,899.80

This is a professional invoice and is due when presented. 1.5% per month charged on invoices over 30 days. (18% per annum)

INYOICE

BACON, DONALDSON & ASSOCIATES LTD.

12271 Horseshoe Way, Richmond, B.C. V7A 4Z1 • Phone: 277-2322 • Fax: 274-7235

In Account With NORTHCOAST INDUSTRIES 1270 - 601 W. Hastings St. Vancouver, B.C. V6B 5A6 Invoice No. 8495

File No. M90-088

Purchase Order No.

Attention: Laurie Forzley

Date 1990 March 13

Re: Pilot-Scale Testing of Bissett Graphite Project to February 28, 1990.

	PROFESSIONAL SERVIC	CES						
1.	Circuit Set-Up							
	Technicians	50.0	hrs.	@	\$ 50.	\$	2,500.00	
	Engineers	38.0	hrs.	0	\$ 65.		2,470.00	
	Consumables						1,178.61	
2。	Receipt & Crushing	of Oi	ce					
		11.5	hrs.	0	\$ 30.		345.00	
		3.0	hrs.	6	\$ 65.		195.00	
		20.0	hrs.	@	\$ 50.		1,000.00	
3.	Preliminary Test Ru	ins						
		34.5	hrs.	0	\$ 30.		1,035.00	
		25.0	hrs.	0	\$ 65.		1,625.00	
	TOTAL					Ş	10,348.61	

This is a professional invoice and is due when presented. 1.5% per month charged on invoices over 30 days. (18% per annum)

NORTHCOAST INDUCTRIES LTD. 0027 1270 - 601 WEST HA NGS STREET VANCOUVER, B.C. V6B 5A6 _<u>19</u>90 31 29248 41 PAY TO 30 THE ORDER OF 41 れ 100 DOLLARS BANK OF MONTREAL NORTHCOAST INDUSTRIES LTD GRANVILLE & PENDER STREET BRANCH , 500 - 520 GRANVILLE STREET VANCOUVER, B.C. V6C 1W7 PĚR 1.17 BY94 8495 Ц. PER FOR_ #000027# 40\$ 120#001# 1243#347# 100029248447 CIATES LTD. 0 04000 ω BRITISH COLUMBUR, APR i 'yor 03 AP ³90[°] 03 40 Ø 07860-\ر ROYAL BANKO DATA CENTRE Ĵ, 01660-003 BRITISK COLUMBIA PC 电压 电双口运 气风层 **13303333** N 2

North Coast Industries Ltd. uite 1575 00 Scanville St Jancouver BC

Tei: 604/681.0799 Fax: 604/681.2741

#700 - 1177 W. HASTINGS ST. VANCOUVER, B.C. V6E 2K3

February 28, 1991

Bacon Donaldson & Associates Ltd. 12271 Horseshoe Way Richmond, B.C. V7A 421 <u>Attn:</u> Lee Schneider, Controller

Dear Sir:

Re: Settlement of our account

As per your letter dated February 21, 1991, enclosed please find our cheque in the amount of \$42,000.00 representing full settlement of the North Coast Industries Ltd.'s account with Bacon Donaldson & Associates Ltd.

We trust this is satisfactory.

Yours very truly,

NORTH COAST INDUSTRIES LTD.

Harold H.G. Forzley Vice President

/rr

NCT:BaconPay

12271 HORSESHOE WAY RICHMOND, B.C. CANADA V7A 4Z1 TELEPHONE: (604) 277-2322 FACSIMILE : (604) 274-7235

February 21, 1991

File Number: M90-088

NORTHCOAST INDUSTRIES 1270 - 601 West Hastings Street Vancouver, B.C. V6B 5A6

Attention: Ron Thiessen

Dear Sir,

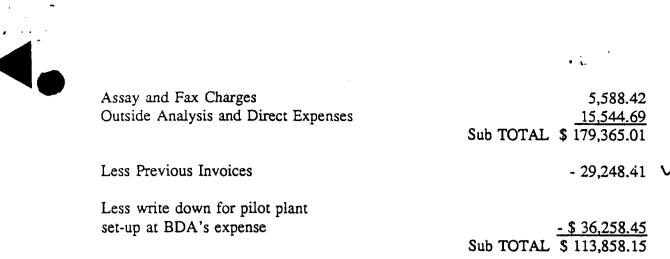
Re: Settlement of Your Account

This will confirm your recent discussions with Messrs. Gord Bacon and Morris Beattie regarding your overdue account with Bacon, Donaldson and Associates Ltd. Upon receipt of the agreed upon final settlement amount of \$42,000 we will issue a credit note for the balance then owing.

Yours truly, BACON DONALDSON & ASSOCIATES LTD.

Lee Schneider, Controller SLS/jlb

. **.**.


-

BREAKDOWN OF INVOICE #1071 BISSETT CREEK PROJECT NORTH COAST INDUSTRIES

A. Preliminary testwork and pilot palnt operation.

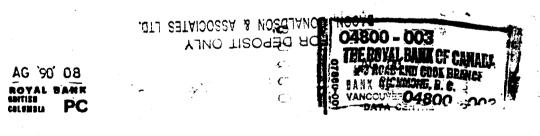
PERSON	HOURS	RATE	TOTAL
Brent Peacock	22	50	\$ 1,100
Bruce Smith	189	50	9,450
	13	57	741
Ted Joyce	284	50	14,200
Clint Rule	7.5	50	375
Diane Baker	33	60	1,980
Ed Henrioulle	521	75	39,075
Gus Chow	8	50	400
Ed Klassen	26.8	75	2,010
Jack Richards	355.7	30	10,671
	107.2	37	3,966.40
Jasman Yee	301	65	19,565
Keith Davidson	181	50	9,050
	12	57	684
Martin Schuchow	62.5	50	3,125
	4	57	228
Morris Beattie	48.5	100	4,850
Peter Tse	335	50	16,750
	26	57	1,482
Richard Steel	13.5	50	675
Ron Williams	1.5	60	90
Shawna Martin	169.5	50	8,475
	4.5	57	256.50
Trish Hosepdales	49	60	2,940
Vince Brusnyk	191.5	30	5,745
	4	37	148
Gord Bacon	2	100	200.00

Sub TOTAL \$ 158,231.90

B. Variability Testwork and Final Reporting

~

PERSON	HOURS	RATE	TOTAL
Bruce Smith	31	50	1,550
Clint Rule	3	50	150
Ed Henrioulle	170.9	75	12,817.50
Grant Morgan	3	60	180
Jack Richman	25.6	30	768
Jasman Yee	15	65	975
Keith Davidson	3	50	150
Morris Beattie	2.5	100	250
Peter Tse	80	50	4,000
Ron Williams	1	57	57
	2	60	120
Shawna Martin	17	50	850
Vince Brusnyk	27.5	30	825
Secretarial	52.1	30	<u>\$ 1,563</u>
		Sub	TOTAL \$ 24,255.50
Assay and Fax charges			\$ 3,837.50
Outside analyses and direct e	expenses		\$ 3,913.74
		Sub	TOTAL \$ 32,006.74
Total this Invoice	\$ 145,864.89		
Less Advances	- \$ 60,000.00	~	
BALANCE DUE	<u>\$ 85,864.89</u>		

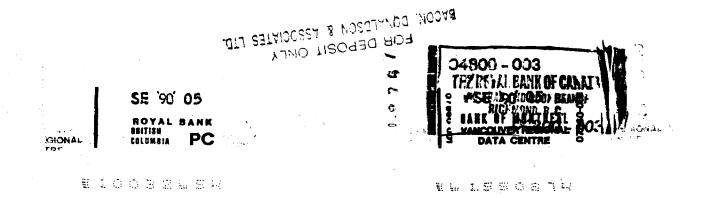

NORTH COAST IN USTRIES LTD. 1268 PRICE WATERS SE CENTRE #1270 - 601 WEST HASTINGS STREET VANCOUVER, B.C. V6B 5A6 _19<u>90</u> ۵ OU 30,000. PAY TO 6 \sim K. 100 DOLLARS 154 the second NORTH COAST INDUSTRIES LTD. SANK OF MONTREAL 41 197 GRANVILLE & PENDER STREET BRANCH 500 - 520 GRANVILLE STREET 2.1 VANCOUVER B.C. V6C 1W7 3.4 niete PER FOR M90-086 108120-0011 1239....102. *000300000* **#001268#**

EACON, DOWALDER ST 0 G JY '90' 09 JY '90' 09 0 OF MONTREAL LOF MONTREAL S COLVER REGIONAL S ROYAL BANK O တ 04800-003 E81718# PC DATA CENTRE COLUMBIA •

114323333

E 4 2 2 5 2 6 5 5

NORTH COAST "DUSTRIES LTD. 1288 PRICE WATE: JUSE CENTRE #1270 - 601 WEST HASTINGS STREET VANCOUVER, B.C. V68 5A6 90 <u>20,000</u>. 00 PAY TO_____ K2 201 7100 DOLLARS BANK OF MONTREAL GRANVILLE & PENDER STREET BRANCH NORTH COAST INDUSTRIES LTD. 500 - 520 GRANVILLE STREET VANCOUVER, B.C. V6C 1W7 FOR 10 6 PER 6 M90-088 "OOD 5000Q00". 108120-0014 1239+ 102* #001288#


载金客客品 飞之气。

142885381

NORTH COAST I USTRIES LTD. 1317 PRICE WATERHOUSE CENTRE #1270 - 601 WEST HASTINGS STREET VANCOUVER, B.C. V68 5A6 1990 00 PAY TO_____ 0∞ 100 DOLLARS BANK OF MONTREAL NORTH COAST INDUSTRIES LTD. GRANVILLE & PENDER STREET BRANCH 500 - 520 GRANVILLE'STREET VANCOUVER, B.C. V6C 1W7 JAAR - Busset FOR PER MGO-058 - Advance "001317" 1:08120-0011 1239-102# "000100000"

Ŧ

. •.

NORTH COA INDUSTRIES LTD. 0084 700 - 1177 WEJI HASTINGS STREET VANCOUVER, BC V6E 2K3 PHONE 681-0799 1991 onaldson & associates, 00 PAY TO THE ORDER OF 7100 DOLLARS NORTH COAST INDUSTRIES LTD. Ω RE: Bank of Montreal VANCOUVER MAIN OFFICE FIRST BANK TOWER, 595 BURRARD ST. PER PER VANCOUVER, B.C. V7X 1L7 H 107 #000084# 1:00040+0011: 1251+893# "0004-20000" **1**. 5-1-1-

 \circ \$

ယ

 \sim

3

BACON, DONALDSON & ASSOCIATES LTD FOR DEPOSIT ONLY

22

NG-

žé

200 - Dudday

LEA.

toiscHitss

FB '91' 28

801

COLUMNS.

N

ω

TH I NREIBI

COL.

145

28

N REGIONAL

02-998-00

`91

DATA CENTRE

. •

Cominco Engineering Services Ltd.

100 - 1200 West 73rd Ave., Vancouver, B.C., Canada V6P 6G5 / Tel. (604) 264-5500 / Telex 04-55357 / Fax (604) 264-5555

,

February 20, 1990

North Coast Industries Ltd. 1270 - 601 W. Hastings Street Vancouver, B.C. V6B 5A6

Attention: Mr. Dave Copeland

Dear Sir:

Re: Bisset Creek Metallurgical Testwork

Please find attached our January 1990 invoice with respect to the above mentioned project:

January Invoice #01-CECV011

\$9,705.91

or 475'

Should you have any questions, please call.

Regards,

G.R. Albright Revenue and Project Accounting Manager

GRA/jmh Attach.

FI.01

Cominco Engineering Services Ltd.	
Invoice No. 01-CECV011	_{Date} 90-02-09
NORTH COAST INDUSTRIES LTD. 1270 - 601 WEST HASTINGS STREET VANCOUVER, B.C. V6B 5A6	Accounting Inquiries Phone - (604) 264-5525 Technical Inquiries Name - VCR : HM BOLU Phone -
ATTENTION: DAVE COPELAND	Phone - (604) 264-5576
JANUARY, 1990 EXPENDITURES AS ATTACHED	
CEC.V01.1 - BISSET CREEK METALLURGICAL TES	TWORK
PROFESSIONAL ENGINEERING SERVICES (SEE ATTACHMENT 1)	\$8,002.50
REIMBURSABLES (SEE ATTACHMENT 2)	\$1,703.41
TOTAL THIS IN	VOICE \$9,705.91

Net 30 Days

Interest Charged at 11/2 % Per Month on Overdue Accounts.

NORTHCOAST INDUSTRIES LTD. 0016 1270 - 601 WEST HASTING 'RI VANCOUVER, B.C. V6B 5A6 REET 96 19 91 TIOS PAY TO CO and class. n Det a 100 DOLLARS BANK OF MONTREAL GRANVILLE & PENDER STREET BRANCH NORTHCOAST INDUSTRIES L מז 500 - 520 GRANVILLE STREET VANCOUVER, B.C. V6C 1W7 51 PER 0-10 FOR CE NÖ C C PER. 1243-3478 1:08120-0011 #000015# 2000970591 1 3, 30 1 3, 30 1 3, 30 1 3, 30 1 3, 30 1 3, 30 1 3, 30 1 3, 30 1 3, 30 1 3, 30 1 3, 30 1 3, 30 1 3, 30 1 3, 30 1 3, 30 1 3, 30 1 3, 30 1 3, 30 1 1, 50 1 1 S. С." ESTHON TO TOOLIT MAR ् ध 28 NONTREA 100/1 DATA GENTRE 0 960 ω 5 ___ ES 1316634 1

Sub-total 1314 00 Entertainment Less: Unused air fare (attach tickets) SEE REFLUD Total Expenses 1629 b2 Sub - total SEE REFLUD Total Expenses 1629 b2 Sub - total SEE REFLUD Total Expenses 1629 b2 Sub - total SEE REFLUD Total Expenses 1629 b2 Sub - total SEE REFLUD Total Expenses 1629 b2 Sub - total Sub - total Expense \$Cdn. (2) 1629 b2 Net advances (1) 1314 00 00 Distribution of Expense Code Amount Purpose of Trip or Expendi V. O (1-0200 1629 00 AT 0 R TEZH 4		
Date Location Daily General Expense Trans- modation iton Description of item bJAN 90 TORON TO 59.65 1314 17 - 2.56.03 1314 17 - 2.56.03 1314 17 - - 2.56.03 17 - - - 17 - - - 17 - - - 17 - - - 17 - - - 17 - - - 17 - - - 17 - - - 17 - - - 17 - - - 18 - - - 19 - - - 10 - - - 10 - - - 11 - - - 12 - - - 13 - - - 14 - - - 15 - - - 16 - - - 17 <th></th> <th></th>		
Image: Product of the second seco	s Sundry	Enter- tainme
Sub-totals \$ 57.5 \$ 257.03 \$ $13 4.00$ Advances from CESL Employee Expenses Reported $25.6.03$ \$ $13 4.00$ Advances from CESL Employee Expenses Reported $25.6.03$ \$ $13 4.00$ Advances from CESL Employee Expenses Reported $25.6.03$ \$ $13 4.00$ Sub-totals \$ $57.6.5$ \$ $257.0.3$ \$ $13 4.00$ Advances from CESL Employee Expenses Reported $25.6.03$ Cash — Daily General Expense $59.6.5$ Transportation 13:14.00 Hotel Accommodation $2.5.6.03$ Sub-total 13:14.00 Entertainment $13:14.00$ Less: Unused air $52.6.6.5$ Exchange Rate $162.9.62$ Sub-total $13:14.00$ Exchange Rate $162.9.62$ Sub-total $13:14.00$ Exchange Rate $162.9.62$ Sub-total $13:14.00$ $54.07.02$ $162.9.62$ Distribution of Expense Amount Purpose of Trip or Expendit Code $54.0.72.7.52.0.7$ $54.0.72.7.52.0.7$ V. O (1-0200) $162.9.00$ $A.T 0.0.T EZH A$		
Sub-totals \$ 57.65 \$ 256.03 \$ 1314.00 Advances from CESL Employee Expenses Reported \$ 256.03 \$ 1314.00 Advances from CESL Employee Expenses Reported \$ 256.03 \$ 1314.00 Advances from CESL Employee Expenses Reported \$ 256.03 \$ 1314.00 Sub-totals \$ 57.65 \$ 256.03 \$ 1314.00 Advances from CESL Employee Expenses Reported \$ 256.03 Sub-total 1314.00 Hotel Accommodation \$ 256.03 Other Transportation 1 3 14.00 Sundry Sub-total 1314.00 Entertainment \$ 162.9 Less: Unused air fare (attach bus, codess bus, codes		
Sub-totals \$ 57.65 \$ 256.03 \$ 1314.00 Advances from CESL Employee Expenses Reported \$ 256.03 \$ 1314.00 Advances from CESL Employee Expenses Reported \$ 256.03 \$ 1314.00 Advances from CESL Employee Expenses Reported \$ 256.03 \$ 1314.00 Sub-totals \$ 57.65 \$ 256.03 \$ 1314.00 Advances from CESL Employee Expenses Reported \$ 256.03 Sub-total 1314.00 Hotel Accommodation \$ 256.03 Other Transportation 1 3 14.00 Sundry Sub-total 1314.00 Entertainment \$ 162.9 Less: Unused air fare (attach bus, codess bus, codes		
Sub-totals \$ 57.65 \$ 256.03 \$ 1314.00 Advances from CESL Employee Expenses Reported 5.65 Cash — Daily General Expense 5.7.65 Transportation 1314 00 Hotel Accommodation 2.56 0.3 Other Transportation 1314 00 Hotel Accommodation 2.56 0.3 Sub-total 1314 00 Hotel Accommodation 2.56 0.3 Other Transportation 1.3 1.4 0.0 Exchange Rate 1.3 1.4 0.0 Sub-total 1.3 1.4 0.0 Exchange Rate 1.62.9 6.2 Sub-total 1.3 1.4 0.3 Exchange Rate 1.62.9 6.2 Sub-total 1.3 1.4 0.3 Exchange Rate 1.62.9 6.2 Sub-total 1.3 1.4 0.3 Exchange Rate 1.62.9 6.2 Distribution of Expense Amount Purpose of Trip or Expendi SuP FER VISION AT 0 & TEZH AT 0		
Sub-totals \$ 59.65 \$ 256.03 \$ 1314.00 Advances from CESL Employee Expenses Reported Cash — Daily General Expense 59.65 Transportation 1314 00 Hotel Accommodation 256 03 Other Transportation 1314 00 Hotel Accommodation 256 03 Other Transportation 1314 00 Bundry 0 Sub-total 1314 00 Entertainment 0 Less: Unused air SEF REFLWD Total Expenses 1629 b2 Exchange Rate Exchange Rate 0 0 Distribution of Expense Amount Purpose of Trip or Expendi Code 1314 00 0 0 0 Distribution of Expense Amount Purpose of Trip or Expendi SUP Erec VISION V. O (1 - 0200 1629 00 AT 0 R TETH A		
Sub-totals \$ 59.65 \$ 256.03 \$ 1314.00 Advances from CESL Employee Expenses Reported Cash — Daily General Expense 59.65 Transportation 1314 00 Hotel Accommodation 256 03 Other Transportation 1314 00 Hotel Accommodation 256 03 Other Transportation 1314 00 Bundry 0 Sub-total 1314 00 Entertainment 0 Less: Unused air SEF REFLWD Total Expenses 1629 b2 Exchange Rate Exchange Rate 0 0 Distribution of Expense Amount Purpose of Trip or Expendi Code 1314 00 0 0 0 Distribution of Expense Amount Purpose of Trip or Expendi SUP Erec VISION V. O (1 - 0200 1629 00 AT 0 R TETH A		
Sub-totals \$ 59.65 \$ 256.03 \$ 1314.00 Advances from CESL Employee Expenses Reported Cash — Daily General Expense 59.65 Transportation 1314 00 Hotel Accommodation 256 03 Other Transportation 1314 00 Hotel Accommodation 256 03 Sub-total 1314 00 Hotel Accommodation 256 03 Sub-total 1314 00 Entertainment 1314 00 Sub-total 1314 00 Entertainment 1314 00 Sub-total 1314 00 Entertainment 1629 b2 Sub-total 1314 00 Exchange Rate 1629 b2 Sub-total 1314 00 Exchange Rate 1629 b2 Sub-total 1314 00 Distribution of Expense Amount Purpose of Trip or Expendi Code		
Sub-totals \$ 59.65 \$ 256.03 \$ 1314.00 Advances from CESL Employee Expenses Reported Cash — Daily General Expense 59.65 Transportation 1314 00 Hotel Accommodation 256 03 Other Transportation 1314 00 Hotel Accommodation 256 03 Sub-total 1314 00 Hotel Accommodation 256 03 Sub-total 1314 00 Entertainment 1314 00 Sub-total 1314 00 Entertainment 1314 00 Sub-total 1314 00 Entertainment 1629 b2 Sub-total 1314 00 Exchange Rate 1629 b2 Sub-total 1314 00 Exchange Rate 1629 b2 Sub-total 1314 00 Distribution of Expense Amount Purpose of Trip or Expendi Code	· <u> </u>	
Sub-totals \$ 59.65 \$ 256.03 \$ 1314.00 Advances from CESL Employee Expenses Reported Cash — Daily General Expense 59.65 Transportation 1314 00 Hotel Accommodation 256 03 Other Transportation 1314 00 Hotel Accommodation 256 03 Sub-total 1314 00 Hotel Accommodation 256 03 Sub-total 1314 00 Entertainment 1314 00 Sub-total 1314 00 Entertainment 1314 00 Sub-total 1314 00 Entertainment 1629 b2 Sub-total 1314 00 Exchange Rate 1629 b2 Sub-total 1314 00 Exchange Rate 1629 b2 Sub-total 1314 00 Distribution of Expense Amount Purpose of Trip or Expendi Code		
Sub-totals \$ 59.65 \$ 256.03 \$ 1314.00 Advances from CESL Employee Expenses Reported Cash — Daily General Expense 59.65 Transportation 1314 00 Hotel Accommodation 256 03 Other Transportation 1314 00 Hotel Accommodation 256 03 Sub-total 1314 00 Hotel Accommodation 256 03 Sub-total 1314 00 Entertainment 1314 00 Sub-total 1314 00 Entertainment 1314 00 Sub-total 1314 00 Entertainment 1629 b2 fare (attach SEF REFLWD SLIP FOR TOTAL Expenses 1629 b2 Exchange Rate Exchange Rate 1629 b2 Net advances (1) 1314 00 00 1629 62 Distribution of Expense Amount Purpose of Trip or Expendi Code 1629 00 AT 0 R TETH A	· · · · · · · · · · · · · · · · · · ·	
Sub-totals \$ 59.65 \$ 256.03 \$ 1314.00 Advances from CESL Employee Expenses Reported Cash — Daily General Expense 59.65 Transportation 1314 00 Hotel Accommodation 256 03 Other Transportation 1314 00 Hotel Accommodation 256 03 Other Transportation 1314 00 Bundry 0 Sub-total 1314 00 Entertainment 0 Less: Unused air SEF REFLWD Total Expenses 1629 b2 Exchange Rate Exchange Rate 0 0 Distribution of Expense Amount Purpose of Trip or Expendi Code 1314 00 0 0 0 Distribution of Expense Amount Purpose of Trip or Expendi SUP Erec VISION V. O (1 - 0200 1629 00 AT 0 R TETH A		
Sub-totals \$ 59.65 \$ 256.03 \$ 1314.00 Advances from CESL Employee Expenses Reported Cash — Daily General Expense 59.65 Transportation 1314 00 Hotel Accommodation 256 03 Other Transportation 1314 00 Hotel Accommodation 256 03 Other Transportation 1314 00 Bundry 0 Sub-total 1314 00 Entertainment 0 Less: Unused air SEF REFLWD Total Expenses 1629 b2 Exchange Rate Exchange Rate 0 0 Distribution of Expense Amount Purpose of Trip or Expendi Code 1314 00 0 0 0 Distribution of Expense Amount Purpose of Trip or Expendi SUP Erec VISION V. O (1 - 0200 1629 00 AT 0 R TETH A		
Sub-totals \$ 59.65 \$ 256.03 \$ 1314.00 Advances from CESL Employee Expenses Reported Cash — Daily General Expense 59.65 Transportation 1314 00 Hotel Accommodation 256 03 Other Transportation 1314 00 Hotel Accommodation 256 03 Other Transportation 1314 00 Bundry 0 Sub-total 1314 00 Entertainment 0 Less: Unused air SEF REFLWD Total Expenses 1629 b2 Exchange Rate Exchange Rate 0 0 Distribution of Expense Amount Purpose of Trip or Expendi Code 1314 00 0 0 0 Distribution of Expense Amount Purpose of Trip or Expendi SUP Erec VISION V. O (1 - 0200 1629 00 AT 0 R TETH A		
Sub-totals \$ 59.65 \$ 256.03 \$ 1314.00 Advances from CESL Employee Expenses Reported Cash — Daily General Expense 59.65 Transportation 1314 00 Hotel Accommodation 256 03 Other Transportation 1314 00 Hotel Accommodation 256 03 Other Transportation 1314 00 Bundry 1314 00 Sub-total 1314 00 Entertainment 1314 00 Sub-total 1314 00 Entertainment 1314 00 Sub-total 1314 00 Entertainment 1400 Sub-total 1314 00 Entertainment 1629 b2 Exchange Rate Exchange Rate 1629 b2 Net advances (1) 1314 00 Distribution of Expense Amount Purpose of Trip or Expendi Code		
Sub-totals \$ 59.65 \$ 256.03 \$ 1314.00 Advances from CESL Employee Expenses Reported Cash — Daily General Expense 59.65 Transportation 1314 00 Hotel Accommodation 256 03 Other Transportation 1314 00 Hotel Accommodation 256 03 Other Transportation 1314 00 Bundry 0 Sub-total 1314 00 Entertainment 0 Less: Unused air SEF REFLWD Total Expenses 1629 b2 Exchange Rate Exchange Rate 0 0 Distribution of Expense Amount Purpose of Trip or Expendi Code 1314 00 0 0 0 Distribution of Expense Amount Purpose of Trip or Expendi SUP Erec VISION V. O (1 - 0200 1629 00 AT 0 R TETH A		
Sub-totals\$ 59.65\$256.03\$ [3]4.00Advances from CESLEmployee Expenses ReportedCash—Daily General Expense59.65Transportation1314 00Hotel Accommodation256 03OtherTransportation1314 00Hotel Accommodation256 03OtherTransportation1314 00Entertainment1314 00Sub-total1314 00Entertainment1314 00Less: Unused air555 REFLWDTotal Expenses1629 b2fare (attach557 CEANDMYTotal Expenses1629 b2bus: CLASS50 CEANDMYTotal Expense \$Cdn. (2)162.9 b2Net advances (1)1314 00Distribution of ExpenseAmountPurpose of Trip or ExpendiV. O (- 0200162.9 00AT DRTEZH 4	rd	
Advances from CESLEmployee Expenses ReportedCash—Daily General Expense59.65Transportation1314 00Hotel Accommodation256 03OtherTransportation1314 00Sub-total1314 00EntertainmentLess: Unused airSEE REFUNDTotal ExpensesSLP FoRFoRExchange RateTickets)Total Expense \$Cdn. (2)1629 68Net advances (1)1314 00HountUnistribution of ExpenseAmountPurpose of Trip or ExpendiV.OII-020016291629 00AT 0R TECH 44	\$	\$
Cash — Daily General Expense 59.65 Transportation 1314 00 Hotel Accommodation 256 03 Other Transportation 1314 00 Hotel Accommodation 256 03 Other Transportation 1314 00 Ital 400 Sub-total 1314 00 Entertainment 1314 00 Less: Unused air fare (attach SEF REFLYD Total Expenses 1629 b2 Sub-total SEF REFLYD Total Expenses 1629 b2 Exchange Rate Exchange Rate 1629 b2 Net advances (1) 1314 00 00 1629 b2 Distribution of Expense Amount Purpose of Trip or Expendi Code Super VISION AT DRTECH 4		
Transportation 1314 00 Hotel Accommodation 256 03 Other Transportation 1314 00 Sub-total 1314 00 Sundry Sub-total 1314 00 Entertainment Less: Unused air fare (attach SEE REFLYD Total Expenses 1629 b8 tickets) SUB-CLASS Exchange Rate 1629 b8 Net advances (1) 1314 00 Other Purpose of Trip or Expendi Sub-total 1314 00 Other AT DRTECH 4	Recap Ttl. Exp. \$Cdn. (2)	1629
Other Transportation 1314 00 Sub-total 1314 00 Entertainment 1314 00 Sub-total 1314 00 Entertainment 1629 62 Less: Unused air fare (attach SLIP Fore Total Expenses 1629 62 Sub-total 1314 00 Total Expenses 1629 62 Net advances (1) 1314 00 Total Expense \$Cdn. (2) 1629 62 Net advances (1) 1314 00 Distribution of Expense Amount Purpose of Trip or Expendi V.OII-0200 1629 00 ATORTEZH ATORTEZH ATORTEZH	Less:	1001
Sub-total 1314 00 Entertainment Less: Unused air fare (attach SEE REFLUD Total Expenses 1629 52 fare (attach SLIP For Exchange Rate 1629 52 bus. CLASS Bus. CLASS Total Expense \$Cdn. (2) 1629 52 Net advances (1) 1310 00 1629 52 Distribution of Expense Amount Purpose of Trip or Expendi Code SUPER VISION AT DRTECH	Net Advances (1)	
Less: Unused air fare (attach fare (attach stickets) SEE REFLVD Total Expenses 629 62 Sus. cutss Exchange Rate stickets) Exchange Rate stickets 162.9 62 Net advances (1) 1314 03 162.9 62 Distribution of Expense Code Amount Code Purpose of Trip or Expendi V.O(1-0200162900 162.9 00 AT 0R TECH 4	Balance owing: — to me 124	315
fare (attach SLIP For Exchange Rate tickets) BUS. CLISS Total Expense \$Cdn. (2) 1629 68 Net advances (1) 1314 03 Distribution of Expense Amount Purpose of Trip or Expendi Code SUPER VISION V.O(1-0200162900 ATORTECH 4	- to CESL	
Indexession Image: Second pay Initial Expense \$Con. (2) Image: Second pay Net advances (1) 1314 03 1314 03 Distribution of Expense Code Amount Code Purpose of Trip or Expendition of Expendition of Expense Amount Code V.O((-0200)1629 00 ATORTECH A	(cheque attached)	
Distribution of Expense Amount Purpose of Trip or Expendi Code SUPER VISION V.O(1-0200 1629 00 ATORTECH 4		
Code <u>V.011-0200162900</u> <u>ATORTEZH</u>		
V.011-0200 1629 00 ATORTECH 4		
AT ORTEZH 4	OF LAS I	1375
	ITH THEC	LIENT
Total Expense \$Cdn.	·	
	12 ,	
For Office Use Daily Debit Credit	D-A. (11.	18JAN
For Office Use Only C 101 101 02CU 102 C Certified as/	true accounting	Date
<u>\\01 \011 0260</u> \\ 029 0 Certifiedias/ 3.45€ 0202 \\029 0		

PAGE 153

COMINCO ENGINEERING SERVICES LTD.

90-02-02

.

۰.

JS644		CUM	ULATIVE TIME D	ISTRIBUTI	DN FOR JAN	, ENDING 9	0/01/31		ATTACHMENT 1
CECV01-1	BISSET C	K HETALLURGICAL	TESTWORK		₽.0. NO:				
CHARGE CODE	HAN NO	NAME	REG HRS	OVT Hrs	TOTAL HRS	CHARGE Rate	CHARGE Amount	OVERTIME PREMIUM	TOTAL AHOUNT
OFFIC	E SERVICES								
		WILLIAMS	5.0		5.0	27.50	137.50		137.50
	ACT	IVITY TOTALS	5.0		5.0		137.50		137.50
HETAL	'L ENGINEER	S							
V0110100	800303 HM	BOLU	117.0	13.0	130.0	60.50	7,865.00		7,865.00
	ACT	IVITY TOTALS	117.0	13.0	130.0		7,865.00		7,865.00
	CHARGE	CODE TOTALS	122.0	13.0	135.0		8,002.50		8,002.50
		JOB TOTALS	122.0	13.0	135.0		8,002.50		8,002.50

COMINCO ENGINEERING SERVICES LTD

ATTACHMENT 2

•

90-02-08

C.VOII BISSET CK METALLURGICAL TESTWORK REIMBURSABLES

708

8	CODE	SUPPLIER NAME	SUPPLIER INVOICE NUMBER	AMOUNT
11	0200	BOLU, H.M. C/O #400	E/A 900118B	1629.68
	0200	DWARF COURIER LTD.	C141231	7.25
	0200	REPRO CHGES - JAN/90	J/E 00024	0.90
	0200	TEL CHGES - JAN/90	J/E 00026	17.26
	0200	TEL CHGES - JAN/90	J/E 00028	48.32
			JOB TOTAL	\$1703.41
				================

TO:

5 Simpson Rd.
Richmond, B.C.
V6X 2R2
Dispaten: 276-1935
Admin: 278-6044

Small in Name — BIG IN RELIABILITY!

COMINCO ENGINEERING

VANCOUVER, B.C.

V6P 6G5

100-1200 WEST 73RD.,

01003

INVOICE NO. C141231 INVOICE DATE ACCOUNT NO. 12/31/89 C14

TERMS: NET 15 DAYS - 2% CHARGED ON ALL OVERDUE ACCOUNTS.

TRANSACTION	INVOICE NO.	DESCRIPTION		AMOUNT	BALANCE
0ATE 11/30/89 12/31/89 12/31/89	C141130 C141231	INTEREST 141 WAYBII //O		675.45 13.32 	675.45 688.77 1,389.42
AGE	CURRENT	30 DAYS	60 DAYS	S 90 DAYS	TOTAL
AMOUNT	713.97	675.45	0.00	0.00	1,389.42

		ORIGINAL INVOICE										
	CHECKS	BOODS SEF RECEIVE		PRICE	TAXES	EXTENSION						
ار برد ال	(G.L	JOB #		PCIS	AMOUNT	1					
	115	50	LUBA		8137	81.50	1					
	4		4952		0010	00 11 -	1					
	[<u>`</u>		* This CAPI		tite	110.45	(Ē					
	[1101	40	ઝા	0400	7 50	1					
		150	71	51	4137	36 75	1					
		NEO	TI		3129	17.00]					
	<u> </u>	1101	<u> </u>	- <u></u>		1 27 35						
-	•	1101	- 10	11-1-11	3000 -	+ 1.35						
1		1151		<u></u>		\$12.75	7					
-		110	<u></u>			15 35	1					

i		OR	IGI	VAL		INVO	ICI			
	CHECKS	1 +. NOI '8401		K888 MISO		XIW		یں ج		
		1150	103	э		8137	الب	.50	ч.	
		101 8401 1101 1105 1101 1101	NA STAN	20 0 9 11 13		EX10 02.00 A 500 B 200 300 300 300 300	000m0000	25 3 3 3 7 5 9 9 2 2 9 9 2 5 9 9 2		
	-	1150	FOL		Ś	5280		145 10		
	-	1103	0 Q Q Q Q Q	C Alexandra		, 		15	ISALSIAA Idrixink (
		1150	Ks	-		83 2 7				
L	<u> </u>	1150	71 66			530		5.0V 5.J	•	

									ų .
dwart	COURI	ER		batch: 278 dmin:		WAYBILL NO.	236	146	
	MOND dwarf COURIER		MONTH	DAY	YEAR 89	SMALL	IN NAME BIG IN RE	LIABILITY	2.44
COMINCO ENGINEER		TO: Mo	DANIC	Con	AND .	COLLECT	ADVANCE CHARGE		
100-1200 WEST 73		CEC	and the second second second second second second second second second second second second second second second	INEER		<i>р</i>			
VANCOUVER, B.C. V6P 6G5 C	14	Sul VC	<u>TE 127</u> L.	70-60	WETH	&TINES T	- WAITING		
D PARTY CHARGE				TEL	\leq		WEIGHT CHARGE		
		HOT N/D FCO		RUSH		G. 🛛 🗹	DELIVERY CHARGE		
RUCTIONS					NO. C		RETURN CHARGE		
						LBS.	OTHER	0125	
V 01.1 0200 TM		APPARENT	GOOD DRDER			KGS.			1.1
	TIME DRIVER RECEIVED H	<u>5</u>	Ţ	â,	DEL GOOD OF	ECEIVED IN APP DER. (PLS. PRIN	ſ) ^{,,}	A.M. DEL.	
ALT MAXIMUM LIABILITY OF CA					IMS MUST BE	SUBMITTED			2 - A & A
IN 30 DAYS OF SHIPMENT. PLEASE	REFER TO TERMS AND	OFFICE		rse side.			CASH 🗌		and the second
				n an the second	- - -			• • •	
						an an an an an an an an an an an an an a	ан 1919 - Ал		
	*								Ę.
		ala di Santa di S	1			· • •			
						· · · ·			0 - 6 - 8
									811. 1
						e george			
						1			
	а. С								
	:		14 15 15						en a Sera
	· · · · · · · · · · · · · · · · · · ·								
		िन्दूरी सन्दर्भ अन			新教 教 公開報				,
								• •	
									• • •
					44				1
		<u>,</u>				у ¹⁵ 17 г. т. т.			. 1, 5
	n a star					alan ar Maria			р #
			* [47		н ^{се}			4.	· · ·
		.4.			·			·	
	¢.		کمی و الاروان بر او						
		9°'	÷ ₽₹						
			1.11		1,-				

COMINCO ENGINEERING SERVICES LTD. REPRODUCTION USAGE CHARGES JANUARY 1990

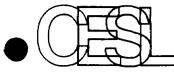
USER ID.	JOB NUMBER	COPIES MADE	RATE	AMOUNT CHARGED
8011	V011 BISSET CREEK METALLURGICAL	REVIEW		
	1ST FLOOR - CANON NP-7550 1ST FLOOR - MITA DC-3132 3RD FLOOR - CANON NP-8570 3RD FLOOR - XEROX 1045 4TH FLOOR - CANON 6650	0 0 3 0 3	0.15 0.15 0.15 0.15 0.15	\$0.00 0.00 0.45 0.00 0.45
	TOTAL CHARGES	 6 =======		\$0.90 ========

oday's date: 30/02/	02 00:18				SERVICES LTD. (Vancouver) one Management System		Period	Page 13 starting 89/12/29
Vo	11		1	ACCOUNT CI	DDE DETAIL REPORT			ending 90/02/01
Date	Time	Ext.	Trunk	Туре	Number Dialed	Loc	Duration	Cost
90/01/12	11:59	5596	T002003	CD02	1-416-822-4111	ON	0:24:37	17.26
Totals	1 calls	5					0:24:37	17.26

yes 1.01.1

.

GENESIS Telephone Management System


.

icount code:

Period starting B9/12/29 ending 90/02/01

ACCOUNT CODE DETAIL REPORT

Date	Time	Ext.	Trunk	Туре	Number Dialed	Loc	Duration	Cost
90/01/18	13:34	5596	T002005	C002	1-416-822-4111	DN	0:01:47	1.38
90/01/19	08:16	5596	T002001	C002	1-416-822-4111	ON	0:14:31	10.35
90/01/19	12:55	5596	T00200B	CD02	1-416-954-0411	ON	0:01:13	1.38
90/01/24	11:09	5596	T002006	C002	1-416-822-4111	DN	0:01:53	1.38
90/01/24	13:36	5596	T002004	CD02	1-416-822-4111	DN	0:23:31	16.57
90/01/25	14:08	5596	T002002	C002	1-416-822-4111	ON	0:24:43	17.26
Totals	6 call	5					1:07:38	48.32

Cominco Engineering Services Ltd.

100 - 1200 West 73rd Ave., Vancouver, B.C., Canada V6P 6G5 / Tel. (604) 264-5500 / Telex 04-55357 / Fax (604) 264-5555

March 29, 1990

North Coast Industries Ltd. 1270 - 601 West Hastings Street Vancouver, B.C. V6B 5A6

Attention: Mr. Dave Copeland

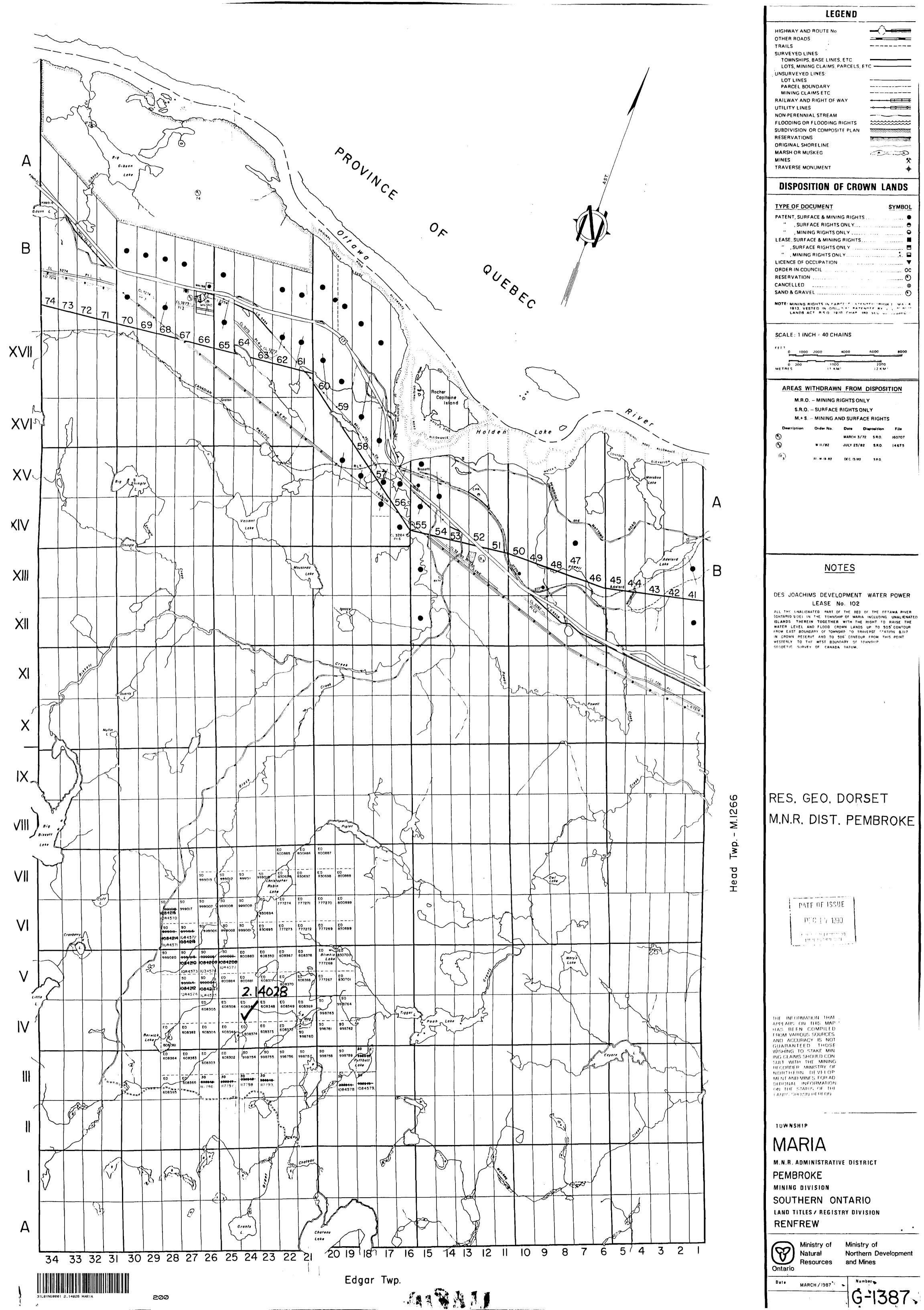
Dear Sir:

Re: Bisset Creek Metallurgical Testwork

Please find attached our February 1990 invoice with respect to the above mentioned project:

February Invoice #02-CECV011 \$3,965.12

Should you have any questions, please call.


Regards,

G.R. Albright Revenue and Project Accounting Manager

GRA/mlw

Attach.

Ltr.Mar.29

(ONTARIO SIDE) IN THE TOWNSHIP OF MARIA INCLUDING UNALIENATED