

31M04SW0025 20 STRATHCONA

010

Diamond Drilling

Township of STRATHCONA

Report No: 20

Work performed by: VINNIE MINES LTD.

Claim Nº	Hole Nº	Footage	Date	Note
L 212361	V-1	117'	Oct/70	(1)
	V-2	106'	Oct-Nov/70	(1)
	V-3	102'	Nov/70	(1)
		325'	-	

Notes:

(1) #267/70

Note: All following information in Logs attacked. Diameter of core 3 onner of Prill Box 416 (Huy 17) Worth Bay Out. Drilling Done. Depit 1 12 Dip. Hrl+-V, Oct 23-28 mel 1970 N--60 W2 Oct 28-Nov5 mo/ 1970 106' 102 N' - 60 V3 NOV5 - NOVIIMI970 3 25 total #267/20 Strathens Jugo.

Venin Mine Sol

Diamond Dill Plan
Claim Croop statch

Vinne Mires Ltd

Por 20 1970

But the Kull

#1 CL. L 212361

Vinnie Mines Limited

Diamond Drill Hole Plan

Vi ; Vz; Vz

Strath cona Twp. ont.

Dec 20, 1970

ME & EC

Sul eheld

DIAMOND DRILL HOLE RECORD — VINUI MINES INITED

Started October 23 , 1970	Purpose salphide zone to shallow depth	Hole No.V-1
Completed October 28th , 1970 Township Strathcora Lat. 5000 N Dep. 5000 E	Depth 117 Feet Group Savard Az. 360 El. 5000	Sheet No. 1 Zone # II Dips -Collar Minus 60

FOOTAGE From To Description Sample No. Feet Width % Cu. Ozs. Au. Ozs. Ag. 0 4.0 Crring (In andesite) 0 7.7 Andesite 5 7.7 20 % pyrrhotite - minor chalcopyrite 7 20.0 Feldspar Porphyry 1 lineation 45 degrees to core 0 25.0 Feldspar Porphyry 0 43.6 Andesite 0 43.6 15 % pyrrhotite minor chalcopyrite 50 degrees to core 10 107.0 Andesite 117.0 End of hole NOTE - Hole did not reach objective - machine had resched in the state of the	A (CCUMULATIVE	E EXTENSI	O N
7.7 Andesite 7.7 20 % pyrrhotite - minor chalcopyrite 7 20.0 Feldspar Porphyry	Cu. x W.	Au. x W.	Ag. x W.	x W
7.7 Andesite 7.7 20 % pyrhotite - minor chalcopyrite 7 20.0 Feldspar Porphyry 1ineation 45 degrees to core 80 23.0 Andesite 90 25.0 Feldspar Porphyry 10 43.6 Andesite 10 43.6 Andesite 15 % pyrhotite minor chalcopyrite 50 degrees to core 16 69.0 Feldspar Porphyry 10 107.0 Andesite 1 lineation 50 degrees to core 117.0 End of hole				
7.7 20 % pyrrhotite - minor chalcopyrite 20.0 Feldspar Porphyry lineation 45 degrees to core 23.0 Andesite 25.0 Feldspar Porphyry 0 43.6 Andesite 15 % pyrrhotite minor chalcopyrite 50 degrees to core 6 69.0 Feldspar Porphyry 107.0 Andesite linection 50 degrees to core 7.0 117.0 End of hole				
20.0 Feldspar Porphyry lineation 45 degrees to core 23.0 Andesite 25.0 Feldspar Porphyry 43.6 Andesite 15 % pyrrhotite minor chalcopyrite 50 degrees to core 66 69.0 Feldspar Porphyry 107.0 Andesite lineation 50 degrees to core 117.0 Feldspar Porphyry 117.0 End of hole				
23.0 Andesite 25.0 Feldspar Porphyry 0 43.6 Andesite 0 69.0 Feldspar Porphyry 0 107.0 Andesite 1 line tion 50 degrees to core 117.0 End of hole				
25.0 Feldspar Porphyry 0 43.6 Andesite 15 % pyrrhotite minor chalcopyrite 50 degrees to core 6 69.0 Feldspar Porphyry 10 107.0 Andesite 1inection 50 degrees to core 117.0 Feldspar Porphyry 117.0 End of hole				
Andesite 15 % pyrrhotite minor chalcopyrite 50 degrees to core 6 69.0 Feldspar Porphyry 10 107.0 Andesite 1inection 50 degrees to core 117.0 Feldspar Porphyry 117.0 End of hole			,	
43.6 Andesite 15 % pyrhotite minor chalcopyrite 50 degrees to core 6 69.0 Feldspar Porphyry 10 107.0 Andesite line tion 50 degrees to core 117.0 End of hole				
15 % pyrrhotite minor chalcopyrite 50 degrees to core 6 69.0 Feldspar Porphyry 107.0 Andesite 1ine tion 50 degrees to core 117.0 Feldspar Porphyry 117.0 End of hole				
6 69.0 Feldspar Porphyry 0 107.0 Andesite linection 50 degrees to core 117.0 Feldspar Porphyry 117.0 End of hole				
107.0 Andesite line tion 50 degrees to core 117.0 Feldspar Porphyry 117.0 End of hole				
line tion 50 degrees to core 117.0 Feldspar Porphyry 117.0 End of hole				
117.0 Feldspar Porphyry 117.0 End of hole				
117.0 End of hole				
NOTE - Hole did not reach objective - machine had reached i				
	ts depth ca	apacity.		

Drilled By Federal Drilling Supplies
Box 416 . North Bay . Ontario

Logged By Ben W. Chechak , B.Sc.

But child

	DIAMO	OND DRILL HO	LE RECOR	$\mathbf{D} - \mathbf{v}$	innio m	iges :	HMI I ID	;					
Started	Purpose To		ore sul		one to		Hole No. ▼-2						
Township	Stratheo	r 5th . 1970 na Dep. 5000 E			Depth 106 Claim 1-6 Az. 360	6.0 21236:	L	Feet Grou	p <u>Save</u> 9 0 '	rd Dips -Col	Sheet Zone	t No. 1 # 11	
	OTAGE	Description	Sample	Width	Accum.	% Cu.	Ozs. Au.	Ozs. Ag.			CUMULATIVE	E EXTENSIO	O N
From	То		No.	Feet	Width	70 Cu.	023. Au.	OZS. Ag.		Cu. x W.	Au. x W.	Ag. x W.	x W.
0.0	4.0	Casing (In	rhyclite										
-0	35.0	Phyolite -	intermedi	ste li	ght sul	chide	minera	lizatio	n through	ghout.			
0	7.5		pyrmotit										
2.3	15.3		ve Sulphi										-
			otite and		gers of	chalo	opyri t	€ 45 €C	grees t	o core			
-	7		-	1	1		1	1	1 "				

4.0	35.0	Phyolite - intermediate light sulphide mineralization throughout .	
4.0	7.5	20 % pyrrhotite - minor chalcopyrite	
12.3	15.3	Massive Sulphides	
		Pyrmotite and stringers of chalcopyrite 45 degrees to core	
		V2=5	
18.0	24.0	5 % pyrrhotite -minor chalcopyrite	
24.0	26.3	Massive Sulphides	
(- T <u>a D</u>	1	Pyrrhotite and stringers of chalcopyrite 45 degrees to core	
26.3	35.0	V2-4 2-5 % pyrrhotite - minor chalcopyrite	
1.0 <u>.0</u>	7,180		
35.0	95.0	Andesite - barren	
65.0	80.0	calcite and quartz stringers 35 to 45 degrees to core .	
95-0	100.5	Feldspar Porphyry	
77.		contacts 60 degrees to core	
100.5	106_0	Andesite	
10000			
	106.0	End of Hole .	
	2000		

Drilled By Federal Orilling Supplies
Box 416 . North Bay . Ontario

Logged By B.W. Chechak B.Sc. CONSULATE G CHUROGIST

Box L chechal

DIAMOND DRILL HOLE RECORD — VINNIE MINES LIMITED

Started Movember 5th, 1970	Purpose To explore sulphide zone to	Hole No. V-3
	challow depth .	
Completed November 11th , 1970	Depth 102 Feet	Sheet No. 1
Township Strathcona	Claim L- 212361 Group Savard	Zone # 11
Lat. 5600 N Dep. 4300 E	Az 360 degrees El 5000	Dips -Collar minus 60
*		• • • • • • • • • • • • • • • • • • • •

FOO	TAGE	Description	Sample	Width	Accum.	% Cu.	Oza Avr	Ozs. Ag.	1		CUMULATIV	E EXTENSI	ON
From	То	1	No.	Feet	Width	70 Cu.	Ozs. Au.	UZS. Ag.		Cu. x W.	Au. x W.	Ag. x W.	x W
0	4.0		licbsse)									
0	20.0	Diabase - ty	dical Ni	pissing	t somer	inst f	ne gra	in					
0	10.0	very is	ine grai	n									
•0	20.0	faulte	d 30 des	rees to	core	- shaf	tered	some ca	lcite a	nd quarts v	einlets 30	degrees to	corc
•0	20.0										que contact		
•0	35.5	Rhyolite - ti	rending	to inte	media	te -	light p	vrite t	hrougho	ut-up to 5	7.		
. 2	21.4	pyrite	• pyrrh	otite d	chale	opvri	e stri	neers 6	0 degre	es to core		***************************************	
· V	1					7.50							
•0	23.5	gulnhid	1 es 29 f	hove 20	decre	es to	core -	some m	essive	narrow stri	ngers		
••		D WT NITT	<u> </u>	3010 20		000	0000		<u> </u>				
•0	28.2	ingran	sing to	10 4 ms	rehoti	to -							1
•0	~ C • C	TUCYES	SILLE. GO	10 /0 D	LT TITO 07	•							
•2	29.6	Monasar	e Sulphi	Act - 7	ry rah o f	5 4 0							
	29.0	ME.SSIV				1100	<u> </u>	 		<u> </u>			
•5	69.0		₩3-1	hyolite									-
		N		b				-					
•9	32.3	435517	e Sulphi	<u>aes - 1</u>	yrrnot	lte							<u> </u>
	<u> </u>		V3-2	<u>L</u>	<u> </u>			-				<u> </u>	
.0	34.0	Massiv		desm	per co	ntect	60 and	Lower	po degr	ees to core	<u> </u>		
	 		V3-3	<u> </u>	-								
•5	42.0	Feldepar Por	p hyry	 									ļ
:8	66.5	Anderite 1 Feldspar Por	ingation	60 đe	rees 1	o cor	G -	ļ					-
•0			bullta						ļ				
•5	68.5	Andenite		 				4 3 - - -					
•5	69.5	20 % pt	yrrhotit	e and s	ome cr	BTC OD.	grite b	y aegre	es to c	ole •	 		
<u>• 5</u>	81.7	Rhyolite			+	ļ		 	 				
•7	84.5	Feldspar Por	pnyry			<u> </u>	ļ						<u> </u>
5	102.0	Andesite		_									<u> </u>
	102.0	End of			<u> </u>								
		Note - This	hole sho	pld be	deeper	red la	ter usi	ng lare	er mach	nue •			
													<u> </u>
												1	<u> </u>
D-111- 1 D-	Federal	Drilling Sup	plies							T	Bollo Chic	ceak, B.c	•
numed RA -	PAT VICE	, North Bay	Ontari	70						Logge	a by conserva	HC CHLECIS	and the second

THE MINING ACT REPORT OF WORK

recorded.Mining Division Miner's Licence 121 e 5 Limi 1 Ontakio 13.0 × 4/6 5.....days of Didemand Drillen. not before reported to be applied on the following contiguous claims Claim No. Days Claim No. Claim No.

1212364 20 V 1-212357 20 4-105802 200 L 212365 L-212358 L-105801 L-212362 4-212359 4-105803 L-2.1.2.3.6.1 2-212360 L-105804. 4-21235(5 20 est of 232318 L-212356

READ CAREFULLY: THE FOLLOWING INFORMATION IS REQUIRED BY THE MINING RECORDER.

For Manual Work, Stripping or Opening up of Mines, Sinking Shafts or Other Actual Mining Operations — Names and addresses of the men who performed the work and the dates and hours of their employment. For Diamond and other Core Drilling - Footage, No. and angle of holes and diameter of core. Name and address of

owner or operator of drill. Dates when drilling was done. Signed core log and sketch in duplicate. For Compressed Air or Other Power Driven or Mechanical Equipment

Type of drill or equipment. Names and addresses of men engaged in operating equipment and the dates and hours of

For Power Stripping - Type of equipment. Name and address of owner or operator. Amount expended. Dates on which

work was done. Proof of actual cost must be submitted within 30 days of recording.

With each of the above types of work sketches are required to show the location and extent of the work in relation to the nearest claim post. In the case of diamond or other core drilling the sketch must be submitted in duplicate. For Geological and Geophysical Survey - The names and addresses of men employed as well as dates. Type of instrument used in the case of geophysical survey. Reports and maps in duplicate must be filed with the Minister within 60 days of recording.

For Land Survey - the name and address of Ontario Land surveyor.

The Required Information is as Follows:

(Attach a list if this space is insufficient)

Signature of Recorded Holder or Agent

The Mining Act Certificate Verifying Report of Work hereby certify:

1. That I have a personal and intimate knowledge of the facts set forth in the report of work annexed hereto, having performed the work or witnessed same during and/or after its completion.

SIX MONTHS IMPRISONMENT 8 PENALTY FOR MAKING A FALSE STATEMENT IN THIS REPORT AND/OR CERTIFICATE